WASTELOAD ANALYSIS [WLA] Addendum: Statement of Basis

UPDES No: UT-0022896

Facilities: Cottonwood-Wilberg Mine Discharging to: Cottonwood Canyon Creek

I. Introduction

Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses [R317-2-8, UAC]. Projected concentrations are compared to numeric water quality standards to determine acceptability. The anti-degradation policy and procedures are also considered. The primary in-stream parameters of concern may include metals (as a function of hardness), total dissolved solids (TDS), total residual chlorine (TRC), un-ionized ammonia (as a function of pH and temperature, measured and evaluated interms of total ammonia), and dissolved oxygen.

Mathematical water quality modeling is employed to determine stream quality response to point source discharges. Models aid in the effort of anticipating stream quality at future effluent flows at critical environmental conditions (e.g., low stream flow, high temperature, high pH, etc).

The numeric criteria in this wasteload analysis may always be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality.

II. Receiving Water and Stream Classification

Cottonwood Canyon Creek:1C, 2B, 3A, 4Antidegradation Review:Level I review completed. Level II review not required.

III. Numeric Stream Standards for Protection of Aquatic Wildlife

Total Ammonia (TNH3)

Chronic Total Residual Chlorine (TRC)

Chronic Dissolved Oxygen (DO)

Maximum Total Dissolved Solids

Varies as a function of Temperature and pH Rebound. See Water Quality Standards

0.011 mg/l (4 Day Average) 0.019 mg/l (1 Hour Average)

6.50 mg/l (30 Day Average) 9.50 mg/l (7Day Average) 8.00 mg/l (1 Day Average

1200.0 mg/l

Acute and Chronic Heavy Metals (Dissolved)

4 Day Average (Chronic) Standard			1 Hour Average (Acute) Standard			
Parameter	Concentration	Load*	Concentration	•	Load*	
Aluminum	87.00 ug/l**	0.392 lbs/day	750.00	ug/l	3.384 lbs/day	
Arsenic	190.00 ug/l	0.857 lbs/day	340.00	ug/l	1.534 lbs/day	
Cadmium	0.76 ug/l	0.003 lbs/day	8.73	ug/l	0.039 lbs/day	
Chromium III	268.22 ug/l	1.210 lbs/day	5611.67	ug/l	25.317 lbs/day	
ChromiumVI	11.00 ug/l	0.050 lbs/day	16.00	ug/l	0.072 lbs/day	
Copper	30.50 ug/l	0.138 lbs/day	51.68	ug/l	0.233 lbs/day	
Iron			1000.00	ug/l	4.511 lbs/day	
Lead	18.58 ug/l	0.084 lbs/day	476.82	ug/l	2.151 lbs/day	
Mercury	0.0120 ug/l	0.000 lbs/day	2.40	ug/l	0.011 lbs/day	
Nickel	168.54 ug/l	0.760 lbs/day	1515.91	ug/l	6.839 lbs/day	
Selenium	4.60 ug/l	0.021 lbs/day	20.00	ug/l	0.090 lbs/day	
Silver	N/A ug/l	N/A lbs/day	41.07	ug/l	0.185 lbs/day	
Zinc	387.83 ug/l	1.750 lbs/day	387.83	ug/l	1.750 lbs/day	
* A	llowed below discharge			•		

* Allowed below discharge **Chronic Aluminum standard applies only to waters with a pH < 7.0 and a Hardness < 50 mg/l as CaCO3

Metals Standards Based upon a Hardness of 400 mg/l as CaCO3

Organics [Pesticides]

	4 Day Average (Chronic	c) Standard		1 Hour Avera	ge (Acute) Sta	ndard
Parameter	Concentration	n Loa	ad*	Concentration		Load*
Aldrin				1.500	ug/l	0.007 lbs/day
Chlordane	0.004 ug/l	0.019	lbs/day	1.200	ug/l	0.005 lbs/day
DDT, DDE	0.001 ug/l	0.005	lbs/day	0.550	ug/l	0.002 lbs/day
Dieldrin	0.002 ug/l	0.009	lbs/day	1.250	ug/l	0.006 lbs/day
Endosulfan	0.056 ug/l	0.252	lbs/day	0.110	ug/l	0.000 lbs/day
Endrin	0.002 ug/l	0.010	lbs/day	0.090	ug/l	0.000 lbs/day
Guthion				0.010	ug/l	0.000 lbs/day
Heptachlor	0.004 ug/l	0.017	lbs/day	0.260	ug/l	0.001 lbs/day
Lindane	0.080 ug/l	0.361	lbs/day	1.000	ug/l	0.005 lbs/day
Methoxychlor				0.030	ug/l	0.000 lbs/day
Mirex				0.010	ug/l	0.000 lbs/day
Parathion				0.040	ug/l	0.000 lbs/day
PCB's	0.014 ug/l	0.063	lbs/day	2.000	ug/l	0.009 lbs/day
Pentachlorophenol	13.00 ug/l	58.605	lbs/day	20.000	ug/l	0.090 lbs/day
Toxephene	0.0002 ug/l	0.001	lbs/day	0.7300	ug/l	0.003 lbs/day

IV. Numeric Stream Standards for Protection of Agriculture 4 Day Average (Chronic) Standard

4 Day Average (Chronic) Standard		1 Hour Average (Acute) Standard		
	Concentration	Load*	Concentration	Load*
Arsenic			100.0 ug/l	lbs/day
Boron			750.0 ug/l	1.69 lbs/day
Cadmium			10.0 ug/l	0.02 lbs/day
Chromium			100.0 ug/l	lbs/day
Copper			200.0 ug/l	lbs/day
Lead			100.0 ug/l	lbs/day
Selenium			50.0 ug/l	lbs/day
TDS, Summer			1200.0 mg/l	2.71 tons/day

