Utah Division of Water Quality Statement of Basis ADDENDUM Wasteload Analysis and Antidegradation Level I Review - PRELIMINARY

Dat	te:	

November 30, 2016

Prepared by:

Dave Wham Do Standards and Technical Services

Facility: Moroni WWTP UPDES No. UT0020222

Receiving water: San Pitch River (2B, 3C, 3D, 4)

This addendum summarizes the wasteload analysis that was performed to determine water quality based effluent limits (WQBEL) for this discharge. Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses (UAC R317-2-8). Projected concentrations are compared to numeric water quality standards to determine acceptability. The numeric criteria in this wasteload analysis may be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality.

Discharge

Outfall 001: Moroni WWTP effluent. The treatment plant processes domestic wastewater for the City of Moroni and wastewater from the Moroni Feed Company turkey processing plant.

The maximum daily flow is 1.1 MGD as estimated by the permittee.

Receiving Water

The receiving water for Outfall 001 is the San Pitch River.

Per UAC R317-2-13.6, the designated beneficial uses of the San Pitch River and tributaries, from confluence with Sevier River to Highway U-132 crossing (with exceptions) is 2B, 3C, 3D and 4.

- Class 2B Protected for infrequent primary contact recreation. Also protected for secondary contact recreation where there is a low likelihood of ingestion of water or a low degree of bodily contact with the water. Examples include, but are not limited to, wading, hunting, and fishing.
- Class 3C Protected for nongame fish and other aquatic life, including the necessary aquatic organisms in their food chain.

- Class 3D Protected for waterfowl, shore birds and other water-oriented wildlife not included in Classes 3A, 3B, or 3C, including the necessary aquatic organisms in their food chain.
- Class 4 Protected for agricultural uses including irrigation of crops and stock watering.

Typically, the critical flow for the wasteload analysis is considered the lowest stream flow for seven consecutive days with a ten year return frequency (7Q10). Due to a lack of flow records for the San Pitch River, the 20th percentile of flow measurements was calculated on an annual basis for the irrigation season (April - September) and non- irrigation (October - March). The source of flow data was DWQ monitoring site 4946955, San Pitch R above Moroni WWTP 200 meters above 100 E, 1996-2013.

Table 1.Critical Low Flow

Season	Critical Low Flow (cfs)			
Irrigation Season	1.0			
Non-irrigation Season	17.7			

San Pitch River water quality was characterized based on samples collected from DWQ monitoring site 4946955 (2013-2014). Applicable Water Quality Standards are presented in the WLA Addendum.

<u>TMDL</u>

According to the Utah's 2016 303(d) Water Quality Assessment, the assessment unit for this section of the San Pitch River (UT16030004-005) was listed as impaired for E. coli (class 2B use), total ammonia (class 3C and 3D uses) and total dissolved solids (class 4 use).

A TMDL was completed for total dissolved solids (TDS) on the Middle San Pitch River (HUC #16030004) on November 18th 2003 (UDWQ 2003). The TMDL identified a critical season of March 1 - September 30 where the loading capacity was exceeded and load limitations apply. The TMDL identified a load limit of 1,177 tons during the critical season (March 1 - September 30), or 2,009 tons per year which is equivalent to the WWTP's design capacity of 1.1 MGD multiplied by the 1,200 mg/l water quality standard. Therefore, during the critical season, effluent limits for TDS will equal 1,200 mg/l.

Mixing Zone

The maximum allowable mixing zone is 15 minutes of travel time for acute conditions, not to exceed 50% of stream width, and 2,500 feet for chronic conditions, per UAC R317-2-5. Water quality standards must be met at the end of the mixing zone. The effluent was consider to be totally mixed as the ratio of river flow (7Q10) to discharge flow was .6 (<=2). Acute limits were calculated using 50% of the seasonal critical low flow.

Utah Division of Water Quality Wasteload Analysis Moroni Feed Company UPDES No. UT0020222

Parameters of Concern

The potential parameters of concern identified for the discharge/receiving water were TDS, E. coli, total residual chlorine and ammonia as determined in consultation with the UPDES Permit Writer.

WET Limits

The percent of effluent in the receiving water in a fully mixed condition, and acute and chronic dilution in a not fully mixed condition are calculated in the WLA in order to generate WET limits. The LC₅₀ (lethal concentration, 50%) percent effluent for acute toxicity and the IC₂₅ (inhibition concentration, 25%) percent effluent for chronic toxicity, as determined by the WET test, needs to be below the WET limits, as determined by the WLA. The WET limit for LC₅₀ is typically 100% effluent and does not need to be determined by the WLA.

IC25 WET limits for Outfalls 001 should be based on 63% effluent.

