Utah Division of Water Quality Statement of Basis ADDENDUM Wasteload Analysis and Antidegradation Level I Review

Date: January 9, 2018

Facility: Price River Water Improvement District Wastewater Treatment Plant Wellington, UT UPDES No. UT0021814

Receiving Water: Price River (2B, 3C, 4)

This addendum summarizes the wasteload analysis that was performed to determine water quality based effluent limits (WQBEL) for this discharge. Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses (UAC R317-2-8). Projected concentrations are compared to numeric water quality standards to determine acceptability. The numeric criteria in this wasteload analysis may be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality.

Discharge Outfall 001: Price River

The maximum daily discharge projected to occur during the next 5 years is 3.0 MGD and the maximum mean monthly discharge is 2.2 MGD, as provided by the facility.

Receiving Water

The receiving water for Outfall 001 is the Price River, which is tributary to the Green River, and then the Colorado River.

Per UAC R317-2-13.1.b, the designated beneficial uses for the Price River from the confluence with the Green River to the Carbon Canal Diversion at Price City Golf Course are 2B, 3C, and 4.

- Class 2B Protected for infrequent primary contact recreation. Also protected for secondary contact recreation where there is a low likelihood of ingestion of water or a low degree of bodily contact with the water. Examples include, but are not limited to, wading, hunting, and fishing.
- Class 3C Protected for nongame fish and other aquatic life, including the necessary aquatic organisms in their food chain.
- Class 4 Protected for agricultural uses including irrigation of crops and stock watering.

Typically, the critical flow for the wasteload analysis is considered the lowest stream flow for seven consecutive days with a ten year return frequency (7Q10). Due to a lack of flow records for the Price River downstream of the irrigation diversions, the 20th percentile of flow measurements from water quality monitoring conducted above the facility outfall was calculated

to estimate the annual critical flow in the receiving water. Insufficient flow data was available to estimate seasonal low flow. The annual critical low flow was estimated to be 13.25 cfs.

<u>TMDL</u>

A TMDL for total dissolved solids (TDS) was completed for this segment of the Price River (*Price River, San Rafael River, and Muddy Creek TMDLs for Total Dissolved Solids, West Colorado Watershed Management Unit, Utah;* EPA Approval Date August 4, 2004). A site specific standard was recommended for TDS. Per UAC R317-2-14 Table 2.14.1, a site specific standard of 1,700 mg/L applies to the Price River and tributaries from Soldier Creek to Carbon Canal Diversion.

According to the 303(d) list in the 2016 Utah Integrated Report, the assessment unit Price River and tributaries (excluding Gordon Creek and Pinnacle Wash) from Coal Creek confluence to Carbon Canal Diversion was listed as impaired for total boron, dissolved selenium and total ammonia. However, the monitoring site immediately above the wastewater treatment plant, 4932390 Price River above Price WWTP at Wellington Bridge, was found to be meeting the criteria for total boron, dissolved selenium and total ammonia. Therefore, standard procedures were used to determine the WQBELs for these constituents.

Mixing Zone

Per UAC R317-2-5, the maximum allowable mixing zone is 15 minutes of travel time for acute conditions, not to exceed 50% of stream width, and 2,500 feet for chronic conditions. Water quality standards must be met at the end of the mixing zone.

Based on field observations of specific conductivity across the cross-section during the data collection for the synoptic survey, the discharge was fully mixed approximately 250 feet downstream of the discharge point. Therefore, the allowable mixing zone is 250 feet. The critical low flow was used for chronic conditions and 50% of the critical low flow was simulated for acute conditions.

Parameters of Concern

The potential parameters of concern identified for the discharge/receiving water were total suspended solids (TSS), total dissolved solids (TDS), dissolved oxygen (DO), BOD₅, total phosphorus (TP), total nitrogen (TN), total ammonia (NH3), E. coli, pH, and total residual chlorine (TRC), as determined in consultation with the UPDES Permit Writer.

Water Quality Modeling

A QUAL2Kw model of the receiving water was built and calibrated under contract by Utah State University (USU). The model was calibrated to synoptic survey data collected in the summer of 2010 (8/30 to 9/1/2010) by USU and DWQ (Neilson et al., 2012). The model extends from immediately above the plant discharge to the crossing at Ridge Road (approximately 0.8 km). For the purposes of the WLA, the model was extended to the dam along Farnham Road (approximately 1.85 km).

Receiving water quality data was obtained from monitoring site 4992390 Price River above Price WWTP at Wellington Bridge. The average seasonal value was calculated for each constituent with available data in the receiving water. Data from 4932180 Soldier Creek at US50-6 Crossing and 4932200 Coal Creek at US50-6 Crossing were used to characterize the tributaries. Effluent nutrient data was obtained from the Discharge Monthly Reports.

The QUAL2Kw model was used for determining the WQBELs for parameters related to eutrophication and in-stream DO criteria, as well as ammonia toxicity. Effluent concentrations were adjusted so that water quality standards were not exceeded in the receiving water. Where WQBELs exceeded secondary standards or technology based effluent limits (TBEL), the concentration in the model was set at the secondary standard or TBEL.

The QUAL2Kw model was also used to determine the limits for ammonia. The water quality standard for chronic ammonia toxicity is dependent on temperature and pH, and the water quality standard for acute ammonia toxicity is dependent on pH. QUAL2Kw rates, input and output for DO and eutrophication related constituents are summarized in Appendix A.

A mass balance mixing analysis was conducted for conservative constituents such as dissolved metals. The WQBELs for conservative constituents are summarized in Appendix B.

The limits for total residual chlorine were determined assuming a decay rate of 20 /day (at 20 °C) and a travel time of 10 minutes in the outlet ditch prior to discharge to the Price River. The analysis for TRC is summarized in Appendix C.

