Utah Division of Water Quality Statement of Basis ADDENDUM Wasteload Analysis and Antidegradation Level I Review - PRELIMINARY

Date:

Prepared by:	Dave Wham Standards and Technical Services
Facility:	Pacificorp Deer Creek Mine; Discharge 003 UPDES No. UT0023604
Receiving water:	Huntington Creek (1C, 2B, 3A, 4)

February 28, 2017

This addendum summarizes the wasteload analysis that was performed to determine water quality based effluent limits (WQBEL) for this discharge. Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses (UAC R317-2-8). Projected concentrations are compared to numeric water quality standards to determine acceptability. The numeric criteria in this wasteload analysis may be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality.

Discharge

UPDES Discharge Point 003, Mine water discharge with an estimated mean monthly discharge of 0.72 MGD (1.12 cfs).

Receiving Water

Huntington Creek. Per UAC R317-2-13.1(b), the designated beneficial uses of Huntington Creek and tributaries from Highway 10 crossing to USFS boundary are 1C, 2B, 3A, 4.

- Class 1C Protected for domestic purposes with prior treatment by treatment processes as required by the Utah Division of Drinking Water.
- Class 2B Protected for infrequent primary contact recreation. Also protected for secondary contact recreation where there is a low likelihood of ingestion of water or a low degree of bodily contact with the water. Examples include, but are not limited to, wading, hunting, and fishing.
- Class 3A Protected for cold water species of game fish and other cold water aquatic life, including the necessary aquatic organisms in their food chain.
- Class 4 Protected for agricultural uses including irrigation of crops and stock watering.

Typically, the critical flow for the wasteload analysis is considered the lowest stream flow for seven consecutive days with a ten year return frequency (7Q10). Due to a lack of flow records, the 20th percentile of available flow measurements was calculated for the period of record to approximate the 7Q10 low flow condition. Flow data for the receiving water was obtained from Emery Water Conservancy District for their site *Huntington River below Power Plant* from the period 2012-2017. This station is below the Power Plant diversion but above other significant diversions like Huntington North Reservoir. Ambient water quality was characterized using data from DWQ station #4930530, Huntington Creek above UP&L Diversion from the period 2007-2013.

The critical low flow condition for discharges 003 is 12.1 cfs.

<u>TMDL</u>

According to the Utah's 2016 303(d) Water Quality Assessment, the assessment unit for this section of Huntington Creek, Huntington Creek and tributaries from Highway 10 crossing to USFS boundary (UT14060009-004) was listed as impaired for pH (Classes 1C, 2B, 3A, 4), dissolved oxygen (Class 3A), temperature (Class 3A) and total dissolved solids (Class 4).

Review of the listing data show that the temperature impairment was based on results from stations located in Bear Creek, a tributary to Huntington Creek located upstream from the proposed discharge. As a result, the proposed discharge cannot cause or contribute to that impairment.

Data from two monitoring stations above and below Deer Creek on Huntington Creek show impairments for pH and dissolved oxygen (DO). As a result, the proposed discharge must meet applicable Water Quality Standards (WQS) at end of pipe for these constituents (6.5 mg/l DO, and pH 6.5-9.0 pH).

Review of the listing data show that the total dissolved solids (TDS) impairment was based on results from the Huntington Creek at U10 crossing monitoring station. In order to protect downstream uses, and to avoid causing or contributing to that impairment, effluent limits for TDS should be set at the WQS of 1200 mg/l TDS.

Mixing Zone

The maximum allowable mixing zone is 15 minutes of travel time for acute conditions, not to exceed 50% of stream width, and 2,500 feet for chronic conditions, per UAC R317-2-5. Water quality standards must be met at the end of the mixing zone.

Mixing zone modeling showed 100 % mixing within 15 minutes travel time, and acute limits defaulted to 50% of the seasonal critical low flow.

Parameters of Concern

The potential parameters of concern identified for the discharge/receiving water were temperature, pH, dissolved oxygen, TDS, and iron, as determined in consultation with the

Utah Division of Water Quality Wasteload Analysis Pacificorp Deer Creek Mine UPDES No. UT0023604

UPDES Permit Writer.

WET Limits

The percent of effluent in the receiving water in a fully mixed condition, and acute and chronic dilution in a not fully mixed condition are calculated in the WLA in order to generate WET limits. The LC_{50} (lethal concentration, 50%) percent effluent for acute toxicity and the IC_{25} (inhibition concentration, 25%) percent effluent for chronic toxicity, as determined by the WET test, needs to be below the WET limits, as determined by the WLA.

LC50 WET Limits for Outfall 003 should be based on 61.4% effluent. IC25 WET limits for Outfalls 003 should be based on 8.4% effluent.

Wasteload Allocation Methods

Effluent limits were determined for conservative constituents using a simple mass balance mixing analysis (UDWQ 2012). The mass balance analysis is summarized in the Wasteload Addendums.

The water quality standard for chronic ammonia toxicity is dependent on temperature and pH, and the water quality standard for acute ammonia toxicity is dependent on pH. The AMMTOX Model developed by University of Colorado and adapted by Utah DWQ and EPA Region VIII was used to determine ammonia effluent limits (Lewis et al. 2002). The analysis is summarized in the Wasteload Addendum.

Models and supporting documentation are available for review upon request.

Antidegradation Level I Review

The objective of the Level I ADR is to ensure the protection of existing uses, defined as the beneficial uses attained in the receiving water on or after November 28, 1975. No evidence is known that the existing uses deviate from the designated beneficial uses for the receiving water. Therefore, the beneficial uses will be protected if the discharge remains below the WQBELs presented in this wasteload.

An amended Level II Antidegradation Review (ADR) is required for this facility. The receiving stream for the proposed discharge is a Class 1C drinking water source.

Documents:

WLA Document: DeerCk_003_WLADoc_2-27-17.docx Wasteload Analysis and Addendums: DeerCk_003_WLA_2-27-17.xlsm

References:

Emery County Water Conservancy District. http://www.ewcd.org/canals/huntington-drainage/ Utah Division of Water Quality. 2012. Utah Wasteload Analysis Procedures Version 1.0.

WASTELOAD ANALYSIS [WLA] Addendum: Statement of Basis SUMMARY

Discharging Facility: Deer Creek 003 Discharge

UPDES No:	UT-0023604		
Current Flow:	0.72	MGD	Design Flow
Design Flow	0.72	MGD	

Receiving Water: Stream Classification:	Huntington (1C, 2B, 3A, 4			
Stream Flows [cfs]:		Summer (luly-Sent)	20th Percentile
otrodin i lono [olo].		Fall (Oct-E		20th Percentile
		Winter (Ja	,	20th Percentile
		Spring (Ap	'	20th Percentile
		Average	i ouno)	
Stream TDS Values:		Summer (lulv-Sept)	Average
		Fall (Oct-D		Average
		Winter (Ja	,	Average
		Spring (Ap		Average
	200.0	opinig (/ ip	i dune)	/ Weitage
Effluent Limits:				WQ Standard:
Flow, MGD:	0.72	MGD	Design Flow	
BOD, mg/l:	25.0	Summer	5.0	Indicator
Dissolved Oxygen, mg/	l 6.5	Summer	6.5	30 Day Average
TNH3, Chronic, mg/l:	16.2	Summer		Function of pH and Temperature
TDS, mg/l:	11922.1	Summer	1200.0	

Modeling Parameters:

Acute River Width:	50.0%
Chronic River Width:	100.0%

Level 1 Antidegradation Level Completed: Amended Level II Review required.

