Utah Division of Water Quality Statement of Basis ADDENDUM Wasteload Analysis and Antidegradation Level I Review

Date:	March 23, 2018
Prepared by:	Dave Wham 😥 Standards and Technical Services
Facility:	Swift Beef Company UPDES No. UT000281
Receiving water:	Ditch => South Fork Spring Creek

This addendum summarizes the wasteload analysis that was performed to determine water quality based effluent limits (WQBEL) for this discharge. Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses (UAC R317-2-8). Projected concentrations are compared to numeric water quality standards to determine acceptability. The numeric criteria in this wasteload analysis may be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality.

Discharge

001 Treatment plant discharge	2.0 MGD
-------------------------------	---------

Receiving Water

Swift Beef Co. discharges into a ditch system that runs for approximately 4.5 miles before coalescing as the South Fork of Spring Creek at Highway 89. As per UAC R317-2-13.10, the receiving ditch is classed 2B, 3E. As per R317-2-13.3(a), the designated beneficial uses of Little Bear River and tributaries, from Cutler Reservoir to headwaters are 2B, 3A, 3D, 4.

- Class 2B Protected for infrequent primary contact recreation. Also protected for secondary contact recreation where there is a low likelihood of ingestion of water or a low degree of bodily contact with the water. Examples include, but are not limited to, wading, hunting, and fishing.
- Class 3A Protected for cold water species of game fish and other cold water aquatic life, including the necessary aquatic organisms in their food chain.
- Class 3D Protected for waterfowl, shore birds and other water-oriented wildlife not included in Classes 3A, 3B, or 3C, including the necessary aquatic organisms in their food chain.

- Class 3E- Severely habitat-limited waters. Narrative standards will be applied to protect these waters for aquatic wildlife.
- Class 4 Protected for agricultural uses including irrigation of crops and stock watering.

Data from the following stations was used to populate the model:

Station #	Station Name	Data Period
4904840	DITCH AB EA MILLER SC-12	2006-2016
4905540	E. A. MILLER CO. EFFLUENT	2012-2016
4905520	HYRUM WWTP	2012-2016
4904940	S FK SPRING CK @ US 89 XING	2012-2016
4904943	S FK SPRING CK W OF HYRUM	2006-2016
	WWTP AT END OF RD	21
4904810	SPRING CK SC-9	2012-2016

Table 1. Data Sources

Data was segmented into two seasons; Irrigation (April-September) and Non-irrigation (October-May). Significant changes were made to Swift Beef Company's treatment plant in 2011. In order to be reflective of current conditions, only data from 2012 to present was used from those stations downstream of the facility.

Typically, the critical flow for the wasteload analysis is considered the lowest stream flow for seven consecutive days with a ten year return frequency (7Q10). Due to a lack of flow records, the 20th percentile of available flow measurements was calculated for the period of record to approximate the 7Q10 low flow condition. Calculated critical low flow conditions are as follows:

Station #	Station Name	Low Flow (cfs)		
		Irrigation Season	Non-irrigation Season	
4904840	DITCH AB EA MILLER SC-12	0.1	0.1	
4904810	SPRING CK SC-9	2.2	0.5	
4904940	S FK SPRING CK @ US 89 XING	6.7	3.8	

Table 2. Critical low flow conditions

Ambient water quality for the receiving water/discharge was characterized using data from the same stations and time periods as presented in Table 1.

<u>TMDL</u>

According to Utah's 2016 303(d) assessment unit UT16010203-008_00, Spring Creek and tributaries from confluence with Little Bear River to headwaters are currently listed as impaired (TMDL required) for temperature and O/E Bioassessment. A TMDL was completed for Spring Creek in 2002 which addressed impairments for dissolved oxygen, ammonia, E. coli and total phosphorus (TP). The TP target/endpoint was set at 0.05 mg/l at the watershed outlet. Since that

Utah Division of Water Quality Wasteload Analysis Swift Beef Company UPDES No. UT000281

time, major upgrades have been made to both Hyrum City's WWTP and Swift Beef Company's treatment plant, resulting in greatly improved effluent quality. The 2015 intensive monitoring that occurred in the drainage showed the average TP concentration at the watershed outlet to be 0.086 mg/l, which is significantly lower than the 0.7 mg/l concentration that existed prior to the treatment plants improvements. Because of these significant water quality improvements, and the volume of TP reduction that has occurred, additional time is needed to realize the temporal impacts of these changes to be expressed in the monitoring data of the South Fork of Spring Creek. The TP concentration trend continues to decline over time and has not shown to be tapering off to date. At present, additional time and monitoring are needed to assess the full impacts of the improvements. As a result, TP for Hyrum City's WWTP has been set at an interim level of 1.0 mg/l for September through May and 0.1 mg/l June through August and TP for Swift Beef Company has been set at an interim level of 1.0 mg/l for the next intensive monitoring cycle scheduled to begin in 2020.

Mixing Zone

The maximum allowable mixing zone is 15 minutes of travel time for acute conditions, not to exceed 50% of stream width, and 2,500 feet for chronic conditions, per UAC R317-2-5. Water quality standards must be met at the end of the mixing zone.

Because the receiving water is a ditch that flows for several miles with multiple inputs, the combined flows are considered to be totally mixed. Chronic and acute limits were calculated using 100% of the seasonal critical low flow.

Parameters of Concern

The potential parameters of concern identified for the discharge/receiving water were TDS, phosphorous and ammonia, as determined in consultation with the UPDES Permit Writer.

WET Limits

The percent of effluent in the receiving water in a fully mixed condition, and acute and chronic dilution in a not fully mixed condition are calculated in the WLA in order to generate WET limits. The LC₅₀ (lethal concentration, 50%) percent effluent for acute toxicity and the IC₂₅ (inhibition concentration, 25%) percent effluent for chronic toxicity, as determined by the WET test, needs to be below the WET limits, as determined by the WLA. The WET limit for LC₅₀ is typically 100% effluent and does not need to be determined by the WLA.

IC25 WET limits for Outfall 001:

Irrigation Season 58.4% effluent. Non-Irrigation Season 73% effluent.

Wasteload Allocation Methods

The QUAL2Kw model was used for determining the WQBELs for parameters related to eutrophication and in-stream DO criteria, as well as ammonia toxicity. Effluent concentrations

Utah Division of Water Quality Wasteload Analysis Swift Beef Company UPDES No. UT000281

were adjusted so that water quality standards were not exceeded in the receiving water. Where WQBELs exceeded secondary standards or technology based effluent limits (TBEL), the concentration in the model was set at the secondary standard or TBEL.

Effluent limits were determined for conservative constituents using a simple mass balance mixing analysis (UDWQ 2012). The mass balance analysis is summarized in the Wasteload Addendum.

Models and supporting documentation are available for review upon request.

Antidegradation Level I Review

The objective of the Level I ADR is to ensure the protection of existing uses, defined as the beneficial uses attained in the receiving water on or after November 28, 1975. No evidence is known that the existing uses deviate from the designated beneficial uses for the receiving water. Therefore, the beneficial uses will be protected if the discharge remains below the WQBELs presented in this wasteload.

A Level II Antidegradation Review (ADR) is not required for this facility. The proposed permit is a simple renewal of an existing UPDES permit. No increase in flow or concentration of pollutants over those authorized in the the existing permit is being requested.

Documents:

WLA Document: SwiftBeef_WLADoc_3-23-18.docx Wasteload Analysis and Addendums: SwiftBeef_WLA NonIrrig_3-23-18.xlsm; SwiftBeef WLA Irrig_3-23-18.xlsm

References:

Utah Division of Water Quality. 2012. Utah Wasteload Analysis Procedures Version 1.0.

.

WASTELOAD ANALYSIS [WLA] Addendum: Statement of Basis

SUMMARY	Date:	12/18/2018	Time:	12:33 PM
Discharging Facility:	EA Miller			
UPDES No: Current Flow: Design Flow		MGD MGD		
Irrigation Season (April - Septen	nber)			
Receiving Water: Stream Classification: Stream Flows [cfs]:	-		Controlling: Ily-Sept) c) -Mar)	3A Critical Low Flow Critical Low Flow Critical Low Flow Critical Low Flow
Stream TDS Values [mg/l as CaCO3]	-	Summer (Ju Fall (Oct-De Winter (Jan- Spring (Apr-	ec) -Mar)	
Parameter: summer Flow, MGD: BOD, mg/l: Dissolved Oxygen, mg/l: NH4	25.00 4.00 3.00	MGD summer summer summer	6.5	Indicator 30 Day Average vith pH and Temperature
TDS, mg/l: Modeling Parameters: Acute River Width: Chronic River Width:	3,000.00 50.0% 100.0%		1200.00	шул

Antidegradation Review: An Antidegradation Level I Review was completed. Antidegradation Level II Review is NOT Required

WASTELOAD ANALYSIS [WLA] Addendum: Statement of Basis

Facilities: Discharging to: EA Miller Ditch to So. Fork of Spring Creek UPDES No: UT00000281

Time:

Date: 12/18/2018

12:33 PM

I. Introduction

Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses [R317-2-8, UAC]. Projected concentrations are compared to numeric water quality standards to determine acceptability. The anti-degradation policy and procedures are also considered. The primary in-stream parameters of concern may include metals (as a function of hardness), total dissolved solids (TDS), total residual chlorine (TRC), un-ionized ammonia (as a function of pH and temperature, measured and evaluated interms of total ammonia), and dissolved oxygen.

Mathematical water quality modeling is employed to determine stream quality response to point source discharges. Models aid in the effort of anticipating stream quality at future effluent flows at critical environmental conditions (e.g., low stream flow, high temperature, high pH, etc).

The numeric criteria in this wasteload analysis may always be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality.

II. Receiving Water and Stream Classification

Ditch to So. Fork of Spring Creek Antidegradation Review: 2B, 3A, 3D, 4 Antidegradation Level II Review is NOT Required

III. Numeric Stream Standards for Protection of Aquatic Wildlife

Total Ammonia (TNH3)

Chronic Total Residual Chlorine (TRC)

Chronic Dissolved Oxygen (DO)

Maximum Total Dissolved Solids

Varies as a function of Temperature and pH Rebound. See Water Quality Standards

> 0.011 mg/l (4 Day Average) 0.019 mg/l (1 Hour Average)

6.50 mg/l (30 Day Average) N/A mg/l (7Day Average) 3.00 mg/l (1 Day Average

1200.0 mg/l

Acute and Chronic Heavy Metals (Dissolved)

		4 Day Average (Chronic	:) Standard	1 Hour Average (Acute) Standard		
Parameter		Concentration	Load*	Concentration	Load*	
	Aluminum	87.00 ug/l**	0.005 lbs/day	750.00 ug/l	0.040 lbs/day	
	Arsenic	190.00 ug/l	0.010 lbs/day	340.00 ug/l	0.018 lbs/day	
	Cadmium	0.76 ug/l	0.000 lbs/day	8.73 ug/l	0.000 lbs/day	
	Chromium III	268.22 ug/l	0.014 lbs/day	5611.67 ug/l	0.302 lbs/day	
	ChromiumVI	11.00 ug/l	0.001 lbs/day	16.00 ug/l	0.001 lbs/day	
	Copper	30.50 ug/l	0.002 lbs/day	51.68 ug/l	0.003 lbs/day	
	Iron			1000.00 ug/l	0.054 lbs/day	
	Lead	18.58 ug/l	0.001 lbs/day	476.82 ug/l	0.026 lbs/day	
	Mercury	0.012 ug/l	0.000 lbs/day	2.40 ug/l	0.000 lbs/day	
	Nickel	168.54 ug/l	0.009 lbs/day	1515.91 ug/l	0.082 lbs/day	

Utah Division of Water Quality

Selenium	4.60 ug/l	0.000 lbs/day	20.00 ug/l	0.001 lbs/day
Silver	N/A ug/I	N/A lbs/day	41.07 ug/l	0.002 lbs/day
Zinc	387.83 ug/l	0.021 lbs/day	387.83 ug/l	0.021 lbs/day

Page: 3

* Allowed below discharge

**Chronic Aluminum standard applies only to waters with a pH < 7.0 and a Hardness < 50 mg/l as CaCO3 Metals Standards based upon a hardness of 400 mg/l as CaCO3 where applicable.

Organics [Pesticides]

	4 Day Average (Chronic) Standard			1 Hour Average (Acute) Standard		
Parameter	Concer	ntration	Load*	Concentratio	on	Load*
Aldrin		ug/l		1.5000	ug/l	8.085E-05 lbs/day
Chlordane	0.0043	ug/l	2.318E-07 lbs/day	1.2000	ug/l	6.468E-05 lbs/day
DDT, DDE	0.0010	ug/l	5.390E-08 lbs/day	0.5500	ug/l	2.965E-05 lbs/day
Dieldrin	0.0019	ug/l	1.024E-07 lbs/day	1.2500	ug/l	6.738E-05 lbs/day
Endosulfan	0.0560	ug/l	3.018E-06 lbs/day	0.1100	ug/l	5.929E-06 lbs/day
Endrin	0.0023	ug/l	1.240E-07 lbs/day	0.0900	ug/l	4.851E-06 lbs/day
Guthion				0.0100		
Heptachlor	0.0038	ug/l	2.048E-07 lbs/day	0.2600	ug/l	1.401E-05 lbs/day
Lindane	0.0800	ug/l	4.312E-06 lbs/day	1.0000	ug/l	5.390E-05 lbs/day
Methoxychlor				0.0300		
Mirex				0.0100		
Parathion				0.0400		
PCB's	0.0140	ug/l	7.546E-07 lbs/day	2.0000	ug/ł	1.078E-04 lbs/day
Pentachlorophenol	13.0000	ug/l	7.007E-04 lbs/day	20.0000	ug/l	1.078E-03 lbs/day
Toxephene	0.0002	ug/l	1.078E-08 lbs/day	0.7300	ug/l	3.935E-05 lbs/day

IV. Numeric Stream Standards for Protection of Agriculture

4 Day Average (Chronic) Standard		1 Hour Average (Acute) Standard		
	Concentration	Load*	Concentration	Load*
Arsenic	N/A		100.0 ug/l	5.39E-03 lbs/day
Boron	N/A		750.0 ug/l	4.04E-02 lbs/day
Cadmium	N/A		10.0 ug/l	5.39E-04 lbs/day
Chromium	N/A		100.0 ug/l	5.39E-03 lbs/day
Copper	N/A		200.0 ug/l	1.08E-02 lbs/day
Lead	N/A		100.0 ug/l	5.39E-03 lbs/day
Selenium	N/A		50.0 ug/l	2.70E-03 lbs/day
TDS	N/A		1200.0 mg/l	3.23E-02 tons/day

V. Numeric Stream Standards for Protection of Human Health (Class 1C Waters) **4 Day Average (Chronic) Standard**

4	Day Average (Chronic) S	standard	1 Hour	Average	(Acute) Standard
Metals	Concentration	Load*	Concentratio	on '	Load*
Arsenic	N/A		50.0	ug/l	2.70E-03 lbs/day
Barium	N/A		1000.0	ug/l	5.39E-02 lbs/day
Cadmium	N/A		10.0	ug/l	5.39E-04 lbs/day
Chromium	N/A		50.0	ug/l	2.70E-03 lbs/day
Lead	N/A		50.0	ug/l	2.70E-03 lbs/day
Mercury	N/A		2.0	ug/l	1.08E-04 lbs/day
Selenium	N/A		10.0	ug/l	5.39E-04 lbs/day
Silver	N/A		50.0	ug/l	2.70E-03 lbs/day
Fluoride (3)	N/A		1.4	ug/l	7.55E-05 lbs/day
to	N/A		2.4	ug/l	1.29E-04 lbs/day
Nitrates as N	N/A		10.0	ug/l	5.39E-04 lbs/day

4	4 Day Average (Chronic) Standard		1 Hour Average (A	Acute) Standard
Chlorophenoxy Herbicides	Concentration	Load*	Concentration	Load*
2,4-D	N/A		100.0 ug/l	5.39E-03 lbs/day
2,4,5-TP	N/A		10.0 ug/i	5.39E-04 lbs/day

Page: 4

Endrin	N/A	0.2	ug/l	1.08E-05 lbs/day
Hexachlorocyclohexane (Lindane)	N/A	4.0	ug/l	2.16E-04 lbs/day
Methoxychlor	N/A	100.0	ug/l	5.39E-03 lbs/day
Toxaphene	N/A	5.0	ug/l	2.70E-04 lbs/day
		-		