Wasteload Allocation Methods

Effluent limits were determined for conservative constituents using a simple mass balance mixing analysis (UDWQ 2012). The mass balance analysis is summarized in the Wasteload Addendum.

The water quality standard for chronic ammonia toxicity is dependent on temperature and pH, and the water quality standard for acute ammonia toxicity is dependent on pH. The AMMTOX Model developed by University of Colorado and adapted by Utah DWQ and EPA Region VIII was used to determine ammonia effluent limits (Lewis et al. 2002). The analysis is summarized in the Wasteload Addendum.

Models and supporting documentation are available for review upon request.

Antidegradation Level I Review

The objective of the Level I ADR is to ensure the protection of existing uses, defined as the beneficial uses attained in the receiving water on or after November 28, 1975. No evidence is known that the existing uses deviate from the designated beneficial uses for the receiving water. Therefore, the beneficial uses will be protected if the discharge remains below the WQBELs presented in this wasteload.

A Level II Antidegradation Review (ADR) is not required for this facility. The proposed permit is a simple renewal of an existing UPDES permit. No increase in flow or concentration of pollutants over those authorized in the the existing permit is being requested.

Utah Division of Water Quality Wasteload Analysis Moroni Feed Company UPDES No. UT0020222

Documents:

WLA Document: Moroni_WLADoc_11-30-16.docx Wasteload Analysis and Addendum: Moroni_WLA_11-30-16.xlsm Supporting Data: Moroni 8-3-16_Data.xlsm

References:

Utah Division of Water Quality. 2012. Utah Wasteload Analysis Procedures Version 1.0. Utah Division of Water Quality. 2003. San Pitch River Watershed Water Quality Management Plan.

WASTELOAD ANALYSIS [WLA] Addendum: Statement of Basis SUMMARY

Discharging Facility: Moroni WWTP UT-0020222

UPDES No: Current Flow: **Design Flow**

1.10 MGD 1.10 MGD

Design Flow

Receiving Water: San Pitch River

Stream Classification: 2B, 3C, 3D, 4 Stream Flows [cfs]:

1.0 Summer (July-Sept) 20th Percentile 17.7 Fall (Oct-Dec) 20th Percentile 17.7 Winter (Jan-Mar) 20th Percentile 1.0 Spring (Apr-June) 20th Percentile 0.0 Average 641.0 Summer (July-Sept) Average 416.0 Fall (Oct-Dec) Average 416.0 Winter (Jan-Mar) Average 641.0 Spring (Apr-June) Average

Effluent Limits:

Stream TDS Values:

Effluent Limits:			WQ Standard:	
Flow, MGD:	1.10	MGD	Design Flow	
BOD, mg/l:	25.0	Summer	5.0 Indicator	
Dissolved Oxygen, mg/l	5.5	Summer	5.0 30 Day Average	
TNH3, Chronic, mg/l:	5.3	Summer	Varies Function of pH and Temperature	
TDS, mg/l:	1200.0	Summer	1200.0	26

Modeling Parameters:

Acute River Width:	50.0%
Chronic River Width:	100.0%

Level 1 Antidegradation Level Completed: Level II Review not required.

Date: 11/30/2016

Permit Writer:

WLA by:

WQM Sec. Approval:

TMDL Sec. Approval:

30/16

WASTELOAD ANALYSIS [WLA] Addendum: Statement of Basis

Facilities:	Moroni WWTP		
Discharging to:	San Pitch River		

I. Introduction

30-Nov-16 4:00 PM

UPDES No: UT-0020222

THIS IS A DRAFT DOCUMENT

Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses [R317-2-8, UAC]. Projected concentrations are compared to numeric water quality standards to determine acceptability. The anti-degradation policy and procedures are also considered. The primary in-stream parameters of concern may include metals (as a function of hardness), total dissolved solids (TDS), total residual chlorine (TRC), un-ionized ammonia (as a function of pH and temperature, measured and evaluated interms of total ammonia), and dissolved oxygen.

Mathematical water quality modeling is employed to determine stream quality response to point source discharges. Models aid in the effort of anticipating stream quality at future effluent flows at critical environmental conditions (e.g., low stream flow, high temperature, high pH, etc).

The numeric criteria in this wasteload analysis may always be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality.

II. Receiving Water and Stream Classification

San Pitch River:	2B, 3C, 3D, 4
Antidegradation Review:	Level I review completed. Level II review not required.

