Utah Division of Water Quality Statement of Basis ADDENDUM Wasteload Analysis and Antidegradation Level I Review - PRELIMINARY

Date:

January 4, 2016

Prepared by:

Dave Wham Standards and Technical Services

Facility:Manti Lagoons.UPDES No. Not Yet Assigned

Receiving water: San Pitch River (2B, 3C, 3D, 4)

This addendum summarizes the wasteload analysis that was performed to determine water quality based effluent limits (WQBEL) for this discharge. Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses (UAC R317-2-8). Projected concentrations are compared to numeric water quality standards to determine acceptability. The numeric criteria in this wasteload analysis may be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality.

Discharge

Outfall 001: Unnamed Ditch → San Pitch River

The mean monthly design discharge is 0.97 MGD (1.5 cfs) for the facility.

Receiving Water

The receiving water for Outfall 001 the San Pitch River.

Per UAC R317-2-13.7(a), the designated beneficial uses for San Pitch River and tributaries, is 2B, 3C, 3D, and 4.

- Class 2B Protected for infrequent primary contact recreation. Also protected for secondary contact recreation where there is a low likelihood of ingestion of water or a low degree of bodily contact with the water. Examples include, but are not limited to, wading, hunting, and fishing.
- Class 3C Protected for nongame fish and other aquatic life, including the necessary aquatic organisms in their food chain.
- Class 3D Protected for waterfowl, shore birds and other water-oriented wildlife not included in Classes 3A, 3B, or 3C, including the necessary aquatic organisms in their food chain.

• Class 4 - Protected for agricultural uses including irrigation of crops and stock watering.

Typically, the critical flow for the wasteload analysis is considered the lowest stream flow for seven consecutive days with a ten year return frequency (7Q10). Due to a lack of flow records for the San Pitch River at this location, the 20th percentile of flow measurements was used to represent the critical low flow condition. The source of flow data was from DWQ sampling at station 4946450, San Pitch River west of Manti above Gunnison Reservoir at county road crossing for the period 1995-2014.

Table 1: Seasonal (Oct-Feb) critical low flow (cfs)

Season	San Pitch River at Station 4946450
Oct-Feb	1.2 cfs

San Pitch River water quality was characterized based on samples collected from monitoring station 4946450 - San Pitch River west of Manti above Gunnison Reservoir at county road crossing - for the period 1995-2014 (Oct.-Feb).

TMDL

The receiving water is listed as impaired for total dissolved solids according to the 2012 303(d) list. A TMDL was completed for the Middle San Pitch River (HUC #16030004) on November 18^{th} 2003 (UDWQ 2003). The TMDL identified a critical season of March 1 - September 30 where the loading capacity was exceeded and load limitations apply. As a result, new discharges with a potential to cause or contribute to the existing impairment are not allowed during the critical season. The findings of this wasteload allocation apply only during the non-critical season – October 1^{st} through the end of February.

Mixing Zone

The maximum allowable mixing zone is 15 minutes of travel time for acute conditions, not to exceed 50% of stream width, and 2,500 feet for chronic conditions, per UAC R317-2-5. Water quality standards must be met at the end of the mixing zone.

Since the receiving water low flow (1.2 cfs) is equal to or less than twice the flow of a point source discharge (1.5 cfs), the combined flows are considered to be totally mixed. Acute limits were calculated using 50% of the seasonal critical low flow.

Parameters of Concern

The potential parameters of concern identified for the discharge/receiving water were BOD₅, total suspended solids, total dissolved solids, total ammonia, and total residual chlorine as determined in consultation with the UPDES Permit Writer.

Utah Division of Water Quality Wasteload Analysis Manti Lagoons UPDES No. Not yet assigned

WET Limits

The percent of effluent in the receiving water in a fully mixed condition, and acute and chronic dilution in a not fully mixed condition are calculated in the WLA in order to generate WET limits. The LC₅₀ (lethal concentration, 50%) percent effluent for acute toxicity and the IC₂₅ (inhibition concentration, 25%) percent effluent for chronic toxicity, as determined by the WET test, needs to be below the WET limits, as determined by the WLA. The WET limit for LC₅₀ is typically 100% effluent and does not need to be determined by the WLA.

Table 2: WET Limits for IC₂₅

Outfall	Percent Effluent
Outfall 001	56%

Wasteload Allocation Methods

Effluent limits were determined for conservative constituents using a simple mass balance mixing analysis (UDWQ 2012). The mass balance analysis is summarized in the Wasteload Addendum.

The water quality standard for chronic ammonia toxicity is dependent on temperature and pH, and the water quality standard for acute ammonia toxicity is dependent on pH. The AMMTOX Model developed by University of Colorado and adapted by Utah DWQ and EPA Region VIII was used to determine ammonia effluent limits (Lewis et al. 2002). The analysis is summarized in the Wasteload Addendum.

Effluent Limits

		Acute		Chronic			
Constituent	Standard	Standard Limit Averaging Standard Period Standard		Standard	Limit	Averaging Period	
Flow Outfall 001 (MGD)		0.97	30 days		0.97	30 days	
Ammonia (mg/L)	5.7	7.3	1 hour	1.89	2.8	30 days	
Total dissolved solids (mg/L)	1200	1476	Instantaneous				
Total residual chlorine (mg/L)	.019			.011	.019	30 days	

Table 3: Water Quality Based Effluent Limits Summary Non-critical Season: October -February

Models and supporting documentation are available for review upon request.

Antidegradation Level I Review

The objective of the Level I ADR is to ensure the protection of existing uses, defined as the beneficial uses attained in the receiving water on or after November 28, 1975. No evidence is known that the existing uses deviate from the designated beneficial uses for the receiving water. Therefore, the beneficial uses will be protected if the discharge remains below the WQBELs presented in this wasteload.

Utah Division of Water Quality Wasteload Analysis Manti Lagoons UPDES No. Not yet assigned

A Level II Antidegradation Review (ADR) is required for this facility because it is a new discharge permit application.

Documents:

WLA Document: Manti_WLADoc_1-4-16.docx Wasteload Analysis and Addendum: Manti_WLA_12-24-15.xlsm

References:

Utah Division of Water Quality. 2012. Utah Wasteload Analysis Procedures Version 1.0.

Utah Division of Water Quality. 2003. San Pitch River Watershed Water Quality Management Plan. Millennium Science and Engineering, Inc.