VI. Numeric Stream Standards the Protection of Human Health from Water & Fish Consumption [Toxics]

	Maximum Conc., ug/I - Acute Standards Class 1C Class 3A. 3B				
		,) Kg Person over 70 Yr.]	Class 3A, [6.5 g for 70 Kg	Person over 70 Yr.]	
Antimony Arsenic Beryllium Cadmium Chromium III Chromium VI	6E+00 ug/l	6E+00 lbs/day	6E+02 ug/l	6.42E+02 lbs/day	
Copper Lead Mercury	1E+03 ug/l	1E+03 lbs/day	0E+00 ug/l	0.00E+00 lbs/day	
Nickel Selenium Silver	1E+02 ug/l	1E+02 lbs/day	5E+03 ug/l 4E+03 ug/l	4.61E+03 lbs/day 4.21E+03 lbs/day	
Thallium	2E-01 ug/l	2E-01 lbs/day	5E-01 ug/l	4.71E-01 lbs/day	
Zinc	7E+03 ug/l	7E+03 lbs/day	3E+04 ug/l	2.61E+04 lbs/day	
Cyanide	1E+02 ug/l	1E+02 lbs/day	1E+02 ug/l	1.40E+02 lbs/day	
Asbestos	5	8 505 2020 HEA FOL BURG	9	·····,	
2,3,7,8-TCDD Dioxin	5E-09				
Acrolein	2E+02 ug/l	2E+02 lbs/day	3E+02 ug/l	2.91E+02 lbs/day	
Acrylonitrile	5E-02 ug/l	5E-02 lbs/day	3E-01 ug/l	2.51E-01 lbs/day	
Alachlor	2E+00 ug/l	2E+00 lbs/day	0		
Atrazine	3E+00 ug/l	3E+00 lbs/day			
Benzene	2E+00 ug/l	2E+00 lbs/day	5E+01 ug/l	5.12E+01 lbs/day	
Bromoform	4E+00 ug/l	4E+00 lbs/day	1E+02 ug/l	1.40E+02 lbs/day	
Carbofuran	4E+01 ug/l	4E+01 lbs/day			
Carbon Tetrachloride	2E-01 ug/l	2E-01 lbs/day	2E+00 ug/l	1.60E+00 lbs/day	
Chlorobenzene	1E+02 ug/l	1E+02 lbs/day	2E+03 ug/l	1.61E+03 lbs/day	
Chlorodibromomethane	4E-01 ug/l	4E-01 lbs/day	1E+01 ug/l	1.30E+01 lbs/day	
Chloroethane					
2-Chloroethylvinyl Ether					
Chloroform	6E+00 ug/l	6E+00 lbs/day	5E+02 ug/l	4.72E+02 lbs/day	
Dalapon	2E+02 ug/l	2E+02 lbs/day			
Di(2ethylhexl)adipate	4E+02 ug/i	4E+02 lbs/day			
Dibromochloropropane	2E-01 ug/l	2E-01 lbs/day			
Dichlorobromomethane 1,1-Dichloroethane	6E-01 ug/l	6E-01 lbs/day	2E+01 ug/l	1.71E+01 lbs/day	
1,2-Dichloroethane	4E-01 ug/l	4E-01 lbs/day	4E+01 ug/l	3.71E+01 lbs/day	
1,1-Dichloroethylene	7E+00 ug/l	7E+00 lbs/day	7E+03 ug/l	7.12E+03 lbs/day	
Dichloroethylene (cis-1,2	7E+01 ug/l	7E+01 lbs/day	0E+00 ug/l		
Dinose	7E+00 ug/l	7E+00 lbs/day	0E+00 ug/l		
Diquat	2E+01 ug/l	2E+01 lbs/day	0E+00 ug/l		
1,2-Dichloropropane	5E-01 ug/l	5E-01 lbs/day	2E+01 ug/l	1.50E+01 lbs/day	
1,3-Dichloropropene	3E-01 ug/l	3E-01 lbs/day	2E+01 ug/l	2.11E+01 lbs/day	
Endothall	1E+02 ug/ł	1E+02 lbs/day			
Ethylbenzene	5E+02 ug/l	5E+02 lbs/day	2E+03 ug/l	2.11E+03 lbs/day	
Ethylene Dibromide	5E-02 ug/i	5E-02 lbs/day			
Glyphosate	7E+02 ug/l	7E+02 lbs/day			
Haloacetic acids	6E+01 ug/l	6E+01 lbs/day		a constraint and an a	
Methyl Bromide	5E+01 ug/l	5E+01 lbs/day	2E+03 ug/l	1.50E+03 lbs/day	

Page: 5

Methyl Chloride				
Methylene Chloride	5E+00 ug/l	5E+00 lbs/day	6E+02 ug/l	5.92E+02 lbs/day
Ocamyl (vidate)	2E+02 ug/l	2E+02 lbs/day		
Picloram	5E+02 ug/l	5E+02 lbs/day		
Simazine	4E+00 ug/l	4E+00 lbs/day		
Styrene	1E+02 ug/l	1E+02 lbs/day	45.00	
1,1,2,2-Tetrachloroethane Tetrachloroethylene	2E-01 ug/l	2E-01 lbs/day	4E+00 ug/l	4.01E+00 lbs/day
Toluene	7E-01 ug/l 1E+03 ug/l	7E-01 lbs/day 1E+03 lbs/day	3E+00 ug/l 2E+04 ug/l	3.31E+00 lbs/day 1.50E+04 lbs/day
1,2 -Trans-Dichloroethyle	1E+02 ug/l	1E+02 lbs/day	1E+04 ug/l	1.00E+04 lbs/day
1,1,1-Trichloroethane	2E+02 ug/l	2E+02 lbs/day	TE+04 ug/i	1.00E+04 105/0ay
1,1,2-Trichloroethane	6E-01 ug/l	6E-01 lbs/day	2E+01 ug/l	1.61E+01 lbs/day
Trichloroethylene	3E+00 ug/l	3E+00 lbs/day	3E+01 ug/l	3.01E+01 lbs/day
Vinyl Chloride	3E-02 ug/l	3E-02 lbs/day	2E+00 ug/l	2.41E+00 lbs/day
Xylenes	1E+04 ug/i	1E+04 lbs/day	LL oo ugn	2.112.00 100.003
2-Chlorophenol	8E+01 ug/l	8E+01 lbs/day	2E+02 ug/l	1.50E+02 lbs/day
2,4-Dichlorophenol	8E+01 ug/l	8E+01 lbs/day	3E+02 ug/l	2.91E+02 lbs/day
2,4-Dimethylphenol	4E+02 ug/l	4E+02 lbs/day	9E+02 ug/l	8.52E+02 lbs/day
2-Methyl-4,6-Dinitrophenol	1E+01 ug/l	1E+01 lbs/day	3E+02 ug/l	2.81E+02 lbs/day
2,4-Dinitrophenol	7E+01 ug/l	7E+01 lbs/day	5E+03 ug/l	5.32E+03 lbs/day
2-Nitrophenol				
4-Nitrophenol				
3-Methyl-4-Chlorophenol				
Penetachlorophenol	3E-01 ug/l	3E-01 lbs/day	3E+00 ug/l	3.01E+00 lbs/day
Phenol	2E+04 ug/l	2E+04 lbs/day	2E+06 ug/l	1.71E+06 lbs/day
2,4,6-Trichlorophenol	1E+00 ug/l	1E+00 lbs/day	2E+00 ug/l	2.41E+00 lbs/day
Acenaphthene	7E+02 ug/l	7E+02 lbs/day	1E+03 ug/l	9.92E+02 lbs/day
Acenaphthylene	05.00 #			
Anthracene	8E+03 ug/l	8E+03 lbs/day	4E+04 ug/l	4.01E+04 lbs/day
Benzidine	9E-05 ug/l	9E-05 lbs/day	2E-04 ug/l	2.01E-04 lbs/day
BenzoaAnthracene	4E-03 ug/l	4E-03 lbs/day	2E-02 ug/l	1.81E-02 lbs/day
BenzoaPyrene BenzobFluoranthene	4E-03 ug/l 4E-03 ug/l	4E-03 lbs/day	2E-02 ug/l	1.81E-02 lbs/day
BenzoghiPerylene	0E+00 ug/l	4E-03 lbs/day 0E+00 lbs/day	2E-02 ug/l 0E+00 ug/l	1.81E-02 lbs/day
BenzokFluoranthene	4E-03 ug/l	4E-03 lbs/day	2E-02 ug/l	0.00E+00 lbs/day 1.81E-02 lbs/day
Bis2-ChloroethoxyMethane	0E+00 ug/l	0E+00 lbs/day	0E+00 ug/l	0.00E+00 lbs/day
Bis2-ChloroethylEther	3E-02 ug/l	3E-02 lbs/day	5E-01 ug/l	5.32E-01 lbs/day
Bis2-Chloroisopropy1Ether	1E+03 ug/l	1E+03 lbs/day	7E+04 ug/l	6.52E+04 lbs/day
Bis2-EthylhexylPhthalate	1E+00 ug/l	1E+00 lbs/day	2E+00 ug/l	2.21E+00 lbs/day
4-Bromophenyl Phenyl Ether	0E+00			00 100,000
Butylbenzyl Phthalate	2E+03 ug/l	2E+03 lbs/day	2E+03 ug/l	1.90E+03 lbs/day
2-Chloronaphthalene	1E+03 ug/l	1E+03 lbs/day	2E+03 ug/l	1.60E+03 lbs/day
4-Chlorophenyl Phenyl Ether		-	-	
Chrysene	4E-03 ug/l	4E-03 lbs/day	2E-02 ug/l	1.81E-02 lbs/day
Dibenzoa, (h)Anthracene	4E-03 ug/l	4E-03 lbs/day	2E-02 ug/l	1.81E-02 lbs/day
1,2-Dichlorobenzene	4E+02 ug/l	4E+02 lbs/day	1E+03 ug/l	1.30E+03 lbs/day
1,3-Dichlorobenzene	3E+02 ug/l	3E+02 lbs/day	1E+03 ug/l	9.63E+02 lbs/day
1,4-Dichlorobenzene	6E+01 ug/l	6E+01 lbs/day	2E+02 ug/l	1.91E+02 lbs/day
3,3-Dichlorobenzidine	2E-02 ug/l	2E-02 lbs/day	3E-02 ug/l	2.81E-02 lbs/day
Diethyl Phthalate	2E+03 ug/l	2E+03 lbs/day	4E+04 ug/l	4.41E+04 lbs/day
Dimethyl Phthalate	3E+05 ug/l	3E+05 lbs/day	1E+06 ug/l	1.10E+06 lbs/day
Di-n-Butyl Phthalate	2E+03 ug/l	2E+03 lbs/day	5E+03 ug/l	4.51E+03 lbs/day
2,4-Dinitrotoluene	1E-01 ug/l	1E-01 lbs/day	3E+00 ug/l	3.41E+00 lbs/day
2,6-Dinitrotoluene				
Di-n-Octyl Phthalate 1,2-Diphenylhydrazine	4E-02 ug/l	AE 02 lbaldar	25 01	201E 01 lbalder
Fluoranthene	4E-02 ug/l 1E+02 ug/l	4E-02 lbs/day 1E+02 lbs/day	2E-01 ug/l	2.01E-01 lbs/day
Fluorene	1E+03 ug/l	1E+02 lbs/day	5E+03 ug/l	5.32E+03 lbs/day
Hexachlorobenzene	3E-04 ug/l	3E-04 lbs/day	3E-04 ug/l	2.90E-04 lbs/day
Hexachlorobutedine	4E-01 ug/l	4E-01 lbs/day	2E+01 ug/l	1.81E+01 lbs/day
	or agn	TE OT IDS/ddy	LE OF Ug/I	Lote of bolddy

Utah Division of Water Quality

Pa	n	۵.	6
F C	i Ui	с.	U

Hexachloroethane	1E+00 ug/l	1E+00 lbs/day	3E+00 ug/l	3.31E+00 lbs/day
Hexachlorocyclopentadiene	4E+01 ug/l	4E+01 lbs/day	1E+03 ug/l	1.10E+03 lbs/day
Ideno 1,2,3-cdPyrene	4E-03 ug/l	4E-03 lbs/day	2E-02 ug/l	1.81E-02 lbs/day
Isophorone	4E+01 ug/l	4E+01 lbs/day	1E+03 ug/l	9.63E+02 lbs/day
Naphthalene			ug/l	
Nitrobenzene	2E+01 ug/l	2E+01 lbs/day	7E+02 ug/l	6.92E+02 lbs/day
N-Nitrosodimethylamine	7E-04 ug/l	7E-04 lbs/day	3E+00 ug/l	3.01E+00 lbs/day
N-Nitrosodi-n-Propylamine	5E-03 ug/l	5E-03 lbs/day	5E-01 ug/l	5.12E-01 lbs/day
N-Nitrosodiphenylamine	3E+00 ug/l	3E+00 lbs/day	6E+00 ug/l	6.01E+00 lbs/day
Phenanthrene				
Pyrene	8E+02 ug/l	8E+02 lbs/day	4E+03 ug/l	4.01E+03 lbs/day
1,2,4-Trichlorobenzene	4E+01 ug/l	4E+01 lbs/day	7E+01 ug/l	7.02E+01 lbs/day
Aldrin	5E-05 ug/l	5E-05 lbs/day	5E-05 ug/l	5.01E-05 lbs/day
alpha-BHC	3E-03 ug/l	3E-03 lbs/day	5E-03 ug/l	4.91E-03 lbs/day
beta-BHC	9E-03 ug/l	9E-03 lbs/day	2E-02 ug/l	1.70E-02 lbs/day
gamma-BHC (Lindane)	2E-01 ug/l	2E-01 lbs/day	2E+00 ug/l	1.81E+00 lbs/day
delta-BHC	0E+00 ug/l	0E+00 lbs/day	0E+00 ug/l	0.00E+00 lbs/day
Chlordane	8E-04 ug/l	8E-04 lbs/day	8E-04 ug/l	8.11E-04 lbs/day
4,4-DDT	2E-04 ug/l	2E-04 lbs/day	2E-04 ug/l	2.20E-04 lbs/day
4,4-DDE	2E-04 ug/l	2E-04 lbs/day	2E-04 ug/l	2.20E-04 lbs/day
4,4-DDD	3E-04 ug/l	3E-04 lbs/day	3E-04 ug/l	3.11E-04 lbs/day
Dieldrin	5E-05 ug/l	5E-05 lbs/day	5E-05 ug/l	5.41E-05 lbs/day
alpha-Endosulfan	6E+01 ug/l	6E+01 lbs/day	9E+01 ug/l	8.92E+01 lbs/day
beta-Endosulfan	6E+01 ug/l	6E+01 lbs/day	9E+01 ug/l	8.92E+01 lbs/day
Endosulfan Sulfate	6E+01 ug/l	6E+01 lbs/day	9E+01 ug/l	8.92E+01 lbs/day
Endrin	6E-02 ug/l	6E-02 lbs/day	6E-02 ug/l	6.01E-02 lbs/day
Endrin Aldehyde	3E-02 ug/l	3E-02 lbs/day	3E-01 ug/l	3.01E-01 lbs/day
Heptachlor	8E-05 ug/l	8E-05 lbs/day	8E-05 ug/l	7.91E-05 lbs/day
Heptachlor Epoxide	4E-05 ug/l	4E-05 lbs/day	4E-05 ug/i	3.91E-05 lbs/day
Polychlorinated Biphenyls	6E-05 ug/l	6E-05 lbs/day	6E-05 ug/l	6.41E-05 lbs/day
PCB's				
Toxaphene	3E-04 ug/l	3E-04 lbs/day	3E-04 ug/l	0.00E+00 lbs/day

1.7

There are additional standards that apply to this receiving water, but were not considered in this modeling/waste load allocation analysis.

VII. Mathematical Modeling of Stream Quality

Model configuration was accomplished utilizing standard modeling procedures. Data points were plotted and coefficients adjusted as required to match observed data as closely as possible.

The modeling approach used in this analysis included one or a combination of the following models.

(1) The Utah River Model, Utah Division of Water Quality, 1992. Based upon QUAL2kw EPA and the University of Washington.

(2) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644.

Coefficients used in the model were based, in part, upon the following references:

(1) Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling. QUAL2kw default values or as adjusted by user, as noted.

