Utah Division of Water Quality Statement of Basis ADDENDUM Wasteload Analysis and Antidegradation Level I Review

Date:	May 28, 2019
Prepared by:	Nicholas von Stackelberg, P.E.
	Watershed Protection Section
Facility:	Springville City Wastewater Treatment Plant
	UPDES No. UT0020834
Receiving water:	Little Spring Creek (2B, 3D, 4)

This addendum summarizes the wasteload analysis that was performed to determine water quality based effluent limits (WQBEL) for this discharge. Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses (UAC R317-2-8). Projected concentrations are compared to numeric water quality standards to determine acceptability. The numeric criteria in this wasteload analysis may be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality.

<u>Discharge</u> Outfall 001: Little Spring Creek

The design capacity of the facility is 5.7 MGD maximum monthly average discharge and 6.6 MGD maximum daily discharge.

Receiving Water

The receiving water for Outfall 001 is Little Spring Creek, which is tributary to Big Spring Creek, Mill Race and Provo Bay of Utah Lake.

Per UAC R317-2-13.5.a, the designated beneficial uses for Little Spring Creek which receives the Springville City WWTP effluent from confluence with Big Spring Creek to headwaters are 2B, 3D, and 4.

- Class 2B Protected for infrequent primary contact recreation. Also protected for secondary contact recreation where there is a low likelihood of ingestion of water or a low degree of bodily contact with the water. Examples include, but are not limited to, wading, hunting, and fishing.
- Class 3D Protected for waterfowl, shore birds and other water-oriented wildlife not included in Classes 3A, 3B, or 3C, including the necessary aquatic organisms in their food chain.
- Class 4 Protected for agricultural uses including irrigation of crops and stock watering.

Utah Division of Water Quality Wasteload Analysis Springville City WWTP UPDES No. UT0020834

Per UAC R317-2-13.5.a, the designated beneficial uses for Big Spring Creek from Utah Lake to 50 feet upstream from the east boundary of the Industrial Parkway Road right-of-way are 2B, 3B, and 4.

• Class 3B - Protected for warm water species of game fish and other warm water aquatic life, including the necessary aquatic organisms in their food chain.

Protection of Downstream Uses

Per UAC R317-2-8, all actions to control waste discharges under these rules shall be modified as necessary to protect downstream designated uses. For this discharge, numeric aquatic life use criteria need to be met for both Little Spring Creek and Big Spring Creek.

Receiving Water Critical Flow

Typically, the critical flow for the wasteload analysis is considered the lowest stream flow for seven consecutive days with a ten year return frequency (7Q10). Due to a lack of flow records for each of the source waters, the 20th percentile of flow measurements from water quality monitoring conducted by DWQ was calculated to estimate seasonal critical flow in the receiving water (Table 1).

Table 1. Seasonal critical low now (cis)					
Secon	Headwater	Little Spring	Big Spring		
Season	Spring	Creek	Creek		
Monitoring ID	4996290	4996200	4996310		
Summer			10.9		
Fall			13.9		
Winter			13.8		
Spring			14.2		
Annual	1.8	2.8			

Table 1: Seasonal critical low flow (cfs)

TMDL

Spring Creek (Big) was listed as impaired for total ammonia according to the 303(d) list in *Utah's 2016 Integrated Report* (DWQ).

Utah Lake was listed for harmful algal blooms, total dissolved solids, total phosphorus and PCBs in fish tissue and Provo Bay was listed for pH, total ammonia, total phosphorus and PCBs in fish tissue on the 2016 303(d) list of impaired waterbodies. The Utah Lake Water Quality Study is ongoing with the objective to develop numeric nutrient criteria for Utah Lake and Provo Bay.

Mixing Zone

The maximum allowable mixing zone is 15 minutes of travel time for acute conditions, not to exceed 50% of stream width, and 2,500 feet for chronic conditions, per UAC R317-2-5. Water quality standards must be met at the end of the mixing zone.

The discharge is considered instantaneously fully mixed since the discharge is mixed with the headwater spring within a manhole structure. Therefore, no mixing zone is allowed. Since the discharge is considered fully mixed, 100% of the critical low flow was simulated for both

Utah Division of Water Quality Wasteload Analysis Springville City WWTP UPDES No. UT0020834

chronic and acute conditions.

Parameters of Concern

The parameters of concern identified for the discharge/receiving water were total suspended solids (TSS), dissolved oxygen (DO), BOD₅, total phosphorus (TP), total nitrogen (TN), total ammonia (TAN), and pH as determined in consultation with the UPDES Permit Writer.

Water Quality Modeling

A QUAL2Kw model of the receiving water was built and calibrated to synoptic survey data collected by DWQ staff in September and October of 2012 and is documented in the *QUAL2Kw Model Calibration Report for Spring Creek* (DWQ 2019). The model extends 1.6 kilometers along Little Spring Creek downstream from the treatment facility outfall to the confluence with Big Spring Creek and then extends 1.05 kilometers downstream along Big Spring Creek.