The calibration and wasteload models are available for review by request.

WET Limits

The percent of effluent in the receiving water in a fully mixed condition, and acute and chronic dilution in a not fully mixed condition are calculated in the WLA in order to generate WET limits. The LC₅₀ (lethal concentration, 50%) percent effluent for acute toxicity and the IC₂₅ (inhibition concentration, 25%) percent effluent for chronic toxicity, as determined by the WET test, needs to be below the WET limits, as determined by the WLA. The WET limit for LC₅₀ is typically 100% effluent and does not need to be determined by the WLA.

Table 1: WET Limits for IC25

Season	Percent Effluent
Annual	32%

Effluent Limits

The effect of the effluent on the DO in the receiving water was evaluated using the QUAL2Kw model. A DO sag downstream in the Price River resulting from the plant discharge was observed and predicted by the model due to decay of BOD in the effluent and benthic algal growth and decomposition resulting from nutrients in the effluent. However, the DO sag was not predicted

to exceed water quality criteria and recovery occurs within the model extents. The benthic algae growth appeared to be limited by light as a result of high turbidity due to suspended solids. Therefore, limits beyond secondary standards are not required for DO and BOD₅ (Table 2).

The acute limit for ammonia from the previous permit was verified to meet water quality criteria in the receiving water, but was not raised due to antidegradation considerations.

The complete list of WQBELs is listed in Appendices A, B, and C.

		Acute	•	Chronic		
Effluent Constituent	Standard	Limit	Averaging Period	Standard	Limit	Averaging Period
Flow (MGD)	N/A	3.0	1 day	N/A	2.2	30 days
Ammonia (mg/L) ¹						
Summer (Jul-Sep)					7.5	
Fall (Oct-Dec)	Varies ²	16.0	1 hour	Varies ³	9.0	30 days
Winter (Jan-Mar)					9.5	
Spring (Apr-Jun)					9.5	
Total Residual Chlorine (mg/L)	0.019	0.051	1 hour	0.011	0.060	4 days
Dissolved Oxygen Min. (mg/L)	3.0	5.0	Instantaneous	5.0	5.0	30 days
$BOD_5 (mg/L)$	N/A	35	7 days	N/A	25	30 days
1: Ammonia limit due to toxicity requirements. 2: Standard varies with pH. 3: Standard varies with pH and temperature						

Table 2: Selected WQBELs

Antidegradation Level I Review

The objective of the Level I ADR is to ensure the protection of existing uses, defined as the beneficial uses attained in the receiving water on or after November 28, 1975. No evidence is known that the existing uses deviate from the designated beneficial uses for the receiving water. Therefore, the beneficial uses will be protected if the discharge remains below the WQBELs presented in this wasteload.

A Level II Antidegradation Review (ADR) is <u>not</u> required for this discharge, as pollutant concentration and load are not proposed to increase under this permit renewal.

Prepared by: Nicholas von Stackelberg, P.E. Standards and Technical Services Section

Documents

- WLA Document: *price_potw_wla_projected_flow_2018-01-09.docx*
- QUAL2Kw Calibration Model: Qual2kw Price Calibration 1.1.xls
- QUAL2Kw Wasteload Model: price_potw_wla_2017.xlsm

References:

- Using QUAL2K Modeling to Support Nutrient Criteria Development and Wasteload Analyses in Utah. 2012. Neilson, B.T., A.J. Hobson, N. von Stackelberg, M. Shupryt, and J.D. Ostermiller.
- Price River, San Rafael River, and Muddy Creek TMDLs for Total Dissolved Solids, West Colorado Watershed Management Unit, Utah. 2004. Utah Division of Water Quality
- Field Data Collection for QUAL2Kw Model Build and Calibration Standard Operating Procedures Version 1.0. 2012. Utah Division of Water Quality.
- Utah Wasteload Analysis Procedures Version 1.0. 2012. Utah Division of Water Quality.
- 2016 Utah Integrated Report. 2016. Utah Division of Water Quality.

DiscRarging Facility: UPDES No: Permit Flow [MGD]:	Price Water Improvement District WWTP UT-0021814 3.00 Maximum Daily Flow 2.20 Maximum Monthly Flow
Receiving Water: Stream Classification: Stream Flows [cfs]:	Price River 2B, 3C, 4 13.25 Summer (July-Sept) Critical Low Flow 13.25 Fall (Oct-Dec) 13.25 Winter (Jan-Mar) 13.25 Spring (Apr-June)
Acute River Width: Chronic River Width:	50% 100%

Modeling Information

A QUAL2Kw model was used to determine these effluent limits.

Model Inputs

The following is upstream and discharge information that was utilized as inputs for the analysis.

