Utah Division of Water Quality Statement of Basis ADDENDUM Wasteload Analysis and Antidegradation Level I Review

Date:	April 10, 2017
Facility:	Payson City Wastewater Treatment Facility
	Payson, UT
	UPDES No. UT0020427

Receiving water: Beer Creek (2B, 3C, 4)

This addendum summarizes the wasteload analysis that was performed to determine water quality based effluent limits (WQBEL) for this discharge. Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses (UAC R317-2-8). Projected concentrations are compared to numeric water quality standards to determine acceptability. The numeric criteria in this wasteload analysis may be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality.

<u>Discharge</u> Outfall 001: Irrigation Ditch → Beer Creek → Benjamin Slough → Utah Lake

The maximum daily design discharge is 5.0 MGD and the maximum monthly design discharge is 3.0 MGD for the facility.

Receiving Water

The receiving water for Outfall 001 is an unnamed irrigation ditch, which is tributary to Beer Creek, which drains to Benjamin Slough and then to Utah Lake.

Per UAC R317-2-13.5.c, the designated beneficial uses for Beer Creek (Utah County) from 4850 West (in NE1/4NE1/4 sec. 36, T.8 S., R.1 E.) to headwaters are 2B, 3C, and 4.

- Class 2B Protected for infrequent primary contact recreation. Also protected for secondary contact recreation where there is a low likelihood of ingestion of water or a low degree of bodily contact with the water. Examples include, but are not limited to, wading, hunting, and fishing.
- Class 3C Protected for nongame fish and other aquatic life, including the necessary aquatic organisms in their food chain
- Class 4 Protected for agricultural uses including irrigation of crops and stock watering.

Typically, the critical flow for the wasteload analysis is considered the lowest stream flow for seven consecutive days with a ten year return frequency (7Q10). Due to a lack of flow records for Beer Creek, the 20th percentile of flow measurements was calculated to estimate seasonal

Utah Division of Water Quality Wasteload Analysis Payson City Wastewater Treatment Plant, Payson, UT UPDES No. UT0020427

critical flow in the receiving water (Table 1). No flow records were found for the irrigation ditch and it was assumed the ditch has no flow during critical conditions.

Payson Power (UPDES UT0025518) also discharges to the same irrigation ditch and has the potential to discharge concurrently with the Payson City Wastewater Treatment Plant discharge; however, based on information provided by the permittee, Payson Power would not discharge when the wastewater treatment plant discharge is at the maximum (AQUA Engineering 2017a).

		Flow	(cfs)	
Season	Payson Power	Payson Power	Irrigation Ditab	Beer Creek above
	Discharge During	Discharge During	above WWTP	confluence with
	Chronic Conditions	Acute Conditions		Irrigation Ditch
Summer	0.0	0.0	0.0	4.0
Fall	0.0	0.0	0.0	10.0
Winter	0.0	0.0	0.0	13.2
Spring	0.0	0.0	0.0	10.0

Table 1: Annual critical low flow

<u>TMDL</u>

Beer Creek from confluence with Spring Creek to headwaters is listed as impaired for total ammonia and O/E bioassessment according to the 303(d) list in the *Utah's Final 2016 Integrated Report* (UDWQ 2017). Benjamin Slough from confluence with Utah Lake to Beer Creek confluence is listed as impaired for total ammonia. Utah Lake is listed as impaired for total phosphorus and total dissolved solids.

Mixing Zone

The maximum allowable mixing zone is 15 minutes of travel time for acute conditions, not to exceed 50% of stream width, and 2,500 feet for chronic conditions, per UAC R317-2-5. Water quality standards must be met at the end of the mixing zone.

The actual length of the mixing zone was not determined; however, it was presumed to remain within the maximum allowable mixing zone dimensions. Acute limits were calculated using 50% of the seasonal critical low flow.

Parameters of Concern

The potential parameters of concern identified for the discharge/receiving water were total suspended solids (TSS), dissolved oxygen (DO), BOD₅, total phosphorus (TP), total nitrogen (TN), total ammonia (TAN), E. coli, pH, and total residual chlorine (TRC) as determined in consultation with the UPDES Permit Writer.

