Technical Support Document Overview

Science Panel Meeting | March 2, 2023

Purpose of the Technical Support Document

- Provide the technical basis for the development of numeric nutrient criteria (NNC) to protect aquatic life and recreation uses
- Conduct analyses to support multiple lines of evidence in the NNC framework

Utah Lake Water Quality Study— Numeric Nutrient Criteria Technical Framework FINAL REPORT

September 1, 2021 Version 9.0

Lines of Evidence

1. Reference-based

- Results from paleolimnological studies
- Utah Lake Nutrient Model prediction/extrapolation of reference conditions

2. Stressor-response analysis

- Utah Lake Nutrient Model output
- Statistical models

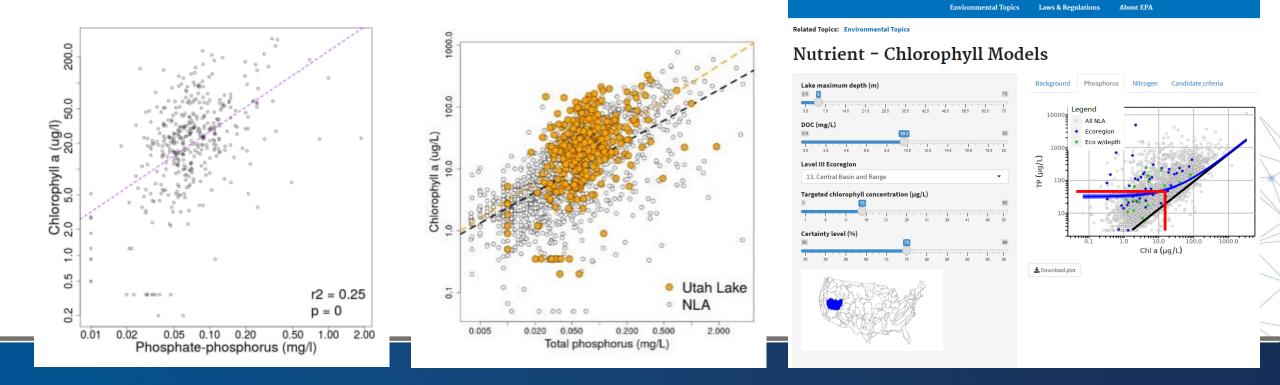
3. Scientific literature

- Scientific studies of comparable/related lake ecosystems
- Support/supplement other lines of evidence

Reference-Based Analysis

Paleolimnological reconstruction of past conditions

- Quantify pre-settlement nutrient conditions and how they have changed over time
- SC charge questions include paleo topics: historic trophic state, water quality, & nutrient regime

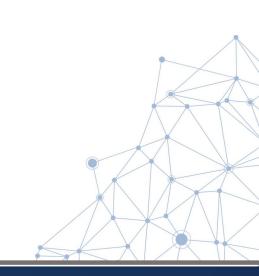

Model-based prediction

- Watershed model run under a "reference conditions" scenario \rightarrow watershed nutrient loading
- Pre-EuroAmerican land cover, removal of water withdrawals/releases and irrigation, removal of nutrient point sources
- Dams, stream hydraulics, sub-basin boundaries, weather maintained
- Intended to set a "floor" and add context

Stressor-Response Analysis

• Output from the Utah Lake Nutrient model (current and reduced nutrient loading)

- In-lake monitoring data for water quality variables
- Application of EPA's Ambient Water Quality Criteria nutrient models

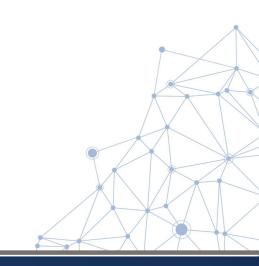


Stressor-Response Analysis

Use	Assessment Endpoint	Stressor	Response	Empirical S-R Data Available	Mechanistic Model Output
Recreation, Aquatic Life, Agriculture, Drinking Water	Algal toxins	Chlorophyll a	Microcystin concentration	Yes	No
Recreation, Aquatic Life, Agriculture, Drinking Water	Algal toxins	Cyanobacterial abundance	Microcystin concentration	Yes	No
Recreation	Algal blooms	Chlorophyll a	Cyanobacterial abundance	Yes	Yes
Recreation, Aquatic Life	рН	Chlorophyll a	рН	Yes	Yes
Recreation	Lake visitation	Chlorophyll a	Annual visitation	Yes	No
Recreation	Lake visitation	Cyanobacterial abundance	Annual visitation	Yes	No
Recreation	Lake visitation	K _d , Secchi depth	Annual visitation	Yes	No
Recreation	Public perception	Chlorophyll a	Public perception	User perception	No
Recreation	Public perception	Cyanobacteria abundance	Public perception	User perception	No
Recreation	Public perception	K _d , Secchi depth	Public perception	User perception	No
Aquatic Life	DO	Chlorophyll a	DO	Yes	Yes
Aquatic Life	Food resources	Chlorophyll a	Zooplankton:Phytoplankton	National Model	No
Aquatic Life	Food resources	Chlorophyll a	Proportion cyanobacteria	Yes	Yes
Aquatic Life	Light	Chlorophyll a	K _d , Secchi depth	Yes	Yes
Criteria Setting		TN & TP	Chlorophyll a	Yes	Yes
Criteria Setting		TN & TP	Cyanobacterial abundance	Yes	Yes
Criteria Setting		TN & TP	K _d , Secchi depth	Yes	Yes

Aggregation for Stressor-Response Analyses

- Growing/recreation season
- Depths to represent surface
- Period of interest
- Extent: break lake into regions or take a lakewide average?
 - If lake is broken into regions, may end up with different targets



Scientific Literature

• Comparison with nutrient levels in other lakes

• Could include:

- Similar lakes worldwide
- NLA data
- Reference waterbodies in ecoregion

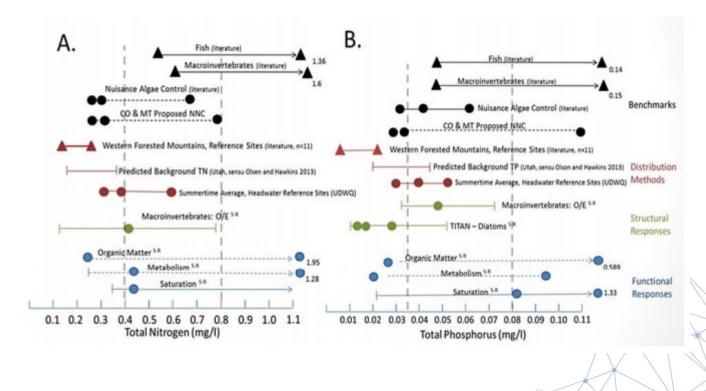
Evaluating Numeric Targets

• Magnitude

- "the maximum amount of the contaminant that may be present in a water body that supports the designated use"
- This value is most readily identified from analyses

• Frequency

- "the number of times the contaminant may be present above the magnitude over the specified period (duration)"
- Examples: not to be exceeded, x exceedances in a season, x exceedances in y years


Duration

- "the period over which the magnitude is calculated"
- Examples: grab (single date), seasonal central tendency

• Some parameters already have these defined (e.g., microcystin, DO, pH)

Weight of Evidence

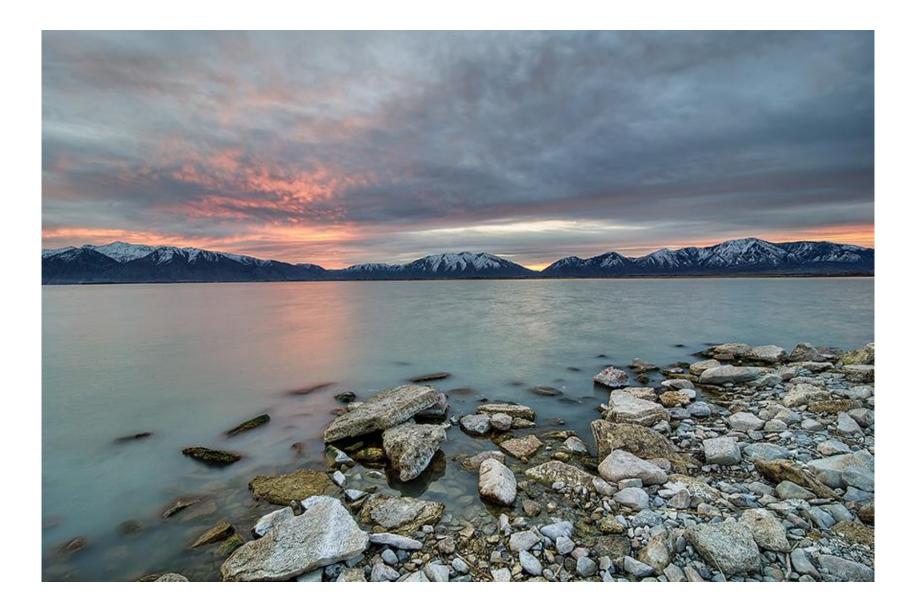
- Ranges of nutrients deemed protective of uses across lines of evidence
- How to distill these lines of evidence into a recommendation?
 - Statistical distributions of endpoints
 - Interpret endpoints in the context of their uncertainty
 → weigh lines against each other by their relevance, strength, and reliability

Questions and Discussion

Utah Lake Bioassay Final Report-Nutrient Limitation of Phytoplankton, Cyanobacteria and Cyanotoxins

Professors in order of overall contribution

PI: Dr. Zachary T. Aanderud, Brigham Young University (BYU) Co-PI: Dr. Michelle A. Baker, Utah State University (USU)


Co-PI: Dr. Ben Abbott, BYU

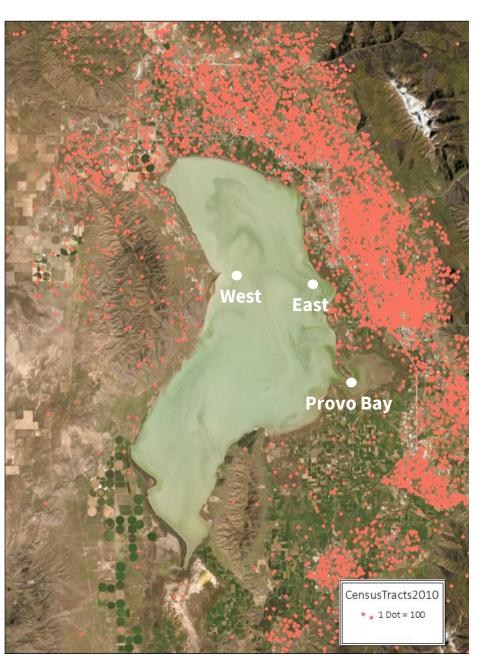
Graduate Students in order of overall contribution Gabriella M. Lawson, BYU, MS Dr. Erin F. Jones, BYU, PhD Samuel P. Bratsman, BYU, MS Rachel Buck, USU, PhD

List of Reviewers from the Utah Lake Quality Study Science Panel

Scott Daly, Utah Department of Environmental Quality-Water Quality


- Dr. Kateri Salk-Gunderen, Tetra Tech
- Dr. Hans W. Paerl, University of North Carolina at Chapel Hill
- Dr. Ryan King, Baylor University
- Dr. Michael J. Paul Tetra Tech
- Dr. Mitch Hogsett, Forsgren Associates Inc.

Methods



- P amendment = 0.10 mg-P/Labove background concentrations added as K₂HPO₄,
- N amendment = 0.72 mg-N/Ladded as NH_4NO_3 to achieve a
- 16:1 molar ratio of DIN:SRP
- ΔR = mean chlorophyll-a treatment/mean chlorophyll-a control)

PLOS ONE

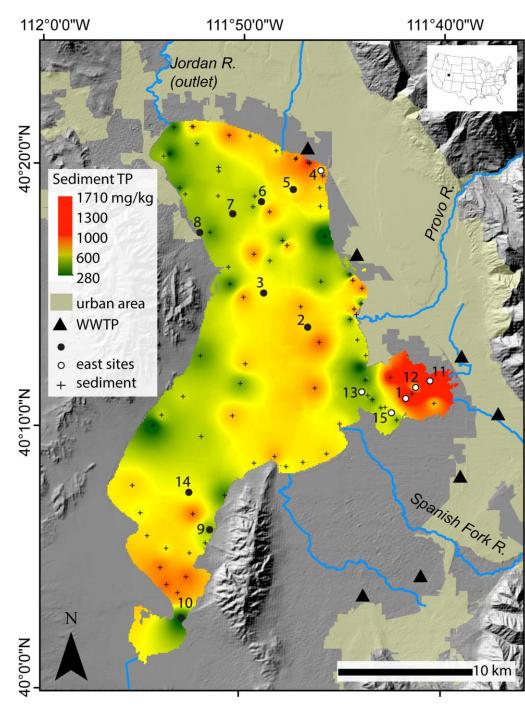
🔓 OPEN ACCESS 🖻 PEER-REVIEWED

RESEARCH ARTICLE

Sediment potentially controls in-lake phosphorus cycling and harmful cyanobacteria in shallow, eutrophic Utah Lake

PORFIZH

AROOT

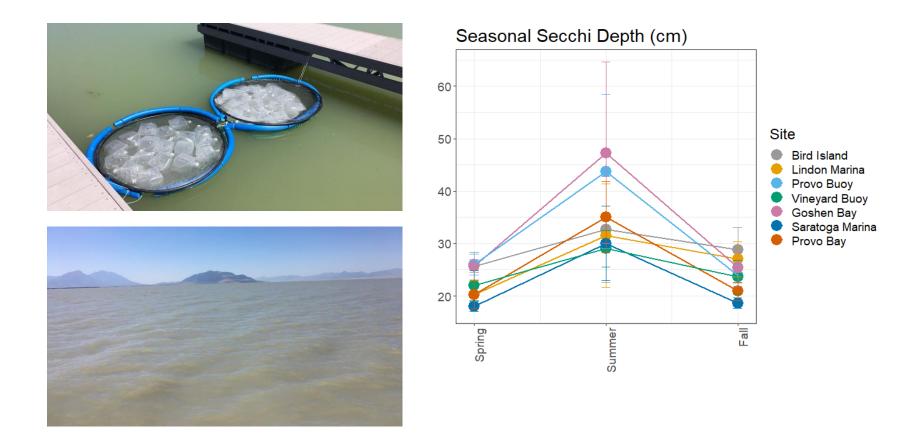

RKOM2F

Matthew C. Randall, Gregory T. Carling 🔄, Dylan B. Dastrup, Theron Miller, Stephen T. Nelson, Kevin A. Rey, Neil C. Hansen, Barry R. Bickmore, Zachary T. Aanderud

