GOALS

Review Document Updates

Finalize Document
Feedback from December Meeting

Additional internal DWQ Review

Revised version sent
EDIT SUMMARY

- General formatting
- Added a great deal more information tying assessment endpoints to management goals
- Amended language to clarify contingent vs committed actions
- Updated the mechanistic model language – incorporating James’ presentation
- Added language that commits funded studies to this structure
- Added language that commits model team to this structure
- Added language to facilitate SP uncertainty discussions
GOALS

Review Document Updates

Finalize Document
PROCESS

Feedback from December Meeting

Additional internal DWQ Review

Revised version sent
EDIT SUMMARY

- General formatting
- Reconcile with the criteria setting regulatory process
- Management goal/assessment endpoint/measure of effect language
- Adding pH as an assessment endpoint
- New language on constraints of S-R modeling for single system
- New language on frequency and duration
- Clarify state change challenge – and roles of SC and SP
- Added a few new citations
- Clarify stringency rule with criteria
- Assure criteria protectiveness requirement with MLE
GOALS

Review Prioritization Exercise and Approve Priorities

Summarize one-to-one highlights

Begin list of discrete RFP projects
o Started with 13 ideas from 2019 that were not funded
o December – Two groups, modified Delphi ranking, introduced 6 new ideas
o January – Ranked all research ideas
o Straight average
o Are we okay with this ordering?
o Do we need to combine any?

<table>
<thead>
<tr>
<th>Research ideas</th>
<th>Mean Ranking - Feb 2020</th>
<th>Mean Ranking - Dec 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 How large is internal vs external loading (how long would recovery take?)</td>
<td>2.3</td>
<td>1.9</td>
</tr>
<tr>
<td>2 Sediment budgets (C, N, and P; nutrient flux chambers)</td>
<td>3.6</td>
<td>3.9</td>
</tr>
<tr>
<td>3 Calcite scavenging (how bioavailable is SRP – does bioassay address?)</td>
<td>4.3</td>
<td>3.4</td>
</tr>
<tr>
<td>4 Adding modules to the WQ models (sediment diagenesis, calcite scavenging)</td>
<td>4.3</td>
<td>5.2</td>
</tr>
<tr>
<td>5 Carp effects on nutrient cycling</td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td>6 Lake level (effect on macrophytes)</td>
<td>9.2</td>
<td>9.0</td>
</tr>
<tr>
<td>7 Bioassays that incorporate sediment (next phase mesocosms)</td>
<td>9.4</td>
<td></td>
</tr>
<tr>
<td>8 Macrophyte recovery potential (Provo Bay demo)</td>
<td>10.0</td>
<td>10.7</td>
</tr>
<tr>
<td>9 Lake-level effects on biogeochemistry and nutrient cycling</td>
<td>10.2</td>
<td></td>
</tr>
<tr>
<td>10 Environmental controls on toxin production</td>
<td>11.1</td>
<td></td>
</tr>
<tr>
<td>11 Turbidity effect on primary producers</td>
<td>11.2</td>
<td>10.6</td>
</tr>
<tr>
<td>12 Resuspension rates from bioturbation</td>
<td>11.7</td>
<td></td>
</tr>
<tr>
<td>13 Carp effects on zooplankton (and does this influence algal response)</td>
<td>11.8</td>
<td>9.6</td>
</tr>
<tr>
<td>14 Carp effects on macrophytes</td>
<td>12.1</td>
<td>9.9</td>
</tr>
<tr>
<td>15 Toxin Production and N Species</td>
<td>13.7</td>
<td>12.3</td>
</tr>
<tr>
<td>16 Recreational surveys</td>
<td>13.8</td>
<td>9.6</td>
</tr>
<tr>
<td>17 Macrophyte role (to biogeochemistry)</td>
<td>14.0</td>
<td>11.1</td>
</tr>
<tr>
<td>18 Additional atmospheric deposition data</td>
<td>14.6</td>
<td></td>
</tr>
<tr>
<td>19 Alternative models (PCLake – cyano/macrophyte state change)</td>
<td>14.9</td>
<td>12.0</td>
</tr>
</tbody>
</table>
ONE-ONE CALL SUMMARY

- Last 2 weeks – met with everyone
- Identified some common (and unique) elements among calls
- We review those here
ONE-ONE CALL SUMMARY

- Items 1-4 are not independent
 - Does that mean 1 project?