V. Numeric Stream Standards for Protection of Human Health (Class 1C Waters)

	Day Average (Chronic) Standard	· · · · · ·	1 Hour Avera	age (Acute)	Standard
Metals	Concentration	Load*	Concentration		Load*
Arsenic			50.0	ug/l	0.225 lbs/day
Barium			1000.0	ug/l	4.508 lbs/day
Cadmium			10.0	ug/l	0.045 lbs/day
Chromium			50.0	ug/l	0.225 lbs/day
Lead			50.0	ug/l	0.225 lbs/day
Mercury			2.0	ug/l	0.009 lbs/day
Selenium			10.0	ug/l	0.045 lbs/day
Silver			50.0	ug/l	0.225 lbs/day
Fluoride (3)			1.4	ug/l	0.006 lbs/day
to			2.4	ug/l	0.011 lbs/day
Nitrates as N			10.0	ug/l	0.045 lbs/day
Chlorophenoxy Herbi	cides				
2,4-D			100.0	ug/l	0.451 lbs/day
2,4,5-TP			10.0	ug/l	0.045 lbs/day
Endrin			0.2	ug/l	0.001 lbs/day
clohexane (Lindane)			4.0	ug/l	0.018 lbs/day
Methoxychlor			100.0	ug/l	0.451 lbs/day
Toxaphene			5.0	ug/l	0.023 lbs/day

VI. Numeric Stream Standards the Protection of Human Health from Water & Fish Consumption [Toxics]

Maximum Conc., ug/I - Acute Standards

	Class 1	С			Class	s 3A, 3B
Toxic Organics	[2 Liters/Day for 70 Kg I	Person over 70 Yr.]		[6.5 g for	70 Kg	Person over 70 Yr.]
Acenaphthene	1200.00 ug/l	5.41	lbs/day	2700.0	ug/l	12.17 lbs/day
Acrolein	320.00 ug/l	1.44	lbs/day	780.0	ug/l	3.52 lbs/day
Acrylonitrile	0.06 ug/l	0.00	lbs/day	0.7	ug/l	0.00 lbs/day
Benzene	1.20 ug/l	0.01	lbs/day	71.0	ug/l	0.32 lbs/day
Benzidine	0.00012 ug/l	0.00	lbs/day	0.0	ug/l	0.00 lbs/day
Carbon tetrachloride	0.25 ug/l	0.00	lbs/day	4.4	ug/l	0.02 lbs/day
Chlorobenzene	680.00 ug/l	3.07	lbs/day	21000.0	ug/l	94.67 lbs/day
1,2,4-Trichlorobenzene						
Hexachlorobenzene	0.00075 ug/l		lbs/day		ug/l	0.00 lbs/day
1,2-Dichloroethane	0.38 ug/l	0.00	lbs/day	99.0	ug/l	0.45 lbs/day
1,1,1-Trichloroethane						
Hexachloroethane	1.90 ug/l	0.01	lbs/day	8.9	ug/l	0.04 lbs/day
1,1-Dichloroethane						
1,1,2-Trichloroethan	0.61 ug/l	0.00	lbs/day	42.0	ug/l	0.19 lbs/day
1,1,2,2-Tetrachloroe	0.17 ug/l	0.00	lbs/day	11.0	ug/l	0.05 lbs/day
Chloroethane				0.0	ug/l	0.00 lbs/day
Bis(2-chloroethyl) etl	0.03 ug/l		lbs/day	1.4	. 3.	0.01 lbs/day
2-Chloroethyl vinyl e	0.00 ug/l	0.00	lbs/day	0.0	ug/l	0.00 lbs/day
2-Chloronaphthalene	1700.00 ug/l		lbs/day	4300.0	ug/l	19.38 lbs/day
2,4,6-Trichlorophenc	2.10 ug/l	0.01	lbs/day	6.5	ug/l	0.03 lbs/day
p-Chloro-m-cresol				0.0	ug/l	0.00 lbs/day
Chloroform (HM)	5.70 ug/l		lbs/day	470.0	ug/l	2.12 lbs/day
2-Chlorophenol	120.00 ug/l		lbs/day	400.0	ug/l	1.80 lbs/day
1,2-Dichlorobenzene	2700.00 ug/l		lbs/day	17000.0		76.64 lbs/day
1,3-Dichlorobenzene	400.00 ug/l		lbs/day	2600.0		11.72 lbs/day
1,4-Dichlorobenzene	400.00 ug/l		lbs/day	2600.0	ug/l	11.72 lbs/day
3,3'-Dichlorobenzidir	0.04 ug/l		lbs/day	0.1	ug/l	0.00 lbs/day
1,1-Dichloroethylene	0.06 ug/l		lbs/day	3.2		0.01 lbs/day
1,2-trans-Dichloroeth	700.00 ug/l	3.16	lbs/day	0.0	ug/l	0.00 lbs/day