Date: 2/27/2017

Permit Writer:		
WLA by:	Did Millen	3/30/17
WQM Sec. Approval:		
TMDL Sec. Approval:		<u></u> }

WASTELOAD ANALYSIS [WLA] Addendum: Statement of Basis

27-Feb-17
4:00 PM

Facilities:	Deer Creek 003 Discharge
Discharging to:	Huntington Creek

UPDES No: UT-0023604

I. Introduction

Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses [R317-2-8, UAC]. Projected concentrations are compared to numeric water quality standards to determine acceptability. The anti-degradation policy and procedures are also considered. The primary in-stream parameters of concern may include metals (as a function of hardness), total dissolved solids (TDS), total residual chlorine (TRC), un-ionized ammonia (as a function of pH and temperature, measured and evaluated interms of total ammonia), and dissolved oxygen.

Mathematical water quality modeling is employed to determine stream quality response to point source discharges. Models aid in the effort of anticipating stream quality at future effluent flows at critical environmental conditions (e.g., low stream flow, high temperature, high pH, etc).

The numeric criteria in this wasteload analysis may always be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality.

II. Receiving Water and Stream Classification

Huntington Creek :	1C, 2B, 3A, 4
Antidegradation Review:	Level I review completed. Amended Level II review required.

III. Numeric Stream Standards for Protection of Aquatic Wildlife

Total Ammonia (TNH3)	Varies as a function of Temperature and pH Rebound. See Water Quality Standards
Chronic Total Residual Chlorine (TRC)	0.011 mg/l (4 Day Average) 0.019 mg/l (1 Hour Average)
Chronic Dissolved Oxygen (DO)	6.50 mg/l (30 Day Average) 5.00 mg/l (7Day Average) 4.00 mg/l (1 Day Average
Maximum Total Dissolved Solids	1200.0 mg/l

Acute and Chronic Heavy Metals (Dissolved)

	4 Day Average (Chronic) Standard		1 Hour Average (Acute) Standard		
Parameter	Concentration	Load*	Concentration		Load*
Aluminum	87.00 ug/l**	0.523 lbs/day	750.00	ug/l	4.511 lbs/day
Arsenic	0	1.143 lbs/day	340.00	ug/l	2.045 lbs/day
Cadmium	0.52 ug/l	0.003 lbs/day	5.25	ug/l	0.032 lbs/day
Chromium III	178.07 ug/l	1.071 lbs/day	3725.58	ug/l	22.410 lbs/day
ChromiumVI	11.00 ug/l	0.066 lbs/day	16.00	ug/l	0.096 lbs/day
Copper	19.89 ug/l	0.120 lbs/day	32.26	ug/l	0.194 lbs/day
Iron		-	1000.00	ug/i	6.015 lbs/day
Lead	9.83 ug/l	0.059 lbs/day	252.25	ug/l	1.517 lbs/day
Mercury	0.0120 ug/l	0.000 lbs/day	2.40	ug/l	0.014 lbs/day
Nickel	110.39 ug/l	0.664 lbs/day	992.91	ug/l	5.973 lbs/day
Selenium	4.60 ug/i	0.028 lbs/day	20.00	ug/l	0.120 lbs/day
Silver	N/A ug/l	N/A lbs/day	17.38	ug/l	0.105 lbs/day
Zinc	253.86 ug/l	1.527 lbs/day	253.86	ug/l	1.527 lbs/day
* Allow	ved below discharge	-		2	,

**Chronic Aluminum standard applies only to waters with a pH < 7.0 and a Hardness < 50 mg/l as CaCO3

Metals Standards Based upon a Hardness of 242.57 mg/l as CaCO3

Organics [Pesticides]

	4 Day Average (Chronic) Standard		1 Hour Average (Acute) Standard					
Parameter	Concen	tration	Loa	ıd*	Concentration	1	Load*	
Aldrin					1.500	ug/l	0.009	bs/day
Chlordane	0.004	ug/l	0.306	lbs/day	1.200	ug/l	0.007	bs/day
DDT, DDE	0.001	ug/l	0.071	lbs/day	0.550	ug/l	0.003	bs/day
Dieldrin	0.002	ug/l	0.135	lbs/day	1.250	ug/l	0.008	bs/day
Endosulfan	0.056	ug/l	3.988	lbs/day	0.110	ug/l	0.001	bs/day
Endrin	0.002	ug/l	0.164	lbs/day	0.090	ug/l	0.001 I	bs/day
Guthion					0.010	ug/l	0.000	bs/day
Heptachlor	0.004	ug/l	0.271	lbs/day	0.260	ug/l	0.002	bs/day
Lindane	0.080	ug/l	5.698	lbs/day	1.000	ug/l	0.006 I	bs/day
Methoxychlor					0.030	ug/l	0.000 I	bs/day
Mirex					0.010	ug/l	0.000	bs/day
Parathion					0.040	ug/l	0.000 I	bs/day
PCB's	0.014	ug/l	0.997	lbs/day	2.000	ug/l	0.012	bs/day
Pentachlorophenol	13.00	ug/l	925.894	lbs/day	20.000	ug/l	0.120 !	bs/day
Toxephene	0.0002	ug/l	0.014	lbs/day	0.7300	ug/l	0.004	bs/day

IV. Numeric Stream Standards for Protection of Agriculture

	4 Day Average (Chronic) Standard		1 Hour Average (Acute) Standard	
	Concentration	Load*	Concentration	Load*
Arsenic			100.0 ug/l	lbs/day
Boron			750.0 ug/l	2.26 lbs/day
Cadmium			10.0 ug/l	0.03 lbs/day
Chromium			100.0 ug/l	lbs/day
Copper			200.0 ug/l	lbs/day
Lead			100.0 ug/i	lbs/day
Selenium			50.0 ug/l	lbs/day
TDS, Summer			1200.0 mg/l	3.61 tons/day