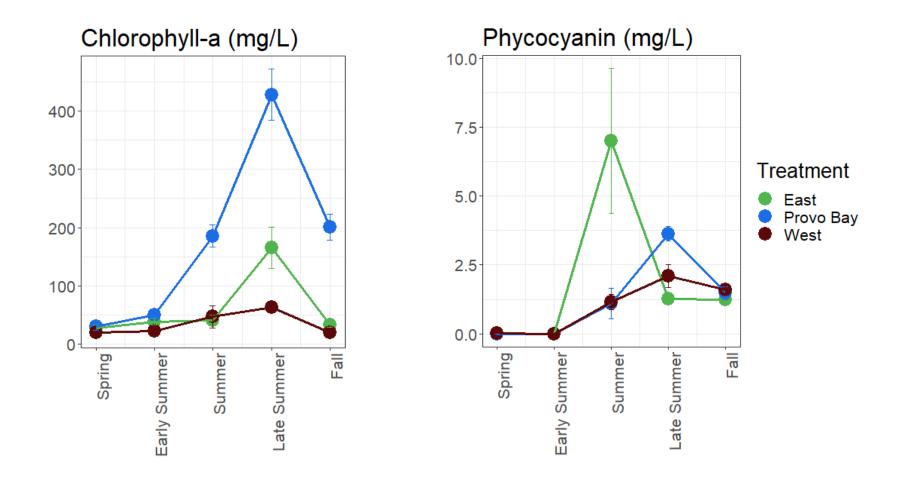
Published: February 14, 2019 • https://doi.org/10.1371/journal.pone.0212238

Table 1 Cyanobacterial species distribution across Utah Lake

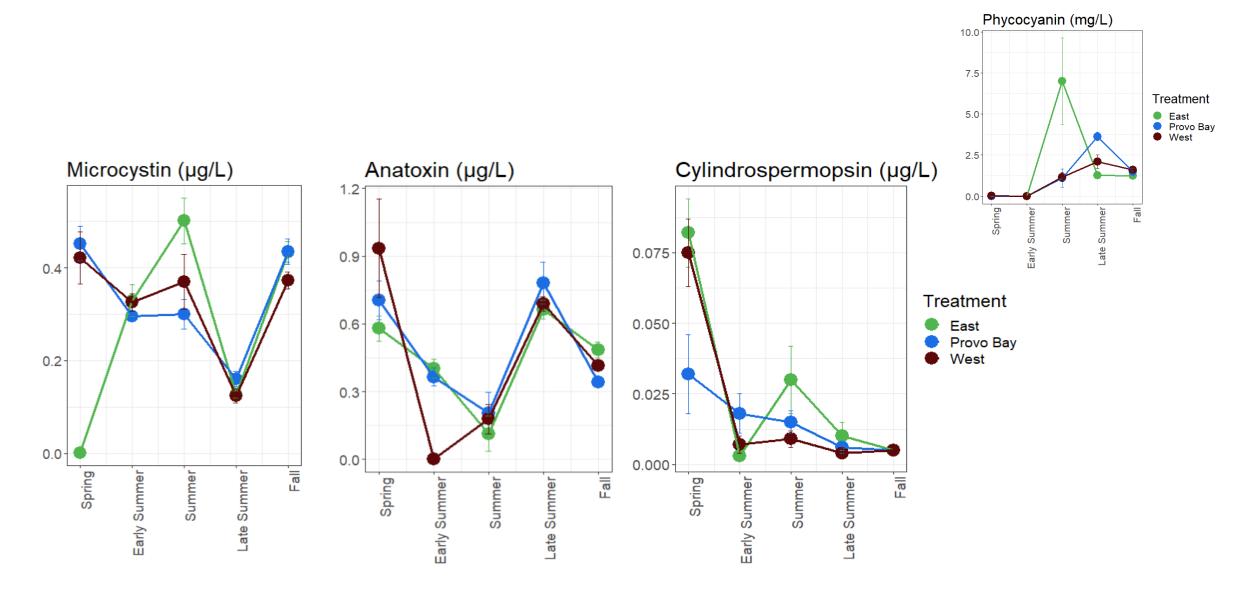
	EAST					WE	ST				PROVO BAY							
	counts (#)		richr	ness =	18		counts (#)		richn	ess =	- 15		counts (#)		richr	ness =	12	
Species		SP	ES	S	LS	F		SP	ES	S	LS	F		SP	ES	S	LS	F
Aphanizomenon flosaquae	47,463-234,076						5,466-81,833						100,476-344,058					
Aphanocapsa grevillei	728																	
Aphanocapsa holsatica	3,528																	
Aphanocapsa planctonica	1,568-10,662						314-627											
Aphanocapsa species	2,394-10,591						532-8,512						1,862-46,075					
Calothrix species	157																	
Chroococcus species							62											
Chrococcus dispersus													3,240					
Chroococcus limeticus	101												101					
Coelosphaerium species							45						1,440					
Cyanodictyon planctonicum	336-2,688						2,520						2,700-54,000					
Dolichospermum circinalis	645-74,650						946-3,830						1,125-630,157					
Dolichospermum species													6,413					
Gomphosphaeria aponina	5,018																	
Leptolyngbya species	3,928-9,565						3,007						7,515-17,763					
Merismopedia glauca	3,472-48,288						5,555						6,535-65,596					
Microcystis aeruginosa	686						392											
Microcystis species	2,688-3,584						6,272						12,600					
Phormidium species	1,456-2,058						2,464						1,456-12,555					
Phormidium species 3	168-8,623																	
Planktothrix species	826-19,936						9,390-15,680						5,376-36,000					
Pseudanabaena species	162-1,217						324-1,966						1,620-3,035					
Snowella lacustris	784						2,867											



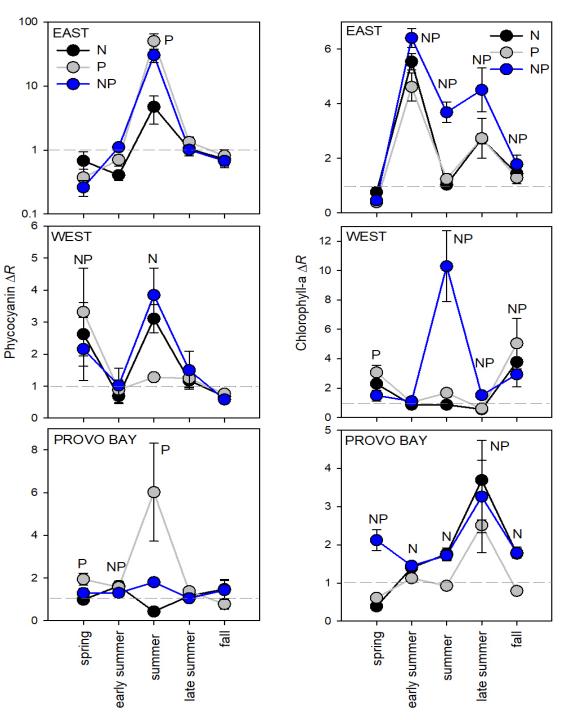
advanced sear 62 12 Save Citation


SEARCH

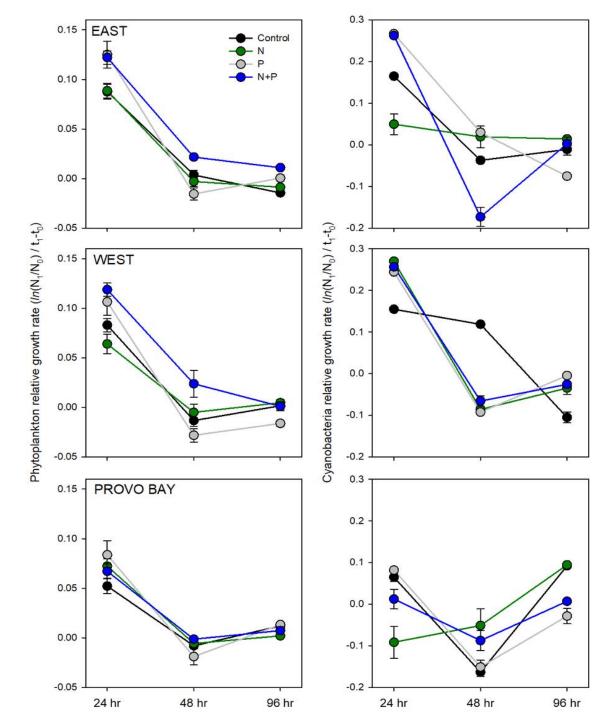
3,824 4 View Share


Sunlight is available to phytoplankton

• Shade covers reduced light by 30% / Plastic cubitainers reduced light by 15%



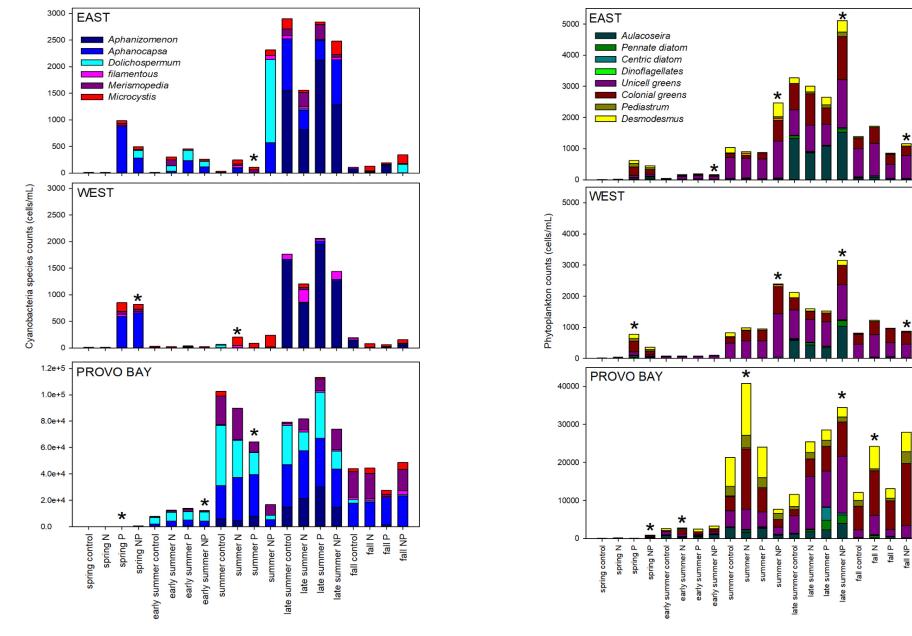
• phytoplankton as all prokaryotic or eukaryotic organism containing chlorophyll-a (e.g., chlorophytes, diatoms, and cyanobacteria)



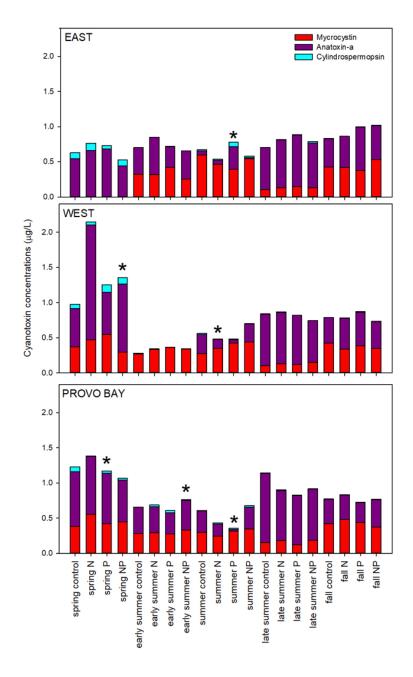
- Cyanotoxins demonstrated a seasonal signal that was not dependent on the cell density of cyanobacteria
- Anatoxin-a concentration was generally higher in the spring, late summer, and fall
- Cylindrospermopsin concentration was highest in the spring

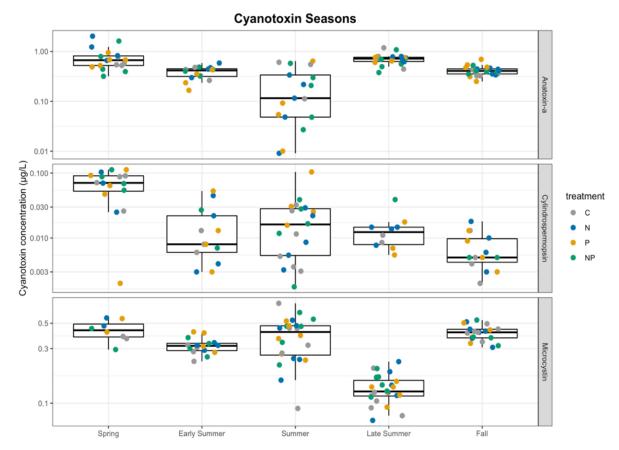
- N or P limited cyanobacteria in the summer across all three locations.
- P limited cyanobacterial responses in East and Provo Bay water, while N limited cyanobacteria in West water
- Cyanobacteria were not limited by either N or P in the late summer and fall
- Nutrient colimitation of phytoplankton occurred in the summer, late summer, and fall
- In the relatively nutrient rich Provo Bay that supported orders of magnitude more phytoplankton biomass than the main body, phytoplankton was limited during every season with N limiting phytoplankton responses when a colimitation was not present

- In the summer, total phytoplankton growth was generally higher in the first 24 hours of the 96-hour time series in the main body of the lake
- Increases in cyanobacterial growth were dependent on the nutrient addition and location in the lake
- In the main body, cyanobacterial growth was stimulated by nutrient addition (i.e., P and N+P addition in the East, and any treatment in the West) in the first 24 hours
- There was no clear and consistent growth pattern in the bay during the incubation
- See final report for growth of individual species

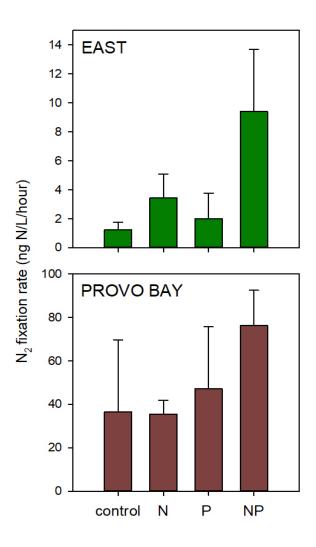

Table 2 Summary of Nutrient Limitation

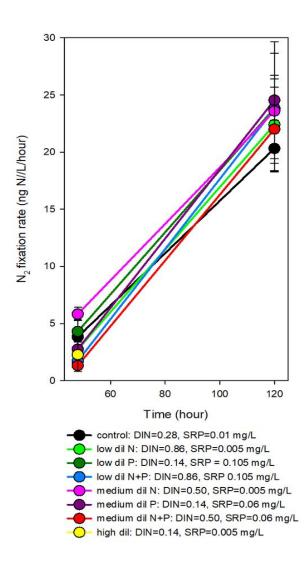
Variable and Location	spring	early summer	summer	late summer	fall	
Cyanobacteria nuti	rient limitation					
East	No limitation	No limitation	Р	No limitation	No limitation	
West	N+P	No limitation	Ν	No limitation	No limitation	
Provo Bay	Р	N+P	Р	No limitation	No limitation	
Total phytoplanktor	nutrient limitation					
East	No limitation	N+P	N+P	N+P	N+P	
West	Р	No limitation	N+P	N+P	N+P	
Provo Bay	N+P	Ν	Ν	N+P	Ν	


