Utah Division of Water Quality Statement of Basis ADDENDUM Preliminary Wasteload Analysis and Antidegradation Level I Review

Date:	May 18, 2023
Prepared by:	Christopher L. Shope Standards and Technical Services
Facility:	Moroni Wastewater Treament Plant Moroni, Utah UPDES Permit No. UT-0020222

Receiving water: San Pitch River (2B,3C,3D,4)

This addendum summarizes the wasteload analysis that was performed to determine water quality based effluent limits (WQBEL) for this discharge. Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses (UAC R317-2-8). Projected concentrations are compared to numeric water quality standards to determine acceptability. The numeric criteria in this wasteload analysis may be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality (DWQ).

<u>Discharge</u>

Treated effluent is discharged to the San Pitch River via outfall number 001, which is an 18" underground pipe running southeast from the WWTP through a diffuser into the river.

Outfall 001 - The design flow for the system is 1.10 MGD. The annual average flow is 0.50 MGD. The maximum daily flow is 0.72 MGD.

Receiving Water

Moroni Wastewater Treatment Plant effluent of approximately 10 percent and Pitman Farms Moroni Turkey Processing facility effluent of approximately 90 percent discharge to the San Pitch River. The Publicly Operated Treatment Works (POTW) is operated by Pitman Farms.

Per UAC R317-2-13.3(a), the designated beneficial use of the assessment unit in the immediate downstream area is: San Pitch River and tributaries, from confluence with Sevier River to Highway U-132 crossing except As listed below: 2B,3C,3D,4.

• Class 2B -- Protected for infrequent primary contact recreation. Also protected for secondary contact recreation where there is a low likelihood of ingestion of water or a low degree of bodily contact with the water. Examples include, but are not limited to, wading, hunting, and fishing.

- Class 3C Protected for nongame fish and other aquatic life, including the necessary aquatic organisms in their food chain.
- Class 3D -- Protected for waterfowl, shore birds and other water-oriented wildlife not included in Classes 3A, 3B, or 3C, including the necessary aquatic organisms in their food chain.
- Class 4 -- Protected for agricultural uses including irrigation of crops and stock watering.

Typically, the critical flow for the wasteload analysis is considered the lowest stream flow averaged over seven consecutive days with a ten year return frequency (7Q10). The USGS 10210500 SAN PITCH RIVER NEAR MT PLEASANT, UTAH stream gauge located approximately 5.7 miles upgradient was used to evaluate ambient or background flow conditions. One year of continuous daily discharge data in 1988 to 1989 to statistically analyze flow conditions. This long-term daily flow record used to calculate the 7Q10 critical flow resulted in similar seasonal 20th percentile flow conditions to DWQ 4946960 San Pitch R Ab Moroni WWTP. Therefore, the USGS 10210500 results are used to estimate the seasonal critical flow (Table 1). The average annual critical low flow condition is 3.60 ft3/s.

Season	Critical flow (ft3/s)
Summer	3.60
Fall	9.23
Winter	26.0
Spring	7.09
Annual Overall	3.60

Table 1: Seasonal Critical Flow at USGS 10210500 San Pitch River Near Mt Pleasant, Utah.

Ambient, upstream, background receiving water quality was characterized using data from DWQ 4946960 San Pitch R Ab Moroni WWTP. The 20th percentile concentration value was calculated for each constituent with available monitoring and sampling data in the upstream receiving water. Seasonal average effluent discharge parameter concentrations were determined from the Discharge Monitoring Report (DMR) between 2000 and 2022. Additional parameter concentrations not provided in the DMR were determined from DWQ 4946970 Moroni WWTP.

Total Maximum Daily Load (TMDL)

According to the Utah's 2021 303(d) <u>Water Quality Assessment Report</u> "Combined 2018/2020 Integrated Report Version 1.0", the receiving water for the discharge is *San Pitch River and tributaries from Gunnison Reservoir to U132 crossing and below USFS boundary (San Pitch-3-1: UT16030004-005_01)*. The reach was not supporting for total ammonia as N, E. Coli, pH, minimum dissolved oxygen (DO) with a low priority for a TMDL. There is an approved TMDL for total dissolved solids (TDS).

