Utah Division of Water Quality ADDENDUM Statement of Basis Wasteload Analysis

Date: March 13, 2017

Facility:Oakley WWTPUPDES No. UT020061

Receiving water: Weber River (1C, 2B, 3A, 4)

This addendum summarizes the wasteload analysis that was performed to determine water quality based effluent limits (WQBEL) for this discharge. Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses (UAC R317-2-8). Projected concentrations are compared to numeric water quality standards to determine acceptability. The numeric criteria in this wasteload analysis may be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality.

Discharge Outfall 002: Weber River

The design flow for the discharge is 0.5 MGD maximum daily and 0.25 MGD maximum monthly average discharge.

Receiving Water

The receiving water for Outfall 002 is the Weber River. Per UAC R317-2-13.4.a, the designated uses for the Weber River and tributaries, from Stoddard diversion to headwaters are 1C, 2B, 3A, and 4.

- Class 1C Protected for domestic purposes with prior treatment by treatment processes as required by the Utah Division of Drinking Water.
- Class 2B Protected for infrequent primary contact recreation. Also protected for secondary contact recreation where there is a low likelihood of ingestion of water or a low degree of bodily contact with the water. Examples include, but are not limited to, wading, hunting, and fishing.
- Class 3A Protected for cold water species of game fish and other cold water aquatic life, including the necessary aquatic organisms in their food chain.
- Class 4 Protected for agricultural uses including irrigation of crops and stock watering.

The critical flow for the wasteload analysis is typically considered the lowest stream flow for seven consecutive days with a ten year return frequency (7Q10). However, since continuous flow measurements were not available immediately upstream of the wastewater treatment plant, the 20^{th} percentile of the flow records at the water quality monitoring site 4928005 Weber River above Oakley City WWTP above Millrace Road was used to estimate critical low flow.

Utah Division of Water Quality Wasteload Analysis Oakley WWTP UPDES No. UT0020061

Critical Low Flow (Annual) = 9.7 cfs

Mixing Zone

Per UAC R317-2-5, the maximum allowable mixing zone is 15 minutes of travel time for acute conditions, not to exceed 50% of stream width, and 2,500 feet for chronic conditions. Water quality standards must be met at the end of the mixing zone. The mixing zone was not delineated for this WLA; however, the discharge is presumed fully mixed within the maximum allowable mixing zone. For chronic conditions, the annual critical low flow was simulated, and for acute conditions, 50% of the critical low flow was simulated.

TMDL

The immediate receiving assessment unit (UT16020101-023 Weber River from Rockport Reservoir to Weber-Provo Canal) is not listed as impaired for any parameters per the *2016 Utah Integrated Report* (DWQ, 2017).

Rockport Reservoir and Echo Reservoir downstream are listed as impaired for temperature in the 2016 Utah Integrated Report. The Rockport Reservoir and Echo Reservoir TMDL Final Report (SWCA Environmental Consultants, 2014) includes waste load allocations for total phosphorus and total nitrogen for Oakley. These load limits are summarized below under effluent limits.

Parameters of Concern

The potential parameters of concern for the discharge/receiving water identified were total suspended solids (TSS), dissolved oxygen (DO), BOD₅, total phosphorus (TP), total nitrogen (TN) and total ammonia (TAN), as determined in consultation with the UPDES Permit Writer.

Water Quality Modeling

A QUAL2Kw model of the receiving water was built and calibrated under contract by Utah State University (USU). The model was calibrated to synoptic survey data collected in the summer of 2010 by USU and DWQ (Neilson et al., 2012). Subsequently, the model was extended downstream to the confluence with Beaver Creek.

Receiving water quality data was obtained from monitoring site 4928005 Weber River above Oakley City WWTP above Millrace Road for 2005-2016. The average seasonal value was calculated for each constituent in the receiving water.

The calibrated model was used to determine WQBELs for BOD₅, TAN, TN, TP, and DO. Effluent concentrations were adjusted so that water quality standards were not exceeded at the end of the mixing zone. QUAL2Kw rates, input and output for nutrient related constituents are summarized in Appendix A. The calibration and wasteload QUAL2Kw models are available for review by request.

Utah Division of Water Quality Wasteload Analysis Oakley WWTP UPDES No. UT0020061

Effluent limits for conservative constituents were determined using a mass balance mixing analysis (DWQ, 2012). The mass balance analysis is summarized in Appendix B.

