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ABSTRACT 

 

 

Organic Matter Sources, Composition, and Quality  

in Rivers and Experimental Streams 

 

by 

 

Julia E. Kelso, Doctor of Philosophy 

Utah State University, 2018 

 

Major Professor: Michelle A. Baker 

Department: Biology 

 

Organic matter (OM) regulates important ecosystem functions such as nutrient 

and pollutant retention, ecosystem respiration, and primary production. Through these 

processes, rivers remove or slow transport of inorganic nutrients and OM that cause 

eutrophication, and transform pollutants that otherwise are be transported to downstream 

receiving waters.  My study was motivated by research questions such as: How does OM 

source and composition differ in reference versus urban watersheds with wastewater 

inputs? How does OM source and quality (i.e. lability) differ across watersheds that vary 

in land cover associated with human development? How much faster does labile OM 

decay than semi-labile OM in rivers? What is the effect on decay rates when labile and 

semi-labile OM pools of varying lability are mixed? To address these questions, I 
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collected particulate OM (POM) and dissolved OM (DOM) in four watersheds of 

Northeastern Utah. I also measured decay rates of DOM from various experimentally 

derived OM sources in experimental streams. I identified and quantified the proportion of 

autochthonous, terrestrial, and anthropogenic sources of OM within an entirely urban 

watershed, and found significant contribution from anthropogenic sources such as a 

eutrophic lake and wastewater treatment plant (WWTP) effluent. I evaluated the effects 

of different land covers including urban and suburban development, crops, and other 

agriculture on OM composition, and found that OM from WWTPs was distinct from 

terrestrial and autochthonous OM in the same watersheds. Lastly, I measured microbial 

rates of OM consumption that varied in source and quality, including high quality OM 

such as algal leachates and lower quality OM such as soil and plant leachates. These 

experiments revealed extremely fast DOM decay rates in experimental streams (1.7/day). 

Forty percent of impaired rivers and streams in the U.S. are impaired due to 

sedimentation and OM enrichment. My study identified OM sources, characterized 

lability, and quantified microbial consumption of common OM sources to rivers. This 

information will inform management decisions aimed at reducing organic matter loads in 

rivers, such as whether to focus on reducing primary production of autochthonous 

sources, or regulating terrestrial and anthropogenic OM inputs.  

 (212 pages) 
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PUBLIC ABSTRACT 

 

Organic Matter Sources, Composition and Quality 

in Rivers and Experimental Streams 

 

Julia E. Kelso 

 Organic matter (OM) is often considered the “currency” for ecosystem processes, 

such as respiration and primary production. OM in aquatic ecosystems is derived from 

multiple sources, and is a complex mixture of thousands of different chemical 

constituents. Therefore, it is difficult to identify all the sources of OM that enter and exit 

aquatic ecosystems. As humans develop undisturbed land, the rate at which terrestrial 

OM (e.g. soil and plants) and associated nutrients (e.g. nitrogen) enters rivers has 

increased. Increased nutrients may lead to increased primary production from aquatic 

plants and algae, potentially causing eutrophication and harmful algal blooms. In this 

study, I identified and characterized different sources of OM in four watersheds of 

Northeastern Utah with multiple land covers such as cities, forests, and crops. I expected 

OM in watersheds with human-altered land cover would have more OM produced 

instream by algae and other primary producers, than OM in less disturbed watersheds, 

which typically have OM from terrestrial sources. I found that OM at river sites with high 

human impact had high amounts of OM from instream primary production, but there was 

also OM produced in-steam at sites with low human impact. The greatest differences in 

OM across watersheds was due to wastewater treatment effluent. I also measured 

microbial consumption rates of algal derived and terrestrially derived DOM in 

experimental streams to quantify how much faster algal derived OM was consumed than 
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terrestrial OM. I found algal derived OM was consumed extremely fast, so fast that 

realistic measurements of its consumption in some river ecosystems may not be possible. 

It is important to identify and characterize sources of OM to rivers, so watershed 

managers can devise effective OM reduction plans appropriate for the constituent of 

concern unique to that watershed or region. Constituents of concern associated with OM 

include pathogens affiliated with manure, toxins in harmful algal blooms, metals, and 

pharmaceuticals from wastewater treatment effluent. Each pollutant requires a unique 

mitigation strategy and therefore the first step to pollution mitigation is source 

identification. 
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INTRODUCTION 

 

Rivers are bioreactors of organic matter (OM) that can efficiently utilize energy 

from terrestrial OM inputs that would otherwise be lost to the atmosphere, or transported 

to downstream waters (Fisher and Likens 1972). OM processing mediates important 

ecosystem functions, such as nutrient retention and transformation, which influences 

water quality in rivers and downstream lakes and estuaries. Constituents of concern that 

are transformed or retained due to OM processing include trace metals (Mulholland et al. 

1981, Kikuchi et al. 2017) such as mercury (Creed et al. 2018), phosphorus (Guillemette 
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et al. 2013, Larsen et al. 2015), nitrate (Taylor and Townsend 2010), and surfactants 

(Sickman et al. 2007, DeBruyn and Rasmussen 2012). The balance of OM supply and 

demand within a watershed regulates the net export of these constituents of concern to 

downstream waters (Wollheim et al. 2018). Therefore, it is important to identify potential 

sources of OM, so managers can plan to reduce and effectively limit OM supply or 

possibly manipulate OM retention or transformation to increase OM demand.  

 The majority of particulate OM (POM) and dissolved (DOM) is presumed to 

originate from terrestrial sources, and the remainder is attributed to autochthonous 

sources, which are produced instream (Findlay and Sinsabaugh 2003, Findlay and Parr 

2017). However, depending on OM size-class, stream order, reservoir and lake inputs, 

and watershed land cover, the proportion of terrestrial versus autochthonous sources of 

OM in rivers and streams (hereafter rivers) varies greatly (Wilkinson et al. 2013). Coarse 

POM (CPOM is POM >1 mm) from terrestrial ecosystems is an important energy source 

for consumers and higher trophic levels. CPOM is also major source of fine POM 

(FPOM, POM > 0.45 µm and < 1mm) and DOM, but sources of autochthonous CPOM in 

rivers is rarely reported (Wallace et al. 1982, Tank et al. 2010). FPOM has a large surface 

area compared to DOM and therefore affects sorption, and nutrient and metal transport in 

watersheds (Yoshimura et al. 2010, Larsen et al. 2015). While FPOM is assumed to be 

primarily terrestrial, estimates of autochthonous sources of FPOM in rivers range from 

less than 1% to as much as 50%  (Kendall et al. 2007, Ostapenia et al. 2009, Larsen et al. 

2015). Likewise, the majority of DOM is assumed to be resistant to microbial 

consumption, but portions of humic-like DOM may support a significant portion of 

microbial OM demand (Volk et al. 1997, Fellman et al. 2008) and the proportion of 
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humic-like OM may better predict the magnitude of microbial OM processing than more 

labile OM (Amon and Benner 1996). It is hard to identify and separate autochthonous 

versus terrestrial sources in the ambient DOM pool. Therefore, estimates of the 

proportional contributions of each source remain unconstrained (Wilkinson et al. 2013). 

 As the urban footprint of metropolitan areas expands (Ng 2016), OM loads to 

rivers have increased (Kaushal and Belt 2012), and the diversity of OM sources has also 

increased (Stanley et al. 2012). Anthropogenic sources of POM include plastics 

(McCormick et al. 2016) and wastewater treatment plant (WWTP) effluent (Sickman et 

al. 2007, Gücker et al. 2011). Human land use has also altered DOM composition as a 

result of impervious surfaces and agricultural landscapes which transport pollutants such 

as pesticides, surfactants, and other petroleum products (Griffith et al. 2009, Sickman et 

al. 2010, McElmurry et al. 2013). WWTP effluent is a source of hydrocarbons, 

pharmaceuticals, and illicit drugs that WWTPs are not designed to remove during the 

wastewater treatment process (Bridgeman et al. 2014). Typically anthropogenic sources 

are expected to be more labile than terrestrial sources, but their relative lability compared 

to autochthonous sources is not quantified. Therefore, understanding the ecological 

effects of increased labile OM loads to rivers, is necessary to advance watershed 

management paradigms from simple sanitation to sustainable urban landscapes  (Kaushal 

and Belt 2012, Parr et al. 2016). 

 I have introduced OM as a pool divided into unknown proportions of three 

sources: terrestrial, autochthonous, and anthropogenic. The source of OM may predict 

OM composition and quality (Chen and Jaffé 2014). Throughout the literature, aquatic 

OM composition of terrestrial origin is described as high in aromatic and humic content, 
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which is correlated with lower proportions of amino acids and protein-like OM (Findlay 

and Sinsabaugh 1999, del Giorgio and Davis 2003). Consequently, terrestrially derived 

aquatic OM has a high organic carbon to organic nitrogen ratio (C:N; range of 20 to 100 

in aquatic ecosystems) compared to autochthonous sources (5 to 20 C:N range; Knapik et 

al. 2015, Parr et al. 2015). It is also typically composed of larger, more complex OM 

constituents than autochthonous sources, which makes it less likely to be assimilated 

and/or respired by microbes (Guillemette et al. 2013). Therefore, terrestrially derived OM 

in rivers is characterized as a low quality carbon source for microbial consumption. In 

contrast, autochthonous OM sources have greater proportions of small, simple, aliphatic, 

nitrogen rich, protein-like compounds, and are classified as high quality OM (Findlay and 

Sinsabaugh 1999, del Giorgio and Davis 2003, Mostofa et al. 2013). Measures of OM 

composition and quality are also used as proxies of OM bioavailability, where high 

quality OM is considered more bioavailable than low quality OM. Bioavailable (or labile) 

OM is “preferred” by microbes, that is, rapidly consumed within hours, days, or weeks in 

aquatic ecosystems versus semi-labile (or recalcitrant) OM, which is lost over months, 

years, or centuries (Cory and Kaplan 2012). 

Current estimates of microbial consumption or OM decay rates are highly 

variable among OM sources and across aquatic ecosystems. Decay rates calculated from 

natural sources of DOM in rivers, such as soil or algal leachate, range from 0.0003/d to 

62.8/d (Webster and Meyer 1997, Kaplan et al. 2008). One reason for this wide range is 

due to the many methods used to quantify DOM decay, including bioassays, reach-scale 

tracer experiments, and ecosystem models. Bioassays, which include any closed system 

incubation (e.g., dark bottles and plug-flow reactors), are commonly used to measure 
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DOM decay as bacterial respiration and/or organic carbon loss. However, most 

incubations do not include a proxy for the benthic zones of lotic ecosystems (Catalán et 

al. 2016, Mineau et al. 2016, Bengtsson et al. 2018), and benthic habitats are responsible 

for at least half of DOM consumption (Cory and Kaplan 2012, Risse-Buhl et al. 2012, 

Mineau et al. 2016). Further, results are difficult to compare across studies because 

incubation times vary from days to years (Mineau et al. 2016), and are often conducted in 

the dark, so bioassays do not account for effects of photodegradation, an important 

abiotic driver of DOM decay (Moran and Zepp 2000, Findlay and Parr 2017). Thus to 

better estimate DOM processing rates in streams, more empirical measures of 

autochthonous and terrestrial OM decay that include benthic OM consumption are 

needed (Mineau et al. 2016, Bengtsson et al. 2018). 

The effects of increased proportions of autochthonous and/or anthropogenic OM 

sources on river ecosystem function remains unclear. Increased human influence within a 

watershed has increased the proportion of labile OM compared to semi-labile OM in 

freshwater ecosystems (Hosen et al. 2014, Parr et al. 2015, Williams et al. 2016). It is 

proposed that the smaller proportion of labile, autochthonous OM has non-additive 

effects on the decay rates of semi-labile OM, such that when labile and semi-labile OM 

are mixed, labile OM stimulates microbial consumption of semi-labile OM resulting in a 

positive non-additive effect or “priming” effect (Bengtsson et al. 2018). Terrestrial 

studies of OM non-additive effects identified positive non-additive effects over 50 years 

ago (Kuzyakov et al. 2000), but results remain unclear for aquatic ecosystems (Guenet et 

al. 2010, Bengtsson et al. 2018). In theory, increased anthropogenic inputs of labile OM 

may increase mineralization of terrestrial OM in rivers due to non-additive effects of 
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labile and semi-labile DOM. Or, if labile OM does not accelerate semi-labile decay, the 

addition of labile DOM may saturate demand for semi-labile DOM, and consequently 

semi-labile, terrestrial OM loads would increase to downstream lakes and estuaries 

(Wollheim et al. 2018). 

Based on these gaps in OM research, the objectives for my dissertation were to: 

1) Identify seasonal sources of OM to an urban river, and provide proportional 

estimates of terrestrial, autochthonous, and anthropogenic sources of POM 

and DOM. 

2) Identify sources, and characterize composition of POM and DOM in 

watersheds at base flow with varying degrees of human impact and mixed 

land cover including urban development, natural ecosystems (e.g., forest and 

shrublands) and agriculture. 

3) Measure decay rates of labile and semi-labile DOM in experimental streams 

with a benthic microbial community and compare these decay rates to bottle-

bioassays without a benthic microbial community. Then, use measured decay 

rates of labile and semi-labile DOM to model the non-additive effects of 

mixing labile and semi-labile DOM in experimental streams and bottle-

bioassays. 

 

 It is important to identify sources of OM, characterize OM composition, and 

quantify OM decay rates to better to inform models of OM flux between terrestrial and 

aquatic ecosystems, and from headwaters to downstream waterbodies. Aside from its 

relation to carbon budgets, it is important to have baseline estimates of stream OM 
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transformations for managers who aim to reduce OM loads, as well as to mitigate for 

pathogens and contaminants associated with OM in human-altered watersheds (Edmonds 

and Grimm 2011, Stanley et al. 2012). DOM can contribute to biochemical oxygen 

demand, the formation of disinfection by-products, and adsorb metal contaminants 

(Stanley et al. 2012, Kaushal et al. 2014). Also, OM inputs to rivers from terrestrial and 

human altered landscapes needs further study at the reach, and watershed scale (as in this 

study) to understand OM dynamics within larger aquatic networks of wetlands, lakes, 

reservoirs, and urban or agricultural infrastructure (as in Williams et al. 2016). The study 

of novel sources of DOM in anthropogenically altered landscapes is just beginning 

(Stanley et al. 2012, Creed et al. 2015), and estimates of the proportional contributions of 

autochthonous and terrestrial sources, as well as empirical measures of DOM decay, will 

help put the ecological consequences of less studied sources of DOM in perspective. My 

study provides proportional estimates of anthropogenic sources of OM in rivers and 

empirical measurements of OM decay and carbon spiraling metrics that will help predict 

the implications of DOM processing in streams with respect to downstream water quality. 
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CHAPTER II 

 

ORGANIC MATTER IS A MIXTURE OF TERRESTRIAL, AUTOCHONOUS, 

AND ANTHROPOGENIC SOURCES IN AN URBAN RIVER 

 

 

 

Abstract: The first step to reducing organic matter (OM) loads that contribute to poor 

water quality in urban watersheds is to identify the sources of OM inputs. Autochthonous 

sources of OM are predicted to increase compared to terrestrial sources in urban rivers 

due to higher nutrient concentrations and light availability than reference watersheds, and 

anthropogenic sources of OM to urban rivers (e.g. wastewater effluent) are hard to 

distinguish from other sources. Our objective was to identify sources of three size-classes 

of OM to an urban river, the Jordan River, in the Salt Lake Basin, Utah, USA. Stable 

isotopes of carbon, nitrogen and hydrogen were used as tracers of OM sources for 

samples of coarse particulate OM (CPOM), fine particulate OM (FPOM), and dissolved 

OM (DOM). Isotopes were used in a Bayesian mixing model and a graphical gradient-

based mixing model to identify autochthonous, terrestrial, and anthropogenic sources of 

OM. optical properties of DOM were also used to identify the sources and composition of 

DOM. We found CPOM was mostly terrestrially derived with increased autochthonous 

inputs in warm months. FPOM was a mixture of terrestrially derived OM, wastewater 

influenced OM, and OM from the eutrophic Utah lake. DOM was primarily from Lake-
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DOM with increasingly significant contributions from WWTP effluent in fall. Based on 

proportional estimates of autochthonous, terrestrial, lake and wastewater effluent sources 

managers can better target specific sources of problematic OM loads to the Jordan River. 

Additionally, baseline estimates of terrestrial versus autochthonous OM sources in an 

urban river will inform developing theoretical frameworks (e.g. Urban Watershed 

Continuum) that aim to understand ecosystem functions of urban watersheds. 

 

Keywords: urban ecology, wastewater, water quality, dissolved organic matter, 

particulate organic matter, natural abundance stable isotope tracer, mixing models, 

deuterium 

 

 

Introduction 

 Rivers and streams are hotspots of organic matter (OM) transport and 

transformation (McClain et al. 2003, Battin et al. 2008). River metabolism is often fueled 

by terrestrial inputs, and rivers have high metabolic efficiency considering their surface 

area at the global scale (Fisher and Likens 1973, Duarte and Prairie 2005, Raymond et al. 

2013). Recent data revealed the global surface area of streams and rivers was previously 

underestimated by 40%, so they likely contribute significantly more to global carbon 

cycling than previously thought (Allen and Pavelsky 2018). By storing, transporting, and 

transforming OM, rivers provide important ecosystem services, such as nutrient retention 

and removal that maintain water quality and ecological integrity of downstream lakes, 

estuaries, and oceans. For example, river networks efficiently transform terrestrial inputs 
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into biomass that are used as energy for organisms occupying higher trophic levels 

(Wallace 1997, Kominoski and Rosemond 2012). Rivers also store or mineralize 

terrestrial inputs which helps to mitigate excessive nutrients (Alexander et al. 2009, 

Kaushal et al. 2014) and sediment loads (Larsen and Harvey 2017) to downstream 

waterbodies. 

Increased urbanization has altered river geomorphology, flow regimes, and 

biological community structure, potentially reducing the capacity of urban watersheds to 

retain and transform OM (Meyer et al. 2001, Kominoski and Rosemond 2011, Smith and 

Kaushal 2015). Hydrologic connectivity among streets, storm drains, pipe networks, and 

ditches results in high drainage densities (i.e., stream length per unit watershed area) in 

urban watersheds compared to natural watersheds (Baruch et al. 2018). As a result, OM 

loads to urban rivers are larger than to their reference counterparts (Kaushal and Belt 

2012). Excessive particulate OM (POM) loads in rivers increases nutrient concentrations 

associated with POM (Larsen and Harvey 2017), thereby exacerbating symptoms of 

eutrophication in urban rivers. Greater light availability and higher inorganic nutrient 

concentrations in urban rivers may also increase autochthonous OM production (Bernot 

et al. 2010, Smith and Kaushal 2015). A greater proportion of autochthonously derived 

OM compared to terrestrially derived, is problematic because autochthonous OM sources 

are more bioavailable than terrestrial sources (Kaplan and Bott 1989, del Giorgio and 

Pace 2008, Parr et al. 2015). More bioavailable OM in urban watersheds compared to 

reference watersheds augments  microbial activity (McCallister and del Giorgio 2012) 

again exacerbating symptoms of eutrophication such as increased dissolved oxygen 

demand. 
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In addition to increased autochthonous sources, urban OM loads include less 

studied OM sources such as storm water, impervious surface and lawn runoff (Edmonds 

and Grimm 2011, Hosen et al. 2014), as well as hydrocarbons and pharmaceuticals 

(Griffith et al. 2009, McElmurry et al. 2013), all of which occur at unknown quantities in 

urban watersheds. Effluent from wastewater treatment plants (WWTPs) is another 

possible source of labile DOM (Westerhoff and Anning 2000, Figueroa-Nieves et al. 

2014) which again, would spur primary production and microbial metabolism in reaches 

downstream of WWTPs. Anthropogenic OM released from wastewater treatment has 

been studied for decades (Ma et al. 2001, Debryyn and Rasmussen 2002, Gücker et al. 

2006), the downstream consequences of OM are often ignored (Wassenaar et al. 2010). 

Also, due to the interacting effects of landuse, geomorphology, and climate it remains 

difficult to quantify the downstream ecological impact of a single WWTP (Wassenaar et 

al. 2010). ).  

Robust estimates of autochthonous, terrestrial, and anthropogenic OM sources is 

important information for watershed managers to reduce excess OM loads in impaired 

urban rivers. Studies have estimated the proportion of terrestrial versus autochthonous 

particulate OM (POM) in pristine freshwater ecosystems and found terrestrial sources 

dominated POM (Karlsson et al. 2003, Mohamed and Taylor 2009, Solomon et al. 2011), 

or was a mixture of autochthonous and terrestrial sources (Wilkinson et al 2013). 

Reported proportions autochthonous dissolved OM (DOM) in lakes, ranges from 0 to 

20% , and the remainder of DOM is considered terrestrial  (Kritzberg et al. 2004, Bade et 

al. 2007, Ostapenia et al. 2009, Wilkinson et al. 2013).  



17 

Proportional estimates of autochthonous, terrestrial and WWTP effluent OM 

sources in rivers are limited. Autochthonous dissolved organic carbon (DOC) accounted 

for upwards of 25% of total primary production per day in a nutrient-rich stream (Lyon 

and Ziegler 2009), and almost 16% in a reference stream (Hotchkiss and Hall 2015). 

Autochthonous sources of POM were found to increase with greater watershed area, and 

represent at least half of POM in large rivers of the United States (drainage area >10,000 

km2; Kendall et al 2001). In small urban streams, POM was derived from both 

agricultural (15%) and WWTP (85%) sources (Gücker et al. 2011), or contributions of 

autochthonous sources ranged from 20 to 50% all POM and the remainder was terrestrial 

(Imberger et al. 2014). However, estimates remain uncertain because source proportions 

were based on carbon and nitrogen isotope mixing models with endmember δ13C values 

that overlapped. 

Reference watershed DOM is dominated by terrestrial sources (Palmer et al. 

2001, Hood et al. 2005, Cartwright 2010, Wilkinson et al. 2013), while urban watersheds 

have an unknown proportion of laabile (Hosen et al. 2014, Imberger et al. 2014), recently 

derived (Williams et al. 2016), and autochthonous DOM sources (Parr et al. 2015). Labile 

DOM in urban waterways can originate from anthropogenic sources, such as runoff from 

lawns and impervious surfaces, leaky septic tanks, and treated wastewater (Smith and 

Kaushal 2015, Fork et al. 2018), but the proportions of anthropogenic, autochthonous, 

and terrestrial sources of DOM in urban rivers remains unknown. In addition to 

informing management strategies to reduce OM loads, baseline estimates of terrestrial 

versus autochthonous OM sources in an urban river will inform current theoretical 

frameworks, for example the urban watershed continuum that aim to extend conceptual 
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models of organic matter in reference watersheds to urban ecosystems (Vannote et al. 

1980, Kaushal and Belt 2012, Kominoski and Rosemond 2012). 

Our objective was to provide proportional estimates of terrestrial, autochthonous, 

and anthropogenic sources of POM and DOM to an urban river, and identify how these 

sources may vary across 4 watersheds within a matrix of land covers. We collected 

CPOM (POM, >1mm), FPOM (POM, 1mm-0.7m and DOM throughout the year in the 

Jordan River, an urban river in the Great Salt Lake Basin (Fig. 1). Optical properties of 

DOM were used to identify sources and characterize DOM composition, and naturally 

occurring stable isotopes of carbon, nitrogen, and hydrogen were used as tracers in 

mixing models to identify OM sources. Proportional estimates of OM sources can test the 

hypothesis that urbanization increases autochthonous OM in rivers, and this study 

provides one of few proportional estimates of terrestrial, autochthonous, and 

anthropogenic sources in a river. 

 

 

Methods 

Study sites and sampling regime 

The Jordan River begins at Utah Lake, a shallow, eutrophic lake in the southern 

portion of the Great Salt Lake Basin, and flows north 82 km where it terminates in 

wetlands that connect to the Great Salt Lake. Utah Lake receives water from the Provo 

River, Spanish Fork River, and American Fork River as well as wastewater effluent from 

6 WWTP in these drainages (Psomas, 2009). Three WWTPs discharge effluent into the 

Jordan River and are located 22, 37, and 50 km downstream from Utah Lake (Fig. 1).  
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Discharge from Utah Lake to the Jordan River is highly regulated for irrigation, 

and flood control in the Salt Lake metropolitan area; average daily discharge has ranged 

from 0.05 to 8.9 m3 s-1 since 1985 (Cirrus and Stantex 2009; Supplement 1). Since 1985 

the river has been regulated never to exceed 9.8 cubic meters per second (CMS) as a 

result of extensive flooding in 1983-1985 (Supplement 1; Hooten 2011). Depth and width 

range from 0.57 m and 16 m in the first 50 km below Utah Lake to 1 m depth and 39 m 

width at lower reaches (Epstein et al. 2016). The dominant substrate is gravel in the upper 

reaches and fine sediments in lower reaches (Epstein et al. 2016).  

Three size-classes of OM were collected at 9 sites. OM in the Jordan River is 

dominated by the dissolved size-class, which makes up 94% of total annual carbon 

transport, compared to 6% and 1% of FPOM and CPOM (Epstein et al. 2016). CPOM, 

FPOM, and DOM were collected in April, July, September, and November of 2014, and 

December of 2015 for δ13C, δ15N, and δ2H stable isotope analysis. We collected OM in 

April and July to characterize OM before and after snowmelt-runoff which typically 

occurs in mid-June. OM was collected in September, November, and December to 

characterize OM before and after leaf senescence in October. We also collected Jordan 

River water for deuterium (δ2H-water), and carbon isotopes of DIC (δ13C-DIC), at the 

same time as OM (but DIC was not collected in December 2015). 

 

Organic matter isotope sampling of CPOM, FPOM and DOM 

In addition to samples collected in 2014 and 2015, CPOM samples collected from 

a previous study of the Jordan River were also analyzed for δ13C, δ15N, and δ2H. Samples 

from Epstein et al. (2016) were collected in February, May, July, August, and October of 
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2013. All CPOM was sampled with bedload samplers based on the Helley-Smith bedload 

sampler design (Helley and Smith 1971). One-mm mesh nets were attached to the bottom 

and top of a steel pole. Nets were held perpendicular to flow for 6 minutes to collect 

CPOM in transit along the bottom and on the surface of the river. CPOM was then picked 

from the nets and transported back to the laboratory in a cooler. 