Headwater/Upstream Information	Summer	Fall	Winter	Spring
Flow (cfs)	13.3	13.3	13.3	13.3
Temperature (deg C)	16.4	4.5	6.7	14.3
Specific Conductance (µmhos)	1546	2071	1365	1470
Inorganic Suspended Solids (mg/L)	170.2	86.1	301.2	284.9
Dissolved Oxygen (mg/L)	7.7	11.6	9.7	9.1
CBOD ₅ (mg/L)	3.7	3.7	3.7	3.7
Organic Nitrogen (mg/L)	0.510	0.420	0.216	0.235
NH4-Nitrogen (mg/L)	0.150	0.025	0.050	0.050
NO3-Nitrogen (mg/L)	1.200	0.825	0.561	0.320
Organic Phosphorus (mg/L)	0.300	0.601	0.522	0.428
Inorganic Ortho-Phosphorus (mg/L)	0.136	0.064	0.031	0.029
Phytoplankton (µg/L)	7.000	7.000	7.000	7.000
Detritus [POM] (mg/L)	9.0	4.5	15.9	15.0
Alkalinity (mg/L)	197	348	272	271
рН	8.3	8.3	8.3	8.3
Tributary Information - Coal Creek	Summer	Fall	Winter	Spring
Tributary Information - Coal Creek	Summer	Fall	Winter	Spring
Tributary Information - Coal Creek Flow (cfs) Temperature (deg.C)	Summer 2.2 12.9	Fall 2.2 4.4	Winter 2.2 3.5	Spring 2.2 14.3
Tributary Information - Coal Creek Flow (cfs) Temperature (deg C) Specific Conductance (umbos)	Summer 2.2 12.9 3934	Fall 2.2 4.4 3934	Winter 2.2 3.5 3934	Spring 2.2 14.3 3934
Tributary Information - Coal Creek Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/l)	Summer 2.2 12.9 3934 896 4	Fall 2.2 4.4 3934 896 4	Winter 2.2 3.5 3934 896 4	Spring 2.2 14.3 3934 896 4
Tributary Information - Coal Creek Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxvaen (mg/L)	Summer 2.2 12.9 3934 896.4 8.8	Fall 2.2 4.4 3934 896.4 8.8	Winter 2.2 3.5 3934 896.4 8.8	Spring 2.2 14.3 3934 896.4 8.8
Tributary Information - Coal Creek Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD _ε (mg/L)	Summer 2.2 12.9 3934 896.4 8.8 2.0	Fall 2.2 4.4 3934 896.4 8.8 2.0	Winter 2.2 3.5 3934 896.4 8.8 2.0	Spring 2.2 14.3 3934 896.4 8.8 2.0
Tributary Information - Coal Creek Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L)	Summer 2.2 12.9 3934 896.4 8.8 2.0 0.505	Fall 2.2 4.4 3934 896.4 8.8 2.0 0.505	Winter 2.2 3.5 3934 896.4 8.8 2.0 0.505	Spring 2.2 14.3 3934 896.4 8.8 2.0 0,505
Tributary Information - Coal Creek Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L) NH4-Nitrogen (mg/L)	Summer 2.2 12.9 3934 896.4 8.8 2.0 0.505 0.068	Fall 2.2 4.4 3934 896.4 8.8 2.0 0.505 0.068	Winter 2.2 3.5 3934 896.4 8.8 2.0 0.505 0.068	Spring 2.2 14.3 3934 896.4 8.8 2.0 0.505 0.068
Tributary Information - Coal Creek Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L) NH4-Nitrogen (mg/L) NO3-Nitrogen (mg/L)	Summer 2.2 12.9 3934 896.4 8.8 2.0 0.505 0.068 0.833	Fall 2.2 4.4 3934 896.4 8.8 2.0 0.505 0.068 0.833	Winter 2.2 3.5 3934 896.4 8.8 2.0 0.505 0.068 0.833	Spring 2.2 14.3 3934 896.4 8.8 2.0 0.505 0.068 0.833
Tributary Information - Coal Creek Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L) NO3-Nitrogen (mg/L) Organic Phosphorus (mg/L)	Summer 2.2 12.9 3934 896.4 8.8 2.0 0.505 0.068 0.833 0.095	Fall 2.2 4.4 3934 896.4 8.8 2.0 0.505 0.068 0.833 0.095	Winter 2.2 3.5 3934 896.4 8.8 2.0 0.505 0.068 0.833 0.095	Spring 2.2 14.3 3934 896.4 8.8 2.0 0.505 0.068 0.833 0.095
Tributary Information - Coal Creek Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L) NH4-Nitrogen (mg/L) NO3-Nitrogen (mg/L) Organic Phosphorus (mg/L) Inorganic Ortho-Phosphorus (mg/L)	Summer 2.2 12.9 3934 896.4 8.8 2.0 0.505 0.068 0.833 0.095 0.100	Fall 2.2 4.4 3934 896.4 8.8 2.0 0.505 0.068 0.833 0.095 0.100	Winter 2.2 3.5 3934 896.4 8.8 2.0 0.505 0.068 0.833 0.095 0.100	Spring 2.2 14.3 3934 896.4 8.8 2.0 0.505 0.068 0.833 0.095 0.100
Tributary Information - Coal Creek Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L) NO3-Nitrogen (mg/L) Organic Phosphorus (mg/L) Inorganic Ortho-Phosphorus (mg/L) Phytoplankton (ua/L)	Summer 2.2 12.9 3934 896.4 8.8 2.0 0.505 0.068 0.833 0.095 0.100 0.000	Fall 2.2 4.4 3934 896.4 8.8 2.0 0.505 0.068 0.833 0.095 0.100 0.000	Winter 2.2 3.5 3934 896.4 8.8 2.0 0.505 0.068 0.833 0.095 0.100 0.000	Spring 2.2 14.3 3934 896.4 8.8 2.0 0.505 0.068 0.833 0.095 0.100 0.000
Tributary Information - Coal Creek Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L) NO3-Nitrogen (mg/L) Organic Phosphorus (mg/L) Inorganic Ortho-Phosphorus (mg/L) Phytoplankton (μg/L) Detritus [POMI (mg/L)	Summer 2.2 12.9 3934 896.4 8.8 2.0 0.505 0.068 0.833 0.095 0.100 0.000 47.2	Fall 2.2 4.4 3934 896.4 8.8 2.0 0.505 0.068 0.833 0.095 0.100 0.000 47.2	Winter 2.2 3.5 3934 896.4 8.8 2.0 0.505 0.068 0.833 0.095 0.100 0.000 47.2	Spring 2.2 14.3 3934 896.4 8.8 2.0 0.505 0.608 0.833 0.095 0.100 0.000 47.2
Tributary Information - Coal Creek Flow (cfs) Temperature (deg C) Specific Conductance (μmhos) Inorganic Suspended Solids (mg/L) Dissolved Oxygen (mg/L) CBOD ₅ (mg/L) Organic Nitrogen (mg/L) NH4-Nitrogen (mg/L) NO3-Nitrogen (mg/L) Organic Phosphorus (mg/L) Inorganic Ortho-Phosphorus (mg/L) Phytoplankton (μg/L) Detritus [POM] (mg/L) Alkalinity (mg/L)	Summer 2.2 12.9 3934 896.4 8.8 2.0 0.505 0.068 0.833 0.095 0.100 0.000 47.2 200	Fall 2.2 4.4 3934 896.4 8.8 2.0 0.505 0.068 0.833 0.095 0.100 0.000 47.2 200	Winter 2.2 3.5 3934 896.4 8.8 2.0 0.505 0.068 0.833 0.095 0.100 0.000 47.2 200	Spring 2.2 14.3 3934 896.4 8.8 2.0 0.505 0.608 0.833 0.095 0.100 0.000 47.2 200