Mixing Zone

The maximum allowable mixing zone is 15 minutes of travel time for acute conditions, not to exceed 50% of stream width, and for chronic conditions is 2500 ft, per UAC R317-2-5. Water

Utah Division of Water Quality Wasteload Analysis Pitman Farms/Moroni WWTP, UPDES Permit No. UT-0020222

quality standards must be met at the end of the mixing zone. Individual mixing zones may be further limited or disallowed in consideration of the following factors in the area affected by the discharge: Zone of passage for migrating fish or other species (including access to tributaries).

The EPA Region 8 stream mixing zone analysis (STREAMIX1, 1994), was used to determine the plume width and mixed flow rate for both acute and chronic conditions.

Parameters of Concern

The potential parameters of concern identified for the discharge/receiving water were total dissolved solids (TDS), biochemical oxygen demand (BOD), dissolved oxygen (DO), pH, ammonia, and E. coli, as determined in consultation with the UPDES Permit Writer and the Watershed Protection Specialist.

WET Limits

The percent of effluent in the receiving water in a fully mixed condition, and acute and chronic dilution in a not fully mixed condition are calculated in the WLA in order to generate WET limits. The LC₅₀ (lethal concentration, 50%) percent effluent for acute toxicity and the IC₂₅ (inhibition concentration, 25%) percent effluent for chronic toxicity, as determined by the WET test, needs to be below the WET limits, as determined by the WLA. The WET limit for LC₅₀ is typically 100% effluent and does not need to be determined by the WLA.

According to the permit application, WET testing has failed four quarters during the past five years. For two quarters, no sample results were provided.

abic 2. WEI Limits Io	able 2. WET Limits for IC25				
Season	IC ₂₅ (%)				
Summer	32				
Fall	16				
Winter	6				
Spring	19				

Table 2: WET Limits for IC25

Wasteload Allocation Methods

Effluent limits were determined for all constituents using the QUAL2Kw Model (UDWQ, 2021). The analysis is summarized in the Wasteload Addendum.

The water quality standard for chronic ammonia toxicity is dependent on temperature and pH, and the water quality standard for acute ammonia toxicity is dependent on pH. However, temperature, pH, and ammonia concentration of the effluent were not provided. Background temperature and pH values were used in the analysis. The analysis is summarized in the Wasteload Addendum.

Models and supporting documentation are available for review upon request.

Antidegradation Level I Review

The objective of the Level I ADR is to ensure the protection of existing uses, defined as the beneficial uses attained in the receiving water on or after November 28, 1975. No evidence is known that the existing uses deviate from the designated beneficial uses for the receiving water.

Utah Division of Water Quality Wasteload Analysis Pitman Farms/Moroni WWTP, UPDES Permit No. UT-0020222

Therefore, the beneficial uses will be protected if the discharge remains below the WQBELs presented in this wasteload.

A Level II Antidegradation Review (ADR) is not required for this facility. The proposed permit is a simple renewal of an existing UPDES permit. No increase in flow or concentration of pollutants over those authorized in the the existing permit is being requested.

Documents:

WLA Document: *Q2Kw_Pitman_wla_2023.docx* Wasteload Analysis and Addendums: *Q2Kw_Pitman_wla_2023.xlsm*

References:

Utah Division of Water Quality. 2014, TMDL for Selenium in the Colorado River Watershed

Utah Division of Water Quality. 2022. Final 2022 Integrated Report on Water Quality

Utah Division of Water Quality. 2021. Utah Wasteload Analysis Procedures Version 2.0.

Date:

5/18/2023

WASTELOAD ANALYSIS [WLA] Appendix A: QUAL2Kw Analysis Results

DiscRarging Facility: Moroni Wastewater Treament Plant UPDES No: UT-0020222 Permit Flow [MGD]: 1.10 Maximum Daily Flow 1.10 Maximum Monthly Flow San Pitch River Receiving Water: Stream Classification: 2B,3C,3D,4 Stream Flows [cfs]: 3.60 Summer (July-Sept) Critical Low Flow 9.23 Fall (Oct-Dec) 26.00 Winter (Jan-Mar) 7.09 Spring (Apr-June) Acute River Width: 50% 100% Chronic River Width:

Modeling Information

A QUAL2Kw model was used to determine these effluent limits.

Model Inputs

The following is upstream and discharge information that was utilized as inputs for the analysis.