FPOM was collected as grab samples in the field with a 1-liter bottle from each 

site and then transported back to the laboratory for filtering. FPOM for δ13C and δ15N 

isotope analysis was filtered on 25 mm diameter glass fiber filters of 0.7 µm pore size 

(Whatman GF/F, Maidstone, UK). Filters were dried at 50 °C, rewet with deionized 

water, and acidified by fumigation in a desiccator with 25% HCl for 6 hours (Brodie et al. 

2011). FPOM for δ2H isotope analysis was collected on 0.45 µm nylon filters (Whatman 

polyamide membrane filters, Maidstone, UK) then backwashed into deionized water, and 

dehydrated at 50 °C in a drying oven (Wilkinson et al. 2013). The remaining solid was 

scraped from glass dishes and sent for δ 2H isotope analyses. 

DOM was collected as grab samples in the field with two, 1-liter bottles at each 

site and filtered in the laboratory through 0.7 µm glass fiber filters (Whatman GF/F, 

Maidstone, UK). One liter was acidified to pH 2.5-3 with concentrated HCl to remove 

inorganic carbon. Acidified DOM was then evaporated in 8-inch diameter glass dishes at 

50 °C, residue was scraped from plates (Wilkinson et al 2013), and stored in scintillation 

vials. DOM from November 2014 and December 2015 was freeze dried because several 

previously collected DOM samples congealed after dehydration and were not submitted 

for isotope analysis. Non-acidified DOM was also dehydrated and residue was sent for δ 

2H isotope analysis. 
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Organic matter source sampling 

Five endmember categories were evaluated as possible sources for each size-class 

of OM: terrestrial, autochthonous, benthic organic matter (BOM), WWTP effluent and 

lake sources. Except for WWTP and lake sources, 1 to 2 samples of each source were 

collected from each site and dried at 50°C for stable isotope analysis. Terrestrial sources 

included leaf-litter (senesced), tree leaves (not senesced), and Phragmites. 

Autochthonous sources included macrophytes, biofilm, and algae. Macrophytes were cut 

from large submerged aquatic vegetation anchored to the benthic zone. Biofilm was 

scraped from benthic rocks, and algae were collected from green mats floating on the 

water surface. Autochthonous sources were transported back to the laboratory, rinsed 

with DI water, and large macroinvertebrates (>1 mm) were removed. BOM was collected 

by sinking a stove-pipe 5 to 10 cm into river sediment, agitating with a meter stick, then a 

100 mL sample of the sediment-water mixture was collected and stored in coolers for 

transport (Wallace et al. 2006). WWTP and lake sources included OM of each-size-class 

from Utah Lake (Lake-CPOM, Lake-FPOM, Lake-DOM) and WWTP effluent (WWTP-

CPOM, WWTP-FPOM, WWTP-DOM), and were collected identically to each size-class 

of OM at sampling sites. Lake OM was collected directly below the Utah Lake pumping 

station in a large depositional area below the pumping station (Supplement 2).  

WWTP and lake sources included OM of each-size-class from Utah Lake (Lake-

CPOM, Lake-FPOM, Lake-DOM) and WWTP effluent (WWTP-CPOM, WWTP-FPOM, 

WWTP-DOM), and were collected identically to each size-class of OM at sampling sites. 
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Lake OM was collected in a large depositional area below the Utah Lake pumping station 

(Supplement 2). WWTP effluent was sampled directly below the effluent outfall of the 

Central Valley Water Reclamation Facility on Mill Creek (Mille Creek WWTP) ca. 2 km 

from the confluence of the Jordan River (Supplement 2). Effluent was only collected 

from the Mill Creek WWTP because the effluent stream of the most upstream WWTP, 

South Valley Water Reclamation Facility (South Valley WWTP) was difficult to 

distinguish from irrigation return flows, and was very small compared to mainstem river 

flow. The 3 most downstream WWTPs on the Jordan River were outside our study 

domain. The South Valley and Mill Creek WWTPs are both tertiary treatment facilities 

with UV disinfection, and were constructed in the early 1980s (Mill Creek 1981-1989 

www.svwater.com, South Valley 1985 www.cvwrf.org). The South Valley WWTP has a 

smaller capacity (25 million gallons per day) than Central Valley WWTP (75 million 

gallons per day), and contributes up to half of total discharge to the Jordan River, or more 

during low flow periods (Cirrus and Stantex 2009). 

 

Stable isotope analysis 

Organic matter samples for isotope analysis were prepared and analyzed using 

standard methods (Hershey et al. 2017).  Briefly, acidified OM samples were packed in 

silver, and non-acidified samples were packed in tin capsules for stable isotope analysis. 

All dried POM samples were ground in a coffee bean grinder. Samples for δ13C and δ15N 

analysis were sent to the Stable Isotope Facility (SIF) at University of California Davis 

on a PDZ Europa ANCA-GSL elemental analyzer interfaced to a PDZ Europa 20-20 

isotope ratio mass spectrometer (Sercon Ltd., Cheshire, UK) with a long term standard 
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deviation of 0.2 ‰ for 13C and 0.3‰ 15N. Deuterium analysis was conducted at the 

Colorado Plateau Stable Isotope Laboratory (CPSIL) at Northern Arizona University. 

Samples were pyrolyzed to H2 gas following the procedures of Doucett et al (2007) and 

analyzed with a Thermo-Finnigan TC/EA and DeltaPLUS-XL (Thermo Electron 

Corporation, Bremen, Germany; precision 2‰). Samples analyzed for δ2H were 

corrected for exchange of H atoms between sample and ambient water vapor using the 

bench top equilibration method (Doucett et al. 2007). The δ13C of DIC was  obtained by 

filling helium-flushed, 12 mL exetainer vials with 1 mL of 85% phosphoric acid and 4 

mL of filtered river water (Taipale and Sonninen 2009). DIC samples were analyzed 

using a GasBench II system interfaced to a Delta V Plus IRMS (Thermo Scientific, 

Bremen, Germany) with a long term standard deviation of 0.1 ‰. Jordan River water was 

analyzed for δ2H (precision 2‰) and δ18O (precision 1‰) isotopes at the Utah State 

University Stable Isotope Lab. Samples were run using a GasBench II with GC PAL 

auto-sampler interfaced to a Delta V Plus IRMS (Thermo Scientific, Bremen, Germany; 

precision 2‰ 2H and 1‰ 18O). 

 

Isotope mixing model 

The Stable Isotope Mixing Model in R package (SIMMR) provided a Bayesian 

inference mixing model designed to estimate the proportional contribution of sources to a 

mixture (Parnell and Inger 2016). SIMMR incorporates variability of end-members into 

the model and estimates source contributions to a mixture regardless of the number of 

isotope tracers (Parnell et al. 2013). Three isotope tracers (δ13C, δ15N, δ2H) were used to 
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estimate source contributions to CPOM and FPOM, but only δ13C and δ2H isotopes were 

used in the DOM mixing model since δ15N values of DOM included nitrate. 

CPOM samples were collected in 9 different months and were grouped into 4 

seasons for SIMMR analysis. Fall included samples collected in November and 

September, winter included February and December, spring included April and May, and 

summer included June, July, and August. FPOM and DOM were collected in April, July, 

September, November of 2014, December 2015, and were grouped by month for 

analysis. 

 

Source identification  SIMMR was first run for each OM size-class, CPOM, 

FPOM, and DOM, using all potential sources (13 total). The high density intervals (HDI) 

of estimated source contribution were compared to identify significant sources to OM. 

Estimated values within the HDI have higher probability density than values outside the 

HDI and the total probability of values in the 95% HDI is 95% (Kruschke 2018). Within 

the 95% HDI, a 75% HDI was delimited to convey skewness of the 95% HDI, and further 

constrain the most credible contribution estimates. Similar to the 95% HDI, values within 

the 75% HDI are more probable than outside the 75% HDI. 

 Sources were excluded from a subsequent mixing models for 2 reasons. First, if 

the 75% HDI of feasible solutions was less than 10%, the source was considered too 

small a contributor and was excluded from subsequent models. Second, if the 75% HDI 

of feasible solutions estimated a contribution greater than 60% of OM, isotope values 

were considered too variable, and the source was excluded. Sequential models were run 

and sources were excluded until a model with 4 or less sources was resolved. While 
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SIMMR can estimate any number of sources, we constrained our CPOM and FPOM 

models to 4 sources since we had 3 isotope tracers (δ13C, δ15N and δ2H).  Models for 

DOM were constrained to 3 sources since we had only 2 isotope tracers for DOM (δ13C 

and δ2H) because dehydrated DOM contained 15N from nitrate. 

 

FPOM and DOM gradient-based mixing model 

 In addition to the Bayesian mixing model, a graphical, gradient-based mixing 

model was used to partition OM sources as either terrestrial or autochthonous (Mohamed 

and Taylor 2009, Rasmussen 2010, Wilkinson et al. 2013). If DOM was primarily 

derived from terrestrial inputs, δ13C-DOM or δ2H-DOM would not vary systematically 

with δ13C-DIC or δ2H-water, and yield a flat line with a y-intercept at the average δ13C or 

δ2H terrestrial isotope values. If DOM was primarily derived from autochthonous 

production, the δ13C and δ2H values would vary linearly with aqueous δ13C-DIC or δ2H-

water values (Wilkinson et al. 2013).  

 

Water quality metrics 

DOC, total dissolved nitrogen (TDN), and Chlorophyll a (Chla) were collected in 

April, July, September, November, and December along with OM samples. DOC and 

TDN samples were filtered through 0.7 µm glass fiber filters into 40 mL amber vials and 

acidified with HCl to a pH of 2.5 for storage until carbon analysis. Acidified DOC and 

TDN samples were run on a Shimadzu TOC-L analyzer via catalytic oxidation 

combustion at 720 °C (DOC MDL 0.2 mg/L, TDN MDL 0.1 mg/L; Shimadzu Corp., 

Kyoto, Japan). Chla was collected on glass fiber filters, in-stream, with a drill-pump 
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(Kelso and Baker 2015), wrapped in foil, frozen, and subsequently analyzed on a Turner 

handheld fluorometer (Turner Designs, Sunnyvale, CA;  MDL 0.1 mg/L) following 

Steinman et al (2007). 

 

DOM spectroscopic indices 

Six spectroscopic indices were calculated from excitation emission matrices 

(EEMs), which were produced on a Horiba Aqualog spectrofluorometer (Horiba 

Scientific, Edison, New Jersey). EEMs were collected over excitation wavelengths 248-

830 nm at 6 nm increments and over emissions 249.4-827.7 nm at 4.7 nm (8 pixel) 

increments. All samples were collected in ratio mode (S/R), and run at an integration time 

resulting in a maximum emission intensity of 5,000 to 50,000 counts per second, 

typically 0.25 to 1 second. Samples that exceeded 0.3 absorbance units at excitation 254 

nm were diluted with deionized water. All samples were corrected for inner filter effects, 

Rayleigh scatter, and blank subtracted in MATLABTM (version 6.9; MathWorks, Natick, 

Massachusetts) as described in Murphy et al (2013). 

The fluorescence index (FI), Yeomin fluorescence index (YFI), freshness index 

(BIX), humification index (HIX), peak T to peak C ratio (TC), and SUVA254 were 

calculated from corrected EEMs in MATLABTM (Table 1). The FI was calculated at 

excitation 370 nm as the ratio of emission intensities at 470 and 520 nm (Cory and 

McKnight 2005). The YFI was calculated as the average intensity over emission 350-400 

nm divided by the average intensity over emission 400-500 nm at excitation 280 nm (Heo 

et al 2016). YFI was calculated in addition to the FI because the YFI can better 

differentiate fluorophore precursor materials than the FI, and it is less sensitive to 
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concentration-dependent effects (Heo et al. 2016). For example, the YFI has a wide index 

range for fulvic, humic, aminosugar-like, and protein-like fluorophores (0.30-6.41). In 

contrast, the FI has a narrower index range (0.82-2.14), and cannot distinguish between 

protein-like and aminosugar-like standards (Heo et al. 2016). The β:α index (BIX), also 

called the freshness index, was calculated as the intensity at excitation 380 nm divided by 

the max intensity between emission 420-435 nm, where higher values represent more 

recently derived DOM (Parlanti et al. 2000). The HIX was calculated at excitation 254 

nm as the area under emission 435-480 divided by the area under emission 300-450 nm + 

435-480 nm; higher HIX values represent more humic-like material (Zsolnay et al. 1999). 

The TC index is the ratio of maximum fluorescence in the peak T region (protein-like) 

versus peak C region (humic-like) with higher values representing more protein-like 

DOM, which are also associated with WWTP effluent (Baker 2001). TC was calculated 

as the ratio of maximum fluorescence at excitation 275/em350 nm to max intensity 

within excitation 320-340nm/emission 410-430 nm (Gabor et al. 2014). Last, SUVA254, 

an indicator of aromaticity, was calculated from DOM absorbance at 254 nm normalized 

by DOC concentration (Weishaar et al. 2003). Nitrate and iron interferences with 

fluorescence and absorbance indices were ruled out following Weishaar et al. (2003) 

given iron concentrations were < 1 mg/L (Jordan River maximum 0.08 mg/L) and nitrate 

concentrations were < 40 mg/L (maximum 20.4 mg/L TDN this study, maximum NO2
-

+NO3-N 8 mg/L, Epstein et al. 2016). 

Spectroscopic indices were correlated to water quality metrics with all months 

combined. Correlations were conducted with the GGally package in R (Schloerke et al. 
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2014). Correlations were considered significant when correlation coefficients were 

greater than 0.35 (Rohlf and Sokal 1995). 

 

 

Results 

Source isotope values  

Deuterium was the only isotope that sufficiently separated autochthonous and 

terrestrial sources (Fig. 2). Biofilm, algae, and macrophytes had the most negative δ2H 

values (-222.6 ‰, standard deviation (sd) 35.9; Table 2). WWTP-FPOM, WWTP-DOM, 

and Lake-DOM had the most positive δ2H values (Fig. 2). All other sources had average 

δ2H values between -150 to -200‰. Variation in δ13C and δ2H values of autochthonous 

sources (mean coefficient of variation, 0.22 δ13C ‰ and 0.12 δ2H ‰) was greater than 

terrestrial sources (mean coefficient of variation, 0.04 δ13C ‰ and 0.07 δ2H ‰). Average 

δ15N for all sources were between 5 ‰ and 10 ‰ except for WWTP-DOM which had 

more positive values (29.4 δ15N ‰) because it included enriched WWTP-derived nitrate. 

Average δ13C values from autochthonous sources overlapped the range of terrestrial δ13C 

values, again highlighting that only δ2H isotopes may be able to differentiate between 

autochthonous and terrestrial sources (Table 2). 

Carbon and hydrogen isotope values were similar between leaf-litter and tree leaf 

sources (Table 2). Therefore if SIMMR did not distinguish sources depending on the 

δ15N isotope value of an OM size-class, as was the case with FPOM and DOM, these leaf 

sources were averaged together and modeled as one terrestrial source 

(Litter+TreeLeaves). However, because leaf-litter had depleted δ15N values (mean 3.9, sd 
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2.4‰) compared to living tree leaves (mean 6.9, sd 3.5‰), SIMMR was able to 

distinguish litter and tree leaves as different sources to CPOM (see below). 

 

CPOM 

Bayesian model Three possible sources of CPOM were identified: biofilms, 

macrophytes and leaf-litter. Algae, BOM, living tree leaves, Lake-FPOM, Lake-DOM, 

WWTP-FPOM, and WWTP-FPOM were excluded from the model because proportional 

estimates were <10%, and all other excluded sources had proportional estimates with 

variability >60% (Supplement 3.1). Leaf-litter always represented the greatest feasible 

proportion of CPOM, except in summer when leaf-litter and macrophyte contributions 

were roughly equal (Fig. 3). Macrophytes were the second most likely source of CPOM; 

contributions ranged from 4 to 38% in fall, increased in winter and spring, and greatest 

feasible proportions were in summer (15-64%). Biofilm was the least likely source of 

CPOM with higher contributions estimated in spring (3-34%), and summer (5 to 26%) 

compared to fall and winter. 

 

FPOM 

Bayesian model Four potential sources of FPOM were identified by SIMMR, 

including Lake-FPOM, WWTP-FPOM, Litter+TreeLeavess and BOM. Autochthonous 

sources, Phragmites, and WWTP-DOM were excluded from the model because 

proportional estimates were <10%, and all other excluded sources had proportional 

estimates with variability >60% (Supplement 3.1). BOM and Lake-FPOM had higher 

feasible proportions in July and September, than November and December, ranging from 
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9 to 82% in July and 8 to 58% in September (Fig. 4). Litter+TreeLeaves increased from 

July to December with median percent contributions of 12 % in July and 18% in 

December. WWTP-FPOM was greatest in September and November, and ranged from 16 

to 69% over both months. In sum, terrestrial sources of FPOM increased in autumn, with 

possible autochthonous contributions from Lake-FPOM in July and September, and from 

WWTP-FPOM in September and November. April was not included because there was 

not enough particulate for analysis of δ2H. 

 

Graphical gradient model If FPOM was derived from 100% autochthonous sources, 

we expected δ2H-FPOM and δ13C-FPOM values to have a positive relationship with δ2H-

water and δ13C-DIC. Lake samples were excluded from δ13C gradient models because 

Lake DIC-δ13C values were extremely high compared to all other OM (Fig. 5).There 

were no significant linear relationships between δ2H-FPOM and δ2H-water within 

months, or among all months combined (Fig. 5 top, Supplement 4). FPOM δ2H values 

averaged -166.3 ‰ (sd 13.6) which was similar to average terrestrial sources (-163.8 ‰, 

sd 11.5). WWTP FPOM had δ2H-FPOM values (mean -140‰, sd 16.2) that were more 

positive than terrestrial δ2H values (Fig. 5 top). Several FPOM samples from July had 

lower δ2H values than terrestrial sources, suggesting autochthonous contributions to 

FPOM in July. November δ13C-FPOM and δ13C-DIC values had a positive relationship (r 

= 0.44, p = 0.04); all other months were not significantly correlated. The results of both 

models indicated FPOM was primarily terrestrial in November and December with 

possible autochthonous contributions from Lake-FPOM and BOM in July, and increased 

contributions from WWTP-FPOM in September and November. 
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DOM  

Bayesian model DOM was composed of 3 sources, Lake-DOM, WWTP-DOM and 

Litter+TreeLeaves. SIMMR predicted average terrestrial contributions of 16%, and 

WWTP-DOM contributions averaged 27% throughout the year. Lake-DOM was always 

the most likely DOM source and averaged 57% throughout the year. Autochthonous 

sources, Phragmites, BOM, Lake-CPOM, Lake-FPOM,  and WWTP-CPOM were 

excluded from the model because proportional estimates were <10%, and WWTP-FPOM 

was excluded because proportional estimates of WWTP-FPOM were too variable (75% 

HDI >60%; Supplement 3.1). Lake-DOM was the primary source of Jordan River DOM, 

with median contributions that ranged from 48 to 70 % throughout the year (Fig. 6). 

WWTP-DOM was the second most likely source of DOM, with median values ranging 

from 20 to 33% in all months. Litter+Tree leaves contributions were similar among July, 

November, and December (mean 11%, sd 7), but were greater in September (mean 29%, 

sd 10).  

 

Graphical-gradient model If DOM was derived from 100 % terrestrial sources, we 

expected no relationship between δ2H-DOM and δ13C-DOM versus δ2H-water and δ13C-

DIC, and a flat line near terrestrial values. All δ2H-DOM values were more positive 

(mean –103.6 ‰, sd 19.3) than average δ2H values of terrestrial sources (Fig.7), and there 

were no significant linear relationships between δ2H-DOM and δ2H-water (Supplement 

4). There were positive relationships between δ13C-DOM and δ13C-DIC in April and 

November (Fig. 7), but these relationships were dependent on WWTP-DOM values, 
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which had more positive δ13C-DOM values than other sites in each month. Both models 

indicated Lake-DOM was a major source of DOM in the Jordan River, and DOM was 

neither autochthonous nor terrestrial but had major contributions from WWTPs 

throughout the year. 

 

Relationships between spectroscopic indices and water quality 

 Correlations of spectroscopic indices and water quality metrics indicated DOM 

was microbial derived but not necessarily autochthonously derived. Chla was negatively 

correlated with FI (r = -0.43) and YFI (r = -0.48) values (Table 3, Fig. 8). This negative 

relationship was due to higher Chla concentrations and low FI/YFI values in July, 

compared to higher FI/YFI values and low Chla in November and December (Table 3, 

Fig. 8). DOC was positively correlated with FI (r = 0.51) and YFI (r = 0.45) values and 

negatively correlated with HIX (r= -0.28) and SUVA (r = -0.42; Table 3, Fig. 8). 

Therefore, samples with high DOC concentrations were more microbial-derived, and less 

aromatic, than samples with low DOC concentrations. SUVA values were also 

significantly higher in September than all other months, indicating increased aromatic 

content of DOM in September (Supplement 5). TC values were too variable to interpret 

as biologically significant, likely due to highly correlated Peak T and Peak C. 

 

 

Discussion 

The POM sources we identified were consistent with previous OM studies in 

urban watersheds, which found POM was a mixture of sources including periphyton, 
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leaves, and grass (Newcomer et al. 2012), WWTP effluent (Gücker et al. 2011), as well 

as algae and macrophytes (Imberger et al. 2013).   In the Jordan River, CPOM was 

primarily terrestrial with a greater proportion of autochthonous sources in warm months. 

Macrophytes and biofilms contributed the most to CPOM in summer, an average of 40% 

and 18%, respectively (Fig. 3). FPOM was at least 12% terrestrially-derived throughout 

the year and increased to an average of 56% in December (Fig. 4). SIMMR predicted 3 

other sources of FPOM including WWTP-FPOM, Lake-FPOM, and BOM. WWTP-

FPOM contributions were greatest in fall due to less dilution from Lake-FPOM after 

irrigation season (Supplement 1). Water is released from Utah Lake during spring to late 

summer to regulate spring runoff and meet irrigation requirements and then water 

released from Utah lake decreases in fall (Cirrus and Stantec 2009). Similarly, a recent 

study of the Jordan River found Utah Lake accounted for roughly 50% of discharge in the 

upstream reach in summer, versus 20% in fall, and WWTP effluent was consistently 

between 30 and 50% throughout the year (personal communication, Jennifer Follstad 

Shah, University of Utah). 

Consistent with lake discharge to the river, Lake-FPOM contributions were 

greatest in July, and we assumed Lake-FPOM was mostly autochthonous for two reasons. 

First, Chla concentrations were highest at all sites in July and reached up to 30 µg/L in 

Utah Lake (Fig. 8). Second, δ2H-FPOM values were lower than average terrestrial δ2H 

values in July indicative of autochthonous sources which have lower δ2H values than 

terrestrial sources (Fig. 5; Doucett et al. 2007).  

We found the majority of DOM was neither autochthonous nor terrestrial 

throughout the year. Median terrestrial contributions from Litter+TreeLeaves averaged 
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15% for all 4 months, and the highest average contributions were in September (29%, sd 

12.5; Fig. 6). Fluorescence indices and δ2H isotope values indicated the remainder of 

DOM was microbial-derived, but not from autochthonous sources. High FI/YFI values 

(>2) indicated microbial derived DOM (Heo et al. 2016, Ateia et al. 2017), and high 

FI/YFI were associated with WWTP river locations, and were negatively correlated to 

Chla (Fig. 8). The FI was designed to distinguish between  autochthonous and terrestrial 

endmembers, based on fulvic acids isolated from a black water river in Georgia (the 

Suawannee, FI = 1.2), and a productive lake in Antarctica (Pony Lake, FI = 1.5; Cory and 

McKnight 2005, Cory et al. 2010). The FI has since been broadly applied to bulk DOM 

samples across ecosystem types with typical values ranging between 1.1 and 1.8 (Jaffé et 

al. 2008). However, at high DOC concentrations the relationship between fluorescence 

intensity and DOC concentration is not linear and therefore when comparing samples 

over a wide range of concentrations the change in FI may not represent the degree of 

change in DOM composition (Korak et al. 2014). FI values above 2 have been attributed 

to WWTP-sourced DOM specifically (Dong and Rosario-Ortiz 2012, Hansen et al. 2016, 

Ateia et al. 2017). 

In addition to high FI and YFI, all δ2H-DOM and most δ13C-DOM values were 

more positive than average terrestrial isotope values collected in this study (Fig. 7), as), 

as well as more positive than terrestrial values in a similar study of Midwestern lakes 

(Wilkinson et al. 2013). In the literature, terrestrial sources range from -124 to -161 δ2H 

‰ which is much more negative than Jordan River δ2H-DOM values (Doucett et al. 

2007, Collins et al. 2016). We concluded DOM was primarily microbial derived from 
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WWTP effluent sources and Utah Lake, or a combination of the 2 considering Utah Lake 

receives effluent from 6 WWTPs. 

We cannot know the source or mechanism for enriched δ2H-DOM values, but we 

propose 3 possible explanations. First, assuming WWTP OM is primarily derived from 

humans, δ2H-DOM would reflect human δ2H values. Human hair directly correlates with 

local tap water δ2H values (Ehleringer et al. 2008) which range from -131.9 to -93.6‰ in 

the Salt Lake Valley (Jameel et al. 2016). Additionally, one other study reported a δ2H-

WWTP value of -52 ‰ (Spies et al. 1989), but this value was produced prior to 

development of standard methods that account for exchangeable hydrogen of OM and 

may not be comparable to other δ2H ‰ values (Wassenaar and Hobson 2000). Second, 

Lake-DOM was the primary source of DOM which also had enriched δ2H-DOM values (-

86.1‰, sd 18.2) compared to all other sources (Table 2). While we expected Utah Lake 

DOM to have more negative δ2H values due to autochthonous production of DOM, Utah 

Lake had enriched δ2H-DOM values due to evaporative enrichment of δ2H-water in Utah 

Lake (Jameel et al. 2016). While water was retained in Utah Lake, microorganisms likely 

used enriched lake water for photosynthesis which would enrich microbial-derived δ2H-

DOM. However, Utah Lake also receives effluent from 6 WWTPs, and therefore, WWTP 

as a source of DOM in Utah Lake cannot be discounted. Third, since δ2H-DOM samples 

were not acidified, DOM may have included bicarbonate, which might make δ2H-DOM 

more positive. We believe bicarbonate contamination was minimal because δ13C-DOM 

samples were acidified, and also had more positive δ13C values than other sources. 

