Utah Division of Water Quality Statement of Basis ADDENDUM Wasteload Analysis and Antidegradation Level I Review

Date:	January 24, 2019
Prepared by:	Dave Wham All Standards and Technical Services
Facility:	Springdale Wastewater Lagoons UPDES No. UT-025224
Receiving water:	Virgin River (1C, 2B, 3C, 4)

This addendum summarizes the wasteload analysis that was performed to determine water quality based effluent limits (WQBEL) for this discharge. Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses (UAC R317-2-8). Projected concentrations are compared to numeric water quality standards to determine acceptability. The numeric criteria in this wasteload analysis may be modified by narrative

Discharge

Outfall 001: Virgin River

The maximum monthly average design flow for the facility is 0.29 MGD (0.54 cfs).

criteria and other conditions determined by staff of the Division of Water Quality.

Receiving Water

The receiving water for Outfall 001 is the Virgin River.

Per UAC R317-2-13.2(a), the designated beneficial uses for the Virgin River and tributaries from the Quail Creek Diversion to headwaters (with exceptions) are 1C, 2B, 3C and 4.

- Class 1C -- Protected for domestic purposes with prior treatment by treatment processes as required by the Utah Division of Drinking Water
- Class 2B Protected for infrequent primary contact recreation. Also protected for secondary contact recreation where there is a low likelihood of ingestion of water or a low degree of bodily contact with the water. Examples include, but are not limited to, wading, hunting, and fishing.
- Class 3C Protected for nongame fish and other aquatic life, including the necessary aquatic organisms in their food chain.

• Class 4 - Protected for agricultural uses including irrigation of crops and stock watering.

Critical Low Flow

Typically, the critical flow for the wasteload analysis is considered the lowest stream flow for seven consecutive days with a ten year return frequency (7Q10). The 7Q10 was calculated using daily average flow values from USGS station #09406000 Virgin River at Virgin, UT for the period 1999-2018. Receiving water quality was characterized using data from DWQ Monitoring Station #4950850, Virgin River 1 Mile East of Virgin for the period 2001-2013.

The calculated annual 7Q10 is 49.5 cfs.

Both of the above monitoring stations are below Springdale's discharge location. However, review of available stations and data led to the conclusion that they are the most appropriate sites to characterize the receiving water. Upstream stations on the Virgin River are upstream of the confluence with major tributaries (East Fork of the Virgin River). Discharge data from Springdale's Lagoons indicate that they discharge on a very intermittent basis (on the order of 4 times per year). Additionally, the lagoon discharge rate (.45 cfs) is very small compared to the receiving water flow (even at critical low flow of 49.5 cfs). Given these factors, it is unlikely that downstream data is significantly influence by the lagoon discharge.

<u>TMDL</u>

According to DWQ's 2016 303(d) Assessment, the Virgin River and tributaries from North Creek confluence to North Fork Virgin River (Assessment Unit UT15010008-012_00), is fully supporting its beneficial uses.

Mixing Zone

The maximum allowable mixing zone is 15 minutes of travel time for acute conditions, not to exceed 50% of stream width, and 2,500 feet for chronic conditions, per UAC R317-2-5. Water quality standards must be met at the end of the mixing zone.

Modeling results show that the effluent was totally mixed with the receiving water within the chronic mixing zone. Acute limits were calculated using 50% of the seasonal critical low flow.

Parameters of Concern

No specific parameters of concern were identified by based on review of the past permit and the impairment status of the receiving water. Addition parameters of concern may become apparent as a result of reasonable potential analysis, technology based standards, or other factors as determined by the UPDES Permit Writer.

WET Limits

The percent of effluent in the receiving water in a fully mixed condition, and acute and chronic dilution in a not fully mixed condition are calculated in the WLA in order to generate WET

Utah Division of Water Quality Wasteload Analysis Springdale Lagoons No. UT-025224

limits. The LC₅₀ (lethal concentration, 50%) percent effluent for acute toxicity and the IC₂₅ (inhibition concentration, 25%) percent effluent for chronic toxicity, as determined by the WET test, needs to be below the WET limits, as determined by the WLA. The WET limit for LC₅₀ is typically 100% effluent and does not need to be determined by the WLA.

Table 1: WET Limits for IC₂₅

Outfall	Percent Effluent		
Outfall 001	0.9%		

Wasteload Allocation Methods

Effluent limits were determined for conservative constituents using a simple mass balance mixing analysis (UDWQ 2012). The mass balance analysis is summarized in the Wasteload Addendum.

The water quality standard for chronic ammonia toxicity is dependent on temperature and pH, and the water quality standard for acute ammonia toxicity is dependent on pH. The AMMTOX Model developed by University of Colorado and adapted by Utah DWQ and EPA Region VIII was used to determine ammonia effluent limits (Lewis et al. 2002). The analysis is summarized in the Wasteload Addendum.

Models and supporting documentation are available for review upon request.

Antidegradation Level I Review

The objective of the Level I ADR is to ensure the protection of existing uses, defined as the beneficial uses attained in the receiving water on or after November 28, 1975. No evidence is known that the existing uses deviate from the designated beneficial uses for the receiving water. Therefore, the beneficial uses will be protected if the discharge remains below the WQBELs presented in this wasteload.

A Level II Antidegradation Review (ADR) is not required for this facility. The proposed permit is a simple renewal, with no increase in flow or concentration over that which was approved in the existing permit.

Documents:

WLA Document: Springdale_WLADoc_1-24-19.docx Wasteload Analysis and Addendum: Springdale_WLA_1-25-19.xls

References:

Utah Division of Water Quality. 2012. Utah Wasteload Analysis Procedures Version 1.0.

Lewis, B., J. Saunders, and M. Murphy. 2002. Ammonia Toxicity Model (AMMTOX, Version2): A Tool for Determining Effluent Ammonia Limits. University of Colorado, Center for Limnology.

WASTELOAD ANALYSIS [WLA] Addendum: Statement of Basis SUMMARY

Discharging Facility:	Springdale Lagoons
UPDES No:	UT-025224
Design Flow	0.29 MGD

Receiving Water:	Springdale_\	NLA_1-25-	19.xls	
Stream Classification:	1C, 2B, 3C, 4			
Stream Flows [cfs]:	49.50 Summer (July-Sept) 7		7Q10	
	49.50	Fall (Oct-I	Dec)	7Q10
	49.50	Winter (Ja	n-Mar)	7Q10
	49.50	Spring (Ap	or-June)	7Q10
	0.0	Average		
Stream TDS Values:	480.8	Summer (July-Sept)	Average
	492.2	Fall (Oct-I	Dec)	Average
	457.3	Winter (Ja	an-Mar)	Average
	512.2	Spring (Ap	or-June)	Average
Effluent Limits:				WQ Standard:
Flow, MGD:	0.29	MGD	Design Flow	
BOD, mg/l:	35.0	Summer	5.0	Indicator
Dissolved Oxygen, mg/	4.0	Summer	5.0	30 Day Average
TNH3, Chronic, mg/l:	108.0	Summer	Varies	Function of pH and Temperature
TDS, mg/l:	80553.6	Summer	1200.0	

Modeling Parameters:

Acute River Width:	50.0%			
Chronic River Width:	100.0%			

Level 1 Antidegradation Level Completed: Level II Review not required.

