Utah Division of Water Quality
Statement of Basis
ADDENDUM
Wasteload Analysis and Antidegradation Level I Review

Date:	February 19, 2024
Prepared by:	Suzan Tahir Standards and Technical Services
Facility:	Hexcel Corporation UPDES No. UT 0025305
Receiving water:	The Ridge Golf Club→Riter Canal (2B, 3E, 3D 4)

This addendum summarizes the wasteload analysis that was performed to determine water quality based effluent limits (WQBEL) for this discharge. Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses (UAC R317-2-8). Projected concentrations are compared to numeric water quality standards to determine acceptability. The numeric criteria in this wasteload analysis may be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality.

Discharge

001 Hexcel Corporation 0.6 MGD (maximum monthly average)

Receiving Water

Hexcel Corporation discharges into the Ridge Golf Course and then to Riter Canal. As per R317-2-13.9, the designated beneficial uses of irrigation canals and ditches statewide, except as otherwise designated are 2B, 3E, 4.

- Class 2B Protected for infrequent primary contact recreation. Also protected for secondary contact recreation where there is a low likelihood of ingestion of water or a low degree of bodily contact with the water. Examples include, but are not limited to, wading, hunting, and fishing.
- Class 3E Severely habitat-limited waters. Narrative standards will be applied to protect these waters for aquatic wildlife. The narrative standards will be defaulted to 3D beneficial use class.

- Class 3D -Protected for waterfowl, shore birds and other water-oriented wildlife not included in Classes 3A, 3B, or 3C, including the necessary aquatic organisms in their food chain.
- Class 4 Protected for agricultural uses including irrigation of crops and stock watering.

Flow

Typically, the critical flow for the wasteload analysis is considered the lowest stream flow for seven consecutive days with a ten-year return frequency (7Q10). Flow values for the Utah and Salt Lake Canal were obtained from the Utah Division of Water Rights website (https://www.waterrights.utah.gov/cgibin/dvrtview.exe?STATION_ID=1&RECORD_YEAR=& Modinfo=Daily_Comma&Startup=0.7126994544417689) for the period 2010-2022. The most consistent data set for each season was for the period 2011-2021.

	7Q10	Flow Units	
	Flow		Period
Summer	12.286	cfs	2011-2021
Fall	9.643	cfs	2011-2021
Winter	0.40	cfs	2011-2021
Spring	7.143	cfs	2011-2021
Avg Flow	75.033	cfs	2011-2021
20 th percentile	48.52	cfs	2011-2021

Table 1. The critical low flow conditions for Utah & Salt Lake Canal are:

Ambient Water Quality Parameters

Ambient water quality for the receiving water body was characterized using data from DWQ monitoring station #4994790, JORDAN R AT UTAH L OUTLET U121 XING (the Jordan River is the source of the canal water) for the period 2002-2022 and data provided by the Ridge Golf Club personnel for the period 2017-2023.

Parameters of Concern

Antimony, Methylene Chloride, Cyanide, Toluene, Phenols, total dissolved solids (TDS) and BOD were identified as a potential parameter of concern for the discharge. Addition parameters of concern may become apparent as a result of reasonable potential analysis, technology-based standards, or other factors as determined by the UPDES Permit Writer.

Protection of Downstream Uses

Per UAC R317-2-8, all actions to control waste discharges under these rules shall be modified as necessary to protect downstream designated uses. For this discharge, numeric criteria for aquatic wildlife (Class 3D, protected for waterfowl, shore birds and other water-oriented wildlife) applies

Utah Division of Water Quality Wasteload Analysis Hexcel Corporation UPDES No. UT-0025305

to the immediate receiving water (Riter Canal) will be applied under the narrative standards.

TMDL

The Riter Canal is not listed as impaired on Utah's 2022 303(d) Water Quality Assessment Report (canals are not typically assessed for the report). However, the Jordan River source water is listed as impaired for TDS, as are several downstream river segments. In order to protect against causing or contributing to these existing impairments, TDS effluent limit should not exceed the Class 4 standard of 1,200 mg/l.

Mixing Zone

The maximum allowable mixing zone is 15 minutes of travel time for acute conditions, not to exceed 50% of stream width, and for chronic conditions, per UAC R317-2-5. Water quality standards must be met at the end of the mixing zone. For the discharge to the Utah and Salt Lake Canal, complete mixing was assumed for the chronic condition. Acute limits were calculated using 50% of the seasonal critical low flow for both discharge points.

WET Limits

The percent of effluent in the receiving water in a fully mixed condition, and acute and chronic dilution in a not fully mixed condition are calculated in the WLA in order to generate WET limits. The LC₅₀ (lethal concentration, 50%) percent effluent for acute toxicity and the IC₂₅ (inhibition concentration, 25%) percent effluent for chronic toxicity, as determined by the WET test, needs to be below the WET limits, as determined by the WLA. The WET limit for LC₅₀ is typically 100% effluent and does not need to be determined by the WLA.

Season	IC25 WET limits
Summer	7.0
Fall	8.8
Winter	100.0
Spring	11.6

IC25 WET limits for Outfall 001 should be based on

Wasteload Allocation Methods

Effluent limits were determined for conservative constituents using a simple mass balance mixing analysis (UDWQ 2012). The mass balance analysis is summarized in the Wasteload Addendums.

Models and supporting documentation are available for review upon request.

Utah Division of Water Quality Wasteload Analysis Hexcel Corporation UPDES No. UT-0025305

Antidegradation Level I Review

The objective of the Level I ADR is to ensure the protection of existing uses, defined as the beneficial uses attained in the receiving water on or after November 28, 1975. No evidence is known that the existing uses deviate from the designated beneficial uses for the receiving water. Therefore, the beneficial uses will be protected if the discharge remains below the WQBELs presented in this wasteload.

