Draft Combined 2018/2020 Integrated Report

CITATION: DIVISION OF WATER QUALITY. 2020. UTAH'S DRAFT COMBINED 2018/2020 INTEGRATED REPORT. SALT LAKE CITY, UTAH. UTAH DEPARTMENT OF ENVIRONMENTAL QUALITY

Table of Contents

Abbreviations	7
Figures	10
Tables	11
Executive Summary	12
Introduction	13
Purpose	13
Scope	13
Methods	13
Data Collection	13
Delistings	14
AU Resegmentation	14
Public Comment Process	15
Findings	15
State Map	16
Data Reviewed	16
Assessment Totals (Flowing Surface Waters of the State, Canals, Lakes, Reservoirs, and Ponds)	16
Lake, Reservoir, and Pond Assessments	18
Delistings	20
Recommendations	20
Priority Waters	20
Chapter 1: 303(d) Assessment Methods	1
Introduction	2
The Clean Water Act and the Integrated Report	2
Assessment Categories for Surface Waters	2
Utah's Numeric Criteria and Beneficial Uses	5
Priority and Assessed Parameters	6
Assessment Process and Time Frames	8
Developing the Methods	8
Public Review of the Methods Process and Schedule	8
Call for Readily Available Data and Schedule	8
Existing and Readily Available Data Defined	9
Developing the Components of the Draft Integrated Report and 303(d) List	12
Final 303(d) Assessment Methods	12
305(b) Summary	12
303(d) Assessment Results	12
305(b) Summary and 303(d) Assessment Metadata	13
Public Review of the 303(d) List	13
Finalizing the Integrated Report and 303(d) List	14

Scope of the Assessment	15
Waters of the State	
Waterbody Types	
Assessment Units	
Assessment Unit Delineation and Identification	
Additional Guidelines for Delineating Assessment Units	
Assessment Unit Datum	
AU Stream Mileage Estimation for Flowing Surface Waters and Canals	
Waters within and Shared with Other States	
Data Quality	
Credible Data Defined	
Components for Credible Data	
Quality Assurance Program Plan Guidance and Example	
Sampling Analysis Plan Guidelines and Examples	
Standard Operating Procedures Guidelines and Examples	
Sampling Observations and Laboratory Comments	
Monitoring Location Information	
Credible Data Matrices	
Data Submission Process	
Type of Data to Submit	
Period of Record	
Older Data and Information	
Newer Data and Information	
Data Submission Tools	
Data Preparation for Conventional and Toxic Assessments for All Waters	
Results below Detection Limits	
Duplicate and Replicate Results	
Initial Assessment: Monitoring Location Site Level	
Assessments Specific to Flowing Surface Waters of the State and Canals	
Conventional Parameter Assessments	
Grab Sample Assessments	
High Frequency Assessments for Dissolved Oxygen	
Analyzing Multiple DO Datasets at a Site	
Narrative Standards: Biological Assessments	
River Invertebrate Prediction and Classification System Models	
Model Construction and Performance	
Assessing Biological Use Support	
Assessments Specific to Lakes, Reservoirs, and Ponds	
Assessment Overview	
Tier I Assessment	

Drinking Water Use Support	
Recreational Use Support	43
Aquatic Life Use Support	43
Tier II Assessment	
Weight of Evidence Criteria	
Carlson's Trophic State Index	50
Phytoplankton Community	51
Great Salt Lake	51
Gilbert Bay Bird Egg Tissue Assessment	51
Toxics Parameter Assessments for All Waters	53
Equation-Based Toxic Parameters	53
Assessment Process	53
Escherichia Coli Assessment for All Waters	55
Data Preparation	55
Recreation Season	55
Escherichia coli Collection Events and Replicate Samples	55
Data Substitution for Calculating the Geometric Mean	55
Use Designation	55
Annual Recreation Season Assessment	55
Summarizing Assessment Results	60
Pollutions Indicator Assessments for All Waters	
Narrative Standards for All Waters	63
Drinking Water Closures	63
Fish Kills	63
Harmful Algal Blooms (HAB)	
Fish Tissue Assessments and Consumption Health Advisories	
Mercury Assessment Process	
Determinations of Impairment: All Assessment Units	
Individual Assessment of Water Quality Standards	
Conflicting Assessments of Water Quality Standards	
Aggregation of Site-Specific Assessments to Assessment Unit Categories	
Secondary Review	69
Assessment Unit Re-segmentation	
Identifying Causes of Impairments	71
Pollutants	71
Pollution	71
Unknown Sources	71
Natural Conditions	
Revising the 303(d) List and Other Categorical Assessments	73
Category 4A	

Category 4B	
Category 4C	
Delistings	
Delisting Categorical Pollutant Causes	
Previous Categorical Listings	
303(d) Listings	
Non-303(d) Categorical Listings	
303(d) Vision and TMDL Priority Development	
Revision Requests between Cycles	80
Chapter 2: Assessments Specific to Lakes, Reservoirs, and Ponds	
Chapter 3: Assessments Specific to Flowing Surface Waters of the State and Canals	3-0
Literature Cited	ii
Appendix 1	i
Priority Parameters	i
Appendix 2	ix
Data Quality Guideline Examples	ix
DWQ Sampling Analysis Plan Requirements	ix
Example Field Observation Form for Grab Samples	xiii
Appendix 3	xiv
Application of Secondary Review Process	xiv
Appendix 4	xvii
Summarizing Assessments From Site to Assessment Unit Level	xvii
Appendix 5	xix
4B Submission Policies and Procedures	xix
Appendix 6	xxi
Guidelines	xxi
EPA Delisting Codes	xxii
Appendix 7	xxiii
TMDL Prioritization Process	xxiii
Appendix 8	xxiv
DWQ's Response to Comments and Public Comments Received: 303(d) Assessment Methods	xxiv

Abbreviations

Abbreviation	Definition
<	less than
>	greater than
≤	less than or equal to
2	greater than or equal to
AGRC	Automated Geographic Reference Center
ATTAINS	The Assessment, Total Maximum Daily Load (TMDL) Tracking and Implementation System. This EPA- maintained database is an online system for accessing information about the conditions of the Nation's surface waters.
AU	assessment unit
BMP	best management practices
Са	calcium
CFR	Code of Federal Regulations
Chl-a	chlorophyll a
CWA	Clean Water Act
DEQ	Utah Department of Environmental Quality
DO	dissolved oxygen
DWQ	Utah Division of Water Quality
E	expected
E. coli	Escherichia coli
EPA	U.S. Environmental Protection Agency
GIS	geographic information systems

Abbreviation	Definition
GSL	Great Salt Lake
GRAMA	Government Records Access and Management Act
HAB(s)	harmful algal bloom(s)
нн	human health
HUC	hydrologic unit
IR	integrated report
kg	kilogram
L	liter
Mg	magnesium
mg	milligram
mg/kg	milligram per kilogram
mg/l	milligram per liter
ml	milliliter
MLID	monitoring location identifier
MPN	most probable number
NHD	National Hydrologic Dataset
0	observed
O/E	observed/expected
Pc	probability of capturing
ppm	parts per million
QA	quality assurance

Abbreviation	Definition
QA/QC	quality assurance/quality control
QC	quality control
QAPP	quality assurance project plan
RIVPACS	River Invertebrate Prediction and Classification System
SAP(s)	sample analysis plan(s)
SD	standard deviation
SDD	Secchi disk depth
SOP(s)	standard operating procedure(s)
Т	temperature
TDS	total dissolved solids
TMDL	total maximum daily load
ТР	total phosphorus
TSI	trophic state index
UAC	Utah Administrative Code
UDOH	Utah Department of Health
USGS	U.S. Geological Survey
WMU	watershed management unit
WQP	(EPA's) Water Quality Portal
WQS	water quality standard
μg/l	microgram per liter

Figures

Figure 2. Counts and mileages of the State's flowing surface waters and canals in assessment categories	Figure 1. Utah's defined assessment units and assessment categories	. 16
Figure 3. Impairment counts by parameter category for the State's flowing surface waters and canals 18 Figure 4. Counts and acreages of lakes, reservoirs, and ponds in assessment categories 19 Figure 5. Counts and acreages of lakes, reservoirs, and ponds in assessment categories 20 Figure 6. Utah Division of Water Quality assessment unit delineations 17 Figure 8. Overview of the assessment process for conventional parameters using grab sample data 32 Figure 9. Overview of the assessment process for the minimum dissolved oxygen, 7-day averages using high frequency data. 34 Figure 10. Overview of the assessment process for the minimum dissolved oxygen, 30-day averages using high frequency data. 36 Figure 11. A hypothetical example of O/E as a standardization of biological assessments. 38 Figure 12. Decision tree for making biological assessment decisions 41 Figure 13. Process using conventional (nontoxic) parameters to assess lakes that are mixed 44 Figure 14. Plots of PH measurements (blue dots) against lake depth for two sites to provide an example of assessment procedures. Note: The red line illustrates a temperature criterion of 20 degrees Celsius: Class 3A beneficial use. Panel A (top) illustrates a site meeting the beneficial use because less than 10% of the temperature measures exceed the criterion. 46 Figure 14. Concept of the habitable zone where both DO and temperature are suitable for aquatic life. Uses becaus	Figure 2. Counts and mileages of the State's flowing surface waters and canals in assessment categories	17
Figure 4. Counts and acreages of lakes, reservoirs, and ponds in assessment categories	Figure 3. Impairment counts by parameter category for the State's flowing surface waters and canals	18
Figure 5. Counts and acreages of lakes, reservoirs, and ponds in assessment categories 20 Figure 6. Utah Division of Water Quality assessment unit delineations 17 Figure 7. Overview of the assessment process for the minimum dissolved oxygen, minimum using high frequency data. 32 Figure 8. Overview of the assessment process for the minimum dissolved oxygen, 7-day averages using high frequency data 35 Figure 10. Overview of the assessment process for the minimum dissolved oxygen, 30-day averages using high frequency data 36 Figure 11. A hypothetical example of O/E as a standardization of biological assessments. 38 Figure 12. Decision tree for making biological assessment decisions. 41 Figure 13. Process using conventional (nontoxic) parameters to assess lakes that are mixed. 44 Figure 14. Plots of pH measurements (blue dots) against lake depth for a waterbody meeting (Panel A) and violating (Panel B) the pH water quality standards. 45 Figure 15. Plots of temperature measurements (blue dots) against lake depth for two sites to provide an example of assessment procedures. Note: The red line illustrates a temperature criterion of 20 degrees Celsius: Class 3A beneficial use. Panel A (top) illustrates a site not meeting the beneficial use because greater than 10% of the temperature measures exceed the criterion. 46 Figure 15. Plots of temperature measurements of upper table davide doxygen and temperature and solved oxygen of the assitable zone where both DO and temperature assitable for aquatic life. The si	Figure 4. Counts and acreages of lakes, reservoirs, and ponds in assessment categories	19
Figure 6. Utah Division of Water Quality assessment unit delineations	Figure 5. Counts and acreages of lakes, reservoirs, and ponds in assessment categories	20
Figure 7. Overview of the assessment process for conventional parameters using grab sample data	Figure 6. Utah Division of Water Quality assessment unit delineations	17
Figure 8. Overview of the assessment process for the minimum dissolved oxygen, minimum using high frequency data	Figure 7. Overview of the assessment process for conventional parameters using grab sample data	32
Figure 9. Overview of the assessment process for the minimum dissolved oxygen, 7-day averages using high frequency data	Figure 8. Overview of the assessment process for the minimum dissolved oxygen, minimum using high frequen data.	ıсу 34
frequency data	Figure 9. Overview of the assessment process for the minimum dissolved oxygen, 7-day averages using high	
Figure 10. Overview of the assessment process for the minimum dissolved oxygen, 30-day averages using high frequency data	frequency data	35
Trequency data 36 Figure 11. A hypothetical example of O/E as a standardization of biological assessments 38 Figure 12. Decision tree for making biological assessment decisions 41 Figure 13. Process using conventional (nontoxic) parameters to assess lakes that are mixed 44 Figure 14. Plots of pH measurements (blue dots) against lake depth for a waterbody meeting (Panel A) and 45 Figure 15. Plots of temperature measurements (blue dots) against lake depth for two sites to provide an example 45 Figure 16. Plots of temperature measurements (blue dots) against lake depth for two sites to provide an example 45 remperature measurements (blue dots) against lake depth for two sites to provide an example 45 remperature measurements (blue dots) against lake depth for two sites to provide an example 45 remperature measures are greater than the criterion, whereas Panel B (bottom) illustrates a site not meeting the beneficial use because greater than 10% of the temperature measures exceed the criterion 46 Figure 17. Concept of the habitable zone where both DO and temperature are suitable for aquatic life. The site 47 Figure 18. Beneficial use support in the water column where dissolved oxygen and temperature criteria are met 48 Figure 17. Concept of the habitable zone where both temperature and dissolved oxygen criteria 48 Figure 19. Tier II assessment pr	Figure 10. Overview of the assessment process for the minimum dissolved oxygen, 30-day averages using high	h
Figure 11. A hypothetical example of O/E as a standardization of biological assessments	frequency data	36
Figure 12. Decision tree for making biological assessment decisions 41 Figure 13. Process using conventional (nontoxic) parameters to assess lakes that are mixed 44 Figure 14. Plots of pH measurements (blue dots) against lake depth for a waterbody meeting (Panel A) and 45 Figure 15. Plots of temperature measurements (blue dots) against lake depth for two sites to provide an example 45 of assessment procedures. Note: The red line illustrates a temperature criterion of 20 degrees Celsius: Class 3A beneficial use. Panel A (top) illustrates a site meeting the beneficial use because less than 10% of the temperature measures are greater than the criterion, whereas Panel B (bottom) illustrates a site not meeting the 46 Figure 17. Concept of the habitable zone where both DO and temperature are suitable for aquatic life. The site 47 figure 17. Concept of the habitable zone where both DO and temperature are suitable for aquatic life. The site 47 regione of overlap in the water column where dissolved oxygen and temperature and DO provide sufficient habitat (>=3 m). Conversely, the site on the bottom (Panel B) is not meeting aquatic life uses because although there are regions in the water column where dissolved oxygen and temperature criteria are met 48 Figure 18. Assessment process to determine support of the agricultural beneficial use with TDS data. 49 Figure 19. Tier II assessment process for toxic parameters. 54 <	Figure 11. A hypothetical example of O/E as a standardization of biological assessments	
Figure 13. Process using conventional (nontoxic) parameters to assess lakes that are mixed	Figure 12. Decision tree for making biological assessment decisions	41
Figure 14. Plots of pH measurements (blue dots) against lake depth for a waterbody meeting (Panel A) and violating (Panel B) the pH water quality standards	Figure 13. Process using conventional (nontoxic) parameters to assess lakes that are mixed	44
violating (Panel B) the pH water quality standards. 45 Figure 15. Plots of temperature measurements (blue dots) against lake depth for two sites to provide an example of assessment procedures. Note: The red line illustrates a temperature criterion of 20 degrees Celsius: Class 3A beneficial use. Panel A (top) illustrates a site meeting the beneficial use because less than 10% of the temperature measures exceed the criterion. 46 Figure 16. Beneficial use support based on the existence of adequate habitat 47 Figure 17. Concept of the habitable zone where both DO and temperature are suitable for aquatic life. The site depicted on the top (Panel A) would be considered supporting because the lens where both temperature and DO provide sufficient habitat (>=3 m). Conversely, the site on the bottom (Panel B) is not meeting aquatic life uses because although there are regions in the water column where both temperature and dissolved oxygen criteria (approximately 8 meters depth) is less than 3 meters thick. 48 Figure 19. Tier II assessment process for lakes, reservoirs, and ponds 50 Figure 21. Considering E. coli related beach closures and/or health advisories. 54 Figure 22. Scenario A: a seasonal assessment using the maximum criterion at a monitoring location. 57 Figure 24. Scenario C: A seasonal geometric mean assessment. 60 Figure 25. Overview of independent applicability process. Note: These judgment decisions are based in part on the set set of the maximum criterion at a monitoring location. 57 Figure 24. Scenario C: A seasonal geometric mean assessment.	Figure 14. Plots of pH measurements (blue dots) against lake depth for a waterbody meeting (Panel A) and	4 -
Figure 15. Plots of temperature measurements (blue dots) against lake depth for two sites to provide an example of assessment procedures. Note: The red line illustrates a temperature criterion of 20 degrees Celsius: Class 3A beneficial use. Panel A (top) illustrates a site meeting the beneficial use because less than 10% of the temperature measures are greater than the criterion, whereas Panel B (bottom) illustrates a site not meeting the beneficial use because greater than 10% of the temperature measures exceed the criterion	violating (Panel B) the pH water quality standards	45
of assessment procedures. Note: The red line illustrates a temperature criterion of 20 degrees Celsius: Class 3A beneficial use. Panel A (top) illustrates a site meeting the beneficial use because less than 10% of the temperature measures are greater than the criterion, whereas Panel B (bottom) illustrates a site not meeting the beneficial use because greater than 10% of the temperature measures exceed the criterion	Figure 15. Plots of temperature measurements (blue dots) against lake depth for two sites to provide an examp	le
temperature measures are greater than the criterion, whereas Panel B (bottom) illustrates a site not meeting the beneficial use because greater than 10% of the temperature measures exceed the criterion	of assessment procedures. Note: The red line illustrates a temperature criterion of 20 degrees Celsius: Class 3 beneficial use. Panel A (top) illustrates a site meeting the beneficial use because less than 10% of the	A
beneficial use because greater than 10% of the temperature measures exceed the criterion	temperature measures are greater than the criterion, whereas Panel B (bottom) illustrates a site not meeting the	е
Figure 16. Beneficial use support based on the existence of adequate habitat	beneficial use because greater than 10% of the temperature measures exceed the criterion	46
Figure 17. Concept of the habitable zone where both DO and temperature are suitable for aquatic life. The site depicted on the top (Panel A) would be considered supporting because the lens where both temperature and DO provide sufficient habitat (>=3 m). Conversely, the site on the bottom (Panel B) is not meeting aquatic life uses because although there are regions in the water column where dissolved oxygen and temperature criteria are met separately, the region of overlap in the water column where both temperature and dissolved oxygen criteria (approximately 8 meters depth) is less than 3 meters thick	Figure 16. Beneficial use support based on the existence of adequate habitat	47
depicted on the top (Panel A) would be considered supporting because the lens where both temperature and DO provide sufficient habitat (>=3 m). Conversely, the site on the bottom (Panel B) is not meeting aquatic life uses because although there are regions in the water column where dissolved oxygen and temperature criteria are met separately, the region of overlap in the water column where both temperature and dissolved oxygen criteria (approximately 8 meters depth) is less than 3 meters thick	Figure 17. Concept of the habitable zone where both DO and temperature are suitable for aquatic life. The site	
provide sufficient habitat (>=3 m). Conversely, the site on the bottom (Panel B) is not meeting aquatic life uses because although there are regions in the water column where dissolved oxygen and temperature criteria are met separately, the region of overlap in the water column where both temperature and dissolved oxygen criteria (approximately 8 meters depth) is less than 3 meters thick	depicted on the top (Panel A) would be considered supporting because the lens where both temperature and D)O
because although there are regions in the water column where dissolved oxygen and temperature criteria are met separately, the region of overlap in the water column where both temperature and dissolved oxygen criteria (approximately 8 meters depth) is less than 3 meters thick	provide sufficient habitat (>=3 m). Conversely, the site on the bottom (Panel B) is not meeting aquatic life uses	
separately, the region of overlap in the water column where both temperature and dissolved oxygen criteria (approximately 8 meters depth) is less than 3 meters thick	because although there are regions in the water column where dissolved oxygen and temperature criteria are n	net
(approximately 8 meters depth) is less than 3 meters thick48Figure 18. Assessment process to determine support of the agricultural beneficial use with TDS data49Figure 19. Tier II assessment process for lakes, reservoirs, and ponds50Figure 20. Overview of the assessment process for toxic parameters54Figure 21. Considering E. coli related beach closures and/or health advisories56Figure 22. Scenario A: a seasonal assessment using the maximum criterion at a monitoring location57Figure 23. Scenario B: an assessment using the 30-day geometric mean for monitoring locations with five or more59Figure 24. Scenario C: A seasonal geometric mean assessment.60Figure 25. Overview of independent applicability process. Note: These judgment decisions are based in part on68Figure 26. Process of assigning EPA categories to AUs based on results of monitoring location assessments	separately, the region of overlap in the water column where both temperature and dissolved oxygen criteria	
Figure 18. Assessment process to determine support of the agricultural beneficial use with TDS data	(approximately 8 meters depth) is less than 3 meters thick	48
Figure 19. Tier II assessment process for lakes, reservoirs, and ponds50Figure 20. Overview of the assessment process for toxic parameters54Figure 21. Considering E. coli related beach closures and/or health advisories56Figure 22. Scenario A: a seasonal assessment using the maximum criterion at a monitoring location57Figure 23. Scenario B: an assessment using the 30-day geometric mean for monitoring locations with five or more collection events within 30 days59Figure 24. Scenario C: A seasonal geometric mean assessment.60Figure 25. Overview of independent applicability process. Note: These judgment decisions are based in part on EPA's Consolidated Assessment and Listing Methods guidance published in 200268Figure 26. Process of assigning EPA categories to AUs based on results of monitoring location assessments69	Figure 18. Assessment process to determine support of the agricultural beneficial use with TDS data	49
Figure 20. Overview of the assessment process for toxic parameters	Figure 19. Tier II assessment process for lakes, reservoirs, and ponds	50
Figure 21. Considering E. coli related beach closures and/or health advisories	Figure 20. Overview of the assessment process for toxic parameters	54
Figure 22. Scenario A: a seasonal assessment using the maximum criterion at a monitoring location	Figure 21. Considering E. coli related beach closures and/or health advisories	
Figure 23. Scenario B: an assessment using the 30-day geometric mean for monitoring locations with five or more collection events within 30 days	Figure 22. Scenario A: a seasonal assessment using the maximum criterion at a monitoring location	57
collection events within 30 days	Figure 23. Scenario B: an assessment using the 30-day geometric mean for monitoring locations with five or m	ore
Figure 24. Scenario C: A seasonal geometric mean assessment	collection events within 30 days	
Figure 25. Overview of independent applicability process. Note: These judgment decisions are based in part on EPA's Consolidated Assessment and Listing Methods guidance published in 2002	Figure 24. Scenario C: A seasonal geometric mean assessment	60
Figure 26. Process of assigning EPA categories to AUs based on results of monitoring location assessments	Figure 25. Overview of independent applicability process. Note: These judgment decisions are based in part on EPA's Consolidated Assessment and Listing Methods guidance published in 2002	۱ 68
	Figure 26. Process of assigning EPA categories to AUs based on results of monitoring location assessments	69

Tables

Table 1. U.S. Environmental Protection Agency categorization of assessed surface waterbodies for integrated	
report purposes	3
Table 2. Subclassifications of Utah's beneficial uses	5
Table 3. DWQ's data availability matrix	10
Table 4. Assessed waterbody types used for categorizing monitoring locations	15
Table 5. Data validation criteria for water quality field grab sample parameters	22
Table 6. Data validation criteria for water quality high frequency dissolved oxygen data.	23
Table 7. Data validation criteria for water quality chemistry grab sample parameters	24
Table 8. Data validation criteria for macroinvertebrate data	25
Table 9. Data validation criteria for Escherichia coli (E. coli) data	26
Table 10. Summary of data types considered by the assessment program	27
Table 11. Conventional parameters and associated designated uses as identified for assessment purposes	30
Table 12. Final predictor variables used in model construction	39
Table 13. Beneficial use support determination for O/E values obtained from different sample sizes	42
Table 14. Selenium trigger levels and DWQ responses (UAC R317-2-14.2(14))	51
Table 15. Cyanotoxin thresholds used for recreational use assessments	64

Executive Summary

Introduction

PURPOSE

Section 305(b) of the Clean Water Act (CWA) requires states to submit a biennial report to the Environmental Protection Agency (EPA) on the quality of their waters. The Draft Combined 2018/2020 Integrated Report (IR) prepared by the Utah Division of Water Quality (DWQ) to meet this federal requirement is a comprehensive analysis of the condition of the state's flowing surface waters, canals, lakes, reservoirs, and ponds.

Section 303(d) of the CWA requires states to submit a list of waterbodies that do not meet the state's water quality standards as part of the IR. This list guides the state's development of water quality improvement plans (Total Maximum Daily Load plans or TMDLs) for impaired waterbodies to bring them into compliance with their beneficial uses and water quality standards.

The IR supports DWQ's commitment to protecting and improving the water quality of Utah's flowing surface waters of the state, canals, lakes, reservoirs, and ponds by providing critical information and thorough analyses of water quality conditions, waterbody impairments, statewide trends, and emerging issues. DWQ uses these data to identify areas with impairments and prioritize projects, TMDLs, and best management practices (BMPs) to improve and enhance water quality in affected areas.

SCOPE

The Draft Combined 2018/2020 IR reports on 913 assessment units (AUs), over 82.5 thousand miles of flowing surface waters of the state and canals, and nearly 1.5 million lake, reservoir, and pond acres. The water quality assessment data covers the period between October 1, 2010 and September 30, 2018 and includes updates from previous reports. The data used in the report were collected by DWQ, 12 agencies, and numerous public and private stakeholder groups and individuals.

METHODS

The State of Utah sets <u>water quality standards</u> that support <u>designated beneficial uses</u> for Utah's flowing surface waters of the state, canals, lakes, reservoirs, and ponds. These designations protect water quality for different uses, including drinking water, recreation, aquatic life, and agriculture. Waterbodies are protected for several combinations of beneficial uses, such as recreation and aquatic life.

DATA COLLECTION

The IR uses water quality data collected by DWQ and a number of public and private entities to determine whether assessed waterbodies in the state meet water quality standards and support their designated beneficial uses. Data submitted or obtained by DWQ during the IR data compilation process are integrated into DWQ's assessments and subject to DWQ's data management and quality assurance and quality control (QA/QC) processes. Datasets may include laboratory results for water chemistry sampling for conventional (e.g., temperature) and toxic (e.g., metals) parameters, monitoring data specific to lakes, reservoirs, ponds, or flowing surface waters, potential causes of impairments, and macroinvertebrate surveys.

DWQ combines data from individual monitoring sites into a larger spatial scale or Assessment Unit (AU). The Division collects all readily available and credible water quality data for each AU and prepares the data for assessment. Data are assessed according to specific conventional and toxic parameters against beneficial use criteria established in state regulations. DWQ uses these data to categorize the state's assessment units to

determine designated beneficial use attainment. The state uses five EPA-approved categories in its assessment determinations:

- Category 1: All beneficial uses attained.
- Category 2: Some beneficial uses attained but there are insufficient data to determine if all beneficial uses are supported.
- Category 3: Insufficient or no data to make a determination.
- Category 4: Impaired for one or more beneficial uses. Does not require the development of a TMDL because one has already been completed (4A), uses are expected to be attained within a reasonable timeframe (4B), or the impairment is not caused by a pollutant (4C).
- Category 5: Impaired for one or more beneficial uses by a pollutant. Requires the development of a TMDL.

Waters determined to be impaired are placed on the state's 303(d) list and prioritized for TMDL development. The TMDLs calculate the pollution reduction levels needed to support designated beneficial uses and meet water quality standards. Once a TMDL is completed and approved by EPA, the assessment unit covered under the TMDL is transferred from Category 5 (impaired) to Category 4A (approved TMDL in place).

DELISTINGS

DWQ reviews the data submitted during the IR process to determine whether assessment units identified as impaired in previous IRs are now meeting their designated beneficial uses. If DWQ finds during its assessment that waterbodies previously listed as impaired are now meeting water quality standards, it provides a list of the sites proposed for removal from the 303(d) list (Category 5) in the report. DWQ can delist a previously impaired parameter, waterbody, or segment within a waterbody that is currently meeting water quality standards if it can demonstrate good cause to stakeholders and EPA. Good cause includes one or more of the following:

- The impairment was resolved through the implementation of nonpoint source projects and/or revised effluent limits.
- Revised water quality standards and/or beneficial uses put the waterbody into attainment of those standards and/or uses.
- A new listing method consistent with state water quality standards and classifications and federal listing requirements changed the previous listing.
- New data led to a reassessment that demonstrated that applicable standards and uses are being met.
- Flaws in the original analysis led to an incorrect listing.
- Improved modeling applications demonstrated that applicable standards and uses are being met.

AU RESEGMENTATION

When site-specific assessments within a single AU conflict, DWQ may determine that it is appropriate to resegment (i.e., -splitl) an existing AU polygon into two or more new AUs rather than aggregate those conflicting assessments into a single AU scale category. AUs where water quality criterion exceedances are clearly isolated to a relatively small, hydrologically distinct portion of the larger AU may be re-segmented to more accurately reflect that variation in water quality. This results in a higher resolution and overall more accurate assessment. DWQ does not consider it appropriate to re-segment an AU when exceedances are observed in multiple locations throughout an AU, or where impaired sites are not hydrologically distinct from unimpaired portions of the AU.

PUBLIC COMMENT PROCESS

DWQ engages its stakeholders early in the process as part of its ongoing commitment to work with the public to safeguard human health and protect and enhance Utah's waters. Communities and others affected by the decisions under CWA 305(b) and 303(d) are asked to participate in the IR process during three public involvement opportunities before the Division submits the IR to EPA.

1. Public Comment on Assessment Methods

DWQ held a public comment period on the 303(d) Assessment Methods from November 7, 2018, to December 21, 2018, to solicit public input on the assessment methods for the Combined 2018/2020 IR. DWQ received comments from eight different individuals and groups for a combined total of approximately 215 unique comments. DWQ's Response to Comments, as well as the comments submitted, can be found on the <u>Integrated Report Program</u> webpage.

2. Publicly Submitted Data Notification

DWQ issues a formal public notification during each IR cycle through website postings and listservs requesting data and information that can be used for the assessment. Whenever possible, DWQ tries to obtain all data and information with sufficient time to compile the information during odd-numbered years. This provides the Division with adequate time to obtain clarification where necessary and ensures that outside sources of information are used to the greatest extent possible for IR assessments. The Combined 2018/2020 IR Call for Data ran for 60 days from May 21, 2019, to July 20, 2019. Data submitters registered on the DWQ <u>Call for Data</u> website and were provided detailed instructions on how to submit data accurately and effectively to <u>EPA's Water Quality Exchange</u>.

3. Public Comment on 305(b) and 303(d) Decisions

DWQ provides another formal public notification at the end of the IR report writing process, requesting comments on the placement of AUs in the five categories. DWQ responds to the comments in a summary and can revise the IR based on the public's feedback. Public comments and DWQ's response are then submitted to EPA along with the 305(b) report and 303(d) listing decisions.

FINDINGS

DWQ compiled all existing and readily available data and conducted designated beneficial use assessments to determine which waters in the state are supporting or not supporting these uses. The figures, charts, and graphs below offer a view of the state's total waterbody miles and acreage, areas and water quality parameters assessed, waterbodies proposed for delisting, and AUs subject to resegmentation.

State Map

Data Reviewed

- Number of data records downloaded from EPA's Water Quality Portal: 1.36 million
- Number of data records that passed screening and data preparation checks for assessment: 432,280
- Number of data records rejected during the secondary review process: 35,281
- Number of data records in the core assessment dataset for the period of record following screening, secondary review, and daily aggregation: 348,003
- Number of unique assessments by site, use, parameter, and criterion: 61,388

Assessment Totals (Flowing Surface Waters of the State, Canals, Lakes, Reservoirs, and Ponds)

- Total AUs reported on: 913
- Total AUs fully supporting (Category 1): 79
- Total AUs partially supporting (Category 2): 130
- Total AUs with insufficient data (Category 3): 318
- Total AUs with a plan in place (Category 4): 32
- Total AUs impaired (Category 5): 354

Flowing Surface Waters of the State and Canals

Assessments

- Total assessment units (AUIDs) reported on: 771
- Total miles reported on: 82,339
- Total monitoring locations assessed and reported on during the period of record: 1,929

Impaired Parameters

Figure 3. Impairment counts by parameter category for the State's flowing surface waters and canals.

Lake, Reservoir, and Pond Assessments

Assessments

- Total AUs reported on: 142
- Total acres reported on: 1.46 million (includes Great Salt Lake at 1.1 million acres)

EPA Assessment Categories for 2018/2020 IR

Figure 4. Counts and acreages of lakes, reservoirs, and ponds in assessment categories.

Impaired Parameters

Figure 5. Counts and acreages of lakes, reservoirs, and ponds in assessment categories.

DELISTINGS

Forty-seven AUs were delisted for one or more parameters in the state's flowing surface waters and canals. Seven AUs were delisted for one or more parameters in Utah's lakes, reservoirs, and ponds.

RECOMMENDATIONS

Priority Waters

The CWA requires the development of total maximum daily load (TMDL) plans for all impaired waterbodies on the 303(d) List but recognizes the limitations in data, time, and staff resources to accomplish this task. Taking these limitations into account, the CWA requires states to prioritize where they will dedicate resources toward TMDL development. DWQ prioritizes impairments or risks to human and ecological health as described in the <u>Division of Water Quality's (DWQ) 303(d) vision document</u>. These priorities focus on the protection and restoration of waters designated for culinary, recreational, and aquatic wildlife uses.

Chapter 1: 303(d) Assessment Methods

Introduction

THE CLEAN WATER ACT AND THE INTEGRATED REPORT

The rules and regulations of the federal Clean Water Act (CWA) require the Utah Division of Water Quality (DWQ) to report the condition or health of all Utah surface waters to the U.S. Congress every other year. The Integrated Report (IR) contains two key reporting elements defined by the CWA:

• **Statewide reporting under CWA Section 305(b):** Section 305(b) reporting summarizes the overall condition of Utah's surface waters and estimates the relative importance of key water quality concerns. These concerns can include pollutants, habitat alteration, and sources of water quality problems.

• Water quality assessments under CWA Section 303(d): Section 303(d) requires states to identify waters that are not attaining beneficial uses according to state water quality standards (Utah Administrative Code [UAC] R317.2.7.1). The Utah Section 303(d) List (hereafter the 303(d) List) also prioritizes the total maximum daily loads (TMDL) required for each listed waterbody and the cause of nonattainment. This list includes waters impaired as a result of nonpoint sources, point source discharges, natural sources, or a combination of sources.

In addition to Utah's 303(d) List, DWQ also identifies waterbodies that:

- have water quality problems but DWQ cannot confirm due to uncertainty regarding the nature of the data, insufficient sample size, or other factors,
- are either currently addressed by DWQ through a TMDL or other pollution-control mechanism, or
- are attaining water quality standards.

Full descriptions of these and other U.S. Environmental Protection Agency (EPA) identified waterbody assessment classifications are described and summarized in Table 1.

ASSESSMENT CATEGORIES FOR SURFACE WATERS

DWQ uses five categories defined by EPA to assess surface waters of the state (EPA, 2005). These categories are described in Table 1.

EPA Assessment Category	Assessment Category Description
1	Supporting . All beneficial uses assigned to a waterbody are evaluated against one or more numeric criteria and each use is found to be fully attaining applicable water quality standards.
2	No Evidence of Impairment. Some, but not all, beneficial uses assigned to a waterbody are evaluated against one or more numeric criteria and each assessed use is found to be fully attaining applicable water quality standards.
3	Insufficient Data and/or Information. There are insufficient data and information to conclude support or nonsupport of a use. The application of this category may be applied when: (1) the dataset is smaller in size and has water quality criteria exceedances OR no water quality criteria exceedances, (2) a secondary review was applied to a waterbody that was not attaining, (3) water quality criteria and/or beneficial use support assessment methods are not yet developed (or are undergoing development or revisions) and therefore use attainment has not been determined, (4) waterbodies were assessed against water quality parameters and characteristics that require further investigations as defined in <u>UAC R317-2</u> , (5) assessment units (AUs) lack use designations, have improper use designations, or contain other inconsistencies in the dataset.
4A	TMDL-Approved . Waterbodies that are impaired by a pollutant and have had TMDL(s) developed and approved by EPA. Where more than one pollutant is associated with the impairment of a waterbody, the waterbody and the parameters that have an approved TMDL are listed in this category. If a waterbody has other pollutants that need a TMDL, the waterbody is still listed in Category 5 with an Approved TMDL.
4B	Pollution Control . Consistent with 40 Code of Federal Regulations (CFR) 130.7(b) (I) (ii) and (iii), waterbodies that are not supporting designated uses are listed in this subcategory where other pollution-control requirements, such as best management practices required by local, state, or federal authority, are stringent enough to bring the waters listed in this category back into attainment in the near future with the approved pollution-control requirements in place. All waterbodies placed in this category must have a pollution control requirement plan developed and approved by EPA. Similar to Category 4A, if the waterbody has other pollutants that need a TMDL, or there is already a TMDL in place for another pollutant, the waterbody may also be listed in Categories 5 and 4A. Therefore, an AU with a pollution control in place can be listed in Categories 4B, 4A, and 5.
4C	Non-Pollutant Impairment . Waterbodies that are not supporting designated uses are placed in this category if the impairment is not caused by a pollutant but rather by pollution such as hydrologic modification or habitat degradation. Similar to Categories 4A and 4B, if the waterbody has other pollutants that need a TMDL, or there is an approved TMDL or pollution-control mechanism in place, the waterbody may also be listed in Categories 4A, 4B, and 5. Therefore, an AU with a pollution control in place can be listed in Categories 4A, 4B, and 5.

 Table 1. U.S. Environmental Protection Agency categorization of assessed surface waterbodies for integrated report purposes.

EPA Assessment Category	Assessment Category Description
5	Not Supporting. The concentration of a pollutant, or several pollutants, exceeds numeric water quality criteria, or beneficial uses are non-attaining based on violation of the narrative water quality standards. In addition, waterbodies identified as -threatenedI may also be placed in this category. In the case of a -threatenedI waterbody, one or more of its uses are likely to become impaired by the next IR cycle. Water quality may be exhibiting a deteriorating trend if pollution control actions are not taken. In the event that DWQ categorizes a waterbody as -threatenedI, documentation of a listing rationale will be provided.
	Both impaired and threatened waterbodies constitute Utah's formal Section 303(d) List and are prioritized for future TMDL development.
	TMDL Alternatives. The 303(d) program vision promotes the identification of alternative approaches to TMDL development for
5-Alt	impaired waters where these approaches would result in a more rapid attainment of water quality standards. Note: This category is only referred to in DWQ's -303(d) Vision Documentl.

UTAH'S NUMERIC CRITERIA AND BENEFICIAL USES

To determine the appropriate assessment categories for a waterbody (see Table 1), DWQ must first evaluate the impacts of measured pollutant concentrations on environmental and human health. Under <u>UAC R317-2</u>, Utah has developed and adopted water quality numeric criteria (chemical concentrations that should not be exceeded) to protect the water quality of surface waters and the uses these waterbodies support. As noted in <u>UAC R317-2</u>, the water quality criteria for a pollutant can vary depending on the beneficial use assigned to a waterbody.

To identify the use and value of a waterbody for public water supply, aquatic wildlife, recreation, and agriculture, EPA and DWQ developed several beneficial use classifications (see <u>UAC R317-2-6</u>). Currently, DWQ designates five uses of surface waters within the state:

- Class 1. Protected for use as a raw water source for domestic water systems.
- Class 2. Protected for recreational use and aesthetics.
- Class 3. Protected for use by aquatic wildlife.
- Class 4. Protected for agricultural uses including irrigation of crops and stock watering.
- Class 5. The Great Salt Lake (GSL).

Subclassifications for several of these categories exist and are further defined in Table 2.

Table 2. Subclassifications of Utah's beneficial uses.

Beneficial Use Subclassification	Use Definition
1C*	Protected for domestic purposes with prior treatment by treatment processes as required by the Utah Division of Drinking Water
2A	Protected for frequent primary contact recreation where there is a high likelihood of ingestion of water or a high degree of bodily contact with the water. Examples include, but are not limited to, swimming, rafting, kayaking, diving, and water skiing.
2B	Protected for infrequent primary contact recreation. Also protected for secondary contact recreation where there is a low likelihood of ingestion of water or a low degree of bodily contact with the water. Examples include, but are not limited to, wading, hunting, and fishing.
3A*	Protected for cold water species of game fish and other cold water aquatic life, including the necessary aquatic organisms in their food chain.
3B*	Protected for warm water species of game fish and other warm water aquatic life, including the necessary aquatic organisms in their food chain.
3C*	Protected for nongame fish and other aquatic life, including the necessary aquatic organisms in their food chain.
3D*	Protected for waterfowl, shore birds and other water-oriented wildlife not included in Classes 3A, 3B, or 3C, including the necessary aquatic organisms in their food chain.
3E*	Severely habitat-limited waters. Narrative standards will be applied to protect these waters for aquatic wildlife.
4	Protected for agricultural uses including irrigation of crops and stock watering.
5A	Gilbert Bay Geographical Boundary All open waters at or below approximately 4,208-foot elevation south of the Union Pacific Causeway, excluding all of the Farmington Bay south of the Antelope Island Causeway and salt evaporation ponds. Beneficial Uses Protected for frequent primary and secondary contact recreation, waterfowl, shore birds and other water-oriented wildlife including their necessary food chain.

Beneficial Use Subclassification	Use Definition		
5B	Gunnison Bay Geographical Boundary All open waters at or below approximately 4,208-foot elevation north of the Union Pacific Causeway and west of the Promontory Mountains, excluding salt evaporation ponds. Beneficial Uses Protected for infrequent primary and secondary contact recreation, waterfowl, shore birds and other water-oriented wildlife including their necessary food chain.		
5C	Bear River Bay Geographical Boundary All open waters at or below approximately 4,208-foot elevation north of the Union Pacific Causeway and east of the Promontory Mountains, excluding salt evaporation ponds. Beneficial Uses Protected for infrequent primary and secondary contact recreation, waterfowl, shore birds and other water-oriented wildlife including their necessary food chain		
5D	Farmington Bay Geographical Boundary All open waters at or below approximately 4,208-foot elevation east of Antelope Island and south of the Antelope Island Causeway, excluding salt evaporation ponds. Beneficial Uses Protected for infrequent primary and secondary contact recreation, waterfowl, shore birds and other water-oriented wildlife including their necessary food chain.		
5E	Transitional Waters along the Shoreline of the Great Salt Lake Geographical Boundary All waters below approximately 4,208-foot elevation to the current lake elevation of the open water of the Great Salt Lake receiving their source water from naturally occurring springs and streams, impounded wetlands, or facilities requiring a UPDES permit. The geographical areas of these transitional waters change corresponding to the fluctuation of open water elevation. Beneficial Uses Protected for infrequent primary and secondary contact recreation, waterfowl, shore birds and other water-oriented wildlife including their necessary food chain.		
*Footnote: There are human health (HH) criteria associated with these beneficial uses in <u>UAC R317-2</u> . For uses with a HH criteria, (see Table 2.14.6 in <u>UAC R317-2</u>), the following use notation will be used in 303(d)			
data and assessment reports: HH1C, HH3A, HH3B, HH3C, and HH3D.			

For 303(d) assessment purposes, every beneficial use with numeric criteria and credible and readily available data is assessed and reported. DWQ does not just assess and report on the most environmentally protective criterion and/or use for a parameter and waterbody. Where waterbodies are unclassified and do not have assigned beneficial uses in DWQ data records, DWQ may assign default beneficial uses as articulated in <u>UAC</u> <u>R317-2-13.9, 13.10, 13.11, 13.12, and 13.13</u>. Alternately, these undefined waterbodies may be classified as an EPA Category 3 or not reported in the IR if an Assessment Unit has not been established.

For more information on how DWQ develops, adopts, and updates the numeric criteria and beneficial uses in <u>UAC R317-2</u>, please refer to DWQ's <u>Standards</u> website.

PRIORITY AND ASSESSED PARAMETERS

To make the list of pollutants with numeric criteria in <u>UAC R317-2</u> more manageable for monitoring and assessment purposes, DWQ developed a priority parameter list that is recommended for routine water quality monitoring. This priority list is a subset of the pollutants listed in <u>UAC R317-2</u> and reflects the following constraints:

- Laboratory resources that limit the ability to assess all parameters in UAC R317-2.
- Significant monitoring and/or analytical costs associated with processing a sample or measuring a pollutant.
- Logistical constraints due to monitoring location and holding times for certain parameters.

As a result, water quality assessments may not report on all parameters listed in <u>UAC R317-2</u>. Instead, assessments reflect all parameters with adopted numeric criteria that also have readily available and credible datasets from the IR period of record.

To view DWQ's list of priority parameters, please refer to Appendix 1. Please be aware that priority parameters can change from one reporting cycle to the next if laboratory and financial constraints and monitoring priorities within a sampling area change.

Assessment Process and Time Frames

DEVELOPING THE METHODS

This document describes Utah's most up-to-date assessment methods that will be applied to Utah's current IR cycle. Although many of the methods described have been applied in past assessment cycles, other methods are new or modified from previous reporting cycles. Some of the assessment method revisions are simply intended to clarify ongoing DWQ practices. Other more substantive revisions may be based on comments that were raised during the previous IR's 303(d) Assessment Methods and draft IR public comment periods.

DWQ updates and revises the 303(d) methods when concerns are raised or when program developments are released by DWQ staff. Additional modifications or clarifications to the Assessment Methods may also be made based on feedback provided by EPA during and after a reporting cycle or from the <u>EPA's cycle-specific 303(d)</u> guidance memorandum.

Moving forward, all changes made to the 303(d) Assessment Methods will be reviewed and updated on evennumbered years in anticipation of developing the Draft IR and 303(d) List in the following odd-numbered year. This process allows DWQ to consider comments and suggestions on assessment methods before a formal analysis is conducted which reduces the need to rework analyses from changes in methods.

PUBLIC REVIEW OF THE METHODS PROCESS AND SCHEDULE

The development and acceptance of the Assessment Methods includes a public review process and occurs on the following schedule:

- a. DWQ releases the proposed methods during an even numbered year, for a 30-day public comment period. The notice for public comments on the methods are advertised on <u>DWQ's News</u> and <u>Announcements</u> and <u>Public Notices</u> website, the <u>Water Quality Assessments Program</u> and <u>Current Assessment Methods & Guidance</u> websites, and <u>DWQ's listserv</u>.
- b. DWQ compiles and responds to the comments received within the 30-day public comment period. DWQ's responses to comments are posted on the <u>Current Assessment Methods & Guidance</u> website.
- c. If substantial revisions to the methods are adopted by DWQ based on comments received in the public comment period, DWQ has the discretion to hold a second public comment period of 30 days or less. Should DWQ proceed with a second public comment period, notifications will be advertised, at a minimum, on <u>DWQ's News and Announcements</u> and/or <u>Public Notices</u> website, the <u>Water Quality Assessments Program</u> and <u>Current Assessment Methods & Guidance</u> websites, and <u>DWQ's listserv</u>.
- d. Following the conclusion of the public comment period(s), DWQ posts responses to comments on the <u>Assessment Methods</u> webpage. Any changes or additions that were made in response to public comments will be documented and issued with the draft IR and 303(d) List. If stakeholders have concerns with the final Assessment Methods released during the draft IR, the public should submit their comments during the next IR cycle when future calls for public comments on 303(d) assessment methodologies are issued.

Concerns and comments not received through the above processes may not be considered for current and future 303(d) methods updates and modifications.

CALL FOR READILY AVAILABLE DATA AND SCHEDULE

DWQ issues a request for all readily available data (i.e., the IR Call for Data) after November 1 of even-numbered years.

Existing and Readily Available Data Defined

As mandated in 40 CFR 130.7(b)(5) DWQ assembles and evaluates all existing and readily available data in determining whether a waterbody is supporting or not supporting the assigned beneficial uses and numeric criteria in <u>UAC R317-2</u>. For the purposes of the IR, existing and readily available data may include:

- Data and information referenced in 40 CFR 130.7(b)(5)(i), (iii), and (iv)
- Data collected by DWQ or DWQ cooperators for assessment purposes.
- Data collected for other DWQ programs, such as waste load allocations, TMDL development, watershed planning, and use attainability analysis.
- Data collected for narrative assessments (see Narrative Assessment: Biological Assessments and Narrative Standards for All Waters)
- Data obtained through <u>EPA's Water Quality Portal</u> (WQP)
- Data and information obtained through the IR's public <u>Call for Data</u>
- Data and information submitted to EPA's Water Quality Exchange System or DWQ's Call for Data to support a credible data submission (e.g., Tables 5-8)
- Data included in the Data Types Matrix in Table 10.

Data and information (as described above) that are not brought forward during the IR's <u>Call for Data</u> or presented to DWQ in accordance with the schedule as outlined in this document and on the <u>Water Quality Assessments</u> <u>Program</u> website will not be treated as readily available for the purpose of assessment decisions during the current assessment cycle.

Data that are submitted to DWQ or obtained by DWQ during the IR data compilation process are integrated into DWQ's assessments as described in Table 3 and subject to DWQ's data management and quality assurance and quality control (QA/QC) processes. Should any data and information not be included in the assessment process, DWQ will clearly document which dataset (or datasets) were not included and why (as described and required in 40 CFR 130.7(b)(6)(iii)).

Table 3. DWQ's data availability matrix.

Data Availability	Description	Processing required	Uses for Assessments
Readily available	Data are incorporated into <u>EPA's WQP database</u> and can interface directly with DWQ's IR data processing and assessment tools. Data is submitted by stakeholders or data submitters through DWQ's data submission templates or electronic submission processes, which are provided on the <u>Assessment's Call for</u> <u>Data</u> website ^{1,2}	None	Fully incorporate into DWQ's assessment tools.
	Additional -otherll sources of data included in the Data Types Matrix in Table 10 that described the waterbodies in <u>40 CFR 130.7(b)(5)(i)</u> , (iii), and (iv) and are submitted through DWQ's electronic submission process as described on the <u>Assessment's Call for Data</u> website.	None	Fully incorporate into DWQ's Conflicting Assessments of Water Quality Standards and Secondary Reviews processes
Readily available (additional processing may be required by DWQ)	Quantitative data and information may be stored in and routinely uploaded to a queriable, regularly maintained database that is available on the web or electronically submitted to DWQ during the public call for data. Database format is consistent and allows repeatable queries with predictable results (e.g. parameter names, location descriptions, and parameter units are consistent), making development of automated interface tools practicable.	Full incorporation into IR assessment tools requires DWQ development of interface tools for aggregating, translating, and harmonizing data to appropriate formats. In particular, sampling locations and dates, parameter names, fractions, units, analysis methods and detection limits require translation and interpretation prior to assessment.	Fully incorporate into IR assessment tools if interface tools have been developed ² . If interface tools are still in the development phase, (1) screen data for exceedances for the waterbodies described in <u>40 CFR 130.7(b)(5)(i)</u> , (iii), and (iv), or (2) manually assess data for specific sites, dates, and parameters at the request of stakeholders or data submitters for waterbodies described in <u>40 CFR</u> <u>130.7(b)(5)(i)</u> , (iii), and (iv). Results are fully incorporated into DWQ's Conflicting Assessments of Water Quality Standards and Secondary Reviews

Data AvailabilityDescriptionProcessing requiredUses for Assessments¹ DWQ data submission templates and processes are designed to allow for data and information that may not fit the data structure of EPA's

Water Quality Exchange System or may be used to support a credible data review (Tables 5-8) or perform a narrative or high frequency data assessments.

² DWQ requests data submitters inform the Division which data system contains their data, so DWQ can work with submitters prior to the IR's call for data to develop interface tools.

DEVELOPING THE COMPONENTS OF THE DRAFT INTEGRATED REPORT AND 303(D) LIST

Following the response to public comments on the draft 303(d) Assessment Methods, and the compilation of all existing and readily available data, DWQ reviews all data and assigns a credible data -gradell. All non-rejected, credible data are then assessed for the release of the following IR and associated 303(d) components.

The minimum reporting elements included in the Integrated Report and available for public review and comment are the final 303(d) Assessment Methods, 305(b) Summary, and 303(d) Assessment Results .

Final 303(d) Assessment Methods

The final version of the publicly-vetted 303(d) Assessment Methods including any changes or additions that were made in response to the assessment method public comment period(s) will be posted on the <u>Water Quality</u> <u>Assessments Program</u> website.

305(b) Summary

At a minimum, this summary will address the following elements for current assessments (and previous assessments where new data and information did not result in an EPA-defined categorical change):

- A unique identifier assigned to the Assessment Unit by DWQ.
- The name and location description of the Assessment Unit.
- An indicator of whether the Assessment Unit is currently active, or if the Assessment Unit identifier has been retired and is being kept for historical tracking purposes and is part of an Assessment Unit History of another Assessment Unit.
- The geographic state within which the Assessment Unit is contained.
- The waterbody type for the Assessment Unit.
- The size (and the unit of measure) for the assessed waterbody type.
- The EPA-defined assessment category for each defined and evaluated Assessment Unit.

303(d) Assessment Results

At a minimum, the following information will be provided for current assessments (and previous assessments where new data and information did not result in an EPA-defined categorical change):

- The minimum elements discussed above in the above 305(b) Summary.
- The cycle the Assessment Unit was last assessed, which can include any conclusions related to this Assessment Unit and delisting decisions (if appropriate).
- The beneficial use(s) designated to the Assessment Unit and the EPA-defined assessment categories associated with the beneficial use after assessment.
- The name of the parameter assessed, the beneficial use associated with the assessed parameter, and the EPA-defined assessment category status for the parameter and beneficial use.
- An indicator of the water quality trend representing the beneficial use or parameter assessment.
- A flag indicating whether or not the cause of the attainment status is a pollutant.
- The agency responsible for identifying the EPA-defined assessment category status for the waterbody.
- The IR cycle the Assessment Unit was first listed for a cause.
- The name of the source of the EPA-defined assessment category status, and if that source has been confirmed.
- The reason(s) and the agency responsible for identifying the delisting of a waterbody and cause.

305(b) Summary and 303(d) Assessment Metadata

To support DWQ's decision to list or not list waters, DWQ will provided (at a minimum) the following supporting information and documentation as referenced in CFR 130.7 (b)(6):

- A description of (or access to) the data records and information used in the IR's current period of record,
- A rationale for (and access to) any data and information that was obtained or submitted to DWQ during the call for data but did not meet DWQ's readily available or credible data requirements and was not used for 305(b) and 303(d) assessments, and
- A rationale for (and access to) any rejected data records and information

For archiving purposes and to assist with the review of the IR and 303(d) List, DWQ will also provide the following as time and resources allow:

- The assessment method type and the assessment method context (as defined in <u>ATTAINS</u>).
- Geolocation information on waterbodies that were assessed.
- The date and version of <u>UAC R317-2</u> that were used in the assessment cycle.
- The list of approved TMDLs that were used in the assessment cycle.
- A fact sheet summarizing the Final IR results.

Note: On January 1 of odd-numbered years, DWQ will -freezell and establish file versions of several working files to maintain consistency and data integrity. These files include geographic information system (GIS) point files of monitoring locations, layers of AUs, beneficial uses, and water quality standards.

PUBLIC REVIEW OF THE 303(D) LIST

There will be a formal public review process for the IR and 303(d) List with the following steps:

- a. Any person who has a pollution-control mechanism plan for a waterbody and would like to submit that plan for consideration and EPA approval as a Category 4B must submit that information to DWQ by July 1 of even-numbered years (Appendix 5). If approved by DWQ, this information will then be submitted to EPA for review and final approval. It should be noted, however, that successful Category 4B determinations typically take a long time to receive EPA approval and may not be received in time to be included in the current IR cycle.
- b. Waters and pollutants that are considered for a potential Category 4A (approved TMDLs) must be approved by DWQ's Water Quality Board per <u>UAC R317-1-7</u> and by EPA per 40 CFR 130.7 by September 30 of even-numbered years. TMDLs that are approved by DWQ and EPA after that date will be considered in future IRs.
- c. After July 1 of odd-numbered years and no later than February 1 of even-numbered years, DWQ will release the proposed IR and 303(d) List for a 30-day public comment period. At a minimum, the notice for public comments on the IR will be advertised on <u>DWQ's News and Announcements</u> and/or <u>Public Notices</u> website, the <u>Water Quality Assessments Program</u> website, and <u>DWQ's listserv</u>.
- d. Stakeholders who wish to submit data for listing or delisting considerations are encouraged to submit that data and information during the Assessment Program's <u>Call for Data</u>. However, DWQ may consider data that are submitted during the public comment period of the draft IR and 303(d) List when the commenter can show that submitted data results could result in a change to a specific waterbody assessment decision. Data that are submitted during the public comment period for the draft IR must be submitted in the format articulated in this document and on the IR <u>Call for Data</u> website and be of Grade A or B quality to be used in an assessment decision (see the Data Quality Matrices at the IR <u>Call for Data</u> website). Submitted information during the public comment period will undergo a secondary review (see Secondary Review and Appendix 3).
- e. At the close of the 30-day public comment period, DWQ will compile and respond to comments that were received within the 30-day public comment period.

- f. If substantial revisions to the IR and 303(d) List are adopted by DWQ on the basis of comments received in the first public comment period, DWQ may offer a second public comment period of 30 days or fewer. Should DWQ proceed with a second public comment period, notifications will be advertised, at a minimum, on DWQ's <u>News and Announcements</u> and/or <u>Public Notices</u> website, the <u>Water Quality Assessments Program</u> website, and <u>DWQ's listserv</u>.
- g. No later than April 1 of even-numbered years, DWQ will submit a response to the public comments that were received during the 30-day public comment period and a final version of the IR and 303(d) List to EPA for final approval. DWQ will post a status update on the <u>IR Program's</u> website, letting stakeholders know that a final IR was submitted to EPA for final approval. After the submission of the IR to EPA for final approval, any concerns or rebuttals that stakeholders have with the IR will not be considered for the recently submitted IR. If stakeholders continue to have concerns with the IR and 303(d) List, they should submit their comments during the next IR cycle.
- h. EPA has 30 days to approve or disapprove the 303(d) List after receiving DWQ's formal submission letter, IR chapters, 303(d) List, categorization of non-303(d) waterbodies, public comments received and DWQ's response to them, delisting tables and justifications, list of approved TMDLs/pollution-control mechanisms, and GIS files of all assessment results. If EPA disapproves a state list, EPA has 30 days to develop a new list for the state; although historically EPA has rarely established an entire list for a state. EPA may also partially disapprove alist because some waters have been omitted, and EPA may add these waters to the state's list. If EPA's final approval of the IR takes longer than the timeframe identified above, DWQ will post updates on the <u>IR</u> website.
- i. Any concerns and comments not received through the above processes will not be addressed in the IR.

FINALIZING THE INTEGRATED REPORT AND 303(D) LIST

Following EPA's approval, DWQ will release the following information on DWQ's <u>Water Quality Assessments</u> <u>Program</u> website:

- A final version of 303(d) Assessment Methods, including the public comments received and DWQ's response to comments.
- Final IR chapters and 303(d) Lists, including public comments received, DWQ's response to comments, all assessment information that was considered and evaluated in the finalization of the IR and 303(d) List, and a GIS file of the final assessments and 303(d) List.

In addition, EPA maintains a <u>database</u> of state IR results and TMDL status. If additional information not available on the <u>Assessment Methods</u> website is needed, DWQ may require a <u>Government Records Access and</u> <u>Management Act request</u> to be filed. These requests can be submitted at any time.

Scope of the Assessment

WATERS OF THE STATE

As defined in <u>UAC R317-1-1</u>, DWQ characterizes waters of the state as follows:

... all streams, lakes, ponds, marshes, watercourses, waterways, wells, springs, irrigation systems, drainage systems, and all other bodies or accumulations of water, surface and underground, natural or artificial, public or private, which are contained within, flow through, or border upon this state or any portion thereof, except that bodies of water confined to and retained within the limits of private property, and which do not develop into or constitute a nuisance, or a public health hazard, or a menace to fish and wildlife, shall not be considered to be "waters of the state" under this definition (Section 19-5-102).

For 303(d) assessment purposes, DWQ reports on the following:

- flowing surface waters of the state,
- canals as identified in site-specific standards or named in the list of waters with designated use classifications in UAC R317-2, and
- lakes, reservoirs, and ponds.

All other waters are currently reported through other programs within DWQ. For more information on these waterbodies and their reports, please refer to DWQ's website.

WATERBODY TYPES

Utah assesses surface waters of the state at the monitoring-site level and then summarizes the site-level assessments up to a larger spatial scale (i.e., the Assessment Unit (AU) scale). To determine what sites are appropriate for assessments, the monitoring locations are categorized by considering the definitions in Table 4.

Table 4. Assessed waterbody types used for categorizing monitoring locations.

Assessed Waterbody Type	Description		
Flowing surface waters of the state*	A surface body of water moving under gravity flow. Perennial, intermittent and ephemeral surface waters are included in this type. Springs and seeps are also included in this waterbody type provided they are flowing and connect, contribute, or are influencing water quality in a downstream river or stream.		
Canals (general, irrigation, transport, or drainage)*	A human-made water conveyance with flowing water. Note: Canals are only assessed when identified in the site-specific numeric criteria in <u>UAC R317-2-14</u> or are named in the list of waters with designated use classifications in <u>UAC R317-2-13</u> .		
Lakes, reservoirs, and ponds*	An inland body of standing fresh or saline water that is generally too deep to permit submerged aquatic vegetation to take root across the entire body. This type may include expanded parts of a river or natural lake, a reservoir behind a dam, or a natural or excavated depression containing a waterbody without surface water inlet and/or outlet.		
*Footnote: Sites associated with these waterbody types that have readily available and credible data are also subject to secondary reviews, which are described in the Secondary Review section and Appendix 3.			

ASSESSMENT UNITS

Assessment Unit Delineation and Identification

Surface waters identified appropriate for 303(d) assessments have been delineated into discrete units called assessment units (AUs). AUs are used in identifying waters of the state that have been assessed to determine whether or not they are supporting their designated beneficial uses. Lakes, reservoirs, and ponds have been delineated as individual AUs and their size is reported in acres. Flowing surface waters of the state and canals have been delineated by specific rivers or one or more surface water reaches in subwatersheds. When using subwatersheds to delineate flowing surface water AUs, the new U.S. Geological Survey (USGS) 5th-level (10 digit) and 6th-level (12-digit) hydrologic unit codes (HUCs) for Utah are used. These HUCs allow for the aggregation of surface water reaches into individual AUs that are hydrologically based watersheds. The 5th- and 6th-level HUCs were developed by individuals representing state and federal agencies, and have been certified by the Natural Resources Conservation Service.

Additional Guidelines for Delineating Assessment Units

When delineating AUs for flowing surface waters of the state, DWQ follows the guidelines listed below with the first two guideline statements being fixed rules.

- The entire AU is within a single 8-digit USGS HUC.
- Each AU comprises reaches having identical designated beneficial use classifications. For example, for a waterbody that has beneficial uses of Class 1C, 2B, and 3A in one portion and Class 2B and 3B in another portion, this waterbody would have at least two distinct AUs because of the difference in beneficial use classifications.
- Large flowing surface waters of the state, such as the Green River, Colorado River, and portions of other large rivers (e.g., the Bear River and Weber River) were delineated into "linear" or "ribbon" AUs containing no tributaries. Where a major tributary enters these rivers or hydrological features such as dams exist, the river is further delineated into two or more AUs.
- Tributaries and headwaters were delineated primarily using the 5th- and 6th-level HUC boundaries to define the AUs.
- Additional AUs were defined by combining or splitting 5th- or 6th-level watersheds using hydrological and ecological changes such as geology, vegetation, or land use.
- Small tributaries to larger flowing surface waters that could not be incorporated into a watershed unit were combined into separate unique AUs.
- AU boundaries generally follow hydrologic units, but may also be delineated to reflect beneficial use designation changes, major tributaries or other observed hydrologic or chemical changes, administrative boundaries, such as at some U.S. Forest Service boundaries, or notable road crossings as stated in Water Quality Standards, <u>UAC R317-2-13</u>.

Individual AUs for flowing surface waters of the state were assigned a unique identification code for indexing. Each AU identifier begins with the prefix -UTI followed by the associated 8-digit HUC and ending in a 3-digit DWQ sequential number. Similarly, lake, reservoir, and pond AUs were identified by adding the prefix -UT-L-I to the 8-digit HUC followed by a 3-digit sequential number.

Figure 6 illustrates one example of the results of using the above guidelines to delineate and identify AUs within a major watershed. The Weber River was delineated as a linear AU from its confluence with Chalk Creek upstream to the Wanship Dam and then designated as UT16020101-017. South Fork Chalk Creek (UT16020101-011) in the Chalk Creek watershed was delineated by combining two 12-digit HUCs comprising the South Fork Chalk Creek sub-basin. The first AU (UT16020101-010) in the Chalk Creek watershed above Echo Reservoir was
delineated using the confluence of the South Fork as the upstream endpoint. This necessitated splitting the 12digit HUC into two AUs, one for Chalk Creek below the confluence with South Fork (UT16020101-010) and another AU for Chalk Creek above the South Fork confluence and below the Huff Creek confluence to form UT16020101-012. An example of small tributary streams that could not be combined into a hydrological based AU is illustrated by the UT16020101-019 AU. These are very small tributaries, and the Weber River is not reflective of their stream order or the habitat that they flow through. Echo Reservoir (UT-L-16020101-001) and Rockport Reservoir (UT-L-16020101-002) are examples of lake or reservoir AUs.

Figure 6. Utah Division of Water Quality assessment unit delineations.

Assessment Unit Datum

Digital data representing all established AUs are stored as subwatershed polygons in GIS-formatted spatial data files. These data are georeferenced as North American Datum 1983 in Universal Transverse Mercator (Zone 12 North) projection, and units are in meters. Maps depicting statewide AUs on letter-sized paper require scales at approximately 1:2,200,000. Digital maps can be shown at various scales depending on the selected zoom magnification.

AU Stream Mileage Estimation for Flowing Surface Waters and Canals

For reporting purposes, flowing surface water assessments are summarized by stream mileage in each assessment category. Stream mileage within each AU is estimated using a streams GIS layer generated by the Utah Automated Geographic Reference Center (AGRC). This layer was derived from the high resolution (1:24,000 scale) National Hydrologic Dataset (NHD). Stream mileage within an AU is estimated as the sum of the lengths of all perennial and intermittent streams and canals identified in the site-specific numeric criteria in UAC R317-2-14 or named in the list of waters with designated use classifications in UAC R317-2-13. The NHD based

layer is used only to estimate stream mileage within an AU and is not used to define individual monitoring locations as perennial or intermittent or remove monitoring locations from the assessment process on that basis.

WATERS WITHIN AND SHARED WITH OTHER STATES

Though readily available data may exist from locations near Utah's state boundaries, DWQ only assesses, for 303(d) purposes, monitoring location sites that are within the jurisdictional boundaries of the state. Assessment Units or sites on lands under tribal jurisdiction are not assessed in the IR. Assessed surface waters of the state (as defined in Table 4) that flow into Utah but originate outside of Utah's borders will be assessed using DWQ monitoring locations residing within state boundaries. Lakes, reservoirs, and ponds that overlap with other state jurisdictions (e.g., Lake Powell, Bear Lake, and Flaming Gorge) will be assessed using the monitoring locations that fall within Utah state jurisdictional boundaries.

As resources allow, DWQ will work with neighboring states on any impairments that fall close to jurisdictional boundaries in other states by notifying the neighboring state of the impairments or exceedances and available data relevant to the impairment.

Data Quality

CREDIBLE DATA DEFINED

To be considered for 303(d) water quality assessments, all readily available data and information that are submitted to the Water Quality Assessment Program or obtained during the assessment program's data compilation process must be of high quality.

DWQ's assessment program defines credible data as a complete and validated data submission consisting of:

- water quality samples and field measurements (data) that are collected following the adherence and documentation of appropriate quality assurance (QA) and quality control (QC) procedures,
- environmental data that are representative of water quality conditions at the time of sampling, and
- field sample collection, processing, and laboratory analyses that are documented and follow established protocols, procedures and methods, which are available when needed/requested.

To ensure that the data and information used by the assessment program is of high quality, the assessment program relies on documentation from project planners, sample collectors, and laboratories to assist in documenting that the data are of known quality and defensible. External entities are not obligated to collect data under the specifications of any of DWQ's or EPA's currently established quality assurance protocols to be considered credible. However, all sources of data must meet the definition of credible data. DWQ will evaluate the credibility of data using the criteria and documentation described in the following sections.

Please note that the definition of credible data outlined in this document is specific to the Water Quality Assessment Program (the _assessment program') and does not restrict other programs (e.g. water quality standards development, TMDLs, etc.).within DWQ from using data for other Division reporting analyses and actions. For example, data used for a Watershed Plan may not necessarily meet the credible data requirements for the assessment program but may meet the needs of a Watershed Plan.

COMPONENTS FOR CREDIBLE DATA

Quality Assurance Program Plan Guidance and Example

The assessment program requires that all assessment related decisions that use data are supported by a Quality Assurance Project Plan (QAPP). QAPPs, *"integrate all technical and quality aspects of a project, including planning, implementation, and assessment." The purpose of a QAPP is to document planning results for environmental data operations and to provide a project-specific "blueprint" for obtaining the type and quality of environmental data needed for a specific decision or use. The QA Project Plan documents how quality assurance (QA) and quality control (QC) are applied to an environmental data operation to assure that the results obtained are of the type and quality needed and expected" (EPA, 2002).*

DWQ does not require that entities follow a specific QAPP, However, external entities should be prepared to share the QAPP that was relied upon for data collection associated with a particular data submission. External entities may choose to follow one of the example QAPPs below or develop a QAPP specific to their entity or sampling program(s).

Example QAPPs

• <u>Environmental Protection Agency's Quality Assurance Quality Program Guidance & Requirements.</u> EPA's requirements and guidance documents for ensuring that all environmental data is of a known quality and

defensible. The Water Quality Assessment Program encourages DWQ staff and cooperators and all other parties interested in submitting high quality data to the assessment program to review QA/R-5 and QA/G-5.

• <u>DWQ Quality Assurance Program Planning (QAPP)</u>. DWQ's document outlining the minimum Quality Assurance and Quality Control (QA/QC) requirements for environmental data generated by DWQ and used by most of its cooperators.

Sampling Analysis Plan Guidelines and Examples

Sampling Analysis Plans are the second type of documentation the assessment program requires when compiling information for assessments and other programmatic decisions. SAPs, *"are intended to assist organizations in documenting the procedural and analytical requirements for one-time, or time limited, projects involving the collection of water, soil, sediment, or other samples taken to characterize areas of potential environmental contamination. It combines the basic elements of a Quality Assurance Project Plan (QAPP) and a Field Sampling <i>Plan*" (EPA, 2014).

DWQ does not require that entities follow a specific SAP, However, external entities should be prepared to share the SAP that was relied upon for data collection associated with a particular data submission. External entities may choose to follow one of the example SAPs below or develop a SAP specific to their sampling program(s).

Example SAPs

- EPA's Sampling Analysis Plan Guidance & Requirements.
- <u>DWQ's recommended Sampling Analysis Plan Requirements</u>. Currently used by DWQ cooperators and internally at DWQ, this document contains information on what DWQ looks for in a SAP (see Appendix 2)

Standard Operating Procedures Guidelines and Examples

Standard Operating Procedures (SOPs) are documented procedures that describe in full detail the routine operations of a monitoring program. The assessment program requires SOPs as part of data submission packages to provide for consistency and comparability across sampling techniques from many disparate data sources.

DWQ does not require that entities follow a specific SOP, However, external entities should be prepared to share the SOPs that were relied upon for data collection associated with a particular data submission. External entities may choose to follow the example SOPs below or develop SOPs specific to their sampling program(s).

Example SOPs

• <u>EPA's Guidance for Preparing Standard Operating Procedures (G-6)</u>. EPA's guidance on how to develop and provide the necessary documentation when generating an SOP. DWQ recommends referring to EPA's guidance if using a SOP different than DWQ's.

• <u>DWQ Standard Operating Procedures</u>. DWQ generates SOPs for any procedure that becomes routine, even when published methods are utilized. The use of SOPs ensures data comparability, defensibility, accuracy, and reduces bias. DWQ has published the following final SOPs, which can be found on DWQ's website:

- a. Aquatic Benthic Macroinvertebrate Collection in Rivers and Stream
- b. Calibration, Maintenance, and Use of Hydrolab Multiprobes (SOP includes an example of a multiprobe calibration form).
- c. Chain-of-Custody Samples
- d. Collection and Handling of Escherichia coli (E. coli) Samples
- e. Collection and Preparation of Fish Tissue Samples for Mercury Analysis
- f. Collection of Lake Water Samples

- g. Collection of Water Chemistry Samples
- h. *Escherichia coli (E. coli)* and Total Coliform Quantification using the IDEXX Quanti-Tray/2000 System
- i. Filtering Water Column Chlorophyll-a Samples
- j. Hydrolab Data Collection in Lakes
- k. Phytoplankton collection to detect Harmful Algal Blooms
- l. Secchi Disk Depth Measurements
- m. Stream Flow Measurement

Sampling Observations and Laboratory Comments

To assist DWQ in determining data quality, the assessment program requires documentation on field conditions which may affect data quality or laboratory comments on QA/QC issues encountered during analysis. Appendix 2 includes an example of sampling observations DWQ recommends documenting in the field for grab sample collections, and the credible data matrices included in Table 5 - Table 9 describe additional sampling and laboratory observations and comments required by the assessment program.

Monitoring Location Information

To assess a waterbody against the numeric criteria assigned in <u>UAC R317-2</u>, DWQ must review all of the monitoring location information associated with datasets. This process involves validating the location's geospatial information in GIS, assigning beneficial uses to DWQ-validated locations, and merging monitoring locations and their associated data where locations are representative of the same waterbody or segment. Information that must be included with a monitoring location measurement is as follows:

- Monitoring Location ID (Organization's unique identifier for the sample site),
- Waterbody type description, and
- Monitoring location latitude/longitude measurements and associated metadata as defined on the Assessment Program's <u>Call for Data</u> website.

If, during DWQ's geospatial review of the monitoring location information, a monitoring location has insufficient or inaccurate information (e.g., it cannot be mapped or is improperly recorded by the sampler in the field), the monitoring location and its associated data will not be included in the assessment.

CREDIBLE DATA MATRICES

Where beneficial uses can be assigned to a DWQ-validated monitoring location, DWQ will then consider the scientific rigor of the sampling information and measurements associated with that site. To assess the validity of the sampling and analytical protocols associated with a sample measurement, DWQ uses a data type–specific credible-data matrix. As noted in the credible-data matrices, each credible-data matrix considers the field and laboratory QA/QC protocols, sampling and laboratory methods, analytical detection or instrumentation limits, and field observations associated with a sample measurement. Based on the level of information provided and the strength of the metadata associated with the sample measurement, DWQ assigns a grade level (A–C) to the associated sample measurement(s).

Measurements that receive an A or B grade are considered to be of high quality by DWQ and will be considered and used by DWQ in the process of assigning an EPA-derived assessment category to a waterbody (i.e., the IR's 305(b) and 303(d) assessments). Measurements that receive a C grade are considered by DWQ to be of insufficient quality for assessment and 303(d) listing purposes. Details on the required data quality criteria for inclusion in the IR and use by the water quality assessment program are included in Table 5.

Table 5. Data validation criteria for water quality field grab sample parameters.

Data Quality Grade	Quality Assurance	Essential Metadata ¹	Calibration Documentation	Field Documentation	Flow Data	Calibration: Water Temperature Methods*	Calibration: pH Methods*	Calibration: Dissolved Oxygen, Percent Saturation for Calibrated Meter*	Calibration: Dissolved Oxygen, Concentration Methods for Calibrated Meter*
А	QAPP, SAP(s), and SOP(s) or equivalents are available for DWQ review if requested	Essential metadata is included with the data submission.	Available for DWQ review if requested for all field parameters	Available for DWQ review if requested	Submitted or available for DWQ review if requested	Checked against NIST A ≤ ± 0.1 °C R ≤ 0.01 °C	Calibrated pH Probe $A \le \pm 0.2$ $R \le 0.01$	0-200 %Sat: A ≤ ± 1% R ≤ 0.1%	0-8 mg/L: A ≤ ± 0.01mg/L > 8mg/L: A ≤ ± 0.02 mg/L R ≤ 0.01
В	QAPP, SAP(s), and SOP(s) or equivalents are available for DWQ review if requested	Essential metadata is provided to DWQ upon request.	Available for DWQ review if requested, for field parameters	Unavailable	Not submitted or unavailable	A ≤ ± 0.5 °C R ≤ 0.05 °C	Calibrated pH Probe $A \le \pm 0.5$ $R \le 0.05$	0-200 %Sat: A ≤ ± 2% R ≤ 0.2%	0-20 mg/L: A ≤ ± 0.1 mg/L R ≤ 0.1
С	QAPP, SAP, or SOP is unavailable Not Submitted	Essential metadata is missing from the data submission and is unavailable.	Unavailable	Unavailable	Not submitted or unavailable	A ≥ ± 0.5 °C R ≥ 0.05 °C OR not a calibrated meter, missing, or rejected data	Not a calibrated meter, missing, or rejected data	Not a calibrated meter, missing, or rejected data	Not a calibrated meter, missing, or rejected data
¹ Essential metada *Footnote: A = acc	ata elements are san curacy, R = range	nple location (latitude/lon	gitude), sample date and	time, parameter name, result value and unit					

Table 6. Data validation criteria for water quality high frequency dissolved oxygen data.

.

Data Quality Grade	Quality Assurance Quality Assurance Project Plan (QAPP)	Essential Metadata ¹	Calibration Documentation	Data QA/QC Information or Report	Field Documentation	Flow Data	Calibration: Dissolved Oxygen*, Percent Saturation for Calibrated Meter	Calibration: Dissolved Oxygen*, Concentration Methods for Calibrated Meter		
А	QAPP, SAP(s), and SOP(s) or equivalents are available for DWQ review if requested	Essential metadata is included with the data submission.	Mandatory-calibration record(s) (e.g., field records of calibration and/or fouling)	Documentation describing the QA/QC process on the raw data	All pertinent deployment data (i.e., information necessary for interpreting data)	Submitted or available for DWQ review if requested	0-200%: A ≤ ± 1% R ≤ 0.1%	0-8 mg/L: A $\leq \pm$ 0.01 mg/L > 8mg/L: A $\leq \pm$ 0.02 mg/L R \leq 0.01		
в	QAPP, SAP(s), and SOP(s) or equivalents are available for DWQ review if requested	Essential metadata is provided to DWQ upon request.	Mandatory-calibration record(s) (e.g., field records of calibration and/or fouling)	Documentation describing the QA/QC process on the raw data	All pertinent deployment data (i.e., information necessary for interpreting data)	Not submitted or unavailable	0-200%: A ≤ ± 2% R ≤ 0.2%	0-20 mg/L: A ≤ ± 0.1 mg/L R ≤ 0.1		
с	QAPP, SAP, or SOP is unavailable	Essential metadata is missing from the data submission and is unavailable.	Unavailable	Unavailable	Unavailable	Not submitted or unavailable	missing, or rejected data R ≤ 0.2%	R ≤ 0.1		
¹ Essential metadata elements are sample location (latitude/longitude), sample date and time, parameter name, result value and unit. *Footnote: A = accuracy, R = range										
Please note: F	Raw and QA/QC data records <i>r</i>	Please note: Raw and QA/QC data records must be submitted to gualify for consideration in 303(d) assessments.								

DRAFT 2018/2020 IR: VERSION 2.4

Table 7. Data validation criteria for water quality chemistry grab sample parameters.

Data Quality Grade	Quality Assurance Project Plan (QAPP)	Essential Metadata ¹	Laboratory Method	Detection Limits	Lab Certification	QC Data	Laboratory Comments	Field Documentation	Metals*	Organics*	Inorganics*
A	QAPP, SAP(s), and SOP(s) or equivalents are available for DWQ review if requested	Essential metadata is included with the data submission.	Standard Methods	Below applicable water quality standard	Utah Bureau of Laboratory Improvement certification, NELAC, or equivalent	Available for DWQ review if requested	Laboratory Comments Associated with Sample	Available for DWQ review if requested	Chronic: Aluminum submitted with Ca and Mg OR Lab Hardness and field pH; Cadmium, Chromium (III), Copper, Lead, Nickel, Silver, and Zinc submitted with Ca and Mg OR Lab Hardness	Pentachlorophenol submitted with field pH	Total Ammonia as N submitted with field pH or field Temperature
В	QAPP, SAP(s), and SOP(s) or equivalents are available for DWQ review if requested	Essential metadata is provided to DWQ upon request.	Standard Methods	Below applicable water quality standard	Documentation of laboratory procedures	Available for DWQ review if requested	Laboratory Comments Associated with Sample	Unavailable	Chronic: As above, but Aluminum submitted without Hardness or field pH will be assessed at 750 ug/l; As above, but samples submitted without Ca, Mg, or Lab Hardness **	Pentachlorophenol submitted without field pH	Total Ammonia as N submitted with field pH or field Temperature
С	QAPP, SAP, or SOP is unavailable	Essential metadata is missing from the data submission and is unavailable.	Missing or Non- Standard Methods	Above applicable water quality standards	No certification or laboratory documentation	Unavailable	No Laboratory Comments	Unavailable	Chronic: As above, but Aluminum without Hardness or field pH will not be assessed;	Pentachlorophenol submitted without field pH	Total Ammonia as N submitted with field pH or field Temperature
' Essent *Footno **Footno	¹ Essential metadata elements are sample location (latitude/longitude), sample date and time, parameter name and fraction, parameter units, analytical method, result value or non-detect limitation, and laboratory name. *Footnote: Please also refer to UAC R317-2 to confirm that all the necessary data is submitted to DWQ, so correction factors and equations may be fully calculated for 303(d) assessment purposes. **Footnote: Please refer to the 303(d) Assessment Methods for corrections to assessment due to missing values of hardness or pH.										

Table 8. Data validation criteria for macroinvertebrate data.

Data Quality Grade	Quality Assurance Project Plan (QAPP)	Essential Metadata ¹	Field Documentation	Qualified taxonomy lab		
A	EPA Approved Lab QAPP available for DWQ review if requested; SAP and SOP or equivalents available for DWQ review if requested	Essential metadata is provided to DWQ upon request.	Available for DWQ review if requested	Required		
В	Lab QAPP or equivalent is available for DWQ review if requested; SAP and SOP or equivalents available for DWQ review if requested	Essential metadata is provided to DWQ upon request.	Unavailable	Required		
С	QAPP, SAP, or SOP is unavailable	Essential metadata is missing from the data submission and is unavailable.	Unavailable	Unavailable		
¹ Essential metadata elements are sample location (latitude/longitude), sample date and time, parameter name and fraction, analytical method, result value and unit, and laboratory name.						

Table 9. Data validation criteria for Escherichia coli (E. coli) data.

Data Quality Grade	Quality Assurance	Essential Metadata ¹	EPA Approved Method	Lab Documentation	QA/QC		
Α	QAPP, SAP(s), and SOP(s) or equivalents are available for DWQ review if requested	Essential metadata is provided to DWQ upon request.	IDEXX Colilert	Bench Sheet Present and Complete	Information on holding time, incubation*, and expiration dates provided.		
В	QAPP, SAP(s), and SOP(s) or equivalents are available for DWQ review if requested	Essential metadata is provided to DWQ upon request.	IDEXX Colilert or EasyGel	Bench Sheet Present, incomplete, or not available	Not provided		
С	QAPP, SAP, or SOP is unavailable	Essential metadata is missing from the data submission and is unavailable.	IDEXX Colilert or EasyGel	Unavailable	Not provided		
¹ Essential metadata elements are sample location (latitude/longitude), sample date and time, parameter name and fraction, analytical method, result value and unit, and laboratory name. *Footnote: "incubation" refers to data and information that is recorded on DWQ's E. coli bench sheets and relates to time and temperature (i.e., time samples were placed in and taken out of the incubator and the temperature of the incubator when samples were placed in and taken out of it). For an example of how DWQ records this information, please refer to Appendix 3 of DWQ's Standard Operating Procedure for Escherichia coli (E. coli) and Total Coliform Quantification Using the IDEXX QUANTI-TRAY/2000 System (https://deq.utah.gov/legacy/monitoring/water-quality/docs/2014/05May/SOP_EcoliSampleAnalysis_5.1.14_Rev%201.2.pdf).							

Data Submission Process

TYPE OF DATA TO SUBMIT

As referenced in 40 CFR 130.7(b)(5), the assessment program considers all existing and readily available data as defined in Table 3. Both quantitative and qualitative data may be used to evaluate whether physical, chemical, and biological characteristics of a water body are sufficient to support that water bodies designated uses. However, based on the type of data submitted to or obtained by DWQ during the Assessment Program's <u>Call for</u> <u>Data</u> for generating the Integrated Report, the data may not be appropriate for assessments. As recommended in EPA's July 29, 2005, guidance (EPA, 2005), DWQ considers several quantitative and qualitative types of data described in Table 10 for water quality assessments and analyses.

Table 10.	Summary	of data types	considered by	/ the assessment	program.
-----------	---------	---------------	---------------	------------------	----------

Assessment Program Data Uses	Quantitative Data	Qualitative Data	Other
305(b) and 303(d) Assessments (Grade A and B Data in credible data matrices)	(1) Assessment Parameters contained in Utah Water Quality Standards (<u>UAC R317-2</u>) and Safe Drinking Water Act Standards (see Appendix 1), (2) Segment-specific ambient monitoring of Analytical, Physical, and/or Biological Conditions, (3) Simple Dilution Calculations, and (4) Human Health/Consumption closures, restrictions, and/or advisories	(1) Observed Effects (e.g. fish kills), (2) Complaints and comments from the public, and (3) Human health/consumption closures, restrictions, and/or advisories	Landscape Analysis (when applicable)
Monitoring Planning and Training (Grade C and D Data in credible data matrices)	See above	See above	 (1) Landscape Analysis (when applicable), (2) Technical Reports, (3) White Papers, (4) Articles from Refereed Journals, and (5) Other Scientific Publications

PERIOD OF RECORD

DWQ uses water years to define the period of record. DWQ uses the same definition as the U.S. Geologic Survey (https://water.usgs.gov/nwc/explain_data.html) and defines the water year as the 12-month period between October 1 and September 30 of the following year. For the 2018/2020 IR, the period of record is October 1, 2010 to September 30, 2018 (water years 2011-2018).

Data and information from the IR's period of record are considered to be most reflective of the current conditions of a waterbody. Provided the data from this record period meet the interpretive, sampling, and analytical considerations and protocols outlined in this document and on the Assessment Program's <u>Call for Data</u> website, DWQ will analyze and assign EPA- derived assessment categories to the assessed waterbodies from this record period (see Table 1).

Older Data and Information

DWQ will not consider data and other information older than the period of record in the current IR and 303(d) List, unless the data is used to support a secondary review of an impairment determination. Instead, DWQ will

encourage the data submitter to collect newer information and submit that data and information in future calls for data. The IR's period of record does not preclude DWQ from using older or longer term datasets for programs other than assessments (e.g. water quality standards development, TMDLs, etc.).

Newer Data and Information

Quantitative and qualitative data types that are considered in 303(d) assessments but are collected or represent conditions after the closing date specified in the above period of record are not considered in the current reporting cycle. DWQ does not include these newer datasets because of the time required to compile data, perform data quality checks, format data from different sources, assess, review assessments, and generate the IR and 303(d) for public comment by April 1 of even-numbered years.

DATA SUBMISSION TOOLS

To ensure the inclusion of data in DWQ's assessment process, it is important for data to be submitted in a form that are amenable to the Assessment Program's existing data-management and QA capabilities. Please refer to the Table 3 and the water quality assessment program's <u>Call for Data</u> website for more information on how to submit data for consideration in the IR.

Data Preparation for Conventional and Toxic Assessments for All Waters

Following the readily available and credible data reviews, DWQ compiles all high quality credible data within the period of record of concern and begins standardizing, validating, and preparing the data for assessments. To assist reviews and increase transparency to reviewers, raw data and accompanying metadata are not altered; instead, a series of database comments and flags are used. Though High Frequency Dissolved Oxygen (DO) and E. coli assessments are considered conventional assessments (see Table 11), these parameters have data preparation protocols that are unique to those datasets. Please refer to the High Frequency and E. coli assessment sections of this document for more details.

RESULTS BELOW DETECTION LIMITS

Environmental chemistry laboratories often report sample results as below their detection limit for a given analytical method. These limits are variously reported as minimum detection limit, minimum reporting limit, and/or minimum quantitation limit. DWQ first screens and flags laboratory result values that are empty and have detection limits higher than the water quality criteria in <u>UAC R317-2</u>. These flagged data records are not considered for the analysis. For sample results below detection, the reported result value or a value of 0.5 times the lowest reported detection limit is applied for purposes of the assessment. However, if the detection limit is above the water quality standard, the data will not be used in the assessment.

DUPLICATE AND REPLICATE RESULTS

Datasets often contain duplicate and replicate sample results due to QA/QC procedures, reporting errors, or sampling design. In these cases, a single daily value is determined by accepting the highest result for parameters with not-to-exceed criteria in <u>UAC R317-2</u>, or the lowest reported value for parameters with minimum criteria in <u>UAC R317-2</u>. All data are retained in the assessment dataset and flagged as rejected because of replicate or duplicate values.

INITIAL ASSESSMENT: MONITORING LOCATION SITE LEVEL

DWQ determines attainment or nonattainment of numeric standards by assessing credible data at the monitoring location site level against the numeric criteria in <u>UAC R317-2</u>. DWQ developed this protocol because individual assessments offer a more direct measure of supporting or not-supporting water quality standards in <u>UAC R317-2</u>.

Multiple parameter assessments at an individual monitoring location and results from multiple monitoring locations within the same AU are then summarized and combined following the procedures outlined in the Determination of Impairment: All Assessment Units section of this report.

Assessments Specific to Flowing Surface Waters of the State and Canals

CONVENTIONAL PARAMETER ASSESSMENTS

Currently, DWQ assesses five parameters within <u>UAC R317-2</u> as conventional parameters and assesses them against the beneficial use–specific criteria established in <u>UAC R317-2</u>. Several waterbodies with conventional numeric criteria have site-specific standards articulated in self-explanatory footnotes within DWQ's surface water standards (<u>UAC R317-2</u>). Site-specific standards that require further clarification for 303(d) assessment purposes are noted and explained in Table 11.

Table 11. Conventional parameters and associated designated uses as identified for assessment purposes.

Parameters	Designated Use	Notes
DO*	Aquatic life	DO measurements collected by instantaneous/ grab samples are assessed against the 30-day averages in UAC R317-2 and follow the assessment process in Figure 2 and the "Assessments Specific to Lakes, Reservoirs, and Ponds" section of the methods. DO measurements that are collected by high frequency data probes are assessed against the 30- and 7-day averages and minimums in UAC R317-2 and follow the assessment process in Figures 3-5. Note: for high frequency DO assessments, DWQ assumes early life stages are present for the 7-day and minimum. Some site-specific standards have been generated, which are used for assessment purposes.
Maximum temperature*	Aquatic life	Some site-specific standards have been generated, which are used for assessment purposes
рН*	Domestic, Recreation, Aquatic life	Criteria are identical across uses.