Utah Division of Water Quality Wasteload Analysis Payson City Wastewater Treatment Plant, Payson, UT UPDES No. UT0020427

Water Quality Modeling

A QUAL2Kw model of the receiving water was built and calibrated to synoptic survey data collected in October of 2013 by DWQ staff using standard operating procedures (UDWQ 2012). The model of Beer Creek extends 4 kilometers downstream from the confluence with the unnamed irrigation ditch to near the crossing with South 4850 West.

Receiving water quality data were obtained from monitoring site 4995420 Beer Creek above Payson WWTP at U-115 Crossing. The average seasonal value was calculated for each constituent with available data in the receiving water. Effluent parameters were characterized using data from monitoring site 4995410 Payson WWTP and 4995480 Payson Power.

The QUAL2Kw model was used for determining the WQBELs. Effluent concentrations were adjusted so that water quality standards were not exceeded in the receiving water. Where WQBELs exceeded secondary standards or categorical limits, the concentration in the model was set at the secondary standard or categorical limit.

The calibration and wasteload models are available for review by request.

WET Limits

The percent of effluent in the receiving water in a fully mixed condition, and acute and chronic dilution in a not fully mixed condition are calculated in the WLA in order to generate WET limits. The LC₅₀ (lethal concentration, 50%) percent effluent for acute toxicity and the IC₂₅ (inhibition concentration, 25%) percent effluent for chronic toxicity, as determined by the WET test, needs to be below the WET limits, as determined by the WLA. The WET limit for LC₅₀ is typically 100% effluent and does not need to be determined by the WLA.

Table 2: WET Limits for IC25

Season	Percent Effluent
Summer	54%
Fall	32%
Winter	26%
Spring	32%

Effluent Limits

The effect of the effluent on the DO in the receiving water was evaluated using the QUAL2Kw model. A DO sag downstream resulting from the plant discharge was predicted by the model in Beer Creek. However, the DO recovered and limits beyond secondary standards are not required for DO and BOD₅ (Table 3). QUAL2Kw rates, input and output for DO and eutrophication related constituents are summarized in Appendix A.

The ammonia limits for both acute and chronic toxicity were determined. The previous permit only had limits for ammonia resulting from acute toxicity (max. daily limit). In 2008, the chronic ammonia criteria were extended to 3C and 3D waters.

The limits for total residual chlorine were determined assuming an average decay rate of 42 /day (at 20 C°) and a travel time in the unnamed irrigation ditch of 107 minutes prior to discharge to Beer Creek (AQUA Engineering 2017b). The analysis for TRC is summarized in Appendix B.

A mass balance mixing analysis was conducted for conservative constituents such as dissolved metals. The WQBELs for conservative constituents are summarized in Appendix C.

Table 5. Water Quarty Dased Ennuent Emnits Summary							
Effluent Constituent	Acute			Chronic			
Efficient Constituent	Standard	Limit	Averaging Period	Standard	Limit	Averaging Period	
Flow (MGD)		5.0	1 day		3.0	30 days	
Ammonia (mg/L) ¹							
Summer (Jul-Sep)		7.0			4.0		
Fall (Oct-Dec)	Varies	9.0	1 hour	Varies	6.0	30 days	
Winter (Jan-Mar)		12.0			8.0		
Spring (Apr-Jun)		11.0			8.0		
Min. Dissolved Oxygen (mg/L)	3.0	4.0	Instantaneous	5.0	5.0	30 days	
$BOD_5 (mg/L)$	None	35	7 days	None	25	30 days	
Total Residual Chlorine (mg/L)							
Summer (Jul-Sep)		0.84			0.72		
Fall (Oct-Dec)	0.019	0.49	1 hour	0.011	0.54	4 days	
Winter (Jan-Mar)		0.29			0.35		
Spring (Apr-Jun)		0.48			0.53		
1: Ammonia limit due to toxicity requirements.							

Table 3: Wat	er Quality I	Based Effluent	Limits Summary

Models and supporting documentation are available for review upon request.

Antidegradation Level I Review

The objective of the Level I ADR is to ensure the protection of existing uses, defined as the beneficial uses attained in the receiving water on or after November 28, 1975. No evidence is known that the existing uses deviate from the designated beneficial uses for the receiving water. Therefore, the beneficial uses will be protected if the discharge remains below the WQBELs presented in this wasteload.

A Level II Antidegradation Review (ADR) is not required for this discharge since the pollutant concentration and load is not increasing under this permit renewal.