Additionally, FPOM δ2H would have contained bicarbonate contamination as well, but 
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FPOM δ2H values were in the same range as terrestrial values suggesting minimal 

bicarbonate contamination even though samples were not acidified. 

This study highlights a gap in evolving urban aquatic ecosystem frameworks 

which have yet to incorporate the role of higher order streams/rivers (e.g. > 1000 km2), as 

well as the effects of reservoirs or inlet/outlet lakes within urban watersheds on OM 

source and quality. The Urban Stream Syndrome (Walsh et al. 2005) characterized urban 

stream hydrology of engineered headwaters and stream networks as flashy, which is the 

opposite of urban rivers like the Jordan River which are highly regulated, and largely 

sourced as a lake outlet. Likewise the Urban Watershed Continuum is based on low order 

streams of the Baltimore Long Term Ecological Research (Kaushal and Belt 2012, Smith 

and Kaushal 2015) and calls for further research in OM dynamics from human influenced 

headwaters, to rivers, and estuaries to better mitigate the effects of urban pollution that 

result in hypoxic dead zones, as observed in the Chesapeake Bay (Baskin et al. 2002) or 

in the case of the Jordan River, pollution of the Great Salt Lake (Naftz et al. 2008). There 

are many examples of studies of OM quality and quantity in large, urban rivers with 

WWTP inputs, including foundational work in the Santa Cruz and Gila Rivers of 

Phoenix, AZ (Westerhoff and Anning 2000, Edmonds and Grimm 2011), Hudson River, 

NY (Findlay 2005, del Giorgio and Pace 2008, Caraco et al. 2010) and Sacramento River, 

CA (Sickman et al. 2007), but the results of these studies have yet to be incorporated into 

a larger framework that links headwaters to estuaries in human impacted watersheds 

(Kaushal and Belt 2012). Evidence from studies on the Jordan River indicate reaches 

directly downstream of the dam-controlled lake are metabolically autotrophic, and lower 

reaches are heterotrophic because of fine sediments and turbidity that limit light 
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penetration in the water column (Epstein et al. 2016). Our findings suggest heterotrophic 

activity in lower reaches may also be spurred by labile WWTP effluent inputs. 

Specifically, this study informs the total maximum daily load (TMDL) plan 

developed by the state of Utah. The plan identifies OM as the cause of low dissolved 

oxygen concentrations in the lower section of the Jordan (Cirrus and Stantec 2009). The 

TMDL identified 35 possible sources of POM to the Jordan River, primarily from storm 

water runoff and tributaries. We narrowed primary sources of POM and DOM throughout 

the year, and found sources from Utah Lake and WWTPs contributed greatly to DOM, 

the largest pool of OM (Epstein et al. 2016). Dilution from non-WWTP water is a 

common mechanism to mitigate adverse effects of excessive nutrient and OM loads from 

(Edmonds and Grimm 2011, Gücker et al. 2011), and this study can help water 

companies and managers to effectively plan and allocate water released from Utah Lake 

throughout the year to mitigate excessive OM loads of concern (Cirrus and Stantex 

2009). Since Utah Lake was the primary DOM source to the Jordan River, reducing OM 

loads or improving water quality in the river would also require improved water quality 

of Utah Lake. 

OM load reduction and regulation begins with source identification, and therefore, 

this study informs future management of urban river water quality. Excessive OM loads 

may increase the cost of wastewater treatment and make treatment less effective (Chow 

et al. 2005). For example, algal-derived DOM reduces WWTP effectiveness through 

increased coagulant demand and membrane fouling (Nyguen et al. 2005, Henderson et al. 

2008). Likewise, microbial and algal-derived DOM is produced and persists throughout 

the treatment process, and upon chlorination may form hazardous disinfection-products 
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by (Nyguen et. al. 2005, Bridgeman et al. 2014). To prevent increased WWTP costs and 

energy use in the future managers could consider strategies that may reduce 

autochthonous sources in the Jordan River such as reducing autochthonous inputs from 

Utah Lake, decreasing inorganic nutrient inputs at base flow, and/or mitigating inorganic 

nutrient pulses during storms. Increased habitat heterogeneity through construction of 

riffle and pool sequences along the Jordan River could increase retention and microbial 

processing of OM. However, this strategy would have to balance the benefits of increased 

OM retention with flood hazards, and construction of new depositional areas that may 

increase primary production in oxic habitats or methanogenesis in anoxic habitats. This 

study can inform efforts to effectively manage OM loads in urban ecosystems, as well as 

inform future studies that aim to understand the ecological consequences of 

anthropogenic OM inputs to rivers and streams. 
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Tables 

Table 1. Fluorescence indices used to characterize and identify potential sources of DOM in the Jordan River, Salt Lake City, 

Utah. High and low values represent index ranges expected in developed watershedsa and do not encompass all possible values 

of each index.  

Index Abbreviation 
high values  

indicate:  

Low values 

 indicate: 
Reference 

Fluorescence index FI 1.8 
microbial 

derived  
1.2 

terrestrial 

derived 

Cory and 

McKnight 2005 

Yeomin     

fluorescence index 
YFI 2-7 

aminosugar and 

protein-like 
0-2 humic-like 

Heo et al. 

2016 

Freshness index 

(β:α) 
BIX 0.7-0.9 recently derived 0.3-0.5 

less recently 

derived 

Parlanti et al. 

2000 

Humification index HIX variable 

 lower H/C 

ratios    

indicative of 

humification 

variable 

lower degree 

of 

humification 

Zsolnay et al. 

1999 

Peak T to Peak C 

ratio 
TC 1 

wastewater-like, 

high 

biochemical 

oxygen demand 

0 

low 

biochemical 

oxygen 

demand 

Baker 2001 

Specific UV 

absorbance  

at 254 nm 

SUVA 3-6 

greater 

proportion 

aromatic content 

0-3 

lower 

proportion 

aromatic 

content 

Weishaar et al. 

2003 

a See Hosen et al. 2014, Parr et al. 2015, Williams et al. 2016 
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Table 2. Mean isotope values and standard deviation for potential sources of Jordan River 

organic matter (OM) including autochhtonous and terrestrial sources, OM from Utah 

Lake and WWTP effluent, and average isotope values for each size-class of OM. Stable 

Isototpe Analsysis In R (SIMMR) was conducted on all size-classes, and gradient-based 

mixing models were conducted for FPOM and DOM. Nitrogen isotope values were not 

used as a tracer in the SIMMR DOM model due to nitrate contamination of DOM. 

Sources n δ13C ‰ δ15N ‰ δ2H ‰ 

Average Autochthonous  -25.5 ± 5.7 8.7 ± 4.9 -222.6 ± 27.7 

Macrophytes 24 -26.5 ± 4.6 10.4 ± 5.4 -198.0 ± 21.1 

Biofilm 30 -22.4 ± 5.6 9.3 ± 3.8 -244.2 ± 29.4 

Algae 10 -29.6 ± 7.1 6.3 ± 5.4 -255.6 ± 32.6 

Average Terrestrial  -27.2 ± 1.2 5.8 ± 3.1 -163.8 ± 11.5 

Senesced leaf-litter 11 -27.8 ± 0.6 3.9 ± 2.4 -165.8 ± 10.0 

Living tree leaves 17 -28.5 ± 1.4 6.9 ± 3.5 -159.4 ± 9.1 

Phragmites 11 -28.4 ± 1.7 9.6 ± 3.5 -170.4 ± 15.4 

BOM 21 -22.9 ± 4.8 5.1 ± 2.1 -202.3 ± 24.0 

Lake-CPOM 2 -25.6 ± 0.5 7.4 ± 1.8 -164.4 ± 5.3 

Lake-FPOM 5 -19.1 ± 6.1 6.8 ± 1.8 -186.7 ± 19.3 

Lake-DOM 6 -25.9 ± 2.0 5.0 ± 3.9 -86.1 ± 18.2 

WWTP-CPOM 5 -25.6 ± 1.7 10.4 ± 3.2 -182.4 ± 12.4 

WWTP-FPOM 5 -23.9 ± 0.5 8.5 ± 1.2 -140.4 ± 16.2 

WWTP-DOM 5 -23.5 ± 3.5 29.4 ± 12.4a -121.5 ± 15.2 

Jordan River OM     
CPOM 49 -27.0 ± 1.4 8.6 ± 2.5 -182.2 ± 28.3 

FPOM 28 -22.1 ± 2.9 7.2 ± 1.6 -166.8 ± 13.6 

DOM 30 -25.4 ± 1.7 25.1 ± 15.4 a -117.2 ± 19.3 

DIC and water     
River-DIC 34 -9.4 ± 0.9   
Lake-DIC 8 -2.7 ± 0.9   
WWTP-DIC 8 -8.3 ± 0.6   
River-water 49   -98.0 ± 15.9 

Lake-water 8   -77.6 ± 30.9 

WWTP-water 11   -111.7 ± 9.2 

a - DOM nitrogen isotope values include nitrate and were not included in the Bayesian 

mixing models 
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Table 3. Pearson’s correlations between spectroscopic indices FI, YFI, BIX, HIX, and 

SUVA and water quality metrics Chla, DOC, and TDN. Correlations were run between 

indices and water quality metrics for all months combined (see Fig. 8). 

 Chla µg/L DOC mg/L TDN mg/L 

BIX 0.05 -0.2 -0.43 

HIX 0.15 -0.28 -0.29 

FI -0.43 0.51 0.86 

YFI -0.48 0.45 0.63 

SUVA -0.11 -0.42 -0.12 
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Figures 

Figure 1. Study sites (A-I) and wastewater treatment plant (WWTP) located along the 

Jordan River from Utah Lake to terminus in wetlands of the Great Salt Lake. Light grey 

represents urban land-cover. 
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Figure 2. Above the dotted line are average δ2H values of potential sources. Below the 

dotted are average δ2H values of 3 size-classes of organic matter. Dots represent the 

means and whiskers are 1 standard deviation. Autochthonous sources were the average of 

macrophytes, biofilms and algae. Terrestrial sources were the average of senesced leaf-

litter, living tree-leaves and Phragmites (Table 2). 
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Figure 3. The percent feasible contributions of 3 sources to CPOM depending on season. 

Contributions were estimated using SIMMR with 3 isotope tracers, δ13C, δ15N, and δ2H. 

Boxes represent the 75% high density interval; whiskers represent the 95% high density 

interval. 
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Figure 4. Percent feasible contributions to FPOM from 4 sources depending on the 

month. Contributions were estimated using SIMMR with 3 isotope tracers, δ13C, δ15N, 

and δ2H. Boxes represent the median and 75% high density interval; whiskers represent 

the 95% high density interval. 
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Figure 5. Deuterium values of FPOM compared to δ2H-water (top) and δ13C-FPOM 

compared to δ13C of dissolved inorganic carbon (DIC; bottom). The dashed lines and 

grey areas represent the average deuterium and carbon isotope values of terrestrial 

sources collected in this study (see Table 2). Grey circles represent FPOM collected from 

WWTP effluent, black circles are FPOM collected from Utah Lake and open circles are 

all other sites. 
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Figure 6. Percent feasible contributions to DOM from 4 sources depending on the month 

collected. Contributions were estimated using SIMMR with 2 isotope tracers, δ13C and 

δ2H. Boxes represent the median and 75% high density interval; whiskers represent the 

95% high density interval. 
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Figure 7. Deuterium values of DOM compared to δ2H-water (top) and δ13C-DOM 

compared to δ13C of dissolved inorganic carbon (DIC; bottom). The dashed lines and 

grey area represent the average δ2H and δ13C values of terrestrial sources collected in this 

study (see Table 2). Grey circles represent FPOM collected from WWTP effluent, black 

circles are FPOM collected from Utah Lake and open circles are all other sites. 
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Figure 8. Water quality metrics, chlorphyll a (Chla µg/L), dissolved organic carbon 

(DOC mg/L), and total dissolved nitrogen (TDN mg/L), correlated to 5 fluorescence 

indices,freshness index (BIX), flourescence index (FI), Yeomin index (YFI), 

humification index (HIX) and SUVA.  
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Supplement 

 

Supplement 1. Top: Mean daily discharge for the Jordan River (JR) at site H (Figure 1) in 

2014 and 2015 (gage 10171000). A 10-day moving average was calculated for each year 

of daily discharge. Upside-down triangles (4) represent sampling dates in 2014 and the 

triangle represents the sampling date in 2015. Bottom: Flow duration curve since 1985 

until sampling period. After 1985 Utah Lake was regulated so the JR would never exceed 

9.8 m3/s (Hooten 2011). Discharge exceedance probability represents the percent of time 

discharge is predicted to be met or exceeded over the period of record.  
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Supplement 2. Locations where Lake and WWTP OM endmembers were collected. Top: 

just below the Jordan River pumping station Lake samples were collected by wading into 

the thalweg. Bottom: WWTP OM collection site at Central Valley Water Reclamation 

Facility on Mill Creek just below effluent outfall. Samples were collected by floating into 

the thalweg on a one-man raft.  
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Supplement 3. Table of sources that were included and excluded for each SIMMR model. 

If a source had a 75% HDI that was <10% it was excluded, and if the 75% HDI had a 

range >60% the source was excluded. 

 CPOM FPOM DOM 

Macrophytes Included <10% <10% 

Biofilm Included <10% <10% 

Algae <10% <10% <10% 

Senesced leaf-litter Included Included Included 

Living tree leaves 0-80% Included Included 

Phragmites 0-60% <10% <10% 

BOM  <10% Included <10% 

Lake-CPOM 0-60% 0-60% <10% 

Lake-FPOM  <10% Included <10% 

Lake-DOM <10% 0-100% Included 

WWTP-CPOM 0-100% 0-60% <10% 

WWTP-FPOM <10% Included 0-60% 

WWTP-DOM <10% <10% Included 
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Supplement 4. Table of linear regressions results for graphical analysis of gradient based 

mixing models of FPOM (top) and DOM (bottom). Analyses were run for each month 

and for all months combined. 

 δ2H-FPOM vs δ2H-Water δ13C-FPOM vs δ13C-DIC 

Month n slope r p n slope R p 

Apr - - - - 7 -0.33 0.16 0.2 

Jul 8 -0.29 0.35 0.07 8 -0.29 -0.14 0.72 

Sep 7 -0.59 0.627 0.02 7 -0.69 -0.19 0.95 

Nov 8 -0.17 -0.08 0.51 8 0.45 0.44 0.04 

Dec 6 0.45 -0.15 0.58 - - - - 

 
        

All Months 29 -0.29 0.05 0.12 30 0.17 0.19 0.01 

 

 δ2H-DOM vs δ2H-Water δ13C-DOM vs δ13C-DIC 

Month n slope r p n slope r p 

Apr - - - - 6 1.18 0.55 0.05 

Jul 8 0.13 -0.07 0.49 8 0.21 -0.03 0.41 

Sep 8 0.82 0.09 0.24 7 0.03 -0.16 0.71 

Nov 6 0.38 0.41 0.09 7 0.31 0.49 0.05 

Dec 7 -0.12 0.03 0.32 - - - - 

 
        

All Months 29 -0.19 0.05 0.13 28 -0.02 0.04 0.82 
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Supplement 5. Boxplots of water quality metrics, Chlorophyll a (Chla, µg/L), dissolved 

organic carbon (DOC, mg/L), and total dissolved nitrogen (TDN, mg/L) and index values 

for Fluorescence Index (FI), Yeomin Flourescence Index (YFI), Biological index (BIX), 

PeakT to PeakC ratio (TC), humification index (HIX) and SUVA  grouped by month.  
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CHAPTER III 

 

ORGANIC MATTER SOURCES AND COMPOSITION IN 

RIVERS WITH MIXED LAND COVER 

 

 

 

Abstract: As human dominated landscapes have expanded, the diversity of organic 

matter (OM) sources to rivers has increased and knowledge of the composition and 

quality of these sources is lacking. The source and quality of OM regulate ecosystem 

functions that affect material retention and transport within a watershed. Aquatic OM is a 

complex mixture of thousands of organic molecules, which makes OM source difficult to 

identify within a matrix of land covers. We collected fine particulate OM (FPOM) and 

dissolved OM (DOM), in 4 watersheds of north-east Utah with a mixture of urban, forest, 

and agricultural land cover. We used the natural abundance of 13C, 15N, and 2H isotopes 

in mixing models to quantify the proportion of terrestrial, autochthonous, and 

anthropogenic OM. We also used the fluorescence and absorbance properties of DOM to 

characterize OM composition as microbial versus humic derived, and bioavailability 

based on percent protein-like DOM. Percent land cover within a watershed did not 

explain differences in proportional sources of OM among sites. The greatest differences 

in OM composition was due to the influence of wastewater treatment plants (WWTP) at a 

subset of the urban sites. FPOM and DOM were primarily derived from terrestrial 

sources, except at sites influenced by wastewater which had significant contributions 
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from WWTP derived OM. In addition, sites influenced by WWTPs had more 

homogenous DOM that consistently had ~ 35% protein-like DOM. All other sites had 

much more percent protein-like DOM. Further study is needed to understand landscape 

drivers of DOM bioavailability and composition, and studies in watersheds with WWTPs 

should incorporate direct measures of WWTP OM when comparing OM composition 

across land covers. 

 

Keywords: dissolved organic matter, fine particulate organic matter, mixing models, 

land cover, water quality, urban ecology, PARAFAC, wastewater 

 

 

Introduction 

Organic matter (OM) across aquatic and terrestrial ecosystems is a complex 

mixture of thousands of organic molecules and exists in in every compartment of the 

hydrologic cycle. OM source, composition, and bioavailability to microbes (i.e. quality) 

are directly linked. Identification of OM sources is a challenge, due to the multiple 

origins of OM in rivers, including inputs from terrestrial and anthropogenic sources, as 

well as OM produced in situ through primary production. OM source identification is 

helpful so watershed managers can understand the origins of excessive OM loads, and 

infer its bioavailability. OM produced in-stream, autochthonous OM, is considered more 

bioavailable (i.e. labile) to microbes compared to terrestrial sources because microbial 

activity associated with photosynthesis produces exudates of simple, low molecular 

weight compounds that are easy for microbes to consume (Guillemette et al. 2013, Wyatt 
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et al. 2014). Autochthonously derived OM has proportionally more nitrogen rich 

compounds (e.g. amino acids, DNA), than terrestrial sources and therefore is also 

considered high quality OM that is preferentially consumed in nutrient limited conditions 

(Knapik et al. 2014, Guenet et al. 2010). 

The quality of OM in rivers regulates functions such as decomposition and 

nutrient assimilation that affect material retention and transport within watersheds. 

Excessive labile OM and inorganic nutrient loads to rivers can saturate microbial demand 

for high quality OM, thereby reducing transformation and retention of semi-labile OM 

(Edmonds and Grimm 2011, Wollheim et al. 2018). Consequently, OM and associated 

nutrients and pathogens are transported downstream to lakes and estuaries causing 

pollution and eutrophication which pose significant public health risks, and increase the 

cost of drinking water treatment (Chow et al. 2005, Shutova et al. 2014). Therefore, it is 

important to identify the sources and composition of OM in rivers to inform management 

strategies aimed at improving water quality in both rivers and downstream water bodies. 

With increased urbanization and other land-use changes, the diversity of 

anthropogenic OM inputs to rivers has increased (Stanley et al. 2012, Fork et al. 2018) 

adding to the complexity, and difficulty, of characterizing OM sources and composition. 

For example, conversion of wetlands to agriculture was thought to destabilize fossil-aged 

soil OM, which contributed large OM loads to the Sacramento River (Sickman et al. 

2007). However, the same indicators of fossil soil OM (radiocarbon values) may also 

signify the contribution of anthropogenic sources of petroleum products from wastewater 

effluent, urban runoff, or pesticides (Sickman et al. 2010, Butman et al. 2015). Other 

anthropogenic sources of OM include detergents, pharmaceuticals (Kolpin et al. 2002), 
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microplastics (McCormick et al. 2016), leaky sewage pipes and septic tanks (Kaushal and 

Belt 2012), grass clippings, and pet waste (Mallin et al. 2006). Many of these 

anthropogenic sources are discharged from wastewater treatment plants (WWTPs), which 

are not equipped to remove pharmaceuticals and petroleum products (Bridgeman et al. 

2014). The ‘ecological footprint’ of wastewater effluent on downstream organic matter 

processing and production, and effects at higher trophic levels needs further study in 

rivers to understand the consequences of anthropogenic sources of OM to downstream 

lakes and estuaries (Wassenaar et al. 2010, Figueroa-Nieves et al. 2014, Hansen et al. 

2016). 

Numerous studies have aimed to describe OM sources and quality in watersheds 

with different land covers and gradients of human impact. Fine particulate OM (FPOM), 

OM between 0.45 and 1000 µm (Hutchens et al. 2017), was more autochthonously 

derived in agricultural and urban watersheds compared to watersheds with less human 

influence (Newcomer et al. 2012, Imberger et al. 2014). Dissolved OM (< 0.45 µm) in 

urban watersheds was more bioavailable (Hosen et al. 2014,), autochthonous (Petrone et 

al. 2011, Parr et al. 2015), and had greater proportions of hydrophobic/petroleum OM 

(McElmurry et al. 2013), than DOM in non-urban watersheds. Agricultural land use was 

associated with less complex, more microbial-derived OM compared to forest land cover 

(Wilson and Xenopoulos 2008, Williams et al. 2010). But, only one study has 

successfully distinguished DOM associated with urban versus agricultural land cover, 

and differences were dependent on the scale of comparison, and type of waterbody (e.g. 

lake vs. river, Williams et al. 2016). 
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The ability to link OM sources and composition to OM bioavailability is an 

exciting frontier in OM research. Traditional methods to assess bioavailability with 

bioassays that measure dissolved organic carbon (DOC) decay, biochemical oxygen 

demand (BOD), or bioavailable dissolved organic carbon (BDOC), are informative but 

labor intensive. Development of spectrofluorometers that can rapidly analyze DOM 

samples and produce 3-dimensional fluorescence excitation-emission matrices (EEMs) 

has driven advancements in characterizing DOM character and function (Shutova et al. 

2014). EEMs produce peaks over a range of excitation and emission wavelengths, and 

depending on peak location, DOM can be characterized as humic-like or protein-like 

(Coble 1996). The percent protein-like DOM in a sample has been directly correlated to 

DOC decay rate (Parr et al. 2015), BOD (Baker and Inverarity 2004), and BDOC 

(Fellman et al. 2008, Balcarczyk et al. 2009, Petrone et al. 2011, Hosen et al. 2014), 

making spectrofluorometry an inexpensive and efficient tool to describe DOM 

bioavailability. 

Our first objective was to identify sources of FPOM and DOM in watersheds with 

varying land covers including urban, suburban, forest, shrub/scrub, and agriculture. We 

hypothesized that OM at sites with urban or agricultural development would have a 

greater proportion of autochthonously derived DOM due to increased inorganic nutrient 

concentrations and primary production, compared to forest and shrub/scrub land covers. 

Our second objective was to use spectrofluorometric properties of DOM to infer DOM 

composition and relative lability at sites with varying land use. We used fluorescent 

properties of DOM, and the natural abundance of carbon (δ13C), nitrogen (δ15N), and 

deuterium (δ2H) stable isotopes, to estimate the proportion of autochthonous, terrestrial, 
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and anthropogenic sources of OM collected in rivers across 4 watersheds with a mixture 

of land cover. 

 

 

Methods 

Study sites and land cover 

Four watersheds located in the Central Basin and Wasatch Mountain Ecoregions  

(Woods et al. 2001) were sampled in Northeastern Utah. The Logan River, Provo River, 

and Red Butte Creek watersheds all transition from forested, nationally protected areas 

(USDA National Forest and Wilderness Areas) to downstream reaches surrounded by 

either urban or suburban/rural land covers (Hall et al. 2015). The Jordan River flows 

north through the Salt Lake Valley metropolitan area. The source of the Jordan River is 

Utah Lake, a shallow, eutrophic lake that receives wastewater effluent from 6 WWTPs in 

the Orem, Provo, and Spanish Fork urban areas (Hogsett 2015; Fig. 1). The Jordan River 

also receives effluent from 3 WWTPs located 22, 37, and 50 km downstream of Utah 

Lake. It also receives runoff from six major tributaries with headwaters in the Wasatch 

Range (Epstein et al. 2016). There were 8 to 9 sampling sites within each of the 4 

watersheds (Supplement 1). Nine sites were sampled on the Jordan River, 2 of which 

were above and below a WWTP on Mill Creek, a Jordan River tributary 37 km 

downstream of Utah Lake. Study site locations were chosen to sample river reaches that 

represented either, or both natural and developed land covers.  

Watersheds and sub-watersheds were delineated for each site in ArcGIS (version 

10.4.1; Environmental Systems Research Institute, Redlands, California) and the USGS 
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StreamStats web application (https://water.usgs.gov/osw/streamstats). Land cover metrics 

were derived from the 2011 National Land Cover Dataset (Homer et al. 2015); 18 land 

covers were reduced to 6 types expected to explain DOM concentrations and composition 

at a site (Petrone et al. 2011, Williams et al. 2016). Initial land cover classes included 

forest, scrub-grassland, wetland, pasture, cultivated crops, and developed. Percent land 

cover within a sub-watershed was calculated for each the 8 or 9 sites within a watershed. 

 Correlations of percent land cover classes among the 34 sites sampled revealed 

land covers indicative of human influence were positively correlated. For example, 

percent crop and pasture were correlated (r = 0.97), and both crop and pasture were 

correlated with development (r = 0.56 and r = 0.54; Supplement 2A). Percent 

development within a sub-watershed was negatively correlated with percent forest (p = 

0.73) and percent scrub-grassland was positively correlated with both crop (p = 0.31) and 

pasture land cover (p = 0.27). A principal components analysis (PCA) of percent land 

cover within sub-watersheds of 34 sites revealed forest-dominated sites were different 

from development-dominated sites, but there were no significant differences between 

sites with agricultural versus urban development, or scrub versus forest land cover 

(Supplement 2B). Furthermore, a PCA of water quality and land cover metrics among 

sites also revealed differences in OM composition among sites were better explained by 

watershed than land cover (see below). Therefore, further analysis of OM composition 

and quality at each site were compared by watershed and not land cover. 