Parameters	Designated Use	Notes
Total dissolved solids (TDS)**	Agriculture	 Many site-specific standards have been generated, which are used for assessment purposes. Clarification on how three site-specific standards are used for 303(d) purposes are provided below: (1) For South Fork Spring Creek from the confluence with Pelican Pond Slough Stream to U.S. Route 89, two seasonal assessments are not performed. Instead, each sample is compared to the monthly corrected criteria in the footnote in <u>UAC R317-2</u>. (2) Ivie Creek and its tributaries from the confluence with Muddy Creek to the confluence with Quitchupah Creek. If TDS exceeds the site-specific standard, the site is not attaining site-specific criteria. If TDS is not exceeding, total sulfate is assessed. (3) Quitchupah Creek from the confluence with Ivie Creek to Utah State Route 10: If TDS exceeds the site-specific standard, it is not attaining site-specific criteria. If TDS is not exceeding, total sulfate is assessed. (4) Blue Creek and tributaries, Box Elder County, from Bear River Bay, Great Salt Lake to Blue Creek Reservoir. The only site to be assessed within this area is 4960740. (All other sites within this area description will not be assessed for TDS). Site-specific standard associated with sulfate for the following areas: (1) Ivie Creek and its tributaries from the confluence with Muddy Creek to the confluence with Quitchupah Creek: When TDS is not exceeding site-specific criteria and total sulfate exceeds site-specific criteria, it is not attaining. (2) Quitchupah Creek from the confluence with Ivie Creek to Utah State Route 10: When TDS is not exceeding site-specific criteria and total sulfate exceeds site-spec
Sulfate**	Agriculture	 Site-specific standard associated with sulfate for the following areas: (1) Ivie Creek and its tributaries from the confluence with Muddy Creek to the confluence with Quitchupah Creek: When TDS is not exceeding site-specific criteria and total sulfate exceeds site-specific criteria, it is not attaining. (2) Quitchupah Creek from the confluence with Ivie Creek to Utah State Route 10: When TDS is not exceeding site-specific criteria and total sulfate exceeds site-specific criteria and total sulfate exceeding site-specific criteria site specific criter
*Footnote: Indica **Footnote: Indic	ite that assessme ate that assessm	ents are performed from field measurement only. ents are performed from lab measurements only.

Grab Sample Assessments

A minimum of 10 samples for conventional parameters are required to determine if a site is attaining or not attaining water quality standards (Figure 7). Where locations have sufficient sample sizes of 10 or more, 10% of the total samples are calculated. This 10% calculation becomes the maximum number of samples that can exceed the numeric criterion. For example, if there are 10 samples in a dataset for a site, one sample can exceed the criterion and the site still supports uses. If more than 10% of the total samples collected exceed the criterion, the site is not attaining the beneficial use and the next beneficial use is assessed. If 10% or less of the total samples collected exceed the criterion, the site is attaining its beneficial use and the next beneficial use is assessed. In the case of waterbodies with site-specific standards for TDS and sulfate, both criteria must be met or the waterbody will be listed as not supporting its agricultural use.

High Frequency Assessments for Dissolved Oxygen

Data Preparation

High frequency data are often screened and corrected to account for sensor drift, calibration shift, strange anomalous points, and battery issues before data analysis and interpretation begins. These data screens are particularly important for dissolved oxygen (DO) sensors because they are subject to bio-fouling, especially in nutrient-rich water where they have the higher potential to become covered in algae growth. When bio-fouling occurs, it results in erroneous logger measurements or sensor drift. For assessments, DWQ will use corrected high frequency data as documented by the data submitter. If during the assessment DWQ determines that additional corrections may be required, DWQ will contact the data submitter for clarification and additional information.

Data sufficiency

To ensure that daily minima are captured and that daily averages can be accurately calculated, high frequency data must capture complete days. DWQ defines a complete day as a calendar day (i.e. 12:00 am – 11:59 pm) in which at least one measurement is made in each hour. Incomplete days will not be included in the high frequency DO assessment.

Assessment Process

For each complete day in a dataset, a daily minimum and daily average are calculated. Moving 7 and 30 day averages are then calculated from the daily averages for each 7 or 30 day period within the dataset. These values are then compared to the applicable daily minimum, 7-day average, and 30-day average criteria to determine use impairment or support.

A site is considered to be not attaining the daily DO minimum criterion if more than 10% of the total daily minima within the period of record are below the applicable standard (Figure 8).

Figure 8. Overview of the assessment process for the minimum dissolved oxygen, minimum using high frequency data.

A site is considered to be not attaining the 7-day average criterion if more than 10% of the 7-day averages within the period of record are below the applicable standard (Figure 9).

Figure 9. Overview of the assessment process for the minimum dissolved oxygen, 7-day averages using high frequency data.

A site is considered to be not attaining the 30-day average criterion if greater than 10% of the 30-day averages within the period of record are below the applicable standard (Figure 10).

Figure 10. Overview of the assessment process for the minimum dissolved oxygen, 30-day averages using high frequency data.

A site is considered not supporting if it is not attaining either of daily minimum, 7-day average, or 30-day average criteria. A site is considered fully supporting if less than 10% violation is observed for all three criteria.

This process (Figure 8 - Figure 10) is repeated until each beneficial use has been assessed.

Analyzing Multiple DO Datasets at a Site

During the initial assessment of DO at a site, DWQ assesses grab and high frequency independently of each other. During the secondary reviews of determining impairment, DWQ reviews these assessments in context of one another. These processes are discussed in greater detail in Determinations of Impairment: All Assessment Units.

NARRATIVE STANDARDS: BIOLOGICAL ASSESSMENTS

Utah's beneficial uses for aquatic life require the protection of fish (cold water or warm water species) and the organisms on which they depend (<u>UAC R317-2-6.3</u>). Historically, DWQ assessed these beneficial uses using water chemistry sampling and associated standards that are protective of aquatic organisms. Now, DWQ uses an **empirically based model** that directly assesses attainment of aquatic life uses by quantifying the integrity of

macroinvertebrate assemblages. Measuring biological communities directly has the advantage of integrating the combined effects of all pollutants, which allows a direct examination of how pollutants are interacting to affect the condition of a stream ecosystem (Karr, 1981). Moreover, because aquatic macroinvertebrates spend most of their life in aqueous environments, they are capable of integrating the effects of stressors over time, providing a measure of past and transient conditions (Karr and Dudley, 1981).

Biological assessments are often conducted by comparing the biological assemblage observed at a site with the expected biological assemblage. Ideally, these comparisons are made using historical data to measure changes to the current biological community. However, in most cases, historical data are not available. As a result, biological conditions representing least human-caused disturbance are typically set using reference sites as controls, or benchmarks. The biological integrity of sites can be evaluated by comparing the biological composition observed at a site against a subset of ecologically similar reference sites. Collectively, such comparisons are referred to as biological assessments.

In aquatic biological assessments, reference sites are selected to represent the best available condition for waterbodies with similar ecological, physical, and geographical characteristics (Hughes et al., 1986; Suplee et al., 2005; <u>Western Center for Monitoring and Assessment of Freshwater Ecosystems</u> website). When reference sites are selected for water quality programs, conditions vary regionally depending on adjacent historical land use. For example, reference sites in Utah mountains are generally more pristine than in valleys. As a result, there are more biological benchmarks in areas of the state that receive less human-made disturbance than those with more disturbances.

A numeric index is a useful tool that quantifies the biological integrity, or biological beneficial use, of stream and river segments. Data obtained from biological collections are complex, with hundreds of species found throughout Utah that vary both spatially and temporally. Similarly, the physical template on which biota depends also varies considerably across streams. A robust index of biological integrity should simultaneously account for naturally occurring physical and biological variability and summarize these conditions through a single, easily interpretable number (Hawkins, 2006; Hawkins et al., 2010).

River Invertebrate Prediction and Classification System Models

DWQ uses the River Invertebrate Prediction and Classification System (RIVPACS) model approach to quantify biological integrity (Wright, 1995). RIVPACS is a classification of freshwater sites based on macroinvertebrate fauna. It was first derived in 1977 and has subsequently been used in numerous biological assessment programs worldwide. In the early 1970s, scientists and water managers recognized a need to understand the links between the ecology of running waters and macroinvertebrate communities. This began some of the very early biological assessment work in Europe. A 4-year project was initiated to create a biological classification of unpolluted running waters in Great Britain based on the macroinvertebrate fauna (Clarke et al., 1996; Furse et al., 1984; Moss et al., 1999; Wright, 1995).

Over the past 30 years, equivalent RIVPACS models have been developed for aquatic ecosystems throughout the world, including Australia (Davies et al., 2000; Marchant and Hehir, 2002; Metzeling et al., 2002) and Indonesia (Sudaryanti et al., 2001). In the United States, scientists have developed RIVPACS models to assess the biological integrity of the country's aquatic habitats (Hawkins et al., 2000; Hawkins and Carlisle, 2001). Recently, many western states have adopted the RIVPACS model to determine beneficial uses of aquatic life in the rivers of state's such as Colorado (Paul et al., 2005), Montana (Feldman, 2006; Jessup et al., 2006), and Wyoming (Hargett et al., 2005).

To quantify biological condition, RIVPACS models compare the list of taxa (the lowest practical taxonomic resolution to which taxonomic groups are identified) that are observed (O) at a site to the list of taxa expected (E) of least human-caused disturbance. Predictions of E are obtained empirically from reference sites that together are assumed to encompass the range of ecological variability observed among streams in the region where the

model was developed. In practice, these data are expressed as the ratio O/E, the index of biological integrity (Figure 11).

Figure 11. A hypothetical example of O/E as a standardization of biological assessments.

O/E has some very useful properties as an index of biological condition. First, it has an intuitive biological meaning. Species diversity is considered the ecological capital on which ecosystem processes depend; therefore, O/E can be easily interpreted by researchers, managers, policy-makers, and the public. Second, O/E is universally spatial, which allows direct and meaningful comparison throughout the state on a site-specific scale. This is particularly important for Utah, where streams vary considerably from high-altitude mountain environments to the arid desert regions. Third, its derivation and interpretation do not require knowledge of stressors in the region; it is simply a biological measuring tool. Finally, the value of O/E provides a quantitative measure of biological condition.

Model Construction and Performance

Construction of a RIVPACS model for Utah began in 2002, which involved developing and evaluating dozens of models. Details of model development procedures can be found elsewhere (Clarke et al., 1996; Moss et al. 1999; Wright et al., 1993; Wright 1995). Additionally, specific detailed instructions can be viewed on the <u>Western Center</u> for <u>Monitoring and Assessment of Freshwater Ecosystems</u> website and the <u>EPA</u> website. A brief summary is provided here to help the reader better understand Utah's model results and subsequent assessments.

Predictions of expected -EII taxa are obtained empirically from reference site collections made throughout Utah. Reference sites are those that represent the reference conditions in different biogeographical settings throughout Utah. The initial list of candidate reference sites is independently ranked by different scientists familiar with the waterbodies. Only reference sites with a consensus representing best available conditions are used in model development. Subsequent reference sites are added using scores from reference scoring metrics developed during site visits and averaging with independent rankings from field scientists.

Some of the calculations involved in obtaining the list of expected taxa are complex. A heuristic description of the steps involved in predicting -EII provides some context of the Assessment Methods. The first step in model development is to classify reference sites into groups of sites with similar taxonomic composition using a cluster analysis. Next, models are developed based on watershed descriptors such as climatic setting, soil characteristics, and stream size to generate equations that predict the probability of a new site falling within each group of reference sites. These equations account for environmental heterogeneity and ensure that when a new site is assessed, it is compared against ecologically similar reference sites. When a new site is assessed, predictions of group membership are then coupled to the distributions of taxa across groups of reference sites to estimate the probability of capturing (Pc) each taxon from the regional pool of all taxa found across all reference sites. E is then calculated as the sum of all taxa Pcs that had a greater than 50% chance of occurring at a site given the site's specific environmental characteristics. Using a Pc limit set at greater than 50% typically results in models that are more sensitive and precise, which results in a better ability to detect biological stress (Hawkins et al., 2000; Simpson and Norris, 2000; Ostermiller and Hawkins, 2004; Hawkins, 2006; Van Sickle et al., 2007, Hawkins et al., 2015; Hawkins and Yuan, 2016; Mazor et al., 2016).

The accuracy and precision of RIVPACS models depend in part on the ability of the models to discriminate among groups of biologically similar reference sites. An extensive list of 74 GIS-based watershed descriptors is evaluated for potential predictor variables in models that predict the probability of membership within biological groups for sites not used in model construction. Site-specific, GIS-based predictor variables, such as soils, meteorology, and geography, instead of field-derived descriptors, are evaluated for a couple of reasons. First, GIS-based descriptors are unlikely to be influenced by human disturbance and are therefore unlikely to bias estimates of expected conditions (Hawkins, 2004). Second, these predictors are easily obtained for any location, on a site-specific basis, that allows inclusion of additional macroinvertebrate samples collected by others. Various subsets of potential predictors are evaluated in an iterative, analytical process that explores different combinations of predictors able to explain the biological variability among reference sites. The current RIVPACS model used by DWQ includes 15 variables that resulted in the most precisely predictive model (Table 12).

General Category	Description
Geography	Mean watershed elevation (meters) from National Elevation Dataset.
Geography	Minimum watershed elevation (meters) from National Elevation Dataset.
Geography	Watershed area in square kilometers.
Geography	Latitude of the sample location.
Climate	Watershed average of the mean day of year (1–365) of the first freeze derived from the PRISM data.
Climate	Watershed average of the annual mean of the predicted mean monthly precipitation (millimeters) derived from the PRISM data.
Climate	Watershed average of the annual maximum of the predicted mean monthly precipitation (millimeters) derived from the PRISM data.
Climate	Watershed average of the annual mean of the predicted mean monthly air temperature derived from PRISM data.
Climate	Average of the annual mean of the predicted maximum monthly air temperature at the sample location derived from PRISM data.

Table 12. Final predictor variables used in model construction.

General Category	Description
Climate	Watershed average of the annual mean of the predicted maximum monthly air temperature derived from PRISM data.
Climate	Watershed average of the annual mean of the predicted minimum monthly air temperature derived from PRISM data.
Climate	Watershed average of the annual mean of the predicted mean monthly relative humidity derived from PRISM data.
Climate	Average of the annual mean of the predicted mean monthly air temperature at the sample location derived from PRISM data
Climate	Watershed maximum of mean 1961–1990 annual number of wet days.
Vegetation	Watershed maximum of mean 2000–2009 annual enhanced vegetation index.

The RIVPACS model used for the current assessments was reconstructed to accommodate broader spatial and temporal data. Models used earlier were limited to samples from streams ranging from second to fifth order and were collected during a fall' window of September–November. The updated model accepts data collected from first- to eighth-plus- order rivers and streams with no limitations on season of collection. In addition, new predictor variables were tested, and new and updated reference site data were included. However, to include data collected from agencies using different taxonomic laboratories, the taxon levels required adjustment, which resulted in a more coarse resolution of taxonomy. However, the resulting model was capable of scoring nearly 1,800 samples collected across the state by various agencies.

The updated model is nearly as accurate and precise as previous models. If the model was perfectly accurate and precise, the O/E score for all reference sites would equal 1. Instead, reference O/E values are typically spread in a roughly normal distribution centered on 1 (Wright, 1995). Model precision is often expressed as the standard deviation (SD) of reference O/E values with lower SDs indicating higher model precision. The RIVPACS model to be used for the current IR assessments has an SD of 0.19, which is within the range of -acceptedI water quality models. The precision was likely affected by the more coarse resolution of taxonomy and the inclusion of a few large river sites as reference. The average reference O/E score for the current model is 1.00, which means that the model has high precision calculating O/E values. The accuracy of the model was evaluated by examining the distribution of reference O/E scores across environmental settings and determined that reference O/E values are not biased by stream size, elevation, or ecoregion.

Assessing Biological Use Support

DWQ does not have numeric biological criteria. However, DWQ has narrative biological criteria (<u>UAC R317-2-7.3</u>) that specify how quantitative model outputs are used to guide assessments. To make the narrative assessments as rigorous as possible, a systematic procedure was devised to use the RIVPACS model O/E values to determine aquatic life beneficial use support (Figure 12). The goal of this assessment process is to characterize each AU as fully supporting or not supporting aquatic life beneficial uses.

Figure 12. Decision tree for making biological assessment decisions.

Utah currently assesses watersheds based on established AUs. Although many AUs contain a single biological monitoring location, some AUs contain multiple sites. In such instances, DWQ staff examines available data to determine if multiple sites in an AU score similarly. When comparisons suggest that sites in one AU are ecologically similar, O/E scores from all sites in an AU are averaged for assessment purposes, provided that conclusions of biological condition are similar. If O/E scores differ appreciably among multiple sites in an AU, DWQ will investigate possible explanations for such discrepancies (see the Assessment Unit Re-segmentation discussion for more information on that process). Additionally, if only one site is sampled in an AU, it is examined to determine whether it is an appropriate representation of the AU.

To translate the O/E values into assessment categories, it is necessary to devise thresholds, or O/E scores that indicate whether or not a site is meeting biological beneficial uses (Table 13). For these assessments, the 10th and 5th percentiles of reference sites were used. Essentially, the data used for the current assessment calculate the threshold based on 5th percentile at 0.69, whereas the 10th percentile is 0.76. These thresholds will provide the bounds according to sample strength. The data will be averaged across 8 years since the most recent year of

available data. Multiple years are preferred for assessments because O/E scores can vary from year to year and assessments are based on average conditions. Assessments based on the average condition of three or more samples reduce the probability of making an error of biological beneficial-use support as a result of an unusual sampling event (e.g., following a flash flood, an improperly preserved sample).

Sample Size	O/E Threshold	Use Determination	Comments
≥ 1 sample collected over 8 years	Mean O/E score ≥ 0.76	Fully Supporting	Threshold based on 10th percentile of reference sites.
≥ 3 samples collected over 8 years	Mean O/E score < 0.76	Not supporting	Threshold based on 10th percentile of reference sites.
< 3 samples	Mean O/E score ≥ 0.69–≤ 0.76	Insufficient Data	Lower threshold based on 5th percentile of reference sites.
< 3 samples	2 O/E scores < 0.69	Not Supporting	Threshold based on 5th percentile of reference sites
< 3 samples	< 2 O/E scores < 0.69	Insufficient Data	Threshold based on 5th percentile of reference sites

Table 13. Beneficial use support determination for O/E values obtained from different sample sizes.

AUs not meeting biological thresholds will be assessed as non-supporting. Assessments of more than three samples with average O/E scores of greater than or equal to 0.76 have a low probability of being misclassified as nonsupport. Alternatively, assessments with fewer than three samples with an average O/E score of less than 0.69 have a 5% probability of being misclassified as nonsupport. To ensure that one sample was not incorrectly misapplied, at least two samples with a score of 0.69 or less will be required to consider an AU not meeting the aquatic life use. Assessments with fewer than three samples that have a mean O/E score of greater than or equal to 0.69 and less than 0.76 will be placed in Category 3 (insufficient data and information with exceedances), which indicates that there are insufficient data to make an assessment. All sites listed as Category 3 with exceedances will be given a high priority for future biological monitoring.

Assessments Specific to Lakes, Reservoirs, and Ponds

ASSESSMENT OVERVIEW

Lakes, reservoirs, and ponds are defined in <u>UAC R317-2-13.12</u> by county along with the designated beneficial uses for which they are protected. Waterbodies not specifically listed are assigned beneficial uses by default to the classification(s) of the tributary stream(s). In <u>UAC R317-2-14</u>, numeric water quality criteria for both toxic and conventional parameters are assigned for each designated use. Deeper lakes naturally stratify thermally, which affects how conventional water quality parameters are assessed (<u>UAC R317-2-14</u>). Therefore, each waterbody is evaluated for thermal stratification and assessed appropriately.

The assessment of Utah lakes and reservoirs consists of two tiers:

• **Tier 1**: The tier I assessment is the preliminary determination of support status for recreational use (Class 2), aquatic life (Class 3), and agricultural (Class 4) classes based on conventional parameters, such as DO, temperature, pH, toxic parameters, and E. coli. When Tier I data are not available, DWQ may rely on Tier II data to make an initial assessment. When considering Aquatic Life Use attainment within this tier, the waterbody will be classified as mixed or stratified based on the depth profile information. If it is a stratified waterbody, the evaluation of conventional parameters will follow the protocol designed to evaluate the sufficiency of aquatic life habitat. If the waterbody is mixed, it will follow the assessment protocol that evaluates the entire depth profile.

• **Tier II**: The tier II assessment looks further into the weight of evidence criteria (trophic state index [TSI], fish kills, and algal composition) using secondary reviews. The Tier I preliminary support status may be modified through an evaluation of the TSI, water quality-related fish kills, and the composition and abundance of blue-green algae. The Tier II evaluation could adjust the preliminary support status ranking if at least two of the three criteria indicate a different support status.

TIER I ASSESSMENT

Drinking Water Use Support

Drinking Water Use support is assessed by evaluations of pH, toxics, E. coli, and harmful algal blooms (HABs). For further information regarding drinking water use assessments for Toxics, E. Coli and HABs, please review the Toxics Parameter Assessments for All Waters, Escherichia Coli Assessment for All Waters, and Harmful Algal Blooms (HAB) assessment sections. The evaluation process of pH is the same as the requirements for Aquatic Life Uses, which are described in the second paragraph below.

Recreational Use Support

Assessing for Recreational Use support involves evaluations of pH, E. coli, and harmful algal blooms. The evaluation of pH is the same as the requirements for Aquatic Life Uses, which are described in the paragraph below. For further information regarding recreational use assessments for E. Coli and HABs, please review the Escherichia Coli Assessment for All Waters and Harmful Algal Blooms (HAB) assessment sections.

Aquatic Life Use Support

Lake monitoring routinely involves collecting pH, temperature, and DO measurements at approximately1-meter intervals throughout the water column, from the surface to the lake bottom (note that the measurement interval may be modified in the field depending on waterbody depth). These water column measurements are compared against Utah water quality standards to assess beneficial use support (Figure 13). For waterbodies that are

pH, All Lakes and Reservoirs

Beneficial Use Supported

The beneficial use is supported if the number of violations are less than or equal to 10% of the measurements (see Figure 14, Panel A).

Beneficial Use Not Supported

The beneficial use is not supported if greater than 10% of the measurements (minimum of two discrete measures outside thresholds) violate the pH criterion (Figure 14, Panel B).

Figure 14. Plots of pH measurements (blue dots) against lake depth for a waterbody meeting (Panel A) and violating (Panel B) the pH water quality standards.

Temperature and Dissolved Oxygen, Mixed Lakes and Reservoirs

Temperature

The criteria used to assess the beneficial use support are based on profile data. If the temperature criterion is exceeded in more than 10% of the measurements with a minimum of two discrete measures exceeding criteria from any individual sampling event, the site is considered to be not supporting the aquatic life uses.

Beneficial Use Fully Supported

The beneficial use is supported if the number of violations is less than or equal to 10% of the measurements (see Figure 15, Panel A).

Beneficial Use Not Supported

The beneficial use is not supported if more than 10% of the measurements violate the temperature standard (see Figure 15, Panel B).

Figure 15. Plots of temperature measurements (blue dots) against lake depth for two sites to provide an example of assessment procedures. Note: The red line illustrates a temperature criterion of 20 degrees Celsius: Class 3A beneficial use. Panel A (top) illustrates a site meeting the beneficial use because less than 10% of the temperature measures are greater than the criterion, whereas Panel B (bottom) illustrates a site not meeting the beneficial use because greater than 10% of the temperature measures exceed the criterion.

Dissolved Oxygen

Like the temperature assessment, the DO assessment uses data that are gathered from profiles. The DO assessment uses the minimum criteria of 4.0 mg/l for Class 3A waters and 3.0 mg/l for Class 3B and 3C waters (<u>UAC R317-2-14</u>, Table 2.14.2). State standards account for anoxic or low DO conditions that may exist in the bottoms of deep waterbodies (<u>UAC R317-2-14</u>). For that reason, DO assessments for stratified lakes and reservoirs follow the stratified lakes and reservoirs assessment methods below:

Beneficial Use Supported

The beneficial use is supported if at least 90% of the oxygen measurements are greater than the standard.

Beneficial Use Not Supported

The beneficial use is not supported if greater than 10% of the oxygen measurements are below the DO standard during any single sampling event.

Stratified Lakes and Reservoirs

Temperature and Dissolved Oxygen: Aquatic Life Use Assessment

When sample locations demonstrate stratification, a separate assessment technique for temperature and DO is used to ensure that sufficient habitat for aquatic life exists. Habitat is considered sufficient if at least 3 continuous meters of the water column are meeting the criteria for both temperature and DO. The rationale for a conclusion of beneficial use support based on the existence of adequate habitat follows the decision diagram (Figure 16). Figure 17 provides an example of supporting and not supporting the beneficial use based on the DO and temperature data above the thermocline.

Figure 16. Beneficial use support based on the existence of adequate habitat.

Beneficial Use Supported

The beneficial use is supported if there is sufficient habitat, defined as 3 continuous meters of the water column meeting the criteria for both temperature and DO.

Beneficial Use Not Supported

The beneficial use is not supported if there is insufficient habitat for aquatic life based on DO and temperature profile.

Figure 17. Concept of the habitable zone where both DO and temperature are suitable for aquatic life. The site depicted on the top (Panel A) would be considered supporting because the lens where both temperature and DO provide sufficient habitat (>=3 m). Conversely, the site on the bottom (Panel B) is not meeting aquatic life uses because although there are regions in the water column where dissolved oxygen and temperature criteria are met separately, the region of overlap in the water column where both temperature and dissolved oxygen criteria (approximately 8 meters depth) is less than 3 meters thick.

Total Dissolved Solids: Agricultural Use Support

The following rules are used to determine whether a lake is supporting its agricultural beneficial use (Figure 18):

Beneficial Use Supported

The beneficial use is supported if the standard is exceeded in 10% or fewer of TDS samples.

Beneficial Use Not Supported

The beneficial use is not supported if the TDS standard is exceeded in more than 10% of TDS samples.

TIER II ASSESSMENT

Weight of Evidence Criteria

The weight of evidence criteria allows DWQ to use key lines of evidence in assessing a waterbody's use support including evaluations of Utah's narrative standard.

The weight of evidence evaluation consists of three components:

- Increasing trophic state index (TSI) trend over the long term (approximately 10 years) or a TSI-Chl-a greater than 50 (see Carlson's Trophic State Index section below for more information).
- The observation of water quality–based fish kills (see the Narrative Standards for All Waters for more information) or winter DO measures not meeting the criterion when measured.
- Evaluation of phytoplankton community.

These three components are evaluated following Figure 19.

Figure 19. Tier II assessment process for lakes, reservoirs, and ponds.

Carlson's Trophic State Index

The Carlson's TSI is calculated using Secchi disk transparency, total phosphorus, and chlorophyll a. TSI value ranges from 0 to about 100, with increasing values indicating a more eutrophic condition. TSIs are calculated independently for each indicator (i.e., Secchi disk, chlorophyll a, and total phosphorus) and are not averaged. Chlorophyll a (TSI-Chl-a) is generally considered the most reliable indicator of trophic status, followed by Secchi disk (TSI-SDD), and total phosphorus (TSI-TP) (Carlson, 1977).

Carlson's TSI estimate for chlorophyll a is calculated using the following equation:

• Trophic Status Based on Chlorophyll a (TSI-Chl-a): TSI-Chl-a = 9.81 ln (Chl-a) + 30.60, where Chl-a = chlorophyll a concentrations in μ g/l.

Phytoplankton Community

DWQ routinely collects phytoplankton to evaluate the composition and relative abundance of algae and cyanobacteria. These data are used to identify waterbodies potentially undergoing cultural eutrophication that may negatively impact beneficial uses. Phytoplankton data are used in the Tier II assessment process because they may reflect nutrient availability and nutrient ratios. The observation that a waterbody has a diverse assemblage of diatoms or green algae relative to cyanobacteria or other potentially harmful taxa is used as a line of evidence that the waterbody is supporting its designated uses. In contrast, a phytoplankton assemblage dominated by cyanobacteria may be indicative of eutrophication, an increased potential for harmful algal blooms, and a loss of aquatic biodiversity.

GREAT SALT LAKE

GSL is assigned its own beneficial use class (Class 5) and is further divided into five subclasses (5A–5E) that represent the four main bays (Gilbert, Gunnison, Bear River, and Farmington) and transitional waters (<u>UAC R317-</u><u>2-6</u>). The only numeric water quality criterion currently applicable to GSL is a selenium bird egg tissue criterion for Gilbert Bay (Class 5A). In addition to this criterion, the beneficial uses of GSL are protected and assessed by Utah's narrative water quality standard (<u>UAC R317-2-7.2</u>). The <u>Great Salt Lake Water Quality Strategy</u> outlines the process for monitoring and criteria development for GSL.

Gilbert Bay Bird Egg Tissue Assessment

Bird eggs are collected annually from representative locations within the Gilbert Bay AU or from Gilbert Bay adjacent transitional wetlands (<u>UAC R317-2-6.5</u>) during each nesting season. Selenium concentrations from eggs collected each year are assessed against the criterion in <u>UAC R317-2-14</u>. Gilbert Bay's beneficial use will be identified as impaired if the geometric mean of selenium concentrations from five or more eggs collected in any year exceeds the 12.5 mg/kg criterion. DWQ will identify Gilbert Bay's beneficial use as threatened and initiate preliminary TMDL studies to evaluate selenium loading sources if the geometric mean of selenium concentrations from five or more eggs collected in any year exceeds 9.8 mg/kg dry weight. If Gilbert Bay is identified as impaired for selenium, five consecutive nesting seasons meeting selenium criteria will be considered sufficient for delisting the impairment.

The Gilbert Bay selenium criterion also includes thresholds below 9.8 mg/kg that trigger management actions (Table 14). DWQ evaluates egg concentrations against these thresholds to inform management decisions, but these thresholds are not used for use attainment determinations in the IR.

Eggs are also collected as part of discharge monitoring programs for certain dischargers to GSL. Eggs collected as a part of these programs are specifically intended to characterize discharge outfall conditions and are therefore not relevant to assessing more general GSL conditions. Eggs collected under these programs are only used for evaluating discharge permits and are not used in 303(d) assessment of the GSL AUs.

Se concentration (mg/kg dry weight)	DWQ Response
< 5.0	Routine monitoring with sufficient intensity to determine if selenium concentrations within the Great Salt Lake ecosystem are increasing.
5.0	Increased monitoring to address data gaps, loadings, and areas of uncertainty identified from Great Salt Lake selenium studies.
6.4	Initiation of a Level II Antidegradation review by the State for all discharge permit renewals or new discharge permits to Great Salt Lake. The Level II Antidegradation review may include an analysis of loading reductions.

Table 14. Selenium trigger levels and DWQ responses (UAC R317-2-14.2(14)).

Se concentration (mg/kg dry weight)	DWQ Response
9.8	Declare aquatic life use as threatened. Initiate preliminary TMDL studies to evaluate selenium loading sources.
12.5	Declare aquatic life use as impaired. Formalize and implement TMDL.
Toxics Parameter Assessments for All Waters

DWQ identifies toxics as all parameters within <u>UAC R317-2</u> that are not defined as conventional parameters (see Table 11 and the Lakes, Reservoirs, and Ponds Assessment section).

To ensure protection of designated uses, data are compared against one or more toxic criteria, depending on the beneficial use. For 303(d) assessment purposes, one daily measurement at each monitoring location is compared to the chronic and/or acute criteria. In lakes, DWQ targets dissolved metals sample collection to 1 meter above the bottom at the deepest site of the waterbody, as this location is the most likely to identify dissolved metal exceedances if they exist in a lake. However, where additional metals data are available for other lake locations or depths, they are also assessed following these methods. Currently, the acute and chronic averaging periods defined in <u>UAC R317-2</u> are not applied for 303(d) assessment analysis because monitoring and sampling frequencies are different and more widely spaced than the acute and chronic periods typically defined in <u>UAC R317-2</u>.

EQUATION-BASED TOXIC PARAMETERS

A number of toxic criteria are specified as equations rather than specific values (see footnotes in <u>UAC R317-2</u>). The equations include variables of other chemical constituents or water properties that either reduce or magnify the extent to which a toxic is harmful to aquatic life. To properly apply the correction factor equations, it is necessary to use measured data for the variables in the equation to calculate the appropriate numeric criteria for the sample. To calculate the correct criterion for a pollutant-result value, the monitoring location site and date of sample must match between the pollutant of concern and the additional parameter(s) needed for the equation. In the case where there are missing supplemental data values to apply the equation, the following rules will be applied:

Only hardness-dependent toxics: For hardness-dependent criteria where a calcium (Ca) or magnesium (Mg) value is missing and the hardness cannot be calculated, a hardness value reported from the laboratory will be used. Data without a hardness value are removed from assessments.

• Aluminum, chronic only: If either a field pH or calculated or laboratory hardness is missing, the aluminum acute default value of 750 microgram per liter (μ g/l) provided in Table 2.14.2 of <u>UAC R317-2</u> will be applied. Otherwise, the following pH and hardness combination and numeric criteria are applied:

- a. $pH \ge 7.0$ and (calculated or laboratory reported) hardness ≥ 50 parts per million (ppm): $750 \mu g/l$.
- b. pH < 7.0 and (calculated or laboratory reported) hardness ≥ 50 ppm: $87 \mu g/l$.
- c. $pH \ge 7.0$ and (calculated or laboratory reported) hardness < 50 ppm: $87\mu g/l$.
- d. pH < 7.0 and (calculated or laboratory reported) hardness < 50 ppm: 87 μ g/l.

• Ammonia, chronic: DWQ assumes fish early life stages are present at all monitoring locations and the following equation is used: ((0.0577/(1+107.688-pH)) + (2.487/(1+10pH-7.688))) * MIN (2.85, 1.45*100.028*(25-T)). Where (1.45*100.028*(25-T)) is ≤ 2.85 , (1.45*100.028*(25-T)) is applied and if (1.45*100.028*(25-T)) is > 2.85, 2.85 is applied. However, if a field pH or temperature reading is unavailable, a correction factor cannot be made and the result value for ammonia will be removed from the assessment.

• **Ammonia, acute**: If a field pH is missing, a correction factor cannot be made, and the result value for ammonia will be removed from assessment.

ASSESSMENT PROCESS

Once chronic and acute criteria are calculated, where applicable, toxicant sampling results are compared to the criteria to determine if the monitoring location is supporting designated uses or is impaired due to exceedances of the standard. Sites with sufficient data (4 or more samples) with two or more exceedances of the acute and/or

chronic criteria will result in nonattainment of the beneficial use. For sites to be attaining beneficial uses, four or more samples will be required with one or zero samples exceeding acute or chronic criteria. In cases where there are fewer than four samples and one or zero samples are exceeding the acute or chronic criteria, sites will be placed in category 3, insufficient data (Figure 20).

Figure 20. Overview of the assessment process for toxic parameters.

Escherichia Coli Assessment for All Waters

DATA PREPARATION

Following a credible data review and additional QA/QC checks as outlined in DWQ's Quality Assurance Program Plan for Environmental Data Operations (DWQ, 2014), DWQ compiles all credible data within the period of record of concern and makes several adjustments based on the reported limits and sampling frequencies necessary to conduct the assessment. Similar to the other QA/QC and assessment procedures outlined in this document, the raw data and accompanying metadata values in Escherichia coli (E. coli) datasets are not altered; instead, a series of database comments and flags are used.

Recreation Season

To ensure protection of recreation uses, E. coli assessments will be conducted on data collected during the recreation season from May 1 through October 31. The recreation season may be adjusted either longer or shorter based on site-specific conditions. Any site-specific adjustments made to the recreation season will be documented.

Escherichia coli Collection Events and Replicate Samples

Due to sampling design, datasets at a single monitoring location may contain replicate samples or multiple samples collected in the same day. For E. coli assessments, single daily values, or collection events, are required. DWQ defines a collection event as one of the following:

- The daily most probable number (MPN) result value.
- A geometric mean of replicates where multiple samples are collected on the same day.
- The daily MPN as a quantified value reported as being obtained from a dilution.

In cases where replicate samples were taken and there is a quantified MPN value reported from a dilution and the MPN value reported is greater-than-detect, the quantified MPN value will be used as the collection event for assessment purposes. In this scenario, MPNs reported as greater-than-detect are not used to calculate the geometric mean for the collection event.

Data Substitution for Calculating the Geometric Mean

Attainment of E. coli standards is assessed using the geometric mean of representative samples. E. coli data that are reported as less than detect (< 1) or 0 will be treated as a value of 1 to allow for the calculation of a geometric mean. Similarly, E. coli data that are reported as greater than detect (> 2,419.6) will be treated as 2,420 to allow for the calculation of the geometric mean.

Use Designation

Once the data are compiled, DWQ assesses use support for each monitoring location. All waters of the state are classified for contact recreation (Class 2), and some waters are classified as drinking water sources (Class 1C). These uses have associated specific E. coli standards that are used for determining use support. Based on the beneficial use assignments to a waterbody or segment within a waterbody, the numeric criteria within <u>UAC R317-</u> $\underline{2}$ are applied to Class 2 and Class 1C uses.

Annual Recreation Season Assessment

The first step in the assessment process is to gather information regarding health advisories and/or closures issued during the recreation season. If there were two or more E. coli–related beach closures and/or health advisories in a recreation season, or if a health advisory and/or closure was issued for recreational access to a waterbody for two or more weeks, the waterbody is considered impaired and no further assessment is conducted

(Figure 21). If there were fewer than two closures or advisories, or if the closure lasted less than two weeks, the assessment process continues using E. coli concentrations.

Figure 21. Considering E. coli related beach closures and/or health advisories.

To ensure protection of recreation and drinking water uses of assessed waterbodies of the state, DWQ considers three scenarios based on sampling frequency and the number of collection events at a monitoring location:

- Scenario A: A seasonal assessment against the maximum criterion (Figure 22).
- Scenario B: A 30-day geometric mean assessment (Figure 23).
- Scenario C: A seasonal geometric mean assessment (Figure 24).

Scenario A

Each monitoring location is assessed against the maximum criterion if there are five or more collection events (see Figure 22).

Step 1: Calculate 10% of collection events. If there are greater than or equal to 5 collection events within the recreation season, then the following calculations are performed:

• Divide the total number of collection events in the recreation season by 10 and round to the nearest whole number. This is the number of collection events that can exceed the maximum criteria. For example, if there were 6 collection events in a recreation season, then one sample can exceed the maximum criteria. If there were 15 collection events in a recreation season, then two samples can exceed the maximum criteria.

Step 2: Determine the number of times the collection event exceeded the max criteria.

- If more than 10% of the collection events exceeded the maximum criteria, the monitoring location is not supporting beneficial uses.
- If less than 10% of the collection events exceeded the maximum criteria, the site is then assessed using Scenario B and C.

• If there are less than 5 collection events in the recreation season, a tally of collection events exceeding the max criteria determines if the site is placed in the category of insufficient data with exceedances, or insufficient data without exceedances.

Scenario B

If less than 10% of the collection events exceed the maximum criterion, the site is then assessed using the 30-day geometric mean criterion (see Figure 23). In order to assess against the 30-day geometric mean criterion directly, there must be a minimum of five collection events in 30 days, with at least 48 hours between collection events. This ensures that collection events are adequately spaced and are representative of ambient conditions.

Step 1: Determine if there are \geq 5 collection events within a 30-day period.

• Count the number of collection events collected between each sample date (day 1) and the sample date plus 29 days (day 30).

Step 2: Determine if the collection events are representative (must have \geq 5 collection events within a 30-day period).

- Count the number of collection events collected between each sample day (day 0) and the sample date plus 2 days (day 3).
- If there are two collection events within this period, only one sample will be considered representative.

Step 3: Calculate the 30-day geometric mean.

- If there are ≥5 representative samples in a 30-day period, then all collection events will be used to calculate the 30-day geometric mean.
- If ≥1 30-day geometric mean exceeds the 30-day criteria, the site is not supporting beneficial uses. If there are not representative data for Scenario B, or if the 30-day geometric mean did not exceed the 30-day criteria, the site is assessed using Scenario C.

Figure 23. Scenario B: an assessment using the 30-day geometric mean for monitoring locations with five or more collection events within 30 days.

Scenario C

If adequate (at least five samples) and/or representative data spaced by at least 48 hours are not available to assess against the 30-day geometric mean, DWQ will assess E. coli data for the recreation season provided there are at least five collection events during the defined recreational season. Exceedances of the geometric mean criterion will result in the site being classified either as impaired (minimum of 10 collection events in a recreation season) or as insufficient data (sample size is more than five but fewer than 10) (see Figure 24).

Figure 24. Scenario C: A seasonal geometric mean assessment.

Summarizing Assessment Results

When determining the attainment of a monitoring location with assessment results across multiple years, the following rules are applied (in the following order):

Not Supporting (Category 5)

A waterbody is considered to be impaired (not meeting its designated uses) if any of the following conditions exist:

- A lake, reservoir, or pond has two or more posted health advisories or beach closures during any recreation season.
- Any monitoring location where E. coli concentrations from 10% or more of the collection events exceed the maximum criterion.
- Any monitoring location where the 30-day geometric mean exceeds the 30-day geometric mean criterion (minimum five collection events with at least 48 hours between collection events).
- Any monitoring location where the recreational season geomean exceeds the 30-day geometric mean criterion (minimum of 10 collection events).

Insufficient Data or Information Assessment Considerations (Category 3, with exceedances)

• Sites with four or fewer samples in all seasons evaluated will be listed as insufficient data, provided impairment is not suggested by a posted health advisories or beach closures.

Combinations of Category 3 (with no exceedances), 2, and/or 1

• When making a final attainment decision of a site after all recreation season assessments are complete, DWQ uses the approach that if there is no evidence of impairment at a site by any of the assessment approaches over the period of record of concern, the assessment analysis from the most recent year outweighs the results from previous years. (DWQ's process for merging assessment results from multiple locations within an AU is discussed in more detail in Determinations of Impairment: All Assessment Units).

Supporting (Category 1 or 2)

• No evidence of impairment by any assessment approach for all recreation seasons over period of records. A fully supporting determination can be made with a minimum of five collection events during the recreational season.

Combining E. coli with Other Parameter Assessment Results

Until the determination of impairment and the review of additional supporting information are completed by reviewers, parameter assessments at an individual monitoring location and results from multiple monitoring locations within the same AU are not summarized and combined (see Determination of Impairment for more details).

Pollutions Indicator Assessments for All Waters

Several parameters and beneficial uses in <u>UAC R317-2</u> are identified as pollution indicators and have footnotes indicating that further investigations should be conducted to develop more information when levels are exceeded. To capture this footnote in the assessment process, DWQ reviews preliminary pollution indicator assessments during the Secondary Review process to determine whether or not pollution indicators demonstrate clear and convincing evidence of supporting or not supporting the beneficial uses assigned to the waterbody in <u>UAC R317-2</u>. Secondary reviews incorporate pollution indicator data into assessment category determinations, relying on multiple lines of evidence including pollution indicator thresholds, the presence or absence of other indicator-associated water quality issues, potential pollutant sources, and other site or watershed specific knowledge to determine whether listing or delisting on a pollution indicator parameter is appropriate or whether to prioritize waterbodies for additional monitoring.

Narrative Standards for All Waters

In addition to the numeric criteria used to perform water quality assessments, Utah's water quality standards contain provisions for the application of narrative criteria to protect uses. The narrative criteria state the following:

It shall be unlawful, and a violation of these rules, for any person to discharge or place any waste or other substance in such a way as will be or may become offensive such as unnatural deposits, floating debris, oil, scum, or other nuisances such as color, odor to taste; or cause conditions which produce undesirable aquatic life or which produce objectionable tastes in edible aquatic organisms; or result in concentration or combinations of substance which produce undesirable human health effect, as determined by bioassay or other tests performed in accordance with standard procedures; or determined by biological assessments in (UAC) Subsection R317-2-7.3.

Under circumstances where evidence exists that human-caused actions have produced any of these undesirable outcomes in a waterbody, DWQ will apply the narrative criteria to protect human health and aquatic life. Examples where the Narrative Standards may be used to make an impairment determination include drinking-water closures, fish kills, Harmful Algal Blooms (HABs), beach closures (for swimming), and health advisories for the consumption of fish. The assessment of E. coli data and associated beach closures to protect human health is an additional weight of evidence for defining the impairment of recreational uses and is addressed in more detail earlier in this document in the Escherichia Coli Assessment for All Waters section. DWQ will also apply a cyanobacterial cell count threshold for determining impairments due to harmful algal blooms.

DRINKING WATER CLOSURES

If the Utah Division of Drinking Water or a local municipality issues an advisory or closure for a surface drinking water source, DWQ will assess the site as impaired for 1C uses, unless data show that the problem has been solved.

FISH KILLS

DWQ requests information on reported fish kills from the Utah Division of Wildlife Resources and other stakeholders. These data are used in concert with water quality data to make final assessment decisions. For example, sites that would generally not be assessed due to small sample sizes may be listed as impaired if fish kills have also been observed in the waterbody.

HARMFUL ALGAL BLOOMS (HAB)

In fresh waters, HABs are typically composed of cyanobacteria; a phylum of photosynthetic bacteria sometimes called blue-green algae. Exposure to cyanobacteria or cyanotoxins through skin contact, inhalation, or ingestion can have negative impacts on the health of people and animals. Epidemiological studies have linked cyanobacteria exposure to negative health impacts in humans including respiratory inflammation, gastrointestinal distress, vomiting, headaches and ear aches, and skin irritations (e.g. Pilotto et al., 1997, Stewart et al., 2006, Levesque et al. 2014, Lin et al., 2016). In addition, some species of cyanobacteria such as *Dolichospermum sp., Aphanizomenon sp., Nodularia sp., Microcystis sp., and Planktothrix sp.*, can produce cyanotoxins that can produce liver, kidney, or neurological damage in humans and animals.

The goal of DWQ's HAB assessment method is to identify waterbodies that experience HAB events that impair class 2 recreational uses. Potential impacts of HABs on aquatic life uses are currently addressed through eutrophication-related aspects of general lakes, reservoirs, ponds, flowing surface waters or the State, and canal assessment methods (e.g. dissolved oxygen, pH, and lake Tier II assessments). However, HAB specific assessment methods may consider direct impacts on aquatic life (e.g., toxic effects of cyanobacteria or cyanotoxins on wildlife) in the future as more information becomes available.

Though the Narrative Standard speaks to a broad range of undesirable conditions, the potential for negative human or animal health effects and the formation of algal scums are the primary considerations in DWQ's HAB assessment methods.

DWQ's HAB assessment methods rely on three independent indicators to determine beneficial use support: cyanobacteria cell counts, cyanotoxin concentrations, and waterbody access or use limitations. In some circumstances, additional supporting indicators such as chlorophyll a concentrations or reports of human or animal health effects may also be considered in determining beneficial use support or impairment. For example, longer-term chlorophyll a concentration data in a waterbody can help estimate the frequency and potential of HAB occurrences in a waterbody which allows an assessment to differentiate an anomalous HAB in an otherwise low productivity waterbody from high productivity waterbodies where HABs are likely to occur more frequently.

DWQ's HAB assessment methods apply to waterbodies with frequent primary contact recreational uses, including those currently designated with 2A uses and those where existing frequent primary contact recreational uses have been documented. Waterbodies currently designated with a class 2B use where existing frequent primary contact usage has been documented will be considered for a classification change to 2A. DWQ is currently evaluating the applicability of existing HAB assessment benchmarks for infrequent primary contact recreational uses.

DWQ collects samples during HAB events for use in recreational use assessments using DWQ's HAB Standard Operating Procedures (SOP, DWQ 2016). These samples are most representative of recreational uses and potential recreational exposure to HABs. Samples collected outside the HAB SOP can be used to identify impairment of recreational uses in some cases, but because they may not adequately represent recreational uses, are not used to determine full support. Multiple exposure pathways to cyanobacteria and cyanotoxins exist through recreational activities such as swimming, wading, boating, or water-skiing. DWQ's assessment methods rely on EPA's draft recommended criteria for microcystin and cylindrospermopsin (EPA 2016) and guidelines recommended by Utah Department of Health for anatoxin-a (UDOH 2016, Table 15). These thresholds are subject to revision following finalization of EPA's draft criteria or continued development by DWQ and other agencies. Thresholds for additional cyanotoxins may continue to be added to the assessment methods as they become available.

Table 15. Cyanotoxin	thresholds	used for	' recreational	use	assessments.	

Recreational Cyanotoxin Guideline	s (μg/L)	Source
Microcystin	4	EPA 2016
Cylindrospermopsin	8	EPA 2016
Anatoxin-a	20	UDOH 2016

Beneficial Use Supported

_ . . . _ _

The beneficial use is fully supported if, over the period of record:

- Cyanobacteria cell counts have not exceeded 20,000 cells/mL, AND
- Cyanotoxin concentrations have not been identified above recreational use thresholds (Table 15), AND
- A warning, danger, or closure has not been issued for recreational access to a waterbody.

Beneficial Use Not Supported

The beneficial use is not supported if, in representative samples for recreational uses, in two or more years in the period of record:

• The cyanobacteria cell count exceeded 100,000 cells/mL in two or more weeks (i.e. in samples collected 7 or more days apart), OR

- Cyanotoxin concentrations above recreational guidelines (Table 15) have been reported for two or more weeks (i.e. in samples collected 7 or more days apart), OR
- A warning, danger, or closure has been issued for recreational access to a waterbody for two or more weeks.

Insufficient Data and Information with Exceedances (IR Category 3)

The waterbody will be categorized 3 if:

• For less than two weeks, or only in one year: the cyanobacteria cell count exceeded 20,000 cells/mL, cyanotoxin concentrations exceeded recreational use thresholds (Table 15), or a warning, danger, or closure has been issued for recreational use for less than 2 weeks. These waterbodies will be prioritized for further sampling and evaluation.

FISH TISSUE ASSESSMENTS AND CONSUMPTION HEALTH ADVISORIES

DWQ has collected fish tissue samples for mercury analysis in waterbodies throughout the state since 2000. Since that time, consumption advisories have been issued for 24 waterbodies.

DWQ currently uses the EPA-published ambient water quality criterion for methylmercury for the protection of people who eat fish and shellfish. This criterion is 0.3 milligram (mg) methylmercury per kilogram (kg) fish tissue wet weight. If all fish (small and large) of the same species at a monitoring location have a mean mercury concentration of > 0.3 mg/kg, additional statistical tests are used to determine if a consumption advisory is necessary. If the mean is < 0.3 mg/kg, no advisory is issued. In several instances, size class advisories have been issued when it is apparent that only the larger size class exceeds the safe consumption criterion.

For locations with a mean mercury concentration of > 0.3 mg/kg, the p-value is considered. The p-value refers to the probability of obtaining a result equal to or greater than those that were measured at that location. DWQ uses a p-value of 0.05 to be 95% certain an advisory is not unnecessarily issued. Therefore, if a species has a mean of > 0.3 mg/kg and a p-value < 0.05, then a consumption advisory is issued. If a species has a mean of > 0.3 mg/kg but a p-value of > 0.05, then an advisory is not issued. The consumption advisories are based on long-term consumption; therefore, the mean is the most appropriate and commonly used parameter to estimate exposure.

In an effort to control for false negatives, DWQ calculates 95% confidence limits of the mean mercury concentration. If the upper confidence limit is above 0.3 mg/kg, that site is targeted for additional sampling.

When an advisory is warranted, DWQ sends the data to the Utah Department of Health toxicologist who uses the mean mercury concentration to calculate the actual consumption recommendations. Those calculations are based on the following:

- Average Adult Weight: 70 kg (154 pounds) | Average Adult Meal Size: 227 grams (8 ounces)/meal
- Average Child Weight: 16 kg (35 pounds) | Average Child Meal Size: 113 grams (4 ounces)/meal

Consumption amounts are calculated for three target populations: Pregnant Women and Children < 6, Women of Child Bearing Age and Children 6–16, and Adult Women Past Child Bearing Age and Men >16.

Mercury Assessment Process

The current approach for making assessments of aquatic life use support for mercury is different than the consumption advisory process. The assessment is based on the U.S. Food and Drug Administration recommended value of 1.0 mg/kg. The U.S. Food and Drug Administration set the consumption concentration at 1.0 mg/kg, which correlates to the water column mercury concentration of 0.012 µg/l in previous studies by EPA

(EPA, 1985). Utah's water quality standard for mercury is 0.012 μ g/l as a 4-day average. Therefore, the corresponding fish tissue concentration of 1.0 mg/kg is used for assessment.

Beneficial Use Supported (Category 1)

- No fish consumption advisories for mercury are in place.
- Mean fish tissue mercury concentration for all individuals of the same species at a location is less than 0.3 mg/kg and p-value is < 0.5.

Insufficient Data with Exceedances (Category 3)

• Fish consumption advisories for mercury are in place, but the mean fish tissue mercury concentration for all individuals of the same species at a location is less than or equal to 1.0 mg/kg.

Beneficial Use Not Supported (Category 5)

- Fish consumption advisory for mercury is in place.
- Mean fish tissue mercury concentration is greater than 1.0 mg/kg.

For additional information and the most up-to-date list of consumption advisories, please visit <u>fishadvisories.utah.gov</u>.

Determinations of Impairment: All Assessment Units

Following the initial assessment of credible data against the numeric criteria in <u>UAC R317-2</u>, each use and parameter within a waterbody is assigned a provisional EPA-derived assessment category. To verify the use and parameter-specific assessment results and consolidate the often multiple parameter assessments into one result per waterbody, DWQ must consider the quantity of data and the extent to which such data demonstrate clear and convincing evidence of supporting or not supporting the beneficial uses assigned to the waterbody in <u>UAC R317-2</u>. In determining the strength of whether or not a waterbody is supporting or not supporting its beneficial uses, DWQ considers the following information:

- Individual assessment of water quality standards at a single site.
- Independent applicability.
- Multiple lines of evidence and several levels of secondary reviews.

INDIVIDUAL ASSESSMENT OF WATER QUALITY STANDARDS

In determining whether or not a waterbody is supporting or not supporting the beneficial uses assigned in <u>UAC</u> <u>R317-2</u>, DWQ first considers the individual use and parameter-specific assessment results from the monitoring location level data. Each use and parameter assessed for the waterbody is assigned a provisional EPA-derived assessment category. Unless noted in the waterbody-specific data assessment protocols, the assessment policies outlined in this document provide a direct and quantifiable method and documentation of data supporting or not supporting DWQ's water quality standards versus data and information that are developed using surrogate parameters or indicators. Because individual assessments at a single monitoring location site offer a more direct measure of supporting or not supporting water quality standards in <u>UAC R317-2</u>, DWQ places a greater weight on individual assessment decisions that follow the data assessment protocols in this document.

Following the review of the individual water quality standard assessments for a beneficial use, DWQ looks across the multiple parameter-specific assessment results that exist for a location and consolidates the results into a preliminary assessment at the individual site level. That is, DWQ assigns one EPA-derived assessment decision category as defined in Table 1 to each monitoring location.

CONFLICTING ASSESSMENTS OF WATER QUALITY STANDARDS

To address the possibility of conflicting results among different types of data (e.g., biological versus conventionals, toxics versus E.coli) at the site- and AU-level, DWQ applies the policy of independent applicability and goes through a series of considerations to determine if the discrepancies are because of:

- differences in data quality, or
- environmental factors such as the application of the water effects ratio, development of site specific criteria, revision to numeric criteria in <u>UAC R317-2</u>, or conducting a use attainability analysis.

Figure 25 elaborates on DWQ's use of the independent applicability policy.

In cases where concerns about the quality of independent datasets cannot be rectified through an evaluation and documentation of the QA/QC issues that resulted in accepting one dataset and the resulting assessment result, sites with conflicting assessment results may be listed as Category 3 (insufficient data and information) to better understand the seemingly conflicting lines of evidence. Specific assumptions regarding model applicability applied during the biological assessment process are discussed in the Biological Assessment section. Similarly, if the application of water effects ratio, justifiable site-specific criteria change, or change in beneficial uses based on a use attainability analysis cannot rectify the difference in the assessment results, then a Category 3 may be

warranted. All evaluations of conflicting assessment decisions will be made in consultation with EPA on a caseby-case basis.

Figure 25. Overview of independent applicability process. Note: These judgment decisions are based in part on EPA's Consolidated Assessment and Listing Methods guidance published in 2002.

AGGREGATION OF SITE-SPECIFIC ASSESSMENTS TO ASSESSMENT UNIT CATEGORIES

For reporting purposes, DWQ aggregates all site-specific water quality assessments within an AU to a single assessment category for that AU as described in Table 1. A flow chart describing this process is presented in Figure 26 (see Appendix 4 for additional detail).

SECONDARY REVIEW

Following the consolidation of all of the individual assessment results and the assignment of preliminary assessment category(s) for an AU, DWQ conducts a secondary review of listing determinations. The secondary review process allows the application of site/waterbody specific knowledge and additional data quality controls to evaluate the extent to which data used in the preliminary assessment demonstrates clear and convincing evidence of supporting or not supporting the beneficial uses assigned to the waterbody in <u>UAC R317-2</u>. In addition to the internal secondary review process, DWQ recognizes that input from reviewers during public comment periods may also provide key information regarding the data used in listing decisions. To ensure consistency in its use among different professionals, the secondary process will be applied in a select number of scenarios using a standard set of guidelines as outlined in Appendix 3.

If as a result of the secondary review, documentation can be provided of evidence sufficient in strength to modify the basis and result of the preliminary assessment, the preliminary assessment decision based on the data

assessment procedures outlined in this document will be overwritten. For example, preliminary listings for Category 5 or Category 1 and Category 2 waters could be re-assigned as Category 3, insufficient data and information.

Where documentation for overriding a preliminary assessment decision is insufficient in strength, vague, or cannot be provided, the preliminary assessment decision based on the data assessment procedures outlined in this document will carry forward.

For tracking and transparency to the public, DWQ will document the original category assignment and a justification for the secondary review.

Assessment Unit Re-segmentation

In cases where site-specific assessments within a single AU conflict, DWQ may determine that it is appropriate to re-segment (i.e. -splitl) an existing AU polygon into two or more new AUs rather than aggregate those conflicting assessments into a single AU scale category. In particular, AUs where water quality criterion exceedances are clearly isolated to a relatively small, hydrologically distinct portion of the larger AU may be re-segmented to more accurately reflect that variation in water quality. For example, a large AU with an impairment isolated to a single tributary may be re-segmented into two AUs: one for the impaired tributary and another for the rest of the existing AU. Assessment categories for both AUs are then determined following standard aggregation (Figure 22 and the delisting procedures discussed in the Delistings section. This results in a higher resolution and overall more accurate assessment. DWQ does not consider it appropriate to re-segment an AU when exceedances are observed in multiple locations throughout an AU or where impaired sites are not hydrologically distinct from unimpaired portions of the AU.

If after aggregating all of the assessments into one EPA-derived assessment category for an AU, DWQ determines that the supporting or not supporting assessment result decision is not representative of the entire AU, DWQ will investigate further to determine whether the supporting or not supporting decision is widespread or limited to individual portions of the waterbody, such as specific tributaries or reaches. Results from the analysis will be categorized as follows:

• Whole AU is Not Supporting (Category 5): If data from multiple sites or tributaries within an AU indicate multiple (or a combination of) not supports (Category 5) and insufficient data with exceedances (Category 3), DWQ will recommend that the AU not be re-segmented and the entire AU be listed as not supporting.

• Only Not Supporting Tributaries are listed as Not Supporting (Category 5): If data from one or more tributaries indicate a combination of any of the following, DWQ may recommend the AU be resegmented into two AUs and that only the tributaries with data indicating impairment are listed as not supporting.

- Insufficient Data with Exceedances (Category 3)
- No Evidence of Impairments (Category 2)
- Supporting (Category 1)
- Needs Further Investigations (Category 3)
- Insufficient Data with No Exceedances (Category 3)
- Not Assessed (Category 3)

The rest of the AU will be assigned a category following procedures as outlined in Figure 26.

Identifying Causes of Impairments

Once an AU is assigned an EPA-derived assessment category that is representative of conditions with the AU, DWQ will determine if the impairment or impairments are driven by pollutants, pollution, unknown, or natural causes (see Table 1). DWQ will identify causes of impairment defined by a pollutant that has specific numeric water quality criteria identified in <u>UAC R317-2</u>. Pollution is a generalized term for causes of water quality impairment that can include multiple pollutants and other factors such as the absence or lack of water, riparian vegetation, and other modifications that affect a waterbody's ability to support aquatic habitat and other designated uses. With the exception of naturally occurring causes, only one cause will be applied to a not-supporting waterbody and parameter. Procedures on how DWQ identifies the cause of impairments are described in the section below.

POLLUTANTS

Using the CWA's definition of a pollutant as a guide, DWQ defines pollutant-driven impairments (Category 5) as those resulting from the following:

... dredged spoil, solid waste, incinerator residue, sewage, garbage, sewage sludge, munitions, chemical wastes, biological materials, radioactive materials (except those regulated under Atomic Energy Act of 1954, as amended), heat, wrecked or discarded equipment, rock, sand, cellar dirt, and industrial, municipal, and agricultural waste discharged into water. (<u>UAC R317-2</u>)

Notwithstanding the federal definition cited above, DWQ will also identify certain radiological constituents that are regulated under the state's Water Quality Control Act. For the purpose of the 303(d) List, causes for impairments due to toxic parameters will be identified as the parameter for which there is an impairment. In the case of conventional parameters such as DO, temperature, pH, and biological scores, the cause will be assigned as the parameter that was assessed until such time as a TMDL or pollution prevention plan identifies an alternative cause of the impairment.

Once an impairment for a waterbody or segment within a waterbody is identified as pollutant-driven, DWQ will list the waterbody and the not-supporting parameter(s) as impaired for that pollutant (cadmium, iron, etc.). Waterbodies that are not supporting their beneficial uses due to pollutant impairments require future development of a TMDL or application of a TMDL alternative. Information on DWQ's process of prioritizing and developing a TMDL, and TMDL alternatives, is described in section 303(d) Vision and TMDL Priority Development and on DWQ's website.

POLLUTION

Where DWQ can identify that an impairment was not driven by a pollutant, DWQ may consider if the notsupporting assessment was driven solely by pollution versus a pollutant or by an unknown cause. Using the CWA's definition of pollution as a guide, DWQ will go through an evaluation to determine if an impairment resulted from -the man-made or man-induced alteration of the chemical, physical, biological, and radiological integrity of water.II Waterbodies with not-supporting parameters that are driven solely by pollution problems do not require the future development of a TMDL and are candidates for a non-pollutant impairment (4C) assessment category. Details on DWQ's process for using EPA's 4C assessment category are described in section Category 4C.

UNKNOWN SOURCES

For the purpose of the IR, sources of pollution contributing to an impairment will be reported in the 303(d) list to EPA as -unknownll until such time as a TMDL or special study identifies the sources and any additional causes of impairment.

NATURAL CONDITIONS

In cases where DWQ or a stakeholder can demonstrate that the natural conditions of the waterbody or segment within a waterbody are the key factor for an impairment(s), DWQ will still retain the not-supporting assessment decision. However, DWQ's response to such exceedances differs unless a site-specific standard has been promulgated. Site-specific standards require documentation that demonstrates the extent to which the violations were due to natural conditions. Once this documentation is developed, the proposed changes to standards will be developed. For more information on the review and approval process for developing standards and numeric criteria surrounding exceedances caused by naturally occurring conditions, please review DWQ's <u>Standards</u> website.

Revising the 303(d) List and Other Categorical Assessments

Upon validating the strength and extent of the impairments within a waterbody or segment within a waterbody, DWQ will include newly proposed and previously listed not supporting (Category 5) waterbodies on the updated 303(d) List unless the waterbody or waterbody segment(s) is currently included in the IR's TMDL-approved (Category 4A), pollution control (Category 4B), non-pollutant impairment (Category 4C), or delisting lists. Details on how and when DWQ will not apply or carry an impaired listing (not supporting, Category 5) forward on DWQ's 303(d) List are described below.

CATEGORY 4A

The first alternative DWQ has available for not listing or removing an impaired waterbody or segment within a waterbody on the state's 303(d) List is to calculate the maximum amount of a pollutant that a waterbody can receive while still meeting the state's water quality standards. This calculation and analysis work must be formalized in a TMDL and go through a thorough internal and external review process. This calculation and analysis work must be formalized in a TMDL that is provided to the public for review and comment, submitted to the Utah Water Quality Board for approval, provided to the Legislative Natural Resources, Agriculture, and Environment Interim Committee for review if implementation costs exceed \$10 million or the full State Legislature for approval if implementation costs exceed \$100 million, and ultimately to EPA for their approval. Information on DWQ's process for developing and implementing a TMDL can be found on DWQ's <u>Watershed Management</u> <u>Program</u> website and EPA's TMDL 303(d) website. Where DWQ has documentation of a DWQ Water Quality Board- and EPA-approved TMDL for an impaired parameter within a not-supporting waterbody or segment within a waterbody, DWQ will override a current or previous not supporting Category 5 listing decision at the AU level as follows:

- Whole AU Category 4A, TMDL-approved if:
 - a. The only impairments within the waterbody or segment within the waterbody are included in the approved TMDL.
 - b. There are additional impairments within the waterbody or segments within the waterbody that are addressed in a Category 4B demonstration plan (described in section Category 4B and Appendix 5) and are not included in the approved TMDL. If the parameters included in the approved Category 4B demonstration plan are still not supporting or are insufficient data with exceedances in the current assessment cycle, DWQ will indicate that those parameters have an approved Category 4B demonstration plan in place.
 - c. There are additional impairments within the waterbody or segments within the waterbody that are pollution-driven (Category 4C) and not included in the approved TMDL. If the pollution-driven parameters are still not supporting or are insufficient data with exceedances in the current assessment cycle, DWQ will indicate that those parameters are pollution-versus pollutant-driven.
- Whole AU Category 5, Not Supporting if:
 - d. There are any additional pollutant impairments within the waterbody or segments within the waterbody that are not included in the approved TMDL. If the parameters included in the approved TMDL are still not supporting or are insufficient data with exceedances in the current assessment cycle, DWQ will indicate that those parameters have an approved TMDL in place.

CATEGORY 4B

DWQ's second alternative to not listing or removing an impaired waterbody or segment within a waterbody on the state's 303(d) List is to develop a plan that ensures upon implementation that the waterbody will meet state water quality standards within a reasonable time period and through state- and EPA-approved pollution-control mechanisms. Similar to a TMDL, a Category 4B demonstration plan must go through a robust internal and

external review process. For example, once DWQ or a stakeholder develops a plan for consideration, DWQ will present the plan to DWQ's Water Quality Board and submit the board-approved plan to EPA for final approval. More information on the Category 4B demonstration plan process can be found in Appendix 5 and in EPA's <u>Guidance for 2006 Assessment, Listing and Reporting Requirements Pursuant to Sections 303(d), 305(b) and 314 of the Clean Water Act and Information Concerning 2008 Clean Water Act Sections 303(d), 305(b), and 314 Integrated Reporting and Listing Decisions.</u>

Where DWQ has documentation of an EPA-approved Category 4B demonstration plan for an impaired parameter within a not-supporting waterbody or segment within a waterbody, DWQ will override a current (or previous) not-supporting Category 5 listing decision at the AU level as follows:

• Whole AU Category 4A, TMDL-approved if:

- a. There are any additional impairments within the waterbody or segments within the waterbody that are addressed in an approved TMDL (Category 4A) and are not included in the approved Category 4B demonstration plan. If the parameters included in the approved Category 4B demonstration plan are still not supporting or are insufficient data with exceedances in the current assessment cycle, DWQ will indicate that those parameters have an approved Category 4B demonstration plan in place.
- Whole AU Category 4B, Pollution Control if:
 - b. The only impairments within the waterbody or segment within the waterbody are included in the approved Category 4B demonstration plan.
 - c. There are additional impairments within the waterbody or segments within the waterbody that are pollution-driven (Category 4C) and are not included in the approved Category 4B demonstration plan. If the pollution-driven parameter impairments are still not supporting or are insufficient data with exceedances in the current assessment cycle, DWQ will indicate that those parameters are pollution- rather than pollutant-driven.
- Whole AU Category 5, Not Supporting if:
 - d. There are any additional pollutant impairments within the waterbody or segments within the waterbody that are not included in the approved Category 4B demonstration plan. If the parameters included in the approved Category 4B demonstration plan are still not supporting or are insufficient data with exceedances in the current assessment cycle, DWQ will indicate that those parameters have an approved Category 4B demonstration plan in place.

CATEGORY 4C

The third alternative for not listing or removing an impaired waterbody or segment within a waterbody on the state's 303(d) List is to demonstrate that the parameter-specific impairment (or impairments) is driven by pollution and not by a pollutant or pollutant that causes pollution. Unlike a TMDL or Category 4B demonstration plan, the analysis works to determine if the cause of impairment is driven by pollution and does not require formal approval from DWQ's Water Quality Board or EPA. Pollution analysis work is instead reviewed internally by DWQ and by stakeholders during the public comment period of the draft IR and 303(d) List.

For the draft IR and 303(d) List, DWQ will temporarily assume —approvall of any pollution-driven analysis work and supersede a current or previous not supporting Category 5 listing decision at the AU level as follows:

- Whole AU Category 4A, TMDL-approved if:
 - a. All impairments within the waterbody or segments within the waterbody are addressed in an approved TMDL (Category 4A). For pollution-driven impairments that are still not supporting or are insufficient data with exceedances in the current assessment cycle, DWQ will indicate that those parameters are pollution- rather than pollutant-driven.

- Whole AU Category 4B, Pollution Control if:
 - b. All impairments within the waterbody or segments within the waterbody that are addressed in an approved Category 4B demonstration plan. For pollution-driven impairments that are still not supporting or are insufficient data with exceedances in the current assessment cycle, DWQ will indicate that those parameters are pollution-driven.
- Whole AU Category 4C, Non-Pollutant Impairment if:
 - c. The only impairments within the waterbody or segment within the waterbody are included in the approved Category 4B demonstration plan.
- Whole AU Category 5, Not Supporting if:
 - d. There are any additional pollutant impairments within the waterbody or segments within the waterbody. The pollution-driven impairments that are still not supporting or are insufficient data with exceedances in the current assessment cycle, DWQ will indicate that those parameters are pollution-driven.
 - e. DWQ will provide to stakeholders during the public comment period of the draft IR and 303(d) List documentation as to why the impaired parameter within the waterbody or segment within the waterbody is pollution- and not pollutant-driven and will not require the future development of a TMDL.

DELISTINGS

The fourth and final alternative DWQ has at its disposal is to demonstrate good cause to stakeholders and EPA that the previously impaired parameter and waterbody or segment within a waterbody are now meeting water quality standards in <u>UAC R317-2</u>. Good cause occurs when DWQ can demonstrate one or more of the following categories and scenarios:

- Improvements in Watershed Conditions:
 - a. Because of the implementation of nonpoint source projects and/or revised effluent limits, the waterbody has improved such that post-implementation data indicate that the impairment has been resolved. This assessment may be based on additional data, beyond that which is typically used in assessments, including before and after project implementation monitoring. In some cases, demonstration of improvement may be based on a different time period for data collection that corresponds with known watershed improvements.
- Changes to Water Quality Standards:
 - b. Adoption of revised water quality standards and/or uses such that the water is now in attainment of the revised standards and/or uses.
- Changes to the 303(d) Assessment Methods:
 - c. Development of a new listing method consistent with the state water quality standards and classifications and federal listing requirements. This includes all information contained in this document and posted on DWQ's <u>Call for Data</u> website.
- Reassessment (new data and information):
 - d. Assessment and interpretation of older data that was not originally included in the previous assessment and/or more recent or more accurate data that demonstrate that the applicable classified uses and numeric and narrative standards are being met.
- Geo-location Information Error:

- e. Inappropriate listing of a water that is located within Indian lands as defined in 18 United States Code 1151.
- Analysis Errors:
 - f. Flaws in the original analysis of data and information that led to the waterbody-pollutant combination being incorrectly listed. Such flaws may include the following: (1) Calculation errors in the data assessment methods outlined in the 303(d) Assessment Methods from that Assessment cycle, (2) errors produced when reviewing credible and representative data information, (3) mapping errors generated during the validation of monitoring location information and assigning AU designations, (4) discrepancies between the beneficial use assignments in UAC R317-2 and the IR geo-location information files for internal and external data, (5), wrong identification and assessment of a waterbody type, and (6) application of the wrong numeric criteria to a beneficial use.
- New Modeling:
 - g. Results of more sophisticated water quality modeling that demonstrate that the applicable classified uses and numeric and narrative standards are being met.
- Effluent Limitations:
 - h. Demonstration pursuant to 40 CFR 130.7(b)(1)(ii) that there are effluent limitations required by state or local authorities that are more stringent than technology-based effluent limitations, required by the CWA, and that these more stringent effluent limitations will result in attainment of classified uses and numeric and narrative standards for the pollutant causing the impairment.
- Other:
 - i. There is other relevant information that supports the decision not to include the segment on the Section 303(d) List.

In order to first justify a delisting of an AU for a given parameter based on new data, the dataset must be of sufficient quantity and quality to make an assessment. There are two mechanisms for justifying a delisting based on assessment results:

- Delisting an AU for all parameters.
- Delisting individual parameters for an AU.

To demonstrate good cause, DWQ will compare the previous IR cycle's final assessment categories and 303(d) List to the current IR's assessment categories and 303(d) List. Where differences in categorical assignments exist, DWQ will only further investigate the following scenarios for good cause:

• The AU/waterbody or segment within the waterbody was previously not supporting (Category 5) and is now supporting (Category 1), shows no evidence of impairment (Category 2), or has insufficient data with no exceedances (Category 3).

• The AU/waterbody or segment within the waterbody was previously not supporting but had an approved TMDL (Category 4A) and is now supporting (Category 1), shows no evidence of impairment (Category 2), or has insufficient data with no exceedances (Category 3).

- The AU/waterbody or segment within the waterbody was previously not supporting but had an approved Category 4B demonstration plan and is now supporting (Category 1), shows no evidence of impairment (Category 2), or has insufficient data with no exceedances (Category 3).
- The AU/waterbody or segment within the waterbody was previously not supporting but had pollutiondriven impairment (Category 4C) and is now supporting (Category 1), shows no evidence of impairment (Category 2), or has insufficient data with no exceedances (Category 3).

Note: The next set of scenarios describes the methods that apply to delisting individual parameters rather than entire AUs.

• A parameter within an AU/waterbody (or segment within the waterbody) was previously not supporting (Category 5) and is now supporting (Category 1), shows no evidence of impairment (Category 2), or has insufficient data with no exceedances (Category 3).

• A parameter within an AU/waterbody (or segment within the waterbody) was previously not supporting but had an approved TMDL (Category 4A) and is now supporting (Category 1), shows no evidence of impairment (Category 2), or has insufficient data with no exceedances (Category 3).

• A parameter within an AU/waterbody (or segment within the waterbody) was previously not supporting but had an approved Category 4B demonstration plan and is now supporting (Category 1), shows no evidence of impairment (Category 2), or has insufficient data with no exceedances (Category 3).

• A parameter within an AU/waterbody (or segment within the waterbody) was previously not supporting but had pollution-driven impairment (Category 4C) and is now supporting (Category 1), shows no evidence of impairment (Category 2), or has insufficient data with no exceedances (Category 3).

Where assessment category assignments at the AU- and parameter-level warrant a further investigation for good cause, DWQ will reevaluate the data from the following:

- The period of record from when the AU and/or parameter was first listed.
- The period of record in the current assessment cycle.
- The data that were collected between when the AU and/or parameter were first listed and the period of record considered in the current assessment cycle.

As part of the demonstration of good cause process, DWQ will review the data from all assessed sample locations (as defined in Table 4) in the three above scenarios to confirm whether or not there were exceedances at the sample sites. Where exceedances occur, DWQ must demonstrate that the exceedances no longer exist, no longer are of concern, or that water quality has improved. If a sample site had exceedances (and newer data do not exist), DWQ will provide documentation and a justification as to why the site was not re-sampled and/or whether water quality conditions have improved. If documentation cannot be provided, the AU and parameter will not be delisted, and the previous categorical assignment will carry forward.

Delisting Categorical Pollutant Causes

In the case of TMDLs or special studies which identify parameters contributing to a cause of impairment, but are not the original cause for listing on the 303(d) list, there may be good cause justification for delisting the categorical cause if the original impaired parameter is no longer impaired and a linkage of the additional causes can be documented in a TMDL or other study. For instance, in some circumstances DWQ has identified phosphorus as a contributing cause of impairment to an existing dissolved oxygen listing and subsequently made a categorical listing for phosphorus as a cause on subsequent 303(d) lists. Since DWQ does not have assessment methods for phosphorus, a delisting based on process outlined here is not feasible. Therefore, if the assessment results for the original DO listing can justify a delisting, any additional parameters associated with that cause may also be delisted with proper documentation of a direct linkage.

Appendix 6 elaborates on the process DWQ will follow when evaluating good cause at the AU-level, and also describes, in more detail, the process DWQ will go through when evaluating good cause at the parameter-level. For EPA review and approval, DWQ applies several delisting codes (also included in Appendix 6).

If a waterbody or parameter is shown to have good cause for not being listed or removed as an impaired waterbody or segment within a waterbody on the state's 303(d) List, DWQ will state the good cause and provide a more detailed description of the good cause. Details of the good-cause evaluation process such as the dataanalysis work will not be posted online during the draft public comment period or after the final approval and publication of the final IR and 303(d) List. DWQ will, however, summarize the data analysis work in the description of the good cause. The analyses will be available to the public upon request through Utah's Government Records Access and Management Act (GRAMA) requirements.

PREVIOUS CATEGORICAL LISTINGS

303(d) Listings

Without the proper documentation to support changing a previous not-supporting (Category 5) listing decision to a TMDL-approved (Category 4A), pollution control (Category 4B), non-pollutant impairment (Category 4C), or delisting (demonstration of good cause), DWQ must continue to list all previous impairments. At a minimum, this includes carrying forward all waterbodies or segments within a waterbody that were previously not supporting (Category 5), indicating the cause of impairment, listing the beneficial use (or uses) that is failing to meet water quality standards, providing the priority of developing a TMDL, and indicating the assessment cycle the waterbody or segment within the waterbody were first listed.

Non-303(d) Categorical Listings

Where DWQ has the proper documentation to support changing a previous not supporting (Category 5) listing decision to a TMDL-approved (Category 4A), pollution control (Category 4B), non-pollutant impairment (Category 4C), or delisting (demonstration of good cause), DWQ will do so as outlined by the policies and procedure described throughout this document.

DWQ will also carry forward all previous categorizations of waterbodies or segments within a waterbody if the waterbody does not have any credible or representative data from the period of record of the current assessment cycle . This includes carrying forward the following:

- Previous TMDL-approved (Category 4A), pollution control (Category 4B), and non-pollutant impairment (Category 4C) categorizations that do not demonstrate good cause.
- Previous categorizations that have insufficient data with exceedances (Category 3), require further investigations (Category 3), have insufficient data with no exceedances (Category 3), are not assessed (Category 3), show no evidence of impairment (Category 2), or are supporting (Category 1).
- Historical Category 3 waters that had insufficient data with exceedances will remain in that category unless there is new data for assessment.

Waterbodies or segments within a waterbody that are supporting or show no evidence of impairment (Categories 1 and 2, respectively) may carry forward for six consecutive assessment (or two rotating basin) cycles. On the seventh consecutive assessment cycle, DWQ will not continue to carry forward a supporting or no evidence of impairment categorization for waterbodies or segment within a waterbody that do not have any new data collected in the last 12 years. Data older than the period of record may not be reflective of current conditions, and will not be used for assessment purposes unless there is information or a rationale with supporting documentation that shows the data are reflective of current conditions.

If there is evidence that the data are reflective of current conditions, the previous supporting (Category 1) or no evidence of impairment (Category 2) categorization will carry forward for one more assessment cycle (the current one) and be re-evaluated in the next cycle. If there is no or not enough supporting evidence that the data are reflective of current conditions, DWQ will not carry forward the supporting or no evidence of impairment categorization for a seventh consecutive assessment cycle. Instead, DWQ will change the categorization to insufficient data with no exceedances (Category 3).

303(d) Vision and TMDL Priority Development

For waterbodies or segments within a waterbody that are impaired by a pollutant, DWQ must ensure that TMDLs will be developed following the final release of the current IR and 303(d) List. Recognizing that all TMDLs cannot be completed at once and that certain risks may be greater than others, the CWA Section 303(d) allows states to prioritize impaired waterbodies or segments within a waterbody on the Section 303(d) List for the future development of TMDLs.

To help guide states on how to best prioritize and demonstrate progress on addressing the water quality concerns highlighted and reported on in the IR and 303(d) List, EPA announced on December 5, 2013, a collaborative framework for implementing the CWA Section 303(d) Program with states (See <u>A Long-Term Vision for</u> <u>Assessment, Restoration, and Protection under the Clean Water Act Section 303(d) Program</u>). This document outlines a framework on how states can focus their resources to support the development of TMDLs and other water quality improvement programs (such as the anti-degradation program, nonpoint source implementation program, and 401 water quality certification program). In response to the release of this document, DWQ engaged with stakeholders and developed new policies and procedures for the following IR and 303(d) reporting-specific elements:

- Assigning TMDL priorities to impaired waterbodies and segments within waterbodies on DWQ's 303(d) List.
- Performing cost–benefit analyses that estimate the environmental, economic, and social costs and benefits, and time needed to achieve the objectives of the CWA and state water quality standards.
- Tracking the status and development of TMDLs.

Please refer to Appendix 7 for how DWQ prioritized the future developments of TMDLs on DWQ's 303(d) List.

Revision Requests between Cycles

Barring unforeseen circumstances, DWQ will only propose to revise the IR and 303(d) List during the regularly scheduled reviews, which are currently biennially and on even-numbered years. Interested persons may petition DWQ at any time to request a revision to the IR and 303(d) List, whether it is an addition or deletion to the final 303(d) List. However, such revisions may only be considered if failing to either add a segment to the list or delete a segment from the list before the next scheduled review will result in a substantial hardship to the party or parties requesting the revision(s). If such hardship is shown, DWQ will take the potential revision under strong consideration and begin a dialogue with the interested party or parties and EPA.