Prepared by:Nicholas von Stackelberg, P.E.Standards and Technical Services Section

Utah Division of Water Quality Wasteload Analysis Payson City Wastewater Treatment Plant, Payson, UT UPDES No. UT0020427

Documents: WLA Document: payson_potw_wla_2017-04-10.docx QUAL2Kw Calibration Model: payson_potw_cal_2013.xlsm QUAL2Kw Wasteload Model: payson_wla_2017.xlsm

References:

AQUA Engineering. 2017a. Discharge Flows to Beer Creek from Payson City and UAMPS.

AQUA Engineering. 2017b. Payson Chlorine Decay Rates.

Neilson, B.T., A.J. Hobson, N. von Stackelberg, M. Shupryt, and J.D. Ostermiller. 2012. Using QUAL2K Modeling to Support Nutrient Criteria Development and Wasteload Analyses in Utah.

Utah Division of Water Quality. 2012a. Utah Wasteload Analysis Procedures Version 1.0.

Utah Division of Water Quality. 2012b. *Field Data Collection for QUAL2Kw Model Build and Calibration Standard Operating Procedures Version 1.0.*

Utah Division of Water Quality. 2017. Utah's Final 2016 Integrated Report.

WASTELOAD ANALYSIS [WLA] Appendix A: QUAL2Kw Analysis for Eutrophication

Date: 4/10/2017

Discharging Facility: UPDES No: Permit Flow [MGD]:	Payson WW UT-0020427 1.00 3.00	TP Maximum Monthly Flow Maximum Daily Flow	
Receiving Water: Stream Classification:	Beer Creek 2B, 3C, 4		
Stream Flows [cfs]:	4.00 10.00 13.20 10.00	Summer (July-Sept) Fall (Oct-Dec) Winter (Jan-Mar) Spring (Apr-June)	Critical Low Flow
Fully Mixed: Acute River Width: Chronic River Width:	NO 50% 100%		

Modeling Information

A QUAL2Kw model was used to determine these effluent limits.

Model Inputs

The following is upstream and discharge information that was utilized as inputs for the analysis. Dry washes are considered to have an upstream flow equal to the flow of the discharge.

Headwater/Upstream Information	Summer	Fall	Winter	Spring
Flow (cfs)	4.0	10.0	13.2	10.0
Temperature (deg C)	21.2	12.1	5.0	12.6
Specific Conductance (µmhos)	1125	1125	1125	1125
Inorganic Suspended Solids (mg/L)	28.0	37.3	29.5	27.3
Dissolved Oxygen (mg/L)	6.7	8.2	10.4	8.5
CBOD ₅ (mg/L)	2.6	2.7	5.1	3.6
Organic Nitrogen (mg/L)	1.500	1.500	1.500	1.500
NH4-Nitrogen (mg/L)	0.080	0.185	0.399	0.250
NO3-Nitrogen (mg/L)	1.125	1.327	1.430	1.255
Organic Phosphorus (mg/L)	0.035	0.110	0.119	0.077
Inorganic Ortho-Phosphorus (mg/L)	0.169	0.145	0.186	0.190
Phytoplankton (µg/L)	0.0	0.0	0.0	0.0
Detritus [POM] (mg/L)	3.1	4.1	3.3	3.0
Alkalinity (mg/L)	235	235	235	235
pH	7.8	8.2	8.3	8.0