Date: 1/25/2019

WASTELOAD ANALYSIS [WLA] Addendum: Statement of Basis

25-Jan-19
4:00 PM

Facilities:Springdale LagoonsDischarging to:Springdale_WLA_1-25-19.xls

UPDES No: UT-025224

THIS IS A DRAFT DOCUMENT

I. Introduction

Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses [R317-2-8, UAC]. Projected concentrations are compared to numeric water quality standards to determine acceptability. The anti-degradation policy and procedures are also considered. The primary in-stream parameters of concern may include metals (as a function of hardness), total dissolved solids (TDS), total residual chlorine (TRC), un-ionized ammonia (as a function of pH and temperature, measured and evaluated interms of total ammonia), and dissolved oxygen.

Mathematical water quality modeling is employed to determine stream quality response to point source discharges. Models aid in the effort of anticipating stream quality at future effluent flows at critical environmental conditions (e.g., low stream flow, high temperature, high pH, etc).

The numeric criteria in this wasteload analysis may always be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality.

II. Receiving Water and Stream Classification

Virgin River:	1C, 2B, 3C, 4
Antidegradation Review:	Level I review completed. Level II review not required.

III. Numeric Stream Standards for Protection of Aquatic Wildlife

Total Ammonia (TNH3)	Varies as a function of Temperature and pH Rebound. See Water Quality Standards
Chronic Total Residual Chlorine (TRC)	0.011 mg/l (4 Day Average) 0.019 mg/l (1 Hour Average)
Chronic Dissolved Oxygen (DO)	5.00 mg/l (30 Day Average) N/A mg/l (7Day Average) 3.00 mg/l (1 Day Average
Maximum Total Dissolved Solids	1200.0 mg/l

Acute and Chronic Heavy Metals (Dissolved)

4 Day Average (Chronic) Standard		1 Hour Average (Acute) Standard			
Parameter	Concentration	Load*	Concentration		Load*
Aluminum	87.00 ug/l**	0.211 lbs/day	750.00	ug/l	1.817 lbs/day
Arsenic	190.00 ug/l	0.460 lbs/day	340.00	ug/i	0.824 lbs/day
Cadmium	2.01 ug/l	0.005 lbs/day	5.40	ug/l	0.013 lbs/day
Chromium III	215.32 ug/l	0.522 lbs/day	4504.99	ug/l	10.915 lbs/day
ChromiumVI	11.00 ug/l	0.027 lbs/day	16.00	ug/l	0.039 lbs/day
Copper	24.25 ug/l	0.059 lbs/day	40.14	ug/l	0.097 lbs/day
Iron	_		1000.00	ug/l	2.423 lbs/day
Lead	13.21 ug/l	0.032 lbs/day	338.90	ug/l	0.821 lbs/day
Mercury	0.0120 ug/l	0.000 lbs/day	2.40	ug/l	0.006 lbs/day
Nickel	134.33 ug/l	0.325 lbs/day	1208.18	ug/l	2.927 lbs/day
Selenium	4.60 ug/l	0.011 lbs/day	20.00	ug/l	0.048 lbs/day
Silver	N/A ug/l	N/A lbs/day	25.89	ug/l	0.063 lbs/day
Zinc	308.99 ug/l	0.749 lbs/day	308.99	ug/l	0.749 lbs/day
* Allov	ved below discharge				

**Chronic Aluminum standard applies only to waters with a pH < 7.0 and a Hardness < 50 mg/l as CaCO3

Metals Standards Based upon a Hardness of 305.9 mg/l as CaCO3

Organics [Pesticides]

	4 Day Average (Chronic) Standard		1 Hour	ute) Standard	i			
Parameter	Concent	ration	Loa	nd*	Concentratio	on	Load*	
Aldrin					1.500	ug/l	0.004	lbs/day
Chlordane	0.004	ug/l	1.158	lbs/day	1.200	ug/l	0.003	lbs/day
DDT, DDE	0.001	ug/l	0.269	lbs/day	0.550	ug/l	0.001	lbs/day
Dieldrin	0.002	ug/l	0.512	lbs/day	1.250	ug/l	0.003	lbs/day
Endosulfan	0.056	ug/l	15.076	lbs/day	0.110	ug/l	0.000	lbs/day
Endrin	0.002	ug/l	0.619	lbs/day	0.090	ug/l	0.000	lbs/day
Guthion					0.010	ug/l	0.000	lbs/day
Heptachlor	0.004	ug/l	1.023	lbs/day	0.260	ug/l	0.001	lbs/day
Lindane	0.080	ug/l	21.538	lbs/day	1.000	ug/l	0.002	lbs/day
Methoxychlor					0.030	ug/l	0.000	lbs/day
Mirex					0.010	ug/l	0.000	lbs/day
Parathion					0.040	ug/l	0.000	lbs/day
PCB's	0.014	ug/l	3.769	lbs/day	2.000	ug/l	0.005	lbs/day
Pentachlorophenol	13.00	ug/l	3499.901	lbs/day	20.000	ug/l	0.048	lbs/day
Toxephene	0.0002	ug/l	0.054	lbs/day	0.7300	ug/l	0.002	lbs/day

IV. Numeric Stream Standards for Protection of Agriculture

4 Day Average (Chronic) Standard		1 Hour Average (Acute) Standard	
Concentration	Load*	Concentration	Load*
		100.0 ug/l	lbs/day
		750.0 ug/l	0.91 lbs/day
		10.0 ug/l	0.01 lbs/day
		100.0 ug/l	lbs/day
		200.0 ug/l	lbs/day
		100.0 ug/l	lbs/day
		50.0 ug/l	lbs/day
		1200.0 mg/l	1.45 tons/day
	4 Day Average (Chronic) St Concentration	4 Day Average (Chronic) Standard Concentration Load*	4 Day Average (Chronic) Standard 1 Hour Average (Ad Concentration Concentration 100.0 ug/l 750.0 ug/l 100.0 ug/l 100.0 ug/l 200.0 ug/l 100.0 ug/l 100.0 ug/l