Chapter 2: Assessments Specific to Lakes, Reservoirs, and Ponds

	Draft Combined 2018/2020 Integrated Report: Lakes, Reservoirs, and Ponds 305(b) and 303(d)											
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Lake, Reservoir, and Pond Acres		
Bear River	UT-L-16010101-001_00	Woodruff Reservoir	Woodruff Reservoir	2	No Evidence of Impairment					92		
Bear River	UT-L-16010101-002 00	Birch Creek	Birch Creek	2	No Evidence of Impairment					62		
Bear River	UT-L-16010101-007_00	Little Creek Reservoir	Little Creek Reservoir	2	No Evidence of Impairment					67		
Bear River	UT-L-16010101-030 00	Whitney Reservoir	Whitney Reservoir	3	Insufficient Data					129		
Bear River	UT-L-16010201-003_00	Bear Lake	Bear Lake	1	Fully Supporting					35,414		
Bear River	UT-L-16010202-002 00	Cutler Reservoir	Cutler Reservoir	4	Approved TMDL	Lakes tier II	3B	Low	2004	1,356		
						Minimum Dissolved Oxygen	3B	Low	2004	1,356		
						Total Phosphorus as P	3B	Low	2004	1,356		
Bear River U	UT-L-16010202-013_00	Newton Reservoir	Newton Reservoir	5	Not Supporting	Max. Temperature	3A	Low	2006	172		
					Approved TMDL	Minimum Dissolved Oxygen	3A	Low	1998	172		
						Total Phosphorus as P	3A	Low	1998	172		
Bear River	UT-L-16010203-005_00	Hyrum Reservoir	Hyrum Reservoir	5	Not Supporting	Max. Temperature	3A	Low	1994	446		
					Approved TMDL	Minimum Dissolved Oxygen	3A	Low	1998	446		
						Total Phosphorus as P	ЗA	Low	1998	446		
Bear River	UT-L-16010203-009_00	Porcupine Reservoir	Porcupine Reservoir	2	No Evidence of Impairment					180		
Bear River	UT-L-16010203-012_00	Tony Grove Lake	Tony Grove Lake	5	Not Supporting	Max. Temperature	3A	Low	2006	25		
						Minimum Dissolved Oxygen	3A	Low	1996	25		
						pН	ЗA	Low	2004	25		
Bear River	UT-L-16010204-033_00	Mantua Reservoir	Mantua Reservoir	5	Not Supporting	Harmful algal blooms	2B	Low	2020	514		
						Max. Temperature	3A	Low	2008	514		
					Approved TMDL	Minimum Dissolved Oxygen	3A	Low	1998	514		
						pН	3A	Low	1998	514		
						Total Phosphorus as P	3A	Low	1998	514		

	Draft Combined 2018/2020 Integrated Report: Lakes, Reservoirs, and Ponds 305(b) and 303(d)											
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Lake, Reservoir, and Pond Acres		
Cedar/Beaver	UT-L-16030006-002_00	Upper Enterprise Reservoir	Upper Enterprise Reservoir	5	Not Supporting	Max. Temperature	3A	Low	2012	353		
						Minimum Dissolved Oxygen	3A	Low	2014	353		
						pH	3A	Low	2016	353		
Cedar/Beaver	UT-L-16030006-008_00	Newcastle Reservoir	Newcastle Reservoir	5	Not Supporting	Fish Tissue (Mercury)	ЗA	Low	2010	159		
						Max. Temperature	3A	Low	2012	159		
					Approved TMDL	Minimum Dissolved Oxygen	3A	Low	1996	159		
						Total Phosphorus as P	ЗA	Low	1996	159		
Cedar/Beaver	UT-L-16030006-017_00	Yankee Meadow Reservoir	Yankee Meadow Reservoir	2	No Evidence of Impairment					56		
		Red Creek Reservoir (Iron	Red Creek Reservoir (Iron									
Cedar/Beaver	UT-L-16030006-019_00	Co)	Co)	5	Not Supporting	Total Phosphorus as P	ЗA	Low	2006	59		
Cedar/Beaver	UT-L-16030007-011_00	Minersville Reservoir	Minersville Reservoir	5	Not Supporting	Max. Temperature	ЗA	Low	1994	1,071		
					Approved TMDL	Minimum Dissolved Oxygen	ЗA	Low	1998	1,071		
						pН	ЗA	Low	2014	1,071		
						Total Phosphorus as P	ЗA	Low	1998	1,071		
Cedar/Beaver	UT-L-16030007-020_00	Kents Lake	Kents Lake	4	Approved TMDL	Minimum Dissolved Oxygen	ЗA	Low	1998	39		
						Total Phosphorus as P	ЗA	Low	1998	39		
Cedar/Beaver	UT-L-16030007-024_00	Reservoir	Reservoir	2	No Evidence of Impairment					8		
Cedar/Beaver	UT-L-16030007-025_00	Three Creeks Reservoir	Three Creeks Reservoir	5	Not Supporting	рН	ЗA	Low	2006	55		
Cedar/Beaver	UT-L-16030007-027_00	LaBaron Lake	LaBaron Lake	4	Approved TMDL	Minimum Dissolved Oxygen	ЗA	Low	1998	22		
						Total Phosphorus as P	3A	Low	2014	22		
Cedar/Beaver	UT-L-16030007-028_00	Puffer Lake	Puffer Lake	4	Approved TMDL	Minimum Dissolved Oxygen	3A	Low	1998	58		
						pH	3A	Low	2014	58		

	Draft Combined 2018/2020 Integrated Report: Lakes, Reservoirs, and Ponds 305(b) and 303(d)										
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Lake, Reservoir, and Pond Acres	
Colorado River Southeast	UT-L-14030004-001_00	Dark Canyon Lake	Dark Canyon Lake	2	No Evidence of Impairment					5	
Colorado River Southeast	UT-L-14030005-004_00	Kens Lake	Kens Lake	3	Insufficient Data					78	
Colorado River Southeast	UT-L-14070006-001_00	Lake Powell	Lake Powell	5	Not Supporting	рН	3B	Low	2016	150,143	
Colorado River Southeast	UT-L-14080201-002_00	Blanding City Reservoir	Blanding City Reservoir	5	Not Supporting	Max. Temperature	3A	Low	2012	92	
						Minimum Dissolved Oxygen	ЗA	Low	2020	92	
Colorado River Southeast	UT-L-14080201-007_00	Recapture Reservoir	Recapture Reservoir	5	Not Supporting	Max. Temperature	ЗA	Low	2020	221	
						Minimum Dissolved Oxygen	ЗA	Low	2020	221	
Colorado River Southeast	UT-L-14080203-002_00	Monticello Lake	Monticello Lake	5	Not Supporting	Max. Temperature	ЗA	Low	2020	5	
						Minimum Dissolved Oxygen	3A	Low	2016	5	
Colorado River Southeast	UT-L-14080203-009_00	Lloyds Reservoir	Lloyds Reservoir	2	No Evidence of Impairment	рп	JA	LOW	2000	90	

	Draft Combined 2018/2020 Integrated Report: Lakes, Reservoirs, and Ponds 305(b) and 303(d)											
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Lake, Reservoir, and Pond Acres		
Colorado River West	UT-L-14060007-001 00	Fairview Lakes	Fairview Lakes	2	No Evidence of Impairment					104		
Colorado River West	UT-L-14060007-004 00	Lower Gooseberry Reservoi	r Lower Gooseberry Reservoi	r 5	Not Supporting	Total Phosphorus as P	ЗA	Low	2010	64		
Colorado River West	UT-L-14060007-005_00	Scofield Reservoir	Scofield Reservoir	5	Not Supporting	Harmful algal blooms	2B	Low	2020	2,670		
					Approved TMDL	Minimum Dissolved Oxygen	ЗA	Low	1998	2,670		
						pH	3A	Low	2014	2,670		
						Total Phosphorus as P	3A	Low	1998	2,670		
Colorado River West	UT-L-14060009-001_00	Ferron Reservoir	Ferron Reservoir	2	No Evidence of Impairment					54		
Colorado River West	UT-L-14060009-004_00	Duck Fork Reservoir	Duck Fork Reservoir	2	No Evidence of Impairment					42		
Colorado River West	UT-L-14060009-017_00	Joes Valley Reservoir	Joes Valley Reservoir	3	Insufficient Data					1,052		
Colorado River West	UT-L-14060009-018_00	Huntington Reservoir	Huntington Reservoir	2	No Evidence of Impairment					163		
Colorado River West	UT-L-14060009-023_00	Miller Flat Reservoir	Miller Flat Reservoir	2	No Evidence of Impairment					161		
Colorado River West	UT-L-14060009-024_00	Cleveland Reservoir	Cleveland Reservoir	2	No Evidence of Impairment					147		
Colorado River West	UT-L-14060009-025_00	Electric Lake	Electric Lake	2	No Evidence of Impairment					451		
Colorado River West	UT-L-14060009-026_00	Millsite Reservoir	Millsite Reservoir	3	Insufficient Data					367		
Colorado River West	UT-L-14060009-034_00	Huntington Lake North	Huntington Lake North	2	No Evidence of Impairment					235		
Colorado River West	UT-L-14070003-006_00	Fish Lake	Fish Lake	2	No Evidence of Impairment					2,586		
Colorado River West	UT-L-14070003-010_00	Johnson Valley Reservoir	Johnson Valley Reservoir	4	Approved TMDL	Total Phosphorus as P	ЗA	Low	1998	672		
Colorado River West	UT-L-14070003-015_00	Mill Meadow Reservoir	Mill Meadow Reservoir	4	Approved TMDL	Total Phosphorus as P	ЗA	Low	1998	160		
Colorado River West	UT-L-14070003-018_00	Cook Lake	Cook Lake	2	No Evidence of Impairment					10		
Colorado River West	UT-L-14070003-019_00	Forsyth Reservoir	Forsyth Reservoir	4	Approved TMDL	Total Phosphorus as P	ЗA	Low	1998	165		
Colorado River West	UT-L-14070003-027_00	Donkey Reservoir	Donkey Reservoir	5	Not Supporting	рН	ЗA	Low	2020	24		
Colorado River West	UT-L-14070003-044_00	Lower Bowns Reservoir	Lower Bowns Reservoir	5	Not Supporting	Max. Temperature	ЗA	Low	2012	108		
						Minimum Dissolved Oxygen	ЗA	Low	2010	108		
						pH	ЗA	Low	2006	108		
						Total Ammonia as N	ЗA	Low	2020	108		
						Total Phosphorus as P	ЗA	Low	2012	108		
Colorado River West	UT-L-14070005-008_00	Posy Lake	Posy Lake	2	No Evidence of Impairment					12		
Colorado River West	UT-L-14070005-011_00	Wide Hollow Reservoir	Wide Hollow Reservoir	5	Not Supporting	Max. Temperature	ЗA	Low	2008	156		
						Minimum Dissolved Oxygen	ЗA	Low	2010	156		
						pH	3A	Low	2008	156		

	Draft Combined 2018/2020 Integrated Report: Lakes, Reservoirs, and Ponds 305(b) and 303(d)										
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Lake, Reservoir, and Pond Acres	
Great Salt Lake only	UT-L-16020310-001_00	Gilbert Bay	Gilbert Bay	2	No Evidence of Impairment					559,422	
Great Salt Lake only	UT-L-16020310-002_00	Gunnison Bay	Gunnison Bay	3	Insufficient Data					386,813	
Great Salt Lake only	UT-L-16020310-003_00	Bear River Bay	Bear River Bay	3	Insufficient Data					67,287	
Great Salt Lake only	UT-L-16020310-004_00	Farmington Bay	Farmington Bay		Insufficient Data					77,243	

	Draft Combined 2018/2020 Integrated Report: Lakes, Reservoirs, and Ponds 305(b) and 303(d)										
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Lake, Reservoir, and Pond Acres	
Jordan River	UT-L-16020204-024_00	Lake Mary	Lake Mary	2	No Evidence of Impairment					19	
Jordan River	UT-L-16020204-026_00	Little Dell Reservoir	Little Dell Reservoir	2	No Evidence of Impairment					221	

	Draft Combined 2018/2020 Integrated Report: Lakes, Reservoirs, and Ponds 305(b) and 303(d)										
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First I isted	Lake, Reservoir, and Pond Acres	
Lower Colorado River	UT-L-15010008-001_00	Gunlock Reservoir	Gunlock Reservoir	4	Approved TMDL	Total Phosphorus as P	3B	Low	1998	221	
Lower Colorado River	UT-L-15010008-008_00	Baker Dam Reservoir	Baker Dam Reservoir	5	Not Supporting	Max. Temperature	ЗA	Low	1992	44	
					Approved TMDL	Minimum Dissolved Oxygen	ЗA	Low	1998	44	
						Total Phosphorus as P	3A	Low	2002	44	
Lower Colorado River	UT-L-15010008-018_00	Kolob Reservoir	Kolob Reservoir	2	No Evidence of Impairment					238	
Lower Colorado River	UT-L-15010008-024_00	Quail Creek Reservoir	Quail Creek Reservoir	3	Insufficient Data					588	
Lower Colorado River	UT-L-15010008-025_00	Sand Hollow Reservoir	Sand Hollow Reservoir	1	Fully Supporting					1,260	

	Draft Combined 2018/2020 Integrated Report: Lakes, Reservoirs, and Ponds 305(b) and 303(d)										
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Lake, Reservoir, and Pond Acres	
Sevier River	UT-L-16030001-001_00	Navajo Lake	Navajo Lake	5	Not Supporting	pН	ЗA	Low	2016	631	
Sevier River	UT-L-16030001-006_00	Panguitch Lake	Panguitch Lake	5	Not Supporting	рН	3A	Low	2020	1,182	
					Approved TMDL	Minimum Dissolved Oxygen	ЗA	Low	2000	1,182	
						Total Phosphorus as P	ЗA	Low	2000	1,182	
Sevier River	UT-L-16030001-011_00	Piute Reservoir	Piute Reservoir	5	Not Supporting	Max. Temperature	ЗA	Low	2008	2,152	
						Total Phosphorus as P	ЗA	Low	2006	2,152	
Sevier River	UT-L-16030002-002_00	Tropic Reservoir	Tropic Reservoir	2	No Evidence of Impairment					182	
Sevier River	UT-L-16030002-004_00	Otter Creek Reservoir	Otter Creek Reservoir	5	Not Supporting	Max. Temperature	ЗA	Low	1994	2,495	
						рН	3A	Low	2006	2,495	
					Approved TMDL	Total Phosphorus as P	ЗA	Low	1998	2,495	
Sevier River	UT-L-16030002-005_00	Lower Box Creek Reservoir	Lower Box Creek Reservoir	5	Not Supporting	pН	ЗA	Low	2010	22	
					Approved TMDL	Minimum Dissolved Oxygen	ЗA	Low	2004	22	
						Total Phosphorus as P	3A	Low	1998	22	
Sevier River	UT-L-16030002-007_00	Pine Lake	Pine Lake	5	Not Supporting	pH	ЗA	Low	2016	85	
Sevier River	UT-L-16030002-011_00	Koosharem Reservoir	Koosharem Reservoir	5	Not Supporting	Max. Temperature	3A	Low	2020	341	
						Minimum Dissolved Oxygen	ЗA	Low	2020	341	
						pН	ЗA	Low	2020	341	
					Approved TMDL	Total Phosphorus as P	ЗA	Low	1998	341	
Sevier River	UT-L-16030003-005_00	Barney Lake	Barney Lake	3	Insufficient Data					21	
Sevier River	UT-L-16030003-006_00	Manning Meadow Reservoir	Manning Meadow Reservoir	5	Not Supporting	pH	3A	Low	2016	85	
						Total Phosphorus as P	3A	Low	1994	85	
		Sevier Bridge Reservoir	Sevier Bridge Reservoir								
Sevier River	UT-L-16030003-007_00	(Yuba Lake)	(Yuba Lake)	3	Insufficient Data					8,992	
Sevier River	UT-L-16030003-012_00	Redmond Lake	Redmond Lake	2	No Evidence of Impairment					240	
Sevier River	UT-L-16030003-016_00	Rex Reservoir	Rex Reservoir	2	No Evidence of Impairment	14 T	0.4		0000	35	
Sevier River	01-L-16030004-001_00	Ninemile Reservoir	Ninemile Reservoir	Э	Not Supporting	Max. Temperature	3A	Low	2008	185	
						Minimum Dissolved Oxygen	3A	Low	1998	105	
						Tatal Dhaamhamir as D	3A	Low	2006	601	
Sevier River	LIT-1-16030004-002-00	Gunnison Reservoir	Gunnison Reservoir	2	No Evidence of Impairment	Total Phosphorus as P	SA	LOW	1990	100	
Sevier River	LIT_L_16030004-002_00	Palicade Lake	Palisada Laka	5	Not Supporting	May Temperature	34	L OW	1002	1,230	
Sevier River	LIT-L-16030004-005_00	Gunnison Bend Reservoir		2	No Evidence of Impairment	Max. Temperature	JA	LOW	1992	/07	
Sevier River	LIT_L_16030005-021_00			2	No Evidence of Impairment					497	
Seviel Rivel	01-L-10030003-020_00	D.M.A.D. Reservoir	D.W.A.D. Reservoir	2	No Evidence or impairment					115	

Draft Combined 2018/2020 Integrated Report: Lakes, Reservoirs, and Ponds 305(b) and 303(d)										
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Lake, Reservoir, and Pond Acres
Uinta Basin	UT-L-14040106-001 00	Hoop Lake	Hoop Lake	3	Insufficient Data					171
Uinta Basin	UT-L-14040106-002 00	Spirit Lake	Spirit Lake	3	Insufficient Data					42
Uinta Basin	UT-L-14040106-016_00	Sheep Creek Lake	Sheep Creek Lake	2	No Evidence of Impairment					81
Uinta Basin	UT-L-14040106-019_00	Browne Lake	Browne Lake	5	Not Supporting	pН	ЗA	Low	2020	48
Uinta Basin	UT-L-14040106-021_00	Flaming Gorge Reservoir	Flaming Gorge Reservoir	5	Not Supporting	рН	3A	Low	2020	12,525
Uinta Basin	UT-L-14040106-026_00	Crouse Reservoir	Crouse Reservoir	2	No Evidence of Impairment					111
Uinta Basin	UT-L-14040106-031_00	Beaver Meadow Reservoir	Beaver Meadow Reservoir	3	Insufficient Data					106
Uinta Basin	UT-L-14040106-032_00	Long Park Reservoir	Long Park Reservoir	3	Insufficient Data					301
Uinta Basin	UT-L-14040106-033_00	Matt Warner Reservoir	Matt Warner Reservoir	5	Not Supporting	Harmful algal blooms	2B	Low	2020	364
						Lakes tier II	3A	Low	2020	364
						Max. Temperature	3A	Low	1996	364
						pH	3A	Low	2020	364
					Approved TMDL	Minimum Dissolved Oxygen	3A	Low	1998	364
						Total Phosphorus as P	3A	Low	1998	364
Uinta Basin	UT-L-14040106-034_00	Calder Reservoir	Calder Reservoir	5	Not Supporting	Lakes tier II	3A	Low	2016	94
						Max. Temperature	3A	Low	2010	94
						pH	3A	Low	2016	94
						Total Ammonia as N	3A	Low	2020	94
					Approved TMDL	Minimum Dissolved Oxygen	3A	Low	1998	94
						Total Phosphorus as P	3A	Low	1998	94
Uinta Basin	UT-L-14040107-001 00	Meeks Cabin Reservoir	Meeks Cabin Reservoir	2	No Evidence of Impairment	1				17
Uinta Basin	UT-L-14040107-003 00	Marsh Lake	Marsh Lake	2	No Evidence of Impairment					42
Uinta Basin	UT-L-14040107-004 00	Bridger Lake	Bridger Lake	5	Not Supporting	Minimum Dissolved Oxygen	3A	Low	1996	19
	_	5	0			рН	3A	Low	2016	19
Uinta Basin	UT-L-14040107-005 00	Lvman Lake	Lyman Lake	5	Not Supporting	Minimum Dissolved Oxvaen	3A	Low	1996	35
Uinta Basin	UT-L-14040107-006 00	China Lake	China Lake	5	Not Supporting	Max. Temperature	3A	Low	2000	27
						Minimum Dissolved Oxvaen	3A	Low	1996	27
Uinta Basin	UT-L-14040107-007 00	Stateline Reservoir	Stateline Reservoir	2	No Evidence of Impairment					274
Uinta Basin	UT-L-14060003-002_00	Scout Lake	Scout Lake	3	Insufficient Data					19
Uinta Basin	UT-L-14060003-003_00	Pyramid Lake	Pyramid Lake	3	Insufficient Data					15
Uinta Basin	UT-L-14060003-006_00	Mirror Lake	Mirror Lake	3	Insufficient Data					53
Uinta Basin	UT-L-14060003-011 00	Marshall Lake	Marshall Lake	3	Insufficient Data					19
Uinta Basin	UT-L-14060003-012_00	Hoover Lake	Hoover Lake	3	Insufficient Data					19
Uinta Basin	UT-L-14060003-112_00	Moon Lake	Moon Lake	3	Insufficient Data					786
Uinta Basin	UT-I -14060003-230_00	Big Sand Wash Reservoir	Big Sand Wash Reservoir	3	Insufficient Data					394
Uinta Basin	UT-L-14060003-293_00	Butterfly Lake	Butterfly Lake	5	Not Supporting	Minimum Dissolved Oxvaen	3A	Low	2020	5
onna baonn	01 2 11000000 200_00	Duttoriny Latto	Dationly Latto	0	riot oupporting	nH	34	Low	2016	5
Llinta Basin	LIT-L-14060003-296_00	Lipper Stillwater Reservoir	Linner Stillwater Reservoir	2	No Evidence of Impairment	pri	0, (2011	2010	301
Llinta Basin	LIT_L_14060003-297_00	Paradise Park Reservoir	Paradise Park Reservoir	5	Not Supporting	nH	34	Low	2020	147
Llinta Basin	UT-L -14060004-001_00	Strawberry Reservoir	Strawberry Reservoir	5	Not Supporting	pH	34	Low	2020	15 614
Olitta Dasili	01-E-14000004-001_00	Strawberry Reservoir	Guawberry Reservoir	5	Approved TMDI	Minimum Dissolved Oxygen	34	Low	1008	15,614
					Approved HMBE	Total Phoenborus as P	34	Low	1000	15,614
Llinta Basin	LIT-L-14060004-003_00	Red Creek Reservoir	Red Creek Reservoir	2	No Evidence of Impairment		ON	Low	1000	1/17
Llinta Basin	LIT-L-14060004-003_00	Lake Canvon Lake	Lake Canvon Lake	5	Not Supporting	Arsenic	10	Low	2016	147
	SIL 1400004-004_00	Lano Ganyon Lano	Lano Ganyon Lane	5		Boron	4	Low	2016	29
						nH	30	Low	2016	29
						Total Dissolved Solida	1		2016	29
Llinta Basin	LIT-L-14060004-006-00	Stanyation Resonvoir	Stanuation Reconvoir	5	Not Supporting	May Temperature	30	Low	2010	2 2 4 2
Unite Dasin	01-2-14080004-008_00	Starvation Reservoir	Starvation Reservoir	5	Not Supporting	Minimum Dissolved Courses	3A	Low	2020	3,343
						winninhum Dissolved Oxygen	SА	LOW	2020	3,343

* Impairment confirmed by water quality samples and advisories.

	Draft Combined 2018/2020 Integrated Report: Lakes, Reservoirs, and Ponds 305(b) and 303(d)											
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Lake, Reservoir, and Pond Acres		
Uinta Basin	UT-L-14060004-007_00	Currant Creek Reservoir	Currant Creek Reservoir	2	No Evidence of Impairment					274		
Uinta Basin	UT-L-14060010-001_00	Pelican Lake	Pelican Lake	5	Not Supporting	рН	3B	Low	2004	1,114		
						Total Phosphorus as P	3B	Low	2012	1,114		

* Impairment confirmed by water quality samples and advisories.

	Draft Combined 2018/2020 Integrated Report: Lakes, Reservoirs, and Ponds 305(b) and 303(d)											
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Lake, Reservoir, and Pond Acres		
Uinta Basin	UT-L-14060010-002_00	Brough Reservoir	Brough Reservoir	5	Not Supporting	Fish Tissue (Mercury)	ЗA	Low	2020	136		
						Max. Temperature	ЗA	Low	2008	136		
					Approved TMDL	Minimum Dissolved Oxygen	ЗA	Low	1998	136		
Uinta Basin	UT-L-14060010-003_00	Ashley Twin Lakes	Ashley Twin Lakes	2	No Evidence of Impairment					32		
Uinta Basin	UT-L-14060010-005_00	Oaks Park Reservoir	Oaks Park Reservoir	3	Insufficient Data					338		
Uinta Basin	UT-L-14060010-006_00	Steinaker Reservoir	Steinaker Reservoir	5	Not Supporting	Max. Temperature	ЗA	Low	2008	745		
					Approved TMDL	Minimum Dissolved Oxygen	ЗA	Low	1998	745		
Uinta Basin	UT-L-14060010-007_00	East Park Reservoir	East Park Reservoir	3	Insufficient Data					179		
Uinta Basin	UT-L-14060010-008_00	Red Fleet Reservoir	Red Fleet Reservoir	5	Not Supporting	Max. Temperature	ЗA	Low	2010	478		
					Approved TMDL	Minimum Dissolved Oxygen	ЗA	Low	1998	478		
Uinta Basin	UT-L-14060010-009_00	Stewart Lake	Stewart Lake	5	Not Supporting	Selenium	3B	Low	2016	158		

Watershad Management Lunit Juni Management Junit Management Ju		Draft Combined 2018/2020 Integrated Report: Lakes, Reservoirs, and Ponds 305(b) and 303(d)											
Ulah Lake UT-L-16020201-004_01 Mona Reservoir Mona Reservoir Bay Issufficient Data Hamful algal blooms 2A Low 2016 87.984 Ulah Lake other than Provo Ulah Lake other than Provo Bay Bay 5 Not Supporting Hamful algal blooms 2A Low 2016 87.984 Ulah Lake UT-L-16020201-004_02 Bay Provo Bay portion of Ulah Lake Provo Bay portion of Ul	Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Lake, Reservoir, and Pond Acres		
Uhi Lake Uhi Lake other than Prov Bay Total Propholy Field i Fish Tsue Aux Cov 2020 67,084 Uhi Lake Total Propholy Total Propholy Total Propholy Description Total Propho	Utah Lake	UT-L-16020201-001_00	Mona Reservoir	Mona Reservoir	3	Insufficient Data					1,562		
Lakes tier II 38 Low 2020 67.984 PCB in Fibr Tissue 38 Low 2010 67.984 Total Disolved Solids 4 Low 2000 67.984 Ulah Lake WT-L-16020201-004_02 Provo Bay portion of Utah Lake Frovo Bay portion of Utah Poring Porting Poring Portion Bay Portion Sas P Low<	Utah Lake	UT-L-16020201-004_01	Utah Lake other than Provo Bay	Utah Lake other than Provo Bay	5	Not Supporting	Harmful algal blooms	2A	Low	2016	87,984		
Pick in Figh Tissue 38 Low 2010 87,884 Ulah Lake UT-L-16020201-004_02 Provo Bay portion of Ulah Lake Frovo Bay portion of Ulah Lake Second Science 2A Low 2020 3.611 Ulah Lake UT-L-16020201-005_00 Tibble Fork Reservoir Tibble Fork Reservoir 3 Insufficient Data 3B Low 2020 3.611 Ulah Lake UT-L-16020201-005_00 Tibble Fork Reservoir Tibble Fork Reservoir 3 Insufficient Data 3B Low 2010 3.611 Ulah Lake UT-L-16020201-005_00 Silver Lake Flat Reservoir 3 Insufficient Data 11 10a Acow 2020 3.3 Ulah Lake UT-L-16020202-001_00 Salem Lake Silver Lake Flat Reservoir 5 Not Supporting Minimum Disolved Oxygen 3A Low 2020 13 Ulah Lake UT-L-16020202-001_00 Big East Lake 5 Not Supporting							Lakes tier II	3B	Low	2020	87,984		
Interpretation Interpr							PCB in Fish Tissue	3B	Low	2010	87,984		
Instruction Total Prosonary Brows as P 38 Low 1994 87,894 Ulah Lake UT-L-16020201-004_02 Lake Provo Bay portion of Ultah Lake 5 Not Supporting Harmful algal blooms 2A Low 2020 3,611 Lake Lake Lake Lake 10 38 Low 2020 3,611 PCB in FishTissue 38 Low 2010 3,611 PCB in FishTissue 38 Low 2010 3,611 Total Phosphorus as P 38 Low 2010 3,611 Ulah Lake UT-L-16020201-005_00 Tibble Fork Reservoir 5 Not Supporting Minimum Dissolved Oxygen 3A Low 2020 33 Ulah Lake UT-L-16020202-002_00 Salem Lake 5 Not Supporting Minimum Dissolved Oxygen 3A Low 2012 26 Ulah Lake UT-L-16020203-001_00 Salem Lake 5 Not Supporting Max. Temperature 3A Low 2012 26							Total Dissolved Solids	4	Low	2006	87,984		
Provo Bay portion of Utah Pr							Total Phosphorus as P	3B	Low	1994	87,984		
Lakes UT-L-16020201-005_00 Tibble Fork Reservoir Tibble Fork Reservoir 3 Insufficient Data Insufficie	Utah Lake	UT-L-16020201-004 02	Provo Bay portion of Utah Lake	Provo Bay portion of Utah Lake	5	Not Supporting	Harmful algal blooms	2A	Low	2020	3,611		
$\frac{PCB \text{ in Fish Tissue } 3B Low \\ 2010 3.611 \\ \hline PH \\ 3B Low \\ 2016 3.611 \\ \hline Total Ammonia as N \\ 3B Low \\ 2016 3.611 \\ \hline Total Ammonia as N \\ 3B Low \\ 2016 3.611 \\ \hline Total Phosphorus as P \\ 3B Low \\ 2016 3.611 \\ \hline Total Phosphorus as P \\ 3B Low \\ 2016 3.611 \\ \hline Total Phosphorus as P \\ 3B Low \\ 2016 3.611 \\ \hline Total Phosphorus as P \\ 2010 3.611 \\ \hline Total Phosphorus as P \\ 2010 3.611 \\ \hline Total Phosphorus as P \\ 2010 3.611 \\ \hline Total Phosphorus as P \\ 2010 3.611 \\ \hline Total Phosphorus as P \\ 2010 3.61 \\ \hline Total Phosphorus as P \\ 2010 3.61 \\ \hline Total Phosphorus as P \\ 2010 2.6 \\ \hline PH \\ 3A Low \\ 2020 200 \\ \hline Total Phosphorus as P \\ \hline Health Advisory (E. coli) \\ 2A Low \\ 2020 200 \\ \hline PH \\ 3A Low \\ 2020 200 \\ \hline Total Phosphorus as P \\ 3A Low \\ 2020 200 \\ \hline Total Phosphorus as P \\ 3A Low \\ 2012 26 \\ \hline PH \\ 3A Low \\ 2012 26 \\ \hline PH \\ 3A Low \\ 2012 26 \\ \hline PH \\ 3A Low \\ 2012 26 \\ \hline PH \\ 3A Low \\ 2012 26 \\ \hline PH \\ 3A Low \\ 2012 26 \\ \hline PH \\ 3A Low \\ 2012 26 \\ \hline PH \\ 3A Low \\ 2012 26 \\ \hline PH \\ 3A Low \\ 2012 26 \\ \hline PH \\ 3A Low \\ 2012 26 \\ \hline PH \\ 3A Low \\ 2012 26 \\ \hline PH \\ 3A Low \\ 2012 26 \\ \hline PH \\ 3A Low \\ 2012 26 \\ \hline PH \\ 3A Low \\ 2012 26 \\ \hline PH \\ 3A Low \\ 2012 26 \\ \hline PH \\ 3A Low \\ 2016 2,989 \\ \hline PH \\ 3A Low \\ 2016 2,989 \\ \hline PH \\ 3A Low \\ 2016 2,989 \\ \hline PH \\ \hline Total Phosphorus as P \\ A Low \\ 2016 2,989 \\ \hline PH \\ \hline Total Phosphorus as P \\ A Low \\ 2016 2,989 \\ \hline PH \\ \hline Total Phosphorus as P \\ A Low \\ 2016 2,989 \\ \hline PH \\ \hline Total Phosphorus as P \\ A Low \\ 2016 2,989 \\ \hline PH \\ \hline Total Phosphorus as P \\ A Low \\ 2016 2,989 \\ \hline PH \\ \hline Total Phosphorus as P \\ A Low \\ 2016 2,989 \\ \hline PH \\ \hline Total Phosphorus as P \\ A Low \\ 2016 2,989 \\ \hline PH \\ \hline Total Phosphorus as P \\ A Low \\ 2016 2,989 \\ \hline PH \\ \hline Total Phosphorus as P \\ A Low \\ 2016 2,989 \\ \hline PH \\ \hline Total Phosphorus as P \\ A Low \\ 2016 2,989 \\ \hline PH \\ \hline Total Phosphorus as P \\ A Low \\ 2016 2,980 \\ \hline PH \\ \hline Total Phosphoru$							Lakes tier II	3B	Low	2020	3,611		
$\frac{\text{pH}}{\text{Total Ammonia as N}} = 3B \text{Low} & 2016 3.611 \\ \hline \text{Total Ammonia as N}} = 3B \text{Low} & 2016 3.611 \\ \hline \text{Total Ammonia as N}} = 3B \text{Low} & 2016 3.611 \\ \hline \text{Total Ammonia as N}} = 3B \text{Low} & 2016 3.611 \\ \hline \text{Total Ammonia as N}} = 3B \text{Low} & 1994 3.611 \\ \hline \text{Total Ammonia as N}} = 3B \text{Low} & 1994 3.611 \\ \hline \text{Total Ammonia as N}} = 3B \text{Low} & 1994 3.611 \\ \hline \text{Total Ammonia as N}} = 3B \text{Low} & 1994 3.611 \\ \hline \text{Total Ammonia as N}} = 3B \text{Low} & 2020 33 \\ \hline \text{Utah Lake} & \text{UT-L-16020202-001_00} \text{Silver Lake Flat Reservoir} Silver Lake Flat Reservoir} Silver Lake Flat Reservoir \\ \hline \text{Total Ammonia as N}} = 2B \text{Low} & 2020 33 \\ \hline \text{Utah Lake} & \text{UT-L-16020202-002_00} \text{Big East Lake} Salem Lake S \text{Not Supporting} \underline{F. col^*} 2A \text{Low} 2020 19 \\ \hline \text{Health Advisory (E. col)} 2A \text{Low} 2020 26 \\ \hline \text{Interm Dissolved Oxygen} 3A \text{Low} 2020 26 \\ \hline \text{Interm Dissolved Oxygen} SA \text{Low} 2020 26 \\ \hline \text{Total Prosphorus as P} 3A \text{Low} 2020 26 \\ \hline \text{Total Prosphorus P} 3A \text{Low} 2020 26 \\ \hline \text{Interm Dissolved Oxygen} SA \text{Low} 2020 26 \\ \hline \text{Interm Dissolved Oxygen} SA \text{Low} 2020 26 \\ \hline \text{Interm Dissolved Oxygen} SA \text{Low} 2020 26 \\ \hline \text{Interm Dissolved Oxygen} SA \text{Low} 2020 26 \\ \hline \text{Interm Dissolved Oxygen} SA \text{Low} 2020 26 \\ \hline \text{Interm Dissolved Oxygen} SA \text{Low} 2006 2.562 \\ \hline \text{Interm Dissolved Oxygen} SA \text{Low} 2006 2.562 \\ \hline \text{Approved TMDL} \text{Minimum Dissolved Oxygen} SA \text{Low} 2006 2.562 \\ \hline \text{Approved TMDL} \text{Minimum Dissolved Oxygen} SA \text{Low} 2006 2.562 \\ \hline \text{Approved TMDL} \text{Minimum Dissolved Oxygen} SA \text{Low} 2006 2.562 \\ \hline \text{Approved TMDL} \text{Minimum Dissolved Oxygen} SA \text{Low} 2006 2.562 \\ \hline \text{Approved TMDL} \text{Minimum Dissolved Oxygen} SA \text{Low} 2006 2.562 \\ \hline \text{Approved TMDL} \text{Minimum Dissolved Oxygen} SA \text{Low} 2006 2.562 \\ \hline \text{Approved TMDL} Minimum Dissolved Oxyge$							PCB in Fish Tissue	3B	Low	2010	3,611		
$\frac{1}{1} \frac{1}{1} \frac{1}$							pH	3B	Low	2016	3,611		
Utah Lake UT-L-16020201-005_00 Tibble Fork Reservoir Tibble Fork Reservoir Tibble Fork Reservoir Tibble Fork Reservoir Silver Lake Flat Reservoir Silver Lake Silver Lake Silver Silver Lake <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Total Ammonia as N</td> <td>3B</td> <td>Low</td> <td>2016</td> <td>3,611</td>							Total Ammonia as N	3B	Low	2016	3,611		
Utah Lake UT-L-16020201-005_00 Tibble Fork Reservoir 3 Insufficient Data 11 Utah Lake UT-L-16020201-006_00 Silver Lake Flat Reservoir Silver Lake Flat Reservoir 5 Not Supporting Minimum Dissolved Oxygen 3A Low 2020 19 Utah Lake UT-L-16020202-001_00 Salem Lake Salem Lake 5 Not Supporting Minimum Dissolved Oxygen 3A Low 2020 19 Utah Lake UT-L-16020202-002_00 Big East Lake Big East Lake 5 Not Supporting Max. Temperature 3A Low 2012 26 Minimum Dissolved Oxygen 3A Low 2012 26 26 200 200 2020 2							Total Phosphorus as P	3B	Low	1994	3,611		
Utah Lake UT-L-16020201-006_00 Silver Lake Flat Reservoir Silver Lake Silver Lake Not Supporting Minimum Dissolved Oxygen 3A Low 2020 19 Utah Lake UT-L-16020202-002_00 Big East Lake Big East Lake 5 Not Supporting Max. Temperature 3A Low 2012 26 Utah Lake UT-L-16020203-001_00 Deer Creek Reservoir Deer Creek Reservoir 5 Not Supporting Max. Temperature 3A Low 2012 26 Utah Lake UT-L-16020203-001_00 Deer Creek Reservoir Deer Creek Reservoir 5 Not Supporting Max. Temperature 3A Low 2020 26 Utah Lake UT-L-16020203-002_00 Trial Lake Trial Lake Trial Lake Supporting PH 3A Low <	Utah Lake	UT-L-16020201-005_00	Tibble Fork Reservoir	Tibble Fork Reservoir	3	Insufficient Data					11		
Utah Lake UT-L-16020202-001_00 Salem Lake Salem Lake S Not Supporting E. colt 2A Low 2016 19 Utah Lake UT-L-16020202-002_00 Big East Lake Big East Lake 5 Not Supporting Max. Temperature 3A Low 2020 26 Minimum Dissolved Oxygen 3A Low 2020 26 Total Phosphorus as P 3A Low 2020 26 Vtah Lake UT-L-16020203-001_00 Deer Creek Reservoir Deer Creek Reservoir 5 Not Supporting Max. Temperature 3A Low 2020 26 Vtah Lake UT-L-16020203-002_00 Trial Lake Trial Lake 5 Not Supporting Max. Temperature 3A Low 2020 26 Utah Lake UT-L-16020203-002_00 Trial Lake Trial Lake 5 Not Supporting PH 3A Low 1998 2,562 Utah Lake UT-L-16020203-002_00 Jordanelle Reservoir Jordanelle Reservoir 5 Not Supporting PH 3A Low 2016 2,989 Utah Lake UT-L-16020203-004_00 Mill Hollow Reservoir 5 Not Supporting PH 3A Low 1992 18	Utah Lake	UT-L-16020201-006_00	Silver Lake Flat Reservoir	Silver Lake Flat Reservoir	5	Not Supporting	Minimum Dissolved Oxygen	3A	Low	2020	33		
Utah Lake UT-L-1602020-002_00 Big East Lake Big East Lake 5 Not Supporting Max. Temperature 3A Low 2020 26 Minimu Dissolved Oxygen 3A Low 2020 26 PH 3A Low 2020 26 Total Phosphorus as P 3A Low 2020 26 Total Phosphorus as P 3A Low 2020 26 Total Phosphorus as P 3A Low 2012 26 Total Phosphorus as P 3A Low 2020 26 Utah Lake UT-L-16020203-002_00 Trial Lake 5 Not Supporting PH 3A Low 2020 26 Utah Lake UT-L-16020203-004_00 Mill Hollow Reservoir 5 Not Supporting PH 3A Low<	Utah Lake	UI-L-16020202-001_00	Salem Lake	Salem Lake	5	Not Supporting	E. coli*	2A	Low	2016	19		
Utah Lake UT-L-16020202-002_00 Big East Lake Big East Lake Big East Lake 5 Not Supporting Max. Temperature 3A Low 2012 26 Minimum Dissolved Oxygen 3A Low 1996 26 PH 3A Low 2020 26 Vah Lake UT-L-16020203-001_00 Deer Creek Reservoir Deer Creek Reservoir 5 Not Supporting Max. Temperature 3A Low 2020 26 Vah Lake UT-L-16020203-002_00 Trial Lake Trial Lake 5 Not Supporting Minimum Dissolved Oxygen 3A Low 2020 26 Utah Lake UT-L-16020203-002_00 Trial Lake Trial Lake 5 Not Supporting PH 3A Low 2020 62 Utah Lake UT-L-16020203-004_00 Jordanelle Reservoir 5 Not Supporting PH 3A Low 2016 2,989 Utah Lake UT-L-16020203-004_00 Mill Hollow Reservoir 5 Not Supporting PH 3A Low 1992 18 Utah Lake UT-L-16020203-004_00 Mill Hollow Reservoir 5 Not Supporting PH 3A Low 1992 18 Utah Lake UT							Health Advisory (E. coli)	2A	Low	2020	19		
$\frac{\text{Minimum Dissolved Oxygen 3A}}{\text{PH}} = \frac{3A}{2} Low = \frac{1996}{26} 26 \\ \hline \text{PH} & 3A & Low = 2020 & 26 \\ \hline \text{PH} & 3A & Low = 2020 & 26 \\ \hline \text{PH} & 3A & Low = 2020 & 26 \\ \hline \text{Total Phosphorus as P} & 3A & Low = 2026 & 2,562 \\ \hline \text{Other Phosphorus as P} & 3A & Low = 2006 & 2,562 \\ \hline \text{Other Phosphorus as P} & 3A & Low = 2006 & 2,562 \\ \hline \text{Other Phosphorus as P} & 3A & Low = 2006 & 2,562 \\ \hline \text{Other Phosphorus as P} & 3A & Low = 2006 & 2,562 \\ \hline \text{Other Phosphorus as P} & 3A & Low = 2006 & 2,562 \\ \hline \text{Other Phosphorus as P} & 3A & Low = 2006 & 2,562 \\ \hline \text{Other Phosphorus as P} & 3A & Low = 2020 & 62 \\ \hline \text{Other Phosphorus as P} & 3A & Low = 2020 & 62 \\ \hline \text{Other Phosphorus as P} & 3A & Low = 2020 & 62 \\ \hline \text{Other Phosphorus as P} & 3A & Low = 2016 & 2,989 \\ \hline \text{Other Phosphorus as P} & 3A & Low = 2016 & 2,989 \\ \hline \text{Other Phosphorus as P} & 3A & Low = 2016 & 2,989 \\ \hline \text{Other Phosphorus as P} & 3A & Low = 2016 & 2,989 \\ \hline \text{Other Phosphorus as P} & 3A & Low = 2016 & 2,989 \\ \hline \text{Other Phosphorus as P} & 3A & Low = 2016 & 2,989 \\ \hline \text{Other Phosphorus as P} & 3A & Low = 2016 & 2,989 \\ \hline \text{Other Phosphorus as P} & 3A & Low = 2016 & 2,989 \\ \hline \text{Other Phosphorus as P} & 3A & Low = 2016 & 2,989 \\ \hline \text{Other Phosphorus as P} & 3A & Low = 2016 & 2,989 \\ \hline \text{Other Phosphorus as P} & 3A & Low = 2016 & 2,989 \\ \hline \text{Other Phosphorus as P} & 3A & Low = 2016 & 2,989 \\ \hline \text{Other Phosphorus as P} & 3A & Low = 2016 & 2,989 \\ \hline \text{Other Phosphorus as P} & 3A & Low = 2016 & 2,989 \\ \hline \text{Other Phosphorus as P} & 3A & Low = 2017 & 2,919 & 2,180 \\ \hline \text{Other Phosphorus as P} & 3A & Low & 1992 & 180 \\ \hline \text{Other Phosphorus as P} & 3A & Low & 1992 & 180 \\ \hline \text{Other Phosphorus as P} & 3A & Low & 1992 & 180 \\ \hline \text{Other Phosphorus as P} & 3A & Low & 1992 & 180 \\ \hline \text{Other Phosphorus as P} & 3A & Low & 1992 & 180 \\ \hline \text{Other Phosphorus as P} & 3A & Low & 1992 & 180 \\ \hline \text{Other Phosphorus as P} & 3A & Low & 1992 & 180 \\ \hline \text{Other Phosphorus as P} & 3A & Low & 1992 & 180 \\ \hline \text{Other Phosphorus as P} & 3A & Low & 1992 & 180 \\ \hline Other Phosp$	Utah Lake	UT-L-16020202-002_00	Big East Lake	Big East Lake	5	Not Supporting	Max. Temperature	ЗA	Low	2012	26		
$\frac{PH}{Total Phosphorus as P} = 3A \\ Low = 2020 \\ 262$							Minimum Dissolved Oxygen	3A	Low	1996	26		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							pН	3A	Low	2020	26		
Violation Vol Supporting Max. temperature SA Low 2006 2,562 Approved TMDL Minimum Dissolved Oxygen 3A Low 1998 2,562 Utah Lake UT-L-16020203-002_00 Trial Lake 5 Not Supporting pH 3A Low 2006 2,962 Utah Lake UT-L-16020203-003_00 Jordanelle Reservoir Jordanelle Reservoir 5 Not Supporting pH 3A Low 2016 2,989 Utah Lake UT-L-16020203-004_00 Mill Hollow Reservoir Mill Hollow Reservoir 5 Not Supporting pH 3A Low 1992 18 Utah Lake UT-L-16020203-005_00 Washington Lake Washington Lake 3 Insufficient Data 10 1092 18 Utah Lake UT-L-16020203-005_00 Washington Lake Washington Lake 3 Insufficient Data 102 18	Likely Later		Deer Greek Deerevin	Deer Oreel: Deererie	_	Net Commenting	Total Phosphorus as P	3A	Low	2012	26		
Utah Lake UT-L-16020203-002_00 Trial Lake Trial Lake 5 Not Supporting pH 3A Low 200 62 Utah Lake UT-L-16020203-003_00 Jordanelle Reservoir Jordanelle Reservoir 5 Not Supporting pH 3A Low 2016 2,982 Utah Lake UT-L-16020203-004_00 Mill Hollow Reservoir Jordanelle Reservoir 5 Not Supporting pH 3A Low 1992 18 Utah Lake UT-L-16020203-005_00 Washington Lake Washington Lake 3 Insufficient Data 107 18 Utah Lake UT-L-16020203-005_00 Washington Lake Washington Lake 3 Insufficient Data 107 18	Utan Lake	01-L-16020203-001_00	Deer Creek Reservoir	Deer Creek Reservoir	5		Miaimum Disasture	3A	Low	2006	2,562		
Otal Lake OT-L-16020203-002_00 Intal Lake S Not Supporting ph SA Low 2020 62 Utah Lake UT-L-16020203-003_00 Jordanelle Reservoir 5 Not Supporting pH 3A Low 2020 62 Utah Lake UT-L-16020203-004_00 Mill Hollow Reservoir Mill Hollow Reservoir 5 Not Supporting pH 3A Low 2020 62 Utah Lake UT-L-16020203-004_00 Mill Hollow Reservoir 5 Not Supporting pH 3A Low 1992 18 Utah Lake UT-L-16020203-005_00 Washington Lake 3 Insufficient Data 107 18 Utah Lake UT-L-16020203-005_00 Washington Lake 3 Insufficient Data 107	Litab Laka	LIT I 16020202 002 00	Trial Lake	Trial Laka	5	Approved TMDL	Minimum Dissolved Oxygen	3A	Low	1998	2,502		
Utat Lake UT-L-16020203-005_00 Valuation reservoir Software reservoir<	Utah Lake	LIT L 16020203-002_00			5	Not Supporting	pri	3A 2A	Low	2020	2 080		
Utah Lake UT-L-16020203-004_00 Mill Hollow Reservoir Mill Hollow Reservoir 5 Not Supporting pH 3A Low 1992 18 Utah Lake UT-L-16020203-005_00 Washington Lake Washington Lake 3 Insufficient Date 3A Low 1992 18 Utah Lake UT-L-16020203-005_00 Washington Lake 3 Insufficient Date 3A Low 1992 18 Utah Lake UT-L-16020203-005_00 Washington Lake 3 Insufficient Date 3A Low 1992 18		01-L-10020203-003_00			5	Not Supporting	pri	JA		2010	2,909		
Total Phosphorus as P 3A Low 1992 18 Utah Lake UT-L-16020203-005_00 Washington Lake 3 Insufficient Data 107 Utah Lake UT-L-16020203-005_00 Washington Lake 3 Insufficient Data 107 Utah Lake UT-L-16020203-005_00 Washington Lake 3 Insufficient Data 107	Utah Lake	UT-L-16020203-004_00	Mill Hollow Reservoir	Mill Hollow Reservoir	5	Not Supporting	pH	3A	Low	1992	18		
Vian Land O' E 1002200 000_00 Tradingon Land Maningon Land O Maningon Land O Maningon Land O Maningon Land Maningon Land O Man	Litah Lake	LIT-L-16020203-005_00	Washington Lake	Washington Lake	3	Insufficient Data	Total Phosphorus as P	3A	Low	1992	18		
	Litah Lake	LIT-L-16020203-006_00	Wall Lake	Wall Jaka	3	Insufficient Data					72		

	Draft Combined 2018/2020 Integrated Report: Lakes, Reservoirs, and Ponds 305(b) and 303(d)											
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Lake, Reservoir, and Pond Acres		
Weber River	UT-L-16020101-001_00	Echo Reservoir	Echo Reservoir	5	Not Supporting	Max. Temperature	ЗA	Low	2012	1,337		
					Approved TMDL	Minimum Dissolved Oxygen	3A	Low	1996	1,337		
						Total Phosphorus as P	3A	Low	1994	1,337		
Weber River	UT-L-16020101-002_00 F	Rockport Reservoir	Rockport Reservoir	5	Not Supporting	Max. Temperature	ЗA	Low	2012	1,060		
						pH	3A	Low	2020	1,060		
					Approved TMDL	Minimum Dissolved Oxygen	3A	Low	2006	1,060		
Weber River	UT-L-16020101-003_00	Lost Creek Reservoir	Lost Creek Reservoir	2	No Evidence of Impairment					370		
Weber River	UT-L-16020101-005_00	Reservoir	Reservoir	2	No Evidence of Impairment					207		
Weber River	UT-L-16020102-004_00	Willard Bay Reservoir	Willard Bay Reservoir	1	Fully Supporting					10,109		
Weber River	UT-L-16020102-014_00	Pineview Reservoir	Pineview Reservoir	5	Not Supporting	Max. Temperature	3A	Low	1994	3,010		
					Approved TMDL	Minimum Dissolved Oxygen	3A	Low	1998	3,010		
						Total Phosphorus as P	ЗA	Low	1998	3,010		
Weber River	UT-L-16020102-020_00	East Canyon Reservoir	East Canyon Reservoir	4	Approved TMDL	Total Phosphorus as P	ЗA	Low	1988	640		
Weber River	UT-L-16020102-021_00	Causey Reservoir	Causey Reservoir	2	No Evidence of Impairment					127		

* Impairment confirmed by water quality samples and advisories.

	Draft Combined 2018/2020 Integrated Report: Lakes, Reservoirs, and Ponds 305(b) and 303(d)											
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Lake, Reservoir, and Pond Acres		
West Desert / Columbia	UT-L-16020304-002_00	Rush Lake	Rush Lake	2	No Evidence of Impairment					242		
West Desert / Columbia	UT-L-16020304-003_00	Stansbury Lake	Stansbury Lake	5	Not Supporting	Total Dissolved Solids	4	Low	2016	91		
West Desert / Columbia	UT-L-16020304-004_00	Reservoir	Reservoir	5	Not Supporting	pН	ЗA	Low	2020	26		
West Desert / Columbia	UT-L-16020304-005_00	Grantsville Reservoir	Grantsville Reservoir	5	Not Supporting	Max. Temperature	ЗA	Low	2020	95		
						Minimum Dissolved Oxygen	ЗA	Low	2020	95		

	Draft (Combined 2018/20	20 Integrated Report: Resegme	nted Assessment Units for Lakes, Reservoirs, and Ponds
Watershed Management Unit	Original Assessment Unit ID	New Assessment Unit ID	New Assessment Unit Name	New Assessment Unit Description
	There are no propos	ed assessment unit (AU	J) splits for the Draft Combined 2018/2020	IR. Proposed splits for lake, reservoir, and pond AUs will be considered in future IRs.

Draft Combined 2018/2020 Integrated Report: Delistings for Lakes, Reservoirs, and Ponds										
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessed Parameter	Cycle Delisted	EPA Justification	DWQ Delisting Comment			
Bear River	UT-L-16010203-009_00	Porcupine Reservoir	Porcupine Reservoir	Max. Temperature	2018/2020	Attaining WQS with new data	New data			
Colorado River West	UT-L-14070003-015_00	Mill Meadow Reservoir	Mill Meadow Reservoir	pН	2018/2020	Attaining WQS with new data	New data			
Colorado River West	UT-L-14070003-019_00	Forsyth Reservoir	Forsyth Reservoir	Minimum Dissolved Oxygen	2018/2020	Attaining WQS with new data	New data			
Lower Colorado River	UT-L-15010008-001_00	Gunlock Reservoir	Gunlock Reservoir	Minimum Dissolved Oxygen	2018/2020	Attaining WQS with new data	New data			
Sevier River	UT-L-16030001-001_00	Navajo Lake	Navajo Lake	Minimum Dissolved Oxygen	2018/2020	Attaining WQS with new data	New data			
Uinta Basin	UT-L-14060003-230_00	Big Sand Wash Reservoir	Big Sand Wash Reservoir	Max. Temperature	2018/2020	Attaining WQS with new data	New data			
Uinta Basin	UT-L-14060003-230_00	Big Sand Wash Reservoir	Big Sand Wash Reservoir	Minimum Dissolved Oxygen	2018/2020	Attaining WQS with new data	New data			
Weber River	UT-L-16020102-020_00	East Canyon Reservoir	East Canyon Reservoir	Max. Temperature	2018/2020	Attaining WQS with new data	New data			
Weber River	UT-L-16020102-020_00	East Canyon Reservoir	East Canyon Reservoir	Minimum Dissolved Oxygen	2018/2020	Attaining WQS with new data	New data			

Chapter 3: Assessments Specific to Flowing Surface Waters of the State and Canals

		Draft Con	nbined 2018/2020 Integrated Repo	ort: Flowing Surfa	ace Waters of the State	e and Canals 305(b) and	1 303(d)			
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Bear River	UT16010101-001_00	Bear River West	Bear River west side tributaries from Sixmile Creek north	5	Not Supporting	Max. Temperature	3A	Low	2020	17
						E. coli	2B	Low	2020	17
Bear River	UT16010101-002_00	Six Mile Creek - Bear	Sixmile Creek from reservoir to headwaters	5	Not Supporting	E. coli	2B	Low	2016	26
						Minimum Dissolved Oxygen Max. Temperature	3A 3A	Low	2020	26
Bear River	UT16010101-003_00	Little Creek - Bear	Little Creek and tributaries from confluence with Bear River to headwaters	s 2	No Evidence of Impairment					30
Bear River	UT16010101-004_00	Sage Creek	confluence with Bear River to headwaters	s 5	Not Supporting	Max. Temperature	3A	Low	2010	33
						E. coli Minimum Dissolved Oxygen	2B 34	Low	2014	33
						Macroinvertebrates	3A	Low	2020	33
Bear River	UT16010101-005_00	Otter Creek	Otter Creek and tributaries from Bear River to headwaters	3	Insufficient Data					54
Bear River	UT16010101-006 00	Bear River-4	Bear River from Woodruff Creek north to	5	Not Supporting	Max Temperature	34	Low	2014	19
Boarrator	0110010101000_00	Boarranon	ouge oreek bundlion	0	Approved TMDL	Total Phosphorus as P	3A		2000	19
			Big Creek and tributaries from Bear River	r		Minimum Dissolved Oxygen	3A		2020	19
Bear River	UT16010101-007_00	Big Creek	to headwaters	5	Not Supporting	pH	3A	Low	2006	62
			Bear River west side tributaries between			E. COII	28	LOW	2014	62
Bear River	UT16010101-008_00	North Woodruff	Woodruff and Big Creek	2	No Evidence of Impairment					43
Bear River	UT16010101-009_00	Bear River-5	Bear River from Woodruff Creek upstream to Utah-Wyoming border	5	Not Supporting	Max. Temperature	3A	Low	2020	4
Bear River	UT16010101-010_00	Birch Creek - Bear	Birch Creek and tributaries from confluence with Woodruff Creek to headwaters	3	Insufficient Data					24
Bear River	UT16010101-011 00	Woodruff Creek-1	Woodruff Creek from mouth to Birch	2	No Evidence of Impairment					22
Bear River	UT16010101-012_00	Unnamed Creek	Unnamed tributary to Saleratus Creek	3	Insufficient Data					4
			Woodruff Creek and tributaries from							
Bear River	UT16010101-013_00	Woodruff Creek-4	Woodruff Creek Reservoir to headwaters	3	Insufficient Data					46
Bear River	UT16010101-014_00	Woodruff Creek-3	Woodruff Creek Reservoir tributaries excluding Woodruff Creek	3	Insufficient Data					0
			Woodruff Creek and tributaries from Birch	h						
Bear River	UT16010101-015_00	Woodruff Creek-2	Reservoir	2	No Evidence of Impairment					7
			Saleratus Creek and tributaries from							
Bear River	UT16010101-016_00	Saleratus Creek	headwaters	5	Not Supporting	Max.Temperature	3A	Low	2012	71
						Minimum Dissolved Oxygen			1000	71
Bear River	UT16010101-017 00	Drv Creek	Dry Creek and tributaries from confluence with Saleratus Creek to beadwaters	e 3	Insufficient Data					40
		,	Sutton Creek and tributaries from Utah-							10
Bear River	UT16010101-018_00	Sutton Creek	Wyoming border to headwaters Yellow Creek tributaries (e.g. Thief, Chicken, Spring Creeks) above Barker	3	Insufficient Data					68
Bear River	UT16010101-019 01	Yellow Creek Tributaries-1	Reservoir and Yellow Creek below Barke Reservoir	۲ 2	No Evidence of Impairment					35
		. Show Grook "Inbutanes" I		-	chaonee or impairment					55

	Dial con		Jrt. Howing Surfa			10 303(0)			
Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
UT16010101-019_02	Yellow Creek Tributaries-2	Yellow Creek tributaries (e.g. Thief, Chicken, Spring Creeks) above Barker Reservoir and Yellow Creek below Barke Reservoir	r 2	No Evidence of Impairment					0
UT16010101-021_00	Bear River-6	Bear River and tributaries from Utah- Wyoming border to Hayden Fork - Stillwater Fork confluence	5	Not Supporting	Aluminum	ЗA	Low	2020	36
UT16010101-022_00	Mill Creek	Mill Creek and tributaries from Utah- Wyoming border to headwaters	1	Fully Supporting					94
UT16010101-023_00	West Fork Bear River	West Fork Bear River and tributaries from confluence with Bear River to headwaters	1 5 3	Insufficient Data					78
UT16010101-024_00	Hayden Fork	Hayden Fork and tributaries from confluence with Stillwater Creek to headwaters	3	Insufficient Data					19
UT16010101-025_00	Stillwater Fork	Stillwater Fork and tributaries from confluence with Hayden Fork to headwaters	5	Not Supporting	pН	2B;3A;4	Low	2020	37
UT16010101-026 00	East Fork Bear River	East Fork Bear River and tributaries from confluence with Hayden Fork to headwaters	1	Fully Supporting					66
UT16010101-027_00	Bear River East	Bear River east side tributaries from Woodruff to near Sage Creek Junction	2	No Evidence of Impairment					65
UT16010101-028_00 UT16010102-001_00	Yellow Creek Bear River North	Yellow Creek and tributaries from Utah- Wyoming border to headwaters Bear River tributaries in HUC 16010102	5 3	Not Supporting Insufficient Data	Macroinvertebrates	3A	Low	2008	26 2
UT16010201-001_00	Bear Lake West	Bear Lake west side tributaries	5	Not Supporting	Macroinvertebrates	3A	Low	2016	22
UT16010201-002_00	Laketown	Laketown and Big Creek and other tributaries from Bear Lake to headwaters	5	Not Supporting	Max.Temperature Macroinvertebrates	<u>3A</u> 3A	Low Low	<u>2008</u> 2020	<u>46</u> 46
UT16010201-003_00	South Eden	South Eden Creek from Bear Lake to headwaters	2	No Evidence of Impairment					15
UT16010201-004_00	North Eden	North Eden Creek and tributaries from Bear Lake to headwaters	5	Not Supporting	E. coli	2B	Low	2020	21
UT16010202-001_00	Worm Creek	Worm Creek from confluence with Cub River to Utah-Idaho state line	2	No Evidence of Impairment					4
UT16010202-002_00	Newton Creek	Newton Creek from confluence with Cutle Reservoir to Newton Reservoir	er 5	Not Supporting Approved TMDL	Max.Temperature Total Phosphorus as P	<u>3A</u> 3A	Low	<u>2008</u> 1996	<u>12</u>
UT16010202-003_00	Hopkins Slough	Hopkins Slough from confluence with Bear River to headwaters	3	Insufficient Data					40
UT16010202-004_00	Bear River-3	Bear River from Cutler Reservoir to Idaho state line	5	Not Supporting	Sediment E. coli	3B;3D 2B	Low Low	<u>1998</u> 2020	<u>25</u> 25
UT16010202-005 00	Summit Creek Lower	Summit Creek and tributaries from confluence with Bear River to USFS boundary	3	Insufficient Data	rotar Phosphorus as P	38;30		1990	
UT16010202-006_00	City Creek	City Creek and tributaries and other Bear River east side tributaries south toward Summit Creek to be dwaters	3	Insufficient Data					25
LIT16010202-007_00	Cherry Creek - Rear	Cherry Creek and tributaries from	3	Insufficient Data					- 30
	Assessment Unit ID UT16010101-019_02 UT16010101-021_00 UT16010101-022_00 UT16010101-023_00 UT16010101-023_00 UT16010101-025_00 UT16010101-025_00 UT16010101-025_00 UT16010201-001_00 UT16010201-001_00 UT16010201-003_00 UT16010202-001_00 UT16010202-004_00 UT16010202-004_00 UT16010202-005_00 UT16010202-005_00 UT16010202-006_00	Assessment Unit IDAssessment Unit NameUT16010101-019_02Yellow Creek Tributaries-2UT16010101-021_00Bear River-6UT16010101-022_00Mill CreekUT16010101-023_00West Fork Bear RiverUT16010101-025_00Stillwater ForkUT16010101-025_00East Fork Bear RiverUT16010101-026_00East Fork Bear RiverUT16010101-026_00East Fork Bear RiverUT16010101-026_00Yellow CreekUT16010101-026_00Yellow CreekUT16010201-001_00Bear River NorthUT16010201-002_001South EdenUT16010201-003_00South EdenUT16010202-001_00North EdenUT16010202-001_00Newton CreekUT16010202-001_00Hopkins SloughUT16010202-004_00Bear River-3UT16010202-004_00Summit Creek LowerUT16010202-005_00City CreekUT16010202-006_00City Creek	Assessment Unit ID Assessment Unit Name Assessment Unit Description UT16010101-019_02 Yellow Creek Tributaries Yellow Creek tributaries (e.g. Thief, Chicken, Spring Creek) above Barker Reservoir and Yellow Creek below Barker Reservoir to Hayden Fork to Stillwater Fork confluence with Tebularies from Utah-Wyoming border to headwaters UT16010101-022_00 West Fork Bear River West Fork Bear River to headwaters UT16010101-022_00 West Fork Bear River West Fork Bear River to headwaters UT16010101-022_00 Hayden Fork Stillwater Fork and tributaries from confluence with Hayden Fork to headwaters UT16010101-025_00 Stillwater Fork East Fork Bear River headwaters UT16010101-026_00 East Fork Bear River headwaters UT16010101-026_00 UT16010101-026_00 Bear River East Wordwit for and Tibutaries from confluence with Hayden Fork to headwaters UT16010101-026_00 Bear River North Bear River and tributaries from Confluence with Colo 10102 UT16010101-026_00 Bear River North Bear River headwaters UT16010201-000_00	Assessment Unit ID Assessment Unit Name Assessment Unit Description Assessment Unit Celebration UT16010101-019_02 Yellow Creek Tributaries (e.g. Thief, Chicken, Spring Creeks) above Barker Preservoir UT16010101-019_02 Yellow Creek Tributaries-2 Bear River of tributaries from Utah- Wyoning border to Hayden Fork - Stillwater Fork collumence 5 UT16010101-021_00 Bear River-6 Mill Creek and tributaries from Utah- Wyoning border to Hayden Fork - Stillwater Fork off tributaries from Utah- Wyoning border to Hayden Fork - Stillwater Fork off tributaries from Confluence with Hayden Fork - Stillwater Fork Mear River 3 UT16010101-023_00 West Fork Bear River And tributaries from Confluence with Hayden Fork - Bard Erek Baar River to theadwaters - S 3 UT16010101-024_00 Hayden Fork Stillwater Fork Mear River Tork - Baar River And tributaries from Confluence with Hayden Fork to bedwaters - S 3 UT16010101-028_00 East Fork Bear River Mayden Fork to UT1601001-028_00 East Fork Bear River And Bear River Reat Hayden Fork to Deadwaters - S 1 UT1601001-028_00 Vellow Creek Mear River And Bear River Reat Big Creek Aunction - Bear River Roth Bear River Reat Big Creek Aunction - S 2 UT16010201-002_00 Laketown Bear Lake west aide tributaries from Bear Lake to headwaters - S 2 UT16010202-002_00 Laketown Bear Lake west aide tribu	Assessment Unit ID Assessment Unit Name Assessment Unit Description Assessment Unit Category Category Description UT16010101-019_02 Yellow Creek Tributaries (e.g. Thief, Chicken, Spring Creek) above Barker Reservoir and Yellow Creek below Barker Sillwater Fork and tributaries from confluence with Bark River and tributaries from confluence with Barker River and tributaries from confluence with Hayden Fork 1 Fully Supporting UT16010101-025_00 Sillwater Fork 5 Not Supporting UT16010101-025_00 Sillwater Fork 1 Fully Supporting UT16010101-025_00 Sillwater River 5 Not Supporting UT16010101-025_00 Sillwater River North 5 Not Supporting UT16010101-025_00 Sillwater River North 5 Not Supporting UT16010101-025_00 Sillw	Assessment Unit ID Assessment Unit Name Assessment Unit Description Category Description Impaired Parameter UT16010101-019_02 Yellow Creek Influence Reservoir and Yellow Creek Nobe Barker Reservoir and Yellow Creek Nobe Barker Nob Supporting Austriaum UT16010101-023_00 Well Fork Bar River Harden Fork and Inducates from confluence With Sellivater Creek to Reservoir and Yellow Creek to Sellivater Creek to Reservoir for the Parameter Sellivater Creek to Reservoir and Yellow Creek to Sellivater Creek to Reservoir and Yellow Creek to Sellivater Creek to Reservoir and Yellow Creek to Yellow Creek and Inducates from Confluence With Sellivater Creek to Sellivater Creek to Yellow Creek Mer Houdanes from Confluence With Sellivater Creek to Sellivater Creek to Yellow Creek Mer Houdanes from Unit Yellow Creek Mer Houdanes from Sellivater Sellivater Creek Mer Houdanes from Selivater Deservoir to Merkon Reservoir Sellivater Creek Mer Houdanes	Assessment Unit ID Assessment Unit Name Assessment Unit Description Sessment Unit Description Research Unit Description Impaired Parameter Research Description UT10010101-019_02 Vielow Creek Tribulates Parameter Discontrol No Exclored on Impairment UT10010101-019_02 Vielow Creek Tribulates Parameter No Exclored on Impairment UT10010101-019_02 Vielow Creek Tribulates Parameter No Exclored on Impairment UT10010101-020_00 Bear River-8 Bear River and Tribulates from Unit- No Exclored Data UT10010101-020_00 West Fork Bear River West Fork Bear River Not Supporting UT10010101-020_00 West Fork Bear River Bear River and Tribulates from Unit- Impairment UT10010101-020_00 West Fork Bear River Bear River and Tribulates from Unit- Impairment UT10010101-020_00 Bear River and Tribulates from Unit- Impairment Impairment UT10010101-020_00 Bear River Bear River Bear Bear River Impairment River Impairment UT10010101-020_00 Bear River Bear River Bear Bear River Impairment River Impairment UT10010101-020_00 Bear River Bear River Bear Bear River Impairment River Impairment UT10010101-020_00 Bear River River Bear	Assessment Unit, D Assessment Unit, Description A	Assessment Unit D Assessment Unit Name Assessment Unit Description Assessment

		Draft Con	nbined 2018/2020 Integrated Repo	Suffa	ace waters of the State	e and Canals 305(b) and	-303(d)			
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
			High Creek and tributaries from confluence with Cub River to USFS							
Bear River	UT16010202-008_00	High Creek Lower	boundary Spring Creek (Lewiston) and tributaries	4A	Approved TMDL	Total Phosphorus as P	3A		1998	10
Bear River	UT16010202-009_00	Spring Creek Lewiston	from confluence with Cub River to Utah- Idaho border	4A	Approved TMDL	Total Phosphorus as P Minimum Dissolved Oxygen	3B 3B		1998 2020	5
Bear River	UT16010202-010_00	Cub River	Cub River from confluence with Bear River to Utah-Idaho state line	5	Not Supporting	Sediment E. coli	3B 2B	Low	1998	15
					Approved TMDL	Total Phosphorus as P	3B		1998	15
Bear River	UT16010202-011_00	Summit Creek Upper	Summit Creek and tributaries from USFS boundary to headwaters	3	Insufficient Data					13
Bear River	UT16010202-012_00	High Creek Upper	High Creek and tributaries from U.S. Forest Service boundary to headwaters	3	Insufficient Data					14
Bear River	UT16010202-013_00	Clarkston Creek	Clarkston Creek and tributaries from Newton Reservoir to Utah-Idaho State Line	3	Insufficient Data					30
Bear River	UT16010202-014_00	The Slough	The Slough and tributaries from Cutler Reservoir to headwaters	2	No Evidence of Impairment	t				10
Bear River	UT16010202-015_00	Clay Slough	Clay Slough and tributaries from Cutler Reservoir to headwaters	5	Not Supporting	Total Dissolved Solids pH	4 2B;3B;3D;4	Low	2012 2012	41 41
Bear River	UT16010203-001_00	Cutler West	Cutler Reservoir west side tributaries	3	Insufficient Data	Minimum Dissolved Oxygen	3B;3D	Low	2012	41 20
Bear River	UT16010203-002_00	Swift Slough	Swift Slough and tributaries from Cutler Reservoir to headwaters	2	No Evidence of Impairment	t				48
Bear River	UT16010203-005_00	Logan River-1	Logan River and tributaries, except Blacksmith Fork drainage, from Cutler Reservoir to Third Dam	5	Not Supporting Approved TMDL	<u>E. coli</u> Total Phosphorus as P	2B 3A	Low	<u>2020</u> 1998	<u>69</u> 69
Bear River	UT16010203-006_00	Logan River-2	Logan River and tributaries from Third Dam to headwaters	5	Not Supporting	рН	2B;3A;3D;4	Low	2020	102
Bear River	UT16010203-007_00	Little Bear-3	Little Bear River west side tributaries from Cutler Reservoir To Hyrum Reservoir	n 3	Insufficient Data					35
			Spring Creek and tributaries from							
Bear River	UT16010203-008_00	Spring Creek-Hyrum	headwaters	5	Not Supporting	Max. Temperature Macroinvertebrates	3A 3A	Low Low	2006 2008	51 51
					Approved TMDL	Total Dissolved Solids Total Ammonia as N E. coli	4 3A;3D 2B	Low	2020 1998 2020	<u>51</u> 51
Bear River	UT16010203-009_00	Little Bear River-1	Little Bear River from Cutler Reservoir to Hyrum Reservoir	5	Not Supporting	Max. Temperature	3A	Low	2008	28
Bear River	UT16010203-010_00	Little Bear-4	Little Bear River east side tributaries from Hyrum Reservoir to East Fork Little Bear confluence	3	Insufficient Data					30
Bear River	UT16010203-011_00	Little Bear River-2	Little Bear River from Hyrum Reservoir to East Fork Little Bear confluence	1	Fully Supporting					12
Bear River	UT16010203-012_00	Little Bear River Tributaries	West side tributaries to Little Bear River above Hyrum Reservoir	2	No Evidence of Impairment	t				7
Bear River	UT16010203-013_00	South Fork Little Bear	South Fork Little Bear and tributaries fror confluence with Little Bear River to headwaters, except Davenport Creek	m 3	Insufficient Data					36

		Draft Com	bined 2018/2020 Integrated Repo	ort: Flowing Surfa	ice Waters of the State	e and Canals 305(b) ar	nd 303(d)			
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses 	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Bear River	UT16010203-014_00	East Fork Little Bear-1	East Fork Little Bear River and tributaries from confluence with Little Bear to Porcupine Reservoir	1	Fully Supporting					32
Bear River	UT16010203-015_00	Davenport Creek	Davenport Creek and tributaries from confluence with South Fork Little Bear to headwaters	3	Insufficient Data					46
Bear River	UT16010203-016_00	Porcupine Creek	Porcupine Creek and tributaries from Porcupine Reservoir to headwaters	2	No Evidence of Impairment					6
Bear River	UT16010203-017_00	East Fork Little Bear-2	East Fork Little Bear River and tributaries from Porcupine Reservoir to headwaters	2	No Evidence of Impairment					41
Bear River	UT16010203-018_00	Blacksmith Fork-2	confluence with Left Hand Fork Blacksmith Fork to headwaters	2	No Evidence of Impairment					70
Bear River	UT16010203-019_00	Left Hand Fork Blacksmith Fork	Left Hand Fork Blacksmiths Fork and tributaries from confluence with Blacksmiths Fork to headwaters	3	Insufficient Data					43
Bear River	UT16010203-020_00	Blacksmith Fork-1	Blacksmiths Fork and tributaries from confluence with Logan River to Left Hand Fork Blacksmiths Fork	5	Not Supporting	E. coli	2B	Low	2016	47
Bear River	UT16010204-001_00	Box Elder Creek-1	Box Elder Creek from the confluence with Black Slough to Brigham City Reservoir (the Mayor's Pond)	5	Not Supporting	E. coli	2B	Low	2020	6
Bear River	UT16010204-002_00	Bear River Lower-East	Bear River east side tributaries from Malad confluence south	5	Not Supporting	Total Dissolved Solids	4	Low	2012	94
Bear River	UT16010204-003_00	Bear River-1	Bear River from Great Salt Lake to Malad River confluence	5	Not Supporting	Total Dissolved Solids Macroinvertebrates	<u>4</u> 3B	Low Low	<u>2008</u> 2010	<u>5</u> 5
Bear River	UT16010204-004_00	Bear River Lower-West	Bear River west side tributaries from Malad River confluence south	3	Insufficient Data					19
Bear River	UT16010204-005_00	Box Elder Creek-2	Box Elder Creek from Brigham City Reservoir (the Mayor's Pond) to headwaters	3	Insufficient Data					18

		Draft Com	bined 2018/2020 Integrated Repo	ort: Flowing Surfa	ace Waters of the State	e and Canals 305(b) and	l 303(d)			
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Bear River	UT16010204-006 00	Malad River-1	Malad River from confluence with Bear River to Utab-Idabo state line	5	Not Supporting	Total Ammonia as N	3C	Low	2020	51
			The state state inc		11 5	Macroinvertebrates	3C	Low	2020	51
						E. coli	2B	Low	2020	51
Bear River	UT16010204-007_01	Middle Bear East-1	Bear River east side tributaries from Malad River confluence north to HUC boundary	5	Not Supporting	E. coli	2B	Low	2020	45
Bear River	UT16010204-007 02	Middle Bear East-2	Bear River east side tributaries from Malad River confluence north to HUC boundary	1	Fully Supporting					26
Bear River	UT16010204-008_01	Bear River-2-1	Bear River from Malad River confluence to Cutler Reservoir	5	Not Supporting	Macroinvertebrates	3B	Low	2008	61
Bear River	UT16010204-008_02	Bear River-2-2	Bear River from Malad River confluence to Cutler Reservoir	5	Not Supporting	Macroinvertebrates	3B	Low	2008	2
						Minimum Dissolved Oxygen	3B;3D	Low	2014	2
Boar River	LIT16010204 010 01	Malad River 2.1	Malad River tributaries	2	No Evidence of Impairment	Total Dissolved Solids	4	LOW	2020	57
Bear River	UT16010204-010_07	Malad River-2-2	Malad River tributaries	2	No Evidence of Impairment					72
Bear River	UT16010204-011_01	Mantua Reservoir Tributaries-1	Big Creek from confluence with Box Elde Creek to Mantua Reservoir	г З	Insufficient Data					1
Bear River	UT16010204-011_02	Mantua Reservoir Tributaries-2	Big Creek from confluence with Box Elde Creek to Mantua Reservoir	r 5	Not Supporting	E. coli	2B	Low	2020	3
Bear River	UT16010204-013_00	Salt Creek-Bothwell	Salt Creek and tributaries from Salt Creek Waterfowl Managment Area to headwaters	k 3	Insufficient Data					24

		Draft Com	bined 2018/2020 Integrated Repo	ort: Flowing Surfa	ace Waters of the State	e and Canals 305(b) and	303(d)			
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Cedar-Beaver	UT16030006-001_00	Coal Creek - C/B	Coal Creek and tributaries from Main Street in Cedar City (SR130) to headwaters	5	Not Supporting	Max. Temperature	3A	Low	2016	65
Cedar-Beaver	 UT16030006-002_00	Pinto Creek	Pinto and Little Pinto Creeks and their tributaries from Newcastle Reservoir to headwaters	5	Not Supporting	Max. Temperature Aluminum Minimum Dissolved Oxygen E. coli	3A 3A 3A 2B	Low Low Low	2014 2014 2016 2016	41 41 41 41
Cedar-Beaver	UT16030006-003_00	Summit Creek-Iron	Summit Creek and tributaries from collection pond at 6060 feet elevation to headwaters	2	No Evidence of Impairment		20		2010	24
Cedar-Beaver	UT16030006-004_00	Parowan Creek	Parowan Creek and tributaries from the south end of Main Street in Parowan to headwaters	2	No Evidence of Impairment					44
Cedar-Beaver	UT16030006-005_00	Little Creek (Iron Co.)	Little Creek and tributaries from irrigation diversion at mouth to headwaters Shoal Creek and tributaries from	3	Insufficient Data					17
Cedar-Beaver	UT16030006-006_00	Shoal Creek	Enterprise to headwaters	3	Insufficient Data					74
Cedar-Beaver	UT16030006-007_00	Red Creek (Iron Co.)	County Red Creek and tributaries (Iron Co.) below	5 N	Not Supporting	E. coli	2B	Low	2020	7
Cedar-Beaver	UT16030006-008_00	Red Creek Lower (Iron Co.) Cottonwood Canyon-Parowan	Red Creek Reservoir	3	Insufficient Data					11
Cedar-Beaver	UT16030006-009_00	Valley	Cottonwood Canyon-Parowan Valley	2	No Evidence of Impairment					6
Cedar-Beaver	UT16030007-001_00	Beaver River-1	Beaver River Below Minersville Reservoir Beaver River and tributaries from	r 3	Insufficient Data					14
Cedar-Beaver	UT16030007-002_00	Beaver River-2	Minersville Reservoir to USFS boundary	5	Not Supporting Approved TMDL	Macroinvertebrates E. coli Aluminum Max. Temperature Minimum Dissolved Ovycon	3A 2B <u>3A</u> 3A 3A	Low Low Low	2008 2016 2016 1998 2014	208 208 208 208 208
Cedar-Beaver	UT16030007-003_00	Beaver River-3	Beaver River and tributaries from USFS boundary to headwaters	3	Insufficient Data	State of the state	0.0		2014	200
Cedar-Beaver	UT16030007-004_00	Pine Creek-Tushar	Pine Creek and tributaries from I-15 to headwaters	3	Insufficient Data					9

		Draft Con	nbined 2018/2020 Integrated Repo	ort: Flowing Surfa	ace Waters of the Stat	e and Canals 305(b) and	303(d)			
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Jordan River	UT16020201-002_01	American Fork River-2	American Fork River and tributaries from Tibble Fork Reservoir to headwaters	3	Insufficient Data					29
Jordan River	UT16020201-002_02	Mary Ellen Gulch	American Fork River and tributaries from Tibble Fork Reservoir to headwaters	5	Not Supporting	Zinc Copper Cadmium	3A 3A 3A	Low Low Low	2020 2020 2020	
Jordan River	UT16020201-008_00	Jordan River-8	Jordan River from Narrows to Utah Lake	5	Not Supporting	Total Dissolved Solids Arsenic	4 1C;HH1C	Low Low	2006 2014	1:
Jordan River	UT16020201-015_00	Dry Creek-Alpine	Dry Creek and tributaries from USFS boundary to headwaters Jordan River from Farmington Bay	5	Not Supporting	pН	2B;3A;4	Low	2014	12
Jordan River	UT16020204-001_01	Jordan River-1	upstream contiguous with the Davis County line	5	Not Supporting	Macroinvertebrates E. coli Copper Total Dissolved Solids	3B;3D 2B 3B;3D 4	Low High Low Low	2008 2010 2014 2016	16 16 16 16
Jordan River	UT16020204-001_02	North Canyon Creek	Jordan River from Farmington Bay upstream contiguous with the Davis County line	5	Approved TMDL Not Supporting	Minimum Dissolved Oxygen* Macroinvertebrates E. coli Copper Total Dissolved Solids	3B;3D 3B;3D 2B 3B;3D 4	Low High Low Low	2002 2008 2010 2014 2016	
Jordan River	UT16020204-002_00	Jordan River-2	Jordan River from Davis County line upstream to North Temple Street	5	Approved TMDL Not Supporting	Minimum Dissolved Oxygen E. coli	3B;3D 2B 3B	High	2002 2006 2008	
Jordan River	UT16020204-003_00	Jordan River-3	Jordan River from North Temple to 2100 South	5	Approved TMDL Not Supporting	Minimum Dissolved Oxygen*	3B 2B	High	2002	
					Approved TMDL	I otal Phosphorus as P Macroinvertebrates Minimum Dissolved Oxygen*	3B 3B 3B	Low	2008 2008 2008	1
Jordan River	UT16020204-004_00	Jordan River-4	Jordan River from 2100 South to the confluence with Little Cottonwood Creek	5	Not Supporting	Total Dissolved Solids Macroinvertebrates E. coli	4 3B 2B	Low Low High	2008 2010 2014	
Jordan River	UT16020204-005_00	Jordan River-5	Jordan River from the confluence with Little Cottonwood Creek to 7800 South	5	Not Supporting	Total Dissolved Solids Max. Temperature	4 3A 2B	Low Low	2006 2006	8
Jordan River	UT16020204-006_01	Jordan River-6	Jordan River from 7800 South to Bluffdal at 14600 South	e 5	Not Supporting	Total Dissolved Solids Max. Temperature	4 3A	Low	2006 2006 2008	1
Jordan River	UT16020204-006_02	Big Willow Creek	Jordan River from 7800 South to Bluffdal at 14600 South	e 5	Not Supporting	Total Dissolved Solids Max. Temperature	4 3A	Low	2006 2006	1
Jordan River	UT16020204-006_03	Dry Creek	Jordan River from 7800 South to Bluffdal at 14600 South	e 5	Not Supporting	Macroinvertebrates Total Dissolved Solids Max. Temperature Macroinvertebrates	4 3A	Low Low	2008 2006 2006	

Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
lordan River	LIT16020204-007_00	lordan River-7	Jordan River from Bluffdale at 14600	5	Not Supporting	Max Temperature	34	Low	2004	22
bordan raver	0110020204-001_00		South to Narrows	0	not ouppoining	Macroinvertebrates	3A	Low	2008	22
lordan River	LIT16020204 000 00	City Creek 1	City Creek and tributaries from Memory	3	Insufficient Data	Total Dissolved Solids	4	LOW	2020	5
Jordan River	UT16020204-003_00	City Creek 2	City Creek and tributaries from filtration	5	Not Supporting	Codmium	24	Low	2010	14
Jordan River	UT16020204-010_00	Dad Dutte Creek Unner	Red Butte Creek and tributaries from Red	5	Not Supporting	Cadmium	54	LOW	2010	10
Jordan River	0116020204-011_00	Red Butte Creek Opper	Butte Reservoir to headwaters	2	No Evidence of Impairment					10
Jordan River	UT16020204-012_00	Emigration Creek	Emigration Creek and tributaries from stream gage at Rotary Glen Park (40 44 58.49N, 111 48 36.29W) to headwaters	4A	Approved TMDL	E. coli	2B		2008	17
			Parleys Canyon Creek and tributaries from Mountain Dell Reservoir to							
Jordan River	UT16020204-013_00	Parleys Canyon Creek-2	headwaters Mountain Dell Creek from Mountain Dell	5	Not Supporting	Cadmium	3A	Low	2014	20
Jordan River	UT16020204-014_00	Mountain Dell Creek-1	Reservoir to Little Dell Reservoir Mountain Dell Creek and tributariae from	2	No Evidence of Impairment					2
Jordan River	UT16020204-015_00	Mountain Dell Creek-2	to Little Dell Reservoir headwaters	2	No Evidence of Impairment					10
Jordan River	UT16020204-016_00	North Canyon	North Canyon Creek and tributaries from USFS boundary to headwates.	1	Fully Supporting					1
Jordan River	UT16020204-017_00	Mill Creek2-SLCity	Mill Creek and tributaries from Interstate 15 to USFS Boundary	5	Not Supporting	E. coli	2B	High	2002	14
Jordan River	UT16020204-018 00	Mill Creek3-SI City	Mill Creek and tributaries from USFS	2	No Evidence of Impairment	Macroinvertebrates	3A	LOW	2010	26
			Big Cottonwood Creek and tributaries							
Jordan River	UT16020204-019_00	Big Cottonwood Creek-1	WTP	5	Not Supporting	Max. Temperature	3A	Low	2006	25
						E. coli	2B	Low High	2014	25
			Big Cottonwood Creek and tributaries							
Jordan River	UT16020204-020_00	Big Cottonwood Creek-2	from Big Cottonwood WTP to headwaters	5	Not Supporting	Copper Cadmium	3A 3A	Low	2014 2014	60 60
			Little Cottonwood Creek and tributaries							
Jordan River	UT16020204-021_00	Little Cottonwood Creek-1	Metropolitan WTP	5	Not Supporting	Total Dissolved Solids	4	High	2006	28
						Macroinvertebrates	3A 3A	Low	2008	28
						E. coli	2B	High	2014	28
			Little Cottonwood Creek and tributaries			Caumum	5A	LOW	2014	20
Jordan River	0116020204-022_00	Little Cottonwood Creek-2	from Metropolitan WTP to headwaters	5	Not Supporting	рн Copper	1C;2B;3A 3A	Low	2014 2014	30 30
						Cadmium	3A	Low	2014	30
					Approved TMDL	Zinc	3A		1998	30
			confluence with Jordan River to							
Jordan River	UT16020204-023_00	Bingham Creek	headwaters	5	Not Supporting	Total Dissolved Solids	4	Low	2014	55
						Selenium	3D	Low	2014	55

		Draft Con	mbined 2018/2020 Integrated Repo	ort: Flowing Surfa	ice waters of the Stat	e and Canals 305(b) and	303(d)			
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Jordan River	UT16020204-024_01	Midas Creek	Butterfield Creek and tributaries from confluence with Jordan River to headwaters	5	Not Supporting	Total Dissolved Solids	4	Low	2014	59
						E. coli	2B	Low High	2014	59
Jordan River	UT16020204-024_02	Butterfield Creek	Butterfield Creek and tributaries from confluence with Jordan River to headwaters	5	Not Supporting	Total Dissolved Solids Selenium	4 3D	Low Low	2014 2014	25 25
Jordan River	UT16020204-025_00	Parleys Canyon Creek-1	Parleys Canyon Creek and tributaries from 1300 East to Mountain Dell Reservoir	5	Not Supporting	E. coli Macroinvertebrates	1C;2B 3A	High Low	2014 2010 2014	
Jordan River	UT16020204-026_00	Mill Creek1-SLCity	Mill Creek from confluence with Jordan River to Interstate 15 crossing	5	Not Supporting	Macroinvertebrates E. coli	3C 2B	Low High	2014 2014	3
Jordan River	UT16020204-027_00	Coon Creek	Perennial portion of Coon Creek	3	Insufficient Data			5		10
Jordan River	UT16020204-028 00	Barneys Canyon Creek	Barney Canyon Creek and tributaries fror mouth to headwaters	n 3	Insufficient Data					10
Jordan River	UT16020204-029_00	Rose Creek	Rose Creek and tributaries from confluence with Jordan River to headwaters	5	Not Supporting	E. coli	2B	High	2014	37
Jordan River	UT16020204-030_00	Bells Canyon	Bells Canyon Creek and tributaries from Lower Bells Canyon Reservoir to headwaters	3	Insufficient Data					5
Jordan River	UT16020204-031_00	Little Willow Creek	Little Willow Creek and tributaries from Draper Irrigation Company diversion to headwaters	2	No Evidence of Impairment	t				7
Jordan River	UT16020204-032 00	Surplus Canal	Surplus Canal from Great Salt Lake wetlands to diversion from Jordan River	3	Insufficient Data					21
			Emigration Creek and tributaries from 1100 East (below Westminster College) to stream gage at Rotary Glen Park (40 44 58.49N, 111 48 36.29W) above Hogle)						
Jordan River	UT16020204-033_00	Emigration Creek Lower	Zoo	5	Not Supporting	E. coli	2B	High	2014	4
Jordan River	UT16020204-034_00	State Canal	State Canal from Farmington Bay to confluence with the Jordan River	5	Not Supporting	Minimum Dissolved Oxygen* Total Dissolved Solids	3B;3D 4 3B:3D	Low Low	2014 2016 2016	16 16 16
							00,00	Low	2010	10
Jordan River	UT16020204-035_00	Red Butte Creek Lower	Red Butte Creek and tributaries from 1100 East Street to Red Butte Reservoir	5	Not Supporting	Macroinvertebrates	ЗA	Low	2014	4
Jordan River	UT16020204-036_00	Lee Creek	Lee Greek from Great Salt Lake to headwaters near 2100 South	1	Fully Supporting					10

		Draft Cor	homed 2018/2020 Integrated Repo	T: Flowing Surfa	ace waters of the State	e and Canals 305(b) and	-303(a)			
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Lower Colorado River	LIT15010003-001_00	Cottonwood Canvon	Cottonwood Canyon from Utah-Arizona	5	Not Supporting		30	Low	2014	15
	0110010000-001_00	Contonino da Canyon	state line to neadwaters	0	Not ouppoining	Max. Temperature	3C	Low	2014	15
Lower Colorado River	UT15010003-002_00	Kanab Creek-1	Kanab Creek and tributaries from state line to the confluence with Fourmile Hollow near the White Cliffs	5	Not Supporting	Total Dissolved Solids	4	Low	2008	38
			Kanab Creek and tributaries from the confluence with Fourmile Hollow near the							
Lower Colorado River	UT15010003-003_00	Kanab Creek-2	White Cliffs to Reservoir Canyon	5	Not Supporting	Total Dissolved Solids	4	Low	2014	31
						Boron	4	Low	2014	31
						Selenium	3C;4	Low	2016	31
			Johnson Wash and tributaries from Utah-							
Lower Colorado River	LIT15010003-004 00	Johnson Wash-1	Arizona state line to Skutumpah Canyon	5	Not Supporting	Total Dissolved Solids	4	Low	2008	53
	0110010000-004_00	bonnaon waaren	connuence	0	Not Supporting	Selenium	30	Low	2014	53
						Boron	4	Low	2014	53
			Johnson Wash and tributaries, from							
			(including) Skutumpah Canyon to	-		-				
Lower Colorado River	0115010003-005_00	Johnson Wash-2	headwaters	5	Not Supporting	Zinc Tatal Dissalward Salida	3A	Low	2014	41
						Minimum Dissolved Solids	24	Low	2014	41
						Max Temperature	3A 3A	LOW	2014	41
						Lead	3A:4	Low	2014	41
						Copper	3A;4	Low	2014	41
						Macroinvertebrates	3A	Low	2016	41
Lower Colorado River	UT15010003-006_00	Kanab Creek-3	Kanab Creek and tributaries from Reservoir Canyon to headwaters	3	Insufficient Data					4
Leures Colorada Diver	11745040000 004 00	Carta Class 1	Santa Clara River from confluence with	5	Net Currentine	May Tananatura	20	Laur	2000	20
Lower Colorado River	0115010008-001_00	Santa Ciara-1	Virgin River to Gunlock Reservoir	D	Not Supporting	Roron	30	LOW	2008	32
						Argonia	4	Low	2000	32
					Approved TMDL	Total Dissolved Solids	4	LOW	1998	32
			Santa Clara River and tributaries from							
			Gunlock Reservoir to Baker Dam							
Lower Colorado River	UT15010008-002_00	Santa Clara-2	Reservoir (includes Magotsu Creek)	5	Not Supporting	Max. Temperature	3A	Low	2008	61
						Minimum Dissolved Oxygen	3A	Low	2014	61
Leures Colorada Diver	11745040000 002 00	Carta Class 2	Santa Clara River and tributaries from	5	Net Currentine	A luma income	2.4	Laur	2014	77
Lower Colorado River	0115010008-003_00	Santa Clara-3	Baker Dam Reservoir to headwaters Virgin River and tributaries from Santa Clara River confluence to Quail Creek	5	Not Supporting	Aluminum	3A	LOW	2014	11
			diversion, excluding Quail, Ash, and La	-		D	,	1	0000	0.1
Lower Colorado River	0115010008-004_00	Virgin River-2	Verkin Greeks	5	Not Supporting	Boron	4	LOW	2008	94
			Quail Crock and tributarian from Quail			Total Dissolved Solids	4	LOW	2014	94
Lower Colorado River	UT15010008-005 00	Quail Creek	Creek Reservoir to headwaters	3	Insufficient Data					9
	_		Leeds Creek and tributaries from							
			confluence with Quail Creek to							
Lower Colorado River	UT15010008-006_00	Leeds Creek	headwaters	2	No Evidence of Impairment					21
			Ash Creek and tributaries from confluence	е						
Lower Colorado Diver	LIT15010009-007-00	Ash Crock 1	with La Verkin Creek to springs near	5	Not Supporting	Max Temperatura	3.4	Low	2016	40
Lower Colorado River	0113010008-007_00	ASIT Greek-1	Ash Crock and tributarias from animati	0	Not Supporting	wax. remperature	OM	LOW	2010	42
Lower Colorado River	UT15010008-008 00	Ash Creek-2	near Toquerville to Ash Creek Reservoir	3	Insufficient Data					20
			Ash Creek and tributaries from Ash Creek	k						20
Lower Colorado River	UT15010008-009 00	Ash Creek-3	Reservoir to headwaters	1	Fully Supporting					82

		Draft Con	nbined 2018/2020 Integrated Repo	ort: Flowing Surfa	ace Waters of the State	e and Canals 305(b) ar	id 303(d)			
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Lower Colorado River	UT15010008-010_00	La Verkin Creek	La Verkin Creek and tributaries from confluence with Virgin River to headwaters (excludes Ash Creek)	5	Not Supporting	Macroinvertebrates	3В	Low	2016	67
Lower Colorado River	UT15010008-011 00	Virgin River-3	Virgin River and tributaries from Quail Creek Diversion to North Creek confluence	1	Fully Supporting					1
Lower Colorado River	 UT15010008-012_00	Virgin River-4	Virgin River and tributaries from North Creek confluence to Norh Fork Virgin River	2	No Evidence of Impairment					11
Lower Colorado River	UT15010008-013_00	North Fork Virgin River-2	North Fork Virgin River and tributaries from Deep Creek confluence to headwaters	5	Not Supporting Approved TMDL	<u>Max.Temperature</u> E. coli*	<u>3A</u> 1C;2A	Low	<u>2014</u> 2020	39
Lower Colorado River	UT15010008-014_00	North Creek-Virgin	North Creek and tributaries from confluence with Virgin River to headwaters	5	Not Supporting	<u>pH</u> Macroinvertebrates	<u>1C;2B;3C;4</u> 3C	Low	<u>2014</u> 2016	<u>53</u>
Lower Colorado River	UT15010008-015_00	North Fork Virgin River-1	North Fork Virgin River and tributaries from confluence with East Fork Virgin River to Kolob Creek confluence	5	Not Supporting Approved TMDL	<u>Max.Temperature</u> E. coli	<u>3A</u> 1C;2A	Low	<u>2010</u> 2020	<u>73</u>
Lower Colorado River	UT15010008-016_00	Kolob Creek	Kolob Creek and tributaries from confluence with North Fork Virgin River to headwaters	3	Insufficient Data					21
Lower Colorado River	UT15010008-017_00	Deep Creek	Deep Creek and tributaries from confluence with North Fork Virgin River to headwaters	2	No Evidence of Impairment					79
Lower Colorado River	UT15010008-018_00	East Fork Virgin-1	East Fork of Virgin River and tributaries from confluence with North Fork Virgin River to Carmel Junction	1	Fully Supporting					55
Lower Colorado River	UT15010008-019_00	East Fork Virgin-2	East Fork Virgin River and tributaries from Carmel Junction to Glendale	n 1	Fully Supporting					33
Lower Colorado River	UT15010008-020_00	East Fork Virgin-3	East Fork Virgin River and tributaries from Glendale to headwaters	n 2	No Evidence of Impairment					38
Lower Colorado River	UT15010009-001_00	Fort Pearce Wash	Fort Pearce Wash and tributaries within Utah, from Virgin River confluence to headwaters, exlcuding Short Creek	5	Not Supporting	Total Dissolved Solids	4	Low	2012	25
Lower Colorado River	UT15010009-002_00	Short Creek	Short Creek and tributaries from the Utah Arizona border (near Hildale) to headwaters	3	Insufficient Data					13
Lower Colorado River	UT15010010-001_00	Virgin River-1	Virgin River from state line to Santa Clara River confluence	5	Not Supporting	Max.Temperature Boron Total Dissolved Solids	<u>3B</u> 4 4	Low Low Low	2006 2008 2014	<u>2</u> 2 2
Lower Colorado River	UT15010010-002_00	Beaver Dam Wash	Beaver Dam Wash and tributaries from Motoqua to headwaters	2	No Evidence of Impairment	t				49

