RESERVATION CANYON TAILINGS IMPOUNDMENT SITE CHARACTERIZATION AND FINAL CLOSURE DESIGN

BARRICK MERCUR GOLD MINE TOOELE COUNTY, UTAH

Prepared For:

JULY 1999

VOLUME 2 OF 2

993-2037

APPENDIX D LABORATORY TESTING RESULTS

SOIL CLASSIFICATION CHART

MAJ	OR DIVISI	ONS	GRAPHIC SYMBOL	GROUP Symbol	TYPICAL DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES, LITTLE OR NO FINES
COARSE Grained	GRAVELLY SOILS	KAKT <u>EE3 1)</u> (EBNIY 67 8		GP	POORLY-GRADED ERAVELS, GRAVEL- SAND MOXTURES, LITTLE OR NO PINES
SOILS	NORETHAN 50% OF COARSE FRACTION	GRAVELS WITH		GM	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES
	RETAINED ON NO.4 SIEVE	FINES (MORE THAN 12 % FINES)		GC	CLAYEY GRAVELS, GRAVEL-SAND-CLAY Nixtures
	SANO And	CLEANSAND		sw	WELL-GRADED SANOS, GRAVELLY SANDS, LITTLE OR NO FINES
MORE THAN 50% OF MATERIAL IS LARGER THAN	F MATERIAL IS SOILS	(<u>Less</u> Than 5% Fines)		SP	PODRLY-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
NG.200 SIEVE SIZE		SANDS WITH FINES(MORE THAN 12 % FINES)		SM	SILTY BANDS, SAHO-SILT MIXTURES
	PASSING SVSIC 4.0K			sc	CLAYEY SANOS, SAND-CLAY MIXTURES
FINE		LIQUID LIMIT		ML	INDREAMIC SILTS AND VERY FINE SANDS, TOCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
GRAINED SOILS	SILTS And Clays			CL	INDREAMIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SAMDY CLAYS, SILTY CLAYS, LEAN CLAYS
				OL	ORGANIC SILTS AND GREANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50%	SILTS			мн	INDREAMIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAMO OR SILTY SOILS
OF MATERIAL IS SMALLER THAN NO. 200 SIEVE SIZE	ANO	LIGUID LIMIT		СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
				ОН	ORGANIC CLAYS OF MEDIUM TO MIGH PLASTICITY, GREANIC SILTS
н	IGHLY ORGANIC SO	(L3		PT	PEAT, HUNUS, SWAMP SOLS WITH HIGH ORGANIC CONTENTS

NOTE: QUAL STREOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS.

G G	Older Asso		TITLE	USCS CLASSIFICATION SYSTEM						
			DATE	C 1992	JOB HOL	923-2484				
DRAWN BR8	CHECKED	REVIEWED	FILE	DWG. HQ.	FIGURE	A.1-1				

BARRICK/RESERVATION CANYON TAILINGS/UT 983-2344.001-2 TABLE 1 SUMMARY OF SOIL DATA

The Address of Manager of Manager

CA98 BH-4 Coc. CA98 BH-9 CA-62 CA98 BH-9 CA98 BH	
20-22 ML 45.0 77.9 29 23 6 100 100 40-42 CL 36.0 86.6 100 100 100 60-62 ML 30.0 90.6 29 23 6 100 100 20-22 SC R 100 100 100 100 100 100 20-44 SC 28.1 94.5 1 1 10 100 100 80-82 SM 24.5 99.0 R 1	#4 #200 PCF (Dry) MOIST (%) (See Notes)
40-42 CL 36.0 86.6 100 100 60-62 ML 30.0 90.6 29 23 6 100 100 78-80 ML 30.0 90.6 29 23 6 100 100 20-22 SC 28.1 94.5 100 100 100 20-40 SC 24.5 99.0 100 100 100 80-82 SM 24.4 99.8 NP NP NP 100 100 100-102 CL 23.3 102.3 NP NP NP 100 100 122-12 CL 23.1 99.8 NP NP NP 100 100 142-144 SC 21.0 108.1 NP NP 100 100 180-162 SC 21.0 108.1 NP	-
60-62 ML 30.0 90.6 29 23 6 100 100 20-22 SC SC 28.1 94.5 1 100 100 20-40 SC 28.1 94.5 1 100 100 20-40 SC 28.1 94.5 1 100 100 80-82 SM 24.4 99.8 NP NP NP 100 100 100-102 CL 23.3 102.3 1	
78-80 ML 30.0 90.6 29 23 6 100 100 20-22 SC SC 100 100 100 100 20-40 SC 28.1 94.5 1 100 100 60-62 SM 24.5 99.0 1 100 100 100-102 SM 24.4 99.8 NP NP NP 100 100 100-102 SM 24.4 99.8 NP NP NP 100 100 100-102 CL 23.3 102.3 NP NP NP 100 100 142-14 SC 21.0 108.1 NP NP NP 100 100 182-18 113.1 NP	
20-22 SC 100 100 100 20-40 42-44 SC 28.1 94.5 100 100 42-44 SC 28.1 94.5 100 100 80-82 SM 24.4 99.8 NP NP 100 100 100-102 SM 24.4 99.8 NP NP 100 100 100-102 SM 24.4 99.8 NP NP 100 100 142-14 SC 21.0 102.3 102.3 100 100 162-16 SC 21.0 108.1 100 100 180-182 18.3 113.1 100 100 200-20 CL-ML 23.8 104.4 100 100 20-22 CL 31.7 90.4 100 100 40-42 CL 30.3 90.5 100 100 60-62 SC 28.6 92.6 100 100	
20-40 SC 28.1 94.5 100 100 42-44 SC 28.1 94.5 100 100 60-62 24.5 99.0 NP NP 100 100 100-102 26.7 97.2 NP NP 100 100 122-12 CL 23.3 102.3 102.3 100 100 142-14 23.1 99.8 NP 100 100 180-18 23.1 99.8 NP 100 100 200-20 CL-ML 23.8 104.7 29 22 7 100 100 200-20 CL-ML 23.4 104.4 NP 100 100 100 240-24 CL 27.2 99.3 100 100 100 40-42 CL 30.3 90.5 100 100 60-62 28.6 92.6 100 100	
42-44 SC 28.1 94.5 100 100 60-62 24.5 99.0 NP NP 100 100 80-82 SM 24.4 99.8 NP NP 100 100 100-102 26.7 97.2 NP NP 100 100 122-12 CL 23.3 102.3 102.3 100 100 142-144 23.1 99.8 NP 100 100 180-18 SC 21.0 108.1 NP 100 100 200-20 CL-ML 23.8 104.7 29 22 7 100 100 200-22 CL-ML 27.2 99.3 NP 100 100 20-22 CL 31.7 90.4 NP 100 100 40-42 CL 27.2 99.3 NP 100 100 60-62 CL 30.3 90.5 NP NP NP	
60-62 SM 24.5 99.0 NP NP 100 100 80-82 SM 24.4 99.8 NP NP 100 100 100-102 26.7 97.2 N N 100 100 122-12 CL 23.3 102.3 102.3 100 100 142-14 SC 21.0 108.1 N 100 100 162-16 SC 21.0 108.1 N 100 100 180-18 SC 21.0 108.1 N N 100 100 220-20 CL-ML 23.8 104.7 29 22 7 100 100 240-24 CL 27.2 99.3 N 100 100 40-42 CL 30.3 90.5 N 100 100 60-62 28.6 92.6 N N N N	
80-82 SM 24.4 99.8 NP NP 100 100 100-102 26.7 97.2 1 1 1 1 122-12 CL 23.3 102.3 102.3 100 100 142-144 23.1 99.8 1 100 100 162-16 SC 21.0 108.1 1 100 100 180-18 18.3 113.1 1 1 100 100 200-20 CL-ML 23.8 104.7 29 22 7 100 100 240-24 CL 27.2 99.3 1 100 100 40-42 CL 30.3 90.5 1 100 100 60-62 28.6 92.6 1 100 100	
100-102 26.7 97.2 67.2 70.2	_
122-12 CL 23.3 102.3 100 100 142-144 23.1 99.8 100 100 100 162-16 SC 21.0 108.1 100 100 100 180-182 18.3 113.1 100 100 100 200-20 CL-ML 23.8 104.7 29 22 7 100 100 240-24 CL 27.2 99.3 100 100 100 40-42 CL 30.3 90.5 100 100 100 60-62 CL 28.6 92.6 100 100 100	
142-144 23.1 99.8 100 100 162-16 SC 21.0 108.1 100 100 180-182 18.3 113.1 100 100 100 200-20 CL-ML 23.8 104.7 29 22 7 100 100 20-22 23.4 104.4 29 2 7 100 100 20-22 CL 31.7 90.4 100 100 100 40-42 CL 30.3 90.5 100 100 60-62 28.6 92.6 100 100	_
162-16 SC 21.0 108.1 100 100 180-182 18.3 113.1 29 22 7 100 100 200-20 CL-ML 23.8 104.7 29 22 7 100 100 220-222 23.4 104.4 2 100 100 100 20-22 CL 31.7 90.4 100 100 100 40-42 CL 30.3 90.5 100 100 100 60-62 28.6 92.6 7 100 100 100	
180-182 18.3 113.1 29 22 7 100 100 200-20 CL-ML 23.8 104.7 29 22 7 100 100 220-222 23.4 104.4 2 7 100 100 240-24 CL 27.2 99.3 100 100 20-22 CL 31.7 90.4 100 100 40-42 CL 30.3 90.5 100 100 60-62 28.6 92.6 100 100	
200-20 CL-ML 23.8 104.7 29 22 7 100 100 220-222 23.4 104.4 2 7 100 100 100 240-24 CL 27.2 99.3 7 100 100 100 20-22 CL 31.7 90.4 7 100 100 40-42 CL 30.3 90.5 7 100 100 60-62 28.6 92.6 7 100 100	
220-222 23.4 104.4 104.4 104.4 100	-
240-24 CL 27.2 99.3 100 100 20-22 CL 31.7 90.4 100 100 40-42 CL 30.3 90.5 100 100 60-62 28.6 92.6 70 100 100	
20-22 CL 31.7 90.4 100 100 40-42 CL 30.3 90.5 100 100 60-62 28.6 92.6 70 100 100	_
40-42 CL 30.3 90.5 100 100 60-62 28.6 92.6 82.6 100	_
60-62 28.6	-
GA98 BH-10 80-82 CL 26.0 97.4 100 100 90	

BARRICK/RESERVATION CANYON TAILINGS/UT 983-2344.001-2 TABLE 1 SUMMARY OF SOIL DATA

SPECIFIC MOIST/DEN RELATIONSHIP ADDITIONAL TESTS GRAVITY STANDARD PROCTOR COMMENTS PCF (Dty) MOIST (%) (See Notes)							υ	ļ			υ		υ				
ELATIONSHIP PROCTOR MOIST (%)					-												
MOIST/DEN RELATIONSH STANDARD PROCTOR PCF (Dry) MOIST (%)																	
IBUTION SPECIFIC % FINER GRAVITY #200									2.72								
% FINER #200		83	52	87	91		49		66	:	96		90				
GRAIN SIZE DISTRIBUTION % FINER % FINER 3/4" #4 #200		100	100	100	100		100		100		100		100				
7.55		100	100	100	100		100		100		100		100				
SERG S PI			_	4					7				6				
ATTERBERG LIMITS LL PL PI			_	19	_				21			_	18		_	 	
and a straight				23	_				28				27			 ļ	
DRY DENSITY (PCF)	97.3	100.0	99.8	105.4	100.9	96.8	95.8		92.9	95.2	88.6	6.66	103.3	88.0	81.8	: :	
DELIVERED MOISTURE (%)	27.4	24.6	21.2	22.0	25.0	27.5	25.6		30.5	26.9	32.0	25.0	23.8	26.7	26.8		
U.S.C.S. SOIL CLASSI- FICATION		ر ا	CL	CL-ML	CL CL		SC		ML		CL		CL				
SAMPLE DEPTH (ft)	102-104	120-12	142-14	162-16	182-18	202-204	20-22	40-42	60-62	80-82	101-10	120-122	140-14	05	05	i i	
SAMPLE NUMBER	GA98 BH-10 102-104	GA98 BH-10 120-12	GA98 BH-10 142-14	GA98 BH-10 162-16	GA98 BH-10 182-18	GA98 BH-10 202-204	GA98 BH-11 101-10	GA98 BH-11 120-122	GA98 BH-11 140-14	тв@срт6	тв@срт9						
SAMPLE TYPE																	

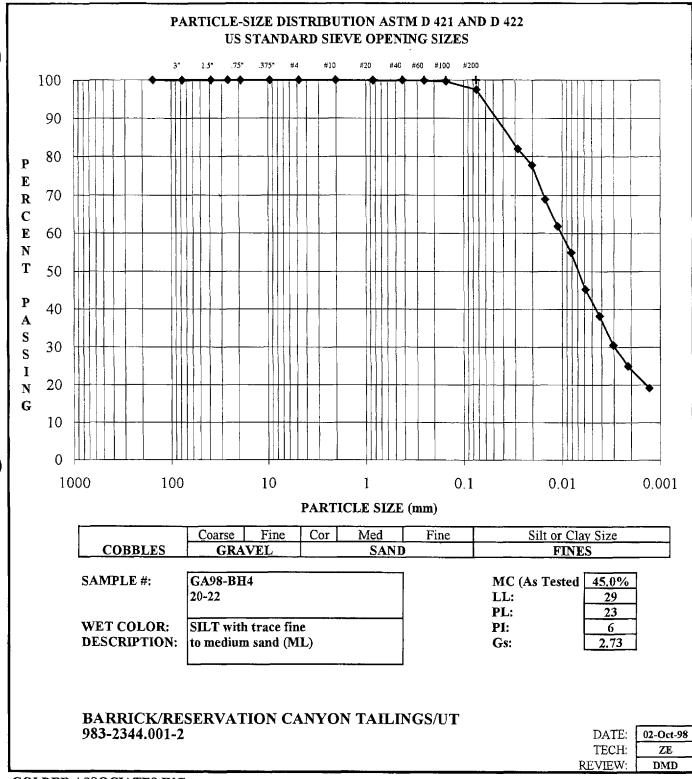
NOTES:

PL = PLASTIC LIMIT LL = LIQUID LIMIT

T = TRIAXIAL TEST

U = UNCONFINED COMPRESSION TEST

BARRICK/RESERVATION CANYON TAILINGS/UT 983-2344.001-2 TABLE 1 SUMMARY OF SOIL DATA

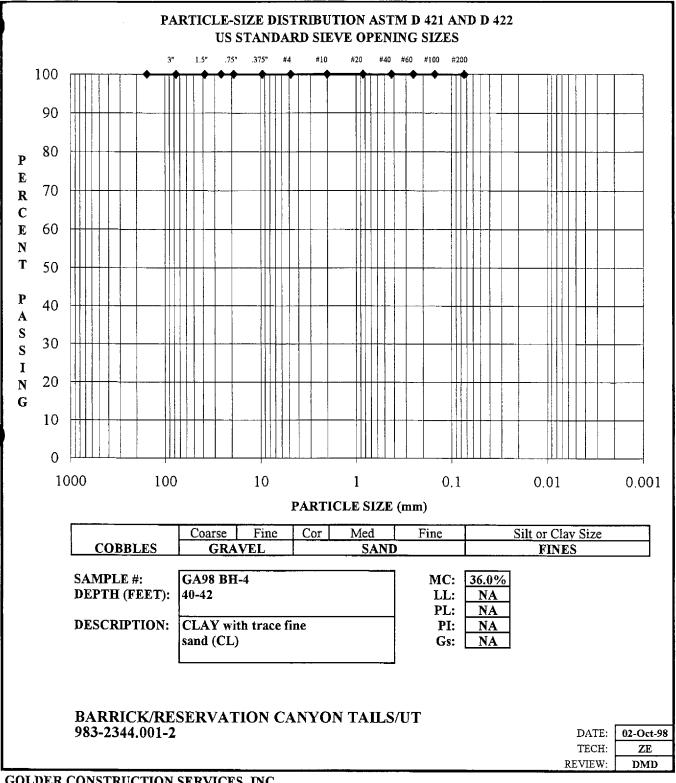

SAMPLE SAMPLE SAMPLE LUSC.S. SOIL DELIVERED DRY ATTERBERG GRAIN SIZE DISTRIBUTION SPECIFIC MOIST/DEN RELATIONSHIP ADDITIONAL TESTS TYPE NUMBER DEPTH CLASS. MOISTURE DENSITY LIMITS % FINER % FINER % FINER GRAVITY STANDARD PROCTOR COMMENTS (f) FICATION (%) (PCF) LL PL PI PI 34" #4 #200 PCF (Dny) MOIST (%) (See Notes)	S]
E SAMPLE SAMPLE SAMPLE U.S.C.S. SOIL DELIVERED DRY ATTERBERG GRAIN SIZE DISTRIBUTION SPECIFIC MOIST/DEN RELATIONSHIP ADDITIONAL CLASSI- MOISTURE DENSITY LIMITS % FINER % FINER GRAVITY STANDARD PROCTOR COMME (ft) FICATION (%) (PCF) IL PL PI PI 3/4" #4 #200 PCF (Dvy) MOIST (%) (See No	TES	S (Se	
E SAMPLE SAMPLE U.S.C.S. SOIL DELIVERED DRY ATTERBERG GRAIN SIZE DISTRIBUTION SPECIFIC MOIST/DEN RELATIONSHIP IN NUMBER DEPTH CLASSL MOISTURE DENSITY LIMITS % FINER % FINER GRAVITY STANDARD PROCTOR (ft) FICATION (%) (PCF) LL PL PI 3/4" #4 #200 PCF (Dry) MOIST (%)	¥	AMEN Note	1
E SAMPLE SAMPLE LOUGH OF SOUR DELIVERED DRY ATTERBERG GRAIN SIZE DISTRIBUTION SPECIFIC MOIST/DEN RELATIONSHIP A NUMBER DEPTH CLASSI- MOIST/URE DENSITY LIMITS % FINER % FINER GRAVITY STANDARD PROCTOR (ft) FICATION (%) LL PL PI 3/4" #4 #200 PCF (Dry) MOIST (%)	IT:0	CON See	
E SAMPLE SAMPLE U.S.C.S. SOIL DELIVERED DRY ATTERBERG GRAIN SIZE DISTRIBUTION SPECIFIC MOIST/DEN RELATIONS NUMBER DEPTH CLASSI- MOISTURE DENSITY LIMITS % FINER % FINER GRAVITY STANDARD PROCTO (ft) FICATION (%) (PCF) IL PL PI 3/4" #4 #200 PCF (Dry) MOIST (AP		
E SAMPLE SAMPLE U.S.C.S.SOIL DELIVERED DRY ATTERBERG GRAIN SIZE DISTRIBUTION SPECIFIC MOIST/DEN RELATION SPECIFIC MOIST/DEN RELATION SPECIFIC MOIST/DEN RELATION STANDARD PROMITY STANDARD PROMIT	탶	χ 8 ⁸	
E SAMPLE SAMPLE U.S.C.S.SOIL DELIVERED DRY ATTERBERG GRAIN SIZE DISTRIBUTION SPECIFIC MOIST/DEN RELATION SPECIFIC MOIST/DEN RELATION SPECIFIC MOIST/DEN RELATION STANDARD PROMITY STANDARD PROMIT	NO.	STO IST (
E SAMPLE SAMPLE U.S.C.S. SOIL DELIVERED DRY ATTERBERG GRAIN SIZE DISTRIBUTION SPECIFIC MOIST/DEN F NUMBER DEPTH CLASSI- MOISTURE DENSITY LIMITS % FINER % FINER GRAVITY STANDARI (ft) FICATION (%) (PCF) IL PL PI 91 3/4" #4 #200 PCF (Dry)	LAT	PRO	
E SAMPLE SAMPLE OSC.S.SOIL DELIVERED DRY ATTERBERG GRAIN SIZE DISTRIBUTION SPECIFIC MOISTING NUMBER DEPTH CLASSI. MOISTURE DENSITY LIMITS % FINER % FINER GRAVITY STAND STAND (ft) FIGATION (ft) (PCF) IL PL PI PI 34" #4 #200 PCF (D	1	ARD y)	
E SAMPLE SAMPLE SAMPLE U.S.C.S.SOIL DELIVERED DRY ATTERBERG GRAIN SIZE DISTRIBUTION SPECIFIC MOISTURE DENSITY LIMITS % FINER % FINER GRAVITY S (ft) FIGATION (%) (PCF) IL PL PI PI 3/4" #4 #200	TO	AND I	ĺ
E SAMPLE SAMPLE U.S.C.S.SOIL DELIVERED DRY ATTERBERG GRAIN SIZE DISTRIBUTION SPECIFIC NUMBER DEPTH CLASSI- MOISTURE DENSITY LIMITS % FINER % FINER GRAVITY (ft) FICATION (%) (PCF) LL PL PI PI 3/4" #4 #4 #200	ΘM	rs PC	
E SAMPLE SAMPLE U.S.C.S.SOIL DELIVERED DRY ATTERBERG GRAIN SIZE DISTRIBUTION NUMBER DEPTH CLASSL MOISTURE DENSITY LIMITS % FINER % FINER % FINER (ft) FICATION (PCF) LL PL PI PI 3/4" #4 #200	은		١
E SAMPLE SAMPLE U.S.C.S.SOIL DELIVERED DRY ATTERBERG GRAIN SIZE DISTRIBUTION NUMBER DEPTH CLASSL MOISTURE DENSITY LIMITS % FINER % FINER % FINER (ft) FICATION (PCF) LL PL PI PI 3/4" #4 #200	PEC	3RAV	
E SAMPLE SAMPLE U.S.C.S.SOIL DELIVERED DRY ATTERBERG GRAIN SIZE DISTORMBER DEPTH CLASSI- MOISTURE DENSITY LIMITS % FINER % FINER (ft) FIGATION (%) (PCF) IL PL PI PI 3/4" #4	z z	<u>بر</u>	l
E SAMPLE SAMPLE U.S.C.S.SOIL DELIVERED DRY ATTERBERG GRAIN SIZE DISTORMBER DEPTH CLASSI- MOISTURE DENSITY LIMITS % FINER % FINER (ft) FIGATION (%) (PCF) IL PL PI PI 3/4" #4	일	FINE #200	
E SAMPLE SAMPLE U.S.C.S.SOIL DELIVERED DRY ATTERBERG GRAIN SI. NUMBER DEPTH CLASSI- MOISTURE DENSITY LIMITS % FINER 1 (ft) FICATION (%) (PCF) LL PL PI 3/4"	띪	ል	
E SAMPLE SAMPLE U.S.C.S.SOIL DELIVERED DRY ATTERBERG GRAIN SI. NUMBER DEPTH CLASSI- MOISTURE DENSITY LIMITS % FINER (f) FICATION (%) (PCF) LL PL PI 3/4"	ŝ	FINE 4	
E SAMPLE SAMPLE U.S.C.S. SOIL DELIVERED DRY ATTERBERG GRAIN NUMBER DEPTH CLASSI. MOISTURE DENSITY LIMITS % FIN (ft) FICATION (%) (PCF) LL PL PI PI 3/4	SIZE	ጸ	
E SAMPLE SAMPLE U.S.C.S.SOIL DELIVERED DRY ATTERBER OLYMBER DEPTH CLASSI- MOISTURE DENSITY LIMITS (ft) FICATION (%) (PCF) IL PL F	RAIN	FINE 3/4"	
E SAMPLE SAMPLE U.S.C.S.SOIL DELIVERED DRY ATTERBER OLYMBER DEPTH CLASSI- MOISTURE DENSITY LIMITS (ft) FICATION (%) (PCF) IL PL F	9	8	1
E SAMPLE SAMPLE U.S.C.S. SOIL DELIVERED DRY NUMBER DEPTH CLASSI. MOISTURE DENSITY (ft) FICATION (%) (PCF)	3ERG	TS P	
E SAMPLE SAMPLE U.S.C.S. SOIL DELIVERED DRY NUMBER DEPTH CLASSI. MOISTURE DENSITY (ft) FICATION (%) (PCF)	TER	≅ □	
E SAMPLE SAMPLE U.S.C.S.SOIL DELIVERED NUMBER DEPTH CLASSI- MOISTURE (ft) FICATION (%)	Ā		
E SAMPLE SAMPLE U.S.C.S.SOIL DELIVERED NUMBER DEPTH CLASSI- MOISTURE (ft) FICATION (%)	≿	SITY `F)	
E SAMPLE SAMPLE U.S.C.S.SOIL DELIVERED NUMBER DEPTH CLASSI- MOISTURE (ft) FICATION (%)	ő	DEN. (PC	
E SAMPLE SAMPLE U.S.C.S.SOIL DE NUMBER DEPTH CLASSI- M (ft) FICATION			
E SAMPLE SAMPLE U.S.C.S.SOIL DE NUMBER DEPTH CLASSI- M (ft) FICATION	≥	STUI	
E SAMPLE SAMPLE U.S.C.S.S. NUMBER DEPTH CLASSI- (ft) FICATIOI	DE	Σ	
E SAMPLE SAMPLE U.S NUMBER DEPTH (ft) F	šol	ıχ	
E SAMPLE SAMPLE U.S NUMBER DEPTH (ft) F	S.S.	LASS	
E SAMPLE SAMPI NUMBER DEPT (ft)	U.S.(그 님	
E SAMPLE S/ NUMBER D	PLE	Ę į	
E SAMPLE NUMBER	SAM	DEP (ft	
ш			
ш	(PLE	1BER	
SAMPLE TYPE	SAN	Š	
SAMPLE	411	- 1 F.	
SA ⊤	MPLE	YPE	
	SA	-	

SL = SHRINKAGE LIMIT PI = PLASTIC INDEX

C = CONSOLIDATION TEST
DS = DIRECT SHEAR TEST
PERM = PERMEABILITY

APPENDIX D-1

INDEX TESTING

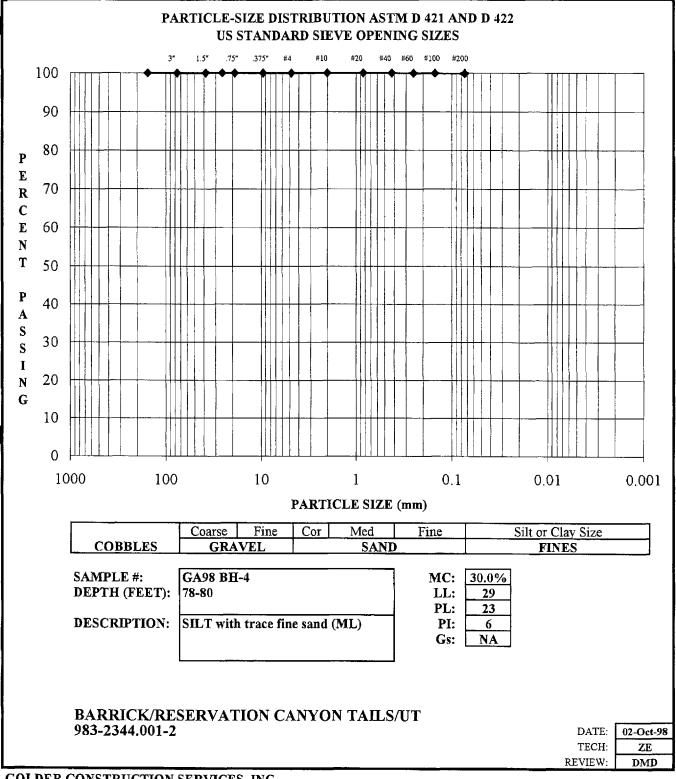

GOLDER ASSOCIATES INC. LAKEWOOD, COLORADO

PARTICLE-SIZE ANALYSIS OF SOILS ASTM D 421, D 422, D 1140, D 2216, D 2217

BARRICK/R 983-2344.001	RESERVATIO -2	ON CANYO	N TAILING	S/UT		NUMBER: DEPTH (ft):	GA98-BH4 20-22	
MOISTURE	CONTENT ((As Tested)			PERCENT	PASSING #1	0 SIEVE	
_		·					г	
Tare		}	TARE		Total Weight		<u>_</u>	404.30
Weight Wet S		Ļ	0.00		Weight Split			404.30
Weight Dry S]	0.00		Percent Passi	ng #10	Ĺ	100.00%
Weight Tare,		ļ	0.00					
Weight Water			0.00					
Weight Dry S		ļ	0.00					
Moisture Con	tent, %		#DIV/0!					
		SIEVE	Wt. Ret., g	% Ret.	% Pass.	SIEVE		
Coarse Gravel	1	3.000"	0.00	0.00%	100.00%	3 000"	Coarse Gravel	1
Compo Ciaro	-	1.500"	0.00	0.00%	100.00%	1.500"	Compo Crave	•
		1.000"	0.00	0.00%	100.00%	1.000"		
Fine Gravel		0.750"	0.00	0.00%	100.00%		Fine Gravel	
		0.375"	0.00	0.00%	100.00%	0.750	- me Graver	
Coarse Sand		#4	0.00	0.00%	100.00%		Coarse Sand	
Coarse Sand Medium Sand		#10	0.00	0.00%	100.00%		Medium Sand	
SAMPLE PE	REPARATIO				S	π10	medium bailu	
Percent Passir			100.00		Initial Wet W	eight /	50.00	
Specific Grav		ŀ	2.73		Calculated D		49.88	
	gent, ml, Used	(40 ml Na(P)		ı 0 ml H ₂ O)	125	l	+2.00	
	CONTENT			<u> </u>	1 12		i	
Tare		(11) g. 0000 p.	AZ					
Weight Wet S	Soil & Tare o	Ì	87.26				LL: [29
Weight Dry S		l	87.12	Ì			PL:	23
Weight Tare,		ľ	29.12	1			PI:	6
Weight Moist		ľ	0.14				Gs:	2.73
Weight Dry S			58.00				55. [2.75
Moisture Con			0.24%				1	
	10 TO #200 S	SIEVE CAL						
	CUMUL. WT		CUMUL. WI		PERCENT			
SEIVE	RETAINED]	RET. CORR		PASSING			
#10	0.00		0.00		100.00%	#10	Medium Sand	
#20	0.03		0.03		99.94%	#20		
#40	0.05		0.05		99.90%	#40	Fine Sand	
#60	0.10		0.10		99.80%	#60		
#100	0.15		0.15	1	99.70%	#100		
#20 <u>0</u>	1.28		1.28		97.43%		Fines	
DATE	TIME	TIME, CUM.	READING	TEMP.	HYD. RDG.	PARTICLE	PERCENT	
		(min)	R	Т	н	DIAMETER	FINER	
10/01/1998	08:59	2	45.0	23.7	3.69	0.028	82.0%	
	09:01	4	42.9	23.7	3.69	0.020	77.8%	
	09:05	8	38.4	23.8	3.66	0.015	69.0%	
	09:12	15	34.8	23.9	3.62	0.011	61.9%	
	09:27	30	31.3	23.9	3.62	0.008	54.9%	
	09:57	60	26.4	24.0	3.59	0.006	45.3%	
	10:57	120	22.8	24.2	3.53	0.004	38.3%	
	12:57	240	18.7	24.7	3.37	0.003	30.4%	
	16:57	480	15.8	25.2	3.21	0.002	25.0%	
10/02/1998	08:57	1,440	13.5	23.2	3.85	0.001	19.2%	
% C GRVL:	0.0%_							***************************************
% F GRVL:	0.0%	0.0%						
% C SAND:	0.0%	0.070	Wet Color:	SILT with	trace fine		1	
% M SAND:	0.1%		Description:				1	
% F SAND:	2.5%	2.6%		- Medium	Seemer (TVALL)		DATE: [10/02/199
	97.4%	2.0 /0	•	L			TECH:	ZE
% FINES:								

GOLDER ASSOCIATES INC. LAKEWOOD, COLORADO

JOB NUMBER . 983-2344 . 001-2 BORING NUMBER GA 98-BH-4 PROJECT BARRICK MERCURTAILINGS / NT SAMPLE NUMBER DATE 9-22-98 DEPTH 20-22' TOP SAMPLE DESCRIPTION Slines & sills, dive, dank tom 30-Sandy lense near top, f, gr. w clays & silts, olive, don't to 24odown 18-12-**BOTTOM** DENSITY WATER CONTENT DETERMINATION DIAMETER (cm) 7,20 F-19 LENGTH (cm) 54,35 TARE # X-36 WT. TUBE & WET SAMPLE (g) \$622.19 WET WT. & TARE (g) 205,63 175.51 129.25 TUBE WT. (g) 17/0.3 DRY WT. & TARE (g) 154.82 WET WT. OF SAMPLE (g) 39/1.8 TARE (g) 32,79 33,70 MOISTURE CONTENT (%) 45.0 3 Ave AREA (cm²) 40,72 VOLUME (cm3) ZZ/Z, WET UNIT WT. (pcf) DRY UNIT WT. (pcf) LAB WORK DONE BY: RD APPROVED BY:

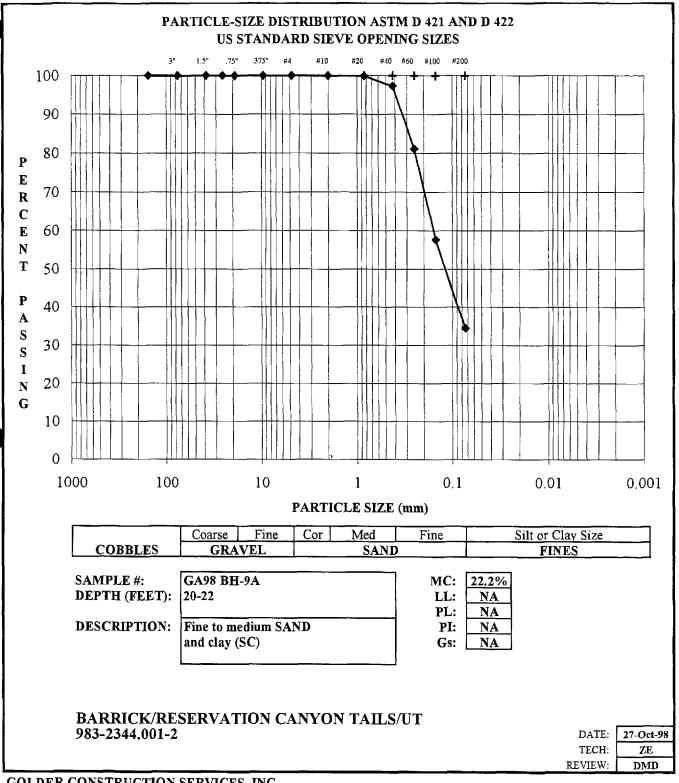


PARTICLE-SIZE ANALYSIS OF SOILS

ASTM C 117, C 136, D 421, D 422, D 1140, D 2216, D 2217

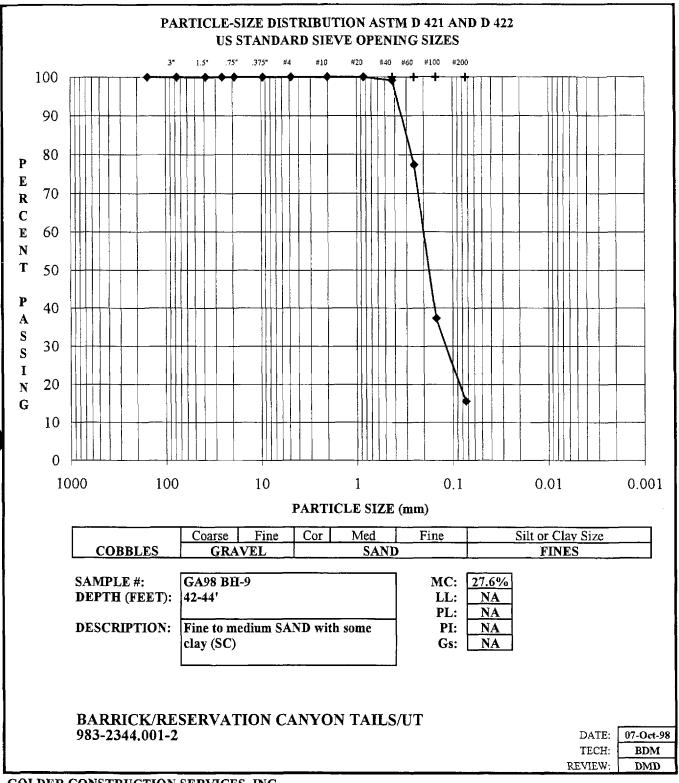
BARRICK/RESER 983-2344.001-2	RVATION C	ANYON T	AILS/UT		IPLE #: GA98 BH-4 (FEET): 40-42	
MOISTURE CON	ΓENT (Deliv	ered Moist	ure)		SH (Percent Fines)	
Tare	ſ	F26		Tare		513
Weight Wet Soil & T	293.55			il & Tare Before Wash, g	492.94	
Weight Dry Soil & T		224.49		-	il & Tare After Wash, g	158.49
Weight Tare, g	arc, 5	32.61		Weight Ta		158.25
Weight Water, g		69.06		Weight Fir	• •	245.87
Weight Dry Soil, g		191.88		Weight Dr	. •	246.11
Moisture, %		35.99%		Fines Lost	· · ·	99.90%
	SIEVE	Wt. Ret.	% Ret.	% Pass.	SIEVE	
	6.000"	0.00	0.00%	100.00%	6.000"	
Coarse Gravel	3.000"	0.00	0.00%	100.00%	3.000" Coarse Gravel	
	1.500"	0.00	0.00%	100.00%	1.500"	
	1,000"	0.00	0.00%	100.00%	1.000"	
Fine Gravel	0.750"	0.00	0.00%	100.00%	0.750" Fine Gravel	
	0.375"	0.00	0.00%	100.00%	0.375"	
Coarse Sand	#4	0.00	0.00%	100.00%	#4 Coarse Sand	
Medium Sand	#10	0.00	0.00%	100.00%	#10 Medium Sand	
	#20	0.00	0.00%	100.00%	#20	
Fine Sand	#40	0.00	0.00%	100.00%	#40 Fine Sand	
	#60	0.01	0.00%	100.00%	#60	
	#100	0.01	0.00%	100.00%	#100	
	#200	0.29	0.12%	99.88%	#200	
Fines	PAN	0.36	0.00%	100.00%	PAN Fines	
			_			
% C GRVL:					CLAY with trace fine	
% F GRVL:		0.0%	D	escription:	sand (CL)	
% C SAND:				r		· , - • · · · · · · · · · · · · · · · · · ·
% M SAND:			LL:	NA		
% F SAND: 0.1% 0.19		0.1%	PL:	NA	DATE:	02-Oct-98
% FINES:			PI:	NA	TECH:	ZE
% TOTAL:	100.0%		Gs:	NA	REVIEW:	DMD

JCB NUMBER 983 - 2344. 001-2 PROJECT BARRICK / MERCUR TAILIN DATE 10/05/98	
30 Tap	SAMPLE DESCRIPTION
	patium brown wet to moist
18- brown W	some con matteling
12- 6-	52mp/R
O TITITION BOTTOM	bottor
DENSITY	WATER CONTENT DETERMINATION
DIAMETER (cm) 7.23 LENGTH (cm) 53.5 WT. TUBE & WET SAMPLE (g) 56 50.5 TUBE WT. (g) 1505.4 WET WT. OF SAMPLE (g) 41.06	TARE # X-36 WET WT. & TARE (g) 227.67 DRY WT. & TARE (g) 176.05 TARE (g) 32.79 MOISTURE CONTENT (%) 36.0
VOLUME (cm²) 7/9/6.4 WET UNIT WT. (pcf) //7.8 DRY UNIT WT. (pcf) 86.6	LAB WORK DONE BY:
	APPROVED BY:


PARTICLE-SIZE ANALYSIS OF SOILS ASTM C 117, C 136, D 421, D 422, D 1140, D 2216, D 2217

BARRICK/RESERV	VATION C	ANVON T	'AII S/IIT	SAM	PLE#:	GA98 BH-4	
	VALION C	ANIONI	AILS/UI				
983-2344.001-2				DEPTH ((FEE1):	/8-80	
MOISTURE CONT	ENT (Deliv	ered Moist	ture)	#200 WAS	H (Percen	t Fines)	
Tare		C5		Tare			15D
Weight Wet Soil & Tare, g		289.88		Weight Soi	l & Tare Be	efore Wash, g	758.15
Weight Dry Soil & Ta	- 1	230.76		Weight Soi	l & Tare At	fter Wash, g	158.11
Weight Tare, g		33.80		Weight Tar	e, g		157.02
Weight Water, g		59.12		Weight Fin	es Lost, g		461.26
Weight Dry Soil, g		196.96		Weight Dry	Soil, g		462.35
Moisture, %		30.02%		Fines Lost,	%		99.76%
<u></u>	SIEVE	Wt. Ret.	% Ret.	% Pass.	SIEVE		
	6,000"	0.00	0.00%	100.00%	6.000"		
Coarse Gravel	3.000"	0.00	0.00%	100,00%	3.000"	Coarse Gravel	
	1.500"	0.00	0.00%	100.00%	1.500"		
	1.000"	0.00	0.00%	100.00%	1.000"		
Fine Gravel	0.750"	0.00	0.00%	100.00%	0.750"	Fine Gravel	
	0.375"	0.00	0.00%	100.00%	0.375"		
Coarse Sand	#4	0.00	0.00%	100.00%	#4	Coarse Sand	
Medium Sand	#10	0.00	0.00%	100.00%	#10	Medium Sand	
	#20	0.00	0.00%	100.00%	#20		
Fine Sand	#40	0.02	0.00%	100.00%	#40	Fine Sand	
	#60	0.23	0.05%	99.95%	#60		
	#100		0.12%	99.88%	#100		
	#200		0.21%	99.79%	#200		
Fines	PAN	1.07	0.00%	100.00%	PAN	Fines	
				ı			
% C GRVL:	0.0%				SILT with	trace fine sand	d (ML)
% F GRVL:	0.0%	0.0%	D	escription:			
% C SAND:	0.0%			_			
% M SAND:	0.0%		LL:	29			
% F SAND: 0.2%		0.2%	PL:	23		DATE:	02-Oct-98
% FINES:	99.8%		PI:	6		TECH:	ZE
% TOTAL:	100.0%		Gs:	NA		REVIEW:	DMD

JOB NUMBER 983-1344 001-	BORING NUMBER 6498 BHY
PROJECT BANNICK Morem Failing DATE 10/5/28	DEPTH 78-80
TOP	SAMPLE DESCRIPTION
30 Empli	
24	
5/ine, medi - finm to	slightly soft, sticky
12- Consolidation sa becoming	prod brown
6	
BOTTOM	
DENSITY	WATER CONTENT DETERMINATION
DIAMETER (cm) 7.26 LENGTH (cm) 53.7 WT. TUBE & WET SAMPLE (g) 5826.7	TARE # 2 5 2 WET WT. & TARE (g) 2 5%, 5%
TUBE WT. (g) 1629, 35 WET WT. OF SAMPLE (g) 4/197.2	DRY WT. & TARE (g) 230, 76 TARE (g) 33, 80 MOISTURE CONTENT (%) 30, 0
AREA (cm²) 41.40 VOLUME (cm³) 2223_0 WET UNIT WT. (pcf) 117.8 DRY UNIT WT. (pcf) 90.6	
	LAB WORK DONE BY: APPROVED BY:


red Attalians of zarrach

0, 1447

PARTICLE-SIZE ANALYSIS OF SOILS ASTM C 117, C 136, D 421, D 422, D 1140, D 2216, D 2217

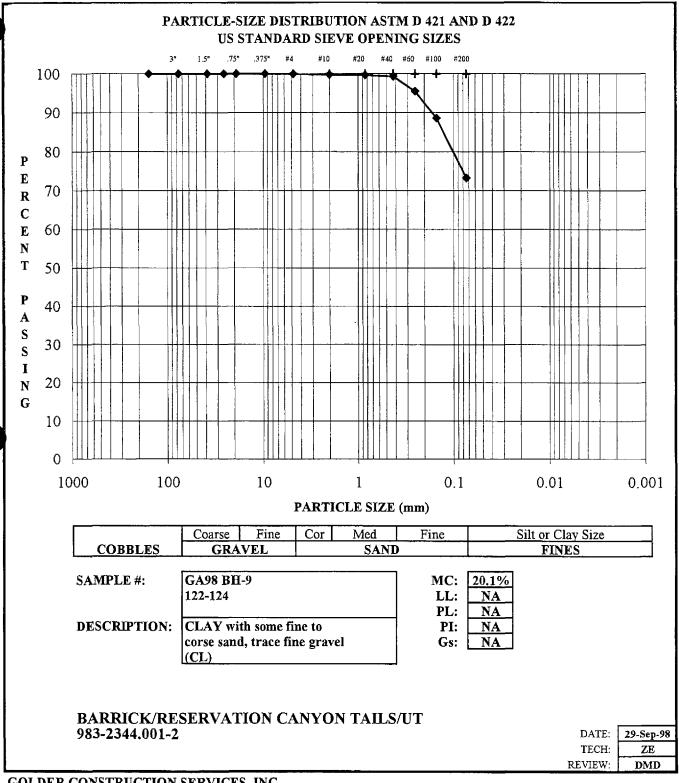
BARRICK/RESERV	VATION C	ANYON T	AILS/UT	SAM	[PLE #: GA98 BH-9A			
983-2344.001-2				DEPTH (FEET): 20-22				
MOISTURE CONT	ENT (Deliv	ered Moist	ture)	#200 WAS	SH (Percent Fines)			
Tare	!	X28		Tare		Z17		
Weight Wet Soil & Ta	ire, g	110.45		Weight So	il & Tare Before Wash, g	593.87		
Weight Dry Soil & Ta	re, g	96.50		Weight So:	il & Tare After Wash, g	409.67		
Weight Tare, g		33.58		Weight Ta	re, g	190.77		
Weight Water, g		13.95		Weight Fir	nes Lost, g	111.05		
Weight Dry Soil, g		62.92		Weight Dr	y Soil, g	329.95		
Moisture, %		22.17%		Fines Lost.	, %	33.66%		
	SIEVE	Wt. Ret.	% Ret.	% Pass.	SIEVE			
	6.000"	0.00	0.00%	100.00%	6.000"			
Coarse Gravel	3.000"	0.00	0.00%	100.00%	3.000" Coarse Gravel			
	1.500"	0.00	0.00%	100.00%	1.500"			
	1.000"	0.00	0.00%	100.00%	1.000"			
Fine Gravel	0.750"	0.00	0.00%	100.00%	0.750" Fine Gravel			
	0.375"	0.00	0.00%	100,00%	0.375"			
Coarse Sand	#4	0.00	0.00%	100.00%	#4 Coarse Sand			
Medium Sand	#10		0.00%	100.00%	#10 Medium Sand			
	#20	0,33	0.10%	99.90%	#20			
Fine Sand	#40	8.71	2.64%	97.36%	#40 Fine Sand			
	#60	62.54	18.95%	81.05%	#60			
	#1001	139.67	42.33%	57.67%	#100			
	#200		65.50%	34.50%	#200			
Fines	PAN	219.27	0.00%	100.00%	PAN Fines			
A/ G CD1#		1	_					
% C GRVL:	0.0%				Fine to medium SAND			
% F GRVL:	0.0%	0.0%	D	escription:	and clay (SC)			
% C SAND:	0.0%							
% M SAND:			LL:	NA_				
	% F SAND: 62.9%		PL:	NA NA	DATE:	27-Oct-98		
% FINES:	34.5%		PI:	NA	TECH:	ZE		
% TOTAL:	100.0%		Gs:	NA	REVIEW:	DMD		

PARTICLE-SIZE ANALYSIS OF SOILS

ASTM C 117, C 136, D 421, D 422, D 1140, D 2216, D 2217

BARRICK/RESERV	VATION C	ANYON T	AILS/UT	SAM	PLE #:	GA98 BH-9	
983-2344.001-2				DEPTH	(FEET):	12-44'	
MOISTURE CONT	ENT (Deliv	ered Moist	ure)	#200 WAS	SH (Percent	Fines)	
Tare	1	f39		Tare			75
Weight Wet Soil & Tare, g		192.75		Weight Soi	l & Tare Be	fore Wash, g	769.48
Weight Dry Soil & Ta	re, g	158.18		Weight Soi	l & Tare Af	ter Wash, g	585.27
Weight Tare, g	-	32.98		Weight Tar	re, g		221.49
Weight Water, g		34.57		Weight Fin	es Lost, g		65.64
Weight Dry Soil, g		125.20		Weight Dry	y Soil, g		429.42
Moisture, %		27.61%		Fines Lost,	%		15.29%
	SIEVE	Wt. Ret.	% Ret.	% Pass.	SIEVE		
	6.000"	0.00	0.00%	100.00%	6.000"		
Coarse Gravel	3.000"	0.00	0.00%	100.00%	3.000"	Coarse Gravel	
	1.500"	0.00	0.00%	100.00%	1.500"		
	1.000"	0.00	0.00%	100.00%	1.000"		
Fine Gravel	0.750"	0.00	0.00%	100.00%	0.750"	Fine Gravel	
	0.375"	0.00	0.00%	100.00%	0.375"		
Coarse Sand	#4	0.00	0.00%	100.00%	#4	Coarse Sand	
Medium Sand	#10	0.02	0.00%	100.00%	#10	Medium Sand	
	#20	0.07	0.02%	99.98%	#20		
Fine Sand	#40	3.63	0.85%	99.15%	#40]	Fine Sand	
	#60	96.94	22.57%	77.43%	#60		
	#100	269.07	62.66%	37.34%	#100		
	#200	362.60	84.44%	15.56%	#200		
Fines	PAN	363.75	0.00%	100.00%	PAN	Fines	
		•					
% C GRVL:	0.0%		7	Wet Color:	Fine to me	dium SAND w	ith some
% F GRVL:	0.0%	0.0%	D	escription:	clay (SC)		
% C SAND:	0.0%						
% M SAND:	0.8%		LL:	NA			
% F SAND: 83.6%		84.4%	PL:	NA		DATE:	07-Oct-98
% FINES:	15.6%		PI:	NA		TECH:	BDM
% TOTAL:	100.0%		Gs:	NA		REVIEW:	DMD

Fax #

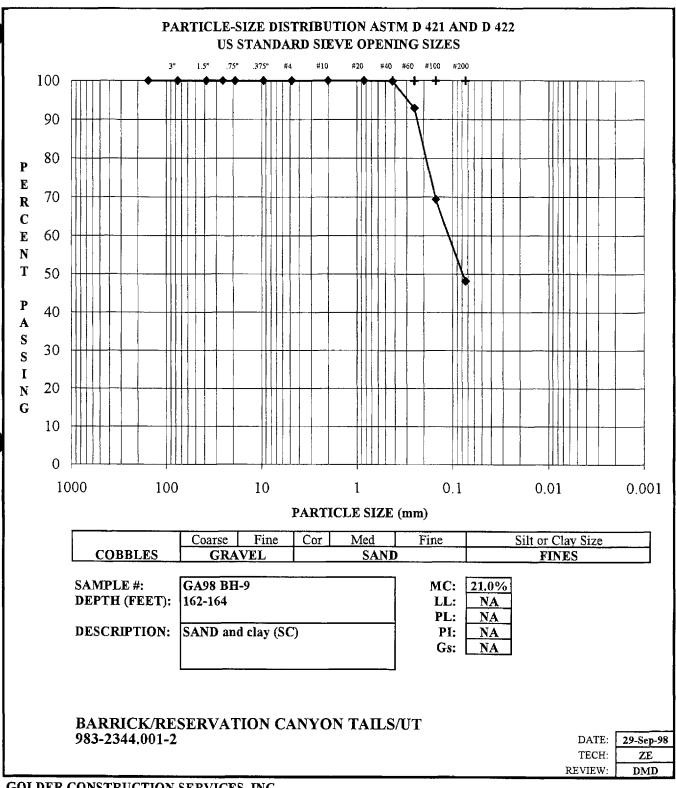

SHELBY	TUBE SAMPLE DESCRIPTION	ZN
AND	DENSITY MEASUREMENT	

AND DE	NSITY MEASUREMENT	
JOB NUMBER 783-2344. 0017- PROJECT PANTUS/MARCUS FAILURG DATE 10/7/94	BORING NUMBER SS SAMPLE NUMBER DEPTH	GA 98 BH9 42-44
TOP 30 24 Way 18- 12- Sand, many met	SAMPLE DESCRIPTION	mpdium grain,
Perus 57/ 0 BOTTOM		
DENSITY	WATER CONTENT D	ETERMINATION
DIAMETER (cm) 7.26 LENGTH (cm) 30.35 WT. TUBE & WET SAMPLE (g) 33/3.0 TUBE WT. (g) 275.7 WET WT. OF SAMPLE (g) 2437./3 AREA (cm²) 41.40	TARE # WET WT. & TARE (g) DRY WT. & TARE (g) TARE (g) MOISTURE CONTENT (%)	192.75 50.7/ 158.18 124.39 32-98 32-3/ 27.6 28.6
VOLUME (cm²) 1756.4 WET UNIT WT. (pcf) 171-1 DRY UNIT WT. (pcf) 94.5		78-1 AV 7671 Date 10-Zb pages 1
	Co/Dept. Phone #	Co. Phone #

JOB NUMBER 983-1344 OF PROJECT BANTON MOYCUM FAIT	21-7, BORING NUMBER 6498 BH9
DATE	DEPTH 60-62
TOP	SAMPLE DESCRIPTION
24-	
12- Sand Opvision BOTTOM	angelians gray moist, undicum of las sline strongs, interfamons?
DENSITY DIAMETER (cm) 7.24 LENGTH (cm) 37.95 WT. TUBE & WET SAMPLE (g) 4250.2 TUBE WT. (g) 1162. 8 WET WT. OF SAMPLE (g) 3088.2 AREA (cm²) 4/.17 VOLUME (cm³) 1562.4 WET UNIT WT. (pcf) 123.3 DRY UNIT WT. (pcf) 99.0	WATER CONTENT DETERMINATION TARE #
	LAB WORK DONE BY: APPROVED BY:

JOB NUMBER 983-2344 001- PROJECT BANTILIS MANGENTATION DATE 10/12/98	BORING NUMBER GA 98 BH 9 DEPTH BO-87
ТОР	SAMPLE DESCRIPTION
24- Trep way 18- 18- 18- 5/ine, yeld consil spl 5/ine, media	y brown moist slimy/w slive modium arsined, slime bs//s comme low brown, moist y moist to wet, medium to sine some brown, moist to wet
DENSITY	WATER CONTENT DETERMINATION
DIAMETER (cm) 7.23 LENGTH (cm) 49.20 WT. TUBE & WET SAMPLE (g) 554/8.8 TUBE WT. (g) 1505-1 WET WT. OF SAMPLE (g) 4043.8 AREA (cm²) 41.28 VOLUME (cm³) 2031-1	TARE # X 3 /
WET UNIT WT. (pcf) 124.7 DRY UNIT WT. (pcf) 99.8	
	LAB WORK DONE BY: APPROVED BY:

		BORING NUMBER	GA98-BH	<u> </u>
DATE	de/Marcus Tai/h	DEPTH	100-102	
ТОР		SAMPLE DESCRIPTION		
30 TOP	<i>y</i>			
26 WJX				
18- /w water				
12-	Sline in towart /	edium brows	5 July me	165
6				
воттом				
DENSITY		WATER CONTENT DET	ERMINATION	
DIAMETER (cm) LENGTH (cm) WT. TUBE & WET SAMPLE (g)	7.27 20.75 7331.78	TARE#_ WET WT. & TARE (g)	F19 F	2 40 552
TUBE WT. (g) WET WT. OF SAMPLE (g)	1700.2	DRY WT. & TARE (g) _ TARE (g) _	148.33 129. 32-66 32.	74
AREA (cm²) VOLUME (cm²) WET UNIT WT. (pcf) DRY UNIT WT. (pcf)	41.51 861.3 123.2 97.2	MOISTURE CONTENT (%)	26.7	· · · //
		LAB WORK DONE BY: _ APPROVED BY: _		



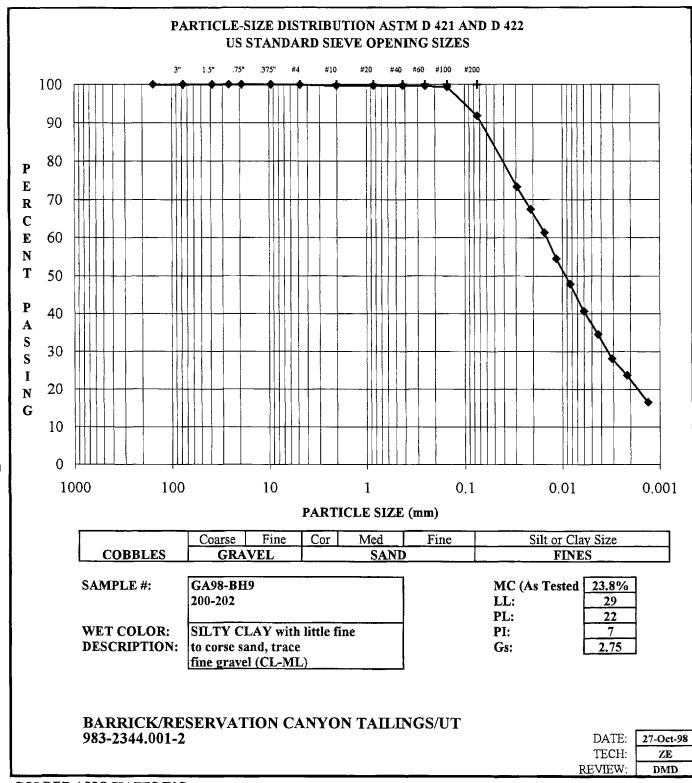
PARTICLE-SIZE ANALYSIS OF SOILS ASTM C 117, C 136, D 421, D 422, D 1140, D 2216, D 2217

				•	·		
BARRICK/RESERV	VATION C	ANYON T	AILS/UT	SAM	PLE #:	GA98 BH-9	
983-2344.001-2				DEPTH	(FEET):	122-124	
MOISTURE CONT	ENT (Deliv	ered Moist	ure)	#200 WAS	SH (Percen	t Fines)	
Tare	[F23		Tare			O5
Weight Wet Soil & Ta	ıre, g	186.50		Weight Soi	l & Tare Be	efore Wash, g	774.88
Weight Dry Soil & Ta	re, g	160.86		Weight Soi	il & Tare Af	fter Wash, g	310.48
Weight Tare, g		33.60		Weight Ta	re, g		166.75
Weight Water, g		25.64		Weight Fin	es Lost, g		362.42
Weight Dry Soil, g		127.26		Weight Dr	y Soil, g		506.15
Moisture, %		20.15%		Fines Lost,	%		71.60%
	SIEVE	Wt. Ret.	% Ret.	% Pass.	SIEVE		
	6.000"	0.00	0.00%	100.00%	6.000"		
Coarse Gravel	3.000"	0.00	0.00%	100.00%	3.000"	Coarse Gravel	
	1.500"	0.00	0.00%	100.00%	1.500"		
	1.000"	0.00	0.00%	100.00%	1.000"		
Fine Gravel	0.750"	0.00	0.00%	100.00%	0.750"	Fine Gravel	
	0.375"	0.00	0.00%	100.00%	0.375"		
Coarse Sand	#4	0.41	0.08%	99.92%	#4	Coarse Sand	
Medium Sand	#10	1.06	0.21%	99.79%	#10	Medium Sand	
	#20	1.66	0.33%	99.67%	#20		
Fine Sand	#40	3.50	0.69%	99.31%	#40	Fine Sand	
	#60	22.75	4.49%	95.51%	#60		
	#100	57.60	11.38%	88.62%	#100		
	#200	135.53	26.78%	73.22%	#200		
Fines	PAN	144.22	0.00%	100.00%	PAN	Fines	
					·		
% C GRVL:	0.0%		7	Wet Color:	CLAY wit	th some fine to	
% F GRVL:	0.1%	0.1%	D	escription:	corse sand	l, trace fine gra	vel
% C SAND:	0.1%				(CL)		
% M SAND:	0.5%		LL:	NA			
% F SAND:	26.1%	26.7%	PL:	NA		DATE:	29-Sep-98
% FINES:	73.2%		PI:	NA		TECH:	ZE
% TOTAL:	100.0%		Gs:	NA]	REVIEW:	DMD

JOB NUMBER 983-1344. 001-2 PROJECT BOVICK/MEVOUR TOTAL DATE 9/24	BORING NUMBER GA98 BH9 [FUCS HSAMPLE NUMBER DEPTH 122-124
ТОР	SAMPLE DESCRIPTION
30- Tup	
12 12 12 12 12 12 12 12 12 12 12 12 12 1	e gran, fine to medium grained varned in part, part slimey
The place	green-brown, fine-medium grains,
DENSITY	WATER CONTENT DETERMINATION
DIAMETER (cm) 7.27 LENGTH (cm) 55.70 WT. TUBE & WET SAMPLE (g) 6292.6 TUBE WT. (g) /617.4 WET WT. OF SAMPLE (g) 4675.2	TARE # CC / A DD / K23 WET WT. & TARE (g) 3//.0/ 363, 77 53. 3/ DRY WT. & TARE (g) 268,06 310.97 46.48 TARE (g) 94.03 84.22 21.90 MOISTURE CONTENT (%) 23.3 23.3 27.8
AREA (cm²) 4/, 5/ VOLUME (cm³) 23/2./ WET UNIT WT. (pcf) /26, 2 DRY UNIT WT. (pcf) /02.3	MOISTURE CONTENT (%) 13,3 23,3 27,8 5/ine
8146.7 Tofs/tube	LAB WORK DONE BY: APPROVED BY:

PROJECT BOUTCH! Herews Talling of SAMPLE NUMBER DATE TOP SAMPLE DESCRIPTION WATER CONTENT DETERMINATION DIAMETER (cm) 7.27 LENGTH (cm) 29.30 WT. TUBE & WET SAMPLE (a) 3248.5 TUBE WT. (a) 9.94.4 WET WT. OF SAMPLE (a) 2344.4 AREA (cm*) 41.51 VOLUME (cm*) 1216.3 WET UNIT WT. (pcf) 49.3	JOB NUMBER 983-1	344 001-2 BORING NUMBER	GA98 BH9
DENSITY DENSITY DIAMETER (cm) TUBE WIT. (29 994.4 WET WIT. OF SAMPLE (a) VOLUME (cm?) VOLUME (cm?) VOLUME (cm?) VOLUME (cm.) VOLUME (PROJECT BAYATOLO	Moreus Tothing / SAMPLE NUMBER	11/2-11/1
DENSITY DIAMETER (cm) TUBE & WET SAMPLE (g) TUBE W. (g) POY J WET WT. OF SAMPLE (g) AREA (cm²) VOLUME (cm²)	DATE	DEFIR	176-149
Sourch Medium Drown Well fine medius	ТОР	SAMPLE DESCRIPTION	J
DENSITY WATER CONTENT DETERMINATION DIAMETER (cm) 7. 27 LENGTH (cm) 29. 30 WT. TUBE & WET SAMPLE (g) 3298.5 TUBE WT. (g) 904.4 WET WT. OF SAMPLE (g) 2394./ AREA (cm²) 4/.5/ VOLUME (cm³) 1216.3 WET UNIT WT. (pcf) 122.8 WATER CONTENT DETERMINATION AREA CONTENT DETERMINATION 1 2 AREA (cm) 29. 30 WET UNIT WT. (pcf) 122.8	18- 12- 12- 12- 12- 12- 12- 12- 12- 12- 12	grained	
DIAMETER (cm) 7, 27 LENGTH (cm) 29, 30 WT. TUBE & WET SAMPLE (g) 3298.5 TUBE WT. (g) 904.9 WET WT. OF SAMPLE (g) 7394.1 AREA (cm²) 41.51 VOLUME (cm²) 121.8 DIAMETER (cm) 7, 27 TARE # F 17 3 A WET WT. & TARE (g) 167.10 JAMET WT. & TARE (g) 142.97 TARE (g) 32-99 TARE (g) 142.97 TARE (g) 122.8	DENSITY	WATER CONTENT I	DETERMINATION
	DIAMETER (cm) LENGTH (cm) WT. TUBE & WET SAMPLE (g) TUBE WT. (g) WET WT. OF SAMPLE (g) AREA (cm²) VOLUME (cm²) WET UNIT WT. (pcf)	7. 27 29. 30	# $F17$ 3 A 107.10 158.85 1142.97 134.30 10 32.99 33.42 10 21.9 24.3
LAB WORK DONE BY: APPROVED BY:			· · · · · · · · · · · · · · · · · · ·

PARTICLE-SIZE ANALYSIS OF SOILS


ASTM C 117, C 136, D 421, D 422, D 1140, D 2216, D 2217

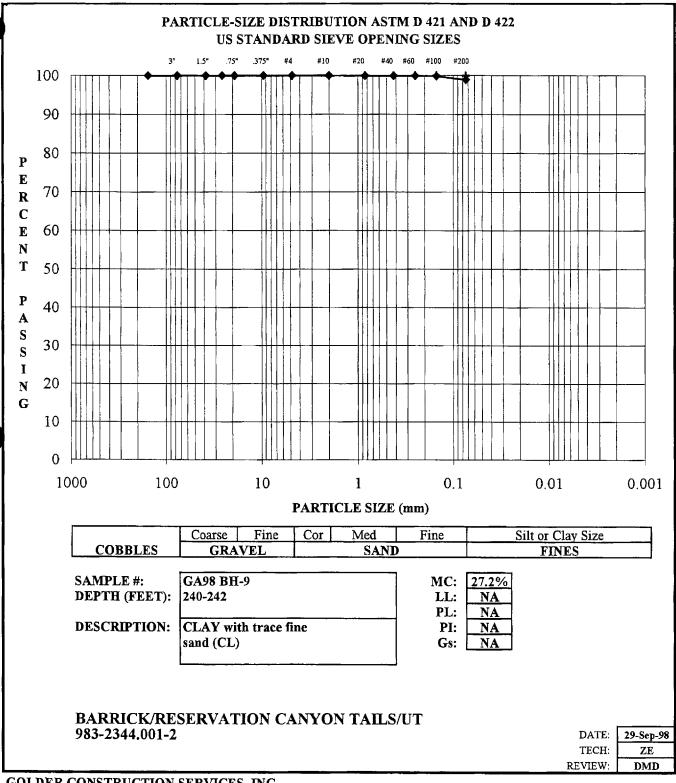
				-		
BARRICK/RESERY	VATION C	ANYON T	AILS/UT	SAM	PLE #: GA98 BH-9	
983-2344.001-2				DEPTH	(FEET): 162-164	····
MOISTURE CONT	ENT (Deliv	ered Moist	ure)	#200 WAS	SH (Percent Fines)	
Tare	[METS		Tare		1
Weight Wet Soil & Ta	are, g	1046.30		Weight Soi	l & Tare Before Wash, g	1037.90
Weight Dry Soil & Ta	re, g	881.80		Weight Soi	l & Tare After Wash, g	591.23
Weight Tare, g		98.11		Weight Tar	re, g	217.30
Weight Water, g		164.50		Weight Fin	es Lost, g	304.31
Weight Dry Soil, g		783.69		Weight Dry	y Soil, g	678.24
Moisture, %		20.99%		Fines Lost,	%	44.87%
	SIEVE	Wt. Ret.	% Ret.	% Pass.	SIEVE	
	6.000"	0.00	0.00%	100.00%	6.000"	
Coarse Gravel	3.000"	0.00	0.00%	100.00%	3.000" Coarse Gravel	
	1.500"	0.00	0.00%	100.00%	1.500"	
	1.000"	0.00	0.00%	100.00%	1.000"	
Fine Gravel	0.750"	0.00	0.00%	100.00%	0.750" Fine Gravel	
	0.375"	0.00	0.00%	100.00%	0.375"	
Coarse Sand	#4	0.00	0.00%	100.00%	#4 Coarse Sand	
Medium Sand	#10	0.05	0.01%	99.99%	#10 Medium Sand	•
	#20	0.12	0.02%	99.98%	#20	
Fine Sand	#40	0.89	0.13%	99.87%	#40 Fine Sand	
	#60	48.12	7.09%	92.91%	#60	
	#100	207.63	30.61%	69.39%	#100	
	#200	351.53	51.83%	48.17%	#200	
Fines	PAN	374.08	0.00%	100.00%	PAN Fines	
% C GRVL:	0.0%		τ.	Wat Calam	CAND I -I (CC)	·
		Λ Λ 0/			SAND and clay (SC)	
% F GRVL:	0.0%	0.0%	ט	escription:		
% C SAND:	0.0%		т т	TO T A		
% M SAND:	0.1%	5 1 00/	LL:	NA NA	7- 4 mm	00.0
% F SAND:	51.7%	51.8%	PL:	NA	DATE:	-
% FINES:	48.2%		PI:	NA	TECH:	
% TOTAL:	100.0%		Gs:	NA	REVIEW:	DMD

JOB NUMBER <u>983</u> PROJECT <u>Bayvid</u> DATE	3-1344 001- k/Mexcux tailings/ 9/19/9 8	BORING NUMBER _ SAMPLE NUMBER _ DEPTH _	GA98 BH9 162-164	
TOP		SAMPLE DESCRIPTION		
30- TOD 24-	Sand old moret to	vegyay, bro	own, fine grain	ep
DENSITY		WATER CONTENT DE	TERMINATION	
DIAMETER (cm) LENGTH (cm) WT. TUBE & WET SAMPLE (g) TUBE WT. (g) WET WT. OF SAMPLE (g) AREA (cm²) VOLUME (cm³) WET UNIT WT. (pcf) DRY UNIT WT. (pcf)	7.24 43.2 505/.4 1325.4 3716.0 41.17 17.78.5 130.7 108.1	TARE # _ WET WT. & TARE (g) DRY WT. & TARE (g) TARE (g) MOISTURE CONTENT (%)	69 Mets 1046,3 881.8 98-11 21.0	
		LAB WORK DONE BY:		
		APPROVED BY:		.

6899-2

JCB NUMBER 983 - 2344 001.	Z BORING NUMBER GA98 BH9
PROJECT Barrick / Mereur Tail	· /
DATE 10/13/98	DEPTH 180-182
TOP	SAMPLE DESCRIPTION
101	SAME LE DESCAIF HOM
30 Ton	
30	
Enpty	
V25 011 00 011	
24 1/1/1 WX	
Soud, used in	imbrowy vory fino grained, sitty
18- Marst & w	ant Chiefe
10-	1 3/1/My
12-	
	,
;	
6	
,	
o ///// wax	
воттом	
DENSITY	WATER CONTENT DETERMINATION
DIAMETER (cm) 7.24	$ \frac{1}{2}$
LENGTH (cm) 54.05	TARE # $X9$ $F.28$
WT. TUBE & WET SAMPLE (g) 6428-4	WET WT. & TARE (9) 55.89 170.38
TUBE WT. (g) 1656.18	DRY WT. & TARE (g) 136,84 149.04
WET WT. OF SAMPLE (g) 477/6	TARE (g) 33, 27
,//,/	MOISTURE CONTENT (%) /8,3 18.4
AREA (cm²) 4/.//	_
VOLUME (cm³) 2229. 7	- 18.3
WET UNIT WT. (pcf) /33.8	- 18
DRY UNIT WT. (pcf)//3,/	-
	LAB WORK DONE BY:
	APPROVED BY:
1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	ſ

GOLDER ASSOCIATES INC. LAKEWOOD, COLORADO

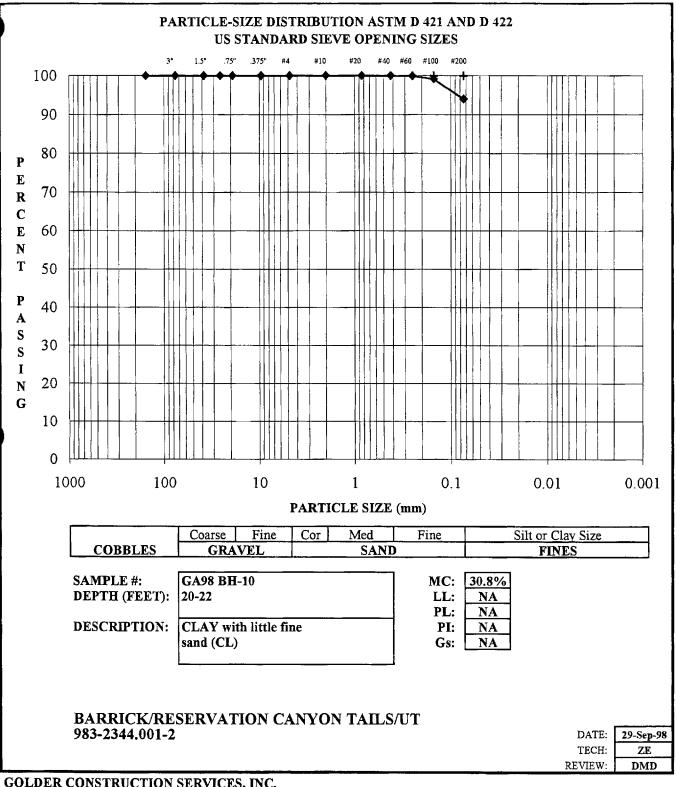

PARTICLE-SIZE ANALYSIS OF SOILS ASTM D 421, D 422, D 1140, D 2216, D 2217

BARRICK/R	RESERVATION	ON CANYO	N TAILING	S/UT	SAMPLE	NUMBER:	GA98-BH9		
9 <u>83-23</u> 44.001	983-2344.001-2					DEPTH (ft): 200-202			
MOISTURE	CONTENT	(As Tested)		· · · · · · · · · · · · · · · · · · ·	PERCENT	PASSING #1	0 SIEVE		
Tare		1	TARE		Total Weight	σ	Г	763.30	
Weight Wet S	oil & Tare a		0.00		Weight Split		F	761.00	
Weight Dry So			0.00		Percent Passi		-	99.70%	
Weight Tare,			0.00		1 CICCIII I ASSI	ing #10	L	22.1070	
Weight Water			0.00						
Weight Dry So			0.00						
Moisture Con			# DIV /0!						
1,10121010 0011		SIEVE	Wt. Ret., g	% Ret.	% Pass.	SIEVE			
_	_			1			_		
Coarse Grave	1	3.000"	0.00	0.00%	100.00%		Coarse Grave]	
		1.500"	0.00	0.00%	100.00%	1.500"			
E. C. 1		1.000"	0.00	0.00%	100.00%	1.000"	r: 0 1		
Fine Gravel		0,750"	0.00	0.00%	100.00%		Fine Gravel		
Coarse Sand		0.375" #4	0.00 0.63	0.00% 0.08%	100.00%	0.375"	Coarse Sand		
Coarse Sand <u>Medium Sand</u>	1	#4 #10	2.30	0.08%	99.92% 99.70%		Medium Sand		
SAMPI F DE	REPARATIO			ANALVET	99.7070.	#10	Medimii Sand		
Percent Passir		TITOKIII	99.70	MINDIOL	Initial Wet W	/eight	50.00		
Specific Grav			2.75		Calculated D		49.83		
	gent. ml, Used	(40 ml Na(P		0 ml H ₂ O)	125	l	12.05		
	CONTENT				<u> </u>				
Tare		· · · · · · · · · · · · · · · · · · ·	S9						
Weight Wet S	Soil & Tare, g		120.45				LL: [29	
Weight Dry S	oil & Tare, g		120.14				PL: [22	
Weight Tare,			27.92				PI:	7	
Weight Moist			0.31_				Gs:	2.75	
Weight Dry S			92.22	1			1		
Moisture Con	tent %		0.34%	<u> </u>			<u> </u>		
	10 TO #200 S			•					
	CUMUL. WI		CUMUL. WI		PERCENT				
SEIVE #10	RETAINED		RET. CORR	i	PASSING	1 410	Medium Sand	ı	
#10 #20	0.00		0.15		99.70% 99.70%	#10 #20			
#40	0.00		0.13			1 .			
# 4 0	0.02		0.17	1	99.66% 99.58%	#40 #60	Fine Sand		
#100	0.17		0.32	1	99.36%	#100			
# <u>200</u>	3.94		4.09	İ	91.82%	4	Fines		
DATE	TIME	TIME, CUM.	READING	ТЕМР.	HYD. RDG.	PARTICLE	PERCENT		
		(min)	R	T	н	DIAMETER	FINER		
10/26/1998	07:53	2	41.4	22.7	4.01	0.029	73.3%		
	07:55	4	38.4	22.7	4.01	0.021	67.4%		
	07:59	8	35.3	22.7	4.01	0.015	61.4%		
	08:06	15	31.8	22.7	4.01	0.011	54.5%		
	08:21	30	28.4	22.8	3.98	0.008	47.9%		
	08:51	60	24.7	22.9	3.94	0.006	40.7%		
	09:51	120	21.5	23.1	3.88	0.004	34.5%		
	11:51	240	18.0	23.7	3.69	0.003	28.1%		
	15:51	480	15.3	25.2	3.21	0.002	23.7%		
10/27/1998		1,440	12.5	22.5	4,07	0.001	16.5%	· · · · · · · · · · · · · · · · · · ·	
% C GRVL:	0.0%								
% F GRVL:	0.1%	0.1%					,		
% C SAND:	0.2%		Wet Color:		AY with little	fine			
% M SAND:	0.0%		Description:						
% F SAND:	7.8%	8.1%		fine gravel	(CL-ML)		DATE:	10/27/1998	
% FINES:	91.8%						TECH:	ZE	
% TOTAL:	100.00%	<u> </u>					REVIEW:	DMD	

GOLDER ASSOCIATES INC. LAKEWOOD, COLORADO

JCB NUMBER 983-2344. 001-2	T BORING NUMBER 6A98 BH 9
PROJECT Barrick Mencin Tail	INCHOIT SAMPLE NUMBER
DATE / 10/21/98	DEPTH 200-202
TOP TOP	SAMPLE DESCRIPTION .
24 7/1//// Wex	
5/ine, m 5/ig lit 19 16 saudy stva	adiumbrown, moist, firm to
12-	
0 11111111 W2X	
воттом	
DENSITY	WATER CONTENT DETERMINATION
DIAMETER (cm) 7.24	- \ \frac{1}{1} \(\frac{7}{1} \)
LENGTH (cm) <u>55.9</u> WT. TUBE & WET SAMPLE (g) 6434.9	TARE #
TUBE WT. (g) 1653.6	DRY WT. & TARE (g) 200, 73
WET WT. OF SAMPLE (g) 478 (, 3	TARE (g) 33.09
	MOISTURE CONTENT (%) 23.8
VOLUME (cm²) 2301. 3	-
WET UNIT WT. (pcf) 179.6	-
DRY UNIT WT. (pcf) 104.7	- -
	LAB WORK DONE BY:
	APPROVED BY:

JCB NUMBER 983-2344.001.70 PROJECT Bancick Mercy Tailix DATE 10/13/98	
ТОР	SAMPLE DESCRIPTION .
12- Void 6-1111 wax	ium brown maist, soft to firm -
DENSITY	WATER CONTENT DETERMINATION
DIAMETER (cm) 4.90 LENGTH (cm) 9.09 WT. TUBE & WET SAMPLE (g) 104.4 DIAMETER (cm) 9.09 WET WT. OF SAMPLE (g) 353.80 AREA (cm²) /8.86 VOLUME (cm²) 17/.4 WET UNIT WT. (pcf) 128.8 DRY UNIT WT. (pcf) 104.4	TARE # 6A X 10 WET WT. & TARE (g) 154.30 (64.99) DRY WT. & TARE (g) 131.06 (40.09) TARE (g) 31.63 33.17 MOISTURE CONTENT (%) 23.4 23.5
	LAB WORK DONE BY: APPROVED BY:

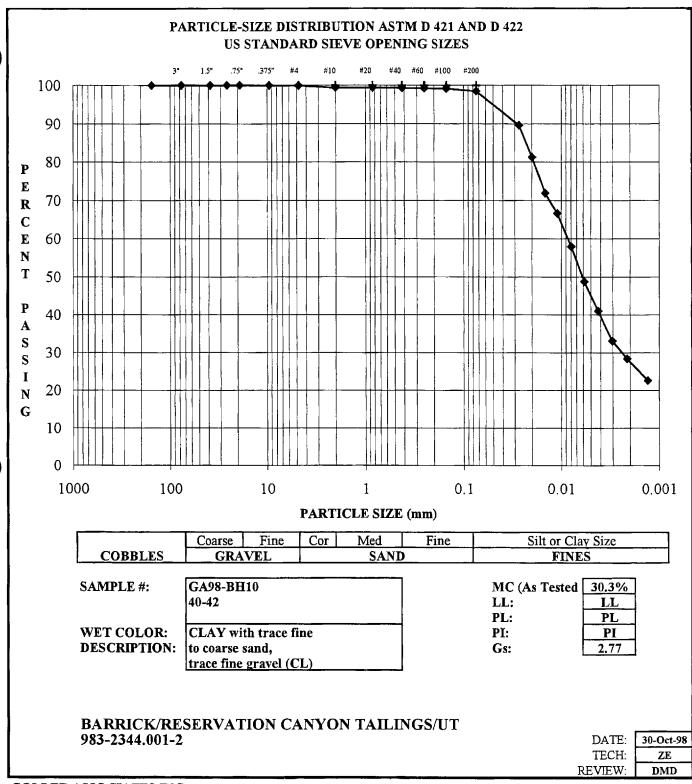


PARTICLE-SIZE ANALYSIS OF SOILS

ASTM C 117, C 136, D 421, D 422, D 1140, D 2216, D 2217

BARRICK/RESER 983-2344,001-2	VATION C	ANYON T	1	(FEET): 240-242		
200 2544.001 2					(FBE1). 210	
MOISTURE CONT	ΓΕΝΤ (Deliv	ered Moist	ure)	#200 WAS	SH (Percent Fines)	
Tare		V-3		Tare		Z17
Weight Wet Soil & T	Tare, g	359.82		Weight So:	il & Tare Before Wash, g	662.10
Weight Dry Soil & T	are, g	301.10		Weight So	il & Tare After Wash, g	201.85
Weight Tare, g		85.00		Weight Ta	re, g	190.46
Weight Water, g		58.72		Weight Fir	ies Lost, g	359.48
Weight Dry Soil, g		216.10		Weight Dr	y Soil, g	370.87
Moisture, %		27.17%		Fines Lost	, %	96.93%
	SIEVE	Wt. Ret.	% Ret.	% Pass.	SIEVE	
	6.000"	0.00	0.00%	100.00%	6.000"	
Coarse Gravel	3.000"	0.00	0.00%	100.00%	3.000" Coarse Gravel	
	1.500"	0.00	0.00%	100.00%	1.500"	
	1.000"	0.00	0.00%	100.00%	1.000"	
Fine Gravel	0.750"	0.00	0.00%	100.00%	0.750" Fine Gravel	
	0.375"	0.00	0.00%	100.00%	0.375"	
Coarse Sand	#4	0.00	0.00%	100.00%	#4 Coarse Sand	
Medium Sand	#10	0.08	0.02%	99.98%	#10 Medium Sand	
	#20		0.05%	99.95%	#20	
Fine Sand	#40	0.20	0.05%	99.95%	#40 Fine Sand	
	#60		0.08%	99.92%	#60	
	#100		0.13%	99.87%	#100	
	#200		1.05%	98.95%	#200	
Fines	PAN	11.44	0.00%	100.00%	PAN Fines	
% C GRVL:	0.0%	ļ	,	Wet Color:	CLAY with trace fine	
% F GRVL:		0.0%		escription:	sand (CL)	
% F GRVL. % C SAND:		0.076	ע	escription.	Sanu (CL)	
% C SAND: % M SAND:			LL:	NA		
% W SAND:		1.0%	PL:	NA NA	DATE:	29-Sep-9
% F SAND. % FINES:		1.070	PL. PI:		i	
				NA NA	TECH:	ZE
% TOTAL:	100.0%	<u> </u>	Gs:	NA	REVIEW:	DMD

SHELBY TUBE SAMPLE DESCRIPTION							
	AND DEI	NSITY MEASUREMENT					
JOB NUMBER 983	3-1344 00/-	2 BORING NUMBER	98 B	49			
DATE 9	128/98	DEPTH_	240 -	242			
TOP		SAMPLE DESCRIPTION					
30 TOP							
24	Slime u	redium gra	y soft	to 9/			
Moist	firm, me	pişt					
12-			/ Wite a	sutent V-3			
6- Moist			Wt Wt Dry Wt	359.82			
			MES	25.00 27.2			
ВОТТОМ				1			
DENSITY		WATER CONTENT DE	TERMINATION				
DIAMETER (cm) LENGTH (cm)	7.27 55.50	TARE#	F39	x/19			
WT. TUBE & WET SAMPLE (g)	6284.0	WET WT. & TARE (g)	336.42	1383.85			
TUBE WT. (g)	1622.2	DRY WT. & TARE (g)	189.35	239.36			
WET WT. OF SAMPLE (g)	4661.6	TARE (g) _ MOISTURE CONTENT (%)	94.0	70,0			
AREA (cm²)	41.51	-	onto A	verrale			
VOLUME (cm³)	2303.8		8	+			
WET UNIT WT. (pcf) DRY UNIT WT. (pcf)	126.3		1 Bu	1 CX			
		LAB WORK DONE BY:	Bour				
		APPROVED BY:					



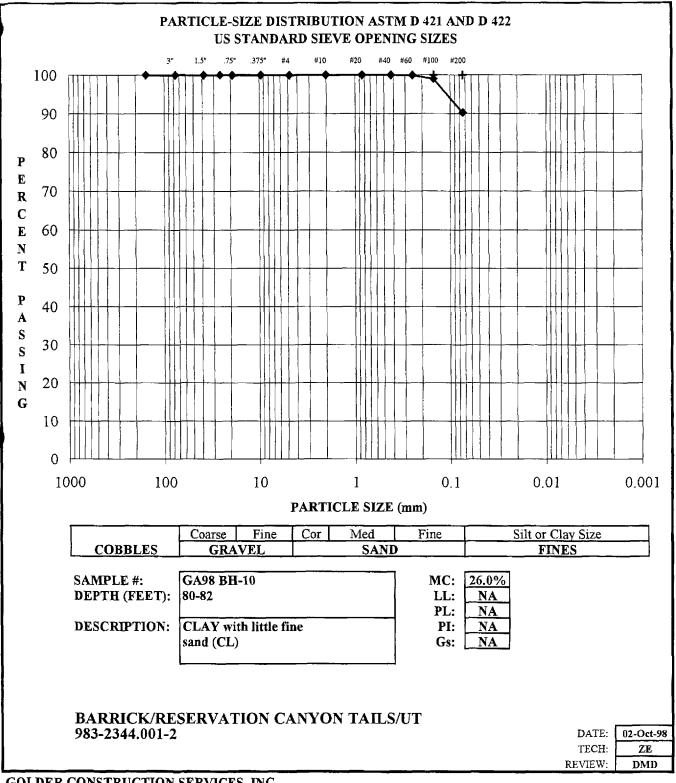
PARTICLE-SIZE ANALYSIS OF SOILS

ASTM C 117, C 136, D 421, D 422, D 1140, D 2216, D 2217

BARRICK/RESERV	VATION C	ANYON T	AILS/UT	SAM	[PLE #: GA98 BH-10	
983-2344.001-2			DEPTH	(FEET): 20-22		
				-		
MOISTURE CONT	ENT (Deliv	ered Moist	ure)	#200 WAS	SH (Percent Fines)	
Tare	Į.	Х9		Tare		15D
Weight Wet Soil & Ta	re, g	192,91		Weight So	il & Tare Before Wash, g	609.56
Weight Dry Soil & Ta		155.41		•	il & Tare After Wash, g	180.76
Weight Tare, g		33.51		Weight Ta	, -	157.02
Weight Water, g		37.50		Weight Fir	nes Lost, g	322.34
Weight Dry Soil, g		121.90		Weight Dr	y Soil, g	346.08
Moisture, %		30.76%		Fines Lost,	, %	93.14%
	SIEVE	Wt. Ret.	% Ret.	% Pass.	SIEVE	
	6.000"	0.00	0.00%	100.00%	6.000"	
Coarse Gravel	3.000"	0.00	0.00%	100.00%	3.000" Coarse Gravel	
	1.500"	0.00	0.00%	100.00%	1.500"	
	1.000"	0.00	0.00%	100.00%	1.000"	
Fine Gravel	0.750"	0.00	0.00%	100.00%		
	0.375"	0.00	0.00%	100.00%		
Coarse Sand	#4	0.00	0.00%	100.00%	#4 Coarse Sand	
Medium Sand	#10	0.00	0.00%	100.00%	#10 Medium Sand	
	#20	0.01	0.00%	100.00%	#20	
Fine Sand	#40	0.02	0.01%	99.99%	#40 Fine Sand	
	#60	0.40	0.12%	99.88%	#60	
İ	#100		0.85%	99.15%	#100	
	#200	20.73	5.99%	94.01%	#200	
Fines	PAN	23.77	0.00%	100.00%	PAN Fines	
V C CDXII	0.007	1				·
% C GRVL:	0.0%	0.007			CLAY with little fine	
% F GRVL:	0.0%	0.0%	D	escription:	sand (CL)	
% C SAND:	0.0%		* *	F 37.		
% M SAND:	0.0%	C 001	LL:	NA NA	<u> </u>	
% F SAND:	6.0%	6.0%	PL:	NA	DATE:	29-Sep-98
% FINES:	94.0%		PI:	NA	TECH:	ZE
% TOTAL:	100.0%		Gs:	NA	REVIEW:	DMD

ANU	DENSILY MEASUREMENT
JOB NUMBER 983-1344, 001-7 PROJECT 13 AVVICK/MOVCULTE DATE	BORING NUMBER GA98 BH 10 SAMPLE NUMBER DEPTH 10-12
TOP TOP TOP TOP TOP TOP TOP TOP	edium known, plive - moist tower e grained, medium array, moist egy-brown, soft, wot thin sand,
DENSITY DIAMETER (cm) 7,24 LENGTH (cm) 45.61	WATER CONTENT DETERMINATION TARE # 5-13
WT. TUBE & WET SAMPLE (g) 4957. 3 TUBE WT. (g) 448. 4 WET WT. OF SAMPLE (g) 3502.9 AREA (cm²) 4/./7 VOLUME (cm³) 1877.7 WET UNIT WT. (pcf) 1/9.	WET WT. & TARE (g) 739.6 (DRY WT. & TARE (g) 599.52 TARE (g) 158.08 MOISTURE CONTENT (%) 3 (. 7)
DRY UNIT WT. (pcf) 90,4	LAB WORK DONE BY: APPROVED BY:

GOLDER ASSOCIATES INC. LAKEWOOD, COLORADO

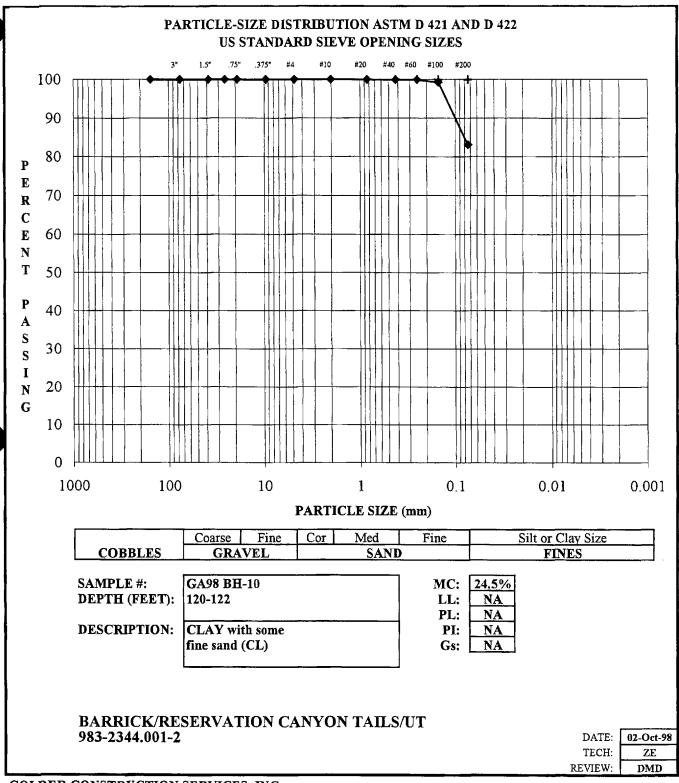

PARTICLE-SIZE ANALYSIS OF SOILS ASTM D 421, D 422, D 1140, D 2216, D 2217

BARRICK/R 983-2344.001	RESERVATI 1-2	ON CANYO	SAMPLE NUMBER: GA98-BH10 DEPTH (ft): 40-42					
MOISTURE	CONTENT	(As Tested)			PERCENT	PASSING #1	10 SIEVE	
Γare		!	TARE	1	Total Weight		Γ	702.40
Veight Wet S	oil & Tore a		0.00	ł	Weight Split		-	698.35
Weight Dry S			0.00	1	Percent Passi		-	99.42%
Weight Dry 30 Weight Tare,			0.00	{	r ercent r assi	uig #10	L	99.4270
Weight Tare, ; Weight Water			0.00					
Weight Dry S			0.00					
Moisture Cont			# DIV /0!					
Moisture Con	(EIII. 76	SIEVE	Wt. Ret., g	% Ret.	% Pass.	SIEVE		<u></u>
	_							
Coarse Gravel	l	3.000"		0.00%	100.00%		Coarse Gravel	
		1.500"	0.00	0.00%	100.00%	1.500"		
		1.000"		0.00%	100.00%	1.000"		
Fine Gravel		0.750"		0.00%	100.00%		Fine Gravel	
		0.375"	0.00	0.00%	100.00%	0.375"		
Coarse Sand		#4		0.12%	99.88%	#4	Coarse Sand	
Medium Sand		#10		0.58%	99.42%	#10	Medium Sand	
	REPARATIO	N FOR HYI		ANALYSI				
Percent Passir			99.42		Initial Wet W		50.00	
Specific Gravi			2.77	1	Calculated D	ry Weight	49.64	
	gent, ml, Used			0 ml H ₂ O)	125	<u></u> _		
	CONTENT	(Hygroscopic		•				
Tare			F30					
Weight Wet S			188.64				LL: L	LL
Weight Dry S			187.52				PL:	PL
Weight Tare,			32.86				PI:	PI
Weight Moist			1.12				Gs:	2.77
Weight Dry S			154.66					
Moisture Con			0.72%				<u> </u>	
	10 TO #200 S			_				
	CUMUL. WI		CUMUL. WI		PERCENT			
SEIVE	RETAINED]	RET. CORR	i	PASSING	1		
#10	0.00		0.29		99.42%		Medium Sand	
#20	0.00		0.29		99.42%	#20		
#40	0.05		0.34		99.32%		Fine Sand	
#60	0.11	1	0.40		99.20%	#60		
#100	0.14		0.43		99.14%	#100		
#200	0.48		0.77	<u> </u>	<u> </u>		Fines	
DATE	TIME	TIME, CUM.	READING	ТЕМР.	HYD. RDG.	PARTICLE	PERCENT	
		(min)	R	T	H	DIAMETER	FINER	
10/29/1998	08:32	2	49.4	23.5	3.75	0.027	89.6%	
	08:34	4	45.2	23.4	3.78	0.020	81.3%	
i	08:38	8	40.4	23.5	3.75	0.015	71.9%	
	08:45	15	37.7	23.5	3.75	0.011	66.6%	
	09:00	30	33.3	23.4	3.78	0.008	57.9%	
	09:30	60	28.6	23.5	3.75	0.006	48.8%	
į	10:30	120	24.5	23.9	3.62	0.004	41.0%	
	12:30	240	20.3	24.4	3.46	0.003	33.0%	
	16:30	480	17.6	25.4	3.14	0.002	28.4%	
10/30/1998	08:30	1.440	15.8	21.9	4.26	0.001	22,6%	
% C GRVL:	0.0%							
% F GRVL:	0.1%	0.1%						
% C SAND:	0.5%	×12.70	Wet Color:	CLAY with	n trace fine		1	
% M SAND:	0.1%		Description:					
% F SAND:	0.9%	1.4%			gravel (CL)		DATE:	10/30/199
	U-2/0	L.4 /0		LI ALE IIIIE	LATEL (CL)			
% FINES:	98.5%						TECH:	ZE

GOLDER ASSOCIATES INC. LAKEWOOD, COLORADO

JCB NUMBER 983-2344 001- ~ PROJECT Barrie 1x Moveus Tailin DATE 13/22/98	BORING NUMBER GA 98 BH 10 ASSOCIATION SAMPLE NUMBER 40-42
TOP 70P	SAMPLE DESCRIPTION .
Slime me	diumbrown radish brown. T. Soft to slightly Girm
18- Strok.	
6-	
BOTTOM	
DENSITY	WATER CONTENT DETERMINATION
DIAMETER (cm) 7.26 LENGTH (cm) 55-5 WT. TUBE & WET SAMPLE (g) 5764.9 TUBE WT. (g) 15950 WET WT. OF SAMPLE (g) 4169.9	TARE# 3 A 2A WET WT. & TARE (g) 246.69 308.45 DRY WT. & TARE (g) 197.31 244.3/ TARE (g) 33.44 33.95 MOISTURE CONTENT (%) 30./ 30.5
AREA (cm²) 4/-40 VOLUME (cm³) 2206, 9 WET UNIT WT. (pcf) 1/7, 9 DRY UNIT WT. (pcf) 90-5	30.3
	LAB WORK DONE BY: APPROVED BY:

JOB NUMBER 983-2344 001.7 PROJECT BANGER Menery Teilings	BORING NUMBER GAGS BH 10 SAMPLE NUMBER CO-62
TOP Top 30	SAMPLE DESCRIPTION .
18 18 18 10 12 10 BOTTOM	evium brown, sellew brown to wet, soft to skylly firm
DENSITY DIAMETER (cm) 7.14	WATER CONTENT DETERMINATION
LENGTH (cm) 55.50 WT. TUBE & WET SAMPLE (g) 5960.6 TUBE WT. (g) 1599.0 WET WT. OF SAMPLE (g) 4361.6 AREA (cm²) 4/17	TARE # 3A F 40 WET WT. & TARE (g) 145.72 203.95 DRY WT. & TARE (g) 198.38 166.03 TARE (g) 33-4/ 32.79 MOISTURE CONTENT (%) 18.7 28.4
VOLUME (cm³) 2784.9 WET UNIT WT. (pcf) 1/9-/ DRY UNIT WT. (pcf) 92.6	18.6 LA
	APPROVED BY:

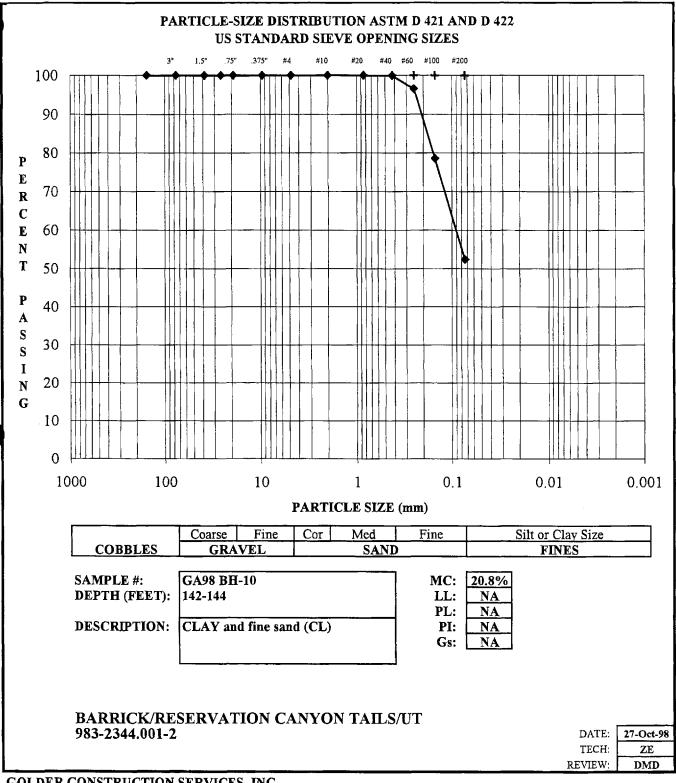


PARTICLE-SIZE ANALYSIS OF SOILS ASTM C 117, C 136, D 421, D 422, D 1140, D 2216, D 2217

BARRICK/RESERV	VATION C	ANYON T	SAM	[PLE #: GA98 BH-10		
983-2344.001-2				DEPTH	(FEET): 80-82	
			<u>-</u>			
MOISTURE CONT	ENT (Deliv	ered Moist	ture)	#200 WAS	SH (Percent Fines)	
Tare	ĺ	Z8		Tare		O5
Weight Wet Soil & Ta	ıre, g	646.96		Weight So	il & Tare Before Wash, g	620.98
Weight Dry Soil & Ta	re, g	547.85		Weight So	il & Tare After Wash, g	205.41
Weight Tare, g		166.58		Weight Ta	re, g	166.85
Weight Water, g		99.11		Weight Fir	nes Lost, g	321.88
Weight Dry Soil, g		381.27		Weight Dr	y Soil, g	360.44
Moisture, %		25.99%		Fines Lost	, %	89.30%
	SIEVE	Wt. Ret.	% Ret.	% Pass.	SIEVE	
	6.000"	0.00	0.00%	100.00%	6.000"	
Coarse Gravel	3.000"	0.00	0.00%	100.00%	3.000" Coarse Gravel	
	1.500"	0.00	0.00%	100.00%	1.500"	
	1.000"	0.00	0.00%	100.00%	1.000"	
Fine Gravel	0.750"	0.00	0.00%	100.00%	0.750" Fine Gravel	
	0.375"	0.00	0.00%	100.00%	0.375"	
Coarse Sand	#4	0.00	0.00%	100.00%	#4 Coarse Sand	
Medium Sand	#10	0.02	0.01%	99.99%	#10 Medium Sand	
	#20	0.06	0.02%	99.98%	#20	
Fine Sand	#40	0.07	0.02%	99.98%	#40 Fine Sand	
	#60	0.23	0.06%	99.94%	#60	
	#100	3.54	0.98%	99.02%	#100	
	#200	35.18	9.76%	90.24%	#200	
Fines	PAN	38.62	0.00%	100.00%	PAN Fines	
% C GRVL:	0.0%		7	Wet Color:	CLAY with little fine	
% F GRVL:	0.0%	0.0%	D	escription:	sand (CL)	
% C SAND:	0.0%			-		
% M SAND:	0.0%		LL:	NA		
% F SAND:	9.7%	9.8%	PL:	NA	DATE:	02-Oct-98
% FINES:	90.2%		PI:	NA	TECH:	ZE
% TOTAL:	100.0%		Gs:	NA	REVIEW:	DMD

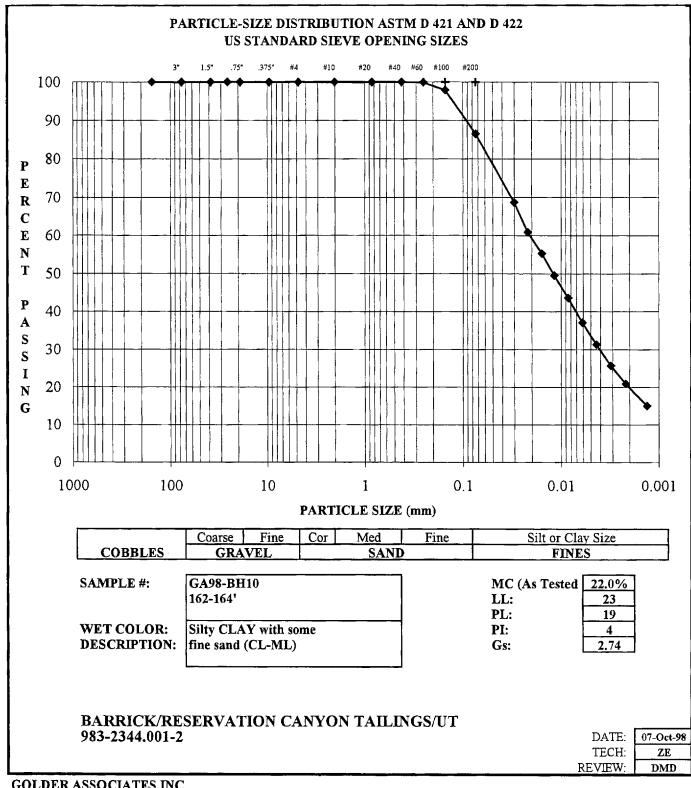
JOB NUMBER 903-1344 001-2	BORING NUMBER BA98 BH 10
PROJECT BANVICK/NEWCUN TO ITEMS	/ (T SAMPLE NUMBER
DATE 10/2/98	DEPTH 80-82
TOP	SAMPLE DESCRIPTION
30 TOP	
1 de la constantina della constantina della constantina de la constantina della cons	
24-	
The second secon	
Sandy (a) To	
18-	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
SIMO, Yel	100 brown, produing 11/ SAF
morst, Pa	VE WED
12-	
6-	
slightly same	ly stresk
S	
BOTTOM	
DENSITY	WATER CONTENT DETERMINATION
DENSITY	WATER CONTENT DETERMINATION
DIAMETER (cm)	1 2
LENGTH (cm) 45.45	TARE # _ Z &
WT. TUBE & WET SAMPLE (g) 5046.6	WET WT. & TARE (g)
TUBE WT. (g) /3/3.6	DRY WT. & TARE (g) 547.85
WET WT. OF SAMPLE (g) 3733.0	TARE (g) 66-58
AREA (cm²) 41.5/	MOISTURE CONTENT (%) 260
VOLUME (cm³) /899,/	
WET UNIT WT. (pcf) /22. 7	sampled full length for Moisture of grainsize Test
DRY UNIT WT. (pcf) 97,4	Sempled full
	Marchare & drawates
	LAB WORK DONE BY: Bdm
	APPROVED BY:
	(16412.8)

jcb number <u>98</u> project <i>Bay</i> y		BORING NUMBER SAMPLE NUMBER	GA 98 12
DATE	10/15/04	DEPTH	102-194 100-102
TOP		SAMPLE DESCRIPTION	
18- 18- 19- 12- 11'- 6-	Some yello Some brown Sime yellow becoming to Sound brown	very fine gra yellow brow orown n, moist, ver	in as above
DENSITY DIAMETER (COLUME & WET WT. TUBE & WET SAMPLE TUBE WT. WET WT. OF SAMPLE AREA (COLUME (COLUM	m) 51.70 (g) 5739.0 (g) 15.12-1 (g) 4226.9 m ²) 41.17 m ³) 2128.4 oct) 123-9	WATER CONTENT DE TARE # WET WT. & TARE (9) DRY WT. & TARE (9) TARE (9) MOISTURE CONTENT (%)	TERMINATION $ \begin{array}{c cccc} & 1 & 36 & 7 & 32 \\ \hline & 177.99 & 144.67 \\ \hline & 147.16 & 120.44 \\ \hline & 32.82 & 33.36 \\ \hline & 27.0 & 27.8 \\ \hline & 27.4 & AV \end{array} $
		LAB WORK DONE BY: APPROVED BY:	



PARTICLE-SIZE ANALYSIS OF SOILS

ASTM C 117, C 136, D 421, D 422, D 1140, D 2216, D 2217

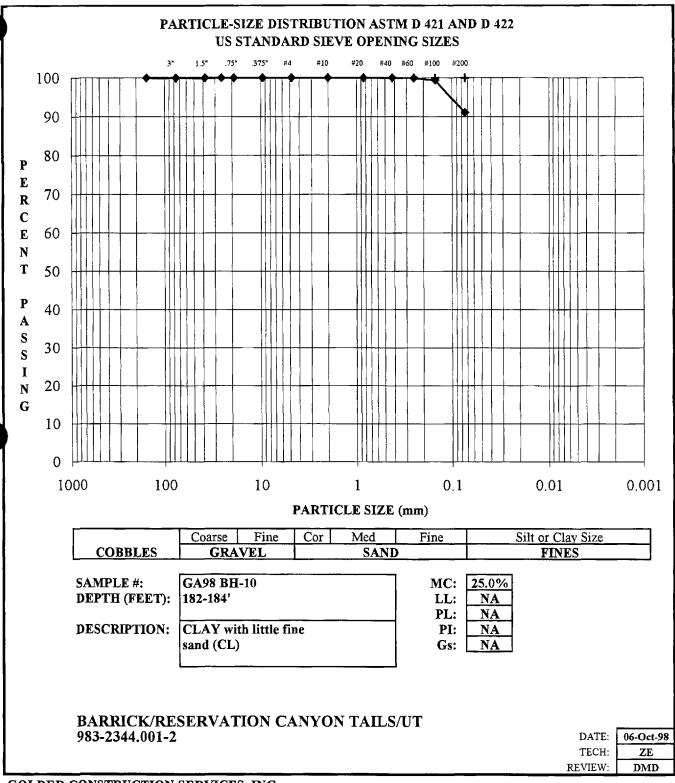

				٦		
BARRICK/RESER	VATION C	ANYON T	AILS/UT	SAM	IPLE #: GA98 BH-10	
983-2344.001-2			DEPTH	(FEET): 120-122		
MOISTURE CONT	ENT (Deliv	ered Moist	ture)	#200 WAS	SH (Percent Fines)	
Tare	Ī	F29		Tare		88A
Weight Wet Soil & Ta	are, g	212.83		Weight So	il & Tare Before Wash, g	490.15
Weight Dry Soil & Ta	are, g	177.56		Weight So	il & Tare After Wash, g	212.84
Weight Tare, g		33.89		Weight Tar	re, g	164.62
Weight Water, g		35.27		Weight Fir	nes Lost, g	213.15
Weight Dry Soil, g		143.67		Weight Dr	y Soil, g	261.37
Moisture, %	<u></u>	24.55%		Fines Lost	, %	81.55%
!	SIEVE	Wt. Ret.	% Ret.	% Pass.	SIEVE	
	6.000"	0.00	0.00%	100.00%	6.000"	
Coarse Gravel	3.000"	0.00	0.00%	100.00%	3.000" Coarse Gravel	
	1.500"	0.00	0.00%	100.00%	1.500"	
	1.000"	0.00	0.00%	100.00%	1.000"	
Fine Gravel	0.750"	0.00	0.00%	100.00%	0.750" Fine Gravel	
	0.375"	0.00	0.00%	100.00%	0.375"	
Coarse Sand	#4	0.00	0.00%	100.00%	#4 Coarse Sand	
Medium Sand	#10	0.00	0.00%	100.00%	#10 Medium Sand	
	#20	0.03	0.01%	99.99%	#20	
Fine Sand	#40	0.12	0.05%	99.95%	#40 Fine Sand	
	#60	0.25	0.10%	99.90%	#60	
	#100	1.88	0.72%	99.28%	#100	
	#200	44.06	16.86%	83.14%	#200	
Fines	PAN	48.23	0.00%	100.00%	PAN Fines	
				_		
% C GRVL:	0.0%		7	Wet Color:	CLAY with some	
% F GRVL:	0.0%	0.0%	D	escription:	fine sand (CL)	
% C SAND:	0.0%					
% M SAND:	0.0%		LL:	NA		
% F SAND:	16.8%	16.9%	PL:	NA	DATE:	02-Oct-98
% FINES:	83.1%		PI:	NA	TECH:	ZE
% TOTAL:	100.0%		Gs:	NA	REVIEW:	DMD

JOB NUMBER 983-2344 001:2 PROJECT Barrick Moroum Tailing DATE 10/2/98	
TOP 30 700	SAMPLE DESCRIPTION
Emply 24 - Sime place 5/ine place	gray, moist to wet
18- 12- {wet_	
6- Sand Olive G	yay, graybrown, moist fine to
DENSITY DIAMETER (cm) 7.24 LENGTH (cm) 48.75	WATER CONTENT DETERMINATION Soud Total TARE # F29 Intant
WT. TUBE & WET SAMPLE (g) 5473.6 TUBE WT. (g) 1425-1 WET WT. OF SAMPLE (g) 4008.5	WET WT. & TARE (g) 2/2,83 762.05 DRY WT. & TARE (g) 177.56 642.71 TARE (g) 33-89 158.51 MOISTURE CONTENT (%) 24.6
AREA (cm²) 4/./7 VOLUME (cm³) 2007.0 WET UNIT WT. (pcf) 124.6 DRY UNIT WT. (pcf) 100.0	1
	LAB WORK DONE BY: Bolin APPROVED BY:

PARTICLE-SIZE ANALYSIS OF SOILS ASTM C 117, C 136, D 421, D 422, D 1140, D 2216, D 2217

				1			
BARRICK/RESER	VATION C	ANYON T	AILS/UT		PLE #: GA98 BH-10		
983-2344.001-2				DEPTH	(FEET): 142-144		
MOISTURE CONT	ENT (Deliv	ered Moisture)		#200 WAS	#200 WASH (Percent Fines)		
Tare	ı	F15		Tare		75	
Weight Wet Soil & T	are o	204.09			l & Tare Before Wash, g	819.20	
Weight Dry Soil & Ta	,	174.73		_	l & Tare After Wash, g	469.66	
Weight Tare, g	, 8	33.72		Weight Tar	. •	221.52	
Weight Water, g		29.36		Weight Fin	, 0	246.54	
Weight Dry Soil, g		141.01		Weight Dry	· -	494.68	
Moisture, %		20.82%		Fines Lost,	. •	49.84%	
	SIEVE	Wt. Ret.	% Ret.	% Pass.	SIEVE	725-	
	6.000"	0.00	0.00%	100.00%	6.000"		
Coarse Gravel	3.000"	0.00	0.00%	100.00%	3.000" Coarse Grave	l	
	1.500"	0.00	0.00%	100.00%	1.500"		
	1.000"	0.00	0.00%	100.00%	1.000"		
Fine Gravel	0.750"	0.00	0.00%	100.00%	0.750" Fine Gravel		
	0.375"	0.00	0.00%	100.00%	0.375"		
Coarse Sand	#4	0.00	0.00%	100.00%	#4 Coarse Sand		
Medium Sand	#10	0.07	0.01%	99.99%	#10 Medium Sand		
	#20	0.10	0.02%	99.98%	#20		
Fine Sand	#40	0.30	0.06%	99.94%	#40 Fine Sand		
	#60	16.94	3.42%	96.58%	#60		
	#100	105,65	21.36%	78.64%	#100		
	#200	235.49	47.60%	52.40%	#200		
Fines	PAN	248.39	0.00%	100.00%	PAN Fines		
				,			
% C GRVL:	0.0%				CLAY and fine sand (C	L)	
% F GRVL:	0.0%	0.0%	D	escription:			
% C SAND:	0.0%						
% M SAND:	0.0%		LL:	NA			
% F SAND:	47.5%	47.6%	PL:	NA	DATE:	27-Oct-98	
% FINES:	52.4%		PI:	NA	TECH:	ZE	
% TOTAL:	100.0%		Gs:	NA	REVIEW:	DMD	

GOLDER ASSOCIATES INC. LAKEWOOD, COLORADO

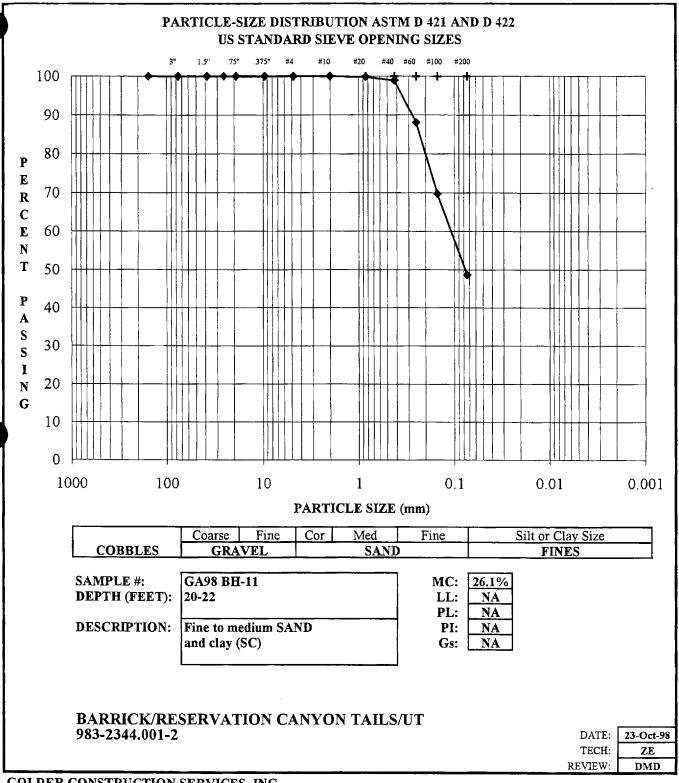

PARTICLE-SIZE ANALYSIS OF SOILS ASTM D 421, D 422, D 1140, D 2216, D 2217

BARRICK/R	RESERVATION	ON CANYO	N TAILING	S/UT	SAMPLE	NUMBER:	GA98-BH10	
983-2344.001					DEPTH (ft): 162-164'			
MOIGREEN	CONTENT	(A = 1004 - 10			DEDCESSE	DACORIO "	A CITEXIE	
MOISTURE	CONTENT	(As Tested)			PERCENT I	PASSING #1	USIEVE	
Tare		[TARE		Total Weight		[478.20
Weight Wet So		ļ	0.00		Weight Split		1	478.20
Weight Dry So			0.00		Percent Passi	ng #10	L	100.00%
Weight Tare, g			0.00					
Weight Water,			0.00					
Weight Dry So		,	0.00					
Moisture Cont	tent. %	SIEVE	22.0% Wt. Ret., g	% Ret.	% Pass.	SIEVE		····
		SILVE	w i. Rei., g	70 Ret.	/0 T 455.	SIEVE		
Coarse Gravel	1	3.000"	0.00	0.00%	100.00%	3.000"	Coarse Grave	1
		1.500"	0.00	0.00%	100.00%	1.500"		
		1.000"	0.00	0.00%	100.00%	1.000"		
Fine Gravel		0.750"	0.00	0.00%	100.00%		Fine Gravel	
		0.375"	0.00	0.00%	100.00%	0.375"	_	
Coarse Sand		#4	0.00	0.00%	100.00%		Coarse Sand	
Medium Sand		#10		0.00%	100.00%	#10	Medium Sand	<u> </u>
SAMPLE PR Percent Passin		N FUK HYD I	100.00	ANALYSI 	S Initial Wet W	leight	50.00	
Specific Gravi			2.74		Calculated D		49.89	
Dispersing Ag		(40 ml Na/P)		I () m1 H ₂ ()	125	l weight	49.69	
MOISTURE				<u> </u>	1 123		1	
Tare		`	T-5					
Weight Wet S	oil & Tare, g		86.26				LL:	23
Weight Dry So			86.13				PL:	19
Weight Tare, 1		:	28.38				PI:	4
Weight Moist			0.13				Gs:	2.74
Weight Dry So			57.75					
Moisture Cont			0.23%				<u> </u>	
PERCENT #	:10 1 0 #200 ; CUMUL. W1		CULATION CUMUL. WI	ין	PERCENT			
	RETAINED		RET. CORR		PASSING			
#10	0.00	أ	0.00	ĺ	100.00%	#10	Medium Sand	i
#20	0.00		0.00		100.00%	#20		•
#40	0.00		0.00		100.00%		Fine Sand	
#60	0.06		0.06	Ì	99.88%	#60		
#100	1.06		1.06		97.88%	#100		
#200	6.73		6.73		86.51%	e e	Fines	
DATE	TIME	TIME, CUM.	READING	TEMP.	HYD. RDG.	PARTICLE	PERCENT	-
		(min)	R	T	H	DIAMETER	FINER	
10/06/1998	08:02	2	38.8	22.1	4.20	0.030	68.7%	
	08:04	4	34.9	22.0	4.23	0.022	60.9%	
	08:08	8	32.1	22.0	4.23	0.016	55.3%	
	08:15 08:30	15 30	29.2 26.2	22.0 22.0	4.23	0.012	49.5%	
	08:30	60	20.2	22.0	4.23 4.20	0.008 0.006	43.6%	
	10:00	120	19.9	22.1	4.20	0.006	37.1% 31.3%	
: :	10.00	240	16.7	23.5	3.75	0.004	25.7%	
	16:00	480	13.8	25.0	3.73	0.003	20.9%	
10/07/1998	08:00	1,440	11.8	22.0	4.23	0.002	15.0%	
% C GRVL:	0.0%	4,170	*****	, <u>, , , , , , , , , , , , , , , , , , </u>	1.23		12.070	
% F GRVL:	0.0%	0.0%						
% C SAND:	0.0%			Silty CLAY	with some]	
% M SAND:	0.0%		Description:				1	
% F SAND:	13.5%	13.5%]			DATE:	10/07/199
% FINES:	86.5%		•				TECH:	ZE
%_TOTAL:	100.00%	I					REVIEW:	DMD

GOLDER ASSOCIATES INC. LAKEWOOD, COLORADO

JOB NUMBER 983-234/ 001-2 PROJECT Barrick/Mercus Tailings/V	BORING NUMBER GA98-BH 10 SAMPLE NUMBER DEPTH 162-164
30 TOP	SAMPLE DESCRIPTION
24	
18- Stine, /e/ Motherina wet to wet in	part to firm, moist,
6- BOTTOM	veele -
DENSITY DIAMETER (cm) 7.23 LENGTH (cm) 5/.65 WT. TUBE & WET SAMPLE (g) 5640.5 TUBE WT. (g) 1270.4 WET WT. OF SAMPLE (g) 4370./ AREA (cm²) 4/.06 VOLUME (cm³) 2/20.5 WET UNIT WT. (pcf) 128.6	WATER CONTENT DETERMINATION TARE # WET WT. & TARE (g) 538.9/ DRY WT. & TARE (g) 471.30 TARE (g) 163.58 MOISTURE CONTENT (%) 22.0 Sompled full length for Moisture of 514 A
DRY UNIT WT. (pcf) 105.4 5/4 1770.4	

7390.0

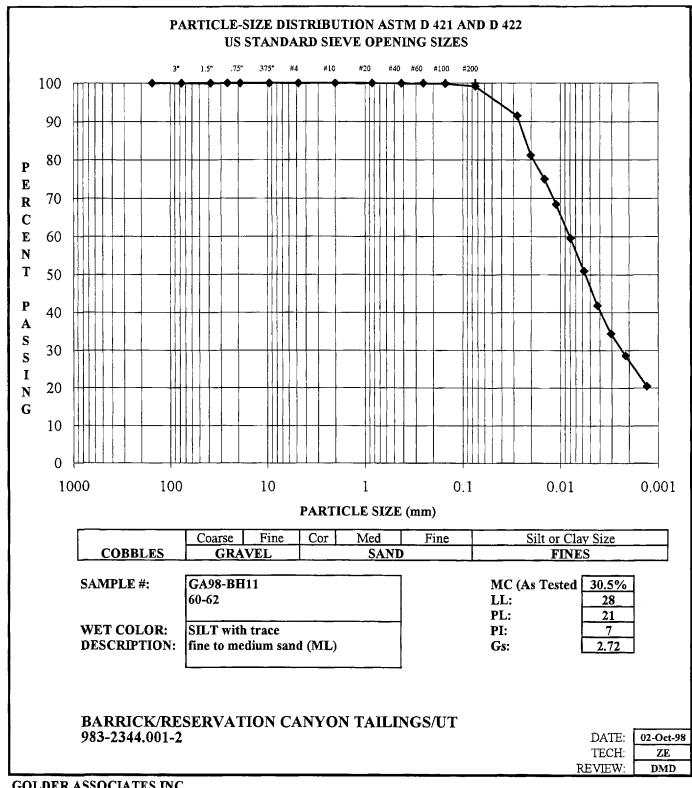


PARTICLE-SIZE ANALYSIS OF SOILS ASTM C 117, C 136, D 421, D 422, D 1140, D 2216, D 2217

		· · · · · · · · · · · · · · · · · · ·		1	r 	
BARRICK/RESER	VATION C	ANYON T	AILS/UT	SAM	[PLE #: GA98 BH-10	
983-2344.001-2			<u> </u>	DEPTH	(FEET): 182-184'	
	•					
MOISTURE CONT	ENT (Deliv	ered Moist	ture)	#200 WAS	SH (Percent Fines)	
Tare	1	F23		Tare		5-8
Weight Wet Soil & Ta	are, g	260.71		Weight Soi	il & Tare Before Wash, g	563.88
Weight Dry Soil & Ta	, 0	215.32		_	il & Tare After Wash, g	187.00
Weight Tare, g		33.64		Weight Tar	. •	157.31
Weight Water, g		45.39		Weight Fin	_	295.61
Weight Dry Soil, g		181.68		Weight Dr	y Soil, g	325.30
Moisture, %		24.98%		Fines Lost,	, %	90.87%
	SIEVE	Wt. Ret.	% Ret.	% Pass.	SIEVE	
	6.000"	0.00	0.00%	100.00%	6.000"	
Coarse Gravel	3.000"	0.00	0.00%	100.00%	3.000" Coarse Gravel	
	1.500"	0.00	0.00%	100.00%	1.500"	
	1.000"	0.00	0.00%	100.00%	1.000"	
Fine Gravel	0.750"	0.00	0.00%	100.00%	0.750" Fine Gravel	
	0.375"	0.00	0.00%	100.00%	0.375"	
Coarse Sand	#4	0.00	0.00%	100.00%	#4 Coarse Sand	
Medium Sand	#10	0.00	0.00%	100.00%	#10 Medium Sand	
	#20	0.03	0.01%	99.99%	#20	
Fine Sand	#40	0.07	0.02%	99.98%	#40 Fine Sand	
	#60	0.16	0.05%	99.95%	#60	
	#100	1.82	0.56%	99.44%	#100	
	#200	28.94	8.90%	91.10%	#200	
Fines	PAN	29.74	0.00%	100.00%	PAN Fines	
		•				
% C GRVL:	0.0%		7	Wet Color:	CLAY with little fine	
% F GRVL:	0.0%	0.0%	D	escription:	sand (CL)	
% C SAND:	0.0%		•			
% M SAND:	0.0%		LL:	NA		
% F SAND:	8.9%	8.9%	PL:	NA	DATE:	06-Oct-98
% FINES:	91.1%		PI:	NA	TECH:	ZE
% TOTAL:	100.0%		Gs:	NA	REVIEW:	DMD

JOB NUMBER 983-1344 00/-2 PROJECT BAVVICK MEYOUW TEXTING	SINT SAMPLE NUMBER
DATE 10/6/48	DEPTH 182-184
TOP TOP	SAMPLE DESCRIPTION
24-7/1///// wex Stine used 5/int for	Vinn brown, mort, saft to
6	
BOTTOM NO Wax -	
DENSITY	WATER CONTENT DETERMINATION
DIAMETER (cm) 7-26 LENGTH (cm) 52-2 WT. TUBE & WET SAMPLE (g) 5923.7 TUBE WT. (g) 1557.5 WET WT. OF SAMPLE (g) 4366.2 AREA (cm²) 41.40 VOLUME (cm³) 2160.7 WET UNIT WT. (pcf) 126.7 DRY UNIT WT. (pcf) 100, 5	TARE # 5 - 8 F23 WET WT. & TARE (g) 215.32 TARE (g) 15 7.25 33.64 MOISTURE CONTENT (%) 25.0
	LAB WORK DONE BY: APPROVED BY:

JOB NUMBER 983-2344 001 PROJECT BANNER MOVELLY FAITHER DATE 10/6/04	1.7 BORING NUMBER GA 98 B	
TOP TOP Empty	SAMPLE DESCRIPTION	
24-1/1/1 wax		
18- 5/inv 1	medium gray brown, m	1013t
6		
BOTTOM		
DENSITY	WATER CONTENT DETERMINATION	
DIAMETER (cm) 7.26 LENGTH (cm) 45.75 WT. TUBE & WET SAMPLE (g) 5082-3 TUBE WT. (g) 1336.2 WET WT. OF SAMPLE (g) 3746.7	TARE # 9A WET WT. & TARE (g) 198.32 DRY WT. & TARE (g) 162.77 TARE (g) 33.46 MOISTURE CONTENT (%) +62.72	2
AREA (cm²) 4/.40 VOLUME (cm³) 1993.9 WET UNIT WT. (pcf) 123.4 DRY UNIT WT. (pcf) 96.8	27.5%	
	LAB WORK DONE BY: APPROVED BY:	V 10.



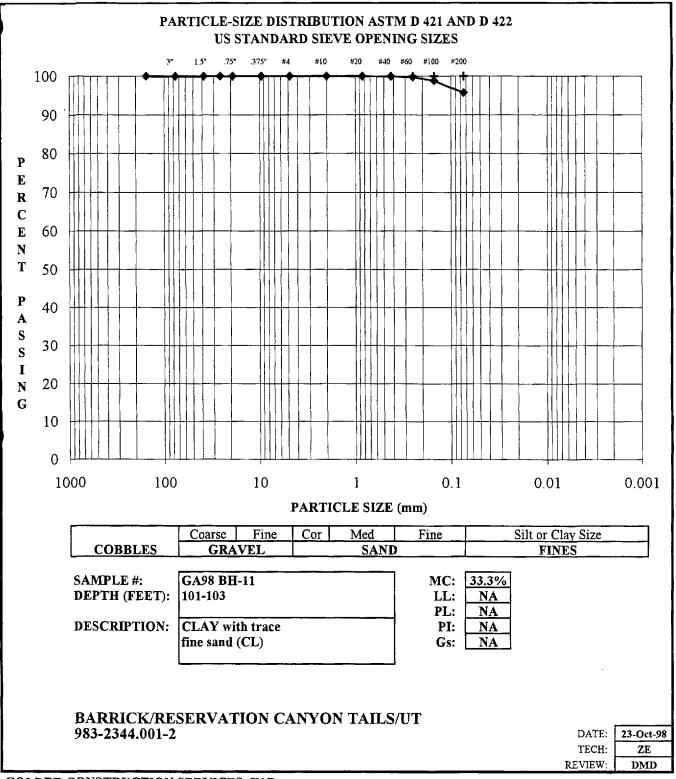
PARTICLE-SIZE ANALYSIS OF SOILS

ASTM C 117, C 136, D 421, D 422, D 1140, D 2216, D 2217

				_		
BARRICK/RESERY	VATION C	ANYON T	AILS/UT	SAM	PLE #: GA98 BH-11	
983-2344.001-2			DEPTH	(FEET): 20-22		
MOISTURE CONT	ENT (Deliv	ered Moist	ure)	#200 WAS	6H (Percent Fines)	
Tare		9A		Q4		
Weight Wet Soil & Ta	are, g	200.00		Weight Soi	il & Tare Before Wash, g	699.49
Weight Dry Soil & Ta	re, g	165.52		Weight Soi	l & Tare After Wash, g	383.18
Weight Tare, g		33.44		Weight Tar	re, g	155.49
Weight Water, g		34.48		Weight Fin	ies Lost, g	203.70
Weight Dry Soil, g		132.08		Weight Dr	y Soil, g	431.39
Moisture, %		26.11%		Fines Lost,	%	47.22%
	SIEVE	Wt. Ret.	% Ret.	% Pass.	SIEVE	
	6.000"	0.00	0.00%	100.00%	6.000"	
Coarse Gravel	3.000"	0.00	0.00%	100.00%	3.000" Coarse Gravel	
	1.500"	0.00	0.00%	100.00%	1.500"	
	1.000"	0.00	0.00%	100.00%	1.000"	
Fine Gravel	0.750"	0.00	0.00%	100.00%	0.750" Fine Gravel	
	0.375"	0.00	0.00%	100.00%	0.375"	
Coarse Sand	#4	0.00	0.00%	100.00%	#4 Coarse Sand	
Medium Sand	#10	0.16	0.04%	99.96%	#10 Medium Sand	
	#20	0.74	0.17%	99,83%	#20	
Fine Sand	#40	4.64	1.08%	98.92%	#40 Fine Sand	
	#60	51.28	11.89%	88.11%	#60	
	#100	130.58	30.27%	69.73%	#100	
	#200	221,71	51.39%	48.61%	#200	
Fines	PAN	227.91	0.00%	100.00%	PAN Fines	
		•				
% C GRVL:	0.0%		7	Wet Color:	Fine to medium SAND	
% F GRVL:	0.0%	0.0%	D	escription:	and clay (SC)	
% C SAND:	0.0%					
% M SAND:	1.0%_	1	LL:	NA		
% F SAND:	50.3%	51.4%	PL:	NA	DATE:	23-Oct-98
% FINES:	48.6%		PI:	NA	TECH:	ZE
% TOTAL:	100.0%		Gs:	NA	REVIEW:	DMD

DATE 10/27 DEPTH 70-22
TOP SAMPLE DESCRIPTION
30- Tap Enat!
sand brown fine grained very moist
18-
12- Coussel 50/
6-
BOTTOM
DENSITY WATER CONTENT DETERMINATION
DIAMETER (cm) 7.24
LENGTH (cm) 5/-5 TARE # 9/ F30 WT. TUBE & WET SAMPLE (g) 5/690.7 WET WT. & TARE (g) 200.00 175.48
TUBE WT. (g) 1601.9 DRY WT. & TARE (g) 165.52 146.81
WET WT. OF SAMPLE (g) 4088. 8 TARE (g) 33-44 32-89 MOISTURE CONTENT (%) 26.1 75-2
ABEA (cm2) 4/./7
VOLUME (cm³) 2/20.2 WET UNIT WT. (pcf) /20.3
DRY UNIT WT. (pcf) 75, 8
LAB WORK DONE BY: APPROVED BY:

GOLDER ASSOCIATES INC. LAKEWOOD, COLORADO

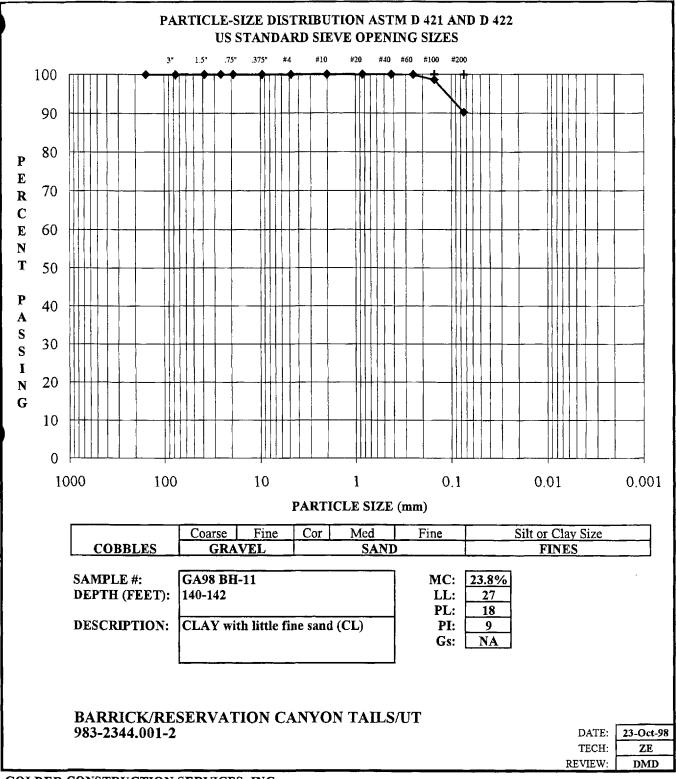

PARTICLE-SIZE ANALYSIS OF SOILS ASTM D 421, D 422, D 1140, D 2216, D 2217

BARRICK/RESERVATION CANYON TAILINGS/UT 083-2344.001-2					SAMPLE NUMBER: GA98-BH11 DEPTH (ft): 60-62			
MOISTURE	CONTENT	(As Tested)			PERCENT I	PASSING #1	0 SIEVE	
Tare		ī	TARE		Total Weight	σ	Г	494.40
Weight Wet S	oil & Tare o	ŀ	0.00		Weight Split		}	494.40
Weight Dry S			0.00		Percent Passi		ŀ	100.00%
Weight Tare,			0.00		1 Crocm 1 door		L	100,007
Weight Water			0.00					
Weight Dry S			0.00					
Moisture Con		Ì	# DIV /0!					
		SIEVE	Wt. Ret., g	% Ret.	% Pass.	SIEVE		
Coarse Grave	1	3.000"	0.00	0.00%	100.00%	3.000"	Coarse Grave	1
	_	1.500"	0.00	0.00%	100.00%	1.500"		-
		1.000"	0.00	0.00%	100.00%	1.000"		
Fine Gravel		0.750"	0.00	0.00%	100.00%		Fine Gravel	
		0.375"	0.00	0.00%	100.00%	0.375"		
Coarse Sand		#4	0.00	0.00%	100.00%		Coarse Sand	
Medium Sand		#10	0.00	0.00%	100.00%		Medium Sand	<u> </u>
	REPARATIO				S			
Percent Passir			100.00		Initial Wet W	eight e	50.00	
Specific Grav	ity	l	2.72		Calculated D		49.88	
Dispersing A	gent, ml, Used			0 ml H₁O)	125			
	CONTENT							
Tare		` • •	N3					
Weight Wet S	Soil & Tare, g		90.22				LL:	28
Weight Dry S	oil & Tare, g		90.07				PL:	21_
Weight Tare,	g		28.04				PI:	7
Weight Moist	ure, g		0.15				Gs:	2.72
Weight Dry S	oil, g		62.03				1	
Moisture Con			0.24%			.		
	10 TO #200 S							
	CUMUL. WI		CUMUL. WI		PERCENT			
SEIVE	RETAINED		RET. CORR	i	PASSING	ı		
#10	0.00		0.00		100.00%		Medium Sand	
#20	0.02		0.02		99.96%	#20		
#40	0.04		0.04		99.92%		Fine Sand	
#60	0.06		0.06		99.88%	#60		
#100	0.07		0.07		99.86%	#100		
#200	0.41	TIME CONT	0.41	The same of the sa	99.18%		Fines	
DATE	TIME	TIME, CUM.	READING	ТЕМР.	HYD. RDG.	PARTICLE	PERCENT	
10/01/1998	08:56	(min)	40.7	723 O	H 2.62	DIAMETER	FINER	
10/01/1338	08:56	2 4	49.7 44.5	23.9	3.62	0.027	91.5%	
	09:02	8	44.5 41.4	24.0 24.0	3.59 3.59	0.020	81.2%	
	09:02	15	38.1	24.0		0.014	75.0%	
	09:09	30	33.6	23.9	3.62 3.59	0.011 0.008	68.4%	
	09:24	60	33.6 29.2	24.0	1	0.008	59.6%	
	10:54	120	29.2	24.2	3.53		51.0%	
	10:54	240		I	3.49	0.004	41.9%	
			20.7	24.8	3.33	0.003	34.5%	
10/02/1000	16:54	480	17.6	25.3	3.17	0.002	28.6%	
10/02/1998	08:54	1,440	14.2	23.2	3.85	0.001	20.5%	
% C GRVL:	0.0%	0.004						
% F GRVL:	0.0%	0.0%	777.40.1	OTT TO 11			1	
% C SAND:	0.0%			SILT with			1	
% M SAND:	0.1%		Description:	tine to med	ium sand (MI	ــ)		
% F SAND:	0.7%	0.8%		L			DATE:	10/02/19
% FINES:	99.2%	ļ					TECH:	<u>ZE</u>
% TOTAL:	100.00%	L					REVIEW:	DMD

GOLDER ASSOCIATES INC. LAKEWOOD, COLORADO

JCB NUMBER 983 - 2344 .001-	2. BORING NUMBER A98 BH-11
PROJECT BARRICK / MERCUR	Z BORING NUMBER A98 BH-11 TAILINGS/LISAMPLE NUMBER
DATE 9-23-98	DEPTH 60-62
TOP	SAMPLE DESCRIPTION
Sline w/fi	ie gr. sands
olive, tam moist, to vet	
18-	
12-	
6-	
воттом	
DENSITY	WATER CONTENT DETERMINATION
DIAMETER (cm) 7, 15 LENGTH (cm) 55.75 WT. TUBE & WET SAMPLE (g) 5994, 5 TUBE WT. (g) 1645, 1 WET WT. OF SAMPLE (g) 4349, 4 AREA (cm²) 40,15 VOLUME (cm³) 7236, 4 WET UNIT WT. (pcf) 171, 1 DRY UNIT WT. (pcf) 97.9	TARE # F-39 X-28 WET WT. & TARE (g) /39,34 2/4,07 DRY WT. & TARE (g) 114.50 171.91 TARE (g) 33,01 33,47 MOISTURE CONTENT (%) 30, 5 30,5
	LAB WORK DONE BY:
	7 () () () () () () () () () (

	JMBER 64 48 BH //
PROJECT BOWITH MOVELY TOTTINGS / SAMPLE NO	DEPTH 80-87
DATE 10/15/98	8/7-82
TOP SAMPLE DESCR	RIPTION
30- Tap Enjoty	
15 MILLION 2X	
Stiere, mediusas brou	
18- This sandy stronks	firm - occasions/
15	
12-	
6	
6 WILLIAM WAX-	
DENSITY WATER CONT	ENT DETERMINATION
DIAMETER (cm) 7.25 LENGTH (cm) 55.92	TARE # X 3 (X 19
WT. TUBE & WET SAMPLE (g) 6/32.6 WET WT. & T	
TUBE WT. (g) 1674, 9 DRY WT. & T WET WT. OF SAMPLE (g) 445 7, 9	TARE (g) 179.59 192.2/4 TARE (g) 33.14 32.96
MOISTURE CONT	ENT (%) 26.5/ 27.3
AREA (cm²) 4/.20	26.924
VOLUME (cm ³) <u>2805.5</u> WET UNIT WT. (pcf) <u>120-5</u>	26:1
DRY UNIT WT. (pcf) 95.2	
LAB WORK DO	ONE BY:
APPRO	VED BY:



PARTICLE-SIZE ANALYSIS OF SOILS ASTM C 117, C 136, D 421, D 422, D 1140, D 2216, D 2217

				1		
BARRICK/RESER	VATION C	ANYON T	AILS/UT	SAM	IPLE #: GA98 BH-11	
983-2344,001-2				DEPTH	(FEET): 101-103	
MOISTURE CONT	ENT (Deliv	ered Moist	ture)	#200 WAS	SH (Percent Fines)	
Tare		F17		Tare		CC1
Weight Wet Soil & T	are, g	284.24		Weight So	il & Tare Before Wash, g	617.80
Weight Dry Soil & Ta	are, g	221.53		Weight So	il & Tare After Wash, g	172.51
Weight Tare, g	_	33.08		Weight Ta	re, g	156.97
Weight Water, g		62.71		Weight Fin	nes Lost, g	330.23
Weight Dry Soil, g		188.45		Weight Dr	y Soil, g	345.77
Moisture, %		33.28%		Fines Lost,	, %	95.51%
	SIEVE	Wt. Ret.	% Ret.	% Pass.	SIEVE	
	6.000"	0.00	0.00%	100.00%	6.000"	
Coarse Gravel	3.000"	0.00	0.00%	100.00%	3.000" Coarse Gravel	
	1.500"	0.00	0.00%	100.00%	1.500"	
	1.000"	0.00	0.00%	100.00%	1.000"	
Fine Gravel	0.750"	0.00	0.00%	100.00%	0.750" Fine Gravel	
	0.375"	0.00	0.00%	100.00%	0.375"	
Coarse Sand	#4	0.00	0.00%	100.00%	#4 Coarse Sand	
Medium Sand	#10	0.02	0.01%	99.99%	#10 Medium Sand	
	#20	0.05	0.01%	99.99%	#20	
Fine Sand	#40	0.18	0.05%	99.95%	#40 Fine Sand	
	#60	0.96	0.28%	99.72%	#60	
	#100	3.90	1.13%	98.87%	#100	
	#200	14.60	4.22%	95.78%	#200	
Fines	PAN	15.76	0.00%	100.00%	PAN Fines	
		1				
% C GRVL:	0.0%				CLAY with trace	
% F GRVL:	0.0%	0.0%	D	escription:	fine sand (CL)	
% C SAND:	0.0%					
% M SAND:	0.0%		LL:	NA		
% F SAND:	4.2%	4.2%	PL:	NA	DATE:	23-Oct-98
% FINES:	95.8%		PI:	NA	TECH:	ZE
% TOTAL:	100.0%		Gs:	NA	REVIEW:	DMD

JOB NUMBER 983-1344 001-2	BORING NUMBER 6498 BH 1/
DATE 10/24	SAMPLE NUMBER DEPTH 10/-103
TOP	SAMPLE DESCRIPTION .
30 Tap	
24-	
5/ight/yf	brown, moist gaft to
szudy stv-	
12- Tousol souple interel	
6-13 Goud Very + Slight	inogramed for interformated
о воттом	
DENSITY	WATER CONTENT DETERMINATION
DIAMETER (cm) 7.24 LENGTH (cm) 48.0.	TARE # = 1
WT. TUBE & WET SAMPLE (g) 5/18.0 TUBE WT. (g) /4/2.6	WET WT. & TARE (g) 284-24 182-16 DRY WT. & TARE (g) 221.53 147.14
WET WT. OF SAMPLE (9) 3 705 4	TARE (g) 33-08 33-10
AREA (cm²) 4/, 17 VOLUME (cm³) 1976-/ WET UNIT WT. (pcf) 117-0 DRY UNIT WT. (pcf) 88, 6	MOISTURE CONTENT (%) 33.3 30.7
5.11 5.11 11 150y <u>5575</u>	LAB WORK DONE BY: APPROVED BY:

JOB NUMBER 493	-1344 001.2	BORING NUMBER	6/498 BH 1/
PROJECT BAUVICK		SAMPLE NUMBER	100 100
DATE	10/7/98	DEPTH _	120-122
TOP		SAMPLE DESCRIPTION	
30 700			
24		<i></i>	
18-	SIIME, MEG MOISE, G	Salt to fi	run
12-			
6-			
воттом			
DENSITY		WATER CONTENT DE	TERMINATION
DIAMETER (cm) LENGTH (cm) WT. TUBE & WET SAMPLE (g) TUBE WT. (g)	7.26 50./ 5587.2 1437.3	TARE # _ WET WT. & TARE (g) _ DRY WT. & TARE (g)	X 17 241.46 190.12 199.91 158.59
WET WT. OF SAMPLE (g) AREA (cm²)	41.40	TARE (g) MOISTURE CONTENT (%)	33-08 33-12
VOLUME (cm²) WET UNIT WT. (pcf) DRY UNIT WT. (pcf)	2074.0 124.9 99.9		25.0 AU MC %
		LAB WORK DONE BY: APPROVED BY:	

GOLDER CONSTRUCTION SERVICES, INC. LAKEWOOD, COLORADO

PARTICLE-SIZE ANALYSIS OF SOILS ASTM C 117, C 136, D 421, D 422, D 1140, D 2216, D 2217

BARRICK/RESER	VATION C	ANYON T	AILS/UT	SAM	PLE #: GA98 BH-11	
983-2344.001-2				DEPTH	(FEET): 140-142	
MOISTINE COM	TENTE (IN II	126.		1/200 TY/A C	TY (D	
MOISTURE CONT	ENT (Deliv	ered Moist	ure)	#200 WAS	SH (Percent Fines)	
Tare		X22		Tare		17F
Weight Wet Soil & Ta	are, g	233.52		Weight Soi	l & Tare Before Wash, g	615.39
Weight Dry Soil & Ta	are, g	194.95		Weight Soi	l & Tare After Wash, g	195.40
Weight Tare, g	. 1	33.10		Weight Tar	re, g	158.13
Weight Water, g		38.57		Weight Fin	ies Lost, g	331.99
Weight Dry Soil, g		161.85		Weight Dry	y Soil, g	369.26
Moisture, %		23.83%		Fines Lost,	%	89.91%
	SIEVE	Wt. Ret.	% Ret.	% Pass.	SIEVE	
	6.000"	0.00	0.00%	100.00%	6.000"	
Coarse Gravel	3.000"	0.00	0.00%	100.00%	3.000" Coarse Grave	el .
	1.500"	0.00	0.00%	100.00%	1.500"	
	1.000"	0.00	0.00%	100.00%	1.000"	
Fine Gravel	0.750"	0.00	0.00%	100.00%	0.750" Fine Gravel	
	0.375"	0.00	0.00%	100.00%	0.375"	
Coarse Sand	#4	0.00	0.00%	100.00%	#4 Coarse Sand	
Medium Sand	#10	0.00	0.00%	100.00%	#10 Medium Sand	i
l	#20	0.05	0.01%	99.99%	#20	
Fine Sand	#40	0.13	0.04%	99.96%	#40 Fine Sand	
	#60	0.34	0.09%	99.91%	#60	
	#100	5.36	1.45%	98.55%	#100	
	#200	35.98	9.74%	90.26%	#200	
Fines	PAN	37,34	0.00%	100.00%	PAN Fines	
% C GRVL:	0.0%		7	Wet Color:	CLAY with little fine sa	and (CL)
% F GRVL:	0.0%	0.0%	D	escription:		
% C SAND:	0.0%					
% M SAND:	0.0%		LL:	27		
% F SAND:	9.7%	9.7%	PL:	18	DATE	23-Oct-98
% FINES:	90.3%		PI:	9	TECH	ZE
% TOTAL:	100.0%		Gs:	NA	REVIEW	

GOLDER CONSTRUCTION SERVICES, INC. LAKEWOOD, COLORADO

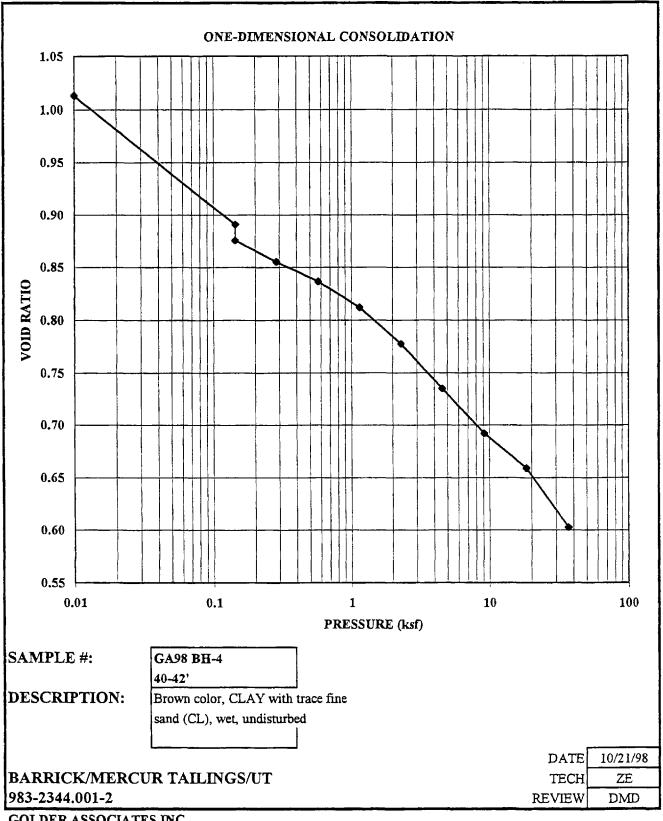
JOB NUMBER 983	-1344 001.2	/ BORING NUMBER _	GA98	BH 11
PROJECT BAVE	10/24/98	SAMPLE NUMBER DEPTH _	140-1	42
TOP		SAMPLE DESCRIPTION		
30 720	4	4 brawn		
24	Slime mo	rist, firm,		
18-	sandy stronk	dr. 6 ³		
12-	Consol solioner	rl		ring '
6-	-			
BOTTOM				
DENSITY	クッフ	WATER CONTENT DE	TERMINATION	
DIAMETER (cm) LENGTH (cm) WT. TUBE & WET SAMPLE (g) TUBE WT. (g)	52,65 6051.5 1573.2	TARE# WET WT. & TARE (g) DRY WT. & TARE (g)	X 27 233.52 194.95	X 15 194.16 163.04
WET WT. OF SAMPLE (g) AREA (cm²)	41.57	TARE (g) MOISTURE CONTENT (%)	33-10 13.8	32.38 23-8
VOLUME (cm ³) WET UNIT WT. (pcf) DRY UNIT WT. (pcf)	107.9			
		LAB WORK DONE BY: APPROVED BY:	Edu	

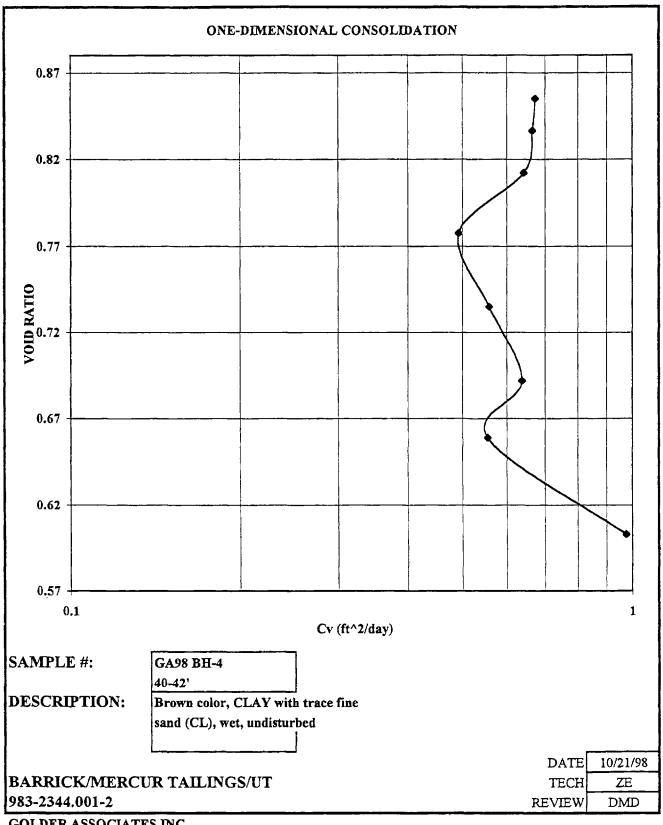
	JOB NUMBER <u>983</u>		BORING NUMBER	TB @ CPTS
	DATE	10/8/98	SAMPLE NUMBER DEPTH	0- 0.5
	ТОР		SAMPLE DESCRIPTION	
	30		<u>'</u>	
	24			
	18-			
	12-			
	6 Тар 0 ВОТТОМ	Bross lines Sond lines thin slimes		st/w introducental
ı	DENSITY		WATER CONTENT DE	TERMINATION
755.7	DIAMETER (cm) LENGTH (cm) WT. TUBE & WET SAMPLE (g) TUBE WT. (g) WET WT. OF SAMPLE (g) AREA (cm²) VOLUME (cm²) WET UNIT WT. (pcf) DRY UNIT WT. (pcf)	757.97 30.09 424.0	TARE # WET WT. & TARE (g) DRY WT. & TARE (g) TARE (g) MOISTURE CONTENT (%)	F32 X 19 199.70 152.60 165.63 126.62 33.30 32.96 25.7 27.7
	15.2 - 1. 4	1	LAB WORK DONE BY: APPROVED BY:	Testin

1.195 1.14

1.16

JCB NUMBER 98. PROJECT BAND DATE	3-2344 001-2 rick/Marcus Tailing 10/8/98	BORING NUMBER _ SAMPLE NUMBER _ DEPTH _	TB @ CTP 9
ТОР		SAMPLE DESCRIPTION	
30-			
24-			
18-			
12			
6 BOTTOM	Brass Tube Sand madic Laurium along bedding	moist vary- planes,	prominat sline svizble, odsly separates
DENSITY		WATER CONTENT DE	TERMINATION
DIAMETER (cm LENGTH (cm WT. TUBE & WET SAMPLE (g TUBE WT. (g WET WT. OF SAMPLE (g AREA (cm ² VOLUME (cm ² VOLUME (cm ²) WET UNIT WT. (pc)	1) /4,70 1) 953-4 2) 218.3 1) 735-/ 2) 30.09 2) 442.4 1) 103.7	TARE # _ WET WT. & TARE (g) _ DRY WT. & TARE (g) _ TARE (g) _ MOISTURE CONTENT (%) _	X 30 F 17 200.26 191.29 164.48 158.11 32.05 33.01 26.8 AVE
	15.19 .49	LAB WORK DONE BY: APPROVED BY:	Edm

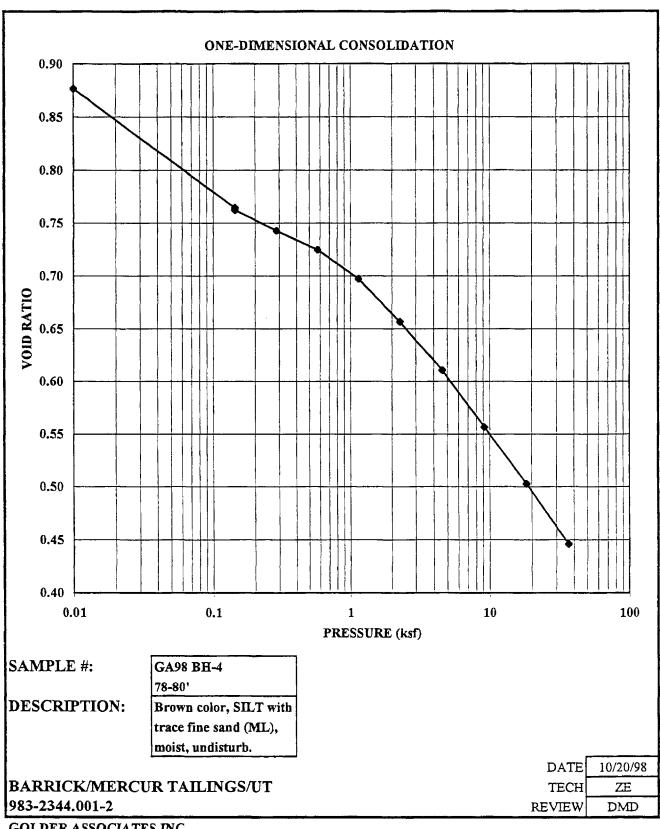

APPENDIX D-2


CONSOLIDATION TESTING

ONE-DIMENSIONAL CONSOLIDATION ASTM D 2435

				A	ASTM D 2435	135					
BARRICK/MERCUR TAILINGS/UT	UR TAILIN	NGS/UT	<i>S</i> 1	SAMPLE:	GA98 BH-4	-4				DATE	10/21/98
983-2344.001-2					40-47,					ТЕСН	ZE
SAMPIE	SAMPLE DATA CENERAL	PDAL		SAMPLED	SAMPLE DATA INITIAL	Δ1.		SAMPLED	SAMPLE DATA FINAL	KEVIEW	DMD
	Total dela					}					
height (in)		1.330		total height (in)	in)	1.330		total height (in)	ii)	1.055	
diameter (in)	æ	1.928		height of solids (in)	ds (in)	1990		height of solids (in)	ds (in)	0.661	
area (m^2) volume (in^3)	33	3.883		neight of voids (In)	as (m) se	1.013		neignt of voids (in) void ratio	(m) sr	0.597	
specimen w	specimen weight, wet (g)	116.12		dry density (pcf)	(Joc	83.77		dry density (pcf)	(Joc	105.58	
specimen w	specimen weight, dry (g)	85.38		moist density (pcf)	/ (bcl)	113.91		moist density (pcf)	(pcl)	130.46	-
water weight (g)	89 #	20.75									
DESCRIPTION	TION			MOISTURE	MOISTURE CONTENT, INITIAI	C, INITIAL		MOISTURE	MOISTURE CONTENT, FINAL	FINAL	
Brown colo	Brown color, CLAY with trace fine	trace fine		tare#		F-26		tare #	,	6-0	
sand (CL),	sand (CL), wet, undisturbed	p.		wt soil&tare,moist	moist	293.55		wt soil&tare,moist	moist	131.32	
				wt soil&tare,dry	dry	224.49		wt soil&tare,dry	dry	111.69	
.U.				wt tare		32.61		wt tare		28.38	
i in	I.L			wt dry soil		191 88		wt dry soil		83.31	<u> </u>
Assumed Gs:				% moisture		35.99%		% moisture		23.56%	
Final	DS0	150	Sample	CIOA	DRAINA	DRAINAGE PATH	DRAINA	DRAINAGE PATH	COEFFICIENT OF	IENT OF	
PRESSURE Sample	Sample	TIME (min)	Density	RATIO	(DOUBLE I	(DOUBLE DRAINAGE)	(DOUBLE I	(DOUBLE DRAINAGE)	CONSOLIDATION	DATION	
	Height		(bct)	υ	H (in)	Н (ош)	H^2 (in^2)	H^2 (cm^2)	Cv (cm^2/sec)	(fl^2/day)	
	1	ı	83.8	1.01	1	,	1	•	·	r	
	ı	ı	89.1	0.89			ı	1	ı	ı	
		, -	67.6	0.00	, ,	2 5570	03750	, , ,	7 376 73	- 745 01	
0.576 1.2218	00777	101.1	90.8	0.80	0.6130	1.537/0	0.3738	2.3843	7.4E-03	6.74E-01	- -
	1.2022	1.1103	93.0	0.81	0.6011	1.5268	0.3613	2.3311	6.89E-03	6.43E-01	
2.304 1.1706	1.1826	1.4024	94.8	0.78	0.5913	1.5019	0.3497	2.2558	5.28E-03	4.93E-01	
	1.1563	1.1833	97.1	0.74	0.5782	1.4685	0.3343	2.1566	5.98E-03	5.58E-01	
	1.1283	0.9855	9.66	69:0	0.5642	1.4330	0.3183	2.0534	6.84E-03	6.38E-01	
18.432 1.0925 36.864 1.0555	1.1032	1.0851	101.6	99:0	0.5516	1.4011	0.3043	1.9630	5.94E-03 1.05E-02	5.54E-01 9.75E-01	
ASSC	ES INC.										

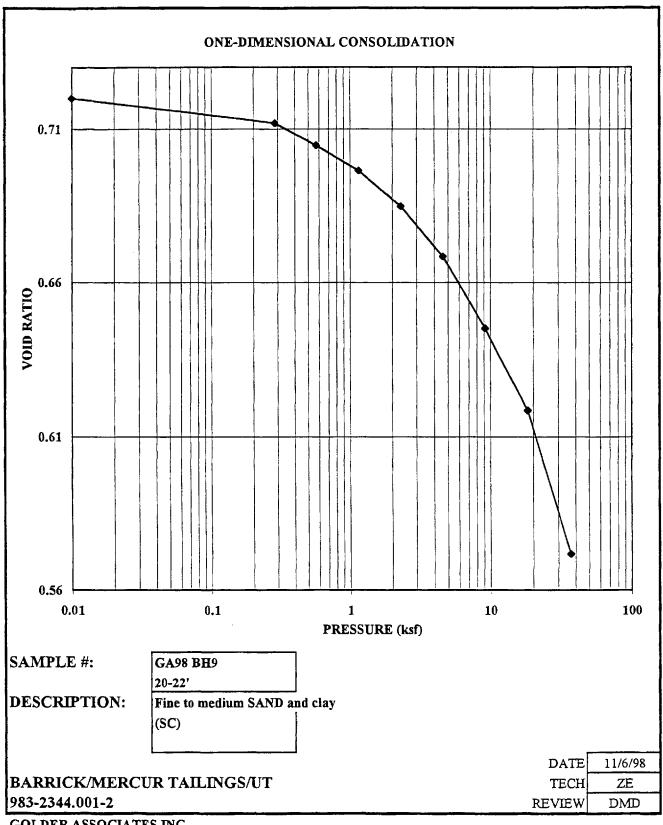
GOLDER ASSOCIATES INC.

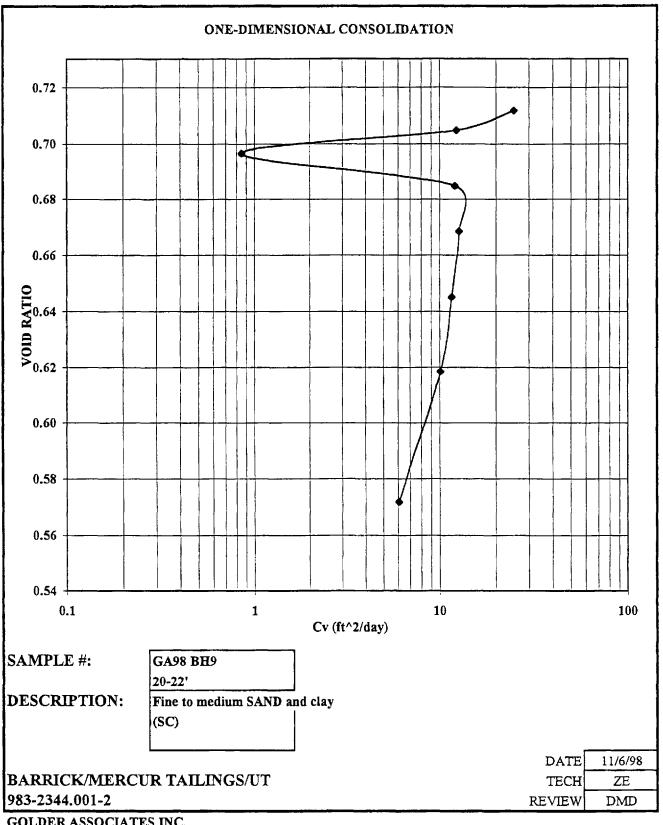


ONE-DIMENSIONAL CONSOLIDATION ASTM D 2435

			THE 18 THE		THE PARTY	CTA OF PILE					J. A. CT.	90/00/01
BAKKIC	BAKKICK/MEKCUK IAILINGS/UI	KIAILII	10/25	מ	SAIMILE:	CA38- BH-4	-				DAIE	10/70/30
983-2344.001-2	001-2		:			78-80'					TECH	ZE
								1			REVIEW	DMD
	SAMPLE DATA, GENERAL	ATA, GENE	RAL		SAMPLE DATA, INITIAL	ATA, INITI	T.		SAMPLE DA	SAMPLE DATA, FINAL		
	height (in) diameter (in) area (in^2) volume (in^3) specimen weight,wet (g) specimen weight,dy (g) water weight (g)) ight,wet (g) ight,dry (g) (g)	1.335 1.926 2.912 3.887 119.23 91.70 27.53		total height (in) height of solids (in) height of voids (in) void ratio dry density (pcf) moist density (pcf)	n) ls (in) s (in) cl) (pcl)	1.335 0.711 0.623 0.877 89.87 116.84		total height (in) height of solids (in) height of voids (in) void ratio dry density (pcf) moist density (pcf)	n) ls (in) ls (in) ccf) (pcf)	1.025 0.711 0.314 0.441 117.03	
	DESCRIPTION Brown color, SILT with trace fine sand (ML), moist., undist.	ION , SILT with L), moist., u	trace ndist.		MOISTURE CONTENT, INITIAL tare # C-5 wt soil&tare,moist 289.88 wt soil&tare,dry 230.76	CONTENT noist	, INITIAL C-5 289.88 230.76		MOISTURE COI tare # wt soil&tare,moist wt soil&tare,dry	MOISTURE CONTENT, FINAL tare # F-30 H-30 FINAL F-30 140.01 121.16		
	LL	29			wt tare		33.80		wt tare		32.85	
5	PI: (Assumed) Gs:	6 2.70			wt dry soil % moisture		196.96		wt dry soil % moisture		88.31	
	Final	D50	150	Sample	CIION	DRAINA	DRAINAGE PATH	DRAINA	DRAINAGE PATH	COEFFICIENT OF	ENT OF	
rkrasorke (ks)	Sample	Sample Height	TIME (MIN)	(pcf)		H (in)	H (cm)	H^2 (in^2)	H^2 (cm^2)	Cv (cm^2/sec)	(fl^2/day)	
0.010	1.3347	,	-	89.9	0.88						1	
0.144	1.2507	1	ı	95.5	0.76	ı	1		•	•	'	
0.144	1.2492	1 7206	1 0704	95.6	0.76	0.6108	1 57/13	0.3877	2 4785	7 55E-03	7.045-01	
0.576	1.2224	1.2267	1.1289	97.7	0.72	0.6133	1.5579	0.3762	2.4271	7.06E-03	6.59E-01	
1.152	1,2030	1.2114	0.9105	99.3	0.70	0.6057	1.5385	0.3669	2.3669	8.54E-03	7.96E-01	
2.304	1.1743	1.1869	0.9105	101.7	99.0	0.5935	1.5074	0.3522	2.2722	8.19E-03	7.65E-01	
4.608	1.1416	1.1531	1.3288	104.6	19:0	0.5766	1.4645	0.3324	2.1448	5.30E-03	4.94E-01	
9.216	1.1033	1.1173	0.9716	108.2	0.50	0.5399	1.4190	0.2914	1.8802	6.35E-03	6.20E-01 5.93E-01	
36.864	1.0250	1.0393	1.4000	116.5	0.45	0.5196	1.3199	0.2700	1.7421	4.09E-03	3.81E-01	
4 030 100	ONI SELVINOS V	CINIC										

GOLDER ASSOCIATES INC.

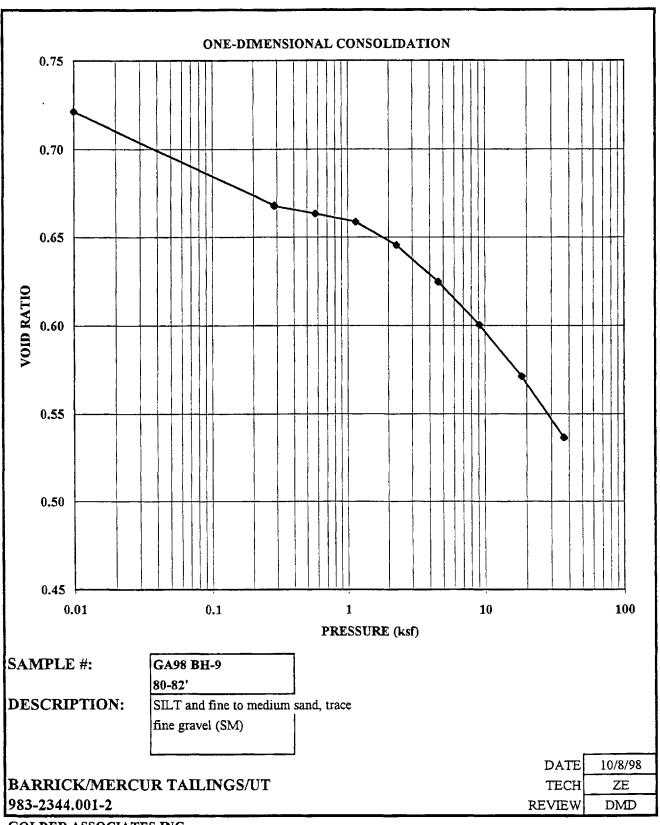


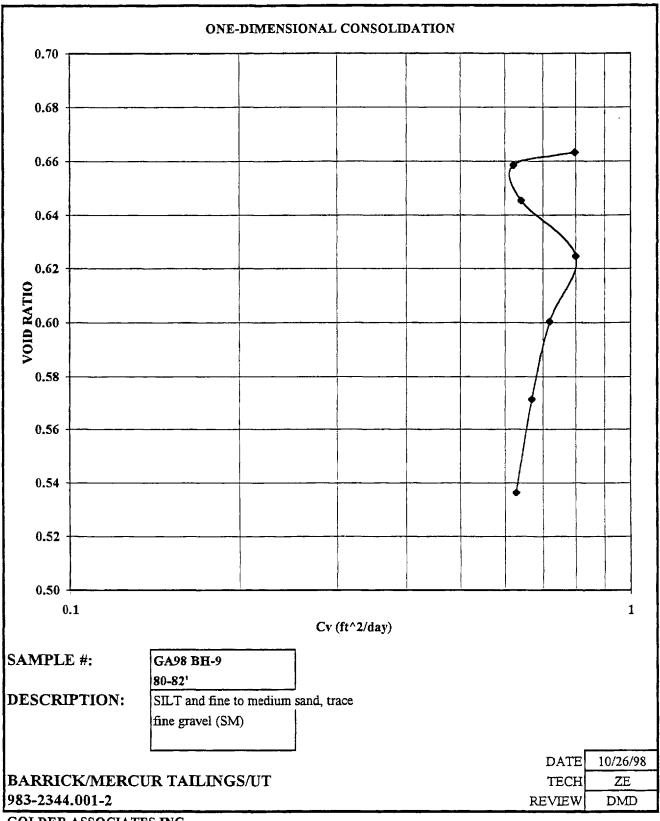


ONE-DIMENSIONAL CONSOLIDATION ASTM D 2435

					A	AS I M D 2435	35					
BARRIC	BARRICK/MERCUR TAILINGS/UT	R TAILIN	NGS/UT	נש	SAMPLE: GA98- BH-9A	GA98- BH	(-9A				DATE	11/6/98
983-2344.001-2	001-2					20-22					TECH	ZE
											REVIEW	DMD
	SAMPLE DATA, GENERAL	ATA, GENE	ERAL		SAMPLE D,	SAMPLE DATA, INITIAL	A.L.		SAMPLE DATA, FINAL	TA, FINAL		
	height (in) diameter (in) area (in^2) volume (in^3) specimen weight, wet (g) specimen weight, dy (g) water weight (g)) ght,wet (g) ght,dry (g) (g)	1.335 1.926 2.912 3.889 126.19 101.96 24.23		total height (in) height of solids (in) height of voids (in) void ratio dry density (pcf) moist density (pcf)	n) ls (in) ls (in) cf) (pcl)	1.335 0.776 0.559 0.720 99.87 123.61		total height (in) height of solids (in) height of voids (in) void ratio dry density (pcf) moist density (pcf)	s (in) s (in) s (in) s (pcl)	1.216 0.776 0.440 0.566 109.66 133.33	
	DESCRIPTION Fine to medium SAND and clay (SC) LL: LL PL: PL PL: PL PL: PL Assumed Gs: 2.75	um SAND a LL LL PL PL PI PI 2.75	ınd clay		MOISTURE COI tare # wt soil&tare,moist wt soil&tare,dry wt tare wt moisture wt dry soil % moisture	MOISTURE CONTENT, INITIAL are # 22 wt soil&tare,moist 197.18 wt soil&tare,dry 164.72 wt tare 32.46 wt dry soil 136.59 % moisture 23.76%	22 22 197.18 164.72 28.13 32.46 136.59 23.76%		MOISTURE CONTENT, FINAL 150.2 wt soil&tare,dry 128.3 wt lare wt noisture 27.9 wt dry soil 100.5 wt dry soil 100.5 wt dry soil 100.5 % moisture 21.59	CONTENT,	PINAL Q6 150.24 128.53 27.96 21.71 100.57 21.59%	
PRESSURE	Final	D50 Samule	LSO TIME (min)	Sample Density	VOID	DRAINAGE PATH (DOUBLE DRAINAGE)	GE PATH	DRAINAC	DRAINAGE PATH	COEFFICIENT OF	ENT OF	-
(ksl)	Height	Height)	(bcl)	v	H(in)	H (cm)	H^2 (in^2)	H^2 (cm^2)	Cv (cm^2/sec)	(ft^2/day)	
0.010	1.3354	1 3308	0.0350	99.9	0.72	- 0 6654	- 1 6901	0.4427	2 8561	, 68F-01	2 SOF +01	
0.200	1.3192	1.3219	0.0700	100.7	0.70	0.6609	1.6788	0.4368	2.8183	1.32E-01	1.23E+01	
1.152	1.3128	1.3144	0.0000	101.1	0.70	0.6572	1.6693	0.4319	2.7867	9.15E-03	8.54E-01	
4.608	1.2911	1.2982	0.0654	102.8	0.02	0.6491	1.6487	0.4213	2.7183	1.36E-01	1.27E+01	
9.216	1.2730	1.2827	0.0700	104.3	0.65	0.6413	1.6290	0.4113	2.6536	1.24E-01	1.16E+01	
18.432	1.2524	1.2635	0.0780	106.0 109.2	0.62	0.6317	1.6046	0.3991	2.5747	1.08E-01 6.52E-02	1.01E+01 6.09E+00	
COLDERA	GOLDER ASSOCIATES INC	INC										

GOLDER ASSOCIATES INC.