WET Limits

The percent of effluent in the receiving water in a fully mixed condition, and acute and chronic dilution in a not fully mixed condition are calculated in the WLA in order to generate WET limits. The LC₅₀ (lethal concentration, 50%) percent effluent for acute toxicity and the IC₂₅ (inhibition concentration, 25%) percent effluent for chronic toxicity, as determined by the WET test, needs to be below the WET limits, as determined by the WLA. The WET limit for LC₅₀ is typically 100% effluent and does not need to be determined by the WLA.

Table 1: WET Limits for IC25

Season	Percent Effluent
Annual	4%

Effluent Limits

Water quality based effluent limits are summarized in Table 2. The complete list of limits is included in Appendix A and B.

The DO in the Weber River is not significantly impacted by the discharge from the Oakley WWTP. Therefore, secondary treatment requirements (R317-1-3) for BOD₅ are sufficient to meet water quality standards in the receiving water.

Tuble 21 Trates Vault, Dabea Linacht Linnes

		Acute		Chronic		2
Effluent Constituent	Ston dond	Limit	Averagin	Standar	Limit	Averaging
	Stalidard	LIIIIIt	g Period	d	Limit	Period
Flow (MGD)		0.50	1 day		0.25	30 days
Dissolved Oxygen (mg/L)	4.0	5.0	Instant	6.5	5.0	30 days
$BOD_5 (mg/L)$	None	35	7 days	None	25	30 days
Ammonia (mg/l)	Varies	20	1 hour	Varies	20	30 days
Total Phosphorus (kg)						
Summer: April – Sept.					173	
Annual					346	
Total Nitrogen (kg)						
Summer: April – Sept.					1,732	
Annual					3,464	

Antidegradation Level I Review

The objective of the Level I ADR is to ensure the protection of existing uses, defined as the beneficial uses attained in the receiving water on or after November 28, 1975. No evidence is known that the existing uses deviate from the designated beneficial uses for the receiving water. Therefore, the beneficial uses will be protected if the discharge remains below the WQBELs presented in this wasteload.

Utah Division of Water Quality Wasteload Analysis Oakley WWTP UPDES No. UT0020061

A Level II Antidegradation Review (ADR) is required for this discharge since the receiving water is designated as a Class 1C drinking water source.

Prepared by: Nicholas von Stackelberg, P.E. Standards and Technical Services Section

Files:

WLA Document: *oakley_potw_wla_2017-03-13.doc* QUAL2Kw Wasteload Model: *oakley_potw_wla_2017.xls* QUAL2Kw Calibration Model: *qual2kw Oakley City Calibration V1.2b.xls*

References:

Utah Wasteload Analysis Procedures Version 1.0. 2012. Utah Division of Water Quality.

Field Data Collection for QUAL2Kw Model Build and Calibration Standard Operating Procedures Version 1.0. 2012. Utah Division of Water Quality.

Using QUAL2K Modeling to Support Nutrient Criteria Development and Wasteload Analyses in Utah. 2012. Neilson, B.T., A.J. Hobson, N. von Stackelberg, M. Shupryt, and J.D. Ostermiller.

2016 Integrated Report. 2016. Utah Division of Water Quality.

Rockport Reservoir and Echo Reservoir Total Maximum Daily Loads Final Report. 2014. SWCA Environmental Consultants, Inc.

Rockport Reservoir and Echo Reservoir Total Maximum Daily Loads Implementation Plan. 2013. SWCA Environmental Consultants, Inc.

DWQ-2017-002333

WASTELOAD ANALYSIS [WLA] Appendix A: QUAL2Kw Model

Discharge Information	Summer	Fall	Winter	Spring
pH	7.95	7.82	8.17	8.26
Alkalinity (mg/L)	111	111	111	111
Detritus [POM] (mg/L)	0.6	0.6	0.6	0.6
Phytoplankton (μg/L)	2.0	2.0	2.0	2.0
Inorganic Ortho-Phosphorus (mg/L)	0.010	0.010	0.010	0.010
Organic Phosphorus (mg/L)	0.002	0.002	0.002	0.002
NO3-Nitroaen (ma/L)	0.041	0.041	0.041	0.041
NH4-Nitrogen (mg/L)	0.022	0.022	0.022	0.022
Organic Nitrogen (mg/L)	0.117	0.117	0.117	0.117
CBOD _c (mg/L)	22	22	22	22
Dissolved Oxygen (mg/L)	2.0 8.7	11.4	2.0	9.5
Inorganic Suspended Solids (mg/L)	200	200	200 23	200
Specific Conductance (umbos)	265	2.0	2.1	9.0 265
FIOW (CIS)	9.7	9.7	9.7	9.7 9.8
Headwater/Upstream Information	Summer	Fall	Winter	Spring
Modeling Information	_			
Chronic River Width:	100.0%			
Acute River Width:	50.0%			
	4.9	Annual		Acute Critical Low Flow
Stream Flows [cfs]:	9.7	Annual		Chronic Critical I ow Flow
Receiving Water: Stream Classification:	Weber River	1		
	0.50	Maximum Da	IIY FIOW	
Permit Flow [MGD]:	0.25	Maximum Mo	onthly Flow	
UPDES No:	UT-0020061			
Discharging Facility:	Oakley WW	TP		