		Draft Con	nbined 2018/2020 Integrated Repo	rt: Flowing Surfa	ace waters of the State	e and Canals 305(b) ar	ia 303(d)			
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
			Sevier River west side tributaries from Sevier Bridge Dam to Salina Creek							
Lower Sevier River	UT16030003-001_00	Sevier River-19	confluence Willow Creek and tributaries from USES	3	Insufficient Data					78
Lower Sevier River	UT16030003-002_00	Willow Creek - Axtell	boundary to headwaters Salina Creek and tributaries from	3	Insufficient Data					25
Lower Sevier River	UT16030003-003_00	Salina Creek-1	confluence with Sevier River to USFS boundary	4A	Approved TMDL	Total Dissolved Solids	4		1998	14
	1174000000 004 04	Caulas Dives 10.1	Sevier River east and west side tributaries from Salina Creek confluence to Rocky	s	Incufficient Data					
Lower Sevier River	0116030003-004_01	Sevier Kiver-16-1	Ford Reservoir (excludes Lost Creek)	s	Insuncient Data					5
Lower Sevier River	UT16030003-004_02	Sevier River-16-2	from Salina Creek confluence to Rocky Ford Reservoir (excludes Lost Creek)	3	Insufficient Data					26
Lower Sevier River	UT16030003-004_03	Sevier River-16-3	Sevier River east and west side tributarie: from Salina Creek confluence to Rocky Ford Reservoir (excludes Lost Creek)	s 3	Insufficient Data					4
			Lost Creek and tributaries from							
Lower Sevier River	UT16030003-005_00	Lost Creek-1	approximately 6 miles	5	Not Supporting	Total Dissolved Solids Copper Boron	4 3B 4	Low Low Low	2012 2016 2016	1
Lawas Caulas Discus		Colling Corolly 2	Salina Creek and tributaries from USFS	5	Not Currenting	Copper	3C;3D	Low	2020	7
Lower Sevier River	0110030003-006_00	Jamia Creek-2	boundary to headwaters Beaver Creek and other west side tributaries to Sevier River below USFS boundary from Clear Creek upstream to	J	Not Supporting	μu	2D;3A;4	LOW	2020	192
Lower Sevier River	UT16030003-007_00	Beaver Creek-1 Sevier	HUC boundary	1	Fully Supporting					4(
Lower Sevier River	UT16030003-008_00	Lost Creek2-Salina	upstream to USFS boundary	3	Insufficient Data					ç
Lower Sevier Piver	LIT16030003 000 00	Servier Piver 11	Annabella Diversion upstream to Sevier River confluence with Clear Creek and below USES boundary	3	Insufficient Data					24
Lower Sevier River		Leet Creek? Seline	Lost Creek and tributaries from USFS	5	Not Supporting	E coli	28	Low	2020	35
Lower Sevier River	0116030003-010_00	Losi Creek3-Salina	boundary to headwaters	0	Not Supporting	E. COII	28	LOW	2020	46
			Sevier River west side tributaries from approximately due West of Salina Creek confluence upstream to Clear Creek							
Lower Sevier River	UT16030003-011_00	Sevier River-12	confluence and above USFS boundary Sevier River from Yuba Dam upstream to	3	Insufficient Data					60
Lower Sevier River	UT16030003-012_00	Sevier River-17	confluence with Salina Creek	4A	Approved TMDL	Total Phosphorus as P Total Dissolved Solids Sediment	3B 4 3C		2000 2000 2000	10 10 10
Lower Sevier Piver		Monroe Creek	Sevier River east side tributaries above USFS boundary from Mill Creek-Water Creek area unstream to Durkes Creak	1	Fully Supporting				2000	-400
FOMEL GENIEL KING	0110030003-013_00	WOTTOE CLEEK	Sevier River east side tributaries from Rocky Ford Reservoir upstream to	1	r any supporting					108
Lower Sevier River	UT16030003-014_00	Sevier River-14	Annabella Diversion and below USFS boundary	2	No Evidence of Impairment					76

		Draft Con	homed 2018/2020 Integrated Repo	ort: Flowing Surfa	ice waters of the Stat		<u> </u>			
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Lower Sevier River	UT16030003-015_00	Sevier River-8	Sevier River from Rocky Ford Reservoir upstream to Annabella Diversion	3	Insufficient Data					35
Lower Sevier River	UT16030003-016_00	Sevier River-10	Sevier River east side tributaries below USFS boundary from Anabella Diversion upstream to Clear Creek confluence	3	Insufficient Data					33
Lower Sevier River	UT16030003-017 00	Sevier River-6	Sevier River from Clear Creek confluence to HUC unit 1603003-1603001 boundary	5	Not Supporting	Max. Temperature	3A	Low	2006	10
	<u>-</u>		Clear Creek and tributaries from confluence with Sevier River to	-						
Lower Sevier River	UT16030003-018_00	Clear Creek-I70	headwaters	5	Not Supporting	Aluminum Max. Temperature	3A 3A	Low Low	2014 2016	138 138
Lower Sevier River	UT16030003-019_00	Sevier River-9	Sevier River from Annabella Diversion to Clear Creek confluence	3	Insufficient Data					15
Lower Sevier River	UT16030003-020_00	Beaver Creek2-Piute	Beaver Creek and other west side tributaries to Sevier River above USFS boundary from Clear Creek upstream to HUC boundary	1	Fully Supporting					68
Lower Sevier River	UT16030003-021_00	Manning Creek	Manning Creek and tributaries from confluence with Sevier River to headwaters	5	Not Supporting	Minimum Dissolved Oxygen	3A	Low	2014	26
Lower Sevier River	UT16030003-022_00	Sevier River-5	Sevier River east side tributaries from Manning Creek confluence to HUC unit boundary	3	Insufficient Data					29
Laura Caulas Divez		Caulas Dives 40	Sevier River east side tributaries from Sevier Bridge Dam to Salina Creek confluence, excluding San Pitch River	2	In sufficient Data					400
Lower Sevier River	0116030003-023_00	Sevier River-16	Sevier River form confluence with Salina	3	insuncient Data					100
Lower Sevier River	UT16030003-024_00	Sevier River-15	Creek upstream to Rocky Ford Reservoir Sevier River west side tributaries from	3	Insufficient Data					14
Lower Sevier River	UT16030003-025_00	Sevier River-13	Rocky Ford Reservoir upstream to Annabella Diversion and below USFS boundary	3	Insufficient Data					66
			Sevier River east side tributaries from the Clear Creek confluence upstream to	2						
Lower Sevier River	UT16030003-026_00	Sevier River-7	Manning Creek confluence	5	Not Supporting	pH Max. Temperature	2B;3A;4 3A	Low	2014 2014	4
Lower Sevier River	UT16030003-027_00	Peterson Creek	Petersen Creek and tributaries from confluence with Sevier River to USFS boundary	5	Not Supporting	Total Dissolved Solids Copper	4 3B 3C:3D	Low Low	2016 2016 2020	23 23 23
Lower Sevier River	UT16030004-001 00	San Pitch-1	San Pitch River and tributaries from confluence with Sevier River to tailwaters of Gunnison Reservoir (excluding all of Sixmile Creek and Twelvemile Creek above USF5 boundarv)	4A	Approved TMDL	Total Dissolved Solids	4		2020	63
Lower Sevier River	UT16030004-002_00	Twelve Mile Creek	Twelvemile Creek and tributaries from USFS boundary to headwaters	3	Insufficient Data					73
			Sixmile Creek and tributaries from confluence with San Pitch River to							
Lower Sevier River	UT16030004-003_00	Six Mile Creek - Sevier	headwaters	5	Not Supporting	Minimum Dissolved Oxygen Max. Temperature	3A 3A	Low	2012 2012	45 45

		Draft Con	nbined 2018/2020 Integrated Repo	rt: Flowing Surfa	ace Waters of the State	e and Canals 305(b) and	303(d)			
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Lower Sevier River	UT16030004-004_00	South Creek	South Creek (Manti Creek) and tributaries from USFS boundary to headwaters	3	Insufficient Data					35
Lower Sevier River	UT16030004-005_01	San Pitch-3-1	San Pitch River and tributaries from Gunnison Reservoir to U132 crossing and below USFS boundary	5	Not Supporting	Total Ammonia as N E. coli pH Minimum Dissolved Oxygen	3C;3D 2B 2B;3C;3D;4 3C:3D	Low Low Low	2016 2016 2020 2020	153 153 153 153 153
			San Pitch Piver and tributaries from		Approved TMDL	Total Dissolved Solids	4		1998	153
Lower Sevier River	UT16030004-005_02	San Pitch-3-2	Gunnison Reservoir to U132 crossing and below USFS boundary	5	Not Supporting	Total Ammonia as N E. coli	3C;3D 2B	Low	2016	(
			Oak Crook and Canal Crook and		Approved TMDL	Total Dissolved Solids	4		1998	(
Lower Sevier River	UT16030004-006 00	Oak Creek-1	tributaries from Chester Ponds to USFS boundary	3	Insufficient Data					32
Lower Sevier River	_ UT16030004-007_01	Upper Willow Creek	Ephraim Creek and tributaries from USFS boundary to headwaters	2	No Evidence of Impairment					37
Lower Sevier River	UT16030004-007_02	Ephraim Creek	Ephraim Creek and tributaries from USFS boundary to headwaters	2	No Evidence of Impairment					8
Lower Sevier River	LIT16030004-008_00	Pleasant Creek	Pleasant Creek and tributaries from confluence with San Pitch River to beadwaters	1	Fully Supporting					67
Lower Sevier River	UT16030004-009_00	San Pitch-5	San Pitch River and tributaries from U- 132 to Pleasant Creek confluence, excluding Cedar Creek, Oak Creek, Pleasant Creek and Cottowood Creek	5	Not Supporting	E. coli Max. Temperature	2B 3A	Low	2016 2020	13(13)
Lower Sevier River	UT16030004-010_00	Oak Creek-2	Oak Creek and Canal Creek and tributaries from USFS boundary to headwaters	1	Fully Supporting					34
Lower Sevier River	UT16030004-011 00	San Pitch-4	Silver Creek and tributaries from	5	Not Supporting	Total Dissolved Solids	4	Low	2014	4:
Lower Sevier River	UT16030004-012 00	Oak Creek Upper	Oak Creek and tributaries from confluence with San Pitch River to headwaters (near Fairview)	1	Fully Supporting					15
Lower Sevier River	UT16030004-013_00	Cottonwood Creek-SP	Cottonwood Creek and tributaries from confluence with San Pitch River to headwaters	1	Fully Supporting					16
Lower Sevier River	UT16030005-002_00	Cherry Creek	Cherry Creek and tributaries from mouth to headwaters	3	Insufficient Data					41
Lower Sevier River	UT16030005-003_00	Tanner Creek	Tanner Creek and tributaries from mouth to headwaters	3	Insufficient Data					90
Lower Sevier River	UT16030005-004_00	Oak Creek-1	Oak Creek tributaries from mouth to USFS boundary (near Oak City)	3	Insufficient Data					15
Lower Sevier River	UT16030005-005 00	Fool Creek-1	Fool Creek and tributaries from mouth to USFS boundary	3	Insufficient Data					4
Lower Sevier River	UT16030005-006 00	Fishlake National Forest-I15	Fishlake National Forest perennial streams located west of Interstate 15	3	Insufficient Data					76

			nomeu zu loizuzu megrateu Repo	on. Flowing Suna	ice waters of the state	and Canals 505(b) an	ia 303(a)			
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Lower Sevier River	UT16030005-007 00	Sevier River-21	Sevier River north side tributaries from DMAD Reservoir upstream to Sevier Bridge Reservoir (Yuba Dam) excluding Tanner Creek, Chicken Creek, their tributaries, and waters above USFS boundary	3	Insufficient Data					55
Lower Sevier River	UT16030005-008_00	Sevier River-27	Sevier River south side tributaries from DMAD Reservoir upstream to Yuba Dam excluding all waters above USFS boundary	, 1	Fully Supporting					84
Lower Sevier River	UT16030005-011_00	Chicken Creek-3	Sevier River drainage streams south of Chicken Creek and above USFS boundary flowing towards Sevier River	3	Insufficient Data					21
Lower Sevier River	UT16030005-012_00	Ivie Creek	Ivie Creek and tributaries from Scipio Dam to headwaters	2	No Evidence of Impairment					33
Lower Sevier River	UT16030005-013_00	Goose Creek-1	Goose Creek and tributaries from mouth to USFS boundary	3	Insufficient Data					4
Lower Sevier River	UT16030005-014_00	Goose Creek-2	boundary to headwaters Pioneer Creek and tributaries from mouth	3	Insufficient Data					8
Lower Sevier River	UT16030005-015_00	Pioneer Creek-1	to USFS boundary Pioneer Creek and tributaries from USES	3	Insufficient Data					13
Lower Sevier River	UT16030005-016_00	Pioneer Creek-2	boundary to headwaters	3	Insufficient Data					6
Lower Sevier River	UT16030005-017_00	Sevier River-23	Gunnison bend reservoir upstream to DMAD Reservoir	3	Insufficient Data					23
Lower Sevier River	UT16030005-018_00	Chalk Creek-1	Chalk Creek and Pine Creek (Millard County) and tributaries from mouth to USFS boundary	3	Insufficient Data					39
Lower Sevier River	UT16030005-019_00	Chalk Creek2-Fillmore	Chalk Creek and Pine Creek (Millard County) and tributaries from USFS boundary to headwaters	1	Fully Supporting					53
Lower Sevier River	UT16030005-020_00	Chicken Creek-1	Chicken Creek and tributaries from Levar to headwaters	ו 1	Fully Supporting					27
Lower Sevier River	UT16030005-021_00	Corn Creek	Corn Creek and tributaries from mouth to headwaters	1	Fully Supporting					84
Lower Sevier River	UT16030005-022_00	Chicken Creek-2	Chicken Creek and tributaries from confluence with Sevier River to Levan	5	Not Supporting	Total Dissolved Solids Max. Temperature	4 3A	Low Low	<u>1998</u> 2016	<u>57</u> 57
Lower Sevier River	UT16030005-023_00	Meadow Creek	Meadow Creek and tributaries from mout to headwaters (Juab County)	h 2	No Evidence of Impairment					15
Lower Sevier River	UT16030005-024_00	Round Valley Creek	Round Valley Creek from mouth upstrear to Scipio Reservoir	n 3	Insufficient Data					16
Lower Sevier River	UT16030005-025_00	Sevier River-20	Sevier River from U-132 crossing at the northern most point of the Sevier River (near Dog Valley Wash confluence) upstream to Yuba Dam	5	Not Supporting	Macroinvertebrates	3В	Low	2008	4
Lower Sevier River	UT16030005-026_00	Sevier River-22	Sevier River from DMAD Reservoir upstream to U-132 crossing at the northern most point of the Sevier River (near Dog Valley Wash)	4A	Approved TMDL	Total Phosphorus as P Sediment	<u>3B</u> 3C		<u>1998</u> 1998	<u>8</u>
Lower Sevier River	UT16030005-027_00	Sevier River-24	Sevier River from Gunnison Bend Reservoir to DMAD Reservoir	5	Not Supporting Approved TMDL	Total Dissolved Solids Total Phosphorus as P Sediment	4 3B 3C	Low	<u>2016</u> <u>1998</u> 1998	<u>1</u> 1 1

	Draft Combined 2018/2020 Integrated Report: Flowing Surface Waters of the State and Canals 305(b) and 303(d)												
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles			
Lower Sevier River	UT16030005-028_00	Sevier River-25	Sevier River from Crafts Lake to Gunnison Bend Reservoir	1	Fully Supporting					29			
Lower Sevier River	UT16030005-029_00	Sevier River-26	Sevier River north side tributaries from Gunnison Bend Reservoir to DMAD Reservoir	3	Insufficient Data					18			

				nt. Flowing Suna	ice waters of the State	e and Canals 305(b) and	<u> </u>			
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
			Colorado River from HUC 14010005- 14030001 boundary to Colorado State							
Southeast Colorado R	tiv UT14010005-001_00	Colorado River-6	Line	4A	Approved TMDL	Selenium	3B		2004	18
Southeast Colorado R	tiv UT14010005-002_00	Unknown tribs	(14010005) to Utah-Colorado state line	3	Insufficient Data					46
Southeast Colorado R	tiv UT14030001-001_00	Cottonwood Wash	Cottonwood Wash from Colorado River confluence to headwaters	5	Not Supporting	Max. Temperature Total Dissolved Solids	3B 4	Low	2014 2020	515 515
			Little Dolores River from confluence with							
Southeast Colorado R	tiv UT14030001-002_00	Little Dolores River	Colorado River to Utah-Colorado state	3	Insufficient Data					32
			Westwater Creek and tributaries from confluence with Colorado River to							
Southeast Colorado R	tiv UT14030001-003_00	Westwater Creek	headwaters	5	Not Supporting	Total Dissolved Solids Max. Temperature	4 3B	Low	2012	703 703
Southeast Colorado P	iv UT14030001-004 00	Bitter Creek	Bitter Creek and tributaries from Colorado) 3	Insufficient Data					244
Courreast Colorado R	av 0114030001-004_00		Colorado River from Dolores River						0000	443
Southeast Colorado R	iv UT14030001-005_00	Colorado River-5	confluence to HUC 14010005 boundary Nash Wash and tributaries from the	4A	Approved TMDL	Selenium	3B		2004	61
Southeast Colorado R	tiv UT14030001-006_00	Nash Wash	headwaters	2	No Evidence of Impairment					137
Southeast Colorado R	tiv UT14030002-001_01	La Sal Creek-1	La Sal Creek and tributaries from Utah- Colorado state line to headwaters	1	Fully Supporting					182
Southeast Colorado R	tiv UT14030002-001_02	La Sal Creek-2	La Sal Creek and tributaries from Utah- Colorado state line to headwaters	3	Insufficient Data					0
Southeast Colorado R		La Sal Creek-3	La Sal Creek and tributaries from Utah- Colorado state line to headwaters	3	Insufficient Data					0
Southeast Colorado R	iv UT14030004-001_00	Dolores River	Dolores River and tributaries (except Granite Creek) from confluence with Colorado River to headwaters or Utah- Colorado state line	5	Not Supporting	Max. Temperature Macroinvertebrates	3C 3C	Low	2014 2020	547
			Granite Creek and tributaries from confluence with Dolores River to Utab-							
Southeast Colorado R	tiv UT14030004-002_00	Granite Creek - CRSE	Colorado state line	3	Insufficient Data					59
Southeast Colorado R	tiv UT14030004-003_00	Roc Creek	Colorado state line to headwaters	3	Insufficient Data					166
Southeast Colorado R	tiv UT14030005-001_00	Kane Spring Wash	Kane Spring Wash from confluence with Colorado River to headwaters	5	Not Supporting	Total Dissolved Solids	4	Low	2014	1472
Southeast Colorado R	iv UT14030005-002_00	Indian Creek-2	Indian Creek and tributaries from Newspaper Rock State Park north boundary to headwaters	1	Fully Supporting	max. remperature		2011	2014	94
Southeast Colorado R	tiv UT14030005-003 00	Colorado River-3	Colorado River from Green River	4A	Approved TMDL	Selenium	3B		2006	97
Southeast Colorado R	tiv UT14030005-004_00	Colorado River-4	Colorado River from Moab to HUC unit (14030005) boundary	5	Not Supporting	E. coli Selenium	2A 3B	Low	2020	<u>71</u>
Southeast Colorado R	tiv UT14030005-005_00	Mill Creek1-Moab	Mill Creek and tributaries, except Pack Creek, from the confluence with Colorado River to USFS boundary	5	Not Supporting	Minimum Dissolved Oxygen E. coli	3A 1C;2B	Low	2014 2016	105 105
Southeast Colorado R	iv UT14030005-006_00	Mill Creek2-Moab	Mill Creek and tributaries from USFS boundary to headwaters	1	Fully Supporting	Max. Temperature	5 M		1990	105

Dratt Combined 2018/2020 integrated Report: Flowing Surface Waters of the State and Canals 305(b) and 303(d)											
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles	
Southeast Colorado Riv	v UT14030005-007 00	Salt Wash	Salt Wash and tributaries from confluence with Colorado River to beadwaters	5	Not Supporting	Total Dissolved Solids	4	Low	2016	324	
Southeast Colorado Riv	 v UT14030005-008_00	Grandstaff Canvon	Grandstaff Canyon from confluence with Colorado River to beadwaters	2	No Evidence of Impairment					46	
			Castle Creek and tributaries from	-							
Southeast Colorado Riv	v UT14030005-009_00	Castle Creek-1	Seventh-Day Adventist diversion	5	Not Supporting	Macroinvertebrates	3B	Low	2008	134	
Southeast Colorado Riv	v UT14030005-010_00	Onion Creek Lower	Onion Creek and tributaries from confluence with Colorado River toroad crossing above Stinking Springs	5	Not Supporting	Total Dissolved Solids	4	Low	2016	44	
			Pack Creek and tributaries from the		Approved IMDL	Max. Temperature	38		1998	44	
Southeast Colorado Riv	v UT14030005-011_00	Pack Creek	confluence with Mill Creek to USFS boundary	5	Not Supporting	Total Dissolved Solids Max. Temperature	4 3A	Low	2006	80 80	
						Selenium E. coli	3A 1C:2B	Low	2010	80 80	
			Castle Creek and tributaries from Seventh								
Southeast Colorado Riv	v UT14030005-012_00	Castle Creek-2	Day Adventist diversion to headwaters	3	Insufficient Data					40	
Southeast Colorado Riv	v UT14030005-013_00	Onion Creek Upper	crossing above Stinking Springs to headwaters	1	Fully Supporting					43	
Southeast Colorado Riv	v UT14030005-014 00	Indian Creek-1	Indian Creek from confluence with North Cottonwood Creek near Dugout Ranch to northern boundary of Newspaper Rock State Park	3	Insufficient Data					81	
Southeast Colorado Riv	- v UT14030005-015_00	North Cottonwood Creek	North Cottowood Creek and tributaries from confluence with Indian Creek near Dugout Ranch to headwaters	5	Not Supporting	Macroinvertebrates	3В	Low	2014	362	
Southeast Colorado Riv	v UT14030005-016 00	Salt Creek-Canyonlands	Salt Creek and tributaries from confluence with Colorado River to headwaters	3	Insufficient Data					294	
Southeast Colorado Riv	v UT14030005-017_00	Courthouse Wash	Harts Draw and tributaries from confluence with Indina Creek to beadwaters	5	Not Supporting	Macroinvertebrates	3B	Low	2020	323	
			Courthouse Wash and tributaries from	0	nor ouppoining		05	2011	2020	020	
Southeast Colorado Riv	v UT14030005-018_00	Courthouse Wash	headwaters	3	Insufficient Data					355	
Southeast Colorado Riv	v UT14030005-019_00	Professor Creek	confluence with Colrado River to headwaters	5	Not Supporting	Total Dissolved Solids	4 3B	Low	2012	109	
Southeast Colorado Riv	v UT14070001-003 00	Colorado River-2	Colorado River from Dirty Devil	1	Fully Supporting	max. remperature	00	2011	2012	84	
Southeast Colorado Riv	v UT14070001-004 00	White Canvon	Bowns Canyon from confluence with Lake	3	Insufficient Data					680	
			Lake Powell south side tributaries from Utah-Arizona state line to HUC								
Southeast Colorado Riv	v UT14070006-007_01	Lake Powell Tributaries-4-1	(14070006) boundary Lake Powell south side tributaries from	3	Insufficient Data					187	
Southeast Colorado Riv	v UT14070006-007 02	Lake Powell Tributaries-4-2	Utah-Arizona state line to HUC (14070006) boundary	3	Insufficient Data					6	

	Drait Combined 2016/2020 integrated Report. Flowing Surface waters of the State and Canals 305(b) and 303(d)												
Watershed As Management Unit As	ssessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles			
Southeast Colorado Riv UT	14070006-007_03	Lake Powell Tributaries-4-3	Lake Powell south side tributaries from Utah-Arizona state line to HUC (14070006) boundary	3	Insufficient Data					5			
Southeast Colorado Riv UT	14070006-007_04	Lake Powell Tributaries-4-4	Lake Powell south side tributaries from Utah-Arizona state line to HUC (14070006) boundary	3	Insufficient Data					6			
Southoost Colorado Pix UT	-	Puttor Wooh	Butler Wash and tributaries from confluence with San Juan River to	2	Insufficient Date					167			
Southeast Colorado Riv OT	14080201-001_00	Dutter Wash	Cottonwood Wash and tributaries from confluence with San Juan River to	3	Insumcient Data					107			
Southeast Colorado Riv UT	F14080201-002_00	Cottonwood Wash-1	Westwater Creek confluence Recapture Creek and tributaries from	2	No Evidence of Impairment					267			
Southeast Colorado Riv UI	14080201-003_00	Recapture Creek-2	USFS boundary to headwaters Johnson Creek and tributaries from	3	Insufficient Data					84			
Southeast Colorado Riv UT	14080201-004_00	Johnson Creek	headwaters	5	Not Supporting	Max. Temperature Minimum Dissolved Oxygen	3A 3A	Low Low	2010 2014	89 89			
Southeast Colorado Riv III	14080201-005 00	Reconture Creek-1	Recapture Creek and tributaries from confluence with San Juan River to USFS boundary within State Jurisdiction, excep	t	Not Supporting	Minimum Dissolved Oxygen	3B	Low	2020	610			
Southeast Colorado Riv UT	14080201-006 00	Cottonwood Wash-2	Cottonwood Wash from Westwater	5	Not Supporting	Radium 226, 228 (Combined)	10	Low	1998	422			
			connaines to con o soundary		Approved TMDL	Minimum Dissolved Oxyge Gross Alpha	<u>3B</u> 1C	Low	2012 1998	<u>422</u> 422			
Southeast Colorado Riv UT	14080201-007_00	Cottonwood Wash-3	Cottonwood Wash and tributaries within USFS boundary	5	Not Supporting Approved TMDL	Radium 226, 228 (Combined Gross Alpha	1C;4 1C;4	Low	<u>2010</u> 2010	<u>468</u>			
Southeast Colorado Riv UT	14080201-008_00	Westwater Creek	Westwater Creek and tributaries from confluence with Cottonwood Wash to headwaters	5	Not Supporting	Selenium	3B	Low	2012	127			
			San Juan River from the confluence with Chinle Creek to the Confluence with			Minimum Dissolved Oxygen	3B	Low	2012	127			
Southeast Colorado Riv UT	14080201-009_00	San Juan River-2	Montezuma Creek within State Jurisdiction	5	Not Supporting	Lead Iron	3B 3B	Low Low	2016 2016	49 49			
						Cadmium Macroinvertebrates E. coli	3B 3B 1C;2A	Low Low Low	2016 2020 2020	49 49 49			
			San Juan River from the confluence with Montezuma Creek to the Utah-Colorado										
Southeast Colorado Riv UI	14080201-010_00	San Juan River-3	border Comb Wash and tributaries from the	3	Insufficient Data					54			
Southeast Colorado Riv UT	F14080201-011_00	Comb Wash	headwaters	5	Not Supporting	Total Dissolved Solids Selenium Minimum Dissolved Oxygen Max. Temperature	4 3B 3B 3B	Low Low Low Low	2014 2014 2014 2014	788 788 788 788 788			
			McElmo Creek and tributaries from the confluence with San Juan River to Utah-			Macroinvertebrates	3B	Low	2020	788			
Southeast Colorado Riv UT	14080202-001_00	McElmo Creek	Jurisdiction	3	Insufficient Data					202			

Draft Combined 2018/2020 Integrated Report: Flowing Surface Waters of the State and Canals 305(b) and 303(d)											
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles	
Southeast Colorado Riv	UT14080203-001_00	Verdure Creek-1	Verdure Creek and tributaries from confluence with Montezuma Creek to U.S.191	5	Not Supporting	Macroinvertebrates	ЗA	Low	2020	32	
Southeast Colorado Riv	UT14080203-002_00	Verdure Creek-2	Verdure Creek and tributaries from U.S. 191 to headwaters	2	No Evidence of Impairment					66	
Southeast Colorado Riv	UT14080203-003_00	Montezuma Creek-2	Montezuma Creek and tributaries from Verdure Creek confluence to U.S. 191	5	Not Supporting	Macroinvertebrates	3A	Low	2020	148	
Southeast Colorado Riv	UT14080203-004_00	South Creek	South Creek and tributaries from confluence with Montezuma creek to headwaters	1	Fully Supporting					47	
Southeast Colorado Riv	UT14080203-005_01	Montezuma Creek-1-1	Montezuma Creek and all other tributaries not defined, from U.S. 191 to headwaters	s 2	No Evidence of Impairment					58	
Southeast Colorado Riv	UT14080203-005_02	Montezuma Creek-1-2	Montezuma Creek and all other tributaries not defined, from U.S. 191 to headwaters	s 2	No Evidence of Impairment					25	
Southeast Colorado Riv	UT14080203-006_00	Spring Creek	Spring Creek and tributaries from confluence with Vega Creek to headwaters	3	Insufficient Data					68	
Southeast Colorado Riv	UT14080203-007 00	Montezuma Creek-3	Montezuma Creek from San Juan River confluence to Verdure Creek confluence <u+00a0>within State Jurisdiction</u+00a0>	5	Not Supporting	Selenium	3В	Low	2014	2025	
Southeast Colorado Riv	UT14080203-008_00	North Creek	North Creek and tributaries from confluence with Montezuma Creek to headwaters	3	Insufficient Data					37	
Southeast Colorado Riv	UT14080205-001_00	San Juan River-1	San Juan River from Lake Powell to confluence with Chinle Creek within State Jurisdiction	5	Not Supporting	Max.Temperature E. coli	<u>3B</u> 1C;2A	Low Low	<u>2020</u> 2020	<u>97</u> 97	
Southeast Colorado Riv	UT14080205-002_00	Grand Gulch	Grand Gulch and tributaries from San Juan River confluence to headwaters	3	Insufficient Data					493	
Southeast Colorado Riv	UT14080205-003_00	San Juan River-1 Triburaries	San Juan River north side tributaries from Lake Powell to confluence with Chinle Creek	5	Not Supporting	Total Dissolved Solids	4	Low	2012	573	

		Draft Con	Ibined 2018/2020 Integrated Repo	ort: Flowing Surfa	ice waters of the State		303(d)			
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Uinta Basin	UT14040106-001_00	Dahlgreen Creek	Dahlgreen Creek and tributaries from Utah-Wyoming state line to headwaters	2	No Evidence of Impairment					48
Uinta Basin	UT14040106-002_00	Henrys Fork River	Henrys Fork River and tributaries from Utah-Wyoming state line to headwaters West Fork Beaver Creek and tributaries	3	Insufficient Data					122
Uinta Basin	UT14040106-003_00	West Fork Beaver Creek	from Utah-Wyoming state line to headwaters	5	Not Supporting	Aluminum	3A	Low	2014	51
Uinta Basin	UT14040106-004_00	Middle Fork Beaver Creek	Middle Fork Beaver Creek and tributaries from Utah-Wyoming state line to headwaters	5	Not Supporting	Aluminum	3A	Low	2014	84
Uinta Basin	UT14040106-005_00	Burnt Fork Creek	Burnt Fork Creek and tributaries from Utah-Wyoming state line to headwaters	1	Fully Supporting					100
Uinta Basin	UT14040106-006_00	Birch Creek-tribs	Birch Creek tributaries Utah-Wyoming state line to headwaters	3	Insufficient Data					133
Uinta Basin	UT14040106-007_00	Sheep Creek	Sheep Creek and tributaries from Flaming Gorge Reservoir to headwaters	g 3	Insufficient Data					264
Uinta Basin	UT14040106-008_01	Green River-1 Tribs-1	Green River perennial tributaries to Green River-1 (UT14040106-019) not specifially defined	1	Fully Supporting					82
Uinta Basin	UT14040106-008_02	Green River-1 Tribs-2	Green River perennial tributaries to Green River-1 (UT14040106-019) not specifially defined	1 7 1	Fully Supporting					29
Uinta Basin	UT14040106-008_03	Green River-1 Tribs-3	Green River perennial tributaries to Green River-1 (UT14040106-019) not specifially defined	1	Fully Supporting					75
Uinta Basin	UT14040106-008 04	Green River-1 Tribs-4	Green River perennial tributaries to Green River-1 (UT14040106-019) not specifially defined	1	Fully Supporting					7
Uinta Basin	UT14040106-008_05	Green River-1 Tribs-5	Green River perennial tributaries to Green River-1 (UT14040106-019) not specifially defined	1	Fully Supporting					8
Uinta Basin	UT14040106-009_00	Birch Spring Draw	Birch Spring Draw and tributaries from Flaming Gorge Reservoir to headwaters	5	Not Supporting	Total Dissolved Solids Selenium	4 3C;4	Low Low	2012 2012	<u>146</u> 146
Uinta Basin	UT14040106-010_00	Carter Creek	Carter Creek and tributaries from Flaming Gorge Reservoir to headwaters	5	Not Supporting	Aluminum	3A	Low	2014	199
Uinta Basin	UT14040106-011_00	Eagle Creek	Eagle Creek and tributaries from Flaming Gorge Reservoir to headwaters	1	Fully Supporting					25
Uinta Basin	UT14040106-012_01	Flaming Gorge Tributaries-1	Flaming Gorge Reservoir tributaries not defined separately	3	Insufficient Data					14
Uinta Basin	UT14040106-012_02	Flaming Gorge Tributaries-2	Flaming Gorge Reservoir tributaries not defined separately	3	Insufficient Data					34
Uinta Basin	UT14040106-012_03	Flaming Gorge Tributaries-3	Flaming Gorge Reservoir tributaries not defined separately	3	Insufficient Data					0
Uinta Basin	UT14040106-012_04	Flaming Gorge Tributaries-4	Flaming Gorge Reservoir tributaries not defined separately	2	No Evidence of Impairment					70
Uinta Basin	UT14040106-013_00	Spring Creek	Spring Creek and tributaries from Flaming Gorge Reservoir to Utah-Wyoming state line	g 3	Insufficient Data					59
Uinta Basin	UT14040106-014_00	Cart Creek	Cart Creek and tributaries from Flaming Gorge Reservoir to headwaters	5	Not Supporting	Aluminum Minimum Dissolved Oxygen	<u>3A</u> 3A	Low Low	<u>2014</u> 2020	<u>52</u> 52

Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Uinta Basin	UT14040106-015 00	Gorge Creek	Gorge Creek and tributaries from Green	2	No Evidence of Impairment					16
Uinta Basin	UT14040106-016_00	Davenport Creek	Davenport Creek and tributaries from Green River confluence to headwaters	1	Fully Supporting					18
Uinta Basin	UT14040106-017_00	Goslin Creek	Goslin Creek and tributaries from Green River confluence to headwaters	1	Fully Supporting					1
Uinta Basin	UT14040106-018_00	Red Creek	Red Creek and tributaries from Green River confluence to headwaters	5	Not Supporting	Macroinvertebrates	3C	Low	2020	10
Uinta Basin	UT14040106-019_00	Green River-1	Green River from Utah-Colorado state line to Flaming Gorge Reservoir	9 1	Fully Supporting					6
Uinta Basin	UT14040106-020_00	Jackson Creek	Jackson Creek and tributaries from Green River confluence to headwaters	5	Not Supporting	Minimum Dissolved Oxygen	3A	Low	2020	3!
Uinta Basin	UT14040106-021_00	Pot Creek	Pot Creek and tributaries from Crouse reservoir to headwaters	5	Not Supporting	Minimum Dissolved Oxygen Iron Aluminum	3A 3A 3A	Low Low Low	2014 2014 2014	105 105 105
Uinta Basin	UT14040106-022_00	Sears Creek	Sears Creek and tributaries from Green River confluence to headwaters	1	Fully Supporting	E. COII	ZD	LOW	2020	2
Uinta Basin	UT14040106-023_00	Pot Creek Lower	Pot Creek from Utah-Colorado state line to Crouse Reservoir outlet	3	Insufficient Data					6
Uinta Basin	UT14040106-024_00	Willow Creek - Daggett	Willow Creek and tributaries from confluence with Green River to headwaters (Dagget Co.)	1	Fully Supporting					5
Uinta Basin	UT14040106-025_00	O-Wi-Yu-Kuts Creek	O-Wi-Yu-Kuts Creek and tributaries from Willow Creek confluence to Utah- Colorado state line	3	Insufficient Data					
Uinta Basin	UT14040106-026_00	Tolivers Creek	Tolivers Creek from confluence with Green River to headwaters	2	No Evidence of Impairment					1:
Uinta Basin	UT14040106-027_00	Beaver Creek	Beaver Creek and tributaries (east of Willow Creek near 3 corners) from Colorado-Utah state line to Utah-Colorado state line	2	No Evidence of Impairment					1
Llinta Basin		Blacks Fork	Blacks Fork River and tributaries from Utah-Wyoming state line at Meeks Cabin	5	Not Supporting	Aluminum	34	Low	2014	22
Uinta Basin	UT14040107-002 00	Archie Creek	Archie Creek and tributaries from Utah- Wyoming state line to headwaters	2	No Evidence of Impairment	Auminum	54	LOW	2014	1
Uinta Basin	UT14040107-003_00	West Fork Smiths Fork	West Fork Smiths Fork and tributaries from Utah-Wyoming state line to beadwaters	2	No Evidence of Impairment					20
Uinta Basin	UT14040107-004_00	Gilbert Creek	Gilbert Creek and tributaries from Utah-	3	Insufficient Data					3
Uinta Basin	UT14040107-005_00	East Fork Smiths Fork	East Fork Smiths Fork and tributaries from Utah-Wyoming state line to headwaters	5	Not Supporting	Zinc	3A 3A	Low	2014	8
Uinta Basin	UT14040108-001_00	West Muddy Creek	West Muddy Creek and tributaries from Utah-Wyoming state line to headwaters	3	Insufficient Data				2011	1
Uinta Basin	UT14050007-001_00	White River	White River from confluence with Green River to Utah-Colorado state line	3	Insufficient Data					209;

Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
			Bitter Creek and tributaries from White River confluence to start of perennial							
Uinta Basin	UT14050007-002_00	Bitter Creek Lower	stream (excluding Sweetwater Creek)	5	Not Supporting	Total Dissolved Solids	4	Low	2014	24
						Selenium Max. Temperature	3A 3A	Low	2014	245
						Boron	4	Low	2014	245
						Minimum Dissolved Oxygen	3A	Low	2020	245
			Evacuation Creek and tributaries from the confluence with White River to	2						
Uinta Basin	UT14050007-003_00	Evacuation Creek	headwaters	5	Not Supporting	Total Dissolved Solids	4	Low	2008	336
						Selenium	3B	Low	2014	336
						Max. Temperature Boron	3B 4	Low	2014	336
			Sweetwater Creek and tributaries from							
Uinta Basin	UT14050007-004_00	Sweetwater Creek	Bitter Creek confluence to headwaters	3	Insufficient Data					379
Uinta Basin	UT14050007-005 00	Bitter Creek Upper	Bitter Creek and tributaries from upper portion that is perennial	5	Not Supporting	Total Dissolved Solids	4	Low	2014	352
			portion that to pororintal		11 5	Max. Temperature	3A	Low	2014	352
Uinta Basin	UT14060001-001_01	Green River-2 Tribs-1	Green River tributaries from Duchesne River confluence to Utah-Wyoming border, except Ashley, Brush, and Jones Hole Creeks	5	Not Supporting	E. coli	1C;2A	Low	2014	42
Uinta Basin	UT14060001-001_02	Green River-2 Tribs-2	Green River tributaries from Duchesne River confluence to Utah-Wyoming border, except Ashley, Brush, and Jones Hole Creeks	5	Not Supporting	E. coli	1C;2A	Low	2014	537
	_					E. coli	2B	Low	2020	537
Uinta Basin	UT14060001-001_03	Green River-2 Tribs-3	Green River tributaries from Duchesne River confluence to Utah-Wyoming border, except Ashley, Brush, and Jones Hole Creeks	5	Not Supporting	E. coli	1C;2A	Low	2014	225
Llinta Basin	UT14060001-001_04	Green River-2 Tribs-4	Green River tributaries from Duchesne River confluence to Utah-Wyoming border, except Ashley, Brush, and Jones Hole Creeks	5	Not Supporting	E coli	1C:2A	low	2014	867
onna baon			Jones Hole Creek and tributaries from	0	not oupporting	2.000	10,21	2011	2011	001
Linte Desin	11744060004 000 00	lanas Ilala Casak	confluence with Green River to	4	Fully Comparting					24
Unita Basin	0114060001-002_00	Johes Hole Creek	Diamond Gulch and tributaries from pear	1	Fully Supporting					- 34
Uinta Basin	UT14060001-003_00	Diamond Gulch	Jones Hole Creek to headwaters	5	Not Supporting	Aluminum	3A	Low	2014	140
						E. coli	2B	Low	2020	140
Uinta Basin	UT14060001-004_00	Green River-2	Green River from Duchesne River confluence to Utah-Wyoming border	5	Not Supporting	Selenium	3B	Low	2014	99
			Ashley Creek and tributaries from Green							
Uinta Basin	UT14060002-001 00	Ashley Creek Lower	River confluence to vernal sewage lagoons	5	Not Supporting	Total Dissolved Solids	4	Low	1992	173
			-			Selenium	3B;4	Low	1992	173
Uinta Basin	UT14060002-002_00	Middle Ashley Creek	Asniey Creek and tributaries from Vernal sewage lagoons to Dry Fork confluence	5	Not Supporting	Total Dissolved Solids	4	Low	2008	413
			5 · · · 5 · · · · · · · · · · · · · · ·			Selenium	3B	Low	2008	413
						Aluminum	3B	Low	2014	413
									C1 (1) (1) (1)	440

Draft Combined 2018/2020 Integrated Report: Flowing Surface Waters of the State and Canals 305(b) and 303(d)												
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles		
			Brush Creek and tributaries from confluence with Green River to Red Fleet									
Uinta Basin	UT14060002-003_00	Brush Creek	Dam but excluding Little Brush Creek	5	Not Supporting	Selenium E. coli	3B 2B	Low	2004 2014	282		
Uinta Basin	UT14060002-004_00	Little Brush Creek Lower	Little Brush Creek and tributaries from Big Brush Creek confluence to mouth of Little Brush Creek Gorge	3	Insufficient Data					76		
Uinta Basin	UT14060002-005 00	Little Brush Creek Upper	Little Brush Creek and tributaries from mouth of Little Brush Creek Gorge to beadwaters	5	Not Supporting	Aluminum	3B	Low	2014	84		
			Big Brush Creek and tributaries from Red									
Uinta Basin	UT14060002-006_00	Big Brush Creek	Fleet Reservoir to headwaters Ashley Creek and tributaries from Dry	5	Not Supporting	Aluminum	3A	Low	2014	211		
Uinta Basin	UT14060002-007_00	Ashley Creek Upper	Dry Fork)	5	Not Supporting	Aluminum	3A	Low	2014	230		
Uinta Basin	UT14060002-008_00	Dry Fork Creek Lower	Dry Fork and tributaries from confluence with Ashley Creek to USFS boundary	3	Insufficient Data					60		
Uinta Basin	UT14060002-009_00	Dry Fork Creek Upper	Dry Fork and tributaries from U.S. Forest Service boundary to headwaters	2	No Evidence of Impairment	t				153		
Llinta Basin	LIT14060003-001 00	Duchesne River-1	Duchesne River and tributaries from Green River confluence to Uinta River	5	Not Supporting	E coli	2B	Low	2014	244		
onita basin	011400000-001_00	Dublication (1991-1	confidence	0	Approved TMDL	Total Dissolved Solids	4	2011	1998	244		
Uinta Basin	UT14060003-002_00	Duchesne River-2	Duchesne River and tributaries from confluence with Uinta River to Myton	5	Not Supporting	E. coli	2B	Low	2014	248		
					Approved TMDL	Total Dissolved Solids	4	LOW	2016	248		
Llinta Rasin	11714060002 002 00	Llinta Divar 1	Uinta River and tributaries from Duchesne River confluence upstream to Dry Gulch	4.0		Total Dissolved Solida	4		2016	26		
Unita Dasin	0114080003-003_00	Unita River-1	conitience	4A	Approved TMDL	Total Dissolved Solids	4		2010	50		
Uinta Basin	UT14060003-004_00	Uinta River-2	Uinta River and tributaries from Dry Gulch confluence upstream to U.S. Highway 40	4A	Approved TMDL	Total Dissolved Solids	4		1998	104		
			Antelope Creek and tributaries from Duchesne River confluence to									
Uinta Basin	UT14060003-005_00	Antelope Creek	headwaters	5	Not Supporting	Total Dissolved Solids Boron	4	Low	1998 2008	509 509		
						Selenium	3A	Low	2014	509		
						Arsenic	1C;HH1C	Low	2014	509		
Uinta Basin	UT14060003-006_00	Duchesne River-3	River confluence	2	No Evidence of Impairment	t				381		
Uinta Basin	UT14060003-007_00	Zimmerman Wash	Lake Fork River to headwaters	5	Not Supporting	Total Dissolved Solids	4	Low	2020	147		
			Lake Fork River and tributaries from									
Uinta Basin	UT14060003-008_00	Lake Fork-1	Water Creek confluence	5	Not Supporting	Max. Temperature	3A	Low	2000	163		
						Aluminum Minimum Dissolved Oxygen	3A 3A	Low	2014	163		
						Macroinvertebrates	3A	Low	2020	163		
			Dry Gulch Creek and tributaries from		Approved TMDL	Total Dissolved Solids	4		2004	163		
Llinte Desi		Day Outab Carach	Duchesne River confluence to	<i>c</i>	Not Supporting	E coli	28	Low	2014	40.44		
Unita Basin	0114060003-009_00	Dry Guich Creek	neadwaters	5	Approved TMDL	Total Dissolved Solids	4	LUW	1998	1344		

Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of th State and Canal Miles
			Uinta River and tributaries from U.S. Highway 40 to USES boundary, excluding							
Uinta Basin	UT14060003-010_00	Uinta River-3	all of Whiterocks River and Farm, Pole, and Deep Creeks	3	Insufficient Data					59
Uinta Basin	UT14060003-011_00	Whiterocks River Lower	Whiterocks River and tributaries from confluence with Uintah River to Tridell Water Treatment Plant	2	No Evidence of Impairment					6
Uinta Basin	UT14060003-012 00	Deep Creek - Uinta	Deep Creek and tributaries from Uintah River confluence to beadwaters	5	Not Supporting	Minimum Dissolved Oxvaen	3A	Low	2014	26
			Whiterocks River and tributaries from			X/gui				20
Uinta Basin	UT14060003-013_00	Whiterocks River Upper	headwaters	3	Insufficient Data					14
	· · · · ·		Pole and Farm Creeks and their tributaries from their Uinta River confluence to headwaters, and Cart							
Uinta Basin	UT14060003-014_00	Pole Creek	Hollow above USFS boundary	3	Insufficient Data					15
Llinta Basin	UT14060003-015_00	l ake Fork-2	Lake Fork River and tributaries from Pigeon Water Creek confluence to Yellowstone River confluence (includes Pigeon Water Creek and Yellowstone River to USFS boundary)	1	Fully Supporting					39
	0	Lind Form L	Rock Creek and tributaries from		, oupporting					
Uinta Basin	UT14060003-016 00	Rock Creek Lower	confluence with Duchesne River to USFS boundary	3	Insufficient Data					19:
Llinta Basin	UT14060003-017_00	Duchespe River-4	Duchesne River and tributaries from Strawberry River confluence to West Fork Duchesne River confluence, excluding Rock Creek	3	Insufficient Data					56
Unita DaSIII	0114000003-017_00	Ducheshe River-4	West Fork Duchesne River and tributaries	6	mounicient Data					50
Uinta Basin	UT14060003-018_00	West Fork Duchesne	headwaters	5	Not Supporting	pН	1C;2B;3A;4	Low	2020	18
			North Fork Duchesne River and tributaries from Duchesne River confluence to							
Uinta Basin	UT14060003-019_00	North Fork Duchesne	headwaters	5	Not Supporting	Aluminum	ЗA	Low	2014	12
Uinta Basin	UT14060003-020 00	Rock Creek Upper	Rock Creek and tributaries from USFS	5	Not Supporting	Aluminum	3A	Low	2014	17:
Uinta Basin	UT14060003-021_00	Moon Lake Tributaries	Moon Lake tributaries	5	Not Supporting	Minimum Dissolved Oxygen	ЗA	Low	2014	16
			Lake Fork River and tributaries from Yellowstone River confluence to Moon							_
Uinta Basin	UI14060003-022_00	Lake Fork-3	Lake	3	Insufficient Data					93
Uinta Basin	UT14060003-023_00	Yellowstone Upper	USFS boundary to headwaters	2	No Evidence of Impairment					16
Uinta Basin	UT14060003-024_00	Uinta River-4	Uinta River and tributaries from USFS boundary to headwaters	5	Not Supporting	Zinc pH	3A 2B:3A:4	Low	2014 2014	165 165
						Aluminum	3A	Low	2014	16
Uinta Basin	UT14060004-001_00	Strawberry River-1	Strawberry River from confluence with Duchesne River to Starvation Dam	1	Fully Supporting					4
			Indian Canyon Creek and tributaries from Strawberry River confluence to							
Uinta Basin	UT14060004-002_00	Indian Canyon Creek	headwaters	5	Not Supporting	Lotal Dissolved Solids	4 A	Low	1998	27
						Arsenic	1C;HH1C	Low	2008	276
						Selenium	3A	Low	2014	276
Uinta Basin	UT14060004-003_01	Starvation Tributaries-1	Starvation Reservoir tributaries except Strawberry River	2	No Evidence of Impairment					6

Drait Combined 2016/2020 integrated Report. Flowing Surface waters of the State and Canals 505(b) and 505(b)											
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles	
Llinta Rasin	LIT14060004 002 02	Stanuation Tributarian 2	Starvation Reservoir tributaries except	5	Not Supporting	Total Dissolved Solida	4	Low	2020	249	
Unita Dasin	0114000004-003_02	Starvation moutanes-2	Strawberry River	5	Not Supporting	Max. Temperature	4 3A	Low	2020	248	
Llinta Basin	UT14060004-004_00	Stawherry River-2	Strawberry River and tributaries from Starvation Reservoir to Avintaquin Creek confluence, excluding Red Creek and tributaries	5	Not Supporting	Arsenic	10-1110	Low	2020	310	
Unita Dasin	011400004-004_00	Stawberry River-2	Avintaguin Creek and tributaries from	5	Not Supporting	Alsellic	10,11110	LOW	2020	510	
Llinte Desin	11744060004 005 00	Avintanuia Carali	Strawberry River confluence to	5	Net Currentine	Arrania	40.11140	Law	2000	200	
Unta Basin	0114060004-005_00	Avintaquin Creek	Red Creek and tributaries from Strawberry	5	Not Supporting	Arsenic	IC;HHIC	LOW	2008	300	
			River confluence to Currant Creek								
Uinta Basin	UT14060004-006_00	Red Creek Lower	Confluence	1	Fully Supporting					30	
			Red Creek and tributaries from Current	_							
Uinta Basin	UT14060004-007_00	Red Creek Lipper	Creek confluence to Red Creek Reservoir Red Creek Reservoir tributaries	3	Not Supporting	Macroinvertebrates	3A	Low	2020	217	
Uinta Basin	UT14060004-009_00	Currant Creek Lower	Current Creek and tributaries from Red Creek confluence to Current Creek Reservoir	3	Insufficient Data					280	
Uinta Basin	UT14060004-010 00	Strawberry River-3	Strawberry River and tributaries, except Willow Creek and Timber Canyon, from Avintaquin Creek confluence to Strawberry Reservoir	5	Not Supporting	Macroinvertebrates	3A	Low	2014	182	
Uinta Basin	UT14060004-011 00	Timber Canvon Creek	Timber Canyon Creek and tributaries from confluence with Strawberry River to beadwaters	5	Not Supporting	Arsenic	1C:HH1C	Low	2014	123	
Linte Denin		Willow Corole, Warehold	Willow Creek and tributaries from confluence with Strawberry River to	2	No Evidence of Imperiment						
Unita Basin	0114060004-012_00	Willow Creek - Wasatch	Strawberry Reservoir tributaries other	2	No Evidence of Impairment					00	
Uinta Basin	UT14060004-013_00	Strawberry-4	than Strawberry River	5	Not Supporting	<u>pH</u> Minimum Dissolved Oxygen*	<u>1C;2B;3A;4</u> 3A	Low Low	2014 2014	<u>281</u> 	
Llinta Basin	LIT14060004-014_00	Strawberry River Upper	Strawberry River and tributaries from	3	Insufficient Data					144	
Uinta Basin	UT14060004-015_00	Currant Creek Upper	Currant Creek Reservoir tributaries	5	Not Supporting	Minimum Dissolved Oxygen	3A	Low	2014	107	
Uinta Basin	UT14060005-001 01	Green River-3 Tribs-1	Green River tributaries from Price River to Duchesne River (HUC 14060005) not spefically defined	3	Insufficient Data					110	
	<u> </u>		Green River tributaries from Price River to Duchesne River (HUC 14060005) not)	indunition Data					110	
Uinta Basin	UT14060005-001_02	Green River-3 Tribs-2	spefically defined Green River tributaries from Price River to	3	Insufficient Data					4	
Uinta Basin	UT14060005-001_03	Green River-3 Tribs-3	Duchesne River (HUC 14060005) not spefically defined Green River tributaries from Price River to	3	Insufficient Data					503	
Uinta Basin	UT14060005-001_04	Green River-3 Tribs-4	Duchesne River (HUC 14060005) not spefically defined	3	Insufficient Data					954	
Uinta Basin	UT14060005-001_05	Green River-3 Tribs-5	Green River tributaries from Price River to Duchesne River (HUC 14060005) not spefically defined	3	Insufficient Data					369	
Uinta Basin	UT14060005-001 06	Green River-3 Tribs-6	Green River tributaries from Price River to Duchesne River (HUC 14060005) not spefically defined	3	Insufficient Data					148	

Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
			Green River tributaries from Price River to Duchesne River (HUC 14060005) not	D						
Uinta Basin	UT14060005-001_07	Green River-3 Tribs-7	spefically defined	3	Insufficient Data					40
Uinta Basin	UT14060005-001_08	Green River-3 Tribs-8	Green River tributaries from Price River to Duchesne River (HUC 14060005) not spefically defined	3	Insufficient Data					218
Uinta Basin	UT14060005-002 00	Pariette Draw Creek	Pariette Draw Creek and tributaries from Green River confluence to headwaters	5	Not Supporting	Max. Temperature	3B	Low	2014	1083
	_				Approved TMDL	Minimum Dissolved Oxygen Total Dissolved Solids	<u>3B;3D</u> 4	Low	2020 1998	<u>1083</u> 1083
						Selenium	3B;3D		1998	1083
			Ninemile Creek and tributaries from			Boron	4		1998	1083
Uinta Basin	UT14060005-003_00	Ninemile	Green River confluence to headwaters	4A	Approved TMDL	Max. Temperature	3A		2020	1053
Uinta Basin	UT14060005-004 00	Range Creek Upper	Range Creek and tributaries from Range Creek Pumping Station to beadwaters	5	Not Supporting	Minimum Dissolved Oxvaen	3A	Low	2016	23
			Range Creek and tributaries from ranch							
Llinta Pagin	LIT14060005 005 00	Banga Crook Middle	diversion to Range Creek Pumping	2	No Evidence of Impeirment					010
Unita Dasin	0114000005-005_00	Range Creek Middle	Range Creek and tributaries from	2	NO Evidence of Impairment					213
			confluence with Green River to ranch							
Uinta Basin	UT14060005-006_00	Range Creek Lower	diversion	2	No Evidence of Impairment					116
Uinta Basin	UT14060005-007_00	Florence Creek	Green River confluence to headwaters	3	Insufficient Data					101
			Rock Creek from Green River confluence							(00
Uinta Basin	UT14060005-008_00	Rock Creek	to headwaters	3	Insufficient Data					120
			Green River from Price River confluence							
Line Busin	11744000005 000 00	On the Diversion	to Duchesne River confluence (Green	-	Nuclear	- 11		1	0000	001
Uinta Basin	0114060005-009_00	Green River-3	River in HUC 14060005) Willow Creek and tributaries from Geen	5	Not Supporting	рн	10;28;38;4	LOW	2020	221
			River confluence to Meadow Creek							
Uinta Basin	UT14060006-001_00	Willow Creek	confluence (excluding Hill Creek)	5	Not Supporting	Boron Total Dissolved Selida	4	Low	2014	1035
			Willow Creek and tributaries from and			Total Dissolved Solids	4	LOW	2020	1035
			including, Meadow Creek confluence to							
Uinta Basin	UT14060006-002_00	Willow Creek Upper	headwaters	2	No Evidence of Impairment					500
Uinta Basin	UT14060006-003_00	Hill Creek	Creek confluence to headwaters	3	Insufficient Data					782
			Green River from San Rafael confluence							
Uinta Basin	0114060008-001_00	Green River-4	to Price River confluence	1	Fully Supporting					119
			Green River from confluence with							
Uinta Basin	UT14060008-002_00	Green River-5	Colorado River to San Rafael confluence	3	Insufficient Data					148
Uinta Basin	UT14060008-003_00	Green River-5 Tributaries	I hompson Creek and tributaries from I-70 to headwaters	ງ 1	Fully Supporting					69
			Flow Wash and tributaries from							
Llinta Basin	UT14060008-004_00	Flov Creek	confluence with Little Grand Wash to	2	No Evidence of Impairment					165
onità Daoin	011400000-004 00	I IOY OICCK	neauwalers	2	The Evidence of impairment					105

		Draft Com	nbined 2018/2020 Integrated Rep	oort: Flowing Surfa	ace Waters of the Stat	e and Canals 305(b) and	303(d)			
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Uinta Basin	UT14060008-005_00	Horse Canyon-Canyonlands	Horse Canyon and tributaries from confluence with Green River to headwaters	3	Insufficient Data					192
Uinta Basin	UT14060008-006_00	Barrier Creek	Barrier Creek and tributaries from confluence with Green River to headwaters	3	Insufficient Data					299
Uinta Basin	UT14060008-007_00	Ten Mile Canyon - Grand	Ten mile canyon and tribs from confluence with Green River to confluence with Thompson Wash	5	Not Supporting	<u>Minimum Dissolved Oxygen</u> Max. Temperature	<u>3B</u> 3B	Low Low	<u>2014</u> 2014	<u>153</u> 153

Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Upper Provo River	UT16020203-002_00	Provo River-2	Provo River from Murdock Diversion to Olmstead Diversion	3	Insufficient Data					
Upper Provo River	UT16020203-003_00	Provo River-3	Provo River from Olmstead Diversion to Deer Creek Reservoir	5	Not Supporting	Macroinvertebrates	ЗA	Low	2020	
Upper Provo River	UT16020203-004_00	Provo River-4	Provo River from Deer Creek Reservoir to Jordanelle Reservoir	5	Not Supporting	E. coli	1C;2B	High	2010	1
Upper Provo River	UT16020203-005_00	Provo River-5	Provo River from Jordanelle Reservoir to Woodland	5	Not Supporting	Aluminum	ЗA	Low	2016	1
Upper Provo River	UT16020203-006_01	Provo River-6-1	Provo River and tributaries from Woodland to headwaters, except Little South Fork and Upper South Fork	5	Not Supporting	Zinc	3A 3A	Low Low	2014 2014	3
Upper Provo River	UT16020203-006_02	Provo River-6-2	Provo River and tributaries from Woodland to headwaters, except Little South Fork and Upper South Fork	5	Not Supporting	Zinc Aluminum	3A 3A	Low Low	2014 2014	3
Upper Provo River	UT16020203-006_03	Provo River-6-3	Provo River and tributaries from Woodland to headwaters, except Little South Fork and Upper South Fork	5	Not Supporting	Zinc Aluminum pH Copper	3A 3A 1C;2B;3A;4 3A	Low Low	2014 2014 2020 2020	4444
Upper Provo River	UT16020203-007_00	South Fork Provo River	Lower South Fork Provo River and tributaries from confluence with Provo River to headwaters	1	Fully Supporting	Сорры	U.Y.	2011	2020	1
Upper Provo River	UT16020203-008_00	North Fork Provo River	North Fork Provo River and tributaries from confluence with Provo River to headwaters	3	Insufficient Data					1
Upper Provo River	UT16020203-009_00	Main Creek-1	Main Creek and tributaries from Deer Creek Reservoir to Round Valley	5	Not Supporting	E. coli Macroinvertebrates	1C;2B 3A	Low Low	2010 2016	1
Upper Provo River	UT16020203-010_00	Main Creek-2	Main Creek and tributaries from Round Valley to headwaters	5	Not Supporting	E. coli	1C;2B	Low	2020	5
Upper Provo River	UT16020203-011_00	Daniels Creek-1	Daniels Creek and tributaries from confluence with Deer Creek Reservoir to Whiskey Springs	1	Fully Supporting					2!
Upper Provo River	UT16020203-012_00	Daniels Creek-2	Daniels Creek and tributaries from Whiskey Springs to headwaters	2	No Evidence of Impairmen	t				1
Upper Provo River	UT16020203-013_00	Provo Deer Creek	Provo Deer Creek and tributaries from confluence with Provo River to headwaters	5	Not Supporting	Macroinvertebrates	3A	Low	2008	2
Upper Provo River	UT16020203-014 00	Snake Creek-1	Snake Creek from confluence with Provo River to Wasatch Mountain State Park Golf Course	5	Not Supporting	Arsenic	1C;HH1C	High	2006	
Upper Provo River	UT16020203-015_00	Snake Creek-2	Snake Creek and tributaries from Wasatch Mountain State Park to headwaters	5	Not Supporting	E. coli	1C;2B	Low	2020	2
Upper Provo River	UT16020203-016_00	McHenry Creek	McHenry Creek and tributaries from Jordanelle Reservoir to headwaters	5	Not Supporting	Cadmium	3A	Low	2014	
Upper Provo River	UT16020203-017_00	Little South Fork Provo	Little South Fork Provo River and tributaries from confluence with Provo River to beadwaters	2	No Evidence of Impairmen	t				3
Upper Provo River	UT16020203-018_00	South Fork Provo	Upper South Fork Provo River and tributaries from confluence with Provo River to beadwaters	3	Insufficient Data	х 				3

		Draft Com	bined 2018/2020 Integrated Repo	rt: Flowing Surfa	ace Waters of the Stat	te and Canals 305(b) ar	nd 303(d)			
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Upper Provo River	UT16020203-019_00	Lake Creek-2	Lake Creek and tributaries above Timber Creek confluence to headwaters	1	Fully Supporting					23
Upper Provo River Upper Provo River	_ UT16020203-020_00 UT16020203-021_00	Lost Creek and tributaries from confluence with Provo River Upper Falls Drainage	HUC: 16020203 (across Provo Canyon from Bridal Veil Falls) Upper Falls above Bridal Veil Falls	3 3	Insufficient Data					2
Upper Provo River Upper Provo River	UT16020203-022_00 UT16020203-023_00	Bridal Veil Falls Provo Lower Tributaries	Bridal Veil Falls from falls to headwaters HUC: 16020203	3 3	Insufficient Data Insufficient Data					0
Upper Provo River Upper Provo River	 UT16020203-024_00 UT16020203-025_00	Rock Canyon Provo Canyon	Rock Canyon and tributaries from mouth to headwaters HUC: 16020203	3	Insufficient Data Insufficient Data					5
Upper Provo River	 UT16020203-026_00	Heber Valley	Provo River east side tributaries from Daniels Creek to Little South Fork except Lake Creek	5	Not Supporting	E. coli	1C;2B	Low	2020	83
Upper Provo River	UT16020203-027_00	Spring Creek-Heber	Spring Creek and tributaries from confluence with Provo River to headwaters	5	Not Supporting	E. coli	1C;2B	Low	2016	36
Upper Provo River	UT16020203-028_01	Provo Tributaries-Heber-1	Provo River west side tributaries from Deer Creek Dam to Jordanelle Dam except Snake Creek	3	Insufficient Data					14
Upper Provo River	UT16020203-028_02	Provo Tributaries-Heber-2	Provo River west side tributaries from Deer Creek Dam to Jordanelle Dam except Snake Creek	3	Insufficient Data					16

DRAFT 2018/2020 IR: VERSION 2.4

Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Upper Sevier River	UT16030001-001_00	Piute West	Piute Reservoir west side tributaries (City Creek) above USFS boundary and south of HUC boundary 16030003	3	Insufficient Data					17
Upper Sevier River	UT16030001-002_00	Sevier River-4	Sevier River and tributaries from Piute Reservoir to Circleville Irrigation Diversion, excluding East Fork Sevier River and tributaries	3	Insufficient Data					77
Upper Sevier River	UT16030001-004_00	Bear Creek	Bear Creek and tributaries from confluence with Sevier River to headwaters	5	Not Supporting	Max. Temperature Copper	3A 3A;4	Low Low	2014 2014	27
Upper Sevier River	UT16030001-005 00	Sevier River-3	Sevier River and tributaries from Circleville Irrigation Diversion to Horse Vallev Diversion	4A	Approved TMDL	E. coli Total Phosphorus as P	2B 3A	Low	2020 1998	27
Upper Sevier River	LIT16030001-006_00	Panquitch Creek-2	Panguitch Creek and tributaries from confluence with Sevier River to Panguitch Pacepuoir	5	Not Supporting	Sediment	3C 2B	Low	1998	72
Upper Sevier River	UT16030001-007_00	Sevier River-2	Sevier River and east side tributaries from Horse Valley Bridge Diversion upstream to Long Canal	5	Not Supporting	Macroinvertebrates	3A	Low	2020	134
			Papquitch Creek and tributaries and all		Approved TMDL	Max.Temperature Total Phosphorus as P Sediment	3A 3A 3C	Low	2020 2002 2002	<u>134</u> 134 134
Upper Sevier River	UT16030001-008_00	Panguitch Creek-1	other tributaries to Panguitch Reservoir to headwaters Mammoth Creek and tributaries from	5	Not Supporting	Max. Temperature	ЗA	Low	2014	32
Upper Sevier River	UT16030001-009_00	Mammoth Creek Lower	confluence with Sevier River to Mammoth Spring confluence Duck Creek and tributaries from mouth to	4A	Approved TMDL	Total Phosphorus as P	3A		2004	3:
Upper Sevier River	UT16030001-010_00	Duck Creek	headwaters Asay Creek and tributaries from confluence with Sevier River to	3	Insufficient Data					22
Upper Sevier River Upper Sevier River	UT16030001-011_00 UT16030001-012_00	Asay Creek Sevier River-1	Headwaters Sevier River and tributaries from Long Canal to Mammoth Creek confluence	5	Fully Supporting Not Supporting	Max. Temperature	ЗА	Low	2008	87
Upper Sevier River	UT16030001-013_00	Piute	Piute Reservoir tributaries below USFS boundary and excluding Sevier River inlet	3	Insufficient Data					13
Upper Sevier River	UT16030001-014_00	Threemile Creek	west side tributaries from Horse Valley Diversion upstream to Long Canal, excluding Panquitch and Bear Creeks	5	Not Supporting	Max. Temperature	ЗA	Low	2008	76
Upper Sevier River	UT16030001-015_00	Mammoth Creek Upper	confluence with Mammoth Spring to headwaters	3	Insufficient Data					32
Upper Sevier River	UT16030002-001_00	Otter Creek-4	Koosharem Reservoir to headwaters	5	Not Supporting	Max. Temperature E. coli	3A 2B	Low	2008 2016	36 36
Upper Sevier River	UT16030002-002_00	Otter Creek-1	Otter Creek and tributaries from Otter Creek Reservoir to Koosharem Reservoir, except Box and Greenwich Creeks	5	Not Supporting	Max. Temperature	3A 3A	Low	2008	122

		Draπ Com	ibined 2018/2020 Integrated Repo	rt: Flowing Surfa	ice waters of the Stat	e and Canals 305(b) and	303(a)			
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Upper Sevier River	UT16030002-003_00	Otter Creek-3	Greenwich Creek and tributaries from confluence with Otter Creek to headwaters	4A	Approved TMDL	Total Phosphorus as P Sediment	<u>3A</u> 3A		<u>1998</u> 1998	<u>32</u> 32
Upper Sevier River	UT16030002-004_00	Otter Creek-2	Box Creek and tributaries from confluence with Otter Creek to headwaters	e 4A	Approved TMDL	<u>Total Phosphorus as P</u> Sediment Minimum Dissolved Oxyge Habitat	<u>3A</u> <u>3A</u> 3A 3A		<u>1998</u> 1998 2012 1998	<u>39</u> <u>39</u> 39
Upper Sevier River	UT16030002-005_00	East Fork Sevier River-4	East Fork Sevier River and tributaries from confluence with Sevier River upstream to Antimony Creek confluence, excluding Otter Creek and tributaries	5	Not Supporting Approved TMDL	<u>Max.Temperature</u> Total Phosphorus as P	<u>3A</u> 3A	Low	<u>2006</u> 2000	<u>56</u> 56
Upper Sevier River	UT16030002-006_00	East Fork Sevier-3	East Fork Sevier River and tributaries from Antimony Creek confluence to Deer Creek confluence	5	Not Supporting	Macroinvertebrates	ЗA	Low	2010	82
Upper Sevier River	UT16030002-007_00	Deer Creek	Deer Creek and tributaries from confluence with East Fork Sevier River to headwaters	3	Insufficient Data					29
Upper Sevier River	UT16030002-008_00	Antimony Creek	Antimony Creek and tributaries from confluence with Sevier River to headwaters	1	Fully Supporting					33
Upper Sevier River	UT16030002-009_00	East Fork Sevier-2	East Fork Sevier River and tributaries from Deer Creek confluence to Tropic Reservoir	5	Not Supporting	Macroinvertebrates	ЗA	Low	2014	323
Upper Sevier River	UT16030002-010_00	East Fork Sevier-1	East Fork Sevier River and tributaries from Tropic Reservoir to headwaters	3	Insufficient Data					77

Draft Combined 2018/2020 Integrated Report: Flowing Surface Waters of the State and Canals 305(b) and 303(d

		Drait Cor	nomed 2016/2020 integrated Repo	ort. Flowing Suna	ace waters of the Stat	e and Canals 505(b) and	r 303(a)			
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Litab Lake Lower Prov	(a. LIT16020201.001.00	American Fork Diver 1	American Fork River and tributaries from Diversion at mouth of Canyon to Tibble	1	Fully Supporting					12
Otall Lake-Lower 1100	0 0110020201-001_00	American Fork River-1	Current Creek from mouth of Goshen	1	Tuny Supporting					10
Utah Lake-Lower Prov	o UT16020201-003_00	Currant Creek	Canyon to Mona Reservoir Salt Creek from mouth of Canyon to	5	Not Supporting	Max. Temperature	3A	Low	2002	5
Utah Lake-Lower Prov	ro UT16020201-004_00	Salt Creek-1	USFS boundary Salt Creek and tributaries from USFS	3	Insufficient Data					7
Utah Lake-Lower Prov	o UT16020201-005_00	Salt Creek-2	boundary to headwaters	5	Not Supporting	pH	2B;3A;4	Low	2014	32
Utah Lake-Lower Prov	o UT16020201-006_00	Hop Creek	Hop Creek and tributaries from confluence with Salt Creek to headwaters	s 1	Fully Supporting					18
Utah Lake-Lower Prov	o UT16020201-007_00	Summit Creek-Santaquin	Summit Creek and tributaries from USFS boundary to headwaters	3	Insufficient Data					8
Utah Lake-Lower Prov	o UT16020201-009_00	Spring Creek-Lehi	Spring Creek and tributaries from Utah Lake near Lehi to headwaters	5	Not Supporting	Minimum Dissolved Oxygen	3A	Low	2020	18
Utah Lake-Lower Prov	o UT16020201-010_00	Powell Slough	Powell Slough state waterfowl management area	5	Not Supporting	Minimum Dissolved Oxygen	3D	Low	2014	1
Utah Lake-Lower Prov	o UT16020201-011_00	Lindon Hollow	Lindon Hollow and tributaries from Utah Lake to Interstate 15	3	Insufficient Data					10
Utah Lake-Lower Prov	ro UT16020201-012_00	Mill Race Creek-1	Mill Race Creek and tributaries from HUC boundary (16020203) to headwaters	5	Not Supporting	Macroinvertebrates E. coli	<u>3B</u> 2B	Low Low	<u>2016</u> 2020	<u> </u>
Utah Lake-Lower Prov	ro UT16020201-013_00	Ironton Canal Lower	Ironton Canal from Utah Lake (Provo Bay to the east boundary of the Denver Rio Grande Western Railroad right-of-way	2	No Evidence of Impairment					1
Utah Lake-Lower Prov	ro UT16020201-014_00	Currant Creek-Juab Valley	Currant Creek and tributaries from Mona Reservoir to headwaters, except Salt Creek	5	Not Supporting	Max. Temperature	3A	Low	2016	68
Utah Lake-Lower Prov	ro UT16020201-016 00	American Fork	American Fork and tributaries from Utah Lake to diversion at mouth of American Fork Canvon	1	Fully Supporting					22
Utah Lake-Lower Prov	o UT16020201-017 00	Currant Creek-Goshen	Current Creek and tributaries from Utah	1	Fully Supporting					46
I Itah Lake-Lower Prov	- IVIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Spanish Fork River-1	Spanish Fork River from Utah Lake to	5	Not Supporting	E coli*	28	Low	2020	35
Utah Lake Lawer Draw	UT16020202-001_00	Contract Contract Contract	Spanish Fork River from Moark Diversion		Fully Supporting	2.001	20	2011	2020	
Utah Laka Lawas Daaw		Jackla Creek 4	Hobble Creek confluence Hobble Creek from Utah Lake to confluence of Left Fork Hobble Creek and	i _	Not Supporting	-11	00-04-4	1 mil	2046	10
Otan Lake-Lower Prov	0 0116020202-003_00		Left Fork Hobble Creek and tributaries from confluence with Right Fork to	5	Not Supporting	рп	20,38,4	LOW	2016	12
Utah Lake-Lower Prov	ro UI16020202-004_00	Hobble Greek-2	headwaters Right Fork Hobble Creek and tributaries from confluence with Left Fork to	3	insufficient Data					27
Utah Lake-Lower Prov	ro UF16020202-005_00	Hobble Creek-3	headwaters Diamond Fork Creek and tributaries from confluence with Spanish Fork River to	3	Insufficient Data					32
Utah Lake-Lower Prov	o UT16020202-006_00	Diamond Fork-1	Sixth Water confluence	3	Insufficient Data					28
Utah Lake-Lower Prov	ro UT16020202-007 00	Diamond Fork-2	Diamond Fork Creek and tributaries from Sixth Water Creek confluence to Hawthorne Campground	3	Insufficient Data					E

Draft Combined 2018/2020 Integrated Report: Flowing Surface Waters of the State and Canals 305(b) and 303(

		Draft Cor	nbined 2018/2020 Integrated Repo	ort: Flowing Surfa	ace Waters of the State	e and Canals 305(b) and	1303(d)			
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Utah Lake-Lower Prov	o UT16020202-008_00	Diamond Fork-3	Diamond Fork Creek and tributaries from Hawthorne Campground to headwaters	3	Insufficient Data					30
Utah Lake-Lower Prov	ro UT16020202-009_00	Sixth Water Creek	Sixth Water Creek and tributaries except Fifth Water and First Water Creeks and tributaries from confluence with Diamond Fork Creek to headwaters	5	Not Supporting	<u>Selenium</u> Minimum Dissolved Oxygen	<u>3A</u> 3A	- Low Low	<u>2020</u> 2020	- <u>25</u> 25
			Third Water Creek and tributaries from							
Utah Lake-Lower Prov	o UT16020202-010_00	Third Water Creek	headwaters	3	Insufficient Data					32
Utah Lake-Lower Prov	o UT16020202-011_00	Cottonwood Creek	Cottonwood Creek and tributaries from confluence with Sixth Water Creek to headwaters	3	Insufficient Data					15
			Soldier Creek from confluence with Thistle Creek to confluence of Staniation							
Utah Lake-Lower Prov	ro UT16020202-012_00	Soldier Creek-1	Creek	5	Not Supporting Approved TMDL	Max.Temperature Total Phosphorus as P Sediment	3A 3A 3A	Low	2014 1998 1998	<u>28</u> 28
Utah Lake-Lower Prov	o UT16020202-013_00	Soldier Creek-2	Soldier Creek and tributaries from Starvation Creek confluence to headwaters	1	Fully Supporting					8
Utah Lake-Lower Prov	o UT16020202-014_00	Sheep Creek	Sheep Creek and tributaries from confluence with Soldier Creek to headwaters	3	Insufficient Data					6
Utah Lake-Lower Prov	o UT16020202-015_00	Tie Fork	Tie Fork and tributaries from confluence with Soldier Creek to headwaters	3	Insufficient Data					15
Utah Lake-Lower Prov	o UT16020202-016_00	Lake Fork	Lake Fork and tributaries from USFS Boundary to headwaters	3	Insufficient Data					36
Utah Lake-Lower Prov	o UT16020202-017_00	Dairy Fork	Dairy Fork and tributaries from confluence with Soldier Creek to headwaters	e 2	No Evidence of Impairment					10
Utah Lake-Lower Prov	ro UT16020202-018 00	Mill Fork	Mill Fork and tributaries from confluence	3	Insufficient Data					14
Long Long 110			Clear Creek and tributaries from							14
Utah Lake-Lower Prov	o UT16020202-019_00	Clear Creek-Tucker	headwaters Starvation Creek and tributaries from	5	Not Supporting	Macroinvertebrates	3A	Low	2008	14
Utah Lake-Lower Prov	o UT16020202-020_00	Starvation Creek	confluence with Soldier Creek to headwaters	1	Fully Supporting					22
Utah Lake-Lower Prov	o UT16020202-021_00	Indian Creek	Indian Creek and tributaries from confluence with Soldier Creek to headwaters	3	Insufficient Data					5
Utah Lake-Lower Prov	o UT16020202-022_00	Thistle Creek-1	Thistle Creek from confluence with Soldier Creek to confluence with Little Clear Creek	4A	Approved TMDL	Sediment	3A		2008	27
Utah Lake-Lower Prov	o UT16020202-023_00	Thistle Creek-2	Thistie Creek and tributaries from confluence with Little Clear Creek to headwaters	2	No Evidence of Impairment					22
			Bennie Creek and tributaries from confluence with Thistle Creek to							
Utah Lake-Lower Prov	ro UT16020202-024_00	Bennie Creek	headwaters Nebo Creek and tributaries from confluence with Thistle Creek to	3	Insufficient Data					14
Utah Lake-Lower Prov	o UT16020202-025 00	Nebo Creek	headwaters	2	No Evidence of Impairment					53

		Draft Cor	nbined 2018/2020 Integrated Repo	ort: Flowing Surfa	ace Waters of the Stat	e and Canals 305(b) a	nd 303(d)			
Watershed Management Unit Assess	sment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Utah Lake-Lower Provo UT16020	0202-026_00	Spring Creek-Payson	Spring Creek and tributaries from confluence with Beer Creek to headwaters	s 3	Insufficient Data					36
Utah Lake-Lower Provo UT16020	0202-027_00	Beer Creek	Beer Creek and tributaries from confluence with Spring Creek to headwaters	5	Not Supporting	Macroinvertebrates Total Ammonia as N pH E coli	3C 3C 2B;3C;4 2B	Low Low Low	2014 2016 2020 2020	47 47 47 47
Utob Loke Lower Brove, UT1602	0202.028.00	Patastast Crask	Peteetneet Creek and tributaries from	2	Insufficient Data	E. GOI	20	2011	2020	20
Utah Lake-Lower Provo UT16020	0202-030_00	Benjamin Slough	Benjamin Slough from confluence with Utah Lake to Beer Creek confluence	5	Not Supporting	Total Ammonia as N	3B	Low	2016	
Utah Lake-Lower Provo UT16020	0202-031_00	Moark	Spanish Fork River east side tributaries from Moark Diversion to Diamond Fork confluence	3	Insufficient Data					0
Utah Lake-Lower Provo UT16020	0202-032_00	Thistle Creek-5	Thistle Creek tributaries between Bennie Creek and Nebo Creek confluences Soldiar Creek poth side parannial	3	Insufficient Data					1
Utah Lake-Lower Provo UT16020	0202-033_00	Soldier Creek-3	tributaries between Tie Fork and Sheep Creek confluence	3	Insufficient Data					0
Iltah Lake-Lower Provo 11T1602	0202-034 00	Soldier Creek-A	Soldier Creek south side tributaries from confluence with Thistle Creek to Dairy Fork confluence, excluding Lake Fork above USES boundary	3	Insufficient Data					3
Utah Lake-Lower Provo UT16020	0202-035_00	Dry Creek-1	Dry Creek and tributaries from Utah Lake (Provo Bay) to Interstate 15	5	Not Supporting	рН	2B;4	Low	2020	12
Utah Lake-Lower Provo UT16020	0202-036 00	Drv Creek-2	Dry Creek and tributaries from Interstate 15 to headwaters	3	Insufficient Data	E. coli	2B	Low	2020	12
Litah Lake-Lower Provo LIT1602	0202-037 00	Thistle Creek-3	Thistle Creek east side tributaries from confluence with Soldier Creek upstream to confluence with Little Clear Creek	3	Insufficient Data					14
	0202-037_00	misue creek-s	Thistle Creek west and south side tributaries from Nebo Creek to Little Clear	r	insuncient Data					14
Utah Lake-Lower Provo UT16020	0202-038_00	Thistle Creek-4	Creek Soldier Creek south side tributaries between Mill Fork confluence and Clear	3	Insufficient Data					7
Utah Lake-Lower Provo UT16020	0202-039_00	Soldier Creek-5	Creek confluence	3	Insufficient Data					0
Utah Lake-Lower Provo UT16020	0202-042_00	Spring Creek-Springville	headwaters	5	Not Supporting	Total Ammonia as N	3B;3D	Low	2014	3
Utah Lake-Lower Provo UT16020	0203-001 00	Provo River-1	Provo River from Utah Lake to Murdock Diversion	5	Not Supporting	Macroinvertebrates	3A	Low	2008	25

		Dial Col		ort. Howing Sund			1 303(0)			
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Weber River	UT16020101-001_00	Lost Creek1-Croydon	Lost Creek and tributaries from confluence with Weber River to Lost Creek Reservoir	3	Insufficient Data					48
Weber River	UT16020101-002_00	Francis Creek	Francis Creek and tributaries from Lost	3	Insufficient Data					15
Weber River	UT16020101-003_00	Lost Creek2-Crovdon	Lost Creek and tributaries from Lost	3	Insufficient Data					72
Weber River	UT16020101-004_00	Weber River-7	Weber River segment between confluence of Lost Creek and Echo Reservoir	5	Not Supporting	Total Phosphorus as P Macroinvertebrates	3A 3A	Low	2008	3
Weber River	UT16020101-005 00	Main Canvon	Main Canyon Creek and other tributaries	2	No Evidence of Impairment					21
Weber River	UT16020101-006 00	Weber Upper Tributaries-1	Weber River east side tributaries from	3	Insufficient Data					6
Weber River	UT16020101-007_00	Echo Creek	Echo Creek and tributaries from confluence with Weber River to headwaters, excluding Sawmill Creek	5	Not Supporting	Total Dissolved Solids	- <u>4</u> 3A	Low	<u>2014</u> 1998	<u>91</u> 91
Weber River	UT16020101-008_00	Carruth Creek	Carruth and Lewis Canyon Creeks and tributaries from confluence with Echo Reservoir to headwaters	5	Not Supporting	E. coli	1C;2B	Low	2020	9
Weber River	UT16020101-009 00	Grass Creek	confluence with Echo Reservoir to	3	Insufficient Data					12
Weber River	UT16020101-010 00	Chalk Creek1-Coalville	Chalk Creek and tributaries from confluence with Weber River to South Fork confluence	5	Not Supporting	Macroinvertebrates	3A	Low	2008	18
Weber River	UT16020101-011_00	South Fork Chalk Creek	South Fork Chalk Creek and tributaries from confluence with Chalk Creek to headwaters	5	Not Supporting Approved TMDL	E. coli Total Phosphorus as P Sediment	<u>1C:2B</u> 3A 3A	Low	2020 1998 1998	<u>- 65</u> 65
Weber River	UT16020101-012_00	Chalk Creek-2	Chalk Creek and tributaries from South Fork confluence to Huff Creek confluence	5	Not Supporting	E. coli	1C;2B	Low	2020	8
Weber River	UT16020101-013_00	Huff Creek	Huff Creek and tributaries from confluence with Chalk Creek to headwaters	4A	Approved TMDL	Total Phosphorus as P Sediment	3A 3A		1998 1998	22
Weber River	UT16020101-014_00	Chalk Creek3-Coalville	Chalk Creek and tributaries from Huff Creek confluence to East Fork confluence	e 4A	Approved TMDL	Total Phosphorus as P Sediment	3A 3A	_	1998 <u>1998</u>	26 26
Weber River	UT16020101-015 .00	Fast Fork Chalk Creek	East Fork Chalk Creek and tributaries from confluence with Chalk Creek to beadwaters	3	Insufficient Data	mauntal	54		1990	20
Weber River	UT16020101-015_00	Chalk Creek 4	Chalk Creek and tributaries from East Fork Chalk Creek confluence to	40	Approved TMDI	Total Phosphorus as P	34		1998	50
WEDEL KIVEL	0110020101-010_00	Ghaik Greek-4	neadwaters	475	Αμριονέα ΤΝΙΔΕ	Sediment	3A		1998	65
Weber River	UT16020101-017_00	Weber River-8	Weber River from Echo Reservoir to Rockport Reservoir	3	Insufficient Data	winimum Dissolved Oxygen	JM.		2020	9

Draft Combined 2018/2020 Integrated Report: Flowing Surface Waters of the State and Canals 305(b) and 303(

Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
			Weber River west side tributaries between	1						
Weber River	UT16020101-018_00	Weber Upper Tributaries-2	Echo Reservoir and Silver Creek confluence Water Biver cost side tributories between	3	Insufficient Data					1
Weber River	UT16020101-019 00	Weber Upper Tributaries-3	Echo Reservoir and Fort Creek	3	Insufficient Data					4
	0110020101010_00	Trobol oppor Tributaneo o	Silver Creek and tributaries from	0	indunisioni Data					
Weber River	UT16020101-020_00	Silver Creek	headwaters	5	Not Supporting	Arsenic Macroinvertebrates Total Dissolved Solids	1C;HH1C 3A 4	Low Low Low	2006 2008 2010	5 5
						Nitrates as N E. coli	1C 1C:2B	Low	2014 2020	5
					Approved TMDL	Zinc	3A		1998	5
			Weber Piver west side tributaries between			Cadmium	1C;3A;4		1998	5
Weber River	UT16020101-021 00	Weber Upper Tributaries-4	Silver Creek confluence and Beaver Creek confluence	2	No Evidence of Impairment	t				1
			Fort Creek and tributaries from							
Weber River	UT16020101-022_00	Fort Creek	headwaters	3	Insufficient Data					2
Weber River	UT16020101-023 00	Weber River-9	Weber River from Rockport Reservoir to Weber-Provo Canal	3	Insufficient Data					2
			Weber River and tributaries from Provo							
Weber River	UT16020101-024_00	Weber River-10	Canal Diversion to Smith-Morehouse confluence	3	Insufficient Data					5
Weber River	UT16020101-025 00	Weber River-11	Weber River and tributaries from Smith Morehouse confluence to Holiday Park	3	Insufficient Data					4
			Smith Morehouse River from confluence							
Weber River	UT16020101-026_00	Smith Morehouse River-1	with Weber River to Smith Morehouse Reservoir	3	Insufficient Data					1
			Smith Morehouse River and tributaries							
Weber River	UT16020101-027_00	Smith Morehouse River-2	headwaters	3	Insufficient Data					2
Weber River	UT16020101-028_00	Weber River-12	Weber River and tributaries from Holiday Park to headwaters	3	Insufficient Data					2
Weber River	LIT16020101-029 00	Beaver Creek-1	Beaver Creek and tributaries from	3	Insufficient Data					f
			Beaver Creek and tributaries from Kamas	-						0,
Weber River	UT16020101-030_00	Beaver Creek2-Kamas	to headwaters Sawmill Creek and tributaries from	5	Not Supporting	Aluminum	3A	Low	2020	3
Weber River	UT16020101-031_00	Sawmill Creek	confluence with Echo Creek to headwaters	3	Insufficient Data					
Weber River	UT16020102-001_00	Weber River-1	Weber River and tributaries from Great Salt Lake to Slaterville Diversion	5	Not Supporting	Macroinvertebrates	3C:3D	Low	2008	16
	2		Weber River from Ogden River	-					2000	10
Weber River	UT16020102-002_00	Weber River-3	confluence to Cottonwood Creek confluence	5	Not Supporting	Macroinvertebrates	3A	Low	2008	2
			Fourmile Creek and tributaries from							
Weber River	UT16020102-003_00	Four Mile Creek	headwaters	2	No Evidence of Impairment	t				3
Weber River	UT16020102-004_00	Burch Creek-2	Burch Creek and tributaries from Harrison Blvd to headwaters	3	Insufficient Data					
			Ogden River from confluence with Weber	-						
Weber River	UT16020102-005_00	Ogden River-1	River to Pineview Reservoir North Fork Orden River and tributaries	3	Insufficient Data					1.
Weber River	UT16020102-006 00	North Fork Orden River	from Pineview Reservoir to headwaters	2	No Evidence of Impairment					8

Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Weber River	UT16020102-007_00	Weber River-2	Weber River from Slaterville Diversion to Ogden River confluence	2	No Evidence of Impairment	t				(
Weber River	UT16020102-008 00	Wheeler Creek	Wheeler Creek and tributaries from confluence with Ogden River to headwaters	3	Insufficient Data					14
Weber River	 UT16020102-009_00	Middle Fork Ogden River	Middle Fork Ogden River and tributaries from Pineview Reservoir to headwaters	5	Not Supporting	Minimum Dissolved Oxygen	3A	Low	2014	6
Weber River	UT16020102-010_00	South Fork Ogden River-1	South Fork Ogden River and tributaries from Pineview Reservoir to Causey Reservoir	3	Insufficient Data					5
Weber River	UT16020102-011 00	Beaver Creek-Weber	Beaver Creek and tributaries from South Fork Ogden River confluence to headwaters	3	Insufficient Data					3
Weber River	UT16020102-012_00	South Fork Ogden River	South Fork Ogden River and tributaries from Causey Reservoir to headwaters	1	Fully Supporting					4
Weber River	UT16020102-013_00	Strong Canyons Creek	Strongs Canyon Creek and tributaries from USFS boundary to headwaters Burch Creek and tributaries from	3	Insufficient Data					:
Weber River	UT16020102-014_00	Burch Creek-1	confluence with Weber River to Harrison Blvd	3	Insufficient Data					
Weber River	UT16020102-015_00	Spring Creek	Spring Creek and tributaries from USFS boundary to headwaters	3	Insufficient Data					
Weber River	UT16020102-016 00	Weber Lower Tributaries-2	mouth of Weber Canyon to Cottonwood Creek	3	Insufficient Data					1
Weber River	UT16020102-017_01	Weber Lower Tributaries-1-1	Weber River north side tributaries from Ogden River confluence to Cottonwood Creek confluence, excluding defined tributaries	5	Not Supporting	Max. Temperature	ЗA	Low	2020	
			Weber River north side tributaries from Ogden River confluence to Cottonwood Creek confluence, excluding defined							
Weber River	UT16020102-017_02	Weber Lower Tributaries-1-2	tributaries Cottonwood Creek and tributaries from confluence with Weber River to	3	Insufficient Data					48
Weber River	UT16020102-018_00	Cottonwood Creek	headwaters	3	Insufficient Data					3
Weber River	UT16020102-019_00	Weber Lower Tributaries-4	Cottonwood Creek to Stoddard Diversion	3	Insufficient Data					Ę
Weber River	UT16020102-020_00	Weber River-4	confluence to Stoddard Diversion	3	Insufficient Data					6
Weber River	UT16020102-021_00	Weber Lower Tributaries-3	Weber River west side tributaries from Cottonwood Creek to Stoddard Diversion Weber River between East Canvon Creek	3	Insufficient Data					3
Weber River	UT16020102-022_00	Weber River-6	confluence and Lost Creek confluence	5	Not Supporting	Macroinvertebrates	3A	Low	2008	1
Weber River	UT16020102-023_00	Hardscrabble Creek	confluence with East Canyon Creek to headwaters	5	Not Supporting	Max. Temperature	3A	Low	2012	3
Weber River	UT16020102-024_00	East Canyon Creek-1	East Canyon Creek from confluence with Weber River to East Canyon Dam	3	Insufficient Data					4
Weber River	UT16020102-025 00	East Canyon Creek-3	East Canyon Reservoir tributaries other than East Canyon Creek	3	Insufficient Data					1

Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Weber River	UT16020102-026 01	East Canyon Creek-2	East Canyon Creek and tributaries from East Canyon Reservoir to headwaters	5	Not Supporting	Macroinvertebrates	3A	Low	2008	5
			,			Total Dissolved Solids	4	Low	2014	5
						Max. Temperature	3A	Low	2014	5
					Approved TMDL	Total Phosphorus as P	3A		1992	5
Weber River	UT16020102-026_02	Murnin Creek	East Canyon Creek and tributaries from	5	Not Supporting	Macroinvertebrates	3A	Low	2008	
Webel Rivel	0110020102-020_02	Mumili Creek	East Ganyon Reservoir to neadwaters	0	Not Supporting	Total Dissolved Solids	4	Low	2008	
						Max. Temperature	3A	Low	2014	
					Approved TMDL	Total Phosphorus as P	3A		1992	
			East Canyon Creek and tributaries from							
Weber River	UT16020102-026_03	Toll Canyon	East Canyon Reservoir to headwaters	5	Not Supporting	Macroinvertebrates	3A	Low	2008	
						I Utal DISSOIVED Solids	4	LOW	2014	
					Approved TMDL	Total Phosphorus as P	3A	LOW	1992	
			Kimball Creek and tributaries from East		Approved INDE		0/1		1002	
			Canyon Creek confluence to headwaters,							
Weber River	UT16020102-027_00	Kimball Creek	including McLeod Creek	5	Not Supporting	Macroinvertebrates	3A	Low	2008	1
						Arsenic	1C;HH1C	Low	2014	1
			Weber River north side tributaries							
Weber River	UT16020102-028 00	Weber Lower Tributaries-7	Detween East Canyon Creek and Lost Creek	3	Insufficient Data					0
	31.3020102-020_00		Weber River south side tributaries	~	moundoint Data					2
			between East Canyon Creek and Lost							
Weber River	UT16020102-029_00	Weber Lower Tributaries-8	Creek	3	Insufficient Data					(
			North Fork Kays Creek and tributaries							
Weber River	UI16020102-030_00	North Fork Kays Creek	trom USFS boundary to headwaters	2	No Evidence of Impairment	t				;
Weber River	UT16020102-031_00	Kays Creek	Farmington Bay to USES boundary	5	Not Supporting	E. coli	2B	Low	2014	2
	2	14,0000	r annington bay to oor o boundary			Copper	3B	Low	2016	24
			Kays Creek South Fork and Middle Fork			11			-	-
			and their tributaries from USFS Boundary	r						
Weber River	UT16020102-032_01	South Fork Kays Creek	to headwaters	5	Not Supporting	Copper	3A	Low	2014	
			Kays Creek South Fork and Middle Fork							
Weber River	UT16020102-032 02	Middle Fork Kays Creek	to headwaters	5	Not Supporting	Copper	3A	Low	2014	
Weber River	UT16020102-033 00	Snow Creek	Snow Creek and tributaries	5	Not Supporting	E. coli	2B	Low	2020	
			Holmes Creek and tributaries from USFS							
Weber River	UT16020102-034_00	Holmes Creek-2	boundary to headwaters	2	No Evidence of Impairment	t				8
Wabar Piyor	LIT16020102 025 00	Holmon Crock 1	Holmes Creek and tributaries from	E	Not Supporting	E coli	20	Low	2014	A
VVEDEI RIVEL	0110020102-035_00	Holmes Greek-1	Familington bay to USES boundary	U	Not Supporting	Copper	2D 3B	LOW	2014	14
			Baer Creek and tributaries from US 80 to			00000	00	LOW	2014	14
Weber River	UT16020102-036_00	Baer Creek-3	headwaters	1	Fully Supporting					8
	_		Sheppard Creek and tributaries from							
Weber River	UT16020102-037_00	Shepard Creek	USFS boundary to headwaters	3	Insufficient Data					:
Wahan Diver	11740000400 000 00	Forminaton Crook 2	Farmington Creek and tributaries from	5	Net Currentine	C	2.4	Law	2014	
weber River	0116020102-038_00	Farmington Creek-2	USES boundary to headwaters	5	Not Supporting	Aluminum	3A 2A	Low	2014	22
			Farmington Creek and tributories from			Aummun	3M	LOW	2010	2
Weber River	UT16020102-039 00	Farmington Creek-1	Farmington Bay to USFS boundary	5	Not Supporting	E. coli	2B	Low	2014	ŧ
			<u> </u>			Copper	3B	Low	2014	l.
						pН	2B;3B;4	Low	2020	(
						Aluminum	3B	Low	2020	Ę
	117710000107-010		Steed Creek and tributaries from USFS							
Weber River	U [16020102-040_00	Steed Creek	boundary to beadwaters	3	Insufficient Data					6

Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Weber River	LIT16020102-041_00	Davis Creek	Davis and Lone Pine Creeks and	1	Fully Supporting					
Weber River	UT16020102-042_00	Ricks Creek	Ricks Creek and tributaries from	1	Fully Supporting					F
Weber River	UT16020102-043_00	Barnard Creek	Barnard Creek and tributaries from US 89 to headwaters	5	Not Supporting	Copper E. coli	3A 2B	Low	2014	4
Weber River	UT16020102-044 01	Parrish Creek	Parrish and Duel Creeks and their tributaries from Davis Aqueduct to headwaters	1	Fully Supporting					2
Weber River	LIT16020102-044_02	Centerville Canvon	Parrish and Duel Creeks and their tributaries from Davis Aqueduct to headwaters	5	Not Supporting	Conner	34	Low	2014	F
Weber River	UT16020102-045_00	Stone Creek-2	Stone Creek and tributaries from USFS boundary to headwaters	3	Insufficient Data	oopper	0/1	Low	2014	6
Weber River	UT16020102-046_00	Stone Creek-1	Stone Creek from Great Salt Lake to USFS boundary	5	Not Supporting	Max. Temperature Copper pH	3A 3A 2B;3A;4	Low Low Low	2014 2014 2016	2
Weber River	UT16020102-047 00	Barton Creek	Barton Creek and tributaries from USFS boundary to headwaters	1	Fully Supporting	E. COI	ZD	LOW	2010	
Weber River	 UT16020102-048_00	Weber River-5	Weber River from Stoddard Diversion to East Canyon Creek confluence	3	Insufficient Data					2
Weber River	UT16020102-049_00	Mill Creek2-Davis	Mill Creek and tributaries from Mueller Park at USFS boundary to headwaters	5	Not Supporting	Copper	ЗA	Low	2014	12
Weber River	UT16020102-050_00	Mill Creek1-Davis	Mill Creek from Great Salt Lake to Mueller Park at USFS boundary	5	Not Supporting	Total Dissolved Solids Copper	4 3B 2B	Low Low	2014 2014 2020	5
Weber River	UT16020102-051_00	Baer Creek-2	Baer Creek and tributaries from Interstate 15 to US 89	3	Insufficient Data	E. 001	20	Low	2020	4
Weber River	UT16020102-052_00	Rudd Creek	Rudd Creek and tributaries from Davis Aqueduct to headwaters	1	Fully Supporting					2
Weber River	UT16020102-053_00	Baer Creek-1	Baer Creek and tributaries from Farmington Bay to Interstate 15	5	Not Supporting	E. coli	2B	Low	2020	4
Weber River	UT16020102-054_00	Weber Lower Tributaries-6	Stoddard Diversion to East Canyon Creek	< 3	Insufficient Data					6
Weber River	UT16020102-055_00	Weber Lower Tributaries-5	Stoddard Diversion to East Canyon Creek Corbett Creek and tributaries from U.S.	ς 5	Not Supporting	E. coli	1C;2B	Low	2020	42
Weber River	UT16020102-056_00 UT16020102-057_00	Corbett Creek Unknown	Highway 89 to headwaters	3	Insufficient Data					24

		Draft Cor	nbined 2018/2020 Integrated Repo	ort: Flowing Surfa	ace Waters of the State	e and Canals 305(b) ar	na 303(a)			
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
West Desert	UT16020301-001_00	Lake Creek-Millard Co	Lake Creek and tributaries from Garrison to Nevada state line	5	Not Supporting	Macroinvertebrates	3A	Low	2020	60
West Desert	UT16020301-002_00	Hamlin Valley Wash	Hamlin Valley Wash and tributaries from Nevada state line to headwaters	2	No Evidence of Impairment					89
West Desert	UT16020304-001_00	Vernon Creek	County	5	Not Supporting	pН	2B;3A;4	Low	2014	48
West Desert	UT16020304-002_00	Faust Creek	Faust Creek and tributaries, Tooele County	5	Not Supporting	Max. Temperature	ЗA	Low	2016	55
West Desert	UT16020304-003_00	North Willow Creek	North Willow Creek and tributaries, Tooele County	3	Insufficient Data					20
West Desert	UT16020304-004_00	Ophir Creek	Ophir Creek and tributaries, Tooele County	3	Insufficient Data					11
West Description			Soldier Creek and tributaries from the Drinking Water Treatment Facility to	0						10
West Desert	UT16020304-005_00	Soldier Greek	headwaters, Tooele County Settlement Canyon Creek and tributaries	3	Insufficient Data					10
West Desert	UT16020304-006_00	Settlement Canyon Creek	Tooele County Middle Canvon Creek and tributaries.	3	Insufficient Data					2
West Desert	UT16020304-007_00	Middle Canyon	Tooele County South Willow Creek and tributaries from	3	Insufficient Data					13
West Desert	UT16020304-008_00	South Willow Creek	headwaters	3	Insufficient Data					14
West Desert	UT16020304-009_00	Clover Creek	to headwaters	3	Insufficient Data					8
West Desert	UT16020306-001_00	Trout Creek	Trout Creek and tributaries, Juab County Granite Creek and tributaries, Juab	3	Insufficient Data					21
West Desert	UT16020306-002_00	Granite Creek	County Thomas Creek and tributaries, Juab	3	Insufficient Data					40
West Desert	UT16020306-003_00	Thomas Creek	County Basin Creek and tributaries, Jush and	3	Insufficient Data					28
West Desert	UT16020306-004_00	Basin Creek	Tooele Counties	3	Insufficient Data					16
West Desert	UT16020306-005 00	Deep Creek - 1 WD/C	Deep Creek and tributaries from Rock Spring Creek to headwaters, Juab and Tooele Counties	2	No Evidence of Impairment					95
		,	Donner Creek and tributaries from							
West Desert	UT16020308-001_00	Donner Creek	line	3	Insufficient Data					4
West Desert	UT16020308-002_00	Bettridge Creek	Bettridge Creek and tributaries from irrigation diversion to Utah-Nevada state line	3	Insufficient Data					6
West Desert	UT16020308-003_00	Red Butte Creek	Red Butte Creek and tributaries from confluence with Grouse Creek to beadwaters	2	No Evidence of Impairment					18
West Desert	LIT16020208 004 00	Dina Crook	Pine Creek and tributaries, Box Elder	2	Insufficient Data					24
West Desert	UT16020308-004_00	Worm Crock	Warm Creek from confluence with Etna	3	No Evidence of Impeirment					21
West Desert	UT16020308-006 00	Straight Fork Creek	Straight Fork Creek and tributaries from Etna Reservoir to headwaters	2	No Evidence of Impairment					9
		-	Grouse Creek and tributaries from Red Butte confluence to headwaters, except							
West Desert	UT16020308-007_00	Grouse Creek	Pine Creek and tributaries Birch Creek and tributaries from mouth to	2	No Evidence of Impairment					59
West Desert	UT16020308-008_00	Birch Creek	headwaters, Box Elder County	3	Insufficient Data					10
West Desert	UT16020308-009_00	Cottonwood Creek	mouth to headwaters, Box Elder County	3	Insufficient Data					6

	Draft Combined 2018/2020 Integrated Report: Flowing Surface Waters of the State and Canals 305(b) and 303(d)									
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
West Desert	UT16020308-010_00	Muddy Creek	Muddy Creek and tributaries from mouth to headwaters, Box Elder County	3	Insufficient Data					39
West Desert	UT16020309-001_00	Deep Creek	Deep Creek and tributaries from Utah- Idaho state line to Rose Ranch Reservoir Box Elder County	r, 3	Insufficient Data					27
West Desert	UT16020309-002_00	Blue Creek	Blue Creek and tributaries from Great Sal Lake to Blue Creek Reservoir	t 5	Not Supporting	Total Dissolved Solids Selenium pH E. coli	4 3D 2B;3D;4 2B	Low Low Low	2012 2012 2012 2020	49 49 49 49
West Desert	UT16030005-001_00	Judd Creek	Judd Creek and tributaries from mouth to headwaters	3	Insufficient Data	Boron	4	LOW	2020	20
West Desert	UT17040210-001_00	Raft River	Raft River and tributaries from Utah-Idaho state line to confluence of Junction Creek and South Junction Creek	2	No Evidence of Impairmen	t				126
West Desert	UT17040210-002_00	Junction Creek	Junction Creek and tributaries from confluence with South Junction Creek to headwaters	3	Insufficient Data					61
West Desert	UT17040210-003_00	South Junction Creek	South Junction Creek and tributaries from confluence with Junction Creek to headwaters	2	No Evidence of Impairmen	t				158
West Desert	UT17040210-004_00	Johnson Creek - WD/C	Johnson Creek and tributaries from Utah- Idaho state line to headwaters	- 3	Insufficient Data					43
West Desert	UT17040210-005_00	Holt Creek	Holt Creek from Utah-Idaho state line to headwaters	3	Insufficient Data					9
West Desert	UT17040210-006_00	Clear Creek-Sawtooth NF	Clear Creek and tributaries from Idaho state line to headwaters	3	Insufficient Data					42
West Desert	UT17040211-001_01	Goose Creek-1	Goose Creek and tributaries from Utah- Idaho state line to headwaters	3	Insufficient Data					81
West Desert	UT17040211-001_02	Goose Creek-2	Goose Creek and tributaries from Utah- Idaho state line to headwaters	3	Insufficient Data					11
West Desert	UT17040211-002_00	Pole Creek	Pole Creek and tributaries from Utah- Idaho state line to headwaters	2	No Evidence of Impairmen	t				43
West Desert	UT17040211-003_00	Birch Creek - WD/C	Birch Creek and tributaries from Utah- Idaho state line to headwaters	2	No Evidence of Impairmen	t				19

		Drait Cor	momeu zoro zozo miegraleu Repo	n. Howing Suna	ace waters of the State					
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
			White River from confluence with Price							
Western Colorado Rive	er UT14060007-001_00	White River-Colton	River to headwaters	1	Fully Supporting	Minimum Disaster I Oscilla	0.4	1	0040	213
Western Colorado Rive	er UT14060007-002_00	Scofield Tributaries	Scotield Reservoir tributaries	5	Not Supporting	Minimum Dissolved Oxygen	3A	Low	2016	260
			Price River and tributaries from Price City							
Western Colorado Rive	er UT14060007-003_00	Price River-1	Reservoir	5	Not Supporting	Minimum Dissolved Oxygen	3A	Low	2014	232
Western Oblorado Nive	01 01 14000001-000_00		110301401	0	Not Supporting	Macroinvertebrates	3A	Low	2014	232
			Willow Creek and tributaries from							
Western Colorado Rive	er UT14060007-004_00	Willow Creek - Carbon	confluence with Price River to headwaters	3	Insufficient Data					172
			Price River and tributaries from Carbon							
			Canal Diversion to Price City Water							
Western Colorado Rive	er UT14060007-005_00	Price River-2	Treatment intake	3	Insufficient Data					173
Western Calenada Dive	- 11714060007 006 00	Cardan Creak	Gordon Creek and tributaries below 7500	F	Net Currentine	Manage in casta banda a	20	Law	2020	047
western Colorado Rive	0114060007-006_00	Gordon Creek	leet elevation	0	Not Supporting	Macroinvertebrates	30	LOW	2020	217
			Disc Discourse Helicologies (see leafly a		Approved TMDL	Total Dissolved Solids	4		2014	217
Western Colorado Rive	ar UT14060007-007_00	Price River-3	Price River and tributaries (excluding Gordon Creeka nd Pinnacle Wash) from Coal Creek confluence to Carbon Canal Diversion	5	Not Supporting	Total Ammonia as N	30	Low	2014	332
		1 1100 1 11 01 0		0	not cappoining	Selenium	3C:4	Low	2014	332
						Boron	4	Low	2014	332
					Approved TMDL	Total Dissolved Solids	4		2014	332
Western Colorado Rive	er UT14060007-008_00	Coal Creek	Coal Creek and tributaries from confluence with Price River to headwaters	5	Not Supporting	Macroinvertebrates	3C	Low	2014	211
Western Colorado Rive	er UT14060007-009 00	Soldier Creek	Soldier Creek and tributaries from confluence with Price River to headwaters	2	No Evidence of Impairment					161
			Miller Creek and tributaries below 7500							
Western Colorado Rive	er UT14060007-010_00	Miller Creek	feet elevation	5	Not Supporting	Total Dissolved Solids	4	Low	2020	273
			Desert Seep Wash from confluence with							
Western Colorado Rive	er UT14060007-011_00	Desert Seep Wash	Price River to headwaters	5	Not Supporting	Macroinvertebrates	3C	Low	2020	521
			Grassy Trail Creek and tributaries from							
Western Colorado Rive	ar UT14060007 012 00	Grassy Trail Creek Lower	Price River confluence to Grassy Trail	3	Insufficient Data					013
Western Colorado Rive	ar UT14060007-013_00	Grassy Trail Creek Upper	Grassy Trail Reservoir tributaries	5	Not Supporting	Max Temperature	34	L OW	2014	313
Western Golorado Hive			Price River and tributaries (except Desert Seep Wash, Miller Creek, and Grassy Trail Creek) from Woodside to Soldier	0	Not Supporting	wax. remperature	074	LOW	2014	
Western Colorado Rive	er UT14060007-014_00	Price River-4	Creek confluence	3	Insufficient Data					977
Western Colorado Rive	er UT14060007-015_00	Price River-5	Price River and tributaries from confluence with Green River to Woodside	4A	Approved TMDL	Total Dissolved Solids	4		2016	378
			Pinnacle Wash and tributaries from							
Western Colorado Rive	er UT14060007-017_00	Pinnacle Wash	confluence with Price River to headwaters	5	Not Supporting	Selenium	3C	Low	2016	71
				0	Approved TMDL	Total Dissolved Solids	4		2016	71
western Colorado Rive	er 0114060009-001_00	Electric Lake Tributaries	Lectric Lake Indutaries Left Fork Huntington Creek and tributaries from confluence with Huntington Creek to	2	No Evidence of Impairment					43
Western Colorado Rive	er UT14060009-002_00	LF Huntington Creek	headwaters	3	Insufficient Data					78
	_		Huntington Creek and tributaries from							
Western Colorado Rive	er UT14060009-003_01	Huntington Creek-3-1	USFS boundary to headwaters	5	Not Supporting	pH	1C;2B;3A;4	Low	2014	148
						Minimum Dissolved Oxygen	3A	Low	2014	148
						Max. Temperature	3A	Low	2014	148
					Approved TMDL	I otal Dissolved Solids	4		2016	148

Draft Combined 2018/2020 Integrated Report: Flowing Surface Waters of the State and Canals 305(b) and 303(d

		Drait Cor	nomeu zo rozozo integrateu Repo	Sht. Flowing Suna	ice waters of the State	and Canals 305(b) and	303(u)			
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Western Colorado Riv	er UT14060009-003_02	Huntington Creek-3-2	Huntington Creek and tributaries from USFS boundary to headwaters	5	Not Supporting	рН	1C;2B;3A;4	Low	2014	36
						Minimum Dissolved Oxygen Max. Temperature	3A 3A	Low	2014 2014	36 36
					Approved TMDL	Total Dissolved Solids	4		2016	36
Western Colorado Rive	er UT14060009-003_03	Rilda Canyon	Huntington Creek and tributaries from USFS boundary to headwaters	5	Not Supporting	pH Minimum Dissolved Oxygon	1C;2B;3A;4	Low	2014	12
						Minimum Dissolved Oxygen Max Temperature	3A 3A	LOW	2014	12
					Approved TMDL	Total Dissolved Solids	4	2011	2016	12
Western Colorado Riv	er UT14060009-003_04	Bear Canyon-2	Huntington Creek and tributaries from USFS boundary to headwaters	5	Not Supporting	pН	1C;2B;3A;4	Low	2014	3
						Minimum Dissolved Oxygen	3A	Low	2014	3
						Max. Temperature	3A	Low	2014	3
					Approved TMDL	Total Dissolved Solids	4		2016	3
Western Colorado Riv	er I IT14060009-004 01	Huntington Creek-2	Huntington Creek and tributaries from	5	Not Supporting	nH	1C-2B-3A-4	Low	2014	310
Western Obligation	010114000000-004_01	Hundington Orecit-2	Fighway to crossing to USES boundary	0	Not ouppoining	Minimum Dissolved Oxygen	3A	Low	2014	310
					Approved TMDL	Total Dissolved Solids	4		2014	310
Western Colorado Riv	er UT14060009-004_02	Bear Canyon-1	Huntington Creek and tributaries from Highway 10 crossing to USFS boundary	5	Not Supporting	pН	1C;2B;3A;4	Low	2014	3
						Minimum Dissolved Oxygen	3A	Low	2014	3
			I construct the second state of the former of the second state of		Approved IMDL	Total Dissolved Solids	4		2014	3
Western Colorado Rive	er UT14060009-005_00	Lowery Water	Valley Reservoir to headwaters	2	No Evidence of Impairment					116
Western Colorado Riv	er UT14060009-006 00	Joes Valley	Lowry Creek	2	No Evidence of Impairment					128
			Cottonwood Creek and tributaries from							
			USFS boundary to headwaters and Joes							
Western Colorado Riv	er UT14060009-007_00	Cottonwood Creek Upper	Valley Reservoir	5	Not Supporting	Total Dissolved Solids	4	Low	2014	111
						pH Max Temperature	1C;2B;3A;4	LOW	2014	111
Western Colorado Rive	er UT14060009-009_00	Ferron Creek Upper	Ferron Creek and tributaries from Millsite Reservoir to headwaters	3	Insufficient Data	Max. remperature	JA	LUW	2014	274
			Huntington Creek and tributaries from							
			confluence with Cottonwood Creek to							
Western Colorado Riv	er UT14060009-010_00	Huntington Creek-1	Highway 10	5	Not Supporting	Selenium	3C	Low	2006	202
			Cottonwood Crook and tributarias from			Max. Temperature	3A	LOW	2014	202
			confluence with Huntington Creek to							
Western Colorado Riv	er UT14060009-011_00	Cottonwood Creek Lower	Highway 57	5	Not Supporting	pН	2B;3C;4	Low	2014	389
					Approved TMDL	Total Dissolved Solids	4		2014	389
Western Calenada Div	1174400000 040 00	Farmer Created awar	Ferron Creek and tributaries from confluence with San Rafael River to Millette Reservoir	4	Fully Currentine					240
western Colorado RIV	er 0114060009-012_00	Fendit Greek Lower	Son Refeel Piver from Puekhers Creasing		Fully Supporting					310
			to confluence of Huntington and	9						
Western Colorado Riv	er UT14060009-013_00	San Rafael Upper	Cottonwood Creeks	5	Not Supporting	Macroinvertebrates	3C	Low	2008	50
			San Rafael River from confluence with							
Western Colorado Rive	er UT14060009-014_00	San Rafael Lower	Green River to Buckhorn Crossing	5	Not Supporting	Macroinvertebrates	3C	Low	2010	121
			Halla Crook and tributarian from Lake		Approved IMDL	lotal Dissolved Solids	4		2016	121
Western Colorado Riv	er UT14070001-001 00	Halls Creek	Powell to headwaters	5	Not Supporting	Max. Temperature	3B	Low	2020	354
			Bullfrog Creek and tributaries from Lake							
Western Colorado Rive	er UT14070001-002_00	Bullfrog Creek	Powell to headwaters	3	Insufficient Data					665
Western Colorado Riv	er UT14070001-005 00	Lake Canyon	Bowns Canyon from confluence with Lak Powell to headwaters	.e 3	Insufficient Data					8

Draft Combined 2018/2020 Integrated Report: Flowing Surface Waters of the State and Canals 305(b) and 303(d

Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Western Colorado Piv	or UT14070001 006 00	Navaio Long Creek	Navajo Long Canyon and tributaries from	2	Insufficient Date					
Western Colorado Riv	er UT14070001-008_00	North Wash	North Wash from Lake Powell to	1	Fully Supporting					28
Western Colorado Riv	er UT14070001-000_00	Trachyte Creek	Trachyte Creek and tributaries from Lake	1	Fully Supporting					11
Western Colorado Riv	er UT14070001-094_00	Muddy Crock Upper	Muddy Creek from U-10 crossing to	5	Not Supporting	Total Dissolved Solida	4	Low	2014	4
western Colorado Riv	er 0114070002-001_00	Muddy Creek Opper	neadwaters	5	Not Supporting	Minimum Dissolved Solids	4 3A	Low	2014	20
						Max. Temperature	3A 3A	Low	2014	26
Western Colorado Riv	er UT14070002-002_00	Quitchipah Creek Upper	Quitchipah Creek from U-10 to headwaters	5	Not Supporting	Macroinvertebrates	3A	Low	2010	19
						Minimum Dissolved Oxygen Max. Temperature	3A 3A	Low	2014 2014	19
Western Colorado Riv	er UT14070002-003_00	Saleratus Creek - Emery	Saleratus Creek and tributaries from U-10 crossing to headwaters) 5	Not Supporting	Macroinvertebrates	3A	Low	2020	E
Western Colorado Riv	er UT14070002-004_01	Ivie Creek Upper-1	lvie Creek and some tributaries from U-10 crossing to headwaters) 3	Insufficient Data					
Western Colorado Riv	er UT14070002-004_02	Ivie Creek Upper-2	lvie Creek and some tributaries from U-10 crossing to headwaters) 1	Fully Supporting					13
Western Colorado Riv	er UT14070002-005_00	Last Chance Creek	Last Chance Creek and tributaries from lvie Creek confluence to headwaters	3	Insufficient Data					7
Western Colorado Riv	er UT14070002-006_00	Muddy Creek Middle	Muddy Creek and tributaries from lvie Creek confluence to U-10 crossing	3	Insufficient Data					10
			Quitchipah Creek and tributaries from confluence with Ivie Creek to U-10							
Western Colorado Riv	er UT14070002-007_00	Quitchipah Creek Lower	crossing	5	Not Supporting Approved TMDL	Macroinvertebrates Total Dissolved Solids	<u>3C</u> 4	Low	2010 2014	6
			lvie Creek and tributaries from confluence with Muddy River to U-10 highway	9						
Western Colorado Riv	er UT14070002-008_00	Ivie Creek Lower	crossing	5	Not Supporting	Boron Max. Temperature	4 3A	Low	2014 2016	6
			Muddy Creek from confluence with		Approved TMDL	Total Dissolved Solids	4		2014	6
Western Colorado Riv	er UT14070002-009_00	Muddy Creek Lower	Freemont River to Ivie Creek confluence	5	Not Supporting	Macroinvertebrates	3C	Low	2020	18
Western Colorado Riv	er UT14070003-001_00	Johnson Valley	Johnson Valley Reservoir tributaries	5	Not Supporting	E. coli	1C;2A	Low	2020	3
Western Colorado Riv	er UT14070003-002_00	UM Creek	Reservoir	5	Not Supporting	Zinc	3A	Low	2012	g
Masters Calenada Div		UM Creak Lawre	UM Creek and tributaries from Mill	4	Fully Supporting	E. COII	10;2A	LOW	2020	9
western Colorado Riv	er 0114070003-003_00	DIM CIEEK LOWEI	Fremont River and tributaries from Mill	1	Pully Supporting					
Western Colorado Riv	er UT14070003-004_00	Fremont River-1	Reservoir to Johnson valley	1	Fully Supporting					5
Western Colored D'		Formant Diver 2	⊢remont River and tributaries from Bicknell to Mill Meadow Reservoir near	5	Net Currentine	-11	40.04.04.4	Levi	2014	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
western Colorado Riv	er 0 i i4070003-005_00	FIEINONT KIVEF-2	USES boundary	0	NOL SUPPORING	рп Max. Temperature	10;2A;3A;4 3A	Low	2014	90
						E. coli	1C;2A	Low	2020	90
					Approved TMDL	Total Phosphorus as P	3A		1998	90
			Pine Creek and tributaries from							
Western Calenada Div			basedusees	0						00

Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
			Donkey Creek and other tributaries							
Western Colorado Rive	er UT14070003-007_00	Donkey Creek	and above USFS boundary Fremont River and tributaries from east boundary of Capitol Reef National Park to	1	Fully Supporting					164
Western Colorado Rive	er UT14070003-008_00	Fremont River-3	Bicknell	5	Not Supporting	Total Dissolved Solids Max.Temperature	4 3A 1C:2A	Low Low High	2014 2014 2014	<u>1109</u> 1109
			Pleasant Creek and tributaries from east boundary of Capitol Reef National Park to			L. 001	10,21		2011	
Western Colorado Rive	er UT14070003-009_00	Pleasant Creek-1	headwaters Pleasant Creek and tributaries from	5	Not Supporting	Max. Temperature	3A	Low	2016	322
Western Colorado Rive	er UT14070003-010_00	Pleasant Creek-2	confluence with Fremont River to east boundary of Capitol Reef National Park	3	Insufficient Data					52
Western Colorado Rive	er UT14070003-011_00	Oak Creek	Oak Creek and tributaries from east boundary of Capitol Reef National Park to headwaters Sandy Creek and tributaries from	5	Not Supporting	Max. Temperature	3A	Low	2014	311
Western Colorado Rive	er UT14070003-012_00	Sandy Creek	confluence with Fremont River to east boundary of Capitol Reef National Park	2	No Evidence of Impairment					377
Western Colorado Rive	er UT14070003-013 00	Henry Mountains	Henry Mountain streams in Garfield County whicih flow west and north as Fremont River tributaries	3	Insufficient Data					391
	_		Fremont River and tributaries from confluence with Dirty Devil to east boundary of Capitol Reef National Park,							
Western Colorado Rive Western Colorado Rive	er UT14070003-014_00 er UT14070003-015 00	Fremont River-4 Fish Lake Tributaries	Fish Lake tributaries	4A 3	Approved TMDL Insufficient Data	Total Dissolved Solids	4		1998	1123
Western Colorado Rive	_ er UT14070004-001_00	Dirty Devil River	Dirty Devil from confluence with Colorado River to Fremont River	5	Not Supporting	Total Dissolved Solids	4	Low	2016	125
Western Colorado Rive	er UT14070004-002_00	Dirty Devil west side tributaries	Dirty Devil River west side tirubtaries from Lake Powell to Fremont River	1	Fully Supporting					660
Western Colorado Rive	er UT14070005-001_00	Upper Valley Creek	Upper Valley Creek and tributaries from confluence with Birch Creek to headwaters	3	Insufficient Data					132
Western Calanada Dive		Direk Carely	Birch Creek and tributaries from confluence with Escalante River to	5	Net Currenting	May Tamaaakua	24	Law	2014	400
Western Colorado Rive	er 0114070005-002_00	Birch Creek	North Creek and tributaries from confluence with Escalante River to	5	Not Supporting	Max. Temperature	JA	LOW	2014	102
Western Colorado Rive	er UT14070005-003_00	North Creek-Escalante	headwaters	5	Not Supporting	Minimum Dissolved Oxygen Max. Temperature	<u>3A</u> 3A	Low Low	<u>2014</u> 2014	<u>176</u>
Western Colorado Rive	er UT14070005-004_00	Pine Creek	Pine Creek and tributaries from confluence with Escalante River to headwaters	2	No Evidence of Impairment					162
Western Colorado Pivo	or LIT14070005 005 00	Mamie Creek	Mamie Creek and tributaries from confluence with Escalante River to bacduators	3	Insufficient Data					110
	a. o 114070000-000_00		Sand Creek and tributaries from confluence with Escalante River to	•	incamoroni Data					118
Western Colorado Rive	er UT14070005-006_00	Sand Creek	headwaters Calf Creek and tributaries from	2	No Evidence of Impairment					163
Western Colorado Rive	er UT14070005-007_00	Calf Creek	confluence with Escalante River to headwaters	5	Not Supporting	Max. Temperature	3A	Low	2008	32
Western Colorado Rive	er UT14070005-008 00	Deer Creek (Garfield Co.)	confluence with Escalante River to	3	Insufficient Data					182

							<u></u>			
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Western Colorado Riv	er UT14070005-010_00	The Gulch	The Gulch from confluence with Escalante River to headwaters	5	Not Supporting	Macroinvertebrates	3B	Low	2020	205
Western Colorado Riv	er UT14070005-011_00	Escalante River Lower	Boulder Creek confluence	3	Insufficient Data					108
Western Colorado Riv	er UT14070005-012_00	Escalante River Upper	confluence to Birch Creek confluence	5	Not Supporting	Macroinvertebrates Total Dissolved Solids	<u>3B</u> 4	Low Low	2008 2016	<u>66</u> 66
Western Colorado Riv	er UT14070005-013_01	Escalante Tributaries-1	defined from Boulder Creek to Birch Creek	3	Insufficient Data					1
Western Colorado Riv	er UT14070005-013_02	Escalante Tributaries-2	Escalante River tributaries not previously defined from Boulder Creek to Birch Creek	3	Insufficient Data					4
Western Colorado Riv	er UT14070005-013 03	Escalante Tributaries-3	Escalante River tributaries not previously defined from Boulder Creek to Birch Creek	3	Insufficient Data					6
Western Colorada Biy		Eccelente Tributorico 4	Escalante River tributaries not previously defined from Boulder Creek to Birch Creek	2	Insufficient Data					7
Western Colorado Riv	er 0114070005-013_04	Estalante moulanes-4	Escalante River tributaries not previously defined from Boulder Creek to Birch	5	Insunicient Data					I
Western Colorado Riv	er UT14070005-013_05	Escalante Tributaries-5	Creek Escalante River tributaries not previously defined from Boulder Creek to Birch	3	Insufficient Data					17
Western Colorado Riv	er UT14070005-013_06	Escalante Tributaries-6	Creek Escalante River tributaries not previously	3	Insufficient Data					48
Western Colorado Riv	er UT14070005-013_07	Escalante Tributaries-7	Creek Escalante River tributaries not previously	3	Insufficient Data					5
Western Colorado Riv	er UT14070005-013_08	Escalante Tributaries-8	defined from Boulder Creek to Birch Creek Alvey Wash and tributaries from Tenmile	3	Insufficient Data					27
Western Colorado Riv	er UT14070005-014_00	Alvey Wash Upper	Spring to headwaters Harris Wash and tributaries from	3	Insufficient Data					441
Western Colorado Riv	er UT14070005-015_00	Alvey Wash Lower	Tenmile Spring Wolverine Creek and tributaries from	3	Insufficient Data					200
Western Colorado Riv	er UT14070005-016_00	Wolverine Creek	confluence with Escalante River to headwaters Covote Gulch and tributaries from	3	Insufficient Data					309
Western Colorado Riv	er UT14070005-017_00	Coyote Gulch	confluence with Escalante River to headwaters	3	Insufficient Data					313
Western Colorado Riv	er UT14070005-018_00	Boulder Creek	confluence with Escalante River to headwaters	3	Insufficient Data					153
Western Colorado Riv	er UT14070005-019_00	Lower Escalante River trbiutaries	Cow Canyon and tributaries from Lake Powell to headwaters Wahweap Creek and tributaries from Lak	3 .e	Insufficient Data					19
Western Colorado Riv	er UT14070006-001_00	Wahweap Creek	Powell to headwaters	5	Not Supporting	Total Dissolved Solids Max. Temperature	4 3B	Low	2014 2014	<u>980</u> 980
Western Colorado Riv	er UT14070006-002_00	Warm Creek	Powell to headwaters Lake Powell north side tributaries betwee	3 en	Insufficient Data					344
Western Colorado Riv	er UT14070006-003_00	Lake Powell Tribs-1	Wahweap and Warm Creek Chance Creek and tributaries from Lake	3	Insufficient Data					100
Western Colorado Riv	er UT14070006-004_00	Last Chance Creek	Powell to headwaters	5	Not Supporting	Macroinvertebrates	<u>3B</u>	Low	2008	606

Draft Combined 2018/2020 Integrated Report: Flowing Surface Waters of the State and Canals 305(b) and 303(d)

	Draft Combined 2018/2020 Integrated Report: Flowing Surface Waters of the State and Canals 305(b) and 303(d)									
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessment Unit Category	Category Description	Impaired Parameter	Impaired Beneficial Uses	Total Maximun Daily Load Development Priority	IR Cycle First Listed	Flowing Surface Waters of the State and Canal Miles
Western Colorada Dive	TUT14070006 005 00	Croton	Croton Canyon and tributaries from Lake	3	Incufficient Data					400
western Colorado Rive	91 0 1 14070006-005_00	Groton	Powell to neadwaters	3	Insunicient Data					408
Western Colorado Rive	r UT14070006-006_01	Lake Powell Tribs-3-1	Canvon to HUC boundary	3	Insufficient Data					2
			Lake Powell tributaries from Croton							2
Western Colorado Rive	er UT14070006-006_02	Lake Powell Tribs-3-2	Canyon to HUC boundary	3	Insufficient Data					407
			Lake Powell north side tributaries between	η						
Western Colorado Rive	er UT14070006-008_00	Lake Powell Tribs-2	Warm and Chance Creeks	3	Insufficient Data					119
Western Colorado Piva	r UT14070007-001-00	Paria River-1	Paria River from start of Paria River	5	Not Supporting	Total Dissolved Solids	А	Low	2000	704
Tratem Colorado RIVe		- dia 1/1761-1	Corge to neadward15	0	not oupporting	Max. Temperature		Low	2008	701
						Macroinvertebrates	3C	Low	2020	701
			Paria River from Cottonwood Creek							
Western Colorado Rive	er UT14070007-002_00	Paria River-2	confluence to start of Paria Gorge	5	Not Supporting	Total Dissolved Solids	4	Low	2014	574
						Max. Temperature	3C	Low	2014	574
N/	11744070007.000.00	Desire the Order	Buckskin Gulch and tributaries from Paria	1	E III O					
vvestern Colorado Rive	er 0114070007-003_00	Buckskin Gulch	River confluence to headwaters	1	Fully Supporting					651
Western Colorado Rive	r UT14070007-004 00	Cottonwood Creek	confluence with Paria River to headwater	s 5	Not Supporting	Minimum Dissolved Oxvgen	3C	Low	2014	308
			Paria River and tributaries from Arizona-							000
			Utah state line to Cottonwood Creek							
Western Colorado Rive	er UT14070007-005_00	Paria River-3	confluence	5	Not Supporting	Macroinvertebrates	3C	Low	2008	378
						Total Dissolved Solids	4	OW	2014	378

	Draft Combined 2018/2020 Integrated Report: Resegmented Assessment Units for Flowing Surface Waters of the State and Canals								
Watershed Management Unit	Original Assessment Unit ID	New Assessment Unit ID	New Assessment Unit Name	New Assessment Unit Description					
				Yellow Creek tributaries (e.g. Thief, Chicken, Spring Creeks) above Barker Reservoir and Yellow Creek below					
Bear River	UT16010101-019_00	UT16010101-019_01	Yellow Creek Tributaries-1	Barker Reservoir					
Deer Diver			Valley, Orack Tributarian O	Yellow Creek tributaries (e.g. Thief, Chicken, Spring Creeks) above Barker Reservoir and Yellow Creek below					
Bear River	UT16010101-019_00	UT16010101-019_02	Middle Beer Feet 1	Darker Reservoir					
Bear River	UT16010204-007_00	0116010204-007_01	Middle Bear East-1	Bear River east side tributaries from Malad River confluence north to HUC boundary					
Bear River	UT16010204-007_00	UT16010204-007_02	Middle Bear East-2	Bear River east side tributaries from Malad River confluence north to HUC boundary					
Bear River	0116010204-008_00	0116010204-008_01	Bear River-2-1	Bear River from Malad River confluence to Cutter Reservoir					
Bear River	UT16010204-008_00	UT16010204-008_02	Bear River-2-2	Bear River from Malad River confluence to Cutler Reservoir					
Bear River	UT16010204-010_00	UT16010204-010_01	Malad River-2-1	Malad River tributaries					
Bear River	UI16010204-010_00	UI16010204-010_02	Malad River-2-2	Malad River tributaries					
Bear River	UT16010204-011_00	UT16010204-011_01	Mantua Reservoir Tributaries-1	Big Creek from confluence with Box Elder Creek to Mantua Reservoir					
Bear River	UT16010204-011_00	UT16010204-011_02	Mantua Reservoir Tributaries-2	Big Creek from confluence with Box Elder Creek to Mantua Reservoir					
Jordan River	UT16020201-002_00	UT16020201-002_01	American Fork River-2	American Fork River and tributaries from Tibble Fork Reservoir to headwaters					
Jordan River	UT16020201-002_00	UT16020201-002_02	Mary Ellen Gulch	American Fork River and tributaries from Tibble Fork Reservoir to headwaters					
Jordan River	UT16020204-001_00	UT16020204-001_01	Jordan River-1	Jordan River from Farmington Bay upstream contiguous with the Davis County line					
Jordan River	UT16020204-001_00	UT16020204-001_02	North Canyon Creek	Jordan River from Farmington Bay upstream contiguous with the Davis County line					
Jordan River	UT16020204-006_00	UT16020204-006_01	Jordan River-6	Jordan River from 7800 South to Bluffdale at 14600 South					
Jordan River	UT16020204-006_00	UT16020204-006_02	Big Willow Creek	Jordan River from 7800 South to Bluffdale at 14600 South					
Jordan River	UT16020204-006_00	UT16020204-006_03	Dry Creek	Jordan River from 7800 South to Bluffdale at 14600 South					
Jordan River	UT16020204-024_00	UT16020204-024_01	Midas Creek	Butterfield Creek and tributaries from confluence with Jordan River to headwaters					
Jordan River	UT16020204-024_00	UT16020204-024_02	Butterfield Creek	Butterfield Creek and tributaries from confluence with Jordan River to headwaters					
				Sevier River east and west side tributaries from Salina Creek confluence to Rocky Ford Reservoir (excludes					
Lower Sevier River	UT16030003-004_00	UT16030003-004_01	Sevier River-16-1	Lost Creek)					
				Sevier River east and west side tributaries from Salina Creek confluence to Rocky Ford Reservoir (excludes					
Lower Sevier River	UT16030003-004_00	UT16030003-004_02	Sevier River-16-2	Lost Creek)					
				Sevier River east and west side tributaries from Salina Creek confluence to Rocky Ford Reservoir (excludes					
Lower Sevier River	UT16030003-004_00	UT16030003-004_03	Sevier River-16-3	Lost Creek)					
Lower Sevier River	UT16030004-005_00	UT16030004-005_01	San Pitch-3-1	San Pitch River and tributaries from Gunnison Reservoir to U132 crossing and below USFS boundary					
Lower Sevier River	UT16030004-005 00	UT16030004-005 02	San Pitch-3-2	San Pitch River and tributaries from Gunnison Reservoir to U132 crossing and below USFS boundary					
Lower Sevier River	UT16030004-007 00	UT16030004-007 01	Upper Willow Creek	Ephraim Creek and tributaries from USFS boundary to headwaters					
Lower Sevier River	UT16030004-007 00	UT16030004-007 02	Ephraim Creek	Ephraim Creek and tributaries from USFS boundary to headwaters					

	Dran Combined 2016/2020 Integrated Report: Resegnented Assessment Units for Flowing Surface waters of the State and Canais							
Watershed Management Unit	Original Assessment Unit ID	New Assessment Unit ID	New Assessment Unit Name	New Assessment Unit Description				
Southeast Colorado								
River	UT14030002-001_00	UT14030002-001_01	La Sal Creek-1	La Sal Creek and tributaries from Utah-Colorado state line to headwaters				
Southeast Colorado								
River	UT14030002-001_00	UT14030002-001_02	La Sal Creek-2	La Sal Creek and tributaries from Utah-Colorado state line to headwaters				
Southeast Colorado								
River	UT14030002-001_00	UT14030002-001_03	La Sal Creek-3	La Sal Creek and tributaries from Utah-Colorado state line to headwaters				
Southeast Colorado								
River	UT14070006-007_00	UT14070006-007_01	Lake Powell Tributaries-4-1	Lake Powell south side tributaries from Utah-Arizona state line to HUC (14070006) boundary				
Southeast Colorado								
River	UI14070006-007_00	UT14070006-007_02	Lake Powell Tributaries-4-2	Lake Powell south side tributaries from Utah-Arizona state line to HUC (14070006) boundary				
Southeast Colorado								
River	0114070006-007_00	0114070006-007_03	Lake Powell Tributaries-4-3	Lake Powell south side tributaries from Utah-Arizona state line to HUC (140/0006) boundary				
Southeast Colorado								
River	0114070006-007_00	0114070006-007_04	Lake Powell Tributaries-4-4	Lake Powell south side tributaries from Utah-Arizona state line to HUC (14070006) boundary				
Southeast Colorado			Manhamuma Creak 4.4	Mantenuese Openie and all other tributeries and defined from U.S. 404 to be advectors				
	0114060203-005_00	0114060203-005_01	Montezuma Creek-1-1	Montezuma creek and an other tributaries not defined, nom 0.5. 191 to headwaters				
Southeast Colorado	11714090202 005 00	LIT14090202 005 02	Montozuma Crook 1.2	Montozuma Crack and all other tributorias not defined from U.S. 101 to be deductors				
Llinto Rocin	UT14080203-005_00	UT14080203-005_02	Groop River 1 Tribs 1	Montezunia Greek and an outer unduranes not demined, non 0.5. 191 to neadwaters				
Unita Dasin	UT14040106-008_00	UT14040106-008_01	Green River 1 Tribs 2	Green River perennial tributaries to Green River 1 (0114040106-019) not specifically defined				
Unita Dasin		UT14040106-008_02	Green River 1 Tribs 2	Green River perennial tributaries to Green River 1 (0114040106-019) hot specifically defined				
Unita Dasin	UT14040106-008_00	UT14040106-008_03	Green River 1 Tribs 4	Green River perennial tributaries to Green River 1 (0114040106-019) not specifically defined				
Unita Dasin		UT14040106-008_04	Green River 1 Tribs 5	Green River perennial tributaries to Green River 1 (0114040106-019) hot specifically defined				
Unita Dasin	UT14040100-008_00	UT14040100-008_03	Eleming Corgo Tributorios 1	Sieter Arver peterminal inductanes to Green Arver - (OF 14040100-019) hot specimally defined				
Unita Basin	UT14040100-012_00	UT14040100-012_01	Elaming Corgo Tributarios 2	Flaming Gorge Reservoir tributanes not defined separately				
Unita Dasin	UT14040100-012_00	UT14040100-012_02	Flaming Gorge Tributaries 2	Flaming Gorge Reservoir tributanes not defined separately				
Unita Basin	UT14040100-012_00	UT14040100-012_03	Flaming Gorge Tributaries-3	Flaming Gorge Reservoir tributanes not defined separately				
Unita Dasin	0114040100-012_00	0114040106-012_04	Flaming Gorge Tributaries-4	Filaming Gorge Reservoir inductanes not demined separately				
Llinto Rocin	LIT14060001 001 00	UT14060001 001 01	Groop River 2 Tribs 1	Green River undutaries from Duchesne River confidence to Otari-vvyoning border, except Asiney, Brush, and				
Unita Dasin	0114000001-001_00	0114000001-001_01	Green River-2 Tribs-1	Joines noise Greeks				
Llinto Rocin	LIT14060001 001 00	LIT14060001 001 02	Groop River 2 Tribs 2	Green Kiver undutaries from Duchesne Kiver confidence to Otari-vvyonning border, except Asney, Brush, and				
Unita Dasin	0114000001-001_00	0114000001-001_02	Gleen River-2 Thbs-2	Joines Hole Creeks				
Llinta Basin	LIT1/060001-001_00	LIT1/060001-001_03	Green River-2 Tribs-3	Green Kiver undutaries nom Duchesne Kiver connuence to Otari-wyonning border, except Asiney, Brush, and				
	011400001-001_00	011400001-001_03		Green River tributaries from Duchesne River confluence to Litah Wyoming border, except Ashley, Brush, and				
Llinta Basin	LIT14060001-001_00	LIT14060001-001_04	Green River-2 Tribs-4	Innes Hole Creeks				
Llinta Basin	LIT14060001-001_00	UT14060004-003_01	Starvation Tributaries-1	Starvation Reservoir tributaries excent Strawherry River				
Uinta Basin	UT14060004-003_00	UT14060004-003_02	Starvation Tributaries-2	Starvation Reservoir tributaries except Strawberry River				

Dran Combined 2018/2020 integrated Report. Resegnented Assessment Units for Flowing Surface waters of the State and Canais								
Watershed Management Unit	Original Assessment Unit ID	New Assessment Unit ID	New Assessment Unit Name	New Assessment Unit Description				
Uinta Basin	UT14060005-001_00	UT14060005-001_01	Green River-3 Tribs-1	Green River tributaries from Price River to Duchesne River (HUC 14060005) not spefically defined				
Uinta Basin	UT14060005-001_00	UT14060005-001_02	Green River-3 Tribs-2	Green River tributaries from Price River to Duchesne River (HUC 14060005) not spefically defined				
Uinta Basin	UT14060005-001_00	UT14060005-001_03	Green River-3 Tribs-3	Green River tributaries from Price River to Duchesne River (HUC 14060005) not spefically defined				
Uinta Basin	UT14060005-001_00	UT14060005-001_04	Green River-3 Tribs-4	Green River tributaries from Price River to Duchesne River (HUC 14060005) not spefically defined				
Uinta Basin	UT14060005-001_00	UT14060005-001_05	Green River-3 Tribs-5	Green River tributaries from Price River to Duchesne River (HUC 14060005) not spefically defined				
Uinta Basin	UT14060005-001_00	UT14060005-001_06	Green River-3 Tribs-6	Green River tributaries from Price River to Duchesne River (HUC 14060005) not spefically defined				
Uinta Basin	UT14060005-001_00	UT14060005-001_07	Green River-3 Tribs-7	Green River tributaries from Price River to Duchesne River (HUC 14060005) not spefically defined				
Uinta Basin	UT14060005-001_00	UT14060005-001_08	Green River-3 Tribs-8	Green River tributaries from Price River to Duchesne River (HUC 14060005) not spefically defined				
Upper Provo River	UT16020203-006_00	UT16020203-006_01	Provo River-6-1	Provo River and tributaries from Woodland to headwaters, except Little South Fork and Upper South Fork				
Upper Provo River	UT16020203-006_00	UT16020203-006_02	Provo River-6-2	Provo River and tributaries from Woodland to headwaters, except Little South Fork and Upper South Fork				
Upper Provo River	UT16020203-006_00	UT16020203-006_03	Provo River-6-3	Provo River and tributaries from Woodland to headwaters, except Little South Fork and Upper South Fork				
Upper Provo River	UT16020203-028_00	UT16020203-028_01	Provo Tributaries-Heber-1	Provo River west side tributaries from Deer Creek Dam to Jordanelle Dam except Snake Creek				
Upper Provo River	UT16020203-028_00	UT16020203-028_02	Provo Tributaries-Heber-2	Provo River west side tributaries from Deer Creek Dam to Jordanelle Dam except Snake Creek				
Weber River	UT16020102-017_00	UT16020102-017_01	Weber Lower Tributaries-1-1	Weber River north side tributaries from Ogden River confluence to Cottonwood Creek confluence, excluding defined tributaries				
Weber River	UT16020102-017_00	UT16020102-017_02	Weber Lower Tributaries-1-2	Weber River north side tributaries from Ogden River confluence to Cottonwood Creek confluence, excluding defined tributaries				
Weber River	UT16020102-026_00	UT16020102-026_01	East Canyon Creek-2	East Canyon Creek and tributaries from East Canyon Reservoir to headwaters				
Weber River	UT16020102-026_00	UT16020102-026_02	Murnin Creek	East Canyon Creek and tributaries from East Canyon Reservoir to headwaters				
Weber River	UT16020102-026_00	UT16020102-026_03	Toll Canyon	East Canyon Creek and tributaries from East Canyon Reservoir to headwaters				
Weber River	UT16020102-032_00	UT16020102-032_01	South Fork Kays Creek	Kays Creek South Fork and Middle Fork and their tributaries from USFS Boundary to headwaters				
Weber River	UT16020102-032_00	UT16020102-032_02	Middle Fork Kays Creek	Kays Creek South Fork and Middle Fork and their tributaries from USFS Boundary to headwaters				
Weber River	UT16020102-044_00	UT16020102-044_01	Parrish Creek	Parrish and Duel Creeks and their tributaries from Davis Aqueduct to headwaters				
Weber River	UT16020102-044_00	UT16020102-044_02	Centerville Canyon	Parrish and Duel Creeks and their tributaries from Davis Aqueduct to headwaters				
West Desert	UT17040211-001_00	UT17040211-001_01	Goose Creek-1	Goose Creek and tributaries from Utah-Idaho state line to headwaters				
West Desert	UT17040211-001_00	UT17040211-001_02	Goose Creek-2	Goose Creek and tributaries from Utah-Idaho state line to headwaters				

....

	Draft Combined 2018/2020 Integrated Report: Resegmented Assessment Units for Flowing Surface Waters of the State and Canals									
Watershed Management Unit	Original Assessment Unit ID	New Assessment Unit ID	New Assessment Unit Name	New Assessment Unit Description						
Western Colorado										
River	UT14060009-003_00	UT14060009-003_01	Huntington Creek-3-1	Huntington Creek and tributaries from USFS boundary to headwaters						
Western Colorado River	UT14060009-003_00	UT14060009-003_02	Huntington Creek-3-2	Huntington Creek and tributaries from USFS boundary to headwaters						
Western Colorado River	UT14060009-003_00	UT14060009-003_03	Rilda Canyon	Huntington Creek and tributaries from USFS boundary to headwaters						
Western Colorado River	UT14060009-003_00	UT14060009-003_04	Bear Canyon-2	Huntington Creek and tributaries from USFS boundary to headwaters						
Western Colorado River	UT14060009-004_00	UT14060009-004_01	Huntington Creek-2	Huntington Creek and tributaries from Highway 10 crossing to USFS boundary						
Western Colorado River	UT14060009-004_00	UT14060009-004_02	Bear Canyon-1	Huntington Creek and tributaries from Highway 10 crossing to USFS boundary						
Western Colorado River	UT14070002-004_00	UT14070002-004_01	Ivie Creek Upper-1	Ivie Creek and some tributaries from U-10 crossing to headwaters						
Western Colorado River	UT14070002-004_00	UT14070002-004_02	Ivie Creek Upper-2	Ivie Creek and some tributaries from U-10 crossing to headwaters						
Western Colorado River	UT14070005-013_00	UT14070005-013_01	Escalante Tributaries-1	Escalante River tributaries not previously defined from Boulder Creek to Birch Creek						
Western Colorado River	UT14070005-013_00	UT14070005-013_02	Escalante Tributaries-2	Escalante River tributaries not previously defined from Boulder Creek to Birch Creek						
Western Colorado River	UT14070005-013_00	UT14070005-013_03	Escalante Tributaries-3	Escalante River tributaries not previously defined from Boulder Creek to Birch Creek						
Western Colorado River	UT14070005-013_00	UT14070005-013_04	Escalante Tributaries-4	Escalante River tributaries not previously defined from Boulder Creek to Birch Creek						
Western Colorado River	UT14070005-013_00	UT14070005-013_05	Escalante Tributaries-5	Escalante River tributaries not previously defined from Boulder Creek to Birch Creek						
Western Colorado River	UT14070005-013_00	UT14070005-013_06	Escalante Tributaries-6	Escalante River tributaries not previously defined from Boulder Creek to Birch Creek						
Western Colorado River	UT14070005-013_00	UT14070005-013_07	Escalante Tributaries-7	Escalante River tributaries not previously defined from Boulder Creek to Birch Creek						
Western Colorado River	UT14070005-013 00	UT14070005-013 08	Escalante Tributaries-8	Escalante River tributaries not previously defined from Boulder Creek to Birch Creek						
Western Colorado River	UT14070006-006 00	 UT14070006-006_01	Lake Powell Tribs-3-1	Lake Powell tributaries from Croton Canyon to HUC boundary						
Western Colorado River	UT14070006-006_00	UT14070006-006_02	Lake Powell Tribs-3-2	Lake Powell tributaries from Croton Canyon to HUC boundary						

Draft Combined 2018/2020 Integrated Report: Delistings for Flowing Surface Waters of the State and Canals										
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessed Parameter	Cycle Delisted	EPA Justification	DWQ Delisting Comment			
Bear River	UT16010101-007_00	Big Creek	Big Creek and tributaries from Bear River to headwaters	s Max. Temperature	2018/2020	Attaining WQS with new data	Pre 2012: 4908180 impaired for temperature with data from 1/1/99-12/31/08. 2014 IR: 4908180 still impaired for temperature. 4908190 IDVE for temperature. 2016 IR: 4908140 and 4908190 impaired for temperature. 4908180 IDNE for temperature. 2020 IR: 4908140 for 10/1/14-9/30/18 only 1/23 exceed so fully supporting. 4908180 for 10/1/14-9/30/18 0/28 exceed so fully supporting for temperature.			
Bear River	UT16010101-007 00	Big Creek	Big Creek and tributaries from Bear River to headwaters	s Total Dissolved Solids	2018/2020	Attaining WQS with new data	2012/2014 IR: 4908180 was not supporting. 2018/2020 IR: 4908180 has sufficient new data since cycle first listed and is supporting.			
Poor Divor	-	Lakatown	Laketown and Big Creek and other tributaries from		2018/2020	Attaining WQS with new data due to	2012/2014 IR: 4907100 was not supporting. 2018/2020 IR: 4907100 has			
Bear River	UT16010201-002_00	North Eden	North Eden Creek and tributaries from Bear Lake to headwaters	Max. Temperature	2018/2020	Attaining WQS with new data	2014 IR: 4907120 impaired for temperature. 2016 IR: 4907120 IDNE for temperature. 2020 IR: 4907120 has only 1 exceedance of 11 samples with data from 10/1/14-9/21/15 for full support for temperature.			
Bear River	UT16010203-008 00	Spring Creek-Hvrum	Spring Creek and tributaries from confluence with Little Bear River to beadwaters	Macroinvertebrates	2018/2020	Attaining WQS with new data due to restoration activity	Attaining WQS with new data			
Bear River	UT16010203-009_00	Little Bear River-1	Little Bear River from Cutler Reservoir to Hyrum Reservoir	Minimum Dissolved Oxygen	2018/2020	Original 303(d) listing rationale was in error and due to restoration activity.	2012/2014 IR: 4904800 and 4905000 were not supporting. 2018/2020 IR: 4905000 has sufficient new data since cycle first listed and is supporting. 4904800 is a Blind Duplicate of 4905000 (and should not have been assessed in 2012/2014). QAQC monitoring location ID.			
Bear River	UT16010203-020 00	Blacksmith Fork-1	Blacksmiths Fork and tributaries from confluence with Logan River to Left Hand Fork Blacksmiths Fork	Minimum Dissolved Oxygen	2018/2020	Attaining WQS with new data due to restoration activity.	2012/2014 IR: 4905400 was not supporting; 4908735 was insuffic data with exceedances. 2018/2020 IR: 4905400 and 4908735 have sufficient new data since cycle first listed and are supporting.			
Bear River	UT16010204-002_00	Bear River Lower-East	Bear River east side tributaries from Malad confluence south	Minimum Dissolved Oxygen	2018/2020	Attaining WQS with new data due to restoration activity.	2012/2014 IR: 4901180 was not supporting. 2018/2020 IR: 4901180 has sufficient new data since cycle first listed and is supporting.			
Bear River	UT16010204-003_00	Bear River-1	Bear River from Great Salt Lake to Malad River confluence	r Minimum Dissolved Oxygen	2018/2020	Original 303(d) listing rationale was in error and due to restoration activity.	2012-2016 IR: 4901100 was not supporting. 2018/2020 IR: 4901100 was wrongly assessed in 2012-2016. The site is in a different AU (UT16010204-008). Delist wrong AU (UT16010204-003) and listUT16010204-008.			
Bear River	UT16010204-003_00	Bear River-1	Bear River from Great Salt Lake to Malad River confluence	r Minimum Dissolved Oxygen	2018/2020	Original 303(d) listing rationale was in error.	Previous not supporting site(s) were assessed in wrong AU in older IRs. 2012/2014 IR: 4901100 was not supporting for DO. 2018/2020 IR: 4901100 is in different AU (UT16010204-008_00). List correct AU for DO.			
Bear River	UT16010204-008_01	Bear River-2-1	Bear River from Malad River confluence to Cutler Reservoir	Max. Temperature	2018/2020	Attaining WQS with new data	2012/2014 IR: 4901700 was not supporting. 2018/2020 IR: 4901700 has sufficient new data since cycle first listed and is supporting.			
Bear River	UT16010204-008_02	Bear River-2-2	Bear River from Malad River confluence to Cutler Reservoir	Max. Temperature	2018/2020	Attaining WQS with new data	2012/2014 IR: 4901700 was not supporting. 2018/2020 IR: 4901700 has sufficient new data since cycle first listed and is supporting.			
Colorado River West	UT14070006-001_00	Wahweap Creek	Wahweap Creek and tributaries from Lake Powell to headwaters	Selenium	2018/2020	Attaining WQS with new data	2014 IR: 5994530 impaired for selenium. 2016 IR: 5994530 still impaired for selenium. 2018/20 IR: 5994530 had 2 exceedances from 2011 (March and May) driving impairment. Kanab BLM sampled the site after it was listed. Most recent 11 samples, including several from the months of March and May, show full support. If DWQ only considers the 2020 IR period of record from 10/1/12-9/30/18 there would be no exceedances and full support.			

Draft Combined 2018/2020 Integrated Report: Delistings for Flowing Surface Waters of the State and Canals										
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessed Parameter	Cycle Delisted	EPA Justification	DWQ Delisting Comment			
Jordan River	UT16020204-002_00	Jordan River-2	Jordan River from Davis County line upstream to North Temple Street	Total Dissolved Solids	2018/2020	Attaining WQS with new data	2016 IR: 4991900 was not supporting. 2018/2020 IR: 4991900 has sufficient new data since cycle first listed and is supporting.			
Jordan River	UT16020204-006_01	Jordan River-6	Jordan River from 7800 South to Bluffdale at 14600 South	Selenium	2018/2020	Attaining WQS with new data	2012-2016 IR: 4994170 was not supporting. 2018/2020 IR: 4994170 has sufficient new data since cycle first listed and is supporting.			
Jordan River	UT16020204-006_02	Big Willow Creek	Jordan River from 7800 South to Bluffdale at 14600 South	Selenium	2018/2020	Attaining WQS with new data	2012-2016 IR: 4994170 was not supporting. 2018/2020 IR: 4994170 has sufficient new data since cycle first listed and is supporting.			
Jordan River	UT16020204-006_03	Dry Creek	Jordan River from 7800 South to Bluffdale at 14600 South	Selenium	2018/2020	Attaining WQS with new data	2012-2016 IR: 4994170 was not supporting. 2018/2020 IR: 4994170 has sufficient new data since cycle first listed and is supporting.			
Lower Colorado River	UT15010003-002_00	Kanab Creek-1	Kanab Creek and tributaries from state line to the confluence with Fourmile Hollow near the White Cliffs	e Minimum Dissolved Oxygen	2018/2020	Attaining WQS with new data	2012-2016 IR: 4951800 was not supporting. 2018/2020 IR: 4951800 has sufficient new data since cycle first listed and is supporting.			
Lower Colorado River	UT15010008-004_00	Virgin River-2	Virgin River and tributaries from Santa Clara River confluence to Quail Creek diversion, excluding Quail, Ash, and La Verkin Creeks	Max. Temperature	2018/2020	Attaining WQS with new data	Pre 2012: Unsure of what MLID was driving the original impairment. Robust data sets for 4950200 (n=35) and 4950320 (n=58) show full support with data from 1/1/1997-12/31/2007. 2020 IR: 4950200 had 0 exceedances of 12 samples between 10/22/12 and 9/16/13 for full support. 4950320 had 1 exceedance of 12 samples between 10/22/12-9/16/13 for full support.			

Draft Combined 2018/2020 Integrated Report: Delistings for Flowing Surface Waters of the State and Canals											
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessed Parameter	Cycle Delisted	EPA Justification	DWQ Delisting Comment				
Southeast Colorado River	UT14030004-001_00	Dolores River	Dolores River and tributaries (except Granite Creek) from confluence with Colorado River to headwaters or Utah-Colorado state line	o Total Dissolved Solids	2018/2020	Attaining WQS with new data	Pre 2012: 4958600 impaired for TDS from 1/1/1997-12/31/2007 with 10 of 57 samples exceeding. 4958780 IDNE. 2014 IR: 49558600 still impaired for TDS. 2016 IR: Both 4958780 and 4958780 IDNE. 2020 IR: 4958800 fully supporting from 10/1/2014-9/30/2018 with only 1 sample of 11 exceeding. 4958780 IDNE from 10/1/14-9/30/2018 with 0/8 exceeding.				
Southeast Colorado River	UT14030005-010_00	Onion Creek Lower	Onion Creek and tributaries from confluence with Colorad River to road crossing above Stinking Springs	Selenium	2018/2020	Attaining WQS with new data due to restoration activity.	2012/2014 IR: 4958280 was not supporting and 4958285 was insufficient data with exceedances. 2016 IR: 4958280 was on a UDWQ targeted run in the 2016 IR. Only 9 samples were new to dataset (2 were from the beginning of the targeted run and in the 2012/2014 data set). Also note that all data from the targeted run except the 2 repeated data points were rejected in the 2018/2020 secondary review. AU should be cat 3 because of previous data assessment from site 4958285. (This site had no data in the 2018/2020 IR). 2018/2020 IR: 4958280 has insufficient data with NO exceedances.				
Southeast Colorado River	UT14080201-009_00	San Juan River-2	San Juan River from the confluence with Chinle Creek to the Confluence with Montezuma Creek within State Jurisdiction	Aluminum	2018/2020	Attaining WQS with new data	2016 IR: 4953250 was not supporting. 2018/2020 IR: 4953250 has sufficient new data since cycle first listed and is supporting.				
Southeast Colorado River	UT14080205-001_00	San Juan River-1	San Juan River from Lake Powell to confluence with Chinle Creek within State Jurisdiction	Aluminum	2018/2020	Attaining WQS with new data	2016 IR: 4953000 was not supporting. 2018/2020 IR: 4953000 has sufficient new data since cycle first listed and is supporting.				
Southeast Colorado River	UT14080205-001_00	San Juan River-1	San Juan River from Lake Powell to confluence with Chinle Creek within State Jurisdiction	Copper	2018/2020	Attaining WQS with new data	2016 IR: 4953000 was not supporting. 2018/2020 IR: 4953000 has sufficient new data since cycle first listed and is supporting.				
Southeast Colorado River	UT14080205-001 00	San Juan River-1	San Juan River from Lake Powell to confluence with Chinle Creek within State Jurisdiction	Iron	2018/2020	Attaining WQS with new data	2016 IR: 4953000 was not supporting. 2018/2020 IR: 4953000 has sufficient new data since cycle first listed and is supporting.				
Southeast Colorado River	UT14080205-001_00	San Juan River-1	San Juan River from Lake Powell to confluence with Chinle Creek within State Jurisdiction	Mercury	2018/2020	Attaining WQS with new data	2016 IR: 4953000 was not supporting. 2018/2020 IR: 4953000 has sufficient new data since cycle first listed and is supporting.				
Southeast Colorado River	UT14080205-001_00	San Juan River-1	San Juan River from Lake Powell to confluence with Chinle Creek within State Jurisdiction	Minimum Dissolved Oxygen	2018/2020	Attaining WQS with new data	2012/2014 IR: 4952940 was not supporting. 2018/2020 IR: 4952940 has sufficient new data since cycle first listed and is supporting.				

Draft Combined 2018/2020 Integrated Report: Delistings for Flowing Surface Waters of the State and Canals									
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessed Parameter	Cycle Delisted	EPA Justification	DWQ Delisting Comment		
Uinta Basin	UT14040106-014_00	Cart Creek	Cart Creek and tributaries from Flaming Gorge Reservoir to headwaters	Max. Temperature	2018/2020	Attaining WQS with new data	2016 IR: 4938700 was not supporting. 2018/2020 IR: 4938700 has sufficient new data since cycle first listed and is supporting.		
Uinta Basin	UT14040106-021_00	Pot Creek	Pot Creek and tributaries from Crouse reservoir to headwaters	Max. Temperature	2018/2020	Attaining WQS with new data	2012/2014 IR: 5937880 was not supporting. 2018/2020 IR: 5937880 has sufficient new data since cycle first listed and is supporting.		
Uinta Basin	UT14040107-001_00	Blacks Fork	Blacks Fork River and tributaries from Utah- Wyoming state line at Meeks Cabin Reservoir to headwaters	рН	2018/2020	Attaining WQS with new data	2012/2014 IR: 4939550 was not supporting. 2016 IR: 4939116 had insuffic data with exceedances. 2018/2020 IR: 4939550 has sufficient new data since cycle first listed and is supporting. 4939116 has insufficient data with NO exceedances.		
Uinta Basin	UT14060003-011_00	Whiterocks River Lower	Whiterocks River and tributaries from confluence with Uintah River to Tridell Water Treatment Plant	Aluminum	2018/2020	Original 303(d) listing rationale was in error.	2012-2016 IR: 4935070 was not supporting. 2018/2020 IR: 4935070 is identified as not within the state's jurisdiction. Other data in AU shows no exceedances.		
Uinta Basin	UT14060003-015_00	Lake Fork-2	Lake Fork River and tributaries from Pigeon Water Creek confluence to Yellowstone River confluence (includes Pigeon Water Creek and Yellowstone River to USFS boundary)	l Zinc	2018/2020	Original 303(d) listing rationale was in error.	2012-2016 IR: 4935110 was not supporting. 2018/2020 IR: 4935110 is not an IR waterbody type site. Wrongly assessed in 2012-2016 IRs.		
Uinta Basin	 UT14060004-001_00	Strawberry River-1	Strawberry River from confluence with Duchesne River to Starvation Dam	pН	2018/2020	Attaining WQS with new data	2016 IR: 4934510 was not supporting. 2018/2020 IR: 4934510 has sufficient new data since cycle first listed and is supporting.		
Uinta Basin	UT14060004-010_00	Strawberry River-3	Strawberry River and tributaries, except Willow Creek and Timber Canyon, from Avintaquin Creek confluence to Strawberry Reservoir	Macroinvertebrates	2018/2020	Attaining WQS with new data	Attaining WQS with new data		

Draft Combined 2018/2020 Integrated Report: Delistings for Flowing Surface Waters of the State and Canals										
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessed Parameter	Cycle Delisted	EPA Justification	DWQ Delisting Comment			
Upper Provo River	UT16020203-016_00	McHenry Creek	McHenry Creek and tributaries from Jordanelle Reservoir to headwaters	Zinc	2018/2020	Attaining WQS with new data	2012-2016 IR: 4997675 was not supporting. 2018/2020 IR: 4997675 has sufficient new data since cycle first listed and is supporting.			
Upper Provo River	UT16020203-026_00	Heber Valley	Provo River east side tributaries from Daniels Creek to Little South Fork except Lake Creek	Max. Temperature	2018/2020	Attaining WQS with new data	2012/2014 IR: 5911120 was not supporting. 2018/2020 IR: 5911120 has sufficient new data since cycle first listed and is supporting.			
Upper Sevier River	UT16030002-002_00	Otter Creek-1	Otter Creek and tributaries from Otter Creek Reservoir to Koosharem Reservoir, except Box and Greenwich Creeks	рH	2018/2020	Attaining WQS with new data due to restoration activity.	2012/2014: 4948870 and 4949070 were not supporting. 2018/2020 IR: 4948870 and 4949070 have sufficient new data since cycle first listed and are supporting.			
Upper Sevier River	UT16030002-006_00	East Fork Sevier-3	East Fork Sevier River and tributaries from Antimony Creek confluence to Deer Creek confluence	Macroinvertebrates	2018/2020	Attaining WQS with new data due to restoration activity.	Attaining WQS with new data			
Utah Lake-Lower Provo River	UT16020201-009_00	Spring Creek-Lehi	Spring Creek and tributaries from Utah Lake near Lehi to headwaters	Cadmium	2018/2020	Attaining WQS with new data	2012-2016 IR: 4994950 was not supporting. 2018/2020 IR: 4994950 has sufficient new data since cycle first listed and is supporting.			
Utah Lake-Lower Provo River	UT16020202-019_00	Clear Creek-Tucker	Clear Creek and tributaries from confluence with Soldier Creek to headwaters	Macroinvertebrates	2018/2020	Attaining WQS with new data	Attaining WQS with new data			
Utah Lake-Lower Provo River	UT16020202-042_00	Spring Creek-Springville	Spring Creek from wetlands at I-15 to headwaters	Max. Temperature	2018/2020	Original 303(d) listing rationale was in error and due to restoration activity.	2012/2014 IR: 4996290 was not supporting. 2018/2020 IR: 4996290 is in an undefined AU. Should not have been assessed 2012/2014 for AU UT16020202-042.			

Drait Combined 2018/2020 Integrated Report: Denstings for Flowing Surface Waters of the State and Canals										
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessed Parameter	Cycle Delisted	EPA Justification	DWQ Delisting Comment			
Weber River	UT16020101-010_00	Chalk Creek1-Coalville	Chalk Creek and tributaries from confluence with Weber River to South Fork confluence	Macroinvertebrates	2018/2020	Attaining WQS with new data due to restoration activity.	Attaining WQS with new data			
Weber River	UT16020101-014_00	Chalk Creek3-Coalville	Chalk Creek and tributaries from Huff Creek confluence to East Fork confluence	pН	2018/2020	Attaining WQS with new data due to restoration activity.	2012/2014 IR: 4926390 was not supporting. 2018/2020 IR: 4926390 has sufficient new data since cycle first listed and is supporting.			
Weber River	UT16020101-015 00	East Fork Chalk Creek	East Fork Chalk Creek and tributaries from confluence with Chalk Creek to headwaters	рН	2018/2020	Attaining WQS with new data due to restoration activity	2012/2014 IR: 4926370 was not supporting. 2018/2020 IR: 4926370 has sufficient new data since cycle first listed and is supporting			
Weber River	UT16020101-017_00	Weber River-8	Weber River from Echo Reservoir to Rockport Reservoir	Minimum Dissolved Oxygen	2018/2020	Attaining WQS with new data due to restoration activity.	2012/2014 IR: 4927010 was not supporting. 2018/2020 IR: 4927010 has sufficient new data since cycle first listed and is supporting.			
Weber River	UT16020101-020_00	Silver Creek	Silver Creek and tributaries from confluence with Weber River to headwaters Silver Creek and tributaries from confluence with Weber	Minimum Dissolved Oxygen	2018/2020	Attaining WQS with new data	2012/2014 IR: 4926850 was not supporting. 2016 IR: 4926850, 4922688, and 4926791 had insuffic data with exceedances. 2018/2020 IR: 4926850 has sufficient new data since cycle first listed and is supporting. 4926791 and 4922698 (was merged with 4926794) are insuffic data with NO exceedances. 2012/2014 IR: 4926750 was not supporting. 2016 IR: 4926850 had insufficient data with exceedances. 2018/2020 IR: 4926750 has sufficient new data since cycle first listed and is supporting. 4926850 is also			
Weber River	UT16020102-001_00	Weber River-1	Weber River and tributaries from Great Salt Lake to Slaterville Diversion	Total Ammonia as N	2018/2020	Attaining WQS with new data	2012-2016 IR: 4920050 was not supporting. 2018/2020 IR: 4920050 and USGS-10141000 were merged and are now called USGS-10141000. USGS- 10141000 has sufficient new data since cycle first listed and is supporting.			
Weber River	UT16020102-002_00	Weber River-3	Weber River from Ogder River confluence to Cottonwood Creek confluence	Macroinvertebrates	2018/2020	Attaining WQS with new data	Attaining WQS with new data			
Weber River	UT16020102-026_01	East Canyon Creek-2	East Canyon Creek and tributaries from East Canyon Reservoir to headwaters	Macroinvertebrates	2018/2020	Attaining WQS with new data due to restoration activity.	Attaining WQS with new data			
Weber River	UT16020102-026_02	Murnin Creek	East Canyon Creek and tributaries from East Canyon Reservoir to headwaters	Macroinvertebrates	2018/2020	Attaining WQS with new data due to restoration activity.	Attaining WQS with new data			
Weber River	UT16020102-026_03	Toll Canyon	East Canyon Creek and tributaries from East Canyon Reservoir to headwaters	Macroinvertebrates	2018/2020	Attaining WQS with new data due to restoration activity.	Attaining WQS with new data			
Weber River	UT16020102-027_00	Kimball Creek	Kimball Creek and tributaries from East Canyon Creek confluence to headwaters, including McLeod Creek	Macroinvertebrates	2018/2020	Attaining WQS with new data due to restoration activity.	Attaining WQS with new data			
Weber River	UT16020102-034_00	Holmes Creek-2	Holmes Creek and tributaries from USFS boundary to headwaters	Copper	2018/2020	Original 303(d) listing rationale was in error.	Previous not supporting site(s) were assessed in wrong AU in older IRs. 2016 IR: 4990220 was not supporting for Copper. 2018/2020 IR: 4990220 is in different AU (UT16020102-035_00). Correct Au already not supporting for copper.			
Weber River	UT16020102-043_00	Barnard Creek	Barnard Creek and tributaries from US 89 to headwaters	Minimum Dissolved Oxygen	2018/2020	Attaining WQS with new data	2012/2014 IR: 4990390 was not supporting. 2018/2020 IR: 4990390 has sufficient new data since cycle first listed and is supporting.			

Draft Combined 2018/2020 Integrated Report: Delistings for Flowing Surface Waters of the State and Canals										
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessed Parameter	Cycle Delisted	EPA Justification	DWQ Delisting Comment			
Weber River	UT16020102-044_01	Parrish Creek	Parrish and Duel Creeks and their tributaries from Davis Aqueduct to headwaters	Copper	2018/2020	Original 303(d) listing rationale was in error.	2012-2016 IR: 4990360 was not supporting. 2018/2020 IR: 4990360 is located in different AU (UT16020102-044_02) and was wrongly assessed in 2012-2016. UT16020102-044_02 should be listed for Cu.			
Weber River	UT16020102-044_02	Centerville Canyon	Parrish and Duel Creeks and their tributaries from Davis Aqueduct to headwaters	Copper	2018/2020	Original 303(d) listing rationale was in error.	2012-2016 IR: 4990360 was not supporting. 2018/2020 IR: 4990360 is located in different AU (UT16020102-044_02) and was wrongly assessed in 2012-2016. UT16020102-044_02 should be listed for Cu.			
Weber River	UT16020102-045_00	Stone Creek-2	Stone Creek and tributaries from USFS boundary to headwaters	Copper	2018/2020	Original 303(d) listing rationale was in error.	Previous not supporting site(s) were assessed in wrong AU in older IRs. 2012-2016 IR: 4990620 was not supporting for Copper. 2018/2020 IR: 4990620 is in different AU (UT16020102-046_00). Correct Au already not supporting for copper.			
West Desert	UT16020309-002_00	Blue Creek	Blue Creek and tributaries from Great Salt Lake to Blue Creek Reservoir	Aluminum	2018/2020	Attaining WQS with new data	2012-2016 IR: 4960760 was not supporting. 2018/2020 IR: 4960760 has sufficient new data since cycle first listed and is supporting.			
Western Colorado River	UT14060007-003_00	Price River-1	Price River and tributaries from Price City Water Treatment intake to Scofield Reservoir	Macroinvertebrates	2018/2020	Attaining WQS with new data	Attaining WQS with new data			
Western Colorado River	UT14060009-004_01	Huntington Creek-2	Huntington Creek and tributaries from Highway 10 crossing to USFS boundary	Max. Temperature	2018/2020	Original 303(d) listing rationale was in error.	Previous not supporting site(s) were assessed in wrong AU in older IRs. 2012/2014 IR: 4930524 was not supporting for temperature. 2018/2020 IR: 4930524 is in different AU (UT14060009-010_00). List correct AU for Temp.			
Western Colorado River	UT14060009-004_02	Bear Canyon-1	Huntington Creek and tributaries from Highway 10 crossing to USFS boundary	Max. Temperature	2018/2020	Original 303(d) listing rationale was in error.	Previous not supporting site(s) were assessed in wrong AU in older IRs. 2012/2014 IR: 4930524 was not supporting for temperature. 2018/2020 IR: 4930524 is in different AU (UT14060009-010_00). List correct AU for Temp.			

Draft Combined 2018/2020 Integrated Report: Delistings for Flowing Surface Waters of the State and Canals										
Watershed Management Unit	Assessment Unit ID	Assessment Unit Name	Assessment Unit Description	Assessed Parameter	Cycle Delisted	EPA Justification	DWQ Delisting Comment			
Western Colorado River	UT14060009-013_00	San Rafael Upper	San Rafael River from Buckhorn Crossing to confluence of Huntington and Cottonwood Creeks	n ; Macroinvertebrates	2018/2020	Attaining WQS with new data due to restoration activity.	Attaining WQS with new data			
Western Colorado River	UT14070002-003_00	Saleratus Creek - Emery	Saleratus Creek and tributaries from U-10 crossing to headwaters	Boron	2018/2020	Original 303(d) listing rationale was in error.	Previous not supporting site(s) were assessed in wrong AU in older IRs. 2012/2014 IR: 4955460 was not supporting for Boron and TDS. 2016 IR: 4955460 was not supporting for Temperature. 2018/2020 IR: 4955460 is in different AU (UT14070002-008_00). List correct AU for Boron and temperature (correct AU is already not supporting for TDS).			
Western Colorado River	UT14070002-003_00	Saleratus Creek - Emery	Saleratus Creek and tributaries from U-10 crossing to headwaters	Max. Temperature	2018/2020	Original 303(d) listing rationale was in error.	Previous not supporting site(s) were assessed in wrong AU in older IRs. 2012/2014 IR: 4955460 was not supporting for Boron and TDS. 2016 IR: 4955460 was not supporting for Temperature. 2018/2020 IR: 4955460 is in different AU (UT14070002-008_00). List correct AU for Boron and temperature (correct AU is already not supporting for TDS).			
Western Colorado River	UT14070002-003_00	Saleratus Creek - Emery	Saleratus Creek and tributaries from U-10 crossing to headwaters	Total Dissolved Solids	2018/2020	Original 303(d) listing rationale was in error.	2012-2016 IR: 4955460 was not supporting. 2018/2020 IR: 4955460 is located in different AU (UT14070002-008_00) and was wrongly assessed in 2012-2016. Correct AU is already impaired for TDS.			
Western Colorado River	UT14070002-004_01	Ivie Creek Upper-1	Ivie Creek and some tributaries from U-10 crossing to headwaters	Total Dissolved Solids	2018/2020	Original 303(d) listing rationale was in error.	2012/2014 IR: 4955450 was not supporting. 2018/2020 IR: 4955450 is located in a different AU (UT14070002-008_00) and was wrongly assessed in 2012-2016. Correct AU is already impaired for TDS.			
Western Colorado River	UT14070002-004_01	lvie Creek Upper-1	lvie Creek and some tributaries from U-10 crossing to headwaters	Total Dissolved Solids	2018/2020	Original 303(d) listing rationale was in error.	Previous not supporting site(s) were assessed in wrong AU in older IRs. 2012/2014 IR: 4955450 was not supporting for TDS 2018/2020 IR: 4955450 is in different AU (UT14070002-008_00). Correct Au already not supporting for TDS			
Western Colorado River	UT14070002-004_02	Ivie Creek Upper-2	lvie Creek and some tributaries from U-10 crossing to headwaters	Total Dissolved Solids	2018/2020	Original 303(d) listing rationale was in error.	2012/2014 IR: 4955450 was not supporting. 2018/2020 IR: 4955450 is located in a different AU (UT14070002-008_00) and was wrongly assessed in 2012-2016. Correct AU is already impaired for TDS.			
Western Colorado River	UT14070002-004_02	Ivie Creek Upper-2	lvie Creek and some tributaries from U-10 crossing to headwaters	Total Dissolved Solids	2018/2020	Original 303(d) listing rationale was in error.	Previous not supporting site(s) were assessed in wrong AU in older IRs. 2012/2014 IR: 4955450 was not supporting for TDS 2018/2020 IR: 4955450 is in different AU (UT14070002-008_00). Correct Au already not supporting for TDS			

Literature Cited

Carlson, R.E. 1977. A Trophic Status Index for Lakes. Limnology and Oceanography 22:361–364.

Carlson, R.E., and K.E. Havens. 2005. Simple graphical method for interpretation of relationships between trophic state variables. Lake and Reservoir Management 21:107-118.

Clarke, R.T., M.T. Furse, J.F. Wright, and D. Moss. 1996. Derivation of a biological quality index for river sites: comparison of the observed with the expected fauna. Journal of Applied Statistics 23:311–332.

Davies, N.M, R.H. Norris, and M.C. Thoms. 2000. Prediction and assessment of local stream habitat features using large-scale catchment characteristics. Freshwater Biology 45:343–369.

EPA. 2016. Human health recreational ambient water quality criteria or swimming advisories for Microcystins and Cylindrospermopsin.

Feldman, D. 2006. A Report to the DEQ Water Quality Planning Bureau on the Proper Interpretation of Two Recently Developed Bioassessment Models. Helena, Montana: Montana Department of Environmental Quality.

Furse, M.T., D. Moss, J.F. Wright, and P.D. Armitage. 1984. The influence of seasonal and taxonomic factors on the ordination and classification of running-water sites in Great Britain and on the prediction of their macro-invertebrate communities. Freshwater Biology 14:257–280.

Hargett, E.G., J.R. ZumBerge, and C.P. Hawkins. 2005. Development of a RIVPACS Model for Wadable Streams of Wyoming. Wyoming Department of Environmental Quality, Water Quality Division.

Hawkins, C.P. 2004. Predictive Model Assessments: A Primer. The Western Center for Monitoring and Assessment of Freshwater Ecosystems, Utah State University, 29 September 2004. Available at: https://gcnr.usu.edu/wmc/predictive_models/model_primer.

Hawkins, C.P., 2006. Quantifying biological integrity by taxonomic completeness: its utility in regional and global assessments. Ecological Applications, 16(4), pp.1277-1294.

Hawkins, C.P., and D.M. Carlisle. 2001. Use of Predictive Models for Assessing the Biological Integrity of Wetlands and Other Aquatic Habitats. In Bioassessment and Management of North American Freshwater Wetlands, edited by Russell B. Rader, Darold P. Batzer, and Scott A. Wissinger. Hoboken, New Jersey: John Wiley & Sons, Inc.

Hawkins, C.P., Cao, Y. and Roper, B., 2010. Method of predicting reference condition biota affects the performance and interpretation of ecological indices. Freshwater Biology, 55(5), pp.1066-1085.

Hawkins, C.P., Mykrä, H., Oksanen, J. and Vander Laan, J.J., 2015. Environmental disturbance can increase beta diversity of stream macroinvertebrate assemblages. Global Ecology and Biogeography, 24(4), pp.483-494.

Hawkins, C.P, R.H. Norris, J.N. Hogue, and J.W. Feminella. 2000. Development and evaluation of predictive models for measuring the biological integrity of streams. Ecological Applications 10:1456–1477.

Hawkins, C.P., Olson, J.R. and Hill, R.A., 2010. The reference condition: predicting benchmarks for ecological and water-quality assessments. Journal of the North American Benthological Society, 29(1), pp.312-343.

Hawkins, C.P. and Yuan, L.L., 2016. Multitaxon distribution models reveal severe alteration in the regional biodiversity of freshwater invertebrates. Freshwater Science, 35(4), pp.000-000.

Hughes, R.M., D.P. Larsen, and J.M. Omernik. 1986. Regional reference sites: a method for assessing stream potential. Environmental Management 5:629–635.

Jessup, B., C.P. Hawkins, and J. Stribling. 2006. Biological Indicators of Stream Condition in Montana Using Benthic Macroinvertebrates. Tetra Tech. Technical report prepared for the Montana Department of Environmental Quality, Helena, Montana.

Karr, J.R. 1981. Assessment of biotic integrity using fish communities. Fisheries 6:21-27.