Date: 1/9/2018

Utah Division of Water Quality

Tributary Information - Soldier Creek	Summer	Fall	Winter	Spring
Flow (cfs)	0.8	0.8	0.8	0.8
Temperature (deg C)	19.4	10.7	4.3	13.4
Specific Conductance (µmhos)	3003	3003	3003	3003
Inorganic Suspended Solids (mg/L)	629.1	629.1	629.1	629.1
Dissolved Oxygen (mg/L)	9.1	9.1	9.1	9.1
CBOD ₅ (mg/L)	2.0	2.0	2.0	2.0
Organic Nitrogen (mg/L)	0.410	0.410	0.410	0.410
NH4-Nitrogen (mg/L)	0.076	0.076	0.076	0.076
NO3-Nitrogen (mg/L)	0.446	0.446	0.446	0.446
Organic Phosphorus (mg/L)	0.096	0.096	0.096	0.096
Inorganic Ortho-Phosphorus (mg/L)	0.100	0.100	0.100	0.100
Phytoplankton (µg/L)	0.000	0.000	0.000	0.000
Detritus [POM] (mg/L)	33.1	33.1	33.1	33.1
Alkalinity (mg/L)	200	200	200	200
pH	7.9	7.9	7.9	7.9
Discharge Information - Chronic	Summer	Fall	Winter	Spring
Flow (mgd)	2.2	2.2	2.2	2.2
Temperature (deg C)	20.9	15.3	10.3	14.9
Specific Conductance (µmhos)	1778	1762	1716	1916
Inorganic Suspended Solids (mg/L)	4.4	4.1	2.3	4.2
Dissolved Oxygen (mg/L)	5.0	5.0	5.0	5.0
CBOD ₅ (mg/L)	25.0	25.0	25.0	25.0
Organic Nitrogen (mg/L)	1.850	1.850	1.850	1.850
NH4-Nitrogen (mg/L)	7.500	9.000	9.500	9.500
NO3-Nitrogen (mg/L)	14.540	14.540	14.540	14.540
Organic Phosphorus (mg/L)	0.340	0.340	0.340	0.340
Inorganic Ortho-Phosphorus (mg/L)	2.880	2.880	2.880	2.880
Phytoplankton (μg/L)	11.000	11.000	11.000	11.000
Detritus [POM] (mg/L)	0.0	0.0	0.0	0.0
Alkalinity (mg/L)	208	208	208	208
pH	7.4	7.4	7.4	7.4
Discharge Information - Acute	Summer	Fall	Winter	Spring
Flow (mad)	3.0	3.0	3.0	3.0
Temperature (deg C)	22.0	17.5	12.0	17.4
Specific Conductance (umbos)	1778	1762	1716	1916
Inorganic Suspended Solids (mg/L)	4 4	4 1	23	42
Dissolved Oxygen (mg/L)	5.0	5.0	5.0	5.0
	35.0	35.0	35.0	35.0
Organic Nitrogen (mg/L)	1 850	1 850	1 850	1 850
NH4-Nitrogen (mg/L)	16.000	16,000	16 000	16.000
NO3-Nitrogen (mg/L)	14 540	14 540	14 540	14 540
Organic Phosphorus (mg/L)	0 340	0.340	0 340	0 340
Inorganic Ortho-Phosphorus (mg/L)	2 880	2 880	2 880	2 880
Phytonlankton (ug/L)	11 000	11 000	11 000	11 000
Detritus [POM] (mg/L)	0.0	0.000	0.0	0.0
Alkalinity (mg/L)	202	20.0	20.0	20.0 20.9
nH	7 4	74	200 74	7 /
pri	7.4	1.4	7.4	7.4

All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality.

Effluent Limitations

Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9).

Other conditions used in the modeling effort reflect the environmental conditions expected at low stream flows.

Effluent Limitations based upon Water Quality Standards for DO

and Ammonia Toxicity

In-stream criteria of downstream segments for Dissolved Oxygen and Ammonia will be met with an effluent limitation as follows:

Chronic	Standard	Summer	Fall	Winter	Spring
Flow (MGD)	N/A	2.2	2.2	2.2	2.2
NH4-Nitrogen (mg/L)	Varies	7.5	9.0	9.5	9.5
CBOD ₅ (mg/L)	N/A	25.0	25.0	25.0	25.0
Dissolved Oxygen [30-day Ave] (mg/L)	5.0	5.0	5.0	5.0	5.0
Acute	Standard	Summer	Fall	Winter	Spring
Flow (cfs)	N/A	3.0	3.0	3.0	3.0
NH4-Nitrogen (mg/L)	Varies	16.0	16.0	16.0	16.0
CBOD ₅ (mg/L)	N/A	35.0	35.0	35.0	35.0
Dissolved Oxvaen [Minimum] (ma/L)	3.0	5.0	5.0	5.0	5.0

Summary Comments

The mathematical modeling and best professional judgement indicate that violations of receiving water beneficial uses with their associated water quality standards, including important down-stream segments, will not occur for the evaluated parameters of concern as discussed above if the effluent limitations indicated above are met.