Onionic	Gammer	i un	Winter	opinig
Flow (cfs)	0.3	0.3	0.3	0.3
Temperature (deg C)	15.9	12.1	8.1	11.3
Inorganic Suspended Solids (mg/L)	583	583	583	583
Organic Nitrogen (mg/L)	6.000	6.000	6.000	6.000
NO3-Nitrogen (mg/L)	3.097	7.638	5.278	3.675
Organic Phosphorus (mg/L)	0.255	0.000	0.174	0.218
Inorganic Phosphorus (mg/L)	0.962	1.956	1.015	0.824
Alkalinity (mg/L)	142	142	142	142
pH	7.57	7.34	7.54	7.55
Acute	Summer	Fall	Winter	Spring
Acute Flow (cfs)	Summer 0.5	Fall 0.5	Winter 0.5	Spring 0.5
Acute Flow (cfs) Temperature (deg C)	Summer 0.5 15.9	Fall 0.5 12.1	Winter 0.5 8.1	Spring 0.5 11.3
Acute Flow (cfs) Temperature (deg C) Inorganic Suspended Solids (mg/L)	Summer 0.5 15.9 583	Fall 0.5 12.1 583	Winter 0.5 8.1 583	Spring 0.5 11.3 583
Acute Flow (cfs) Temperature (deg C) Inorganic Suspended Solids (mg/L) Organic Nitrogen (mg/L)	Summer 0.5 15.9 583 6.000	Fall 0.5 12.1 583 6.000	Winter 0.5 8.1 583 6.000	Spring 0.5 11.3 583 6.000
Acute Flow (cfs) Temperature (deg C) Inorganic Suspended Solids (mg/L) Organic Nitrogen (mg/L) NO3-Nitrogen (mg/L)	Summer 0.5 15.9 583 6.000 3.097	Fall 0.5 12.1 583 6.000 7.638	Winter 0.5 8.1 583 6.000 5.278	Spring 0.5 11.3 583 6.000 3.675
Acute Flow (cfs) Temperature (deg C) Inorganic Suspended Solids (mg/L) Organic Nitrogen (mg/L) NO3-Nitrogen (mg/L) Organic Phosphorus (mg/L)	Summer 0.5 15.9 583 6.000 3.097 0.255	Fall 0.5 12.1 583 6.000 7.638 0.000	Winter 0.5 8.1 583 6.000 5.278 0.174	Spring 0.5 11.3 583 6.000 3.675 0.218
Acute Flow (cfs) Temperature (deg C) Inorganic Suspended Solids (mg/L) Organic Nitrogen (mg/L) NO3-Nitrogen (mg/L) Organic Phosphorus (mg/L) Inorganic Phosphorus (mg/L)	Summer 0.5 15.9 583 6.000 3.097 0.255 0.255	Fall 0.5 12.1 583 6.000 7.638 0.000 0.000	Winter 0.5 8.1 583 6.000 5.278 0.174 0.174	Spring 0.5 11.3 583 6.000 3.675 0.218 0.218
Acute Flow (cfs) Temperature (deg C) Inorganic Suspended Solids (mg/L) Organic Nitrogen (mg/L) NO3-Nitrogen (mg/L) Organic Phosphorus (mg/L) Inorganic Phosphorus (mg/L) Alkalinity (mg/L)	Summer 0.5 15.9 583 6.000 3.097 0.255 0.255 142	Fall 0.5 12.1 583 6.000 7.638 0.000 0.000 142	Winter 0.5 8.1 583 6.000 5.278 0.174 0.174 142	Spring 0.5 11.3 583 6.000 3.675 0.218 0.218 0.218 142
Acute Flow (cfs) Temperature (deg C) Inorganic Suspended Solids (mg/L) Organic Nitrogen (mg/L) NO3-Nitrogen (mg/L) Organic Phosphorus (mg/L) Inorganic Phosphorus (mg/L) Alkalinity (mg/L) pH	Summer 0.5 15.9 583 6.000 3.097 0.255 0.255 142 7.85	Fall 0.5 12.1 583 6.000 7.638 0.000 0.000 142 7.84	Winter 0.5 8.1 583 6.000 5.278 0.174 0.174 142 8.13	Spring 0.5 11.3 583 6.000 3.675 0.218 0.218 0.218 142 8.15