Lewis, B., J. Saunders, and M. Murphy. 2002. Ammonia Toxicity Model (AMMTOX, Version2): A Tool for Determining Effluent Ammonia Limits. University of Colorado, Center for Limnology.

WASTELOAD ANALYSIS [WLA] Addendum: Statement of Basis SUMMARY

Discharging Facility: Manti City Lagoons

UPDES No: Current Flow: Design Flow UT-None 0.97 MGD 0.97 MGD

2B, 3C, 3D, 4

Design Flow

Design Flow

1200.0

Receiving Water: Ditch => San Pitch

Stream Classification: Stream Flows [cfs]:

1.2 Winter (Dec-Mar)

Stream TDS Values:

855.0 Winter (Dec-Mar)

0.97 MGD

25.0 Winter

5.0 Winter

2.8 Winter

1475.9 Winter

Fall and Winter Average

Varies Function of pH and Temperature

WQ Standard:

5.0 30 Day Average

5.0 Indicator

20th Percentile Fall & Winter

Effluent Limits:

Flow, MGD: BOD, mg/l: Dissolved Oxygen, mg/l TNH3, Chronic, mg/l: TDS, mg/l:

Modeling Parameters:

Acute River Width: Chronic River Width:

50.0% 100.0%

Level II Antidegradation Review required (new permit).

Date: 12/24/2015

Permit Writer:

1 han

WLA by:

WQM Sec. Approval:

TMDL Sec. Approval:

WASTELOAD ANALYSIS [WLA] Addendum: Statement of Basis

Facilities:Manti City LagoonsDischarging to:Ditch => San Pitch

24-Dec-15 4:00 PM

UPDES No: UT-None

THIS IS A DRAFT DOCUMENT

I. Introduction

Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses [R317-2-8, UAC]. Projected concentrations are compared to numeric water quality standards to determine acceptability. The anti-degradation policy and procedures are also considered. The primary in-stream parameters of concern may include metals (as a function of hardness), total dissolved solids (TDS), total residual chlorine (TRC), un-ionized ammonia (as a function of pH and temperature, measured and evaluated interms of total ammonia), and dissolved oxygen.

Mathematical water quality modeling is employed to determine stream quality response to point source discharges. Models aid in the effort of anticipating stream quality at future effluent flows at critical environmental conditions (e.g., low stream flow, high temperature, high pH, etc).

The numeric criteria in this wasteload analysis may always be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality.

II. Receiving Water and Stream Classification

Ditch => San Pitch: Antidegradation Review: 2B, 3C, 3D, 4 Level I review completed. Level II review required.

III. Numeric Stream Standards for Protection of Aquatic Wildlife

Total Ammonia (TNH3)	Varies as a function of Temperature and pH Rebound. See Water Quality Standards
Chronic Total Residual Chlorine (TRC)	0.011 mg/l (4 Day Average) 0.019 mg/l (1 Hour Average)
Chronic Dissolved Oxygen (DO)	5.00 mg/l (30 Day Average) N/A mg/l (7Day Average) 3.00 mg/l (1 Day Average
Maximum Total Dissolved Solids	1200.0 mg/l

Acute and Chronic Heavy Metals (Dissolved)

	4 Day Average (Chron	nic) Standard	1 Hour A	verage (Acut	e) Standard
Parameter	Concentration	Load*	Concentration		Load*
Aluminum	n 87.00 ug/l**	0.705 lbs/day	750.00	ug/l	6.078 lbs/day
Arsenio	2 190.00 ug/l	1.540 lbs/day	340.00	ug/l	2.755 lbs/day
Cadmium	n 1.00 ug/l	0.008 lbs/day	12.89	ug/l	0.104 lbs/day
Chromium II	1 367.10 ug/l	2.975 lbs/day	7680.50	ug/l	62.242 lbs/day
ChromiumV	l 11.00 ug/l	0.089 lbs/day	16.00	ug/l	0.130 lbs/day
Coppei	r 42.32 ug/l	0.343 lbs/day	74.16	ug/l	0.601 lbs/day
Iron	1		1000.00	ug/l	8.104 lbs/day
Lead	i 30.26 ug/l	0.245 lbs/day	776.61	ug/l	6.294 lbs/day
Mercury	/ 0.0120 ug/l	0.000 lbs/day	2.40	ug/l	0.019 lbs/day
Nicke	l 233.07 ug/l	1.889 lbs/day	2096.36	ug/l	16.989 lbs/day
Selenium	4.60 ug/l	0.037 lbs/day	20.00	ug/l	0.162 lbs/day
Silver	r N/A ug/l	N/A lbs/day	79.39	ug/l	0.643 lbs/day
Zinc	536.60 ug/l	4.348 lbs/day	536.60	ug/l	4.348 lbs/day
* Allov	wed below discharge				

**Chronic Aluminum standard applies only to waters with a pH < 7.0 and a Hardness < 50 mg/l as CaCO3

Metals Standards Based upon a Hardness of 586.79 mg/l as CaCO3

Organics [Pesticides]

	4 Day Average (Chronic) Standard		1 Hour A	e) Standard		
Parameter	Concen	tration	Load*	Concentration	n	Load*
Aldrin				1.500	ug/l	0.012 lbs/day
Chlordane	0.004	ug/l	0.063 lbs/day	1.200	ug/l	0.010 lbs/day
DDT, DDE	0.001	ug/l	0.015 lbs/day	0.550	ug/l	0.004 lbs/day
Dieldrin	0.002	ug/l	0.028 lbs/day	1.250	ug/l	0.010 lbs/day
Endosulfan	0.056	ug/l	0.815 lbs/day	0.110	ug/l	0.001 lbs/day
Endrin	0.002	ug/l	0.033 lbs/day	0.090	ug/l	0.001 lbs/day
Guthion				0.010	ug/l	0.000 lbs/day
Heptachlor	0.004	ug/l	0.055 lbs/day	0.260	ug/l	0.002 lbs/day
Lindane	0.080	ug/l	1.164 lbs/day	1.000	ug/l	0.008 lbs/day
Methoxychlor				0.030	ug/l	0.000 lbs/day
Mirex				0.010	ug/l	0.000 lbs/day
Parathion				0.040	ug/l	0.000 lbs/day
PCB's	0.014	ug/l	0.204 lbs/day	2.000	ug/l	0.016 lbs/day
Pentachlorophenol	13.00	ug/l	189.230 lbs/day	20.000	ug/l	0.162 lbs/day
Toxephene	0.0002	ug/l	0.003 lbs/day	0.7300	ug/i	0.006 lbs/day