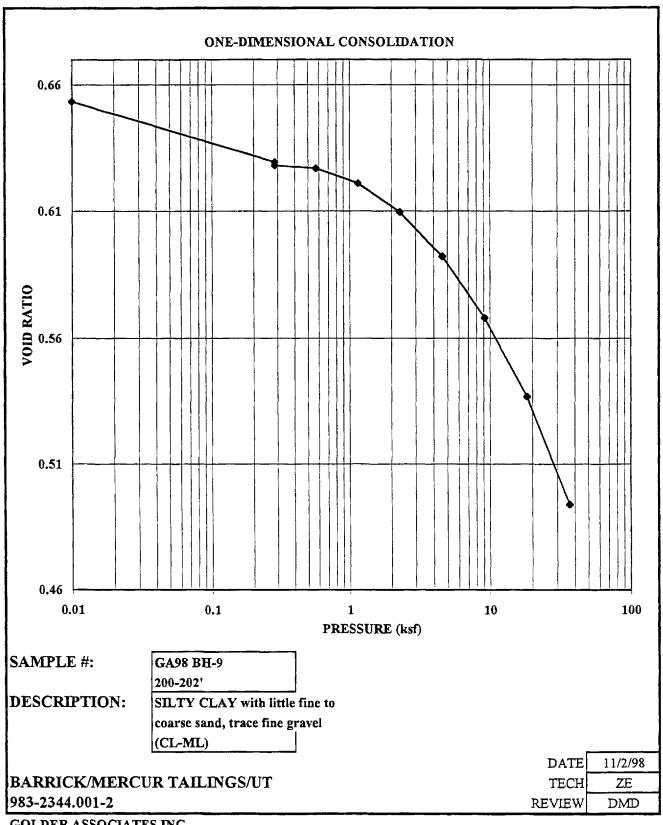


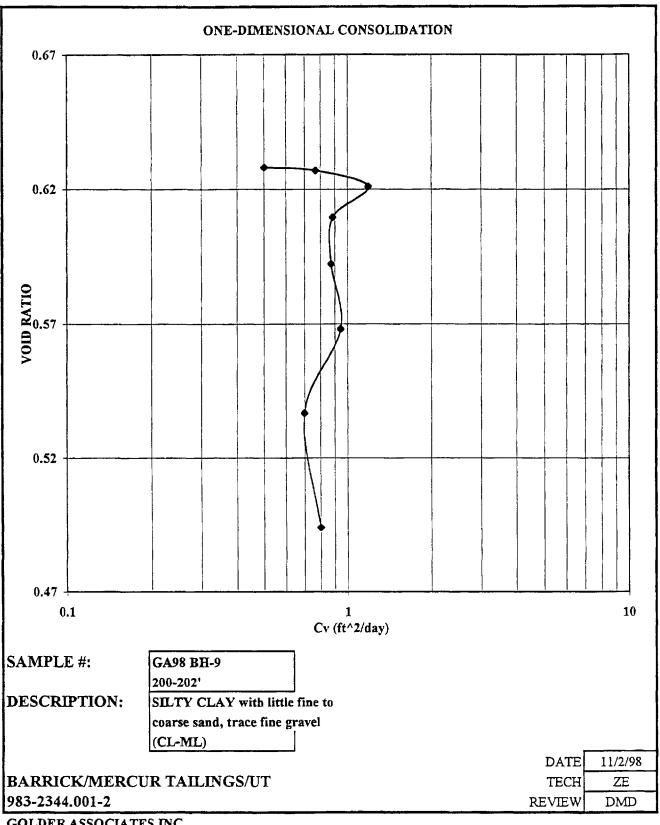


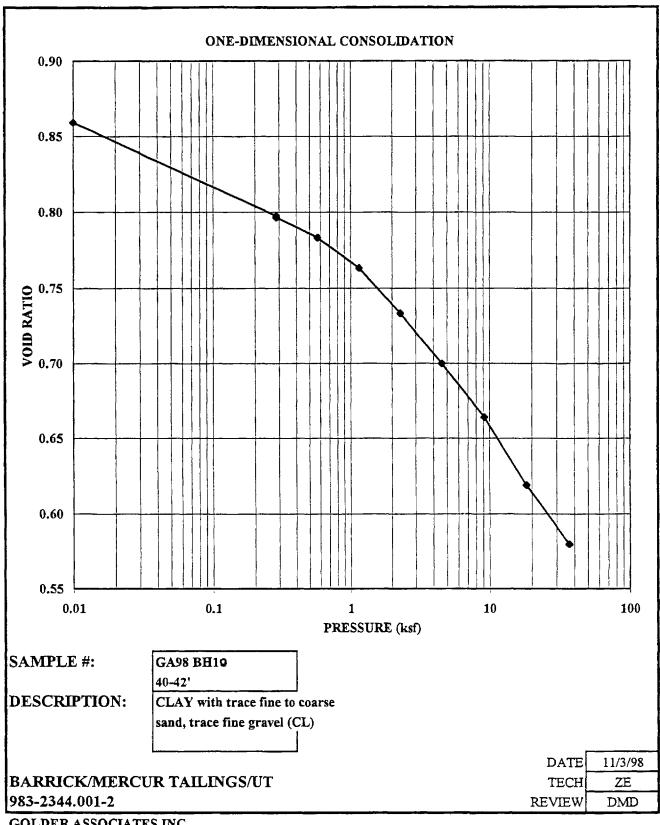
ONE-DIMENSIONAL CONSOLIDATION ASTM D 2435

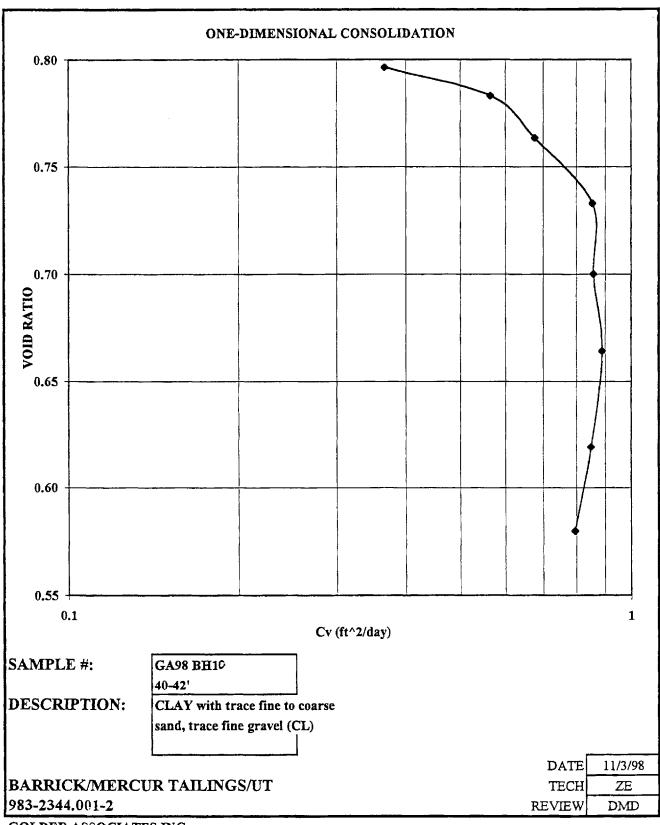
DIGGYG	PAPPICE/MEDCIID TAII INCOME	D TAILIN	JOSHIT	3	SAMPLE: CA98 BH 0	C A 08 PL	0				DATE	10/8/08
DANNIC		וו ועורוו	10/05	מ	CALL LIE	10 -07V					יולים ליי	10/0/20
983-2344.001-2	001-2					80-82					TECH	ZE
											REVIEW	DMD
	SAMPLED	SAMPLE DATA, GENERAL	RAL		SAMPLE DATA, INITIAL	ATA, INITI	AL		SAMPLE D.	SAMPLE DATA, FINAL		
	height (in) diameter (in) area (in^2) volume (in^3) specimen weight,wet (g) specimen weight,dy (g) water weight (g)) ight,wet (g) ight,dry (g) (g)	1.337 1.925 2.911 3.891 130.02 102.67 27.35		total height (iu) height of solids (in) height of voids (in) void ratio dry density (pcf) moist density (pcf)	n) sk (in) s (in) (cf) (pcf)	1.337 0.777 0.560 0.721 100.52 127.30		total height (in) height of solids (in) height of voids (in) void ratio dry density (pcf) moist density (pcf)	n) ds (in) ls (in) cf) (pcf)	1.189 0.777 0.412 0.531 113.01	
	DESCRIPTION SILT and fine to n fine gravel (SM) LL: PL: PL: GS:	SILT and fine to medium sand, trace fine gravel (SM) LL: NP PL: NP PL: NP PL: NP GS: 2.77	sand, trace		MOISTURE CONTENT, INITIAL tare # 1A wt soil&tare,moist 132.74 wt soil&tare,dry 34.44 wt moisture 20.68 wt dry soil 77.62 % moisture 26.64%	CONTENT noist Iry	132.74 132.74 112.06 34.44 20.68 77.62 26.64%		MOISTURE COltare # wt soil&tare,moist wt soil&tare,dry wt tare wt moisture wt dry soil % moisture	MOISTURE CONTENT, FINAL 148.8 wt soil&tare,dry 130.7 wt tare wt moisture 18.1 wt dry soil 17.70 wt dry	FINAL N5 148.88 130.70 27.96 18.18 102.74 17.70%	
PRESSURE	Final	Ds0 Sample	t50 TIME (min)	Sample	VOID RATTO	(DOUBLE I	DKAINAGE PATH (DOUBLE DRAINAGE)	(DOUBLE DRAINAGE)	DRAINAGE PATH OUBLE DRAINAGE)	CONSOLIDATION	DATION	
(ksl)	Height	Height	,	(bcl)	υ	H (in)	H (cm)	H^2 (in^2)	H^2 (cm^2)	Cv (cm^2/sec)	(ft^2/day)	
0.010	1.3366	,	1	100.5	0.72	,	•	ı		ı	1	
0.288	1.2909	, ,	, ,	103.6	0.67		, ,			1 1		
0.576	1.2871	1.2884	1.0272	103.9	99.0	0.6442	1.6363	0.4150	2.6775	8.56E-03	7.99E-01	
1.152	1.2835	1.2845	1.3111	104.2	99.0	0.6423	1.6313	0.4125	2.6612	6.66E-03	6.22E-01	
2.304	1.2734	1.2771	1.2560	105.0	0.65	0.6385	1.6219	0.4077	2.6304	6.88E-03	6.42E-01	
4.608	1.2573	1.2624	0.9828	106.4	0.62	0.6312	1.6033	0.3984	2.5705	8.59E-03	8.01E-01	
9.216	1.2385	1.2436	1.0620	0.801	0.60	0.6218	1.5794	0.3866	2.4944	7.71E-03	7.20E-01 6.69E-01	
36.864	1.1890	1.1961	1.1257	112.5	0.54	0.5981	1615.1	0.3577	2.3075	6.73E-03	6.28E-01	
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\										

GOLDER ASSOCIATES INC.

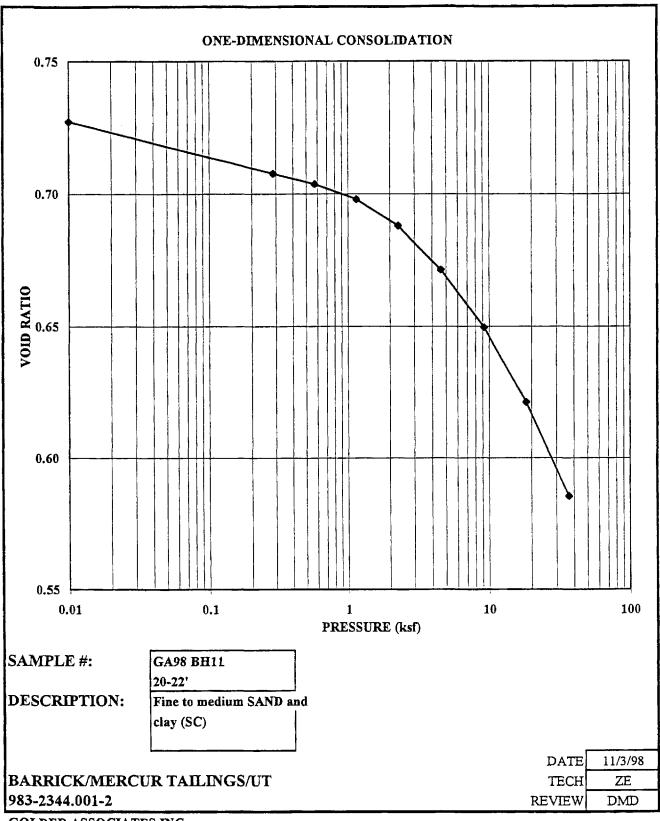


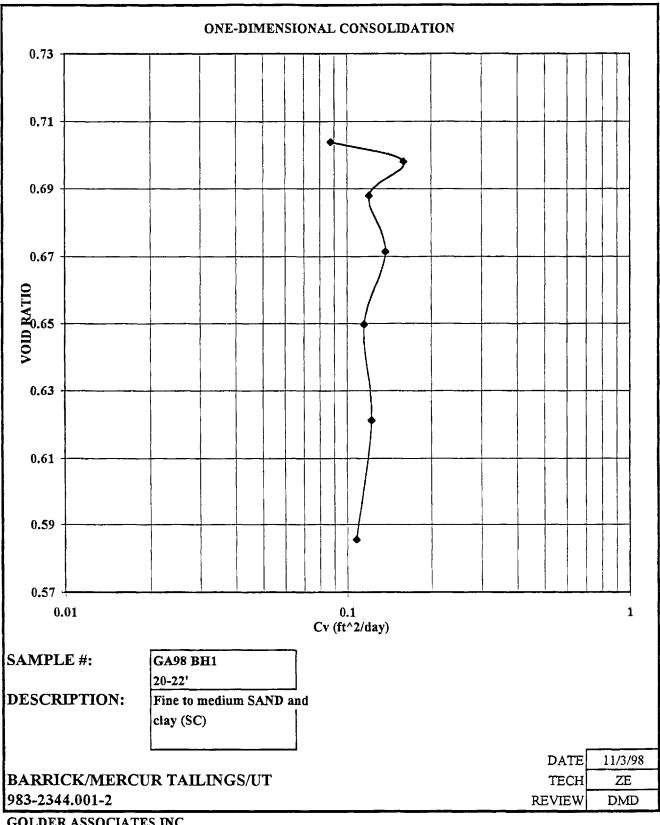

ONE-DIMENSIONAL CONSOLIDATION


ASTM D 2435


					<	AS I M D 2435	35					
BARRIC	BARRICK/MERCUR TAILINGS/UT	IR TAILIF	AGS/UT		SAMPLE: GA98- BH-9	GA98- BH	6-1				DATE	11/2/98
983-2344.001-2	001-2					200-202					TECH	ZE
											REVIEW	DMD
	SAMPLED	SAMPLE DATA, GENERAL	FRAL		SAMPLE D.	SAMPLE DATA, INITIAL	AL		SAMPLED	SAMPLE DATA, FINAL		
	height (in) diameter (in) area (in^2) volume (in^3) specimen weight, wet (g) specimen weight, dry (g) water weight (g)) ight, wet (g) ight, dry (g) i (g)	1.330 1.927 2.916 3.877 130.93 105.74 25.19		total height (in) height of solids (in) height of voids (in) void ratio dry density (pcf) nroist density (pcf)	n) ds (in) ls (in) cf) (pcf)	1.330 0.804 0.525 0.653 103.89 128.64		total height (in) height of solids (in) height of voids (in) void ratio dry density (pcf) moist density (pcf)	in) ds (in) ds (in) ls (in) ocf)	1.197 0.802 0.396 0.494 115.00	
	DESCRIPTION SILTY CLAY w coarse sand, trac (CL-ML) LL: PL: PL: GS:	DESCRIPTION SILTY CLAY with little fine to coarse sand, trace fine gravel (CL-ML) LL 29 PL 22 PL 77 GS: 2.75	fine to ravel		MOISTURE COL tare # wt soil&tare,moist wt soil&tare,dry wt tare wt moisture wt dry soil % moisture	MOISTURE CONTENT, INITIAL late # X17 wt soil&tare,moist 240.66 wt soil&tare,dry 200.73 wt tare 33.09 wt dry soil 167.64 % moisture 23.82%	, INITIAL X17 240.66 200.73 33.09 39.93 167.64 23.82%		MOISTURE COI tare # wt soil&tare,moist wt soil&tare,dry wt tare wt moisture wt dry soil % moisture	MOISTURE CONTENT, FINAL Fare # X28 wt soil&tare,moist 159.1 wt soil&tare,dry 138.1 wt tare 21.0 wt dry soil 104.6 moisture 20.10	FINAL X28 159.17 138.14 33.51 21.03 104.63	
BRESSIRE	Final	D50 Sample	t50 TINSE (min)	Sample	VOID	DRAINAC	DRAINAGE PATH	ORAINA(DRAINAGE PATH	COEFFICIENT OF	LENT OF	
(ksl)	lfeight	Height	(ma)	(bel)	o o	H(in)	H (cm)	H^2 (in^2)	H^2 (cm^2)	Cv (cm^2/sec)	(ft^2/day)	
0.010	1.3295	-	1	103.9	0.65	-		,	,	,	,	
0.288	1.3058	1 2150	- 1 2043	105.3	0.63	- 0.6570	111231	0.4379	2 707	- 5 30E 03		
0.200	1,3038	1.3044	1.0907	105.5	0.63	0.6522	1.6566	0.4254	2.7443	8.26E-03	7.71E-01	•
1.152	1.2991	1.3016	0.7017	105.9	0.62	0.6508	1.6530	0.4235	2.7324	1.28E-02	1.19E+00	
2.304	1.2899	1.2940	0.9333		0.61	0.6470	1.6434	0.4186	2.7009	9.50E-03	8.87E-01	
4.608	1.2761	1.2828	0.9284	107.8	0.59	0.6414	1.6291	0.4114	2.6540	9.39E-03	8.76E-01	
9.216	1.2566	1.2658	0.8351		0.57	0.6329	1.6076	0.4006	2.5844	1.02E-02	9.48E-01	
18.432 36.864	1.1973	1.2440	0.9128	111.7	0.49	0.6085	1.5455	0.3869	2.3886	7.51E-03 8.59E-03	7.01E-01 8.02E-01	
GOLDERA	GOLDER ASSOCIATES INC.	SINC.										

GOLDER ASSOCIATES INC.

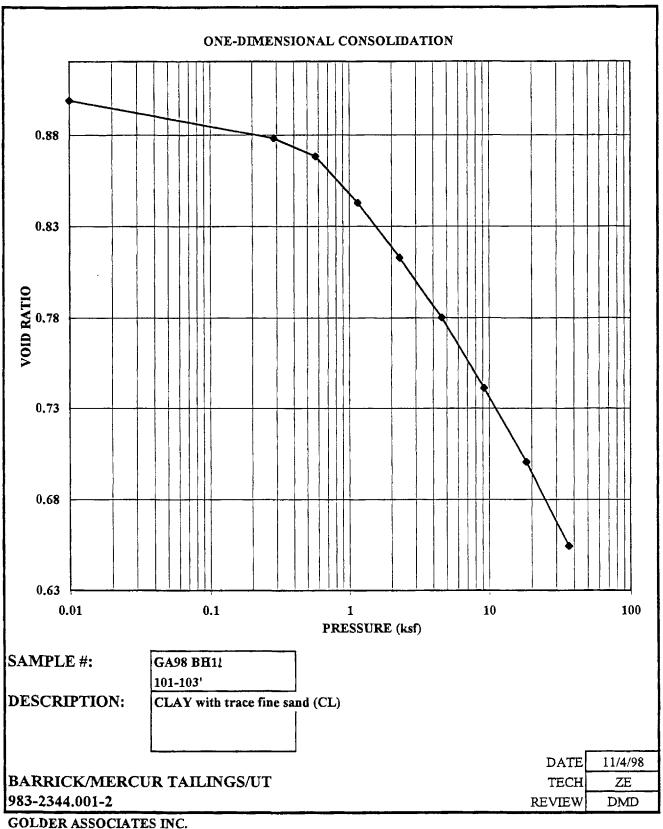

ONE-DIMENSIONAL CONSOLIDATION ASTM D 2435

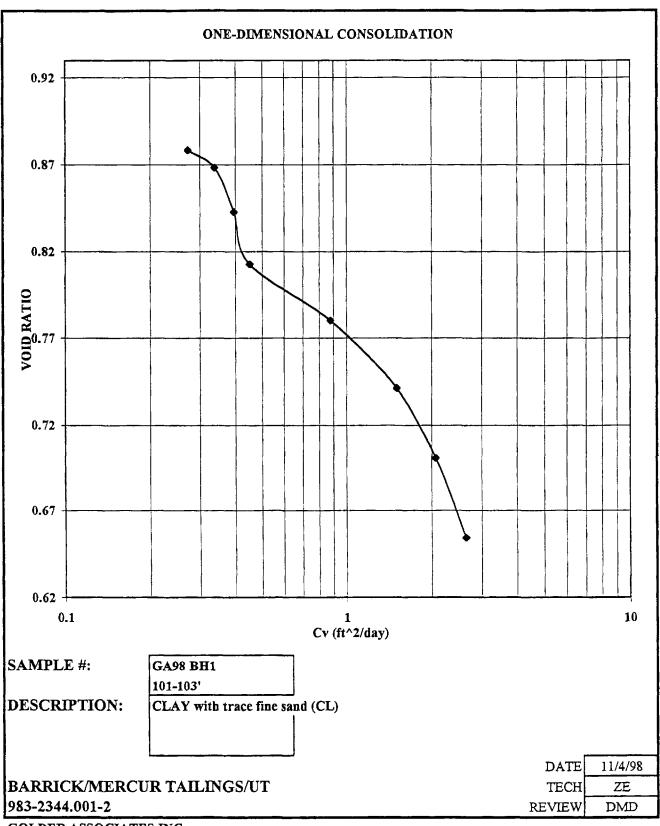

					Y	AS I M D 2435	3				1	30, 2,
BARRICE	BARRICK/MERCUR TAILINGS/UT	R TAILIN	CS/UT	S	SAMPLE: GA98- BH-10	CA98- BH	-10				DATE	11/3/98
983-2344.001-2	101-2					40-42'					TECH	ZE
					_						REVIEW	DMD
	SAMPLE D.	SAMPLE DATA, GENERAL	RAL		SAMPLE DATA, INITIAL	VTA, INITL	/L		SAMPLE DATA, FINAL	VTA, FINAL		
	height (in) diameter (in) area (in^2) volume (in^3) specimen weight, wet (g) specimen weight, dry (g) water weight (g)) ight,wet (g) ight,dry (g) (g)	1.329 1.928 2.921 3.883 123.95 94.84 29.11		total height (in) height of solids (in) height of voids (in) void ratio dry density (pcf) moist density (pcf)	n) ls (in) s (in) c(f) (pcf)	1.329 0.715 0.614 0.859 93.05 121.62		height (in) height of solids (in) height of voids (in) void ratio dry density (pcf) moist density (pcf)	n) ls (in) s (in) cf) (pcf)	1.126 0.711 0.415 0.583 109.31 133.38	
	DESCRIPTION CLAY with trace fine to coarse sand, trace fine gravel (CL) LL LL PL: PL PL: PL Gs: Z.77	DESCRIPTION CLAY with trace fine to cossand, trace fine gravel (CL) PL: PL: PL PL: PL OS: 2.77	L)		MOISTURE CONTENT, INITIAL tare # X28 wt soil&tare, moist 136.43 wt soil&tare, dry 33.52 wt tare 24.17 wt dry soil 78.74 % moisture 30.70%	CONTENT	, INITIAL X28 136.43 112.26 33.52 24.17 78.74 30.70%		MOISTURE COL tare # wt soil&tare,moist wt soil&tare,dry wt tare wt moisture wt dry soil % moisture	MOISTURE CONTENT, FINAL day soil date, day the moisture with day soil days oil 22.02	4A 147.72 127.04 33.13 20.68 93.91 22.02%	
DDFCCIDE	Final	D50	tS0 TIME (min)	Sample	VOID	DRAINA	DRAINAGE PATH	DRAINAGE PATH (DOUBLE DRAINAGE)	JE PATH	COEFFICIENT OF	ENT OF DATION	
(ks)	Height	Height		(bcl)	· ·	11 (in)	H (cm)	H^2 (in^2)	H^2 (cm^2)	Cv (cm^2/sec)	(ft^2/day)	
0.010	1.3294	,		93.1	0.86	•		,	-	•	,	
0.288	1.2807	1 3013	2 2820	96.2	08.0	0.6507	1.6527	0.4234	2.7313	3.93E-03	3.67E-01	
0.576	1.2706	1.2764	1.4224	6.96	0.78	0.6382	1.6210	0.4073	2.6278	6.07E-03	5.66E-01	
1.152	1.2565	1.2638	1.1654	0.86	0.76	0.6319	1.6051	0.3993	2.5763	7.26E-03	6.77E-01	
2.304	1.2350	1.2454	0.8968	99.7	0.73	0.6227	1.5817	0.38/8	2.5018	9.16E-03	8.58E-01	
4.000	1.1858	1.1983	0.7984	103.9	99:0	0.5992	1.5219	0.3590	2.3160	9.52E-03	8.89E-01	
18.432	1.1538	1.1703	0.7962 0.8054	106.7 109.4	0.62 0.58	0.5852 0.5695	1.4863 1.4466	0.3424 0.3243	2.2091 2.0926	9.11E-03 8.53E-03	8.50E-01 7.96E-01	
GOLDER A	GOLDER ASSOCIATES INC.	S INC.										

ONE-DIMENSIONAL CONSOLIDATION ASTM D 2435

					¥	ASTM D 2435	35					
BARRIC	BARRICK/MERCUR TAILINGS/UT	JR TAILIF	VGS/UT	S	SAMPLE: GA98- BH-11	GA98- BE	111-1				DATE	11/3/98
983-2344.001-2	001-2					20-22'					TECH	ZE
											REVIEW	DMD
	SAMPLE D	SAMPLE DATA, GENERAL	GRAL		SAMPLE D.	SAMPLE DATA, INITIAL	AL		SAMPLE D.	SAMPLE DATA, FINAL		
	height (in) diameter (in) area (in^2) volume (in^3) specimen weight,wet (g) specimen weight,dy (g) water weight (g)) sight,wet (g) sight,dry (g) (g)	0.535 2.500 4.909 2.626 85.39 68.55		total height (in) height of solids (in) height of voids (in) void ratio dry density (pcf) moist density (pcf)	ds (in) ls (in) loc() (pcf)	0.535 0.310 0.225 0.727 99.44 123.87		total height (in) height of solids (in) height of voids (in) void ratio dry density (pcf) moist density (pcf)	n) ds (in) ls (in) cf) (pcf)	0.489 0.310 0.180 0.580 108.70 131.25	
	Fine to medium Sclay (SC) LL: PL: PL: PL: PL: Assumed Gs:	Fine to medium SAND and clay (SC) LL: LL PL: PL: PL: PL: PL: PL: PL: PL: P	Pu		MOISTURE COltare # wt soil&tare,moist wt soil&tare,dry wt tare wt moisture wt dry soil wt dry soil wt dry soil	MOISTURE CONTENT, INITIAL Faz F3Z wt soil&tare, moist 203.44 wt soil&tare, dry 169.91 wt lare 33.38 wt moisture 33.53 wt dry soil 136.53 % moisture 24.56%	, INITIAL F32 203.44 169.91 33.53 13.53 136.53 24.56%		MOISTURE CO tare # wt soil&tare,moist wt soil&tare,dry wt tare wt moisture wt dry soil % moisture	MOISTURE CONTENT, FINAL lare #	FINAL T7 110.70 96.59 28.59 14.11 68.00 20.75%	
PRESSURE	Sample	D50 Sample	tion (min)	Sample	VOID	DKAINAN (DOUBLE E	DRAINAGE PATH (DOUBLE DRAINAGE)	DRAINA	DRAINAGE PATH (DOUBLE DRAINAGE)	CONSOLIDATION	ENT OF	
(ksl)	Height	Height	,	(bcl)	o	H (in)	H (cm)	11^2 (in^2)	H^2 (om^2)	Cv (cm^2/sec)	(A^2/day)	
0.010	0.5350		,	99.4	0.73			1	•		•	
0.576	0.5259	0.5263	1.5625	100.7	0.70	0.2631	0.6684	0.0692	0.4467	9.39E-04	8.76E-02	
1.152	0.5241	0.5248	0.8521	101.1	0.70	0.2624	0.6665	0.0689	0.4442	1.71E-03	1.60E-01	
2.304	0.5210	0.5218	1.1187		69:0	0.2609	0.6627	0.0681	0.4391	1.29E-03	1.20E-01	
4.608	0.5159	0.5172	0.9619	102.7	0.67	0.2586	0.6569	0.0669	0.4315	1.47E-03	1.37E-01	
9.216	0.5092	0.5029	1.0203	104.0	0.62	0.2515	0.6387	0.0633	0.4210	1.24E-03 1.31E-03	1.15E-01 1.23E-01	
36.864	0.4894	0.4923	1.1102	108.2	0.59	0.2461	0.6252	0.0606	0.3909	1.16E-03	1.08E-01	
4 444		CINIO										

GOLDER ASSOCIATES INC.

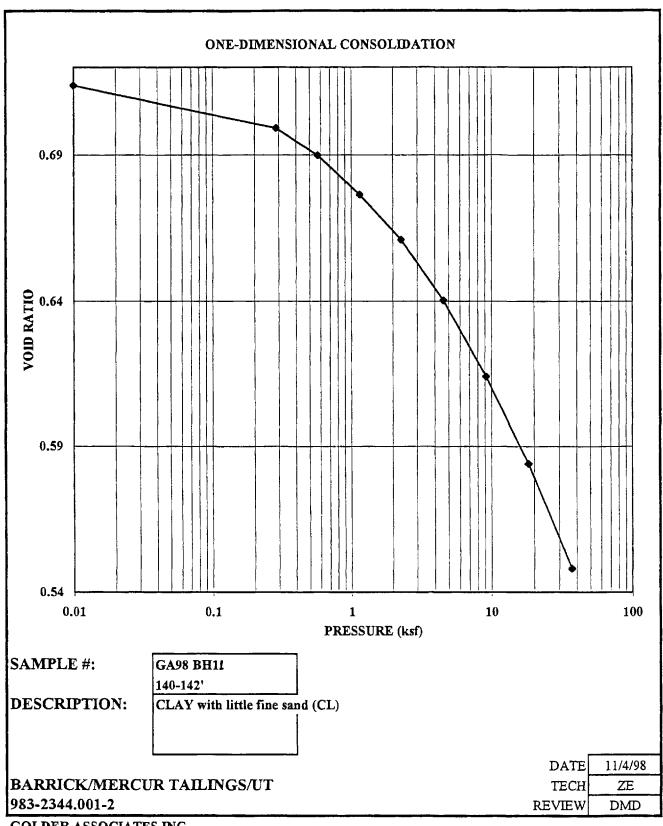


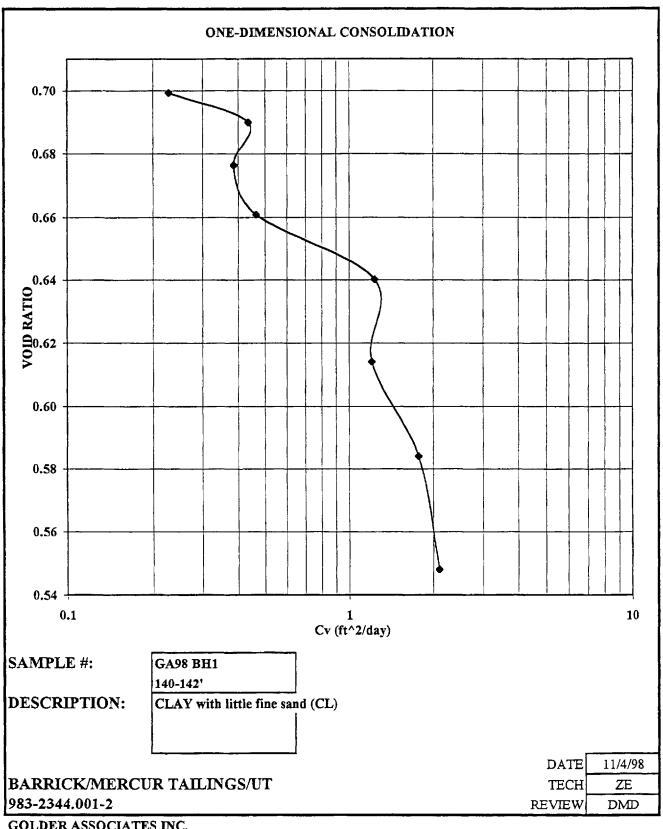


ONE-DIMENSIONAL CONSOLIDATION ASTM D 2435

						ASTM D 2435	35				-	
BARRICI	BARRICK/MERCUR TAILINGS/UT	R TAILIF	CS/OT	2	SAMPLE:	GA98- BH-11					DAIE	11/4/98
983-2344.001-2	701-2					101-103					TECH	ZE
					•						REVIEW	DMD
	SAMPLE D.	SAMPLE DATA, GENERAL	ERAL		SAMPLE DATA, INITIAL	ATA, INITIA	II.		SAMPLE DATA, FINAL	YTA, FINAL		
	height (in) diameter (in) area (in^2) volume (in^3) specimen weight,wet (g) specimen weight,dry (g) water weight (g)) ight,wet (g) ight,dry (g) (g)	1.000 2.500 4.909 4.909 156.47 117.40		total height (in) height of solids (in) height of voids (in) void ratio dry density (pcf) moist density (pcf)	n) ls (in) s (in) (cf) (pcf)	1.000 0.527 0.473 0.899 91.11 121.43		total height (in) height of solids (in) height of voids (in) void ratio dry density (pcl) moist density (pcl)	s (in) s (in) ci) (pcl)	0.868 0.527 0.342 0.649 104.94 127.99	
	DESCRIPTION CLAY with trac	DESCRIPTION CLAY with trace fine sand (CL)	nd (CL)		MOISTURE COI tare # wt soil&tare,moist	MOISTURE CONTENT, INITIAL lare # F17	F17 284.24		MOISTURE COI tare # wt soil&tare,moist wt soil&lare dry	MOISTURE CONTENT, FINAL F25 and soil&tare, moist 178.8 and soil&tare, dry	FINAL F25 178.80 152.49	
_ *	LL: PL: PI: Assumed Gs:	LL PL PI			wt tare wt dry soil % moisture		33.08 62.71 188.45 33.28%		wt tare wt moisture wt dry soil % moisture		32.71 26.31 119.78 21.97%	
	Final	DSO	120	Sample	QIOA	DRAINAGE PATH	зе ратн	DRAINA	DRAINAGE PATH	COEFFICIENT OF	ENT OF	
PRESSURE (ksf)	Sample Height	Sample	IIME (min)	Density (pcf)	KAIIO	H (in) II (cm)	II (cm)	(LXOUBLE L H^2 (in^2)	(LXOUBLE DRAUNAGE)	Cv (cm^2/sec) (ft^2/c	(h^2/day)	
0.010	1.0000	- 0000		91.1	0.90	- 0.4074	- 1 2633	- 4740	0705 1	, and 03	- 2 73E-01	
0.288	0.9857	0.9948	1.7918	92.0	0.87	0.4974	1.2533	0.2474	1.5636	3.63E-03	3.39E-01	
1.152	0.9671	0.9749	1.1853	93.8	0.84	0.4874	1.2381	0.2376	1.5329	4.25E-03	3.96E-01	
2.304	0.9513	0.9597	1.0081	95.4	18.0	0.4798	1.2188	0.2302	1.4854	4.84E-03	4.51E-01	
4.608	0.9342	0.9430	0.5000	97.1	0.78	0.4715	1.1976	0.2223	1.4343	9.42E-03	8.79E-01 1.51E+00	
9.216 18.432	0.8924	0.9054	0.1955	99.3 101.6	0.70	0.4527	1.1498	0.2049	1.3222	2.22E-02	2.07E+00	
36.864	0.8682	0.8829	0.1455	104.5	0.65	0.4415	1.1213	0.1949	1.2573	2.84E-02	2.65E+00	
COLDEDA	A SSOCIATES INC	UNI										

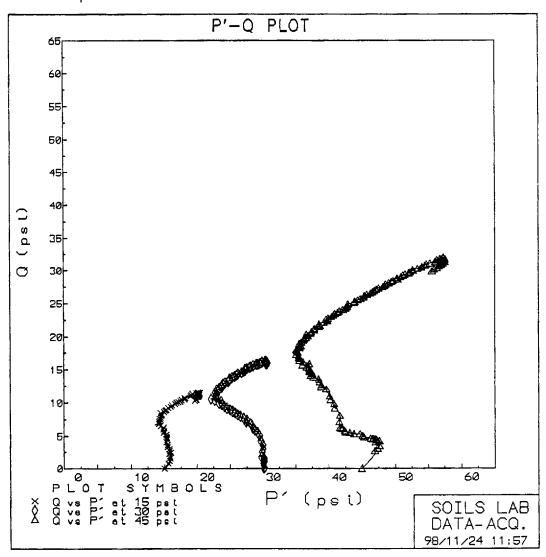
GOLDER ASSOCIATES INC.

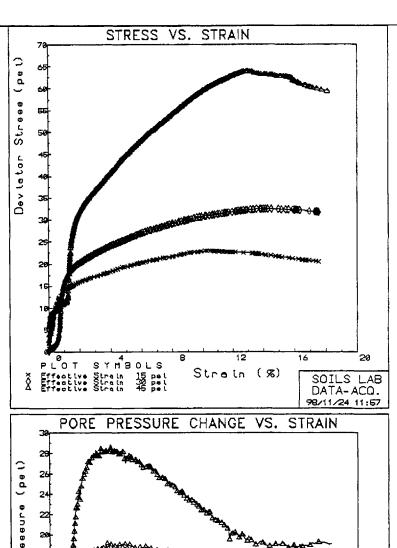


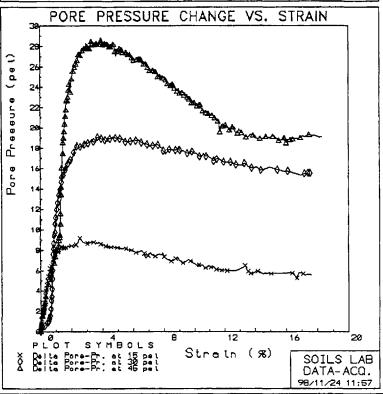

ONE-DIMENSIONAL CONSOLIDATION

ASTM D 2435

					V	ASTM D 2435	35					
BARRICI	BARRICK/MERCUR TAILINGS/UT	R TAILI	NGS/UT	50	SAMPLE:	GA98- BH-11	-11				DATE	11/4/98
983-2344.001-2	001-2	,				140-142'					TECH	ZE
											REVIEW	DMD
	SAMPLED	SAMPLE DATA, GENERAL	ERAL		SAMPLE DATA, INITIAL	ATA, INITI	1L		SAMPLE DATA, FINAL	TA, FINAL		
	height (in) diameter (in) area (in^2) volume (in^3) specimen weight, wet (g) specimen weight, dry (g) water weight (g)) ight,wet (g) ight,dry (g) (g)	1.000 2.500 4.909 4.909 161.09 130.09		total height (in) height of solids (in) height of voids (in) void ratio dry density (pcf) moist density (pcf)	n) Is (in) Is (in) (cf) (pcf)	1.000 0.584 0.416 0.714 100.96		total height (in) height of solids (in) height of voids (in) void ratio dry density (pcf) moist density (pcf)	s (in) s (in) s (in) f(pcf)	0.900 0.579 0.321 0.555 111.25 132.93	
	DESCRIPTION CLAY with little fine sand (CL)	ION little fine sar	nd (CL)		MOISTURE COStare# tare # wt soil&tare,moist wt soil&tare.drv	MOISTURE CONTENT, INITIAL lare # X22 wt soil&tare,moist 233.52 wt soil&tare.dry	X22 X22 233.52		MOISTURE COI tare # wt soil&tare,moist wt soil&tare.drv	MOISTURE CONTENT, FINAL lare # C5	FINAL C5 187.81 162.70	
- `	LL: PL: PI: Assuned Gs:	27 18 9			wt tare wt moisture wt dry soil % moisture		33.10 38.57 161.85 23.83%		wt tare wt moisture wt dry soil % moisture	?	33.82 25.11 128.88 19.48%	
10120000	Final	D50	150 TIME (min)	Sample	VOID	DRAINAGE PATH OOTBLE DRAINAGE	GE PATH	DRAINA	DRAINAGE PATH	CONSOLIDATION	DATION	· ·
(ksf)	Height	Height		(bod)		H (in)	H (cm)	H^2 (in^2)	H^2 (cm^2)	Cv (cm^2/sec)	(R^2/day)	
0.010	1.0000	20000	7 1361	101.0	0.71	- 0.4963	1 2606	0.2463	1 5897	- 2 44E-03	2 28E-01	
0.576	0.9827	0.9863	1.1017	102.3	69.0	0.4931	1.2526	0.2432	1.5689	4.68E-03	4.36E-01	
1.152	0.9748	9626'0	1.2252	103.1	89.0	0.4898	1.2440	0.2399	1.5476	4.15E-03	3.87E-01	
2.304	0.9658	0.9706	1.0000	104.1	99:0	0.4853	1.2327	0.2355	1.5195	4.99E-03	4.66E-01	•
4.608 9.216	0.9386	0.9609	0.3689	103.4	0.04	0.4803	1.2028	0.2243	1.4694	1.29E-02 1.29E-02	1.24E+00 1.21E+00	
18.432	0.9211	0.9317	0.2407	109.1	0.58	0.4658	1.1832	0.2170	1.4000	1.91E-02	1.78E+00	
١,	A CCOCIATECINO	0.2127 FINC	0.17.0	111:	6.50	COCK-O	1721.1	7007.0	Carcin	70 707.7	22.77.77	


GOLDER ASSOCIATES INC.




APPENDIX D-3 SHEAR STRENGTH TESTING

Boring Number	GA98 BH4	GA98 BH4	GA98 BH4
Sample Number	BH4	BH4	BH4
Sample Depth (ft.)	60-62	60-62	60-62
Sample Diameter (in.)	2.85	2.85	2.85
Sample Length (in.)	5.64	5.58	5.58
Dry Density (pcf)	86.7	90.2	94.2
Initial Moisture Content (%)	35.4	33.2	30.5
Final Moisture Content (%)	30.8	28.4	23.3
Strain Rate (in./min)	0.0024	0.0024	0.0024
Effective Stress (psi)	15.0	30.0	45.0
Back Pressure (psi)	85.0	70.0	55.0
Alpha = Phi =	A =	C =	

GOLDER ASSOCIATES INC		ATED UNDRAIN	
Client/Project	TRIAXIAL	COMPRESSION	TEST REPORT ID
BARRICK/MERCUR TAILINGS/UT	GA98 BH4	60-62	2344-R2
DRAWN BDM CHECKED DD REVIEWED DJ	DATE NOV98	JOB NO. 983-2344	FIGURE
	2344BH48	2344BH4A	23446H4C

GOLDER ASSOCIATES INC	TITLE CONSOLIDATED UNDRAINED
Client/Project	TRIAXIAL COMPRESSION TEST
BARRICK/MERCUR TAILINGS/UT	GA98 BH4 60-62 2344-R2
DRAWN BDM CHECKED DD REVIEWED DJ	DATE NOV98 JOB NO. 983 - 2344 FIGURE

SAMPLE NUMBER BH4
SAMPLE DEPTH (FEET) 60-62
BORING NUMBER GA98 BH4
EFFECTIVE STRESS (PSI) 15.0

SAMPLE NUMBER

BH4

SAMPLE DEPTH (FEET)

60-62

BORING NUMBER

GA98 BH4

EFFECTIVE STRESS (PSI)

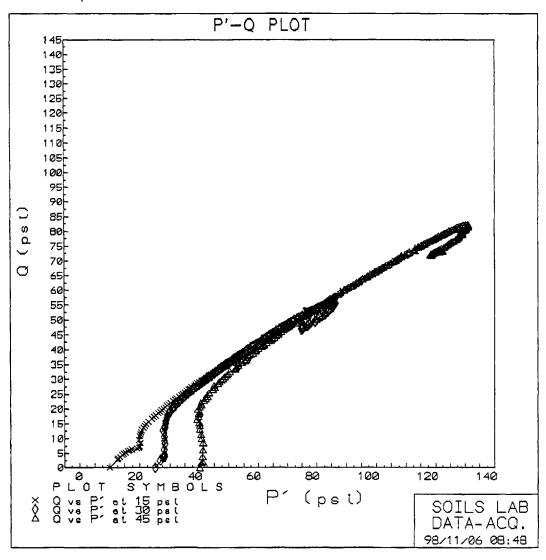
Reading Strain crietd crietd sigmal sigmal Stress Press. Nbr	' 3_ واء '	Q	P'
14 6.2 6.80 185.5 127.3 100.0 27.3 18.8 38.7 16.6 6.6 6.83 189.4 127.7 100.0 27.7 18.5 39.4 16.7 1 6.87 193.4 128.2 100.0 28.2 18.2 40.2 17 7.5 6.90 197.4 128.6 100.0 28.6 18.4 40.3 18 7.9 6.93 201.3 129.1 100.0 29.1 18.0 41.2 19 8.4 6.96 205.3 129.5 100.0 29.1 18.0 41.2 19 8.4 6.96 205.3 129.5 100.0 29.8 17.9 41.7 20 8.8 7.00 208.6 129.8 100.0 29.8 17.9 41.7 22 9.7 7.07 216.5 130.2 100.0 30.2 17.7 42.7 22 9.7 7.07 216.5 130.6 100.0 30.6 17.6 43.2 23 10.1 7.10 219.2 130.9 100.0 30.9 17.5 43.5 24 10.6 7.14 221.8 131.1 100.0 31.1 17.5 43.7 26 11.1 7.18 225.1 131.4 100.0 31.4 17.0 44.8 27 11.9 7.25 230.4 131.8 100.0 31.6 17.0 44.8 27 11.9 7.25 230.4 131.8 100.0 31.8 16.6 45.3 28 12.3 7.28 233.0 132.0 100.0 32.1 16.4 45.9 30 13.1 7.35 237.6 132.3 100.0 32.3 16.3 46.2 31 13.7 7.39 240.3 132.5 100.0 32.5 16.1 46.6 33 15.2 33 14.7 7.48 242.9 132.5 100.0 32.5 16.1 46.6 34 15.2 7.52 243.6 132.4 100.0 32.4 16.1	20774300703303647070345667205688002 0	287001112223333444445555556666666666666666666666	### ##################################
35 15.6 7.56 244.9 132.4 100.0 32.4 15.9 46.7 36 16.0 7.60 245.6 132.3 100.0 32.3 15.8 46.7 37 16.5 7.64 245.6 132.1 100.0 32.1 15.6 46.7 38 16.9 7.68 245.6 132.0 100.0 32.0 15.3 46.8 39 17.4 7.72 245.6 131.8 100.0 31.8 15.5 46.5	14.3 14.4 14.6 14.8 14.7	16.2 16.1	30.5 30.5 30.6 30.8 30.6

SAMPLE NUMBER

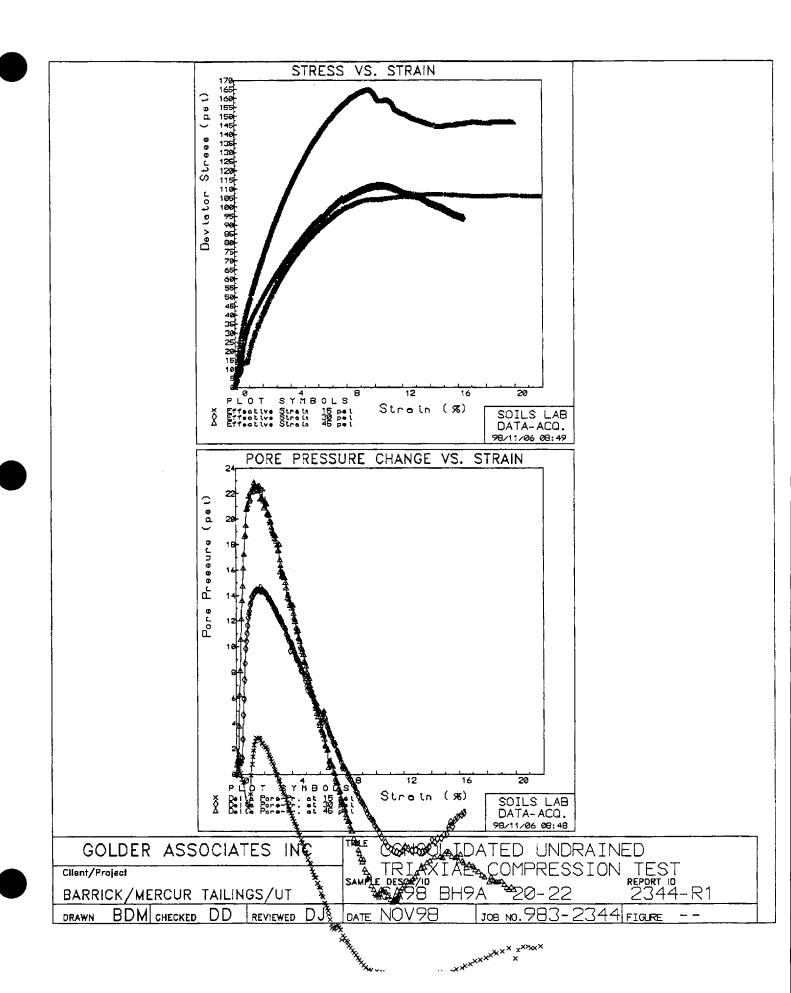
BH4

SAMPLE DEPTH (FEET)

60-62


BORING NUMBER

GA98 BH4


EFFECTIVE STRESS (PSI)

ee Force			′ e tg_3′	a	۲′
2	- 0.8 3 3 5 9 8 5 1 8 5 2 4 4 5 5 8 8 0 2 4 4 6 7 9 9 9 9 8 4 20 9 5 9 9 5 3 1 1 2 6	1 0 0 1 5 0 5 7 9 7 1 2 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	\$48365087766667777888879007362836162436098 -	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$4443333333333444444444456565656555555555
59 470.6 162.0 53 467.3 161.3 67 466.0 160.8 72 464.7 160.2 76 464.7 159.9	100.0 62.0 100.0 61.3 100.0 60.8 100.0 60.2 100.0 59.9	18.8 88.9 18.6 88.3 18.9 87.3 18.9 86.7 19.2 86.0 19.3 85.5	26.2 26.3 26.0 26.8 25.6	31.4 31.0 30.6 30.4 30.1	253739 5555555555555555555555555555555555
	## 1	2 stama1 stama3 stress stress	Stress Press Pet ctd crrctd slgmal slgmal Slress pel pel 44.9 44.9 44.9 44.9 24.9 7 38.9 28.9 9.0	Cold Cold	

Boring Number	GA98 BH9A	GA98 BH9A	GA98 BH9A
Sample Number	BH9	BH9	BH9
Sample Depth (ft.)	20-22	20-22	20-22
Sample Diameter (in.)	2.87	2.85	2.87
Sample Length (in.)	3.95	5.52	5,56
Dry Density (pcf)	9 7.5	99.9	106.0
Initial Moisture Content (%)	23.1	23.1	22.2
Final Moisture Content (%)	22.9	22.6	19.5
Strain Rate (in./min)	0.003 9	0.0039	0.0039
Effective Stress (psi)	15.0	30.0	45.0
Back Pressure (psi)	85.0	70.0	65.0
Alpho = Phi =	: A =	C =	

GOLDER ASSOCIATES INC	CONSOLIDATED UNDRAINED	
Client/Project	TRIAXIAL COMPRESSION TEST	
BARRICK/MERCUR TAILINGS/UT	GA98 BH9A 20-22 2344-R1	
DRAWN BDM CHECKED DD REVIEWED DJ	DATE NOV98 JOB NO. 983 - 2344 FIGURE	
	2344BH98 2344BH9C	

SAMPLE NUMBER

BH9

SAMPLE DEPTH (FEET)

20-22

BORING NUMBER GA98 BH9A

EFFECTIVE STRESS (PSI) 15.0

Reading	Strain	Area orrotd in 2	Force	sigma1	s igma3		or Pore s Press	s lg_1'	'3_وا ء	۵	۴′
๔๑-๛๓๚๒๘๖๓๑๑-๛๓๚๒๘๖๓๑๑๔พพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพ	01111223334455566677778889900011222334444 004826048371593715937260482615937159	66666666666666667777777777777777777777	05497621882937830879777777777777888888888894976218829378308879777777777777888888888888888888	P08-97-4-0-2-9-4-6-5-4-1-5-37-2-2-9-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	**************************************	10214388440294654153722291750378367898 102143886440294654153722291750378366666666666666666666666666666666666	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$5.4.29.4.31.4.9.530.4.7.9.9.4.5.67.32.5.4.4.9.4.30.4.4.6.5.5.4.4.5.5.6.7.7.6.9.9.4.5.67.32.5.4.4.5.5.5.6.4.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	**************************************	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
%%%%%%\$	155.667.1604827.16049 111111111111111111111111111111111111	7.77.77 7.775 7.775 7.775 7.775 7.799 8.00 127 120 8.00 8.00 8.00 8.00 8.00	2851 570 682235 69223 69223 69223 6933 6935 6937 6937 6937 6937 6937 6937 6937 6937	864209789913310989 8642097899133110989 8642099555646665555 86420999999999999999999999999999999999999	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	186.8 186.6 186.6 186.6 186.7 185.7 185.7 185.7 186.3	742086444 55.0.08644 -155.4444 -144.9989755554 -144.4998975554	137.50 137.66395 1336.595 1336.1355 1335 1335 1335 1335 1335 1335 1335	742086448989775554 888888888888888888888888888888888	43N1000000000000000000000000000000000000	17429523900105544 4333222212011111111111111111111111111111

SAMPLE NUMBER

BH9

SAMPLE DEPTH (FEET)

20-22

BORING NUMBER

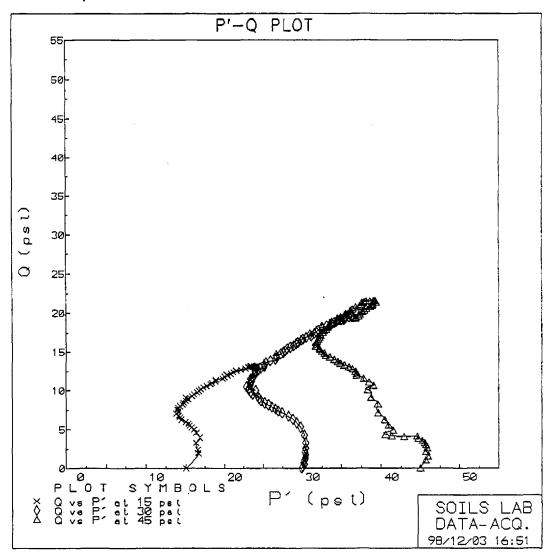
GA98 BH9A

EFFECTIVE STRESS (PSI) 45.0

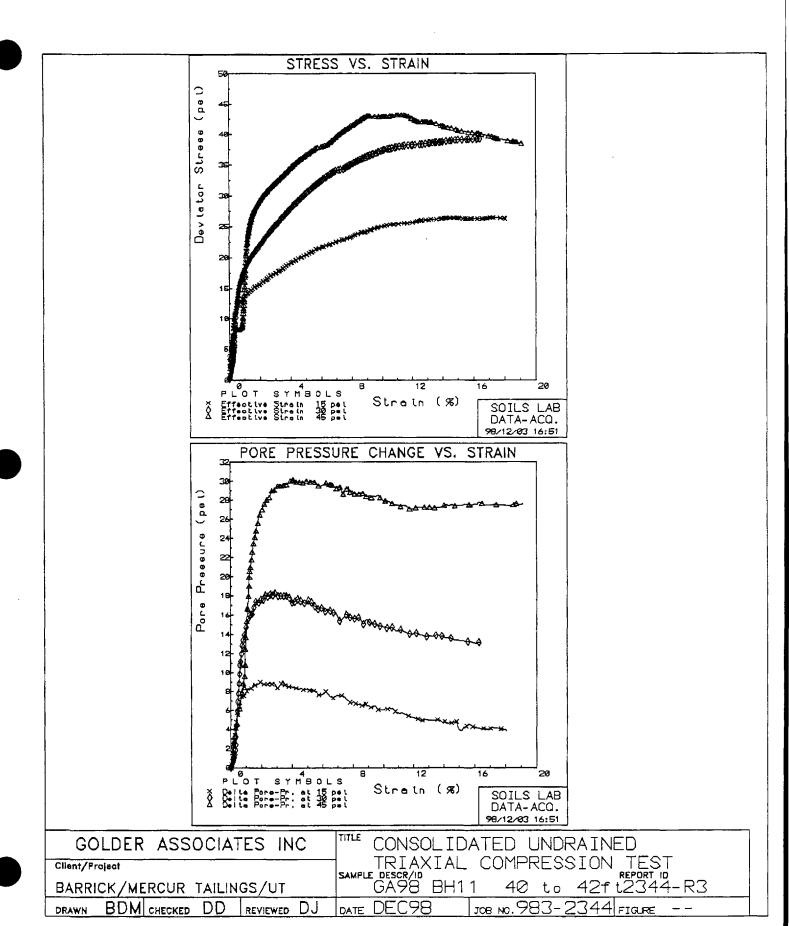
Reading	Strain	Area	Force	s tgma 1	s lg ma3	Deviator Stress	Pore Pres	s lg_1′	'کــو۱ ء	Q	P'
ro-2345678991234567898128888888888888888888888888888888888	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7.12 7.15 7.18 7.22 7.25	080633486835800377441264324582456666704 0446377744773790625538084245687795049369369140542687793711533976 075044555677888897906369141511111111111009976	P0997596822441417847508336750193833102 P099759682244141784750833675019833102 P099759682244141784750833675019833102 P099759682244141784750833675019833102	11100000000000000000000000000000000000	0.00975968224441417847508767501938771021 1.0901109975284441417881285812444189972198771021 1.0901109975284441417855812444189972198771021	######################################	\$\\\^{\text{95}}.1384260142217723149444051777910078176 \$\\\^{\text{67}}.1384260142217723149444051777910078176 \$\\\^{\text{67}}.1384260142217723149444051777910078176 \$\\\^{\text{67}}.13842622171866232222222222222222222222222222222222	42000000000000000000000000000000000000	P095050448269257024677777788888977777777777777777777777777	\$\\\^\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
336788984122345447	1555648371593824 11556467771593824	7.63 7.67 7.71 7.79 7.82 7.99 7.99 8.07	1104.3 1112.8 1120.8 1120.7 1139.2 1155.1 1155.1 11652.2 1170.5 1170.5	254.7 2555.4 2555.7 2556.6 2556.7 2556.6 2566.6 256	110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0	144.7 144.0 144.5 144.5 146.5 146.6 146.6 146.6 146.6 146.6 146.6 146.6	246875801478 	196.0 196.5 197.1 197.1 199.1 199.2 199.2 199.2 200.6 200.8	4.5.7.9.8.6.9.1.75.9.9.9.175.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	72.35782.43733.4455	123.7 124.4 124.4 124.8 126.1 126.1 126.6 127.2 127.4

SAMPLE NUMBER

BH9


SAMPLE DEPTH (FEET)

20-22


BORING NUMBER GA98 BH9A

EFFECTIVE STRESS (PSI) 30.0

Boring Number	GA98BH11	GA98BH11	GA98BH11
Sample Number	11	11	11
Sample Depth (ft.)	40-42	40-42	40-42
Sample Diameter (in.)	2.82	2.82	2.82
Sample Length (in.)	5.67	5.43	5.52
Dry Density (pcf)	90.8	9 2.7	92.0
Initial Moisture Content $(\%)$	31.6	2 9. 8	30.3
Final Moisture Content (%)	25.6	23.7	24.0
Strain Rate (in./min)	0.0031	0.0031	0.0031
Effective Stress (psi)	15.0	30.0	45.0
Back Pressure (psi)	85.0	70.0	55.0
Alpha = Phi =	A =	C =	

GOLDER ASSOCIATES INC	CONSOLID	, , , eb on brother
Client/Project	TRIAXIAL	COMPRESSION TEST
BARRICK/MERCUR TAILINGS/UT	GA98 BH1	
DRAWN BDM CHECKED DD REVIEWED DJ	DATE DEC98	JOB NO. 983-2344 FIGURE
	2744119	2344116

SAMPLE NUMBER

11

SAMPLE DEPTH (FEET)

40-42

BORING NUMBER

GA98BH11

EFFECTIVE STRESS (PSI)

SAMPLE NUMBER

1 1

SAMPLE DEPTH (FEET)

40-42

BORING NUMBER

GA98BH11

EFFECTIVE STRESS (PSI)

	Area Force	istoma1	s toma 3	Devlator Stress	Pare Press.	e tg_1′	s lg_3′	a	P'
*07160482604827159483715949393837161 *00112223344455566677788899990111234461	26 0 0 0 1 0 8 7 9 2 1 1 2 0 1 0 8 1 3 9 1 2 0 1 1 1 2 1 1 1 7 0 1 3 9 8 1 1 1 2 1 1 1 7 0 1 3 1 1 2 1 1 1 7 0 1 3 1 1 2 1 1 1 7 0 1 3 1 1 2 1 1 1 7 0 1 3 1 1 1 1 7 0 1 3 1 1 1 1 1 7 0 1 1 1 1 1 1 1 1 1 1 1 1 1	100.0 116.0 118.0 120.6 121.3 121.3 124.7	P. C.	**************************************	P0257.111111111111111111111111111111111111	L9925323666276088840881848461257803 293333456780123568884444444444444444444444444444444444	29774221111112222333344444455555556666666666666666666	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	P9982360736777115187608937115600744499 0
36 16 . 0 7	7.41 289.8 7.46 291.8 7.48 293.7	139.1 139.2 139.2	100.0 100.0 100.0	3 9 .2	13.4 13.3 13.1 13.1	55.5 55.7 55.9 56.1	16.6 16.8 16.8	19.5 19.6 19.6	36.0 36.2 36.4 36.5

SAMPLE NUMBER

11

SAMPLE DEPTH (FEET)

40-42

BORING NUMBER

GA98BH11

EFFECTIVE STRESS (PSI)

Reading Strain	Area orgotd	Force	sigma1	S Lgma3	Deviator Stress	Pore Press	s lg_1'	'3_ وا ء	Q	Pʻ
*08260482604837-604826-50593726-6060-17-59 *081122233444556677778899911111111111111111111111111111	16666666666666666666666666667777777777	689786025709985477222140470070073070 602946641857384079676778999990000099 5374864185784079677899999000000099	a0.4.1.4.3.6.7.7.6.6.6.3.1.80.7.6.4.1.8.5.1.9.9.0.1.2.9.2.0.0.7.4.0.6.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	10000000000000000000000000000000000000	19 041436776663180764185199012920074066 -0441436776663180764185199012920074066	09299094609906792706844085412232354 09299094609906792706844085412232354	\$6.5954572067412394812766927881875152 \$6.5954572067412333567889999000009999988 \$6.5954572067412333567889999000009999988	P\$5771.876555555555566666677777777777777777777	#04176303030005904006905556651009753	#51-8422111222233444566577888889999988888877409
35 15.1 36 16.7 37 16.1 38 16.5 39 16.9 40 17.4 41 17.8 42 18.4 43 19.0	7.37 7.42 7.46 7.49 7.53 7.61 7.67 7.72	299.0 299.7 299.7 299.0 298.4 298.4 297.7	140.6 140.0 140.0 139.4 139.5 138.5 138.5	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	40.632 40.207 40.077 40.399.39 39.39 38.5	27.4 27.5 27.6 27.6 27.5 27.5 27.5 27.6	58.2 57.7 57.4 57.4 56.7 56.7 56.4 56.0	17.6 17.5 17.5 17.5 17.5 17.5 17.4	20.3 20.1 20.1 20.0 19.8 19.7 19.5 19.5 19.3	37.9 37.7 37.6 37.4 37.4 37.2 37.1 37.0 36.7

APPENDIX D-4 PERMEABILITY TESTING

BARRICK/RESERVATICALZANYON TAILINGS/UT 983-2344.001.2 TABLE 1 SUMMARY OF FLEXIBLE-WALL PERMEABILITY TEST RESULTS

			 	 		 _	 	
AVERAGE PERMEABILITY (cm/sec)	7.1X10 ⁻⁴	3.9X10 ⁻⁷						
GRADIENT	-	6						
BACK PRESSURE (psi)	75	78						
EFFECTIVE STRESS (psi)	25	22						
INITIAL MOISTURE (%)	28.1	30.3						
SAMPLE SAMPLE SAMPLE SAMPLE INITIAL EFFECTIVE NUMBER DEPTH LENGTH DIAMETER DRY DENSITY MOISTURE STRESS (ft) (cm) (cm) (pcf) (pcf) (psi)	92.8	92.2						
SAMPLE DIAMETER (cm)	7.27	7.24						
SAMPLE LENGTH (cm)	10.58	9.36						
SAMPLE DEPTH (ff)	42-44	40-42						
SAMPLE	BH-9	BH-10						

APPENDIX E
WMCI REPORT

WATER MANAGEMENT CONSULTANTS, INC.

TECHNICAL MEMORANDUM

To:

Brent Bronson

Company:

Golder and Associates, Inc.

From:

C. Filippone

Date:

January 13, 1999

Subject:

Updated Reservation Canyon draindown analysis

1.0 Introduction

Water Management Consultants, Inc. (WMCI) was retained by Golder Associates, Inc. (GAI) to conduct numerical flow modeling of draindown in the Reservation Canyon tailing impoundment at Barrick Resources' (USA) Mercur Gold Mine, located in Tooele, Utah. This study builds upon previous modeling efforts by Water Management Consultants, Inc. (WMCI, 1996) and TriTechnics (1996). Estimates of anticipated incidental flows at the tailing impoundment including seepage from the main dam seepage collection system, main dam chimney drain, levee seepage collection system and the saddle seep collection system are needed for closure planning. Estimates of water level declines within the tailing impoundment are required for compaction calculations to assist in determining the feasibility of alternative engineering controls on the surface.

The work reported here incorporates recently developed estimates of spatial variability of hydraulic conductivity within the tailing and includes estimates of flows through the clay liner underlying the impoundment in the long-term draindown projections. GAI used cone penetrometer (CPT) pore pressure dissipation methods to estimate saturated hydraulic conductivity distribution in the impoundment along five cross-sections through the tailing impoundment. The depth of the pool was also measured along these sections. Water level elevations and drain discharge records were kept from June to October 1998. Model calibration is to measured water levels and discharges from tailing embankments at two locations during the month of September 1998.

The WMCI (1996) report focused on the effect of two alternative cap designs at the impoundment with and without basal discharge on long-term discharge and draindown rates. For the saturated-unsaturated UNSAT2 simulations, WMCI input parameter values reported by TriTechnics (1996) and found that temporal variation of combined seepage rates from the main dam, main dam chimney drain, and the reclaim levee would decline from about 35 gallons per minute (gpm) to about 14 gpm after 30 years. The WMCI (1996) report concluded that a cap consisting of one foot of topsoil over two feet of subsoil was superior to one with the same cover underlain by a one foot thick clay layer. Discharge through the clay liner beneath the tailing impoundment was estimated to be about 1.17 ft/yr.

TriTechnics (1996) evaluated cap designs and estimated draindown rates and seepage flows from the main dam and the levee seepage collection system using the HELP model. HELP predicted that the upper 90 feet of tailing could dewater in about 7 to 9 years, resulting in the cessation of seepage from the main dam, and that the entire tailing mass could free drain in about 10 or 11 years.

Global Environmental Technologies (GET, 1998) presented a two-phase long-term management plan for anticipated incidental flows at the tailing impoundment including; seepage from the main dam seepage collection system; main dam chimney drain; levee seepage collection system; and, the saddle seep collection system. The plan includes recycling incidental seepage to the northwest corner of the impoundment basin and the synthetically lined East Bay impoundment during the first phase. A tailing cover and decommissioning of all facilities involved in active pumping from the incidental seepage collection points are planned for phase two.

Subsequent to the completion of the work described above, Barrick has installed flow meters to accurately measure the flow rates and seepage volumes at the main dam and levee seepage collection system. Substantially different quantities of discharge from the impoundment have been measured since then, and it has become necessary to re-evaluate previous estimations of the hydraulic parameters of the materials and the long-term behavior of the impoundment.

This report summarizes WMCI's current draindown evaluation, which is based on data obtained during CPT testing performed by GAI at the tailing impoundment and recent observations of discharge. The objectives of the study were to:

- quantify the flux of water through the clay liner and embankments, and
- estimate the temporal variation of hydraulic head distribution within the impoundment.

A variably saturated flow model, UNSAT2 (Davies and Neuman, 1983) was used to evaluate parameter estimates, draindown and seepage in cross-sections developed normal to the main dam (A-A') and the levee buttress (D-D'). The location of these profiles is indicated on Figure 1 of the main report. A three-dimensional flow model, MODFLOW (McDonald and Harbaugh, 1988), was used to analyze long-term draindown over the area of the tailing impoundment. This combination of modeling approaches allows the estimation of hydraulic parameters via calibration to existing water level and outflow data with a rigorous state of the art unsaturated flow model (UNSAT2) in two dimensions. Following calibration to existing conditions, the unsaturated flow model is used to estimate long-term draindown while incorporating physically realistic atmospheric boundary conditions. The hydraulic parameters and the liner seepage rates obtained from the unsaturated flow simulations are then built into a three-dimensional saturated flow model (MODFLOW) of the tailing impoundment for assessment of long-term draindown.

2.0 Conceptual Model

The Reservation Canyon tailing impoundment consists of approximately 20 million cubic yards of mine tailing, bounded by a main dam, saddle dam, and the levee buttress. The material in the tailing impoundment has been deposited into segregated layers over the 15-year operation of the impoundment. The crest of the original impoundment was at an elevation of 7250 ft above mean sea level (amsl). Upstream construction methods were used to elevate the crest of the dam to 7360 ft amsl using crushed limestone placed in lifts above a previously developed tailing beach. The most recently deposited tailing are still unconsolidated and lack a porous media structure. Construction of the East Bay, a synthetically lined impoundment facility designed to hold 72 million gallons of solution, was completed in 1996. The East Bay impoundment was built to facilitate water management during closure operations.

As of August 1998, tailing surface elevations sloped from about 7,337 at the beaches along the southeast and southwest sides of the impoundment to about 7,326 ft amsl in the northwest corner of the impoundment. Standing water within the impoundment at the time of the survey had a surface elevation of 7,336.7 ft amsl. This water level was maintained during the model calibration period for the month of September 1998.

With exception of inboard slopes of the upstream raises, the impoundment is lined with a six inch to one-foot thick layer of clay. This clay liner rests upon in situ shale or two feet of crushed shale, which overlies bedrock. The main dam and saddle dam are zoned earthen structures with a clay core and chimney drain. The base of the upstream construction is at the top of the main dam at 7,250 ft amsl. Seepage from the upstream construction berm is collected in an 800 foot long seepage collection apron located at the top of the main dam. The levee buttress does not include a clay core or chimney drain, and is intended to allow free drainage from the impoundment into a 610 foot long levee seepage collection apron and sump located at an elevation of 7,234 ft amsl.

Water is maintained in the impoundment by recirculating the discharge from the collection systems to the northwest corner of the tailing impoundment. Water collected from the levee buttress is generally routed to the East Bay impoundment. Seepage rates at both the main dam and the levee buttress have been observed to be strongly dependent on the location of slurry drops in the impoundment or if evaporation emitters are active. Flows from the main dam chimney drain and the saddle seep collection system have been observed to be small.

Climatic conditions at the tailing impoundment have been described by WMCI (1996). The same atmospheric inputs as used in the previous WMCI simulation (1996) were applied at the surface for the draindown simulation. These were synthetically generated using the HELP model for a 30-year period. For simulation projections beyond 30 years, the record was repeated. Mean temperatures and precipitation data from the Mercur site were combined with meteorological data from the Salt Lake City area representing typical weather patterns for the vicinity. Mean annual rainfall is 19.0 inches, while mean snowfall is 79.0 inches (Barrick monthly meteorological database). Adopting a 10 percent average water content for the snow, an equivalent annual precipitation of 26.9 inches is applied. Taking into account evaporation and snow sublimation during rainfall events, the overall mean net precipitation available for infiltration is estimated at 23.6 in/yr. Mean annual potential evaporation is 28.7 in/yr.

2.1 Previous work

2.1.1 Field characterization

As discussed in the introduction, several site closure studies have been conducted. These studies have made use of estimates of saturated hydraulic conductivity obtained in the field and in the laboratory during multiple phases of testing. Variability in hydraulic conductivity of the subaerial tailing proximal to the beach areas was found to range from 8.1 x 10⁻⁵ cm/sec to 2.7 x 10⁻³ cm/sec for nine of ten slug tests conducted by Physical Resource Engineering, Inc. (PRE) in 1993 and 1994. A tenth slug test in the subaerial tailing resulted in an estimate of 1.8 cm/sec. A value of 1.8 x 10⁻⁵ for the subaerial tailing was reported by PRE in 1989, but the method of measurement was not noted. Hydraulic conductivity estimates obtained by different measurement methods, i.e. in laboratory columns, slug testing in the field or from CPT dissipation data, can be affected both by methodology and by material properties that are a function of the scale of the measurement. For this reason it is difficult to directly compare estimates obtained by different measurement techniques. Hydraulic conductivity estimates based on in situ CPT pore pressure dissipation data interpretation by GAI in the upper subaerial tailing zone ranged from 6.7 x 10⁻⁶ cm/sec in the distal upper subaerial tailing to 4.5 x 10⁻⁵ cm/sec in the proximal unconsolidated slimes. These tests were conducted to evaluate the range of material within the tailing impoundment. The values are generally on the low end of those obtained from the proximal beach slug testing.

Tailing below the 7,213 ft amsl elevation within the impoundment were classified as bulk discharge tails in the WMCI (1996) report, and assigned a hydraulic conductivity value of 7.6 x 10⁻⁶ cm/sec as reported by PRE (1989). CPT data hydraulic conductivity values from in situ pore pressure dissipation testing for tailing in this deeper zone were estimated by GAI as 9.9 x 10⁻⁷ cm/sec for the subaqueous tailing at the deepest levels of the impoundment below approximately 7,175 ft amsl.

2.1.2 Technical approach

WMCI has adopted an approach to modeling of the tailing impoundment that combines the advantages of incorporating the nonlinear phenomena inherent to unsaturated flow processes, within a two-dimensional finite element context, with the fully saturated three-dimensional finite difference model MODFLOW for estimation of long-term water levels. Calibration of the two-dimensional main dam cross-section simulation to water levels and discharge rates observed during September 1998 was accomplished by assigning the tailing hydraulic conductivity values and spatial distributions supplied by GAI. When these parameters did not initially result in the seepage conditions observed in the field, an increasing ratio of horizontal to vertical anisotropy of those zones within the subaerial tailing was implemented. This still did not result in sufficient discharge at the main dam's solution collection system. Next, the hydraulic conductivities of the tailing zones were increased by a factor as a group and the simulations were repeated until seepage volumes corresponded with measurement data. Hydraulic parameters for materials outside the tailing were not altered from the values provided by GAI.

When a reasonable set of parameter values that reproduced measurements at the main dam and levee buttress collection systems for September 1998 at steady state was found, the steady state pressure distribution resulting from the simulation was input as the initial condition for 100-year UNSAT2 draindown simulations. For the draindown simulations, atmospheric boundaries were implemented at all surface elements except for the potential seepage faces. The resulting net seepage rates through the clay liner and recharge rates due to atmospheric conditions at the surface from UNSAT2 was incorporated into MODFLOW for a three-dimensional long-term draindown analysis.

Effectively, the simulation with MODFLOW integrates the results of the two cross-sectional UNSAT2 simulations over the entire area of the impoundment. Although this approach is considered technically sound, it is affected by the limitations of MODFLOW to deal with flow through variably saturated materials and may tend to overestimate the long-term flows out of the impoundment.

3.0 Numerical modeling

3.1 Unsaturated flow simulations

The UNSAT2 computer code has been used to model draindown in a wide range of heap leach, waste dump, and tailing piles (Guzman, Srivastava, and Beale, 1998). The model uses the Galerkin finite element method to solve the Richards equation for pore pressure, then converts this to volumetric water content according to the van Genuchten relationship. Since hydraulic conductivity is a function of saturation, the use of the UNSAT2 model allows accurate representation of flow under partially saturated conditions. When coupled with site-specific long-term synthetic atmospheric input, the model incorporates the additional effects of climatic variability. In combination with new information about the spatial distribution of hydraulic conductivity within the impoundment and measured seepage rates at the main dam and levee buttress, the revised UNSAT2 model was used to provide improved estimates of long-term draindown characteristics including water levels and outflows from the system. These estimates are then used to set boundary conditions for the three-dimensional MODFLOW simulations.

In previous modeling studies (WMCI, 1996), two cross-sections were modeled with UNSAT2. The location of cross-sections A-A' and D-D' (approximate) are shown in Figure 1. Although section D-D' is relatively close to previously simulated section B-B', it was decided to generate a new finite element grid for section D-D' which captures the details available from the recent field characterization by GAI. Figure 2 shows the two finite element grids used to model these cross-sections.

3.2 UNSAT2 model calibration

The model was calibrated to site conditions for the month of September 1998. This time period was selected because discharge rates were relatively constant, and the effect of snow guns used for enhancement of evaporation had dissipated. Figure 3 is a plot of water level elevation in the tailing reservoir from June to October 1998. Since fewer variables in operational procedures occurred in September, the September water levels exhibit significantly less fluctuation than that observed during earlier months. The average water level elevation of 7,336.7 ft was used for the modeling calibration phase. Figure 4 is a plot of pumping rates from June to September 1998. During September, the pumping rate at the main dam was approximately 200 gallons per minute (gpm). The pump-back rate from the levee buttress sump was approximately 60 gallons per minute

Hydraulic conductivity values and distributions reported by GAI for the CPT pore pressure dissipation tests were incorporated into the UNSAT2 A-A' (main dam) cross-section. Material properties for the zones surrounding the tailing including the bulk fill, run of mine, clay core and liner, chimney and bedrock, were assigned identically to those of the WMCI (1996) modeling study. Boundary conditions of unit gradient were set along the lower and left-hand (downstream) sides. For the steady state simulation, no flow boundary conditions were established along the right hand side and along the main dam surfaces away from the seepage area. The slope of the upstream construction lifts above the main dam crest at 7,250 ft was assigned seepage face boundary conditions. The tailing impoundment surface was set at constant head equal to the observed September water level of 7,336.7 ft amsl. The resulting simulation did not produce the discharges through the upstream buttress reported for the month of September 1998 at the main dam collection system.

Similarly, cross-section D-D' (levee buttress) was constructed. Material distribution as determined from the CPT characterization effort was built into the finite element grid. Material property distributions for the A-A' and D-D' unsaturated simulations are shown in the Appendix A.

Potential contribution of anisotropy within the subaerial tailing zones to the observed seepage rates was investigated. Figure 5 illustrates the seepage rates observed from the main dam buttress as a function of anisotropy. A 100:1 horizontal to vertical anisotropy ratio resulted in flows of 67 gpm at the main dam buttress, less than half of the observed rates of around 200 gpm. It was concluded that anisotropy alone could not explain the disparity between high seepage rates observed in the field and low rates predicted by the model when the in situ CPT derived hydraulic conductivity values were used.

To match observed discharges through the upstream construction buttress, hydraulic conductivity values of the tailing were increased incrementally as a group until the discharge from the model matched the reported discharge. The increase on the hydraulic conductivity values was done while maintaining the contrast of hydraulic conductivity as determined by GAI on the basis of the CPT testing and field observation. The hydraulic conductivity of the slimes or the subaqueous tailing material, was kept as measured for the following reasons. The slimes do not present a typical porous media structure, but resemble a typical dispersed colloidal emulsion. When drained, these extremely fine materials are expected to have very low hydraulic conductivity. The subaqueous tailing is believed to be significantly compacted due to the overburden pressure exerted by the overlying materials.

Figure 6 is a plot of discharge from the impoundment versus the factor by which the saturated hydraulic conductivity measurements were increased when a 10:1 horizontal to vertical anisotropy is imposed within the subaerial tailing zones. Discharge rates increase linearly as the overall tailing hydraulic conductivities are increased. A factor of 15 times the values estimated from the CPT data was found to result in the observed seepage rates around 200 gpm at the main dam seepage face.

As both Figures 5 and 6 show, basal outflows were found to be relatively unaffected by variation of hydraulic conductivity within the tailing, i.e., the unit gradient boundary condition at the bottom of the simulation domain and the hydraulic properties of the clay liner and the bedrock controlled basal seepage rates. Variation in hydraulic conductivity of the bedrock was found to have a significant effect on flow through the liner, although details of these results are not reported here.

Based on these calibration evaluations, it was concluded that except for the slimes and the subaqueous tailings, hydraulic conductivity values of 10 to 15 times those estimated from the CPT data, in combination with a 10:1 horizontal to vertical anisotropy ratio within the subaerial tailing, were reasonable. The steady state pressure distribution from the simulation was used as initial conditions for transient simulations designed to provide estimates of long-term discharge and temporal variation of hydraulic head distribution within the tailing impoundment.

Table 1 Material properties used in unsaturated flow simulations

Material description	K _{s,x} (cm/sec)	K _{s,z} (cm/sec)	θ _s (vol/vol)	θ _r (vol/vol)	α (1/cm)	n
 Proximal upper subaerial tailing * 	1.5e-03	1.5e-04	0.50	0.20	0.014	1.323
Distal upper subaerial tailing *	1.0e-03	1.0e-04	0.50	0.20	0.014	1.323
3. Proximal unconsolidated slimes	4.5e-05	4.5e-05	0.70	0.250	0.0066	1.323
4. Distal unconsolidated slimes	6.9e-06	6.9e-06	0.70	0.250	0.0066	1.323
Lower subaerial tailing *	1.2e-03	1.2e-04	0.37	0.150	0.016	1.768
6. Subaqueous tailing	9.9e-07	9.9e-07	0.42	0.080	0.014	1.323
7. Clay liner	2.0e-08	2.0e-08	0.37	0.286	0.002	1.590
8. Bulk fill	1.5e-04	1.5e-04	0.32	0.051	0.0163	4.360
Rock fill upstream	2.2e-03	2.2e-03	0.21	0.010	0.164	2.5
10. Chimney drain	3.3e-03	3.3e-03	0.27	0.033	0.119	2.450
11. Oquirrh Formation	1.4e-03	1.4e-03	0.15	0.050	0.031	3.2
Manning Canyon shale	3.9e-05	3.9e-05	0.15	0.050	0.014	3.2
13. Medial limestone	2.2e-03	2.2e-03	0.15	0.080	0.0140	1.323
14. Intercalated series	2.0e-4	2.e-04	0.15	0.010	0.031	3.2

^{*}Indicates zones for which a factor of 15 and a 10:1 horizontal to vertical anisotropy in hydraulic conductivity was implemented.

3.3 Three-dimensional saturated flow simulations

Two-dimensional simulations can be used to estimate discharge from the impoundment, but a three-dimensional representation is necessary to determine the long-term variation of hydraulic heads within the impoundment. The computer code MODFLOW was used to model flow in the impoundment. MODFLOW is a finite-difference saturated flow model, which calculates the hydraulic head in each cell based upon material properties and the head in neighboring cells.

While MODFLOW does not have the capability to model unsaturated flow, it is expected that the three-dimensional model will provide an accurate representation of the temporal behavior of hydraulic head within the impoundment. This is because the boundary conditions for the saturated flow model are determined using the results from the two-dimensional unsaturated flow model. Material properties (saturated hydraulic conductivity and porosity) used in the three-dimensional model are the same as those for the unsaturated flow model except that no unsaturated flow parameters are included. A comparison of discharge rates through the main dam buttress (Figure 7), and the levee buttress (Figure 8), illustrates that the two models produce very similar results. Despite the differences between the models, the application of consistent parameters, boundary conditions and the matching of water levels over time and discharge from the system justifies the applicability of the saturated flow model to estimate the long-term draindown of the tailing impoundment.

The MODFLOW grid consists of 50 rows, 31 columns, and 11 layers for a total of 17,050 cells. The base cell area is 100 feet by 100 feet. Additional discretization was utilized in areas where higher resolution was necessary. Cells near the main dam and reclaim levee measure 50 feet by 50 feet. The base cell height is 50 feet; layer thicknesses as small as one foot were used where necessary. The lined East Bay storage pond was not included in the simulation since it is not hydraulically connected to the rest of the impoundment.

3.3.1 Model calibration

Calibration of the saturated flow model consisted primarily of determining appropriate conductances for the drains at the seepage faces and the general head boundary at the bottom of the model given the boundary conditions as computed from UNSAT2. The calibration period for the three-dimensional model was September 1998, the same as for the UNSAT2 model. While the two-dimensional models were calibrated to the measured discharge through the main dam upstream construction and levee buttress, the three-dimensional model included two additional parameters basal seepage and atmospheric interaction as determined from the unsaturated flow model. A constant head of 7,336.7 ft amsl was used to represent the standing water in the impoundment for the steady state simulation. MODFLOW's drain package was used to simulate flow through the main dam upstream construction and reclaim levee. The general head boundary package was used to simulate downward flow from the base of the impoundment.

Transient simulations were conducted for up to 100 years after closure, using the calibrated steady state results as initial conditions. It was also assumed that pump back activities onto the main impoundment would cease after closure, eliminating another source of recharge. Recharge rates in the UNSAT2 simulations were found to be close to zero when integrated over the duration of the draindown simulations because of the ability of the model to include upward flux in the unsaturated zone when net evaporative conditions exist on the surface. A comparison of water table elevations along the A-A' and D-D' cross-section shows excellent agreement with the UNSAT2.

4.0 Analysis of results

Figure 10 illustrates the results of the steady state calibration to September 1998 conditions for the A-A' and D-D' profiles. Water levels at the surface for each profile are 7,336.7 ft. Unsaturated conditions are predicted at steady state beneath the clay liner and within the main dam and both the main dam and levee buttresses. The surface of the water table slopes gently from the end of the ponded tailing (edge of the beach) to the respective seepage outflow locations for each profile. Results of the draindown simulations are presented as discharge over time for the main dam buttress (Figure 7), the levee buttress (Figure 8), and basal outflow (Figure 9).

Main Dam Buttress Seepage Rates

As shown in Figure 7, estimated seepage rates at the main dam upstream construction buttress are expected to decline rapidly during the first year of draindown. From the calibrated initial seepage rate of 182 gpm, seepages from UNSAT2 after a year decrease to approximately 62.1 gpm, after two years the seepage rate is 38.3 gpm, after three years the rate is 22.1 gpm, and after five years the rate is about 8 gpm. Seepage from the main dam buttress is predicted to cease approximately 8 years after the initiation of draindown by UNSAT2, and sometime in the fifth year by MODFLOW.

Levee Buttress Seepage Rates

Levee buttress seepage results from the D-D' UNSAT2 profile and MODFLOW are shown in Figure 8. Due to the fact that the levee has no clay liner and the collection sump is located at a lower elevation than for the main dam buttress seepage face, discharge at the levee collection sump is estimated to continue for about 13 years, five years longer than for the main dam buttress seepage. Discharge rates at the levee decline from a current level of around 60 gpm to about 42 gpm after the first year, 31 gpm after the second year, 21 gpm after the third year, to 2.5 gpm at the start of the tenth year. After year 13, no discharge was observed at the buttress levee in the Unsat2 simulations. Discharge in the MODFLOW simulations continued at negligible levels until around year 20.

Basal Seepage Rates

Estimated average seepage rates through the impoundment bottom are plotted in Figure 9. These rates result from an integration of average basal seepage from the A-A and D-D' profiles over a 50 acre area. This area was chosen due to the observation that seepage as computed by the UNSAT2 simulations occurred primarily beneath the deeper areas of the tailing impoundment, and that the area of seepage decreased as water levels decreased over the draindown period. Rates of basal seepage were seen to decay more or less exponentially over the 100 year simulation period. Loss rates at the end of the first year of draindown are predicted by UNSAT2 to be about 35 gpm over the impoundment base. At the end of 10 years basal seepage is estimated at 18 gpm. Basal seepage rate after 30 years is 9 gpm, after 50 years is 6 gpm, after 75 years is 4 gpm and after 100 years is about 3 gpm.

Distribution of basal seepage was heavily weighted in the area immediately behind the main dam throughout the 100 year simulation period. This is the area where tailing thicknesses are greatest. A high conductivity run of mine zone located between the clay core in the main dam and the tailing was found to provide a pathway for water flowing downward. The embankment zone overlies a six-inch thick clay liner at that location and an elevated seepage rate was predicted in that area.

Water Level Contour Plots

Water levels determined by MODFLOW were found to correlate very well with the predictions from the UUNSAT2 vertical profiles. The surface of the saturated tailing was found to remain more or less level as draindown progressed. As a result, water level contours are so widely spaced that plan view contour maps do not illustrate impoundment conditions as well as the vertical profiles. Figure 11 illustrates water pressure distribution within the impoundment along the A-A' profile at 10 years and 30 years after initiation of draindown. After 10 years saturated conditions exist just below the 7,250 ft main dam upstream buttress seepage outflow. After 30 years, water levels have dropped to about 7,210 ft. Water pressures in the tailing material above that level are for the most part in the -1 ft to -15 ft range (dark green), with only a small near surface portion showing pressures below -15 ft (blue). Figure 12 illustrates water pressures along the A-A' profile after 50 and 70 years. Saturated water levels within the tailing decline to about 7,175 ft 50 years after initiation of draindown, and to about 7,150 ft after 70 years. Differences in material properties are exhibited by heterogeneity in water pressures as tailing moisture content decreases. After 100 years, water levels within the impoundment have declined to 7,120 ft, about 70 feet above the clay liner.

Pressure distribution contour plots for section D-D' for 30 and 50 years after onset of draindown are presented in Appendix A. The pressure distribution indicate similar water level elevations as those reported for cross-section A-A'. Pressure contours indicate the effect of spatial variability in the material properties of the tailing materials.

Figure 13 illustrates MODFLOW water levels after one year of draindown, as an example of MODFLOW output. Also included in Figure 13 is the hydraulic head distribution computed by MODFLOW for year five of the draindown simulation. Subsequent time output showed uniform elevation drop across the impoundment, with level surface that did not exhibit significant slope.

5.0 Conclusions and recommendations

Conclusions

Current surface discharge from the impoundment is greater than predicted by previous studies. Values of saturated hydraulic conductivity estimated from CPT pore pressure dissipation tests were found to be too low to produce measured discharge rates from the main dam upstream buttress and the levee buttress in the unsaturated flow cross-section simulations. In order to calibrate to measured flow data, hydraulic conductivity values were increased slightly and a 10:1 horizontal to vertical anisotropy ratio was imposed on the three subaerial tailings zones observed to exhibit anisotropy.

Flow through the base of the impoundment was found to play a significant role in development of water levels for the entire simulation period. Basal through flow is the sole mechanism for draindown once water levels fall below the main dam upstream buttress after eight years and the levee buttress after 13 years. As indicated by the histograms of discharge into the collection system for the levee and the main dam, seepage into these structures is controlled by their elevation. In fact, seepage from the main dam collection ceases once the water level near the main impoundment falls below elevation 7,250 ft while seepage through the levee continues until the water level in its vicinity falls below elevation 7,234 ft. Seepage rates through the base decline over time and are still declining at the end of the simulation period at 100 years. Additional simulations to estimate seepage rates after 100 years, if necessary, should be conducted once that further field data become available. Typically, uncertainty in simulation results increases with length of the simulation period and decreases as a function of the data available for calibration.

A water balance analysis would make it possible to better determine the suitability of the hydraulic properties applied to the bedrock for the unsaturated simulations. The bedrock hydraulic conductivity was found to control liner seepage rates to a large extent. A concurrent record of daily meteorological conditions and an accounting of all water applied to and removed from the impoundment reservoir would make it possible to determine appropriate basal seepage values from a total water balance. For maximum accuracy, water level data over time within the tailings would also be required as a means of monitoring storage changes. Current data available to WMCI covers the period June 1998 to October 1998. Incomplete data and high variability in this short period makes the establishment of a longer period of record a prerequisite to a meaningful water budget analysis.

Recommendations

Continuous monitoring of discharge, pump back of water, and climatic conditions should be maintained so an accurate water balance analysis of the tailings impoundment can be conducted. The water balance method is an excellent means of confirming basal discharge rates obtained by other methods.

Since vertical flow into the bedrock is of paramount importance in the ultimate draindown of the impoundment, more information should be collected on the hydraulic properties of the bedrock.

References

DAVIES, L. A. & NEUMAN, S. P. 1983. Documentation and User's Guide: UNSAT2 – Variably Saturated Flow Model. Nuclear Regulatory Commission report: NUREG/CR-3390; WWL/TM-1791-1.

GLOBAL ENVIRONMENTAL TECHNOLOGIES, LLC, 1998. Post Closure Management of Reservation Canyon Tailing Impoundment Incidental Flows Barrick Resources (USA), Inc. Mercur Mine. Salt Lake City, UT.

GUZMAN, A., R. SRIVASTAVA & G. BEALE. 1998. A New Method for Estimating the Hydraulic Behavior of Spent Ore Heaps, Waste Dumps, and Tailing Impoundments, *Tailings and Mine Waste '98*, Proceedings of the Fifth International Conference on Tailings and Mine Waste '98, Fort Collins, Colorado, USA. 26-28 January 1998, pp. 263-271.

MC DONALD, M.G. and HARBAUGH, A.W. 1988. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model. U.S. Geological Survey, Reston, VA.

TRITECHNICS CORPORATION 1996. Infiltration Analysis Reservation Canyon Tailing Impoundment Barrick Mercur Mine. Unpublished report to Barrick Mercur Gold Mines, Inc., Toole, UT.

WATER MANAGEMENT CONSULTANTS 1996. Reservation Canyon Impoundment Mercur Mine Post-Closure Hydrologic and Engineering Performance.

Figure 1 Site topography and location of cross-sections

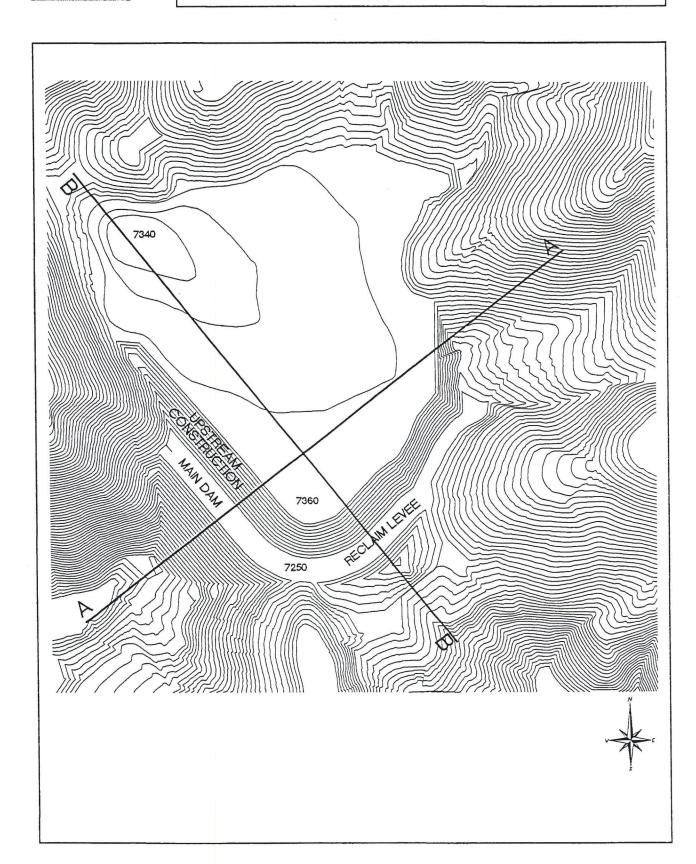


Figure 2 Finite element grids developed for AA' and DD' profile simulations

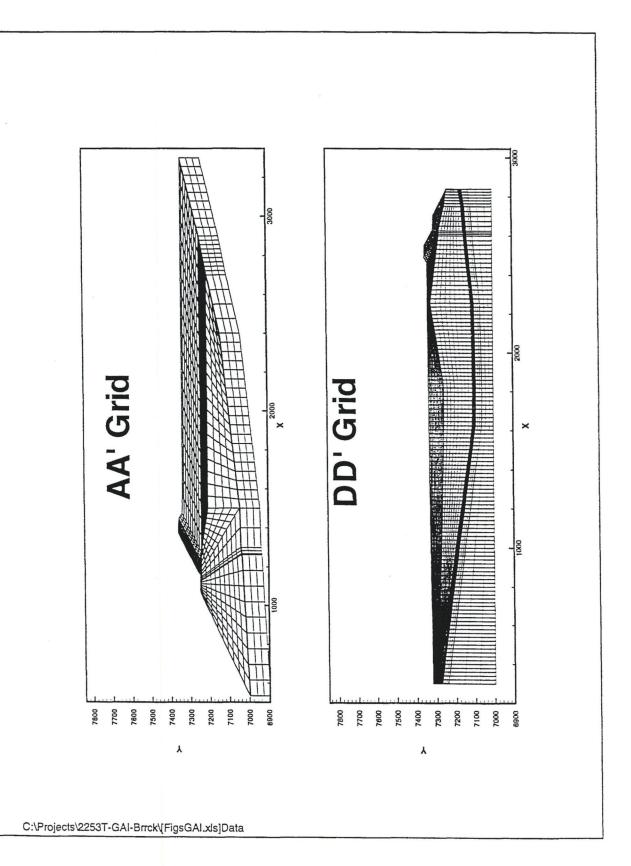


Figure 3 Tailings impoundment pond water level elevations

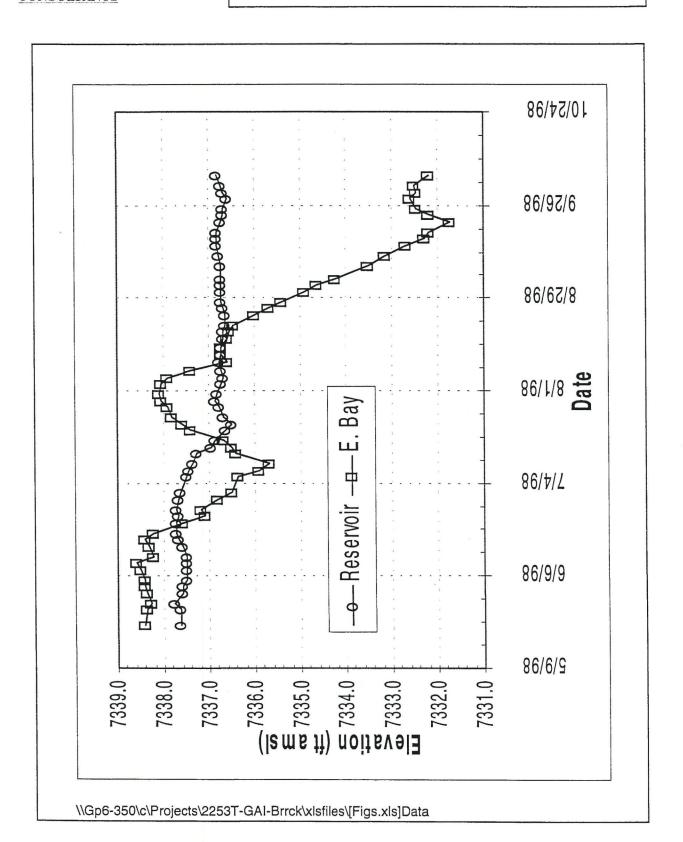


Figure 4 Pump back rates from main dam and levee buttress collection system

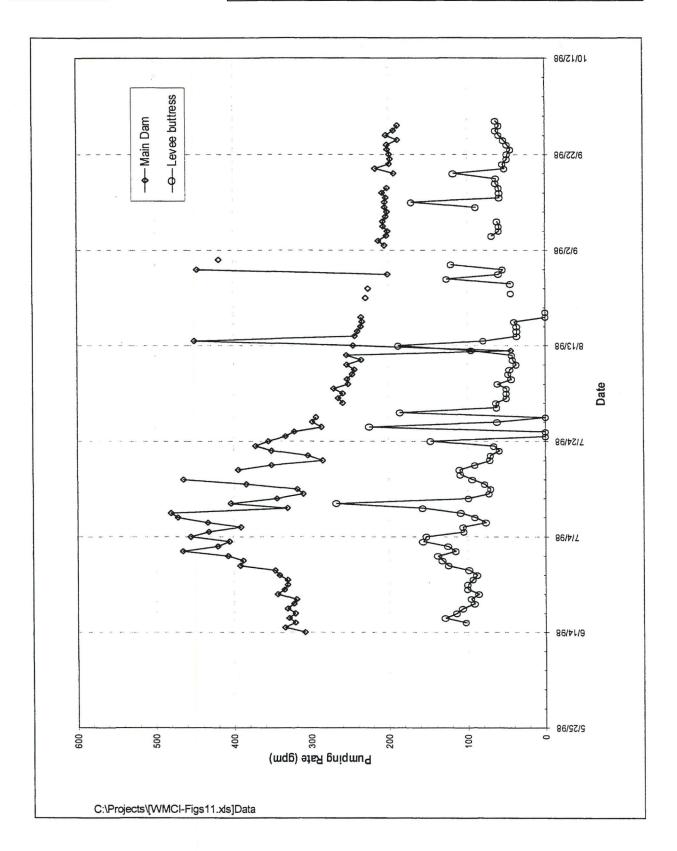


Figure 5 Main dam and bottom outflow versus X-direction hydraulic conductivity anisotropy factor

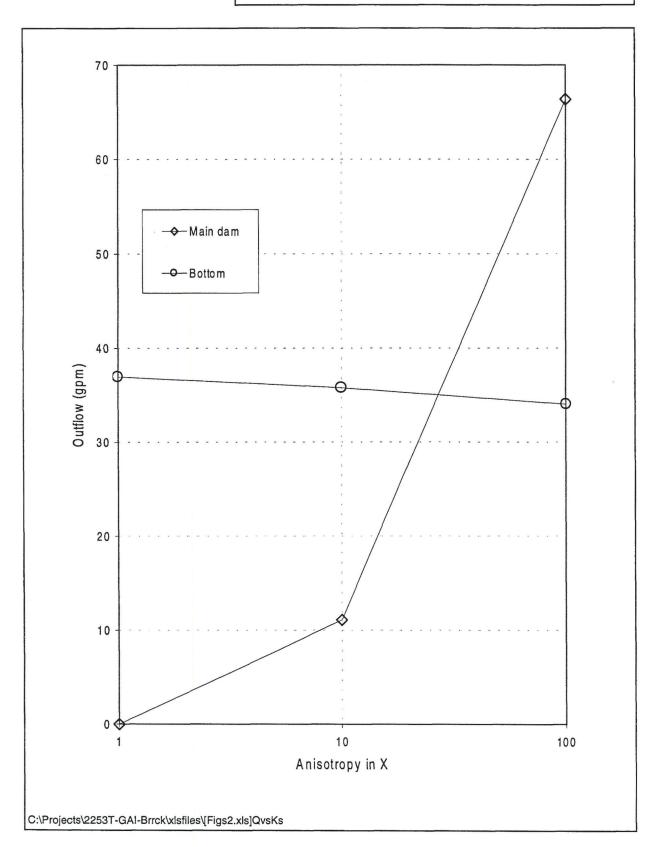


Figure 6 Main dam and bottom outflow versus hydraulic conductivity factor (with 10:1 horizontal to

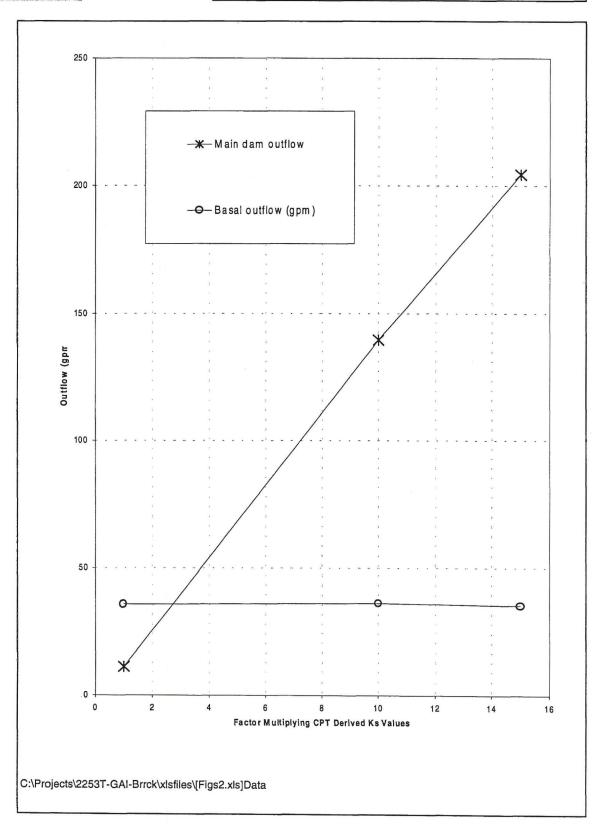


Figure 7 Main dam seepage rates for UNSAT2 and MODFLOW during draindown

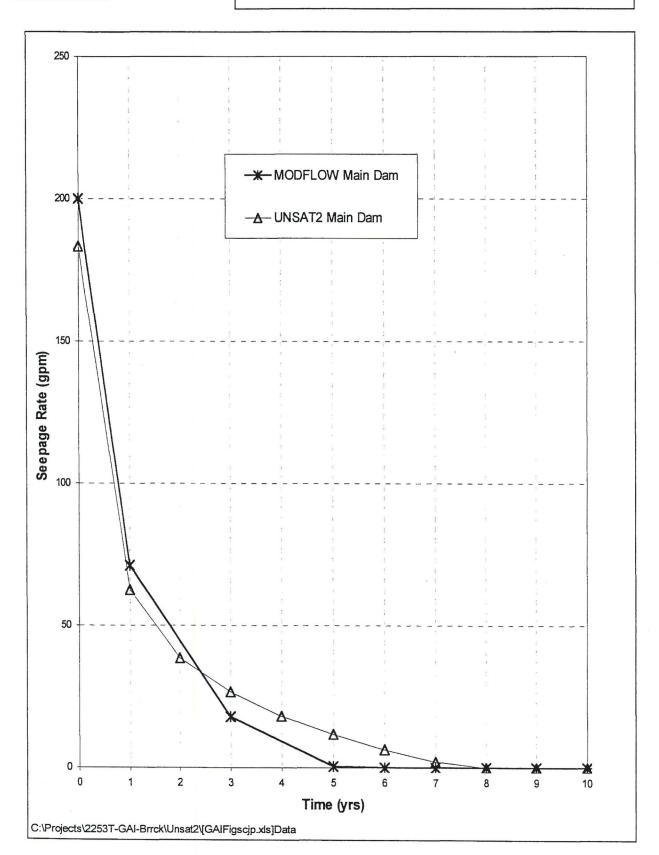
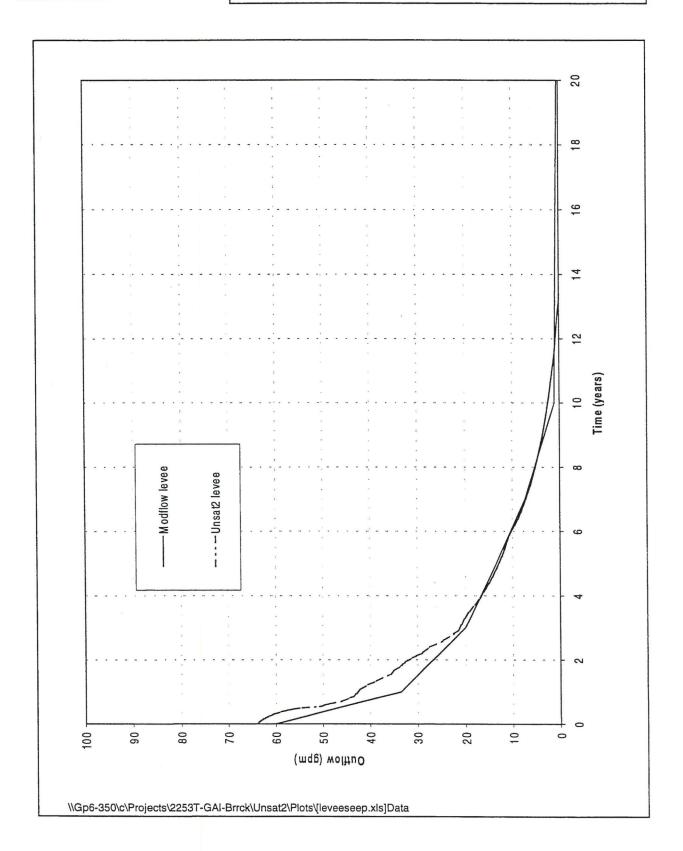



Figure 8 Comparison of seepage at levee from Modflow and Unsat2

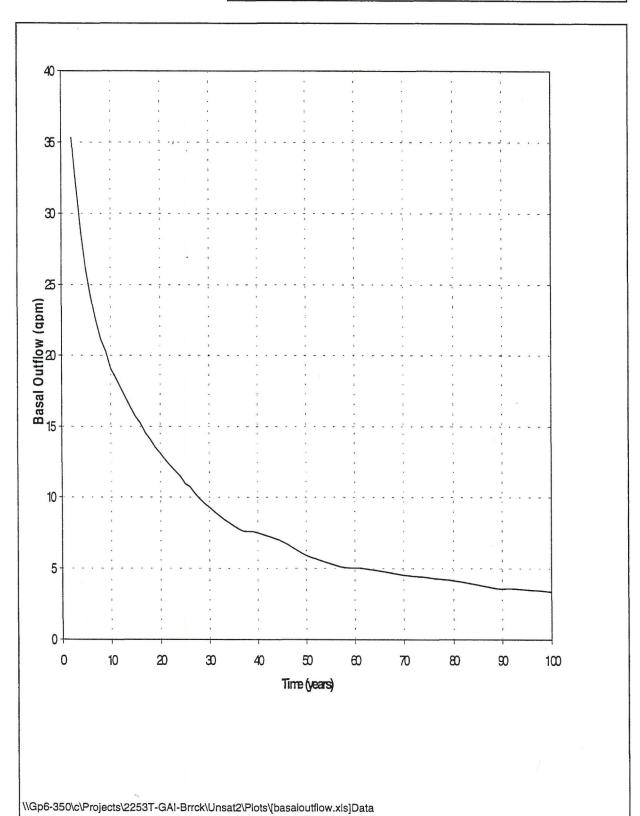


Figure 10 Water pressures along A-A' and D-D' profiles at start of draindown

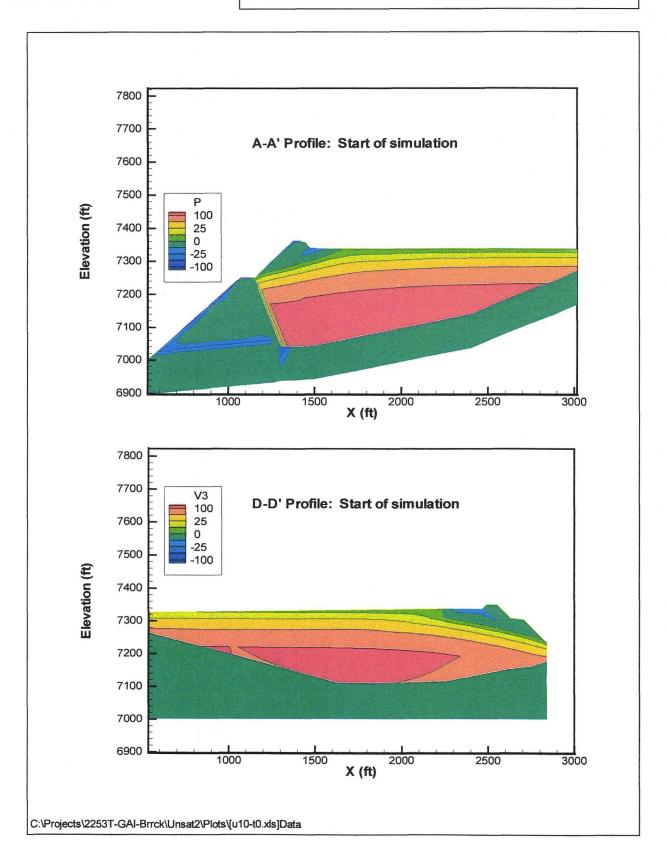


Figure 11 Water pressures along AA' profile after 10 and 30 years of draindown

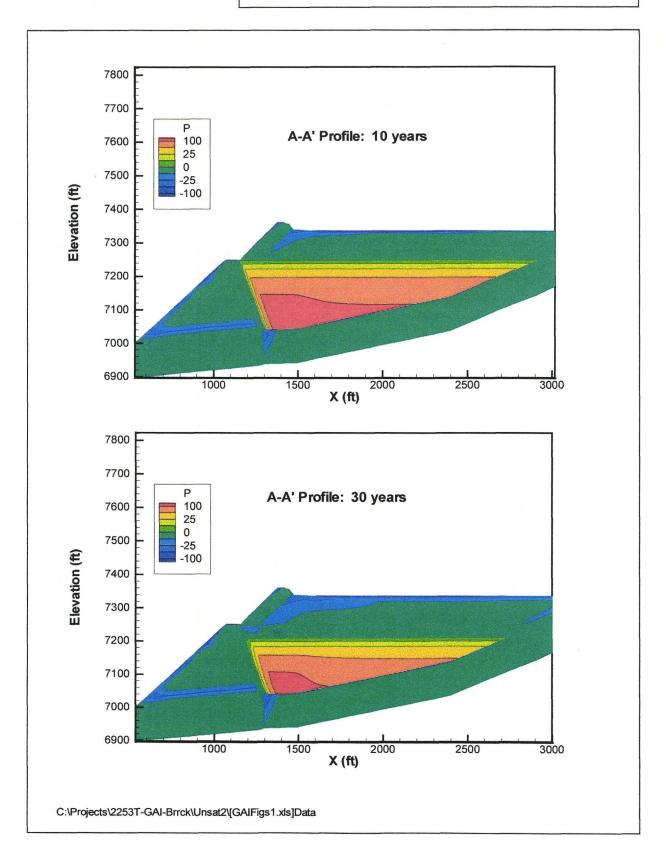
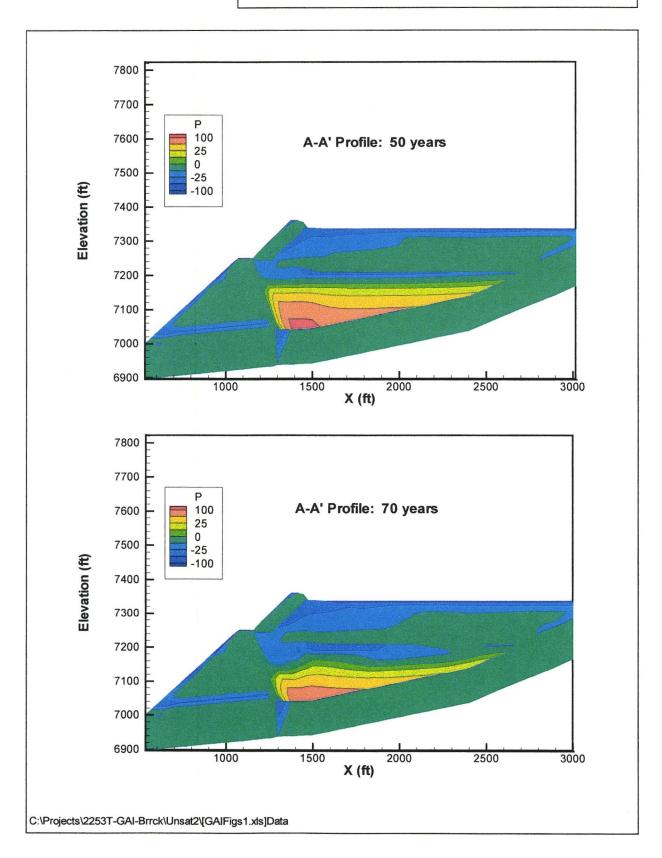
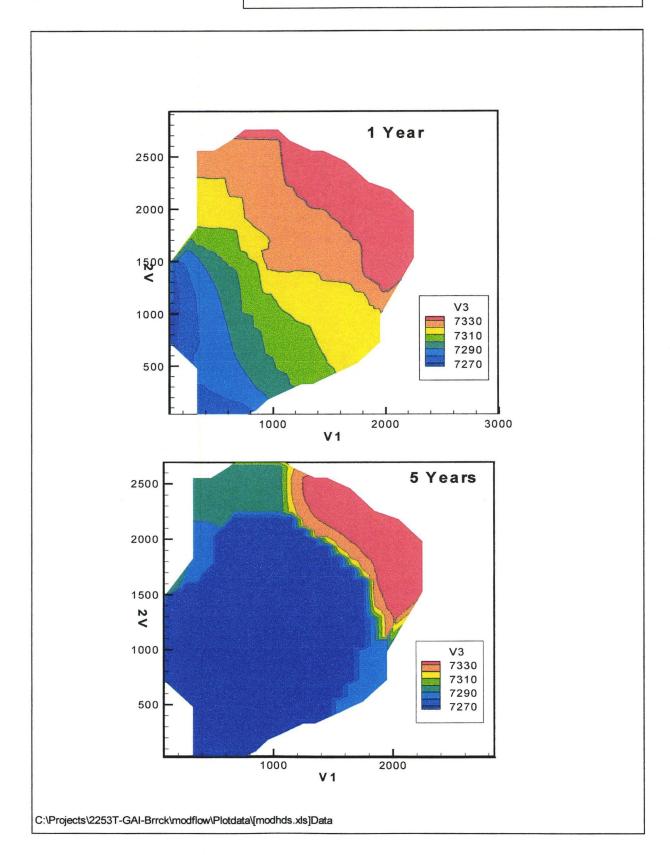
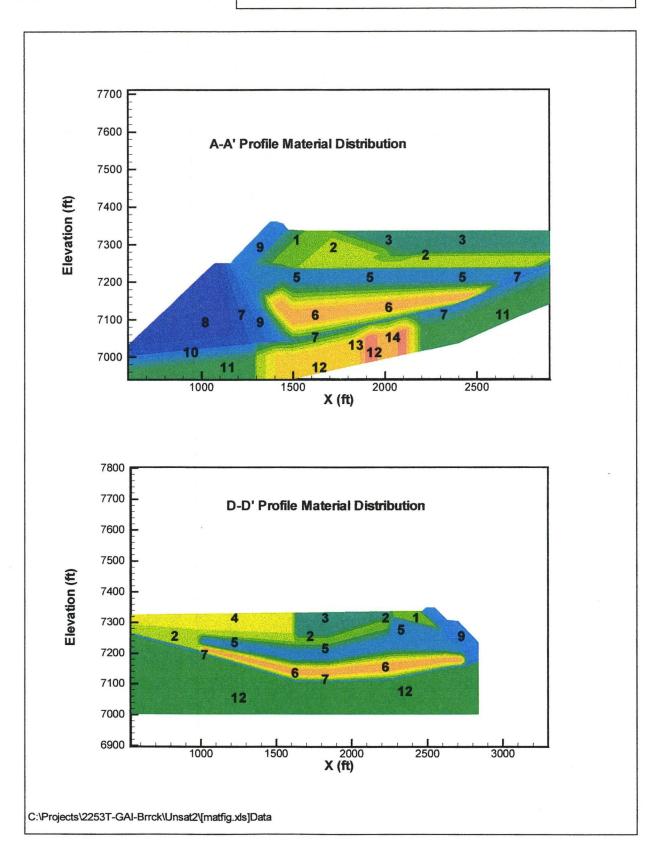
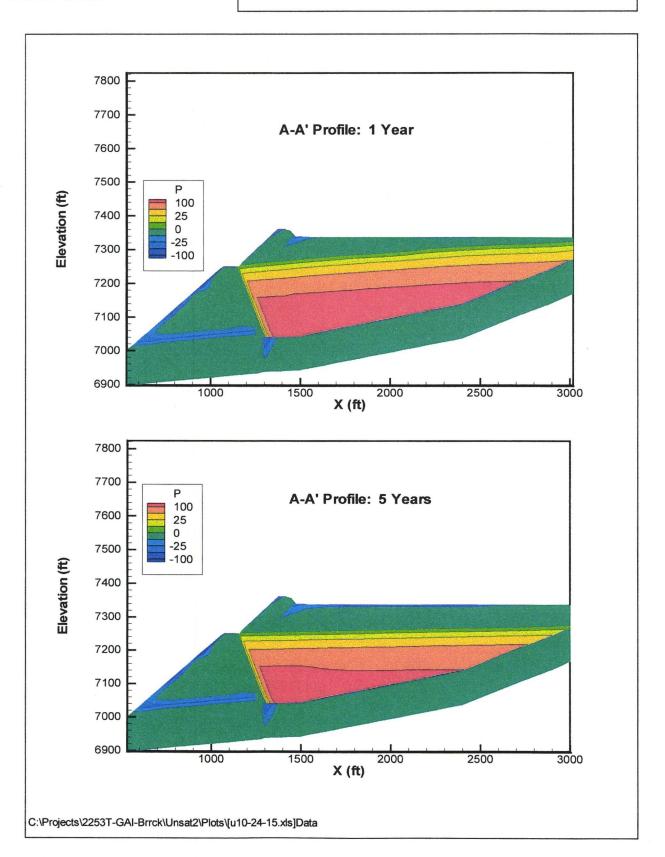
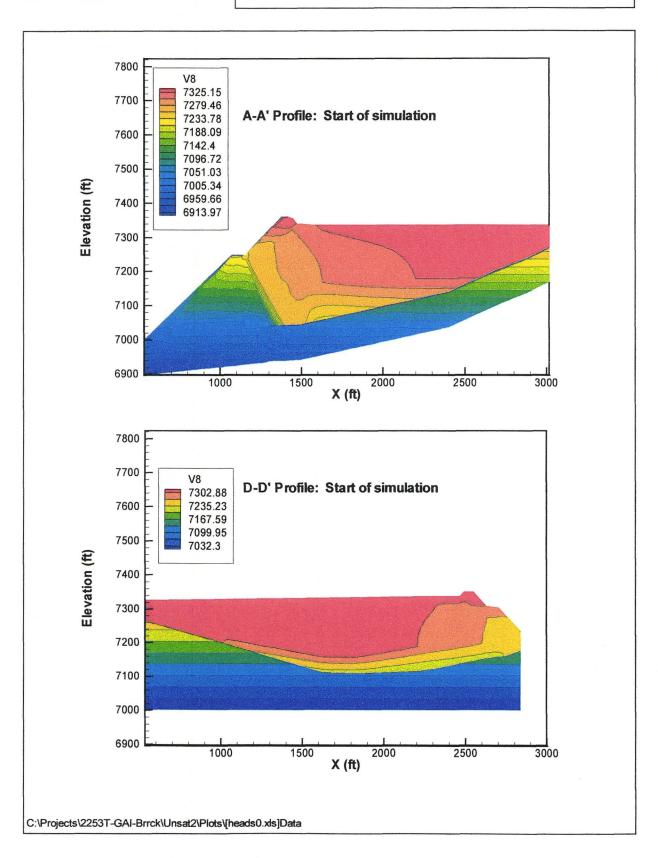
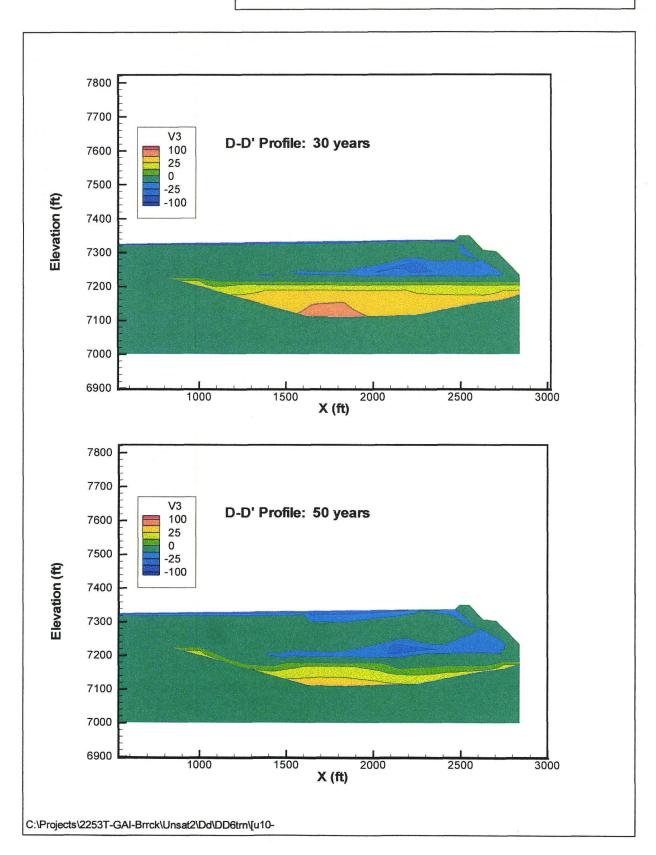


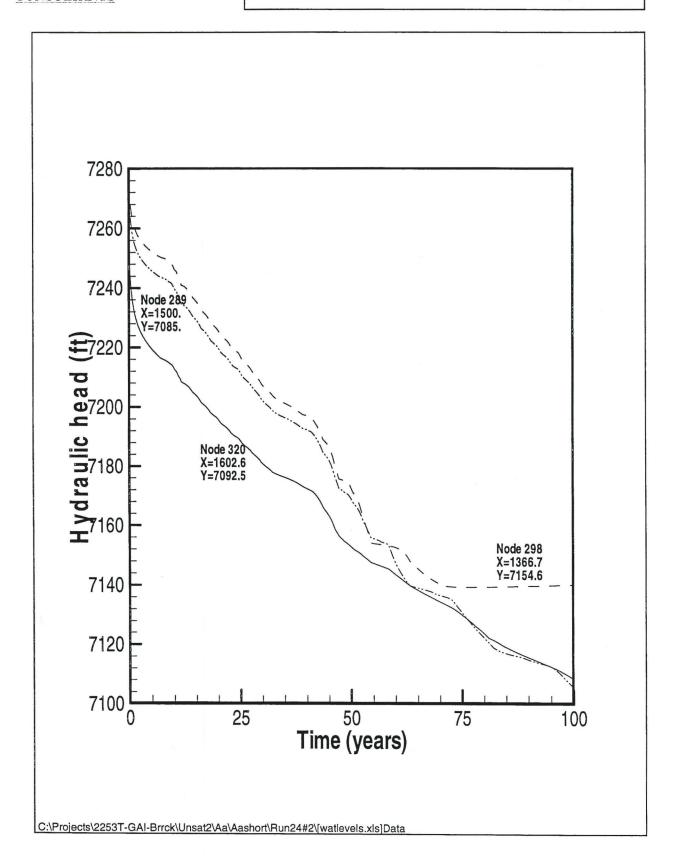
Figure 12 Water pressures along AA' profile after 50 and 70 years of draindown

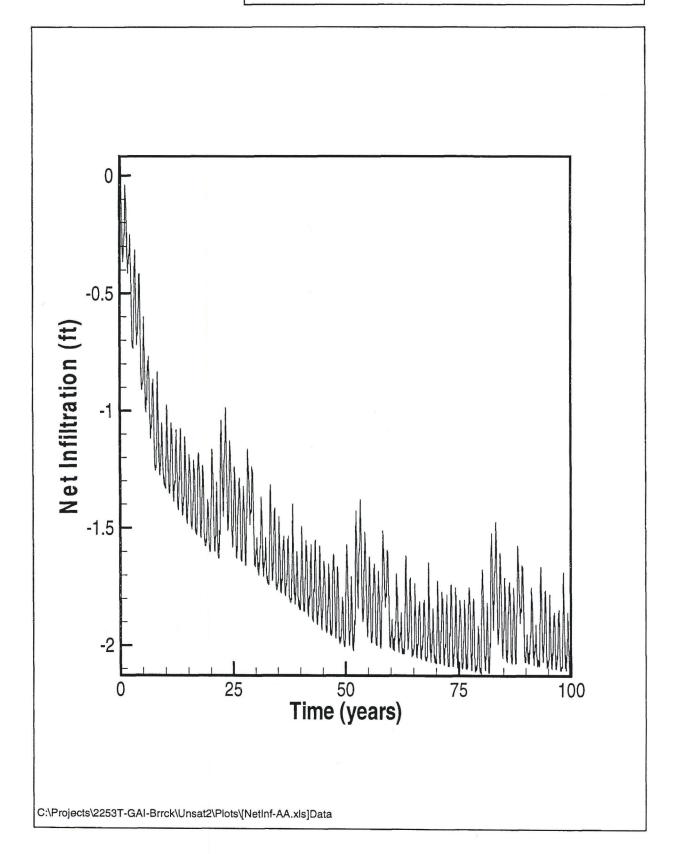





Figure 13 Water level after one and five years predicted by MODFLOW






Total hydraulic head distribution at start of simulations



APPENDIX A ADDITIONAL SIMULATION RESULTS

APPENDIX F CONSOLIDATION ANALYSES DOCUMENTATION

APPENDIX F-1
DR. ZNIDARCIC'S REPORT

Dobroslav Znidarcic, Ph.D. Geotechnical Engineer 462 Whitetail Cir., Lafayette, CO 80026 Phone: 303/673-9766

Settlement Analyses for Tailings Impoundment at Mercur Mine

by

Dobroslav Znidarcic

and

Daniel (Ta Chun) Yao

Prepared for:

Golder Associates Inc. 4730 N. Oracle Rd., Suite 210 Tucson, AZ 85705

December, 1998

Introduction

This report summarizes activities related to the settlement calculation for the tailings impoundment at Mercur Mine as requested by Golder Associates Inc. from Tucson, AZ. The scope of the work was defined in the letter from Golder Associates, dated August 9, 1998 (ref.: 983-2344.001-3). In addition to the interpreted field test results, we were provided with the results of the laboratory tests performed at the Golder laboratory and a slurry sample on which a seepage induced consolidation test was performed at the University of Colorado laboratory. We were also provided with a detailed map of the tailings impoundment with several cross sections on which differentiable stratigraphic units were identified for the purpose of the settlement analysis. The interpreted results of the CPT probes were also received with the interpreted pore pressure profiles currently existing at the site of each probe.

All this information was considered and utilized in the settlement calculations

described in this report.

The references cited in this report are included in the appendix for the convenience of the reader.

Material characteristics

A sample of the tailings from the depth of 20'-22' from the borehole GA98 BH-4 was remolded at an initial void ratio of 4.51. Preliminary tests have shown that this void ratio corresponds to the zero effective stress, or the soil formation void ratio for the material. The slurry sample was then tested in the seepage induced consolidation device and the consolidation material characteristics were obtained. Table 1 presents the analysis results for the seepage induced consolidation test in SI units, while Table 2 presents the consolidation model parameters A, B, Z, C and D in both SI and lb-ft-day units. The parameters define the void ratio - effective stress and void ratio - hydraulic conductivity relationships by following expressions (Liu and Znidarcic, 1991)

$$e = A(\sigma' + Z)^{B}$$

 $k = C e^{D}$

Figures 1 and 2 present the consolidation characteristics for the sample in SI and lb-ft-day units respectively.

The seepage induced consolidation test and analysis are described in the paper by

Abu-Hejleh and Znidarcic (1996) which is attached in the Appendix.

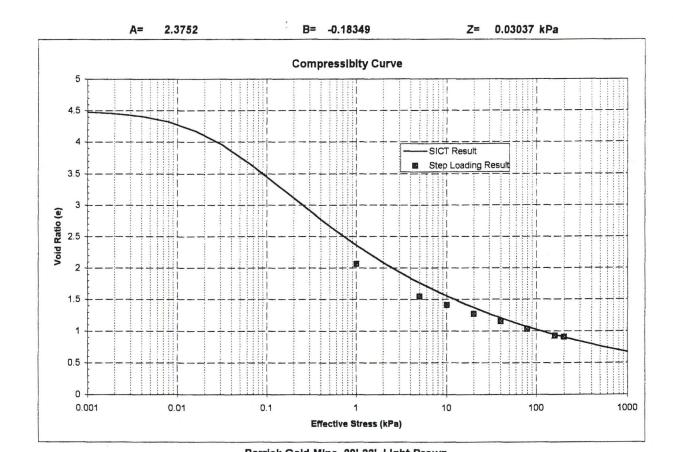

Upon reviewing all available data, it was concluded that the material characteristics obtained for the BH-4 sample are representative for the stratigraphic unit identified as "unconsolidated slimes" and should be used for calculating settlement at CPT locations 1, 3, 4 and 8. Similarly, it was concluded that the rest of the material in the impoundment should be modeled as two materials with non-linear compressibility characteristics. These characteristics were selected based on the conventional consolidation test results performed at the Golder lab and on the field data that provided information on density and pore pressure profiles. The two materials, identified as type A and B, where used to calculate settlements at CPT locations 2, 6, 9, 12 (type A) and 7, 10, 11 (type B). The sample BH-4, 20'-22', was identified as type C material. The compressibility model parameters for all three types are summarized in Table 3, and the compressibility curves are presented in Figure 3. Figure 3 demonstrates how materials A and B are much stiffer than material C, representing coarser tailings but how all three materials approach a similar void ratio at high effective stresses.

Table 1 Results of the SICT Analysis for Sample GA98 BH4, 20'-22'

			_							
Seepage Induced Consolida	ation 1	Results :								
Unit Weight of Water	=									
Unit Weight of Solids	=	26.78130	kN/m³							
Initial Height of the Sample	=	.05172	m							
Void Ratio at zero effective stre										
Top Effective Stress	=	.10000	kPa							
Darcian Velocity	==	.42550E-06	m/s							
Final Height of the Sample	=	.03540								
Final Bottom Effective Stress	=	.95940	kPa							
Step Loading Test Results			-							
Void Ratio	. =	.89530								
Effective Stress	=	203.81000	kPa							
Permeability Coefficient	==	.58698E-08	m/s							
MUE OURDUR DEGULEO ADE LICO		POLLOWS .								
THE OUTPUT RESULTS ARE LIST	LED AS	FOLLOWS :								
PARAMETER ESTIMATION										
FARAMETER ESTIMATION	RESUL'	IS								
Parameter A		2.37519								
		2.37519								
Parameter A Parameter B	=	2.37519								
Parameter A	=	2.37519								
Parameter A Parameter B	= =	2.37519								
Parameter A Parameter B Parameter Z	= =	2.3751918349 .03036 kPa .83719E-08 m/s								
Parameter A Parameter B Parameter Z Parameter C	= = = =	2.3751918349 .03036 kPa .83719E-08 m/s 3.21039								
Parameter A Parameter B Parameter Z Parameter C Parameter D	= = = =	2.3751918349 .03036 kPa .83719E-08 m/s 3.21039								

Table 2 Consolidation Parameters for Sample GA98 BH4, 20'-22'

Parameter	Α	В	Z	С	D
Value SI Units	2.38	-0.183	0.0304	8.37*10 ⁻⁹	3.21
Value lb-ft-day U	nits 4.15	-0.183	0.634	2.37*10 ⁻³	3.21

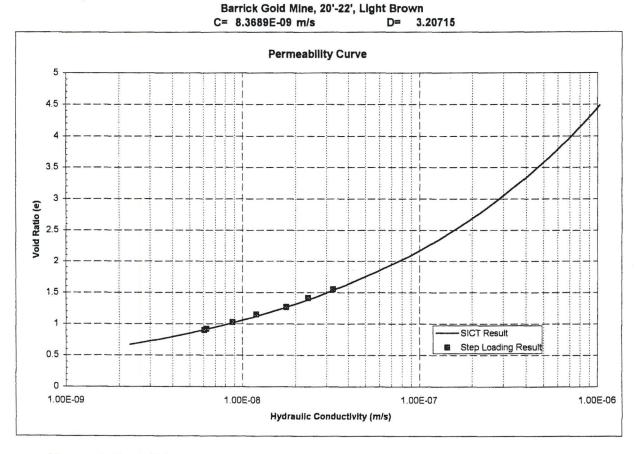
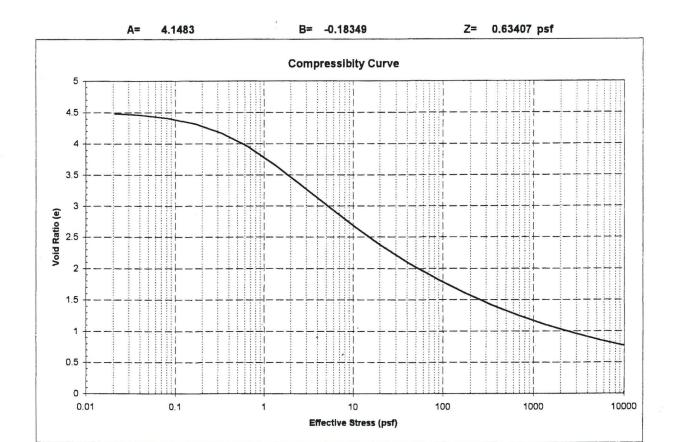



Figure 1 Consolidation Characteristics for Sample GA98 BH4, 20'-22' (SI units)

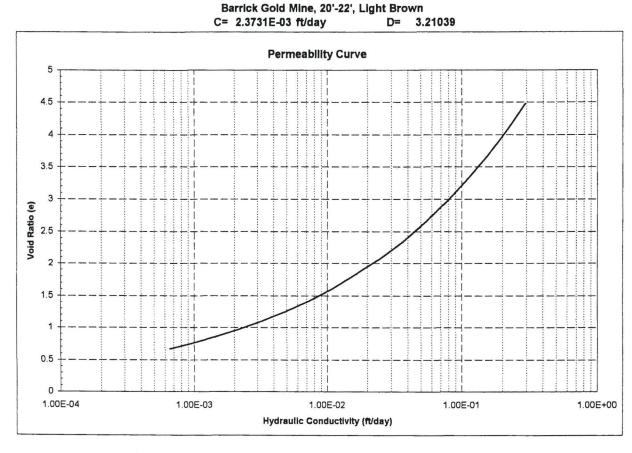


Figure 2 Consolidation Characteristics for Sample GA98 BH4, 20'-22' (lb-ft-day units)

Compressibility Curve

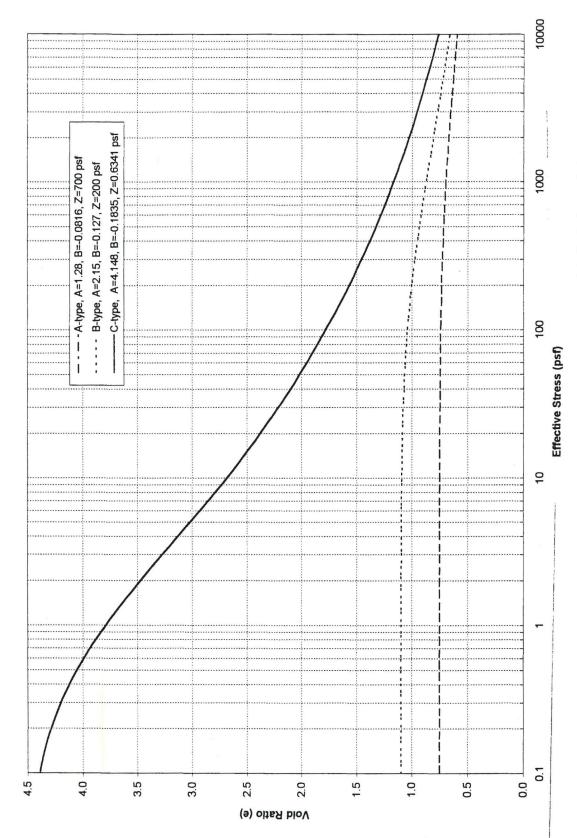


Figure 3 Compressibility Characteristics for type A, B and C material (lb-ft-day units)

Preliminary consolidation and desiccation analysis

Using the material consolidation characteristics obtained in the seepage induced consolidation test, the filling history for the CPT 4 location was modeled using the computer program CONDES (Yao and Znidarcic, 1997). The filling history modeling was followed by the self-weight consolidation and desiccation analyses. The results are presented in Figures 4 and 5. Figure 4 summarizes the height data for various scenarios. The instantaneous filling results are shown just as a benchmark case as if the total amount of the tailings at the location were deposited in an instant. The gradual filling rate is assumed to be constant over the period of 9 years, the time over which the thickness of tailings at CPT-4 location was deposited, based on the historical data provided. The effective evaporation rate of 3.3 ft/year was selected from the climatic data provided to us. Figure 5 presents the void ratio profiles for the three cases at the indicated times.

The consolidation and desiccation theories implemented into the computer program CONDES are described in the papers by Abu-Hejleh and Znidarcic (1995 and 1996). One of the essential features of the desiccation process is the creation of the desiccated crust at the tailing surface. Once the crust is formed, further evaporation is inhibited and the beneficial effect of the desiccation process is lost. The thickness of the crust and the rate of its creation depend on the relative magnitudes of the hydraulic conductivity of the slimes and the evaporation rate. For the given slime properties higher evaporation rates will create thinner crust sooner while lower evaporation rates will result in thicker crust created over a longer period of time. Thus, higher evaporation rate will be more critical in the sense that the desiccation effects will be less beneficial for slime management. For this reason, in the analysis the highest effective evaporation rate of 3.3 ft per year, representing the climatic conditions during the summer months, was assumed. It should be also noted that the effective evaporation rate is somewhat lower than the maximum evaporation rate at a site and is not at all affected by the precipitation rates. During the rainy periods there is no evaporation, but the moisture doesn't penetrate significantly into the soil, since the volume change of the soil during swelling is much smaller that during initial compression.

Several conclusions regarding the material behavior can be derived from the presented results. First, the material consolidates readily in a relatively short period of time and only a small additional settlement should be expected at the location in the absence of any external factors that will change the current condition in which the location is submerged. Second, the external factors such as loading or desiccation will affect mostly the upper 20-ft of the deposit and most of the settlement will be a consequence of the compression of this upper layer. Third, the evaporation effects at the assumed rate will produce a relatively uniform upper layer without creating a thin crust at the site.

These conclusions are supported by the field observations in which the upper 20-ft of the deposit was found to be in such a soft state that the sampling method used prevented the collection of undisturbed samples for the void ratio determination. The measured pore pressures were also consistent with the conclusion that the self-weight consolidation is almost completed.

Based on these findings we have concluded that the material consolidation is not a major issue at the site, and that the settlement analysis will be sufficient to characterize the behavior of the impoundment during and after the closure. Therefore the subsequent analyses will focus only on the settlement calculations, while an implicit assumption is made that the full consolidation will take place during any construction activity or shortly thereafter. This assumption is further justified by realizing that the preliminary analysis was performed for the type C material that clearly has the least favorable consolidation characteristics. For any other location in the impoundment, the consolidation will be even faster than demonstrated for the location CPT 4.

It should also be noted that a more detailed consolidation analysis for the impoundment is possible, but for it to be justified additional data will be necessary. These

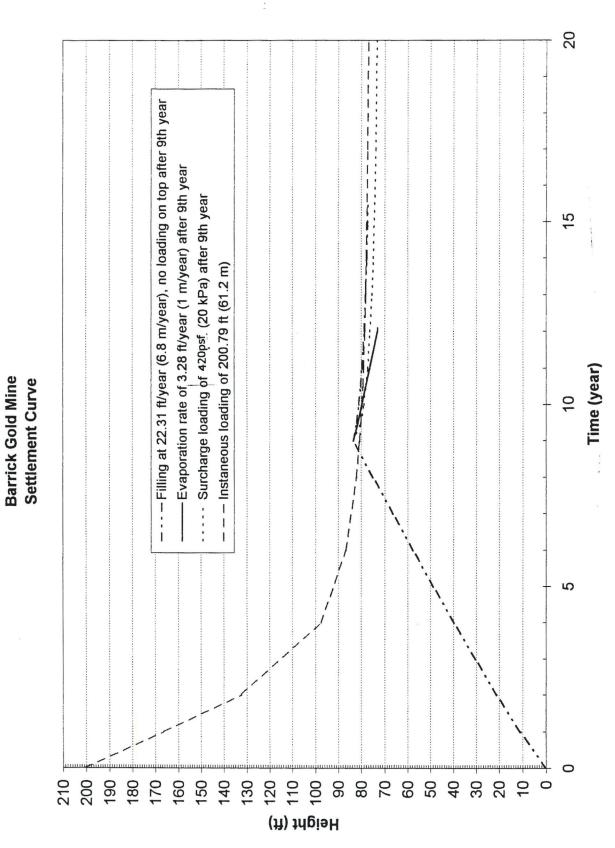


Figure 4 Height Results for Various Filling and Loading Conditions

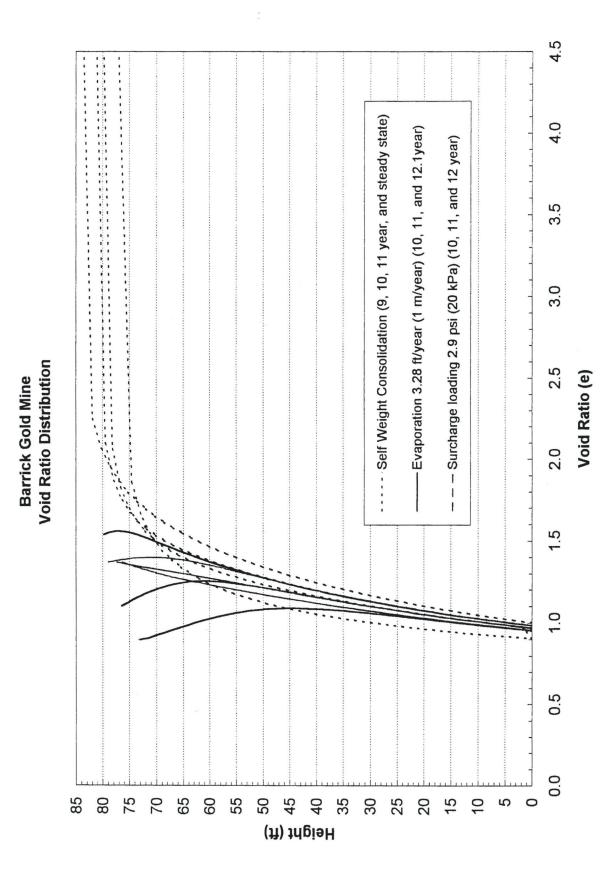
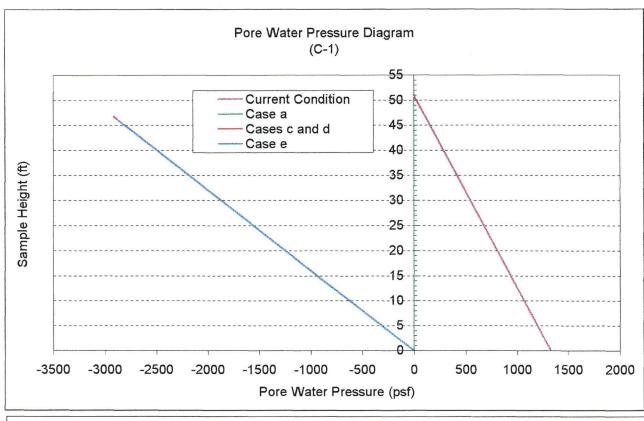


Figure 5 Void Ratio Profiles

data would require as a minimum a reliable measurement of the water content in the soft upper 20 ft of the submerged tailings and additional consolidation tests on coarser tailings samples. While such investigation is certainly possible we do not believe it to be justified for the purposes of this study.

Settlement analyses


Using material characteristics that are described previously, analyses for various field conditions were performed at each CPT location. First, the current state was analyzed by considering the current pore pressure profiles obtained from the CPT data. The results of these analyses were used as the initial condition for the subsequent settlement calculations. The settlements will be created as a consequence of the changing groundwater conditions, including desiccation, and due to any additional loading produced by the cover to be placed on the tailings. The changes in the groundwater conditions were predicted by groundwater hydrological studies and were provided to us by Golder Associates.

Consequently, several settlement scenarios were analyzed. First, a case is analyzed in which all positive pore pressures were dissipated and no capillary effects are considered (case a). This is equivalent of assuming zero pore pressure at all depths. Second, full draindown with a capillary rise of 10 ft is considered for coarse grained tailings (CPT locations 2, 6, 7, 9, 10, 11 and 12), while capillary rise to the ground surface is considered for the finer material (CPT locations 1, 3, 4 and 8) (cases b and c respectively). Third, the lowering of the groundwater table to the elevation 7240 is considered with the already stated capillary effects above the water table (case d). And finally the addition of the cover is considered (case e). Figure 6 shows the pore pressure conditions considered for all the cases including the initial condition for each CPT location. The groundwater table elevations and capillary conditions were obtained from the hydrologic studies.

The results of the settlement analyses are presented in Table 4, and the corresponding void ratio profiles for each CPT location are presented in Figure 7 a to k. The void ratio profiles are provided here in order to demonstrate for each case the parts of the layers that compress the most and therefore contribute the most to the calculated settlement.

It should be noted that the results here do not explicitly present the desiccation effects. However, based on the presented analyses, the desiccation settlement can be easily predicted if the drying periods are known. For the CPT locations 1, 3, 4, and 8 any cover construction will have to be preceded by a drying period since for these locations the surface material is extremely soft preventing any construction traffic in this situation.

It should also be noted that the desiccation effects are equivalent to the lowering of the groundwater table effects and as such they are already considered in the analyses. Thus, any evaporation-generated settlements will have to be subtracted from the calculated values in order to predict the subsequent settlements. As for the rate of the evaporation generated settlements, the preliminary analyses has demonstrated that for the Barrick Mercur Mine tailings the settlement rate is equal to the effective overall yearly evaporation rate of 2.4 ft/ year, since even the extreme evaporation rate of 3.3 ft/year doesn't produce a thin crust that would diminish the desiccation effects. Thus, the total evaporative settlement can be calculated by multiplying this rate with the elapsed period of time over which the tailings will be allowed to dry. Based on the earlier presented desiccation analysis, such calculation is valid for desiccation of up to two years over which period the upper 20 ft of the slimes will be affected by the process and the resulting settlement will be up to 5 ft. This value will than have to be subtracted from the predicted settlements in Table 4 in order to obtain the subsequent settlement that will take place after cover construction and the lowering of the groundwater table.

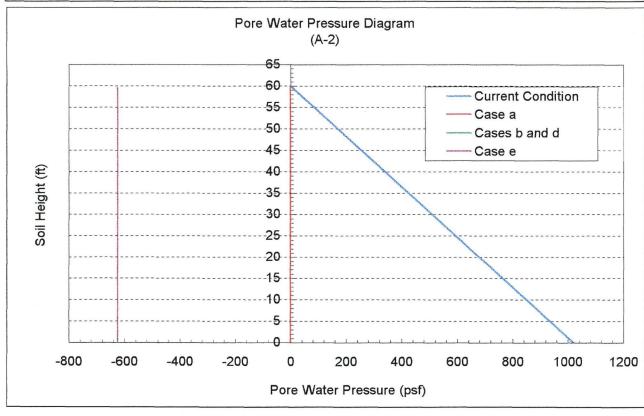
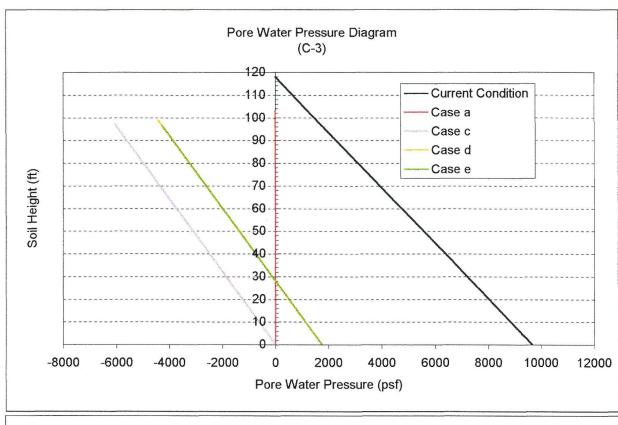



Figure 6 Pore Water Pressure Profiles for Settlement Analysis

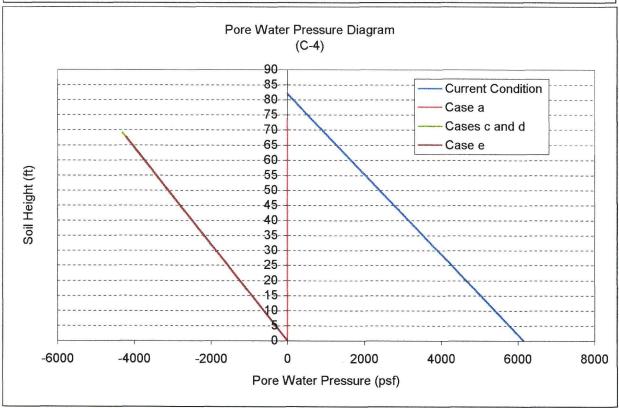
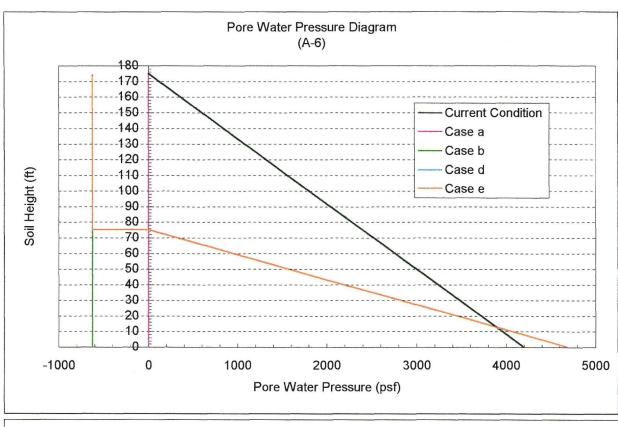



Figure 6 (Continue) Pore Water Pressure Profiles for Settlement Analysis

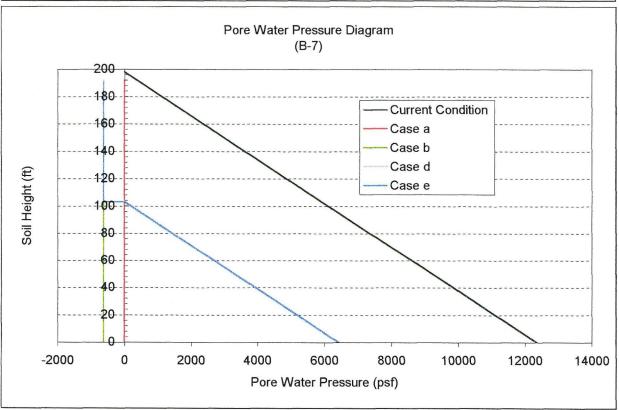


Figure 6 (Continue) Pore Water Pressure Profiles for Settlement Analysis

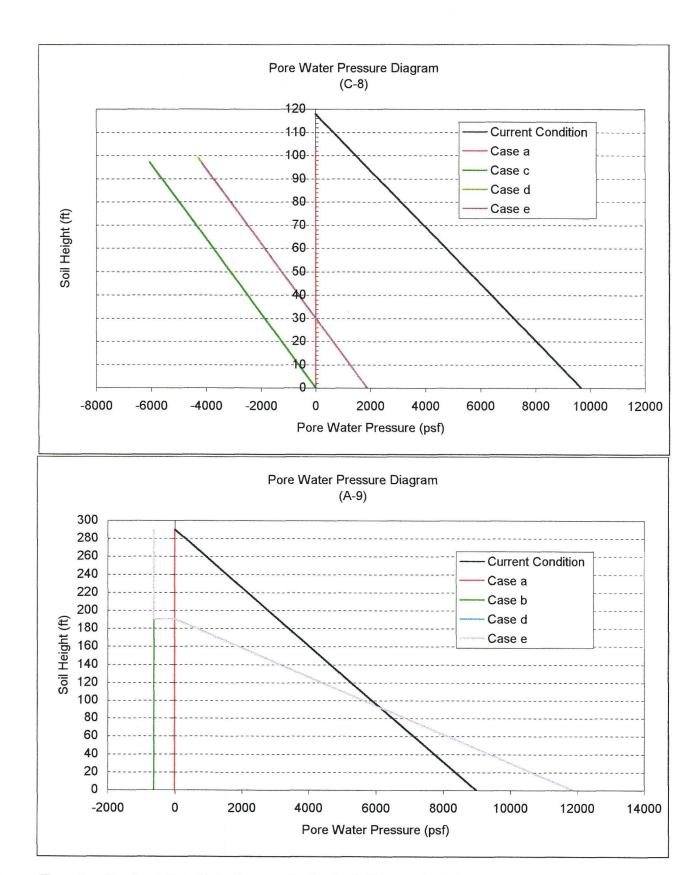
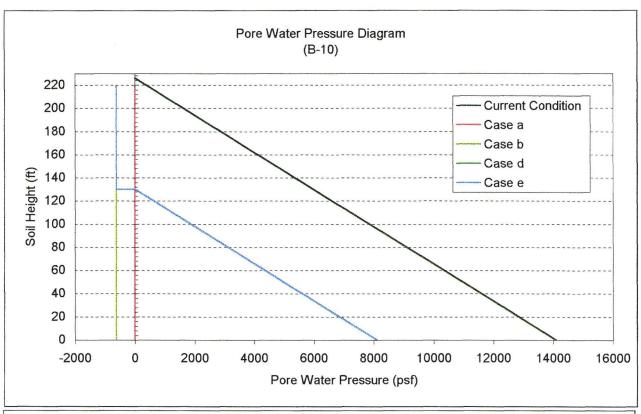



Figure 6 (Continue) Pore Water Pressure Profiles for Settlement Analysis

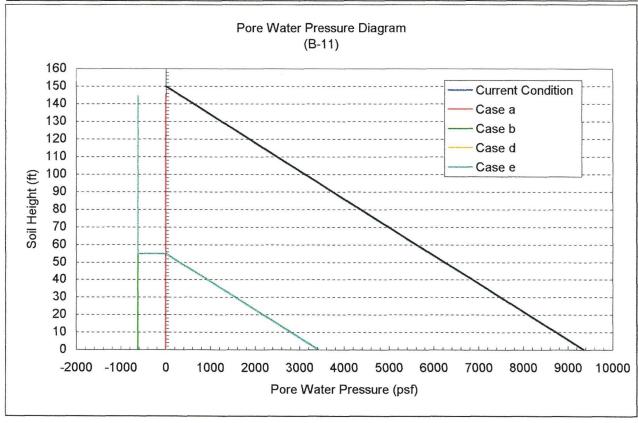


Figure 6 (Continue) Pore Water Pressure Profiles for Settlement Analysis

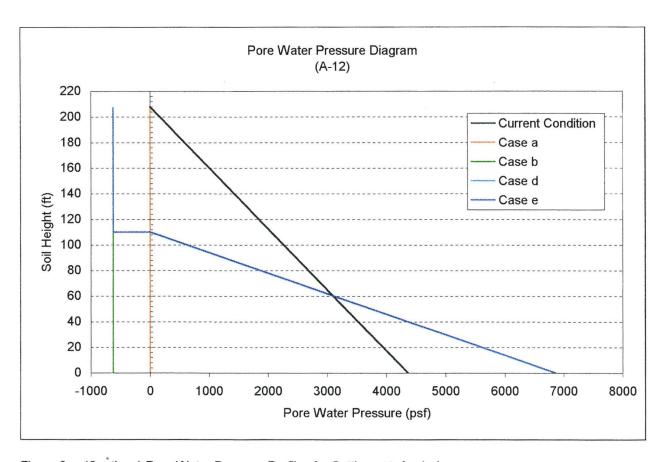
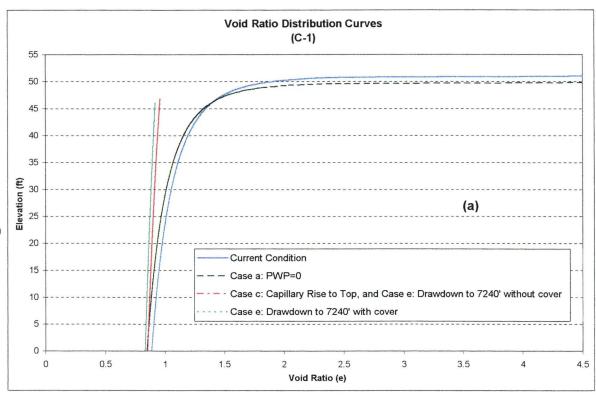



Figure 6 (Continue) Pore Water Pressure Profiles for Settlement Analysis

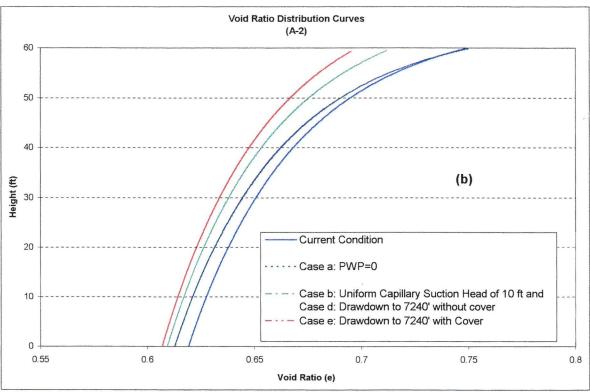
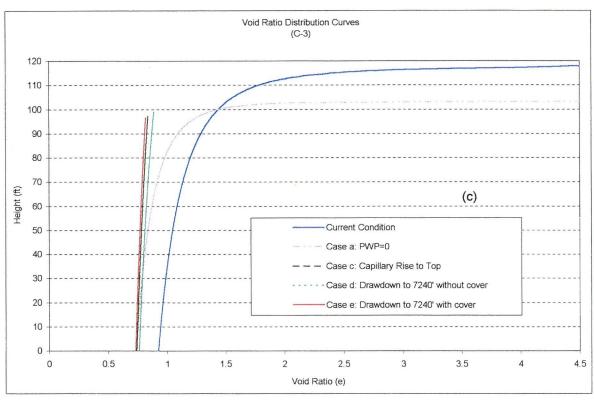



Figure 7 Void Ratio Profiles

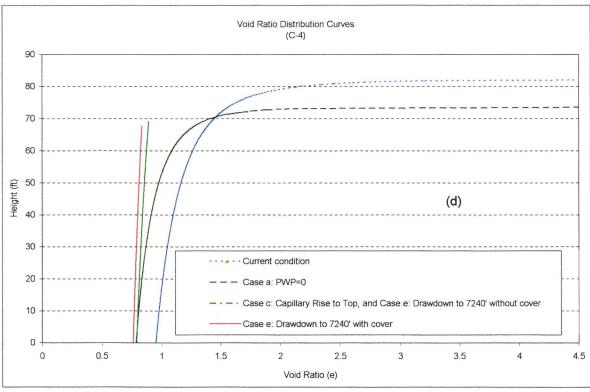
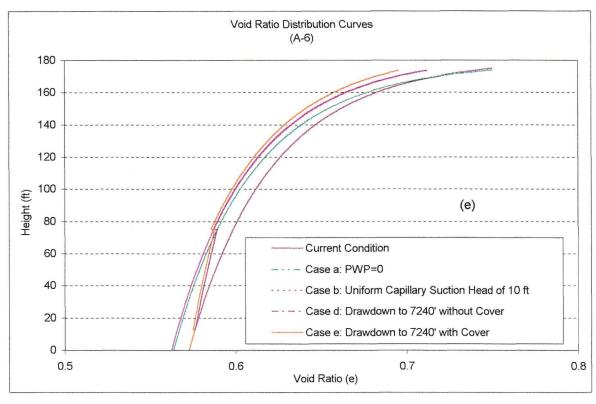



Figure 7 -continue Void Ratio Profiles

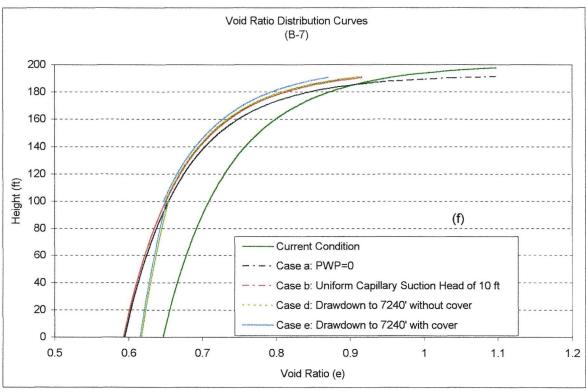
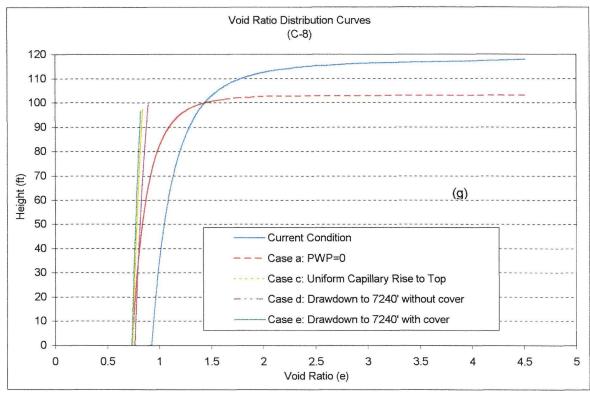



Figure 7 -continue Void Ratio Profiles

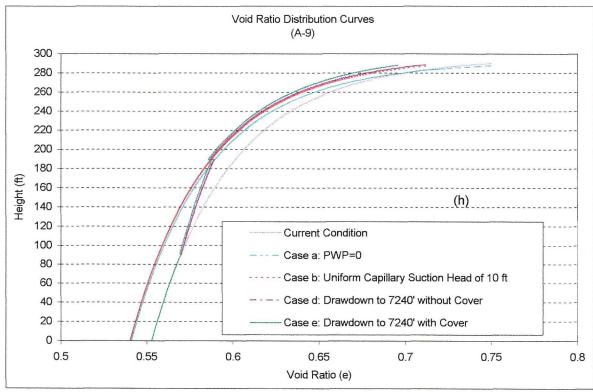
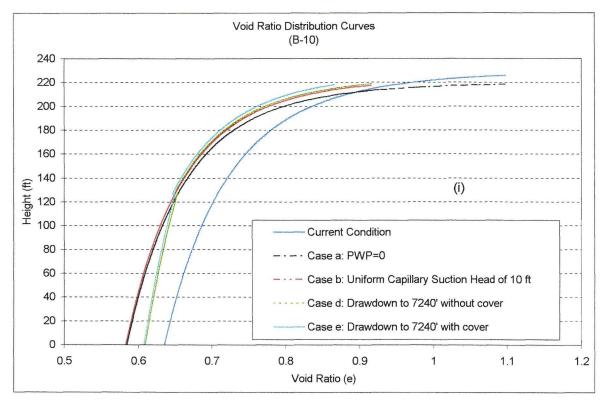



Figure 7 -continue Void Ratio Profiles

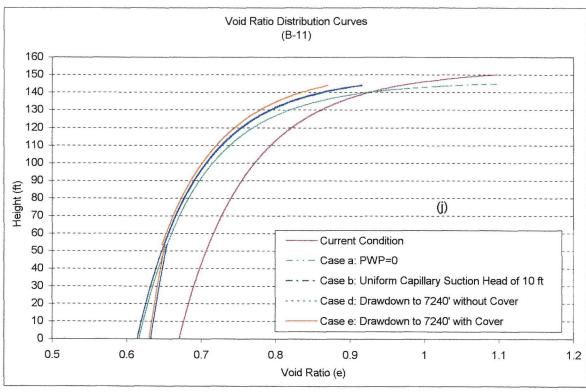


Figure 7 -continue Void Ratio Profiles

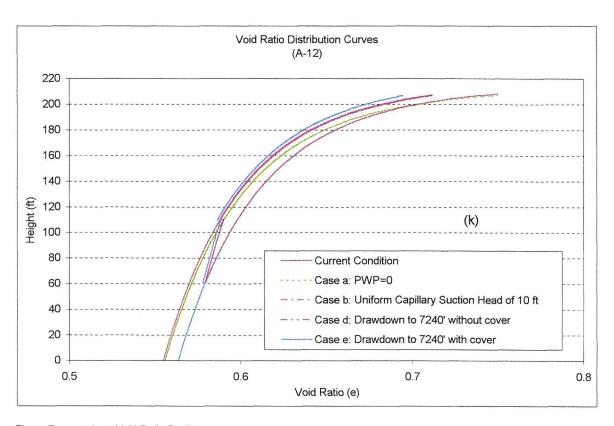


Figure 7 -continue Void Ratio Profiles

Table 3 Compressibility Parameters for Types A, B and C Material (lb-ft-day)

Α	В	Z
-	-	psf
1.28	-0.0816	700
2.15	-0.127	200
4.15	-0.183	0.634
	1.28 2.15	1.28 -0.0816 2.15 -0.127

Table 4 Settlement Results

	Soil	Current	Se	Settlement (ft) with Different Scenarios				
CPT No.	Type	Depth(ft)	а	b	С	d	е	
1	С	51	1.2	-	4.3	4.3	5.0	
2	Α	60	0.2	0.5	-	0.5	0.7	
3	С	118	14.9	-	20.9	19.2	21.7	
4	С	82	8.5	-	12.9	12.9	14.4	
6	Α	175	1.0	1.5	-	1.1	1.4	
7	В	198	6.6	7.7	-	6.6	7.2	
8	С	118	14.9	•	20.9	19.1	21.6	
9	Α	290	2.1	2.6		1.5	1.8	
10	В	226	7.5	8.6	-	7.2	7.8	
11	В	150	5.1	6.1	•	5.7	6.2	
12	Α	208	1.0	1.5	-	0.9	1.2	

Note:

- a: Assuming zero pore water pressure at all depths
- b: Assuming uniform 10 ft capillary suction head at all depths
- c: Assuming full capillary rise from bottom to soil surface
- d: Settlements with drawdown to Elev. 7240ft, without cover
- e: Settlement with drawdown to Elev. 7240ft, with cover

The described desiccation effects should be considered for the CPT locations 1, 3, 4 and 8 only, as the coarser surface tailings in other locations will not be affected by the evaporation in the same manner.

It is noted here that the CPT locations 7, 10 and 11 were analyzed here with the assumption that the maximum void ratio at these locations doesn't exceed the value of 1.10. Field data indicate that at these locations the top 20 ft are in as soft state as for the CPT locations 1,3,4 and 8, and that this upper material has similar characteristics to the C type material. If that is the case, the upper 20 ft of slimes at these locations will behave similar to the locations 1,3,4 and 8, and up to 5 ft of desiccation settlement can be expected at a rate of 2.4 ft per year. However, for locations 7, 10 and 11 these settlements will be in addition to those indicated in Table 4, since the soft upper layer was not considered in the presented analyses for these locations. The main reason why the upper layer was not analyzed is the lack of reliable field data for the shallow depth and the absence of the laboratory tests for this material.

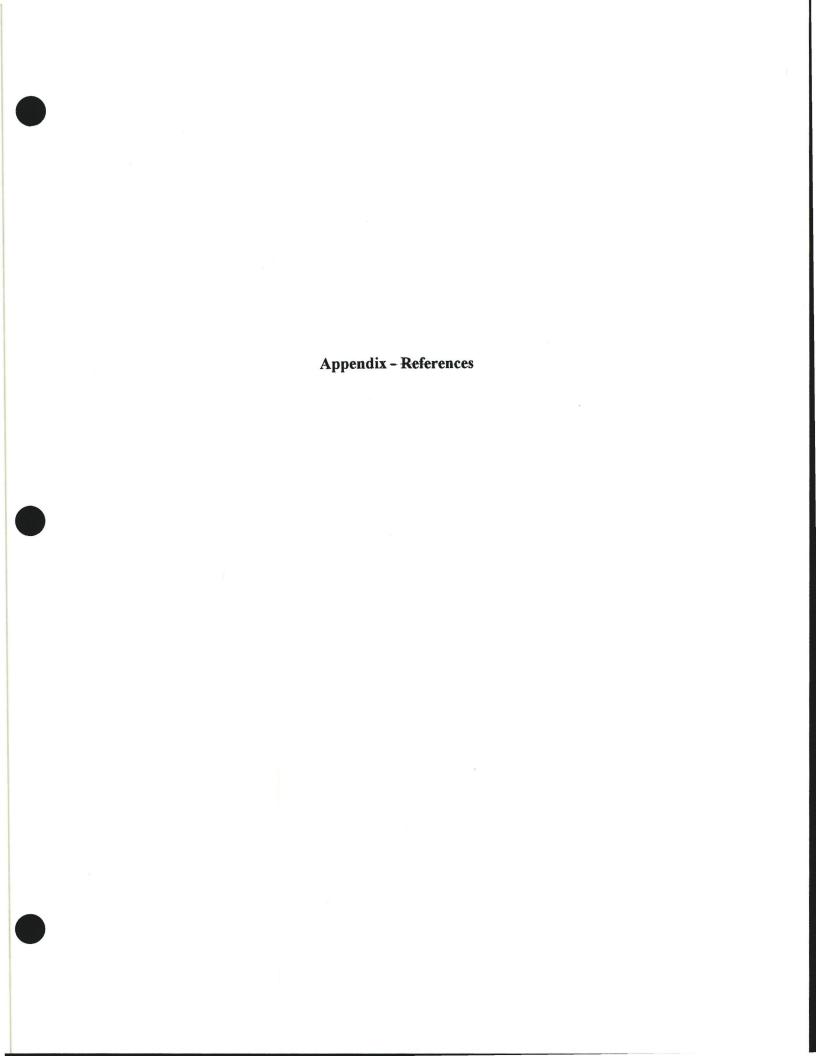
Discussion and Conclusions

The results in Table 4 demonstrate that at locations with A type material, CPT 2, 6, 9 and 12, final settlements of between 1 ft and 2 ft could be expected. These settlements are achieved by more or less uniform (with depth) compression of the layer as demonstrated in Figure 7 b, e, h and k in which the more or less uniform reduction in void ratios is demonstrated.

Locations with B type material, CPT 7, 10 and 11, will experience intermediate final settlements of between 6 ft and 8 ft. These settlements are created by the compression of the material over the whole depth of the layer, but also by the compression of the relatively softer material at the surface. This is demonstrated by the void ratio profiles in Figure 7 f, i and j. As stated earlier if the slimes at top surface at these locations have void ratios higher than the assumed value of 1.10, additional settlement of up to 5 ft due to desiccation could be expected.

Finally, extreme settlements of up to 22 ft can be expected at locations with type C material, CPT 1, 3, 4 and 8. Location CPT 1 will experience the final settlement of only 5 ft despite the presence of the C type material due to its relatively shallow depth of only 51 ft. As void ratio profiles in Figure 7 a, c, d and g demonstrate, most of the extreme settlement is concentrated in the surface layer in which the large void ratio changes are expected. Most likely a good portion of the surface layer will be compressed during the initial drying process and subsequent settlement will be reduced by this amount.

The presented results can be used for designing the final cover for the impoundment. It should be recognized in the design process that the extreme settlements for type C material carry the most uncertainty due to the lack of reliable field data on the condition of the surface portion of this material. These locations will also be affected to the greatest extend by the desiccation process and this fact should be also kept in mind when deciding on the form of the final cover as well as on the construction schedule.


References:

Abu-Hejleh, A. N. and Znidarcic, D., 1995, Desiccation Theory for Soft Cohesive Soils, Journal of Geotechnical Engineering, ASCE, New-York, Vol. 121, No. 6. pp.493-502.(Paper named among 10 Outstanding Papers by the ASCE Geotechnical Engineering Division and nominated for an award in 1996 and 1997.)

Abu-Hejleh, A. N. and Znidarcic, D., 1996, Consolidation Characteristics of Phosphatic Clays, <u>Journal of Geotechnical Engineering</u>, ASCE, New-York, Vol. 122, No. 4. pp. 295-301.

Liu, J.C., and Znidarcic, D., 1991. Modeling One-Dimensional Compression Characteristics of Soils. <u>Journal of Geotechnical Engineering</u>, ASCE, 117, No. 1, pp. 164-171.

Yao, T.C.D., and Znidarcic, D., 1997, Crust Formation and Desiccation Characteristics for Phosphatic Clays, User's Manual for Computer Program CONDESO, Florida Institute of Phosphate Research, Publication No. 04-055-134,115 pp

DESICCATION THEORY FOR SOFT COHESIVE SOILS

By A. Naser Abu-Hejleh¹ and Dobroslav Znidarčić, Associate Members, ASCE

ABSTRACT: A new desiccation theory is developed that provides a rational framework for the consolidation and desiccation analysis of soft fine-grained waste soils. The theory includes four consecutive segments that correspond chronologically to the phases that a soft soil layer undergoes in the field after deposition: consolidation under one-dimensional compression; desiccation under one-dimensional shrinkage; propagation of vertical cracks and tensile stress release; and desiccation under three-dimensional shrinkage. A general form of the finite strain governing equation of the overall consolidation and desiccation process is formulated. It includes the cracking function and the nonlinear constitutive relations. The experimentally obtained consolidation and desiccation characteristics for soft china clay, which are needed for the overall analysis of a given field problem, are presented. The predictions of this theory for the response of a hypothetical soft china clay layer undergoing self-weight consolidation, seepage consolidation, and desiccation due to lowering of the ground-water level or surface drying are presented and discussed.

INTRODUCTION

Significant amounts of slurried fine-grained waste soils are produced in the mining and dredging operations and deposited hydraulically in large disposal facilities. For example, more than 50,000,000 t (dry weight) of highly plastic phosphatic clays are produced annually in Florida's phosphate industry (Carrier et al. 1983). Quantities of sediments, approaching 400,000,000 m³ are dredged annually from the navigable waterways of the United States (Poindexter and Walker 1988). These and other soft wastes have unconventional consolidation properties such as high water content, high compressibility, and low strength and permeability. Hence, densification of the waste is required either at the time of deposition or later. The densification maximizes the disposalite capacity, stabilizes the disposal-facility structure, and alws for the reclamation of the disposal site for subsequent and use by increasing the soil shear strength and reducing the long-term settlements. Out of several densification techniques reported (Johnson et al. 1977; Mitchell 1988), desiccation due to surface drying and lowering of the ground-water level is of interest in the present paper.

Due to desiccation, the surface of the soil layer settles, and cracks initiate and propagate downward forming cracked soil columns with a desiccated surface crust. According to Blight (1988), surface drying has the effect of considerably reducing the void ratio of the deposited slurry materials and increasing the solid storage capacity of the impoundments. East et al. (1987) argued that surface drying can fully consolidate the slurry soil during the subaerial deposition (i.e., when the surface water on the top of the soil layer is removed), thus reducing the long-term settlement to a minimum. Often, the reclamation operations for soft cohesive waste-disposal sites require the development of a desiccated surface crust with an adequate strength in order to support workers and equipment (Carrier and Bromwell 1983; Johnson et al. 1977). The depth of the surface crust depends on the climatic conditions (i.e., evaporation rate), the final ground-water level, and vegetation (Mitchell 1988).

There are many reasons why a rational method to predict the response and behavior of soft cohesive soils undergoing

desiccation is needed. First, the available models in the literature for the analysis of desiccation of soft soils are empirical or semiempirical. For example, Swarbrick and Fell (1992) described a semiempirical one-dimensional model of sedimentation and desiccation that includes restrictive assumptions, such as a uniform distribution of water content with depth throughout the desiccation process. The U.S. Army Engineer Waterways Experiment Station (WES) model (Cargill 1985) is also empirically based and can be used only in a limited number of field situations. Second, only a few oversimplified models for the three-dimensional shrinkage are available. For example, the Bronswijk (1988) model might be applicable only for relatively stiff soils, where small strains occur and the changes in the total vertical stresses are negligible. These conditions are unjustified for modeling threedimensional shrinkage of soft fine-grained soils. For example. McNeilan and Skaggs (1988) reported observations for a driedout surface of a hydraulic landfill in Los Angeles. Orthogonal desiccation crack patterns with 0.3-m width and as much as 1.5-2.1m depth were noted, and the total settlement in the softest area of the landfill from spring 1983 to spring of 1987 was 1.8 m. Third, a complete study on desiccation cracking of soft soils or a model that incorporates the desiccation cracking analysis in the transition from one-dimensional to threedimensional shrinkage is not described in the literature. Fourth. the constitutive and cracking relations for soft fine-grained soils undergoing desiccation are not reported in the literature. For all these reasons, many researchers stressed the need for more work in the area of desiccation of soft soils (Johnson et al. 1977).