Utah Division of Water Quality

Discharge Information - Payson POTW					
Chronic	Summer	Fall	Winter	Spring	
Flow (MGD)	3.0	3.0	3.0	3.0	
Temperature (deg C)	22.7	17.1	11.4	16.9	
Specific Conductance (µmhos)	1450	1450	1450	1450	
Inorganic Suspended Solids (mg/L)	6.0	4.0	5.3	5.0	
Organic Nitrogen (mg/L)	5.000	5.000	5.000	5.000	
NO3-Nitrogen (mg/L)	21.700	22.875	28.820	28.500	
Organic Phosphorus (mg/L)	0.000	0.000	0.000	0.000	
Inorganic Ortho-Phosphorus (mg/L)	5.000	5.000	5.000	5.000	
Phytoplankton (μg/L)	0.000	0.000	0.000	0.000	
Detritus [POM] (mg/L)	0.0	0.0	0.0	0.0	
Alkalinity (mg/L)	235	235	235	235	
pH	7.6	7.6	7.5	7.5	
Aquito	Summor	Fall	Winter	Spring	
Elow (MGD)	50	50	5.0	50 50	
Temperature (deg C)	20 T	17.1	11 A	16.0	
Specific Conductance (umbos)	1450	1/50	1450	1450	
Inorganic Suspended Solids (mg/l)	60	4.0	53	5.0	
Organic Nitrogen (mg/L)	10 000	10 000	10 000	10 000	
NO3-Nitrogen (mg/L)	21 700	22 875	28 820	28 500	
Organic Phosphorus (mg/L)	0.000	0.000	0.000	0.000	
Inorganic Ortho-Phosphorus (mg/L)	10 000	10 000	10 000	10 000	
Phytoplankton (ug/L)	0.000	0.000	0.000	0.000	
Detritus [POM] (mg/L)	0.0	0.0	0.0	0.0	
Alkalinity (mg/L)	235	235	235	235	
Hq	8.0	8.2	7.9	8.1	
·					
Discharge Information - Payson Powe	r				
Chronic	Summer	Fall	Winter	Spring	
Flow (MGD)	0.0	0.0	0.0	0.0	
Δουτο	Summer	Fall	Winter	Spring	
Flow (MGD)	0.0	0.0	0.0	0.0	
(-)					

All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality.

Effluent Limitations

Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9).

Other conditions used in the modeling effort reflect the environmental conditions expected at low stream flows.

Effluent Limitations based upon Water Quality Standards for DO, and Ammonia and Total Residual Chlorine Toxicity

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent limitation as follows:

Chronic	Standard	Summer	Fall	Winter	Spring
Flow (MGD)	N/A	3.00	3.00	3.00	3.00
NH4-Nitrogen (mg/L)	Varies	6.0	9.0	9.5	12.0
CBOD ₅ (mg/L)	N/A	25.0	25.0	25.0	25.0
Dissolved Oxygen [30-day Ave] (mg/L)	5.0	5.0	5.0	5.0	5.0
Acute	Standard	Summer	Fall	Winter	Spring
Flow (MGD)	N/A	5.0	5.0	5.0	5.0
NH4-Nitrogen (mg/L)	Varies	10.0	12.0	13.0	12.0
CBOD ₅ (mg/L)	N/A	35.0	35.0	35.0	35.0
Dissolved Oxygen [Minimum] (mg/L)	3.0	4.0	4.0	4.0	4.0

Summary Comments

The mathematical modeling and best professional judgement indicate that violations of receiving water beneficial uses with their associated water quality standards, including important downstream segments, will not occur for the evaluated parameters of concern as discussed above if the effluent limitations indicated above are met.

Coefficients and Other Model Information

Parameter Stoichiometry:	Value	Units
Carbon	40	аC
Nitrogen	72	aN
Phosphorus	1	aP
Dryweight	100	gr aD
Chlorophyll	100	gD aA
	1	уА
Settling velocity	0.001	m/d
Oxvaen.	0.001	11/0
Beaeration model	Thackston-Da	awson
Temp correction	1 024	
Reservation wind effect	None	
Ω_2 for earbon evidation	2 60	a02/aC
O2 for NH4 nitrification	2.09	gO2/gO
Overgan inhib model CPOD evidation	4.J7 Exponential	y02/ym
Oxygen Innib model CBOD Oxidation		L/ma00
	0.00	L/IIIgOz
Oxygen mind model minication		l/maO2
	U.6U	L/mgO2
Oxygen ennance model denitrification	Exponential	
Oxygen enhance parameter denitrification	0.60	L/mgO2
Oxygen innib model phyto resp	Exponential	
Oxygen inhib parameter phyto resp	0.60	L/mgO2
Oxygen enhance model bot alg resp	Exponential	
Oxygen enhance parameter bot alg resp	0.60	L/mgO2
Slow CBOD:		
Hydrolysis rate	0	/d
Temp correction	1.047	
Oxidation rate	0.103	/d
Temp correction	1.047	
Fast CBOD:		
Oxidation rate	10	/d
Temp correction	1.047	
Organic N:		()
Hydrolysis	0.88120891	/d
I emp correction	1.07	
Settling velocity	0.099218	m/d
Ammonium:		()
Nitrification	0.2064034	/d
I emp correction	1.07	
Nitrate:	0.00050040	(-1
	0.28353818	/d
I emp correction	1.07	
Sed denitrification transfer coeff	0.053355	m/d
I emp correction	1.07	
	0.70005015	(-1
Hvarolysis	0 /9805215	/d
	0.70000210	
Temp correction	1.07	
Temp correction Settling velocity	1.07 0.096605	m/d
Temp correction Settling velocity Inorganic P:	1.07 0.096605	m/d
Temp correction Settling velocity Inorganic P: Settling velocity	1.07 0.096605 0.04793	m/d m/d

