Utah Division of Water Quality Statement of Basis ADDENDUM Wasteload Analysis and Antidegradation Level I Review

Date: May 16, 2023

Prepared by: Suzan Tahir

Standards and Technical Services

Facility: Stansbury Park WWTP

UPDES No. UT 0025241

Receiving water: Un-named Ditch \rightarrow Wetland \rightarrow Saline Playa \rightarrow GSL

This addendum summarizes the wasteload analysis that was performed to determine water quality based effluent limits (WQBEL) for this discharge. Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses (UAC R317-2-8). Projected concentrations are compared to numeric water quality standards to determine acceptability. The numeric criteria in this wasteload analysis may be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality.

Discharge

001 & 002 Combined plant discharge 1.5 MGD

Receiving Water

Stansbury Park's WWTP discharges into a constructed ditch that flows for approximately 1.3 miles before reaching a wetland area which transitions into a saline playa. As per UAC R317-2-13.10, the receiving ditch is classed 2B, 3E. As per R317-2-13.13, the transitional wetlands were presumptively classified as 2B, 3D.

- Class 2B Protected for infrequent primary contact recreation. Also protected for secondary contact recreation where there is a low likelihood of ingestion of water or a low degree of bodily contact with the water. Examples include, but are not limited to, wading, hunting, and fishing.
- Class 3D Protected for waterfowl, shore birds and other water-oriented wildlife not included in Classes 3A, 3B, or 3C, including the necessary aquatic organisms in their food chain.

Utah Division of Water Quality Wasteload Analysis Stansbury Park WWTP UPDES No. UT 0025241

• Class 3E- Severely habitat-limited waters. Narrative standards will be applied to protect these waters for aquatic wildlife.

Typically, the critical flow for the wasteload analysis is considered the lowest stream flow for seven consecutive days with a ten year return frequency (7Q10). Because the receiving water is a seasonally dry ditch (prior to discharge), the 7Q10 is assumed to be zero and effluent limits revert to end of pipe water quality standards.

Receiving water quality data was not available. Data inputs for temperature, pH, TDS and hardness were based on effluent water quality data. Limits for total residual chlorine and ammonia were calculated by considering modeled conditions where the flow enters the 3D classified wetlands and are protective of the use at that point.

TMDL

The receiving water, Gilbert Bay (UT-L-16020310-001_00, Gilbert Bay open water south of the Union Pacific Causeway and below 4208 feet, excluding all of Farmington Bay, transitional wetlands below 4208 feet, and State Waterfowl Management Areas) support all assessed uses assessment based on_Utah's 2022 303(d) Water Quality Assessment Report.

Ditches and canals are not typically assessed for the report.

Mixing Zone

The maximum allowable mixing zone is 15 minutes of travel time for acute conditions, not to exceed 50% of stream width, and 2,500 feet for chronic conditions, per UAC R317-2-5. Water quality standards must be met at the end of the mixing zone. In this case, because the 7Q10 was assumed to be zero, no mixing zone was considered.

Parameters of Concern

The potential parameters of concern identified for the discharge/receiving water were Biochemical Oxygen Demand and Total Ammonia. and total residual chlorine.

WET Limits

The percent of effluent in the receiving water in a fully mixed condition, and acute and chronic dilution in a not fully mixed condition are calculated in the WLA in order to generate WET limits. The LC₅₀ (lethal concentration, 50%) percent effluent for acute toxicity and the IC₂₅ (inhibition concentration, 25%) percent effluent for chronic toxicity, as determined by the WET test, needs to be below the WET limits, as determined by the WLA. The WET limit for LC₅₀ is typically 100% effluent and does not need to be determined by the WLA.

IC25 WET limits for Outfall 001 100% effluent.

Utah Division of Water Quality Wasteload Analysis Stansbury Park WWTP UPDES No. UT 0025241 Wasteload Allocation Methods

Effluent limits were determined for conservative constituents using a simple mass balance mixing analysis (UDWQ 2012). The mass balance analysis is summarized in the Wasteload Addendum.

The water quality standard for chronic ammonia toxicity is dependent on temperature and pH, and the water quality standard for acute ammonia toxicity is dependent on pH. The AMMTOX Model developed by University of Colorado and adapted by Utah DWQ and EPA Region VIII was used to determine ammonia effluent limits (Lewis et al. 2002). The analysis is summarized in the Wasteload Addendum.

Models and supporting documentation are available for review upon request.

Antidegradation Level I Review

The objective of the Level I ADR is to ensure the protection of existing uses, defined as the beneficial uses attained in the receiving water on or after November 28, 1975. No evidence is known that the existing uses deviate from the designated beneficial uses for the receiving water. Therefore, the beneficial uses will be protected if the discharge remains below the WQBELs presented in this wasteload.

Antidegradation Level II Review

A Level II Antidegradation Review (ADR) is not required for this facility. The proposed permit is a simple renewal of an existing UPDES permit. No increase in flow or concentration of pollutants over those authorized in the the existing permit is being requested.

Documents:

WLA Document: StansburyPark WLADoc 3-26-23.docx

Wasteload Analysis and Addendums: StansburyPark WLA 3-26-23

References:

Utah Division of Water Quality. 2022. Final 2022 Integrated Report on Water Quality

Utah Division of Water Quality. 2021. Utah Wasteload Analysis Procedures Version 2.0.