A new theory for modeling the overall consolidation and desiccation process of soft fine-grained soils after deposition was developed (Abu-Hejleh 1993). It eliminates all the stated shortcomings of existing studies. The theory was implemented in a finite-element computer program, and laboratory tests were developed to provide all the necessary desiccation constitutive relations for soft cohesive soils. The present paper describes the main components of the theory and the experimentally obtained consolidation and desiccation characteristics for soft china clay that are needed for the overall analysis. The predictions for the response of a hypothetical soft china clay layer undergoing self-weight consolidation, seepage consolidation, and desiccation due to lowering of the ground-water level or surface drying are also included.

THEORETICAL DEVELOPMENT

While the proposed desiccation theory overcomes most of the limitations of existing analyses reported in the literature, several assumptions were used in order to proceed with the

^{&#}x27;Res. Assoc., Dept. of Civ., Envir. and Arch. Engrg., Univ. of Colorado, Boulder, CO 80309.

²Assoc. Prof., Dept. of Civ., Envir. and Arch. Engrg., Univ. of Colado. Boulder. CO.

Note. Discussion open until November 1, 1995. To extend the closing date one month, a written request must be filed with the ASCE Manager of Journals. The manuscript for this paper was submitted for review and possible publication on July 2, 1993. This paper is part of the *Journal of Geotechnical Engineering*, Vol. 121, No. 6, June, 1995. ©ASCE, ISSN 0733-9410/95/0006-0493-0502/\$2.00 + \$.25 per page. Paper No. 6369.

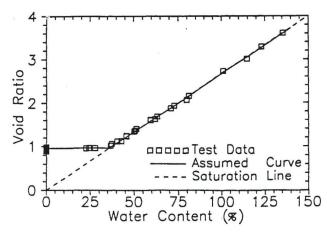


FIG. 1. Shrinkage Curve for China Clay

analysis for solving this complex problem and to provide a practical approach for analyzing soft waste-disposal sites. First, the theory is based on the assumption that soft fine-grained soils undergoing desiccation remain saturated until the void ratio reaches the shrinkage limit void ratio, that is, the void ratio at which soil shrinkage is terminated. Thereafter, the desiccated soil becomes rigid and its response is not modeled in the present theory. The experimental results obtained by Bronswijk (1988) show that soils with high clay content (cohesive soils) remain staurated over a wide range of water contents during desiccation and low clay content soils show residual shrinkage; that is, the reduction in soil volume is smaller than the water volume lost during the desiccation process. Fox (1964) reported that air entered a desiccated clay sample at a suction of 1,000 kPa, whereas Yule and Ritchie (1980) gave a value of 1.500 kPa. The experimentally obtained shrinkage data, void ratio versus water content, for soft china clay are shown in Fig. 1. They suggest that soil shrinkage can be modeled with two stages: (1) normal shrinkage, where the soil remains saturated from the initial void ratio to the shrinkage limit void ratio, e = 0.96; and (2) zero shrinkage, where the soil does not show any volumetric change from the shrinkage limit void ratio to the end of the desiccation process. Consequently, this assumption can be justified for soft fine-grained soils, which are of primary interest in the present paper, since this type of material undergoes a large volume decrease when the moisture content is reduced (Johnson et al. 1977).

Second, the theory considers a homogeneous soil that does not vary in properties from point to point horizontally, which is a common assumption in many theories. This assumption allows for modeling a simultaneous development of desiccation cracks at different locations, which propagate vertically to the same crack depth forming cracked soil columns with equal crack spacing (Lachenbruch 1962).

Third, the soil skeleton exhibits no intrinsic time effects with incompressible water and solid phases, which is assumed in most classical small- and large-strain consolidation analyses (McVay et al. 1986). For soft soils undergoing desiccation, the presented assumptions allow for the application of the effective stress principle and allow the material constitutive relations to be a function of the void ratio only for a given stress path (Gibson et al. 1967).

Fourth, during the overall consolidation and desiccation process, the lateral and vertical planes through any point in the cracked and the uncracked soil columns are principal planes (Miller 1975). This assumption simplifies the analysis of three-dimensional shrinkage, as is discussed in subsequent sections of the present paper.

The overall consolidation and desiccation process of soft

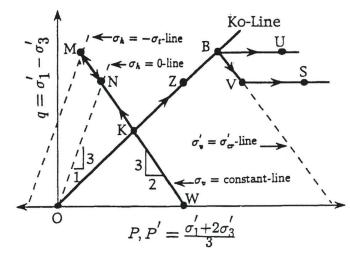


FIG. 2. Total and Effective Stress Paths during Overall Consolidation and Desiccation Process

soils is modeled in the theory with four consecutive segments. which correspond chronologically to the phases that a soft soil layer undergoes in the field after deposition. These phases are consolidation under one-dimensional compression, onedimensional shrinkage, propagation of desiccation vertical cracks with tensile stress release, and three-dimensional shrinkage. The total and effective stress paths during these four phases for a typical soil element are presented in Fig. 2. At the beginning of the consolidation process, when the effective stresses acting on the slurry soil element are zero, the element is at the effective stress state O and the total stress state W. The initial positive pore-water pressure acting on the soil element, equal to the total vertical stress, is the distance on the graph between the total stress state W and the effective stress state O. Due to consolidation and desiccation, this initial positive pore-water pressure decreases. While the stress paths are presented in the following for an element experiencing a constant total vertical stress, the theory is not restricted to this case and the analysis properly accounts for the change in the total vertical stresses throughout the consolidation-desiccation process.

In the development of this theory, it is convenient to consider the soil deformation as consisting of two components, One is associated with the change in the pore-water pressure. and the other results from the change in total stresses. The first is termed free strain, since it is the only strain component that occurs during desiccation of unconfined soil element, and the other is termed the mechanical strain. The sum of free and mechanical strains is the net strain, which arises due to change in effective stresses. Before the initiation of cracks, the net lateral strain for any soil element remains zero, and so the effective stress path during consolidation and desiccation must follow K_0 line where K_0 is the coefficient of lateral earth pressure at rest. Due to the reduction of pore-water pressure, the lateral total stress decreases, while, for illustration purposes only, the total vertical stress is assumed to remain constant. Therefore, the total stress path at this phase has a slope of -3/2 in the coordinate system shown in Fig. 2.

Along the total stress path WK and effective stress path OK, the pore-water pressure remains positive, and thus consolidation under one-dimensional compression takes place. Along the total stress path KM and the effective stress path KB, the pore-water pressure is negative while the soil undergoes one-dimensional shrinkage. For modeling the consolidation process, the compressibility and permeability relations are defined as

$$\sigma_{v}' = F_{1}(e); \quad k = Q_{1}(e)$$
 (1)

where σ'_{i} = vertical effective stress; e = void ratio; and k = coefficient of permeability. The constitutive relations needed for modeling the one-dimensional shrinkage are

$$\sigma'_{1} = F_{2}(e); \quad k = Q_{2}(e)$$
 (2)

Soils start cracking during one-dimensional shrinkage when total lateral tensile stress at the crack tip reaches the soil tensile strength

$$-\sigma_h = \sigma_t \tag{3}$$

where σ_h = total lateral stress; and σ_t = tensile strength. The lateral mechanical tensile strain and the corresponding total lateral tensile stress are developed during one-dimensional shrinkage, since zero net lateral strain is maintained. This type of restraint causes the development of shrinkage cracks in concrete (Penev and Kawamura 1993) and in permafrost regions (Lachenbruch 1962). Corte and Higashi (1964) used (3) to predict the development of desiccation cracks in soft soil samples. Lambe and Whitman (1969) used (3) to predict the crack depth due to lowering of the ground-water level for a normally consolidated soil layer that has a zero tensile strength. In a soil having no tensile strength, vertical desiccation cracks can open only when the total lateral stress vanishes, that is, only atmospheric pressure acts on the face of an open crack. Thus, the total stress state for this case is at N, which is on the $\sigma_h = 0$ line (Fig. 2). However, the effective stress state is at Z, where the lateral effective stress is compressive and equal to the suction (negative pore-water pressure) at the moment the cracks open. If the soil possesses some tensile strength, a larger suction is needed to create cracks. In this case, the cracking criterion is reached at the total stress state M and the effective stress state B, as shown n Fig. 2. At that point, the soil element is at the cracking void ratio e_{cr} and the cracking vertical effective stress σ'_{cr} = $F_2(e_{cr})$.

The lateral effective stress is equal to $K_0\sigma'_{ij}$, and the porewater pressure is equal to $\sigma_{ii} - \sigma'_{ii}$. The lateral tensile stress $-\sigma_{ii}$ at any depth is thus related to the vertical effective stress and the total vertical stress by

$$\sigma_h = \sigma_v + (K_0 - 1)\sigma_v' \tag{4}$$

Hence, a crack at any depth, which is characterized by a total vertical stress σ_{cr} , initiates once the void ratio at that depth is reduced enough to reach the cracking void ratio e_{cr} , which can then be related to the total vertical stress by a cracking function G

$$e_{cr} = G(\sigma_{v}) \tag{5}$$

The cracking function is determined from (3) and (4) and the e- σ'_{i} relation during one-dimensional shrinkage.

Theoretically, the cracks should develop at the surface and propagate downward simultaneously and uniformly for a homogeneous soil layer. However, reported field observations indicate that a network of more or less regularly spaced cracks develops. Their spacing and pattern is influenced by small lateral variations in material characteristics (Lachenbruch 1962; Corte and Higashi 1964). Such variations should be expected in any natural soil deposit. At the beginning of crack opening, a fracture zone of small thickness develops in the weakest points of the soil layer, where the cracks later develop, and the soil is unloaded elastically from the lateral total tensile kresses outside the fracture zone (the unfractured zone), which later forms the cracked soil column. In the fracture zone, the total lateral tensile stress starts to decrease, and once this stress drops to zero (at point N in Fig. 2), the cracks fully develop or open, and the cracked soil columns separate completely (Abu-Hejleh 1993, Hillerborg et al. 1976). The total lateral tensile stresses in the fractured and unfractured zones drop uniformly, so that no lateral and vertical shear stresses arise in the soil mass during and after the development of cracks. Therefore, the drop of total lateral tensile stresses in any vertical plane during the development of cracks can be represented by the total stress path MN in Fig. 2, where the total stress state N indicates that the cracked soil columns are free from lateral stresses. Assuming that no suction changes occur during the development of cracks, the effective stress path during the tensile stress release can be represented by BV, which is parallel to the total stresss path MN as shown in Fig. 2.

Along path MN or BV, the soil layer is unloaded, and any associated volumetric changes could be neglected. This is a realistic assumption for desiccation of soft soils, for which these unloading strains are much smaller than the large strains during loading. Furthermore, these strains are insignificant when compared to those caused by a change in suction during three-dimensional shrinkage along effective stress path VS. Neglecting the volumetric changes during the development of cracks implies that the desiccation cracks initiate and open at the same void ratio e_{cr} . Eq. (5) can be used to calculate the distribution of e_{cr} along depth characterized by total vertical stress σ_{v} . With the known void ratio distribution e in the soil column (from the solution of the governing equation), the cracks propagate to a depth where $e = e_{cr}$. This depth defines the horizontal boundary between the cracked (e < e_{cr}) and uncracked ($e > e_{cr}$) soil columns.

Neglecting the volumetric changes during the development of cracks implies also that the three-dimensional shrinkage in the cracked soil columns can be represented with the incremental isoptropic effective stress path BU shown in Fig. 2. This "free" three-dimensional shrinkage is attributed to change in suction only under a constant total vertical stress. For soil elements under different total vertical stresses, consolidation and desiccation follow the K_0 line up to cracking, and then three-dimensional shrinkage starts at different values of e_{cr} [determined by (5)] and σ'_{cr} [determined as $F2(e_{cr})$], and continues along different incremental isotropic effective stress paths. Some difference in the constitutive relations for one-dimensional shrinkage along the K_0 line and three-dimensional shrinkage along the incremental isotropic effective stress paths could be expected. One-dimensional shrinkage should produce a more dispersed structure with the parallel orientation of the particles, while during the three-dimensional shrinkage a flocculated structure could be expected, since lower shear stresses should develop at the particle interfaces. Thus, unlike the unique void ratio-vertical effective stress relation used to represent the compressibility relation along the K_0 compression line, the void ratio-vertical effective stress relations along different incremental isotropic effective stress paths are expected to be a function of the void ratio at which the three-dimensional shrinkage starts

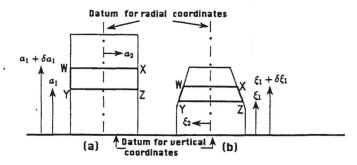
$$\sigma_v' = F_3(e, e_{cr}) \tag{6}$$

The compressibility functional predicts only the current void ratio during three-dimensional shrinkage. Another functional, $\alpha(e, e_{cr})$, is defined to characterize the proportion of vertical and lateral deformations along the incremental isotropic effective stress paths from the beginning of three-dimensional shrinkage where $e=e_{cr}$ to a current void ratio e (e.g., from state B to state U in Fig. 2). For a soil element with a unit initial area and a unit solid volume, the three-dimensional free shrinkage reduces its volume from $1+e_{cr}$ to 1+e and the height from $1+e_{cr}$ to $(1+e_{cr})[1-\epsilon_{v}(e,e_{cr})]$, where $\epsilon_{v}(e,e_{cr})$ is the vertical strain from the beginning of three-dimensional shrinkage. Functional $\alpha(e,e_{cr})$ is defined

$$\alpha(e, e_{cr}) = \frac{1 + e}{(1 + e_{cr})[1 - \epsilon_{n}(e, e_{cr})]}$$
 (7)

Note that α is equal to unity (area) during consolidation and desiccation up to cracking. If e_{cr} and e can be determined at any depth during three-dimensional shrinkage and used to determine $\alpha(e, e_{cr})$, the specific area of cracks at that depth, defined as the area of cracks per unit area, can be predicted by

$$S_c(e, e_{cr}) = 1 - \alpha \tag{8}$$


Formulation of Governing Equation

The derivation of the governing equation for the overall consolidation and desiccation process follows the lines of Gibson et al. (1967). The main difference is the treatment of the desiccation process under three-dimensional shrinkage. The soil column at the origin of time t = 0 and the deformed soil column at some subsequent time t are shown in Figs. 3 (a and b), respectively. As shown in these figures, the vertical Lagrangian (initial) and current coordinates, designated as a_1 and ξ_1 , respectively, are taken positive against the gravity from a reference datum plane, where the vertical deformations are zero; and the reference datum plane for the lateral (radial) Lagrangian and current coordinates, designated as a_2 and ξ_2 , respectively, are taken from the centerline of the soil columns, where the lateral deformations are zero. The derivation is presented for an element WXYZ in the initial and deformed soil columns whose boundaries always encompass the same volume of soil solid particles. At t = 0, the oil element is located at the Lagrangian coordinate a_1 , has unit area, a thickness of δa_1 and a void ratio of e_i . The deformed soil element at time t is located at the current coordinate ξ_1 , has an area equal to α (see the definition of α), a thickness of $\delta \xi_1$, and a current void ratio of e. Since the same volume of solids is encompassed by the element in the initial and current conditions

$$\frac{\delta a_1}{1+e_i} = \frac{\alpha \delta \xi_1}{1+e} \tag{9}$$

Thus, for an infinitesimal element, (9) is reduced to

$$\frac{\partial a_1}{\partial \xi_1} = \frac{\alpha(1 + e_i)}{(1 + e)} \tag{10}$$

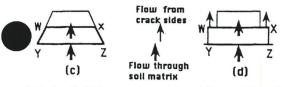


FIG. 3. Soil Element in Initial and Current Coordinate Systems

The equilibrium equation, the flow equation, the effective stress principle, and the continuity equation are used in the derivation of the governing equation.

Since no lateral shear stresses develop in the soil mass during three-dimensional shrinkage, the total vertical stresses are equal at all radii of the soil column. The vertical equilibrium equation is given as

$$\frac{\partial \sigma_{s}}{\partial \xi_{1}} = -\gamma = -\frac{\frac{\alpha \delta \xi_{1}}{1 + e} (\gamma_{s} + e \gamma_{w})}{\alpha \delta \xi_{1}} = -\frac{e \gamma_{w} + \gamma_{s}}{1 + e} \quad (11)$$

where γ , γ_w and γ_s = unit weights of water-solid mixture, water phase, and solid phase, respectively. With (10), the equilibrium equation in Lagrangian coordinate system is obtained as

$$\frac{\partial \sigma_{v}}{\partial a_{1}} = -\frac{(e\gamma_{w} + \gamma_{s})}{\alpha(1 + e_{i})}$$
 (12)

th

W

C:

0

SI

d

d

tì

ti

v:

W

T

F

a

T

th

(1

a:

e:

W

C

Ci

tì

fl [s

SI

el

Si (I

g

ir.

fr

el o

fc

t(

The principle of effective stress is

$$\sigma_v' = \sigma_v - u = \sigma_v - u_s - u_e \tag{13}$$

where u = pore-water pressure, which is the sum of the static pore-water pressure, u_s and the excess pore water u_e . Note that $\partial u_s/\partial \xi_1 = -\gamma_w$.

Using Darcy's Law in terms of the apparent relative velocity between the water and solid phases (Gibson et al. 1967), the flow equations in the vertical and lateral directions are given by

$$q_{1} = n(v_{w1} - v_{s1}) = -\frac{k}{\gamma_{w}} \frac{\partial u_{e}}{\partial \xi_{1}};$$

$$q_{2} = n(v_{w2} - v_{s2}) = -\frac{k}{\gamma_{w}} \frac{\partial u_{e}}{\partial \xi_{2}}$$
(14)

where q_1 , q_2 = apparent relative velocities between the water and solid phases in the vertical and lateral directions, respectively; n = porosity; v_{w1} and v_{s1} = velocities of the water and solid phases in the vertical direction; and v_{w2} and v_{s2} = velocities of the water and solid phases in the lateral direction. The v_{s2} and v_{w2} are zero during consolidation and desiccation up to cracking, and are assumed equal to each other during three-dimensional shrinkage, so that the relative flow velocity between the water and solid phases in the lateral direction q_2 is always zero. Consequently, the excess pore-water pressures as well as the vertical effective stresses are equal at all radii of the cracked and uncracked soil columns. The flow equation in the vertical Lagrangian coordinate system can be obtained from (14), (13), and (10) as

$$q_1 = -k - \frac{k}{\gamma_w} \frac{\alpha(1+e_i)}{(1+e)} \left(\frac{\partial \sigma_v}{\partial a_1} - \frac{\partial \sigma_v'}{\partial a_1} \right)$$
 (15)

From (6)

$$\frac{\partial \sigma_{v}'}{\partial a_{1}} = \frac{\partial \sigma_{v}'}{\partial e} \frac{\partial e}{\partial a_{1}} + \frac{\partial \sigma_{v}'}{\partial e_{cr}} \frac{\partial e_{cr}}{\partial \sigma_{v}} \frac{\partial \sigma_{v}}{\partial a_{1}}$$
(16)

By substituting (16) and (12) in (15), q_1 can be expressed as

$$q_{1} = -k + \frac{k}{\gamma_{w}} \frac{(e\gamma_{w} + \gamma_{s})}{1 + e} \left(1 - \frac{\partial \sigma'_{v}}{\partial e_{cr}} \frac{de_{cr}}{d\sigma_{v}} \right) + \frac{k}{\gamma_{w}} \frac{\alpha(1 + e_{i})}{(1 + e)} \frac{\partial \sigma'_{v}}{\partial e} \frac{\partial e}{\partial a_{i}}$$

$$(17)$$

For any values of e and e_{cr} , $\partial \sigma'_{..}/\partial e_{cr}$ and $\partial \sigma'_{..}/\partial e$ can be determined from (6), and $de_{cr}/d\sigma_{..}$ can be determined from (5). The $\partial \sigma'_{..}/\partial e_{cr}$ arises from the fact that the void ratio-effective stress relation is not a unique function for the material during

three-dimensional shrinkage but depends on the void ratio at which the three-dimensional shrinkage starts. Thus, in calculating the gradient of the effective stress, the chain rules of derivatives are observed.

Finally, the continuity equation of the mixture of water and solid phases is derived for element WXYZ. This element is deforming in the space with a speed of $\partial \xi_1/\partial t$ in the vertical direction and a speed of $\partial \xi_2/\partial t$ in the lateral direction. Since the volume of solids in this element does not change with time, that is, no solid flows into or out of the element in the vertical and lateral directions, it is required that $v_{s1} = \partial \xi_1/\partial t$ and $v_{s2} = \partial \xi_2/\partial t$. Also, since $v_{w2} = v_{s2}$, there is no flow of water into or out of element WXYZ in the lateral direction. The volume of water that flows into the element shown in Fig. 3(c) through section YZ in a period of δt is

$$\alpha n(v_{w1} - v_{s1})\delta t = \alpha q_1 \delta t \tag{18}$$

and the volume of water that flows out of the element through section WX is

$$\alpha q_1 \delta t + \frac{\partial(\alpha q_1)}{\partial \xi_1} \delta \xi_1 \delta t \tag{19}$$

The volume of water stored in the element over δt must equal the net change in the volume of water in the element over δt , so that

$$-\frac{\partial(\alpha q_1)}{\partial \xi_1} \delta \xi_1 \delta t = \frac{\alpha \delta \xi_1}{1 + e} \frac{De}{Dt} \delta t \tag{20}$$

where $(\alpha \delta \xi_1 e)/(1 + e)$ = volume of water in the element; $(\alpha \delta \xi_1)/(1 + e)$ = constant volume of solids in the element; and De/Dt = material derivative of the void ratio (McVay et al. 1986) that models properly the change of void ratio with time for moving soil elements

$$\frac{De}{Dt} = \frac{\partial e}{\partial t} + \frac{\partial e}{\partial \xi_1} v_{s1} + \frac{\partial e}{\partial \xi_2} v_{s2} = \frac{\partial e}{\partial t} + \frac{\partial e}{\partial a_1} \frac{\partial a_1}{\partial t} + \frac{\partial e}{\partial a_2} \frac{\partial a_2}{\partial t}$$
(21)

Considering (10) and that $\partial a_1/\partial t = 0$ and $\partial a_2/\partial t = 0$, the continuity equation for the water-solid mixture in the Lagrangian coordinate system can be obtained as

$$\frac{\partial (q_1 \alpha)}{\partial a_1} + \frac{1}{(1 + e_i)} \frac{\partial e}{\partial t} = 0$$
 (22)

Assuming that α is constant across $\delta \xi_1$, as shown in Fig. 3(d), the continuity equation can be simpfilied to

$$\frac{\partial q_1}{\partial a_1} + \frac{1}{\alpha(1+e_i)} \frac{\partial e}{\partial t} = 0$$
 (23)

It is considered in the derivation of (22) that there is no flow of water relative to the solid phase across the crack sides [see Fig. 3(c)]. This is not the case with (23) [see Fig. 3(d)], since a flow of $q_1 \Delta \alpha$ is lost across the crack sides of the element, where $\Delta \alpha$ is the projected area of the element crack sides in the vertical direction. The condition represented by (22) is suitable for modeling desiccation due to lowering the ground-water level, where the downward water flow is limited to the soil matrix, and the crack sides can be considered impermeable. Since the water is lost through evaporation from both the soil layer surface as well as the crack sides, the condition represented by (23) should be reasonable for modeling desiccation due to surface drying, especially if the evapration rate from the crack sides is close to the calculated water flux in the soil matrix near to the crack sides. For the former case, it is found that both continuity equations lead to almost identical results, and, therefore, (23) is adopted in the further analysis.

The governing nonlinear partial differential equation can be obtained by combining (17) and (23)

$$\frac{\partial}{\partial a_{1}} \left[k - \frac{k}{\gamma_{w}} \frac{(e\gamma_{w} + \gamma_{s})}{1 + e} \left(1 - \frac{\partial \sigma'_{v}}{\partial e_{cr}} \frac{de_{cr}}{d\sigma_{v}} \right) \right]
- \frac{\partial}{\partial a_{1}} \left[\frac{k}{\gamma_{w}} \frac{\alpha(1 + e_{i})}{(1 + e)} \frac{\partial \sigma'_{v}}{\partial e} \frac{\partial e}{\partial a_{1}} \right] = \frac{1}{\alpha(1 + e_{i})} \frac{\partial e}{\partial t}$$
(24)

For the consolidation and desiccation up to cracking, $\alpha=1$ and the void ratio-effective stress relation is a unique function for the material so that $\partial \sigma'_{\nu}/\partial e_{cr}=0$. Applying these conditions to (24), the equation derived by Gibson et al. (1967) in the finite-strain consolidation theory is obtained

$$-\left(\frac{\gamma_s}{\gamma_w} - 1\right) \left[\frac{d}{de} \left(\frac{k}{1+e}\right)\right] \frac{\partial e}{\partial a_1}$$

$$-\frac{\partial}{\partial a} \left[\frac{k}{\gamma_w} \frac{1+e_i}{(1+e)} \frac{d\sigma'_{i}}{de} \frac{\partial e}{\partial a_1}\right] = \frac{1}{1+e_i} \frac{\partial e}{\partial t}$$
(25)

While (25) models the one-dimensional soil response during the consolidation and desiccation processes in the uncracked soil columns, (24) is the governing equation for the overall consolidation and desiccation process in the cracked and uncracked soil columns.

EXPERIMENTAL RESULTS

As stated in the theoretical development and in the derivation of the governing equation, several material functions are required in the solution process of a certain field situation. These included three pairs of compressibility and permeability relations for consolidation, desiccation under one-dimensional shrinkage, and desiccation under three-dimensional shrinkage. In addition, the cracking function G and the α functional are required. All of these constitutive and cracking functions are determined from laboratory tests that were developed earlier or from new experiments developed as a part of this research. The void ratio-effective stress and void ratio-permeability relations during the consolidation phase of the process are obtained from the seepage-induced consolidation testing and analysis (Znidarčić and Liu, 1989; Liu, 1990; Abu-Hejleh and Znidarčić, 1994).

The desiccation compressibility and permeability characteristics are obtained from a suction test in which the water is removed from the bottom of a sample in the oedometer using a flow pump to control precisely the outflow rate (Abu-Hejleh 1993). Capillary menisci develop at the sample top, creating an effective stress increase and the corresponding sample compression. Since the sample remains saturated in the test, the sample volume change is equal to the withdrawn volume of water, and this change is used to estimate the sample average void ratio at various testing times. The applied suction at the bottom of the sample is measured with a precision transducer and used to estimate the sample bottom effective stress at various testing times. For the slow withdrawal flow rate, the effective stress within the sample is uniform, and, therefore, the desiccation effective stress-void ratio relation is determined directly from the obtained test results. Desiccation compressibility characteristics along the K_0 line are obtained from samples that are laterally confined in order to produce one-dimensional shrinkage response only. Desiccation compressibility characteristics along the isotropic effective stress path (after cracking) are obtained from unconfined samples that are allowed to shrink freely in the lateral and vertical directions. To obtain material characteristics for varying cracking void ratios, several preconsolidated samples with different void ratios are prepared and then tested.

A suction test with a higher withdrawal flow rate is performed on the same material in order to produce a measureable pore pressure gradient within the sample. The generated gradient depends on the material permeability characteristics. With the known desiccation effective stress—void ratio relation, the obtained experimental results under the higher flow rate are used to evaluate indirectly the desiccation void ratio—permeability relationship. The test analysis follows the inverse problem solution algorithm equivalent to the one used in the analysis of the seepage induced consolidation test (Abu-Hejleh and Znidarčić 1994).

The obtained void ratio-effective stress relations for soft china clay during consolidation, one-dimensional shrinkage,

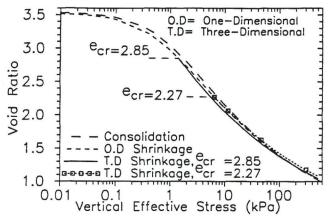


FIG. 4. Consolidation and Desiccation Compressibility Characteristics for Soft China Clay

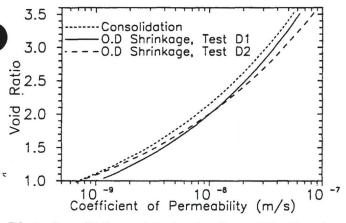


FIG. 5. Consolidation and Desiccation Permeability Characteristics for Soft China Clay

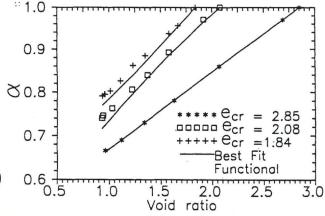


FIG. 6. Functional $\alpha(e,\,e_{\rm c})$ for China Clay during Three-Dimensional Shrinkage

and three-dimensional shrinkage are presented in Fig. 4. The graphical results indicate that these three relationships are very close to each other and could be assumed identical. The obtained permeability characteristics for soft china clay during consolidation and desiccation under one-dimensional shrinkage are presented in Fig. 5. Again, similar permeability characteristics during consolidation and desiccation can be noticed. While accepting that these two last conclusions lead to a simpler analysis, the obtained results for a single material should not be taken as a general rule. More tests on other soft cohesive materials should be made before general conclusions regarding their consolidation and desiccation behavior is made. The permeability during three-dimensional shrinkage is assumed to have the same permeability-void ratio relationship as during one-dimensional shrinkage. This assumption is justified by the similar compressibility characteristics for the two desiccation phases of the process.

The free shrinkage test provides the experimental data needed for the determination of functional α (Abu-Hejleh 1993). In this test, a soil sample is left to shrink vertically and laterally freely without the presence of any external constraint, and both vertical and lateral deformations are measured. Preconsolidated soil samples, with different void ratios, are prepared for this test. The experimentally obtained values of $\alpha(e, e_{cr})$ for three soft china clay samples, with three different initial void ratios, were fitted with an analytical function. Fig. 6 shows the data of α together with the fitted functional.

Finally, the evaluation of the tensile strength function and the corresponding cracking function G are needed in the analysis. The tensile strength, like the shear strength, is a function of the vertical effective stress or void ratio. Its experimental determination is quite difficult and no routine tests exist for its measurement. Thus, the tensile strength is here related to the shear strength that could be determined from routine tests. The factor F is defined as $F = \sigma_t/S_u$, where S_u is the undrained shear strength. For example, the experimentally obtained undrained shear strength-void ratio relation for china clay by Znidarčić et al. (1992) was used to estimate the tensile strength-void ratio relation as

$$\sigma_t = F10^{(1.945 - e/0.435)} \tag{26}$$

The exponential relation between the tensile strength and void ratio in (26) confirms the published data (Williams and Sibley 1992; Farrel et al. 1967). While the lower limit for F is zero, the range of unconfined compressive strength to tensile strength reported by Lau (1987) suggests that an appropriate upper limit value for F is 0.5.

To relate the development of the total lateral tensile stresses in china clay to the void ratio and the total vertical stress

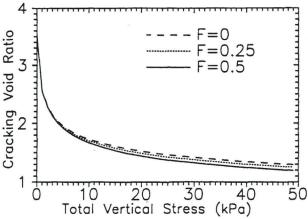


FIG. 7. Cracking Function for Soft China Clay

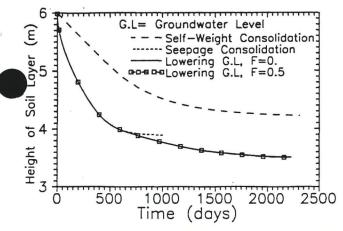


FIG. 8. Progress of Settlement with Time during Self-Weight Consolidation, Seepage-Induced Consolidation, and Lowering Ground-Water Level

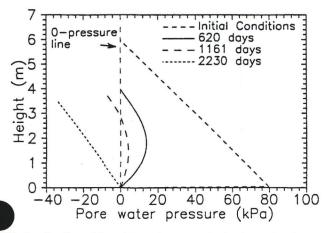


FIG. 9. Profiles of Pore-Water Pressure during Lowering Ground-Water Level

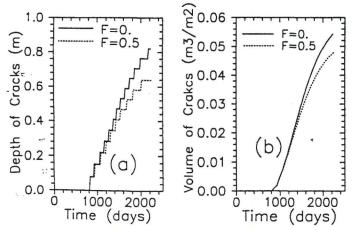


FIG. 10. Progress of (a) Crack Depth and (b) Volume of Cracks per Unit Area with Time during Lowering Ground-Water Level

only, the experimentally obtained K_0 value of 0.67 (Hutapea et al. 1992) and $e - \sigma'_{\cdot}$ function during one-dimensional shrinkage are substituted in (4). Subsequently, the cracking function for china clay, $e_{cr} - \sigma_{\cdot \cdot}$ relation, is obtained by subtituting (26) and (4) in (3). Graphical forms of the obtained cking functions for china clay with F = 0, F = 0.25, and F = 0.5 are shown in Fig. 7. Alternatively, the cracking function can be evaluated from desiccation experiments in which a soil sample is allowed to crack during the desiccation process. Since the cracking characteristics are dependent on

the stress level, as (5) implies, a convenient way for obtaining these characteristics is to conduct the desiccation experiment in the geotechnical centrifuge under an increased gravity level that properly simulates the stress level in the field.

EVALUATION OF THEORY

The theory has been implemented in an efficient nonlinear finite-element computer program, called CADA (Consolidation And Desiccation Analysis). The numerical solution predicts profiles of void ratio, cracking void ratio, and total vertical stress along the vertical Lagrangian coordinate at each time step. By transforming the coordinates from Lagrangian to the current coordinates as expressed in (10), the settlement-time curve and profiles of effective stress, void ratio, porewater pressure, and the specific area of cracks along the current depth are determined. The depth of vertical desiccation cracks is determined by the location of $e = e_{cr}$. The specific volume of cracks, defined as the volume of cracks per unit area, is evaluated by the numerical integration of the distribution of specific area of cracks along the crack depth.

A hypothetical soft china clay disposal site was used to demonstrate main features of the theory. The initial height of the soil layer is 6 m and the initial uniform distribution of void ratio corresponds to the zero effective stress void ratio for the soil, e = 3.53. The experimentally obtained consolidation and desiccation constitutive relations and cracking function for soft china clay are used in the analysis. Fig. 8 shows the time-settlement curves for the self-weight and seepage-induced consolidation of the layer. For the self-weight consolidation an undrained bottom boundary was assumed, and for the seepage induced consolidation a bottom drainage layer with zero pore pressure was considered. For both cases, zero effective stress void ratio, e = 3.53, is imposed at the top boundary throughout the process, since the soil layer surface should remain covered with water in these two scenarios. The beneficial effect of the bottom drainage layer in accelerating the rate of consolidation is evident in Fig. 8.

Lowering Ground-Water Level

Fig. 8 also presents the time-settlement curve for the case in which the downward water flow causes the lowering of the ground-water table. Initially, the boundary conditions are equal to those in the seepage-induced consolidation case. Once the upward flow at the top boundary ceases, an impervious boundary is imposed. That reflects the absence of any evaporation from, or additional infiltration into, the soil layer. Capillary suction develops at the surface with time, and the ground-water table with zero pore pressure moves downward. Ultimately, the water table reaches the bottom boundary and the hydrostatic suction distribution is established within the layer. Pore-pressure profiles are presented in Fig. 9, while the development of crack depth and specific volume with time are presented in Figs. 10(a and b). The results show that the suction will develop at the surface after 620 days and that the tensile strength, as related to the F-value, has only a slight influence on the progress of settlement as well as on the crack depth and specific volume of cracks.

Surface Drying

Surface drying is caused by the evaporation at a rate that depends on the climatic conditions at a given site. The evaporation has no effect as long as the upward surface-water flow, resulting from the self-weight consolidation of the soil layer, exceeds the evaporation rate. Once the flow rate drops below the evaporation rate, the desiccation process starts and continues until the top void ratio reaches the shrinkage limit.

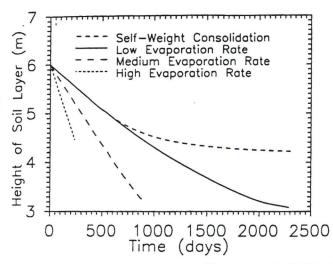


FIG. 11. Progress of Settlement with Time during Self-Weight Consolidation and Surface Drying

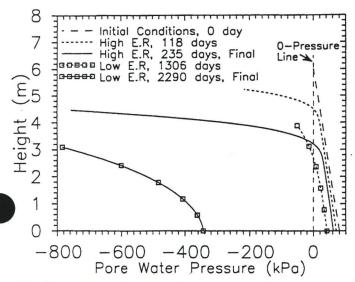


FIG. 12. Profiles of Pore-Water Pressure during Surface Drying

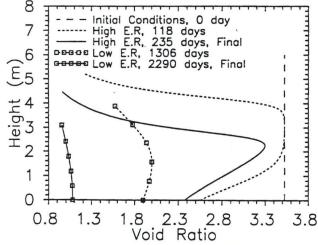


FIG. 13. Profiles of Void Ratio during Surface Drying

At that point, the soil starts to desaturate but without any ssociated volume change, as demonstrated in the shrinkage curve shown in Fig. 1. The present theory does not model this phase and the numerical analysis is terminated at that point. It should be noted that the actual physical process

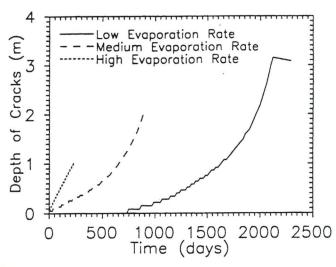


FIG. 14. Progress of Crack Depth with Time during Surface Drying

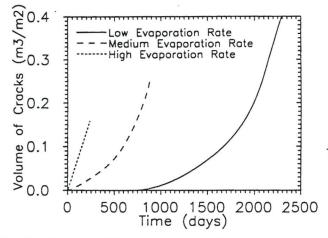


FIG. 15. Progress of Volume of Cracks with Time during Surface Drying

terminates as well, shortly after the shrinkage limit is reached, since the permeability of the desaturated soil at the surface is drastically reduced, creating an impervious crust that prevents further evaporation (Johnson et al. 1977).

The surface drying of the soft china clay layer is modeled with three surface evaporation rates: a low value of 1.87 × 10^{-8} m/s, a medium value of 4 \times 10^{-8} m/s, and a high value of 8.5×10^{-8} m/s. The bottom boundary is assumed impervious while the top boundary has zero effective stress for the consolidation phase (as in the self-weight consolidation) and an imposed outflow rate equal to the evaporation rate in the desiccation phase. The results of the analyses are presented in Figs. 11-14. The void-ratio and pore-water pressure distributions clearly indicate the creation of a desiccated crust at the soil surface whose thickness and strength (void ratio) depend on the evaporation rate. The slower the evaporation rate, the thicker the crust. The time settlement and the crackdepth curves demonstrate that the shrinkage limit void ratio, e = 0.96, is reached at the surface faster under the higher evaporation rates and that the desiccation process is terminated sooner. This might lead to the apparent paradox that the lower evaporation rate creates a larger overall compression. Again, this is easily explained by the sealing effect of the desiccated crust at the shrinkage limit. For example, as Figs. 11-13 indicate for the high evaporation rate, the desiccated crust can seal the soil surface even before the self-weight consolidation is completed, leaving a soft unconsolidated soil zone under a thin crust and preventing further dissipation of

the excess pore-water pressures. Thus, the higher evaporation rates can have a detrimental effect on the overall consolidation and desiccation process.

As demonstrated in Figs. 14 and 15, the higher evaporation rate creates more-shallow cracks with smaller volume than he lower rate. Since the crack spacing is related directly to e crack depth (Lachenbruch 1962), a thin and highly fracfured crust should be expected for this case, and thicker crust with more widely spaced cracks should be expected under the lower evaporation rates. The volume of cracks resulting from surface drying increase with the decrease of the evap-

CONCLUSIONS

oration rate.

The described desiccation theory provides a rational framework for the analysis of the overall consolidation and desiccation process of soft fine-grained soil in the field after deposition. The presented experimental results support the fundamental assumptions of the theory. The numerical analysis provides the rate of vertical and lateral deformations for a soil layer undergoing consolidation and desiccation, voidratio and pore-water pressure distributions throughout the process, and the thickness and strength (from the void ratio) of the desiccated crust that forms at the soil surface.

The presented examples demonstrate that the theory is in qualitative agreement with the reported observation of the behavior of desiccating soil layers. The predicted relation between the evaporation rate and the thickness of the surface crust, as well as the depth and intensity of cracks are confirmed by many field observations (Mitchell 1988; Blight 1988; Johnson et al. 1977; Lachenbruch 1962; Corte and Higashi 1964). However, the quantitative verification of the theory requires additional experimental work in which a soft material is tested to obtain relevant material characteristics, and then e analysis results are compared to a well-controlled model periment and ultimately to a field case. The centrifuge modeling technique provides an excellent tool for the confirmation, especially in terms of verifying the crack-formation mechanism. Short of an actual well-controlled field case, it is probably the only technique available to study crack development, since the field stress conditions that control crack propagation are properly simulated in the centrifuge models.

Several benefits are envisioned in applying the developed theory to analyzing various strategies in mine and dredging waste disposal. First, the theory can provide information on how to maximize simultaneously the benefits of the self-weight consolidation and desiccation for varying environmental evaporation conditions and slurry deposition rates. The second application is in predicting the strength and thickness of the desiccated crust for the final reclamation of the disposal site as well as in the intermediate stages in the staged filling operations. The third, and possibly the most beneficial, application is in providing a rational tool for evaluating possible aggressive disposal-management strategies prior to their trial implementation in the field. For example, the benefits of intermediate drainage layers sandwiched between the layers during the slurry deposition in accelerating the consolidation process and extending the influence of surface drying to larger depths inside the soil layer could be evaluated.

APPENDIX I. REFERENCES

Abu-Hejleh, A. N. (1993). "Desiccation theory for soft soils," PhD thesis, University of Colorado, Boulder, Colo.

u-Hejleh, A. N., and Znidarčić, D. (1994). "Estimation of the consolidation constitutive relations." Eighth Int. Conf. on Comp. Methods and Adv. in Geomech. (IACMAG94), H. J. Siriwardane and M. M. Zaman, eds., Balkema, Rotterdam, The Netherlands, 499-504. Blight, G. E. (1988). "Some less familiar aspects of hydraulic fill struc-

tures." Proc., Hydr. Fill Struct., Spec. Conf., Geotech. Spec. Publ. No. 21, D. J. A. Van Zyl and S. G. Vick, eds., ASCE, New York. N.Y., 1000-1027.

Bronswijk, J. J. B. (1988). "Modelling of water balance, cracking and subsidence of clay soils." J. Hydr., 97, 199-212.

Cargill, K. W. (1985). "Mathematical model of the consolidation desiccation process in the dredged material." Tech. Rep. D-85-4, U.S. Army Engineer Waterways Experiments Station, Vicksburg, Miss.

Carrier, W. D., and Bromwell, L. G. (1983). "Disposal and reclamation of mining and dredging wastes." Proc., Seventh Panam. Conf. on Soil Mech. and Found. Engrg., Canadian Geotechnical Society. Lima, Peru. Vol. 2, 727-738.

Carrier, W. D., Bromwell, L. G., and Somogyi, F. (1983). "Design capacity of slurried mineral waste ponds." J. Geotech. Engrg. Div., ASCE, 109(5), 699-716.

Corte, A., and Higashi, A. (1964). "Experimental research on desiccation cracks in soil." Res. Rep. No. 66., U.S. Army Materiel Command, Cold Regions Research & Engineering Laboratory (CRREL). Hanover, N.H.

East, D. R., Haile, J. P., and Dew, H. P. (1987). "Sub-aerial deposition of phosphatic clay wastes." Symp. on Consolidation and Disposal of Phosphatic and other Waste Clays, Prepared by Dept. of Civ. Engrg., Univ. of Florida, sponsored by Florida Institute of Phosphate Research, Bartow, Fla.

Farrel, D. A., Greacen, E. L., and Larson, W. E. (1967). "The effect of water content on axial strain in a loam soil under tension and compression." Soil Science Soc. of Am. Proc., 31, 445-450.

Fox, W. E. (1964). "A study of bulk density and water in a swelling soil." Soil Sci., 98, 307-316.

Gibson, R. E., England, G. L., and Hussey, M. H. L. (1967). "The theory of one-dimensional consolidation of saturated clays. I. finite nonlinear consolidation of thin homogeneous layers." Géotechnique, 17(3), 261-273.

Hillerborg, A., Modeer, M., and Petersson, P. E. (1976). "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements." Cement and Concr. Res., 6, 773-782.

Hutapea, B., Znidarčić, D., Ko, H. Y., and Sture, S. (1992). "Drag anchor tests in clay, volume 1: soil property assessment." Rep. Prepared for Exxon Production Res. Co., University of Colorado, Boul-

Johnson, S. J., Gunny, R. W., Perry, E. B., and Devay, L. (1977). State-of-the art applicability of conventional densification techniques to increase disposal area storage capacity." Tech. Rep. D-77-4, Soils and Pavements Lab., U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss.

Lachenbruch, A. H. (1962). "Mechanics of thermal contraction cracks and ice-wedge polygons in permafrost." Spec. Papers, No. 70, Geological Survey of America, Lambe, T. W., and Whitman, R. V. (1969). Soil mechanics. John Wiley & Sons, Inc., New York, N.Y.

Lau, J. T. K. (1987). "Desiccation cracking of soils," MSc thesis, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.

Liu, J. C. (1990). "Determination of soft soil characteristics," PhD thesis University of Colorado, Boulder, Colo.

McNeilan, T. W., and Skaggs, R. L. (1988). "In place properties of a hydraulic landfill." Proc., Hydr. Fill Struct. Spec. Conf., Geotech. Spec. Publ. No. 21, D. J. A. Van Zyl and S. G.Vick, eds., ASCE, New York, N.Y., 255-273.

McVay, M., Townsend, F., and Bloomquist, D. (1986). "Quiescent consolidation of phosphatic waste clays." J. Geotech. Engrg., ASCE, 112(11), 1033-1049.

Miller, E. E. (1975). "Physics of swelling and cracking soils." J. Colloid

and Interface Sci., 52(3), 434-443.

Mitchell, J. K. (1988). "Densification and improvement of hydraulic fills." Proc. Hydr. Fill Struct. Spec. Conf., Geotech. Spec. Publ. No. 21, D. J. A. Van Zyl and S. G. Vick, eds., ASCE, New York, N.Y.,

Penev, D., and Kawamura, M. (1993). "Estimation of the spacing and the width of cracks caused by shrinkage in the cement-treated slab

under restraint." Cement and Concr. Res., 23, 925-932.
Poindexter, M. E., and Walker, J. E. (1988). "Dredged fill performance: South Blakeley Island." Proc., Hydr. Fill Struct., Spec. Conf., Geotech. Spec. Publ. No. 21, D. J. A. Van Zyl and S. G. Vick, eds., ASCE, New York, N.Y., 676-692.

Swarbrick, G. E., and Fell, R. (1992). "Modelling desiccation of mine tailings." J. Geotech. Engrg., ASCE, 118(4), 540-557.

Williams, D. J., and Sibley, J. W. (1992). "The behavior at the shrinkage limit of clay undergoing drying." Geotech. Testing J., 15(3), 217-222.

Yule, D. F., and Ritchie, J. T. (1980). "Soil shrinkage relationships of Texas vertisols: I. small cores." Soil Sci. Soc. of Am. J., 44, 1285Znidarčić, D., and Liu, J. C. (1989). "Consolidation characteristics determination for dredged materials." Proc., 22nd Annu. Dredging Seminar, CDC Rep. No. 317, Ctr. for Dredging Studies, Texas A&M University, College Station, TX., 45-65.

Znidarčić, D., et al. (1992). "Drag anchors tests in clay, volume 3: soil specimen preparation procedure." Rep. Prepared for Exxon Production Res. Co., University of Colorado, Boulder, Colo.

APPENDIX II. NOTATION

The following symbols are used in this paper:

 a_1 and a_2 = Lagrangian coordinates in vertical and lateral directions, respectively;

e = void ratio;

 e_{cr} = cracking void ratio, and void ratio at beginning of three-dimensional shrinkage;

= initial void ratio;

F = ratio of tensile strength to undrained shear strength;

 F_1 , F_2 = compressibility functions;

 F_3 = compressibility functional;

G = cracking function;

 K_0 = coefficient of lateral earth pressure at rest;

k = coefficient of permeability;

 Q_1 and Q_2 = permeability functions;

 q_1 and q_2 = apparent relative velocity between waste and solid phases in vertical and lateral directions, respectively;

 S_c = specific area of cracks;

t = time;

u = pore-water pressure;

 u_e = excess pore-water pressure;

 u_s = static pore-water pressure;

 v_{w1} and v_{w2} = velocities of water phase in vertical and lateral directions, respectively;

 v_{s1} and v_{s2} = velocities of solid phase in vertical and lateral directions, respectively;

 α = functional used to characterize proportion of vertical and lateral deformation during threedimensional shrinkage;

 γ , γ_w , and γ_s = unit weight of water-solid mixture, water phase, and solid phase, respectively;

 δa_1 , $\delta \xi_1$ = thickness of small soil element in initial and current coordinates, respectively;

 $\delta t = \text{small time step};$

 $\varepsilon_{r}(e, e_{cr})$ = vertical free strain from beginning of threedimensional shrinkage;

 ξ_1 and ξ_2 = current coordinates in vertical and lateral directions, respectively;

 σ'_{cr} = cracking vertical effective stress, and vertical effective stress at beginning of three-dimensional shrinkage;

 $\sigma_h = \text{total lateral stress};$

 σ'_r = tensile strength; σ'_r = vertical effective stress; and

 σ_{ij} = total vertical stress.

CONSOLIDATION CHARACTERISTICS OF PHOSPHATIC CLAYS

By A. Naser Abu-Hejleh, Associate Member, ASCE, Dobroslav Znidarčić, Associate Member, ASCE, and Bobby L. Barnes³

ABSTRACT: Reliable and convenient testing technique and analysis are used to evaluate the void ratio-effective stress and void ratio-permeability relations for several types of very soft phosphatic waste clays. The technique is based on the seepage-induced consolidation test in which a soft soil sample is subjected to a constant downward flow rate and its final consolidated height and bottom effective stress are measured as the sample reaches steady state conditions. These two data points and the measured zero effective stress void ratio represent three reliable experimental data in the low range of effective stress, where the consolidation constitutive relations are highly nonlinear. In the higher effective stress range, the loading and permeability tests are used to determine the coefficient of permeability and effective stress corresponding to a given void ratio. An efficient algorithm to describe the steady-state flow in soft soils and a parameter-estimation scheme are employed for the determination of the soil consolidation parameters needed in the finite strain consolidation theory. The laboratory data of the restricted flow test and the transient seepage-induced consolidation test and the field measurements in three phosphatic clay settling ponds confirm the results obtained from the seepage-induced consolidation testing and analysis.

INTRODUCTION

It is estimated that 30% of the world's phosphate is produced in the state of Florida, leading to the creation of large quantities of very soft, fine, and highly plastic phosphatic waste clays (McVay et al. 1986). According to Carrier et al. (1983), more than 50,000,000 t (dry weight) of such waste materials are generated annually in Florida's phosphate industry. The resulting slurry waste clay is typically pumped into large retention ponds at an initial void ratio of between 40 and 130. Within a few days to a few weeks after deposition, the sedimentation of the suspended soil particles brings the slurry clay to the zero effective stress void ratio, e_0 , at which a soil ; formed and the effective stress principle begins to apply. At that point, the very long consolidation process starts and might continue for decades. The soil formation void ratio, e_0 , is not a material constant but depends on the initial slurry void ratio (Liu 1990). Carrier et al. (1983) listed typical values of e_0 for various fine-grained waste materials, with a value of around 30 for the phosphatic waste clays. The magnitude of densification that a deposit of soft soil undergoes during the consolidation phase is directly dependent on the soil void ratio-effective stress relation and the time-dependent progress of densification is directly dependent on the soil permeabilityvoid ratio relation. Many computer models, based on finite strain consolidation analysis, have proven to be valuable tools in planning disposal site capacity, predicting the time at which site reclamation is technically feasible, and predicting the development of soil shear strength. However, the success of such analyses depends on the accuracy of the input data, especially the consolidation constitutive relations.

The changes of void ratio and permeability with the effective stress are very significant for soft phosphatic waste clays and other fine-grained materials, especially in the early stages

¹Colorado Dept. of Transp., Sterling, CO 80751; formerly, Res. Assoc., Dept. of Civ., Envir., and Arch. Engrg., Univ. of Colorado, Boulder, CO 80309.

Note. Discussion open until September 1, 1996. To extend the closing ate one month, a written request must be filed with the ASCE Manager of Journals. The manuscript for this paper was submitted for review and possible publication on January 23, 1995. This paper is part of the Journal of Geotechnical Engineering, Vol. 122, No. 4, April, 1996. ©ASCE, ISSN 0733-9410/96/0004-0295-0301/\$4.00 + \$.50 per page. Paper No. 9949.

of consolidation when the effective stresses are low. The direct determination of the consolidation characteristics for such soils is difficult if not impossible to achieve (Znidarčić 1982). For example, the application of a constant hydraulic gradient across a sample to measure its permeability results in a varying effective stress along the sample depth. For a very soft soil sample in the low effective stress range, this variation in effective stress produces a nonuniform void ratio distribution, and, therefore, the permeability within the sample changes significantly and can't be assumed constant. McVay et al. (1986) also concluded that the laboratory measurements for determining the permeability relationships of phosphatic clays were deficient, but that acceptable results for their compressibility relationships could be obtained from the tests. Indeed, reliable effective stress-void ratio relations for soft soils could be determined from the field measurements or laboratory tests, but only if the soil layer (or soil sample) is fully consolidated (e.g., Cargill 1986). Obtaining such data, however, requires excessive testing time for fine-grained soils. For example, Carrier et al. (1983) reported that the time needed to conduct a direct stress-controlled slurry consolidometer test on a Florida phosphatic clay sample is 6-7 months. To provide more practical and reliable methodology for the determination of the consolidation characteristics of soft soils, Znidarčić (1982) introduced the concept of the inverse solution (or indirect) approach, in which the variation of void ratio across the sample is recognized in the analysis.

Imai (1979) proposed a seepage induced consolidation test, in which, besides the self-weight of the specimen, a downward seepage force is imposed by creating a constant head differ-. ence across the specimen. The pore-water pressure within the sample is measured during the experiment and the void ratio distribution is obtained at the end of the test by slicing the specimen. From the obtained test data, the soil permeabilityvoid ratio and effective stress-void ratio relations can be determined. Huerta et al. (1988) presented a new analysis for the seepage induced consolidation test, in which the inverse solution algorithm is adopted. While the two methods have enhanced our ability to determine the consolidation characteristics of soft soils, especially the permeability relation, they have not been widely used in practical applications. Both have some shortcomings that make their application difficult, or at least cumbersome. Imai's approach requires specialized equipment, for which the quality of the measured data is operator-dependent. In addition, the process of the determination of void ratio distribution is unreliable and may produce erroneous results. The analysis of the constant rate deformation technique sug-

JOURNAL OF GEOTECHNICAL ENGINEERING / APRIL 1996 / 295

²Assoc. Prof., Dept. of Civ., Envir., and Arch. Engrg., Univ. of Colorado, Boulder, CO.

³Froehling and Robertson, Inc., Asheville, NC 28802; formerly, BCI, Lakeland, FL.

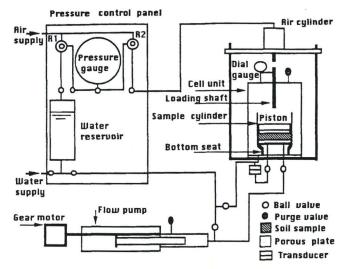


FIG. 1. Seepage-Induced Consolidation Testing Equipment

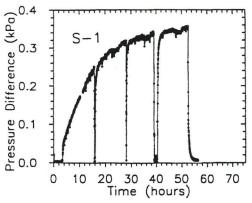


FIG. 2. Experimental Results of Seepage-Induced Consolidation Test on Sample S-1

gested by Znidarčić et al. (1986) is based on the linearized consolidation theory, which may not be appropriate for very soft, cohesive soils. In addition, the sensitivity of the developed equipment limits its application to stress levels above 1 kPa. The method proposed by Huerta et al. (1988) is the most comprehensive one, but still requires a direct measurement of the void ratio at the bottom of the sample and a precise determination of the steady-state flow rate. Both of these requirements make it a difficult and operator-dependent procedure. In addition, the associated analysis of the test results is inconvenient.

A reliable testing technique to evaluate the highly nonlinear consolidation constitutive relations of soft, cohesive soils was developed by Znidarčić and Liu (1989). The technique is based on the seepage induced consolidation test suggested originally by Imai (1979). This experiment has been enhanced and a new analysis has been developed (Abu-Hejleh and Znidarčić 1992; Znidarčić et al. 1992; Abu-Hejleh et al. 1992; and Abu-Hejleh and Znidarčić 1994). The new procedure eliminates most of the limitations of the existing methods. This paper presents the new version of the seepage induced consolidation testing and analysis and demonstrates its advantages over existing methods. Consolidation characteristics for several samples of very soft phosphatic clays obtained by the new procedure are also included. These characteristics are verified by utilizing independent experimental and field measurements.

EXPERIMENTS

The experimental part of the procedure consists of three distinct phases that all provide data for the test analysis. These

include the determination of the zero effective stress void ratio, e_0 , the steady-state stage of the seepage induced consolidation test, and the step loading test with the direct permeability measurements at high effective stresses.

A sufficient amount of the soft clay is thoroughly mixed at the consistency corresponding to the deposited characteristics at the beginning of the disposal. For the e_0 determination, two laboratory jars are filled with a 25 mm (1 in.) thick layer of the slurry clay and covered to prevent evaporation. The slurry clay is left for several days to settle. At the end of its consolidation, any supernatant is carefully removed and few samples are taken from the surface of the settled clay, where the effective stress is very close to zero, to determine e_0 . The overall contribution of the sedimentation process in densifying the slurry clay can be estimated by the difference between the initial mixing void ratio and e_0 .

The testing system for the seepage induced consolidation. step loading, and permeability tests consists of five major parts: a triaxial cell unit with a differential pressure transducer, a pressure control panel, a loading system, a flow pump, and a data acquisition system. A schematic diagram of the experimental apparatus is shown in Fig. 1. The testing system is self-contained and requires only electrical power and an airpressure supply. The cell unit contains a transparent sample ring for housing the soft soil sample, a plastic piston, and a bottom seat that are equipped with a coarse porous plate, a loading shaft, and a dial gauge to measure the sample height. The pressure control panel has a dual purpose: to apply the necessary back pressure and to control the air pressure in the air cylinder for loading the sample in the step loading test. Two ports beneath the bottom seat connect the pore water at the bottom of the soil sample to the flow pump and to the transducer. The use of the flow pump facilitates a precise control of the flow rate through the sample. The pressure difference across the sample is measured with the precision differential pressure transducer connected to a personal computerbased data acquisition system to collect the data of pressure changes with time.

The slurry clay is poured into the transparent container and the loading piston is allowed to rest freely on top of the sample. The triaxial cell is filled with water and the entire testing system is saturated under a back pressure of 200 kPa. The slurry soil sample is left to consolidate overnight under both its own weight and the top effective stress produced by the plastic piston. Due to the piston's buoyancy, an effective stress of only 0.1 kPa is applied to the top sample boundary. This small surface load is used to prevent the creation of flow channels during the seepage induced consolidation test that would otherwise form in the sample (You 1993).

In the seepage induced consolidation test, a constant flow rate is imposed across the sample by withdrawing water from the bottom of the sample using the flow pump. Due to the downward flow of water, the sample consolidates and the resulting pressure difference across the sample increases with time. The pressure difference is continuously measured with the pressure transducer and recorded by the data acquisition system (Fig. 2). The same flow rate is maintained until the steady state condition is reached where no further consolidation takes place and the pressure difference across the sample, ΔP_s , becomes constant. The water flux across the sample, v_s , is constant at the steady state, and it is calculated as the imposed flow rate divided by the sample area, A_s . At that stage, the sample height, H_s , is measured and ΔP_s is used to evaluate the sample's bottom effective stress, σ_b , as

$$\sigma_b' = \sigma_0' + \gamma_w H_s(G_s - 1) + \Delta P_s \tag{1}$$

where σ'_0 = effective stress produced by the loading piston; γ_w = water unit weight; G_t = specific gravity of solids; and H_t =

296 / JOURNAL OF GEOTECHNICAL ENGINEERING / APRIL 1996

height of solids contained in the sample calculated as $W_d/(G_s\gamma_w A_s)$, in which W_d is the dry weight of the sample.

Once the steady-state conditions under a given flow rate are reached, the seepage-induced consolidation test with a higher flow rate can be performed. This will produce further compression of the sample and a higher pressure difference. The seepage-induced consolidation test should be performed under relatively high flow rate that will produce significant variations of void ratio and effective stress across the specimen. This provides more reliable values of v, σ_b , and H_f for the analysis of test results. Based on experience, the flow rate should be increased from low flow rate until the resulting pressure difference is between 2 kPa and 5 kPa, and not less than 0.3 kPa or more than 10 kPa. Note that only one set of v, σ_b , and H_f is needed for the analysis of test results.

To obtain compressibility and permeability data in the higher effective stress range, step loading and permeability tests are performed. At the conclusion of the seepage-induced consolidation test, the sample is consolidated under a large vertical effective stress, σ'_c . At the end of its consolidation, the sample height is measured and the corresponding uniform void ratio of the compressed sample, e_c , is calculated. A small downward water flux is imposed across the sample with the flow pump. The resulting pressure change across the sample is obtained and used to calculate the permeability of the sample, k_c (Aiban and Znidarčić 1989). The two tests can be repeated several times under increasing loads in order to obtain redundant data, but only one set of σ'_c , e_c , and k_c are needed for the analysis. The sample is removed from the testing apparatus and the weight of solids, W_d , is determined.

TEST ANALYSIS

An extended power function (Liu and Znidarčić 1991) is used to relate the vertical effective stress, σ'_{ν} , to the void ratio, e

$$e = A(\sigma_v' + Z)^B \tag{2}$$

This form, representing an expanded form of a widely used power function, removes all major deficiencies of the conventional logarithmic models. Namely, the void ratio is well defined at zero effective stress and, irrespective of the stress magnitude, the void ratio never becomes negative. The conventional form of the power function is used to relate the coefficient of permeability, k, to the void ratio

$$k = Ce^{D} (3)$$

This form describes the permeability relations for soft soils quite well, as demonstrated by Somogyi (1979) and Al Tabaa and Wood (1987). The empirical parameters A, B, C, D, and Z are the consolidation constitutive parameters to be determined for a given soil. An efficient solution describing the steady state conditions in the seepage induced consolidation test and a parameter-estimation algorithm are developed and coded in the computer program SICTA (Seepage Induced Consolidation Test Analysis). The parameters A, B, C, D, and Z are determined in program SICTA from the test results. A brief description of the overall analysis procedure follows.

The consolidation of soft phosphatic clays and other cohesive materials is properly described by the finite strain consolidation theory (Gibson et al. 1967; McVay et al. 1986). The governing equation for the process can be written in the material coordinate system as:

$$(G_{t}-1)\left[\frac{d}{de}\left(\frac{k}{1+e}\right)\right]\frac{\partial e}{\partial z}-\frac{\partial}{\partial z}\left[\frac{k}{\gamma_{w}(1+e)}\frac{d\sigma'_{v}}{de}\frac{\partial e}{\partial z}\right]=\frac{\partial e}{\partial t}$$
(4)

where the material coordinate z is taken positive in the direc-

tion of gravity, and t = time. For the steady-state condition the right-hand side of the equation is equal to zero, since there is no further change of the void ratio with time. The equation is thus written in the form

$$(G_s - 1) \left[\frac{d}{de} \left(\frac{k}{1 + e} \right) \right] \frac{de}{dz} - \frac{d}{dz} \left[\frac{k}{\gamma_w (1 + e)} \frac{d\sigma'_v}{de} \frac{de}{dz} \right] = 0 \quad (5)$$

This new equation describes, together with the appropriate boundary conditions, the steady-state flow of water through a soft soil layer. Its solution gives the void ratio distribution at steady state, from which the effective stresses and layer height can be determined. It is clear from (5) that both the compressibility and permeability constitutive relations influence the steady-state void ratio distribution. Thus, the steady state in the seepage induced consolidation experiment is also an appropriate and sufficient test from which the consolidation constitutive properties can be determined. The use of the steady state, rather than the transient part of the test, has several benefits. It is easier to make reliable measurements in the steady state than during the transient part of the test. The delay in the instrumentation response, caused by the system compliance, has less effect on the quantities measured in the steady state than during the transient phase of the test. The analysis of the steady-state flow is also much simpler and involves less computational effort. The use of the steady state as the basis for the determination of the consolidation characteristics of soft soils distinguishes this method from others that are based on the analysis of transient tests (Been and Sills 1981).

At the steady-state condition in the seepage-induced consolidation test, the velocity of the sample solid phase is zero (no vertical deformation) and the apparent velocity of the water phase is constant along the sample depth and does not change with time. Hence, the steady-state apparent relative velocity between the water phase and the solid phase is the applied water flux, v. By combining the equilibrium equation, the principle of effective stress, and Darcy's Law in terms of the relative apparent velocity between the water and solid phases, an expression for v can be obtained as

$$v = \frac{k}{\gamma_w(1+e)} \frac{d\sigma'_v(z)}{dz} - \frac{k}{1+e} (G_s - 1)$$
 (6)

Note that (6) is equivalent to (5), but the use of (6) to simulate the test is more convenient since the steady-state water flux, v, is known. The material coordinate, z, identifies the height of solids from the top of the sample, where z=0, to the point of interest; note that $z=H_r$, at the bottom of the sample. The rearrangement of (6) followed by the integration from z=0 to any z leads to

$$\sigma'_{v}(z) = \sigma'_{0} + \gamma_{w}(G_{z} - 1)z + \int_{0}^{z} \frac{v\gamma_{w}}{k} (1 + e) dz$$
 (7)

The integral equation, (7), relates the vertical effective stress at any material depth z in the soil sample (or a soil layer) at steady state to the sample void ratio distribution above z. The effective stress and permeability in the integral equation are expressed in terms of the void ratio using (2) and (3). A simple iterative numerical solution for the integral equation was developed and used to describe the steady state conditions in the seepage induced consolidation test. With the known values of H_n , σ'_0 , v, e_0 , G_n , and γ_w , the numerical solution predicts the steady-state sample bottom effective stress, σ'_{bn} , and height, H_{fn} , for any set of parameters A, B, C, and C. The numerical solution is very accurate and always stable irrespective of the degree of nonlinearity of the consolidation constitutive relations.

With the measured zero effective stress void ratio and the compressibility and permeability data in the higher effective stress range, the number of parameters needed to be estimated is reduced from five to two. Parameters B and D are chosen to be the free parameters and the other parameters are determined as

$$Z = \frac{\sigma'_c}{(e_c/e_0)^{1/B} - 1}, \quad A = \frac{e_0}{Z^B}, \quad C = \frac{k_c}{(e_c)^D}$$
 (8)

By utilizing the steady-state results of the seepage induced consolidation test and their numerical predictions for any set of consolidation constitutive parameters, parameters B and D are determined by minimizing the objective function, Q, defined as

$$Q = \left| 1 - \frac{\sigma'_{bn}}{\sigma'_{b}} \right| + \left| 1 - \frac{H_{fn}}{H_{f}} \right| \tag{9}$$

An iterative parameter estimation algorithm, based on the Newton method coupled with the line search procedure (Dennis and Schnabel 1983), is used to minimize Q by calculating improved values for A, B, C, D, and Z in each successive iteration until an arbitrary small value of Q is reached. Both the efficiency of the numerical simulation of the test and the requirement that only two free parameters need to be determined prevent the parameter estimation analysis from converging to inaccurate optimized constitutive parameters. The complete analysis of any set of experimental data with the SICTA program usually requires between 3 and 20 iterations and can be completed within a few seconds on any personal computer.

The seepage-induced consolidation test with the controlled flow rate has many advantages when compared to the controlled head difference techniques (Imai 1979; Huerta et al. 1988). First, the flow pump facilitates a precise determination of the steady-state flow rates with a resolution in the range of 10⁻⁶ mL/s, that is four orders of magnitude better than with the conventional methods of volume change measurement (Alva-Hurtado and Selig 1981). Second, the precise control of low flow rates with the flow pump enables testing under small gradients that are easily measured with the sensitive pressure transducer. This leads to more reliable results in the low effective stress range for soft cohesive soils. Third, since the response of the transducer is essentially instantaneous, the steady-state condition will be detected as soon as it is reached in the experiment. This is a major advantage over the constant head test in which a sufficient water quantity has to be accumulated for a reliable calculation of the steady-state average flow rate. Thus, the constant head test has to be extended for some time into the steady-state regime, leading to prolonged tests.

TABLE 1. Properties of Phosphatic Clays

Sample (1)	Specific gravity (2)	Plastic limit (%) (3)	Liquid limit (%) (4)
A-1	2.6	74	318
A-9	2.82	49	233
C-1	2.92	33	114
S-1	2.71	50	198

TEST AND ANALYSIS RESULTS FOR PHOSPHATIC CLAYS

The consolidation characteristics for samples of very soft and cohesive waste phosphatic clay were determined with the presented seepage-induced consolidation testing and analysis. The samples were obtained from several phosphate mines in Florida. The specific gravity, plastic limit, and liquid limit for the samples are included in Table 1. The results of all three phases of the testing programs are summarized in Table 2, and an example of the recorded pore water pressure during the seepage induced consolidation test is given in Fig. 2. The several pressure drops noticed in Fig. 2 were caused by the resetting of the flow pump at the end of its travel distance. The data indicate that the short flow interruptions do not affect the pore pressure response significantly. The test data from Table 2 are used as the input variables for the SICTA program and the analysis results, constitutive parameters, are listed in Table 3. Graphical presentations of the obtained compressibility and permeability relations are shown in Figs. 3 and 4, respectively. The low permeability of the phosphatic clays and their high compressibility are demonstrated in these figures.

VERIFICATION RESULTS

Three types of independent measurements are used to verify the seepage-induced consolidation test and analysis results for the phosphatic clays. The obtained consolidation constitutive relations are first compared with the results of the restricted flow consolidation test which produces the same relations with a completely different testing procedure and analysis. Second, the obtained consolidation characteristics are used in the consolidation analysis to simulate the transient phase of the seepage-induced consolidation test and to predict the field conditions in several phosphatic clay settling ponds for which some direct measurements are available. The transient finite strain consolidation analysis is conducted with the CADA program (Abu-Hejleh 1993), in which an efficient, nonlinear, finite-element solution algorithm for (4) is implemented.

The testing technique and analysis procedure for the restricted flow consolidation test are documented in the report by Sills et al. (1984). In the analysis, the experimentally obtained compressibility and permeability data are fitted to the exponential curves, which correspond to linear functions in double log scale. The data from this test on sample A-9 and the fitted linear curves on double log scale plots are shown in Figs. 5 and 6, together with the obtained compressibility and permeability curves from the seepage-induced consolidation test and analysis. A good agreement between the two sets of results is noted with the only notable deviation in the low effective stress range. The data reported for the restricted flow consolidation test show substantial scatter in that range, indicating that the procedure may not be reliable for the low effective stress level. The seepage-induced consolidation test produces less ambiguous results at low effective stresses. In addition, a simpler power function is fitted to the compressibility data from the restricted flow test, while an expanded power function is used in the analysis of the seepage-induced consolidation test. Since the simple power function does not recognize the maximum void ratio for a given sample, the

TABLE 2. Experimental Results of Tests Performed on Phosphatic Clays

Sample (1)	e ₀ (2)	<i>H</i> ₀ (m) (3)	σ _ό (kPa) (4)	v (m/s) (5)	σ _β ' (kPa) (6)	H _r (m) (7)	σ _σ (kPa) (8)	<i>e_c</i> (9)	<i>k</i> ₅ (m/s) (10)
A-1	25.93	0.046	0.10	0.147×10^{-6}	2.29	0.0230	50.00	4.68	0.798×10^{-9}
A-9	18.39	0.034	0.10	0.294×10^{-6}	2.82	0.0275	50.00	4.17	0.648×10^{-9}
C-1	13.07	0.051	0.39	0.164×10^{-6}	2.94	0.0307	29.20	4.07	0.169×10^{-8}
S-1	32.50	0.049	0.10	0.147×10^{-6}	0.474	0.0302	99.47	3.11	0.203×10^{-9}

TABLE 3. Obtained Consolidation Constitutive Parameters for Phosphatic Clays

Sample (1)	A (2)	<i>B</i> (3)	Z (kPa) (4)	C (m/s) (5)	<i>D</i> (6)
A-1	11.50	-0.230	0.029	$\begin{array}{c} 0.625 \times 10^{-11} \\ 0.361 \times 10^{-11} \\ 0.429 \times 10^{-11} \\ 0.384 \times 10^{-11} \end{array}$	3.14
A-9	12.74	-0.285	0.277		3.64
C-1	7.75	-0.191	0.065		4.26
S-1	13.49	-0.319	0.064		3.50

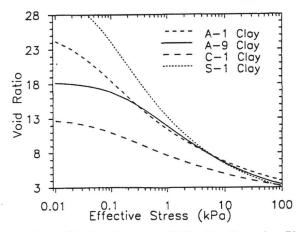


FIG. 3. Consolidation Compressibility Relations for Phosphatic Clays

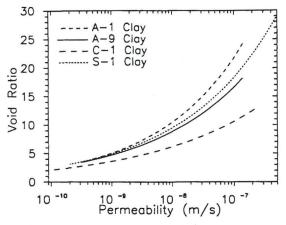


FIG. 4. Consolidation Permeability Relations for Phosphatic Clays

obtained data in the higher effective stress range are extrapolated to the low effective stress range, leading to a further disagreement between the two techniques.

In the seepage-induced consolidation test, the soil sample passes through a transient phase of consolidation before reaching the steady-state conditions. Thus, the obtained data in this phase gives the opportunity for an independent verification of the obtained consolidation characteristics in the low range of effective stresses. Note that the consolidation characteristics were obtained using only the steady state results of the seepage induced consolidation test. With the known testing conditions and measured consolidation material characteristics of the phosphatic clays, the CADA program is used to simulate the seepage induced consolidation tests. The measured test data on samples A-1 and S-1 and their numerical predictions are shown in Figs. 7 and 8. These figures show a good agreement between the test data and their numerical predictions, confirming the accuracy of the obtained consolidation characteristics of phosphatic clays in the low effective stress range.

Using the piston tube sampler, profiles of void ratio with

depth were obtained from the phosphatic clay settling ponds where samples A-1, C-1, and S-1, were taken, and these are shown graphically in Figs. 9-11. In order to predict these field data numerically using the experimentally obtained consolidation characteristics and the CADA program, information that describes the boundary conditions and the slurry deposition history of the phosphatic clays is needed. It was given that the bottom surface of the settling ponds can be assumed impervious and that the phosphatic clay deposits had been covered with water. Thus, the measured zero effective stress void ratio in our laboratory is assumed for the surface of the deposits, where the effective stress is zero, and it is included in the

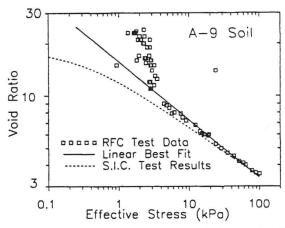


FIG. 5. Consolidation Compressibility Relation for A-9 Phosphatic Soil

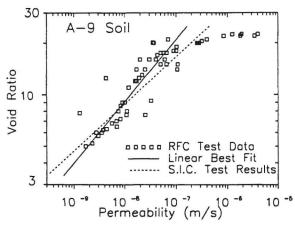


FIG. 6. Consolidation Permeability Relation for A-9 Phosphatic Soli

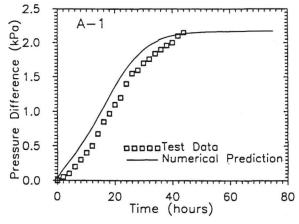


FIG. 7. Measured and Predicted Data in Seepage Induced Consolidation Test on Sample A-1

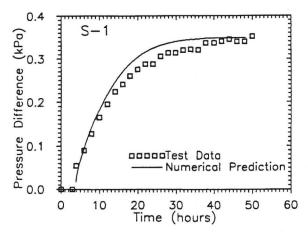


FIG. 8. Measured and Predicted Data in Seepage Induced Consolidation Test on Sample S-1

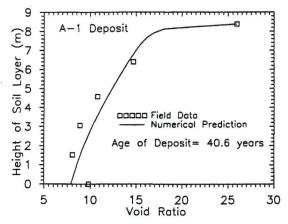


FIG. 9. Field Measurements for Void Ratio Distribution in Settling Pond A-1 and Their Numerical Predictions

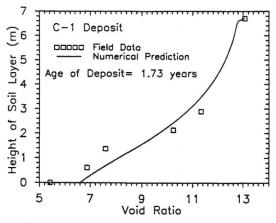


FIG. 10. Field Measurements for Void Ratio Distribution in Settling Pond C-1 and Their Numerical Predictions

presented void ratio profiles in Figs. 9-11. In addition, the e_0 value is used to represent the initial void ratio of the slurry phosphatic clays at the beginning of consolidation. For the stated boundary and initial conditions, the only source of the slurry phosphatic waste densification is the self-weight consolidation.

Since we could not obtain information on the slurry filling rates and periods, such information was either estimated or investigated with the available field data and the CADA program. The measured data of void ratio with depth were used to estimate the height of solids contained in each profile, H_r . Then, the uniform deposition rate, in terms of volume of de-

posited waste clay per unit area and per unit time, DR, during a filling period F is estimated as:

$$DR = H_{-}/F \tag{10}$$

The height of the unconsolidated slurry column, H_0 , for each deposit can be calculated as $H_s(1 + e_0)$, and the corresponding filling rate is H_0/F . For example, the estimated values of H_s and H_0 for deposit S-1 are 0.516 m and 17.3 m, respectively. For each deposit, the self-weight consolidation of the unconsolidated slurry column with a total height of H_0 is modeled. The deposition conditions were simulated with the instantaneous filling and with varying uniform filling rates. A sample of the obtained settlement response for deposit S-1 is shown in Fig. 12. The graphical results indicate that the soil layer height during the self-weight consolidation could be assumed independent of the filling rate, especially when the filling rate is high. A similar result was obtained by Carrier et al. (1983). Therefore, it is assumed that the phosphatic clay conditions at the time of sampling are independent of the filling rate history and are related only to the elapsed time from the beginning of the slurry deposition operations, T_c .

The consolidation analysis results for the instantaneous filling are used to predict the void ratio profiles in the phosphatic clay deposits. The value of T_c corresponding to the sampling time, designated as the deposit age, was estimated with the measured soil layer height. For example, the age of deposit S-1 at the time of sampling is estimated as 13.13 years, since at that time the predicted soil layer height from Fig. 12 is 7.62 m, which is equal to the measured height of profile S-1 shown in Fig. 11. The void ratio profiles corresponding to the sampling time for the three phosphatic deposits are then obtained, and

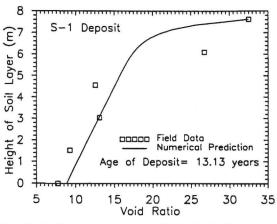


FIG. 11. Field Measurements for Void Ratio Distribution in Settling Pond S-1 and Their Numerical Predictions

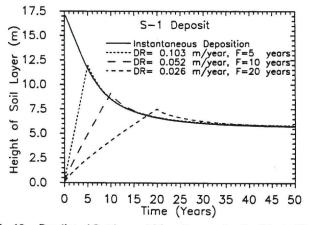


FIG. 12. Predicted Settlement-Time Curves for the Waste Clay in Settling Pond S-1 under Different Deposition Conditions

300 / JOURNAL OF GEOTECHNICAL ENGINEERING / APRIL 1996

they are presented in Figs. 9–11. The graphical results show a good agreement between the measured field data of void ratio with depth and their numerical predictions. This represents further evidence of the reliability of the obtained consolidation characteristics from the seepage induced consolidation test and analysis, and supports the use of such results in the consolidation analysis of real field situations. Fig. 10 indicates that the upper portion of deposit C-1 is relatively unconsolidated, implying that this deposit was relatively young at time of sampling. This is not the case for deposits A-1 and S-1.

CONCLUSIONS

The seepage induced consolidation test and analysis provide a rational method for the determination of the consolidation constitutive relations for soft phosphatic clays and other fine-grained materials. The analysis procedure is consistent with the finite strain consolidation theory that is routinely used in the analysis of field conditions in the settling ponds at phosphate mines. The presented methodology solves the difficult problem of material characteristics determination, usually the most critical aspect of any field prediction.

The advantages of the presented methodology include the precise control of the steady-state flow rate using the flow pump, the accurate measurements of the pressure difference across the sample with the sensitive differential pressure transducer, and an efficient analysis of the test results without any restrictive assumptions. The quality of the obtained results is verified by the comparison with three types of independent measurements including the field data.

ACKNOWLEDGMENTS

The work presented in this paper was partially supported by the Florida Institute of Phosphate Research. This support as well as the permission to publish the data is gratefully acknowledged. Throughout the work reported in this paper, the last author was at BCI of Lakeland, Fla.

APPENDIX I. REFERENCES

- Abu-Hejleh, A. N., and Znidarčić, D. (1992). "User manual for computer program SICTA." Rep. Prepared for FIPR, Dept. of Civ. Engrg., Univ. of Colorado, Boulder, Colo.
- Abu-Hejleh, A. N., Znidarčić, D., and Robertson, A. (1992). "Results of seepage induced consolidation tests on phosphatic clays." Rep. Prepared for FIPR, Dept. of Civ. Engrg., Univ. of Colorado, Boulder, Colo.

Abu-Hejleh, A. N. (1993). "Desiccation theory for soft soils," PhD dissertation, Dept. of Civ. Engrg., Univ. of Colorado, Boulder, Colo.

- Abu-Hejleh, A. N., and Znidarčić, D. (1994). "Estimation of the consolidation constitutive relations." 8th Int. Conf. on Comp. Methods and Adv. in Geomech. (IACMAG94), H. J. Siriwardane and M. M. Zaman, eds., Morgantown, W.Va., 499-504.
- Aiban, S. A., and Znidarčić, D. (1989). "Evaluation of the flow pump and constant head techniques for permeability measurements." Géotechnique, London, U.K., 39(4), 655-666.
- Al-Tabbaa, A., and Wood, D. M. (1987). "Some measurements of the permeability of kaolin." *Géotechnique*, London, U.K., 37(4), 499-503.
- Alva-Hurtado, J. E., and Selig, E. T. (1981). "Survey of laboratory devices for measuring soil volume change." ASTM Geotech. Testing J., 4, 11-18.
- Been, K., and Sills, G. C. (1981). "Self-weight consolidation of soft soils: an experimental and theoretical study." Géotechnique, London, U.K., 31(4), 519-535.
- Cargill, K. W. (1986). "The large strain consolidation controlled rate of strain (LSCRS) device for consolidation testing of soft fine-grained soils." Tech. Rep. GL-86-13, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- Carrier, W. D., Bromwell, L. G., and Somogyi, F. (1983). "Design capacity of slurried mineral waste ponds." J. Geotech. Engrg. Div., ASCE, 109(5), 699-716.
- Dennis, J. E., and Schnabel, R. B. (1983). "Numerical methods for unconstrained optimization." Series in computational mathematics, Prentice-Hall, Englewood Cliffs, N.J.
- Gibson, R. E., England, G. L., and Hussey, M. H. L. (1967). "The theory

- of one-dimensional consolidation of saturated clays, I. finite nonlinear consolidation of thin homogeneous layers." *Géotechnique*, London, U.K., 17(3), 261-273.
- Huerta, A., Kriegsmann, G. A., and Krizek, R. J. (1988). "Permeability and compressibility of slurries from seepage-induced consolidation." J. Geotech. Engrg., ASCE, 114(5), 614-627.
- Imai, G. (1979). "Development of a new consolidation test procedure using seepage force." Soils and Found., Tokyo, Japan, 19(3), 45-60.
- Liu, J. C. (1990). "Determination of soft soil characteristics," PhD dissertation, Dept. of Civ. Engrg., Univ. of Colorado, Boulder, Colo.
- Liu, J. C., and Znidarčić, D. (1991). "Modelling one-dimensional compression characteristics of soils." J. Geotech. Engrg., ASCE, 117(1), 162-169.
- McVay, M., Townsend, F., and Bloomquist, D. (1986). "Quiescent consolidation of phosphatic waste clays." J. Geotech. Engrg., ASCE, 112(11), 1033-1049.
- Sills, G. C., Hoare, S. D. L., and Baker, N. (1984). "An experimental assessment of the restricted flow consolidation test." Oxford Univ. Engrg. Rep. SM052/84, Oxford Univ., Oxford, U.K.
- Somogyi, F. (1979). "Analysis and prediction of phosphatic clay consolidation: implementation package." Tech. Rep., Florida Phosphatic Clay Res. Proj., Lakeland, Fla.
- You, Z. (1993). "Flow channeling in soft clay and its influence on consolidation," PhD dissertation, Dept. of Civ. Engrg., Univ. of Colorado, Boulder, Colo.
- Znidarčić, D. (1982). "Laboratory determination of consolidation properties of cohesive soils," PhD dissertation, Dept. of Civ. Engrg., Univ of Colorado, Boulder, Colo.
- Znidarčić, D., Schiffman, R. L., Pane, V., Croce, P., Ko, H. Y., and Olsen, H. W. (1986). "The theory of one-dimensional consolidation of saturated clays: V, constant rate of deformation testing and analysis." Géotechnique, London, U.K., 36(2), 227-237.
- Znidarčić, D., and Liu, J. C. (1989). "Consolidation characteristics determination for dredged materials." Proc., 22nd Annu. Dredging Seminar, Ctr. for Dredging Studies, Texas A&M Univ., College Station, Tex., 45-65.
- Znidarčić, D., Abu-Hejleh, A. N., Fairbanks, T., and Robertson, A. (1992). "Seepage induced consolidation test, equipment description and user's manual." Rep. Prepared for FIPR, Dept. of Civ. Engrg., Univ. of Colorado, Boulder, Colo.

APPENDIX II. NOTATION

The following symbols are used in this paper:

- A, B, Z, C, D = consolidation constitutive parameters;
 - $A_s = \text{sample area};$
 - DR = deposition rate of solid wastes;
 - e = void ratio;
 - e_c = measured void ratio in the loading test;
 - e_0 = zero effective stress void ratio;
 - F = filling period;
 - G_s = specific gravity of solids;
 - H_f = measured height of the sample in steady-state seepage-induced consolidation test;
 - H_{fn} = numerical prediction of H_{f} ;
 - H_s = height of solids in sample or soil layer;
 - H₀ = initial height of unconsolidated sample or soil layer;
 - k =coefficient of permeability;
 - k_c = measured coefficient of permeability in permeability test;
 - Q = total normalized difference;
 - T_c = age of waste deposit;
 - v = applied water flux across sample;
 - $W_d = dry$ weight of sample;
 - z = material coordinate;
 - γ_w = unit weight of water;
 - ΔP_s = pressure difference across sample in steady-state seepage-induced consolidation test;
 - σ'_b = measured bottom effective stress in steady-state seepage-induced consolidation test;
 - σ'_{bn} = numerical prediction of σ'_{b} ;
 - σ'_c = measured vertical effective stress in loading test;
 - σ'_{ν} = vertical effective stress; and
 - σ'_0 = vertical effective stress on top of sample.

MODELING ONE-DIMENSIONAL COMPRESSION CHARACTERISTICS OF SOILS

By Jin-Chuan Liu, Student Member, ASCE, and Dobroslav Znidarčić, 2 Associate Member, ASCE

INTRODUCTION

of the field condition, as well as the compressibility and permeability characteristics of the material. These characteristics are usually presented in the Prediction of consolidation behavior of soil deposits requires knowledge form of void ratio-effective stress and void ratio-permeability relationships, which are obtained experimentally.

ematical functions that approximate the observed behavior. Various forms of these functions, ranging in complexity from constant values for compressibility and permeability to logarithmic, exponential, and power func-1963; Monte and Krizek 1976; Butterfield 1979; Somogyi 1979; Koppula function form is appropriate for modeling the void ratio-permeability relationship (Al-Tabbaa and Wood 1987; Znidarčić and Aiban 1988), earlier them deficient in rigorous analyses. Namely, the power relation predicts an applying a fictitious effective stress at the top of the consolidating layers (Huerta et al. 1988) and by assuming different parameters for the normally proaches give reasonable results in most applications, the questions of a proper choice of the fictitious effective stress level and the continuity of the two For the purpose of the analysis, these relationships are modeled by mathtions, have been proposed and used with greater or lesser success (Janbu zek and Somogyi 1984). While experimental evidence suggests that the powerproposed effective stress-void ratio models have various limitations that make infinite void ratio for the point of zero effective stress and it cannot model the effect of overconsolidation. These problems are often circumvented by consolidated and overconsolidated ranges (Butterfield 1979). While these apand Morgenstern 1982; Carrier and Beckman 1984; Gibson et al. 1981; Krifunctions at the preconsolidation stress region remain open.

Hardin (1989) recently proposed a 1/e versus $\sigma_{\nu}^{\prime p}$ model for one-dimensional, normally consolidated cohesive soils in the form

$$\frac{1}{e} = \frac{1}{e_0} + \frac{1}{S_{1-D}} \left(\frac{\sigma_v^2}{P_o} \right)^p \tag{1}$$

mensionless stiffness coefficient for one-dimensional strain. Clearly, the void and irrespective of the magnitude of the effective stress the void ratio is where $1/e_0$ = intercept at $\sigma'_v = 0$, and the reciprocal slope S_{1-D} = the diratio is well defined at zero effective stress, since p is a positive number, always positive.

current research on consolidation of soft clays. The model overcomes the shortcomings of the earlier proposed models and has characteristics similar This note presents an extended power-function model that we use in our to those of the Hardin's model. It has the form

$$e = A(\sigma' + Z)^B \qquad (2)$$

power-function models, and Z is an additional soil parameter having a unit of stress. Besides removing the previously stated deficiencies, the model is capable, as will be shown later, of modeling both normally and overconsolidated soil behaviors with a continuous function and having one set of in which A and B are constants, having the usual connotation as in other parameters.

COMPARISON OF MODELS

proposed here, are compared with the published one-dimensional compression data for various soils and with the data experimentally obtained by the but some stiffer and some sensitive clays are included in the analyses as writers. Emphasis is given to the comparison of responses of soft materials, The two models, Hardin (1989) and the extended power-function model

perimental data using the simplex method (Nelder and Mead 1965), in which the objective function in the form proposed by Arai et al. (1985) is nor-The model parameters are obtained by a least-square fitting to the exmalized by the initial void ratio and minimized

$$\sqrt{\sum_{i=1}^{n} (e_i - \overline{e}_i)^2}$$

$$e_{\sigma'=0} \sqrt{n}$$
(3)

and not only for the normally consolidated part. In this regard, we have deviated from the procedure recommended by Hardin (1989), but as the data will show this only proves that this model can be used to predict behavior of a wider range of soils, including overconsolidated materials. We believe ended power-function models. For the overconsolidated material, the curvefitting to the experimental data is achieved over the entire range of stresses, this deviation is justified since only in this case can a true comparison bein which e_i = the void ratio calculated by the models for a given effective stress; \overline{e}_i = the experimentally obtained void ratio for the same effective stress; and n = the number of points. The models are forced to give the initial void ratio when the effective stress is equal to zero. In this way only two of the three model parameters need to be determined in the minimization process. The same procedure was followed for both Hardin's and the extween the two models be made.

The results are presented in Table 1 and Figs. 1-3. The table contains the values of the parameters for both models, as well as the normalized minima of the objective function (NMOF). In the normalized form, the error measure (minimum of the objective function) is not affected by the absolute value of the void ratio, thus facilitating comparison between different cases.

Grad. Res. Asst., Dept. of Civ. Engrg., Univ. of Colorado, Boulder, CO 80309.

²Asst. Prof., Dept. of Civ. Engrg., Univ. of Colorado, Boulder, CO. Note. Discussion open until June 1, 1991. To extend the closing date one month, a written request must be filed with the ASCE Manager of Journals. The manuscript This paper is part of the *Journal of Geotechnical Engineering*, Vol. 117, No. 1, January, 1991. @ASCE, ISSN 0733-9410/91/0001-0162/\$1.00 + \$.15 per page. for this paper was submitted for review and possible publication on August 2, 1989.

Drammen clay (lean) Butterfield (1979) Field samples 410.0 52.6 74.1 Fig. 3(a) Butterfield (1979) Drammen clay (plastic) Field samples 1.731 +IE'0-LSL'O 150.0 ZE.T 850.0 3.65 35.06 Butterfield (1979) Newfoundland peat Field samples 94.9 794.0-\$6.28 £70.0 259.0 200.0 010.0 5.25 242.0-4.35 900:0 \$65.0 LL'S 29.1 Butterfield (1979) Newfoundland silt Field samples Chicago clay 9.081 915.0-18.7 800.0 127.0 07.6 12.1 Butterfield (1979) Field samples 250.0 20.0€ 61.1 Butterfield (1979) Boston blue clay Field samples 000.0 .861,1 654.0-00.0€ 100.0 9\$6.0 580.0 012.0-3.56 121.0 274.0 20.1 00.8 Fig. 2(b) Current study Speswhite kaolin China clay 001.0 Fig. 2(b) Current study 022.0-96'0 95.8 Speswhite kaolin China clay 690'0 610.0 82.5 721.0 714.0 Current study ₱800°0 642.0-3.65 0.135 414.0 18.0 12.00 Fig. 2(a) Speswhite kaolin China clay 190.0 Current study 0.030 822.0-714.0 10.1 00.8 Speswhite kaolin China clay 970.0 19.5 0.112 Caldwell et al. (1984) Gold mine (pH = 10.2) 920.0 \$10.0 0.130 2.10 €90.0 892.0 65.1 89.£ Mine tailing Caldwell et al. (1984) (7 = Hq) anim bloD 220.0 210.0 960'0-1.97 9£0.0 222.0 2.13 3.02 Mine tailing Scully et al. (1984) 8£0.0 120.0 £81.0-Z4.7 0.030 154.0 2.03 12.00 Рьограние свяу Mine tailing Scully et al. (1984) Phosphatic clay 610.0 010.0 212.0-SS.T 220.0 454.0 1.76 00.02 Mine tailing 180.0 2100.0 761.0-\$2.8 740.0 845.0 22.2 30.00 Scully et al. (1984) Phosphatic clay Mine tailing 610.0 454.0 -0.244 11.42 850.0 TZZ.O 3.29 14.00 Fig. 2(a) Somogyi et al. (1984) Phosphatic clay Mine tailing 667.0-Fig. 2(a) Somogyi et al. (1984) Phosphatic clay 0.030 857.0 13.70 £70.0 282.0 **6Ε.Ε** 15.00 Mine tailing Znidarčić (1986) 750.0 **\$85.0** 622.0-25.T 670.0 064.0 3.23 02.8 Baltimore Harbor (5-4, 5-6) Dredge clay Znidarčić (1986) Baltimore Harbor (N-4, N-6) Dredge clay 940.0 952.0 812.0-78.2 690'0 £9Þ.0 85.2 06.7 Baltimore Harbor (S-2) Dredge clay 14.2 09.6 1 .8iH Znidarčić (1986) 220.0 \$52.0 852.0-08.9 290.0 594.0 Dredge clay **422.0**-97.2 04.T [.8iH Znidarčić (1986) Baltimore Harbor (N-1) 910.0 764.0 25.9 840.0 LL#'0 250.0 610.0 212.0-1.84 12.30 Poindexter (1987) Dredge clay 5.23 910.0 **96€.0** Charleston Harbor 0.050 820.0 452.0-10.0 1.62 Poindexter (1987) Dredge clay 620.0 191.0 12.48 Charleston Harbor \$20.0 220.0 952.0rz.z **720.0** 124.0 69'1 13.62 Poindexter (1987) Charleston Harbor Dredge clay 640.0 971.0 952.0-29.T **PPO.0** 955.0 3.20 12.00 Cargill (1984) Crancy Island Dredge clay 820.0 \$200.0 PLI'0-€9.€ 090.0 1.63 10.30 Poindexter (1987) Dredge clay 0.294 New York Harbor 0.110 110.0 452.0-89.T 0.112 125.0 2.59 00.71 Cargill (1984) Canaveral Harbor Dredge clay 240.0 020.0 £12.0-91.8 940.0 68.I 64.6 Poindexter (1987) Dredge clay Canaveral Harbor 890.0 980.0 252.0rs.s 890.0 1.84 76.6 Poindexter (1987) Canaveral Harbor Dredge clay 124.0 640.0 420.0 802.0-11.2 120.0 1.93 11.12 Poindexter (1987) Canaveral Harbor Dredge clay 065.0 (11) (6) (15) (01) (8) (Z) (9) (2) (4) (5) (2) (1) a-15 0=,02 Figure NWOE Z (KPa) ٨ 8 MOL Reference Source **IBN91BM** Extended Power-Function Model Hardin's Model

Material Compressibility Properties

.1 3JBAT

FIG. 1. Compressibility Relations of Dredged Materials from Baltimore Harbor Effective 10-3 Z)B et e=A(o'+ Hordin's Somogyi 10-5 0 7 8 9 0 12 ٥ Void ratio 16 20 €0.€9 Fig. 3(b) Butterfield (1979) 1'45 × 10_e 160.0 254.1 25.01 251.0 8.887 11.1-Fig. 3(a) 789.0 1.00 981.0-2.43 **\$20.0** 85.8 4.811

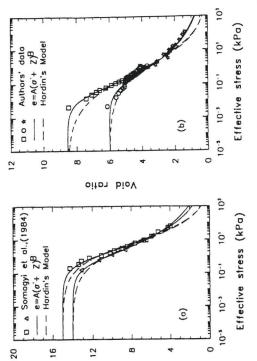
103

101

10-1

(kPa)

stress


Znidarcic,(1986)

0

Hardin's Model

 $e=A(\sigma + Z)^B$

 $e_{\sigma'=0}$, is a model parameter, while for the extended power function the same value is obtained by substituting the three parameters into the model and setting the effective stress, σ' , to zero. In other words, none of the three For Hardin's model, the value of the void ratio at zero effective stress,

Void ratio

Mexico City clay

Field samples

Compressibility Relations of: (a) Phosphatic Clay; and (b) Speswhite Clay 6 E.

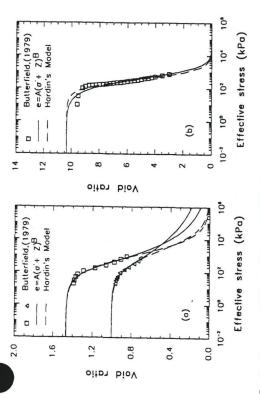


FIG. 3. Compressibility Relations of Field Samples: (a) Drammen Clay; and (b) Mexico City Clay

parameters is equal to the initial void ratio, but all three implicitly affect its value.

Figs. 1–3 demonstrate the ability of the models to predict one-dimensional compression of various materials. They represent both normally consolidated and overconsolidated samples with various values of the normalized error measure. The solid and dashed lines are used for the extended power function and Hardin's models, respectively.

sion behavior of soft soils, including dredged materials, phosphatic clays, and laboratory-prepared mixtures of speswhite kaolinite clay. Predictions from both models agree fairly well with the experimental data over the presented range of stresses. While all of these materials are normally consolidated, the experimental data indicate a flat portion of one-dimensional compression curve in the low stress range. The data in this range are scarce and probably less reliable than in the higher stress range. Still, it is evident that for the same Figs. 1 and 2(a) and (b) present examples of the one-dimensional compresmaterial, the one-dimensional compression behavior in the low stress range I and 2(b), where the same material was mixed with different water contents is highly dependent on the initial void ratio. This is well illustrated in Figs. and they merge in the higher stress range. Similar behavior was observed by Martinez et al. (1987). It is evident that even the models intended exclusively for predicting soft material behavior should be able to properly model this apparent overconsolidation. The two presented models are cerand tested. The two curves resemble behavior of overconsolidated samples, tainly able to do so.

Fig. 3(a) presents the one-dimensional behavior of two samples of Drammen clay, as reported by Butterfield (1979). The two models approximate experimental results fairly well and they deviate from one another in the higher stress range, in which there is no experimental data available. This example demonstrates that both models are able to predict one-dimensional

compression behavior of overconsolidated materials using a continuous function with one set of parameters.

In Fig. 3(b), the models are compared with the experimental data for the sensitive Mexico City clay, as reported by Butterfield (1979). Relatively larger difference between the observed and predicted behavior is noted. In this case, Hardin's model agrees better with the experiments than the expanded power function. Both models, however, have difficulty in properly modeling the sharp curvature of the experimental data at the preconsolidation pressure. This is taken as an indication that the two models should not be used to model an overconsolidated regime of sensitive clays using a continuous function with one set of parameters. If the models were to be fitted only to the normally consolidated part of the presented data, excellent agreement would be obtained as demonstrated by Hardin (1989).

The two analytical models, Hardin's and the extended power function, remove all the major deficiencies of the conventional log-linear and power-function models. Namely, void ratio is well defined at zero effective stress; irrespective of the stress magnitude, void ratio is never negative, as is the case for the conventional log-linear model, and the models are capable of modeling one-dimensional behavior of soft soils as well as preconsolidated material. It is important that the models require only three parameters, so that their experimental determination is practicable.

mance. Overall the differences are insignificant, and, as demonstrated in the extended power-function model predicts relatively sharp curvature at the idated" regime, shown in Figs. 1-3(a). The opposite is true in the case of are needed to decide which of the two models is closer to the real behavior compression characteristics of various soils can be evaluated by comparing he normalized minima of the objective function in Table 1. The smaller the value, the better performance of the model. Though it appears that the fitting of the power function was more successful in this exercise for larger number of cases, in our opinion this does not always guarantee a superior perforhigh, the curves fit the experimental data quite well. It is interesting that apparent "preconsolidation pressure" of soft materials, while Hardin's model has a smoother transition from the "overconsolidated" to "normally consolsensitive clay [Fig. 3(b)]. More reliable data in the very low stress range The relative performance of the two models in predicting one-dimensional Figs. 1-3 even in the cases when the normalized error measure is relatively of the material.

The decision on which of the two models should be used in any particular case can be made only after both models are fitted to the same set of data and their performances can be compared for that material. It is very likely that, in most cases, the differences between the models will be much smaller than the scatter of the available data. The choice of the model will then depend more on the user's preference than on the merit of the model itself.

CONCLUSIONS

An extended power function is proposed for modeling one-dimensional compression of normally consolidated and overconsolidated soils. The function has three parameters, and a single set of these parameters is sufficient for representing void ratio-effective stress relations from zero effective stress to any desired stress level.

rable characteristics to the model proposesd by the writers. For modeling overconsolidated behavior, a fitting process different from the one proposed The model proposed by Hardin (1989) has a different form, but compaby Hardin (1989) is described.

ising, the experiments needed for the determination of the three parameters may not be trivial. In particular, reliable measurements of soft-soil charac-Both models may have problems in fitting data of highly sensitive clays, but from the limited comparison presented in the paper, it appears that for these cases Hardin's model is more suitable. While the two models are promteristics at low effective stresses is difficult. We leave the discussion of an appropriate experimental approach to a later paper.

ACKNOWLEDGMENT

Financial support by the National Science Foundation under grant number MSM-8715580 is gratefully acknowledged. The permission granted by the Maryland Environmental Service to use the data on the Baltimore Harbor material is appreciated.

APPENDIX. REFERENCES

Al-Tabbaa, A., and Wood, D. M. (1987). "Some measurements of the permeability of Kaolin." Geotechnique, 37(4), 499-503.

Arai, K., Ohnishi, Y., and Kasagawa, M. (1985). "Parameter estimation of unconfined acquifer by measuring change of groundwater level." Soils Found., 25, 129-

Butterfield, R. (1979). "A natural compression law for soils (an advance on e-logp'). Geotechnique, 29(4), 469-480.

Caldwell, J. A., Ferguson, K., Schiffman, R. L., and Zyl, D. V. (1984). "Application of finite strain consolidation theory for engineering design and environmental planning of mine tailings impoundments." Proc. of the Symp. on Sedimentation-Consolidation Models: Predictions and Validation, ASCE, San Francisco, Calif., 581-606

Cargill, K. W. (1984). "Prediction of consolidation of very soft soil." J. Geotech.

Engrg., ASCE, 110(6), 775-795. Carrier, W. D., and Beckman, J. F. (1984). "Correlations between index tests and

Gibson, R. E., Schiffman, R. L., and Cargill, K. W. (1981). "The theory of one-dimensional consolidation of saturated clays, II. Finite nonlinear consolidation of thick homogeneous layers." Can Geotech. J., 18(2), 280-293. the properties of remoulded clays." Geotechnique, 34(2), 211-228.

Hardin, B. O. (1989). "1-D strain in normally consolidated cohesive soils." J. Geotech. Engrg., ASCE, 115(5), 689-710.

ASCE, 114(5), 614-627. Ianbu, N. (1963). "Soil compressibility as determined by oedometer and triaxial tests." Huerta, A., Kriegsmann, G. A., and Krizek, R. J. (1988). "Permeability and compressibility of slurries from seepage-induced consolidation." J. of Geotech. Engrg., Proc. of the European Conf. on Soil Mechanics and Foundation Engineering,

"On the consolidation of sedi-Koppula, S. D., and Morgenstern, N. R. (1982). Wiesbaden, West Germany, 1, 19-25.

menting clays." Can. Geotech. J., 19, 260-268. Krizek, R. J., and Somogyi, F. (1984). "Perspectives on modelling consolidation of dredged materials." Proc. of the Symp. on Sedimentation-Consolidation Models: Predictions and Validation, ASCE, San Francisco, Calif., 296-332.

erties of phosphatic clays from automated slurry consolidometer tests." Symp. on Martinez, R. E., Bloomquist, D., and Townsend, F. C. (1987). "Consolidation prop-

Consolidation and Disposal of Phosphatic and Other Waste Clays, Florida Institute of Phosphatic Research, Bartow, Fla.

Monte, J. L., and Krizek, R. J. (1976). "One-dimensional mathematical model for large-strain consolidation." Geotechnique, 26(4), 495-510.
Nelder, J. A., and Mead, R. (1965). "A simplex method for function minimization."

Poindexter, M. E. (1987). "Consolidation properties of dredge materials." Symp. on Computer J., 7(4), 308-313.

Scully, R. W., Schiffman, R. L., Olsen, H. W., and Ko, H. Y. (1984). "Validation of consolidation properties of phosphatic clay at very high void ratios." Proc. of the Symp. on Sedimentation-Consolidated Models: Predictions and Validation, ASCE, of Phosphatic Research, Bartow, Fla.

Consolidation and Disposal of Phosphatic and Other Waste Clays, Florida Institute

plementation package." Tech. Report, Florida Phosphatic Clay Research Project, Somogyi, F. (1979). "Analysis and prediction of phosphatic clay consolidation: Im-San Francisco, Calif., 158-181.

Somogyi, F., Carrier, W. D., Lawver, J. E., and Beckman, J. F. (1984). "Waste phosphatic clay disposal in mine cuts." Proc. of the Symp. on Sedimentation-Consolidation Models: Predictions and Validation, ASCE, San Francisco, Calif., 545-Lakeland, Fla.

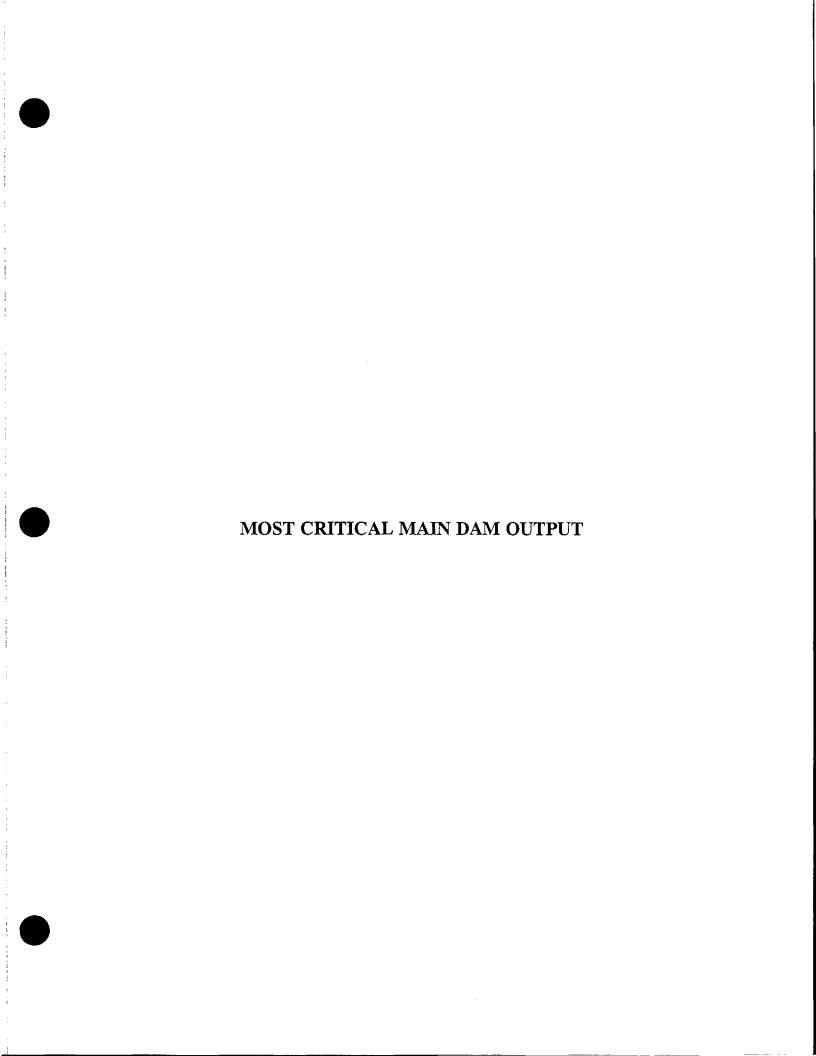
Znidarčić, D. (1986). "Constant rate of deformation consolidation tests on the dredged material samples." Report, Maryland Environmental Service, Baltimore, Md. Znidarčić, D., and Aiban, S. A. (1988). "Discussion on some measurements of the permeability of Kaolin by Al-Tabbaa and Wood." Geotechnique, 38(4), 453-454.

APPENDIX F-2
SETTLEMENT GRID OUTPUT

						fil. (V.)					Section 2			i i i			Sept.	
y (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	0	125	250:	375	500	625	,750	875	1000	1125	1250	1875	1500	-1625	1750	1875	2000	2125
2500	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2375	0	0	0	0	21	26	22	0	0	0	0	0	0	0	0	0	0	0
2250	0	0	0	15	37.5	46	41	26	20	0	0	0	0	0	0	0	0	0
2125	0	0	0	41	64	72	67	46	37	30	19	6	0	0	0	0	0	0
2000	0	0	37	64	81	84	82	66	51	47	43	29	21	10	0	0	0	0
1875	0	0	72	83	92	100	104	77	71	71	67	59	45	32	15	12	0	0
1750	0	0	77	85	106	121	116	117	107	97	87	78	59	50	41	34	10	0
1625	0	22	82	104	119	136	130	121	118	110	107	98	73	64	52	43	34	0
1500	0	51	112	140	153	162	151	135	129	118	112	110	98	79	61	50	34	0
1375	0	80	142	165	183	193	182	156	130	119	114	112	104	85	61	43	14	0
1250	0	111	175	196	214	218	203	172	141	130	120	115	111	81	53	14	0	O
1125	0	120	202	226	234	233	213	178	147	137	132	117	102	73	35	0	0	0
1000	0	145	227	251	255	244	223	188	152	142	132	132	90	59	13	0	0	0
875	0	180	263	271	270	248	223	193	163	153	143	133	94	55	16	0	0	0
750	0	201	288	287	275	254	223	193	168	163	155	143	100	76	17	0	0	0
625	0	201	299	287	275	250	224	195	174	169	160	145	106	82	57	0	0	0
500	0	201	288	282	265	245	228	195	185	180	170	151	122	98	0	0	0	0
376	0	201	270	268	257	247	222	196	186	176	162	152	123	99	0	0	0	0
250	0	201	249	249	239	228	210	197	180	167	157	149	124	0	0	0	0	0
125	0	141	171	175	182	185	186	162	145	118	97	71	50	0	0	0	0	0
ÿ	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Levee Dam

TABLE F-2. TOTAL SETTLEMENT DUE TO FULL DRAINDOWN AND SOIL COVER SURCHARGE


									X-C001	dinates								
Y-Coordinates	Ω	125	250	375	500	625	750	875	1000	1125	1250	71375	1500	1625	1750	1875	2000	2125
2500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2375	0.0	0.0	0.0	0.0	2.3	2.9	2.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2250	0.0	0.0	0.0	1.6	4.1	5.0	4.5	2.9	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2125	0.0	0.0	0.0	4.5	7.0	7.9	7.4	5.0	4.1	3.3	2.9	0.9	0.0	0.0	0.0	0.0	0.0	0.0
2000	0.0	0.0	0.3	3.8	8.3	12.5	12.2	9.9	7.7	7.3	6.7	4.5	3.3	1.6	0.0	0.0	0.0	0.0
1875	0.0	0.0	0.7	0.8	9.1	18.9	19.6	14.5	12.2	11.0	10.4	9.2	7.0	5.0	2.3	1.9	0.0	0.0
1750	0.0	0.2	0.7	0.8	10.5	22.8	21.9	22.1	18.4	15.1	13.5	12.1	9.2	7.8	6.4	5.3	1.6	0.0
1625	0.0	0.5	0.7	0.9	11.8	25.7	24.5	22.8	20.3	17.1	16.6	15.2	11.3	9.9	8.1	6.7	5.3	0.0
1600	0.0	0.8	1.1	1.4	10.4	20.5	19.1	17.1	19.0	19.9	18.9	18.5	16.5	13.3	10.3	8.4	5.7	0.0
1375	0.0	1.1	1.5	1.7	6.8	12.4	11.7	10.0	16.0	21.6	20.7	20.3	18.9	15.4	11.1	7.8	2.5	0.0
1250	0.0	1.2	1.8	2.0	8.0	14.0	13.0	11.0	17.3	23.6	21.8	20.9	20.2	14.7	9.6	2.5	0.0	0.0
1125	0.0	1.5	2.1	2.3	8.7	14.9	13.6	11.4	18.1	24.9	24.0	21.3	18.5	13.3	6.4	0.0	0.0	0.0
1000	0.0	1.8	2.3	2.6	9.4	15.4	14.1	11.9	14.5	18.1	16.8	16.8	11.5	7.5	1.7	0.0	0.0	0.0
.875	0.0	2.0	2.6	2.7	9.8	15.5	13.9	12.0	11.1	11.3	10.5	9.8	6.9	4.0	1.2	0.0	0.0	0.0
750	0.0	2.0	2.9	2.9	10.0	15.8	13.9	12.0	11.4	12.0	11.4	10.5	7.4	5.6	1.3	0.0	0.0	0.0
625	0.0	2.0	3.0	2.9	10.0	15.6	14.0	12.2	11.8	12.4	11.8	10.7	6.4	1.8	0.5	0.0	0.0	0.0
500	0.0	2.0	2.8	2.7	7.2	8.7	8.1	6.9	8.9	11.9	10.3	9.1	2.6	0.8	0.0	0.0	0.0	0.0
375	0.0	2.0	2.6	2.5	2.2	2.1	1.9	1.7	1.6	3.8	3.5	3.3	1.1	8.0	0.0	0.0	0.0	0.0
250	0.0	2.0	2.3	2.3	2.1	2.0	1.8	1.7	1.5	1.4	1.3	1.3	1.1	0.0	0.0	0.0	0.0	0.0
126	0.0	1.3	1.5	1.5	1.6	1.6	1.6	1.4	1.2	1.0	0.8	0.6	0.4	0.0	0.0	0.0	0.0	0.0
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Levee Buttress

APPENDIX G

EXISTING EMBANKMENT STABILITY ANALYSES

APPENDIX G-1 STATIC STABILITY OUTPUT

1800 1575 10 most critical surfaces, MINIMUM BISHOP FOS = 1.762 1350 '5 900 1125 X-AXIS (feet) CURRENT COND. STABILITY ANALYSIS 450 225 6450 (teet) ZIXA-Y 22 6900 7575 7350 6675

1-12-99 14:21

MD_EC2

XSTABL File: SD EC2 1-12-99 14:31

Problem Description : EXISTING STABILITY ANALYSIS

SEGMENT BOUNDARY COORDINATES

14 SURFACE boundary segments

Segment	x-left	y-left	x-right	y-right	Soil Unit
No.	(ft)	(ft)	(ft)	(ft)	Below Segment
	(= = /	(==/	(=0)	(20)	zozon oogmono
1	.0	7206.3	72.7	7210.0	1
2	72.7	7210.0	128.4	7237.9	2
3	128.4	7237.9	162.3	7238.4	2
4	162.3	7238.4	169.3	7238.4	3
5	169.3	7238.4	189.2	7237.6	4
6	189.2	7237.6	235.0	7235.2	5
7	235.0	7235.2	419.0	7236.0	10
8	419.0	7236.0	568.6	7299.0	5
9	568.6	7299.0	632.6	7300.8	5
10	632.6	7300.8	721.0	7345.0	5
11	721.0	7345.0	886.8	7341.0	5
12	886.8	7341.0	893.8	7338.5	5
13	893.8	7338.5	1009.8	7337.9	6
14	1009.8	7337.9	1400.0	7334.4	7

26 SUBSURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	816.8	7339.0	893.8	7338.5	6
2	732.4	7301.4	816.8	7339.0	6
3	1009.8	7337.9	1400.0	7334.4	7

		2050 0		E 2 2 2 2	_
4	893.3	7278.2	1009.8	7337.9	8
5	1009.8	7337.9	1400.0	7262.1	8
6	732.4	7301.4	893.3	7278.2	9
7	893.3	7278.2	1400.0	7221.2	9
8	587.8	7232.0	732.4	7301.4	9
9	189.2	7237.6	201.4	7202.9	4
10	235.0	7235.2	299.4	7192.3	5
11	587.8	7232.0	732.4	7301.4	9
12	374.3	7200.0	419.0	7236.0	5
13	528.7	7232.0	587.8	7232.0	9
14	498.9	7214.1	528.7	7232.0	9
15	498.9	7214.1	526.0	7194.9	5
16	72.7	7210.0	162.3	7205.2	1
17	162.3	7205.2	169.3	7204.6	1
18	169.3	7204.6	201.4	7202.9	1
19	201.4	7202.9	299.4	7192.3	1
20	374.3	7200.0	526.0	7194.9	10
21	526.0	7194.9	1400.0	7182.7	10
22	299.4	7192.3	584.2	7156.1	1
23	584.2	7156.1	898.0	7142.9	1
24	898.0	7142.9	1076.2	7117.6	1
25	1076.2	7117.6	1179.5	7111.3	1
26	1179.5	7111.3	1400.0	7108.8	1

ISOTROPIC Soil Parameters

10 Soil unit(s) specified

Soil Unit No.	Unit Moist (pcf)	Weight Sat. (pcf)	Cohesion Intercept (psf)	Friction Angle (deg)	Pore Pr Parameter Ru	essure Constant (psf)	Water Surface No.
1	150.0	150.0	9000.0	35.00	.000	.0	1
2	125.0	125.0	.0	35.00	.000	.0	0
3	125.0	125.0	.0	35.00	.000	.0	1
4	118.0	123.0	288.0	30.00	.000	.0	1
5	130.0	135.0	.0	40.00	.000	.0	1
6	112.0	115.0	.0	36.00	.000	.0	1
7	112.0	122.0	500.0	.00	.000	.0	1
8	112.0	122.0	710.0	.00	.000	.0	1
9	112.0	124.0	9000.0	.00	.000	.0	1
10	112.0	128.0	2300.0	.00	.000	.0	1

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 10 coordinate points

PHREATIC SURFACE,

Point No.	x-water (ft)	y-water (ft)
1	162.30	7238.40
2	189.20	7237.60
3	235.00	7235.20
4	419.00	7236.00
5	570.00	7222.00
6	635.00	7245.00
7	700.00	7247.00
8	880.00	7293.00
9	1000.00	7336.70
10	1400.00	7336.70

A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified.

900 trial surfaces will be generated and analyzed.

30 Surfaces initiate from each of 30 points equally spaced along the ground surface between x = 300.0 ft and x = 425.0 ft

Each surface terminates between x = 850.0 ftand x = 1000.0 ft

Unless further limitations were imposed, the minimum elevation at which a surface extends is y = 0.0 ft

- * * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *
 - 11.0 ft line segments define each trial failure surface.

ANGULAR RESTRICTIONS :

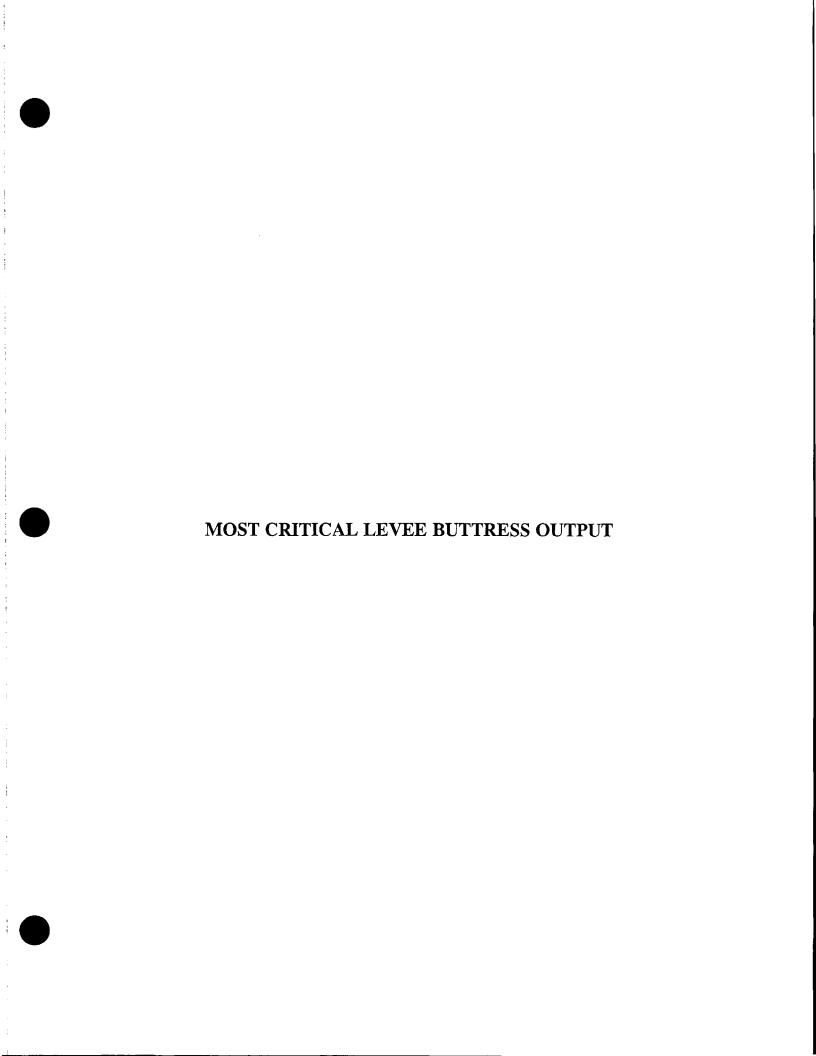
The first segment of each failure surface will be inclined within the angular range defined by :

Lower angular limit := -45.0 degrees Upper angular limit := (slope angle - 5.0) degrees Factors of safety have been calculated by the :

The most critical circular failure surface is specified by 64 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
43	796.04	7196.79
44	805.99	7201.48
45	815.82	7206.42

46	825.52	7211.60
47	835.10	7217.01
48	844.54	7222.66
49	853.84	7228.54
50	862.99	7234.64
51	871.98	7240.97
52	880.82	7247.52
53	889.50	7254.28
54	898.00	7261.26
55	906.33	7268.44
56	914.49	7275.83
57	922.45	7283.41
58	930.23	7291.19
59	937.82	7299.15
60	945.21	7307.30
61	952.39	7315.63
62	959.37	7324.14
63	966.13	7332.81
64	970.06	7338.11


**** Simplified BISHOP FOS = 2.094 ****

The following is a summary of the TEN most critical surfaces

Problem Description : EXISTING STABILITY ANALYSIS

	FOS (BISHOP)	Circle x-coord (ft)	Center y-coord (ft)	Radius (ft)	Initial x-coord (ft)	Terminal x-coord (ft)	Resisting Moment (ft-lb)
1.	2.094	610.13	7603.18	446.75	356.03	970.06	1.121E+09
2.	2.103	588.34	7483.39	325.13	377.59	880.91	7.511E+08
3.	2.118	629.06	7615.88	460.57	368.97	995.86	1.154E+09
4.	2.123	619.13	7594.42	437.26	368.97	973.80	1.084E+09
5.	2.127	606.45	7540.22	383.46	373.28	932.19	9.336E+08
6.	2.129	604.87	7524.68	367.55	377.59	921.52	8.828E+08
7.	2.130	616.97	7538.25	383.03	381.90	943.61	9.237E+08
8.	2.134	620.64	7630.86	473.15	360.34	992.52	1.202E+09
9.	2.137	613.99	7548.24	391.79	377.59	944.84	9.539E+08
10.	2.138	583.37	7554.32	393.92	351.72	912.98	9.818E+08

* * * END OF FILE * * *

EXISTING STABILITY ANALYSIS 10 most critical surfaces, MINIMUM BISHOP FOS = 2.094525 700 875 X-AXIS (feet) 1-12-99 14:31 SD_EC2

XSTABL File: MD EC2 1-12-99 14:21

Problem Description : CURRENT COND. STABILITY ANALYSIS

SEGMENT BOUNDARY COORDINATES

11 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	6979.0	223.8	6995.0	1
2	223.8	6995.0	733.8	7250.0	2
3	733.8	7250.0	760.8	7250.0	2
4	760.8	7250.0	769.1	7250.0	3
5	769.1	7250.0	775.1	7250.0	4
6	775.1	7250.0	978.8	7345.0	5
7	978.8	7345.0	1071.6	7345.0	5
8	1071.6	7345.0	1145.0	7340.0	5
9	1145.0	7340.0	1179.1	7337.0	5
10	1179.1	7337.0	1266.3	7337.0	6
11	1266.3	7337.0	1800.0	7334.4	7

30 SUBSURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	1052.3	7335.0	1179.1	7337.0	6
2	867.7	7245.3	1052.3	7337.0	6
3	1266.3	7337.0	1560.4	7255.0	8
4	1560.4	7255.0	1800.0	7257.0	8
5	867.7	7245.3	1066.4	7235.1	9
6	1066.4	7235.1	1266.3	7337.0	8

1066.4	7235.1	1560.4	7218.1	9
1560.4	7218.1	1800.0	7228.6	9
834.7	7229.3	867.7	7245.3	9
834.7	7229.3	845.9	7212.0	5
845.9	7212.0	908.6	7170.2	5
908.6	7170.2	1560.4	7183.2	10
1560.4	7183.2	1800.0	7183.2	10
775.1	7250.0	788.8	7250.0	4
788.8	7250.0	802.4	7229.0	5
908.6	7170.2	1092.6	7047.6	5
802.4	7229.0	986.6	7044.9	4
769.1	7250.0	903.8	7042.7	3
760.8	7250.0	873.3	7042.0	2
1726.9	7149.4	1800.0	7162.5	1
1571.0	7109.4	1726.9	7149.4	1
1329.6	7059.5	1571.0	7109.4	1
1220.1	7048.2	1329.6	7059.5	1
1092.6	7047.6	1220.1	7048.2	1
986.6	7044.9	1092.6	7047.6	1
903.8	7042.7	986.6	7044.9	1
873.3	7042.0	903.8	7042.7	1
865.6	7042.5	873.3	7042.0	1
680.7	7018.7	895.6	7042.5	1
223.8	6995.0	680.7	7018.7	1
	1560.4 834.7 834.7 845.9 908.6 1560.4 775.1 788.8 908.6 802.4 769.1 760.8 1726.9 1571.0 1329.6 1220.1 1092.6 986.6 903.8 873.3 865.6 680.7	1560.4 7218.1 834.7 7229.3 834.7 7229.3 845.9 7212.0 908.6 7170.2 1560.4 7183.2 775.1 7250.0 788.8 7250.0 908.6 7170.2 802.4 7229.0 769.1 7250.0 769.1 7250.0 760.8 7250.0 1726.9 7149.4 1571.0 7109.4 1329.6 7059.5 1220.1 7048.2 1092.6 7047.6 986.6 7044.9 903.8 7042.7 873.3 7042.0 865.6 7042.5 680.7 7018.7	1560.4 7218.1 1800.0 834.7 7229.3 867.7 834.7 7229.3 845.9 845.9 7212.0 908.6 908.6 7170.2 1560.4 1560.4 7183.2 1800.0 775.1 7250.0 788.8 788.8 7250.0 802.4 908.6 7170.2 1092.6 802.4 7229.0 986.6 769.1 7250.0 903.8 760.8 7250.0 873.3 1726.9 7149.4 1800.0 1571.0 7109.4 1726.9 1329.6 7059.5 1571.0 1220.1 7048.2 1329.6 1092.6 7047.6 1220.1 986.6 7044.9 1092.6 903.8 7042.7 986.6 873.3 7042.0 903.8 865.6 7042.5 873.3 680.7 7018.7 895.6	1560.4 7218.1 1800.0 7228.6 834.7 7229.3 867.7 7245.3 834.7 7229.3 845.9 7212.0 845.9 7212.0 908.6 7170.2 908.6 7170.2 1560.4 7183.2 1560.4 7183.2 1800.0 7183.2 775.1 7250.0 788.8 7250.0 788.8 7250.0 802.4 7229.0 908.6 7170.2 1092.6 7047.6 802.4 7229.0 986.6 7044.9 769.1 7250.0 903.8 7042.7 760.8 7250.0 873.3 7042.0 1726.9 7149.4 1800.0 7162.5 1571.0 7109.4 1726.9 7149.4 1329.6 7059.5 1571.0 7109.4 1220.1 7048.2 1329.6 7059.5 1092.6 7047.6 1220.1 7048.2 986.6 7044.9 1092.6 7047.6 903.8 7042.7 986.6 7044.9 873

ISOTROPIC Soil Parameters

10 Soil unit(s) specified

Soil Unit No.	Unit Moist (pcf)	Weight Sat. (pcf)	Cohesion Intercept (psf)	Friction Angle (deg)	Pore Pr Parameter Ru	essure Constant (psf)	Water Surface No.
1	150.0	150.0	9000.0	35.00	.000	.0	1
2	125.0	125.0	.0	35.00	.000	.0	0
3	125.0	125.0	.0	35.00	.000	.0	1
4	118.0	123.0	288.0	30.00	.000	.0	1
5	130.0	135.0	.0	40.00	.000	.0	1
6	112.0	115.0	.0	36.00	.000	.0	1
7	112.0	122.0	500.0	.00	.000	.0	1
8	112.0	122.0	710.0	.00	.000	.0	1
9	112.0	124.0	9000.0	.00	.000	.0	1
10	112.0	128.0	2300.0	.00	.000	.0	1

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 5 coordinate points

PHREATIC SURFACE,

Point No.	x-water (ft)	y-water (ft)
1	769.10	7250.00
2	880.00	7252.00
3	980.00	7257.00
4	1200.00	7336.70
5	1800.00	7336.70

A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified.

900 trial surfaces will be generated and analyzed.

30 Surfaces initiate from each of 30 points equally spaced along the ground surface between x = 200.0 ft and x = 450.0 ft

Each surface terminates between x = 1100.0 ft and x = 1500.0 ft

Unless further limitations were imposed, the minimum elevation at which a surface extends is y = 0.0 ft

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

35.0 ft line segments define each trial failure surface.

ANGULAR RESTRICTIONS :

> Lower angular limit := -45.0 degrees Upper angular limit := (slope angle - 5.0) degrees

Negative effective stresses were calculated at the base of a slice. This warning is usually reported for cases where slices have low self

weight and a relatively high "c" shear strength parameter. In such cases, this effect can only be eliminated by reducing the "c" value.

USER SELECTED option to maintain strength greater than zero

Factors of safety have been calculated by the :

The most critical circular failure surface is specified by 31 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	(ft) 251.72 286.70 321.69 356.69 391.67 426.60 461.47 496.26 530.93 565.47 599.86 634.07 668.09 701.89 735.45 768.74 801.76 834.47 866.86 898.90 930.57 961.86 992.75 1023.21 1053.22 1082.78	(ft) 7008.96 7007.57 7007.06 7007.43 7008.68 7010.82 7013.83 7017.73 7022.49 7028.14 7034.65 7042.03 7050.26 7059.36 7069.30 7080.08 7091.70 7104.15 7117.43 7131.51 7146.40 7162.08 7178.54 7195.78 7213.78 7232.54
27	1111.85	7252.03
28	1140.42	7272.25
29	1168.47	7293.18
30	1195.98	7314.81
31	1222.77	7337.00

The following is a summary of the TEN most critical surfaces

Problem Description: CURRENT COND. STABILITY ANALYSIS

	FOS (BISHOP)		Center y-coord (ft)	Radius (ft)	Initial x-coord (ft)	Terminal x-coord (ft)	Resisting Moment (ft-lb)
-	1 760	204 40	0204 01	1207 06	251.72	1000 77	1 110P.10
1.	1.762	324.48	8394.91	1387.86	251.72	1222.77	1.118E+10
2.	1.769	-12134.12	39726.95	34984.92	243.10	1102.64	8.246E+10
3.	1.782	304.12	8689.68	1663.58	286.21	1272.28	1.216E+10
4.	1.793	159.81	9297.37	2282.39	268.97	1327.83	1.677E+10
5.	1.801	130.06	8692.62	1699.30	225.86	1157.07	1.170E+10
6.	1.804	141.38	8591.46	1575.46	277.59	1102.00	8.145E+09
7.	1.805	281.81	8845.19	1806.31	312.07	1275.64	1.193E+10
8.	1.806	60.80	9516.18	2500.16	286.21	1285.90	1.579E+10
9.	1.811	431.77	8230.80	1213.36	286.21	1252.11	1.026E+10
10.	1.812	249.39	9131.13	2122.17	251.72	1381.60	1.849E+10

* * * END OF FILE * * *

APPENDIX G-2 PSEUDOSTATIC STABILITY

MOST CRITICAL MAIN DAM OUTPUT

10 most critical surfaces, MINIMUM BISHOP FOS = 1.323 75 900 1125 X-AXIS (feet) CURRENT COND. STABILITY ANALYSIS (teet) SIXA-Y 690 75

1-12-99 14:24

MD_EP2

Problem Description : EXISTING STABILITY ANALYSIS

SEGMENT BOUNDARY COORDINATES

14 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	7206.3	72.7	7210.0	1
2	72.7	7210.0	128.4	7237.9	2
3	128.4	7237.9	162.3	7238.4	2
4	162.3	7238.4	169.3	7238.4	3
5	169.3	7238.4	189.2	7237.6	4
6	189.2	7237.6	235.0	7235.2	5
7	235.0	7235.2	419.0	7236.0	10
8	419.0	7236.0	568.6	7299.0	5
9	568.6	7299.0	632.6	7300.8	5
10	632.6	7300.8	721.0	7345.0	5
11	721.0	7345.0	886.8	7341.0	5
12	886.8	7341.0	893.8	7338.5	5
13	893.8	7338.5	1009.8	7337.9	6
14	1009.8	7337.9	1400.0	7334.4	7

26 SUBSURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	816.8	7339.0	893.8	7338.5	6
2	732.4	7301.4	816.8	7339.0	6
3	1009.8	7337.9	1400.0	7334.4	7

4	893.3	7278.2	1009.8	7337.9	8
5	1009.8	7337.9	1400.0	7262.1	8
6	732.4	7301.4	893.3	7278.2	9
7	893.3	7278.2	1400.0	7221.2	9
8	587.8	7232.0	732.4	7301.4	9
9	189.2	7237.6	201.4	7202.9	4
10	235.0	7235.2	299.4	7192.3	5
11	587.8	7232.0	732.4	7301.4	9
12	374.3	7200.0	419.0	7236.0	5
13	528.7	7232.0	587.8	7232.0	9
14	498.9	7214.1	528.7	7232.0	9
15	498.9	7214.1	526.0	7194.9	5
16	72.7	7210.0	162.3	7205.2	1
17	162.3	7205.2	169.3	7204.6	1
18	169.3	7204.6	201.4	7202.9	1
19	201.4	7202.9	299.4	7192.3	1
20	374.3	7200.0	526.0	7194.9	10
21	526.0	7194.9	1400.0	7182.7	10
22	299.4	7192.3	584.2	7156.1	1
23	584.2	7156.1	898.0	7142.9	1
24	898.0	7142.9	1076.2	7117.6	1
25	1076.2	7117.6	1179.5	7111.3	1
26	1179.5	7111.3	1400.0	7108.8	1

ISOTROPIC Soil Parameters

10 Soil unit(s) specified

Soil Unit No.	Unit Moist (pcf)	Weight Sat. (pcf)	Cohesion Intercept (psf)	Friction Angle (deg)	Pore Pr Parameter Ru	essure Constant (psf)	Water Surface No.
1	150.0	150.0	9000.0	35.00	.000	.0	1
2	125.0	125.0	.0	35.00	.000	.0	0
3	125.0	125.0	.0	35.00	.000	.0	1
4	118.0	123.0	288.0	30.00	.000	.0	1
5	130.0	135.0	.0	40.00	.000	.0	1
6	112.0	115.0	.0	36.00	.000	.0	1
7	112.0	122.0	500.0	.00	.000	.0	1
8	112.0	122.0	710.0	.00	.000	.0	1
9	112.0	124.0	9000.0	.00	.000	.0	1
10	112.0	128.0	2300.0	.00	.000	.0	1

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 10 coordinate points

PHREATIC SURFACE,

Point No.	x-water (ft)	y-water (ft)
1	162.30	7238.40
2	189.20	7237.60
3	235.00	7235.20
4	419.00	7236.00
5	570.00	7222.00
6	635.00	7245.00
7	700.00	7247.00
8	880.00	7293.00
9	1000.00	7336.70
10	1400.00	7336.70

A horizontal earthquake loading coefficient of .100 has been assigned

A vertical earthquake loading coefficient of .000 has been assigned

A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified.

900 trial surfaces will be generated and analyzed.

30 Surfaces initiate from each of 30 points equally spaced along the ground surface between x = 300.0 ft and x = 425.0 ft

Each surface terminates between x = 850.0 ftand x = 1000.0 ft

Unless further limitations were imposed, the minimum elevation at which a surface extends is y = 0.0 ft

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

11.0 ft line segments define each trial failure surface.

ANGULAR RESTRICTIONS :

Lower angular limit := -45.0 degrees

Upper angular limit := (slope angle - 5.0) degrees

-- WARNING -- WARNING -- WARNING -- (# 48) ******************

Negative effective stresses were calculated at the base of a slice. This warning is usually reported for cases where slices have low self weight and a relatively high "c" shear strength parameter. In such cases, this effect can only be eliminated by reducing the "c" value.

USER SELECTED option to maintain strength greater than zero

Factors of safety have been calculated by the :

The most critical circular failure surface is specified by 65 coordinate points

Point No.	x-surf (ft)	y-surf (ft)
1	368.97	7235.78
2	378.12	7229.68
3	387.41	7223.80
4	396.84	7218.14
5	406.41	7212.71
6	416.10	7207.50
7	425.92	7202.54
8	435.85	7197.80
9	445.89	7193.31
10	456.03	7189.06
11	466.28	7185.05
12	476.61	7181.29
13	487.03	7177.77
14	497.54	7174.51
15	508.12	7171.49
16	518.77	7168.74
17	529.48	7166.23
18	540.25	7163.99
19	551.07	7162.00
20	561.93	7160.27
21	572.83	7158.80
22	583.76	7157.59
23	594.72	7156.64

^ .	605 70	7755 00
24	605.70	7155.96
25	616.69	7155.54
26	627.69	7155.38
27	638.69	7155.48
28	649.69	7155.85
	660.67	7156.48
29		
30	671.63	7157.37
31	682.57	7158.52
32	693.48	7159.94
33	704.35	7161.61
34	715.18	7163.54
35	725.96	7165.74
36	736.68	7168.19
37	747.34	7170.89
38	757.94	7173.85
39	768.46	7177.06
	778.90	7180.52
40		
41	789.26	7184.23
42	799.52	7188.19
43	809.69	7192.39
44	819.75	7196.84
45	829.70	7201.52
46	839.54	7206.44
47	849.26	7211.59
48	858.85	7216.97
49	868.31	7222.58
50	877.64	7228.42
51	886.82	7234.48
52	895.86	7240.75
53	904.74	7247.24
54	913.46	7253.94
55	922.03	7260.84
56	930.42	7267.95
57	938.64	7275.26
58	946.69	7282.76
59	954.55	7290.45
60	962.23	7298.33
61	969.72	7306.39
62	977.01	7314.62
63	984.10	7323.03
64	990.99	7331.60
65	995.86	7337.97
55	222.00	

**** Simplified BISHOP FOS = 1.354 ****

The following is a summary of the TEN most critical surfaces $% \left(1\right) =\left(1\right) +\left(1\right$

Problem Description : EXISTING STABILITY ANALYSIS

FOS	Circle	Center	Radius	Initial	Terminal	Resisting
(BISHOP)	x-coord	y-coord		x-coord	x-coord	Moment
	(ft)	(ft)	(ft)	(ft)	(ft)	(ft-lb)

1.	1.354	629.06	7615.88	460.57	368.97	995.86	1.161E+09
2.	1.366	610.13	7603.18	446.75	356.03	970.06	1.124E+09
3.	1.369	620.64	7630.86	473.15	360.34	992.52	1.208E+09
4.	1.370	611.46	7663.96	505.41	343.10	997.41	1.326E+09
5.	1.380	619.13	7594.42	437.26	368.97	973.80	1.089E+09
6.	1.391	589.60	7722.45	562.18	308.62	999.68	1.550E+09
7.	1.393	628.91	7620.23	461.67	373.28	994.45	1.171E+09
8.	1.398	630.11	7608.25	449.97	377.59	989.20	1.131E+09
9.	1.399	631.57	7574.18	417.93	386.21	976.46	1.027E+09
10.	1.403	603.08	7667.50	506.30	338.79	987.67	1.336E+09

* * * END OF FILE * * *

MOST CRITICAL LEVEE BUTTRESS OUTPUT

1225 EXISTING STABILITY ANALYSIS 10 most critical surfaces, MINIMUM BISHOP FOS = 1.354 1050 25 700 875 X-AXIS (feet) 525 350 1-12-99 14:34 175 7350 _ _ 0599 (taat) ZIXA-Y 7525 6825 SD_EP2

XSTABL File: MD_EP2 1-12-99 14:24

Problem Description : CURRENT COND. STABILITY ANALYSIS

SEGMENT BOUNDARY COORDINATES

11 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	6979.0	223.8	6995.0	1
2	223.8	6995.0	733.8	7250.0	2
3	733.8	7250.0	760.8	7250.0	2
4	760.8	7250.0	769.1	7250.0	3
5	769.1	7250.0	775.1	7250.0	4
6	775.1	7250.0	978.8	7345.0	5
7	978.8	7345.0	1071.6	7345.0	5
8	1071.6	7345.0	1145.0	7340.0	5
9	1145.0	7340.0	1179.1	7337.0	5
10	1179.1	7337.0	1266.3	7337.0	6
11	1266.3	7337.0	1800.0	7334.4	7

30 SUBSURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	1052.3	7335.0	1179.1	7337.0	6
2	867.7	7245.3	1052.3	7337.0	6
3	1266.3	7337.0	1560.4	7255.0	8
4	1560.4	7255.0	1800.0	7257.0	8
5	867.7	7245.3	1066.4	7235.1	9
6	1066.4	7235.1	1266.3	7337.0	8

7	1066.4	7235.1	1560.4	7218.1	9
8	1560.4	7218.1	1800.0	7228.6	9
9	834.7	7229.3	867.7	7245.3	9
10	834.7	7229.3	845.9	7212.0	5
11	845.9	7212.0	908.6	7170.2	5
12	908.6	7170.2	1560.4	7183.2	10
13	1560.4	7183.2	1800.0	7183.2	10
14	775.1	7250.0	788.8	7250.0	4
15	788.8	7250.0	802.4	7229.0	5
16	908.6	7170.2	1092.6	7047.6	5
17	802.4	7229.0	986.6	7044.9	4
18	769.1	7250.0	903.8	7042.7	3
19	760.8	7250.0	873.3	7042.0	2
20	1726.9	7149.4	1800.0	7162.5	1
21	1571.0	7109.4	1726.9	7149.4	1
22	1329.6	7059.5	1571.0	7109.4	1
23	1220.1	7048.2	1329.6	7059.5	1
24	1092.6	7047.6	1220.1	7048.2	1
25	986.6	7044.9	1092.6	7047.6	1
26	903.8	7042.7	986.6	7044.9	1
27	873.3	7042.0	903.8	7042.7	1
28	865.6	7042.5	873.3	7042.0	1
29	680.7	7018.7	895.6	7042.5	1
30	223.8	6995.0	680.7	7018.7	1

ISOTROPIC Soil Parameters

10 Soil unit(s) specified

Soil Unit	Moist	Weight Sat.	Cohesion Intercept	Friction Angle	Pore Pr Parameter	Constant	Water Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	150.0	150.0	9000.0	35.00	.000	.0	1
2	125.0	125.0	.0	35.00	.000	.0	0
3	125.0	125.0	.0	35.00	.000	.0	1
4	118.0	123.0	288.0	30.00	.000	.0	1
5	130.0	135.0	.0	40.00	.000	.0	1
6	112.0	115.0	.0	36.00	.000	.0	1
7	112.0	122.0	500.0	.00	.000	.0	1
8	112.0	122.0	710.0	.00	.000	.0	1
9	112.0	124.0	9000.0	.00	.000	.0	1
10	112.0	128.0	2300.0	.00	.000	.0	1

1 Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by $\,$ 5 coordinate points

PHREATIC SURFACE,

, *******************************

Point No.	x-water (ft)	y-water (ft)
1	769.10	7250.00
2	880.00	7252.00
3	980.00	7257.00
4	1200.00	7336.70
5	1800.00	7336.70

A horizontal earthquake loading coefficient of .100 has been assigned

A vertical earthquake loading coefficient of .000 has been assigned

A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified.

900 trial surfaces will be generated and analyzed.

30 Surfaces initiate from each of 30 points equally spaced along the ground surface between x = 200.0 ft and x = 450.0 ft

Each surface terminates between x = 1100.0 ftand x = 1500.0 ft

Unless further limitations were imposed, the minimum elevation at which a surface extends is y = 0.0 ft

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

35.0 ft line segments define each trial failure surface.

ANGULAR RESTRICTIONS :

The first segment of each failure surface will be inclined within the angular range defined by :

Lower angular limit := -45.0 degrees

Upper angular limit := (slope angle - 5.0) degrees

Negative effective stresses were calculated at the base of a slice. This warning is usually reported for cases where slices have low self weight and a relatively high "c" shear strength parameter. In such cases, this effect can only be eliminated by reducing the "c" value.

USER SELECTED option to maintain strength greater than zero

Factors of safety have been calculated by the :

The most critical circular failure surface is specified by 37 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	243.10	7004.65
2	278.03	7006.84
3	312.94	7009.47
4	347.80	7012.53
5	382.63	7016.03
6	417.41	7019.96
7	452.13	7024.32
8	486.80	7029.12
9	521.41	7034.34
10	555.95	7040.00
11	590.42	7046.09
12	624.80	7052.60
13	659.11	7059.55
14 15	693.32	7066.92 7074.72
16	727.44 761.46	7082.94
17	795.38	7091.58
18	829.18	7100.65
19	862.87	7110.14
20	896.44	7120.05
21 22	929.89	7130.37
23	963.20 996.37	7141.11 7152.27
24 25	1029.41	7163.83 7175.81
26	1095.03	7188.20
27	1127.60	7200.99

28	1160.02	7214.19
29	1192.27	7227.79
30	1224.35	7241.79
31	1256.25	7256.19
32	1287.96	7270.99
33	1319.50	7286.18
34	1350.84	7301.77
35	1381.98	7317.74
36	1412.92	7334.10
37	1416.90	7336.27

**** Simplified BISHOP FOS = 1.323 ****

The following is a summary of the TEN most critical surfaces

Problem Description : CURRENT COND. STABILITY ANALYSIS

	FOS (BISHOP)	Circle x-coord (ft)	e Center y-coord (ft)	Radius (ft)	Initial x-coord (ft)	Terminal x-coord (ft)	Resisting Moment (ft-lb)
1.	1.323	84.66	9809.21	2809.03	243.10	1416.90	2.290E+10
2.	1.326	-200.91	10830.23	3854.56	234.48	1426.61	2.918E+10
3.	1.331	159.81	9297.37	2282.39	268.97	1327.83	1.641E+10
4.	1.332	249.39	9131.13	2122.17	251.72	1381.60	1.809E+10
5.	1.340	219.61	9700.85	2687.89	260.34	1497.06	2.418E+10
6.	1.341	304.12	8689.68	1663.58	286.21	1272.28	1.191E+10
7.	1.342	29.17	10050.50	3038.78	277.59	1395.63	2.159E+10
8.	1.347	324.48	8394.91	1387.86	251.72	1222.77	1.092E+10
9.	1.348	288.94	9429.42	2407.56	277.59	1478.14	2.122E+10
10.	1.350	109.40	10225.72	3200.58	294.83	1485.43	2.448E+10

* * * END OF FILE * * *

APPENDIX H LIQUEFACTION AND POST-LIQUEFACTION ANALYSIS

APPENDIX H-1 LIQUEFACTION ANALYSIS

APPENDIX H-1

Assessment Of Liquefaction Potential

The liquefaction analysis procedures employed during this investigation rely upon the estimation of the cyclic resistance ratio (CRR) of the in situ soils and compares that value to the cyclic stress ratio (CSR) imposed by the design earthquake to compute a factor of safety. The CRR has been computed from three independent methods that all utilize the cone penetrometer testing with pore pressure measurements (CPTU) or the seismic cone penetration testing (SCPT) data. The analysis is spreadsheet oriented and summary output for the three CPT soundings located nearest to the embankments (i.e. those tailings which constitute the foundation materials for the upstream constructed buttresses) are included in this appendix.

The CSR is defined as the ratio of the cyclic shear stress acting on a horizontal plane to the initial (pre-earthquake) effective vertical stress. The CSR that will induce liquefaction, which is equal to the CRR, is found from empirical curves that relate the estimated CSR from sites that have versus have not liquefied. The CSR is a function of the relative density and fines content of the soil as deduced from SPT, CPT, SCPT, and/or laboratory testing. The empirical curves are based on a magnitude 7.5 earthquake to yield the cyclic resistance ratio for a magnitude 7.5 earthquake (CRR_{7.5}). Lower magnitude earthquakes (i.e. shorter duration and fewer shear stress cycles) require a larger peak acceleration to induce liquefaction. The earthquake scaling factors applied are from Andurs and Stokoe, 1997 (in Youd and Idriss, 1977) and are as follows:

TABLE H-1

LIQUEFACTION POTENTIAL SPREADSHEET SUMMARY CPT-6

	٠.	_	_	<u> </u>	_	<u></u>	_	<u>-</u>	<u> </u>	ıc	ır	r	~	_	~.	·r	·	ייז	(r	۸.	<u> </u>	.	6.5	<u> </u>	١,	_	_	,-		ᇛ	Ī
45	6	35	30	25	20	15	5	8	8	25	8	35	8	75	70	55	20	55	— প	ţ,	5	35	ප <u></u>	23	- 0	5	ō	5	(f)	DEPTH UNI	
125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	(pcf)	UNIT WEIGHT	
29.06	38.32	46.33	51.05	56.59	66.62	59.98	48.63	54.76	43.69	37.12	47.12	39.29	33.29	30.59	25.88	23.01	30.77	30.75	19.29	15.41	15.29	16.49	12.39	11.15	11.31	10.09	9.52	7.95	(tsf)		
32.09	40.28	47.64	51.93	57.57	67.64	60.91	49.77	55.48	44.90	38,43	47.74	40.02	33.96	31.43	26,90	23.92	31.28	31.02	19.74	15.93	15.69	16.77	12.64	11.33	1.4.1	10.18	9.58	7.96	(tst)	Ď	
0.40	0.61	8	0.68	0.82	8	<u>.</u>	0.88	D.81	0.60	0.54	0.67	0.55	0.48	0.37	0.29	0.24	0.29	0.29	0.16	0.13	0.14	0.13	0.09	0.08	0.08	0.06	9.04	0.06	(tst)	Ji .	_
0.01	0.02	0.02	0.01	2	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	9	<u>.</u>	9.0	0.01	9	0.01	8	0.01		Rf%	
20.20	13.09	8.58	5.90	6.56	6.76	6.21	7.64	4.81	8,03	8.72	4.14	4.B2	4.47	5.58	6.84	6.07	3.42	1.79	3.02	3,47	2.67	1.86	1.67	1.22	0.85	0.63	0.41	0.10	PWP (tst)	DYNAMIC	
67.20	63.35	59.63	55.78	52.05	48.20	44.48	40.75	36.91	33.18	29.68	27.39	25.82	24.33	22.78	21.29	19.75	18.25	16.71	15.21	13.67	12.18	10.63	9.14	7.59	6.10	4.56	3.06	1.52	PWP (ft)	EQUIL	
9.07	8.75	8,44 44	8.13	7.82	7.50	7.19	6.88	6.57	6.26	5.94	5.63	5.32	5.01	4.69	4.38	4.07	3.76	3,44	3.13	2.81	2.51	2.19	1.88	1.56	1.26	0.94	0.63	0.31	STRESS (ts	TOTAL	
6.97	6.77	6.58	6.38	6.19	6.00	5.80	5.61	5.42	5.22	5.02	4.78	4.51	4.25	3.98	3.72	3,45	3.19	2.92	2.66	2.39	2.13	1.86	1.60	1.33	1.07	0.80	0.53	0.27	STRESS (tsf) STRESS (tsf	EFFECTIVE	
0.07	0.07	0.07	0.07	0.07	0.07	0,06	0.06	0.06	0.06	0.06	0.06	0.07	0.07	0.07	0.07	0.08	0.08	0.09	0.09	0.10	0.10	0.11	0.11	0.12	0.12	0.12	0.12	0.12	0.16	CSR	
0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.51	0.52	0.54	0.55	0.57	0.60	0.64	0.68	0.73	0.77	0.81	0.85	0.89	0.92	0.94	0.95	0.96	0.98	0.99	2.		
11.67	15.30	18.41	20.15	22.07	25.71	23.31	19.13	21.34	17.00	14.52	18.38	15.45	13.16	12.09	10.29	9.16	12.09	12.09	7.72	6.19	6.12	6.60	4.97	4.45	4.50	4.03	3.81	3.06	(blows/ft.)	Z	
0.39	0.40	0.40	0.41	0.41	0.42	0.43	0.43	0.44	0.45	0.46	0.47	0.48	0.50	0.52	0.53	0.55	0.58	0.60	0.63	0.67	0.71	0.76	0.82	0.90	1.8	1.17	1.45	2.59		č	בועטמדי
4.55	6.05	7.38	8.20	9.13	10.81	9.93	8.30	9.44	7.63	6.68	8.65	7.46	6.57	6.22	5.48	5.06	7.03	7.23	4.87	4.11	4.34	4.98	4.02	4.04	4.50	4.70	5.45	6.50	(blows/ft	N 1(60)	C HON PO
50.00	50.00	50.00	50.00	50.00	50.00	50,00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	45.50	30.00	20.00	20.00	20.00	20.00	20.00	20.00	╁	FINES	IEN HAL B
5.00	5.00	50	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	4.79	4.08	3.61	3.61	3.61	3.61	3.61	3.61		ρ	LIQUEFACIJON POJENIJAL BASED ON BLOW COON I CORRELATIONS
1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20		1.20	1.20	1.20	1.20	1.20	1.20	1.18	1.12	1.08	1.08	1.08	1.08	1.08	1.08		ъ	SLOW COO
10.46	12.26	13.86	14.85	15.96	17.97	16.92	14.97	16.33	14.15	13.02	15.38	13.95	12.88	12.47	11.58	11.08	13.44	13.68	10.84	9.93	9.91	9.67	7.95	7.98	8.47	8.69	9.50	10.63	(blows/ft)	N 1(60)cs	או כטאאני
0.11	0.13	0.15	0.16	0.17	0.20	0.19	0.16	0.18	0.16	0.14	0.17	0.15	0.14	0.14	0.13	0.12	0.15	0.15	0.12	0.11	0,11	0.11	0.09	0.09	0.10	0.10	0.10	0.12	7	CRR,	LAHONS
1.68	1.98	2.25	2.44	2.65	3.04	2.88	2.56	2.90	2.54	2.25	2.60	2.31	2.08	1.96	1.71	1.53	1.74	1.69	1.26	1.10	<u>.</u>	0.98	0.79	0.79	0.82	0.82	0.87	0.96		FS	
11.33	15.16	18.58	20.78	23.41	28.01	26.55	21.11	24.23	19.59	17.09	22.17	18.98	16.63	15.75	13,79	12.72	17.90	18.39	12.17	10.23	10.86	12.44	10.01	10.15	11.31	11.76	13.60	17,12	(tsf)	ğ	-
6.68	9.01	11.12	12.53	14.23	17.16	15.76	13.14	15.24	12.40	10.96	14.37	12.46	11.11	10.68	9,51	8.94	12.91	13.44	9.14	7.88	8.65	10.21	8.50	9.17	10.71	12.04	14.84	14.69		선	
30.50	34.67	39.13	40.00	37.44	37.74	37.73	36.40	38.35	33.24	31.06	36.57	37.08	36.26	34.93	35.09	36.36	40.55	41.24	37.45	35.47	37.14	42.90	39.66	35.92	38.71	48.09	59.59	42.53		(q _{c1N})cr	בועטבדא
0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75		3	ONPO
0.24	0.25	0.25	0.26	0.27	0.27	0.28	0.29	0.29	0.30	0.31	0.32	0.34	0.35	0.37	0.39	0.41	0.44	0.47	0.50	0.54	0.59	0.66	0.74	0.85	1.01	1.27	1.67	1.97		ဂ္ဂ	LIQUEFACTION POTENTIAL BASED ON
5.29	7.42	9,40	10.76	12.51	15.49	14.11	11.59	13.61	10.96	9.59	12,84	11.00	9.66	9.33	8.28	7.71	11.56	12.04	7.87	6.71	7.47	9.03	7.37	8.06	9.64	11.06	14.60	24.62		a	
1.84%	2.09%	1.92%	1.84%	1.90%	2.01%	2.38%	2.40%	2 02%	1.85%	2.01%	1.98%	1.89%	1.95%	1.80%	1.62%	1.48%	1.44%	1.40%	1.22%	1.29%	1.32%	1.01%	1.10%	1.17%	0.99%	0.82%	0.55%	1.10%		71	SIKECT API
2 85	2.71	2.61	2.57	2.52	2.42	2.43	2.50	2.47	2.64	2.69	2,50	2.56	2,62	2.69	2.74	2.76	2.64	2.61	2.77	28.4	2.78	2.71	2.82	2.84	2.76	2.70	2.64	2.37		ਨ 	DIRECT APPLICATION OF CPT
4.76	4.25	3.91	3.66	3.19	2.69	2.79	3.14	3.03	3.61	3.70	3.01	3.46	3.82	3.97	4.24	4.50	3.89	3,75	4.48	4.73	4.63	4.45	4.76	4.51	4.23	4.40	4.25	2.93		₹	OF CPT
0.08	0.08	0.08	0.08	80.0	0.08	0.08	80.0	0.08	0.08	0.08	0.08	0,08	0.08	0.08	0.08	0.08	0.08	0,08	0.08	0.08	0.08	0.09	0.08	0.08	0.08	0.09	0.11	0.09	CONE	CRR	
<u>.</u>	1.17	1.24	1.26	1.24	1.25	1.26	1.26	1.30	1.24	1.20	1.25	1.23	1.19	1.14	1.07	1.02	1.00	0.95	0.87	0.81	0.78	0.79	0.74	0.70	0.71	0.78	0.91	0.76	-	FScone	-
.44	1.57	1.74	1.83	1.97	2.11	2.06	1.98	.99	93	1.82	1.83	1.76	2	1.55	1.40	1.30	.34	1.28	1.06	0.97	0.92	0.86	0.78	0.74	0.78	0.83	0.87			FSavg	

tableH-1.xls

TABLE H-2

LIQUEFACTION POTENTIAL SPREADSHEET SUMMARY CPT-9

HLdad UNIT WEIGH 125.00 125.00 125.00 52.00 51.64 77.47 73.66 66.26 53.91 70.23 64.22 77.46 48.51 32.89 34.11 30.84 24.95 27.57 ę 11.86 6.73 11.22 11.74 11.77 22.60 11.77 11.77 28.28 28.28 28.28 29.28 20.35 22.28 28.28 28.28 29.28 20.35 2 E 7 ş DYNAMIC 0.08
0.47
0.68
1.15
2.08
1.72
1.97
3.02
2.62
2.62
2.62
2.75
5.12
2.75
5.12
2.75
6.23
7.71
11.98
8.60
8.21
11.33
7.77
11.33
7.77
15.36
8.76
8.77
15.36
8.76 EQUIL PWP 394.74 416.36 437.27 458.89 479.80 501.42 522.33 968.54 980.15 1011.06 1032.68 1053.58 1075.21 1086.12 883,48 905.09 928.01 947.82 799,12 543.94 564.86 586.47 692,45 š STRESS (tsf) TOTAL STRESS (tsf) EFFECTIVE æ CSR 0.16 4.08 3.45 4.71 4.71 4.79 4.79 4.79 4.79 4.79 9.66 6.87 9.66 ž 2.86
1.1.58
0.0.85
0.0.85
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60
0.0.60 Ð Z (SS) FINES 3 SED ON BLOW COUNT CORRELATIONS

α
β
Νηφορα
CRR-1 11.60 11.62 8.66 9.77 9.77 11.29 11.29 11.30 11.33 11.33 11.33 11.33 11.33 11.35 11.35 11.36 11.37 11.37 11.38 11.39 11. FS 28.29 14.23 11.88 7.60 7.60 9.82 9.82 11.23 11.23 11.23 11.23 11.23 <u>a</u> 4 Ę (qenu) <u>s</u> ACTION POTENTIAL B L BASED ON DIRECT AP 11.11 10.91 15.30 15.31 15.60 10.53 7.58 9.32 9.32 9.32 9.32 9.32 9.32 11.04 11.34 1 26.36 13.72 13.79 12.55 5.94 7.34 9.73 8.73 2.32% 2.28% 2.219% 2.219% 2.23% 2.23% 2.20% 1.1.55% 1. 0.55% 0.55% 0.57% 0.71% 1.46% 1.43% 1.58% 1.43% 1.43% 1.43% 1.46% PLICATION 6 2 240 2 250 OF CPT 2.76
4.10
4.13
3.96
4.33
3.96
3.71
4.33
3.02
2.89
3.02
2.89
3.02
2.89
3.02
2.89
3.02
2.89
3.02
2.89
3.02
2.89
3.02
2.89
3.02
2.89
3.02
2.89
3.02
2.89
3.02
2.89
3.02
2.89
3.02
2.89
3.02
2.89
3.02
2.89
3.02
2.89
3.02
2.89 CRR_{7.5} FS V_n
(fps) 641.64
520.47
487.87
484.05
477.87
483.68
485.41
487.18
487.11
481.07
483.68
4877.11
508.60
507.25
508.60
507.28
507.88
607.87
608.51
608.60
607.87
608.51
608.60
607.87 157.91 141.22 160.57 150.53 150.53 150.53 150.53 150.53 151.00 15 BASED ON SHEAR WAVE VELOCITY

CRR_{7,3} FS_{848mk} FSavg

TABLE H-3

LIQUEFACTION POTENTIAL SPREADSHEET SUMMARY CPT-12a

170 175	165	<u>1</u> 60	35.	150	14.	14.	135	130	125	120	116	<u>-</u>		Ŕ	95	90	85	88	75	70	53	60	55	50	45	4	35	30	25	20	75	5		-	∄	DEPTH	Ī
																																				TH UNIT WEIGHT	╀
125																												_				_			(pcf)		
21.11																					_						_					_		_	-		
26.21							-						_	_									_									_				ភ	
033					_								_										_											_	(tsf)	_	
9 0 8 8 —	0.01	.01	2	0.01	.03	0.01	01	.02	8	.82	22	22	.01	92	20.00	8	22	2	<u> </u>	2	<u>9</u>	<u></u>	01	<u></u>	<u>5</u>	22	<u> </u>	<u> </u>	<u>5</u>	ğ	10.).01	<u>.</u>			Rf% DYI	1
34.00 35.27	33.22	32.51	29.85	26.87	26.32	26.18	26.06	20.04	12.11	11.30	11.77	9.98	6.11	7.43	10.56	8.75	9.21	8.40	5.73	5.47	2.24	0.91	3.20	3.07	2.12	2,33	2.01	1,89	1.63	1.10	0.81	0.25	-0.02		(tsf)	DYNAMIC PWP	
59.91 61.68	58,18	56.38	54.64	52.84	51.10	49.31	47.62	45.77	44.03	42.23	40.49	38.75	36.96	35.22	33.42	31.68	29.88	28.15	26.35	24.61	22.81	21.07	19.28	17.54	15.74	14.00	12.20	10.46	8.67	6.93	5.13	3.39	1.77		a	EQUIL. PWP	
10.60	10.29	9.97	9.66	9.35	9,04	8.72	8.42	8.09	7.79	7.47	7.16	58,3	ი 20:54	6.23	5.91	5,60	5.29	4.98	4.66	4.35	4.03	3.73	3.41	3.10	2.78	2.48	2.16	1.85	1.53	1.23	0.91	0.60	0.31		STRESS (ts		1
8.73 8.98	8.47	8.21	7.96	7.70	7.44	7.18	6.94	6,67	6.41	6.15	5.90	5.64	5.38	5.13	4.87	4.61	4.35	4.10	3.84	3.58	3.32	3.07	2.81	2.55	2.29	2.04	1.78	1.52	1.26	1.01	0.75	0.49	0.26		STRESS (tsf) STRESS (tsf)	EFFECTIVE	
0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.51	0.53	0.54	0.55	0.57	0.61	0.65	0.69	0.73	0.77	0.81	0.85	0.89	0.92	0.94	0.95	0.97	0.98	0.99		3	E C	-
0.0	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	D.06	0.06	0.06	0.06	0.06	0.07	0.07	0.07	0.07	0.08	0.08	0.09	0.09	0.10	0.10	0.11	9.1	0.12	0.12	0.12	0.12	0.12	0.12		0.16	CSR	
B 48														_														_					5.99		(<u>p</u> i	Z	l
0.35	0.35	0.36	0.36	0.37	0.38	0.38	0.39	0.40	0,41	0.41	0.42	0.43	0.44	0.45	0.47	0,48	0.49	0.51	0.53	0.54	0.56	0.59	0.61	0.64	0.68	0.72	0.77	0.84	0.92	1.03	1.21	1.52	2.63	:	=	ຼິດ	
2.95 2.87	3.01	2.90	3.20	4.51	4.89	4.04	3.58	5.62	9.57	9.31	7.92	8.81	10.78	9.57	5.95	6.37	6.31	5.73	7.24	7.97	10.02	9.54	6.20	6.47	6.23	4.93	4.59	3.79	2.90	3.35	3.59	6.74	14.71		(blows/ft)	Z 1(86)	
75.88 36.88	75.00	75.00	73.75	88	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50,00	50.00	50.00	50. 60.	50.00	50.00	50.00	<u>4</u> 8	28.50	20.00	20.00	20.00	20.00	20.00	20.00		(%)	FINES	
75 38	5.00	5.8	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.8	5.00	5.00	5.00	5.00	5.00	5.00	5.8	5.8	5.00	5,00	4.72	4.01	3.61	3.61	3.61	3.61	3.61	3.61			р	
1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.18	=======================================	1.08	1.08	1.08	1.08	1.08	1.08			φ	
00 00 12 55 14 44	8.61	8.48	8.84	10.42	10.87	9.85	9.29	11.74	16.48	16.17	14.51	15.58	17.94	16.49	12.15	12.64	12.57	11.88	13.69	14.57	17.02	16.44	12,44	12.77	12.48	10.54	9.12	7.70	6,74	7.23	7,49	10.89	19.50		(blows/ft)	N _{1(60)cs}	
0.09	0.09	0.09	0.10	0.11	0.12	0.11	0.10	0.13	0.18	0.18	0.16	0.17	0.20	0.19	0.13	0.14	0.14	0.13	0.15	0.16	0.19	0.18	0.14	0.14	0.14	0.12	0.10	0.09	0.08	0.08	0.09	0.12	0.13		Z	CRR7.6	
1,49 1,47	1.50	1.48	1.52	1.80	1.87	1.70	1.61	2.04	2.90	2.84	2.52	2.70	3.20	2.92	2.04	2.06	2.01	1.85	2.07	2.09	2.30	2.11	1.48	1.43	1.33	1.08	0.90	0.75	0.67	0.69	0.70	0.97	1.01			FSN	
7.35 7.14	7.48	7.22	7.98	11.24	12.19	10.08	8.91	14.29	24.74	24.04	20.29	22.62	27.82	24.58	15.01	16.12	15.99	14.41	18.40	20.40	25.88	24,58	15.76	16.46	15.76	12.41	11.47	9.43	7.22	8.34	8.94	17.45	51.60		(tsf)	<u>τ</u>	
4.6 66	4.20	4.09	4.55	6.48	7.07	5.90	5.26	8.55	14.92	14.61	12.48	14.07	17.51	15.63	9.68	10.56	10.59	9.72	12.63	14.23	18.42	17.73	11.62	12.49	12.28	9.95	9.52	8.08	6.56	8.00	9.30	21.16	84.71			Q:1x	
20.50	21.02	20.44	22.77	29,93	31.12	27.41	26.00	29.06	35.59	35.73	35.01	37.02	40.65	39.90	34.87	34.69	34.31	35.26	39.27	39.71	42.53	43.25	37.13	37.55	39.12	37.88	49.64	36.99	30,79	37.41	43.79	57.16	105.69		(tsf)	(Q _{c1N}) _{Ca}	1
0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.76	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75			,	
2021	0.21	0.22	0.22	0.23	0.23	0.24	0.24	0.25	0.26	0.27	0.28	0.29	0.30	0.31	0.32	0.33	0.35	0.36	0.38	0.40	0.42	0.45	0.48	0.52	0.56	0.61	0.68	0.76	0.88	1.05	1.33	1.89	4.82			ဂ္ဂ	בינים היים היים היים היים היים היים היים
3.03	3.15	ω 65	3.48	5.34	5,96	4.82	4.22	7.33	13.45	13.15	11.07	12.63	15.94	14.15	8.38	9.22	9.32	8.45	11.26	12.89	16.93	16.21	10.32	11.20	10.97	8.73	.8 34	წ	5.49	6.97	8.33	20.22	83.88			ဂ	1
2.14%	1.99%	62%	1.48%	1.46%	1.51%	1.69%	1.77%	2.05%	2.17%	2 15%	2.26%	2.14%	1.67%	1.94%	2.38%	2 09%	2.16%	2.09%	1.69%	1.44%	1.51%	1.40%	1.59%	1.60%	1.76%	1.90%	1.46%	1.28%	1.54%	1.28%	0.98%	0.82%	1.18%			7 1	100
3.03	3.02	3.04	3.00	2.86	2.83	2.89	2.92	2.77	2.49	2.50	2.57	2.51	2.45	2.51	2.67	2.63	2.63	2.66	2.60	2.59	2.46	246	2.66	2.64	2.63	2.72	2.72	2.85	2.97	2.85	2.78	2.55	2.00			त	CINTON OF CT
5.00	5.00	50	8	4.82	4.69	4.84	4.97	4.29	3.06	3.14	3.53	3.23	2.80	3.17	4.16	3.86	3.84	4.10	3.75	3,55	2.85	2.99	3.94	3.74	3.76	4.33	4.53	4.74	4.84	4.81	4.80	3.52	1.82			Kc	9
20	0.07	0.07	007	0.07	0.08	0.07	0.07	0.07	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.09	0.09	0 0 0 0 0	0.08	0.08	0 08	0.08	0.08	0,08	0.08	0.09	0.10	0.37		CONE	CRR,	
2.5	1.07	8	9	5	1.20	1.15	1.13	1.18	1.26	1.26	1.25	1.28	1.33	1.31	1.22	1.19	1.16	1.14	<u>.</u> 15	1.08	<u>.</u> .	0.99	0.88	0.84	0.81	0.76	0.74	0.69	0.64	0.67	0.71	0.81	2.98			FS _{core}	
1.27	1 28	1 28	3	46	55	1.44	1.4.	1.67	2.03	2.04	1.92	2.05	2.17	1.98	1.72	1.65	1.57	1.50	1.57		. <u>.</u>	<u>.</u> 5	1.26	1.09	:. 82	0.94	0 :	0.73	0.68	0.68	0.73	. <u>.</u>	1.23			Fsavg	

cableH-3.xls

Earthquake Magnitude, M	Magnitude Scaling Factor
5.5	2.80
6.0	2.10
6.5	1.60
7.0	1.25
7.5	1.00
8.0	0.80
8.5	0.65

The design seismic event, as discussed in Section 6.2 of this report, is a Magnitude 7.5 earthquake imposing a peak ground acceleration (a_{max}) of 0.16g. Seed and Idriss (1971) formulated the following equation for the calculation of the CSR induced by the earthquake for the depth:

$$CSR = 0.65 \bullet (a_{\text{max}} / g) \bullet \left(\frac{\sigma}{\sigma'}\right) \bullet r_d$$

The factor r_d was computed from the following relations:

$$r_d=1.0-0.00765(z)$$
 for $z < 9.15m$
 $r_d=1.174-0.0267(z)$ for $9.15 < z < 23m$
 $r_d=0.744-0.008(z)$ for $23 < z < 30m$
 $r_d=0.5$ for $z > 30m$

where z is the depth below the ground surface in meters.

The vertical total stress (σ_v) and vertical effective vertical stress (σ_v) were computed from average unit weights from laboratory testing and from equilibrium pore pressure conditions in the tailings as assessed from the CPTU.

The cyclic resistance ratio (CRR) was assessed from the following methods;

Correlation of CPT data with standard penetration resistance blow counts and use of empirical blow count versus CRR curves. The curve for CRR_{7.5} based on SPT blow count is represented mathematically by the equation:

$$CRR_{7.5} = \frac{0.048 - 0.004721x + 0.0006136x^2 - 0.00001673x^3}{1 - 0.1248x + 0.009578x^2 - 0.0003285x^3 + 0.000003714x^4}$$

where x is the blow count estimated from the cone tip resistance corrected for fines content (Youd and Idriss, 1997).

▶ Direct application of cone tip resistance and use of recently developed empirical cone tip resistance versus CRR_{7.5} curves. The curve for CRR_{7.5} based on cone tip resistance is represented mathematically by:

$$If(q_{c1N})_{cs} < 50 \longrightarrow CRR_{7.5} = 0.833[(q_{c1N})_{cs} / 1000] + 0.05$$

If
$$50 \le (q_{c1N})_{cs} < 160 \longrightarrow CRR_{7.5} = 93[(q_{c1N})_{cs}/1000]^3 + 0.08$$

where $(q_{c1N})_{cs}$ is the stress corrected and normalized (stress with respect to atmospheric pressure) cone tip resistence which is also corrected for fines content (Youd and Idriss, 1997).