Headwater/Upstream Information	Summer	Fall	Winter	Spring
Flow (cfs)	3.6	9.2	26.0	7.1
Temperature (deg C)	18.2	6.5	4.1	12.7
Specific Conductance (µmhos)	1031	796	744	755
Inorganic Suspended Solids (mg/L)	12.3	27.6	103.5	114.4
Dissolved Oxygen (mg/L)	8.8	10.3	10.1	10.4
CBOD ₅ (mg/L)	1.4	1.2	1.4	1.6
Organic Nitrogen (mg/L)	0.450	0.578	0.169	0.004
NH4-Nitrogen (mg/L)	0.024	0.027	0.026	0.022
NO3-Nitrogen (mg/L)	0.612	0.838	1.220	0.570
Organic Phosphorus (mg/L)	0.220	0.031	0.027	-0.062
Inorganic Ortho-Phosphorus (mg/L)	0.010	0.026	0.071	0.188
Phytoplankton (μg/L)	9.050	9.050	9.050	9.050
Detritus [POM] (mg/L)	0.6	1.5	5.4	6.0
Alkalinity (mg/L)	327	318	323	344
pH	8.0	8.2	8.2	8.3

Utah Division of Water Quality

Discharge Information - Chronic	Summer	Fall	Winter	Spring
Flow (mgd)	1.1	1.1	1.1	1.1
Temperature (deg C)	20.9	15.7	10.4	17.3
Specific Conductance (µmhos)	1298	1172	1301	1240
Inorganic Suspended Solids (mg/L)	10.5	11.9	10.9	9.4
Dissolved Oxygen (mg/L)	5.5	5.5	5.5	5.5
CBOD ₅ (mg/L)	35.0	35.0	35.0	35.0
Organic Nitrogen (mg/L)	39.444	0.119	10.344	43.632
NH4-Nitrogen (mg/L)	5.300	38.500	38.500	5.300
NO3-Nitrogen (mg/L)	60.458	34.887	15.700	42.033
Organic Phosphorus (mg/L)	-9.645	-5.679	-5.176	-8.680
Inorganic Ortho-Phosphorus (mg/L)	10.645	6.679	6.176	9.680
Phytoplankton (μg/L)	9.050	9.050	9.050	9.050
Detritus [POM] (mg/L)	0.0	0.0	0.0	0.0
Alkalinity (mg/L)	413	413	413	413
рН	7.5	7.4	7.4	7.5
Discharge Information - Acute	Summer	Fall	Winter	Spring
Discharge Information - Acute Flow (mgd)	Summer 1.1	Fall 1.1	Winter 1.1	Spring 1.1
Flow (mgd) Temperature (deg C)				• •
Flow (mgd) Temperature (deg C) Specific Conductance (µmhos)	1.1	1.1	1.1	1.1
Flow (mgd) Temperature (deg C)	1.1 23.5	1.1 21.3	1.1 17.0	1.1 25.2
Flow (mgd) Temperature (deg C) Specific Conductance (µmhos)	1.1 23.5 1762	1.1 21.3 1920	1.1 17.0 2085	1.1 25.2 1709
Flow (mgd) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L)	1.1 23.5 1762 40.6	1.1 21.3 1920 25.0	1.1 17.0 2085 30.2	1.1 25.2 1709 31.4
Flow (mgd) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L)	1.1 23.5 1762 40.6 5.5	1.1 21.3 1920 25.0 5.5	1.1 17.0 2085 30.2 5.5	1.1 25.2 1709 31.4 5.5
Flow (mgd) Temperature (deg C) Specific Conductance (µmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L)	1.1 23.5 1762 40.6 5.5 35.0	1.1 21.3 1920 25.0 5.5 35.0	1.1 17.0 2085 30.2 5.5 35.0	1.1 25.2 1709 31.4 5.5 35.0
Flow (mgd) Temperature (deg C) Specific Conductance (µmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L)	1.1 23.5 1762 40.6 5.5 35.0 -16.180	1.1 21.3 1920 25.0 5.5 35.0 3.300	1.1 17.0 2085 30.2 5.5 35.0 -47.185	1.1 25.2 1709 31.4 5.5 35.0 5.040
Flow (mgd) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L) NH4-Nitrogen (mg/L) NO3-Nitrogen (mg/L) Organic Phosphorus (mg/L)	1.1 23.5 1762 40.6 5.5 35.0 -16.180 21.400	1.1 21.3 1920 25.0 5.5 35.0 3.300 24.100	1.1 17.0 2085 30.2 5.5 35.0 -47.185 49.500	1.1 25.2 1709 31.4 5.5 35.0 5.040 13.700
Flow (mgd) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L) NH4-Nitrogen (mg/L) NO3-Nitrogen (mg/L)	1.1 23.5 1762 40.6 5.5 35.0 -16.180 21.400 60.458	1.1 21.3 1920 25.0 5.5 35.0 3.300 24.100 34.887	1.1 17.0 2085 30.2 5.5 35.0 -47.185 49.500 15.700	1.1 25.2 1709 31.4 5.5 35.0 5.040 13.700 42.033
Flow (mgd) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L) NH4-Nitrogen (mg/L) NO3-Nitrogen (mg/L) Organic Phosphorus (mg/L)	1.1 23.5 1762 40.6 5.5 35.0 -16.180 21.400 60.458 -9.645	1.1 21.3 1920 25.0 5.5 35.0 3.300 24.100 34.887 -5.679	1.1 17.0 2085 30.2 5.5 35.0 -47.185 49.500 15.700 -5.176	1.1 25.2 1709 31.4 5.5 35.0 5.040 13.700 42.033 -8.680
Flow (mgd) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L) NO3-Nitrogen (mg/L) Organic Phosphorus (mg/L) Inorganic Ortho-Phosphorus (mg/L)	$\begin{array}{c} 1.1\\ 23.5\\ 1762\\ 40.6\\ 5.5\\ 35.0\\ -16.180\\ 21.400\\ 60.458\\ -9.645\\ 10.645\\ 9.050\\ 0.0\\ \end{array}$	1.1 21.3 1920 25.0 5.5 35.0 3.300 24.100 34.887 -5.679 6.679 9.050 0.0	$\begin{array}{c} 1.1 \\ 17.0 \\ 2085 \\ 30.2 \\ 5.5 \\ 35.0 \\ -47.185 \\ 49.500 \\ 15.700 \\ -5.176 \\ 6.176 \\ 9.050 \\ 0.0 \end{array}$	1.1 25.2 1709 31.4 5.5 35.0 5.040 13.700 42.033 -8.680 9.680 9.050 0.0
Flow (mgd) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L) NO3-Nitrogen (mg/L) Organic Phosphorus (mg/L) Inorganic Ortho-Phosphorus (mg/L) Phytoplankton (μg/L)	$\begin{array}{c} 1.1\\ 23.5\\ 1762\\ 40.6\\ 5.5\\ 35.0\\ -16.180\\ 21.400\\ 60.458\\ -9.645\\ 10.645\\ 9.050\end{array}$	1.1 21.3 1920 25.0 5.5 35.0 3.300 24.100 34.887 -5.679 6.679 9.050	$\begin{array}{c} 1.1 \\ 17.0 \\ 2085 \\ 30.2 \\ 5.5 \\ 35.0 \\ -47.185 \\ 49.500 \\ 15.700 \\ -5.176 \\ 6.176 \\ 9.050 \end{array}$	1.1 25.2 1709 31.4 5.5 35.0 5.040 13.700 42.033 -8.680 9.680 9.050