Ambient receiving water quality data was obtained from monitoring site 4996290 Spring Creek above Springville WWTP, 4996200 Little Spring Creek without Effluent, and 4996310 Spring Creek below Fish Hatcheries and above Springville WWTP. Effluent parameters were characterized using data from monitoring site 4996280 Springville WWTP. The average seasonal value was calculated for each constituent with available data in the receiving water.

The QUAL2Kw model was used for determining the WQBELs for parameters related to eutrophication and in-stream DO criteria, as well as ammonia toxicity. Effluent concentrations were adjusted so that water quality standards were not exceeded in the receiving water. Where WQBELs exceeded secondary standards, the concentration in the model was set at the secondary standard.

The QUAL2Kw model was also used to determine the limits for ammonia. The water quality standard for chronic ammonia toxicity is dependent on temperature and pH, and the water quality standard for acute ammonia toxicity is dependent on pH. QUAL2Kw rates, input and output for DO and eutrophication related constituents are summarized in Appendix A.

A mass balance mixing analysis was conducted for conservative constituents such as dissolved metals. The WQBELs for conservative constituents are summarized in Appendix B.

The wasteload model is available for review by request.

WET Limits

The percent of effluent in the receiving water in a fully mixed condition, and acute and chronic dilution in a not fully mixed condition are calculated in the WLA in order to generate WET limits. The LC₅₀ (lethal concentration, 50%) percent effluent for acute toxicity and the IC₂₅ (inhibition concentration, 25%) percent effluent for chronic toxicity, as determined by the WET test, needs to be below the WET limits, as determined by the WLA. The WET limit for LC₅₀ is typically 100% effluent and does not need to be determined by the WLA.

Utah Division of Water Quality Wasteload Analysis Springville City WWTP UPDES No. UT0020834

 Table 2: WET Limits for IC25

Season	Percent Effluent
Annual	83%

Effluent Limits

The effect of the effluent on the DO in the receiving water was evaluated using the QUAL2Kw model. A DO sag downstream in Little Spring Creek resulting from the plant discharge was predicted by the model, however, the DO did not fall below the criteria and limits beyond secondary standards are not required for DO and BOD₅ (Table 3).

Table 3: Water Quality Based Effluent Limits Summary

	Acute			Chronic		
Effluent Constituent	Standard	Limit	Averaging	Standard	Limit	Averaging
			Period			Period
Flow (MGD)		6.6	1 day		5.7	30 days
Ammonia (mg/L) ¹	Varies	8.0	1 hour	Varies	1.8	30 days
Min. Dissolved Oxygen (mg/L)	5.0	5.0	Minimum	5.5	5.0	30 days
$BOD_5 (mg/L)$	None	35.0	7 days	None	25.0	30 days
1: Ammonia limits from previous permit due to impairment of Spring Creek and Provo Bay for ammonia.						

Antidegradation Level I Review

The objective of the Level I ADR is to ensure the protection of existing uses, defined as the beneficial uses attained in the receiving water on or after November 28, 1975. No evidence is known that the existing uses deviate from the designated beneficial uses for the receiving water. Therefore, the beneficial uses will be protected if the discharge remains below the WQBELs presented in this wasteload.

A Level II Antidegradation Review (ADR) is not required for this discharge, and the pollutant concentration and load from the facility is not being increased under this permit renewal.

<u>Files</u> WLA Document: *springville_potw_wla_2019-05-28.docx* QUAL2Kw Wasteload Model: *springville_potw_wla_2019.xlsm*

References

Utah's 2016 Integrated Report. 2016. Utah Division of Water Quality.

Utah Wasteload Analysis Procedures Version 1.0. 2012. Utah Division of Water Quality.

QUAL2Kw Model Calibration Report for Spring Creek. 2019. Utah Division of Water Quality.

WASTELOAD ANALYSIS [WLA] Appendix A: QUAL2Kw Analysis for Eutrophication

Date: 5/15/2019

Discharging Facility: UPDES No:	Springville WWTP UT-0020834	
Permit Flow [MGD]:	5.7 Maximum Monthly Flow 6.6 Maximum Daily Flow	I
Receiving Water:	Little Spring Creek	
Stream Classification:	2B, 3D, 4	
Stream Flows [cfs]:	1.8 Summer (July-Sept) 1.8 Fall (Oct-Dec) 1.8 Winter (Jan-Mar) 1.8 Spring (Apr-June)	Critical Low Flow
Fully Mixed: Acute River Width: Chronic River Width:	YES 100% 100%	

Modeling Information

A QUAL2Kw model was used to determine these effluent limits.