- The DIN and SRP was biologically available to the cyanobacteria and phytoplankton
- Concentrations of DIN and SRP consistently declining in treatments—the addition of N resulted in lower P concentrations and the addition of P leading to lower N concentrations
- During the summer seasons, across all locations, the ratio of DIN to SRP in the N+P addition remained close to 16:1 indicating that phytoplankton and/or cyanobacteria were still utilizing N and P even under excessive nutrient conditions
- Biogeochemically co-limited instead of community-level colimited


Table 3 SRP and DIN concentrations and molar ratios in nutrient	
additions treatments	

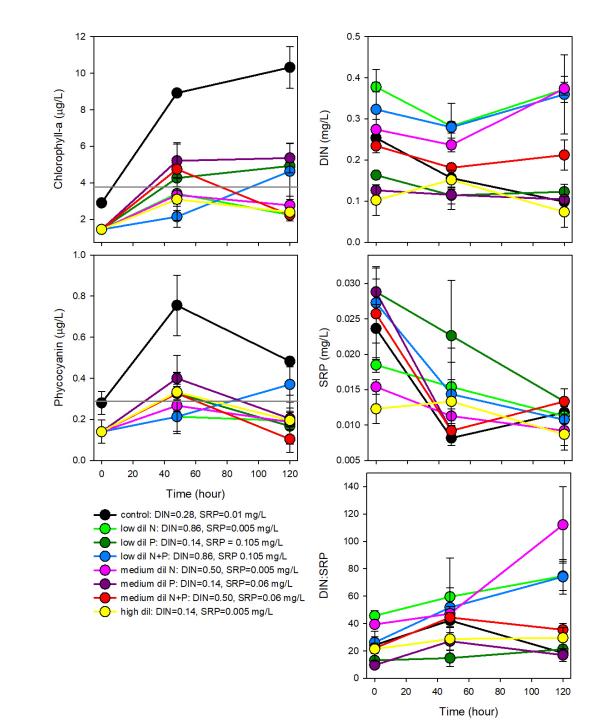
Location	Treatment	Treatment	SRP (mg/L)	DIN (mg/L)	DIN:SRP (mole:mole)
EAST	spring	N	0.013 ±0.002	0.05 ±0.02	9.22 ±3.33
		Р	0.029 ±0.015	$\textbf{0.26}\pm\textbf{0.01}$	32.6±12.8
		N+P	0.016 ±0.004	$\textbf{0.49}\pm\textbf{0.33}$	55.5 ±25.5
	early summer	Ν	0.005 ±0.001	0.19 ±0.01	117 ±4.88
		Р	0.008 ±0.003	0.07 ±0.06	16.2 ±8.66
		N+P	0.007 ±0.001	$\textbf{0.02}\pm\textbf{0.001}$	5.30 ± 1.25
	summer	Ν	0.004 ±0.002	0.86 ±0.08	800 ± 405
		Р	0.100 ± 0.001	0.06	1.33
		N+P	0.096 ±0.20	0.70 ±0.15	16.2 ± 0.614
	late summer	Ν	0.031 ±0.012	0.39 ±0.06	$33.5\pm\!7.72$
		Р	0.067 ±0.033	0.02 ±0.01	8.49 ±7.95
		N+P	0.037 ±0.033	0.17 ±0.06	94.1±53.2
	fall	Ν	0.008 ±0.004	1.00 ±0.06	$122\pm\!\!61.5$
		Р	0.140 ±0.020	0.29 ±0.06	4.58 ±0.365
		N+P	0.123 ±0.021	1.18 ±0.38	12.0 ±6.45
WEST	spring	Ν	0.022 ±0.021	0.14 ±0.07	104 ±93.8
		Р	0.084 ±0.026	$\textbf{0.06}\pm\textbf{0.04}$	1.36 ± 0.469
		N+P	0.117 ±0.043	$\textbf{0.25}\pm\textbf{0.23}$	3.17 ± 2.33
	early summer	Ν	0.005 ±0.002	0.28 ±0.01	372 ±278
		Р	0.006 ±0.001	0.03 ±0.01	11.2 ±4.12
		N+P	0.009 ±0.002	0.23 ± 0.001	75.0
	summer	Ν	0.003 ±0.002	1.0±0.13	2859 ± 1764
		Р	0.094 ±0.002	0.14	3.43
		N+P	0.068 ±0.003	0.63 ±0.04	20.3 ±0.962
	late summer	Ν	0.065 ±0.037	0.75 ±0.04	13.0 ± 7.78
		Р	0.020 ±0.014	0.08 ±0.02	49.0±39.2
		N+P	0.037 ±0.021	0.50 ±0.09	19.7±14.3
	fall	N	0.009 ±0.006	0.96 ±0.11	913 ±712
		Р	0.141 ±0.009	0.34 ±0.04	5.41 ±0.263
		N+P	0.106 ±0.003	0.96 ±0.06	20.0 ±0.836
PROVO BAY	spring	Ν	0.024 ±0.006	0.30 ±0.16	34.5 ±24.7
		Р	0.015 ±0.002	0.31 ± 0.02	45.1±1.55
		N+P	0.021 ±0.006	$\textbf{0.14}\pm\textbf{0.04}$	18.9 ±8.72
	early summer	N	0.012 ±0.002	0.30 ±0.16	31.4 ±14.6
		Р	0.010 ±0.002	0.31 ±0.02	2.42
		N+P	0.010 ±0.002	0.14 ±0.04	17.7 ±14.1
	summer	Ν	0.008 ±0.001	0.14 ±0.06	41.0 ±29.1
		Р	0.246 ±0.020	0.37 ±0.31	3.68 ±3.13
		N+P	0.074 ±0.018	0.26 ±0.12	11.1±7.11
	late summer	N	0.021 ±0.005	0.09 ±0.06	16.9±13.9
		Р	0.114 ±0.010	0.19 ±0.06	3.72 ±1.08
		N+P	0.056 ±0.032	0.19 ±0.07	3.84 ±1.66
	fall	N	0.009 ±0.001	0.09 ±0.07	26.9 ±19.8
		Р	0.084 ±0.006	0.01 ±0.001	0.257 ±0.129
		N+P	0.010 ±0.001	0.11 ±0.05	29.5 ±16.4


- During the summer, Microcystis sp. was associated with cyanobacterial nutrient limitation in the East and West. In the bay, Aphanocapsa, Dolichospermum, Merismopedia, and Aphanizomenon spp. were associated with nutrient limitation in the early summer and summer.
- Aulacoseira and Desmodesmus spp. and two taxonomical categories of algae (i.e., unicellular and colonial green algae) were primarily associated with the phytoplankton nutrient limitations across Utah Lake regardless of season.



• Microcystin was most prevalent in the early summer and summer, regardless of nutrient treatment or a specific nutrient limitation to phytoplankton.

- In the early summer, N+P additions increased N₂ fixation 7.7-fold (N+P=9.41 ng N/L/hour ±4.27, control=1.23 ng N/L/hour ±0.523) in East water. In Provo Bay, N₂ fixation rates were at least 4-times higher than in East but were not influenced by nutrient addition. N₂ fixation was non-detectable in West water
- Regardless of treatment, N₂ fixation dramatically increased at least 5.5-fold from 48 to 120 hours (mean of all treatments: 48 hours=3.33 ±0.442 and 120 hours=22.9 ±1.08 ng N/L/hour



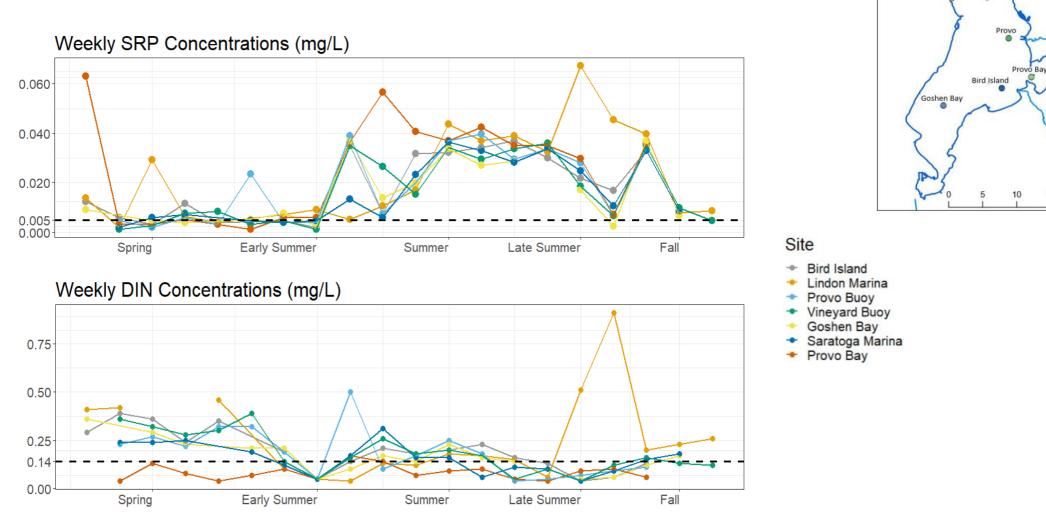

- In the spring, the nutrient levels needed to curb phytoplankton was a DIN concentration < 0.14 mg/L combined with an SRP concentration < 0.06 mg/L
- The nutrient level needed to curb cyanobacteria was a SRP concentration < 0.005 mg/L

Table 4 Synthetic Utah Lake water recipe

J	
Chemical form	Final concentration of the major ion solution used to dilute the assays (mg/L or element)
Si ⁴ + as Na2SiO3 9H2O	0.037
Ca ²⁺ as CaCl2 2H2O	44.0
Mg ²⁺ as MgSO4 7H2O	77.0
Na⁺ as Na2SO4	50.0
K⁺ as K2 SO4	10.6
SO42- as MgSO4 7H2O	304
Cl ⁻ as CaCl2 2H2O	165

Are We Exceeding These Thresholds?

C. Utah Lake

Saratoga Vineyard

15 km

- Dual-nutrient management strategy maintaining DIN concentrations and reducing SRP (especially SRP)
- We strongly suggest that management goals focus on DIN in the spring and SRP in summer and late summer
- However, many measurements are completed as TN or TP
- Our thresholds in terms of TN and TP are: TN: < 1.3 mg/L, TP: < 0.11 mg/L

 Table 5 Impact of grazers on chlorophylla-a and phycocyanin concentrations

- In the main body of the lake, in the early summer, microzooplankton grazed total phytoplankton and cyanobacteria, but in the bay, microzooplankton grazers demonstrated a selective feeding preference for cyanobacteria
 - In the main body of the lake, microzooplankton grazed cyanobacteria, measured as phycocyanin concentrations, to almost non-detectable levels

٠

 In Provo Bay water, the inclusion of microzooplankton led to an increase in chlorophyll-a concentrations across all treatments and the control.

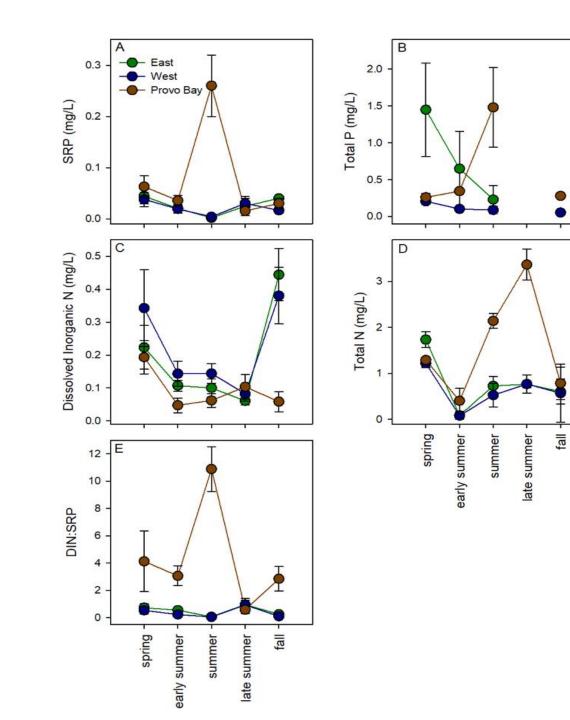
		Chloro	phyll-a	Phyco	cyanin
Location	Treatment	plus grazers	minus grazers	plus grazers	minus grazers
EAST	Control	2.28 ±0.870	8.72 ±0.344	0.01 ±0.005	0.540 ±0.56
	Ν	2.48 ±1.07	48.2 ±4.81	0	2.62 ±0.254
	Ρ	4.84 ±3.44	40.2 ±8.84	0.01 ±0.035	2.08 ±0.344
	N+P	3.90 ±2.49	55.8 ±5.64	0.01 ±0.045	2.64 ±0.333
WEST	Control	2.56 ±1.17	21.5 ±0.558	0.01 ±0.01	0.960 ±0.051
	Ν	2.41 ±1.01	18.4 ±0.649	0.01 ±0.005	0.870 ±0.006
	Ρ	4.49 ±3.09	22.1 ±2.51	0.01 ±0.055	0.953 ±0.087
	N+P	3.97 ±2.57	23.6 ±4.78	0.01 ±0.050	0.990 ±0.107
PROVO BAY	Control	78.2 ±10.4	41.5 ±5.57	3.27 ±0.340	5.21 ±2.00
	Ν	101 ±12.9	55.7 ±2.61	4.26 ±0.645	7.71 ±0.254
	Ρ	76.5 ±12.1	44.8 ±2.13	3.22 ±0.390	7.26 ±0.155
	N+P	89.3 ±0.660	57.7 ±2.61	3.76 ±0.145	7.09 ±0.274