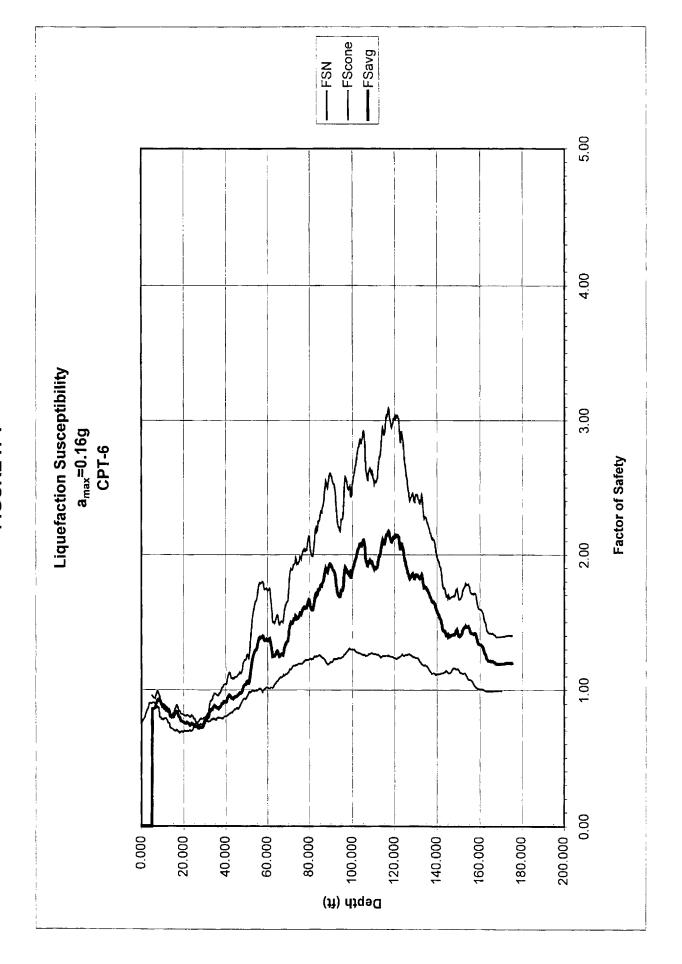
▶ Use of shear wave velocity (for sounding CPT-9) to estimate CRR_{7.5} based on recently developed curves. The curves for CRR_{7.5} based on shear wave velocity is represented mathematically by:

$$CRR_{7.5} = 0.03 \left(\frac{V_{S1}}{100}\right)^2 + \frac{0.9}{\left(V_{S1c} - V_{S1}\right)} - \frac{0.9}{V_{S1c}}$$

where V_{S1} is the stress corrected and normalized shear wave velocity and:

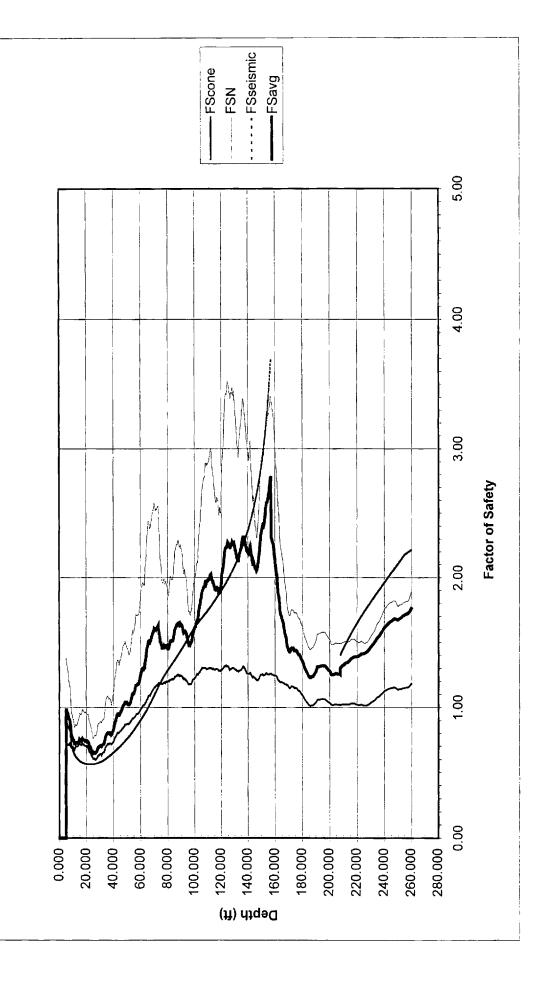
 $V_{\rm slc}$ =220 m/s for sands and gravels with fines contents less than 5%

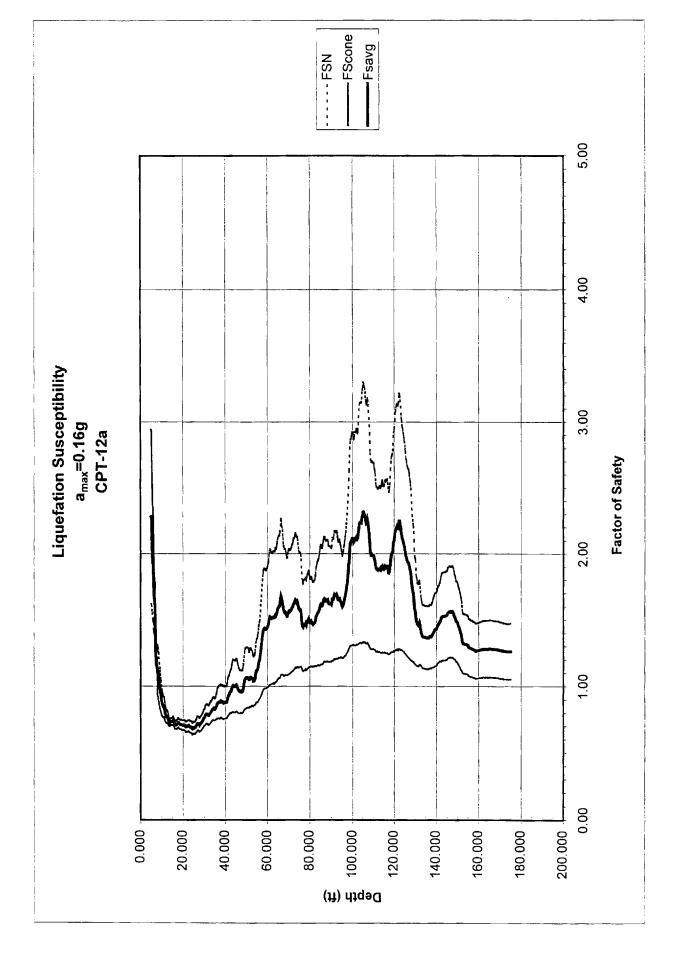
 $V_{\rm s1c}$ =210 m/s for sands and gravels with fines contents of about 20%


 $V_{\mbox{\scriptsize slc}}{=}200$ m/s for sands and gravels with fines contents greater than 35%

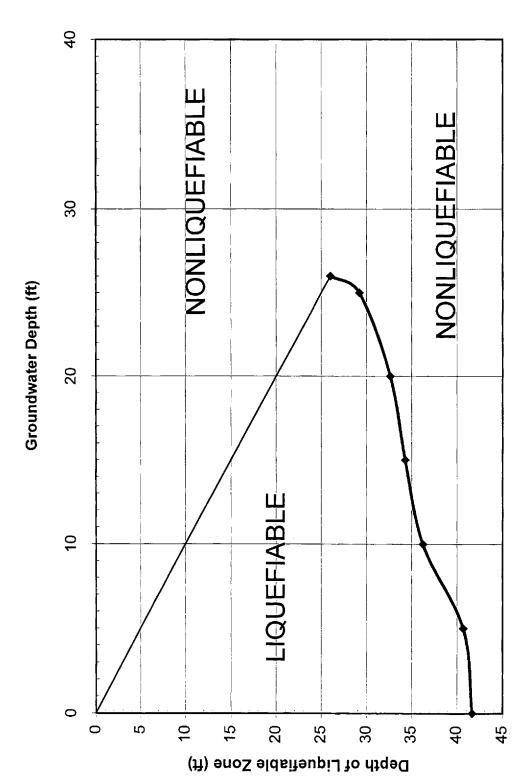
Where V_{slc} is the critical value of V_{sl} , which separates contractive and dilative behavior (Youd and Idriss, 1997).

The shear wave velocity method consistently yields the most conservative CRR. Also note that the middle term goes to infinity as V_{SI} approaches V_{slc} and then becomes very negative at slightly higher values of V_{SI} .


-4-


The results of the liquefaction potential analyses for CPT soundings located near the embankments (i.e. CPT-6, CPT-9 and CPT-12) are shown graphically in this appendix Figures (H-1 through H-3) and the locations of the soundings are shown on Drawing 1. It should be noted that these boring locations are all located outside the footprints of the embankments and therefore do not have the benefit of consolidation from the embankment materials. As a result, the analyses provided herein are considered conservative with respect to liquefaction potential of the foundation materials upon which the upstream raises are constructed. These Figures show that the upper 40 to 60 feet of tailings have Factors of Safety (FOS) below 1.0 indicating liquefaction during the design earthquake. liquefaction potential has been assessed for the conditions encountered at the time of the site investigation. As the tailings drain and the phreatic level lowers, the zone of potential liquefaction is reduced for two reasons. First, the unsaturated tailings above the water table are not susceptible to liquefaction; and secondly, the lower phreatic surface increases the effective stress and limits the depth of potential liquefaction. Figures H-4 and H-5 indicate that if the phreatic surface is lowered to 33 feet below the tailings surface at the Main Dam (27 feet for the Levee Buttress) the tailings will not be susceptible to liquefaction. Based on the draindown modeling presented in Section 7.0, the embankments will not be susceptible to liquefaction after one year of draindown after the supernatent solution has been removed. The impact of liquefaction on the embankment stability is assessed utilizing residual strength values for the liquefied portion of the tailings (see Appendix H-2).

Liquefaction Susceptibility


a_{max}=0.16g CPT-9

NONLIQUEFIABLE NONLIQUEFIABLE **Liquefaction Sensitivity Groundwater Depth (ft)** Main Dam LIQUEFIABLE Depth of Liquefiable Zone (ft)

LIQUEFACTION POTENTIAL SPREADSHEET SUMMARY CPT-6

TABLE H-1

	_	-				7-											_							_					T		_
145 	146	135	130	125	120	115	110	<u>ફ</u>	8	8	9	ß	80	75	70	ន	8	8	50	8	4	္ဌ	30	25	20	5	6	(J)	(1)	DEPTH	
125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	(pcf)	UNIT WEIGHT	
29.06	38.32	46.33	51.05	56.59	66,62	59.98	48.63	54.76	43.69	37.12	47.12	39.29	33.29	30.59	25.88	23.01	30.77	30.75	19.29	15,41	15.29	16.49	12.39	11.15	11.31	10.09	9.52	7.95	(tsf)	ဝူ	
32.09	40.28	47.64	51.93	57.57	67.64	60.91	49.77	55.48	44.90	38.43	47.74	40.02	33.96 8	31.43	26.90	23.92	31.28	31.02	19.74	15.93	15.69	16.77	12.64	11.33	14.1	10.18	9.58	7.96	(tsf)	Ö	
0.40	0.61	0.66	0.68	0.82	1.03	<u>-</u> 2	0.88	0.81	0.60	0.54	0.67	0.55	0.48	0.37	0.29	0.24	0.29	0.29	0.16	0.13	0.14	0.13	0.09	0.08	0.08	0.06	9. 2.	0.06	(tsf)	Ţì	-
0.01	0.02	0.02	0.01	0.02	0.02	0,02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01	9.9	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.01		RF%	
20.20	13.09	8.68	5.90	6.56	6.76	6.21	7.64	4.81	8.03	8.72	4 14	4.82	4.47	5.58	6.84	6.07	3.42	1.79	3.02	3.47	2.67	1.86	1.67	1.22	0.85	0.63	0.41	0.10	PWP (tsf)	DYNAMIC	
67.20	63.35	59.63	55.78	52.05	48.20	44.48	40.75	36.91	33.18	29.68	27.39	25.82	24.33	22.78	21.29	19.75	18.25	16.71	15.21	13.67	12.18	10.63	9.14	7.59	6.10	4.56	3.06	1.52	PWP (ft)		
9.07	8.75	,8, 4 .	B. 13	7.82	7.50	7.19	6.88	6.57	6.26	5.94	5.63	5.32	5.01	4.69	4.38	4.07	3.76	3.44	3.13	2.81	2.51	2.19	1.88	1.56	1.26	0.94	0.63	0.31	STRESS (tsf) STRESS (tst	TOTAL	
6.97	6.77	6.58	6.38	6.19	6.00	5.80	5.61	5.42	5.22	5.02	4.78	4.51	4.25	3.98	3.72	3,45	3.19	2.92	2.66	2.39	2.13	1.86	1.60	1.33	1.07	0.80	0.53	0.27	STRESS (tsf	EFFECTIVE	
0.07	0.07	0.07	0,07	0.07	0.07	0.06	0.06	0.06	0.06	0.06	0.06	0.07	0.07	0.07	0.07	0.08	0.08	0.09	0.09	0.10	0.10	0.11	0,11	0.12	0.12	0.12	0.12	0.12	0.16	CSR	
0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.51	0.52	0.54	0.55	0.57	0.60	0.64	0.68	0.73	0.77	0.81	0.85	0.89	0.92	0.94	0.95	0.96	0.98	0.99	7		
11.67	15.30	18.41	20.15	22.07	25.71	23.31	19.13	21.34	17.00	14.52	18.38	15.45	13.16	12.09	10.29	9.16	12.09	12.09	7.72	6.19	6.12	6.60	4.97	4.45	4,50	4.03	3.81	3,06	(blows/ft.)	Z g	
0.39	0.40	0.40	0.41	0.41	0.42	0.43	0.43	0.44	0.45	0.46	0.47	0.48	0.50	0.52	0.53	0.55	0.58	0.60	0.63	0.67	0.71	0.76	0.82	0.90	. <u>.</u>	1.17	1.45	2.59		ភិ	QUEFACI
4.55	6.05	7.38	8.20	9.13	10.81	9 93	8.30	9.44	7.63	6,68	8.65	7.46	6.57	6.22	5.48	5.06	7.03	7.23	4.87	4.11	4.34	4.98	4.02	4.04	4.50	4.70	5.45	6,50	blows/ft)	N 1(60)	ION POTER
50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50,00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	45.50	30.00	20.00	20.00	20.00	20.00	20.00	20.00	(%)	FINES	LIQUEFACTION POTENTIAL BASED ON BLOW COUNT CORRELATIONS
5.00	5.00	5.00	5.00	5.00	5,00	5.00	5.00	8	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	4.79	4.08	3.61	3.61	3.61	3.61	3.61	3.61		р	ED ON BL
1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.18	1.12	.68	.1 88	 8	28	1.08	1.08	_	ъ	DAY COON
10.46	12.26	13.86	14.85	15.96	17.97	16.92	14.97	16.33	14.15	13.02	15.38	13.95	12.88	12.47	11.58	11.08	13.44	13.68	10.84	9.93	9.91	9.67	7.95	7.98	8.47	8.69	9.50	10.63	-1=		COKKEL
0.11	0.13	0.15	0.16	0.17	0.20	0.19	0.16	0.18	0.16	0.14	0.17	0.15	0.14	0.14	0.13	0.12	0.15	0.15	0.12	0.11	0.11	0.11	0.09	90.0	0.10	0.10	0.10	0.12	z	CRR,	NOIL
1.68	98	2.25	2.44	2.65	3.04	2.88	2.56	2.90	2.54	2.25	2.60	2.31	2.08	28	1.71	1.53	1.74	1.69	1.26	1.10	2	0.98	0.79	0.79	0.82	0.82	0.87	0.96		FS	
11.33	15.16	18.58	20.78	23.41	28.01	25.55	21.11	24.23	19.59	17.09	22.17	18.98	16.63	15.75	13.79	12.72	17.90	18.39	12.17	10.23	10,86	12.44	10.01	10.15	11.31	11.76	13.60	17.12	(ts.)	₹.	
6.68	9.01	11.12	12.53	14.23	17.16	15.76	13.14	15.24	12.40	10.98	14.37	12,46	11.11	10.68	9.51	8.94	12.91	13.44	9.14	7.88	8.65	10.21	8.50	9.17	10.71	12.04	14.84	14.69		Q _{C IN}	
30.50	34.67	39.13	40.00	37.44	37.74	37.73	36.40	36.35	33.24	31.06	36.57	37.08	36.26	34.93	35.09	36.36	40.55	41.24	37.45	35.47	37.14	42.90	39.66	35.92	38.71	48.09	59.59	42.53		(q _{cN})c	LIQUEFAC
0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75			TION POT
0.24	0.25	0.25	0.26	0.27	0.27	0.28	0.29	0.29	0.30	0.31	0.32	0.34	0.35	0.37	0.39	0.41	24	0.47	0.50	0.54	0.59	0.66	0.74	0.85	<u>.</u>	1.27	1.67	1.97		ဂူ	LIQUEFACTION POTENTIAL BASED O
5.29	7.42	9.40	10.76	12.51	15.49	14.11	11.59	13.61	10.96	9.59	12,84	11.00	9.66	9.33	8.28	7.71	11.56	12.04	7.87	6.71	7.47	9.03	7.37	8. 06	9.64	11.06	14.60	24.62		a	SED ON D
1.84%	2.09%	1.92%	1.84%	1.90%	2.01%	2.38%	2.40%	2.02%	1.85%	2.01%	1.98%	1.89%	1.95%	1.80%	1.62%	1.48%	1.44%	1.40%	1.22%	1.29%	1.32%	1.01%	1.10%	1.17%	0.99%	0.82%	0.55%	1.10%		'n	RECT APP
2.85	2.71	2.61	2.57	2.52	2.42	2.43	2.50	2.47	2.64	2.69	2.50	2.56	2.62	2.69	2.74	2.76	20.54	2.61	2.77	2.84	2.78	2.71	2.82	2.84	2.76	2.70	2.64	2.37	-	ក	N DIRECT APPLICATION OF CPT
4.76	4.25	3.91	3.66 6	3.19	2.69	2.79	3.14	3.03	3.61	3.70	3.01	3.46	3.82	3.97	4.24	4.50	3.89	3.75	4.48	4.73	4.63	4.45	4.76	4.51	4.23	4.40	4.25	2.93		্ন	OF CPT
0.08	0.08	0.08	0.08	0.08	0,08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0,08	0.08	0.08	0.08	0.08	0.08	0.08	0.09	0.08	0.08	0.08	0.09	0.11	0.09	CONE	CRRys	
:: ::	1.17	1.24	1.26	1.24	1.25	1.26	1.26	1.30	1.24	1.20	1.25	1.23	1.19	1.14	1.07	1.02	1.00	0.95	0.87	0.81	0.78	0.79	0.74	0.70	0.71	0.78	0.91	0.76	-	FS	
1.44	1.57	1.74	1.83	1.97	2.11	2.06	1.98	1.99	1,93	1.82	1.83	1.76	.64	1.55	1.40	1.30	1.34	1.28	1.09	0.97	0.92	0.86	0.78	0.74	0.78	0.83	0.87			FSavg	

TABLE H-2

LIQUEFACTION POTENTIAL SPREADSHEET SUMMARY CPT-9

																							····												· -							
200	195	190	185	é	175	170	165	6 0	155	150	145	1 8 0	135	130	126	120	115	110	105	100	95	8	85	8	76	70	65	6	S	50	15	3	<u>3</u>	30	25	20	5 5	5	u	_	(#)	HL43
125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125,00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00		(pcf)	DEPTH UNIT WEIGHT
29.61	31.28	27.57	24.95	30.84	34.11	32.88	48.51	77.48	84.22	70.23	53.91	66.26	73.70	73.66	77.47	51.64	52.00	57.12	46.18	29.66	24.04	36.51	34.12	28.81	34.15	46.64	43.56	34.83	27.89	25.72	24.36	17.28	17.11	11.95	8.00	12.85	11.78	8.68	10.52		(tsf)	ą
35.98	37.46	33.28	30.16	36.39	39.90	38.43	53.13	80.30	86.37	72.49	56.21	67.80	74.72	74.97	78.63	53.34	53.38	58.27	47.48	31,46	25.95	37.44	35.08	28.00	34.82	47.05	43,92	35.22	26.28	26.01	24.64	17.74	17.41	12.21	8.31	13.02	11.88	8.73	10.53		(tsf)	લ
0.42	0.42	0.34	0.34	0.43	0.47	0.41	0.58	0.89	0.98	0.88	0.70	0.91	1,04	1.10	1.26	1.00	0.89	1.01	0.85	0,45	0.43	0.60	0.54	0.45	0.50	0.55	0.50	0.38	0.30	0.27	0.24	0.19	0.16	0.13	0,08	0.06	0.05	0.04	0.05		(tsf)	P
0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	9.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0,01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.01			Ŗ,
42.49	41.24	38.07	34.71	36.99	38.57	36.85	30.78	18.80	14.34	15.02	15.36	10.27	6.76	8.75	7.71	11.33	9.22	7.66	8.69	11.99	12.71	6,23	6.41	7.90	5.12	2.75	2.37	2.62	2,62	1.99	1.88	3,02	1.97	1.72	2.08	1.15	0.69	0.47	0.09		PWP (tsf)	DYNAMIC
103.88	99.95	95.70	91.45	86.96	82.57	78.03	73.65	69.19	64.95	80.70	58.71	52.76	49.11	45.54	42.28	39.13	36.30	33.69	31.21	29.04	27.01	25.24	23.62	22.22	20.84	19.84	18.52	17.92	17.05	16.24	15.38	14.51	13.51	12.41	11.09	9.58	7.73	5.59	2.97		(#	EQUIL. PWP
1223.71	1202.79	1181.18	1160.26	1138.65	1117.74	1096.12	1075.21	1053.59	1032.68	1011.06	990.15	968.54	947.62	926.01	905.09	883.48	862.56	841.65	820.03	799.12	777.50	756.59	734,98	714.06	692,45	671.53	649.82	629.00	607.39	586,47	564.86	543.94	522,33	501.42	479.80	458.89	437.27	416,36	394.74			٠ ۲
12.50	12.20	11.88	11.57	11.25	10.94	10.63	10.32	10.00	9.69	9.38	9.07	8.75	8.44	6.13	7.82	7.50	7.19	6.88	6.57	6.26	5.94	5.63	5,32	5,01	4,69	4.38	4.07	3.76	3,44	3.13	2.81	2.51	2.19	1.88	1.56	1.26	0.94	0.63	0.31		STRESS (tsf)	TOTAL
9.26	9.08	8.89	8.72	8.54	8.37	8.16	8.02	7.84	7.67	7.48	7.30	7.10	6.91	6.70	6.50	6.28	5.06	5.83	5.59	5.35	5.10	4.85	4.58	4.32	4.04	3.76	3.48	3.20	2.91	2.63	2.33	2.05	1.77	1.49	1.22	0.96	0.70	0.46	0.22		STRESS (tsf)	EFFECTIVE
0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.51	0.52	0,54	0.55	0.57	0.60	0.64	0.68	0.73	0.77	0.81	0.85	0.89	0.92	0.94	0.95	0.98	0.98	0.99		_	e l
0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.06	0.06	0.06	0.06	0.08	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.07	0.07	0.07	0.08	0.08	0.09	0.10	0.10	0.11	0.11	0.12	0.13	0.13	0.14	0.14	0.15		0.16	CS R
11.89	12.56	11.07	10.02	12.39	13.70	13.21	19.25	30.21	32.51	27.22	21.10	25.68	28.51	28.36	29.74	20.20	20.34	22.20	18.08	11.78	9.59	14.40	13,48	10.71	13.50	18.10	16.85	13,62	10.99	10.19	9.65	6.85	6.79	4.79	3.21	5,14	4.71	3,46	4.08		(blows/ft.)	Z
0.34	0.34	0.34	0.35	0.35	0.36	0.36	0.36	0.37	0.37	0.38	0.38	0.39	0.39	0,40	0.40	0.41	0.42	0.43	0.44	0.44	0.46	0.47	0.48	0.50	0.51	0.53	0.55	0.58	0.60	0.64	0.67	0.72	0.78	0.85	0.94	1.06	1.25	1.58	2.88			C. C.
4.02	4.29	3.82	3,49	4.36	4.67	4.75	7.01	13.11	12.07	10.23	B.D3	9.94	11.13	11.29	11.99	8.28	8.52	9,45	7.85	5.21	4.39	6.76	6.46	5,31	6.93	8.61	9.25	7,84	6.59	6.53	B.45	4.89	5.25	3.98	3.05	5.55	5.69	5.68	10.89		(blows/ft)	N ₍₈₀₎
75.00	75.00	75,00	75.00	75.00	75.00	75.00	75.00	75,00	75.00	62,08	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	\$0.00	50.00		(%)	CN Niger FINES a B Nigerier CRRs.
5.00	5.00	5.00	5.00	5.00	5,00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.08	5.00	5.00	5.00	5.00	5.00	5,00	5,00	5.00	5.00	5.00	5.00			a ON BL
1.20	120	1.20	120	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20		_	β
9.83	10.15	9.58	9,18	10.24	10.85	10.70	13,41	18.33	19.48	17.27	4.64	16.93	18.36	18,55	19.38	14.93	15.22	16.34	14.42	11.26	10.26	13.10	12.75	11.37	13.32	16.53	16,10	14.41	12.91	12.83	12.74	10.87	11.30	9.77	8.66	11.66	11.83	11.82	18.07		~	N (188)
0.11	0.11	0.10	0.10	0.11	0.12	0.12	0.15	0.20	0.21	0.19	0.16	0.19	0.20	0.21	0.22	0.18	0.18	0.18	0.16	0.12	0,11	0.14	0.14	0.12	0.14	0.19	0.18	0.16	0.14	0.14	0.14	0.12	0.12	0.11	0.10	0.13	0.13	0.13	0.21		z	CRR7.s
1.52	1.58	1.50	1.45	1.62	1.73	1.72	2.17	3.02	3.27	2.91	2.47	2.96	3,22	3.34	3.53	2.63	2.67	2.81	2.58	2.01	1.80	2.24	2.14	1.86	2.10	2.57	2.36	1.87	1.58	1.46	1.37	1.11	1.08	0.89	0.76	0.97	0.95	0.91	1.38			Fis
10.01	10.68	9.50	8.70	10.87	12.13	11.82	17.65	28.49	31.26	26.39	20.51	25.64	28.78	29.33	31.22	21.16	21.77	24.30	20.03	13.12	 8	17.11	16.34	13.29	17.54	24.76	23.91	20.08	16.73	16.48	16.27	12.36	13.22	9.92	7.60	13,88	14.24	14.23	28.29		[[S]	2
5.50	5.90	5.27	4.85	6.10	6.84	6.70	10.06	16.33	18.00	15.29	11.96	15.08	16.99	17.49	18.73	12.80	13.31	14.98	12.47	8.25	7.03	11.08	10.68	.cs	11.88	17.05	16.74	14.39	12.25	12.47	12.57	9.88	10.85	8.52	7.01	13.66	14.86	14.63	26.98		_	<u>₹</u>
27.20	29.18	26.36	24.26	30.10	33,80	33.48	35.83	38.98	39.01	37.75	35.14	36.75	38.31	37.92	38.96	35.62	35.67	35.51	34.80	29.93	25.29	34.76	35.31	35.40	38.24	41.12	39.98	39.05	38.54	39.68	39.31	34.89	37.04	32.91	31.39	50.62	57.18	56.32	61.22	_	(tsf)	IQUEFACTION POTENTIAL BASED ON DIRECT APPLICATION OF CPT (Qana)a
0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75		0.75	0.75	0.75	0.75	0.75	0.75	0.66	0.53			n ON POIEM
0.20	0.20	0.20	0.21	0.21	0.21	0.22	0.22	0.22	0.23	0.23	0.23	0.24	0.24	0.25	0.26	0.26	0.27	0.28	0.29	0.30	0.31	0.32	0.33	0.35	0.37	0.39	0.41	0.44	0.47	0.51		0.61		0.78	0.01	1.10	1.41	1.75	2.92	_		C _Q BASE
4.36	. 77	4.09	3.62	4.97	5.80	5.86	8.88	14.82	16,39	13.74		_	15.28		17.12		11.83	13.48	11.04	7.00	5.85	9.65	9.32	7.58	10.53		15.31	13.00				8.70			5.94	12.55	13.79	13.72 0	26.36 0	_		a DON DIRE
1.72%	1,61%	1.64%	1.83%	1.69%	1.62%	1.47%	1,36%	1.37%	1.37%	1.65%	1.81%	1.85%	1.96%	2.01%	2.23%	2.49%	2.19%	2.28%	2.32%	1.93%	2.27%	2.31%	2.25%	2.24%	1.93%	1.63%		1.45%		_	_				1.46%	0.71%	0.55%	0.63%	0.64%	\dashv		F
\vdash	2.87	2.93	2.97	2.65	2.77	2.80	2.66	2.43	2.40	2.50	2.64	2.53	2.44	2.43	2.36	2.51	2.50	2.45	2.54	2.77	2.81	2.61	2.63	2,69	2.58	2.44	2.47	2.53				2.73			2.93	2.72	2.67			\dashv		F ON OF
4.97	4.97	5.00	5.00	4.97	4.97	5.00	2	2.60	2.53	3.14	3.72	3.18	2.74	2.77	2.55	3.29	3.12	2.73	3.33	4.23	4.49	3,70	3.87	4.36	3.67										4.74	4.10	4.16	4.23	2.78	\dashv		`
0.07	0.07	0.07	0.07	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08			0.08	0.08	0.08	0.07	0.07	0.08	0.08	0.08	80.0	0.08						0.08		0,08	0.08	0.09	0.10		0.10			CRR _{7,s}
1.04	ŝ	2	1.02	1.10	1.15	1.15	1.19	1.24	1.25	1.25	1.23	1.26	1.29	1.29	1.32	1.28	1.29	26	1.29	1,23	1.19	1.25	1.23	8	1.18	1.15	1.07	0.99	0.82	0.87	0.82	0.74	0.71	0.64	0.60	0.71	0.72	0.69	0.70	_		FS .
711.43	702.80	693,74	684.85	675.57	666.51	657.10	647.87	638.53	629.41	620.01	610.96	601.67	592.76	583.65	574.83	566,05	557.58	549.26	540.82	532,83	524.78	517.19	509.60	502.51	495.48	489.02	482.74	477.11	471.85	467.41	463,66	461.07	459.81	460.49	464.05	471.87	487.95	520.47	641.64		(fps)	V _m
220.17	214.11	217.44	218.19	205.20	196,00	194.86	178.19	154.03	150.27	157.45	167.17	156.45	146.64	145.22	138.58	149.21	145.50	139.46	145.49	160.76	163.43	144.58	143.98	147.50	136.43	124.83	126.02	128.32	132.73	131.08	131.20	142.69	139.51	150.53	160.57	141.22	143.07	153.33	157.91			N POTENTIAL
0.08	0.07	0.05	0.02	0.04	-0.31	-0.97	-0.49	0.30	0.22	0.19	0.17	0.15	0.14	0.13	0.12	0.12	0.11	0.15	0.10	0.10	90.0	0.06	0.09	0.09	0.08	0.08	0.08	0.08	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.08	0.09	0.13		≶	CRR74
1.18	0.99	0.72	0.30	-0.59	4.53	-14.32	-7.20	4.47	3.37	2.86	2.57	2.36	2.21	2.09	1,89	1.90	1.82	1.75	1.68	1.62	1.53	1.44	1.36	1.29	1.20	1.10	0.99	0.90	0.83	0.76	0,70	0.65	0.61	0.58	0.56	0.56	0.59	0,86	0.91		ļ	LIQUEFACTION POTENTIAL BASED ON SHEAR WAVE VELOCITY V: CRR, FSavg
1.28	1.31	1.28	1.27	1.35	1.42	1.50	1.71	2.17	2.48	2.31	2.16	2.22	2.22	2.22	2.21	2.03	1.94	1.86	1.83	1.62	1.55	1.61	1.57	1.49	1.53	1.56	<u>.</u>	1.26	<u>=</u>	1.03	0.96	0.86	0.77	0.70	0.68	0.72	0.74	0.81		1		FSavg

ublel3-2.sk

TABLE H-3

LIQUEFACTION POTENTIAL SPREADSHEET SUMMARY CPT-12a

The part The part
Column C
Column C
Part
Part
Primate Pare Total Primate Pare Total
STREES May
STREES May
CSR Name Property Propert
CSR Name Property Propert
Corn Na
Nat CAUSES CAN SECON
Characterioris porterioris porterioris Characterioris porterioris Characterioris porterioris Characterioris porterioris Characterioris Characterior
ANSED ON NEOW ICOUNTECLOPRISEL FS4,
ANSED ON NEOW ICOUNTECLOPRISEL FS4,
ANSED ON NEOW ICOUNTECLOPRISEL FS4,
Color FSw
Color FSw
Color FSw
Color FSw
Correction Part P
CAN CRR10N POTENTIAL BASED ON DIRECT APPLICATION OF CPT CAN
CR.W. S. CA CA CA CA CA CA CA C
ACTION POTENTIAL BASED ON DIRECT APPLICATION OF CPT
BASED ON DIRECT APPLICATION OF CPT
BASED ON DIRECT APPLICATION OF CPT
ON DIRECT APPLICATION OF CPT F C KC CRR ₇₋₈ FS _{come}
F Ic Kc CRR, J FS _{00m} 1.18% 2.00 1.82 0.10 0.84 0.82% 2.55 3.52 0.10 0.84 0.88% 2.78 4.80 0.08 0.67 1.28% 2.85 4.74 0.08 0.69 1.46% 2.72 4.83 0.08 0.84 1.90% 2.64 3.74 0.08 0.84 1.59% 2.64 3.74 0.08 0.84 1.60% 2.64 3.74 0.08 0.84 1.59% 2.64 3.74 0.08 0.84 1.60% 2.64 3.74 0.08 0.84 1.69% 2.66 3.94 0.08 0.84 1.69% 2.63 3.75 0.08 0.84 1.69% 2.63 3.16 0.08 1.19 2.10% 2.63 3.16 0.08 1.19 1.99% 2.63 3.17 0.08
CCRR _{1.5} FS _{Dom} CCNRE 0.37 2.98 0.10 0.81 0.08 0.69 0.08 0.81 0.08 0.81 0.08 0.84 0.08 0.81 0.08 0.84 0.08 0.84 0.08 1.16 0.08 1.16 0.08 1.16 0.08 1.16 0.08 1.16 0.08 1.17 0.08 1.18 0.08 1.19 0.09 1.25 0.08 1.26 0.08 1.26 0.08 1.26 0.08 1.26 0.08 1.26 0.08 1.26 0.08 1.26 0.08 1.26 0.08 1.26 0.08 1.26 0.08 1.26 0.08 1.26 0.08 1.26 0.08 1.26 0.08 1.26 0.08 1.26 0.09 1.19 0.09 1.19 0.09 1.19 0.09 1.19 0.09 1.19 0.09 1.19 0.09 1.19 0.09 1.19 0.09 1.19 0.09 1.19
CCRR _{1.5} FS _{Dom} CCNRE 0.37 2.98 0.10 0.81 0.08 0.69 0.08 0.81 0.08 0.81 0.08 0.84 0.08 0.81 0.08 0.84 0.08 0.84 0.08 1.16 0.08 1.16 0.08 1.16 0.08 1.16 0.08 1.16 0.08 1.17 0.08 1.18 0.08 1.19 0.09 1.25 0.08 1.26 0.08 1.26 0.08 1.26 0.08 1.26 0.08 1.26 0.08 1.26 0.08 1.26 0.08 1.26 0.08 1.26 0.08 1.26 0.08 1.26 0.08 1.26 0.08 1.26 0.08 1.26 0.08 1.26 0.08 1.26 0.09 1.19 0.09 1.19 0.09 1.19 0.09 1.19 0.09 1.19 0.09 1.19 0.09 1.19 0.09 1.19 0.09 1.19 0.09 1.19
FS ₀₀ 2.98 0.84 0.67 0.64 0.74 0.69 0.74 0.98 1.16 1.16 1.126 1.1
Fsavg 1.23 1.00 0.68 0.68 0.68 0.73 0.68 0.73 0.68 1.51 1.51 1.55 1.57 1.57 1.57 1.57 1.58 1.72 1.92 2.04 2.03 1.44 1.52 1.48 1.38 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.2

APPENDIX H-2 POST-LIQUEFACTION STABILITY ANALYSIS

Subject	Mercur Mine,
	Reservation Canyon Tailings
Post- E	arthquake Residual Strength
Based	on Seed & Harder, 1990

Made by	TJW
Checked by	SV
Approved by	BRB

Job No	983-2344.002-3
Date	1/7/99
Sheet No	1 of 3

OBJECTIVE:

Liquefaction analyses at the Reservation Canyon Tailings Facility indicate that a portion of the tailings are susceptible to liquefaction during the design seismic event. The post liquefaction stability of the embankment was assessed to evaluate if there would be significant consequences to liquefaction. The strength of the liquefied tailings was assessed from established procedures presented by Seed and Harder, 1990.

METHOD:

The factor of safety against liquefaction is computed using methods in Youd and Idriss, 1997.

➤ If FS<1.0 Soils will liquefy. Use undrained residual strength assessed from Seed and Harder, 1990, Figure 11. The cone tip resistance is correlated to blow count (N₁₍₆₀₎) values using curves provided by Seed and De Alba, 1986. The Seed and De Alba curves are modified in terms of soil type index (Ic) rather than mean grain size. The Ic is related to mean grain size as follows:

Mean Grain Size (mm)	Soil Type Index (Ic)
1	1
0.35	1.3
0.15	1.6
0.055	1.9
0.025	2.2
0.01	2.5

 $N_{1(60)}$ is corrected for fines content (i.e. $N_{1(60)cs}$) as assessed from laboratory testing using recommendations by Seed and Harder, 1990.

> If 1.0<FS<1.4 soils will develop some residual excess pore pressure. The relationship presented by Marcuson and Hynes, (1989), Figure 10, which relates the residual excess pore pressure ratio as a function of the factor of safety was used. In order to model the residual excess pore pressure ratio using the computer software program XSTABL, a reduced friction angle was applied for tailings with 1.0<FS<1.4. The static total stress friction angle (φ) was estimated from:

$$\phi = \arctan\left(\frac{Su}{\sigma_{v}}\right)$$

where:

Su=undrained shear strength assessed from CPT data σ_v '=vertical effective stress based on in situ pore pressures

The reduced friction angle (ϕ_r) was computed so that the shear strength, assuming in situ stress conditions, was equal to the shear strength assuming partial excess pore pressures utilizing the static total stress friction angle (ϕ) (see attached Reduced Friction Angle Worksheets).

➤ If FS>1.4 Use in situ shear strength as assessed from CPT data.

CPT soundings CPT-9 and CPT-12 are located at the Main Dam and Saddle Dam, respectively, maximum cross-sections. The liquefaction susceptibility and the post liquefaction stability are based on CPT data from these soundings.

For CPT-9

0'-60'

FS<1.0

Subject	Mercur Mine,
_	Reservation Canyon Tailings
Post- E	arthquake Residual Strength

Based on Seed & Harder, 1990

Made by	TJW
Checked b	y SV
Approved	by BRB
''	

Job No	983-2344.002-3
Date	1/7/99
Sheet No	2 of 3

Determine strength from

Figure 11. Subdivide into three, 20 foot thick sublayers. From laboratory testing typical fines content 35 %.

Sublayer Interval	N ₁₍₆₀₎ is corrected for fines content	Post liquefaction Undrained Shear Strength (psf)
0 ft. – 20 ft.	11	400
20 ft. – 40 ft.	7	200
40 ft. – 60 ft.	9	250

60'-100'

1.0<FS<1.4

The average undrained shear strength over this interval = 4786 psf The vertical effective stress @ 80 ft. (i.e. mid height) =9416 psf

So:

 $\phi = \arctan(4786/9416)$

φ=27 degrees

The average factor of safety over this interval is taken to be 1.2. The corresponding excess residual pore pressure (Ru) from Marcuson et.al. (1989) is 0.3. The reduced friction angle (\$\phi\$r) for the interval from 60' to 100 is 21 degrees (see attached Reduced Friction Angle Worksheet).

φr=21 degrees

100'-160'

FS>1.4

The average undrained shear strength from CPT data is 9600 psf. Use 100% of that value since this material is dense, dilative lower subaerial tailings.

Su=9600 psf

160'-260

1.0<FS<1.4

Interval consists of subaqueous tailings (ST). Material has high fines content but low plasticity. May be subject to partial pore pressure increase.

The average undrained shear strength over this interval = 3414 psfThe vertical effective stress @ 210 ft (i.e. mid height) = 20,332 psf

So:

 $\phi = \arctan(3414/20,332)$

φ=9 degrees

The average factor of safety over this interval is taken to be 1.3 (see Figures H-1 through H-3). The corresponding excess residual pore pressure (Ru) from Marcuson et.al. (1989) is 0.2. The reduced friction angle (ϕ r) for the interval from 160' to 260 is 7.4 degrees (see attached Reduced Friction Angle Worksheet). ϕ r=7.4 degrees

For CPT-12

0'-60'

FS<1.0

Determine strength from Figure 11. Subdivide into three, 20 foot thick sublayers. From laboratory testing typical fines content 35 %. Equivalent blow counts are virtually the same as those determined in CPT-9. For consistency use same values.

Sublayer Interval	N ₁₍₆₀₎ is corrected for fines content	Post liquefaction Undrained Shear Strength (psf)
0 ft. – 20 ft.	11	400

Subject	Mercur Mine,
	Reservation Canyon Tailings
Post- E	arthquake Residual Strength

Based on Seed & Harder, 1990

Made by	IJW
Checked by	SV
Approved by	BRB

Job No	983-2344.002-3
Date	1/7/99
Sheet No	3 of 3

20 ft. – 40 ft.	6	200
40 ft. – 60 ft.	8	250

60'-100'

1.0<FS<1.4

The average undrained shear strength over this interval = 5228 psf The vertical effective stress @ 80 ft. (i.e. mid height) =8240 psf

So:

 $\phi = \arctan(5228/8240)$

φ=32 degrees

The average factor of safety over this interval is taken to be 1.4 (see figures H-1 through H-3). The corresponding excess residual pore pressure (Ru) from Marcuson et.al. (1989) is 0.15. The reduced friction angle (ϕ r) for the interval from 60' to 100 is 28.75 degrees(see attached Reduced Friction Angle Worksheets).

φr=28.75 degrees

100'-135'

FS>1.4

The average undrained shear strength from CPT data is 7454 psf. Use 100% of that value since this material is dense, dilative lower subaerial tailings.

Su=7454 psf

135'-175'

1.1<FS<1.4

The average undrained shear strength over this interval = 2450 psf The vertical effective stress @ 155 ft. (i.e. mid height) = 15960 psf

So:

 $\phi = \arctan(2450/15960)$

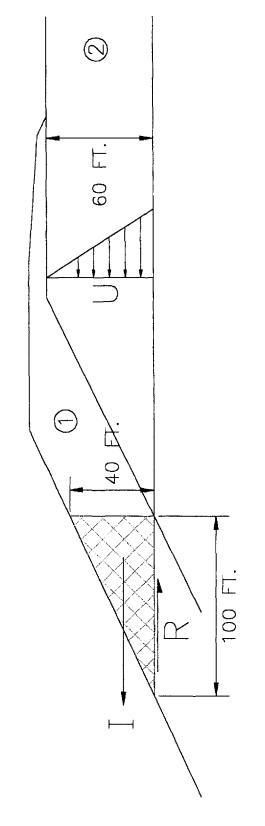
φ=9 degrees

The average factor of safety over this interval is taken to be 1.25. The corresponding excess residual pore pressure (Ru) from Marcuson et.al. (1989) 0.23. The reduced friction angle (φr) for the interval from 135' to 175 is 7.2 degrees (see attached Reduced Friction Angle Worksheets).

φr=7.2 degrees

CONCLUSIONS/RESULTS:

Limit equilibrium, post liquefaction stability analyses indicate a minimum factor of safety of 1.16 for the Main Dam and 1.2 for the Levee buttress for the design earthquake. The design earthquake consists of a magnitude 7.5 earthquake generating a peak bedrock acceleration of 0.16g.. A factor of safety of 1.0 is considered acceptable for the analyses employed.


REFERENCES:

Marcuson, W.F., Hynes, M.E., and Franklin, A.G., 1989, Evaluation and Use of Residual Strength in Seismic Analysis of Embankments, Earthquake Spectra, Vol. 6, No. 3

Robertson, P.K., 1998, Oral Communication.

Seed, R.B., Harder, L.F., 1990, SPT-Based Analysis of Cyclic Pore Pressure Generation and Undrained Residual Strength, in Volume 2 Memorial Symposium Proceedings, ed. J. M. Duncan.

Seed R.B., DeAlba, P., 1986, Use of SPT and CPT for Evaluating the Liquefaction Resistance of Sands, Proceedings, ASCE Specialty Conference on the Use of In Situ Tests in Geotechnical Engineering, Blacksburg, pp.281-302.

(ο Ο. —	
`		
 	SAFEIY=	
L	5	
	FACIOR	

SOIL	MATERIAL TYPE	UNIT WEIGHT (pcf)	COHESION (PSF)	FRICTION ANGLE (degrees)
Θ	EMBANKMENT ROCKFILL	130	0	40
8	(2) LIQUEFIED TAILINGS	100	0	0

BARRICK RESOURCES (USA)-MERCUR MINE RESERVATION CANYON TALINGS PRELIMINARY CLOSURE DESIGN TJW REVIEWED BARRICK CLIENT/PROJECT

Golder Associates FEB 1999 SCALE

FILE NO. HDYNAMIC Tucson, Arizona N.T.S.

DATE

BRB

DRAWN MJG, CAN CHECKED

HYDRODYNAMIC STABILITY ANALYSIS

JOB NO. 983-2344

DWG NO./REV.NO.

FIGURE H-2-1

CPT-9
Proximal Upper Subaerial Tailings
Reduced Friction Angle Worksheet
Effective unit weight (pcf)

α 45+φ/2	degrees	58.5	58.4	58.3	58.0	57.7	57.5	57.0	56.5	99.0	52.5	54.3	53.1	50.3	48.7	47.0
Reduced Friction Angle (¢r)	degrees	27.00	5 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	10 (0) (0)	20 EZ	10 10 10		50 PZ	70.64	0.70	20,61			18, 13,		3.88
Shear Strength (τ), in situ, static	(bsd)	1413	1399	1385	1343	1300	1272	1201	1131	1060	686	848	707	424	283	141
Shear Strength (t), with partial pore pressure increase	(jsd)	1413	1399	1385	1343	1300	1272	1201	1131	1060	686	848	707	424	283	141
Residual Horizontal Effective Stress 🖙'r	(pst)	1908.0	1888.9	1869.8	1812.6	1755.4	1717.2	1621.8	1526.4	1431.0	1335.6	1144.8	954.0	572.4	381.6	190.8
Residual Excess Pore Pressure Ratio	Marcuson & Hynes, 1989															
Factor of Safety		maled	2.6	2.4	~	1.6	1.55	4	د .	1.22	1.19	1.125	T.	1.05	1.02	1.01
α 45+φ/2	degrees	58.5	58.5	58.5			_	58.5	58.5	58.5	58.5	58.5	58.5	58.5	58.5	58.5
Total Stress Friction Angle (¢)	degrees	TA I		ā	Ą						Ą				Ą	
Horizontal Effective Stress σ ₃ '	(pst)	1908	1908	1908	1908	1908	1908	1908	1908	1908	1908	1908	1908	1908	1908	1908
Vertical Effective Stress σ ₁ '	(bst)	4240	4240	4240	4240	4240	4240	4240	4240	4240	4240	4240	4240	4240	4240	4240
Depth	(teet)			0.00			3		9	2	8	ğ	8	5		

CPT-12
Proximal Upper Subaerial Tailings
Reduced Friction Angle Worksheet
Effective unit weight (pcf)

Depth	Vertical	Horizontal	Total	α 45+6/2	Factor of	Residual	Residual	Shear	Shear	Reduced	ಶ
	Effective Ctross 2.	Effective	Stress	-	Safety	Excess	Horizontal	Strength (τ) ,	Strength	Friction	45+¢/2
	Siless of	Siless 03	Angle (¢)			Pressure	Stress	with partial pore pressure	(כ), וח אמן, static	Aligie (#1)	
						Ratio	σ ₃ 'Γ	increase			
(feet)	(pst)	(bst)	degrees	degrees		Marcuson	(bst)	(bst)	(bst)	degrees	degrees
						& Hynes, 1989					
108	4208	1893.6	4 2 3 3 3 3 3 3 3 3 3 3	6			1893.6	1810	1810		61.0
8	4208	1893.6	ß,	ia.	5.6		1874.7	1792	1792	9) 63	6.09
	4208	1893.6	3). 1).	60	2.4	200	1855.7	1774	1774		8.09
a	4208	1893.6	ä	70.	7		1798.9	1720	1720		60.5
3	4208	1893.6	3		1.6	21116	1742.1	1665	1665		60.2
3	4208	1893.6	Ġ	i.	1.55		1704.2	1629	1629		59.9
3	4208	1893.6	8	io	1.4		1609.6	1539	1539		59.4
8	4208	1893.6		ā	1.3	ri O	1514.9	1448	1448	27.59	58.8
	4208	1893.6		, a	1.22	500	1420.2	1358	1358		58.2
6	4208	1893.6		76	1.19	0.0	1325.5	1267	1267		57.6
	4208	1893.6	æ	je G	1.125		1136.2	1086	1086		56.3
8	4208	1893.6	No.		7:		946.8	905	902	6.63	54.8
	4208	1893.6		i ka	1.05		568.1	543	543	ца (5	51.6
	4208	1893.6		in to	1.02		378.7	362	362	S S	49.7
3	4208	1893.6	X	O	1.01		189.4	181	181		47.5

Subaqueous Tailings Reduced Friction Angle Worksheet Effective unit weight (pcf)

45+¢/2			degrees		49.5	9.5	9.4	9.3	9.5	49.1	8.9	8.7	8.5	8.3	7.9	7.4	5.5	9.0	45.5
2			geç		4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Reduced	Friction Angle (¢r)		degrees		00%	(4)			A	6		- 10/2/	36.4	Æ.e	. .		(i) 6 %	38.	100 E
Shear	Strength (τ), in situ, static		(bst)		1562	1547	1531	1484	1437	1406	1328	1250	1172	1094	937	781	469	312	156
Shear	Strength (τ), with partial	pore pressure increase	(bsd)		1562	1547	1531	1484	1437	1406	1328	1250	1172	1094	937	781	469	312	156
Residual	Horizontal Effective Stress	d ₃ F	(bst)		8531.1	8445.8	8360.5	8104.5	7848.6	7678.0	7251.4	6824.9	6398.3	5971.8	5118.7	4265.6	2559.3	1706.2	853.1
Residual	Excess Pore Pressure	Kano	Marcuson	& Hynes, 1989	38	1803	A(0, ; §	(C)			Bale		1.5%		[0]C)			1.50	1070)
Factor of	Safety					5.6	2.4	2	1.6	1.55	1.4	1.3	1.22	1.19	1.125	1:	1.05	1.02	1.01
ಶ	45+φ/2		degrees		49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5
Total	Stress Friction Angle (¢)		degrees		Ď.	*	•	1.0	•	•		40				意。	•		(E)
Horizontal	Effective Stress σ ₃ '		(bst)		8531.1	8531.1	8531.1	8531.1	8531.1	8531.1	8531.1	8531.1	8531.1	8531.1	8531.1	8531.1	8531.1	8531.1	8531.1
Vertical	Effective Stress σ ₁ '		(bst)		18958	18958	18958	18958	18958	18958	18958	18958	18958	18958	18958	18958	18958	18958	18958
Depth			(teet)		-105	(3)	1161	(3)	101	5.7	1:1:	100	2(0)		101	3 (10) × 3	130	(0)	195

POST LIQUEFACTION STABILITY ANALYSIS 10 most critical surfaces, MINIMUM JANBU FOS = '5 900 1125 X-AXIS (feet) (†991) ZIXA-Y 22 60 60 60

2-03-99 9:56

MD_LB4

Problem Description : POST LIQUEFACTION STABILITY ANALYSIS

SEGMENT BOUNDARY COORDINATES

10 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	6979.0	223.8	6995.0	1
2	223.8	6995.0	733.8	7250.0	2
3	733.8	7250.0	760.8	7250.0	2
4	760.8	7250.0	769.1	7250.0	3
5	769.1	7250.0	775.1	7250.0	4
6	775.1	7250.0	978.8	7345.0	5
7	978.8	7345.0	1071.6	7345.0	5
8	1071.6	7345.0	1142.5	7340.0	5
9	1142.5	7340.0	1153.3	7335.0	5
10	1153.3	7335.0	1800.0	7333.4	6

35 SUBSURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	1052.3	7335.0	1153.3	7335.0	6
2	1011.2	7315.0	1052.3	7335.0	6
3	1011.2	7315.0	1800.0	7315.0	12
4	970.0	7295.0	1011.2	7315.0	12
5	970.0	7295.0	1800.0	7295.0	13
6	928.8	7275.0	970.0	7295.0	13
7	928.8	7275.0	1146.3	7275.0	7
8	1146.3	7275.0	1800.0	7273.4	8
9	867.7	7245.3	928.8	7275.0	7
10	1066.4	7235.1	1146.3	7275.0	8

11	867.7	7245.3	1066.4	7235.1	9
12	1066.4	7235.1	1560.4	7218.1	9
13	1560.4	7218.1	1800.0	7228.6	9
14	834.7	7229.3	867.7	7245.3	9
15	834.7	7229.3	845.9	7212.0	5
16	845.9	7212.0	908.6	7170.2	5
17	908.6	7170.2	1560.4	7183.2	10
18	1560.4	7183.2	1800.0	7183.2	10
19	775.1	7250.0	788.8	7250.0	4
20	788.8	7250.0	802.4	7229.0	4
21	908.6	7170.2	1092.6	7047.6	5
22	802.4	7229.0	986.6	7044.9	4
23	769.1	7250.0	903.8	7042.7	3
24	760.8	7250.0	873.3	7042.0	2
25	1726.9	7149.4	1800.0	7162.5	1
26	1571.0	7109.4	1726.9	7149.4	1
27	1329.6	7059.5	1571.0	7109.4	1
28	1220.1	7048.2	1329.6	7059.5	1
29	1092.6	7047.6	1220.1	7048.2	1
30	986.6	7044.9	1092.6	7047.6	1
31	903.8	7042.7	986.6	7044.9	1
32	873.3	7042.0	903.8	7042.7	1
33	865.6	7042.5	873.3	7042.0	1
34	680.7	7018.7	895.6	7042.5	1
35	223.8	6995.0	680.7	7018.7	1

ISOTROPIC Soil Parameters

13 Soil unit(s) specified

Soil Unit No.	Unit Moist (pcf)	Weight Sat. (pcf)	Cohesion Intercept (psf)	Friction Angle (deg)	Pore Pr Parameter Ru	essure Constant (psf)	Water Surface No.
1	150.0	150.0	9000.0	35.00	.000	.0	1
2	125.0	125.0	.0	35.00	.000	.0	1
3	125.0	125.0	.0	35.00	.000	.0	1
4	118.0	123.0	288.0	30.00	.000	.0	1
5	130.0	135.0	.0	40.00	.000	.0	1
6	115.0	115.0	400.0	.00	.000	.0	0
7	122.0	122.0	.0	21.00	.000	.0	1
8	122.0	122.0	710.0	.00	.000	.0	0
9	124.0	124.0	9000.0	.00	.000	.0	0
10	128.0	128.0	.0	7.40	.000	.0	1
11	115.0	115.0	230.0	.00	.000	.0	0
12	115.0	115.0	200.0	.00	.000	.0	0
13	115.0	115.0	250.0	.00	.000	.0	0

¹ Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 6 coordinate points

PHREATIC SURFACE,

Point No.	x-water (ft)	y-water (ft)
1	769.10	7250.00
2	775.10	7250.00
3	788.80	7250.00
4	880.00	7250.00
5	1052,30	7335.00
6	1800.00	7335.00

A critical failure surface searching method, using a random technique for generating sliding BLOCK surfaces, has been specified.

The active and passive portions of the sliding surfaces are generated according to the Rankine theory.

1000 trial surfaces will be generated and analyzed.

3 boxes specified for generation of central block base

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

Length of line segments for active and passive portions of sliding block is 71.0 ft

Box no.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Width (ft)
1	800.0	7250.0	850.0	7250.0	2.0
2	900.0	7250.0	1000.0	7250.0	2.0
3	1050.0	7330.0	1200.0	7330.0	2.0

Factors of safety have been calculated by the :

The 10 most critical of all the failure surfaces examined are displayed below – the most critical first

Failure surface No. 1 specified by 6 coordinate points

	Point No.	x-surf (ft)	y-surf (ft)	
	1	792.59	7258.16	
	2	810.56	7249.78	
	3	901.37	7250.97	
	4	1056.73	7330.51	
	5	1061.22	7335.00	
	6	1065.88	7345.00	
*	Corrected	JANBU FOS =	1.133 **	(Fo factor = 1.056)

Failure surface No. 2 specified by 6 coordinate points

Point No.	x-surf (ft)	y-surf (ft)	
1	792.12	7257.94	
2	807.10	7250.95	
3	900.28	7249.26	
4	1063.85	7329.92	
5	1068.93	7335.00	
6	1073.53	7344.86	

** Corrected JANBU FOS = 1.137 ** (Fo factor = 1.055)

Failure surface No. 3 specified by 6 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	788.69	7256.34
2	801.22	7250.50
3	908.79	7250.88
4	1057.03	7330.95
5	1061.09	7335.00
6	1065.75	7345.00

** Corrected JANBU FOS = 1.139 ** (Fo factor = 1.057)

Failure surface No. 4 specified by 6 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	789.19	7256.57
2	805.19	7249.11
3	911.75	7249.39
4	1053.97	7329.36
5	1059.61	7335.00
6	1064.28	7345.00

** Corrected JANBU FOS = 1.145 ** (Fo factor = 1.060)

Failure surface No. 5 specified by 6 coordinate points

	Point No.	x-surf (ft)	y-surf (ft)	
	1	789.98	7256.94	
	2	806.04	7249.46	
	3	903.15	7249.87	
	4	1075.66	7330.63	
	5	1080.03	7335.00	
	6	1084.28	7344.11	
**	Corrected	JANBU FOS =	1.151 **	(Fo factor = 1.052)

Failure surface No. 6 specified by 6 coordinate points

Point No.	x-surf (ft)	y-surf (ft)	
1	794.83	7259.20	
2	814.74	7249.91	
3	906.40	7249.04	
4	1059.27	7330.52	
5	1063.76	7335.00	
6	1068.42	7345.00	

** Corrected JANBU FOS = 1.152 ** (Fo factor = 1.059)

Failure surface No. 7 specified by 6 coordinate points

Point No.	x-surf (ft)	y-surf (ft)	
1	788.61	7256.30	
2	800.38	7250.81	
3	900.17	7249.39	
4	1083.68	7330.32	
5	1088.37	7335.00	
6	1092.35	7343.54	

** Corrected JANBU FOS = 1.155 ** (Fo factor = 1.049)

Failure surface No. 8 specified by 6 coordinate points

Point No.		
1	789.18	7256.57
2	803.61	7249.84
3	912.76	7249.20
4	1061.73	7330.25
5	1066.48	7335.00
6	1071.14	7345.00

Failure surface No. 9 specified by 6 coordinate points

	Point No.	x-surf (ft)	y-surf (ft)	
	1	797.90	7260.63	
	2	819.04	7250.78	
	3	909.15	7250.79	
	4	1054.66	7329.15	
	5	1060.51	7335.00	
	6	1065.18	7345.00	
**	Corrected	JANBU FOS =	1.160 **	(Fo factor = 1.060)

Failure surface No.10 specified by 6 coordinate points

Point No.	x-surf (ft)	y-surf (ft)	
1	791.30	7257.55	
2	807.50	7250.00	
3	904.42	7250.38	
4	1075.06	7329.10	
5	1080.96	7335.00	
6	1085.17	7344.04	

** Corrected JANBU FOS = 1.161 ** (Fo factor = 1.052)

The following is a summary of the TEN most critical surfaces

Problem Description: POST LIQUEFACTION STABILITY ANALYSIS

	Modified JANBU FOS	Correction Factor	Initial x-coord (ft)	Terminal x-coord (ft)	Available Strength (lb)
1.	1.133	1.056	792.59	1065.88	4.779E+05
2.	1.137	1.055	792.12	1073.53	4.887E+05
3.	1.139	1.057	788.69	1065.75	4.935E+05
4.	1.145	1.060	789.19	1064.28	5.105E+05
5.	1.151	1.052	789.98	1084.28	5.076E+05
6.	1.152	1.059	794.83	1068.42	4.994E+05
7.	1.155	1.049	788.61	1092.35	5.093E+05
8.	1.157	1.059	789.18	1071.14	5.193E+05
9.	1.160	1.060	797.90	1065.18	4.901E+05
10.	1.161	1.052	791.30	1085.17	5.084E+05

10 most critical surfaces, MINIMUM BISHOP FOS = 1.268 '5 900 1125 X-AXIS (feet) POST LIQUEFACTION STABILITY ANALYSIS (teet) 21XA-Y 6900

MD_LC5 1-07-99 16:00

XSTABL File: MD_LC5 1-07-99 16:00

Problem Description : POST LIQUEFACTION STABILITY ANALYSIS

SEGMENT BOUNDARY COORDINATES

10 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	6979.0	223.8	6995.0	1
2	223.8	6995.0	733.8	7250.0	2
3	733.8	7250.0	760.8	7250.0	2
4	760.8	7250.0	769.1	7250.0	3
5	769.1	7250.0	775.1	7250.0	4
6	775.1	7250.0	978.8	7345.0	5
7	978.8	7345.0	1071.6	7345.0	5
8	1071.6	7345.0	1142.5	7340.0	5
9	1142.5	7340.0	1153.3	7335.0	5
10	1153.3	7335.0	1800.0	7333.4	6

35 SUBSURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	1052.3	7335.0	1153.3	7335.0	6
2	1011.2	7315.0	1052.3	7335.0	6
3	1011.2	7315.0	1800.0	7315.0	12
4	970.0	7295.0	1011.2	7315.0	12
5	970.0	7295.0	1800.0	7295.0	13
6	928.8	7275.0	970.0	7295.0	13
7	928.8	7275.0	1146.3	7275.0	7

8	1146.3	7275.0	1800.0	7273.4	8
9	867.7	7245.3	928.8	7275.0	7
10	1066.4	7235.1	1146.3	7275.0	8
11	867.7	7245.3	1066.4	7235.1	9
12	1066.4	7235.1	1560.4	7218.1	9
13	1560.4	7218.1	1800.0	7228.6	9
14	834.7	7229.3	867.7	7245.3	9
15	834.7	7229.3	845.9	7212.0	5
16	845.9	7212.0	908.6	7170.2	5
17	908.6	7170.2	1560.4	7183.2	10
18	1560.4	7183.2	1800.0	7183.2	10
19	775.1	7250.0	788.8	7250.0	4
20	788.8	7250.0	802.4	7229.0	4
21	908.6	7170.2	1092.6	7047.6	5
22	802.4	7229.0	986.6	7044.9	4
23	769.1	7250.0	903.8	7042.7	3
24	760.8	7250.0	873.3	7042.0	2
25	1726.9	7149.4	1800.0	7162.5	1
26	1571.0	7109.4	1726.9	7149.4	1
27	1329.6	7059.5	1571.0	7109.4	1
28	1220.1	7048.2	1329.6	7059.5	1
29	1092.6	7047.6	1220.1	7048.2	1
30	986.6	7044.9	1092.6	7047.6	1
31	903.8	7042.7	986.6	7044.9	1
32	873.3	7042.0	903.8	7042.7	1
33	865.6	7042.5	873.3	7042.0	1
34	680.7	7018.7	895.6	7042.5	1
35	223.8	6995.0	680.7	7018.7	1

ISOTROPIC Soil Parameters

13 Soil unit(s) specified

Soil Unit No.	Unit Moist (pcf)	Weight Sat. (pcf)	Cohesion Intercept (psf)	Friction Angle (deg)	Pore Pr Parameter Ru	cessure Constant (psf)	Water Surface No.
1	150.0	150.0	9000.0	35.00	.000	.0	1
2	125.0	125.0	.0	35.00	.000	.0	1
3	125.0	125.0	.0	35.00	.000	.0	1
4	118.0	123.0	288.0	30.00	.000	.0	1
5	130.0	135.0	.0	40.00	.000	.0	1
6	115.0	115.0	400.0	.00	.000	.0	0
7	122.0	122.0	.0	21.00	.000	.0	1
8	122.0	122.0	710.0	.00	.000	.0	0
9	124.0	124.0	9000.0	.00	.000	.0	0
10	128.0	128.0	.0	7.40	.000	.0	1
11	115.0	115.0	230.0	.00	.000	.0	0
12	115.0	115.0	200.0	.00	.000	.0	0
13	115.0	115.0	250.0	.00	.000	.0	0

¹ Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 6 coordinate points

PHREATIC SURFACE,

x-water (ft)	y-water (ft)
769.10	7250.00
775.10	7250.00
788.80	7250.00
880.00	7250.00
1052.30	7335.00
1800.00	7335.00
	(ft) 769.10 775.10 788.80 880.00 1052.30

A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified.

900 trial surfaces will be generated and analyzed.

30 Surfaces initiate from each of 30 points equally spaced along the ground surface between x = 200.0 ft and x = 450.0 ft

Each surface terminates between x = 1100.0 ftand x = 1500.0 ft

Unless further limitations were imposed, the minimum elevation at which a surface extends is y = 0.0 ft

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

35.0 ft line segments define each trial failure surface.

ANGULAR RESTRICTIONS :

The first segment of each failure surface will be inclined within the angular range defined by :

Lower angular limit := -45.0 degrees
Upper angular limit := (slope angle - 5.0) degrees

Factors of safety have been calculated by the :

The most critical circular failure surface is specified by 24 coordinate points

Point No.	x-surf (ft)	y-surf (ft)
1	372.41	7069.31
2 3	405.52 438.61	7080.66 7092.08
4	471.67	7103.55
5	504.72	7103.33
6	537.75	7126.66
7	570.76	7120.00
8	603.74	7150.00
9	636.71	7161.75
10	669.66	7173.56
11	702.58	7185.43
12	735.49	7197.36
13	768.37	7209.34
14	801.24	7221.38
15	834.08	7233.47
16	866.91	7245.62
17	899.71	7257.83
18	932.49	7270.09
19	965.25	7282.41
20	997.99	7294.79
21	1030.70	7307.22
22	1063.40	7319.71
23	1096.07	7332.26
24	1120.20	7341.57

**** Simplified BISHOP FOS = 1.268 ****

The following is a summary of the TEN most critical surfaces

Problem Description : POST LIQUEFACTION STABILITY ANALYSIS

FOS	Circle	Center	Radius	Initial	Terminal	Resisting
(BISHOP)	x-coord	y-coord		x-coord	x-coord	Moment
	(ft)	(ft)	(ft)	(ft)	(ft)	(ft-lb)

1. 1.268 -6192.27 26260.63 20283.04 372.41 1120.20 2.887E+10

2.	1.269	-2928.44	18122.98	11521.35	450.00	1131.71	1.450E+10
3.	1.284	-7835.86	31901.52	26145.41	424.14	1128.62	3.323E+10
4.	1.291	-10299.62	39949.55	34558.80	432.76	1142.64	4.518E+10
5.	1.302	-2617.38	16756.65	10130.45	415.52	1121.49	1.420E+10
6.	1.317	-7980.63	30478.79	24858.63	346.55	1110.58	3.685E+10
7.	1.328	-12134.12	39726.95	34984.92	243.10	1102.49	6.195E+10
8.	1.351	-11636.91	40113.21	35167.48	303.45	1120.96	6.126E+10
9.	1.365	-10400.39	36085.44	30958.75	312.07	1102.15	4.861E+10
10.	1.369	-8961.22	32487.07	27089.31	277.59	1115.91	5.032E+10

* * * END OF FILE * * *

1800 1575 1.509 10 most critical surfaces, MINIMUM BISHOP FOS = 1350 '5 900 1125 X-AXIS (feet) POST LIQUEFACTION STABILITY ANALYSIS 675 450 225 (teet) SIXA-Y 52 69 69 7350 _ 7575 6675 6450

1-07-99 16:01

MD_LC6

XSTABL File: MD_LC6 1-07-99 16:01

Problem Description : POST LIQUEFACTION STABILITY ANALYSIS

SEGMENT BOUNDARY COORDINATES

10 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	6979.0	223.8	6995.0	1
2	223.8	6995.0	733.8	7250.0	2
3	733.8	7250.0	760.8	7250.0	2
4	760.8	7250.0	769.1	7250.0	3
5	769.1	7250.0	775.1	7250.0	4
6	775.1	7250.0	978.8	7345.0	5
7	978.8	7345.0	1071.6	7345.0	5
8	1071.6	7345.0	1142.5	7340.0	5
9	1142.5	7340.0	1153.3	7335.0	5
10	1153.3	7335.0	1800.0	7333.4	6

35 SUBSURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	1052.3	7335.0	1153.3	7335.0	6
2	1011.2	7315.0	1052.3	7335.0	6
3	1011.2	7315.0	1800.0	7315.0	12
4	970.0	7295.0	1011.2	7315.0	12
5	970.0	7295.0	1800.0	7295.0	13
6	928.8	7275.0	970.0	7295.0	13
7	928.8	7275.0	1146.3	7275.0	7

8	1146.3	7275.0	1800.0	7273.4	8
9	867.7	7245.3	928.8	7275.0	7
10	1066.4	7235.1	1146.3	7275.0	8
11	867.7	7245.3	1066.4	7235.1	9
12	1066.4	7235.1	1560.4	7218.1	9
13	1560.4	7218.1	1800.0	7228.6	9
14	834.7	7229.3	867.7	7245.3	9
15	834.7	7229.3	845.9	7212.0	5
16	845.9	7212.0	908.6	7170.2	5
17	908.6	7170.2	1560.4	7183.2	10
18	1560.4	7183.2	1800.0	7183.2	10
19	775.1	7250.0	788.8	7250.0	4
20	788.8	7250.0	802.4	7229.0	. 4
21	908.6	7170.2	1092.6	7047.6	5
22	802.4	7229.0	986.6	7044.9	4
23	769.1	7250.0	903.8	7042.7	3
24	760.8	7250.0	873.3	7042.0	2
25	1726.9	7149.4	1800.0	7162.5	1
26	1571.0	7109.4	1726.9	7149.4	1
27	1329.6	7059.5	1571.0	7109.4	1
28	1220.1	7048.2	1329.6	7059.5	1
29	1092.6	7047.6	1220.1	7048.2	1
30	986.6	7044.9	1092.6	7047.6	1
31	903.8	7042.7	986.6	7044.9	1
32	873.3	7042.0	903.8	7042.7	1
33	865.6	7042.5	873.3	7042.0	1
34	680.7	7018.7	895.6	7042.5	1
35	223.8	6995.0	680.7	7018.7	1

ISOTROPIC Soil Parameters

13 Soil unit(s) specified

Soil Unit No.	Unit Moist (pcf)	Weight Sat. (pcf)	Cohesion Intercept (psf)	Friction Angle (deg)	Pore Pr Parameter Ru	essure Constant (psf)	Water Surface No.
1	150.0	150.0	9000.0	35.00	.000	.0	1
2	125.0	125.0	.0	35.00	.000	.0	1
3	125.0	125.0	.0	35.00	.000	.0	1
4	118.0	123.0	288.0	30.00	.000	. 0	1
5	130.0	135.0	.0	40.00	.000	.0	1
6	115.0	115.0	400.0	.00	.000	. 0	0
7	122.0	122.0	.0	21.00	.000	.0	1
8	122.0	122.0	710.0	.00	.000	.0	0
9	124.0	124.0	9000.0	.00	.000	.0	0
10	128.0	128.0	.0	7.40	.000	.0	1
11	115.0	115.0	230.0	.00	.000	.0	0
12	115.0	115.0	200.0	.00	.000	.0	0
13	115.0	115.0	250.0	.00	.000	.0	0

¹ Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 6 coordinate points

PHREATIC SURFACE,

Point No.	x-water (ft)	y-water (ft)
1	769.10	7250.00
2	775.10	7250.00
3	788.80	7250.00
4	880.00	7250.00
5	1052.30	7335.00
6	1800.00	7335.00

A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified.

900 trial surfaces will be generated and analyzed.

30 Surfaces initiate from each of 30 points equally spaced along the ground surface between x = 1100.0 ft and x = 1300.0 ft

Each surface terminates between x = 900.0 ftand x = 1000.0 ft

Unless further limitations were imposed, the minimum elevation at which a surface extends is y = .0 ft

10.0 ft line segments define each trial failure surface.

ANGULAR RESTRICTIONS :

The first segment of each failure surface will be inclined within the angular range defined by :

Lower angular limit := -45.0 degrees
Upper angular limit := (slope angle - 5.0) degrees

Factors of safety have been calculated by the :

* * * * * * SIMPLIFIED BISHOP METHOD * * * * * *

The most critical circular failure surface is specified by 32 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1 2 3 4 5	1265.52 1258.35 1250.81 1242.92 1234.69	7334.72 7327.74 7321.18 7315.04 7309.35
6	1226.16	7309.33
7	1217.36	7299.39
8	1208.30	7295.15
9	1199.02	7291.42
10	1189.55	7288.22
11	1179.91	7285.54
12	1170.14	7283.41
13	1160.27	7281.83
14	1150.32	7280.79
15 16	1140.34 1130.34	7280.32 7280.40
17	1120.36	7280.40
18	1110.43	7282.23
19	1100.58	7283.97
20	1090.85	7286.26
21	1081.25	7289.08
22	1071.84	7292.44
23	1062.62	7296.32
24	1053.63	7300.70
25	1044.90	7305.58
26	1036.46	7310.94
27	1028.32	7316.76
28 29	1020.53 1013.09	7323.02 7329.71
29 30	1013.09	7329.71
31	999.40	7336.80
32	998.82	7345.00

**** Simplified BISHOP FOS = 1.509 ****

**

**

Out of the 900 surfaces generated and analyzed by XSTABL,

**

575 surfaces were found to have MISLEADING FOS values.

**

The following is a summary of the TEN most critical surfaces

Problem Description: POST LIQUEFACTION STABILITY ANALYSIS

	FOS (BISHOP)	Circle x-coord (ft)	Center y-coord (ft)	Radius (ft)	Initial x-coord (ft)	Terminal x-coord (ft)	Resisting Moment (ft-lb)
1.	1.509	1136.72	7459.78	179.52	1265.52	998.82	1.783E+07
2.	1.517	1145.40	7472.33	196.92	1286.21	995.21	2.138E+07
3.	1.523	1138.53	7464.71	186.62	1272.41	995.35	1.956E+07
4.	1.545	1145.21	7477.19	200.47	1286.21	994.71	2.187E+07
5.	1.571	1119.29	7441.45	154.46	1231.03	998.78	1.393E+07
6.	1.582	1138.45	7474.80	198.68	1279.31	987.97	2.281E+07
7.	1.593	1125.36	7455.16	169.60	1244.83	996.35	1.635E+07
8.	1.659	1139.94	7488.60	207.64	1279.31	990.04	2.336E+07
9.	1.661	1148.77	7498.50	213.85	1286.21	999.74	2.223E+07
10.	1.676	1141.48	7494.01	215.25	1286.21	986.31	2.556E+07

* * * END OF FILE * * *

1225 10 most critical surfaces, MINIMUM BISHOP FOS = 1050 POST LIQUEFACTION STABILITY ANALYSIS .5 700 875 X-AXIS (feet) 350 175 0 (feet) SIXA-Y 72 60 72 7350 6825 6650 7525

1-08-99 8:08

SD_LC4

XSTABL File: SD_LC4 1-08-99 8:08

Problem Description : POST LIQUEFACTION STABILITY ANALYSIS

SEGMENT BOUNDARY COORDINATES

14 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	7206.3	72.7	7210.0	1
2	72.7	7210.0	128.4	7237.9	2
3	128.4	7237.9	162.3	7238.4	2
4	162.3	7238.4	169.3	7238.4	3
5	169.3	7238.4	189.2	7237.6	4
6	189.2	7237.6	235.0	7235.2	5
7	235.0	7235.2	419.0	7236.0	11
8	419.0	7236.0	568.6	7299.0	5
9	568.6	7299.0	632.6	7300.8	5
10	632.6	7300.8	721.0	7345.0	5
11	721.0	7345.0	798.9	7345.0	5
12	798.9	7345.0	894.2	7339.0	5
13	894.2	7339.0	1009.9	7337.9	6
14	1009.9	7337.9	1400.0	7334.4	6

28 SUBSURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	816.8	7339.0	894.2	7339.0	6
2	771.9	7319.0	816.8	7339.0	6
3	771.9	7319.0	1400.0	7319.0	12

4	707 0	7200 0	771 0	7210 0	10
4	727.0	7299.0	771.9	7319.0	12
5	727.0	7299.0	1400.0	7299.0	13
6	696.1	7285.2	727.0	7299.0	13
7	696.1	7285.2	888.2	7278.2	9
8	888.2	7278.2	1400.0	7265.9	8
9	888.2	7278.2	922.8	7271.1	9
10	922.8	7271.1	1400.0	7221.0	9
11	189.2	7237.6	201.4	7202.9	4
12	235.0	7235.2	299.4	7192.3	5
13	587.8	7232.0	696.1	7285.2	9
14	374.3	7200.0	419.0	7236.0	5
15	528.7	7232.0	587.8	7232.0	9
16	498.9	7214.1	528.7	7232.0	9
17	498.9	7214.1	526.0	7194.9	5
18	72.7	7210.0	162.3	7205.2	1
19	162.3	7205.2	169.3	7204.6	1
20	169.3	7204.6	201.4	7202.9	1
21	201.4	7202.9	299.4	7192.3	1
22	374.3	7200.0	526.0	7194.9	10
23	526.0	7194.9	1400.0	7182.7	10
24	299.4	7192.3	584.2	7156.1	1
25	584.2	7156.1	898.0	7142.9	1
26	898.0	7142.9	1076.2	7117.6	1
27	1076.2	7117.6	1179.5	7111.3	1
28	1179.5	7111.3	1400.0	7108.8	1

ISOTROPIC Soil Parameters

13 Soil unit(s) specified

Soil Unit No.	Unit Moist (pcf)	Weight Sat. (pcf)	Cohesion Intercept (psf)	Friction Angle (deg)	Pore Pr Parameter Ru		Water Surface No.
1	150.0	150.0	9000.0	35.00	.000	.0	1
2	125.0	125.0	.0	35.00	.000	.0	1
3	125.0	125.0	.0	35.00	.000	. 0	1
4	118.0	123.0	288.0	30.00	.000	.0	1
5	130.0	135.0	.0	40.00	.000	.0	1
6	115.0	115.0	400.0	.00	.000	.0	0
7	122.0	122.0	.0	28.75	.000	.0	1
8	122.0	122.0	710.0	.00	.000	.0	0
9	124.0	124.0	7454.0	.00	.000	.0	0
10	128.0	128.0	.0	7.20	.000	.0	1
11	115.0	115.0	230.0	.00	.000	.0	0
12	115.0	115.0	200.0	.00	.000	.0	0
13	115.0	115.0	250.0	.00	.000	.0	0

¹ Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 7 coordinate points

PHREATIC SURFACE,

Point No.	x-water (ft)	y-water (ft)
1	189.20	7237.60
2	235.00	7235.20
3	419.00	7236.00
4	630.00	7250.00
5	800.00	7335.00
6	1000.00	7336.00
7	1400.00	7336.00

A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified.

900 trial surfaces will be generated and analyzed.

30 Surfaces initiate from each of 30 points equally spaced along the ground surface between x = 600.0 ft and x = 700.0 ft

Each surface terminates between x = 800.0 ft and x = 900.0 ft

Unless further limitations were imposed, the minimum elevation at which a surface extends is y = 0.0 ft

6.0 ft line segments define each trial failure surface.

ANGULAR RESTRICTIONS :

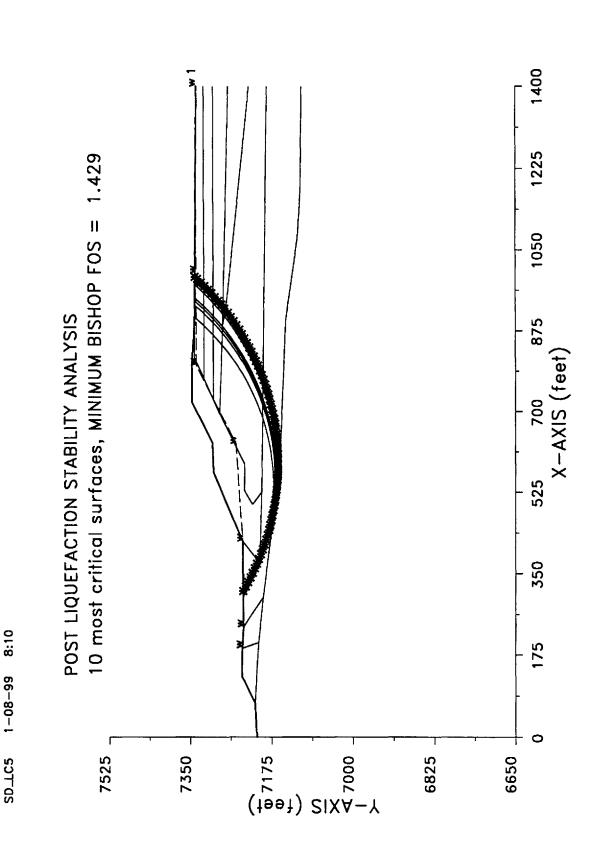
The first segment of each failure surface will be inclined within the angular range defined by :

Lower angular limit := -45.0 degrees
Upper angular limit := (slope angle - 5.0) degrees

Factors of safety have been calculated by the :

The most critical circular failure surface is specified by 39 coordinate points

**** Simplified BISHOP FOS = 1.557 ****


**	Out of the 900 surfaces generated and analyzed by XSTABL,	* *
**	82 surfaces were found to have MISLEADING FOS values.	* *
**		**
***	*****************	· * *

The following is a summary of the TEN most critical surfaces

Problem Description: POST LIQUEFACTION STABILITY ANALYSIS

	FOS (BISHOP)	Circle x-coord (ft)	Center y-coord (ft)	Radius (ft)	Initial x-coord (ft)	Terminal x-coord (ft)	Resisting Moment (ft-lb)
1.	1.557	692.98	7471.21	185.41	620.69	826.98	4.775E+07
2.	1.592	678.06	7496.80	211.83	600.00	824.25	6.083E+07
3.	1.604	690.20	7426.50	140.56	627.59	804.38	3.619E+07
4.	1.611	692.03	7511.27	225.04	613.79	840.75	6.031E+07
5.	1.677	697.41	7436.07	148.34	634.48	813.68	3.704E+07
6.	1.679	677.67	7443.29	158.17	610.34	801.23	4.633E+07
7.	1.682	676.84	7496.10	209.40	603.45	820.06	6.127E+07
8.	1.704	708.66	7537.84	251.88	624.14	866.08	6.494E+07
9.	1.707	713.68	7484.43	199.12	634.48	852.32	4.870E+07
10.	1.714	703.29	7465.38	177.52	634.48	831.99	4.426E+07

* * * END OF FILE * * *

XSTABL File: SD_LC5 1-08-99 8:10

Problem Description: POST LIQUEFACTION STABILITY ANALYSIS

SEGMENT BOUNDARY COORDINATES

14 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	7206.3	72.7	7210.0	1
2	72.7	7210.0	128.4	7237.9	2
3	128.4	7237.9	162.3	7238.4	2
4	162.3	7238.4	169.3	7238.4	3
5	169.3	7238.4	189.2	7237.6	4
6	189.2	7237.6	235.0	7235.2	5
7	235.0	7235.2	419.0	7236.0	11
8	419.0	7236.0	568.6	7299.0	5
9	568.6	7299.0	632.6	7300.8	5
10	632.6	7300.8	721.0	7345.0	5
11	721.0	7345.0	798.9	7345.0	5
12	798.9	7345.0	894.2	7339.0	5
13	894.2	7339.0	1009.9	7337.9	6
14	1009.9	7337.9	1400.0	7334.4	6

28 SUBSURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	816.8	7339.0	894.2	7339.0	6
2	771.9	7319.0	816.8	7339.0	6
3	771.9	7319.0	1400.0	7319.0	12

727.0	7299.0	771.9	7319.0	12
727.0	7299.0	1400.0	7299.0	13
696.1	7285.2	727.0	7299.0	13
696.1	7285.2	888.2	7278.2	9
888.2	7278.2	1400.0	7265.9	8
888.2	7278.2	922.8	7271.1	9
922.8	7271.1	1400.0	7221.0	9
189.2	7237.6	201.4	7202.9	4
235.0	7235.2	299.4	7192.3	5
587.8	7232.0	696.1	7285.2	9
374.3	7200.0	419.0	7236.0	5
528.7	7232.0	587.8	7232.0	9
498.9	7214.1	528.7	7232.0	9
498.9	7214.1	526.0	7194.9	5
72.7	7210.0	162.3	7205.2	1
162.3	7205.2	169.3	7204.6	1
169.3	7204.6	201.4	7202.9	1
201.4	7202.9	299.4	7192.3	1
374.3	7200.0	526.0	7194.9	10
526.0	7194.9	1400.0	7182.7	10
299.4	7192.3	584.2	7156.1	1
584.2	7156.1	898.0	7142.9	1
898.0	7142.9	1076.2	7117.6	1
1076.2	7117.6	1179.5	7111.3	1
1179.5	7111.3	1400.0	7108.8	1
	696.1 888.2 888.2 922.8 189.2 235.0 587.8 374.3 528.7 498.9 72.7 162.3 169.3 201.4 374.3 526.0 299.4 584.2 898.0 1076.2	727.0 7299.0 696.1 7285.2 696.1 7285.2 888.2 7278.2 888.2 7278.2 922.8 7271.1 189.2 7237.6 235.0 7235.2 587.8 7232.0 374.3 7200.0 528.7 7232.0 498.9 7214.1 498.9 7214.1 72.7 7210.0 162.3 7205.2 169.3 7204.6 201.4 7202.9 374.3 7200.0 526.0 7194.9 299.4 7192.3 584.2 7156.1 898.0 7142.9 1076.2 7117.6	727.0 7299.0 1400.0 696.1 7285.2 727.0 696.1 7285.2 888.2 888.2 7278.2 1400.0 888.2 7278.2 922.8 922.8 7271.1 1400.0 189.2 7237.6 201.4 235.0 7235.2 299.4 587.8 7232.0 696.1 374.3 7200.0 419.0 528.7 7232.0 587.8 498.9 7214.1 528.7 498.9 7214.1 526.0 72.7 7210.0 162.3 162.3 7205.2 169.3 169.3 7204.6 201.4 201.4 7202.9 299.4 374.3 7200.0 526.0 526.0 7194.9 1400.0 529.4 7156.1 898.0 898.0 7142.9 1076.2 1076.2 7117.6 1179.5	727.0 7299.0 1400.0 7299.0 696.1 7285.2 727.0 7299.0 696.1 7285.2 888.2 7278.2 888.2 7278.2 1400.0 7265.9 888.2 7278.2 922.8 7271.1 922.8 7271.1 1400.0 7221.0 189.2 7237.6 201.4 7202.9 235.0 7235.2 299.4 7192.3 587.8 7232.0 696.1 7285.2 374.3 7200.0 419.0 7236.0 528.7 7232.0 587.8 7232.0 498.9 7214.1 528.7 7232.0 498.9 7214.1 526.0 7194.9 72.7 7210.0 162.3 7205.2 162.3 7205.2 169.3 7204.6 169.3 7204.6 201.4 7202.9 201.4 7202.9 299.4 7192.3 374.3 7200.0 526.0 7194.9 526.0 7194.9 1400.0 7182.7 299.4

ISOTROPIC Soil Parameters

13 Soil unit(s) specified

Soil Unit No.	Unit Moist (pcf)	Weight Sat. (pcf)	Cohesion Intercept (psf)	Friction Angle (deg)	Pore Pr Parameter Ru		Water Surface No.
1	150.0	150.0	9000.0	35.00	.000	.0	1
2	125.0	125.0	.0	35.00	.000	.0	1
3	125.0	125.0	.0	35.00	.000	.0	1
4	118.0	123.0	288.0	30.00	.000	.0	1
5	130.0	135.0	.0	40.00	.000	.0	1
6	115.0	115.0	400.0	.00	.000	.0	0
7	122.0	122.0	.0	28.75	.000	.0	1
8	122.0	122.0	710.0	.00	.000	.0	0
9	124.0	124.0	7454.0	.00	.000	.0	0
10	128.0	128.0	.0	7.20	.000	.0	1
11	115.0	115.0	230.0	.00	.000	.0	0
12	115.0	115.0	200.0	.00	.000	.0	0
13	115.0	115.0	250.0	.00	.000	.0	0

¹ Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 7 coordinate points

PHREATIC SURFACE,

Point No.	x-water (ft)	y-water (ft)
1	189.20	7237.60
2	235.00	7235.20
3	419.00	7236.00
4	630.00	7250.00
5	800.00	7335.00
6	1000.00	7336.00
7	1400.00	7336.00

A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified.

900 trial surfaces will be generated and analyzed.

30 Surfaces initiate from each of 30 points equally spaced along the ground surface between x = 300.0 ft and x = 425.0 ft

Each surface terminates between x = 900.0 ft and x = 1000.0 ft

Unless further limitations were imposed, the minimum elevation at which a surface extends is y =

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

11.0 ft line segments define each trial failure surface.

ANGULAR RESTRICTIONS :

The first segment of each failure surface will be inclined within the angular range defined by :

Lower angular limit := -30.0 degrees

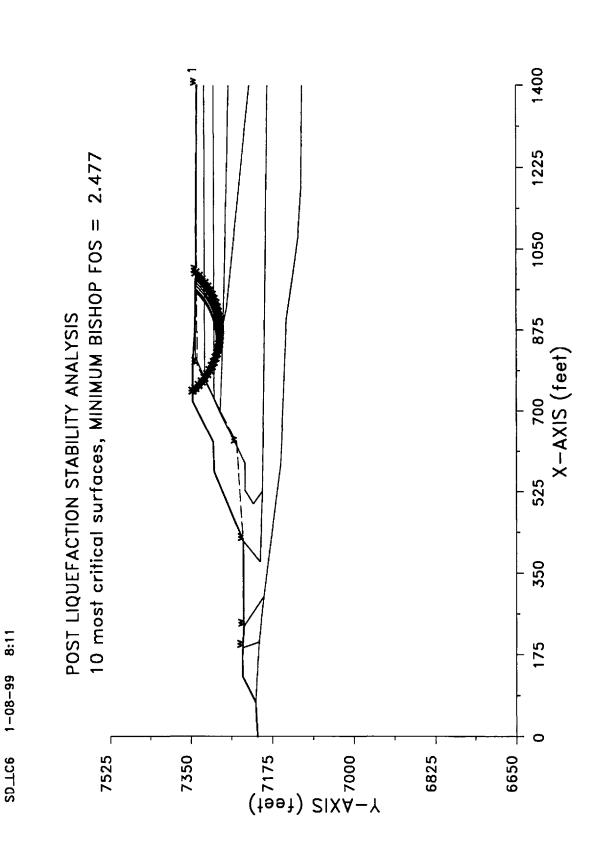
Upper angular limit := (slope angle - 5.0) degrees

Factors of safety have been calculated by the :

The most critical circular failure surface is specified by 69 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	(ft) 312.93 322.46 332.10 341.84 351.68 361.62 371.66 381.78 391.99 402.27 412.64 423.08 433.58 444.15 454.78 465.46 476.20 486.98 497.80 508.66 519.55 530.48 541.42 552.39	(ft) 7235.54 7230.04 7224.74 7219.63 7214.72 7210.01 7205.50 7201.20 7197.10 7193.21 7189.52 7186.05 7182.79 7179.74 7176.90 7174.28 7171.88 7169.69 7167.73 7165.98 7164.45 7163.14 7162.06 7161.19
25	563.37	7160.55
26	574.36	7160.12
27	585.36	7159.92
28	596.36	7159.95
29	607.36	7160.19
30	618.35	7160.66
31	629.32	7161.35
32	640.29	7162.26
33	651.23	7163.39
34	662.15	7164.74
35	673.03	7166.31
36	683.89	7168.11
37	694.70	7170.12
38	705.47	7172.35
39	716.20	7174.79
40	726.87	7177.46
41	737.49	7180.33
42	748.04	7183.43
43	758.53	7186.73

44	768.96	7190.25
45	779.31	7193.97
46	789.58	7197.91
47	799.77	7202.05
48	809.88	7206.39
49	819.89	7210.94
50	829.81	7215.69
51	839.64	7220.64
52	849.36	7225.79
53	858.97	7231.13
54	868.48	7236.67
55	877.87	7242.39
56	887.14	7248.31
57	896.30	7254.41
58	905.32	7260.70
59	914.22	7267.16
60	922.99	7273.81
61	931.62	7280.63
62	940.11	7287.62
63	948.46	7294.79
64	956.66	7302.12
65	964.71	7309.61
66	972.61	7317.27
67	980.35	7325.08
68	987.93	7333.05
69	992.51	7338.07


**** Simplified BISHOP FOS = 1.429 ****

The following is a summary of the TEN most critical surfaces

Problem Description : POST LIQUEFACTION STABILITY ANALYSIS

	FOS (BISHOP)	Circle x-coord (ft)	Center y-coord (ft)	Radius (ft)	Initial x-coord (ft)	Terminal x-coord (ft)	Resisting Moment (ft-lb)
1.	1.429	589.55	7703.94	543.98	312.93	992.51	1.007E+09
2.	1.437	556.21	7660.86	494.36	304.31	931.52	8.856E+08
3.	1.437	563.50	7674.01	509.38	304.31	946.61	9.260E+08
4.	1.437	578.82	7696.51	534.34	308.62	975.84	9.861E+08
5.	1.437	584.80	7695.54	534.33	312.93	981.93	9.868E+08
6.	1.443	540.90	7646.13	476.10	300.00	904.84	8.334E+08
7.	1.446	591.63	7700.26	539.67	317.24	991.37	1.001E+09
8.	1.449	560.35	7672.95	506.87	304.31	940.41	9.194E+08
9.	1.451	565.66	7669.88	504.72	308.62	946.92	9.203E+08
10.	1.454	590.10	7716.70	555.28	312.93	996.01	1.037E+09

* * * END OF FILE * * *

XSTABL File: SD_LC6 1-08-99 8:11

Problem Description : POST LIQUEFACTION STABILITY ANALYSIS

SEGMENT BOUNDARY COORDINATES

14 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	.0	7206.3	72.7	7210.0	1
2	72.7	7210.0	128.4	7237.9	2
3	128.4	7237.9	162.3	7238.4	2
4	162.3	7238.4	169.3	7238.4	3
5	169.3	7238.4	189.2	7237.6	4
6	189.2	7237.6	235.0	7235.2	5
7	235.0	7235.2	419.0	7236.0	11
8	419.0	7236.0	568.6	7299.0	5
9	568.6	7299.0	632.6	7300.8	5
10	632.6	7300.8	721.0	7345.0	5
11	721.0	7345.0	798.9	7345.0	5
12	798.9	7345.0	894.2	7339.0	5
13	894.2	7339.0	1009.9	7337.9	6
14	1009.9	7337.9	1400.0	7334.4	6

28 SUBSURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	816.8	7339.0	894.2	7339.0	6
2	771.9	7319.0	816.8	7339.0	6
3	771.9	7319.0	1400.0	7319.0	12

4	727.0	7299.0	771.9	7319.0	12
5	727.0	7299.0	1400.0	7299.0	13
6	696.1	7285.2	727.0	7299.0	13
7	696.1	7285.2	888.2	7278.2	9
8	888.2	7278.2	1400.0	7265.9	8
9	888.2	7278.2	922.8	7271.1	9
10	922.8	7271.1	1400.0	7221.0	9
11	189.2	7237.6	201.4	7202.9	4
12	235.0	7235.2	299.4	7192.3	5
13	587.8	7232.0	696.1	7285.2	9
14	374.3	7200.0	419.0	7236.0	5
15	528.7	7232.0	587.8	7232.0	9
16	498.9	7214.1	528.7	7232.0	9
17	498.9	7214.1	526.0	7194.9	5
18	72.7	7210.0	162.3	7205.2	1
19	162.3	7205.2	169.3	7204.6	1
20	169.3	7204.6	201.4	7202.9	1
21	201.4	7202.9	299.4	7192.3	1
22	374.3	7200.0	526.0	7194.9	10
23	526.0	7194.9	1400.0	7182.7	10
24	299.4	7192.3	584.2	7156.1	1
25	584.2	7156.1	898.0	7142.9	1
26	898.0	7142.9	1076.2	7117.6	1
27	1076.2	7117.6	1179.5	7111.3	1
28	1179.5	7111.3	1400.0	7108.8	1

ISOTROPIC Soil Parameters

13 Soil unit(s) specified

Soil Unit No.	Unit Moist (pcf)	Weight Sat. (pcf)	Cohesion Intercept (psf)	Friction Angle (deg)	Pore Pr Parameter Ru		Water Surface No.
1	150.0	150.0	9000.0	35.00	.000	.0	1
2	125.0	125.0	.0	35.00	.000	.0	1
3	125.0	125.0	.0	35.00	.000	.0	1
4	118.0	123.0	288.0	30.00	.000	.0	1
5	130.0	135.0	.0	40.00	.000	.0	1
6	115.0	115.0	400.0	.00	.000	.0	0
7	122.0	122.0	.0	28.75	.000	.0	1
8	122.0	122.0	710.0	.00	.000	.0	0
9	124.0	124.0	7454.0	.00	.000	.0	0
10	128.0	128.0	.0	7.20	.000	.0	1
11	115.0	115.0	230.0	.00	.000	.0	0
12	115.0	115.0	200.0	.00	.000	.0	0
13	115.0	115.0	250.0	.00	.000	.0	0

¹ Water surface(s) have been specified

Unit weight of water = 62.40 (pcf)

Water Surface No. 1 specified by 7 coordinate points

PHREATIC SURFACE,

Point No.	x-water (ft)	y-water (ft)
1	189,20	7237.60
2	235.00	7235.20
3	419.00	7236.00
4	630.00	7250.00
5	800.00	7335.00
6	1000.00	7336.00
7	1400.00	7336.00

A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified.

900 trial surfaces will be generated and analyzed.

30 Surfaces initiate from each of 30 points equally spaced along the ground surface between x = 900.0 ft and x = 1000.0 ft

Each surface terminates between x = 635.0 ftand x = 750.0 ft

Unless further limitations were imposed, the minimum elevation at which a surface extends is y = .0 ft

10.0 ft line segments define each trial failure surface.

ANGULAR RESTRICTIONS :

The first segment of each failure surface will be inclined within the angular range defined by :

Lower angular limit := -45.0 degrees Upper angular limit := (slope angle - 5.0) degrees

Factors of safety have been calculated by the :

The most critical circular failure surface is specified by 30 coordinate points

x-surf	y-surf
(ft)	(ft)
(ft) 1000.00 992.88 985.36 977.47 969.24 960.70 951.87 942.78 933.47 923.96 914.29 904.48 894.58 884.62 874.62 874.62 864.67 844.78 834.99 825.34 815.85 806.56 797.51	(ft) 7337.99 7330.98 7324.38 7318.23 7312.55 7307.36 7302.66 7298.49 7294.85 7291.75 7289.22 7287.24 7285.83 7285.00 7284.75 7285.08 7285.99 7287.47 7289.52 7292.13 7295.30 7299.01 7303.25
788.71	7308.01
780.21	7313.27
772.02	7319.01
764.18	7325.22
756.72	7331.87
749.65	7338.95
744.26	7345.00
	(ft) 1000.00 992.88 985.36 977.47 969.24 960.70 951.87 942.78 933.47 923.96 914.29 904.48 894.58 884.62 874.62 854.67 844.78 834.99 825.34 815.85 806.56 797.51 788.71 780.21 772.02 764.18 756.72 749.65

**** Simplified BISHOP FOS = 2.477 ****

```
**

** Out of the 900 surfaces generated and analyzed by XSTABL,

**

605 surfaces were found to have MISLEADING FOS values.

**

**
```

Problem Description : POST LIQUEFACTION STABILITY ANALYSIS

	FOS (BISHOP)	Circle x-coord (ft)	Center y-coord (ft)	Radius (ft)	Initial x-coord (ft)	Terminal x-coord (ft)	Resisting Moment (ft-lb)
1.	2.477	875.31	7457.42	172.66	1000.00	744.26	1.828E+07
2.	2,511	872.19	7455.30	168.42	993.10	744.94	1.740E+07
3.	2.527	862.87	7440.78	150.04	972.41	747.51	1.427E+07
4.	2.529	868.75	7451.34	163.14	986.21	745.07	1.656E+07
5.	2.536	865.87	7446.71	156.99	979.31	746.37	1.542E+07
6.	2.558	872.07	7459.43	171.41	993.10	744.43	1.779E+07
7.	2.563	860.50	7438.47	145.11	965.52	749.61	1.317E+07
8.	2.588	855.99	7434.04	140.29	958.62	747.61	1.280E+07
9.	2.590	856.81	7436.62	144.00	962.07	745.90	1.358E+07
10.	2.595	865.36	7455.78	171.17	989.66	734.94	1.986E+07

* * * END OF FILE * * *

APPENDIX I SOIL COVER STABILITY ANALYSES

Subject	Mercer Mine,
	Reservation Canvon
Maxin	num and Minimum Lift
Thiele	ness of the Tailings Cover

Made by	MJG
Checked by	y
Approved l	ру

Job No	993-2037
Date	7/15/99
Sheet No	1 of 4

OBJECTIVE:

- > Estimate maximum recommended initial lift thickness for various tailings strength conditions and degrees of draindown through a limit equilibrium stability analysis.
- > Estimate minimum equipment setback distances from the edge of the initial lift.
- > Estimate maximum recommended lift height for subsequent lifts.
- Estimate minimum recommended initial lift thickness for the anticipated tailings strength conditions at the time they are covered. The ability of the initial lift to support construction equipment was evaluated with and without geosynthetic reinforcement.
- > Define criteria in terms of tailings strength and depth to water to provide guidance as to when cover placement can occur.

METHOD:

- Maximum lift thickness evaluated using limit equilibrium, 2-dimensional stability analysis program (XSTABL). Total stress strength parameters were developed for the tailings and a total stress analysis was performed. An undrained shear strength was computed for the tailings as a function of the vertical effective stress, at midheight of the layer, prior to loading. The influence of negative pore pressures was included in the estimate of the vertical effective stress. A friction angle of 35-degrees was applied for the cover material. Using XSTABL (Sharma, 1995), four initial lift scenarios were considered. Lift thickness was varied between 3 and 10 feet and profile end slopes between 1.5H:1V and a 3H:1V. For each slope geometry, the shear strength is defined for the upper 5 feet that yields a factor of safety (FOS) equal to 1.5. All failures involved only the upper 5-feet of tailings. The depth to the static water level that is associated with that shear strength is also provided in Table I-2. The shear strength that yields a FOS equal to 1.5 is the estimated minimum shear strength necessary to place an initial lift of cover material over the tailings surface without generating a potentially unmanageable mudwave.
- > Setback distances were defined using XSTABL line load feature. A uniform load, representative of a loaded haul truck, of 500 psf was applied to the initial lift and moved from the crest until a factor of safety of 1.5 was reached to determine the minimum equipment setback distance.
- ▶ Utilizing the three initial lift thickness' (3, 5, and 10 ft.), a maximum lift height was determined for a second lift placed on top of an initial lift of cover material. XSTABL was used to determine the overall stability of subsequent lifts of cover material on top of an initial lift. The water level was maintained at the tailings surface and tailings shear strengths were maintained at the levels applied in the initial lift thickness analyses.
- Estimate minimum recommended initial lift thickness for the anticipated tailings strength conditions at the time they are covered. The strength of the tailings at the time they are covered was estimated from the settlement modeling conducted by Prof. Znidarcic and CPT data. Prof. Znidarcic estimated that the tailings at the surface will reach a void ratio of approximately 1.0 after 2 years of desiccation. Results of CPT indicate that tailings slimes with void ratios of 1.0 have an undrained shear strength of approximately 200 psf. The ability of the initial lift to support construction equipment was evaluated with and without geosynthetic reinforcement. The minimum lift thickness to prevent equipment wheel loads from punching through the cover was estimated for haulage equipment. Four different pieces of haulage equipment were considered; two types of scrapers (CAT 657E and CAT 631E), and two types of articulated trucks (CAT

Subject	Mercer Mine,
	Reservation Canyon
Maxin	num and Minimum Lift
Thick	ess of the Tailings Cover

Made by	MJG
Checked by	y
Approved	by

Job No	993-2037
Date	7/15/99
Sheet No	2 of 4
1	

D400E and

CAT D300E). Dozers are anticipated to be used to push the fill material within the equipment setback distance, and are not as likely to puncture the initial lift as the haulage equipment. Calculations are based on a method given by TENSAR (1987).

CALCULATIONS:

Output from the XSTABL stability analyses performed to determine maximum initial lift thickness, minimum equipment setback distance, and maximum subsequent lift height is provided in this Appendix.

The following equations were used to calculate the minimum lift thickness: From TENSAR, 1987. Effective contact radius of haulage equipment tires:

$$R = \sqrt{P/p\pi}$$

Where:

P= wheel load, lbs

p= tire inflation pressure, psi

TABLE 1-1. HAULAGE EQUIPMENT PROPERTIES

Equipment Type	Gross Machine Weight Loaded (lbs)	Tire Inflation Pressure (psi)	Wheel Load (lbs)
CAT 657E Scraper	271,270	80	69,174
CAT 631E Scraper	187,090	55	45,837
CAT D400E	144,512	48	24,567
Articulated Truck	1		
CAT D300E	106,695	58	18,672
Articulated Truck			

Bearing capacity of tailings:

Without geogrid:

 $q_u=N_cS_u=3.1xS_u$ (slimes)

 $q_u=N_cS_u=8xS_u$ (sands)

With geogrid:

 $q_r = N_c S_u = 6.2 \times S_u$ (slimes)

 $q_r = N_c S_u = 16x S_u$ (sands)

Where:

N_c=bearing capacity factor (based on TENSAR (1987), and NAVFAC (1971))

S_u=undrained shear strength of tailings (200 psf=1.39 psi for slimes; 299 psf=2.08 psi for sands)

Subject	Mercer Mine,	
	Reservation Canyon	
Maxin	num and Minimum Lift	
Thickr	ness of the Tailings Cover	

Made by	MJG
Checked by	
Approved b	у

993-2037
7/15/99
3 of 4

Minimum lift thickness to prevent puncture:

Without geogrid:

$$z_{u} = \frac{R}{\sqrt{\frac{1}{1 - q_{u}} - 1}}$$

With geogrid:

$$z_{u} = \frac{R}{\sqrt{\frac{1}{1 - q_{r}/p} - 1}}$$

CONCLUSIONS/RESULTS:

Stability analyses show that an initial lift thickness of 3 ft. can be placed over the tailings surface when the depth to the static water table is 3.5 ft. (for an end slope of 1.5H:1V) and a minimum tailings strength of 117 psf. An initial lift thickness of 5 ft. can be placed when the static water level is at 6 ft. and a minimum tailings shear strength of 180 psf. However, a 10 ft. lift cannot be placed on the tailings surface without having significant deformation of the end slope. These recommendations are provided so that prior to fill placement the likelihood of successful placement can be assessed using probes that assess water depth or shear strength (i.e. tensiometers, penetrometers, torsional shear vanes). The results of these analyses are presented in Table I-2 and slope profiles are presented in Figure I-1.

TABLE I-2. MAXIMUM INITIAL LIFT THICKNESS, MINIMUM STRENGTH REQUIREMENTS, AND HAULAGE EQUIPMENT SETBACKS

Initial Lift	End Profile Slope	Depth to Water	Minimum Tailings	Haulage Equipment
Thickness (ft.)		Below Tailings	Shear Strength for	Setback (ft.)
		Surface (ft.)	Upper 5 ft. (psf)	
3	1.5H:1V	3.5	117	18.0
3	3H:1V	3.0	100	16.0
5	1.5H:1V	6.0	180	16.0
5	3H:1V	6.0	170	15.0
10	1.5H:1V	NA	NA	NA
10	3H:1V	NA	NA	NA

For a given initial lift thickness over tailings, the maximum secondary lift height is given in Table I-3 and shown in Figure I-2.

Subject	Mercer Mine,
	Reservation Canyon
Maxin	num and Minimum Lift
Thickr	ness of the Tailings Cover

Made by	MJG	
Checked by	<u> </u>	_
Approved b	y	

Job No	993-2037
Date	7/15/99
Sheet No	4 of 4

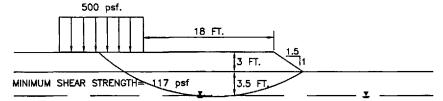
TABLE I-3. MAXIMUM LIFT THICKNESS FOR GIVEN INTIAL LIFT THICKNESS

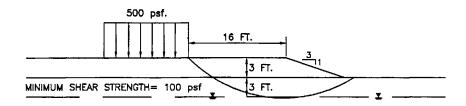
Initial Lift	Maximum Lift	
Thickness (ft.)	Thickness	
3	5.0	
5	13.0	
10	23.0	

It is expected that the largest piece of haulage equipment which will operate on the tailings surface is a CAT 631E scraper (or equivalent). Given this, the minimum lift thickness for this piece of equipment is estimated to be 3.2 ft. if a geogrid is used to reinforce the tailings surface. Other lift thickness' are presented in Table I-4.

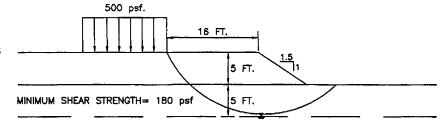
TABLE I-4. MINIMUM LIFT THICKNESS TO PREVENT PUNCTURE

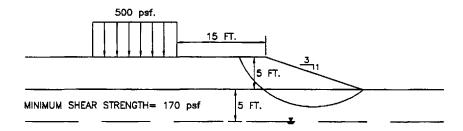
Equipment Type	Minimum Lift Thickness, Without Geogrid (ft.)	Minimum Lift Thickness, With Geogrid (ft.)
CAT 657E Scraper	7.1	5,5
CAT 631E Scraper	4.8	3.2
CAT D400E Articulated Truck	1.8	0.8
CAT D300E Articulated Truck	1.5	0.5


REFERENCES:


NAVFAC, 1971, DM-7 Design Manual; soil mechanics, foundations and earth structures," U.S. Government Printing Office.

Sharma, S., 1995, XSTABL: An integrated slope stability analysis program. Version 5.105, Interactive Software Designs, Inc., p. 219.


TENSAR Environmental Systems Inc., 1987, TENSAR geogrid for subgrade improvement design guide and cost comparisons. The TENSAR Corporation, p. 6.

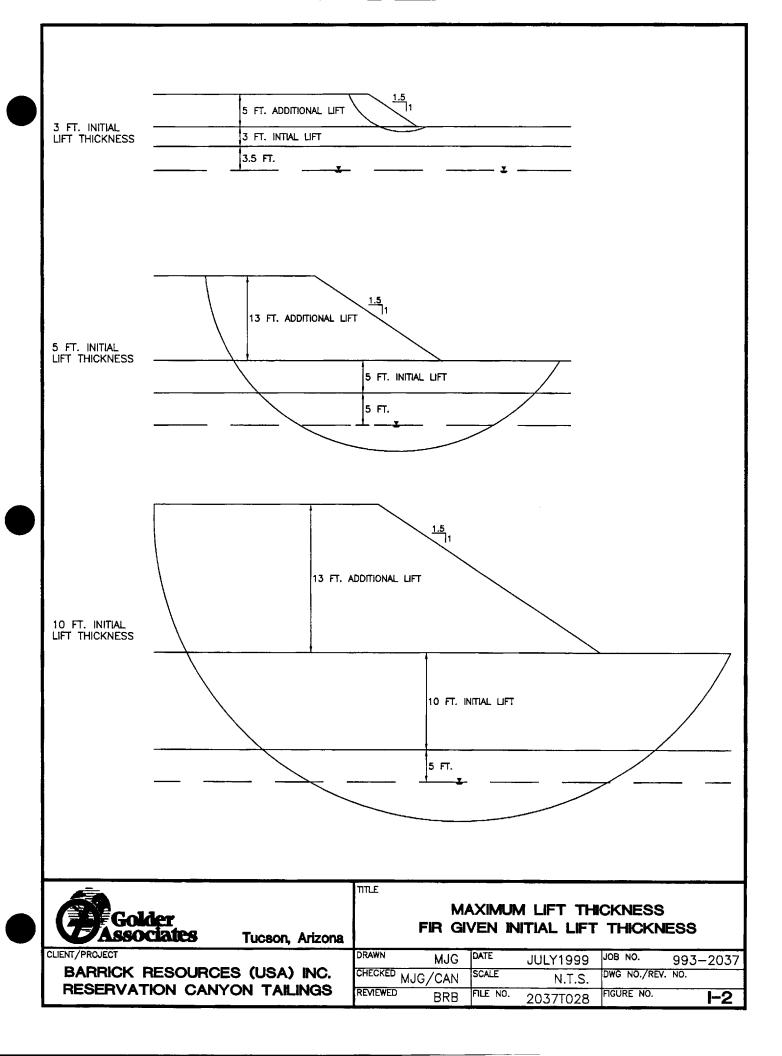


5 FT. MAXIMUM LIFT THICKNESS

10 FT. MAXIMUM LIFT THICKNESS

NA

TITLE


Tucson, Arizona

MAXIMUM LIFT THICKNESS AND EQUIPMENT SETBACKS

CLIENT/PROJECT

BARRICK RESOURCES (USA) INC. RESERVATION CANYON TAILINGS

DRAWN	MOG	DATE	JULY	1999	JOB NO.	993-2037
	MUG/ CAN	SCALE		N.T.S.	DWG NO./REV.	NO.
REVIEWED	BRB	FILE NO.	203	7T028	FIGURE NO.	I-1

XSTABL File: TS3 NCS1 7-15-99 9:11

Problem Description: Tailings Surface Construction

SEGMENT BOUNDARY COORDINATES

3 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	300.0	7335.0	400.0	7335.0	2
2	400.0	7335.0	404.3	7338.0	1
3	404.3	7338.0	500.0	7338.0	1

5 SUBSURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x~right (ft)	y-right (ft)	Soil Unit Below Segment
1	400.0	7335.0	500.0	7335.0	2
2	300.0	7331.5	500.0	7331.5	3
3	300.0	7330.0	500.0	7330.0	4
4	300.0	7325.0	500.0	7325.0	5
5	300.0	7320.0	500.0	7320.0	6

ISOTROPIC Soil Parameters

6 Soil unit(s) specified

Soil Unit Weight Cohesion Friction Pore Pressure Water Unit Moist Sat. Intercept Angle Parameter Constant Surface

No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	125.0	125.0	.0	35.00	.000	.0	0
2	112.0	115.0	117.2	.00	.000	.0	0
3	112.0	115.0	165.6	.00	.000	.0	0
4	112.0	115.0	216.1	.00	.000	.0	0
5	112.0	115.0	317.0	.00	.000	.0	0
6	112.0	115.0	418.0	.00	.000	.0	0

BOUNDARY LOADS

1 load(s) specified

Load	x-left	x-right	Intensity	Direction
No.	(ft)	(ft)	(psf)	(deg)
1	420.0	433.0	500.0	.0

NOTE - Intensity is specified as a uniformly distributed force acting on a HORIZONTALLY projected surface.

A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified.

900 trial surfaces will be generated and analyzed.

30 Surfaces initiate from each of 30 points equally spaced along the ground surface between x = 375.0 ft and x = 399.0 ft

Each surface terminates between x = 404.0 ftand x = 450.0 ft

Unless further limitations were imposed, the minimum elevation at which a surface extends is y = 0.0 ft

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

1.0 ft line segments define each trial failure surface.

ANGULAR RESTRICTIONS :

The first segment of each failure surface will be inclined

within the angular range defined by :

Lower angular limit := -45.0 degrees

Upper angular limit := (slope angle - 5.0) degrees

Circular surface (FOS= 36.8819) is defined by: xcenter = 389.79 ycenter = 7352.44 Init. Pt. = 379.14 Seg. Length = 1.00

Negative effective stresses were calculated at the base of a slice. This warning is usually reported for cases where slices have low self weight and a relatively high "c" shear strength parameter. In such cases, this effect can only be eliminated by reducing the "c" value.

USER SELECTED option to maintain strength greater than zero

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED BISHOP METHOD * * * * *

The most critical circular failure surface is specified by 48 coordinate points

Point No.	x-surf (ft)	y-surf (ft)
1	391.55	7335.00
2	392.26	7334.29
3	392.99	7333.61
4	393.75	7332.96
5	394.53	7332.34
6	395.34	7331.74
7	396.16	7331.18
8	397.01	7330.65
9	397.88	7330.15

```
398.76
10
                   7329.68
11
         399.66
                   7329.25
12
         400.58
                   7328.85
13
        401.51
                   7328.48
                   7328.15
14
        402.45
15
        403.41
                   7327.86
                   7327.60
16
         404.37
17
         405.35
                   7327.38
18
         406.33
                   7327.19
19
         407.32
                   7327.05
20
         408.32
                   7326.93
21
         409.31
                   7326.86
                   7326.82
22
         410.31
23
         411.31
                   7326.82
24
         412.31
                   7326.86
25
        413.31
                   7326.94
26
        414.30
                   7327.05
        415.29
                   7327.20
27
28
                   7327.39
         416.27
29
         417.25
                   7327.61
30
         418.21
                   7327.87
31
         419.17
                   7328.17
32
         420.11
                   7328.50
33
        421.04
                  7328.86
34
        421.96
                  7329,26
                  7329.70
35
         422.86
                  7330.17
36
         423.74
37
         424.61
                   7330.67
38
        425.45
                  7331.20
39
        426.28
                   7331.77
40
        427.08
                   7332.36
41
        427.87
                   7332.98
                   7333.64
42
        428.62
                   7334.32
43
         429.35
44
         430.06
                   7335.03
45
         430.74
                   7335.76
46
         431.39
                   7336.52
47
         432.01
                   7337.30
48
         432.53
                   7338.00
```

**** Simplified BISHOP FOS = 1.508 ****

The following is a summary of the TEN most critical surfaces

Problem Description : Tailings Surface Construction

	FOS (BISHOP)	Circle x-coord (ft)	Center y-coord (ft)	Radius (ft)	Initial x-coord (ft)	Terminal x-coord (ft)	Resisting Moment (ft-lb)
1.	1.508	410.87	7353.62	26.84	391.55	432.53	2.451E+05
2.	1.525	410.65	7354.93	27.60	391.55	432.69	2.492E+05
3.	1.533	408.32	7357.00	30.93	386.59	432.98	3.214E+05
4.	1.541	413.36	7351.99	24.51	395.69	433.22	2.011E+05
5.	1.548	410.62	7356.88	29.57	390.72	433.40	2.713E+05
6.	1.549	410.01	7357.25	29.99	389.90	433.29	2.813E+05
7.	1.561	410.66	7357.09	30.89	389.07	434.60	2.966E+05
8.	1.563	410.61	7350.98	23.02	394.03	429.76	1.801E+05
9.	1.566	413.02	7353.58	25.40	395.69	433.41	2.028E+05
10.	1.568	410.64	7357.00	31.40	388.24	435.38	3.078E+05

* * * END OF FILE * * *

XSTABL File: TS3 NCS2 7-15-99 9:16

Problem Description: Tailings Surface Construction

SEGMENT BOUNDARY COORDINATES

3 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	300.0	7335.0	400.0	7335.0	2
2	400.0	7335.0	409.0	7338.0	1
3	409.0	7338.0	500.0	7338.0	1

5 SUBSURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	400.0	7335.0	500.0	7335.0	2
2	300.0	7331.0	500.0	7331.0	3
3	300.0	7330.0	500.0	7330.0	4
4	300.0	7325.0	500.0	7325.0	5
5	300.0	7320.0	500.0	7320.0	6

ISOTROPIC Soil Parameters

6 Soil unit(s) specified

Soil Unit Weight Cohesion Friction Pore Pressure Water Unit Moist Sat. Intercept Angle Parameter Constant Surface

No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	125.0	125.0	.0	35.00	.000	.0	0
2	112.0	115.0	100.4	.00	.000	.0	0
3	112.0	115.0	149.2	.00	.000	.0	0
4	112.0	115.0	199.6	.00	.000	.0	0
5	112.0	115.0	300.6	.00	.000	.0	0
6	112.0	115.0	401.6	.00	.000	.0	0

BOUNDARY LOADS

1 load(s) specified

Load	x-left	x-right	Intensity	Direction
No.	(ft)	(ft)	(psf)	(deg)
4	407.0	440.0	500.0	•
Τ	427.0	440.0	500.0	.0

NOTE - Intensity is specified as a uniformly distributed force acting on a HORIZONTALLY projected surface.

A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified.

900 trial surfaces will be generated and analyzed.

30 Surfaces initiate from each of 30 points equally spaced along the ground surface between x = 375.0 ft and x = 399.0 ft

Each surface terminates between x = 404.0 ftand x = 450.0 ft

Unless further limitations were imposed, the minimum elevation at which a surface extends is y = .0 ft

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

1.0 ft line segments define each trial failure surface.

ANGULAR RESTRICTIONS :

The first segment of each failure surface will be inclined

within the angular range defined by :

Lower angular limit := -45.0 degrees

Upper angular limit := (slope angle - 5.0) degrees

```
*************
      Factor of safety calculation for surface # 94 **
      failed to converge within FIFTY iterations
  ** The last calculated value of the FOS was 30.0057
  ** This will be ignored for final summary of results **
  ***************
Circular surface (FOS= 30.0057) is defined by: xcenter = 389.79
ycenter = 7360.33 Init. Pt. = 377.48 Seg. Length = 1.00
______
  *****************
      Factor of safety calculation for surface # 287 **
      failed to converge within FIFTY iterations
  ** The last calculated value of the FOS was 109.4305 **
  ** This will be ignored for final summary of results **
  *******************
Circular surface (FOS=109.4305) is defined by: xcenter = 391.40
ycenter = 7367.39 Init. Pt. = 382.45 Seg. Length = 1.00
______
  ******************
      Factor of safety calculation for surface # 546 **
      failed to converge within FIFTY iterations
  **
  * *
  ** The last calculated value of the FOS was 32.7678
  ** This will be ignored for final summary of results **
  ****************
Circular surface (FOS= 32.7678) is defined by: xcenter = 395.42
ycenter = 7352.53 Init. Pt. = 389.90 Seg. Length = 1.00
  Factors of safety have been calculated by the :
```

The most critical circular failure surface

is specified by 56 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
		_
51	435.70	7334.51
52	436.40	7335.23
53	437.08	7335.96

54	437.73	7336.72
55	438.36	7337.49
56	438.75	7338.00

**** Simplified BISHOP FOS = 1.528 ****

The following is a summary of the TEN most critical surfaces ${\bf r}$

Problem Description : Tailings Surface Construction

	FOS (BISHOP)	Circle x-coord (ft)	Center y-coord (ft)	Radius (ft)	Initial x-coord (ft)	Terminal x-coord (ft)	Resisting Moment (ft-lb)
1.	1.528	413.43	7357.08	31.68	390.72	438.75	3.152E+05
2.	1.530	416.44	7355.39	29.09	395.69	439.69	2.620E+05
3.	1.548	413.57	7361.52	35.55	389.90	439.92	3.604E+05
4.	1.563	415.87	7356.67	29.61	395.69	439.12	2.582E+05
5.	1.568	417.74	7355.08	28.62	397.34	440.65	2.467E+05
6.	1.583	411.54	7364.84	39.43	385.76	440.20	4.340E+05
7.	1.591	413.58	7363.99	37.44	389.90	440.51	3.717E+05
8.	1.602	411.32	7364.36	38.39	386.59	439.42	4.095E+05
9.	1.602	412.11	7359.28	32.91	389.90	437.56	3.179E+05
10.	1.611	413.37	7362.54	35.14	391.55	439.05	3.285E+05

* * * END OF FILE * * *

Problem Description : Tailings Surface Construction

SEGMENT BOUNDARY COORDINATES

3 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	300.0	7335.0	400.0	7335.0	2
2	400.0	7335.0	407.1	7340.0	1
3	407.1	7340.0	500.0	7340.0	1

5 SUBSURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	400.0	7335.0	500.0	7335.0	2
2	300.0	7330.0	500.0	7330.0	3
3	300.0	7329.0	500.0	7329.0	4
4	300.0	7325.0	500.0	7325.0	5
5	300.0	7320.0	500.0	7320.0	6

ISOTROPIC Soil Parameters

6 Soil unit(s) specified

Soil Unit Weight Cohesion Friction Pore Pressure Water Unit Moist Sat. Intercept Angle Parameter Constant Surface

No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	125.0	125.0	.0	35.00	.000	.0	0
2	112.0	115.0	179.3	.00	.000	.0	0
3	112.0	115.0	248.4	.00	.000	.0	0
4	112.0	115.0	310.3	.00	.000	.0	0
5	112.0	115.0	409.4	.00	.000	.0	0
6	112.0	115.0	510.4	.00	.000	.0	0

BOUNDARY LOADS

1 load(s) specified

Load	x-left	x-right	Intensity	Direction
No.	(ft)	(ft)	(psf)	(deg)
1	423.0	436.0	500.0	.0

NOTE - Intensity is specified as a uniformly distributed force acting on a HORIZONTALLY projected surface.

A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified.

900 trial surfaces will be generated and analyzed.

30 Surfaces initiate from each of 30 points equally spaced along the ground surface between x = 375.0 ft and x = 398.0 ft

Each surface terminates between x = 411.0 ftand x = 450.0 ft

Unless further limitations were imposed, the minimum elevation at which a surface extends is y = .0 ft

- * * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *
 - 1.0 ft line segments define each trial failure surface.

ANGULAR RESTRICTIONS :

The first segment of each failure surface will be inclined

within the angular range defined by :

Lower angular limit := -45.0 degrees Upper angular limit := $(slope \ angle - 5.0)$ degrees

Factors of safety have been calculated by the :

The most critical circular failure surface is specified by 43 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	(ft) 395.62 396.42 397.24 398.09 398.95 399.83 400.73 401.65 402.58 403.52 404.48 405.44 406.42 407.40 408.39 409.39 410.38 411.38 412.38 413.38 414.38 415.37 416.36 417.34 418.31 419.27 420.23 421.17 422.09 423.00 423.89 424.77	(ft) 7335.00 7334.40 7333.83 7333.30 7332.79 7332.32 7331.88 7331.48 7331.12 7330.79 7330.49 7330.23 7330.01 7329.83 7329.68 7329.58 7329.51 7329.48 7329.53 7329.61 7329.48 7329.53 7329.61 7329.73 7329.89 7330.09 7331.24 7331.62 7332.04 7332.97
33	425.63	7333.48
34	426.46	7334.03
35	427.28	7334.61
36	428.07	7335.22
37	428.84	7335.86

38	429.58	7336.53
39	430.30	7337.23
40	430.99	7337.95
41	431.65	7338.70
42	432.28	7339.48
43	432.68	7340.00

**** Simplified BISHOP FOS = 1.530 ****

The following is a summary of the TEN most critical surfaces

Problem Description : Tailings Surface Construction

	FOS (BISHOP)	x-coord	Center y-coord	Radius	x-coord	Terminal x-coord	Resisting Moment
		(ft)	(ft)	(ft)	(ft)	(ft)	(ft-lb)
1.	1.530	411.55	7355.42	25.90	395.62	432.68	2.520E+05
2.	1.535	410.02	7358.04	28.98	392.45	432.57	3.084E+05
3.	1.544	410.56	7352.53	22.53	396.41	429.11	1.828E+05
4.	1.550	413.80	7353.10	24.03	398.00	433.89	2.317E+05
5.	1.564	410.39	7356.67	26.22	395.62	430.67	2.288E+05
6.	1.575	412.37	7359.37	28.70	397.21	433.55	2.607E+05
7.	1.576	403.58	7341.53	9.70	396.41	413.12	3.506E+04
8.	1.576	403.72	7342.61	11.11	395.62	414.55	4.482E+04
9.	1.577	403.54	7343.87	13.00	394.03	415.91	6.001E+04
10.	1.584	403.91	7343.78	12.64	394.83	415.88	5.604E+04

* * * END OF FILE * * *

Problem Description : Tailings Surface Construction

SEGMENT BOUNDARY COORDINATES

3 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	300.0	7335.0	400.0	7335.0	2
2	400.0	7335.0	415.0	7340.0	1
3	415.0	7340.0	500.0	7340.0	1

5 SUBSURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	400.0	7335.0	500.0	7335.0	2
2	300.0	7330.0	500.0	7330.0	3
3	300.0	7329.0	500.0	7329.0	4
4	300.0	7325.0	500.0	7325.0	5
5	300.0	7320.0	500.0	7320.0	6

ISOTROPIC Soil Parameters

6 Soil unit(s) specified

Soil Unit Weight Cohesion Friction Pore Pressure Water Unit Moist Sat. Intercept Angle Parameter Constant Surface

No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	125.0	125.0	.0	35.00	.000	.0	0
2	112.0	115.0	167.4	.00	.000	.0	0
3	112.0	115.0	215.0	.00	.000	.0	0
4	112.0	115.0	265.4	.00	.000	.0	0
5	112.0	115.0	366.4	.00	.000	.0	0
6	112.0	115.0	467.4	.00	.000	.0	0

BOUNDARY LOADS

._____

1 load(s) specified

Load	x-left	x-right	Intensity	Direction
No.	(ft)	(ft)	(psf)	(deg)
1	430.0	443.0	500.0	.0

NOTE - Intensity is specified as a uniformly distributed force acting on a HORIZONTALLY projected surface.

A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified.

900 trial surfaces will be generated and analyzed.

30 Surfaces initiate from each of 30 points equally spaced along the ground surface between x = 375.0 ft and x = 398.0 ft

Each surface terminates between x = 411.0 ftand x = 450.0 ft

Unless further limitations were imposed, the minimum elevation at which a surface extends is y = 0.0 ft

* * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *

1.0 ft line segments define each trial failure surface.

ANGULAR RESTRICTIONS :

The first segment of each failure surface will be inclined

within the angular range defined by :

Lower angular limit := -45.0 degrees Upper angular limit := (slope angle - 5.0) degrees

Factors of safety have been calculated by the :

The most critical circular failure surface is specified by 60 coordinate points

38	425.20	7327.41
39	426.14	7327.75
40	427.07	7328.11
41	427.99	7328.51
42	428.89	7328.93
43	429.79	7329.38
44	430.67	7329.86
45	431.53	7330.36
46	432.38	7330.88
47	433.21	7331.44
48	434.03	7332.01
49	434.83	7332.61
50	435.61	7333.24
51	436.38	7333.88
52	437.12	7334.55
53	437.84	7335.25
54	438.54	7335.96
55	439.22	7336.69
56	439.88	7337.44
57	440.52	7338.22
58	441.13	7339.01
59	441.72	7339.81
60	441.85	7340.00

**** Simplified BISHOP FOS = 1.535 ****

The following is a summary of the TEN most critical surfaces ${\bf r}$

Problem Description : Tailings Surface Construction

	FOS (BISHOP)	Circle x-coord (ft)	Center y-coord (ft)	Radius (ft)	Initial x-coord (ft)	Terminal x-coord (ft)	Resisting Moment (ft-lb)
		(=0)	(20)	(20)	(20)	(10)	(11 12)
1.	1.535	414.10	7359.07	33.46	390.86	441.85	4.796E+05
2.	1.542	415.69	7356.88	30.79	394.03	441.38	4.090E+05
3.	1.547	417.39	7355.49	29.32	396.41	441.98	3.761E+05
4.	1.547	413.71	7361.80	36.27	389.28	442.32	5.376E+05
5.	1.554	414.61	7363.44	38.09	389.28	443.90	5.685E+05
6.	1.559	417.81	7357.66	32.28	394.83	445.01	4.355E+05
7.	1.564	412.89	7359.23	33.84	389.28	440.50	4.890E+05
8.	1.565	413.17	7356.59	31.05	390.86	439.74	4.308E+05
9.	1.568	418.57	7356.71	31.02	396.41	444.45	4.049E+05
10.	1.568	415.27	7357.52	30.96	394.03	440.57	4.004E+05

* * * END OF FILE * * *

Problem Description : Tailings Surface Construction

SEGMENT BOUNDARY COORDINATES

3 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	300.0	7338.0	400.0	7338.0	1
2	400.0	7338.0	404.5	7343.0	1
3	404.5	7343.0	500.0	7343.0	1

5 SUBSURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	300.0	7335.0	500.0	7335.0	2
2	300.0	7331.5	500.0	7331.5	3
3	300.0	7330.0	500.0	7330.0	4
4	300.0	7325.0	500.0	7325.0	5
5	300.0	7320.0	500.0	7320.0	6

ISOTROPIC Soil Parameters

6 Soil unit(s) specified

Soil Unit Weight Cohesion Friction Pore Pressure Water Unit Moist Sat. Intercept Angle Parameter Constant Surface

No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	125.0	125.0	.0	35.00	.000	.0	0
2	112.0	115.0	117.2	.00	.000	.0	0
3	112.0	115.0	165.6	.00	.000	.0	0
4	112.0	115.0	216.1	.00	.000	.0	0
5	112.0	115.0	317.0	.00	.000	.0	0
6	112.0	115.0	418.0	.00	.000	.0	0

A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified.

900 trial surfaces will be generated and analyzed.

30 Surfaces initiate from each of 30 points equally spaced along the ground surface between x = 375.0 ft and x = 399.0 ft

Each surface terminates between x = 404.0 ftand x = 450.0 ft

Unless further limitations were imposed, the minimum elevation at which a surface extends is y = .0 ft

- * * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *
 - 1.0 ft line segments define each trial failure surface.

ANGULAR RESTRICTIONS :

The first segment of each failure surface will be inclined within the angular range defined by :

Lower angular limit := -45.0 degrees Upper angular limit := (slope angle - 5.0) degrees

Factors of safety have been calculated by the :

The most critical circular failure surface is specified by 13 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
1	396.52	7338.00
2	397.50	7337.84
3	398.50	7337.80
4	399.50	7337.88
5	400.48	7338.08
6	401.43	7338.40
7	402.33	7338.84
8	403.17	7339.38
9	403.93	7340.02
10	404.62	7340.75
11	405.21	7341.56
12	405.69	7342.43
13	405.92	7343.00

**** Simplified BISHOP FOS = 1.038 ****

The following is a summary of the TEN most critical surfaces

Problem Description: Tailings Surface Construction

	FOS (BISHOP)	Circle x-coord	Center y-coord	Radius	Initial x-coord	Terminal x-coord	Resisting Moment
		(ft)	(ft)	(ft)	(ft)	(ft)	(ft-lb)
1.	1.038	398.34	7346.12	8.32	396.52	405.92	5.796E+03
2.	1.125	398.33	7343.52	5.81	396.52	404.03	1.938E+03
3.	1.127	400.13	7343.30	5.42	399.00	405.51	4.599E+03
4.	1.343	399.99	7344.03	6.58	397.34	406.46	9.106E+03
5.	1.355	397.09	7351.15	13.50	394.03	407.85	1.622E+04
6.	1.358	400.27	7345.21	7.52	398.17	407.41	1.116E+04
7.	1.516	400.75	7345.95	8.14	399.00	408.46	1.453E+04
8.	1.579	404.41	7352.99	21.45	389.07	423.26	1.454E+05
9.	1.581	400.70	7353.95	22.43	384.93	420.13	1.554E+05
10.	1.595	404.28	7353.17	21.48	389.07	423.39	1.465E+05

* * * END OF FILE * * *

XSTABL File: TS5_NCS3 7-27-99 12:40

Problem Description: Tailings Surface Construction

SEGMENT BOUNDARY COORDINATES

3 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	300.0	7340.0	400.0	7340.0	1
2	400.0	7340.0	419.5	7353.0	1
3	419.5	7353.0	500.0	7353.0	1

5 SUBSURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	300.0	7335.0	500.0	7335.0	2
2	300.0	7330.0	500.0	7330.0	3
3	300.0	7329.0	500.0	7329.0	4
4	300.0	7325.0	500.0	7325.0	5
5	300.0	7320.0	500.0	7320.0	6

ISOTROPIC Soil Parameters

6 Soil unit(s) specified

Soil Unit Weight Cohesion Friction Pore Pressure Water Unit Moist Sat. Intercept Angle Parameter Constant Surface

No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.
1	125.0	125.0	.0	35.00	.000	.0	0
2	112.0	115.0	179.3	.00	.000	.0	0
3	112.0	115.0	248.4	.00	.000	.0	0
4	112.0	115.0	310.3	.00	.000	.0	0
5	112.0	115.0	409.4	.00	.000	.0	0
6	112.0	115.0	510.4	.00	.000	.0	0

A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified.

900 trial surfaces will be generated and analyzed.

30 Surfaces initiate from each of 30 points equally spaced along the ground surface between x = 375.0 ft and x = 398.0 ft

Each surface terminates between x = 420.0 ft and x = 450.0 ft

Unless further limitations were imposed, the minimum elevation at which a surface extends is y = .0 ft

- * * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *
 - 2.0 ft line segments define each trial failure surface.

ANGULAR RESTRICTIONS :

The first segment of each failure surface will be inclined within the angular range defined by :

Lower angular limit := -45.0 degrees
Upper angular limit := (slope angle - 5.0) degrees

Factors of safety have been calculated by the :

* * * * * * SIMPLIFIED BISHOP METHOD * * * * *

The most critical circular failure surface is specified by 35 coordinate points

Point	x-surf	y-surf
No.	(ft)	(ft)
No. 1 2 3 4 5 6 7 8 9 10 112 13 14 15 16 17 18 19 20 21 22 23 24 25 6 27 28 9 30 31 32 33	384.52 385.95 387.46 389.05 390.71 392.44 394.23 396.07 397.95 399.87 401.83 403.80 405.79 407.79 407.79 407.79 411.78 413.76 415.71 417.64 419.53 421.37 424.90 426.57 428.17 429.70 431.14 432.49 433.75 434.91 435.97 436.92 437.76	7340.00 7338.60 7337.29 7336.08 7334.97 7333.96 7333.07 7332.28 7331.61 7331.05 7330.30 7330.11 7330.04 7330.10 7330.57 7330.57 7330.57 7330.57 7332.97 7332.97 7332.97 7333.85 7334.85 7335.95 7337.15 7338.44 7339.83 7341.30 7342.86 7344.49 7346.18 7347.94 7349.76
34	438.49	7351.62
35	438.93	7353.00

**** Simplified BISHOP FOS = 1.180 ****

The following is a summary of the TEN most critical surfaces $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1$

Problem Description : Tailings Surface Construction

			y-coord		x-coord		Resisting Moment (ft-lb)
1.	1.180	407.93	7362.52	32.49	384.52	438.93	7.171E+05
2.	1.187	410.31	7361.48	31.19	387.69	440.30	6.769E+05
3.	1.194	411.91	7362.84	33.29	387.69	443.78	7.676E+05

4.	1.200	411.52	7364.30	34.59	386.90	444.12	8.086E+05
5.	1.201	412.87	7364.09	34.85	387.69	445.81	8.271E+05
6.	1.203	408.70	7365.22	35.50	383.72	442.16	8.442E+05
7.	1,205	409.82	7366.00	36.28	384.52	443.80	8.721E+05
8.	1.205	410.02	7365.26	36.47	383.72	444.29	9.108E+05
9.	1.206	406.46	7364.78	34.72	382.14	439.02	7.965E+05
10.	1.208	411.55	7361.38	30.88	389.28	441.19	6.689E+05

* * * END OF FILE * * *

Problem Description : Tailings Surface Construction

SEGMENT BOUNDARY COORDINATES

3 SURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	300.0	7345.0	400.0	7345.0	1
2	400.0	7345.0	434.5	7368.0	1
3	434.5	7368.0	600.0	7368.0	1

4 SUBSURFACE boundary segments

Segment No.	x-left (ft)	y-left (ft)	x-right (ft)	y-right (ft)	Soil Unit Below Segment
1	300.0	7335.0	600.0	7335.0	2
2	300.0	7330.0	600.0	7330.0	3
3	300.0	7325.0	600.0	7325.0	4
4	300.0	7320.0	600.0	7320.0	5

ISOTROPIC Soil Parameters

6 Soil unit(s) specified

Soil	Unit	Weight	Cohesion	Friction	Pore Pr	essure	Water
Unit	Moist	Sat.	Intercept	Angle	Parameter	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Ru	(psf)	No.

1	125.0	125.0	.0	35.00	.000	.0	0
2	112.0	115.0	179.3	.00	.000	.0	0
3	112.0	115.0	248.4	.00	.000	.0	0
4	112.0	115.0	310.3	.00	.000	.0	0
5	112.0	115.0	409.4	.00	.000	.0	0
6	112.0	115.0	510.4	.00	.000	. 0	Ω

A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified.

900 trial surfaces will be generated and analyzed.

30 Surfaces initiate from each of 30 points equally spaced along the ground surface between x = 350.0 ft and x = 398.0 ft

Each surface terminates between x = 435.0 ftand x = 550.0 ft

Unless further limitations were imposed, the minimum elevation at which a surface extends is y = .0 ft

- * * * * * DEFAULT SEGMENT LENGTH SELECTED BY XSTABL * * * * *
 - 3.0 ft line segments define each trial failure surface.

ANGULAR RESTRICTIONS :

The first segment of each failure surface will be inclined within the angular range defined by :

Lower angular limit := -45.0 degrees Upper angular limit := (slope angle - 5.0) degrees

Factors of safety have been calculated by the :

* * * * * SIMPLIFIED BISHOP METHOD * * * * *

The most critical circular failure surface is specified by 53 coordinate points

Point No.	x-surf (ft)	y-surf (ft)
No. 12345678901123456789012234567890123345678901234456789012345678901234567890123345678901234678901234567890123456789012345678901234567890124567890124567890123456789012456789012456789012456789012456789012456789012456789012456789012456789012456789000000000000000000000000000000000000	356.62 358.74 360.95 363.22 365.57 367.99 370.47 373.02 375.62 378.28 380.99 383.74 386.54 389.38 392.25 398.03 404.00 406.98 409.97 415.97 421.96 424.94 427.90 430.84 427.90 430.84 445.11 447.85 450.54 453.18 455.76 458.28 460.74 463.13 465.45 467.70 471.96 473.97 471.96 473.97 471.96 473.97 475.97 477.74 479.48 481.13 482.69 484.15 485.51	7345.00 7342.88 7340.84 7338.89 7337.03 7335.25 7333.57 7331.98 7329.09 7327.80 7326.61 7325.53 7324.55 7322.27 7321.73 7320.98 7320.78 7320.78 7320.79 7321.45 7321.92 7321.45 7321.92 7321.45 7321.92 7321.45 7321.92 7321.45 7321.92 7321.45 7321.92 7331.05 7332.58 7345.84 7345.84 7355.18 7360.25 7365.54
53	486.65	7368.00

The following is a summary of the TEN most critical surfaces

Problem Description: Tailings Surface Construction

	FOS (BISHOP)	Circle x-coord (ft)	Center y-coord (ft)	Radius (ft)	Initial x-coord (ft)	Terminal x-coord (ft)	Resisting Moment (ft-lb)
1.	1.055	413.88	7400.27	79.58	356.62	486.65	6.462E+06
2.	1.055	418.11	7399.46	78.49	361.59	490.04	6.324E+06
3.	1.057	419.49	7402.00	81.25	361.59	493.27	6.656E+06
4.	1.058	421.76	7404.91	84.91	361.59	498.43	7.161E+06
5.	1.067	422.87	7412.49	96.92	353.31	509.30	9.341E+06
6.	1.067	423.69	7415.39	100.72	351.66	512.79	9.963E+06
7.	1.068	420.02	7410.37	93.40	353.31	503.70	8.720E+06
8.	1.068	415.14	7407.52	87.93	353.31	493.60	7.639E+06
9.	1.068	415.64	7409.64	92.12	350.00	497.85	8.470E+06
10.	1.068	427.23	7418.46	105.39	351.66	519.32	1.077E+07

* * * END OF FILE * * *

APPENDIX J SURFACE HYDROLOGIC ANALYSIS

Subject	Barrick Mercur
Reserv	ation Canyon Tailings
Surface	e Water Hydrology

Made by	TJW
Checked by	MJG
Approved by	BRB

Job No	993-2037
Date	7/29/99
Sheet No	1 of 2

OBJECTIVE:

Determine design storm runoff rates for sizing of storm-water diversion channels, spillway, and auxillary spillway. Design channel and spillway to contain peak design flows.

METHOD:

Storm runoff was computed using SCS curve number method.

Channel sizing was accomplished using FlowMaster, software program that solves surface water hydraulics using manning's equation.

Spillway sizing based on Bureau of Reclamation method for nappe shaped crest profile (Bureau of Reclamation, 1987)

ASSUMPTIONS:

Runoff curve numbers from JBR (1997) based on soil and vegetative baseline studies are:

81 for disturbed ground

60 for undisturbed ground

A Type II rainfall distribution was applied.

Design precipitation events from Miller, J.F., et.al. (1973) are:

2-yr, 24-hr event

1.8 inches

10-yr, 24-hr event

2.6 inches

50-yr, 24-hr event

3.4 inches

100-yr, 24-hr event

3.8 inches

Channel and Spillway sizing based on the 100-yr, 24-hr storm event.

Maximum spillway outflow assumes that reservoir is full at the time of the peak flow.

Subbasin areas are shown on Figure 11-1

CALCULATIONS:

Runoff calculations were performed using a hydrologic modeling program StormSHED (Boss International, 1995). StormSHED output is included with this Appendix.

Depth and velocity of channel flow was determined using a hydraulic modeling program FlowMaster (Haestad, 1997). FlowMaster output is included with this Appendix.

Auxiliary Spillway sizing is based on the equation:

$$Q = C \cdot L \cdot H^{\frac{3}{2}}$$

where:

C=coefficient=3.08

L=width of spillway

H=total head

(USBR, 1987)

CONCLUSIONS/RESULTS:

The peak runoff that must be conveyed by the Northern Channel resulting from the 100-yr, 24-hr storm event runoff from A&B basin is 179 cfs. A low flow channel, capable of conveying more frequent storm events (i.e. 2-yr, 24-hr of 12.4 cfs) will be provided. A channel alignment was developed that provides ease of construction and maximizes storm water interception. The Northern Channel consists of four channel reaches (A1 thru A4). Northern Channel reach A1 maintains

Subject	Barrick Mercur
Reserv	ation Canyon Tailings
Surface	e Water Hydrology

Made by	TJW
Checked by	MJG
Approved by	BRB

Job No	993-2037
Date	7/29/99
Sheet No	2 of 2

a slope of 2.89 percent for

approximately 250 feet. Channel section A1 has an trapezoidal cross-section with a minimum 10 foot bottom width and 2H:1V side slopes. Reach A2 also has a trapezoidal channel and is anticipated to be excavated in highly durable limestone with a minimum bottom width and 1H:1V side slopes at a grade of 2.89% for 300 feet. Channel reach A3 will have the same cross-sectional and grade characteristics as reach A1 for a distance of 750 feet. Reach A4 maintains a slope of 0.5 percent for approximately 1290 feet with an irregular cross-section consisting of a 1.5 foot deep triangular "low flow" ditch and a 10 foot wide, 3.8 foot deep "overflow channel" for extreme storm events.

Runoff from sub-basin C will flow into the reclaimed East Bay. Minor regrading may be necessary to promote drainage into the reclaimed East Bay. Where principle tributaries enter the east side of the East Bay, riprap erosion protection will be provided. The approximate limits of riprap are shown on Drawing No. 5. The riprapped channels should have a minimum cross-sectional area of 22 sq. ft. and will consist of schedule "B" riprap with a minimum depth of riprap equal to the maximum riprap size

i.e.:

Schedule B Riprap

		PERCENT PASSING				
0%-5%	0%-5% 5%-15% 30%-50% 70%-85% 90%-100%					
4"	8"	12"	18"	24"		

The Main Spillway is sized to convey, at a minimum, the combined peak runoff from basin A&B and from the Tailings Pond Basin (see Figure 11-1) (179+84=263 cfs). The Main Spillway has been designed with 40 foot bottom width and 2.25H:1V interbench side slopes and a 1 percent slope. This results in a peak flow depth of 1.24 ft.

An Auxiliary Spillway will be provided for the unlikely potential situation of the main Spillway becoming blocked and a prolonged period of net stormwater accumulation occurs. The Auxiliary Spillway will be located in the berm that separates the tailings impoundment from the East Bay. The Auxiliary Spillway is sized to pass the combined peak runoff from basin A&B and the Tailings Pond Basin (263 cfs) without failure. The minimum crest elevation of the existing crest is 7344.5 ft amsl. The tailings surface elevation at the beach is 7339 ft amsl. To maintain a minimum 3 ft cover over tailings, the minimum spillway inlet invert elevation is 7342 ft amsl.. Therefore the maximum possible spillway depth is 2.5 feet. Providing 0.5 feet for freeboard or a maximum flow depth of 2 ft:

$$Q = C \cdot L \cdot H^{\frac{3}{2}}$$

$$263 = 3.08 \cdot L \cdot 2.0^{\frac{3}{2}}$$

$$L = 30.$$

Provide an Auxillary Spillway i.e. a low section in the embankment that is protected from erosion. Use a trapezoidal cross-section with 3H:1V sideslopes and 30 foot bottom width. A detail of the Auxillary Spillway is shown on Drawing No.10, detail 9. Riprap spillway and slope into the East Bay with Schedule B riprap.

REFERENCES:

Boss International, 1995, Boss StormSHED, Madison, WI.

Bureau of Reclamation, 1987, Design of Small Dams, U.S. Dept. Interior, U.S. Govt. Printing Office..

Haestad, 1996, FlowMaster for Windors, Haestad Methods International, Waterbury, CT.

JBR, 1997, JBR Environmental Consultants, Inc., Conceptual Plan for Regrading, Surface Water Hydrology and Storm-Water Routing, prepared for Barrick Mercur Mine.

Miller, J.F., et.al., 1973, Precipitation-Frequency Atlas of the United States, NOAA Atlas 2, National Oceanic and Atmospheric Administration, National Weather Service, Silver Spring, ND.

Reservation Canyon Tailings

Mercur Mine North Channel

BASIN SUMMARY

BASIN ID: 100yr NAME: North Basin A+B

SCS METHODOLOGY

TOTAL AREA....: 475.60 Acres BASEFLOWS: 0.00 cfs RAINFALL TYPE...: TYPE2 PERV

RAINFALL TYPE...: TYPE2 IMP

PRECIPITATION...: 3.80 inches AREA..: 415.60 Acres 60.00 Acres

TIME INTERVAL...: 6.00 min CN...: 60.00 81.00 TC...: 49.63 min 65.72 min

ABSTRACTION COEFF: 0.20

TcReach - Sheet L: 300.00 ns:0.1300 p2yr: 1.50 s:0.5000

TcReach - Shallow L:1500.00 ks:11.00 s:0.5300 TcReach - Channel L:4500.00 kc:15.00 s:0.2780

PEAK RATE: 179.25 cfs VOL: 32.19 Ac-ft TIME: 756 min

NAME: North Basin A&B BASIN ID: 10yr

SCS METHODOLOGY

TOTAL AREA....: 475.60 Acres BASEFLOWS: 0.00 cfs

IMP

60.00 Acres

RAINFALL TYPE...: TYPE2 PERV
PRECIPITATION...: 2.60 inches AREA.: 415.60 Acres
TIME INTERVAL...: 6.00 min CN...: 60.00 81.00 TC...: 49.63 min 65.72 min

ABSTRACTION COEFF: 0.20

TcReach - Sheet L: 300.00 ns:0.1300 p2yr: 1.50 s:0.3670

TcReach - Shallow L: 450.00 ks:11.00 s:0.5560 TcReach - Channel L: 800.00 kc:15.00 s:0.3440

PEAK RATE: 48.51 cfs VOL: 11.83 Ac-ft TIME: 762 min

BASIN ID: 2yr NAME: North Basin A+B

SCS METHODOLOGY

TOTAL AREA....: 475.60 Acres BASEFLOWS: 0.00 cfs

RAINFALL TYPE...: TYPE2 PERV IMP

1.80 inches AREA..: 415.60 Acres PRECIPITATION...: 60.00 Acres

TIME INTERVAL...: 6.00 min CN...: 60.00 81.00 TC...: 49.63 min 65.72 min

ABSTRACTION COEFF: 0.20

TcReach - Sheet L: 300.00 ns:0.1300 p2yr: 1.50 s:0.5000

TcReach - Shallow L:1500.00 ks:11.00 s:0.5300 TcReach - Channel L:4500.00 kc:15.00 s:0.2780

PEAK RATE: 12.42 cfs VOL: 3.39 Ac-ft TIME: 762 min

page 2 1/5/99 11:38:31 am Golder Associates

Reservation Canyon Tailings

Mercur Mine North Channel

BASIN SUMMARY

NAME: North Basin A+B BASIN ID: 50yr

SCS METHODOLOGY

TOTAL AREA....: 475.60 Acres BASEFLOWS: 0.00 cfs

RAINFALL TYPE...: TYPE2 PERV IMP

PRECIPITATION...: 3.40 inches AREA..: 415.60 Acres 60.00 Acres
TIME INTERVAL...: 6.00 min CN...: 60.00 81.00

TC...: 49.63 min 65.72 min

ABSTRACTION COEFF: 0.20

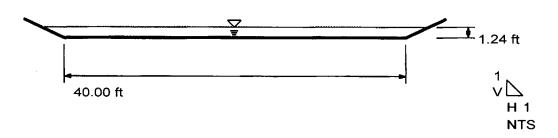
TcReach - Sheet L: 300.00 ns:0.1300 p2yr: 1.50 s:0.5000 TcReach - Shallow L:1500.00 ks:11.00 s:0.5300

TcReach - Channel L:4500.00 kc:15.00 s:0.2780

PEAK RATE: 126.65 cfs VOL: 24.57 Ac-ft TIME: 756 min

Main Spillway Worksheet for Trapezoidal Channel

Project Description	on
Project File	c:\haestad\fmw\mercur1.fm2
Worksheet	Main Spillway
Flow Element	Trapezoidal Channel
Method	Manning's Formula
Solve For	Channel Depth


Input Data		
Mannings Coefficient	0.033	_
Channel Slope	0.010000 ft/ft	
Left Side Slope	2.250000 H:V	
Right Side Slope	2.250000 H:V	
Bottom Width	40.00 ft	
Discharge	263.00 cfs	

Results		
Depth	1.24	ft
Flow Area	53.14	ft²
Wetted Perimeter	46.11	ft
Top Width	45.59	ft
Critical Depth	1.08	ft
Critical Slope	0.015968	ft/ft
Velocity	4.95	ft/s
Velocity Head	0.38	ft
Specific Energy	1.62	ft
Froude Number	0.81	
Flow is subcritical.		

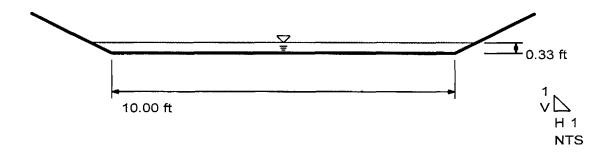
Cross Section Cross Section for Trapezoidal Channel

Project Description	
Project File	c:\haestad\fmw\mercur1.fm2
Worksheet	Main Spillway
Flow Element	Trapezoidal Channel
Method	Manning's Formula
Solve For_	Channel Depth

Section Data		
Mannings Coefficient	0.033	
Channel Slope	0.010000	ft/ft
Depth	1.24	ft
Left Side Slope	2.250000	H : V
Right Side Slope	2.250000	H:V
Bottom Width	40.00	ft
Discharge	263.00	cfs

Channel Reach A1 Worksheet for Trapezoidal Channel

Project Descriptio	n
Project File	c:\haestad\fmw\mercur1.fm2
Worksheet	2.89% slope channel reach A1
Flow Element	Trapezoidal Channel
Method	Manning's Formula
Solve For	Channel Depth


Input Data		
Mannings Coefficient	0.033	
Channel Slope	0.028900 f	t/ft
Left Side Slope	2.000000 H	1 : V
Right Side Slope	2.000000 H	1 : V
Bottom Width	10.00 f	t
Discharge	12.40	fs

Results		
Depth	0.33	ft
Flow Area	3.55	ft²
Wetted Perimeter	11.49	ft
Top Width	11.33	ft
Critical Depth	0.35	ft
Critical Slope	0.023362	ft/ft
Velocity	3.50	ft/s
Velocity Head	0.19	ft
Specific Energy	0.52	ft
Froude Number	1.10	
Flow is supercritical.		

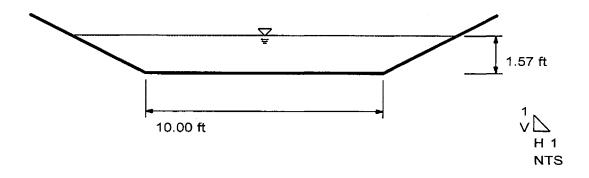
Channel Reach A1 Cross Section for Trapezoidal Channel

Project Description	on
Project File	c:\haestad\fmw\mercur1.fm2
Worksheet	2.89% slope channel reach A1
Flow Element	Trapezoidal Channel
Method	Manning's Formula
Solve For	Channel Depth

Section Data		
Mannings Coefficient	0.033	
Channel Slope	0.028900	ft/ft
Depth	0.33	ft
Left Side Slope	2.000000	H : V
Right Side Slope	2.000000	H:V
Bottom Width	10.00	ft
Discharge	12.40	cfs

Channel Reach A1 Worksheet for Trapezoidal Channel

Project Descriptio	n
Project File	c:\haestad\fmw\mercur1.fm2
Worksheet	2.89% slope channel reach A1
Flow Element	Trapezoidal Channel
Method	Manning's Formula
Solve For	Channel Depth


Input Data		
Mannings Coefficient	0.033	
Channel Slope	0.028900 ft/ft	
Left Side Slope	2.000000 H:V	
Right Side Slope	2.000000 H:V	
Bottom Width	10.00 ft	
Discharge	179.00 cfs	

Deculto		
Results		
Depth	1.57	ft
Flow Area	20.59	ft²
Wetted Perimeter	17.01	ft
Top Width	16.27	ft
Critical Depth	1.88	ft
Critical Slope	0.014877	ft/ft
Velocity	8.69	ft/s
Velocity Head	1.17	ft
Specific Energy	2.74	ft
Froude Number	1.36	
Flow is supercritical.		

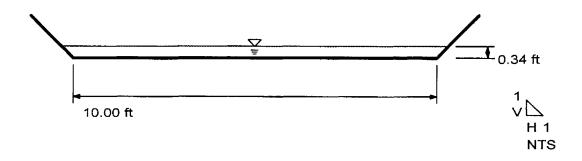
Channel Reach A1 Cross Section for Trapezoidal Channel

Project Description	on
Project File	c:\haestad\fmw\mercur1.fm2
Worksheet	2.89% slope channel reach A1
Flow Element Trapezoidal Channel	
Method	Manning's Formula
Solve For	Channel Depth

Section Data		
Mannings Coefficient	0.033	
Channel Slope	0.028900	ft/ft
Depth	1.57	ft
Left Side Slope	2.000000	H:V
Right Side Slope	2.000000	H:V
Bottom Width	10.00	ft
Discharge	179.00	cfs

Channel Reach A2 Worksheet for Trapezoidal Channel

Project Description	on
Project File	c:\haestad\fmw\mercur1.fm2
Worksheet	2.89% slope channel reach A2
Flow Element	Trapezoidal Channel
Method	Manning's Formula
Solve For	Channel Depth


Input Data		
Mannings Coefficient	0.033	
Channel Slope	0.028900 ft/ft	
Left Side Slope	1.000000 H : V	
Right Side Slope	1.000000 H : V	
Bottom Width	10.00 ft	
Discharge	12.40 cfs	

Results		
Depth	0.34	ft
Flow Area	3.48	ft²
Wetted Perimeter	10.95	ft
Top Width	10.67	ft
Critical Depth	0.36	ft
Critical Slope	0.02343	32 ft/ft
Velocity	3.56	ft/s
Velocity Head	0.20	ft
Specific Energy	0.53	ft
Froude Number	1.10	
Flow is supercritical.		

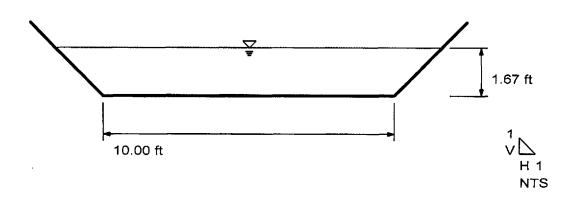
Channel Reach A2 Cross Section for Trapezoidal Channel

Project Descriptio	n
Project File	c:\haestad\fmw\mercur1.fm2
Worksheet	2.89% slope channel reach A2
Flow Element	Trapezoidal Channel
Method	Manning's Formula
Solve For	Channel Depth

Section Data		
Mannings Coefficient	0.033	
Channel Slope	0.028900 ft/ft	
Depth	0.34 ft	
Left Side Slope	1.000000 H : V	
Right Side Slope	1.000000 H:V	
Bottom Width	10.00 ft	
Discharge	12.40 cfs	

Channel Reach A2 Worksheet for Trapezoidal Channel

Project Description	on
Project File	c:\haestad\fmw\mercur1.fm2
Worksheet	2.89% slope channel reach A2
Flow Element	Trapezoidal Channel
Method	Manning's Formula
Solve For	Channel Depth


Input Data		
Mannings Coefficient	0.033	
Channel Slope	0.028900 ft/ft	
Left Side Slope	1.000000 H : V	
Right Side Slope	1.000000 H : V	
Bottom Width	10.00 ft	
Discharge	179.00 cfs	

Results		
Depth	1.67	ft
Flow Area	19.43	ft²
Wetted Perimeter	14.71	ft
Top Width	13.33	ft
Critical Depth	2.01	ft
Critical Slope	0.015384	ft/ft
Velocity	9.21	ft/s
Velocity Head	1.32	ft
Specific Energy	2.98	ft
Froude Number	1.35	
Flow is supercritical.		

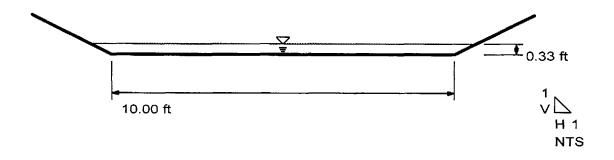
Channel Reach A2 Cross Section for Trapezoidal Channel

Project Descriptio	n
Project File	c:\haestad\fmw\mercur1.fm2
Worksheet	2.89% slope channel reach A2
Flow Element	Trapezoidal Channel
Method	Manning's Formula
Solve For	Channel Depth

Section Data	** **	
Mannings Coefficient	0.033	
Channel Slope	0.028900	ft/ft
Depth	1.67	ft
Left Side Slope	1.000000	H:V
Right Side Slope	1.000000	H:V
Bottom Width	10.00	ft
Discharge	179.00	cfs

Channel Reach A3 Worksheet for Trapezoidal Channel

Project Descriptio	n
Project File	c:\haestad\fmw\mercur1.fm2
Worksheet	2.89% slope channel reach A3
Flow Element	Trapezoidal Channel
Method	Manning's Formula
Solve For	Channel Depth


Input Data		
Mannings Coefficient	0.033	-
Channel Slope	0.028900 ft/ft	
Left Side Slope	2.000000 H:V	
Right Side Slope	2.000000 H:V	
Bottom Width	10.00 ft	
Discharge	12.40 cfs	

Results		
Depth	0.33	ft
Flow Area	3.55	ft²
Wetted Perimeter	11.49	ft
Top Width	11.33	ft
Critical Depth	0.35	ft
Critical Slope	0.023362	ft/ft
Velocity	3.50	ft/s
Velocity Head	0.19	ft
Specific Energy	0.52	ft
Froude Number	1.10	
Flow is supercritical.		

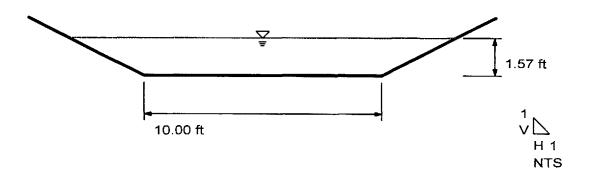
Channel Reach A3 Cross Section for Trapezoidal Channel

Project Description	on
Project File	c:\haestad\fmw\mercur1.fm2
Worksheet	2.89% slope channel reach A3
Flow Element	Trapezoidal Channel
Method	Manning's Formula
Solve For	Channel Depth

Section Data		
Mannings Coefficient	0.033	_
Channel Slope	0.028900 ft/ft	
Depth	0.33 ft	
Left Side Slope	2.000000 H:V	
Right Side Slope	2.000000 H : V	
Bottom Width	10.00 ft	
Discharge	12.40 cfs	

Channel Reach A3 Worksheet for Trapezoidal Channel

Project Descriptio	n	
Project File	c:\haestad\fmw\mercur1.fm2	
Worksheet	2.89% slope channel reach A3	
Flow Element Trapezoidal Channel		
Method	Manning's Formula	
Solve For	Channel Depth	


Input Data	
Mannings Coefficient	0.033
Channel Slope	0.028900 ft/ft
Left Side Slope	2.000000 H:V
Right Side Slope	2.000000 H:V
Bottom Width	10.00 ft
Discharge	179.00 cfs

Results		_
Depth	1.57	ft
Flow Area	20.59	ft²
Wetted Perimeter	17.01	ft
Top Width	16.27	ft
Critical Depth	1.88	ft
Critical Slope	0.014877	ft/ft
Velocity	8.69	ft/s
Velocity Head	1.17	ft
Specific Energy	2.74	ft
Froude Number	1.36	
Flow is supercritical.		

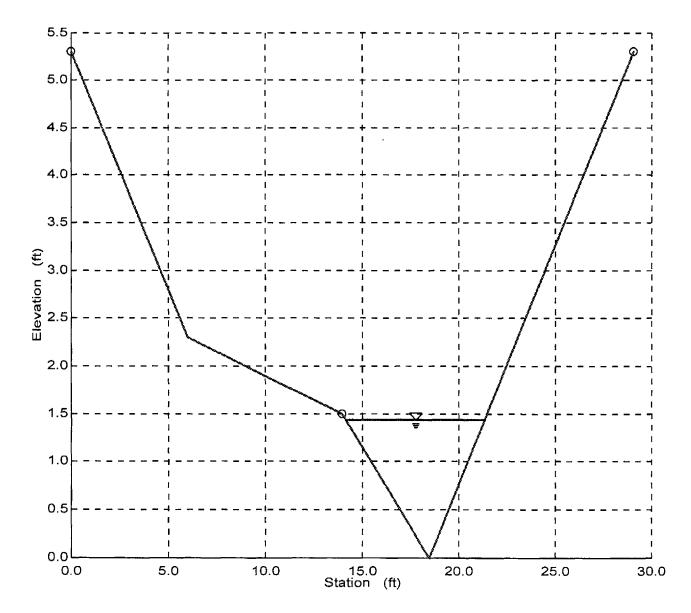
Channel Reach A3 Cross Section for Trapezoidal Channel

Project Descriptio	n	
Project File	c:\haestad\fmw\mercur1.fm2	
Worksheet	2.89% slope channel reach A3	
Flow Element Trapezoidal Channel		
Method	Manning's Formula	
Solve For	Channel Depth	

Section Data		
Mannings Coefficient	0.033	
Channel Slope	0.028900	ft/ft
Depth	1.57	ft
Left Side Slope	2.000000	H : V
Right Side Slope	2.000000	H : V
Bottom Width	10.00	ft
Discharge	179.00	cfs

Channel Reach A4 Worksheet for Irregular Channel

Project Description	
Project File	c:\haestad\fmw\mercur1.fm2
Worksheet	0.5% slope channel north of tailings
Flow Element	Irregular Channel
Method	Manning's Formula
Solve For	Water Elevation


Input Data				
Channel Slope	0.005000 ft/	/ft		
Elevation range: 0	0.00 ft to 5.30 ft.			
Station (ft)	Elevation (ft)	Start Station	End Station	Roughness
0.00	5.30	0.00	14.00	0.045
6.00	2.30	14.00	29.10	0.033
14.00	1.50			
18.50	0.00			
29.10	5.30			
Discharge	12.40 cf	's		

Results		
Wtd. Mannings Coefficient	0.033	
Water Surface Elevation	1.43	ft
Flow Area	5.12	ft²
Wetted Perimeter	7.73	ft
Top Width	7.16	ft
Height	1.43	ft
Critical Depth	1.09	ft
Critical Slope	0.021526	ft/ft
Velocity	2.42	ft/s
Velocity Head	0.09	ft
Specific Energy	1.52	ft
Froude Number	0.50	
Flow is subcritical.		

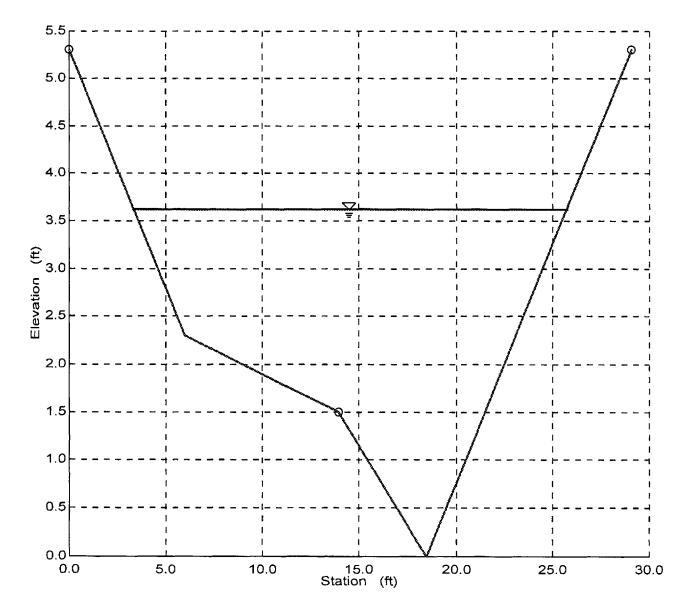
Channel Reach A4 Cross Section for Irregular Channel

Project Description	on
Project File	c:\haestad\fmw\mercur1.fm2
Worksheet	0.5% slope channel north of tailings
Flow Element	Irregular Channel
Method	Manning's Formula
Solve For	Water Elevation

Section Data		
Wtd. Mannings Coefficient	0.033	
Channel Slope	0.00500	O ft/ft
Water Surface Elevation	1.43	ft
Discharge	12.40	cfs

Channel Reach A4 Worksheet for Irregular Channel

Project Description	on
Project File	c:\haestad\fmw\mercur1.fm2
Worksheet	0.5% slope channel north of tailings
Flow Element	Irregular Channel
Method	Manning's Formula
Solve For	Water Elevation


Input Data				
Channel Slope	0.005000 ft/ft			
Elevation range: 0	.00 ft to 5.30 ft.			
Station (ft)	Elevation (ft)	Start Station	End Station	Roughness
0.00	5.30	0.00	14.00	0.045
6.00	2.30	14.00	29.10	0.033
14.00	1.50			
18.50	0.00			
29.10	5.30			
Discharge	179.00 cfs			

Results		
Wtd. Mannings Coefficient	0.035	
Water Surface Elevation	3.63	ft
Flow Area	41.66	ft²
Wetted Perimeter	23.86	ft
Top Width	22.40	ft
Height	3.63	ft
Critical Depth	2.92	ft
Critical Slope	0.016170	ft/ft
Velocity	4.30	ft/s
Velocity Head	0.29	ft
Specific Energy	3.91	ft
Froude Number	0.56	
Flow is subcritical.		