 

Isotope mixing models 



72 

 

Two isotope mixing models were used to identify the sources of FPOM and 

DOM, a Bayesian mixing model, and a graphical gradient-base mixing model. The Stable 

Isotope Mixing Model in R package (SIMMR) used three isotope tracers (δ13C, δ15N, 

δ2H) to estimate source contributions to FPOM and DOM. SIMMR is a Bayesian 

inference mixing model that can incorporate variability of end-members into the model, 

and estimate source contributions to a mixture regardless of the number of isotope tracers 

(Parnell and Inger 2016). Significant differences among source contributions for each 

land cover classification were assessed by comparing the 95% high density intervals 

(HDI) of the posterior probability densities of each source. Parameter values within the 

HDI have higher probability density than values outside the HDI and the total probability 

of values in the 95% HDI is 95% (Kruschke 2018). Within the 95% HDI, a 75% HDI was 

delimited to convey skewness of the 95% HDI, and further constrain the most credible 

estimates. 

A graphical, gradient-based mixing model was used to partition OM sources as 

either terrestrial or autochthonous (Mohamed and Taylor 2009, Rasmussen 2010, 

Wilkinson et al. 2013). If OM was primarily derived from terrestrial inputs, OM- δ13C or 

OM- δ2H will not vary systematically with DIC δ13C or water-δ2H, yielding a flat line 

with a y-intercept at the average δ13C or δ2H terrestrial isotope values. If OM was 

primarily derived from autochthonous sources, the δ13C and δ2H values will vary linearly 

with aqueous DIC- δ13C or water- δ2H values since autochthonous sources (e.g. algae) 

used river water to fix carbon, and terrestrial sources did not (Wilkinson et al. 2013). 

 

OM sampling 



73 

 

FPOM and DOM were collected at 34 sites in all 4 watersheds (Fig. 1). Samples 

were collected during baseflow in September and November of 2014, and November of 

2015. Five OM endmembers were evaluated as possible sources of FPOM and DOM for 

the SIMMR mixing model. Endmembers included benthic organic matter (BOM), 

autochthonous sources (macrophytes, biofilm, and algae), tree leaves (both senesced and 

live), soil, and WWTP-DOM or WWTP-FPOM. All OM samples were analyzed for  

δ13C, δ15N, and δ2H stable isotopes. 

DOM was collected with 2, 1-liter grab samples at each site and filtered in the 

laboratory through 0.7 µm glass fiber filters (Whatman GF/F, Maidstone, UK). One liter 

was acidified to pH 2.5-3 with concentrated HCl to remove inorganic carbon. Acidified 

DOM was then evaporated in 8-inch diameter glass dishes at 50 °C, residue was scraped 

from plates (Wilkinson et al 2013), and stored in coin envelopes or scintillation vials. 

DOM was then freeze dried, packed in silver capsules, and sent for δ13C and δ15N 

analysis. One liter of non-acidified DOM was also dehydrated in glass dishes, stored in 

coin envelopes or scintillation vials, and residue was sent to be packed and analyzed for δ 

2H analysis.  

FPOM for δ2H samples was collected instream with a 1-liter bottle from each site 

and transported back to the laboratory for filtering. FPOM was collected on 0.45 µm 

nylon filters (Whatman polyamide membrane filters, Maidstone, UK) then backwashed 

into deionized water, and dehydrated at 50 °C in a drying oven (Wilkinson et al. 2013). 

This material was packed in tin capsules. FPOM for δ13C and δ15N isotope analysis was 

collected instream with a drill-pump (Kelso and Baker 2015) and filtered onto a 25-mm 

diameter glass fiber filters of 0.7 µm pore size (Whatman GF/F, Maidstone, UK). Filters 
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were transported back to the laboratory in foil, dried at 50 °C, rewet with deionized 

water, and acidified by fumigation in a desiccator with 25% HCl for six hours (Brodie et 

al. 2011) before being packed into silver capsules.  

OM endmembers were collected in all watersheds throughout the 3 sampling 

efforts, but not all sources were sampled in each sampling effort. Autochthonous sources 

of OM were collected in July and September of 2014 in the Jordan River and September 

of 2014 in all other watersheds (Table 1). The autochthonous endmember was 

represented by the average isotope values of macrophytes, algae, and biofilm. Large 

submerged aquatic vegetation was classified as macrophytes, biofilm was scraped from 

benthic rocks, and algae were collected from green mats floating on the water surface. 

Tree leaves were sampled as a proxy for terrestrial vegetation in all watersheds in either 

November of 2014 or December of 2015 at sites that had Elm trees (Ulmus pumila) 

because elm trees were a deciduous tree present in all 4 watersheds (Hall et al. 2015). 

Senesced tree leaves were collected from riparian zones and tree leaves were collected 

from live elm trees. BOM and soil was collected in December 2015. BOM was collected 

at two sites, a reference site, and a development-dominated site in each of the four 

watersheds. BOM was collected by sinking a stove-pipe 5 to 10 cm into river sediment, 

agitating with a meter stick, and then a 100 mL sample of the sediment-water mixture 

was collected, transported back to the laboratory, and filtered through 0.7 µm glass fiber 

filters. Soil was collected at four sites along the Jordan, two upstream, and two 

downstream of the WWTP effluent input on Mill Creek, and four sites on the Logan 

River at two forested, and two urban sites. Soil was collected by inserting a 10 x 1 inch 

soil auger into soil at the riparian zone of sites. One inch of soil was removed from the 
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bottom of the of the auger. WWTP-FROM and WWTP-DOM were collected instream at 

the WWTP effluent outfall of the Central Valley Water Reclamation Facility on the Mill 

Creek tributary of the Jordan River. WWTP-DOM and WWTP-FPOM were collected in 

all three sampling efforts. WWTP OM was processed for isotopes as described for all 

FPOM and DOM isotope samples. In the laboratory all isotope samples were  dried for at 

least 48 hours in a drying oven at 50°C, ground in a coffee grinder, and packed for 

isotope analysis.  

 

Isotope analysis 

OM stable isotope analysis Samples were sent to the Stable Isotope Facility (SIF) at 

University of California Davis for δ13C and δ15N analysis on a PDZ Europa ANCA-GSL 

elemental analyzer interfaced to a PDZ Europa 20-20 isotope ratio mass spectrometer 

(Sercon Ltd., Cheshire, UK). Deuterium analysis was conducted at the Colorado Plateau 

Stable Isotope Laboratory (CPSIL) at Northern Arizona University. Samples were 

pyrolyzed to H2 gas following the procedures of Doucett et al (2007),and analyzed on a 

Thermo-Finnigan TC/EA and DeltaPLUS-XL IRMS (Thermo Scientific, Bremen, 

Germany).  

Samples analyzed for deuterium were corrected for exchange of H atoms between 

sample and water vapor using the bench top equilibration method (Wassenaar and 

Hobsob 2000). To account for exchangeable hydrogen of a sample OM is equilibrated in 

a vacuum, at a high temperature (> 100º C), using water vapor with a known δ2H value. 

This equilibration process effectively replaces all exchangeable hydrogen with non-

exchangeable hydrogen of a known δ2H value (Wassenaar and Hobsob 2000). Then a 2 



76 

 

endmember isotopic equilibration procedure is used to calculate the proportion of 

exchangeable hydrogen. 

 

OM isotope analysis challenges Many DOM samples collected in the first sampling 

effort could not be successfully analyzed for carbon and nitrogen isotopes because some 

acidified samples that were stored in coin envelopes turned into gel, which degraded coin 

envelopes and could not be packed for isotope analysis. Additionally, DOM samples 

from low DOC sites (e.g. < 1 mg/L) did not produce enough DOM solid when 

dehydrated for deuterium isotope analysis. Likewise, for FPOM, it was often hard to 

backwash and dehydrate sufficient FPOM material for deuterium analysis. These issues 

were rectified for subsequent samples by freeze-drying DOM, storing OM in scintillation 

vials, and collecting more water to filter for FPOM at low DOC sites. However, only 

samples that were successfully analyzed for all three isotopes could be included in the 

SIMMR mixing models. Because of these issues the DOM and FPOM SIMMR models 

included 50 and 75 samples, respectively. 

 

Organic nitrogen isotope correction  The 15N content of DOM samples was 

corrected for 15N of nitrate. First, TDN-δ15N values obtained from DOM residue were 

converted to TDN-15N atom percent (AP), and then values were corrected with nitrate-

15N AP to obtain DON-15N AP. TDN-15N AP was corrected for 15N of nitrate using the 

following equation, 

TDN-15N AP *[TDN] = DON-15N AP *[DON] + nitrate-15N AP *[nitrate]  
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where TDN-15N AP was the 15N AP value of residue submitted for 15N analysis, and the 

concentration of DON was calculated by subtracting the concentration of nitrate, from 

TDN. The corrected DON-15N AP value were then converted to DON-δ15N values for 

DOM stable isotope mixing models. TDN residue was not corrected for ammonium-15N 

isotope values, so DON concentrations and DON-δ15N included ammonium. However, 

we assumed the influence of ammonium was minimal because, on average, ammonium 

was 6.4% of TDN (sd 5.6), while nitrate was 56% of TDN (sd 39.2). 

For nitrate-δ15N analysis filtered water was frozen in 40 mL centrifuge tubes and 

sent to the UC Davis Stable Isotope Facility. Samples were prepared by bacterial 

denitrification (Sigman et al. 2001) and measured with a GasBench + PreCon trace gas 

concentration system (Thermo Scientific, Bremen, Germany) interfaced to a Delta V Plus 

IRMS. Filtered samples, collected concurrently with DOM, were frozen in 60 mL high 

density polyethylene bottles for analysis of nitrate and ammonium. Nitrate was 

determined by nitrate-nitrite calorimetric, automated, cadmium reduction, and 

ammonium nitrogen was determined by semi-automated colorimetry on an Astoria 

Autoanalyzer (nitrate method detection limit (MDL) 0.005 mg/L, ammonium MDL 0.001 

mg/L). 

 

Inorganic tracers of OM Carbon isotopes of dissolved inorganic carbon (DIC) and 

deuterium isotopes of river water were collected in September and November 2014 for 

use in the graphical gradient-based mixing models. The DIC-δ13C was obtained by filling 

helium-flushed, 12 mL Exetainer® vials (Labco, Lampeter, United Kingdom) with 1 mL 

of 85% phosphoric acid and 4 mL of 0.7µm filtered river water (Taipale and Sonninen 
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2009). DIC samples were analyzed at SIF using a GasBench II system interfaced to a 

Delta V Plus IRMS (Thermo Scientific, Bremen, Germany). Unfiltered river water was 

collected in scintillation vials and stored at 6º C until analyzed. δ2H and δ18O isotopes of 

water were obtained with a GasBench II with GC PAL auto-sampler interfaced to a Delta 

V Plus IRMS at the Utah State University Stable Isotope Lab. 

 

Water quality metrics 

We collected samples for analysis of chlorophyll a (Chla) dissolved organic 

carbon (DOC) and total dissolved nitrogen (TDN) concurrently with organic matter 

sampling described above. DOC and TDN samples were filtered through 0.7 µm glass 

fiber filters into 40 mL amber vials and acidified with HCl to a pH of 2.5 for storage until 

carbon analysis. Acidified DOC and TDN samples were run on a Shimadzu TOC-L 

analyzer via catalytic oxidation combustion at 720 °C (DOC MDL 0.2 mg/L, TDN MDL 

0.1 mg/L; Shimadzu Corp., Kyoto, Japan). Chla was collected on glass fiber filters, in-

stream, with a drill-pump, wrapped in foil, frozen, and subsequently analyzed on a Turner 

handheld fluorometer (Turner Designs, Sunnyvale, CA) following Steinman et al. (2007).  

 

DOM fluorescence  

Fluorescence characteristics of DOM were collected to characterize DOM as 

microbial derived versus terrestrially derived using fluorescence indices and protein-like 

versus humic-like fluorophores identified by parallel factor analysis (PARAFAC). 

Filtered water from each site and sampling effort was analyzed for DOM 

spectrofluorometric properties obtained from EEMs collected on a Horiba Aqualog 
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spectrofluorometer (Horiba Scientific, Edison, New Jersey). EEMs were collected over 

excitation wavelengths 248-830 nm at 6 nm increments and over emissions 249.4-827.7 

nm at 4.7 nm (8 pixel) increments. All samples were collected in ratio mode (S/R), and 

run at an integration time resulting in a maximum emission intensity of 5,000 to 50,000 

counts per second. Samples that exceeded 0.3 absorbance units at excitation 254 nm were 

diluted with deionized water. All samples were corrected for inner filter effects, Rayleigh 

scatter, and blank subtracted in MATLABTM (version 6.9; MathWorks, Natick, 

Massachusetts) as described in Murphy et al. (2013).  

Five optical indices were calculated from EEMs: the fluorescence index (FI), 

Yeomin fluorescence index (YFI), freshness index (BIX), humification index (HIX), 

peak T to peak C ratio (TC), and one index, SUVA254 (SUVA) was calculated from 

sample absorbance. The FI was calculated at excitation 370 nm as the ratio of emission 

intensities at 470 and 520 nm (McKnight et al. 2001, Cory et al. 2010). The YFI was 

calculated as the average intensity over emission 350-400 nm divided by the average 

intensity over emission 400-500 nm at excitation 280 nm (Heo et al. 2016). The YFI 

differs from FI in that it has a wider range of values used to characterize fulvic, humic, 

aminosugar-like and protein-like fluorophores (0.30-6.41), the last two of which are 

prevalent in WWTP effluent (Heo et al. 2016). In contrast, the FI has a narrower index 

range (0.82-2.14), and cannot distinguish between protein-like and aminosugar-like 

standards (Heo et al. 2016). The β:α index (BIX), also called the freshness index, was 

calculated as the intensity at excitation 380 nm divided by the max intensity between 

emission 420-435 nm, where higher values represent more recently derived DOM 

(Parlanti et al. 2000). The HIX was calculated at excitation 254 nm as the area under 
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emission 435-480 divided by the area under emission 300-450 nm + 435-480 nm; higher 

HIX values represent more humic-like material (Zsolnay et al. 1999). The TC index is the 

ratio of maximum fluorescence in the peak T region (protein-like) versus peak C region 

(humic-like) with higher values representing more protein-like DOM, which are also 

associated with WWTP effluent (Baker 2001). TC was calculated as the ratio of 

fluorescence intensity of peak T, at excitation 275/emission 350 nm, to the maximum 

intensity of peak C within excitation 320-340nm/emission 410-430 nm (Gabor et al. 

2014). Lastly, SUVA, an indicator of aromaticity, was calculated from DOM absorbance 

at 254 nm normalized by DOC concentration (Weishaar et al. 2003). In addition to 

fluorescence indices, we calculated a DOC:TDN ratio to compare the proportion of 

organic carbon to inorganic plus organic nitrogen in DOM samples. 

PARAFAC was used to identify humic and protein-like fluorescent components 

of DOM to elucidate differences in DOM that varied by watershed and water quality 

within a watershed. PARAFAC decomposes a collection of EEMs into groups of organic 

compounds with similar fluorescent characteristics (Stedmon and Bro 2008, Murphy et 

al. 2013) The drEEM toolbox was used to create a PARAFAC model in MATLABTM 

following Murphy et al. (2013). Resolved PARAFAC components were then compared 

to previously found fluorophores in the open source library OpenFluor (Murphy et al. 

2014). A total of 499 EEMs, collected as part of a previous synoptic sampling effort from 

July 2014 to December 2015, were used to create the PARAFAC model. The model 

included EEMs from all 4 watersheds, each of which composed 11-36% of all EEMs 

used for the model. Of the EEMs from the model, 97 were collected concurrent with OM 

for this study, and were used for further analysis.  
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DOM source and composition analysis 

Wilcoxon sign-ranked t-tests were conducted in R to identify water quality and 

DOM composition indices that differentiated high and low human impact sites (version 

3.4.3; R Project for Statistical Computing, Vienna, Austria). Multi-way ANOVAs were 

conducted in R and significant differences among watersheds were assessed with Tukey’s 

HSD post-hoc test. Metrics included four water quality variables (DOC, TDN, 

DOC:TDN, Chla), 6 indices (BIX, FI, YFI, HIX, SUVA, TC), and four PARAFAC 

components (C1, C2, C3, C4). Metrics that were significantly different between high and 

low human impact sites were used in a principal component analysis (PCA) of DOM. 

However, DOC and TDN were excluded from the PCA to emphasize DOM composition 

and not concentration. Prior to conducting the PCA all variables were Z-score 

standardized. The PCA was conducted with using the FactoMineR package (Lê et al. 

2008), and visualized with the factoextra package (Kassambara 2015). 

Pearson’s correlations were conducted among water quality metrics, isotope 

values, fluorescence indices, and PARAFAC components for DOM grouped by 

watershed to identify variables that revealed the source or character of DOM among 

watersheds. Correlations were conducted with the GGally package using all DOM 

samples and grouped by watershed (Schloerke et al. 2014). Correlations were considered 

significant when correlation coefficients were greater than 0.35 (Rohlf and Sokal 1995) 

 

 

 

 



82 

 

Results 

Watershed characteristics 

 The 4 watersheds differed substantially in area and less so in land cover. The 

Jordan River had the most human developed land cover and largest watershed area of all 

4 watersheds equal to1191 km2 upstream of the Mill Creek confluence, and 1683 km2 at 

the most downstream site. The Provo and Logan Rivers were similar in area, 1900 km2 

and 1526 km2 respectively, and Red Butte Creek was the smallest watershed (186 km2; 

Table 2). The Jordan River watershed was the most human impacted watershed with the 

greatest percent urban development within a sub-watershed (mean 26%, sd 6%) and 

agriculture land cover (mean 7%, sd 3%) compared to other watersheds. The 3 other 

watersheds had similar levels of percent development (mean 3%) and agriculture (1%) 

and were dominated by forest (mean 73%) and scrub-grassland (mean 21%) land covers. 

Average DOC (4.0 mg/L sd 1.5), TDN (5.1 mg/L sd 3.2) and Chla (3.9 µg/L sd 3.7) 

concentrations were all highest among Jordan River sites and lowest among Logan River 

sites (DOC 0.7 mg/L sd 0.2), TDN (0.2 mg/L sd 0.1) and Chla (1.4 µg/L sd 1.1) 

 

Deconstructing influence of land cover on watershed DOM composition 

PARAFAC A 4 component PARAFAC model was resolved and validated with split-

half analysis (Supplement 3). Components 1 and 2 (C1, C2) were humic-like, and 

components 3 and 4 (C3, C4) were protein-like (Table 3). Previous studies identified C1 

and C2 as fulvic-acid derived (Walker et al. 2009, Yamashita et al. 2011), and C2 was 

also characterized as terrestrial with high molecular weight content (Amaral et al. 2016). 

Protein-like C3 was identified as tryptophan-like (Graeber et al. 2012) and protein-like 
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C4 was identified as both tyrosine and tryptophan- like (Walker et al. 2009, Murphy et al. 

2011, Yamashita et al. 2013). In this study, percent C2 and C4 were correlated with 

percent forest land cover within a sub-watershed and percent C1 and C3 were correlated 

with developed land cover (Supplement 4). 

 

DOM by watershed analysis To better understand variability in DOM composition 

among watersheds we assessed differences in water quality, fluorescence indices, and 

PARAFAC components grouped by watershed with multi-way ANOVAs and a PCA. 

DOC, TDN, and Chla were significantly higher for the Jordan River than all other 

watersheds (ANOVAs, Supplement 5). The FI, YFI, BIX, percent humic-like C1, and 

percent protein-like C3 were also higher for the Jordan River than all other watersheds. 

The Provo River had the highest HIX (range 5 to 10 and lowest percent protein (22 to 

35%) compared to all other watersheds, and had high SUVA values (range 2.2 to 5.3) 

compared to all watersheds except for Red Butte Creek which had variable SUVA (range 

0.3 to 5.4). 

 The first 3 components of the PCA explained 45%, 21% and 10% of variation 

among DOM samples (Fig. 2, Supplement 6). The FI, YFI, TC, BIX and percent protein-

like C3 had significant positive correlations with PC1, and SUVA, HIX, DOC:TDN, and 

percent C2 were negatively correlated to PC1 (Table 4). The FI and percent humic-like 

C1, which were greatest at Jordan River sites, were positively correlated with PC2. 

Positive PC1 coordinate values separated Jordan River sites with more microbial-derived 

DOM (high FI, YFI, TC, and BIX) from negative PC1 coordinate values and Provo sites 

with more humic-like DOM (high SUVA and HIX). DOM at sites in the Logan and Red 



84 

 

Butte Creek watersheds were more humic-like than Jordan River DOM, but not as humic-

like as Provo DOM as indicated by overlap of 95% confidence ellipses. Chla was only 

significantly correlated to PC3 (Supplement 6). Positive C3 coordinate values were 

correlated with Chla, and distinguished Utah Lake and upstream Jordan River sites from 

WWTP sites and lower reaches with negative PC3 coordinates. Significantly more 

microbial-derived and protein-like DOM at Jordan River sites compared to all others was 

attributed to the influence of Utah Lake and WWTP effluent. 

 

Attribution of OM sources 

DOM isotope mixing models  DOM in the Jordan River was primarily WWTP-

derived while DOM from all other watersheds was primarily terrestrially-derived (Fig. 3). 

WWTP-derived DOM ranged from 8 to 85% in the Jordan River and terrestrial 

contributions from tree leaves ranged from 3 to 68%. In other watersheds, contributions 

from tree leaves ranged from 53 to 93% in the Provo River and Red Butte Creek, with 

slightly lower tree leaf contribution estimated for the Logan River (95% HDI 26 to 79%). 

Maximum feasible autochthonous contributions were estimated for the Jordan River 

(95% HDI 1 to 46%, median 11%), but median feasible autochthonous contributions 

were highest for the Logan River (95% HDI 3 to 43%, median 18%). Estimated 

contributions of BOM as a source of DOM were similar to estimates of autochthonous 

sources across watersheds likely due to similar mean δ13C and δ2H values between these 

sources (Table 1). 

DOM carbon gradient-based mixing models indicated most DOM was 

terrestrially derived, while DOM hydrogen gradient-based mixing models indicated 
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DOM was only terrestrial at some Provo and Red Butte sites and not terrestrial in other 

watersheds. DOM-δ13C and DIC-δ13C were in the same range as terrestrial δ13C values 

and were not positively correlated in any watershed or among all watersheds (Fig. 4A, 

Supplement 7) indicating terrestrial sources of DOM. All DOM δ2H values were more 

positive than terrestrial δ2H values for the Jordan River, as were over half of Red Butte 

samples and all but one Logan DOM sample (Fig. 4B). A wide range in δ2H values of 

water was due to differences in water-δ2H values in each of the 4 watersheds 

(Supplement 8). Water δ2H values in the Logan and Provo rivers averaged -128.4 ‰ and 

-122.9 ‰ (sd 3.4 and sd 4.4) which were lower than values in Red Butte Creek (mean -

115.8 ‰, sd 10.3) and the Jordan River (mean –97.4 ‰, sd 21.9). DOM- δ2H values were 

higher at WWTP sites than all other sites (Fig. 4B). Carbon isotope values between 

autochthonous and terrestrial sources were not different (means -25.5 versus -25.4), but 

hydrogen isotope values were different (mean -222.6 versus -176.5 δ2H), and therefore 

the hydrogen gradient based mixing models were considered more informative.  Results 

from SIMMR and the hydrogen gradient-based mixing model indicated most sites had 

primarily terrestrially-derived DOM, except in the Jordan River primarily a WWTP- 

derived DOM. 

 

Microbial versus autochthonous DOM sources We expected microbial derived 

DOM to be derived from autochthonous DOM, and therefore expected a positive 

relationship between Chla and microbial indices of DOM, Chla, and percent protein-like 

DOM, and a negative relationship between Chla and DOC:TDN.  In contrast to this 

expectation, Chla and FI/YFI microbial indices were negatively correlated for the Jordan 
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River (r = -0.69, r = -0.62), and there were no strong relationships between Chla and 

FI/YFI in other watersheds (Fig. 5; Supplement 9). Also counter to our expectation, there 

was a positive relationship between Chla and DOC:TDN for the Jordan River, but 

DOC:TDN was extremely low for the Jordan River (mean 0.9, sd 0.6) compared to all 

other watersheds (mean 6.1, sd 4.9). Chla and percent protein-like DOM were positively 

correlated at WWTP sites (r = 0.52), but this relationship was driven by one very low 

Chla concentration (0.45 µg/L) at the WWTP site. We reasoned that autochthonous 

sources were present at WWTP sites, but a different microbial source also contributed to 

significant portion of DOM at WWTP sites. 

 

FPOM isotope mixing models Similar to DOM results, FPOM was primarily from 

terrestrial sources in all watersheds except the Jordan River (Fig. 6). Estimated 

contribution of WWTP-FPOM for the Jordan River ranged from 47 to 77% and ranged 

from 1 to 34% for other watersheds. Compared to all other watersheds the Logan River 

had the greatest variability in estimated source contributions with autochthonous and 

BOM sources ranging from 2 to 69% and terrestrial contributions ranging from 5 to 85%. 

In contrast, autochthonous and BOM sources ranged from 1 to 30% for all other 

watersheds, and terrestrial sources ranged from 33 to 91% in the Provo and Red Butte 

Creek watersheds. 

Graphical gradient-based isotope mixing models were consistent with SIMMR 

mixing model results and indicated FPOM was terrestrially derived across watersheds 

except for the Jordan River. FPOM δ13C and δ13C-DIC isotope values were positively 

correlated for the Jordan River (r = 0.68), and δ13C values were not in the terrestrial range 



87 

 

suggesting autochthonous sources of OM (Fig. 4A, Supplement 7). The Logan River also 

had positively correlated δ13C and δ13C-DIC (r = 0.53), but, FPOM δ13C values were 

clustered within the range of terrestrial δ13C values, and therefore we assumed FPOM 

was primarily terrestrial. In contrast to the carbon graphical gradient-based model, the 

hydrogen gradient-based model suggested Jordan River FPOM were primarily terrestrial, 

and from a variety of sources in all other watersheds as indicated by a variable range of 

δ2H-FPOM values (-198 to -120 δ2H ‰; Fig 4B). 