Model Inputs

The following is upstream and discharge information that was utilized as inputs for the analysis. Dry washes are considered to have an upstream flow equal to the flow of the discharge.

Headwater Inputs	Summer	Fall	Winter	Spring
Flow (cfs)	1.8	1.8	1.8	1.8
Temperature (deg C)	20.9	12.8	8.7	13.6
Specific Conductance (µmhos)	1158	1158	1158	1158
Inorganic Suspended Solids (mg/L)	4.0	4.7	12.6	8.4
Dissolved Oxygen (mg/L)	9.0	9.0	9.9	9.3
CBOD ₅ (mg/L)	2.5	1.5	1.8	3.9
Organic Nitrogen (mg/L)	0.500	0.500	0.500	0.500
NH4-Nitrogen (mg/L)	0.031	0.043	0.028	0.029
NO3-Nitrogen (mg/L)	0.850	0.850	0.850	0.850
Organic Phosphorus (mg/L)	0.000	0.000	0.000	0.000
Inorganic Ortho-Phosphorus (mg/L)	0.034	0.034	0.034	0.034
Phytoplankton (μg/L)	0.0	0.0	0.0	0.0
Detritus [POM] (mg/L)	0.4	0.5	1.4	0.9
Alkalinity (mg/L)	235	235	235	235
pH	8.4	8.0	8.1	8.1
Discharge Inputs	Summor	Fall	Winter	Spring
Discharge Inputs	Summer	Fall	Winter	Spring
Discharge Inputs Flow (cfs)	Summer 5.7	Fall 5.7	Winter 5.7	Spring 5.7
Discharge Inputs Flow (cfs) Temperature (deg C) Specific Conductance (umbes)	Summer 5.7 22.8	Fall 5.7 16.2	Winter 5.7 12.7 1017	Spring 5.7 17.5
Discharge Inputs Flow (cfs) Temperature (deg C) Specific Conductance (µmhos)	Summer 5.7 22.8 959 10.8	Fall 5.7 16.2 989	Winter 5.7 12.7 1017 16.2	Spring 5.7 17.5 969
Discharge Inputs Flow (cfs) Temperature (deg C) Specific Conductance (µmhos) Inorganic Suspended Solids (mg/L)	Summer 5.7 22.8 959 10.8 5.0	Fall 5.7 16.2 989 12.5 5.0	Winter 5.7 12.7 1017 16.2 5.0	Spring 5.7 17.5 969 15.1 5.0
Discharge Inputs Flow (cfs) Temperature (deg C) Specific Conductance (µmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L)	Summer 5.7 22.8 959 10.8 5.0 25.0	Fall 5.7 16.2 989 12.5 5.0 25.0	Winter 5.7 12.7 1017 16.2 5.0 25.0	Spring 5.7 17.5 969 15.1 5.0 25.0
Discharge Inputs Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L)	Summer 5.7 22.8 959 10.8 5.0 25.0 2.371	Fall 5.7 16.2 989 12.5 5.0 25.0 4 740	Winter 5.7 12.7 1017 16.2 5.0 25.0 2 217	Spring 5.7 17.5 969 15.1 5.0 25.0 4.467
Discharge Inputs Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L)	Summer 5.7 22.8 959 10.8 5.0 25.0 3.271 2.500	Fall 5.7 16.2 989 12.5 5.0 25.0 4.740 4.000	Winter 5.7 12.7 1017 16.2 5.0 25.0 3.217 5.000	Spring 5.7 17.5 969 15.1 5.0 25.0 4.467 4.000
Discharge Inputs Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L) NH4-Nitrogen (mg/L)	Summer 5.7 22.8 959 10.8 5.0 25.0 3.271 2.500 12.222	Fall 5.7 16.2 989 12.5 5.0 25.0 4.740 4.000	Winter 5.7 12.7 1017 16.2 5.0 25.0 3.217 5.000 15 000	Spring 5.7 17.5 969 15.1 5.0 25.0 4.467 4.000 12,102
Discharge Inputs Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L) NH4-Nitrogen (mg/L) NO3-Nitrogen (mg/L)	Summer 5.7 22.8 959 10.8 5.0 25.0 3.271 2.500 12.323 0.000	Fall 5.7 16.2 989 12.5 5.0 25.0 4.740 4.000 14.549 0.347	Winter 5.7 12.7 1017 16.2 5.0 25.0 3.217 5.000 15.906 0.382	Spring 5.7 17.5 969 15.1 5.0 25.0 4.467 4.000 13.102 0.721
Discharge Inputs Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L) NH4-Nitrogen (mg/L) Organic Phosphorus (mg/L) Inorganic Ortho. Phosphorus (mg/L)	Summer 5.7 22.8 959 10.8 5.0 25.0 3.271 2.500 12.323 0.000 3.000	Fall 5.7 16.2 989 12.5 5.0 25.0 4.740 4.000 14.549 0.347 3.042	Winter 5.7 12.7 1017 16.2 5.0 25.0 3.217 5.000 15.906 0.382 2.700	5.7 17.5 969 15.1 5.0 25.0 4.467 4.000 13.102 0.721 2.241
Discharge Inputs Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L) NH4-Nitrogen (mg/L) NO3-Nitrogen (mg/L) Organic Phosphorus (mg/L) Inorganic Ortho-Phosphorus (mg/L) Phytoplankton (ug/L)	Summer 5.7 22.8 959 10.8 5.0 25.0 3.271 2.500 12.323 0.000 3.009 0.000	Fall 5.7 16.2 989 12.5 5.0 25.0 4.740 4.000 14.549 0.347 3.042 0.000	Winter 5.7 12.7 1017 16.2 5.0 25.0 3.217 5.000 15.906 0.382 2.700 0.000	Spring 5.7 17.5 969 15.1 5.0 25.0 4.467 4.000 13.102 0.721 2.241 0.000
Discharge Inputs Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L) NH4-Nitrogen (mg/L) NO3-Nitrogen (mg/L) Organic Phosphorus (mg/L) Inorganic Ortho-Phosphorus (mg/L) Phytoplankton (μg/L) Detritus [POM] (mg/L)	Summer 5.7 22.8 959 10.8 5.0 25.0 3.271 2.500 12.323 0.000 3.009 0.000	Fall 5.7 16.2 989 12.5 5.0 25.0 4.740 4.000 14.549 0.347 3.042 0.000 0.000	Winter 5.7 12.7 1017 16.2 5.0 25.0 3.217 5.000 15.906 0.382 2.700 0.000 0.000	Spring 5.7 17.5 969 15.1 5.0 25.0 4.467 4.000 13.102 0.721 2.241 0.000 0.000
Discharge Inputs Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L) NH4-Nitrogen (mg/L) NO3-Nitrogen (mg/L) Organic Phosphorus (mg/L) Inorganic Ortho-Phosphorus (mg/L) Phytoplankton (μg/L) Detritus [POM] (mg/L) Alkalinity (mg/L)	Summer 5.7 22.8 959 10.8 5.0 25.0 3.271 2.500 12.323 0.000 3.009 0.000 0.000 235	Fall 5.7 16.2 989 12.5 5.0 25.0 4.740 4.000 14.549 0.347 3.042 0.000 0.000 235	Winter 5.7 12.7 1017 16.2 5.0 25.0 3.217 5.000 15.906 0.382 2.700 0.000 0.000 235	Spring 5.7 17.5 969 15.1 5.0 25.0 4.467 4.000 13.102 0.721 2.241 0.000 0.000 235