WASTELOAD ANALYSIS [WLA] 1-Apr-23

Addendum: Statement of Basis

Facilities: Stansbury Park WWTP UPDES No: UT-0025241

Discharging to: Un-named Ditch>Wetland>Playa

Design Flow 1.50 MGD

I. Introduction

Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses [R317-2-8, UAC]. Projected concentrations are compared to numeric water quality standards to determine acceptability. The anti-degradation policy and procedures are also considered. The primary in-stream parameters of concern may include metals (as a function of hardness), total dissolved solids (TDS), total residual chlorine (TRC), un-ionized ammonia (as a function of pH and temperature, measured and evaluated interms of total ammonia), and dissolved oxygen.

Mathematical water quality modeling is employed to determine stream quality response to point source discharges Models aid in the effort of anticipating stream quality at future effluent flows at critical environmental conditions (e.g., low stream flow, high temperature, high pH, etc).

The numeric criteria in this wasteload analysis may always be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality.

II. Receiving Water and Stream Classification

Un-named Ditch>Wetland>Playa: 2B, 3D, 3E, 5

Antidegradation Review: Level I review completed. Amended Level II review N

III. Numeric Stream Standards for Protection of Aquatic Wildlife

Total Ammonia (TNH3)

Varies as a function of Temperature and

pH Rebound. See Water Quality Standards

Chronic Total Residual Chlorine (TRC) 0.011 mg/l (4 Day Average)

0.019 mg/l (1 Hour Average)

Chronic Dissolved Oxygen (DO) 5.00 mg/l (30 Day Average)

N/A mg/l (7Day Average) 3.00 mg/l (1 Day Average

Maximum Total Dissolved Solids N/A mg/l Background

Acute and Chronic Heavy Metals (Dissolved)

	4 Day Average (Chronic) Standard	1 Hour Ave	rage (Acute)	Standard
Parameter	Concentration	Load*	Concentration		Load*
Aluminum	87.00 ug/l**	1.090 lbs/day	750.00	ug/l	9.399
Arsenio	: 190.00 ug/l	2.381 lbs/day	340.00	ug/l	4.261
Cadmium	0.76 ug/l	0.009 lbs/day	8.73	ug/l	0.109
Chromium III	268.22 ug/l	3.361 lbs/day	5611.60	ug/l	70.323
ChromiumVI	11.00 ug/l	0.138 lbs/day	16.00	ug/l	0.201
Copper	30.50 ug/l	0.382 lbs/day	51.68	ug/l	0.648
Iron	1	•	1000.00	ug/l	12.532
Lead	l 18.58 ug/l	0.233 lbs/day	476.81	ug/l	5.975
Mercury	0.0120 ug/l	0.000 lbs/day	2.40	ug/l	0.030
Nickel	168.54 ug/l	2.112 lbs/day	1515.89	ug/l	18.997
Selenium	4.60 ug/l	0.058 lbs/day	20.00	ug/l	0.251
Silver	N/A ug/l	N/A lbs/day	41.07	ug/l	0.515
Zinc	: 387.82 ug/l	4.860 lbs/day	387.82	ug/l	4.860
* Allov	wed below discharge	·		-	

^{**}Chronic Aluminum standard applies only to waters with a pH < 7.0 and a Hardness < 50 mg/l as C

Metals Standards Based upon a Hardness of 399.99 mg/l as CaCO3

Organics [Pesticides]

	4 Day Averag	ge (Chroni	c) Standard		1 Hour Ave	erage (Acute)	Standard
Parameter	Concen	tration	Loa	d*	Concentration		Load*
Aldrin					1.500	ug/l	0.019
Chlordane	0.004	ug/l	0.054	lbs/day	1.200	ug/l	0.015
DDT, DDE	0.001	ug/l	0.013	lbs/day	0.550	ug/l	0.007
Dieldrin	0.002	ug/l	0.024	lbs/day	1.250	ug/l	0.016
Endosulfan	0.056	ug/l	0.700	lbs/day	0.110	ug/l	0.001
Endrin	0.002	ug/l	0.029	lbs/day	0.090	ug/l	0.001
Guthion					0.010	ug/l	0.000
Heptachlor	0.004	ug/l	0.048	lbs/day	0.260	ug/l	0.003
Lindane	0.080	ug/l	1.001	lbs/day	1.000	ug/l	0.013
Methoxychlor					0.030	ug/l	0.000
Mirex					0.010	ug/l	0.000
Parathion					0.040	ug/l	0.001
PCB's	0.014	ug/l	0.175	lbs/day	2.000	ug/l	0.025
Pentachlorophenol	13.00	ug/l	162.604	lbs/day	20.000	ug/l	0.251
Toxephene	0.0002	ug/l	0.003	lbs/day	0.7300	ug/l	0.009

IV. Numeric Stream Standards for Protection of Agriculture

	4 Day Average (Chronic) Standard		1 Hour Average (Ac	ute) Standard
	Concentration	Load*	Concentration	Load*
Arsenio	;		ug/l	
Boron	1		ug/l	
Cadmium	l		ug/l	
Chromium	l		ug/l	
Copper	•		ug/l	
Lead	I		ug/l	
Selenium	l		ug/l	
TDS, Summer	•		mg/l	