VIII. Modeling Information

The required information for the model may include the following information for both the upstream conditions at low flow and the effluent conditions:

Flow, Q, (cfs or MGD)	D.O. mg/l
Temperature, Deg. C.	Total Residual Chlorine (TRC), mg/l
рН	Total NH3-N, mg/l
BOD5, mg/l	Total Dissolved Solids (TDS), mg/l
Metals, ug/l	Toxic Organics of Concern, ug/I

Other Conditions

In addition to the upstream and effluent conditions, the models require a variety of physical and biological coefficients and other technical information. In the process of actually establishing the permit limits for an effluent, values are used based upon the available data, model calibration, literature values, site visits and best professional judgement.

Model Inputs

The following is upstream and discharge information that was utilized as inputs for the analysis. Dry washes are considered to have an upstream flow equal to the flow of the discharge.

Current Headwater/Upstream Information

	Stream Critical				74			
	Low Flow	Temp.	рН	T-NH4	BOD5	DO	TRC	TDS
	cfs	Deg. C		mg/l as N	mg/l	mg/l	mg/l	mg/l
Summer	0.010	15.1	8.3	0.05	0.10	9.10	0.00	1812.0
Fall	0.000	0.0	0.0	0.00	0.00	0.00	0.00	0.0
Winter	0.010	8.0	8.2	0.31	0.10	10.70	0.00	1288.0
Spring	0.000	0.0	0.0	0.00	0.00	0.00	0.00	0.0
Dissolved	AI	As	Cd	CrIII	CrVI	Copper	Fe	Pb

	Uta	ah Division c	of Water Q	uality			Page:	В
Metals All Seasons	ug/l 15.00	ug/l 2.50	ug/l 0.38	ug/l 134.11	ug/l 5.50	ug/l 5.59	ug/I 0.00	ug/l 9.29
Dissolved Metals All Seasons	Hg ug/l 0.0060	Ni ug/l 3.75	Se ug/l 1.30	Ag ug/l 1.00	Zn ug/l 41.00	Boron ug/I 375.0	* 1	/2 MDL

Projected Discharge Information [See page 5 for additional information]

Season	Flow, MGD	Temp.	TDS mg/l	TDS tons/day
Summer	2.00	23.60	3,000.00	25.01
Fall		-	-	=
Winter	2.00	21.50	3,000.00	25.01
Spring	9 0	-	-	-

All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality.

IX. Effluent Limitations

Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9).

Other conditions used in the modeling effort coincide with the environmental conditions expected at low stream flows.

Effluent Limitation for Flow based upon Water Quality Standards

In-stream criteria of downstream segments will be met with an effluent flow maximum value as follows:

Season		Daily Average	
Summer	2.00	MGD	3.094 cfs
Fall	2	MGD	0.000 cfs
Winter	2.00	MGD	3.094 cfs
Spring	-	MGD	0.000 cfs

Flow Requirement or Loading Requirement

The calculations in this wasteload analysis utilize the maximum effluent discharge flow of 2 MGD. If the discharger is allowed to have a flow greater than 2 MGD during 7Q10 conditions, and effluent limit concentrations as indicated, then water quality standards will be violated. In order to prevent this from occuring, the permit writers must include the discharge flow limititation as indicated above; or, include loading effluent limits in the permit.

Effluent Limitation for Whole Effluent Toxicity (WET) based upon WET Policy

Effluent Toxicity will not occur in downstream segements if the values below are met.

WET Requirements	LC50 >	EOP Effluent	[Acute]
System is Totally Mixed	IC25 >	58.4% Effluent	[Chronic]

Effluent Limitation for Biological Oxygen Demand (BOD₅) based upon Water Quality Standards or Regulations

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent BOD5 limitation as follows:

Season	Concentration	
Summer	25.00 mg/l as CBOD5	416.92 lbs/day
Fall	 mg/l as CBOD5 	 Ibs/day
Winter	25.00 mg/l as CBOD5	416.92 lbs/day
Spring	- mg/l as CBOD5	- lbs/day

Effluent Limitation for Dissolved Oxygen (DO) based upon Water Quality Standards

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent D.O. limitation as follows:

Season	Concer	ntration	Load	
Summer	4.00	mg/l	66.71	lbs/day
Fall	-	mg/l	-	lbs/day
Winter	4.00	mg/l	66.71	lbs/day
Spring	-	mg/l	-	lbs/day

Effluent Limitation for Total Ammonia based upon Water Quality Standards

In-stream criteria of downstream segments for Total Ammonia will be met with an effluent limitation (expressed as Total Ammonia as N) as follows:

Season		Concentrat	tion	Load	
Summer	4 Day Avg Chronic	3.00	mg/l as N	50.03	lbs/day
	1 Hour Avg Acute	17.17	mg/I as N	286.26	lbs/day
Fall	4 Day Avg Chronic	-	mg/I as N	-	lbs/day
	1 Hour Avg Acute	-	mg/I as N	-	lbs/day
Winter	4 Day Avg Chronic	4.00	mg/I as N	66.71	lbs/day
	1 Hour Avg Acute	22.89	mg/l as N	381.68	lbs/day
Spring	4 Day Avg Chronic	-	mg/l as N	())	lbs/day
	1 Hour Avg Acute	-	mg/I as N		lbs/day

Effluent Limitation for Total Residual Chlorine based upon Water Quality Standards

In-stream criteria of downstream segments for Total Residual Chlorine will be met with an effluent limitation as follows:

Season		Concentrat	ion	Load	l
Summer	4 Day Avg Chronic	0.25	mg/l	4.17	lbs/day
	1 Hour Avg Acute	0.43	mg/l	7.20	lbs/day
Fall	4 Day Avg Chronic	÷.	mg/l	-	lbs/day
	1 Hour Avg Acute	-	mg/l	-	lbs/day
Winter	4 Day Avg Chronic	0.15	mg/l	2.50	lbs/day
	1 Hour Avg Acute	0.26	mg/l	4.32	lbs/day
Spring	4 Day Avg Chronic	-	mg/l	-	lbs/day
	1 Hour Avg Acute	=	mg/l		lbs/day

Effluent Limitations for Total Dissolved Solids based upon Water Quality Standards				
Season	Concentration	Load		

Summer	Maximum, Acute	3,000.0	mg/l	50,030	tons/day
Fall	Maximum, Acute	-	mg/l	-	tons/day
Winter	Maximum, Acute	3,000.0	mg/l	50,030	tons/day
Spring	Maximum, Acute	2	mg/l	-	tons/day

Colorado Salinity Form Limits

Determined by Permitting Section

Effluent Limitations for Heat/Temperature based upon Water Quality Standards

Summer	Maximum	23.60	Deg. C.	74.5	Deg. F
Fall	Maximum	-	Deg. C.	-	Deg. F
Winter	Maximum	21.50	Deg. C.	70.7	Deg. F
Spring	Maximum	-	Deg. C.	-	Deg. F

Effluent Limitations for Organics [Pesticides] Based upon Water Quality Standards [Class 3]

In-stream criteria of downstream segments for Organics [Pesticides] will be met with an effluent limit as follows:

	4 Day Average		1 Hour A		
	Concentration	Load	Concentration		Load
Aldrin			1.5E+00	ug/l	8.09E-02 lbs/day
Chiordane	4.31E-03 ug/l	2.32E-04 lbs/day	1.2E+00	ug/l	6.48E-02 lbs/day
DDT, DDE	1.00E-03 ug/l	5.40E-05 lbs/day	5.5E-01	ug/l	2.97E-02 lbs/day
Dieldrin	1.90E-03 ug/l	1.03E-04 lbs/day	1.3E+00	ug/l	6.75E-02 lbs/day
Endosulfan	5.61E-02 ug/l	3.02E-03 lbs/day	1.1E-01	ug/l	5.94E-03 lbs/day
Endrin	2.30E-03 ug/l	1.24E-04 lbs/day	9.0E-02	ug/l	4.86E-03 lbs/day
Guthion	0.00E+00 ug/l	0.00E+00 lbs/day	1.0E-02	ug/l	5.39E-04 lbs/day
Heptachlor	3.81E-03 ug/l	2.05E-04 lbs/day	2.6E-01	ug/l	1.40E-02 lbs/day
Lindane	8.01E-02 ug/l	4.32E-03 lbs/day	1.0E+00	ug/l	5.40E-02 lbs/day
Methoxychlor	0.00E+00 ug/l	0.00E+00 lbs/day	3.0E-02	ug/l	1.62E-03 lbs/day
Mirex	0.00E+00 ug/l	0.00E+00 lbs/day	1.0E-02	ug/l	5.39E-04 lbs/day
Parathion	0.00E+00 ug/l	0.00E+00 lbs/day	4.0E-02	ug/l	2.16E-03 lbs/day
PCB's	1.40E-02 ug/l	7.56E-04 lbs/day	2.0E+00	ug/l	1.08E-01 lbs/day
Pentachlorophenol	1.30E+01 ug/l	7.02E-01 lbs/day	2.0E+01	ug/l	1.08E+00 lbs/day
Toxephene	2.00E-04 ug/l	1.08E-05 lbs/day	7.3E-01	ug/t	3.94E-02 lbs/day

Effluent Limitations for E. coli Based upon Water Quality Standards [Class 2] E. coli

126.0 organisms per 100 ml

Effluent Targets for Pollution Indicators **Based upon Water Quality Standards**

In-stream criteria of downstream segments for Pollution Indicators will be met with an effluent limit as follows:

	1 Hour Average		
	Concentration	Loading	
Gross Beta (pCi/l)	50.1 pCi/L	0.00	
BOD (mg/l)	5.0 mg/l	83.5 lbs/day	
Nitrate as N (mg/l)	4.0 mg/l	66.8 lbs/day	
Total Phosphorus as P	0.1 mg/l	0.0 lbs/day	

Note: Pollution indicator targets are for information purposes only.

Effluent Limitations for Protection of Human Health [Toxics Rule] Based upon Water Quality Standards (Most stringent of 1C or 3A & 3B as appropriate.)

In-stream criteria of downstream segments for Protection of Human Health [Toxics] will be met with an effluent limit as follows:

be met with an effluent limit as follows:		
		Maximum Concentration
Toxic Organics	LINUCIA	Concentra Load
	Limitation	Effluent
	(30 Day	Limit (30
	Avg.)	Day Avg.)
	Class 1C	Class 3
Antimony	5.609E+00	
Antimony Arsenic	5.009E+00	6.421E+02
Beryllium		
Cadmium Chromium III		
Chromium VI	4 00 45 00	
Copper	1.304E+03	
Lead		
Mercury Nickel	4 0005 00	4 045 :00
Selenium	1.003E+02	4.61E+03
		4.21E+03
Silver	0.4045.04	0.00E+00
	2.404E-01	4.71E-01
Zinc	7.424E+03	2.61E+04
Cyanide	1.404E+02	1.40E+02
	7.000E+06	5 445 00
2,3,7,8-TCDD Dioxin	4 0005 00	5.11E-09
Acrolein	1.903E+02	2.91E+02
Acrylonitrile	5.108E-02	2.51E-01
Alachlor	2.003E+00	0.00E+00
Atrazine	3.005E+00	0.00E+00
Benzene	2.204E+00	5.12E+01
Bromoform	4.307E+00	1.40E+02
Carbofuran	4.006E+01	4 205 200
Carbon Tetrachloride	2.304E-01	1.60E+00
Chlorobenzene	1.002E+02	1.61E+03
Chlorodibromomethane	4.006E-01	1.30E+01
Chloroethane		
2-Chloroethylvinyl Ether	F 700F 100	4 705 : 00
Chloroform	5.709E+00	4.72E+02
Dalapon Di (2ethul) e dia etc	2.003E+02	
Di(2ethylhexl)adipate	4.006E+02	
Dibromochloropropane Dichlorobromomethane	2.003E-01	4 74 - 04
	5.509E-01	1.71E+01
1,1-Dichloroethane	0.0005.04	0.00E+00
1,2-Dichloroethane	3.806E-01	3.71E+01
1,1-Dichloroethylene	7.011E+00	7.12E+03
Dichloroethylene (cis-1,2	7.011E+01	0.00E+00
Dinose	7.011E+00	0.00E+00
Diquat 1.2 Disklasses	2.003E+01	0.00E+00
1,2-Dichloropropane	5.008E-01	1.50E+01
1,3-Dichloropropene	3.405E-01	2.11E+01
Endothall	1.002E+02	0.00E+00
Ethylbenzene Ethylopo Dibromido	5.309E+02	2.11E+03
Ethylene Dibromide	5.008E-02	0.00E+00

Glyphosate	7.011E+02	0.00E+00
Haloacetic acids	6.010E+01	0.00E+00
Methyl Bromide	4.708E+01	1.50E+03
Methyl Chloride	0.000E+00	
Methylene Chloride	4.607E+00	5.92E+02
Ocamyl (vidate)	2.003E+02	
Picloram	5.008E+02	
Simazine	4.006E+00	
Styrene	1.002E+02	
1,1,2,2-Tetrachloroethane	1.703E-01	4.01E+00
Tetrachloroethylene	6.911E-01	3.31E+00
Toluene	1.002E+03	1.50E+04
1,2 -Trans-Dichloroethyle	1.002E+02	1.00E+04
1,1,1-Trichloroethane	2.003E+02	0.00E+00
1,1,2-Trichloroethane	5.910E-01	1.61E+01
Trichloroethylene		
-	2.504E+00	3.01E+01
Vinyl Chloride	2.504E-02	2.41E+00
Xylenes	1.002E+04	4 505.00
2-Chlorophenol	8.113E+01	1.50E+02
2,4-Dichlorophenol	7.712E+01	2.91E+02
2,4-Dimethylphenol	3.806E+02	8.52E+02
2-Methyl-4,6-Dinitrophenol	1.302E+01	2.81E+02
2,4-Dinitrophenol	6.911E+01	5.32E+03
2-Nitrophenol		
4-Nitrophenol		
3-Methyl-4-Chlorophenol		
Penetachlorophenol	2.704E-01	3.01E+00
Phenol	2.103E+04	1.71E+06
2,4,6-Trichlorophenol	1.402E+00	2.41E+00
Acenaphthene	6.711E+02	9.92E+02
Acenaphthylene	0.000E+00	0.00E+00
Anthracene	8.313E+03	4.01E+04
Benzidine	8.614E-05	2.01E-04
BenzoaAnthracene	3.806E-03	1.81E-02
BenzoaPyrene	3.806E-03	1.81E-02
BenzobFluoranthene	3.806E-03	1.81E-02
BenzoghiPerylene		0.00E+00
BenzokFluoranthene	3.806E-03	1.81E-02
Bis2-ChloroethoxyMethane		0.00E+00
Bis2-ChloroethylEther	3.005E-02	5.32E-01
Bis2-Chloroisopropy1Ether	1.402E+03	6.52E+04
Bis2-EthylhexylPhthalate	1.202E+00	2.21E+00
4-Bromophenyl Phenyl Ether	1.2022.00	0.00E+00
Butylbenzyl Phthalate	1.502E+03	1.90E+03
2-Chloronaphthalene	1.002E+03	1.60E+03
4-Chlorophenyl Phenyl Ether	1.0022+03	1.00L+05
	2 8065 02	
Chrysene	3.806E-03	1.81E-02
Dibenzoa, (h)Anthracene	3.806E-03	1.81E-02
1,2-Dichlorobenzene	4.207E+02	1.30E+03
1,3-Dichlorobenzene	3.205E+02	9.63E+02
1,4-Dichlorobenzene	6.310E+01	1.91E+02
3,3-Dichlorobenzidine	2.103E-02	2.81E-02
Diethyl Phthalate	1.703E+03	4.41E+04
Dimethyl Phthalate	2.704E+05	1.10E+06
Di-n-Butyl Phthalate	2.003E+03	4.51E+03
2,4-Dinitrotoluene	1.102E-01	3.41E+00
2,6-Dinitrotoluene		0.00E+00
Di-n-Octyl Phthalate		0.00E+00
1,2-Diphenylhydrazine	3.606E-02	2.01E-01
Fluoranthene	1.302E+02	