V. Numeric Stream Standards for Protection of Human Health (Class 1C Waters)

	4 Day Average (Chronic)	Standard	1 Hour	Averag	je (Acute) Standard
Metals	Concentration	Load*	Concentratio	on	Load*
Arsenic			50.0	ug/l	13.461 lbs/day
Barium			1000.0	ug/l	269.223 lbs/day
Cadmium			10.0	ug/l	2.692 lbs/day
Chromium			50.0	ug/l	13.461 lbs/day
Lead			50.0	ug/l	13.461 lbs/day
Mercury			2.0	ug/l	0.538 lbs/day
Selenium			10.0	ug/l	2.692 lbs/day
Silver			50.0	ug/l	13.461 lbs/day
Fluoride (3)			1.4	ug/l	0.377 lbs/day
to			2.4	ug/l	0.646 lbs/day
Nitrates as N			10.0	ug/l	2.692 lbs/day
Chlorophenoxy Herbic	ides				
2,4-D			100.0	ug/l	26.922 lbs/day
2,4,5-TP			10.0	ug/l	2.692 lbs/day
Endrin			0.2	ug/l	0.054 lbs/day
ocyclohexane (Lindane)			4.0	ug/l	1.077 lbs/day
Methoxychlor			100.0	ug/l	26.922 lbs/day
Toxaphene			5.0	ug/l	1.346 lbs/day

VI. Numeric Stream Standards the Protection of Human Health from Water & Fish Consumption [Toxics]

	Maximum Conc., ug/l - Acute Standards						
	Class	1C			Class	3A, 3B	
Toxic Organics	[2 Liters/Day for	70 Kg Person over	70 Yr.]	[6.5]	g for 7	0 Kg Person over 70	Yr.]
Acenaphthene	1200.00 ug/l	323.07	lbs/day	2700.0	ug/l	726.90	lbs/day
Acrolein	320.00 ug/l	86.15	lbs/day	780.0	ug/l	209.99	lbs/day
Acrylonitrile	0.06 ug/l	0.02	lbs/day	0.7	ug/l	0.18	lbs/day
Benzene	1.20 ug/l	0.32	lbs/day	71.0	ug/l	19.11	lbs/day
Benzidine	0.00012 ug/l	0.00	lbs/day	0.0	ug/l	0.00	lbs/day
Carbon tetrachloride	0.25 ug/l	0.07	lbs/day	4.4	ug/l	1.18	lbs/day
Chlorobenzene	680.00 ug/l	183.07	lbs/day	21000.0	ug/l	5653.69	lbs/day
1,2,4-Trichlorobenzene							
Hexachlorobenzene	0.00075 ug/l	0.00	lbs/day	0.0	ug/l	0.00	lbs/day
1,2-Dichloroethane	0.38 ug/l	0.10	lbs/day	99.0	ug/l	26.65	lbs/day

1,1,1-Trichloroethane								
Hexachloroethane	1.90	uq/l	0.51	lbs/dav	8.9	ua/l	2.40	lbs/dav
1,1-Dichloroethane		U		,,		- 3.		
1,1,2-Trichloroethane	0.61	ug/l	0,16	lbs/dav	42.0	ua/l	11.31	lbs/dav
1,1,2,2-Tetrachloroethai	0.17	ug/l	0.05	lbs/day	11.0	ua/l	2.96	lbs/day
Chloroethane		Ŭ		,	0.0	ua/l	0.00	lbs/day
Bis(2-chloroethyl) ether	0.03	ug/l	0.01	lbs/dav	1.4	ua/l	0.38	lbs/day
2-Chloroethyl vinyl ether	0.00	uq/l	0.00	lbs/dav	0.0	ua/l	0.00	lbs/day
2-Chloronaphthalene	1700.00	uq/l	457.68	lbs/dav	4300.0	ua/l	1157.66	lbs/day
2,4,6-Trichlorophenol	2.10	uq/l	0.57	ibs/dav	6.5	ua/l	1.75	lbs/day
p-Chloro-m-cresol		0			0.0	ua/l	0.00	lbs/day
Chloroform (HM)	5.70	uq/l	1.53	lbs/dav	470.0	ua/l	126.53	lbs/day
2-Chlorophenol	120.00	uq/l	32.31	lbs/dav	400.0	ua/l	107.69	lbs/day
1,2-Dichlorobenzene	2700.00	ua/l	726.90	lbs/dav	17000.0	ua/l	4576.79	lbs/day
1,3-Dichlorobenzene	400.00	ua/l	107.69	lbs/dav	2600.0	ua/l	699.98	lbs/day
1,4-Dichlorobenzene	400.00	ua/l	107.69	lbs/day	2600.0	ua/l	699.98	lbs/day
3.3'-Dichlorobenzidine	0.04	ua/l	0.01	lbs/day	0.1	ua/l	0.02	lbs/day
1,1-Dichloroethylene	0.06	ua/l	0.02	lbs/day	3.2	ua/l	0.86	lbs/day
1,2-trans-Dichloroethyle	700.00	ua/l	188.46	lbs/day	0.0	ua/l	0.00	lbs/day
2,4-Dichlorophenol	93.00	ua/l	25.04	lbs/day	790.0	ua/l	212.69	lbs/day
1,2-Dichloropropane	0.52	ua/l	0.14	lbs/dav	39.0	ug/l	10.50	lbs/day
1,3-Dichloropropylene	10.00	ug/l	2.69	lbs/dav	1700.0	ua/l	457.68	lbs/day
2,4-Dimethylphenol	540.00	uq/l	145.38	lbs/dav	2300.0	ua/l	619.21	lbs/day
2,4-Dinitrotoluene	0.11	ua/l	0.03	lbs/dav	9.1	ug/l	2.45	lbs/day
2,6-Dinitrotoluene	0.00	ug/l	0.00	lbs/dav	0.0	ua/l	0.00	lbs/day
1,2-Diphenylhydrazine	0.04	ug/l	0.01	lbs/dav	0.5	ua/i	0.15	lbs/day
Ethylbenzene	3100.00	ua/l	834.59	lbs/dav	29000.0	ug/l	7807 47	lbs/day
Fluoranthene	300.00	ua/l	80.77	lbs/day	370.0	ua/l	99.61	lbs/day
4-Chlorophenyl phenyl ether	1	U		,		- <u>3</u>		
4-Bromophenyl phenyl ether								
Bis(2-chloroisopropyl) e	1400.00	uq/l	376.91	lbs/dav	170000.0	ua/l	45767 93	lbs/dav
Bis(2-chloroethoxy) met	0.00	ug/l	0.00	lbs/dav	0.0	ua/ł	0.00	lbs/day
Methylene chloride (HM	4.70	uq/l	1.27	lbs/dav	1600.0	ug/l	430.76	lbs/day
Methyl chloride (HM)	0.00	ug/l	0.00	lbs/day	0.0	ua/l	0.00	lbs/day
Methyl bromide (HM)	0.00	ug/l	0.00	lbs/dav	0.0	ua/l	0.00	lbs/day
Bromoform (HM)	4.30	ua/l	1.16	lbs/dav	360.0	ua/l	96.92	lbs/day
Dichlorobromomethane	0.27	ug/l	0.07	lbs/dav	22.0	ua/l	5.92	lbs/day
Chlorodibromomethane	0.41	ua/l	0.11	lbs/dav	34.0	ua/l	9.15	lbs/day
Hexachlorobutadiene(c)	0.44	ug/l	0.12	lbs/dav	50.0	ua/l	13.46	lbs/day
Hexachlorocyclopentadi	240.00	uq/l	64.61	lbs/dav	17000.0	ua/l	4576.79	lbs/day
Isophorone	8.40	ua/l	2.26	lbs/dav	600.0	ua/l	161.53	lbs/day
Naphthalene		U		,				
Nitrobenzene	17.00	ua/l	4.58	lbs/dav	1900.0	ua/l	511 52	lbs/dav
2-Nitrophenol	0.00	ua/l	0.00	lbs/dav	0.0	ua/l	0.00	lbs/day
4-Nitrophenol	0.00	ua/l	0.00	lbs/dav	0.0	ua/l	0.00	lbs/day
2.4-Dinitrophenol	70.00	ua/l	18.85	lbs/dav	14000.0	ua/l	3769 12	lbs/day
4,6-Dinitro-o-cresol	13.00	ua/l	3.50	lbs/dav	765.0	ua/l	205.96	lbs/day
N-Nitrosodimethylamine	0.00069	ug/l	0.00	lbs/dav	8 1	ua/l	2 18	lbs/day
N-Nitrosodiphenvlamine	5.00	uq/l	1.35	lbs/dav	16.0	ua/l	4.31	lbs/day
N-Nitrosodi-n-propylami	0.01	ug/l	0.00	lbs/dav	1.4	ua/l	0.38	lbs/day
Pentachlorophenol	0.28	ug/l	0.08	lbs/dav	8.2	ua/l	2.21	lbs/dav
-		-				<u> </u>		