A Level II Antidegradation Review (ADR) is not required for this facility. The proposed permit is a simple renewal of an existing UPDES permit. No increase in flow or concentration of pollutants over those authorized in the existing permit is being requested.

Documents:

WLA Document: *Hexcel_WLADoc_2-19-2024.docx* Wasteload Analysis and Addendums: *Hexcel_WLA_2-19-2043.xlsm*

References:

Utah Division of Water Quality. 2022. Final 2022 Integrated Report on Water Quality

Utah Division of Water Quality. 2021. Utah Wasteload Analysis Procedures Version 2.0.

WASTELOAD ANALYSIS [WLA] Addendum: Statement of Basis

Facilities:Hexcel Corp.Discharging to:The Ridge Golf Club--> Riter CanalDesign Flow:0.60MGD

19-Feb-24

UPDES No: UT-0025305

I. Introduction

Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses [R317-2-8, UAC]. Projected concentrations are compared to numeric water quality standards to determine acceptability. The anti-degradation policy and procedures are also considered. The primary in-stream parameters of concern may include metals (as a function of hardness), total dissolved solids (TDS), total residual chlorine (TRC), un-ionized ammonia (as a function of pH and temperature, measured and evaluated interms of total ammonia), and dissolved oxygen.

Mathematical water quality modeling is employed to determine stream quality response to point source discharges. Models aid in the effort of anticipating stream quality at future effluent flows at critical environmental conditions (e.g., low stream flow, high temperature, high pH, etc).

The numeric criteria in this wasteload analysis may always be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality.

II. Receiving Water and Stream Classification

The Ridge Golf Club> Riter Canal:	2B, 3D,3E, 4
Antidegradation Review:	Level I review completed. Level II review not required.

III. Numeric Stream Standards for Protection of Aquatic Wildlife

Total Ammonia (TNH3)	Varies as a function of Temperature and pH Rebound. See Water Quality Standards
Chronic Total Residual Chlorine (TRC)	0.011 mg/l (4 Day Average) 0.019 mg/l (1 Hour Average)
Chronic Dissolved Oxygen (DO)	5.00 mg/l (30 Day Average) N/A mg/l (7Day Average) 3.00 mg/l (1 Day Average
Maximum Total Dissolved Solids	1200.0 mg/l

Acute and Chronic Heavy Metals (Dissolved)

4 Day Average (Chronic) Standard			1 Hour Average (Acute) Standard			
Parameter	Concentration	Load*	Concentration		Load*	
Aluminum	87.00 ug/l**	0.436 lbs/day	750.00	ug/l	3.760 lbs/day	
Arsenic	6	0.952 lbs/day	340.00	ug/l	1.704 lbs/day	
Cadmium	2.49 ug/l	0.012 lbs/day	7.00	ug/l	0.035 lbs/day	
Chromium III	6	1.345 lbs/day	5611.67	ug/l	28.130 lbs/day	
ChromiumVI	11.00 ug/l	0.055 lbs/day	16.00	ug/l	0.080 lbs/day	
Copper	30.50 ug/l	0.153 lbs/day	51.68	ug/l	0.259 lbs/day	
Iron			1000.00	ug/l	5.013 lbs/day	
Lead	18.58 ug/l	0.093 lbs/day	476.82	ug/l	2.390 lbs/day	
Mercury	0.0120 ug/l	0.000 lbs/day	2.40	ug/l	0.012 lbs/day	
Nickel	168.54 ug/l	0.845 lbs/day	1515.91	ug/l	7.599 lbs/day	
Selenium	4.60 ug/l	0.023 lbs/day	20.00	ug/l	0.100 lbs/day	
Silver	N/A ug/l	N/A lbs/day	41.07	ug/l	0.206 lbs/day	
Zinc	387.83 ug/l	1.944 lbs/day	387.83	ug/l	1.944 lbs/day	
* Allov	wed below discharge			-		

**Chronic Aluminum standard applies only to waters with a pH < 7.0 and a Hardness < 50 mg/l as CaCO3

Metals Standards Based upon a Hardness of 400 mg/l as CaCO3

Organics [Pesticides]

	4 Day Average (Chronic) Standard			1 Hour A	verage (Acu	ite) Standard	
Parameter	Concen	tration	Load	* t	Concentration	า	Load*
Aldrin					1.500	ug/l	0.008 lbs/day
Chlordane	0.004	ug/l	0.307 I	bs/day	1.200	ug/l	0.006 lbs/day
DDT, DDE	0.001	ug/l	0.071 l	bs/day	0.550	ug/l	0.003 lbs/day
Dieldrin	0.002	ug/l	0.135 I	bs/day	1.250	ug/l	0.006 lbs/day
Endosulfan	0.056	ug/l	3.993 I	bs/day	0.110	ug/l	0.001 lbs/day
Endrin	0.002	ug/l	0.164 I	bs/day	0.090	ug/l	0.000 lbs/day
Guthion					0.010	ug/l	0.000 lbs/day
Heptachlor	0.004	ug/l	0.271	bs/day	0.260	ug/l	0.001 lbs/day
Lindane	0.080	ug/l	5.704 l	bs/day	1.000	ug/l	0.005 lbs/day
Methoxychlor					0.030	ug/l	0.000 lbs/day
Mirex					0.010	ug/l	0.000 lbs/day
Parathion					0.040	ug/l	0.000 lbs/day
PCB's	0.014	ug/l	0.998 l	bs/day	2.000	ug/l	0.010 lbs/day
Pentachlorophenol	13.00	ug/l	926.900 I	bs/day	20.000	ug/l	0.100 lbs/day
Toxephene	0.0002	ug/l	0.014 I	bs/day	0.7300	ug/l	0.004 lbs/day