Utah Division of Water Quality

Fluorene	1.102E+03	5.32E+03
Hexachlorobenzene	2.805E-04	2.90E-04
Hexachlorobutedine	4.407E-01	1.81E+01
Hexachloroethane	1.402E+00	3.31E+00
Hexachlorocyclopentadiene	4.006E+01	1.10E+03
Ideno 1,2,3-cdPyrene	3.806E-03	1.81E-02
Isophorone	3.506E+01	9.63E+02
Naphthalene		
Nitrobenzene	1.703E+01	6.92E+02
N-Nitrosodimethylamine	6.911E-04	3.01E+00
N-Nitrosodi-n-Propylamine	5.008E-03	5.12E-01
N-Nitrosodiphenylamine	3.305E+00	6.01E+00
Phenanthrene		
Pyrene	8.313E+02	4.01E+03
1,2,4-Trichlorobenzene	3.506E+01	7.02E+01
Aldrin	4.908E-05	5.01E-05
alpha-BHC	2.604E-03	4.91E-03
beta-BHC	9.115E-03	1.70E-02
gamma-BHC (Lindane)	2.003E-01	1.81E+00
delta-BHC		0.00E+00
Chlordane	8.013E-04	8.11E-04
4,4-DDT	2.204E-04	2.20E-04
4,4-DDE	2.204E-04	2.20E-04
4,4-DDD	3.105E-04	3.11E-04
Dieldrin	5.208E-05	5.41E-05
alpha-Endosulfan	6.210E+01	8.92E+01
beta-Endosulfan	6.210E+01	8.92E+01
Endosulfan Sulfate	6.210E+01	8.92E+01
Endrin	5.910E-02	6.01E-02
Endrin Aldehyde	2.905E-02	3.01E-01
Heptachlor	7.913E-05	7.91E-05
Heptachlor Epoxide	3.906E-05	3.91E-05
PCBs	6.410E-05	6.41E-05

Toxaphene

2.805E-04

Metals Effluent Limitations for Protection of All Beneficial Uses Based upon Water Quality Standards and Toxics Rule

	Class 3 Chronic Aquatic Wildlife ug/l	Class 3: Acute Aquatic Wildlife ug/l	Class 1C: Drinking Water Supply	Class 1C: Acute Toxics Drinking Water Source ug/l	Class 3: Acute Toxics Drinking & Consumpt ion Criteria ug/l		Acute Most Stringent ug/l
Aluminum	N/A	751.2					751.2
Antimony				5.6			5.6
Arsenic	190.6	340.5	50.2			100.3	50.2
Asbestos				7.00E+06			7000000.0
Barium			1001.6				1001.6
Beryllium							0.0
Cadmium	0.8	8.7	10.0			10.0	0.8
Chromium (III)	268.7	5620.5	49.7				49.7
Chromium (VI)	11.02	16.0				99.9	11.0
Copper	30.6	51.8		1304.2		200.6	30.6
Cyanide	5.2	22.0		140.4			5.2
Iron		1001.6					1001.6
Lead	18.6	477.6	50.1			100.3	18.6
Mercury	0.012	2.40	2.01		-		0.0
Nickel	169.1	1518.4		100.3			100.3
Selenium	4.6	20.0	10.0		4213.6	50.2	4.6
Silver		41.1	50.2				41.1
Thallium							0.0
Zinc	388.9	388.4			26083.9		388.4
Boron						751.2	751.2

Summary Effluent Limitations for Metals [Wasteload Allocation, TMDL]

[If Acute is more stringent than Chronic, then the Chronic takes on the Acute value.]

	WLA Acute	WLA Chroni	c
	ug/l	ug/l	
Aluminum	751.2	N/A	
Antimony	5.61		
Arsenic	50.2	190.6	Acute Controls
Asbestos	7.00E+06		
Barium	1001.6		
Beryllium			
Cadmium	0.8	0.8	
Chromium (III)	49.7	269	Acute Controls
Chromium (VI)	11.0	11.0	
Copper	30.6	30.6	
Cyanide	5.2	5.2	
Iron	1001.6		
Lead	18.6	18.6	
Mercury	0.012	0.012	
Nickel	100.3	169	Acute Controls
Selenium	4.6	4.6	
Silver	41.1	N/A	
Thallium	0.0		
Zinc	388.4	388.9	Acute Controls
Boron	751.21		

Other Effluent Limitations are based upon R317-1.

X. Antidegradation Considerations

The Utah Antidegradation Policy allows for degradation of existing quality where it is determined that such lowering of water quality is necessary to accommodate important economic or social development in the area in which the waters are protected [R317-2-3]. It has been determined that certain chemical parameters introduced by this discharge will cause an increase of the concentration of said parameters in the receiving waters. Under no conditions will the increase in concentration be allowed to interfere with existing instream water uses.

The antidegradation rules and procedures allow for modification of effluent limits less than those based strictly upon mass balance equations utilizing 100% of the assimilative capacity of the receiving water. Additional factors include considerations for "Blue-ribbon" fisheries, special recreational areas, threatened and endangered species, and drinking water sources.

An Antidegradation Level I Review was conducted on this discharge and its effect on the receiving water. Based upon that review, it has been determined that an **Antidegradation Level II Review is NOT Required.**

XI. Colorado River Salinity Forum Considerations

Discharges in the Colorado River Basin are required to have their discharge at a TDS loading of less than 1.00 tons/day unless certain exemptions apply. Refer to the Forum's Guidelines for additional information allowing for an exceedence of this value.

XII. Summary Comments

The mathematical modeling and best professional judgement indicate that violations of receiving water beneficial uses with their associated water quality standards, including important down-stream segments, will not occur for the evaluated parameters of concern as discussed above if the effluent limitations indicated above are met.

XIII. Notice of UPDES Requirement

This Addendum to the Statement of Basis does not authorize any entity or party to discharge to the waters of the State of Utah. That authority is granted through a UPDES permit issued by the Utah Division of Water Quality. The numbers presented here may be changed as a function of other factors. Dischargers are strongly urged to contact the Permits Section for further information. Permit writers may utilize other information to adjust these limits and/or to determine other limits based upon best available technology and other considerations provided that the values in this wasteload analysis [TMDL] are not compromised. See special provisions in Utah Water Quality Standards for adjustments in the Total Dissolved Solids values based upon background concentration.

XIV. Special Considerations

EA Miller discharges to a tributary of Spring Creek which is listed on the Utah 303(d) listed for total phosphorous (TP), ammonia and dissolved oxygen (DO). A TMDL was completed for Spring Creek on September 9th, 2002. The TMDL set the load allocation for EA Miller at 170 kg/yr TP based on the anticipated capacity of the plant (2 mgd) and an average total phosphorus concentration of 0.10 mg/l (30 day average).

Prepared by: David Wham Utah Division of Water Quality File Name: EA Miller & Hyrum WWTP_Irrigation_limits.xls

Level I Antidegradation Review for: EA Miller

Level II Antidegradation Review is NOT required. Basic permit renewal. No increase in load or concentration over last issued permit.

APPENDIX - Coefficients and Other Model Information

Parameter	Value	Units
Stoichiometry:	Value	Units
Carbon	40	gC
Nitrogen	7.2	gN
Phosphorus	1	gP
Dry weight	100	gD
Chlorophyll	1	gA
Inorganic suspended solids:		94
Settling velocity	0.06128	m/d
Oxygen:	0.00120	n/u
Reaeration model	Internal	
Temp correction	1.024	
Reaeration wind effect		
O2 for carbon oxidation	None	-00/-0
	2.69	gO2/gC
O2 for NH4 nitrification	4.57	gO2/gN
Oxygen inhib model CBOD oxidation	Exponent	
Oxygen inhib parameter CBOD oxidation	0.60	L/mgO2
Oxygen inhib model nitrification	Exponent	
Oxygen inhib parameter nitrification	0.60	L/mgO2
Oxygen enhance model denitrification	Exponent	
Oxygen enhance parameter denitrification	0.60	L/mgO2
Oxygen inhib model phyto resp	Exponent	
Oxygen inhib parameter phyto resp	0.60	L/mgO2
Oxygen enhance model bot alg resp	Exponent	ial
Oxygen enhance parameter bot alg resp	0.60	L/mgO2
Slow CBOD:		
Hydrolysis rate	1.93545	/d
Temp correction	1.047	
Oxidation rate	1.18385	/d
Temp correction	1.047	
Fast CBOD:		
Oxidation rate	0.5447	/ď
Temp correction	1.047	
Organic N:		
Hydrolysis	0.8365	/d
Temp correction	1.07	
Settling velocity	0.24964	m/d
Ammonium:		
Nitrification	4.2	/d
Temp correction	1.07	/4
Nitrate:	1.07	
Denitrification	1.02986	/d
Temp correction	1.02500	
Sed denitrification transfer coeff	0.05126	m/d
		m/a
Temp correction	1.07	

Organic P:		
Hydrolysis	3.4361	/d
Temp correction	1.07	
Settling velocity	0.62926	m/d
Inorganic P:		
Settling velocity	0.01384	m/d
Sed P oxygen attenuation half sat constant	1.69154	mgO2/L
Phytoplankton:		
Max Growth rate	2.5	/d
Temp correction	1.07	
Respiration rate	0.1	/d
Temp correction	1.07	
Death rate	0	/d
Temp correction	1	
Nitrogen half sat constant	15	ugN/L
Phosphorus half sat constant	2	ugP/L
Inorganic carbon half sat constant	1.30E-05	moles/L
Phytoplankton use HCO3- as substrate	Yes	
Light model	Half satura	tion
Light constant	57.6	langleys/d
Ammonia preference	25	ugN/L
Settling velocity	0.15	m/d
Bottom Plants:		
Growth model	Zero-order	
Max Growth rate	49.3845	gD/m2/d or /d
Temp correction	1.07	
First-order model carrying capacity	100	gD/m2
Basal respiration rate	0.48434	/d
Photo-respiration rate parameter	0	unitless
Temp correction	1.07	
Excretion rate	0.46367	/d
Temp correction	1.07	, u
Death rate	0.40579	/d
Temp correction	1.07	
External nitrogen half sat constant	163.368	ugN/L
External phosphorus half sat constant	47.556	ugP/L
Inorganic carbon half sat constant	1.05E-05	moles/L
Bottom algae use HCO3- as substrate	Yes	mologic
Light model	Half satura	tion
Light constant	2.09098	langleys/d
Ammonia preference	1.48807	ugN/L
Subsistence quota for nitrogen	29.957365	mgN/gD
Subsistence quota for phosphorus	0.3928168	mgP/gD
Maximum uptake rate for nitrogen	446.5885	mgN/gD/d
Maximum uptake rate for phosphorus	114.4235	mgP/gD/d
Internal nitrogen half sat ratio	2.856177	ing. ,ge.a
Internal phosphorus half sat ratio	1.752547	
Nitrogen uptake water column fraction	1	
Phosphorus uptake water column fraction	1	
Detritus (POM):		
Dissolution rate	2.7754	/d
Temp correction	1.07	70
Settling velocity	3.89475	m/d
	3.09475	m/u
Pathogens: Decay rate	0.8	/d
•	0.8 1.07	/d
Temp correction		m/d
Settling velocity	1	m/d
alpha constant for light mortality	1	/d per ly/hr
pH: Partial processor of earbon diaxida	247	
Partial pressure of carbon dioxide	347	ppm

•

-		1
Dagar	19	2
Page:	10)

Hyporheic metabolism					
Model for biofilm oxidatio	n of fast CBOD		Ze	ro-order	
Max biofilm growth rate			5	g	O2/m^2/d or /d
Temp correction			1.0	47	
Fast CBOD half-saturation	n		0.5	i n	ngO2/L
Oxygen inhib model			Ex	ponential	
Oxygen inhib parameter			0.6	0 L	/mgO2
Respiration rate			0.2	. /	d
Temp correction			1.0	7	
Death rate			0.0	15 /0	b
Temp correction			1.0	7	
External nitrogen half sat	constant		15	u	igN/L
External phosphorus half	sat constant		2	u	gP/L
Ammonia preference			25	u	gN/L
First-order model carrying	g capacity		10	0.0 g	D/m2
Generic constituent					
Decay rate			30	.0 /0	d
Temp correction			1.1		
Settling velocity			1.0) n	n/d
Atmospheric Inputs:	summer	Summer	Fall	Winter	Spring
Air Temperature, F	65.0	65.0	45.0	30.0	45.0
Dew Point, Temp., F	44.0	44.0	35.0	32.0	35.0
Wind, ft./sec. @ 21 ft.	2.0	2.0	2.0	2.0	2.0
Cloud Cover, %	10.0%	10.0%	10.0%	10.0%	10.0%
Shade, %	5.0%	5.0%	5.0%	5.0%	5.0%
Other Inputs:					
Manning Coeffecient	0.04 D	efault			
Side Slope	10.0%				
Bottom Algae Coverage	50.0%				

Utah Division of Water Quality Statement of Basis ADDENDUM Wasteload Analysis and Antidegradation Level I Review

Date:	March 23, 2018
Prepared by:	Dave Wham Standards and Technical Services
Facility:	Swift Beef Company UPDES No. UT000281
Receiving water:	Ditch => South Fork Spring Creek

This addendum summarizes the wasteload analysis that was performed to determine water quality based effluent limits (WQBEL) for this discharge. Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses (UAC R317-2-8). Projected concentrations are compared to numeric water quality standards to determine acceptability. The numeric criteria in this wasteload analysis may be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality.

Discharge

001	Treatment plant discharge	2.0 MGD
-----	---------------------------	---------

Receiving Water

Swift Beef Co. discharges into a ditch system that runs for approximately 4.5 miles before coalescing as the South Fork of Spring Creek at Highway 89. As per UAC R317-2-13.10, the receiving ditch is classed 2B, 3E. As per R317-2-13.3(a), the designated beneficial uses of Little Bear River and tributaries, from Cutler Reservoir to headwaters are 2B, 3A, 3D, 4.

- Class 2B Protected for infrequent primary contact recreation. Also protected for secondary contact recreation where there is a low likelihood of ingestion of water or a low degree of bodily contact with the water. Examples include, but are not limited to, wading, hunting, and fishing.
- Class 3A Protected for cold water species of game fish and other cold water aquatic life, including the necessary aquatic organisms in their food chain.
- Class 3D Protected for waterfowl, shore birds and other water-oriented wildlife not included in Classes 3A, 3B, or 3C, including the necessary aquatic organisms in their food chain.

- Class 3E- Severely habitat-limited waters. Narrative standards will be applied to protect these waters for aquatic wildlife.
- Class 4 Protected for agricultural uses including irrigation of crops and stock watering.

Data from the following stations was used to populate the model:

Station #	Station Name	Data Period	
4904840	DITCH AB EA MILLER SC-12	2006-2016	
4905540	E. A. MILLER CO. EFFLUENT	2012-2016	
4905520	HYRUM WWTP	2012-2016	
4904940	S FK SPRING CK @ US 89 XING	2012-2016	
4904943	S FK SPRING CK W OF HYRUM WWTP AT END OF RD	2006-2016	
4904810	SPRING CK SC-9	2012-2016	

Table 1. Data Sources

Data was segmented into two seasons; Irrigation (April-September) and Non-irrigation (October-May). Significant changes were made to Swift Beef Company's treatment plant in 2011. In order to be reflective of current conditions, only data from 2012 to present was used from those stations downstream of the facility.

Typically, the critical flow for the wasteload analysis is considered the lowest stream flow for seven consecutive days with a ten year return frequency (7Q10). Due to a lack of flow records, the 20th percentile of available flow measurements was calculated for the period of record to approximate the 7Q10 low flow condition. Calculated critical low flow conditions are as follows:

Station #	Station Name	Low Flow (cfs)		
		Irrigation Season	Non-irrigation Season	
4904840	DITCH AB EA MILLER SC-12	0.1	0.1	
4904810	SPRING CK SC-9	2.2	0.5	
4904940	S FK SPRING CK @ US 89 XING	6.7	3.8	

Table 2. Critical low flow conditions

Ambient water quality for the receiving water/discharge was characterized using data from the same stations and time periods as presented in Table 1.

<u>TMDL</u>

According to the Utah's 2016 303(d) assessment unit UT16010203-008_00, Spring Creek and tributaries from confluence with Little Bear River to headwaters is currently listed as impaired (TMDL required) for temperature and O/E Bioassessment. A TMDL was completed for Spring Creek in 2002 which addressed impairments for dissolved oxygen, ammonia, E. coli and total phosphorous. Since that time, major upgrades have been made to both Hyrum City's WWTP and

Utah Division of Water Quality Wasteload Analysis Swift Beef Company UPDES No. UT000281

Swift Beef Company's treatment plant, resulting in greatly improved effluent quality. Because of these significant water quality improvements in the Spring Creek Watershed, the TMDL is being implemented in a phased manner to allow time to assess the impact of these changes in the South Fork of Spring Creek. Total phosphorous has been set an interim level of 1.0 mg/l.

Mixing Zone

The maximum allowable mixing zone is 15 minutes of travel time for acute conditions, not to exceed 50% of stream width, and 2,500 feet for chronic conditions, per UAC R317-2-5. Water quality standards must be met at the end of the mixing zone.