2,4-Dichlorophenol	93.00 ug/l	0.42 lb	os/day	790.0	ug/l	3.56 lbs/day
1,2-Dichloropropane	0.52 ug/l	0.00 lb		39.0	ug/l	0.18 lbs/day
1,3-Dichloropropyler	10.00 ug/l	0.05 lb	-	1700.0	ug/l	7.66 lbs/day
· · · · · ·	•				•	
2,4-Dimethylphenol	540.00 ug/l	2.43 lb		2300.0	ug/l	10.37 lbs/day
2,4-Dinitrotoluene	0.11 ug/l	0.00 lb	os/day	9.1	ug/l	0.04 lbs/day
2,6-Dinitrotoluene	0.00 ug/l	0.00 lb	os/day	0.0	ug/l	0.00 lbs/day
1,2-Diphenylhydrazir	0.04 ug/l	0.00 lb	ns/dav	0.5	ug/l	0.00 lbs/day
, , , ,	3100.00 ug/l	13.98 lb	-	29000.0	ug/l	130.73 lbs/day
Ethylbenzene	0		-			
Fluoranthene	300.00 ug/l	1.35 lb	os/day	370.0	ug/l	1.67 lbs/day
4-Chlorophenyl phenyl	ether					
4-Bromophenyl phenyl	ether					
Bis(2-chloroisopropy	1400.00 ug/l	6.31 lb	ns/dav	170000.0	ug/l	7.66E+02 lbs/day
Bis(2-chloroethoxy)	0.00 ug/l	0.00 lb	,	0.0		0.00 lbs/day
(),	0		-			
Methylene chloride (4.70 ug/l	0.02 lb	-	1600.0	<u> </u>	7.21 lbs/day
Methyl chloride (HM)	0.00 ug/l	0.00 lb	os/day	0.0	ug/l	0.00 lbs/day
Methyl bromide (HM	0.00 ug/l	0.00 lb	os/day	0.0	ug/l	0.00 lbs/day
Bromoform (HM)	4.30 ug/l	0.02 lb	-	360.0		1.62 lbs/day
Dichlorobromometha	0.27 ug/l	0.00 lb	-	22.0		0.10 lbs/day
	0		-			
Chlorodibromometha	0.41 ug/l	0.00 lb	-	34.0	<u> </u>	0.15 lbs/day
Hexachlorobutadien	0.44 ug/l	0.00 lb	os/day	50.0	ug/l	0.23 lbs/day
Hexachlorocyclopen ⁻	240.00 ug/l	1.08 lb	os/day	17000.0	ug/l	76.64 lbs/day
Isophorone	8.40 ug/l	0.04 lb	os/dav	600.0	ug/l	2.70 lbs/day
Naphthalene	0110 ag,	0.011		00010	«g,.	2.1.0 1.00,000
	47.00	0.00 /	/-!	1000.0		
Nitrobenzene	17.00 ug/l	0.08 lb	-	1900.0	ug/l	8.57 lbs/day
2-Nitrophenol	0.00 ug/l	0.00 lb	os/day	0.0	ug/l	0.00 lbs/day
4-Nitrophenol	0.00 ug/l	0.00 lb	os/day	0.0	ug/l	0.00 lbs/day
2,4-Dinitrophenol	70.00 ug/l	0.32 lb	os/dav	14000.0	ug/l	63.11 lbs/day
4,6-Dinitro-o-cresol	13.00 ug/l	0.06 lb	,	765.0	ug/l	3.45 lbs/day
					<u> </u>	
N-Nitrosodimethylar	0.00069 ug/l	0.00 lb		8.1	ug/l	0.04 lbs/day
N-Nitrosodiphenylarr	5.00 ug/l	0.02 lb	os/day	16.0	ug/l	0.07 lbs/day
N-Nitrosodi-n-propyla	0.01 ug/l	0.00 lb	os/day	1.4	ug/l	0.01 lbs/day
Pentachlorophenol	0.28 ug/l	0.00 lb	os/dav	8.2	ua/l	0.04 lbs/day
Phenol	2.10E+04 ug/l	9.47E+01 lb	-	4.6E+06		2.07E+04 lbs/day
	0		-		<u> </u>	
Bis(2-ethylhexyl)phtr	1.80 ug/l	0.01 lb		5.9	•	0.03 lbs/day
Butyl benzyl phthala	3000.00 ug/l	13.52 lb	-	5200.0	0	23.44 lbs/day
Di-n-butyl phthalate	2700.00 ug/l	12.17 lb	os/day	12000.0	ug/l	54.10 lbs/day
Di-n-octyl phthlate						
Diethyl phthalate	23000.00 ug/l	103.69 lb	vs/dav	120000.0	ua/l	540.97 lbs/day
	0		-			
Dimethyl phthlate	3.13E+05 ug/l	1.41E+03 lb	-	2.9E+06	<u> </u>	1.31E+04 lbs/day
Benzo(a)anthracene	0.0028 ug/l	0.00 lb	-		ug/l	0.00 lbs/day
Benzo(a)pyrene (PA	0.0028 ug/l	0.00 lb	os/day	0.0	ug/l	0.00 lbs/day
Benzo(b)fluoranthen	0.0028 ug/l	0.00 lb	os/day	0.0	ug/l	0.00 lbs/day
Benzo(k)fluoranthen	0.0028 ug/l	0.00 lb	-	0.0		0.00 lbs/day
Chrysene (PAH)	0.0028 ug/l	0.00 lb	-	0.0		0.00 lbs/day
	0.0028 ug/i	0.00 10	JS/Uay	0.0	ug/i	0.00 105/049
Acenaphthylene (PAH)						
Anthracene (PAH)	9600.00 ug/l	43.28 lb	os/day	0.0	ug/l	0.00 lbs/day
Dibenzo(a,h)anthrac	0.0028 ug/l	0.00 lb	os/day	0.0	ug/l	0.00 lbs/day
Indeno(1,2,3-cd)pyre	0.0028 ug/l	0.00 lb	os/dav	0.0	ug/l	0.00 lbs/day
Pyrene (PAH)	960.00 ug/l	4.33 lb		11000.0		49.59 lbs/day
			-			
Tetrachloroethylene	0.80 ug/l	0.00 lb	-		ug/l	0.04 lbs/day
Toluene	6800.00 ug/l	30.65 lb	os/day	200000	ug/l	901.62 lbs/day
Trichloroethylene	2.70 ug/l	0.01 lb	os/day	81.0	ug/l	0.37 lbs/day
Vinyl chloride	2.00 ug/l	0.01 lb	os/dav	525.0	ua/l	2.37 lbs/day
	g.			0.0	- 3, -	0.00 lbs/day
Pesticides				0.0		
						0.00 lbs/day
Aldrin	0.0001 ug/l	0.00 lb	os/day		ug/l	0.00 lbs/day
Dieldrin	0.0001 ug/l	0.00 lb	os/day	0.0	ug/l	0.00 lbs/day
Chlordane	0.0006 ug/l	0.00 lb	os/dav		ug/l	0.00 lbs/day
4,4'-DDT	0.0006 ug/l	0.00 lb	-		ug/l	0.00 lbs/day
	0		,			
4,4'-DDE	0.0006 ug/l	0.00 lb			ug/l	0.00 lbs/day
4,4'-DDD	0.0008 ug/l	0.00 lb	-		ug/l	0.00 lbs/day
alpha-Endosulfan	0.9300 ug/l	0.00 lb	os/day		ug/l	0.01 lbs/day
beta-Endosulfan	0.9300 ug/l	0.00 lb	os/day	2.0	ug/l	0.01 lbs/day
Endosulfan sulfate	0.9300 ug/l	0.00 lb			ug/l	0.01 lbs/day
Endrin	0.7600 ug/l	0.00 lb	-		ug/l	0.00 lbs/day
	0		-			
Endrin aldehyde					11/1/1	0.00 lbs/day
	0.7600 ug/l	0.00 lb	-	0.8		
Heptachlor Heptachlor epoxide	0.7600 ug/l	0.00 lb	-		ug/l	0.00 lbs/day