IV. Numeric Stream Standards for Protection of Agriculture

4	4 Day Average (Chronic) Standard		1 Hour Average (Ad	cute) Standard
	Concentration	Load*	Concentration	Load*
Arsenic			100.0 ug/l	lbs/day
Boron			750.0 ug/l	lbs/day
Cadmium			10.0 ug/l	0.03 lbs/day
Chromium			100.0 ug/l	lbs/day
Copper			200.0 ug/l	lbs/day
Lead			100.0 ug/l	lbs/day
Selenium			50.0 ug/l	lbs/day
TDS, Summer			1200.0 mg/l	3.01 tons/day

VI. Numeric Stream Standards the Protection of Human Health from Water & Fish Consumption [Toxics]

Maximum Conc., ug/I - Acute Standards						
	Class 1C		Class 3A, 3B			
Toxic Organics	[2 Liters/Day for 70 Kg P	erson over 70 Yr.]) Kg Person over 70 Yr.]	
Acenaphthene	ug/l	lbs/day	2700.0		192.51 lbs/day	
Acrolein	ug/l	lbs/day	780.0	0	55.61 lbs/day	
Acrylonitrile	ug/l	lbs/day		ug/l	0.05 lbs/day	
Benzene	ug/l	lbs/day	71.0	ug/l	5.06 lbs/day	
Benzidine	ug/l	lbs/day		ug/l	0.00 lbs/day	
Carbon tetrachloride	ug/l	lbs/day	4.4	ug/l	0.31 lbs/day	
Chlorobenzene	ug/l	lbs/day	21000.0	ug/l	1497.30 lbs/day	
1,2,4-Trichlorobenzene	-			-		
Hexachlorobenzene	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day	
1,2-Dichloroethane	ug/l	lbs/day	99.0	ug/l	7.06 lbs/day	
1,1,1-Trichloroethane				0	-	
Hexachloroethane	ug/l	lbs/day	8.9	ug/l	0.63 lbs/day	
1,1-Dichloroethane	5			U	,	
1,1,2-Trichloroethane	ug/l	lbs/day	42.0	ug/l	2.99 lbs/day	
1,1,2,2-Tetrachloroetha	ug/l	lbs/day	11.0	0	0.78 lbs/day	
Chloroethane	- 3-	· · · · ·)	0.0	0	0.00 lbs/day	
Bis(2-chloroethyl) ether	ug/l	lbs/day		ug/l	0.10 lbs/day	
2-Chloroethyl vinyl ethe	ug/l	lbs/day		ug/l	0.00 lbs/day	
2-Chloronaphthalene	ug/l	lbs/day	4300.0		306.59 lbs/day	
2,4,6-Trichlorophenol	ug/l	lbs/day		ug/l	0.46 lbs/day	
p-Chloro-m-cresol	- - - -			ug/l	0.00 lbs/day	
Chloroform (HM)	ug/l	lbs/day	470.0		33.51 lbs/day	
2-Chlorophenol	ug/l	lbs/day	400.0	. 3.	28.52 lbs/day	
1,2-Dichlorobenzene	ug/l	lbs/day	17000.0		1212.10 lbs/day	
1,3-Dichlorobenzene	ug/l	lbs/day	2600.0	ug/l	185.38 lbs/day	
1,4-Dichlorobenzene	ug/l	lbs/day	2600.0		185.38 lbs/day	
3,3'-Dichlorobenzidine	ug/l	lbs/day	0.1	<u> </u>	0.01 lbs/day	
1,1-Dichloroethylene	ug/l	lbs/day		ug/l	0.23 lbs/day	
1,2-trans-Dichloroethyle	ug/l	lbs/day		ug/l	0.00 lbs/day	
2,4-Dichlorophenol	ug/l	lbs/day	790.0	0	56.33 lbs/day	
1,2-Dichloropropane	ug/l	lbs/day	39.0	ug/l	2.78 lbs/day	
1,3-Dichloropropylene	ug/l	lbs/day	1700.0	0	121.21 lbs/day	
2,4-Dimethylphenol	ug/l	lbs/day	2300.0		163.99 lbs/day	
2,4-Dinitrotoluene	ug/l	lbs/day	2300.0	ug/l	0.65 lbs/day	
2,6-Dinitrotoluene	ug/l	lbs/day	9.1 0.0	0	0.00 lbs/day	
1,2-Diphenylhydrazine	ug/l	lbs/day		ug/l	0.00 lbs/day	
Ethylbenzene	ug/l	lbs/day	29000.0	0	2067.70 lbs/day	
Fluoranthene		lbs/day	29000.0 370.0	0	26.38 lbs/day	
4-Chlorophenyl phenyl ethe	ug/l	ius/uay	570.0	uy/i	20.30 IDS/Udy	