Effluent Limitation for Biological Oxygen Demand (BOD₅) based upon Water Quality Standards

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent BOD5 limitation as follows:

	Concent		
Season	Chronic	Acute	
Summer	25.0	35.0	mg/L as CBOD5
Fall	25.0	35.0	mg/L as CBOD5
Winter	25.0	35.0	mg/L as CBOD5
Spring	25.0	35.0	mg/L as CBOD5

Effluent Limitation for Dissolved Oxygen (DO) based upon Water Quality Standards

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent DO limitation as follows:

Concentration					
Chronic	Acute				
5.0	5.0	mg/L			
5.0	5.0	mg/L			
5.0	5.0	mg/L			
5.0	5.0	mg/L			
	Concen Chronic 5.0 5.0 5.0 5.0	Concentration Chronic Acute 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0			

Effluent Limitation for Total Ammonia based upon Water Quality Standards

In-stream criteria of downstream segments for Total Ammonia will be met with an effluent limitation (expressed as Total Ammonia as N) as follows:

Total Ammonia					
Season	Chronic	Acute			
Summer	20.0	20.0	mg/L as N		
Fall	20.0	20.0	mg/L as N		
Winter	20.0	20.0	mg/L as N		
Spring	20.0	20.0	mg/L as N		

Summary Comments

The mathematical modeling and best professional judgement indicate that violations of receiving stream segments will not occur for the evaluated parameters of concern if the effluent limitations indicated above are met.