All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality.

Effluent Limitations

Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9).

Other conditions used in the modeling effort reflect the environmental conditions expected at low stream flows.

Effluent Limitations based upon Water Quality Standards for DO

and Ammonia Toxicity

In-stream criteria of downstream segments for Dissolved Oxygen and Ammonia will be met with an effluent limitation as follows:

Chronic	Standard	Summer	Fall	Winter	Spring
Flow (MGD)	N/A	1.1	1.1	1.1	1.1
NH4-Nitrogen (mg/L)	Varies	5.3	38.5	38.5	5.3
CBOD₅ (mg/L)	N/A	35.0	35.0	35.0	35.0
Dissolved Oxygen [30-day Ave] (mg/L)	5.0	5.5	5.5	5.5	5.5
Acute	Standard	Summer	Fall	Winter	Spring
Flow (cfs)	N/A	1.1	1.1	1.1	1.1
NH4-Nitrogen (mg/L)	Varies	21.4	24.1	49.5	13.7
CBOD₅ (mg/L)	N/A	35.0	35.0	35.0	35.0
Dissolved Oxygen [Minimum] (mg/L)	3.0	5.5	5.5	5.5	5.5

Summary Comments

The mathematical modeling and best professional judgement indicate that violations of receiving water beneficial uses with their associated water quality standards, including important down-stream segments, will not occur for the evaluated parameters of concern as discussed above if the effluent limitations indicated above are met.