V. Numeric Stream Standards for Protection of Human Health (Class 1C Waters)

4	4 Day Average (Chronic) Standard		1 Hour Average (Acute) Standard		
Metals	Concentration	Load*	Concentratio		Load*
Arsenic			50.0	ug/l	3.561 lbs/day
Barium			1000.0	ug/l	71.223 lbs/day
Cadmium			10.0	ug/l	0.712 lbs/day
Chromium			50.0	ug/l	3.561 lbs/day
Lead			50.0	ug/l	3.561 lbs/day
Mercury			2.0	ug/l	0.142 lbs/day
Selenium			10.0	ug/l	0.712 lbs/day
Silver			50.0	ug/l	3.561 lbs/day
Fluoride (3)			1.4	ug/l	0.100 lbs/day
to			2.4	ug/l	0.171 lbs/day
Nitrates as N			10.0	ug/l	0.712 lbs/day
Chlorophenoxy Herbicio	des				
2, 4 -D			100.0	ug/l	7.122 lbs/day
2,4,5-TP			10.0	ug/l	0.712 lbs/day
Endrin			0.2	ug/l	0.014 lbs/day
ocyclohexane (Lindane)			4.0	ug/l	0.285 lbs/day
Methoxychlor			100.0	ug/l	7.122 lbs/day
Toxaphene			5.0	ug/l	0.356 lbs/day

VI. Numeric Stream Standards the Protection of Human Health from Water & Fish Consumption [Toxics]

	Maximum Conc., ug/I - Acute Standards					
	Class 10	2			Class 3	3A, 3B
Toxic Organics	[2 Liters/Day for 70) Kg Person ove	er 70 Yr.]	[6.5 g	for 70	Kg Person over 70 Yr.]
Acenaphthene	1200.00 ug/l	85.47	lbs/day	2700.0	ug/l	192.30 lbs/day
Acrolein	320.00 ug/l	22.79	lbs/day	780.0	ug/l	55.55 lbs/day
Acrylonitrile	0.06 ug/l	0.00	lbs/day	0.7	ug/l	0.05 lbs/day
Benzene	1.20 ug/l	0.09	lbs/day	71.0	ug/l	5.06 lbs/day
Benzidine	0.00012 ug/l	0.00	lbs/day	0.0	ug/l	0.00 lbs/day
Carbon tetrachloride	0.25 ug/l	0.02	lbs/day	4.4	ug/l	0.31 lbs/day
Chlorobenzene	680.00 ug/l	48.43	lbs/day	21000.0	ug/l	1495.67 lbs/day
1,2,4-Trichlorobenzene						
Hexachlorobenzene	0.00075 ug/l	0.00	lbs/day	0.0	ug/l	0.00 lbs/day
1,2-Dichloroethane	0.38 ug/l	0.03	lbs/day	99.0	ug/l	7.05 lbs/day

1

							1
1,1,1-Trichloroethane							
Hexachloroethane	1.90	ug/l	0.14	lbs/day	8.9	ug/l	0.63 lbs/day
1,1-Dichloroethane	0.04						
1,1,2-Trichloroethane	0.61	-		lbs/day	42.0		2.99 lbs/day
1,1,2,2-Tetrachloroetha	0.17	ug/I	0.01	lbs/day	11.0	-	0.78 lbs/day
Chloroethane						ug/l	0.00 lbs/day
Bis(2-chloroethyl) ether	0.03			lbs/day		ug/l	0.10 lbs/day
2-Chloroethyl vinyl ether	0.00	-		lbs/day		ug/l	0.00 lbs/day
2-Chloronaphthalene	1700.00	-		lbs/day	4300.0	ug/l	306.26 lbs/day
2,4,6-Trichlorophenol	2.10	ug/l	0.15	lbs/day	6.5	ug/l	0.46 lbs/day
p-Chloro-m-cresol					0.0	ug/l	0.00 lbs/day
Chloroform (HM)	5.70	-		lbs/day	470.0	ug/l	33.47 lbs/day
2-Chlorophenol	120.00	-		lbs/day	400.0	ug/l	28.49 lbs/day
1,2-Dichlorobenzene	2700.00	-		lbs/day	17000.0	ug/l	1210.78 lbs/day
1,3-Dichlorobenzene	400.00	-		lbs/day	2600.0	ug/l	185.18 lbs/day
1,4-Dichlorobenzene	400.00			lbs/day	2600.0	ug/l	185.18 lbs/day
3,3'-Dichlorobenzidine	0.04	-		lbs/day	0.1	ug/l	0.01 lbs/day
1,1-Dichloroethylene	0.06	•		lbs/day		ug/l	0.23 lbs/day
1,2-trans-Dichloroethyle	700.00			lbs/day	0.0	ug/l	0.00 lbs/day
2,4-Dichlorophenol	93.00			lbs/day	790.0	ug/l	56.27 lbs/day
1,2-Dichloropropane	0.52			lbs/day	39.0	ug/i	2.78 lbs/day
1,3-Dichloropropylene	10.00			lbs/day	1700.0	ug/l	121.08 lbs/day
2,4-Dimethylphenol	540.00	-		lbs/day	2300.0	ug/l	163.81 lbs/day
2,4-Dinitrotoluene	0.11	-		lbs/day	9.1	ug/l	0.65 lbs/day
2,6-Dinitrotoluene	0.00	-		lbs/day	0.0	ug/l	0.00 lbs/day
1,2-Diphenylhydrazine	0.04			lbs/day	0.5	ug/l	0.04 lbs/day
Ethylbenzene	3100.00	-		lbs/day	29000.0	ug/l	2065.46 lbs/day
Fluoranthene	300.00	ug/l	21.37	lbs/day	370.0	ug/l	26.35 lbs/day
4-Chlorophenyl phenyl ether							
4-Bromophenyl phenyl ether							
Bis(2-chloroisopropyl) e [.]	1400.00			lbs/day	170000.0	ug/l	12107.84 lbs/day
Bis(2-chloroethoxy) met	0.00	ug/l	0.00	lbs/day	0.0	ug/l	0.00 lbs/day
Methylene chloride (HM	4.70	ug/l	0.33	lbs/day	1600.0	ug/l	113.96 lbs/day
Methyl chloride (HM)	0.00	•	0.00	lbs/day	0.0	ug/l	0.00 lbs/day
Methyl bromide (HM)	0.00	ug/l	0.00	lbs/day	0.0	ug/l	0.00 lbs/day
Bromoform (HM)	4.30		0.31	lbs/day	360.0	ug/l	25.64 lbs/day
Dichlorobromomethane	0.27	ug/l	0.02	lbs/day	22.0	ug/l	1.57 lbs/day
Chlorodibromomethane	0.41	ug/l	0.03	lbs/day	34.0	ug/l	2.42 lbs/day
Hexachlorobutadiene(c)	0.44	ug/l	0.03	lbs/day	50.0	ug/l	· 3.56 lbs/day
Hexachlorocyclopentadi	240.00	ug/l	17.09	lbs/day	17000.0	ug/l	1210.78 lbs/day
Isophorone	8.40	ug/l	0.60	lbs/day	600.0	ug/l	42.73 lbs/day
Naphthalene							
Nitrobenzene	17.00	ug/l	1.21	lbs/day	1900.0	ug/l	135.32 lbs/day
2-Nitrophenol	0.00	ug/l	0.00	lbs/day	0.0	ug/l	0.00 lbs/day
4-Nitrophenol	0.00	ug/l	0.00	lbs/day		ug/l	0.00 lbs/day
2,4-Dinitrophenol	70.00	-	4.99	lbs/day	14000.0	-	997.12 lbs/day
4,6-Dinitro-o-cresol	13.00	ug/l	0.93	lbs/day	765.0	-	54.49 lbs/day
N-Nitrosodimethylamine	0.00069	ug/l		lbs/day	8.1	-	0.58 lbs/day
N-Nitrosodiphenylamine	5.00	ug/l		lbs/day	16.0	•	1.14 lbs/day
N-Nitrosodi-n-propylami	0.01	-		lbs/day		ug/l	0.10 lbs/day
Pentachlorophenol	0.28	-		lbs/day		ug/l	0.58 lbs/day
		-				5	· · · · · · · · · · · · · · · · · · ·