V. Numeric Stream Standards for Protection of Human Health (Class 1C Waters)

4 [4 Day Average (Chronic) Standard		1 Hour Average (Acute) Standa	
Metals	Concentration	Load*	Concentration	Load*
Arsenic			ug/l	
Barium			ug/l	
Cadmium			ug/l	
Chromium			ug/l	
Lead			ug/l	
Mercury			ug/l	
Selenium			ug/l	
Silver			ug/l	
Fluoride (3)			ug/l	
to			ug/l	
Nitrates as N			ug/l	
Chlorophenoxy Herbicide	es			
2,4-D			ug/l	
2,4,5-TP			ug/l	
Endrin			ug/l	

C

2,4-D	ug/l
2,4,5-TP	ug/l
Endrin	ug/l
ocyclohexane (Lindane)	ug/l
Methoxychlor	ug/l
Toxaphene	ug/l

VI. Numeric Stream Standards the Protection of Human Health from Water & Fish Consumption [Toxics]

Maximum Conc., ug/I - Acute Standards

	Class 1C		Class 3A, 3B
Toxic Organics	[2 Liters/Day for 70 Kg F	Person over 70 Yr.]	[6.5 g for 70 Kg Person over 70 Yr
Acenaphthene	ug/l	lbs/day	ug/l
Acrolein	ug/l	lbs/day	ug/l
Acrylonitrile	ug/l	lbs/day	ug/l
Benzene	ug/l	lbs/day	ug/l
Benzidine	ug/l	lbs/day	ug/l
Carbon tetrachloride	ug/l	lbs/day	ug/l
Chlorobenzene	ug/l	lbs/day	ug/l
1,2,4-Trichlorobenzene			
Hexachlorobenzene	ug/l	lbs/day	ug/l
1,2-Dichloroethane	ug/l	lbs/day	ug/l
1,1,1-Trichloroethane			
Hexachloroethane	ug/l	lbs/day	ug/l

1,1-Dichloroethane			
1,1,2-Trichloroethane	ug/l	lbs/day	ug/l
1,1,2,2-Tetrachloroethar	ug/l	lbs/day	ug/l
Chloroethane	- - -	is an array	ug/l
Bis(2-chloroethyl) ether	ug/l	lbs/day	ug/l
2-Chloroethyl vinyl ether	ug/l	lbs/day	ug/l
2-Chloronaphthalene	ug/l	lbs/day	ug/l
2,4,6-Trichlorophenol	ug/l	lbs/day	ug/l
p-Chloro-m-cresol	_	•	ug/l
Chloroform (HM)	ug/l	lbs/day	ug/l
2-Chlorophenol	ug/l	lbs/day	ug/l
1,2-Dichlorobenzene	ug/l	lbs/day	ug/l
1,3-Dichlorobenzene	ug/l	lbs/day	ug/l
1,4-Dichlorobenzene	ug/l	lbs/day	ug/l
3,3'-Dichlorobenzidine	ug/l	lbs/day	ug/l
1,1-Dichloroethylene	ug/l	lbs/day	ug/l
1,2-trans-Dichloroethyle	ug/l	lbs/day	ug/l
2,4-Dichlorophenol	ug/l	lbs/day	ug/l
1,2-Dichloropropane	ug/l	lbs/day	ug/l
1,3-Dichloropropylene	ug/l	lbs/day	ug/l
2,4-Dimethylphenol	ug/l	lbs/day	ug/l
2,4-Dinitrotoluene	ug/l	lbs/day	ug/l
2,6-Dinitrotoluene	ug/l	lbs/day	ug/l
1,2-Diphenylhydrazine	ug/l	lbs/day	ug/l
Ethylbenzene	ug/l	lbs/day	ug/l
Fluoranthene	ug/l	lbs/day	ug/l
4-Chlorophenyl phenyl ether			
4-Bromophenyl phenyl ether			
Bis(2-chloroisopropyl) et	ug/l	lbs/day	ug/l
Bis(2-chloroethoxy) met	ug/l	lbs/day	ug/l
Methylene chloride (HM)	ug/l	lbs/day	ug/l
Methyl chloride (HM)	ug/l	lbs/day	ug/l
Methyl bromide (HM)	ug/l	lbs/day	ug/l
Bromoform (HM)	ug/l	lbs/day	ug/l
Dichlorobromomethane(ug/l	lbs/day	ug/l
Chlorodibromomethane	ug/l	lbs/day	ug/l
Hexachlorobutadiene(c)	ug/l	lbs/day	ug/l
Hexachlorocyclopentadi	ug/l	lbs/day	ug/l
Isophorone	ug/l	lbs/day	ug/l
Naphthalene			
Nitrobenzene	ug/l	lbs/day	ug/l
2-Nitrophenol	ug/l	lbs/day	ug/l
4-Nitrophenol	ug/l	lbs/day	ug/l
2,4-Dinitrophenol	ug/l	lbs/day	ug/l
4,6-Dinitro-o-cresol	ug/l	lbs/day	ug/l
N-Nitrosodimethylamine	ug/l	lbs/day	ug/l
N-Nitrosodiphenylamine	ug/l	lbs/day	ug/l
N-Nitrosodi-n-propylami	ug/l	lbs/day	ug/l
Pentachlorophenol	ug/l	lbs/day	ug/l
Phenol	ug/l	lbs/day	ug/l
Bis(2-ethylhexyl)phthala	ug/l	lbs/day	ug/l
Butyl benzyl phthalate	ug/l	lbs/day	ug/l
Di-n-butyl phthalate	ug/l	lbs/day	ug/l
Di-n-octyl phthlate			