Little Spring Creek Inputs	Summer	Fall	Winter	Spring
Flow (cfs)	2.8	2.8	2.8	2.8
Temperature (deg C)	20.9	12.8	8.7	13.6
Specific Conductance (µmhos)	1158	1158	1158	1158
Inorganic Suspended Solids (mg/L)	4.0	4.7	12.6	8.4
Dissolved Oxygen (mg/L)	9.0	9.0	9.9	9.3
CBOD ₅ (mg/L)	2.5	1.5	1.8	3.9
Organic Nitrogen (mg/L)	0.500	0.500	0.500	0.500
NH4-Nitrogen (mg/L)	0.031	0.043	0.028	0.029
NO3-Nitrogen (mg/L)	0.850	0.850	0.850	0.850
Organic Phosphorus (mg/L)	0.000	0.000	0.000	0.000
Inorganic Ortho-Phosphorus (mg/L)	0.034	0.034	0.034	0.034
Phytoplankton (μg/L)	0.0	0.0	0.0	0.0
Detritus [POM] (mg/L)	0.4	0.5	1.4	0.9
Alkalinity (mg/L)	235	235	235	235
pH	8.4	8.0	8.1	8.1
Big Spring Creek Inputs	Summer	Fall	Winter	Spring
Big Spring Creek Inputs	Summer	Fall	Winter	Spring
Big Spring Creek Inputs Flow (cfs) Temperature (deg C)	Summer 10.9 26 7	Fall 13.9 13.2	Winter 13.8 11.8	Spring 14.2 14.9
Big Spring Creek Inputs Flow (cfs) Temperature (deg C) Specific Conductance (umbos)	Summer 10.9 26.7 1134	Fall 13.9 13.2 1139	Winter 13.8 11.8 1071	Spring 14.2 14.9 1085
Big Spring Creek Inputs Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L)	Summer 10.9 26.7 1134 13.6	Fall 13.9 13.2 1139 27.3	Winter 13.8 11.8 1071 8.4	Spring 14.2 14.9 1085 7.3
Big Spring Creek Inputs Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxvaen (mg/L)	Summer 10.9 26.7 1134 13.6 8.5	Fall 13.9 13.2 1139 27.3 9.7	Winter 13.8 11.8 1071 8.4 11.0	Spring 14.2 14.9 1085 7.3 11.1
Big Spring Creek Inputs Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L)	Summer 10.9 26.7 1134 13.6 8.5 1.5	Fall 13.9 13.2 1139 27.3 9.7 1.5	Winter 13.8 11.8 1071 8.4 11.0 1.5	Spring 14.2 14.9 1085 7.3 11.1 1.5
Big Spring Creek Inputs Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L)	Summer 10.9 26.7 1134 13.6 8.5 1.5 0.236	Fall 13.9 13.2 1139 27.3 9.7 1.5 0.179	Winter 13.8 11.8 1071 8.4 11.0 1.5 0.090	Spring 14.2 14.9 1085 7.3 11.1 1.5 0.279
Big Spring Creek Inputs Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L) NH4-Nitrogen (mg/L)	Summer 10.9 26.7 1134 13.6 8.5 1.5 0.236 0.036	Fall 13.9 13.2 1139 27.3 9.7 1.5 0.179 0.041	Winter 13.8 11.8 1071 8.4 11.0 1.5 0.090 0.026	Spring 14.2 14.9 1085 7.3 11.1 1.5 0.279 0.025
Big Spring Creek Inputs Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L) NH4-Nitrogen (mg/L) NO3-Nitrogen (mg/L)	Summer 10.9 26.7 1134 13.6 8.5 1.5 0.236 0.036 0.706	Fall 13.9 13.2 1139 27.3 9.7 1.5 0.179 0.041 0.913	Winter 13.8 11.8 1071 8.4 11.0 1.5 0.090 0.026 0.947	Spring 14.2 14.9 1085 7.3 11.1 1.5 0.279 0.025 0.905