6.

	18.2			
Phenol	2.10E+04 ug/l	1.50E+03 lbs/day	4.6E+06 ug/l	3.28E+05 lbs/day
Bis(2-ethylhexyl)phthala	1.80 ug/l	0.13 lbs/day	5.9 ug/i	0.42 lbs/day
Butyl benzyl phthalate	3000.00 ug/l	213.67 lbs/day	5200.0 ug/l	370.36 lbs/day
Di-n-butyl phthalate	2700.00 ug/l	192.30 lbs/day	12000.0 ug/l	854.67 lbs/day
Di-n-octyl phthlate				-
Diethyl phthalate	23000.00 ug/l	1638.12 lbs/day	120000.0 ug/l	8546.71 lbs/day
Dimethyl phthlate	3.13E+05 ug/i	2.23E+04 lbs/day	2.9E+06 ug/l	2.07E+05 lbs/day
Benzo(a)anthracene (P/	0.0028 ug/l	0.00 lbs/day	0.0 ug/l	0.00 lbs/day
Benzo(a)pyrene (PAH)	0.0028 ug/l	0.00 lbs/day	0.0 ug/l	0.00 lbs/day
Benzo(b)fluoranthene (F	0.0028 ug/l	0.00 lbs/day	0.0 ug/l	0.00 lbs/day
Benzo(k)fluoranthene (F	0.0028 ug/l	0.00 lbs/day	0.0 ug/l	0.00 lbs/day
Chrysene (PAH)	0.0028 ug/l	0.00 lbs/day	0.0 ug/l	0.00 lbs/day
Acenaphthylene (PAH)	-	2	Ū	· · · · · · · · · · · · · · · · · · ·
Anthracene (PAH)	9600.00 ug/l	683.74 lbs/day	0.0 ug/l	0.00 lbs/day
Dibenzo(a,h)anthracene	0.0028 ug/l	0.00 lbs/day	0.0 ug/l	0.00 lbs/day
Indeno(1,2,3-cd)pyrene	0.0028 ug/l	0.00 lbs/day	0.0 ug/l	0.00 lbs/day
Pyrene (PAH)	960.00 ug/l	68.37 lbs/day	11000.0 ug/l	783.45 lbs/day
Tetrachloroethylene	0.80 ug/l	0.06 lbs/day	8.9 ug/l	0.63 lbs/day
Toluene	6800.00 ug/l	484.31 lbs/day	200000 ug/l	14244.52 lbs/day
Trichloroethylene	2.70 ug/l	0.19 lbs/day	81.0 ug/l	5.77 lbs/day
Vinyl chloride	2.00 ug/l	0.14 lbs/day	525.0 ug/i	37.39 lbs/day
	2.00 ug/1	0.14 100/day	0.0	0.00 lbs/day
Pesticides			0.0	0.00 lbs/day
Aldrin	0.0001 ug/l	0.00 lbs/day	0.0 ug/l	0.00 lbs/day
Dieldrin	0.0001 ug/l	0.00 lbs/day	0.0 ug/l	0.00 lbs/day
Chlordane	0.0006 ug/l	0.00 lbs/day	0.0 ug/l	
4,4'-DDT	0.0006 ug/l	0.00 lbs/day	0.0 ug/l	0.00 lbs/day
4,4'-DDE	0.0006 ug/l	0.00 lbs/day	0.0 ug/l	0.00 lbs/day
4,4'-DDD	0.0008 ug/l	0.00 lbs/day	-	0.00 lbs/day
alpha-Endosulfan	0.9300 ug/l	-	0.0 ug/l	0.00 lbs/day
beta-Endosulfan	0.9300 ug/l	0.07 lbs/day	2.0 ug/l	0.14 lbs/day
Endosulfan sulfate	•	0.07 lbs/day	2.0 ug/l	0.14 lbs/day
Endrin	0.9300 ug/l	0.07 lbs/day	2.0 ug/l	0.14 lbs/day
	0.7600 ug/l	0.05 lbs/day	0.8 ug/l	0.06 lbs/day
Endrin aldehyde	0.7600 ug/l	0.05 lbs/day	0.8 ug/l	0.06 lbs/day
Heptachlor	0.0002 ug/l	0.00 lbs/day	0.0 ug/l	0.00 lbs/day
Heptachlor epoxide				
PCB's				
	0.000044 ug/l		0.0	
PCB 1242 (Arochlor 124	0	0.00 lbs/day	0.0 ug/l	0.00 lbs/day
PCB-1254 (Arochlor 12:	0.000044 ug/l	0.00 lbs/day	0.0 ug/l	0.00 lbs/day
PCB-1221 (Arochlor 122	0.000044 ug/l	0.00 lbs/day	0.0 ug/l	0.00 lbs/day
PCB-1232 (Arochlor 12)	0.000044 ug/l	0.00 lbs/day	0.0 ug/l	0.00 lbs/day
PCB-1248 (Arochlor 124	0.000044 ug/l	0.00 lbs/day	0.0 ug/l	0.00 lbs/day
PCB-1260 (Arochlor 126	0.000044 ug/l	0.00 lbs/day	0.0 ug/l	0.00 lbs/day
PCB-1016 (Arochlor 10'	0.000044 ug/l	0.00 lbs/day	0.0 ug/l	0.00 lbs/day
Destisida				
Pesticide	0.000750	0.00	0.0 "	
Toxaphene	0.000750 ug/l	0.00	0.0 ug/l	0.00 lbs/day
Diavin				
Dioxin	4 205 00			A
Dioxin (2,3,7,8-TCDD)	1.30E-08 ug/l	0.00 lbs/day	1.40E-08	0.00

Metals				
Antimony	14.0 ug/l	1.00 lbs/day		
Arsenic	50.0 ug/l	3.56 lbs/day	4300.00 ug/l	306.26 lbs/day
Asbestos	7.00E+06 ug/l	4.99E+05 lbs/day	-	
Beryllium		-		
Cadmium				
Chromium (III)				
Chromium (VI)			3	
Copper				
Cyanide	1.30E+03 ug/l	92.59 lbs/day	2.2E+05 ug/l	15668.97 lbs/day
Lead	700.0 ug/l	49.86 lbs/day		2
Mercury			0.15 ug/l	0.01 lbs/day
Nickel			4600.00 ug/l	327.62 lbs/day
Selenium	0.1 ug/l	0.01 lbs/day	0	
Silver	610.0 ug/l	43.45 lbs/day		
Thallium	_		6.30 ug/l	0.45 lbs/day
Zinc			0	

There are additional standards that apply to this receiving water, but were not considered in this modeling/waste load allocation analysis.