Heptachlor epoxide

PCB's

106					
PCE	3 1242 (Arochlor	0.000044 ug/l	0.00 lbs/day	0.0 ug/l	0.00 lbs/day
PCE	3-1254 (Arochlor	0.000044 ug/l	0.00 lbs/day	0.0 ug/l	0.00 lbs/day
PCE	3-1221 (Arochlor	0.000044 ug/l	0.00 lbs/day	0.0 ug/l	0.00 lbs/day
PCE	3-1232 (Arochlor	0.000044 ug/l	0.00 lbs/day	0.0 ug/l	0.00 lbs/day
PCE	3-1248 (Arochlor	0.000044 ug/l	0.00 lbs/day	0.0 ug/l	0.00 lbs/day
PCE	3-1260 Arochlor	0.000044 ug/l	0.00 lbs/day	0.0 ug/l	0.00 lbs/day
	3-1016 (Arochlor	0.000044 ug/l	0.00 lbs/day	0.0 ug/l	0.00 lbs/day
	,	5	,	5	2
Pes	ticide				
Тоха	aphene	0.000750 ug/l	0.00	0.0 ug/l	0.00 lbs/day
	•	5		5	
Dio	kin				
Diox	tin (2,3,7,8-TCDI	1.30E-08 ug/l	0.00 lbs/day	1.40E-08	0.00
		_	-		
Meta					
	mony	14.0 ug/l	0.06 lbs/day		
Arse		50.0 ug/l	0.23 lbs/day	4300.00 ug/l	19.38 lbs/day
	estos	7.00E+06 ug/l	3.16E+04 lbs/day		
,	/llium				
	mium				
Chro	omium (III)				
Chro	omium (VI)				
Сор	per				
Cya	nide	1.30E+03 ug/l	5.86 lbs/day	2.2E+05 ug/l	991.78 lbs/day
Lead	b	700.0 ug/l	3.16 lbs/day		
Mer	cury			0.15 ug/l	0.00 lbs/day
Nick	el			4600.00 ug/l	20.74 lbs/day
Sele	enium	0.1 ug/l	0.00 lbs/day		
Silve	er	610.0 ug/l	2.75 lbs/day		
Tha	llium			6.30 ug/l	0.03 lbs/day
Zinc				_	-

There are additional standards that apply to this receiving water, but were not considered in this modeling/waste load allocation analysis.

VII. Mathematical Modeling of Stream Quality

Model configuration was accomplished utilizing standard modeling procedures. Data points were plotted and coefficients adjusted as required to match observed data as closely as possible.

The modeling approach used in this analysis included one or a combination of the following models.

(1) The Utah River Model, Utah Division of Water Quality, 1992. Based upon STREAMDO IV (Region VIII) and Supplemental Ammonia Toxicity Models; EPA Region VIII, Sept. 1990 and QUAL2E (EPA, Athens, GA).

(2) Utah Ammonia/Chlorine Model, Utah Division of Water Quality, 1992.

- (3) AMMTOX Model, University of Colorado, Center of Limnology, and EPA Region 8
- (4) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644.

Coefficients used in the model were based, in part, upon the following references:

(1) Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling. Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens Georgia. EPA/600/3-85/040 June 1985.

(2) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644.

VIII. Modeling Information

The required information for the model may include the following information for both the upstream conditions at low flow and the effluent conditions:

Flow, Q, (cfs or MGD)	D.O. mg/l
Temperature, Deg. C.	Total Residual Chlorine (TRC), mg/l
рН	Total NH3-N, mg/l
BOD5, mg/l	Total Dissolved Solids (TDS), mg/l
Metals, ug/l	Toxic Organics of Concern, ug/l

Other Conditions

In addition to the upstream and effluent conditions, the models require a variety of physical and biological coefficients and other technical information. In the process of actually establishing the permit limits for an effluent, values are used based upon the available data, model calibration, literature values, site visits and best professional judgement.