Diethyl phthalate	ug/l	lbs/day	ug/l
Dimethyl phthlate	ug/l	lbs/day	ug/l
Benzo(a)anthracene (P/	ug/l	lbs/day	ug/l
Benzo(a)pyrene (PAH)	ug/l	lbs/day	ug/l
Benzo(b)fluoranthene (F	ug/l	lbs/day	ug/l
Benzo(k)fluoranthene (F	ug/l	lbs/day	ug/l
Chrysene (PAH)		lbs/day	
. ,	ug/l	ibs/day	ug/l
Acenaphthylene (PAH)			//
Anthracene (PAH)	ug/l	lbs/day	ug/l
Dibenzo(a,h)anthracene	ug/l	lbs/day	ug/l
Indeno(1,2,3-cd)pyrene	ug/l	lbs/day	ug/l
Pyrene (PAH)	ug/l	lbs/day	ug/l
Tetrachloroethylene	ug/l	lbs/day	ug/l
Toluene	ug/l	lbs/day	ug/l
Trichloroethylene	ug/l	lbs/day	ug/l
Vinyl chloride	ug/l	lbs/day	ug/l
Viriyi dindilad	ag/i	155/day	ug/i
Pesticides			
Aldrin	ug/l	lbs/day	ug/l
Dieldrin	ug/l	lbs/day	_
Chlordane		•	ug/l
	ug/l	lbs/day	ug/l
4,4'-DDT	ug/l	lbs/day	ug/l
4,4'-DDE	ug/l	lbs/day	ug/l
4,4'-DDD	ug/l	lbs/day	ug/l
alpha-Endosulfan	ug/l	lbs/day	ug/l
beta-Endosulfan	ug/l	lbs/day	ug/l
Endosulfan sulfate	ug/l	lbs/day	ug/l
Endrin	ug/l	lbs/day	ug/l
Endrin aldehyde	ug/l	lbs/day	ug/l
Heptachlor	ug/l	lbs/day	ug/l
Heptachlor epoxide	ug/.	100/444	ug, i
Tropiaciner openiac			
PCB's			
PCB 1242 (Arochlor 124	ug/l	lbs/day	ug/l
PCB-1254 (Arochlor 12t	ug/l	lbs/day	ug/l
PCB-1221 (Arochlor 122	=	lbs/day	_
	ug/l	•	ug/l
PCB-1232 (Arochlor 123	ug/l	lbs/day	ug/l
PCB-1248 (Arochlor 124	ug/l	lbs/day	ug/l
PCB-1260 (Arochlor 126	ug/l	lbs/day	ug/l
PCB-1016 (Arochlor 101	ug/l	lbs/day	ug/l
Pesticide	,		4
Toxaphene	ug/l		ug/l
Diovin			
Dioxin	//	U /-l	
Dioxin (2,3,7,8-TCDD)	ug/l	lbs/day	
Metals			
Antimony	ug/l	lbs/day	
Arsenic	ug/l	lbs/day	ua/l
	=	•	ug/l
Asbestos	ug/l	lbs/day	
Beryllium			
Cadmium			

Chromium (III) Chromium (VI) Copper			
Cyanide	ug/l	lbs/day	ug/l
Lead	ug/l	lbs/day	Ū
Mercury	_		ug/l
Nickel			ug/l
Selenium	ug/l	lbs/day	
Silver	ug/l	lbs/day	
Thallium	_	•	ug/l
Zinc			

There are additional standards that apply to this receiving water, but were not considered in this modeling/waste load allocation analysis.

VII. Mathematical Modeling of Stream Quality

Model configuration was accomplished utilizing standard modeling procedures. Data points were plotted and coefficients adjusted as required to match observed data as closely as possible.

The modeling approach used in this analysis included one or a combination of the following models.

- (1) The Utah River Model, Utah Division of Water Quality, 1992. Based upon STREAMDO IV (Region VIII) and Supplemental Ammonia Toxicity Models; EPA Region VIII, Sept. 1990 and QUAL2E (EPA, Athens, GA).
- (2) Utah Ammonia/Chlorine Model, Utah Division of Water Quality, 1992.
- (3) AMMTOX Model, University of Colorado, Center of Limnology, and EPA Region 8
- (4) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644.

Coefficients used in the model were based, in part, upon the following references:

- (1) Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling. Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens Georgia. EPA/600/3-85/040 June 1985.
- (2) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644.

VIII. Modeling Information

The required information for the model may include the following information for both the upstream conditions at low flow and the effluent conditions:

Flow, Q, (cfs or MGD) D.O. mg/l
Temperature, Deg. C. Total Residual Chlorine (TRC), mg/l

pH Total NH3-N, mg/l

BOD5, mg/l Total Dissolved Solids (TDS), mg/l Metals, ug/l Toxic Organics of Concern, ug/l

Other Conditions

In addition to the upstream and effluent conditions, the models require a variety of physical and biological coefficients and other technical information. In the process of actually establishing the permit limits for an effluent, values are used based upon the available data, model calibration, literature values, site visits and best professional judgement.