III. Numeric Stream Standards for Protection of Aquatic Wildlife

Total Ammonia (TNH3)	Varies as a function of Temperature and pH Rebound. See Water Quality Standards
Chronic Total Residual Chlorine (TRC)	0.011 mg/l (4 Day Average) 0.019 mg/l (1 Hour Average)
Chronic Dissolved Oxygen (DO)	5.00 mg/l (30 Day Average) N/A mg/l (7Day Average) 3.00 mg/l (1 Day Average
Maximum Total Dissolved Solids	1200.0 mg/l

Acute and Chronic Heavy Metals (Dissolved)

	4 Day Average (Chronic) Standard		1 Hour	1 Hour Average (Acute) Standard			
Parameter	Concentrati	on Loa	d* Concentration	on	Load*		
Aluminum	87.00 ug/l	** 0.800	lbs/day 750.00) ug/l	6.892 lbs/day		
Arsenic	-		lbs/day 340.00	- <u>-</u>	3.125 lbs/day		
Cadmium	0.62 ug/l		lbs/day 6.73	-	0.062 lbs/day		
Chromium III	217.36 ug/l	1,998	lbs/day 4547.61	-	41.792 lbs/day		
ChromiumVI	11.00 ug/l	0.101	lbs/day 16.00	-	0.147 lbs/day		
Copper	24.49 ug/l	0,225	lbs/day 40.58	B ug/l	0.373 lbs/day		
Iron			1000.00) ug/l	9.190 lbs/day		
Lead	13.40 ug/l	0,123	lbs/day . 343.90) ug/l	3.160 lbs/day		
Mercury	0.0120 ug/l	0.000	lbs/day 2.40) ug/l	0.022 lbs/day		
Nickel	135.64 ug/l	1,247	lbs/day 1219.99	9 ug/l	11.212 lbs/day		
Selenium	4.60 ug/l	0.042	lbs/day 20.00) ug/l	0.184 lbs/day		
Silver	N/A ug/l	N/A	lbs/day 26.41	1 ug/l	0.243 lbs/day		
Zinc	312.02 ug/l	2.867	lbs/day 312.02	2 ug/l	2.867 lbs/day		
* Allov	ved below discharg	e			-		

**Chronic Aluminum standard applies only to waters with a pH < 7.0 and a Hardness < 50 mg/l as CaCO3

Metals Standards Based upon a Hardness of 309.44 mg/l as CaCO3

Organics [Pesticides]

	4 Day Averag	ge (Chro	onic) Standard		1 Hour Aver	age (Acute	e) Standard
Parameter	Concen	tration	Load*	C	Concentration		Load*
Aldrin					1.500	ug/l	0.014 lbs/day
Chlordane	0.004	ug/l	0.063 lbs/da	/	1.200	ug/l	0.011 lbs/day
DDT, DDE	0.001	ug/l	0.015 lbs/da		0.550	ug/l	0.005 lbs/day
Dieldrin	0.002	ug/l	0.028 lbs/da	/	1.250	ug/l	0.011 lbs/day
Endosulfan	0.056	ug/l	0.815 lbs/da	/	0.110	ug/l	0.001 lbs/day
Endrin	0.002	ug/l	0.033 lbs/da	/ ·	0.090	ug/l	0.001 lbs/day
Guthion					0.010	ug/l	0.000 lbs/day
Heptachlor	0.004	ug/l	0.055 lbs/da	/	0.260	ug/l	0.002 lbs/day
Lindane	0.080	ug/l	1.165 lbs/da	/	1.000	ug/l	0.009 lbs/day
Methoxychlor					0.030	ug/l	0.000 lbs/day
Mirex					0.010	ug/l	0.000 lbs/day
Parathion					0.040	ug/l	0.000 lbs/day
PCB's	0.014	ug/l	0.204 lbs/da	/	2.000	ug/l	0.018 lbs/day
Pentachlorophenol	13.00	ug/l	189.308 lbs/da	/	20.000	ug/l	0.184 lbs/day
Toxephene	0.0002	ug/i	0.003 lbs/da	/	0.7300	ug/l	0.007 lbs/day

IV. Numeric Stream Standards for Protection of Agriculture

	4 Day Average (Chronic) Standard		1 Hour Average (Acute) Standard		
	Concentration	Load*	Concentration	Load*	
Arsenic			100.0 ug/l	lbs/day	
Boron			750.0 ug/l	lbs/day	
Cadmium			10.0 ug/l	0.05 lbs/day	
Chromium			100.0 ug/l	lbs/day	
Copper			200.0 ug/l	lbs/day	
Lead			100.0 ug/l	lbs/day	
Selenium			50.0 ug/l	lbs/day	
TDS, Summer			1200.0 mg/l	5.51 tons/day	