Because the receiving water is a ditch that flows for several miles with multiple inputs, the combined flows are considered to be totally mixed. Chronic and acute limits were calculated using 100% of the seasonal critical low flow.

Parameters of Concern

The potential parameters of concern identified for the discharge/receiving water were TDS, phosphorous and ammonia, as determined in consultation with the UPDES Permit Writer.

WET Limits

The percent of effluent in the receiving water in a fully mixed condition, and acute and chronic dilution in a not fully mixed condition are calculated in the WLA in order to generate WET limits. The LC_{50} (lethal concentration, 50%) percent effluent for acute toxicity and the IC_{25} (inhibition concentration, 25%) percent effluent for chronic toxicity, as determined by the WET test, needs to be below the WET limits, as determined by the WLA. The WET limit for LC_{50} is typically 100% effluent and does not need to be determined by the WLA.

IC25 WET limits for Outfall 001:

Irrigation Season 58.4% effluent. Non-Irrigation Season 73% effluent.

Wasteload Allocation Methods

The QUAL2Kw model was used for determining the WQBELs for parameters related to eutrophication and in-stream DO criteria, as well as ammonia toxicity. Effluent concentrations were adjusted so that water quality standards were not exceeded in the receiving water. Where WQBELs exceeded secondary standards or technology based effluent limits (TBEL), the concentration in the model was set at the secondary standard or TBEL.

Effluent limits were determined for conservative constituents using a simple mass balance mixing analysis (UDWQ 2012). The mass balance analysis is summarized in the Wasteload Addendum.

Models and supporting documentation are available for review upon request.

١

Utah Division of Water Quality Wasteload Analysis Swift Beef Company UPDES No. UT000281

Antidegradation Level I Review

The objective of the Level I ADR is to ensure the protection of existing uses, defined as the beneficial uses attained in the receiving water on or after November 28, 1975. No evidence is known that the existing uses deviate from the designated beneficial uses for the receiving water. Therefore, the beneficial uses will be protected if the discharge remains below the WQBELs presented in this wasteload.

A Level II Antidegradation Review (ADR) is not required for this facility. The proposed permit is a simple renewal of an existing UPDES permit. No increase in flow or concentration of pollutants over those authorized in the the existing permit is being requested.

Documents:

WLA Document: SwiftBeef_WLADoc_3-23-18.docx Wasteload Analysis and Addendums: SwiftBeef WLA NonIrrig 3-23-18.xlsm; SwiftBeef WLA Irrig 3-23-18.xlsm

References:

Utah Division of Water Quality. 2012. Utah Wasteload Analysis Procedures Version 1.0.

.

WASTELOAD ANALYSIS [WLA Addendum: Statement of Basis SUMMARY		12/18/2018 T	ïme: 1:07 PM
Discharging Facility:	EA Miller		
UPDES No: Current Flow: Design Flow		MGD MGD	
Non Irrigation Season (October	- May)		
Receiving Water: Stream Classification: Stream Flows [cfs]:	2B, 3A, 3D, 4 0.01	Fork of Spring Cree Controll Summer (July-Sept) Fall (Oct-Dec) Winter (Jan-Mar) Spring (Apr-June)	ling: 3A
Stream TDS Values [mg/l as CaCO3]	-	Summer (July-Sept) Fall (Oct-Dec) Winter (Jan-Mar) Spring (Apr-June)	Headwater Headwater
Parameter: winter Flow, MGD:	Effluent Lin 2.00	nits: WQ Sta MGD	indard:
BOD, mg/l:		winter	5.0 Indicator
Dissolved Oxygen, mg/l:			6.5 30 Day Average
NH4	4.00	winter Var	ries with pH and Temperature
TDS, mg/l:	3,000.00	winter 1200).00 mg/l
Modeling Parameters: Acute River Width: Chronic River Width:	50.0% 100.0%		
Antidegradation Review:		adation Level I Review ation Level II Review	

WASTELOAD ANALYSIS [WLA] Addendum: Statement of Basis

Date: 12/18/2018 Time: 1:07 PM

Facilities: Discharging to: EA Miller Ditch to So. Fork of Spring Creek UPDES No: UT00000281

I. Introduction

Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses [R317-2-8, UAC]. Projected concentrations are compared to numeric water quality standards to determine acceptability. The anti-degradation policy and procedures are also considered. The primary in-stream parameters of concern may include metals (as a function of hardness), total dissolved solids (TDS), total residual chlorine (TRC), un-ionized ammonia (as a function of pH and temperature, measured and evaluated interms of total ammonia), and dissolved oxygen.

Mathematical water quality modeling is employed to determine stream quality response to point source discharges. Models aid in the effort of anticipating stream quality at future effluent flows at critical environmental conditions (e.g., low stream flow, high temperature, high pH, etc).

The numeric criteria in this wasteload analysis may always be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality.

II. Receiving Water and Stream Classification

Ditch to So. Fork of Spring Creek	2B, 3A, 3D, 4
Antidegradation Review:	Antidegradation Level II Review is NOT Required

III. Numeric Stream Standards for Protection of Aquatic Wildlife

Total Ammonia (TNH3)	Varies as a function of Temperature and pH Rebound. See Water Quality Standards
Chronic Total Residual Chlorine (TRC)	0.011 mg/l (4 Day Average) 0.019 mg/l (1 Hour Average)
Chronic Dissolved Oxygen (DO)	6.50 mg/l (30 Day Average) N/A mg/l (7Day Average) 3.00 mg/l (1 Day Average
Maximum Total Dissolved Solids	1200.0 mg/l

Acute and Chronic Heavy Metals (Dissolved)

	4 Day Average (Ch	ronic) Standard	1 Hour Average (Acute) Standard	
Parameter	Concentration	n Load*	Concentration	Load*
Alumi	num 87.00 ug/l**	0.005 lbs/day	750.00 ug/l	0.040 lbs/day
Ars	enic 190.00 ug/l	0.010 lbs/day	340.00 ug/l	0.018 lbs/day
Cadm	ium 0.76 ug/l	0.000 lbs/day	8.72 ug/l	0.000 lbs/day
Chromiu	m III 268.04 ug/l	0.014 lbs/day	5607.97 ug/l	0.302 lbs/day
Chromiu	mVI 11.00 ug/l	0.001 lbs/day	16.00 ug/l	0.001 lbs/day
Co	oper 30.48 ug/l	0.002 lbs/day	51.65 ug/l	0.003 lbs/day
	Iron		1000.00 ug/l	0.054 lbs/day
L	.ead 18.56 ug/l	0.001 lbs/day	476.33 ug/l	0.026 lbs/day
Mer	cury 0.012 ug/l	0.000 lbs/day	2.40 ug/l	0.000 lbs/day
Ni	ckel 168.43 ug/l	0.009 lbs/day	1514.88 ug/ł	0.082 lbs/day

Utah Division of Water Quality

Selenium	4.60 ug/l	0.000 lbs/day	20.00 ug/l	0.001 lbs/day
Silver	N/A ug/l	N/A lbs/day	41.01 ug/l	0.002 lbs/day
Zinc	387.56 ug/l	0.021 lbs/day	387.56 ug/l	0.021 lbs/day

Page: 3

* Allowed below discharge

**Chronic Aluminum standard applies only to waters with a pH < 7.0 and a Hardness < 50 mg/l as CaCO3 Metals Standards based upon a hardness of 399.677835051546 mg/l as CaCO3 where applicable.

Organics [Pesticides]

Organics [Festicides]									
	4 Day Averag	Day Average (Chronic) Standard				1 Hour Average (Acute) Standard			
Parameter	Concent	tration		Load*		Concentratio	n	Load*	
Aldrin		ug/l				1.5000	ug/l	8.085E-05 lbs/day	
Chlordane	0.0043	ug/l		2.318E-07 lbs/d	day	1.2000	ug/l	6.468E-05 lbs/day	
DDT, DDE	0.0010	ug/l		5.390E-08 lbs/d	day	0.5500	ug/l	2.965E-05 lbs/day	
Dieldrin	0.0019	ug/l		1.024E-07 lbs/d	day	1.2500	ug/l	6.738E-05 lbs/day	
Endosulfan	0.0560	ug/l		3.018E-06 lbs/d	day	0.1100	ug/l	5.929E-06 lbs/day	
Endrin	0.0023	ug/l		1.240E-07 lbs/d	day	0.0900	ug/l	4.851E-06 lbs/day	
Guthion						0.0100			
Heptachlor	0.0038	ug/l		2.048E-07 lbs/d	day	0.2600	ug/l	1.401E-05 lbs/day	
Lindane	0.0800	ug/l		4.312E-06 lbs/d	day	1.0000	ug/l	5.390E-05 lbs/day	
Methoxychlor						0.0300			
Mirex						0.0100			
Parathion						0.0400			
PCB's	0.0140	ug/l		7.546E-07 lbs/d	day	2.0000	ug/l	1.078E-04 lbs/day	
Pentachlorophenol	13.0000	ug/l		7.007E-04 lbs/d	day	20.0000	ug/l	1.078E-03 lbs/day	
Toxephene	0.0002	ug/l		1.078E-08 lbs/d	day	0.7300	ug/l	3.935E-05 lbs/day	

IV. Numeric Stream Standards for Protection of Agriculture

	4 Day Average (Chronic) S	tandard	1 Hour Average (Acute) Standard		
	Concentration	Load*	Concentration	Load*	
Arsenic	N/A		100.0 ug/l	5.39E-03 lbs/day	
Boron	N/A		750.0 ug/l	4.04E-02 lbs/day	
Cadmium	N/A		10.0 ug/l	5.39E-04 lbs/day	
Chromium	N/A		100.0 ug/l	5.39E-03 lbs/day	
Copper	N/A		200.0 ug/l	1.08E-02 lbs/day	
Lead	N/A		100.0 ug/l	5.39E-03 lbs/day	
Selenium	N/A		50.0 ug/l	2.70E-03 lbs/day	
TDS	N/A		1200.0 mg/l	3.23E-02 tons/day	

V. Numeric Stream Standards for Protection of Human Health (Class 1C Waters) 4 Day Average (Chronic) Standard

Stanuarus IOI P	Standards for Protection of Furnan Health (Glass To Waters)								
4 Day Average (Chronic) Standard			1 Hour Average (Acute) Standard						
Metals	Concentration	Load*	Concentratio	on	Load*				
Arsenic	N/A		50.0	ug/l	2.70E-03 lbs/day				
Barium	N/A		1000.0	ug/l	5.39E-02 lbs/day				
Cadmium	N/A		10.0	ug/l	5.39E-04 lbs/day				
Chromium	N/A		50.0	ug/l	2.70E-03 lbs/day				
Lead	N/A		50.0	ug/l	2.70E-03 lbs/day				
Mercury	N/A		2.0	ug/l	1.08E-04 lbs/day				
Selenium	N/A		10.0	ug/l	5.39E-04 lbs/day				
Silver	N/A		50.0	ug/l	2.70E-03 lbs/day				
Fluoride (3)	N/A		1.4	ug/i	7.55E-05 lbs/day				
to	N/A		2.4	ug/i	1.29E-04 lbs/day				
Nitrates as N	N/A		10.0	ug/l	5.39E-04 lbs/day				

4	Day Average (Chronic) S	Standard	1 Hour Average (Acute) Standard			
Chlorophenoxy Herbicides	Concentration Load*		Concentration	Load*		
2,4-D	N/A		100.0 ug/l	5.39E-03 lbs/day		
2,4,5-TP	N/A		10.0 ug/l	5.39E-04 lbs/day		

N/A	0.2	ug/l	1.08E-05 lbs/day
N/A	4.0	ug/l	2.16E-04 lbs/day
N/A	100.0	ug/l	5.39E-03 lbs/day
N/A	5.0	ug/l	2.70E-04 lbs/day
	N/A N/A	N/A 4.0 N/A 100.0	N/A 4.0 ug/l N/A 100.0 ug/l

VI. Numeric Stream Standards the Protection of Human Health from Water & Fish Consumption [Toxics]

	Maximum Conc., ug/l - Acute Standards Class 1C Class 3A. 3B					
		0 Kg Person over 70 Yr.]	Class 3A, 3B [6.5 g for 70 Kg Person over 70 Yr.]			
Antimony Arsenic Beryllium Cadmium Chromium III Chromium VI	6E+00 ug/l	6E+00 lbs/day	6E+02 ug/l	6.42E+02 lbs/day		
Copper Lead Mercury	1E+03 ug/l	1E+03 lbs/day	0E+00 ug/l	0.00E+00 lbs/day		
Nickel Selenium Silver	1E+02 ug/l	1E+02 Ibs/day	5E+03 ug/l 4E+03 ug/l	4.61E+03 lbs/day 4.21E+03 lbs/day		
Thallium	2E-01 ug/l	2E-01 lbs/day	5E-01 ug/l	4.71E-01 lbs/day		
Zinc	7E+03 ug/l	7E+03 lbs/day	3E+04 ug/l	2.61E+04 lbs/day		
Cyanide Asbestos	1E+02 ug/l	1E+02 lbs/day	1E+02 ug/ł	1.40E+02 lbs/day		
2,3,7,8-TCDD Dioxin	5E-09					
Acrolein	2E+02 ug/l	2E+02 lbs/day	3E+02 ug/l	2.91E+02 lbs/day		
Acrylonitrile	5E-02 ug/l	5E-02 lbs/day	3E-01 ug/l	2.51E-01 lbs/day		
Alachlor	2E+00 ug/l	2E+00 lbs/day				
Atrazine	3E+00 ug/l	3E+00 lbs/day				
Benzene	2E+00 ug/l	2E+00 lbs/day	5E+01 ug/l	5.12E+01 lbs/day		
Bromoform	4E+00 ug/l	4E+00 lbs/day	1E+02 ug/l	1.40E+02 lbs/day		
Carbofuran	4E+01 ug/l	4E+01 lbs/day				
Carbon Tetrachloride	2E-01 ug/l	2E-01 lbs/day	2E+00 ug/l	1.60E+00 lbs/day		
Chlorobenzene	1E+02 ug/l	1E+02 lbs/day	2E+03 ug/l	1.61E+03 lbs/day		
Chlorodibromomethane Chloroethane	4E-01 ug/l	4E-01 lbs/day	1E+01 ug/l	1.30E+01 lbs/day		
2-Chloroethylvinyl Ether	05.00 /					
Chloroform	6E+00 ug/l	6E+00 lbs/day	5E+02 ug/l	4.72E+02 lbs/day		
Dalapon	2E+02 ug/l	2E+02 lbs/day				
Di(2ethylhexl)adipate	4E+02 ug/l	4E+02 lbs/day				
Dibromochloropropane	2E-01 ug/l	2E-01 lbs/day				
Dichlorobromomethane 1,1-Dichloroethane	6E-01 ug/l	6E-01 lbs/day	2E+01 ug/l	1.71E+01 lbs/day		
1,2-Dichloroethane	4E-01 ug/l	4E-01 lbs/day	4E+01 ug/l	3.71E+01 lbs/day		
1,1-Dichloroethylene	7E+00 ug/l	7E+00 lbs/day	7E+03 ug/l	7.12E+03 lbs/day		
Dichloroethylene (cis-1,2	7E+01 ug/l	7E+01 lbs/day	0E+00 ug/l			
Dinose	7E+00 ug/l	7E+00 lbs/day	0E+00 ug/l			
Diquat	2E+01 ug/l	2E+01 lbs/day	0E+00 ug/l			
1,2-Dichloropropane	5E-01 ug/l	5E-01 lbs/day	2E+01 ug/l	1.50E+01 lbs/day		
1,3-Dichloropropene	3E-01 ug/l	3E-01 lbs/day	2E+01 ug/l	2.11E+01 lbs/day		
Endothall	1E+02 ug/l	1E+02 lbs/day				
Ethylbenzene	5E+02 ug/i	5E+02 lbs/day	2E+03 ug/l	2.11E+03 lbs/day		
Ethylene Dibromide	5E-02 ug/l	5E-02 lbs/day				
Glyphosate	7E+02 ug/l	7E+02 lbs/day				
Haloacetic acids	6E+01 ug/l	6E+01 lbs/day				
Methyl Bromide	5E+01 ug/l	5E+01 lbs/day	2E+03 ug/l	1.50E+03 lbs/day		