IV. Numeric Stream Standards for Protection of Agriculture

	4 Day Average (Chronic) Standard		1 Hour Average (Ac	cute) Standard
	Concentration	Load*	Concentration	Load*
Arsenic			100.0 ug/l	lbs/day
Boron			750.0 ug/ł	lbs/day
Cadmium			10.0 ug/l	0.04 lbs/day
Chromium			100.0 ug/l	lbs/day
Copper			200.0 ug/l	lbs/day
Lead			100.0 ug/l	lbs/day
Selenium			50.0 ug/l	lbs/day
TDS, Summer			1200.0 mg/l	4.86 tons/day

V. Numeric Stream Standards for Protection of Human Health (Class 1C Waters)

4	4 Day Average (Chronic) Standard		1 Hour Average (Acute) Standard
Metals	Concentration	Load*	Concentration	Load*
Arsenic			ug/l	lbs/day
Barium			ug/l	lbs/day
Cadmium			ug/l	lbs/day
Chromium			ug/l	lbs/day
Lead			ug/l	lbs/day
Mercury			👔 ug/l	lbs/day
Selenium			ug/l	lbs/day
Silver			ug/l	lbs/day
Fluoride (3)			ug/)	lbs/day
to			ug/l	lbs/day
Nitrates as N			ug/l	lbs/day
Chlorophenoxy Herbicid	es			
2,4-D			ug/l	lbs/day
2,4,5-TP			ug/l	lbs/day
Endrin			ug/l	lbs/day
ocyclohexane (Lindane)			ug/l	lbs/day
Methoxychlor			ug/l	lbs/day
Toxaphene			ug/l	lbs/day

VI. Numeric Stream Standards the Protection of Human Health from Water & Fish Consumption [Toxics]

	Maximum Conc., ug/I - Acute Standards					
	Class 1C			Class	3A, 3B	
Toxic Organics	[2 Liters/Day for 70 Kg P	erson over 70 Yr.] [6.5 ູ	g for 70) Kg Person	over 70 Yr.]
Acenaphthene	ug/l	lbs/day	2700.0	ug/l		39.30 lbs/day
Acrolein	ug/l	lbs/day	780.0	ug/l		11.35 lbs/day
Acrylonitrile	ug/l	lbs/day	0.7	ug/l		0.01 lbs/day
Benzene	ug/l	lbs/day	71.0	ug/l		1.03 lbs/day
Benzidine	ug/l	lbs/day	0.0	ug/l		0.00 lbs/day
Carbon tetrachloride	ug/l	lbs/day	4.4	ug/l		0.06 lbs/day
Chlorobenzene	ug/l	lbs/day	21000.0	ug/l		305.68 lbs/day
1,2,4-Trichlorobenzene						
Hexachlorobenzene	ug/l	lbs/day	0.0	ug/l		0.00 lbs/day
1,2-Dichloroethane	ug/l	lbs/day	99.0	ug/l		1.44 lbs/day

1,1,1-Trichloroethane				W		
Hexachloroethane	ug/l	lbs/day	8.9	ug/l	0.13 lbs/day	
1,1-Dichloroethane	цен	lh a /al au	40.0			
1,1,2-Trichloroethane	ug/l	lbs/day	42.0	-	0.61 lbs/day	
1,1,2,2-Tetrachloroethai	ug/l	lbs/day	11.0	- 10 M	0.16 lbs/day	
Chloroethane		lla a fal a c	0.0	- 10 H	0.00 lbs/day	
Bis(2-chloroethyl) ether	ug/l	lbs/day	1.4	-	0.02 lbs/day	
2-Chloroethyl vinyl ether	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day	
2-Chloronaphthalene	ug/l	lbs/day	4300.0	ug/l	62.59 lbs/day	
2,4,6-Trichlorophenol	ug/l	lbs/day	6.5	ug/l	0.09 lbs/day	
p-Chloro-m-cresol			0.0		0.00 lbs/day	
Chloroform (HM)	ug/l	lbs/day	470.0	ug/l	6.84 lbs/day	
2-Chlorophenol	ug/l	lbs/day	400.0	ug/l	5.82 lbs/day	
1,2-Dichlorobenzene	ug/l	lbs/day	17000.0	ug/l	247.46 lbs/day	
1,3-Dichlorobenzene	ug/l	lbs/day	2600.0	ug/l	37.85 lbs/day	
1,4-Dichlorobenzene	ug/l	lbs/day	2600.0	-	37.85 lbs/day	
3,3'-Dichlorobenzidine	ug/l	lbs/day	0.1	ug/l	0.00 lbs/day	
1,1-Dichloroethylene	ug/l	lbs/day	3.2	- 12	0.05 lbs/day	
1,2-trans-Dichloroethyle	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day	
2,4-Dichlorophenol	ug/l	lbs/day	790.0	ug/l	11.50 lbs/day	
1,2-Dichloropropane	ug/l	lbs/day	39.0	ug/l	0.57 lbs/day	
1,3-Dichloropropylene	ug/l	lbs/day	1700.0	ug/l	24.75 lbs/day	
2,4-Dimethylphenol	ug/l	lbs/day	2300.0	•	33.48 lbs/day	
2,4-Dinitrotoluene	ug/l	lbs/day	9.1	ug/l	0.13 lbs/day	
2,6-Dinitrotoluene	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day	
1,2-Diphenylhydrazine	ug/l	lbs/day	0.5	•	0.01 lbs/day	
Ethylbenzene	ug/l	lbs/day	29000.0		422.13 lbs/day	
Fluoranthene	ug/l	lbs/day	370.0	ug/l	5.39 lbs/day	
4-Chlorophenyl phenyl ether						
4-Bromophenyl phenyl ether						
Bis(2-chloroisopropyl) e	ug/l	lbs/day	170000.0	-	2474.55 lbs/day	
Bis(2-chloroethoxy) met	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day	
Methylene chloride (HM	ug/l	lbs/day	1600.0	ug/l	23.29 lbs/day	
Methyl chloride (HM)	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day	
Methyl bromide (HM)	ug/l	lbs/day		ug/l	0.00 lbs/day	
Bromoform (HM)	ug/l	lbs/day	360.0		5.24 lbs/day	
Dichlorobromomethane	ug/l	lbs/day	22.0	-))	0.32 lbs/day	
Chlorodibromomethane	ug/l	lbs/day	34.0		0.49 lbs/day	
Hexachlorobutadiene(c)	ug/l	lbs/day	50.0		0.73 lbs/day	
Hexachlorocyclopentadi	ug/l	lbs/day	17000.0	-	247.46 lbs/day	
Isophorone	ug/l	lbs/day	600.0	ug/l	8.73 lbs/day	
Naphthalene						
Nitrobenzene	ug/l	lbs/day	1900.0	-	27.66 lbs/day	
2-Nitrophenol	ug/l	lbs/day	0.0	•	0.00 lbs/day	
4-Nitrophenol	ug/l	lbs/day	0.0		0.00 lbs/day	
2,4-Dinitrophenol	ug/l	lbs/day	14000.0	ug/l	203.79 lbs/day	
4,6-Dinitro-o-cresol	ug/l	lbs/day	765.0	ug/l	11.14 lbs/day	
N-Nitrosodimethylamine	ug/l	lbs/day	8,1	•	0.12 lbs/day	
N-Nitrosodiphenylamine	ug/l	lbs/day	16.0	-	0.23 lbs/day	
N-Nitrosodi-n-propylami	ug/l	lbs/day		ug/l	0.02 lbs/day	
Pentachlorophenol	ug/l	lbs/day	8.2	ug/l	0.12 lbs/day	