 

 

Discussion 

The greatest differences in OM composition among sites were not elucidated by 

differences in land cover. OM composition was significantly different in the Jordan River 

due to the influence of WWTP effluent and autochthonously derived OM from Utah 

Lake, and OM composition was more variable for the Logan River due to human 

activities at forested sites (e.g. cattle grazing and recreation).  

Despite numerous studies, it remains difficult to detect differences in DOM 

composition in response to gradients of urban development, and across multiple land 

covers. Studies of DOM quality among multiple land covers (e.g. agriculture, wetland, 

forest) (Petrone et al. 2011, Parr et al. 2015, Williams et al. 2016), and watersheds that 

included WWTP effluent, or leaky sewage infrastructure, have found human impact 

increased DOM lability (Harbott and Grace 2005, Newcomer et al. 2012, Hosen et al. 

2014). But, only one study has successfully distinguished the effect of agricultural versus 

urban land cover on DOM composition and results were dependent on landscape scale of 

analysis (Williams et al. 2016). Several studies that reported a WWTP influence did not 
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directly sample WWTP effluent OM (Stedmon et al. 2003, Sickman et al. 2007, Petrone 

et al. 2011, Hossler and Bauer 2012, Lambert et al. 2017) or did not consider wastewater 

effluent sources in the initial study design (Harbott and Grace 2005, Newcomer et al. 

2012, Hosen et al. 2014). A few studies directly sampled DOM from WWTPs to compare 

to other land uses and found DOM was less aromatic, (Westerhoff and Anning 2000), and 

had lower C:N ratios (Gücker et al. 2011) than non-WWTP or agricultural DOM. Duan et 

al. (2014) compared wastewater OM stable isotopes to surrounding urban, non-urban, and 

storm water DOM, and found terrestrial derived OM was replaced by wastewater and 

autochthonous sources of DOM. We had similar results to Duan et al. (2014), but ours is 

the first study to report proportional contributions of autochthonous, terrestrial, and 

WWTP sources in watersheds with multiple land covers. Proportional estimates of OM 

sources can then inform OM reduction strategies to focus on WWTP effluent versus 

autochthonous sources, non-point sources from agriculture, or terrestrial sources within a 

watershed. 

 Identifying relative proportions of DOM sources can also help to characterize the 

quality of DOM, or bioavailability to microbes. The composition of DOM at sites 

influenced by WWTP effluent were likely of high quality for microbial assimilation and 

mineralization. DOM in the Jordan River was directly correlated with indices of 

microbial-derived DOM including FI, YFI, BIX, and had very low DOC:TDN values 

indicating it was more bioavailable than DOM of other watersheds. It is important to note 

that FI values are based on the assumption that OM concentration varies proportionally 

with fluorescence intensity, which is generally true except at high DOC concentrations 

(e.g. >5 mg/L , and FI values above 2 are rarely, if ever, reported for non-human 
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impacted water bodies. However, several studies have reported FI values greater than 2 

from samples of algal leachate and WWTP effluent (Dong and Rosario-Ortiz 2012, 

Hansen et al. 2016, Ateia et al. 2017). Furthermore, Ateia et al. (2017) described DOM 

with FI values between 1.2 and 1.8 as a mixture of terrestrially- and microbial-derived 

DOM and values above 1.8 represented entirely microbial-derived DOM. We concluded 

DOM from the Jordan River was dominated by microbial-derived DOM, some from Utah 

Lake and some from wastewater effluent. 

 It was likely autochthonous sources of DOM from high primary production in 

Utah Lake contributed some degree to indicators of DOM bioavailability at Jordan River 

sites, but several lines of evidence suggest significant sources of microbial-derived DOM 

from WWTP effluent. First, Chla was not significantly correlated to Jordan River sites 

along the axis that explained the most variation of the DOM PCA, and Chla was 

negatively correlated to WWTP effluent sites along PC3. Second, the gradient-based 

mixing model did not indicate contributions from autochthonous sources, and δ2H values 

of WWTP DOM were much higher than both terrestrial and autochthonous δ2H values. 

Third, Chla was negatively correlated with FI, and YFI, and positively correlated with the 

DOC:TDN ratio, which was lower for the Jordan River compared to other watersheds 

(e.g. <2.5). Although percent protein was significantly correlated to Chla at for the Jordan 

River, percent protein never exceeded 35% in that watershed. Thus, we characterized 

DOM at WWTP sites as a more consistently produced, protein-like, homogenous source 

of microbial DOM compared to other watersheds that had a wider range of DOM 

composition. Previous studies in watersheds with mixed land cover identified wastewater 

effluent as a likely source of DOM, or estimated 25% of DOM was petroleum-based, 
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through sources such as WWTP effluent (Griffith et al. 2009, McElmurry et al. 2013). 

We posit DOM at WWTP sites was derived from a consistent, homogenous, microbial 

derived source, such as lysed microbes or microbial exudates from a “microbe factory” 

like a WWTP. 

The primary indications that WWTP DOM was a homogeneous, protein-like 

source was percent protein was never above 35%; and SUVA and DOC:TDN values 

were less variable than for other watersheds. DOM from other watersheds was 

characterized as more variable because percent protein values ranged from 21 to 54%, 

and DOC:TDN and SUVA values were also more variable than at Jordan River sites. 

Surprisingly, the site with lowest percent protein was one of the WWTP-DOM samples, 

and the 3 highest percent protein values were on the Logan River from forested sites (54 

and 46 % percent protein), and an urban site (52% percent protein). A possible source of 

labile DOM at forested sites on the Logan River is cattle grazing. Forested sites in the 

along the Logan River were historically grazed by cattle from 1935 to 2005, and 

currently have cattle trailed up tributaries of the river each fall (Hough-Snee et al. 2013). 

In addition, the National Forest in the southern portion of the Logan River watershed 

includes a network of trails and two-track dirt roads used for recreation throughout the 

year. Sediment from dirt roads or exhaust from vehicles could contribute inorganic 

nutrients to upper sites of the Logan River, stimulating microbial activity, resulting in 

possible increases in the proportion of protein-like DOM. 

Similar to DOM, FPOM at all sites was primarily terrestrially-derived, except for 

the Jordan River, which was dominated by contributions from WWTP effluent derived 

FPOM. WWTP effluent has enriched nitrate- δ15N values due the δ15N signature of 
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human waste, and wastewater treatment processes that induce isotopic fractionation such 

as ammonia volatilization and denitrification (Ulseth and Hershey 2005, Finlay and 

Kendall 2007, Gücker et al. 2011). FPOM is a mixture of detritus and microorganisms 

(DeBruyn and Rasmussen 2002, Gücker et al. 2011) and therefore, 2 possible pathways 

for enriched δ15N FPOM values below WWTP sites were FPOM discharged in effluent, 

or microbial assimilation of enriched nitrate-δ15N.  

FPOM at WWTP influenced sites also had contributions from autochthonous and 

BOM sources (ranging from 2-27%) which was consistent with previous studies that 

found FPOM in urban streams was a mixture of autochthonous, terrestrial, and BOM 

sources (Newcomer et al. 2012, Imberger et al. 2014), and had significant WWTP 

contributions at WWTP influenced sites (Duan et al. 2014). A positive relationship 

between FPOM-δ13C and DIC-δ13C for the Jordan River indicated autochthonous sources 

of FPOM, but there was no linear relationship between FPOM-δ2H and water-δ2H. This 

was due to a wider range of water-δ2H than expected for the Jordan River (range -120 to -

40 δ2H ‰), compared to other watersheds (range -130 to -100 δ2H), and compared to 

values of precipitation across Utah (range -127 to -92  δ2H‰, Bowen et al. 2007). More 

positive and variable δ2H values for the Jordan Rivers may be attributed to the enriched 

δ2H values of humans (Ehleringer et al. 2008), and a wide range of OM sources 

processed within WWTPs. We concluded there were small contributions of 

autochthonous, terrestrial and BOM derived sources for the Jordan River, but WWTP-

FPOM was the dominant source. In contrast, FPOM in the Provo and Red Butte Creek 

watersheds was dominated by terrestrial sources, and a mixture of sources for the Logan 

watershed. Greater variability in FPOM source estimates for the Logan River could have 
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been due to cattle grazing activity or recreation in forested reaches of the watershed. We 

did not have a metric to assess FPOM lability (e.g. C:N or BOD), but similar studies 

found that WWTP FPOM was preferred by microbes compared to autochthonous and 

terrestrial sources (DeBruyn and Rasmussen 2002), and considering the very high FI and 

YFI values combined with very low DOC:TDN values we concluded WWTP-FPOM was 

likely more labile than other FPOM sources. 

We did not identify a human land cover metric that could adequately predict OM 

composition or bioavailability. Typical land cover metrics that predict DOM quality 

include wetland land cover (Wilson and Xenopoulos 2008, Williams et al. 2010, Petrone 

et al. 2011, Williams et al. 2016) and impervious surface area (Harbott and Grace 2005, 

Hosen et al. 2014, Parr et al. 2015). Impervious surface area within a sub-watershed 

might have better distinguished low and high human impact sites in this study. However, 

the influence of impervious surface area can vary greatly depending on the degree of 

hydrologic connection above and below ground, and within urban infrastructure (Baruch 

et al. 2018), and therefore, measures of impervious surface may also be meaningless 

unless detailed water infrastructure information is available. More importantly, land 

cover in this study did not account for stark differences in DOM quality due to the 

influence of WWTPs, and human activity in forested reaches of the Logan River. We 

recommend all OM studies in watersheds with WWTP effluent obtain a representative 

WWTP sample, and incorporate wastewater OM into study designs that compare land 

cover across watersheds. 

We also did not consider how storms or seasonal changes in hydrology could 

influence DOM source and bioavailability. The effect of storms in urban watersheds may 
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supersede the influence of urban land cover as storms may replace autochthonous derived 

OM with terrestrial OM (Imberger et al. 2013, Smith and Kaushal 2015). In general, 

lower flows in summer result in more autochthonous OM compared to terrestrial OM in 

other seasons (Kendall et al. 2001, Hudson et al. 2007). Autochthonous sources during 

low flow in summer transition to terrestrial sources in autumn due to allochthonous 

inputs in temperate ecosystems (Kendall et al. 2001). In contrast, terrestrial sources are 

greater in spring during runoff in snowmelt driven ecosystems with little deciduous 

riparian cover (Hornberger et al. 1994, Hood et al. 2005). In addition, the influence of 

WWTP effluent can increase during low flows in summer due to decreased dilution from 

other sources (e.g. tributaries and groundwater), and results in greater autochthonous OM 

production (Wassenaar et al. 2010, Edmonds and Grimm 2011, Duan et al. 2014 While 

there has been extensive research on the effect of hydrology to OM sources and 

composition, studies of OM at large spatial scales that include multiple land cover and 

aquatic ecosystem types (e.g. Spencer et al. 2012, Williams et al. 2016), will help 

elucidate anthropogenic controls on OM composition. 

DOM composition of freshwaters in wet, temperate ecoregions, such as the 

Eastern United States, is controlled by different parameters than in the arid west, such as 

the influence of reservoirs and large dams, legacy land cover, and differences in urban 

growth patterns (Grimm et al. 2000). In this study, percent and total area of wetland land 

cover was near zero, and therefore had little influence on DOM composition. Wetland 

land cover is less extensive in the west (4% of sites sampled by EPA in 2011) compared 

to eastern ecoregions (EPA 2016). This could be due to the arid climate, sparse 

assessment of western wetlands, or incomparable wetland typology between western and 
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eastern ecoregions. Regardless of the reason for low wetland cover in west, wetlands 

appear to play a smaller role in DOM composition in the arid west compared to regions 

such as the Great Lakes (Wilson and Xenopoulos 2008, Williams et al. 2016), the boreal 

forest (Kothawala et al. 2014), eastern U.S (Newcomer et al. 2012, Parr et al. 2015), and 

coastal ecosystems (Sickman et al. 2007, Yamashita et al. 2008, Fellman et al. 2011).  

It is important to identify and quantify the sources and lability of OM in rivers to 

better understand controls on OM supply and demand within and among watersheds. OM 

is a common currency of energy across watersheds that influences biological processes 

such as nutrient retention and primary production (Smith and Kaushal et al. 2015), as 

well as abiotic processes such as metal sorption  and sediment transport (Casas-Ruiz et al. 

2017). Knowing OM source can inform management decisions to reduce supply of OM 

through point and non-point sources, or increase retention and removal or OM by altering 

flow regimes or stream geomorphology. Constituent removal, a common goal of 

watershed management is tightly linked with OM supply and demand (Wollheim et al. 

2018) which also depends on OM quality. For example, the ratio of dissolved iron and 

copper to DOM increases with increased aromatic DOM content (Kikuchi et al. 2017). 

Therefore, management practices aimed at reducing labile OM inputs (e.g. WWTP 

effluent or autochthonous sources) would not sufficiently address iron and copper 

constituent transport and accumulation. Similarly, if in-stream nutrient reduction is the 

primary management goal, targeted reduction of labile OM might be effective, but 

identification of the primary labile OM source, e.g. point sources or urban/agricultural 

runoff would be crucial. Thus for constituents of concern, whether it be transport to 
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downstream waters or accumulation within the watersheds, management of constituent 

fluxes can be improved through knowledge of OM source, composition and quality. 

 

Conclusions 

Traditional land use metrics, such as percent developed land cover within a 

watershed, did not account for the greatest differences in FPOM and DOM composition. 

Sites influenced by WWTP effluent had OM with significant WWTP-OM contributions, 

and WWTP-DOM was a consistent source of microbial derived, protein-like DOM. 

Likewise, greater variability in OM composition in forested sub-watersheds of the  Logan 

River associated with cattle grazing or recreational activity were also not accounted for 

by land cover. This study also highlights that arid regions have different drivers of DOM 

composition compared to wetter ecoregions, and further study is needed to link, 

hydrology, land cover and OM source and composition. 

As human dominated landscapes increase it will become more important to 

understand the sources and quality of OM in rivers. Depending on source and 

composition OM can degrade or improve river ecosystem functions such as constituent 

removal and retention. With increased human development, impervious surfaces, dams, 

and diversions, sources of OM to rivers will increase and become more variable (Kaushal 

and Belt 2012). Therefore, scientists and watershed managers need access to information 

that describes OM composition in rivers with varying land cover to predict how OM 

composition will influence ecosystem functions such primary production, decomposition, 

pollutant transport, and nutrient retention and transformation. In addition to management 

implications, understanding OM source and composition will also provide baseline 



96 

 

estimates of organic carbon flux from terrestrial to aquatic ecosystems and inform 

ecosystem models of carbon cycling. 
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Tables 

Table 1. Carbon, nitrogen and hydrogen isotopes values of sources used in the SIMMR 

isotope mixing model. Tree leaves were the average of both sceneced and living tree 

leaves collected in site riparian zone. Macrophytes were defined as rooted, submerged 

aquatic vegetation, biofilms were scaped from benthic rocks, and algae was collected 

from floating matts.  

Sources n δ13C ‰ δ15N ‰ δ2H ‰ 

Avg. Autochthonous  -25.5 ± 6.2 8.7 ± 4.9 -222.6 ± 35.9 

Macrophytes 24 -26.5 ± 4.6 10.4 ± 5.4 -198.0 ± 21.1 

Biofilm 30 -22.4 ± 5.6 9.3 ± 3.8 -244.2 ± 29.4 

Algae 10 -29.6 ± 7.1 6.3 ± 5.4 -255.6 ± 32.6 

Avg. Terrestrial  -25.4 ± 6.1 5.2 ± 3.0 -176.5 ± 29.8 

Soil 4 -27.8 ± 0.6 3.9 ± 2.4 -168.2 ± 14.4 

Tree leaves 25 -28.5 ± 1.4 6.9 ± 3.7 -165.1 ± 14.0 

BOM 21 -22.9 ± 4.8 5.1 ± 2.1 -202.3 ± 24.0 

WWTP-FPOM 5 -23.9 ± 0.5 11.9  ± 1.2 -140.4 ± 16.2 

WWTP-DOM 5 -23.5 ± 3.5 38.4  ± 11.9b -121.5 ± 15.2 

FPOM 75 -26.2 ± 3.3 5.6 ± 2.1 -168.9 ± 16.9 

DOM   50 a -27.2 ± 1.9 11.9 ± 20.4b -140.2 ± 32.6 
a There were less DOM than FPOM samples because only samples that were successfully 

analyzed for all 3 isotopes were included in mixing models (see methods).  
b δ15N-DOM and δ15N-WWTP-FPOM includes a correction for δ15N-nitrate that was 

included in the DOM sample. 
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 Table 2. Watershed characteristics, water quality, and DOM optical metrics averaged 

among sub-watersheds within each watershed. Percent agriculture was the sum of crop 

and pasture land cover within each sub-watershed. Percent protein was the sum of 

protein-like PARAFAC components C3 and C4 (see table 3). 

 

  Jordan Logan Provo Red Butte 

Mean % development 20.6 (7.0) 0.5 (0.4) 0.6 (0.3) 3.6 (6.5) 

Mean % Agriculture 7.6 (4.3) 0.7 (0.8) 3.6 (2.0) 0.1 (0.1) 

Mean % Forest 34.0 (19.6) 68.7 (4.2) 71.0 (5.9) 79.0 (10.6) 

Mean % Scrub 21.3 (10.1) 28.4 (3.1) 18.9 (5.7) 16.5 (3.4)  

Mean % Wetland 1.1 (0.8) 0.2 (0.1) 0.4 (0.3) 0.1 (0.1) 

Mean sub-watershed  

area (km) 
1175 (307) 725 (501) 893 (655) 40 (60) 

DOC (mg/L) 4.0 (1.5) 0.7 (0.2) 2.4 (1.2) 1.6 (1.2) 

TDN (mg/L) 5.1 (3.2) 0.2 (0.1) 0.5 (0.3) 0.4 (0.6) 

Chlorophyll a (µg/L) 3.9 (3.7) 1.4 (1.1) 1.7 (1.7) 1.2 (1.8) 

BIX  0.8 (<0.01) 0.8 (<0.01) 0.7 (0.1) 0.8 (0.0) 

FI 1.9 (0.2) 1.7 (<0.01) 1.6 (0.1) 1.7 (0.1) 

YFI 0.9 (0.1) 0.7 (0.1) 0.6 (0.1) 0.7 (0.1) 

TC 0.7 (0.1) 0.7 (0.2) 0.5 (0.1) 0.7 (0.2) 

SUVA 2.0 (0.3) 2.3 (1.1) 3.2 (1.0) 2.6 (1.5) 

HIX 4.3 (0.9) 4.9 (1.5) 7.4 (1.5) 5.7 (1.9) 

Percent.protein 32.3 (3.8) 34.5 (6.3) 27.1 (3.8) 31.2 (6.0) 
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Table 3. PARAFAC components and descriptions from references matched in the OpenFluor database and descriptions for this 

study. 

Component 
Excitation/ 

Emission (nm.) 
Reference Description- Reference Description - This study 

C1 320/415 Yamashita et al. 2011 Humic, fulvic-acid-type Humic-like: 

  Walker et al. 2009 Humic      

  Amaral et al. 2016 Humic, fulvic-acid-type  
C2 368/490 Amaral et al. 2016 Humic, terrestrial, aromatic Humic-like, 

    Walker et al. 2009 Humic-like       

C3 290/355 Graeber 2012 Tryptophan-like Protein-like 

  Bittar et al. 2016 Protein-like 
 

    

 

C4 275/315 Yamashita et al. 2011 B peak; Tyrosine-like Protein-like 

  Walker et al. 2009 Tryptophan-Tyrosine mixture  

  Yamashita et al. 2013 Tyrosine-like  

    Murphy et al. 2011 Tryptophan-like   
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Table 4. PCA correlation coefficients (r) for DOM water quality metrics, PARAFAC 

components, and optical indices. Variables are listed in order of correlation to PC1 and 

were considered significantly correlated to an axis (bold) with correlation coefficients 

>0.35 (Rohlf and Sokal 1995). 

Variable 
PC1 

45% 

PC2 

21% 

PC3 

10% 

  r r r 

percentC2 -0.90 -0.33 0.13 

HIX -0.89 0.22 0.14 

DOC:TDN -0.48 0.08 0.22 

SUVA -0.47 -0.09 -0.04 

percentC1 -0.08 0.96 -0.13 

Chla 0.20 0.02 0.76 

percentC4 0.31 -0.87 -0.24 

FI 0.64 0.47 -0.41 

TC 0.72 -0.55 0.09 

percentC3 0.76 0.29 0.42 

BIX 0.87 0.06 0.20 

YFI 0.96 0.05 -0.06 
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Figures 

 

Figure 1. Eight to 9 sites were sampled in each of 4 watersheds, the Logan River 

(watershed area 1756 km2), Provo River (1810 km2), and Red Butte Creek (189 km2), a 

tributary of the Jordan River (2067 km2). Sites were sampled in each watershed in 

September and November of 2014 and November of 2015. 
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Figure 2. Principle components 1(PC1) and 2 (PC2) of a PCA with 82 DOM samples 

from 34 sites (A). The larger symbol at the center of the 95% confidence ellipses 

represents the mean of PC1 and PC2 values within a watershed. If 95% confidence 

ellipses do not overlap DOM composition between watersheds was different. Covariates 

inlcuded 2 humic-like flourescent components (percent C1 and C2), 2 protein-like 

components (percet to C3 and C4), Chla concetrations, the ratio of DOC and TDN 

concentrations (DOC:TDN), and flourescence indices of microbial derived DOM (FI, 

BIX), protein-like peak T to :humic-like peak C ratio (TC), and humic DOM (SUVA, 

HIX). 
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Figure 3. Percent feasible contributions of 4 sources to 50 DOM samples collected in all 

watersheds. Contributions were estimated with 3 isotope tracers, δ13C, δ15N, and δ2H. The 

autochthonous endmember was the average of algae, biofilm and macrophyte isotope 

values (Table 1). Boxes represent 75% high density interval (HDI), the 75% most 

credible values,  and whiskers represent the 95% HDI. 
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Figure 4. DOM-δ13C values compared to DIC-δ13C of river water (A), and DOM-δ2H 

values compared to δ2H value of river water (B). The solid and dashed lines represent the 

average and standard deviation of  δ2H and δ13C values of tree leaves (Table 1). If DOM 

was dominated by autochthonous sources, DOM-δ13C and DOM-δ2H would vary linearly 

with aqueous δ13C and δ2H. 
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Figure 5. Correlations between chlorophyll a (µg/L) and fluorescence indices of 

microbially- derived DOM (FI, YFI), dissolved organic carbon to total dissolved nitrogen 

ratio (DOC:TDN), and percent protein-like DOM. Chla concentrations were log 

transformed. Percent protein was the sum of percent C3 and C4 PARAFAC components 

(Table 3). For pearson’s correlation significance results see Supplement 9. 
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Figure 6. Percent feasible contributions of 4 sources to 75 FPOM samples collected in all 

watersheds. Contributions were estimated with 3 isotope tracers, δ13C, δ15N, and δ2H. The 

autochthonous endmember was the average of algae, biofilm and macrophyte isotope 

values (Table 1). Boxes represent 75% high density interval (HDI), the 75% most 

credible values, and whiskers represent the 95% HDI. 
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Figure 7. FPOM-δ13C values compared to DIC-δ13C of river water (A), and FPOM -δ2H 

values compared to δ2H of river water (B). The solid and dashed lines represent the 

average and standard deviation of δ2H and δ13C values of tree leaves; Table 1). If FPOM 

was dominated by autochthonous sources, FPOM-δ13C and FPOM-δ2H would vary 

linearly with aqueous δ13C and δ2H. 
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Supplement 

Supplement 1A. Maps of study sites for Red Butte Creek (n=8, 2nd highest site not 

shown) and the Provo River (n=8). 
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Supplement 1B. Study sites on the Logan River (n=8) and Blacksmith Fork (n=1). 
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Supplement 2A. Six land covers were expected to influence OM composition including 

wetland, forest, cultivated cropland (crops), pasture, scrub-grassland and development. 

These land covers were derived by summing land covers that were ecologically similar 

and positively correlated with each other including developed (open+ low+ medium+ 

high), forest (deciduous + evergreen + mixed), wetland (woody + emergent), scrub-

grassland (Shrub/Scrub + Grassland). 
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Supplement 2B. PCA of land cover by site grouped by watershed. 
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Supplement 3. Contour maps of excitation and emission intensities of the 4 components 

resolved by a PRAFAC model with 213 EEMs. Intensities are in Raman units. 

Components 1 and 2 (C1, C2) were humic-like and components 3 and 4 (C3,C4) were 

protein-like. (B) Split half validation of excitation (dotted lines) and emission (solid 

lines) loadings. Validation indicates samples were split into 6 halves and recombined into 

3 models and all components in the split models found a match with Tucker correlation 

coefficient > .95 (Murphy et al. 2013). 
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Supplement 4. PCA of land cover and sites grouped by watershed and percent 

PARAFAC components projected onto the PCA. C1 and C2 were humic-like components 

and C3 and C4 were protein-like components (See table 3). 
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Supplement 5.1. Multi-way ANOVAs of water quality metrics, fluorescence indices and 

PARAFAC components among watersheds. Tukey HSD significant differences are in the 

multiple comparisons table below. 
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Supplement 5.2. Table of Tukey HSD multiple comparisons for ANOVAs of water 

quality and DOM fluorescence metrics. DOC and TDN units were mg/L and Chla units 

were µg/L. 