Model Inputs

The following is upstream and discharge information that was utilized as inputs for the analysis. Dry washes are considered to have an upstream flow equal to the flow of the discharge.

Current Upstream Information Stream Critical Low

	Critical Low						
	Flow	Temp.	рН	T-NH3	BOD5	DO	TRC
	cfs	Deg. C		mg/l as N	mg/l	mg/l	mg/l
Summer (Irrig. Season)	0.00	20.0	7.6	0.00	0.10	11.35	0.00
Fall	0.00	15.0	7.6	0.00	0.10		0.00
Winter	0.00	4.0	7.5	0.00	0.10		0.00
Spring	0.00	12.0	7.6	0.00	0.10		0.00
Dissolved	Al	As	Cd	CrIII	CrVI	Copper	Fe
Metals	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
All Seasons	2.385*	0.795*	0.0795*	0.795*	3.975*	0.8*	1.25*
Dissolved	Hg	Ni	Se	Ag	Zn	Boron	
Metals	-	ug/l	ug/l	ug/l	ug/l	ug/l	
All Seasons		0.795*	1.59*	0.15*	0.0795*	1.59*	* ~

Projected Discharge Information

Season	Flow, MGD	Temp.
Summer	1.50000	22.7
Fall	1.50000	10.9
Winter	1.50000	1.9
Spring	1.50000	17.8

All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality.

IX. Effluent Limitations

Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9).

Other conditions used in the modeling effort coincide with the environmental conditions expected at low stream flows.

Effluent Limitation for Flow based upon Water Quality Standards

In-stream criteria of downstream segments will be met with an effluent flow maximum value as follows:

Season	Daily Average	
Summer	1.500 MGD	2.321 cfs
Fall	1.500 MGD	2.321 cfs
Winter	1.500 MGD	2.321 cfs
Spring	1.500 MGD	2.321 cfs

Flow Requirement or Loading Requirement

The calculations in this wasteload analysis utilize the maximum effluent discharge flow of 1.5 MGD. If the discharger is allowed to have a flow greater than 1.5 MGD during 7Q10 conditions, and effluent limit concentrations as indicated, then water quality standards will be violated. In order to prevent this from occuring the permit writers must include the discharge flow limitiation as indicated above; or, include loading effluent limits in the permit.

Effluent Limitation for Whole Effluent Toxicity (WET) based upon WET Policy

Effluent Toxicity will not occur in downstream segements if the values below are met.

WET Requirements	LC50 >	100.0% Effluent	[Acute]
	IC25 >	100.0% Effluent	[Chronic]

Effluent Limitation for Biological Oxygen Demand (BOD) based upon Water Quality Standards or Regulations

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent BOD limitation as follows:

Season	Concentration	
Summer	22.0 mg/l as BOD5	275.2 lbs/day
Fall	22.0 mg/l as BOD5	275.2 lbs/day
Winter	22.0 mg/l as BOD5	275.2 lbs/day
Spring	22.0 mg/l as BOD5	275.2 lbs/day

Effluent Limitation for Dissolved Oxygen (DO) based upon Water Quality Standards

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent D.O. limitation as follows:

Season	Concentration
Summer	5.00
Fall	5.00
Winter	5.00
Spring	5.00

Effluent Limitation for Total Ammonia based upon Water Quality Standards

In-stream criteria of downstream segments for Total Ammonia will be met with an effluent limitation (expressed as Total Ammonia as N) as follows:

Seas	on			
Concentration			Loa	d
Summer	4 Day Avg Chronic	1.0 mg/l as N	12.4	lbs/day
	1 Hour Avg Acute	4.7 mg/l as N	59.4	lbs/day
Fall	4 Day Avg Chronic	2.7 mg/l as N	33.7	lbs/day
	1 Hour Avg Acute	8.2 mg/l as N	103.1	lbs/day
Winter	4 Day Avg Chronic	3.4 mg/l as N	42.1	lbs/day
	1 Hour Avg Acute	9.8 mg/l as N	123.0	lbs/day
Spring	4 Day Avg Chronic	2.7 mg/l as N	33.7	lbs/day
	1 Hour Avg Acute	8.2 mg/l as N	103.1	lbs/day

Acute limit calculated with an Acute Zone of Initial Dilution (ZID) to be equal to 100.%.

Effluent Limitation for Total Residual Chlorine based upon Water Quality Standards

In-stream criteria of downstream segments for Total Residual Chlorine will be met with an effluent limitation as follows:

Seas	on	Concentr	ation	Load	d
Summer	4 Day Avg Chronic	0.630	mg/l	7.88	lbs/day
	1 Hour Avg Acute	1.100	mg/l	13.76	lbs/day
Fall	4 Day Avg Chronic	0.630	mg/l	7.88	lbs/day
	1 Hour Avg Acute	1.100	mg/l	13.76	lbs/day
Winter	4 Day Avg Chronic	0.630	mg/l	7.88	lbs/day
	1 Hour Avg Acute	1.100	mg/l	13.76	lbs/day
Spring	4 Day Avg Chronic	0.630	mg/l	7.88	lbs/day
	1 Hour Avg Acute	1.100	mg/l	13.76	lbs/day

Effluent Limitations for Total Dissolved Solids based upon Water Quality Standards