4 Promonhonyd phonyd othor					
4-Bromophenyl phenyl ether Bis(2-chloroisopropyl) e	ug/l	lbs/day	170000.0	ua/l	12121.00 lbs/day
Bis(2-chloroethoxy) met	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
Methylene chloride (HM	ug/l	lbs/day	1600.0	ug/l	114.08 lbs/day
Methyl chloride (HM)	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
Methyl bromide (HM)	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
Bromoform (HM)	ug/l	lbs/day	360.0	ug/l	25.67 lbs/day
Dichlorobromomethane	ug/l	lbs/day	22.0	ug/l	1.57 lbs/day
Chlorodibromomethane	ug/l	lbs/day	34.0	ug/l	2.42 lbs/day
Hexachlorobutadiene(c)	ug/l	lbs/day	50.0	ug/l	3.56 lbs/day
Hexachlorocyclopentad	ug/l	lbs/day	17000.0	ug/l	1212.10 lbs/day
Isophorone	ug/l	lbs/day	600.0		42.78 lbs/day
Naphthalene	ug/i	ibo, day	000.0	ag,i	12.1 0 160, day
Nitrobenzene	ug/l	lbs/day	1900.0	ua/l	135.47 lbs/day
2-Nitrophenol	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
4-Nitrophenol	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
2,4-Dinitrophenol	ug/l	lbs/day	14000.0	ug/l	998.20 lbs/day
4,6-Dinitro-o-cresol	ug/l	lbs/day	765.0	ug/l	54.54 lbs/day
N-Nitrosodimethylamine	ug/l	lbs/day	8.1	ug/l	0.58 lbs/day
N-Nitrosodiphenylamine	ug/l	lbs/day	16.0	ug/l	1.14 lbs/day
N-Nitrosodi-n-propylami	ug/l	lbs/day		ug/l	0.10 lbs/day
Pentachlorophenol	ug/l	lbs/day		ug/l	0.58 lbs/day
Phenol	ug/l	lbs/day	4.6E+06	-	3.28E+05 lbs/day
Bis(2-ethylhexyl)phthala	ug/l	lbs/day		ug/l	0.42 lbs/day
Butyl benzyl phthalate	ug/l	lbs/day	5200.0		370.76 lbs/day
Di-n-butyl phthalate	ug/l	lbs/day	12000.0		855.60 lbs/day
Di-n-octyl phthlate				- 3, -	
Diethyl phthalate	ug/l	lbs/day	120000.0	ua/l	8556.00 lbs/day
Dimethyl phthlate	ug/l	lbs/day	2.9E+06	-	2.07E+05 lbs/day
Benzo(a)anthracene (P	ug/l	lbs/day		ug/l	0.00 lbs/day
Benzo(a)pyrene (PAH)	ug/l	lbs/day		ug/l	0.00 lbs/day
Benzo(b)fluoranthene (I	ug/l	lbs/day		ug/l	0.00 lbs/day
Benzo(k)fluoranthene (F	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
Chrysene (PAH)	ug/l	lbs/day		ug/l	0.00 lbs/day
Acenaphthylene (PAH)	5	,		0	5
Anthracene (PAH)	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
Dibenzo(a,h)anthracene	ug/l	lbs/day		ug/l	0.00 lbs/day
Indeno(1,2,3-cd)pyrene	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
Pyrene (PAH)	ug/l	lbs/day	11000.0	ug/l	784.30 lbs/day
Tetrachloroethylene	ug/l	lbs/day	8.9		0.63 lbs/day
Toluene	ug/l	lbs/day	200000		14260.00 lbs/day
Trichloroethylene	ug/l	lbs/day	81.0		5.78 lbs/day
Vinyl chloride	ug/l	lbs/day	525.0	ug/l	37.43 lbs/day
-	-	-		-	lbs/day
Pesticides					lbs/day
Aldrin	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
Dieldrin	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
Chlordane	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
4,4'-DDT	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
4,4'-DDE	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
4,4'-DDD	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
alpha-Endosulfan	ug/l	lbs/day	2.0	ug/l	0.14 lbs/day
beta-Endosulfan	ug/l	lbs/day	2.0	ug/l	0.14 lbs/day
Endosulfan sulfate	ug/l	lbs/day		ug/l	0.14 lbs/day
Endrin	ug/l	lbs/day	0.8	ug/l	0.06 lbs/day
Endrin aldehyde	ug/l	lbs/day	0.8	ug/l	0.06 lbs/day
Heptachlor	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
Heptachlor epoxide					

Metals				
Antimony	ug/l	lbs/day		
Arsenic	ug/l	lbs/day	4300.00 ug/l	306.59 lbs/day
Asbestos	ug/l	lbs/day		
Beryllium				
Cadmium				
Chromium (III)				
Chromium (VI)				
Copper				
Cyanide	ug/l	lbs/day	2.2E+05 ug/l	15686.00 lbs/day
Lead	ug/l	lbs/day		
Mercury			0.15 ug/l	0.0107 lbs/day
Nickel			4600.00 ug/l	327.98 lbs/day
Selenium	ug/l	lbs/day	-	
Silver	ug/l	lbs/day		
Thallium	_		6.30 ug/l	0.45 lbs/day
Zinc			_	-

There are additional standards that apply to this receiving water, but were not considered in this modeling/waste load allocation analysis.

VII. Mathematical Modeling of Stream Quality

Model configuration was accomplished utilizing standard modeling procedures. Data points were plotted and coefficients adjusted as required to match observed data as closely as possible.

The modeling approach used in this analysis included one or a combination of the following models.

(1) The Utah River Model, Utah Division of Water Quality, 1992. Based upon STREAMDO IV (Region VIII) and Supplemental Ammonia Toxicity Models; EPA Region VIII, Sept. 1990 and QUAL2E (EPA, Athens, GA).

- (2) Utah Ammonia/Chlorine Model, Utah Division of Water Quality, 1992.
- (3) AMMTOX Model, University of Colorado, Center of Limnology, and EPA Region 8
- (4) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644.

Coefficients used in the model were based, in part, upon the following references:

(1) Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling. Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens Georgia. EPA/600/3-85/040 June 1985.

(2) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644.

VIII. Modeling Information

The required information for the model may include the following information for both the upstream conditions at low flow and the effluent conditions:

Flow, Q, (cfs or MGD)	D.O. mg/l
Temperature, Deg. C.	Total Residual Chlorine (TRC), mg/l
рН	Total NH3-N, mg/l
BOD5, mg/l	Total Dissolved Solids (TDS), mg/l
Metals, ug/l	Toxic Organics of Concern, ug/l

Other Conditions

In addition to the upstream and effluent conditions, the models require a variety of physical and biological coefficients and other technical information. In the process of actually establishing the permit limits for an effluent, values are used based upon the available data, model calibration, literature values, site visits and best professional judgement.

Model Inputs

The following is upstream and discharge information that was utilized as inputs for the analysis. Dry washes are considered to have an upstream flow equal to the flow of the discharge.