VII. Mathematical Modeling of Stream Quality

Model configuration was accomplished utilizing standard modeling procedures. Data points were plotted and coefficients adjusted as required to match observed data as closely as possible.

The modeling approach used in this analysis included one or a combination of the following models.

(1) The Utah River Model, Utah Division of Water Quality, 1992. Based upon STREAMDO IV (Region VIII) and Supplemental Ammonia Toxicity Models; EPA Region VIII, Sept. 1990 and QUAL2E (EPA, Athens, GA).

- (2) Utah Ammonia/Chlorine Model, Utah Division of Water Quality, 1992.
- (3) AMMTOX Model, University of Colorado, Center of Limnology, and EPA Region 8
- (4) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644.

Coefficients used in the model were based, in part, upon the following references:

(1) Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling. Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens Georgia. EPA/600/3-85/040 June 1985.

(2) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644.

VIII. Modeling Information

The required information for the model may include the following information for both the upstream conditions at low flow and the effluent conditions:

Flow, Q, (cfs or MGD)	D.O. mg/l
Temperature, Deg. C.	Total Residual Chlorine (TRC), mg/l
рН	Total NH3-N, mg/l
BOD5, mg/l	Total Dissolved Solids (TDS), mg/l
Metals, ug/l	Toxic Organics of Concern, ug/l

Other Conditions

In addition to the upstream and effluent conditions, the models require a variety of physical and biological coefficients and other technical information. In the process of actually establishing the permit limits for an effluent, values are used based upon the available data, model calibration, literature values, site visits and best professional judgement. **Model Inputs**

The following is upstream and discharge information that was utilized as inputs for the analysis. Dry washes are considered to have an upstream flow equal to the flow of the discharge.

Current Upstream li	nformation Stream							
	Critical Low							
	Flow	Temp.	рН	T-NH3	BOD5	DO	TRC	TDS
	cfs	Deg. C		mg/I as N	mg/l	mg/l	mg/l	mg/l
Summer (Irrig. Season)	12.10	12.0	8.5	0.01	0.05	7.64	0.00	213.0
Fall	12.10	2.1	8.4	0.01	0.05		0.00	265.0
Winter	12.10	1.0	8.3	0.01	0.05		0.00	307.0
Spring	12.10	7.3	8.4	0.01	0.05	-	0.00	230.0
Dissolved	AI	As	Cd	CrIII	CrVI	Copper	Fe	Pb
Metals	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
All Seasons	13.67	0.50	0.06	1.77	3.975*	0.95	15.2	0.35
Dissolved	Hg	Ni	Se	Ag	Zn	Boron		
Metals	ug/l	ug/i	ug/l	ug/l	ug/l	ug/l		
All Seasons	0.0000	2.50	0.92	0.25	7.12	20.1	*~80	0% MDL

Projected Discharge Information

Season	Flow, MGD	Temp.	TDS mg/l	TDS tons/day
Summer	0.72000	13.9	542.00	1.62697
Fall	0.72000	13.9		
Winter	0.72000	13.9		
Spring	0.72000	13.9		

All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality.

IX. Effluent Limitations

Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9).

Other conditions used in the modeling effort coincide with the environmental conditions expected at low stream flows.

Effluent Limitation for Flow based upon Water Quality Standards

In-stream criteria of downstream segments will be met with an effluent flow maximum value as follows:

Season	Daily Average	
Fall 0.7	20 MGD 20 MGD	1.114 cfs 1.114 cfs
Winter 0.7	20 MGD	1.114 cfs
Spring 0.7	20 MGD	1.114 cfs

Flow Requirement or Loading Requirement

The calculations in this wasteload analysis utilize the maximum effluent discharge flow of 0.72 MGD. If the discharger is allowed to have a flow greater than 0.72 MGD during 7Q10 conditions, and effluent limit concentrations as indicated, then water quality standards will be violated. In order to prevent this from occuring, the permit writers must include the discharge flow limititation as indicated above; or, include loading effluent limits in the permit.

Effluent Limitation for Whole Effluent Toxicity (WET) based upon WET Policy

Effluent Toxicity will not occur in downstream segements if the values below are met.

WET Requirements	LC50 >	61.4% Effluent	[Acute]
	IC25 >	8.4% Effluent	[Chronic]

Effluent Limitation for Biological Oxygen Demand (BOD) based upon Water Quality **Standards or Regulations**

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent BOD limitation as follows:

Season	Concentration	
Summer Fall Winter Spring	25.0 mg/l as BOD5 25.0 mg/l as BOD5 25.0 mg/l as BOD5 25.0 mg/l as BOD5	150.1 lbs/day 150.1 lbs/day 150.1 lbs/day 150.1 lbs/day
	_	

Effluent Limitation for Dissolved Oxygen (DO) based upon Water Quality Standards

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent D.O. limitation as follows:

Season	Concentration
Summer	6.50
Fall	6.50
Winter	6.50
Spring	6.50

Effluent Limitation for Total Ammonia based upon Water Quality Standards

1

In-stream criteria of downstream segments for Total Ammonia will be met with an effluent limitation (expressed as Total Ammonia as N) as follows:

Seas	on				
	Concentr	Concentration			
Summer	4 Day Avg Chronic	16.2	mg/l as N	97.1	lbs/day
	1 Hour Avg Acute	25.5	mg/l as N	153.2	lbs/day
Fall	4 Day Avg Chronic	18.2	mg/l as N	109.0	lbs/day
	1 Hour Avg Acute	25.0	mg/l as N	150.3	lbs/day
Winter	4 Day Avg Chronic	19.9	mg/l as N	119.2	lbs/day
	1 Hour Avg Acute	28.7	mg/l as N	172.2	lbs/day
Spring	4 Day Avg Chronic	17.2	mg/I as N	103.2	lbs/day
	1 Hour Avg Acute	25.0	mg/l as N	150.3	lbs/day

Acute limit calculated with an Acute Zone of Initial Dilution (ZID) to be equal to 50.%.