Coefficients and Other Model Information

Para sector	Matur	11.11
Parameter	Value	Units
Stoichiometry:	40	0
Carbon	40	gC
Nitrogen	7.2	gN
Phosphorus	1	gP
Dry weight	100	gD
Chlorophyll	1	gA
Inorganic suspended solids:		
Settling velocity	1.5	m/d
Oxygen:		
Reaeration model	Tsivoglou-Ne	al
Temp correction	1.024	
Reaeration wind effect	None	
O2 for carbon oxidation	2.69	gO2/gC
O2 for NH4 nitrification	4.57	gO2/gN
Oxygen inhib model CBOD oxidation	Exponential	-
Oxygen inhib parameter CBOD oxidation	0.60	L/mgO2
Oxygen inhib model nitrification	Exponential	-
Oxygen inhib parameter nitrification	0.60	L/mgO2
Oxygen enhance model denitrification	Exponential	5
Oxygen enhance parameter denitrification	0.60	L/mgO2
Oxygen inhib model phyto resp	Exponential	3
Oxygen inhib parameter phyto resp	0.60	L/mgO2
Oxygen enhance model bot alg resp	Exponential	
Oxygen enhance parameter bot alg resp	0.60	L/mgO2
Slow CBOD:	0.00	
Hydrolysis rate	0	/d
Temp correction	1.047	
Oxidation rate	0.103	/d
Temp correction	1.047	/u
Fast CBOD:	1.047	
Oxidation rate	5	/d
Temp correction	1.047	/u
•	1.047	
Organic N:	0.84504511	/d
Hydrolysis Tomp correction	1.07	/u
Temp correction		m/d
Settling velocity	0.055176	m/d
Ammonium:	4 444504	(-1
Nitrification	1.444564	/d
Temp correction	1.07	
Nitrate:	1.0000000	()
Denitrification	1.6632371	/d
	1.07	
Temp correction		
Sed denitrification transfer coeff	0.38965	m/d
Sed denitrification transfer coeff Temp correction		m/d
Sed denitrification transfer coeff Temp correction Organic P:	0.38965 1.07	
Sed denitrification transfer coeff Temp correction <i>Organic P:</i> Hydrolysis	0.38965 1.07 0.28013059	m/d /d
Sed denitrification transfer coeff Temp correction Organic P: Hydrolysis Temp correction	0.38965 1.07 0.28013059 1.07	
Sed denitrification transfer coeff Temp correction <i>Organic P:</i> Hydrolysis	0.38965 1.07 0.28013059	
Sed denitrification transfer coeff Temp correction Organic P: Hydrolysis Temp correction Settling velocity Inorganic P:	0.38965 1.07 0.28013059 1.07	/d
Sed denitrification transfer coeff Temp correction Organic P: Hydrolysis Temp correction Settling velocity	0.38965 1.07 0.28013059 1.07	/d