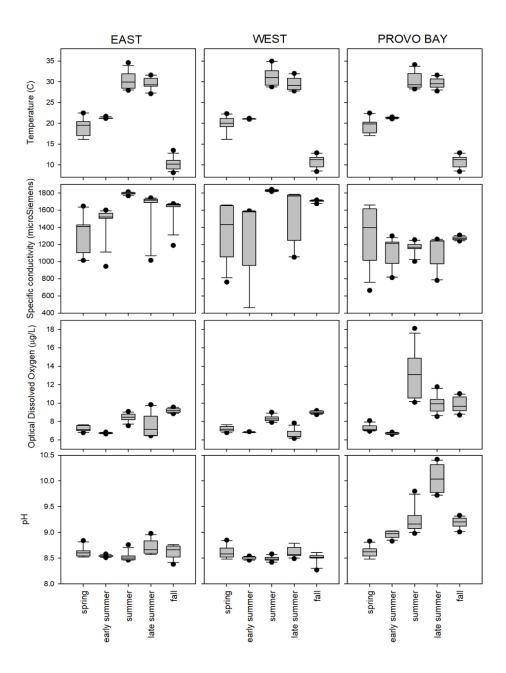
Calanoida (Calanoids)

Diplostraca (Cladocera)

Cycolopoida (Cyclopoids)

Monogononta (Rotifers)

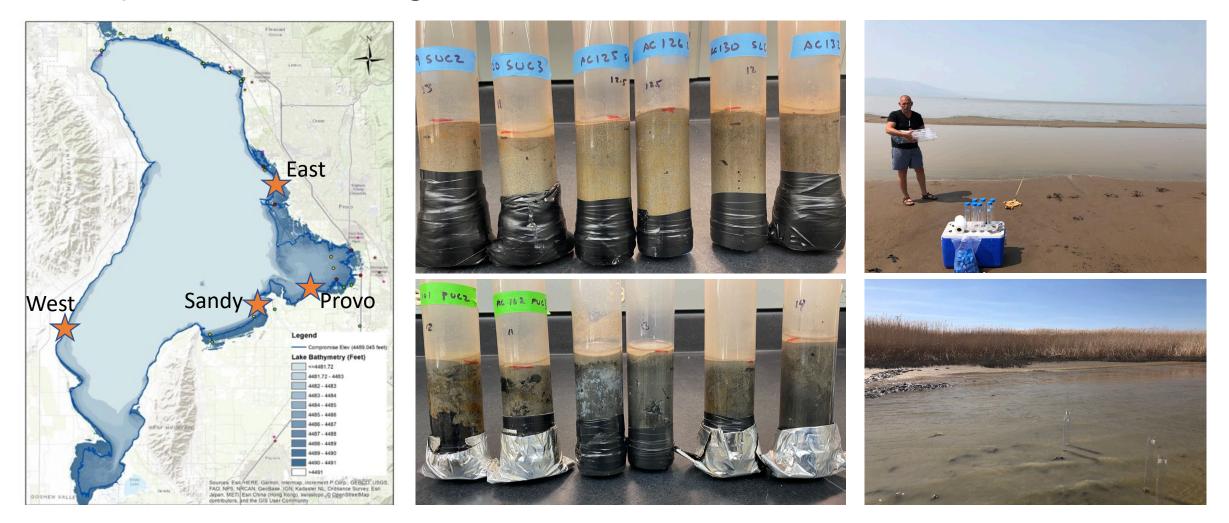

Ploimida (Rotifers)


Acknowledgements

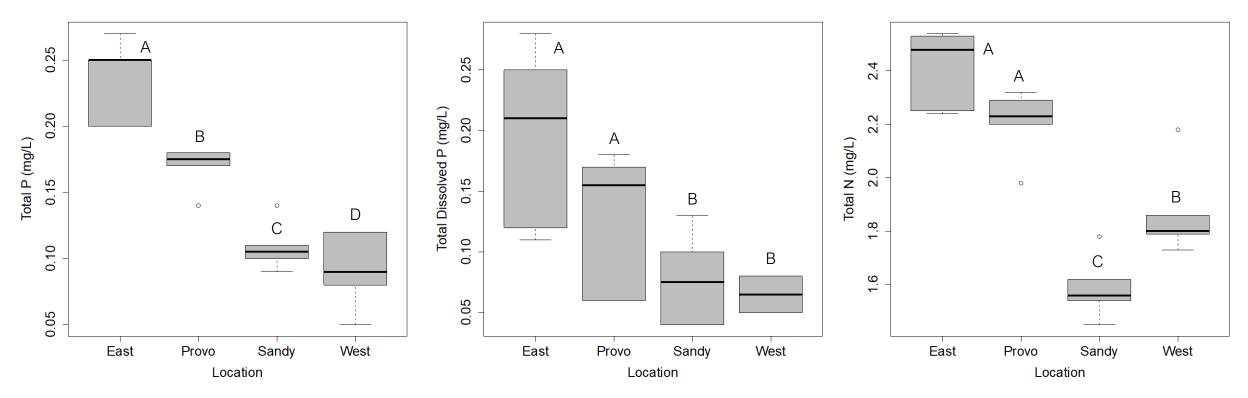
- Utah Department of Environmental Quality Scott Daly
- Dr. Hans Paerl University of North Carolina at Chapel Hill
- Dr. Ryan King Baylor University
- Dr. Erin Jones Brigham Young University
- Dr. Michael J. Paul Tetra Tech
- Dr. Mitch Hogsett PhD
- Rachel Buck PhD, Utah State University
- Timpanogos Nation

- BYU Graduates / Undergraduates:
 - Jonathan Daniels, Elizabeth Mclaughlin, Madeleine Malmfeldt, Maddie Armond, Detiare Leifi, Sara Schenk, Jacquelyn Land, Kevin Torgerson, Chelsea Abrahamian, Sierra Curtis Nichols, Alison Barnett Fischer

Utah Lake Littoral Sediment Study: An Assessment of C, N, and P Dynamics in the Utah Lake Littoral Zone


PI: Dr. Erin Rivers, USU

Co-PI: Dr. Zachary Aanderud, Western States Water and Soil & BYU Co-PI: Dr. Greg Carling, Western States Water and Soil & BYU


Task 1: Frequency and Duration of Sediment Drying-Rewetting on Nutrient Release and Oxygen Demand

Experimental Design

Four lake locations with three sediment types (i.e., lake, margin, and upland) expose sediments to constant water and drying-re-inundation regimes and estimate N and P release from sediments and P sink potential of sediments

Baseline water chemistry

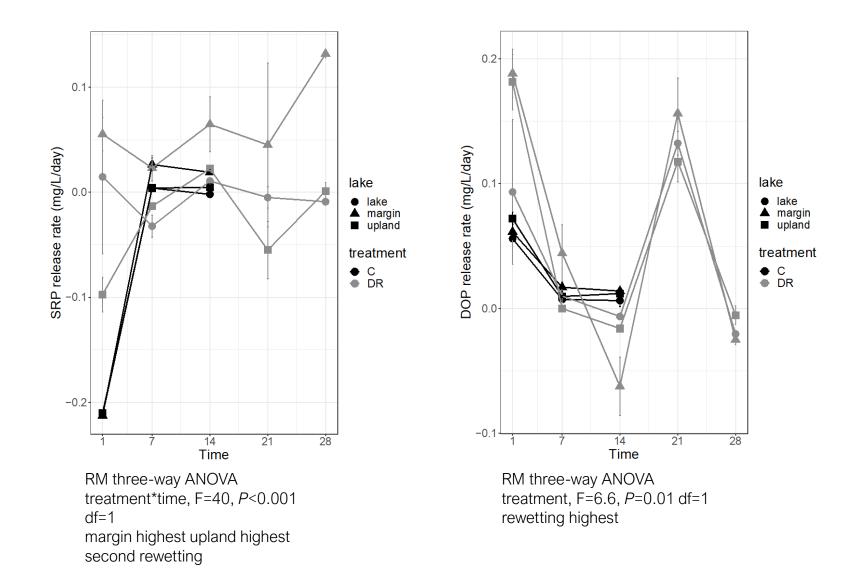
one-way ANOVA with mean, standard error mg/L:

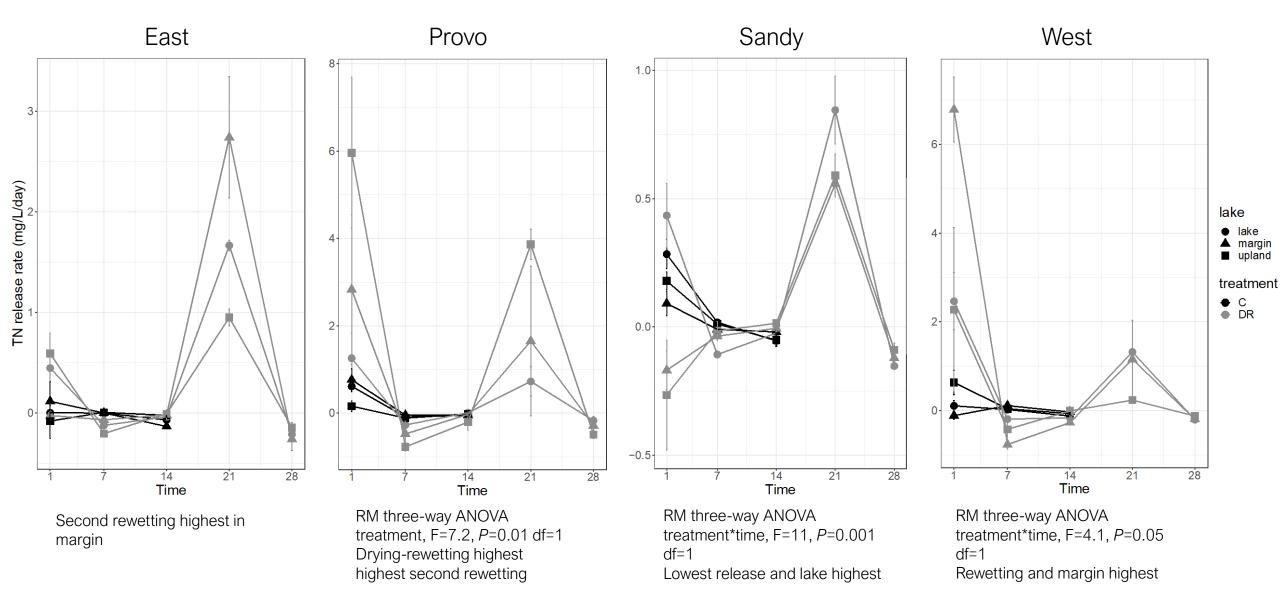
SRP = 0.14, 0.02; Particulate P = 0.04, 0.01; Dissolved Organic P = 0.01, 0.00;

NO3-N = 0.69, 0.11; NH4+N = 0.19, 0.05; Total Dissolved N = 0.64. 0.05; Total Dissolved Organic N = 0.06, 0.02; DOC = 4.56, 0.26

TP release rates

East SRP and DOP release rates




Table 1. P species release rates (grams P/m2 sediment/day) from four Utah Lake locations across three sediment types under continuous water conditions (control) and exposed to drying and rewetting cycles (DR 1). Values are means (n: control = 6, DR 1 = 9) with standard error.

location	sediment	treatment	TP		TDP		PP		SRP		DOP	
			mean	sterr	mean	sterr	mean	sterr	mean	sterr	mean	sterr
east beach	upland	control	0.002	0.000	0.004	0.000	-0.002	0.001	0.001	0.000	0.003	0.000
east beach	margin	control	0.005	0.003	0.009	0.001	-0.003	0.002	0.005	0.001	0.004	0.001
east beach	lake	control	0.000	0.001	0.002	0.001	-0.002	0.001	0.000	0.000	0.001	0.000
provo bay	upland	control	0.002	0.001	0.004	0.001	-0.002	0.001	0.002	0.000	0.001	0.000
			0.004	0.000	0.000	0.040	0.004	0.040	0.004	0.000	0.040	0.040
provo bay	margin	control	-0.001	0.002	0.020	0.019	-0.021	0.019	0.001	0.000	0.019	0.019
provo bay	lake	control	0.000	0.001	0.002	0.001	-0.002	0.000	0.001	0.000	0.001	0.000
sandy beach	upland	control	0.000	0.001	0.001	0.000	-0.001	0.000	0.000	0.000	0.001	0.000
sandy beach	margin	control	0.000	0.000	0.001	0.000	-0.001	0.000	0.000	0.000	0.001	0.000
sandy beach	lake	control	0.001	0.001	0.002	0.001	-0.001	0.000	0.000	0.000	0.001	0.001
wast baach	upland	control	-0.001	0.000	0.000	0.000	-0.001	0.000	0.000	0.000	0.000	0.000
west beach	upland	control										
west beach	margin	control	0.000	0.001	0.001	0.000	-0.001	0.001	0.000	0.000	0.001	0.000
west beach	lake	control	-0.001	0.001	0.000	0.000	-0.001	0.000	0.000	0.000	0.000	0.000
east beach	lake	DR 1	0.010	0.006	0.011	0.007	-0.001	0.002	-0.001	0.005	0.008	0.005
east beach	margin	DR 1	0.029	0.011	0.031	0.012	-0.002	0.001	0.012	0.003	0.014	0.010
east beach	upland	DR 1	0.009	0.005	0.012	0.007	-0.003	0.002	-0.007	0.004	0.014	0.008
provo bay	lake	DR 1	0.011	0.006	0.011	0.006	0.000	0.000	-0.002	0.002	0.012	0.006
provo bay	margin	DR 1	0.022	0.012	0.017	0.010	0.005	0.003	0.004	0.004	0.011	0.007
provo bay	upland	DR 1	0.009	0.006	0.012	0.006	0.000	0.000	-0.003	0.002	0.011	0.006
sandy beach	lake	DR 1	0.004	0.002	0.004	0.002	0.000	0.001	-0.006	0.003	0.008	0.004
sandy beach	margin	DR 1	0.001	0.000	0.001	0.001	-0.001	0.001	-0.006	0.003	0.006	0.003
sandy beach	upland	DR 1	0.177	0.210	0.003	0.002	0.174	0.210	-0.006	0.003	0.007	0.004
west beach	lake	DR 1	0.002	0.001	0.003	0.002	0.000	0.001	-0.002	0.002	0.005	0.003
west beach	margin	DR 1	0.004	0.003	0.005	0.003	0.000	0.001	-0.003	0.002	0.007	0.004
west beach	upland	DR 1	0.011	0.007	0.012	0.008	-0.001	0.001	0.004	0.004	0.007	0.004

Table 2. Range of TP release rates (grams P/m2 sediment/day) from four Utah Lake locations across three sediment types under continuous water conditions (control) and exposed to drying and rewetting cycles (DR 1 and DR 2). Values are means (n: control = 6, DRs = 9) with standard error.