Channel Reach A4 Cross Section for Irregular Channel

Project Description	on
Project File	c:\haestad\fmw\mercur1.fm2
Worksheet	0.5% slope channel north of tailings
Flow Element	Irregular Channel
Method	Manning's Formula
Solve For	Water Elevation

Section Data			_
Wtd. Mannings Coefficient	0.035		_
Channel Slope	0.0050	00 ft/ft	
Water Surface Elevation	3.63	ft	
Discharge	179.00	cfs	

APPENDIX K BASELINE INSTRUMENTATION READINGS

APPENDIX K-1 PIEZOMETER READINGS

PIEZO #: 1 SERIAL #: 10915 RO: 9732.00 TO: 12.00 deg. C C: 0.02204

K: -0.0309

BAROM. 31.57 " Hg

GE: 7233.1

DATE	TIME	TEMP.	BAROM.	R1 POS B	THERM.	T1	Pore Pressure (ft H2O)	CHANGE	Piezometric Surface	REMARKS
DATE	TIME	U	BAROW.	KI FUS B	I FIERWI.	11	H2U)	CHANGE	Surface	KEMAKKS
12/30/97	9:00 AM	0	23.49	9304	6.58	8.28	22.03	0.00	7255.13	
1/7/98	9:00 AM	-4	23.26	9314	6.58	8.28	21.52	0.51	7254.62	
1/14/98	9:00 AM	-7	23.42	9317	6.58	8.28	21.37	0.15	7254.47	
1/22/98	9:30 AM	-4	23.28	9317	6.58	8.28	21.37	0.00	7254.47	
1/28/98	8:30 AM	-2	23.3	9314	6.58	8.28	21.52	-0.15	7254.62	
2/3/98	1:00 PM	4	23.06	9317	6.58	8.28	21.37	0.15	7254.47	
2/12/98	11:30 AM	1	23.35	9306	6.56	8.34	21.92	-0.55	7255.02	
2/20/98	9:00 AM	-1	23,13	9295	6.57	8.31	22.48	-0.56	7255.58	
3/25/98	9:00 AM	10	23.08	9278	6.57	8.31	23.35	-0.86	7256.45	
4/2/98	12:40 PM	6	23.3	9279	6.57	8,31	23.30	0.05	7256.40	
4/8/98	11;00 AM	4	23.32	9278	6.57	8.31	23.35	-0.05	7256.45	
4/15/98	10:30 AM	0	23.02	9262	6.57	8.31	24.16	-0.81	7257.26	
4/22/98	9:30 AM	11	23.46	9273	6.58	8.28	23.60	0.56	7256.70	
4/29/98	11:00 AM	15	23.42	9275	6.57	8.31	23.50	0.10	7256.60	
5/7/98	9:00 AM	6	23.26	9278	6.57	8.31	23.35	0.15	7256.45	
5/13/98	9:30 PM	10	23	9284	6.58	8.28	23.04	0.30	7256.14	
5/20/98	9:00 AM	15	23.28	9284	6.57	8.31	23.04	0.00	7256.14	
5/27/98	8:30 AM	5	23.25	9289	6.57	8.31	22.79	0.25	7255.89	
6/3/98	11:00 AM	16	23.19	9289	6.57	8.31	22.79	0.00	7255.89	
6/10/98	11:00 AM	10	23.29	9288	6.57	8.31	22.84	-0.05	7255.94	
6/17/98	1:00 PM	6	23.35	9279	6.57	8.31	23.30	-0.46	7256.40	
6/24/98	11:00 AM	18	23.28	9283	6.57	8.31	23.09	0.20	7256.19	
7/1/98	10:00 AM	24	23.4	9279	6.57	8.31	23.30	-0.20	7256.40	
7/8/98	8:00 AM	15	23.46	9280	6.57	8.31	23.25	0.05	7256.35	
7/15/98	8:00 AM	17	23.5	9279	6.57	8.31	23.30	-0.05	7256.40	
7/22/98	8:00AM	16	23.4	9280	6.58	8.28	23.25	0.05	7256.35	
7/29/98	8:00 AM	14	23.43	9279	6.57	8.31	23.30	-0.05	7256.40	
8/12/98	9:00 AM	16	23.58	9283	6.57	8.31	23.09	0.20	7256,19	
8/19/98	11:00 AM	20	23.45	9280	6.357	9.03	23.19	-0.10	7256.29	
8/31/98	9:00 AM	22	23.44	9291	6.57	8.31	22.69	0.51	7255.79	
9/11/98	10:00 AM	15	23.48	9297	6.57	8.31	22.38	0.31	7255.48	
9/16/98	11:00 AM	23	23.42	9290	6.57	8.31	22.74	-0.36	7255.84	
9/22/98	9:00 AM	17	23.38	9301	6.56	8.34	22.18	0.56	7255.28	
9/30/98	10:00 AM	16	23.32	9303	6.56	8.34	22.07	0.10	7255.17	
10/7/98	9:00 AM	6	23.46	9304	6.56	8.34	22.02	0.05	7255.12	
10/14/98	8:30 AM	5	23.32	9306	6.56	8.34	21.92	0.10	7255.02	
10/26/98	7:30 AM	6	23.7	9308	6.55	8.38	21.82	0.10	7254.92	
10/30/98	9:00 AM	3	23.8	9310	6.55	8.38	21.72	0.21	7254.82	
11/5/98	9:30 AM			9311	6.55	8.38	21.66	0.05	7254.76	
11/13/98	10:00 AM	4	23.4	9312	6.54	8.41	21.61	0.05	7254.71	
11/18/98	10:00 AM	0	23.4	9315	6.54	8.41	21.46	0.15	7254.56	
1/7/99	12:10PM	6.7		9318	6.52	8.48	21.30	0.16	7254.40	
2/6/99	9:30AM	5		9322	6.51	8.51	21.10	0.21	7254.20	
3/6/99	11:00AM	5		9322	6.5	8.54	21.09	0.00	7254.19	
5/6/99	2:30PM	15.6		9316	6.5	8.54	21.40	-0.31	7254.50	
7/26/99	1:00PM			9315	6.53	8.44	21.46	-0.06	7254.56	

PIEZO #: 3 SERIAL #: 10910 RO: 9624.00

TO: 9.00 deg. C

" Hg

C: 0.02235

K: -0,0224 BAROM. 31.05

GE: 7115

							Pore			
		TEMP.					Pressure (ft		Piezometric	D
DATE	TIME	С	BAROM.	R1 POS B	THERM.	T1	H2O)	CHANGE	Surface	REMARKS
10/00/07	9:00 AM	G	22.40	0050	5.50	44.00	1.40	-0.10	7113.51	
12/30/97			23.49	9650	5.59	11.82	-1.49		7113.51	
01/07/98	9:00 AM	-4	23.26	9655	5.59	11.82	-1.74	0.26		
01/14/98	9:00 AM	-7	23.42	9656	5.59	11.82	-1.80	0.05	7113.20	
01/22/98	9:30 AM	4	23.28	9656	5.59	11.82	-1.80	0.00	7113.20	
01/28/98	8:30 AM	-2	23.3	9654	5.59	11.82	-1.69	-0.10	7113.31	
02/03/98	1:00 PM	4	23.06	9658	5.6	11.78	-1.90	0.20	7113.10	
02/12/98	11:30 AM	1	23.35	9654	5.58	11.86	-1.69	-0.20	7113,31	
02/20/98	9:00 AM	-1	23.13	9658	5.59	11.82	-1.90	0.20	7113.10	
03/25/98	9:00 AM	10	23.08	9658	5.6	11.78	-1.90	0.00	7113.10	
04/02/98	12:40 PM	6	23.3	9659	5.6	11.78	-1.95	0.05	7113.05	
04/08/98	11:00 AM	4	23.32	9658	5.6	11.78	-1.90	-0.05	7113.10	
04/15/98	10:30 AM	0	23.02	9668	5.6	11.78	-2.41	0.52	7112.59	
04/22/98	9:30 AM	11	23.46	9650	5.6	11.78	-1.48	-0.93	7113,52	
04/29/98	11:00 AM	15	23.42	9652	5.6	11.78	-1.59	0.10	7113.41	
05/07/98	9:00 AM	6	23.26	9655	5.6	11.78	-1.74	0.15	7113.26	
05/13/98	9:30 PM	10	23	9660	5.6	11.78	-2.00	0.26	7113.00	
05/20/98	9:00 AM	15	23.28	9654	5.6	11.78	-1.69	-0.31	7113.31	
05/27/98	8:30 AM	5	23.25	9657	5.6	11.78	-1.85	0.15	7113.15	
06/03/98	11:00 AM	16	23.19	9656	5,6	11.78	1.79	-0.05	7113.21	
06/10/98	11:00 AM	10	23.29	9655	5.6	11.78	-1.74	-0.05	7113.26	
06/17/98	1:00 PM	6	23.35	9659	5.6	11.78	-1.95	0.21	7113.05	
06/24/98	11:00 AM	18	23.28	9655	5.6	11.78	-1.74	-0.21	7113.26	
07/01/98	10:00 AM	24	23.4	9653	5.61	11.74	-1.64	-0.11	7113.36	
07/08/98	8:00 AM	15	23.46	9654	5.6	11.78	-1.69	0.05	7113.31	
07/15/98	8:00 AM	17	23.5	9650	5.61	11.74	-1.48	-0.21	7113.52	
07/22/98	8:00AM	16	23.4	9651	5.61	11.74	-1.53	0.05	7113.47	
07/29/98	8:00 AM	14	23.43	9651	5.61	11.74	-1.53	0.00	7113.47	
08/12/98	9:00 AM	16	23.58	9648	5.61	11.74	-1.38	-0.15	7113,62	
08/19/98	11:00 AM	20	23.45	9650	5.61	11.74	-1.48	0.10	7113.52	
08/31/98	9:00 AM	22	23.44	9651	5.61	11.74	-1.53	0.05	7113.47	
09/11/98	10:00 AM	15	23.48	9652	5.61	11.74	-1.59	0.05	7113.41	
09/16/98	11:00 AM	23	23.42	9651	5.61	11.74	-1.53	-0.05	7113.47	
09/22/98	9:00 AM	17	23.38	9653	5.61	11.74	-1,64	0.10	7113.36	
09/30/98	10:00 AM	16	23.32	9654	5.61	11.74	-1.69	0.05	7113.31	
10/07/98	9:00 AM	6	23.46	9652	5.61	11.74	-1.59	-0.10	7113.41	
10/14/98	8:30 AM	5	23.32	9654	5.62	11.70	-1.69	0.10	7113.31	
10/26/98	7:30 AM	6	23.7	9655	5.62	11.70	-1.74	0.05	7113.26	
10/30/98	9:00 AM	3	23.8	9657	5.62	11.70	-1.84	0.10	7113.16	
11/05/98	9:30 AM	0	0	9655	5.62	11.70	-1.74	-0.10	7113.26	
11/13/98	10:00 AM	4	23,4	9650	5,62	11.70	-1.48	-0.26	7113.52	
11/18/98	10:00 AM	0	23.4	9655	5.62	11.70	-1.74	0.26	7113.26	
1/7/99	12:10PM	6.7		9655	5.63	11.66	-1.74	0.00	7113.26	
2/6/99	9:30AM	5	<u> </u>	9656	5.63	11.66	-1.79	0.05	7113.21	
3/6/99	11:00AM	5		9659	5,63	11.66	-1.94	0.15	7113.06	
5/6/99	2:30PM	15.6		9654	5.64	11.63	-1.68	-0.26	7113.32	
7/26/99	1:00PM	<u> </u>	<u>L</u>	9651	5.65	11.59	-1.53	-0.16	7113.47	<u> </u>

PIEZO #: 4 SERIAL #: 10914 RO: 9906.00 TO: 10.00 deg. C

C: 0.02239

K: -0.0269 BAROM. 31.05 " Hg

GE: 7033.1

					<u> </u>		Pore			
		TEMP.					Pressure (ft		Piezometric	
DATE	TIME	C	BAROM,	R1 POS B	THERM.	T1	H2O)	CHANGE	Surface	REMARKS
12/30/97	9:00 AM	0	23.49	9927	5.8	11.02	-1.15	-0.31	7031.95	L
01/07/98	9:00 AM	-4	23.26	9932	5.8	11.02	-1.41	0.26	7031.69	
01/14/98	9:00 AM	-7	23.42	9931	5.8	11.02	-1.35	-0.05	7031.75	
01/22/98	9:30 AM	-4	23.28	9933	5.8	11.02	-1.46	0.10	7031.64	
01/28/98	8:30 AM	-2	23.3	9931	5.8	11.02	-1.35	-0.10	7031.75	
02/03/98	1:00 PM	4	23.06	9936	5,8	11.02	-1.61	0.26	7031.49	
02/12/98	11:30 AM	1	23.35	9931	5.77	11.13	-1.36	-0.25	7031.74	
02/20/98	9:00 AM	-1	23.13	9935	5.8	11.02	-1.56	0.20	7031.54	
03/25/98	9:00 AM	10	23.08	9936	5.8	11.02	-1.61	0.05	7031.49	
04/02/98	12:40 PM	6	23.3	9937	5.8	11.02	-1.66	0.05	7031.44	
04/08/98	11:00 AM	4	23.32	9936	5.8	11.02	-1.61	-0.05	7031.49	
04/15/98	10:30 AM	0	23.02	9938	5,8	11.02	-1.72	0.10	7031.38	
04/22/98	9:30 AM	11	23.46	9928	5.8	11.02	-1.20	-0.52	7031.90	
04/29/98	11:00 AM	15	23.42	9930	5.8	11.02	-1.30	0.10	7031.80	
05/07/98	9:00 AM	6	23.26	9933	5.81	10,98	-1.46	0.15	7031.64	
05/13/98	9:30 PM	10	23	9939	5.81	10.98	-1.77	0.31	7031.33	
05/20/98	9:00 AM	15	23.28	9932	5.8	11.02	-1.41	-0.36	7031.69	
05/27/98	8:30 AM	5	23.25	9935	5.81	10,98	-1.56	0.15	7031.54	
06/03/98	11:00 AM	16	23.19	9934	5.8	11.02	-1.51	-0.05	7031.59	
06/10/98	11:00 AM	10	23.29	9933	5.81	10.98	-1.46	-0.05	7031.64	
06/17/98	1:00 PM	6	23.35	9937	5.8	11.02	-1.66	0.21	7031.44	
06/24/98	11:00 AM	18	23.28	9933	5.81	10.98	-1.46	-0.21	7031.64	
07/01/98	10:00 AM	24	23.4	9931	5.81	10.98	-1.35	-0.10	7031.75	
07/08/98	8:00 AM	15	23.46	9932	5.81	10,98	-1.40	0.05	7031.70	
07/15/98	8:00 AM	17	23,5	9929	5.8	11.02	-1.25	-0.15	7031.85	
07/22/98	8:00AM	16	23.4	9929	5.81	10.98	-1.25	0.00	7031.85	
07/29/98	8:00 AM	14	23.43	9929	5.81	10.98	-1.25	0.00	7031.85	
08/12/98	9:00 AM	16	23.58	9926	5.81	10.98	-1.09	-0.15	7032.01	
08/19/98	11:00 AM	20	23.45	9927	5.81	10.98	-1.15	0.05	7031.95	
08/31/98	9:00 AM	22	23.44	9929	5.81	10.98	-1.25	0.10	7031.85	
09/11/98	10:00 AM	15	23.48	9931	5.81	10.98	-1.35	0.10	7031.75	
09/16/98	11:00 AM	23	23.42	9927	5.81	10.98	-1.15	-0.21	7031.95	
09/22/98	9:00 AM	17	23.38	9931	5.81	10.98	-1.35	0.21	7031.75	
09/30/98	10:00 AM	16	23.32	9933	5.81	10.98	-1.46	0.10	7031.64	
10/07/98	9:00 AM	6	23.46	9930	5.81	10.98	-1.30	-0.15	7031.80	
10/14/98	8:30 AM	5	23.32	9933	5.81	10.98	-1.46	0.15	7031.64	
10/26/98	7:30 AM	6	23.7	9934	5.81	10.98	-1.51	0.05	7031.59	
10/30/98	9:00 AM	3	23.8	9936	5.81	10.98	-1.61	0.10	7031.49	
11/05/98	9:30 AM	0	0	9934	5.81	10.98	-1.51	-0.10	7031.59	
11/13/98	10:00 AM	4	23.4	9929	5.81	10.98	-1.25	-0.26	7031.85	
11/18/98	10:00 AM	0	23.4	9934	5.82	10.94	-1.50	0.26	7031.60	
1/7/99	12:10PM	6.7		9933	5.82	10.94	-1.45	-0.05	7031.65	
2/6/99	9:30AM	5		9935	5.82	10.94	-1.56	0.10	7031.54	
3/6/99	11:00AM	5		9938	5.82	10.94	-1.71	0.15	7031.39	
5/6/99	2:30PM	15.6		9932	5.82	10.94	-1.40	-0.31	7031.70	
7/26/99	1:00PM			9931	5.83	10.91	-1.35	-0.05	7031.75	

PIEZO #: 5 SERIAL #: 10912 RO: 9636.00

TO: 3.00 deg. C

C: 0.02217

K: -0.0244

BAROM. 31.98 " Hg

7096.1

										
		TEMP.					Pore Pressure (ft		Piezom etric	
DATE	TIME	C C	BAROM.	R1 POS B	THERM.	T1	H2O)	CHANGE	Surface	REMARKS
12/30/97	9:00 AM	0	23.49	9651	5.81	10.98	-1.22	-0.31	7094.88	
01/07/98	9:00 AM	-4	23.26	9655	5.81	10.98	-1.42	0.20	7094.68	
01/14/98	9:00 AM	-7	23.42	9654	5.81	10.98	-1.37	-0.05	7094.73	
01/22/98	9:30 AM	-4	23.28	9656	5.81	10.98	-1.47	0.10	7094.63	
01/28/98	8:30 AM	-2	23.3	9655	5.81	10.98	-1.42	-0.05	7094.68	
02/03/98	1:00 PM	4	23.06	9659	5.81	10.98	-1.63	0.20	7094.47	
02/12/98	11:30 AM	1	23.35	9655	5.8	11.02	-1.42	-0.20	7094.68	
02/20/98	9:00 AM	-1	23.13	9659	5.81	10.98	-1.63	0.20	7094.47	
03/25/98	9:00 AM	10	23.08	9659	5.82	10.94	-1.62	0.00	7094.48	
04/02/98	12:40 PM	6	23.3	9661	5.82	10.94	-1.73	0.10	7094.37	
04/08/98	11:00 AM	4	23.32	9660	5.93	10.54	-1.65	-0.07	7094.45	
04/15/98	10:30 AM	0	23.02	9661	5.82	10.94	-1.73	0.07	7094.37	
04/22/98	9:30 AM	11	23.46	9651	5.82	10.94	-1.21	-0.51	7094.89	
04/29/98	11:00 AM	15	23.42	9653	5.82	10.94	-1.32	0.10	7094.78	
05/07/98	9:00 AM	6	23.26	9657	5.82	10.94	-1.52	0.20	7094.58	
05/13/98	9:30 PM	10	23	9662	5.83	10.91	-1.77	0.25	7094.33	
05/20/98	9:00 AM	15	23.28	9655	5.82	10.94	-1.42	-0.36	7094.68	
05/27/98	8:30 AM	5	23.25	9658	5.83	10.91	-1.57	0.15	7094.53	
06/03/98	11:00 AM	16	23.19	9657	5.83	10.91	-1.52	-0.05	7094.58	
06/10/98	11:00 AM	10	23.2 9	9656	5.83	10.91	-1.47	-0.05	7094.63	
06/17/98	1:00 PM	6	23.35	9661	5.82	10.94	-1.73	0.26	7094.37	
06/24/98	11:00 AM	18	23.28	9657	5.83	10.91	-1.52	-0.21	7094.58	
07/01/98	10:00 AM	24	23.4	9654	5.83	10.91	-1.37	-0.15	7094.73	
07/08/98	8:00 AM	15	23.46	9656	5.83	10.91	-1.47	0.10	7094.63	
07/15/98	8:00 AM	17	23.5	9651	5.83	10.91	-1.21	-0.26	7094.89	
07/22/98	8:00AM	16	23.4	9652	5.83	10.91	-1.26	0.05	7094.84	
07/29/98	8:00 AM	14	23.43	9653	5.83	10.91	-1.31	0.05	7094.79	
08/12/98	9:00 AM	16	23.58	9649	5.84	10.87	-1.11	-0.21	7094.99	
08/19/98	11:00 AM	20	23.45	9650	5.84	10.87	-1.16	0.05	7094.94	
08/31/98	9:00 AM	22	23.44	9652	5.84	10.87	-1.26	0.10	7094.84	
09/11/98	10:00 AM	15	23.48	9653	5.84	10.87	-1.31	0.05	7094.79	
09/16/98	11:00 AM	23	23.42	9650	5.84	10.87	-1.16	-0.15	7094.94	
09/22/98	9:00 AM	17	23.38	9655	5.84	10.87	-1.41	0.26	7094.69	
09/30/98	10:00 AM	16	23.32	9655	5.84	10.87	-1.41	0.00	7094.69	
10/07/98	9:00 AM	6	23.46	9653	5.84	10.87	-1.31	-0.10	7094.79	
10/14/98	8:30 AM	5	23.32	9657	5.84	10.87	-1.52	0.20	7094.58	
10/26/98	7:30 AM	6	23.7	9656	5.84	10.87	-1.47	-0.05	7094.63	
10/30/98	9:00 AM	3	23.8	9659	5.85	10.83	-1.62	0.15	7094.48	
11/05/98	9:30 AM	0	0	9658	5.85	10.83	-1.57	-0.05	7094.53	_
11/13/98	10:00 AM	4	23.4	9651	5.85	10.83	-1.21	-0.36	7094.89	
11/18/98	10:00 AM	0	23.4	9656	5.85	10.83	-1.46	0.26	7094.64	
01/07/1999	12:10PM	6.7	23,26	9655	5.81	10.98	-1.42	-0.04	7094,68	
02/06/99	9:30AM	5		9657	5.86	10.80	-1.51	0.09	7094.59	
3/6/99	11:00AM	5		9661	5.86	10.80	-1.72	0.20	7094.38	
05/06/99	2:30PM	15.6		9656	5.86	10.80	-1.46	-0.26	7094.64	
07/26/99	1:00PM			9653	5.88	10.72	-1.30	-0.16	7094.80	

PIEZO #: 6 SERIAL #: 10911 RO: 9758.00

TO: 3.00 deg. C

C: 0.02302

K: -0.0322 BAROM. 31.98 " Hg

GE: 7041

							Pore			
		TEMP.	,				Pressure (ft		Piezometric	
DATE	TIME	C	BAROM.	R1 POS B	THERM.	T1	H2O)	CHANGE	Surface	REMARKS
12/30/97	9:00 AM	0	23,49	9776	5.91	10.61	-1.52	-0.32	7039.48	
01/07/98	9:00 AM	-4	23.26	9780	5.92	10.57	-1.73	0.21	7039.27	
01/14/98	9:00 AM	-7	23.42	9779	5.97	10.39	-1.66	-0.07	7039.34	_
01/22/98	9:30 AM	-4	23.28	9781	5.92	10.57	-1.78	0.12	7039.22	
01/28/98	8:30 AM	-2	23.3	9779	5.92	10.57	-1.68	-0.11	7039.32	
02/03/98	1:00 PM	4	23.06	9784	5.92	10.57	-1.94	0.27	7039.06	
02/12/98	11:30 AM	1	23.35	9779	5.91	10.61	-1.68	-0.26	7039.32	
02/20/98	9:00 AM	-1	23.13	9782	5.92	10.57	-1.84	0.16	7039.16	
03/25/98	9:00 AM	10	23.08	9783	5.93	10.54	-1.89	0.05	7039.11	
04/02/98	12:40 PM	6	23.3	9785	5.93	10.54	-1.99	0.11	7039.01	<u> </u>
04/08/98	11:00 AM	4	23.32	9785	5.93	10.54	-1.99	0.00	7039.01	<u>-</u>
04/15/98	10:30 AM	0	23.02	9786	5.93	10.54	-2.05	0.05	7038.95	
04/22/98	9:30 AM	11	23.46	9777	5.93	10.54	-1.57	-0.48	7039.43	
04/29/98	11:00 AM	15	23.42	9779	5.93	10.54	-1.68	0.11	7039.32	
05/07/98	9:00 AM	6	23.26	9781	5.92	10.57	-1.78	0.11	7039.22	
05/13/98	9:30 PM	10	23	9786	5,93	10.54	-2.05	0.26	7038.95	
05/20/98	9:00 AM	15	23.28	9780	5,93	10.54	-1.73	-0.32	7039.27	
05/27/98	8:30 AM	5	23.25	9783	5.93	10.54	-1.89	0.16	7039.11	
06/03/98	11:00 AM	16	23.19	9782	5.92	10.57	-1.84	-0.05	7039.16	
06/10/98	11:00 AM	10	23.29	9781	5.93	10.54	-1.78	-0.06	7039.22	
06/17/98	1:00 PM	6	23.35	9785	5.93	10.54	-1.99	0.21	7039.01	
06/24/98	11:00 AM	18	23.28	9781	5.93	10.54	-1.78	-0.21	7039.22	
07/01/98	10:00 AM	24	23.4	9778	5.93	10.54	-1.62	-0.16	7039.38	
07/08/98	8:00 AM	15	23.46	9781	5.93	10.54	-1.78	0.16	7039.22	
07/15/98	8:00 AM	17	23.5	9771	5.93	10.54	-1.25	-0.53	7039.75	
07/22/98	8:00AM	16	23.4	9777	5.92	10.57	-1.57	0.32	7039.43	
07/29/98	8:00 AM	14	23.43	9776	5.92	10.57	-1.52	-0.05	7039.48	
08/12/98	9:00 AM	16	23.58	9774	5.93	10.54	-1.41	-0.11	7039.59	
08/19/98	11:00 AM	20	23.45	9776	5.90	10.65	-1.52	0.11	7039.48	
08/31/98	9:00 AM	22	23.44	9777	5.94	10.50	-1.57	0.04	7039.43	
09/11/98	10:00 AM	15	23.48	9779	5.85	10.83	-1.70	0.13	7039.30	
09/16/98	11:00 AM	23	23.42	9777	5.85	10.83	-1.59	-0.11	7039.41	
09/22/98	9:00 AM	17	23.38	9779	5.93	10.54	-1.68	0.08	7039.32	
09/30/98	10:00 AM	16	23.32	9781	5.99	10.32	-1.77	0.09	7039.23	
10/07/98	9:00 AM	6	23.46	9778	5.94	10.50	-1.62	-0.15	7039.38	
10/14/98	8:30 AM	5	23.32	9782	5.94	10.50	-1.83	0.21	7039.17	
10/26/98	7:30 AM	6	23.7	9782	5.94	10.50	-1.83	0.00	7039.17	
10/30/98	9:00 AM	3	23.8	9784	5.95	10.46	-1.94	0.10	7039.06	
11/05/98	9:30 AM	0	0	9782	5.94	10.50	-1.83	-0.10	7039.17	
11/13/98	10:00 AM	4	23.4	9777	5.95	10.46	-1.56	-0.27	7039.44	
11/18/98	10:00 AM	0	23.4	9782	5.95	10.46	-1.83	0.27	7039.17	
1/7/99	12:10PM	6.7		9781	5.95	10.46	-1.78	-0.05	7039.22	
02/06/99	9:30AM	5		9783	5.95	10.46	-1.88	0.11	7039.12	
03/06/99	11:00AM	5		9786	5.95	10.46	-2.04	0.16	7038.96	
05/06/99	2:30PM	15.6		9781	5.96	10.43	-1.77	-0.27	7039.23	
07/26/99	1:00PM			9779	5.96	10.43	-1.67	-0.11	7039.33	

PIEZO #: 7 SERIAL #: 10900 RO: 9024.00

TO: 13.00 deg. C

C: 0.0208

K: -0.0208 BAROM. 31.57 " Hg

GE: 7232.9

							Pore			
		TEMP.					Pressure (ft		Piezometric	
DATE	TIME	ပ	BAROM.	R1 POS B	THERM.	T1	H2O)	CHANGE	Surface	REMARKS
12/30/97	9:00 AM	0	23.49	8639	6.6	8.21	18.70	0.29	7251.60	
01/07/98	9:00 AM	-4	23.26	8651	6.68	7.95	18.14	0.56	7251.04	
01/14/98	9:00 AM	-7	23.42	8660	6.6	8.21	17.70	0.44	7250.60	
01/22/98	9:30 AM	-4	23.28	8663	6.6	8.21	17.55	0.14	7250.45	
01/28/98	8:30 AM	-2	23.3	8663	6.6	8,21	17.55	0.00	7250.45	
02/03/98	1:00 PM	4	23.06	8666	6.6	8.21	17.41	0.14	7250.31	
02/12/98	11:30 AM	1	23.35	8638	6.58	8.28	18.75	-1.34	7251.65	
02/20/98	9:00 AM	-1	23.13	8607	6.59	8.25	20.24	-1.49	7253.14	
03/25/98	9:00 AM	10	23.08	8564	6.59	8.25	22.30	-2.06	7255.20	
04/02/98	12:40 PM	6	23.3	8564	6.59	8.25	22.30	0.00	7255.20	
04/08/98	11:00 AM	4	23.32	8564	6.59	8.25	22.30	0.00	7255.20	<u> </u>
04/15/98	10:30 AM	0	23.02	8566	6.6	8.21	22.21	0.09	7255.11	
04/22/98	9:30 AM	11	23.46	8558	6.6	8.21	22.59	-0.38	7255.49	
04/29/98	11:00 AM	15	23.42	8558	6.6	8.21	22.59	0.00	7255.49	
05/07/98	9:00 AM	6	23.42	8566	6.6	8.21	22.21	0.38	7255.11	
05/13/98	9:30 PM	10	23.26	8580	6.6	8.21	21.54	0.67	7254.44	
05/20/98	9:00 AM	15	23.28	8587	6.6	8.21	21.20	0.34	7254.10	
05/20/98	8:30 AM	5	23.25	8597	6.61	8.18	20.72	0.48	7253.62	
06/03/98	11:00 AM	16	23.25	8597	6.61	8,18	20.72	0.00	7253.62	
		10			6.61		21.20	-0.48	7253.62	
06/10/98	11:00 AM		23.29	8587		8.18				
06/17/98	1:00 PM	6	23.35	8564	6.59	8.25	22.30	-1.10 0.38	7255.20 7254.82	
06/24/98	11:00 AM	18	23.28	8572	6.61	8.18	21.92			
07/01/98	10:00 AM	24	23.4	8561	6.61	8.18	22.45	-0.53	7255.35	
07/08/98	8:00 AM	15	23.46	8572	6.61	8.18	21.92	0.53	7254.82	
07/15/98	8:00 AM	17	23.5	8559	6.61	8.18	22.54	-0.62	7255.44	
07/22/98	8:00AM	16	23.4	8560	6.61	8.18	22.50	0.05	7255.40	
07/29/98	8:00 AM	14	23.43	8560	6.61	8.18	22.50	0.00	7255.40	
08/12/98	9:00 AM	16	23.58	8583	6.61	8.18	21.39	1.10	7254.29	
08/19/98	11:00 AM	20	23.45	8583	6.61	8.18	21.39	0.00	7254.29	
08/31/98	9:00 AM	22	23.44	8607	6.61	8.18	20.24	1.15	7253.14	
09/11/98	10:00 AM	15	23.48	8623	6.61	8.18	19.47	0.77	7252.37	
09/16/98	11:00 AM	23	23.42	8593	6.61	8.18	20.91	-1.44	7253.81	
09/22/98	9:00 AM	17	23.38	8634	6.61	8.18	18.95	1.97	7251.85	
09/30/98	10:00 AM	16	23.32	8639	6.61	8.18	18.71	0.24	7251.61 7251.41	
10/07/98	9:00 AM	5	23.46	8643	6.6	8.21	18.51	0.19	7251.41	
10/14/98	8:30 AM		23.32	8647	6.6	8.21	18.32	0.19		
10/26/98	7:30 AM	6	23.7	8653	6.6	8.21	18.03		7250.93	
10/30/98	9:00 AM	3	23.8	8657	6.6	8.21	17.84	0.19	7250.74	
11/05/98	9:30 AM	0	0	8658	6.6	8.21	17.79	0.05	7250.69	
11/13/98	10:00 AM	4	23.4	8659	6.59	8.25	17.74	0.05	7250.64	
11/18/98	10:00 AM	0	23.4	8662	6.59	8.25	17.60	0.14	7250.50	
12/30/98	9:00AM	0	23.49	8639	6.6	8.21	18.70	-1.11	7251.60	
1/7/99	12:10PM	6.7	-	8674	6.57	8.31	17.02	1.68	7249.92	
02/06/99	9:30AM	5	 	8678	6.56	8.34	16.83	0.19	7249.73	
03/06/99	11:00AM	5	 	8672	6.57	8.31	17.12	-0.29	7250.02	
05/06/99	2:30PM	15.6	├ ──-	8649	6.16	9.71	18.15	-1.04	7251.05	
07/26/99	1:00PM	<u> </u>	<u> </u>	8650	6.66	8.02	18.19	-0.03	7251.09	<u> </u>

PIEZO #: 9 SERIAL #: 10902 RO: 9517.00

TO: 7.00 deg. C

C: 0.02452

K: -0.027

BAROM. 32.08 " Hg GE 7230.3

-		TEMP.					Pore Pressure (ft		Piezometric	
DATE	TIME	С	BAROM.	R1 POS B	THERM.	T1	H2O)	CHANGE	Surface	REMARKS
12/30/97	9:00 AM	0	23.49	9035	6.32	9.15	27.13	0.17	7257.43	
01/07/98	9:00 AM	-4	23.26	9046	6.32	9.15	26.51	0.62	7256.81	
01/14/98	9:00 AM	-7	23.42	9051	6.32	9.15	26.23	0.28	7256.53	, <u>, , , , , , , , , , , , , , , , , , </u>
01/22/98	9:30 AM	-4	23.28	9054	6.32	9.15	26.06	0,17	7256.36	
01/28/98	8:30 AM	-2	23.3	9054	6.32	9.15	26.06	0.00	7256.36	
02/03/98	1:00 PM	4	23.06	9057	6.32	9.15	25.89	0.17	7256.19	
02/12/98	11:30 AM	1	23.35	9042	6.31	9.19	26.73	-0.85	7257.03	
02/20/98	9:00 AM	-1	23.13	9020	6.32	9.15	27.98	-1.25	7258.28	
03/25/98	9:00 AM	10	23.08	8984	6.32	9.15	30.02	-2.04	7260.32	
04/02/98	12:40 PM	6	23.3	8978	6.32	9.15	30.36	-0.34	7260.66	
04/08/98	11:00 AM	4	23.32	8982	6.32	9.15	30.13	0.23	7260.43	<u> </u>
04/15/98	10:30 AM	7	23.02	8982	6.32	9.15	30.13	0.00	7260.43	
04/13/98	9:30 AM	11	23.46	8977	6.32	9.15	30.41	-0.28	7260,71	
04/29/98	11:00 AM	15	23.42	8978	6.32	9.15	30.36	0.06	7260.66	
05/07/98	9:00 AM	6	23.42	8983	6.32	9.15	30.07	0.08	7260.37	
05/13/98	9:30 PM	10	23.26	8994	6.32	9.15	29.45	0.62	7259.75	
						9.15	29.05	0.40	·	
05/20/98	9:00 AM	15 5	23.28	9001	6.32 6.32	9.15		0.40	7259.35	<u> </u>
05/27/98	8:30 AM		23.25	9008		9.15	28.66		7258.96 7258.73	
06/03/98	11:00 AM	16	23.19	9012	6.32		28.43	0.23		
06/10/98	11:00 AM	10	23.29	9005	6.31	9.19	28.83	-0.39	7259.13	
06/17/98	1:00 PM	6	23.35	8978	6.32	9.15	30.36	-1.53	7260.66	
06/24/98	11:00 AM	18	23.28	8992	6.31	9.19	29.56	0.79	7259.86	
07/01/98	10:00 AM	24	23.4	8986	6.31	9,19	29.90	-0.34	7260.20	
07/08/98	8:00 AM	15	23.46	8992	6.31	9.19	29.56	0.34	7259.86	
07/15/98	8:00 AM	17	23.5	8983	6.31	9.19	30.07	-0.51	7260.37	
07/22/98	8:00AM	16	23.4	8985	6.31	9.19	29.96	0.11	7260.26	ļ
07/29/98	8:00 AM	14	23.43	8986	6.31	9.19	29.90	0.06	7260.20	
08/12/98	9:00 AM	16	23.58	9003	6.31	9.19	28.94	0.96	7259.24	
08/19/98	11:00 AM	20	23.45	9004	6.31	9.19	28.88	0.06	7259.18	
08/31/98	9:00 AM	22	23.44	9025	6.31	9.19	27.69	1.19	7257.99	
09/11/98	10:00 AM	15	23.48	9035	6.31	9.19	27.13	0.57	7257.43	
09/16/98	11:00 AM	23	23.42	9030	6.31	9.19	27.41	-0.28	7257.71	ļ
09/22/98	9:00 AM	17	23.38	9046	6.31	9.19	26.51	0.91	7256.81	
09/30/98	10:00 AM	16	23.32	9049	6.31	9.19	26.34	0.17	7256.64	
10/07/98	9:00 AM	6	23.46	9053	6.31	9.19	26.11	0.23	7256.41	
10/14/98	8:30 AM	5	23.32	9058	6.31	9.19	25.83	0.28	7256.13	
10/26/98	7:30 AM	6	23.7	9063	6.31	9.19	25.55	0.28	7255.85	
10/30/98	9:00 AM	3	23.8	9065	6.31	9.19	25.43	0.11	7255.73	
11/05/98	9:30 AM	0	0	9068	6.31	9.19	25.26	0.17	7255.56	
11/13/98	10:00 AM	4	23.4	9069	6.31	9.19	25.21	0.06	7255.51	
11/18/98	10:00 AM	0	23.4	9072	6.31	9.19	25.04	0.17	7255.34	
1/7/99	12:10PM	6.7		9085	6.31		24.87	0.16	7255.17	
02/06/99	9:30AM	5		9088	6.31	9.19		0.74	7254.43	
3/6/99	11:00AM	5		9086	6.31	9.19	24.24	-0.11	7254.54	
05/06/99	2:30PM	15.6		9071	6.3	9.22	25.09	-0.85	7255.39	
07/26/99	1:00PM			9074	6.03	10.17	24.86	0.23	7255,16	

PIEZO #: 13 SERIAL #: 10892 RO: 9500.00 TO: 12.00 deg. C C: 0.02315 K: -0.0301

BAROM. 31.57 " Hg GE: 7232.7

							Pore			
		TEMP.					Pressure (ft		Piezometric	
DATE	TIME	С	BAROM.	R1 POS B	THERM.	T1	H2O)	CHANGE	Surface	REMARKS
	7						<u> </u>			
12/30/97	9:00 AM	0	23.49	9249	6.71	7.85	13.69	1.07	7246.39	
01/07/98	9:00 AM	-4	23.26	9264	6.71	7.85	12.89	0.80	7245.59	
01/14/98	9:00 AM	-7	23.42	9275	6.70	7.89	12.30	1.39	7245.00	
01/22/98	9:30 AM	-4	23.28	9287	6.70	7.89	11.66	1.23	7244.36	
01/28/98	8:30 AM	-2	23.3	9290	6.70	7.89	11.50	0.80	7244.20	
02/03/98	1:00 PM	4	23.06	9293	6.70	7.89	11.34	0.32	7244.04	
02/12/98	11:30 AM	1	23.35	9289	6.68	7.95	11.55	-0.05	7244.25	
02/20/98	9:00 AM	-1	23.13	9261	6.69	7.92	13.05	-1.71	7245.75	
03/25/98	9:00 AM	10	23.08	9217	6.68	7.95	15.40	-3.85	7248.10	
04/02/98	12:40 PM	6	23.3	9214	6.68	7.95	15.56	-2.51	7248.26	
04/08/98	11:00 AM	4	23.32	9215	6.54	8.41	15.47	-0.07	7248.17	
04/15/98	10:30 AM	0	23.02	9215	6.68	7.95	15.50	0.05	7248.20	
04/22/98	9:30 AM	11	23.46	9111	6.69	7.92	21.06	-5.59	7253.76	
04/29/98	11:00 AM	15	23.42	9110	6.69	7.92	21.11	-5.61	7253.81	
05/07/98	9:00 AM	6	23.26	9125	6.69	7.92	20.31	0.75	7253.01	
05/13/98	9:30 PM	10	23	9170	6.70	7.89	17.91	3.20	7250.61	
05/20/98	9:00 AM	15	23.28	9193	6.70	7.89	16.68	3.63	7249.38	
05/27/98	8:30 AM	5	23.25	9208	6.70	7.89	15.88	2.03	7248.58	
06/03/98	11:00 AM	16	23.19	9210	6.70	7.89	15.77	0.91	7248.47	
06/10/98	11:00 AM	10	23.29	9185	6.70	7.89	17.11	-1.23	7249.81	
06/17/98	1:00 PM	6	23.35	9215	6.68	7.95	15.50	0.27	7248.20	
06/24/98	11:00 AM	18	23.28	9155	6.70	7.89	18.71	-1.60	7251.41	
07/01/98	10:00 AM	24	23.4	9134	6.71	7.85	19.83	-4.33	7252.53	
07/08/98	8:00 AM	15	23.46	9155	6.70	7.89	18.71	0.00	7251.41	
07/15/98	8:00 AM	17	23.5	9130	6.71	7.85	20.05	-0.21	7252.75	
07/22/98	8:00AM	16	23.4	9137	6.71	7.85	19.67	-0.96	7252.37	
07/29/98	8:00 AM	14	23.43	9132	6.72	7.82	19.94	0.10	7252.64	
08/12/98	9:00 AM	16	23.58	9188	6.72	7.82	16.95	2.72	7249.65	
08/19/98	11:00 AM	20	23.45	9170	6.72	7.82	17.91	-0.96	7250.61	
08/31/98	9:00 AM	22	23.44	9239	6.72	7.82	14.23	3.69	7246.93	
09/11/98	10:00 AM	15	23.48	9261	6.72	7.82	13.05	1.17	7245.75	
09/16/98	11:00 AM	23	23.42	9239	6.72	7.82	14.23	-1.17	7246.93	
09/22/98	9:00 AM	17	23.38	9278	6.72	7.82	12.15	2.08	7244.85	
09/30/98	10:00 AM	16	23.32	9288	6.72	7.82	11.61	2.62	7244.31	
10/07/98	9:00 AM	6	23.46	9294	6.72	7.82	11.29	0.85	7243.99	
10/14/98	8:30 AM	5	23.32	9303	6.72	7.82	10.81	0.80	7243.51	
10/26/98	7:30 AM	6	23.7	9316	6.72	7.82	10.12	1.17	7242.82	
10/30/98	9:00 AM	3	23.8	9318	6.72	7.82	10.01	0.80	7242.71	
11/05/98	9:30 AM	0	0	9319	6.72	7.82	9.96	0.16	7242.66	
11/13/98	10:00 AM	4	23.4	9324	6.72	7.82	9.69	0.32	7242.39	
11/18/98	10:00 AM	0	23.4	9329	6.72	7.82	9.42	0.53	7242.12	
01/07/99	12:10PM	6.7		9353	6.71	7.85	8.14	1.55	7240.84	
2/6/99	9:30AM	5		9358	6.7	7.89	7.87	1.55	7240.57	
03/06/99	11:00AM	5		9347	6.69	7.92	8.45	-0.32	7241.15	
05/06/99	2:30PM	15.6	<u> </u>	9304	6.61	8.18	10.73	-2.86	7243.43	
07/26/99	1:00PM	<u> </u>	<u> </u>	9315	6.66	8.02	10.16	-1.70	7242.86	<u>L</u>

PIEZO #: SERIAL#: 10894 RO: 9772.00 TO: 10.00 deg. C

C: 0.02292 K: -0.0298

BAROM. 31.57 " Hg

GE: 7231.4

		темр.					Pore Pressure (ft		Piezometric	5-11-512
DATE	TIME	С	BAROM.	R1 POS B	THERM.	T1	H2O)	CHANGE	Surface	REMARKS
12/30/97	9:00 AM	0	23.49	9502	6.53	8.44	14.38	-0.05	7245.78	
01/07/98	9:00 AM	-4	23.26	9504	6.53	8.44	14.28	0.11	7245.68	
01/14/98	9:00 AM	-7	23.42	9508	6.53	8.44	14.07	0.21	7245.47	
01/22/98	9:30 AM	-4	23.28	9514	6.54	8.41	13.75	0.31	7245.15	
01/28/98	8:30 AM	-2	23.3	9513	6.54	8.41	13.80	-0.05	7245.20	
02/03/98	1:00 PM	4	23.06	9514	6.54	8.41	13.75	0.05	7245.15	
02/12/98	11:30 AM	1	23.35	9513	6.53	8.44	13.80	-0.05	7245.20	
02/20/98	9:00 AM	-1	23.13	9515	6.53	8.44	13.70	0.11	7245.10	
33/25/98	9:00 AM	10	23.08	9463	6.54	8.41	16.45	-2.75	7247.85	
04/02/98	12:40 PM	6	23.3	9493	6.54	8.41	14.86	1.59	7246.26	
04/08/98	11:00 AM	4	23.32	9470	6.54	8.41	16.08	-1.22	7247.48	, . ·
04/15/98	10:30 AM	0	23.02	9501	6.53	8.44	14.44	1.64	7245.84	
04/22/98	9:30 AM	11	23.46	9496	6.54	8.41	14.70	-0.27	7246.10	
04/29/98	11:00 AM	15	23.42	9496	6.54	8.41	14.70	0.00	7246.10	
05/07/98	9:00 AM	6	23.26	9506	6.54	8.41	14.17	0.53	7245.57	
05/13/98	9:30 PM	10	23	9513	6.54	8.41	13.80	0.37	7245.20	
05/20/98	9:00 AM	15	23.28	9510	6.54	8.41	13.96	-0.16	7245.36	
5/27/98	8:30 AM	5	23.25	9509	6.54	8.41	14.02	-0.05	7245.42	
06/03/98	11:00 AM	16	23.19	9508	6.54	8.41	14.07	-0.05	7245.47	
06/10/98	11:00 AM	10	23.29	9504	6.54	8.41	14.28	-0.21	7245.68	
06/17/98	1:00 PM	6	23.35	9493	6.54	8.41	14.86	-0.58	7246.26	
06/24/98	11:00 AM	18	23.28	9492	6.54	8.41	14.91	-0.05	7246.31	
07/01/98	10:00 AM	24	23.4	9479	6.54	8.41	15.60	-0.69	7247.00	
07/08/98	8:00 AM	15	23.46	9479	6.54	8.41	15.60	0.00	7247.00	
07/15/98	8:00 AM	17	23.5	9496	6.55	8.38	14.71	0.90	7246.11	
07/22/98	8:00AM	16	23.4	9501	6.55	8.38	14.44	0.26	7245.84	
07/29/98	8:00 AM	14	23.43	9504	6.55	8.38	14.28	0.16	7245.68	·
08/12/98	9:00 AM	16	23.58	9510	6.55	8.38	13.97	0.32	7245.37	
08/19/98	11:00 AM	20	23.45	9505	6.55	8.38	14.23	-0.26	7245.63	
08/31/98	9:00 AM	22	23.44	9516	6.55	8.38	13.65	0.58	7245.05	
09/11/98	10:00 AM	15	23.48	9518	6.55	8.38	13.54	0.11	7244.94	
09/16/98	11:00 AM	23	23.42	9517	6.55	8.38	13.60	-0.05	7245.00	
09/22/98	9:00 AM	17	23.38	9521	6.56	8.34	13.39	0.21	7244.79	
09/30/98	10:00 AM	16	23.32	9523	6.56	8.34	13.28	0.11	7244.68	
10/07/98	9:00 AM	6	23.46	9522	6.56	8.34	13.33	-0.05	7244.73	
10/14/98	8:30 AM	5	23.32	9524	6.56	8.34	13.23	0.11	7244.63	
10/26/98	7:30 AM	6	23.7	9527	6.56	8.34	13.07	0.16	7244.47	
10/30/98	9:00 AM	3	23.8	9530	6.56	8.34	12.91	0.16	7244.31	
11/05/98	9:30 AM	0	0	9530	6.56	8.34	12.91	0.00	7244.31	
11/13/98	10:00 AM	4	23.4	9528	6.56	8.34	13.02	-0.11	7244.42	
11/18/98	10:00 AM	0	23.4	9532	6.56	8.34	12.80	0.21	7244.20	· · · · · · · · · · · · · · · · · · ·
1/7/99	12:10PM	6.7		9536	6.57	8.31	12.59	0.21	7243.99	
02/06/99	9:30AM	5	1	9540	6.57	8.31	12.38	0.21	7243.78	
03/06/99	11:00AM	5	1	9525	6.57	8.31	13.18	-0.79	7244.58	
5/6/99	2:30PM	15.6		9516	6.56		14.22	-1.05	7245.62	
07/26/99	1:00PM		1	9532	6.57	8.31	12.81	1.42	7244.21	

PIEZO #: 16 SERIAL #: 10896 RO: 9348.00 TO: 3.00 deg. C C: 0.02874 K: -0.0431

BAROM. 31.98 " Hg GE: 7216,7

				T		-	Pore			
		TEMP.		ľ			Pressure (ft		Piezometric	
DATE	TIME	С	BAROM.	R1 POS B	THERM.	T1	H2O)	CHANGE	Surface	REMARKS
-							 			<u> </u>
12/30/97	9:00 AM	0	23.49	9250	6.51	8.51	5.95	0.00	7222.65	
01/07/98	9:00 AM	-4	23.26	9250	6.51	8.51	5.95	0.00	7222.65	
01/14/98	9:00 AM	-7	23.42	9257	6.51	8.51	5.49	0.46	7222.19	
01/22/98	9:30 AM	-4	23.28	9256	6.51	8.51	5.55	-0.07	7222.25	
01/28/98	8:30 AM	-2	23.3	9256	6.51	8.51	5.55	0.00	7222.25	
02/03/98	1:00 PM	4	23.06	9257	6.51	8.51	5.49	0.07	7222.19	
02/12/98	11:30 AM	1	23.35	9255	6.5	8.54	5.61	-0.13	7222.31	
02/20/98	9:00 AM	-1	23.13	9256	6.51	8.51	5.55	0.06	7222.25	
03/25/98	9:00 AM	10	23.08	9223	6.51	8.51	7.74	-2.19	7224.44	
04/02/98	12:40 PM	6	23.3	9243	6.51	8.51	6.41	1.33	7223.11	
04/08/98	11:00 AM	4	23.32	9230	6.51	8.51	7.28	-0.86	7223.98	
04/15/98	10:30 AM	0	23.02	9246	6.51	8.51	6.21	1.06	7222.91	
04/22/98	9:30 AM	11	23.46	9243	6.51	8.51	6.41	-0.20	7223.11	-
04/29/98	11:00 AM	15	23.42	9316	6.51	8.51	1.57	4.84	7218.27	
05/07/98	9:00 AM	6	23.26	9252	6.51	8.51	5.82	-4.24	7222.52	
05/13/98	9:30 PM	10	23	9251	6.51	8,51	5.88	-0.07	7222.58	
05/20/98	9:00 AM	15	23.28	9255	6.51	8.51	5.62	0.27	7222.32	
05/27/98	8:30 AM	5	23.25	9255	6.51	8.51	5.62	0.00	7222.32	
06/03/98	11:00 AM	16	23.19	9253	6.51	8.51	5.75	-0.13	7222.45	
06/10/98	11:00 AM	10	23.29	9249	6.51	8.51	6.02	-0.27	7222.72	1
06/17/98	1:00 PM	6	23.35	9242	6.51	8.51	6.48	-0.46	7223.18	
06/24/98	11:00 AM	18	23.28	9242	6.52	8.48	6.48	0.00	7223.18	
07/01/98	10:00 AM	24	23.4	9231	6.52	8.48	7.21	-0.73	7223.91	
07/08/98	8:00 AM	15	23.46	9231	6.52	8.48	7.21	0.00	7223.91	
07/15/98	8:00 AM	17	23.5	9243	6.52	8.48	6.42	0.80	7223.12	
07/22/98	8:00AM	16	23.4	9246	6.52	8.48	6.22	0.20	7222.92	
07/29/98	8:00 AM	14	23.43	9249	6.52	8.48	6.02	0.20	7222.72	
08/12/98	9:00 AM	16	23.58	9252	6.53	8.44	5.82	0.20	7222.52	
08/19/98	11:00 AM	20	23.45	9249	6.52	8.48	6.02	-0.20	7222.72	
08/31/98	9:00 AM	22	23.44	9256	6.53	8.44	5.56	0.46	7222.26	
09/11/98	10:00 AM	15	23.48	9258	6.53	8.44	5.43	0.13	7222.13	
09/16/98	11:00 AM	23	23.42	9256	6.53	8.44	5.56	-0.13	7222.26	
09/22/98	9:00 AM	17	23.38	9259	6.54	8.41	5.36	0.20	7222.06	
09/30/98	10:00 AM	16	23.32	9261	6.54	8.41	5.23	0.13	7221.93	
10/07/98	9:00 AM	6	23.46	9259	6.54	8.41	5.36	-0.13	7222.06	
10/14/98	8:30 AM	5	23.32	9261	6.54	8.41	5.23	0.13	7221.93	
10/26/98	7:30 AM	6	23.7	9264	6.54	8.41	5.03	0.20	7221.73	
10/30/98	9:00 AM	3	23.8	9266	6.54	8.41	4.90	0.13	7221.60	
11/05/98	9:30 AM	0	0	9265	6.54	8.41	4.97	-0.07	7221.67	
11/13/98	10:00 AM	4	23.4	9263	6.54	8.41	5.10	-0.13	7221.80	
11/18/98	10:00 AM	0	23.4	9267	6.55	8.38	4.84	0.26	7221.54	
1/7/99	12:10PM	6.7	<u> </u>	9268	6.55	8.38	4.77	0.07	7221.47	
02/06/99	9:30AM	5		9271	6.55	8.38	4.57	0.20	7221.27	
03/06/99	11:00AM	5		9258	6.57	8.31	5.44	-0.87	7222.14	
5/6/1999	2:30PM	15.6	<u> </u>	9250	6.54	8.41	5.96	-0.52	7222.66	
07/26/99	1:00PM	<u> </u>	<u> </u>	9267	6.53	8.44	4.83	1.13	7221.53	

PIEZO #: 17 SERIAL #: 10895

RO: 9176.00

12.00 TO: deg. C

C: 0.02650

K: -0.0292 DM. 31.57 " Hg BAROM.

GE: 7230,4

	-				T		Pore		Г	
		TEMP.			1		Pressure (ft		Piezometric	
DATE	TIME	С	BAROM.	R1 POS B	THERM.	T1	H2O)	CHANGE	Surface	REMARKS
_						_	<u> </u>			
12/30/97	9:00 AM	0	23.49	8891	6.4	8.88	17.63	-0.06	7248.03	
01/07/98	9:00 AM	-4	23.26	8893	6.4	8.88	17.51	0.12	7247.91	
01/14/98	9:00 AM	-7	23.42	8896	6.4	8.88	17.33	0.18	7247.73	
01/22/98	9:30 AM	-4	23.28	8900	6.4	8.88	17.08	0.24	7247.48	
01/28/98	8:30 AM	-2	23.3	8900	6.4	8.88	17.08	0.00	7247.48	
02/03/98	1:00 PM	4	23.06	8902	6.4	8.88	16.96	0.12	7247.36	
02/12/98	11:30 AM	1	23.35	8900	6.37	8.98	17.08	-0.12	7247.48	
02/20/98	9:00 AM	-1	23.13	8902	6.4	8.88	16.96	0.12	7247.36	
03/25/98	9:00 AM	10	23.08	8864	6.4	8.88	19.28	-2.32	7249.68	
04/02/98	12:40 PM	6	23.3	8881	6.4	8.88	18.25	1.04	7248.65	V
04/08/98	11:00 AM	4	23.32	8870	6.4	8.88	18.92	-0.67	7249.32	· · · · · · · · · · · · · · · · · · ·
04/15/98	10:30 AM	0	23.02	8887	6.4	8.88	17.88	1.04	7248.28	
04/22/98	9:30 AM	11	23.46	8884	6.4	8.88	18.06	-0.18	7248.46	
04/29/98	11:00 AM	15	23.42	8884	6.41	8.85	18.06	0.00	7248.46	
05/07/98	9:00 AM	6	23.26	8892	6.41	8.85	17.57	0.49	7247.97	
05/13/98	9:30 PM	10	23	8898	6.41	8.85	17.21	0.37	7247.61	······································
05/20/98	9:00 AM	15	23.28	8897	6.41	8.85	17.27	-0.06	7247.67	
05/27/98	8:30 AM	5	23.25	8897	6.41	8.85	17.27	0.00	7247.67	
06/03/98	11:00 AM	16	23.19	8896	6.41	8.85	17.33	-0.06	7247.73	
06/10/98	11:00 AM	10	23.29	8894	6.41	8.85	17.45	-0.12	7247.85	
06/17/98	1:00 PM	6	23.35	8881	6.4	8.88	18.25	-0.79	7248.65	
06/24/98	11:00 AM	18	23.28	8884	6.41	8.85	18.06	0.18	7248.46	
07/01/98	10:00 AM	24	23.4	8875	6.41	8.85	18.61	-0.55	7249.01	
07/08/98	8:00 AM	15	23.46	8875	6.41	8.85	18.61	0.00	7249.01	. ,
07/15/98	8:00 AM	17	23.5	8887	6.41	8.85	17.88	0.73	7248.28	
07/22/98	8:00AM	16	23.4	8890	6.41	8.85	17.70	0.18	7248.10	
07/29/98	8:00 AM	14	23.43	8891	6.41	8.85	17.64	0.06	7248.04	
08/12/98	9:00 AM	16	23.58	8898	6.41	8.85	17.21	0.43	7247.61	
08/19/98	11:00 AM	20	23.45	8892	6.41	8.85	17.57	-0.37	7247.97	
08/31/98	9:00 AM	22	23.44	8905	6.41	8.85	16.78	0.79	7247.18	
09/11/98	10:00 AM	15	23.48	8907	6.41	8.85	16.66	0.12	7247.06	
09/16/98	11:00 AM	23	23.42	8905	6.41	8.85	16.78	-0.12	7247.18	
09/22/98	9:00 AM	17	23.38	8910	6.41	8.85	16.47	0.31	7246.87	·
09/30/98	10:00 AM	16	23.32	8912	6.41	8.85	16.35	0.12	7246.75	
10/07/98	9:00 AM	6	23.46	8912	6.41	8.85	16.35	0.00	7246.75	
10/14/98	8:30 AM	5	23.32	8914	6.41	8.85	16.23	0.12	7246.63	
10/26/98	7:30 AM	6	23.7	8916	6.41	8.85	16.11	0.12	7246.51	
10/20/98	9:00 AM	3	23.8	8919	6.41	8.85	15.92	0.12	7246.32	
11/05/98	9:30 AM	0	0	8919	6.41	8.85	15.92	0.00	7246,32	
11/13/98	10:00 AM	4	23.4	8918	6.41	8.85	15.99	-0.06	7246.39	
11/18/98	10:00 AM	0	23.4	8921	6.41	8.85	15.80	0.18	7246.20	
1/7/99	12:10PM	6.7	- 20.7 -	8926	6.42	8.81	15.50	0.30	7245.90	
2/6/99	9:30AM	5		8930	6.42	8.81	15.25	0.30	7245.65	
03/06/99	11:00AM	5	 	8918	6.42	8.81	15.25	-0.73	7246.39	
05/06/99	2:30PM	15.6	 	8911	6.42	8.81	16.42	-0.43	7246.82	
07/26/99	1:00PM	15.6	 	8924	6.43	8.78	15.62	0.79	7246.02	
01120199	I I JUPIN	L	<u> </u>	0324	0.43	0.70		0.73	/ 270.02	

PIEZO #: 21 SERIAL #: 10903 RO: 9573.00 TO: 12.00 deg. C C: 0.02306

K: -0.0208 BAROM. 31.57 " Hg

7216.9

							Pore			
		TEMP.					Pressure (ft		Piezometric	
DATE	TIME	С	BAROM.	R1 POS B	THERM.	T1	H2O)	CHANGE	Surface	REMARKS
										· · · · · · · · · · · · · · · · · · ·
12/30/97	9:00 AM	0	23.49	9343	60.70	-39.98	14.73	-0.37	7231.63	· · · · · · · · · · · · · · · · · · ·
01/07/98	9:00 AM	-4	23.26	9349	61.1	-40.12	14.42	0.31	7231.32	
01/14/98	9:00 AM	-7	23.42	9350	61.6	-40.30	14.37	0.04	7231.27	
01/22/98	9:30 AM	-4	23.28	9353	61.7	-40.33	14.22	0.16	7231.12	
01/28/98	8:30 AM	-2	23.3	9349	61.5	-40.26	14.42	-0.21	7231.32	
02/03/98	1:00 PM	4	23.06	9353	61.5	-40.26	14.21	0.21	7231.11	
02/12/98	11:30 AM	1	23.35	9352	61.7	-40.33	14.27	-0,06	7231.17	
02/20/98	9:00 AM	-1	23.13	9354	62.1	-40.47	14.17	0.10	7231.07	
03/25/98	9:00 AM	10	23.08	9331	63.9	-41.09	15.42	-1.25	7232.32	
04/02/98	12:40 PM	6	23.3	9345	63.9	-41.09	14.68	0.74	7231.58	
04/08/98	11:00 AM	4	23.32	9340	63.9	-41.09	14.94	-0.27	7231.84	
04/15/98	10:30 AM	0	23.02	9345	64.8	-41.40	14.69	0.25	7231.59	
04/22/98	9:30 AM	11	23.46	9339	64.9	-41.43	15.01	-0.32	7231.91	
04/29/98	11:00 AM	15	23.42	9338	64.7	-41.36	15.06	-0.05	7231.96	
05/07/98	9:00 AM	6	23.26	9349	64.8	-41.40	14.48	0.58	7231.38	
05/13/98	9:30 PM	10	23	9356	65.3	-41.56	14.11	0.36	7231.01	
05/20/98	9:00 AM	15	23.28	9351	66	-41.79	14.39	-0.28	7231.29	
05/27/98	8:30 AM	5	23.25	9353	66.2	-41.86	14.29	0.10	7231.19	
06/03/98	11:00 AM	16	23.19	9352	66.6	-41.99	14.35	-0.06	7231.25	·
06/10/98	11:00 AM	10	23.29	9352	66.9	-42.09	14.35	0.00	7231.25	
06/17/98	1:00 PM	6	23.35	9346	63.8	-41.06	14.62	-0.27	7231.52	
06/24/98	11:00 AM	18	23.28	9347	66.8	-42.06	14.62	0.01	7231.52	
07/01/98	10:00 AM	24	23.4	9343	67.4	-42.25	14.84	-0.22	7231.74	
07/08/98	8:00 AM	15	23.46	9343	66.7	-42.02	14.83	0.01	7231.73	
07/15/98	8:00 AM	17	23.5	9348	68.6	-42.63 -42.66	14.59	0.24	7231.49	
07/22/98	8:00AM 8:00 AM	16 14	23.4	9349 9350	68.70 68.10	-42.66	14.48	14.59 -14.48	7216.90 7231.38	
08/12/98	9:00 AM	16	23.43	9351	68.60	-42.47	14.43	0.05	7231.38	
08/19/98	11:00 AM	20	23.45	9350	68.10	-42.47	14.48	-0.05	7231.38	
08/31/98	9:00 AM	22	23.44	9350	69	-42.76	14.49	-0.03	7231.39	
09/11/98	10:00 AM	15	23.48	9353	69.8	-43.01	14.34	0.15	7231.24	
09/16/98	11:00 AM	23	23.42	9353	69.1	-42.79	14.33	0.01	7231.23	
09/22/98	9:00 AM	17	23.38	9357	70.2	-43.13	14.14	0.20	7231.04	
09/30/98	10:00 AM	16	23.32	9356	71.3	-43.47	14.21	-0.07	7231.11	
10/07/98	9:00 AM	6	23.46	9357	71.5	-43.53	14.16	0.05	7231.06	· · · · · · · · · · · · · · · · · · ·
10/14/98	8:30 AM	5	23.32	9356	71.6	-43.56	14.21	-0.05	7231.11	
10/26/98	7:30 AM	6	23.7	9361	71.6	-43.56	13.94	0.27	7230.84	
10/30/98	9:00 AM	3	23.8	9364	72	-43.68	13.79	0.15	7230.69	
11/05/98	9:30 AM	1 0	0	9363	72.3	-43.77	13.85	-0.06	7230.75	
11/13/98	10:00 AM	4	23.4	9362	73.4	-44.10	13.92	-0.07	7230.82	
11/18/98	10:00 AM	0	23.4	9365	73.4	-44.10	13.76	0.16	7230.66	
1/7/99	12:10PM	6.7		9367	75.5	-44.71	13.68	0.08	7230.58	
02/06/99	9:30AM	5		9372	75.9	-44.83	13.42	0.26	7230.32	
03/06/99	11:00AM	5	 	9370	77.1	-45.17	13.54	-0.12	7230.44	
05/06/99	2:30PM	15.6	†	9345	79.6	-45.86	14.91	-1.36	7231.81	
07/26/99	1:00PM	 	 	9367	82.9	-46.75	13.78	1.13	7230.68	

PIEZO #: 22 SERIAL #: 10904 RO: 9725.00 TO: 3.00 deg. C C: 0.02258

K: -0.0406 BAROM. 31.98 " Hg GE: 7230.9

DATE 12/30/97	TIME	TEMP.					Pore			
12/30/97	TIME						Pressure (ft		Piezometric I	
12/30/97	122417	C	BAROM.	R1 POS B	THERM.	T1	H2O)	CHANGE	Surface	REMARKS
			D/ II COIVI.	KIT GG B			1120)	0111102	041,000	11211011110
	9:00 AM	0	23.49	9528	6.36	9.02	9.70	-0.36	7240.6D	
01/07/98	9:00 AM	-4	23.26	9534	6.36	9.02	9.39	0.31	7240.29	
01/14/98	9:00 AM	-7	23.42	9534	6.36	9.02	9.39	0.00	7240.29	
01/22/98	9:30 AM	-4	23.28	9536	6.37	8.98	9.29	0.10	7240.19	
01/28/98	8:30 AM	-2	23.3	9534	6.37	8.98	9.39	-0.10	7240.29	
02/03/98	1:00 PM	4	23.06	9538	6.37	8.98	9.18	0.21	7240.08	
02/12/98	11:30 AM	1	23.35	9535	6,36	9.02	9.33	-0.15	7240.23	
02/20/98	9:00 AM	-1	23.13	9538	6.37	8.98	9.18	0.15	7240.08	
03/25/98	9:00 AM	10	23.08	9517	6.37	8.98	10.27	-1.09	7241.17	
04/02/98	12:40 PM	6	23.3	9531	6.29	9.26	9.52	0.75	7240.42	
04/08/98	11:00 AM	4	23.32	9525	6.37	8.98	9.86	-0.34	7240.76	
04/15/98	10:30 AM	0	23.02	9530	6.37	8.98	9.60	0.26	7240.50	/
04/22/98	9:30 AM	11	23.46	9523	6.37	8.98	9.96	-0.36	7240.86	
04/29/98	11:00 AM	15	23.42	9523	6.37	8.98	9.96	0.00	7240.86	
05/07/98	9:00 AM	6	23.26	9531	6.37	8.98	9.55	0.42	7240.45	
05/13/98	9:30 PM	10	23	9538	6,38	8.95	9.18	0.36	7240.08	
05/20/98	9:00 AM	15	23.28	9533	6.37	8.98	9.44	-0.26	7240.34	
05/27/98	8:30 AM	5	23.25	9534	6.37	8.98	9.39	0.05	7240.29	
06/03/98	11:00 AM	16	23.19	9533	6.38	8.95	9.44	-0.06	7240.34	***
06/10/98	11:00 AM	10	23.29	9532	6.38	8.95	9.50	-0.05	7240.40	
06/17/98	1:00 PM	6	23.35	9531	6.29	9.26	9.52	-0.02	7240.42	
06/24/98	11:00 AM	18	23.28	9529	6.38	8.95	9.65	-0.13	7240.55	
07/01/98	10:00 AM	24	23.4	9526	6.38	8.95	9.81	-0.16	7240.71	
07/08/98	8:00 AM	15	23.46	9529	6.37	8.98	9.65	0.16	7240.55	
07/15/98	8:00 AM	17	23.5	9526	6.38	8.95	9.81	-0.16	7240.71	
07/22/98	8:00AM	16	23.4	9529	6.38	8.95	9.65	0.16	7240.55	
07/29/98	8:00 AM	14	23.43	9530	6.38	8.95	9.60	0.05	7240.50	
08/12/98	9:00 AM	16	23.58	9530	6.39	8.91	9.60	0.00	7240.50	
08/19/98	11:00 AM	20	23.45	9532	6.38	8.95	9.50	0.11	7240.40	
08/31/98	9:00 AM	22	23.44	9529	6.39	8.91	9.66	-0.16	7240.56	
09/11/98	10:00 AM	15	23.48	9530	6.40	8.88	9.61	0.05	7240.51	
09/16/98	11:00 AM	23	23.42	9532	6.38	8.95	9.50	0.11	7240.40	
09/22/98	9:00 AM	17	23.38	9534	6.40	8.88	9,40	0.10	7240.30	
09/30/98	10:00 AM	16	23.32	9534	6.40	8.88	9.40	0.00	7240.30	
10/07/98	9:00 AM	6	23.46	9534	6.40	8.88	9.40	0.00	7240.30	
10/14/98	8;30 AM	5	23.32	9533	6.47	8.64	9.47	-0.07	7240.37	
10/26/98	7:30 AM	6	23.7	9539	6.41	8.85	9.14	0.33	7240.04	
10/30/98	9:00 AM	3	23.8	9541	6.41	8.85	9.04	0.10	7239.94	
11/05/98	9:30 AM	0	0	9541	6.41	8.85	9.04	0.00	7239.94	
11/13/98	10:00 AM	4	23.4	9535	6.41	8.85	9.35	-0.31	7240.25	
11/18/98	10:00 AM	0	23.4	9542	6.41	8.85	8.99	0.36	7239.89	
1/7/99	12:10PM	6.7		9542	6.42	8.81	8.99	0.00	7239.89	
02/06/99	9:30AM	5		9544	6.42	8.81	8.88	0.10	7239.78	
03/06/99	11:00AM	5		9542	6.43	8.78	8.99	-0.11	7239.89	
05/06/99	2:30PM	15.6		9516	6.42	8.81	10.34	-1.35	7241.24	
07/26/99	1:00PM	L	<u> </u>	9535	6.42	8.81	9.35	0.99	7240.25	

PIEZO #:

23

STANDPIPE ELEV:

7295.56

Twinned with Piezometer #24

COLLAR ELEV:

7291.52

SCREEN TYPE: Johnson 8 Slot, 40 X 60 pack

DEPTH TO TOP OF SCREEN:

69.00

SCREEN LENGTH:

10.00

STANDPIPE DIAMETER: 1.5 INCHES

				EFFECTIVE	COMPARATIVE		
		DEPTH TO	WATER	PRESSURE (FT			
DATE	TIME	WATER (FT)	ELEVATION	H2O)	(FT H2O)	CHANGE	REMARKS
12/30/97	9:00 AM	49	7246,56	30.00	30.04	-0.42	
01/07/98	9:00 AM	49.28	7246,28	29.72	29.76	-0.28	
01/14/98	9:00 AM	49.68	7245.88	29.32	29.36	-0.40	
01/22/98	9:30 AM	49.75	7245.81	29.25	29.29	-0.07	
01/28/98	8:30 AM	49.6	7245.96	29.40	29.44	0.15	
02/03/98	1:00 PM	49.24	7246.32	29.76	29.80	0.36	
02/12/98	11:30 AM	48.8	7246,76	30.20	30.24	0.44	
02/20/98	9:00 AM	47.9	7247.66	31.10	31.14	0.90	
03/25/98	9:00 AM	46.98	7248.58	32.02	32.06	0.92	· · · · · · · · · · · · · · · · · · ·
04/02/98	12:40 PM	47.01	7248.55	31.99	32.03	-0.03	
04/08/98	11:00 AM	47.02	7248.54	31.98	32.02	-0.01	
04/15/98	10:30 AM	46.88	7248.68	32.12	32.16	0.14	
04/22/98	9:30 AM	47.1	7248.46	31.90	31,94	-0.22	
04/29/98	11:00 AM	47.12	7248.44	31.88	31.92	-0.02	
05/07/98	9:00 AM	47.22	7248.34	31.78	31.82	-0.10	· · · · · · · · · · · · · · · · · · ·
05/13/98	9:30 PM	47.21	7248.35	31.79	31.83	0.01	
05/20/98	9:00 AM	47.55	7248.01	31,45	31,49	-0.34	
05/27/98	8:30 AM	47,48	7248.08	31.52	31.56	0.07	
06/03/98	11:00 AM	47.65	7247.91	31.35	31,39	-0.17	
06/10/98	11:00 AM	47.6	7247.96	31.40	31.44	0.05	
06/17/98	1:00 PM	47,55	7248.01	31.45	31,49	0.05	
06/24/98	11:00 AM	47.52	7248.04	31.48	31.52	0.03	
07/01/98	10:00 AM	47.82	7247.74	31.18	31.22	-0.30	
07/08/98	8:00 AM	47.5	7248.06	31.50	31,54	0.32	······································
07/15/98	8:00 AM	47.5	7248.06	31.50	31.54	0.00	
07/22/98	8:00AM	47.55	7248.01	31.45	31,49	-0.05	
07/29/98	8:00 AM	47.4	7248.16	31.60	31.64	0.15	
08/12/98	9:00 AM	47.76	7247.80	31.24	31.28	-0.36	·
08/19/98	11:00 AM	47.8	7247.76	31.20	31.24	-0.04	
08/31/98	9:00 AM	47.88	7247.68	31.12	31.16	-0.08	
09/11/98	10:00 AM	47.75	7247.81	31.25	31.29	0.13	
09/16/98	11:00 AM	48.34	7247.22	30.66	30.70	-0.59	
09/22/98	9:00 AM	48.3	7247.26	30.70	30.74	0.04	
09/30/98	10:00 AM	48.58	7246.98	30.42	30.46	-0.28	
10/07/98	9:00 AM	48.76	7246.80	30.24	30.28	-0.18	
10/14/98	8:30 AM	48.65	7246.91	30.35	30.39	0.11	
10/26/98	7:30 AM	48.89	7246.67	30.11	30.15	-0.24	
10/30/98	9:00 AM	56.47	7239.09	22.53	22.57	-7,58	
11/05/98	9:30 AM	48.94	7246.62	30.06	30.10	7.53	
11/18/98	10:00 AM	49.18	7246.38	29.82	29.86	-0.24	
12/30/98	9:00AM	49	20.00	30.00	-7196.52	0.18	
1/7/99	12:10PM	49.3	7335.50	29.70	118.98	-0.12	
02/06/99	9:30AM	49.54	7336.05	29.46	119.53	-0.54	
03/06/99	11:00AM	49.2	7335.82	29.80	119.30	0.10	
05/06/99	2:30PM	49.28	7336.21	29.72	119.69	0.26	
07/26/99	1:00PM	48.93	1	30.07	-7216.52	0.27	

PIEZO #: 24 SERIAL #: 19974 RO: 8066.00 TO: 21.00 deg. C C: 0.02678

K: 0.0054 BAROM. 31.05 " Hg

GE: 7216.6

		TEMP.					Pore Pressure (ft		Piezometric	
DATE	TIME	С	BAROM.	R1 POS B	THERM.	T1	H2O)	CHANGE	Surface	REMARKS
2/30/97	9:00 AM	0	23.49	7763	6.45	8.71	18.57	0.19	7235.17	
01/07/98	9:00 AM	-4	23.26	7770	6.46	8.68	18.13	0.43	7234.73	
1/14/98	9:00 AM	-7	23.42	7774	6.46	8.68	17.89	0.25	7234.49	
1/22/98	9:30 AM	-4	23.28	7774	6.46	8.68	17.89	0.00	7234.49	
1/28/98	8:30 AM	-2	23.3	7772	6.46	8.68	18.01	-0.12	7234.61	
2/03/98	1:00 PM	4	23.06	7775	6.46	8.68	17.82	0.19	7234.42	T
2/12/98	11:30 AM	1	23.35	7763	6,45	8.71	18.57	-0.74	7235.17	<u> </u>
02/20/98	9:00 AM	-1	23.13	7753	6.46	8.68	19.18	-0.62	7235.78	
3/25/98	9:00 AM	10	23.08	7738	6.46	8.68	20,11	-0.93	7236.71	
04/02/98	12:40 PM	6	23.3	7738	6.46	8.68	20.11	0.00	7236,71	
04/08/98	11:00 AM	4	23.32	7738	6.46	8.68	20.11	0.00	7236.71	
04/15/98	10:30 AM	0	23.02	7738	6.46	8.68	20.11	0.00	7236.71	
04/22/98	9:30 AM	11	23,46	7734	6.46	8.68	20.36	-0.25	7236.96	
04/29/98	11:00 AM	15	23.42	7735	6.46	8.68	20.30	0.06	7236.90	
05/07/98	9:00 AM	6	23.26	7738	6.46	8.68	20.11	0.19	7236.71	
05/13/98	9:30 PM	10	23	7747	6.46	8.68	19.55	0.56	7236.15	
05/20/98	9:00 AM	15	23.28	7744	6.37	8.98	19.74	-0.19	7236.34	
05/27/98	8:30 AM	5	23.25	7748	6.46	8.68	19.49	0.25	7236.09	
06/03/98	11:00 AM	16	23.19	7748	6.46	8.68	19.49	0.00	7236.09	
06/10/98	11:00 AM	10	23.29	7747	6.46	8.68	19.55	-0.06	7236.15	
06/17/98	1:00 PM	6	23.35	7743	6.47	8.64	19.80	-0.25	7236.40	
06/24/98	11:00 AM	18	23.28	7740	6.47	8.64	19.99	-0.19	7236.59	
07/01/98	10:00 AM	24	23.4	7740	6.47	8.64	19.99	0.00	7236.59	
07/08/98	8:00 AM	15	23.46	7743	6,47	8.64	19.80	0.19	7236.40	
07/15/98	8:00 AM	17	23.5	7739	6.47	8.64	20.05	-0.25	7236.65	
07/22/98	8:00AM	16	23.4	7740	6.47	8.64	19.99	0.06	7236.59	
07/29/98	8:00 AM	14	23.43	7739	6.47	8.64	20.05	-0.06	7236.65	
08/12/98	9:00 AM	16	23.58	7742	6.47	8.64	19.86	0.19	7236.46	
08/19/98	11:00 AM	20	23.45	7740	6.47	8.64	19.99	-0.12	7236.59	<u> </u>
08/31/98	9:00 AM	22	23.44	7751	6.47	8.64	19.31	0.68	7235.91	
09/11/98	10:00 AM	15	23.48	7756	6.47	8.64	19.00	0.31	7235.60	
09/16/98	11:00 AM	23	23.42	7750	6.47	8.64	19.37	-0.37	7235.97	
09/22/98	9:00 AM	17	23.38	7760	6.46	8.68	18.75	0.62	7235.35	
09/30/98	10:00 AM	16	23.32	7762	6.46	8.68	18.63	0.12	7235.23	
10/07/98	9:00 AM	6	23.46	7763	6.6	8.21	18.56	0.07	7235.16	
10/14/98	8:30 AM	5	23.32	7765	6.47	8.64	18.44	0.12	7235.04	
10/26/98	7:30 AM	6	23.7	7769	6.45	8.71	18.20	0.25	7234.80	
10/30/98	9:00 AM	3	23.8	7769	6.45	8.71	18.20	0.00	7234.80	
								<u> </u>	,	Broken wire during tailir reclamation
01/07/99	12:10PM	6.7	 	7777	6.41	8.85	17.70	-17.70	7234.30	
02/06/99	9:30AM	5	 	7780	6.39	8,91	17.52	0.18	7234.12	
03/06/99	11:00AM	5	 	7779	6.39	8.91	17.58	-0.06	7234.18	†
05/06/99	2:30PM	15.6	 	7773	6.4	8.88	17.95	-0.37	7234.55	
07/26/99	1:00PM	 	 	7768	6.45	8.71	18.26	-0.31	7234.86	ļ

PIEZO#: 25 SERIAL#: 19972 RO: 9073.00 TO: 21.00 deg. C C: 0.02144

K: -0.0214 BAROM. 31.57 " Hg

GE: 7201.3

DATE	TIME	TEMP.	BAROM.	R1 POS B	THERM.	T1	Pore Pressure (ft H2O)	CHANGE	Piezometric Surface	REMARKS
40/00/07	0.00 A11	0	00.40	8304	0.40	8.61	38.65	0.15	7020.05	
12/30/97	9;00 AM		23.49		6.48				7239.95	
01/07/98	9:00 AM	-4	23.26	8313	6.48	8.61	38.20	0.45	7239.50	
01/14/98	9:00 AM	-7	23.42	8318	6.48	8.61	37.96	0.25	7239.26	
01/22/98	9:30 AM	-4	23.28	8319	6.48	8.61	37.91	0.05	7239.21	
01/28/98	8:30 AM	-2	23.3	8317	6.48	8.61	38.00	-0.10	7239.30	
02/03/98	1:00 PM	4	23.06	8320	6.49	8.58	37.86	0.15	7239.16	
02/12/98	11:30 AM	1	23.35	8306	6.48	8.61	38.55	-0.69	7239.85	
02/20/98	9:00 AM	-1	23.13	8292	6.48	8.61	39.24	-0.69	7240.54	
03/25/98	9:00 AM	10	23.08	8270	6.48	8.61	40.33	-1.09	7241.63	<u> </u>
04/02/98	12:40 PM	6	23.3	8266	6.48	8.61	40.53	-0.20	7241.83	
04/08/98	11:00 AM	4	23.32	8265	6.48	8.61	40.58	-0.05	7241.88	
04/15/98	10:30 AM	0	23.02	8264	6.48	8.61	40.63	-0.05	7241.93	
04/22/98	9:30 AM	11	23.46	8262	6.49	8.58	40.73	-0.10	7242.03	
04/29/98	11:00 AM	15	23.42	8262	6.48	8.61	40.73	0.00	7242.03	
05/07/98	9:00 AM	6	23.26	8265	6.49	8.58	40.58	0.15	7241.88	
05/13/98	9:30 PM	10	23	8273	6.49	8.58	40.18	0.40	7241.48	
05/20/98	9:00 AM	15	23.28	8275	6.49	8.58	40.08	0.10	7241.38	
05/27/98	8:30 AM	5	23.25	8280	6.49	8.58	39.84	0.25	7241.14	
06/03/98	11:00 AM	16	23.19	8283	6.49	8.58	39.69	0.15	7240.99	
06/10/98	11:00 AM	10	23.29	8282	6.49	8.58	39.74	-0.05	7241.04	
06/17/98	1:00 PM	6	23.35	8266	6.48	8.61	40.53	-0.79	7241.83	
06/24/98	11:00 AM	18	23.28	8274	6.49	8.58	40.13	0.39	7241.43	
07/01/98	10:00 AM	24	23.4	8270	6.49	8.58	40.33	-0.20	7241.63	
07/08/98	8:00 AM	15	23.46	8274	6.49	8.58	40.13	0.20	7241.43	
07/15/98	8:00 AM	17	23.5	8266	6.48	8.61	40.53	-0.39	7241.83	
07/22/98	8:00AM	16	23.4	8267	6.49	8.58	40.48	0.05	7241.78	
07/29/98	8:00 AM	14	23.43	8266	6.49	8.58	40.53	-0.05	7241.83	
08/12/98	9:00 AM	16	23.58	8269	6.49	8.58	40.38	0.15	7241.68	
08/19/98	11:00 AM	20	23.45	8270	6.49	8.58	40.33	0.05	7241.63	
08/31/98	9:00 AM	22	23.44	8281	6.49	8.58	39.79	0.54	7241.09	
09/11/98	10:00 AM	15	23.48	8289	6.49	8.58	39.39	0.40	7240.69	
09/16/98	11:00 AM	23	23.42	8270	6.49	8.58	40.33	-0.94	7241.63	·
09/22/98	9:00 AM	17	23.38	8295	6.49	8.58	39.09	1.24	7240.39	
09/30/98	10:00 AM	16	23.32	8296	6.49	8.58	39.05	0.05	7240.35	·····
10/07/98	9:00 AM	6	23.46	8302	6.49	8.58	38.75	0.00	7240.05	<u> </u>
10/07/98	8:30 AM	5		8302	6.49	8.58	38.55	0.30		
		L	23.32			L		1 .	7239.85	-
10/26/98	7:30 AM	6	23.7	8309	6.49	8.58	38.40	0.15	7239.70	
10/30/98	9:00 AM	3	23,8	8313	6.49	8.58	38.20	0.20	7239.50	Broken wire during tallings
10.000.000				200		0.51	20.05	-38.65	7000.05	reclamation
12/30/98	9:00AM	0	23.49	8304	6.48	8.61	38.65	1	7239.95	ļ <u></u>
1/7/99	12:10PM	6.7	.	8336	6.49	8.58	37.07	1.58	7238.37	
02/06/99	9:30AM	5	 	8340	6.48	8.61	36.87	0.20	7238.17	
03/06/99	11:0AM	5		8334	6.47	8.64	37.16	-0.30	7238.46	
05/06/99	2:30PM	15.6	ļ	8320	6.44	8.75	37.85	-0.69	7239.15	1
07/26/99	1:00PM	ļ	1	8308	6.43	8.78	38.44	-0.59	7239.74	I

PIEZO #: 26 SERIAL #: 19977 RO: 8843.00 TO: 21.00 deg. C C: 0.02084

K: -0.0167

BAROM. 31.57 * Hg

GE: 7146.5

DATE	TIME	TEMP.	BAROM.	R1 POS B	THERM.	T1	Pore Pressure (ft H2O)	CHANGE	Piezometric Surface	REMARKS
12/31/96	1:00 PM	9	23.4	9059	6.38	8.95	-9.92	-0.01	7136.58	
1/7/98	9:00 AM	-4	23.26	9058	6.38	8.95	-9.87	0.05	7136.63	
1/23/97	1:00 PM	0	23.2	9058	6.38	8.95	-9.87	0,00	7136.63	
2/26/97	10:30 AM	 		9055	6.39	8.91	-9.73	0.15	7136.77	<u> </u>
3/4/97	1:10 PM	10	23.34	9056	6.39	8.91	-9.77	-0.05	7136.73	
3/11/97	12:55 AM	16	23.31	9055	6.39	8.91	-9.73	0.05	7136.77	
3/17/97	11:50 AM	6	23.49	9055	6.40	8.88	-9.73	0.00	7136.77	
3/26/97	2:05 PM	18	23.52	9054	6.39	8.91	-9.68	0.05	7136.82	
4/3/97	8:30 AM	-1	23.28	9056	6.40	8.88	-9.77	-0.09	7136.73	
4/9/97	9:15 AM	0	23.39	9054	6,40	8.88	-9.68	0.10	7136.82	
4/17/97	2:30 PM	20	23.36	9055	6.40	8.88	-9.73	-0.05	7136.77	
4/24/97	9:45 AM	-2	22.99	9055	6.40	8.88	-9.73	0.00	7 136.77	
5/6/97	11:20 AM	19	23.7	9058	6.41	8.85	-9.87	-0.14	7136.63	
5/21/97	9:30 AM	13	23.39	9057	6.41	8.85	-9.82	0.05	7136.68	
										Broken wire noted - no longer reading.
	···				Wire Broken					
					Piezometer no longer					
07/26/99	1:00PM	į		9069	functioning	#REF!	#REF!	#REF!	#REF!	

PIEZO#:

27

STANDPIPE ELEV: 7298.30

Twinned with Piezometer # 28

COLLAR ELEV:

7294.55

SCREEN TYPE: Johnson 8 Slot, 40 X 60 pack DEPTH TO TOP OF SCREEN: TRANSDUCER DEPTH: 80 ft. (Comparative)

SCREEN LENGTH:

75.00

SCREEN LENGTH:	10.00
STANDPIPE DIAMETER:	1.5 INCHES

				EFFECTIVE	COMPARITITVE		
		DEPTH TO	WATER	PRESSURE	PRESSURE		
DATE	TIME	WATER (FT)	ELEVATION	(FT H2O)	(FT H2O)	CHANGE	REMARKS
12/30/97	9:00 AM	53.43	7244.87	31.57	30.32	-0.88	
01/07/98	9:00 AM	53.87	7244.43	31.13	29.88	-0.44	
01/14/98	9:00 AM	54.56	7243.74	30.44	29.19	-0.69	
01/12/98	9:30 AM	54.7	7243.60	30.30	29.05	-0.14	
01/28/98	8:30 AM	54.5	7243.80	30.50	29.25	0.20	
02/03/98	1:00 PM	54.47	7243.83	30.53	29.28	0.03	
02/03/98	11:30 AM	53.05	7245.25	31.95	30.70	1.42	
02/12/98	9:00 AM	51.4	7246.90	33.60	32.35	1.65	
03/25/98	9:00 AM	49.26	7249.04	35.74	34.49	2.14	
03/23/98	12:40 PM	49.39	7248.91	35.61	34.36	-0.13	
04/08/98	11:00 AM	49.3	7249.00	35.70	34.45	0.09	
04/15/98	10:30 AM	49.28	7249.02	35.72	34.47	0.02	
04/22/98	9:30 AM	49.38	7248.92	35.62	34.37	-0.10	
04/29/98	11:00 AM	49.25	7249.05	35.75	34.50	0.13	
05/07/98	9:00 AM	49.61	7248.69	35.39	34.14	-0.36	
05/13/98	9:30 PM	49.38	7248.92	35.62	34.37	0.23	
05/20/98	9:00 AM	50.46	7247.84	34.54	33,29	-1.08	
05/27/98	8:30 AM	50.94	7247.36	34.06	32.81	-0.48	
06/03/98	11:00 AM	50.86	7247.44	34.14	32.89	0.08	
06/10/98	11:00 AM	50.9	7247.40	34.10	32.85	-0.04	
06/17/98	1:00 PM	50.93	7247.37	34.07	32.82	-0.03	
06/24/98	11:00 AM	49.82	7248.48	35.18	33.93	1.11	
07/01/98	10:00 AM	49.48	7248.82	35.52	34.27	0.34	
07/08/98	8:00 AM	49.5	7248.80	35.50	34.25	-0.02	
07/15/98	8:00 AM	49.55	7248.75	35.45	34.20	-0.05	
07/22/98	8:00AM	49.48	7248.82	35.52	34.27	0.07	
07/29/98	8:00 AM	49.83	7248.47	35.17	33.92	-0.35	
08/12/98	9:00 AM	50.62	7247.68	34.38	33.13	-0.79	
08/19/98	11:00 AM	50.1	7248.20	34.90	33.65	0.52	
08/31/ 9 8	9:00 AM	51.65	7246.65	33,35	32.10	-1.55	
09/11/98	10:00 AM	51.02	7247.28	33.98	32.73	0.63	
09/16/98	11:00 AM	52.58	7245.72	32.42	31.17	-1.56	
09/22/98	9:00 AM	52.5	7245.80	32.50	31.25	0.08	
09/30/98	10:00 AM	52.92	7245.38	32.08	30.83	-0.42	
?	?	51.68	7246.62	33.32	32.07	1.24	
7	7	51.97	7246.33	33.03	31.78	-0.29	
10/07/98	9:00 AM	53.24	7245.06	31.76	30.51	-1.27	
10/14/98	8:30 AM	53.35	7244.95	31.65	30.40	-0.11	
10/26/98	7:30 AM	53.74	7244.56	31.26	30.01	-0.39	
10/30/98	9:00 AM	53.81	7244.49	31.19	29.94	-0.07	
11/05/98	9:30 AM	53.82	7244.48	31.18	29.93	-0.01	
11/13/98	10:00 AM						
11/18/98	10:00 AM	54.23	7244.07	30.77	29.52	-0.41	
12/30/98	9:00AM	53.43	21.57	31.57	-7192.98	31.57	
1/7/99	12:10PM	54.7	7335.50	30.30	120.95	-0.47	
02/06/99	9:30AM	54.8	7336.05	30.20	121.50	-1.37	
03/06/99	11:00AM	54	7335.82	31.00	121.27	0.70	
05/06/99	2:30PM	53.25	7336.21	31.75	121.66	1.55	
07/26/99	1:00PM	53.32		31.68	-7214.55	0.68	

PIEZO #: SERIAL #:

28

19973

RO: 8742.00

21.00 deg. C TO:

C:

0.02169 -0.0174 K:

BAROM. 31.57 " Hg

GE: 7214.6

DATE	TIME	ТЕМР. С	BAROM.	R1 POS B	THERM.	T1	Pore Pressure (ft H2O)	CHANGE	Piezometric Surface	REMARKS
12/30/97	9:00 AM	0	23.49	8393	6.55	8.38	17.97	-0.45	7232.57	
01/07/98	9:00 AM	-4	23.26	8408	6.55	8.38	17.22	-0.75	7231.82	
01/14/98	9:00 AM	-7	23.42	8416	6.55	8.38	16.82	-0.40	7231.42	
01/22/98	9:30 AM	-4	23.28	8419	6.55	8.38	16.67	-0.15	7231.27	
01/28/98	8:30 AM	-2	23.3	8419	6.55	8.38	16.67	0.00	7231.27	
02/03/98	1:00 PM	4	23.06	8422	6.55	8.38	16,52	-0.15	7231.12	
02/12/98	11:30 AM	1	23.35	8391	6.54	8.41	18.07	1.55	7232.67	
02/20/98	9:00 AM	-1	23.13	8363	6.55	8.38	19.47	1.40	7234.07	
03/25/98	9:00 AM	10	23.08	8386	6.49	8.58	18.31	-1.16	7232.91	
04/02/98	12:40 PM	6	23.3	8321	6,54	8.41	21.57	3.26	7236.17	
04/08/98	11:00 AM	4	23.32	8350	6.55	8.38	20.12	-1.45	7234.72	<u> </u>
04/15/98	10:30 AM	0	23.02	8322	6.54	8.41	21.52	1.40	7236.12	
04/22/98	9:30 AM	11	23.46	8316	6.54	8.41	21.82	0.30	7236.42	
04/29/98	11:00 AM	15	23.42	8313	6.54	8.41	21.97	0.15	7236.57	-
05/07/98	9:00 AM	6	23,26	8323	6.54	8.41	21.47	-0.50	7236.07	
05/13/98	9:30 PM	10	23	8335	6.54	8.41	20.87	-0.60	7235.47	
05/20/98	9:00 AM	15	23.28	8342	6.54	8.41	20.52	-0.35	7235.12	
05/27/98	8:30 AM	5	23.25	8349	6.54	8.41	20.17	-0.35	7234,77	
06/03/98	11:00 AM	16	23.19	8351	6.54	8.41	20.07	-0.10	7234,67	
06/10/98	11:00 AM	10	23.29	8341	6.54	8.41	20.57	0.50	7235.17	
06/17/98	1:00 PM	6	23.35	8321	6.54	8.41	21.57	1.00	7236.17	
06/24/98	11:00 AM	18	23.28	8329	6.54	8.41	21.17	-0.40	7235.77	
07/01/98	10:00 AM	24	23.4	8319	6.54	8.41	21.67	0.50	7236.27	
07/08/98	8:00 AM	15	23.46	8329	6.54	8.41	21.17	-0.50	7235.77	
07/15/98	8:00 AM	17	23.5	8318	6.54	8.41	21.72	0.55	7236.32	
07/22/98	8:00AM	16	23.4	8319	6.54	8.41	21.67	-0.05	7236.27	
07/29/98	8:00 AM	14	23.43	8318	6.54	8.41	21.72	0.05	7236.32	
08/12/98	9:00 AM	16	23.58	8337	6.54	8.41	20.77	-0.95	7235.37	
08/19/98	11:00 AM	20	23.45	8338	6.54	8.41	20.72	-0.05	7235.32	
08/31/98	9:00 AM	22	23.44	8360	6.54	8.41	19.62	-1.10	7234.22	
09/11/98	10:00 AM	15	23.48	8375	6.54	8.41	18.87	-0.75	7233.47	
09/16/98	11:00 AM	23	23.42	8360	6.54	8.41	19.62	0.75	7234.22	
09/22/98	9:00 AM	17	23.38	8386	6.54	8.41	18.32	-1.30	7232.92	
09/30/98	10:00 AM	16	23.32	8391	6.54	8.41	18.07	-0,25	7232.67	
10/07/98	9:00 AM	6	23,46	8395	6.54	8.41	17.87	-0.20	7232.47	
10/14/98	8:30 AM	5	23.32	8399	6.54	8.41	17.67	-0.20	7232.27	
10/26/98	7;30 AM	6	23.7	8400	6.54	8.41	17.62	-0.05	7232.22	
10/30/98	9:00 AM	3	23.8	8410	6.54	8.41	17.12	-0.50	7231.72	
										Broken wire during tailings reclamation
12/30/98	9:00AM	Ö	23,49	8393	6.55	8.38	17.97	17.97	7232.57	<u> </u>
1/7/99	12:10PM	6.7		8429	6.54	8.41	16.17	-1.80	7230.77	
02/06/99	9:30AM	5		8431	6.53	8.44	16.07	-0.10	7230.67	<u> </u>
03/06/99	11:00AM	5		8422	6.52	8.48	16.52	0.45	7231.12	
05/06/99	2:30PM	15.6		8398	6.15	9.75	17.67	1.15	7232.27	<u> </u>
07/26/99	1:00PM	t		8398	6.52	8.48	17.72	0.05	7232.32	†"·

PIEZO #: 29
Twinned with Piezometer # 30
SCREEN TYPE: Johnson 8 Slot, 40 X 60 pack
TRANSDUCER DEPTH: 164 ft. (Comparative)

STANDPIPE ELEV: 7298.32
COLLAR ELEV: 7294.74
DEPTH TO TOP OF SCREEN: 159.00
SCREEN LENGTH: 10.00
STANDPIPE DIAMETER: 1.5 INCHES

		DEPTH TO	WATER	EFFECTIVE PRESSURE	COMPARATIVE PRESSURE		
DATE	TIME	WATER (FT)	ELEVATION	(FT H2O)	(FT H2O)	CHANGE	REMARKS
12/30/97	9:00 AM	92.37	7205.95	76.63	75.21	-0.42	
01/07/98	9:00 AM	92.82	7205.50	76.18	74.76	-0.45	
01/14/98	9:00 AM	93,61	7204.71	75.39	73.97	-0.79	
01/22/98	9:30 AM	93.80	7204.52	75.20	73,78	-0.19	
01/28/98	8:30 AM	92.82	7205.50	76.18	74.76	0.98	-
02/03/98	1:00 PM	93.75	7204.57	75.25	73.83	-0.93	
02/12/98	11:30 AM	92.88	7205.44	76.12	74.70	0.87	
02/20/98	9:00 AM	91.94	7206.38	77.06	75.64	0.94	
03/25/98	9:00 AM	91.02	7207.30	77.98	76.56	0.92	
04/02/98	12:40 PM	91.48	7206.84	77.52	76,10	-0.46	
04/08/98	11:00 AM	91.50	7206.82	77.50	76.08	-0.02	
04/15/98	10:30 AM	91.87	7206.45	77.13	75.71	-0.37	
04/22/98	9:30 AM	92.16	7206.16	76.84	75.42	-0.29	
04/29/98	11:00 AM	91.92	7206.40	77.08	75.66	0.24	
05/07/98	9:00 AM	91.82	7206.50	77.18	75.76	0.10	
05/13/98	9:30 PM	91.87	7206.45	77.13	75.71	-0.05	
05/20/98	9:00 AM	92.82	7205.50	76.18	74.76	-0.95	
05/27/98	8:30 AM	92.98	7205.34	76.02	74.60	-0.16	· · · · · · · · · · · · · · · · · · ·
06/03/98	11:00 AM	92.86	7205.46	76.14	74.72	0.12	
06/10/98	11:00 AM	92.90	7205.42	76.10	74.68	-0.04	
06/17/98	1:00 PM	92.90	7205.42	76.10	74.68	0.00	
06/24/98	11:00 AM	92.95	7205.37	76.05	74.63	-0.05	
07/01/98	10:00 AM	93.35	7204.97	75.65	74.23	-0.40	
07/08/98	8:00 AM	93.40	7204.92	75,60	74.18	-0.05	
07/15/98	8:00 AM	93.97	7204.35	75.03	73.61	-0.57	
07/22/98	8:00AM	93.33	7204.99	75.67	74.25	0.64	
07/29/98	8:00 AM	93.40	7204.92	75.60	74.18	-0.07	
08/12/98	9:00 AM	95.20	7203.12	73.80	72.38	-1.80	
08/19/98	11:00 AM	93.98	7204.34	75.02	73.60	1.22	
08/31/98	9:00 AM	95.95	7202.37	73.05	71.63	-1.97	
09/11/98	10:00 AM	95.30	7203.02	73.70	72.28	0.65	
09/16/98	11:00 AM	97.18	7201.14	71.82	70.40	-1.88	
09/22/98	9:00 AM	97.20	7201.12	71.80	70.38	-0.02	
09/30/98	10:00 AM	97.98	7200.34	71.02	69.60	-0.78	
10/07/98	9:00 AM	98.25	7200.07	70.75	69.33	-0.27	
10/14/98	8:30 AM	98.36	7199.96	70.64	69.22	-0.11	
10/26/98	7:30 AM	98.60	7199.72	70.40	68.98	-0.24	
10/30/98	9:00 AM	98.85	7199.47	70.15	68.73	-0.25	
11/05/98	9:30 AM	98.81	7199.51	70.19	68.77	0.04	
11/18/98	10:00 AM	99.23	7199.09	69.77	68.35	-0.42	
12/30/98	9:00AM	92.37	66.63	76.63	-7064.11	6.86	
1/7/99	12:10PM	100	7335.50	69.00	204.76	-7.63	
02/06/99	9:30AM	103.40	7336.05	65.60	205,31	-3.40	
03/06/99	11:00AM	101.80	7335.82	67.20	205.08	1.60	
05/06/99	2:30PM	108.30	7336.21	60.70	205.47	-6.50	
07/26/99	1:00PM	113.22		55.78	-7130.74	-4.92	

PIEZO #: 30 SERIAL #: 19975

RO: 8663.00 TO: 21.00 deg. C C: 0.02226

K: -0.0111

BAROM. 31.57 " Hg GE: 7130.7

DATE	TIME	TEMP. C	BAROM.	R1 POS B	THERM.	T1	Pore Pressure (FT H2O)	CHANGE	Piezometric Surface	REMARKS
12/30/97	9:00 AM	0	23,49	7401	6.49	8.58	65.13	-0.05	7195.83	
01/07/98	9:00 AM	-4	23.26	7416	6.49	8.58	64.36	-0.77	7195.06	
01/14/98	9:00 AM	-7	23.42	7427	6.49	8.58	63.79	-0.56	7194.49	
01/22/98	9:30 AM	-4	23.28	7428	6.49	8.58	63.74	-0.05	7194.44	
01/28/98	8:30 AM	-2	23.3	7433	6.49	8.58	63.48	-0.26	7194.18	
02/03/98	1:00 PM	4	23.06	7437	6.49	8.58	63.28	-0.21	7193.98	1
02/12/98	11:30 AM	1	23.35	7414	6.49	8.58	64.46	1.18	7195.16	
02/20/98	9:00 AM	-1	23.13	7401	6.49	8.58	65.13	0.67	7195.83	
03/25/98	9:00 AM	10	23.08	7346	6.59	8.25	67.96	2.83	7198.66	<u> </u>
04/02/98	12:40 PM	6	23.3	7391	6.49	8.58	65.64	-2.32	7196,34	
04/08/98	11:00 AM	4	23.32	7401	6.49	8.58	65.13	-0.51	7195,83	
04/15/98	10:30 AM	0	23.02	7403	6.49	8.58	65.02	-0.10	7195.72	
04/22/98	9:30 AM	11	23.46	7399	6.49	8.58	65.23	0.21	7195.93	1
04/29/98	11:00 AM	15	23.42	7396	6.48	8.61	65.38	0.15	7196.08	
05/07/98	9:00 AM	6	23.26	7396	6.49	8.58	65.38	0.00	7196.08	
05/13/98	9:30 PM	10	23	7408	6.49	8.58	64.77	-0.62	7195,47	-
05/20/98	9:00 AM	15	23.28	7417	6.49	8.58	64.30	-0.46	7195,00	1
05/27/98	8:30 AM	5	23.25	7420	6.49	8.58	64.15	-0.15	7194.85	· · · · · · · · · · · · · · · · · · ·
06/03/98	11:00 AM	16	23.19	7419	6.49	8,58	64.20	0.05	7194.90	
06/10/98	11:00 AM	10	23.29	7422	6.49	8.58	64.05	-0.15	7194.75	
06/17/98	1:00 PM	6	23.35	7390	6.49	8.58	65.69	1.64	7196.39	
06/24/98	11:00 AM	18	23.28	7420	6.49	8,58	64.15	-1.54	7194.85	
07/01/98	10:00 AM	24	23.4	7424	6.49	8.58	63.95	-0.21	7194.65	<u> </u>
07/08/98	8:00 AM	15	23,46	7420	6.49	8.58	64.15	0.21	7194.85	
07/15/98	8:00 AM	17	23.5	7434	6.49	8.58	63,43	-0.72	7194.13	
07/22/98	8:00AM	16	23.4	7436	6.49	8.58	63,33	-0.10	7194.03	
07/29/98	8:00 AM	14	23,43	7442	6.49	8.58	63.02	-0.31	7193.72	-
08/12/98	9:00 AM	16	23,58	7455	6.5	8.54	62.35	-0.67	7193.05	
08/19/98	11:00 AM	20	23.45	7450	6.5	8.54	62.61	0.26	7193.31	
08/31/98	9:00 AM	22	23,44	7450	6.5	8.54	62.61	0.00	7193.31	
09/11/98	10:00 AM	15	23,48	7473	6.5	8.54	61.43	-1.18	7192.13	
09/16/98	11:00 AM	23	23.42	7486	6.51	8.51	60.76	-0.67	7191.46	· · · · · · · · · · · · · · · · · · ·
09/22/98	9:00 AM	17	23.38	7485	6.5	8.54	60.81	0.05	7191.51	
09/30/98	10:00 AM	16	23.32	7507	6.51	8.51	59.68	-1.13	7190.38	
10/07/98	9:00 AM	6	23,46	7516	6.51	8.51	59.22	-0.46	7189.92	
10/14/98	8:30 AM	5	23.32	7527	6.51	8.51	58.66	-0.56	7189.36	
10/26/98	7:30 AM	6	23.7	7529	6.52	8.48	58.56	-0.10	7189.26	
10/30/98	9:00 AM	3	23.8	7536	6.51	8.51	58.20	-0.36	7188.90	
				1						Broken wire during tailings reclamation
1/7/99	12:10PM	6.7		7564	6.53	8.44	56.76	56.76	7187.46	
02/06/99	9:30AM	5		7623	6.53	8.44	53.73	-3.03	7184.43	
03/06/99	11:00AM	5		7670	6.53	8.44	51.32	-2.41	7182.02	
05/06/99	2:30PM	15.6		7713	6.51	8.51	49.11	-2.21	7179.81	
07/26/99	1:00PM	t		7807	6.5	8.54	44.28	-4.83	7174.98	

PIEZO #: 31 SERIAL #: 19976 RO: 8891.00 TO: 21.00 deg. C C: 0.02393

K: -0.0168 BAROM. 31.57 " Hg

GE: 7200.1

							Pore			
		TEMP.					Pressure		Piezometric	
DATE	TIME	С	BAROM.	R1 POS B	THERM.	T1	(FT H2O)	CHANGE	Surface	REMARKS
2/30/97	9:00 AM	0	23.49	8416	6.60	8.21	26.72	-0.39	7226.82	
1/07/98	9:00 AM	-4	23.26	8428	6.6	8.21	26.06	-0.66	7226.16	
1/14/98	9:00 AM	-7	23.42	8437	6.59	8.25	25.56	-0.50	7225.66	
1/22/98	9:30 AM	-4	23.28	8442	6.60	8.21	25.28	-0.27	7225.38	
1/28/98	8:30 AM	-2	23.3	8443	6.60	8.21	25.23	-0.06	7225.33	
2/03/98	1:00 PM	4	23.06	8445	6.60	8.21	25.12	-0.11	7225.22	
2/12/98	11:30 AM	1	23.35	8421	6.59	8.25	26.44	1.32	7226.54	
2/20/98	9:00 AM	-1	23.13	8394	6.59	8.25	27.93	1.49	7228.03	
3/25/98	9:00 AM	10	23.08	8350	6.59	8.25	30.36	2.43	7230.46	
4/02/98	12:40 PM	6	23,3	8344	6.59	8.25	30.69	0.33	7230.79	
4/08/98	11:00 AM	4	23.32	8394	6.59	8.25	27.93	-2.76	7228.03	
4/15/98	10:30 AM	0	23.02	8344	6.59	8.25	30.69	2.76	7230.79	
4/22/98	9:30 AM	11	23.46	8339	6.59	8.25	30.97	0.28	7231.07	
4/29/98	11:00 AM	15	23.42	8337	6.59	8.25	31.08	0.11	7231.18	
5/07/98	9:00 AM	6	23.26	8345	6.59	8.25	30.64	-0.44	7230.74	
)5/13/98	9:30 PM	10	23	8357	6.60	8.21	29.98	-0.66	7230.08	
5/20/98	9:00 AM	15	23.28	8364	6.60	8.21	29.59	-0.39	7229.69	
5/27/98	8:30 AM	5	23.25	8372	6.60	8.21	29.15	-0.44	7229.25	
6/03/98	11:00 AM	16	23.19	8373	6.60	8.21	29.09	-0.06	7229.19	
6/10/98	11:00 AM	10	23.29	8365	6.60	8.21	29.53	0.44	7229.63	
06/17/98	1:00 PM	6	23.35	8344	6.59	8.25	30.69	1.16	7230.79	
06/24/98	11:00 AM	18	23.28	8352	6.60	8.21	30.25	-0.44	7230.35	
07/01/98	10:00 AM	24	23.4	8343	6.60	8.21	30.75	0.50	7230.85	
7/08/98	8:00 AM	15	23.46	8352	6.60	8.21	30.25	-0.50	7230.35	
7/15/98	8:00 AM	17	23.5	8341	6.60	8.21	30.86	0.61	7230.96	
07/22/98	8:00AM	16	23.4	8342	6.60	8.21	30.80	-0.06	7230.90	
7/29/98	8:00 AM	14	23.43	8341	6.60	8.21	30.86	0.06	7230.96	
08/12/98	9:00 AM	16	23.58	8363	6.61	8.18	29.65	-1.21	7229.75	
08/19/98	11:00 AM	20	23.45	8363	6.61	8.18	29.65	0.00	7229.75	
08/31/98	9:00 AM	22	23.44	8385	6.61	8.18	28.43	-1.21	7228.53	F
09/11/98	10:00 AM	15	23.48	8400	6.61	8.18	27.60	-0.83	7227.70	
09/16/98	11:00 AM	23	23.42	8364	6.61	8.18	29.59	1.99	7229.69	
9/22/98	9:00 AM	17	23.38	8411	6.61	8.18	27.00	-2.59	7227.10	
9/30/98	10:00 AM	16	23.32	8446	6.61	8.18	25.06	-1.93	7225.16	
0/07/98	9:00 AM	6	23.46	8422	6.61	8.18	26.39	1.32	7226.49	
0/14/98	8:30 AM	5	23,32	8427	6.61	8.18	26.11	-0.28	7226.21	
0/26/98	7:30 AM	6	23.7	8434	6.61	8.18	25.73	-0.39	7225.83	
10/30/98	9:00 AM	3	23.8	8437	6.61	8.18	25.56	-0.17	7225.66	
										Broken wire during tailin reclamation
2/30/98	9:00AM	0	23.49	8416	6.61	8.18	26.72	26.72	7226.82	
1/7/99	12:10PM	6.7		8454	6.61	8.18	24.62	-2.10	7224.72	
02/06/99	9:30AM	5	Ĭ	8453	6.60	8.21	24.68	0.05	7224.78	
03/06/99	11:00AM	5		8444	6.59	8.25	25.17	0.50	7225.27	
05/06/99	2:30PM	15.6		8419	6.57	8.31	26.55	1.38	7226.65	
07/26/99	1:00PM		Ţ	8419	6.58	8.28	26.55	0.00	7226.65	T

PIEZO #: 32 SERIAL #: 19979 RO: 8657.00 TO: 21.00 deg. C C: 0.02118 K: -0.02118

K: -0.02... BAROM. 31.57 " Hg GE: 7030.8

							Pore		_	
		TEMP.					Pressure		Piezometric	BE141-0/2
DATE	TIME	С	BAROM.	R1 POS B	THERM.	T1	(FT H2O)	CHANGE	Surface	REMARKS
40/00/07	0.00 414		00.40	0046		44.00	7.00	0.20	7000 60	
12/30/97	9:00 AM	0	23.49	8816	5.8 5.8	11.02 11.02	-7.28 -7.53	0.30 -0.24	7023.52 7023.27	
01/07/98	9:00 AM	-4	23.26	8821		11.06		0.05	7023.27	
01/14/98	9:00 AM 9:30 AM	-7 4	23,42	8820 8822	5.79 5.79	11.06	-7.48 -7.58	-0.10	7023.32	
01/28/98	8:30 AM	-4 -2	23.26	882Ô	5.79	11.06	-7.48	0.10	7023.22	
02/03/98	1:00 PM	4	23.06	8825	5.79	11.06	-7.72	-0.24	7023.32	
02/12/98	11:30 AM	1	23.06	8820	5.79	11.40	-7.12 -7.50	0.23	7023.00	
02/20/98	9:00 AM	-1	23,13	8824	5.87	10.76	-7.66	-0.16	7023.30	· · · · · · · · · · · · · · · · · · ·
03/25/98	9:00 AM	10	23.13	8825	5.8	11.02	-7.72	-0.06	7023.14	
04/02/98	12:40 PM	6	23.3	8825	5.8	11.02	-7.72	0.00	7023.08	
04/02/98	11:00 AM	4	23,32	8884	5.8	11.02	-10.60	-2.88	7020.20	
04/15/98	10:30 AM	0	23.02	8827	5.8	11.02	-7.82	2.79	7022.98	
04/22/98	9:30 AM	11	23.46	8817	5.8	11.02	-7.33	0.49	7023.47	
04/29/98	11:00 AM	15	23.42	8818	5.8	11.02	-7.38	-0.05	7023.42	-
05/07/98	9:00 AM	6	23.26	8821	5.8	11.02	-7.53	-0.05	7023.27	
05/13/98	9:30 PM	10	23	8827	5.8	11.02	-7.82	-0.29	7022.98	
05/20/98	9:00 AM	15	23.28	8820	5.8	11.02	-7.48	0.34	7023.32	
05/27/98	8:30 AM	5	23,25	8823	5.8	11.02	-7.62	-0.15	7023.18	· · · · · · · · · · · · · · · · · · ·
06/03/98	11:00 AM	16	23,19	8823	5.8	11.02	-7.62	0.00	7023.18	
06/10/98	11:00 AM	10	23.29	8822	5.8	11.02	-7.57	0.05	7023.23	
06/17/98	1:00 PM	6	23.35	8825	5.8	11.02	-7.72	-0.15	7023.08	
06/24/98	11:00 AM	18	23.28	8821	5.8	11.02	-7.53	0.20	7023.27	
07/01/98	10:00 AM	24	23.4	8819	5.8	11.02	-7.43	0.10	7023.37	
07/08/98	8:00 AM	15	23.46	8820	5.8	11.02	-7.48	-0.05	7023.32	· · · · · · · · · · · · · · · · · · ·
07/15/98	8:00 AM	17	23.5	8816	5.8	11.02	-7.28	0.20	7023.52	
07/22/98	8:00AM	16	23.4	8817	5.8	11.02	-7.33	-0.05	7023.47	
07/29/98	8:00 AM	14	23.43	8817	5.81	11.02	-7.33	0.00	7023.47	
08/12/98	9:00 AM	16	23.58	8814	5.81	5.81	-6.93	0.40	7023.87	
08/19/98	11:00 AM	20	23.45	8816	5.81	10.98	-7.28	-0.35	7023.52	
08/31/98	9:00 AM	22	23.44	8817	5.81	10.98	-7.33	-0.05	7023.47	
09/11/98	10:00 AM	15	23.48	8818	5.81	10.98	-7.38	-0.05	7023.42	
09/16/98	11:00 AM	23	23.42	8818	5.81	10.98	-7.38	0.00	7023.42	
09/22/98	9:00 AM	17	23.38	8819	5.81	10.98	-7.43	-0.05	7023.37	
09/30/98	10:00 AM	16	23.32	8821	5.81	10.98	-7.52	-0.10	7023.28	
10/07/98	9:00 AM	6	23.46	8817	5.81	10.98	-7.33	0.20	7023.47	
10/14/98	8:30 AM	5	23.32	8821	5.81	10.98	-7.52	-0.20	7023.28	
10/26/98	7:30 AM	6	23.7	8822	5.81	10.98	-7.57	-0.05	7023.23	
10/30/98	9:00 AM	3	23.8	8823	5.81	10.98	-7.62	-0.05	7023.18	
11/05/98	9:30 AM			8823	5.81	10.98	-7.62	0.00	7023.18	
11/13/98	10:00 AM	4	23.4	8816	5.81	10.98	-7.28	0.34	7023.52	
11/18/98	10:00 AM	0	23.4	8821	5.81	10.98	-7.52	-0.24	7023.28	
12/30/98	9:00AM	0	23.49	8816	5.8	11.02	-7.28	0.24	7023.52	
1/7/99	12:10PM	6.7		8822	5.81	10.98	-7.57	-0.29	7023.23	
02/06/99	9:30AM	5		8822	5.82	10.94	-7.57	0.00	7023.23	
03/06/99	11:00AM	5		8826	5.82	10.94	-7.77	-0.20	7023.03	
05/06/99	2:30PM	15.6		8819	5.82	10.94	-7.42	0.34	7023.38	
07/26/99	1:00PM		1	8817	5.83	10.91	-7.32	0.10	7023.48	

PIEZO #: 33

STANDPIPE ELEV: 7257.05 COLLAR ELEV: 7252.78

Twinned with Piezometer #32

7252.78 212.00

SCREEN TYPE: Johnson 8 Stot, 40 X 60 pack TRANSDUCER DEPTH: 217 ft. (Comparative)

DEPTH TO TOP OF SCREEN: 2
SCREEN LENGTH:

SCREEN LENGTH: 10.00 STANDPIPE DIAMETER: 1.5 INCHES

		DEPTH TO	WATER	EFFECTIVE PRESSURE	COMPARATIVE PRESSURE		
DATE	TIME	WATER (FT)	ELEVATION	(FT H2O)	(FT H2O)	CHANGE	REMARKS
12/30/97	9:00 AM	222	7035.05	0.00	-0.73	0.00	
01/07/98	9:00 AM	222	7035.05	0.00	-0.73	0.00	
01/14/98	9:00 AM	222	7035.05	0.00	-0.73	0.00	
01/22/98	9:30 AM	222	7035.05	0.00	-0.73	0.00	
01/28/98	8:30 AM	222	7035.05	0.00	-0.73	0.00	
02/03/98	1:00 PM	222	7035.05	0.00	-0.73	0.00	
02/12/98	11:30 AM	222	7035.05	0.00	-0.73	0.00	
02/20/98	9:00 AM	222	7035.05	0.00	-0.73	0.00	
03/25/98	9:00 AM	222	7035.05	0.00	-0.73	0.00	
04/02/98	12:40 PM	222	7035.05	0.00	-0.73	0.00	
04/08/98	11:00 AM	222	7035.05	0.00	-0.73	0.00	
04/15/98	10:30 AM	222	7035.05	0.00	-0.73	0.00	
04/22/98	9:30 AM	222	7035.05	0.00	-0.73	0.00	****
04/29/98	11:00 AM	222	7035.05	0.00	-0.73	0.00	
05/07/98	9:00 AM	222	7035.05	0.00	-0.73	0.00	
05/13/98	9:30 PM	222	7035.05	0.00	-0.73	0.00	
05/20/98	9:00 AM	222	7035.05	0.00	-0.73	0.00	
05/27/98	8:30 AM	222	7035.05	0.00	-0.73	0.00	
06/03/98	11:00 AM	222	7035.05	0.00	-0.73	0.00	
06/10/98	11:00 AM	222	7035.05	0.00	-0.73	0.00	·4
06/17/98	1:00 PM	222	7035.05	0.00	-0.73	0.00	
06/24/98	11:00 AM	222	7035.05	0.00	-0.73	0.00	
07/01/98	10:00 AM	222	7035.05	0.00	-0.73	0.00	
07/08/98	8:00 AM	222	7035.05	0.00	-0.73	0.00	
07/15/98	8:00 AM	222	7035.05	0.00	-0.73	0.00	
07/22/98	8:00AM	222	7035.05	0.00	-0.73	0.00	
07/29/98	8:00 AM	222	7035.05	0.00	-0.73	0.00	
08/12/98	9:00 AM	222	7035.05	0.00	-0.73	0.00	
08/19/98	11:00 AM	222	7035.05	0.00	-0.73	0.00	
08/31/98	9:00 AM	222	7035.05	0.00	-0.73	0.00	
09/11/98	10:00 AM	222	7035.05	0.00	-0.73	0.00	
09/16/98	11:00 AM	222	7035.05	0.00	-0.73	0.00	
09/22/98	9:00 AM	222	7035.05	0.00	-0.73	0.00	
09/30/98	10:00 AM	222	7035.05	0.00	-0.73	0.00	
12/30/98	9:00AM	222	-10.00	0.00	-7045.78	0.00	

PIEZO #: 34 SERIAL #: 10897 RO: 9757.00 TO: 19.00 deg. C C: 0.02168

K: -0.0304

BAROM. 31.57 " Hg

GE: 7122.7

							Pore			
		TEMP.					Pressure		Piezometric	
DATE	TIME	С	BAROM.	R1 POS B	THERM.	T1	(FT H2O)	CHANGE	Surface	REMARKS
12/30/97	9:00 AM	0	23.49	9928	5.62	11.70	-8.04	0.35	7114.66	
01/07/98	9:00 AM	-4	23.26	9934	5.62	11.70	-8.34	-0.30	7114.36	
01/14/98	9:00 AM	-7	23.42	9932	5.62	11.70	8.24	0.10	7114.46	
01/22/98	9:30 AM	-4	23.28	9945	5.62	11.70	-8.89	-0.65	7113.81	
01/28/98	8:30 AM	-2	23.3	9933	5.63	11.66	-8.29	0.60	7114.41	
02/03/98	1:00 PM	4	23.06	9938	5.63	11.66	-8.54	-0.25	7114.16	
02/12/98	11:30 AM	1	23.35	9933	5.63	11.66	-8.29	0.25	7114.41	
02/20/98	9:00 AM	-1	23.13	9938	5.64	11.63	-8.54	-0.25	7114.16	
03/25/98	9:00 AM	10	23.08	9939	5.63	11.66	-8.59	-0.05	7114.11	
04/02/98	12:40 PM	6	23.3	9938	5.64	11.63	-8.54	0.05	7114.16	
04/08/98	11:00 AM	4	23.32	9938	5.64	11.63	-8.54	0.00	7114.16	
04/15/98	10:30 AM	0	23.02	9941	5.63	11.66	-8.69	-0.15	7114.01	
04/22/98	9:30 AM	11	23.46	9931	5.64	11.63	-8.19	0.50	7114.51	
04/29/98	11:00 AM	15	23.42	9932	5.66	11.55	-8.23	-0.04	7114.47	
05/07/98	9:00 AM	6	23.26	9935	5.64	11.63	-8.39	-0.16	7114.31	
05/13/98	9:30 PM	10	23	9941	5.61	11.74	-8.69	-0.31	7114.01	****
05/20/98	9:00 AM	15	23,28	9935	5.64	11.63	-8.39	0.31	7114.31	
05/27/98	8:30 AM	5	23.25	9935	5.64	11.63	-8.39	0.00	7114.31	
06/03/98	11:00 AM	16	23.19	9936	5.64	11.63	-8.44	-0.05	7114.26	
06/10/98	11:00 AM	10	23.29	9935	5.63	11.66	-8.39	0.05	7114.31	
06/17/98	1:00 PM	6	23.35	9937	5.63	11.66	-8.49	-0.10	7114.21	
06/24/98	11:00 AM	18	23.28	9935	5.64	11.63	-8.39	0.10	7114.31	
07/01/98	10:00 AM	24	23.4	9933	5.65	11.59	-8.28	0.10	7114.42	
07/08/98	8:00 AM	15	23.46	9936	5.64	11.63	-8.44	-0.15	7114.26	
07/15/98	8:00 AM	17	23.5	9929	5.65	11.59	-8.08	0.35	7114.62	
07/22/98	8:00AM	16	23.4	9931	5.65	11.59	-8.18	-0.10	7114.52	
07/29/98	8:00 AM	14	23.43	9931	5.65	11.59	-8.18	0.00	7114.52	
08/12/98	9:00 AM	16	23.58	9928	5.65	11.59	-8.03	0.15	7114.67	
08/19/98	11:00 AM	20	23.45	9930	5.65	11.59	-8.13	-0.10	7114,57	
08/31/98	9:00 AM	22	23.44	9931	5.65	11.59	-8.18	-0.05	7114.52	
09/11/98	10:00 AM	15	23.48	9933	5.65	11.59	-8.28	-0.10	7114.42	
09/16/98	11:00 AM	23	23.42	9930	5.65	11.59	-8.13	0,15	7114.57	
09/22/98	9:00 AM	17	23.38	9934	5.65	11.59	-8.33	-0.20	7114.37	
09/30/98	10:00 AM	16	23.32	9935	5.65	11.59	-8.38	-0.05	7114.32	
10/07/98	9:00 AM	6	23.46	9932	5.65	11.59	-8.23	0.15	7114,47	
10/14/98	8:30 AM	5	23.32	9936	5.65	11.59	-8.43	-0.20	7114.27	
10/26/98	7:30 AM	6	23.7	9936	5.66	11.55	-8.43	0.00	7114.27	
10/30/98	9:00 AM	3	23.8	9938	5.65	11.59	-8.53	-0.10	7114.17	
11/05/98	9:30 AM	0	0	9937	5.65	11.59	-8.48	0.05	7114.22	
11/13/98	10:00 AM	4	23.4	9931	5.66	11.55	-8.18	0.30	7114.52	
11/18/98	10:00 AM	0	23.4	9936	5.66	11.55	-8.43	-0.25	7114.27	
1/7/99	12:10PM	6.7		9937	5.66	11.55	-8.48	-0.05	7114.22	
02/06/99	9:30AM	5		9937	5.66	11.55	-8.48	0.00	7114.22	
03/06/99	11:00AM	5	•	9942	5.67	11.51	-8.73	-0.25	7113.97	
05/06/99	2:30PM	15.6]	9935	5.68	11.47	-8.37	0.35	7114.33	
07/26/99	1:00PM			9935	5.69	11.43	-8.37	0.00	7114.33	

PIEZO #: 35
Twinned with Piezometer # 34

SCREEN TYPE: Johnson 8 Slot, 40 X 60 pack TRANSDUCER DEPTH: 130 ft. (Comparative)

STANDPIPE ELEV: 72
COLLAR ELEV: 72

7256.93 7252.66

DEPTH TO TOP OF SCREEN: SCREEN LENGTH: 125.50

SCREEN LENGTH: 10.00 STANDPIPE DIAMETER: 1.5 INCHES

		DEPTH TO	WATER	EFFECTIVE PRESSURE	COMPARATIVE PRESSURE		
DATE	TIME	WATER (FT)	ELEVATION	(FT H2O)	(FT H2O)	CHANGE	REMARKS
						<u> </u>	An Effective Pressure of
					1		0.00 ft H2O is indicative of
12/30/97	9:00 AM	135.50	7121.43	0.00	85.77	0.00	a dry standpipe
01/07/98	9:00 AM	135.50	7121.43	0.00	85.77	0.00	1
01/14/98	9:00 AM	135.5	7121.43	0	85.77	0.00	
01/22/98	9:30 AM	135.5	7121.43	0	85.77	0.00	
01/28/98	8:30 AM	135.50	7121.43	0.00	85.77	0.00	
02/03/98	1:00 PM	135.5	7121.43	0.00	85.77	0.00	· · · · · · · · · · · · · · · · · · ·
			7121.43	0.00	85.77	0.00	
02/12/98	11:30 AM	135.5					
02/20/98	9:00 AM	135.5	7121.43	0.00	85.77	0.00	
03/25/98	9:00 AM	135.5	7121.43	0.00	85.77	0.00	
04/02/98	12:40 PM	135.5	7121.43	0.00	85.77	0.00	
04/08/98	11:00 AM	135.5	7121.43	0.00	85.77	0.00	
04/15/98	10:30 AM	135.5	7121.43	0.00	85.77	0.00	
04/22/98	9:30 AM	135.5	7121.43	0.00	85.77	0.00	
04/29/98	11:00 AM	135.5	7121.43	0.00	85.77	0.00	
05/07/98	9:00 AM	135.5	7121.43	0.00	85.77	0.00	
05/13/98	9:30 PM	135.5	7121.43	0.00	85.77	0.00	
05/20/98	9:00 AM	135.5	7121.43	0.00	85.77	0.00	
05/27/98	8:30 AM	135,5	7121.43	0.00	85.77	0.00	
06/03/98	11:00 AM	135.5	7121.43	0.00	85.77	0.00	
06/10/98	11:00 AM	135.5	7121.43	0.00	85.77	0.00	<u> </u>
06/17/98	1:00 PM	135.5	7121.43	0.00	85.77	0.00	
06/24/98	11:00 AM	135.5	7121.43	0.00	85.77	0.00	
07/01/98	10:00 AM	135.5	7121.43	0.00	85.77	0.00	
07/08/98	8:00 AM	135.5	7121.43	0.00	85.77	0.00	
07/15/98	8:00 AM	135.5	7121.43	0.00	85.77	0.00	<u></u>
07/22/98	8:00AM	135.5	7121.43	0.00	85.77	0.00	
07/29/98	8:00 AM	135.5	7121.43	0.00	85.77	0.00	
08/12/98	9:00 AM	135.5	7121.43	0.00	85.77	0.00	
08/19/98	11:00 AM	135.5	7121.43	0.00	85.77 85.77	0.00	
08/31/98	9:00 AM	135.5	7121.43	0.00	85.77 85.77	0.00	
09/11/98	10:00 AM	135.5	7121.43				-
09/16/98 09/22/98	11:00 AM	135.5 135.5	7121.43 7121.43	0.00	85.77 85.77	0.00	
09/22/98	9:00 AM 10:00 AM	135.5	7121.43	0.00	85.77	0.00	
09/30/96	10:00 AM	135.5	/121.43	0.00	03.11	0.00	An Effective Dransuss of
12/30/ 9 8	9:00AM	135.50	-10.00	0.00	197.00	0.00	An Effective Pressure of 0.00 ft H2O is indicative a dry standpipe

PIEZO #: 36 SERIAL #: 19978 RO: 8582.00

TO: 21.00 deg. C

C: 0.02204

K: -0.00661 BAROM. 31.57 " Hg

GE: 6963.8

		TEMP.					Pore Pressure		Piezometric	
DATE	TIME	С	BAROM.	R1 POS B	THERM.	T1	(FT H2O)	CHANGE	Surface	REMARKS
2/30/97	9:00 AM	0	23.49	8724	6.06	10.07	-7.05	0.31	6956.75	
01/07/98	9:00 AM	-4	23.26	8729	6.09	9.96	-7.31	-0.25	6956.49	
01/14/98	9:00 AM	-7	23.42	8726	6.06	10.07	-7.16	0.15	6956.64	· · · · · · · · · · · · · · · · · · ·
01/22/98	9:30 AM	-4	23.28	8729	6.06	10.07	-7.31	-0.15	6956.49	
01/28/98	8:30 AM	-2	23.3	8728	6.06	10.07	-7.26	0.05	6956.54	
02/03/98	1:00 PM	4	23.06	8733	6.06	10.07	-7.51	-0.25	6956.29	
02/12/98	11:30 AM	1	23.35	8728	6.05	10.10	-7.26	0.25	6956.54	
02/20/98	9:00 AM	-1	23.13	8732	6.06	10.07	-7.46	-0.20	6956.34	
03/25/98	9:00 AM	10	23.08	8733	6.06	10.07	-7.51	-0.05	6956.29	
04/02/98	12:40 PM	- 6	23.3	8732	6.06	10.07	-7.46	0.05	6956.34	- · · · · · · · · · · · · · · · · · · ·
04/08/98	11:00 AM	4	23.32	8733	6.06	10.07	-7.51	-0.05	6956.29	
04/15/98	10:30 AM	0	23.02	8735	6.06	10.07	-7.61	-0.10	6956.19	
04/22/98	9:30 AM	11	23.46	8724	6.06	10.07	-7.05	0.56	6956.75	
04/29/98	11:00 AM	15	23.42	8726	6.06	10.07	-7.16	-0.10	6956.64	
05/07/98	9:00 AM	6	23.26	8729	6.06	10.07	-7.31	-0.15	6956.49	
05/13/98	9:30 PM	10	23	8734	6.06	10.07	-7.56	-0.25	6956.24	
05/20/98	9:00 AM	15	23.28	8728	6.06	10.07	-7.26	0.31	6956.54	
05/27/98	8:30 AM	5	23.25	8729	6.02	10.21	-7.31	-0.05	6956.49	··· ···· ········
06/03/98	11:00 AM	16	23.19	8732	6.06	10.07	-7.46	-0.15	6956.34	
06/10/98	11:00 AM	10	23.29	8729	6.06	10.07	-7.31	0.15	6956.49	<u> </u>
06/17/98	1:00 PM	6	23.35	8733	6.06	10.07	-7.51	-0.20	6956.29	
06/24/98	11:00 AM	18	23.28	8729	6.06	10.07	-7.31	0.20	6956.49	,
07/01/98	10:00 AM	24	23.4	8727	6.06	10.07	-7.21	0.10	6956.59	
07/08/98	8:00 AM	15	23.46	8730	6.06	10.07	-7.36	-0.15	6956.44	
07/15/98	8:00 AM	17	23.5	8723	6.06	10.07	-7.00	0.36	6956.80	
07/22/98	8:00AM	16	23.4	8725	6.06	10.07	-7.10	-0.10	6956.70	
07/29/98	8:00 AM	14	23.43	8725	6.06	10.07	-7.10	0.00	6956.70	<u></u>
08/12/98	9:00 AM	16	23.58	8722	6.06	10.07	-6.95	0.15	6956.85	
08/19/98	11:00 AM	20	23.45	8725	6.06	10.07	-7.10	-0.15	6956.70	· · · · · · · · · · · · · · · · · · ·
08/31/98	9:00 AM	22	23.44	8724	6.06	10.07	-7.05	0.05	6956.75	
09/11/98	10:00 AM	15	23.48	8726	6.06	10.07	-7.16	-0.10	6956.64	
09/16/98	11:00 AM	23	23.42	8725	6.06	10.07	-7.10	0.05	6956.70	
09/22/98	9:00 AM	17	23.38	8727	6.06	10.07	-7.21	-0.10	6956.59	
09/30/98	10:00 AM	16	23.32	8728	6.06	10.07	-7.26	-0.05	6956.54	
10/07/98	9:00 AM	6	23.46	8725	6.06	10.07	-7.10	0.15	6956.70	
10/14/98	8:30 AM	5	23.32	8730	6.06	10.07	-7.36	-0.25	6956.44	
10/26/98	7:30 AM	6	23.7	8729	6.06	10.07	-7.31	0.05	6956.49	
10/30/98	9:00 AM	3	23.8	8731	6.06	10.07	-7.41	-0.10	6956.39	
11/05/98	9:30 AM			8731	6.06	10.07	-7.41	0.00	6956.39	
11/13/98	10:00 AM	4	23.4	8724	6.06	10.07	-7.05	0.36	6956.75	
11/18/98	10:00 AM	0	23.4	8729	6.06	10.07	-7.31	-0.25	6956.49	
1/7/99	12:10PM	6.7		8730	6.06	10.07	-7.36	-0.05	6956.44	· · · · · · · · · · · · · · · · · · ·
02/06/99	9:30AM	5	1	8729	6.06	10.07	-7.31	0.05	6956.49	
03/06/99	11:00AM	5		8734	6.06	10.07	-7.56	-0.25	6956.24	
05/06/99	2:30PM	15.6		8726	6.07	10.03	-7.15	0.41	6956.65	· · · · · · · · · · · · · · · · · · ·
07/26/99	1:00PM			8725	6.07	10.03	-7.10	0.05	6956.70	

PZO 37

PIEZO #: 37
Twinned with Piezometer # 36
SCREEN TYPE: Johnson 8 Siot, 40 X 60 pack
TRANSDUCER DEPTH: 289 ft. (Comparative)

STANDPIPE ELEV: 7256.93
COLLAR ELEV: 7252.83
DEPTH TO TOP OF SCREEN: 284.00
SCREEN LENGTH: 10.00
STANDPIPE DIAMETER: 1.5 INCHES

				EFFECTIVE			
		DEPTH TO	WATER	PRESSURE	COMPARATIVE PRESSURE		
DATE	TIME	WATER (FT)	ELEVATION	(FT H2O)	(FT H2O)	CHANGE	REMARKS
DATE	TIVE	**********		0,1,124)	(OTH WOL	TIEMPUNTO
12/30/97	9:00 AM	294	6962.93	0.00	-72.90	0.00	
01/07/98	9:00 AM	294.00	6962.93	0.00	-72.90	0.00	
01/14/98	9:00 AM	294	6962.93	0.00	-72.90	0.00	
01/22/98	9:30 AM	294	6962.93	0.00	-72.90	0.00	
01/28/98	8:30 AM	294	6962.93	0.00	-72.90	0.00	
02/03/98	1:00 PM	294	6962.93	0.00	-72.90	0.00	
02/12/98	11:30 AM	294	6962.93	0.00	-72.90	0.00	
02/20/98	9:00 AM	294	6962.93	0.00	-72.90	0.00	
03/25/98	9:00 AM	294	6962.93	0,00	-72.90	0.00	
04/02/98	12:40 PM	294	6962.93	0.00	-72.90	0.00	
04/08/98	11:00 AM	294	6962.93	0.00	-72.90	0.00	
04/15/98	10:30 AM	294	6962.93	0.00	-72.90	0.00	
04/22/98	9:30 AM	294	6962.93	0.00	-72.90	0.00	
04/29/98	11:00 AM	294	6962.93	0.00	-72.90	0.00	
05/07/98	9:00 AM	294	6962.93	0.00	-72.90	0.00	
05/13/98	9:30 PM	294	6962.93	0.00	-72.90	0.00	
05/20/98	9:00 AM	294	6962.93	0.00	-72.90	0.00	
05/27/98	8:30 AM	294	6962.93	0.00	-72.90	0.00	· · · · · · · · · · · · · · · · · · ·
06/03/98	11:00 AM	294	6962.93	0.00	-72.90	0.00	
06/10/98	11:00 AM	294	6962.93	0.00	-72.90	0.00	
06/17/98	1:00 PM	294	6962.93	0.00	-72.90	0.00	
06/24/98	11:00 AM	294	6962.93	0.00	-72.90	0.00	
07/01/98	10:00 AM	294	6962.93	0.00	-72.90	0.00	
07/08/98	8:00 AM	294	6962.93	0.00	-72.90	0.00	
07/15/98	8:00 AM	294	6962.93	0.00	-72.90	0.00	
07/22/98	8:00AM	294	6962.93	0.00	-72.90	0.00	
07/29/98	8:00 AM	294	6962.93	0.00	-72.90	0.00	
08/12/98	9:00 AM	294	6962.93	0.00	-72.90	0.00	
08/19/98	11:00 AM	294	6962.93	0.00	-72.90	0.00	
08/31/98	9:00 AM	294	6962.93	0.00	-72.90	0.00	
09/11/98	10:00 AM	294	6962.93	0.00	-72.90	0.00	
09/16/98	11:00 AM	294	6962.93	0.00	-72.90	0.00	
09/22/98	9:00 AM	294	6962.93	0.00	-72.90	0.00	
09/30/98	10:00 AM	294	6962.93	0.00	-72.90	0.00	

PIEZO#: 38 SERIAL #: 10899 RO: 9270.00 TO: 19.00 deg. C

C: 0.02389 K: -0.0334 BAROM. 31.57 "Hg GE: 7191.3

DATE	ТІМЕ	TEMP. C	BAROM.	R1 POS B	THERM.	T1	Pore Pressure (ft H2O)	CHANGE	Piezometric Surface	REMARKS
2/30/97	9:00 AM	0	23.49	8580	6.41	8,85	38.81	-0.06	7230.11	
01/07/98	9:00 AM	4	23.26	8588	6.42	8.81	38.37	-0.44	7229.67	
01/14/98	9:00 AM	-7	23.42	8580	6.41	8.85	38.81	0.44	7230.11	
01/22/98	9:30 AM	-4	23.28	8591	6.41	8.85	38.20	-0.61	7229.50	
01/28/98	8:30 AM	-2	23.3	8590	6.41	8.85	38.26	0.06	7229.56	
2/03/98	1:00 PM	4	23.06	8598	6.41	8.85	37.82	-0.44	7229.12	
02/12/98	11:30 AM	1	23.35	8584	6.42	8.81	38.59	0.77	7229.89	
2/20/98	9:00 AM	-1	23.13	8574	6.43	8.78	39.15	0.55	7230.45	
03/25/98	9:00 AM	10	23.D8	8559	6.41	8.85	39.97	0.82	7231.27	
04/02/98	12:40 PM	6	23.3	8553	6.41	8.85	40.30	0.33	7231.60	
14/08/98	11:00 AM	4	23.32	8555	6.41	8.85	40.19	-0.11	7231.49	
04/15/98	10:30 AM	0	23.02	8556	6.41	8.85	40.13	-0.06	7231.43	
04/22/98	9:30 AM	11	23.46	8554	6.41	8.85	40.24	0.11	7231.54	
04/29/98	11:00 AM	15	23.42	8554	6.41	8.85	40.24	0.00	7231.54	
05/07/98	9:00 AM	6	23.26	8557	6.34	9.09	40.06	-0.18	7231.36	
05/13/98	9:30 PM	10	23	8555	6.34	9.09	40.17	0.11	7231.47	
05/20/98	9:00 AM	15	23,28	8554	6.41	8.85	40.24	0.07	7231.54	
05/27/98	8:30 AM	5	23,25	8568	6.42	8.81	39.48	-0.77	7230.78	
06/03/98	11:00 AM	16	23.19	8573	6.41	8.85	39.20	-0.28	7230.50	· · · · · · · · · · · · · · · · · · ·
06/10/98	11:00 AM	10	23.29	8570	6.42	8.81	39.36	0.17	7230.66	
06/17/98	1:00 PM	6	23.35	8552	6.41	8.85	40.35	0.99	7231.65	· · · ·
06/24/98	11:00 AM	18	23.28	8567	6.41	8.85	39.53	-0.83	7230.83	
07/01/98	10:00 AM	24	23.4	8565	6.41	8.85	39.64	0.11	7230.94	
07/08/98	8:00 AM	15	23.46	8566	6.40	8.88	39.58	-0.06	7230.88	
07/15/98	8:00 AM	17	23.5	8564	6.41	8.85	39.69	0.11	7230.99	
07/22/98	8:00AM	16	23.4	8566	6.45	8.71	39.59	-0.10	7230.89	••
07/29/98	8:00 AM	14	23.43	8567	6.31	9.19	39.50	0.09	7230.80	
08/12/98	9:00 AM	16	23.58	8566	6.41	8.85	39.58	0.08	7230.88	
08/19/98	11:00 AM	20	23.45	8567	6.41	8.85	39.53	-0.06	7230.83	
08/31/98	9:00 AM	22	23.44	8580	6.41	8.85	38.81	-0.72	7230.11	
09/11/98	10:00 AM	15	23.48	8564	6.41	8.85	39.69	0.88	7230.99	
09/16/98	11:00 AM	23	23.42	8567	6.41	8.85	39.53	-0.17	7230.83	
09/22/98	9:00 AM	17	23.38	8590	6.41	8.85	38.26	-1.27	7229.56	
09/30/98	10:00 AM	16	23.32	8592	6.40	8.88	38.15	-0.11	7229.45	
10/07/98	9:00 AM	6	23.46	8595	6.40	8.88	37.98	-0.17	7229.28	
10/14/98	8:30 AM	5	23.32	8598	6.41	8.85	37.82	-0.16	7229.12	
10/26/98	7:30 AM	6	23.7	8599	6.35	9.05	37.75	-0.10	7229.05	
10/20/98	9:00 AM	3	23.7	8602	6.39	8.91	37.75	-0.07	7228.89	
11/05/98	9:00 AM		23.0	8605	6.41	8.85	37.43	-0.15	7228.73	
11/05/98	10:00 AM	4	22.4	8602	6.40	8.88	37.60	0.16	7228.90	
11/13/98	10:00 AM	0	23.4	8602	6.40	8.88	37.38	-0.22	7228.90	
					↓		38.81	1.44	7230.11	·
12/30/98	9:00AM	0	23.49	8580	6.41	8.85			7230.11	
1/7/99	12:10PM	6.7		8615	6.4	8.88	36.88	-1.93		
02/06/99	9:30AM	5	ļ	8617	6.37	8.98	36.76	-0.12	7228.06	
03/06/99	11:00AM	5	ļ	8618	6.38	8.95	36.71	-0.05	7228.01	
05/06/99	2:30PM	15.6		8612	6.40	8.88	37.04	0.34	7228.34	
07/26/99	1:00PM	I	1	8610	6.40	8.88	37.16	0.11	7228.46	

PIEZO #: 41
Twinned with Piezometer # 36
SCREEN TYPE: Johnson 8 Slot, 40 X 60 pack

TRANSDUCER DEPTH: 119 ft. (Comparative)

COLLAR ELEV: 7313.49
DEPTH TO TOP OF SCREEN: 114.00
SCREEN LENGTH 10.00

STANDPIPE ELEV:

STANDPIPE DIAMETER: 1.5 INCHES

7317.29

				EFFECTIVE	COMPARATIVE		
		DEPTH TO	WATER	PRESSURE	PRESSURE		
DATE	TIME	WATER (FT)	ELEVATION	(FT H2O)	(FT H2O)	CHANGE	REMARKS
12/30/97	9:00 AM	76	7241.29	48.00	144.80	0.21	
1/7/98	9:00 AM	75.82	7241.47	48.18	144.98	0.18	
1/14/98	9:00 AM	76.12	7241.17	47.88	144.68	-0.30	
01/22/98	9:30 AM	76	7241.29	48.00	144.80	0.12	
01/28/98	8:30 AM	76.12	7241.17	47.88	144.68	-0.12	
02/03/98	1:00 PM	76.22	7241.07	47.78	144.58	-0.10	
02/12/98	11:30 AM	76.1	7241.19	47.90	144.70	0.12	
02/20/94	9:00 AM	76.13	7241.16	47.87	144.67	-0.03	
03/25/98	9:00 AM	74.1	7243.19	49.90	146.70	2.03	
04/02/98	12:40 PM	74.61	7242.68	49.39	146.19	-0.51	
04/08/98	11:00 AM	74.4	7242.89	49.60	146.40	0.21	
04/15/98	10:30 AM	75.04	7242.25	48.96	145.76	-0.64	
04/22/98	9:30 AM	74.98	7242.31	49.02	145.82	0.06	
4/29/98	11:00 AM	75.3	7241.99	48.70	145.50	-0.32	
05/07/98	9:00 AM	75.67	7241.62	48.33	145.13	-0.37	
05/13/98	9:30 PM	75.4	7241.89	48,60	145.40	0.27	
05/20/98	9:00 AM	76.04	7241.25	47.96	144.76	-0.64	
05/27/98	8:30 AM	76.03	7241.26	47.97	144.77	0.01	
06/03/98	11:00 AM	76.08	7241.21	47.92	144.72	-0.05	
06/10/98	11:00 AM	76.07	7241.22	47.93	144.73	0.01	
06/17/98	1:00 PM	76.05	7241.24	47.95	144.75	0.02	
06/24/98	11:00 AM	75.36	7241.93	48.64	145.44	0.69	
07/01/98	10:00 AM	74.93	7242.36	49.07	145.87	0.43	
07/08/98	8:00 AM	75.2	7242.09	48.80	145.60	-0.27	
07/15/98	8:00 AM	75.65	7241.64	48.35	145.15	-0.45	
07/22/98	8:00AM	75.71	7241.58	48.29	145.09	-0.06	
07/29/98	8:00 AM	75.75	7241.54	48.25	145.05	-0.04	
08/12/98	9:00 AM	75.98	7241.31	48.02	144.82	-0.23	
08/19/98	11:00 AM	75.95	7241.34	48.05	144.85	0.03	
08/31/98	9:00 AM	76.8	7240.49	47.20	144.00	-0.85	
09/11/98	10:00 AM	76.3	7240.99	47.70	144.50	0.50	
09/16/98	11:00 AM	76,98	7240.31	47.02	143.82	-0.68	
09/22/98	9:00 AM	76.95	7240.34	47.05	143.85	0.03	
09/30/98	10:00 AM	 		i			
10/07/98	9:00 AM	77.15	7240.14	46.85	143.65	-0.20	
10/14/98	8:30 AM	78.58	7238.71	45.42	142.22	-1.43	
10/26/98	7:30 AM	77.42	7239.87	46.58	143.38	1.16	
10/30/98	9:00 AM	77.59	7239.70	46.41	143.21	-0.17	
11/05/98	9:30 AM	77.59	7239.70	46.41	143.21	0.00	
11/18/98	10:00 AM	77.57	7239.72	46.43	143.23	0.02	,
12/30/98	9:00AM	76	38.00	48.00	-7058.49	1.57	
1/7/99	12:10PM	78.00	7335.50	46.00	239.01	-2.00	
2/6/99	9:30AM	78.25	7336.05	45.75	239.56	-0.25	· · · · · · · · · · · · · · · · · · ·
03/06/99	11:00AM	77.31	7335.82	46.69	239.33	0.94	
05/06/99	2:30PM	77.35	7336.21	46.65	239.72	-0.04	
07/26/99	1:00PM	78.2		45.80	-7096.49	-0.85	• • • • • • • • • • • • • • • • • • • •

PIEZO #: 42 SERIAL #: 10898

RO: 8904.00 TO: 19.00 deg. C

C: 0.02451

K: -0.147 BAROM. 31.57 " Hg GE: 7280.5

		TEMP.					Pore Pressure		Piezometric	
DATE	TIME	C	BAROM.	R1 POS B	THERM.	T1	(FT H2O)	CHANGE	Surface	REMARKS
							1			
12/30/97	9:00 AM	0	23.49	8757	8.29	3.26	13.65	0.03	7294.1	
1/7/98	9:00 AM	-4	23.26	8757	8.29	3.26	13.65	0.00	7294.1	
1/14/98	9:00 AM	-7	23.42	8761	8.33	3.16	13.46	-0.19	7294.0	
1/22/98	9:30 AM	-4	23.28	8766	8.34	3.13	13.18	-0.27	7293.7	······································
1/28/98	8:30 AM	-2	23.3	8759	8.55	2.59	13.76	0.58	7294.3	
2/3/98	1:00 PM	4	23.06	8770	8.38	3.03	12.99	-0.77	7293.5	
2/12/98	11:30 AM	1	23.35	8768	8.4	2.98	13.12	0.13	7293.6	
2/20/98	9:00 AM	-1	23.13	8765	8.41	2.95	13.30	0.18	7293,8	
3/25/98	9:00 AM	10	23.08	8742	8.49	2.74	14.67	1.37	7295.2	
4/2/98	12:40 PM	6	23.3	8744	8.51	2.69	14.58	-0.10	7295.1	
4/8/98	11:00 AM	4	23.32	8750	8.41	2.95	14.15	-0.43	7294.7	· · · · · · · · · · · · · · · · · · ·
4/15/98	10:30 AM	0	23.02	8756	8.53	2.64	13,92	-0.23	7294.4	
4/22/98	9:30 AM	11	23.46	8759	8.52	2.67	13.74	-0.18	7294.2	
4/29/98	11:00 AM	15	23.42	8763	8.55	2.59	13.54	-0.20	7294.0	
5/7/98	9:00 AM	6	23.26	8765	8.56	2.57	13.43	-0.10	7293.9	
5/13/98	9:30 PM	10	23	8772	8.57	2.54	13.05	-0.39	7293.5	
5/20/98	9:00 AM	15	23.28	8775	8.58	2.51	12.88	-0.16	7293.4	
5/27/98	8:30 AM	5	23.25	8774	8.59	2.49	12.95	0.07	7293.5	
6/3/98	11:00 AM	16	23.19	8774	8.63	2.39	12.98	0.03	7293.5	
6/10/98	11:00 AM	10	23.29	8768	8.59	2,49	13.29	0.31	7293.8	
6/17/98	1:00 PM	6	23.35	8744	8.51	2.69	14.58	1.29	7295.1	
6/24/98	11:00 AM	18	23.28	8759	8.64	2.36	13.84	-0.74	7294.3	
7/1/98	10:00 AM	24	23.4	8754	8.65	2,34	14.13	0.29	7294.6	
7/8/98	8:00 AM	15	23.46	8760	8.64	2.36	13.78	-0.35	7294.3	
7/15/98	8:00 AM	17	23.5	8763	8.66	2.31	13.63	-0.15	7294.1	
7/22/98	8:00AM	16	23.4	8768	8.68	2.26	13.37	-0.27	7293.9	
7/29/98	8:00 AM	14	23.43	8775	8.69	2.24	12.98	-0.39	7293.5	
8/12/98	9:00 AM	16	23.58	8787	8.7	2.21	12.31	-0.67	7292.8	
8/19/98	11:00 AM	20	23.45	8780	8.69	2.24	12.70	0.39	7293.2	
8/31/98	9:00 AM	22	23.44	8797	8.73	2.14	11.77	-0.93	7292.3	
9/11/98	10:00 AM	15	23.48	8787	8.75	2.09	12.35	0.58	7292.9	
9/16/98	11:00 AM	23	23.42	8787	8.75	2.09	12.35	0.00	7292.9	····
9/22/98	9:00 AM	17	23.38	8796	8.77	2.04	11.86	-0.49	7292.4	
9/30/98	10:00 AM	16	23.32	8799	8.77	2.04	11.69	-0.17	7292.2	·
10/7/98	9:00 AM	6	23.46	8803	8.78	2.01	11.47	-0.22	7292.0	
10/14/98	8:30 AM	5	23.32	8806	8.79	1.99	11.31	-0.16	7291.8	
10/26/98	7:30 AM	6	23.7	8802	8.80	1.96	11.54	0.23	7292.0	
10/30/98	9:00 AM	3	23.8	8811	8.81	1.94	11.04	-0.50	7291.5	
11/5/98	9:30 AM	 	0	8814	8.82	1.92	10.88	-0.16	7291.4	
11/13/98	10:00 AM	4	23.4	8816	8.84	1.87	10.79	-0.10	7291.3	
11/18/98	10:00 AM	 	23.4	8817	8.92	1.67	10.80	0.01	7291.3	
1/7/99	12:10PM	6.7		8827	8.91	1.70	10.22	-0.57	7290.7	
02/06/99	9:30AM	5		8834	8.96	1.57	9.87	-0.35	7290.4	
03/06/99	11:00AM	5	 	8839	9.04	1.38	9.65	-0.22	7290.2	
05/06/99	2:30PM	15.6	 	8843	8.94	1.62	9.34	-0.31	7289.8	
07/26/99	1:00PM	 , , , , , , , , , , , , , , , , , , ,	 	8807	9.37	0.60	11.72	2.38	7292.2	
0.120133	1.00-10		ь	1 0007	3.57	0.00	J	1 2.00		

PIEZO #: SERIAL #:

43

10909

RO: 9753.00 TO: 19.00 deg. C

C: 0.02466

K: -0.0296 BAROM.

31.57 " Hg 7189 GE:

DATE	TIME	TEMP. C	BAROM.	R1 POS B	THERM.	T 1	Pore Pressure (ft H2O)	CHANGE	Piezometric Surface	REMARKS
					-					
12/30/97	9:00 AM	0	23.49	9286	6.25	9.40	27.22	0.51	7216.22	
01/07/98	9:00 AM	-4	23.26	9293	6.25	9.40	26.83	-0.40	7215.83	
01/14/98	9:00 AM	-7	23.42	9292	6.25	9.40	26.88	0.06	7215,88	
01/22/98	9:30 AM	-4	23.28	9295	6.25	9.40	26.71	-0.17	7215.71	
01/28/98	8:30 AM	-2	23.3	9293	6.25	9.40	26.83	0.11	7215.83	
02/03/98	1:00 PM	4	23.06	9298	6.25	9.40	26.54	-0.28	7215.54	
02/12/98	11:30 AM	1	23.35	9293	6.26	9.36	26.83	0.29	7215.83	
02/20/98	9:00 AM	-1	23.13	9297	6.26	9.36	26.60	-0.23	7215.60	
03/25/98	9:00 AM	10	23.08	9278	6.26	9.36	27.68	1.08	7216.68	
04/02/98	12:40 PM	6	23.3	9290	6.26	9.36	27.00	-0.68	7216.00	
04/08/98	11:00 AM	4	23.32	9297	6.26	9.36	26.60	-0.40	7215.60	
04/15/98	10:30 AM	0	23.02	9290	6.26	9.36	27.00	0.40	7216.00	
04/22/98	9:30 AM	11	23.46	9280	6.26	9.36	27.57	0.57	7216.57	
04/29/98	11:00 AM	15	23.42	9281	6.26	9.36	27.51	-0.06	7216.51	
05/07/98	9:00 AM	6	23.26	9291	6.26	9.36	26.94	-0.57	7215.94	
05/13/98	9:30 PM	10	23	9297	6.26	9.36	26.60	-0.34	7215.60	
05/20/98	9:00 AM	15	23.28	9291	6.26	9.36	26.94	0.34	7215.94	
05/27/98	8:30 AM	5	23.25	9292	6.27	9.33	26.89	-0.05	7215.89	
06/03/98	11:00 AM	16	23.19	9293	6.27	9.33	26.83	-0.06	7215.83	
06/10/98	11:00 AM	10	23.29	9291	6.27	9.33	26.94	0.11	7215.94	
06/17/98	1:00 PM	6	23.35	9290	6.26	9.36	27.00	0.05	7216.00	
06/24/98	11:00 AM	18	23.28	9288	6.27	9.33	27.11	0.12	7216.11	
07/01/98	10:00 AM	24	23.4	9284	6.27	9.33	27.34	0.23	7216.34	
07/08/98	8:00 AM	15	23.46	9288	6.27	9.33	27.11	-0.23	7216.11	
07/15/98	8:00 AM	17	23.5	9285	6.27	9.33	27.29	0.17	7216.29	
07/22/98	8:00AM	16	23.4	9288	6.27	9.33	27.11	-0.17	7216.11	
07/29/98	8:00 AM	14	23.43	9287	6.27	9.33	27.17	0.06	7216.17	
08/12/98	9:00 AM	16	23.58	9288	6.27	9.33	27.11	-0.06	7216.11	
08/19/98	11:00 AM	20	23.45	9288	6.27	9.33	27.11	0.00	7216.11	
08/31/98	9:00 AM	22	23.44	9286	6.28	9.29	27.23	0.12	7216.23	
09/11/98	10:00 AM	15	23.48	9288	6.27	9.33	27.11	-0.12	7216,11	
09/16/98	11:00 AM	23	23.42	9286	6.27	9.33	27.23	0.11	7216.23	
09/22/98	9:00 AM	17	23.38	9291	6.28	9.29	26.95	-0.28	7215.95	
09/30/98	10:00 AM	16	23.32	9290	6.28	9.29	27.00	0.06	7216,00	
10/07/98	9:00 AM	6	23.46	9290	6.28	9.29	27.00	0.00	7216.00	
10/14/98	8:30 AM	5	23.32	9289	6.28	9.29	27.06	0.06	7216.06	
10/26/98	7:30 AM	6	23.7	9295	6.28	9.29	26.72	-0.34	7215.72	
10/30/98	9:00 AM	3	23.8	6984	6.31	9.19	158.20	131.48	7347.20	possible misread of gauge
11/05/98	9:30 AM	0	0	9297	6.28	9.29	26.61	-131.60	7215.61	
11/13/98	10:00 AM	4	23.4	9293	6.28	9.29	26.83	0.23	7215.83	
11/18/98	10:00 AM	0	23.4	9298	6.28	9.29	26.55	-0.28	7215.55	
12/30/98	9:00AM	0	23.49	9286	6.25	9.40	27.22	0.68	7216.22	
1/7/99	12:10PM	6.7		9299	6.29	9.26	26.49	-0.73	7215.49	
02/06/99	9:30AM	5		9300	6.29	9.26	26.44	-0.06	7215.44	
03/06/99	11:00AM	5		9505	6.34	9.09	14.79	-11.65	7203.79	
05/06/99	2:30PM	15.6	<u> </u>	9276	6.3	9.22	27.80	13.02	7216.80	
07/26/99	1:00PM			9289	6.31	9.19	27.07	-0.74	7216.07	

PIEZO #: 44
Twinned with Piezometer # 43
SCREEN TYPE: Johnson 8 Slot, 40 X 60 pack
TRANSDUCER DEPTH: 121 ft. (Comparative)

STANDPIPE ELEV: 7311.89

COLLAR ELEV: 7308.14

DEPTH TO TOP OF SCREEN: 116.00

SCREEN LENGTH: 10.00

STANDPIPE DIAMETER: 1.5 INCHES

				EFFECTIVE	COMPARATIVE	 	
		DEPTH TO	WATER	PRESSURE	PRESSURE		
DATE	TIME	WATER (FT)	ELEVATION	(FT H2O)	(FT H2O)	CHANGE	REMARKS
DATE	TIME	WATER (F1)	ELLVATION	(111120)	((11120)	CHANGE	VENIVIVO
12/30/97	9:00 AM	79.52	7232.37	46.48	45.23	0.21	
01/07/98		79.52	7232.31	46.32	45.23	-0.16	
01/14/98	9:00 AM	79.8	7232.21	46.20	44.95	-0.16	
01/14/98	9:00 AM	79.6		46.30	45.05	0.12	
	9:30 AM		7232.19	46.30	45.05		
01/28/98	8:30 AM	79.80	7232.09			-0.10	
02/03/98	1:00 PM	79.55	7232.34	46.45	45.20	0.25	
02/12/98	11:30 AM	79.81	7232.08	46.19	44.94	-0.26	
02/20/98	9:00 AM	79.8	7232.09	46.20	44.95	0.01	
03/25/98	9:00 AM	78.65	7233.24	47.35	46.10	1.15	
04/02/98	12:40 PM	79.4	7232.49	46.60	45.35	-0.75	
04/08/98	11:00 AM	79,45	7232.44	46.55	45.30	-0.05	
04/15/98	10:30 AM	79.24	7232.65	46.76	45.51	0.21	
04/22/98	9:30 AM	79.22	7232.67	46.78	45.53	0.02	
04/29/98	11:00 AM	79.2	7232.69	46.80	45.55	0.02	
05/07/98	9:00 AM	79.56	7232.33	46.44	45.19	-0.36	
05/13/98	9:30 PM	79.56	7232.33	46.44	45.19	0.00	
05/20/98	9:00 AM	79.62	7232.27	46.38	45.13	-0.06	
05/27/98	8:30 AM	79.6	7232.29	46.40	45.15	0.02	
06/03/98	11:00 AM	79.5	7232.39	46.50	45.25	0.10	
06/10/98	11:00 AM	79.55	7232.34	46.45	45.20	-0.05	
06/17/98	1:00 PM	79.51	7232.38	46.49	45.24	0.04	
06/24/98	11:00 AM	79.35	7232.54	46.65	45.40	0.16	
07/01/98	10:00 AM	79.31	7232.58	46.69	45.44	0.04	
07/08/98	8:00 AM	79.3	7232.59	46.70	45.45	0.01	
07/15/98	8;00 AM	79.3	7232.59	46.70	45.45	0.00	
07/22/98	8:00AM	79.53	7232.36	46.47	45.22	-0.23	
07/29/98	8:00 AM	79.49	7232.40	46.51	45.26	0.04	
08/12/98	9:00 AM	79.7	7232.19	46.30	45.05	-0.21	
08/19/98	11:00 AM	79.65	7232.24	46.35	45.10	0.05	
08/31/98	9:00 AM	79.31	7232.58	46.69	45.44	0.34	
09/11/98	10:00 AM	79.3	7232.59	46.70	45.45	0.01	
09/16/98	11:00 AM	79.55	7232.34	46.45	45.20	-0.25	
09/22/98	9:00 AM	79.69	7232.20	46.31	45.06	-0.14	
09/30/98	10:00 AM	79.52	7232.37	46.48	45.23	0.17	
2/6/99	9:30AM	80.21	7336.05	45.79	148.91	-0.69	
03/06/99	11:00AM	79.82	7335.82	46.18	148,68	0.39	···
05/06/99	2:30PM	80	7336.21	46.00	149.07	-0.18	
7/26/99	1:00PM	79.76	1	46.24	-7187.14	0.24	

PIEZO #: 45 SERIAL #: 10905 RO: 9651.00

TO: 19.00 deg. C

C: 0.02309

K; -0.0323

BAROM. 31.57 " Hg

GE: 7231.3

DATE	TIME	TEMP. C	BAROM.	R1 POS B	THERM.	T1	Pore Pressure (ft H2O)	CHANGE	Piezometric Surface	REMARKS
12/30/97	9:00 AM	0	23.49	9475	6.34	9.09	10.11	0.32	7241.41	
01/07/98	9:00 AM	-4	23.49	9480	6.34	9.09	9.85	-0.27	7241.15	
01/14/98	9:00 AM	-7	23.42	9479	6.34	9.09	9.90	0.05	7241.13	
01/22/98	9:30 AM	-4	23.42	9484	6.34	9.09	9.63	-0.27	7240.93	
01/28/98	8:30 AM	-2	23.26	9481	6.35	9.05	9.80	0.16	7241.10	
02/03/98	1:00 PM	4	23.06	9484	6.34	9.09	9.63	-0.16	7241.10	
02/03/98	11:30 AM	1	23.35	9482	6.34	9.09	9.74	0.11	7240.93	
02/20/98	9:00 AM	-1	23.13	9487	6.34	9.09	9.47	-0.27	7240.77	
03/25/98	9:00 AM	10	23.13	9466	6.34	9.09	10.59	1.12	7241.89	
04/02/98	12:40 PM	6	23.06	9476	6.34	9.09	10.06	-0.53	7241.36	
04/08/98	11:00 AM	4	23.32	9487	6.34	9.09	9.47	-0.59	7240.77	·
04/05/98	10:30 AM	0	23.02	9477	6.34	9.09	10.01	0.53	7240.77	
04/22/98	9:30 AM	11	23.46	9477	6.34	9.09	10.27	0.33	7241.57	
04/29/98	11:00 AM	15	23.46	9472	6.34	9.09	10.27	0.27	7241.57	
05/07/98	9:00 AM	6	23.42	9480	6.34	9.09	9,85	-0.53	7241.55	
05/07/98	9:30 PM	10	23.26	9486	6.34	9.09	9.53	-0.32	7241.13	
05/20/98	9:00 AM	15	23.28	9483	6.34	9.09	9.69	0.16	7240.99	
05/27/98	8:30 AM	5	23.25	9485	6.34	9.09	9,58	-0.11	7240.88	
06/03/98	11:00 AM	16	23.19	9484	6.34	9.09	9.63	0.05	7240.93	
06/10/98	11:00 AM	10	23.29	9484	6.33	9.12	9.63	0.00	7240.93	
06/17/98	1:00 PM	6	23.35	9477	6.33	9.12	10.00	0.37	7241.30	
06/24/98	11:00 AM	18	23.28	9480	6.34	9.09	9.85	-0.16	7241.15	······································
07/01/98	10:00 AM	24	23.4	9476	6.34	9.09	10.06	0.21	7241,36	
07/08/98	8:00 AM	15	23.46	9475	6.34	9.09	10.11	0.05	7241.41	
07/15/98	8:00 AM	17	23.5	9480	6.34	9.09	9,85	-0.27	7241.15	····
07/12/98	8:00AM	16	23.4	9481	6.34	9.09	9,79	-0.05	7241.09	
07/29/98	8:00 AM	14	23.43	9482	6.33	9.12	9.74	-0.06	7241.04	
08/12/98	9:00 AM	16	23.58	9484	6.34	9.09	9.63	-0.10	7240.93	·
08/19/98	11:00 AM	20	23.45	9484	6.34	9.09	9.63	0.00	7240.93	
08/31/98	9:00 AM	22	23.44	9483	6.33	9.12	9.69	0.05	7240.99	
09/11/98	10:00 AM	15	23.48	9487	6.33	9.12	9,47	-0.21	7240.77	
09/16/98	11:00 AM	23	23.42	9486	6.34	9.09	9.53	0.06	7240.83	
09/22/98	9:00 AM	17	23.38	9491	6.34	9.09	9.26	-0.27	7240.56	
09/30/98	10:00 AM	16	23.32	9491	6.33	9.12	9.26	0.00	7240.56	
10/07/98	9:00 AM	6	23.46	9492	6.33	9.12	9.21	-0.05	7240.51	
10/14/98	8:30 AM	5	23.32	9491	6.33	9.12	9.26	0.05	7240.56	
10/26/98	7:30 AM	6	23.7	9495	6.33	9.12	9.05	-0.21	7240.35	
10/30/98	9:00 AM	3	23.8	9497	6.34	9.09	8.94	-0.10	7240.24	
11/05/98	9:30 AM	0	0	9498	6.34	9.09	8.89	-0.05	7240.19	
11/13/98	10:00 AM	4	23.4	9497	6.34	9.09	8.94	0.05	7240.24	
11/18/98	10:00 AM	0	23.4	9499	6.34	9.09	8.84	-0.11	7240.14	· · · · · · · · · · · · · · · · · · ·
1/7/99	12:10PM	6.7		9501	6.34	9.09	8.73	-0.11	7240.03	
02/06/99	9:30AM	5	 	9506	6.33	9.12	8.46	-0.27	7239.76	
03/06/99	11:00AM	5	 	9404	6.29	9.26	13.88	5.42	7245.18	
05/06/99	2:30PM	15.6		9488	6.34	9.09	9.42	-4.46	7240.72	

PIEZO #: 46
Twinned with Piezometer # 45
SCREEN TYPE: Johnson 8 Slot, 40 X 60 pack
TRANSDUCER DEPTH: 79 ft. (Comparative)

		,		FEET ON T			
		DEDTU TO	MATER	EFFECTIVE	COMPADATIVE PRESCUE		
D. T.		DEPTH TO	WATER	PRESSURE	COMPARATIVÉ PRESSURE		
DATE	TIME	WATER (FT)	ELEVATION	(FT H2O)	(FT H2O)	CHANGE	REMARKS
12/30/97	9:00 AM	63,14	7248.87	21.86	19.61	-0.06	
01/07/98	9:00 AM	63.12	7248.89	21.88	19.63	0.02	
01/14/98	9:00 AM	63.18	7248.83	21,82	19.57	-0.06	
01/22/98	9:30 AM	63,15	7248.86	21.85	19.60	0.03	
01/28/98	8:30 AM	63.20	7248.81	21.80	19.55	-0.05	
02/03/98	1:00 PM	63.02	7248.99	21.98	19.73	0.18	
02/12/98	11:30 AM	63.45	7248.56	21.55	19.30	-0.43	
02/20/98	9:00 AM	63.25	7248.76	21.75	19.50	0.20	
03/25/98	9:00 AM	62.16	7249.85	22.84	20.59	1.09	
04/02/98	12:40 PM	62.82	7249.19	22.18	19.93	-0.66	
04/08/98	11:00 AM	62.50	7249.51	22.50	20.25	0.32	
04/15/98	10:30 AM	62.67	7249.34	22.33	20.08	-0.17	
04/22/98	9:30 AM	62.88	7249.13	22.12	19.87	-0.17	
04/29/98	11:00 AM	62.79	7249.22	22.21	19.96	0.09	
05/07/98	9:00 AM	63.17	7248.84	21.83	19.58	-0.38	
05/13/98	9:30 PM	63.17	7248.84	21.83	19.58	0.00	
05/20/98	9:00 AM	63.32	7248.69	21.68	19.43	-0.15	
05/27/98	8:30 AM	63.37	7248.64	21.63	19.38	-0.05	
06/03/98	11:00 AM	63.21	7248.80	21.79	19.54	0.16	
06/10/98	11:00 AM	63.25	7248.76	21.75	19.50	-0.04	
06/17/98	1:00 PM	63.20	7248.81	21.80	19.55	0.05	
06/24/98	11:00 AM	63.03	7248.98	21.97	19.72	0.17	
07/01/98	10:00 AM	62.98	7249.03	22.02	19.77	0.05	
07/08/98	8:00 AM	63.00	7249.01	22.00	19.75	-0.02	
07/15/98	8:00 AM	63.58	7248.43	21.42	19.17	-0.58	
07/22/98	8:00AM	63.39	7248.62	21.61	19.36	0.19	
07/29/98	8:00 AM	63.40	7248.61	21.60	19.35	-0.01	
08/12/98	9:00 AM	63.39	7248.62	21.61	19.36	0.01	
08/19/98	11:00 AM	63.41	7248.60	21.59	19.34	-0.02	
08/31/98	9:00 AM	63.27	7248.74	21.73	19.48	0.14	
09/11/98	10:00 AM	63.40	7248.61	21.60	19.35	-0.13	
09/16/98	11:00 AM	63.69	7248.32	21.31	19.06	-0.29	
09/22/98	9:00 AM	63.80	7248.21	21.20	18.95	-0.11	
09/30/98	10:00 AM	63.77	7248.24	21.23	18.98	0.03	
10/07/98	9:00 AM	63.64	7248.37	21,36	19.11	0.13	
10/14/98	8:30 AM	63.87	7248.14	21.13	18.88	-0.23	
10/26/98	7:30 AM	63.97	7248.04	21.03	18.78	-0.10	
11/18/98	10:00 AM	64.12	7247.89	20.88	18.63	-0.15	
12/30/98	9:00AM	63.14	11.86	21.86	-7217.40	0.98	·
1/7/99	12:10PM	64.00	7335.50	21.00	106.24	-0.86	
02/06/99	9:30AM	64.52	7336.05	20.48	106.79	-0.52	
03/06/99	11:00AM	64.00	7335.82	21.00	106.56	0.52	
05/06/99	2:30PM	63.36	7336.21	21.64	106.95	0.64	
07/26/99	1:00PM	64.33		20.67	-7229.26	-0.97	

PIEZO#: 47 SERIAL#: 10908 RO: 9475.00 TO: 19.00 deg. C

C: 0.02673 K: -0.0294

BAROM. 31.57 GE: 7281.1

1							Pore Pressure	<u> </u>	Piezometric	
DATE	TIME	TEMP, C	BAROM.	R1 POS B	THERM.	T1	(FT H2O)	CHANGE	Surface	REMARKS
12/30/97	9:00 AM	0	23.49	9362	6.40	8.88	7,65	0.12	7288.75	
01/07/98	9:00 AM	-4	23.26	9363	6.4	8.88	7,59	-0.06	7288.69	
01/14/98	9:00 AM	-7	23.42	9363	6.40	8.88	7.59	0.00	7288.69	
01/22/98	9:30 AM	-4	23.28	9364	6.41	8.85	7.53	-0.06	7288.63	
01/28/98	8:30 AM	-2	23.3	9364	6.41	8.85	7.53	0.00	7288.63	
02/03/98	1:00 PM	4	23.06	9365	6.41	8.85	7.47	-0.06	7288.57	
02/12/98	11:30 AM	1	23.35	9365	6.41	8.85	7.47	0.00	7288.57	
02/20/98	9:00 AM	-1	23,13	9366	6.41	8.85	7.41	-0,06	7288.51	
03/25/98	9:00 AM	10	23.08	9355	6.41	8.85	8.09	0.68	7289.19	
04/02/98	12:40 PM	6	23.3	9356	6.41	8.85	8,03	-0.06	7289.13	
04/08/98	11:00 AM	4	23.32	9366	6.41	8.85	7.41	-0.62	7288.51	
04/15/98	10:30 AM	0	23.02	9359	6.41	8.85	7.84	0.43	7288.94	
04/22/98	9:30 AM	11	23.46	9358	6.41	8.85	7.90	0.06	7289.00	·
04/29/98	11:00 AM	15	23.42	9359	6.41	8.85	7.84	-0.06	7288.94	
05/07/98	9:00 AM	6	23.26	9362	6.40	8.88	7.65	-0.19	7288.75	
05/13/98	9:30 PM	10	23	9365	6.40	8,88	7.47	-0.18	7288.57	
05/20/98	9:00 AM	15	23.28	9366	6.40	8.88	7,41	-0.06	7288.51	
05/27/98	8:30 AM	5	23.25	9365	6.40	8.88	7.47	0.06	7288.57	
06/03/98	11:00 AM	16	23.19	9364	6.40	8.88	7.53	0.06	7288.63	
06/10/98	11:00 AM	10	23.29	9364	6.40	8.88	7.53	0.00	7288.63	
06/17/98	1:00 PM	6	23.35	9356	6.41	8.85	8.03	0.50	7289.13	
06/24/98	11:00 AM	18	23.28	9363	6.40	8.88	7.59	-0.43	7288.69	
07/01/98	10:00 AM	24	23.4	9363	6.40	8.88	7.59	0.00	7288.69	··
07/08/98	8:00 AM	15	23.46	9362	6.40	8.88	7.65	0.06	7288.75	
07/15/98	8:00 AM	17	23.5	9363	6.40	8.88	7.59	-0.06	7288.69	
07/22/98	8:00AM	16	23.4	9364	6.40	8.88	7.53	-0.06	7288.63	
07/29/98	8:00 AM	14	23.43	9367	6.40	8.88	7.35	-0.18	7288,45	
08/12/98	9:00 AM	16	23.58	9370	6.40	8.88	7.16	-0.18	7288.26	.,
08/19/98	11:00 AM	20	23.45	9368	6.40	8.88	7.28	0.12	7288.38	
08/31/98	9:00 AM	22	23.44	9375	6.40	8.88	6.85	-0.43	7287.95	
09/11/98	10:00 AM	15	23.48	9375	6.40	8.88	6.85	0.00	7287.95	
09/16/98	11:00 AM	23	23.42	9370	6.40	8.88	7.16	0.31	7288.26	
09/22/98	9:00 AM	17	23.38	9378	6.40	8.88	6.67	-0.49	7287.77	<u>. </u>
09/30/98	10:00 AM	16	23.32	9380	6.40	8.88	6.54	-0.12	7287.64	
10/07/98	9:00 AM	6	23.46	9382	6.40	8.88	6.42	-0.12	7287.52	
10/14/98	8:30 AM	5	23.32	9383	6.40	8.88	6.36	-0.06	7287.46	
10/26/98	7:30 AM	6	23.7	9385	6.40	8.88	6.24	-0.12	7287.34	
10/30/98	9:00 AM	3	23.8	9386	6.40	8.88	6.17	-0.06	7287.27	
11/05/98	9:30 AM	0	0	9388	6.40	8.88	6.05	-0.12	7287.15	
11/13/98	10:00 AM	4	23.4	9389	6.40	8.88	5.99	-0.06	7287.09	
11/18/98	10:00 AM	0	23.4	9390	6.40	8.88	5.93	-0.06	7287.03	
01/07/99	12:10PM		 	9396	6.41	8.85	5.56	-0.37	7286.66	
02/06/99	9:30AM	 	 	9401	6.41	8.85	5.25	-0.31	7286.35	·
03/06/99	11:00AM	5		9404	6.42	8.81	5.07	-0.18	7286.17	·
05/06/99	2:30PM	15.6	 	9408	6.42	8.81	4.82	-0.25	7285.92	
07/26/99	1:00PM	 -		9402	6.43	8.78	5.19	0.37	7286.29	
27720,00	7.001 191	1		J 7702	00	1			/200.20	.

APPENDIX K-2
PRISM READINGS

clate
ASSO
Š
Œ

leveprsm.xls

- AFA		2000		#DIV/0: 45.00	238.31 15.50	255.96 13.63	231.34 -17.35	21260	225.00 - 10.02	225.00	239.04 27.23	218.66 25.10	15.79	213.89	216.87 30.96	158.20 86.05	168.69 86.31	236.31 87.39	258.69 86.35	243.43 86.72	236.31 87.32	248.20 86.05	260.54 85.42	216.87 86.28	225.00 85.74	233.13 86.33	233.13 86.24	258.69 66.35	233.13 86.28	251.57 85.18	248.20 86.05	280.54 85.17	236.31 87.21	213.69 87.25 225.00 87.84	#DIV/0: 98.24	258.69 86.16	#DIV/U: 87.68			#DIV/0: 86.33			243.43 86.59	260.54 85.30			#OIV/0: 84.67	258.69 86.11	258.69 86.31	236.31 87.39	280.54 86.08	255.96 83.38	
NITA BASE	DISPLACEMENT	ACTION OF THE PERSON OF THE PE	1		3	3	8	9 6	0 60	3	3	8	9 9	9 6	3	7	2 2	2 6	3	3	8 0	9 60	3	8	0 0	2 60	3	6	3	3	3	0 60	3	0 0	2	8	2	3	3	2 2	1 2	2	9	2 60	3	8	2 6	2 60	3	6	0 6	8	
. OTOES	(CUMULATIVE)			4 2		0	8		9 60	2	0		100		7	3	0	0 20	3	0	50 8		0	0	200	2 50		7	2		0		7,	0		0	- 6	7	0		0 5	7	7 2	* 0	3	2	0	- 0	8	9		3	
ALMONOMINA	DISPLACEMENT		1 40.6	215.54	4 296.5	2 135.0	3 198.43	1 #UNA	3 243.43	1 #DIVA	2 135.0	296.57	#DIV	#DIVA	1 26.57	2 108.4	270.0	2 #DIV/	153.4	315.00	#DIVIO:	#DIVA	135.0	315.00	#DIVID:	#DIV/	1 #DIV/O!	116.57	236.57	2 #DIV/0	#DIV/O	161.57	4 341.57	315.00	2 146.31	270.00	1 63.43	3 206.57	0.00	135.00	1 #DIV/0!	3 251.57	326.31	1 45.00	4 333.43	4 296.5	135.00	135.00	1 #DIV/0!	333.43	2/0.00	3 243.4	
	(INCREM)																																																				
SLOPE DISPLACEMENT PATE	MOVING AVG	П				0.002							١																	0.004		0.003		0.002	0.001	0.001	0.002	00:001	0.003	0.003	0.003	0.003	0.002	0.002	0.002	0.003	0.003	0.003	0.002	0.003	500.0	0.006	
SLOPE DISPLACEMENT DEP	DAY		0.013	0.003	0.001	0000	0.004	0.00	0.001	0.000	0.002	0.002	0.000	1000	0.001	0.003	0.002	0.003	0.002	0.003	0.001	0.00	0.002	0.002	0.001	0.004	0.003	2000	0.00	0.005	0.004	0.005	0.003	0.001	0.002	0.000	0.003	0.002	0.000	0.004	0.000	0.004	0 000	0.00	0.005	0.004	0.003	0.001	0.005	0.000	0.004	0.008	
CUMULATIVE	DISTANCE	1 1		0.014																											0.782					0.762				0.082	0.811	0.753	0 757	0.742	0.791	0.772	0.753	0.752	0.792	0.791	0.762	0.715	
INCREMENTAL	DISTANCE	4.9	0 105	0.095	0.037	0.014	0.04	0.020	0.030	0.000	0.042	0.022	0.014	9600	0.030	0.753	0.014	0.022	0.024	0.024	0.014	0.022	0.024	0.044	0.014	0.030	0.020	0.046	0.037	0.032	0.032	0.044	0.037	0.010	0.037	0.010	0.030	0.024	0.010	0.032	0.010	0.068	0.036	0.024	0.055	0.030	0.060	0.017	0.040	0.022	0.052	0.055	
CUMULATIVE	DISTANCE	1 1	050.0-	0.010	0.010	0.010	0200	0.010	0.010	0.010	0.030	0.030	0200	0.010	0.030	0.780	084.0	0.790	0.800	0.780	0.770	0.780	0.760	0.770	0.780	0.780	0.760	0.800	0.780	0.750	0.780	0.720	0.740	0.750	0.760	0.760	0.740	0.750	0.750	0810	0.810	0.750	0.750	0.740	0.790	0.770	0.750	0.750	0.790	0.730	0.760	0.710	
INCREMENTAL	DISTANCE		0.050	0.040	0.030	0000	0000	00000	0.020	0.000	0.040	0000	0.010	0000	0.020	0.750	0.010	0.020	0.010	-0.020	0.010	0.010	-0.020	0.010	01010	0.030	0.020	0.040	0.030	0:030	0.030	0.030	0.020	0.000	0.010	0.000	-0.020	0.010	0000	0.030	0.000	0.080	0.000	0.020	0.050	0.020	0.020	0.010	0.040	0.000	0000	050'0-	
CUMULATIVE	DISTANCE	,	0.092	0.010	0.036	0.041	90.0	960.0	0.057	0.057	0.058	0.064	0.00	0.072	0.050	0.054	0.038	0.036	0.051	0.045	960.0	0.054	0.061	0.050	0.057	0.050	0.050	0.051	9000 10000	0.063	2000	0.061	90:03	0.028	0.050	0.051	0.030	0.045	0.041	0.051	0.041	0.070	0.045	0.061	0.045	0.050	0.070	0.051	0.051	0.036	0.061	0.082	
INCREMENTAL	DISTANCE (ft)			0.050			i																	i												0.010								0.014		0.022					0.042	0.022	
	ELEV.	П	7259.33			-		1	П	H		ı	1		Ш	-		П	$ \ $	- 1				1		П	П	-	1	ΙÌ	1		1	7280.13	Н		1	Н				1				-	1	П	- [7280.09	
	EASTING	1 1	- 1	1	u		1		1	ш	- 1	-		!	ŀΙ	- 1	1	П	H	- 1	1			- 1		1	ΙI	- 1		П	- 1	l i			П	25264.04		! !	-	1	ΙI	- 1	1			- 1		П	ı			1	
	NORTHING	26022.43	26022.49	26022.39	26022.40	26022.39	26022.40	26022.41	28022.39	26022.39	26022.38	26022.39	26022.41	28022.39	26022.40	26022.38	28022.41	28022.40	28022.38	26022.39	26022.40	26022.38	26022.37	26022.40	28022.39	26022.39	26022.39	28022.38	26022.38	26022.37	26022.38	26022.37	26022.40	26022.41	26022.38	26022.38	26022.40	26022 39	26022.39	26022.38	26022.39	26022.36	28022.38	26022.37	26022.39	28022.40	26022.39	26022 38	26022.38	26022.40	28022.37	26022.35	2000
LEVEE +	TIME	1/3/96	1/11/96	3/22/86	4/4/96	4/18/96	96/2/5	96/6/9	5/31/96	6/5/96	6/10/96	6/13/96	7/18/96	7/25/96	8/16/96	5/16/97	6/4/97	6/11/97	6/18/97	8/25/97	76/6/7	7/16/97	7/25/97	7/30/97	8/13/97	B/20/97	8/27/97	76/2/6	9/25/97	10/1/97	10/8/97	10/22/97	10/29/97	11/12/97	11/19/97	12/3/97	12/10/97	12/17/97	12/23/97	177/96	1/14/98	1/27/98	2/19/96	3/25/86	4/3/96	4/8/98	4/15/96	4/29/98	26/2/38	5013988	5/28/96	6/3/96	100000

LEVEE1

١	г	•	
l	1	J	
ı	1		
	3	,	
ĺ	ı	J	
		j	

									SLOPE	SLOPE					
			INCREMENTAL	CUMULATIVE	INCREMENTAL	CUMULATIVE	INCREMENTAL	CUMULATIVE	DISPLACEMENT	DISPLACEMENT					
			HORIZONTAL.	HORIZONTAL	VERTICAL	VERTICAL	TOTAL	TOTAL	RER	RATE	SECTOR	INCREMENTAL	SECTOR	CUMULATIVE	CUMULATIVE
NORTHING	EASTING	ELEV.	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DAY	MOVING AVG	(INCREM)	DISPLACEMENT	(CUMULATIVE)	DISPLACEMENT	윰
1			(£)	(4)	(a)	æ	€	€	(ft/dey)	(ft/day)		AZIMUTH		AZIMUTH	ANGLE
28022.35	25264.03	7260.12	0.030	0.082	-0.030	0.740	0.042	0.745	0.004	2000	2	#DIV/0	8	255.96	83.64
26022.35	25284.03	7260.12	0.000	0.082	0.000	0.740	0.000	0.745	0000		1	#DIV/0i	ń	255.96	83.64
26022.36	25264.05	7280.16	0.022	0.070	0.040	0.780	0.046	0.783	9000	0.004	-	78.57	2	iO/A/Q#	84.87
76022.37	25264.06	7280.14	0.014	0.061	-0.020	0.760	0.024	0.762	0.003	0.004	=	45.00	2	170.54	85.42
26022.36	25264.06	7280.10	0.010	1.00.0	-0.040	0.720	0.041	0.723	0.008	0.003	2	iD/AIG#	2	171.87	84.39
26022.36	25264.07	7260.10	0.010	0.073	0.000	0.720	0.010	0.724	0000	0.003	-	000	2	164.05	84.23
26022.36	25284.06	7260.10	0.010	0.071	0:000	0.720	0.010	0.723	0.000	0.002	4	270.00	2	171.87	84.39
26022.36	25264.07	7260.06	0.010	0.073	-0.040	0.680	0.041	0.684	0.003	0.004		0.00	2	164.05	83.89
26022.38	25264.07	7260.16	0.020	0.054	0.100	0.780	0.102	0.782	600:0	0.004	1	#DIVIO#	2	05.86.1	88.05
26022.34	25284.11	7260.11	0.057	0.108	-0.050	0.730	0.075	0.738	600'0	900:0	2	135.00	2	146.31	81.57
26022.35	25264.06	7260.08	0.051	0.081	-0.050	0.680	1,200	0.685	0.009	200.0	4	281.31	2	172.87	83.24
26022.34	25264.08	7260.00	0.022	0.095	-0.060	0.620	0.064	0.627	2000	500.0	2	116.57	2	161.57	81.30
26022.35	25284.07	7260.09	0.014	0.082	0.090	0.710	160.0	0.715	0.013	800.0	4	315.00	2	165.96	83.38
26022.31	25264.09	7260.05	0.045	0.126	-0.040	0.670	0.060	0.682	0000	900'0	2	153.43	2	161.57	79.31
26022.34	25264.06	7260.07	0.042	0.091	0200	0.690	740.0	969:0	0000	0.004	4	315.00	2	173.66	82.52

Golder Associates Inc.