Utah Division of Water Quality

	Phytoplankton:					
	Max Growth rate				2.8862	/d
	Temp correction				1.07	
	Respiration rate				0.1045676	/d
	Temp correction				1.07	
	Death rate				0.325185	/d
	Temp correction				1	
	Nitrogen half sat constant				15	ugN/L
	Phosphorus half sat constant				11	ugP/L
	Inorganic carbon half sat constant				1.30E-05	moles/L
	Phytoplankton use HCO3- as substrate				Yes	
	Light model				Smith	
	Light constant				57.6	langleys/d
	Ammonia preference				7.35575	ugN/L
	Settling velocity				0.11142	m/d
	Bottom Plants:					
	Growth model				Zero-order	
	Max Growth rate				22.21241	gD/m2/d or /d
	Temp correction				1.07	
	First-order model carrying capacity				100	gD/m2 /d
	Basal respiration rate				0.6899654	/a unitless
	Photo-respiration rate parameter Temp correction				0.01 1.07	unitiess
	Excretion rate				0.11302	/d
	Temp correction				1.07	/u
	Death rate				0.021304	/d
	Temp correction				1.07	, a
	External nitrogen half sat constant				694.537	ugN/L
	External phosphorus half sat constant				122.1963	ugP/L
	Inorganic carbon half sat constant				3.31E-05	moles/L
	Bottom algae use HCO3- as substrate				Yes	
	Light model				Smith	
	Light constant				66.948	mgO^2/L
	Ammonia preference				21.34475	ugN/L
	Subsistence quota for nitrogen				35.4263	mgN/gD
	Subsistence quota for phosphorus				3.569585	mgP/gD
	Maximum uptake rate for nitrogen				886	mgN/gD/d
	Maximum uptake rate for phosphorus				29.3088	mgP/gD/d
	Internal nitrogen half sat ratio				3.404516	
	Internal phosphorus half sat ratio				1.081363	
	Nitrogen uptake water column fraction				1	
	Phosphorus uptake water column fraction				1	
	Detritus (POM):				1.5255605	/d
	Dissolution rate Temp correction				1.07	/u
	Settling velocity				0.89958	m/d
	pH:				0.03350	III/G
	Partial pressure of carbon dioxide				380	ppm
					000	ppiii
Atmo	ospheric Inputs:	Spring	Fall	Winter	Spring	a a a a a a a a a a a a a a a a a a a
	Air Temperature, F	89.2	66.4	51.7	81.8	
	Air Temperature, F	41.0	13.7	11.7	29.8	
	Point, Temp., F	52.7	30.4	26.7	43.4	
Wind	, ft./sec. @ 21 ft.	6.8	5.9	6.3	8.4	
	d Cover, %	0.0	0.0	0.0	0.0	
Othe	r Inputs:					
Botto	m Algae Coverage	100.0%				
	m SOD Coverage	100.0%				
Pres	cribed SOD (mg O ₂ /m²/day)	0.0				

WASTELOAD ANALYSIS [WLA] Appendix B: Mass Balance Mixing Analysis Results

Discharging Facility: UPDES No: Permit Flow [MGD]:	Moroni Wastewater Treament Plant UT-0020222 1.10 Maximum Daily Flow 1.10 Maximum Monthly Flow	
Receiving Water: Stream Classification: Stream Flows [cfs]:	San Pitch River 2B,3C,3D,4 3.60 Annual	Critical Low Flow
Acute River Width: Acute Combined Flow [cfs] Chronic River Width: Chronic Combined Flow [cfs]	50% 3.50 100% 5.30	

Modeling Information

A simple mixing analysis was used to determine these effluent limits.

All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality.

Effluent Limitations

Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9).

Other conditions used in the modeling effort reflect the environmental conditions expected at low stream flows.

Effluent Limitations for Protection of Recreation (Class 2B Waters)

Parameter pH	Limit
Minim	ium 6.5
Maxim	num 9.0
Bacteriological E. coli (30 Day Geometric Me E. coli (Maxim	, , , , ,

Effluent Limitations for Protection of Aquatic Wildlife (Class 3C Waters)

Parameter						
Temperature (deg C)		Limit				
N	laximum	27.0				
Maximum	Change	4.0				
рН		Limit				
1	Minimum	6.5				
Ν	laximum	9.0				
Inorganics	CI	hronic Standard	l (4 Day Aver	age)	Acute Standard	(1 Hour Average)
-		Standard	Limit	Unit	Standard	Limit Unit
Phenol					0.010	0.014 mg/L
Hydrogen Sulfide (Undise	sociated)				0.002	0.003 mg/L

Date: 5/18/2023

Utah Division of Water Quality

Dissolved Metals [µg/L]

Chronic Standard (4 Day Average)			Acute Sta	Acute Standard (1 Hour Average)			
Parameter	Standard ¹	Background	Limit	Standard	Background	Limit	
Aluminum	NA ³	NA	NONE	750	13.0	1,530	
Arsenic	150	1.1	465	340	1.1	699	
Cadmium	0.6	0.06	1.9	7.7	0.06	15.9	
Chromium VI	11.0	2.7	28.6	16.0	2.7	30.1	
Chromium III	231	2.7	713	1,773	2.7	3,646	
Copper	29.3	3.0	84.9	49.6	3.0	99.0	
Cyanide ²	5.2	3.5	8.9	22.0	3.5	41.6	
Iron				1,000	28.65	2,027	
Lead	10.9	0.19	33.7	281	0.19	578	
Mercury ²	0.012	0.008	0.020	2.4	0.008	4.9	
Nickel	168	4.7	514	1,513	4.7	3,108	
Selenium	4.6	2.0	10.1	18.4	2.0	35.7	
Silver				34.9	0.25	71.6	
Tributylin ²	0.072	0.048	0.123	0.46	0.048	0.90	
Zinc	382	14.1	1,162	379	14.1	766	