Big Spring Creek Inputs Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L) NH4-Nitrogen (mg/L) NO3-Nitrogen (mg/L) Organic Phosphorus (mg/L)	Summer 10.9 26.7 1134 13.6 8.5 1.5 0.236 0.036 0.706 0.047	Fall 13.9 13.2 1139 27.3 9.7 1.5 0.179 0.041 0.913 0.063	Winter 13.8 11.8 1071 8.4 11.0 1.5 0.090 0.026 0.947 0.040	Spring 14.2 14.9 1085 7.3 11.1 1.5 0.279 0.025 0.905 0.041
Big Spring Creek Inputs Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L) NH4-Nitrogen (mg/L) NO3-Nitrogen (mg/L) Organic Phosphorus (mg/L)	Summer 10.9 26.7 1134 13.6 8.5 1.5 0.236 0.036 0.706 0.047 0.026	Fall 13.9 13.2 1139 27.3 9.7 1.5 0.179 0.041 0.913 0.063 0.024	Winter 13.8 11.8 1071 8.4 11.0 1.5 0.090 0.026 0.947 0.040 0.025	Spring 14.2 14.9 1085 7.3 11.1 1.5 0.279 0.025 0.905 0.041 0.026
Big Spring Creek Inputs Flow (cfs) Temperature (deg C) Specific Conductance (µmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L) NH4-Nitrogen (mg/L) NO3-Nitrogen (mg/L) Organic Phosphorus (mg/L) Inorganic Ortho-Phosphorus (mg/L) Phytoplankton (µg/L)	Summer 10.9 26.7 1134 13.6 8.5 1.5 0.236 0.036 0.706 0.047 0.026 1.4	Fall 13.9 13.2 1139 27.3 9.7 1.5 0.179 0.041 0.913 0.063 0.024 1.4	Winter 13.8 11.8 1071 8.4 11.0 1.5 0.090 0.026 0.947 0.040 0.025 1.4	Spring 14.2 14.9 1085 7.3 11.1 1.5 0.279 0.025 0.905 0.041 0.026 1.4
Big Spring Creek Inputs Flow (cfs) Temperature (deg C) Specific Conductance (µmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L) NH4-Nitrogen (mg/L) NO3-Nitrogen (mg/L) Organic Phosphorus (mg/L) Inorganic Ortho-Phosphorus (mg/L) Phytoplankton (µg/L) Detritus [POM] (mg/L)	Summer 10.9 26.7 1134 13.6 8.5 1.5 0.236 0.036 0.706 0.047 0.026 1.4 3.4	Fall 13.9 13.2 1139 27.3 9.7 1.5 0.179 0.041 0.913 0.063 0.024 1.4 6.8	Winter 13.8 11.8 1071 8.4 11.0 1.5 0.090 0.026 0.947 0.040 0.025 1.4 2.1	Spring 14.2 14.9 1085 7.3 11.1 1.5 0.279 0.025 0.905 0.041 0.026 1.4 1.8
Big Spring Creek Inputs Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L) NH4-Nitrogen (mg/L) NO3-Nitrogen (mg/L) Organic Ortho-Phosphorus (mg/L) Phytoplankton (μg/L) Detritus [POM] (mg/L) Alkalinity (mg/L)	Summer 10.9 26.7 1134 13.6 8.5 1.5 0.236 0.036 0.706 0.047 0.026 1.4 3.4 236	Fall 13.9 13.2 1139 27.3 9.7 1.5 0.179 0.041 0.913 0.063 0.024 1.4 6.8 236	Winter 13.8 11.8 1071 8.4 11.0 1.5 0.090 0.026 0.947 0.040 0.025 1.4 2.1 236	Spring 14.2 14.9 1085 7.3 11.1 1.5 0.279 0.025 0.905 0.041 0.026 1.4 1.8 228