•			_	_		_		1		_				
		HORIZONTAL	CUMULATIVE	NCREMENTAL	CUMULATIVE	INCREMENTAL	CUMULATIVE	DISPLACEMENT	DISPLACEMENT	\$FCTOB	ATMENTAL	GECTOR	CINAL ATIVE	CINE ATIVE
EASTING	ELEV.	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DAY	MOVING AVG	(INCREM)	DISPLACEMENT	(CUMULATIVE)	DISPLACEMENT	OIP
		(¥)	€	Ê	æ	€	€	(fl/day)	(fVday)		AZIMUTH		AZIMUTH	ANGLE
25111.94														
25111.95			0.014		-0.050	0.052	0.052	900:0		2	135.00	2		
25111.96				090.0	0.010	0.062	0.030	0.001		2	135.00		135.00	19.47
20111.95	7050 00			0.060	-0.050	0.061	0.065	0.004		4	270.00			-65.91
25111 96	Ĺ	0.014	2000		-0.020	0.033	0.022	0.009		4	315.00	2	10/AIG#	-63.43
2511192	L			0.000	-0.020	0.020	0.030	200.0			306 87		16.57	46.60
25111.97				0100	0000	9200	0.04	0.00		,	140 19	4 0	149.13	21.80
25111.95	L		0.022	0.020	0000	0.035	0.002	0.004		7 4	315.00	2 6	153.43	000
25111.97			0.036	-0.020		0.028	0.041	0.003			000		123 69	-29.02
25111.95			0.010	0000	-0.020	0.028	0.022	0.003		4	315.00		00 0	-63 43
25111.95	L					0.020	0:030	0.00	0.003	1	'0/VIC#		153 43	4181
25111.93				-0.040		0.045	0.064	0.005	0.003	1	270.00			99.69-
25111.92				0.010		2100	0.055	0.00	0.003	1	315.00			.65 91
25111.94	L		0000	0.040		0.046	0100	9000			26.57			IE:CO-
25893.85 25111.94				0.010	020 0-	2000	8000	0.001	2000	,	O NOT	,	OWICH IOWICH	45.00
	7259.32			0000	0.020	0.000	0.020	0000		7	OWIC#			45.00
25111.94	L		0.040			0.028	0.057	900 0		0	10/AIC#			-45 00
25893.86 25111.91	L	0.042				0.047	20.037	900 0	0.003	4			198.43	-32.31
	7259.35			0:030		0.032	0.037	0.000	0.003			3		15.50
Ш						0.070	0.064	0.004		2	123.69	2	IO/AIC#	-51.34
25893.84 25111.91						0.033	0.073	0.001	0.002	4	288.43	3	225.00	-54.74
						0.046	0:030	0.002		-	63.43	8	206.57	41.81
25111.96			0.028	0.200		0.206	0.182	0.001		_	36.87	_	45.00	81.07
25111.96	7259.53	0.000	0.028	0.010		010.0	0.192	0.002	0.001	-	Ø/AIG#		45.00	81.53
25893.93 25111.91				0.000		0.064	0.201	0.001	0.001	4	308.66	4	333.43	70.55
						0.057	0.181	0.003	0.001	2	135.00	1	63.43	82.92
25893.88 25111.94		0.014	0.010	0.000	0.180	0.014	0.180	0000	0.002	3	225.00	-	:0/AIG#	86.82
			0:030			0.022	0.173	0.001	0.002		i0/AIC#	-	i0/AIG#	66.62
					0.150	0.022	0.153	0.003	0.002	4	270.00	*	341.57	78.10
_			0.030	0.020	0.170	0.022	0.173	0.003	0.002	-	0.00	•	#DIA/0;	79.99
25893.89 25111.94	7259.52	0.010	0.020		0.180	0.014	0.181	0.001	0.002	2	#DIA/0i	1	#DIA/0;	83.66
			0.022			0:030	0.162	0.002	#DIA/0i	2	116.57		26.57	82:04
25893.90 25111.93	7259.51	0.036				0.037	0.173	0.002	#DIA/0i	4	303.69	4	341.57	79.46
			0.030			0.022	0.153	0 003	i0/AIC#	1	0.00	-	i0/AIC#	78.69
25111.94						0000	0.153	#DIV/OI	i0/AIQ#	-	i0/AIQ#		:0/AIQ#	69.82
25111.93	7259.49	0.014	0.041	0.000	0.150	0.014	0.156	0.000	10/AIQ#	4	315.00	*	345.96	74.63
25111.93			0.041	0.000	Ì	0000	0.156	0:000	#DIA/0i	-	#DIV/0;	4	345.96	74.63
						0.033	0.140	0.003	#DIV/0!	2	161.57		#DIA/0i	85.91
25893.89 25111.92	7259.50	0.022		0.020		0.030	0.162	0.003	0.002	4	296.57	4	315.00	79.98
	_					0.020	0.161	0.000	0.002		00:00		#DIA/0	82.87
_			0.014			0.033	0.191	0.005	0.003	6	225.00	4	315.00	85.74
25893.89 25111.94	7259.50	0.014		-0.030		0.033	0.161	0.004	0.003	٦	45.00		#DIA/0	82.87
25111.93	\downarrow					7100	0.153	0.001	0.003	1	315.00	4	341.57	78.10
20093.09 20111.93		0.00	0.022	-0.030	0.120	0.032	0.122	0.005	0.003	2	io/AlQ#	4	333.43	79.44
25893.90 25111.93				0000	0.150	0.032	0.153	0.004	0.002		10/AIO#	4	341.57	78.10
L					00.100	0.000	0.153	0.000	0.002		:0/AIC#		341.57	01.87
25893.90 25111.93	ļ	3			0.130	0000	0.133	100.0	0.002		יטיאום#		341.57	77.97
25893.88 25111,94	L	!		0000	0.140	2000	0 140	0000	0.00	ľ	153.43		10/10#	95.01
25111.96	L		0.028	0.030	0.170	20.0	0 172	0 005	0.000		26.57		45.00	80.55
25111.95	L		0.032	-0.030	0.140	0.033	0.144	0.004		4	315.00		71.57	77.27
25111.94	7259.51	0.010	0:030	0.030	0.170	0.032	0.173	0.004	0.003	4	270.00	-	i0/AIG#	79.99
25111.95		0.010	0.032	-0.010	0.160	0.014	0.163	0.002			00:0	-	71.57	78.82
25111.95	l		0.032	0.010	0.170	0.010	0.173	0.001	0.002		D/AIG#		71.57	79.46
25111.94	7259.51	0.010	0:030	0.000	0.170	0.010	0.173	0:00	0.002	4	270.00		#DIV/0i	79.99
25111.95		0.014	0.022	0.010	0.160	0.017	0.162	0.002	0.001	2	135.00		63.43	82.04

LEVEE2

?	
ш	
⋝	
쁘	

		CUMULATIVE	۵i۵	ANGLE	79.99	80.55	85.60	85.24	79.46	86.42	76.48	85.60	85.51	82.92	70.53	82.51	80,24	85.51	80.24	86.42	85.91	85.91	86 19	81.52	80.93	79.98	81.07	#OIV/0!	81.07	73.28	81.95	82.41	85.24	76.74	74.21	182.51
_			DISPLACEMENT	AZIMUTH	i0/AIC#	45.00	#DIA/0i	45.00	341.57	:0/AIG#	326.31	#DIA/0i	45.00	63.43	315.00	333.43	296.57	45.00	296.57	#DIV/Oi	270.00	270.00	00:0	26.57	26.57	45.00	45.00	#DIV/0!	45.00	123.69	45.00	00:0	00.00	135.00	135.00	9
_			(CUMULATIVE) DISP		-	1	+	-	4	-	4	1	1	-	4	4	4	-	4	1	4	₹	-	1	1	+	-	-	ļ	2	~	1	-	2	2	00:0
_			Ę	AZIMUTH	#DIV/0!	116.57	206.57	0.00	315.00	153.43	315.00	135.00	0.00	#DIV/0i	284.04	116.57	225.00	0.00	270.00	0.00	225.00	#DIA/0i	0.00	45.00	#DIV/0!	270.00	#DIA/Gi	225.00	45.00	165.96	326.31	135.00	270.00	153,43	#DIV/0!	-
			(INCREM) DISPLA	AZ	1	2	9	1	4	2	4	2	1	-	4	2	ю	-	4	-	3	F	-	1	•	4	-	8	1	2	4	2	4	2	-	772.09
SLOPE	ENT	-	-\ 9\	(ft/day)	100.0	0.001	0.002	0.002	0.002	0.002	0:005	0.003	0.002	0.003	0.005	0.005	0.005	0.007	900:0	0.005	0.004	0.003	0.002	0.001	0.002	0.002	0.002	0.003	0.005	0.005	900:0	9000	0.005	0.003	0.002	0 001
SLOPE	NEN4			(fl/day)	0.002	0.000	0.001	0.004	0000	0.002	0.001	0.003	900'0	0.000	200.0	900:0	200.0	200.0	200.0	0.004	0.003	0.000	0.001	0000	0.001	0.005	0.001	0.005	0.003	0.011	0.004	900'0	0.004	0.000	000:0	0.001
	Ä.	TOTAL	DISTANCE	(u)	0.173	0.172	0.130	0.171	0.173	0.160	0.154	0.130	0.181	0.181	0.127	0.171	0.132	0.181	0.132	0.160	0.140	0.140	0.150	0.152	0.142	0.081	0.091	0.150	0.182	0.125	0.101	0.151	0.120	0.123	0.104	0.133
	TAL	TOTAL	DISTANCE	(H)	0.022	0.022	0.046	0.041	0.028	0.024	0:030	0.035	0.051	0.010	0.073	0.055	0.042	950.0	0.058	90.036	0.024	0.000	0.022	0.014	0.010	0.061	0.010	0.062	0.041	0.073	0.041	0.052	0.032	0.022	0.020	0:030
	ū		Dis	æ	0.170	0.170	0.130	0.170	0.170	0.160	0.150	0.130	0.180	0.180	0.120	0.170	0.130	0.180	0.130	0.160	0.140	0.140	0.150	0.150	0.140	0.080	060.0	0.150	0.180	0.120	0.100	0.150	0.120	0.120	0.100	0 130
	INCREMENTAL	VERTICAL	DISTANCE	(£)	0.010	0.000	-0.040	0.040	0.000	-0.010	-0.010	-0.020	0.050	0000	090:0-	0.050	-0.040	0.050	-0.050	0.030	-0.020	0.000	0.010	0.000	-0.010	-0.060	0.010	090'0	0.030	090:0-	-0.020	0.050	-0.030	0.000	-0.020	0.030
			Ä	Û	0.030	0.028	0.010	0.014	0.032	0.010	0.036	0.010	0.014	0.022	0.042	0.022	0.022	0.014	0.022	0.010	0.010	0.010	0.010	0.022	0.022	0.014	0.014	0.000	0.028	90.036	0.014	0.020	0.010	0.028	0.028	0:030
	INCREMENTAL	HORIZONTAL	DISTANCE	(#)	0.020	0.022	0.022	0.010	0.028	0.022	0.028	0.028	0.010	0.010	0.041	0.022	0.014	0:030	0:030	0.020	0.014	0.000	0.020	0.014	0.000	0.010	0.000	0.014	0.028	0.041	0.036	0.014	0.010	0.022	0.000	0000
٠.			ELEV.		7259.51	7259.51	7259.47	7259.51	7259.51	7259.50	7259.49	7259.47	7259.52	7259.52	7259.46	7259.51	7259.47	7259.52	7259.47	7259.50	7259.48	7259.48	7259.49	7259.49	7259.48	7259.42	7259.43	7259.49	7259.52	7259.46	7259.44	7259.49	7259.46	7259.46	7259.44	7259.47
	-		EASTING		25111.94	25111.96	25111.94	25111.95	25111.93	25111.94	25111.92	25111.94	25111.95	25111.95	25111.91	25111.93	25111.92	25111.95	25111.92	25111.94	25111.93	25111.93	25111.95	25111.96	25111.96	25111.95	25111.95	25111.94	25111.96	25111.97	25111.95	25111.96	25111.95	25111.96	25111.96	25111.96
,			NORTHING		25893.90	25893.89	25893.88	25893.88	25893.90	25893.88	25893.90	25893.88	25893.88	25893.89	25893.90	25893.89	25893.88	25893.88	25893.88	25893.88	25893.87	25893.87	25893.87	25893.88	25893.88	25893.88	25893.88	25893.87	25893.89	25893.85	25893.88	25893.87	25893.87	25893.85	25893.85	25893.85
	LEVEE 2		TIME		2/3/98	2/19/98	3/25/98	4/3/98	4/8/98	4/15/98	4/22/98	4/29/98	5/7/98	5/13/98	5/21/98	5/28/98	6/3/98	6/10/98	6/17/98	6/24/98	7/1/98	2/8/38	7/15/98	7/22/98	B6/6Z/Z	8/11/98	8/19/98	8/31/98	9/11/8	9/16/98	9/22/98	9/30/98	10/7/98	3/3/88	5/27/99	7/23/99

Inc.
ociates
r Ass
Solde

7				INCREMENTAL	TOTA II WILL	ATMENDED	EVITA III ATIVE	NOSEMENTA	C. Bully ATTIVE	SLOPE	SLOPE DISPLACEMENT					
	Citination	9		HORIZONTAL	HORIZONTAL	VERTICAL	VERTICAL	TOTAL			RATE	SECTOR	INCREMENTAL		CUMULATIVE	CUMULATIVE
ME E	SOK HING	EASTING	ELEV.	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DISTANCE (ft)	DISTANCE (#)	(ft/dav)	MOVING AVG	(NCREM)	DISPLACEMENT	(CUMULATIVE)	DISPLACEMENT	ANGLE
1/3/96	26100.77	25184.32	7309.13													
1/11/96	26100.78	25184.32	7309.10	0.010	0.010	-0.030	-0.030	0.032	0.032	0.004		1	ID/AIG#	1	IO/AIC#	
2/8/96	26100.78	25184.32	7309.10	0.000	0.010	0.000	-0.030	0.000	0.032	0.000		-	#DIV/0i	-	#DIN/0i	-71.57
2/15/96	26100.79	25184.31	7309.11	0.014	0.022	0.010	-0.020	0.017	0.030	0.000		4	315.00	4	333.43	-41.81
2/22/96	26100.80	25184.31	7309.12	0.010	0.032	0.010	-0.010	0.014	0.033	000:0	0.001	F	#DIV/0i	4	341.57	-17,55
2/29/96	26100.77	25184.34	7309.10	0.042	0.020	-0.020	-0.030	0.047	0.036	0.000	0.001	2	135.00		0.00	-56.31
3/1/96	26100.80	25184.29	7309.10	0.058	0.042	0.000	-0.030	0.058	0.052	0.002	0.002	4	300.96	4	315.00	-35.26
3/14/96	26100.75	25184.35	7309.11	0.078	960'0	0.010	-0.020	0.079	0.041	0.002	0.002	2	129.81	2	123.69	-29.02
3/22/96	26100.76	25184.33	7309.12	0.022	0.014	0.010	-0.010	0.024	0.017	0.003	0.002	4	296.57	2.	135.00	-35.26
3/28/96	26100.78	25184.31	7309.09	0.028	0.014	-0.030	-0.040	0.041	0.042	0.004	0.002	4	315.00	4	315.00	-70.53
4/4/96	26100.79	25184.32	7309.10	0.014	0.020	0.010	-0.030	0.017	0.036	0.001	0.002	-	45.00	-	i0/AIQ#	-56.31
4/18/96	26100.78	25184.33	7309.10	0.014	0.014	0.000	-0.030	0.014	0.033	0000	0.002	2	135.00	-	45.00	-64.76
4/25/96		25184.30	7309.10	00:030	0.022	0.000	-0.030	0.030	0.037	0.001	0.001	4	270.00	4	296.57	-53.30
5/2/96	26100.79	25184.29	7309.11	910.0	980'0	0,010	-0.020	0.017	0.041	0.001	0.001	4	315.00	4	303.69	-29.02
96/6/9	-	25184.29	7309.08	0000	950.0	0.030	090.0-	0.030	0.062	0.003	0.001	F	i0/AIQ#	4	303.69	-54.20
5/31/96	26100.78	25184.27	7309.08	0.022	0.051	0.000	-0.050	0.022	0.071	0.000	100.0	3	206.57	4	281.31	44.44
6/2/96	26100.78	25184.27	7309.08	0000	0.051	0000	-0.050	0000	0.071	0000	0.001	F	i0/AIQ#	4	281.31	44.44
6/10/96	26100.77	25184.29	7309,11	0.022	0.030	0.030	-0.020	0.037	0.036	0.007	0.005	2	116.57	4	270.00	-33.69
6/13/96	26100.78	25184.26	7309.10	0.032	0.061	-0.010	-0.030	0.033	0.068	0.011	0.005	4		4	279.46	-26.25
7/11/96	26100.76	25184.26	7309.06	0.020	0.061	-0.040	-0.070	0.045	0.093	0.00	0.004	2	#DIN/0i	3	189,46	-49.01
7/18/96	26100.77	25184.27	7309.11	0.014	0.050	0.050	-0.020	0.052	0.054	900:0	0.004	-	45.00	4	270.00	-21.80
7/25/96	26100.76	25184.25	7309.10	0.022	1200	-0.010	-0.030	0.024	720.0	0.003	0.004	6		3	188.13	-22.99
8/16/96	26100.78	25184.24	7309.09	0.022	0.081	-0.010	-0.040	0.024	0.090	0.001	0.002	4	333.43	4	277.13	-26.39
9/12/96	26100.77	25184.27	7309.09	0.032	0.050	0.000	-0.040	0.032	0.064	0.001	0.003	2	108.43	4	270.00	-38.66
9/19/96	26100.79	25184.26	7309.05	0.022	0.063	.0.040	-0.080	0.046	0.102	0.005	0.002	4	333.43	4	288.43	-51.67
9/26/96	26100.77	25184.25	7309.06	0.022	0.070	0.010	-0.070	0.024	0.099	0.000	0.002	8	243.43	4	270.00	-45.00
10/2/96	26100.76	25184.26	7309.08	0.014	0.061	0.020	-0.050	0.024	0.079	0.003	0.002	2	135.00	8	189.46	-39.42
10/10/96	26100.75	_	7309.08	0.022	0.082	0.000	-0.050	0.022	960'0	0.002	0.002	င်	206.57	3		-31.23
10/24/96	26100.76		7309.06	0.010	0.081	-0.020	-0.070	0.022	0.107	0.001	0.001		#DIA/0i	3		-40.97
11/18/96	26100.76		7309.03	0.020	0.061	-0.030	-0.100	960'0	0.117	0000	0.002		0.00	8	189.46	-58.69
5/16/97	_		7309.01	0,040	0.100	-0.020	-0.120	0.045	0.157	00:00	0.002	4	270.00	3	185.71	-50.05
5/22/97	_	25184.24	7309.01	0,020	0.081	0.000	-0.120	0.020	0.145	0.002	0.002		00:00	İ		-56.10
6/4/97	26100.77	_	7309.00	0.032	0.110	-0.010	-0.130	0.033	0.170	0.002	0.002	4	288.43	4		-49.76
6/11/97	26100.76	_	7309.00	0.041	0.071	0.000	-0.130	0.041	0.148	0.003	0.003	2	104:04	8	188.13	-61.46
/6/9C/9	67:001.07	12.48162	1908.01	0.020	211.0	0.00	07.170	10.00	0.164	0.002	0.003	1	300.87	4	280.30	-47.03
TOTOL	26100.10	25.101.52	7200.37	40.0	0.16	2000	0.150	0.042	0070	9000	500	٦	00.027		01.452	94.44
70/0/7	26100.95	_	7308 90	/6. O	0.181	0000	0 140	0.197	0.242	0.000	0.000		PG-SG	4 4	353.66	07.75
7116/97	26100.79	_	7309.01	0.179	0.102	0.020	-0.120	0.180	0 157	0010	0 00		243.43	4	281.31	-49.64
7/25/97	26100.78	_	7308.97	0.014	0.091	-0.040	-0.160	0.042	0.184	0.003	0.004	7	135.00	4		-60.49
7/30/97	26100.B0	-	7308.98	0.028	0.114	0.010	-0.150	0:030	0.188	0.001	0.003	4	315.00	4		-52.76
16/9/8	26100.79	25184.21	7308.98	0.010	0.112	0.000	-0.150	0.010	0.187	00:00	0.003	2	#DIV/0i	4	280.30	-53.30
8/13/97	26100.79	25184.19	7308.97	0.020	0.132	-0.010	-0.160	0.022	0.207	0.003	0.002	7		4		-50.58
8/20/97	26100.79	_	7308.99	0000	0.132	0.020	-0.140	0.020	0.192	0.002	0.002	_	#DIV/0I	4		-46.79
8/27/97	26100.79		7308.99	0000	0.132	0.000	0.140		0.192	0000	0.002	-	#DIV/O	4		-46.79
9/2/97	26100.79	_	7309.00	0.010	0.122	0.010	-0.130		0.178	0.002	0.005	_	0.00			-46.90
9/10/97	26100.79	-	7308.98	0.020	0.141	0.020	-0.150		0.206	0.004	0.002	4	270.00			-46.69
18/22/8	26100.78	25154.20	1308.91	0.020	07.120	0.00	0.160	0.024	0.200	0.000	100.0	7	716.57	4	274.76	-53.03
10/0/01	26100.70	-	7308.30	0.020	0.140	0.00	-0.130	0.062	002.0	10.00	0.002	7	7			140.90
100000	26100.70	-	7908.92	0.000	0.120	0000	-0.210	0.003	0.042	900.0	0.002		200.00			51.46
10/22/67	26100.79	25,194, 27	7308.94	0.032	0.131	0.020		0.037	0.225	0.000	0.002	4 .		7	27 77	-51.46
10/29/97	26100.80		7308.95	0.028	0.143	0.010	-0.180	0000	0.230	10000	0.002	4	315.00			-51.50
11/5/97	26100.81		7308.95	0.014	0.155	0.000	-0.180	0.014	0.238	0.001	0.001	4	315.00	4	284.93	-49.22
11/12/97	26100.81		7308.95	0.010	0.146	0000	-0.180	0.010	0.232	0.001	0.002		00:0	4	285.95	-51.03

LEVEE3

?	
۲	
ú	
_	

0.002 0.003 0.003 0.003 0.003 0.004 0.002		0000 0000 0000 0000 0000 0000 0000 0000 0000	0.215 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.004	0.022 0.215 0.002 0.002 0.003	0.160 0.022 0.215 0.002 -0.150 0.014 0.206 0.001 -0.150 0.030 0.187 0.003 -0.210 0.070 0.252 0.002 -0.200 0.037 0.238 0.002 -0.200 0.022 0.247 0.002 -0.700 0.022 0.247 0.002 -0.700 0.022 0.240 0.004 -0.70 0.022 0.240 0.004 -0.70 0.022 0.240 0.004 -0.70 0.022 0.240 0.004 -0.70 0.022 0.240 0.004 -0.70 0.022 0.203 0.001 -0.10 0.022 0.182 0.004 -0.150 0.042 0.184 0.004 -0.150 0.042 0.224 0.004 -0.150 0.042 0.224 0.004 -0.150 0.014 0.224 0.001 -0.120	0.020 -0.160 0.022 0.215 0.002 0.010 -0.160 0.014 0.206 0.001 0.000 -0.150 0.034 0.236 0.001 0.000 -0.150 0.030 0.187 0.003 0.020 -0.160 0.037 0.238 0.002 0.020 -0.100 0.037 0.247 0.002 0.020 -0.100 0.022 0.247 0.002 0.030 -0.170 0.022 0.247 0.002 0.030 -0.170 0.022 0.247 0.002 0.030 -0.170 0.022 0.247 0.002 0.000 -0.170 0.022 0.240 0.001 0.000 -0.170 0.022 0.240 0.001 0.000 -0.170 0.022 0.182 0.001 0.000 -0.150 0.042 0.187 0.001 0.000 -0.150 0.044 0.024 0.004 <t< th=""><th>0,143 0,020 -0,160 0,021 0,215 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,022 0,022 0,022 0,002 0,022 0,002 <t< th=""><th>0.010 0.143 0.020 -0.160 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0015 0.0016 0.014 0.0216 0.0145 0.0216 0.0216 0.0017 0.022 0.002 0.0</th><th>7308 95 0.010 0.143 0.020 -0.160 0.021 0.215 0.021 7308 96 0.010 0.141 0.010 -0.160 0.044 0.002 0.015 0.002 7308 98 0.030 0.142 0.000 -0.160 0.070 0.187 0.003 7308 92 0.022 0.138 0.030 -0.160 0.071 0.228 0.003 7308 93 0.022 0.146 -0.020 -0.100 0.022 0.022 0.003 7308 93 0.010 0.146 -0.020 -0.200 0.022 0.023 0.002 7308 94 0.014 0.138 0.000 -0.170 0.022 0.201 0.001 7308 96 0.022 0.022 0.020 0.002 0.002 0.001 7308 96 0.022 0.020 0.000 -0.170 0.022 0.001 7308 96 0.022 0.022 0.000 -0.100 0.022 0.001 7308 96<</th><th>7308 97 0.010 0.143 0.020 -0.160 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.021 0.002 0.014 0.010 0.014 0.022 0.022 0.003 0.014 0.003 0.014 0.003 0.014 0.003 0.014 0.003 0.014 0.003 0.018 0.003 0.018 0.003 0.018 0.003 0.018 0.003 0.003 0.022 0.003</th></t<></th></t<>	0,143 0,020 -0,160 0,021 0,215 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,022 0,022 0,022 0,002 0,022 0,002 <t< th=""><th>0.010 0.143 0.020 -0.160 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0015 0.0016 0.014 0.0216 0.0145 0.0216 0.0216 0.0017 0.022 0.002 0.0</th><th>7308 95 0.010 0.143 0.020 -0.160 0.021 0.215 0.021 7308 96 0.010 0.141 0.010 -0.160 0.044 0.002 0.015 0.002 7308 98 0.030 0.142 0.000 -0.160 0.070 0.187 0.003 7308 92 0.022 0.138 0.030 -0.160 0.071 0.228 0.003 7308 93 0.022 0.146 -0.020 -0.100 0.022 0.022 0.003 7308 93 0.010 0.146 -0.020 -0.200 0.022 0.023 0.002 7308 94 0.014 0.138 0.000 -0.170 0.022 0.201 0.001 7308 96 0.022 0.022 0.020 0.002 0.002 0.001 7308 96 0.022 0.020 0.000 -0.170 0.022 0.001 7308 96 0.022 0.022 0.000 -0.100 0.022 0.001 7308 96<</th><th>7308 97 0.010 0.143 0.020 -0.160 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.021 0.002 0.014 0.010 0.014 0.022 0.022 0.003 0.014 0.003 0.014 0.003 0.014 0.003 0.014 0.003 0.014 0.003 0.018 0.003 0.018 0.003 0.018 0.003 0.018 0.003 0.003 0.022 0.003</th></t<>	0.010 0.143 0.020 -0.160 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0015 0.0016 0.014 0.0216 0.0145 0.0216 0.0216 0.0017 0.022 0.002 0.0	7308 95 0.010 0.143 0.020 -0.160 0.021 0.215 0.021 7308 96 0.010 0.141 0.010 -0.160 0.044 0.002 0.015 0.002 7308 98 0.030 0.142 0.000 -0.160 0.070 0.187 0.003 7308 92 0.022 0.138 0.030 -0.160 0.071 0.228 0.003 7308 93 0.022 0.146 -0.020 -0.100 0.022 0.022 0.003 7308 93 0.010 0.146 -0.020 -0.200 0.022 0.023 0.002 7308 94 0.014 0.138 0.000 -0.170 0.022 0.201 0.001 7308 96 0.022 0.022 0.020 0.002 0.002 0.001 7308 96 0.022 0.020 0.000 -0.170 0.022 0.001 7308 96 0.022 0.022 0.000 -0.100 0.022 0.001 7308 96<	7308 97 0.010 0.143 0.020 -0.160 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.021 0.002 0.014 0.010 0.014 0.022 0.022 0.003 0.014 0.003 0.014 0.003 0.014 0.003 0.014 0.003 0.014 0.003 0.018 0.003 0.018 0.003 0.018 0.003 0.018 0.003 0.003 0.022 0.003
	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		0.206 0.187 0.238 0.247 0.240 0.240 0.240 0.298 0.192 0.192 0.193 0.194 0.198 0.198 0.238 0.238 0.238 0.238 0.238	0.014 0.206 0.020 0.187 0.007 0.256 0.007 0.256 0.007 0.258 0.002 0.210 0.002 0.210 0.002 0.197 0.004 0.187 0.004 0.187 0.004 0.187 0.004 0.187 0.004 0.187 0.004 0.187 0.004 0.187 0.004 0.187 0.004 0.187 0.007 0.018 0.001 0.188 0.019 0.189 0.019 0.189 0.019 0.189 0.019 0.189 0.019 0.189 0.019 0.224 0.019 0.238	0.150 0.014 0.206 -0.150 0.030 0.187 -0.160 0.070 0.252 -0.180 0.037 0.238 -0.200 0.032 0.247 -0.200 0.014 0.240 -0.170 0.022 0.210 -0.170 0.022 0.210 -0.170 0.022 0.187 -0.170 0.022 0.182 -0.190 0.073 0.284 -0.150 0.045 0.187 -0.150 0.046 0.187 -0.150 0.046 0.184 -0.150 0.046 0.184 -0.170 0.046 0.184 -0.170 0.046 0.224 -0.170 0.046 0.224 -0.170 0.093 0.146 -0.170 0.094 0.224 -0.170 0.093 0.146 -0.170 0.093 0.146 -0.170 0.093 0.224 <td>0,010 -0,150 0,014 0,206 0,000 -0,150 0,030 0,187 0,006 -0,150 0,030 0,187 0,020 -0,150 0,037 0,236 0,020 -0,180 0,037 0,236 0,020 -0,200 0,074 0,237 0,020 -0,170 0,022 0,240 0,030 -0,170 0,022 0,210 0,000 -0,170 0,022 0,203 0,000 -0,170 0,022 0,192 0,000 -0,170 0,022 0,192 0,000 -0,170 0,022 0,192 0,000 -0,150 0,043 0,187 0,000 -0,150 0,044 0,184 0,000 -0,150 0,041 0,182 0,000 -0,170 0,041 0,182 0,040 -0,130 0,075 0,148 0,040 -0,130 0,075 0,148 0,040<!--</td--><td>0,141 0,010 0,180 0,044 0,206 0,112 0,000 -0,180 0,030 0,187 0,138 0,000 -0,180 0,070 0,282 0,146 0,020 -0,180 0,070 0,282 0,146 -0,020 -0,200 0,072 0,287 0,133 0,000 -0,170 0,022 0,240 0,124 0,000 -0,170 0,022 0,210 0,080 0,000 -0,170 0,022 0,20 0,090 0,000 -0,170 0,022 0,20 0,090 0,000 -0,170 0,022 0,20 0,090 0,000 -0,180 0,073 0,20 0,112 0,000 -0,180 0,073 0,20 0,132 0,040 -0,180 0,044 0,180 0,134 0,040 -0,180 0,044 0,184 0,134 0,040 -0,180 0,044 0,184 0,1</td><td>0.010 0.141 0.010 0.150 0.014 0.206 0.030 0.112 0.000 -0.150 0.030 0.187 0.032 0.139 0.060 -0.160 0.070 0.256 0.032 0.156 0.030 -0.180 0.070 0.256 0.010 0.146 -0.020 -0.200 0.072 0.236 0.010 0.146 -0.020 -0.200 0.022 0.246 0.012 0.124 0.030 -0.170 0.022 0.240 0.022 0.020 -0.170 0.022 0.240 0.022 0.030 -0.170 0.022 0.20 0.022 0.030 -0.170 0.022 0.20 0.072 0.030 -0.170 0.022 0.18 0.072 0.040 -0.180 0.042 0.18 0.042 0.040 -0.190 0.042 0.18 0.042 0.041 -0.190 0.042 0.18 <td>7308.96 0.010 0.141 0.010 0.150 0.044 0.206 7308.98 0.030 0.112 0.000 -0.150 0.030 0.187 7308.92 0.032 0.112 0.000 -0.160 0.070 0.526 7308.92 0.022 0.156 0.020 -0.210 0.070 0.226 7308.93 0.014 0.146 -0.020 -0.200 0.027 0.246 7308.93 0.014 0.134 0.000 -0.200 0.022 0.246 7308.94 0.017 0.124 0.000 -0.170 0.022 0.20 7308.95 0.017 0.124 0.000 -0.170 0.022 0.20 7308.96 0.022 0.020 -0.170 0.022 0.18 7308.96 0.012 0.145 -0.010 -0.180 0.012 0.18 7308.96 0.014 0.124 0.040 -0.180 0.042 0.18 7308.96 0.014</td><td>25184.18 7308.99 0,010 0,141 0,010 -0,150 0,014 0,006 25184.21 7308.98 0,039 0,112 0,000 -0,150 0,030 0,187 25184.19 7308.92 0,032 0,145 0,000 -0,160 0,070 0,282 25184.19 7308.92 0,010 0,146 0,000 -0,160 0,070 0,282 25184.19 7308.92 0,010 0,146 0,020 -0,190 0,072 0,287 25184.19 7308.92 0,010 0,146 0,020 -0,190 0,270 0,287 25184.19 7308.92 0,010 0,146 0,020 -0,170 0,022 0,240 25184.19 7308.96 0,010 0,120 0,000 -0,170 0,022 0,201 25184.19 7308.96 0,012 0,100 -0,190 0,170 0,022 0,202 25184.19 7308.96 0,012 0,100 -0,190 -0,190 <</td></td></td>	0,010 -0,150 0,014 0,206 0,000 -0,150 0,030 0,187 0,006 -0,150 0,030 0,187 0,020 -0,150 0,037 0,236 0,020 -0,180 0,037 0,236 0,020 -0,200 0,074 0,237 0,020 -0,170 0,022 0,240 0,030 -0,170 0,022 0,210 0,000 -0,170 0,022 0,203 0,000 -0,170 0,022 0,192 0,000 -0,170 0,022 0,192 0,000 -0,170 0,022 0,192 0,000 -0,150 0,043 0,187 0,000 -0,150 0,044 0,184 0,000 -0,150 0,041 0,182 0,000 -0,170 0,041 0,182 0,040 -0,130 0,075 0,148 0,040 -0,130 0,075 0,148 0,040 </td <td>0,141 0,010 0,180 0,044 0,206 0,112 0,000 -0,180 0,030 0,187 0,138 0,000 -0,180 0,070 0,282 0,146 0,020 -0,180 0,070 0,282 0,146 -0,020 -0,200 0,072 0,287 0,133 0,000 -0,170 0,022 0,240 0,124 0,000 -0,170 0,022 0,210 0,080 0,000 -0,170 0,022 0,20 0,090 0,000 -0,170 0,022 0,20 0,090 0,000 -0,170 0,022 0,20 0,090 0,000 -0,180 0,073 0,20 0,112 0,000 -0,180 0,073 0,20 0,132 0,040 -0,180 0,044 0,180 0,134 0,040 -0,180 0,044 0,184 0,134 0,040 -0,180 0,044 0,184 0,1</td> <td>0.010 0.141 0.010 0.150 0.014 0.206 0.030 0.112 0.000 -0.150 0.030 0.187 0.032 0.139 0.060 -0.160 0.070 0.256 0.032 0.156 0.030 -0.180 0.070 0.256 0.010 0.146 -0.020 -0.200 0.072 0.236 0.010 0.146 -0.020 -0.200 0.022 0.246 0.012 0.124 0.030 -0.170 0.022 0.240 0.022 0.020 -0.170 0.022 0.240 0.022 0.030 -0.170 0.022 0.20 0.022 0.030 -0.170 0.022 0.20 0.072 0.030 -0.170 0.022 0.18 0.072 0.040 -0.180 0.042 0.18 0.042 0.040 -0.190 0.042 0.18 0.042 0.041 -0.190 0.042 0.18 <td>7308.96 0.010 0.141 0.010 0.150 0.044 0.206 7308.98 0.030 0.112 0.000 -0.150 0.030 0.187 7308.92 0.032 0.112 0.000 -0.160 0.070 0.526 7308.92 0.022 0.156 0.020 -0.210 0.070 0.226 7308.93 0.014 0.146 -0.020 -0.200 0.027 0.246 7308.93 0.014 0.134 0.000 -0.200 0.022 0.246 7308.94 0.017 0.124 0.000 -0.170 0.022 0.20 7308.95 0.017 0.124 0.000 -0.170 0.022 0.20 7308.96 0.022 0.020 -0.170 0.022 0.18 7308.96 0.012 0.145 -0.010 -0.180 0.012 0.18 7308.96 0.014 0.124 0.040 -0.180 0.042 0.18 7308.96 0.014</td><td>25184.18 7308.99 0,010 0,141 0,010 -0,150 0,014 0,006 25184.21 7308.98 0,039 0,112 0,000 -0,150 0,030 0,187 25184.19 7308.92 0,032 0,145 0,000 -0,160 0,070 0,282 25184.19 7308.92 0,010 0,146 0,000 -0,160 0,070 0,282 25184.19 7308.92 0,010 0,146 0,020 -0,190 0,072 0,287 25184.19 7308.92 0,010 0,146 0,020 -0,190 0,270 0,287 25184.19 7308.92 0,010 0,146 0,020 -0,170 0,022 0,240 25184.19 7308.96 0,010 0,120 0,000 -0,170 0,022 0,201 25184.19 7308.96 0,012 0,100 -0,190 0,170 0,022 0,202 25184.19 7308.96 0,012 0,100 -0,190 -0,190 <</td></td>	0,141 0,010 0,180 0,044 0,206 0,112 0,000 -0,180 0,030 0,187 0,138 0,000 -0,180 0,070 0,282 0,146 0,020 -0,180 0,070 0,282 0,146 -0,020 -0,200 0,072 0,287 0,133 0,000 -0,170 0,022 0,240 0,124 0,000 -0,170 0,022 0,210 0,080 0,000 -0,170 0,022 0,20 0,090 0,000 -0,170 0,022 0,20 0,090 0,000 -0,170 0,022 0,20 0,090 0,000 -0,180 0,073 0,20 0,112 0,000 -0,180 0,073 0,20 0,132 0,040 -0,180 0,044 0,180 0,134 0,040 -0,180 0,044 0,184 0,134 0,040 -0,180 0,044 0,184 0,1	0.010 0.141 0.010 0.150 0.014 0.206 0.030 0.112 0.000 -0.150 0.030 0.187 0.032 0.139 0.060 -0.160 0.070 0.256 0.032 0.156 0.030 -0.180 0.070 0.256 0.010 0.146 -0.020 -0.200 0.072 0.236 0.010 0.146 -0.020 -0.200 0.022 0.246 0.012 0.124 0.030 -0.170 0.022 0.240 0.022 0.020 -0.170 0.022 0.240 0.022 0.030 -0.170 0.022 0.20 0.022 0.030 -0.170 0.022 0.20 0.072 0.030 -0.170 0.022 0.18 0.072 0.040 -0.180 0.042 0.18 0.042 0.040 -0.190 0.042 0.18 0.042 0.041 -0.190 0.042 0.18 <td>7308.96 0.010 0.141 0.010 0.150 0.044 0.206 7308.98 0.030 0.112 0.000 -0.150 0.030 0.187 7308.92 0.032 0.112 0.000 -0.160 0.070 0.526 7308.92 0.022 0.156 0.020 -0.210 0.070 0.226 7308.93 0.014 0.146 -0.020 -0.200 0.027 0.246 7308.93 0.014 0.134 0.000 -0.200 0.022 0.246 7308.94 0.017 0.124 0.000 -0.170 0.022 0.20 7308.95 0.017 0.124 0.000 -0.170 0.022 0.20 7308.96 0.022 0.020 -0.170 0.022 0.18 7308.96 0.012 0.145 -0.010 -0.180 0.012 0.18 7308.96 0.014 0.124 0.040 -0.180 0.042 0.18 7308.96 0.014</td> <td>25184.18 7308.99 0,010 0,141 0,010 -0,150 0,014 0,006 25184.21 7308.98 0,039 0,112 0,000 -0,150 0,030 0,187 25184.19 7308.92 0,032 0,145 0,000 -0,160 0,070 0,282 25184.19 7308.92 0,010 0,146 0,000 -0,160 0,070 0,282 25184.19 7308.92 0,010 0,146 0,020 -0,190 0,072 0,287 25184.19 7308.92 0,010 0,146 0,020 -0,190 0,270 0,287 25184.19 7308.92 0,010 0,146 0,020 -0,170 0,022 0,240 25184.19 7308.96 0,010 0,120 0,000 -0,170 0,022 0,201 25184.19 7308.96 0,012 0,100 -0,190 0,170 0,022 0,202 25184.19 7308.96 0,012 0,100 -0,190 -0,190 <</td>	7308.96 0.010 0.141 0.010 0.150 0.044 0.206 7308.98 0.030 0.112 0.000 -0.150 0.030 0.187 7308.92 0.032 0.112 0.000 -0.160 0.070 0.526 7308.92 0.022 0.156 0.020 -0.210 0.070 0.226 7308.93 0.014 0.146 -0.020 -0.200 0.027 0.246 7308.93 0.014 0.134 0.000 -0.200 0.022 0.246 7308.94 0.017 0.124 0.000 -0.170 0.022 0.20 7308.95 0.017 0.124 0.000 -0.170 0.022 0.20 7308.96 0.022 0.020 -0.170 0.022 0.18 7308.96 0.012 0.145 -0.010 -0.180 0.012 0.18 7308.96 0.014 0.124 0.040 -0.180 0.042 0.18 7308.96 0.014	25184.18 7308.99 0,010 0,141 0,010 -0,150 0,014 0,006 25184.21 7308.98 0,039 0,112 0,000 -0,150 0,030 0,187 25184.19 7308.92 0,032 0,145 0,000 -0,160 0,070 0,282 25184.19 7308.92 0,010 0,146 0,000 -0,160 0,070 0,282 25184.19 7308.92 0,010 0,146 0,020 -0,190 0,072 0,287 25184.19 7308.92 0,010 0,146 0,020 -0,190 0,270 0,287 25184.19 7308.92 0,010 0,146 0,020 -0,170 0,022 0,240 25184.19 7308.96 0,010 0,120 0,000 -0,170 0,022 0,201 25184.19 7308.96 0,012 0,100 -0,190 0,170 0,022 0,202 25184.19 7308.96 0,012 0,100 -0,190 -0,190 <
	0000 0000 0000 0000 0000 0000 0000 0000 0000		0.187 0.232 0.236 0.240 0.240 0.210 0.203 0.192 0.238 0.184 0.186 0.192 0.231 0.192 0.231 0.234 0.234 0.234 0.234 0.236	0.070 0.187 0.187 0.070 0.070 0.187 0.259 0.007 0.259 0.027 0.270 0.027 0.027 0.027 0.002 0.002 0.197 0.004 0.187 0.004 0.007 0.004 0.187 0.004 0.007 0.187 0.004 0.007 0.187 0.004 0.007 0.187 0.007 0.004 0.007 0.187 0.007 0.004 0.007 0.187 0.007	-0.150 0.030 0.187 -0.210 0.070 0.252 -0.180 0.037 0.287 -0.200 0.032 0.247 -0.200 0.014 0.240 -0.170 0.022 0.210 -0.170 0.022 0.210 -0.170 0.022 0.187 -0.170 0.022 0.182 -0.190 0.073 0.284 -0.150 0.054 0.187 -0.150 0.045 0.187 -0.150 0.046 0.184 -0.170 0.045 0.184 -0.170 0.046 0.224 -0.170 0.041 0.182 -0.170 0.044 0.228 -0.170 0.046 0.224 -0.170 0.093 0.144 -0.170 0.093 0.201 -0.170 0.093 0.24 -0.180 0.090 0.224	0.000 -0.150 0.020 0.187 0.066 -0.200 0.070 0.252 0.020 -0.180 0.037 0.238 -0.020 -0.200 0.074 0.237 0.030 -0.170 0.022 0.240 0.030 -0.170 0.022 0.210 0.000 -0.170 0.022 0.210 0.000 -0.170 0.022 0.192 0.000 -0.170 0.022 0.187 0.000 -0.150 0.044 0.187 0.000 -0.150 0.044 0.187 0.000 -0.150 0.044 0.187 0.000 -0.150 0.044 0.187 0.000 -0.150 0.041 0.182 0.000 -0.150 0.041 0.182 0.000 -0.150 0.041 0.182 0.040 -0.130 0.075 0.146 0.040 -0.130 0.075 0.146 0.040<	0,112 0,000 -0,150 0,000 0,187 0,139 0,066 -0,210 0,070 0,252 0,146 0,020 -0,180 0,070 0,252 0,146 -0,020 -0,100 0,037 0,234 0,133 0,000 -0,170 0,022 0,240 0,124 0,000 -0,170 0,022 0,210 0,040 0,000 -0,170 0,022 0,210 0,040 0,000 -0,170 0,022 0,210 0,040 0,000 -0,170 0,022 0,210 0,040 0,000 -0,170 0,022 0,20 0,146 0,000 -0,180 0,073 0,20 0,147 0,000 -0,180 0,073 0,28 0,124 0,000 -0,180 0,045 0,18 0,124 0,000 -0,180 0,045 0,18 0,124 0,000 -0,170 0,042 0,18 0,1	0.030 0.112 0.000 -0.150 0.020 0.187 0.026 0.139 -0.060 -0.160 0.070 0.252 0.022 0.145 0.020 -0.210 0.070 0.239 0.010 0.146 -0.020 -0.200 0.027 0.234 0.010 0.146 -0.020 -0.200 0.022 0.240 0.012 0.124 0.030 -0.170 0.022 0.210 0.022 0.124 0.000 -0.170 0.022 0.20 0.022 0.030 -0.170 0.022 0.20 0.022 0.030 -0.170 0.022 0.20 0.022 0.030 -0.170 0.022 0.20 0.072 0.050 -0.000 -0.170 0.022 0.23 0.072 0.12 -0.000 -0.180 0.044 0.187 0.074 0.12 -0.000 -0.180 0.044 0.184 0.071 0.14	7308.584 0.030 0.112 0.000 -0.150 0.020 0.187 7308.585 0.023 0.112 0.000 -0.160 0.020 0.070 0.252 7308.585 0.0202 0.146 -0.020 -0.160 0.037 0.234 7308.95 0.014 0.135 0.020 -0.200 0.021 0.240 7308.96 0.014 0.134 0.000 -0.170 0.022 0.240 7308.96 0.017 0.124 0.000 -0.170 0.022 0.20 7308.96 0.022 0.020 -0.170 0.022 0.20 7308.97 0.022 0.040 -0.190 0.072 0.192 7308.96 0.072 0.150 -0.190 0.073 0.187 7308.96 0.010 0.112 0.040 -0.150 0.042 0.184 7308.96 0.010 0.112 0.040 -0.150 0.042 0.184 7308.96 0.010 0.14<	25184 17 7308 58 0.030 0.112 0.000 -0.150 0.030 0.187 25184 18 7308 32 0.032 0.145 0.000 -0.160 0.070 0.252 25184 18 7308 32 0.0145 0.000 -0.180 0.037 0.252 25184 18 7308 93 0.014 0.146 0.020 -0.180 0.037 0.241 25184 19 7308 95 0.014 0.133 0.000 -0.170 0.022 0.241 25184 20 7308 96 0.010 0.124 0.020 -0.170 0.022 0.240 25184 19 7308 96 0.012 0.104 0.020 -0.170 0.022 0.20 25184 19 7308 96 0.012 0.146 0.000 -0.170 0.022 0.20 25184 19 7308 96 0.012 0.146 0.000 -0.150 0.022 0.146 25184 21 7308 96 0.014 0.146 0.020 -0.150 0.022 <td< td=""></td<>
	0000 0000 0000 0000 0000 0000		0.238 0.240 0.240 0.210 0.203 0.192 0.187 0.188 0.188 0.198 0.198 0.198 0.198 0.224 0.238 0.210	0.037 0.238 0.002 0.240 0.002 0.240 0.002 0.240 0.002 0.240 0.002 0.240 0.003 0.387 0.045 0.187 0.045 0.187 0.046 0.187 0.046 0.187 0.047 0.188 0.041 0.182 0.041 0.182 0.041 0.186 0.041 0.186 0.041 0.186 0.041 0.187	-0.180 0.037 0.238 -0.200 0.022 0.247 -0.200 0.014 0.240 -0.170 0.022 0.240 -0.170 0.022 0.203 -0.170 0.022 0.203 -0.170 0.022 0.192 -0.150 0.073 0.187 -0.150 0.064 0.187 -0.150 0.010 0.187 -0.150 0.010 0.184 -0.150 0.010 0.184 -0.150 0.010 0.184 -0.170 0.010 0.184 -0.170 0.010 0.184 -0.170 0.010 0.184 -0.170 0.010 0.184 -0.170 0.024 0.224 -0.170 0.024 0.224 -0.170 0.035 0.244 -0.180 0.075 0.081 -0.180 0.224 0.224	0.030 -0,160 0.037 0.238 -0.020 -0,200 0.022 0.247 0.000 -0,170 0.022 0.240 0.000 -0,170 0.022 0.210 0.000 -0,170 0.022 0.210 0.000 -0,170 0.022 0.020 0.000 -0,170 0.022 0.93 0.030 -0,170 0.022 0.93 0.030 -0,150 0.073 0.238 0.040 -0,150 0.044 0.187 0.040 -0,150 0.045 0.187 0.020 -0,150 0.010 0.182 0.020 -0,150 0.010 0.182 0.020 -0,170 0.041 0.182 0.040 -0,170 0.041 0.224 0.040 -0,130 0.075 0.146 0.040 -0,130 0.075 0.146 0.040 -0,130 0.075 0.146 0.040 <td>0.155 0.020 -0.180 0.037 0.238 0.146 -0.020 -0.200 0.037 0.234 0.124 0.030 -0.170 0.032 0.240 0.134 0.030 -0.170 0.032 0.210 0.040 0.030 -0.170 0.022 0.20 0.050 0.000 -0.170 0.022 0.20 0.056 -0.010 -0.170 0.022 0.70 0.155 -0.010 -0.150 0.073 0.238 0.124 0.030 -0.150 0.043 0.187 0.124 0.040 -0.150 0.043 0.187 0.124 0.040 -0.150 0.043 0.187 0.124 0.040 -0.150 0.043 0.187 0.124 0.040 -0.150 0.042 0.184 0.124 0.000 -0.150 0.042 0.184 0.124 0.000 -0.170 0.044 0.182 <t< td=""><td>0.022 0.155 0.020 -0.180 0.037 0.28 0.010 0.146 -0.020 -0.200 0.027 0.247 0.014 0.133 0.000 -0.200 0.014 0.240 0.010 0.124 0.000 -0.170 0.022 0.210 0.022 0.110 0.000 -0.170 0.022 0.210 0.022 0.020 -0.170 0.022 0.210 0.022 0.030 -0.170 0.022 0.210 0.032 0.050 0.000 -0.170 0.022 0.210 0.032 0.050 0.000 -0.170 0.022 0.210 0.072 0.050 0.000 -0.170 0.023 0.234 0.072 0.132 0.040 -0.180 0.043 0.187 0.074 0.134 0.040 -0.180 0.044 0.184 0.074 0.146 0.040 -0.180 0.044 0.184 0.076</td><td>7308 95 0.022 0.156 0.020 -0.180 0.037 0.238 7308 95 0.010 0.146 0.020 -0.790 0.027 0.247 7308 95 0.014 0.133 0.000 -0.170 0.022 0.240 7308 96 0.010 0.124 0.030 -0.170 0.022 0.240 7308 96 0.012 0.110 0.000 -0.170 0.022 0.210 7308 96 0.022 0.110 0.000 -0.170 0.022 0.202 7308 96 0.072 0.155 -0.010 -0.190 0.022 0.187 7308 96 0.072 0.122 0.010 -0.150 0.022 0.187 7308 96 0.074 0.124 0.040 -0.150 0.042 0.187 7308 96 0.074 0.144 0.040 -0.150 0.042 0.184 7308 96 0.036 0.014 0.040 -0.150 0.041 0.184 7308 96<!--</td--><td>25184.17 7388 95 0.022 0.165 0.020 -0.160 0.037 0.28 25184.18 7308 95 0.010 0.146 -0.020 -0.100 0.037 0.247 25184.19 7308 95 0.014 0.133 0.000 -0.10 0.022 0.240 25184.23 7308 96 0.010 0.112 0.000 -0.170 0.022 0.20 25184.23 7308 96 0.022 0.090 0.000 -0.170 0.022 0.20 25184.13 7308 96 0.072 0.155 -0.010 -0.150 0.022 0.20 25184.14 7308 96 0.072 0.155 -0.010 -0.150 0.022 0.20 25184.17 7308 96 0.045 0.132 -0.040 -0.150 0.044 0.18 25184.19 7308 96 0.010 0.144 0.000 -0.150 0.042 0.18 25184.12 7308 96 0.010 0.144 0.000 -0.150 0.</td></td></t<></td>	0.155 0.020 -0.180 0.037 0.238 0.146 -0.020 -0.200 0.037 0.234 0.124 0.030 -0.170 0.032 0.240 0.134 0.030 -0.170 0.032 0.210 0.040 0.030 -0.170 0.022 0.20 0.050 0.000 -0.170 0.022 0.20 0.056 -0.010 -0.170 0.022 0.70 0.155 -0.010 -0.150 0.073 0.238 0.124 0.030 -0.150 0.043 0.187 0.124 0.040 -0.150 0.043 0.187 0.124 0.040 -0.150 0.043 0.187 0.124 0.040 -0.150 0.043 0.187 0.124 0.040 -0.150 0.042 0.184 0.124 0.000 -0.150 0.042 0.184 0.124 0.000 -0.170 0.044 0.182 <t< td=""><td>0.022 0.155 0.020 -0.180 0.037 0.28 0.010 0.146 -0.020 -0.200 0.027 0.247 0.014 0.133 0.000 -0.200 0.014 0.240 0.010 0.124 0.000 -0.170 0.022 0.210 0.022 0.110 0.000 -0.170 0.022 0.210 0.022 0.020 -0.170 0.022 0.210 0.022 0.030 -0.170 0.022 0.210 0.032 0.050 0.000 -0.170 0.022 0.210 0.032 0.050 0.000 -0.170 0.022 0.210 0.072 0.050 0.000 -0.170 0.023 0.234 0.072 0.132 0.040 -0.180 0.043 0.187 0.074 0.134 0.040 -0.180 0.044 0.184 0.074 0.146 0.040 -0.180 0.044 0.184 0.076</td><td>7308 95 0.022 0.156 0.020 -0.180 0.037 0.238 7308 95 0.010 0.146 0.020 -0.790 0.027 0.247 7308 95 0.014 0.133 0.000 -0.170 0.022 0.240 7308 96 0.010 0.124 0.030 -0.170 0.022 0.240 7308 96 0.012 0.110 0.000 -0.170 0.022 0.210 7308 96 0.022 0.110 0.000 -0.170 0.022 0.202 7308 96 0.072 0.155 -0.010 -0.190 0.022 0.187 7308 96 0.072 0.122 0.010 -0.150 0.022 0.187 7308 96 0.074 0.124 0.040 -0.150 0.042 0.187 7308 96 0.074 0.144 0.040 -0.150 0.042 0.184 7308 96 0.036 0.014 0.040 -0.150 0.041 0.184 7308 96<!--</td--><td>25184.17 7388 95 0.022 0.165 0.020 -0.160 0.037 0.28 25184.18 7308 95 0.010 0.146 -0.020 -0.100 0.037 0.247 25184.19 7308 95 0.014 0.133 0.000 -0.10 0.022 0.240 25184.23 7308 96 0.010 0.112 0.000 -0.170 0.022 0.20 25184.23 7308 96 0.022 0.090 0.000 -0.170 0.022 0.20 25184.13 7308 96 0.072 0.155 -0.010 -0.150 0.022 0.20 25184.14 7308 96 0.072 0.155 -0.010 -0.150 0.022 0.20 25184.17 7308 96 0.045 0.132 -0.040 -0.150 0.044 0.18 25184.19 7308 96 0.010 0.144 0.000 -0.150 0.042 0.18 25184.12 7308 96 0.010 0.144 0.000 -0.150 0.</td></td></t<>	0.022 0.155 0.020 -0.180 0.037 0.28 0.010 0.146 -0.020 -0.200 0.027 0.247 0.014 0.133 0.000 -0.200 0.014 0.240 0.010 0.124 0.000 -0.170 0.022 0.210 0.022 0.110 0.000 -0.170 0.022 0.210 0.022 0.020 -0.170 0.022 0.210 0.022 0.030 -0.170 0.022 0.210 0.032 0.050 0.000 -0.170 0.022 0.210 0.032 0.050 0.000 -0.170 0.022 0.210 0.072 0.050 0.000 -0.170 0.023 0.234 0.072 0.132 0.040 -0.180 0.043 0.187 0.074 0.134 0.040 -0.180 0.044 0.184 0.074 0.146 0.040 -0.180 0.044 0.184 0.076	7308 95 0.022 0.156 0.020 -0.180 0.037 0.238 7308 95 0.010 0.146 0.020 -0.790 0.027 0.247 7308 95 0.014 0.133 0.000 -0.170 0.022 0.240 7308 96 0.010 0.124 0.030 -0.170 0.022 0.240 7308 96 0.012 0.110 0.000 -0.170 0.022 0.210 7308 96 0.022 0.110 0.000 -0.170 0.022 0.202 7308 96 0.072 0.155 -0.010 -0.190 0.022 0.187 7308 96 0.072 0.122 0.010 -0.150 0.022 0.187 7308 96 0.074 0.124 0.040 -0.150 0.042 0.187 7308 96 0.074 0.144 0.040 -0.150 0.042 0.184 7308 96 0.036 0.014 0.040 -0.150 0.041 0.184 7308 96 </td <td>25184.17 7388 95 0.022 0.165 0.020 -0.160 0.037 0.28 25184.18 7308 95 0.010 0.146 -0.020 -0.100 0.037 0.247 25184.19 7308 95 0.014 0.133 0.000 -0.10 0.022 0.240 25184.23 7308 96 0.010 0.112 0.000 -0.170 0.022 0.20 25184.23 7308 96 0.022 0.090 0.000 -0.170 0.022 0.20 25184.13 7308 96 0.072 0.155 -0.010 -0.150 0.022 0.20 25184.14 7308 96 0.072 0.155 -0.010 -0.150 0.022 0.20 25184.17 7308 96 0.045 0.132 -0.040 -0.150 0.044 0.18 25184.19 7308 96 0.010 0.144 0.000 -0.150 0.042 0.18 25184.12 7308 96 0.010 0.144 0.000 -0.150 0.</td>	25184.17 7388 95 0.022 0.165 0.020 -0.160 0.037 0.28 25184.18 7308 95 0.010 0.146 -0.020 -0.100 0.037 0.247 25184.19 7308 95 0.014 0.133 0.000 -0.10 0.022 0.240 25184.23 7308 96 0.010 0.112 0.000 -0.170 0.022 0.20 25184.23 7308 96 0.022 0.090 0.000 -0.170 0.022 0.20 25184.13 7308 96 0.072 0.155 -0.010 -0.150 0.022 0.20 25184.14 7308 96 0.072 0.155 -0.010 -0.150 0.022 0.20 25184.17 7308 96 0.045 0.132 -0.040 -0.150 0.044 0.18 25184.19 7308 96 0.010 0.144 0.000 -0.150 0.042 0.18 25184.12 7308 96 0.010 0.144 0.000 -0.150 0.
01	000000000000000000000000000000000000000		0.247 0.240 0.210 0.203 0.187 0.187 0.194 0.198 0.192 0.224 0.224 0.238 0.210	0.022 0.247 0.014 0.240 0.022 0.210 0.022 0.203 0.023 0.284 0.045 0.187 0.046 0.187 0.047 0.188 0.041 0.188 0.041 0.188 0.041 0.224 0.044 0.224 0.047 0.224 0.049 0.224 0.049 0.224 0.049 0.224 0.049 0.224 0.049 0.224 0.049 0.224 0.049 0.224 0.049 0.224 0.049 0.224 0.049 0.224 0.049 0.224	-0.200 0.022 0.247 -0.200 0.014 0.240 -0.170 0.022 0.210 -0.170 0.022 0.202 -0.170 0.022 0.182 -0.190 0.073 0.238 -0.150 0.054 0.187 -0.150 0.044 0.187 -0.150 0.016 0.187 -0.150 0.010 0.184 -0.150 0.010 0.184 -0.170 0.010 0.182 -0.170 0.010 0.182 -0.170 0.010 0.182 -0.170 0.010 0.182 -0.170 0.041 0.224 -0.170 0.074 0.224 -0.180 0.075 0.148 -0.220 0.189 0.224 -0.180 0.224 0.224	-0.020 -0.200 0.024 0.247 0.000 -0.200 0.014 0.240 0.000 -0.170 0.022 0.210 0.000 -0.170 0.022 0.203 0.000 -0.170 0.022 0.903 0.010 -0.170 0.022 0.182 0.020 -0.170 0.023 0.182 0.030 -0.150 0.043 0.187 0.040 -0.150 0.044 0.184 0.040 -0.150 0.042 0.184 0.000 -0.150 0.010 0.182 0.000 -0.150 0.044 0.184 0.000 -0.150 0.041 0.182 0.000 -0.150 0.041 0.182 0.010 -0.170 0.041 0.182 0.040 -0.170 0.042 0.224 0.040 -0.130 0.015 0.146 0.040 -0.130 0.016 0.146 0.040<	0.146 -0.020 -0.200 0.020 0.247 0.133 0.000 -0.170 0.032 0.240 0.114 0.000 -0.170 0.022 0.210 0.026 0.000 -0.170 0.022 0.210 0.026 0.000 -0.170 0.022 0.201 0.056 0.000 -0.170 0.022 0.932 0.145 -0.010 -0.180 0.073 0.238 0.132 -0.040 -0.180 0.045 0.187 0.134 0.040 -0.180 0.045 0.187 0.136 0.020 -0.180 0.042 0.184 0.144 0.000 -0.180 0.010 0.184 0.026 -0.020 -0.170 0.042 0.184 0.124 0.000 -0.170 0.042 0.182 0.124 0.010 -0.180 0.014 0.182 0.124 0.010 -0.180 0.014 0.182	0.010 0.146 -0.020 -0.200 0.020 0.247 0.014 0.133 0.000 -0.200 0.014 0.240 0.010 0.124 0.000 -0.170 0.022 0.210 0.022 0.119 0.000 -0.170 0.022 0.201 0.022 0.029 -0.170 0.022 0.201 0.022 0.020 -0.170 0.022 0.201 0.072 0.126 -0.010 -0.180 0.023 0.234 0.045 0.112 -0.040 -0.180 0.043 0.284 0.045 0.132 -0.040 -0.180 0.044 0.187 0.046 0.132 -0.040 -0.180 0.042 0.187 0.047 0.144 0.040 -0.180 0.042 0.184 0.049 0.146 0.040 -0.140 0.042 0.184 0.040 0.146 0.040 -0.140 0.042 0.184 0.040	7308 93 0.014 0.020 0.020 0.020 0.020 0.024 0.024 7308 95 0.014 0.133 0.000 0.020 0.014 0.020 7308 96 0.022 0.110 0.000 0.017 0.022 0.010 7308 96 0.022 0.110 0.000 0.0170 0.022 0.020 7308 96 0.022 0.100 0.000 0.0170 0.022 0.020 7308 96 0.072 0.156 0.010 0.012 0.020 0.187 7308 96 0.074 0.132 0.040 0.040 0.015 0.187 7308 96 0.074 0.144 0.040 0.040 0.042 0.187 7308 96 0.076 0.144 0.040 0.040 0.042 0.184 7308 96 0.036 0.036 0.040 0.040 0.042 0.184 7308 96 0.036 0.040 0.040 0.040 0.040 0.044	25184.18 7308 95 0.010 0.146 -0.020 -0.200 0.024 0.247 25184.19 7308 95 0.014 0.133 0.000 -0.200 0.014 0.240 25184.19 7308 96 0.010 0.112 0.000 -0.170 0.022 0.210 25184.21 7308 96 0.012 0.072 0.090 0.000 -0.170 0.022 0.20 25184.22 7308 96 0.012 0.090 0.000 -0.170 0.022 0.20 25184.11 7308 96 0.012 0.050 -0.140 0.022 0.02 25184.12 7308 96 0.012 0.012 0.000 -0.150 0.02 0.23 25184.13 7308 96 0.014 0.014 0.000 -0.150 0.044 0.18 25184.12 7308 96 0.010 0.144 0.000 -0.150 0.016 0.18 25184.13 7308 96 0.010 0.146 0.000 -0.170 0.01
004			0.240 0.210 0.203 0.187 0.187 0.184 0.188 0.192 0.224 0.224 0.238 0.210 0.238	0.014 0.240 0.022 0.210 0.022 0.203 0.023 0.284 0.045 0.187 0.045 0.187 0.046 0.187 0.046 0.187 0.047 0.187 0.047 0.187 0.048 0.041 0.188 0.041 0.187 0.042 0.192 0.043 0.214 0.074 0.288	-0,200 0.014 0.240 -0,170 0.022 0.210 -0,170 0.022 0.236 -0,170 0.022 0.182 -0,190 0.073 0.238 -0,150 0.064 0.187 -0,150 0.045 0.187 -0,150 0.010 0.184 -0,150 0.010 0.184 -0,150 0.010 0.184 -0,170 0.010 0.186 -0,170 0.011 0.182 -0,170 0.024 0.224 -0,170 0.034 0.224 -0,130 0.016 0.224 -0,130 0.016 0.224 -0,130 0.015 0.148 -0,130 0.016 0.224 -0,130 0.026 0.224 -0,130 0.026 0.224	0 000 -0,200 0,014 0,240 0,003 -0,170 0,022 0,210 0,000 -0,170 0,022 0,210 0,000 -0,170 0,022 0,92 0,010 -0,170 0,022 0,192 0,030 -0,150 0,073 0,28 0,040 -0,150 0,044 0,187 0,040 -0,150 0,042 0,184 0,040 -0,150 0,042 0,184 0,000 -0,150 0,042 0,184 0,000 -0,150 0,042 0,184 0,000 -0,150 0,042 0,184 0,000 -0,170 0,041 0,182 0,000 -0,170 0,044 0,224 0,010 -0,170 0,044 0,224 0,040 -0,170 0,044 0,224 0,040 -0,130 0,075 0,146 0,040 -0,130 0,075 0,146 0,040 <td>0.133 0.000 -0.200 0.044 0.240 0.124 0.030 -0.170 0.032 0.210 0.134 0.000 -0.170 0.022 0.210 0.056 0.000 -0.170 0.022 0.201 0.145 -0.010 -0.150 0.073 0.238 0.132 -0.040 -0.150 0.045 0.187 0.134 0.040 -0.150 0.045 0.187 0.114 0.000 -0.150 0.042 0.184 0.039 -0.020 -0.150 0.042 0.184 0.042 0.040 -0.150 0.042 0.184 0.042 0.040 -0.150 0.042 0.184 0.044 0.020 -0.170 0.042 0.184 0.046 0.020 -0.170 0.042 0.182 0.124 0.010 -0.170 0.044 0.224 0.124 0.010 -0.170 0.044 0.224</td> <td>0.014 0.133 0.000 0.200 0.014 0.240 0.070 0.124 0.030 -0.170 0.032 0.210 0.022 0.110 0.000 -0.170 0.022 0.201 0.022 0.030 0.000 -0.170 0.022 0.201 0.072 0.056 0.000 -0.170 0.022 0.730 0.072 0.124 0.000 -0.150 0.073 0.234 0.074 0.132 -0.040 -0.150 0.045 0.187 0.074 0.124 0.040 -0.150 0.045 0.187 0.076 0.144 0.000 -0.150 0.045 0.187 0.076 0.146 0.000 -0.170 0.045 0.184 0.076 0.076 -0.170 0.044 0.184 0.076 0.076 -0.170 0.044 0.184 0.076 0.076 -0.170 0.044 0.234 0.080 0.076</td> <td>7308 56 0.014 0.133 0.000 -0.200 0.014 0.240 7308 56 0.010 0.124 0.003 -0.170 0.022 0.210 7308 56 0.022 0.110 0.000 -0.170 0.022 0.701 7308 56 0.022 0.100 0.000 -0.170 0.022 0.702 7308 56 0.072 0.156 -0.010 -0.190 0.073 0.732 7308 56 0.072 0.132 -0.040 -0.150 0.042 0.187 7308 56 0.074 0.132 -0.040 -0.150 0.042 0.187 7308 56 0.074 0.144 0.040 -0.150 0.045 0.187 7308 56 0.076 0.144 0.040 -0.150 0.041 0.184 7308 56 0.036 0.036 -0.050 -0.050 -0.150 0.041 0.184 7308 56 0.036 0.036 0.030 -0.150 0.041 0.136</td> <td>25184.19 7308.96 0.014 0.133 0.000 -0.200 0.014 0.200 25184.21 7308.96 0.010 0.1124 0.030 -0.170 0.022 0.210 25184.22 7308.96 0.022 0.020 0.072 0.020 0.072 0.020 25184.21 7308.96 0.022 0.020 0.072 0.020 0.022 0.020 25184.12 7308.96 0.012 0.050 0.012 0.050 0.012 0.022 0.020 25184.13 7308.96 0.045 0.112 0.030 -0.150 0.045 0.187 25184.22 7308.96 0.010 0.144 0.000 -0.150 0.042 0.187 25184.13 7308.96 0.010 0.144 0.000 -0.150 0.010 0.182 25184.13 7308.96 0.010 0.146 0.000 -0.170 0.010 0.182 25184.20 7308.96 0.010 0.146 0.000 -</td>	0.133 0.000 -0.200 0.044 0.240 0.124 0.030 -0.170 0.032 0.210 0.134 0.000 -0.170 0.022 0.210 0.056 0.000 -0.170 0.022 0.201 0.145 -0.010 -0.150 0.073 0.238 0.132 -0.040 -0.150 0.045 0.187 0.134 0.040 -0.150 0.045 0.187 0.114 0.000 -0.150 0.042 0.184 0.039 -0.020 -0.150 0.042 0.184 0.042 0.040 -0.150 0.042 0.184 0.042 0.040 -0.150 0.042 0.184 0.044 0.020 -0.170 0.042 0.184 0.046 0.020 -0.170 0.042 0.182 0.124 0.010 -0.170 0.044 0.224 0.124 0.010 -0.170 0.044 0.224	0.014 0.133 0.000 0.200 0.014 0.240 0.070 0.124 0.030 -0.170 0.032 0.210 0.022 0.110 0.000 -0.170 0.022 0.201 0.022 0.030 0.000 -0.170 0.022 0.201 0.072 0.056 0.000 -0.170 0.022 0.730 0.072 0.124 0.000 -0.150 0.073 0.234 0.074 0.132 -0.040 -0.150 0.045 0.187 0.074 0.124 0.040 -0.150 0.045 0.187 0.076 0.144 0.000 -0.150 0.045 0.187 0.076 0.146 0.000 -0.170 0.045 0.184 0.076 0.076 -0.170 0.044 0.184 0.076 0.076 -0.170 0.044 0.184 0.076 0.076 -0.170 0.044 0.234 0.080 0.076	7308 56 0.014 0.133 0.000 -0.200 0.014 0.240 7308 56 0.010 0.124 0.003 -0.170 0.022 0.210 7308 56 0.022 0.110 0.000 -0.170 0.022 0.701 7308 56 0.022 0.100 0.000 -0.170 0.022 0.702 7308 56 0.072 0.156 -0.010 -0.190 0.073 0.732 7308 56 0.072 0.132 -0.040 -0.150 0.042 0.187 7308 56 0.074 0.132 -0.040 -0.150 0.042 0.187 7308 56 0.074 0.144 0.040 -0.150 0.045 0.187 7308 56 0.076 0.144 0.040 -0.150 0.041 0.184 7308 56 0.036 0.036 -0.050 -0.050 -0.150 0.041 0.184 7308 56 0.036 0.036 0.030 -0.150 0.041 0.136	25184.19 7308.96 0.014 0.133 0.000 -0.200 0.014 0.200 25184.21 7308.96 0.010 0.1124 0.030 -0.170 0.022 0.210 25184.22 7308.96 0.022 0.020 0.072 0.020 0.072 0.020 25184.21 7308.96 0.022 0.020 0.072 0.020 0.022 0.020 25184.12 7308.96 0.012 0.050 0.012 0.050 0.012 0.022 0.020 25184.13 7308.96 0.045 0.112 0.030 -0.150 0.045 0.187 25184.22 7308.96 0.010 0.144 0.000 -0.150 0.042 0.187 25184.13 7308.96 0.010 0.144 0.000 -0.150 0.010 0.182 25184.13 7308.96 0.010 0.146 0.000 -0.170 0.010 0.182 25184.20 7308.96 0.010 0.146 0.000 -
1004			0.210 0.020 0.192 0.187 0.187 0.193 0.192 0.224 0.238 0.210 0.210	0.022 0.200 0.022 0.200 0.022 0.203 0.033 0.210 0.045 0.187 0.046 0.187 0.047 0.184 0.040 0.188 0.041 0.182 0.041 0.182 0.041 0.182 0.041 0.186 0.041 0.187 0.042 0.184 0.041 0.186 0.041 0.236 0.042 0.24	-0.170 0.022 0.270 -0.170 0.022 0.203 -0.170 0.022 0.203 -0.187 -0.150 0.064 0.187 -0.150 0.046 0.231 -0.150 0.041 0.198 -0.170 0.041 0.198 -0.170 0.041 0.228 -0.170 0.054 0.228 -0.170 0.054 0.228 -0.170 0.054 0.228 -0.170 0.054 0.228 -0.170 0.054 0.228 -0.170 0.054 0.228 -0.170 0.095 0.018	0.0030 -0.170 0.022 0.270 0.000 -0.170 0.022 0.203 0.000 -0.170 0.022 0.203 0.010 -0.170 0.022 0.928 0.020 -0.150 0.044 0.187 0.040 -0.150 0.045 0.731 0.040 -0.150 0.045 0.731 0.000 -0.150 0.010 0.182 0.000 -0.150 0.010 0.182 0.000 -0.170 0.041 0.182 0.010 -0.170 0.041 0.224 0.040 -0.130 0.015 0.182 0.040 -0.130 0.016 0.224 0.040 -0.130 0.075 0.146 0.040 -0.130 0.075 0.146 0.040 -0.130 0.075 0.146 0.040 -0.130 0.076 0.221	0.124 0.030 0.077 0.022 0.270 0.020	0.022 0.174 0.030 -0.170 0.032 0.20 0.022 0.174 0.000 -0.170 0.022 0.20 0.022 0.030 -0.170 0.022 0.20 0.072 0.030 -0.170 0.022 0.70 0.072 0.046 -0.010 -0.180 0.073 0.238 0.045 0.012 -0.040 -0.180 0.044 0.187 0.040 0.124 0.040 -0.180 0.045 0.184 0.010 0.144 0.040 -0.150 0.041 0.182 0.036 0.046 -0.170 0.041 0.182 0.040 0.146 0.000 -0.170 0.041 0.182 0.041 0.146 0.000 -0.170 0.044 0.234 0.042 0.146 0.010 -0.170 0.044 0.234 0.044 0.146 0.010 -0.170 0.033 0.210 0.044 0.147	7308.96 0.072 0.174 0.030 -0.170 0.032 0.200 7308.96 0.022 0.090 0.010 -0.170 0.022 0.203 7308.96 0.072 0.080 0.010 -0.170 0.022 0.703 7308.96 0.072 0.155 -0.010 -0.150 0.073 0.584 0.187 7308.96 0.074 0.112 0.030 -0.150 0.044 0.187 7308.96 0.070 0.114 0.040 -0.150 0.042 0.187 7308.96 0.070 0.114 0.040 -0.150 0.042 0.187 7308.96 0.070 0.114 0.000 -0.150 0.010 0.187 7308.96 0.036 0.036 0.020 -0.170 0.041 0.182 7308.96 0.036 0.146 0.000 -0.170 0.041 0.136 7308.96 0.037 0.148 0.010 -0.170 0.014 0.236 <tr< td=""><td>25184.21 7308.96 0.072 0.070</td></tr<>	25184.21 7308.96 0.072 0.070
			0.192 0.238 0.187 0.131 0.192 0.192 0.224 0.238 0.210 0.210	0 0022 0 192 0 0073 0 238 0 0044 0 187 0 0045 0 194 0 0 010 0 188 0 0 010 0 198 0 0 010 0 198 0 0 010 0 198 0 0 010 0 198 0 0 010 0 010 0 198 0 0 010 0 010 0 198 0 0 010 0 010 0 198	-0.170 0.022 0.192 -0.180 0.073 0.238 -0.150 0.064 0.187 -0.150 0.064 0.187 -0.150 0.010 0.188 -0.170 0.011 0.192 -0.170 0.041 0.224 -0.170 0.054 0.228 -0.170 0.054 0.228 -0.170 0.054 0.228 -0.170 0.054 0.228 -0.170 0.039 0.016 -0.180 0.075 0.148	0.000 -0.170 0.022 0.192 -0.010 -0.190 0.073 0.238 0.030 -0.150 0.044 0.187 -0.040 -0.150 0.045 0.187 0.040 -0.150 0.042 0.194 0.000 -0.150 0.042 0.194 0.020 -0.150 0.042 0.182 0.020 -0.170 0.041 0.182 0.010 -0.170 0.041 0.182 0.010 -0.170 0.044 0.224 0.010 -0.170 0.033 0.210 0.040 -0.130 0.075 0.140 0.040 -0.130 0.075 0.140 0.040 -0.130 0.075 0.140 0.040 -0.130 0.075 0.140 0.040 -0.130 0.090 0.221	0.090 0.000 -0.170 0.022 0.192 0.155 -0.010 -0.180 0.073 0.238 0.112 0.030 -0.150 0.044 0.187 0.132 -0.040 -0.150 0.045 0.187 0.124 0.040 -0.150 0.042 0.184 0.124 0.040 -0.150 0.042 0.194 0.090 -0.170 0.042 0.182 0.090 -0.170 0.042 0.182 0.156 0.010 -0.180 0.010 0.182 0.156 0.010 -0.170 0.041 0.182 0.156 0.010 -0.170 0.044 0.224 0.174 0.010 -0.180 0.014 0.228 0.175 0.010 -0.170 0.014 0.228 0.177 0.040 -0.170 0.014 0.228 0.175 -0.090 -0.120 0.136 0.281 0.133 0.040	0.022 0.059 0.000 -0.170 0.022 0.192 0.072 0.056 -0.010 -0.150 0.073 0.238 0.045 0.112 0.030 -0.150 0.054 0.187 0.045 0.132 -0.040 -0.150 0.045 0.231 0.074 0.124 0.040 -0.150 0.045 0.187 0.070 0.114 0.040 -0.150 0.042 0.194 0.076 0.146 0.000 -0.150 0.041 0.187 0.036 0.036 -0.020 -0.170 0.041 0.182 0.046 0.146 0.000 -0.170 0.041 0.182 0.047 0.146 0.000 -0.170 0.044 0.234 0.056 0.126 0.010 -0.170 0.033 0.214 0.068 0.124 0.010 -0.130 0.014 0.146 0.064 0.175 0.040 0.130 0.075 0.146 <td>7308.96 0.022 0.020 0.010 -0.170 0.022 0.182 7308.95 0.072 0.155 -0.010 -0.190 0.073 0.538 7308.95 0.045 0.112 0.030 -0.150 0.054 0.187 7308.96 0.074 0.132 -0.040 -0.150 0.045 0.187 7308.96 0.074 0.144 0.040 -0.150 0.042 0.194 7308.96 0.070 0.114 0.000 -0.150 0.041 0.184 7308.96 0.036 0.036 0.144 0.000 -0.150 0.041 0.182 7308.96 0.036 0.036 0.146 0.000 -0.170 0.041 0.182 7308.96 0.037 0.148 0.010 -0.170 0.044 0.236 7308.96 0.032 0.124 0.010 -0.170 0.033 0.210 7308.06 0.064 0.064 0.130 0.016 0.146 0.146</td> <td>25184.23 7308.96 0.012 0.090 0.000 -0.170 0.022 0.187 25184.17 7308.95 0.012 0.155 -0.010 -0.190 0.073 0.192 25184.12 7308.96 0.045 0.112 0.030 -0.150 0.045 0.187 25184.20 7308.96 0.045 0.132 -0.040 -0.150 0.045 0.721 25184.20 7308.96 0.010 0.114 0.000 -0.150 0.016 0.187 25184.21 7308.96 0.010 0.114 0.000 -0.150 0.010 0.184 25184.13 7308.96 0.010 0.146 0.000 -0.170 0.010 0.182 25184.13 7308.96 0.010 0.146 0.000 -0.170 0.041 0.182 25184.22 7308.96 0.010 0.156 0.010 0.010 0.010 0.010 25184.29 7308.96 0.010 0.146 0.010 0.010 <t< td=""></t<></td>	7308.96 0.022 0.020 0.010 -0.170 0.022 0.182 7308.95 0.072 0.155 -0.010 -0.190 0.073 0.538 7308.95 0.045 0.112 0.030 -0.150 0.054 0.187 7308.96 0.074 0.132 -0.040 -0.150 0.045 0.187 7308.96 0.074 0.144 0.040 -0.150 0.042 0.194 7308.96 0.070 0.114 0.000 -0.150 0.041 0.184 7308.96 0.036 0.036 0.144 0.000 -0.150 0.041 0.182 7308.96 0.036 0.036 0.146 0.000 -0.170 0.041 0.182 7308.96 0.037 0.148 0.010 -0.170 0.044 0.236 7308.96 0.032 0.124 0.010 -0.170 0.033 0.210 7308.06 0.064 0.064 0.130 0.016 0.146 0.146	25184.23 7308.96 0.012 0.090 0.000 -0.170 0.022 0.187 25184.17 7308.95 0.012 0.155 -0.010 -0.190 0.073 0.192 25184.12 7308.96 0.045 0.112 0.030 -0.150 0.045 0.187 25184.20 7308.96 0.045 0.132 -0.040 -0.150 0.045 0.721 25184.20 7308.96 0.010 0.114 0.000 -0.150 0.016 0.187 25184.21 7308.96 0.010 0.114 0.000 -0.150 0.010 0.184 25184.13 7308.96 0.010 0.146 0.000 -0.170 0.010 0.182 25184.13 7308.96 0.010 0.146 0.000 -0.170 0.041 0.182 25184.22 7308.96 0.010 0.156 0.010 0.010 0.010 0.010 25184.29 7308.96 0.010 0.146 0.010 0.010 <t< td=""></t<>
1001			0.238 0.187 0.231 0.198 0.192 0.224 0.238 0.210 0.24 0.24	0.073 0.238 0.064 0.187 0.045 0.187 0.040 0.184 0.041 0.192 0.041 0.182 0.044 0.234 0.044 0.236 0.075 0.148 0.075 0.148	-0.150 0.073 0.238 -0.150 0.064 0.187 -0.150 0.045 0.231 -0.150 0.046 0.231 -0.150 0.010 0.184 -0.170 0.041 0.182 -0.170 0.041 0.182 -0.170 0.064 0.224 -0.170 0.074 0.228 -0.180 0.078 0.210 -0.180 0.079 0.740 -0.220 0.189 0.281 -0.180 0.095 0.281 -0.180 0.096 0.224	-0.010 -0.190 0.073 0.238 0.030 -0.150 0.064 0.187 -0.040 -0.150 0.064 0.187 0.040 -0.150 0.045 0.231 0.000 -0.150 0.010 0.182 -0.020 -0.150 0.010 0.182 -0.020 -0.170 0.041 0.182 -0.010 -0.170 0.044 0.224 -0.010 -0.170 0.033 0.210 0.040 -0.130 0.075 0.146 -0.090 -0.130 0.075 0.146 -0.090 -0.180 0.075 0.146 -0.090 -0.180 0.075 0.146 -0.090 -0.180 0.090 0.221	0.155 -0.010 -0.180 0.073 0.238 0.112 0.030 -0.150 0.044 0.187 0.132 -0.040 -0.190 0.045 0.187 0.114 0.000 -0.150 0.042 0.194 0.036 -0.020 -0.170 0.042 0.194 0.090 -0.170 0.041 0.182 0.046 0.000 -0.170 0.041 0.182 0.15 0.010 -0.170 0.064 0.224 0.17 0.010 -0.180 0.014 0.238 0.12 0.010 -0.170 0.064 0.224 0.12 0.010 -0.180 0.014 0.238 0.011 0.010 -0.170 0.014 0.238 0.011 0.040 -0.120 0.015 0.046 0.130 0.020 -0.130 0.075 0.046 0.133 0.040 -0.180 0.090 0.224	0.072 0.155 -0.010 -0.150 0.073 0.238 0.045 0.112 0.030 -0.150 0.045 0.187 0.020 0.132 -0.040 -0.190 0.045 0.187 0.010 0.134 0.040 -0.190 0.045 0.132 0.010 0.114 0.040 -0.150 0.010 0.194 0.036 0.036 -0.170 0.041 0.182 0.036 0.036 -0.170 0.041 0.182 0.037 0.146 0.000 -0.170 0.044 0.182 0.037 0.146 0.010 -0.170 0.044 0.234 0.040 0.156 0.010 -0.170 0.033 0.210 0.040 0.071 0.040 0.016 0.018 0.016 0.044 0.077 0.040 0.033 0.210 0.044 0.075 0.040 0.030 0.046 0.044 0.075 0.040	7308.95 0.072 0.155 -0.010 -0.190 0.073 0.238 7308.98 0.0445 0.112 0.030 -0.150 0.044 0.187 7308.98 0.020 0.112 -0.040 -0.150 0.045 0.187 7308.96 0.071 0.124 0.040 -0.150 0.042 0.194 7308.96 0.070 0.114 0.000 -0.150 0.010 0.184 7308.96 0.036 0.036 0.144 0.000 -0.170 0.041 0.182 7308.96 0.036 0.146 0.000 -0.170 0.041 0.182 7308.96 0.032 0.146 0.010 -0.170 0.041 0.224 7308.96 0.032 0.124 0.010 -0.170 0.033 0.210 7308.06 0.064 0.071 0.010 -0.170 0.033 0.210	25184.17 7308.95 0.072 0.155 010 -0.180 0.073 0.238 25184.12 7308.98 0.045 0.112 0.030 -0.150 0.045 0.187 25184.19 7308.99 0.014 0.134 0.090 -0.150 0.045 0.187 25184.20 7308.99 0.010 0.144 0.000 -0.150 0.014 0.184 25184.21 7308.96 0.010 0.114 0.000 -0.170 0.019 0.184 25184.13 7308.96 0.016 0.146 0.000 -0.170 0.041 0.182 25184.13 7308.96 0.010 0.146 0.000 -0.170 0.041 0.182 25184.13 7308.96 0.010 0.146 0.000 -0.170 0.044 0.224 25184.25 7308.90 0.010 0.014 0.010 0.014 0.224 25184.25 7308.90 0.014 0.071 0.040 0.016 0.016
0.006			0.187 0.231 0.194 0.188 0.224 0.238 0.210 0.210 0.281	0.054 0.187 0.045 0.231 0.042 0.194 0.041 0.192 0.054 0.224 0.014 0.238 0.075 0.148	-0.150 0.06s 0.187 -0.190 0.045 0.231 -0.150 0.012 0.194 -0.150 0.010 0.184 -0.170 0.041 0.182 -0.170 0.044 0.224 -0.170 0.044 0.228 -0.170 0.014 0.228 -0.170 0.034 0.224 -0.180 0.074 0.288 -0.190 0.078 0.148 -0.220 0.189 0.224 -0.180 0.095 0.284	0.030 -0.150 0.034 0.187 -0.040 -0.190 0.045 0.231 0.040 -0.190 0.042 0.231 0.000 -0.150 0.010 0.194 0.020 -0.170 0.041 0.182 0.000 -0.170 0.041 0.192 0.010 -0.170 0.044 0.224 0.010 -0.170 0.033 0.210 0.040 -0.130 0.075 0.148 0.040 -0.220 0.138 0.201 0.040 -0.220 0.138 0.244 0.040 -0.130 0.075 0.148 0.040 -0.180 0.090 0.221	0.112 0.030 -0.150 0.064 0.187 0.132 -0.040 -0.160 0.045 0.231 0.114 0.000 -0.150 0.042 0.194 0.030 -0.020 -0.170 0.042 0.194 0.046 -0.020 -0.170 0.041 0.182 0.046 -0.020 -0.170 0.044 0.182 0.146 0.000 -0.170 0.044 0.224 0.127 0.010 -0.180 0.014 0.228 0.071 0.010 -0.180 0.014 0.238 0.071 0.040 -0.120 0.016 0.224 0.177 -0.080 -0.120 0.015 0.046 0.175 -0.090 -0.120 0.136 0.216 0.175 -0.090 -0.120 0.136 0.221 0.133 0.040 -0.180 0.090 0.221	0.045 0.112 0.030 -0.150 0.045 0.187 0.020 0.132 -0.040 -0.190 0.045 0.231 0.014 0.124 0.040 -0.150 0.042 0.194 0.036 0.014 0.000 -0.150 0.010 0.188 0.036 0.036 -0.020 -0.170 0.041 0.188 0.046 0.046 -0.020 -0.170 0.041 0.188 0.047 0.046 -0.010 -0.170 0.044 0.188 0.049 0.046 -0.180 0.014 0.224 0.041 0.042 -0.180 0.014 0.238 0.042 0.043 0.014 0.234 0.210 0.044 0.074 0.040 0.014 0.026 0.044 0.074 0.040 0.014 0.048 0.044 0.075 0.040 0.048 0.048 0.044 0.075 0.049 0.048 0.048	7308 98 0.045 0.112 0.030 -0.150 0.045 0.187 7308 94 0.020 0.132 -0.040 -0.190 0.045 0.231 7308 98 0.014 0.14 0.000 -0.150 0.012 0.194 7308 96 0.016 0.14 0.000 -0.150 0.01 0.182 7308 96 0.056 0.056 0.070 -0.170 0.041 0.182 7308 96 0.016 0.16 -0.170 0.044 0.224 7308 96 0.017 0.010 -0.180 0.014 0.224 7308 96 0.017 0.016 -0.180 0.014 0.236 7308 96 0.016 0.017 0.010 0.014 0.216 7308 06 0.064 0.017 0.010 0.016 0.016	25184.21 7308.89 0.045 0.112 0.030 -0,150 0.045 0.187 25184.19 7308.99 0.020 0.132 -0.040 -0,190 0.045 0.231 25184.20 7308.99 0.014 0.144 0.040 -0,150 0.042 0.194 25184.21 7308.96 0.016 0.144 0.000 -0,170 0.041 0.186 25184.12 7308.96 0.056 0.046 -0,170 0.041 0.182 25184.12 7308.96 0.016 0.146 0.000 -0,170 0.041 0.182 25184.22 7308.96 0.016 0.146 0.000 -0,170 0.041 0.182 25184.13 7308.96 0.016 0.146 0.016 -0,170 0.044 0.224 25184.22 7308.96 0.016 0.017 0.010 -0,170 0.024 0.224 25184.22 7308.90 0.016 0.017 0.019 0.016 0.016 <t< td=""></t<>
0.003		0.231 0.194 0.188 0.224 0.238 0.238		0.045 0.042 0.010 0.011 0.044 0.014 0.013 0.075	-0.190 0.046 -0.150 0.042 -0.150 0.041 -0.170 0.064 -0.170 0.064 -0.180 0.014 -0.180 0.075 -0.130 0.075 -0.130 0.075	0.040 -0.150 0.045 0.040 -0.150 0.042 0.020 -0.170 0.041 -0.020 -0.170 0.041 -0.010 -0.170 0.041 0.040 -0.130 0.075 -0.090 -0.220 0.136 0.040 -0.220 0.136	0.132 -0.040 -0.190 0.045 0.045 0.130 0.045 0.130 0.045 0.130 0.045 0.130 0.045 0.130 0.045 0.130 0.045 0.130 0.045 0.130 0.045 0.130 0.045 0.130 0.045 0.130 0.045 0.130 0.045 0.130 0.045 0.130 0.045 0.130 0.045 0.130 0.045 0.130 0.045 0.130 0.045 0.130 0.130 0.045 0.130 0.13	0.020 0.132 -0.040 -0.190 0.045 0.014 0.124 0.040 -0.150 0.042 0.010 0.114 0.000 -0.150 0.010 0.084 0.144 0.000 -0.170 0.041 0.084 0.466 0.000 -0.170 0.064 0.010 0.155 -0.010 -0.180 0.014 0.010 0.156 0.010 -0.180 0.014 0.010 0.156 0.010 -0.180 0.014 0.010 0.126 0.010 -0.180 0.014 0.010 0.126 0.019 -0.180 0.014 0.010 0.126 0.019 -0.180 0.014 0.027 0.020 -0.130 0.075 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	7308.94 0.020 0.132 -0.040 -0.190 0.045 7308.96 0.014 0.124 0.040 -0.150 0.042 7308.96 0.016 0.114 0.000 -0.150 0.010 7308.96 0.054 0.046 -0.170 0.041 7308.96 0.016 0.146 0.000 -0.170 0.044 7308.96 0.016 0.125 -0.010 -0.180 0.014 7308.96 0.064 0.012 -0.110 -0.180 0.014 7308.00 0.064 0.012 0.010 -0.180 0.014	25184.19 7308.94 0.020 0.132 -0.040 -0.190 0.045 25184.20 7308.96 0.014 0.124 0.040 -0.150 0.042 25184.23 7308.96 0.036 0.059 -0.070 -0.170 0.041 25184.13 7308.96 0.004 0.146 0.000 -0.170 0.041 25184.27 7308.96 0.010 0.146 0.000 -0.170 0.041 25184.13 7308.96 0.010 0.155 -0.010 -0.170 0.034 25184.14 7308.96 0.044 0.146 0.010 -0.170 0.034 25184.15 7308.97 0.044 0.170 0.040 -0.170 0.033 25184.15 7308.91 0.104 0.175 0.040 -0.130 0.075
0.001		0.194 0.188 0.192 0.224 0.238		0.042 0.010 0.041 0.0054 0.075 0.075 0.075	0.150 0.042 -0.150 0.010 -0.170 0.004 -0.170 0.004 -0.180 0.013 -0.220 0.136 -0.180 0.096	0.040 -0.150 0.042 0.000 -0.150 0.041 0.000 -0.170 0.041 0.010 -0.180 0.014 0.010 -0.180 0.013 0.040 -0.130 0.075 0.040 -0.180 0.075 0.040 -0.180 0.095	0.124 0.040 0.150 0.042 0.114 0.000 -0.150 0.010 0.050 -0.020 -0.170 0.041 0.146 0.010 -0.170 0.064 0.124 0.010 -0.170 0.035 0.175 -0.050 -0.130 0.075 0.133 0.040 -0.180 0.095	0.014 0.124 0.040 -0.150 0.042 0.010 0.114 0.000 -0.150 0.010 0.036 0.036 -0.020 -0.170 0.041 0.084 0.146 0.000 -0.170 0.041 0.010 0.155 -0.010 -0.180 0.014 0.082 0.124 0.010 -0.180 0.014 0.084 0.074 0.010 -0.180 0.014 0.084 0.072 0.010 -0.170 0.004 0.084 0.077 0.040 -0.170 0.075 0.144 0.077 0.040 -0.130 0.075 0.145 0.075 -0.090 -0.130 0.075	7308.98 0.014 0.124 0.040 -0.150 0.042 7308.99 0.010 0.114 0.000 -0.150 0.010 7308.96 0.036 0.090 -0.070 0.041 7308.95 0.010 0.146 0.000 -0.170 0.044 7308.96 0.010 0.155 -0.010 0.014 0.014 7308.96 0.064 0.012 0.012 0.014 0.034 7308.00 0.064 0.071 0.040 0.130 0.014	25184.20 7308.98 0.014 0.124 0.040 -0.150 0.042 25184.21 7308.98 0.051 0.114 0.000 -0.150 0.010 25184.22 7308.98 0.056 0.059 -0.170 0.041 25184.12 7308.96 0.015 0.146 0.000 -0.170 0.041 25184.22 7308.96 0.010 0.155 -0.010 0.014 0.004 25184.22 7308.96 0.010 0.155 -0.010 -0.170 0.004 25184.27 7308.96 0.062 0.124 0.010 -0.170 0.004 25184.57 7308.91 0.042 0.146 0.010 -0.170 0.004 25184.57 7308.91 0.104 0.175 0.000 -0.170 0.003 25184.15 7308.91 0.104 0.175 0.000 -0.170 0.005
0.004		0.188 0.192 0.224 0.238 0.210		0.010 0.041 0.064 0.014 0.033 0.075	-0.150 0.010 -0.170 0.041 -0.170 0.064 -0.180 0.014 -0.120 0.035 -0.220 0.136 -0.180 0.090	0,000 -0,150 0.010 -0.150 0.010 -0.000 0.010 -0.000 0.011 0.000 0.014 0.010 0.014 0.010 0.014 0.010 0.014 0.010 0.014 0.010 0.014 0.010 0.015 0.010 0.	0.134 0.000 -0.150 0.010 0.010 0.030 0.030 0.030 0.030 0.041 0.0020 0.0170 0.0041 0.055 0.010 0.055 0.010 0.055 0.010 0.015 0.	0,010 0,114 0,000 -0,150 0,010 0,036 0,030 -0,020 -0,170 0,041 0,010 0,146 0,000 -0,170 0,064 0,010 0,156 -0,010 -0,180 0,014 0,022 0,124 0,010 -0,170 0,034 0,064 0,077 0,040 0,170 0,056 0,124 0,077 0,040 0,130 0,075 0,146 0,175 -0,090 -0,130 0,075 0,146 0,175 -0,090 -0,130 0,075 0,146 0,175 -0,090 -0,130 0,075	7308.96 0.010 0.114 0.000 -0.150 0.010 7308.96 0.036 0.030 -0.020 -0.170 0.041 7308.96 0.054 0.146 0.000 -0.170 0.054 7308.96 0.010 0.156 0.016 0.014 0.014 7308.96 0.084 0.071 0.040 -0.170 0.034 7308.00 0.084 0.071 0.040 0.130 0.075	25184.21 7308.99 0.010 0.114 0.000 -0.150 0.010 25184.23 7308.96 0.036 0.030 -0.020 -0.170 0.041 25184.12 7308.96 0.064 0.146 0.000 -0.170 0.044 25184.12 7308.95 0.032 0.124 0.010 -0.180 0.014 25184.27 7308.00 0.064 0.071 0.040 -0.130 0.075 25184.15 7308.00 0.064 0.071 0.000 -0.130 0.075 25184.15 7308.00 0.064 0.071 0.000 -0.130 0.075
0.001		0.192 0.224 0.238 0.210		0.041 0.064 0.014 0.033 0.075	-0.170 0.041 -0.170 0.064 -0.180 0.014 -0.170 0.033 -0.130 0.075 -0.220 0.189 -0.180 0.090	0.000 -0.170 0.041 -0.010 -0.170 0.064 -0.010 -0.170 0.014 -0.010 -0.130 0.075 -0.090 -0.220 0.136 -0.090 -0.220 0.090	0.090 -0.020 -0.170 0.041 0.041 0.041 0.041 0.041 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.045 0.044 0.045 0.044 0.045 0.045 0.045 0.046 0.048 0.046 0.048 0.049 0.049 0.049	0.036 0.036 -0.020 -0.170 0.041 0.064 0.146 0.000 -0.170 0.064 0.017 0.016 -0.010 -0.016 0.014 0.022 0.124 0.010 -0.170 0.034 0.064 0.077 0.040 -0.170 0.034 0.014 0.077 0.040 -0.130 0.075 0.014 0.077 0.040 -0.130 0.075 0.014 0.017 -0.040 -0.120 0.016 0.014 0.017 -0.040 -0.020 0.016 0.014 0.017 -0.040 -0.020 0.016	7308.96 0.036 0.020 -0.020 -0.170 0.041 7308.96 0.064 0.146 0.000 -0.170 0.064 7308.96 0.032 0.126 -0.010 0.016 0.014 7308.96 0.032 0.124 0.010 -0.170 0.033 7308.00 0.064 0.017 0.040 -0.170 0.033	25184.23 7308.96 0.036 0.036 0.030 -0.170 0.041 25184.18 7308.96 0.064 0.146 0.000 -0.170 0.064 25184.17 7308.95 0.010 0.155 -0.010 -0.180 0.014 25184.27 7308.90 0.084 0.014 0.017 0.040 0.075 25184.15 7308.00 0.084 0.071 0.090 -0.130 0.075 25184.15 7308.01 0.044 0.175 0.040 -0.130 0.075
0.001		0.224 0.238 0.210		0.064 0.014 0.033 0.075 0.079	-0.170 0.064 -0.180 0.014 -0.180 0.015 -0.180 0.075 -0.180 0.086 -0.18	0.000 -0.170 0.064 -0.170 0.0054 -0.010 0.014 0.014 0.014 0.014 0.014 0.015 0.	0.146 0.000 -0.170 0.064 0.155 -0.010 -0.180 0.014 0.124 0.010 -0.170 0.033 0.071 0.040 -0.130 0.075 0.133 0.040 -0.180 0.090	0.064 0.146 0.000 -0.170 0.064 0.010 0.155 -0.010 -0.180 0.014 0.022 0.124 0.010 -0.170 0.033 0.064 0.077 0.040 -0.130 0.075 0.044 0.175 -0.090 -0.220 0.136	7368.96 0.064 0.146 0.000 -0.170 0.064 7368.95 0.010 0.155 -0.010 -0.180 0.014 7308.95 0.032 0.124 0.010 -0.170 0.033 7308.00 0.064 0.071 0.040 -0.130 0.075	25/144, 18 7308 96 0.064 0.146 0.000 -0,170 0.064 25/144, 18 7308 95 0.010 0.155 -0.010 -0,140 0.014 25/144, 25 7308 00 0.084 0.071 0.040 -0,170 0.073 25/144, 15 7308 00 0.084 0.071 0.040 -0,130 0.075 25/144, 15 7308 91 0.104 0.175 0.040 -0,130 0.075
0.004		0.238		0.014 0.033 0.075 0.136	-0.180 0.014	0.040 -0.180 0.014 0.014 0.010 0.014 0.010	0.155 -0.010 -0.180 0.014 0.012	0.010 0.155 -0.010 -0.180 0.014 0.012 0.020 0.014 0.015 0.014 0.010 0.015 0.014 0.010 0.015 0.014 0.015 0.014 0.015 0.014 0.01	7308.95 0.010 0.155 -0.010 -0.180 0.014 7308.95 0.032 0.124 0.010 -0.170 0.033 7308.00 0.064 0.071 0.040 -0.130 0.075	25/84/17 7308 95 0.010 0.155 0 010 0 180 0.014 25/84/20 7308 96 0.022 0.124 0.010 0 170 0.033 25/84/25 7308 91 0.044 0.071 0.040 -0.130 0.075 25/84/15 7308 91 0.104 0.175 0.080 -0.220 0.186
0.002	J	0.210		0.033	-0.170 0.033	0.040 -0.170 0.033 0.040 -0.130 0.075 -0.050 -0.220 0.139 0.040 -0.180 0.090	0.124 0.010 -0.170 0.033 0.071 0.040 -0.130 0.075 0.175 -0.090 -0.220 0.136 0.133 0.040 -0.180 0.090	0.032 0.124 0.010 -0.170 0.033 0.064 0.071 0.040 -0.130 0.075 0.145 -0.090 -0.220 0.138 0.044 0.175 -0.090 -0.220 0.138	7308.96 0.032 0.124 0.010 0.170 0.033 7308.00 0.064 0.071 0.040 0.130 0.075	25194,20 7308,96 0.0642 0.174 0.010 0.033 0.075
0.003	- 1			0.138	-0.130 0.075 -0.220 0.136 -0.180 0.090	0.040 -0.130 0.075 -0.050 -0.220 0.139 -0.040 -0.180 0.090	0.175 -0.090 -0.130 0.075 0.136 0.133 0.040 -0.180 0.090	0.004 0.075 0.090 0.075 0.090 0.075 0.095 0.095 0.095 0.090	7309.00 0.064 0.071 0.040 0.130 0.075	25184.25 7308.91 0.104 0.175 -0.090 -0.220 0.138
0.010	1	0.148		0.138	0.200 0.030	0.040 0.090	0.13 0.040 -0.180 0.090	0.109 0.138 0.138	2000	[25164:15] 1305:31 0.104 0.175] -0.050 -0.220 0.138
7100		0.281			000.0	2007	Opp. 1		7308.95 0.000 081.0. 040.0 051.0 051.0 051.0	0.081 0. 0.040 0.040
0.004	1	0.247	_	0.036	-0.210 0.036	-0.030 -0.210 0.036	0.130 -0.210 0.036	0.020 0.130 -0.030 -0.210 0.036	7308.92 0.020 0.130 -0.030 -0.210 0.036	25184.19 7308.92 0.020 0.130 -0.030 -0.210 0.036
0.005	1	0.210		0.046	-0.170 0.046	0.040 -0.170 0.046	0.124 0.040 -0.170 0.046	0.022 0.124 0.040 0.170 0.046	7308.96 0.022 0.124 0.040 -0.170 0.046	25184.20 7308.96 0.022 0.124 0.040 .0.170 0.046
0.005	·	0.247	0.046 0.247		0.046	-0.210 0.046	-0.040 -0.210 0.046	0.022 0.130 -0.040 -0.210 0.046	7308.92 0.022 0.130 -0.040 -0.210 0.046	25184.19 7308.92 0.022 0.130 -0.040 -0.210 0.046
100.0		0.242		0.028	-0.190 0.028	0.020 -0.190 0.028	0.150 0.020 -0.190 0.028	0.020 0.150 0.020 -0.190 0.028	7308.94 0.020 0.150 0.020 -0.190 0.028	25184.17 7308.94 0.020 0.150 0.150 0.020 -0.190 0.028
0.003		0.222		0:030	-0.180 0.030	0.010 -0.180 0.030	0.130 0.010 -0.180 0.030	0.028 0.130 0.010 0.010 0.030	7308,95 0.028 0.130 0.010 -0.180 0.030	25184.19 7308.95 0.028 0.130 0.010 -0.140 0.030
0.000		0.222		0.000	-0.180 0.000	0.000 -0.180 0.000	0.130 0.000 -0.180 0.000	0.000 0.130 0.000 0.000	7308.95 0.000 0.130 0.000 -0.180 0.000	25184.19 7308.95 0.000 0.130 0.000 0.000 0.000
0.004		0.197		0.067	-0.180 0.067	0.000 -0.180 0.067	0.081 0.000 0.067	0.067 0.081 0.000 0.067	7308.95 0.067 0.081 0.000 -0.180 0.067	25184.25 7308.95 0.067 0.081 0.000 0.067
0.002		0.210		0.028	-0.180 0.028	0.000 -0.180 0.028	0.108 0.000 -0.180 0.028	0.028 0.108 0.000 -0.180 0.028	7308.95 0.028 0.108 0.000 -0.180 0.028	25184.23 7308.95 0.028 0.108 0.000 -0.180 0.028
0.004		0.236		0.030	-0.210 0.030	-0.030 -0.210 0.030	0.108 -0.030 -0.210 0.030	0.000 0.108 -0.030 -0.210 0.030	7308.92 0.000 0.108 -0.030 -0.210 0.030	25184.23 7308.92 0.000 0.108 -0.030 -0.210 0.030
0.000		0.233	0.041 0.233	0.041	-0.210 0.041	0.000 -0.210 0.041	0.102 0.000 -0.210 0.041	0.041 0.102 0.000 -0.210 0.041	7308.92 0.041 0.102 0.000 -0.210 0.041	25184.22 7308.92 0.041 0.102 0.000 -0.210 0.041
0.001		0.239	0.014 0.239	0.014	-0.210 0.014	-0.210 0.014	0.000 -0.210 0.014	0.014 0.114 0.000 -0.210 0.014	7308.92 0.014 0.114 0.000 -0.210 0.014	25184.21 7306.92 0.014 0.114 0.000 -0.210 0.014
0.000		0.233	0.014 0.233		0.014	-0.210 0.014	0.000 -0.210 0.014	0.102 0.000 -0.210 0.014	7308.92 0.014 0.102 0.000 -0.210 0.014	25184,22 7308.92 0.014 0.102 0.000 -0.210 0.014
0.007		0.157	0.091 0.157		0.091	-0.120	0.090 -0.120 0.091	0.100 0.090 -0.120 0.091	7309.01 0.010 0.100 0.090 -0.120 0.091	0.010 0.100 0.090 -0.120 0.091
0.017		0.244	0.118 0.244		0.118	-0.230 0.118	-0.110 -0.230 0.118	0.081 -0.110 -0.230 0.118	7308.90 0.042 0.081 -0.110 -0.230 0.118	0.042 0.081 -0.110 -0.230 0.118
0.000	}	0.241	0.022 0.241		0.022	-0.220 0.022	0.010 -0.220 0.022	0.098 0.010 0.0220 0.022	7308.91 0.020 0.098 0.010 0.022	0.020 0.098 0.010 -0.220 0.022
0.003		0.219	0.022 0.219		0.022	-0.200 0.022	0.020 -0.200 0.022	0.089 0.020 -0.200 0.022	7308.93 0.010 0.089 0.020 -0.200 0.022	0.010 0.089 0.020 0.020 0.022
0.003		0.240			0.024	-0.220 0.024	-0.020 -0.220 0.024	0.095 -0.020 -0.220 0.024	7308.91 0.014 0.095 -0.020 -0.220 0.024	0.014 0.095 -0.020 -0.220 0.024
0.000		0.219	0.024 0.219		-0.200 0.024	0.020 -0.200 0.024	0.020 -0.200 0.024	0.014 0.089 0.020 0.020 0.024	7308.93 0.014 0.089 0.020 -0.200 0.024	25184.24 7308.93 0.014 0.089 0.020 0.020 0.024
0.001		0.277			-0.230 0.076	-0.030 -0.230 0.076	0.155 -0.030 -0.230 0.076	0.070 0.155 -0.030 -0.230 0.076	7308.9 0.070 0.155 -0.030 -0.230 0.076	25184.17 7308.9 0.070 0.155 -0.030 -0.230 0.076
0.000		0.296	0.037 0.296		0.037	-0.260 0.037	-0.030 -0.260 0.037	0.141 -0.030 -0.260 0.037	7308.87 0.022 0.141 -0.030 -0.260 0.037	0.022 0.141 -0.030 -0.260 0.037
ı	0:00		0.296	0.037 0.296	-0.260 0.037 0.296	-0.030 -0.260 0.037 0.296	0.141 -0.030 -0.260 0.037 0.296	0.022 0.141 -0.030 -0.260 0.037 0.296	7308.87 0.022 0.141 -0.030 -0.260 0.037 0.296	25184.18 7308.87 0.022 0.141 -0.030 -0.260 0.037 0.296

160107	70:0/607	Z4804.10	1310.20	0.045	0.333	0.000	-0.430	0.045	0.557	0.003	0.00	4	296.57	4	334.89	
leveprsm.xls								Golder A	Associates Ir	č						

!	CUMULATIVE	ANGLE		-75.96	-63.43	-18.43	45.00	-29.12	44,13	-25.88	-50.49	-38.11	-56.31	-65.91	-51.67	33.23	47.00	50 80	-54 74	46.67	-45.82	-54.53	45.45	-45.76	-51.07	-53 02	-51.28	-50.39	-54.69	-52.16	-54.79	-51.16	-55.29	-51.16	-52.26	-50.16	-51.61	-53.30	-53.30	-54.16	-53.30	-51.00	-62.59	53.77	-52.64	-53.30	-53.84	-50.45	-52.01	-52.41	-52.04	-52.57	-53.68	85.53
		4	ö	ö	ō		ŏ	8	4	96	96	66	ō	2 !	20 9	3 5		3 2		1 00	7	2	0,	82	8.	25	8 9	88 5	2 2	2	182	53	4	22 2	21 5	2 0	1 98	£3	13	53	13	81	2 5	21 9	2 27	13	81	23	8	8 5	2 5	2 22	9	3
	DISPLACEMENT	AZIMUTH	i0/AIO#	#DIA/0i	#DIV/0	#DIV/0	#Div/0	338.20	14.04	75.96	345.96	348.69	#DIV/0i	333.43	341.57	336.80	2.4.5	324.5	315.00	327.8	329.04	322.	331.70	334.9	3387	341.57	336.8	334.98	331.93	339.4	338.6	332.6	339.44	332.53	335.	335.10	334.36	333.4	333.43	332.53	333.43	334	333.4	335.22	333 43	333.43	334.29	334.23	336.6	334.98	223.42	337.52	335.10	96 025
1	SECTOR (CUMULATIVE)			1	1		1	4	-	1	4	4	1	4	4	4		1	7	7	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4 4	4	4	
	DISPLACEMENT	AZIMUTH	I0/AIQ#	#DIV/0;	#DIA/0;	#DIV/0/	#DIV/0/	315.00	123.69	315.00	270.00	#DIA/0i	135.00	270.00	#D/VIC#	315.00	135.00 10/VIU#	206 57	10/VIC#	345.96	333.43	225.00	#DIA/0i	#DIA/0i	00:00	0.00	225.00	315.00	270.00	330.26	#DIV/0	296.57	104.04	284.04	45.00	#DIV/0	161.57	315.00	#DIV/0:	#DIA/0i	#DIA/0;	io/AIQ#	#DIV/OI	00:00	WIND#	153.43	+DIV/01	333.43	116.57	315.00	#DIV/VIC#	108.43	225.00	45.00
1	SECTOR (INCREM)		-	2			-	4	2	4	4	-	2	4	-	4 6	1	-	1	4	7	3	-	1	-	-	e .	7	4 -	4	2	4	2	4		-	2	4	1	2	-	-	2	1		2	-	4	2	4	-	. 2	3	Ī
DISPLACEMENT	MOVING AVG	(tr/dey)				0.001	0.001	0.002	0.002	0.001	0.002	0.002	0.002	0.002	0.001	0.002	0.007	0.004	0.004	0.004	0.004	0:003	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002	0.002	0.002	0.002	0.001	0.001	0.001	19.0	0.002	0.002	0.002	0.002	0.003	0.003	0.002	0.003	0.002	0000
DISPLACEMENT	DAY	(Trosy)	0.003	0.001	00:00	0.002	0.002	0.003	0.001	0.001	0.003	0.000	0.001	0.005	0.001	2000	0000	200.0	0.010	0.001	0.004	0.004	0.001	0.001	0.003	0.001	0.003	0.002	0.002	0.00	0.002	0.002	0.000	0.000	0.003	0.001	0.005	0.004	00000	0.001	0.001	00:01	0000	00.0	0.002	0.005	0.003	0000	0.002	0.007	0.002	0.004	100.0	000
	DISTANCE	Ê	0.020	0.041	0.045	0.032	0.042	0.062	0.057	0.046	0.065	0.065	0.072	0.110	201.0	100.0	0.094	0.03	0.098	0.137	0.167	0.196	0.210	0.237	0.257	0.263	0.244	0.260	0.315	0.418	0.428	0.449	0.450	0.449	0.400	0.482	0.447	0.486	0.486	0.481	0.486	0.476	0.478	0.404	0.516	0.486	0.508	0.506	0.495	0.543	0.555	0.516	0.521	0010
INCREMENTAL	DISTANCE	E)	0.020	0.041	0.010	0.032	0.020	0.028	0.073	0.047	0.036	0.014	0.024	0.045	0.028	0.000	000 0	0.046	0.032	0.046	0.030	0.042	0.041	0.028	0.032	0 014	0.024	0.017	0.041	0.107	0.022	0.045	0.046	0.046	0.024	0.010	0.037	0.042	0.000	0.010	0.010	0.022	0.014	0.014	0.032	0.030	0.022	0.030	0.022	0.049	0.010	0.037	0.017	0000
CUMULATIVE	DISTANCE	Œ	0.000	-0.040	0.040	-0.010	-0.030	-0.030	0.040	-0.020	-0.060	-0.040	-0.060	0.100	080.5	0.030	070.0-	0.110	080'0-	-0.100	-0.120	0.160	-0.150	-0.170	-0.200	-0.210	-0.190	0.200	0.260	-0.330	-0.350	-0.350	-0.370	-0.350	0.370	-0.370	-0.350	-0.390	-0.390	-0.390	-0.390	-0.370	-0.380	0800	-0.410	082.0-	-0.410	-0.390	-0.390	-0.430	-0.430	-0.410	-0.420	0070
INCREMENTAL	DISTANCE	(11)	0.000	-0.040	0000	0.030	-0.020	000	-0.010	0.020	-0.030	0.010	-0.020	-0.040	0.020	0.030	0000	-0.040	0.030	-0.020	-0.020	-0.040	0.010	-0.020	-0.030	0.010	0.020	0100	020 0-	-0.070	-0.020	0.000	-0.020	0.020	-0.020	0.010	0.020	-0.040	0.000	0.000	0.000	0.020	-0.010	0100	-0.030	0.020	-0.020	0.020	0.000	0.040	0.010	0.020	-0.010	0100
CUMULATIVE	DISTANCE		0.020	0.010	0.020	0:030	0.030	0.054	0.041	0.041	0.041	0.051	0.040	0.045	0.063	0.070	0.063	0.064	0.057	0.094	0.117	0.114	0.148	0.166	0.162	0.158	0.152	0.100	0.177	0.256	0.247	0.282	0.256	0.282	0.200	0.309	0.277	0.291	0.291	0.282	0.291	0.300	U.281	0.304	0.313	0.291	0.300	0.322	0.305	0.331	0.335	0.314	0.309	0 320
NOREMENTAL	DISTANCE	(ii)	0.020	0.010	0.010	0.010	0000	0.028	0.072	0.042	0.020	0.010	0.014	0.020	0.020	4100	000.0	0.022	0.010	0.041	0.022	0.014	0.040	0.020	0.010	0.010	410.0	0.014	0.036	0.081	0.010	0.045	0.041	0.041	0.02	0000	0.032	0.014	0.000	0.010	0.010	0.010	0.00	0.022	0.010	0.022	0.010	0.022	0.022	0.028	0000	0.032	0.014	8000
	ELEV.	7316.63	7316.63	7316.59	7316.59	7316.62	/316.60	7316.60	7316.59	7316.61	7316.58	7316.59	7316.57	7316.53	7316.58	7316.56	7316.56	7316.52	7316.55	7316.53	7316.51	7316.47	7316.48	7316.46	7316.43	7316.42	7216.43	7316.30	7316.37	7316.30	7316.28	7316.28	7316.26	7246.26	7316.25	7316.26	7316.28	7316.24	7316.24	7316.24	7316.24	7316.20	20,0167	7316.25	7316.22	7316.24	7316.22	7316.24	7316.24	7316.20	7316.20	7316.22	7316.21	7316.20
-	EASTING	24934.30	24934.30	24934.30	24934.30	24934.30	24834.30	24934.28	24834.34	24934.31	24934.29	24934.29	24834.30	24034.28	24934 27	24934 78	24934.28	24934.26	24934.26	24934.25	24934.24	24934.23	24934.23	24934.23	24934.24	24934.25	240476	24034 22	24934.25	24834.21	24934.21	24934.17	24934.21	24934.17	24934.17	24934.17	24934.18	24934.17	24934.17	24934.17	24934.17	24934.17	24934.18	24934.16	24934.16	24934.17	24934.17	24934.16	24934.18	24934.16	24934.15	24934.18	24934.17	24934 10
	NORTHING	25978.35	25978.37	25978.36	25978.37	25978.38	25978.38	25978.40	25978.36	25978.39	25978.39	25978.40	25978.39	25278.39	25978 42	25978.41	25978.41	25978.40	25978.39	25978.43	25978.45	25978.44	25978.48	25978.50	25978.50	25978.50	25978.50	25978.50	25978.52	25978.59	25978.58	25978.60	25978 59	25978.61	25978.63	25978.63	25978.60	25978.61	25978.61	25978.60	25978.61	25070.02	25078.64	25978.62	25978.63	25978.61	25978.62	25978.64	25978.63	26978.65	25978.65	25978.64	25978.63	25079 65
LEVEE 4	TIME	1/3/96	1/11/96	2/8/96	2/15/96	36/22/2	08/87/7	377/96	3/14/96	3/22/96	3/28/96	4/4/95	4/18/96	4/20/80 5/2/86	5/9/96	5/31/96	96/2/9	6/10/96	6/13/96	7/11/96	7/18/96	7/25/96	8/16/96	9/12/96	9/19/96	9/26/96	10/10/96	10/24/96	11/18/96	5/16/97	5/22/97	6/4/97	6/11/97	6/25/97	7/2/97	79/9/7	7/16/97	7/25/97	7/30/97	8/6/97	19/19/9/	160270	70/2/0	9/10/97	9/25/97	10/1/97	10/8/97	10/16/97	10/22/97	11/5/97	11/12/97	11/19/97	11/26/97	12/3/97

LEVEE4

July 1999

ì	7	5	
į	1	j	
í	?	;	
•	_	3	

LEVEE 4				INCREMENTAL	CUMULATIVE	INCREMENTAL	CUMULATIVE	NCREMENTAL	CUMULATIVE	SLOPE	SLOPE					
				HORIZONTAL		VERTICAL	VERTICAL.	TOTAL	TOTAL	PER	RATE	SECTOR	INCREMENTAL	SECTOR	CUMULATIVE	CUMULATIVE
HWE	NORTHING	EASTING	ELEV.	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DAY	MOVING AVG	(INCREM)	DISPLACEMENT	(CUMULATIVE)	DISPLACEMENT	DIP
				(£)	(m)	(H)	(m)	(n)	(m)	(fVday)	(fl/day)		AZIMUTH		AZIMUTH	ANGLE
12/17/97	25978.65	24934.15	7316.20	0.020	0.335	0.000	-0.430	0.020	0.545	0.002	0.002	2	#DIA/0i	4	333.43	-52.04
12/23/97	25978.65	24934.16	7316.20	0.010	0.331	0.000	-0.430	0.010	0.543	0.000	0.002	-	00:0	4	334.98	-52.41
12/30/97	25978.65	Ц	7316.19	0.020	0.323	-0.010	-0.440	0.022	0.546	0.000	100.0	1	00:00	4	338.20	-53.71
17/98	25978.65	24934.17	7316.21	0.010	0.327	0.020	-0.420	0.022	0.532	0.002	0.001	4	270 00	4	336.57	-52.10
1/14/98	25978.65	24934.18	7316.19	0.010		-0.020	-0.440	0.022	0.546	0.002	0.001	=	00:0	4	338.20	-53.71
1/27/98	25978.65	24934.16	7316.19	0.020	0.331	000:0	-0.440	0.020	0.551	0.000	0.001	4	270.00	4	334.98	-53.04
2/3/98	25978 65	24934.15	7316.2	0.010	0.335	0.010	-0.430	0.014	0.545	0.001	0.001	4	270.00	4	333.43	-52.04
2/19/98	25978.65		7316.2	0.040		000.0	-0.430	0.040	0.536	0.001	0.001	-	0:00	4	339.86	-53.38
3/25/98	25978.66	24934.18	7316.2	0.014	0.332	0.000	-0.430	0.014	0.544	0.000	0.001	4	315.00	7	338.84	-52.29
4/3/98	25978.67	24934.16	7316.18	0.022	0.349	-0.020	-0.450	0:030	0.570	00'0	0.004	4	296.57	4	336.37	-52.18
4/8/98	25978.61	24934.17	7316.24	0.061	0.291	090'0	-0.390	0.085	0.486	0.017	900:0	2	170.54	4	333.43	-53.30
4/15/98	25978.65	24934.16	7316.19	0.041	0.331	-0.050	-0.440	90.0	0.551	6000	200.0	4	345.96	4	334.98	-53.04
4/22/98	25978.68	24934.14	7316.17	0.036	0.367	-0.020	-0.460	0.041	0.588	0.005	2000	4	326.31	4	334.13	-51,44
4/29/98	25978.67	24934.16	7316.16	0.022	0.349	-0.010	-0.470	0.024	0.586	0.000	200.0	2	116.57	4	336.37	-53.38
5/7/98	25978.67	24934.17	7316.19	0.010	0.345		-0.440	0 032	0.559	0.003	200.0	-	00:0	4	337.89	-51.87
5/13/98	25978.59	24934.21	7316.26	0.089	0.256	0.070	-0.370	0.114	0:450	0.018	0.010	2	153.43	7	339.44	-55.29
5/21/98	25978.68	24934.14	7316.13	0.114		-0 130		0.173	0.620	0.021	0.009	4	322.13	7		-53.74
5/28/98	25978.68	_		0.020	0.358	0.030	-0.470	0.036	0.591	0.004	0.010	1	00:00	4	337.01	-52.67
6/3/98	25978.67	24934.16	-	0.010	0.349	-0.020	-0.490	0.022	0.602	0.002	0.010	2	#DIV/0:	4	336.37	-54.52
6/10/98	25978.67	24934.17	-	0.010				0.051		900:0	0.008	1	00:00	7	337.89	-51.87
6/17/98	25978.67	_	7316.14	0.010	0.349	-0.050	-0.490	0.051	0.602	9000	0.004	4	270.00	4	336.37	-54.52
6/24/98	25978.68	24934.16	7316.14	0.010	0.358	000.0	-0.490	0.010	0.607	0.001	0.004	1	i0/AIC#	4	337.01	-53.81
7/1/98	25978.67	24934.16	7316.16			0.020	-0.470	0.022	0.586	0.003	0.003	2	#DIV/0!	4	336.37	-53.38
7/8/98	25978.67	24934.16	7316.16		0.349	0.000	-0.470	0.000	0.586	0.000	0.002	1	#DIA/IOI	4	336.37	-53.38
7/15/98	25978.67	24934.17	7316.17				-0.460	0.014	0.575	0.001	0.002	1	0.00	4	337.89	-53.10
7/22/98	25978.7	\perp	7316.15				-0.480	0.054	0.618	0.006	0.003	4	306.87	4	334.09	-50 97
7/29/98	25978.68	Ì	7316.15					0.045	0.597	0.003	0.002	2	116.57	4	338.50	-53.54
8/11/98	25978.67	24934.16	7316.15	0.014	ĺ			0.014	0.594	0.000	0.002	3	225.00	4	336.37	-53.96
8/19/98	26978.67	24934.17	7316.15	0.010				0.010	0.591	0.000	0.002	1	0.00	4	337.89	-54.26
8/31/98	25978.67	_	7316.14	0.010		-0.010		0.014	0.602	0:001	0.004	4	270.00	4	336.37	-54.52
9/11/98	25978.59		7316.3	0.094	0.256	0.160	-0.330	0.186	0.418	0.017	0.012	2	147.99	4	339.44	-52.16
9/16/98	25978.68	24934.16	7316.11	0.103	0.358	-0.190	-0.520	0.216	0.632	0.043	0.013	4	330.95	4	337.01	-55.42
9/22/98	25978.7	_				0000		0.022	0.645	0.005	0.013	4	333.43	4	336.80	-53.79
9/30/98	25978.69	_	Γ	0.010	0.372	0.020	-0.500	0.022	0.623	0.003	0.014	2	#DIV/0;	4	336.19	-53.38
10/7/98	26978.7	_	7316.1	0.014		-0.030		0.033	0.650	0:004	0.010	1	45.00	4	338.20	-54 58
3/3/68	25978.68	- 1						0.055	0.661	0.000	0.002	3.	201.80	4	330.07	-54.81
5/27/99	25978.72	24934.11	7316.07		0.416			0.045	0.698	0.000	0 001	-	#DIV/0i	4	332.82	-53.40
7/23/99		24934.1	7316.06	0.014	0.429	-0.010	-0.570	0.017	0.714	0.000	0.001	4	315.00	4	332.24	-53.01

٠.
- 2
4
- 0
-2
7
**
٠,
•
4
ũ
d
q
7
-
٠,
1

										SLOPE	SLOPE					
MD2			:	INCREMENTAL		INCREMENTAL	CUMULATIVE	INCREMENTAL	Ä	FN.	DISPLACEMENT				!	į
TIME	NORTHING	EASTING	ELEV.	DISTANCE	DISTANCE	DISTANCE	VER I ICAL.	DISTANCE	DISTANCE	DA FE	MOVING AVG	(INCREM)	INCREMENTAL	SECTOR (CUMULATIVE)	CUMULATIVE DISPLACEMENT	CUMULATIVE
				(H)	(¥)	€	(#)	(£)	(#)	(fl/day)	(fl/day)		AZIMUTH		AZIMUTH	ANGLE
1/3/96	26379.64	23941.41	7254.20													
1/11/96	26379.65	23941.41	7254.17	0.010	0.010	-0.030	-0.030	0.032	0.032	0.004		-	#DIA/O	1	#DIV/0	
2/8/96	26379.65	23941.42	7254.17	0.010	0.014	0.000	-0.030	0.010	0.033	0.000		1	0.00	1	45.00	-64.76
2/15/96	26379.63	23941.39	7254.16		0.022	-0.010	-0.040	0.037	0.046	0.002		3	213.69	3	206.57	-60.79
2/22/96	26379.63	23941.40	7254.16	0.010	0.014	0.000	0.040	0.010	0.042	0.000	0.005	1	0.00	3	225.00	-70.53
2/29/96	26379.67	23941.47	7254.17	0.081	0.067	0.010	0.030	0.081	0.073	0.004	0.002	1	29.74	1	26.57	-24.09
3/1/96	26379.62	23941.38	7254.16	0.103	0.036	-0.010	-0.040	0.103	0.054	0.003	0.003	3	209.05	3	213.69	-47.97
3/14/96	26379.67	23941.47	7254.21	0.103	0.067	0.050	0.010	0.114	0.068	0.002	0.003	1	29.05	1	26.57	8.48
3/22/96	26379.65	23941.45	7254.20	0.028	0.041	-0.010	0.000	0.030	0.041	0.003	0.003	3	225.00	1	14.04	00'0
3/28/96	26379.64	23941.42	7254.19	0.032	0.010	-0.010	-0.010	0.033	0.014	0.002	0.002	3	198.43	1	0.00	-45.00
4/4/96	26379.65	23941.42	7254.20	0.010	0.014	0.010	0000	0.014	0.014	000:0	0.003	1	i0/AIQ#	-	45.00	0.00
4/18/96	26379.66	23941.46	7254.20	0.041	0.054	0000	000:0	0.041	0.054	0.003	0.003	-	14.04	-	21.80	0.00
4/25/96	26379.62	23941.45	7254.15	0.041	0.045	-0.050	-0.050	0.065	290:0	0.002	0.002	3	255.96	2	116.57	-48.19
5/2/96	26379.62	23941.43	7254.17	0.020	0.028	0.020	-0.030	0.028	0.041	0.004	0.002	4	270.00	2	135.00	-46.69
96/6/9	26379.62	23941.40	7254.15	0:030	0.022	-0.020	-0.050	0.036	0.055	0.002	0.002		270.00	3	243.43	-65,91
5/31/96	26379.62	23941.41	7254.14	0100	0.020	-0.010	-0.060	0.014	0.063	0.000	0.002	+	00.0		i0/AIQ#	-71.57
6/10/96	26379.63	23941.46	7254.16	0.051	0.051	0.020	-0.040	0.055	0.065	0.000	0.002	-	11.31		101 31	-38 11
6/13/96	26379.60	23941.41	7254.12	0.058	0.040	-0.040	080'0-	1200	0.089	0.008	2000	F.	210.96	-	IO/AIC#	-63 43
7/11/96	26379.59	23841 42	7254 16	0.014	0.051	0.040	OPO O	0 042	0.065	0.001	0000	,	135.00	Î	168 60	-38 11
7/18/96	26379.62	23941.41	7254 14	0.032	0.020	0000-	090 0-	0.037	0.063	0000	1000		241 47	2 6	10/XIU#	-71.57
7/25/96	26379.58	23941.41	7254.18	0.040	090'0	0.040	0.020	0.057	0.063	0000	2000	2	#DIV/O#	1	#DIV/O	-1843
8/16/96	26379.60	23941.39	7254 16	BC0 0	0.045	020 0-	CAOC	0.035	0900	0000	0.00	1	315.00		24343	18.18.
9/12/96	26379.62	23941.30	77 7254 17	0200	0.028	0100	0.000	6000	0.00	0.00	0.00		00:016 100/010#		245.45	46.60
8/26/96	26379.59	23941 39	7254 18	0000	4500	01010	0200-	0.032	0.057	1000	1000		10/AIC#		00.022	20.05
10/2/96	26379.59	23941.39	7254.14	0000	0.054	0.040	0900 0	0.040	0.081	7000	0000	-	io/AiG#	· •	248.20	48 09
10/10/96	26379.56	23941.38	7254.18	0.032	0.085	0.040	-0.020	0.051	0.088	0.001	0.002	· E	251.57	(F)	249 44	-13.17
10/24/96	26379.57	23941.41	7254.09	0.032	0.070	060.0	0.110	0.095	0.130	0000	0000	-	18.43		IO/AiG#	-57 53
11/18/96	26379.60	23941.41	7254.15	0:030	0.040	090:0	-0.050	0.067	0.064	0.003	0,003		io/AlQ#	2	#DIV/OI	51.34
5/16/97	26379.56		7254.11	0.050	0.085	0.040	0000	0 064	0.124	0000	0.003	6	233 13	6	249.44	46.49
5/22/97	26379.59		7254.12	0.036	0.051	0100	0800	0 037	0.095	5000	0.003		56.31		258.60	.57 49
6/4/97	26379.54	23941.37	7254.12	0.058	0.108	0000	0.090	0.058	12.0	0000	0000	6	239.04) m	248.20	-36.60
6/11/97	26379.57	23941.41	7254.12	0900	0200	0000	080 0-	0.050	0.106	0000	2000	-	TR AF		IU/AIU#	48.81
6/18/97	26379.59	23941.41	7254.15	0.020	050.0	0000	0.050	960 0	0.071	0000	7000		IU/AIC#	2 6	IO/AIC#	45.00
6/25/97	26379 59	23941 41	7254 12	0000	0.050	050.0-	080 0-	0.030	7000	0003	1000		WALCH	1 6	IOWIC#	57.00
7/2/97	26379.56	23941.37	7254.11	0.050	690 0	0100-	080 0-	0.051	0 127	0.005	0.003	- "	216.87	7	243 43	45.18
76/6/7	26379.55	23941.37	7254.12	0.010	0.098	0.010	-0.080	0.014	0.127	0000	1000	2	io/AiQ#	· (e	246.04	93.09
7/16/97	26379.58		7254.13	0.058	0.061	0.010	-0.070	0.059	0.093	0.005	0.003		30.96	2	170.54	-49.01
7125/97	26379.58		7254.12	0.010	090:0	-0.010	-0.080	0.014	0.100	0.001	0.003	4	270.00	2	#DIV/Oi	-53.13
7/30/97	26379.55	23941.38	7254.11	0.042	90.0	-0.010	0.090	0.044	0.131	900:0	0.002	6	225.00	6	251.57	43.49
8/6/97	26379.55	23941.38	7254.11	0000	960.0	0.000	-0.090	0.000	0.131	0.000	0.003	1	#DIA/0i	E.	251.57	-43.49
8/13/97	26379.56	23941.39	7254.12	0.014	0.082	0.010	-0.080	0.017	0.115	0.002	0.003	1	45.00	3	255.96	44.13
8/20/97	26379.55	ı	7254.11	0.014	0.095	-0.010	-0.090	0.017	0.131	0.002	0.004	3	225.00	3	251.57	-43.49
8/27/97	26379.56	23941.38	7254.12	0.010	0.085	0.010	-0.080	0.014	0.117	0.002	0.003	1	io/AIQ#	3	249.44	-43.12
9/2/97	26379.50	23941.45	7254.11	0.092	0.146	-0.010	-0.090	0.093	0.171	0.009	0.004	2	130.60	2	164.05	-31.72
9/10/97	26379.54	23941.38	7254.10	0.081	0.104	-0.010	-0.100	0.081	0.145	0.003	0.004	4	299.74	3	253.30	-43.77
9/25/97	26379.54	23941.39	7254.08	0.010	0.102	-0.020	-0.120	0.022	0.157	0.001	0.004	-	0.00	3	258.69	-49.64
10/1/97	26379.55	23941.39	7254.15	0.010	0.092	0.070	-0.050	0.071	0.105	0.009	0.005	-	#DIV/0	3	257.47	-28.47
10/8/97	26379.55	2394139	7254.12	0.000	0.092	-0.030	-0.080	0.030	0.122	0.002	0.003	-	iO/AiQ#	3	257.47	-40.95
10/16/97	26379.55	2394138	7254.10	0.010	0.095	-0.020	-0.100	0.022	0.138	0.002	0.003	4	270.00	3	251.57	46.51
10/22/97	26379.56	23941.42	7254.10	0.041	0.081	000:0	0 100	0.041	0.128	0.002	0.003	-	14.04	2	172.87	-51.12
10/29/97	26379.56	23941.40	7254.10	0.020	0.081	00000	-0.100	0.020	0.128	0.000	0.002	4	270.00	3	262.87	-51.12
11/5/97	26379.54	23941.39	7254.08	0.022	0.102	-0.020	0.120	0.030	0.157	0.004	0.002	6	243.43	6	258.69	49.64
11/10/07	26370 50	i.	725A 11	0.010	00.00	0000	0.110	0.014	0.149	0.00	0.003		0.00	E .	264.29	47.58
11/26/97	26379.55	2394140	7254 11	0.030	0.034	020.0	080.0	0.062	0.100	0.00	0.003	- 6	233 13	7	763.66	-59.11
			, ,,,,,	A.V.V.	1.000	200.5	-0.00c	Taopia	V. 16.v.	200.0	T COAN'A	,	603.10		70.000	70:44

ن
드
tes
ū
ဗ္ဂ
ij
ä
Ė
ŏ
ु
O

ľ																
				INCREMENTAL	CUMULATIVE	INCREMENTAL	CUMULATIVE	INCREMENTAL	CUMULATIVE	SLOPE SLOPE DISPLACEMENT	SLOPE DISPLACEMENT					
TIME	CONTHING	CASTING	ù	HORIZONTAL	HORIZONTAL	VERTICAL	VERTICAL	TOTAL	TOTAL	PER	RATE	SECTOR	INCREMENTAL	SECTOR	CUMULATIVE	CUMULATIVE
	SALL HAS	EAST ING	ברבי.	(F)	CISTANCE (#)	E SI ANCE	DISTANCE (#)	DISTANCE	DISTANCE (f)	(ft/dav)	MOVING AVG	(INCREM)	DISPLACEMENT	(CUMULATIVE)	DISPLACEMENT	dio A
12/3/97	26379.55	23941.38	7254.10		0.095			0.022	0.138	0.001	0.003	4	270.00	3	251.57	-46 51
12/10/97	26379.60	23941,41	7254.09	0.058	0.040	-0.010	0.110	650.0	0.117	0.003	0.004		59.04	2	ro/∧lO#	-70 02
12/17/97	26379.54	\Box	7254.06	0.072	0.108	-0.030	-0.140	0.078	0.177	0.009	0.004	3	236.31	3	248.20	-52.43
12/23/97	26379.55	_ [7254.07	0.010	0.098		-0.130	0.014	0.163	0.005	0.003	_	#DIV/0i	3	246.04	-52.85
12/30/97	26379.54	23941.38	7254.06	0.014	0.104	010.0-	-0.140	0.017	0.175	0.002	0.005	2	135.00	E	253.30	-53 29
1/7/98	26379.57	23941.40	7254.15	0.036	0.071	060'0	-0.050	260.0	0.087	0.011	0.006	-	56.31	3	261.87	-35.26
1/14/98	26379.58	23941.42	7254.08	0.022	0.061	-0.070		0.073	0.135	0.007	0.005	1	76.57	1	PS 021	-63 12
1/27/98	26379.56	23941.41	7254.11	0.022	0.080	0:030	-0.090	0.037	0.120	0.001	90000	3		1	#DIV/ul	-4837
2/3/98	26379.54	23941.37	7254.06	0.045	0.108	-0.050	-0.140	290.0	0.177	0.008	9000	F		3	248.20	-52.43
2/19/98	26379.55	23941.38	7254.1	0.014	0.095	0.040	-0.100	0.042	0.138	0.002	10000	, -	45.00		251 67	46.51
3/25/98	26379.56	23941.42	7254.13			0:030		0.051	0.107	0.001	0.003	-	14 04	,	12.16.2	40.07
4/3/98	26379.56	23941.40	7254.16	0.020		0000		0.036	0800	2000	7000		02020	2	10.211	26.90
4/8/98	26379.55		L		Ĺ	-0.050		0.055	0.131	0.008	0.003	ron	25 802	2	254 57	42.49
4/15/98	26379.56	23941.41	7254.11	0.032	080	000'0		0 032	0 120	1000	0000		10.43		101/10#	40.04
4/22/98	26379.53	23941.38	7254.09			-0.020		0.047	0.158	0.005	7000	- 6	00966	3	254 74	-40.37
4/29/98	26379.52	23941.41	7254.12	0.032	0.120	0:030		0.044	0.144	0.002	1000	1	108.43	2	ION/IO#	-33.60
5/7/98	26379.54	23941.41	7254.08	0.020	0.100	-0.040	-0.120	0.045	0.156	0.001	0.004	-	IO/VIO#		io/AlO#	-50 19
5/13/98	26379.57	23941.41	7254.12	0.030	0.070	0,040	-0.080	0:020	0.106	0.008	0.002	-	i0/AIQ#	2	IONIC#	48.81
5/21/98	26379.51	-[7254.08	0.067	0.133	-0.040	-0.120	0.078	0.179	0000	0.005	9	243.43	3	257.01	-4197
5/28/98	26379.54	23941.40	7254.11	0.036	0.100	0.030	060:0-	0.047	0.135	9000	9000	+	56.31	3	264.29	-41.85
96/2/9	26379.55	23941.43	7254.08	0.032	0.092	-0.030	-0.120	0.044	0.151	0.003	0.005	-	18.43	2	167.47	-52.47
6/10/98	26379.54	23941.41	7254.08	0.022	0.100	0.000	-0.120	0.022	0.156	0.001	0.004	3	206.57	2	#Div/ig	-50 19
6/11/98	26379.55	23941.43	7254.08	0.022	0.092	0.000	-0.120	0.022	0.151	0.001	0.004	1	26.57	2	167.47	-52 47
6/24/98	26379.59	23941.41	7254.15	0.045	0.050	0.070	-0.050	0.083	0.071	0.012	0:00	4	333.43	2	i0/AlG#	-45.00
7/1/98	26379.52	23941.40	7254.08	0.071	0.120	-0.070	-0.120	660'0	0.170	0.014	900:0	3	261.87	3	265.24	-44 90
7/8/98	26379.51	23941.41	7254.08	0.014	0.130	0000	-0.120	0.014	0.177	0.001	2000	2	135.00	2	i0/AIG#	-42.71
7/15/98	26379.54	23941.42	7254.12	0.032	0.100	0.040	080:0-	150:0	0.128	0.007	700.D	-	71.57	2	174.29	-38.52
7/22/98	26379.55	23941.41	7254.11			-0.010		0.017	0.127	0.000	0.005	4	315.00	2	#DIV/O	-45.00
86/62/2	26379.56	23941.42	7254.07			-0.040	-0.130	0.042	0.153	0.004	0.002	-	45.00	2	172.87	-58.19
8/11/8	26379.55	23941.42	7254.08	0.010	0.091	0.010	-0.120	0.014	0.150	0.000	0.002	2	#DIA/Oi	2	173.66	-52.96
8/19/98	26379.56	23941.42	7254.07	0.010	0.081	-0.010	-0.130	0.014	0.153	0000	10001	1	IDI/AIO#	2	172.87	-58.19
8/31/98	26379.55	23941.43	7254.13	0.014		0.060		0.062	0.116	0.003	0.002	2	135.00	2	167.47	-37.21
9/11/98	26379.56	23941.38	7254.11	0.051	0.085	-0.020		0.055	0.124	100.0	0.002	4	281.31	3	249.44	46.49
9/16/98	26379.59	23941.43	7254.11		0.054	0.000		0.058	0.105	0.004	0.002	-	30.96	2	158.20	-59.11
9/22/98	26379.57	23941.39	7254.12	0.045	0.073	0.010	-0.080	0.046	0.108	100.00	0.002	е	206.57	3	254.05	47.70
9/30/98	26379.57	23941.42	7254.1	0.030		-0.020		0.036	0.122	0.002	0.002		00'0	2	171.87	-54.74
10/7/98	26379.56	23941.40	7254.07	0.022	0.081	-0.030	-0.130	0.037	0.153	0.004	0.003	3	206.57	3	262.87	-58.19
3/3/99	26379.53	23941.4	7254.09	0:030	0.110	0.020	-0.110	90.036	0.156	0.000	0.002	2	#DIV/0i	3	264.81	-44.88
5/27/99	26379.51	23941.35	7254.08	0.054		-0.010	-0.120	0.055	0.187	0.000	0.002	3	201.80	3	245.22	-39.97
7/23/99	26379.52	23941.38	7254.11	0.032	0.124	0.030	-0.090	0.044	0.153	100.0	100.001	_	18.43	8	255.96	-36.04

									100	SCOP			_		
MD2			INCREMENTA	CUMULATIVE	INCREMENTAL	CUMULATIVE	INCREMENTAL	CUMULATIVE	DISPLACEMENT	DISPLACEMENT					
		i	HORIZONTAL	HORIZONTAL,	VERTICAL	VERTICAL	TOTAL	TOTAL	PER	RATE	SECTOR	INCREMENTAL	SECTOR	CUMULATIVE	CUMULATIVE
TIME NORTHING	EASTING	ELEV.	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DAY (fl/dev)	MOVING AVG	(INCREM)	DISPLACEMENT	(CUMULATIVE)	DISPLACEMENT	DIP
1/3/96 26150.67	7 24134.25	7253.34		7.3	1.37	2			77	/Jan 11					
1/11/96 26150.66			0.014		-0.020	-0.020	0.024	0.024	0.003		3		3	225.00	
			0.010		0.020	0.000	0.022	0.010	0.001			00:0	2	i0/AIG#	00'0
1	4	7253.33	0.010		-0.010	0.010	0.014	0.017	0.001		4		3	225.00	-35.26
┙	_	7253.33	0.014		0000	-0.010	0.014	0.022	1000	0.001		315.00	4	270.00	-26.57
1	\perp	ı	0.063	0.045	000.0	-0.010	0.063	0.046	0.003	0.001	- -		1	26.57	.12.60
3//96 26150.65	1	7253.31	0.089	0.045	-0.020	-0.030	0.092	0.054	0.001	0.002	6		3	206.57	-33.85
┸	24 134.29	7059 94	0.089	0.045	0.020	0.00-0	0.092	0.046	0.00	0.002			,	26.57	-12.60
		7262 22	0.040	0.045	0.010	0.000	0.041	0.045	0.000	0.002	7		2	116.57	0.00
	\perp	7253.33	0.020		-0.010	0.010	0.030	0.022	0.004	0.002		315.00		000	1577- 1577-
		7253.35	0.020	0.000	0100	0.000	0.022	0.000	0.00	0.002	1	00.07		0/4/0#	*CIVIO*
L	L	7253.34	20.0	0.050	0.010	0000	0.022	0.022	0.00	0.002	- "	248.20	,	IOINIO#	000
1	1			0.022	0.030	0.030	0.033	760.0	2000	0.002	1	71.57	2	153.43	53.30
	L	7253.32		0.045	0.010	-0.020	0.037	0.049	2000	2000		213.69	3	243.43	-24 09
Ĺ	L			0.030	-0.020	-0.040	0.030	0900	0000	0.002		26.57	2	i0/AlQ#	-53.13
6/10/96 26150.64	4 24134.29	7253.30	0.040	0.050	0000	-0.040	0.040	0.064	0.001	0.001	-	00.0	2	126.87	-38.66
		7253.33	0.051	0.041	0.030	-0.010	0.059	0.042	0.007	0.002	F	191.31	3	255.96	-13.63
		7253.30	0.032	0.070	-0.030	-0.040	0.044	0.081	0.001	0.002	2	161.57	2	i0/AIQ#	-29.74
		7253.28	0.022	0.051	0.020	-0.060	0:030	0.079	0.000	0.002	4	333.43	3	258.69	-49.64
		7253.33	0.022	0.070	0.050	-0.010	0.055	0.071	0.001	0.002	2	153.43	2	i0/AIG#	-8.13
┙	┙	7253.30	0.051	0.094	-0.030	-0.040	0.059	0.102	0.001	0.005	3	191.31	3	237.99	-22.98
\perp	\perp	7253.30	0.022	0.072	000.0	-0.040	0.022	0.082	0.001	0.002		63.43	3	236.31	
l	4		0.014	0.086	0.020	-0.020	0.024	0.088	0.000	0.002	6	225.00	3	234.46	
10/2/96 26150.56	24134.21	7050 24	0.022	0.098	090.0-	-0.080	0.064	0.127	0.006	0.002	,	153.43	6	246.04	
	1_		0.022	0.121	Sen'o	-0.030	0.030	0.124	0.00	0.002	7	243.43	3	245.56	
L	L	7253.27	0.064		0.010	-0.070	0.065	0.093	0.002	0.002		38.66	3	260.54	
Ц	L	7253.23	0.057	0.112	-0.040	-0.110	0.069	0.157	0.000	0.002		225.00	3	243.43	-44.53
		7253.23	0.028		0.000	-0.110	0.028	0.139	0.003	0.002	-	45.00	3	249.44	
\perp		7253.24	0.057	0.139	0.010	-0.100	0.057	0.171	0.002	0.002	8	225.00	3	239.74	
	_	7253.22	0.050		-0.020	-0.120	0.054	0.153	0.003	0.003		36.87	3	251.57	-51.67
\perp		7253.25	0.030		0:030	060'0-	0.042	0.127	0.004	0.003		0.00	2	#DI/\/0i	-45.00
6/25/9/ 26150.58	24134.22	7253.25	0.030	0.095	000.0	-0.090	0.030	0.131	0.000	0.003	4	270.00	3	251.57	-43.48
L		7253 22	0.042	0. 0	0000	-0.120	0.052	0.180	0.00	0.003	"	00.622	3	243.43	27.64
L		7253.23	0000	0.114	0.010	-0.110	0.032	0.158	2000			000	0 60	254 74	
L		7253.21	0.010		-0.020	-0.130	0.022	0.175	0.005		4	270.00	8	250.02	
7/30/97 26150.55	5 24134.19	7253.20	0.022	0,134	-0.010	-0.140	0.024	0.194	0.004	0.002		206.57	8	243.43	-46.22
		7253.21	0.014	0.139	0.010	-0.130	0.017	0.191	0.000	0.002	2	135.00	3	248.96	-43.03
\perp			0.010	0.130	0.010	-0.120	0.014	0.177	0.002	600.0		IO/AIG#	3	247.38	
4		1	0.028		0000	-0.120	0.028	0.197	0.003	0.004	۳ ا	225.00	8	243.43	
6/2//3/ Z6150.53	24134.19	7253.21	0.010		-0.010	-0.130	0.014	0.200	0.000	0.003	- '	0.00	e (246.80	
┸		7253 22	0.00	0.092	0.030	-0.100	0.071	0.130	110.0	0.000		51.34	5 6	257.47	-47.35 AP AP
L		7253.21	0.010	0.130	-0.010	-0.120	4100	0 184	0.000	2000 C		270.00	2 6	16.162 8F 7AG	
L	L	7253.24	0.032	0.112	0:030	-0.100	0.044	0.150	0.006	0.005		18.43	8	259.70	
10/8/97 26150.56	6 24134.20	7253.24	0.030	0.121	0.000	-0.100	0:030	0.157	0.001	0.003	4	270.00	3	245.56	
	Ц	7253.23	0.000	0,121	-0.010	-0.110	0.010	0.163	0.001	0.002	-	io/AlQ#	3	245.56	-42.31
_		7253.20	0.010	0.117	-0.030	-0.140	0.032	0.182	0.003	0.002	-	0.00	3	250.02	-50.10
4	1	7253.21	0.020	0.125	0.010	-0.130	0.022	0.181	0.000	0.001	4	270.00	3	241.39	
		7253.20	0.010	0.121	0.010	-0.140	0.014	0.185	0.001	0.001		0:00	3	245.56	
11/12/97 20150.56	24134.20	7253.27	0.000	0.121	0.010	-0.130	0.010	0.177	0.001	0.002	-	IO/AIG#		245.56	
11/26/97 26150.50	1	7253.24	0.010	0.121	0:030	-0.100	0.032	0.160	0.002	0.00		0.00	20 6	241.39	-38.59
12/3/97 26150.59		7253.22	0.032	0.089	0000	-0.120	0.032	0.150	0.003	0.002	-	71.57	6	243.43	
12/10/97 26150.60	ĺ	7253,21	0.010		-0.010	-0.130	0.014	0.153	00:00	0.003	-	#DIV/O	ľ	240.26	

	٤
į	Į.
1	
4	Š
٠	Ċ
3	1
ć	۹

N D2				INCREMENTA	CUMULATIVE	INCREMENTAL	CUMULATIVE	INCREMENTAL	CUMULATIVE	DISPLACEMENT	SLOPE					
ļ				HORIZONTAL		VERTICAL		TOTAL	TOTAL	PER	RATE	SECTOR	INCREMENTAL	SECTOR	CUMULATIVE	CUMULATIVE
11 12 13	NOK HING	EASTING	ELEV.	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DAY	MOVING AVG	(INCREM)	DISPLACEMENT	(CUMULATIVE)	(CUMULATIVE) DISPLACEMENT	P.
12/17/97	26150 56	24134.20	7253.18		0.121	0.030	0.150	0.064	0.500	7000	(inday)	C	HIMI		AZIMUIH	ANGLE
12/23/97	Ĺ	24134.21	7253.18			0000	0.180	0.00	0.103			2	45.00	5	245.55	-52.94
12/30/97	L	24134.20	7253.18	0.010		0000	0 160	0000	0 195		0.002		270.00	3 0	248.20	00'9c-
1/7/98		24134.23	7253.24	0.036		090'0	0.100	0.070	0:130			7	33 69	7 (*	365.06	-33.00
1/14/98	26150.59	24134.22	7253.22	0.010		-0.020	-0.120	0.022	0.147	0.003		4	270.00	0 6	249.44	- FA 6.5
1/27/98	26150.57	24134.22	7253.21	0.020		0.010	-0.130	0.022	0.167	0.001		2	#DIA/O) m	253.30	-5123
2/3/98	26150.56	24134.20	7253.18	0.022	0.121	-0.030	-0.160	0.037	0.200	0.002		(F)	206.57		245.56	-52 94
2/19/98	26150.59	24134.21	7253.22	0.032	0.089	0.040	-0.120	0.051	0.150			-	71.57	m	243.43	-53.30
3/25/98	26150.57	24134.22	7253.19	0.022	0.104	-0.030	-0.150	0.037	0.183			2		e	253.30	-55.16
4/3/98	26150.56	24134.21	7253.23	0.014	0.117	0.040	-0.110	0.042	0.161		}	6			250.02	-43.22
4/8/98		24134.19	7253.20	0.022	0.134	-0.030	-0.140	0.037	0.194	0.007		8			243.43	46.22
4/15/98	ĺ	24134.22	7253.21	0.036	0.104	0.010	-0.130	0.037	0.167	0.004	0.005	-	33,69	8	253.30	-51.23
4/22/98	26150.52	24134.18	7253.16	0.064	0.166	-0.050	-0.180	0.081	0.245			6	2		244.98	-47.40
4/29/98	ĺ	24134.19	7253.19			0:030	-0.150	0.033	0.214	0.004	900:0	F	45.00		246.90	-44.56
5/7/98		24134.21	7253.20		0.126	0.010	-0.140	0:030	0.189	0.003	900:0	-	45.00	3	251.57	-47.90
5/13/98	. [24134.22	7253.22		0.095	0.020	-0.120	0.037	0.153	900:0	900'0	- 	71.57	9	251.57	-51.67
5/21/98	ĺ	24134.18	7253.21	0.072	0.166	-0.010	-0.130	0.073	0.210	200'0		6	7	8	244.98	-38,14
5/28/98	ı	24134.21	7253.20	0.036	0.136	-0.010	-0.140	0.037	0.195	0.002	0.004	٦	33.69	3	252.90	-45.83
86/2/98	. [24134.22	7253.19	0.010	0.133	-0.010	-0.150	0.014	0.201	0.001		1.	00.0	3	257.01	-48.35
6/10/98	ſ	24134.21	7253.20	0.014	0.126	0.010	-0.140	0.017	0.189	0.002	0.003	4	315.00	60	251.57	-47.90
6/17/98		- {	7253.19		0.133	-0.010	-0.150		0.201	0.002	0.003	2	135.00	6	257.01	-48.35
6/24/98	\perp	- {	7253.25		0.090	090:0	060:0-	0.078	0.127	0.010	0.005	1	53.13	2	#DIV/OI	-45.00
7/1/98	[24134.22	7253.20		0.143	-0.050	-0.140	0.077	0.200	0.010	9000	3	239.04	3	257.91	-44.36
2/8/8	ĺ	24134.22	7253.19		0.143	0.010	.0.150		0.207	0.001	0.005	1	#DIV/0i	8	257.91	-46.33
7/15/98	26150.52	1	7253.20		0.155	0.010	-0.140	0.017	0.208	0.000	0.005	6	225.00	E	255.07	42.04
7/22/98	26150.53	-	7253.20		0.146	0.000	-0.140	0.010	0.202	0.001	0.003	1	#DIV/0i	8	254.05	43.88
7/29/98		-	7253.22	0.022	0.124	0.020	-0.120	0:030	0.172	0.004	0.002	-	63.43	ε	255.96	44.13
8/11/98	1	24134.20	7253.17	0.028	0.149	-0.050	-0.170		0.226	0.004	0.002	3	225.00	8	250.35	-48.83
8/19/98	ſ	24134.21	7253.18	0.014	0.136	0.010	-0.160	0.017	0.210	0.002		-	45.00	8	252.90	-49.63
8/31/98	-[24134.20	7253.22	0.014	0.149	0.040	-0.120	0.042	0.191	0.002	0.003	3	225.00	8	250.35	-38.91
9/11/98	_[24134.20	7253.23	0.040	0.112	0.010	-0.110	0.041	0.157	0.003	0.004	1	io/AIQ#	8	243.43	44.53
8/16/98		24134.24	7253.20	0.057	0.140	-0.030	-0.140	0.064	0.198	0.008	0.004	2	135.00	8	265.91	-44.93
9/22/98	26150.54	24134.19	7253.17	İ	0.143	-0.030	-0.170	0.059	0.222	0.004	0.004	4		8	245.22	-49.90
9/30/98	ſ	24134.23	7253.16		0.122	-0.010	-0.180	0.042	0.217	0.001	0.004	-	14.04	9	260.54	-55.95
10/7/98	ı	- 1	7253.17	0.010	0.112	0.010	-0.170	0.014	0.203	0.002	0.003	1	io/AIC#	8	259.70	-56.67
3/3/99	26150.54	- 1	7253.16			-0.010	-0.180	0.024	0.224			3	243.43	e	257.01	-53.45
5/27/99		24134.21	7253.17	0.014	0.146	0.010	-0.170	0.017	0.224	0000		6		3	254.05	49.42

Golder Associates Inc.