1: Based upon a Hardness of 400 mg/l as CaCO3

2: Ambient concentration assumed 2/3 of water quality standard

3: Where the pH is equal to or greater than 7.0 and the hardness is equal to or greater than 50 ppm as CaC0₃ in the receiving water after mixing, the 87 ug/L chronic criterion (expressed as total recoverable) will not apply, and aluminum will be regulated based on compliance with the 750 ug/L acute aluminum criterion (expressed as total recoverable).

Organics [Pesticides] [µg/L]

	Chronic St	tandard (4 Day Av	erage)	Acute Sta	Acute Standard (1 Hour Average)						
Parameter	Standard	Background ¹	Limit	Standard	Background	Limit					
Aldrin				1.5	1.0	2.0					
Chlordane	0.0043	0.0029	0.0073	1.2	0.0029	2.5					
DDT, DDE	0.001	0.0007	0.0017	0.55	0.0007	1.13					
Diazinon	0.17	0.11	0.29	0.17	0.11	0.23					
Dieldrin	0.0056	0.0037	0.0095	0.24	0.0037	0.49					
Endosulfan, a & b	0.056	0.037	0.095	0.11	0.037	0.19					
Endrin	0.036	0.024	0.061	0.086	0.024	0.152					
ptachlor & H. epoxide	0.0038	0.0025	0.0065	0.26	0.0025	0.53					
Lindane	0.08	0.05	0.14	1.0	0.05	2.0					
Methoxychlor				0.03	0.02	0.04					
Mirex				0.001	0.0007	0.001					
Nonylphenol	6.6	4.4	11.3	28.0	4.4	53.0					
Parathion	0.013	0.009	0.022	0.066	0.009	0.127					
PCB's	0.014	0.009	0.024								
Pentachlorophenol	15.0	10.0	25.6	19.0	10.0	28.5					
Toxephene	0.0002	0.0001	0.0003	0.73	0.0001	1.50					
	Aldrin Chlordane DDT, DDE Diazinon Dieldrin Endosulfan, a & b Endrin ptachlor & H. epoxide Lindane Methoxychlor Mirex Nonylphenol Parathion PCB's Pentachlorophenol	ParameterStandardAldrinChlordane0.0043DDT, DDE0.001Diazinon0.17Dieldrin0.0056Endosulfan, a & b0.056Endosulfan, a & b0.036ptachlor & H. epoxide0.0038Lindane0.008MethoxychlorMirexMonylphenol6.6Parathion0.013PCB's0.014Pentachlorophenol15.0	Parameter Aldrin Standard Background ¹ Aldrin 0.0043 0.0029 DDT, DDE 0.001 0.0007 Diazinon 0.17 0.11 Dieldrin 0.0056 0.037 Endosulfan, a & b 0.056 0.037 Endosulfan, a & b 0.036 0.024 ptachlor & H. epoxide 0.0038 0.0025 Lindane 0.08 0.05 Methoxychlor Mirex 10.009 PCB's 0.014 0.009 PCB's 0.014 0.009 Pentachlorophenol 15.0 10.0	Aldrin Chlordane 0.0043 0.0029 0.0073 DDT, DDE 0.001 0.0007 0.0017 Diazinon 0.17 0.11 0.29 Dieldrin 0.0056 0.0037 0.0095 Endosulfan, a & b 0.056 0.037 0.095 Endrin 0.036 0.024 0.061 ptachlor & H. epoxide 0.0038 0.0025 0.0065 Lindane 0.08 0.05 0.14 Methoxychlor Mirex V V Nonylphenol 6.6 4.4 11.3 Parathion 0.013 0.009 0.022 PCB's 0.014 0.009 0.244 Pentachlorophenol 15.0 10.0 25.6	Parameter Standard Background ¹ Limit Standard Aldrin 1.5 Chlordane 0.0043 0.0029 0.0073 1.2 DDT, DDE 0.001 0.0007 0.0017 0.55 Diazinon 0.17 0.11 0.29 0.17 Dieldrin 0.0056 0.037 0.095 0.24 Endosulfan, a & b 0.056 0.037 0.095 0.11 Endrin 0.036 0.024 0.061 0.086 ptachlor & H. epoxide 0.0038 0.0025 0.0065 0.26 Lindane 0.08 0.05 0.14 1.0 Methoxychlor 0.03 0.001 0.001 Nonylphenol 6.6 4.4 11.3 28.0 Parathion 0.013 0.009 0.022 0.066 PCB's 0.014 0.009 0.024 0.061	Parameter Aldrin Standard Background ¹ Limit Standard Background Aldrin 1.5 1.0 Chlordane 0.0043 0.0029 0.0073 1.2 0.0029 DDT, DDE 0.001 0.0007 0.0017 0.55 0.0007 Diazinon 0.17 0.11 0.29 0.17 0.11 Dieldrin 0.0056 0.037 0.095 0.24 0.0037 Endosulfan, a & b 0.056 0.037 0.095 0.11 0.037 Endrin 0.036 0.024 0.061 0.086 0.024 ptachlor & H. epoxide 0.0038 0.025 0.005 0.26 0.0025 Lindane 0.08 0.05 0.14 1.0 0.05 Methoxychlor 0.013 0.009 0.022 0.066 0.009 Mirex 0.013 0.009 0.024 0.066 0.009 PCB's 0.014 0.009 0.024 0.066 0.009					