Phenol	ug/l		lbs/day	4.6E+06	ug/l	6.70E+04 lbs/da	ay
Bis(2-ethylhexyl)phthala	ug/l		lbs/day	5.9	ug/i	0.09 lbs/di	ay
Butyl benzyl phthalate	ug/l		lbs/day	5200.0	ug/l	75.69 lbs/da	ay
Di-n-butyl phthalate	ug/l		lbs/day	12000.0	ug/l	174.67 lbs/da	ay
Di-n-octyl phthlate							
Diethyl phthalate	ug/l		lbs/day	120000.0	ug/l	1746.74 lbs/da	ay
Dimethyl phthlate	ug/l		lbs/day	2.9E+06	ug/l	4.22E+04 lbs/da	ay
Benzo(a)anthracene (P/	ug/l		lbs/day	0.0	ug/l	0.00 lbs/da	ay
Benzo(a)pyrene (PAH)	ug/l		lbs/day	0.0	ug/l	0.00 lbs/da	-
Benzo(b)fluoranthene (F	ug/l		lbs/day	0.0	ug/l	0.00 lbs/da	ay .
Benzo(k)fluoranthene (F	ug/l		lbs/day	0.0	ug/l	0.00 lbs/da	ay
Chrysene (PAH)	ug/l		lbs/day	- 0.0	ug/l	0.00 lbs/da	ay
Acenaphthylene (PAH)	_				-		-
Anthracene (PAH)	ug/l		lbs/day	0.0	ug/l	0.00 lbs/da	ay
Dibenzo(a,h)anthracene	ug/l		lbs/day	0.0	ug/l	0.00 lbs/da	
Indeno(1,2,3-cd)pyrene	ug/l		lbs/day	0.0	ug/l	0.00 lbs/da	
Pyrene (PAH)	ug/l		lbs/day	11000.0	ug/l	160.12 lbs/da	•
Tetrachloroethylene	ug/l		lbs/day	8.9	ug/l	0.13 lbs/d	
Toluene	ug/l		lbs/day	200000	ug/l	2911.24 lbs/da	
Trichloroethylene	ug/l		lbs/day	81.0		1.18 lbs/da	-
Vinyl chloride	ug/l		lbs/day	525.0		7.64 lbs/d	-
,	0					lbs/da	•
Pesticides						lbs/d	
Aldrin	ug/l		lbs/day	0.0	ug/l	0.00 lbs/d	
Dieldrin	ug/l		lbs/day		ug/l	0.00 lbs/d	
Chlordane	ug/l		lbs/day	0.0	-	0.00 lbs/d	-
4,4'-DDT	ug/i		lbs/day	0.0	ug/l	0.00 lbs/d	-
4,4'-DDE	ug/l		lbs/day		ug/l	0.00 lbs/d	
4,4'-DDD	ug/l		lbs/day		ug/l	0.00 lbs/d	
alpha-Endosulfan	ug/l		lbs/day		ug/l	0.03 lbs/d	-
beta-Endosulfan	ug/l	Ω.	lbs/day		ug/l	0.03 lbs/d	-
Endosulfan sulfate	ug/l		lbs/day		ug/l	0.03 lbs/d	-
Endrin	ug/l		lbs/day	0.8	-	0.01 lbs/d	
Endrin aldehyde	ug/l		lbs/day	0.8	ug/l	0.01 lbs/d	
Heptachlor	ug/l		lbs/day		ug/l	0.00 lbs/d	
Heptachlor epoxide	ugn		looraay	0.0	ugn	0.00 105/01	чу
						3	
PCB's							
PCB 1242 (Arochlor 124	ug/l		lbs/day	0.0	ug/l	0.00 lbs/d	av
PCB-1254 (Arochlor 12)	ug/l		lbs/day		ug/l	0.00 lbs/d	-
PCB-1221 (Arochlor 122	ug/l		lbs/day		ug/l	0.00 lbs/d	
PCB-1232 (Arochlor 12:	ug/l		lbs/day		ug/l	0.00 lbs/d	-
PCB-1248 (Arochlor 124	ug/l		lbs/day		ug/l	0.00 lbs/d	-
PCB-1260 (Arochlor 12)	ug/l		lbs/day		ug/l	0.00 lbs/d	-
PCB-1016 (Arochlor 10 [°]	ug/l		lbs/day		ug/l	0.00 lbs/d	
	ugn		iboluay	0.0	uy/I	0.00 105/0	ay
Pesticide							
Toxaphene	ug/ł			0.0	ug/l	0.00 lbs/d	21/
Голарнене	ugn			0.0	ugn	0.00 105/0	ay
Dioxin							
Dioxin (2,3,7,8-TCDD)	ug/l		lbs/day				
$Dioxin(\mathbf{z},\mathbf{y},\mathbf{r},\mathbf{u}^{-} + \mathbf{ODD})$	ugn		insiday				

Metals				
Antimony	ug/l	lbs/day		
Arsenic	ug/l	lbs/day	4300.00 ug/l	62.59 lbs/day
Asbestos	ug/l	lbs/day		•
Beryllium				
Cadmium				
Chromium (III)				
Chromium (VI)				
Copper				
Cyanide	ug/l	lbs/day	2.2E+05 ug/l	3202.36 lbs/day
Lead	ug/l	lbs/day	U	,
Mercury	-	-	0.15 ug/l	0.00 lbs/day
Nickel			4600.00 ug/l	66.96 lbs/day
Selenium	ug/l	lbs/day	Ū	,
Silver	ug/l	lbs/day		
Thallium	-	-	6.30 ug/l	0.09 lbs/day
Zinc			-	,
			6.30 ug/l	0.09 lbs/day

There are additional standards that apply to this receiving water, but were not considered in this modeling/waste load allocation analysis.