Model Inputs

The following is upstream and discharge information that was utilized as inputs for the analysis. Dry washes are considered to have an upstream flow equal to the flow of the discharge.

Current Upstream	Information tream Critical			
	Low Flow	Temp.	рН	T-NH3
	cfs	Deg. C		mg/l as N
Summer (Irrig.		_		_
Season)	0.00	18.0	8.2	0.10
Fall	0.00	12.0	8.0	0.10
Winter	0.00	6.0	8.0	0.10
Spring	0.00	12.0	8.1	0.10
Dissolved	Δ1	٨٥	64	Call

i aii	0.00	12.0	0.0	0.10	1.00		0.00	000.0
Winter	0.00	6.0	8.0	0.10	1.00		0.00	800.0
Spring	0.00	12.0	8.1	0.10	1.00		0.00	800.0
Dissolved	AI	As	Cd	CrIII	CrVI	Copper	Fe	Pb
Metals	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
All Seasons	2.385*	0.795*	0.0795*	0.795*	3.975*	0.8*	1.25*	0.795*
Dissolved	Hg	Ni	Se	Ag	Zn	Boron		
Metals	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l		
All Seasons	0.0000	0.795*	1.59*	0.15*	0.0795*	1.59*	* ~80)% MDL

BOD5

mg/l

1.00

1.00

DO

mg/l

9.88

TRC

mg/l

0.00

0.00

TDS

mg/l

800.0

800.0

Projected Discharge Information

Season	Flow, MGD	Temp.
Summer	0.54000	11.4
Fall	0.54000	11.4
Winter	0.54000	11.4
Spring	0.54000	11.4

All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality.

IX. Effluent Limitations

Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9).

Other conditions used in the modeling effort coincide with the environmental conditions expected at low stream flows.

Effluent Limitation for Flow based upon Water Quality Standards

In-stream criteria of downstream segments will be met with an effluent flow maximum value as follows:

Season	Daily Average	
Summer Fall	0.540 MGD 0.540 MGD	0.835 cfs 0.835 cfs
Winter	0.540 MGD	0.835 cfs
Spring	0.540 MGD	0.835 cfs

Flow Requirement or Loading Requirement

The calculations in this wasteload analysis utilize the maximum effluent discharge flow of 0.54 MGD. If the discharger is allowed to have a flow greater than 0.54 MGD during 7Q10 conditions, and effluent limit concentrations as indicated, then water quality standards will be violated. In order to prevent this from occuring, the permit writers must include the discharge flow limititation as indicated above; or, include loading effluent limits in the permit.

Effluent Limitation for Whole Effluent Toxicity (WET) based upon WET Policy

Effluent Toxicity will not occur in downstream segements if the values below are met.

WET Requirements	LC50 >	100.0% Effluent	[Acute]
	IC25 >	99.9% Effluent	[Chronic]

Effluent Limitation for Biological Oxygen Demand (BOD) based upon Water Quality Standards or Regulations

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent BOD limitation as follows:

Season Concentration				
Summer	25.0 mg/l as BOD5	112.6 lbs/day		
Fall	25.0 mg/l as BOD5	112.6 lbs/day		
Winter	25.0 mg/l as BOD5	112.6 lbs/day		
Spring	25.0 mg/l as BOD5	112.6 lbs/day		

Effluent Limitation for Dissolved Oxygen (DO) based upon Water Quality Standards

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent D.O. limitation as follows:

Season	Concentration
Summer	6.50
Fall	6.50
Winter	6.50
Spring	6.50

Effluent Limitation for Total Ammonia based upon Water Quality Standards

In-stream criteria of downstream segments for Total Ammonia will be met with an effluent limitation (expressed as Total Ammonia as N) as follows:

Seasor	า				
		Concentration			
Summer	4 Day Avg Chronic	5.58	s mg/l as N	25.1	lbs/day
	1 Hour Avg Acute	17.8	mg/I as N	80.3	lbs/day
Fall	4 Day Avg Chronic	5.6	mg/I as N	25.1	lbs/day
	1 Hour Avg Acute	17.8	mg/I as N	80.3	lbs/day
Winter	4 Day Avg Chronic	5.6	mg/I as N	25.1	lbs/day
	1 Hour Avg Acute	17.8	mg/I as N	80.3	lbs/day
Spring	4 Day Avg Chronic	5.6	mg/I as N	25.1	lbs/day
	1 Hour Avg Acute	17.8	mg/I as N	80.3	lbs/day

Acute limit calculated with an Acute Zone of Initial Dilution (ZID) to be equal to 100.%.

Effluent Limitations for Total Dissolved Solids based upon Water Quality Standards

Season		Concentration	Concentration		
Summer	Maximum, Acute	1200.5	mg/l	2.70	tons/day
Fall	Maximum, Acute	1200.5	mg/l	2.70	tons/day
Winter	Maximum, Acute	1200.5	mg/l	2.70	tons/day
Spring	Maximum, Acute	1200.5	mg/l	2.70	tons/day
Colorado Sa	linity Forum Limits	Determined by	Permitting Section		

Effluent Limitations for Total Recoverable Metals based upon Water Quality Standards

In-stream criteria of downstream segments for Dissolved Metals will be met with an effluent limitation as follows (based upon a hardness of 400 mg/l):