All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality.

Effluent Limitations

Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9).

Other conditions used in the modeling effort reflect the environmental conditions expected at low stream flows.

Effluent Limitations based upon Water Quality Standards for DO

and Ammonia Toxicity

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent limitation as follows:

Chronic	Standard	Summer	Fall	Winter	Spring
Flow (MGD)	N/A	5.7	5.7	5.7	5.7
NH4-Nitrogen (mg/L)	Varies	2.5	4.0	5.0	4.0
CBOD ₅ (mg/L)	N/A	25.0	25.0	25.0	25.0
Dissolved Oxygen [30-day Ave] (mg/L)	5.5	5.0	5.0	5.0	5.0
Acute	Standard	Summer	Fall	Winter	Spring
Flow (cfs)	N/A	6.6	6.6	6.6	6.6
NH4-Nitrogen (mg/L)	Varies	16.0	18.0	20.0	14.0
CBOD ₅ (mg/L)	N/A	35.0	35.0	35.0	35.0

5.0

5.0

5.0

5.0

Summary Comments

Dissolved Oxygen [Minimum] (mg/L)

The mathematical modeling and best professional judgement indicate that violations of receiving water beneficial uses with their associated water quality standards, including important down-stream segments, will not occur for the evaluated parameters of concern as discussed above if the effluent limitations indicated above are met.

5.0

Coefficients and Other Model Information

Parameter	Value	Units
Stoichiometry:		
Carbon	40	gC
Nitrogen	7.2	gN
Phosphorus	1	gP
Dry weight	100	gD
Chlorophyll	1	gA
Inorganic suspended solids:		
Settling velocity	0.001	m/d
Oxygen:		
Reaeration model	Tsivoglou-Ne	al
Temp correction	1.024	
Reaeration wind effect	None	
O2 for carbon oxidation	2.69	qO2/qC
O2 for NH4 nitrification	4.57	qO2/qN
Oxygen inhib model CBOD oxidation	Exponential	0 - 0
Oxygen inhib parameter CBOD oxidation	0.60	L/maO2
Oxygen inhib model nitrification	Exponential	0
Oxygen inhib parameter nitrification	0.60	L/mgO2
Oxygen enhance model denitrification	Exponential	
Oxygen enhance parameter denitrification	0.60	L/maO2
Oxygen inhib model phyto resp	Exponential	
Oxygen inhib parameter phyto resp	0.60	L/maQ2
Oxygen enhance model bot alg resp	Exponential	Linigot
Oxygen enhance parameter bot alg resp	0.60	L/maO2
Slow CBOD	0.00	Linigot
Hydrolysis rate	0	/d
Temp correction	1 047	, a
Oxidation rate	0 103	/d
Temp correction	1 047	, -
Fast CBOD	1.0 11	
Oxidation rate	10	/d
Temp correction	1 047	, -
Organic N ⁻		
Hydrolysis	0.93052954	/d
Temp correction	1 07	
Settling velocity	0.075512	m/d
Ammonium [.]		
Nitrification	8.5417597	/d
Temp correction	1 07	
Nitrate:		
Denitrification	1.22459618	/d
Temp correction	1.07	
Sed denitrification transfer coeff	0.22519	m/d
Temp correction	1.07	
Organic P:		
Hydrolysis	0 02341756	/d
Temp correction	1 07	
Settling velocity	0 012595	m/d
	0.012000	
Settling velocity	0 173285	m/d
Sed P oxygen attenuation half sat constant	0.37624	mgO2/L