V. Numeric Stream Standards for Protection of Human Health (Class 1C Waters)

4	Day Average (Chronic) S	1 Hour Average (Acute) Standard		
Metals	Concentration	Load*	Concentration	, Load*
Arsenic			ug/l	lbs/day
Barium			ug/l	lbs/day
Cadmium			ug/l	lbs/day
Chromium			ug/l	lbs/day
Lead			ug/l	lbs/day
Mercury			ug/l	lbs/day
Selenium			ug/l	lbs/day
Silver			ug/l	lbs/day
Fluoride (3)			ug/l	lbs/day
to			ug/l	lbs/day
Nitrates as N			ug/l	lbs/day
Chlorophenoxy Herbicid	es			
2,4-D			ug/l	lbs/day
2,4,5-TP			ug/l	lbs/day
Endrin			ug/l	lbs/day
ocyclohexane (Lindane)	∞		ug/l	lbs/day
Methoxychlor			ug/l	lbs/day
Toxaphene			ug/l	lbs/day

VI. Numeric Stream Standards the Protection of Human Health from Water & Fish Consumption [Toxics]

	Maximum Conc., ug/l - Acute Standards				
	Class 1C	_	(Class 3/	А, ЗВ
Toxic Organics	[2 Liters/Day for 70 Kg Pe	erson over 70 Yr.]	[6.5 g	, for 70 l	Kg Person over 70 Yr.]
Acenaphthene	ug/l	lbs/day	2700.0	ug/l	39.32 lbs/day
Acrolein	ug/l	lbs/day	780.0	ug/l	11.36 lbs/day
Acrylonitrile	ug/l	lbs/day	0.7	ug/l	0.01 lbs/day
Benzene	ug/l	lbs/day	71.0	ug/l	1.03 lbs/day
Benzidine	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
Carbon tetrachloride	ug/l	lbs/day 👒	4.4	ug/l	0.06 lbs/day
Chlorobenzene	ug/l	lbs/day	21000.0	ug/l	305.81 lbs/day
1,2,4-Trichlorobenzene					
Hexachlorobenzene	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
1,2-Dichloroethane	ug/l	lbs/day	99.0	ug/l	1.44 lbs/day

1,1,1-Trichloroethane				ŝ			
Hexachloroethane	ug/l	lbs/day	8.9	ug/l		0.13	lbs/day
1,1-Dichloroethane	0.01-0.007	N 71	10.0				
1,1,2-Trichloroethane	ug/l	lbs/day	42.0				lbs/day
1,1,2,2-Tetrachloroethai	ug/l	lbs/day	11.0	•			lbs/day
Chloroethane				ug/l			lbs/day
Bis(2-chloroethyl) ether	ug/l	lbs/day		ug/l			lbs/day
2-Chloroethyl vinyl ether	ug/l	lbs/day		ug/l			lbs/day
2-Chloronaphthalene	ug/l	lbs/day	4300.0	ug/l			lbs/day
2,4,6-Trichlorophenol	ug/l	lbs/day	6.5				lbs/day
p-Chloro-m-cresol	100 000 000 /			ug/l			lbs/day
Chloroform (HM)	ug/l	lbs/day	470.0	•			lbs/day
2-Chlorophenol	ug/l	lbs/day	400.0				lbs/day
1,2-Dichlorobenzene	ug/l	lbs/day	17000.0	ug/l			lbs/day
1,3-Dichlorobenzene	ug/l	lbs/day	2600.0	•			lbs/day
1,4-Dichlorobenzene	ug/l	lbs/day	2600.0	-			lbs/day
3,3'-Dichlorobenzidine	ug/l	lbs/day	0,1				lbs/day
1,1-Dichloroethylene	ug/l	lbs/day		ug/l			lbs/day
1,2-trans-Dichloroethyle	ug/l	lbs/day		ug/l			lbs/day
2,4-Dichlorophenol	ug/l	lbs/day	790.0	ug/l		11.50	lbs/day
1,2-Dichloropropane	ug/l	lbs/day	39.0	ug/l		0.57	lbs/day
1,3-Dichloropropylene	ug/l	lbs/day	1700.0	ug/l			lbs/day
2,4-Dimethylphenol	ug/l	lbs/day	2300.0	ug/l			lbs/day
2,4-Dinitrotoluene	ug/l	lbs/day	9.1	ug/l		0.13	lbs/day
2,6-Dinitrotoluene	ug/l	lbs/day	0.0	ug/l		0.00	lbs/day
1,2-Diphenylhydrazine	ug/l	lbs/day	0.5	ug/l		0.01	lbs/day
Ethylbenzene	ug/l	lbs/day	29000.0	ug/l		422.30	lbs/day
Fluoranthene	ug/l	lbs/day	370.0	ug/l	10	5.39	lbs/day
4-Chlorophenyl phenyl ether							
4-Bromophenyl phenyl ether							
Bis(2-chloroisopropyl) e	ug/l	lbs/day	170000.0	ug/l		2475.57	lbs/day
Bis(2-chloroethoxy) met	ug/l	lbs/day	0.0	ug/l		0.00	lbs/day
Methylene chloride (HM	ug/l	lbs/day	1600.0	ug/l		23.30	lbs/day
Methyl chloride (HM)	ug/l	lbs/day	0.0	ug/l		0.00	lbs/day
Methyl bromide (HM)	ug/l	lbs/day	0.0	ug/l		0.00	lbs/day
Bromoform (HM)	ug/l	lbs/day	360.0	ug/l		5.24	lbs/day
Dichlorobromomethane	ug/l	lbs/day	22.0	ug/l		0.32	lbs/day
Chlorodibromomethane	ug/l	lbs/day	34.0	ug/l		0.50	lbs/day
Hexachlorobutadiene(c)	ug/l	lbs/day	50.0	ug/l		0.73	lbs/day
Hexachlorocyclopentadi	ug/l	lbs/day	17000.0	ug/l		247.56	lbs/day
Isophorone	ug/l	lbs/day	600.0	ug/l		8.74	lbs/day
Naphthalene							
Nitrobenzene	ug/l	lbs/day	1900.0	ug/l		27.67	lbs/day
2-Nitrophenol	ug/l	lbs/day	0.0	ug/l		0.00	lbs/day
4-Nitrophenol	ug/l	lbs/day	0.0	ug/l		0.00	lbs/day
2,4-Dinitrophenol	ug/l	lbs/day	14000.0				lbs/day
4,6-Dinitro-o-cresol	ug/l	lbs/day	765.0	-			lbs/day
N-Nitrosodimethylamine	ug/l	lbs/day	8.1				lbs/day
N-Nitrosodiphenylamine	ug/l	lbs/day	16.0				lbs/day
N-Nitrosodi-n-propylami	ug/l	lbs/day		ug/l			lbs/day
Pentachlorophenol	ug/l	lbs/day		ug/l			lbs/day
·	10000000000000000000000000000000000000	2		0.00			