Current Upstream	Information Stream							
	Critical Low							
	Flow	Temp.	рН	T-NH3	BOD5	DO	TRC	TDS
	cfs	Deg. C		mg/I as N	mg/l	mg/l	mg/l	mg/l
Summer (Irrig. Season)	12.30	22.1	7.3	0.16	11.18	6.50	0.00	1065.0
Fall	9.60	10.2	7.3	0.17	3.64		0.00	1101.1
Winter	0.40	4.4	7.3	0.13	2.60		0.00	1079.8
Spring	7.10	15.9	7.3	0.07	2.24		0.00	913.6
Dissolved	AI	As	Cd	CrIII	CrVI	Copper	Fe	Pb
Metals	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
All Seasons	2.385*	0.795*	0.0795*	0.795*	3.975*	0.8*	1.25*	0.795*
Dissolved	5	Ni	Se	Ag	Zn	Boron		
Metals	- 3.	ug/l	ug/l	ug/l	ug/l	ug/l		
All Seasons	0.0000	0.795*	1.59*	0.15*	0.0795*	1.59*		* ~80% MDL

Projected Discharge Information

Season	Flow, MGD	Temp.
Summer	0.60000	24.9
Fall	0.60000	17.2
Winter	0.60000	12.1
Spring	0.60000	19.2

All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality.

IX. Effluent Limitations

Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9).

Other conditions used in the modeling effort coincide with the environmental conditions expected at low stream flows.

Effluent Limitation for Flow based upon Water Quality Standards

In-stream criteria of downstream segments will be met with an effluent flow maximum value as follows:

Season	Daily Average	
Summer	0.600 MGD	0.928 cfs
Fall	0.600 MGD	0.928 cfs
Winter	0.600 MGD	0.928 cfs
Spring	0.600 MGD	0.928 cfs

Flow Requirement or Loading Requirement

The calculations in this wasteload analysis utilize the maximum effluent discharge flow of 0.6 MGD. If the discharger is allowed to have a flow greater than 0.6 MGD during 7Q10 conditions, and effluent limit concentrations as indicated, then water quality standards will be violated. In order to prevent this from occuring, the permit writers must include the discharge flow limititation as indicated above; or, include loading effluent limits in the permit.

Effluent Limitation for Whole Effluent Toxicity (WET) based upon WET Policy

Effluent Toxicity will not occur in downstream segements if the values below are met.

WET Requirements	LC50 >	100.0% Effluent	[Acute]
	IC25 >	7.0% Effluent	[Chronic]

Effluent Limitation for Biological Oxygen Demand (BOD) based upon Water Quality Standards or Regulations

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent BOD limitation as follows:

Season	Concentration	
Summer	25.0 mg/l as BOD5	125.1 lbs/day
Fall	25.0 mg/l as BOD5	125.1 lbs/day
Winter	25.0 mg/l as BOD5	125.1 lbs/day
Spring	25.0 mg/l as BOD5	125.1 lbs/day

Effluent Limitation for Dissolved Oxygen (DO) based upon Water Quality Standards

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent D.O. limitation as follows:

Season	Concentration
Summer	5.00
Fall	5.00
Winter	5.00
Spring	5.00

Effluent Limitation for Total Ammonia based upon Water Quality Standards

In-stream criteria of downstream segments for Total Ammonia will be met with an effluent limitation (expressed as Total Ammonia as N) as follows:

Season

	Concent	Load			
Summer	4 Day Avg Chronic	45.15 r	mg/I as N	225.9	lbs/day
	1 Hour Avg Acute	151.7 r	mg/I as N	758.8	lbs/day
Fall	4 Day Avg Chronic	41.5 r	mg/I as N	207.8	lbs/day
	1 Hour Avg Acute	94.8 r	mg/I as N	474.2	lbs/day
Winter	4 Day Avg Chronic	6.6 r	mg/I as N	33.0	lbs/day
	1 Hour Avg Acute	21.7 r	mg/I as N	108.4	lbs/day
Spring	4 Day Avg Chronic	53.6 r	mg/I as N	268.4	lbs/day
	1 Hour Avg Acute	119.6 r	ng/l as N	598.2	lbs/day

Acute limit calculated with an Acute Zone of Initial Dilution (ZID) to be equal to 50.%.

Effluent Limitation for Total Residual Chlorine based upon Water Quality Standards

In-stream criteria of downstream segments for Total Residual Chlorine will be met with an effluent limitation as follows:

Seaso	on	Concentra	ation	Load	l
Summer	4 Day Avg Chronic	0.143	mg/l	0.72	lbs/day
	1 Hour Avg Acute	0.138	mg/l	0.69	lbs/day
Fall	4 Day Avg Chronic	0.114	mg/l	0.57	lbs/day
	1 Hour Avg Acute	0.112	mg/l	0.56	lbs/day
Winter	4 Day Avg Chronic	0.015	mg/l	0.08	lbs/day
	1 Hour Avg Acute	0.023	mg/l	0.11	lbs/day
Spring	4 Day Avg Chronic	0.087	mg/l	0.44	lbs/day
	1 Hour Avg Acute	0.088	mg/l	0.44	lbs/day

Effluent Limitations for Total Dissolved Solids based upon Water Quality Standards

Seaso	on	Concentra	ation	Load	b
Summer	Maximum, Acute	2988.9	mg/l	7.48	tons/day
Fall	Maximum, Acute	2510.6	mg/l	6.28	tons/day
Winter	Maximum, Acute	2792.8	mg/l	6.99	tons/day
Spring	Maximum, Acute	4995.2	mg/l	12.50	tons/day

Colorado Salinity Forum Limits

Determined by Permitting Section

Effluent Limitations for Total Recoverable Metals based upon Water Quality Standards

In-stream criteria of downstream segments for Dissolved Metals will be met with an effluent limitation as follows (based upon a hardness of 400 mg/l):