Karr, J.R., and D.R. Dudley. 1981. Ecological perspectives on water quality goals. Environmental Management 5(1):55–68.

Lévesque, B., M. Gervais, P. Chevalier, D. Gauvin, E. Anassour-laouan-sidi, S. Gingras, N. Fortin, G. Brisson, C. Greer, and D. Bird. 2014. Science of the Total Environment Prospective study of acute health effects in relation to exposure to cyanobacteria. Science of the Total Environment 466-467:397–403.

Lin, C. J., T. J. Wade, E. A. Sams, A. P. Dufour, A. D. Chapman, and E. D. Hilborn. 2016. A Prospective Study of Marine Phytoplankton and Reported Illness among Recreational Beachgoers in Puerto Rico, 2009.

Marchant, R., and G. Hehir. 2002. The use of AUSRIVAS predictive models to assess the response of lotic macroinvertebrates to dams in south-east Australia. Freshwater Biology 43:1022–1050.

Mazor, R.D., Rehn, A.C., Ode, P.R., Engeln, M., Schiff, K.C., Stein, E.D., Gillett, D.J., Herbst, D.B. and Hawkins, C.P., 2016. Bioassessment in complex environments: designing an index for consistent meaning in different settings. Freshwater Science, 35(1), pp.249-271.

Metzeling, L., D. Robinson, S. Perris, and R. Marchant. 2002. Temporal persistence of benthic invertebrate communities in south-eastern Australian streams: taxonomic resolution and implications for the use of predictive models. Marine and Freshwater Research 53:1223–1234.

Moss, D. J.F. Wright, M.T. Furse, and R.T. Clarke. 1999. A comparison of alternative techniques for prediction of the fauna of running-water sites in Great Britain. Freshwater Biology 41:167–181.

Ostermiller, J.D. and Hawkins, C.P., 2004. Effects of sampling error on bioassessments of stream ecosystems: application to RIVPACS-type models. Journal of the North American Benthological Society, 23(2), pp.363-382.

Ostermiller, J. D., M. Shupryt, M. A. Baker, B. Neilson, E. B. Gaddis, A. J. Hobson, B. Marshall, T Miller, D. Richards, N. vonStackelberg. 2014. Technical Basis for Utah's Nutrient Strategy, Draft Report. Utah Division of Water Quality.

Paul, M. J., J. Gerritsen, C.P. Hawkins, and E. Leppo. 2005. Development of Biological Assessment Tools for Colorado. Tetra Tech. Technical report prepared for the Colorado Department of Public Health and Environment, Water Quality Control Division – Monitoring Unit, Denver, Colorado.

Pilotto, L. S., R.M. Douglas, M.D. Burch, S. Cameron, M. Beers, G.J. Rouch, and C. Moore. 1997. Health effects of exposure to cyanobacteria (blue–green algae) during recreational water–related activities. Australian and New Zealand Journal of Public Health, 21(6), 562-566.

Simpson, J.C., and R.H. Norris. 2000. Biological assessment of river quality: development of AusRivAS models and outputs. In Assessing the Biological Quality of Fresh Waters, edited by J.F. Wright, D.W. Sutcliffe, and M.T. Furse, pp. 125–142. Ambleside, United Kingdom: Freshwater Biological Association.

Stewart, I., P. M. Webb, P. J. Schluter, L. E. Fleming, J. W. B. Jr, M. Gantar, L. C. Backer, and G. R. Shaw. 2006b. Epidemiology of recreational exposure to freshwater cyanobacteria – an international prospective cohort study. BMC Public Health 11:1–11.
Sudaryanti, S., Y. Trihadiningrum, B.T. Hart, P.E. Davies, C. Humphrey, R.H. Norris, J. Simpson, and L. Thurtell. 2001. Assessment of the biological health of the Brantas River, East Java, Indonesia using the Australian River Assessment System (AUSRIVAS) methodology. Aquatic Ecology 35(2):135–146.

Suplee, M., R. Sada de Suplee, D. Feldman, and T. Laidlaw. 2005. Identification and Assessment of Montana Reference Streams: A Follow-Up and Expansion of the 1992 Benchmark Biology Study. Helena, Montana: Montana Department of Environmental Quality.

U.S. Environmental Protection Agency (EPA). 1985. Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and their Uses. EPA-PB85-227049.

U.S. Environmental Protection Agency. EPA Requirements for Quality Assurance Project Plans. Office of Environmental Information. Washington: March 2002. (EPA/240/B-01/003).

U.S. Environmental Protection Agency. Sampling Analysis Plan Guidance and Template, Version 4, General Projects. Washington: May 2014. (EPA R9QA/009.1).

_____. 2005. Guidance for 2006 assessment, listing and reporting requirements pursuant to Sections 303(d) and 305(b) of the Clean Water Act. Available at: <u>http://www.epa.gov/owow/tmdl/2006IRG/report/2006irg-report.pdf</u>. Accessed September 19, 2014.

Utah Division of Water Quality (DWQ). 2014. Quality Assurance Program Plan For Environmental Data Operations. Final Plan. Available at:

http://www.deq.utah.gov/Compliance/monitoring/water/docs/2014/05May/DWQ_QAPP_5.1.14_Rev0.pdf. Accessed September 19, 2014.

Van Sickle, J., Larsen, D.P. and Hawkins, C.P., 2007. Exclusion of rare taxa affects performance of the O/E index in bioassessments. Journal of the North American Benthological Society, 26(2), pp.319-331.

Wright, J.F. 1995. Development and use of a system for predicting the macroinvertebrate fauna in flowing waters. Australian Journal of Ecology 20:181–197.

Wright, J.F., M.T. Furse, and P.D. Armitage. 1993. RIVPACS: a technique for evaluating the biological water quality of rivers in the UK. European Water Pollution Control 3:15–25.

PRIORITY PARAMETERS

DWQ Parameter Name	DWQ Parameter Fraction	Recommended CAS Number	Parameters impacted by New/ Revised Assessment Methodology	DWQ Parameters Routinely Measured for Assessment Purposes	Required Additional Parameter Submissions for Complete Assessment Purposes
Fish Mercury		n/a			
Flow	n/a	Field Measurement		Х	
pH	n/a	Field Measurement		Х	
Secchi Depth	n/a	Field Measurement		Х	for Lake Samples only Accompanying Fluoride, Dissolved for Fluoride
Temperature, Air	n/a	Field Measurement			Assessment
Temperature, Water	n/a	Field Measurement		Х	
Total Dissolved Gases	Total	Field Measurement			
Bromate	Total	15541-45-4			
Chlorine (Total Residual)	Total	Field Measurement			
Chlorite	Total	14998-27-7			
Cvanide	Dissolved	57-12-5			
Cyanida	Total	57 12 5 57 12 5			
Cyanide	Total	16094 49 9			Accompanying Air Temperature measurement
	Total	10904-40-0		× .	Accompanying Air Temperature measurement
Hardness	Dissolved	Calculated		X	
Hydrogen Sulfide	Total	7783-06-4			Accompanying Field pH Measurement
- <i></i>					Accompanying Total Dissolved Solids measurement Site-specific locations located on Ivie Creek and its tributaries from the confluence with Muddy Creek to confluence with Quitchupah Creek, and Quitchupah
Suifate		14808-79-8			Creek from confluence with Ivie Creek to U-10
I otal Dissolved Solids	lotal	n/a		X	
BOD	Total	n/a			
Chlorophyll a	Total	n/a		X	for Lake Samples only; Accompanying Secchi Depth
Chlorophyll a, uncorrected					
for pheophytin	Total	n/a		X	for Lake Samples only; Accompanying Secchi Depth
Dissolved Oxygen (% Sat)	n/a	Field Measurement			Disconnection to the analible data requirements and
(Concentration)	n/a	Field Measurement	X - High frequency data	×	Please refer to the credible data requirements and DWO's Call for Data Website
	11/4		2000000000	~	Accompanying Field pH Measurement AND Hardnes
Aluminum	Dissolved	7420 00 5		×	Measurement
Antimony	Total	7429-90-9		~	measurement
Arconio	Disashuad	7440-30-0		V	
Arsenic	Dissolved	7440-36-2			
Arsenic (Trivalent)	Dissolved	7440-38-2		routinely measure this parameter due to analytical constraints	
Asbastas	Total	1332 21 4		oonorrainto	
Asbestos Parium	Disselved	7440 20 2		V	
Barium	Dissolved	7440-39-3		~	
Beryllium		7440-41-7		X	
Boron	Total	7440-42-8		X	
Cadmium	Dissolved	7440-43-9		×	Accompanying Hardness or Calcium, Dissolved ANI
Caumum	Dissolved	7440-40-3		~	Accompanying Magnesium Dissolved for Hardness
Calcium	Dissolved	7440-70-2		x	calculation
Chromium	Dissolved	7440-47-3		X	
		140-11-0		O - DWQ unable to routinely measure this parameter due to analytical	
Chromium (Hexavalent)	Dissolved	18540-29-9		constraints O - DWQ unable to routinely measure this	
Chromium Trivalent	Dissolved	16065-83-1		constraints	Magnesium, Dissolved Measurement
Copper	Dissolved	7440-50-8		Х	Accompanying Hardness or Calcium, Dissolved ANI Magnesium, Dissolved Measurement
Iron	Dissolved	7439-89-6		Х	
					Accompanying Hardness or Calcium, Dissolved ANI
Lead	Dissolved	7439-92-1		Х	Magnesium, Dissolved Measurement
Magnesium	Dissolved	7439-95-4		х	calculation
	Disasta	7400.07.0		v	
mercury	DISSOIVED	(439-97-6		X	
Nickel	Dissolved	7440-02-0		Х	Accompanying Hardness or Calcium, Dissolved ANI Magnesium, Dissolved Measurement
Selenium	Dissolved	7782-49-2		Х	

DRAFT 2018/2020 IR: VERSION 2.4

(1) The dissolved metals method involves filtration of the sample in the field, acidification of the sample in the field, no digestion process in the laboratory, and analysis by EPA approved laboratory methods for the required detection levels. (2) Recommended that the **Total** fraction result value is also submitted in the data package for QAQC purposes.

ents for to the enth Recommend submitting Water Temperature Please refer to the credible data requirements and DWQ's Call for Data Website. (1) The dissolved metals method involves filtration of the sample in the field, acidification of the sample in the field, no ness digestion process in the laboratory, and analysis by EPA approved laboratory methods for the required detection levels. (2) Recommended that the Total fraction result value is also submitted in the data package for QAQC purposes. Recommended that the **Total** fraction result value is also submitted in the data package for QAQC purposes. (1) The dissolved metals method involves filtration of the sample in the field, acidification of the sample in the field, no digestion process in the laboratory, and analysis by EPA approved laboratory methods for the required detection levels. (2) Recommended that the **Total** fraction result value is also submitted in the data package for QAQC purposes. Recommended that the **Total** fraction result value is also submitted in the data package for QAQC purposes. Recommended that the **Total** fraction result value is also submitted in the data package for QAQC purposes. (1) The dissolved metals method involves filtration of the sample in the field, acidification of the sample in the field, no AND digestion process in the laboratory, and analysis by EPA approved laboratory methods for the required detection levels. (2) Recommended that the Total fraction result value is also submitted in the data package for QAQC purposes. Recommended that the **Total** fraction result value is also submitted in the data package for QAQC purposes. Recommended that the **Total** fraction result value is also submitted in the data package for QAQC purposes. (1) The dissolved metals method involves filtration of the sample in the field, acidification of the sample in the field, no digestion process in the laboratory, and analysis by EPA approved laboratory methods for the required detection levels. (2) Recommended that the **Total** fraction result value is also submitted in the data package for QAQC purposes. (1) The dissolved metals method involves filtration of the sample in the field, acidification of the sample in the field, no digestion process in the laboratory, and analysis by EPA approved laboratory methods for the required detection levels. (2) ١ND Recommended that the **Total** fraction result value is also submitted in the data package for QAQC purposes. (1) The dissolved metals method involves filtration of the sample in the field, acidification of the sample in the field, no digestion process in the laboratory, and analysis by EPA approved laboratory methods for the required detection levels. (2) ND Recommended that the **Total** fraction result value is also submitted in the data package for QAQC purposes. (1) The dissolved metals method involves filtration of the sample in the field, acidification of the sample in the field, no digestion process in the laboratory, and analysis by EPA approved laboratory methods for the required detection levels. (2) Recommended that the Total fraction result value is also submitted in the data package for QAQC purposes. (1) The dissolved metals method involves filtration of the sample in the field, acidification of the sample in the field, no ٩ND digestion process in the laboratory, and analysis by EPA approved laboratory methods for the required detection levels. (2) Recommended that the **Total** fraction result value is also submitted in the data package for QAQC purposes. Recommended that the Total fraction result value is also submitted in the data package for QAQC purposes. (1) The dissolved metals method involves filtration of the sample in the field, acidification of the sample in the field, no digestion process in the laboratory, and analysis by EPA approved laboratory methods for the required detection levels. (2) Recommended that the **Total** fraction result value is also submitted in the data package for QAQC purposes. (1) The dissolved metals method involves filtration of the sample in the field, acidification of the sample in the field, no digestion process in the laboratory, and analysis by EPA approved laboratory methods for the required detection levels. (2) ١ND Recommended that the **Total** fraction result value is also submitted in the data package for QAQC purposes. (1) The dissolved metals method involves filtration of the sample in the field, acidification of the sample in the field, no digestion process in the laboratory, and analysis by EPA approved laboratory methods for the required detection levels. (2) Recommended that the **Total** fraction result value is also submitted in the data package for QAQC purposes.

DWQ Parameter Name	DWQ Parameter Fraction	Recommended CAS Number	Parameters impacted by New/ Revised Assessment Methodology	DWQ Parameters Routinely Measured for Assessment Purposes	Required Additional Parameter Submissions for Complete Assessment Purposes
					Accompanying Hardness or Calcium, Dissolved A
Silver	Dissolved	7440-22-4		Х	Magnesium, Dissolved Measurement
Thallium	Total	7440-28-0			
Uranium	Total	7440-61-1			
					Accompanying Hardness or Calcium Dissolved A
Zinc	Dissolved	7440-66-6		x	Magnesium, Dissolved Measurement
E. coli	n/a	n/a		X	
Beach Closures		n/a			
Drinking Water Closures		n/a			
Fish Kills		n/a			
Harmful Algal Blooms:		nla		v	for Laka Samplaa anly
Harmful Algal Blooms:		n/a		Α	for Lake Samples only
Cyanobacteria taxanomic					
composition (i.e.,					
phytoplankton)		n/a		Х	
Harmful Algal Blooms:					
concentrations		n/a		Х	
	Total and/ or				
Nitrate as N	Dissolved	14797-55-8		Х	
Total Ammonia on N	Tatal	7664 44 7		V	Accompanying Field pH AND Field Water Temper
Total Ammonia as N	Total	7004-41-7		X	Measurement
1 1 1-Trichloroethane	Total	71_55_6		^	
1,1,2,2-Tetrachloroethane	Total	79-34-5			
1,1,2,Trichloroethane	Total	79-00-5			
1.1-Dichloroethane	Total	75-34-3			
1,1-Dichloroethylene	Total	75-35-4			
, , , , , , , , , , , , , , , , , , , ,					
1,2 -Trans-Dichloroethylene	Total	156-60-5			
1,2,4-Trichlorobenzene	Total	120-82-1			
1,2-Dichlorobenzene	Total	95-50-1			
1,2-Dichloroethane	Total	107-06-2			
1,2-Dichloropropane	Total	78-87-5			
1,2-Dipnenyinyarazine	l otal	122-66-7			
1,3-Dichloropropene	Total	547-75-6			
1,3-Dichlorobenzene	Total	106-46-7			
2.4.5-TP	Total	93-72-1			
2.4.6-Trichlorophenol	Total	88-06-2			
2,4-D	Total	94-75-7			
2,4-Dichlorophenol	Total	120-83-2			
2,4-Dimethylphenol	Total	105-67-9			
2,4-Dinitrophenol	Total	51-28-5			
2,4-Dinitrotoluene	Total	121-14-2			
2,6-Dinitrotoluene	Total	606-20-2			
2-Chloroethyl vinyl Ether	Total	110-75-8			
2-Chloronaphthalene	Total	91-58-7			
2-Chlorophenol	lotal	95-57-8			
2-Methyl-4.6-Dinitrophenol	Total	534-52-1			
2-Nitrophenol	Total	88-75-5			
3,3'-Dichlorobenzidine	Total	91-94-1			
3-Methyl-4-Chlorophenol	Total	59-50-7			
4,4-DDD	Total	72-54-8			
4,4-DDE	Total	72-55-9			
4,4'-DDT	Total	50-29-3			
-ъromophenyi Phenyi Ether	Total	101-55-3			
4-Chlorophenyl Phenyl	- otai				
Ether	Total	7005-72-3			
4-Nitrophenol	Total	100-02-7			
Acenaphthene	Total	83-32-9			
Acenaphthylene	Total	208-96-8			
Acrolein	Total	107-02-8			
Acrylonitrile	Total	107-13-1			
Alachior	l otal	15972-60-8			
Alarin alaba BHC	i otal	309-00-2			
alpha-BHC	Total	3 19-04-0 050 09 9			
aipiia-Eiluosullan Anthracono	Total	303-30-0 120_12_7			
	Total	1912-24-9			
Benzene	Total	71-43-2			
Benzidine	Total	92-87-5			
Benzo(a)Anthracene	Total	56-55-3			
Benzo(a)Pyrene	Total	50-32-8			
Benzo(b)Fluoranthene	Total	205-99-2			
Benzo(ghi)Perylene	Total	191-24-2			

r	Additional Submission Considerations for QAQC	
ID	(1) The dissolved metals method involves filtration of the sample in the field, acidification of the sample in the field, no digestion process in the laboratory, and analysis by EPA approved laboratory methods for the required detection levels. (a Recommended that the Total fraction result value is also submitted in the data package for QAQC purposes.	2)
ID	(1) The dissolved metals method involves filtration of the sample in the field, acidification of the sample in the field, no digestion process in the laboratory, and analysis by EPA approved laboratory methods for the required detection levels. (Recommended that the Total fraction result value is also submitted in the data package for QAQC purposes.	2)
iture		

DWQ Parameter Name	DWQ Parameter Fraction	Recommended CAS Number	Revised Assessment	Routinely Measured for	Required Additional Parameter Submissions for Complete Assessment Purposes
Benzo(k)Fluoranthene	Total	207-08-9	Methodology	Assessment Purposes	
beta-BHC	Total	319-85-7			
beta-Endosulfan	Total	33213-65-9			
Bis(2-					
Chloroethoxy)Methane	Total	111-91-1			
Bis(2-Chloroethyl)Ether	Total	111-44-4			
BIS(2- Chloroisopropyl)Ether	Total	39638-32-9			
		00000 02 0			
Bis(2-Ethylhexyl)Phthalate	Total	117-81-7			
Bromoform	Total	75-25-2			
Butylbenzyl Phthalate	Total	85-68-7			
Carbofuran	Total	1563-66-2			
Carbon Tetrachloride	Total	56-23-5			
Chlordane	l otal	57-74-9			
Chlorodenzene	Total	108-90-7			
Chloroethane	Total	75-00-3			
Chloroform	Total	67-66-3			
Chlorpyrifos	Total	2921-88-2			
Chrysene	Total	218-01-9			
Dalapon	Total	75-99-0			
Di(2-ethylhexl)adipate	Total	103-23-1			
Diazinon	Total	333-41-5			
Dibenzo(a,h)Anthracene	Total	53-70-3			
Dibromochloropropane	Total	96-12-8			
Dichlorobromomethane	Total	75-27-4			
Dichloroethylene (cis-1,2)	l otal	156-59-2			
Dielarin Diethyl Phthalata	Total	60-57-1			
Dimethyl Phthalate	Total	131-11-3			
Di-n-Butyl Phthalate	Total	84-74-2			
Di-n-Octyl Phthalate	Total	117-84-0			
Dinoseb	Total	88-85-7			
Dioxin	Total	1746-01-6			
Diquat	Total	85-00-7			
Endosulfan Sulfate	Total	1031-07-8			
Endothall	Total	145-73-3			
Endrin	Total	72-20-8			
Endrin Aldehyde	Total	7421-93-4			
Ethylbenzene	l otal	100-41-4			
Ethylene Dibromide	Total	206-44-0			
Fluorene	Total	86-73-7			
gamma-BHC (Lindane)	Total	58-89-9			
Glyphosate	Total	1071-83-6			
Haloacetic acids	Total	n/a			
Heptachlor	Total	76-44-8			
Heptachlor epoxide	Total	1024-57-3			
Hexachlorobenzene	Total	118-74-1			
Hexachlorobutadine	Total	87-68-3			
(Lindane)	Total	58-89-9			
()					
Hexachlorocyclopentadiene	Total	77-47-4			
Hexachloroethane	Total	67-72-1			
Ideno 1,2,3-cdPyrene	i otal	193-39-5			
Isophorone	Total	78-59-1			
Methoxychior Methyl Bromide	Total	72-43-5			
Methyl Chloride	Total	74-87-3			
Methylene Chloride	Total	75-09-2			
Mirex	Total	2385-85-5			
Naphthalene	Total	91-20-3			
Nitrobenzene	Total	98-95-3			
N-Nitrosodimethylamine	Total	62-75-9			
N-Nitrosodi-n-Pronylamino	Total	621-64-7			
N-Nitrosodiphenvlamine	Total	86-30-6			
Nonylphenol	Total	84852-15-3			
Oxamyl (vydate)	Total	23135-22-0			
Parathion	Total	56-38-2			
PCB's	Total	1336-36-3			
Pentachlorophenol	Total	87-86-5			Accompanying Field pH Measurement
Phenanthrene	Total	85-01-8			
Phenol	Total	108-95-2			
Picloram	lotal	1918-02-1			
Polychlorinated Biphenvls	Total	1336-36-3			
Pyrene	Total	129-00-0			

DRAFT 2018/2020 IR: VERSION 2.4

DWQ Parameter Name	DWQ Parameter Fraction	Recommended CAS Number	Parameters impacted by New/ Revised Assessment Methodology	DWQ Parameters Routinely Measured for Assessment Purposes	Required Additional Parameter Submissions for Complete Assessment Purposes
Simazine	Total	122-34-9			
Styrene	Total	100-42-5			
Tetrachloroethylene	Total	127-18-4			
Toluene	Total	108-88-3			
Toxaphene	Total	8001-35-2			
Trichloroethylene	Total	79-01-6			
Vinyl Chloride	Total	75-01-4			
Xylenes	Total	1330-20-7			
Tributyltin	Dissolved	n/a			
Gross Alpha	Total	12587-46-1			
Gross Beta (Combined)	Total	12587-47-2			
Radium 226	Total	13982-63-3			
Radium 228	Total	15262-20-1			
Strontium 90	Total	10098-97-2			
Tritium	Total	10028-17-8			

NOTE: This list and accompanying information may not be complete. Please check UAC R317-2 for the most current list of parameters and the 303(d) Methods for additional information on what parameters are assessed, readily available, and credible.

Please refer to appropriate method for QC requirements and to ensure that method sensitivity is sufficient to accurately quantify constituent concentration from natural waters

DATA QUALITY GUIDELINE EXAMPLES

DWQ Sampling Analysis Plan Requirements

Revision 1.1 July 6, 2016

Utah Division of Water Quality

Checklist of Essential Elements for Sampling and Analysis Plans (SAPs)

Monitoring Project/Program:
Preparer(s):
Reviewer(s):
Date Submitted for Review:
Date of Review:
Parent QAPP or Equivalent Document:

Instructions for Preparers:

As required by DWQ's Quality Assurance Program Plan for Monitoring Programs (DWQ QAPP), **any monitoring activity** conducted or overseen by DWQ **must** have a SAP, excluding one-time response actions (such as a spill) or compliance sampling. The SAP must be reviewed and revised for each field season/monitoring year. SAPs are approved and kept on file by the Monitoring Section QA Staff and must be distributed to everyone involved with a monitoring project. Use the template and checklist below to help create your SAP. The SAP should contain or reference all the elements in this checklist but need not have the same format. Rather than extensive text, include as much information as possible in the form of tables, which are easier to refer to in the field.

The SAP should be a usable, stand-alone document that can be taken into the field by Monitors. Therefore, if you choose to use an element directly from the DWQ QAPP that needs to be viewable when reading the SAP, copy and paste it into the SAP rather than just referencing the QAPP so that Monitors do not have to read through both documents while in the field. The Monitoring- and Data and Information-Section's QA Staff are available to assist you in preparing your SAP and you may view other DWQ SAP examples on the Monitoring Council Webpage at http://www.waterquality.utah.gov/Monitoring/Council.

Definitions and Acronyms:

DPM - Designated Project Manager. As defined by DEQ's Quality Management Plan (QMP), the DPM is the staff member responsible for a specific project and has immediate managerial or technical control of that project. The DPM is responsible for specifying the quality of the data required for each project and initiating corrective actions when quality control is not being met. The DPM may also be a program manager. The DPM is responsible for designing monitoring strategies, setting project-specific data quality objectives (DQOs), and developing project-specific SAPs. DPMs are responsible for making sure all personnel involved with the project are briefed and/or trained on the procedures to be used. Roles of DPMs are further discussed throughout the DWQ QAPP.

IR - Integrated Report

Introduction and Background Information (This can be brief if it references some previous documentation or the IR or SMP, etc.)

- Site history
- Regulatory framework
- Summary of previous investigations
- Location/characteristics of any known pollution sources at the site or in the area
- Site location map showing area at a broad scale

Objectives and Design of the Investigation (This should be very specific to the project and should be a result of discussions between DPM, data users, stakeholders, science panel, etc.)

- Specific objectives of this study (describe how they support broader program goals/objectives or regulatory framework)
- Provide the study design (i.e. spatial/temporal limits, sample characteristics, the smallest population, area, volume, or time frame for which decisions will be made).
- Discuss representative sampling conditions and instructions for field personnel if they encounter non-representative sampling conditions
- Describe parameters of concern (narrative must conform to list(s) in sections 4 and 6)
- Number, location, and frequency of samples and quality control samples
- Sampling site locations
- Rationale for site selection
- Site map(s) showing sampling locations and -controll sites and any other pertinent features such as land use, etc. within the sampling area

Special Precautions and Safety Plan

- Detailed itemization of any specific safety concerns
- Reference to an applicable safety plan
- Any additional safety training required for project
- Documentation that field personnel comply with your Invasive Species Plan and SOPs to prevent spread of invasive species

Field Sampling Methods and Documentation

- Any special training needed beyond those discussed in DWQ QAPP and where training documentation will be kept
- A table listing each field instrument to be used (equipment, describe operation or indicate where operation manual is kept for field event, include calibration procedures, if any)
- A table listing each sampling method to be used (sampling equipment if needed, cite method in SAP, attach applicable SOPs)
- For any sampling equipment used, describe operation or indicate where operation manual is kept for field event, include decontamination procedures, if any, attach applicable SOPs
- If not found in SOPs, include equipment lists, sampling trip organizing checklists,
- List corrective actions for problems that may occur in the field
- Discuss what field documentation is required, and how field records shall be generated and stored

Laboratory Sample Handling Procedures

- Describe sample containers, preservatives, holding times
- Describe field documentation (COC) and sample labeling procedures
- Describe shipping plan for sample transport to laboratory

Analytical Methods and Laboratory Documentation

- Chemical list parameter, cite preparation method and analytical method, list required sensitivity or detection limits
- Biological cite method or desired taxonomic level and organism target count, etc.
- Required reporting procedures (e.g. hardcopy, electronic deliverables) and turnaround times
- Be sure DWQ has obtained QA documentation for each laboratory used (check with Monitoring Section QA Staff), reference this information and any new/research analytical methods being used (obtain these protocols if available from lab)
- List the required data package contents from the analyzing laboratories [or reference a service contractor Memorandum of Understanding (MOU)]

Project Quality Control Requirements

- Table of QC limits for field instruments (operation range, accuracy, and precision)
- Table listing each Data Quality Indicator (precision, accuracy, bias, etc.), how it will be measured, and the performance criteria against which it will be evaluated (use the table in the DWQ QAPP and adapt it to this project if needed): (1) analytical (internal to lab) QC limits for chemical analyses (acceptable precision, accuracy, and negative control lab method blank, (2) field sample QC limits for chemical analyses [Acceptable precision (field duplicates) and negative control (field or trip blanks)], and (3) QC limits for biological analysis [Acceptable precision (% diff in enumeration, five taxonomic difference)]
- QC limits, schedule, and descriptions of planned field/lab audits/assessments
- Data quality assurance review procedures: (1) describe system of data qualification, (2) describe measure of completeness relative to planned design, and (3) corrective actions for non-conformance

Data Analysis, Record Keeping, and Reporting Requirements

- Data interpretation approach (include means to temper decision-making if limited completeness of design occurs)
- Describe project record-keeping procedures and archive (hardcopies, electronic data)
- Describe how and when DPM wishes to be notified of available laboratory/field results
- Describe expected content and format of final project report and who will receive original/copies.

Schedule and Budget

- Table or figure showing project schedule with key project milestones
- List funding sources for project and include anticipated equipment, consumables, personnel purchases/costs
- Sample costs/lab resources per fee schedule

Project Team and Responsibilities

- Identify project team responsibilities and personnel
- Identify sampling personnel
- Identify subcontractors (e.g., chemical and biological labs)

References (Include references to DWQ-prepared documents)

Appendices and Attachments (Include SOPs, Chain of Custody Forms, Field Forms, Sample Labels, etc.)

Example Field Observation Form for Grab Samples

Version 2.0 Monitoring Location ID: Monitoring Location Name:	UTAH DEPARTMENT OF ENVIRONMENTAL QUALITY
Monitoring Location Description:	
Sample Date: Sample Time:	
Check the water color desciption that best fits the sampling location: □ Brown/Gray (turbid) □ Black □ Clear □ Stained (tea-look)	= Green = Other (describe)
Indicate the level of coverage of <i>Didymosphenia geminata</i> (didymo) in reach Absent (0%)	(>75%) C Example of didymo. Photo fromhtp://www.wvdnr.gov/fishing/didymo.shtm
Indicate the level of coverage of Filmentous algae in reach □ Absent (0%) □ Sparse (<10%) □ Moderate (10-75%) □ Heavy (>	<-55%) >75%) Solution <- Example of filamentous algae Photo from http://www.dep.wv.gov/WWE/Programs/ /wqs/Pages/FilamentousAlgaeinWestVirginia.aspx
(Lake sampling) Is there blue green algae? □ Y □ N	< Example of blue green algae Photo courtesy of Utah County Health Dept
Is there an Algal Mat? 🗆 Y 🗆 N Fish kill?: 🗆 Y 🗆 N Numl	nber of Fish Observed: Type of Fish:
Does the underside of the rock look black AND have a straong sulfur/ rotten eggs small?	V N Sheen present? V N Odor at the site? V N
Anthropogenic disturbances present at site that may affect sample results?	
If yes to any above, explain here:	
Were any photos take from the site visit? 🗆 Y 🗆 N	
Circle all weather codes that apply 1 Windy 4 Rain (presently 2 Dust 5 Runoff (indicate if you are sampling/ try 3 Rain in the last 24/48 hrs	ying to capture runoff)
Circle all flow codes that apply 1. Standing Water (no flow <u>BUT</u> measurement/ sample taken 2. Measurement/ sample taken from backwater 3. Swift and deep	4 Shallow/trickle 5 Ice Present: evidence of flow beneath surface 6 Ice Present: unsure if flowing beneath surface
Circle all field condition codes that apply 1 Fire (evidence of) 4 Presently Floodir 2 Landslide/Mudslide (evidence of) 5 Livestock (preser	ing/ Water Rising 7 Beaver Dam (sample taken upstream) ent) 8 Beaver Dam (sample taken downstream)
3 Flooding (evidence of) 6 Livestock (not pr	resent but evidence of) 9 Dam (sample taken downstream of resevoir tailrace)
FIELD COMMENTS:	
Other comments/concerns/issues:	

APPLICATION OF SECONDARY REVIEW PROCESS

Data Concern	Secondary Review Process	Data Application
Temporal variation	Insufficient sampling frequency within an	
within a dataset	assessment period of record.	Individual data records.
Bias in sampling design	 (1) Event monitoring (review flow, weather, and spill/response/incident data; narrative criteria; field observations and photographs; satellite imagery; other data types collected in same (and around the) period of concern, etc.), (2) sample time of day (literature review to determine if parameter is impacted by the time of day sample is collected), (3) sampling a specific season (unless approved by DWQ in a SAP or is data-type specific (e.g., E. coli sampling during the recreation season)], and (4) locational bias. 	Individual data records.
Data quality	(1) Quality Assurance Program Plan for Environmental Data Operations, (2) field calibration documentation, (3) laboratory methods, (4) standard operating procedures, (5) demonstration of capability (if applicable to data type), and (6) discussion with sample collector.	Individual data records, and/or, parameter(s) in period of record, and/or monitoring location.
Wrongly monitored	(1) Measured point source (vs. main water body), review imagery of area, flow, etc., (2) waterbody type DWQ does not assess, (3) grab sample vs. composite, (4) flow conditions (too low or not flowing), and (5) field observation that impacts quality of data.	Individual data records and/or monitoring location.
Outlier	(1) Need more than a statistical test. Should be based on scientific or QA basis, (2) QA/QC field sampling blanks, duplicates/replicate, (3) laboratory Analytical Batch QC, (4) value is nonsensical (e.g., cannot be measured with field/laboratory method), and (5) refer to data quality (above).	Individual data records
Magnitude of exceedance	(1) Significant figures and (2) review narrative criteria	Individual data records
QA/QC concerns	(1) Holding time, (2) laboratory comment, (3) dilutions, spikes, and (4) other laboratory QC Performance Checks	Individual data records
Assessment unit grouping/spatial variation	(1) Multiple locations not grouped correctly (either should or should not have been grouped), (2) AUs where water quality criterion exceedances are clearly isolated to a relatively small, hydrologically distinct portion of the larger AU and may need to be re-segmented to more accurately reflect that variation in water quality (please refer to 303(d) Assessment Methods section on —Assessment Unit Re-segmentationII for more information on the process), and (3) a surface water (e.g., a spring or seep) was sampled in the AU and was assessed but additional information indicates that the surface water may not have been flowing or did not connect, contribute, or influence downstream water quality.	Monitoring location.

Data Concern	Secondary Review Process	Data Application
Credible data	 (1) Data type applied incorrectly and (2) data type not considered. (Data type must meet credible and representative data requirements in 303(d) Assessment Methods and if included in the assessment analysis would result in a change in the categorization of the waterbody and parameter. 	Individual data records and/or parameter(s) in period of record, monitoring location.
Other	(1) Parameters wrongly grouped (by CAS, fraction, or methods), (2) data type is laboratory measurement (when the data assessment requires a field measurement), (3) IR QA/QC flagged data, and (4) errors in standards.	Individual data records. Entire parameter assessments.
Conflicting DO assessments between grab and high frequency data	Scenario: Two types of data available at the site(s) (i.e., grab or high frequency data) do not have the same preliminary assessment result. Reviews to consider: (1) sampling period captured, (2) duration of conditions below criterion, (3) frequency of recurrent low DO events, (4) magnitude of exceedance, (5) spatial extent of low DO, and (6) diel flux of DO.	Individual data records. Entire parameter assessments.
Representativeness and Environmental Factors*	Examples of extreme events include the following: (1) accidental spills of toxic chemicals, (2) scouring storm flows that lead to diminished aquatic-life beneficial uses, and (3) extreme drought conditions. Given the scope of these assessments, it is not always possible to identify where such circumstances may be influencing a specific sample, but DWQ will consider any evidence presented that a sample is not representative of ambient conditions. Examples of such a review may include reviewing flow, weather, spill data, narrative criteria, field observations and photographs, satellite imagery, other data types collected in the same (and around the) period of concern, etc	Individual data records
Pollution Indicators	Secondary reviewers will incorporate indicator data into assessment category determinations, relying on multiple lines of evidence including pollution indicator thresholds, the presence or absence of other indicator-associated water quality issues, potential pollutant sources, and other site or watershed specific knowledge to determine whether listing or delisting on a pollution indicator parameter is appropriate or whether to prioritize waterbodies for additional monitoring.	 (1) Pollution indicator evaluations will be posted with the report(s (e.g., exceedance counts and frequencies) so DWQ programs and stakeholders can consider the results when planning for future monitoring, studies, evaluations, etc., (2) pollution Indicator evaluations may be included in a narrative assessment/standard not supporting or supporting assessment decision, (3) pollution indicators may be reported by the IR as a cause of pollution indicators may be reported by the IR as the source of an impairment.

Data Concern Secondary Review Process

Data Application

*Footnote: Where these conditions are present in a dataset, DWQ will run the analysis without the extreme events/data record and will apply and document an appropriate assessment result for the waterbody using the methods outlined below.

Category 1: Supporting: If analyses with and without the extreme events are supporting (Category 1).

Category 2: No evidence of impairment: If analyses with the extreme events are supporting (Category 1), but the analyses without the extreme events show no evidence of impairment (Category 2).

Category 2: No evidence of impairment: If analyses with and without the extreme events do not indicate evidence of impairment (Category 2).

Category 2: No evidence of impairment: If analyses with the extreme events are evidence of impairment (Category 3 with exceedances), but the analyses without the extreme events show no evidence of impairment (Category 2).

Category 2: No evidence of impairment: If analyses with the extreme events are not supporting (Category 5), but the analyses without the extreme events show no evidence of impairment (Category 2).

Category 3: Insufficient Data, Exceedances: If analyses with and without the extreme events show evidence of impairment (Category 3).

Category 3: Insufficient Data, Exceedances: If analyses with the extreme events are not supporting (Category 5), but the analyses without the extreme events are supporting (Category 1).

Category 5: Not supporting: If analyses with the extreme events are evidence of impairment (Category 3), but the analyses without the extreme events are not supporting (Category 5).

Category 5: Not supporting: If analyses with the extreme events are not supporting (Category 5), but the analyses without the extreme events show evidence of impairment (Category 3).

Category 5: Not supporting: If analyses with and without the extreme events are not supporting (Category 5).

SUMMARIZING ASSESSMENTS FROM SITE TO ASSESSMENT UNIT LEVEL

Going from a multiple beneficial uses assessments for a parameter (i.e., a Parameter Summary Report) to One Parameter Category per Monitoring Location ID (MLID)*.

IR Analysis Action: 3: (Insufficient Data with Exceedances)

- 1, 2, or 3 exceedances (with no data rejected for a use). ParamCat: 3 insufficient data with exceedances → ParamEPACat: 3
- 1, 2, or 3 exceedances (with some data rejected for a use). ParamCat: 3 insufficient data with exceedances → ParamEPACat: 3
- 0 exceedances (with no data rejected for a use). ParamCat: 3 insufficient data with no exceedances → ParamEPACat: 3
- 0 exceedances (with some data rejected for a use). ParamCat: 3 insufficient data with no exceedances → ParamEPACat: 3
- All data removed for every use. ParamCat: 3 insufficient data because not assessed → ParamEPACat: 3

IR Analysis Action: Not Assessed

• All data removed for every use. ParamCat: 3 insufficient data because not assessed → ParamEPACat: 3

IR Analysis Action: Not Assessed

• IR Analysis Comment: —Non-Rejected data available for MLID/AU, but data available for individual use assessment was all rejected. I ParamCat: 3 insufficient data because not assessed →ParamEPACat: 3

IR Analysis Action: Not Assessed

• IR Analysis Comment: —No uses assigned to site.∥ ParamCat: 3 insufficient data because not assessed →ParamEPACat: 3

IR Analysis Action: Assessed by Use

- FS Only →ParamEPACat: 1
- FS Only + some data rejected by use →ParamEPACat: 2
- Contains an NS → ParamEPACat: 5
- Only combo: All data was rejected for a use →ParamEPACat: 3, insufficient data because not assessed
- FS Only + exceedances by use + some data rejected by use →ParamCat: 3 insufficient data with exceedances →ParamEPACat: 3
- FS Only + no exceedances by use + some data rejected by use →ParamEPACat: 2
- FS Only + exceedances by use + NO data rejected by use →ParamCat: 3 insufficient data with exceedances →ParamEPACat: 3
- FS Only + no exceedances by use + NO data rejected by use →ParamEPACat: 2
- Exceedances by use + some data rejected by use →3 insufficient data with exceedances →ParamEPACat: 3
- No exceedances by use + some data rejected by use →3 insufficient data with no exceedances →ParamEPACat: 3
- Exceedances by use + NO data rejected by use →3 insufficient data with exceedances →ParamEPACat:
 3

- No exceedances by use (NO exceedances) + NO data rejected by use →3 insufficient data with no exceedances →ParamEPACat: 3
- BOD, TP**, and Nitrate (for non-1C uses) →ParameterCat: MLIDCat =3 Further Investigations →ParamEPACat: 3

*Note: After this rollup, there will be multiple parameter assessment categories for 1 MILD. For example, MLID -XII will have one Iron, one Copper, one Temperature, one Dissolved Oxygen, etc.

Going from many parameter categories within an MLID to one category for the MLID: Take MLID Param Cats and group them by MLID.then assign the MLID category by the following logic:

- **ParameterCat = 5 →MLIDCat = 5 AND MLIDEPACat = 5
- ParameterCat = 3 with exceedances →MLIDCat =3 with exceedances AND MLIDEPACat = 3
- ParameterCat = 1 \rightarrow (Cat1 Matrix Check is a match) \rightarrow MLIDCat = 1 AND MLIDEPACat = 1
- ParameterCat = 1 → (Cat1 Matrix Check is a NOT a match) → MLIDCat = 2 AND MLIDEPACat = 2
- ParameterCat = 2 → MLIDCat =2 AND MLIDEPACat = 2
- ParameterCat = 3 further investigations needed →MLIDCat =3 further Investigations Needed AND MLIDCat = 3
- ParameterCat = 3 no exceedances →MLIDCat =3 no exceedance AND MLIDEPACat = 3
- ParameterCat = 3 not assessed →MLIDCat =3 no assessed AND MLIDEPACat = 3

** Should be able to see a concatenation of the uses for a parameter that created a 5 category (needs validation too)

Going from many MLID Categories within an Assessment Unit (AU) to one category for the AU: Take MLID Cats and group them by AUID then assign the AUID category by the following logic:

- **MLIDCat = 5 \rightarrow AUIDCat = 5 AND AUIDEPACat = 5
- AUIDCat = 5 (and TMDL in Place) →AUIDCat = 5 AND AUIDEPACat = 4a
- AUIDCat = 5 (and non-TMDL in Place) →AUIDCat = 5 AND AUIDCat = 4b
- **MLIDCat = 5 → (and TMDL is in place & only parameter assessed for that AUID is being considered) →AUIDCat = 4a AND AUIDEPACat = 4a
- AUIDCat = 5 (and non-TMDL in place) →AUIDCat = 4a AND AUIDEPACat = 4b
- **MLIDCat = 5 \rightarrow (and non-TMDL is in place and only parameter assessed for that AUID is being considered) \rightarrow AUIDCat = 4b AND AUIDCat = 4b
- MLIDCat = 3 with exceedances \rightarrow AUIDCat = 3 with exceedances AND AUIDEPACat = 3
- MLIDCat = 2 →AUIDCat =2 AND AUIDEPACat = 2
- MLIDCat = 1 →AUIDCat =1 AND AUIDEPACat = 1
- MLIDCat = 3 further investigations needed →AUIDCat =3 further investigations needed AND AUIDCat = 3
- MLIDCat = 3 no exceedances →AUIDCat = 3 no exceedances AND AUIDCat = 3
- MLIDCat = 3 not assessed →AUIDCat = 3 not assessed AND AUIDCat = 3

** Should be able to see a concatenation of the uses for a parameter that created a 5 category (needs validation too)

Extra Checks: Biological assessments only assess 3A, 3B, 3C, or 3D beneficial uses. For an AU to be Category 1, all assigned beneficial uses must be assessed. Query AUs with biological assessments in them and confirm that the AU assessment category follows the rollup process described in this document. *One* example is only if a biological assessment is performed for an AU and the AU is Category 1 (should be changed to a Category 2).

4B SUBMISSION POLICIES AND PROCEDURES

Process for Determining Category 4B Classification

An alternative to listing an impaired segment on the state's 303(d) List is an approved Category 4B demonstration plan. A Category 4B demonstration plan, when implemented, must ensure attainment with all applicable water quality standards through agreed-upon pollution-control mechanisms within a reasonable time period. These pollution-control mechanisms can include approved compliance schedules for capital improvements or plans enforceable under other environmental statutes (such as the Comprehensive Environmental Response, Compensation, and Liability Act) and their associated regulations. A Category 4B demonstration can be used for segments impaired by point sources and/or nonpoint sources. Both DWQ and EPA must accept a Category 4B demonstration plan for the affected segment to be placed in Category 4B. In the event that the Category 4B demonstration plan is not accepted, the segment at issue will be included on the 303(d) List, Category 5.

Generally speaking, the following factors will be considered necessary for Category 4B demonstration plan acceptance: 1) appropriate voluntary, regulatory, or legal authority to implement the proposed control mechanisms (through permits, grants, compliance orders for Utah Pollutant Discharge Elimination System permits, etc.); 2) existing commitments by the proponent(s) to implement the controls; 3) adequate funding; and 4) other relevant factors appropriate to the segment.

The following evidence must be provided as a rationale for a Category 4B demonstration plan:

A Statement of the Problem Causing the Impairment

A description of:

- The pollution controls to be used
- How these pollution controls will achieve attainment with all applicable water quality standards
- Requirements under which those pollution controls will be implemented.

An estimate of the time needed to meet all applicable water quality standards

A schedule for implementation of the necessary pollution controls

A schedule for tracking progress, including a description of milestones

A commitment from the demonstration plan proponent to revise the implementation strategy and pollution controls if progress toward meeting all applicable water quality standards is not shown

Timing for Proposal Submittal and Acceptance by DWQ and EPA

- Category 4B demonstration plans should be submitted to DWQ by *July 1 of even numbered years* in order for DWQ to submit the plan to EPA by *September 1 of even numbered years*. Parties are encouraged to work with DWQ before this date as states are the entity required to submit these plans to EPA.
- Acceptance from EPA must be obtained by *October 31 of even numbered years*; otherwise, DWQ will *continue* to propose that the segment in question is included on the *current cycle's* 303(d) List.
- If EPA and DWQ accept the Category 4B plan, DWQ will notify the Utah Water Quality Board and the public through proposed statement of basis and purpose language in its proposal that a Category 4B demonstration plan is accepted and is appropriate for this segment.

EPA has several documents that contain additional information on Category 4B demonstration requirements, including "2006 Integrated Report Guidance" and "Information Concerning 2008 Clean Water Act Sections 303(d), 305(b), and 314 Integrated Reporting and Listing Decisions."

GUIDELINES

Does the AU/AU-parameter combination warrant further investigation? (See 303(d) Assessment Methods for more details.)

What was the AU originally impaired for?

What IR assessment cycle was the AU and parameter first listed?

- What datasets were used for that listing (e.g., the agency/sample collector)?
- What was the period of record? (If unknown, use the longer period of record.)
- What MLIDs are in the AU?

For impairments listed in the previous assessment cycle, compile the data. (Query data for all MLIDs in the AU. Ignore waterbody types.)

• What MLID has > = 1 exceedances?

• For MLIDs with impairments/exceedances and not assessed in the current IR cycle: why did DWQ (or someone else) not resample? (Provide documentation as to why resampling was not done and why (by not re-sampling) the site should meet water quality standards. Please refer to the good cause descriptions in the 303(d) methods. Check for good cause. If it is a reason other than good cause, the documentation will need to be EPA-approved).

• Where all MLIDs with exceedances are assessed in the current IR cycle: (1) For MLIDs with impairments/exceedances and the current parameter assessment for the MLID is not 1, 2, or 3 no exceedances -> no delisting or (2) is the current parameter Category 1, 2, or 3 no exceedances? Was there a secondary review applied to this parameter (e.g., an assessment category overwrite for the whole?). If so:

- a. Parameter? If the secondary review created a Category 1, 2, or 3 no exceedances, the secondary review justification will need to be EPA-approved if it is considered to be a delisting. Check for good cause.
- b. MLID? If the secondary review created a Category 1, 2, or 3 no exceedances, the secondary review justification will need to be EPA-approved if it is considered to be a delisting. Check for good cause.
- c. AU? If the secondary review created a Category 1, 2, or 3 no exceedances, the secondary review justification will need to be EPA-approved if it is considered to be a delisting. Check for good cause.
- (3) Is the current parameter Category 1, 2, or 3 no exceedances? (No secondary review applied to this parameter) → Check for good cause.)

Note: Need to confirm that if no new data are collected, the new assessment analysis is not a Category 1,2, or 3 no exceedances because the exceedances are out of the period of record for assessment analysis (i.e., not a delisting).

Double check before delisting:

- If the current Parameter Category 1, 2, or 3 no exceedances what is the oldest date in that period of record for that MLID/Parameter combo in the current Assessment cycle?
- For every MLID in the AU (ignore waterbody types), compile all data for that parameter between the max date from the cycle the parameter was first listed and the oldest date in that period of record for that MLID/Parameter combo in the current assessment cycle.

• What MLID has > = 1 exceedances

• For MLIDs with impairments/exceedances and not assessed in the current IR cycle: why did DWQ (or someone else) not resample? (Provide documentation as to why resampling was not done and why (by not re-sampling) the site should meet water quality standards. Please refer to the good cause descriptions in the 303(d) methods. If it is a reason other than good cause, the documentation will need to be EPA-approved.) Check for good cause.

• Where all MLIDs with exceedances are assessed in the current IR cycle: (1) for MLIDs with impairments/exceedances and the current parameter assessment for the MLID is not 1, 2, or 3 no exceedances -> no delisting or (2) is the current parameter Category 1, 2, or 3 no exceedances. Was there a secondary review applied to this parameter (e.g., an assessment category overwrite for the whole?) If so:

- d. Parameter? If the secondary review created a Category 1, 2, or 3 no exceedances, the secondary review justification will need to be EPA-approved if it is considered to be a delisting. Check for good cause.
- e. MLID? If the secondary review created a Category 1, 2, or 3 no exceedances, the secondary review justification will need to be EPA-approved if it is considered to be a delisting. Check for good cause.
- f. AU? If the secondary review created a Category 1, 2, or 3 no exceedances, the secondary review justification will need to be EPA-approved if it is considered to be a delisting. Check for good cause.
- (3) Is the current parameter Category 1, 2, or 3 no exceedances? (No secondary review applied to this parameter) →Check for good cause

Note: Need to confirm that if no new data are collected, the new assessment analysis is not a Category 1,2, or 3 no exceedances because the exceedances are out of the period of record for assessment analysis.

EFA DELISTING CODES	
Delisting Reason Code	Comment
TMDL Approved or established by EPA (4A)	Not meeting water quality standards (WQS) but removed from 303(d) List
Other pollution control requirements (4B)	Not meeting water quality standards (WQS) but removed from 303(d) List
Not caused by a pollutant (4C)	Not meeting water quality standards (WQS) but removed from 303(d) List
Data and/or information lacking to determine WQ status; original basis for listing was incorrect	Delisting
WQS no longer applicable	Delisting
Listed water not in state's jurisdiction	Delisting
Water determined to not be a water of the state	Delisting
Applicable WQS attained according to new assessment method	WQS Attainment
Applicable WQS attained due to change in WQS	WQS Attainment
Applicable WQS attained due to restoration activities	WQS Attainment
Applicable WQS attained; original basis for listing was incorrect	WQS Attainment
Applicable WQS attained; reason for recovery unspecified	WQS Attainment
Applicable WQS attained; threatened water no longer threatened	WQS Attainment
Applicable WQS attained based on new data	WQS Attainment
Refinement of terminology of listing cause	Refinement

EPA DELISTING CODES

TMDL PRIORITIZATION PROCESS

The Clean Water Act (CWA) requires total maximum daily loads (TMDLs) be developed for all impaired waterbodies on the 303(d) List. Recognizing the many limitations in data, time, and staff resources to accomplish this, the CWA also requires states to prioritize where they will dedicate resources toward TMDL development. Defining an impaired waterbody as high priority does not necessarily mean that a TMDL will be developed before lower priority segments. For some high-priority TMDLs, the development may take considerably longer due to data collection, stakeholder involvement, and other factors.

As described in the <u>Division of Water Quality's (DWQ) 303(d) vision document</u>, DWQ prioritizes impairments to human and ecological health. These priorities translate into the protection and restoration of waters designated for culinary, recreational, and aquatic wildlife uses. Considerations for TMDL prioritization in Utah also include the level of partner agency and stakeholder involvement and potential for restoration as defined by the Recovery Potential Screening tool. Other factors considered in setting TMDL priorities include programmatic needs such as permitting and addressing watershed-wide water quality issues.

DWQ'S RESPONSE TO COMMENTS AND PUBLIC COMMENTS RECEIVED: 303(D) ASSESSMENT METHODS

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's R
Dan	Potts	DPotts_121 02018.pdf	1		Because "beneficial use" data may not be parametric in nature, non- parametric data (e.g. excellent, good, average, bad, extremely bad should also qualify as legitimate measures, even though they may not be necessarily numeric.	None.	DWQ eva of informa other asp in tables 3 types of ir process d Specific A "Seconda assessme
Dan	Potts	DPotts_121 02018.pdf	2		Evaluation of HAB-produced off-flavor in fish (=poor taste, texture and odor), most commonly the result of cyano-produced geosmyn should be considered in ANY evaluation of "beneficial use" by the public, especially anglers who might be consuming those fish. The decades old channel catfish industry has used techniques to evaluate whether they can/should harvest commercially raised fish for the market from which water quality can (and should) utilize to help evaluate beneficial use (food fish) for the waters of Utah. Just because other states and the Fed have not yet successfully moved in this direction is no reason that Utah could not be the first to utilize an approach to truly assess beneficial use in this mostly non-parametric assessment way. If anglers simply cannot, or will not consume the fish they catch because of a problem of off-flavor then that water certainly cannot be deemed beneficial.	None.	Thank you aquatic or informatic for consid review pro for Data. I to this typ
Dan	Potts	DPotts_121 02018.pdf	5		Parametric "numerical" data are not likely to pick up this off-flavor compound regardless of DWQ's various assessment methods to evaluate HABs! Utah Lake provides an excellent example of this condition, where recurring HABs may be occurring in isolated areas protected from the wind (e.g. marinas and shallow protected areas of Provo Bay), however, fish lake wide continue to NOT suffer from any cyano-causing off-flavors that compromise their beneficial use as both sport and food fish! Let's get ahead of the crowd.	None.	Although aspects o other non process, p and availa methods o in the ass starting or methods s

esponse

aluates qualitative data and other non-numeric types ation in the assessment process, provided they meet bects of data credibility and availability, as identified 3, 5-9, and 10 of the assessment methods. These nformation are included in the assessment review described in table 3 and the "Aggregation of Site-Assessments to Assessment Unit Categories", ary Review", and "Appendix 3" sections of the ent methods.

bu for your suggestion. Objectionable tastes in edible organisms is a part of Utah's Narrative Standard and on regarding objectionable tastes may be submitted deration by DWQ under the assessment secondary rocess (page 80) during the Integrated Report Call DWQ may consider the addition of methods specific be of assessment in the future.

DWQ's current HAB methods do not include of fish taste, DWQ does consider qualitative data and n-numeric types of information in the assessment provided they meet other aspects of data credibility ability, as identified in Table 10 of the assessment document. These types of information are included sessment secondary review process described on page 80. DWQ may consider the addition of specific to this type of assessment in the future.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's R
David	Richards	DRichards_ 12042018.p df	6	35	NARRATIVE STANDARDS: BIOLOGICAL ASSESSMENTS. Page 46. Comment: Based on the following paragraphs in the draft, I am not sure why macroinvertebrate O/E assessments are considered narrative. O/E is one number similar to a temperature or DO value. Perhaps O/E should be considered numerical criteria not narrative.	None.	DWQ is a biological methods to produce of account for environme capture th are not ap that is use
David	Richards	DRichards_ 12152018_v 1.pdf	7	36	Page 46. Last sentence. Comment: I would change wording to read DWQ uses an empirically based model' not empirical model'.	Clarified Methods text.	Thank you the comm
David	Richards	DRichards_ 12152018_v 1.pdf	8	37	Page 47. Last sentence, first paragraph. Comment: Most importantly, macroinvertebrates are the designated beneficial use, "aquatic life in the food chain" and consequently need to be explicitly protected. Macroinvertebrates are secondarily a useful measure of conditions.	None.	Thank you why DWC directly m such as c

authorized by R317-2-7.3.c. to use quantitative al assessment methods which are -documented is that have been subject to technical review and consistent, objective and repeatable results that for methodological uncertainty and natural mental variability. IN arrative criteria are intended to threats to designated uses for which numeric criteria applicable. O/E in this context is a numeric translator sed to assess narrative criteria objectives.

ou for this comment. The text was edited to reflect nenter's suggestion.

bu for the comment. This is one important reason Q chose to create an assessment method that neasures aquatic life rather than an indirect measure chemical criteria.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's R
David	Richards	DRichards_ 12152018_v 1.pdf	9	38	Biological integrity is not a measurable attribute but an abstract idea (latent variable), similar to -human healthII. Bioassessments do not quantify integrity, they are only an indicator.	None.	DWQ agre assessme aspect of integrity b impossible assessme negate the sites when score is an inferring th objectives O/E may r the fact th fact that p ignored.
David	Richards	DRichards_ 12152018_v 1.pdf	10	39	 Page 47. 4th sentence, second paragraphabsence of human-caused disturbance'. Comment: Obviously, there are no waterbodies in UT that are absent of human-caused disturbance. Suggest rewording to read, _least impaired sites that could be limited or affected by the types of impairment not being evaluated or compared with'. 	Clarified Methods text.	Thank you locations i disturband the goal o text and m reference
David	Richards	DRichards_ 12152018_v 1.pdf	11	40	Page 47. 4th sentence, third paragraph Comment: There apparently are no direct, real world, reference site(s) to compare with the Jordan River, Green River, Colorado Rivers, or Utah Lake (and others). Only generalized, regionwide, summary, and averaged hypothetical reference sites. This absence of benchmarks makes O/E models highly questionable. For example, the Jordan River's source is Utah Lake, a shallow remnant of Lake Bonneville, and its terminus is the Great Salt Lake. Historically the Jordan River had wide, meandering or sometimes braided channels that migrated across its valley. These conditions make the Jordan River a truly unique river and I assume there is no real-world reference river in the state, only reference conditions based on averaged watershed values.	None.	Each streat commente to estimat a given sti reference assessed E is more everywhet more of a regional ra incorporat west rathe addition, I assessed fail this tes Jordan Rit this mode

ees with the commenter that O/E (or any biological ent) is not biological integrity, but it is an important it. Indicators are needed to measure biological because all aspects of this conceptual construct are e to quantify completely, particularly for statewide ents conducted biannually. This does not, however, e utility of these indicators to accurately identify re biological degradation has occurred. A low O/E an indication biological degradation has occurred, the stream is not meeting its biological integrity s, and needs to be further evaluated and restored. not measure all aspects of biological integrity, but nat the measure is incomplete does not negate the problems revealed through this metric should be

u for this comment. DWQ agrees that there are no in Utah that are absent of human-caused ce. The phrase was used conceptually to describe of the model. DWQ removed this phrase from the nade changes to the section to better describe sites..

am and river segment is unique; not just those the er identifies. RIVPACS uses real reference site data te the most probable set of taxa that would occur at ream. In this sense, the model is heavily weighting sites that are physically/chemically similar to the site when estimating the taxa that should occur (E). than a general, hypothetical community that applies re (unless a null model is used). Larger rivers offer challenge to assess because they are more ather than isolated to a state. DWQ's model tes reference river locations from the intermountain er than being limited to Utah-based locations. In DWQ runs a chi-square test to ensure that each site fits within the bounds of the model. Sites that st are not used in the assessment. For example, the iver sites passed that test and were appropriate for and assessment.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's R
David	Richards	DRichards_ 12152018_v 1.pdf	13	42	The Green River downstream of Flaming Gorge Reservoir should not be considered a reference site if UDWQ has chosen to do so. The Green River is a highly regulated river and does not resemble its condition prior to construction of the dam.	None.	Larger rive they are n are also fe complicate incorporat west rathe tackle the undamme reference instance n miles dow in this sen dams cau collection,
David	Richards	DRichards_ 12152018_v 1.pdf	14	43	Of course, the Colorado River does not have any other river(s) to compare with in Utah and no hypothetical reference rivers and -Ell scores should be used on such a national treasure.	None.	Each strea Colorado locations f the range assess Co

vers offer more of a challenge to assess because more regional rather than isolated to a state. There ewer large river reference sites, which further es model predictions. Therefore, DWQ's model tes reference river locations from the intermountain er than being limited to Utah-based locations to ese challenges. There are only a handful of ed rivers in the intermountain west, but when sites on dammed rivers are used, such as this mentioned by the commenter, they are hundreds of Instream on well-regulated rivers. Again, -reference se, means least-impacted. It is well known that ise impacts to aquatic life and DWQ avoids sample even for test sites, immediately below dams. eam and river segment is unique; not just the River. DWQ's model incorporates reference river from across the intermountain west and captures of watershed predicator variables sufficient to olorado River samples collected thus far.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
David	Richards	DRichards_ 12042018.p df	15	44	River Invertebrate Prediction and Classification System Models Entire section. Comment: There is no reason to justify using a single measure to describe highly complex biological integrity and report as one numeric index just to summarize into a single, easily interpretable number. Biological integrity/beneficial use is one of the main reasons DWQ conducts biological assessments, determines criteria, and sets regulations. UDWQ is mandated to protect beneficial uses, including aquatic life. To simplify biological integrity into one number just because it is easily interpretable (by who? DWQ trained biologists? Citizens of UT?) is a disservice to citizens of UT and is not the best protection criterion of our waterbodies. I do not know of any other state, federal, tribal, or county agency that relies solely on one biological assessment metric. Utah DWQ is the only one that does this, as far as I know.	None.	O/E is mor composition believes it Ecological need not tr life use sup has been i important a on tolerand either. Mos correlated signals (e. 2010). Mos for assess one summ may be im of an ecolo otherwise full evaluat everywher assessmen identified, i changes th biological a degradation has identifi scientifical bioassess rationale for more preci- than other Hawkins e similar deta and princip impairmen

esponse

re than richness. It is sensitive to shifts in on. Based on substantial stakeholder input, DWQ is important that indices be easily interpretable. interactions can be complex, but assessment tools ry to expose all of the complexity. From an aquatic pport context, DWQ assesses whether aquatic life impaired. O/E is not biological integrity but an aspect of it. Other measures such as indices based ces are not measures of overall biotic integrity st invertebrate-based indices are strongly with one another, so they tend to capture the same g., please review: Hawkins 2006 and Hawkins et al. st importantly, when multi-metric indices are used ment purposes they are generally collapsed into nary metric to simplify impairment determinations. It portant to point out that O/E, MMI, etc., are indices ogical endpoint (biological integrity) that is very difficult to measure in full. To conduct detailed, tions of ecological structure and function e is unrealistic for a biannual, state-wide nt process. However, once degraded waters are it is possible to more thoroughly investigate those hat have occurred to better understand alteration to assemblages and likely stressors contributing to the on. DWQ, in collaboration with many local entities, ied the RIVPACS O/E index approach as the most lly defensible method for performing ments for assessment purposes for Utah. The or this decision is that RIVPACS models tend to be ise and often more responsive to known stressors indices (e.g., please review Hawkins 2006, et al 2010). Many states and countries have made a ermination with respect to assessment decisions pally use additional metrics for further exploration of nts identified by O/E.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Davio	KICHAROS	12042018.p df		40	Inite eight-page section rever invertebrate Prediction and Classification System Models6- in the draft appears to be written primarily to justify the use of RIVPACS models by UDWQ. The draft states that Recently, many western states have adopted the RIVPACS model such as Colorado, Montana, and Wyoming. These States indeed use O/E models but the O/E metric is just one of many in a multimetric assessment program (see Table 1). To claim that these states also use O/E models leads the public to believe that UDWQ's use of O/E as a stand-alone metric is valid, which it is not. Table 1. Some metrics used by other states Bioassessment metrics used by other states Bioassessment metrics used by Montana (MDEQ 2016) Ephemeroptera taxa Plecoptera taxa Plecoptera taxa % Perdator Burrower taxa % Hilsenhoff Biotic Index % EPT excluding Hydropsychidae and Baetidae % Chironomidae % Crustacea and Mollusca Shredder Taxa % Tanypodinae % Orthocaldinae of Chironomidae Predator EPT taxa % Tanypodinae % Orthocaldinae of Chironomidae Predator taxa % Filterers and Collectors O/E Bioassessment metrics used by Wyoming (Hargett 2011) Richness and Diversity Metrics % Chironomidae Taxa of Total Taxa % Ephemeroptera Taxa (ess Arctopsychidae and Hydropychidae) No. EPT Taxa (less Arctopsychidae and Hydropychidae) No. EPT Taxa (less Baetidae and Tricorythodes) Shannon Diversity (E) Composition Metrics % Eph (less Arctopsychidae and Tricorythodes) % EPT (less Arctopsychidae and Tricorythodes) % EPT (less Arctopsychidae and Tricorythodes) % EPT (less Baetidae and Tricorythodes) % EPT (less Baetidae and Tricorythodes) % EPT (less Baetidae and Tricorythodes) % EPT (less Arctopsychidae and Tricorythodes) % EPT (less Arctopsychi		other indical 2010). Fidentifies, I but that prospecifically full suite of

esponse

fication is that RIVPACS models tend to be more and often more responsive to known stressors than ices (e.g., please review Hawkins 2006, Hawkins et Further, only one of the states the commenter , Montana, uses additional metrics in support of O/E, process is used to assess sediment pollution Ily. DWQ's use of O/E is applied more broadly to the of anthropogenic stress.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's R
David	Richards	DRichards_ 12042018.p df	16	45	Ratio of Multivoltine Taxa to Unvoltine Taxa +Semivoltine Taxa Functional Feeding Group/Habitat Metrics % Cilleger % Collector-gatherer % Filterer Taxa of Total Taxa % Scraper % Scraper Taxa of Total Taxa No. Burrower Taxa No. Predator Taxa No. Predator Taxa No. Semivoltine Taxa Bioascessment metrics used by Idaho (IDEQ 2011). % Chironomidae % Collegers % Ephemeroptera % Ephemeroptera and Plecoptera % filterers % EPT % EPT, excl. Hydropsychidae % filterers (adjusted) % Multivoltine % non-insects % Tolerant % tolerant (adjusted) Becks Biotic index Cillinger taxa (adjusted) Becks Biotic index Cillinger taxa PT taxa Bioascessment metrics % EPT % EPT % EPT % EPT % EPT % EPT % EPT % Collinger taxa (adjusted) Becks Biotic index Cillinger taxa Somi-voltine taxa Simpsons index Sprawler taxa Sprawler taxa Sprawler taxa O/E	None.	[see row a

Response

above for response]

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
David	Richards	DRichards_ 12042018.p df	17	46	I don't agree that using a single taxon richness-based metric, RIVPACS O/E would constitute a robust index of biological integrity. It is only one metric that does not address anything other than richness and apparently does not do an adequate job of that (Richards 2016).	None.	O/E is more composition believes it Ecological need not to life use su has been in important either. More correlated same sign Hawkins e an ecologi very difficu evaluation unrealistic
David	Richards	DRichards_ 12042018.p df	18	47	There is also no reason to make a <u>robust IBI</u> easily interpretable. Ecological interactions between dozens of organisms and their responses to human caused impairment are anything but easily interpretable. RIVPACS O/E models themselves are not easily interpretable. The data and algorithms used in these models are extremely difficult to obtain and often not available, thus not transparent. Other metrics used by other agencies, such as taxa richness, functional feeding group, etc. are very transparent and easily calculable.	None.	Ecological need not ti life use su has been i important on tolerand either. Mos correlated same sign Hawkins e an ecologi very difficu evaluation unrealistic
David	Richards	DRichards_ 12042018.p df	19		Arbitrary cut- off points, no statistical justification for choices in Decision Tree (Figure 7) or Use Determination (Table 13). Apparently mostly a best guess.	None.	Thresholds error (whic specific va positive) a dilemma fo more so w the chapte errors are

esponse

re than richness. It is sensitive to shifts in on. Based on substantial stakeholder input, DWQ is important that indices be easily interpretable. interactions can be complex, but assessment tools ry to expose all of the complexity. From an aquatic pport context, DWQ assesses whether aquatic life impaired. O/E is not biological integrity but an aspect of it. Other measures such as indices based ces are not measures of overall biotic integrity st invertebrate-based indices are strongly with one another, so they do tend to capture the als (e.g., please review: Hawkins 2006 and et al. 2010). Further, O/E, MMI, etc., are indices of ical endpoint (biological integrity) that is otherwise ult to measure in full. To conduct detailed, full ns of ecological structure and function everywhere is for a biannual state-wide assessment process. interactions can be complex, but assessment tools ry to expose all of the complexity. From an aquatic pport context, DWQ assesses whether aquatic life impaired. O/E is not biological integrity but an aspect of it. Other measures such as indices based ces are not measures of overall biotic integrity st invertebrate-based indices are strongly with one another, so they do tend to capture the als (e.g., please review: Hawkins 2006 and et al. 2010). Further, O/E, MMI, etc., are indices of ical endpoint (biological integrity) that is otherwise ult to measure in full. To conduct detailed, full s of ecological structure and function everywhere is for a biannual state-wide assessment process. s are derived based on an understanding of model ch is based on actual field measures) and the alues represent an attempt to balance type I (false and type II (false negative) errors. This is a common for any regulatory agency in general and perhaps vith those using biological data. DWQ has stated in er the cost-benefit of ensuring that type I and II appropriately balanced and not arbitrarily set.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
David	Richards	DRichards_ 12042018.p df	20	68	Methods are lacking in the draft to evaluate biological integrity/aquatic beneficial uses. There are no zooplankton, benthic macroinvertebrate, or fish numeric or narrative metrics. Without such metrics, there likely is no possibility of evaluating whether biological beneficial uses are supported or not supported. A program needs to be started by UDWQ to develop robust multimetric biological assessments for lentic waters.	None.	O/E is not DWQ agre tools for a taken preli the use of be a robus useful way More nuar degradatic degraded evaluation unrealistic With respe DWQ has addition, n lakes and of these e expanding participate reservoirs the numbe
David	Richards	DRichards_ 12042018.p df	21	69	In many instances UDWQ refers to cold-water vs. warm-water uses. Temperatures that exceed 200 C do not necessary mean impaired. It is possible that the water body is naturally a warm water fishery and may have been misclassified or that increased temperatures due to climate change have affected temperatures. This is a problem with stream assessments as well (e.g. Jordan River).	None.	As explain BENEFICI current da the IR pro- R317-2, S the data e temperatu more inter investigati be misclas Standards of the IR. I should be (https://de
David	Richards	DRichards_ 12042018.p df	22	70	There is also no reason for UDWQ to infer that a cold-water fishery is superior to a warm water fishery by stating that cold water uses are a higher use than warm water use. For example, UDWQ states their goal is to meet the highest attainable use. We need to get away from the idea that cold-water mountain streams and lakes have some greater innate value than lower elevation warm-water bodies. Global climate change may insure this, eventually.	None.	DWQ does regarding for the IR. may be ma depending use classe higher or I Recomme changes s program (l standards

biological integrity but an important aspect of it. ees that the development of biological assessment dditional assemblages would be useful and has iminary steps to accomplish this task. Nevertheless, O/E, which has been repeatedly demonstrated to st indicator of biological degradation, provides a / to identify whether a site is biologically degraded. nced evaluations of the nature and extent of this on can always be evaluated once biologically sites are identified. To conduct detailed, full s of ecological structure and function everywhere is for a biannual state-wide assessment process. ect to biological assessments of lentic ecosystems, developed a MMI for impounded wetlands. In nany of the metrics used for the assessment of reservoirs are biological indicators of the condition cosystems. Nevertheless, DWQ is open to these approaches as resources permit. DWQ has ed in the national assessment of lakes and and these data could potentially be used to expand er of indicators used to assess lentic ecosystems. ned in UTAH'S NUMERIC CRITERIA AND IAL USES section in the Assessment Methods, ta are compared to current water quality criteria in cess. If the current temperature criterion is 20° C in Standards of Quality for Waters of the State, and exceed 20° C, the water quality is impaired for are. An identified impairment is typically followed by nse monitoring. One potential outcome of these ons is that the beneficial use for a waterbody may ssified which can be corrected by a Water Quality change. Standards changes are beyond the scope Recommendations for use classification changes made to DWQ's water quality standards program q.utah.gov/water-quality/water-quality-standards). s not infer differences in value among aquatic life es. It appears that this is a general comment beneficial use classifications which are out of scope Water quality criteria to protect aquatic life uses ore or less stringent from use class to use class on the sensitivity of organisms occurring in those es to various pollutants, but this does not imply ower intrinsic value of various types of ecosystems. nded beneficial use or water quality standards hould be directed towards DWQ's Standards https://deg.utah.gov/water-quality/water-quality-

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's R
David	Richards	DRichards_ 12042018.p df	23	71	My overall conclusion is that the UDWQ 2018 Draft reflects a concerted effort by UDWQ to manage Utah's waters that are protective of biological integrity (and other uses) and is to be commended.	None.	DWQ app regarding methods.
David	Richards	DRichards_ 12042018.p df	24	72	However, the draft is heavy on numeric -criteria based- measures such as DO and weak on how these metrics actually relate to biological integrity, the real measure of water quality as mandated by the Clean Water Act.	None.	The Clear eliminate and maint the Natior section 10 involves r numeric c criteria we evaluatior biological infer supp assessme integrity o biological measured regulatory important
David	Richards	DRichards_ 12042018.p df	25	73	Finally, there seems to be no clear scientific or otherwise causal link between the numeric based metrics and the beneficial uses particularly biological, that UDWQ is evaluating.	None.	The biolog Narrative standard i uses ascr an aquatic aquatic life but an imp demonstra a wide rar confidenc nuanced i degradatic the degra are identif
David	Richards	DRichards_ 12042018.p df	26	74	A few Recommendations and Suggestions 1. UDWQ needs to provide user-friendly public access to RIVPAC O/E and PRISM models. Transparency (repeatability) is a key component of scientifically validity.	None.	RIVPACS made ava underlying instruction provided t data are n been inde very large disciplines contact D manager models.

esponse

preciates your encouragement and feedback the Integrated Report and the 303(d) assessment

n Water Act (CWA) aims to prevent, reduce, and pollution in the nation's waters in order to "restore tain the chemical, physical, and biological integrity of n's waters"(emphasis added), as described in CWA 01(a). In practice, the protection of chemical integrity egular assessments to determine whether or not chemical criteria are violated. Some of these numeric ere established to protect aquatic life uses, so an of these criteria provides an indirect evaluation of integrity objectives. Sites that meet these criteria porting aquatic life uses. Similarly, biological ents are intended as another indicator of biological bjectives. As the commenter notes elsewhere, integrity is an abstract idea that cannot be directly or completely, so DWQ and other agencies depend on indicators that quantify components of this CWA objective.

gical assessment process is based on Utah's Water Quality standard. Applicability of the narrative is not wholly dependent on the specific beneficial ribed to an individual waterbody. Nevertheless, from c life use support context, DWQ assesses whether fe has been impaired. O/E is not biological integrity portant aspect of it. Numerous studies have ated that O/E can quantify biological degradation to nge of human-caused stressors, which provides be the metric as a robust measure of condition. More investigations of the nature and extent of the on that has occurred and the stressors that caused idation to occur can be evaluated once impairments fied.

© O/E scores have been, and will continue to be, ailable with publication of the Integrated Report. The g models require additional information and some in to be used properly, so have traditionally been to interested stakeholders upon request. PRISM not proprietary and are freely available. They have ependently tested and validated. They are used by a e community of scientists across a wide range of s and are continually updated and corrected. Please WQ's Standard and Technical Services Section for public access to the RIVPAC O/E and PRISM

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
David	Richards	DRichards_ 12042018.p df	27	75	2. Macroinvertebrates are the corner stone of biological integrity. As such, UDWQ should put much more effort into developing useful macroinvertebrate metrics in a multimetric assessment program that could include an O/E metric.	None.	At this time approach a performing that experi preclude th provide ins degraded s (MMIs) and weaknesse would requ documenta employed assessme

ne, DWQ has identified the RIVPACS O/E index n as the most scientifically defensible method for ng bioassessment for purposes of identifying sites erienced biological degradation. This does not the use of other indicators of biological integrity or to nsights into the nature and extent of any biologically d sites that are identified. Both multiple metric indices nd O/E indices have potential strengths and ses. Alternative biological assessment methods quire the same level of technical review and ntation that has been completed for the currently d RIVPACS approach if they are to be used for ent purposes.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
David	Richards	DRichards_ 12042018.p df	28	76	 There is a need to include references or links in the draft to UDWQ field macroinvertebrate sampling protocols or add one or two sentences in the draft that include methods used such as riffle/run habitats, 8 composite samples, 600 organism subsample including large and rare, taxonomic resolution used, etc. Literature Cited and Suggested Readings Hargett, E. G. 2011. The Wyoming stream integrity index (WSII) multimetric indices for assessment of wadeable streams and large rivers in Wyoming. Wyoming Department of Environmental Quality. Cheyenne, WY. Idaho Department of Environmental Quality. 2011. Biological assessment frameworks and index development for rivers and streams in Idaho. IDEQ. Boise, Idaho. Jessup, B. Recalibration of the macroinvertebrate multi-metric index for Colorado. Colorado Department of Public Health and Environment. Water Quality Control Division. Denver, CO. Jones, J. and J. Woods 2007 to 2010. A statewide assessment of Arizona's streams. Arizona Department of Environmental Quality. Leitao, R. P. et al. 2016. Rare species contribute disproportionately to the functional structure of species assemblages. Proceedings of the Royal Society B: Biological Sciences. Vol. 283. Issue 1828. Montana Department of Environmental Quality. 2008. An assessment of the ecological conditions of the streams and rivers of Montana using environmental monitoring and assessment program (EMAP) method. Montana Department of Environmental Quality. Helena MT. New Mexico Environmental Department. 2006. Benthic macroinvertebrate stream condition indices for New Mexico and ecological assessment. Hydrobiologia. Vol. 515 1:347-363. Pirm, S. L. et al. 2014. The biodiversity of species and their rates of extinction, distribution, and protection. Science. Vol. 344. Issue 6187. Review. Richards, D. C. 2016. Real and Perceived Macroinvertebrate Assemblage Variability in the Jordan River,	None.	The online collection s all IR relev on page 30 Also, than were helpf assessment

e location of the benthic macroinvertebrate Standard Operating Procedure (SOP), along with evant SOPs, is identified In the Data Quality section 30 in the IR methods.

nk you for providing the literature references. These oful when reviewing your comments on the ent methods.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's R
David	Richards	DRichards_ 12042018.p df	28	76	 Richards, D. C. 2016. Does Phylogeny Predict Sensitivity to Ammonia in Freshwater Animals using USEPA Ammonia Criteria Data? Submitted to the Wasatch Front Water Quality Council. Salt Lake City, UT. Oreohelix Consulting, Vineyard, UT. Richards, D. C. 2016. Is Reliance on a Single Bioassessment Metric for Assessing Water Quality in Utah's Rivers and Streams Prudent? Draft Technical Report to Wasatch Front Water Quality Council. Salt Lake City, UT. Oreohelix Consulting, Vineyard, UT. Stout III, Ben M. "River Continuum Concept as an Analytical Template for Assessing Watershed Health" Wheeling Jesuit University. 2003. Thorp J.H., Delong M.D.: The Riverine Productivity Model: An Heuristic View of Carbon Sources and organic processing in large river ecosystems• . In: Oikos 70 (2) :305-308. Blackwell, Oxford 70 .1994. Turak, E. and K. Koop. 2003. Use of rare macroinvertebrate taxa and multiple- year data to detect low-level impacts in rivers. Aquatic ecosystem health and management. 167-175. UDWQ et al. 2017. Utah and Colorado Water Survey for Mussels and Snails. Final Report. Original Draft-July 1, 2017. Revised Draft Vannote R.L., G. W. Minshall, K. W. Cummins, Can. J. River Continuum Concept• Fish. Aquatic Science. March 2005. Vannote R.L., G.W. MINSHALL, K.W. Cummins, J.R. Sedell, C.E. Cushing: The River Continuum Concept• . Canadian Journal of Fisheries and Aquatic Sciences. 37.1980,1 Ottawa, 130-137. Ward J.V., J.A. Stanford: The Serial Discontinuity Concept of River Ecosystems. T.D. Fontaine, S.M. Bartell: Dynamics of Lotic Ecosystems. Science Publications, Ann Arbor Mich 29-42. 1983. 	None.	[see row a
Davio	RICHALOS	12152018_v 1.pdf	50		from Word document but it appears that the formats for headings, literature cited did not transcribe. Therefore, I am also submitting my comments as additional comments in the native Word format. Thanks!	improvemen t on form functionality.	formatting public con form's forr Office of F Specialists formatting properties forms for t

above for response]

opreciates your feedback regarding the form's ing issues and thanks you for using the electronic comment submission form. Your notes regarding the ormatting issues have been communicated to DEQ's Felanning and Public Affairs Web Manager and sts who are looking into whether or not special ing can be accommodated in the form's text box es. These comments are helpful for enhancing our r the next public comment period.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's R
Marian	Rice	MRice_120 72018.pdf	101		This letter transmits comments from Salt Lake City Department of Public Utilities (SLCDPU) in response to the DRAFT 2018/2020 303(d) Assessment Methods. Salt Lake City (City) supports the Utah Division of Water Quality (DWQ) efforts to monitor assess, and protect the surface and ground waters of the state. Thus, we appreciate the opportunity to provide feedback and comment on the DRAFT 2018/2020 303(d) Assessment Methods.	None.	DWQ app regarding methods.
Mark	Allen	MAllen_112 72018.pdf	111		In meetings with DWQ it has been stated that there are not any standards for heavy metals bonded with sediments that flow in high water years, into irrigation systems. There are standards for dissolved heavy metals in the water column, but we all know that the heavy metals that are not dissolved can end up in backyards via the irrigation system and then rain that is acidic can release these heavy metals. American Fork Canyon is particularly prone to this problem. Please create a standard to protect the public health from this known problem.	Out of scope.	Thank you currently b continues heavy me DWQ con to ensure potentially (see https reservoir- DWQ is a ongoing A Assessme 2019.
Mark	Allen	MAllen_112 72018.pdf	112		Please put in place measures to dredge the heavy metals that are still in Tibble Fork Reservoir.	Out of scope.	DWQ app however, DWQ con to ensure potentially (see https reservoir- coordinati Fork Cany Recomme expected
Mark	Allen	MAllen_112 72018.pdf	113		Please put the discharge permit that was promised 2 years ago to the outflows of the Yankee Mine and address the problems with the Globe Mine complex at the headwaters of American Fork River.	Out of scope.	DWQ app however, Please co Discharge informatio quality/uta system/in

preciates your encouragement and feedback the Integrated Report and the 303(d) assessment

u for your comment. Sediment assessments are beyond the scope of the IR, although the Division to investigate potential sediment standards for etal laden waters.

ntinues to work with the Utah Department of Health human health is protected with regards to y contaminated sediment in American Fork Canyon s://deq.utah.gov/destinations/updates-tibble-forksediment-release-august-2016).

Iso coordinating with the EPA to support the American Fork Canyon CERCLA Preliminary ent. Recommendations from PA are expected in

breciates the comment and underlying concern; this comment is not within the scope of the IR. attinues to work with the Utah Department of Health human health is protected with regards to y contaminated sediment in American Fork Canyon s://deq.utah.gov/destinations/updates-tibble-forksediment-release-august-2016). DWQ is also ing with the EPA to support the ongoing American yon CERCLA Preliminary Assessment. endations from Preliminary Assessment are in 2019.

preciates the comment and underlying concern; this comment is not within the scope of the IR. ontact the DWQ Surface Water Utah Pollutant e Elimination System Section Manager for more on at https://deq.utah.gov/legacy/permits/waterah-pollutant-discharge-eliminationidex.htm).

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Ro
Shera	Reems	EPA_Regio n8_1207201 8.pdf	114		EPA recommends that UDEQ include a link to the State's Vision Document.	Clarified Methods table.	DWQ app "Assessme DWQ did i document out of scop Prioritizing https://dec quality/wa developme

esponse

preciates the feedback and added a hyperlink to the ment Category Description" for the 5-alt EPA nent category in Table 1 of the assessment methods. d not include a section in the assessment methods nt on Utah's prioritization of the 303(d) list as this was tope for the IR. For more information on the ng Utah's 303(d) List, please see eq.utah.gov/legacy/programs/watervatersheds/docs/2016/303d-list-for%20tmdlment.pdf
Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Shera	Reems	EPA_Regio n8_1207201 8.pdf	115		The list of required data elements under 305(b) Summary and 303(d) Assessment Results is not consistent with EPA guidance document. EPA recommends deleting the lists and pointing the public to the ATTAINS website.	Revised Methods text.	DWQ appr the "Develo Report and For this rep list for the whether to method do conflict wit (https://ww under-cwa (b)(6), DW the Compo List" section 305(b) Sur At a minim elements f assessment in an EPA- 303(d) Ass At a minim current ass data and in categorica 305(b) and To support provided (a and docum • A descrip information • A rationa was obtain did not me requirement assessment • A rationa
							Information

preciates the comment and suggestion to simplify loping the Components of the Draft Integrated ad 303(d) List" section of the assessment methods. eporting cycle, DWQ decided to keep the bulleted current assessment methods and will review o simplify this section in a future assessment ocument. To ensure the current language does not th the 2018 guidance document

ww.epa.gov/tmdl/integrated-reporting-guidancea-sections-303d-305b-and-314) and 40 CFR 130.7 /Q added the following language to the "Developing onents of the Draft Integrated Report and 303(d) on:

mmary

num, this summary will address the following for current assessments (and previous ents where new data and information did not result -defined categorical change):

sessment Results

num, the following information will be provided for sessments (and previous assessments where new nformation did not result in an EPA-defined al change):

d 303(d) Assessment Data and Information t DWQ's decision to list or not list waters, DWQ will (at a minimum) the following supporting information mentation as referenced in CFR 130.7 (b)(6): ption of (or access to) the data records and in used in the IR's current period of record, al for (and access to) any data and information that ned or submitted to DWQ during the call for data but eet DWQ's readily available or credible data ents and was not used for 305(b) and 303(d) ents, and

al for (and access to) any rejected data records and n

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's R
Shera	Reems	EPA_Regio n8_1207201 8.pdf	116		Table 6. Does UDEQ have validation criteria for high frequency datasets other than dissolved oxygen?	Issue added to the Methods Current Review Topics Tracking Workplan list for future IRs.	For the 20 high frequ based on: the 2016 I response pilot study River to al 2018/2020 DWQ has parameter (and other states that
Shera	Reems	EPA_Regio n8_1207201 8.pdf	117		Table 8. Has UDEQ considered expanding this table for macroinvertebrate data to include the list of requirements to parallel the list of requirements for toxics and other conventional parameters? For example, include in this table the following information: number of organisms counted and level of taxonomic resolution.	Clarified Methods table.	DWQ app credible di assessme submissio Operating the metho QAPP dis- resolution across all ensure co align requ unintentio submitting
Shera	Reems	EPA_Regio n8_1207201 8.pdf	118		Please clarify what is meant by water years?	Clarified Methods text.	DWQ uses (https://wa the water and Septe 2018 wate Septembe Period of
Shera	Reems	EPA_Regio n8_1207201 8.pdf	119		EPA recommends including the actual water quality criteria in the table.	Clarified Methods table.	To reduce between r towards m the divisio using hype source of the most of continued Methods. DWQ add in Table 2

018/2020 IR, DWQ is focusing only on assessing uency data for dissolved oxygen. This decision is : (1) the foundation that was laid out in Chapter 7 of IR, and (2) our commitment made in the 2016 IR to public comment process to scale the Chapter 7 y for assessing high frequency data on the Jordan all assessed waterbodies of the State in the 0 303(d) Assessment Methods and IR. Currently, s not yet developed assessment methods for other ers with high frequency data. DWQ welcomes EPA ers) to provide any studies or examples from other at assess high frequency data.

preciates EPA's suggestions to clarify what the lata requirements are for 305(b) and 303(d) ent purposes. To be consistent with the SOP on requirements communicated in the "Standard procedures Guidelines and Examples" section of ods, DWQ added a QAPP column to Tables 5-8. The scusses subsample organism counts and taxonomic a. Also, we added an essential metadata element data types including macroinvertebrates to further onsistency. DWQ will continue to seek ideas to uirements in the next IR cycle without causing onal and unnecessary burden to organizations g data.

es the same definition as the U.S. Geologic Survey ater.usgs.gov/nwc/explain_data.html) and defines year as the 12-month period between October 1 ember 30 of the following year. As an example, a er year begins on October 1, 2017 and ends on er 30, 2018. This clarification has been added to the Record section of the methods.

e errors and avoid inconsistencies in information multiple documents and files, DWQ is working ninimizing the duplication of data and information in on's files. Beginning with the 2016 IR, DWQ started perlinks to direct readers to the primary document or information to ensure that users were referring to current and accurate information. DWQ has I this practice in the 2018/2020 303(d) Assessment To better assist users of the assessment methods, led hyperlinks to the numeric criteria in UAC R317-2 2 of the 303(d) Assessment Methods .

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's R
Shera	Reems	EPA_Regio n8_1207201 8.pdf	120		Has UDEQ considered assessing the 30-day average with high frequency dissolved oxygen data?	None.	For high f assesses each othe average). high frequ Process s in more de
Shera	Reems	EPA_Regio n8_1207201 8.pdf	121		Does UDEQ have a process to assess turbidity data?	Issue added to the Methods Current Review Topics Tracking Workplan list for future IRs.	Currently, process for turbidity. ⁻ The difficu- with the in- which to e the turbidi certification caused by NTU's. As methods, high frequ- moves for assessment temperature
Shera	Reems	EPA_Regio n8_1207201 8.pdf	122		Figure 2. EPA recommends UDEQ delete this figure. When assessing all designated uses more than just conventional pollutants should be considered.	None.	When eva concentra 305(b) an and repor credible a just the m for a para on how D refer to th "Narrative "Assessme Coli Asse Waters".

frequency dissolved oxygen (DO) data, DWQ three dissolved oxygen criteria independently of er (i.e., the minimum, 7-day average, and 30-day The 30-day average minimum DO assessment for uency data is outlined in Figure 5 of the Assessment section of the assessment methods and is described etail under Figure 4's caption.