Coefficients and Other Model Information

Parameter Stoichiometry:	Value	Units
Carbon	40	аC
Nitrogon	70	gU
Rhambarria	1.2	yn «D
Phosphorus	1	gP
Dry weight	100	gD
Chlorophyll	1	gA
Inorganic suspended solids:		
Settling velocity	0.001	m/d
Oxygen:		
Reaeration model	Internal	
Temp correction	1 024	
Reperation wind effect	None	
O2 for earbon evidetion	0.60	~00/~0
	2.09	yO2/yC
O2 for NH4 hitrification	4.57	gO2/gN
Oxygen inhib model CBOD oxidation	Exponential	
Oxygen inhib parameter CBOD oxidation	0.60	L/mgO2
Oxygen inhib model nitrification	Exponential	
Oxygen inhib parameter nitrification	0.60	L/mgO2
Oxygen enhance model denitrification	Exponential	
Oxygen enhance parameter denitrification	0.60	L/mgO2
Oxygen inhib model phyto resp	Exponential	0
Oxygen inhib narameter phyto resp	0.60	L/maO2
Oxygon onhance model bet alg resp	Exponential	Lingoz
Oxygen enhance model bot alg resp		L/maO2
	0.00	L/IIIgOz
SIOW CBOD?		
1 bester bester verte	0	/-1
Hydrolysis rate	0	/d
Hydrolysis rate Temp correction	0 1.047	/d
Hydrolysis rate Temp correction Oxidation rate	0 1.047 0.22265	/d /d
Hydrolysis rate Temp correction Oxidation rate Temp correction	0 1.047 0.22265 1.047	/d /d
Hydrolysis rate Temp correction Oxidation rate Temp correction <i>Fast CBOD:</i>	0 1.047 0.22265 1.047	/d /d
Hydrolysis rate Temp correction Oxidation rate Temp correction <i>Fast CBOD:</i> Oxidation rate	0 1.047 0.22265 1.047 10	/d /d /d
Hydrolysis rate Temp correction Oxidation rate Temp correction <i>Fast CBOD:</i> Oxidation rate Temp correction	0 1.047 0.22265 1.047 10 1.047	/d /d /d
Hydrolysis rate Temp correction Oxidation rate Temp correction <i>Fast CBOD:</i> Oxidation rate Temp correction <i>Organic N:</i>	0 1.047 0.22265 1.047 10 1.047	/d /d /d
Hydrolysis rate Temp correction Oxidation rate Temp correction <i>Fast CBOD:</i> Oxidation rate Temp correction <i>Organic N:</i> Hydrolysis	0 1.047 0.22265 1.047 10 1.047 0.0810275	/d /d /d
Hydrolysis rate Temp correction Oxidation rate Temp correction <i>Fast CBOD:</i> Oxidation rate Temp correction <i>Organic N:</i> Hydrolysis Temp correction	0 1.047 0.22265 1.047 10 1.047 0.0810275 1.07	/d /d /d
Hydrolysis rate Temp correction Oxidation rate Temp correction <i>Fast CBOD:</i> Oxidation rate Temp correction <i>Organic N:</i> Hydrolysis Temp correction Settling velocity	0 1.047 0.22265 1.047 10 1.047 0.0810275 1.07 0.155642	/d /d /d /d m/d
Hydrolysis rate Temp correction Oxidation rate Temp correction <i>Fast CBOD:</i> Oxidation rate Temp correction <i>Organic N:</i> Hydrolysis Temp correction Settling velocity <i>Ammonium:</i>	0 1.047 0.22265 1.047 10 1.047 0.0810275 1.07 0.155642	/d /d /d /d m/d
Hydrolysis rate Temp correction Oxidation rate Temp correction <i>Fast CBOD:</i> Oxidation rate Temp correction <i>Organic N:</i> Hydrolysis Temp correction Settling velocity <i>Ammonium:</i> Nitrification	0 1.047 0.22265 1.047 10 1.047 0.0810275 1.07 0.155642 3.483972	/d /d /d m/d
Hydrolysis rate Temp correction Oxidation rate Temp correction <i>Fast CBOD:</i> Oxidation rate Temp correction <i>Organic N:</i> Hydrolysis Temp correction Settling velocity <i>Ammonium:</i> Nitrification Temp correction	0 1.047 0.22265 1.047 10 1.047 0.0810275 1.07 0.155642 3.483972 1.07	/d /d /d m/d /d
Hydrolysis rate Temp correction Oxidation rate Temp correction <i>Fast CBOD:</i> Oxidation rate Temp correction <i>Organic N:</i> Hydrolysis Temp correction Settling velocity <i>Ammonium:</i> Nitrification Temp correction	0 1.047 0.22265 1.047 10 1.047 0.0810275 1.07 0.155642 3.483972 1.07	/d /d /d m/d /d
Hydrolysis rate Temp correction Oxidation rate Temp correction <i>Fast CBOD:</i> Oxidation rate Temp correction <i>Organic N:</i> Hydrolysis Temp correction Settling velocity <i>Ammonium:</i> Nitrification Temp correction Participation	0 1.047 0.22265 1.047 10 1.047 0.0810275 1.07 0.155642 3.483972 1.07	/d /d /d m/d /d
Hydrolysis rateTemp correctionOxidation rateTemp correctionFast CBOD:Oxidation rateTemp correctionOrganic N:HydrolysisTemp correctionSettling velocityAmmonium:NitrificationTemp correctionNitrate:DenitrificationTemp correction	0 1.047 0.22265 1.047 10 1.047 0.0810275 1.07 0.155642 3.483972 1.07 0.902462 1.07	/d /d /d /d m/d /d /d
Hydrolysis rate Temp correction Oxidation rate Temp correction <i>Fast CBOD:</i> Oxidation rate Temp correction <i>Organic N:</i> Hydrolysis Temp correction Settling velocity <i>Ammonium:</i> Nitrification Temp correction <i>Nitrate:</i> Denitrification Temp correction	0 1.047 0.22265 1.047 10 1.047 0.0810275 1.07 0.155642 3.483972 1.07 0.902462 1.07 0.902462 1.07	/d /d /d /d m/d /d /d