Utah Division of Water Quality

	Phytoplankton:						
	Max Growth rate				2.8944	/d	
	Temp correction				1.07		
	Respiration rate				0.480803	/d	
	Temp correction				1.07		
	Death rate				0.86518	/d	
	Temp correction				1		
	Nitrogen half sat constant				15	ugl	N/L
	Phosphorus half sat constant				2	ugF	9/L
	norganic carbon half sat constant				1.30E-05	mo	les/L
	Phytoplankton use HCO3- as substrate				Yes		
	Light model				Smith		
	Light constant				57.6	lan	gleys/d
	Ammonia preference				25.4151	ugľ	N/L
	Settling velocity				0.468545	m/c	t de la companya de la
	Bottom Plants:				<u> </u>		
	Growth model				Zero-orde	er –	
	Max Growth rate				10.8314	gD/	/m2/d or /d
					1.07	_	
	First-order model carrying capacity				100	gD/	/m2
	Basal respiration rate				0.245880	2/d.	
	Photo-respiration rate parameter				0.01	uni	liess
					1.07	/ a l	
	Excretion rate				0.046004	/d	
	I emp correction				1.07	/ a l	
	Dealh raie				0.036896	/d	
	Temp correction				1.07		.1/1
					102 472	ugi	N/L D/I
					7 445 05	uyr	
	Rottom algao uso UCO2, as substrato				7.44⊑-00 Voc	mo	IES/L
	light model				r es Smith		
					A1 6646	ma	0^2/
					28 00375	ual	
	Subsistence quota for nitrogen				31 0370	ma	N/aD
	Subsistence quota for phosphorus				2 26157	ma	P/aD
	Maximum uptake rate for nitrogen				770 252	ma	N/aD/d
	Maximum uptake rate for phosphorus				36 4362	ma	P/aD/d
	Internal nitrogen half sat ratio				1 468463	mg	, ge/a
	Internal phosphorus half sat ratio				3,286134	5	
	Nitrogen uptake water column fraction				1	•	
	Phosphorus uptake water column fraction	n			1		
	Detritus (POM):						
	Dissolution rate				2.318491	/d	
	Temp correction				1.07		
	Settling velocity				0.08897	m/o	k
	oH:						
	Partial pressure of carbon dioxide				370	ppr	n
7	FRC:						
	Decay rate				0.8	/d	
Atmos	pheric Inputs:	Summer	Fal	l Winte	r Sp	ring	
Min. A	r Temperature, F	57.7	29.5	24.0	4	5.0	
Max. A	ir Temperature, F	90.5	51.0	44.9	7	4.2	
Dew P	oint, Temp., F	58.6	35.0	30.3	4	8.5	
Wind,	ft./sec. @ 21 ft.	9.8	7.5	7.6	i !	9.2	
Cloud	Cover, %	10%	10%	b 10%	6 1	0%	
Other	Inputs:						
Bottom	Algae Coverage	75%					
Bottom	n SOD Coverage	100%					
Prescr	ibed SOD, gO ₂ /m^2/day	0					