Phenol	2.10E+04 ug	ug/l 5.65E+03	lbs/day 4.6E+0	6 ug/l	1.24E+06	lbs/day
Bis(2-ethylhexyl)phthala	1.80 ug	ug/l 0.48	lbs/day 5.9	ug/l	1.59	lbs/day
Butyl benzyl phthalate	3000.00 ug	ıg/l 807.67	lbs/day 5200.0	ug/l	1399.96	lbs/day
Di-n-butyl phthalate	2700.00 ug	ıg/l 726.90	lbs/day 12000.0	ug/l	3230.68	lbs/day
Di-n-octyl phthlate						
Diethyl phthalate	23000.00 ug	ıg/l 6192.13	lbs/day 120000.0	ug/l	32306.77	lbs/day
Dimethyl phthlate	3.13E+05 ug	ıg/l 8.43E+04	lbs/day 2.9E+0	6 ug/l	7.81E+05	lbs/day
Benzo(a)anthracene (P/	0.0028 ug	ug/l 0.00	lbs/day 0.0	ug/l	0.01	lbs/day
Benzo(a)pyrene (PAH)	0.0028 ug	ug/l 0.00	lbs/day 0.0	ug/l	0.01	lbs/day
Benzo(b)fluoranthene (F	0.0028 ug	ug/l 0.00	lbs/day 0.0	uq/l	0.01	lbs/day
Benzo(k)fluoranthene (F	0.0028 ug	ug/l 0.00	lbs/day 0.0	uq/l	0.01	lbs/dav
Chrysene (PAH)	0.0028 ug	0.00 l/p	lbs/day 0.0	ua/l	0.01	lbs/day
Acenaphthylene (PAH)	percent of acting the second second		and a second and a second as a second			
Anthracene (PAH)	9600.00 ud	a/l 2584.54	lbs/day 0.0	ua/l	0.00	lbs/day
Dibenzo(a,h)anthracene	0.0028 uc	Ja/l 0.00	lbs/day 0.0	ua/l	0.01	lbs/day
Indeno(1.2.3-cd)pyrene	0.0028 µc	ug/l 0.00	lbs/day 0.0	ug/l	0.01	lbs/day
Pvrene (PAH)	960.00 uc	ug/l 258.45	lbs/day 11000.0	ug/l	2961.45	lbs/day
Tetrachloroethylene	0.80 uc	uo/l 0.22	lbs/day 8.9	ug/l	2 40	lbs/day
Toluene	6800 00 uc	In 1830 72	lbs/day 200000	ug/l	53844.62	lbs/day
Trichloroethylene	2 70 uc	ig/i 0.73	lbs/day 200000	ug/l	21.81	lbs/day
Vinvl chloride	2.00 ug	ig/l 0.54	lbs/day 525.0	ug/l	141 34	lbs/day
	2.00 03	.9.1 0.0 1	0.0	ugn	0.00	lbs/day
Pesticides			0.0		0.00	lbs/day
Aldrin	0.0001.uc	ua/l 0.00	lbs/day 0.0	uo/l	0.00	lbs/day
Dieldrin		ig/l 0.00	lbs/day 0.0	ug/l	0.00	lbs/day
Chlordane			lbs/day 0.0	ug/l	0.00	Ibs/day
		ig/i 0.00	lbs/day 0.0	ug/i	0.00	lbs/day
	0.0000 ug	19/1 0.00	Ibs/day 0.0	ug/l	0.00	IDS/Gay
		ig/i 0.00	Ibs/day 0.0	ug/l	0.00	IDS/Gay
alpha Endosulfan	0.0000 ug	19/1 0.00	Ibs/day 0.0	ug/i	0.00	IDS/Gay
bota Endocultan	0.9300 ug	19/1 0.25	ibs/day 2.0	ug/i	0.54	Ibs/day
Endoculton cultoto	0.9300 ug	IG/I 0.25	Ibs/day 2.0	ug/i	0.54	ibs/day
Endosulian sullate	0.9300 40		IDS/day 2.0	ug/i	0.54	ibs/day
Englin eldebude	0.7600 ug	ig/i 0.20	IDS/day 0.8	ug/i	0.22	lbs/day
Liontachier	0.7600 ug	Ig/i 0.20	IDS/day 0.8	ug/i	0.22	lbs/day
	0.0002 4g	ig/i 0.00	ibs/day 0.0	ug/i	0.00	lbs/day
Heptachior epoxide						
PCB's						
PCB 1242 (Arochlor 124	0.000044 ud	ua/l 0.00	lbs/day 0.0	ua/l	0.00	lbs/dav
PCB-1254 (Arochlor 12)	0.000044.uc		lbs/day 0.0	ug/l	0.00	lbs/day
PCB-1221 (Arochlor 12)	0.000044 uc	ug/l 0.00	lbs/day 0.0	ug/l	0.00	lbs/day
PCB-1232 (Arochlor 12)	0.000044 uc	ig/l 0.00	lbs/day 0.0	ug/l	0.00	lbs/day
PCB-1248 (Arochior 12)			lbs/day 0.0	ug/l	0.00	lbs/day
PCB-1260 (Arochlor 12		ig/i 0.00	lbs/day 0.0		0.00	lbs/day
PCB-1016 (Arochlor 10'		ig/i 0.00	ibs/day 0.0	ug/l	0.00	lbs/day
				ugn	0.00	looraay
Pesticide						
Toxaphene	0.000750 ug	ıg/l 0.00	0.0	ug/l	0.00	lbs/day
Dioxin						
Dioxin (2 3 7 8-TCDD)	1.30E-08.uc	ua/l 0.00	lbs/day 1.40E_0	8	0.00	
	us		1.40L-0		0.00	