Hydrolysis rateTemp correctionOxidation rateTemp correctionFast CBOD:Oxidation rateTemp correctionOrganic N:HydrolysisTemp correctionSettling velocityAmmonium:NitrificationTemp correctionNitrificationTemp correctionSettling velocityActionSettling correctionSettling correctionSettling velocityActionTemp correctionSettling correctionSettlin	0 1.047 0.22265 1.047 10 1.047 0.0810275 1.07 0.155642 3.483972 1.07 0.902462 1.07 0.2395	/d /d /d /d /d /d /d /d /d
Hydrolysis rateTemp correctionOxidation rateTemp correctionFast CBOD:Oxidation rateTemp correctionOrganic N:HydrolysisTemp correctionSettling velocityAmmonium:NitrificationTemp correctionNitrate:DenitrificationTemp correctionSed denitrification transfer coeffTemp correction	0 1.047 0.22265 1.047 10 10 1.047 0.0810275 1.07 0.155642 4 3.483972 1.07 0.902462 1.07 0.2395 1.07	/d /d /d /d /d /d /d /d /d /d
Hydrolysis rateTemp correctionOxidation rateTemp correctionFast CBOD:Oxidation rateTemp correctionOrganic N:HydrolysisTemp correctionSettling velocityAmmonium:NitrificationTemp correctionNitrate:DenitrificationTemp correctionSed denitrification transfer coeffTemp correctionSed denitrification transfer coeffTemp correction	0 1.047 0.22265 1.047 10 1.047 0.0810275 1.07 0.155642 	/d /d /d /d /d /d /d /d m/d
Hydrolysis rateTemp correctionOxidation rateTemp correctionFast CBOD:Oxidation rateTemp correctionOrganic N:HydrolysisTemp correctionSettling velocityAmmonium:NitrificationTemp correctionNitrate:DenitrificationTemp correctionSed denitrification transfer coeffTemp correctionSed denitrification transfer coeffHydrolysisHydrolysis	0 1.047 0.22265 1.047 10 1.047 0.0810275 1.07 0.155642 0.155642 0.902462 1.07 0.2395 1.07 0.2395 1.07 0.199205	/d /d /d /d /d /d /d /d /d
Hydrolysis rateTemp correctionOxidation rateTemp correctionFast CBOD:Oxidation rateTemp correctionOrganic N:HydrolysisTemp correctionSettling velocityAmmonium:NitrificationTemp correctionNitrate:DenitrificationTemp correctionSed denitrification transfer coeffTemp correctionSed denitrification transfer coeffTemp correctionSed denitrification transfer coeffTemp correctionSed denitrification transfer coeffTemp correctionSet denitrification transfer coeffTemp correctionSet denitrification transfer coeffTemp correctionSet denitrification transfer coeffTemp correctionFemp correctionOrganic P:HydrolysisTemp correction	0 1.047 0.22265 1.047 10 1.047 0.0810275 1.07 0.155642 0.155642 0.0902462 1.07 0.2395 1.07 0.2395 1.07 0.199205 1.07	/d /d /d /d /d /d /d /d /d /d
Hydrolysis rateTemp correctionOxidation rateTemp correctionFast CBOD:Oxidation rateTemp correctionOrganic N:HydrolysisTemp correctionSettling velocityAmmonium:NitrificationTemp correctionNitrate:DenitrificationTemp correctionSed denitrification transfer coeffTemp correctionOrganic P:HydrolysisTemp correctionSettling velocity	0 1.047 0.22265 1.047 10 1.047 0.0810275 1.07 0.155642 0.155642 0.902462 1.07 0.2395 1.07 0.2395 1.07 0.199205 1.07 0.199205 1.07 0.165438	/d /d /d /d /d /d /d /d /d /d /d
Hydrolysis rateTemp correctionOxidation rateTemp correctionFast CBOD:Oxidation rateTemp correctionOrganic N:HydrolysisTemp correctionSettling velocityAmmonium:NitrificationTemp correctionNitrate:DenitrificationTemp correctionSed denitrification transfer coeffTemp correctionOrganic P:HydrolysisTemp correctionSettling velocity	0 1.047 0.22265 1.047 10 1.047 0.0810275 1.07 0.155642 0.155642 0.0902462 1.07 0.2395 1.07 0.2395 1.07 0.199205 1.07 0.199205 1.07 0.165438	/d /d /d /d /d /d /d /d /d /d /d /d
Hydrolysis rateTemp correctionOxidation rateTemp correctionFast CBOD:Oxidation rateTemp correctionOrganic N:HydrolysisTemp correctionSettling velocityAnnonium:NitrificationTemp correctionNitrate:DenitrificationTemp correctionSed denitrification transfer coeffTemp correctionOrganic P:HydrolysisTemp correctionSettling velocity	0 1.047 0.22265 1.047 10 1.047 0.0810275 1.07 0.155642 3.483972 1.07 0.3902462 1.07 0.2395 1.07 0.2395 1.07 0.199205 1.07 0.199205 1.07 0.165438	/d /d /d /d /d /d /d /d /d /d /d /d /d /
Hydrolysis rateTemp correctionOxidation rateTemp correctionFast CBOD:Oxidation rateTemp correctionOrganic N:HydrolysisTemp correctionSettling velocityAnmonium:NitrificationTemp correctionNitrate:Denitrification transfer coeffTemp correctionSed denitrification transfer coeffTemp correctionSetd correctionSettling velocityAnnonium:Nitrate:Denitrification transfer coeffTemp correctionSetd denitrification transfer coeffTemp correctionSettling velocityHydrolysisTemp correctionSettling velocitySettling velocity	0 1.047 0.22265 1.047 10 1.047 0.0810275 1.07 0.155642 3.483972 1.07 0.3902462 1.07 0.2395 1.07 0.2395 1.07 0.199205 1.07 0.165438 1.6467 0.8846	/d /d /d /d /d /d /d /d /d /d /d /d /d /