Methyl Chloride				
Methylene Chloride	5E+00 ug/l	5E+00 lbs/day	6E+02 ug/l	5.92E+02 lbs/day
Ocamyl (vidate)	2E+02 ug/l	2E+02 lbs/day		
Picloram	5E+02 ug/l	5E+02 lbs/day		
Simazine	4E+00 ug/l	4E+00 lbs/day		
Styrene	1E+02 ug/l	1E+02 lbs/day		
1,1,2,2-Tetrachloroethane	2E-01 ug/l	2E-01 lbs/day	4E+00 ug/l	4.01E+00 lbs/day
Tetrachloroethylene	7E-01 ug/l	7E-01 lbs/day	3E+00 ug/l	3.31E+00 lbs/day
Toluene	1E+03 ug/l	1E+03 lbs/day	2E+04 ug/l	1.50E+04 lbs/day
1,2 -Trans-Dichloroethyle	1E+02 ug/l	1E+02 lbs/day	1E+04 ug/l	1.00E+04 lbs/day
1,1,1-Trichloroethane	2E+02 ug/l	2E+02 lbs/day	A 202 50 UN 35	
1,1,2-Trichloroethane	6E-01 ug/l	6E-01 lbs/day	2E+01 ug/l	1.61E+01 lbs/day
Trichloroethylene	3E+00 ug/l	3E+00 lbs/day	3E+01 ug/l	3.01E+01 lbs/day
Vinyl Chloride	3E-02 ug/l	3E-02 lbs/day	2E+00 ug/l	2.41E+00 lbs/day
Xylenes	1E+04 ug/l	1E+04 lbs/day		
2-Chlorophenol	8E+01 ug/l	8E+01 lbs/day	2E+02 ug/l	1.50E+02 lbs/day
2,4-Dichlorophenol	8E+01 ug/l	8E+01 lbs/day	3E+02 ug/l	2.91E+02 lbs/day
2,4-Dimethylphenol	4E+02 ug/l	4E+02 lbs/day	9E+02 ug/l	8.52E+02 lbs/day
2-Methyl-4,6-Dinitrophenol	1E+01 ug/l	1E+01 lbs/day	3E+02 ug/l	2.81E+02 lbs/day
2,4-Dinitrophenol	7E+01 ug/l	7E+01 lbs/day	5E+03 ug/l	5.32E+03 lbs/day
2-Nitrophenol				
4-Nitrophenol				
3-Methyl-4-Chlorophenol				
Penetachlorophenol	3E-01 ug/l	3E-01 lbs/day	3E+00 ug/l	3.01E+00 lbs/day
Phenol	2E+04 ug/l	2E+04 lbs/day	2E+06 ug/l	1.71E+06 lbs/day
2,4,6-Trichlorophenol	1E+00 ug/l	1E+00 lbs/day	2E+00 ug/l	2.41E+00 lbs/day
Acenaphthene	7E+02 ug/l	7E+02 lbs/day	1E+03 ug/l	9.92E+02 lbs/day
Acenaphthylene				
Anthracene	8E+03 ug/ł	8E+03 lbs/day	4E+04 ug/l	4.01E+04 lbs/day
Benzidine	9E-05 ug/l	9E-05 lbs/day	2E-04 ug/l	2.01E-04 lbs/day
BenzoaAnthracene	4E-03 ug/l	4E-03 lbs/day	2E-02 ug/l	1.81E-02 lbs/day
BenzoaPyrene	4E-03 ug/l	4E-03 lbs/day	2E-02 ug/l	1.81E-02 lbs/day
BenzobFluoranthene	4E-03 ug/l	4E-03 lbs/day	2E-02 ug/l	1.81E-02 lbs/day
BenzoghiPerylene	0E+00 ug/l	0E+00 lbs/day	0E+00 ug/l	0.00E+00 lbs/day
BenzokFluoranthene	4E-03 ug/l	4E-03 lbs/day	2E-02 ug/l	1.81E-02 lbs/day
Bis2-ChloroethoxyMethane	0E+00 ug/l	0E+00 lbs/day	0E+00 ug/l	0.00E+00 lbs/day
Bis2-ChloroethylEther	3E-02 ug/l	3E-02 lbs/day	5E-01 ug/l	5.32E-01 lbs/day
Bis2-Chloroisopropy1Ether	1E+03 ug/l	1E+03 lbs/day	7E+04 ug/l	6.52E+04 lbs/day
Bis2-EthylhexylPhthalate	1E+00 ug/l	1E+00 lbs/day	2E+00 ug/l	2.21E+00 lbs/day
4-Bromophenyl Phenyl Ether	0E+00			-
Butylbenzyl Phthalate	2E+03 ug/l	2E+03 lbs/day	2E+03 ug/l	1.90E+03 lbs/day
2-Chloronaphthalene	1E+03 ug/l	1E+03 lbs/day	2E+03 ug/l	1.60E+03 lbs/day
4-Chlorophenyl Phenyl Ether				
Chrysene	4E-03 ug/l	4E-03 lbs/day	2E-02 ug/l	1.81E-02 lbs/day
Dibenzoa, (h)Anthracene	4E-03 ug/l	4E-03 lbs/day	2E-02 ug/l	1.81E-02 lbs/day
1,2-Dichlorobenzene	4E+02 ug/l	4E+02 lbs/day	1E+03 ug/l	1.30E+03 lbs/day
1,3-Dichlorobenzene	3E+02 ug/l	3E+02 lbs/day	1E+03 ug/l	9.63E+02 lbs/day
1,4-Dichlorobenzene	6E+01 ug/l	6E+01 lbs/day	2E+02 ug/l	1.91E+02 lbs/day
3,3-Dichlorobenzidine	2E-02 ug/l	2E-02 lbs/day	3E-02 ug/l	2.81E-02 lbs/day
Diethyl Phthalate	2E+03 ug/l	2E+03 lbs/day	4E+04 ug/l	4.41E+04 lbs/day
Dimethyl Phthalate	3E+05 ug/l	3E+05 lbs/day	1E+06 ug/l	1.10E+06 lbs/day
Di-n-Butyl Phthalate	2E+03 ug/l	2E+03 lbs/day	5E+03 ug/l	4.51E+03 lbs/day
2,4-Dinitrotoluene	1E-01 ug/l	1E-01 lbs/day	3E+00 ug/l	3.41E+00 lbs/day
2,6-Dinitrotoluene	U.S.	,	0	······)
Di-n-Octyl Phthalate				
1,2-Diphenylhydrazine	4E-02 ug/l	4E-02 lbs/day	2E-01 ug/l	2.01E-01 lbs/day
Fluoranthene	1E+02 ug/l	1E+02 lbs/day		
Fluorene	1E+03 ug/l	1E+03 lbs/day	5E+03 ug/l	5.32E+03 lbs/day
Hexachlorobenzene	3E-04 ug/l	3E-04 lbs/day	3E-04 ug/l	2.90E-04 lbs/day
Hexachlorobutedine	4E-01 ug/l	4E-01 lbs/day	2E+01 ug/l	1.81E+01 lbs/day
	Ŭ			- ,

Utah Division of Water Quality

Page: (6
---------	---

Hexachloroethane	1E+00 ug/l	1E+00 lbs/day	3E+00 ug/l	3.31E+00 lbs/day
Hexachlorocyclopentadiene	4E+01 ug/l	4E+01 lbs/day	1E+03 ug/l	1.10E+03 lbs/day
Ideno 1,2,3-cdPyrene	4E-03 ug/l	4E-03 lbs/day	2E-02 ug/l	1.81E-02 lbs/day
Isophorone	4E+01 ug/l	4E+01 lbs/day	1E+03 ug/l	9.63E+02 lbs/day
Naphthalene			ug/l	
Nitrobenzene	2E+01 ug/l	2E+01 lbs/day	7E+02 ug/l	6.92E+02 lbs/day
N-Nitrosodimethylamine	7E-04 ug/l	7E-04 lbs/day	3E+00 ug/l	3.01E+00 lbs/day
N-Nitrosodi-n-Propylamine	5E-03 ug/l	5E-03 lbs/day	5E-01 ug/l	5.12E-01 lbs/day
N-Nitrosodiphenylamine	3E+00 ug/l	3E+00 lbs/day	6E+00 ug/l	6.01E+00 lbs/day
Phenanthrene				
Pyrene	8E+02 ug/l	8E+02 lbs/day	4E+03 ug/l	4.01E+03 lbs/day
1,2,4-Trichlorobenzene	4E+01 ug/l	4E+01 lbs/day	7E+01 ug/l	7.02E+01 lbs/day
Aldrin	5E-05 ug/l	5E-05 lbs/day	5E-05 ug/l	5.01E-05 lbs/day
alpha-BHC	3E-03 ug/l	3E-03 lbs/day	5E-03 ug/l	4.91E-03 lbs/day
beta-BHC	9E-03 ug/l	9E-03 lbs/day	2E-02 ug/l	1.70E-02 lbs/day
gamma-BHC (Lindane)	2E-01 ug/l	2E-01 lbs/day	2E+00 ug/l	1.81E+00 lbs/day
delta-BHC	0E+00 ug/l	0E+00 lbs/day	0E+00 ug/l	0.00E+00 lbs/day
Chlordane	8E-04 ug/l	8E-04 lbs/day	8E-04 ug/l	8.11E-04 lbs/day
4,4-DDT	2E-04 ug/l	2E-04 lbs/day	2E-04 ug/l	2.20E-04 lbs/day
4,4-DDE	2E-04 ug/l	2E-04 lbs/day	2E-04 ug/l	2.20E-04 lbs/day
4,4-DDD	3E-04 ug/l	3E-04 lbs/day	3E-04 ug/l	3.11E-04 lbs/day
Dieldrin	5E-05 ug/l	5E-05 lbs/day	5E-05 ug/l	5.41E-05 lbs/day
alpha-Endosulfan	6E+01 ug/l	6E+01 lbs/day	9E+01 ug/l	8.92E+01 lbs/day
beta-Endosulfan	6E+01 ug/l	6E+01 lbs/day	9E+01 ug/l	8.92E+01 lbs/day
Endosulfan Sulfate	6E+01 ug/l	6E+01 lbs/day	9E+01 ug/l	8.92E+01 lbs/day
Endrin	6E-02 ug/l	6E-02 lbs/day	6E-02 ug/l	6.01E-02 lbs/day
Endrin Aldehyde	3E-02 ug/l	3E-02 lbs/day	3E-01 ug/l	3.01E-01 lbs/day
Heptachlor	8E-05 ug/l	8E-05 lbs/day	8E-05 ug/l	7.91E-05 lbs/day
Heptachlor Epoxide	4E-05 ug/l	4E-05 lbs/day	4E-05 ug/l	3.91E-05 lbs/day
Polychlorinated Biphenyls	6E-05 ug/l	6E-05 lbs/day	6E-05 ug/l	6.41E-05 lbs/day
PCB's				
Toxaphene	3E-04 ug/l	3E-04 lbs/day	3E-04 ug/l	0.00E+00 lbs/day

There are additional standards that apply to this receiving water, but were not considered in this modeling/waste load allocation analysis.

VII. Mathematical Modeling of Stream Quality

Model configuration was accomplished utilizing standard modeling procedures. Data points were plotted and coefficients adjusted as required to match observed data as closely as possible.

The modeling approach used in this analysis included one or a combination of the following models.

(1) The Utah River Model, Utah Division of Water Quality, 1992. Based upon QUAL2kw EPA and the University of Washington.

(2) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644.

Coefficients used in the model were based, in part, upon the following references:

(1) Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling. QUAL2kw default values or as adjusted by user, as noted.

VIII. Modeling Information

The required information for the model may include the following information for both the upstream conditions at low flow and the effluent conditions:

Flow, Q, (cfs or MGD)	D.O. mg/l
Temperature, Deg. C.	Total Residual Chlorine (TRC), mg/l
рН	Total NH3-N, mg/l
BOD5, mg/l	Total Dissolved Solids (TDS), mg/l
Metals, ug/l	Toxic Organics of Concern, ug/l

Other Conditions

In addition to the upstream and effluent conditions, the models require a variety of physical and biological coefficients and other technical information. In the process of actually establishing the permit limits for an effluent, values are used based upon the available data, model calibration, literature values, site visits and best professional judgement.

Model Inputs

The following is upstream and discharge information that was utilized as inputs for the analysis. Dry washes are considered to have an upstream flow equal to the flow of the discharge.

Current Headwater/Upstream Information

	Stream Critical							
	Low Flow	Temp.	pН	T-NH4	BOD5	DO	TRC	TDS
	cfs	Deg. C		mg/l as N	mg/l	mg/l	mg/l	mg/l
Summer	0.010	15.1	8.3	0.05	0.10	9.10	0.00	1812.0
Fall	0.000	0.0	0.0	0.00	0.00	0.00	0.00	0.0
Winter	0.010	8.0	8.2	0.31	0.10	10.70	0.00	1288.0
Spring	0.000	0.0	0.0	0.00	0.00	0.00	0.00	0.0
Dissolved	AI	As	Cd	CrIII	CrVI	Copper	Fe	Pb

Utah Division of Water Quality

Utah Division of Water Quality						Page: 8		
Metals All Seasons	ug/l 15.00	ug/l 2.50	ug/l 0.38	ug/l 134.02	ug/l 5.50	ug/l 5.59	ug/l 0.00	ug/l 9.28
Dissolved Metals All Seasons	Hg ug/l 0.0060	Ni ug/l 3.75	Se ug/l 1.30	Ag ug/l 1.00	Zn ug/l 41.00	Boron ug/l 375.0		/2 MDL

Projected Discharge Information [See page 5 for additional information]

Season	Flow, MGD	Temp.	TDS mg/l	TDS tons/day
Summer	2.00	23.60	3,000.00	25.01
Fall	-		-	-
Winter	2.00	21.50	3,000.00	25.01
Spring	-	-	-	- 1

All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality.

IX. Effluent Limitations

Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9).

Other conditions used in the modeling effort coincide with the environmental conditions expected at low stream flows.

Effluent Limitation for Flow based upon Water Quality Standards

In-stream criteria of downstream segments will be met with an effluent flow maximum value as follows:

Season		Daily Average	
Summer	2.00	MGD	3.094 cfs
Fall	-	MGD	0.000 cfs
Winter	2.00	MGD	3.094 cfs
Spring	-	MGD	0.000 cfs

Flow Requirement or Loading Requirement

The calculations in this wasteload analysis utilize the maximum effluent discharge flow of 2 MGD. If the discharger is allowed to have a flow greater than 2 MGD during 7Q10 conditions, and effluent limit concentrations as indicated, then water quality standards will be violated. In order to prevent this from occuring, the permit writers must include the discharge flow limititation as indicated above; or, include loading effluent limits in the permit.

Effluent Limitation for Whole Effluent Toxicity (WET) based upon WET Policy

Effluent Toxicity will not occur in downstream segements if the values below are met.