Metals				
Antimony	14.0 ug/l	3.77 lbs/da	ay	
Arsenic	50.0 ug/l	13.46 lbs/da	ay 4300.00 ug/l	1157.66 lbs/day
Asbestos	7.00E+06 ug/l	1.88E+06 lbs/da	ay	
Beryllium				
Cadmium				
Chromium (III)				
Chromium (VI)				
Соррег				
Cyanide	1.30E+03 ug/l	349.99 lbs/da	ay 2.2E+05 ug/l	59229.09 lbs/day
Lead	700.0 ug/l	188.46 lbs/da	ау	
Mercury			0.15 ug/l	0.04 lbs/day
Nickel			4600.00 ug/l	1238.43 lbs/day
Selenium	0.1 ug/l	0.04 lbs/da	ау	
Silver	610.0 ug/l	164.23 lbs/da	ay	
Thallium			6.30 ug/l	1.70 lbs/day
Zinc				

There are additional standards that apply to this receiving water, but were not considered in this modeling/waste load allocation analysis.

VII. Mathematical Modeling of Stream Quality

Model configuration was accomplished utilizing standard modeling procedures. Data points were plotted and coefficients adjusted as required to match observed data as closely as possible.

The modeling approach used in this analysis included one or a combination of the following models.

(1) The Utah River Model, Utah Division of Water Quality, 1992. Based upon STREAMDO IV (Region VIII) and Supplemental Ammonia Toxicity Models; EPA Region VIII, Sept. 1990 and QUAL2E (EPA, Athens, GA).

- (2) Utah Ammonia/Chlorine Model, Utah Division of Water Quality, 1992.
- (3) AMMTOX Model, University of Colorado, Center of Limnology, and EPA Region 8
- (4) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644.

Coefficients used in the model were based, in part, upon the following references:

(1) Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling. Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens Georgia. EPA/600/3-85/040 June 1985.

(2) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644.

VIII. Modeling Information

The required information for the model may include the following information for both the upstream conditions at low flow and the effluent conditions:

Flow, Q, (cfs or MGD)	D.O. mg/l
Temperature, Deg. C.	Total Residual Chlorine (TRC), mg/l
pH	Total NH3-N, mg/l
BOD5, mg/l	Total Dissolved Solids (TDS), mg/l
Metals, ug/l	Toxic Organics of Concern, ug/l

Other Conditions

In addition to the upstream and effluent conditions, the models require a variety of physical and biological coefficients and other technical information. In the process of actually establishing the permit limits for an effluent, values are used based upon the available data, model calibration, literature values, site visits and best professional judgement.

Model Inputs

The following is upstream and discharge information that was utilized as inputs for the analysis. Dry washes are considered to have an upstream flow equal to the flow of the discharge.

Current Upstream	Information Stream Critical Low							
	Flow	Temp.	pН	T-NH3	BOD5	DO	TRC	TDS
	cfs	Deg. C		mg/I as N	mg/l	mg/l	mg/l	mg/l
Summer (Irrig. Season)	49.50	21.7	8.3	0.01	1.00	6.97	0.00	480.8
Fall	49.50	10.1	8.2	0.01	1.00		0.00	492.2
Winter	49.50	7.8	8.1	0.01	1.00	1 <u></u>	0.00	457.3
Spring	49.50	15.7	8.1	0.01	1.00		0.00	512.2
Dissolved	AI	As	Cd	CrIII	CrVI	Copper	Fe	Pb
Metals	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
All Seasons	11.20	1.30	0.20	1.80	3.975*	2.80	12.2	0.60
Dissolved	Hg	Ni	Se	Ag	Zn	Boron		
Metals	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l		
All Seasons	0.0000	3.00	0.50	0.50	10.50	69.9	* ~8	0% MDL

Projected Discharge Information

Season	Flow, MGD	Temp.
Summer	0.29000	22.0
Fall	0.29000	12.0
Winter	0.29000	8.0
Spring	0.29000	12.0

All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality.

IX. Effluent Limitations

Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9).

Other conditions used in the modeling effort coincide with the environmental conditions expected at low stream flows.

Effluent Limitation for Flow based upon Water Quality Standards

In-stream criteria of downstream segments will be met with an effluent flow maximum value as follows:

Season	Daily Averag	е
Summer	0.290 MGD	0.449 cfs
Fall	0.290 MGD	0.449 cfs
Winter	0.290 MGD	0.449 cfs
Spring	0.290 MGD	0.449 cfs

Flow Requirement or Loading Requirement

The calculations in this wasteload analysis utilize the maximum effluent discharge flow of 0.29 MGD. If the discharger is allowed to have a flow greater than 0.29 MGD during 7Q10 conditions, and effluent limit concentrations as indicated, then water quality standards will be violated. In order to prevent this from occuring, the permit writers must include the discharge flow limititation as indicated above; or, include loading effluent limits in the permit.

Effluent Limitation for Whole Effluent Toxicity (WET) based upon WET Policy

Effluent Toxicity will not occur in downstream segements if the values below are met.

WET Requirements	LC50 >	100.0% Effluent	[Acute]
	IC25 >	0.9% Effluent	[Chronic]

Effluent Limitation for Biological Oxygen Demand (BOD) based upon Water Quality Standards or Regulations

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent BOD limitation as follows:

Concentration	
35.0 mg/l as BOD5	84.6 lbs/day
35.0 mg/l as BOD5	84.6 lbs/day
35.0 mg/l as BOD5	84.6 lbs/day
35.0 mg/l as BOD5	84.6 lbs/day
	Concentration 35.0 mg/l as BOD5 35.0 mg/l as BOD5 35.0 mg/l as BOD5 35.0 mg/l as BOD5

Effluent Limitation for Dissolved Oxygen (DO) based upon Water Quality Standards

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent D.O. limitation as follows:

Season	Concentration
Summer	4.00
Fall	4.00
Winter	4.00
Spring	4.00

Effluent Limitation for Total Ammonia based upon Water Quality Standards

In-stream criteria of downstream segments for Total Ammonia will be met with an effluent limitation (expressed as Total Ammonia as N) as follows:

Seaso	n					
	Concentration					
Summer	4 Day Avg Chronic	107.98 mg/l as N	261.1 lbs/day			
	1 Hour Avg Acute	182.5 mg/l as N	441.4 Ibs/day			
Fall	4 Day Avg Chronic	218.2 mg/l as N	527.6 lbs/day			
	1 Hour Avg Acute	266.4 mg/l as N	644.3 lbs/day			
Winter	4 Day Avg Chronic	220.1 mg/l as N	532.3 lbs/day			
	1 Hour Avg Acute	264.4 mg/l as N	639.3 lbs/day			
Spring	4 Day Avg Chronic	187.6 mg/l as N	453.7 lbs/day			
	1 Hour Avg Acute	218.2 mg/l as N	527.7 lbs/day			

Acute limit calculated with an Acute Zone of Initial Dilution (ZID) to be equal to 50.%.