Effluent Limitation for Total Residual Chlorine based upon Water Quality Standards

In-stream criteria of downstream segments for Total Residual Chlorine will be met with an effluent limitation as follows:

Season		Concentra	ation	Load		
Summer	4 Day Avg Chronic	0.119	mg/l	0.72	lbs/day	
	1 Hour Avg Acute	0.117	mg/l	0.70	lbs/day	
Fall	4 Day Avg Chronic	0.119	mg/l	0.72	lbs/day	
	1 Hour Avg Acute	0.117	mg/l	0.70	lbs/day	
Winter	4 Day Avg Chronic	0.119	mg/l	0.72	lbs/day	
	1 Hour Avg Acute	0.117	mg/l	0.70	lbs/day	
Spring	4 Day Avg Chronic	0.119	mg/l	0.00	lbs/day	
	1 Hour Avg Acute	0.117	mg/l	0.00	lbs/day	

Effluent Limitations for Total Dissolved Solids based upon Water Quality Standards

Season		Concentration		Load	
Summer Fall Winter Spring	Maximum, Acute Maximum, Acute Maximum, Acute 4 Day Avg Chronic	11922.1 11357.2 10900.9 11737.4	mg/l mg/l mg/l mg/l	35.79 34.09 32.72 35.23	tons/day tons/day tons/day tons/day
Colorado Salinity Forum Limits		Determine	d by Permi	tting Section	

Effluent Limitations for Total Recoverable Metals based upon Water Quality Standards

In-stream criteria of downstream segments for Dissolved Metals will be met with an effluent limitation as follows (based upon a hardness of 242.57 mg/l):

		4 Day Av	/erage		1 Hour A	verage	
	Concen	tration		Load	Concentration	-	Load
Aluminum*	N/A			N/A	4,749.5	ug/ł	28.6 lbs/day
Arsenic*	2,248.60	ug/l		8.7 lbs/day	2,184.0	ug/l	13.1 lbs/day
Cadmium	5.55	ug/l		0.0 lbs/day	33.5	ug/i	0.2 lbs/day
Chromium III	2,093.33	ug/l		8.1 lbs/day	23,952.1	ug/l	144.1 lbs/day
Chromium VI*	87.31	ug/l		0.3 lbs/day	81.3	ug/l	0.5 lbs/day
Copper	225.72	ug/l		0.9 lbs/day	202.4	ug/l	1.2 lbs/day
Iron*	N/A			N/A	7,072.1	ug/l	42.5 lbs/day
Lead	112.87	ug/l		0.4 lbs/day	1,620.5	ug/l	9.7 lbs/day
Mercury*	0.14	ug/l		0.0 lbs/day	15.4	ug/l	0.1 lbs/day
Nickel	1,282.47	ug/l		5.0 lbs/day	6,372.5	ug/l	38.3 lbs/day
Selenium*	44.61	ug/l		0.2 lbs/day	123.7	ug/l	0.7 lbs/day
Silver	N/A	ug/l		N/A lbs/day	110.4	ug/i	0.7 lbs/day

Ŀ,

Zinc	2,934.28 ug/l	11.4 lbs/day	1,594.1	ug/l	9.6 lbs/day
Cyanide*	61.69 ug/l	0.2 lbs/day	141.5	ug/l	0.9 lbs/day

*Limits for these metals are based on the dissolved standard.

Effluent Limitations for Heat/Temperature based upon Water Quality Standards

Summer	35.7 Deg. C.	96.3 Deg. F
Fall	25.8 Deg. C.	78.5 Deg. F
Winter	24.7 Deg. C.	76.5 Deg. F
Spring	31.0 Deg. C.	87.8 Deg. F

Effluent Limitations for Organics [Pesticides] Based upon Water Quality Standards

In-stream criteria of downstream segments for Organics [Pesticides] will be met with an effluent limit as follows:

	4 Day Average		1 Hour A		
	Concentration	Load	Concentration	-	Load
Aldrin			1.5E+00	ug/l	1.40E-02 lbs/day
Chlordane	4.30E-03 ug/l	2.58E-02 lbs/day	1.2E+00	ug/l	1.12E-02 lbs/day
DDT, DDE	1.00E-03 ug/l	6.00E-03 lbs/day	5.5E-01	ug/l	5.12E-03 lbs/day
Dieldrin	1.90E-03 ug/l	1.14E-02 lbs/day	1.3E+00	ug/l	1.16E-02 lbs/day
Endosulfan	5.60E-02 ug/l	3.36E-01 lbs/day	1.1E-01	ug/l	1.02E-03 lbs/day
Endrin	2.30E-03 ug/l	1.38E-02 lbs/day	9.0E-02	ug/l	8.38E-04 lbs/day
Guthion	0.00E+00_ug/l	0.00E+00 lbs/day	1.0E-02	ug/l	9.31E-05 lbs/day
Heptachlor	3.80E-03 ug/l	2.28E-02 lbs/day	2.6E-01	ug/l	2.42E-03 lbs/day
Lindane	8.00E-02 ug/l	4.80E-01 lbs/day	1.0E+00	ug/l	9.31E-03 lbs/day
Methoxychlor	0.00E+00 ug/l	0.00E+00 lbs/day	3.0E-02	ug/l	2.79E-04 lbs/day
Mirex	0.00E+00 ug/l	0.00E+00 lbs/day	1.0E-02	ug/l	9.31E-05 lbs/day
Parathion	0.00E+00 ug/l	0.00E+00 lbs/day	4.0E-02	ug/l	3.72E-04 lbs/day
PCB's	1.40E-02 ug/l	8.41E-02 lbs/day	2.0E+00	ug/l	1.86E-02 lbs/day
Pentachlorophenol	1.30E+01 ug/i	7.80E+01 lbs/day	2.0E+01	ug/l	1.86E-01 lbs/day
Toxephene	2.00E-04 ug/l	1.20E-03 lbs/day	7.3E-01	ug/l	6.79E-03 lbs/day

Effluent Targets for Pollution Indicators Based upon Water Quality Standards

In-stream criteria of downstream segments for Pollution Indicators will be met with an effluent limit as follows:

	1 Hour Average		
	Concentration	Loading	
Gross Beta (pCi/l)	50.0 pCi/L		
BOD (mg/l)	5.0 mg/l	30.1 lbs/day	
Nitrates as N	4.0 mg/l	24.1 lbs/day	
Total Phosphorus as P	0.05 mg/l	0.3 lbs/day	
Total Suspended Solids	90.0 mg/l	541.4 lbs/day	

Note: Pollution indicator targets are for information purposes only.

Effluent Limitations for Protection of Human Health [Toxics Rule] Based upon Water Quality Standards (Most stringent of 1C or 3A & 3B as appropriate.)