Utah Division of Water Quality

	Phytoplankton:					
	Max Growth rate				2.427675	/d
	Temp correction				1.07	
	Respiration rate				0.1954895	/d
	Temp correction				1.07	
	Death rate				0.57862	/d
	Temp correction				1	
	Nitrogen half sat constant				15	uaN/L
	Phosphorus half sat constant				2	uaP/I
	Inorganic carbon half sat constant				- 1 30E-05	moles/l
	Phytoplankton use HCO3- as substrate				Ves	moloo, E
	l ight model				Smith	
	Light appetant				57.6	langlova/d
	Ammonia proforonoo				15	langleys/u
	Sottling velocity				0.4011	ugiv/L
	Setting velocity				0.4811	m/a
	Dollom Plants.				Zeneralen	
	Growth model				Zero-order	
	Max Growth rate				30.3/1825	gD/m2/d or /d
	I emp correction				1.07	- / -
	First-order model carrying capacity				100	gD/m2
	Basal respiration rate				0.1285202	/d
	Photo-respiration rate parameter				0.39	unitless
	Temp correction				1.07	
	Excretion rate				0.193645	/d
	Temp correction				1.07	
	Death rate				0.017	/d
	Temp correction				1.07	
	External nitrogen half sat constant				143.544	ugN/L
	External phosphorus half sat constant				89.5825	ugP/L
	Inorganic carbon half sat constant				2.92E-06	moles/L
	Bottom algae use HCO3- as substrate				Yes	
	Light model				Half saturatio	n
	Light constant				67.0276	langlevs/d
	Ammonia preference				20.3871	uaN/I
	Subsistence quota for nitrogen				1 2329748	maN/aD
	Subsistence quota for phosphorus				0 1469345	maP/aD
	Maximum untake rate for nitrogen				1359 3435	mgN/gD/d
	Maximum uptake rate for phosphorus				155 015	mgN/gD/d mgP/gD/d
	Internal nitrogen half sat ratio				1 6379/3	iligi /gb/u
	Internal nitrogen nan sat ratio				2 000/01	
	Nitrogon uptako wator column fraction				1	
	Respective untake water column fraction				1	
	Priosphorus uplake water column fraction	1			1	
	Dissolution rate				1 210021	/d
					1.319001	/u
					1.07	
	Settling velocity				0.3537095	m/a
	pH:				0.70	
	Partial pressure of carbon dioxide				370	ppm
Atmo	spheric Inputs:	Summer	Fall	Winter	Spring	
Max.	Air Temperature, F	83.5	46.2	39.8	66.1	
Min. A	Nir Temperature, F	46.6	21.1	14.7	35.0	
Dew F	Point, Temp., F	55.7	29.3	23.7	37.7	
Wind,	ft./sec. @ 21 ft.	5.7	4.0	3.9	7.3	
Cloud	Cover, %	0.1	0.1	0.1	0.1	
Shade	9, %	0.0	0.0	0.0	0.0	
Othe	r Inputs:					
Botto	n Algae Coverage	100.0%				
Botto	n SOD Coverage	100.0%				
_	ribad COD	0.0 ~	20/m2/d			

WASTELOAD ANALYSIS [WLA] Appendix B: Mass Balance Mixing Analysis for Conservative Constituents

Discharging Facility: UPDES No:	Oakley WWTP UT-0020061	
Permit Flow [MGD]:	0.25 Maximum Monthly	Flow
	0.50 Maximum Daily Flo	W
Receiving Water:	Weber River	
Stream Classification:	1C, 2B, 3A, 4	
Stream Flows [cfs]:	9.7 Annual	Chronic Critical Low Flow
	4.9 Annual	Acute Critical Low Flow
Combined Flow [cfs]		
	10.1 Chronic	
	5.6 Acute	
Acute River Width:	50%	
Chronic River Width:	100%	

Modeling Information

A simple mixing analysis was used to determine these effluent limits.

Model Inputs

The following is upstream and discharge information that was utilized as inputs for the analysis. Dry washes are considered to have an upstream flow equal to the flow of the discharge.

All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality.

Effluent Limitations

Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9).

Other conditions used in the modeling effort reflect the environmental conditions expected at low stream flows.