VII. Mathematical Modeling of Stream Quality

Model configuration was accomplished utilizing standard modeling procedures. Data points were plotted and coefficients adjusted as required to match observed data as closely as possible.

The modeling approach used in this analysis included one or a combination of the following models.

(1) The Utah River Model, Utah Division of Water Quality, 1992. Based upon STREAMDO IV (Region VIII) and Supplemental Ammonia Toxicity Models; EPA Region VIII, Sept. 1990 and QUAL2E (EPA, Athens, GA).

- (2) Utah Ammonia/Chlorine Model, Utah Division of Water Quality, 1992.
- (3) AMMTOX Model, University of Colorado, Center of Limnology, and EPA Region 8
- (4) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644.

Coefficients used in the model were based, in part, upon the following references:

(1) Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling. Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens Georgia. EPA/600/3-85/040 June 1985.

(2) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644.

VIII. Modeling Information

The required information for the model may include the following information for both the upstream conditions at low flow and the effluent conditions:

Flow, Q, (cfs or MGD)	D.O. mg/l
Temperature, Deg. C.	Total Residual Chlorine (TRC), mg/l
рН	Total NH3-N, mg/l
BOD5, mg/i	Total Dissolved Solids (TDS), mg/l
Metals, ug/l	Toxic Organics of Concern, ug/I

Other Conditions

In addition to the upstream and effluent conditions, the models require a variety of physical and biological coefficients and other technical information. In the process of actually establishing the permit limits for an effluent, values are used based upon the available data, model calibration, literature values, site visits and best professional judgement. **Model Inputs**

The following is upstream and discharge information that was utilized as inputs for the analysis. Dry washes are considered to have an upstream flow equal to the flow of the discharge.

Current Upstream								
	Stream							
	Critical Low							
	Flow	Temp.	рН	T-NH3	BOD5	DO	TRC	TDS
	cfs	Deg. C		mg/I as N	mg/l	mg/l	mg/l	mg/l
Summer	1.20	3.6	8.2	0.10	2.00	9.75	0.00	855.0
Fall	1.20	3.6	8.2	0.10	2.00		0.00	855.0
Winter	1.20	3.6	8.2	0.10	2.00		0.00	855.0
Spring	1.20	3.6	8.2	0.10	2.00		0.00	855.0
Dissolved	AI	As	Cd	CrIII	CrVI	Copper	Fe	Pb
Metals	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
All Seasons	1.59*	0.53*	0.053*	0.53*	2.65*	0.53*	0.83*	0.53*
Dissolved	Hg	Ni	Se	Ag	Zn	Boron		
Metals	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l		
All Seasons	0.0000	0.53*	1.06*	0.1*	0.053*	10.0	•	* 1/2 MDL

Projected Discharge Information

Season	Flow, MGD	Temp.
Winter (Dec-Mar)	0.97000	5.0

All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality.

IX. Effluent Limitations

Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9).

Other conditions used in the modeling effort coincide with the environmental conditions expected at low stream flows.

Effluent Limitation for Flow based upon Water Quality Standards

In-stream criteria of downstream segments will be met with an effluent flow maximum value as follows:

Season

Daily Average

Winter 0.970 MGD 1.501 cfs

Flow Requirement or Loading Requirement

The calculations in this wasteload analysis utilize the maximum effluent discharge flow of MGD. If the discharger is allowed to have a flow greater than MGD during 7Q10 conditions, and effluent limit concentrations as indicated, then water quality standards will be violated. In order to prevent this from occuring, the permit writers must include the discharge flow limititation as indicated above; or, include loading effluent limits in the permit.

Effluent Limitation for Whole Effluent Toxicity (WET) based upon WET Policy

Effluent Toxicity will not occur in downstream segements if the values below are met.

WET Requirements	LC50 >	EOP Effluent	[Acute]
	IC25 >	55.6% Effluent	[Chronic]

Effluent Limitation for Biological Oxygen Demand (BOD) based upon Water Quality Standards or Regulations

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent BOD limitation as follows:

Summer	25.0 mg/l as BOD5	0.0 lbs/day
Fall	25.0 mg/l as BOD5	0.0 lbs/day
Winter	25.0 mg/l as BOD5	0.0 lbs/day
Spring	25.0 mg/l as BOD5	0.0 lbs/day

Concentration

Effluent Limitation for Dissolved Oxygen (DO) based upon Water Quality Standards

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent D.O. limitation as follows:

Season	Concentration
--------	---------------

Winter

Season

5.00

Effluent Limitation for Total Ammonia based upon Water Quality Standards

In-stream criteria of downstream segments for Total Ammonia will be met with an effluent limitation (expressed as Total Ammonia as N) as follows:

Seaso	on				
	Concentr	ation		Loa	d
Winter	4 Day Avg Chronic	2.8	mg/I as N	22.7	lbs/day
(Oct - Feb)	1 Hour Avg Acute	7.3	mg/I as N	59.0	lbs/day

Acute limit calculated with an Acute Zone of Initial Dilution (ZID) to be equal to 100.%.