In-stream criteria of downstream segments for Protection of Human Health [Toxics] will be met with an effluent limit as follows:

	Maximum Concentration			
	Concentration	Load		
Toxic Organics				
Acenaphthene	1.42E+04 ug/l	8.55E+01 lbs/day		
Acrolein	3.80E+03 ug/l	2.28E+01 lbs/day		
Acrylonitrile	7.00E-01 ug/l	4.20E-03 lbs/day		
Benzene	1.42E+01 ug/l	8.55E-02 lbs/day		
Benzidine	ug/l	lbs/day		
Carbon tetrachloride	2.97E+00 ug/l	1.78E-02 lbs/day		
Chlorobenzene	8.07E+03 ug/l	4.84E+01 lbs/day		
1,2,4-Trichlorobenzene				
Hexachlorobenzene	8.90E-03 ug/l	5.34E-05 lbs/day		
1,2-Dichloroethane	4.51E+00 ug/l	2.71E-02 lbs/day		
1,1,1-Trichloroethane				
Hexachloroethane	2.25E+01 ug/l	1.35E-01 lbs/day		
1,1-Dichloroethane				
1,1,2-Trichloroethane	7.24E+00 ug/l	4.34E-02 lbs/day		
1,1,2,2-Tetrachloroethane	2.02E+00 ug/ł	1.21E-02 lbs/day		
Chloroethane				
Bis(2-chloroethyl) ether	3.68E-01 ug/l	2.21E-03 lbs/day		
2-Chloroethyl vinyl ether				
2-Chloronaphthalene	2.02E+04 ug/l	1.21E+02 lbs/day		
2,4,6-Trichlorophenol	2.49E+01 ug/l	1.50E-01 lbs/day		
p-Chloro-m-cresol				
Chloroform (HM)	6.76E+01 ug/l	4.06E-01 lbs/day		
2-Chlorophenol	1.42E+03 ug/l	8.55E+00 lbs/day		
1,2-Dichlorobenzene	3.20E+04 ug/l	1.92E+02 lbs/day		
1,3-Dichlorobenzene	4.75E+03 ug/l	2.85E+01 lbs/day		

1,4-Dichlorobenzene	4.75E+03 ug/l	2.85E+01 lbs/day
3,3'-Dichlorobenzidine	4.75E-01 ug/l	2.85E-03 lbs/day
1,1-Dichloroethylene	6.76E-01 ug/l	4.06E-03 lbs/day
1,2-trans-Dichloroethylene1		
2,4-Dichlorophenol	1.10E+03 ug/l	6.62E+00 lbs/day
1,2-Dichloropropane	6.17E+00 ug/i	3.70E-02 lbs/day
1,3-Dichloropropylene	1.19E+02 ug/ł	7.12E-01 lbs/day
2,4-Dimethylphenol	6.41E+03 ug/l	3.85E+01 lbs/day
2,4-Dinitrotoluene	1.30E+00 ug/l	7.83E-03 lbs/day
2,6-Dinitrotoluene	_	
1,2-Diphenylhydrazine	4.75E-01 ug/l	2.85E-03 lbs/day
Ethylbenzene	3.68E+04 ug/l	2.21E+02 lbs/day
Fluoranthene	3.56E+03 ug/l	2.14E+01 lbs/day
4-Chlorophenyl phenyl ether		• • • • • • • • • • • • • • • • •
4-Bromophenyl phenyl ether		
Bis(2-chloroisopropyl) ether	1.66E+04 ug/l	9.97E+01 lbs/day
Bis(2-chloroethoxy) methane	1.00E · 04 ug/	5.57 E 101 153/04y
Methylene chloride (HM)	5.58E+01 ug/l	3.35E-01 lbs/day
Methyl chloride (HM)	0.00E for ug/	0.00E-01 103/04y
Methyl bromide (HM)		
Bromoform (HM)	5.10E+01 ug/l	3.06E-01 lbs/day
Dichlorobromomethane(HM)	3.20E+00 ug/l	1.92E-02 lbs/day
Chlorodibromomethane (HM)	4.86E+00 ug/l	,
	5	2.92E-02 lbs/day
Hexachlorocyclopentadiene	2.85E+03 ug/l	1.71E+01 lbs/day
Isophorone	9.97E+01 ug/l	5.98E-01 lbs/day
Naphthalene Nitrobenzene		
2-Nitrophenol	2.02E+02 ug/l	1.21E+00 lbs/day
•		
4-Nitrophenol		
2,4-Dinitrophenol	8.30E+02 ug/l	4.99E+00 lbs/day
4,6-Dinitro-o-cresol	1.54E+02 ug/l	9.26E-01 lbs/day
N-Nitrosodimethylamine	8.19E-03 ug/l	4.91E-05 lbs/day
N-Nitrosodiphenylamine	5.93E+01 ug/l	3.56E-01 lbs/day
N-Nitrosodi-n-propylamine	5.93E-02 ug/l	3.56E-04 lbs/day
Pentachlorophenol	3.32E+00 ug/l	1.99E-02 lbs/day
Phenol	2.49E+05 ug/l	1.50E+03 lbs/day
Bis(2-ethylhexyl)phthalate	2.14E+01 ug/l	1.28E-01 lbs/day
Butyl benzyl phthalate	3.56E+04 ug/l	2.14E+02 lbs/day
Di-n-butyl phthalate	3.20E+04 ug/l	1.92E+02 lbs/day
Di-n-octyl phthlate		
Diethyl phthalate	2.73E+05 ug/l	1.64E+03 lbs/day
Dimethyl phthlate	3.71E+06 ug/l	2.23E+04 lbs/day
Benzo(a)anthracene (PAH)	3.32E-02 ug/l	1.99E-04 lbs/day
Benzo(a)pyrene (PAH)	3.32E-02 ug/l	1.99E-04 lbs/day
Benzo(b)fluoranthene (PAH)	3.32E-02 ug/l	1.99E-04 lbs/day
Benzo(k)fluoranthene (PAH)	3.32E-02 ug/l	1.99E-04 lbs/day
Chrysene (PAH)	3.32E-02 ug/l	1.99E-04 lbs/day
Acenaphthylene (PAH)	5	,
Anthracene (PAH)		
Dibenzo(a,h)anthracene (PAH)	3.32E-02 ug/l	1.99E-04 lbs/day
Indeno(1,2,3-cd)pyrene (PAH)	3.32E-02 ug/l	1.99E-04 lbs/day
	5	.,