7D3	
-	

	CUMULATIVE	DIP	-48.15	-47.90	-62.21	-50.19	-66.80	-67.59	-48.15	-62.73	-60.79	-54.90	-52.71	-67.59	-54.36	-57.06	-49.64	-53.93	-51.12	-31.61	-58.76	-49.64	-58.76	-55.30	-57.27	-60.10	-45.00	-63.78	-67.88	-62.07	-63.92	-63.58	-51.67	-65.84	-61.46	-71.02	-67.38	-67.50	-71.93	-68.76	
	CUMULATIVE	DISPLACEMENT	240.26	18.43	251.57	143.13	#DIV/0I	255.96	240.26	255.96	243.43	251.57	246.80	255.96	234.46	239.04	258.69	258.69	240.26	202.62	254.05	258.69	254.05	246.80	261.87	251.57	#DIV/0I	231.34	243.43	239.04	248.20	243.43	251.57	239.04	225.00	243.43	233.13	248.20	225.00	239.04	
	SECTOR	(CUMULATIVE)	8	¢	3	2	2	3	3	3	3	3	3	E.	6	6	8	6	6	3	3	3	ε	3	3	3	2	3	8	60	8	6	3	3	3	3	3	£	3	8	
	INCREMENTAL	DISPLACEMENT AZIMUTH	243.43	41.99	215,54	104.04	288.43	225.00	225.00	45.00	270.00	IO/AIC#	225.00	56.31	216.87	45.00	0.00	#DIV/0l	213.69	284.04	101.31	63,43	243.43	270.00	0.00	315.00	116.57	296.57	26.57	225.00	0.00	IO//\IO#	#DIV/OI	315.00	270.00	18.43	270.00	135.00	333.43	ID/AIG#	
	SECTOR	(INCREM)	6	•	3	2	4	3	3	-	4	2	3	-	3	-	-	1.	3	4	2	1	3	4	1	4	2	٧	7	3	-	1	2	4	4	1	4	2	4	2	
SLOPE DISPLACEMENT	RATE	MOVING AVG	0.005	900.0	0.004	0.004	0.002	0.002	0.002	100.0	0.002	0.002	0.002	0.002	0.010	110.0	0.010	0.011	0.011	0.003	0.004	900'0	0.005	0.004	0.004	0.003	0.002	0.003	0.003	0.003	0.003	0.001	0.002	0.002	0.002	0.002	0.002	0.000	0.000	-0.199	
SLOPE DISPLACEMENT	PER	DAY (flyday)	00:0	00.0	0.004	0.001	0000	0.002	0.002	0.002	0.000	0.002	0.003	0.003	0.003	0.040	D,004	0,001	0.005	D.003	0.002	0.009	0000	0.001	0.000	1000	0.004	0.007	9000	0.000	0.000	0.002	0.000	0.008	0.001	100.0	0000	0.000	0000	0.000	
CUMULATIVE	TOTAL	DISTANCE	0.121	0.094	990'0	970.0	9200	0.108	0.121	0.090	0.092	0.110	0.126	0.108	0.148	0.107	0.079	0.087	0.128	0,153	0.140	620.0	0.140	0.134	0.131	0.127	0.099	0.145	0.119	0.124	0.122	0.100	0.102	0.142	0.148	0.137	0.130	0.141	0.137	0.161	
NCREMENTA		DISTANCE	090'0	0.136	180.0	0.041	0.033	0.033	0.044	0.044	0.010	0.022	0.017	0.036	0.054	0.041	0.036	0.010	0.047	0.085	0110	0.064	0.064	0.014	0.020	0.014	0.046	0.075	0.030	0.014	0.010	0.022	0.022	0.052	0.020	0.032	0.014	0.017	0.022	0.028	
CUMULATIVE		DISTANCE	060:0	0.070	-0.060	-0.060	070.0-	-0.100	060:0-	-0.080	-0.080	-0.090	-0.100	-0.100	-0.120	-0.090	-0.060	0.070	-0.100	-0.080	-0.120	090:0-	-0.120	-0.110	0.110	-0.110	-0.070	-0.130	-0.110	-0.110	-0.110	-0.090	-0.080	-0.130	-0.130	-0.130	-0.120	-0.130	-0.130	-0.150	
INCREMENTAL		DISTANCE	0.040	0.020	0100	0000	-0.010	-0.030	0.010	0.010	0:000	0.010	01-0:0-1	0.000	-0.020	0.030	0:030	-0.010	-0.030	0.020	-0.040	090:0	090:0-	0100	0.000	0000	0.040	-0.060	0.020	0.000	0000	0.020	0.010	-0.050	0.000	0000	0.010	010'0-	00:00	-0.020	
CUMULATIVE	HORIZONTAL	DISTANCE (ft)	0.081	0.063	0.032	050'0	0.030	0.041	180.0	0.041	0.045	0.063	0.076	0.041	0.086	0.058	0.051	0.051	0.081	0.130	0.073	0.051	670.0	970'0	1.00.0	0.063	0.070	0.064	0.045	0.058	0.064	0.045	0.063	0.058	0.071	0.045	0.050	0.054	0.042	0.058	
NCREMENTAL	HORIZONTAL	DISTANCE	0.045	0.135	980'0	0.041	0.032	0.014	0.042	0.042	0.010	0.020	0.014	0.036	0.050	0.028	0.020	0.000	0.036	0.082	0.102	0.022	0.022	0.010	0.020	0.014	0.022	0.045	0.022	0.014	0.010	0.010	0.020	0.014	0.020	0.032	0.010	0.014	0.022	0.020	
		ELEV.	7257.83	7257.85	7257.86	7257.86	7257.85	7257.82	7257.83	7257.84	7257.84	7257.83	7257.82	7257.82	7257.80	7257.83	7257.86	7257.85	7257.82	7257.84	7257.80	7257.86	7257.80	7257.81	7257.81	7257.81	7257.85	7257.79	7257.81	7257.81	7257.81	7257.83	7257.84	7257.79	7257.79	7257.79	7257.B	7257.79	7257.79	7257.77	
		EASTING	24328.50	24328.60	24328.53	24328.57	24328.54	24328.53	24328.50	24328.53	24328.52	24328.52	24328.51	24328.53	24328.49	24328.51	24328.53	24328.53	24328.50	24328.42	24328.52	24328.53	24328.52	24328.51	24328.53	24328.52	24328.54	24328.50	24328.52	24328.51	24328.52	24328.52	24328.52	24328.51	24328.49	24328.52	24328.51	24328.52	24328.51	24328.51	
		NORTHING	25919.40	25919.49	259 19.44	25919.43	25819.44	25919.43	25919.40	25919.43	25919.43	25919.41	25919.40	25919.43	25919.40	25919.42	25919.42	25919.42	25919.40	25919.42	25919.40	25919.42	25919.40	25919.40	25919.40	25919.41	25919.40	25919.42	25919.43	25919.42	25919.42	25919.43	25919.41	25919.42	25919.42	25919.43	25919.43	25919.42	25919.44	25919.42	
MD3		TIME	12/17/97	12/23/97	12/30/97	1/7/98	1/14/98	1/27/98	2/3/98	2/19/98	3/25/98	473/98	4/8/98	4/15/98	4/28/98	4/29/98	5/7/98	5/13/98	5/21/98	5/28/98	6/3/98	6/10/98	6/17/98	6/24/98	7/1/98	7/8/98	7/15/98	7/22/98	7/29/98	8/11/98	8/19/98	BV31/98	9/11/98	9/16/98	9/22/98	9/30/98	10/7/99	3/3/99	5/27/99	1/23/99	

MD4	

		INCREMENTAL	CUMULATIVE	INCREMENTAL	CHAILLATIVE	NORFMENTAL	CUMIII ATIVE	DISPLACEMEN	DISPLACEMENT	_		•		
		HORIZONTAL		VERTICAL	VERTICAL	TOTAL	TOTAL	PER	RATE	SECTOR	INCREMENTAL	SECTOR	CUMULATIVE	CUMULATIVE
EASTING	ELEV.	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DAY	MOVING AVG	(INCREM)	ISPLACEMENT	(CUMULATIVE)	DISPLACEMENT	OID
23962 96	7261.03	Đ	(£)	Œ	(E)	E	Œ	(trday)	(Mday)		AZIMOTH		AZIMUTH	ANGLE
23962.97	7261.00	0.022	0.022	-0.030	-0.030	0.037	0.037	900.0			63.43	-	63.43	
23962.99	7261.04	0.020	0.036	0.040	0.010	0.045	0.037	0000		-	00:0	-	33.69	15.50
23962.95	7261.00	0:020	0.014	-0.040	-0.030	0.064	0.033	0.001		3	216.87	3	225.00	-64.76
23962.94	7261.02	0.014	0.028	0.020	-0.010	0.024	0.030	0.000	0.002	3			225.00	-19.47
23963.01	7261.01	660.0	0.071	-0.010	-0.020	660:0	6.073	900.0	0.003	1	45.00	-	45.00	-15.79
23962.93	7261.01	0.094	0.030	0000	-0.020	0.094	960.0	9000	0.003	E		4	270.00	-33.69
23963.01	7261.02	080.0	0.050	0.010	-0.010	0.081	150.0	0.001	0.003	1	0.00	1	0.00	-11.31
23962.98	7261.02			000:0	-0.010	0.032	0.024	0.004		4		-	26.57	-24.09
23962.97	7261.02	0.010	0.014	000.0	-0.010	0.010	0.017	0.001	0.003	4	270.00	-	45.00	-35.26
23963.01	7261.02	0.050	0.064	000'0	-0.010	0:020	0.065	0.003		-	36.87	-	38.66	88.89
23962.99	7261.02	0.092	0.058	000.0	-0.010	0.092	0.059	0.001	0.002	3	257.47	2	149.04	-9.73
23962.99	7261.02	0:030	0.036	000'0	-0.010	0:030	0.037	0.003	0.003	1	IO/AIG#	2	123.69	-15.50
23962.94	7261.04	0.050	0.028	070.0	0.010	0.054	0.030	0.001	0.002	4	270.00	င	225.00	19.47
23962.97	7261.01	0.032	0.014	-0.030	-0.020	0.044	0.024	0.000	0.002	1	18.43	2	135.00	-54.74
23963.01			0.054	-0.010	-0.030	0.042	0.062	0.004		2	104.04	2	111.80	-29.12
23962.96	7261.00	0.054	0.040	0000	-0.030	0.054	0.050	0.004	0.002	9	201.80	2	#DIV/OI	-36.87
23962.97	7261.03		120.0	0.030	0000	0.033	0.051	0.000		2	135.00		168.69	00.0
23962.95	7261.01	0.022	0.041	-0.020	-0.020	0:030	0.046	0.001	100:0	4	296.57	3	255.96	-25.88
23962.97	7261.03	0.028	0.061	0.020	0.000	0.035	0.061			2	135.00	2	170.54	0.00
23962.94	7261.03		0.063	0.000	0.000	0:030	0.063			4	270.00	8	251.57	0.00
23962.93	7261.00	0.022	0.050	-0.030	-0.030	0.037	0.058	0.000		4	333.43		233.13	-30.96
- 1	7261.01	0.014	0.054	0.010	-0.020	0.017		0.000		2	135.00	Ì	248.20	-20.37
26398.42 23962.98	7261.01	0.045	0.073	0000	-0.020	0.045		0.003		~	116.57		164.05	-15.36
23962.94	7261.01		0.112	0000	-0.020	0.057	0.114				225.00		259.70	-10.14
23962.95	7260.97		0.091	-0.040	00.00	0.046	0.109		0.002		63.43		263.66	-33.53
13062 06	00.007		1000	0.000	-0.030	0.030	0.47	0000		- 6	100.10	7	07.001	42.00
23962.95	7260.92		150.0	2000	0.110	0.078	0.142	0.000		6	233.13		263.66	20.00
23962.98	7260.92		0.073	0.000	-0.110	0.036	0.132	0.002			33.69		164.05	-56.50
23962.96	7260.96		0.030	0.040	-0.070	0.049	0.114	0.001		3	225.00	2	#DIV/OI	-37.87
23962.96	7260.93	0.000	060:0	-0.030	-0.100	0.030	0.135	0.003		-	IG/AIQ#	2	#DIV/0I	-48.01
23963.00	7260.98	0.041	0.089	0.050	-0.050	0.065	0.102	0.005		-	14.04		153.43	-29.21
23962.97	7260.94	0.032	0.091	-0.040	-0.090	0.051	0.128	0.004		3	198.43	2	173.66	44.82
23962.93	7260.90	0.045	0.114	-0.040	-0.130	0.060	0.173	0.006		9	206.57	3	254.74	-48.75
23962.94	7260.96	0.010	0.112	0.060	-0.070	0.061	0.132	900'0			0.00		259.70	-32.05
23962.96	7260.94		0.100	-0.020	-0.090	0.030	0.135	0.000			26.57	2	#DIV/0i	41.99
23962.97	7260.93		0.091	-0.010	-0.100	0.017	0.135	0.000			45.00	2	173.66	47.84
23962.93	7260.93	0.050	0 124	0000	0.100	0.050	0.159	0.005		6	216.87	e	255.96	-38.95
20300 20 23962.94	7255.55	0.014	271.0	0.000	0.100	0.014	0.150	0.001	0.001	- [45.00	3	259.70	-4181
23902.94	7200.92	0.000	0.372	0L0.0-	01.1.0-	0.0.0	0.15/	T00.0	0.002		#UN/O#	יפי	729.70	-44.53
23962.93	7260.96	0.022	0.133	0.040	0.070	0.046	0.151	100.0			243.43	m	257.01	-27.68
23902.34	200002	010.0	0.132	0.000	0.0.0	0.010	0.149	0.000			00.0	9	67 147	70.97-
23062 06	7260.037	0000	0.031	0,010	0000	1000	0.109	0.00	0.003		53.13	7	173.00	-33.53
23962 96	7500 84	0.032	0010	0100	000 0	2000	0.135	0.000	0.00	7	IONU#	2	10//VC#	41.00
23962.99	7260 94	0.050	0.143	0000	060 0	0500	0.169	0.006		0	143 13		167.91	21 08-
23962 95	7260 94	0 0 0 0	0 110	0000	0000	0.050	0.142	0000		7	306 87		264 81	20 17
23962.96	7260.93	0.014	0.100	0.010	0 100	0.030	0.141	0000	0.003	7	300.07	0 0	10///0#	45.00
23962.97	7260.88	0.010	0.100	-0.050	-0.150	0.051	0.181	700.0	0.004		0.00	2	174.29	-56.18
23962.94		0.032	0.112	0.070	-0.080	7.0.0	0.137	900:0		3	198.43	6	259.70	-35.59
23962.93	7260.90	0.010	0.114	-0.050	-0.130	0.051	0.173	0.005	0.004	4	270.00	3	254.74	-48.75
200000	00000		****											

mainprsm.xls

MD4	
_	

Column C					!						StOPE					
				HORIZONTAL	HORIZONTAL	VERTICAL		INCREMENTAL TOTAL			DISPLACEMENT RATE		NCREMENTAL	SECTOR	CUMULATIVE	SUMULATIVE
1982 1985	9 H	EASTING	ELEV.	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DAY	MOVING AVG			(CUMULATIVE)	DISPLACEMENT	占
1986 1985				- 1			ŧ	1		(fVday)	(fVday)	Ţ	AZIMUTH	,	AZIMUTH	ANGLE
The color The color The color Color	398.40	23962.95	7260.95	0.028	0.091	0.030	0.080	0.041	0.121	0.003	0.004		45.00	ى د	203.60	30.30
1966 1966	220.30	2306302	7700.54		0.110	0.0.0	0000	0.024	0,131	0.00	0.00	7	73 47	2	172 87	48 15
2006.20 7.000.00 0.000	388.41	23962.96	7260.96		0.080	0.020	0.070	0.022	0.106	0.002	9000	4	270.00	2	#DIV/0i	-41.19
2000.20 100.00 0.000	398.38	23962.95	7260.91	0.032	0.110	-0.050	-0.120	0.059	0.163	90.00	0.004	3	251.57	6	264.81	-47.37
2000.28 10.00 0.00	398.40	23962.94	7260.94	0.022	0.092	0.030	060:0-	0.037	0.129	900.0	0.004	4	333.43	3	257.47	-44.31
2000, 50 70,000 0.000	398.41	23962.97	7260.95	0.032	0.081	0.010	0.080	0.033	0.114	0.002	0.004	-	18.43	2	172.87	-44.78
25840-18 7785-18 6 0.00 0.100	398.40	23962.98	7260.98	0.014	0.092	0:030	-0.050	0.033	0.105	0.001	0.003	2	135.00	2	167.47	-28.47
2000.00 700.00 700.00 0.00	398.41	23962.96	7260.96	0.022	090'0	-0.020	-0.070	0.030	0.106	0.000	0.002	4	296.57	2	#DIV/0I	-41.19
2000.01 7.000.01 0.010.01	398.38	23962.96	7260.93	0.030	0.110	-0.030	-0.100	0.042	0.149	0.003	0.002	2	#DIV/OI	2	#DIV/Gi	-42.27
2.986.28 7.780.28 0.059 0.145 0.050 0.050 0.144.31 2 11.2 ET 2.986.28 7.780.28 0.059 0.144 0.050 0.144.31 2 11.2 ET 2.986.28 7.780.28 0.059 0.144 0.050 0.144.31 2 11.2 ET 2.986.28 7.780.28 0.059 0.144 0.050 0.044 0.050 0.044 0.049 </td <td>398.38</td> <td>23962.95</td> <td>7260.91</td> <td>0.010</td> <td>0.110</td> <td>-0.020</td> <td>-0.120</td> <td>0.022</td> <td>0.163</td> <td>0.002</td> <td>0.002</td> <td>4</td> <td>270.00</td> <td>3</td> <td>264.81</td> <td>-47.37</td>	398.38	23962.95	7260.91	0.010	0.110	-0.020	-0.120	0.022	0.163	0.002	0.002	4	270.00	3	264.81	-47.37
2882858 766030 0.000 0.000 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.003 0.004 0.003	398.41	23962.97	7260.94	0.036	0.081	0:030	060'0-	0.047	0.121	0.003	0.002	+	56.31	2	172.87	-48.15
2586258 (1982) 6004 0100	398.38	23962.99	7260.95	0.036	0.114	0.010	080:0-	0.037	0.139	0.001	0.002	2	146.31	2	164.74	-35.06
2008259 CROSCO CORD - 1/10 CORD	3398.39	23962.98	7260.95	0.014	0.102	0.000	080:0-	0.014	0.130	10001	0.002	4	315.00	2	168.69	-38.11
2586519 778050 0.01 0.02 0.01 0.02	5398.37	23962.93	7260.93	0.054	0.124	-0.020	0.100	0.057	0.159	9000	0.002	3	201.80	3	255.96	-38.95
2008629 75869 0.008 0.008 0.009 <	6398.38	23962.96	7260.93	0.032	0.110	0000	-0.100	0.032		0.001	0.003	-	18.43	8	#DIV/0I	-42.27
2006.28 178.00 0.00 0.140 0.000 0.140 0.100 0.140 0.000 0.140 0.000 0.140 0.000 0.140 0.000 0.140 0.000 0.140 0.000 0.140 0.000 0.140 0.000 <	6398.35	23962.94	7260.90	0.036	0.141	0.030	-0.130	0.047		0.006	0.003	3	236.31	6	261.87	42.59
2886.29 7780.58 0.008 0.10 -0.009 -0.009 -0.009 0.009 -0.009 <td>6398.35</td> <td>23962.96</td> <td>7260.90</td> <td>0.020</td> <td>0.140</td> <td>0000</td> <td>-0.130</td> <td>0.020</td> <td>0.191</td> <td>0.000</td> <td>0.004</td> <td>-</td> <td>0.00</td> <td>2</td> <td>#DIV/IDI</td> <td>42.88</td>	6398.35	23962.96	7260.90	0.020	0.140	0000	-0.130	0.020	0.191	0.000	0.004	-	0.00	2	#DIV/IDI	42.88
28862-94 77803-19 0.0028 0.0038 0.0038 0.0040 -0.1020	6398.38	23962.98	7260.96	0.036	0.112	090'0	-0.070	0.070	0.132	0.007	0.003	٦	56.31	2	169.70	-32.05
2586291 7780591 0.002 0.147 0.1020 0.147 0.1020 0.147 0.147 0.1020 0.147	26398.40	23962.96	7260.93	0.028	0.090	-0.030	-0.100	0.041	0.135	0.000	0.005	4	315.00	2	#DIV/0I	-48.01
23862-26 77865-1 0.046	6398.32	23962.94	7260.91	0.082	0.171		-0.120	0.085		0.009	0.004	6	255.96	6	263.29	-35.03
25862 97 7500 82 0174 0.006 0174 0.006 0174 0.006 0174 0.006 0174 0.006 0174 0.006 0174 0.006 0174 0.006 0174 0.006 0174 0.006 0174 0.006 0174 0.006 0174 0.006 0174 0.006 0174 0.006 0174 0.006 0174 0.006 0174 0.006 0.006 0174 0.006	6398.35	23962.96	7260.91	90:036	0.140		-0.120	0.036		0.004	0.005	-	56.31	2	#DIV/0i	40.60
25862.91 7780.96 0.022 0.012 0.040 -0.178 0.006 0.005 1.69.70 2.006 0.017 0.006 0.005 2.006 0.005 2.006 0.005 2.006 0.006 0.017 0.006 0.007	6398.36	23962.97	7260.92		0.130	0.010	-0.110	0.017	0.171	0.005	0.004	-	45.00	2	175.60	-40.15
23862 19 7260 22 0.0121 0 1.940 0 -0.000 -0.110 0 0.004 0.171 0 0.004 0.004 0 0.000 -0.110 0 0.000	6398.38	23962.98	7260.96		0.112	0.040	-0.070	0.046	0.132	0.006	0.005	+	63.43	2	169.70	-32.05
25862 97 7750 28 0.010 0.140 0.000 -0.110 0.017 0.178 0.000	6398.36	23962.97	7260.92	0.022	0.130	0.040	-0.110	0.046	0.171	9000	0.004	6	243.43	2	175.60	-40.15
25862.09 7720.09 0.022 0.146 0.000 -0.110 0.023 0.023 2 #817/0 2 #817/0 1 #8143 2 #817/0 1 #8143 2 #817/0 1 #8143 2 #817/0	6398.35	23962.97	7260.92	0.010	0.140	0000	0.110	0.010	0.178	0.001	0.003	2	IO/AIG#	2	175.91	-38.09
2.9862.97 7.269.30 0.070	6598.36	23963.00	7260.92	0.032	0.136	0000	-0.110	0.032	0.175	0000	0.003	- 1	18.43	N C	06.20L	-38.95
25862.59 766.09 0.045 0.146 0.050 0.045 0.042 0.148 0.050 0.045 0.042 0.045 0.148 0.050 0.045 0.148 0.050 0.045 0.148 0.050 0.045 0.148 0.002 0.022 0.148 0.148 0.002 0.022 0.148 0.046 0.148 0.002 0.002 0.022 0.148 0.003	6398.35	23963.00	7260.92	0.010	0.146	0000	-0.110	0.010		0.001	0.003	7	10/AIQ#	7	164.05	-37.07
23861.59 7560.59 0.042 0.1649 0.0164 0.046 0.167 0.002 0.002 1 2.86.57 2 147.81 23862.59 7260.59 0.0104 -0.100 0.016 -0.120 0.017 0.167 0.002 1 4.50.70	6398.37	23962.99	7260.97	0.022	0.124	0.050	090.0	0.055		900:0	0.002	4	333.43	2	165.96	-25.88
2.9962.98 7.260.50 0.0144 -0.102 -0.102 0.002 1 46.57 2 7.65.30 2.9962.98 7.260.50 0.014 -0.102 -0.102 0.014 0.002 1.66 1.66 1.66 0.001 0.002 2 165.30 2.9962.98 7.260.60 0.014 0.026 0.015 0.001 0.001 0.002 0.003 0.002 0.003 0.002 0.003	6398.38	23962.97	7260.93	0.022	0.110	0,040	0-100	0.046	0.149	0.002	0.002	4	296.57	2	174.81	-42.16
2.2966.189 7.206.9 0.00 0.014 0.010 0.016 0.014 0.010 0.016 0.014 0.010 0.010 0.026 1 40.010 0.026 1 40.010 2.026 1 40.010 0.026 3 2.05.00 2 467.47 2 2 2.026 2 40.01 0.026	6396.39	23962.99	7260.90	0.022	0.104	0.030	-0.130	0.037	0.167	0.003	0.002	-	26.57	2	163.30	-51.23
23961.68 7750.90 0.014 0.022 -0.1010 0.017 0.159 0.017 0.159 0.000 0.026 3 205.00 2 716.47 23961.61 7280.61 7280.61 7280.61 7280.61 7280.61 1.000 0.000 0.046 1.667 0.001 0.000 3 213.29 23961.62 7280.61 7280.61 7280.61 0.000 0.025 1.1667 0.00 3 213.29 23961.62 7280.61 7280.62 0.014 1.660 -0.400 0.014 1.662 0.000 0.025 1.1667 0.00 3 213.29 23961.62 7280.61 0.014 1.600 -0.400 0.014 1.662 0.000 0.025 1.665 0.000 0.025 2.13.50 2.13.50 2.13.70 23961.62 7280.61 0.014 1.600 -0.400 0.014 1.662 0.000 0.001 2.13.50 2.13.70 23961.62 7280.61 <	6398.39	23962.99	7260.91	0000	0.104	0.010	-0.120	0.010	0.159	0.001	0.002	1	#DIV/0I	2	163.30	-48.98
2396165 7260.66 1560 1560 -0.540 -0.370 -0.460 -0.056 -0.540 -0.026 <td>6398.40</td> <td>23962.98</td> <td>7260.90</td> <td>0.014</td> <td>0.092</td> <td>-0.010</td> <td>-0.130</td> <td>0.017</td> <td>0.159</td> <td>0.000</td> <td>0.026</td> <td>4</td> <td>315.00</td> <td>2</td> <td>167.47</td> <td>-54.66</td>	6398.40	23962.98	7260.90	0.014	0.092	-0.010	-0.130	0.017	0.159	0.000	0.026	4	315.00	2	167.47	-54.66
23961 62 7280 18 0.010 -0.359 0.014 1.631 0.001 0.025 1.657 0.00 0.025 1.657 0.00 0.025 1.650 0.000 0.025 1.650 0.000 0.025 1.650 0.000 0.001 0.014 1.650 0.000 0.001 0.014 1.650 0.000 0.001 0.014 1.660 0.000 0.001 0.015 4 315.00 3 2.13.79 2.3961 62 7260 52 0.014 1.660 0.014 1.660 0.000 0.001 2.001 2.135.00 3 2.13.79 2.3961 62 7260 50 0.010 -0.440 0.012 1.662 0.000 0.011 2.14.47 2.13.59 2.3961 61 7260 61 0.020 -0.400 0.012 1.662 0.000 0.011 2.14.47 2.14.47 2.3961 62 7260 61 0.020 0.022 1.662 0.000 0.011 4.000 3.14.47 3.15.00 3.14.47 <t< td=""><td>6397.61</td><td>23961.60</td><td>7260.66</td><td>1.590</td><td>1.620</td><td>-0.240</td><td>-0.370</td><td>1.608</td><td>1.662</td><td>0.125</td><td>0.026</td><td>7</td><td>209.79</td><td>n (</td><td>16.212</td><td>72.67</td></t<>	6397.61	23961.60	7260.66	1.590	1.620	-0.240	-0.370	1.608	1.662	0.125	0.026	7	209.79	n (16.212	72.67
2.3961 62 7.260 53 0.014 1.650 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.014 1.650 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010	19.7850	23961.61	/260.6/	0.0.0	1.611	0.00	-0.360	0.014	1.00.1	0.001	0.025	- (00.0	2	213.10	12.39
23961 62 7260 53 0.014 1,000 -0.400 0.014 1,602 0.000 0.001 2,13,20 3 2,13,20 23961 62 7260 63 0.010 1,600 -0.400 0.032 1,665 0.000 0.001 2,10,00 3 2,13,50 23961 62 7260 61 0.030 -0,420 0.032 1,665 0.001 2 100 3 2,13,50 23961 62 7260 61 0.030 -0,420 0.032 1,665 0.001 2 100 3 2,14,7 23961 62 7260 61 0.020 0.032 1,665 0.000 0.001 2 14,7 23961 62 7260 61 -0,420 0.022 1,697 0.001 2,14,7 2 14,4 23961 62 7260 61 -0,420 0.024 0.000 0.001 2 14,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4	19.760	23961.63	7250.63	0.022	0.001	0.040	-0.400	0.046		0.00	670.0	7	76.011	9 (213.79	-14.03
23961 62 7260 61 0.010 1625 0.020 0.021 0.021 0.011 4 27.00 3 213.59 23961 62 7260 61 0.010 1.625 0.010 -0.420 0.032 1.679 0.001 2 1.010 2.14.47 2.14.47 2.14.47 2.14.47 2.14.47 2.246.61 2.256.16 3 2.14.47 2.14.	07.550	23901.022	7260.63	0.014	1,003	0.000	-0.400	0.014		0000	0.000	1	135.00	0 6	213.23	14.03
23861.62 7260.61 0.030 1.625 0.040 0.032 1.679 0.000 0.001 2 #DV/01 3 214.47 23961.61 7260.59 0.014 1.639 0.024 1.687 0.000 0.001 2.25.00 3 214.47 23961.61 7260.59 0.020 -0.420 0.022 1.687 0.000 -0.200 1 #DV/01 3 214.47 23961.61 7260.94 1.020 -0.420 0.020 -0.200 1 #DV/01 3 227.77 3 214.47 23961.61 7260.94 1.020 -0.420 0.000 36584.42 #DV/01 3 227.77 3 227.77 23961.61 2.000 7261.030 0.000 36584.42 #DV/01 #DV/01 #DV/01 3 227.77 23962.542 0.000 7261.030 0.000 36384.42 #DV/01 #DV/01 #DV/01 3 227.77 23962.542 0.000 <t< td=""><td>28397 6</td><td>23961 62</td><td>7260.6</td><td>0100</td><td>1,609</td><td>-0.030</td><td>-0.430</td><td>2500</td><td>1.655</td><td>0000</td><td>0.001</td><td>1</td><td>220.00</td><td>o er</td><td>213.59</td><td>-14.97</td></t<>	28397 6	23961 62	7260.6	0100	1,609	-0.030	-0.430	2500	1.655	0000	0.001	1	220.00	o er	213.59	-14.97
23861.61 7266.58 0.014 1.639 -0.40 0.024 1.637 0.000 -0.200 1.637 0.001 2.25.00 3 214.56 3 214.56 23961.61 7256.61 0.000 1.639 -0.420 0.000 -0.200 1 #DV/00 3 227.77 3 224.56 227.77 3 227.77 4	6397,57	23961.62	7260.61	0.030	1,625	0.010	-0.420	0.032	1.679	0000	0.001	2	ID/AIG#	. 60	214.47	-14.49
23961.61 7286.61 0.000 1.639 0.020 -0.420 0.020 -0.620 1.632 0.000 -2.27.77 3 274.56 2366.0.346 3.5652.542 -7280.610 -7261.030 36.34.424 #DNVI) #DNVI) 3 227.77 3 227.77 236.0.2542 -7260.610 -7261.030 0.000 36.34.424 #DNVI) 1 #DNVI) 3 227.77 236.0.2542 0.000 -7261.030 0.000 36.34.424 #DNVI) 1 #DNVI) 3 227.77 236.0.000 35652.542 0.000 -7261.030 0.000 36.34.424 #DNVI) #DNVI) 3 227.77 236.0.000 35652.542 0.000 -7261.030 0.000 36.34.424 #DNVI) #DNVI) 3 227.77 236.0.000 35652.542 0.000 -7261.030 0.000 36.34.424 #DNVI) #DNVI) 3 227.77 236.0.000 35652.542 0.000 -7261.030	6397.56	23961.61	7260.59	0.014	1.639	-0.020	-0.440	0.024	1.697	0000	0.001	3	225.00	3	214.56	-15.02
36620.946 3562.542 -7260.610 -7261.030 0.000 36384.424 #DVVID #DVVID 1 #DVVID 3 227.77 3	6397.56	23961.61	7260.61	0.000	1.639	0.020	-0.420	0.020	1.692	0000	-0.200	-	#DIV/0i	9	214.56	-14.37
35652 542 0.000 -7261.030 0.000 3634.24 #DV/0 #DV/0 1 #OV/0 3 227.77 35652 542 0.000 -7261.030 0.000 36384.424 #DV/0 #DV/0 1 #OV/0 3 227.77 35652 542 0.000 -7261.030 0.000 36384.424 #DV/0 #DV/0 3 227.77 35652 542 0.000 -7261.030 0.000 36384.424 #DV/0 #DV/0 3 227.77 35652 542 0.000 -7261.030 0.000 36384.424 #DV/0 #DV/0 3 227.77 35652 542 0.000 -7261.030 0.000 36384.424 #DV/0 #DV/0 3 227.77 35652 542 0.000 -7261.030 0.000 36384.424 #DV/0 #DV/0 3 227.77 35652 542 0.000 -7261.030 0.000 36384.424 #DV/0 #DV/0 3 227.77 35652 542 0.000 -7261.030 </td <td></td> <td></td> <td></td> <td>35650.946</td> <td>35652.542</td> <td>-7260.610</td> <td>-7261.030</td> <td>36382.776</td> <td>36384.424</td> <td>-1.001</td> <td>#DIV/0i</td> <td>9</td> <td>227.77</td> <td>3</td> <td>227.77</td> <td>-11.51</td>				35650.946	35652.542	-7260.610	-7261.030	36382.776	36384.424	-1.001	#DIV/0i	9	227.77	3	227.77	-11.51
35652 542 0.000 -7261 030 0.000 3634424 #DVV0 #DVV0 1 #DVV0 3 27.77 35652 542 0.000 -7261 030 0.000 36384424 #DVV0 1 #DVV0 3 227.77 35652 542 0.000 -7261 030 0.000 36384424 #DVV0 #DVV0 1 #DVV0 3 227.77 35652 542 0.000 -7261 030 0.000 36384424 #DVV0 #DVV0 3 227.77 35652 542 0.000 -7261 030 0.000 36384424 #DVV0 #DVV0 3 227.77 35652 542 0.000 -7261 030 0.000 36384424 #DVV0 #DVV0 3 227.77				0.000	35652.542	0.000	-7261.030	0.000	36384.424	#DIA/0i	ID/AIC#	-	#DIV/0i	ъ	77.72	-11.51
35652 547 0.000 -7261 030 0.000 36394 424 #DVV0 #DVV0 1 #DVV0 3 227 77 3562 542 0.000 -7261 030 0.000 36394 424 #DVV0 1 #DVV0 3 227 77 3562 542 0.000 -7261 030 0.000 36394 424 #DVV0 1 #DVV0 3 227 77 3562 542 0.000 -7261 030 0.000 36394 424 #DVV0 1 #DVV0 3 227 77 3562 542 0.000 -7261 030 0.000 36394 424 #DVV0 #DVV0 3 227 77 3562 542 0.000 -7261 030 0.000 36394 424 #DVV0 #DVV0 3 227 77				0.000	35652.542	0.000	-7261.030	0.000	36384.424	#DIA/0i	#DIV/0I	-	I0/AIG#	3	77.72	-11.51
35652 542 0.000 -7261 030 0.000 36394 424 #DIV/ID #DIV/ID 1 #DIV/ID 3 227.77 35652 542 0.000 -7261 030 0.000 36394 424 #DIV/ID 1 #DIV/ID 3 227.77 35652 542 0.000 -7261 030 0.000 36394 424 #DIV/ID #DIV/ID 3 227.77 35652 542 0.000 -7261 030 0.000 36394 424 #DIV/ID #DIV/ID 3 227.77 35652 542 0.000 -7261 030 0.000 36394 424 #DIV/ID #DIV/ID 3 227.77				0.000	35652.542	0.000	-7261.030	0.000	36384.424	i0/AKG#	#DIV/0I	-	#DIV/0i	6	227.77	-11.51
35652.542 0.000 -7261.030 0.000 36394.24 #DIVIO #DIVIO 1 #DIVIO 3 227.77 35652.542 0.000 -7261.030 0.000 36394.424 #DIVIO #DIVIO 1 #DIVIO 3 227.77 35652.542 0.000 -7261.030 0.000 36394.424 #DIVIO #DIVIO 3 227.77 35652.542 0.000 -7261.030 0.000 36394.424 #DIVIO #DIVIO 3 227.77				0.000	35652.542	0.000	-7261.030	0.000	36384.424	#DIV/DI	#D1/\t0/#	1	ID/AIC#	3	227.77	-11.51
35652.542 0.000 -7261.030 0.000 36394.424 #DIV/01 #DIV/01 1 #DIV/01 3 227.77 3562.542 0.000 -7261.030 0.000 36384.424 #DIV/01 #DIV/01 #DIV/01 1 #DIV/01 3 227.77 257.030 0.000 36384.424 #DIV/01 #DIV/01 #DIV/01 1 #DIV/01 3 227.77 257.77 2562.542 0.000 -7261.030 0.000 36384.424 #DIV/01 #DIV/01 #DIV/01 1 #DIV/01 3 227.77 257.7				0.000	35652.542	0.000	-7261.030	0.000	36384.424	i0/AIO#	#DIV/0I	-	#DIV/OI	e	77.72	-11.51
35652.542 0.000 -7261.030 0.000 36384.424 #DIV/0 #DIV/0 1 #DIV/0 3 27.777 25.000 -7261.030 0.000 36534.424 #DIV/0 #DIV/0 1 #DIV/0 3 27.777				0.000	35652.542	000.0	-7261.030	0.000	36384.424	IO/AIC#	#DIV/Oi	-	#DIV/OI	ED.	77.722	-11.51
35622.542 0.000 -7261.030 0.000 36594.24 #DIVIOI #DIVIOI 1 #DIVIOI 3 227.77				000:0	35652.542	0.000	-7261,030	0000	36384.424	#DIV/Oi	#DIA/GI	-	#DIV/Oi	8	77.72	-11.51
20 100 100 100 100 100 100 100 100 100 1	+			0.000	35652.542	0.000	-7261.030	0.000	36384.424	#DIA/GI	#DIVVIG	Ŧ	#DIVIO	8	227.77	-11.51

mainprsm.xls

١	2	t	
	-	2	
	2	Ē	

	SLOPE	EMENT	RATE SECTOR INCREMENTAL SECTOR CUMULATIVE CUMULATIVE	MOVING AVG (INCREM) ISPLACEMENT (CUMULATIVE) DISPLACEMENT DIP	ay). AZIMUTH ANGLE	#DIV/0 1 #DIV/0 3 227.77 -11.51	#DIV/0 1 #DIV/0 3 227.77 -11.51	#DIV/0] 1 #DIV/0] 3 227.77 -11.51	#DIV/01 1 #DIV/01 3 227.77 -11.51	#DIV/0 1 #DIV/0 3 227.77 -11.51	#DIVIO! 1 #DIVIO! 3 227.77 -11.51	#DIV/0! 1 #DIV/0! 3 227.77 -11.51	#DIVIOI 1 #DIVIOI 3 227.77 -11.51	3	#DIV/0! 1 #DIV/0! 3 227.77 -11.51	#DIV/01 1 #DIV/01 3 227.77 -11.51	#DIV/0 1 #DIV/0 3 227.77 -11.51	#DIV/0 3 227.77 -11.51	
		DISPLACEMEN DISPLACEMENT	PER RA	DAY MOVIN	(fl/day) (fl/day)	#DIA/O	#DIV/DI	IO/AIG#	i0/AIQ#	10/AIC#	#DIV/0!	#DIV/DI	#DIV/Di	#DIV/0I	#DIV/OI	io/AIC#	HOI/NO#	#DIV/0I	TOTA COM
<u>.</u>		CUMULATIVE	TOTAL	DISTANCE	(£)	36384.424	36364.424	36384.424	36384.424	36384.424	36384.424	36384.424	36384.424	36384.424	36384.424	36384.424	36384.424	36384.424	707 70000
MD4		Ş Z	TOTAL	DISTANCE	(H)	0.000	0.000	0.000	0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0000
		L CUMULATIVE	VERTICAL	DISTANCE	(#)	0 -7261.030	7261.030	0 -7261.030	0 -7261.030	0 -7261.030	0 -7261.030	.7261.030	.7261.030	7261.030	7261.030	-7261.030	-7261.030	7261.030	000 1000
		NOREMENTAL CUMULATIVE INCREMENTAL CUMULATIVE	LVERTICAL	DISTANCE	(u)	0.000	0.000	0.000	0.000	0.000	2 0.000	2 0.000	0.000	2 0.000	2 0.000	2 0.000	2 0.000	2 0.000	0000
	_	CUMULATIVE	HORIZONTAL	DISTANCE	(tt)	0 35652.542	35652.542	0 35652.542	35652.542	35652.542	35652.542	35652.542	35652.542	0 35652.542	35652.542	0 35652.542	35652.542	0 35652.542	Cra Cadac
		INCREMENTAL	HORIZONTAL	DISTANCE	(¥)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0000
	_			ELEV.															
		•••		G EASTING															
				NORTHING															
July 1999		MD4		TIME															

Golder Associates Inc.

TIME NORTHING		-	INCREMENTAL	CUMULATIVE	INCREMENTAL	CUMULATIVE	INCREMENTAL	CUMULATIVE	SLOPE ISPLACEMEN	SLOPE DISPLACEMENT					•	
7	EASTING	ELEV.	HORIZONTAL	HORIZONTAL	VERTICAL		TOTAL	TOTAL	PER	RATE MOVING AVG	INVERSE	SECTOR	INCREMENTAL	SECTOR	CUMULATIVE	CUMULATIVE
	4		(¥)	(F)	€.	€	Ê	(L)	(fl/day)	(fi/day)	(days/ft)	1	AZIMUTH		AZIMUTH	ANGLE
1/3/96 26167.11	24156.19	7260.40	c c	000	9	0600	0.030	2600	NO. O		25.7 GR	,	00.0	-	9	
L	_	7260.40	0.010	0.020	0.030	0000	0.032	0.020	0000		2409.06	-	000	-	00.0	00:0
2/8/96 26167.11	24156.21	7260.40	0.000	0.020	0.000	0:000	0000	0.020	#DIV/Oi		#DIA/0i	-	iD/AIG#	1	00.0	0.00
_		7260.38	0.032	0.014	-0.020	-0.020	0.037	0.024	0.000		3114.64	3	198.43	3	225.00	54.7
	I.	7260.36	0.042	0.028	-0.020	0.040	0.047	0,049	0.003		285.77	-	45.00	-	45.00	-54.7
\perp	24156.17	7260.35	0.050	0.022	0.010	-0.050	0.051	0.055	0.001		1210.56	6	216.87	3	206.57	65.91
┙		7260.37	0.089	0.067	0.020	0.030	0.092	0.073	0.003	0.003	374.08	+	26.57	- 1	26.57	24.0
	1	7260.39	0.050	0.032	0.020	0.010	0.054	0.033	0.005	0.003	198.42	3	233.13		108.43	27.62
4		7260.35	0.032	0.020	-0.040	0000	0.051	0.054	0.003	0.003	290.062	2	198.43	7	io/AlO#	17.00
┸	1	7260.39	0.020	0.000	0000	0.010	0.045	0.010	0.00	0.004	159.63	-	10 AL		#DIV/U:	25.25
4/15/96 26/167 DR	24156.21	7260.36	0.014	0.014	0.00	200	0.014	0.017	0.00	0.003	191.62	2	165 98	- 0	146.31	47.97
L	1	7260.39	0.04	0.022	0.030	0100	0.033	0.024	0.004	0.003	238.45	4	315.00	2	153.43	-24.09
L	L	7260.36	0.022	0.032	-0.030	0.040	0.037	0.051	0.004	0.003	264.20		206.57	3	251.57	-51.67
	! _	7260.35	0.010	0.030	-0.010	0.050	4100	0.058	0000	0.003	3005.74	-	00:0	2	i0/AIG#	-59.04
6/10/96 26167.10	24155.25	7260.34	0.063	0.061	-0.010	090'0	0.064	0.085	0.003	0.003	368.59	-	18.43	2	99.46	44.6
		7260.35	0.089	0.054	0.010	-0.050	060:0	0.073	0.004	0.002	250.93	3	206.57	3	248.20	-42.88
Ш		7260.38	0.014	0.061	0:030	-0.020	0.033	0.064	0000	0.001	2961.88	2	135.00	3	260.54	-18.20
7/18/96 26167.07	24156.18	7260.35	0.020	0.041	0:030	-0.050	0.036	0.065	0.000	0.001	9018.71		#DIV/0	3	255.96	-50.49
		7260.37	0.022	0.051	0.020	-0.030	0.030	0.059	0.001	0.001	1239.68	2	116.57		168,69	-30.47
	_	7260.37	0.051	0.072	0000	-0.030	0.051	0.078	0,001	0.001	1161.46	3	191.31	9	236.31	-22.58
	- 1	7260.33	0.022	0.050	0.040	0.070	0.046	980.0	0000	0.001	3408.77	-	63.43	3	233.13	-54.46
	- 1	7260.35	0.022	0.072	0.020	0.050	0.030	0.088	0000	0.003	8108.40	7	243.43	6	236.31	2.40
10/10/96 26167.03	24156.15	7260.33	0.030	0.089	0.030	0.070	0.042	0.073	0.002	0.00	210.09	2	ID/AIG#	9 60	243.43	38.
	1	7260.33	0.010	0.081	0.000	0.070	0.010	0.107	0000	0.002	2056.59	-	10/AIO#	8	240.26	40.97
	ļΙ	7260.28	0.022	0.063	-0.050	-0.120	0.055	0.136	100.0	0.002	865.78	-	26.57		251.57	-62.2
5/16/97 26167.03		7260.26	0.036	0.094	0.020	-0.143	0.041	0.169	0.000	0.002	5395.98	3	213.69	3	237.99	-56.03
_		7260.27	0.032	0.073	0.010	-0.130	0.033	0.149	0.003	0.001	302.68	-	18.43	3	254.05	2.09
\perp		7260.25	0.045	0.108	-0.020	0.150	0.049	0,185	0.003	0.002	361.76	3	206.57		236.31	-54.2(
L	-	7260.25	960.0	0.076	0.000	0.150	90.036	0.168	0.002	0.002	419.00	- -	33.69	3	246.80	-63.08
6/18/9/ 26/6/02	24196.16	7260.26	0.020	0.085	0.010	-0.140	0.022	0.169	0.000	0.002	787.30	2	MANUA MANua Manua	3	251.57	20.00
70,70137 70,717		7260.24	0.010	0.098	-0.040	2 5	1000	0.203	5000	0.002	1778 13	4 6	108 43	2 6	235.04	53.65
↓_		7260.23	0.010	0.114	0.010	0.170	0.014	0.205	0000	0.002	2029.71	ì	io/AlO#		232.13	-56.15
		7260.25	0.051	0.082	0.020	-0.150	0.055	0.171	9000	0.003	208.82	-	11.31	6	255.96	97.75
7/25/97 26167.04	24156.17	7260.22	0.010	0.073	-0.030	-0.180	0.032	0.194	0.003	0.002	391.43	T=	#DIV/O	6	254.05	98.79-
7/30/97 26167.02		7260.22	0.036	0.103	000:0	-0.180	0:036	0.207	0.003	0.002	378.80	3	213.69	6	240.95	-60.23
		7260.22	0.020	0.121	0.000	-0.180	0.020	0.217	0.001	0.003	742.28	2	(Q/A)Q#	3	245.56	-56.13
	۱ ا	7260.21	0.014	0.117	-0.010	-0.190	0.017	0.223	0.001	0.003	1140.04	•	315,00	3	239.04	-58.46
8/20/97 26167.01	-	7260.25	0.010	0.122	0.040	-0.150	0.041	0.193	0.004	0.002	236.93	1	270.00	3	235.01	-50.86
	-1	7260.23	0.010	0.130	-0.020	-0.170	0.022	0.214	0.003	0.002	336.70	2	0/AIQ#		237.53	-52.51
\perp	1	7260.23	0.050	0.085	0000	0.170	0.050	0.190	0.004	0.002	250.21	-	36.87		249.44	-63.33
⊥	L	7260.23	0.022	0.108	0000	0.170	0.022	0.201	0.001	0.002	728.39	8	243.43	e	248 20	27.64
10/1/07 26167.03	24150,10	7760.24	0.022	CBOTO	0.010	0.150	0.024	0.181	100.0	0.002	/33.19	- 6	406 00	2	249.44	S 5
┸	L	7260 23	0.014	0.032	0.00	42.176	0.017	0.193	7000	0.002	6306 7a	7	135.00	2 0	297.47	30.03
	┖	7260.62	0.020	6000	0000	9 9	0.020	0.192	200	300	1557 30	*	02020	0	243.43	-02.42 F0 F3
Ļ	L	7260.21	0.030	0.085	0.020	0.190	0.036	0.208	0.002	0.001	540.74	-	00:0	6	249.44	\$
L		7260.23	0.030	0.100	0.020	-0.170	0.036	0.197	0.002	0.001	630.87	4	270.00	6	233.13	-59.53
11/5/97 26167.03	24156.14	7260.24	0.010	0.094	0.010	-0.160	0.014	0.186	0.002	0.001	609.27	-	00:0	3	237.99	-59.48
Ц		7260.23	010:0	00100	-0.010	-0.170	0.014	0.197	0.002	0.002	609.27	4	270.00	6	233.13	-59.53
	1	7260.24	0.022	180.0	0.010	-0.160	0.024	0.179	0.003	0.002	387.47	1	26.57	3	240.26	-63.26
_		7260.23	0.010	690.0	-0.010	-0.170	0.014	0,192	0.002	0.002	541.42	2	iO/AIG#	c	243.43	-62.28
12/3/97 26167.04	-	7260.22	0.010	0.081	0.010	-0.180	0.014	0.197	0.001	0.002	1362.64	-	#DIA10#	3	240.26	-65.87
12/10/97 26167.07	24156.18	7260.24	0.042	0.041	0.020	-0.160	0.047	0.165	0.005	0.003	218.72		45.00	8	255.96	-75.55

ઝ	
ĭ	

		CUMULATIVE	ANGLE	-60.33	-68.47	-67.14	-67.14	-66.82	-60,35	-65.87	-65.53	-65.39	-60.23	-66.82	-60.08	-64.87	-60.79	-63.08	-58.24	-62.60	-65.25	-60.79	-65.25	-62.65	-62.98	-62.98	-63.29	-67.01	-70.07	96 09-	-63.88	-59,00	-56.03	64.81	-68.20	-68.50	-69.56	-61.97	-67.51	
			DISPLACEMENT	249.44	243.43	251.57	251.57	254.05	236.31	240.26	254.05	255.96	240.95	254.05	245.56	246.04	243.43	246.80	247.38	246.04	257.47	243.43	257.47	248.20	258.69	259.69	263.66	240.26	246.80	239.04	240.95	236.31	237.99	236.31	233.13	246.04	243.43	243.43	243.43	237.53
		SECTOR	(CUMULATIVE)	E	3	8	3	3	3	3	3	9	3	9	3	3	3	3	3	3	3	3	3	3	3	3	3	6	3	С	3	3	3	3	3	3	3	3	3	3
		INCREMENTAL	DISPLACEMENT	18.43	#DiV/Di	00:0	#DIV/O	#DIV/0!	206.57	45.00	00.0	#OIV/0i	198.43	33.69	233.13	63.43	#DIV/OI	45.00	248.20	71.57	0.00	296.57	116.57	206.57	00:0	#DIV/O	45.00	303.69	0.00	225.00	45.00	270.00	45.00	225.00	#DIV/0i	116.57	#DIA/Oi	243.43	IO/AIC#	206.57
		SECTOR	(INCREM)	-	-	1	1	2	3	1	1	2	3	1	3	-	-	-	3	1		4	2	3	1	1	-	4	•	9	1	4	1	3	1	2	1	3	*	e
l		INVERSE	VELOCITY	130.42	691.02	400.63	:D/A/O#	587.06	207.72	747.62	1585.31	405.30	533.36	312.05	122.06	677.47	164.46	397.96	101.58	212.30	964.97	189.58	189.58	443.56	608.22	#OIV/OI	304.28	1427.62	412.12	772.65	1264.24	502.51	267.12	58.59	397.54	14345,57	29581.08	-11966.57	1564.65	7499.50
	SLOPE DISPLACEMENT	RATE	MOVING AVG	0.004	0.005	0.004	0.003	0.002	0.002	0,002	0.002	0.002	0.002	0.003	0.003	0.004	0.004	0.006	0.005	0.005	0.005	0.005	0.004	0.003	0.003	0.002	0.002	0.002	0.002	0.002	0.001	0.002	0.005	0.005	0.005	0.005	0.004	0.001	0.000	-0.200
	SLOPE	PER	DAY (fl/dev)	0.008	0.001	0.002	0.000	0.002	0.005	0.001	0.001	0.002	0.002	0.003	0.008	0.001	900.0	0.003	0.010	0.005	0.001	0.005	0.005	0.002	0.002	0:000	0.003	0.001	0.002	0.001	0.001	0.002	0.004	0.017	0.003	0.000	0.000	0.000	0.001	0.000
MD5	CUMULATIVE	TOTAL	DISTANCE	0.173	0.183	0.163	0.163	0.185	0.218	0.197	0.176	0.198	0.207	0.185	0.242	0.232	0.183	0.168	0.247	0.214	0.220	0.183	0.220	0.236	0.224	0.224	0.201	0.206	0.223	0.240	0.234	0.210	0.169	0.254	0.269	0.269	0.256	0.238	0.292	0.300
	INCREMENTAL	TOTAL	DISTANCE	0.051	0.028	0.022	0000	220.0	0.049	0.030	0.028	0.022	0.032	0.037	0.064	0.022	150.0	0.017	0.081	0.037	0.022	0.046	0.046	0.024	0.022	0.000	0.024	0.037	0.022	0.042	0.014	0.032	0.042	0.091	0.022	0.022	0.014	0.037	090:0	0.022
	CUMULATIVE	VERTICAL	DISTANCE	0.150	0.170	-0.150	-0.150	0.170	061.0-	-0.180	-0.160	-0.180	-0.180	-0.170	-0.210	-0.210	-0.160	-0.150	-0.210	-0.190	-0.200	-0.160	-0.200	-0.210	-0.200	-0.200	-0.180	-0.190	-0.210	-0.210	-0.210	-0.180	-0.140	-0.230	-0.250	-0.250	-0.240	-0.210	-0.270	-0.270
	INGREMENTAL	VERTICAL	DISTANCE	0.040	-0.020	0.020	0000	-0.020	-0.020	0.010	9.020	-0.020	0.000	0.010	-0.040	0.000	0.050	0.010	-0.060	0.020	-0.010	0.040	-0.040	0.010	0.010	0.000	0.020	-0.010	-0.020	0.000	0.000	0.030	0.040	-0.090	-0.020	0.000	0.010	0.030	090:0-	0000
	CUMULATIVE	HORIZONTAL	DISTANCE	0.085	0.067	0.063	0.063	0.073	0.108	0.081	0.073	0.082	0.103	0.073	0.121	0.09B	0.089	0.076	0.130	0.098	0.092	0.089	0.092	0.108	0.102	0.102	0.091	0.081	920.0	0.117	0.103	0.108	0.094	0.108	0.100	0.098	0.089	0.112	0.112	0.130
	INCREMENTAL	HORIZONTAL	DISTANCE	0.032	0.020	0.010	00000	0.010	0.045	0.028	0.020	0.010	0.032	960.0	0.050	0.022	0.010	0.014	0.054	0.032	0.020	0.022	0.022	0.022	0.020	0.000	0.014	0.036	0.010	0.042	0.014	0.010	0.014	0.014	0.010	0.022	0.010	0.022	0.000	0.022
		•	ELEV.	7260.25	7260.23	7260.25	7260.25	7260.23	7260.21	7260.22	7260.24	7260.22	7260.22	7260.23	7260.19	7260.19	7260.24	7260.25	7260.19	7260.21	7260.20	7260.24	7260.20	7260.19	7260.20	7260.20	7260.22	7260.21	7250.19	7260.19	7260.19	7260.22	7260.26	7260.17	7260.15	7260.15	7260.16	7260.19	7260.13	7260.13
			EASTING	24156.16	24156.16	24156.17	24156.17	24156.17	24156.13	24156.15	24156.17	24155.17	24156.14	24156.17	24156.14	24156.15	24156.15	24156.16	24156.14	24156.15	24156.17	24156.15	24156.17	24156.15	24156.17	24156.17	24156.18	24156.15	24156.16	24156.13	24156.14	24156.13	24156.14	24156.13	24156.13	24156.15	24156.15	24156.14	24156.14	24156.12
			NORTHING	26167.03	26167.05	26167.05	26167.05	26167.04	26167.02	28167.04	26167.04	26167.03	26167.02	26167,04	26167.00	26167.02	26167,03	26167.04	26166.99	26167.02	26167.02	26167.03	26167.02	26167.01	26167.01	26167.01	26167.02	26167.04	26167.04	26167.01	26167.02	26167.02	26167.03	26167.02	26167.03	26167.02	26167.03	26167.01	26167.01	26167.00
July 1999	MDS		E E	12/23/97	12/30/97	1/7/98	1/14/98	1/27/98	2/3/98	2/19/4B	3/25/98	4/3/98	4/8/98	4/15/98	4/22/98	4/29/98	5/7/98	5/13/98	5/21/98	5/28/98	6/3/98	6/10/98	6/17/98	6/24/98	7/1/98	7/8/98	7/15/98	7/22/98	7729/98	8711/98	8/19/98	8/31/98	9/11/98	9/16/98	9/22/98	86/06/6	10/7/99	3/3/98	5/27/99	7/23/99

mainprsm.xls

	MD6				INCREMENTAL	CUMULATIVE	INCREMENTAL VERTICAL	CUMULATIVE	INCREMENTAL	CUMULATIVE	SLOPE DISPLACEMENT PER	SLOPE DISPLACEMENT RATE	SECTOR	MCREMENTAL	SECTOR	CUMULATIVE	CUMULATIVE
No. 10. No.	TIME NO		EASTING	E.EV.	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DAY	MOVING AVG	(INCREM)	DISPLACEMENT	(CLMULATIVE)	DISPLACEMENT	OF THE SE
Marie Mari	Ц	25904.36	24347.48	7260.46	1 1	rail and a		1 1	1 1			1					
The color of the		25834.37	24347.48	7280.42	0.010	0.010	0,040	0.040	0.041	0.041	0.005		1	(OVVC#		#DIV/O	
The color of the	2/8/36	25834.36	24347.47	7260.45	0.014	0.010	0.030	0.010	0.033	\$10.0	0.001		9	225.00	•	270.00	45.00
	2/15/98	25634.36	24347.45	7280.44	0.020	0000	0.010	0200	0.022	0.036	0.003	2000	4	270.00	* 6	270.00	80.00
The color of the	2/20/196	25 MAR. 25	20,247.49	7260 44	0.030	0000	0000	0200	0.0.0	0.030	0.000	0.003	1	18.43	, -	SCOVO!	W/IO#
	36/1/8	Z5824 37	24347.48	7260.42	0.00	0.010	0.020	0700	0 022	0.041	0.003	0.003		iD/A/O#	-	:C/AIC#	-75.96
The color of the	3/14/96	25934.37	24347.50	7260.40	0.020	0.022	0.020	-0.060	0.028	0.084	0.003	0.003	-	00:0	-	26.57	-69.56
	L	25934.36	24347.50	7260.44	0.010	0.020	0.040	-0.020	0.041	920'0	0.004	0.003	2	#DIV/0i	1	0.00	45.00
1871 1871 1872		25934,36	24347.48	7260.41	0.020	0.000		0.050	960.0	0.050	Ю0:0	0.003	4	270.00	-	#DIA/Oi	#DKN0#
1879 1879		25834.37	24347.47	7260.46	410.0	0.014		0.000	0.052	0.014	0.005	0.003	4	315.00	4	315.00	00:00
The color of the		25934.38	24347.50	7260.43	D:032	0.028	0.030	0.030	0.044	20.0	0.002	0.002	-	18.43	+	45.00	-46.69
The color of the		2583A.35	24347.47	7260.42	0.042	0.014	01010	0.040	0.044	0.042	0.000	0.002	6	225.00	8	225.00	-70 Sa
No. 19. No.		25934.35	24347.46	7280.42	0.010	0.022	0000	-0.040	0.010	0.046	0000	0.001	4	270.00	3	206.57	60 78
Column C		25934.36	24347,46	7280.42	0.010	020.0	0000	0.040	0.010	0.045	0.000	0.001	1	#DIANO#	4	270.00	-63.43
1989 12 1989 12 1989 13 <t< td=""><td>1</td><td>25934.35</td><td>24347.47</td><td>7260.41</td><td>0.014</td><td>0.014</td><td>0.010</td><td>0.050</td><td>0.017</td><td>0.052</td><td>0000</td><td>0000</td><td>2</td><td>135.00</td><td>6</td><td>225.00</td><td>14.27</td></t<>	1	25934.35	24347.47	7260.41	0.014	0.014	0.010	0.050	0.017	0.052	0000	0000	2	135.00	6	225.00	14.27
2001.10. 100.00 60.00	00/10/20	C 15050	24.247.48	25.00.30	0.030	0,022	0.000	90.100	0.00	0.102	0.000	780		220.00	2	206.57	95.69
2001.13 201.13 10.00 0.00	7/11/95	25024.30	24347.46	7260.43	0.040	0.028	000	0600	260.0	100	0.000	1000	,	IDVIO8	, 6	225.00	45.69
38.84.12 19.44.1 79.00. 10.00	1/25/96	25834,33	24347.46	7280.39	0.010	0.036	0.040	0.070	0.041	0.079	0.003	0.003	2	#CNA/OF	n	236.31	-62.75
2004.13 194.14 196.24 0.020		25834.32	24347.43	7260.44	0.032	0.064		-0.020	0.059	0.067	100.0	0.003	3	196.43	3	218.66	-17.38
200.21 200.22 200.21 200.22<		2583A.35	24347.44	7280.42	0.032	0.041		-0.040	0.037	0.057	0.000	100'0	1	71.57	3	191.04	4.13
1500 15 1		25934.33	24347.43	1280.41	0.022	0.050		-0.050	0.024	770'0	0.001	0.001	9	243.43	9	210.96	-40.61
1869 13 1869 13 <t< td=""><td>\downarrow</td><td>25934.34</td><td>24347.42</td><td>7260.41</td><td>0.014</td><td>0,063</td><td></td><td>0.050</td><td>4100</td><td>1800</td><td>0.00</td><td>0.001</td><td>7</td><td>315.00</td><td>3</td><td>198.43</td><td>38.33</td></t<>	\downarrow	25934.34	24347.42	7260.41	0.014	0,063		0.050	4100	1800	0.00	0.001	7	315.00	3	198.43	38.33
1969-25 3447-16 770-26 600-0 610-0	1	25934.31	24347.41	7260.42	0.032	990'0		0.040	0.033	0.095	0.002	0.001	9	251.57	r co	215.54	8 2
266-25 266-25 CORD	11/18/06	25,020,25	24247.46	7260 38	0.020	2000	Ĺ	Caro Ca	0.030	5000	1000	0.002	-	53.13	الله ا	208.57	-74.38
388451 389401 78601 0.00	5/16/97	25834.33	24347.41	7280.33	0.054	9200		0.130	0.073	0.151	0000	0.003	3	201.80	3	203.20	-59.64
258.25 3 mode 7 mode 4 mode 6 mode 7 mode<	5/22/87	25834.35	24347.45	7260.37	0.045	0.032		060:0-	090'0	0.095	0.009	0.003	1	28.57	3	196,43	-70.64
258.24.1 78.64.2 <	Ц	25834.33	24347.40	7260.35	0.054	0.088		-0.110	290.0	0.139	E00'0	0.003	3	201.80	3	200.56	-52.10
586.94.3 544.44 786.94 0.02	_	2583A.34	24347.43	7260.35	0.032	190'0		0,110	0.032	0.122	0.002	0.003	1	18.43	3	201.80	-63.82
256-14 156-15<	1	25934.32	24347.42	7260.34	0.022	0.072		0.120	0.024	0.140	0.003	0.003	9	243,43	9	213.69	-59.00
5555-55 5474.7 7755.2 0.00	\perp	2000	24347.41	7200.32	40.0	0.076		0.140	0.024	ecr.p	0000	0.000	4	926.00	7	205.62	-01.40 -45.47
558.43 200.41 770.43 0.00	Ļ	25834.33	24347.40	7260.35	0.00	0.085		0110	0.000	0.139	0.000	0000	-	WOUND!	0 60	200.58	-52.18
5569.547 2569.547 2569.54 2569.54 2669.54	\perp	25834.34	24347.42	7280.35	0.022	0.063		9,110	0.022	0.127	0.002	0 00		28.57	3 60	196.43	90.10
5569-13 549-14 750-24 69-14 69-14 69-14 69-14 69-14 69-14 750-24 69-14 69-14 750-24		25934.32	24347.44	7280.35	0.028	0.057		0,110	0.028	0.124	0000	0.002	2	135.00	n	225.00	-62.75
256843 SARAMARA		25934.33	24347.40	7260.34	150:041	0.085		0.120	D:042	0.147	0.005	0.002	4	284.04	3	200.56	-54.55
2564542 244474 778032 0.00 0.01 0.01 0.01 0.00 0.01 0.00	teve/97	25934.33	24347.40	7260.33	0000	0.085		-0.130	0.000	0.156	100.0	0.002	1	(CVVIC)#	3	200.56	-56.66
258442 2444741 778043 0.014 0.005 0.142 0.003	8/13/97	25934.33	24347.41	7260.32	0.010	0.076		-0.140	0.014	0.159	0.001	0.002	1	0.00	3	203.20	-61.45
25584.32 2847.41 7780.32 0.00	8/20/97	25934.32	24347.40	7280.35	0.014	680.0	0.03	0.110	0.033	0.142	0 003	0.003		225.00	6	206.57	800
25684.3 2684.1 7780.2 0.008 -0.00	\downarrow	25. PC 820.27	24347.43	7260 30	0.00	0.063		0000	90.0	8 2	1000	0.003		0.00	7	108.43	27.50
25054 30 249474 7760 35 0.014 0.029 0.134 0.024	L	25934.32	24347.40	7260.32	0.028	0.089		0.140	0.049	0.166	9000	0000	6	225.00	2 (2)	206.57	-57.43
259.43 249.47 7 (200.2) 60.04 0.04		25934.33	24347.41	7260.35	0.014	0.076		0.110	0.033	£1.0	0.002	0.003	-	45.00		203.20	-55.30
2559,435 2437,41 7560,38 0.014 0.013 0.019		25934.32	24347.42	7250.32	110.0	0.072	0.030	0.140	0.033	0.157	0.004	0.003	2	135.00	9	213,69	-62.75
25843.3 3. A4347.4 7280.3 0.073 0.073 0.022 0.132 0.022 0.022 0.022 0.023	1	25934.33	24347.41	7260.33	0.014	0.076	0.010	0.130	0.017	0.151	1000	0.003	*	315.00	8	203.20	-59.64
25584.33 2487.74 7780.34 0.002 -0.14 0.004 0.14 0.004 0.104 0.004 0.104 0.004 0.104 0.004	1	25934.34	24347.41	7280.35	0.010	0.073	0.020	0.130	0.022	0.132	0,002	0.002	-	ADIVIOR	n (28.28	25.55
25584.33 2491.73 7700.34 0.010 0.040 0.150 0.153 0.002	26/52/01	25934.33	24347.40	726030	0.038	160.0	050.0	4 4	0.024	8 19	0.000	0.002	-	75.05	9	191.31	26.85
2584.35 2481.76 7760.36 0.010 0.010 0.120 0.120 0.120 0.120 0.120 0.020	11/5/97	25934.33	24347.39	7260.34	0.010	9800	0.020	6.18	0.022	0.153	0.002	0,002	7	270.00	9 69	198.43	-51.67
2584.34 2434.74 7780.34 0.014 0.010 0.170 0.110 0.110 0.010 0.110 0.010 0.110	Ļ	25934.33	24347.40	7260.33	0.010	0.085	010.01	0.130	0.014	0.156	0000	0.002	-	0.00		300.56	999
2584.34 2484.74 7280.34 0.00 0.01 0.00 0.10 0.00 0.10 0.10 0.00 0.10 0.10 0.10 0.00 0.10	L	25934.34	24347.41	7260 34	0.034	0.073	0.010	6.120	710.0	0.140	0.002	0.002	-	45.00	8	195.95	-58.76
25894,35 2494,42 7280,34 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.05 0.04 0.05			24347.41	7260.34	0000	0.073	0.000	021.0	0000	0.140	0.000	0.001	-	:0/AIC#	3	185.85	-58.76
2584,37 2484,47 7280,38 0.072 0.072 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.013 0.003 0.013 0.003 0.013 0.003 0.013 0.003 0.013 0.003 0.013 0.003 0.013 0.003 0.013 0.003 0.013 0.003 0.014 0.003 0.014 0.003 0.014 0.003 0.014 0.003 0.014 0.003 0.014 0.003 0.014 0.003 0.014 0.003 0.014 0.003 0.014 0.003 0.014 0.003 0.014 0.003 0.014 0.003 0.014 0.003 0.014 0.003 0.014 0.003 0.014 0.003 0.014 0.003 0.014 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003		_1	24347.42	7260.34	0.014	0.061	0.000	0.120	0.014	0.135	1000	0.001	-	45.00	3	189.46	-63.12
25554.35 2.444.41 7720.35 0.004		_1	24347.41	7260.36	0.022	120.0	0.020	-0.100	0.030	0.122	0.002	0.002	+	333.43	7	278.13	-54.74
2553.43 2543.45 750.05 0.00 0.10 0.00 0.00 0.10 0.00	1	25934.33	24347.41	2500.33	0.040	0.076	0000	SE 0	0.050	0.151	0.00.0	0.002	2	O'AIC#	9	203.20	39.65
2553.35 2434.72 7760.35 0.022 0.026 -0.10 0.024 0.125 0.020 0.020 0.02<	200000	25624.35	24347.40	7260.36	0.000	0.070	2000	90.0	0.030	61.0	9000	2000	1	MUNVAII	2 6	203.20	02.02
2593.35 2497.43 7260.35 0.00 0.00 0.010 0.110 0.010 0.121 0.00 0.00 0.110 0.121 0.00 0.00 0.120 0.00 0.120 0.00 0.120 0.0	88/2/8	25934.36	24347.42	7280.35	0.022	0.060	0.010	0.110	0.024	0.125	0000	0.002	-	28.57		270.00	-61.36
25843,55 24977,42 7780,34 0.007 0.005; 0.001 0.005 0.001 0.007 0.0	1/14/96	25934.36	24347.43	7260.35	0.010	0.050	000'0	0.110	0.010	0.121	100.0	0.001	-	00:0	4	270.00	-65.56
2594.33 2444.41 7280.38 0.078 -0.100 -0.100 0.015 0.001	1/27/96	25934.35	24347.43	7280.34	0.010	0.051	0.010	-0.120	0.014	0.130	0.001	0.001	2	#DIAVOI	6	191.31	-66.98
			24347.41	7280.33	0.028	0.076	0.010	6.130	0.030	0.151	0.003	100.0	6	225.00	9	203.20	29.69
			24.397.40	7. mar. 7	0,022	U.U.O.	OLOGO O	40.38	0.024	0.130	0.001	10.00	- 6	53.43	n	189.46	51.59

993-2037.2

993-2037.2

		\vdash	\vdash		SLOPE	 				-
COMPLATIVE	_	₹	/E DISPL	_	DISPLACEMENT					_
HORIZONTAL	_				RATE	SECTOR	INCREMENTAL	SECTOR	CUMULATIVE	CUMULATIVE
ICE DISTANCE	S	<u>w</u>	DISTANCE DAY		MOVING AVG	(INCREM)	DISPLACEMENT	(CUMULATIVE)	DISPLACEMENT	45 E
25234 34 24347 40 7780 34 0 000 0 0 000 0 0 000	0,120	UOJU	0.146	900	0.001	-	UANU#	r.	TIOMS.	.55.50
24347.40 7280.34 0.010 0.085		0.0.0	0.147	0.000	0.000	7	MONYO	3	200.56	-54.55
25934.33 24347.41 7260.33 0.010 0.076 -0.010	0130	0.014	0.151	0.00	000'0	-	000	3	203.20	-59.64
25834,33 24347,39 7260.34 0.020 0.035 0.035	0.120	0.022	0.153	0.000	0.001	7	270.00	3	196.43	-51.67
25534.33 24347.40 7260.30 0.010 0.065 40.040	091.0-	0.041	0.181	0.004	0.002	-	00:00	3	200.56	-61.80
	-0.110	0.052	0.132	900:0	0.003	-	45.00	3	186.96	8
25934.34 24347.43 7280.35 0.020 0.054 0.000	0.110	020'0	0.122	0.002	0.004	1	00:00	3	201.80	-63.82
25934,32 24347,38 7250,31 0.054 0.108 -0.040	-0.150	0.067	0.165	0.008	0.005	3	201.80	3	201.80	54.32
25834.34 24347.41 7260.33 0.036 0.073 0.020	-0.130	0.041	0.149	0.005	0.004	1	33.69	3	195.95	-60.75
25934.33 24347.40 7280.33 0.014 0.085 0.000	0.130	0.014	0.156	0.001	0.004	3	225.00	3	200.56	-56.69
25834.34 24347.41 7260.35 0.014 0.073 0.020	-0.110	0.024	0.132	0.003	0.004	1	45.00	3	195.35	-56.50
25524.33 24347.40 7260.33 0.014 0.085 -0.020	-0.130	0.024	0.156	0.003	0.003	3	225.00	3	95:002	-56.69
25834.33 24347.39 7260.32 0.010 0.016 -0.010	-0.140	0.014	0.169	0.002	0.003	4	270.00	3	198.43	-55.88
25934.33 24547.41 7260.34 0.020 0.078 0.078 0.020	0.120	0.028	0.142	0.004	0.003	1	000	3	203.20	-57.60
25834.32 24347.41 7280.33 0.010 0.081 -0.010	0.130	0.014	0.153	0.002	0.003	2	#CIVIO#	3	209.74	-58.19
25934.34 24347.41 7280.31 0.020 0.073 -0.020	20.150	0.028	0.167	0.002	0.002	+	i0/AKO#	3	195.95	\$
25934,34 24347,40 7260,32 0,010 0,062 0,010	0.140	0.014	0.162	100.0	0.002	4	270.00	3	194.04	-59.50
24347.40	-0.110	0.030	0.137	0.004	0.003	-	MONIOR	3	194.04	-53.14
	O 180	0.083	0.217	900.0	0.003	e	206.57	3	196.70	-61.21
24347.39 7260.27 0.010 0.095	0.190	0.010	0.212	0.001	0.002	-	00:0	3	198.43	-63.47
25534.34 24347.39 7260.27 0.010 0.092 0.000	081-0-	0.010	0.211	0.000	0.003	•	ID/A/O#	3	192.53	-64.12
25834,33 24347,41 7260.33 0.022 0.076 0.080	-0.130	0.064	0.151	0.006	0.004	2	118.57	3	203.20	-58.64
25934.34 24347.40 7260.29 0.014 0.082 -0.040	0.170	0.042	0.169	0.008	0.003	7	315.00	3	194.04	-64.12
25534,36 24347,42 7260.30 0.028 0.060 0.010	0,150	0.030	0.171	0.003	0.003	1	45.00	4	270.00	-69.44
25834.35 24347.42 7280.31 0.010 0.010 0.061 0.010	0.150	0.014	0.162	0.001	0.004	2	IO/AKO#	3	189.46	-67.93
25934.34 24347.39 7260.3 0.032 0.032 0.010	10 -0.150	0.033	0.185	0.003	0.003	3	198.43	3	192.53	-60.05
25934.36 24347.4 7260.28 0.014 0.081 0.020	0.190	0.024	0,187	0.000	0.002	+	45.00	3	187.13	-65.87
24347.38 7260.26 0.028 0.104	92.00	0.035	0.726	0.000	0.001	9	225.00	3	195.70	-62.43
25934.34 24347.38 7260.29 0.010 0.010 0.102 0.030	0.170	0.032	0.196	0.000	961.0	1	#DAVO:	3	16.191	-59.04

4
2
-
y
-2
ī
7
c
Ü
U
4
đ
τ
-
С
Č
_

1985	-		_			_			-	-	SLOPE	SLOPE	_				
	MD7				INCREMENTAL HORIZONTAL		INCREMENTAL		NCREMENTAL TOTAL		DISPLACEMENT	DISPLACEMENT				CUMULATIVE	CUMULATIVE
		ORTHING	EASTING	ELEV.	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DAY	MOVING AVG	(INCREM)			DISPLACEMENT	OIP.
MACKAS DE STORMAN STATUTANIA CORREST DE STATUTANIA				$\overline{}$	€	(2)	Ê	£	(¥)	Œ	(feby)	(ft/day)		AZIMUTH		AZIMUTH	ANGLE
MACKARA STANDARD MATERIAL AND AND AND AND AND AND AND AND AND AND	!	6423.65	23993.37				0.00	100		1000	0000		Ţ			00 020	
ACCASION STANDARD AND AND AND AND AND AND AND AND AND AN		6423.65	23993.35	05.8/2/	0.010		-0.050	0000	10.00	0.00	0000		•		1	45.00	-70 53
MACKADE (NORTHWAY) CORD CORD <td>-</td> <td>0423.00</td> <td>23933.30</td> <td>7070 27</td> <td>0.022</td> <td></td> <td>0.000</td> <td>0.040</td> <td>0.024</td> <td>1000</td> <td>0000</td> <td></td> <td>ſ</td> <td></td> <td>- 6</td> <td>243.69</td> <td>-47 97</td>	-	0423.00	23933.30	7070 27	0.022		0.000	0.040	0.024	1000	0000		ſ		- 6	243.69	-47 97
26.25.16 2560.04 2777.3 3 0.00	-	6423.03			060.0		0.000	-0.040	0.000	0.004	0.002	6000			9	270.00	-45.00
26.2516 20200 24 2017 25 20	-	6423.03			0.020		0.030	0.0.0	0.00	1000	8000	0000				38 66	-17.35
26.2.516 (1982) (1977) (2010	-	6423.03			0.072		0.010	0.020	0.003	9000	0000	0 003			2	108 43	-17,55
2647216 (1992) CORD	-	6423.68			0.00	970.0	0.000	0.020	0.052	2200	0.000	0 003				23.20	-7.48
RAGISTOR CORRES CORRE	+	6423 65			0.00		0.010	-0.020	0.044	0.045	4000	0 003	ļ	"	-	0.00	-26.57
264/210 (2.099) CORD	-	6423 64	23003 38	7279 38	0.032		0.0.0	0000	0.033	0.033	0.002	0.002			2	135.00	-64.76
844236 12 20834 2 (1774) 54 0 color 0.00	-	C472 6E	22002 30	7270 37	0.000		0.00	0000	200	0.000	1000	0000			-		-75 96
RACEA DE STANDARDA (1777) SER D	┯	6423.03					0.0.0	0.040	0.014	0.020	0000	0.002	- -	9600		26.57	-16.60
2642361 2 289363 2 17775 3 Condent of the control of the	4	6422 64					0.040	0.060	1900	0.068	0000	1000			2	108 43	62.21
264215 (2) 20890 (2) (277) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	-	6423.04			00.0		0000	0000	0.00	0,000	0000	000			2	146 31	-59.00
RACCORDIS CORRES CORR	1	6423.62	23003 35	7270 35			200	9000	0.022	0,000	0.000	0000				236.31	90.69
RACCIO SERSION STATES	4	6473 E3	23001 30	7770 36			0.000	0.000	0.042	7900	0.001	0000			2	135 00	90.50
REACTION CONTROL NO. CONTROL NO. </td <td>-</td> <td>645362</td> <td>23003 42</td> <td>7270 33</td> <td></td> <td></td> <td>0.0.0</td> <td>080</td> <td>0.044</td> <td>9000</td> <td>0.004</td> <td>0.001</td> <td></td> <td></td> <td>2</td> <td>120.96</td> <td>-53.91</td>	-	645362	23003 42	7270 33			0.0.0	080	0.044	9000	0.004	0.001			2	120.96	-53.91
2642361 (2003) 2003 (2004) 0.000 </td <td>4</td> <td>6472 67</td> <td>-</td> <td>7270 38</td> <td>2000</td> <td></td> <td>0000</td> <td>0.030</td> <td>0.050</td> <td>7000</td> <td>0017</td> <td>0.005</td> <td></td> <td></td> <td>2</td> <td>146.31</td> <td>39.76</td>	4	6472 67	-	7270 38	2000		0000	0.030	0.050	7000	0017	0.005			2	146.31	39.76
56/23/56 2008034 1779/58 0.00		6423.60		7270 38	2000		0000	0000	0.000	0.059	0000	0 004			2	168 69	-30.47
56.23.51 23.993.41 1779.33 0.000	4	6472 63	-	7270 36	200.0		0000	0.030	770.0	790.0	0000	0000			2	135.00	
2662.25 II 15963.31 1777.35 1779.35 1779.35 1777.35 1779.35 1779.35 1779.35 1777.35 1779	+	6472 64	-	7270 30	0.032		0.020	0000	0.00	0.00	0000	2000			-	135 00	
2662.25 B 2663.26 B <t< td=""><td>-</td><td>6473 61</td><td></td><td></td><td>0.020</td><td></td><td>0.030</td><td>0.020</td><td>0.00</td><td>0.000</td><td>000.0</td><td>0.001</td><td></td><td></td><td>2</td><td>IO/AIG#</td><td>15,</td></t<>	-	6473 61			0.020		0.030	0.020	0.00	0.000	000.0	0.001			2	IO/AIG#	15,
2642.25 II. 2599.39 2779.35 CONT COND CON		6473 50			0000		050.0	080 0-	7600	0.100	1000	0.001			3.	260.54	-52.75
264225 51 20993 98 2779 25 0.000 0.001 0.014 0.000 0.002 0.0000 0.0000 0.0000		6423 58			0.014		0.020	090'0	0.024	0.092	0.003	0.001			2	#DIV/Oi	-40.60
2642256 29893 7779 28 0.00 0.01 0.01 0.02 0.00 0.02 0.00	-	6423.58	23993.36		0.010		-0.030	060'0-	0.032	0.114	0.004	0.002			3	261.87	-51.84
26423 51 7793 90 0.044 0.044 0.146 0.044 0.146 0.044 0.146 0.044 0.146 0.044 0.146 0.044	╄-	6423.56	23993.37		0.022		-0.020	-0.110	0.030	0.142	0.003	0.002			2	ID/AIG#	-50.71
26423.56 23993.91 7779.25 0.000	⊢	6423.57	23993.36	7279.30	0.014		0.000	-0.110	0.014	0.136	0000	0.002			3	262.87	-53.76
26423.52 23993.41 7729.25 0.000	\vdash	6423.58	23993.39	7279.32			0.020	-0.090	0.037	0.116	0.001	0.002	-	18.43	2	164.05	-51.03
26423.36 (2393.41 7279.25 0.000 0.000 0.108 0.000 0.108 0.000 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.109 0.108 0.108 0.108 0.108 0.108 0.109 0.108 0.109 0.108 0.109 0.108 0.109	_	6423.53	23993.37	7279.25		0.120	-0.070	-0.160	0.088	0.200	0.000	0.002		1	2	ID/AIC#	-53.13
26423.54 S. 22933.35 2779.25 0.02 0.02 0.03 0.02 0.03 1.5 (18.6) 3 261.25 26423.55 S. 22933.35 2779.25 0.046 0.142 0.046 0.146 0.046 0.146 0.046 0.146 0.046 0.146 0.046 0.146 0.046 0.146 0.046		6423.56	23993.41	7279.25	0.050		0.000	-0.160	0.050	0.188	0.002	0.002			2	156.04	-58.39
26423.56 23993.40 7779.25 0.044 0.043 1 2.65 2 1.63.70 26423.56 23993.41 7779.24 0.044 0.045 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.079 0.090 0.040 0.040 0.044 0.025 0.044 0.020 0.040 0.044 0.026 0.049 0.044 0.026 0.040 0.044 0.026 0.044 0.042 0.044	_	6423.52		7279.23	0.072		-0.020	-0.180	0.075	0.223	0.003	0.002		į	3	261.25	53.84
26423.55 23933.41 7729.27 0.000 0.010 0.000 0.000 0.000 0.000 0.000 1.843 2 153.40 26423.55 23933.41 7279.22 0.014 0.020 0.019 0.020 0.010	_	6423.54		7279.25	0.045		0.020	-0.160	0.049	0.195	0.004	0.003		26.57	2	169.70	-55.06
26423.54 23993.47 7279.25 6004 0.002 0.003 4 31500 2 6004 26423.55 23993.47 7279.22 0.009 0.129 0.004 0.025 0.004 0.003 4 31500 2 6 26423.55 23993.37 7279.22 0.009 0.129 0.041 0.025 0.004 0.003 4 27000 3 2.647 2 6 26423.54 23993.47 7279.28 0.001 0.129 0.041 0.025 0.041 0.003 4 27000 3 2.647 26423.54 23993.40 7279.28 0.001 0.144 0.029 0.160 0.18 0.001 0.18 0.002 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 0.010 0.18 0.010 0.18 0.010 0.18 0.000 0.11 0.010 0.18 0.000 0.11	_	6423.55	23993.42	7279.27	0.032		0.020	-0.140	0.037	0.179	0.002	0.003	-	18.43	2	153.43	-51.39
26423.53 23933.41 7729.22 0.050 0.0120 0.044 0.025 0.044 0.03 3 216.87 2 266.24 26423.53 23933.34 7779.22 0.040 0.150 0.040 0.150 0.040 0.150 0.040 0.150 0.040 0.150 0.040 0.150 0.040 0.150 0.040 0.015 0.003 4 270.00 3 265.24 26423.54 23993.41 7279.25 0.051 0.014 0.020 0.014 0.002 0.003 4 270.00 2 164.74 266.23 266.23 4 270.00 2 164.74 266.23 2 266.23 4 270.00 2 164.74 2 266.23 4 270.00 2 164.74 2 2 2 2 164.74 2 2 164.74 2 2 164.74 2 2 164.74 2 2 2 164.74 2 2 2	-+	6423.56	23993.41	7279.24	0.014		-0.030	-0.170	0.033	0.196	0.002	0.003			2	156.04	-59.91
26423.54 23993.40 7279.26 0.010 0.120 0.040 0.140 0.041 0.142 0.005 0.03 4 270.00 3 265.24 26423.54 23993.40 7279.25 0.010 0.140 0.020 0.018 0.003 4 270.00 2 164.74 26423.54 23993.40 7279.27 0.000 0.14 0.020 0.140 0.020 0.18 0.003 4 270.00 2 164.74 26423.54 23993.40 7279.27 0.000 0.14 0.020 0.140 0.020 0.18 0.003 1 4 270.00 2 164.74 26423.54 23993.40 7279.26 0.000 0.14 0.040 0.010 0.016 0.010 0.000 1 4 70.00 1 4 4 70.00 2 164.74 26423.54 23993.40 7279.20 0.010 0.110 0.010 0.010 0.110 0.010 0.010	-	6423.53			0.050		-0.020	0.190	0.054	0.225	0.004	0.003			2	#DI/\IQ#	-57.72
26423.54 23993.41 7279.28 0.051 0.14 0.050 0.150 0.055 0.175 0.002 0.055 0.175 0.002 0.055 0.175 0.002 0.050 0.050 0.003 0.050	-+	6423.53			0.010		0.040	-0.150	0.041	0.192	0.002	0.003			3	265.24	-51.Z4
26423.54 23993.40 7279.25 0.000 0.014 0.030 0.146 0.032 0.033 4 270.00 2 164.74 26423.54 23993.40 7279.25 0.000 0.114 -0.140 0.019 0.141 0.019 0.140 0.019 0.140 0.019 0.140 0.019 0.014 0.010 0.140 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.010 0.019 0.019 0.010 0.010 0.019 0.010		6423.54			0.051		0.020	-0.130	0.055	0.175	0.002	0.003			2	160.02	-48.00
26423.54 23933.40 7279.25 0.000 0.144 0.020 0.159 0.013 1 #DIVID 2 164.74 26423.54 23993.40 7279.26 0.000 0.144 -0.100 -0.150 0.019 0.003 4 #DIVID 2 164.74 26423.54 23993.40 7279.26 0.000 0.112 -0.010 -0.160 0.019 0.003 4 2 164.74 26423.54 23993.40 7279.26 0.000 0.112 -0.000 -0.110 0.010 0.005 0.001 0.002 1 450/00 2 164.74 26423.54 23993.40 7279.26 0.000 0.111 0.000 -0.16 0.001 0.002 1 460/00 2 164.74 26423.54 23993.40 7279.26 0.002 0.114 0.000 -0.16 0.001 0.002 1 460/00 2 164.74 26423.54 23993.40 7279.22 0.002 <t< td=""><td>-</td><td>6423.54</td><td>23993.40</td><td>(7/9.75</td><td>0.010</td><td></td><td>-0.030</td><td>-0.160</td><td>0.032</td><td>0.196</td><td>0.002</td><td>0.003</td><td></td><td></td><td>7</td><td>164.74</td><td>20,00</td></t<>	-	6423.54	23993.40	(7/9.75	0.010		-0.030	-0.160	0.032	0.196	0.002	0.003			7	164.74	20,00
26423.54 23993.40 7279.25 0.000 0.144 -0.010 -0.150 0.014 0.169 0.014 0.169 0.014 0.169 0.014 0.169 0.014 0.169 0.014 0.169 0.014 0.169 0.014 0.169 0.014 0.169 0.014 0.169 0.014 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.002 1 4000 0.016 0.016 0.016 0.002 1 4000 0.016 0.016 0.002 1 4000 0.016 0.016 0.002 0.016 0.016 0.002 0.016 0.002 0.016 0.002 0.016 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.00	-	6423.54	_	7279.27	0.000		0.020	-0.140	0.020	0.181	0.003	0.003			2	164.74	30.84
26423.54 23993.40 7279.20 0.000 0.112 0.010 0.014 0.003 4 270.00 2 103.70 26423.54 23993.40 0.000 0.011 0.050 0.110 0.050 0.117 0.010 0.118 0.000 0.119 0.010 0.018 0.000 0.010 0.010 0.010 0.010 0.000 0.010 0.010 0.010 0.000	-	6423.54	23993.40	7279.20	0.000		-0.030	0.150	0.010	0.168	0.001	0.002			2 2	164.74	
CA6423.54 CA993.34 CAPAS.354 CAPAS.354 <th< td=""><td>-</td><td>472.34</td><td>23993.39</td><td>C7.6./7/</td><td>0.0.0</td><td></td><td>0.010</td><td>ng. o</td><td>0.014</td><td>SE :</td><td>10.00</td><td>0.003</td><td></td><td></td><td>7</td><td>109.70</td><td></td></th<>	-	472.34	23993.39	C7.6./7/	0.0.0		0.010	ng. o	0.014	SE :	10.00	0.003			7	109.70	
26423.54 23993.46 7279.25 0.070 0.100 0.100 0.002 0.100 0.100 0.002 0.100 0.100 0.002 0.100 0.100 0.002 0.100 0.100 0.000 0.003 1 2.000 2 195.00 26423.55 73993.45 7279.25 0.028 0.121 -0.160 0.065 0.146 0.000 0.003 3 2.867 2 165.60 26423.54 23993.42 7279.25 0.022 0.121 -0.160 0.044 0.209 0.003 3 2.867 2 165.60 26423.55 23993.40 7279.25 0.022 0.146 0.019 0.044 0.239 0.003 3 251.57 2 165.60 26423.55 23993.40 7279.23 0.010 0.180 0.014 0.239 0.023 0.023 0.146 0.030 0.024 0.030 0.033 1 251.57 2 164.05 26423.56 23993.3		0423.04			0.000		0.050	0.110	0.050	0.157	0.005	0.002		IO/AIC#	7	169.70	44.03
26423.57 23893.47 72.13.23 0.08 0.175 0.09 0.077 0.09 0.077 0.09 0.00 </td <td></td> <td>6423.34</td> <td></td> <td></td> <td>0.070</td> <td></td> <td>0.000</td> <td>0.110</td> <td>00.0</td> <td>0.138</td> <td>0.000</td> <td>0.002</td> <td></td> <td>90.00</td> <td>7</td> <td>47.400</td> <td>15.27</td>		6423.34			0.070		0.000	0.110	00.0	0.138	0.000	0.002		90.00	7	47.400	15.27
26423.53 23993.40 7279.25 0.024 0.015 0.024 0.024 0.020 0.024	+	0423.37			BC0.0		000.0-	001.0	0.077	0.190	0000	0000			4	133.00	5
26423.54 23993.42 7279.25 0.022 0.171 0.100 0.100 0.000	-	6423.33	22002 42	7270 25	0.064		0.010	061.0-	0.005	0.000	0.000	0.003			2	100.30	50.03
CP423.51 C3993.41 fZ19.22 0.03 0.146 -0.190 -0.190 0.024 0.029 0.000 0.002 0.104 -0.190 0.014 0.024 0.024 0.000 0.000 0.002 0.124 0.001 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.000 0.002 4 270.00 2 176.54 26423.55 23993.38 7279.22 0.056 0.114 -0.019 0.019 0.227 0.001 0.002 4 270.00 2 176.54 26423.55 23993.38 7279.22 0.056 0.114 -0.019 0.019 0.222 0.001 0.003 1 20.96 2 175.24 26423.55 23993.38 7279.25 0.006 0.126 0.007 0.003 1 20.96 2 175.24 26423.55 23993.38 7279.25 0.006 0.160 0.000 0.000 <	+	0423.34	23333.42	7070 00	0.022		010.0	-0.160	0.024	0.200	0.000	500.0			7	00.001	
26423.52 23993.34 7279.25 0.02 0.180 0.024 0.24 0.03 0.002 4 33.43 2 176.34 26423.53 23993.34 7279.22 0.00 0.14 -0.19 0.010 0.02 4 270.00 2 176.54 26423.55 23993.34 7279.22 0.05 0.14 -0.19 0.05 0.073 1 30.96 2 175.24 26423.55 23993.38 7279.25 0.06 0.120 0.073 0.073 0.001 3 20.657 2 175.24 26423.55 23993.38 7279.25 0.000 0.120 0.000 0.000 0.001 1 #DIVIOR 2 175.24	+	0423.51		_	0.032	0.146	-0.030	-0.190	0.044	0.239	9000	0.003			2	164.05	
Z0423.55 Z3993.34 Z279.25 0.00 0.12 0.00 0.00 0.00 0.00 2 70.00	+	0423.53			0.022		0.010	-6.180	0.024	0.218	0.003	0.002			7	05.601	00.00
Z6423.55 23993.36 7279.25 0.000 0.172 0.000 0.000 0.000 0.001 0.001 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004	-+	0423.53			0.010		0.000	-0.180	0.010	0.217	0000	0.002			7	1/0.54	-00.82
26423.53 23993.38 7279.25 0.000 0.120 0.000 0.000 0.000 0.000 0.000 0.001 1 #DIVIOR 2 175.24	+	6423.30			0.058		-0.010	0.190	0.059	0.222	0.00	0.003		,	7	142.13	50.63
Z64Z3.55 Z3993.56 Z19.75 0.000 0.120 0.000 0.001	+	0443.33	23233.30	1270.05	20.00		0.030	-0.100 -0.100	0.000	U.Z.OU	0.000	U.UU	٦		7	170.04	50.00-
	4	0423.33	23333.30	12/8/27	U.DAV		Toonin	1001.0	U.UUU I	D.SWI	U.UUU.	1000		#Ulviu	-	1/3.61	00.00-

2	
Σ	

		CUMULATIVE	ANGLE	-54.69	-55.94	-48.54	-57.24	-61.53	-51.84	-51.88	-51.39	-52.03	-51.34	-51.84	-57.24	-48.11	-40.82	-56.15	-51.34	-53.50	-53.94	-47.20	-55.06	-49.84	-47.10	-51.22	-47.20	-51.22	-46.41	-49.20	-49.20	-42.18	-52.92	-54.40	-49.84	-48.46	-34.11	-53.13	-43.49	-48.72	-50.64	-59.87	-51.07	-50.54	-51.15
	1	DISPLACEMENT	AZIMUTH	175.24	146.31	165.96	150.95	139.40	171.87	167.01	153.43	160.02	162.90	171.87	240.95	138.01	149.74	164.74	162.90	169.38	164.05	149.74	169.70	163.61	160.35	148.39	149.74	148.39	156.80	142.43	142.43	154.98	162.90	143.97	163.61	163.61	163.61	10/AIC#	161.57	167.47	151.70	158.96	158.20	173.66	163.61
		(CUMULATIVE) DISPLACEMENT		2	2	2.	2	2	2	2	2	2	2	2	3	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
		(INCREM) DISPLACEMENT	AZIMUTH	IO/AIG#	30.96	225.00	56.31	63.43	240.26	45.00	56.31	225.00	#D1V/0I	206.57	305.54	94.09	225.00	284.04	153.43	251.57	63.43	33.69	281.31	153.43	#DIV/0I	18.43	315.00	135.00	206.57	14.04	#DIV/0I	213.69	303.69	26.57	243.43	#DIV/0i	#DIA/0i	315.00	135.00	270.00	59.04	270.00	153.43	216.87	18.43
		SECTOR (INCREM)		-	-	3	-	1	6	1	٠	3	2	3	4	2	3	4	2	3	-	-	4	2	-	1	4	2	3	-	-	6	4	1	3	1	-	4	2	4	-	₹	2	6	=
SLOPE	DISPLACEMENT	MOVING AVG	(fl/day)	0.001	0.001	0.001	0.001	0.002	0.002	0.002	0.002	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.003	0.004	0.005	0.00⊄	900.0	9000	900:0	0.006	0.007	0.005	0.005	0.004	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.004	0.004	0.005	900.0	900.0	0.003	0.003	-0.199
SLOPE	DISPLACEMENT DISPLACEMENT	DAY EX	(ft/day)	0.001	0.002	0.001	0.000	0.000	0.005	0.002	0.005	0.002	0.002	0.005	0.002	0.000	0.002	0.004	0.002	800.0	0.004	0.005	0.002	0.010	0.008	0.004	900'0	0.006	0.003	0.004	0.000	0.004	0.000	0.001	0.003	0.001	0.004	0.001	0.012	0.003	900.0	900:0	0.000	0.000	0000
	Ž	DISTANCE	(tt)	0.208	0.193	0.187	0.190	0.193	0.229	0.216	0.179	0.190	0.218	0.229	0.190	0.201	0.184	0.205	0.218	0.274	0.247	0.204	0.195	0.275	0.218	0.244	0.204	0.244	0.221	0.251	0.251	0.223	0.226	0.234	0.275	0.267	0.214	0.200	0.262	0.279	0.233	0.277	0.257	0.285	0.282
MD7	TAL	DISTANCE	(II)	0.010	0.059	0.047	0.041	0.024	0.081	0.017	0.047	0.017	0.028	0.024	0.088	0.141	0.041	0.065	0.022	0.059	0:030	0.062	0.052	0.084	0.058	0.044	0.042	0.042	0.037	0.051	0.000	0.054	0.047	0.046	0.070	0.010	0.080	0.081	0.087	0.036	990:0	0.063	0.046	0.054	0.032
	ပ	DISTANCE	(tt)	-0.170	-0.160	-0.140	-0.150	-0.170	-0.180	-0.170	-0.140	-0.150	-0.170	-0.180	-0.150	-0.150	-0.120	-0.170	-0.170	-0.220	-0.200	-0.150	-0.160	-0.210	-0.160	-0.190	-0.150	-0.190	-0.160	-0.190	-0.190	-0.150	-0.180	-0.190	-0.210	-0.200	-0.120	-0.160	-0.180	-0.210	-0.180	-0.240	-0.200	-0.220	-0.220
	INCREMENTAL	DISTANCE	(H)	-0.010	0.010	0.020	-0.020	-0.010	010.0-	0.010	0.030	-0.010	-0.020	-0.010	0.020	0.010	0:030	-0.050	0.000	-0.050	0.020	0.050	-0.010	-0.050	0.050	-0.030	0.040	-0.040	0.030	-0.030	0.000	0.040	-0.030	-0.010	-0.020	0.010	0.080	-0.040	-0.020	-0.030	0.030	-0.060	0.040	-0.020	0.000
	CUMULATIVE	DISTANCE	(¥)	0.120	0.108	0.124	0.103	0.092	0.141	0.133	0.112		0.136	0.141	0.103	0.135	0.139	0.114	0.136	0.163	0.146	0.139	0.112	0.177	0.149	0.153	0.139	0.153	0.152	0.164	0.164	0.166	0.136	0.136	0.177	0.177	0.177	0.120	061.0	0.184	0.148	0.139	0.162	0.181	0.177
	INCREMENTAL	DISTANCE	€	0.000	0.058	0.042	0.036	0.022	0.081	0.014	0.036	0.014	0.020	0.022	0.086	0.140	0.028	0.041	0.022	0.032	0.022	0.036	0.051	0.067	0.030	0.032	0.014	0.014	0.022	0.041	0.000	0.036	960'0	0.045	0.067	0.000	0.000	0.071	90.0	0.020	0.058	0.020	0.022	0.050	0.032
		ELEV.		7279.24	7279.25	7279.27	7279.25		7279.23	7279.24	7279.27	7279.26	7279.24	7279.23	7279.25	7279.26	7279.29	7279.24	7279.24	7279.19	7279.21	7279.26	7279.25	7279.20	7279.25	7279.22	7279.26	7279.22	7279.25	7279.22	7279.22	7279.26	7279.23	7279.22	7279.20	7279.21	7279.29	7279.25	7279.23	7279.20	7279.23	7279.17	7279.21	7279.19	7279.19
		EASTING		23993.38	23993.43	23993.40 7279.27	23993.42 7279.25	23993.43	23993.39	23993.40	23993.42	23993.41	23993.41	23993.39 7279.23	23993.32	23993.46 7279.26	23993.44 7279.29	23993.40 7279.24	23993.41	23993.40	23993.41 7279.21	23993.44 7279.26	23993.39 7279.25	23993.42	23993.42 7279.25	23993.45 7279.22	23993.44 7279.26	23993.45 7279.22	23993.43 7279.25	23993.47 7279.22	23993.47 7279.22	23993.44 7279.26	23993.41 7279.23	23993.45 7279.22	23993.42	23993.42	23993.42	23993.37 7279.25	23993.43 7279.23	23993.41	23993.44	23993.42 7279.17	23993.43 7279.21	23993.39 7279.19	23993.42
-		NORTHING	-	26423.53	26423.56	_	$\overline{}$	_	-	-	-		\dashv	-	_	_	_	26423.54	\vdash		-	_		_	\vdash	-	-	\rightarrow	-+	-		-	-	_	_		_		_	_	-	-	-+		26423.48
July 1999	MD7	TIME		11/12/97	11/19/97	11/26/97	12/3/97	12/10/97	12/17/97	12/23/97	1/7/98	1/14/98		_	2/19/98		4/3/98	4/8/98	4/15/98		-	_	_		_		_	_			_	_	_		_		_			$\overline{}$	_				7/23/99

CUMULATIVE	DIP			-64.76	-80.54	-60.79	-64.76	-63.43	-43.31	-54.74	-47.97	-60.79	-33.85	-74.21	-80.54	-69.44	-81.87	-54.90	-72,28	-69.56	-81.87	-69.56	-57.06	-62.21	-71.02	-67.38	-64.08	-70.53	-83.29	-63.24	-77.20	-87.71	-82.49	-84.68	-85.59	-85.08	-87.51	-87.80	-85.27	-84.23	-84.43	-81.46	-83.55	-87.88	-83.32	-85.27	-85.43	-88.03	-86.31	-85.59	-86.31	-85.74
CUMULATIVE	DISPLACEMENT		270.00	315.00	270.00	296.57	45.00	270.00	45.00	45.00	56.31	296.57	63.43	225.00	270.00	270.00	#DIA/0i	18.43	243.43	243.43	#DIV/DI	243.43	210.96	198.43	206.57	216.87	239.04	225.00	243.43	D/VICE	216.87	i0/AiQ#	251.57	153.43	243.43	243.43	10/AIG#	#DIV/0I	206.57	225.00	225.00	236.31	225.00	ID/AID#	251.57	243.43	153.43	#DIA/OI	*DIVIG*	116.57	IUNIO#	243.43 #DIV/0I
SECTOR	(CUMULATIVE)		4	4	4	₹.	-	4	1	١ -	1	4	-	9	4	4	-	-	æ	3	1	3	Э	3	8	3	3	0	. C	7	6		8	2	3	3	2	2	3	3	3	9	3	2	3	6	2	2	2	2	Z	2
INCREMENTAL	DISPLACEMENT AZIMUTH		270.00	45.00	#DIA/0I	315.00	14.04	206.57	36.06	225.00	63.43	206.57	36.87	239.04	#DIA/0i	270.00	18.43	9.46	209.74	#DIA/10!	71.57	251.57	194.04	315.00	00:00	#DIV/O	153.43	315.00	33.69	0.00	210.96	26.57	243.43	26.57	270.00	IO/AIG#	45.00	i0/AIG#	270.00	IO/AIG#	WN/OH	#D1//101	#DtV/0!	26.57	243.43	#D!\/\0i	0.00	315.00	i0/AIQ#	26.57	206.57	0.00
SECTOR	(INCREM)		4	-	7	4	-	3	-	3	7	3	-	3	-	4	-	-	3	-	1	3	67	4	-	7	7	4	-	-		-	6	1	4	+	1	-	4	2	1	2	1	1	9	-	-	4	7			-
INVERSE	VELOCITY (days/ft)		282.84	5735.38	253.06	466.61	341.35	323.91		236.58	204.38	872.18	1744.35		789.52	284.41	1493.62	254.52	82.16	2961.88	1047.99	1047.99	509.18	950.42		802.43	2341.48	385.79	11.7611	2014.00		284.67	861.48	6763.59	140.50	234.11		300.25	465.89	666.63	703.44	143.79	786.37		4818.05		601.98					
SLOPE DISPLACEMENT RATE	ş					0.002	0.003	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.001	0.001	0.001	0.002	0.004	0.003	0.003	0.003	0.001	10001	0.001	0.001	0.001	0.001	0.001	0.00	1000	0 00	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.002	0.002	0.002	0.003	0.001	0.001	0.001	0.002	0.002	0.002	0.002
ENT	DAY (fl/day)		0.004	0.000	0.004	0.002	0.003	0.003	0.002	0.004	0.005	0.001	0.001	0.000	0.001	0.004	0.001	0.004	0.012	0.000	0.001	0.001	0.002	0.001	0.000	0.001	0.000	0.003	0000	000	0.001	0.004	0.001	0.000	0.007	0.004	0.004	0.003	0.002	0.002	0:001	0.007	0.001	0.003	0.000	0.000	0.002	0.001	0.003	0.003	0.003	0.003
CUMULATIVE I	DISTANCE (ft)		0.028	0.033	0.061	0.046	990.0	0.045	0.058	0.024	0.054	0.046	0.054	0.052	0.061	0.085	0.071	0.110	0.073	0.064	0.071	0.064	0.107	0.136	0.137	0.130	0.133	0.170	0.191	0.240	0.226	0.250	0.242	0.241	0.291	0.261	0.230	0.260	0.271	0.281	0.291	0.243	0.252	0.270	0.272	0.271	0.281	0.290	0.311	0.291	0.511	0.311
7	DISTANCE (ft)		0.028	0.017	0.032	0.024	0.046	0.049	0.058	0.035	0:030	0.045	0.051	0.062	0.014	0.028	0.033	0.064	0.083	0.010	0.033	0.033	0.051	0.033	0.022	0.014	0.022	0.042	0.047	0.031	0.062	0.054	0.024	0.022	0.054	0.030	0.033	0.030	0.022	0.014	0.010	0.051	0.014	0:030	0.022	0.010	0.022	0.017	0.022	0.030	0.030	0.014
CUMULATIVE	DISTANCE (ft)		-0.020	-0.030	-0.060	-0.040	-0.060	-0.040	-0.040	-0.020	-0.040	-0.040	-0.030	-0.050	-0.060	-0.080	-0.070	0.090	-0.070	0.060	-0.070	090.0	-0.090	-0.120	-0.130	-0.120	-0.120	0.160	35.0	0.240	-0.220	-0.250	-0.240	-0.240	-0.290	-0.260	-0.230	-0.260	-0.270	-0.280	-0.290	-0.240	-0.250	-0.270	-0.270	-0.270	-0.280	-0.290	-0.310	0570	0.5.0	-0.310
INCREMENTAL VERTICAL	DISTANCE (ft)		-0.020	0.010	-0.030	0.020	-0.020	0.020	000:0	0.020	-0 020	0.000	0.010	-0.020	-0.010	-0.020	0.010	-0.020	0.020	0.010	-0.010	0.010	-0.030	-0.030	-0.010	0.010	0000	-0.040	050.0	0000	0.020	0.030	0.010	0.000	-0.050	0.030	0:030	-0.030	-0.010	-0.010	-0.010	050.0	-0.010	-0.020	0.000	0.000	-0.010	-0.010	-0.020	0.020	-0.020	-0.010
CUMULATIVE	DISTANCE (ft)		0.020	0.014	0.010	0.022	0.028	0.020	0.042	0.014	960.0	0.022	0.045	0.014	0.010	0.030	0.010	0.063	0.022	0.022	0.010	0.022	0.058	0.063	0.045	0500	0.058	0.057	0.022	0.020	0.050	0.010	0.032	0.022	0.022	0.022	0.010	0.010	0.022	0.028	0.028	0.036	0.028	0.010	0.032	0.022	0.022	0.010	0.020	0.022	0.020	0.020
INCREMENTAL HORIZONTAL	DISTANCE (ft)		0.020	0.014	0.010	0.014	0.041	0.045	0.058	0.028	0.022	0.045	0.050	0.058	0.010	0.020	0.032	0.061	0.081	0.000	0.032	0.032	0.041	0.014	0.020	0.010	0.022	0.014	0.036	0.010	0.058	0.045	0.022	0.022	0.020	0.000	0.014	0000	0.020	0.010	0.000	0.010	0.010	0.022	0.022	0.010	0.020	0.014	0.010	0.022	0.022	0.010
	ELEV.	7282.56	7282.54	7282.53	7282.50	7282.52	7282.50	7282.52	7282.52	7282.54	7282.52	7282.52	7282.53	7282.51	7282.50	7282.48	7282.49	7282.47	7282.49	7282.50	7282.49	7282.50	7282.47	7282.44	7282.43	7282.44	7282.44	7282.40	7202 37	7282 32	7282.34	7282.31	7282.32	7282.32	7282.27	7282.30	7282.33	7282.30	7282.29	7282.28	7282.27	7282.32	7282.31	7282.29	7282.29	7282.29	7282.28	7282.27	7282.25	7782.21	00 000	7282.25
	EASTING	24192.54	24192.52	24192.53	24192.53	24192.52	24192.56	24192.52	24192.57	24192.55	24192.56	24192.52	24192.56	24192.53	24192.53	24192.51	24192.54	24192.60	24192.53	24192.53	24192.54	24192.53	24192.49	24192.48	24192.50	24192.50	24192.51	24192.50	24192.33	24192 55	24192.50	24192.54	24192.53	24192.55	24192.53	24192.53	24192.54	24192.54	24192 52	24192.52	24192.52	24192.52	24192.52	24192.54	24192.53	24192.53	24192.55	24192.54	24192.54	24192.30	24 192 34	24192.54
	NORTHING	26199.26	$\overline{}$	26199.27	$\overline{}$	_	_	26199.26	26199.29	26199.27	-	-		26199.25	26199.26			26199.28		_	26199.27							26199.22						26199.24	26199.24	26199.24		26199.25		26199.24		_	26199.24	26199.25		_				25 100 25		
MD8	TIME	1/3/96	1/11/96	2/8/96	2/15/96	2/22/96	2/29/96	3/7/96	3/14/96	3/22/96	3/28/96	4/4/96	4/18/96	4/25/96	5/2/96		5/31/96	_	6/13/96	7/11/96	7/18/96	7/25/96	8/16/96	9/12/96	9/26/96	10/2/96	4	10/24/96	_	5/22/67	6/4/97	6/11/97	6/18/97	6/25/97	712/97	76/6/7	7/16/97	4	_	8/6/97	8/13/97	8/20/97	8/27/97	4	_	4	\dashv	4	4	10/22/9/	4.	\perp

	٠			
	;		•	
	_	J	ı	
۱	5	5	i	
	۰	۰		

	CUMULATIVE	PIO	-87.11	-87.95	-87.95	-83.32	-85.74	-87.21	-87.39	#DIV/0I	-87.21	-84.47	-85.74	-87.95	-84.47	-85.87	-85.27	-84.47	-83.29	-87.39	-87.39	-87.71	-84.96	-85,51	-84.84	-82.42	-84.84	-85.59	-82.89	-83.95	-83.98	-88.26	-88.45	-85.71	-87.06	-86.00	-85.24	-86.99	-86.34	-67.69	-86.73	-86.54	-85.82	-86.95
		SPLACEMENT AZIMITE	45.00	IDI/NIO#	#DIV/01	71.57	206.57	225.00	135.00	IO/AIC#	45.00	0.00	206.57	HDIV/OI	00:0	116.57	206.57	00:00	ID/AIG#	135.00	135.00	#DIV/0I	I0/AIG#	135.00	108.43	194.04	108.43	153.43	135.00	146.31	108.43	0.00	00.0	#DIA/0i	10/AIC#	153.43	#DIV/0;	#DIV/O	26.57	135.00	00:0	116.57	IO/AIG#	153.43
	SECTOR	(CUMULATIVE) DISPLACEMENT	-	2	+	-	3	3	2	1	1	1	3	-	+	2	6	-	2	2	2	2	2	2	2	6	2	2	2	2	2	1	+	2	2	2	2	2	-	2	-	2	2	2
	INCREMENTAL	(INCREM) DISPLACEMENT	71.57	243.43	#DIV/0I	63.43	233.13	00.0	00:0	315.00	45.00	116.57	191.31	45.00	108.43	225.00	270.00	11.31	233.13	71.57	IO/AIG#	270.00	i0/AIG#	26.57	45.00	270.00	0.00	206.57	116.57	270.00	63.43	296.57	i0/AIQ#	251.57	#DIA/0I	0.00	270.00	#DIA/OI	56.31	243.43	45.00	#DIV/0i	225.00	45.00
	SECTOR	(INCREM)	-	3	1	1	3	1	1	4	1	2	3	1	2	3	4	-	6	-	۲	4	2	-	٦	4	-	3	2	4	-	4	-	3	F	F	4	-	-	С	=	2	3	-
	INVERSE	VELOCITY	(100)																																									
SLOPE DISPLACEMENT		MOVING AVG	0.002	100.0	0.001	0.002	0.001	0.002	0.002	0.002	0.002	0.002	100.0	100.0	0.001	2000	0.003	0.004	9000	0.005	0.005	900:0	9000	0.005	900'0	0.005	0.005	900:0	0.005	0.005	0.005	0.005	0.004	0.004	0.004	0.005	600:0	0000	600:0	0.008	200.0	0.001	0.000	-0.200
SLOPE SLOPE DISPLACEMENT DISPLACEMENT	PER	DAY (Midae)	0.004	0.000	0.000	0.001	0.004	0.002	0.003	0.003	0.000	0.002	0.002	0.001	100.0	0.000	800:0	9000	0.004	0.005	0000	0.010	0.011	0.003	0.002	900:0	900.0	600:0	2000	0000	900:0	0.004	0.006	0.002	0.001	900.0	0.007	0.028	0.005	0.000	0.000	0.000	0.000	0.000
	TOTAL	DISTANCE	0.280	0.280	0.280	0.272	0.301	0.290	0.310	0.290	0.290	0.311	0.301	0.280	0.311	0.311	0.271	0.311	0.342	0.310	0.310	0.250	0.341	0.361	0.351	0.313	0.351	0.291	0.343	0.342	0.302	0.330	0.370	0.401	0.391	0.321	0.241	0.381	0.351	0.350	0.351	0.371	0.411	0.421
INCREMENTAL CUMULATIVE	TOTAL	DISTANCE	0.044	0.022	0.020	0.024	0.058	0.014	0.028	0.024	0.014	0.030	0.052	0.035	0.044	0.014	0.057	0.065	0.058	0.044	0.000	0.061	0.092	0.030	0.017	0.081	0.081	0.064	0.055	0.010	0.046	0.037	0.040	0.044	0.014	0.071	0.081	0.140	0.047	0.022	0.014	0.022	0.049	0.017
CUMULATIVE	VERTICAL	DISTANCE		-0.280	-0.280	-0.270	-0.300	-0.290	-0.310	-0.290	-0.290	-0.310	-0.300	-0.280	-0.310	-0.310	-0.270	-0.310	-0.340	-0.310	-0.310	-0.250	-0.340	-0.360	-0.350	-0.310	-0.350	-0.290	-0.340	-0.340	-0.300	-0.330	-0.370	-0.400	06:0-	-0.320	-0.240	-0.380	-0.350	-0.350	-0.350	-0.370	-0.410	-0.420
INCREMENTAL	VERTICAL	DISTANCE	0:030	0000	0.000	0.010	-0.030	0.010	-0.020	0.020	0.000	-0.020	0.010	0.020	-0.030	0.000	0.040	-0.040	-0.030	0:030	0.000	090'0	060'0-	-0.020	0.010	0.040	-0.040	090'0	050:0-	0000	0.040	-0.030	-0.040	-0.030	0.010	0.070	0.080	-0.140	0:030	0.000	0.000	-0.020	-0.040	-0.010
CUMULATIVE	HORIZONTAL	DISTANCE	0.014	0.010	0.010	0.032	0.022	0.014	0.014	0.000	0.014	0:030	0.022	0.010	0.030	0.022	0.022	0.030	0.040	0.014	0.014	0.010	0.030	0.028	0.032	0.041	0.032	0.022	0.042	960.0	0.032	0.010	0.010	0.030	0.020	0.022	0.020	0.020	0.022	0.014	0.020	0.022	0.030	0.022
INCREMENTAL CUMULATIVE	HORIZONTAL	DISTANCE	0.032	0.022	0.020	0.022	0.050	0.010	0.020	0.014	0.014	0.022	0.051	0.028	0.032	0.014	0.040	0.051	0:020	0.032	0.000	0.010	0.020	0.022	0.014	0.070	0.070	0.022	0.022	0.010	0.022	0.022	0.000	0.032	0.010	0.010	0.010	0.000	960.0	0.022	0.014	0.010	0.028	0.014
		ELEV.	7282.28	7282.28	7282.28	7282.29	7282.26	7282.27		-	-	\rightarrow	7282.26	7282.28	7282.25	7282.25	7282.29	7282.25	7282.22	7282.25	7282.25	7282.31	7282.22			7282.25	_	7282.27	7282.22	7282.22	7282.26	7282.23	7282.19	7282.16	7282.17	7282.24	7282.32	7282.18	7282.21	7282.21	7282.21	7282.19	7282.15	7282.14
		EASTING	24192.55	26199.25 24192.54	24192.54	26199.29 24192.55	26199.25 24192.52	26199.25 24192.53	26199.25 24192.55	24192.54	24192.55	24192.57	24192.52	24192.54	24192.57	24192.56	26199.25 24192.52	26199.26 24192.57	24192.54	24192.55	26199.25 24192.55	24192.54	24192.54	24192.56	26199.25 24192.57	26199.25 24192.50	26199.25 24192.57		24192.57	24192.56	24192.57	26199.26 24192.55	26199.26 24192.55	26199.23 24192.54	26199.24 24192.54	26199.24 24192.55	26199.24 24192.54	26199.24 24192.54	24192.56	24192.55	26199.26 24192.56	26199.25 24192.56	26199.23 24192.54	26199.24 24192.55
		NORTHING EASTING	26199.27	26199.25	26199.27	26199.29	26199.25	26199.25	26199.25	26199.26	26199.27	26199.26	26199.25	26199.27	_1	26199.25	26199.25	26199.26	26199.22	26199.25	26199.25	26199.25	26199.23	26199 24	26199.25	26199.25	26199.25	26199.24	26199.23	26199.23	26199.25	26199.26	26199.26	26199.23	26199.24	26199.24	26199.24	26199.24	26199.27	26199.25	26199.26	26199.25	26199.23	26199.24
MD8		TIME	11/19/97	11/26/97	12/3/97	12/10/97	12/17/97	12/23/97	12/30/97	17798	1/14/98	1/27/98	2/3/98	2/19/98	3/25/98	4/3/98	4/8/98	4/15/98	4/22/98	4/29/98	5/7/98	5/13/98	5/21/98	5/28/98	6/3/98	6/10/98	6/17/98	6/24/98	7/1/98	86/8/2	7/15/98	7/22/98	1/29/98	8/11/88	B/19/98	6/31/98	9/11/98	9/16/98	9/22/98	9/30/98	10/7/98	3/3/38	5/27/99	7/23/99

National Part Part	_		INCREMENTAL	CUMULATIVE	INCREMENTAL	CUMULATIVE	INCREMENTAL	CUMULATIVE	DISPLACEMENT	DISPLACEMENT DISPLACEMENT					
1985 1985	EAST			HORIZONTAL	VERTICAL DISTANCE	VERTICAL	TOTAL	TOTAL	PER	RATE MOVING AVG	SECTOR (INCREM)		SECTOR (CUMULATIVE)	CUMULATIVE DISPLACEMENT	CUMULATIVE DIP
1865 1866				(#)	(#)	(ft)	Œ	(H)	(ft/day)	(fVday)				AZIMUTH	ANGLE
1985 1985	25970.20 24394	.18 7285.6													
1,000, 1	2439	.18 7285.5			-0.010		0.014	0.014	0.002		~	10/AIG#		#U/Ai(1#	
Types 0 <td>2439</td> <td></td> <td></td> <td></td> <td>0.020</td> <td></td> <td>0.022</td> <td>0.036</td> <td>0.001</td> <td></td> <td></td> <td>135.00</td> <td></td> <td>#5.00</td> <td>-54.74</td>	2439				0.020		0.022	0.036	0.001			135.00		#5.00	-54.74
7.788.8.9. 6.002 0.003	2439				0.010		0.022	0.017	0.001	0.003	4	270.00		315.00	-35.26
77.88.5.9 0.022 0.024 0.029	2439				-0.020		0:030	0.037	0.003	0.003	-	26.57	1	63.43	-53.30
7788.59 0.029 <	2439				0.020		0.030	0.017	0.003	0.003	3	206.57	4	315.00	-35.26
77.758.68 0.022 0.023 0.029 0.029 0.029 0.024	2439				-0.020		0.057	0.058	9000	0.004	_	21.80	-	36.87	-30.96
7.788-58.9 0.000 0.000 -0.00	25970.21 24394	21 7285.6			0.030		0.037	0.032	0.003	0.004			-	18.43	0.00
77885-81 01020	24394				-0.050		0.051	0.062	0.005	0.004	-		-	33.69	-54.20
77885.51 0.000 0.010 -0.000 -0.000 0.000	25970.22 24394				0.040	l	0.045	0.024	0.005	0.004	4	270.00	_	63.43	-24.06
77865.54 0.00					-0.020		0.022	0.041	0.001	0.004	-	0.00	-	45.00	46.69
77885.58 0.000	24394				-0.030		0.032	0.064	0.003	0.004		¥	1	26.57	-69.56
778655 0.010 0.014 -0.020 -0.020 0.004 0.002 2.000 0.003 4.000	25970.21 24394				0.040		0.045	0.022	9000	0.003		270.00	1	#DIA/IG	-63.43
77856.56 0.00	25970.21 24394				-0.030		0.032	0.052	0.004	0.003	4	270.00	4	315.00	-74.2
77865.51 0.000 0.010 -0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.014 0.020 0.014 0.020 0.014 0.020 0.014 0.020 0.014 0.020 0.014 0.020 0.014 0.020 0.014 0.020 0.014 0.020 0.014 0.020 0.014 0.020 0.014 0.020 0.014 0.020 0.014 0.020 0.014 0.020 0.014 0.020 0.014 0.020 0.014 0.020 0.020 0.001		18 7285.5			0.010		0.014	0.041	0.000	0.003	1	0.00	1	10/AIQ#	-75.96
77865.5 6 020 0.014 -0.020 -0.026 0.026 0.026 0.020 0.014 -0.020 -0.026 0.020 0.010 2 0.000 1.01 2 0.000 1.01 2 0.000 1.01 2 0.000 1.01 2 0.000 1.01 2 0.000 1.01 2 0.000 1.01 2 0.000 1.01 2 0.000 1.01 2 0.000 1.01 2 0.000 1.01 2 0.000 1.01 2 0.000 1.01 2 0.000 1.01 2 0.000 1.01 2 0.000 1.01 <t< td=""><td>24394</td><td>21 7285.5</td><td></td><td></td><td>0.010</td><td></td><td>0.032</td><td>0.044</td><td>0.000</td><td>0.003</td><td>-</td><td>00:00</td><td>-</td><td>18.43</td><td>43.46</td></t<>	24394	21 7285.5			0.010		0.032	0.044	0.000	0.003	-	00:00	-	18.43	43.46
7788-53 0.000 0.014 0.000 <	24394				-0.020		0.028	0.052	0.003	0.001	!	270.00	1	45.00	-74.2
77885.44 0.024	25970.19 24394				-0.020		0.028	0.071	0.001	100:0	7		2	135.00	-78.58
7286.54 0.026 0.016 0.026 0.026 0.026 0.027 <	24394	.20 7285.54			0.010		0.033	0.066	0.001	0.001	•	71.57	*	45.00	-64.76
7286.53 0.020 0.020 0.029 <	24394	18 7285.5			0000		0.036	0.061	0.001	100.0	£		2	i0/AIQ#	-80.54
7286.53 0.020 0.041 -0.010 -0.070 0.022 0.001	2439	.16 7285.5			000:0		0.020	0.064	0:000	100:0	7			206.57	-69.56
7286.53 0.0020 0.0070	24394				-0.010		0.022	0.081	0.001	0.000		270.00		194.04	-59.50
7286.53 0.000 0.022 0.000 -0.070 0.073 0.000 0.001 1.000 0.022 0.000 0.001 1.001 0.001	24394				0.000		0.028	0.073	0.001	0.001	1	45.00	4	296.57	-72.28
7286.53 0.010 0.010 0.000 0.010 <	24394				0.000		0.000	0.073	0.000	100:0	1	10/AIG#	4	296.57	-72.28
7286.50 0.000 0.010 -0.020 -0.100 0.010 0.000 -0.001 <td>25970.20 24394</td> <td></td> <td></td> <td></td> <td>0.000</td> <td></td> <td>0.014</td> <td>0.071</td> <td>0.000</td> <td>0.001</td> <td>2</td> <td></td> <td>4</td> <td>270.00</td> <td>-81.8</td>	25970.20 24394				0.000		0.014	0.071	0.000	0.001	2		4	270.00	-81.8
7286.54 0.022 0.024 0.104 0.020 0.104 0.020 0.104 0.020 0.104 0.004 0.104 <	24394	_			-0.030		0:030	0.100	0.002	0.001	-	#DIV/0I	4	270.00	-84.2
7285.43 0.014 0.042 -0,170 -0,170 0.017 0.175 0.000 0.001 0.017 0.170 0.017 0.017 0.000 0.017 0.017 0.000 0.017 0.017 0.000 0.017 0.018 0.017 0.001 0.017 0.018 0.017 0.001 0.017 0.018 0.010	24394	16 7285.50			0000		0.022	0.104	0.000	100:0	Þ	333.43		315.00	-74.21
7285.43 0.041 0.041 0.040 0.041 0.046 0.040 <	25970.23 24394	.15 7285.40			0200-		0.071	0.175	0.000	100.0		315.00		315.00	-75.99
7286.44 0.054 0.045 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.047 0.146 0.047 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.040 0.147 0.147 0.147 0.040 0.040 0.147 0.147 0.040 0.040 0.147 0.147 0.040 <	24394				0000	-0.170	0.041	0.175	0.000	0.001	-	14.04	-	75.96	-76.37
7286.43 0.022 0.036 -0.110 -0.170 0.024 0.174 0.001 1 26.57 4 7286.42 0.014 0.014 -0.100 -0.170 0.017 0.185 0.001 1 45.00 4 7286.43 0.014 0.036 -0.010 -0.170 0.014 0.174 0.002 0.001 3 25.00 4 7286.44 0.014 0.036 0.010 -0.170 0.014 0.174 0.002 0.001 2 135.00 4 7286.44 0.014 0.036 0.010 -0.160 0.017 0.042 0.001 4 255.00 4 7286.44 0.010 0.016 0.016 0.016 0.017 0.022 0.001 2 135.00 4 7286.42 0.010 0.010 0.010 0.010 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014	24394				0.010	-0.160	0.055	0.166	0.001	0.001	3	201.80	4	296.57	-74.38
7286.42 0.014 0.041 -0.110 -0.110 0.017 0.114 0.002 0.001 1 45.00 4 7286.43 0.014 0.036 0.017 0.017 0.017 0.014 0.002 0.001 3 225.00 4 7286.43 0.014 0.056 0.001 -0.170 0.017 0.154 0.002 0.001 1 45.00 4 7286.44 0.014 0.016 -0.166 0.017 0.154 0.002 0.001 1 45.00 4 7286.45 0.010 0.046 0.010 -0.160 -0.170 0.014 0.154 0.002 0.001 1 4 7286.42 0.000 0.046 0.010 -0.180 0.014 0.184 0.002 0.001 4 4 7286.42 0.000 0.036 -0.100 -0.180 0.014 0.184 0.002 0.001 4 4 7286.42 0.000 0.036	25970.23 24394				-0.010	-0.170	0.024	0.174	0.001	0.001	-	26.57	4	326.31	-78.03
7286.43 0.014 0.036 0.010 -0.170 0.017 0.174 0.002 0.001 315.00 4 7286.43 0.014 0.056 0.010 -0.170 0.014 0.177 0.000 0.001 4 315.00 4 7286.43 0.014 0.036 0.010 -0.160 0.014 0.157 0.001 1 #DIVIOI 4 7286.43 0.010 0.036 -0.010 -0.150 0.014 0.014 0.001 1 #DIVIOI 4 7286.43 0.010 0.036 -0.010 -0.150 0.010 0.164 0.002 0.001 #DIVIOI 4 7286.42 0.000 0.036 -0.010 -0.180 0.010 0.164 0.000 0.000 0.164 0.000 0.000 0.164 0.000 0.000 0.164 0.000 0.000 0.164 0.000 0.000 0.164 0.000 0.000 0.164 0.000 0.000 0.164 <td< td=""><td>24394</td><td></td><td></td><td></td><td>-0.010</td><td></td><td>0.017</td><td>0.185</td><td>0.002</td><td>0.001</td><td>-</td><td>45.00</td><td>4</td><td>345.96</td><td>-77.1</td></td<>	24394				-0.010		0.017	0.185	0.002	0.001	-	45.00	4	345.96	-77.1
7286.43 0.014 0.056 0.004 0.0170 0.0174 0.0170 0.0174 0.002 0.0174 0.0174 0.002 0.0174 0.002 0.0174 0.002 0.0174 0.002 0.0174 0.002 0.0174 0.002		16 7285.43			0.010		0.017	0.174	0.002	0.001	ε	225.00		326.31	-78.03
7286.44 0.014 0.036 0.016 0.016 0.0164 <td>25970,24 24394</td> <td></td> <td></td> <td></td> <td>0.000</td> <td></td> <td>0.014</td> <td>0.177</td> <td>0.000</td> <td>0.001</td> <td>4</td> <td>315.00</td> <td>4</td> <td>323.13</td> <td>-73.61</td>	25970,24 24394				0.000		0.014	0.177	0.000	0.001	4	315.00	4	323.13	-73.61
7286.45 0.010 0.046 0.016 -0.150 0.014 0.157 0.001 0.001 1 #DIV/DI 4 7286.43 0.010 0.036 -0.020 -0.170 0.022 0.174 0.002 0.001 2 #DIV/DI 4 7286.42 0.000 0.036 -0.010 -0.180 0.010 0.164 0.002 0.002 1 #DIV/DI 4 7286.42 0.000 0.036 -0.010 -0.180 0.010 0.164 0.002 0.002 1 #DIV/DI 4 7286.43 0.010 0.045 -0.10 -0.180 0.014 0.184 0.002 0.002 1 #DIV/DI 4 7286.43 0.010 -0.010 -0.180 0.011 0.187 0.001 4 270.00 4 7286.43 0.010 -0.010 -0.180 0.011 0.187 0.001 4 270.00 4 7286.43 0.020 -0.010	24394	_			0,010		0.017	0.164	0.002	0.001	2	135.00	4	326.31	-77.30
7286.43 0.010 0.036 -0.170 0.022 0.174 0.002 0.001 2.001 #DIV/OI 4 7286.42 0.000 0.036 -0.010 -0.180 0.010 0.184 0.002 0.002 1 #DIV/OI 4 7286.42 0.000 0.036 -0.010 -0.180 0.000 0.018 0.002 1 #DIV/OI 4 7286.43 0.010 0.045 -0.010 -0.180 0.014 0.022 0.001 4 270.00 4 7286.43 0.010 0.045 0.010 -0.180 0.016 0.017 0.001 4 270.00 4 7286.43 0.010 0.045 0.010 -0.180 0.016 0.017 0.001 4 270.00 4 7286.43 0.010 0.020 0.017 0.017 0.017 0.001 4 270.00 4 7286.43 0.010 0.020 0.017 0.017 0.017 <t< td=""><td>-</td><td>_</td><td></td><td></td><td>0.010</td><td></td><td>0.014</td><td>0.157</td><td>0.001</td><td>0.001</td><td>-</td><td>#DIV/01</td><td>4</td><td>333.43</td><td>-73.40</td></t<>	-	_			0.010		0.014	0.157	0.001	0.001	-	#DIV/01	4	333.43	-73.40
7285.42 0.000 0.036 -0.010 -0.160 0.0164 0.002 0.002 1 #DIVIDI 4 7285.42 0.000 0.036 0.000 -0.160 0.0164 0.002 0.002 1 #DIVIDI 4 7285.42 0.010 0.045 -0.010 -0.160 0.014 0.012 0.002 1 #DIVIDI 4 7285.42 0.010 0.045 -0.010 -0.170 0.014 0.012 0.001 4 270.00 4 7285.42 0.001 0.045 -0.010 -0.170 0.014 0.017 0.001 4 270.00 4 7285.42 0.001 0.020 -0.017 0.014 0.017 0.001 4 270.00 4 7285.43 0.010 0.045 0.010 -0.170 0.017 0.017 0.001 4 270.00 4 7285.43 0.014 0.020 0.179 0.002 0.001 1 45					-0.020		0.022	0.174	0.002	0.001	2	#DIV/0i	4	326.31	-78.03
7285.42 0.000 0.036 0.0164 0.000 0.0164 0.000 0.0164 0.000 0.002 1 #DIVIDIO 4 7285.41 0.010 0.045 -0.010 -0.140 0.014 0.195 0.002 1 #DIVIDIO 4 7285.42 0.010 0.056 -0.170 -0.170 0.017 0.001 0.001 4 270.00 4 7285.43 0.010 0.056 -0.110 -0.140 0.014 0.176 0.001 1 #DIVIDIO 4 7285.43 0.020 0.056 -0.010 -0.140 0.014 0.176 0.001 4 270.00 4 7285.43 0.020 0.057 0.010 -0.140 0.017 0.001 0.001 4 270.00 4 7285.42 0.031 0.046 -0.160 0.017 0.179 0.000 0.001 4 270.00 4 7285.42 0.032 0.046 -0.160	_				-0.010		0.010	0.184	0.002	0.002	-	#DIA/O	4	326.31	-78.6
7285.41 D.010 0.045 -0.010 -0.150 0.014 0.145 0.002 0.002 0.002 1 #DIVIDI 4 7285.43 0.010 0.056 0.020 -0.170 0.022 0.177 0.003 0.001 4 270.00 4 7285.42 0.020 0.020 0.018 0.018 0.001 0.001 4 270.00 4 7285.43 0.020 0.010 0.0170 0.0170 0.0170 0.0170 0.001 4 270.00 4 7285.43 0.020 0.0170 0.0170 0.0170 0.0170 0.001 4 270.00 4 7285.42 0.014 0.056 0.0170 0.0170 0.0170 0.001 1 4 270.00 4 7285.42 0.014 0.056 0.0180 0.018 0.001 2 1 4 270.00 4 7285.42 0.020 0.020 0.020 0.020 0.001	-				0.000		0.000	0.184	0.000	0.002	-	#DIV/0i	4	326.31	-78.67
7285.43 0.010 0.056 0.020 -0.170 0.022 0.177 0.003 0.001 4 270.00 4 7285.42 0.000 0.020 -0.010 -0.180 0.016 0.187 0.001 0.001 1 #0V/01 4 7285.42 0.010 0.045 0.010 -0.170 0.014 0.017 0.001 0.001 1 #0V/01 4 7285.42 0.014 0.057 0.0170 0.0170 0.0170 0.001 0.001 1 45.00 4 7285.42 0.014 0.056 0.0170 0.0170 0.0170 0.001 1 45.00 4 7285.42 0.014 0.056 0.018 0.018 0.002 0.001 2 108.43 1 7285.42 0.014 0.056 0.018 0.018 0.002 0.001 2 108.43 1 7285.40 0.020 0.020 0.020 0.001 0.001 4					-0.010		0.014	0.195	0.002	0.002	1	#DIN/0i	4	333.43	-76.76
7285,42 0.000 0.050 -0.010 -0.160 0.016 0.167 0.001 0.001 1 #DIVIDI 4 7285,43 0.010 0.045 0.010 -0.170 0.014 0.176 0.002 0.002 1 0.00 4 7285,43 0.020 0.057 0.0170 -0.170 0.020 0.017 0.001 0.001 4 270.00 4 7285,42 0.032 0.046 -0.160 0.017 0.017 0.001 1 45.00 4 7285,42 0.032 0.046 -0.160 0.017 0.017 0.001 1 45.00 4 7285,42 0.032 0.040 0.018 0.001 0.001 1 45.00 4 7285,42 0.032 0.040 0.018 0.001 0.001 2 1084.3 1 7285,42 0.032 0.034 0.030 0.031 4 270.00 4 7285,40 <					0.020	-0.170	0.022	0.177	0.003	0.001	4	270.00	4	323.13	-73.6′
7285.43 0.010 0.045 0.010 -0.170 0.014 0.176 0.002 0.002 0.002 0.002 0.001 4 4 7285.43 0.020 0.027 0.017 0.020 0.179 0.001 4 270.00 4 7285.42 0.034 0.036 0.018 0.017 0.179 0.001 1 45.00 4 7285.42 0.034 0.040 -0.180 0.017 0.164 0.001 2 1084 0.001 2 1084 1 7285.42 0.014 0.056 0.018 0.016 0.016 0.001 2 1084 1 7285.40 0.026 0.026 0.020 0.001 4 315.00 4 7285.40 0.026 -0.020 -0.030 0.002 4 270.00 4 7285.41 0.010 0.020 0.003 0.001 4 270.00 4 7285.41 0.010 0.020 </td <td></td> <td></td> <td></td> <td></td> <td>-0.010</td> <td>-0.180</td> <td>0.010</td> <td>0.187</td> <td>0.001</td> <td>0.001</td> <td>-</td> <td>#DIA/O#</td> <td>4</td> <td>323.13</td> <td>-74.4</td>					-0.010	-0.180	0.010	0.187	0.001	0.001	-	#DIA/O#	4	323.13	-74.4
7285.43 0.020 0.057 0.000 -0.170 0.020 0.179 0.000 0.001 4 270.00 4 7285.42 0.014 0.028 0.010 -0.180 0.017 0.179 0.001 0.001 1 45.00 4 7285.42 0.024 0.020 -0.180 0.037 0.184 0.002 0.001 2 1.0843 1 7285.42 0.014 0.020 -0.180 0.014 0.014 0.001 2 1.0843 1 7285.42 0.024 0.025 -0.020 -0.180 0.014 0.014 315.00 4 7285.42 0.024 0.026 -0.020 0.001 4 315.00 4 7285.42 0.026 -0.020 -0.020 0.002 4 270.00 4 7285.43 0.010 -0.030 0.025 1 270.00 4 7285.43 0.010 -0.030 0.032 0.032 1	25970.24 24394	_			0.010	-0.170	0.014	0.176	0.002	0.002	-	00:0	4	333.43	-75.2[
7285.44 0.014 0.058 0.010 -0.160 0.017 0.170 0.001 0.001 1 45.00 4 7285.42 0.032 0.040 -0.020 -0.180 0.037 0.184 0.002 0.001 2 108.43 1 7285.42 0.014 0.051 0.000 -0.180 0.014 0.167 0.001 4 270.00 4 7285.42 0.024 0.051 -0.020 -0.200 -0.001 4 270.00 4 7285.42 0.026 0.020 -0.029 0.031 4 270.00 4 7285.42 0.010 0.029 0.033 0.035 0.035 1 0.00 4	24394				0.000	-0.170	0.020	0.179	0.000	0.001	4	270.00	4	315.00	-71.55
7285.42 0.032 0.040 -0.020 -0.180 0.037 0.164 0.002 0.001 2 1084.3 1 7285.42 0.014 0.051 0.000 -0.180 0.014 0.167 0.000 0.001 4 315.00 4 7285.40 0.020 0.028 -0.208 0.003 0.003 4 270.00 4 7285.37 0.010 0.005 0.023 0.023 0.026 1 0.000 4	24394				0.010	-0.160	0.017	0.170	0.001	0.001		45.00	4	329.04	-69.9
7285.42 0.014 0.051 0.000 -0.180 0.014 0.180 0.014 0.018 0.0014 0.001 4 315.00 4 7285.40 0.026 0.026 -0.206 0.028 0.003 0.003 4 270.00 4 7285.37 0.016 0.005 0.005 0.005 1 0.00 4	24394			0.040	-0.020	-0.180	0.037	0.184	0.002	0.001	2	108.43	1	#DIA/0i	-77.4
7285.40 0.020 0.058 -0.020 -0.200 0.028 0.208 0.003 0.003 4 270.00 4 7285.37 0.010 0.054 -0.030 -0.230 0.032 0.236 0.005 1 0.00 4	25970.25 24394				0.000	-0.180	0.014	0.187	0.000	0.001	Þ	315.00	4	348.69	-74.18
7285.37 0.010 0.054 -0.030 0.023 0.032 0.236 0.005 0.002 1 0.00 4					-0.020	-0.200	0.028	0.208	0.003	0.002	4	270.00	4	329.04	-73.7
	25970.25 24394	16 7285.37			-0.030	-0.230	0.032	0.236	0.005	0.002	1	00'0	4	338.20	-76.82

Page Page											SLOPE	SLOPE					
NOTITIEN SERVEY SERVEY CHINAGE CHINA	MD9				INCREMENTAL			CUMULATIVE	INCREMENTAL	CUMULATIVE	DISPLACEMENT						
CARRELLY CARRELLY		Citi			HORIZONTAL		VERTICAL	VERTICAL	TOTAL	TOTAL	E S	RATE	SECTOR	INCREMENTAL	SECTOR	CUMULATIVE	CUMULATIVE
Carolina Carolina		PAIR INC			DISTANCE (f)	E ANCE	(#)	(E)	(f)		(Il/dav)	(ft/dav)	(IIIACINEM)	AZIMUTH	(component)		ANGLE
CRANDIA (1984) (1982) CROSS (1984) (1982) CROSS (1984) (1984) CROSS (1984) (1984) (1984) CROSS (1984) (1984) (1984) CROSS (1984) (1984) (1984) (1984) CROSS (1984) (198	11/5/97	25970.25		_			10	-0.210						#DIV/O	4	329.04	-74.48
CENTION STACKS CORD	11/12/97	25970 24			0.010		-0.010	-0.220							4	323.13	-77.20
25070.20 2508.00 0.004 0.019 0.010	11/19/97	25970.26	24394.16		0.022		0.040	-0.180		0.191			_	63.43	4	341.57	-70.64
2597028 758404 758644 0.000 0.000 0.19 0.001 0.000 0.000 0.19 0.000 <	11/26/97	25970.25			0.010		-0.010	-0.190						IO/AIO#	4	338.20	-74.18
25970.28 2586.14 758.44 0.00 0.00 0.00 0.00 0.00 25970.28 2589.16 758.41 758.44 0.00	12/3/97	25970.28			0.036		0.010	-0.180							1	#DIV/0f	-66.04
25970.28 24584.16 728.44 728	12/10/97	25970.29	24394.18		0.010		0:020	-0.160		0.184			_	IO/AIG#	-	i0/AIG#	-60.64
25970.22 25980.22 25980.12	12/17/97	25970.26	24394.16		0.036		-0.020	-0.180		0.191			3	236.31	4	341.57	-70.64
25870.28 2589.1.8 7289.1.8 0.001 0.01 0.01 0.01 0.001	12/23/97	25970.27			0.010		0.000	-0.180					-	10/AIG#	4	344.05	-67.98
29870.28 29890.28 0.001	12/30/97	25970.28			0.010		0.010	-0.170		0.189			-	10/AIQ#	4	345.96	-64.12
25870.22 24384.1 7266.4 0.001 0.009 0.001	1/7/98	25970.26			0.020		-0.020	-0.190	İ				2	#DIV/0i	4	341.57	-71.59
25970.24 24394.1 7266.34 0.002 0.019 0.003 0.019 0.003 0.019 0.003 0.019 0.000 0.001 0.000 0.001 0.000 0.001	1/14/98	25970.27			0.014		0.000	-0.190		0.205			4	315.00	4	336.80	-68.16
25970.28 20384.16 7286.42 0.0010 0.003 0.0040 0.0189 0.0040 0.0189 0.0040 0.003 0.0040 0.0040 0.003 0.0040 0.004	1/27/98	25970.26	24394.17		0.022		-0.020	-0.210						116.57	4	350.54	-73.85
25970.28 20384.18 7864.28 0.000 -0.189 0.004 0.004 0.000 0.004 0.004 0.000 0.004 0.004 0.000 0.004 0.004 0.000 0.004 0.004 0.000 0.004 0.004 0.000 0.000 0.004 0.000	2/3/98	25970.26	24394.15		0.010		0.030	-0.180		0.191			4	270.00	4	341.57	-70.64
25970.28 23844.14 7285.34 0.006 <t< td=""><td>2/19/98</td><td>25970.28</td><td></td><td></td><td>0.028</td><td></td><td>0.000</td><td>-0.180</td><td></td><td></td><td></td><td></td><td>1</td><td>45.00</td><td>1</td><td>#DIA/0i</td><td>-66.04</td></t<>	2/19/98	25970.28			0.028		0.000	-0.180					1	45.00	1	#DIA/0i	-66.04
25970.27 24354.41 7255.42 0.014 0.004 0.004 0.004 0.004 0.002 0.002 0.0 25970.27 24356.41 7255.42 0.0441 0.041 0.041 0.042 0.002 0.002 0 25970.28 24354.11 7255.30 0.043 0.041 0.041 0.041 0.002 0.003 0 25970.28 24354.11 7255.30 0.032 0.041 0.042 0.040 0.040 0	3/25/98	25970.26	24394.16		0.028		-0.040	-0.220			0.001				4	341.57	-73.96
25970.251 24584.41 7256.42 0.0441 0.0164 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0034 0	4/3/98	25970.27	24394.15		0.014			-0.180						315.00	4	336.80	-67.07
25970.28 24384.14 7286.34 0.002 0.003 0.013 0.014 0.013 0.014	4/8/98	25970.23	24394.16		0.041		0.000	-0.180		0.184	0.002			165.96	4	326.31	-78.67
25870.25 24384.14 7286.34 0.004 0.001 0.004	4/15/98	25970.26			0.032		-0.030	-0.210		0.219			_	71.57	4	350.54	-73.85
25870.27 24384.16 7286.34 0.004 0.005 0.004 <t< td=""><td>4/22/98</td><td>25970.25</td><td>24394.14</td><td></td><td></td><td></td><td>0.010</td><td>-0.200</td><td></td><td></td><td></td><td></td><td></td><td>198.43</td><td>4</td><td>321.34</td><td>-72.25</td></t<>	4/22/98	25970.25	24394.14				0.010	-0.200						198.43	4	321.34	-72.25
25970.26 24384.16 7286.43 0.044 0.056 -0.148 0.052 0.191 0.006 0.004 2 25970.26 24384.16 7286.43 0.036 0.004 -0.100 -0.107 0.032 0.074 0.003 0.004 2 25970.26 24384.14 7285.36 0.0026 0.063 0.020 0.026 0.063 0.020 0.004	4/29/98	25970.27	24394.17	_	0.036		-0.030	-0.230		0.241	0.004			33.69	4	351.87	-72.91
25970.28 24384.14 7286.34 0.036 0.036 0.027 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026	5/7/98	25970.26	24394.16				0.050	-0.180		0.191	0.006				4	341.57	-70.64
25970.26 24394.16 7285.39 0.028 0.028 0.028 0.008	5/13/98	25970.23	24394.16		0:030		0.010	-0.170		0.174					4	326.31	-78.03
25570.26 24394.16 7286.34 0.002 0.063 0.020 0.023 0.020 0.063 0.029 0.029 0.003 0.004 1 25970.26 24394.16 7286.3 0.000 0.063 0.020 0.020 0.020 0.003 0.000 0.003 0.004 0.000 0.003 0.000 0.003 0.004 0.000 0.003 0.004 0.000 0.003 0.004 0.000 0.004	5/21/98		24394.14		0.028		-0.050	-0.220						315.00	4	321.34	-73.77
25970.26 24394.16 7286.36 0.000 0.063 -0.020 -0.020 0.029 0.003 0.004 1 25970.26 24394.16 7286.42 0.000 0.063 0.040 -0.180 0.040 0.018 0.000 0.005 0.000 1 25970.26 24394.17 7286.42 0.000 0.061 0.040 -0.180 0.019 0.003 0.003 0.003 0.003 0.003 0.003 0.001 0.003	5/28/98	25970.26	24394.16		0.022		0.020	-0.200						26.57	4	341.57	-72.45
25970.26 24384.16 7286.34 0.006 0.063 0.0040 0.180 0.040 0.180 0.040 0.180 0.005 0.005 0.005 0.005 1 25970.28 24394.17 7286.34 0.010 0.016 0.0220 0.044 0.028 0.003 0.003 0.003 0.004 4 25970.35 24384.16 7286.41 0.026 0.150 0.000 0.190 0.000 0.190 0.001 0.001 0.001 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.003 0.001 0.003	6/3/98	25970.26			0.000		-0.020	-0.220		0.229	0.003			#DIV/0!	4	341.57	-73.96
25970.26 4394.17 7285.38 0.010 0.061 -0.220 0.041 0.226 0.005 0.004 1 25970.27 24394.15 7285.41 0.022 0.076 0.030 -0.130 0.014 0.026 0.001 0.003 0.004 4 25970.28 24394.16 7285.47 0.006 0.150 0.000 0.190 0.000 0.190 0.001	6/10/98	25970.26					0.040	-0.180		0.191			-	10/AIG#	4	341.57	-70.64
25970.27 24394.15 7265.4 0.026 0.037 0.001	6/17/98						-0.040	-0.220					-	0.00	4	350.54	-74.54
25970.35 24394.16 7265.47 0.065 0.150 0.066 -0.130 0.104 0.196 0.001 0.003 1 25970.35 24394.16 7265.47 0.060 0.156 0.000 -0.130 0.000 0.196 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.002	6/24/98		24394.15	7285.41			0:030	-0.190						<u>``</u>	4	336.80	-68.16
25970.25 24394.16 7265.47 0.000 0.150 0.000 0.130 0.000 0.196 0.000 0.196 0.000 0.196 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.002 0.001 0.001 0.000 0.002 0.001 0.001 0.020 0.001 0.001 0.020 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001 1 0.002 0.001 1 0.002 0.001 1 0.002 0.001 1 0.002 0.001 1 0.002 0.001 1 0.002 0.001 1 0.002 0.001 0.001 0.002 0.001 1 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001	7/1/98		24394.18	7285.47		i	0.060	-0.130							1	#DIA/0i	-40.91
25970.28 24394.17 7285.41 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	1/8/98	25970.35	24394.18	7285.47	0.000		0.000	-0.130						#DIV/0		#DIN/OI	40.91
25970.28 24394.16 7285.40 0.014 0.020 0.014 0.021 0.001 0.021 0.002 0.001 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.002	7/15/98	25970.27	24394.17		0.081		-0.060	-0.190	į	0.203					4	351.87	-69.59
25970.27 24394.17 7285.39 0.022 0.100 -0.210 0.024 0.023 0.001 1 25970.27 24394.17 7285.35 0.030 0.071 -0.260 0.026 0.020 0.001 1 25970.28 24394.17 7285.35 0.010 0.081 0.004 -0.250 0.010 0.002 0.001 25970.28 24394.17 7285.35 0.010 0.081 0.040 -0.250 0.010 0.002 0.002 0.002 1 25970.28 24394.17 7285.35 0.000 0.081 0.040 -0.170 0.067 0.015 0.002	7/22/98	25970.28	24394.16		0.014		-0.010	-0.200							4	345.96	
25970.22 4394.17 7286.35 0.030 0.071 -0.040 -0.260 0.056 0.056 0.002 0.001 2 25970.28 4394.17 7286.36 0.010 0.004 0.026 -0.250 0.000 0.002 1 25970.28 43394.17 7286.36 0.001 0.081 0.040 -0.10 0.040 0.002 0.002 1 25970.28 43394.15 7286.36 0.034 0.040 -0.10 0.047 0.077 0.077 0.005 0.005 0.005 1 25970.27 43394.15 7286.36 0.014 0.077 -0.240 0.077 0.261 0.005 0.005 1 25970.27 43394.15 7286.35 0.014 0.076 -0.200 0.017 0.026 0.005 0.005 1 25970.27 43394.15 7286.35 0.014 0.076 0.026 0.017 0.026 0.001 0.004 1 25970.27 43394.13	7/29/98	25970.30	24394.17		0.022	ļ	-0.010	-0.210					ŀ		4	354.29	
25970.28 24394.17 7286.34 0.010 0.0260 0.010 0.0263 0.000 0.002 1 25970.28 24394.17 7286.39 0.000 0.081 0.040 -0.210 0.040 0.225 0.003 0.002 1 25970.28 24394.17 7286.36 0.014 0.040 -0.210 0.047 0.077 0.025 0.005	8/11/98	25970.27	24394.17		0:030		-0.040	-0.250			0.002			#DIV/0i	4	351.87	-74.21
25970.28 24394.17 7286.39 0.000 0.081 0.040 -0.210 0.040 0.225 0.003 0.002 1 25970.28 24394.15 7286.34 0.054 0.042 0.040 -0.170 0.067 0.175 0.005 0.005 3 25970.28 24394.15 7286.36 0.014 0.076 -0.010 -0.220 0.017 0.025 0.005 0.005 1 25970.28 24394.15 7286.35 0.010 0.073 0.010 -0.220 0.017 0.261 0.005 0.005 0.005 25970.28 24394.15 7286.35 0.010 0.0173 0.020 0.010 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.00	8/19/98	25970.28			0.010		0.000	-0.250					-	#DIV/O	4	352.87	-72.13
25970.25 24394.15 7285.34 0.054 0.042 0.040 -0.170 0.067 0.175 0.005 0.005 3 25970.25 24394.14 7285.36 0.032 0.077 -0.070 -0.240 0.077 0.261 0.015 0.005 4 25970.27 24394.16 7285.35 0.010 0.073 0.000 -0.250 0.017 0.261 0.005 0.005 1 25970.27 24394.16 7285.35 0.010 0.073 0.000 -0.240 0.010 0.001 0.004 0.004 0.000 0.000 0.004 <td>8/31/98</td> <td></td> <td></td> <td></td> <td>0.000</td> <td></td> <td>0.040</td> <td>-0.210</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>10/AIQ#</td> <td>4</td> <td>352.87</td> <td>-69.00</td>	8/31/98				0.000		0.040	-0.210					-	10/AIQ#	4	352.87	-69.00
25970.26 24394.14 7286.36 0.032 0.072 -0.070 -0.240 0.077 0.251 0.015 0.015 0.005 4 25970.27 24394.15 7285.35 0.014 0.076 -0.010 -0.250 0.017 0.256 0.007 0.000 0.000 1 25970.27 24394.15 7286.36 0.014 0.085 0.010 -0.240 0.017 0.256 0.001 0.000 1 25970.27 24394.13 7286.36 0.010 0.016 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 2 25970.27 24394.13 7286.34 0.020 0.010 0.020 0.001 0.001 0.001 0.001 2 25970.27 24394.13 7286.34 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 <td>9/11/98</td> <td></td> <td></td> <td></td> <td>0.054</td> <td></td> <td>0.040</td> <td>-0.170</td> <td></td> <td>0.175</td> <td>0.005</td> <td></td> <td></td> <td></td> <td>4</td> <td>315.00</td> <td>-75.99</td>	9/11/98				0.054		0.040	-0.170		0.175	0.005				4	315.00	-75.99
25970.27 24394.15 7285.35 0.014 0.076 -0.010 -0.250 0.017 0.026 0.010 0.026 0.000 1 25970.28 24394.15 7285.35 0.010 0.073 0.000 -0.240 0.017 0.255 0.001 0.004 1 25970.27 24394.13 7286.36 0.010 0.046 0.000 -0.240 0.017 0.255 0.001 0.004 4 25970.27 24394.13 7286.34 0.020 0.010 0.020 0.001 0.001 2 25970.27 24394.13 7286.34 0.020 0.025 0.000 0.000 0.000 2 25970.27 24394.14 7286.34 0.000 0.000 0.000 0.000 0.000 0.000 25970.27 24394.14 7286.34 0.000 0.000 0.000 0.000 0.000 0.000 25970.27 24394.14 7286.34 0.010 0.000 0.000 0.000 0.	9/16/98				0.032		-0.070	-0.240		0.251	0.015		4	341.57	4	326.31	-73.28
25970.27 24394.16 7285.35 0.010 0.0260 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001	9/22/98		24394.15		0.014		9	-0.250		0.261	0.002		-	45.00	4	336.80	-73.06
25970.28 24394.15 7285.36 0.014 0.085 0.010 -0.240 0.017 0.055 0.001 0.004 4 25970.27 24394.15 7285.36 0.010 0.076 0.020 -0.240 0.010 0.252 0.000 0.001 2 25970.27 24394.13 7285.34 0.026 0.086 -0.020 -0.260 0.028 0.274 0.000 4 25970.27 24394.14 7285.34 0.010 0.086 -0.020 -0.260 0.010 0.077 0.000 -0.200 4	96/30/6	_	24394.16		0.010		0.000	-0.250		0.260	0.000		-	0.00	4	344.05	-73.76
25970.27 24394.15 7285.36 0.010 0.026 0.0210 0.025 0.000 0.001 2 25970.27 24394.13 7285.34 0.020 0.086 -0.020 -0.026 0.028 0.274 0.000 0.000 4 25970.27 24394.14 7285.34 0.010 0.081 0.000 -0.260 0.010 0.017 0.000 -0.200 1	10/7/98		24394.15		0.014		0.010	-0.240		0.255	0.001				4	339.44	-70.40
25970.27 24394.14 7295.34 0.010 0.086 -0.020 -0.260 0.010 0.010 0.020 0.000 4.000 4.000 0.010 0.	3/3/99	25970.27	24394.15	7285.36	0.010		0.000	-0.240		0.252	0.000		2	#DIN/01	4	336.80	-72,39
25970.27 24394.14 7285.34 0.010 0.081 0.000 -0.260 0.010 0.272 0.000 -0.200 1	5/27/99	25970.27	24394.13		0.020		-0.020	-0.260		0.274	0.000			27	4	324.46	-71.69
	7/23/99	25970.27	24394.14		0.010		0.000	-0.260	0.010	0.272	0.000		1	0.00	4	330.26	-72.77

t
e
-
u
•

July 1999																
WDia				INCREMENTAL	CUMULATIVE	INCREMENTAL	CUMULATIVE	INCREMENTAL	CUMULATIVE	SLOPE	SLOPE DISPLACEMENT					
	NORTHING E	EASTING	ELEV.	HORIZONTAL	HORIZONTAL	VERTICAL		TOTAL	TOTAL DISTANCE	RATE	RATE MOVING AVG	SECTOR (INCREM)	INCREMENTAL	SECTOR (CUMULATIVE)	CUMULATIVE DISPLACEMENT	CUMULATIVE
	-+			€	Û	Ê	€	Œ	(H)	(fl/day)	(fl/day)		AZIMUTH		АΖІМІТН	ANGLE
1	26462.17	24038.11	7309.37						1	0000		•	90.94	-	45.00	
⊥	26462.18	24038.12	7309.37	0.014	910.0	00.00	0.000	0.014	0.014	0.00			28.57		33.69	-39.76
27,5/88	26462.18	24038 14	7309.30	0.022	0.032	0000	0.070	0.041	7200	0.004		2	#DIA/Q	1	18.43	-65.69
L	26462 19	24038.13	7309.34	410.0	0.028	0.040	0.030	0.042	0.041	0.005	0.003	4		1	45.00	-46.69
L	26462.19	24038.15	7309.34	0.020	0.045	0000	00.030	0.020	0.054	0.002	0.004	-	00:00	1	26.57	-33.85
1	26462.17	24038.19	7309.32	0.045	080'0	-0.020	-0.050	0.049	0.094	0.006	0.004	2	116.57	-	00'0	-32.01
L	26462.22	24038.20	7309.32	0.051	0.103	0000	-0.050	0.051	0.114	0.003	0.003	-	78.69	-	50.62	-25.90
		24038.20	7309.33	0.030	0.092	0.010	-0.040	0.032	0.100	0.002	500.0	2)/AIC#	-	12.53	-23.45
	L	24038.18	7309.34	0.020	0.073	0.010	-0.030	0.022	670,0	0.004	0.003	4	270.00	-	15.95	-22.40
		24038.18	7309.31	0.020	0.081	-0.030	-0.060	0.036	0.100	0.003	0.003		#DtV/0!	-	29.74	-36.66
	26462.20	24038.20	7309.30	0.022	950.0	-0.010	-0.070	0.024	0.118	0.001	0.003	2	116.67	-	18.43	-36.42
Ц		24038.19	7309.29	0.022	0.081	0.010	080.0-	0.024	0.114	1000	0.003	3		-	7.13	44.78
_	4	24038.17	7309.33	0.020	0.061	0.040	-0.040	0.045	0.073	0.006	0.003	1	270.00	,	9.46	-33.33
4	26462.20	24038.18	7309.28	0.022	0.076	-0.050	060.0	0.055	0.118	0.000	0.003		63.43		23.20	43.40
┙	26462.20	24038.20	7309.28	0.020	0.095	0.000	060.0	0.020	0.131	0.001	0.003		0.00	1	18.43	45.49
1	1	24038.19	7309.31	0.032	0.080	0.030	0.000	0.044	0.100	0.000	0.00	2	10,102	- 1	20.0	52.06
1	\perp	24038.20	7309.25	0.014	0.091	090.0	-0 120	0.062	0.150	0.002	0.002	7	135.00	7	50 S	-52.90
	20402.18	24038.21	7200 20	0.022	9 6	0,00	00.0	1000	401.0	0.00	0.003	, ,	(B) AlOR		95.71	41.85
2 96/67/1	26462.10	24U30.21	7300 23	050.0	0.100	0.040	0.030	1700	0.157	0.001	6000	1 6	216.87	2	123.69	-62.75
1	1	24038.77	7300 16	120 5	0.110	0.070	0.210	660 0	0.237	0.003			45.00	-	5.19	-62.26
Ļ		24038.26	2309 00	0 040	0.150	0.070	0.280	1900	0.318	90:0		_	00.0	-	3.81	-61.77
L	26462.19	24038.29	7309.13	0.032	181.0	0.040	-0.240	0.051	0.301	0.003	0.003	-	18.43	1	6.34	-52.96
L		24038.29	7309.10	0.020	0.180	0.030	-0.270	0.036	0.324	0.003		2	#D/A/O	1	00 0	-56.31
10/24/96 2	26462.17	2403B.28	7309.06	0.010	071.0	-0.040	-0.310	0.041	0.354	0.002	0.003	4	270.00	-	0.00	-61.26
Ц		24038.31	7309.04	0.032	0.200	-0.020	-0.330	750.0	0.386	0.001	0.002		18.43		2.86	-58.75
	26462.21	24038.39	7308.93	0.085	0.283	-0.110	-0.440	0.139	0.523	0.001	0.002		20.56		8.13	-57.27
4	-	24038.42	7308.92	0.036	0.311	0.010	-0.450	0.037	0.547	0.004	0.002	2	123.69		3.09	90.00
1	4	24038.39	7308.92	0.030	LEZO C	0000	-0.430	0.030	0.530	0.00	0.002		270.00	-	7.86	-57.53
1	20462.21	24038.40	18.BOS 2	0.000	0.00	010.01	0.470	0.024	0.570	0.004	0.002		000		7.13	-55.54
LOSCO	17.70402	24030.45	7308 80	0.030	0.322	0,000	-0.480	2000	0.572	0000	2000		225.00		5.53	-57.02
丄	1	24038.39	7308.88	0.036	0820	0100	0.480	700.0	0.564	0.001	0.002	F	213.69	-	2.05	-60.24
1	26462.19	24038.40	7308.89	0.014	0.291	0,010	-0.480	710.0	0.561	0000	0.002	-	45.00	1	3.95	-58.80
┖		24038.43	7308.88	0.032	0.321	0.010	-0.490	0.033	0.586	0.004	0.00	-	18.43	1	5.36	-56.74
Ц	26462.22	24038.44	7308.86	0.022	0.334	-0.020	-0.510	0:030	0.610	0.003	0.002	-	63.43	1	8.62	-56.80
7/30/97	25462.19	24038.42	7308.87	960:0	115.0	0.010	009:0-	0.037	0.569	0.004	0.003	3	236.31	-	3.69	-58.15
8/6/97	26462.19	24038.42	7308.85	0.000	0,311	-0.020	-0.520	0.020	0.606	0.002	0.003	_	#Div/0i	-	3.69	-59.15
	26462.19	24038.42	7308.84	0.000	0.311	0.010	-0.530	0.010	0.614	0.001	0.003		#DIV/Oi	-	3.69	59.62
┵	L	24038.41	7308.88	0.010	0.301	0.040	0.490	0.041	0.5/5	0.008	0.003		270.00		18.0	-30.47
2 75/20	26462.19	24038.42	7309.80	0.010	0.362	0000	0.490	0.010	0.380	0.00	0.002	-	21.80		6.34	-52.96
Ļ	Ļ	24038.43	7308.85	0.045	0.321	0.040	-0.520	090'0	0.611	0.001	0.003	6	206.57	•	3.58	-58.34
L	26462.19	24038.44	7308.85	0.010	0,331	0.000	-0.520	0.010	0.616	0.000	0.002	-	0.00	1	3.47	-57.55
L		24038.47	7308.84	0.030	0.361	0.010	-0.530	0.032	0.641	0.004	0.002	-	0.00	1	3.18	-55.77
10/8/97		24038.48	7308.82	0.022	0.370	-0.020	-0.550	0:030	0.663	0.003	0.002	2	153.43	1	00.0	-56.07
10/16/97	26462.15	24038.47	7308.83	0.022	0.361	0.010	-0.540	0.024	0.649	0.002	0.003		243.43	2	93.18	-56.27
4	26462.20	24038.48	7308.80	0.051	0.371	-0.030	0.570	0.059	0.680	0.005	#O/A/O#		78.59	-	4.64	-56.93
1	26462.20	24038.44	7308.83	0.040	0.331	0.030	0.540	0.030	0.634	#UIV/G	#DIANG#	4 0	270.00		A1.0	78.00
2 70/01/11	1	24038.44	7308.80	0000	187.0	0.040	0.570	650	0.600	0.000	#DIA/O	1	IO/AIC#		3.47	-59 89
	26462.19	24038.44	7308.79	0.000	0.331	0.010	0.580	0.010	0.668	0.001	iQ/AIG#	_	#DIV/0i	-	3.47	-60.32
11/26/97 2	L	24038.44	7308.80	0.000	0.331	0.010	0.570	0.010	0.659	0.001	0.001	1	#DIA/0]	1	3.47	-59.89
12/3/97	Ц	24038.47	7308.82	0.042	0.363	0.020	-0.550	0.047	0.659	0.000	0.002		45.00	-	7.91	-56.54
12/10/97	26462.25	24038.48	7308.79	0.032	0.379	-0.030	-0.580	0.044	0.693	0.005	0.003			-	12.20	-56.87
┙	26462.20	24038.42	7308.80	0.070	0.311	0.010	-0.570	0.079	0.650	0.006	0.003	3		•	5.53	-61.35
1000001	26462.21	SA SECTO	730R 70	100		. 0000										

										SLOPE	SLOPE					
MD10			. "	INCREMENTAL	CUMULATIVE	INCREMENTAL	m —	INCREMENTAL	CUMULATIVE	DISPLACEMENT	DISPLACEMENT	20,000	***************************************	do to	0/01/4	O B S S S S S S S S S S S S S S S S S S
ļ	0.400	Citizen	č	HORIZONIAL	HORIZUNIAL	VERTICAL	VERTICAL	CICTANOR	NETANOL	AA IE	MOVING AVO	SECTOR MICEEUS	DISDIA/CRACAT	ú	DISD(ACEMENT	DIE DIE
	200		פרב	CISTANCE (#)	E PAGE	E STANCE	E STANCE	2 E	(ii)	(A/dav)	(fl/day)	(monein)	AZIMUTH		AZIMUTH	ANGLE
12/30/97	26462.23	24038.48	7308.79	0.028	0.375	0000	-0.580	0.028	0.691	0.002	0.004	F	45.00	-	9.21	-57.13
177/98	L	_	7308.85	0.022	0.396	090'0	-0.520	0.064	0.654	0.005	0.005	-	26.57	1	10.18	-52.69
1/14/98	L	24038.50	7308.80	0000	962'0	050.0-	-0.570	0.050	0.694	0.006	0.003	F	#Div/ot	1	10.18	-55.20
1/27/98	L	L	7308.83	0.040	0.436	0:030	-0,540	0.050	0.694	000.0	0.004	+	00:00	1	9.25	-51.10
2/3/98	L	L	7308.80	0.126	0.311	-0.030	0.570	0.130	0.850	900'0	0.003	3	198.43	1	5.53	-61.35
2/19/98	L	L	7308.82	0.054	0.363	0.020	-0.550	0.057	0.659	1000	6DO:0	-	21.80	1	7.91	-56.54
3/25/98	L	24038.52	7308.78	0.051	0.412	-0.040	0.590	0.065	0.720	0.002	0.002	2	101.31	-	5.57	-55.08
4/3/98	3 26462.22	24038.52	7308.80	0.010	0.413	0.020	-0.570	0.022	0.704	0.002	2000	1	#DIV/D!	-	6.95	-54.07
4/8/98		L	7308.87	0.104	0.311	0.070	-0.500	0.126	0.589	0.023	900'0	3	196.70	1	3.69	-58.15
4/15/98		L	7308.83	0.130	0.436	0,040	-0.540	0.136	969'0	0.015	600'0	Ŧ	22.62	1	9.25	-51.10
4/22/98	L	24038.47	7308.73	0.081	0.361	0.100	-0.640	0.128	0.735	0.006	600.0	3	209.74	1	4.76	95.09-
4/29/98	L.	L	7308.76	0.051	0.412	0.030	-0.610	0.059	0.736	0000	0.000	F	11.31	+	6.57	-55.97
86/2/38		24038.51	7308.75	0.022	0.400	-0.010	-0.620	0.024	0.738	0.000	110.0	3	243.43	ŀ	2.86	-57.14
5/13/98		24038.40	7308.91	0.112	0.293	0.160	-0.450	0.195	0.545	200.0	0.013	4	280.30	1	7.85	-57.53
5/21/98	26462.18	24038.49	7308.73	0.095	0.380	-0.180	-0.640	0.203	0.744	0.025	0.012	2	108.43	+	1.51	-59.29
5/28/98	3 26462.21	24038.53	7308.75	0,050	0.422	020:0	-0.620	0.054	0.750	100:0	0.013	•	36.87	-	5.44	-55.77
8/3/98	L	24038.56	7308.71	0.032	0.453	0.040	-0.660	0.051	0.800	0.008	0.015	F	18.43	-	6.34	-65.55
6/10/98	26462.19	24038.51	7308.75	0.058	0.400	0.040	-0.620	1.70.0	0.738	600.0	0.010	3	210.96	1	2.86	-57.14
6/17/98		24038.56	7308.71	0.058	0.453	-0.040	-0.860	0.071	0.800	0.009	0.008	F	30.96	-	6.34	-65.55
6/24/98	26462.20	24038.51	7308.77	0.054	10401	090'0	-0.600	0.081	0.722	0.011	0.008	3	201.80	1	4.29	-56.24
7/1/98	3 26462.21	24038.54	7308.75	0.032	0.432	-0.020	-0.620	0.037	0.756	0.005	0.007	-	18.43	1	5.31	-55.14
86/8/2	3 26462.21	24038.53	7308.75	0.010	0.422	0000	-0.620	0.010	057.0	0:001	900'0	4	270.00	+	5.44	-56.77
7/15/98	26462.21	24038.53	7308.77	0:000	0.422	0.020	-0.600	0.020	0.733	0.002	0.004	Ŧ	#DIV/Oi	1	5.44	-54.89
7/22/98	26462.22	24038.49	7308.75	0.041	0.383	-0.020	-0.620	0.046	0.729	100:0	0.002	4	284.04	F	7.50	-58.28
7/29/98	26462.23	24038,50	7308.73	0.014	0.395	-0.020	-0.640	0.024	0.752	0.003	0.002	-	45.00	-	8.75	58.34
8/11/98	26462.21	24038.53	7308.74	0.036	0.422	0.010	-0.630	0.037	0.758	0.000	0.001	2	123.69	-	5.44	-56.19
8/18/98	3 26462.22	24038.52	7308.74	0.014	0.413	0000	-0.630	0.014	0.753	0.001	0.001	4	315.00	1	6.95	-56.75
8/31/88	26462.21	24038.52	7308.75	0.010	0,412	0.010	-0.620	0.014	0.744	100.0	0.005	2	#DIV/DI	-	5.57	-56.40
8/11/98	26462.21	24038.39	7308.93	0.130	0.283	0.180	-0.440	0.222	0.523	0.020	0.016	4	270.00	-	8.13	-57.27
9/16/98	26462.21	24038.55	7308.69	091.0	0.442	-0.240	-0.680	0.288	0.811	0.058	0.017	-	0.00	-	5.19	-56.99
9/22/98	26452.21	24038.53	7308.71	0.020	0.422	0.020	-0.660	0.028	0.783	0.005	0.017	4	270.00	-	5.44	-57.41
86/06/8	26462.22	24038.55	7308.75	0.022	0.443	0.040	-0.620	0.046	0.762	0.003	0.021	-	26.57		6.48	-54.46
10/7/98	26462.22	24038.56	7308.7	0.010	0.453	-0.050	-0.670	0.051	0.809	700.0	0.018	Ī	00:00	-	6.34	-55.85
3/3/89	26462.23	24038.59	7308.7	0.032	0.484	0.000	-0.670	0.032	0.826	0.000	0.004	F	18.43	-	7.13	-54.17
5/27/99	26462.18	24038.56	7308.64	0.058	0.450	090:0-	-0.730	0.084	0.858	0.000	0.002	3	239.04	+	1.27	-58.34
7/23/99	L	L	7308.67	960.0	0.472	0:030	002.0	0.047	0.844	0000	0.002	Ē	16.31	-	4.86	-56.03

CUMULATIVE	dia	ANGLE		30.96	-63.43			-63.43										-58.39	-58.39		-64.40	-63.59	-60.79								-66.58				-65.85			02.53			-66.25						-65.30			76.98-			-64.36
CUMULATIVE	DISPLACEMENT	AZIMUTH	220 43	36.87	i0/AIC#	io/AIO#	59.04	#DIV/O	35.54	23.20	39.81	59.08	37.87	30.86	38.66	38.66	33.69	23.96	23.96	40.60	26.57	32.01	26.57	33.69	46.81	45.00	38.86	28.61	37.87	40.60	36.87	38.86	36.87	34.82	37.69	38.99	36.99	36.16	38.05	38.05	36.47	36.47	36.53	36.47	36.87	32.20	36.16	36.53	36.87	38.37	26.87	35.54	36.53
SECTOR	(CUMULATIVE)		ľ		-	-	-	-		=						-	=	-	1	1	1	1	1	-	Ī			-					F	1	1			-			1	1		1		-[•			1	•			_
INCREMENTAL	DISPLACEMENT	AZIMUTH	67 666	11.31	270.00	i0/AIQ#	33.69	213.69	15.95	ID/AIO#	333 43	270.00	18.43	225.00	IQ/AIC#	IO/AIG#	00:0	00:0	iO/AIC#	315.00	251.57	45.00	i0/AIC#	201.80	56.31	26.57	135.00	153.43	296.57	45.00	26.57	206.57	26.57	243.43	315.00	270.00	iO/AIC#	14.04	198.43	i0/AlQ#	i0/AIC#	iO/AIC#	36.87	216.87	45.00	108.43	315.00	45.00	213.69	i0/AlG#	i0/AlG#	26.57	270.00
SECTOR	(INCREM)		,		4	1	-	9	-	2	4	4	-		<u>'</u>	-	-	-	1	4	3	1	2	3	1	-	2	2	4	-	,	3	-	3	4	4	,		3	1	2	1	1	8	1	2	-	1	3	-	2	-	4
INVERSE	VELOCITY	(days/ft)	100 02	989.07	797 95	#DIV/O	174.32	174.32		5555.25	4166 43	1189.28	402.35		607 R7	405.30	461.32	233.10	#DIA/0i	148.13	2260.11	123.04	242.81	555.11		1787.34	632.35	221.22	407.17	721.37		502 28	848.18	257.92	851.83	1165.22	1	99).44	1299.14	#DIV/O#	5690.97	iO/AIO#		2485.45	1	112.27	T						
SLOPE DISPLACEMENT RATE	MOVING AVG	(fi/dey)				0.003	0.003	0.003	0.003	0 003	0000	0000	0000	0000	2000	0.002	0.002	0.003	0.004	0.004	0.004	0.003	0.004	0.003	0.003	0.003	0.002	0.005	0.002	0.002	0.002	0002	0.002	0.002	2000	0.002	0.002	1000	1000	1000	100.0	100:0	0.002	0.003	0.003	0000	0.003	0.004	0.003	0.002	0.003	0.003	0.003
SLOPE DISPLACEMEN PER	DAY	(fl/day)	1000	1000	1000	0000	0.006	9000	0.005	000	0000	1000	0000	1000	2000	0.002	0.002	0.004	0000	0.007	0000	0.008	0.004	0.002	0.003	0.001	0.002	0.005	0.005	0.001	0.001	0000	0.001	0.004	0.001	0.001	0.001	F00.0	1000	0.000	0.000	0.000	0.004	0000	0.001	0.00	0000	0 002	0.003	0.003	0.002	M0.0	0.003
CUMULATIVE	DISTANCE	€	0000	0.050	0.067	2900	0.107	290'0	0.105	0 103	0.00	600.0	A5.4 O	221.0	9.10	0.119	0.166	0.188	0.188	0.158	0.155	0.212	0.183	0.223	0.309	0.317	0.326	0.362	0.397	0.431	0.632	0.652	0.644	0.671	0.679	0.685	0.676	0.683	0.713	0.713	0.710	01,710	0,732	0.728	0.743	767.0	0.777	0.785	0.762	0.782	0.771	0.798	0.776
INCREMENTAL	DISTANCE	Œ	000	0000	0.050	0000	0.047	7400	0.073	0000	0000	0.022	7900	590.0	450	0.020	0.051	0.032	0000	0.035	0.032	290.0	0.032	0.081	0.100	0.022	0.017	0.046	0.046	0.071	0.201	0.067	0.054	0.046	7100	0.014	0.010	0.042	0.033	0.000	0.010	0.000	0.050	0.054	0.017	0.059	0.000	2000	750.0	0.022	0.014	0.046	0.022
CUMULATIVE	DISTANCE	€	0000	20.02	0900	0900	9000	0900	090 0	0200	020 9	900	0200	000	2 8	01.0	0.150	0.160	-0.160	-0.140	0.140	0.190	0.160	-0.220	-0.290	-0.290	-0.300	-0.340	-0.380	0.390	0.580	0.80	-0.570	-0.610	-0.620	-0.630	0.620	0.610	0.650	-0.650	-0.650	-0.650	-0.650	0.670	0.680	0.730	0.700	-0.710	-0.700	-0.720	-0.710	0.720	-0.7001
INCREMENTAL	DISTANCE	€	0000	0.020	020	0000	0000	0000	000 0	0100		9,00	0,00	000	250	0.020	050	0.010	0000	0.020	0000	090.0	0.030	090'0-	-0.070	0.000	-0.010	-0.040	0000	0.010	0 190	0.050	0:030	0,040	-0.010	-0.010	0.010	0.010	0000	0.000	0000	000:0	0.000	0.020	0010	-0.050	0000	0.010	0.010	0.020	0.010	0.010	0.020
CUMULATIVE	DISTANCE	(H)	0000	0.022	0000	0.030	0.058	0.00	9000	970.0	8200	8900	414.0	8000	P. 20.0	0.064	0.072	850.0	0.098	0.092	0.067	0.094	0.089	0.036	0.106	0.127	0.128	0.125	0.114	0.184	0.250	0.300	0.300	0.280	0.278	0.270	0.270	0.308	0.292	0.292	0.286	0.286	0.336	0.286	0.300	0.319	0.374	0.336	0.300	0.306	0.300	0.344	0.336
INCREMENTAL	DISTANCE	€	0000	7700	500	0000	9000	0.036	0.073	1500	0000	2000	0.062	2000	2000	9000	0,010	0.030	0000	0.028	0.032	0.028	0.010	0.054	0.072	0.022	0.014	0.022	0.022	1.00.0	0.067	2000	0.045	0.022	0.014	0.010	0000	1000	0.032	0000	0.010	0.000	0.050	0.050	0.014	0.032	0.026	0.014	0.036	0.010	0.010	0.045	0.010
	ELEV.		7312.09	10,2167	7342 03	7312.03	7312 00	7312 03	7312.03	7412 02	7313 03	731201	724200	7311 08	7344.07	7311.89	7311.94	7311.93	7311.93	7311.95	7311.95	7311.90	7311.93	7311.87	7311.80	7311.80	7311.79	7311.75	7311.71	7311.70	7311.51	7311 40	7311.52	7311.48	7311.47	7311.46	7311.47	7911 48	731144	7311.44	7311.44	7311.44	7311.44	7311.42	7311.41	7311.36	7311.39	7311.36	7311.39	7311.37	7311.38	7311.37	7311.39
	EASTING		24240.02	24240.01	24240.00	24240.02	24240 05	24240.02	24240 09	24240.00	24240.03	24240.08	24240 41	24240.07	24240.07	24240 07	24240.08	24240.11	24240.11	24240.09	24240.08	24240.10	24240.10	24240.05	24240.09	24240.11	24240.12	24240.13	24240.11	24240.16	24240.22	24240.22	24240.26	24240.25	24240.24	24240.23	24240.23	24240.27	24240 25	24240.25	24240.25	24240.25	24240.29	24240.25	24240.26	24240.29	24240.27	24240.29	24240.26	24240.26	24240.26	24240.30	24240.29
	NORTHING		26235.66	26235.68	20222.03	26235.69	26235 71	26235 69	26236 71	26236.69	20,000,00	26736 71	26236 72	26232.73	20,523.03	26235.70	26235.70	26235.70	26235.70	26235.72	26235.69	26235.71	26235.70	26235.68	26235.74	26235.75	26235.74	26235.72	26235.73	26235.78	26235.81	26235.04	26235.84	26235.82	26235.83	26235.83	26235.83	26235.84	26235.84	26235.84	26235.83	26235.83	26235.86	26235.83	26235.84	26235.83	26235.85	26235.86	26235.84	26235.85	26235.84	26235.86	26235.86
MD11	TIME		1/3/86	06/11/1	20000	202/96	2/29/96	3/7/96	37.4796	SON TO SON	30200	30.20.20	4/18/06	40100	1/23/80	SAMA	5/31/96	96/2/9	6/10/96	6/13/96	7/11/96	7/18/96	7725/96	96/91/8	9/12/96	9/26/96	10/2/96	10/10/96	10/24/96	11/18/96	5/16/97	6/4/97	6/11/97	6/18/97	6/25/97	76/2/1	79/97	70307	76/05/7	8/6/97	8/20/97	8/27/97	8/2/87	9/10/97	9/25/97	10/1/97	10/16/97	10/22/97	10/29/97	11/5/97	11/12/97	11/19/97	11/26/97

Golder Associates Inc.