1: Ambient concentration assumed 2/3 of water quality standard

Radiological

Parameter	
Gross Alpha	

Maximum Concentration

15 pCi/L

Effluent Limitation for Protection of Agriculture (Class 4 Waters)

Parameter	Maximum Co	oncentration	
	Standard	Background	Limit
Total Dissolved Solids (mg/L)	1,700		1,700 Site specific standard
Arsenic (µg/L)	100	1.1	309
Boron (µg/L)	750	201	1,912
Cadmium (μg/L)	10	0.06	31
Chromium (µg/L)	100	2.7	306
Copper (µg/L)	200	3.0	617
Lead (µg/L)	100	0.19	311
Selenium (µg/L)	50	2.0	152
Gross Alpha (pCi/L)	15		15

WASTELOAD ANALYSIS [WLA] Appendix C: Total Residual Chlorine

Discharging Facility:	Moroni Wastewater Treament Plant
UPDES No:	UT-0020222

CHRONIC								Decay Rate (/day)				
					Mixing							
		Receiving		Total	Zone	Effluent Limit	Temperature	@ 20 deg	@ T	Travel	Decay	Effluent
	Season	Water	Standard	Effluent	Boundary	Without Decay	(°C)	С	deg C	Time (min)	Coefficient	Limit
Discharge (cfs)	Summer	3.6		1.7	5.3							
	Fall	9.2		1.7	10.9							
	Winter	26.0		1.7	27.7							
	Spring	7.1		1.7	8.8							
TRC (mg/L)	Summer	0.000	0.011			0.034	20.9	20	20.8	10	0.8653	0.040
	Fall	0.000	0.011			0.071	15.7	20	16.4	10	0.8925	0.079
	Winter	0.000	0.011			0.179	10.4	20	12.8	10	0.9146	0.196
	Spring	0.000	0.011			0.057	17.3	20	17.7	10	0.8844	0.064

ACUTE								Decay Rate (/day)				
					Mixing							
		Receiving		Total	Zone	Effluent Limit	Temperature			Travel	Decay	Effluent
	Season	Water	Standard	Effluent	Boundary	Without Decay	(°C)	@ 20 °C	@ T °C	Time (min)	Coefficient	Limit
Discharge (cfs)	Summer	1.8		1.7	3.5							
	Fall	4.6		1.7	6.3							
	Winter	13.0		1.7	14.7							
	Spring	3.5		1.7	5.2							
TRC (mg/L)	Summer	0.000	0.019			0.039	23.5	20	23.5	10	0.8494	0.046
	Fall	0.000	0.019			0.071	21.3	20	21.2	10	0.8630	0.082
	Winter	0.000	0.019			0.164	17.0	20	17.4	10	0.8859	0.185
	Spring	0.000	0.019			0.059	25.2	20	25.4	10	0.8383	0.070

Date: 5/18/2023