Coefficients and Other Model Information

Parameter Stoichiometry:	Value	Units
Carbon	40	аC
Nitragen	70	gO
	1.2	yn E
Phosphorus	1	gP
Dry weight	100	gD
Chlorophyll	1	gA
Inorganic suspended solids:		
Settling velocity	0.2	m/d
Oxygen:		
Reaeration model	USGS(pool-	riffle)
Temp correction	1.024	,
Reparation wind effect	None	
		~00/~0
	2.69	gO2/gC
O2 for NH4 nitrification	4.57	gO2/gN
Oxygen inhib model CBOD oxidation	Exponential	
Oxygen inhib parameter CBOD oxidation	0.60	L/mgO2
Oxygen inhib model nitrification	Exponential	-
Oxygen inhib parameter nitrification	0.60	L/maO2
Ovygon onhance model denitrification	Exponential	L/11902
Oxygen enhance model dentrinication		1 /
Oxygen enhance parameter denitrification	0.60	L/mgO2
Oxygen inhib model phyto resp	Exponential	
Oxygen inhib parameter phyto resp	0.60	L/mgO2
Oxygen enhance model bot alg resp	Exponential	-
Oxygen enhance parameter bot alg resp	0.60	L/maO2
exygen ennance parameter bet alg reep	0.00	=go=
Slow CBOD:		
Slow CBOD:	0	/d
Slow CBOD: Hydrolysis rate	0	/d
Slow CBOD: Hydrolysis rate Temp correction	0 1.047	/d
Slow CBOD: Hydrolysis rate Temp correction Oxidation rate	0 1.047 0.103	/d /d
Slow CBOD: Hydrolysis rate Temp correction Oxidation rate Temp correction	0 1.047 0.103 1.047	/d /d
Slow CBOD: Hydrolysis rate Temp correction Oxidation rate Temp correction Fast CBOD:	0 1.047 0.103 1.047	/d /d
Slow CBOD: Hydrolysis rate Temp correction Oxidation rate Temp correction Fast CBOD: Oxidation rate	0 1.047 0.103 1.047 10	/d /d /d
Slow CBOD: Hydrolysis rate Temp correction Oxidation rate Temp correction Fast CBOD: Oxidation rate Temp correction	0 1.047 0.103 1.047 10 1.047	/d /d /d
Slow CBOD: Hydrolysis rate Temp correction Oxidation rate Temp correction Fast CBOD: Oxidation rate Temp correction Organic N:	0 1.047 0.103 1.047 10 1.047	/d /d /d
Slow CBOD: Hydrolysis rate Temp correction Oxidation rate Temp correction Fast CBOD: Oxidation rate Temp correction Organic N: Hydrolysis	0 1.047 0.103 1.047 10 1.047 0.2532525	/d /d /d
Slow CBOD: Hydrolysis rate Temp correction Oxidation rate Temp correction Fast CBOD: Oxidation rate Temp correction Organic N: Hydrolysis Temp correction	0 1.047 0.103 1.047 10 1.047 0.2532525 1.07	/d /d /d
Slow CBOD: Hydrolysis rate Temp correction Oxidation rate Temp correction Fast CBOD: Oxidation rate Temp correction Organic N: Hydrolysis Temp correction	0 1.047 0.103 1.047 10 1.047 0.2532525 1.07 0.186698	/d /d /d /d
Slow CBOD: Hydrolysis rate Temp correction Oxidation rate Temp correction Fast CBOD: Oxidation rate Temp correction Organic N: Hydrolysis Temp correction Settling velocity Ammonium:	0 1.047 0.103 1.047 10 1.047 0.2532525 1.07 0.186698	/d /d /d /d m/d
Slow CBOD: Hydrolysis rate Temp correction Oxidation rate Temp correction Fast CBOD: Oxidation rate Temp correction Organic N: Hydrolysis Temp correction Settling velocity Ammonium: Nitrification	0 1.047 0.103 1.047 10 1.047 0.2532525 1.07 0.186698	/d /d /d /d m/d
Slow CBOD: Hydrolysis rate Temp correction Oxidation rate Temp correction Fast CBOD: Oxidation rate Temp correction Organic N: Hydrolysis Temp correction Settling velocity Ammonium: Nitrification Temp correction	0 1.047 0.103 1.047 10 1.047 0.2532525 1.07 0.186698 0.052449 1.07	/d /d /d /d m/d /d
Slow CBOD: Hydrolysis rate Temp correction Oxidation rate Temp correction Fast CBOD: Oxidation rate Temp correction Organic N: Hydrolysis Temp correction Settling velocity Ammonium: Nitrification Temp correction	0 1.047 0.103 1.047 10 1.047 0.2532525 1.07 0.186698 0.052449 1.07	/d /d /d /d m/d /d
Slow CBOD: Hydrolysis rate Temp correction Oxidation rate Temp correction Fast CBOD: Oxidation rate Temp correction Organic N: Hydrolysis Temp correction Settling velocity Ammonium: Nitrification Temp correction Nitrification Temp correction	0 1.047 0.103 1.047 10 1.047 0.2532525 1.07 0.186698 0.052449 1.07	/d /d /d /d m/d /d
Slow CBOD: Hydrolysis rate Temp correction Oxidation rate Temp correction Fast CBOD: Oxidation rate Temp correction Organic N: Hydrolysis Temp correction Organic N: Hydrolysis Temp correction Settling velocity Ammonium: Nitrification Temp correction Nitrification Temp correction Denitrification	0 1.047 0.103 1.047 10 1.047 0.2532525 1.07 0.186698 0.052449 1.07 0.3067175 4.57	/d /d /d /d /d /d
Slow CBOD: Hydrolysis rate Temp correction Oxidation rate Temp correction Fast CBOD: Oxidation rate Temp correction Organic N: Hydrolysis Temp correction Settling velocity Ammonium: Nitrification Temp correction Mitrate: Denitrification Temp correction	0 1.047 0.103 1.047 10 1.047 0.2532525 1.07 0.186698 0.052449 1.07 0.3067175 1.07	/d /d /d m/d /d /d
