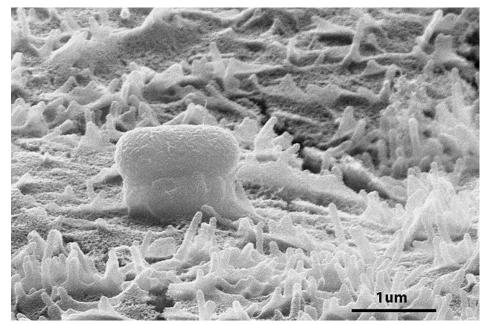
Utah Lake: Public Health Issues

Nathan LaCross, PhD, MPH

Lindon Marina, Utah Lake July 14, 2016 (Photo: Rich Egan, Salt Lake Tribune)



Environmental Epidemiology Program

Escherichia coli

- Normal inhabitant of the mammalian lower digestive tract
 - One of many types of 'coliform' bacteria
 - Most strains not harmful to healthy people
 - Extremely diverse species (~20% of genes are 'core' in all strains)
 - Reliable indicator of fecal contamination & presence of other pathogens

Ken Campellone/UConn Photo

Recreational E. coli Exposure

- Some *E. coli* can cause mild to severe health effects
 - Vomiting
 - Diarrhea
 - UTIs
 - Respiratory illness
- Most common via food
- Can be spread through ingestion of contaminated surface water
- Sources
 - Waste dumping, faulty septic or sewer systems, pets, livestock, wildlife, stormwater

CAUTION

WATER QUALITY ADVISORY

A temporary advisory has been issued for this area based on recent monitoring for E. coli bacteria.

FOR YOUR SAFETY

- Do not ingest lake water.
 No ingerir agua del lago.
- Water is unsafe for swimming and deep wading. Agua no es segura para nadar y vadear profundo.

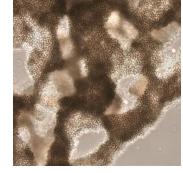
Wash hands after handling fish and lake water.
 Lávese las manos después de manipular el pescado y el agua del lago.

Current threshold: max of 409 per 100 mL for class 2A (~8 illnesses per 1,000 swimmers)

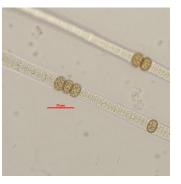
Cyanobacteria

- Photosynthetic bacteria
 - Commonly called blue-green algae (not true algae) —
 - Thought to be some of the first oxygen producing organisms —
 - Distributed worldwide
 - Natural part of nearly every ecosystem
 - Many genera/species

Aphanizomenon flos-aquae



(formerly Anabaena)



Gloeotrichia echinulata

Microcystis aeruginosa

Nodularia spumigena

Images from GreenWater Laboratories

Harmful Algal Blooms

- Rapid growth of cyanobacteria leading to areas with extremely high cell densities
 - Often in the millions of cells per mL
 - Can form scums and mats on the water's surface

UTAH DEPARTMENT OF HEALTH

HAB Impacts

- Many species can produce various toxins
 - Can affect humans, pets, livestock, wildlife
 - Exposure to cyanobacterial cells themselves also associated with health effects
- Impact drinking water & recreation
- Disrupt aquatic ecosystems
 - \downarrow dissolved oxygen
 - 个 turbidity
 - Toxins
 - Altered pH

Cyanotoxin Production

- Conditions influencing toxin production are not well understood
 - Not all species can produce toxins (including within genera)
 - Species capable of toxin production do not always do so
 - Some species can produce multiple types and variants of cyanotoxins
 - Bloom constituents can shift over time
 - Many of the bloom-influencing factors also affect toxin production
 - Often inconsistent and/or contradictory

Cannot determine toxin presence or concentration by sight, smell, cell count, etc.

Routes of Exposure

Ingestion

Inhalation

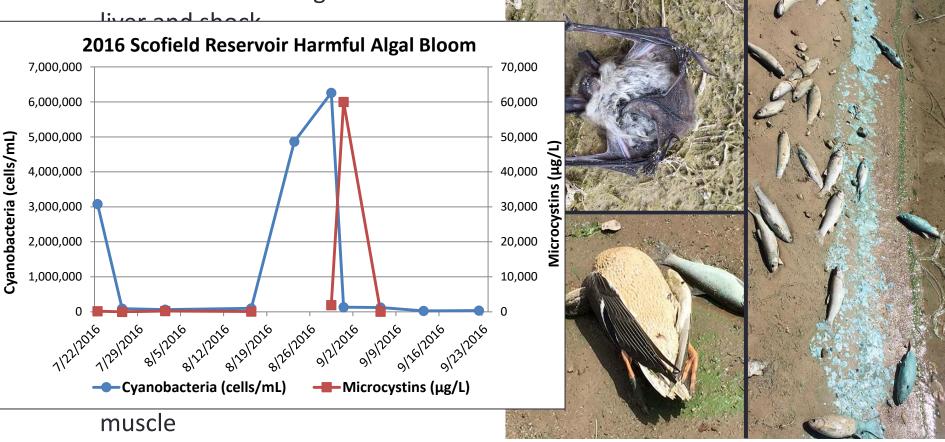
- Recreational
 - Swimming, boating, water skiing, playing, etc.
- Drinking water
- Contaminated fish
 - Some cyanotoxins can accumulate in the tissue of fish and shellfish
 - Microcystins: primarily the liver, but also found at lower levels in muscle
- Contaminated crops
 - Relatively little research, but some studies have shown that cyanotoxins can accumulate to a degree in certain crops
 - Depends on the type of plant, the type of toxin, the method of irrigation, etc.