		٤
	٠	•
		٤
		÷
		ć
		2
		١
		Ì
	•	١

39				IND THE PROPERTY OF	TATE OF THE PERSON	TATA DE COM	DAILY II WATER	A THOMAS CIVI	Community ATIVE	SLOPE	SLOPE						
				HORIZONTAL	HORIZONTAL	VERTICAL	VERTICAL	TOTAL			RATE	INVERSE	SECTOR	INCREMENTAL	SECTOR	CUMULATIVE	CUMULATIVE
TIME	NORTHING	EASTING	ELEV.	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DAY	MOVING AVG	VELOCITY	(INCREM)	DISPLACEMENT	(CUMULATIVE)	DISPLACEMENT	PIO
				€	€	€	€	Ê	€	(R/day)	(fildey)	(days/ft)		AZIMUTH		AZIMUTH	ANGLE
12/10/97	26235.89	24240.31	7311.37	0.014	0.370	-0.040	-0.720	0.042	0.810	900:0	0.003		1	45.00	1	38.42	-62.79
12/17/97	26235.85	24240.27	7311.36	0.057	0.314	010.0-	-0.730	250:0	0.795	0.002	0.003		3	225.00	-	37.23	-66.73
12/23/97	26235.86	24240.28	7311.35	410.0	0.328	-0.010	-0.740	210.0	608'0	2000	0.002		1	45.00	•	37.57	-66.09
12/30/97	26235.87	24240.30	7311.36	0.022	0380	0.010	-0.730	0.024	018:0	000'0	0.002		1	26.57	1	36.87	-64.38
17798	26235,88	24240.31	7311.37	410.0	0.364	0.010	-0.720	710.0	708.0	0000	100.0		+	45.00	+	37.18	-63.1B
1/14/98	26235.88	24240.31	7311.37	000.0	0.364	0000	-0.720	0000	0.807	0000	100.0		-	i0/AIQ#		37.18	-63.18
1/27/98		24240.33	7311.34		0.374	0.030	-0.750	0.037	0.838	0.002	0.002		2	116.57	-	34.11	-63.47
2/3/98	L	24240.27	7311.36		0.314	0.020	-0.730	990'0	0.795	9000	0.002		9	198.43	-	37.23	-66.73
2/19/98		24240.30	7311,41		998.0	0.050	-0.680	990'0	0.768	0.002	0.003		-	45.00	-	38.16	-62.36
3/25/98	26235.88	24240.33	7311.32		0.380	-0.090	-0.770	0.095	0.859	0.003	0.003		-	00:0	-	35.36	-63.73
4/3/98	26235.88	24240.32	7311.33	0.010	0.372	0.010	-0.760	0.014	0.846	1000	90:00		+	270.00	-	36.25	-63.92
4/8/98		24240,25	7311.44		0.292	0.110	0690	0.136	0,713	0.027	0.010		n	209.74	-	38.05	-65.80
4/15/98	26235.87	24240.33	7311.34	0.085	0.374	-0.100	-0.750	0.132	0.838	0.018	0.011		-	20.56	-	11.46	-83.47
4/22/98	26235.86	24240.31	7311.30	0.022	0.352	0.040	-0.790	0.046	0.865	400.0	0.011		3	206.57	-	34.59	-65.97
4/29/98	26235.88	24240.32	7311.26	0.022	0.372	0100	-0.830	0.046	0.910	900'0	0.012		-	63.43	-	36.25	-65.86
5/7/98	26235.88	24240.32	7311.32	0000	0.372	090.0	-0.770	090'0	0.855	200'0	0.014		-	i0/AIC#	•	36.25	-64.21
5/13/98	26235.84	24240.26	7311.52	0.072	0.300	0.200	-0.570	0.213	0.644	960.0	0.017		3	213.69	1	36.87	-62.24
5/21/98	26235.85	24240.29	7311.26	0.032	0.330	-0.260	-0.830	0.262	0.893	0.031	0.016		1	18.43	1	35.13	-68.31
5/28/98	26235.88	24240.32	7311.29	270.0	0.372	0:030	-0.800	0.052	0.882	0.002	0.016		1	45.00	1	36.25	-65.06
6/3/98		24240.35	7311.26	90.038	0.386	-0.030	-0.830	0.047	0.915	9000	0.016		2	123.69	-	31.22	-65.07
6/10/98	26235.88	24240.32	7311.32	960.0	0.372	0.060	-0.770	0.070	0.855	600.0	0.011		4	303.69	-	36.25	-64.21
6/17/98	26235.86	24240.35	7311.26	0.036	0.386	-0.060	-0.830	0.070	0.915	600.0	0.005		2	123.69	1	31.22	-65.07
6/24/98	26235.87	24240.32	7311.27	0.032	0.366	0.010	-0.820	0.033	0.858	0.002	0.005		7	288.43	-	34.99	-85.94
7/1/98	26235.89	24240.35	7311.28	90.036	0.402	0.010	-0.810	0.037	0.904	0.001	0.004		1	33.69	-	34.88	-63.59
7/8/98	26235.89	24240.35	7311.28	0.000	0.402	0.000	-0.810	0.000	0.904	0000	0.003		-	#DIV/OI	1	34.88	-63.59
7/15/98	26235.89	24240.34	7311.30	0.010	0.394	0.020		0.022	0.863	0.003	0.001		4	270.00	-	35,71	-63.49
7/22/98	26235.92	24240.33	7311.30	0.032	0.405	0000	-0.790	0.032	0.888	0.001	0.002		4	341.57	-	38.99	-62.68
7/29/58	26235.91	24240.33	7311.27	0.010	0.398	-0:030	-0.820	0.032	0.912	0.003	0.002		2	#DIV/DI	1	38.88	-64.10
8/11/98	26235.88	24240.34	7311.25	0.032	0.388	-0.020	-0.840	0.037	0.925	0.001	0.002		2	161.57	-	34.51	-65.19
8/19/98	26235.88	24240.34	7311.26	0.000	0.388	0.010	-0.830	0.010	0.916	0.001	0.001		1	#DIV/0i	1	34.51	-64.93
8/31/98	26235.88	24240.33	7311.25	0.010	0.380	-0.010	-0.840	0.014	0.922	0.000	200.0		4	270.00	1	35.36	-65.65
9/11/98	26235.81	24240.22	7311.51	0.130	0.250	0.260	-0.560	1620	0.632	0.026	0.018		3	212.47	1	36.87	-66.68
9/16/98	26235.90	24240.35	7311.25	0.158	0.408	-0.260	-0.840	0.304	0.934	0.060	0.019		1	34.70	1	36.03	-64,09
9/22/88	26235.90	24240.34	7311.21	0.010	0.400	-0.040	-0.830	0.041	0.967	0.005	0.019		4	270.00	1	36.87	-65,56
96/30/38	26235.91	24240.37	7311.24	0.032	0.430	0.030	-0.850	0.044	0.953	0.002	0.019		-	18.43	-	35.54	-63.16
10/7/98	26235.90	24240.35	7311.21	0.022	0.408	-0.030	-0.830	0.037	0.970	0.002	0.014		3	206.57	1	36.03	-65.12
3/3/99	26235.92	24240.39	7311.17	0.045	0.452	-0.040	-0.920	0.060	1.025	0.00	0.005		-	26.57	*	35.10	-63.82
5/27/99	26235.93		7311.14	0.022	0.442	-0:030	-0.950	0.037	1.048	0.000	100.0		4	296.57	-	37.65	-65.05
7/23/99	26235.93	24240.39	7311.15	0.020	0.458	0.010	0760	0.022	1046	0000	9020		-	000	-	25.15	54.02

CLIMIN ATIVE	PIG	ANGLE		-69.56	-69.56	-63.43	-36.66	-32.91	-45.69	54.46	-63.30	47.90	-37.46	-59.80	24.90	-65 13	56.51	-62.21	-57.60	-56.15	-52.76	-57.52	-57.63	-55.47	-57.67	29.76	70.00	-35.00	50 15	-57.43	-56.15	-57.95	-61,49	-61.03	-60.52	-57,93	-58.17	-58.90	-59.12	28 63	-36.91	-58.81	-60.10	-b0.42	-60.58	28.64	06.60-	20.00	9.65	-09.48	67 83	58.50	-57.83	-57.79
FIVE PLANTS		AZIMOTH	#DIVIO	63.43	63.43	#DIV/ol	82.87	33.69	50.19	53.13	63.43	71.57	73.30	38.66	71.57	78.69	54.46	71.57	66.80	52.13	52.13	64.98	67.62	63.43	60.64	62.10	63.43	84.68	CO.CO.	63.43	63.43	63.43	69.69	69.69	64.29	71.03	70.46	72.12	70.46	68.20	29.86	66.57	64.23	65.65	66.57	69.69	62.73	50.37	4.60	09.44	67.03	6837	10.79	61.99
SECTOR	ψ		-	-	1	-	-	=	-	=	=	F	-	-	-	+	-	-	=	-	1	-	-	-	-	-		-	- -	- -	-	-	-	-	-	-	-	-	+	+		+	+	1	-		-	-	+	-	 		-	
INTERNET		AZIMUTH	#DIVIOF	45.00	#DIA/0i	315.00	78.69	104.04	270.00	225.00	#DIV/0I	270.00	75.96	161.57	303.69	225.00	26.57	198.43	45.00	26.57	io/Alg#	i0/AIQ#	#DIV/ol	135.00	000	lo/AlO#	71.57	PDI-SO	208.00	0.00	63.43	243.43	194.04	IO/A/O#	00:0	338.20	#D/A/O#	270.00	000	9 5	2/0:00	0.00	135.00	2/0:00	#Drv/or	45.00	206.57	45.00	A LOCAL	io/Alde	45.00	#DIV/or	#DIV/O#	45.00
SECTOR	(INCREM)		1	-	1	4	1	2	4	3	1	4	-	2	4	6	-	3	-	-	-	1	1	2	-		- '	- -			1	3	3	1	-	4	2	4	-	2	4	-	2	4	-	- '	5	- [-	,	- 1	7	2	-	-
SLOPE DISPLACEMENT PATE	MOVING AVG	(Inday)				0.002	0.002	0.003	0.003	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.003	0.003	0.003	0.004	0.004	0.003	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	#DIV/O	#DIV/Q!	#DIA/Oi	#DIV/OI	io/AiO#	#DIA/OI	io/AIG#	0.002	0.002	0.002	0.002	0.002	0.002	8 6	0.001	1000	1000	1000	0.001
SLOPE DISPLACEMEN D	DAY	(flyday)	0.002	0.002	0000	0.000	0.005	0.004	0.002	0.003	0.004	0.003	0.003	0.001	0.002	0.002	0.002	0.002	0.000	0.009	0.002	0.002	0.003	0.005	0.003	0.003	0.001	1000	500	0.00	0.003	0.005	0.002	0.001	0.002	0.003	0.003	0.001	IO/AIC#	0.001	0000	0.002	0.005	0.000	0.004	0.002	0.001	0.00	0.002	1000	1880	1000	0.001	0.003
CUMULATIVE D	DISTANCE	(II)	0.014	0.064	0.064	0.067	0.100	0.129	0.112	0.086	0.112	0.094	0.132	0.127	0.110	0.121	0.156	0.136	0.142	0.205	0.188	0.308	0.343	0.316	0.343	0.382	0.407	0.582	200.0	0.581	0.602	0.590	0.603	0.594	0.609	0.637	0.624	0.631	0.641	0.621	0.619	0.631	0.646	0.544	0.666	0.679	0.670	0.00	0.000	0.673	0.009	6990	0.673	0.697
INCREMENTAL TOTA!	DISTANCE	Œ	0.014	0.052	0.000	0.014	0.051	0.083	0.041	0:030	0.028	0.022	0.042	0.070	150.0	0.024	0.049	0.033	0.014	0.067	0.020	0.125	0.036	0.033	0.032	0.04	0.033	0.186	200	0.028	0.024	0.022	0.051	0.010	0.032	0.055	0.014	0.014	0.014	0.024	0.010	0.022	0.024	0.0.0	0.022	0.028	0.022	0.0	0.022	0.010	0000	0.010	0.010	0.024
CUMULATIVE	DISTANCE	€	0.010	-0.060	090'0-	-0.060	-0.060	-0.070	-0.090	-0.070	060'0-	-0.070	-0.080	-0.110	0.090	0.110	-0.130	-0.120	-0.120	-0.170	0.150	-0.260	-0.290	-0.260	-0.280	-0.330	-0.340	0.510	2	-0.590	-0.500	-0,500	-0.530	-0.520	-0.530	-0.540	-0.530	-0.540	-0.550	-0.530	-0.530	0.540	0960	OSC O-	0.560	096.0-	0800-	0.380	0000	0000	0.300	0.570	-0.570	-0.590
INCREMENTAL	DISTANCE	(w)	-0.010	-0.050	0.000	0.000	0.000	-0.010	-0.010	0.010	-0.020	0.020	-0.010	-0.030	0.020	-0.020	-0.020	0.010	0.000	-0.050	0.020	-a.110	-0.030	0.030	-0.030	0.040	0.010	-0.1/0		0.020	-0.010	0.000	-0.030	0.010	-0.010	-0.010	0.010	-0.010	0.010	0.020	0.000	0.010	-0.020	0.000	-0.020	0.000	0.000	0000	200	0.0.0	0,000	0000	0000	-0.020
CUMULATIVE	DISTANCE	€	0.010	0.022	0.022	0.030	0.081	0.108	0.078	0.050	0.067	0.063	0.104	0.064	0.063	0.051	0.086.	0.063	0.076	0.114	0.114	0.166	0.184	0.179	0,184 \$81	0.192	0.224	0.300	9000	0.313	0.335	0.313	0.288	0.288	0.300	0.338	0.329	0.326	0.329	0.323	0.320	0.327	0.322	0.318	0.327	0.353	0.336	0.0	200	0.342	0.332	0.349	0.358	0.372
INCREMENTAL	DISTANCE	(¥)	0.010	0.014	0.000	0.014	0.051	0.082	0.040	0.028	0.020	0.010	0.041	0.063	0.036	0.014	0.045	0.032	0.014	0.045	0000	0.060	0.020	0.014	0.010	0.010	0.032	0.000	0.020	0.020	0.022	0.022	0.041	0.000	0.030	0.054	0.010	0.010	0.010	0.014	ULOIN	0.020	0.014	0.010	0.010	0.028	2200	0.00	000	0.000	0.010	0.010	0.010	0.014
	ELEV.	7940 00	7316.04	7315.99	7315.99	7315.99	7315.99	7315.98	7315.97	7315.98	7315.96	7315.98	7315.97	7315.94	7315.96	7315.94	7315.92	7315.93	7315.93	7315.88	7315.90	7315.79	7315.76	7315.79	7315.76	7315.72	7315.71	7375.54	7946.64	7315.56	7315.55	7315.55	7315.52	7315.53	7315.52	7315.51	7315.52	7315.51	7315.50	7316.52	7315.52	7315.51	7375.49	1313.49	/315.4/	/315.4/	79.007	7915.40	7246.47	19:0:01	7315.4R	7315,48	7315.48	7315.46
	EASTING	04444 70	24441.70	24441.71	24441.71	24441.70	24441.71	2441.79	24441.75	24441.73	24441.73	24441.72	24441.73	24441.75	24441.72	24441.71	24441.75	24441.72	24441.73	24441.77	24441.77	24441.77	24441.77	24441.78	24441.79	2441.79	2441 80	24441.83	24441 85	24441.84	2441.85	24441.84	24441.80	24441.80	24441.83	24441.81	24441.81	24441.80	24441.81	24441.82	74441 B1	24441.83	24401.84	24441.03	2441.83	24441.85	2444.03	24441 83	24444 02	70.1	24441.02	2441.84	24441.84	24441.85
_	NORTHING	50 50000	26007.88	26007.89	26007.89	25007.90	25007.95	26007.93	26007.93	26007.91	26007.93	26007.93	26007.97	28007.91	26007.93	26007.92	26007.94	26007.93	26007.94	26007.96	26007.96	26008.02	26008.04	26008.03	26008.03	26008.04	26008.07	Zeone 16	26000 16	26008 15	26008.17	26008.15	26008.14	26008.14	26008.14	26008.19	26008.18	26008.18	26008.18	26008.17	Ze008.17	26008.17	2600B.16	2000g 12	26008.17	26008.19	26006.18	26008 10	25008.10	25000.19	26008.10	26008.19	26008.20	26008.21
WD12	TIME	ower	1/11/96	2/8/96	2/15/96	2/22/96	2/29/96	3/7/96	3/14/96	3/22/96	3/28/96	4/4/96	4/18/96	4/25/96	5/2/96	96/6/5	5/31/96	6/10/96	7/11/96	7/18/96	7/25/96	9/17/96	9/26/96	10/2/96	10/10/96	10/24/96	11/18/96	Tologa Tologa	014103	16/11/97	6/18/97	6/25/97	712/97	78/8/7	7/16/97	7/25/97	7130/97	8/6/97	B/6/97	8/20/97	8421187	9/2/97	76/01/6	PECSIS.	7 EVENOT	TUB/DI	TOWARD	10/20/07	14/5/07	20001	11/19/97	11/26/97	12/3/97	12/10/97

MD12

July 1999

¢	V
٧	=
۵	ב
-	5

July 1999

	CUMULATIVE	ANGLE	-59.82	-60.07	9 -58.23	97.79	3 -57.32	3 -57.32	0 -59.82	1 -57.83	4 -57.14	9 -47.87	6 -58.17	3 -57.32	2 -59.35	7 -58.28	5 -58.08	3 -57.43	0 -60.27	5 -59.66	3 -60.13	5 -58.08	.60.13	-59.42	1 -52.44	-57.84	3 -56.58	7 -57.21	5 -55.75	-59.59	6 -59.00	9 -58.08	9 -59.56	6 -59.37	59.17	57.59	59.17	3 -59.12	59.76
	CUMULATIVE	AZIMUTH	68.50	70.02	64.19	66.19	65.43	65.43	68.50	10.78	66.04	78.69	70.46	65.43	69.62	69.27	68.75	63.43	68.20	68.75	65.43	68.75	65.43	67.38	70.11	65.32	63.43	67.17	69.15	82.69	68.46	69.78	64.29	68.46	96.89	66.45	96.89	08'69	70.35
		(complex)		1	1	1	•	1	+	-	1		1,	1	1	1	-	1	1	1	1	1	1	-	*	1	-	-	1	1	1	1	1	1	1	-	•	-	
	INCREMENTAL	AZIMUTH	3 206.57	1 270.00	18.43	I #DIV/0	1 45.00	IO/VIO#	3 213.69	00.0	1 56.31	345.26	#DIV/OI	38.66	270.00	63.43	#DIA/O	#DIV/0!	IO/AIG#	I #DIV/0I	116.57	296.57	116.57	315.00	19.70	WDIV/OI	135.00	315.00	#DIV/O	3 243.43	0.00	270.00	3 264.81	19.70	IDIA/OI	00.00	270.00	IO/A/OI	IU/VIC#
	SECTOR	(INCREM)		4					8	-		*	2		7		7	2	1		2	4	2	4		2	2	1		[4	6				4		
SLOPE DISPLACEMENT	RATE	(Tiday)	100.0	100.0	0.001	0.001	100.0	0.001	100:00	0.001	0.003	0.012	0.014	P10'0	0.015	610.0	600.0	0.011	1110	0.010	0.011	0.007	0.003	0.004	900'0	0.005	0.005	9000	0.005	0.003	0.003	0.005	0.012	0.013	0.013	0.016	0.013	0.002	0000
SLOPE	PER	(flvday)	0.001	0.000	0000	0.001	0.002	0.000	0.001	0.002	0.002	0.012	0.042	0.013	0.003	0.003	0.003	0.025	0.022	0.001	0.001		0.006		0.008	0.008		0.004	0.005	0.000	0.001	0.002	0.016		0.005	0.003	0.003	0.000	0000
CUMULATIVE	TOTAL	(#)		0.704	0.706	769.0	0.713	0.713	0.706	0.673	0.726	0.836	0.624	0.713	0.732	0.752	0.730	0.581	092.0	0.765	0.773		0.773	0.767	0.820	0.767	0.731	0.761	0.798	0.800	0.793	0.766	0.592	0.802	0.815	0.794	0.815	0.851	0.873
INCREMENTAL	TOTAL	(A)	0.030	0.010	0.033	0.010	710.0	000.0	0.037	0.041	0.054	0.197	0.256	0.095	0.042	0.024	0.022	0.153	0.184	0.010	0.024	0.055	0.055	0.017	0.112	0.100	0.042	0.D41	0.045	0.054	0.014	0.032	0.178	0.212	0.014	0.036	0.036	0.036	0.000
CUMULATIVE	VERTICAL	(#)	-0.610	-0.610	-0.600	065:0-	009'0-	-0.600	-0.610	-0.570	-0.610	-0.620	-0.530	009'0-	-0.630	099'0-	-0.620	-0.490	-0.660	-0.660	-0.670	-0.620	-0.670	-0.660	-0.650	-0.650	-0.610	-0.640	-0.660	-0.690	-0.680	-0.650	-0.510	-0.690	-0.700	-0.670	-0.700	-0.730	0.750
INCREMENTAL	VERTICAL	(ft)	-0.020	0000	0.010	0.010	-0.010	000.0	-0.010	0.040	-0.040	-0.010	060:0	0.00.0-	-0.030	-0.010	0.020	0.130	-0.170	0.000	-0.010	0.050	-0.050	0.010	0.010	0.000	0.040	-0.030	-0.020	-0.030	0.010	0.030	0.140	-0.180	-0.010	0:030	-0.030	-0.030	020 0-
CUMULATIVE	HORIZONTAL	(#)	0.355	0.351	0.372	0.372	0.385	0.385	0.355	0.358	0.394	0.561	0.329	0.385	0.373	966.0	0.386	0.313	0.377	0.386	0.385	0.386	0.385	0.390	0.500	0.407	D:402	0.412	0.449	0.405	0.409	0.405	0.300	0.409	0.418	0.425	0.418	0.437	0.446
INCREMENTAL	HORIZONTAL	(f)	0.022	0.010	0.032	000'0	0,014	000'0	9000	0.010	0.036	0.196	0.240	0.064	060'0	0.022	0.010	0.080	0.070	0.010	0.022	0.022	0.022	0.014	0.112	0.100	0.014	0.028	0.040	0.045	0.010	0.010	0.110	0.112	0.010	0,020	0.020	0.020	0.010
	ò	CLEV.	7315.44	7315.44	7315.45	7315.46	7315.45	7315.45	7315.44	7315.48	7315.44	7315.43	7315.52	7315.45	7315.42	7315.41	7315.43	7315.56	7315.39	7315.39	7315.38	7315.43	7315.38	7315.39	7315.40	7315.40	7315,44	7315.41	7315.39	7315,36	7315.37	7315.40	7315.54	7315.36	7315.35	7315.38	7315.35	7315.32	7315.3
	CASTON	Skii eka	2441.83	24441.82	24441.85	24441.85	2441.86	24441.86	24441.83	24441.84	24441.86	24441.81	24441.81	24441.86	24441.83	24441.84	24441.84	24441.84	24441.84	2441.84	24441.86	24441.84	24441.86	24441.85	24441.87	2441.87	24441.88	24441.86	24441.86	24441.84	24441.85	24441.84	24441.83	24441.85	24441.85	24441.87	24441.85	24441.85	24441.85
	CHILLECT	ONIL VON	26008.20	26008.20	26008.21	26008.21	26008.22	26008.22	26008.20	26008.20	26008.23	26008.42	26008.18	26008.22	26008.22	26008.24	26008.23	26008.15	26008.22	26008.23	26008.22	26008.23	26008.22	26008.23	26008.34	26008.24	26008.23	26008.25	26008.29	26008.25	26008.25	26008.25	26008.14	26008.25	26008.26	26008.26	26008.26	26008.28	25008.29
MD12	1941	J.	12/17/97	12/23/97	12/30/97	1/7/98	1/14/98	1/27/98	2/3/98	2/19/98	3/25/98	4/3/98	4/8/98	4/15/98	4/22/98	4/29/98	5/7/98	5/13/98	5/21/98	5/28/98	6/3/98	6/10/98	6/17/98	6/24/98	7/1/98	7/8/98	7/15/98	7/22/98	7/29/98	8/11/98	8/19/98	8/31/98	9/11/98	9/16/98	9/22/98	96/30/6	10/7/98	3/3/99	5/27/99

mainprsm.xls

APPENDIX L

METHOD OF CONSTRUCTION BY OBSERVATION TECHNICAL DISCUSSIONS

THE OBSERVATIONAL METHOD IN ENVIRONMENTAL GEOTECHNICS

N.R. MORGENSTERN

University of Alberta, Department of Civil Engineering, Edmonton AB Canada T6G 2G7

Abstract

The observational method is an important aspect of risk management in geotechnical engineering. Recent considerations in its evolution are reviewed. It is noted that there are some circumstances in environmental geotechnics that are ideal for the application of the observational method. However there are others in which it is seriously constrained. Constraints arise from: 1) the regulatory environment, 2) the nature of decision-making related to environmental matters and, 3) the issue of longeviry. These matters are amplified by discussions on the role of the observational method in mine waste management, in ground remediation, in landfill design, and in nuclear waste management.

Introduction

The overriding requirement in engineering is for the constructed (manufactured) entity or process to fulfill its intended function. That it should do so safely, economically and in an environmentally acceptable manner are also usually desirable, but not always essential, objectives. That is, the dam must store water in a safe, economical and environmentally approved manner; the foundation must support the load in a safe and economic manner; and the landfill must function in a contained manner while still being economical and in compliance with environmental regulations.

The geotechnical engineer has a long tradition of success in meeting these requirements under conditions that differ from many other types of technological endeavour. The natural materials that the geotechnical engineer must deal with are complex and do not afford the luxury of replication. Construction processes, either in-situ or associated with the construction operation itself, are performed

under circumstances very different from the controlled environment of a manufacturing plant. As a result, uncertainty is a perpetual component of geotechnical design and construction. In view of the successes in the past of geotechnical design practice, there is considerable value in understanding how the geotechnical engineer deals with this uncertainty and in evaluating how this methodology might be applied to environmental design problems.

It is rare for the geotechnical engineer to rely on prediction to meet his objectives. In practice, prediction is considered to be a chimera, only worth contemplating under the most idealized circumstances. The practice of the geotechnical engineer is more modest. Risk is managed to overcome the limitations of site characterization, knowledge of material properties, other unknowns and the vagaries of construction practice. Performance is assured through design that is not driven by prediction in any direct manner and this is executed by means of the observational method.

The evolution of the observational method has had a profound influence on the practice of geotechnical engineering. It is not without its pitfalls, as will be noted below, but the observational method is widely recognized as providing a conceptual framework for geotechnical design that differs from other types of engineering design.

Some problems of environmental geotechnics are similar in kind to traditional geotechnical engineering, but many raise new issues. In some instances the observational method provides an excellent framework from which to address these problems. In others, it provides restraints on the practice of the geotechnical engineer in dealing with certain environmental problems.

It is the intent of this paper to summarize the evolution of the observational method, to assess the differences between design issues in environmental geotechnics and more traditional aspects of geotechnical engineering and to underline circumstances not only where the observational method can be applied effectively but also where there are limitations to its application.

Evolution Of The Observational Method

Peck's [22] classical paper summarizes the evolution of the observational method in its restricted geotechnical sense and it is essential to quote his summary of the method.

"In brief, the complete application of the method embodies the following ingredients:

- a) Exploration sufficient to establish at least the general nature, pattern and properties of the deposits, but not necessarily in detail.
- b) Assessment of the most probable conditions and the most unfavourable conceivable deviations from these conditions. In this assessment geology often plays a major tole.

- c) Establishment of the design based on a working hypothesis of behaviour anticipated under the most probable conditions.
- d) Selection of quantities to be observed as construction proceeds and calculation of their anticipated values on the basis of the working hypothesis.
- e) Calculation of values of the same quantities under the most unfavourable conditions compatible with available data concerning the subsurface conditions.
- f) Selection in advance of a course of action or modification of design for every foreseeable significant deviation of the observational findings from those predicted on the basis of the working hypothesis.
- g) Measurement of quantities to be observed and evaluation of actual conditions.
- h) Modification of design to suit actual conditions.

The degree to which all these steps can be followed depends on the nature and complexity of the work. We can readily distinguish between projects, on the one hand, in which events have already set the stage for the observational method as being almost the only hope of success, and those, on the other hand, in which use of the method has been envisioned from the inception of the project. Applications of the first type are much the more familiar."

Peck [22] went on to provide examples of successful application but then drew attention to significant pitfalls such as:

i) Failure to anticipate unfavourable conditions: Potentially the most serious blunder in applying the observational method is the failure to select in advance appropriate courses of action for all foreseeable deviations of the real conditions, as disclosed by the observations, from those assumed in the design.

- ii) The dominance on the project exercised by the concern whether or not a single potential problem can be solved.
- iii) Choice of significant observations: The selection of proper quantities to observe and measure requires a feel for the significant physical phenomena governing the behaviour of the project during construction and after completion.
- iv) Influence of progressive failure: The presence of brittle elements in a resisting mass may, if not appreciated, lead to failure in spite of the use of the observational method.
- v) Complications in contractual relations.

One might also note that the observational method is limited when dealing with dynamic loading.

Others have added to our understanding of the concept and its application. In particular D'Appolonia [5] extended it to the operational phase of facilities and processes through his concept of "monitored decisions", see Figure 1. This extension is particularly useful when considering various problems in environmental geotechnics that arise during operational phases and require contingency planning. Muir Wood [20] characterized the observational method as a flexible design philosophy, capable of achieving very substantial benefits, provided that flexible adaptation can be accommodated in both procedural and contractual arrangements. Muir Wood [20] also notes some conflict between the implementation of certain Quality Assurance and Quality Control programs and the need to foster iterations between geotechnical design and construction.

The application of the observational method is enhanced by new developments in insummentation and data-processing. It is also enhanced by new developments in computer modelling and simulation. Chen, Morgenstern, and Chan [2] have emphasized that the most effective use of finite element modelling and related techniques is in history matching of performance as an adjunct to the

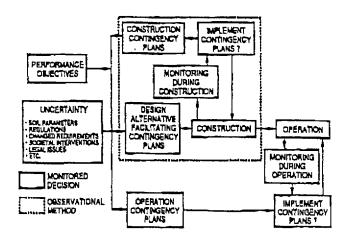


Figure 1. Flow Diagram of the Monitored-Decision Process (D'Appolonia, 1990)

observational method, as opposed to forecasting behaviour during the design phase.

There has been a considerable effort expended in recent years to develop a reliability based design approach that can accommodate different kinds of uncertainty such as uncertainty in the geological model, parameter uncertainty, cost uncertainty and other important considerations. The work of Freeze and his students [7] [13] may be the most ambitious to date. Quantitative case histories based on these methods tend to reaffirm principles of the observational method such as ... it was more important to know whether the field value is above or below some threshold value than it is to know its actual numerical value . . ., and . . . indicating the importance of a conceptual understanding of the site geology in estimating prior probabilities

There is no fundamental conflict between reliability based design and the observational method, provided that Bayesian statistical updating is used. However there may be a conflict if the decision criteria controlling the design are overly simplistic. As Freeze et al., [7] state, the common risk-cost-benefit approach to design is based on the calculation of the probability of failure, P_f, or the

reliability, (1 - P_D. Hashimoto et al. [9] [10] have suggested that reliability does not provide a complete measure of technical performance. They introduce the concept of robustness in engineering design. A design is robust if it has the flexibility to permit adaptation to a wide range of potential conditions at little cost. When there is large uncertainty in future loads (or capacities) robustness is very desirable. There may be economic tradeoffs available between reliability and robustness.

In this terminology, it would appear that the observational method is a method that emphasizes robustness. It will be of interest in the future to see robustness incorporated into engineering design decision analysis.

Issues In Environmental Geotechnics

Morgenstern [18] reviewed the emergence of the field of environmental geotechnics and concluded that it should be primarily identified with the geotechnical aspects of waste management. It is possible to characterize the geotechnically sensitive problems according to the waste stream encountered and for geotechnical purposes it is useful to distinguish the following: 1) municipal waste, 2) industrial waste, 3) agricultural waste, 4) mining waste, and 5) nuclear waste:

- 1) Municipal waste: Municipal waste may be contained in landfills which are not generally regarded as hazardous. In industrialized countries, landfill siting, design, construction, operation and closure are becoming increasingly complex and costly. Geotechnical engineering has input to many aspects of landfill development and operation.
- 2) Industrial waste: Many industrial activities result in hazardous waste that has entered the ground. Non-hazardous waste materials, such as coal fly-ash, are also produced by industrial processes. There

are geotechnical challenges associated with the increased utilization of such waste. Otherwise storage issues do not differ greatly from those encountered in the disposal of municipal waste.

Generators of hazardous waste are increasingly under pressure to reduce or eliminate their waste stream. Legislation is aggressive, particularly in the USA, requiring "cradle-to-grave" management and cleanup of past contaminated site. Complex management systems have evolved. The geotechnical engineer makes contributions to many aspects of contaminant control and site remediation.

- Agricultural waste: Geotechnical aspects
 of farm waste management have not
 received as much attention as other waste
 management issues. Intensive farming can
 readily result in ground water
 contamination.
- 4) Mine waste: Georechnical engineering has long made contributions to mine waste management. A distinction can be made between dry waste streams and wet waste streams [17]. The design of dry waste dumps and of tailings dams are illustrative of different geotechnical issues arising from these two sucams. In some mineral processes, large amounts of water are utilized in separation and large volumes of waste result. Many other geotechnically sensitive issues arise in the mining industry such as mitigation of acid generation, environmentally safe operation of heap leaching and design for reclamation and abandonment.
- 5) Nuclear waste: Nuclear waste generates different public perceptions than other industrial wastes. In many countries dealing with this issue low and intermediate level reactor wastes are stored in either above ground or in-ground engineered structures. Some of the most costly research and development programs in geotechnical engineering have been mounted to address the issue of long term storage of high level waste. No nation has

yet fully resolved this issue and a variety of repository and containment strategies are under investigation.

Important differences arise in the practice of geotechnical waste management when compared with other areas of geotechnical engineering. For example, undertakings are often highly interdisciplinary and the geotechnical engineer is obliged to extend his scientific and technological range in order to function effectively in the design team. The appropriate technology is also very regional dependent. This is more so than, say, the design of a dam. These and other related factors warrant analysis, but they have little bearing on the application of the observational method. Other issues arise that do and they are the focus of this presentation.

While there are some circumstances in environmental geotechnics such as within the mining industry that are ideal for the application of the observational method, there are others in which it is seriously constrained. Constraints arise from i) the regulatory environment, ii) the nature of decision-making related to environmental matters and iii) the issue of longevity.

Environmental issues are highly regulated. The geotechnical engineer is no stranger to regulations but he has usually had little to no input into the framing of the regulations that circumscribe his environmental design practice. The regulatory structure is most highly developed in the USA and it has emphasized the use of quantitative risk analysis in the decision-making process. For example Wallace and Lincoln [26] summarize this process as implemented by the U.S. Environmental Protection Agency (EPA) in their evaluation of Superfund site remediation. They note that quantitative risk assessments are conducted for each potential remedial alternative to determine whether the remedy can reduce the health and environmental risks to acceptable levels and the subsequent decision with regard to remedial design and actions is driven by this process. tendency of enforced quantification of what might be unknowable is in conflict with the effective application of the observational method. It promotes the false view that more study will necessarily reduce uncertainty and it encourages a separation between design and construction or implementation. Jasanoff [14] has analyzed the broad implications of this trend in the United States with fascinating conclusions:

"I have suggested that risk assessment in the United States is the product of a political process that combines large policy expectations with little trust in those called upon to formulate specific policy outcomes. Such a system threatens the credibility both of regulators and science as an institution. Pressing the evidence to produce levels of precision that it cannot support augments controversy and may feed the disenchantment with science and the scientific community already endemic in the U.S. political environment".

The observational method with its emphasis on reasonable assurance has much to commend it as an alternate basis for decision making.

The resolution of environmental issues almost always involves decision-making in the public domain. The specific process will vary from jurisdiction to jurisdiction. It may involve formalized quasi-judicial hearings to review an environmental impact statement or it may require more local informal hearings. Increasingly, the geotechnical engineer, together with other technical specialists, will find that he is not trusted. There is a disaffection with specialists on the part of the public. The geotechnical engineer must learn to earn trust on these occasions through his objectivity, the reasonableness of his claims and the ability to translate his engineering into terms and concepts appropriate for decision-making in the public domain. Under these circumstances it is important that the observational method not be construed as trial and error.

There is an understandable desire on the part of the public for waste management and related containment to have negligible impact in perpetuity. This is manifest at its most extreme in public policy related to high level nuclear waste storage. The issue of longevity creates problems for the geotechnical engineer.

It becomes increasingly necessary to understand the physical phenomenon involved in the long term to a high degree and it is necessary to have confidence in the long term behaviour of materials, whether natural or manufactured. However, this may not be enough. The use of the observational method relies on systematic performance monitoring and effecting changes in the light of this. monitoring. It should be noted that the consistent application of such measures is limited to about 50-75 years of experience. There is difficulty in claiming that one can rely on such methods for a contaminating life span of hundreds of years, let alone the thousands of years that might be required in the design of nuclear waste repertories. The existence of a stable society is a necessary condition for reliance on the observational method. History suggests that even the required social stability cannot be assumed to exist too far into the future. This creates both an ethical and a technical dilemma for the geotechnical engineer. These issues will be discussed in more detail in the context of the examples of the use of the observational method in environmental applications that follow.

The Observational Method In Mine Waste Management

The mining industry often provides near ideal conditions for the application of the observational method. Excavations or construction of waste management structures proceed in an incremental manner over many years. As a result there is often ample opportunity to observe and modify design or procedures. This concept is entirely consistent with the philosophy of continuous improvement that is characteristic of, at least, the larger mining operations. Moreover the

artificial contractual barriers that arise between owners, consultants and contractors and which inhibit making changes can be reduced to a minimum in the mining industry. The successful completion of the Mildred Lake Settling Basin (tailings dam) at the Syncrude Canada Ltd. oil sand mine site, Ft. McMurray, Alberta, Canada provides a vivid example. Details on the geotechnical aspects of oil sand recovery are given by Morgenstern et al. [19].

Approximately 475 x 10⁶ m³ of sand, 400 x 10⁶ m³ of sludge and 50 x 10⁶ m³ of free water will require storage for several decades within this basin. To accommodate these volumes approximately 18 km of dyke ranging from 32 to 90 m in final height have been constructed. At completion, the basin will have a surface area of 17 km². It is currently (1994) nearing completion.

The general layout is illustrated in Figure 2. For planning purposes the dyke perimeter has been divided into 700 m long segments which are referred to as cells. The cell locations are also shown in Figure 2.

Figure 3 illustrates a typical design section for the tailings dyke. The compacted shell is constructed by utilizing hydraulic construction techniques employing dozer compaction. During the winter months when this is not feasible, the tailings stream is discharged upstream of the compacted shell to form a beach. The downstream slope angles are largely dictated by the underlying geology and associated shear strength parameters together with pore pressure response. Beneath much of the dyke is found the Cretaceous Clearwater Formation, a highly plastic clay-shale that has been weakened to its residual strength by glacial drag porcesses.

Given the complexity of the foundation and the scale of the project, it was considered at the outset that design and subsequent construction should utilize the observational method. Initial design was based on approximately average properties and instrumentation was installed in different cells. The intensity of instrumentation depended

stability. Construction proceeded cautiously. Advanced suess analysis was initiated to study the movement mechanism and this revealed that strain in the toe zone was a key issue. Advances were made in instrumentation for strain in the toe region and the dyke was completed on the basis of strain monitoring. In this way in excess of 40 cm of slip were accommodated in the foundation of the dyke in a safe manner. There was always the additional option of more slope flattening but at substantial cost.

The observational method provided an economical resolution of a difficult geotechnical problem that standard analytical procedures could not encompass. The application of the observation method employed not only flexible planning but also advances in geological understanding, instrumentation and theoretical analysis. The relatively slow rate of construction of the dyke facilitated its application.

The Observational Method In Ground Remediation

One of the most widely used methods for remediation of contaminated groundwater is the pump-and-treat method. Contaminated groundwater is pumped to the surface and contaminants are then removed in an appropriate treatment system so that the water can be discharged or re-injected. There are many problems associated with estimating the cleanup time and hence the cost and efficiency of this technology. Kent and Mann [15] note that there have been very few documented case histories of complete cleanup of a contaminated aquifer. Many recovery operations have been terminated, but most have not recovered all of the contaminant mass. A review of several case histories indicates that removing 10-25 plume volumes may be necessary to reduce contaminants to acceptable levels. Many professionals are beginning to believe that recovery well systems may never reduce concentrations of organic contaminants to background levels.

Many of the technical problems associated with this and other remediation techniques are reasonably well understood and undoubtedly advances in scientific understanding will increase the range of problems that can be addressed adequately. However, it is important to recognize McCarty's [16] caution:

".... there needs to be a recognition that there are many sites of contamination that, if not entirely beyond our ability for rectification in an environmentally satisfactory way, may at least require many years to remediate, may involve enormous sums of money, and may create other environmental and social problems that may be equal to or greater than that posed by the contamination itself. Because of the great diversity of the problem sites, setting criteria and priorities for cleanup is not a simple task. An easy solution is not likely to be found."

The frustration expressed by all parties involved in the remediation of contaminated soils and ground water is understandable.

This frustration is compounded by the management process in which site remediation studies, design and execution unfold. In a series of penetrating studies Wallace and Lincoln [26], Brown, Lincoln and Wallace [1], and Holm [12] have analyzed the U.S. Environmental Protection Agency (EPA) procedures and find them wanting in their handling of uncertainty. They propose instead a process that by explicitly recognizing uncertainty in a proper application of the observational method offers the opportunity to reduce project time and costs as well as risks.

The current management process for Superfund site remediation is illustrated in Figure 5. It follows a traditional study-design-build approach. A remedial investigation (RI) is initiated which results in a feasibility study (FS) that compares the alternatives for remediation. The client proposes and the EPA selects an alternative (the record of decision, ROD). A consultant designs the remediation (remedial design - RD) and contractors bid on implementation

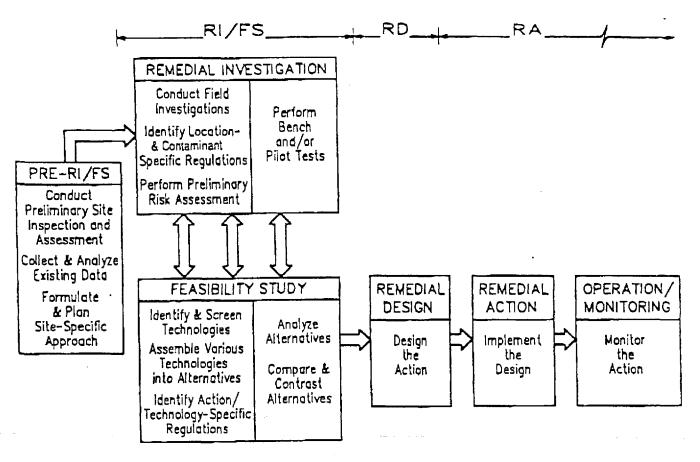


Figure 5. Schematic of the remedial process (Holm, 1993)

(remedial action - RA). Both RD and RA may involve supplemental site investigation. This procedure, common in many types of engineering, emphasizes the reduction of uncertainty early in the life of a project. However, as stressed in the preceding references, this is not an appropriate strategy for coping with the inherent uncertainty of ground remediation.

Often difficulties result in failure to advance in the process due to this uncertainty. There is an implied separation of the decision - making process into specific steps and there may be an inference that the remediation goal is to be reached at completion of implementation. Holm [12] observes that the combined effect may manifest itself as a hesitancy to establish objectives for remediation and an insistence that additional data be gathered often with the mistaken impression that uncertainty will be

eliminated.

These authors advocate the incorporation of the observational method into the methodology of waste remediation by requiring the total process to be a continuum. That is, the interpretation of conditions, criteria and performance that are made in the hypotheses. arc working DIOCESS Reassessment continues from pre-RIFS through implementation. Additional data needs are assessed based on their potential to disprove the working hypotheses. Decisions are finalized only after the remedy is in place and sufficient monitoring has been conducted to confirm performance. This distinction is illustrated in Figure 6.

As summarized by Brown, Lincoln and Wallace [1] the key contributions of the observational method to ground remediation

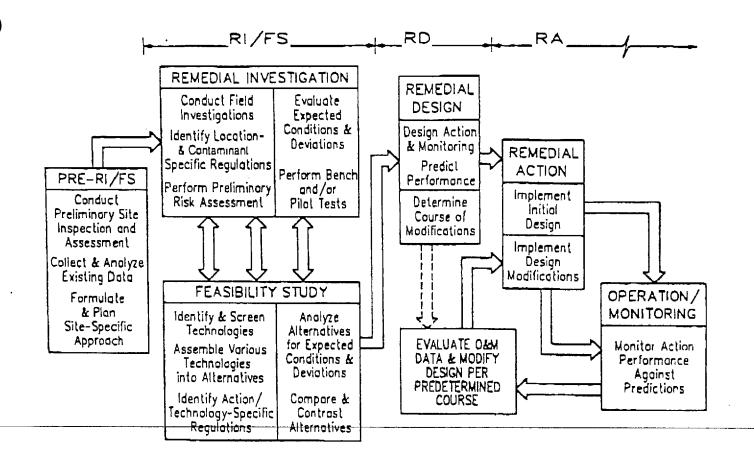


Figure 6. Schematic of the observational method (Holm, 1993)

are:

- 1. Remedial design based on the most probable site conditions,
- 2. Identification of reasonable deviations from those conditions.
- 3. Identification of parameters to observe so as to detect deviations during remediations,
- 4. Preparation of contingency plans for each deviation.

The observational method offers the potential to reduce time and cost, as well as to decrease the risks associated with remediation. This is becoming recognized with advances in pump-and-treat rechnology that employ

dynamic adaptive well field management techniques [11].

The Observational Method in Landfill Design

The design of landfills has become increasingly complex. In the case of non-hazardous waste landfills, it is common to require a leachate collection and removal system overlying a composite liner composed of a geomembrane and compacted clay liner. For hazardous waste landfills much practice is influenced by EPA requirements of a double liner system with a leachate collection layer located above a primary geomembrane liner and a leak detection and removal system

located below the primary liner and above the secondary composite liner. Even more complex systems have been proposed and constructed.

Final covers are also increasingly multi-layer systems designed to control erosion, support vegetation, inhibit infiltration and facilitate gas drainage.

The observational method is often embedded in the monitoring measures implementation of remedial measures should they become necessary. Say that the operational life of the landfill is 20 years, it . would not be difficult for the geotechnical engineer to promise acceptable performance for a 30 year post closure period. There is experience with monitoring engineered structures over this period and concern over fundamental durability of the geosynthetics utilized in landfills is minimal for this duration. However, social fairness in dealing with environmental problems increasingly requires negligible impact over a much longer period; even perpetuity! This taxes reliance on the observational method.

The issue of longevity arises in many ways. In some instances, leachate production and accumulation may be deferred for many decades. In other instances the long term reliability of landfill components may be questioned. This concern might arise from intrinsic degradation of geosynthetic materials themselves or, as is more likely, from practical considerations of clogging of leachate control measures. As emphasized by Rowe [23], there is a moral responsibility to consider the longer term consequences. In some areas there is also a regulatory responsibility to consider environmental protection in perpetuity.

An interesting example of the latter is the Ontario Ministry of the Environment guidelines associated with its Reasonable Use Policy which provides a means of quantifying long term negligible effects in a rational manner. This policy places no time constraint on the period during which the landfill is to have a negligible effect on local reasonable

use of groundwater. An unacceptable impact could be expressed in terms of a limiting contamination concentration at the site boundary. As a result it becomes necessary to assess the service life of the facility and compare it with the "contaminating lifespan", which is the period of time during which the landfill will produce contaminants at levels that could have unacceptable impacts if they were discharged to the environment.

The contaminating lifespan will depend on the contaminant transport pathway, the leachate strength, the mass of waste and infiltration through the cover. It is conceivable that the contaminating lifespan, driven by diffusion processes, could be measured in hundreds of years and under these circumstances the geotechnical designer cannot in good conscience rely on the observation method. Rowe [24] has indicated methods for estimating the contaminating lifespan of landfills and he notes the need to monitor leachate levels and concentrations for the entire contaminating lifespan of the landfill. If these levels exceed nigger levels, appropriate leachate control measures would be initiated. In essence, he is advocating allowable contaminating lifespans that can be managed by the observational method, say 50-75 years.

This would be consistent with good geotechnical practice, but would introduce more active landfill control measures than are common today. For example, it would make sense to maximize leachate generation during the active phase of landfill development. While simple in concept, this is not so readily achieved. Crutcher and Mosher [4] have described the moisture addition and leachate recycle program at a large landfill and note problems that arise from interference with the moisture collection system, short-circuiting during recycle in the refuse, enhanced gas and odour problems and leachate treatment issues. Other measures that can affect the contaminating lifespan include inward gradient systems during the active operating phase and improving the sorption characteristics of clay barriers [8].

It is important that the geotechnical engineer

involved in landfill design recognize the constraints that long contaminating lifespans impose upon the application of the observational method in practice.

The Observational Method In Nuclear Waste Management

The development of a nuclear waste management policy has been both difficult and contentious in many countries. There are a variety of issues involved but the comments here will be restricted to scientific and technological issues. The debates over scientific evidence are most extensive in the USA and this experience will be used to highlight the role of the observational method in developing a nuclear waste management policy.

Controversies over evidence have been particularly important because of the many scientific uncertainties and problems inherent in trying to ensure that nuclear waste in a geological repository will harm neither people nor the environment for the thousands of years that the waste will remain hazardous. Colglazier [3] notes that this requirement of guaranteeing adequate safety over millennia is an unprecedented undertaking for our regulatory and scientific institutions.

There is widespread international agreement that deep geological disposal is the best option for disposing of high-level radioactive waste. While there is no reason to doubt that such a repository could be built, and not withstanding very substantial expenditures to date, a study conducted by the Board on Radioactive Waste Management, U.S. National Research Council [21] concluded that the U.S. Program, as conceived and implemented over the past decade, was unlikely to succeed. attributed a high degree of inflexibility to the U.S. approach which was not well matched to the technical task. In particular the approach assumed that the properties and future behaviour of a geological repository can be determined and specified with a very high degree of certainty. In reality, they observed, the inherent variability of the geological environment will necessitate frequent changes in the specifications, with resultant delays, frustration and loss of public confidence.

The Board was also concerned that geological models, and indeed scientific knowledge generally, had been inappropriately applied. They noted that computer modelling techniques and geophysical analysis can and should have a key role in the assessment of long-term repository isolation. In the face of public concerns about safety, however, models were being asked to predict the detailed structure and behaviour of sites over thousands of years. The Board believes that this was scientifically unsound and would lead to bad engineering practice.

Following a study, the Board ultimately advocated a strategy based on the following premises:

- i) Surprises are inevitable in the course of investigating any proposed site, and things are bound to go wrong on a minor scale in the development of a repository.
- ii) If the repository design can be changed in response to new information, minor problems can be fixed without affecting safety, and major problems, if any appear, can be remedied before damage is done to the environment or the public health.

Three principles are embodied in the advocated flexible approach:

- Start with the simplest description of what is known, so that the largest and most significant uncertainties can be identified early in the program and given priority attention.
- ii) Meet problems as they emerge, instead of trying to anticipate in advance all the complexities of a natural geological environment.

iii) Define the goal broadly in ultimate performance terms, rather than immediate requirements, so that increased knowledge can be incorporated in the design at a specific site.

This approach is, for all practical purposes, the observational method and it is a recognition of the realities of geotechnical practice.

Nuclear repository design requires consideration of safety for periods well in excess of those that can be relied upon by monitoring alone. One means of extending the time scale to offer a reasonable assurance in the design is to rely on natural analogues. Fortunately, several exist that are meaningful for underground repository design.

Conclusions

The geotechnical engineer, artful in the application of the observational method, has no difficulty in accepting the dictum cited by Southwood [25]: "The things we would like to know may be unknowable".

The observational method is an effective method for coping with uncertainty in the implementation of engineering works, particularly uncertainty arising from ground conditions. As such it is a means of risk management and it is sometimes in conflict with other procedures for risk management.

The value of the observational method in conventional geotechnical engineering has been proven beyond a doubt. It has also been shown to be effective in various aspects of environmental geotechnics such as mine waste management and in-situ remediation. However restraints arise in its application from a limited understanding of the observational method, from a dominance of regulations that pre-empt its use, and from issues associated with longevity that limit its practical application.

Neither the public at large nor many regulatory agencies have a full appreciation of and a trust in the application of the observational method for waste management engineering. This is an issue that challenges the geotechnical engineer and requires on-going attention so that the observational method is not perceived as design by trial and error. Risk communication is an integral part of risk management.

References

[1] Brown, S.M., Lincoln, D.R. and Wallace, W.A., 1990. Application of the observational method to hazardous waste engineering. J. Management Eng., ASCE, Vol. 6, p. 479-500.

[2] Chen, Z., Morgenstern, N.R., and Chan, D.H., 1992. Progressive failure of the Carsington Dam: a numerical study. Canadian Geotechnical Journal, Vol. 29, p. 971-988.

[3] Colglazier, E.W., 1991. Evidential, ethical and policy disputes: admissible evidence in radioactive waste management. In Acceptable Evidence ed. by D.G. Mayo and R.D. Hollander, Oxford University Press. New York, p. 137-159.

[4] Crutcher, A.J., and Mosher, F.A., 1991. Leachate collection and moisture recirculation at the Keele Valley Landfill site. Proc. 1st Canadian Conference on Environmental Geotechnics, Canadian Geotechnical Society, Montreal, p. 57-64.

[5] D'Appolonia, E., 1990. Monitored decisions. J. Geotech. Eng., ASCE, Vol. 116, p. 4-34.

[6] Fair, A.E., and Handford, G.T., 1986. Overview of the tailings dyke instrumentation program at Syncrude Canada Ltd. In Geotechnical Stability in Surface Mining ed. by R.K. Singhal, Balkema, p. 245-254.

[7] Freeze, R.A., Massmann, J., Smith, L., Sperling, T., and James, B., 1990. Hydrogeological decision analysis, 1.A framework. Ground Water, Vol. 28, p. 738-766.

[8] Gray, D.H., 1993. Strategies and techniques for the geo-containment of toxic wastes. In Geoconfine '93, ed. by M. Amould, M. Barrès and B. Come, Balkema, p. 213-218. [9] Hashimoto, T., Stedinger, J.R., and Loucks, D.P., 1982(a). Reliability, resiliency and vulnerability criteria for water resource system performance evaluation. Resources Research, Vol. 18, p. 14-20.

[10] Hashimoto, T., Loucks, D.P., and Stedinger, J.R., 1982(b). Robustness of water resource systems. Water Resources Research,

Vol. 18, p. 21-26.

[11] Hoffman, F., 1993. Ground-water remediation using "smart pump and treat". Ground Water, Vol. 31, p. 98-114.

[12] Holm, L.A., 1993. Strategies for remediation. In Geotechnical Practice for Waste Disposal ed. by D.E. Daniel, Chapman and Hall, London, p. 289-310.

[13] James, B.R., and Freeze, R.A., 1993. The worth of data in predicting aquitard continuity in hydrogeological design. Water Resources

Research, Vol. 29, p. 2049-2065.

[14] Jasanoff, S., 1991. Acceptable evidence in a pluralistic society. In Acceptable Evidence ed. by D.G. Mayo and R.D. Hollander, Oxford University Press, New York, p. 29-47.

[15] Kent, B., and Mann, P., 1993. Recovery well systems. In Geotechnical Practice for Waste Disposal, ed. by D.E. Daniel, Chapman

and Hall, London, p. 497-519.

[16] McCarty, P.L., 1990. Scientific limits to remediation of contaminated soils and ground water. In Ground Water and Soil Contamination Remediation: Toward Compatible Science, Policy and Public Perception, p. 38-52, National Research Council, National Academy Press, Washington.

[17] Morgenstern, N.R., 1985. Geotechnical aspects of environmental control. Proc. 11th International Conference Soil Mechanics Found. Eng., San Francisco, Vol. 1,

p. 165-185, Balkema.

[18] Morgenstern, N.R., 1991. emergence of environmental geotechnics. Proc. 9th Asian Regional Conference, Int. Soc. Soil Mechanics Found. Eng., Bangkok, Vol. 2, p. 19-25.

[19] Morgenstern, N.R., Fair, A.E., and McRoberts, E.C., 1988. Geotechnical engineering beyond soil mechanics - a case study. Canadian Geotechnical Journal,

Vol. 24, p. 637-661.

[20] Muir Wood, A., 1990. The observational method revisited. Proc. 10th Southeast Asian Geotechnical Conference, Taipei, Vol. 2,

p. 37-42.

[21] National Research Council, 1990. Rethinking High-Level Radioactive Waste Disposal. Board on Radioactive Waste Management, National Academy Press, Washington, D.C.

[22] Peck, R.B., 1969. Advantages and limitations of the observational method in applied soil mechanics. Geotechnique,

Vol. 19, p. 171-187.

[23] Rowe, R.K. 1991 (a). Some considerations in the design of barrier systems. Proc. 1st Canadian Conference on Environmental Geotechnics, Canadian Geotechnical Society, Montreal, p. 157-164. [24] Rowe, R.K. 1991 (b). Contaminant impact assessment and the contaminating

lifespan of landfills. Canadian Journal of Civil Engineering, Vol. 18, p. 244-253. [25] Southwood, T.R.E., 1985. The roles of

proof and concern in the work of the Royal Commission on Environmental Pollution. Marine Pollution Bulletin, Vol. 16,

p. 346-350.

[26] Wallace, W.A., and Lincoln, David, R., 1990. How scientists make decisions about ground-water and soil remediation. In Ground Water and Soil Contamination Remediation: Toward Compatible Science, Policy and Public Perception, p. 151-165, National Research Council, National Academy Press, Washington.

SEVEN GUIDELINES FOR MANAGING UNCERTAINTY IN GEOENVIRONMENTAL DESIGN

Robert B. Gilbert¹ and Travis C. McGrath²

ABSTRACT: Seven, practical guidelines for managing uncertainty in geoenvironmental design are presented. They range in scope from evaluating uncertainty to reducing it and limiting its impact on design performance. The guidelines are derived from theoretical considerations, but do not require an expertise of (or even a background in) the theory to be employed. Simple tools are provided and a design case history is analyzed to facilitate the implementation of these guidelines in practice.

INTRODUCTION

Uncertainty is significant in geoenvironmental design: site conditions vary spatially and with time; field-scale, long-term performance is not known for many engineered systems; and costs and schedules cannot be predicted with accuracy. There have been numerous attempts at applying decision theory and probability theory to account for uncertainty in geoenvironmental design. Specific applications include groundwater remediation (e.g., Sitar et al. 1987; Freeze et al. 1990; Massmann et al. 1991; Woldt et al. 1991), waste containment (e.g., Tang et al. 1994; Benson and Daniel 1994; Gilbert and Tang 1995b) and nuclear waste management (e.g., Roberds et al. 1991; Keeney and von Winterfeldt 1993). However, most of the theoretical work is confined to the world of research, and a large gap currently exists between uncertainty management in theory and practice. It is unreasonable to expect all practitioners to become experts in the theory so that they can apply it in practice. It is also unreasonable to expect that an expert will be involved in every geoenvironmental design project.

The goal of this paper is to present practical guidelines for uncertainty management that are derived from theory. Seven guidelines will be presented: three of the guidelines deal with evaluating uncertainty and its impact on geoenvironmental design, while the remaining four guidelines deal with

Asst. Prof. of Civil Engrg., The University of Texas at Austin, Austin, TX 78712

managing the uncertainty. Simple tools will be provided to facilitate the implementation of these guidelines in practice. A design case history will be used to demonstrate the guidelines and to illustrate key points. Appendix I provides background information for the case history; this information will be referenced in discussions throughout the remainder of the paper.

GUIDELINE 1

Judgment is essential in evaluating and representing uncertainty.

Uncertainty means that the outcome of a design (i.e., how it will perform) is not known at the outset. Although all uncertainty is ultimately due to a lack of knowledge, it is convenient in practice to consider two types of uncertainty: random uncertainty and systematic (or model) uncertainty.

Random Uncertainty

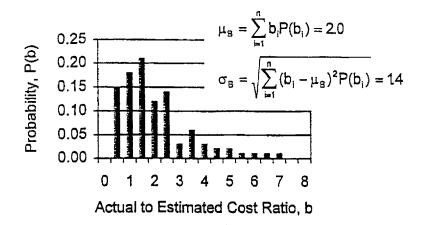
Random uncertainty results from variability with time and/or location. Examples include the daily precipitation at a site (varying from day to day), the hydraulic conductivity of a soil layer (varying with location), or the ratio between an actual construction cost and the estimated cost (varying from project to project). Because of this variability, there will be uncertainty in predicting new values (e.g., at future otimes or different locations).

A random variable model provides a practical tool to quantify variability. This model describes the frequencies with which different values of the variable will occur. For example, a random variable model for the ratio of actual cost to estimated cost in site remediation is shown as a probability distribution on Fig. 1a. This model was developed from data supplied by the U. S. Environmental Protection Agency for 102 Superfund sites (Davis 1996). A random variable model can be continuous (the variable can take on any value) or discrete as in Fig. 1a (the variable can only take on discrete values). In many instances, a discrete model is sufficient for practical purposes even though it may not be entirely realistic. There are several useful properties of a random variable model, as shown on Fig. 1a: the expected or mean value, μ (a measure of the central value for the variable), and the standard deviation, σ (a measure of the variability about the mean value). Since random uncertainty is due to variability, the standard deviation indicates the magnitude of random uncertainty.

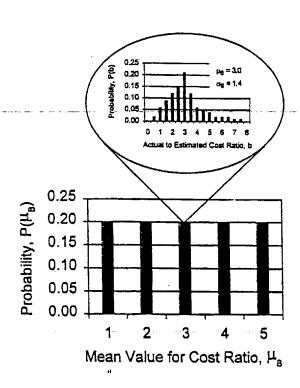
Systematic (or Model) Uncertainty

Systematic (or model) uncertainty results from uncertainty in the random variable models used to represent random uncertainty. Rarely ever in geoenvironmental design will sufficient information exist to formulate the complete probability distribution for a random variable model. For example, the mean ratio between actual cost and estimated cost (Fig. 1a) is uncertain because it is based on data from only 102 sites.

Uncertainty in a random variable model is systematic in the sense that it does not vary (e.g., there is only one mean even though its exact value is not known).


Systematic uncertainty is typically the dominant source of uncertainty in geoenvironmental design due to the scarcity of data. For example, remedial actions have been implemented at only a small percentage of the listed Superfund sites (Russell and Davis 1995). Also, design performance data from five years ago may not be relevant today due to improvements in technology or regulatory changes. Therefore, judgment is essential in evaluating systematic uncertainty.

Theory provides some guidance in the application of judgment. First, model uncertainty, like random uncertainty, can be represented using a probability distribution. For example, a probability distribution representing systematic uncertainty in the mean cost ratio is shown on Fig. 1b. Note that each possible mean cost ratio has an associated distribution accounting for random uncertainty. The probabilities in Fig. 1b do not represent the frequency of occurrence, but rather the likelihood that the mean is equal to different values.


Second, the most important role of judgment is to identify all possible outcomes. The probabilities in Fig. 1b represent the likelihoods relative to all possible outcomes (i.e., a mean of 1, 2, 3, 4 or 5). Failure to consider a possible outcome (e.g., a mean cost ratio of 10) can lead to ineffective design decisions. For example, many pumpand-treat systems were implemented in the 1980s without recognizing their ineffectiveness at removing non-aqueous phase liquids (NRC 1994).

Third, another role of judgment is to impose realistic constraints on the probability distribution. Some outcomes, such as a negative construction cost, may not be possible. Information theory provides guidance on appropriate probability distributions to represent systematic uncertainty within constraints imposed by judgment; an appropriate distribution is one that minimizes unintended biases (e.g., Tribus 1969). Suggested probability distributions for typical constraints are summarized in Table 1. As an example, a discretized version of a uniform distribution (Table 1) is used to model systematic uncertainty in the mean cost ratio (Fig. 1b) because upper and lower bounds can be assigned based on judgment.

Finally, judgment must be applied with care. Cognitive theory suggests potential problems in quantifying judgment into a probability distribution. The most common problems are underestimating the magnitude of uncertainty and imposing artificial biases (e.g., Capen 1976). Formal techniques for subjective assessments are available to minimize these effects (e.g., Roberds 1990). However, most of the problems can be controlled simply by being aware that they exist and clearly defining the parameters to be estimated.

(a) Random Uncertainty in Cost Ratio

(b) Systematic Uncertainty in Mean Cost Ratio

Fig. 1. Random Variable Model for Ratio of Actual to Estimated Cost in Site Remediation

Judgment Constraints Imposed by Judgment Suggested Probability Distribution Significant Features Uniform All possible values are equally Prob. Distr. likely

Variable

Normal

Mean

Variable

Exponential

Variable

Prob. Distr.

Prob. Distr

Mean value at mid-point of lower

Symmetrical distribution about

±1 standard deviation from mean

±2 standard deviations from mean

Symmetrical distribution about

Asymmetrical distribution

63 % of values are less than mean

68 % of values are within

95 % of values are within

and upper bounds

mean value

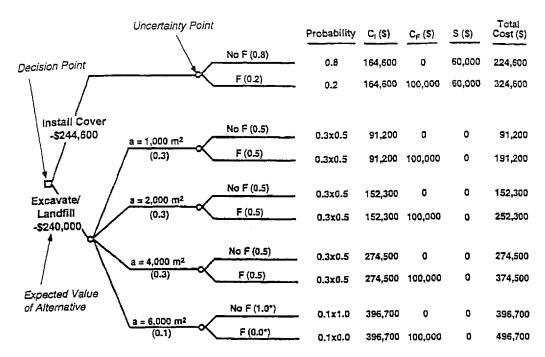
mean value

Table 1. Suggested Probability Distributions Given Constraints Imposed by

GUIDELINE 2

Positive Values and Mean Value

Upper and


Lower Bounds

Mean Value and

Standard Deviation

The outcome of a design (e.g., satisfactory or unsatisfactory performance) will be uncertain. The value of a design is related to the consequences of different outcomes weighted by the likelihoods that those outcomes occur.

Design constitutes a series of decisions that are made under uncertainty and, therefore, risk. A decision tree, as shown on Fig. 2 for the case history site at the completion of Phase I soil sampling (Appendix I), provides a useful tool for analyzing and discussing the design process. For each design alternative, different outcomes can occur. An outcome may be described by a single event (e.g., the cover performs satisfactorily and no future corrective action is required) or a series of events (e.g., 1,000 m² of contaminated soil is excavated to a depth of 0.5 m and there is no residual contamination or need for future corrective action).

F = Future corrective action required

Fig. 2. Decision Tree for Case History Site

Each design outcome has a likelihood of occurrence and an associated consequence. The likelihood of occurrence for an individual event is indicated by the values in parentheses on Fig. 2. As an example, the likelihood that $1,000 \text{ m}^2$ of contaminated soil will have to be excavated is equal to 0.3 based on existing data. The likelihood of occurrence for an outcome is obtained by multiplying the likelihoods together for all events leading to that outcome. The likelihood that $1,000 \text{ m}^2$ of soil will have to be excavated and that no residual contamination exists is $0.3 \times 0.5 = 0.15$ (Fig. 2). The consequence for each possible design outcome is expressed as a total cost on Fig. 2. Estimation of the likelihoods and consequences that are used in the decision tree is discussed in the next section.

The expected (or representative) value of a decision is obtained by weighting each possible consequence by its likelihood

Expected Value =
$$E(Value) = \sum_{i=1}^{n} (Consequence)_i \times p_i$$
 (1)

a = Area of contaminated soil requiring remediation (to a depth of 0.5 m) based on sampling during excavation

C₁ = Cost of implementation (construction, maintenance and monitoring)

Ce = Cost of future corrective action

S = Cost of restricting future land use at the site

Entire work area is excavated - chance for residual contamination assumed negligible

where p_i is the probability that outcome i occurs, (Consequence); is the consequence associated with outcome i, and n is the number of possible outcomes. The expected value of a design alternative provides a convenient measure to compare the value of different designs. If benefits are positive and costs are negative, then the design with the maximum expected value will have the maximum value. In the decision tree shown on Fig. 2, the excavate alternative has the maximum (least negative) expected value. The expected value concept is also helpful in simplifying design decisions. Design outcomes that do not have large consequences or that are not likely are less important, and can possibly be neglected.

GUIDELINE 3

Design decisions should be based only on outcomes that are tangible and consequences that can be measured. Sensitivity analyses should always be conducted to evaluate how estimated quantities affect the value of different design alternatives.

A major difficulty in design is quantifying the likelihoods and consequences of different design outcomes. The key to this process is defining outcomes that are tangible. If an outcome is not tangible, then it is impossible to assess its likelihood of occurrence (one would never know if the outcome had or had not occurred) and it is impossible to evaluate its consequences (consequences could never be linked directly to the outcome). While this guideline is seemingly obvious, it is frequently ignored in practice. For example, an increased risk of cancer in humans due to a site with groundwater contamination is <u>not</u> a tangible outcome, although it is commonly used as a design guideline (e.g., USEPA 1989). Even at the infamous Love Canal site, which is probably the most studied case of site contamination, direct links have never been drawn between environmental contamination and human health effects (e.g., Danzo 1988; Hoffman 1995). An alternative outcome that is tangible would be the contaminant concentration at an exposure point. The case history site (Appendix I) also provides an example of decision outcomes that are not tangible. An example set of tangible outcomes for this site is provided in Table 2.

Table 2. Example Set of Tangible Outcomes for Case-History Site

Original Outcomes Considered	Alternative Outcomes that are Tangible
Overall protection of human health and the	No future corrective action required if mercury
environment	concentrations are kept below:
Long-term effectiveness and permanence	1) 20 mg/kg in the upper 0.5 m of on-site soils and
Reduction of toxicity, mobility or volume of	sediments from drainage ditches; and
contaminant	 2) 2 μg/l in groundwater samples taken from wells
Short-term effectiveness	completed in the shallow aquifer
Implementability	Minimize time to complete remediation
Cost	Minimize total expected cost

Once tangible outcomes are defined, there may still be considerable uncertainty in the likelihoods and the consequences associated with those outcomes. The most rigorous approach to account for this uncertainty is to develop full probability distributions representing both random and systematic uncertainties in these parameters. However, in general, uncertain likelihoods and consequences can be represented simply with estimates for their mean values in design decisions. The value for a design alternative is then approximated from (1) as follows

$$E(Value) = \sum_{i=1}^{n} (\overline{Consequence})_{i} \times \overline{p}_{i}$$
 (2)

where \overline{p}_i is an estimate for the mean likelihood and (Consequence), is an estimate for the mean consequence associated with outcome i. Estimation of these mean values is addressed in the following subsections.

Estimation of Mean Likelihoods

Uncertainty in the frequency of occurrence for an outcome arises from a lack of performance data. Consider a case in which a given outcome has been observed to occur x times in n designs. An estimate for the mean likelihood of occurrence, \overline{p}_i , is given by $\overline{p}_i \equiv (x+1)/(n+2)$ (Ang and Tang 1975). For example, if a design is implemented 5 times and performs successfully each time, then the mean likelihood of unsatisfactory performance, \overline{p}_i , would be estimated as 0.14 (i.e., x=0 failures). Note that the actual frequency of poor performance may be much smaller, but the limited data set does not support a smaller estimate for the mean likelihood. Also note that if no data are available (i.e., n=0), then the estimate for the mean likelihood is 0.5, which is consistent with a uniform distribution bounded by 0 and 1 (Table 1). For the design decision on Fig. 2, it is difficult to estimate the likelihood that future corrective action will be required if the soil is excavated (i.e., the likelihood that contaminated soil is left on-site, leading to future problems). Since the data needed to make this assessment do not exist, the likelihood is estimated to be 0.5.

Performance data will be rare in most instances. While a 0.5 value can serve as a starting point for the mean likelihood, performance modeling can also provide information on the likelihood. The performance model, which can be physical, empirical, analytical or numerical, predicts performance of the design under different conditions. For example, a numerical model of unsaturated flow is used commonly to predict infiltration rates through covers as a function of environmental conditions and cover properties. If probability distributions for the model input parameters are known, then the frequency of different outcomes can be estimated with this model (e.g., the frequency of different infiltration rates). There will be uncertainty in these calculated frequencies because of systematic uncertainties in the input parameters and in the performance model itself (i.e., how well the model represents reality).

A simple chart to account for model uncertainty in estimating \overline{p}_i is provided on Fig. 3. Z is a measure of performance, defined such that Z<0 indicates unacceptable performance (e.g., Z = a maximum allowable, annual infiltration rate minus the actual infiltration rate through a cover). The mean value of Z, μ_Z , is assumed to be greater than zero (e.g., the cover will typically be designed so that the average, annual infiltration rate is less than a maximum allowable rate). The standard deviation of Z, σ_Z , represents the random uncertainty in Z (e.g., due to variability in precipitation between years). Model uncertainty (e.g., uncertainty in the model used to estimate the infiltration rate) is represented by σ_{M} . The curves on Fig. 3, which are developed assuming that Z is normally distributed (Gilbert and Tang 1995a), can be used to estimate the mean likelihood of unacceptable performance as a function of σ_7/μ_7 and $\sigma_{\rm M}/\sigma_{\rm Z}$. For example, if the annual infiltration rate has a mean of 50 mm/yr and a standard deviation of 20 mm/yr while the allowable infiltration rate is 80 mm/yr, then $\mu_z = 80 - 50 = 30$ mm/yr and $\sigma_z / \mu_z = 20 / 30 = 0.67$. If there is no model uncertainty ($\sigma_{M} = 0$), then the mean likelihood of unsatisfactory performance in a given year is 0.07 (Fig. 3). If $\sigma_{\rm M}/\sigma_{\rm Z}=1.0$, then the mean likelihood increases to 0.14 (Fig. 3). The ratio σ_{M}/σ_{Z} will typically be greater than one, and may approach values as large as five.

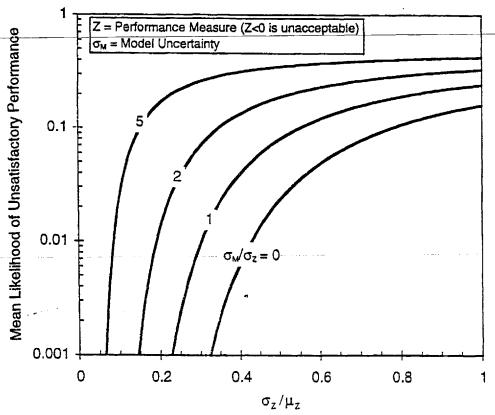


Fig. 3. Effect of Model Uncertainty on the Mean Likelihood of an Outcome

Estimation of Mean Consequences

The potential consequences of unsuccessful or successful designs include: design costs, construction costs, operation and maintenance costs, corrective action costs, legal costs, regulatory fines, environmental effects, human-health effects, worker safety, publicity, land re-use and good-will. There is uncertainty in estimating the consequences associated with a given design outcome (e.g., unsuccessful performance). The outcome may occur many years in the future or be drawn out over long periods of time. Also, an outcome may lead to multiple, incongruous costs and benefits that are difficult to quantify and combine into a single value.

Utility theory has been developed to manage the difficulties in quantifying consequences (e.g., Raiffa 1968). The premise of utility theory is to express all consequences, whether monetary or not, on a normalized utility scale so that they can be combined and compared. The advantage of the utility approach is its generality: different types of consequences can be handled (e.g., construction cost and aesthetic value) and different decision-maker preferences can be accommodated (e.g., a \$10,000,000 loss may be much more significant to a small versus large company). The main limitation of utility theory is also related to its generality. Evaluation of utility values is subjective, which can affect the usefulness of this approach in practice. Many previous authors have discussed the problems in assigning utility values (e.g., Raiffa 1968; Clemen 1991) and in combining utility values from different decision makers (e.g., Merkhofer and Keeney 1987).

An alternative approach to utility that minimizes problems with subjectiveness is to express all consequences in measurable terms, such as economic terms as in Fig. 2. There are several advantages to this approach. It is easier to estimate consequences if they are expressed in concrete terms as opposed to abstract terms. Although tough issues such as aversion to large monetary losses and the intrinsic value of the environment still must be addressed, at least there is some basis for assigning an economic value in a capitalistic society. Also, it is easier to communicate consequences to decision makers and to the public if they are expressed in economic terms. Finally, if consequences can be measured, then the actual consequences of different outcomes can be determined over time after a design is implemented. In this way, actual consequences can be compared with estimated values to provide information for future designs. Therefore, it is recommended that design decisions be based not only on tangible outcomes, but also on consequences that can be measured.

Sensitivity Analyses

Even with tangible outcomes and measurable consequences, it can be difficult in practice to quantify likelihoods and consequences. Sensitivity analyses should always be performed to evaluate how uncertain quantities affect the value of different design options. For example, the following quantities are difficult to estimate in the decision tree shown on Fig. 2: the reliability of the cover system (i.e., the likelihood

that it performs successfully in the long term); the cost of restricted land-use for the cover alternative, S; and the present-worth cost of future corrective action for either alternative, C_F (this cost is assumed to be equal for the two alternatives). The value of each design alternative has been evaluated as a function of these variables, and the results are shown on Fig. 4. Each curve for a given cover reliability represents combinations of S and C_F for which the two alternatives have equal expected costs. If the cover reliability is 0.8 and C_F is \$100,000, for example, then the two designs have equal value for S equal to \$55,400. For pairs of cost values above a particular cover-reliability curve, the excavation alternative minimizes the expected cost. For pairs below the curve, the cover alternative has the lower expected cost.

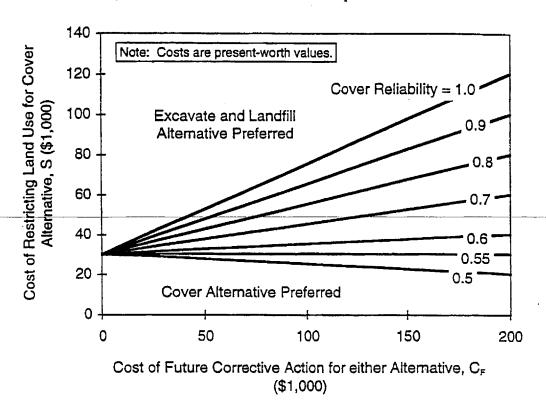


Fig. 4. Sensitivity of Decision to Uncertain Costs and Cover Reliability

There are several interesting conclusions that can be drawn from Fig. 4. The relative design values are insensitive to C_F if the cover reliability is equal to 0.55. At this reliability level, the excavate alternative will have the maximum value for all S values greater than \$30,400. The sensitivity of the decision to the cost of future corrective action increases as the reliability level increases. The reliability of the cover is expected to be greater than 0.55. The primary mode of failure, gully erosion and subsequent contaminant outwash caused by a single, major storm event, is not very

likely. An upper-bound value for the reliability is 1.0. At this reliability level, the critical value for S is not much greater than \$30,400 for small C_F values. However, as C_F approaches \$200,000, the critical value of S approaches \$120,000. Since a reasonable upper bound for C_F is \$200,000, the excavate alternative will be preferred over the cover alternative if the cost of restricted land use is greater than \$120,000, regardless of the cover reliability.

GUIDELINE 4

There are two approaches for managing uncertainty in design: (1) try to reduce the uncertainty by obtaining more information and (2) try to limit the impact of uncertainty on performance of the design.

Thus far, this paper has addressed the evaluation of uncertainty and the analysis of its effects on design. The remainder of the paper will deal with the management of uncertainty in design. There are two basic approaches for managing uncertainty: (1) reduce the uncertainty and (2) limit its impact on design performance.

An example of uncertainty management through uncertainty reduction is shown on Fig. 5 for the case history site. A reduction of uncertainty in the area of contaminated soil (and therefore the volume assuming an average excavation depth of 0.5 m) through additional sampling may prove valuable. The benefit of knowing the area before deciding to excavate the soil is that the area may be larger than expected, in which case the cover option may be preferable. For example, if the entire 6,000 m² work area is contaminated, then the cover alternative has greater value than the excavate alternative (Fig. 5). The maximum possible value from this approach is obtained if the area is determined with certainty by the additional sampling (i.e., uncertainty is eliminated). The design value if uncertainty in the volume is eliminated is \$200,900, compared to a value of \$240,000 if no further sampling is performed (Fig. 5); therefore, the maximum possible value of additional sampling is \$39,100.

An example of uncertainty management through limiting its impact on design performance is shown on Fig. 6. The impact of uncertainty in long-term performance of the cover can be reduced by increasing the level of maintenance. In this case, the maximum possible value is obtained if the cover reliability is increased to 1.0. The design value for this approach is -\$224,600, compared to the base case value of -\$240,000 (Fig. 6); therefore, the maximum possible value of improved reliability is \$15,400.

The value gained through uncertainty management depends on the increased benefits or reduced costs associated with the design, but also on the cost associated with the management. For example, the maximum \$39,200 value associated with eliminating the uncertainty in the contaminated soil volume corresponds to approximately 200 soil samples analyzed for mercury content. It may not be possible to eliminate uncertainty in the contaminated area with 200 additional

samples. As another example, it may not be possible to ensure successful cover performance by spending an additional present-worth amount of \$15,400 on maintenance. Optimization of the value gained through uncertainty management is discussed in the following sections.

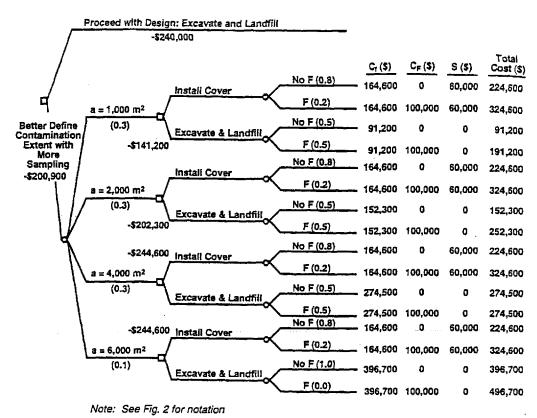


Fig. 5. Value of Additional Sampling to Reduce Uncertainty

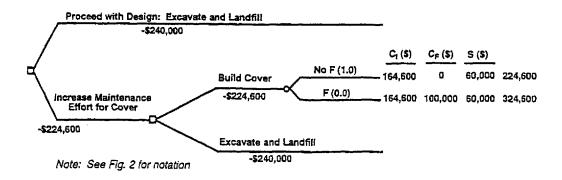


Fig. 6. The Value of Limiting the Impact of Uncertainty

GUIDELINE 5

Uncertainty in an average (e.g., the average fraction of surficial soils contaminated with mercury) can generally be reduced with additional data. Uncertainty in a detail (e.g., the specific boundary of soil contaminated with mercury) is usually more difficult to reduce.

Reduction of Uncertainty in Averages

Average values are commonly of interest in design decisions. Examples include the average contaminant concentrations in groundwater upgradient and downgradient from a site, the average volume of contaminated soils, the average hydraulic conductivity of a clay liner, the average shear strength along an interface in a containment system, and the average annual infiltration through a cover. Uncertainty in the estimated average for a variable is related to the amount of random variability in the variable (with time or location) and to the number of measured values (at different times or locations) as follows

$$\sigma_{\overline{X}} = \frac{\sigma_{X}}{\sqrt{n}} \tag{3}$$

where X is the variable, \overline{X} is the average, $\sigma_{\overline{X}}$ is the standard deviation of the average (systematic uncertainty), σ_{X} is the standard deviation representing random variability in X and n is the number of independent measurements of X.

The simple relationship in (3) provides useful insight into optimizing the value of information for average values. First, variables with the largest variability (large σ_X) will have the greatest uncertainty in the average for a given number of measurements. The magnitude of σ_X is related both to real variations in X and artificial variations due to random errors in the measurement process. In general, investigation programs should focus more attention on variables with large σ_X values, although the focus also depends on the importance of \overline{X} in the design decision and the cost of measurements. Second, there is a diminishing return in uncertainty reduction with additional measurements. The reduction in uncertainty can be measured by $\sigma_{\overline{X}}/\sigma_X$, which is equal to $1/\sqrt{n}$ from (3). Hence, the marginal reduction in the uncertainty with increasing n decreases as n increases, as shown on Fig. 7 (the curve labeled independent sampling).

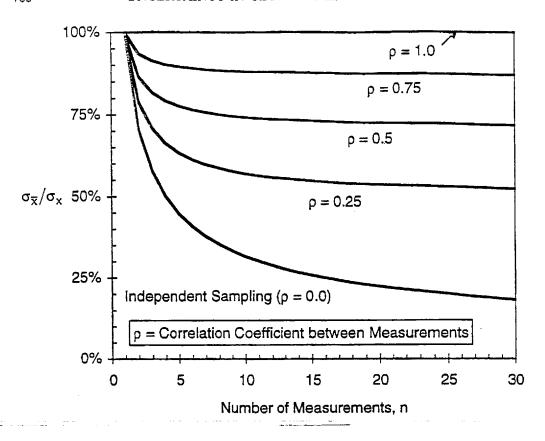


Fig. 7. Uncertainty Reduction versus Sampling Effort

The ability to reduce uncertainty in an average with measurements is affected by correlations between measurements. Measurements will be positively correlated if samples are spaced closely or if there is a systematic error in the measurement process (e.g., sample disturbance). For positively correlated measurements, (3) is modified as follows (e.g., Cochran 1963)

$$\sigma_{\overline{x}} = \frac{\sigma_{X}}{\sqrt{n}} \sqrt{1 + (n-1)\rho}$$
 (4)

where p is the correlation coefficient between measurements (p ranges in magnitude from 0.0 for no correlation to 1.0 for perfect correlation). Each measurement is assumed to be correlated with every other measurement in (4), typical of a systematic error in the measurement process. As the correlation increases, the sampling efficiency decreases, as shown on Fig. 7. This reduction in efficiency occurs because positively correlated samples provide redundant information; the amount of

redundancy increases with increasing ρ . It is impossible to achieve a $\sigma_{\overline{X}}/\sigma_{X}$ ratio that is less than $\sqrt{\rho}$, regardless of the number of measurements (Fig. 7).

In many cases, only samples that are located close together will be correlated. As an example in the case history (Appendix I), mercury measurements in surficial soils were highly correlated within a radius of several meters. In these cases, the effective correlation coefficient for the group of n samples will be smaller than the correlation coefficient between closely spaced samples. When there is a correlation of p between n_p pairs of samples and no correlation between the remainder of the samples, the effective correlation coefficient for the entire sample group, $\rho_{\rm eff}$, can be approximated by the following (e.g., Gilbert 1987)

$$\rho_{\text{eff}} = \left(\frac{2n_{p}}{n(n-1)}\right) \rho \tag{5}$$

For example, if twenty measurements are made (n = 20) and pairs of adjacent measurements are correlated ($n_p = 19$) with $\rho = 0.8$, then ρ_{eff} is equal to 0.08. Journel and Huijbregts (1978) and Vanmarcke (1983) provide more detailed treatments for spatially correlated data.

Additional unknowns will also limit the effectiveness in reducing $\sigma_{\overline{X}}$ with measurements. The effect of additional unknowns can be accounted for approximately by replacing σ_X in (3) with an effective value, σ_{eff} , that is larger to reflect the additional uncertainty. As an example, if the standard deviation of X is not known (rarely ever will σ_X be known if the mean of X is not known), then σ_{eff} is approximated by $\sigma_{\text{eff}} \equiv s\sqrt{(n-1)/(n-3)}$ where s is an estimate for σ_X based on the measured data (Ang and Tang 1975). Consider the case where $s \approx \sigma_X$ and n = 5; σ_{eff} is approximately 1.4 times greater than the estimate for σ_X due to the additional uncertainty. The difference between σ_{eff} and σ_X decreases with increasing n.

An application of these concepts to the case history site demonstrates their usefulness. Mercury-contaminated soil is distributed across the site in concentrated areas (or hot spots) that correspond to areas where mercury was temporarily stored. It is not possible to determine the location, size or frequency of these hot spots based on the limited site history information and Phase I sampling. The average fraction of contaminated area (relative to the 6,000-m² work area) will provide information about the expected volume of contaminated soil. Reduction in the uncertainty about this average fraction is shown on Fig. 8 as a function of the number of additional samples. These curves were generated by numerically simulating a random pattern of contamination across the site, and then sampling from the simulated site according to a fixed grid. Curves are shown for two different average hot-spot diameters. Note that the curves follow the same general trend as that shown on Fig. 7 for the simple

model. Also, note that the sampling efficiency decreases for smaller sample spacings because adjacent samples are correlated (i.e., they may come from the same hot spot).

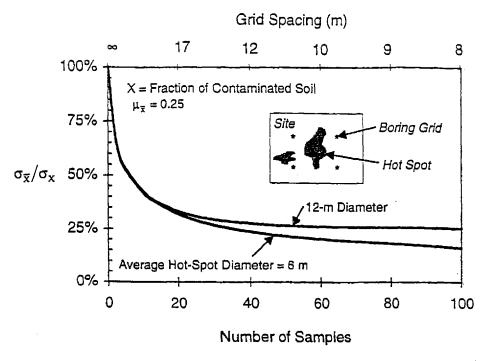


Fig. 8. Numerical Simulation Results for Estimating the Fraction of Contaminated Soil

Reduction of Uncertainty in Details

Details are more useful pieces of information than averages in many design decisions. For example, information about specific hot spots (i.e., their location and size), not the average fraction of contaminated soils, is necessary to develop an excavation plan and accurately estimate the cost of clean-up. While averages can generally be inferred from measured data, details are more difficult to infer. An example is the average mercury concentration (an average) versus the concentration at a specific location in the soil (a detail). Uncertainty in the average can be reduced by taking measurements from anywhere on the site as long as they provide representative samples. However, the only way to reduce uncertainty in the concentration at a specific location is to take a measurement from at (or near if concentrations are correlated) the location. If the location is not known, as is the case in trying to define the boundaries of mercury contamination, then significant effort may be required to reduce uncertainty in the detail.

The case history site provides valuable lessons in the difficulties associated with reducing uncertainty in details. First, a common approach is to try to reduce the number of required samples by identifying the locations of hot-spots based on site history, visual markings, or other information. The Phase I sampling program was

designed around these identified hot spots. However, based on subsequent results from the Phase II sampling effort, only 15 percent of the hot spots were identified and 85 percent were undetected in Phase I because of its biased design. Therefore, care should be exercised in applying judgment (as discussed in the first section of this paper). In general, a regular grid of sample locations will be the most effective. Second, the 181 additional samples obtained in Phase II were largely ineffective at reducing uncertainty in the boundaries of contamination because the average sample spacing was greater than the typical hot-spot sizes. Therefore, this additional sampling effort had limited value because it was not designed to extract the information needed for design.

GUIDELINE 6

Redundant designs (i.e., systems that are not highly dependent on the performance of an individual component) can reduce the impact of uncertainty on performance. The value added through redundancy depends on the degree of dependence between the performance of individual components and that of the system.

One approach to reduce the impact that uncertainty has on design performance is to include redundancy in the design. Redundant designs incorporate systems that do not depend heavily on any single aspect or component. For example, a composite liner (i.e., a compacted clay layer overlain by a geomembrane) forms a redundant containment system. Leakage across the compacted clay is primarily controlled by its hydraulic conductivity, while leakage across the geomembrane is generally governed by defects in the geomembrane (e.g., Giroud and Bonaparte 1989). Since the hydraulic conductivity of the clay is essentially independent of the size and frequency of holes in the geomembrane, the reliability of the composite liner is expected to be greater than that for either a single clay liner or a single geomembrane liner (i.e., the likelihood of excessive leakage should be less for the system than for either component alone).

The following redundancy factor provides a useful measure to quantify system redundancy

$$RF = \frac{\text{Likelihood that a Component Performs Unsatisfactorily}}{\text{Likelihood that the System Performs Unsatisfactorily}}$$
 (6)

where RF is the redundancy factor. The magnitude of RF indicates the gain in reliability due to redundancy: RF = 1.0 indicates a non-redundant system, while RF >> 1.0 indicates a highly redundant system. For example, consider a liner that is designed with a maximum allowable leakage rate of 1,000 lphd. For a single geomembrane liner, the likelihood of exceeding this rate is high due to the potential for

holes in the geomembrane: $P(Q_{FML} > 1,000 \text{ lphd}) = 0.9$. For a compacted clay liner with a hydraulic conductivity less than 1.0×10^{-9} m/s, the likelihood is smaller: $P(Q_{CCL} > 1,000 \text{ lphd}) = 0.2$. Finally, the likelihood for the composite liner is very small: $P(Q_{COMP} > 1,000 \text{ lphd}) = 0.001$. These likelihoods are estimated based on an analysis of laboratory and field data (Gilbert 1993). If performance of the clay liner is assumed to be independent of the geomembrane liner, then the redundancy factor is estimated as follows

$$RF = \frac{P(Q_{FML} > 1,000 \text{ lphd} \cup Q_{CCL} > 1,000 \text{ lphd})}{P(Q_{COMP} > 1,000 \text{ lphd})} = \frac{0.9 + 0.2 - (0.9)(0.2)}{0.001} = 920 (7)$$

where \cup indicates that either or both of the outcomes occur. Hence, this composite liner system exhibits substantial redundancy. The value of this redundancy depends on how the increased reliability, say from 0.8 for a single compacted clay liner to 0.999 for a composite liner, affects the value of the design (e.g., Fig. 6). If this value is greater than the cost of a geomembrane liner, then the composite liner provides a useful alternative to manage uncertainty in the performance of the clay liner.

The magnitude of RF depends on the degree of dependence between the performance of individual components and that of the system. In this composite liner, the frequency and size of defects in the geomembrane are unrelated to the hydraulic conductivity of the clay liner. Further, the performance of the composite liner system is not very sensitive to either the defects or the hydraulic conductivity. An example of a less redundant system is a composite liner consisting of a geosynthetic clay liner (GCL) overlain by a geomembrane. Since both the GCL and the geomembrane are susceptible to damage during construction and operation, RF is estimated to be about an order of magnitude smaller.

GUIDELINE 7

Flexible designs (i.e., systems that can be modified during and after construction in response to unexpected conditions), if implemented properly, are very effective at adding value.

Flexible designs are those that can be modified in response to unexpected conditions during and after construction. This approach, which has been referred to as the Observational Method in geotechnical engineering (Peck 1969) and proposed for geoenvironmental engineering (e.g., Holm 1993), is very effective at improving the value of a design. Its only potential drawback, besides the cost required to implement a flexible design, is the possibility that the design will not be flexible enough to accommodate unanticipated conditions (note that unanticipated conditions are those considered impossible at the design stage, while unexpected conditions are those

considered possible but not typical). However, this drawback applies to all design alternatives and is not peculiar to flexible designs.

The case history site provides examples of both inflexible and flexible design alternatives. The excavate-and-dispose option is inflexible because there is no flexibility available if the contaminated volume of soil is unexpectedly large. An example of a similar design that was unsuccessful because of inflexibility is the PPI Superfund site (Acar et al. 1995). An excavate-and-dispose option was selected but had to be abandoned, at considerable expense and time delay, because of the release of volatile organics during excavation. Conversely, the cover alternative is more flexible in that it can be inspected and maintained continually over its lifetime.

The keys to successful implementation of a flexible design are to (1) design a monitoring program that will reduce the important uncertainties over time and (2) have contingency plans available to manage unexpected outcomes. These concepts have already been addressed in this paper in the context of new designs, and the same principles apply to flexible, evolving designs.

CONCLUSIONS

Seven, practical guidelines for managing uncertainty in geoenvironmental design are presented and discussed in this paper. While these guidelines are derived from theoretical considerations, all of the guidelines could be classified as common sense (a result that lends some credibility to the theory). There are two major conclusions that we have drawn from applying the theory of uncertainty management to practice. First, there is a tremendous need for more, higher quality performance data (both technical and economic) for geoenvironmental systems. Much of what has been compiled is never analyzed (e.g., it is only compiled to satisfy regulatory requirements) or does not provide useful information as feedback to the design process. An integrated, national effort should be initiated to compile and analyze performance data to improve the value of future designs. Second, the most important aspect of uncertainty management is communication. All parties involved in a design need to be aware of the uncertainties, the potential design outcomes (favorable and unfavorable), and the potential consequences associated with those outcomes. This communication is essential, whether or not a formal approach is adopted to manage uncertainty.

APPENDIX I. CASE HISTORY SITE DESCRIPTION

The case history site is a 14,000-m² residential plot (Fig. 9) located in southeast Texas. Soil within a 6,000-m² work area has been contaminated with mercury from a processing operation. The owner has not divulged the details of the operation to investigators, so the number, locations and sizes of the former storage piles must be inferred from physical evidence (e.g., disturbed soil).

The site is generally flat and level. The site stratigraphy, from on-site well logs, is 1.5 to 2.0 m of silty clay overlying 1.5 to 7.5 m of clayey, fine sand, which grades

into clay at a depth of about 9 m. This clay layer extends to a depth of approximately 40 m, below which lies the primary-use aquifer for the local population. Laboratory tests indicate that the surficial clay is overconsolidated and that its hydraulic conductivity in laboratory samples is approximately 2.5 x 10⁻⁶ cm/s. No secondary features have been observed in the surficial clays, and no mercury has been detected in the groundwater within the upper layer of fine sand.

A two-phase sampling program was conducted to determine the extent of soil contamination at the site. In Phase I, 16 boreholes were drilled down to a maximum depth of 9 m and mercury-test samples were taken intermittently to a maximum depth of 3.5 m (no mercury was detected below a depth of 1.5 m). The boreholes were placed where contamination was believed to be most likely based on visual evidence of waste transport and storage and soil disturbance. However, the results from the first phase did not sufficiently delineate the extent of contamination, so a second sampling phase was conducted. In Phase II, 181 soil samples were collected from across the entire site to a maximum depth of 0.3 m. Mercury concentrations in the samples ranged from non-detect (<0.12 mg/kg) to 1,760 mg/kg. A health-risk assessment for the site indicated that the soil should be remediated to a mercury concentration below 20 mg/kg.

Three remedial alternatives were originally considered at the site. The first, a monitoring-only alternative, was removed from consideration because it did not satisfy applicable or relevant and appropriate requirements. The second, containment of the work area with a cover, and the third, excavating the contaminated soil for disposal in an existing off-site landfill, were compared in a qualitative discussion of pros and cons. The following criteria were applied to compare the alternatives: overall protection of human health and the environment; long-term effectiveness and permanence; reduction of toxicity, mobility or volume of contaminant; short-term effectiveness; implementability; and cost. The excavation alternative was selected.

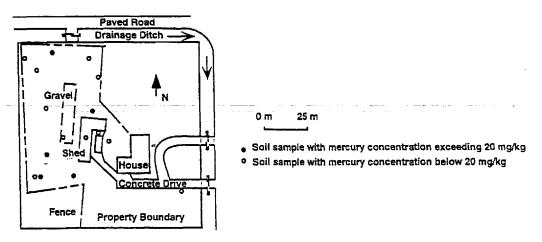


Fig. 9. Site Plan for Case History Site

APPENDIX II. REFERENCES

- Acar, Y. B., Taha, M. R., and Constant, W. D. (1995), "The PPI Superfund Site: Remedial Measures and Alternatives," *Proc.*, Geoenvironment 2000, ASCE, 1684-1699.
- Ang, A. H-S. and Tang, W. H. (1975), Probability Concepts in Engineering Planning and Design, Vol. 1 Basic Principles, John Wiley & Sons, New York.
- Benson, C. H., and Daniel, D. E. (1994), "Minimum Thickness of Compacted Soil Liners: I. Stochastic Models," *Journal of Geotechnical Engineering*, ASCE, Vol. 120, No. 1, 129-152.
- Capen, E. C. (1976), "The Difficulty of Assessing Uncertainty," Journal of Petroleum Technology, Vol. 28, 843-850.
- Cawlfield, J. D. and Wu, M-C. (1993), "Probabilistic Sensitivity Analysis for One-Dimensional Reactive Transport in Porous Media," *Water Resources Research*, Vol. 29, No. 3, pp. 661-672.
- Clemen, R. T. (1991), Making Hard Decisions: An Introduction to Decision Analysis, Duxbury Press, Belmont, CA.
- Cochran, W. G. (1963), Sampling Techniques, 2nd Ed., John Wiley & Sons, Inc., New York.
- Danzo, A. (1988), "The Big Sleazy: Love Canal Ten Years Later," *The Washington Monthly*, September, pp. 11-17.
- Davis, K. L. (1996), Joint Institute for Energy & Environment, Knoxville, TN, personal communication.
- Freeze, R. A., Massmann, J., Smith, L., Sperling, T. and James, B. (1990), "Hydrogeological Decision Analysis: 1. A Framework," *Ground Water*, Vol. 28, 738-766.
- Gilbert, R.B. (1993), "Performance Reliability of Landfill Lining Systems," Ph.D. Dissertation, University of Illinois, Urbana, Illinois.
- Gilbert, R. B. and Tang, W. H. (1995a), "Model Uncertainty in Geotechnical Reliability and Decision Analyses," Intl. Conf. on Applied Stat. and Prob., Paris, 109-114.
- Gilbert, R. B. and Tang, W. H. (1995b), "Reliability-Based Design of Waste Containment Systems," ASCE Specialty Conf., Geoenvironment 2000, 499-513.
- Gilbert, R. O. (1987), Statistical Methods for Environmental Pollution Monitoring, Van Nostrand Reinhold Company, New York.
- Giroud, J. P. and Bonaparte, R. (1989), "Leakage Rates Through Liners Constructed with Geomembranes Part I. Geomembranes," Geotextiles and Geomembranes, Vol. 8, No. 1, 27-67.
- Hoffman, Andrew J. (1995), "An Uneasy Rebirth at Love Canal," *Environment*, Vol. 37, No. 2, 4-16.
- Holm, L. A. (1993), "Strategies for Remediation," Geotechnical Practice for Waste Disposal, D. E. Daniel, Ed., Chapman and Hall, New York, New York.

- Journel, A. G. and Huijbregts, C. J. (1978), Mining Geostatistics, Academic Press, London.
- Keeney, R. L., von Winterfeldt, D. (1993), "An Analysis of Strategies to Manage Nuclear Waste from Power Plants," Decision and Risk Analysis Report 93-1, Institute of Safety and Systems Management, Univ. of Southern California, Los Angeles, CA.
- Massmann, J., Freeze, R. A., Smith, L., Sperling, T. and James, B. (1991),
 "Hydrogeological Decision Analysis: 2. Applications to Groundwater Contamination," Ground Water, Vol. 29, 536-548.
- Merkhofer, M. W., and Keeney, R. L. (1987), "A Multiattribute Utility Analysis of Alternative Sites for the Disposal of Nuclear Waste," *Risk Analysis*, Vol. 7, No. 2, 173-194.
- NRC (1994), <u>Alternatives for Ground Water Cleanup</u>, National Research Council, National Academy Press, Washington, D.C.
- Peck, R. B. (1969), Ninth Rankine Lecture: "Advantages and Limitations of the Observational Method in Applied Soil Mechanics," *Geotechnique*, 19(2), 171-187.
- Raiffa, H. (1968), <u>Decision Analysis: Introductory Lectures on Choices Under Uncertainty</u>, Addison-Wesley, Reading, MA.
- Roberds, W. J., "Methods for Developing Subjective Probability Assessments," Transportation Research Record, No. 1288, 1990, National Research Council, Washington, D. C., 183-190.
- Roberds, W. J., Haerer, H. A. and von Winterfield, D. (1992), "Decision Management for the Hanford Environmental Dose Reconstruction Project," *Proc.*, Intl. High Level Radioactive Waste Management Conf., Las Vegas.
- Russell, M. and Davis, K. L. (1995), "Resource Requirements for NPL Sites: Phase II Interim Report," Joint Institute for Energy & Environment, Knoxville, TN.
- Sitar, N., Cawlfield, J. D., and Der Kiureghian, A. (1987), "First-Order Reliability Approach to Stochastic Analysis of Subsurface Flow and Contaminant Transport," Water Resources Research, Vol. 23, No. 5, 794-804.
- Tang, W.H., Gilbert, R.B., Angulo, M. and Williams, R.S. (1994), "Probabilistic Observational Method for Settlement-Based Design of a Landfill Cover," *Proc.*, Settlement '94, ASCE Geotech. Special Publ. No. 40, College Station, Texas, 1573-1589.
- Tribus, M. (1969), <u>Rational Descriptions</u>, <u>Decisions and Designs</u>, Pergamon, New York.
- USEPA, (1989), <u>Risk Assessment Guidance for Superfund</u>, Volume I, Human Health Evaluation Manual; Part A; Interim Final, EPA/540/1-89/002, U. S. Environmental Protection Agency, Washington, D.C.
- Vanmarcke, E. (1983), <u>Random Fields: Analysis and Synthesis</u>, The MIT Press, Cambridge.

APPENDIX M

CLOSURE AND POST-CLOSURE MONITORING PLAN

Golder Associates Inc.

4730 N. Oracie Road Suite 210 Tucson, AZ USA 85705 Telephone (520) 888-8818 Facsimile (520) 888-8817

April 9, 1999

Our Ref: 983-2344-1.3

Barrick Resources (USA) Inc. Mercur Gold Mine P.O. Box 834 Tooele, UT 84074-0838

Attention: Mr. Lennie Boteilho

RE: CLOSURE AND POST-CLOSURE TAILINGS MONITORING PROGRAM DOCUMENTATION.

Dear Lennie:

This letter has been prepared to document the logic and technical approach to the Closure and Post-Closure monitoring program that has been developed by Golder Associates Inc. (Golder) for implementation at the Reservation Canyon Tailing Facility (tailing facility). This monitoring plan has been developed based upon the results of recent site investigations and analyses conducted to support closure of the facility.

Introduction

The tailing facility ceased deposition operations in March, 1998, after which the final Phase I Reclamation activities were completed. The monitoring program described below has been developed to accommodate both the Closure and Post-Closure periods. The Closure period, as defined herein, is that time period during which construction and reclamation activities associated with the tailing facility are ongoing. The Post-Closure period is that period of time following completion of the final Closure construction activities until the time that the facility is no longer designated a regulated impounding structure.

Previous Operations Monitoring Plan

The existing piezometer and survey prism installations were installed during operations to permit the monitoring of pore pressures and slope movements in the Main Dam, the Main Dam Buttress, and the Levee Buttress. There are 30 piezometers located on the Main Dam and the Levee Buttress. Of these, 7 are standpipe piezometers and 23 are vibrating wire piezometers. Piezometer and prism locations are respectively provided in Figures 1 and 2, with a summary of the piezometer installations provided in Table 1.

TABLE 1 SUMMARY OF PIEZOMETER INSTALLATIONS

Piezometer #	Туре	Northing	Easting	Collar Elev.	Screen/Gauge Elev.	Material at Screen/Gauge	Notes
1	Vib. Wire	26454.21	24026.08	7237.57	7233.1	Tailing	-
3	Vib. Wire	26125.13	24105.42	7252.59	7115	Downstream Shell	Dry
4	Vib. Wire	26125.13	24105.42	7252.59	7033.1	Downstream Shell	Dry
5	Vib. Wire	26134.79	24110.32	7252.22	7096.1	Downstream Shell	Dry. Angle hole at 65
							degrees.
6	Vib. Wire	26134.79	24110.32	7252.22	7041	Downstream Shell	Dry. Angle hole at 65 degrees.
7	Vib. Wire	26218.3	24214.86	7237.23	7232.9	Tailings	
9	Vib. Wire	26296.53	24308.12	7235.62	7230.3	Tailings	
13	Vib. Wire	25987.82	24410.69	7237.68	7232.7	Tailings	
15	Vib. Wire	25991.37	25029.36	7236.66	7231.4	Tailings	
16	Vib. Wire	25959.21	25056.59	7251.33	7216.7	Levee Rockfill	
17	Vib. Wire	26044.89	24985.18	7235.66	7230.4	Tailings	
21	Vib. Wire	26087.56	25209.57	7250.97	7216.9	Levee Rockfill	
22	Vib. Wire	26120.22	25182	7236.17	7230.9	Tailings	
23	Standpipe	26488.83	23980.52	7291.52	7212.6	Tailings	Johnson 8 slot screen 40x60 pack, 10 ft screened
24	Vib. Wire	26488.83	23980.52	7291.52	7216.6	Tailings	
25	Vib. Wire	26465	2399.71	7292.27	7201.3	Clay Core	
26	Vib. Wire	26447.13	23991.56	7291.48	7146.5	Clay Core	
27	Standpipe	26258.87	24187.4	7294.55	7210.6	Tailings	Johnson 8 slot screen 40x60 pack, 10 ft screened
28	Vib. Wire	26258.87	24187.4	7294.55	7214.6	Tailings	
29	Standpipe	26248.23	24187.79	7294.74	7125.7	Clay Core	Clay Core
30	Vib. Wire	26248.23	24187.79	7294.74	7130.7	Clay Core	
31	Vib. Wire	26236.23	24196.53	7295.08	7200.1	Upstream Shell	
32	Vib. Wire	26176.36	24060.16	7257.05	7030.8	Downstream Shell	Dry
33	Standpipe	26176.36	24060.16	7257.05	7030.8	Downstream Shell	Dry. Johnson 8 slor screen, 40x60 pack, 10 ft. screened.
34	Vib. Wire	26161.23	24073.49	7256.93	7122.7	Downstream Shell	Dry
35	Standpipe	26161.23	24073.49	7256.93	7117.2	Downstream Shell	10.9
36	Vib. Wire	26146.47	24086.41	7256.93	6963.8	Dam Bedrock	Upper limestone member of the
37	Standpipe	26146.47	24086.41	7256,93	6958.8	Dam Bedrock	Mississippian Great Blue Formation. Upper limestone
							member of the Mississippian Great Blue Formation, Johnson 8 slot screen, 40x60 pack. Not functioning.
38	Vib. Wire	26530.75	24054.77	7306.34	7191.3	Tailings	
41	Standpipe	26015.32	24971.63	7313.49	7189.5	Tailings	Johnson 8 slot screen. 40x60 pack, 10 ft. screened.
42	Vib. Wire	26198.07	24830.47	7282.5	7280.5	Tailings	
43	Vib. Wire	26138.75	25219.09	7308.98	7189	Tailings	1
44	Standpipe	26138.75	25219.09	7308.98	7183	Tailings	Johnson 8 slot screen, 40x60 pack, 10 ft. screened
45	Vib. Wire	26159.58	25164.6	7308.26	7231.3	Tailings	
46	Standpipe	26159.58	25164.6	7308.26	7223.3	Tailings	Johnson 8 slot screen, 40x60 pack, 10 ft. screened
47	Vib. Wire	26328.53	25043.54	7283.12	7281.1	Tailings	301001104

A total of 12 survey prisms are located on the Main Dam, with 4 on the Levee Buttress. Prism locations are shown on Figure 2. During active operations of the tailing impoundment, these prisms were monitored twice a month to track movements associated with the impounding structures. Golder has recently input the prism readings from 1996 through the present into an excel spreadsheet that calculates the incremental horizontal, vertical and total displacement, displacement direction, and the rate of displacement. The database shows that normal movements have occurred due to settlement of the upstream constructed buttresses into the tailing beach. These movements have slowed considerably since upstream construction activities have ceased, as would be expected.

Barrick personnel have historically conducted the facility piezometer and survey prism monitoring and it is anticipated that Barrick personnel will continue to perform the monitoring requirements throughout the Closure and Post-Closure periods.

Technical Basis of Closure and Post-Closure Monitoring Plan

Golder performed a detailed site investigation of the tailing facility from August 1998 through February 1999 to support the closure design. The investigation included 11 cone penetration test soundings and four twinned boreholes that were sampled at nominal 20-foot intervals. The soundings and boreholes were advanced both from the beach and from a floating barge. A thorough characterization of the distribution of pore pressures and tailing material properties was obtained, which provided the technical basis for the closure design.

As a part of the closure design, a monitoring program was developed for implementation through the Closure and Post-Closure periods. The monitoring program described herein reflects the results of analyzing the detailed data gained during the site investigation and considers that active tailing deposition operations have ceased. Threshold limits associated with the Closure and Post-Closure piezometer monitoring program developed by Golder differ from the "Critical Pore Pressure Readings" that were previously developed and applied during operations. It is important to emphasize that since cessation of active operations, the tailing impoundment is undergoing active draindown of the pore water fluids. The continuing decrease in pore water pressures associated with this draindown will theoretically result in a continuing increase of the stability of the tailing embankments. This continuing increase in stability and the associated reduction in risk of a potential dam failure were considered in the development of the proposed monitoring frequencies for the Closure and Post-Closure periods.

The piezometers installed in the Main Dam and Levee Buttress embankments were installed to allow the pore pressures to be monitored within the embankments and the embankment foundations. Excess pore pressures can have a destabilizing effect on embankment stability and it is necessary to determine what pore pressure values are indicative of unacceptable stability conditions within the tailing embankments. To quantify these values, stability sensitivity analyses were performed over a range of simulated pore pressures. This analyses was conducted with the computer package XSTABL to determine the minimum piezometer readings that would indicate Factors of Safety (FOS) below recommended levels. Pore pressures were modeled using a pore pressure grid, with the

pore pressure distributions estimated by assuming hydrostatic pore pressure conditions. Since the actual measured pore pressure gradients are less than hydrostatic, the assumption of hydrostatic conditions is considered conservative.

The stability modeling analyses were conducted to support final closure of the tailing facility. The results of this modeling provide defensible and conservative criteria for developing the Closure and Post-Closure monitoring program for the tailing facility. Contractive behavior of loose tailings can result in a progressive reduction of the available shear strength, a phenomena referred to as strain softening. In order to account for potential strain softening, the stability analyses conservatively incorporated total stress shear strength parameters for all loose and slow draining soil materials, which included all of the tailing materials. The FOS were determined as a function of the corresponding pore pressures, to provide guidance as to various levels of potential instability within the tailing embankments. These levels of potential instability are referred to herein as Alert Levels, which are documented on Table 2. Alert Levels are provided in terms of piezometric head reported in feet of water (head) above mean sea level (amsl). An appropriate and widely accepted minimum steady state design FOS for dams is 1.5. A piezometer reading indicative of a FOS below 1.5 would trigger the first alert level response. Piezometer readings indicative of lower FOS values of 1.3 and 1.1 trigger second and third alert level responses, respectively. The corresponding actions associated with each alert level are provided on Table 6.

The stability analyses conducted to develop a suitable monitoring program for the tailing facility conservatively assumed a phreatic level in the toe areas of the embankments at the top of the screen elevation (for the standpipe piezometers) or at the gauge elevation (for the vibrating wire piezometers). This assumption is considered conservative based on historical monitoring data, which indicates these monitoring locations are typically dry. For those monitoring points located in the toe areas of the embankments, as indicated by notes on Table 2, exceedance of the screen/gauge elevations would deviate from the assumed phreatic conditions in the embankment toe areas. This would constitute a 2nd alert level and trigger the responses indicated on Table 6, until evaluated by a qualified geotechnical engineer. For comparative purposes, Table 2 also includes the "Operations Critical Pore Pressure Readings" and the "Operations Phreatic Head" levels which were previously used as alert levels during operations.

A comparison of the alert levels previously used during operations with the Closure and Post-Closure alert levels developed herein indicates that, in general, the Closure and Post-Closure alert levels are more conservative than those previously used during operations. This is likely the result of the approach to use conservative undrained shear strength parameters in the stability analyses, rather than less conservative effective stress parameters, for determining the Closure and Post-Closure alert levels.

TABLE 2 PIEZOMETER MONITORING ALERT LEVELS REPORTED IN TOTAL HEAD (FT AMSL)

Piezo-	Location	Screen/	Piezometric	Operations	Operations	1 st Alert	2 nd Alert	3rd Alert
meter		Gauge	Head on	Critical Pore	Piezometric	Level	Level	Level
	1.	Elev.	Dec, 31,	Pressure	Head	(ft. amsl)	(ft. amsl)	(ft. amsl)
		(ft. amsl)	1998 ¹	Reading ³	(ft. amsl) ³			*
1	Main Dam	7233.1	7254.6	75	7308	7280	7293	7298
3	Main Dam	7115.0	7113.3	115	7230	7115.0 ¹	7115.0 ¹	7115.0 ¹
4	Main Dam	7033.1	7031.6	184	7217	7033.11	7033.11	7033.1 ¹
5	Main Dam	7096.1	7091.6	152	7193	7096.11	7096.11	7096.1 ¹
6	Main Dam	7041.0	7039.2	208	7249	7041.0 ¹	7041.0¹	7041.01
7	Main Dam	7232.9	7250.5	101	7334	7280	7293	7298
9	Main Dam	7230.3	7255.3	162	7392	7320	7333	7338
13	Main Dam	7232.7	7242.1	68	7301	7280	7293	7298
15	Levee Buttress	7231.4	7244.2	122	7353	7297	7301	7304
16	Levee Buttress	7216.7	7221.5	138	7355	7282	7286	7289
17	Levee Buttress	7230.4	7246.2	185	7415	7322	7326	7329
21	Levee Buttress	7216.9	7230.7	156	7373	7282	7286	7289
22	Levee Buttress	7230.9	7239.9	133	7364	7297	7301	7304
23 ²	Main Dam	7212.6	7246.4	111	7323	7280	7293	7298
24	Main Dam	7216.52	7234.4	106	7323	7280	7293	7298
25	Main Dam	7216.6	7184.1	202	7348	7280	7293	7298
272	Main Dam	7210.6	7244.1	120	7330	7280	7293	7298
28	Main Dam	7294.6	7231.0	113	7328	7280	7293	7298
29 ²	Main Dam	7125.8	7199.1	236	7362	7280	7293	7298
30	Main Dam	7130.7	7187.8	229	7360	7280	7293	7298
31	Main Dam	7200.08	7224.9	133	7333	7280	7293	7298
32	Main Dam	7030.8	7023.1	186	7217	7030.8 ¹	7030.81	7030.81
33 ²	Main Dam	7030.8	Dry standpipe	186	7217	7030.8 ¹	7030.81	7030.8 ¹
34	Main Dam	7122.7	7114.1	109	7232	7122.71	7122.71	7122.7 ^t
35 ²	Main Dam	7117.2	Dry standpipe	114	7231	7117.21	7117.2 ¹	7117.2 ^t
36	Main Dam	6963.8	6956.5	245	7209	7250	7250	7250
37 ²	Main Dam	6958.8	Dry standpipe	250	7209	7250	7250	7250
38	Main Dam	7191.3	7228.7	157	7348	7300	7313	7318
412	Levee Buttress	7189.5	7239.7	225	7414	7322	7326	7329
42	Levee Buttress	7280.5	7291.3	111	7393	7360	7364	7367
43	Levee Buttress	7189.0	7215.6	224	7413	7297	7301	7304
442	Levee Buttress	7183.0	7232.4	234	7417	7322	7326	7329
45	Levee Buttress	7231.3	7240.1	158	7389	7322	7326	7329
46 ²	Levee Buttress	7223.3	7247.9	172	7395	7322	7326	7329
47	Levee Buttress	7281.1	7287.0	250	7395	7360	7364	7367

Notes:

- 1) Any measured water level above the screen/gauge elevation within the downstream shell would constitute a condition that deviates from the assumed phreatic levels in the downstream toe used in the stability analyses, and as such require evaluation by a qualified geotechnical engineer.
- 2) Indicates a standpipe piezometer monitoring location.
- 3) The "Operations Critical Pore Pressure Readings" and the "Operations Phreatic Head" levels are the critical monitoring readings which were previously used throughout operations.

Closure and Post-Closure Monitoring Program

The tailing facility monitoring program for Closure and the Post-Closure conditions will consist of the following three components:

983-2344-1.3

- ► Piezometer monitoring;
- Prism monitoring; and,
- Visual inspections.

The three Closure and Post-Closure monitoring components include criterion for normal activities, critical responses, and a commitment to notify and mobilize (if necessary) a qualified geotechnical engineer for events indicating a critical condition.

Piezometer Monitoring

Monitoring of the previously installed piezometers will be continued throughout the Closure and Post-Closure period, until draindown of the impoundment has reached a level that ensures safe pore pressure conditions will be maintained over the long-term.

Both the Post-Closure and Closure monitoring schedules include a "Steady State" and "Critical" condition schedule. The Closure monitoring schedule also includes a "Construction" condition. As used herein, these conditions are defined as:

- The Steady State condition refers to those time periods when construction activities are not ongoing and the measured pore pressures are less than Alert Level 1 conditions, i.e., the FOS's are greater than 1.5;
- ► Critical conditions apply during certain unusual events which may impact the stability of the embankments, as defined below on Table 3, and in response to the exceedance of the 2nd Alert Level conditions; and,
- Construction conditions apply during those periods when placement of the soil cover on the tailing facility is occurring and for 30-days following these activities.

TABLE 3 UNUSUAL EVENTS THAT TRIGGER "CRITICAL MONITORING CONDITIONS"

A tailing pond elevation in excess of 7339-ft elevation.

For 30-days following a seismic event with a magnitude greater than 4.0, with an epicenter within 60-miles from the site.

If a reading showed a significant rise relative to the previous reading, i.e., greater than 10-ft.

Rapid rise of water level in standpipe piezometer(s), i.e., greater than 10-ft.

Piezometer readings that exceeds the 2nd Alert Level Conditions.

Water level readings in currently dry standpipe piezometer(s) and positive pore pressure readings in piezometer(s) located in the downstream shell or in bedrock.

The Closure and Post-Closure monitoring schedule developed to monitor the embankment piezometer readings is provided on Table 4.

Prism Monitoring

The prism surveys will be continued throughout the Closure period, but monitoring during Steady State Conditions in the Post-Closure period is not considered necessary unless an event that triggers Critical conditions occurs (as defined by Table 3). The logic of discontinuing prism monitoring during steady state Post-Closure conditions is that the phreatic conditions within the impoundment are predicted to be significantly lower following the Closure period. As a result, the embankments FOS's will be well in excess of 1.5.

The Closure and Post-Closure prism-monitoring schedule is provided on Table 5. Provided conditions are not Critical or that active construction of the soil cover is not ongoing, prism surveys should be conducted on a quarterly basis during the Closure period. Monitoring during "Construction Conditions" should occur on a monthly basis. The monitoring frequency during Critical conditions is increased to monthly and weekly intervals for the Post-Closure and Closure periods, respectively. In the event that anomalous readings occur, a qualified geotechnical engineer will be notified immediately to evaluate the data and impacts on potential embankment stability.

TABLE 4 PIEZOMETER MONITORING SCHEDULE

Piezometer	Post-Closu	re Period		Closure Period	
	Steady State	Critical	Steady State	Construction	Critical
1	Quarterly	Monthly	Monthly	Weekly	Twice Weekly
3	Quarterly	Monthly	Monthly	Weekly	Twice Weekly
4	Quarterly	Monthly	Monthly	Weekly	Twice Weekly
5	Quarterly	Monthly	Monthly	Weekly	Twice Weekly
6	Quarterly	Monthly	Monthly	Weekly	Twice Weekly
7	Quarterly	Monthly	Monthly	Weekly	Twice Weekly
9	Quarterly	Monthly	Monthly	Weekly	Twice Weekly
13	Quarterly	Monthly	Monthly	Weekly	Twice Weekly
15	Quarterly	Monthly	Monthly	Weekly	Twice Weekly
16	Quarterly	Monthly	Monthly	Weekly	Twice Weekly
17	Quarterly	Monthly	Monthly	Weekly	Twice Weekly
21	Quarterly	Monthly	Monthly	Weekly	Twice Weekly
22	Quarterly	Monthly	Monthly	Weekly	Twice Weekly
23	Quarterly	Monthly	Monthly_	Weekly	Twice Weekly
27	Quarterly	Monthly	Monthly	Weekly	Twice Weekly
29	Quarterly	Monthly	Monthly	Weekly	Twice Weekly
32	Quarterly	Monthly	Monthly	Weekly	Twice Weekly
33	Quarterly	Monthly	Monthly	Weekly	Twice Weekly
34	Quarterly	Monthly	Monthly	Weekly	Twice Weekly
36	Quarterly	Monthly	Monthly	Weekly	Twice Weekly
38	Quarterly	Monthly	Monthly	Weekly	Twice Weekly
41	Quarterly	Monthly	Monthly	Weekly	Twice Weekly
42	Quarterly	Monthly	Monthly	Weekly	Twice Weekly
43	Quarterly	Monthly	Monthly	Weekly	Twice Weekly
44	Quarterly	Monthly	Monthly	Weekly	Twice Weekly
45	Quarterly	Monthly	Monthly	Weekly	Twice Weekly
46	Quarterly	Monthly	Monthly	Weekly	Twice Weekly
47	Quarterly	Monthly	Monthly	Weekly	Twice Weekly

TABLE 5
PRISM MONITORING SCHEDULE

	Post-Closu	re Period		Closure Period	
Piezometer	Steady State	Critical	Steady State	Construction	Critical
	Conditions	Conditions	Conditions	Conditions	Conditions
1	Not Applicable	Monthly	Quarterly	Monthly	Weekly
3	Not Applicable	Monthly	Quarterly	Monthly	Weekly
4	Not Applicable	Monthly	Quarterly	Monthly	Weekly
5	Not Applicable	Monthly	Quarterly	Monthly	Weekly
6	Not Applicable	Monthly	Quarterly	Monthly	Weekly
7	Not Applicable	Monthly	Quarterly	Monthly	Weekly
9	Not Applicable	Monthly	Quarterly	Monthly	Weekly
13	Not Applicable	Monthly	Quarterly	Monthly	Weekly
15	Not Applicable	Monthly	Quarterly	Monthly	Weekly
16	Not Applicable	Monthly	Quarterly	Monthly	Weekly
17	Not Applicable	Monthly	Quarterly	Monthly	Weekly
21	Not Applicable	Monthly	Quarterly	Monthly	Weekly
22	Not Applicable	Monthly	Quarterly	Monthly	Weekly
23	Not Applicable	Monthly	Quarterly	Monthly	Weekly
27	Not Applicable	Monthly	Quarterly	Monthly	Weekly
29	Not Applicable	Monthly	Quarterly	Monthly	Weekly
32	Not Applicable	Monthly	Quarterly	Monthly	Weekly
33	Not Applicable	Monthly	Quarterly	Monthly	Weekly
34	Not Applicable	Monthly	Quarterly	Monthly	Weekly
36	Not Applicable	Monthly	Quarterly	Monthly	Weekly
38	Not Applicable	Monthly	Quarterly	Monthly	Weekly
41	Not Applicable	Monthly	Quarterly	Monthly	Weekly
42	Not Applicable	Monthly	Quarterly	Monthly	Weekly
43	Not Applicable	Monthly	Quarterly	Monthly	Weekly
44	Not Applicable	Monthly	Quarterly	Monthly	Weekly
45	Not Applicable	Monthly	Quarterly	Monthly	Weekly
46	Not Applicable	Monthly	Quarterly	Monthly	Weekly
47	Not Applicable	Monthly	Quarterly	Monthly	Weekly

Visual Monitoring

Visual inspections of the embankments will be completed during routine monitoring activities. In addition, the engineer-of-record will make annual inspections during the late spring of each year throughout the closure period. The purpose and objective of visual inspections are to identify potential indicators of instability so that proactive steps can be taken to ensure that the embankments remain stable. The embankments will be inspected for evidence of seeps, sloughs, subsidence, unusual settlements, excessive erosion, and tension cracks, which are all potential indicators of instability. Should any of these features be observed, Barrick's site manager and a qualified geotechnical engineer will be notified. Evidence of seepage includes localized moist soil, puddles without precipitation, or localized lush vegetation. Excessive erosional gullies that could potentially lead to a local slope failure, which could then progress into a more significant failure, will be noted and recorded and then scheduled for maintenance and repair. Tension cracks will be noted and recorded. The formation of small to moderate tension cracks are expected to occur in response to settlement. However, since the formation of tension cracks is also an indicator of slope movements, the location and size of tension cracks within 50-ft of the embankments will be recorded to aid in the determination of their cause. A qualified geotechnical engineer will be notified in the event of occurrence of any tension cracks that are not generally parallel to the crest of the embankments, that could potentially transect the core; any tension cracks which are visually increasing in size; a significant increase in the frequency of tension cracks; or, any unusually large tension cracks. Visual monitoring information will be recorded on the attached "Tailings Embankment Visual Monitoring Form", or other similar form.

TABLE 6 ALERT LEVEL RESPONSE

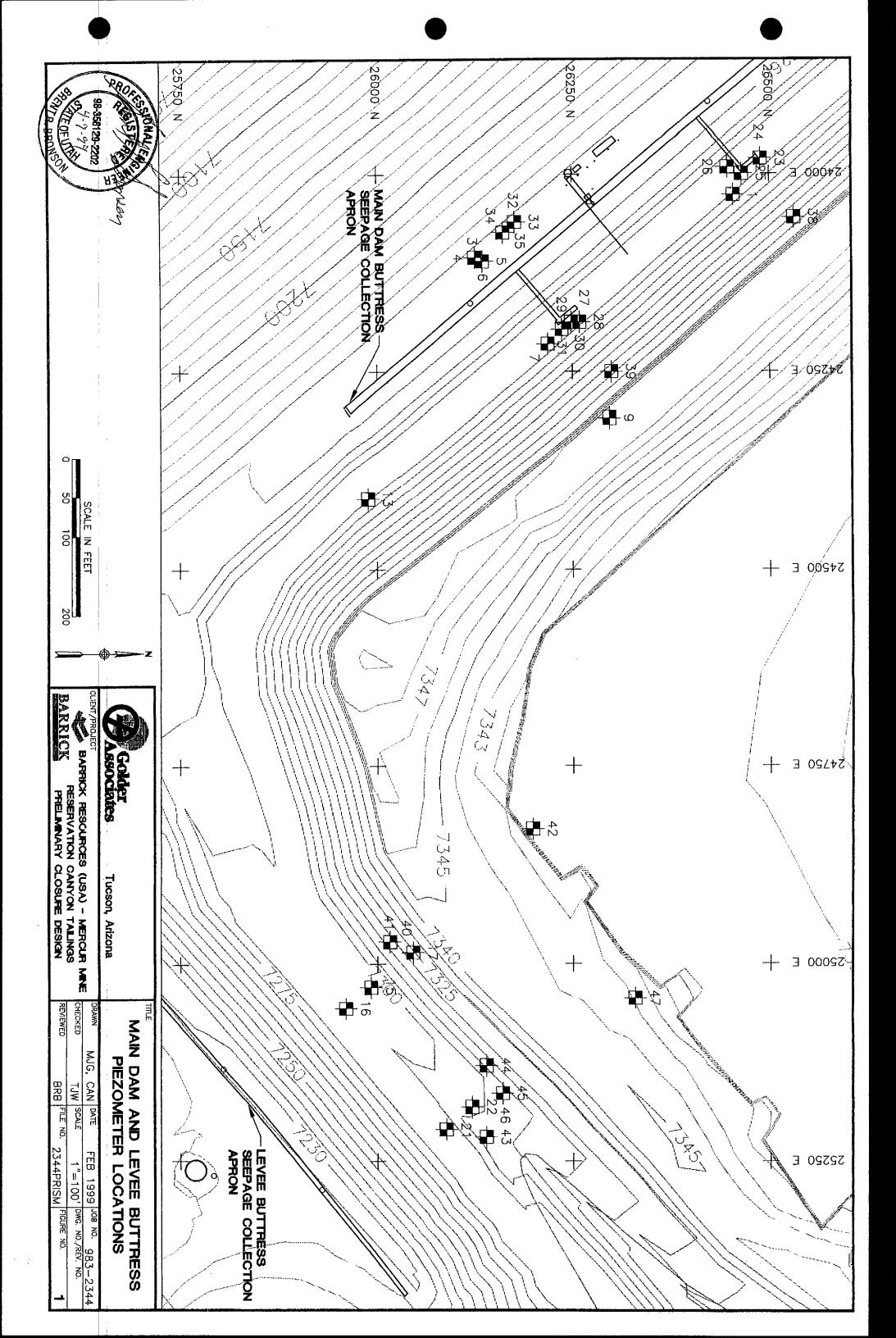
	EKI LETEL KESI ONSE
Alert Level	Response
1 st Monitoring Alert Level, per Table 2 (1.3 < FOS < 1.5)	Increase the piezometer and prism monitoring schedule during the Closure Period to "Construction Conditions", per Tables 4 and 5. Notify Richard Hall, P.E. at the State of Utah Dam Safety Section (801-538-7373). Increase the piezometer and prism monitoring schedule during the Post-Closure Period to "Critical Conditions", per Tables 4 and 5. Notify Richard Hall, P.E. at the State of Utah Dam Safety Section (801-538-7373).
2 rd Monitoring Alert Level, per Table 2 (1.1 < FOS < 1.3), or Triggering Event (Table 3) or Anomalous Prism Reading	Commence "Critical Condition" monitoring schedule. Cease loading or other ongoing construction activities. Retain a qualified geotechnical engineer to review the data and provide recommendations. Notify Richard Hall, P.E. at the State of Utah Dam Safety Section (801-538-7373).
3 rd Alert Level, per Table 2	Maintain "Critical Condition" monitoring schedule. Cease all construction activities. The qualified geotechnical engineer will be directed to develop a mitigation plan. The State Engineer (Richard Hall, P.E. at 801-538-7373) will be notified and advised of the response actions being implemented.

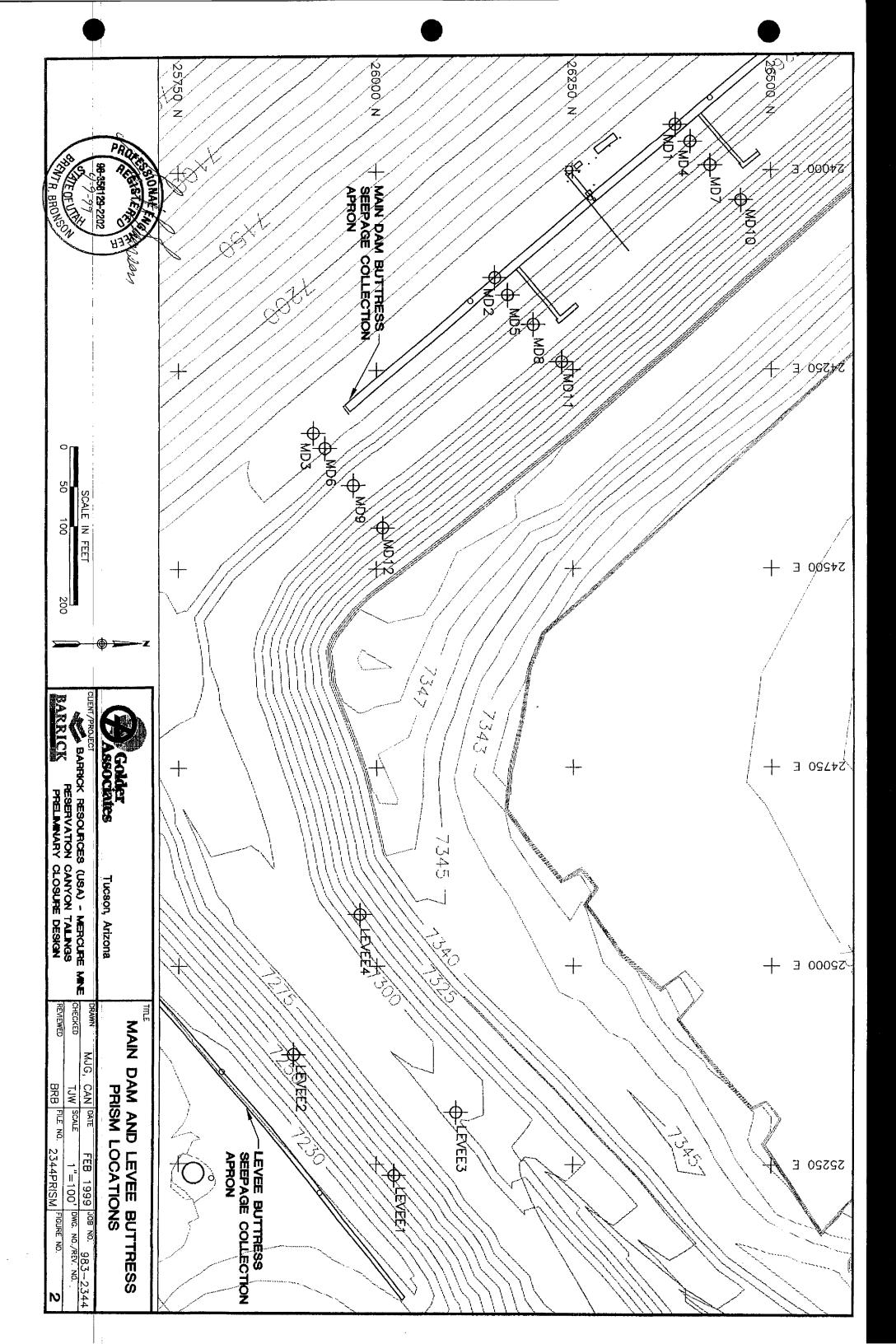
Summary

Golder has developed this Closure and Post-Closure monitoring plan for implementation at the Mercur tailing impoundment, based upon the results of recent site investigations and analyses conducted to support closure of the facility. This monitoring plan generally provides for more conservative alert level criteria than that used during operations, but with a decreased monitoring schedule. The decreased monitoring schedule has been developed in recognition that the tailing impoundment has been undergoing active draindown since operations ceased in the spring of 1998. The result of this draindown is a continuing decrease in pore pressures and a corresponding increase in the factor of safety against failure. Should you need any additional information or clarification please do not hesitate to contact the undersigned.

Sincerely,

GOLDER ASSOCIATES INC.

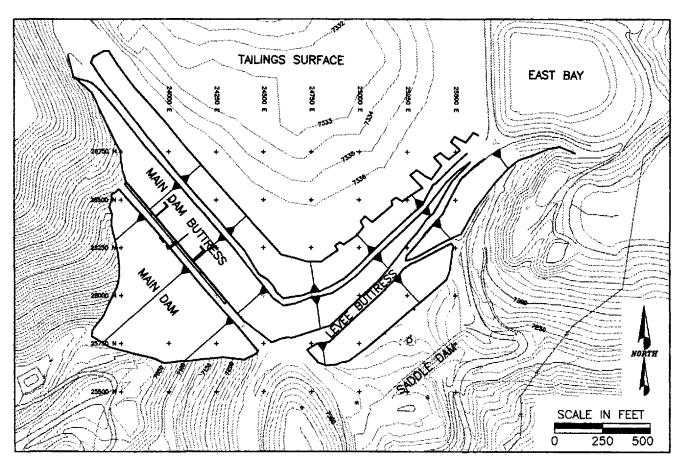

Brent Bronson, P.E.


Director U.S. Mining Sector

Associate

BB/san

FIGURES



MONITORING FORM

TAILINGS EMBANKMENT VISUAL MONITORING FORM

MONITOR (NAME)	POND ELEVATION	DATE
RECENT WEATHER CONDITION	S	
·		OW)
·		w)
TENSION/SETTLEMENT CRACK	OBSERVATIONS (INDICATE LOCAT	TION ON SKETCH BELOW)
PERSONS NOTIFIED:		

APPENDIX N CONSTRUCTION SPECIFICATIONS

BARRICK RESOURCES (USA) INC. - MERCUR MINE MERCUR CANYON TOOELE COUNTY, UTAH

IV. CONSTRUCTION SPECIFICATION

FOR

RECLAMATION OF RESERVATION CANYON TAILINGS IMPOUNDMENT

CONSTRUCTION SPECIFICATIONS FOR BARRICK RESOURCES (USA) INC. - MERCUR MINE RECLAMATION OF RESERVATION CANYON TAILINGS IMPOUNDMENT

SECTION	TITLE	REVISION NO	. DATE
DIVISION 1	GENERAL REQUIREMENTS		
SECTION 01090 SECTION 01300	DEFINITIONS QUALITY ASSURANCE AND	1	JULY 30, 1999
	CONSTRUCTION DOCUMENTATION	1	JULY 30, 1999
SECTION 01500	MOBILIZATION	1	JULY 30, 1999
SECTION 01600	CONTRACT CLOSEOUT	1	JULY 30, 1999
DIVISION 2	MERCUR MINE SITE RECLAMATION		
SECTION 02100	SITE PREPARATION	1	JULY 30, 1999
SECTION 02200	EARTHWORKS	1	JULY 30, 1999
SECTION 02278	GEOGRID	1	JULY 30, 1999

DIVISION 1 GENERAL REQUIREMENTS

PART 1: GENERAL

1.01 SUMMARY:

- A. This Section contains definitions and references applicable to the Specifications.
- B. Definitions
 - "Bidder" The party (or parties) submitting a Proposal to perform the Work.
 - "Bonds" Include Bid, performance and payment bonds and other instruments of security.
 - "Completion" Means that all Work has been fully completed, (except correction during the Period of Warranty).
 - "Contract" The contract entered into by the OWNER through the PROJECT MANAGER
 (OWNER's Representative) and the CONTRACTOR including, without limitation, all of
 the documents listed under Article 2.0 hereof, and others, if any, listed in the Contract
 Agreement or in a subsequent Change Agreements signed by the OWNER through the
 PROJECT MANAGER (OWNER's Representative) and the CONTRACTOR.
 - "Contract Agreement" The principal document of the Contract, signed by the OWNER through the PROJECT MANAGER (OWNER's Representative) and the CONTRACTOR, that specifies the total Contract Price.
 - "Contract Amendment" (Change Order) The document signed by the CONTRACTOR
 and the OWNER through the PROJECT MANAGER (OWNER's Representative) to
 amend the Contract to provide for changed or extra work and, accordingly, an increase
 or decrease in the Contract Price.
 - "Contract Documents" are defined as the Agreement, Addenda (which pertain to the Contract Documents), Form of Proposal which constitutes CONTRACTOR's Bid (including documentation accompanying the Bid and any post-Bid documentation submitted prior to the Notice of Award) when attached as an exhibit to the Agreement, the Bonds, the General Conditions, the Contract Specifications the Construction Specifications, and the Drawings, together with all Modifications issued after the execution of the Agreement.
 - "Contract Price" The total amount of the charges for the Work ("estimated" or "fixed lump sum") stipulated in the Contract Agreement subject to such additions or deductions as may be made under the terms and conditions of the Contract.
 - "Contract Unit Prices" The fixed unit prices or rates established by the Proposal
 which, initially, are applied to estimated measurements of volume, time, or other
 units of performance to establish an <u>estimated</u> Contract Price, and, which ultimately,
 are applied to actual measurements to establish a <u>final</u> Contract Price.

- "CONTRACTOR" is defined as the party which has executed a Contract Agreement for the specified Work with OWNER.
- "Drawings" is defined as the drawings in conjunction with these Specifications titled, Barrick Resources (USA) Inc. – Mercur Mine, Reservation Canyon Tailings Impoundment, Final Closure Design.
- "ENGINEER" is defined as the "Engineer of Record" and is a representative appointed and authorized by the OWNER. The ENGINEER shall be a registered Professional Engineer in the State of Utah, or a designated site representative under his supervision during construction.
- "Equal To, or Equal" Means equal in all respects to the specified product and accepted or reviewed for use in the Work by the Manager, in writing.
- "Final Acceptance" The written Final Acceptance of the Work issued by the OWNER
 through the PROJECT MANAGER (OWNER's Representative) following final inspection,
 Mechanical Acceptance, and 100 percent completion of the Work.
- "Mechanical Acceptance" The written declaration by the OWNER through the PROJECT MANAGER (OWNER's Representative) that any operable unit of equipment or separable portion of the Work is mechanically operative to the extent that all of the deficiencies which can be determined prior to the initiation of use have been corrected by the CONTRACTOR.
- "Mercur" Barrick Mercur Mine, Mercur, Utah.
- "Notice" Notices are to be defined as written notice.
- "Off-site Material" is defined as material obtained from sources other than on-site excavations or borrow areas.
- "On-site Material" is defined as borrow soils obtained from within required facility excavations and designated borrow areas;
- "OWNER" Barrick Resources (USA) Inc., a Delaware corporation with offices in Salt Lake City, Utah.
- "Products" are defined as new material, machines, components, equipment, fixtures, and systems forming the Work. This does not include machinery and equipment used for preparation, fabrication, conveying and erection of the Work. Products may also include existing material or components required for reuse.
- "Project" is defined as Reclamation of Reservation Canyon Tailings Impoundment.
- "PROJECT MANAGER" is defined as the designee(s) or an authorized representative of Barrick Resources (USA) Inc. ("OWNER") responsible for the project management. The individual designated by OWNER is the only person who may execute the Contract and subsequent Contract Amendments.
- "Proposal" (or "Bid") The written offer setting forth the price(s) to perform the Work, as submitted by the Bidder to the OWNER through the PROJECT MANAGER (OWNER's Representative).

- "Quality Assurance Team" is defined as the individuals working under the direction of the **ENGINEER** to perform on site quality assurance tasks for **OWNER**.
- "Record Documents" are defined as the documents prepared and certified by a Registered Land Surveyor in Utah documenting the progress, location, type and quantity of materials placed to complete the Work.
- "Revisions" are defined as changes made to the Specifications or the Drawings that are approved by the PROJECT MANAGER and the ENGINEER in writing after the Specifications on the Drawings have been finalized.
- "Site" The lands of the OWNER under, in, or through which the Work is to be executed.
- "Specifications" is defined as this document of technical specifications prepared for OWNER.
- "Subcontractor" The party which, with approval of the OWNER through the PROJECT MANAGER (OWNER's Representative), has executed a subcontract with the CONTRACTOR for the performance of a part of the Work.
- "Substantial Completion" Means the same as and adopts the definition of "Substantial Completion" or "Substantial Performance" contained in the lien legislation in effect in the State in which the Work is to be performed, and in the event no legislative definition exists for the expression "Substantial Completion" or "Substantial Performance" in the said State, Substantial Completion means that the Work has been essentially completed, sufficient to permit beneficial use by the OWNER for its intended purpose, and that only items of Work which cannot be completed due to conditions outside the CONTRACTOR's control remain to be done.
- "Supplier" Any party, which with approval of the PROJECT MANAGER and OWNER, has executed a contract with the CONTRACTOR or any Subcontractor to supply materials or equipment in performance of a part of the Work and includes, but is not limited to, a material man.
- "Work" The work to be performed as specified in the Contract Agreement and referred to in the Contract Documents all inclusively as "the Work."
- All slopes are described in terms of horizontal distance to vertical distance.

C. References

References to known standard specifications, including American Society of Testing Materials (ASTM), American National Standards Institute (ANSI), and Federal Test Method Standards (FTMS), shall mean and intend latest edition of such standards/specifications adopted and published at date of receipt of bids. All materials, fabrication, erection and related work required for this project shall comply with these standards/specifications which form part of this Specification as applicable, the same as if fully set forth herein.

** END OF SECTION **

SECTION 01300 QUALITY ASSURANCE AND CONSTRUCTION DOCUMENTATION

PART 1: GENERAL

1.01 SUMMARY:

The intent of this Section is to define the requirements of the Project Construction Quality Assurance (CQA) Program and the Construction Quality Control (CQC) documentation required by the CONTRACTOR. The ENGINEER will be responsible for all CQA and testing as documented in these Specifications, and will compile a construction certification report at the completion of the Work. CONTRACTOR is required to complete all Work and CQC in accordance with the Project requirements. Prior to approval of Work, the PROJECT MANAGER will coordinate with ENGINEER to ensure that the Work has been completed in accordance with the Work requirements.

1.02 ASSURANCE TESTING AND FREQUENCY:

Quality Assurance tests and frequency are discussed throughout the Specifications. The frequencies indicated are minimums only, and do not include retests of failed materials. Those quality assurance tests and testing frequencies to be conducted in the field by the **PROJECT MANAGER**, **ENGINEER** or the CQA Team are included in Table 01300-1 at the end of this Section.

1.03 CONSTRUCTION CERTIFICATION DOCUMENTATION:

- A. The **CONTRACTOR** shall be responsible for ensuring that accurate surveys are obtained for the as-built locations and elevations, and where applicable, the type, thickness, and geometry of any and all pipes, shape of grading areas prior to material placement, thickness and elevation of subsoil and topsoil layers, ditches, geosynthetic materials, limits of revegetation, and any other aspect of the work required by the contract. The **ENGINEER** may require surveys to document critical construction components. These survey requirements will be coordinated by the **PROJECT MANAGER**, in accordance with the Contract Documents.
- B. Submittals By OWNER Upon Completion of Work

Within fourteen (14) calendar days after completion of the WORK, CONTRACTOR shall furnish OWNER and ENGINEER with "Record Drawings" (also referred to as "AsBuilt Drawings") of the Work. All surveying Record Drawings shall be signed and sealed by the Utah licensed surveyor who directed the work. The required surveying for surface topography generation shall be carried out on a 100-foot by 100-foot grid with additional survey points required to define the topographic features (i.e., toe of slope, crest of slope, breaks in grade), unless otherwise directed by PROJECT MANAGER. Surveying for pipe layout Record Drawings shall be at fifty (50) foot spacing, breaks in grade and tie-ins from supplementary pipes

CONTRACTOR will submit completed Record Drawings within fourteen (14) calendar days upon completion of the work in the following manner:

- 1. Submit one (1) reproducible copy to the **OWNER**.
- 2. Submit one (1) non-reproducible copy to the OWNER.
- 3. Submit one (1) electronic copy to the **ENGINEER** on a 3.5 inch IBM compatible diskette, in AutoCad Version 13.0 or 14.0 format.
- 4. Submit one (1) reproducible copy to the **ENGINEER**.
- 5. Submit one (1) non-reproducible copy to the ENGINEER.

C. MEASUREMENT AND PAYMENT.

CQC documentation required by **CONTRACTOR** shall be considered incidental and no separate payment will be made for CQC documentation requirements.

GENERAL QUALITY ASSURANCE TABLE MERCUR MINE CLOSURE **TABLE 01300-1**

We ll	l est Method	Minimum Testing Frequency	Survey
1.0 Geogrid	Observation	All Shifts	
	Conformance Testing (per Section 2278)	1/250,000 square ft	
2.0 Earthworks			
2.1 Excavation	Observation of excavation conditions and grade stakes	Per excavation	May require surveying depending on the purpose of the excavation.
2.2 Regrading or Reshaping	Observation	Observation	Grade staking required As Built when complete or prior to cover-up with subsequent layer of fill.
2.3 Structural Fill	Observation	As-Needed	Grade staking during filling
	Compaction – Approved Method Specification	All Shifts	As Built when complete
	Moisture Content ASTM D-2216	1/10,000 cubic yards	
23 Grading Fill	Observation	All shifts	Thickness of layer, lift thickness; rate of
	Thickness- Excavations or Settlement Plates	One per Acre (minimum)	advancement (ft/day); depth to water; presence and height of mudwave; and, unusual or unsafe conditions.
2.4 Subsoil	Observation	All shifts	Thickness of layer; lift thickness; rate of
	Thickness- Excavations or Settlement Plates	One per Acre	 advancement (ft/day); presence and height of mudwave; depth to water; and, unusual or unsafe conditions.
2.5 Topsoil	Observation	All shifts	Thickness of layer
	Thickness - Excavations	1/10,000 ft²	

The results of all CQA observations and testing (field and laboratory) will be presented in a certification report.
 Record ("As-built") drawings will be prepared and submitted in a certification report.
 Fill materials with a high percentage of particles in excess of three quarters (3/4) inch nominal size, which in the opinion of the ENGINEER are not practical to be tested for moisture density control with ASTM D698 procedures, shall be placed and compacted according to a method specification to be determined and approved by the ENGINEER.

** END OF SECTION **

JULY 30, 1999 01300-3

SECTION 01500 MOBILIZATION

PART 1: GENERAL

1.01 SUMMARY:

A. Mobilization shall consist of the complete preparatory work and operations, including but not limited to, those necessary for the movement of personnel, equipment, supplies and incidentals to the project site; for the establishment of offices, buildings and other facilities necessary to complete the Work; and for other work and operations CONTRACTOR must perform or costs CONTRACTOR must incur before beginning work on the project, which is not covered in other bid items. Demobilization of personnel, equipment, supplies and incidentals from the site at the conclusion of construction activities are considered incidental to Mobilization and no separate payment will be made for demobilization.

B. Measurement and Payment

- 1. Payment for the performance of the mobilization work as above specified will be made at the contract lump sum price for the item "Mobilization"
- 2. The partial payment amounts to be allowed for "Mobilization" under the contract will be as follows:
 - a. Ten (10) percent of the amount bid for mobilization, less normal retainage, will be paid for each one (1) percent of total original contract amount earned from other bid items.
- 3. The above schedule of partial payments for mobilization shall not be construed to limit or preclude partial payments otherwise provided by the agreement.

** END OF SECTION **

SECTION 01600 CONTRACT CLOSEOUT

PART 1: GENERAL

1.01 DESCRIPTION:

PROJECT MANAGER shall prepare punch list when notified by **CONTRACTOR** that work is completed. **PROJECT MANAGER** and **ENGINEER** will conduct one final inspection only. (Note: Failure of **PROJECT MANAGER** to include any items on punch list does not alter responsibility of **CONTRACTOR** to complete THE Work in accord with Contract Documents.) Deliver all items called for herein and under various SPECIFICATION sections, and other Contract Documents requirements, to **OWNER** at completion of work.

** END OF SECTION **

DIVISION 2 RECLAMATION OF RESERVATION CANYON TAILING IMPOUNDMENT

SECTION 02100 SITE PREPARATION

PART 1: GENERAL

1.01 SUMMARY:

- A. This Work includes all the site preparation activities within the spillway limits, borrow areas, or other construction areas that require: clearing and grubbing, Topsoil stockpiling, and installation of temporary surface water and erosion controls. This Work is to be performed for the purpose of preparing the site for all earthwork related activities associated with the Reclamation of the Reservation Canyon Tailings Impoundment Project specifically regrading, soil placement, erosion control, and surface water channel construction activities.
- B. Refer to the following Sections for related work:

Section 01300 - Quality Assurance and Construction Documentation

Section 02200 - Earthworks

Section 02278 - Geogrid

1.02 QUALITY ASSURANCE:

- A. **ENGINEER** shall at all times have access to the work during its construction and shall be furnished with every reasonable facility for ascertaining that the materials and workmanship are in accordance with the Drawings and these Specifications.
- B. All site preparation operations shall be carried out under the observation of **ENGINEER** or **PROJECT MANAGER**. Testing shall be performed by **ENGINEER** in accordance with Section 01300 Quality Assurance and Construction Documentation.
- C. Any work found unsatisfactory or any work disturbed by subsequent operations before acceptance is granted shall be corrected by CONTRACTOR as directed by PROJECT MANAGER.

1.03 MEASUREMENT AND PAYMENT

- A. Measurement and payment shall be:
 - Clearing and Grubbing shall be considered incidental for all in-scope Work;
 - 2. Per net volume (yd³) of Topsoil stripped and acceptably stockpiled.

PART 2: EXECUTION

2.01 CLEARING AND GRUBBING:

A. Clearing and grubbing shall be done in designated areas within the footprint of the spillway, or other components of the Work where virgin ground will be impacted as delineated on the Drawings. Clearing and grubbing shall extend a maximum of fifteen (15) feet and a minimum of five (5) feet outside of the construction limits. Areas for clearing and grubbing shall be released to the CONTRACTOR by the PROJECT MANAGER. No pioneering of roads across undisturbed areas shall be allowed without prior written approval of the PROJECT MANAGER.

No clearing and grubbing shall be performed until written permission is given by the **PROJECT MANAGER**. Clearing and grubbing shall consist of cutting trees and brush to the ground level, removing such material, along with wood, rubbish, and any other vegetation, and disposing of all such material in the accepted manner described below.

B. The **CONTRACTOR** shall clear all vegetative matter, rubbish, roots in excess of one (1) inch diameter, and other deleterious materials from the delineated areas.

Cleared and grubbed vegetation shall be removed and disposed of in stockpiles, by controlled burning, or wasted by way of other approved methods in an area designated by the **PROJECT MANAGER** in accordance with permits obtained from the appropriate local, State, and Federal regulatory agencies.

2.02 TOPSOIL:

A. Stripping of the salvageable Topsoil shall be done where Topsoil is present within the entire area of the stripping limits as designated on the Drawings, as determined by **PROJECT MANAGER**.

Topsoil shall be excavated and removed in a manner which will minimize contamination with other soil horizons.

Such measures as are necessary shall be taken to insure that the removal of Topsoil does not result in erosion or excessive sedimentation.

- B. In areas designated to be stripped of unsuitable or objectionable material, said materials shall be stripped to the full depth of organic soil as determined by **ENGINEER** and **PROJECT MANAGER**.
- C. Removed Topsoil shall be stockpiled at locations designated by the PROJECT MANAGER or placed directly on components of the Work requiring replacement of Topsoil as directed by the PROJECT MANAGER. Stored Topsoil shall not be disturbed by construction activities, and shall be protected from wind and water erosion, unnecessary compaction, and contamination which would lessen the capability of the material to support vegetation when redistributed. Topsoil stockpiles will be graded to minimize erosion and prevent ponding of precipitation in the stockpile areas. Stockpiled Topsoil shall be protected by an effective cover of non-noxious, quick-growing, annual and perennial plants, seeded or planted during the first appropriate growing season after removal.

2.03 TEMPORARY EROSION AND SURFACE WATER CONTROLS:

- A. The CONTRACTOR shall be responsible for providing temporary erosion and surface water controls during construction and shall be responsible for, and shall repair at his own expense, any damage to the foundation, structures or other parts of the WORK caused by stormwater runoff, or failure of any temporary erosion or surface water controls.
- B. The **CONTRACTOR** shall be responsible for providing temporary surface water controls during construction. All temporary surface water controls not part of the permanent facility shall be removed, leveled and graded. Disturbance of areas beyond the clearing limits shall not be undertaken without prior written approval by **PROJECT MANAGER**.
- C. The CONTRACTOR shall have full responsibility for the adequacy of the temporary erosion and surface water controls. The sizing for temporary erosion and surface water controls should consider the duration of the construction activities, the time of the year of construction, characteristics of the storms during the construction seasons, cost of possible damage, cost of delay to the construction completion of the Work, and the safety of workmen. Historic rainfall data for the Barrick Mercur site and synthetic storm hydrographs for various return periods will be made available to CONTRACTOR by PROJECT MANAGER, upon request. ENGINEER, OWNER and PROJECT MANAGER assumes no responsibility for any interpretations or conclusions made by the CONTRACTOR from the supplied data.

** END OF SECTION **

SECTION 02200 EARTHWORKS

PART 1: GENERAL

1.01 SUMMARY:

- A. This Work includes all the earthwork activities required to reclaim the tailings impoundment. This work includes, but is not limited to; excavation, haulage, and placement of Grading Fill, Subsoil, and Topsoil ,materials for the soil cover; construction of the final spillways and drainage channels; and, procurement, haulage and deployment of geogrid as required for construction of the soil cover.
- B. Refer to the following Sections for related work:

Section 01300 - Quality Assurance and Construction Documentation

Section 02100 - Site Preparation

Section 02278 - Geogrid

1.02 QUALITY ASSURANCE AND QUALITY CONTROL:

- A. **ENGINEER** shall at all times have access to the work during its construction and shall be furnished with every reasonable facility for ascertaining that the materials and workmanship are in accordance with the Drawings and these Specifications.
- B. All excavation, backfill, and grading operations shall be carried out under the observation of **PROJECT MANAGER**. Testing shall be performed by **ENGINEER** in accordance with Section 01300 Quality Assurance and Construction Documentation.
- B. Any work found unsatisfactory or any work disturbed by subsequent operations before acceptance is granted, shall be corrected by CONTRACTOR as directed by PROJECT MANAGER.
- C. Contractor to record the total thickness of layer; lift thickness; rate of advancement of the lift (ft/day); depth to water; presence and height of mudwave; and, unusual or unsafe conditions while placing the Grading Fill materials, or Subsoil Fill where Grading Fill materials are not required.

1.03 MEASUREMENT AND PAYMENT

- A. Measurement and payment shall be made for:
 - Per unit (placed cubic yard) of grading fill loaded, hauled and placed to the minimum thickness indicated on the Drawings. Measurement will be made by pre and post-excavation surveys of settlement plates, installed on nominal 200-ft centers. Billable quantities will be based on neat line in-place fill.
 - 2. Per unit (placed square yard) of Subsoil (loaded, hauled, and placed) to a nominal thickness of two (2) feet, per the tolerances defined in these

specifications and thicknesses as shown on the Drawings. Measurement will be based upon a neat line post-construction surface survey of the placed subsoillimits. Subsoil excavated from the spillway excavations will be conducted to the lines and grades as shown on the Drawings.

- 3. Per unit (square yard) of Topsoil (loaded, hauled, and placed) to a nominal true thickness of one (1) foot, per the tolerances defined in these specifications and thickness as shown on the Drawings. Measurement will be based upon a neat line post-construction survey of the placed topsoil limits.
- 4. Per unit (square yard) of geogrid deployed from **OWNER'S** stockpile.
- 5. Per unit (linear foot) of diversion channel type, constructed to the lines and grades shown on the Drawings, unless designated otherwise by the Contract Documents.
- 6. Per unit (cubic yard) of Riprap loaded, hauled and placed.
- 7. Per cubic yard of Structural Fill (load, haul, and place) to the lines and grades shown on the drawings, except for Structural Fill required as part of the construction of the Diversion channels which are incidental to diversion channel unit payment.
- B. No separate measurement or payment shall be made for stockpiles, unless otherwise approved by the **PROJECT MANAGER**.

PART 2: PRODUCTS

2.01 FILL MATERIALS:

- A. Fill materials will be soils, gravels or rock fills approved by PROJECT MANAGER and ENGINEER. The materials shall be free of organic matter, debris, frozen material, and other deleterious materials, and shall consist as follows:
 - Subsoil: Subsoil shall be Common Excavation consisting of clean soil and waste rock materials excavated from the Alluvial Subsoil Stockpile or the Spillway Cut area as approved by the PROJECT MANAGER and ENGINEER. The subsoil in the Spillway Cut Stockpile shall not be excavated beyond the lines and grades illustrated on the Drawings. The maximum particle size allowed for fill shall be sixteen (16) inches, unless approved otherwise by ENGINEER, as measured in two adjacent and perpendicular dimensions.
 - Topsoil: Topsoil shall consist of organic soil materials excavated from undisturbed ground in the Spillway Cut or designated stockpiles, as approved by the PROJECT MANAGER.
 - Grading Fill: Grading Fill shall consist of limestone rockfill from the Suggar Shack Quarry, from excess rockfill materials which comprise the crest berm, subsoil materials or other material as pre-approved by the PROJECT MANAGER and ENGINEER.

- 4. Structural Fill: Structural Fill shall consist of soil and rock materials used for diversions, and other areas as designated on the Drawings. The suitability of Structural Fill material will require evaluation by ENGINEER and approval by PROJECT MANAGER and ENGINEER. Structural Fill will have a maximum particle size of sixty-seven (67) percent of the Lift Height and will compaction by an approved method specification. Any materials greater than the allowable size will be broken down or removed.
- 5. Riprap: shall consist of hard, dense, durable stone, angular to subrounded in shape and resistant to weathering, e.g., limestone. Riprap shall have a particle size gradation that generally conforms to the Riprap schedule shown on the Drawings. Riprap is to be developed from the rock excavations and/or from the Sugar Shack quarry as visually approved by the **PROJECT MANAGER** and **ENGINEER**.

2.02 EXCAVATED MATERIALS:

- A. Common Excavation: This classification includes all material other than rock excavation.
- B. Rock Excavation: This classification includes all solid rock which cannot be removed until loosened by blasting, boring, or wedging. It is further defined as rock of such hardness and texture that it cannot be loosened or broken down by a single shank ripper mounted on a D-9 Caterpillar Bulldozer (or equivalent) in good operating condition handled by an experienced operator. In areas where it is impractical to classify material by use of the ripper described, rock excavation is defined as sound material of such hardness and texture that it cannot be excavated with a Caterpillar 235 Backhoe (or equivalent) in good operating condition handled by an experienced operator. It also includes boulders and detached pieces of solid rock greater than three quarters of a cubic yard in volume.
- Excavated bedrock materials shall be classified in accordance with Article 2.01 of this Section.

PART 3: EXECUTION

3.01 BORROW AREAS:

- A. Excavation of materials from the various borrow areas shall be performed in such a way as to minimize the disturbance to surrounding areas. Material removed from the borrow areas shall be taken directly to the fill areas or, if required, stockpiled. Any stockpiles, if required, shall be located at sites pre-approved by the **PROJECT MANAGER**.
- B. Borrow area excavations shall be graded and properly maintained to provide adequate drainage at all times. Work shall be suspended by the **CONTRACTOR** when, in the opinion of the **PROJECT MANAGER**, the site is overly wet, muddy, or otherwise unsuitable for proper maintenance, until directed otherwise by the **PROJECT MANAGER**.

C. At the conclusion of the Work, all borrow area excavations shall be left with smooth neat lines and grades suitable for reclamation, with grades that are in general conformance with the Drawings.

3.02 SUBGRADE:

- A. The Structural Fill materials shall be placed on bedrock or suitable subgrade which has been prepared by the **CONTRACTOR** and approved by the **ENGINEER**. Alluvial soils located within the limits of placement of Structural Fill will be scarified to a depth of one (1) foot. The subgrade will be moisture conditioned and compacted to a minimum of ninety-five (95) percent of the maximum dry density, as determined by the standard Proctor test (ASTM D698), or by an equivalent method specification approved by **ENGINEER**. The **ENGINEER** will inspect and approve the exposed subgrade prior to any fill being placed. In rock areas, the **CONTRACTOR** shall prepare the subgrade by removing loose rock fragments until competent foundation material is encountered, as approved by **ENGINEER**.
- B. The subgrade shall not contain saturated or other deleterious materials as determined by the **PROJECT MANAGER** or **ENGINEER**.
- C. The CONTRACTOR shall protect prepared subgrades from disturbance due to weather, construction equipment, or other factors. Subgrade surfaces, including previously approved subgrade, which become softened or otherwise unsuitable, shall be repaired to the satisfaction of the PROJECT MANAGER and ENGINEER. Subgrades found to exhibit swelling, heaving or other similar conditions shall be replaced or reworked by the CONTRACTOR to remove such defects.

3.03 FILL PLACEMENT:

A. General Requirements

Fill placement activities shall be performed to achieve the lines and grades as shown on the Drawings, to tolerance of plus or minus two tenths (± 0.2) feet, unless approved otherwise. The following general guidelines shall be followed except as noted elsewhere in this Section.

- No Structural Fill materials shall be placed until the site preparation activities
 have been completed as specified in Section 02100, and subgrade preparation
 activities have been completed as specified herein Article 3.02 of this Section.
 The procedures for fill placement shall be reviewed by ENGINEER and
 approved by PROJECT MANAGER prior to start of fill placement.
- No brush, roots, sod, or other deleterious or unsuitable materials shall be incorporated in the fills. The suitability of all materials intended for use in the fill shall be subject to approval by PROJECT MANAGER and ENGINEER. CONTRACTOR shall temporarily stop fill placement due to weather conditions, if materials and installation do not meet these Specifications.
- At all times during construction, the surface of the fill shall be graded and maintained by the CONTRACTOR to prevent ponding of water and for storm water drainage.
- 4. Except as otherwise specified or approved by ENGINEER and PROJECT

MANAGER, the **CONTRACTOR** shall dump and spread fill in such a manner so that no excessive gaps are left between successively-dumped loads of materials. The fill shall be leveled prior to compaction by means of a dozer or grader, or other suitable approved equipment, to obtain a surface free from depressions.

B. Structural Fill

1. CONTRACTOR shall apply water required for moisture conditioning on the fill or in the borrow areas, for Structural fill materials with moisture conditioning requirements. Structural Fill will be placed to the lines and grades as shown on the Drawings, to a tolerance of plus or minus two-tenths (±0.2) foot, unless approved otherwise by the PROJECT MANAGER and ENGINEER. Unless noted otherwise, Structural Fill will be compacted with a method specification approved by ENGINEER, at a moisture content of minus four (4) to plus three (3) percent of the optimum moisture content.

Prior to mixing of wet and dry material on the fill to obtain the proper moisture content, approval shall be obtained from **ENGINEER**. Placing mixed material on the fill can only be done after the material has been mixed so that a uniform distribution of the moisture content has been achieved.

 Structural Fill used to construct safety berms and diversion channel sections will be compacted with a method specification by wheel rolling the surface of the berm, or other methods approved by the PROJECT MANAGER and ENGINEER.

C. Grading Fill

- 1. The limits of Grading Fill placement will be determined based upon foundation conditions encountered in the field. It is the intent of this scope of work to terminate the limits of placement of Grading Fill materials when foundation conditions prohibit the efficient placement of these materials, e.g., when placement of fill materials on the tailing surface results in mud-wave displacement of the tailings in excess of one and five tenths (1.5) vertical foot.
- Geogrid has been approved for use by CONTRACTOR to stabilize the surface of the tailings where required for safety or where its use is cost efficient due to higher equipment productivities. CONTRACTOR will haul geogrid from OWNER's stockpile and will complete deployment in accordance with Section 2278 of these Specifications. It will be the PROJECT MANAGER's decision whether to deploy geogrid or altenatively to allow the tailings subgrade to dry further to increase its shear strength. Whenever the average shear strength of the upper two (2) feet of the tailings subgrade is less than 200 psf, geogrid is required prior to material placement. The average shear strength of the tailings can be assessed using tensiometerrs, penetrometers, and torsional shear vanes.

Biaxial geogrid is to be deployed directly on the tailings surface, after which the Grading Fill (or Subsoil Fill) is pushed out over the geogrid. In general, only low ground pressure dozers, e.g., a Catapillar D4C LGP dozer with wide tracks (gross weight of approximately 17,400 lbs) should be used to place the fill over the geogrid layers. From the point of truck dump, the fill may typically be advanced to within 15-ft of the leading edge of the placed fill

with larger dozers, if the area covered is deemed stable. The low ground pressure dozer (LGP) should then be used to move the grading fill or subsoil material forward over the geogrid.

The technique of placing the fill over very soft soils with the dozer is important. When the LGP dozer approaches the leading edge of the fill, the height of the fill being pushed should not exceed one-half of the dozer blade height. The operator should lift the blade at the leading edge of the fill in order for the fill to spill down onto the exposed geogrid, rather than being pushed downward by the blade. The leading edge of the fill is leveled to the specific lift thickness. The mounding of material at the leading edge on soft soils is strictly prohibited. This placement procedure prevents excessive pressure from being exerted on the subgrade before the geogrid is fully anchored and minimizes mudwaving of the underlying soft soil.

- 3. No Grading Fill materials shall be placed until the areas have been approved for fill placement by the PROJECT MANAGER and ENGINEER. The procedures for fill placement shall be evaluated and approved by the PROJECT MANAGER and ENGINEER prior to start of fill placement.
- 4. Placement of Grading Fill activities shall be performed to achieve the design requirements as defined in these specifications and shown on the Drawings. Grading Fill shall be placed to neat lines to the minimum thicknesses shown on the Drawings, confirmed by settlement plates constructed on 200-ft centers (unless approved otherwise by OWNER). Tolerances for Grading Fill thickness are minus two (2) tenths to plus five (5) tenths of the Grading Fill! thickness requirements shown on the Drawings. Any filling beyond these limits shall be at the expense of the CONTRACTOR, unless approved otherwise by the PROJECT MANAGER.
- 5. ENGINEER has provided guidance calculations to CONTRACTOR of the estimated maximum initial and subsequent lift heights, minimum lift heights, setback distances, etc. for various depth of subsurface water, tailings shear strength, slope of leading edge, presence of geogrid etc. conditions. These guidance have been provided so that prior to fill placement, the likelehood of successful placement can be assessed using probes that assess water depth and tailings shear strength (i.e., tensiometers, penetrometers, torsional shear vanes). However, it is expected that the CONTRACTOR will constantly refine placement techniques based upon experience and observations gained during the construction period.

D. Subsoil

- Placement of Subsoil activities shall be performed to achieve the lines, grades, and design requirements as shown on the Drawings. Tolerances for Subsoil are a minimum thickness of one (1) foot and a maximum thickness of one and twenty-five one hundreds (1.25) feet on the buttresses and above the existing Capillary Break rockfill surface constructed on the Reservation Canyon Tailings Impoundment. For those sectors of the impoundment beyond the limits of the existing Capillary Break rockfill, the tolerances for subsoil shall be a minimum thickness of one and seventy-five hundredths (1.75) feet to two and three tenths (2.3) feet. Any filling beyond these limits shall be at the expense of the CONTRACTOR, unless approved otherwise by the PROJECT MANAGER.
- 2. No Subsoil materials shall be placed until the areas have been approved for fill

placement by the **PROJECT MANAGER** and **ENGINEER**. The procedures for fill placement shall be evaluated and approved by the **PROJECT MANAGER** and **ENGINEER** prior to start of fill placement.

 Subsoil fill placement directly on tailings shall be conducted in accordance to the geogrid and fill placement requirements discussed above in Article 3.03C of this section and Section 2278 of these specifications.

E. Topsoil

- 1. Topsoil placement activities shall be performed to achieve the lines, grades, and design requirements as shown on the Drawings. Tolerances are as follows:
 - a. Topsoil shall be placed to a nominal true thickness of twelve (12) inches, a maximum thickness of fourteen (14) inches, and a minimum thickness of ten (10) inches above the Regraded surface or the Subsoil surface as specified on the Drawings.
 - b. Topsoil thickness not within acceptable tolerance as determined by the ENGINEER and PROJECT MANAGER will be corrected by and at the expense of the CONTRACTOR, unless approved otherwise by the PROJECT MANAGER.
- 2. No Topsoil materials shall be placed until the areas have been approved for fill placement by the **PROJECT MANAGER**.
- Topsoil shall be placed in one lift in such a manner to minimize compaction.
 The procedures for fill placement shall be evaluated and approved by the ENGINEER and PROJECT MANAGER prior to start of fill placement.

3.04 EXCAVATIONS:

- A. Unless specifically noted otherwise, all excavations shall be performed to the lines and grades shown on the Drawings, or to approved field fit modifications made thereto, as approved by the **ENGINEER** and **PROJECT MANAGER**. Any excavation beyond these limits shall be at the expense of the **CONTRACTOR**, unless approved otherwise by the **PROJECT MANAGER**. No excavation or stripping shall begin until the Surveyor has provided construction staking for the proposed work. The exposed subgrade shall be inspected and approved by the **ENGINEER** and **PROJECT MANAGER** prior to any fill placed. Final surface shall be free of loose materials, clods, and other debris including grade stakes and hubs.
- B. Excavations shall be graded and properly maintained to provide adequate drainage at all times. Work shall be suspended by CONTRACTOR when, in the opinion of PROJECT MANAGER, the site is overly wet, muddy, or otherwise unsuitable for proper maintenance.
- C. Blasting if required for Rock Excavation shall be conducted only by trained and experienced personnel who hold blasting certificates for the Work.
- D. All necessary precautions shall be taken to preserve the material below and beyond the lines of excavation in the soundest possible condition. Where required to complete the Work, all excess excavation or overexcavation shall be refilled with approved materials,

placed and compacted to the satisfaction of the PROJECT MANAGER.

- E. Safe temporary construction slopes are the responsibility of the CONTRACTOR.
- F. The **CONTRACTOR** shall inspect all temporary and permanent open-cut excavations on a regular basis for signs of instability. Should signs of instability be noted, the **CONTRACTOR** shall undertake remedial measures immediately and shall notify the **PROJECT MANAGER** as soon as possible.
- G. It will be the CONTRACTOR's responsibility to remove all loose materials from the excavated slopes and to maintain the slopes in a safe and stable condition at all times during the progress of the Work.
- Н. Before undertaking Rock Excavation, the CONTRACTOR will submit the proposed method of excavation to the ENGINEER and PROJECT MANAGER for review and The CONTRACTOR will have the responsibility to ensure the method conforms to all applicable laws and regulations and conforms to proven safe practices for the type of rock, proximity to structures and other installations, prevents the opening of seams and otherwise provides for minimal disturbance or the breaking the rock beyond the required lines, levels and grades, and keeps the danger and danger area to the minimum practical. Use line drilling and pre-splitting, or pre-shearing in conjunction with cushion blasting or other approved method for final rock slopes. Use approved blasting mats as necessary to restrain the movement of material. Provide all flagman, signs, sirens, and other means necessary for safe use of explosives. Before each blast, clear all personnel, vehicles etc. from the blast area to safe limits and then ensure no personnel, vehicles etc. enter the area until after completion of the blast. Scale the sides of rock cuts as soon as possible, preferably as the sides become exposed.
- Construct Diversion Channels with uniform gradients between approved control points for the approved channel alignment, without excessive sags and without humps, unless specifically approved otherwise by the ENGINEER. Cross sectional flow areas for the Diversion Channels shown on the Drawings are the minimum allowable sections. Channel cross sections are not to be achieved through the construction of levees unless shown as such on the Drawings or approved by the ENGINEER. The diversion channel alignments may require field adjustment to maintain the channel tolerances as defined in this section and on the Drawings. Tolerances of approved diversion alignments, unless approved otherwise by the ENGINEER, will be as follows:
 - 1. For channel sections which will be excavated in fill materials, the tolerance of the constructed alignments shall be within minus one-half (1/2) to plus one-half (1/2) percent of the design grades as shown on the Drawings, with a minimum allowable gradient of one-quarter (0.25) percent between fifty (50) foot stations.
 - 2. For channel sections which will be excavated in native material the tolerance of the constructed alignments shall be within minus one-half (1/2) to plus one (1) percent of the design grades as shown on the Drawings, with a minimum allowable gradient of one-quarter (0.25) percent between fifty (50) foot stations.

** END OF SECTION **

SECTION 02278 GEOGRID

PART 1: GENERAL

1.01 DESCRIPTION:

A. The **CONTRACTOR** shall furnish all labor, materials, tools, equipment, supervision, transportation, and installation services necessary, for the deployment and installation of the geogrid that will be used to stabilize the surface of the tailings. **CONTRACTOR** will use geogrid for all haulage routes within the tailings impoundment and to stabilize the surface of the tailings in those areas where required to safely and efficiently complete the work. The Work shall be carried out in accordance with this Specification and the Construction Drawings.

1.02 RELATED WORK:

A. Section 02200 - Earthworks

1.03 REFERENCES:

- A. American Society for Testing and Materials (ASTM) most current version:
 - 1. ASTM D1388 Method for Measuring Flexural Rigidity
 - 2. ASTM D1777 Method for Measuring Thickness of Textile Materials.
 - 3. ASTM D4101 Method for the Determination of Polypropylene Content
 - 4. GRI1 Test Method GG1 Geogrid Tensile Strength.
 - 5. GRI Test Method GG2 Geogrid Junction Strength.
 - GRI Test Method GG3 Creep Behavior and Long Term Design Loads of Geogrid.

1.04 MEASUREMENT AND PAYMENT

Per unit (square yard) of geogrid deployed and installed from OWNERS stockpile.

1.05 SUBMITTALS:

A. The **CONTRACTOR** shall abide by all qualification and submittal requirements of Sections 01300.

1.06 QUALITY ASSURANCE:

A. The geogrid is to be delivered to the site at least 14 calendar days prior to installation to allow sufficient time for conformance testing.

B. Any geogrid rolls that do not meet the requirements of this Specification will be rejected. The OWNER will be required to replace the rejected material with new material that conforms to the specification.

1.07 DELIVERY, STORAGE, AND HANDLING:

- A. Packing and Shipping
 - Geogrids shall be supplied in rolls wrapped in relatively opaque protective covers.
 - 2. Geogrid or geocomposite rolls shall be marked or tagged with the following information:
 - a. Manufacturer's name
 - b. Product identification
 - c. Roll number
 - d. Roll dimensions
 - e. Batch or lot number
- B. Storage and Protection
 - 1. OWNER will provide on-site storage area for geogrid rolls from time of delivery until installation.
 - After Geosynthetics Installation CONTRACTOR has removed material from storage area, protect geogrid, ultraviolet light exposure, and other sources of damage.
 - 3. Preserve integrity and readability of geogrid roll labels.

PART 2: PRODUCTS

2.01 MATERIALS

- Geogrid shall be Tensar BX1100 or pre-approved equivalent by ENGINEER.
- B. Geogrid Requirements
 - Furnish materials whose "minimum average roll values", as defined by Federal Highway Administration (FHWA), meet or exceed geogrid property values specified in Table 2278-1. Obtain written approval for these materials from the ENGINEER.

TABLE 2278-1 GEOGRID PROPERTIES AND TEST METHODS

Property	Test Method	Units	Value
Interlock			
 Aperture Size 	I.D. Calipered		
- D		in	1.0 (nom)
- MD		in	1.3 (nom)
Open Area	COE Method	%	70 (min)
Thickness	ASTM D1777-64		
• Ribs		in	0.03 (nom)
 Junctions 		in	0.11 (nom)
Secant Aperture	Grid Aperture Test	cm-kg/deg	3.2
Stability Modulus @ 20	(Univ. Alaska Fairbanks)		
cm-kg			
Reinforcement			
Flexural Rigidity - MD	ASTM D1388-64	mg-cm	250,000 (min)
Tensile Modulus- MD	GRI GG1-87	lb/ft	14,000 (min) 1
Junctions	1		
 Strength 	GRI GG2-87	lb/ft	765 (min)
Efficiency	GRI GG2-87	%	90 (min)
Material			
Polypropylene	ASTM D4101	%	98 (min)
	Group 1 /Class 1 /Grade 2		
Carbon Black	ASTM 4218	%	0.5 (min)

Notes:

- MD = Machine direction
 CMD = Cross machine direction
- 2) Tensar BX-1100 or approved equivalent

2.02 SOURCE QUALITY CONTROL:

Ensure that geogrid manufacturer meets the conditions in this section.

- A. Geogrid Tests and Inspection
 - Geogrid shall be tested by geogrid manufacturer for quality control to evaluate the minimum geogrid requirements as specified in Table 2278-1. Samples not satisfying specifications shall result in the rejection of applicable rolls.
 - 2. At geogrid manufacturer's discretion and expense, additional testing of individual rolls may be performed to more closely identify noncomplying rolls and to qualify individual rolls.
 - 3. Geogrid manufacturer shall perform quality control tests for at least one per lot, or one per every 100,000 ft² of geogrid produced, whichever is greater.

PART 3: EXECUTION

3.01 EXAMINATIONS:

A. Conformance Testing

- Geogrid manufacturer shall supply samples of geogrid to ENGINEER for conformance testing. Unless otherwise specified, samples shall be taken at a rate of one per lot, not to exceed one conformance test per 250, 000 square feet of geogrid.
- At a minimum, the following tests shall be performed for quality assurance conformance testing in accordance with test methods specified in Table 2278-1:
 - a. Mass per unit area
 - b. Aperture size
 - c. Wide strip tensile strength
 - d. Node strength
 - e. Density
 - f. Thickness
 - g. Carbon black content
- 3. Geogrid shall be rejected if conformance test results do not meet or exceed the values presented in Table 2278-1.

3.02 INSTALLATION:

A. Geogrid Deployment

- No equipment or tools shall damage the geogrid by handling, trafficking, or other means.
- 2. No personnel working on the geogrid shall smoke, wear damaging shoes or engage in other activities that could damage the geogrid.
- 3. On slopes, the geogrid shall be securely anchored and then rolled down the slope in such a manner as to continually keep the sheet in tension.
- 4. In the presence of wind, all geogrids shall be weighted with sandbags or the equivalent. Such sandbags shall be installed during deployment and shall remain until replaced with cover material.
- 5. Geogrid panels shall be deployed directly on the tailings surface in such a manner as to preclude wrinkles and folds.
- 6. Once the biaxial geogrid layers have been placed, the grading or subsoil fill is pushed out over the geogrid. In general, only low ground pressure dozers, e.g., a Catapillar D4C LGP dozer with wide tracks (gross weight of approximately 17,400 lbs) should be used to place the fill over the geogrid layers. From the point of truck dump, the fill may typically be advanced to

within 15-ft of the leading edge of the placed fill with larger dozers, if the area covered is deemed stable. The low ground pressure dozer (LGP) should then be used to move the grading fill or subsoil material forward over the geogrid.

- 7. The technique of placing the fill over very soft soils with the dozer is important. When the LGP dozer approaches the leading edge of the fill, the height of the fill being pushed should not exceed one-half of the dozer blade height. The operator should lift the blade at the leading edge of the fill in order for the fill to spill down onto the exposed geogrid, rather than being pushed downward by the blade. The leading edge of the fill is leveled to the specific lift thickness. The mounding of material at the leading edge on soft soils is strictly prohibited. This placement procedure prevents excessive pressure from being exerted on the subgrade before the geogrid is fully anchored and minimizes mudwaving of the underlying soft soil.
- 8. Care must be taken to ensure that the leading edge of the fill is at least 20-ft from a geogrid end-lap position at the end of the daily operation. This is to guard against localized shear failure which may occur through the lap.

B. Seaming

- 1. Adjacent geogrid shall be placed edge to edge according to Construction Drawings and manufacturer Specifications. In extremely soft material, some shifting of the lap may occur during installation. In these cases UV-stabilized plastic ties must be installed at 2-ft intervals to maintain proper lap.
- 2. Where the geogrid is to be joined, a splice approved by the manufacturer shall be used. The splice shall not have any metallic components.

C. Defects and Repairs:

- The ENGINEER and OWNER will identify any areas requiring repair. The CONTRACTOR shall immediately make all repairs and replacements necessary, to the approval of the PROJECT MANAGER and at no additional cost to the OWNER.
- In the event that a failure of the biaxial geogrid occurs during construction, the failed area is patched by back-blading the area to remove approximately one-foot of fill. A patch of biaxial geogrid is placed over the failed area and extends at least 6-ft in all directions beyond the failed area to achieve anchorage. The one-foot of fill is then placed over the top of the geogrid to complete the patch.

** END OF SECTION **