Slow CBOD: Hydrolysis rate Temp correction Oxidation rate Temp correction Fast CBOD: Oxidation rate Temp correction Organic N: Hydrolysis Temp correction Settling velocity Ammonium: Nitrification Temp correction Nitrate: Denitrification Temp correction Set denitrification transfer coeff	0 1.047 0.103 1.047 10 1.047 0.2532525 1.07 0.186698 0.052449 1.07 0.3067175 1.07 0.3067175 1.07 0.74405	/d /d /d /d m/d /d /d /d /d
Slow CBOD: Hydrolysis rate Temp correction Oxidation rate Temp correction Fast CBOD: Oxidation rate Temp correction Organic N: Hydrolysis Temp correction Settling velocity Ammonium: Nitrification Temp correction Nitrate: Denitrification Temp correction Set denitrification transfer coeff Temp correction	0 1.047 0.103 1.047 10 1.047 0.2532525 1.07 0.186698 0.052449 1.07 0.3067175 1.07 0.3067175 1.07 0.74405 1.07	/d /d /d /d /d /d /d /d /d /d
Slow CBOD: Hydrolysis rate Temp correction Oxidation rate Temp correction Fast CBOD: Oxidation rate Temp correction Organic N: Hydrolysis Temp correction Settling velocity Ammonium: Nitrification Temp correction Nitrate: Denitrification Temp correction Sed denitrification transfer coeff Temp correction Sed denitrification transfer coeff Temp correction	0 1.047 0.103 1.047 10 1.047 0.2532525 1.07 0.186698 0.052449 1.07 0.3067175 1.07 0.3067175 1.07 0.74405 1.07	/d /d /d /d /d /d /d /d /d /d
Slow CBOD: Hydrolysis rate Temp correction Oxidation rate Temp correction Fast CBOD: Oxidation rate Temp correction Organic N: Hydrolysis Temp correction Settling velocity Ammonium: Nitrification Temp correction Nitrate: Denitrification Temp correction Sed denitrification transfer coeff Temp correction Organic P: Hydrolysis	0 1.047 0.103 1.047 10 1.047 0.2532525 1.07 0.186698 0.052449 1.07 0.3067175 1.07 0.3067175 1.07 0.74405 1.07 0.74405 1.07	/d /d /d /d m/d /d /d /d /d /d
Slow CBOD: Hydrolysis rate Temp correction Oxidation rate Temp correction Fast CBOD: Oxidation rate Temp correction Organic N: Hydrolysis Temp correction Settling velocity Ammonium: Nitrification Temp correction Nitrification Temp correction Set denitrification Temp correction Sed denitrification transfer coeff Temp correction Sed denitrification transfer coeff Temp correction Organic P: Hydrolysis Temp correction	0 1.047 0.103 1.047 10 1.047 0.2532525 1.07 0.186698 0.052449 1.07 0.3067175 1.07 0.3067175 1.07 0.74405 1.07 0.74405 1.07	/d /d /d /d /d /d /d /d /d /d /d
Slow CBOD: Hydrolysis rate Temp correction Oxidation rate Temp correction Fast CBOD: Oxidation rate Temp correction Organic N: Hydrolysis Temp correction Settling velocity Anmonium: Nitrification Temp correction Nitrification Temp correction Setd enitrification Temp correction Sed denitrification transfer coeff Temp correction Sed denitrification transfer coeff Temp correction Sed denitrification transfer coeff Temp correction Set ling velocity	0 1.047 0.103 1.047 10 1.047 0.2532525 1.07 0.186698 0.052449 1.07 0.3067175 1.07 0.3067175 1.07 0.74405 1.07 0.1347925 1.07 0.122274	/d /d /d /d /d /d /d /d /d /d /d
Slow CBOD: Hydrolysis rate Temp correction Oxidation rate Temp correction Fast CBOD: Oxidation rate Temp correction Organic N: Hydrolysis Temp correction Organic N: Hydrolysis Temp correction Settling velocity Ammonium: Nitrification Temp correction Nitrification Temp correction Sed denitrification transfer coeff Temp correction Sed denitrification transfer coeff Temp correction Organic P: Hydrolysis Temp correction Settling velocity	0 1.047 0.103 1.047 10 1.047 0.2532525 1.07 0.186698 0.052449 1.07 0.3067175 1.07 0.74405 1.07 0.74405 1.07 0.1347925 1.07 0.132374	/d /d /d /d /d /d /d /d /d /d /d /d
Slow CBOD: Hydrolysis rate Temp correction Oxidation rate Temp correction Fast CBOD: Oxidation rate Temp correction Organic N: Hydrolysis Temp correction Organic N: Hydrolysis Temp correction Settling velocity Ammonium: Nitrification Temp correction Nitrification Temp correction Sed denitrification transfer coeff Temp correction Sed denitrification transfer coeff Temp correction Sed denitrification transfer coeff Temp correction Settling velocity Hydrolysis Temp correction Settling velocity Inorganic P: Hydrolysis Temp correction Settling velocity	0 1.047 0.103 1.047 10 1.047 0.2532525 1.07 0.186698 0.052449 1.07 0.3067175 1.07 0.74405 1.07 0.74405 1.07 0.1347925 1.07 0.132374	/d /d /d /d /d /d /d /d /d /d /d /d /d
Slow CBOD: Hydrolysis rate Temp correction Oxidation rate Temp correction Fast CBOD: Oxidation rate Temp correction Organic N: Hydrolysis Temp correction Settling velocity Ammonium: Nitrification Temp correction Nitrate: Denitrification Temp correction Set denitrification transfer coeff Temp correction Organic P: Hydrolysis Temp correction Settling velocity	0 1.047 0.103 1.047 10 1.047 0.2532525 1.07 0.186698 0.052449 1.07 0.3067175 1.07 0.74405 1.07 0.74405 1.07 0.1347925 1.07 0.132374 1.9476	/d /d /d /d /d /d /d /d /d /d /d /d /d /