WET Requirements	LC50 >	EOP Effluent	[Acute]
System is Totally Mixed	IC25 >	73.0% Effluent	[Chronic]

Effluent Limitation for Biological Oxygen Demand (BOD₅) based upon Water Quality Standards or Regulations

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent BOD5 limitation as follows:

Season	Concentration	
Summer	25.00 mg/l as CBOD5	416.92 lbs/day
Fall	- mg/l as CBOD5	- Ibs/day
Winter	25.00 mg/l as CBOD5	416.92 lbs/day
Spring	- mg/l as CBOD5	- Ibs/day

Effluent Limitation for Dissolved Oxygen (DO) based upon Water Quality Standards

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent D.O. limitation as follows:

Season	Concentration	Load
Summer	4.00 mg/l	66.71 lbs/day
Fall	- mg/l	- Ibs/day
Winter	4.00 mg/l	66.71 lbs/day
Spring	- mg/l	- Ibs/day

Effluent Limitation for Total Ammonia based upon Water Quality Standards

In-stream criteria of downstream segments for Total Ammonia will be met with an effluent limitation (expressed as Total Ammonia as N) as follows:

Season	Concentration			Load		
Summer	4 Day Avg Chronic	3.00	mg/I as N	50.03	lbs/day	
	1 Hour Avg Acute	12.35	mg/I as N	205.89	lbs/day	
Fall	4 Day Avg Chronic	-	mg/l as N	-	lbs/day	
	1 Hour Avg Acute	-	mg/l as N	-	lbs/day	
Winter	4 Day Avg Chronic	4.00	mg/l as N	66.71	lbs/day	
	1 Hour Avg Acute	16.46	mg/l as N	274.52	lbs/day	
Spring	4 Day Avg Chronic	-	mg/I as N	-	lbs/day	
	1 Hour Avg Acute	-	mg/l as N	-	lbs/day	

Effluent Limitation for Total Residual Chlorine based upon Water Quality Standards

In-stream criteria of downstream segments for Total Residual Chlorine will be met with an effluent limitation as follows:

Season		Concentrat	ion	Load	k
Summer	4 Day Avg Chronic	0.25	mg/l	4.17	lbs/day
	1 Hour Avg Acute	0.43	mg/l	7.20	lbs/day
Fall	4 Day Avg Chronic	-	mg/l	-	lbs/day
	1 Hour Avg Acute	-	mg/l	-	lbs/day
Winter	4 Day Avg Chronic	0.15	mg/l	2.50	lbs/day
	1 Hour Avg Acute	0.26	mg/l	4.32	lbs/day
Spring	4 Day Avg Chronic	-	mg/l	-	lbs/day
	1 Hour Avg Acute	-	mg/l		lbs/day

Effluent Limitations for Total Dissolved Solids based upon Water Quality Standards			
Season	Concentration		

Load

Summer	Maximum, Acute	3,000.0	mg/l	50,030	tons/day
Fall	Maximum, Acute	-	mg/l	-	tons/day
Winter	Maximum, Acute	3,000.0	mg/l	50,030	tons/day
Spring	Maximum, Acute	-	mg/l	-	tons/day

Colorado Salinity Form Limits Determine

Determined by Permitting Section

Effluent Limitations for Heat/Temperature based upon Water Quality Standards

Summer	Maximum	23.60	Deg. C.	74.5	Deg. F
Fall	Maximum	-	Deg. C.	1 .	Deg. F
Winter	Maximum	21.50	Deg. C.	70.7	Deg. F
Spring	Maximum	-	Deg. C.		Deg. F

Effluent Limitations for Organics [Pesticides] Based upon Water Quality Standards [Class 3]

In-stream criteria of downstream segments for Organics [Pesticides] will be met with an effluent limit as follows:

	4 Day Average		1 Hour Average		
	Concentration	Load	Concentration		Load
Aldrin			1.5E+00	ug/l	8.09E-02 lbs/day
Chlordane	4.31E-03 ug/l	2.32E-04 lbs/day	1.2E+00	ug/l	6.48E-02 lbs/day
DDT, DDE	1.00E-03 ug/l	5.40E-05 lbs/day	5.5E-01	ug/l	2.97E-02 lbs/day
Dieldrin	1.90E-03 ug/l	1.03E-04 lbs/day	1.3E+00	ug/l	6.75E-02 lbs/day
Endosulfan	5.61E-02 ug/l	3.02E-03 lbs/day	1.1E-01	ug/l	5.94E-03 lbs/day
Endrin	2.30E-03 ug/l	1.24E-04 lbs/day	9.0E-02	ug/l	4.86E-03 lbs/day
Guthion	0.00E+00 ug/l	0.00E+00 lbs/day	1.0E-02	ug/l	5.39E-04 lbs/day
Heptachlor	3.81E-03 ug/l	2.05E-04 lbs/day	2.6E-01	ug/l	1.40E-02 lbs/day
Lindane	8.01E-02 ug/l	4.32E-03 lbs/day	1.0E+00	ug/l	5.40E-02 lbs/day
Methoxychlor	0.00E+00 ug/l	0.00E+00 lbs/day	3.0E-02	ug/l	1.62E-03 lbs/day
Mirex	0.00E+00 ug/l	0.00E+00 lbs/day	1.0E-02	ug/l	5.39E-04 lbs/day
Parathion	0.00E+00 ug/l	0.00E+00 lbs/day	4.0E-02	ug/l	2.16E-03 lbs/day
PCB's	1.40E-02 ug/l	7.56E-04 lbs/day	2.0E+00	ug/l	1.08E-01 lbs/day
Pentachlorophenol	1.30E+01 ug/l	7.02E-01 lbs/day	2.0E+01	ug/l	1.08E+00 lbs/day
Toxephene	2.00E-04 ug/l	1.08E-05 lbs/day	7.3E-01	ug/l	3.94E-02 lbs/day

Effluent Limitations for E. coli Based upon Water Quality Standards [Class 2]

E. coli

126.0 organisms per 100 ml

Effluent Targets for Pollution Indicators Based upon Water Quality Standards

In-stream criteria of downstream segments for Pollution Indicators will be met with an effluent limit as follows:

	1 Hour Average		
	Concentration	Loading	
Gross Beta (pCi/l)	50.1 pCi/L	0.00	
BOD (mg/l)	5.0 mg/l	83.5 lbs/day	
Nitrate as N (mg/l)	4.0 mg/l	66.8 lbs/day	
Total Phosphorus as P	0.1 mg/l	0.0 lbs/day	

Note: Pollution indicator targets are for information purposes only.

Effluent Limitations for Protection of Human Health [Toxics Rule] Based upon Water Quality Standards (Most stringent of 1C or 3A & 3B as appropriate.)

In-stream criteria of downstream segments for Protection of Human Health [Toxics] will be met with an effluent limit as follows:

be met with an effluent limit as follows:		Marian Oran antartian
Toxic Organics	LINUGIL	Maximum Concentration Concentra Load
	Limitation (30 Day Avg.) Class 1C	Effluent Limit (30 Day Avg.) Class 3
Antimony	5.609E+00	6.421E+02
Arsenic		
Beryllium		
Cadmium		
Chromium III		
Chromium VI		
Copper	1.304E+03	
Lead		
Mercury		
Nickel	1.003E+02	4.61E+03
Selenium		4.21E+03
Silver	0.4045.04	0.00E+00
Thallium	2.404E-01	4.71E-01
Zinc	7.424E+03	2.61E+04
Cyanide	1.404E+02	1.40E+02
	7.000E+06	E 44E 00
2,3,7,8-TCDD Dioxin Acrolein	1 0025 102	5.11E-09
	1.903E+02	2.91E+02
Acrylonitrile Alachlor	5.108E-02	2.51E-01
Atrazine	2.003E+00 3.005E+00	0.00E+00 0.00E+00
Benzene	2.204E+00	5.12E+01
Bromoform	4.307E+00	1.40E+02
Carbofuran	4.006E+01	1.40E+02
Carbon Tetrachloride	2.304E-01	1.60E+00
Chlorobenzene	1.002E+02	1.61E+03
Chlorodibromomethane	4.006E-01	1.30E+01
Chloroethane	1.0002 01	1.002.01
2-Chloroethylvinyl Ether		
Chloroform	5.709E+00	4.72E+02
Dalapon	2.003E+02	
Di(2ethylhexl)adipate	4.006E+02	
Dibromochloropropane	2.003E-01	
Dichlorobromomethane	5.509E-01	1.71E+01
1,1-Dichloroethane		0.00E+00
1,2-Dichloroethane	3.806E-01	3.71E+01
1,1-Dichloroethylene	7.011E+00	7.12E+03
Dichloroethylene (cis-1,2	7.011E+01	0.00E+00
Dinose	7.011E+00	0.00E+00
Diquat	2.003E+01	0.00E+00
1,2-Dichloropropane	5.008E-01	1.50E+01
1,3-Dichloropropene	3.405E-01	2.11E+01
Endothali	1.002E+02	0.00E+00
Ethylbenzene	5.309E+02	2.11E+03
Ethylene Dibromide	5.008E-02	0.00E+00
Glyphosate	7.011E+02	0.00E+00
Haloacetic acids	6.010E+01	0.00E+00

Methyl Bromide	4.708E+01	1.50E+03
Methyl Chloride	0.000E+00	
Methylene Chloride	4.607E+00	5.92E+02
Ocamyl (vidate)	2.003E+02	
Picloram	5.008E+02	
Simazine	4.006E+00	
Styrene	1.002E+02	
1,1,2,2-Tetrachloroethane	1.703E-01	4.01E+00
Tetrachloroethylene	6.911E-01	3.31E+00
Toluene	1.002E+03	1.50E+04
1,2 -Trans-Dichloroethyle	1.002E+02	1.00E+04
1,1,1-Trichloroethane	2.003E+02	
		0.00E+00
1,1,2-Trichloroethane	5.910E-01	1.61E+01
Trichloroethylene	2.504E+00	3.01E+01
Vinyl Chloride	2.504E-02	2.41E+00
Xylenes	1.002E+04	
2-Chlorophenol	8.113E+01	1.50E+02
2,4-Dichlorophenol	7.712E+01	2.91E+02
2,4-Dimethylphenol	3.806E+02	8.52E+02
2-Methyl-4,6-Dinitrophenol	1.302E+01	2.81E+02
2,4-Dinitrophenol	6.911E+01	5.32E+03
2-Nitrophenol		
4-Nitrophenol		
3-Methyl-4-Chlorophenol		
Penetachlorophenol	2.704E-01	3.01E+00
Phenol	2.103E+04	1.71E+06
2,4,6-Trichlorophenol	1.402E+00	2.41E+00
Acenaphthene	6.711E+02	9.92E+02
Acenaphthylene	0.000E+00	0.00E+00
Anthracene	8.313E+03	4.01E+04
Benzidine	8.614E-05	2.01E-04
BenzoaAnthracene	3.806E-03	1.81E-02
BenzoaPyrene	3.806E-03	1.81E-02
BenzobFluoranthene	3.806E-03	1.81E-02
BenzoghiPerylene		0.00E+00
BenzokFluoranthene	3.806E-03	1.81E-02
Bis2-ChloroethoxyMethane		0.00E+00
Bis2-ChloroethylEther	3.005E-02	5.32E-01
Bis2-Chloroisopropy1Ether	1.402E+03	6.52E+04
Bis2-EthylhexylPhthalate	1.202E+00	2.21E+00
4-Bromophenyl Phenyl Ether		0.00E+00
Butylbenzyl Phthalate	1.502E+03	1.90E+03
2-Chloronaphthalene	1.002E+03	1.60E+03
4-Chlorophenyl Phenyl Ether	1.0022-03	1.002103
	2 9065 02	1 01 - 02
Chrysene	3.806E-03	1.81E-02
Dibenzoa, (h)Anthracene	3.806E-03	1.81E-02
1,2-Dichlorobenzene	4.207E+02	1.30E+03
1,3-Dichlorobenzene	3.205E+02	9.63E+02
1,4-Dichlorobenzene	6.310E+01	1.91E+02
3,3-Dichlorobenzidine	2.103E-02	2.81E-02
Diethyl Phthalate	1.703E+03	4.41E+04
Dimethyl Phthalate	2.704E+05	1.10E+06
Di-n-Butyl Phthalate	2.003E+03	4.51E+03
2,4-Dinitrotoluene	1.102E-01	3.41E+00
2,6-Dinitrotoluene		0.00E+00
Di-n-Octyl Phthalate		0.00E+00
1,2-Diphenylhydrazine	3.606E-02	2.01E-01
Fluoranthene	1.302E+02	
Fluorene	1.102E+03	5.32E+03
Hexachlorobenzene	2.805E-04	2.90E-04
i leadenioroberizerie	2.0000-04	2.00L-04

Utah Division of Water Quality

Hexachlorobutedine	4.407E-01	1.81E+01
Hexachloroethane	1.402E+00	3.31E+00
Hexachlorocyclopentadiene	4.006E+01	1.10E+03
Ideno 1,2,3-cdPyrene	3.806E-03	1.81E-02
Isophorone	3.506E+01	9.63E+02
Naphthalene		
Nitrobenzene	1.703E+01	6.92E+02
N-Nitrosodimethylamine	6.911E-04	3.01E+00
N-Nitrosodi-n-Propylamine	5.008E-03	5.12E-01
N-Nitrosodiphenylamine	3.305E+00	6.01E+00
Phenanthrene		
Pyrene	8.313E+02	4.01E+03
1,2,4-Trichlorobenzene	3.506E+01	7.02E+01
Aldrin	4.908E-05	5.01E-05
alpha-BHC	2.604E-03	4.91E-03
beta-BHC	9.115E-03	1.70E-02
gamma-BHC (Lindane)	2.003E-01	1.81E+00
delta-BHC		0.00E+00
Chlordane	8.013E-04	8.11E-04
4,4-DDT	2.204E-04	2.20E-04
4,4-DDE	2.204E-04	2.20E-04
4,4-DDD	3.105E-04	3.11E-04
Dieldrin	5.208E-05	5.41E-05
alpha-Endosulfan	6.210E+01	8.92E+01
beta-Endosulfan	6.210E+01	8.92E+01
Endosulfan Sulfate	6.210E+01	8.92E+01
Endrin	5.910E-02	6.01E-02
Endrin Aldehyde	2.905E-02	3.01E-01
Heptachlor	7.913E-05	7.91E-05
Heptachlor Epoxide	3.906E-05	3.91E-05
PCBs	6.410E-05	6.41E-05
Toxaphene	2.805E-04	

Metals Effluent Limitations for Protection of All Beneficial Uses Based upon Water Quality Standards and Toxics Rule

	Class 3 Chronic Aquatic Wildlife ug/l	Class 3: Acute Aquatic Wildlife ug/l	Class 1C: Drinking Water Supply	Class 1C: Acute Toxics Drinking Water Source ug/l	Class 3: Acute Toxics Drinking & Consumpt ion Criteria ug/l	Class 4: Acute Agricultur al ug/l	Acute Most Stringent ug/l
Aluminum	N/A	751.2		u.g.		~g	751.2
Antimony	• • • •			5.6			5.6
Arsenic	190.6	340.5	50.2			100.3	50.2
Asbestos				7.00E+06			7000000.0
Barium			1001.6				1001.6
Beryllium							0.0
Cadmium	0.8	8.7	10.0			10.0	0.8
Chromium (III)	268.5	5616.8	49.7				49.7
Chromium (VI)	11.02	16.0				99.9	11.0
Copper	30.6	51.7		1304.2		200.6	30.6
Cyanide	5.2	22.0		140.4			5.2
Iron		1001.6					1001.6
Lead	18.6	477.1	50.1			100.3	18.6
Mercury	0.012	2.40	2.01				0.0
Nickel	169.0	1517.3		100.3			100.3
Selenium	4.6	20.0	10.0		4213.6	50.2	4.6
Silver		41.1	50.2				41.1
Thallium							0.0
Zinc	388.7	388.1			26083.9		388.1
Boron						751.2	751.2

Summary Effluent Limitations for Metals [Wasteload Allocation, TMDL]

[If Acute is more stringent than Chronic, then the Chronic takes on the Acute value.]

	WLA Acute	WLA Chroni	C
	ug/l	ug/l	
Aluminum	751.2	N/A	
Antimony	5.61		
Arsenic	50.2	190.6	Acute Controls
Asbestos	7.00E+06		
Barium	1001.6		
Beryllium			
Cadmium	0.8	0.8	
Chromium (III)	49.7	268	Acute Controls
Chromium (VI)	11.0	11.0	
Copper	30.6	30.6	
Cyanide	5.2	5.2	
Iron	1001.6		
Lead	18.6	18.6	
Mercury	0.012	0.012	
Nickel	100.3	169	Acute Controls
Selenium	4.6	4.6	
Silver	41.1	N/A	
Thallium	0.0		
Zinc	388.1	388.7	Acute Controls
Boron	751.21		

Other Effluent Limitations are based upon R317-1.

X. Antidegradation Considerations

The Utah Antidegradation Policy allows for degradation of existing quality where it is determined that such lowering of water quality is necessary to accommodate important economic or social development in the area in which the waters are protected [R317-2-3]. It has been determined that certain chemical parameters introduced by this discharge will cause an increase of the concentration of said parameters in the receiving waters. Under no conditions will the increase in concentration be allowed to interfere with existing instream water uses.

The antidegradation rules and procedures allow for modification of effluent limits less than those based strictly upon mass balance equations utilizing 100% of the assimilative capacity of the receiving water. Additional factors include considerations for "Blue-ribbon" fisheries, special recreational areas, threatened and endangered species, and drinking water sources.

An Antidegradation Level I Review was conducted on this discharge and its effect on the receiving water. Based upon that review, it has been determined that an **Antidegradation Level II Review is NOT Required**.

XI. Colorado River Salinity Forum Considerations

Discharges in the Colorado River Basin are required to have their discharge at a TDS loading of less than 1.00 tons/day unless certain exemptions apply. Refer to the Forum's Guidelines for additional information allowing for an exceedence of this value.

XII. Summary Comments

The mathematical modeling and best professional judgement indicate that violations of receiving water beneficial uses with their associated water quality standards, including important down-stream segments, will not occur for the evaluated parameters of concern as discussed above if the effluent limitations indicated above are met.