Watershed 
Comparison DOC TDN DOC:TDN Chla FI YFI BIX HIX SUVA TC 

JR v LR 0 0 0.4 0.03 0 0 0 0.45 0.68 0.11 

JR v PR 0 0 0 0.05 0 0 0 0 0 0.03 

JR v RB 0 0 0 0 0 0 0 0.01 0.08 0.91 

LR v PR 0 0.19 0 1 0.05 0 0 0 0.08 0 

LR v RB 0 0.99 0.02 0.11 1 1 0.3 0.28 0.61 0.39 

RB v PR 0.01 0.31 0.94 0.06 0.03 0 0 0 0.59 0.01 

 

Watershed 
Comparison % C1 % C2 % C3 % C4 % Protein 

JR v LR 0 0 0 0 0.36 

JR v PR 0.01 0 0 1 0.01 

JR v RB 0 0 0 0.12 0.99 

LR v PR 0 0.12 0.95 0 0 

LR v RB 0.14 1 0.07 0.02 0.22 
RB v PR 0.19 0.12 0 0.23 0.02 
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Supplement 6. PCA graphs of DOM grouped by watershed and table of covariate 

correlations to PC1, PC2, and PC3. Principle components 1(PC1) and 2 (PC2) explained 

66% of variation total variation in DOM composition (Figure 2), and PC3 explained 

10%. Larger points in 95% confidence ellipses represent the mean of PC1 and PC3 

values for sites in a watershed. The table was sorted by correlation to PC1 and values in 

bold are signifianct correlations (r > 0.35; Rohlf and Sokal 1995). 

 

Variable 
PC1 

45% 

PC2 

21% 

PC3 

10% 

  r r r 

percentC2 -0.90 -0.33 0.13 

HIX -0.89 0.22 0.14 

DOC:TDN -0.48 0.08 0.22 

SUVA -0.47 -0.09 -0.04 

percentC1 -0.08 0.96 -0.13 

Chla 0.20 0.02 0.76 

percentC4 0.31 -0.87 -0.24 

FI 0.64 0.47 -0.41 

TC 0.72 -0.55 0.09 

percentC3 0.76 0.29 0.42 

BIX 0.87 0.06 0.20 

YFI 0.96 0.05 -0.06 
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Supplement 7. Correlation r squared values for OM-δ13C versus DIC-δ13C, and OM- δ2H, 

versus water-δ2H for DOM and FPOM. 

DOM OM-δ13C v DIC-δ13C OM- δ2H v water- δ2H 

Jordan -0.16 -0.23 

Logan -0.54 0.49 

Provo -0.4 0.06 

Red Butte -0.56 0.13 

FPOM   
Jordan 0.68 -0.19 

Logan 0.53 0.03 

Provo 0.17 0.39 

Red Butte -0.61 -0.11 

 

 

  

  



128 

 

Supplement 8. River water δ18O and δ2H values of 4 watersheds sampled. Most sites fall 

along the local meteoric water line (δ2H = 7.45 X δ18O-1.66). Groundwater dominated 

sites that receive snow melt at higher elevations had lower δ18O and δ2H values (Logan 

River and Provo River) compared to sites at lower elevations (Red Butte) that also 

received water with an evaporative signature from Utah lake (Jordan River). 
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Supplement 9. Pearson’s correlation values for chlorophyll a and fluorescence indices by 

watershed. 
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CHAPTER IV 

 

DOM DEMAND AND NON-ADDITIVE EFFECTS OF AUTOCHTHONOUS AND 

TERRESTRIAL LEACHATES IN BIOASSAYS AND EXPERIMENTAL STREAMS 

 

 

 

Abstract: Dissolved organic matter (DOM) is the largest pool of OM in aquatic systems, 

and as a primary substrate for microbial respiration in streams, it is important to 

understand the drivers of DOM decay. Often, DOM decay measurements are based on 

proxies of DOM (e.g. sugar or leaf-litter leachate) or by compartmentalizing DOM into 2 

pools of labile and semi-labile DOM. Many DOM decay rates were quantified with 

bioassays, which may underestimate DOM decay in streams because they do not include 

a benthic zone, and do not account for downstream transport of DOM. In both 

experimental streams and dark bottle bioassays we measured decay of 2 types of labile 

DOM, algae and light-degraded soil and light-degraded plant leachates, and 2 types of 

semi-labile DOM, plant and soil leachates. We also quantified decay rate constants of 

labile and semi-labile pools of DOM when mixed to test for non-additive effects, or 

priming, of semi-labile DOM by labile DOM. We compared dissolved organic carbon 

(DOC) decay from bioassays and experimental streams to previous studies that quantified 

DOC loss in bioassays or stream reaches. Bioavailable DOC (BDOC) was greater in 

experimental streams (mode 52.6 % ± 20.3),compared to bottle bioassays (mode 22.8% ± 

12.3), but there was no significant difference in DOC decay rate constants between 
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bottles and experimental streams. Mixing of labile and semi-labile DOM resulted in both 

positive and negative non-additive effects. Consistent non-additive effects were difficult 

to quantify due to extremely fast decay of algal (2.06/d ± 0.66), and light-degraded, 

terrestrial DOM (1.54/d ± 0.74 ). Decay rates calculated in this study are needed for 

models that aim to estimate the proportion and quantity of OM transformed and evaded to 

the atmosphere by rivers at the interface of terrestrial and aquatic ecosystems. 

 

Keywords: priming, dissolved organic matter, non-additive effects, light degradation, 

first order decay, biexponential decay, biphasic decay, PARAFAC 

 

 

Introduction 

Dissolved organic matter (DOM) is the largest pool of organic matter (OM) in 

aquatic ecosystems (Webster and Meyer 1997, Wetzel 2001) and the flux of DOM from 

terrestrial ecosystems to inland waters is recognized as an important component of 

organic carbon budgets at watershed (Moody et al. 2013) to global scales (Battin et al 

2008, Butman et al. 2016). Continental and global estimates show that carbon dioxide 

evasion from streams and rivers (hereafter streams) is at least as large as terrestrial net 

ecosystem production (Battin et al. 2008, Butman et al. 2016). However, empirical 

measures of whole-ecosystem DOM transformations are lacking, and the rate at which 

streams process terrestrial DOM inputs remains poorly understood (Battin et al. 2009, 

Mineau et al. 2016). 
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Aside from its relation to carbon budgets, it is important to have baseline 

estimates of stream DOM transformations for managers who aim to reduce OM loads, as 

well as to mitigate for pathogens and contaminants associated with OM in human-altered 

watersheds (Edmonds and Grimm 2011, Stanley et al. 2012). DOM can contribute to 

biochemical oxygen demand, the formation of disinfection by-products, and adsorb metal 

contaminants (Stanley et al. 2012, Kaushal et al. 2014). DOM decay in streams is 

controlled by several factors, including hydrologic dilution, sorption to sediments, 

microbial metabolism, and photodegradation (Edmonds and Grimm 2011). Managers 

may not have control of all these factors, but dilution is a relatively common DOC 

reduction strategy (Gücker et al. 2006, Edmonds and Grimm 2011) that may decrease 

stream ecosystem functions such as nutrient, pollutant, and pathogen retention, (Bunch 

and Bernot 2011, Kaushal et al. 2014). More reach-scale measures of DOM removal, 

such as DOC decay, that are valid for use at the watershed scale are needed (Mineau et al. 

2016, Seybold and McGlynn 2018), and will inform OM management in streams, as with 

similar investigations into nitrate removal in streams (Mulholland et al. 2008). 

Bioassays, which include any closed system incubation (e.g. dark bottles, 

Erlenmeyer flasks), are commonly used to measure DOM decay as bacterial respiration 

and/or organic carbon loss. Bioassay decay rates are problematic because most 

incubations do not include a proxy for the benthic zones (benthos) of aquatic systems 

(Catalán et al. 2016, Mineau et al. 2016, Bengtsson et al. 2018). These habitats contribute 

to at least half of DOM consumption in marine and lake sediments (Bengtsson et al 

2018), and at least half of stream DOM demand (Cory and Kaplan 2012, Risse-Buhl et al. 

2012, Mineau et al. 2016). In addition, bioassays typically are conducted in the dark, so 
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they do not account for effects of photodegradation. Further, results are difficult to 

compare across studies because incubation times vary from days to years, and may or 

may not include sediment (van Nugteren et al. 2009), inorganic substrates (e.g. glass 

beads; Catalán García et al. 2015, Ward et al. 2016), or circulation to maintain realistic 

dissolved oxygen concentrations (Lock and Hynes 1976, Qualls and Haines 1992). 

DOM decay rates are difficult to constrain because DOM is a complex, highly 

variable mixture of compounds (Seitzinger et al. 2005, Kaplan et al. 2008). The chemical 

composition and quality of DOM influences the ability of microbes to consume DOM,  

and is therefore an important control of decay rate (Koehler et al. 2012, Mostovaya et al. 

2016). The majority of DOM is considered semi-labile (i.e. recalcitrant), derived from 

terrestrial sources, such as soil and plant leachates, and is typically rich in humic 

constituents (Findlay and Sinsabaugh 2003). The quality of terrestrial DOM can also 

change because of exposure to sunlight. Photodegradation can reduce the molecular 

weight of DOM constituents but the degree of degradation depends greatly on DOM 

chemical composition (Moran and Zepp 2000, Chen and Jaffé 2014). For example, the 

greater the proportion of aromatic content, the greater the effect of sunlight on 

bioavailability (Moran and Zepp 2000, Tranvik and Bertilsson 2001). The effects of 

photodegradation can increase (Moran and Zepp 1997), decrease (Tranvik and Bertilsson 

2001), or have no effect (Wiegner and Seitzinger 2001) on DOM lability to microbes. 

Autochthonous DOM, OM produced instream by biofilms, filamentous algae, and/or 

macrophytes, is considered extremely labile because it consists of low molecular weight, 

protein-rich cellular exudates produced during photosynthesis (Guillemette et al. 2013). 
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We do not understand the interactions between labile and semi-labile DOM pools. 

When mixed, these two pools are hypothesized to have non-additive effects on microbial 

degradation rates (Guenet et al. 2010, Bengtsson et al. 2018). Non-additive effects refer 

to a change in decay rates, usually of the semi-labile pool, when 2 pools are mixed 

compared to when the 2 pools remain separate (Bengtsson et al. 2018). The concept of 

non-additive effects, also referred to as the priming effect, originated in soil science, but 

has been proposed by aquatic ecologists as a possible mechanism to explain the rapid 

transformation of semi-labile DOM over short distances in stream networks (Hotchkiss et 

al. 2014, Mineau et al. 2016). The priming effect in streams is predicted to occur when a 

small pool of autochthonous DOM is mixed with the semi-labile pool, which then 

accelerates microbial degradation of semi-labile DOM to a faster decay rate than without 

the labile DOM (Guenet et al. 2010, Danger et al. 2013). 

We had 2 objectives, first to compare decay rate constants of labile and semi-

labile DOM in experimental streams that included a benthic zone, exposure to sunlight, 

and constant reaeration versus bottle bioassays that did not include these effects. Second, 

we aimed to quantify the non-additive effects of mixing labile and semi-labile DOM in 

experimental streams and bioassays. We designed experiments to test 2 hypotheses: 1) 

that bioassays in bottles underestimate stream DOM decay because they exclude benthic 

microbes, and 2) that semi-labile DOM decay rates are increased by addition of labile 

DOM (i.e. priming).  

Seven consecutive 3-day experiments were conducted in experimental streams 

and in dark-bottles (bioassays). To confirm that semi-labile sources of DOM decayed at a 

faster rate than labile DOM we conducted 5 single-source experiments which measured 
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decay of 2 types of semi-labile DOM (soil and plant leachates) and 3 types of labile 

DOM (algal derived, light-degraded plant leachate, and light-degraded soil leachate). 

Then we converted decay rate constants to uptake lengths and uptake velocities, to 

compare DOM uptake in bottles, experimental streams, and previously reported DOM 

uptake metrics from previous studies. Following single-source experiments we conducted 

2 priming experiments by mixing labile DOM, either algae or light-degraded plant DOM, 

with semi-labile, plant DOM (Fig. 1). Decay rates calculated from single-source 

experiments were then used to inform 2-compartment models of semi-labile and labile 

decay when mixed. We expected DOM decay rates to be faster in streams compared to 

bottles, and we expected that DOC decay rates of semi-labile DOM would be faster when 

mixed with labile DOM, compared to semi-labile decay rates without labile DOM. 

 

 

Methods 

Experimental streams 

Experiments were conducted in 8 experimental streams at the Cary Institute of 

Ecosystem Studies Artificial Stream Facility in Millbrook, New York. Streams were 

housed in a greenhouse covered with eight mm high-impact double skinned acrylic and 

estimated to transmit 84% of photosynthetically active radiation (Acrylic Building 

Products, Mississauga, Canada). In all experiments the fiberglass artificial streams (4 x 

0.3 x 0.15 m) were filled with 33 L of groundwater that had low levels of DOC (< 1.0 

mg/L, Fig. 1). Water in the streams was circulated at 45 rotations/min using stainless 

steel paddle wheels propelled by Dayton DC gear motors (Dayton, Niles, Illinois), 
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yielding a mean velocity of 0.6 m/sec. Forty cobbles covered with periphyton were added 

to each stream to compare DOC consumption in experimental stream with benthic 

biofilms versus bottle-bioassays without biofilms. Cobbles were collected from an open 

canopy section of East Branch Wappinger Creek within the Cary Institute of Ecosystem 

Studies conservation research area.  

 

Experimental design and leachates 

We conducted 5 single-source experiments followed by 2 priming experiments 

over the course of 22 days in July 2016. One dark-bottle was incubated in each stream to 

compare decay in bottles-bioassays and experimental streams during each 3-day 

experiment (Fig. 1). To ensure DOC concentrations declined over time, 4 experimental 

streams were covered with cardboard and designated as dark treatments. The remaining 4 

streams were not covered and were designated as light treatments. Light streams 

experienced natural daily fluctuations in sunlight to observe more realistic decay rates 

than in dark treatments, and dark streams were used to eliminate labile DOM production 

from photosynthesis and to be more comparable to dark bottles. At the beginning of 

single-source experiments, 12 liters of leachate were added at sunset resulting in 26% of 

total stream volume as leachate (Fig. 1). Leachates were added at sunset to maximize the 

duration of darkness at the beginning of each experiment, and ensure DOC decline in 

light treatment streams prior to sunrise when DOC production would begin in light 

streams. Single-source experiments were referred to as algae, soil, light-degraded soil 

(soil-light), plant, and light-degraded plant (plant-light). For each priming experiment 10 

liters of plant leachate were mixed with 4 liters of labile DOM, either as algae (prime-
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algae experiment) or light-degraded plant leachate (prime-light experiment). After 

leachate was added and allowed to mix, 500 mL dark-bottles were filled with 

experimental stream water and sampled for constituents at the same time as experimental 

streams. 

Algal leachate was made by scrubbing the biofilm off cobbles from East Branch 

Wappinger Creek within the Cary Institute of Ecosystem Studies conservation research 

area and mixing this slurry with groundwater. The leachate was then incubated in 5 

gallon buckets for 1-2 hours. Soil leachate was made by mixing 4 liters of soil with 10 

liters of groundwater, stirred and allowed to settle for 2-4 hours. Plant leachate was made 

from concentrated roasted barley leachate. Barley concentrate was made by adding 60 g 

of ground, roasted barley to one liter of groundwater. Plant leachate was then made by 

adding 5 mL of concentrate to a liter of groundwater. Light-degraded soil and plant 

leachates were made by incubating leachate in 0.5 x 1 x 0.2 m trays in full sun for 3-4 

hours. Terrestrial leachates were exposed for what we considered the minimum amount 

of time DOM would be exposed to natural sunlight in a temperate stream with a short 

travel time (<1 day). All leachates were filter-sterilized using 0.2 µm pore size in-line 

cartridge filters (Waterra, Mississauga, Ontario, CA). 

DOC was sampled prior to adding leachate and 1, 3, 6, 24, and 70 hours after 

leachate additions (Fig. 1). Experimental stream and bottle samples were filtered with 0.7 

µm glass fiber filters (Whatman GF/F) into 40 mL amber vials and acidified to a pH of 

2.5 for storage until carbon analysis. Acidified DOC samples were run on a Shimadzu 

TOC-L analyzer via catalytic oxidation combustion at 720 °C (MDL 0.62 mg/L DOC; 

Shimadzu Corp., Kyoto, Japan). Streams and bottles were sampled for 
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spectrofluorometric analysis after 1, 24, and 70 hours. Samples were filtered and stored in 

amber vials at 6°C until analysis. Periphyton in the experimental streams were also 

collected after 1, 24, and 70 hours to obtain chlorophyll a and ash-free dry mass of 

benthic biomass. 

 

DOM fluorescence  

Excitation emission matrices (EEMs) were collected on an Aqualog 

spectrofluorometer to assess changes in DOM character though each 3-day experiment 

and to calculate DOM fluorescence indices that characterized DOM as either microbial or 

humic-like. EEMs were collected with excitation wavelengths from 248 to 830 at 6 nm 

increments and over emissions 249.4 to 827.7 at 4.7 nm (8 pixel) increments. All samples 

were collected in ratio mode (S/R) and run at an integration time resulting in a maximum 

emission intensity of 5,000 to 50,000 counts per second. Samples that exceeded 0.3 

absorbance at excitation 254 nm were diluted with deionized water. All samples were 

corrected for inner filter effects, Rayleigh scatter, and blank subtracted in MATLABTM 

(version 6.9; MathWorks, Natick, Massachusetts) as described in Murphy et al (2013).  

From EEMs, the fluorescence index (FI), β:α index or freshness index (BIX), 

humification index (HIX), and peak T to peak C ratio (TC) were calculated. High versus 

low FI values indicate microbial versus terrestrially derived DOM (Cory and McKnight 

2005). Higher values of the BIX indicate more recently derived DOM (Parlanti et al. 

2000), and more humic-like DOM for higher values of the HIX (Zsolnay et al. 1999). The 

TC index represents the ratio of the protein-like peak (T) to humic-like peak (C) 

intensities (Baker 2001). SUVA (SUVA), an indicator of DOM aromatic content, was 



139 

 

calculated by normalizing the absorbance at 254 nm by the DOC concentration of each 

sample (Weishaar et al. 2003). 

Parallel factor analysis (PARAFAC) was used to identify fluorescence 

components of DOM to assess changes in DOM throughout each experiment (e.g., a 

decline in humic-like components due to light exposure). PARAFAC decomposes a 

collection of EEMs into groups of organic compounds with similar fluorescent 

characteristics (Stedmon and Markager 2005). MATLAB was used to create a 

PARAFAC model with 213 EEMS using the drEEM toolbox following Murphy et al. 

(2013). The model was then validated with split-half analysis, and resolved components 

were compared to previously found fluorophores in the open source library OpenFluor 

(Murphy et al. 2014). Percentage of each PARAFAC component was correlated with 

fluorescence indices using Pearson correlations in R with the psych v1.7.8 package 

(Revelle 2017). 

Five linear models were run to identify treatments that best described variation in 

fluorescence indices and PARAFAC components. Linear models tested the fixed effects 

of 1) treatment, 2) treatment plus bottles versus streams, 3) treatment light streams versus 

dark streams, and 4) the interaction of treatment and light versus dark streams. Samples 

collected after 70 hours were used to assess differences in fluorescence indices and 

PARAFAC components since that is when differences were greatest. Bayes factors were 

calculated to identify the linear model that best described variation in dependent 

variables. The Bayes factor (B01) can be generalized as the probability ratio between two 

models (𝑀0, 𝑀1) (Eqn. 1). 
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𝐵01 =  

Pr(Data|𝑀0)

Pr(Data|𝑀1)
 

(1) 

The R package BayesFactor was used with uninformative priors (Morey et al. 2018). 

Bayes factors were calculated for models normalized by the effect of treatment alone. 

Significant differences in treatments were then tested using multiple comparisons of 

means and Tukey HSD.  

 

DOC decay models 

To estimate decay rates constants for single-source experiments we used an 

inverse modeling approach with Bayesian parameter estimation. Decay rates constants 

were calculated for all experiments after 6, 24, and 70 hours. Single-source decay rates 

were estimated using a first order exponential decay model (Eqn. 2): 

 𝐶𝑡 =  𝐶0𝑒−𝑘𝑡𝑜𝑡𝑡 (2) 

where 𝐶0 and 𝐶𝑡  represent DOC concentrations at the start and end of the period 

over which −𝑘𝑡𝑜𝑡 was calculated over time (𝑡). The difference in mean decay rates for 

labile and semi-labile DOM estimated from single-sources models were then used to test 

the hypothesis that labile sources of DOM (algae, soil-light, plant-light) decayed faster 

than semi-labile sources (soil, plant). The difference was calculated by subtracting the 

95% high density interval (HDI) of semi-labile DOM from the 95% HDI of labile DOM. 

If the median difference was greater than zero the decay rates were considered 

significantly different (Hotchkiss et al. 2014). Parameter values within the 95% HDI are 

more likely than outside the HDI, and all values within the HDI represent 95% of all 

possible values (Kruschke 2015). 
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Two different models were used to estimate DOC decay rates in priming 

experiments. First, a two-compartment, biexponential decay model assumed the labile 

(𝑘𝑓𝑎𝑠𝑡), and semi-labile (𝑘𝑠𝑙𝑜𝑤), pools of DOC decayed simultaneously starting at time 

zero 𝑡0 (Eqn. 3): 

 𝐶𝑡 =  𝑝1𝐶1(𝑡0)𝑒−𝑘𝑓𝑎𝑠𝑡𝑡 +  𝑝2𝐶2(𝑡0)𝑒−𝑘𝑠𝑙𝑜𝑤𝑡 (3) 

where 𝐶𝑡  is the total concentration of both labile (𝐶1), and semi-labile (𝐶2), pools at the 

start of the experiment, and 𝑝1and 𝑝2 are the proportional volumes of each leachate 

(Hotchkiss et al 2014; Supplement 1).  

Second, a 2-compartment, biphasic decay model assumed there was a fast period 

of decay, followed by a slow period of decay (Eichmiller et al. 2016, Brouwer et al. 

2017). For the biphasic model, 𝑘𝑓𝑎𝑠𝑡 was estimated using first order exponential decay up 

to a breakpoint at time 𝑡∗ (Eqn. 4), and 𝑘𝑠𝑙𝑜𝑤was estimated for the period of decay after 

the breakpoint using the value estimated for 𝑘𝑓𝑎𝑠𝑡 prior to the breakpoint (Eqn. 5; 

Supplement 1).  

      𝐶𝑡∗ =  𝐶0𝑒−𝑘𝑓𝑎𝑠𝑡𝑡                                    𝑡 <  𝑡∗             (4) 

 𝐶𝑡 
=  𝐶0𝑒−𝑘𝑓𝑎𝑠𝑡𝑡∗𝑒−𝑘𝑠𝑙𝑜𝑤(𝑡−𝑡∗)                  𝑡 >  𝑡∗               (5) 

There were not enough time points to identify the breakpoint between fast and slow 

periods of decay using traditional methods of breakpoint analysis (e.g., segmented or 

changepoint analysis). Therefore, breakpoints were estimated visually from raw DOC 

concentrations plotted over 70 hours. 

The decay rates of each compartment were estimated using Bayes Rule where the 

posterior probability distribution of 𝑘𝑓𝑎𝑠𝑡 and 𝑘𝑠𝑙𝑜𝑤, given the DOC data, is proportional 

to the product of the likelihood of the decay model, and the prior probability distributions 
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of the decay parameters (Hotchkiss et al 2014). The posterior probability distributions of 

𝑘𝑓𝑎𝑠𝑡 and 𝑘𝑠𝑙𝑜𝑤 were simulated with the rjags package using Markov Chain Monte Carlo 

(MCMC) sampling from an informed prior distribution (Plummer 2018). Each model was 

run for 150,000 iterations, using three different starting values for each chain, and the 

first 10,000 samples were not included in parameter estimation. Model fit was assessed 

through linear regression of measured versus predicted values of DOC concentrations at 

the last modeled time point.  

To determine if positive non-additive effects were significant (priming effect), we 

subtracted the posterior probability distribution for single-source plant decay (𝑘𝑡𝑜𝑡) from 

the posterior distribution of the slow-decay compartment (𝑘𝑠𝑙𝑜𝑤). A positive non-additive 

was considered significant if the median difference in the 95% HDI of the two 

distributions (𝑘𝑠𝑙𝑜𝑤 −  𝑘𝑡𝑜𝑡) was greater than zero (Hotchkiss et al. 2014).  

 

Bioassay versus experimental stream DOC decay 

To test the hypothesis that bioassays underestimate DOC decay, differences in 

single-source DOC decay constants and BDOC were compared using the BEST test 

(Bayesian estimation superseded t-Test) in R (Kruschke 2013). If the difference in 

posterior probability densities estimated for the mean of each group includes zero, the 

BEST test is considered not significant. BDOC was calculated as the percent loss in DOC 

concentration from 3 to 70 hours in streams (Fellman et al. 2008). BDOC in bottles and 

streams was calculated from 6 to 70 because, for the first 6 hours of 4 experiments, DOC 

concentrations increased due to DOM production, (as seen previously Hosen et al. 2014) 

after which concentrations declined for the duration of the experiment. To further 
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compare bioassays and stream DOM decay, we compared DOM decay rate constants 

from studies that used bottles (Hotchkiss et al. 2014) to decay rate constants calculated 

from stream reach additions (Webster and Meyer 1997, Griffiths et al. 2012, Epstein et al. 

2016, Hall et al. 2016; Supplement 2). 

 

Benthic biomass 

Benthic biomass was measured to assure that any differences in DOM decay were 

due to differences in DOM source rather than biomass effects. To collect periphyton 

biomass one cobble was taken from each experimental stream after 1, 24, and 70 hours, 

scrubbed with a toothbrush and washed with an aliquot of groundwater. Periphyton slurry 

from each cobble was subsampled and filtered through GF/F filters and analyzed for 

chlorophyll a and ash free dry mass (AFDM) analysis following Steinman et al. (2007). 

A picture of each cobble was taken to calculate surface area using ImageJ (Schneider et 

al. 2012). Chlorophyll a and AFDM then were normalized by area of each cobble 

sampled. We detected no significant differences across experiments in benthic biomass 

measured as AFDM which confirmed that biomass did not factor into differences among 

experiments (Supplement 3). Chlorophyll a concentrations were lower in priming 

experiments than single-source experiments, but did not differ among other experiments 

(Supplement 3). As priming experiments occurred at the end of the 22 day period during 

which the experiments were conducted, we interpret this to indicate aging of the biofilm. 

Benthic biomass data are not discussed further in this paper (see Supplement 3). 
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Results 

Were decay rates of algal labile DOM faster than semi-labile DOM?   