WASTELOAD ANALYSIS [WLA] Appendix B: Total Residual Chlorine

Discharging Facility:	Payson WWTP
UPDES No:	UT-0020427

CHRONIC

				Payson	Payson		Mixing		Effluent Limit		Decay	Decay			
		Receiving		WWTP	Power	Total	Zone	Dilution	Without	Temperature	Rate @	Rate @	Travel	Decay	Effluent
	Season	Water	Standard	Effluent	Effluent	Effluent	Boundary	Factor	Decay	(°C)	20 ℃	т℃	Time (min)	Coefficient	Limit
Discharge (cfs)	Summer	4.0		4.6	0.0	4.6	8.6	0.9							
	Fall	10.0		4.6	0.0	4.6	14.6	2.2							
	Winter	13.2		4.6	0.0	4.6	17.8	2.8							
	Spring	10.0		4.6	0.0	4.6	14.6	2.2							
Temperature (°C)	Summer			22.7	30.0	22.7									
	Fall			17.1	25.9	17.1									
	Winter			11.4	27.5	11.4									
	Spring			16.9	23.6	16.9									
TRC (mg/L)	Summer	0.000	0.011						0.020	22.7	42	47.6	107.568	0.03	0.716
	Fall	0.000	0.011			1			0.035	17.1	42	36.8	107.568	0.06	0.541
	Winter	0.000	0.011		P				0.042	11.4	42	28.3	107.568	0.12	0.350
	Spring	0.000	0.011		1				0.035	16.9	42	36.5	107.568	0.07	0.530

ACUTE

				Payson	Payson		Mixing		Effluent Limit		Decay	Decay			
		Receiving		WWTP	Power	Total	Zone	Dilution	Without	Temperature	Rate @	Rate @	Travel	Decay	Effluent
	Season	Water	Standard	Effluent	Effluent	Effluent	Boundary	Factor	Decay	(°C)	20 °C	Т℃	Time (min)	Coefficient	Limit
Discharge (cfs)	Summer	2.0		7.7	0.0	7.7	9.7	0.3							
	Fall	5.0		7.7	0.0	7.7	12.7	0.6							
	Winter	6.6		7.7	0.0	7.7	14.3	0.9							
	Spring	5.0		7.7	0.0	7.7	12.7	0.6							
Temperature (℃)	Summer			22.7	30.0	22.7									
	Fall			17.1	25.9	17.1									
	Winter			11.4	27.5	11.4									
	Spring			16.9	23.6	16.9									
TRC (mg/L)	Summer	0.000	0.019						0.024	22.7	42	47.6	107.568	0.03	0.836
	Fall	0.000	0.019						0.031	17.1	42	36.8	107.568	0.06	0.487
	Winter	0.000	0.019						0.035	11.4	42	28.3	107.568	0.12	0.291
	Spring	0.000	0.019						0.031	16.9	42	36.5	107.568	0.07	0.478

124.66667

WASTELOAD ANALYSIS [WLA] Appendix C: Mass Balance Mixing Analysis for Conservative Constituents

Date: 4/10/2017

Discharging Facility: UPDES No:	Payson WWTP UT-0020427		
Permit Flow [MGD]:	3.00	Maximum Monthly Dischar	ge
	5.00	Maximum Daily Discharge	
Payson Power:	0.00	Discharge	
Receiving Water: Stream Classification:	Beer Creek 2B, 3C, 4		
Stream Flows [cfs]:	4.00	Summer (July-Sept)	Critical Low Flow
Fully Mixed:	NO		
Acute River Width:	50%		
Chronic River Width:	100%		
Mixed Flow [cfs]:	8.6 9.7	Chronic Acute	

Modeling Information

A mass balance mixing analysis was used to determine these effluent limits.

All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality.

Effluent Limitations

Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9).

Other conditions used in the modeling effort reflect the environmental conditions expected at low stream flows.

Effluent Limitations for Protection of Recreation (Class 2B Waters)

Physical Parameter		Maximum Concentration
	pH Minimum	6.5
	pH Maximum	9.0

Bacteriological

E. coli (30 Day Geometric Mean)	206 (#/100 mL)
E. coli (Maximum)	668 (#/100 mL)

Effluent Limitations for Protection of Aquatic Wildlife (Class 3C Waters)

Physical

Parameter	Maximum Concentration
Temperature (deg C)	27
Temperature Change (deg C)	4

Inorganics	Chronic Standard (4 Day Average)	Acute Standard (1 Hour Average)		
Paramete	r Standard	Standard		
Phenol (mg/L)		0.010		
Hydrogen Sulfide (Undissociated) [mg/L]	0.002		