	Phytoplankton:					
	Max Growth rate				2.8944	/d
	Temp correction				1.07	
	Respiration rate				0.480803	/d
	Temp correction				1.07	
	Death rate				0.86518	/d
	Temp correction				1	
	Nitrogen half sat constant				15	ugN/L
	Phosphorus half sat constant				2	ugP/L
	Inorganic carbon half sat constant				1.30E-05	moles/L
	Phytoplankton use HCO3- as substrate				Yes	
	Light model				Smith	
	Light constant				57.6	langleys/d
	Ammonia preference				25.4151	ugN/L
	Settling velocity				0.468545	m/d
	Bottom Plants:					
	Growth model				Zero-order	
	Max Growth rate				9.723175	gD/m2/d or /d
	Temp correction				1.07	0
	First-order model carrying capacity				100	gD/m2
	Basal respiration rate				0.5949614	/d
	Photo-respiration rate parameter				0.01	unitless
	Temp correction				1.07	
	Excretion rate				0.114068	/d
	Temp correction				1.07	
	Death rate				0.016856	/d
	Temp correction				1 07	
	External nitrogen half sat constant				428 4848	uaN/I
	External phosphorus half sat constant				95 6559	uaP/I
	Inorganic carbon half sat constant				3 16F-05	moles/l
	Bottom algae use HCO3- as substrate				Yes	
	Light model				Smith	
	Light constant				45 7548	maO^2/I
	Ammonia preference				18 969	ugN/I
	Subsistence quota for nitrogen				11 7113	maN/aD
	Subsistence quota for phosphorus				2 55002	maP/aD
	Maximum untake rate for nitrogen				880 0625	mgN/gD/d
	Maximum uptake rate for phosphorus				73 4256	maP/aD/d
	Internal nitrogen half sat ratio				1 16297	ingi /gb/d
	Internal phosphorus half sat ratio				4 8781425	
	Nitrogen untake water column fraction				1	
	Phosphorus uptake water column fraction	n			1	
	Detritus (POM):					
	Dissolution rate				2 196361	/d
	Temp correction				1 07	70
	Settling velocity				0.89671	m/d
	nH:				0.00011	in/u
	Partial pressure of carbon dioxide				370	nnm
					0/0	PPIII
Δtmos	spheric Inputs:	Summor	Fall	Winter	Sprin	n
Min A	ir Tomporaturo E	577	1 ali 20 5	24.0	Sprint	9
Mox A	hir Temperature, F	00.5	29.3	24.0	43.0	
Dow D	ni remperature, r point Temp F	90.0 50 6	31.U 35.0	44.9 20.2	14.Z	
	t /2020 @ 21 ft	0.0	35.0	30.3	40.0	
Cloud	$11.7550. W \ge 1 II.$	9.0 100/	C. 1 100/	0.1 100/	9.2	
Cioud		10%	10%	10%	10%	υ
Othor	Inpute					
Durier	Inputs.	1000/				
Bottom	n Aiyae Coverage	100%				
Droce	ibod SOD and im Adiday	100%				
riescr	ibeu SOD, gO ₂ /iii ⁻ 2/day	U				

WASTELOAD ANALYSIS [WLA] Appendix B: Mass Balance Mixing Analysis for Conservative Constituents

Discharging Facility: UPDES No:	Springville WWTP UT-0020834	
Permit Flow [MGD]:	5.7 Maximum Monthly Flow	
	6.6 Maximum Daily Flow	
Receiving Water:	Little Spring Creek	
Stream Classification:	2B, 3D, 4	
Stream Flows [cfs]:	1.8 Summer (July-Sept) Critical Low Fl	low
	1.8 Fall (Oct-Dec)	
	1.8 Winter (Jan-Mar)	
	1.8 Spring (Apr-June)	
Fully Mixed:	YES	
Acute River Width:	100%	
Chronic River Width:	100%	

Modeling Information

A simple mixing analysis was used to determine these effluent limits.

Model Inputs

The following is upstream and discharge information that was utilized as inputs for the analysis. Dry washes are considered to have an upstream flow equal to the flow of the discharge.

Headwater/Upstream Information

	Headwater Spring	Little Spring Creek
	cfs	cfs
Summer	1.8	2.8
Fall	1.8	2.8
Winter	1.8	2.8
Spring	1.8	2.8

Discharge Information

	Flow MGD	
Maximum Daily		6.6
Maximum Monthly		5.7

All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality.

Date: 5/15/2019

Effluent Limitations

Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9).

Other conditions used in the modeling effort reflect the environmental conditions expected at low stream flows.