Effluent Limitation for Total Residual Chlorine based upon Water Quality Standards

In-stream criteria of downstream segments for Total Residual Chlorine will be met with an effluent limitation as follows:

Season		Concentration		Load		
	Winter	4 Day Avg Chronic	0.019	ma/l	0.15	lbs/dav
	(Oct - Feb)	1 Hour Avg Acute	0.033	mg/l	0.10	lbs/day

Effluent Limitations for Total Dissolved Solids based upon Water Quality Standards

Season		Concentration	Load	
Winter (Oct - Feb)	Maximum, Acute	1475.9 mg/l	5.97 tons/day	
Colorado Sa	alinity Forum Limits	Determined by Permit	ting Section	

Effluent Limitations for Total Recoverable Metals based upon Water Quality Standards

In-stream criteria of downstream segments for Dissolved Metals will be met with an effluent limitation as follows (based upon a hardness of 586.79 mg/l):

	Concen	4 Day Average	الممط		Average	
	Concen	tration	Load	Concentration		Load
Aluminum*	N/A		N/A	1,048.9	ug/l	8.5 lbs/day
Arsenic*	341.30	ug/l	1.8 lbs/day	475.6	ug/l	3.9 lbs/day
Cadmium	1.74	ug/l	0.0 lbs/day	18.0	ug/l	0.1 lbs/day
Chromium III	660.03	ug/l	3.5 lbs/day	10,751.2	ug/l	87.1 lbs/day
Chromium VI*	16.62	ug/l	0.1 lbs/day	20.8	ug/l	0.2 lbs/day
Copper	75.52	ug/l	0.4 lbs/day	103.5	ug/l	0.8 lbs/day
Iron*	N/A		N/A	1,399.3	ug/l	11.3 lbs/day
Lead	53.83	ug/l	0.3 lbs/day	1,086.8	ug/l	8.8 lbs/day
Mercury*	0.02	ug/l	0.0 lbs/day	3.4	ug/l	0.0 lbs/day
Nickel	418.82	ug/l	2.2 lbs/day	2,934.3	ug/l	23.8 lbs/day
Selenium*	7.01	ug/l	0.0 lbs/day	27.4	ug/l	0.2 lbs/day
Silver	N/A	ug/l	N/A lbs/day	111.1	ug/l	0.9 lbs/day
Zinc	965.64	ug/l	5.0 lbs/day	751.1	ug/l	6.1 lbs/day
Cyanide*	9.36	ug/l	0.0 lbs/day	30.8	ug/l	0.2 lbs/day

*Limits for these metals are based on the dissolved standard.

Effluent Limitations for Heat/Temperature based upon Water Quality Standards

Summer	10.8 Deg. C.	51.4 Deg. F
Fall	10.8 Deg. C.	51.4 Deg. F
Winter	10.8 Deg. C.	51.4 Deg. F
Spring	10.8 Deg. C.	51.4 Deg. F

Effluent Limitations for Organics [Pesticides] Based upon Water Quality Standards

In-stream criteria of downstream segments for Organics [Pesticides] will be met with an effluent limit as follows:

	4 Day Ave	1 Hour Av			
	Concentration	Load	Concentration		Load
Aldrin			1.5E+00	ug/l	1.88E-02 lbs/day
Chlordane	4.30E-03 ug/l	3.48E-02 lbs/day	1.2E+00	ug/l	1.50E-02 lbs/day
DDT, DDE	1.00E-03 ug/l	8.09E-03 lbs/day	5.5E-01	ug/l	6.90E-03 lbs/day
Dieldrin	1.90E-03 ug/l	1.54E-02 lbs/day	1.3E+00	ug/l	1.57E-02 lbs/day
Endosulfan	5.60E-02 ug/l	4.53E-01 lbs/day	1.1E-01	ug/l	1.38E-03 lbs/day
Endrin	2.30E-03 ug/l	1.86E-02 lbs/day	9.0E-02	ug/l	1.13E-03 lbs/day
Guthion	0.00E+00 ug/l	0.00E+00 lbs/day	1.0E-02	ug/l	1.25E-04 lbs/day
Heptachlor	3.80E-03 ug/l	3.07E-02 lbs/day	2.6E-01	ug/l	3.26E-03 lbs/day
Lindane	8.00E-02 ug/l	6.47E-01 lbs/day	1.0E+00	ug/l	1.25E-02 lbs/day
Methoxychlor	0.00E+00 ug/l	0.00E+00 lbs/day	3.0E-02	ug/l	3.76E-04 lbs/day
Mirex	0.00E+00 ug/l	0.00E+00 lbs/day	1.0E-02	ug/l	1.25E-04 lbs/day
Parathion	0.00E+00 ug/l	0.00E+00 lbs/day	4.0E-02	ug/l	5.01E-04 lbs/day
PCB's	1.40E-02 ug/l	1.13E-01 lbs/day	2.0E+00	ug/l	2.51E-02 lbs/day
Pentachlorophenol	1.30E+01 ug/l	1.05E+02 lbs/day	2.0E+01	ug/l	2.51E-01 lbs/day
Toxephene	2.00E-04 ug/l	1.62E-03 lbs/day	7.3E-01	ug/l	9.15E-03 lbs/day

Effluent Targets for Pollution Indicators Based upon Water Quality Standards

.

In-stream criteria of downstream segments for Pollution Indicators will be met with an effluent limit as follows:

	1 Hour Average		
	Concentration	Loading	
Gross Beta (pCi/l)	50.0 pCi/L		
BOD (mg/l)	5.0 mg/l	40.5 lbs/day	
Nitrates as N	4.0 mg/l	32.4 lbs/day	
Total Phosphorus as P	0.05 mg/l	0.4 lbs/day	
Total Suspended Solids	90.0 mg/l	729.3 lbs/day	

Note: Pollution indicator targets are for information purposes only.

Effluent Limitations for Protection of Human Health [Toxics Rule] Based upon Water Quality Standards (Most stringent of 1C or 3A & 3B as appropriate.)

In-stream criteria of downstream segments for Protection of Human Health [Toxics] will be met with an effluent limit as follows:

	Maximum Concentration			
20	Concentration	Load		
Toxic Organics				
Acenaphthene	=4.86E+03 ug/l	0.00E+00 lbs/day		
Acrolein	1.40E+03 ug/l	0.00E+00 lbs/day		
Acrylonitrile	1.19E+00 ug/l	0.00E+00 lbs/day		
Benzene	1.28E+02 ug/l	0.00E+00 lbs/day		
Benzidine	ug/l	lbs/day		
Carbon tetrachloride	7.92E+00 ug/l	0.00E+00 lbs/day		
Chlorobenzene	3.78E+04 ug/l	0.00E+00 lbs/day		
1,2,4-Trichlorobenzene	8			
Hexachlorobenzene	1.39E-03 ug/l	0.00E+00 lbs/day		
1,2-Dichloroethane	1.78E+02 ug/l	0.00E+00 lbs/day		
1,1,1-Trichloroethane		8		
Hexachloroethane	1.60E+01 ug/l	0.00E+00 lbs/day		
1,1-Dichloroethane	12 22			
1,1,2-Trichloroethane	7.56E+01 ug/l	0.00E+00 lbs/day		
1,1,2,2-Tetrachloroethane	1.98E+01 ug/l	0.00E+00 lbs/day		
Chloroethane				
Bis(2-chloroethyl) ether	2.52E+00 ug/l	0.00E+00 lbs/day		
2-Chloroethyl vinyl ether				
2-Chloronaphthalene	7.74E+03 ug/l	0.00E+00 lbs/day		
2,4,6-Trichlorophenol	1.17E+01 ug/l	0.00E+00 lbs/day		
p-Chloro-m-cresol				
Chloroform (HM)	8.46E+02 ug/l	0.00E+00 lbs/day		
2-Chlorophenol	7.20E+02 ug/l	0.00E+00 lbs/day		
1,2-Dichlorobenzene	3.06E+04 ug/l	0.00E+00 lbs/day		
1,3-Dichlorobenzene	4.68E+03 ug/l	0.00E+00 lbs/day		