XIII. Notice of UPDES Requirement

This Addendum to the Statement of Basis does not authorize any entity or party to discharge to the waters of the State of Utah. That authority is granted through a UPDES permit issued by the Utah Division of Water Quality. The numbers presented here may be changed as a function of other factors. Dischargers are strongly urged to contact the Permits Section for further information. Permit writers may utilize other information to adjust these limits and/or to determine other limits based upon best available technology and other considerations provided that the values in this wasteload analysis [TMDL] are not compromised. See special provisions in Utah Water Quality Standards for adjustments in the Total Dissolved Solids values based upon background concentration.

XIV. Special Considerations

EA Miller discharges to a tributary of Spring Creek which is listed on the Utah 303(d) listed for total phosphorous (TP), ammonia and dissolved oxygen (DO). A TMDL was completed for Spring Creek on September 9th, 2002. The TMDL set the load allocation for EA Miller at 170 kg/yr TP based on the anticipated capacity of the plant (2 mgd) and an average total phosphorus concentration of 0.10 mg/l (30 day average).

Prepared by: David Wham Utah Division of Water Quality

4

File Name: EA Miller & Hyrum WWTP_Irrigation_limits.xls

Level I Antidegradation Review for: EA Miller

Level II Antidegradation Review is NOT required. Basic permit renewal. No increase in load or concentration over last issued permit.

.

APPENDIX - Coefficients and Other Model Information

Parameter	Value	Units
Stoichiometry:		
Carbon	40	gC
Nitrogen	7.2	gN
Phosphorus	1	gP
Dry weight	100	gD
Chlorophyll	1	gA
Inorganic suspended solids:		
Settling velocity	0.06128	m/d
Oxygen:		
Reaeration model	Internal	
Temp correction	1.024	
Reaeration wind effect	None	
O2 for carbon oxidation	2.69	gO2/gC
O2 for NH4 nitrification	4.57	gO2/gN
Oxygen inhib model CBOD oxidation	Exponent	
Oxygen inhib parameter CBOD oxidation	0.60	L/mgO2
Oxygen inhib model nitrification	Exponent	-
Oxygen inhib parameter nitrification	0.60	L/mgO2
Oxygen enhance model denitrification	Exponent	
Oxygen enhance parameter denitrification	0.60	L/mgO2
Oxygen inhib model phyto resp	Exponent	-
Oxygen inhib parameter phyto resp	0.60	L/mgO2
Oxygen enhance model bot alg resp	Exponent	
Oxygen enhance parameter bot alg resp	0.60	L/mgO2
Slow CBOD:	0.00	L/IIIgOz
Hydrolysis rate	1.93545	/d
Temp correction	1.047	/u
Oxidation rate	1.18385	/d
	1.047	/u
Temp correction	1.047	
Fast CBOD:	0 5447	/d
Oxidation rate	0.5447 1.047	70
Temp correction	1.047	
Organic N:	0.0005	14
Hydrolysis	0.8365	/d
Temp correction	1.07	
Settling velocity	0.24964	m/d
Ammonium:		
Nitrification	4.2	/d
Temp correction	1.07	
Nitrate:		
Denitrification	1.02986	/d
Temp correction	1.07	
Sed denitrification transfer coeff	0.05126	m/d
Temp correction	1.07	

Organic P:		
Hydrolysis	3.4361	/d
Temp correction	1.07	
Settling velocity	0.62926	m/d
Inorganic P:	0.02020	in a
Settling velocity	0.01384	m/d
Sed P oxygen attenuation half sat constant	1.69154	mgO2/L
Phytoplankton:	1.00104	ing02/L
Max Growth rate	2.5	/d
Temp correction	1.07	
Respiration rate	0.1	/d
Temp correction	1.07	/u
Death rate		/d
Temp correction	0 1	/u
	-	ucN1/1
Nitrogen half sat constant	15	ugN/L
Phosphorus half sat constant	2	ugP/L
Inorganic carbon half sat constant	1.30E-05	moles/L
Phytoplankton use HCO3- as substrate	Yes	<i>.</i> -
Light model	Half satura	
Light constant	57.6	langleys/d
Ammonia preference	25	ugN/L
Settling velocity	0.15	m/đ
Bottom Plants:		
Growth model	Zero-order	
Max Growth rate	49.3845	gD/m2/d or /d
Temp correction	1.07	
First-order model carrying capacity	100	gD/m2
Basal respiration rate	0.48434	/d
Photo-respiration rate parameter	0	unitless
Temp correction	1.07	
Excretion rate	0.46367	/d
Temp correction	1.07	
Death rate	0.40579	/d
Temp correction	1.07	
External nitrogen half sat constant	163.368	ugN/L
External phosphorus half sat constant	47.556	ugP/L
Inorganic carbon half sat constant	1.05E-05	moles/L
nierganie oursen nun out verletune	1.052-05	
Bottom algae use HCO3- as substrate	Yes	
		ition
Bottom algae use HCO3- as substrate	Yes	i tion langleys/d
Bottom algae use HCO3- as substrate Light model	Yes Half satura	
Bottom algae use HCO3- as substrate Light model Light constant	Yes Half satura 2.09098	langleys/d
Bottom algae use HCO3- as substrate Light model Light constant Ammonia preference	Yes Half satura 2.09098 1.48807	langleys/d ugN/L mgN/gD
Bottom algae use HCO3- as substrate Light model Light constant Ammonia preference Subsistence quota for nitrogen	Yes Half satura 2.09098 1.48807 29.957365	langleys/d ugN/L mgN/gD
Bottom algae use HCO3- as substrate Light model Light constant Ammonia preference Subsistence quota for nitrogen Subsistence quota for phosphorus Maximum uptake rate for nitrogen	Yes Half satura 2.09098 1.48807 29.957365 0.3928168	langleys/d ugN/L mgN/gD mgP/gD mgN/gD/d
Bottom algae use HCO3- as substrate Light model Light constant Ammonia preference Subsistence quota for nitrogen Subsistence quota for phosphorus Maximum uptake rate for nitrogen Maximum uptake rate for phosphorus	Yes Half satura 2.09098 1.48807 29.957365 0.3928168 446.5885	langleys/d ugN/L mgN/gD mgP/gD
Bottom algae use HCO3- as substrate Light model Light constant Ammonia preference Subsistence quota for nitrogen Subsistence quota for phosphorus Maximum uptake rate for nitrogen Maximum uptake rate for phosphorus Internal nitrogen half sat ratio	Yes Half satura 2.09098 1.48807 29.957365 0.3928168 446.5885 114.4235	langleys/d ugN/L mgN/gD mgP/gD mgN/gD/d
Bottom algae use HCO3- as substrate Light model Light constant Ammonia preference Subsistence quota for nitrogen Subsistence quota for phosphorus Maximum uptake rate for nitrogen Maximum uptake rate for phosphorus Internal nitrogen half sat ratio Internal phosphorus half sat ratio	Yes Half satura 2.09098 1.48807 29.957365 0.3928168 446.5885 114.4235 2.856177	langleys/d ugN/L mgN/gD mgP/gD mgN/gD/d
Bottom algae use HCO3- as substrate Light model Light constant Ammonia preference Subsistence quota for nitrogen Subsistence quota for phosphorus Maximum uptake rate for nitrogen Maximum uptake rate for phosphorus Internal nitrogen half sat ratio Internal phosphorus half sat ratio Nitrogen uptake water column fraction	Yes Half satura 2.09098 1.48807 29.957365 0.3928168 446.5885 114.4235 2.856177 1.752547	langleys/d ugN/L mgN/gD mgP/gD mgN/gD/d
Bottom algae use HCO3- as substrate Light model Light constant Ammonia preference Subsistence quota for nitrogen Subsistence quota for phosphorus Maximum uptake rate for nitrogen Maximum uptake rate for phosphorus Internal nitrogen half sat ratio Internal phosphorus half sat ratio Nitrogen uptake water column fraction Phosphorus uptake water column fraction	Yes Half satura 2.09098 1.48807 29.957365 0.3928168 446.5885 114.4235 2.856177 1.752547 1	langleys/d ugN/L mgN/gD mgP/gD mgN/gD/d
Bottom algae use HCO3- as substrate Light model Light constant Ammonia preference Subsistence quota for nitrogen Subsistence quota for phosphorus Maximum uptake rate for nitrogen Maximum uptake rate for phosphorus Internal nitrogen half sat ratio Internal phosphorus half sat ratio Nitrogen uptake water column fraction Phosphorus uptake water column fraction Detritus (POM):	Yes Half satura 2.09098 1.48807 29.957365 0.3928168 446.5885 114.4235 2.856177 1.752547 1	langleys/d ugN/L mgN/gD mgP/gD mgN/gD/d
Bottom algae use HCO3- as substrate Light model Light constant Ammonia preference Subsistence quota for nitrogen Subsistence quota for phosphorus Maximum uptake rate for nitrogen Maximum uptake rate for phosphorus Internal nitrogen half sat ratio Internal phosphorus half sat ratio Nitrogen uptake water column fraction Phosphorus uptake water column fraction Detritus (POM): Dissolution rate	Yes Half satura 2.09098 1.48807 29.957365 0.3928168 446.5885 114.4235 2.856177 1.752547 1 1 2.7754	langleys/d ugN/L mgN/gD mgP/gD mgN/gD/d mgP/gD/d
Bottom algae use HCO3- as substrate Light model Light constant Ammonia preference Subsistence quota for nitrogen Subsistence quota for phosphorus Maximum uptake rate for nitrogen Maximum uptake rate for phosphorus Internal nitrogen half sat ratio Internal phosphorus half sat ratio Nitrogen uptake water column fraction Phosphorus uptake water column fraction Detritus (POM): Dissolution rate Temp correction	Yes Half satura 2.09098 1.48807 29.957365 0.3928168 446.5885 114.4235 2.856177 1.752547 1 1 2.7754 1.07	langleys/d ugN/L mgN/gD mgP/gD/d mgP/gD/d
Bottom algae use HCO3- as substrate Light model Light constant Ammonia preference Subsistence quota for nitrogen Subsistence quota for phosphorus Maximum uptake rate for nitrogen Maximum uptake rate for phosphorus Internal nitrogen half sat ratio Internal phosphorus half sat ratio Nitrogen uptake water column fraction Phosphorus uptake water column fraction Detritus (POM): Dissolution rate Temp correction Settling velocity	Yes Half satura 2.09098 1.48807 29.957365 0.3928168 446.5885 114.4235 2.856177 1.752547 1 1 2.7754	langleys/d ugN/L mgN/gD mgP/gD mgN/gD/d mgP/gD/d
Bottom algae use HCO3- as substrate Light model Light constant Ammonia preference Subsistence quota for nitrogen Subsistence quota for phosphorus Maximum uptake rate for nitrogen Maximum uptake rate for phosphorus Internal nitrogen half sat ratio Internal phosphorus half sat ratio Internal phosphorus half sat ratio Nitrogen uptake water column fraction Phosphorus uptake water column fraction Detritus (POM): Dissolution rate Temp correction Settling velocity Pathogens:	Yes Half satura 2.09098 1.48807 29.957365 0.3928168 446.5885 114.4235 2.856177 1.752547 1 1 2.7754 1.07 3.89475	langleys/d ugN/L mgN/gD mgP/gD/d mgP/gD/d /d
Bottom algae use HCO3- as substrate Light model Light constant Ammonia preference Subsistence quota for nitrogen Subsistence quota for phosphorus Maximum uptake rate for nitrogen Maximum uptake rate for phosphorus Internal nitrogen half sat ratio Internal phosphorus half sat ratio Internal phosphorus half sat ratio Nitrogen uptake water column fraction Phosphorus uptake water column fraction Detritus (POM): Dissolution rate Temp correction Settling velocity Pathogens: Decay rate	Yes Half satura 2.09098 1.48807 29.957365 0.3928168 446.5885 114.4235 2.856177 1.752547 1 1 2.7754 1.07 3.89475 0.8	langleys/d ugN/L mgN/gD mgP/gD/d mgP/gD/d
Bottom algae use HCO3- as substrate Light model Light constant Ammonia preference Subsistence quota for nitrogen Subsistence quota for phosphorus Maximum uptake rate for nitrogen Maximum uptake rate for phosphorus Internal nitrogen half sat ratio Internal phosphorus half sat ratio Internal phosphorus half sat ratio Nitrogen uptake water column fraction Phosphorus uptake water column fraction Detritus (POM): Dissolution rate Temp correction Settling velocity Pathogens: Decay rate Temp correction	Yes Half satura 2.09098 1.48807 29.957365 0.3928168 446.5885 114.4235 2.856177 1.752547 1 1 2.7754 1.07 3.89475 0.8 1.07	langleys/d ugN/L mgN/gD mgP/gD/d mgP/gD/d /d /d
Bottom algae use HCO3- as substrate Light model Light constant Ammonia preference Subsistence quota for nitrogen Subsistence quota for phosphorus Maximum uptake rate for nitrogen Maximum uptake rate for phosphorus Internal nitrogen half sat ratio Internal phosphorus half sat ratio Internal phosphorus half sat ratio Nitrogen uptake water column fraction Phosphorus uptake water column fraction Detritus (POM): Dissolution rate Temp correction Settling velocity Pathogens: Decay rate Temp correction Settling velocity	Yes Half satura 2.09098 1.48807 29.957365 0.3928168 446.5885 114.4235 2.856177 1.752547 1 1 2.7754 1.07 3.89475 0.8 1.07 1	langleys/d ugN/L mgN/gD mgP/gD/d mgP/gD/d /d m/d /d m/d
Bottom algae use HCO3- as substrateLight modelLight constantAmmonia preferenceSubsistence quota for nitrogenSubsistence quota for phosphorusMaximum uptake rate for nitrogenMaximum uptake rate for phosphorusInternal nitrogen half sat ratioInternal phosphorus half sat ratioNitrogen uptake water column fractionPhosphorus uptake water column fractionDetritus (POM):Dissolution rateTemp correctionSettling velocityPathogens:Decay rateTemp correctionSettling velocityalpha constant for light mortality	Yes Half satura 2.09098 1.48807 29.957365 0.3928168 446.5885 114.4235 2.856177 1.752547 1 1 2.7754 1.07 3.89475 0.8 1.07	langleys/d ugN/L mgN/gD mgP/gD/d mgP/gD/d /d /d
Bottom algae use HCO3- as substrate Light model Light constant Ammonia preference Subsistence quota for nitrogen Subsistence quota for phosphorus Maximum uptake rate for nitrogen Maximum uptake rate for phosphorus Internal nitrogen half sat ratio Internal phosphorus half sat ratio Internal phosphorus half sat ratio Nitrogen uptake water column fraction Phosphorus uptake water column fraction <i>Detritus (POM):</i> Dissolution rate Temp correction Settling velocity <i>Pathogens:</i> Decay rate Temp correction Settling velocity	Yes Half satura 2.09098 1.48807 29.957365 0.3928168 446.5885 114.4235 2.856177 1.752547 1 1 2.7754 1.07 3.89475 0.8 1.07 1	langleys/d ugN/L mgN/gD mgP/gD/d mgP/gD/d /d m/d /d m/d

 $\hat{\mathbf{z}}_{i}$

Hyporheic metabolism					
Model for biofilm oxidation	on of fast CBOD		Ze	ro-order	
Max biofilm growth rate				5 gO2/m^2/d d	
Temp correction			1.0)47	
Fast CBOD half-saturatio	n		0.5	5 n	ngO2/L
Oxygen inhib model			Ex	ponential	
Oxygen inhib parameter				50 L	/mgO2
Respiration rate			0.2	2 /0	b
Temp correction			1.0)7	
Death rate			0.0)5 /0	b
Temp correction			1.0)7	
External nitrogen half sat	constant		15	u	gN/L
External phosphorus half			2	and the second se	
Ammonia preference					
First-order model carrying	First-order model carrying capacity				D/m2
Generic constituent					
Decay rate			30	.0 /0	d
Temp correction			1.1	l l	
Settling velocity			1.() n	n/d
Atmospheric Inputs:	winter	Summer	Fall	Winter	Spring
Air Temperature, F	30.0	65.0	45.0	30.0	45.0
Dew Point, Temp., F	32.0	44.0	35.0	32.0	35.0
Wind, ft./sec. @ 21 ft.	2.0	2.0	2.0	2.0	2.0
Cloud Cover, %	10.0%	10.0%	10.0%	10.0%	10.0%
Shade, %	5.0%	5.0%	5.0%	5.0%	5.0%
Other Inputs:			(8)		
Manning Coeffecient	0.04 D	efault			
Side Slope	10.0%				
Bottom Algae Coverage	50.0%				