

Utah Lake Water Quality Study Science Panel Meeting May 21, 2020

GOALS

• Review and Discuss Littoral RFP

• Seek approval to move to SC and release

Lake level fluctuates

Drying = Aeration

Aeration = Transformation

Lake level effect on nutrient cycling?

•Objectives:

- Spatial and temporal extent of drying GIS exercise
- Rate and magnitude of C, N and P fluxes by sediment characteristics and drying treatment (duration)
- Compare the fluxes to other loads

Outcomes:

- Role of drying as a source/sink for C, N and P
- Comparison of littoral sediment loads to others
- Estimate of duration and extent effect on C, N, and P flux

Tasks

- 1. Lit review (context) and lake level evaluation (quantify extent)
- 2. Sampling and analysis plan (QC on methods/approach)

Tasks

- 3. Field collection of cores
 - Provo, Northeast, West, South
 - One site get a spatial gradient
 - Collect during inundation
 - Initial sediment characterization: sediment and C, N, and P

Total Surface Phosphate-phosphorus (mg/l)

Tasks

- 4. Laboratory Component
 - Drying of different durations to be informed by Task 1 (how long are typical drying durations?)
 - Re-wet soils
 - Do we need wet/dry scenarios?
 - Lake not really wetting/drying over short time scales.
 - Duration is main difference and will differ by lake elevation.

Tasks

- 5. C, N, and P analysis
 - Measure C, N and P to water column upon re-wetting.
 - Should we measure C, N and P bulk loss as well?
- 6. Technical Report

COMMENTS, QUESTIONS?

Utah Lake Water Quality Study Science Panel Meeting May 21, 2020

GOALS

• Review and Discuss CNP Workplan

• Seek approval to move to SC and proceed

We have a lot of pieces of these stocks and flows

But no synthesis

- Before we identify gaps for research, need to synthesize
- In addition, a SP based lake mass balance calculation is desired
 - Complement PSOMAS, Merritt, and Mike Brett's review

Total - Surface

•Objectives:

- Compile mass balance of C, N and P for Utah Lake (external inputs and outputs)
- Compile all known data on stocks and internal fluxes for C, N and P
 - Specifically for water column and sediment processes
 - Put values on conceptual models
- Identify major gaps and propose future studies

- Outcomes:
 - C, N and P input and output estimates to Utah Lake
 - Relative roles of water column and sediment in cycling
 - Actively cycling pools
 - Nutrient budget to inform future research

Tasks

- 1. Lit review and data compilation
 - Inputs/outputs
 - Water column/sediment stocks and flux data
 - Any data on modifying factors (redox, temperature, binding, etc.)
 - Track metadata: uncertainty (time and space), method, source

2. Generate mass balance models

- External from updated input/output data
- Internal populate conceptual models
- SedFlux model attempt to population and run

Tasks

- 3. Evaluate bioavailability
 - Estimate percent of pools that are actively cycled based on literature

4. Identify Data Gaps

- Based on synthesis and models
- Existing, but poorly constrained
- Reasonably filled with literature
- Gaps to address through research
- 5. Recommended future studies
- 6. Report

COMMENTS, QUESTIONS?

TECHNICAL FRAMEWORK SUMMARY

Utah Lake Water Quality Study Science Panel Meeting May 21, 2020

GOALS

• Review SC comments on Technical Framework

• Get SP feedback to inform SC discussion

FRAMEWORK

• Process for deriving NNC

• Multiple Lines

• Combining Evidence

Incorporating Uncertainty

 SP approved, went to SC for review

Utah Lake Water Quality Study— Numeric Nutrient Criteria Technical Framework DRAFT

February 24, 2020 Version 6.0

PRESENTED TO

Utah Department of Environmental Quality Division of Water Quality PO Box 144870 Salt Lake City, UT 84114

PREPARED BY

Tetra Tech Inc., Ecological Sciences 1 Park Drive, Suite 200, PO Box14409 Research Triangle Park, NC 27709

SC COMMENTS

Editorial comments Grammar, word choice, etc.

• Nothing really on Part 1 – overview and background including uncertainty

 Most on Part 2 – but not on process (lines) or combing (multiple lines); mostly on goals and measures

• Questions about specific target examples (that distracted from the overall approach)

• General tone: general vs. specific (some wanted more specifics)

• Clarification: especially agricultural use

• Lots and lots on management goals – confusion and clarification

SC COMMENTS: MANAGEMENT GOALS

- Management Goals
- Ecological Risk Construct
- Desired condition
- Value based
- Certainly include designated uses but not only
- Need to decide these FIRST, the rest derives from this

NEXT

Erica will discuss management goal topic in more detail and recap the conversations