Effluent Limitation for Total Residual Chlorine based upon Water Quality Standards

In-stream criteria of downstream segments for Total Residual Chlorine will be met with an effluent limitation as follows:

Season		Concentra	ation	Load	Load		
Summer	4 Day Avg Chronic	1.112	mg/l	2.69	lbs/day		
	1 Hour Avg Acute	1.010	mg/l	2.44	lbs/day		
Fall	4 Day Avg Chronic	1.112	mg/l	2.69	lbs/day		
	1 Hour Avg Acute	1.010	mg/l	2.44	lbs/day		
Winter	4 Day Avg Chronic	1.112	mg/l	2.69	lbs/day		
	1 Hour Avg Acute	1.010	mg/l	2.44	lbs/day		
Spring	4 Day Avg Chronic	1.112	mg/l	2.69	lbs/day		
	1 Hour Avg Acute	1.010	mg/l	2.44	lbs/day		

Effluent Limitations for Total Dissolved Solids based upon Water Quality Standards

Season		Concentra	ation	Load	
Summer Fall Winter Spring	Maximum, Acute Maximum, Acute Maximum, Acute Maximum, Acute	80553.6 79295.8 83146.5 77089.0	mg/l mg/l mg/l mg/l	97.39 95.87 100.53 93.21	tons/day tons/day tons/day tons/day
Colorado Salinity Forum Limits		Determine	d by Permi	ttina Section	

Effluent Limitations for Total Recoverable Metals based upon Water Quality Standards

In-stream criteria of downstream segments for Dissolved Metals will be met with an effluent limitation as follows (based upon a hardness of 305.9 mg/l):

	4 Day Average			1 Hour				
	Concent	tration	Loa	d	Concentration	-	Load	
Aluminum*	N/A		N/A		41,508.1	ug/l	100.6	ibs/day
Arsenic*	21,010.39	ug/l	32.8	lbs/day	19,025.4	ug/l	46.1 I	lbs/day
Cadmium	202.01	ug/l	0.3	lbs/day	292.0	ug/l	0.7	lbs/day
Chromium III	23,774.69	ug/l	37.2	lbs/day	252,937.0	ug/l	612.8	lbs/day
Chromium VI*	786.11	ug/l	1.2	lbs/day	679.4	ug/l	1.6	lbs/day
Copper	2,391.24	ug/l	3.7	lbs/day	2,100.3	ug/l	5.1	lbs/day
Iron*	N/A		N/A		55,494.9	ug/l	134.5	lbs/day
Lead	1,404.15	ug/l	2.2	lbs/day	19,002.2	ug/l	46.0	lbs/day
Mercury*	1.33	ug/l	0.0	lbs/day	134.8	ug/l	0.3	lbs/day
Nickel	14,624.34	ug/l	22.9	lbs/day	67,695.5	ug/l	164.0	lbs/day
Selenium*	456.98	ug/l	0.7	lbs/day	1,095.8	ug/l	2.7	lbs/day
Silver	N/A	ug/l	N/A	lbs/day	1,426.8	ug/l	3.5	lbs/day

Zinc	33,243.26	ug/l	52.0 lbs/day	16,776.1	ug/l	40.6 lbs/day
Cyanide*	578.95	ug/I	0.9 lbs/day	1,235.7	ug/l	3.0 lbs/day

*Limits for these metals are based on the dissolved standard.

Effluent Limitations for Heat/Temperature based upon Water Quality Standards

Summer	467.0 Deg. C.	872.7 Deg. F
Fall	455.4 Deg. C.	851.8 Deg. F
Winter	453.1 Deg. C.	847.7 Deg. F
Spring	461.0 Deg. C.	861.9 Deg. F

Effluent Limitations for Organics [Pesticides] Based upon Water Quality Standards

In-stream criteria of downstream segments for Organics [Pesticides] will be met with an effluent limit as follows:

		4 Day Ave	1 Hour A			
		Concentration	Load	Concentration		Load
	Aldrin			1.5E+00	ug/l	5.62E-03 lbs/day
	Chlordane	4.30E-03 ug/l	1.04E-02 lbs/day	1.2E+00	ug/l	4.50E-03 lbs/day
	DDT, DDE	1.00E-03 ug/l	2.42E-03 lbs/day	5.5E-01	ug/l	2.06E-03 lbs/day
	Dieldrin	1.90E-03 ug/l	4.59E-03 lbs/day	1.3E+00	ug/l	4.69E-03 lbs/day
	Endosulfan	5.60E-02 ug/l	1.35E-01 lbs/day	1.1E-01	ug/l	4.12E-04 lbs/day
	Endrin	2.30E-03 ug/l	5.56E-03 lbs/day	9.0E-02	ug/l	3.37E-04 lbs/day
	Guthion	0.00E+00 ug/l	0.00E+00 lbs/day	1.0E-02	ug/l	3.75E-05 lbs/day
	Heptachlor	3.80E-03 ug/l	9.19E-03 lbs/day	2.6E-01	ug/l	9.75E-04 lbs/day
	Lindane	8.00E-02 ug/l	1.93E-01 lbs/day	1.0E+00	ug/l	3.75E-03 lbs/day
	Methoxychlor	0.00E+00 ug/l	0.00E+00 lbs/day	3.0E-02	ug/l	1.12E-04 lbs/day
	Mirex	0.00E+00 ug/l	0.00E+00 lbs/day	1.0E-02	ug/l	3.75E-05 lbs/day
	Parathion	0.00E+00 ug/l	0.00E+00 lbs/day	4.0E-02	ug/l	1.50E-04 lbs/day
	PCB's	1.40E-02 ug/l	3.39E-02 lbs/day	2.0E+00	ug/l	7.50E-03 lbs/day
Pe	entachlorophenol	1.30E+01 ug/l	3.14E+01 lbs/day	2.0E+01	ug/i	7.50E-02 lbs/day
	Toxephene	2.00E-04 ug/l	4.84E-04 lbs/day	7.3E-01	ug/l	2.74E-03 lbs/day

Effluent Targets for Pollution Indicators Based upon Water Quality Standards

In-stream criteria of downstream segments for Pollution Indicators will be met with an effluent limit as follows:

	1 Hour Average		
	Concentration	Loading	
Gross Beta (pCi/l)	50.0 pCi/L		
BOD (mg/l)	5.0 mg/l	12.1 lbs/day	
Nitrates as N	4.0 mg/l	9.7 lbs/day	
Total Phosphorus as P	0.05 mg/l	0.1 lbs/day	
Total Suspended Solids	90.0 mg/l	218.1 lbs/day	

Note: Pollution indicator targets are for information purposes only.