Image from the Ohio Department of Health

Common Symptoms of Cyanotoxin Exposure

- Symptoms can range from relatively mild to potentially severe
 - Depends on many factors: concentration of toxins, type of toxin, route of exposure, 'intensity' of exposure, characteristics of the person exposed, etc.

 Symptom onset 	Cyanotoxin	Number of Known Variants or Analogues	Primary Organ Affected	Health Effects ¹	Most Common Cyanobacteria Producing Toxin ²
 <u>Hepatotoxins</u> hours to days <u>Neurotoxins</u> 	Microcystin-LR	> 100	Liver	Abdominal pain Vomiting and diarrhea Liver inflammation and hemorrhage Acute pneumonia Acute dermatitis	Microcystis Anabaena Planktothrix Anabaenopsis Aphanizomenon Cylindrospermopsis Aphanizomenon
immediate to hours	Cylindrospermopsin	3	Liver	Kidney damage Potential tumor growth promotion	Anabaena Lyngbya Rhaphidiopsis Umezakia
	Anatoxin-a group ³	2-6	Nervous System	Tingling, burning, numbness, drowsiness, incoherent speech, salivation, respiratory paralysis leading to death	Anabaena Planktothrix Aphanizomenon Cylindrospermopsis Oscillatoria

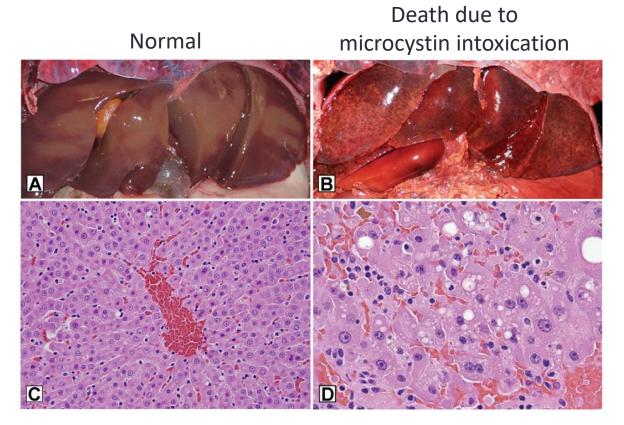

EPA, Cyanobacteria and Cyanotoxins: Information for Drinking Water Systems (2014)

Microcystins

- Exposure to microcystins can cause nausea, vomiting, diarrhea, liver damage, liver failure, and death
 - Short-term: bleeding in the

UTAH DEPARTMENT OF HEALTH

Scofield Reservoir, 2016



Microcystins up to 60,000 μ g/L in this HAB

UTAH DEPARTMENT OF HEALTH

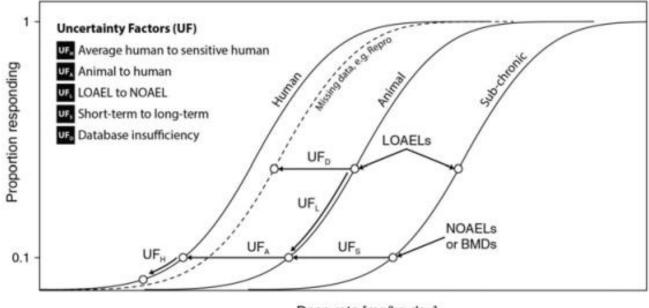
Microcystins

Sea Otter Livers

Miller et al., PLoS 2010

Uncertainty and Public Health

- Many sources of variability and uncertainty
- <u>Uncertainty factors (UF)</u>: full or partial order-of-magnitude values that help quantify our understanding of the uncertainty in a doseresponse relationship
 - Differences between animals and humans
 - Variability within human populations
 - Use of a LOAEL rather than a NOAEL
 - Use of a short-term data for long-term exposures/effects
 - Database inadequacy (e.g., missing data on certain effects)
- The overall objective is to apply the information available to human populations in an appropriately protective way


Uncertainty and Public Health

 <u>Reference Dose (RfD)</u>: an estimate of a daily exposure in humans, including sensitive populations, that is likely to be without appreciable risk of adverse effects during a lifetime