Seas	on	Concenti	ration	Loa	ıd
Summer Fall Winter Spring	Maximum, Acute Maximum, Acute Maximum, Acute 4 Day Avg Chronic	N/A N/A N/A N/A	mg/l mg/l mg/l mg/l	N/A N/A N/A N/A	tons/day tons/day tons/day tons/day
Colorado S	alinity Forum Limits	Determine	ed by Permitt	ing Section	

Effluent Limitations for Total Recoverable Metals based upon Water Quality Standards

In-stream criteria of downstream segments for Dissolved Metals will be met with an effluent limitation as follows (based upon a hardness of 399.99 mg/l):

	4 Day Average		1 Hou				
	Concen	tration	Load	d	Concentration		Load
Aluminum*	N/A		N/A		750.0	ug/l	9.4
Arsenic*	190.01	ug/l	1.5 l	bs/day	340.0	ug/l	4.3
Cadmium	0.76	ug/l	0.0 l	bs/day	8.7	ug/l	0.1
Chromium III	268.23	ug/l	2.2	bs/day	5,611.8	ug/l	70.3
Chromium VI*	11.00	ug/l	0.1 l	bs/day	16.0	ug/l	0.2
Copper	30.50	ug/l	0.2 l	bs/day	51.7	ug/l	0.6
Iron*	N/A		N/A		2,320.6	ug/l	29.1
Lead	18.58	ug/l	0.2 l	bs/day	476.8	ug/l	6.0
Mercury*	0.01	ug/l	0.0 l	bs/day	2.4	ug/l	0.0
Nickel	168.55	ug/l	1.4 l	bs/day	1,516.0	ug/l	19.0
Selenium*	4.60	ug/l	0.0 l	bs/day	20.0	ug/l	0.3
Silver	N/A	ug/l	N/A I	bs/day	41.1	ug/l	0.5
Zinc	387.84	ug/l	3.1 l	bs/day	387.8	ug/l	4.9
Cyanide*	5.20	ug/l	0.0 l	bs/day	22.0	ug/l	0.3

Effluent Limitations for Heat/Temperature based upon Water Quality Standards

Summer	24.0 Deg. C.	75.2 Deg. F
Fall	19.0 Deg. C.	66.2 Deg. F
Winter	8.0 Deg. C.	46.4 Deg. F
Spring	16.0 Deg. C.	60.8 Deg. F

Effluent Limitations for Organics [Pesticides] Based upon Water Quality Standards

In-stream criteria of downstream segments for Organics [Pesticides] will be met with an effluent limit as follows:

	4 Day Average		1 Hour Average			
	Concentration	Load	Concentration		Load	
Aldrin			1.5E+00	ug/l	2.91E-02	
Chlordane	4.30E-03 ug/l	5.38E-02 lbs/day	1.2E+00	ug/l	2.33E-02	
DDT, DDE	1.00E-03 ug/l	1.25E-02 lbs/day	5.5E-01	ug/l	1.07E-02	
Dieldrin	1.90E-03 ug/l	2.38E-02 lbs/day	1.3E+00	ug/l	2.42E-02	
Endosulfan	5.60E-02 ug/l	7.00E-01 lbs/day	1.1E-01	ug/l	2.13E-03	
Endrin	2.30E-03 ug/l	2.88E-02 lbs/day	9.0E-02	ug/l	1.74E-03	
Guthion	0.00E+00 ug/l	0.00E+00 lbs/day	1.0E-02	ug/l	1.94E-04	
Heptachlor	3.80E-03 ug/l	4.75E-02 lbs/day	2.6E-01	ug/l	5.04E-03	
Lindane	8.00E-02 ug/l	1.00E+00 lbs/day	1.0E+00	ug/l	1.94E-02	
Methoxychlor	0.00E+00 ug/l	0.00E+00 lbs/day	3.0E-02	ug/l	5.82E-04	
Mirex	0.00E+00 ug/l	0.00E+00 lbs/day	1.0E-02	ug/l	1.94E-04	
Parathion	0.00E+00 ug/l	0.00E+00 lbs/day	4.0E-02	ug/l	7.75E-04	
PCB's	1.40E-02 ug/l	1.75E-01 lbs/day	2.0E+00	ug/l	3.88E-02	
Pentachlorophenol	1.30E+01 ug/l	1.63E+02 lbs/day	2.0E+01	ug/l	3.88E-01	
Toxephene	2.00E-04 ug/l	2.50E-03 lbs/day	7.3E-01	ug/l	1.42E-02	

^{*}Limits for these metals are based on the dissolved standard.

Effluent Limitations for Protection of Human Health [Toxics Rule] Based upon Water Quality Standards (Most stringent of 1C or 3A & 3B as appropriate.)