To confirm the hypothesis that labile DOM decay rates (algae and light-degraded) 

were faster than semi-labile DOM decay rates (soil and plant) we tested the difference 

between estimated values of labile and semi-labile decay rates (Table 1, Supplement 4). 

The difference in mean decay rates of light versus dark treatments of experimental 

streams were not significantly different after 6 hours (95 %, HDI -2.61, 3.96), 24 hours 

(HDI -0.99, 0.45) or 70 hours (HDI -0.38, 0.23; Supplement 5). Therefore, we assessed 

decay rates among treatments for all 8 streams combined. 

Algal DOM decay rates were always faster than soil and plant DOM decay rates 

in both bottles and streams, except after 70 hours, algal decay was not faster in streams 

(Table 1, Supplement 4). Soil and soil-light DOM decay rates were highly variable in 

streams, and there was little to no decay of both treatments in bottles. Light-degraded 

plant DOM decay rates were faster than soil and plant decay rates over the first 6 hours of 

the experiment but were not significantly faster after 24 and 70 hours in both bottles and 

streams. Overall labile DOM decay rates of algal and plant-light DOM were hard to 

estimate (i.e. high variation) in the first 6 to 24 hours of each experiment, and their decay 

rates declined significantly after 70 hours.  

 

Did sunlight alter DOM composition? 

DOM composition Fluorescence indices were calculated to characterize DOM from 

different leachates and to identify changes in DOM composition during each experiment. 

In all experiments, FI values were higher in light streams (mean 1.65, sd 0.09) than dark 
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streams (mean 1.61, sd 0.09) indicating more microbial-derived DOM in light streams 

(Fig. 2). SUVA and HIX values were significantly lower in the soil-light experiment than 

the soil experiment indicating a decrease in aromatic content of soil-derived DOM after 

exposure to sunlight (Fig2, Supplement 6). Likewise, indices of recently derived DOM 

(BIX) and protein-like DOM (TC) were higher in the soil-light than soil experiment 

(Supplement 6). Plant DOM had lower aromatic content (SUVA mean 0.63, sd 0.19) than 

algal and soil derived DOM (SUVA mean 3.02 sd 2.9; mean 2.6, sd 0.29; Fig. 2).  

A 5 component PARFAC model (hereafter C1 to C5) was resolved and validated 

with split-half analysis to identify major fluorophores (Supplement 7). Components 1 

through 5 were at least 95% identical to fluorophores identified within the OpenFluor 

library (Murphy et al. 2014). C1, C2, and C3 were described as humic-like in previous 

studies and this study (Table 2). Earlier studies described C4 as recently transformed or 

microbial-derived (Murphy et al. 2013). In this study, percent C4 was greatest for plant 

derived DOM (Fig. 3) which had less aromatic content than soil DOM (Fig. 2), and was 

more recently derived than soil DOM as indicated by higher BIX values than soil derived 

DOM (Supplement 6). C5 was protein derived, tryptophan-like DOM in both this, and 

previous studies (Coble et al 1996, Yamashita and Tanoue 2003). 

Percent C2 was lower in light streams at the end of all experiments, except the 

algae experiment, indicating it was susceptible to light degradation in terrestrially derived 

DOM (Fig. 3). The greatest concentrations of C3 were in the soil and soil-light 

experiments (range 23-29%) were associated with older humic DOM because C3 was 

positively correlated with the HIX and SUVA (r = 0.64, r = 0.75; Supplement 8). C3 

appeared to be “produced” from light exposure as it increased in proportion to other 
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components in the light streams of all plant experiments (Fig. 3). But, C3 also increased 

slightly in dark streams with plant DOM, therefore microbial activity that consumed C2 

may have created C3 in the process. C4 had highest concentrations in plant experiments 

(range 24 to 31%) and was negatively correlated with the HIX and SUVA (r =-0.72, r = -

0.81; Supplement 8). C5 the protein-like component, declined in all experiments except 

for the soil experiment which had the lowest percent protein out of all experiments (range 

10-16%). 

 

Do bioassays underestimate microbial DOM demand when compared to 

experimental or real streams?  

To assess whether DOM consumption measured in bioassays was comparable to 

that measured in experimental streams, we compared DOC decay rate constants, and 

BDOC between bioassays versus experimental streams, and bioassay versus experimental 

streams and real streams. Decay rate constants were excluded from comparisons if the 

coefficient of variation (CV) among 8 streams and bottles within a treatment were greater 

than 100% to ensure only consistently estimated decay rates were used in comparisons. 

Excluded decay rate constants included 2 experimental stream decay rates calculated 

after 24 hours (CV  SoilLight 128% and Soil 287%) and 4 bottle decay rates (Plant -24 

hrs 183%,  Soil-70 hrs 377%, SoilLight-70 hrs  612%, Soil-24 hrs 866%). Again, there 

was no difference in mean decay of light versus dark experimental streams, so results 

from light and dark experimental streams were pooled (Supplement 4).  

 

Decay rate constants  Decay rates constants from single-source experiments of 

experimental streams (n= 13, mode 0.23/d, sd 0.89) were not different from decay rate 
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constants of bioassays (n = 11, mode 0.199 /d, sd 0.527; 95 % HDI -0.426, 0.901; Fig. 4). 

Decay rate constants of bioassays in previous studies  tended to be lower (n = 33, 

0.041/d, sd 0.028), than for real streams (n = 25, mode 0.003/d, sd 0.004), but the 

probability density of difference in means included zero ( 95 % HDI -0.004, 0.057), and 

therefore was not significant. 

 

Bioavailable DOC  BDOC was calculated to compare the proportion of DOC lost 

during each single-source experiment between bottles and experimental streams. Soil 

leachate BDOC in streams was significantly lower (<0 %) than all other experimental 

stream experiments, and there were no other significant differences in BDOC among 

treatment experiments in streams (F = 0.94, p = 0.46). Overall, percent BDOC was 

greater in streams (mode 52.6 %, sd 20.3) than bottles (mode 22.8%, sd 12.3; 95 % HDI 

22.6, 36.7; Fig. 5). 

 

 

Do positive non-additive effects result from mixing DOM pools?  

 We used plant-leachate as the semi-labile source of DOM in priming experiments 

because single-source soil leachate experiments reached maximum concentrations of ca. 

4 mg/L DOC so it was difficult to detect significant declines in DOC concentrations and 

estimate decay rates for soil leachate. Variation in single-source estimates of plant 

leachate decay in bottles were extremely high (CV mean 111%) compared to 

experimental streams  (CV mean 20%), so meaningful effect sizes for non-additive 

effects in bottles could not be calculated, and are not discussed further. 
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Mixed algal and plant leachates Non-additive effects were inconsistent among 

experiments with mixed algal and plant leachates (prime-algae). The biexponential 

models detected a negative  non-additive effect on DOC decay (Table 3). This may have 

been due to difficulty in estimating decay rates of the labile pool as a result of DOM 

production in some streams. For example, biexponential estimates of 𝑘𝑓𝑎𝑠𝑡 for algal-

leachate were -1.23/d (sd 0.31) and 0.06/d (sd 0.15) after 6 and 24 hours. These values 

were slower than estimates of 𝑘𝑠𝑙𝑜𝑤 (1.25/d and 1.73/d) for the same models. The prime-

algae biphasic model had a better fit than the biexponential model as indicated by 

predicted versus observed DOC concentration regressions (Supplement 9). The biphasic 

model technically detected a positive non-additive (priming) effect with a median effect 

size greater than zero (0.032/d), but this effect size is very small (Table 3). BDOC for the 

prime-algae experiment was not significantly different than the plant single source 

experiment (ANOVA F = 0.94, p = 0.46, Supplement 10), consistent with little decay or 

DOC production in algal treatments resulting in negative non-additive effects. 

 

Mixed photodegraded plant and plant leachates In the prime-light experiment, the 6-

hour biexponential model and the biphasic model both predicted a positive non-additive 

effect of light-degraded plant DOM on plant leachate. The 6-hour biexponential model 

estimated a non-additive effect size of 4.93/d (95% HDI 1.65, 9.87). Despite being 

statistically significant, biexponential model estimates of both fast and slow decay 

constants were highly variable (CV mean 123%). The biphasic model, while statistically 

significant, could not constrain estimates of non-additive effect size as indicated by the 
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broad posterior probability density around the estimated median of 0.88/d (95% HDI -

0.76, 2.99). While BDOC tended to be higher in streams in the prime-light versus plant 

experiment, there was no significant difference between experiments (Supplement 10). 

 

 

Discussion 

Bioassays may underestimate DOC demand in streams 

Average BDOC in experimental streams was 2 times greater than in bottles, 

which suggests bioassays underestimated DOC decay in experimental streams. 

Experimental stream BDOC was similar to the estimated percent DOC consumed at the 

watershed scale which ranged from 27 to 45% for 7 north-east watersheds (Mineau et al. 

2016). Bioassay decay rate constants also tended to be slower than decay rates calculated 

from mass balance models at the watershed scale, but the ideal comparison to test our 

hypothesis would compare bioassay decay rates constants calculated from mass balance 

models to decay rate constants calculated for ambient DOM in bioassays from the same 

watershed. While we cannot conclude if bioassays underestimated DOC demand in real 

streams, evidence suggests given then same OM substrate, bioassays would likely 

underestimate DOM demand compared to a lotic system with a benthic component.  

In addition, first order decay rates estimated from bioassays and experimental 

streams include products of microbial production less than 0.7 µm, or whatever filter pore 

size is used to collect DOM. As a result, decay rate constants estimated were based on net 

changes in DOC concentration, not gross DOC consumption, another factor to suggest 

such experiments underestimate DOM demand. Without an isotope tracer, DOC demand 
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estimated from bulk DOM additions is likely not comparable to DOM demand in lotic 

ecosystems. Thus, the role of bioassays and experimental streams as a tool to predict 

carbon cycling at the watershed scale needs further study (Mineau et al. 2016) to help 

further constrain estimates of DOM transformation in rivers.  

We recommend future studies of stream DOM supplement bioassay decay rates 

with additional measures of DOC mineralization such as reach-scale measurements 

and/or mass balance models. Bioassays not only exclude DOC consumption by benthic 

biofilms, they also exclude the effect of abiotic factors that increase DOC decay such as 

photodegradation, adsorption, and sedimentation (Cory and Kaplan 2012, Catalan et al. 

2016). As noted by Catalan et al. (2016), field studies better integrate all processes of 

DOC loss and production which may have minimal consequences for bioassays of 

aquatic systems with long water residence times (e.g. > 1 year), but could significantly 

influence bioassay decay rates in water bodies with short residence times such as streams. 

Our study would have benefitted from an experimental stream control without benthic 

periphyton to help elucidate physical versus biological drivers of DOC decay. 

Supplementing bioassays with field studies, or lotic mesocosms, such as experimental 

streams or plug-flow reactors, would help account for all physical and biological factors 

that influence DOC decay in streams. 

 

Extremely fast labile DOM decay 

Our estimates of decay for labile sources of DOM in experimental streams, (i.e. 

algae and light-degraded plant) were an order of magnitude greater than estimates of 

labile pools calculated from previous bioassays and field-based models (Griffiths et al. 
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2012, Hotchkiss et al. 2014, Epstein et al. 2016, Hall et al. 2016). For both bottles and 

experimental streams, decay rate constants were faster when calculated within the first 6 

or 24 hours of the experiment compared to 70 hours. Few studies have estimated DOM 

decay within the first 12 to 24 hours of  incubation (but see Lyon and Zeigler 2009, Cory 

et al. 2007). Incubation durations range over days (Bernhardt and Likens 2002, Hotchkiss 

et al. 2014), weeks (Guillemette and del Giorgio 2011, Catalan et al. 2015), months 

(Danger et al. 2013) and years (Vahatalo and Wetzel 2008, Evans et al. 2017). The only 

study to report a decay rate constant faster than this study was for the labile portion of 

stream DOM incubated in bioreactors with an empty bed contact time < 15 min. resulting 

in a decay rate  constant of 1.59/day and uptake velocity of 1.23 mm/min (Kaplan et al. 

2008). While most DOM decay studies assume a constant first order decay rate 

(Guillemette et al. 2013), if differences in decay rate constants depend on the time over 

which decay is calculated, as in this study, first order decay may not be an appropriate 

model of DOC decay. Recent DOM decay studies have investigated the reactivity 

continuum model that assumes overall decay is the result of an infinite number of 

reactive pools with decay constants that decrease over time and indeed found that decay 

rates vary over time (Koehler et al. 2012, Guillemette et al. 2013). 

Regardless of the model used to describe decay, labile DOM pools in freshwater 

are known to decay within hours to one day (Guillemette and del Giorgio 2011, Cory and 

Kaplan 2012, Hotchkiss et al. 2014, Mostovaya et al 2016, Ward et al. 2016), or even 

within minutes (Pollard et al 2013). Future studies that aim to quantify consumption of 

autochthonous DOM, or other labile DOM, should increase sampling frequency and 

replication within the first 24 hours of experiments. Furthermore, it may be impossible to 
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measure the most bioavailable DOM in streams since it is consumed so quickly 

(Hotchkiss et al. 2014). Bulk DOM samples that are typically collected from streams 

likely constitute only the semi-labile DOM that remains “leftover” after labile DOM has 

been consumed (Hotchkiss et al. 2014, Findlay and Parr 2017).  

 

Light reduced aromatic content in soil leachate 

Exposure to natural sunlight decreased aromatic content in DOM and increased 

BDOC of light-degraded soil compared to the single-source soil experiment. Our indices 

of DOM degradation by natural sunlight may differ from previous studies because 

sunlight exposure time was much shorter than previous experiments. One other study, 

conducted in streams, found significant changes in tyrosine-like DOM within 4 to 7 hours 

of sunlight exposure (Cory et al. 2007), but most studies investigated the effect of light 

over 24 to 48 hours (Skully et al. 2004, Bittar et al. 2015) or up to 5 weeks (Guillemette 

and del Giorgio 2011, Catalán et al. 2015). Our study highlights the effect sunlight had on 

DOM quality after just 3 to 4 hours of exposure, a duration that represented the minimum 

duration of sunlight exposure for a stream in the warm months, of a temperate ecosystem.  

 

Non-additive effects were difficult to quantify 

It was hard to quantify the non-additive effect of mixing labile and semi-labile 

DOM because it was difficult to measure net DOM decay. All but 2 experiments included 

DOM production after leachate was added resulting in highly variable decay rates that 

may have underestimated the total amount of DOM assimilated or mineralized. We did 

not account for DOM production (as in Hosen et al. 2014), which may have reduced 
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variation in estimates of single-source decay, and therefore could have better informed 

biexponential models. The biphasic model better predicted final DOC concentrations for 

both non-additive effects experiments because, as opposed to the biexponential model, 

the labile and semi-labile pool were distinctly separated by the modeler. A stable isotope 

tracer of terrestrially derived DOM would have helped differentiate fast and slow pools 

and therefore models could have better estimated fast versus slow decay rates. 

While non-additive effects on DOM decay have been studied in soil ecosystems 

since the mid 1900s (Bingeman et al. 1953), interactive effects of labile and semi-labile 

DOM in aquatic ecosystems have only been studied over the last decade (Guenet et al. 

2010, Bengtsson et al. 2018). A recent review identified 17 studies since 2010 that 

explicitly tested for non-additive effects in aquatic ecosystems, and found 7 studies 

measured a positive non-additive effect, 6 did not, and 4 had mixed results (Bengtsson et 

al. 2018). It is worth noting that all studies were conducted as lab incubations, and 65% 

of studies used naturally occurring labile OM such as algal leachates, while the other 

studies used glucose or other simple compounds (Bengtsson et al. 2018). Laboratory 

conditions and the use of non-natural DOM reiterate the difficulty of separating labile 

and semi-labile pools due the high variability and complexity of DOM. In addition, 

studies of non-additive effects that include a benthic component are vastly 

underrepresented in the literature (Bengtsson et al. 2018). We conclude if positive non-

additive effects do occur in aquatic systems, it is extremely hard to detect because 

variation in DOM lability is so great that it remains difficult to model separate decay 

rates of 2 different DOM pools. 
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Conclusions 

It is important to quantify DOM decay and compare decay rates among 

ecosystems to better estimate carbon fluxes to the atmosphere from freshwater 

ecosystems. The relative lability and processing rate of autochthonous and terrestrial OM 

sources remains elusive. Our results emphasize the need to better quantify both fast and 

slow decaying OM pools in streams. Direct measurements of known sources of DOM in 

an experimental setting can help define the lability of DOM along a continuum of 

minutes to years, rather than from correlations of  chemical and biological parameters of 

DOM to infer lability (Cory and Kaplan 2012, Koehler et al. 2012). More empirical 

measurements of OM decay and carbon spiraling metrics for pools with varying lability 

will help predict the biological implications of DOM processing in streams. 

Excessive OM in streams is a problem worldwide that contributes to cultural 

eutrophication, the transport of contaminants to downstream waters, and can increase the 

cost of wastewater treatment (Chow et al. 2005, Volkmar and Dahlgren 2006, Solomon et 

al. 2015). In addition to informing models of organic carbon flux from streams, better 

estimates of DOM decay in streams from varying sources can inform management 

decisions aimed at reducing DOM loads at the watershed-scale. If autotrophic production 

in human altered watersheds is increased, it is likely the proportion of autochthonously 

derived, labile DOM compared to the proportion of semi-labile DOM is also increased. A 

greater proportion of labile DOM could saturate microbial demand, and therefore more 

semi-labile DOM would remain untransformed and transported downstream to receiving 

waters. If managers are to mitigate increased OM loads in rivers, the rate at which labile 

and semi-labile DOM is transformed, and the interactive effects of these pools on bulk 
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DOM transformation are useful information for managers. The study of novel sources of 

DOM in anthropogenically altered landscapes is just beginning, and baseline measures of 

autochthonous and terrestrial rates of DOM decay will help put the ecological 

implications of less studied sources of DOM in perspective. 
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Tables 

Table 1. Single source decay rates (ktot/d) calculated after 6, 24, and 70 hours using equation 2. Values are reported as the 

mean (n=8) and standard deviation in parentheses. Positive values represent decay and negative values indicate no decay or net 

DOC production. 

 
Algae Soil Soil- light Plant Plant-light 

Bottles 
 

Decay rate after 6 hours 1.17 (0.64) 0.53 (0.3) 0.06 (0.36) -0.72 (0.45) 1.31 (0.95) 

Decay rate after 24 hours 0.27 (0.09) 0.13 (0.03) 0.2 (0.04) 0.1 (0.18) -0.09 (0.18) 

Decay rate after 70 hours 0.09 (0.03) <0.01 (0.03) 0.07 (0.01) 0.05 (0.04) <0.01 (0.03) 

Streams  

Decay rate after 6 hours 2.06 (0.66) -0.32 (0.26) 0.25 (0.17) 0.21 (0.07) 1.54 (0.74) 

Decay rate after 24 hours 0.39 (0.13) -0.02 (0.04) -0.27 (0.35) 0.12 (0.02) -0.32 (0.26) 

Decay rate after 70 hours 0.23 (0.06) -0.04 (0.02) 0.2 (0.08) 0.25 (0.02) 0.23 (0.02) 
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Table 2. Descriptions of 5 components identified by PARAFAC and references that had a 

tucker’s congruency coefficient of 0.95 or more for previously identified fluorophores in 

the OpenFluor library (Murphy et al. 2014). 

 
Excitation 

emission 

(nm) 

References Reference description 
This study  

description 

C1 
ex 340 

em 435-440 

Osburn et al 2011; 

Stedmon et al 2007 
Humic-like Humic-like 

C2 
ex 255-260 

em 495-500 

Walker 2009,  

Yamashita et al 2008 
Humic-like 

Humic-like,  

susceptible to 

light degradation 

C3 
ex 248 

em 430-440 

Shutova et al 2014;  

Osburn et al 2016 
Humic-like 

Humic-like, 

product of light 

degradation 

C4 
ex 315 

em 385-390 

Osburn et al 2011; 

Shutova et al 2014 

Recently derived or 

microbial-derived 

Recently derived,  

terrestrial 

C5 
ex 278 

em 330-335 

Coble et al 1996;  

Yamashita and 

Tanoue 2003 

Protein-like,  

tryptophan-like 
Protein-like 

 

 

  



 

 

1
6
9
 

 

Table 3. Estimated decay rates (1/d) for the labile, 𝑘𝑓𝑎𝑠𝑡  and semi-labile, 𝑘𝑠𝑙𝑜𝑤 pools of DOM in the prime-algae and prime-

light experiment at 6, 24 and 70 hours. Biexponential models were fit using equation 2 and biphasic models were fit using 

equations 3 and 4. Model fit was assessed through linear regression of measured versus modeled final DOC concentrations 

(Supplement 9). The high density interval (HDI) of effect-size was calculated as the difference in the HDI of the posterior 

probability distribution of 𝑘𝑠𝑙𝑜𝑤and 𝑘𝑝𝑙𝑎𝑛𝑡 where a positive median effect size indicated a positive non-additive (priming) 

effect.  

 t Model 𝑘𝑠𝑙𝑜𝑤 𝑘𝑓𝑎𝑠𝑡 Model fit Effect size 

  Hours   mean (1/d),  
mean 

(1/d),  
slope, r2 2.50% 50% 97.50% 

         

Prime-Algae 6 Biexponential 1.25, 2.88 -1.23, 0.31 0.36, '0.94 -1.835 -1.459 -0.887 
 24 Biexponential 1.73, 1.89 0.06, 0.15 0.11, '0.61 -0.258 -0.068 0.235 
 70 Biexponential 2.55, 2.14 0.12, 0.05 0.13, 0.95 -0.180 -0.136 -0.037 
 70 Biphasic fixed = 0.31 0.28, 0.06 0.43, 0.88 -0.041 0.032 0.134 

Prime-Light 6 Biexponential 3.19, 2.67 5.37, 2.18 0.20, 0.56 1.655 4.931 9.871 
 24 Biexponential 2.68, 2.32 4.52, 3.96 0.42, 0.13 -4.252 4.634 11.702 

  24 Biphasic fixed = 2.0 1.05, 0.96 0.55, 0.83 -0.764 0.880 2.990 

a 𝑘𝑓𝑎𝑠𝑡  was fixed at 0.31 /d which was estimated from time zero to the breakpoint at 0.5 days using equation 3.  

 

b 𝑘𝑓𝑎𝑠𝑡  was fixed at 2.0 /d which was estimated from time zero to the breakpoint at 0.25 days using equation 3. 
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Figures 

Figure 1. Eight experimental streams and 8 bottle-bioassays were used to compare decay 

in bioassays versus experimental streams and test the hypothesis labile DOM would 

increase the decay rate of semi-labile DOM. Streams were in a greenhouse; half of 

streams were covered with cardboard for the dark treatment (4 replicates), and half were 

not for the light treatment (4 replicates; see picture of light treatments). Seven, 3-day 

experiments were conducted as, 5 single-source experiments and 2 priming experiments. 
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Figure 2. Light streams (n=4) had significantly higher fluorescence index (FI) values than 

dark streams (n=4) and all streams had higher FI values than bottles (n=8). SUVA was 

not significantly different among bottles and streams. Letters indicate treatments that 

differed by average FI or SUVA values. High FI values indicated more microbial derived 

DOM and high SUVA values represented greater aromatic content of DOM. 
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Figure 3. Percent fluorescence contribution compared among components 1 through 5 

(C1, C2, C3, C4, C5) after 1, 24 hours and 70 hours. Black lines represent dark streams; 

dashed lines represent light streams. C1, C2 and C3 were humic-like, C4 was recently 

derived humic-like, and C5 was protein-like (Table 2). All components were significantly 

different by treatment, except C2 which had an interactive effect between dark (n=4) and 

light streams (n=4).  
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Figure 4. Dissolved organic carbon (DOC) decay rates for bioassays, experimental 

streams, and natural streams. Bottles include decay rate constants calculated for DOM 

leachates from this study and Hotchkiss et al. 2015. Experimental streams values are 

from this study, and streams values were calculated from modeled decay rates for real 

streams (Griffiths et al. 2009, Epstein et al. 2016, Hall et al. 2016). 
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Figure 5. Average bioavailable DOC (BDOC) was significantly greater for experimental 

streams compared to bottles across all experiments except soil, which had significantly 

higher BDOC in bottles compared to experimental streams, and there were no other 

significant differences among experiments. Boxes represent the median and interquartile 

range, whiskers represent 2.5 and 97.5, and dots are outliers. 
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Supplement 

 

Supplement 1. Text file of R code for biexponential and biphasic models. 

### Biexponential model ### 

modelString = " 

  model { 

    for ( i in 1:Ntotal ) {  

      y[i] ~ dt(mu[i], 1/sigma^2, nu) 

      mu[i] <- pr1*C1*exp(k1[s[i]]*x[i]) + pr2*C2*exp(k2[s[i]]*x[i]) 

    } 

    for ( j in 1:Nsubj ) { 

      k1[j] ~ dnorm( k1mu , 1/(k1sigma)^2)   

      k2[j] ~ dnorm( k2mu , 1/(k2sigma)^2 ) 

    } 

    # Priors 

    k1mu ~ dnorm( -1.57, 0.05 ) 

    k2mu ~ dnorm( -0.21,0.05 ) 

    sigma ~ dgamma( 1 , 0.05 ) 

    k1sigma ~ dgamma( 1 , 0.05 ) 

    k2sigma ~ dgamma( 1 , 0.05 ) 

    nu ~ dexp(1/30.0) 

} 

 

### Biphasic model ### 

modelString = " 

  model { 

    for ( i in 1:Ntotal ) {  

      y[i] ~ dt(mu[i], 1/sigma^2, nu) 

      mu[i] <- Co*exp(k1[s[i]]*tp)*exp(k2[s[i]]*(x[i]-tp)) 

    } 

    for ( j in 1:Nsubj ) { 

      k1[j] ~ dnorm( k1mu , 1/(k1sigma)^2)   

      k2[j] ~ dnorm( k2mu , 1/(k2sigma)^2 ) 

    } 

    # Priors  

    k1mu ~ dnorm( -2, 0.5 ) 

    k2mu ~ dnorm( -0.21, 0.05 ) 

    sigma ~ dgamma( 1 , 0.05 ) 

    k1sigma ~ dgamma( 1 , 0.05 ) 

    k2sigma ~ dgamma( 1 , 0.05 ) 

    nu ~ dexp(1/30.0) 

} 
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Supplement 2. References and values used to create figure 4. Depth and velocity are for 

the stream or experimental stream DOM was collected from. 