DWQ does not have an assessment method or assessing Utah's water quality standard for The criteria is expressed as a change in turbidity. ulty in establishing an assessment methodology lies nability to establish an appropriate baseline from evaluate the change in turbidity. DWQ implements ity standard in Section 401 water quality ons by limiting turbidity increases in receiving waters y activities covered under those permits to 10-15 briefly noted in Table 6 of the assessment DWQ is working towards developing methods for lency data, including temperature and pH. As DWQ rward with the development of high frequency data ent methods and research studies specific to are and pH, DWQ will review turbidity as well. aluating the impacts of measured pollutant ations on environmental and human health for d 303(d) assessment purposes, DWQ assesses ts every beneficial use with numeric criteria that has and readily available data. DWQ does not assess nost environmentally protective criterion and/or use meter and IR waterbody type. For more information WQ assesses non-conventional pollutants, please e following sections in the assessment methods: Standards: Biological Assessments",

nents Specific to Lake, Reservoirs, and Ponds", arameter Assessment for All Waters", "Escherichia assment for All Waters", "Pollution Indicator ents of All Waters", and "Narrative Standards for All

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Shera	Reems	EPA_Regio n8_1207201 8.pdf	123		Data Sufficiency. EPA recommends that UDEQ reconsider greater than or equal to 39 complete days of contiguous data. This approach is a significant data requirement and DO could be assessed against the daily minimum criterion or 7-day average which require less data.	None.	DWQ appr method's ' Oxygen" s requiring ≥ period of r daily minir after revie understan significant submissio assessme contiguous data are n minimum I and remov Sufficiency daily minir accurately complete of day (i.e. 12 measurem be include DWQ also and 4. Inst if at least t calculated
Shera	Reems	EPA_Regio n8_1207201 8.pdf	124		Figure 3. In the box that starts with, calculate the daily, EPA recommends that UDEQ consider specifying that either the 7-day or 30-day averages could be calculated with continuous data.	None.	DWQ appl further cla assessme review DW as is. For assesses another. T reviewers prefers no or assessi

reciates the feedback and concerns regarding the 'High Frequency Assessments for Dissolved ection and Figures 3-5. The original intent of 239 complete days of contiguous data within the ecord was to ensure that the 30-day, 7-day, and num criteria could all be fully assessed. However, w of the publicly submitted comments, DWQ ds how this may have been miscommunicated as a or restrictive data requirement and prevent data ns for further evaluation in 305(b) and 303(d) nts. DWQ agrees with the commenter that 39 s days of high frequency dissolved oxygen (DO) ot needed to fully assess the 7-day average DO criteria. DWQ reviewed the original language /ed the ≥39 day requirement from the "Data y" section. The section now reads, "To ensure that na are captured and that daily averages can be calculated, high frequency data must capture days. DWQ defines a complete day as a calendar 2:00 am – 11:59 pm) in which at least one nent is made in each hour. Incomplete days will not d in the high frequency DO assessment."

b removed the ≥39 day requirements in Figures 3 tead, data are considered sufficient for assessment ten daily minima or 7 or 30 day averages can be l over the period of record.

preciates the comment and suggestion to help arify the high frequency dissolved oxygen (DO) ent process and figure. However, after further VQ decided to keep the Assessment Process figure 305(b) and 303(d) reporting purposes, DWQ each minimum DO criterion independently of one To help communicate that decision clearly to and users of the assessment methods, DWQ of to reference the other high frequency DO criterion sment processes in Figure 3.

Public Commenter First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
		n8_1207201 8.pdf			with fewer days using continuous dissolved oxygen data? See comment submitted for Page 43.		method's " Oxygen" s requiring ≥ period of r daily minin after revier understand significant submissio assessme contiguous data are n minimum I and remov Sufficiency daily minin accurately data must day as a c least one i days will n assessme Instead, d least ten c calculated

reciates the feedback and concerns regarding the "High Frequency Assessments for Dissolved ection and Figures 3-5. The original intent of 239 complete days of contiguous data within the ecord was to ensure that the 30-day, 7-day, and num criteria could all be fully assessed. However, ew of the publicly submitted comments, DWQ ds how this may have been miscommunicated as a or restrictive data requirement and prevent data ns for further evaluation in 305(b) and 303(d) ents. DWQ agrees with the commenter that 39 s days of high frequency dissolved oxygen (DO) ot needed to fully assess the 7-day average DO criteria. DWQ reviewed the original language ved the ≥39 day requirement from the "Data y" section. The section now reads, "To ensure that na are captured and that daily averages can be calculated, high frequency

t capture complete days. DWQ defines a complete calendar day (i.e. 12:00 am – 11:59 pm) in which at measurement is made in each hour. Incomplete not be included in the high frequency DO ent."

ata are considered sufficient for assessment if at laily minima or 7 or 30 day averages can be l over the period of record.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's R
Shera	Reems	EPA_Regio n8_1207201 8.pdf	126		Does UDEQ give additional weight to continuous dissolved oxygen data compared to grab samples?	None.	DWQ reco quality pa actively ex frequency throughou intensive, frequency assesses instantane Multiple D assessme high frequ and follow described Units" and review is a secondary instantane secondary provided o submissio
Shera	Reems	EPA_Regio n8_1207201 8.pdf	127		Does the RIVPACS model apply to larger non-wadeable streams?	None.	Larger rive they are n model inc intermoun locations non-wade chi-square the bound dissimilar squared to conducted
Shera	Reems	EPA_Regio n8_1207201 8.pdf	128		Has UDEQ updated the RIVPACS model since 2002?	None.	DWQ peri number o likelihood different ty recent up
Shera	Reems	EPA_Regio n8_1207201 8.pdf	129		Figure 7. The line from the top left diamond has a Yes going to Beneficial Use Not Supported. Should this line indicate No and point to the diamond that says Do at least 2 O/E samples score <0.69. The line between the top two diamonds should indicate Yes, and the arrow should point to is the average O/E score >.76•.	None.	This figure

ognizes the importance of diurnal variation in water rameters, particularly dissolved oxygen, and is xpanding its capacity to collect and analyze high data with sonde deployments in waterbodies ut the state. However, this effort is resource and it is not currently feasible to deploy high sondes at all monitoring locations. As such, DWQ all available data for this parameter, including eous measures. As discussed in the "Analyzing DO Datasets at a Site" section of the 303(d) ent methods, DWQ assesses instantaneous and lency measurements independently of each other vs the aggregation and secondary review process in "Determinations of Impairment: All Assessment d "Appendix 3". The same level of secondary applied when reviewing delistings. If during the y review, DWQ applies additional weight to eous or high frequency dissolved oxygen data, a y review rationale with supporting documentation is during the draft IR public comment period and on to EPA for final review.

rers offer more of a challenge to assess because more regional rather than isolated to a state. DWQ's corporates reference river locations from the ntain west rather than being limited to Utah-based to ensure that the model is applicable to as many eable streams as possible. In addition, DWQ runs a e test to ensure that each assessed site fits within ds of the model. If a larger river is sufficiently from these larger river reference sites then chitest would fail and assessments would not be d.

iodically updates the model once a sufficient f reference sites have been sampled to increase the that the model can better differentiate between ypes of streams located throughout Utah. The most date occurred in 2012.

e is as intended and correct as applied.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's R
Shera	Reems	EPA_Regio n8_1207201 8.pdf	130		Table 13. Figure 7 and Table 13 do not appear to align. EPA recommends modifying the scenarios in the table to align with Figure 7.The scenario in the third row of the table should read insufficient data.Please clarify the last scenario in this Table.	Clarified Methods table.	Figure 7 a that identi score ≥ 0. confusing
Shera	Reems	EPA_Regio n8_1207201 8.pdf	131		Page 56 indicates that if 10% of the DO measurements are below the criterion, the standard is exceeded. Shouldn't the left column also apply to dissolved oxygen instead of the >50% water column exceedence?	Corrected error.	Thank you been upda
Shera	Reems	EPA_Regio n8_1207201 8.pdf	132		Recommend moving Figure 14 up to follow Figure 8.	None.	Figure 14 follows the processes II assessme assessme of the figu
Shera	Reems	EPA_Regio n8_1207201 8.pdf	133		pH. Is the outlined process the same for both lakes and streams? If so, should these indicators be referenced in the stream section?	None.	The proce separate p conducted Assessme assessme on pages
Shera	Reems	EPA_Regio n8_1207201 8.pdf	134		EPA suggests removing Figures 9 and 10 and simply indicate that pH, temperature, and dissolved oxygen are assessed using profile data.	None.	DWQ belie what profi assessme DWQ will figures in
Shera	Reems	EPA_Regio n8_1207201 8.pdf	135		Streams and Lakes and Reservoirs. * Should this section only reference Lakes and Reservoirs.	None.	DWQ is u The "Asse section do rivers or s
Shera	Reems	EPA_Regio n8_1207201 8.pdf	136		* Assuming the only difference between the assessment process for mixed vs. stratified systems is the approach to dissolved oxygen, EPA suggests revising this section as follows: 1) describe the process for interpreting pH, 2) describe the process for analyzing dissolved oxygen and temperature for mixed lakes, 3) describe the process for analyzing dissolved oxygen and temperature for stratified lakes, 4) discuss Tier 2 analysis.	Clarified Methods text.	DWQ agre comment. recommer confusing stratified a difference non-stratif temperatu The heade

and Table 13 do align correctly. However, the row tified a scenario when < 3 samples with a mean O/E 0.76 as fully supporting is redundant and potentially g, so it was removed.

u for identifying the error in Figure 8. The figure has ated to 10%.

e describes the tier II lakes assessment process and e text and figures that describe the tier I assessment s. As readers may find it confusing to jump to the tier ment process without going through the tier I ent process, DWQ is maintaining the current position ure.

esses for pH assessment for lakes and streams are processes. pH assessments in streams are d following the streams 'Conventional Parameter ents' process described on page 40. Lake pH ents follow the profile assessment process described 54-55.

ieves that these figures provide useful examples of ile data are and how they are used in the ent process and is retaining them for this IR cycle. consider improvements or clarifications to these future cycles.

nclear what section the commenter is referring to. essments Specific to Lakes, Reservoirs, and Ponds" bes not include any methods which are applied to streams.

ees with the order of information suggested in the . The process is generally described in the order nded. However, the section headers are somewhat j. The pH assessment process applies to both and non-stratified profile assessments. The e between the assessment process for stratified and fied profiles is the use of a joint assessment of ure and dissolved oxygen in the stratified profiles. lers were reorganized to clarify the process.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's R
Shera	Reems	EPA_Regio n8_1207201 8.pdf	137		Figure 11. Does this figure refer to at least 3 continuous meters meeting the dissolved oxygen criterion?	Clarified Methods figure.	The text, present?" continuou dissolved figure has clarify the
Shera	Reems	EPA_Regio n8_1207201 8.pdf	138		Figure 11. Recommend explaining the process separately for evaluating dissolved oxygen and temperature data.	None.	Figure 11 dissolved conditions and temp described Lake and
Shera	Reems	EPA_Regio n8_1207201 8.pdf	139		Figure 12 explanation. EPA recommends clarifying this explanation to more clearly communicate that Panel B is not meeting the designated use because of temperature and not dissolved oxygen. Without knowledge of the state's assessment process a reader may not understand as written.	Clarified Methods figure.	Panel B ir although dissolved separately both temp (approxim This has l
Shera	Reems	EPA_Regio n8_1207201 8.pdf	140		Figure 13. Please explain UDEQ's rationale for requiring a two-sample requirement for TDS as a minimum dataset compared to other parameters that require 10 samples?	None.	DWQ's m lakes refle under DW tend to be data requ conventio
Shera	Reems	EPA_Regio n8_1207201 8.pdf	141		Figure 14. Under the first diamond, should the line have a no?	Corrected error.	Yes. The labeled "N
Shera	Reems	EPA_Regio n8_1207201 8.pdf	142		Figure 14. How did UDEQ decide on a TSI > 50 as a decision point?	None.	A TSI of 5 managem potentially recognize general b assessme
Shera	Reems	EPA_Regio n8_1207201 8.pdf	143		EPA recommends removing the TSI-SDD and TSI-TP discussion because UDEQ is not using TSI-SDD or TSI-TP for assessment. This level of detail should be included as an appendix. The location of this information in the document gives the reader the impression that TSI for chl-a, TP and SDD are calculated for the assessment.	Revised Methods text.	DWQ agr phosphor assessme the asses appendix other doc

"Is an adequate habitable zone for aquatic life in Figure 11 refers to the presence of at least 3 is meters in the water column meeting both oxygen and temperature criteria. The text in the s been updated to better correspond to the text and assessment process.

describes the process for jointly assessing oxygen and temperature under stratified lake s. The separate evaluations for dissolved oxygen erature conducted under mixed conditions are I in the preceding section under the headers 'Mixed Reservoirs': 'Temperature' and 'Dissolved Oxygen'.

n Figure 12 is not meeting aquatic life uses because: there are regions in the water column where oxygen and temperature criteria are met y, the region of overlap in the water column where berature and dissolved oxygen criteria nately 8 meters depth) is less than 3 meters thick. been clarified in the figure caption.

inimum data requirements for TDS assessments in ect the frequency of sampling typically conducted VQ's lake monitoring program. Sampling frequencies e higher for stream monitoring, so a higher minimum irement of 10 samples is applied to streams onal assessments.

arrow directly under the first diamond should be No". This label has been added to the figure.

50 is a commonly used benchmark in lake nent to categorize a waterbody as eutrophic and y indicative of cultural eutrophication. DWQ es that trophic states occur on a continuum, but a enchmark is useful for performing tier II ents of lakes.

rees with the commenter. Secchi disk and total rus based TSIs are not currently used in the lake ent methods. This section has been removed from sement methods. Rather than including them in an here, these types of methods will be included in ruments when they are used by other programs.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Ro
Shera	Reems	EPA_Regio n8_1207201 8.pdf	144, 145, 146		Does UDEQ intend to assess the Great Salt Lake using the narrative standard? How will UDEQ consider all readily available data and/or information for the Great Salt Lake? The EPA regulations at 40 C.F.R. §130.7(b)(6) require States to include, as part of their submissions to the EPA, documentation to support decisions for using or excluding data and/or information and decisions to list or not list waters.	None.	The Narra including (available a Lake, in th Standard blooms, a Great Salt whether th develop G process of Assessme Great Salt (https://do technical-s 2019-0005 developed methods f
Shera	Reems	EPA_Regio n8_1207201 8.pdf	147		UDEQ indicates that a single sample is sufficient for assessment; however, at the bottom of the page, UDEQ indicates that 4 samples is the minimum sample size? Please explain.	None.	In the toxic DWQ requ dataset to samples, to not suppor supporting sample loc sufficient of data with of the criterio dataset ex insufficien procedure assessme supporting
Shera	Reems	EPA_Regio n8_1207201 8.pdf	148		Figure 16. Please clarify how Insufficient Data: Exceedances are implemented and whether they result in some waters being a higher priority for additional monitoring?	Out of scope.	DWQ agre following u due to insu- waters we beneficial process for impaired) monitoring identify ca are addres TMDLs, w opportunit monitoring manager. https://dec water-qua

ative Standard applies to all waters of the State, Great Salt Lake, and DWQ will consider all readily and credible data, including data from Great Salt e assessment process. However, current Narrative based assessment methods (e.g. harmful algal nd macroinvertebrate O/E) are not applicable to Lake's beneficial uses. DWQ's goal is to evaluate nese types of methods are applicable to GSL and SL-specific methods in the future. DWQ is in the developing Water Quality Standards and ent Methods for Great Salt Lake as outlined in the Lake Water Quality Strategy Document cuments.deq.utah.gov/water-quality/standardsservices/gsl-website-docs/gsl-wg-strategy/DWQ-535.pdf) Once the standards or methods are fully I, they will be incorporated in the assessment for future Integrated Report cycles.

c parameter assessments section of the methods, uires at least four samples for the sample site's be sufficient in size. If the location has ≥ 4 the site has sufficient data and will be assessed as rting (i.e., ≥ 2 samples exceeds the criterion) or g (i.e., <2 samples exceed the criterion). If a cation has < 4 samples, the site does not have data to assess and will be reported as insufficient exceedances if one of the measurements exceeds on. If none of the measurements in the smaller acceed the criterion, the site will be reported as t data without exceedances. Following this e, while one sample is sufficient to conduct an ent, ≥ 4 samples is required to report either g or non-supporting.

ees with the commenter on the importance of up on assessments that are reported as Category 3 ufficient data and information to determine if the ere supporting or not supporting their designated uses. However, determining the strategy and or following up on Category 3 (or Category 5 waters is outside of the scope of the IR. Follow up due to insufficient data and information or to uses, sources, or develop remediation strategies ssed through individual project plans that focus on atershed plans, BMPs, NPSs, delisting ies, etc. For more information on DWQ's strategies, please contact the Monitoring Section Link to Strategic Monitoring Plan: utah.gov/water-quality/strategic-monitoring-planlity

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Shera	Reems	EPA_Regio n8_1207201 8.pdf	149		UDEQ only included a Data Preparation section for E. coli but not the other parameters discussed. Would this type of information be helpful for other parameters as well or presented more generally?	Issue added to the Methods Current Review Topics Tracking Workplan list for future IRs.	In previous and lake, in preparation redundance created or Convention maintained frequency because the different fre assessme and strear and furthe narrative a
Shera	Reems	EPA_Regio n8_1207201 8.pdf	150		Figure 20. EPA suggests that the left pathway of the flow diagram in Figure 20. conclude with the following decision ovals: Insufficient Data with Exceedances• and Insufficient Data without Exceedances. This allows for an equivalent minimum sample size when determining full support and non-support in Scenario C.	Issue added to the Methods Current Review Topics Tracking Workplan list for future IRs.	DWQ agre 20 (Scena E. coli) sho method do research o DWQ can concerns. will evalua

Is assessment methods, the flowing surface waters reservoir, and ponds sections had separate data on sections resulting in duplicated text. To reduce cy in the 2018/2020 assessment methods, DWQ ne section that discusses the Data Preparation for onal and Toxic Assessments for All Waters. DWQ ad separate data preparation sections for high a dissolved oxygen and E. coli assessments the data collection and sampling frequency is much rom conventional and toxic data collection and ent processes. As DWQ continues to better clarify mline future assessment methods, DWQ will review er define the data preparation steps for applicable and lake specific assessments.

rees with the commenter that the left side of Figure ario C: A seasonal geometric mean assessment of hould be reviewed and edited in a future assessment locument. DWQ is working to conduct analysis and on how to edit the left side of Figure 20, so that h better quantify and address potential E. coli b. During the next internal methods workshop, DWQ ate and strongly consider EPA's suggestion.

ublic ommenter First Iame Shera	Public Commenter : Last Name Reems	Public Comment Document ID EPA_Regio	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed). Table 16. EPA requests details on how UDEQ will assess for Gross	Action Clarified	DWQ's Re
		n8_1207201 8.pdf			aipha and Gross beta.	Methods text.	are evalua criteria in l aquatic life evaluated Table 2.14 should be these leve To capture review the the second gross-alph clear and o the benefi 2. Second assessme of evidenc presence quality issi watershed delisting o whether to As noted i sections o 130.7 (b)(i document as suppor R317-2-14

lass 1C designated use, gross alpha and gross beta ated as a toxicant using comparisons to the numeric UAC R317-2-14, Table 2.14.1. For the Class 3 e designated uses, gross alpha and gross beta are as an indicator in accordance with UAC R317-2-14, 4.2, and footnote 10 that states: "Investigation[s] conducted to develop more information where els are exceeded".

e this footnote in the assessment process, DWQ will e preliminary pollution indicator assessment during dary review process to determine whether or not na, -beta, and other pollution indicators demonstrate convincing evidence of supporting or not supporting cial uses assigned to the waterbody in UAC R317lary reviews will incorporate indicator data into ent category determinations, relying on multiple lines ce including pollution indicator thresholds, the or absence of other indicator-associated water ues, potential pollutant sources, and other site or d specific knowledge to determine whether listing or on a pollution indicator parameter is appropriate or o prioritize waterbodies for additional monitoring.

in in the Secondary Review and Appendix 3 of the assessment methods document and CFR 140 6)(ii) and (iii), DWQ will provide a rationale and ation for any decision to report pollution indicators ting or not supporting the beneficial uses in UAC 4, Tables 2.14.1 and 2.14.2.

capture this process, DWQ removed table 16 from sment methods document and added the pollution evaluation process described above to Appendix 3, n of Secondary Review Process.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Shera	Reems	EPA_Regio n8_1207201 8.pdf	152		Table 16. Total Phosphorus. All categorical assessments for aquatic life uses (Class 3) will be overwritten to Category 3.• Does UDEQ intend to provide delisting rationales for these waters? The EPA regulations at 40 C.F.R. §130.7(b)(6) require States to include, as part of their submissions to the EPA, documentation to support decisions for using or excluding data and/or information and decisions to list or not list waters. Such documentation needs to include, at a minimum, the following information: (1) a description of the methodology used to develop the list; (2) a description of the data and/or information used to identify waters; (3) a rationale for any decision not to use any existing and readily available data and/or information 40 C.F.R. § 130.7(b)(5), and (4) any other reasonable information requested by the Region.	None.	When goo Total Phos documents sections o documents during the any Total I removed fi review and removes fi documents Chapter 3 (https://deu quality/mo 3-river-and
Shera	Reems	EPA_Regio n8_1207201 8.pdf	153		Figure 21. Please clarify the rationale for determining if the bottom diamond arrow is no, the determination is Insufficient Data with Exceedances?	Clarified Methods figure.	As noted in assessme published (https://ww 09/docume ology_calr 3-2 descril of data tha the differe quality issu is to docur situations methods, I of the exan assessme outlined in Figure 21 preliminary directly to

od cause can be demonstrated, DWQ will delist sphorus as P and provide the necessary tation as described in the Delisting and Appendix 6

of the assessment methods document. Any delisting tation and justifications will be available for review e public comment process of the draft IR. To clarify, Phosphorus as P assessments that are delisted or from the 303(d) list will undergo the same level of id documentation as any other parameter DWQ from the 303(d) list. Examples of previous delisting tation are available on the last four pages of 8 of the Final 2016 IR

q.utah.gov/legacy/programs/water-

onitoring-reporting/assessment/docs/2016/chapterd-stream-assessments-final2016ir-v2-1.pdf).

in the figure caption, Figure 21 in DWQ's ent methods is based off of EPA's Consolidated ent and Listing Methods (CALM) guidance that was in 2002

vw.epa.gov/sites/production/files/2015-

ents/consolidated_assessment_and_listing_method m.pdf). In EPA's CALM guidance document, Figure bes a scenario where there are two or more types at do not indicate consistent attainment status, and ences in attainment status are not artifacts of data ues. Under this scenario, EPA's recommendation ment and submit examples to them of where these occur. In Figure 21 of DWQ's assessment DWQ expands on EPA's guidance by notifying EPA mple(s), documenting the conflicting ent(s), and following the secondary review process n DWQ's assessment methods. DWQ will edit to reflect that the next step is to highlight the

an insufficient data category (i.e., Category 3).

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Shera	Reems	EPA_Regio n8_1207201 8.pdf	154		Figure 22. Bottom right box. Please clarify the implications for these subcategories in terms of follow-up actions (e.g., monitoring, future assessments).	Out of scope.	DWQ agre following u because th determine their desig strategy a Category s IR. Follow information remediation project pla NPSs, del follow up r manager. https://dec water-qua
Shera	Reems	EPA_Regio n8_1207201 8.pdf	155		Please elaborate on the types of information that UDEQ considers for a secondary data review.	None.	As part of process, E qualitative Data to Su that is rea some exan considered type of infe documente the public provided in collected u representa with the co several da and transp category a implement assignmen this secon located he quality/mo

ees with the commenter on the importance of up on assessments that are reported as Category 3 there was insufficient data and information to e if the waters were supporting or not supporting gnated beneficial uses. However, determining the and process for following up on Category 3 (or 5 -impaired) waters is outside of the scope of the v up monitoring due to insufficient data and on or to identify causes, sources, or develop on strategies are addressed through individual ans that focus on TMDLs, watershed plans, BMPs, listing opportunities, etc. For more information on monitoring, please contact the Monitoring Section Link to Strategic Monitoring Plan:

q.utah.gov/water-quality/strategic-monitoring-planlity

DWQ's assessment and secondary review DWQ reviews and considers any quantitative and data (as described in greater detail in "Type of ubmit" and Table 10 of the assessment methods) dily available and credible. Appendix 3 provides mples of the kind of information that may be d during the secondary review. An example of the ormation submitted for secondary review, is ed in comment ID #343 from the 2016 IR. During comment process of the 2016 IR a commenter nformation that the data exceeding criteria was under flow conditions that were rare and not ative of normal operating conditions. DWQ agreed ommenter that the data in question did not meet ta concerns as outlined in Appendix 3. For tracking parency to the public, DWQ documented the original assignment, provided a brief justification for ting the secondary review, and the final category nt with the data in question removed. Examples of dary review and others from the 2016 IR are ere: https://deq.utah.gov/legacy/programs/waternitoring-reporting/assessment/docs/2016/dwqto-public-comments-final2016ir-v2-1.pdf

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's R
Shera	Reems	EPA_Regio n8_1207201 8.pdf	156		Does UDEQ complete a secondary review on all assessments?	None.	DWQ per assessme assessme multiple le comment recomme supporting also unde draft repo
Shera	Reems	EPA_Regio n8_1207201 8.pdf	157		Appendix 7 doesn't include information about Vision priorities. Has the UDEQ assessment and listing staff coordinated with the TMDL staff?	Clarified Methods text.	DWQ did document out of sco and add a Appendix of the sec described vision doc https://dea quality/mo for-tmdl-d impairmen paragraph include w
Shera	Reems	EPA_Regio n8_1207201 8.pdf	158		UDEQ should reference here and Appendix 7 the state Vision prioritization document and/or revise the current description to reflect that process & results. See: https://deq.utah.gov/legacy/programs/water- quality/watersheds/docs/2016/303d-list-for%20tmdl-development.pdf	Clarified Methods text.	DWQ did document out of sco and add a Appendix of the sec described vision doc https://de quality/mo for-tmdl-d impairmen paragraph include w

forms a secondary review on all 305(b) and 303(d) ents. However, not supporting and supporting ents that result in a delisting are prioritized for evels of review prior to releasing the report for public

t. Assessments where a secondary review endation is applied and overwrites a preliminary or not supporting site or assessment unit decision ergoes multiple levels of review prior to releasing the ort.

not include a section in the assessment methods t on Utah's prioritization of the 303(d) list as this was ope for the IR. However, DWQ decided to reference a hyperlink to DWQ's 303(d) Vision document in 7 of the assessment methods. The first sentence cond paragraph of the appendix now reads, "As 4 in the Division of Water Quality's (DWQ) 303(d) cument <insert hyperlink to

q.utah.gov/legacy/programs/water-

onitoring-reporting/assessment/docs/2016/303d-listlevelopment-final2016ir.pdf., DWQ prioritizes nts to human and ecological health." The rest of the h discusses additional considerations DWQ may hen prioritizing TMDL development.

not include a section in the assessment methods t on Utah's prioritization of the 303(d) list as this was ope for the IR. However, DWQ decided to reference a hyperlink to DWQ's 303(d) Vision document in 7 of the assessment methods. The first sentence cond paragraph of the appendix now reads, "As 4 in the Division of Water Quality's (DWQ) 303(d) cument <insert hyperlink to

q.utah.gov/legacy/programs/water-

onitoring-reporting/assessment/docs/2016/303d-listlevelopment-final2016ir.pdf., DWQ prioritizes nts to human and ecological health." The rest of the h discusses additional considerations DWQ may hen prioritizing TMDL development.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's R
Theron	Miller	TMiller_122 02018.pdf	166		Page 40, Table 11. Conventional parameters. Numerous recurrence intervals are listed. 30-day averages are used for assessments based on grab samples. 30- and 7-day averages and minimums are used for assessments based on high frequency data, and early life stages are assumed present for the 7-day and minimum high frequency assessments. Some site-specific standards have been generated, which are used for assessment purposes.• Comment: Need to clarify the phrase: Numerous recurrence intervals are listed.	Clarified Methods text.	Thank you removed t specific di averaging assessed
Theron	Miller	TMiller_122 02018.pdf	167		Also, the sentence, 30-day averages are used for assessments based on grab samples is also unclear. It appears that grab samples are used for calculating 30-day averages. Yet, the figures presented describe the instantaneous minimum, 7-day and 30-day criteria, which appear to incorporate the use of high-frequency data. Hence, either the description needs to be re-written or the figures need to be re-drawn. If, however, the use of high-frequency data has been incorporated into the assessment methodology for the 7-day and 30-day dissolved oxygen (DO) criteria, this is a welcome change, which I applaud.	Clarified Methods table.	DWQ app the addition minimum, As noted if Assessme instantane datasets u clarify that used to as 11. The in "DO meas samples a R317-2 ar the "Asses section of collected if against th R317-2 ar Note: for if early life s Some site

u for the comment. To avoid confusion DWQ the sentence in question and now only lists when issolved oxygen minimums, 7-, and 30-day g periods are used based on the DO data type being

preciates the commenter's encouragement regarding on of high frequency dissolved oxygen (DO) , 7-day, and 30-day assessments into the methods. in Table 11 and the Conventional Parameter ents section of the methods, DWQ assesses eous/ DO grab samples and DO high frequency under separate assessment methods. To help at two different sample collection methods will be assess DO, DWQ added assessment notes to Table nformation in the table now reads:

surements collected by instantaneous/ grab are assessed against the 30-day averages in UAC and follow the assessment process in Figure 2 and essments Specific to Lakes, Reservoirs, and Ponds" f the methods. DO measurements that are by high frequency data probes are assessed ne 30- and 7-day averages and minimums in UAC and follow the assessment process in Figures 3-5. high frequency DO assessments, DWQ assumes stages are present for the 7-day and minimum. e-specific standards have been generated, which are assessment purposes."

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Theron	Miller	TMiller_122 02018.pdf	168		 P. 40, Table 11. Some site-specific standards have been generated, which are used for assessment purposes. Comment: The only waterbody with site-specific DO criteria is the Jordan River. The only documentation I can find supporting this determination is from a report submitted to Central Valley Water Reclamation Facility by Bio-West (Hugie 1987), where it was believed (absent any actual data) that DO in the Jordan River influences the DO concentrations in downstream wetlands. This was thought to be a potentially critical issue in the prevention of avian botulism outbreaks. The reasoning for this decision was that Clostridium botulinum is an obligate anaerobic bacterium and producer of the botulinum toxin, whose spores and mature cells reside in anaerobic sediments. Apparently, it was thought that higher DO in the river would help prevent avian botulism outbreaks in the wetlands. Yet, sixteen years of subsequent monitoring in the impounded wetlands of Farmington Bay by monitoring and research staff of both the Wasatch Front Water Quality Council and DWQ, have found NO connection between Jordan River DO and DO in downstream impounded wetlands (Miller et al. 2013, additional unpublished data). In fact, DO in the water column of healthy wetlands typically ranges from near or at 0.0 mg/L in the morning to > 20 mg/L in the afternoon (DWQ DO and pH UAA, GSL wetlands). This is the case regardless of season, hydraulic residence time, or whether source water is the Surplus Canal or the Jordan River/State Canal. The referenced use attainability analysis resulted in DWQ issuing new water quality criteria for the impounded wetlands and removing numerical DO and pH criteria from these waterbodies. Furthermore, after decades of monitoring botulism outbreaks, the only demonstrated relationship between inflows. In turn, these were thought to cause fluctuations in water level in impoundments or flooding of mudflats (Barras and Kadlec 2000, Kadlec, 2002). In a review of dozens botulism outbreaks across	Out of Scope	This comm be directed the potentia to revise the

ment is out of scope for the IR and should instead ed towards DWQ's Standards Coordinator to discuss tial for conducting a Use Attainability Analysis (UAA) the site-specific DO criteria on the Jordan River.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Theron	Miller	TMiller_122 02018.pdf	168		After decades of observations of GSL outbreaks, Kadlec (2002), offers different hypotheses. The historical record of avian botulism at the Bear River Refuge strongly suggests that major out-breaks are more likely in years of high spring and summer rainfall and high flows in the Bear River entering the Refuge (Barras and Kadlec 2000). Thus, hot, dry years, low flows, and deteriorating water quality associated with those conditions appear not to be involved in causing major outbreaks. (emphasis added). Sampling of invertebrates (J. A. Kadlec, unpublished data) does not lend support to the hypothesis that invertebrate mortality is involved in causing outbreaks.• Rather, Kadlec (2002) suggested that the abundant midge and other wetland benthic invertebrates ingest the C. botulinum directly during foraging, followed by ingestion of these invertebrates by the waterfowl or shorebirds; hence there is an element of bioaccumulation. These hypotheses suggest that abundant living invertebrates may be more important, as Dodge (1972) speculated. Certainly, these more recent hypotheses need further investigation. But these multiple lines of evidence make it clear that DO in the Jordan River has nothing to do with avian botulism outbreaks. Therefore, DWQ should perform a use attainability analysis for the purpose of removing the more stringent site-specific DO criterion for the Lower Jordan.	Out of Scope	[see respo
Theron	Miller	TMiller_122 02018.pdf	169		Page 43. Data sufficiency to ensure that daily minima are captured and that daily averages can be accurately calculated, high frequency data must capture complete days. DWQ defines a complete day as a calendar day (i.e. 12:00 am â€- 11:59 pm) in which at least one measurement is made in each hour. For 303(d) assessment purposes DWQ considers a high frequency dataset of sufficient size for assessment when there are ≥39 complete days of contiguous data within the period of record. This ensures measurements are adequately spaced and representative of DO concentrations over the course of a day and that the 30-day, 7-day, and daily minimum criteria can all be fully assessed. If both of these conditions are not met, the data will be flagged as insufficient in size and not included in the current IR cycle.• Comment: This intensive sampling routine appears obviously focused on the Jordan River DO problem. No other stream in Utah receives such attention.	None.	DWQ insta waters, an objectives waterbodie include: Jo Scofield R assessme rivers and data colleo (https://nrt who subm

onse above]

talls high frequency probes on many of Utah's and the length of deployments can vary based on the s of sampling analysis plans. Examples of lies with longer high frequency probe deployments Jordan River, Jordanelle Reservoir, Utah Lake, and Reservoir. For this IR, DWQ's high frequency data ent is limited to assessing Dissolved Oxygen in d streams. DWQ also leverages high frequency ected by U.S. Geologic Survey rtwq.usgs.gov/ut) and other agencies and groups mit data during the Integrated Report's Call for Data.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Theron	Miller	TMiller_122 02018.pdf	170		While it is necessary to measure an appropriate number of days to assess the 7-day and 30-day criteria, there is no inherent mathematical or EPA requirement to measure 39 contiguous days to determine whether DO violates the minimum DO standard.	Revised Methods text.	DWQ appr method's " Oxygen" s requiring ≥ period of r daily minin after review understand requireme DWQ agre high frequ fully asses reviewed t requireme now reads that daily a frequency complete o which at le DWQ also and 4. Ins if at least 1 calculated
Theron	Miller	TMiller_122 02018.pdf	171		Rather, it is likely that such contiguous recordings will only capture a single high-flow runoff event and if there are 39 contiguous days of data, only 4 days of values below the 1-day minimal are necessary to claim impairment. This hardly assures that measurements are adequately spaced.• The high-frequency data recording sondes have revealed that the great majority of low DO events are associated with high-flow storm events. In each of these events, the DO drops precipitously, as the methane and hydrogen sulfide-rich anaerobic sediments are mobilized. This is followed by a 2- to 4-day recovery where morning DO concentrations may drop below the minimum DO standard. The DO minimum standard could therefore be violated in 10 percent of measurements during a single high-flow event, which is contrary to the goal of being adequately spaced •	Clarified Methods text.	The phras spacing of of any give exceedand are not co accurate o day. This I

reciates the feedback and concerns regarding the "High Frequency Assessments for Dissolved section and figures 3-5. The original intent of ≥39 complete days of contiguous data within the record was to ensure that the 30-day, 7-day, and mum criteria could all be fully assessed. However, ew of the publicly submitted comments, DWQ nds how this may be a significant or restrictive data ent and prevent data submissions for assessment. ees with the commenter that 39 contiguous days of ency dissolved oxygen (DO) data are not needed to ss the 7-day average minimum DO criteria. DWQ the original language and removed the \geq 39 day ent from the "Data Sufficiency" section. The section s, "To ensure that daily minima are captured and averages can be accurately calculated, high data must capture complete days. DWQ defines a day as a calendar day (i.e. 12:00 am - 11:59 pm) in east one measurement is made in each hour."

o removed the ≥39 day requirements in Figures 3 tead, data are considered sufficient for assessment ten daily minima or 7 or 30 day averages can be I over the period of record.

e, "adequately spaced," in this context refers to the f dissolved oxygen readings throughout the course en day, not the spacing of days on which ces are observed. This ensures that all samples illected during one particular part of the day and that daily minima and means can be calculated for each has been clarified in the assessment methods.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Theron	Miller	TMiller_122 02018.pdf	172		More important, such violations during high-flow events would not occur if the Jordan River was not suffering from human-caused severe channel alterations and significant flow diversions that leave the river dewatered and accruing enormous amounts of decomposing organic matter through sediment deposition. As EPA has instructed, such severe hydrologic modification can be the cause of nonattainment of beneficial uses (40 CFR 131.10(g) factors 3, 4 and 5 – related to degraded habitat and dewatering)causing unnatural sedimentation of sand, silt and copious amounts of decomposing organic matter, that by themselves require dredging every few years (depending on frequency and severity of high-flow events). After 18 years of more intensive monitoring and countless meetings, there is neither the political or regulatory teeth, nor the financial resources to control the organic matter loads originating from this urban watershed. Therefore, at a minimum, DWQ should develop a use attainability analysis for the purpose of removing the more stringent site-specific DO criterion for the Lower Jordan.	Out of Scope.	DWQ agre evaluating However, Use Attain Integrated TMDL or r Unknown information assessme standards process. In the followin http://www wqmanage For source the comme dissolved of (https://dee program/jo manageme
Theron	Miller	TMiller_122 02018.pdf	173		Additional evidence now exists describing the consequences of severe habitat destruction (channelizing and frequent dredging) and severe hydrologic diversions (leaving the lower JR dewatered and consequently, one long depositional zone). These three factors, are present and clearly dominate the physical and biological conditions of the river.	Out of scope.	The purpo identify wh and suppo Identificati of the Inter of the TME (https://dee program/jo manageme For source the comme dissolved o (https://dee program/jo manageme
Theron	Miller	TMiller_122 02018.pdf	174		No feasible BMPs are currently available, even if there were political and financial will to attempt to mitigate this loading and settling of organic matter. Yet this is causing the extremely high sediment oxygen demand values that cause the DO impairment particularly the unmitigable remobilization of oxygen-demanding methane and hydrogen sulfide and even fresh• debris such as grass clippings (known to drop the DO to 0.0 mg/L), when occasional thunderstorms rush through the watershed.	Out of Scope.	Determinir outside the as part of assessme For source the comme the dissolv (https://de program/jo managem

ees with the commenter on the importance of g impairments that are caused by pollution. determining sources of pollution and site specific nability Analysis are outside the scope of the d Report. Sources are determined as part of the related source assessment studies. (See section Sources in the assessment methods for more in on how sources are identified and tracked in the ent process). Concerns relating to water quality are addressed through the Triennial Review information on the Triennial Review can be found at ing web address:

v.deq.utah.gov/ProgramsServices/programs/water/ ement/standards/triennialrev.htm.

e concerns specifically related to the Jordan River, ienter should refer to the ongoing development of a oxygen TMDL for the Jordan River

eq.utah.gov/water-quality/watershed-monitoringordan-river-dissolved-oxygen-tmdl-watershednent-program)

ose of the Integrated Report assessment is to nether or not waters are exceeding numeric criteria orting their designated beneficial uses(s).

ion of sources and causes of pollution are not part grated Report process and are addressed as part DL or related source studies and assessments eq.utah.gov/water-quality/watershed-monitoringordan-river-dissolved-oxygen-tmdl-watershedent-program).

e concerns specifically related to the Jordan River, enter should refer to the ongoing development of a oxygen TMDL for the Jordan River

q.utah.gov/water-quality/watershed-monitoringordan-river-dissolved-oxygen-tmdl-watershedent-program).

ng the causes and sources of impairments are e scope of the Integrated Report and are addressed the TMDL or related source studies and ents.

e concerns specifically related to the Jordan River, ienter should refer to the ongoing development of ved oxygen TMDL for the Jordan River eq.utah.gov/water-quality/watershed-monitoringordan-river-dissolved-oxygen-tmdl-watershednent-program).

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Theron	Miller	TMiller_122 02018.pdf	175		Page 47. Measuring biological communities directly has the advantage of integrating the combined effects of all pollutants, which allows a direct examination of how pollutants are interacting to affect the condition of a stream ecosystem (Karr, 1981).―	None.	Each strea River. RIV most prob In this sen that are ph when estir
					Comment: This is only true if physical conditions are comparable between reference sites and between reference sites and target sites. In the case of the Jordan River, we know that it is extremely habitat limited and there are no reference sites for the JR. DWQ needs to justify how O/E is used when there are no reference sites.		everywher more of a regional ra incorporate west rathe addition, D assessed fail this tes Jordan Riv this model
Theron	Miller	TMiller_122 02018.pdf	176		Page 47. The biological integrity of sites can be evaluated by comparing the biological composition observed at a site against a subset of ecologically similar reference sites. Collectively, such comparisons are referred to as biological assessments. In aquatic biological assessments, reference sites are selected to represent the best available condition for waterbodies with similar ecological, physical, and geographical characteristics (Hughes et al., 1986; Suplee et al., 2005; Western Center for Monitoring and Assessment of Freshwater Ecosystems website). When reference sites are selected for water quality programs, conditions vary regionally depending on adjacent historical land use. For example, reference sites in Utah mountains are generally more pristine than in valleys. As a result, there are more biological benchmarks in areas of the state that receive less human-made disturbance than those with more disturbances.• Comment: Unfortunately, DWQ acknowledged that for several valley stream sites, particularly in the Jordan River, there are no river sites across the state that quality as reference condition for the Jordan River. This has been discussed with Dr. Chuck Hawkins, who admitted that the RIVPACS model does not work well when there are no usable reference sites with which to determine macroinvertebrate reference condition (David Richards personal communication based on discussions with Dr. Hawkins at a recent EPA Pacific Northwest Bioassessment Workshop held in Astoria, WA). This important factor should be acknowledged by DWQ and should prompt DWQ to choose a different biological assessment approach.	None.	RIVPACS probable s this sense are physic estimating some gene everywher more of a regional ra limitation, locations f limited to l model that site of inte failed then selection of historical of dependent these limit RIVPACS biological site-specif use broad ecoregion comparab

am and river segment is unique; not just the Jordan PACS uses real reference site data to estimate the able set of taxa that would occur at a given stream. se, the model is heavily weighting reference sites nysically/chemically similar to the assessed site mating the taxa that should occur (E). E is more general, hypothetical community that applies e (unless a null model is used). Larger rivers offer challenge to assess because they are more ather than isolated to a state. DWQ's model es reference river locations from the intermountain er than being limited to Utah-based locations. In DWQ runs a chi-square test to ensure that each site fits within the bounds of the model. Sites that st are not used in the assessment. For example, the ver sites passed that test and were appropriate for and assessment.

uses real reference site data to estimate the most set of taxa that would occur at a given stream. In , the model is heavily weighting reference sites that ally/chemically similar to the assessed site when the taxa that should occur (E). E is more than eral, hypothetical community that applies e (unless a null model is used). Larger rivers offer challenge to assess because they are more ather than isolated to a state. To address this DWQ's model incorporates reference river rom the intermountain west rather than being Utah-based locations. DWQ uses a RIVPACS t incorporates a chi-squared test to determine if any erest has comparable reference sites, if this test is O/E scores are not calculated. With respect to the of alternative methods, it is worth noting that unless data are available all biological assessments are t on comparisons to similar reference sites, so ations are not limited to RIVPACS approaches. approaches address this better than most other assessment methods because O/E predictions are ic. In contrast, other methods, like MMIs, frequently a priori classifications (e.g., all streams within an) to establish what reference streams are le to a stream of interest.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Theron	Miller	TMiller_122 02018.pdf	177		Page 47. O/E has some very useful properties as an index of biological condition. First, it has an intuitive biological meaning. Species diversity is considered the ecological capital on which ecosystem processes depend; therefore, O/E can be easily interpreted by researchers, managers, policy-makers, and the public. Second, O/E is universally spatial, which allows direct and meaningful comparison throughout the state on a site-specific scale. This is particularly important for Utah, where streams vary considerably from high-altitude mountain environments to the arid desert regions. Third, its derivation and interpretation do not require knowledge of stressors in the region; it is simply a biological measuring tool. Finally, the value of O/E provides a quantitative measure of biological condition.•	None.	In the cont asset that is charged allows the meet this of biological a site-spec importance example p may revea to the prob stressors, (e.g., ripar degradation and new d developme DWQ relie preclude th purposes.
Theron	Miller	TMiller_122 02018.pdf	178		Page 48. Despite the mathematical complexities of model development, O/E is easily interpreted because it simply represents the extent to which taxa are missing as a result of human activities. For example, an O/E ratio of 0.40 implies that, on average, 60% of the taxa are missing as a result of human-caused alterations to the stream.• Comment: Apparently DWQ assumes that the use of broad geographical variables avoids the biases of differences due to human disturbance, but there is no evidence that this is true.	None.	All biologic sensitive to RIVPACS demonstra stressors a sensitive n this is that make site- this does n sensitivity human-ca

text of identifying biologically degraded sites, it is an O/E does not need knowledge of stressors. DWQ with assessing streams statewide and a tool that identification of problems efficiently is necessary to obligation. Once impairments are identified, both and habitat data can be examined more closely, on cific basis, to better understand the relative e of different sources of stress. Using the specific provided by the commenter, these investigations al that water withdrawals are significant contributors plem. It is also possible that they reveal that other either natural (e.g., droughts) or human-caused ian degradation), contribute to the observed on. Thorough site-specific evaluations of existing lata sources are a necessary step in the ent of effective remediation plans. The fact that es on O/E for assessment purposes does not he use of biological alternative indicators for other

ical assessment methods are inevitably more to some types of stressors than others and 3 is not an exception. Nevertheless, O/E has been ated to be sensitive to a breadth of different and is generally considered to be among the more measures of biological degradation. One reason for t the geographic predictors allow the models to e-specific predictions of expected taxa (E). However, not avoid biases resulting from the relative of different resident taxa to different types of aused stressors.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's R
Theron	Miller	TMiller_122 02018.pdf	179		Alternatively, actual site-specific-scale habitat measures, including those that will assess the degree of human disturbance (rather than being based on probabilities), need to be part of the assessment to determine the value of this assumption.	None.	O/E intrins degradation loss of tax stress (e.g advantage degradation that it allow investigation can be co that have statewide such thore sites allow needed.
Theron	Miller	TMiller_122 02018.pdf	180		For example, what if a flash flood occurred 30 days prior to the sampling?	None.	DWQ doe chosen to flooding a where rec which cou This is on several ur concluding assumptio visit a site of bias ove
Theron	Miller	TMiller_122 02018.pdf	181		Another example is East Canyon Creek, which a few times in recent years has been severely dewatered from drought and excess diversions. A third example is Silver Creek, upstream from the Silver Creek POTW, which is left a trickle every drought summer. These are examples where prior knowledge of the habitat or flow characteristics can account for a low O/E score and inform the assessment process as well as steer restoration efforts.	None.	In some c data in a s particularl extreme d low flow c the site is diversions the cause
Theron	Miller	TMiller_122 02018.pdf	182		Moreover, the 303(d) reporting process to EPA requires that causes and sources be identified for each impaired waterbody. O/E does not provide this necessary information. DWQ should re-think this assessment strategy because it ignores available site-specific information obtained from site visits which should inform actual causes and sources of potential impairment.	Out of scope.	DWQ agre impairmer through ac analyses. of impairm and are ac preventior assessme cause and and popul

sically quantifies the magnitude of biological on that has occurred at a stream. Whether or not a ka scales with a specific type of human-caused g., habitat degradation) is a separate question. The e of O/E measuring the magnitude of biological on without consideration of human-caused stress is by DWQ to identify problems so that follow-up ions, such as those suggested by the commenter, onducted to evaluate the combination of stressors caused the degradation to occur. Given the scale of assessments that DWQ is required to conduct, ough evaluations cannot be routinely conducted are and the identification of biologically degraded ws DWQ to focus these efforts where they are most

es make note of recent flooding activity and has o not assess sites using O/E due to signs of recent activity. However, there may be circumstances cent flash floods were undetected by field staff, uld potentially result in atypically low O/E scores. he of the reasons why DWQ requires the collection of nique samples, from different field seasons, prior to og that a site is impaired based on O/E. The on is that the likelihood that DWQ would happen to be where recent events created undetectable sources over several different years is small.

ases, DWQ will not collect biological assessment stream that has been severely dewatered, ly if this condition is natural, but not typical (e.g., drought). If samples are collected under extreme, conditions, over several different field seasons, and if determined to be impaired, then the role of flow swould manifest in subsequent investigations into of the impairment.

ees that identifying the causes and sources of nts benefits from site-specific information obtained idditional site monitoring, visits, and additional For these reasons identifying causes and sources ments are not part of the Integrated Report process iddressed through either a TMDL, pollution n plan, or other related source and cause ents. Once identified through these processes, d source information for impairments are updated lated in ATTAINS.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's R
Theron	Miller	TMiller_122 02018.pdf	183		As another example of erroneous application of data, the 2014 IR reported excess P as the cause of the low O/E score for the Jordan River. Clearly, this was just a guess. After further study, nutrients were found not even to be a cause of low DO events. Moreover, severe habitat loss has been identified earlier by Miller (2012, 2014), and more recently by Richards (2016).	Out of scope.	In the 2014 were list as uses. Both both were in no connect well. Comment (from both during the Integrated
Theron	Miller	TMiller_122 02018.pdf	184		Further, as described in the introduction, trained field biologists perform independent assessments of candidate reference sites and I assume that this assessment includes the use of UCASE/EMAP protocols to quantify and assess important habitat characteristics. Therefore, data hypothetically exists to compare taxa lists, including sensitive species (e.g. EPT taxa) and guild diversity (e.g. functional feeding groups) to habitat availability and complexity. Developing predictive models based on modeled average watershed characteristics and reduction of taxa lists to simple presence/absence for the purposes of expediency ignores the principles of river continuum theory. Using a single number/metric that is used to describe biological and physical integrity is nothing short of a large step backward in utilizing stream ecological knowledge and principles.	None.	Site-speci develop R means. TI 800 m wh rather tha explain the same com cycle. Rive complexite functional naturally f specific pi closely wi a specific
Theron	Miller	TMiller_122 02018.pdf	185		It is highly presumptive, if not outright inaccurate, to assert that a meaningful measure of species richness and ecological capital• can be based on a probability of > 50% capture. Where are the scientific underpinnings for such an assumption? Indeed, rare species that occupy limited or specialized niches or diverse functional feeding groups are much more valuable in assessing the quality of habitat and degree of biological integrity and resilience ‗ as these taxa are most often those that disappear first in the presence of stress (Richards 2017). Moreover, the relaxation of taxonomic accuracy further reduces the ability to detect subtle indicators of stress.	None.	Considera models te known str Hawkins 2 as oppose literature of taxa can of level taxon states tha use of fine data are e resolution review Ha these trad

IR for the Jordan River-3 Assessment Unit, O/E and TP separate parameters that were not meeting beneficial were originally listed as impaired in the 2008 IR and independently listed as separate impairments. There was ion made between them in the 2014 and 2016 IRs as

s on the 305(b) and 303(d) assessments results a current and historical reports) can be submitted a public comment period of the Draft 2018/2020 I Report.

ific, GIS-based predictor variables are used to RIVPACS models rather than regional watershed the spatial resolution for these predictor variables is nich makes the assessment at reach segment scale in watershed. The text was changed to better the nature of RIVPACS predictor variables after the nment was made during the last Integrated Report ver continuum theory does not speak to habitat ty, but instead is a conceptual model that describes I and structural ecological characteristic changes from headwaters to larger rivers downstream. The redictor variables used in model construction align ith this theory because many could be used to place is site in its position along this continuum.

able research has demonstrated that RIVPACS and to be more precise and often more responsive to essors than other indices (e.g., please review 2006, Hawkins et al 2010) when a Pc >0.5 is used ed to a Pc >0. Similarly, a relatively large amount of empirically shows that the use of coarse (family) often provide similar assessment scores as fine nomic resolution in O/E models. There are many t use just family level data. There are tradeoffs in e versus coarse taxonomic resolution data. Coarse easier to model (more precise) but use of fine data may produce more responsive indices. Please awkins 2006 to understand a few good examples of deoffs.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Theron	Miller	TMiller_122 02018.pdf	186		 Page 49. Table 12. Final predictor variables used in model construction. Comment: While the use of predictor variables at the watershed level is an improvement over regional scales, the use of PRISM model results for the various geographical variables introduces additional uncertainty in determining meaningful environmental tolerances. For example, many macroinvertebrate taxa have known temperature tolerance ranges that have been used to establish temperature criteria (e.g. Richards et al. 2018). Also, actual daily measures of extraordinary stream temperature or watershed air temperature can vary enormously from mean stream temperatures or mean annual air watershed temperatures and sufficiently to cause the loss of local species â€- and which may take months or years to recover. 	None.	This comm predictor v models. Co variables is a site of in accomplish naturally o streams. V scales are is that the human-can prediction empirically to be differ (e.g., wet v continuum
Theron	Miller	TMiller_122 02018.pdf	187		Page 62. Phytoplankton Community: DWQ routinely collects phytoplankton to evaluate the composition and relative abundance of algae and cyanobacteria. These data are used to identify waterbodies potentially undergoing cultural eutrophication that may negatively impact beneficial uses.• Comment: Natural eutrophication has been occurring for a much longer period than cultural eutrophication and many lakes have already naturally exceeded the tipping point• of regime change. Supporting data indicating domination by cyanobacteria historically and prehistorically has been reported numerous times in the literature using paleolimnological techniques, including the recent report on Great Salt Lake by Levitt et al. (2013). Paleolimnological techniques should be a standard procedure when contemplating any restoration effort, as paleo data can date the age of sediments that contain cyanobacteria and other sentinel species of diatoms and thereby help identify the degree of restoration that is reasonably possible and thereby appropriate objectives - including the condition the lake was in during 1975. This is critically important when contemplating massive and expensive remedial practices that more and more are reported in the literature as failures, particularly for shallow lakes (e.g. Sondergaard et al. 2007, Jeppesen et al. 2007). These authors have identified several causes of restoration failures as well as other challenges that require understanding of particularly shallow lake ecology. It is not merely as simple as determining cell counts and relative abundance of cyanobacteria.	None.	Restoration the IR beca the assess during the data, Utah assessing documente methods, t data asses Paleolimno historical c representa

ment reflects a misunderstanding of how appropriate variables are used in the construction of RIVPACS Conceptually, the purpose of physical predictor is to identify the proximity, in multivariate space, of neterest to all reference sites. This is best shed using predictors that are reflective of general, occurring, long-term differences in different types of Variables that change naturally over short time e not good candidates. Another critical assumption predictor variables cannot be strongly affected by aused activities, because doing so would make E a of degraded conditions. The variables that were y selected for Utah's RIVPACS models allow sites erentiated based on major environmental gradients vs. dry conditions) and position along a longitudinal n.

on and restoration goals are beyond the scope of cause decisions regarding restoration are not part of sment process. Restoration is typically addressed TMDL process. With regards to paleolimnological n's assessment methods do not include methods for this type of data nor are they being considered. As red in the PERIOD OF RECORD section of the the assessment is of current water quality and the ssed cannot be more than 10 years old.

ological data are intended to be representative of conditions by definition and are not intended to be ative of current conditions.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Theron	Miller	TMiller_122 02018.pdf	188		Page 64. DWQ targets dissolved metals sample collection to 1 meter above the bottom at the deepest site of the waterbody, as this location is the most likely to identify dissolved metal exceedances if they exist in a lake.• Comment: The reason why metal concentrations are often elevated at the sediment surface is a result of relatively low pH and/or redox chemistry where anaerobic/anoxic conditions reduce the oxidation state of redox-sensitive metals or induce the methylation of some metals such Hg and Se. While concentrations may be elevated at 1 m above the sediment surface, this is only due to the physics of diffusion away from the source. More importantly, the required anaerobic/anoxic conditions, for their dissolution, themselves preclude the presence of most aquatic life. Listing a lake for metal toxicity based on this sampling approach is misleading and overly protective and actually describes a phenomenon that cannot be remedied without expensive intervention such as aeration or chemical treatment. Rather, a more appropriate and accurate approach would be to measure metal concentrations at the bottom of the metalimnion or where the DO concentration falls below the instantaneous criterion. In other words, available habitat will dictate whether aquatic organisms are exposed to metals.	None.	Recomments scope for t monitoring toxic metal commente column is of sampling n potential for web and n additional for web and n additional for web and n additional for standards attainability recomments addressed

ended changes to sampling protocols are out of the IR and should be addressed towards DWQ's program. Aquatic organisms may be exposed to als through multiple pathways. As described by the er, diffusion from anoxic sediments to the water one potential pathway. DWQ's routine metal methods for lakes are intended to capture the or toxic metals to enter the water column or food negatively impact aquatic life uses. However, where metals data are available at other depths, they are ssed following the toxic parameter assessment Although in some cases, an anoxic layer exceeding thickness at the bottom of a lake may exclude ganisms, particularly fish, other organisms are still sent and potentially exposed. or practicality of any potential pollutant remediation

cope for the IR. These considerations are ted into other programs including TMDLs or development (e.g. site-specific standards, use ty analyses, or water quality variances) and ndations regarding those processes should be d to those programs.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Theron	Miller	TMiller_122 02018.pdf	190		Page 74. HABs and Cell Counts Comments: Lake closures and particularly 303(d) listings should not be based merely on cell counts. Existing evidence indicates that these actions are based on weak, anecdotal and incomplete data as described by EPA documentation (EPA 2016, Human Health Recreational Ambient Water Quality Criteria or Swimming Advisories for Microcystins and Cylindrospermopsin). Notably, EPA has rejected recommending cell counts or chlorophyll a because they are not scientifically justified. Indeed, there are many more peer-reviewed studies that denounce the linkage between cell counts and allergic or gastrointestinal symptoms than those that support these metrics. In fact, all reports of these allergic responses, including those reported for Utah Lake, are merely anecdotal and/or require removal of a portion of the sample volunteers (e.g. Pilotto, 1997) to establish some level of significance. This suggests that merely announcing the warnings, or briefing volunteer participants prior to data collection (the power of suggestion), may invite hypersensitivity (hypochondria) and lead to unsupported reports of symptoms. Reports may also fail to record the level or type of exposure â€- such as swimming, wading, waterskiing, fishing, or even walking through or near the hyper-allergenic phragmites which surrounds most of Utah Lake. Therefore, retaining these criteria in state regulations, without the underlying EPA criteria recommendations, is inappropriate and should not be used as a basis for regulatory or assessment decisions by DWQ. Following this line of reasoning, DWQ and UDPH should initiate a program to eradicate all grasses, including phragmites, as well as ragweed, cottonwood trees, mold and many other common allergens â€- because they cause similar symptoms. We owe it to the people of Utah to base such decisions on more rigorous, conclusive data.	None.	The issuan separate p Suggestion addressed (https://dec advisory/in DWQ's HA Narrative S scums, nui quality con are a violat EPA's deve cyanotoxin assessmen indicators of Standard. I microcystin as indicato includes su epidemiolo exposure a review of th EPA's draft DWQ has of does not in protective of The use of point of sul DWQ's 207 responses (https://dec quality/mor

nce of recreational advisories or closures is a process from water quality assessment. ons regarding the health advisory process should be d to the Water Quality and Health Advisory Panel eq.utah.gov/legacy/divisions/water-quality/healthndex.htm).

AB assessment methods directly reflect Utah's Standard which stipulates that the presence of usances such as color, odor, or taste, or water nditions that may cause undesirable human effects ation of the state's water quality rules.

velopment of draft criteria for any particular in does not constitute a rejection of other forms of ent and does not preclude DWQ's use of other of impairment that are reflective of Utah's Narrative EPA's draft recommended criterion document for in specifically identifies cyanobacteria cell densities ors of the ecological health of a waterbody and substantial discussion of the available ecoogical evidence associating cyanobacteria and human health symptoms. Based on DWQ's this evidence, and discussions with the authors of ft microcystin and cylindrospermopsin criteria, determined that a HAB assessment approach that nclude cyanobacteria cell densities would not be of recreational uses.

of cell counts in DWQ's assessment process was a substantial discussion during the 2016 IR. Please see 016 IR response to comments, appendix A, s 2, 3, and 9 for additional information eq.utah.gov/legacy/programs/wateronitoring-reporting/assessment/docs/2016/dwqto-public-comments-final2016ir-v2-1.pdf).

: First : Last Document larger commen Name Name ID	submission is addressed).	
Theron Miller I Miller_122 191 Backer et al. (20 02018.pdf 02018.pdf environmental ephealth outcome.et al., 1997; Stee previous study (fduring recreation result in increase respiratory symp participants report affected waters. causes and only were not able to between expose examine associa measurements (concentrations, concentrations, concentratintate, conconcentrations, concentrations, concentratint	(9) reported: The second important component of idemiologic studies is an accurate measure of the assed on anecdotal reports and earlier studies (Pilotto art et al., 2006a), we hypothesized in this and our acker et al., 2008) that exposure to aerosolized MC al activities in lakes with M. aeruginosa blooms would d frequencies of self-reported acute dermal or oms over baseline (emphasis added). Some study ted throat and skin irritation after being in the bloom-lowever, these are common symptoms with myriad a few participants reported such symptoms. Thus, we lemonstrate differences in symptom reporting and unexposed participants, nor were we able to ions between reported symptoms and environmental yanobacterial cell concentrations, water and air MC r other water quality parameters).― ant point here is that while the EPA carefully chose and criteria based on cell counts, UDWQ and UDPH cell counts in the assessment criteria for lake and sures, as well as for listing on the 303(d) list, as is the is. E. During the WQHAP meeting on January 12, the ve stated that while there was useful data suggesting to inverse in alues for cyanobacterial cell counts. The output determines that while the exposure calculation are assessed to any dose-response relationship or memod criteria values for cyanobacterial cell counts. The output determines that wrote the recommendation anagement team that wrote the recommendation as indeed insufficient information to include cell s decision appears to be the fact that dermal or sublethal effects of als on a dose-response basis. At least part of EPA's root the fact that researchers have attempted to link the determines and sufficient information to include cell s decision appears to be the fact that dermal or the fact that researchers have attempted to link the determines anagement team that wrote the recommendation anagement team tha	Thank you recognizes human hea Recommer conjunction stakeholde Advisory Pa quality/hea health advi inclusion of assessmer Standard w nuisances conditions violation of EPA's deve cyanotoxin assessmer indicators of water quali document f cell densitie waterbody available ei cyanobacte on DWQ's authors of l criteria, DW approach th would not b The use of point of sub DWQ's 201 responses (https://deq quality/mor

u for your providing this paper excerpt. DWQ s the inherent difficulty in attributing causation for alth systems in eco-epidemiological studies.

ended health advisory procedures are developed in on with state and local health departments and ers through DWQ's Water Quality and Health Panel (https://deq.utah.gov/legacy/divisions/wateralth-advisory/index.htm). Recommendations for the visory process can be made to that program. The of cell counts as an indicator in DWQ's HAB ent methods directly reflects Utah's Narrative which stipulates that the presence of scums, a such as color, odor, or taste, or water quality that may cause undesirable human effects are a of the state's water quality rules.

velopment of draft criteria for any particular in does not constitute a rejection of other forms of ent and does not preclude DWQ's use of other of impairment that are reflective of Utah's narrative lity standard. EPA's draft recommended criterion if for microcystin specifically identifies cyanobacteria ties as indicators of the ecological health of a y and includes substantial discussion of the eco-epidemiological evidence associating teria exposure and human health symptoms. Based a review of this evidence, and discussions with the f EPA's draft microcystin and cylindrospermopsin WQ has determined that a HAB assessment that does not include cyanobacteria cell densities be protective of recreational uses.

of cell counts in DWQ's assessment process was a substantial discussion during the 2016 IR. Please see 016 IR response to comments, appendix A, s 2, 3, and 9 for additional information eq.utah.gov/legacy/programs/waterponitoring-reporting/assessment/docs/2016/dwqto-public-comments-final2016ir-v2-1.pdf).

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Theron	Miller	TMiller_122 02018.pdf	191		the allergic respiratory or dermal symptoms to lipopolysaccharides (LPS; molecules that are rooted in the cell membrane of mostly gram- negative heterotrophic bacteria such as E. coli or Salmonella). For example, these well-studied structures have been found to be responsible for the adverse inflammatory cascading responses of our immune system (sore throat, congestion, itchy eyes, mucus secretion, etc.). In most ways these responses have been reported to be akin to typical inflammatory responses to everyday allergens such as pollen, dust or mold. Clearly, EPA has chosen to not try to establish assessment criteria based on cell counts, because there is virtual ly no quantitative data that links a threshold of cell counts to an allergic or gastrointestinal response. Moreover, LPS, of themselves, are not toxic, but actually require specific host proteins (such as within our mucus membranes) for LPS to display full agonist potency. Most notable, the link between cyanobacterial LPS and allergic responses is indeed a very weak one. Stewart et al. (2006), also cited in the EPA document, provides perhaps the most thorough review of the literature that might describe such a link. [Response continued below in the "Mercury Assessment Process" box]	None.	[see respo

onse above]

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Theron	Miller	TMiller_122 02018.pdf	192		Here are some excerpts of the Stewart et al. review: Several authors note that the health implications of cyanobacterial LPS are poorly understood and the topic requires more research [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Carmichael [16] suggests that the relationship between ingested LPS and illness in an immunologically competent population is debatable, there being little evidence that people with a normal LPS-containing gut flora would be affected by LPS from water supplies. (emphasis added) The reason that cyanobacterial LPS has not been discussed here is simply that the required research has not been done as yet (emphasis added). No cyanobacterial lipid A structures have been published, therefore no inferences can be deduced as to their likely endotoxic potential, or lack of it. But with the knowledge that endotoxic potential can vary in the most fundamental way across Gram-negative bacteria, from agonistic to weakly active to inactive to antagonistic, it should be incumbent on the cyanobacteria research community to cease attributing biological activity and clinical symptoms to cyanobacterial LPS without specific research evidence. (emphasis added). Cyanobacteria may not be typical Gram-negative organisms because of their unusual cell wall architecture, and cyanobacteria will have experienced very different selection pressures to gut-dwelling Gram-negative bacterial, which may be reflected in different lipid A structures. Some observations on the behaviour of Gram-negative bacterial LPS in the gut serve to cast doubt on the suspicions that cyanobacterial LPS alone is responsible for initiating acute gastro-intestinal illness in humans by the oral route: Commensal gut flora: The human intestinal tract houses an enormous population of bacteria, many of which are Gram-negative. The Enterobacteriaceae are found in normal faecal flora at some 108‗109 per gram [130]. The number of microbes in the gut lumen exceeds the number of eukaryotic cells in the human body by an order of ma	None.	Thank you the Stewar available e one propos elicit negat lipopolysac additional r apparently exposure is

u for providing these excerpts. DWQ is familiar with art et al. 2006 study which provides a review of the evidence in the scientific literature associated with osed pathway through which cyanobacteria may ative human health effects, cyanobacterial accharides. DWQ agrees with the authors that I research regarding causes of human health effects y associated with cyanobacteria or cyanotoxin is well warranted.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's R
Theron	Miller	TMiller_122 02018.pdf	192		Non-virulent strains: Most Gram-negative organisms are non-pathogenic. Pathogenicity involves a complex interaction between host-related and specific microbial virulence factors â€- the latter including pili, fimbriae and heat shock proteins [133, 134]. Infectious, i.e. colonising, microbes are the most common cause of diarrhoea worldwide; pathogenic strains commonly cause disease by the action of enterotoxins [135]. That virulence factors other than lipid A structures of LPS are responsible for gastro-intestinal disease is seen in the protective effects of attenuated or mutant Gram-negative bacteria when used as live oral vaccines against pathogenic strains [133, 136, 137, 138]. Some E. coli strains are used as probiotics for the treatment of gastrointestinal disease and infection prophylaxis in neonates [139]. Anecdotal reports of consumption of non-hazardous cyanobacteria: Heaney [39] reports observations of cattle seen drinking from two Irish lakes affected by thick scums of Anabaena flos-aquae and Aphanizomenon flos-aquae without ill effect. Author IS can add a similar observation: during recruitment for an epidemiology study [140] at Lake Coolmunda in southern Queensland, a frank Microcystis aeruginosa bloom was in attendance. A group of six or seven dogs were seen playing vigorously in the water, and three dogs were observed drinking from it. The owners of the animals were questioned the following day; all denied observing any adverse effects. The consumption of Spirulina and other cyanobacteria provides further evidence that cyanobacterial LPS cannot all be harmful.•	None.	[see respo

onse above]

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Theron	Miller	TMiller_122 02018.pdf	193		Based on this information it is clear that DWQ's and DPH's decision to push for retaining cell counts as assessment, closure, and listing criteria is not founded in solid science, but rather on incomplete, anecdotal epidemiological reports that are largely non-quantitative in terms of linking cell counts to the presence of cyanotoxins. The reported allergenic and nontoxic response that DWQ and DPH are so adamant to report lacks the necessary scientific underpinnings that link LPS to any of the reported allergenic or gastrointestinal pathogenic symptoms such as diarrhea.	None.	The issuar separate p the IR. Sug should be Advisory P quality/hea The inclus assessme quality stal nuisances conditions violation of Based on evidence a determined include cya recreationa The use of point of su DWQ's 20 responses (https://ded quality/mo responses (https://ded quality/mo responsed I which expo undesirabl of human I bloom exp attempted property of the availab related lite assessme cell densiti

nce of recreational advisories or closures is a process from water quality assessment as part of iggestions regarding the health advisory process addressed to the Water Quality and Health Panel (https://deq.utah.gov/legacy/divisions/wateralth-advisory/index.htm).

sion of cell counts as an indicator in DWQ's HAB ent methods directly reflect Utah's narrative water andard which stipulates that the presence of scums, s such as color, odor, or taste, or water quality that may cause undesirable human effects are a of the state's water quality rules.

DWQ's review of HAB related eco-epidemiological and other HAB related literature DWQ has d that a HAB assessment approach that does not anobacteria cell densities would not be protective of al uses.

of cell counts in DWQ's assessment process was a abstantial discussion during the 2016 IR. Please see of 16 IR response to comments, appendix A, s 2, 3, and 9 for additional information eq.utah.gov/legacy/programs/wateronitoring-reporting/assessment/docs/2016/dwqto-public-comments-final2016ir-v2-1.pdf).

teria lipopolysaccharides are one potential pathway by some authors in the scientific literature through oosure to cyanobacteria blooms may result in le human health effects. Multiple potential causes health symptoms associated with cyanobacteria oosure have been proposed. DWQ has not I link human health symptoms to any specific of cyanobacteria cells. Instead, based on a review of ble eco-epidemiological evidence and other HAB erature DWQ has determined that a HAB ent approach that does not include cyanobacteria ties would not be protective of recreational uses.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's R
Theron	Miller	TMiller_122 02018.pdf	195		[Response continued below in the "General Comments on Narrative Standards for All Waters" box]	Requested improvemen t on form functionality.	Thank you that your i form. DW IR public o

bu for using the public comment form and indicating r response was continued in another text box in the VQ will review text box character limits for the next c comment forms.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Theron	Miller	TMiller_122 02018.pdf	196		What are the implications of such an unsupported decision? Here are the facts: 1. The open water of Utah Lake was sampled about 48 times in 2016 and 2017 for microcystins. Of these, only three samples contained measurable microcystins (toxins in the great majority of samples were below detection limits) and all three of these samples contained less than 4 ug/L microcystin. Yet, due to an abundance of precaution and elevated cell counts, the entire lake was closed for about four weeks. In turn, this was used as support for DWQ's decision to add Utah Lake on the 303(d) list based on 2014 data cell count data. 2. This listing ignored the EPA initial recommended oriteria of 20 ug/L microcystin 46- and NOT cell counts. This EPA decision to not use cell counts for assessments was due to a lack of quantitative and appropriate basic research that needs to be performed. The discussion outlined above explains a lot of EPA's reasoning. Therefore, the decision to retain cell counts as assessment criteria is simply not scientifically supported, and hence, not supported by a major policy decision by EPA. Moreover, Utah Lake blooms are most often dominated by Aphanezomenon flos aquae, a very weak to non-toxin producer (it has been identified as a weak microcystin producer; although whether this species was completely isolated from othermicrocystin producer; although whether this species was completely isolated from othermicrocystin producer; although whother there are not sufficient scientific underprinnings to demonstrate toxicity, or an LPS/allergenic reaction. In fact, quantification of our early zooplankton data found 5 out of the 6 most common species doubled or tripied their populations during the peak of the 2016 bloom. Perhaps most notably, the data indicates that even if appropriate linkages to allergenic responses were to be established, these symptoms are not pathologic and constitute noting more than a nuisance allergic response that is no more serious than hay fever. Just for comparison,	None.	The inclusion assessment quality start nuisances is conditions is violation of of draft critic constitute at not preclud are reflective The use of point of sub DWQ's 2011 responses (https://deq quality/mont response-to review and approved at determination the state's impaired". The issuant separate pro Suggestion addressed (https://deq advisory/inder Water qualt waterbodie indicators t

sion of cell counts as an indicator in DWQ's HAB ent methods directly reflect Utah's narrative water andard which stipulates that the presence of scums, a such as color, odor, or taste, or water quality that may cause undesirable human effects are a of the state's water quality rules. EPA's development iteria for any particular cyanotoxin does not a rejection of other forms of assessment and does de DWQ's use of other indicators of impairment that tive of Utah's narrative water quality standard.

f cell counts in DWQ's assessment process was a ubstantial discussion during the 2016 IR. Please see 016 IR response to comments, appendix A, 52, 3, and 9 for additional information eq.utah.gov/legacy/programs/wateronitoring-reporting/assessment/docs/2016/dwqto-public-comments-final2016ir-v2-1.pdf). In their d comments on the 2016 Integrated Report, EPA and supported the recreational use impairment tion for Utah Lake for harmful algal blooms stating, n a comparison to the HABS methodology and n from the multiple lines of evidence considered in assessment, EPA agrees that Utah Lake is

nce of recreational advisories or closures is a process from water quality assessment. Ins regarding the health advisory process should be d to the Water Quality and Health Advisory Panel eq.utah.gov/legacy/divisions/water-quality/healthindex.htm).

ality based recreational advisories or closures of es protected for recreational uses are direct that recreational uses are not being attained.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Theron	Miller	TMiller_122 02018.pdf	196		The other concern that I have with this type of action (listing an entire lake on cell counts alone), is consideration of where this has led - that DWQ has moved forward to establish water quality criteria that are based only on cell count data and the weak, anecdotal linkage that these cells MIGHT induce some allergenic responses. Not only is this unnecessary, with the type of bloom that occurs on Utah Lake and many others, but it imbues in the court of public opinion the undeserved reputation that particularly Utah lake is toxic and people should not recreate there - which is just simply not the case. This type of publicity is more about raising fear and support for unfounded closures that further support DWQ's nutrient-removal agenda at any cost. Warnings and closures should be based on sound science â€-rather than the common species in recent blooms that are not strong toxin producers. This leads to my biggest concern site-specific criteria are being developed using only cell counts, which, in the case of Utah Lake has thus far included dominant species that are being toxin producers, rather than EPA-recommended cyanotoxin concentrations. This will lead to a TMDL that will require cell counts to be < 100,000 or even < 20,000 - even if the bloom is benign. Moreover, the current literature on nutrient thresholds of cyanobacterial blooms suggests that reaching this goal would require the most remote possibility of achieving total P concentrations in the range of 20 to 30 ug/L or lower, and this will unquestionably be the conclusion of the Science Panel final report. Initial calculations suggest that this would require total P loadings of < about 20 tons per year. While this seems like a lot, preliminary estimates from monitoring and research on the sources of P to Utah Lake indicate that even if POTW loadings were reduced to zero, the unregulated nonpoint sources (urban and rural), or the potential high rates of P recycling from sediments would preclude achieving such low nutrient concentrations. Moreover, an	None.	[see respo

onse above]

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Theron	Miller	TMiller_122 02018.pdf	197		 Literature Cited Backer, L. C. S. V. McNeel, T. Barber, B. Kirkpatrick, C. Williams, M. Irvin, Y. Zhou, T. B. Johnson, K. Nierenberg, M. Aubel, R. LePrell, A. Chapman, A. Foss, S. Corum, V. R. Hill, S. M. Kieszak and Y. Cheng. 2009. Recreational exposure to microcystins during algal blooms in two California lakes. Toxicon: 2009: 1‗13 Barras, S.C. and J. A. Kadlec. 2000. Abiotic predictors of avian botulism outbreaks in Utah. Wildlife Society Bulletin (1973-2006) Vol. 28, No. 3 (Autumn, 2000), pp. 724-729 Jeppesen, E. ņ M. Meerhoff ņ B. A. Jacobsen ņ R. S. Hansen ņ M. SÅ,ndergaard ņ J. P. Jensen ņ T. L. Lauridsen ņ N. Mazzeo ņ C. W. C. Branco. 2007. Restoration of shallow lakes by nutrient control and biomanipulationâ€IIthe successful strategy varies with lake size and climate. Hydrobiologia 581:269‗285. Kadlec, J.A. 2002. Avian Botulism in Great Salt Lake Marshes: Perspectives and Possible Mechanisms. Wildlife Society Bulletin (1973-2006) Vol. 30, No. 3 (Autumn, 2002), pp. 983-989. Miller, T. G. 2012. Research Compendium. A summary of 2009 to 2011 Studies on Jordan River and Farmington Bay wetlands. Report to Jordan River/Farmington Bay Water Quality Council. Miller T.G. 2014. A Physical, Chemical and Biological Assessment of the Jordan River: 2009-2013 Report to Wasatch Front Water Quality Council. Pilotto, L.S., R. M. Douglas, M. D. Burch, S. Cameron, M. Beers, G. J. Rouch, P. Robinson, M. Kirk, C.T. Cowie, S. Hardiman, C. Moore and R. G. Attewell. 1997. Health effects of exposure to cyanobacteria (blue-green algae) during recreational water-related activities. Aust N Z J Public Health 1997; 21: 562-6) Richards, D. C. 2010. Characterization of temperature, dissolved oxygen, and macroinvertebrate communities of targeted intermittent streams. Report to Idaho Department of Environmental Quality, Boise, Idaho. 189 pp. 	None.	Thank you cited and t reviewed t
					1	1	1

bu for providing the literature references that you I used to support of your comments. These were when responding to your comments.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Ro
Theron	Miller	TMiller_122 02018.pdf	197		 Richards, D. C. 2013. Arizona Intermittent Streams Macroinvertebrate Index of Biological Integrity. Developed for the Arizona/New Mexico Mountain Ecoregion. Final Report. Biocriteria Program Monitoring Unit, Water Quality Division, Arizona Department of Environmental Quality, Phoenix AZ. 59 pp. Richards, D. C. 2016. Real and Perceived Macroinvertebrate Assemblage Variability in the Jordan River, Utah can Affect Water Quality Assessments. Draft Technical Report. Submitted to the Jordan River/Farmington Bay Water Quality Council. Salt Lake City, UT. Oreohelix Consulting, Vineyard, UT. Richards, D. C. 2017. Native Unionoida Surveys, Distribution, and Metapopulation Dynamics in the Jordan River-Utah Lake Drainage, UT. Report to: Wasatch Front Water Quality Council. Salt Lake City, UT. Oreohelix Consulting, Vineyard, UT. Richards, D. C. 2016. Is Reliance on a Single Bioassessment Metric for Assessing Water Quality in Utahs Rivers and Streams Prudent? Draft Technical Report to Wasatch Front Water Quality Council. Salt Lake City, UT. Oreohelix Consulting, Vineyard, UT. Richards, D. C., Lester, G., Pfeiffer, J. and J. Pappani. 2018. Temperature Threshold Models for Benthic Macroinvertebrates in Idaho Wadeable Streams and Neighboring Ecoregions. Environmental Monitoring and Assessment. 190: 120. https://doi.org/10.1007/s10661-018-6478-9. Rocke, T.K. and T. K. Bollinger. 2007. Avian Botulism. PP 377-417. In: N.J. Thomas, D. B. Hunter and C. T. Atkinson (Eds.) Infections diseases of wild birds. Blackwell Publishing. Sondergaard, M. E. Jeppesen, T.L. Lauridsen, C. Skov, E.H. Van Ness R. Roujackers, E Lammensand R. Portielje. 2007. Lake restoration: successes, failures and long-term effects. J. Appl. Ecol.44 (6): 1095-1105. Stewart, I, P J Schluter and G R Shaw. 2006. Cyanobacterial lipopolysaccharides and human health â€- a review. Environmental Health. 2006. 5:7 	None.	[see respo
David	Richards	DRichards_ 12152018_v 1.pdf		31	I would like to thank Utah Division of Water Quality (UDWQ) for providing citizens with the opportunity to comment on their 2018/2020 303(d) Assessment Methods draft. UDWQ has done a tremendous job in trying to evaluate and protect Utah's valuable water resources and it is reflected in this draft. UDWQ should be commended for its efforts.	None.	DWQ app improvem and the D Thank you can better

onse above]

preciates your encouragement regarding the ments made to the water quality assessment program Draft 2018/2020 303(d) Assessment Methods. ou for providing comments on the methods, so we er assess and report on Utah's surface waters.
Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
David	Richards	DRichards_ 12152018_v 1.pdf		32	However, I do have some comments that may prove helpful in the next revision of the draft and in particular on how biological evaluations are presently being conducted. Hopefully UDWQ is in the process of revising its biological assessment program to better reflect the state of science and in particular, to address the pitfalls of over reliance on RIVPAC O/E models.	None.	DWQ appr recommen assessmer always be others whe However, I with your of for evaluat Hawkins, O taxonomic assessmer fact that O established not mean t assessmer DWQ is op assessmer can be def
David	Richards	DRichards_ 12152018_v 1.pdf		33	Introduction Table 1. U.S. Environmental Protection Agency categorization of assessed surface waterbodies for integrated report purposes. EPA Assessment Category 4C. Non-Pollutant Impairment. Waterbodies that are not supporting designated uses are placed in this category if the impairment is not caused by a pollutant but rather by pollution such as hydrologic modification or habitat degradation. Similar to Categories 4A and 4B, if the waterbody has other pollutants that need a TMDL, or there is an approved TMDL or pollution-control mechanism in place, the waterbody may also be listed in Categories 4A, 4B, and 5. Therefore, an AU with a pollution control Comment: Many waterbodies in Utah likely fall under this category, which will affect all other assessment criteria. For example, the Jordan River has undergone severe habitat degradation and hydraulic modification. The river has been channelized, dewatered, and not allowed to flush out sediments, including organic matter, that were typically flushed in the past during high water events. In addition, the Jordan River naturally flows through unconsolidated fine sediments including silts, clays, sands, and small gravels. These factors, human caused and natural, directly affect all other types of _pollution,' resulting in increased temperatures, reduced dissolved oxygen (DO) levels, lower O/E scores, etc. Therefore, in many instances, impairments to lotic systems are not caused by a pollutant but rather by _pollution' as defined by EPA. More emphasis by UDWQ should be placed on these types of impairments when evaluating _supporting' or _not supporting' beneficial uses.	None.	DWQ agre evaluating However, i Assessmen assessmen are identific is in the pro Category 4 Watershed For source the comme dissolved o (https://deo program/jo manageme

reciates the time and effort spent in making ndations for improvements to Utah's biological nt method. Improvements to all programs can made and it is important to seek advice from en making a change to any water quality program. DWQ and the primary scientific literature disagree opinion about the effectiveness of using O/E models ting stressor disturbance (e.g., please review: C.P. 2006. Quantifying biological integrity by completeness: it's utility in regional and global nts. Ecological Applications 16(4): 1277-1294). The /E is a scientifically defensible and a welld method for assessing biological degradation does that other methods are invalid. All biological nt approaches have strengths and weaknesses. pen to expanding on the existing biological nt methods in the future, provided that resources flected from other water quality priorities to do so. ees with the commenter on the importance of impairments that are caused by pollution. identifying sources of pollution is not part of the ent Methods of the IR. Instead sources are d as part of the TMDL or related source nts. (See section Unknown Sources in the nt methods for more information on how sources ied and tracked in the assessment process). DWQ rocess of drafting implementation guidance for 4C and 5-alt. For more information, contact DWQ's Protection Section Manager.

e concerns specifically related to the Jordan River, enter should refer to the ongoing development of a oxygen TMDL for the Jordan River eq.utah.gov/water-quality/watershed-monitoringordan-river-dissolved-oxygen-tmdl-watershednent-program).