In-stream criteria of downstream segments for Protection of Human Health [Toxics] will be met with an effluent limit as follows:

	Maximum Concentration		
	Concentration	Load	
Toxic Organics			
Acenaphthene	ug/l	lbs/day	
Acrolein	ug/l	lbs/day	
Acrylonitrile	ug/l	lbs/day	
Benzene	ug/l	lbs/day	
Benzidine	ug/l	lbs/day	
Carbon tetrachloride	ug/l	lbs/day	
Chlorobenzene	ug/l	lbs/day	
1,2,4-Trichlorobenzene	4	W / I	
Hexachlorobenzene	ug/l	lbs/day	
1,2-Dichloroethane	ug/l	lbs/day	
1,1,1-Trichloroethane	ua/I	lbs/dov	
Hexachloroethane	ug/l	lbs/day	
1,1-Dichloroethane	ug/l	lbs/day	
1,1,2-Trichloroethane 1,1,2,2-Tetrachloroethane	ug/l	lbs/day	
Chloroethane	ug/l	ibs/day	
Bis(2-chloroethyl) ether	ug/l	lbs/day	
2-Chloroethyl vinyl ether	ug/i	ibs/day	
2-Chloronaphthalene	ug/l	lbs/day	
2,4,6-Trichlorophenol	ug/l	lbs/day	
p-Chloro-m-cresol	ag/i	150/day	
Chloroform (HM)	ug/l	lbs/day	
2-Chlorophenol	ug/l	lbs/day	
1,2-Dichlorobenzene	ug/l	lbs/day	
1,3-Dichlorobenzene	ug/l	lbs/day	
1,4-Dichlorobenzene	ug/l	lbs/day	
3,3'-Dichlorobenzidine	ug/l	lbs/day	
1,1-Dichloroethylene	ug/l	lbs/day	
1,2-trans-Dichloroethylene1			
2,4-Dichlorophenol	ug/l	lbs/day	
1,2-Dichloropropane	ug/l	lbs/day	
1,3-Dichloropropylene	ug/l	lbs/day	
2,4-Dimethylphenol	ug/l	lbs/day	
2,4-Dinitrotoluene	ug/l	lbs/day	
2,6-Dinitrotoluene	_		
1,2-Diphenylhydrazine	ug/l	lbs/day	
Ethylbenzene	ug/l	lbs/day	
Fluoranthene	ug/l	lbs/day	
4-Chlorophenyl phenyl ether			
4-Bromophenyl phenyl ether	, /I	II /-I -	
Bis(2-chloroisopropyl) ether	ug/l	lbs/day	
Bis(2-chloroethoxy) methane	, . //	حالم الما	
Methylene chloride (HM)	ug/l	lbs/day	
Methyl chloride (HM)			

Methyl bromide (HM)		
Bromoform (HM)	ug/l	lbs/day
Dichlorobromomethane(HM)	ug/l	lbs/day
Chlorodibromomethane (HM)	ug/l	lbs/day
Hexachlorocyclopentadiene	ug/l	lbs/day
Isophorone	ug/l	lbs/day
Naphthalene	3	,
Nitrobenzene	ug/l	lbs/day
2-Nitrophenol	ŭ	•
4-Nitrophenol		
2,4-Dinitrophenol	ug/l	lbs/day
4,6-Dinitro-o-cresol	ug/l	lbs/day
N-Nitrosodimethylamine	ug/l	lbs/day
N-Nitrosodiphenylamine	ug/l	lbs/day
N-Nitrosodi-n-propylamine	ug/l	lbs/day
Pentachlorophenol	ug/l	lbs/day
Phenol	ug/l	lbs/day
Bis(2-ethylhexyl)phthalate	ug/l	lbs/day
Butyl benzyl phthalate	ug/l	lbs/day
Di-n-butyl phthalate	ug/l	lbs/day
Di-n-octyl phthlate		
Diethyl phthalate	ug/l	lbs/day
Dimethyl phthlate	ug/l	lbs/day
Benzo(a)anthracene (PAH)	ug/l	lbs/day
Benzo(a)pyrene (PAH)	ug/l	lbs/day
Benzo(b)fluoranthene (PAH)	ug/l	lbs/day
Benzo(k)fluoranthene (PAH)	ug/l	lbs/day
Chrysene (PAH)	ug/l	lbs/day
Acenaphthylene (PAH)		
Anthracene (PAH)		
Dibenzo(a,h)anthracene (PAH)	ug/l	lbs/day
Indeno(1,2,3-cd)pyrene (PAH)	ug/l	lbs/day
Pyrene (PAH)	ug/l	lbs/day
Tetrachloroethylene	ug/l	lbs/day
Toluene	ug/l	lbs/day
Trichloroethylene	ug/l	lbs/day
Vinyl chloride	ug/l	lbs/day
Pesticides		
Aldrin	/	lba/day
Dieldrin	ug/l	lbs/day lbs/day
Chlordane	ug/l	lbs/day
4,4'-DDT	ug/l	lbs/day
4,4'-DDE	ug/l	lbs/day
4,4'-DDD 4,4'-DDD	ug/l	,
alpha-Endosulfan	ug/l ug/l	lbs/day lbs/day
beta-Endosulfan	ug/l ug/l	lbs/day
Endosulfan sulfate	ug/l	lbs/day
Endosulian sullate Endrin	ug/l	lbs/day
Endrin aldehyde	ug/l	lbs/day
Heptachlor	ug/l	lbs/day
Heptachlor epoxide	ug/i	ib3/uay
Ποριασιίοι ορολίασ		