Utah Division of Water Quality

Phytoplankton:					
Max Growth rate				2.424195	/d
Temp correction				1.07	
Respiration rate				0.2453945	/d
Temp correction				1.07	
Death rate				0.07159	/d
Temp correction				1	
Nitrogen half sat constant				15	ugN/L
Phosphorus half sat constant				2	ugP/L
Inorganic carbon half sat constant				1.30E-05	moles/L
Phytoplankton use HCO3- as substrate				Yes	
Light model				Smith	
Light constant				57.6	langleys/d
Ammonia preference				16.82115	ugN/L
Settling velocity				0.098591	m/d
Bottom Plants:					
Growth model				Zero-order	
Max Growth rate				15.75627	gD/m2/d or /d
Temp correction				1.07	-
First-order model carrying capacity				100	gD/m2
Basal respiration rate				0.0691094	/d
Photo-respiration rate parameter				0.01	unitless
Temp correction				1.07	
Excretion rate				0.3327	/d
Temp correction				1.07	
Death rate				1.66875	/d
Temp correction				1.07	
External nitrogen half sat constant				350.448	ugN/L
External phosphorus half sat constant				67.2535	uaP/L
Inorganic carbon half sat constant				7.41E-05	moles/L
Bottom algae use HCO3- as substrate				Yes	
Light model				Smith	
Light constant				68,6698	maO^2/I
Ammonia preference				17.5728	ugN/I
Subsistence quota for nitrogen				0 8808192	maN/aD
Subsistence quota for phosphorus				0.0874835	maP/aD
Maximum uptake rate for nitrogen				743 668	mgN/gD/d
Maximum uptake rate for phosphorus				144 8225	mgP/gD/d
Internal nitrogen half sat ratio				1 597312	nigi /gb/d
Internal nacogen nan sat ratio				4 9713625	
Nitrogen uptake water column fraction				1	
Phosphorus untake water column fraction				1	
Detritus (POM):					
Dissolution rate				0 279779	/d
Temp correction				1.07	70
Settling velocity				0.0739985	m/d
nH·				0.0700000	in/o
Partial pressure of carbon dioxide				370	nnm
				0/0	ppm
Atmospheric Inputs:	Summer	Fall	Winter	Spring	
Max Air Temperature F	88.2	51.8	42.9	72 4	
Min Air Temperature F	50.5	17.7	14.1	36.2	
Dew Point Temp F	54 5	29.9	26.0	44.3	
Wind ft /sec @ 21 ft	6.6	5.8	5.8	8.4	
Cloud Cover %	0.0	0.1	0.1	0.4	
	0.1	0.1	0.1	0.1	
Other Inputs:					
Bottom Algae Coverage	100.0%				
Bottom SOD Coverage	100.0%				
Propertiesd SOD (mg $\Omega /m^2/day)$	n 1				
Freschbed SOD (mg O2/m /day)	0.1				

WASTELOAD ANALYSIS [WLA] Appendix B: Mass Balance Mixing Analysis Results

Discharging Facility: UPDES No: Permit Flow [MGD]:	Price Water Imp UT-0021814 3.00 2.20	provement District WWTP Maximum Daily Flow Maximum Monthly Flow	
Receiving Water: Stream Classification: Stream Flows [cfs]:	Price River 2B, 3C, 4 13.25	Annual	Critical Low Flow
Acute River Width: Acute Combined Flow [cfs] Chronic River Width: Chronic Combined Flow [cfs]	50% 11.27 100% 16.65		

Modeling Information

A simple mixing analysis was used to determine these effluent limits.

All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality.

Effluent Limitations

Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9).

Other conditions used in the modeling effort reflect the environmental conditions expected at low stream flows.

Effluent Limitations for Protection of Recreation (Class 2B Waters)

Parameter	
рН	Limit
Minimum	6.5
Maximum	9.0
Bacteriological	
E. coli (30 Day Geometric Mean)	206 (#/100 mL)
E. coli (Maximum)	668 (#/100 mL)

Effluent Limitations for Protection of Aquatic Wildlife (Class 3C Waters)

Parameter						
Temperature (deg C)	Limit					
Maximum	n 27.0					
Maximum Change	e 4.0					
рН	Limit					
Minimum	n 6.5					
Maximum	n 9.0					
Inorganics	Chronic Standar	d (4 Day Aver	age)	Acute Standard	(1 Hour Avera	age)
	Standard	Limit	Unit	Standard	Limit	Unit
Phenol				0.010	0.015 r	ng/L
Hydrogen Sulfide (Undissociated)			0.002	0.003 r	ng/L

Date: 1/9/2018

Utah Division of Water Quality

Dissolved Metals [µg/L]