Effluent Limitations for Protection of Human Health [Toxics Rule] Based upon Water Quality Standards (Most stringent of 1C or 3A & 3B as appropriate.)

In-stream criteria of downstream segments for Protection of Human Health [Toxics] will be met with an effluent limit as follows:

	Maximum Concentration				
	Concentration	Load			
Toxic Organics					
Acenaphthene	1.34E+05 ug/l	3.23E+02 lbs/day			
Acrolein	3.56E+04 ug/l	8.62E+01 lbs/day			
Acrylonitrile	6.57E+00 ug/l	1.59E-02 lbs/day			
Benzene	1.34E+02 ug/l	3.23E-01 lbs/day			
Benzidine	ug/l	lbs/day			
Carbon tetrachloride	2.78E+01 ug/l	6.73E-02 lbs/day			
Chlorobenzene	7.57E+04 ug/l	1.83E+02 lbs/day			
1,2,4-Trichlorobenzene					
Hexachlorobenzene	8.35E-02 ug/l	2.02E-04 lbs/day			
1,2-Dichloroethane	4.23E+01 ug/l	1.02E-01 lbs/day			
1,1,1-Trichloroethane					
Hexachloroethane	2.12E+02 ug/l	5.12E-01 lbs/day			
1,1-Dichloroethane					
1,1,2-Trichloroethane	6.79E+01 ug/l	1.64E-01 lbs/day			
1,1,2,2-Tetrachloroethane	1.89E+01 ug/l	4.58E-02 lbs/day			
Chloroethane					
Bis(2-chloroethyl) ether	3.45E+00 ug/l	8.35E-03 lbs/day			
2-Chloroethyl vinyl ether					
2-Chloronaphthalene	1.89E+05 ug/l	4.58E+02 lbs/day			
2,4,6-Trichlorophenol	2.34E+02 ug/l	5.65E-01 lbs/day			
p-Chloro-m-cresol					
Chloroform (HM)	6.35E+02 ug/l	1.53E+00 lbs/day			
2-Chlorophenol	1.34E+04 ug/l	3.23E+01 lbs/day			
1,2-Dichlorobenzene	3.01E+05 ug/l	7.27E+02 lbs/day			
1,3-Dichlorobenzene	4.45E+04 ug/l	1.08E+02 lbs/day			

1,4-Dichlorobenzene	4.45E+04 ug/l	1.08E+02 lbs/day
3,3'-Dichlorobenzidine	4.45E+00 ug/l	1.08E-02 lbs/day
1,1-Dichloroethylene	6.35E+00 ug/l	1.53E-02 lbs/day
1,2-trans-Dichloroethylene1	5	/
2,4-Dichlorophenol	1.04E+04 ug/l	2.50E+01 lbs/day
1,2-Dichloropropane	5.79E+01 ug/l	1.40E-01 lbs/day
1.3-Dichloropropylene	1.11E+03 ug/l	2.69E+00 lbs/day
2.4-Dimethylphenol	6.01E+04 ug/l	1.45E+02 lbs/day
2.4-Dinitrotoluene	1 22E+01 ug/l	2 96F-02 lbs/day
2.6-Dinitrotoluene		2.002 02 100/003
1 2-Diphenylhydrazine	4 45E+00 ug/l	1.08E-02.lbs/day
Ethylbenzene	3 45E+05 ug/l	8 35E+02 lbs/day
Eluoranthene	3 34E+04 ug/l	8.08E+01 lbs/day
4-Chlorophenyl phenyl ether	0.04E.04 ug/i	0.002.01 103/049
4-Bromonbenyl phenyl ether		
Bis(2-chloroisopropyl) ether	1 56E+05 ug/l	3 77E+02 lbc/day
Bis(2-chloroethovy) methane	1.50E 105 ug/	3.112102 105/0ay
Methylene chloride (HM)	5 22E+02 uo/	1.27E+00 lbc/dov
Methylichlorido (HM)	5.23E+02 ug/	1.27 E+00 IDS/day
Methyl bromide (HM)		
Bromoform (HM)	4 705 100 100/	1 105 100 lbs/day
	4.79E+02 ug/l	7.07E 00 lbs/day
Dichlorobromomethane(HM)	3.01E+01 ug/l	7.27E-02 lbs/day
	4.56E+01 ug/l	1.10E-01 lbs/day
Hexachiorocyclopentadiene	2.6/E+04 ug/l	6.46E+01 lbs/day
Isophorone	9.35E+02 ug/l	2.26E+00 lbs/day
Naphthalene	4 4 4 5 7 4 4 4 1	
Nitrobenzene	1.89E+03 ug/l	4.58E+00 lbs/day
2-Nitrophenol		
4-Nitrophenol		
2,4-Dinitrophenol	7.79E+03 ug/l	1.88E+01 lbs/day
4,6-Dinitro-o-cresol	1.45E+03 ug/l	3.50E+00 lbs/day
N-Nitrosodimethylamine	7.68E-02 ug/l	1.86E-04 lbs/day
N-Nitrosodiphenylamine	5.57E+02 ug/l	1.35E+00 lbs/day
N-Nitrosodi-n-propylamine	5.57E-01 ug/l	1.35E-03 lbs/day
Pentachlorophenol	3.12E+01 ug/l	7.54E-02 lbs/day
Phenol	2.34E+06 ug/l	5.65E+03 lbs/day
Bis(2-ethylhexyl)phthalate	2.00E+02 ug/l	4.85E-01 lbs/day
Butyl benzyl phthalate	3.34E+05 ug/l	8.08E+02 lbs/day
Di-n-butyl phthalate	3.01E+05 ug/l	7.27E+02 lbs/day
Di-n-octyl phthlate		
Diethyl phthalate	2.56E+06 ug/l	6.19E+03 lbs/day
Dimethyl phthlate	3.48E+07 ug/l	8.43E+04 lbs/day
Benzo(a)anthracene (PAH)	3.12E-01 ug/l	7.54E-04 lbs/day
Benzo(a)pyrene (PAH)	3.12E-01 ug/l	7.54E-04 lbs/day
Benzo(b)fluoranthene (PAH)	3.12E-01 ug/l	7.54E-04 lbs/day
Benzo(k)fluoranthene (PAH)	3.12E-01 ug/l	7.54E-04 lbs/day
Chrysene (PAH)	3.12E-01 ug/l	7 54E-04 lbs/day
Acenaphthylene (PAH)	or ogn	
Anthracene (PAH)		
Dibenzo(a,h)anthracene (PAH)	3.12E-01 ug/l	7.54F-04 lbs/day
Indeno(1,2,3-cd)pyrene (PAH)	3 12E-01 ug/l	7 54F-04 lbs/day
	O. TEL OT Ugh	1.0 TE OF IDDIDAY