		4 Day Average		1 Hour	Average	
	Concen	tration	Load	Concentration	-	Load
Aluminum*	N/A		N/A	5,703.5	ug/l	28.5899 lbs/day
Arsenic*	2,697.24	ug/l	8.7 lbs/day	2,587.5	ug/l	12.9703 lbs/day
Cadmium	34.47	ug/l	0.1 lbs/day	52.8	ug/l	0.2649 lbs/day
Chromium III	3,811.98	ug/l	12.3 lbs/day	42,787.8	ug/l	214.4824 lbs/day
Chromium VI*	104.09	ug/l	0.3 lbs/day	95.7	ug/l	0.4796 lbs/day
Copper	424.12	ug/l	1.4 lbs/day	388.9	ug/l	1.9493 lbs/day
Iron*	N/A		N/A	7,617.4	ug/l	38.1840 lbs/day
Lead	254.27	ug/l	0.8 lbs/day	3,630.8	ug/l	18.2001 lbs/day
Mercury*	0.17	ug/l	0.0 lbs/day	18.3	ug/l	0.0917 lbs/day
Nickel	2,391.41	ug/l	7.7 lbs/day	11,554.7	ug/l	57.9202 lbs/day
Selenium*	44.49	ug/l	0.1 lbs/day	142.0	ug/l	0.7117 lbs/day
Silver	N/A	ug/l	N/A lbs/day	313.2	ug/l	1.5700 lbs/day
Zinc	5,526.07	ug/l	17.9 lbs/day	2,956.9	ug/l	14.8223 lbs/day
Cyanide*	74.11	ug/l	0.2 lbs/day	167.8	ug/l	0.8410 lbs/day

*Limits for these metals are based on the dissolved standard.

Effluent Limitations for Heat/Temperature based upon Water Quality Standards

Summer	79.1 Deg. C.	174.4 Deg. F
Fall	55.6 Deg. C.	132.0 Deg. F
Winter	10.1 Deg. C.	50.2 Deg. F
Spring	50.5 Deg. C.	122.9 Deg. F

Effluent Limitations for Organics [Pesticides] Based upon Water Quality Standards

In-stream criteria of downstream segments for Organics [Pesticides] will be met with an effluent limit as follows:

	4 Day Average		1 Hour Average		
	Concentration	Load	Concentration	-	Load
Aldrin			1.5E+00	ug/l	1.16E-02 lbs/day
Chlordane	4.30E-03 ug/l	2.15E-02 lbs/day	1.2E+00	ug/l	9.31E-03 lbs/day
DDT, DDE	1.00E-03 ug/l	5.00E-03 lbs/day	5.5E-01	ug/l	4.27E-03 lbs/day
Dieldrin	1.90E-03 ug/l	9.51E-03 lbs/day	1.3E+00	ug/l	9.69E-03 lbs/day
Endosulfan	5.60E-02 ug/l	2.80E-01 lbs/day	1.1E-01	ug/l	8.53E-04 lbs/day
Endrin	2.30E-03 ug/l	1.15E-02 lbs/day	9.0E-02	ug/l	6.98E-04 lbs/day
Guthion	0.00E+00 ug/l	0.00E+00 lbs/day	1.0E-02	ug/l	7.75E-05 lbs/day
Heptachlor	3.80E-03 ug/l	1.90E-02 lbs/day	2.6E-01	ug/l	2.02E-03 lbs/day
Lindane	8.00E-02 ug/l	4.00E-01 lbs/day	1.0E+00	ug/l	7.75E-03 lbs/day
Methoxychlor	0.00E+00 ug/l	0.00E+00 lbs/day	3.0E-02	ug/l	2.33E-04 lbs/day
Mirex	0.00E+00 ug/l	0.00E+00 lbs/day	1.0E-02	ug/l	7.75E-05 lbs/day
Parathion	0.00E+00 ug/l	0.00E+00 lbs/day	4.0E-02	ug/l	3.10E-04 lbs/day
PCB's	1.40E-02 ug/l	7.00E-02 lbs/day	2.0E+00	ug/l	1.55E-02 lbs/day
Pentachlorophenol	1.30E+01 ug/l	6.50E+01 lbs/day	2.0E+01	ug/l	1.55E-01 lbs/day
Toxephene	2.00E-04 ug/l	1.00E-03 lbs/day	7.3E-01	ug/l	5.66E-03 lbs/day

Effluent Limitations for Protection of Human Health [Toxics Rule] Based upon Water Quality Standards (Most stringent of 1C or 3A & 3B as appropriate.)

In-stream criteria of downstream segments for Protection of Human Health [Toxics] will be met with an effluent limit as follows:

	Maximum C	Maximum Concentration		
	Concentration	Load		
Toxic Organics				
Acenaphthene	3.85E+04 ug/l	1.93E+02 lbs/day		
Acrolein	1.11E+04 ug/l	5.56E+01 lbs/day		
Acrylonitrile	9.41E+00 ug/l	4.71E-02 lbs/day		
Benzene	1.01E+03 ug/l	5.06E+00 lbs/day		
Benzidine	ug/l	lbs/day		
Carbon tetrachloride	6.27E+01 ug/l	3.14E-01 lbs/day		
Chlorobenzene	2.99E+05 ug/l	1.50E+03 lbs/day		
1,2,4-Trichlorobenzene	C			
Hexachlorobenzene	1.10E-02 ug/l	5.49E-05 lbs/day		
1,2-Dichloroethane	1.41E+03 ug/l	7.06E+00 lbs/day		
1,1,1-Trichloroethane	5			
Hexachloroethane	1.27E+02 ug/l	6.35E-01 lbs/day		
1,1-Dichloroethane	5	,		
1,1,2-Trichloroethane	5.99E+02 ug/l	2.99E+00 lbs/day		
1,1,2,2-Tetrachloroethane	1.57E+02 ug/l	7.84E-01 lbs/day		
Chloroethane				
Bis(2-chloroethyl) ether	2.00E+01 ug/l	9.98E-02 lbs/day		
2-Chloroethyl vinyl ether				
2-Chloronaphthalene	6.13E+04 ug/l	3.07E+02 lbs/day		
2,4,6-Trichlorophenol	9.26E+01 ug/l	4.63E-01 lbs/day		
p-Chloro-m-cresol				
Chloroform (HM)	6.70E+03 ug/l	3.35E+01 lbs/day		
2-Chlorophenol	5.70E+03 ug/l	2.85E+01 lbs/day		
1,2-Dichlorobenzene	2.42E+05 ug/l	1.21E+03 lbs/day		
1,3-Dichlorobenzene	3.71E+04 ug/l	1.85E+02 lbs/day		
1,4-Dichlorobenzene	3.71E+04 ug/l	1.85E+02 lbs/day		
3,3'-Dichlorobenzidine	1.10E+00 ug/l	5.49E-03 lbs/day		
1,1-Dichloroethylene	4.56E+01 ug/l	2.28E-01 lbs/day		
1,2-trans-Dichloroethylene1				
2,4-Dichlorophenol	1.13E+04 ug/l	5.63E+01 lbs/day		
1,2-Dichloropropane	5.56E+02 ug/l	2.78E+00 lbs/day		
1,3-Dichloropropylene	2.42E+04 ug/l	1.21E+02 lbs/day		
2,4-Dimethylphenol	3.28E+04 ug/l	1.64E+02 lbs/day		
2,4-Dinitrotoluene	1.30E+02 ug/l	6.49E-01 lbs/day		
2,6-Dinitrotoluene				
1,2-Diphenylhydrazine	7.70E+00 ug/l	3.85E-02 lbs/day		
Ethylbenzene	4.13E+05 ug/l	2.07E+03 lbs/day		
Fluoranthene	5.27E+03 ug/l	2.64E+01 lbs/day		
4-Chlorophenyl phenyl ether				
4-Bromophenyl phenyl ether				
Bis(2-chloroisopropyl) ether	2.42E+06 ug/l	1.21E+04 lbs/day		
Bis(2-chloroethoxy) methane	0.005.04			
Methylene chloride (HM)	2.28E+04 ug/l	1.14E+02 lbs/day		
Methyl chloride (HM)				
Methyl bromide (HM)	E 12E · 02 ··~/	0 ETELOA lha/dar		
Bromoform (HM)	5.13E+03 ug/l	2.57E+01 lbs/day		
Dichlorobromomethane(HM)	3.14E+02 ug/l	1.57E+00 lbs/day		
Chlorodibromomethane (HM)	4.85E+02 ug/l	2.42E+00 lbs/day		

Hexachlorocyclopentadiene	2.42E+05 ug/l	1.21E+03 lbs/day
Isophorone	8.55E+03 ug/l	4.28E+01 lbs/day
Naphthalene	0.00E100 dg/1	4.202101 103/003
Nitrobenzene	2.71E+04 ug/l	1.35E+02 lbs/day
2-Nitrophenol	5	· · · · · · · · · · · · · · · · · · ·
4-Nitrophenol		
2,4-Dinitrophenol	2.00E+05 ug/l	9.98E+02 lbs/day
4,6-Dinitro-o-cresol	1.09E+04 ug/l	5.45E+01 lbs/day
N-Nitrosodimethylamine	1.15E+02 ug/l	5.78E-01 lbs/day
N-Nitrosodiphenylamine	2.28E+02 ug/l	1.14E+00 lbs/day
N-Nitrosodi-n-propylamine Pentachlorophenol	2.00E+01 ug/l 1.17E+02 ug/l	9.98E-02 lbs/day 5.85E-01 lbs/day
Phenol	6.56E+07 ug/l	3.28E+05 lbs/day
Bis(2-ethylhexyl)phthalate	8.41E+01 ug/l	4.21E-01 lbs/day
Butyl benzyl phthalate	7.41E+04 ug/l	3.71E+02 lbs/day
Di-n-butyl phthalate	1.71E+05 ug/l	8.56E+02 lbs/day
Di-n-octyl phthlate	_	-
Diethyl phthalate	1.71E+06 ug/l	8.56E+03 lbs/day
Dimethyl phthlate	4.13E+07 ug/l	2.07E+05 lbs/day
Benzo(a)anthracene (PAH)	4.42E-01 ug/l	2.21E-03 lbs/day
Benzo(a)pyrene (PAH)	4.42E-01 ug/l	2.21E-03 lbs/day
Benzo(b)fluoranthene (PAH)	4.42E-01 ug/l 4.42E-01 ug/l	2.21E-03 lbs/day
Benzo(k)fluoranthene (PAH) Chrysene (PAH)	4.42E-01 ug/l	2.21E-03 lbs/day 2.21E-03 lbs/day
Acenaphthylene (PAH)	4.42E-01 ug/i	2.212-05 103/day
Anthracene (PAH)		
Dibenzo(a,h)anthracene (PAH)	4.42E-01 ug/l	2.21E-03 lbs/day
Indeno(1,2,3-cd)pyrene (PAH)	4.42E-01 ug/l	2.21E-03 lbs/day
Pyrene (PAH)	1.57E+05 ug/l	7.84E+02 lbs/day
Tetrachloroethylene	1.27E+02 ug/l	6.35E-01 lbs/day
Toluene	2.85E+06 ug/l	1.43E+04 lbs/day
Trichloroethylene	1.15E+03 ug/l	5.78E+00 lbs/day
Vinyl chloride	7.48E+03 ug/l	3.74E+01 lbs/day
Pesticides		
Aldrin	2.00E-03 ug/l	9.98E-06 lbs/day
Dieldrin	2.00E-03 ug/l	9.98E-06 lbs/day
Chlordane	8.41E-03 ug/l	4.21E-05 lbs/day
4,4'-DDT	8.41E-03 ug/l	4.21E-05 lbs/day
4,4'-DDE	8.41E-03 ug/l	4.21E-05 lbs/day
4,4'-DDD	1.20E-02 ug/l	5.99E-05 lbs/day
alpha-Endosulfan	2.85E+01 ug/l	1.43E-01 lbs/day
beta-Endosulfan	2.85E+01 ug/l	1.43E-01 lbs/day
Endosulfan sulfate Endrin	2.85E+01 ug/l	1.43E-01 lbs/day
Endrin aldehyde	1.15E+01 ug/l 1.15E+01 ug/l	5.78E-02 lbs/day 5.78E-02 lbs/day
Heptachlor	2.99E-03 ug/l	1.50E-05 lbs/day
Heptachlor epoxide	2.002 00 03,1	
PCB's		
PCB 1242 (Arochlor 1242)	6.41E-04 ug/l	3.21E-06 lbs/day
PCB-1254 (Arochlor 1254)	6.41E-04 ug/l	3.21E-06 lbs/day
PCB-1221 (Arochlor 1221)	6.41E-04 ug/l	3.21E-06 lbs/day
PCB-1232 (Arochlor 1232) PCB-1248 (Arochlor 1248)	6.41E-04 ug/l 6.41E-04 ug/l	3.21E-06 lbs/day 3.21E-06 lbs/day
PCB-1240 (Arochlor 1240) PCB-1260 (Arochlor 1260)	6.41E-04 ug/l	3.21E-06 lbs/day
PCB-1016 (Arochlor 1016)		
	6.41E-04 ug/l	3.21E-06 lbs/day