Effluent Limitations for Protection of Recreation (Class 2B Waters)

Physical		
Parameter		Maximum Concentration
	pH Minimum	6.5
	pH Maximum	9.0
Bacteriological		
F coli (30 Day (Geometric Mean)	206 (#/100 mL)

E. coll (30 Day Geometric Mean)	200 (#/1001112)
E. coli (Maximum)	668 (#/100 mL)

Effluent Limitations for Protection of Aquatic Wildlife (Class 3D Waters)

Inorganics	Chronic Standard (4 Day Average)	Acute Standard (1 Hour Average)
Paramete	r Standard	Standard
Phenol (mg/L)		0.010
Hydrogen Sulfide (Undissociated)	[mg/L]	0.002

Total Recoverable Metals	Chronic Standard (4 Day Average) ¹			Acute Standard (1 Hour Average) ¹		
Parameter	Standard	Background	Limit	Standard	Background ²	Limit
Aluminum (µg/L)	N/A ³	20.6	N/A	750	69.0	931
Arsenic (µg/L)	150	0.9	196	340	0.9	430
Cadmium (µg/L)	0.5	0.1	0.6	4.9	0.1	6.2
Chromium VI (µg/L)	11.0	1.9	13.8	16.0	1.9	19.7
Chromium III (µg/L)	157	1.9	205	1,207	1.9	1,526
Copper (µg/L)	19.6	2.0	25.0	31.9	2.0	39.8
Cyanide (µg/L) ²	5.2	3.5	5.7	22.0	3.5	26.9
Iron (µg/L)				1,000	30.0	1,257
Lead (µg/L)	6.7	0.7	8.6	172	0.7	218
Mercury (µg/L) ²	0.012	0.008	0.013	2.4	0.0	3.0
Nickel (µg/L)	113	4.6	146	1,017	4.6	1,285
Selenium (µg/L)	4.6	1.0	5.7	18.4	1.0	23.0
Silver (µg/L)				15.6	0.5	19.5
Tributylin (µg/L) ²	0.072	0.048	0.079	0.46	0.048	0.57
Zinc (µg/L)	257	9.3	333	255	9.3	320
Deserve a lleveluses of 050 man/l as 0						

1: Based upon a Hardness of 250 mg/l as CaCO3.

2: Background concentration assumed 67% of chronic standard.

3: Where the pH is equal to or greater than 7.0 and the hardness is equal to or greater than 50 ppm as CaCO₃ in the receiving water after mixing, the 87 ug/L chronic criterion (expressed as total recoverable) will not apply, and aluminum will be regulated based on compliance with the 750 ug/L acute aluminum criterion (expressed as total recoverable).

Organics [Pesticides]	Chronic Sta	onic Standard (4 Day Average)			Acute Standard (1 Hour Average)		
Parameter	Standard	Background ¹	Limit	Standard	Background ¹	Limit	
Aldrin (µg/L)				1.5	1.0	1.6	
Chlordane (µg/L)	0.0043	0.0029	0.0047	1.2	0.0	1.5	
DDT, DDE (µg/L)	0.001	0.001	0.001	0.55	0.00	0.70	
Diazinon (µg/L)	0.17	0.11	0.19	0.17	0.11	0.18	
Dieldrin (µg/L)	0.0056	0.0038	0.0062	0.24	0.00	0.30	
Endosulfan, a & b (µg/L)	0.056	0.038	0.062	0.11	0.04	0.13	
Endrin (µg/L)	0.036	0.024	0.040	0.086	0.024	0.102	
Heptachlor & H. epoxide (µg/L)	0.0038	0.0025	0.0042	0.26	0.00	0.33	
Lindane (µg/L)	0.08	0.05	0.09	1.0	0.1	1.3	
Methoxychlor (µg/L)				0.03	0.02	0.03	
Mirex (µg/L)				0.001	0.001	0.001	
Nonylphenol (µg/L)	6.6	4.4	7.3	28.0	4.4	34.3	
Parathion (µg/L)	0.0130	0.0087	0.0143	0.066	0.009	0.081	
PCB's (µg/L)	0.014	0.009	0.015				
Pentachlorophenol (µg/L)	15.0	10.1	16.5	19.0	10.1	21.4	
Toxephene (µg/L)	0.0002	0.0001	0.0002	0.73	0.00	0.92	

1: Background concentration assumed 67% of chronic standard

Radiological		Maxim	um Concentratio	n
	Parameter	Standard	Background ¹	Limit
	Gross Alpha (pCi/L)	15	10.1	16.5
1. Deelemanned ee	neentration secured C70/	of obvious stand	and	

1: Background concentration assumed 67% of chronic standard.

Effluent Limitation for Protection of Agriculture (Class 4 Waters)

	Maximum Concentration			
Parameter	Standard	Background ¹	Limit	
Total Dissolved Solids (mg/L)	1,200	808	1,320	
Boron (µg/L)	75.0	99.8	67.4	
Arsenic (µg/L)	100	0.9	130	
Cadmium (µg/L)	10.0	6.7	11.0	
Chromium (µg/L)	100	1.9	130	
Copper (µg/L)	200	2.0	261	
Lead (µg/L)	100	0.7	130	
Selenium (µg/L)	50.0	1.0	65.0	
Gross Alpha (pCi/L) ¹	15.0	10.1	16.5	

1: Background concentration assumed 67% of chronic standard.