sediment	treatment	TP low		TP high	
		mean	sterr	mean	sterr
upland	control	-0.001	0.000	0.002	0.000
margin	control	0.000	0.000	0.005	0.003
lake	control	0.000	0.001	0.001	0.001
lake	DR 1	0.002	0.001	0.011	0.006
margin	DR 1	0.001	0.000	0.029	0.011
upland	DR 1	0.009	0.005	0.177	0.210
lake	DR 2	0.010	0.006	0.026	0.015
margin	DR 2	0.008	0.005	0.068	0.022
upland	DR 2	0.008	0.005	0.039	0.022

TN release rates

East NO3-N and DON release rates

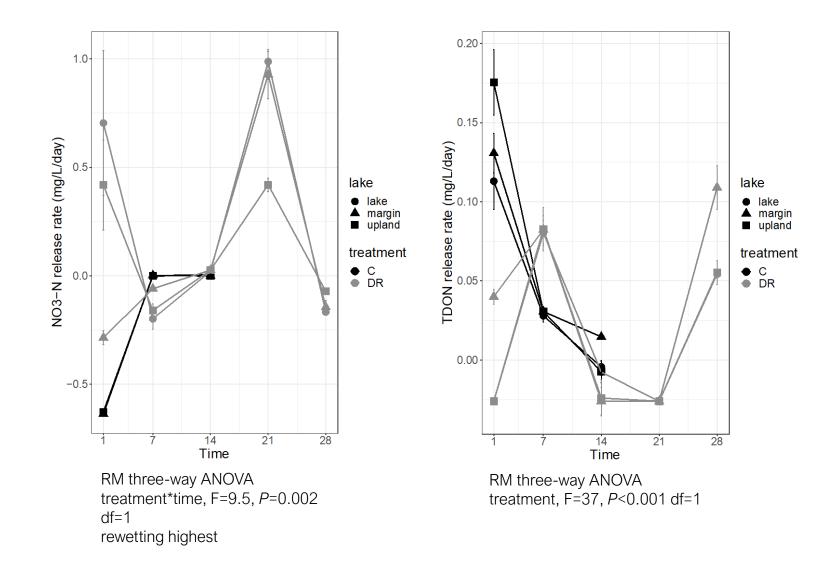
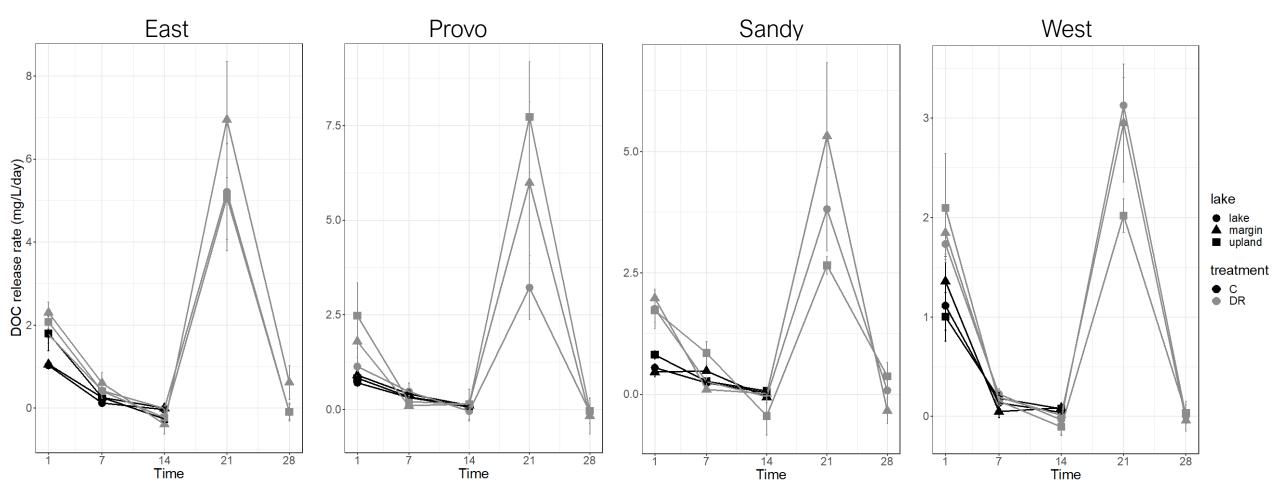
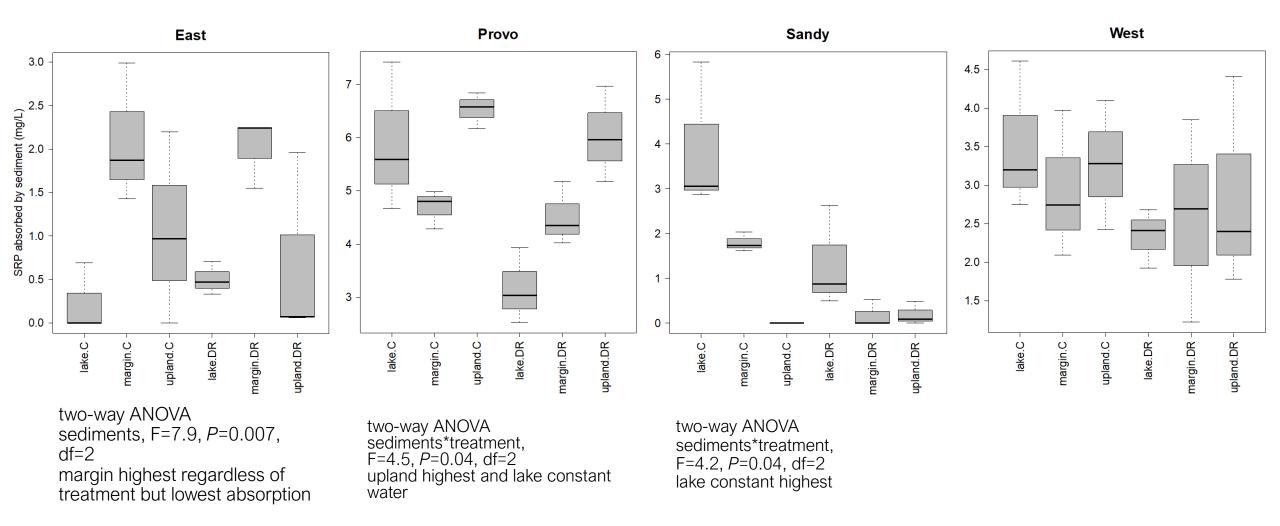



Table 3. Range of TN release rates (grams N/m2 sediment/day) from four Utah Lake locations across three sediment types under continuous water conditions (control) and exposed to drying and rewetting cycles (DR 1 and DR 2). Values are means (n: control = 6, DRs = 9) with standard error.

sediment	treatment	TN low		TN high	
		mean	sterr	mean	sterr
upland	control	-0.015	0.005	-0.002	0.003
margin	control	-0.016	0.008	0.009	0.008
lake	control	-0.015	0.003	-0.004	0.004
upland	DR 1	-0.019	0.016	0.375	0.275
margin	DR 1	-0.019	0.016	0.373	0.240
lake	DR 1	0.023	0.021	0.125	0.083
upland	DR 2	0.011	0.017	0.373	0.217
margin	DR 2	0.047	0.033	0.298	0.169
lake	DR 2	0.011	0.017	0.101	0.063

DOC release rates

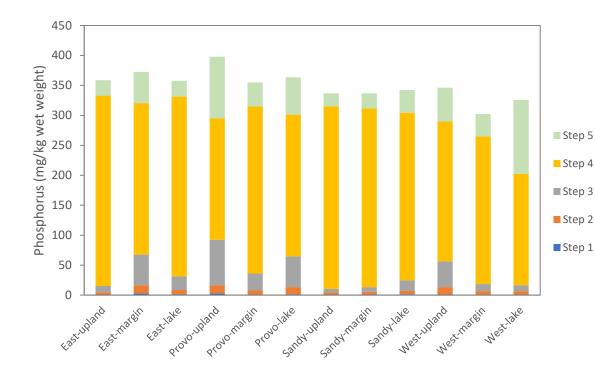

RM three-way ANOVA treatment, F=4.6, P=0.04 df=1 margin highest rewetting and upland highest constant

RM three-way ANOVA treatment, F=3.3, *P*=0.08 df=1 drying-rewetting highest highest second rewetting

RM three-way ANOVA treatment, F=5.5, *P*=0.02 df=1 drying-rewetting highest highest second rewetting

RM three-way ANOVA treatment, F=6.2, *P*=0.02 df=1 drying-rewetting highest highest second rewetting

Sediment SRP absorption


Investigate relationships between P absorption and P already in sediments 10 mg-P L^{-1} as K_2HPO_4 to saturate the water column with available P

Sediment SRP absorption continued

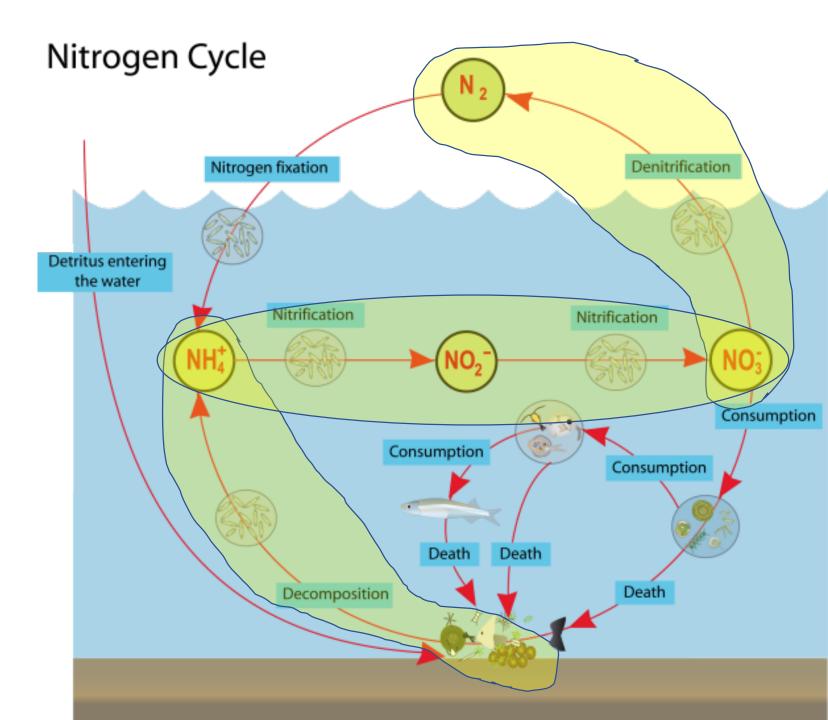
Table 4. SRP adsorption rate by sediments (grams P/m2 sediment/day) and % SRP adsorbed by sediments from four Utah Lake locations across three sediment types under continuous water conditions (control) and exposed to drying and rewetting cycles (DR). Values are means (n: control = 3 and DR = 6) with standard error.

le setter.	a a dua a sa t			-11		1 -
location	sediment	treatment	rate SRP adsorbed by sec		% adsorbed by sedim	
			mean	sterr	mean	sterr
east beach	upland	control	0.033	0.020	10.54	6.35
east beach	margin	control	0.065	0.014	20.96	4.63
east beach	lake	control	0.007	0.007	2.31	2.31
provo bay	upland	control	0.203	0.006	65.31	1.95
provo bay	margin	control	0.146	0.006	46.92	2.06
provo bay	lake	control	0.183	0.025	58.89	8.08
sandy beach	upland	control	0.000	0.000	0.00	0.00
sandy beach	margin	control	0.056	0.004	18.00	1.25
sandy beach	lake	control	0.122	0.030	39.27	9.55
west beach	upland	control	0.101	0.015	32.66	4.87
west beach	margin	control	0.091	0.017	29.31	5.50
west beach	lake	control	0.109	0.017	35.19	5.62
east beach	upland	DR	0.022	0.020	6.98	6.31
east beach	margin	DR	0.062	0.007	20.10	2.29
east beach	lake	DR	0.016	0.003	5.03	1.11
provo bay	upland	DR	0.187	0.016	60.30	5.20
provo bay	margin	DR	0.140	0.011	45.13	3.44
provo bay	lake	DR	0.098	0.013	31.69	4.10
sandy beach	upland	DR	0.006	0.005	1.93	1.50
sandy beach	margin	DR	0.005	0.005	1.76	1.76
sandy beach	lake	DR	0.041	0.020	13.34	6.57
west beach	upland	DR	0.089	0.025	28.62	7.94

Phosphorus sequential extractions in sediment

Sequential extractions suggest that phosphorus is primarily bound to calcite (step 4) with a small, but important, mobile fraction (steps 1-3).