Phenol	ug/l	lbs/day	4.6E+06 ug/l	6.70E+04 lbs/day
Bis(2-ethylhexyl)phthala	ug/l	lbs/day	5.9 ug/l	0.09 lbs/day
Butyl benzyl phthalate	ug/l	lbs/day	5200.0 ug/l	75.72 lbs/day
Di-n-butyl phthalate	ug/l	lbs/day	12000.0 ug/l	174.75 lbs/day
Di-n-octyl phthlate				
Diethyl phthalate	ug/l	lbs/day	120000.0 ug/l	1747.46 lbs/day
Dimethyl phthlate	ug/l	lbs/day	2.9E+06 ug/l	4.22E+04 lbs/day
Benzo(a)anthracene (P/	ug/l	lbs/day	0.0 ug/l	0.00 lbs/day
Benzo(a)pyrene (PAH)	ug/l	lbs/day	0.0 ug/l	0.00 lbs/day
Benzo(b)fluoranthene (F	ug/l	lbs/day	0.0 ug/l	0.00 lbs/day
Benzo(k)fluoranthene (F	ug/l	lbs/day	0.0 ug/l	0.00 lbs/day
Chrysene (PAH)	ug/l	lbs/day	0.0 ug/l	0.00 lbs/day
Acenaphthylene (PAH)				
Anthracene (PAH)	ug/l	lbs/day	0.0 ug/l	0.00 lbs/day
Dibenzo(a,h)anthracene	ug/l	lbs/day	0.0 ug/l	0.00 lbs/day
Indeno(1,2,3-cd)pyrene	ug/l	lbs/day	0.0 ug/l	0.00 lbs/day
Pyrene (PAH)	ug/l	lbs/day	11000.0 ug/l	160.18 lbs/day
Tetrachloroethylene	ug/l	lbs/day	8.9 ug/l	0.13 lbs/day
Toluene	ug/l	lbs/day	200000 ug/l	2912.43 lbs/day
Trichloroethylene	ug/l	lbs/day	81.0 ug/l	1.18 lbs/day
Vinyl chloride	ug/l	lbs/day	525.0 ug/l	7.65 lbs/day
-				lbs/day
Pesticides				lbs/day
Aldrin	ug/l	lbs/day	0.0 ug/l	0.00 lbs/day
Dieldrin	ug/l	lbs/day	0.0 ug/l	0.00 lbs/day
Chlordane	ug/l	lbs/day	0.0 ug/l	0.00 lbs/day
4,4'-DDT	ug/l	lbs/day	0.0 ug/l	0.00 lbs/day
4,4'-DDE	ug/l	lbs/day	0.0 ug/l	0.00 lbs/day
4,4'-DDD	ug/l	lbs/day	0.0 ug/l	0.00 lbs/day
alpha-Endosulfan	ug/l	lbs/day	2.0 ug/l	0.03 lbs/day
beta-Endosulfan	ug/l	lbs/day	2.0 ug/l	0.03 lbs/day
Endosulfan sulfate	ug/l	lbs/day	2.0 ug/l	0.03 lbs/day
Endrin	ug/l	lbs/day	0.8 ug/l	0.03 lbs/day
Endrin aldehyde	ug/l	lbs/day	0.8 ug/l	0.01 lbs/day
Heptachlor	ug/l	lbs/day	0.0 ug/l	
Heptachlor epoxide	ugn	ibs/uay	0.0 ug/i	0.00 lbs/day
PCB's				
PCB 1242 (Arochior 124	ug/l	lbs/day	0.0 ug/l	
PCB-1254 (Arochlor 12	ug/l	lbs/day	0.0 ug/l	0.00 lbs/day
PCB-1221 (Arochlor 122	ug/l	lbs/day	-	0.00 lbs/day
PCB-1232 (Arochlor 12)	ug/i	-	0.0 ug/l	0.00 lbs/day
PCB-1248 (Arochlor 12	=	lbs/day	0.0 ug/l	0.00 lbs/day
PCB-1248 (Arochlor 12) PCB-1260 (Arochlor 12)	ug/l	lbs/day	0.0 ug/l	0.00 lbs/day
•	ug/l	lbs/day	0.0 ug/l	0.00 lbs/day
PCB-1016 (Arochlor 10 ⁻	ug/l	lbs/day	0.0 ug/l	0.00 lbs/day
Pesticide				
	1. m /l	. E	0.0 "	
Toxaphene	ug/l		0.0 ug/l	0.00 lbs/day
Diavin				
		N /		
Dioxin (2,3,7,8-TCDD)	ug/l	lbs/day		