Pesticide

Toxaphene	1.07E-02 ug/l	5.35E-05 lbs/day
Metals		
Antimony	ug/l	lbs/day
Arsenic	ug/l	lbs/day
Asbestos	ug/l	lbs/day
Beryllium		
Cadmium		
Chromium (III)		
Chromium (VI)		
Copper	ug/l	lbs/day
Cyanide	ug/l	lbs/day
Lead		
Mercury	ug/l	lbs/day
Nickel	ug/l	lbs/day
Selenium		
Silver		lh a /day (
Thallium Zinc	ug/l	lbs/day
ZINC		
Dioxin		
Dioxin (2,3,7,8-TCDD)	2.00E-07 ug/l	9.98E-10 lbs/day

Metals Effluent Limitations for Protection of All Beneficial Uses Based upon Water Quality Standards and Toxics Rule

Aluminum	Class 4 Acute Agricultural ug/l	Class 3 Acute Aquatic Wildlife ug/l 5703.5	Acute Toxics Drinking Water Source ug/l	Acute Toxics Wildlife ug/l	1C Acute Health Criteria ug/l	Acute Most Stringent ug/l 5703.5	Class 3 Chronic Aquatic Wildlife ug/l N/A
Antimony				61281.3		61281.3	
Arsenic Barium	1425.1	2587.5				1425.1	2697.2
Beryllium						0.0	
Cadmium	141.5	52.8				52.8	34.5
Chromium (III)		42787.8				42787.8	3812.0
Chromium (VI)	1414.6	95.7				95.67	104.09
Copper	2839.8	388.9				388.9	424.1
Cyanide		167.8	3135320.0			167.8	74.1
Iron		7617.4				7617.4	
Lead	1414.6	3630.8				1414.6	254.3
Mercury		18.30		2.14		2.14	0.171
Nickel		11554.7		65556.7		11554.7	2391.4
Selenium	691.5	142.0				142.0	44.5
Silver		313.2				313.2	
Thallium				89.8		89.8	
Zinc		2956.9				2956.9	5526.1
Boron	10688.6					10688.6	
Sulfate	28502.9					28502.9	

Summary Effluent Limitations for Metals [Wasteload Allocation, TMDL]

[If Acute is more stringent than Chronic, then the Chronic takes on the Acute value.]

	WLA Acute ug/l	WLA Chron ug/l	ic
Aluminum	5703.5	N/A	
Antimony	61281.25		
Arsenic	1425.1	2697.2	Acute Controls
Asbestos			
Barium			
Beryllium			
Cadmium	52.8	34.5	
Chromium (III)	42787.8	3812	
Chromium (VI)	95.7	104.1	Acute Controls
Copper	388.9	424.1	Acute Controls
Cyanide	167.8	74.1	
Iron	7617.4		
Lead	1414.6	254.3	
Mercury	2.138	0.171	
Nickel	11554.7	2391	
Selenium	142.0	44.5	
Silver	313.2	N/A	
Thallium	89.8		
Zinc	2956.9	5526.1	Acute Controls
Boron	10688.59		
Sulfate	28502.9		N/A at this Waterbody

Other Effluent Limitations are based upon R317-1.

126.0 organisms per 100 ml

X. Antidegradation Considerations

E. coli

The Utah Antidegradation Policy allows for degradation of existing quality where it is determined that such lowering of water quality is necessary to accommodate important economic or social development in the area in which the waters are protected [R317-2-3]. It has been determined that certain chemical parameters introduced by this discharge will cause an increase of the concentration of said parameters in the receiving waters. Under no conditions will the increase in concentration be allowed to interfere with existing instream water uses.

An Antidegradation Level I Review was conducted on this discharge and its effect on the receiving water. Based upon that review, it has been determined that an Antidegradation Level II Review is not required. The proposed permit is a simple renewal, with no increase in flow or concentration over that which was approved in the existing permit.

XI. Colorado River Salinity Forum Considerations

Discharges in the Colorado River Basin are required to have their discharge at a TDS loading of less than 1.00 tons/day unless certain exemptions apply. Refer to the Forum's Guidelines for additional information allowing for an exceedence of this value. This doesn't apply to facilities that do not discharge to the Colorado River Basin.

XII. Summary Comments

The mathematical modeling and best professional judgement indicate that violations of receiving water beneficial uses with their associated water quality standards, including important down-stream segments, will not occur for the evaluated parameters of concern as discussed above if the effluent limitations indicated above are met.