4 Day Average			1 Hour Average				
	Conce	ntration	Lo	ad	Concentratio	n	Load
Aluminum*	N/A		N/A		750.	.9 ug/l	3.4 lbs/day
Arsenic*	190.23	ug/l	0.6	lbs/day	340.	.4 ug/l	1.5 lbs/day
Cadmium	0.76	ug/l	0.0	lbs/day	8.	.7 ug/l	0.0 lbs/day
Chromium III	268.54	ug/l	0.8	lbs/day	5,618	.4 ug/l	25.3 lbs/day
Chromium VI*	11.01	ug/l	0.0	lbs/day	16.	.0 ug/l	0.1 lbs/day
Copper	30.53	ug/l	0.1	lbs/day	51.	.7 ug/l	0.2 lbs/day
Iron*	N/A		N/A		836.	.4 ug/l	3.8 lbs/day
Lead	18.60	ug/l	0.1	lbs/day	477.	.4 ug/l	2.2 lbs/day
Mercury*	0.01	ug/l	0.0	lbs/day	2.	.4 ug/l	0.0 lbs/day
Nickel	168.74	ug/l	0.5	lbs/day	1,517.	.7 ug/l	6.8 lbs/day
Selenium*	4.60	ug/l	0.0	lbs/day	20.	.0 ug/l	0.1 lbs/day
Silver	N/A	ug/l	N/A	lbs/day	41.	.1 ug/l	0.2 lbs/day
Zinc	388.29	ug/l	1.1	lbs/day	388.	.3 ug/l	1.8 lbs/day
Cyanide*	5.21	ug/l	0.0	lbs/day	22.	.0 ug/l	0.1 lbs/day

*Limits for these metals are based on the dissolved standard.

Effluent Limitations for Heat/Temperature based upon Water Quality Standards

Summer	20.0 Deg. C.	68.0 Deg. F
Fall	14.0 Deg. C.	57.2 Deg. F
Winter	8.0 Deg. C.	46.4 Deg. F
Spring	14.0 Deg. C.	57.2 Deg. F

Effluent Limitations for Organics [Pesticides] Based upon Water Quality Standards

In-stream criteria of downstream segments for Organics [Pesticides] will be met with an effluent limit as follows:

4 Day Average			1 Hour Average		
	Concentration	Load	Concentration	-	Load
Aldrin			1.5E+00	ug/l	1.05E-02 lbs/day
Chlordane	4.30E-03 ug/l	1.94E-02 lbs/day	1.2E+00	ug/l	8.38E-03 lbs/day
DDT, DDE	1.00E-03 ug/l	4.50E-03 lbs/day	5.5E-01	ug/l	3.84E-03 lbs/day
Dieldrin	1.90E-03 ug/l	8.56E-03 lbs/day	1.3E+00	ug/l	8.72E-03 lbs/day
Endosulfan	5.60E-02 ug/l	2.52E-01 lbs/day	1.1E-01	ug/l	7.68E-04 lbs/day
Endrin	2.30E-03 ug/l	1.04E-02 lbs/day	9.0E-02	ug/l	6.28E-04 lbs/day
Guthion	0.00E+00 ug/l	0.00E+00 lbs/day	1.0E-02	ug/l	6.98E-05 lbs/day
Heptachlor	3.80E-03 ug/l	1.71E-02 lbs/day	2.6E-01	ug/l	1.81E-03 lbs/day
Lindane	8.00E-02 ug/l	3.60E-01 lbs/day	1.0E+00	ug/l	6.98E-03 lbs/day
Methoxychlor	0.00E+00 ug/l	0.00E+00 lbs/day	3.0E-02	ug/l	2.09E-04 lbs/day
Mirex	0.00E+00 ug/l	0.00E+00 lbs/day	1.0E-02	ug/l	6.98E-05 lbs/day
Parathion	0.00E+00 ug/l	0.00E+00 lbs/day	4.0E-02	ug/l	2.79E-04 lbs/day
PCB's	1.40E-02 ug/l	6.30E-02 lbs/day	2.0E+00	ug/l	1.40E-02 lbs/day
Pentachlorophenol	1.30E+01 ug/l	5.85E+01 lbs/day	2.0E+01	ug/l	1.40E-01 lbs/day
Toxephene	2.00E-04 ug/l	9.01E-04 lbs/day	7.3E-01	ug/l	5.09E-03 lbs/day

Effluent Limitations for Protection of Human Health [Toxics Rule] Based upon Water Quality Standards (Most stringent of 1C or 3A & 3B as appropriate.)

In-stream criteria of downstream segments for Protection of Human Health [Toxics] will be met with an effluent limit as follows:

an effluent limit as follows:		
		Maximum Concentration
	Concentration	Load
Toxic Organics		
Acenaphthene	1.20E+03 ug/l	
Acrolein	3.20E+02 ug/l	
Acrylonitrile	5.91E-02 ug/l	
Benzene	1.20E+00 ug/l	
Benzidine Carbon tetrachloride	ug/l 2.50E-01 ug/l	
Chlorobenzene	6.81E+02 ug/l	
1,2,4-Trichlorobenzene	0.01E+02 ug/i	3.07 E+00 lb5/uay
Hexachlorobenzene	7.51E-04 ug/l	3.38E-06 lbs/day
1.2-Dichloroethane	3.80E-01 ug/l	,
1,1,1-Trichloroethane	0.002 01 09/1	1.7 TE 00 155/049
Hexachloroethane	1.90E+00 ug/l	8.57E-03 lbs/day
1,1-Dichloroethane		
1,1,2-Trichloroethane	6.11E-01 ug/l	2.75E-03 lbs/day
1,1,2,2-Tetrachloroethane	1.70E-01 ug/l	
Chloroethane	U U	-
Bis(2-chloroethyl) ether	3.10E-02 ug/l	1.40E-04 lbs/day
2-Chloroethyl vinyl ether		
2-Chloronaphthalene	1.70E+03 ug/l	7.66E+00 lbs/day
2,4,6-Trichlorophenol	2.10E+00 ug/l	9.47E-03 lbs/day
p-Chloro-m-cresol		
Chloroform (HM)	5.71E+00 ug/l	2.57E-02 lbs/day
2-Chlorophenol	1.20E+02 ug/l	
1,2-Dichlorobenzene	2.70E+03 ug/l	
1,3-Dichlorobenzene	4.00E+02 ug/l	
1,4-Dichlorobenzene	4.00E+02 ug/l	,
3,3'-Dichlorobenzidine	4.00E-02 ug/l	
1,1-Dichloroethylene	5.71E-02 ug/l	2.57E-04 lbs/day
1,2-trans-Dichloroethylene1	0.045.04	
2,4-Dichlorophenol	9.31E+01 ug/l	
1,2-Dichloropropane	5.21E-01 ug/l	
1,3-Dichloropropylene 2,4-Dimethylphenol	1.00E+01 ug/l 5.41E+02 ug/l	
2,4-Dinitrotoluene	1.10E-01 ug/l	
2,6-Dinitrotoluene	1.10E-01 ug/i	4.90E-04 lb5/uay
1,2-Diphenylhydrazine	4.00E-02 ug/l	1.80E-04 lbs/day
Ethylbenzene	3.10E+03 ug/l	
Fluoranthene	3.00E+02 ug/l	
4-Chlorophenyl phenyl ether		
4-Bromophenyl phenyl ether		
Bis(2-chloroisopropyl) ether	1.40E+03 ug/l	6.31E+00 lbs/day
Bis(2-chloroethoxy) methane	U U	-
Methylene chloride (HM)	4.71E+00 ug/l	2.12E-02 lbs/day
Methyl chloride (HM)		
Methyl bromide (HM)		
Bromoform (HM)	4.31E+00 ug/l	
Dichlorobromomethane(HM)	2.70E-01 ug/l	,
Chlorodibromomethane (HM)	4.10E-01 ug/l	,
Hexachlorocyclopentadiene	2.40E+02 ug/l	5
Isophorone	8.41E+00 ug/l	3.79E-02 lbs/day
Naphthalene	4 705 04 //	
Nitrobenzene	1.70E+01 ug/l	7.66E-02 lbs/day
2-Nitrophenol		
4-Nitrophenol		
2,4-Dinitrophenol	7.01E+01 ug/l	
4,6-Dinitro-o-cresol N-Nitrosodimethylamine	1.30E+01 ug/l	
N-Nitrosodimethylamine	6.91E-04 ug/l 5.01E+00 ug/l	
N-Nitrosodi-n-propylamine	5.01E+00 ug/l	
Pentachlorophenol	2.80E-01 ug/l	
	2.002 01 Ug/1	1.202 00 103/049

Phenol	2.10E+04 ug/l	9.47E+01 lbs/day
Bis(2-ethylhexyl)phthalate	1.80E+00 ug/l	8.11E-03 lbs/day
Butyl benzyl phthalate	3.00E+03 ug/l	1.35E+01 lbs/day
Di-n-butyl phthalate	2.70E+03 ug/l	1.22E+01 lbs/day
Di-n-octyl phthlate		
Diethyl phthalate	2.30E+04 ug/l	1.04E+02 lbs/day
Dimethyl phthlate	3.13E+05 ug/l	1.41E+03 lbs/day
Benzo(a)anthracene (PAH)	2.80E-03 ug/l	1.26E-05 lbs/day
Benzo(a)pyrene (PAH)	2.80E-03 ug/l	1.26E-05 lbs/day
Benzo(b)fluoranthene (PAH)	2.80E-03 ug/l	1.26E-05 lbs/day
Benzo(k)fluoranthene (PAH)	2.80E-03 ug/l	1.26E-05 lbs/day
Chrysene (PAH)	2.80E-03 ug/l	1.26E-05 lbs/day
Acenaphthylene (PAH)		
Anthracene (PAH)		
Dibenzo(a,h)anthracene (PAH)	2.80E-03 ug/l	1.26E-05 lbs/day
Indeno(1,2,3-cd)pyrene (PAH)	2.80E-03 ug/l	1.26E-05 lbs/day
Pyrene (PAH)	9.61E+02 ug/l	4.33E+00 lbs/day
Tetrachloroethylene	8.01E-01 ug/l	3.61E-03 lbs/day
Toluene	6.81E+03 ug/l	3.07E+01 lbs/day
Trichloroethylene	2.70E+00 ug/l	1.22E-02 lbs/day
Vinyl chloride	2.00E+00 ug/l	9.02E-03 lbs/day
Pesticides		
Aldrin	1.30E-04 ug/l	5.86E-07 lbs/day
Dieldrin	1.40E-04 ug/l	6.31E-07 lbs/day
Chlordane	5.71E-04 ug/l	2.57E-06 lbs/day
4,4'-DDT	5.91E-04 ug/l	2.66E-06 lbs/day
4,4'-DDE	5.91E-04 ug/l	2.66E-06 lbs/day
4,4'-DDD	8.31E-04 ug/l	3.74E-06 lbs/day
alpha-Endosulfan	9.31E-01 ug/l	4.19E-03 lbs/day
beta-Endosulfan	9.31E-01 ug/l	4.19E-03 lbs/day
Endosulfan sulfate	9.31E-01 ug/l	4.19E-03 lbs/day
Endrin	7.61E-01 ug/l	3.43E-03 lbs/day
Endrin aldehyde	7.61E-01 ug/l	3.43E-03 lbs/day
Heptachlor	2.10E-04 ug/l	9.47E-07 lbs/day
Heptachlor epoxide		· · · · · · · · · · · · · · · · · · ·
PCB's		
PCB 1242 (Arochlor 1242)	4.41E-05 ug/l	1.98E-07 lbs/day
PCB-1254 (Arochlor 1254)	4.41E-05 ug/l	1.98E-07 lbs/day
PCB-1221 (Arochlor 1221)	4.41E-05 ug/l	1.98E-07 lbs/day
PCB-1232 (Arochlor 1232)	4.41E-05 ug/l	1.98E-07 lbs/day
PCB-1248 (Arochlor 1248)	4.41E-05 ug/l	1.98E-07 lbs/day
PCB-1260 (Arochlor 1260)	4.41E-05 ug/l	1.98E-07 lbs/day
PCB-1016 (Arochlor 1016)	4.41E-05 ug/l	1.98E-07 lbs/day
Pesticide		
Toxaphene	7.31E-04 ug/l	3.29E-06 lbs/day