	Chronic Standard (4 Day Average)		Acute Sta	ndard (1 Hour A	verage)	
Parameter	Standard ¹	Background	Limit	Standard	Background	Limit
Aluminum	NA ³	NA	NONE	750	13.0	1,802
Arsenic	150	1.1	730	340	1.1	824
Cadmium	0.6	0.06	2.9	7.7	0.06	18.7
Chromium VI	11.0	2.7	43.3	16.0	2.7	35.0
Chromium III	231	2.7	1118	1,773	2.7	4,301
Copper	29.3	3.0	131.7	49.6	3.0	116.2
Cyanide ²	5.2	3.5	11.9	22.0	3.5	48.5
Iron				1,000	28.65	2,387
Lead	10.9	0.19	52.8	281	0.19	681
Mercury ²	0.012	0.008	0.028	2.4	0.008	5.8
Nickel	168	4.7	804	1,513	4.7	3,666
Selenium	4.6	2.0	14.7	18.4	2.0	41.8
Silver				34.9	0.25	84.4
Tributylin ²	0.072	0.048	0.165	0.46	0.048	1.05
Zinc	382	14.1	1,816	379	14.1	901

1: Based upon a Hardness of 400 mg/l as CaCO3

2: Ambient concentration assumed 2/3 of water quality standard

3: Where the pH is equal to or greater than 7.0 and the hardness is equal to or greater than 50 ppm as CaCO₃ in the receiving water after mixing, the 87 ug/L chronic criterion (expressed as total recoverable) will not apply, and aluminum will be regulated based on compliance with the 750 ug/L acute aluminum criterion (expressed as total recoverable).

Organics [Pesticides] [µg/L]

	Chronic St	andard (4 Day Av	erage)	Acute Standard (1 Hour Average)				
Parameter	Standard	Background ¹	Limit	Standard	Background	Limit		
Aldrin				1.5	1.0	2.2		
Chlordane	0.0043	0.0029	0.0099	1.2	0.0029	2.9		
DDT, DDE	0.001	0.0007	0.0023	0.55	0.0007	1.33		
Diazinon	0.17	0.11	0.39	0.17	0.11	0.25		
Dieldrin	0.0056	0.0037	0.0129	0.24	0.0037	0.58		
Endosulfan, a & b	0.056	0.037	0.129	0.11	0.037	0.21		
Endrin	0.036	0.024	0.083	0.086	0.024	0.175		
Heptachlor & H. epoxide	0.0038	0.0025	0.0087	0.26	0.0025	0.63		
Lindane	0.08	0.05	0.18	1.0	0.05	2.4		
Methoxychlor				0.03	0.02	0.04		
Mirex				0.001	0.0007	0.001		
Nonylphenol	6.6	4.4	15.2	28.0	4.4	61.7		
Parathion	0.013	0.009	0.030	0.066	0.009	0.148		
PCB's	0.014	0.009	0.032					
Pentachlorophenol	15.0	10.0	34.5	19.0	10.0	31.8		
Toxephene	0.0002	0.0001	0.0005	0.73	0.0001	1.77		

1: Ambient concentration assumed 2/3 of water quality standard

Radiological

Parameter Gross Alpha

Maximum Concentration

15 pCi/L

Effluent Limitation for Protection of Agriculture (Class 4 Waters)

Parameter	Maximum Co	oncentration					
	Standard	Background	Limit				
Total Dissolved Solids (mg/L)	1,700		1,700 Site specific standard				
Arsenic (µg/L)	100	1.1	485				
Boron (µg/L)	750	201	2,889				
Cadmium (µg/L)	10	0.06	49				
Chromium (µg/L)	100	2.7	479				
Copper (µg/L)	200	3.0	967				
Lead (µg/L)	100	0.19	489				
Selenium (µg/L)	50	2.0	237				
Gross Alpha (pCi/L)	15		15				

WASTELOAD ANALYSIS [WLA] Appendix C: Total Residual Chlorine

Discharging Facility:	Price Water Improvement District WWTP
UPDES No:	UT-0021814

CHRONIC								Decay Rate (/day)				
					Mixing							
		Receiving		Total	Zone	Effluent Limit	Temperature	@ 20 deg	@ T	Travel	Decay	Effluent
	Season	Water	Standard	Effluent	Boundary	Without Decay	(°C)	С	deg C	Time (min)	Coefficient	Limit
Discharge (cfs)	Summer	13.3		3.4	16.7							
	Fall	13.3		3.4	16.7							
	Winter	13.3		3.4	16.7							
	Spring	13.3		3.4	16.7							
TRC (mg/L)	Summer	0.000	0.011			0.054	20.9	20	20.8	10	0.8652	0.062
	Fall	0.000	0.011			0.054	15.3	20	16.1	10	0.8943	0.060
	Winter	0.000	0.011			0.054	10.3	20	12.8	10	0.9147	0.059
	Spring	0.000	0.011			0.054	14.9	20	15.8	10	0.8961	0.060

ACUTE							Decay Rate (/day)					
					Mixing							
		Receiving		Total	Zone	Effluent Limit	Temperature			Travel	Decay	Effluent
	Season	Water	Standard	Effluent	Boundary	Without Decay	(°C)	@ 20 ℃	@ T ℃	Time (min)	Coefficient	Limit
Discharge (cfs)	Summer	6.6		4.6	11.3							
	Fall	6.6		4.6	11.3							
	Winter	6.6		4.6	11.3							
	Spring	6.6		4.6	11.3							
TRC (mg/L)	Summer	0.000	0.019			0.046	22.0	20	22.0	10	0.8586	0.054
	Fall	0.000	0.019			0.046	17.5	20	17.8	10	0.8837	0.052
	Winter	0.000	0.019			0.046	12.0	20	13.9	10	0.9083	0.051
	Spring	0.000	0.019			0.046	17.4	20	17.7	10	0.8842	0.052

Date: 1/9/2018