 \sim

Pyrene (PAH) Tetrachloroethylene Toluene Trichloroethylene Vinyl chloride	1.07E+05 ug/l 8.91E+01 ug/l 7.57E+05 ug/l 3.01E+02 ug/l 2.23E+02 ug/l	2.58E+02 lbs/day 2.15E-01 lbs/day 1.83E+03 lbs/day 7.27E-01 lbs/day 5.38E-01 lbs/day
Pesticides Aldrin Dieldrin Chlordane 4,4'-DDT 4,4'-DDE 4,4'-DDD alpha-Endosulfan beta-Endosulfan Endosulfan sulfate Endrin Endrin aldehyde Heptachlor	1.45E-02 ug/l 1.56E-02 ug/l 6.35E-02 ug/l 6.57E-02 ug/l 9.24E-02 ug/l 1.04E+02 ug/l 1.04E+02 ug/l 1.04E+02 ug/l 8.46E+01 ug/l 8.46E+01 ug/l 2.34E-02 ug/l	3.50E-05 lbs/day 3.77E-05 lbs/day 1.53E-04 lbs/day 1.59E-04 lbs/day 1.59E-04 lbs/day 2.23E-04 lbs/day 2.50E-01 lbs/day 2.50E-01 lbs/day 2.05E-01 lbs/day 2.05E-01 lbs/day 5.65E-05 lbs/day
Heptachlor epoxide		
PCB 1242 (Arochlor 1242) PCB-1254 (Arochlor 1254) PCB-1221 (Arochlor 1221) PCB-1232 (Arochlor 1232) PCB-1248 (Arochlor 1248) PCB-1260 (Arochlor 1260) PCB-1016 (Arochlor 1016)	4.90E-03 ug/l 4.90E-03 ug/l 4.90E-03 ug/l 4.90E-03 ug/l 4.90E-03 ug/l 4.90E-03 ug/l 4.90E-03 ug/l	1.18E-05 lbs/day 1.18E-05 lbs/day 1.18E-05 lbs/day 1.18E-05 lbs/day 1.18E-05 lbs/day 1.18E-05 lbs/day 1.18E-05 lbs/day
Pesticide Toxaphene	8.13E-02 ug/l	1.97E-04 lbs/day
Metals Antimony Arsenic Asbestos Beryllium Cadmium Chromium (III)	1558.70 ug/l 5423.36 ug/l 7.79E+08 ug/l	3.77 lbs/day 13.11 lbs/day 1.88E+06 lbs/day
Chromium (VI) Copper Cyanide Lead Mercury Nickel Selenium Silver Thallium Zinc	144736.69 ug/l 77935.14 ug/l 0.00 15.59 ug/l 67914.91 ug/l 0.00 0.00 189.27 ug/l	349.99 lbs/day 188.46 lbs/day 0.00 0.04 lbs/day 164.23 lbs/day 0.00 0.00 0.46 lbs/day

Dioxin Dioxin (2,3,7,8-TCDD)

1.45E-06 ug/l

3.50E-09 lbs/day

Metals Effluent Limitations for Protection of All Beneficial Uses Based upon Water Quality Standards and Toxics Rule

	Class 4 Acute	Class 3 Acute Aquatic	Acute Toxics Drinking Water	Acute Toxics	1C Acute Health	Acute Most	Class 3 Chronic Aquatic
	Agricultural ug/l	Wildlife ug/l	Source ug/l	Wildlife ug/l	Criteria ug/l	Stringent ug/l	Wildlife ug/ł
Aluminum		41508.1				41508.1	N/A
Antimony			1558.7	478744.4		1558.7	
Arsenic	11133.6	19025.4	5423.4			5423.4	21010.4
Barium					111335.9	111335.9	
Beryllium						0.0	
Cadmium	1091.3	292.0				292.0	202.0
Chromium (III)		252937.0				252937.0	23774.7
Chromium (VI)	10935.0	679.4				679.39	786.11
Copper	21958.2	2100.3	144736.7			2100.3	2391.2
Cyanide		1235.7	24493900.5			1235.7	578.9
Iron		55494.9				55494.9	
Lead	11067.4	19002.2				11067.4	1404.1
Mercury		134.80	15.6	16.70		15.59	1.335
Nickel		67695.5	67914.9	512145.2		67695.5	14624.3
Selenium	5511.6	1095.8				1095.8	457.0
Silver		1426.8				1426.8	
Thallium			189.3	701.4		189.3	
Zinc		16776.1				16776.1	33243.3
Boron	75789.5					75789.5	
Sulfate	222671.8					222671.8	

Summary Effluent Limitations for Metals [Wasteload Allocation, TMDL]

[If Acute is more stringent than Chronic, then the Chronic takes on the Acute value.]

	WLA Acute	WLA Chroni	ic
	ug/i	ug/l	
Aluminum	41508.1	N/A	
Antimony	1558.70		
Arsenic	5423.4	21010.4	Acute Controls
Asbestos	7.79E+08		
Barium			
Beryllium			
Cadmium	292.0	202.0	
Chromium (III)	252937.0	23775	
Chromium (VI)	679.4	786.1	Acute Controls
Copper	2100.3	2391.2	Acute Controls

Cyanide	1235.7	578.9	
Iron	55494.9		
Lead	11067.4	1404.1	
Mercury	15.586	1.335	
Nickel	67695.5	14624	
Selenium	1095.8	457.0	
Silver	1426.8	N/A	
Thallium	189.3		
Zinc	16776.1	33243.3	Acute Controls
Boron	75789.45		
Sulfate	222671.8		N/A at this Waterbody

Other Effluent Limitations are based upon R317-1.

E. coli

126.0 organisms per 100 ml

X. Antidegradation Considerations

The Utah Antidegradation Policy allows for degradation of existing quality where it is determined that such lowering of water quality is necessary to accommodate important economic or social development in the area in which the waters are protected [R317-2-3]. It has been determined that certain chemical parameters introduced by this discharge will cause an increase of the concentration of said parameters in the receiving waters. Under no conditions will the increase in concentration be allowed to interfere with existing instream water uses.

An Antidegradation Level I Review was conducted on this discharge and its effect on the receiving water. Based upon that review, it has been determined that an Antidegradation Level II Review is not required. The proposed permit is a simple renewal, with no increase in flow or concentration over that which was approved in the existing permit.

XI. Colorado River Salinity Forum Considerations

Discharges in the Colorado River Basin are required to have their discharge at a TDS loading of less than 1.00 tons/day unless certain exemptions apply. Refer to the Forum's Guidelines for additional information allowing for an exceedence of this value.

XII. Summary Comments

The mathematical modeling and best professional judgement indicate that violations of receiving water beneficial uses with their associated water quality standards, including important down-stream segments, will not occur for the evaluated parameters of concern as discussed above if the effluent limitations indicated above are met.