1,4-Di	chlorobenzene	4.68E+03	ug/l	0.00E+00	lbs/day
3,3'-D	ichlorobenzidine	1.39E-01	ug/l	0.00E+00	lbs/day
1,1-Di	chloroethylene	5.76E+00	ug/l	0.00E+00	lbs/day
1,2-tra	ins-Dichloroethylene1				
2,4-Di	chlorophenol	1.42E+03	ug/l	0.00E+00	lbs/day
1,2-Di	chloropropane	7.02E+01	ug/l	0.00E+00	lbs/day
1,3-Di	chloropropylene	3.06E+03	ug/l	0.00E+00	lbs/day
2,4-Di	methylphenol	4.14E+03	ug/l	0.00E+00	lbs/day
2,4-Di	nitrotoluene	1.64E+01	ug/l	0.00E+00	lbs/day
2,6-Di	nitrotoluene				
1,2-Di	phenylhydrazine	9.72E-01	ug/l	0.00E+00	lbs/day
Ethylb	enzene	5.22E+04	ug/l	0.00E+00	lbs/day
Fluora	nthene	6.66E+02	ug/l	0.00E+00	lbs/day
4-Chlo	prophenyl phenyl ether				
4-Bror	nophenyl phenyl ether				
Bis(2-	chloroisopropyl) ether	3.06E+05	ug/l	0.00E+00	lbs/day
Bis(2-	chloroethoxy) methane				
Methy	lene chloride (HM)	2.88E+03	ug/l	0.00E+00	lbs/day
Methy	l chloride (HM)				
Methy	l bromide (HM)				
Bromo	oform (HM)	6.48E+02	ug/l	0.00E+00	lbs/day
Dichlo	robromomethane(HM)	3.96E+01	ug/l	0.00E+00	lbs/day
Chloro	dibromomethane (HM)	6.12E+01	ug/l	0.00E+00	lbs/day
Hexad	hlorocyclopentadiene	3.06E+04	ug/l	0.00E+00	lbs/day
Isopho	prone	1.08E+03	ug/l	0.00E+00	lbs/day
Napht	halene		_		-
Nitrob	enzene	3.42E+03	ug/l	0.00E+00	lbs/day
2-Nitro	phenol				-
4-Nitro	phenol				
2,4-Di	nitrophenol	2.52E+04	ug/l	0.00E+00	lbs/day
4,6-Di	nitro-o-cresol	1.38E+03	ug/l	0.00E+00	lbs/day
N-Nitr	osodimethylamine	1.46E+01	ug/l	0.00E+00	
N-Nitr	osodiphenylamine	2.88E+01	ug/l	0.00E+00	lbs/day
N-Nitr	osodi-n-propylamine	2.52E+00	ug/l	0.00E+00	lbs/day
Penta	chlorophenol	1.48E+01	ug/l	0.00E+00	lbs/day
Phenc	bl	8.28E+06	ug/l	0.00E+00	lbs/day
Bis(2-	ethylhexyl)phthalate	1.06E+01	ug/l	0.00E+00	lbs/day
Butyl I	penzyl phthalate	9.36E+03	ug/l	0.00E+00	lbs/day
Di-n-b	utyl phthalate	2.16E+04	ug/l	0.00E+00	lbs/day
Di-n-o	ctyl phthlate				-
Diethy	l phthalate	2.16E+05	ug/l	0.00E+00	lbs/day
Dimet	hyl phthlate	5.22E+06	ug/l	0.00E+00	lbs/day
Benzo	(a)anthracene (PAH)	5.58E-02	ug/l	0.00E+00	lbs/day
Benzo	(a)pyrene (PAH)	5.58E-02	ug/l	0.00E+00	lbs/day
	(b)fluoranthene (PAH)	5.58E-02	-	0.00E+00	-
	(k)fluoranthene (PAH)	5.58E-02	-	0.00E+00	-
	ene (PAH)	5.58E-02	-	0.00E+00	-
-	phthylene (PAH)		5		
	acene (PAH)				
	zo(a,h)anthracene (PAH)	5.58E-02	ug/l	0.00E+00	lbs/dav
	o(1,2,3-cd)pyrene (PAH)	5.58E-02	•	0.00E+00	•
			0		,