PCB's

PCB 1242 (Arochlor 1242) PCB-1254 (Arochlor 1254) PCB-1221 (Arochlor 1221) PCB-1232 (Arochlor 1232) PCB-1248 (Arochlor 1248) PCB-1260 (Arochlor 1260) PCB-1016 (Arochlor 1016)	ug/l ug/l ug/l ug/l ug/l ug/l	Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day
Pesticide		
Toxaphene	ug/l	lbs/day
Metals		
Antimony	ug/l	lbs/day
Arsenic	ug/l	lbs/day
Asbestos	ug/l	lbs/day
Beryllium		
Cadmium		
Chromium (III) Chromium (VI)		
Copper	ug/l	lbs/day
Cyanide	ug/l	lbs/day
Lead	g-:	
Mercury	ug/l	lbs/day
Nickel	ug/l	lbs/day
Selenium		
Silver Thallium	ua/l	lbs/day
Zinc	ug/l	lbs/day
Diamin		
Dioxin Dioxin (2.2.7.9 TCDD)	#NI/A~/I	#NI/A lba/day
Dioxin (2,3,7,8-TCDD)	#N/A ug/l	#N/A lbs/day

Metals Effluent Limitations for Protection of All Beneficial Uses Based upon Water Quality Standards and Toxics Rule

	Class 4 Acute Agricultural ug/l	Class 3 Acute Aquatic Wildlife ug/l	Acute Toxics Drinking Water Source ug/I	Acute Toxics Wildlife ug/l	1C Acute Health Criteria ug/l	Acute Most Stringent ug/l	Class 3 Chronic Aquatic Wildlife ug/l
Aluminum		750.0				750.0	N/A
Antimony				4300.2		4300.2	
Arsenic		340.0				340.0	190.0
Barium							
Beryllium							
Cadmium		8.7				8.7	0.8
Chromium (III)		5611.8				5611.8	268.2
Chromium (VI)		16.0				16.00	11.00
Copper		51.7				51.7	30.5

Cyanide	22.0	220009.5		22.0	5.2
Iron	2320.6			2320.6	
Lead	476.8			476.8	18.6
Mercury	2.40	0.	15	0.15	0.012
Nickel	1516.0	4600).2	1516.0	168.5
Selenium	20.0			20.0	4.6
Silver	41.1			41.1	
Thallium		(6.3	6.3	
Zinc	387.8			387.8	387.8
Boron N/A					
Sulfate N/A				N/A	

Summary Effluent Limitations for Metals [Wasteload Allocation, TMDL]

[If Acute is more stringent than Chronic, then the Chronic takes on the Acute value.]

	WLA Acute	WLA Chronic
	ug/l	ug/l
Aluminum	750.0	N/A
Antimony	4300.19	
Arsenic	340.0	190.0
Asbestos		
Barium		
Beryllium		
Cadmium	8.7	0.8
Chromium (III)	5611.8	268
Chromium (VI)	16.0	11.0
Copper	51.7	30.5
Cyanide	22.0	5.2
Iron	2320.6	
Lead	476.8	18.6
Mercury	0.150	0.012
Nickel	1516.0	169
Selenium	20.0	4.6
Silver	41.1	N/A
Thallium	6.3	
Zinc	387.8	387.8
Boron		
Sulfate	N/A	

N/A at this Waterbody

Other Effluent Limitations are based upon R317-1.

E. coli 126.0 organisms per 100 ml

X. Antidegradation Considerations

The Utah Antidegradation Policy allows for degradation of existing quality where it is determined that such lowering of water quality is necessary to accommodate important economic or social development in the area in which the waters are protected [R317-2-3]. It has been determined that certain chemical parameters introduced by this discharge will cause an increase of the concentration of said parameters in the receiving waters. Under no conditions will the increase in concentration be allowed to interfere with existing instream water uses.

An Antidegradation Level I Review was conducted on this discharge and its effect on the receiving water. Based upon that review, it has been determined that an

Antidegradation Level II Review is required because the receiving water for the discharge is a Class 1C Drinking Water Source.

XI. Colorado River Salinity Forum Considerations

Discharges in the Colorado River Basin are required to have their discharge at a TDS loading of less than 1.00 tons/day unless certain exemptions apply. Refer to the Forum's Guidelines for additional information allowing for an exceedence of this value.

This doesn't apply to facilities that do not discharge to the Colorado River Basin.

XII. Summary Comments

The mathematical modeling and best professional judgement indicate that violations of receiving water beneficial uses with their associated water quality standards, including important downstream segments, will not occur for the evaluated parameters of concern as discussed above if the effluent limitations indicated above are met.

lbs/day

lbs/day

lbs/day

lbs/day lbs/day

lbs/day

lbs/day

lbs/day lbs/day

lbs/day lbs/day

lbs/day lbs/day

aCO3

lbs/day

lbs/day

lbs/day lbs/day

lbs/day

lbs/day

lbs/day lbs/day

lbs/day lbs/day

lbs/day lbs/day

lbs/day lbs/day

lbs/day

lbs/day lbs/day lbs/day lbs/day lbs/day tons/day lbs/day .] lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day

lbs/day

lbs/day lbs/day

lbs/day lbs/day

lbs/day lbs/day lbs/day lbs/day

lbs/day			
lbs/day			
lbs/day			
lbs/day			
lbs/day			
lbs/day			
lbs/day			
lbs/day			
-			
lbs/day			
-			
lbs/day			
lbs/day			
lbs/day			
lbs/day			

lbs/day

lbs/day
lbs/day
lbs/day

TDS mg/l 400.0 400.0 400.0 400.0

ug/l 0.795*

·80% MDL

lbs/day lbs/day

lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day