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
David	Richards	DRichards_ 12152018_v 1.pdf		34	Assessments Specific to Flowing Surface Waters of the State and Canals CONVENTIONAL PARAMETER ASSESSMENTS Page 40. Table 11. Conventional parameters and associated designated uses as identified for assessment purposes. Total dissolved solids (TDS) Comment: TDS are also known to negatively affect aquatic life. Recommend adding Aquatic Life to Designated Use.	Out of Scope.	DWQ is co waterbodie numeric T outside the standards https://dec quality) an Clean Wa aquatic life the scope Triennial F https://dec quality.
David	Richards	DRichards_ 12152018_v 1.pdf		48	Although O/E may have an intuitive biological meaning, there are so many assumptions, generalizations, and errors associated with derivation of results that its accuracy in assessing loss of taxa and impairment is highly questionable.	None.	DWQ and opinion ab evaluating Hawkins, of taxonomic assessme biological and errors which hav associated assumptio and have other meth have expe

ommitted to protecting aquatic life uses of Utah's les. Utah does not currently have aquatic life use DS criteria and the development of standards are le scope of the Integrated Report. Utah water quality are reviewed every 3 years (see

q.utah.gov/water-quality/triennial-review-waternd as of the last review, USEPA had not published ater Act Section 304(A) recommendations for TDS e criteria. The development of standards are outside of the Integrated Report. Information on the Review can be found at the following web address: q.utah.gov/water-quality/triennial-review-water-

d the primary scientific literature disagree with your bout the effectiveness of using O/E models for g stressor disturbance (e.g., please review: C.P. 2006. Quantifying biological integrity by c completeness: it's utility in regional and global ents. Ecological Applications 16(4): 1277-1294). All assessment methods have intrinsic assumptions s. Well over 100 peer-reviewed studies, many of ve been cited in the biological assessment chapter ed with the Integrated Report, have evaluated the ons and errors associated with RIVPACS methods found the approach to be on par or superior to thods for purposes of accurately identifying sites that erienced biological degradation.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
David	Richards	DRichards_ 12152018_v 1.pdf		49	There are several other diversity metrics in use throughout the world that are much simpler to derive and interpret than RIVPACS O/E (Table 1 for example and see Literature Cited). These metrics can easily substitute for O/E or at least supplement it. For example, richness and evenness are better indicators than O/E for several reasons, 1) they are not confounded with other models (e.g. PRISM, a costly and proprietary model that is not transparent except for those who can afford to pay for its use), 2) they are independently verifiable, and 3) they allow assessment of change at local-scale due to point source impacts.	None.	Diversity n ecological influenced when used substitutal signals fro Carlisle 20 preferable suggests, about the types of st are often h scores for Additional available. validated. scientists continually independe assessme pseudorep implement
David	Richards	DRichards_ 12152018_v 1.pdf		50	As I have emphasized to UDWQ on numerous occasions, RIVPACS O/E models do not quantify loss of predicted taxa. In the case of UDWQ assessments, O/E quantifies only those taxa that were identified from a single (N = 1) composite sample collected from several types of habitats (including riffles and runs) that can exhibit much variability between the macroinvertebrate assemblages. Samples were also identified in the laboratory using a subsample (typically 600 organisms, with large and rare counts). O/E simply quantifies what was observed in a sample, nothing more. Taxa not identified may have or may not have been lost from the waterbody; UDWQ can only conclude that they simply weren't observed.	Clarified Methods text.	The comm a taxon fro model res Standards simply qua those taxa predicted

neasures were abandoned long ago by the assessment community because they are strongly by natural setting and are not easily interpretable d in this context. In that sense, they are not at all ble for O/E, which attempts to parse out natural om stressor signals. Please review Hawkins and 001 for an example that shows how O/E is to plain taxa richness. As the commenter other metrics may provide additional information nature of biological degradation and clues to the ressors causing the disturbance. However, these highly correlated, which complicates combining the purposes of making an impairment determination. ly, 1) PRISM data are not proprietary and are freely They have been independently tested and They are used by a very large community of across a wide range of disciplines and are updated and corrected, 2) any O/E model is ently verifiable, 3) O/E can be used for point source ents and sometimes must be used to avoid plication issues when BACI designs cannot be ted.

menter is correct with the assertion that the -lossl of rom a waterbody is strictly an inference made from sults. DWQ removed the text from the Narrative s: Biological Assessment section . O/E does not antify what was observed in a sample; it quantifies a that were observed in a sample that were to occur in the absence of human disturbance.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Respons
David	Richards	DRichards_ 12152018_v 1.pdf		51	Probability of Capture > 50% Again, as I have discussed on numerous occasions, probability of captures (Pc's) >50% preclude those very macroinvertebrate taxa that constitute biological integrity in a water body. As an example, waters in the Bonneville Basin and in some other parts of UT have unique mollusk assemblages found nowhere else in the world. Most of Utah's mollusks, including native mussels, clams, and non pulmonate snails do not occur in UT waters at Pc rates > 50%. By relying on RIVPACS O/E > 50% Pc, UDWQ failed to protect the unique mollusk assemblages in UT and apparently was completely unaware of their declines during the time period when continued molluscan viability may have been protected/ensured. This reliance on a single metric with > 50% Pc to assess biological integrity also likely is not protecting other rare and uncommon macroinvertebrates (< 50% Pc) that are again, by definition, biological integrity.	None.	In short, the use sites that have be exceptions, O/E precise than O/E reason is that co given stream are anthropogenic al facts supported i States and count citations that eva contexts is provid result in a failure relatively low in a absence at a site This is likely why degradation and cases, rare taxa which all biologic incorporate beca against regional important, but the scope and intent purposes of the I endangered speet through the Enda Act. To our know occurred long be assessments. Th with the US Fish Act concerns, ha loss of mollusks
David	Richards	DRichards_ 12152018_v 1.pdf		52	Calculating E' using a probability of capture (Pc) of >50% is extremely problematic and results in a poor assessment of biological integrity. Taxa with Pcs < 50% are likely the most sensitive taxa and the very taxa that respond to impairment more that those with Pc > 50%. The statement that -Using a Pc limit set at greater than 50% typically results in models that are more sensitive and precise, which results in a better ability to detect biological stressl is based on two relatively limited studies that evaluated precision using their own methods, i.e. circular reasoning and these were hardly typical. UDWQ is setting a precedent by using Pc > 50% based on results that are not solidly supported in the literature and not established scientific fact but based on a vague, ill-defined term in the two studies: sensitivity'.	None.	DWQ is not settin methods include provide these res about why this is approaches, mod Pc >0 and Pc >0 programs throug the United States a Pc >0.5 becaus precise and sens lower Pc values.

ne use of a Pc >0.5 helps more accurately identify nave been biologically degraded. With a few , O/E based on Pc >0.5 is more sensitive and an O/E based on all possible taxa (Pc >0). The that common/core taxa that are characteristic of a am are typically the ones that are most sensitive to enic alteration at that site. Due to these scientific orted in peer-reviewed, scientific literature, most countries use Pc >0.5. A suite of research nat evaluated different Pc thresholds in different provided. It is true that these O/E calculations may failure to consider rare taxa. Rare taxa are often ow in abundance, in which case their presence or at a site is strongly influenced by sampling error. ely why the use of Pc >0.5 is more sensitive to on and precise than the use of Pc >0. In other e taxa are limited to a small number of locations, biological assessment methods cannot easily e because they are dependent on comparisons gional reference composition. Rare species are but their identification and protection is beyond the intent of biological assessments conducted for of the Integrated Report. The protection of rare and ed species is an important concern, addressed e Endangered Species Act, not the Clean Water r knowledge, the disappearance of rare mollusks ong before DWQ conducted biological nts. The Division of Wildlife Resources, who works S Fish and Wildlife Service on Endangered Species rns, has that regulatory authority. It is aware of the llusks and working on this problem. ot setting precedent by using a Pc >0.5. The nclude eight peer reviewed articles on the topic that ese results and also include extensive discussion this is the case. In the early stages of RIVPACS es, models were routinely constructed using both a Pc >0.5; however, most biological assessment throughout Europe, Australia, New Zealand, and States that use RIVPACS methods have settled on because they are almost always more accurate, d sensitive to anthropogenic degradation than

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's R
David	Richards	DRichards_ 12152018_v 1.pdf		53	From the lengthy discussion in the draft, it appears that UDWQ is more interested in the continued reliance on a single metric (O/E) that had good statistical properties (e.g. more sensitive and precise) than incorporating other metrics or using a < 50% Pc that may prevent loss of rare, uncommon, and unique taxa and provide greater insights into the types of impairments that Utah waterbodies experience.	None.	At this tim approach performing determina understan impairmer biological of technica completed
David	Richards	DRichards_ 12152018_v 1.pdf		54	It is my opinion that O/E models may be able to detect large levels of biological stress, but not biological integrity.	None.	O/E is not
David	Richards	DRichards_ 12152018_v 1.pdf		55	RIVPACS O/E precision and predictive ability The new O/E model in the draft is claimed to be a less precise predictive model than the previous one used by UDWQ. A loss of precision in the updated model should be critically reevaluated.	None.	The new r including l This is the model acc precision acceptable regulatory that the m conditions savings in partner wi resources collection
David	Richards	DRichards_ 12152018_v 1.pdf		56	Was this updated model selected because in saves time and money?	None.	While it is resource a enabling u and result impetus fo whenever that work
David	Richards	DRichards_ 12152018_v 1.pdf		57	Several problems in simplifying the model are as follows: Incorporation of 1st order and 8th plus order streams and rivers. There is a big difference in macroinvertebrate assemblages in typical 1st order vs. 2nd to 5th order streams and between 8th plus rivers and 2nd to 5th order streams (please review the River Continuum Concept by Vannote et al.).	None.	DWQ is a biological article on variables watershed prediction that the m explicitly a

he, DWQ has identified the RIVPACS O/E index as the most scientifically defensible method for g bioassessments for making impairment ations. Other methods can be used to better hd the nature of biological degradation for any ints that are identified using O/E. Alternative assessment methods would require the same level cal review and documentation that has been d for the currently employed methods.

biological integrity but an important aspect of it.

model incorporated a wider range of reference sites, larger rivers and has an expanded index period. e most likely explanation for the slight decrease in curacy and precision. However, the accuracy and of the current model are at a level considered e for conducting biological assessments by agencies worldwide. It is also important to note nost important reason for expanding the breadth of applicable to the model has led to considerable public resources. DWQ is now able to better ith state and federal agencies to leverage our s, saving well over \$100,000/year in sample and processing costs.

true that the model has saved DWQ and natural agency partners' considerable time and money by us to more effectively collaborate sample collection ts in a consistent manner, this was not the principal or the update. DWQ routinely updates the model r sufficient data from new reference sites suggests to construct a new model is warranted.

ware of naturally-occurring longitudinal changes in composition in stream ecosystems and the seminal this topic cited by the commenter. Several predictor in the RIVPACS model were included (e.g., d area, mean watershed elevation) so the model is could account for such differences. This means nodels predictions for the taxa expected at a site (E) account for stream size.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
David	Richards	DRichards_ 12152018_v 1.pdf		58	Taxonomic resolution. A coarser taxonomic resolution results in a major loss of valuable information provided by individual taxa when 'rolled up' to higher taxonomic level. It also means that some unique or ecologically valuable taxa may be unaccounted for and lost from the AU without knowledge by UDWQ. For example: combining all species of caddisflies in the genus Rhyacophila at least 5 species or more could be lost without UDWQs knowledge. Or by combining all species of the mayfly genus Baetis, several of the more sensitive species may have been lost. UDWQ is well aware that taxonomic (phylogenetic) similarity has very little predictive power for sensitivity to different types of impairment (Richards 2016, UDWQ 2017).	None.	O/E is an of primary go discover w large amon coarse (fail scores as There are are tradeo resolution precise) bu responsive understand model is p providing t partner co of DWQ's
David	Richards	DRichards_ 12152018_v 1.pdf		60	Seasonality effects Seasonality also affects macroinvertebrate assemblages. Summer season has fewer taxa in larval stages that are needed for taxonomic identification and O/E derivation. Comparing summer collected vs. late autumn to early spring samples increases variability and thus O/E results (e.g. summer samples likely will have fewer taxa and lower O). Because of these pitfalls, I caution UDWQ not to try to accommodate broader spatial and temporal data into O/E models simply to cut costs. This will result in loss of predictive power in ability to detect impairment. Remember that all assessments and monitoring efforts will eventually have to be measured at the watershed or site-specific level and a macroinvertebrate assessment program that reduces variability at the onset will be more cost effective in the long run.	None.	The RIVP/ with repea range of v
David	Richards	DRichards_ 12152018_v 1.pdf		61	UDWQ is in an ideal situation to vastly improve macroinvertebrate biological assessments. UDWQ has a strong working relationship with the USU Bug lab, including the leading developers of RIVPACS models at USU and other entities. It should take full advantage of this opportunity to develop a robust biological assessment program comparable to other federal, state, tribal, and county agencies in the region.	None.	At this time recommen RIVPACS defensible assessme RIVPACS responsive please rev states and respect to additional identified t

effective indicator of biological condition. The bal of this tool for water quality management is to whether the aquatic life use is supported. A relatively unt of literature empirically shows that the use of amily) taxa can often provide similar assessment fine level taxonomic resolution in O/E models. many states that use just family level data. There offs in the use of fine versus coarse taxonomic data. Coarse data are easier to model (more out use of fine resolution data may produce more e indices. Please review Hawkins 2006 to nd a few good examples of these tradeoffs. DWQ's perhaps less sensitive, but more precise while also the cost effectiveness of incorporating water quality llected invertebrate data; creating critical efficiency resources.

ACS model was constructed from reference sites at visits across seasons. Therefore, the temporal variability across seasons is implicit in the model.

e, DWQ, in collaboration with many of the entities inded by the commenter, has identified the O/E index approach as the most scientifically e method for performing bioassessments for ent purposes. The rationale for this decision is that is models tend to be more precise and often more e to known stressors than other indices (e.g., view Hawkins 2006, Hawkins et al 2010). Many d countries have made a similar determination with assessment decisions and principally use metrics for further exploration of impairments by O/E.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
David	Richards	DRichards_ 12152018_v 1.pdf		62	It appears to me that many millions of dollars have been spent developing RIVPACs O/E regional models when it would have been much more prudent to train UDWQ staff to recognize the macroinvertebrate taxa that occur in UT and become proficient in understanding their ecology, natural and life history, in order to examine sample results and easily evaluate which taxa were missing and why at the watershed level.	None.	DWQ has O/E mode models wa informatio US Forest all use O/E meet the r conducted national ex commente assessme consistent positioned identified t
David	Richards	DRichards_ 12152018_v 1.pdf		63	Model Construction and Performance Page 49. Table 12. Comment: These predictor models and variables are mostly watershed based. It is commendable that UDWQ is now assessing biological integrity at the watershed level rather than at the region wide level, as it has done in the past.	None.	Site-specific develop R means. Th 800 m white rather that assessme approach. assessme degradation have nevelow waterbodie to better u for plannin
David	Richards	DRichards_ 12152018_v 1.pdf		64	By assessing biological integrity at the watershed level, more accurate and precise conclusions will be made. However, watershed averages are just that: averages. Macroinvertebrate assemblages can easily change from the top of a watershed to the bottom, and an average value likely will not capture those responses.	None.	Site-speci develop R means. Th 800 m whi rather thar predictor v were likely calculated continuum

not spent millions of dollars developing regional ls. Much of the data that was used to develop as collected from EPA-funded projects that used the n for other purposes. DWQ has partnered with the Service, BLM, EPA, and Salt Lake County—who E—to offset costs and ensure that biological data needs of multiple agencies. Model construction was by DWQ staff working in collaboration with xperts. The types of heuristic evaluations that the er recommends are not well suited to making nt decisions because they are difficult to conduct ly and objectively. Instead they are better to assist with further evaluations of impairments hrough empirically derived indices such as O/E. fic, GIS-based predictor variables are used to RIVPACS models rather than regional watershed he spatial resolution for these predictor variables is ich makes the assessment at reach segment scale n watershed. DWQ has conducted biological ents since the 2008 IR using the same site-specific It is true that DWQ has extrapolated site-specific ent results to better understand the extent of on that has occurred regionally, but these analyses er been used to formally assess specific es. Instead, these regional results have been used Inderstand broad patterns of biological degradation ng purposes.

fic, GIS-based predictor variables are used to RIVPACS models rather than regional watershed the spatial resolution for these predictor variables is ich makes the assessment at reach segment scale in watershed. Many of the empirically derived variables that are used in Utah's RIVPACS model y selected because they help ensure that E is I based, in part, on the site position along a river n.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
David	Richards	DRichards_ 12152018_v 1.pdf		65	As discussed in earlier comment letters, PRISM models are proprietary (black box) and as such are not independently verifiable and thus scientifically invalid. The scientific method requires the possibility of independent validations. PRISM models are not reproducible or transparent, which is what we are all striving for. PRISM models rely on historic data (e.g. most of the climate data metrics in Table 12). As an example, -Watershed maximum of mean 1961-1990 annual number of wet days' was 28-year-old data. Conditions likely have changed substantially in 28 years. The past has absolutely nothing to do with the macroinvertebrates collected next year. Similarly, the average of multiple years has nothing to do with invertebrate assemblages that are mostly multivoltine or univoltine. Their lives are shaped only by the conditions in the years during which they lived not over multiyear averages. Variables in Table 12 had nothing to do with environmental conditions during the time when the sampled invertebrates lived. This introduces an unmeasurable and significant error to every Pc calculated and prevents the use of field data, which would be site specific. It may have been useful in developing regional models but it has no place in continued assessment/monitoring and should never be used as such. Only field measurements should be used when possible.	None.	While the methods, i used rather reiterating overarchin determine comparabl -Watersher wet daysll distinguish distinction important with disproport once dry a reasoning of record is patterns va true that se precipitation preci
Jonathan	Ratner	JRatner_12 062018.pdf		77	Thank you for the opportunity to comment on the proposed 2018 Listing Methodology. Our comments and requests for clarification are rather limited as the document is solid and well thought through. Below are the issues we see.	None.	DWQ appi regarding
Jonathan	Ratner	JRatner_12 062018.pdf		79	Table 10, likewise, does not provide the needed clarification. For instance, what is -Landscape Analysisl?	Clarified Methods table.	40 CFR se assemble quality rela EPA's July (https://ww 10/docume states solie types, incle However, data, so D Thank you

model building methodology is explained in the including why GIS-based predictor variables are er than in-stream physical data, it is worth . While the model predictions are site-specific, the ig objective is to use the watershed descriptors to the suite of reference sites that are most le to the site of interest. Variables such as ed maximum of mean 1961-1990 annual number of was likely statistically significant because it helped between wetter and dryer areas of the state, a that the commenter would likely agree to be when accounting for natural variation in ertebrate composition statewide. It is true that this changed in the past 29 years, but this would only h respect to model predictions if they changed ionately. In other words, if areas of Utah that were are now among the wetter areas of the state. Similar also explains why averaging over a longer period is preferable to contemporary data. Weather vary from year-to-year, in any given year it is often ome areas of the state receive above average on while other areas receive below average on. As a result, averaging over several years better indication of climatic difference from one ne state to another. PRISM data are not proprietary eely available. They have been independently I validated. They are used by a very large y of scientists across a wide range of disciplines ontinually updated and corrected reciates your encouragement and feedback

the 303(d) assessment methods.

ection 130.7(b)(5) requires that -Each State shall and evaluate all existing and readily available water ated data and information to develop the list. I In y 29, 2005, guidance

vw.epa.gov/sites/production/files/2015-

ents/2006irg-report.pdf), EPA recommended that cit data and information from several different data uding results from relevant landscape analyses. EPA didn't define types of "landscape analysis" WQ removed landscape analysis from Table 10. If or the comment.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's R
Jonathan	Ratner	JRatner_12 062018.pdf		80	Is Multiple Indicators Monitoring (MIM) suitable for listing under habitat degradation? If so, what are the criteria or triggers for departure that would result in listing.	None.	The first s whether th (both num uses. If th uses, it wi evaluation potential p referring a assessme extent to biological definitive agrees tha integration technical for the bio a specific integrated would be
Jonathan	Ratner	JRatner_12 062018.pdf		81	Is Proper Functioning Condition (PFC) data useful for listing determinations?	None.	DWQ is c assessme standards undergon process, I (PFC) dat assess the however, available with water beneficial UAC R31 submit the
Jonathan	Ratner	JRatner_12 062018.pdf		82	Is Aquatic AIM, the BLM's method of riparian condition assessment and inventory suitable for listing determinations? This issue needs much more elaboration in order to be useful.	None.	Thank you the US BL protocols routinely i macroinve goal of ou assessme not yet av

step in the assessment process is to determine he waterbody is meeting water quality standards neric and narrative), regardless of surrounding land he waterbody is considered not meeting any of the ill be identified on the 303(d) list for further n such as the cause(s), source(s), and magnitude of pollutants. The physical data the commenter is are not currently used in conducting water quality ents. All are potential candidates for evaluating the which habitat degradation is contributing to degradation; however, DWQ has not developed methods quantifying habitat degradation. DWQ at habitat methods would be useful, but the n of available tools would require the same level of review and documentation that has been completed blogical assessment program. If the commenter has proposal for how these approaches could be into an integrative habitat assessment, DWQ interested in seeing these details. currently developing water quality standards and ent methods specific to wetlands. Until the and methods are vetted internally and have e a public comment or DWQ stakeholder review DWQ will not assess Proper Functioning Condition ta that is traditionally used to characterize and e physical functioning of riparian-wetland areas. If, there are PFC data that (1) meet DWQ's readily and credible data requirements, (2) are associated rbodies that are assessed by the IR, and (3) have uses and numeric criteria associated with them in 7-2, DWQ would encourage the commenter to e data during the IR's Call for Data. u for this recommendation. DWQ works closely with _M's AIM Program to ensure our field and lab

and quality control are consistent. Therefore, we incorporate the BLM AIM Program benthic ertebrate results into this assessment. It is a shared ir programs to formalize riparian condition ent methods. However, this project continues and is vailable for implementation into the IR.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Jonathan	Ratner	JRatner_12 062018.pdf		83	At 19, the ability to reject data based on undefined -resource limitationsII does not meet the CWA's -existing and readily available dataII standard We understand resource limitations but the process needs to be designed to accept and use all -existing and readily available dataII. If dates or deadlines need to be adjusted then the process needs to do that as opposed to simply rejecting data that is -existing and readily availableII simply because of, for instance, budget cuts or staffing issues. Table 3 contains the same issues as discussed above.	Revised Methods text.	DWQ app method's ' section an table was developed different fo submitted review of t understan the metho removed t "partially a Thank you
Jonathan	Ratner	JRatner_12 062018.pdf		85	In addition, it is unclear what -Data are collected at pre-determined locationsIl means. We collect data under an SAP that allows for locations to be selected based on observed conditions. As such, specific locations are not defined in the SAP. From the language, it appears DEQ could reject data based on this current wording. We suggest the phrase be removed.	Clarified Methods text.	DWQ agre general. T
Jonathan	Ratner	JRatner_12 062018.pdf		86	In Table 3, we are concerned that existing and readily available data could be rejected based on database issues. For instance, habitat degradation or narrative standards data may not fit into structured databases such as dozens or hundreds of photos or field sheets from habitat assessment methodologies. This would clearly be -existing and readily available datall	Revised Methods text.	DWQ agree Table 3 th are design the data si or may be or perform For furthen Readily Av methods th may includ Narrative A Standards Water Qua through th submitted DWQ's Ca (e.g., Tabl Matrix in T methods fi However, numeric ty provided th availability assessme included in 3 and the Assessme

reciates the feedback and concerns regarding the "Existing and Readily Available Data Defined" and Table 3. The original intent of the section and to demonstrate the tools and processes DWQ d since the previous IR to accommodate the many orms and types of data and information that are during the IR's Call for Data. However, after the publicly submitted comments, DWQ ads how this may have been miscommunicated in ods. DWQ reviewed the original language and the text that discussed resource limitations and the available" and "unavailable" rows from Table 3. u for the feedback.

ees with the commenter that this phrase is too his phrase has been removed from the document.

ees with the commenter and added a footnote to nat "DWQ data submission templates and processes ned to allow for data and information that may not fit tructure of EPA's Water Quality Exchange System used to support a credible data review (Tables 5-8) a narrative or high frequency data assessments". r clarification, DWQ also added to the "Existing and vailable Data Defined" section of the assessment hat existing and readily available data for the IR de: "Data collected for narrative assessments (see Assessment: Biological Assessments and Narrative for All Waters)", "Data obtained through EPA's ality Portal (WQP), "Data and information obtained e IR's public Call for Data", "Data and information to EPA's Water Quality Exchange System or all for Data to support a credible data submission les 5-8)", and "Data included in the Data Types able 10.". At this time, DWQ does not have or assessing physical habitat data or field photos. DWQ can evaluate qualitative data and other nonpes of information in the assessment process, hey meet other aspects of data credibility and r, as identified in tables 3, 5-9, and 10 of the ent methods. These types of information are n the assessment review process described in table "Aggregation of Site-Specific Assessments to ent Unit Categories", "Secondary Review", and 3" sections of the assessment methods. DWQ es the feedback.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Jonathan	Ratner	JRatner_12 062018.pdf		87	In the -partially availablell section we see -may have been collected for the purposes of answering specific questions or addressing specific issues.I Nearly all data could fall under this description. Certainly the data we collect is to answer the specific question of what are e coli levels at this stream reach. This criteria needs to be removed as a trigger for putting data into this category.	Revised Methods text.	DWQ agre available" DWQ inco that are ob Data. DWQ include da to DWQ du document not include purposes f 130.7 (b)(6 rejections and public comment

ees with the commenter and removed the "partially row from Table 3. The table now focuses on how orporates readily available information and datasets btained or submitted to DWQ during the IR's Call for /Q would also like to add that should DWQ not ata and information that is obtained by or submitted during the IR's Call for Data, DWQ will clearly t which information and dataset (or datasets) were led and why. DWQ does this for transparency to reviewers and to meet the requirements of CFR (6)(iii). Any concerns with data and information 6 (or data and information gaps), can be reviewed cally commented on during the Draft IR's public period.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Jonathan	Ratner	JRatner_12 062018.pdf		88	Again, data collected for narrative standards or habitat degradation may require data formats that do not fit in the normal EPA database setup. This data is still existing and readily available.	Revised Methods text.	DWQ appr method's T Defined" s was to der since the p forms and during the publicly su may have the table a qualitative the assess data credit and 10 of t information described Assessme Review", a methods. DWQ reme from Table available o processes may not fit Exchange review (Ta data asses Readily Av methods th may incluo Narrative A Standards Water Qua through th submitted DWQ's Ca (e.g., Table

reciates the feedback and concerns regarding the Table 3 and "Existing and Readily Available Data ection. The original intent of the table and section monstrate the tools and processes DWQ developed previous IR to accommodate the many different types of data and information that are submitted IR's Call for Data. However, after review of the Ibmitted comments, DWQ understands how this been miscommunicated and made several edits to and section described below. DWQ can evaluate data and other non-numeric types of information in sment process, provided they meet other aspects of bility and availability, as identified in tables 3, 5-9, the assessment methods. These types of on are included in the assessment review process in table 3 and the "Aggregation of Site-Specific ents to Assessment Unit Categories", "Secondary and "Appendix 3" sections of the assessment

oved the "unavailable" and "partially available" rows e 3 and added a footnote explaining that for readily data, "DWQ data submission templates and are designed to allow for data and information that t the data structure of EPA's Water Quality System or may be used to support a credible data ables 5-8) or perform a narrative or high frequency ssments". DWQ also added to the "Existing and vailable Data Defined" section of the assessment hat existing and readily available data for the IR de: "Data collected for narrative assessments (see Assessment: Biological Assessments and Narrative for All Waters)", "Data obtained through EPA's ality Portal (WQP), "Data and information obtained e IR's public Call for Data", "Data and information to EPA's Water Quality Exchange System or all for Data to support a credible data submission es 5-8)", and "Data included in the Data Types able 10."

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Jonathan	Ratner	JRatner_12 062018.pdf		89	In the -unavailable! Category, PDF's, such as field sheets or photos, are cited as unavailable. Again, we are concerned that limits beyond what the CWA intended are being applied.	Revised Methods text.	DWQ appr method's T Defined" s was to der since the p forms and the IR's Ca submitted been misc edits to the evaluate q information other aspe in tables 3 types of in process de Specific As "Secondar assessme DWQ reme a footnote data subm allow for d structure of be used to perform a DWQ also Defined" s and readily collected f Assessme Standards Water Qua through th submitted DWQ's Ca (e.g., Table

reciates the feedback and concerns regarding the Table 3 and "Existing and Readily Available Data ection. The original intent of the table and section monstrate the tools and processes DWQ developed previous IR to accommodate the many different types of data and information that are submitted in all for Data. However, after review of the publicly comments, DWQ understands how this may have communicated in the methods and made several e table and section described below. DWQ can jualitative data and other non-numeric types of n in the assessment process, provided they meet ects of data credibility and availability, as identified , 5-9, and 10 of the assessment methods. These formation are included in the assessment review escribed in table 3 and the "Aggregation of Sitessessments to Assessment Unit Categories", ry Review", and "Appendix 3" sections of the nt methods.

oved the "unavailable" row from Table 3 and added explaining that for readily available data, "DWQ nission templates and processes are designed to lata and information that may not fit the data of EPA's Water Quality Exchange System or may support a credible data review (Tables 5-8) or narrative or high frequency data assessments". added to the "Existing and Readily Available Data ection of the assessment methods that existing y available data for the IR may include: "Data or narrative assessments (see Narrative ent: Biological Assessments and Narrative for All Waters)", "Data obtained through EPA's ality Portal (WQP), "Data and information obtained e IR's public Call for Data", "Data and information to EPA's Water Quality Exchange System or all for Data to support a credible data submission es 5-8)", and "Data included in the Data Types able 10."

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's R
Jonathan	Ratner	JRatner_12 062018.pdf		90	Page 30: Since starting data collection in Utah many years ago, we have tried to move our approved Wyoming SAP over to Utah and get it officially approved and signed by Utah DEQ but have not gotten feedback as to what Utah DEQ sees as needed changes. Staff have told us that the Wyoming SAP is sufficient for their immediate purposes of reviewing our data but the process to get a fully approved Utah SAP has not happened. We would appreciate clarification as to what updates are needed in order to get Utah DEQ approval.	None.	DWQ app commente previously Gardberg process th commente SOPs, etc Call for Da are repea the types quality do Credible I
Jonathan	Ratner	JRatner_12 062018.pdf		91	Also our SAP incorporates the elements of a QAPP. It appears from pages 29 and 30 that we need to separate out these two aspects of the SAP into two separate documents. Is that correct?	None.	QAPPs, S the Integra electronic
Jonathan	Ratner	JRatner_12 062018.pdf		92	In Table 5, we see that flow data has been made mandatory for all Grade A data. Is this necessary for all grab sample parameters?	None.	In Table 5 However, public con Conflicting Appendix request flo document when data evaluate t demonstra not suppo in UAC R3 preemptiv upon DW0 removed f
Jonathan	Ratner	JRatner_12 062018.pdf		93	In Table 9, we see that, under QA/QC is -incubationII. It should be clarified as to what aspect of -incubationII information is required. Is it time in and time out, temp in and out, both or other information.	Revised Methods text.	In Table 9 recorded and tempo out of the when sam example of Appendix Escherich Using the (https://de quality/do Rev%201 clarificatio

preciates the feedback and apologizes that the er has not received a response on the SAP that was y submitted for DWQ approval. Please contact Jodi to the Watershed Protection Manager, who will he SAP. DWQ would like to clarify that the er does not need a DWQ approved QAPP, SAP, c. DWQ requests this information during the IR's ata to ensure results from disparate data sources atable and scientifically defensible. For examples of of content EPA and DWQ require for their data becuments, please refer to the "Components for Data" section of the assessment methods.

SAPs, and SOPs that are submitted to DWQ during ated Report's Call for Data may be submitted ally as either one or several smaller documents.

5, flow data is not required for Grade A data. , if during the secondary review process, DWQ or mmenters have any data concerns (as defined in the g Assessments of Water Quality Standards and 3 sections of the assessment methods), DWQ may ow or any other Grade A or B credible data tation. DWQ requests and requires this information a concerns are raised, so that DWQ can further the extent to which data is representative and rates clear and convincing evidence of supporting or orting the beneficial uses assigned to the waterbody 317-2. If the requested information was not vely submitted during the Call for Data or provided 'Q request, the data of concern may be rejected and from assessments.

a) "incubation" refers to data and information that is on DWQ's E. coli bench sheets and relates to time erature (i.e., time samples were placed in and taken incubator and the temperature of the incubator nples were placed in and taken out of it). For an of how DWQ records this information, please refer to 3 of DWQ's Standard Operating Procedure for nia coli (E. coli) and Total Coliform Quantification IDEXX QUANTI-TRAY/2000 System eq.utah.gov/legacy/monitoring/waterncs/2014/05May/SOP EcoliSampleAnalysis 5.1.14

.2.pdf). DWQ added a footnote to table 9 with this n.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's R
Jonathan	Ratner	JRatner_12 062018.pdf		94	At 41, discussing minimum number of grab samples for determining exceedances, is there a minimum time between samples or has this not been defined in the regulations?	None.	DWQ doe conventio are multip DWQ will result for p R317-2, o minimum sample te to the "Hig and "Esch the asses
Jonathan	Ratner	JRatner_12 062018.pdf		95	Figure 2 – Assuming 10 samples are collected and 2 exceed the standard by, for example, 100%, and 2 samples are collected and both exceed by 100%. It is not clear what the rationale is for rejecting latter dataset as insufficient, given they both show the exact same exceedances.	Issue added to the Methods Current Review Topics Tracking Workplan list for future IRs.	DWQ agree assessme exceedan to list a wa dataset. E on what th quantify a DWQ well studies ar threshold sample siz
Jonathan	Ratner	JRatner_12 062018.pdf		96	At 13 and elsewhere, there is a much greater need to define acceptable data types and methods for determining listing and impairment under the categories of hydrologic modification and habitat degradation. These issues are widespread throughout Utah, but there is little to no guidance in acceptable data documenting these conditions. The proposed listing methodology document needs to go much further in clarifying this currently murky issue.	None	DWQ agre evaluating However, Assessme determine process. (methods f and tracke process o and 5-alt. Protectior
Jonathan	Ratner	JRatner_12 062018.pdf		97	Assuming there is a need for more than one sample to exceed in order to list it makes no difference whatsoever if more than the minimum number of samples are collected.	Issue added to the Methods Current Review Topics Tracking Workplan list for future IRs.	DWQ agro assessme threshold impaired r in an IR p analysis a DWQ can quality co others to p evaluating

es not define a minimum time between samples for onal grab sample assessments. However, if there ole grab sample measurements in a single day, only assess a single daily value (i.e., the highest parameters with not-to-exceed criteria in UAC or the lowest reported value for parameters with criteria in UAC R317-2). For assessments with emporal requirements, the commenter should refer gh Frequency Assessments for Dissolved Oxygen" herichia Coli Assessment for All Waters" sections of ssment methods.

ees with the commenter that with conventional ents based on grab sample data there may be an ace frequency threshold where it may be appropriate raterbody as impaired using an insufficiently sized DWQ is working to conduct analysis and research hat threshold may be, so that DWQ can better and address not supporting water quality concerns. Icomes Western Watersheds and others to provide and data that could be used in evaluating what that may be, balanced against an appropriate minimum ize.

ees with the commenter on the importance of g impairments that are caused by pollution. identifying sources of pollution is not part of the ent Methods of the IR. Instead sources are ed as part of a TMDL or related source assessments (See section Unknown Sources in the assessment for more information on how sources are identified ed in the assessment process). DWQ is in the of drafting implementation guidance for Category 4C For more information, contact DWQ's Watershed in Section Manager.

ees with the commenter that with conventional ents based on grab sample data there may be a where an insufficiently sized dataset may be regardless of how much additional data is collected beriod of record. DWQ is working to conduct and research on what that threshold may be, so that better quantify and address not supporting water oncerns. DWQ welcomes Western Watersheds and provide studies and data that could be used in g what that threshold may be.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Jonathan	Ratner	JRatner_12 062018.pdf		98	At 42, the document states -For readily available and credible data within the period of record, DWQ will correct or remove all questionable data points (i.e., sensor drift, calibration shift, strange anomalous points, and battery issues) before data analysis and interpretation beginsll These issues would have been flagged as <u>qualified</u> or <u>invalid</u> during the submitter's QC processes. Without being determined <u>qualified</u> or invalid by the sampler and QC officer it would be nearly impossible for the DEQ to determine what should be <u>qualified</u> or <u>invalid</u> (described as -questionablell above. We are concern that valid data could be rejected based on this undefined -questionablell determination.	Clarified Methods text.	DWQ agre corrections should be submitter. and ensur the assess assessme document DWQ dete DWQ will additional high frequ document data for th assessme
Jonathan	Ratner	JRatner_12 062018.pdf		99	If the DEQ thinks some data are -questionablell and they are not flagged by the submitted as _qualified' or _invalid', the DEQ needs to question the submitter to investigate the cause.	Out of scope.	Following rejected by However, and data s that was re purposes. concerns period of r cycle. In th and "IR Co data recor DWQ's Mo the future.
Jonathan	Ratner	JRatner_12 062018.pdf		100	Page 84: Reasonable time period is way too vague. This needs to be more fully defined.	Out of Scope.	Developin assessme plans go th process, in Board for approval. plans for p waters bac Watershee developed approval of Guidance Requirement the Clean Water Act Reporting

ees with the comment that any necessary ns or removal of data points in high frequency data

e performed and identified by the data collector or . In these cases, DWQ will use the corrected dataset re that data identified for removal are not included in sment. DWQ has clarified this text to state that, "For ents, DWQ will use corrected high frequency data as ted by the data submitter. If during the assessment ermines that additional corrections may be required, contact the data submitter for clarification and information." As described in Table 6, submitters of uency dissolved oxygen data should submit tation of the QA/QC procedures performed on raw heir submitted data to be included in the ent.

up with submitters whose data record(s) have been y the submitter is outside the scope of the IR. DWQ agrees with the commenter that collectors submitters should be aware of problems with data ejected for 305(b) and 303(d) assessment

To assist with this and help communicate with data, DWQ publishes all data from the IR record that was used for the current assessment he published datasets, DWQ populates "IR Flag" omment" columns, where reviewers can see if a rd was rejected and why. Trainings hosted by onitoring Section should help reduce these issues in

g a pollution control plan for category 4B ents is outside the scope of the IR. Pollution control hrough a robust internal and external review ncluding a presentation to DWQ's Water Quality approval and a submission to EPA for final Concerns regarding the time frame specified in collution-control requirements to bring impaired ck into attainment should be raised to DWQ's ed Protection Section manager when a plan is being I. For more information about the development and of a pollution control plan, please refer to EPA's for 2006 Assessment, Listing and Reporting ents Pursuant to Sections 303(d), 305(b) and 314 of Water Act and Information Concerning 2008 Clean Sections 303(d), 305(b), and 314 Integrated and Listing Decisions.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Marian	Rice	MRice_120 72018.pdf		102	 After review of the DRAFT 2018/2020 303(d) Assessment Methods document we would like to provide the following comments: Existing and Readily Available Data Defined Salt Lake City supports use of Citizen Scientist's efforts and data collected to help provide education and capacity building to the public. Also, we support use of the data collected to qualitatively identify a potential issue. However, as the data and collection methods could be inconsistent and thus questionable, we do not support use of the data to determine if the waterbody is supporting or not supporting the assigned beneficial use and numeric criteria. Furthermore, any data utilized must be credible, and needs to be thoroughly reviewed by DWQ prior to use. 	None.	DWQ app readily ava 130.7(b)(5 all existing a waterboo beneficial the IR Cal citizen gro etc To er assessme various sa representa document requireme the metho data that a and 303(d submits da
Marian	Rice	MRice_120 72018.pdf		103	Data collected needs to follow appropriate methodologies and adhere to appropriate QA and QC procedures.	None.	DWQ agre demonstra 303(d) ass procedure assessme submitters assessme concerns a previous re during DW report or w 305(b) and not demon defensible in question For more i collect, pro please con are concer please con Laboratory section.

reciates the comment and concern about assessing ailable and credible data. As mandated in 40 CFR i)(i), (iii), and (iv) DWQ must assemble and evaluate and readily available data in determining whether dy is supporting or not supporting the assigned uses and numeric criteria in UAC R317-2. During I for Data process DWQ can receive data from ups, government agencies, private companies, nsure that the data used for 305(b) and 303(d) ents purposes are of high quality, consistent across mpling techniques from disparate data sources, ative of ambient conditions, and appropriately ed, DWQ goes through a thorough credible data ents review as outlined in the Data Quality section of ds. Following DWQ's review, any readily available are of Grade A or B quality are then used for 305(b)) assessments regardless of who collects and ata.

ees with the commenter on the importance of ating that data collected and used for 305(b) and assessment purposes follows established protocols, es, and methods. In the Data Quality section of the ent methods DWQ requires that collectors and data s provide documentation identified in the ent methods' credible data matrices when any are raised surrounding the quality of that data. (In reporting cycles, this request usually occurred VQ's secondary reviews prior to publishing the draft when responding to public comments on the draft ad 303(d) lists). If documentation is missing or does instrate that the data is of known quality or e, DWQ assigns a lower grade to the data record(s) on.

information on how DWQ and DWQ Cooperators ocess, and calibrate equipment for data collection, ntact DWQ's Monitoring Section manager. If there erns or suggestions on DWQ's quality process, ntact DWQ's Quality Assurance Officer and y Coordinator in the Information and Data Services

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Marian	Rice	MRice_120 72018.pdf		104	Conventional Parameter Assessments • High Frequency Assessments – SLCDPU supports the use of high frequency data collection for parameters such as DO, ph, Temperature, etc. We request the water quality sondes are calibrated on a regular schedule as well as if there is an event that requires additional calibration.	None.	DWQ agree regular an sample da purposes a methods. the assess demonstra submitters assessme concerns a document data is of I grade to th method's of For more i DWQ Coo frequency Section m
Marian	Rice	MRice_120 72018.pdf		105	We request that outlier and questionable data points be assessed and removed as applicable. If correction occurs, that data corrected needs annotation stating the correction.	None.	As part of potential d outliers in Appendix identify a p outlier is b such as: G laboratory (e.g., can there are d If during th as an outli will be pop Draft IR, ro decision. B available i excel data "draft2016 "Flag_Cor (https://de quality/mo

ees with the commenter on the importance of ad proper calibration and requires that any field ata used for 305(b) and 303(d) assessment follows established protocols, procedures, and DWQ also specifies in the Data Quality section of sment methods document that to support and ate that data is of high quality, collectors and data is must provide documentation identified in the ent methods' credible data matrices when any are raised surrounding the quality of that data. If the fation is missing or does not demonstrate that the known quality or defensible, DWQ assigns a lower he data record(s) in question (as outlined in the credible data matrices).

information or any concerns on how DWQ and operators calibrate instantaneous and high data probes, please contact DWQ's Monitoring anager.

DWQ's secondary review process, one of the data concerns DWQ evaluates is the presence of a sample location's dataset. However, as noted in 3, DWQ does not rely solely on a statistical test to potential outlier; instead, the identification of an pased on a scientific or a quality assurance basis, QA/QC field sampling blanks, duplicates/replicates, analytical batch QC, or the value is nonsensical not be measured with field/laboratory methods or concerns with the data quality).

he secondary review process, a record is identified lier, the record will be rejected and a DWQ comment pulated, so during the public comment period of the reviewers will be aware of the secondary review Examples of this type of documentation are in the 2016 IR dissolved oxygen river and stream a file. The commenter should refer to the Sir_do_datareport" worksheet table and the mment" column eq.utah.gov/legacy/programs/water-

onitoring-reporting/assessment/2016-integratedta.htm).

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Marian	Rice	MRice_120 72018.pdf		106	Components for Credible Data Monitoring locations – As DWQ assesses data from partners and performs their own Basin-specific data collection efforts, SLCDPU wants to ensure the monitoring locations are representative of the Basin as well as the specific Assessment Unit (AU). A single monitoring location per AU is not sufficient to determine if an AU and waterbody is supporting the assigned beneficial use and numeric criteria. Thus, we request there are multiple sampling locations per AU to provide a better and more holistic picture of the health of the waterbody. 	Issue added to the Methods Current Review Topics Tracking Workplan list for future IRs.	DWQ agree assessme DWQ's AL of groupin result, AU' tributaries number of AU's range section "D of the asse beneficial the site's I area). As a representa secondary adding the section all relation to the extent when ther DWQ will to expand sections o site densit
Marian	Rice	MRice_120 72018.pdf		107	Data collection during or recently after a precipitation event (rain, snow) needs to be identified and assessed as such. Ideally, the data collected should be dry weather monitoring.	None.	To ensure decisions conditions that data of document data matri quality of t sampling of With this in the second sampling of environme process for and Appen

ees with the commenter that it is important that ent sites be representative of the waters in the AU. J's were delineated into discrete units with the intent g waters likely to share similar characteristics. As a 's across the state range in size from first order to segments of larger river basins. Likewise, the sites that inform listing decisions in each of those e from one to many sites. As described in the eterminations of Impairment: All Assessment Units" essment methods, DWQ assesses each individual use and parameter for a single site (regardless of ocation in an assessment unit (AU) or drainage a first step towards better addressing the ativeness of a site to an AU, DWQ expanded on the review section in the 2018/2020 methods by e section -Assessment Unit Re-segmentation II. This ows DWQ to reevaluate the delineation of AU's in assessment sites to more accurately characterize of water quality assessments in an AU (especially e is conflicting assessment results at the site level). further consider the commenter's recommendation on the secondary review and AU re-segmentation f the assessment methods by considering sample y and distribution within an AU in future IRs. that data used for 305(b) and 303(d) assessment are of high quality, representative of ambient , and appropriately documented, DWQ requires collectors and submitters must provide ation identified in the assessment methods' credible ces when any concerns are raised surrounding the that data. This includes field documentation of conditions, flow data, and sampling analysis plans. nformation DWQ is able to better evaluate during dary review if sample conditions have a bias in their design or are not representative due to ental factors, such as extreme events, DWQ's or this is located in the secondary review section ndix 3 of the assessment methods document.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's R
Marian	Rice	Rice MRice_120 72018.pdf		• Data Outliers-We ask for specific identified and resolved in datasets	Data Outliers-We ask for specific information on how outliers are identified and resolved in datasets.	None.	As part of potential o outliers in Appendix identify a outlier is b such as: 0 laboratory (e.g., can there are
							as an out will be po Draft IR, r decision.
Marian	Rice	MRice_120 72018.pdf		109	 Harmful Algal Blooms (HAB) DWQ states the goal of the HAB assessment method is to identify waterbodies that experience HAB events that impair Class 2 recreational uses. In addition, we request the goal of the HAB assessment method is to also identify waterbodies that experience HAB events that impair Class 4 agricultural uses. We encourage coordination with the Utah Department of Agriculture and Food (UDAF) to identify methods associated with agriculture. 	None.	DWQ agre potential t continues Agricultura agricultura this time, recommen HABs and assessed encourage discussion regarding
Marian	Rice	MRice_120 72018.pdf		110	Cell Counts- We do not believe cell counts alone should be utilized to drive an Advisory of a waterbody. We request there is a review and possible revision of recreational guidance criteria.	None.	The issua separate p the IR. Re developed departme and Healt (https://de advisory/in advisory p of cell cou methods of stipulates color, odo cause uno

f DWQ's secondary review process, one of the data concerns DWQ evaluates for is the presence of a sample location's dataset. However, as noted in 3, DWQ does not rely solely on a statistical test to potential outlier; instead, the identification of an based on a scientific or a quality assurance basis, QA/QC field sampling blanks, duplicates/replicates, y analytical batch QC, or the value is nonsensical not be measured with field/laboratory methods or concerns with the data quality).

he secondary review process, a record is identified lier, the record will be rejected and a DWQ comment pulated, so during the public comment period of the reviewers will be aware of the secondary review

ees with the commenter that HABs have the to negatively impact agricultural uses. DWQ to coordinate with the Utah Department of re and Food regarding potential benchmarks for al use advisories or use assessments. However, at DWQ has not identified sufficient information to agricultural use assessment benchmarks for d as such agricultural uses are not currently under the HAB assessment methods. DWQ es the commenter to participate in broader ns with DWQ, local health departments, and UDAF this issue.

ance of recreational advisories or closures is a process from water quality assessment as part of ecommended health advisory procedures are d in conjunction with state and local health ents and stakeholders through DWQ's Water Quality th Advisory Panel

eq.utah.gov/legacy/divisions/water-quality/healthindex.htm). Recommendations for the health process can be made to that program. The inclusion unts as an indicator in DWQ's HAB assessment directly reflects Utah's Narrative Standard which that the presence of scums, nuisances such as or, or taste, or water quality conditions that may desirable human effects are a violation of the state's ality rules.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's R
Shera	Reems	EPA_Regio n8_1207201 8.pdf		159	The EPA commends the work of the Department of Environmental Quality on implementing outcomes from the continuous improvement process that has been underway for a few years. We want to thank you for providing the EPA the opportunity to review and provide comments on the Draft 2018/2020 303(d) Assessment Methods. This letter highlights a few of our more important comments that we would like to bring to your attention. We have provided additional comments and suggestions via the on-line submission tool located at https://deq.utah.gov/legacy/programs/water-quality/monitoring- reporting/assessment/draft-2020-methodology-for-integrated- report.htm.	None.	DWQ app improvem and the D Thank you for providi methods.
Shera	Reems	EPA_Regio n8_1207201 8.pdf		160	Data Sufficiency In interpreting macroinvertebrate RIVPACs results, the state proposes to apply different minimum sample size requirements to make a fully supporting use decision vs. non-supporting use decision. Table 13 (page 52) indicates that a minimum of one sample is required to make a fully supporting use determination, whereas a minimum of three samples is required to make a non-supporting use decision. The EPA recommends that UDEQ apply the same minimum sample size to make fully supporting and non-supporting use decisions when interpreting data for macroinvertebrates or pollutants.	None.	DWQ mad requirement to the intent 1 indicate condition not obviou conclusion score is st conditions The decis collected of impairment atypical, n

preciates your encouragement regarding the nents made to the water quality assessment program Draft 2018/2020 303(d) Assessment Methods. bu for using the public comment submission form and ding feedback on the draft 303(d) assessment

ide the decision to use different sample size ents based on reasonable assumptions with respect erpretation of biological data. An O/E score closer to es that a stream is indistinguishable from reference and fully supporting the biological uses. There are us sources of bias that could lead to an alternative on. In contrast, it is possible that a single low O/E strongly influenced by atypical environmental s (e.g., undetected flash flood, extreme drought). sion to make impairment decisions based on data over several samples avoids making erroneous ent conclusions based on samples collected in naturally occurring conditions.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Shera	Reems	EPA_Regio n8_1207201 8.pdf		161	Dissolved Oxygen The EPA recognizes the inherent challenges with assessing dissolved oxygen (DO) in Utah's lakes and reservoirs. Based on the assessment methods, it is unclear whether the state's proposed approach for assessing for DO impairments in lakes and reservoirs is consistent with the state's DO water quality standards. The EPA recommends that UDEQ provide additional clarification on this assessment method and its harmonization with the DO water quality standards. Additionally, for high frequency assessments (assessment of continuous data loggers), the EPA requests that UDEQ provide additional information explaining the selection of a 39 contiguous-day minimum dataset to make an assessment determination. This approach appears to represent a significant da\ta/workload requirement and does not provide the flexibility to consider DO averaging periods that could be assessed using less data collected over shorter timeframes (e.g., daily minimum value, 7-day average).	Issue added to the Methods Current Review Topics Tracking Workplan list for future IRs.	DWQ agree the way D assessme rivers & st specific po method ch issue to th IR method assessme with stake DWQ agree high freque fully asses reviewed t requireme now reads that daily a frequency complete o which at less DWQ also and 4. Inst if at least t calculated
Shera	Reems	EPA_Regio n8_1207201 8.pdf		162	Assessment of Wetlands The EPA applauds the work that UDEQ has undertaken to compile the information collected over the past several years for the wetlands surrounding the Great Salt Lake and to develop an approach to assess these wetlands. EPA found the presentation, -What Should the Water Quality Goals for Great Salt Lake Wetlands Be?II from the Watershed Symposium on November 15, 2018, to be very informative. Based on the information presented and the work conducted to date, EPA recommends including a section that discusses UDEQ's approach to assessing the wetlands surrounding the Great Salt Lake and other wetland ecosystems in the 2018/2020 Assessment Methods document.	Out of scope.	DWQ appr improveme wetlands. DWQ is no under dev methods a have unde review pro stakeholde developme Wetlands quality/we

ees with the comment that there is inconsistency in O criteria have been interpreted under the DO ent approaches between lakes & reservoirs and treams. However, the comment does not identify a oint of confusion and does not make specific hange recommendations. DWQ has added this ne methods review topics tracking system for future ds and will continue to work to improve DO ent methods during future IR cycles, collaborating eholders and EPA.

ees with the commenter that 39 contiguous days of uency dissolved oxygen (DO) data are not needed to ss the 7-day average minimum DO criteria. DWQ the original language and removed the \geq 39 day ent from the "Data Sufficiency" section. The section s, "To ensure that daily minima are captured and averages can be accurately calculated, high / data must capture complete days. DWQ defines a day as a calendar day (i.e. 12:00 am – 11:59 pm) in east one measurement is made in each hour."

o removed the ≥39 day requirements in Figures 3 tead, data are considered sufficient for assessment ten daily minima or 7 or 30 day averages can be I over the period of record.

reciates your encouragement regarding the ents made to developing an approach for assessing However, for the 2018/2020 Assessment Methods ot reporting on assessments methods that are still relopment. DWQ's assessment methods reflect and processes that are heavily vetted internally and ergone a public comment or DWQ stakeholder ocess. DWQ encourages the commenter and other ers to follow the research and assessment method ent process for wetlands by visiting DWQ's Program website (https://deq.utah.gov/water-.tlands-program/wetlands-program).

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Shera	Reems	EPA_Regio n8_1207201 8.pdf		163	Great Salt Lake / Farmington Bay UDEQ's draft assessment methodology does not specify whether UDEQ intends to complete an assessment of the Great Salt Lake based on an interpretation of the narrative standard. The EPA requests an update on the state's plan to develop assessment methods for parameters other than Selenium including Harmful Algal Blooms in Great Salt Lake/Farmington Bay.	None.	DWQ is in and Asses the Great (https://do technical-s 2019-0005 developed Board, the for a future
Shera	Reems	EPA_Regio n8_1207201 8.pdf		164	Delisting of Waters In Table 16 (page 73), UDEQ noted that for Nitrate as N and Total Phosphorus as P,all categorical assessments for aquatic life uses (Class 3) will be overwritten to Category 3.II Consistent with 40 C.F.R. § 130.7(b)(5) and the 2006 Integrated Reporting Guidance and subsequent clarification memos, the EPA encourages states to demonstrate good cause (e.g., data and/or information) for not including individual segments (including previously listed segments) on the 303(d) list. We request that UDEQ provide additional information documenting the state's rationale to delist waters based on a review of the site-specific data.	None.	When goo Total Phose documents sections of documents during the any Total removed f review and removes f documents Chapter 3 (https://de quality/mo 3-river-and
Thomas Timothy	Bosteels Hawkes	TBosteels_1 2202018.pdf THawkes_1 2202018.pdf		198	Because of the way we drafted our comments, it's hard to re-engineer them to fit into all the various boxes. For that reason, we thought we'd just attach a complete letter here. (In other words, all our comments are included in the attached.) Thank you.	Requested improvemen t on form functionality.	Thank you submissio future ass comment
Thomas Timothy	Bosteels Hawkes	TBosteels_1 2202018.pdf THawkes_1 2202018.pdf		204	Second, while we appreciate the opportunity to submit comments electronically, electronic submission requires the use of set fields with word limits, which makes it difficult for the public to take a crafted set of comments like this and then shoehorn those comments into a set of word-limited fields that may or may not track the document's organizational structure.	Requested improvemen t on form functionality.	DWQ app structure a electronic commente structure a addition, D Draft 303(a section f re-evaluat per section public com function, a

a the process of developing Water Quality Standards ssment Methods for Great Salt Lake as outlined in Salt Lake Water Quality Strategy Document ocuments.deq.utah.gov/water-quality/standardsservices/gsl-website-docs/gsl-wq-strategy/DWQ-535.pdf) Once the standards or methods are fully d and vetted by stakeholders and the Water Quality ey will be incorporated in the assessment methods e Integrated Report.

od cause can be demonstrated, DWQ will delist sphorus as P and provide the necessary ation as described in the Delisting and Appendix 6 of the assessment methods document. Any delisting ation and justifications will be available for review public comment process of the draft IR. To clarify, Phosphorus as P assessments that are delisted or from the 303(d) list will undergo the same level of d documentation as any other parameter DWQ from the 303(d) list. Examples of previous delisting ation are available on the last four pages of of the Final 2016 IR

q.utah.gov/legacy/programs/wateronitoring-reporting/assessment/docs/2016/chapterd-stream-assessments-final2016ir-v2-1.pdf).

u for using the electronic public comment on form and the form's attachment section. For sessment method and Integrated Report public forms, DWQ will review the form's structure, and text box character limits.

reciates your feedback regarding the form's and text box limits and thanks you for using the public comment submission form. To help er's identify the methods section(s) they were ng on, DWQ's comment form followed the same as the assessment methods Table of Contents. In DWQ provided an "Additional Comments on the (d) Assessment Methods" comment box, as well as for submitters to attach documents. DWQ will also be whether the text box limit set at two pages of text n was adequate and not limiting. For future IR nment forms, DWQ will review the form's structure, and text box character limits.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Thomas	Bosteels	TBosteels_1 2202018.pdf		205	In some ways, that challenge reflects our broader concern with the Draft Assessment Methods. Just as there is more than one way to collect scientifically valid data, there is more than one valid way to	Requested improvemen t on form	DWQ agre way to coll requireme
Timothy	Hawkes	THawkes_1 2202018.pdf			organize comments in response to a call for public comment. In both cases, artificially limiting the way information is submitted can undermine e the broader goals behind asking for information in the first place.	functionality.	are require can ensure repeatable this level c 305(b) and
							See also r

rees with the commenter that there is more than one ollect scientifically valid data. DWQ's credible data ents, which includes submitting SAPs, SOPs, etc., red when requested by DWQ, so that the Division ire results from disparate data sources are le and scientifically defensible. DWQ believes that of review is necessary for instilling confidence in the nd 303(d) lists.

response to Comment 204.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Res
Thomas	Bosteels	TBosteels_1 2202018.pdf		206	Comments and Concerns Regarding the Substance of the Draft Assessment Methods	Revised and clarified	As describe methods do
Timothy	Hawkes THawkes_ 2202018.p	2202018.pdf THawkes_1 2202018.pdf	s_1 .pdf	Assessment Methods (1) Application of the Draft Assessment Methods may exclude robust and legitimate data sets that inform the question of whether GSL is healthy or should be listed as impaired under Section 303(d). In designing our data collection protocols, the Cooperative made a conscious decision to prioritize greater sample quantity and breadth. For example, the nutrient , temperature, oxygen, and chlorophyll-a measures the Cooperative has collected on Gilbert Bay span nine sites over multiple years, which allows us to better assess temporal and spatial trends and ecologically relevant correlations and relationships. While we follow careful and defensible protocols in collecting samples, we lack the resources to collect that same depth and breadth of samples using the elaborate Standard Operating Procedures ("SOP") and protocol requirements of the EPA. For example, we do not use EPA Clean Hands/Dirty Hands for obtaining lake water samples. Instead, we take care to avoid touching or allowing external contaminants to come in contact with the interior surfaces of the water sampler, the sample itself, and sample collection bottles. Similarly, we purchase and use new aseptic sampling bottles for nutrient sampling and acid wash containers in-house for heavy metal sampling rather than use acid washed containers supplied by the lab that performs the analysis.	clarified language in credible data section and Tables 5 - 9.	methods do scientifically quality and further eval under the s established guidelines a document a example the scientifically further clarifically further c	
					In each case, our protocols cost considerably less than the EPA protocols, but still yield scientifically defensible and valid results. More to the point: adopting the more stringent EPA protocols in the context of our GSL sampling would not likely change the dataset. The EPA protocol is designed to prevent contamination of samples, which is a concern when moving between dissimilar water bodies, or in oligotrophic, nutrient poor waters in which a small amount of contamination will have a large proportional effect on the sample. In a t terminal , saline lake like GSL, however, nutrient and chlorophyll levels are generally much higher than in freshwater bodies located higher in a watershed, greatly reducing the effect of between-sample contamination. That assumption is validated by comparisons between the Cooperative's measured ammonia levels, which correlate strongly with measurements by the United States Geological Survey ("USGS") that were collected using more rigid protocols. Similarly, we frequently record chlorophyll-a levels below our outside laboratory's detection limit during key summer months, suggesting contamination is not a large concern in our sampling program.1 Additionally we have split samples between certified research labs and derived similar results. Given that, we believe our sampling protocols are scientifically defensible and the resulting data sets would qualify for inclusion in a peer-reviewed scientific journal. In most cases, however, those same data sets would not meet the strict availability and credibility standards laid out in the DraftAssessment Methods.		

bed in the "Data Quality" section of the assessment document, data collected under a repeatable and Ily defensible QAPP and SAP are considered high d incorporated in the assessment process for aluation. Submitters are not obligated to collect data specifications of any of EPA's or DWQ's ed monitoring protocols. The QAPP, SAP, and SOP and examples in the assessment methods are intended to provide stakeholders with an hat can be used as a template for establishing Ily defensible QAPPs and SAPs. This has been wrified in the methods.

ourages the commenter to submit data and n (as outlined by the processes in the assessment to DWQ during the IR's Call for Data, so that DWQ ate the data for the assessment. DWQ can provide review of the commenter's credible data documents the IR's Call for Data process if this feedback helpful. (Please contact DWQ's Watershed Section manager for more details).

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Thomas	Bosteels	TBosteels_1 2202018.pdf		207	The Cooperative is willing to work with DWQ to do a side-by-side comparison of testing protocols to see whether the more rigorous protocols make a meaningful difference in the results. We strongly	Out of Scope.	DWQ than among sat commente
Timothy	Hawkes	THawkes_1 2202018.pdf			suspect they would not.		coordinato are interes datasets. ⁻ described require a s credible.

anks you for the offer to collaborate on comparisons sampling protocols. DWQ recommends that the inters contact DWQ's Great Salt Lake (GSL) program ator (Jake Vander Laan, jvander@utah.gov) if they rested in further pursuing comparisons of GSL s. Testing protocols is out of scope for the IR. As ad in the response to Comment 206, DWQ does not a specific testing protocol to consider data to be

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Timothy	Bosteels Hawkes	TBosteels_1 2202018.pdf THawkes_1 2202018.pdf		208	Readily Available Data. DWQ allows data submitted by outside entities, but is more likely to consider data in 303(d) assessments if it is submitted in a format that fits the EPA Water Quality Portal ("WQP"). The Draft Assessment Methods (see Table 3, at p. 20) rank datasets in descending order of "fit." Ideal datasets are uploaded into the WQP, and those are eligible for full consideration. Three inferior categories exist below this ideal, with the bottom category of " unavailable" being ineligible for consideration. Our initial evaluation suggests that GSL datasets would likely fall into this category as currently defined.	Table 3 modified.	DWQ appr method's " section an to balance expenditur formats. R revised the used in the available! DWQ, how additional considered from DWC data for 30 assessme incorporate tools have developme exceedand 130.7 (b)(5 specific sit stakeholde 40 CFR 13 incorporate Quality Sta DWQ wou any data a DWQ durit document not include purposes and public comment
Thomas	Bosteels Hawkes	TBosteels_1 2202018.pdf THawkes_1 2202018.pdf		209	While the Draft Assessment Methods contemplate a "partially available" category of data that DWQ might consider if it could be reformatted by DWQ staff "as time and resources allow," inclusion of otherwise scientifically defensible data is now subject to procedural rather than substantive objection, and even the procedural objections remain highly subjective and potentially arbitrary.	Revised Table 3.	DWQ appl method's " section an and remov Thank you -Readily a DWQ)II.

reciates the feedback and concerns regarding the "Existing and Readily Available Data Defined" and Table 3. The readily available data section aims e consideration of all data with reasonable re of resources to accommodate disparate data Recognizing the ambiguity in the table, DWQ has e table to clarify how various types of data will be e Integrated Report and has removed the -partially and -unavailable rows.

vever, did not remove the "Readily available, processing required" row because this is still d readily available data, pending further evaluation). To clarify how DWQ may integrate this type of 05(b) and 303(d) assessments, DWQ added to the nt uses column of Table 3 that DWQ, "fully es this data into IR assessment tools if interface been developed. If interface tools are still in the ent phase, DWQ will (1) screen data for ces for the waterbodies described in 40 CFR i)(i), (iii), and (iv), or (2) manually assess data for tes, dates, and parameters at the request of ers or data submitters for waterbodies described in 30.7(b)(5)(i), (iii), and (iv). Results are fully ed into DWQ's Conflicting Assessments of Water andards and Secondary Reviews.

and like to further clarify that should DWQ not include and information that is obtained by or submitted to ing the IR's Call for Data, DWQ will clearly which information and dataset (or datasets) were ed and why. DWQ does this for transparency to reviewers and to meet the requirements of CFR 6)(iii). Any concerns with data and information (or data and information gaps), can be reviewed cally commented on during the Draft IR's public period.

reciates the feedback and concerns regarding the "Existing and Readily Available Data Defined" and Table 3. DWQ reviewed the original language wed the "partially available" category from Table 3. If or the feedback. Please see the revised category available (additional processing may be required by

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's R
Thomas Timothy	Bosteels Hawkes	TBosteels_1 2202018.pdf THawkes_1 2202018.pdf		210	Data Credibility. Under the Draft Assessment Methods, DWQ will assess data credibility based on adherence to the DWQ's Quality Assurance Project Plan ("QAPP") which is in turn based on EPA's QAPP. Seep. 29. Conforming our future data collection to meet those QAPP standards would impose significant costs-likely as much as three times current costs-and it would be impossible to fix retroactively our existing datasets.	Revised and clarified language in credible data section and Tables 5 - 9.	As describ document QAPP and high qualit Submitters specificati protocols. provided in the assess stakeholde for establis This has b
Thomas	Bosteels Hawkes	TBosteels_1 2202018.pdf THawkes_1 2202018.pdf		211	Tables 5 and 7 on page 32 of the Draft Assessment Methods summarize DWQ's methodology, ranking data quality for water grab samples, which the Cooperative's nutrient, temperature, oxygen, chlorophyll-a, and salinity data would fall under. Based on a preliminary assessment, Cooperative data would likely rank as a "C," owing largely to our data not meeting an "approved" or "equivalent" QAPP and our inconsistent recording of instrument calibration readings, which the Draft Assessment Method suggests would fall outside the data eligible for consideration under 303(d}. We do use a professional lab for the analysis of nutrient s and chlorophyll-a, so we would likely rank highly in those lab-determined factors. Even so, it difficult to know, without more, how DWQ weighs these factors when assigning the A-D quality grade.	Revised and clarified language in credible data section and Tables 5 and 7.	As describ document scientifica and incorp evaluation the specifi quality ass and exam provide sta template a establishin has been As noted b document field collect document and are so in the crec such as Q accuracy a
Thomas Timothy	Bosteels	TBosteels_1 2202018.pdf THawkes_1 2202018.pdf		212	The trouble begins with water chemistry sampling protocols, which affect our nutrient, chlorophyll-a, and any contaminant sampling. These Standard Operating Procedures ("SOPs") call for very specific and time-consuming equipment cleaning and QA/QC processes to avoid contamination. Based on our research needs and the unique conditions of GSL, we do not follow the referenced Clean Hands/Dirty Hands sampling method, the water sampler cleaning between sites, or the use of field blanks and equipment blanks. We also do not preserve our nutrient samples with H2SO4 because our laboratory' s methods do not require it. Given that, DWQ could readily dismiss our large nutrient and chlorophyll databases in making a Section 303(d) determination.	Revised and clarified language in credible data section and Tables 5 - 9.Clarified assessment methods.	The QAPF presented provide sta template f SAPs. As methods of defensible considered assessme obligated t DWQ's or been furth

bed in the 'Data Quality' section of the methods t, data collected under a scientifically defensible d SAP and submitted to DWQ are considered of ty and incorporated in the assessment process. s are not obligated to collect data under the ions of any of DWQ's established monitoring The QAPP and SAP guidelines and examples in the "Components for Credible Data" sections of sment methods are intended to provide ers with an example that can be used as a template ishing scientifically defensible QAPPs and SAPs. been further clarified in the methods.

bed in the "Data Quality" section of the methods t, data collected under a repeatable and illy defensible QAPP are considered high quality porated in the assessment process for further n. Submitters are not obligated to collect data under ications of any of DWQ's or EPA's established surance protocols. The QAPP and SAP guidelines types in the assessment methods are intended to takeholders with an example that can be used as a and suggestions for the documentation for ng scientifically defensible QAPPs and SAPs. This further clarified in the methods.

by the commenter, DWQ relies on the availability of tation from data submitters to demonstrate that the ction processes associated with the data are well ted, followed established protocols and methods, cientifically defensible and repeatable. As outlined dible data matrices this may include information QAPPs, calibration reports, information on the and ranges of properly calibrated probes, ns of method collections, laboratory protocols, and metadata elements for different data types.

P, SAP, and SOP guidelines and examples I in the IR methods document are intended to akeholders with an example that can be used as a for establishing scientifically defensible QAPPs and described in the 'Data Quality' section of the document, data collected under a scientifically e QAPP and SAP and submitted to DWQ are d of high quality and incorporated in the ent process for further evaluation. Submitters are not to collect data under the specifications of any of EPA's established monitoring protocols. This has ner clarified in the methods.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Thomas Timothy	Bosteels Hawkes	TBosteels_1 2202018.pdf THawkes_1 2202018.pdf		213	In the aforementioned QAPP, DWQ references two SOPs for the collection of water chemistry samples, and they are not consistent on Clean Hands/Dirty Hands. For example, the SOP for GSL-specific " Total and Dissolved Water Sampling" (https://deq.utah.gov/legacy/destinations/g/great-salt-lake/monitoring-research/index.htm) calls for the Clean Hands/ Dirty Hands protocol and laboratory blanks. Ironically, the non-GSL lake sampling SOP "Collection of Lake Water Samples" (https://deq.utah.gov/ legacy/monitoring/ water-quality/quality -assurance e-quality control.htm) appears less stringent than the GSL-specific protocol as it does not call for Clean Hand s/Dirty Hands. That SOP specifies a simple triple-rinse in lake water at the sample site, which the Cooperative does use in its GSL sampling.	Clarified assessment methods	Because of project, sa use differed submitters protocols to The comm both of wh that could the Great developed Clean Har evaluating collection Brine Shri
Thomas Timothy	Bosteels Hawkes	TBosteels_1 2202018.pdf THawkes_1 2202018.pdf		214	The temperature, pH, dissolved oxygen, and conductivity data that we routinely collect at multiple depths and multiple sites would also fail to meet DWQ's QAPP standards. DWQ requires frequent calibration of the water quality probe with documentation to verify. While we do calibrate our instruments prior to each sampling program, our data still would not meet the QAP standards. Why isn't our calibration more stringent? Because we are more interested in trends and patterns than the precise absolute values.	None.	DWQ's Int not surface currently of R317-2. T are other u trends and and source by other p purpose of body exce confidence analysis. Please see data.
Thomas Timothy	Bosteels Hawkes	TBosteels_1 2202018.pdf THawkes_1 2202018.pdf		215	The methods that we employ follow guidelines outlined by a certified water quality laboratory and through discussions with their chief scientist. In short, they meet all reasonable guidelines necessary to preserve accuracy and quality of samples.	Revised and clarified language in credible data section and Tables 5 - 9.	DWQ relies submitters associated establishe defensible matrices th calibration properly c collections elements

data quality objectives may vary from project to ampling planners and collectors may develop and ent SOPs. Similarly, stakeholders and data s are free to determine appropriate sampling that satisfy their data quality objectives.

nenter has identified an example of different SOPs, nich are acceptable, for purposes of collecting data be used for assessment purposes. The SOP for Salt Lake water chemistry samples was originally by USGS to collect mercury samples for which nds/ Dirty Hands protocol is appropriate. DWQ is whether a broader SOP may be appropriate for of other Great Salt Lake samples. We welcome the mp Cooperative's participation in this review effort. egrated Report focuses on evaluating whether or e waters are supporting or not supporting the lefined beneficial uses and numeric criteria in UAC hough DWQ agrees with the commenter that there uses of water quality data, including evaluation of d patterns, especially when evaluating the cause es of impairments, these analyses are addressed rograms (e.g., TMDL, Nonpoint Source etc.). The f the assessment is to evaluate whether a water eds water quality standards and therefore relies on e in the absolute value of data included in the

e response to Comment 206 regarding credible

es on the availability of documentation from data s to demonstrate that the field collection processes d with the data are well documented, followed ed protocols and methods, and are scientifically e and repeatable. As outlined in the credible data this may include information such as QAPPs, n reports, information on the accuracy and ranges of calibrated probes, descriptions of method s, laboratory protocols, and essential metadata for different data types.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Thomas	Bosteels Hawkes	TBosteels_1 2202018.pdf THawkes_1 2202018.pdf		216	(2) Complying with DWQ's QA/QC requirements would impose unreasonable costs on the Cooperative's data collection and/or force us to greatly reduce the scope of our sampling, which would impair the ability to assess important determinants of GSL's health. We estimate that complying with DWQ's QA/QC requirements for sampling would at least triple the cost of our current sampling efforts, forcing us to either shoulder those order-of-magnitude increased costs and/or curtail the scope of our sampling. Again, in a nutrient rich water body like GSL, our protocols reflect the need to use a large number of sample sites so as to better assess temporal and spatial trends and ecologically relevant correlations and relationships-in short, to better understand nutrient cycling and ecosystem health, which should be the foremost goal of any regulatory regime that purports to assess the health of a waterbody. As a result of those efforts to broaden the scope and scale of our sampling, the Cooperative's database on nutrient, chlorophyll, temperature, salinity, and dissolved oxygen-all of which could be subject to dismissal under the Draft Assessment Methods contains a spatio-temporal scale that other available datasets simply cannot match. It strikes us as arbitrary for DWQ to categorically exclude such information from its 303(d) assessments.	Revised and clarified language in credible data section and Tables 5 - 9.	Regarding response f DWQ weld Shrimp Co data colled evaluation process of Assessme Great Salt (https://do technical-s 2019-0005 be develop require Wa methods a assessme DWQ does current IR
Thomas Timothy	Bosteels Hawkes	TBosteels_1 2202018.pdf THawkes_1 2202018.pdf		217	 (3) Other categorical restrictions on data may undermine DWQ's ability to make full and fair determinations under Section 303(d). On page 37 of the Draft Assessment Methods, DWQ specifies a "period of record" of eight years and states further that "DWQ will not consider data and other information older than the period of record" in making 303(d) determinations. While an eight-year period seems generally reasonable, the question arises whether older data could in fact inform a current assessment. We think it could. Take, for example, evaluations of Harmful Algal Blooms (HABs) in areas of GSL like Farmington Bay. If older data such as core samples showed HABs occurred routinely in Farmington Bay before settlement, that data would certainly inform the question of whether HABs occurring today represent a true "impairment" of the ecosystem. 	None.	The focus currently of during the commente are import determinin reviewing analyses a by other p etc.). Regarding current Na directly ap is in the pr Assessme Great Salt (https://do technical-s 2019-000s incorporat not intend cycle.

DWQ's QA/QC requirements, please see to comment 206.

comes the opportunity to collaborate with the Brine poperative to leverage our collective resources for ction, recognizing the multiple uses of data for of the health of Great Salt Lake. DWQ is in the developing Water Quality Standards and ent Methods for Great Salt Lake as outlined in the Lake Water Quality Strategy Document cuments.deg.utah.gov/water-guality/standardsservices/gsl-website-docs/gsl-wq-strategy/DWQ-535.pdf). Standards specific to Great Salt Lake will ped in collaboration with stakeholders and will ater Quality Board approval. Once standards or are fully developed, they will be incorporated in the nt methods for future Integrated Report cycles. s not intend to assess Great Salt Lake during the cycle.

s of the Integrated Report is to evaluate whether the defined uses of a waterbody have been attained e recent period of record. DWQ agrees with the er that older data or paleolimnological techniques tant for characterizing historic conditions, ng the cause and sources for impairments, or appropriate use classifications. However, these are outside the scope of the IR and are addressed programs (e.g., TMDL, Nonpoint Source, Standards,

g HAB assessments in Great Salt Lake (GSL), the arrative Standard based assessment method is not oplicable to Great Salt Lake's beneficial uses. DWQ rocess of developing Water Quality Standards and ent Methods for Great Salt Lake as outlined in the t Lake Water Quality Strategy Document cuments.deq.utah.gov/water-quality/standardsservices/gsl-website-docs/gsl-wq-strategy/DWQ-535.pdf).. GSL specific assessment methods will be red into future Integrated Report cycles. DWQ does to assess Great Salt Lake during the current IR

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Thomas	Bosteels	TBosteels_1 2202018.pdf		218	Another concern regarding an arbitrary and one-size-fits-all time frame for data acceptance is that there are well established, cyclical, biological and climatic patterns that exert a tremendous influence on	Revision to Period of Record	The focus currently d during the
Timothy	Hawkes	THawkes_1 2202018.pdf			water quality, biological responses, nutrient levels, and population dynamics within the GSL ecosystem. To impose an arbitrary time frame for information to be considered is to disregard biological factors that are well known to exert a significant influence on water quality.	section.	DWQ from described conditions appropriat or develop waters as programs. However, assessme techniques or standar
Thomas	Bosteels	TBosteels_1 2202018.pdf		219	Again, the problem is not with setting a general period of record, but rather in establishing a categorical limit on information that could otherwise be relevant to a scientific determination, particularly as those	Revision to Period of Record'	The developermits, ware outside
Timothy	Hawkes	THawkes_1 2202018.pdf			limits may limit the ability of DWQ to understand or craft appropriate regulations relative to water quality in GSL and its ecosystem.	section.	and data of DWQ's ab developing DWQ can of a secon has been of

s of the Integrated Report is to evaluate whether the defined uses of a waterbody have been attained a recent period of record. That does not preclude in using older data, including the data types by the commenter, to characterize historic s, determine restoration goals, evaluate the teness of and potentially reclassify beneficial uses, p or update water quality standards for Utah's a part of TMDL, standards, or other DWQ . This has been further clarified in the methods. these processes are out of scope for the ent process. Recommendations regarding these as and their uses should be made to specific TMDL rds development processes.

elopment or alteration of water quality standards, waste load allocations, or other regulatory processes de the scope of the IR. The IR's period of record credibility and availability requirements do not limit bility to use older or other types of data in ng or updating water quality standards or goals. In consider older or other data and information as part indary review of an impairment determination. This is clarified in the revised document.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Name Thomas Timothy	Name Bosteels Hawkes	TBosteels_1 2202018.pdf THawkes_1 2202018.pdf		220	(4) The cyanotoxin thresholds for recreational use assessments do not comport well with best available science. At pages 75-76 of the Draft Assessment Methods, DWQ states that, with regard to HABs, a beneficial use is fully supported only if, over the entire period of record, (a) cyanobacterial cell counts "have not exceeded 20,000 cells/ml AND (b) cyanotoxin concentrations have not been identified above recreational use thresholds, AND (c) a warning, danger, or closure has not been issued for recreational access to a waterbody." (Emphasis added.) Is, then, the single occurrence of a warning or closure over the course of an eight year period, even if that warning or closure is arbitrary and/or not tied to specific measurements, sufficient to remove a waterbody from the category of " Beneficial Use Supported"?	None.	As describ identify a v warning, d is issued for Waterbodid less than tr identified a yes, a sing waterbody recreationa and convir a warning incorrect d secondary the Secon for more in stakeholded data throug methods a Specific re during the period.

bed in the HAB assessment methods, DWQ will waterbody as impaired if a HAB-related recreational langer, or closure notice lasting two or more weeks for that waterbody in two or more years. lies with a warning, danger, or closure notice lasting two weeks or occurring in only one year will be as insufficient data with exceedances. Therefore, gle warning, danger, or closure may result in a not being considered fully supporting its al uses due to HAB occurrence. However, if clear ncing evidence were available to demonstrate that or closure were issued in error or based on lata, that assessment could be modified under the review process to reflect that evidence (please see ndary Review' section of the Assessment Methods nformation). DWQ continues to work with ers and partner agencies to collect HAB related ighout Utah and adapt and adjust HAB assessment as new data and information become available. ecommendations for method updates can be made next IR assessment methods public comment

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Res
: First Name Thomas Timothy	: Last Name Bosteels Hawkes	Document ID TBosteels_1 2202018.pdf THawkes_1 2202018.pdf		221	larger comment submission is addressed). Beyond that, we question whether the use of undifferentiated "cyanobacterial cell counts" at 20,000 cells/ml (for Beneficial Use Not Supported) represent scientifically defensible and reasonable standards. As many researchers have observed, arbitrarily adopting WHO initial standards or otherwise using an alert framework based solely on total cyanobacterial cells/ml is not advisable . See, e.g., David C. Szlag et al., "Cyanobacteria and Cyanotoxins Occurrence and Removal from Five High-Risk Conventional Treatment Drinking Water Plants," Toxins (Basel), 12 June 2015 ("The original WHO Alert Level framework provides a useful starting point but should not be arbitrarily adopted The Water Safety Plan approach should be considered as a tool to modify the WHO ALEr for local conditions including Alert levels based on cell concentrations of locally pre sent toxin producing genera.") (available at: https:// www .ncbi.nlm.nih.gov/ pmc/ art icles/PM C4488698 /). We note that other states have done just that. To cite one example, Oregon previously adopted a Health Advisory system that uses 100,000 cells/ml of "all toxigenic species" or "40,000 cells/ml" of two specific, locally occurring and toxin producing species. See Oregon Health Authority {OHA), " Public Health Advisory Guidelines: Harmful Algal Blooms in Freshwater Bodies, January 2018, at 6 (available at: https:// https:// www.oregon.gov/oha/ph/healthyenvironments/recreation/harmfulalgaeblooms/ document s/ habpublichealthadvisoryguidelines.pdf). OHA specifically evaluated the afficacy of using algal courts along as the quideline for	None.	Thank you f health advis recreational water qualit advisory pro and Health (https://deq advisory/inc In developin HABs, DW0 the country issuance (s https://www 12/document.p variety of in and lists of cyanobacte concentratio
					evaluated the efficacy of using algal cell counts alone as the guideline for issuing advisories for waterbodies contaminated with cyanobacteria, and, after extensive study, concluded that toxin based advisories (TBA) represented a superior and more scientifically defensible means of assessing the risks to the public from cyanotoxins (see David Farrar et al., "Health-Based Cyanotoxin Guideline Values Allow for Cyanotoxin-Based Monitoring and Efficient Public Health Response to Cyanobacterial Bloom s," 5 February 2015; available at: https://www.mdpi.com/2072-6651/7/2/457/htm). That study opined that the pre-existing, cell-based approach was economically harmful and resulted in inefficient use of resources, unnecessary advisories, and increased the risk of "advisory fatigue" among the general population, in which the public ceases to heed to advisories due to the frequency and duration of such advisories. In their closing comments the researchers observed: Toxin data allow OHA to communicate with the public about actual risks, as opposed to the potential risk represented by cell count data alone. Toxin data give great credibility to health advisories when they are issued and decrease the likelihood that an advisory would be issued unnecessarily. See id. Many environmental factors serve to regulate the production of toxins by cyanobacteria. The amount of toxin produced depends on the species of cyanobacteria present as well as the presence of other cyanobacteria. Genetic and epigenetic factors are also at play, and a host of nutritional and enzymatic factors influence cyanotoxin production. While it may make sense to use cell counts to trigger further studies of actual cyanotoxin levels in a given waterbody (i.e., as a trigger for further investigation}, it can be inaccurate, mislanding, and incorrect to access risk baced on coll counts alone.		

a for identifying these studies and recreational visory policies from other states. The issuance of al advisories or closures is a separate process from lity assessment. Suggestions regarding the health process should be addressed to the Water Quality h Advisory Panel

q.utah.gov/legacy/divisions/water-quality/healthndex.htm).

bing recreational use assessment methods for /Q reviewed indicators used by states throughout

y for water quality assessment or health advisory (see

w.epa.gov/sites/production/files/2016-

ents/draft-hh-rec-ambient-water-swimming-.pdf, appendix B for details). States use a wide indicators including cyanobacteria cell counts (total

f pre-determined potentially toxigenic taxa),

teria relative abundances, cyanotoxin

tions, and assessments of the presence of teria scum layers.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Response
Thomas	Bosteels	TBosteels_1 2202018.pdf		222	For all these reasons, we question whether the use of undifferentiated "cyanobacterial cell counts" at 20,000 cells/ml(for Beneficial Use Supported} and 100,000 cells/ml (for Beneficial Use Not Supported)	None.	DWQ's HAB assessment methods directly reflect Utah's Narrative Standard which stipulates that the presence of scums, nuisances such as color, odor, or taste, or water
Timothy	nawkes	2202018.pdf			represent scientifically defensible and reasonable standards.		are a violation of the state's water quality rules. Due to the numerous potential toxins and congeners associated with cyanobacteria and the recombinant nature of cyanobacteria resulting in the potential for gene transfer between toxic an non-toxic strains, differentiating between toxic and non-toxi strains or taxa of cyanobacteria is problematic, and limiting cell counts to specific taxa may be not be protective of recreational uses. DWQ has therefore based assessment methods on total cell counts.
							The use of cell counts in DWQ's assessment process was a point of substantial discussion during the 2016 IR. Please s DWQ's 2016 IR response to comments, appendix A, responses 2, 3, and 9 for additional information (https://deq.utah.gov/legacy/programs/water- quality/monitoring-reporting/assessment/docs/2016/dwq- response-to-public-comments-final2016ir-v2-1.pdf).
Thomas	Bosteels	TBosteels_1 2202018.pdf		223	Conclusion	None.	DWQ appreciates the interest in the assessment process a has clarified our methods to ensure that high quality data is
Timothy	Hawkes	THawkes_1 2202018.pdf			Our over-arching concern about the processes and limitations outlined in the Draft Assessment Methods is that the proposed methodology will categorically exclude highly valuable information that has been collected systematically and according to standard scientific methods over long periods of time information that could help DWQ better understand the complex biological and ecological processes that exist in the GSI ecosystem and that directly informs the question of whether GSI should be listed as impaired under Section 303(d). DWQ and other GSI stakeholders have often expressed concern that little is known about GSI and more research is needed.4 Given that, we are concerned about proposed methods for categorizing data and incorporating (or not incorporating) it into 303(d) determinations that could effectively eliminate from consideration most of the extant scientific data on GSL.		available to the assessment process. DWQ welcomes the opportunity to collaborate with GSL stakeholders in further developing water quality goals and plans for the lake.

<u>esponse</u>

f cell counts in DWQ's assessment process was a ubstantial discussion during the 2016 IR. Please see 016 IR response to comments, appendix A, 2, 3, and 9 for additional information eq.utah.gov/legacy/programs/wateronitoring-reporting/assessment/docs/2016/dwq--to-public-comments-final2016ir-v2-1.pdf). preciates the interest in the assessment process and ied our methods to ensure that high quality data is to the assessment process. DWQ welcomes the

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Ro
Thomas Timothy	Bosteels Hawkes	TBosteels_1 2202018.pdf THawkes_1 2202018.pdf		224	4 To address that knowledge gap, the U.S. Geological Service (USGS) recently put out a call for data on GSL. That call said, to paraphrase, "please send us any quality data you have on GSL, and make sure you include information on where and how the data was collected." That strikes us as a far more sensible approach to receiving and evaluate in g data than trying to shoehorn it into predetermined categories that may or may not be considered, a strategy that sounds good in theory but risks excluding quality data from regulatory decision-making.	None.	DWQ is av GSL relate publically a ScienceBa research o from the IF Assessme Sections 3 suggests i develop so include, bu collections elements f (https://ww 10/docume
Thomas Timothy	Bosteels Hawkes	TBosteels_1 2202018.pdf THawkes_1 2202018.pdf		225	We appreciate DWQ's unique role in protecting Utah's waters, the good working relationship the Cooperative has with DWQ, and our shared goal of preserving the ecologic value and integrity of GSI and its ecosystem. If there is any other information we could provide that would help inform DWQ's 303(d} listing process, please let us know.	None.	Thank you partnershi Great Salt assess Gr quality sta been deve

ware of and commends USGS' effort to compile ed datasets and studies that are not currently available elsewhere through the USGS ase program. The USGS ScienceBase is a data and catalog and has different data quality objectives R. As suggested in EPA's 2005 Guidance for 2006 ent, Listing and Reporting Requirements Pursuant to 303(d), 305(b) and 314 of the Clean Water Act, EPA in the "Data Quality Considerations" section to scientifically sound data evaluation procedures that but are not limited to, QAPPs, descriptions of method s, laboratory protocols, and required metadata for different data types.

ww.epa.gov/sites/production/files/2015ents/2006irg-report.pdf)

u for this comment. DWQ values our collaborative ips with stakeholders to protect water quality in t Lake and statewide. DWQ does not intend to reat Salt Lake during this IR cycle because water andards and assessment methods have not yet eloped for this unique water body.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re
Thomas	Bosteels	TBosteels_1 2202018.pdf		200	The Great Salt Lake Brine Shrimp Cooperative (the "Cooperative") hereby submits comments regarding the Draft 2018/2020 303(d) Assessment Methods (the "Draft Assessment Methods"). The	None.	DWQ app assessme
Timothy	Hawkes	THawkes_1 2202018.pdf			Assessment Methods (the "Draft Assessment Methods"). The Cooperative is concerned that the Draft Assessment Methods unduly restrict the types of data that the Division of Water Quality ("DWQ") will use to assess water quality in the Great Salt Lake ("GSL"), including the likely exclusion of robust data sets on various water quality parameters that directly inform the question of whether GSL is healthy or should be listed as impaired under Section 303(d). While we understand the desire to achieve greater consistency in water quality data, we urge DWQ to resist the temptation to categorically exclude data from consideration. According to the EPA, "States may use any number of ways to determine whether or not a water body meets the water quality standard. However, federal regulations say states must evaluate 'all existing and readily available information' in developing their 303{d} lists (40 C.F.R. §130.7(b) (5)). This means that states cannot select what data/information they use and purposely disregard other." EPA, Overview of Listing Impaired Waters under CWA Section 303{d} at 1 (available at: https: // www.epa.gov/ t mdl/ overview- listing impaired-waters-under -cwa-section-303d) (emphasis added.) Consistent with that EPA guidance, we want to make sure that DWQ has more information rather than less information available to it to make informed decisions affecting the lake and its future.		credible da SOPs, etc the divisio are repeat For 305(b) credible da assessme disparate defensible that DWQ in the "Dat data qualit waterbody and criteri not be incl document why (as de This docu described Integrated methods, the draft II
					, , , , , , , , , , , , , , , , , , ,		Please als

preciates your feedback regarding the 303(d) ent methods and would like to clarify that DWQ's ata requirements, which includes submitting SAPs, c., are required when requested by DWQ, so that on can ensure results from disparate data sources table and scientifically defensible.

) and 303(d) reporting purposes, the available and ata requirements and documentation outlined in the ent methods are designed to ensure results from data sources are repeatable and scientifically and instill confidence in the 305(b) and 303(d) lists publishes. The requirements and review protocols ta Quality" section and tables 5-9 reflect legitimate ty concerns when determining whether or not a is supporting or not supporting the beneficial uses a in UAC R317-2. Should any data and information luded in the assessment process, DWQ will clearly which dataset (or datasets) were not included and escribed and required in 40 CFR 130.7(b)(6)(iii)). mentation, as well as other data and information in section "Developing the Components of the Draft Report and 303(d) List" of the assessment will be tracked and made available for review during R public comment process.

so see response to comment 206.
Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Ro
Thomas Timothy	Bosteels Hawkes	TBosteels_1 2202018.pdf THawkes_1 2202018.pdf		201	Beyond that, we strongly encourage DWQ to consider specific measurements in the context of overall ecosystem health, which is precisely the kind of question our sampling efforts are designed to answer. A hyper focus on any one parameter and excluding scientifically valid data undermines that goal and risks losing the forest for the trees.	None.	DWQ's Int not surfac currently o The identi understan are outsid other DW0 Standards
							However, Quality Sta initially ass the site lev supporting recognizes individual the potent and to bet or not sup levels of re applicabili re-segmen in the "Co and "Appe
Thomas Timothy	Bosteels Hawkes	TBosteels_1 2202018.pdf THawkes_1 2202018.pdf		202	The Cooperative recognizes the need to apply reasonable standards to the data that DWQ will consider in making determinations under Section 303(d). Those standards must, however, take into account the context in which the data was collected, including the purposes and methodology behind the data collection, and, in some cases, the unique characteristics of the water body where the data is collected. In the case of GSL, protocols that may make sense in the context of a pristine headwater stream may make little sense in a terminal lake like GSL that is nutrient rich and where reasonable criteria for assessing the health of the waterbody may be entirely different.	None.	DWQ striv quality ass ambient co credible da incorporat reviewer of forms of s portion of assessme appropriat Review,' s additional not preclu

esponse

tegrated Report focuses on evaluating whether or ce waters are supporting or not supporting the defined beneficial uses and criteria in UAC R317-2. ification of the causes and sources of pollution or nding the overall ecosystem health of surface waters le the scope of the IR and are addressed through Q programs including TMDLs, Nonpoint Source, s etc.

as noted in the "Individual Assessment of Water andards" section of the assessment methods, DWQ sesses each use and parameter for a waterbody at vel as this provides a more direct measure of or not supporting water quality standards. DWQ s that conflicting assessment results can exist at the site or broader assessment unit level. To evaluate ial conflicting results among different data types ter quantify the extent of surface waters supporting porting their beneficial uses, DWQ employs several eviews including, but not limited to: (1) independent ity, (2) secondary reviews, and (3) assessment unit ntation. These reviews are discussed in more detail nflicting Assessment of Water Quality Standards" endix 3" sections of the assessment methods. ves to ensure that all data used for 303(d) water sessments are of high quality, representative of onditions, and appropriately documented. The IR's ata requirements do not preclude DWQ from ing qualitative information including expert opinions, comments, available external research, or other ite-specific knowledge into the secondary review the assessment or potentially modifying the initial ent if clear and convincing evidence indicate it e to do so. Please see the section, 'Secondary tarting on page 80 of the methods document for detail. The IR's credible data requirements also do de DWQ from using these types of information in rams.

Public Commenter : First Name	Public Commenter : Last Name	Public Comment Document ID	NEW FORM SORT ID	ATTACHMENT SORT ID	Public Comment to Respond To (UDWQ sometimes splits the original public comments to make sure each comment within a larger comment submission is addressed).	Action	DWQ's Re	
Thomas	Bosteels	TBosteels_1 2202018.pdf		203	Comments and Concerns Regarding the Process	IR project timeline	DWQ appr result, dela	
Timothy	Hawkes	THawkes_1 2202018.pdf	THawkes_1 2202018 pdf	_1 pdf		Before addressing the substance of the Draft Methods, we would like to express a couple of concerns about the process:	adjusted.	to commer Assessme
					First, the cover email from Jodi Gardberg, Manager of the Technical and Standard Services Section at DWQ, contains the following statement:		the definition credible dat made char the final ve	
					Call for Data: Right after the public comment period closes for the 303{d) assessment methods, DWQ will issue a formal call for water quality data to be used in DWQ's assessment for the combined 2018/2020 IR. The data must meet the readily available and credible data requirements outlined in the 303(d) assessment methods. (Emphasis added.)			
					Our concern is this: if DWQ plans to issue a formal call for water quality data "right after" the public comment period closes, and that data "must meet the readily available and credible data requirements outlined in the [Draft Assessment Methods]," how can DWQ reasonably evaluate public comment relative to those Assessment Methods? In short, the schedule seems to presume the validity of the Assessment Methods and does not seem to provide an effective way for DWQ to take into account public comment before applying those Assessment Methods.			

preciates the feedback from the commenter and as a layed the IR Call for Data until the DWQ Response ents and the revisions to the 2018/2020 IR ent Methods document were released. DWQ multiple public comments asking for clarification of tions and requirements for readily available and lata. DWQ has addressed these concerns and has anges to the data submission and review process in version of the Assessment Methods document.