- Internal vs External Loading/Sediment Budgets
 - Need to consolidate knowledge - may have all we need
 - Use intermediate model (PHREEQ, SEDFLUX) to consolidate and predict water column concentrations
 - What are internal load stocks and fluxes? Just sediments?
 - What critical stocks and fluxes can we put numbers on?
 - Can you use that to predict recovery?
 - More in-situ chamber measurements – run longer and more locations?
 - What is the mechanism of getting from sediment to water column?
 - Where are the major gaps/uncertainties?
 - How could that be answered?
 - Are sediments anoxic? Where? What is Redox condition? What is pH gradient?

<table>
<thead>
<tr>
<th>Research ideas</th>
<th>Mean Ranking - Feb 2020</th>
<th>Mean Ranking - Dec 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 How large is internal vs external loading (how long would recovery take?)</td>
<td>2.3</td>
<td>1.9</td>
</tr>
<tr>
<td>2 Sediment budgets (C, N, and P; nutrient flux chambers)</td>
<td>3.6</td>
<td>3.9</td>
</tr>
<tr>
<td>3 Calcite scavenging (how bioavailable is SRP – does bioassay address?)</td>
<td>4.3</td>
<td>3.4</td>
</tr>
<tr>
<td>4 Adding modules to the WQ models (sediment diagenesis, calcite scavenging)</td>
<td>4.3</td>
<td>5.2</td>
</tr>
</tbody>
</table>
ONE-ONE CALL SUMMARY

- Calcite/Bioavailability Issue
 - What is P binding to in Utah Lake? May be more than Ca.
 - This chemistry is complex.
 - May be need for a pilot analysis/study to identify these.
 - What is the nature of binding? Mineral matrix or adsorption?
 - Sequential extractions may be needed?
 - Experiments to measure rate of P sequestration
 - May need lab experiments/analyses to get at the specific Ca formations
 - Focus on mixing zones at tributaries (low to high pH)

- Bioassay studies may have data on Ca effect (+N, pH)
- Algal growth potential assays could be run (easy to do)

- Need a WQ module to capture this.
ONE-ONE CALL SUMMARY

- **Model Modules**
 - Sediment diagenesis and Ca-scavenging need to be in model
 - Model like PHREEQ should predict how/when Ca-P is formed
 - WASP has sediment diagenesis module (2 layer – aerobic/anaerobic; does not do calcite or P binding chemistry – just equilibria)
 - WASP can model a Ca-bound fraction
 - What needs to be included to model calcite formation and P binding? All chemistry or just equilibria with pH?
ONE-ONE CALL SUMMARY

- **Nitrogen**
 - Is our understanding of nitrogen really lacking?
 - Estimates of N fixation? Nitrification? Denitrification?
 - Given aerobic conditions and low C in sediments, where is Denitrification occurring? Water column aggregates?
 - Is N building up in the system?

- **Lake Level as a Driver**
 - What is flux from littoral sediments as they dry and wet? Sinks or Sources?
 - What is the pattern of wetting and drying?

- **Carbon**
 - Where is the carbon going? Is Denitrification carbon limited?
 - Lots of productivity, but low carbon in sediments (are they light limited?); NEP~0
 - Reaeration estimates?
 - Do we know enough about C cycle? May need more metabolism measurements.
 - So where is respiration happening?
ONE-ONE CALL SUMMARY

- Mesocosms are an opportunity
 - Manipulate: nutrients (by species), pH, sediment, carp, macrophytes, lake level
 - Can use mesocosms to test hypotheses about P chemistry, N chemistry, fluxes, drivers
 - Can measure all aspects of biogeochemical flux as well (lots of birds with one stone)
 - What is the best design (y1) and then implement (y2)
 - How does/does not this interact with the Timpanogas plan?
 - May want to try in Provo Bay – less wind/wave

- Any others?
PROJECT IDEAS

So, what project(s) do we want to prioritize to answer these questions?

We have time here to brainstorm some ideas

Idea 1: Compile everything we have on stocks and rates; try and fit a model like SEDFLUX and see where the gaps are? Report status, major gaps and propose experiments to fill them.

Idea 2: N budget study – what are standing stocks, rates, and fluxes of N? Start with compiling what we know and then measure the gaps.

Idea 3: Calcite binding - what are rates and forms? Again, start with assembling what we know and small pilot to study calcite formation, characterization, etc.

Idea 4: Mesocosm experiments – things you would conduct if you had mesocosms to use? A miniature N and P budget study? pH manipulations?