Metals				
Antimony	ug/l	lbs/day		
Arsenic	ug/l	lbs/day	4300.00 ug/l	62.62 lbs/day
Asbestos	ug/l	lbs/day	0	,
Beryllium		-		
Cadmium				
Chromium (III)				
Chromium (VI)				
Copper				
Cyanide	ug/l	lbs/day	2.2E+05 ug/l	3203.68 lbs/day
Lead	ug/l	lbs/day	0	,
Mercury	_	2	0.15 ug/l	0.00 lbs/day
Nickel			4600.00 ug/l	66.99 lbs/day
Selenium	ug/l	lbs/day	Ū	
Silver	ug/l	lbs/day		
Thallium	_	0	6.30 ug/l	0.09 lbs/day
Zinc				,

There are additional standards that apply to this receiving water, but were not considered in this modeling/waste load allocation analysis.

VII. Mathematical Modeling of Stream Quality

Model configuration was accomplished utilizing standard modeling procedures. Data points were plotted and coefficients adjusted as required to match observed data as closely as possible.

The modeling approach used in this analysis included one or a combination of the following models.

(1) The Utah River Model, Utah Division of Water Quality, 1992. Based upon STREAMDO IV (Region VIII) and Supplemental Ammonia Toxicity Models; EPA Region VIII, Sept. 1990 and QUAL2E (EPA, Athens, GA).

- (2) Utah Ammonia/Chlorine Model, Utah Division of Water Quality, 1992.
- (3) AMMTOX Model, University of Colorado, Center of Limnology, and EPA Region 8
- (4) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644.

Coefficients used in the model were based, in part, upon the following references:

(1) Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling. Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens Georgia. EPA/600/3-85/040 June 1985.

(2) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644.

VIII. Modeling Information

The required information for the model may include the following information for both the upstream conditions at low flow and the effluent conditions:

Flow, Q, (cfs or MGD)	D.O. mg/l
Temperature, Deg. C.	Total Residual Chlorine (TRC), mg/l
рН	Total NH3-N, mg/l
BOD5, mg/l	Total Dissolved Solids (TDS), mg/l
Metals, ug/l	Toxic Organics of Concern, ug/I

Other Conditions

In addition to the upstream and effluent conditions, the models require a variety of physical and biological coefficients and other technical information. In the process of actually establishing the permit limits for an effluent, values are used based upon the available data, model calibration, literature values, site visits and best professional judgement. **Model Inputs**

The following is upstream and discharge information that was utilized as inputs for the analysis. Dry washes are considered to have an upstream flow equal to the flow of the discharge.