Pyrene (PAH)	1.98E+04 ug/l	0.00E+00 lbs/day
Tetrachloroethylene	1.60E+01 ug/l	0.00E+00 lbs/day
Toluene	3.60E+05 ug/l	0.00E+00 lbs/day
Trichloroethylene	1.46E+02 ug/l	0.00E+00 lbs/day
Vinyl chloride	9.45E+02 ug/l	0.00E+00 lbs/day
Pesticides		
Aldrin	2.52E-04 ug/l	0.00E+00 lbs/day
Dieldrin	2.52E-04 ug/l	0.00E+00 lbs/day
Chlordane	1.06E-03 ug/l	0.00E+00 lbs/day
4,4'-DDT	1.06E-03 ug/l	0.00E+00 lbs/day
4,4'-DDE	1.06E-03 ug/l	0.00E+00 lbs/day
4,4'-DDD	1.51E-03 ug/l	0.00E+00 lbs/day
alpha-Endosulfan	3.60E+00 ug/l	0.00E+00 lbs/day
beta-Endosulfan	3.60E+00 ug/l	0.00E+00 lbs/day
Endosulfan sulfate	3.60E+00 ug/l	0.00E+00 lbs/day
Endrin	1.46E+00 ug/l	0.00E+00 lbs/day
Endrin aldehyde	1.46E+00 ug/l	0.00E+00 lbs/day
Heptachlor	3.78E-04 ug/l	0.00E+00 lbs/day
Heptachlor epoxide	0	· · · · · · · · · · · · · · · · · · ·
PCB's		
PCB 1242 (Arochlor 1242)	8.10E-05 ug/l	0.00E+00 lbs/day
PCB-1254 (Arochlor 1254)	8.10E-05 ug/l	0.00E+00 lbs/day
PCB-1221 (Arochlor 1221)	8.10E-05 ug/l	0.00E+00 lbs/day
PCB-1232 (Arochlor 1232)	8.10E-05 ug/l	0.00E+00 lbs/day
PCB-1248 (Arochlor 1248)	8.10E-05 ug/l	0.00E+00 lbs/day
PCB-1260 (Arochlor 1260)	8.10E-05 ug/l	0.00E+00 lbs/day
PCB-1016 (Arochlor 1016)	8.10E-05 ug/l	0.00E+00 lbs/day
Pesticide		
Toxaphene		
Toxapilelle	1.35E-03 ug/l	0.00E+00 lbs/day
Metals		
Antimony	ug/l	lbs/day
Arsenic	ug/l	lbs/day
Asbestos	ug/l	lbs/day
Beryllium	0	
Cadmium		
Chromium (III)		
Chromium (VI)		
Copper	ug/l	lbs/day
Cyanide	ug/l	lbs/day
Lead	-	
Mercury	ug/l	lbs/day
Nickel	ug/l	lbs/day
Selenium		
Silver		
Thallium	ug/l	lbs/day
Zinc		

Dioxin

Dioxin (2,3,7,8-TCDD)

2.52E-08 ug/l

Metals Effluent Limitations for Protection of All Beneficial Uses Based upon Water Quality Standards and Toxics Rule

	Class 4 Acute Agricultural ug/l	Class 3 Acute Aquatic Wildlife ug/I	Acute Toxics Drinking Water Source ug/l	Acute Toxics Wildlife ug/l	1C Acute Health Criteria ug/l	Acute Most Stringent ug/l	Class 3 Chronic Aquatic Wildlife ug/l
Aluminum		1048.9				1048.9	N/A
Antimony	100.0	175.0		7738.6		7738.6	
Arsenic Barium Beryllium	180.0	475.6			0.0	180.0 0.0 0.0	341.3
Cadmium	17.9	18.0			0.0	17.9	1.7
Chromium (III)		10751.2			0.0	10751.2	660.0
Chromium (VI)	179.3	20.8			0.0	20.81	16.62
Copper	359.3	103.5				103.5	75.5
Cyanide		30.8	395930.8			30.8	9.4
Iron		1399.3				1399.3	
Lead	179.3	1086.8			0.0	179.3	53.8
Mercury		3.36		0.27	0.0	0.27	0.022
Nickel		2934.3		8278.6		2934.3	418.8
Selenium	88.7	27.4			0.0	27.4	7.0
Silver		111.1			0.0	111.1	
Thallium				11.3		11.3	
Zinc		751.1				751.1	965.6
Boron	1349.8					1349.8	

Summary Effluent Limitations for Metals [Wasteload Allocation, TMDL]

[If Acute is more stringent than Chronic, then the Chronic takes on the Acute value.]

	WLA Acute ug/l	WLA Chronic ug/l		
Aluminum	1048.9	N/A		
Antimony	7738.65			
Arsenic	180.0	341.3	Acute Cont	rols
Asbestos	0.00E+00			
Barium				
Beryllium				
Cadmium	17.9	1.7		
Chromium (III)	10751.2	660		
Chromium (VI)	20.8	16.6		
Copper	103.5	75.5		

Cyanide	30.8		9.4	
Iron	1399.3			
Lead	179.3		53.8	
Mercury	0.270		0.022	
Nickel	2934.3		419	
Selenium	27.4		7.0	
Silver	111.1		N/A	
Thallium	11.3			
Zinc	751.1	<u>*:</u>	965.6	
Boron	1349.76			

Acute Controls

Other Effluent Limitations are based upon R317-1.

E. coli

126.0 organisms per 100 ml

X. Antidegradation Considerations

The Utah Antidegradation Policy allows for degradation of existing quality where it is determined that such lowering of water quality is necessary to accommodate important economic or social development in the area in which the waters are protected [R317-2-3]. It has been determined that certain chemical parameters introduced by this discharge will cause an increase of the concentration of said parameters in the receiving waters. Under no conditions will the increase in concentration be allowed to interfere with existing instream water uses.

The antidegradation rules and procedures allow for modification of effluent limits less than those based strictly upon mass balance equations utilizing 100% of the assimilative capacity of the receiving water. Additional factors include considerations for "Blue-ribbon" fisheries, special recreational areas, threatened and endangered species, and drinking water sources.

An Antidegradation Level I Review was conducted on this discharge and its effect on the receiving water. Based upon that review, it has been determined that an Antidegradation Level II Review is required.

XI. Colorado River Salinity Forum Considerations

Discharges in the Colorado River Basin are required to have their discharge at a TDS loading of less than 1.00 tons/day unless certain exemptions apply. Refer to the Forum's Guidelines for additional information allowing for an exceedence of this value.

XII. Summary Comments

The mathematical modeling and best professional judgement indicate that violations of receiving water beneficial uses with their associated water quality standards, including important down-stream segments, will not occur for the evaluated parameters of concern as discussed above if the effluent limitations indicated above are met.

XIII. Notice of UPDES Requirement

This Addendum to the Statement of Basis does not authorize any entity or party to discharge to the waters of the State of Utah. That authority is granted through a UPDES permit issued by the Utah Division of Water Quality. The numbers presented here may be changed as a function of other factors. Dischargers are strongly urged to contact the Permits Section for further information. Permit writers may utilize other information to adjust these limits and/or to determine other limits based upon best available technology and other considerations provided that the values in this wasteload analysis [TMDL] are not compromised. See special provisions in Utah Water Quality Standards for adjustments in the Total Dissolved Solids values based upon background concentration.

Antidegredation Review

An antidegradation review (ADR) was conducted to determine whether the proposed activity complies with the applicable antidegradation requirements for receiving waters that may be affected. The Level I ADR evaluated the criteria of R317-2-3.5(b) and determined that the proposed discharge will require a Level II Antidegradation Review.