Other sediment observational data:

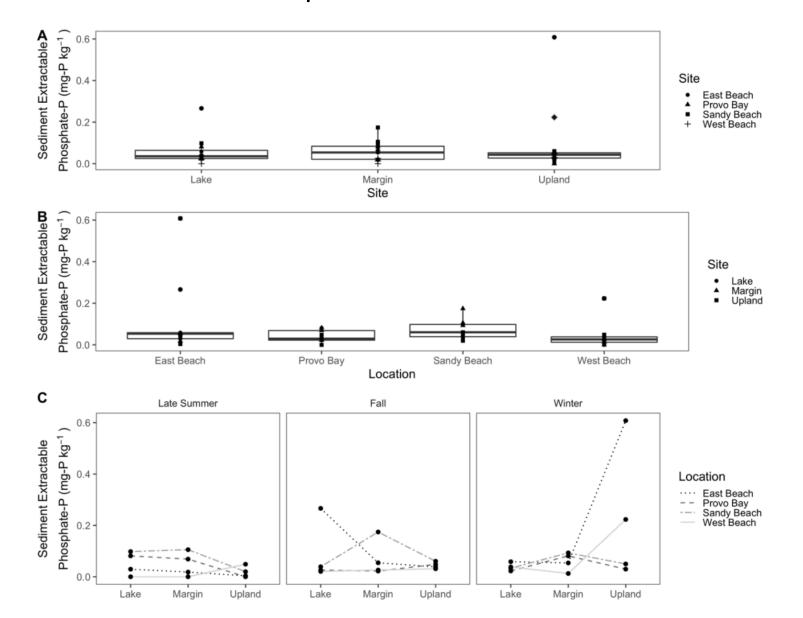

- Mineralogy
- Total P, Total N, TOC
- Metals

٠

Task 2: Rate and Magnitude of Nutrient Fluxes from Drying, Dry, and Rewetting Sediments

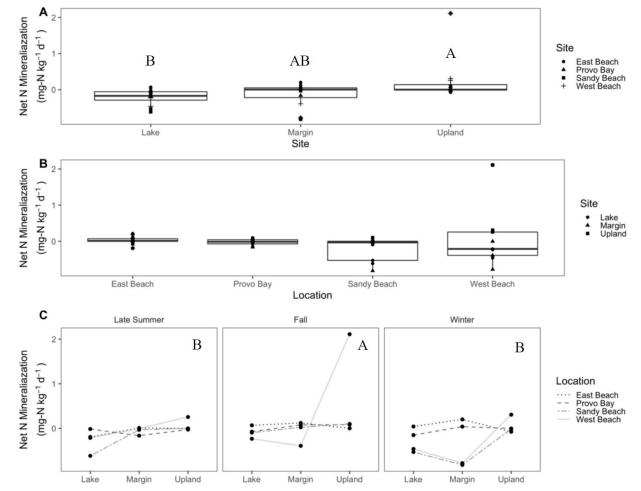
Nitrogen cycle

- Sources
 - Mineralization
 - Microbial biomass turnover
- Sinks
 - Denitrification- only permanent removal
- Internal cycling
 - Nitrification



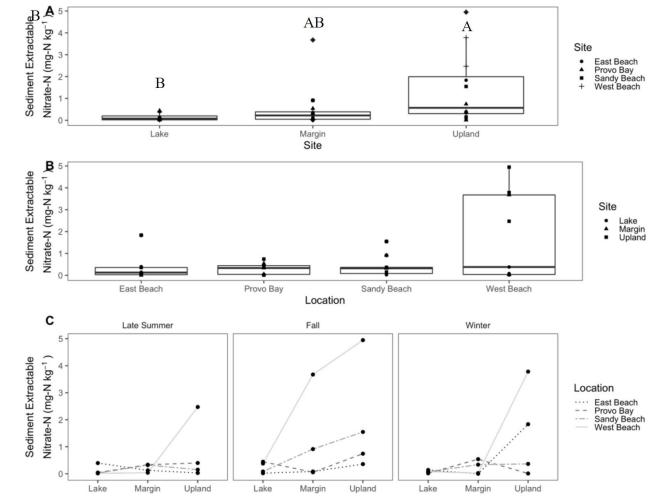
Lab Tests

- Benthic primary production
- Bulk density, moisture content, pH, and loss on ignition
- Microbial biomass N and C
- Nitrification
- Mineralization
- Denitrification


No effects on PO₄

Effect of zone on sediment nitrogen

moderate mineralization potential in littoral zone


Variable	P-value
Mineralization	0.03413
Nitrification	0.3224
Respiration	0.2894
Sediment Nitrate	0.003073
Sediment Ammonium	0.1703
Sediment DIN	0.1281
MBC	0.2681
MBN	0.1475
OMC	0.4296

Effect of zone on sediment nitrogen

moderate mineralization potential in littoral zone

Variable	P-value
Mineralization	0.03413
Nitrification	0.3224
Respiration	0.2894
Sediment Nitrate	0.003073
Sediment Ammonium	0.1703
Sediment DIN	0.1281
MBC	0.2681
MBN	0.1475
OMC	0.4296

Mineralization and nitrification ~ sediment nitrogen, all zones

Site	Variables	Mineralization	Nitrification	Respiration	MBN	MBC
	Sediment NO3	-0.3148953	-0.6879581**	-0.3671524	-0.0283665	-0.028366
	Sediment NH4	-0.4110991	0.1936905	-0.6660403*	-0.5217204	-0.5217204
Laba	Sediment DIN	-0.3030544	0.2876234	-0.6644532*	-0.5637952	-0.5637952
Lake	омс	0.6444089*	0.5679792	0.1405453	-0.1908367	-0.190836
	MBC	0.3746627	0.226647	0.5671072		
	MBN	-0.3220327	-0.4718987	0.8450628***		
	Sediment NO3	-0.1396186	-0.6337979*	-0.2518014	-0.4980386	-0.4980386
	Sediment NH4	-0.5947243*	0.02223607	-0.1056993	0.5359337	0.5359337
	Sediment DIN	-0.5551523	-0.131581	-0.4977898	-0.004480036	-0.00448003
Littoral	омс	-0.4305989	0.08672569	0.06752023	0.4671969	0.4671969
	MBC	-0.7303059	0.3356225	0.2224613		
	MBN	-0.5239152	0.2959826	0.7473789**		
	Sediment NO3	0.2027	0.2989981	0.1919603	0.227439	0.227439
	Sediment NH4	-0.6730649**	0.264067	0.3890907	0.5392459	0.5392459
Unland	Sediment DIN	-0.4463506	0.5997574*	0.4766894	0.519176	0.519176
Upland	омс	-0.2567843	0.5768711	0.2538108	0.2591953	0.2591953
	MBC	0.1282074	0.588944*	0.7275784**		
	MBN	0.02935759	0.4085485	0.8495313***		

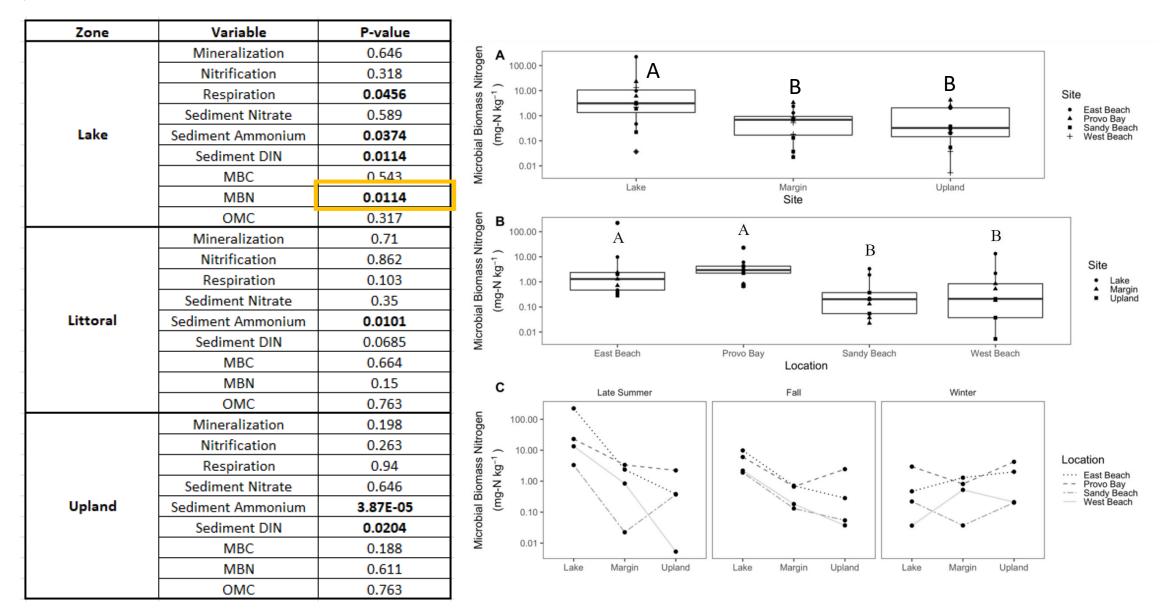
*p<0.10; **p<0.05; ***p<0.01; ****p<0.0001; not displayed: p>0.1

Mineralization ~ sediment organic matter, in-lake only

Site	Variables	Mineralization	Nitrification	Respiration	MBN	MBC
	Sediment NO3	-0.3148953	-0.6879581**	-0.3671524	-0.0283665	-0.028366
	Sediment NH4	-0.4110991	0.1936905	-0.6660403*	-0.5217204	-0.5217204
Laba	Sediment DIN	-0.3030544	0.2876234	-0.6644532*	-0.5637952	-0.5637952
Lake	ОМС	0.6444089*	0.5679792	0.1405453	-0.1908367	-0.190836
	MBC	0.3746627	0.226647	0.5671072		
	MBN	-0.3220327	-0.4718987	0.8450628***		
	Sediment NO3	-0.1396186	-0.6337979*	-0.2518014	-0.4980386	-0.498038
	Sediment NH4	-0.5947243*	0.02223607	-0.1056993	0.5359337	0.5359337
Line and	Sediment DIN	-0.5551523	-0.131581	-0.4977898	-0.004480036	-0.00448003
Littoral	ОМС	-0.4305989	0.08672569	0.06752023	0.4671969	0.4671969
	MBC	-0.7303059	0.3356225	0.2224613		
	MBN	-0.5239152	0.2959826	0.7473789**		
	Sediment NO3	0.2027	0.2989981	0.1919603	0.227439	0.227439
	Sediment NH4	-0.6730649**	0.264067	0.3890907	0.5392459	0.5392459
Unland	Sediment DIN	-0.4463506	0.5997574*	0.4766894	0.519176	0.519176
Upland	омс	-0.2567843	0.5768711	0.2538108	0.2591953	0.2591953
	MBC	0.1282074	0.588944*	0.7275784**		
	MBN	0.02935759	0.4085485	0.8495313***		

*p<0.10; **p<0.05; ***p<0.01; ****p<0.0001; not displayed: p>0.1

Mineralization and nitrification ~ microbial biomass, in-lake and littoral


Site	Variables	Mineralization	Nitrification	Respiration	MBN	MBC
	Sediment NO3	-0.3148953	-0.6879581**	-0.3671524	-0.0283665	-0.0283665
	Sediment NH4	-0.4110991	0.1936905	-0.6660403*	-0.5217204	-0.5217204
Laba	Sediment DIN	-0.3030544	0.2876234	-0.6644532*	-0.5637952	-0.5637952
Lake	омс	0.6444089*	0.5679792	0.1405453	-0.1908367	-0.190836
	MBC	0.3746627	0.226647	0.5671072		
	MBN	-0.3220327	-0.4718987	0.8450628***		
	Sediment NO3	-0.1396186	-0.6337979*	-0.2518014	-0.4980386	-0.498038
	Sediment NH4	-0.5947243*	0.02223607	-0.1056993	0.5359337	0.5359337
Line and	Sediment DIN	-0.5551523	-0.131581	-0.4977898	-0.004480036	-0.00448003
Littoral	омс	-0.4305989	0.08672569	0.06752023	0.4671969	0.4671969
	MBC	-0.7303059	0.3356225	0.2224613		
	MBN	-0.5239152	0.2959826	0.7473789**		
	Sediment NO3	0.2027	0.2989981	0.1919603	0.227439	0.227439
	Sediment NH4	-0.6730649**	0.264067	0.3890907	0.5392459	0.5392459
السامين ما	Sediment DIN	-0.4463506	0.5997574*	0.4766894	0.519176	0.519176
Upland	омс	-0.2567843	0.5768711	0.2538108	0.2591953	0.2591953
	MBC	0.1282074	0.588944*	0.7275784**		
	MBN	0.02935759	0.4085485	0.8495313***		

*p<0.10; **p<0.05; ***p<0.01; ****p<0.0001; not displayed: p>0.1

Zone	Variable	P-value		
	Mineralization	0.646		
	Nitrification	0.318		
	Respiration	0.0456		
	Sediment Nitrate	0.589	A B Site	
Lake	Sediment Ammonium	0.0374	A B Site A A B Site • East Be • Provo B • Sandy E • West Be	ach Bay Beach
	Sediment DIN	0.0114		each
	MBC	0.543		
	MBN	0.0114	Lake Margin Upland	
	OMC	0.317	Site	
	Mineralization	0.71	Site	
	Nitrification	0.862		
	Respiration	0.103	Site	aka
	Sediment Nitrate	0.35		⊥ake Margin Jpland
Littoral	Sediment Ammonium	0.0101		
	Sediment DIN	0.0685		
	MBC	0.664	East Beach Provo Bay Sandy Beach West Beach Location	
	MBN	0.15		
	OMC	0.763	Late Summer Fall Winter	
	Mineralization	0.198		
	Nitrification	0.263		
	Respiration	0.94	Location	
	Sediment Nitrate	0.646	Location Understand Understa	ach Beach
Upland	Sediment Ammonium	3.87E-05	West Br	each
	Sediment DIN	0.0204	B A B C B C C B C C C C C C C C C C C C C	
	MBC	0.188		
	MBN	0.611	Lake Margin Upland Lake Margin Upland Lake Margin Upland	
	OMC	0.763		

Seasonal effect on microbial N in lake

X Seasonal effect on mineralization or sediment organic matter

Zone	Variable	P-value	La A 200 -			•	
	Mineralization	0.646	W (150 -				
	Nitrification	0.318	anic g_1			+	Location
	Respiration	0.0456	50 ¥ 100-		t		 East Beach Provo Bay Sandy Beach West Beach
	Sediment Nitrate	0.589	Sediment Organic Matter (g-OM kg ⁻¹) v	t	t	· ·	 Sandy Beach + West Beach
Lake	Sediment Ammonium	0.0374	50 -		:	<u> </u>	
	Sediment DIN	0.0114	Sec				
	MBC	0.543		Lake	Margin	Upland	
	MBN	0.0114			Site		
	OMC	0.317	tage B 200 −		•		
	Mineralization	0.71	Sediment Organic Matter (g-OM kg ⁻¹) 100 00 100		А		
	Nitrification	0.862	g_1) anic l	•			Site
	Respiration	0.103	ent Organic (g-OM kg ⁻¹)	В г		В	Lake Margin
	Sediment Nitrate	0.35	g-O	E E	B		 ▲ Margin ■ Upland
ittoral	Sediment Ammonium	0.0101	9 () 50 -			!	
	Sediment DIN	0.0685	Sed			i	
	MBC	0.664		East Beach	Provo Bay Sandy Be	each West Beach	
	MBN	0.15			Location		
	OMC	0.763	С	Late Summer	Fall	Winter	
	Mineralization	0.198	200 -			•]
	Nitrification	0.263	itter				
	Respiration	0.94	W _ 150-			1	
	Sediment Nitrate	0.646	anic g ⁻¹			/ .•	Location
Upland	Sediment Ammonium	3.87E-05	Bi ¥ Lo ¥ 100-			1	East Beach
	Sediment DIN	0.0204	ient Organic (g-OM kg ⁻¹)				East Beach Provo Bay Sandy Beach West Beach
	MBC	0.188	Sediment Organic Matter (g-OM kg ⁻¹)	•	N		
	MBN	0.611	Sec	••		•	
	OMC	0.763			·•	••	

Acknowledgements

- Funded by the Utah Department of Environmental Quality, in partnership with Scott Daly
- This work was informed by a Science Panel subgroup that includes Janice Brahney, Michael Mills, Mitch Hogsett, and James Martin.
- BYU Graduates / Undergraduates: Niko Smiley
- USU Graduate student Emily Jainarain