Current Upstream								
	Stream Critical Low					2		
	Flow	Temp.	pН	T-NH3	BOD5	DO	TRC	TDS
	cfs	Deg. C		mg/l as N	mg/l	mg/l	mg/l	mg/l
Summer (Irrig. Season)	1.0	14.9	7.8	0.03	26.00	7.07	0.00	641.0
Fall	17.7	2.5	7.8	0.06	49.00		0.00	416.0
Winter	17.7	2.5	7.8	0.06	49.00		0.00	416.0
Spring	1.0	14.9	7.8	0.03	26.00		0.00	641.0
Dissolved	Al	As	Cd	CrIII	CrVI	Copper	Fe	Pb
Metals	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
All Seasons	5.00	3.12	0.05	1.00	1.00	1.29	0.0	0.21
Dissolved	Hg	Ni	Se	Ag	Zn	Boron		
Metals	ug/i	ug/l	ug/l	ug/l	ug/l	ug/l		
All Seasons	0.0000	2.50	0.50	0.25	10.29	10.0	*	1/2 MDL

Projected Discharge Information

Season	Flow, MGD	Temp.	TDS mg/l	TDS tons/day
Summer	1.10000	19.9	607.00	2.78375
Fall	1.10000	14.4		
Winter	1.10000	14.4		
Spring	1.10000	19.9		

All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality.

IX. Effluent Limitations

Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9).

Other conditions used in the modeling effort coincide with the environmental conditions expected at low stream flows.

Effluent Limitation for Flow based upon Water Quality Standards

In-stream criteria of downstream segments will be met with an effluent flow maximum value as follows:

Season	Daily Average	
Summer Fall Winter Spring	1.100 MGD 1.100 MGD 1.100 MGD 1.100 MGD	1.702 cfs 1.702 cfs 1.702 cfs 1.702 cfs

Flow Requirement or Loading Requirement

The calculations in this wasteload analysis utilize the maximum effluent discharge flow of 1.1 MGD. If the discharger is allowed to have a flow greater than 1.1 MGD during 7Q10 conditions, and effluent limit concentrations as indicated, then water quality standards will be violated. In order to prevent this from occuring, the permit writers must include the discharge flow limititation as indicated above; or, include loading effluent limits in the permit.

Effluent Limitation for Whole Effluent Toxicity (WET) based upon WET Policy

Effluent Toxicity will not occur in downstream segements if the values below are met.

WET Requirements	LC50 >	EOP Effluent	[Acute]
	IC25 >	63.0% Effluent	[Chronic]

Effluent Limitation for Biological Oxygen Demand (BOD) based upon Water Quality Standards or Regulations

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent BOD limitation as follows:

Season	Concentration	
Summer	25.0 mg/l as BOD5	229.3 lbs/day
Fall	25.0 mg/l as BOD5	229.3 lbs/day
Winter	25.0 mg/l as BOD5	229.3 lbs/day
Spring	25.0 mg/l as BOD5	229.3 lbs/day

Effluent Limitation for Dissolved Oxygen (DO) based upon Water Quality Standards

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent D.O. limitation as follows:

Season	Concentration
Summer	5.50
Fall	5.50
Winter	5.50
Spring	5.50

Effluent Limitation for Total Ammonia based upon Water Quality Standards

In-stream criteria of downstream segments for Total Ammonia will be met with an effluent limitation (expressed as Total Ammonia as N) as follows:

Seas	on				
1¢	Concentr		Load	ł	
Summer	4 Day Avg Chronic	5.3	mg/l as N	48.8	lbs/day
	1 Hour Avg Acute	26.0	mg/I as N	238.5	lbs/day
Fall	4 Day Avg Chronic	38.5	mg/I as N	353.1	lbs/day
	1 Hour Avg Acute	75.2	mg/l as N	690.0	lbs/day
Winter	4 Day Avg Chronic	38.5	mg/l as N	353.1	lbs/day
	1 Hour Avg Acute	75.2	mg/l as N	690.0	lbs/day
Spring	4 Day Avg Chronic	5.3	mg/l as N	48.8	lbs/day
	1 Hour Avg Acute	26.0	mg/I as N	238.5	lbs/day

Acute limit calculated with an Acute Zone of Initial Dilution (ZID) to be equal to 100.%.

Effluent Limitation for Total Residual Chlorine based upon Water Quality Standards

In-stream criteria of downstream segments for Total Residual Chlorine will be met with an effluent limitation as follows:

Seas	on	Concentra	ation	Load	Y
Summer	4 Day Avg Chronic	0.017	mg/l	0.15	lbs/day
	1 Hour Avg Acute	0.030	mg/l	0.27	lbs/day
Fall	4 Day Avg Chronic	0.115	mg/l	1.06	lbs/day
	1 Hour Avg Acute	0.206	mg/l	1.89	lbs/day
Winter	4 Day Avg Chronic	0.115	mg/l	1.06	lbs/day
	1 Hour Avg Acute	0.206	mg/l	1.89	lbs/day
Spring	4 Day Avg Chronic	0.017	mg/l	0.15	lbs/day
	1 Hour Avg Acute	0.030	mg/l	0.27	lbs/day