Metals Antimony Arsenic Asbestos Beryllium Cadmium Chromium (III)	14.02 ug/l 50.06 ug/l 7.01E+06 ug/l	0.06 lbs/day 0.23 lbs/day 3.16E+04 lbs/day
Chromium (VI)		
Copper	1301.56 ug/l	5.86 lbs/day
Cyanide	700.84 ug/l	3.16 lbs/day
Lead	0.00	0.00
Mercury	0.14 ug/l	0.00 lbs/day
Nickel	610.73 ug/l	2.75 lbs/day
Selenium	0.00	0.00
Silver	0.00	0.00
Thallium	1.70 ug/l	0.01 lbs/day
Zinc		
Dioxin		
Dioxin (2,3,7,8-TCDD)	1.30E-08 ug/l	5.86E-11 lbs/day

Metals Effluent Limitations for Protection of All Beneficial Uses Based upon Water Quality Standards and Toxics Rule

	Class 4 Acute Agricultural ug/l	Class 3 Acute Aquatic Wildlife ug/l	Acute Toxics Drinking Water Source ug/l	Acute Toxics Wildlife ug/l	1C Acute Health Criteria ug/l	Acute Most Stringent ug/l	Class 3 Chronic Aquatic Wildlife ug/l
Aluminum		750.9				750.9	N/A
Antimony			14.0	4305.1		14.0	
Arsenic	100.1	340.4	50.1			50.1	190.2
Barium					1001.2	1001.2	
Beryllium						0.0	
Cadmium	10.0	8.7				8.7	0.8
Chromium (III)		5618.4				5618.4	268.5
Chromium (VI)	100.1	16.0				16.01	11.01
Copper	200.2	51.7	1301.6			51.7	30.5
Cyanide		22.0	220263.4			22.0	5.2
Iron		836.4				836.4	
Lead	100.1	477.4				100.1	18.6
Mercury		2.40	0.1	0.15		0.14	0.012
Nickel		1517.7	610.7	4605.5		610.7	168.7
Selenium	50.1	20.0				20.0	4.6
Silver		41.1				41.1	
Thallium			1.7	6.3		1.7	
Zinc		388.3				388.3	388.3
Boron	750.9					750.9	
Sulfate	2002.0					2002.0	

Summary Effluent Limitations for Metals [Wasteload Allocation, TMDL]

[If Acute is more stringent than Chronic, then the Chronic takes on the Acute value.]

	WLA Acute ug/l	WLA Chronic ug/l	
Aluminum	750.9	N/A	
Antimony	14.02		
Arsenic	50.1	190.2	Acute Controls
Asbestos	7.01E+06		
Barium			
Beryllium			
Cadmium	8.7	0.8	
Chromium (III)	5618.4	269	
Chromium (VI)	16.0	11.0	
Copper	51.7	30.5	
Cyanide	22.0	5.2	
Iron	836.4		
Lead	100.1	18.6	
Mercury	0.140	0.012	
Nickel	610.7	169	
Selenium	20.0	4.6	
Silver	41.1	N/A	
Thallium	1.7		
Zinc	388.3	388.3	
Boron	750.90		
Sulfate	2002.0		N/A at this Waterbody

Other Effluent Limitations are based upon R317-1.

126.0 organisms per 100 ml

X. Antidegradation Considerations

E. coli

The Utah Antidegradation Policy allows for degradation of existing quality where it is determined that such lowering of water quality is necessary to accommodate important economic or social development in the area in which the waters are protected [R317-2-3]. It has been determined that certain chemical parameters introduced by this discharge will cause an increase of the concentration of said parameters in the receiving waters. Under no conditions will the increase in concentration be allowed to interfere with existing instream water uses.

An Antidegradation Level I Review was conducted on this discharge and its effect on the receiving water. Based upon that review, it has been determined that an Antidegradation Level II Review is not required. The proposed permit is a simple renewal. with no increase in flow or concentrations.

XI. Colorado River Salinity Forum Considerations

Discharges in the Colorado River Basin are required to have their discharge at a TDS loading of less than 1.00 tons/day unless certain exemptions apply. Refer to the Forum's Guidelines for additional information allowing for an exceedence of this value. This doesn't apply to facilities that do not discharge to the Colorado River Basin.

XII. Summary Comments

The mathematical modeling and best professional judgement indicate that violations of receiving water beneficial uses with their associated water quality standards, including important down-stream segments, will not occur for the evaluated parameters of concern as discussed above if the effluent limitations indicated above are met.