Effluent Limitations for Protection of Recreation (Class 2B Waters)

Parameter Physical	Maximum Concentration
pH Minimum	6.5
pH Maximum	9.0
Bacteriological	
E. coli (30 Day Geometric Mean)	206 (#/100 mL)
E. coli (Maximum)	668 (#/100 mL)

Effluent Limitations for Protection of Aquatic Wildlife (Class 3A Waters)

Physical					
Inorganics	Chronic Standard (4 Day Average)		Acute Standard (1 Hour Average)		
	Standard	Limit	Standard	Limit	
Phenol			0.010	0.010 mg/L	
Hydrogen Sulfide (Undissociated)		0.002	0.002 mg/L	

Maximum Concentration

Total Recoverable Metals

Parameter

	Chronic Sta	Chronic Standard (4 Day Average)			Acute Standard (1 Hour Average)		
Parameter (µg/L)	Standard ¹	Background ²	Limit	Standard ¹	Background ²	Limit	
Aluminum	N/A ³	35.0	N/A	750	35.0	5,233	
Arsenic	150	1.0	3,887	340	1.0	2,466	
Cadmium	0.4	0.1	7.7	3.5	0.1	25.0	
Chromium VI	11.0	2.0	237	16.0	2.0	103.8	
Chromium III	129	2.0	3,320	2,704	2.0	19,644	
Copper	14.2	0.6	356	22.3	0.6	158	
Cyanide ²	5.2	3.5	48.7	22.0	3.5	138	
Iron				1,000	19.3	7,149	
Lead	6.0	0.1	153	153.3	0.1	1,114	
Mercury ²	0.012	0.008	0.112	2.4	0.008	17.4	
Nickel	79	0.2	2,062	713	0.2	5,182	
Selenium	4.6	1.0	94.9	18.4	1.0	128	
Silver				8.9	0.5	61.3	
Tributylin ²	0.072	0.048	0.674	0.46	0.048	3.04	
Zinc	182	10.0	4,501	182	10.0	1,262	

1: Based upon a Hardness of 164 mg/l as CaCO3

2: Background concentration assumed 67% of chronic standard

3: Where the pH is equal to or greater than 7.0 and the hardness is equal to or greater than 50 ppm as $CaC0_3$ in the receiving water after mixing, the 87 ug/L chronic criterion (expressed as total recoverable) will not apply, and aluminum will be regulated based on compliance with the 750 ug/L acute aluminum criterion (expressed as total recoverable).

Organics [Pesticides]

	Chronic Standard (4 Day Average)			Acute Standard (1 Hour Average)		
Parameter (µg/L)	Standard	Background	Limit	Standard	Background	Limit
Aldrin				1.5	1.000	4.6
Chlordane	0.0043	0.0029	0.0402	1.2	0.003	8.7
DDT, DDE	0.001	0.0007	0.0094	0.55	0.001	3.99
Diazinon	0.17	0.1133	1.59	0.17	0.113	0.53
Dieldrin	0.0056	0.0037	0.0524	0.24	0.004	1.72
Endosulfan, a & b	0.056	0.0373	0.524	0.11	0.037	0.57
Endrin	0.036	0.0240	0.337	0.086	0.024	0.475
Heptachlor & H. epoxide	0.0038	0.0025	0.0356	0.26	0.003	1.87
Lindane	0.08	0.0533	0.75	1.0	0.053	6.9
Methoxychlor				0.03	0.020	0.09
Mirex				0.001	0.001	0.003
Nonylphenol	6.6	4.4	61.8	28.0	4.4	176.0
Parathion	0.0130	0.0087	0.1217	0.066	0.009	0.425
PCB's	0.014	0.0093	0.131			
Pentachlorophenol	15.00	10	140.4	19.0	10.0	75.4
Toxephene	0.0002	0.0001	0.0019	0.73	0.0001	5.31

Radiological

Parameter	Maximum Concentration		
Gross Alpha	15 pCi/L		

Effluent Limitation for Protection of Agriculture (Class 4 Waters)

Maximum Concentration					
Standard	Background	Limit			
1,200	521	18,230			
750	110	16,802			
100	1.0	2,583			
10	0.1	258			
100	2.0	2,558			
200	0.6	5,201			
100	0.1	2,606			
50	1.0	1,279			
15	10	140			
	Standard 1,200 750 100 100 200 100 50 15	Standard Background 1,200 521 750 110 100 1.0 100 0.1 100 0.1 100 0.1 100 0.1 100 0.1 100 0.0 200 0.6 100 0.1 50 1.0 15 10			