Uranium (soluble salts) eference Dose for Oral Exposure (RfD) (PDF) (8 pp, 92 K) last updated: 10/01						
System	RfD (mg/kg- day)	Basis	PoD	Composite UF		
Urinary, Other	3 x 10 ⁻³	Initial body weight loss moderate nephrotoxicity	LOAEL : 2.8 mg/kg- day	1000		
Confiden	ce Medium					

- RfD: NOAEL (or LOAEL) / uncertainty factors
 - in milligrams per kilogram of body weight per day (mg/kg-day)
- Example: LOAEL of 2.8 mg/kg-day determined for uranium
 - Uncertainty: 10 for interspecies, 10 for intraspecies, 10 for using a LOAEL
 - UF = 10 x 10 x 10 = 1,000
 - RfD = 2.8 / 1,000 = 0.0028 mg/kg-day, rounded to 0.003

Uncertainty and Public Health

Dose rate [mg/kg-day]

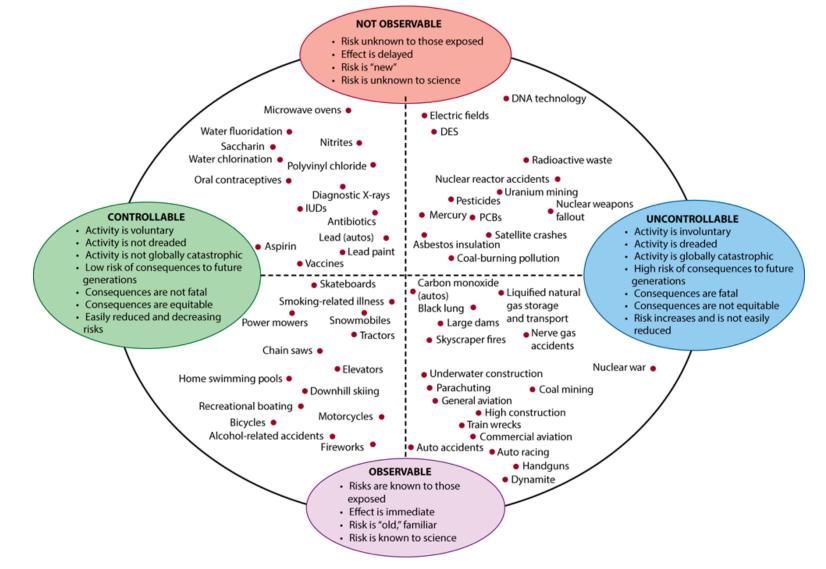
Dankovic et al., 2015. Journal of Occupational and Environmental Hygiene

Uncertainty and Risk Communication

- **Transparency**: full and explicit disclosure of methodology, assumptions, rationale, uncertainties, etc.
- **Clarity**: concise, free of jargon, and readily understandable by readers unfamiliar with the risk assessment process
- **Consistency**: methodology and presentation is in a manner consistent with policy and other similar risk assessments
- Reasonableness: based on sound judgement; methods and assumptions consistent with the current state-of-the-science; presented in a complete, balanced, and informative manner

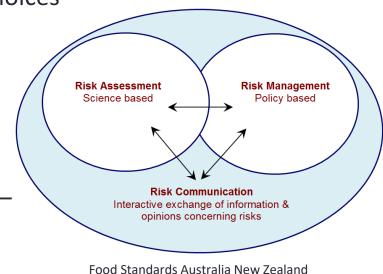
Risk Communication and Public Engagement

- <u>Health Risk</u>: the probability that a person will experience an adverse health effect if exposed to a hazard (source of harm)
 - Function of exposure to, and toxicity of, a hazard


Se Utah Department of Health

- \uparrow exposure (duration, intensity, etc.) = \uparrow health risk
- \uparrow toxicity (severity of effects) = \uparrow health risk

Source Pathway Receptor


- <u>Real Risk</u>: must have all 3 components
- <u>Perceived Risk</u>: at least one component is missing
 - Does **not** mean that it is unimportant
 - Public concern/opinion strongly influences policy and legislation

Perception of Risk

Risk Communication and Health Education

- Effectively communicating information about risk and public health events is one of our most important tasks
 - Health, informed citizens make better choices
- Some key elements:
 - Every situation is different
 - Identify questions and concerns
 - Coordinate between involved entities
 - Lots of partners with valuable expertise use them
 - When people are angry or outraged, be calm and let them vent
 - Be open about what you know and what you don't
 - Don't get caught up in the minutia when communicating
 - When possible, don't be a dead end give a path forward

Some Questions to Consider

- What are the risks (if any) associated with residential secondary water use during a HAB?
- Are there 'typical' cyanobacteria species in Utah Lake HABs? If so, what is known about them?
- Is there a 'normal' frequency/severity/duration/etc. of HABs for Utah Lake (i.e., absent human influence)?
- Can we more strongly link HAB exposures to illness reports (primarily UPCC)?

Questions?

Nathan LaCross, PhD, MPH

nlacross@utah.gov