Total Recoverable Metals	Chronic Sta	ndard (4 Day Av	erage) ¹	Acute Sta	Acute Standard (1 Hour Average) ¹			
Parameter	Standard	Background ²	Limit	Standard	Background ²	Limit		
Aluminum (μg/L)	N/A ³	5.4	NONE	750	5.4	1,001		
Arsenic (μg/L)	150	7.7	273	340	7.7	452		
Cadmium (μg/L)	0.7	0.5	1.0	8.5	0.5	11.2		
Chromium VI (μg/L)	11.0	2.5	18.3	16.0	2.5	20.7		
Chromium III (µg/L)	263	2.5	487	5,497	2.5	7,344		
Copper (µg/L)	29.8	5.3	51.0	50.5	5.3	66.0		
Cyanide (µg/L)	5.2	3.5	6.7	22.0	3.5	28.4		
lron (μg/L)				1,000	6.7	1,334		
Lead (µg/L)	18.0	0.3	33.2	462	0.3	617		
Mercury (µg/L)	0.012	0.008	0.015	2.4	0.0	3.2		
Nickel (µg/L)	165	0.5	307	1,484	0.5	1,983		
Selenium (µg/L)	4.6	1.9	6.9	18.4	1.9	24.1		
Silver (μg/L)				39.3	0.1	52.5		
Tributylin (μg/L)	0.072	0.048	0.092	0.46	0.05	0.60		
Zinc (μg/L)	380	10.0	698	380	10.0	505		
1: Based upon a Hardness of 390 mg/l as C	aCO3							

2: Background concentration average of monitoring data

3: Where the pH is equal to or greater than 7.0 and the hardness is equal to or greater than 50 ppm as CaC0₃ in the receiving water after mixing, the 87 ug/L chronic criterion (expressed as total recoverable) will not apply, and aluminum will be regulated based on compliance with the 750 ug/L acute aluminum criterion (expressed as total recoverable).

Utah Division of Water Quality

Organics [Pesticides]	Chronic Sta	ndard (4 Day Av	erage)	Acute Sta	Acute Standard (1 Hour Average)			
Parameter	Standard	Background ¹	Limit	Standard	Background ¹	Limit		
Aldrin (µg/L)				1.5	1.0	1.7		
Chlordane (µg/L)	0.0043	0.0029	0.0055	1.2	0.0	1.6		
DDT, DDE (µg/L)	0.001	0.001	0.001	0.55	0.00	0.73		
Diazinon (µg/L)	0.17	0.11	0.22	0.17	0.11	0.20		
Dieldrin (µg/L)	0.0056	0.0038	0.0072	0.24	0.00	0.32		
Endosulfan, a & b (µg/L)	0.056	0.038	0.072	0.11	0.04	0.14		
Endrin (μg/L)	0.036	0.024	0.046	0.086	0.024	0.108		
Heptachlor & H. epoxide (µg/L)	0.0038	0.0025	0.0049	0.26	0.00	0.35		
Lindane (µg/L)	0.08	0.05	0.10	1.0	0.1	1.3		
Methoxychlor (µg/L)				0.03	0.02	0.03		
Mirex (µg/L)				0.001	0.001	0.001		
Nonylphenol (µg/L)	6.6	4.4	8.5	28.0	4.4	36.2		
Parathion (µg/L)	0.0130	0.0087	0.0167	0.066	0.009	0.086		
PCB's (µg/L)	0.014	0.009	0.018					
Pentachlorophenol (µg/L)	15.0	10.1	19.3	19.0	10.1	22.6		
Toxephene (µg/L)	0.0002	0.0001	0.0003	0.73	0.00	0.98		

1: Background concentration assumed 67% of chronic standard

Radiological		Maximum Concentration							
	Parameter	Standard	Background ¹	Limit					
	Gross Alpha (pCi/L)	15	10.1	17.3					

1: Background concentration assumed 67% of chronic standard; TDS is based on observed ambient data

Effluent Limitation for Protection of Agriculture (Class 4 Waters)

	Maximum Concentration					
Parameter	Standard	Background ¹	Limit			
Total Dissolved Solids (mg/L)	1,200	754	1,585			
Boron (mg/L)	0.75	0.2	1.2			
Arsenic, Dissolved (µg/L)	100	7.7	180			
Cadmium, Dissolved (µg/L)	10	0.5	18.2			
Chromium, Dissolved (µg/L)	100	2.5	184			
Copper, Dissolved (µg/L)	200	5.3	368			
Lead, Dissolved (µg/L)	100	0.3	186			
Selenium, Dissolved (µg/L)	50	1.9	91.5			
Gross Alpha (pCi/L)	15	10.1	19.3			

1: Background concentration assumed 67% of chronic standard; TDS is based on observed ambient data