WATER QUALITY

OUNG UN

RS

FOUNDED

1875

ROVO, U

RIGHA

UtahState University

Utah Lake Atmospheric Deposition Subgroup Report

Science Panel Meeting | March 2, 2023

AD Subgroup Objectives

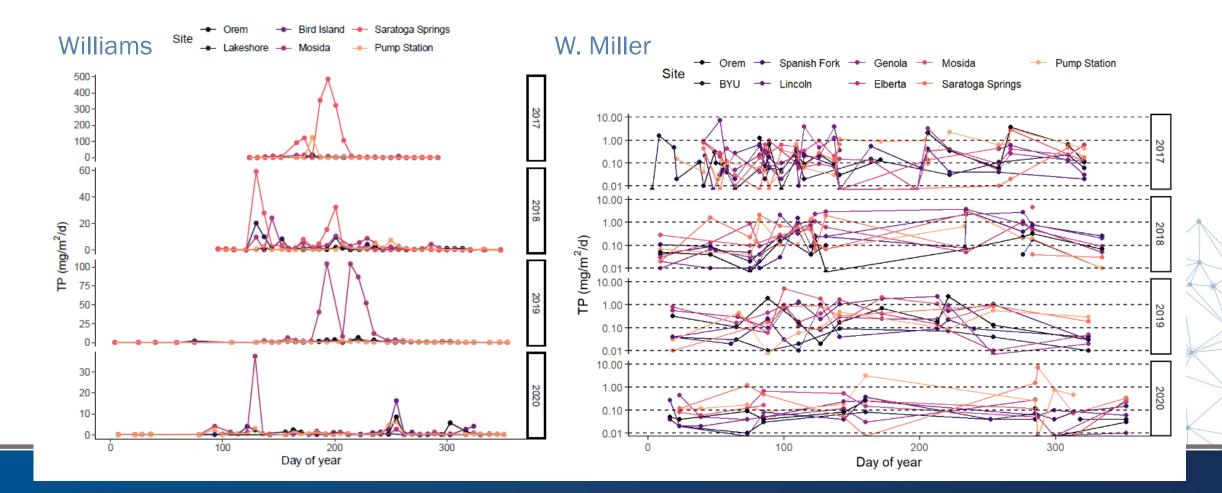
- **1.** Analyze available information and data to improve understanding of atmospheric deposition to Utah Lake
- 2. Work collaboratively toward a recommendation for atmospheric loading, ideally achieved through consensus
- **3.** Document the SP's decision-making process for analyzing and evaluating evidence and working toward an atmospheric deposition recommendation


Datasets

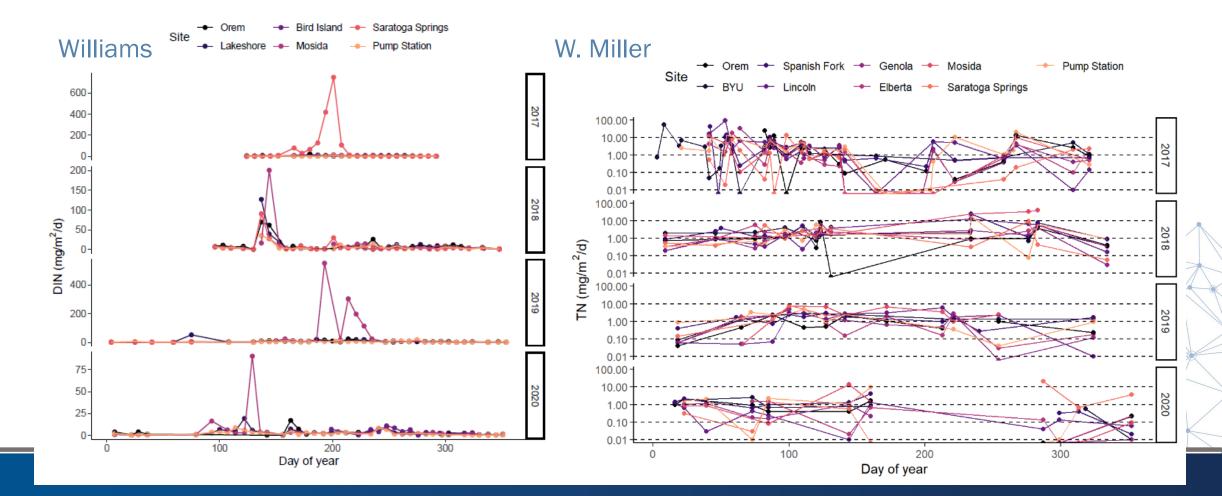
- Williams (2017-2020)
 [Olsen et al. 2018, Reidhead 2019, Barrus et al. 2021]
- W. Miller (2017-2020)

• Nutrients

- TP
- SRP
- DIN
- Nitrate
- Ammonium


• Decision Point: Assigning non-detect values

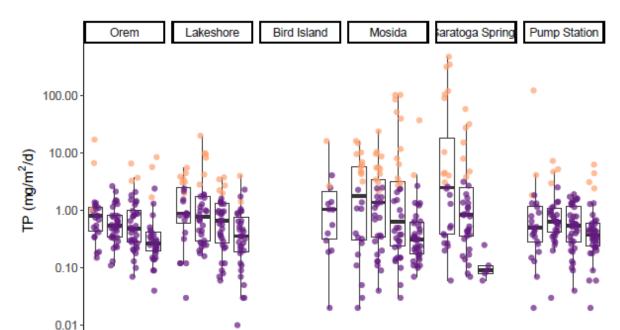
- All subgroup members agreed to assign non-detect values at 0 mg/m²
- No method to convert non-detect concentrations to area-based fluxes
- Very few values listed as 0 mg/m²
- Decision Point: Converting W. Miller volume-based fluxes (mg/L) to area-based fluxes (mg/m²)
 - Area-based fluxes based on W. Miller dataset was estimated using precipitation values from a single precipitation gauge
 - All subgroup members agreed to calculate area-based fluxes from
 W. Miller dataset using data from the nearest precipitation sampler



Processed and visualized TP (and SRP) time series

Processed and visualized DIN (and nitrate, ammonium) time series

• Outliers identified as 75th percentile + 1.5*IQR


- Exploratory approach
- No low outliers found (25th 1.5*IQR)
- Simply identified, not removed!

• Potential explanations for high outliers:

- Weather event
- Local deposition source
- Contamination

• Decision Point: Identifying outliers

 All subgroup members agreed to use the IQR approach to identify outliers due to the distribution of the dataset

Outlier

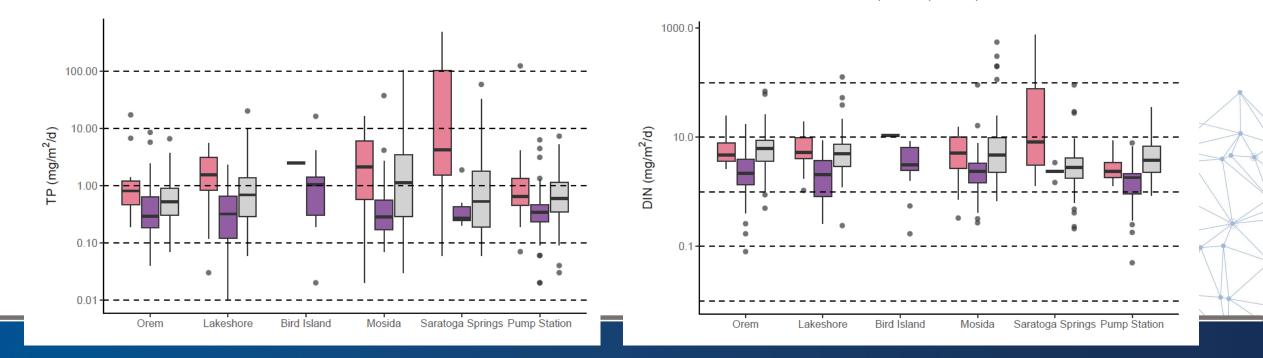
FALSE

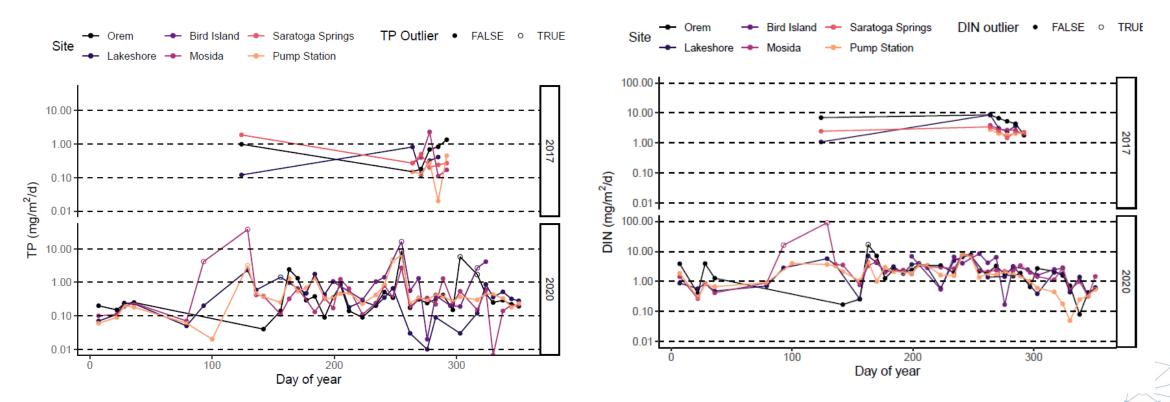
TRUE

2012018019020 2012018019020 2012018019020 2012018019020 2012018019020 2012018019020

- Insects observed in water-filled samplers
- Screens installed on samplers May 2020
- Decision Point: Should insects be considered AD or contamination?
 - 3/4 subgroup members agreed that insects in sampling buckets should be considered contamination
 - Acknowledge that insects fall onto lakes, but as a separate source from AD. Samplers are not likely representative of their contribution to the lake
 - 1/4 subgroup member did not support this decision, with rationale that insects contribute to the nutrient budget of the lake

- Decision Point: How to handle data without metadata
 - Insofar as insects are considered contamination, subgroup members supported including:
 - Data collected from screened samplers
 - Data where metadata indicated the samples did not contain insects
 - Data from unscreened samplers without metadata or where metadata indicated the presence of insects were not used
 - Insect metadata available for 2017 and 2020 data

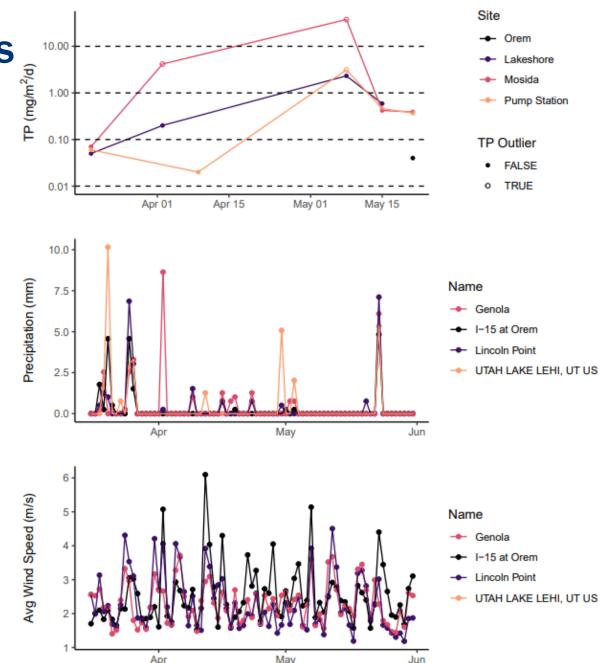

• TP outliers


- 37 insect contamination
- 11 uncontaminated
- 47 unknown (no metadata)
 Contaminated Pres No Contaminated Unknown

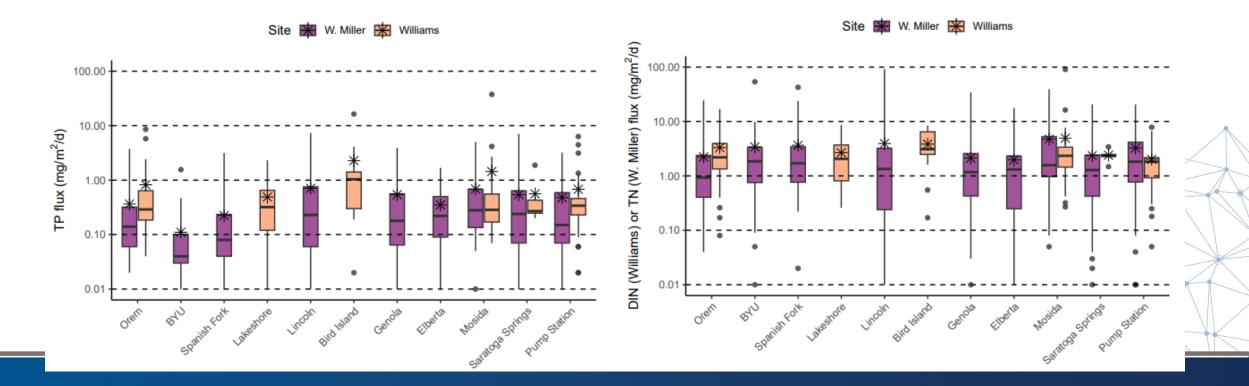
• DIN

- 11 insect contamination
- 3 uncontaminated
- 32 unknown (no metadata)

Site 🚔 Yes 🚔 No 🛱 Unknown



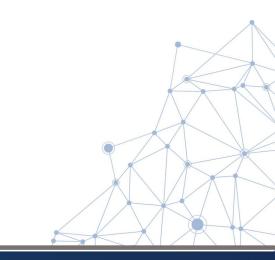
- 11 TP and 3 DIN uncontaminated samples were outliers → potential explanations include weather events and local sources
- Also need to impute fluxes on dates removed due to contamination


Imputing Missing Sampling Events

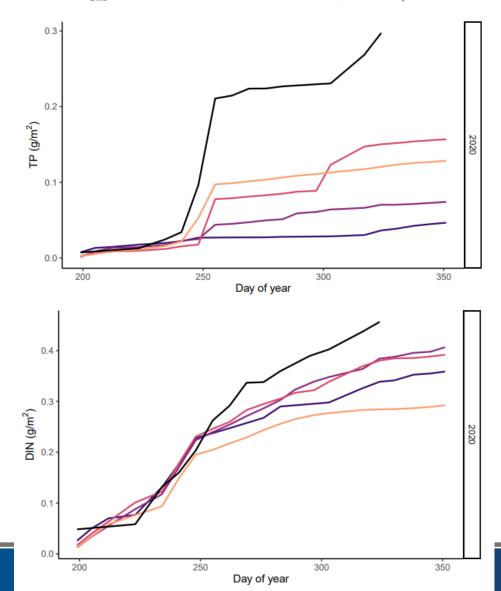
- To compute cumulative annual load, need to fill in gaps in sampling dates
- Options
 - 1. Impute via linear interpolation
 - 2. Impute via relationships with weather
- Decision Point: Imputing fluxes for missing samples due to contamination
 - All subgroup members agreed to use statistical relationships with weather
 - Linear interpolation assumes a predictable and consistent pattern, but AD in the basin is episodic