Reference DOM source 
Stream 
Assay 

Decay 
(1/d) 

Depth 
(m) 

Velocity 
(m/s) 

Epstein et al 2016 Natural Stream 0.6 1.04 0.36 

Epstein et al 2016 Natural Stream 1.6 0.57 1.22 

Epstein et al 2016 Natural Stream 2 0.7 0.86 

Griffiths et al 2012 Natural Stream 0.001 - - 

Griffiths et al 2012 Natural Stream 0.002 - - 

Griffiths et al 2012 Natural Stream 0.002 - - 

Griffiths et al 2012 Natural Stream 0.002 - - 

Griffiths et al 2012 Natural Stream 0.003 - - 

Griffiths et al 2012 Natural Stream 0.004 - - 

Griffiths et al 2012 Natural Stream 0.007 - - 

Griffiths et al 2012 Natural Stream 0.008 - - 

Griffiths et al 2012 Natural Stream 0.009 - - 

Griffiths et al 2012 Natural Stream 0.01 - - 

Griffiths et al 2012 Natural Stream 0.013 - - 

Griffiths et al 2012 Natural Stream 0.019 - - 

Hall et al 2016 Natural Stream 0.041 1.3 0.57 

Hall et al 2016 Natural Stream 0.045 1.3 0.39 

Hall et al 2016 Natural Stream 0.048 1 0.45 

Hall et al 2016 Natural Stream 0.109 0.6 0.53 

Hall et al 2016 Natural Stream 0.258 1.1 0.49 

Hall et al 2016 Natural Stream 0.337 1 0.98 

Hall et al 2016 Natural Stream 0.416 1.4 0.52 

Hall et al 2016 Natural Stream 0.495 0.6 0.59 

Hall et al 2016 Natural Stream 0.819 0.8 0.36 

Hotchkiss et al 2014 Algae Bioassay 0.038 0.6 0.59 

Hotchkiss et al 2014 Algae Bioassay 0.074 0.8 0.36 

Hotchkiss et al 2014 Algae Bioassay 0.075 1.1 0.49 

Hotchkiss et al 2014 Algae Bioassay 0.092 1.2 0.43 

Hotchkiss et al 2014 Algae Bioassay 0.098 1.4 0.52 

Hotchkiss et al 2014 Soil Bioassay 0.001 1.1 0.49 

Hotchkiss et al 2014 Soil Bioassay 0.004 0.8 0.36 

Hotchkiss et al 2014 Soil Bioassay 0.011 1 0.45 

Hotchkiss et al 2014 Soil Bioassay 0.017 1 0.98 

Hotchkiss et al 2014 Soil Bioassay 0.023 1.4 0.52 

Hotchkiss et al 2014 Soil Bioassay 0.024 0.6 0.59 

Hotchkiss et al 2014 Soil Bioassay 0.024 1.2 0.43 

Hotchkiss et al 2014 Soil Bioassay 0.026 1.3 0.39 
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Hotchkiss et al 2014 Soil Bioassay 0.052 1.3 0.57 

Hotchkiss et al 2014 Soil Bioassay 0.058 0.6 0.53 

This study Algae - 24 hr Stream 0.39 0.07 - 

This study Algae - 6 hr Stream 2.06 0.07 0.6 

This study Algae - 70 hr Stream 0.234 0.07 - 

This study Algae -24 hr Bioassay 0.27 0.07 - 

This study Algae -6 hr Bioassay 1.18 0.07 0.6 

This study Algae -70 hr Bioassay 0.088 0.07 - 

This study Light-plant - 6 hr Bioassay 1.31 0.07 0.6 

This study Light-plant - 6 hr Stream 1.53 0.07 0.6 

This study Light-plant - 70 hr Stream 0.225 0.07 - 

This study Light-soil - 24 hr Bioassay 0.2 0.07 - 

This study Light-soil - 6 hr Bioassay 0.06 0.07 0.6 

This study Light-soil - 70 hr Bioassay 0.074 0.07 - 

This study Light-soil - 70 hr Stream 0.202 0.07 - 

This study Plant - 24 hr Stream 0.12 0.07 - 

This study Plant - 6 hr Stream 0.21 0.07 0.6 

This study Plant - 70 hr Stream 0.25 0.07 - 

This study Plant-24 hr Bioassay 0.1 0.07 - 

This study Plant-70 hr Bioassay 0.048 0.07 - 

This study Soil - 24 hr Bioassay 0.13 0.07 - 

This study Soil - 6 hr Bioassay 0.54 0.07 0.6 

This study Soil - 70 hr Bioassay 0.014 0.07 - 
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Supplement 3. Benthic biomass measured as ash free dry mass (AFDM) and chlorophyll 

a (Chla) for each experiment. Boxplots represent the average concentration per area of 

AFDM and Chla for 3 samples collected during each experiment from each stream. 

Concentration of each variable was multiplied by the total volume of slurry produced 

from scrubbing the cobble and normalized by the area of the cobble. 
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Supplement 4. High density intervals (HDI) of the difference between labile (algae, soil-

light, plant-light) and semi-labile (soil, plant) decay rate HDIs. A positive median 

difference in decay rate indicated a significant difference in decay rate constants (bold) 

estimated by the single-source model (Eqn. 2). 

 Algae-Soil Algae-Plant 

Streams 2.5% 50% 97.5% 2.5% 50% 97.5% 

6 hours 0.75 1.18 1.60 0.25 0.90 1.53 

24 hours 0.08 0.20 0.29 -0.03 0.13 0.25 

70 hours -0.09 0.05 0.15 -0.18 -0.07 0.02 

Bottle       

6 hours --0.05 0.30 0.66 0.76 0.94 1.14 

24 hours -0.03 0.06 0.12 0.28 0.13 -0.02 

70 hours 0.00 0.03 0.05 0.09 0.05 0.02 
       

 Plant-light-Soil Plant-light-Plant 

Streams 2.5% 50% 97.5% 2.5% 50% 97.5% 

6 hours 0.39 0.90 1.43 -0.11 0.62 1.36 

24 hours -0.39 -0.16 0.06 -0.50 -0.23 0.02 

70 hours 0.00 0.00 0.00 -0.09 -0.11 -0.12 

Bottle       

6 hours -0.31 0.36 1.02 0.50 0.99 1.51 

24 hours -0.18 -0.12 -0.07 0.13 -0.05 -0.21 

70 hours -0.10 -0.05 -0.02 0.00 -0.03 -0.05 
       

 Soil-light-Soil Soil-light-Plant 

Streams 2.5% 50% 97.5% 2.5% 50% 97.5% 

6 hours -0.17 1.45 3.21 -0.67 1.17 3.13 

24 hours -0.75 -0.20 0.17 -0.86 -0.28 0.12 

70 hours -0.19 0.05 0.15 -0.28 -0.07 0.03 

Bottle       

6 hours -0.30 -0.24 -0.17 0.50 0.39 0.31 

24 hours 0.02 0.03 0.04 -0.10 0.10 0.33 

70 hours 0.00 0.01 0.02 -0.01 0.03 0.10 
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Supplement 5. Comparison of decay rates calculated over 6 hours for light and dark 

streams.  
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Supplement 6.1. Differences in the BIX, HIX, FI and SUVA between treatments. Letters 

at the top of panels represent results of the Tukey HSD test.  
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Supplement 6.2. Bayes factor results for 5 linear models that described variation in fluorescence indices. The biological index 

(BIX), the humification index (HIX), the fluorescence index (FI), the peak T to peak C ratio (TC) and SUVA at absorbance 

wavelength 254 nm (SUVA), were compared after 70 hours in each experiment. Linear models were also fit using the percent 

contribution of each component from the PARAFAC model (C1-C5). The higher the Bayes Factor the better the model 

explained variation in the dependent variable. Bold cells are the highest Bayes Factor in each row. 

 Treatment 
Treatment + 

Bottle/Stream 

Treatment + 

Bottle/Stream 

+ interaction 

Treatment + 

Dark/Light/Bottleb 

Treatment + 

Dark/Light/Bottlea + 

interaction 

BIX 2.1 E 44 0.3 0.3 0.2 0.1 

HIX 3.3 E 31 4.4 1.5 E 3 1.9 2.5 E 4 

FI 1.6 E 19 1.5 E 11 9.6 E 11 3.7 E 25 1.5 E 30 

TC 9.7 E 8 1.2 0.55 0.8 1.1 

SUVA 7.6 E 31 1.3 E 14 1.2 E 17 2.5 E 47 2.5 E 49 
      

Percent C1 1.6 E 27 22.6 2.2 E 3 29.6 1.7 E 3 

Percent C2 4.4 E 15 4.5 E 8 6.1 E 9 6.6 E 17 2.7 E 20 

Percent C3 1.2 E 51 3.4E 2 3.5 E 13 6.1 E 4 2.2 E 21 

Percent C4 2.4 E 70 61.3 4.6 E 9 38.1 4.4 E 10 

Percent C5 7.7 E 10 4.5 21.2 3.1 8.7 
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Supplement 7. Spectral characteristics of five components resolved by PARAFAC. 

Fluorescence intensities are in Raman units (top). Ex = excitation and Em = emission 

wavelengths. Split-half validation of reverse normalized model that produced 

components 1 to 5 (bottom). 
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Supplement 8. Pearson’s correlations between components and fluorescence indices. All 

fluorescence samples were included. 
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Supplement 9.1. Left panels are modeled biexponential DOC decay (red) and actual DOC 

decay (black) for the prime algae experiment after 70, 24, and 6 hours. Right panels are 

the modeled data points in black and the modeled versus actual 1:1 line in red. 
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Supplement 9.2. Left panels are modeled biexponential DOC decay (red) and actual DOC 

decay (black) for the prime-light experiment after 24 and 6 hours. Right panels are the 

modeled data points in black and the modeled versus actual 1:1 line in red. 
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Supplement 9.3. Left panels are modeled biphasic DOC decay (red) and actual DOC 

decay (black) for the prime-algae experiment (top) and prime-light experiment (bottom). 

Right panels are the modeled data points in black and the modeled versus actual 1:1 line 

in red. 
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Supplement 10. Bioavailable DOC (BDOC) in the single-source plant experiment and the 

2 priming experiments. More BDOC in priming experiments than in the plant experiment 

would indicate a possible positive non-additive effect. While BDOC was higher in the 

streams of the prime-light experiment there was not significant difference across 

treatments (ANOVA F = 0.94, p = 0.46). 
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CONCLUSIONS 

 

 Despite the difficulty in distinguishing sources of OM in watersheds with mixed 

land use, I identified major sources of OM to the Jordan River including WWTP effluent, 

OM derived from Utah Lake, and autochthonous and terrestrial sources. WWTP effluent 

OM sources were incorporated into FPOM in the Jordan River and had increased 

influence on FPOM during low flow periods in fall. There were also increased 

autochthonous sources of CPOM in spring and summer. These results support the 

hypothesis outlined in the Urban Watershed Continuum (Kaushal and Belt 2012) that 

urbanization can increase the proportion of autochthonous sources of OM and in effect, 

replace terrestrial OM with more labile sources of OM. 

I did not identify any land cover metrics that correlated with OM source or 

composition across multiple watersheds. The greatest differences in OM were due to the 

influence of WWTP effluent, OM sources from Utah Lake, and human activity within 

federally designated national forests. None of these human activities were accounted for 

in land cover categories of the National Land Cover Dataset. Further study is needed to 

understand the influence of landcover on OM source and composition, especially in arid 

regions which have different flow regimes than temperate systems, and are influenced by 

large lakes and reservoirs within multiple land cover types. While some previous studies 

have specifically compared WWTP OM to other OM sources within the landscape 

(Wassenaar et al. 2010, Gucker et al. 2011, Duan et al. 2014), I think more OM studies 

conducted in watersheds with wastewater effluent should directly incorporate OM 

samples from WWTPs into their sampling regimes. Likewise, researchers of wastewater 

treatment engineering and biogeochemistry are disconnected from sociology, biology and 
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ecology researchers, areas of study that all inform watershed management. Increased 

collaboration across disciplines could rapidly advance our understanding of the sources 

and composition of OM within a matrix of land cover, and the ecological impacts of 

differences in land cover on rivers.  

It is important to identify and quantify the sources and lability of OM in rivers to 

inform management decisions aimed at OM load and associated pollutant reduction. 

Here, I outline how OM source identification can help reduce OM loads of either 

autochthonous or terrestrial sources. Possible strategies to reduce terrestrial OM loads 

include geomorphic alterations of riparian and benthic habitat to increase OM retention 

time within a reach. Greater habitat heterogeneity through the addition of bio swales, 

large benthic substrates (e.g. boulders), and wood additions may increase OM retention 

and/or reduce benthic embeddedness, consequently increasing hyporheic exchange 

(Hester and Gooseff 2010). Greater retention and hyporheic exchange increase the 

amount of habitat and time available for microbial OM processing, thereby reducing OM 

export from a reach (Wollheim et al. 2018). However, geomorphic alterations should be 

considered with extreme caution because reach-scale restoration studies suggest they are 

not effective at improving ecosystem function (Bernhardt and Palmer 2011). 

To reduce autochthonous OM sources, effective reduction strategies must occur at 

the multi-watershed scale. As is the case with the Jordan River, the primary source of 

problematic OM is from Utah Lake, which receives water from 6 other major watersheds 

(Psomas 2009). Reduced inorganic nutrients could reduce in-stream primary production. 

Potential nutrient reduction strategies include updating stormwater infrastructure to 

reduce urban and agricultural runoff during storms, and encouraging best management 



191 

 

practices when applying fertilizer in urban and agricultural areas (Parr et al. 2016). Other 

possible, but costly, nutrient reduction strategies in urban watersheds are wastewater 

treatment facility updates, such as upstream filtration for membrane treatment and UV 

disinfection (Henderson et al. 2009). 

However, replacing infrastructure is expensive, and changing human behavior is 

hard. I think future research to reduce OM loads in the Great Salt Lake Basin should 

focus on how reservoirs and diversions have altered the natural flow regime (Miller et al. 

2018, Wurtsbaugh et al. 2017). A recent study identified consumptive use of water in the 

Great Salt Lake Basin as the cause of reduced lake levels (Wurtsbaugh et al. 2017). This 

implies that water available to dilute OM loads is lacking. A study to assess the effect of 

reservoirs and diversions on river flow regimes before and after impoundment 

installations could reveal alterations to organic matter source and transport dynamics. It is 

not realistic to remove dams and diversions, but knowledge of the flow regimes prior to 

impoundment could outline strategies to return portions of the watershed to their natural 

flow regimes. Then, management strategies could be specifically tailored to flow regimes 

and problematic OM for each watershed. For example, if floodplain areas were lost, 

perhaps constructed wetlands would help simulate ecological services provided by 

floodplains. 

In addition to knowledge of source identity and quantity, understanding OM 

bioavailability can directly inform regional and global models of organic carbon cycling 

(Cole et al. 2007, Raymond et al. 2013). Decay rates for terrestrial sources of DOM span 

10 orders of magnitude due to variation in OM substrate, and methods used to quantify 

dissolved organic carbon uptake (Cory and Kaplan 2012, Mineau et al. 2016). Likewise, 
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microbial transformation rates of labile DOM sources, especially naturally derived labile 

DOM, are poorly constrained. Uncertainty of DOM transformation rates, combined with 

unknown proportions of labile OM within the DOM pool, has limited robust estimates of 

inorganic carbon evasion to the atmosphere from rivers (Wollheim et al. 2015). 

Autochthonous and terrestrially derived DOM decay rates from this study can 

inform future studies that aim to constrain OM transformation rates in rivers. DOM 

reactivity and removal from rivers has been described as moderate (Wollheim et al. 2015) 

to high (Hall et al. 2016). Uncertainty of DOM removal rates is derived from the portion 

of the DOM pool for which removal is measured. For example, removal rates are 

calculated for the entire DOM pool (Hall et al. 2016 and references), the terrestrial 

portion (Mineau et al. 2016), or fractions separated by molecular weight (Skully et al. 

2004) or hydrophobicity (Wollheim et al. 2015). My results emphasize the need to better 

quantify both fast and slow decaying OM pools in rivers. Many measures of OM decay 

are based on bioassays which likely underestimate OM demand in rivers. Direct 

measurements of known sources of DOM in an experimental setting can help define the 

lability of DOM along a continuum of minutes to millennia.  

I have highlighted that the study of OM source, composition, and quality can 

inform both watershed management and the study of carbon cycling at the watershed 

scale. The management implications I discussed focused on source identification of OM 

loads such as labile versus semi-labile sources of autochthonous, anthropogenic, or 

terrestrial inputs. It is important to note these are water quality issues largely faced by 

developed nations that have wastewater treatment infrastructure, while many developing 

nations do not treat wastewater. I also believe estimates of OM demand for 
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autochthonous and terrestrial DOM from this study may inform models of OM 

transformation and carbon dioxide evasion to the atmosphere. But, I emphasize that 

further study is needed to standardize metrics and definitions of OM demand across 

disciplines, and to identify measures of anthropogenic influence within watersheds that 

can predict OM composition at a specified spatial scale. 
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Ecosystems. 19:1041-1061. DOI:10.1007/s11252-016-0556 

 

Kelso, J.E. and M.A. Baker. 2015. Filtering with a drill pump: an efficient method to 

collect suspended sediment and filtrate. Journal of American Water Resources 

Association. 52:1536-1541. DOI:10.1111/1752-1688.12368 

 

PUBLISHED DATASETS 

 

Kelso, J., M.A. Baker (2017). Dissolved organic matter spectrofluorometric properties 

along a mountain to urban gradient in North East Utah, HydroShare, 

http://www.hydroshare.org/resource/7722d73be4b348a9ad874fe29086c1fb 

 

Kelso, J., M.A. Baker (2017). FPOM and DOM isotope values, HydroShare, 

http://www.hydroshare.org/resource/4eb5c9c871e34aa4ae6951ce6d15020d  

 

PRESENTATIONS 

 

Kelso, J., and M.A. Baker. Characterization of organic matter sources within a matrix of 

land use in Northeast Utah. Ecological Society of America. August 2017. 

 

Kelso, J., E.Rosi, and M.A. Baker. Light-degraded dissolved organic matter increased the 

decay rate of terrestrial organic matter in experimental streams. Society for Freshwater 

Science Meeting. June 2017. 

  

Kelso, J., and M.A. Baker. Characterization of dissolved organic matter sources along a 

mountain to urban gradient. Society for Freshwater Science Meeting. May 2016. 

 

Kelso, J., D.M. Epstein, and M.A. Baker. Characterization of riverine organic matter in 

an urban landscape.  Society for Freshwater Science Meeting. May 2015.  

 

Epstein, D.M., J. Kelso and M.A. Baker. Organic matter budget for an impacted urban 

river stream. Society for Freshwater Science Meeting. May 2014. 

 

Kelso, J., D.M. Epstein, and M.A. Baker. Characterization of sources of organic matter to 

an urban river. Society for Freshwater Science Meeting. May 2014. 

 

Kelso, J., D.M. Epstein, and M.A. Baker.  Characterization of sources of organic matter 

to the Jordan River, UT. Symposium on Urbanization and Stream Ecology. May 2014. 

 

Musto, A., S.A. Entrekin, N. Jensen, J.E. Kelso, B. Haggard, C. Gallipeau, E. Inlander, 

and L.Massey, The relationship between land disturbance and trace elements in streams 

of north-central Arkansas. Society for Freshwater Science Meeting. May 2013. 

 

http://www.hydroshare.org/resource/7722d73be4b348a9ad874fe29086c1fb
http://www.hydroshare.org/resource/4eb5c9c871e34aa4ae6951ce6d15020d
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Kelso, J.E. and S.A. Entrekin. Use of the hyporheic zone as refuge by macroinvertebrates 

in an intermittent and perennial Ozark stream. Society for Freshwater Science Meeting. 

May 2013.  

 

Kelso, J.E. and S.A. Entrekin. Macroinvertebrate communities in intermittent and 

perennial Ozark streams. Great Plains Limnology Association. October 2012. 

 

Kelso, J.E., and S.A. Entrekin. Macroinvertebrate communities in intermittent and 

perennial Ozark streams. Society for Freshwater Science Meeting. May 2012. 

 

POSTERS 

 

Kelso, J., M.A. Baker. Characterization of riverine organic matter within a matrix of land 

use in northeast Utah. American Geophysical Union, December 2017. 

 

Gabor, R., R.M. Smith, J.F. Shah, J.E. Kelso, M.A. Baker, P.D. Brooks. The urban 

watershed as a transformer of dissolved organic matter chemistry. American Geophysical 

Union, December 2017. 

 

Kelso, J., D. Epstein, M.A. Baker. Light-degraded dissolved organic matter may have 

increased the decay rate of terrestrial organic matter in experimental streams.  Utah State 

University, Spring Runoff Conference. March 2017. 

 

Kelso, J., D. Epstein, M.A. Baker. Characterization of dissolved organic matter along a 

mountain to urban gradient.  Utah State University, Spring Runoff Conference. March 

2016. 

 

Capito, L.M., J.E. Kelso, M.A. Baker. Diving into Utah’s water with spectrofluorometry.  

Utah State University, Undergraduate Research Symposium. December 2015. 

 

Entrekin, S.A., B. Austin, J.E. Kelso, S. Polaskey, A. Musto, and M. Evans-White.  Does 

hydrology and activity from natural gas development interact to alter quality of 

communities in small streams?  Society for Freshwater Science Meeting. May 2015. 

 

Butterfield, A., J.E. Kelso, M.A. Baker.  Photodegradation of dissolved organic matter in 

the Jordan River, UT.  National Conference on Undergraduate Research, April 2015. 

 

Kelso, J., D. Epstein, M.A. Baker.  Spectrofluorometric and isotopic characterization of 

organic matter along a gradient of urban land use.  Utah State University, Spring Runoff 

Conference. March 2015. 

  

Kelso, J. and M.A. Baker. Characterization of sources of organic matter to an urban river. 

Utah State University, Spring Runoff Conference. April 2014. 

 

Kelso, J. and S.A. Entrekin. Macroinvertebrate community structure in intermittent and 

perennial Ozark streams. UCA Student Research Symposium. April 2012. 
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Kelso, J. and S.A. Entrekin. Does refuge affect macroinvertebrate communities in 

intermittent Ozark streams? Society for Freshwater Science Meeting. May 2011. 

 

Kelso, J. and S.A. Entrekin. Refuge use by macroinvertebrates in intermittent Ozark 

streams. University of Central Arkansas College of Natural Sciences 

and Mathematics Symposium. April 2011. 

 

STUDENT MENTORING 

 

Lindsay Capito, Utah State University, Logan, Utah – 2015-2016 

• Trained in analytical laboratory methods including spectrofluorometric analysis 

of dissolved organic matter, chlorophyll a, isotope sample preparation, and 

volatile suspended solids analysis 

• Assisted with experiment at the Cary Institute of Ecosystem Studies 

Experimental Stream Facility in July 2016 

Simone Jackson, University of Utah, Salt Lake City – Summer 2015 

• Trained to collect aquatic macroinvertebrates and periphyton for stable isotope 

analysis 

• Helped identify macroinvertebrates to family 

• Helped summarize data for poster presented at the Society for Freshwater 

Science meeting 

Andrew Butterfield, Westminster College, Salt Lake City – Summer 2014 

• Conducted an experiment on the Jordan River in which Andrew collected, 

analyzed and presented results at the National Conference on Undergraduate 

Research 2015 

Chelsea Miller, Carolyn Pollard, David Hiltenbrand, Loren Biggs, University of Central 

Arkansas – 2011-2012 

• Trained and managed undergraduate student workers hired to sort and identify 

macroinvertebrates and process organic matter biomass samples.  

• Lead macroinvertebrate sampling field campaigns in headwater streams. 

 

GUEST LECTURER 

 

BIO 1010 Science for the Citizen, Ecosystem Ecology, April 21-24, 2016 

BIO 2220 Ecology, Community Structure, November 7, 2017 

 

GRANTS AND AWARDS 

 

USU Student Association Enhancement Award Jan 2017 – $4,000 

USU Dissertation Enhancement Award Jan 2016 – $10,000 

USU Ecology Center Graduate Research Award, Apr 2015 – $3,700 

Society for Freshwater Science, Mulholland Fund Research, Mar 2015 – $1000 

USU Research and Graduate Studies Student Travel Award, Feb 2015 – $300 

USU Ecology Center Graduate Research Award, Apr 2014 – $4000 

Center for Woman and Gender Graduate Student Travel Award, Apr 2013 – $500 
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UCA University Research Council Student Research Grant, Sep 2011 – $800 

Arkansas Game and Fish Conservation Scholarship, Jul 2011 – $1000  

UCA Travel Award, Feb 2010 – $500 

Outstanding Student Poster, Spring Runoff Conference, Logan, UT, Apr 2014 

 

MEMBERSHIPS AND SERVICE 

 

American Geophysical Union (2017-2018) 

Biology Graduate Program Committee – Student representative (Jan 2014- Aug 2015) 

USU Ecology Center Seminar Series Committee – (2013-2015) 

American Water Works Association (2013-2014) 

Society for Freshwater Science (2010 - present) 

 Merchandise Committee Chair – 2017 Annual Meeting 

American Fisheries Society (2010-2012) 

Ecofest Volunteer (2010-2012) 

 Annual public outreach event for city of Conway, AR 

Backyard water quality sampling workshop, Clinton, AR – 2010 

 

REVIEWER  

 

Hydrobiologia 

Science of the Total Environment 

 

PROFESSIONAL DEVELOPMENT 

 

Alan Alda Center for Communicating Science Workshop, Logan, UT, Oct 2016 

Software Carpentry Workshop, Logan, UT, Mar 2015 

Dissolved Organic Matter Fluorescence Workshop, Boulder, CO, Jul 2014 

One-dimensional Transport with Inflow and Storage (OTIS) solute transport workshop, 

Portland, OR, May 2014 

Getting Started as a Successful Proposal Writer and Academician, Logan, UT, Feb 2013 

Aquatic GIS Workshop, St. Louis, MO, Jun 2011 

Wilderness First Aid, Salmon, ID, Jun 2006   

 

 