Pyrene (PAH)	1.14E+04 ug/l	6.84E+01 lbs/day
Tetrachloroethylene	9.49E+00 ug/l	5.70E-02 lbs/day
Toluene	8.07E+04 ug/l	4.84E+02 lbs/day
Trichloroethylene	3.20E+01 ug/l	1.92E-01 lbs/day
Vinyl chloride	2.37E+01 ug/l	1.42E-01 lbs/day
,		1. in the of the order
Pesticides		
Aldrin	1.54E-03 ug/l	9.26E-06 lbs/day
Dieldrin	1.66E-03 ug/l	9.97E-06 lbs/day
Chlordane	6.76E-03 ug/l	4.06E-05 lbs/day
4,4'-DDT	7.00E-03 ug/l	
4,4'-DDE	7.00E-03 ug/l	4.20E-05 lbs/day
4,4'-DDD	•	4.20E-05 lbs/day
	9.85E-03 ug/l	5.91E-05 lbs/day
alpha-Endosulfan beta-Endosulfan	1.10E+01 ug/l	6.62E-02 lbs/day
	1.10E+01 ug/l	6.62E-02 lbs/day
Endosulfan sulfate	1.10E+01 ug/i	6.62E-02 lbs/day
Endrin	9.02E+00 ug/l	5.41E-02 lbs/day
Endrin aldehyde	9.02E+00 ug/l	5.41E-02 lbs/day
Heptachlor	2.49E-03 ug/l	1.50E-05 lbs/day
Heptachlor epoxide		
PCB's		
PCB 1242 (Arochlor 1242)	5.22E-04 ug/l	3.13E-06 lbs/day
PCB-1254 (Arochlor 1254)	5.22E-04 ug/l	3.13E-06 lbs/day
PCB-1221 (Arochlor 1221)	5.22E-04 ug/l	3.13E-06 lbs/day
PCB-1232 (Arochlor 1232)	5.22E-04 ug/l	3.13E-06 lbs/day
PCB-1248 (Arochlor 1248)	5.22E-04 ug/l	3.13E-06 lbs/day
PCB-1260 (Arochlor 1260)	5.22E-04 ug/l	3.13E-06 lbs/day
PCB-1016 (Arochlor 1016)	5.22E-04 ug/l	3.13E-06 lbs/day
Pesticide		
Toxaphene	8.66E-03 ug/l	5.20E-05 lbs/day
Madala		
Metals	100.00	
Antimony	166.09 ug/l	1.00 lbs/day
Arsenic	587.73 ug/l	3.53 lbs/day
Asbestos	8.30E+07 ug/l	4.99E+05 lbs/day
Beryllium		
Cadmium		
Chromium (III)		
Chromium (VI)		
Copper	15422.32 ug/l	92.59 lbs/day
Cyanide	8304.32 ug/l	49.86 lbs/day
Lead	0.00	0.00
Mercury	1.66 ug/l	0.01 lbs/day
Nickel	7236.63 ug/l	43.45 lbs/day
Selenium	0.00	0.00
Silver	0.00	0.00
Thallium	20.17 ug/l	0.12 lbs/day
Zinc		S. 12 INGIGUY

Dioxin Dioxin (2,3,7,8-TCDD)

1.54E-07 ug/l

9.26E-10 lbs/day

Metals Effluent Limitations for Protection of All Beneficial Uses Based upon Water Quality Standards and Toxics Rule

		0	Acute				
	Class 4 Acute Agricultural ug/l	Class 3 Acute Aquatic Wildlife ug/l	Toxics Drinking Water Source ug/l	Acute Toxics Wildlife ug/l	1C Acute Health Criteria ug/l	Acute Most Stringent ug/l	Class 3 Chronic Aquatic Wildlife ug/l
Aluminum		4749.5				4749.5	N/A
Antimony			166.1	51012.3		166.1	
Arsenic	1186.3	2184.0	587.7		0.0	587.7	2248.6
Barium					11863.3	11863.3	
Beryllium						0.0	
Cadmium	118.0	33.5			0.0	33.5	5.5
Chromium (III)		23952.1			0.0	23952.1	2093.3
Chromium (VI)	1167.2	81.3			0.0	81.32	87.31
Copper	2362.4	202.4	15422.3			202.4	225.7
Cyanide		141.5	2609930.3			141.5	61.7
Iron		7072.1				7072.1	
Lead	1182.6	1620.5			0.0	1182.6	112.9
Mercury		15.44	1.7	1.78	0.0	1.66	0.142
Nickel		6372.5	7236.6	54571.3		6372.5	1282.5
Selenium	583.2	123.7			0.0	123.7	44.6
Silver		110.4			0.0	110.4	
Thallium			20.2	74.7		20.2	
Zinc		1594.1				1594.1	2934.3
Boron	8679.1					8679.1	
Sulfate	23726.6					23726.6	

Summary Effluent Limitations for Metals [Wasteload Allocation, TMDL]

[If Acute is more stringent than Chronic, then the Chronic takes on the Acute value.]

	WLA Acute ug/l	WLA Chroni ug/l	c
Aluminum	4749.5	N/A	
Antimony	166.09		
Arsenic	587.7	2248.6	Acute Controls
Asbestos	8.30E+07		
Barium			
Beryllium			
Cadmium	33.5	5.5	
Chromium (III)	23952.1	2093	
Chromium (VI)	81.3	87.3	Acute Controls
Copper	202.4	225.7	Acute Controls

Cyanide	141.5	61.7	
Iron	7072.1	~	
Lead	1182.6	112.9	
Mercury	1.661	0.142	
Nickel	6372.5	1282	
Selenium	123.7	44.6	
Silver	110.4	N/A	
Thallium	20.2		
Zinc	1594.1	2934.3	Acute Controls
Boron	8679.14		
Sulfate	23726.6		N/A at this Waterbody

Other Effluent Limitations are based upon R317-1.

E. coli

126.0 organisms per 100 ml

X. Antidegradation Considerations

The Utah Antidegradation Policy allows for degradation of existing quality where it is determined that such lowering of water quality is necessary to accommodate important economic or social development in the area in which the waters are protected [R317-2-3]. It has been determined that certain chemical parameters introduced by this discharge will cause an increase of the concentration of said parameters in the receiving waters. Under no conditions will the increase in concentration be allowed to interfere with existing instream water uses.

The antidegradation rules and procedures allow for modification of effluent limits less than those based strictly upon mass balance equations utilizing 100% of the assimilative capacity of the receiving water. Additional factors include considerations for "Blue-ribbon" fisheries, special recreational areas, threatened and endangered species, and drinking water sources.

An Antidegradation Level I Review was conducted on this discharge and its effect on the receiving water. Based upon that review, it has been determined that an Antidegradation Level II Review is required because the receiving water for the discharge is a Class 1C Drinking Water Source.

XI. Colorado River Salinity Forum Considerations

Discharges in the Colorado River Basin are required to have their discharge at a TDS loading of less than 1.00 tons/day unless certain exemptions apply. Refer to the Forum's Guidelines for additional information allowing for an exceedence of this value.

XII. Summary Comments

The mathematical modeling and best professional judgement indicate that violations of receiving water beneficial uses with their associated water quality standards, including important down-stream segments, will not occur for the evaluated parameters of concern as discussed above if the effluent limitations indicated above are met.