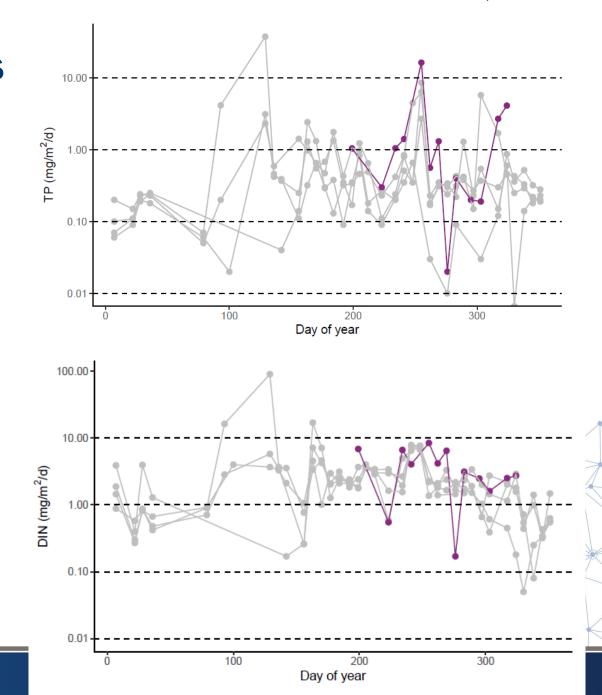
Comparing Samples Between Studies

- TP and DIN fluxes were significantly lower in W. Miller dataset than Williams dataset
- Comparison included several stations that were consistent between studies


Comparing Samples Between Studies

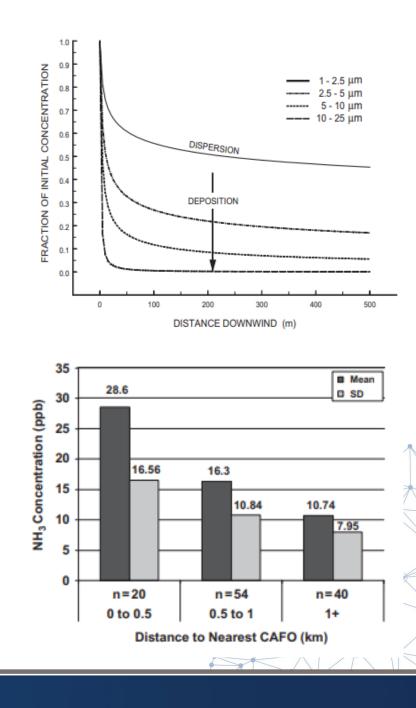
• Decision Point: Interpreting W. Miller dataset


- All subgroup members agreed to use the Williams data as the primary line of evidence for calculating loading to Utah Lake
- Several caveats with the W. Miller dataset that impact confidence:
 - Evaporation from sampling tube between sampling events → fluxes were concentration-based, so evaporation would lead to overestimate in flux
 - Overflow from funnel-shaped collector → precipitation event of >0.5 in would exceed sampler volume
 - Loss of dry deposition from dust blowing off shallow pan collector
 - -Sampler cleaning between samples only conducted "now and then" by weather service
- Several analyses conducted to evaluate impact of precipitation and evaporation, but no conclusive evidence for degree of impact

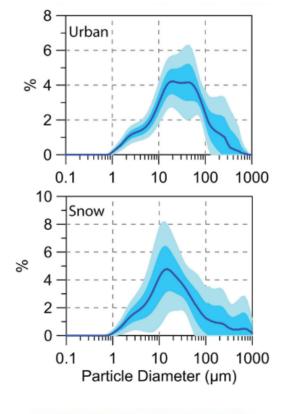

- Previous studies assumed some flux decreased moving away from shore
- Sampler installed on Bird Island to quantify potential attenuation
- Hypotheses:
 - 1. Attenuation occurs moving away from shore \rightarrow Bird Island fluxes lower than shoreline fluxes
 - 2. Attenuation does not occur \rightarrow Bird Island fluxes equivalent to shoreline fluxes

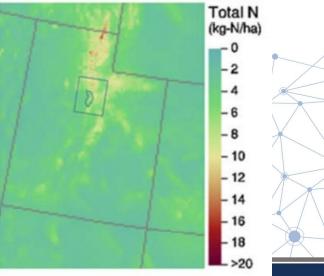
Site - Bird Island - Lakeshore - Mosida - Orem - Pump Station

• Hypotheses:


- Attenuation occurs moving away from shore → Bird Island fluxes lower than shoreline fluxes
- 2. Attenuation does not occur \rightarrow Bird Island fluxes equivalent to shoreline fluxes
- 3. Higher land-based flux not captured by current sampling array \rightarrow Bird Island fluxes higher than shoreline fluxes
- Lake-based source of deposition to Bird Island sampler (e.g., bird droppings, aerosolized materials, lake spray) → Bird island fluxes higher than shoreline fluxes

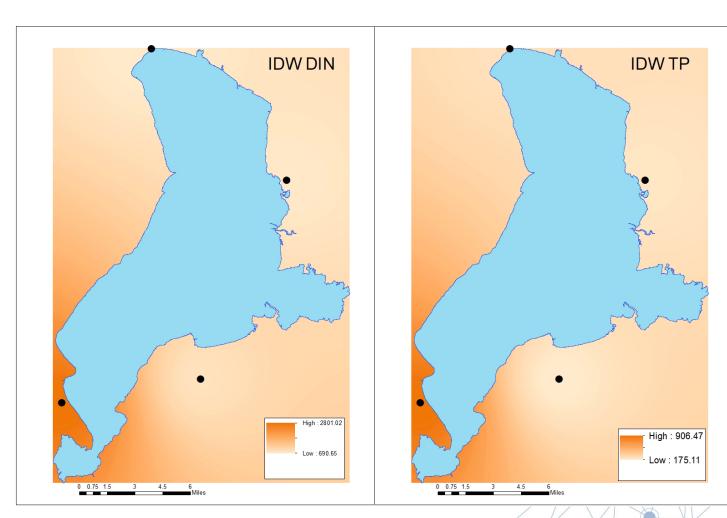
- Hypothesis 3 evaluated using wind rose data, but this did not allow for a definitive identification of an additional nutrient source
- Hypothesis 4 could not be definitively ruled out using existing QA and field metadata
- Lack of conclusive support noted in David Gay review
- Decision Point: Bird Island data
 - 3/4 subgroup members supported excluding Bird Island from load calculations
 - Could not definitively rule in or out hypotheses 3 or 4
 - 1/4 subgroup members did not support this decision, stating support for hypothesis 3 and potential convergence of wind that would concentrate AD over the lake


- Explored observations from the literature on local & regional AD sources
- VanCuren et al. 2012 showed:
 - Local AD attenuates moving away from the source
 - Attenuation of local AD dependent on grain size
 - Regional AD tends to be evenly distributed across lake area

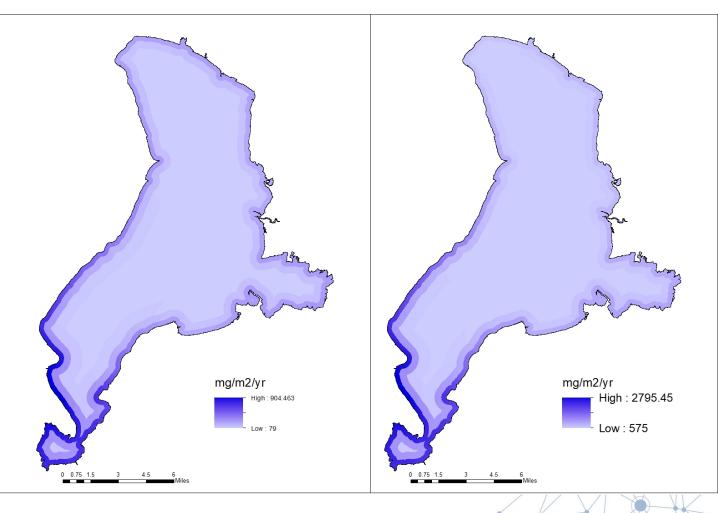

• Wilson and Serre 2007 showed:

- Local sources of ammonium (CAFOs) attenuate rapidly from 0-0.5 km and continue attenuating at a more gradual rate
- Dominance of regional sources of ammonium beyond 2 km

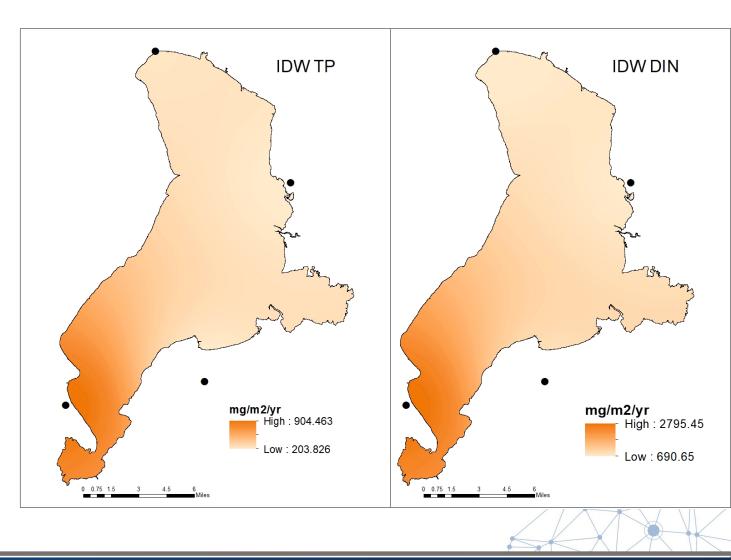
- Shoreline samplers capture local + regional flux
- How to quantify regional flux alone?
- TP: Goodman et al. 2019
 - Bulk samplers around Utah Lake, GSL, and Sevier Desert
 - Local dust sources had avg grain size of 20 µg \rightarrow inform attenuation
 - Urban dust flux avg 30.5 g/m²/yr
 - Urban dust was 91% regional \rightarrow regional flux 27.8 g/m²/yr
 - Consistent with Putman et al. 2022 at Lehi (14.6-36.6 g/m²/yr)
 - P content in regional dust is 1,344-4,340 mg/kg [Carling 2022]
 - Avg regional dust flux = 79 mg TP/m²/yr
- DIN: Brahney 2019
 - CMAQ model: avg 575 mg DIN/m²/yr
- Decision Point: All subgroup members agreed on this approach

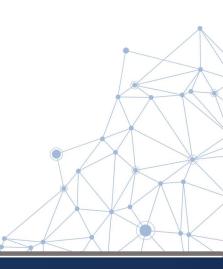


• Decision Point: Attenuation Scenarios


- All subgroup members agreed that dust and aerosols attenuate as a function of distance
- 3/4 subgroup members supported applying an attenuation rate to shoreline sampler fluxes and apply a regional flux beyond the attenuation distance
- 1/4 subgroup member did not support attenuation and supported using Bird Island fluxes instead

Shoreline flux proportion	Regional flux proportion	100 m scenario (VanCuren et al. 2012)	200 m scenario (VanCuren et al. 2012, doubled to account for uncertainty)	2000 m scenario (Wilson and Serre 2007)
1.00	0.00	0 m	0 m	0 m
0.30	0.70	20 m	40 m	400 m
0.045	0.955	50 m	100 m	1000 m
0.026	0.974	100 m	200 m	2000 m


- **1.** Create a raster layer of shoreline fluxes around the edge of Utah Lake
 - 4 shoreline samplers
 - Spatial interpolation via inverse distance weighted interpolation
 - Assumes conditions are more alike in locations close to one another
 - Plays out with Mosida location having an influence on the SW portion of the lake


- 2. Assign the decay rate of shoreline fluxes moving from shoreline to offshore
 - 3 attenuation scenarios
- **3.** Assign the regional flux in areas of Utah Lake beyond the shoreline decay distance
 - 79 mg TP/m²/yr [Goodman et al. 2019, Carling 2022, Putman et al. 2022]
 - 575 mg DIN/m²/yr
 [Brahney 2019, CMAQ model]

- **4.** Fourth scenario: assume no attenuation
 - Applied spatial interpolation via inverse distance weighted interpolation across the lake

Scenario	DIN (metric tons/yr)	TP (metric tons/yr)
Attenuation @ 100 m	218	31
Attenuation @ 200 m	220	32
Attenuation @ 2000 m	249	45
No attenuation	351	93
Carling 2022 (dust conversion, no attenuation)		57.5
Brahney et al. 2019	153-288	2-21
Brahney (mass balance)		33
Brett (mass balance)		60
Miller 2021 (assumed no attenuation)	257-409	50-104
Olsen et al. 2018 (uncontaminated-contaminated)	57-570	10-430
Reidhead et al. 2019 (unscreened)	637	193
Barrus et al. 2021 (partially screened-unscreened)	482-1052	133-262

• Decision Point: Load recommendations

- Modeling team requested one primary recommendation and a range for sensitivity analysis
- 3/4 subgroup members recommended:
 - 32 metric tons TP (31-45 range)
 - 220 metric tons DIN (218-249 range)
 - Based on 200-m attenuation scenario, with range based on 100-2000-m attenuation scenarios
- 1/4 subgroup member recommended:
 - 150 metric tons TP (93-200 range)
 - Based on Williams data in its entirety with no samples removed due to contamination or Bird Island
 - Additional studies and comments provided

Evaluating Chemical Speciation

• DIN constituents

- Avg 30.25% nitrate
- Avg 69.75% ammonium
- Consistent among sites except Mosida

• TP constituents

- Avg 37.5% SRP
- More consistent with regional dust than urban dust
- Decision Point: Speciation
 - All subgroup members supported these proportions
 - Additional specifics (org N and P) to be determined by the modeling team

	Study	Site	NO3/DIN	NH4/DIN	SRP/TP
		Orem	0.35	0.65	0.46
	Williams	Lakeshore	0.37	0.63	0.48
	data 2020	Mosida	0.10	0.90	0.24
		Pump Station	0.39	0.61	0.27
٦ -	Brahney 2019	Urban dust			0.75
		Regional dust			0.34
	Reidhead 2019	Utah Lake shoreline sites			0.37
è	W. Miller 2021	Utah Lake shoreline sites			0.32

Questions and Discussion