Effluent Limitations for Total Dissolved Solids based upon Water Quality Standards

Seaso	n	Concentra	ation	Loa	d
Summer	Maximum, Acute	1200.0	mg/l	5.50	tons/day
Fall	Maximum, Acute	1660.7	mg/l	7.62	tons/day
Winter	Maximum, Acute	1660.7	mg/l	7.62	tons/day
Spring	4 Day Avg Chronic	1200.0	mg/l	5.50	tons/day

Colorado Salinity Forum Limits

Determined by Permitting Section

Effluent Limitations for Total Recoverable Metals based upon Water Quality Standards

In-stream criteria of downstream segments for Dissolved Metals will be met with an effluent limitation as follows (based upon a hardness of 309.44 mg/l):

		4 Day Average		1 Hour A	verage	
	Concen	tration	Load	Concentration	Ū	Load
Aluminum*	N/A		N/A	968.9	ug/l	8.9 lbs/day
Arsenic*	299.82	ug/l	1.8 lbs/day	439.0	ug/l	4.0 lbs/day
Cadmium	0.96	ug/l	0.0 lbs/day	8.7	ug/l	0.1 lbs/day
Chromium III	344.50	ug/l	2.0 lbs/day	5,883.5	ug/l	54.1 lbs/day
Chromium VI*	16.88	ug/l	0.1 lbs/day	20.4	ug/l	0.2 lbs/day
Copper	38.13	ug/l	0.2 lbs/day	52.1	ug/l	0.5 lbs/day
Iron*	N/A		N/A	1,293.8	ug/l	11.9 lbs/day
Lead	21.16	ug/l	0.1 ibs/day	444.9	ug/l	4.1 lbs/day
Mercury*	0.02	ug/l	0.0 lbs/day	3.1	ug/l	0.0 lbs/day
Nickel	213.88	ug/l	1.3 lbs/day	1,577.7	ug/l	14.5 lbs/day
Selenium*	7.01	ug/l	0.0 lbs/day	25.7	ug/l	0.2 lbs/day
Silver	N/A	ug/l	N/A lbs/day	34.1	ug/i	0.3 lbs/day

Zinc	489.32 ug/l	2.9 lbs/day	400.7	ug/l	3.7 lbs/day
Cyanide*	8.26 ug/l	0.0 lbs/day	28.5	ug/l	0.3 lbs/day

*Limits for these metals are based on the dissolved standard.

Effluent Limitations for Heat/Temperature based upon Water Quality Standards

Summer	18.1 Deg. C.	64.6 Deg. F
Fall	25.3 Deg. C.	77.6 Deg. F
Winter	25.3 Deg. C.	77.6 Deg. F
Spring	18.1 Deg. C.	64.6 Deg. F

Effluent Limitations for Organics [Pesticides] Based upon Water Quality Standards

In-stream criteria of downstream segments for Organics [Pesticides] will be met with an effluent limit as follows:

	4 Day Average		1 Hour A		
	Concentration	Load	Concentration	Ũ	Load
Aldrin			1.5E+00	ug/l	2.13E-02 lbs/day
Chlordane	4.30E-03 ug/l	3.94E-02 lbs/day	1.2E+00	ug/l	1.71E-02 lbs/day
DDT, DDE	1.00E-03 ug/l	9.17E-03 lbs/day	5.5E-01	ug/l	7.82E-03 lbs/day
Dieldrin	1.90E-03 ug/l	1.74E-02 lbs/day	1.3E+00	ug/l	1.78E-02 lbs/day
Endosulfan	5.60E-02 ug/l	5.14E-01 lbs/day	1.1E-01	ug/l	1.56E-03 lbs/day
Endrin	2.30E-03 ug/l	2.11E-02 lbs/day	9.0E-02	ug/l	1.28E-03 lbs/day
Guthion	0.00E+00 ug/l	0.00E+00 lbs/day	1.0E-02	ug/l	1.42E-04 lbs/day
Heptachlor	3.80E-03 ug/l	3.49E-02 lbs/day	2.6E-01	ug/l	3.70E-03 lbs/day
Lindane	8.00E-02 ug/l	7.34E-01 lbs/day	1.0E+00	ug/l	1.42E-02 lbs/day
Methoxychlor	0.00E+00 ug/l	0.00E+00 lbs/day	3.0E-02	ug/l	4.27E-04 lbs/day
Mirex	0.00E+00 ug/l	0.00E+00 lbs/day	1.0E-02	ug/l	1.42E-04 lbs/day
Parathion	0.00E+00 ug/l	0.00E+00 lbs/day	4.0E-02	ug/l	5.69E-04 lbs/day
PCB's	1.40E-02 ug/l	1.28E-01 lbs/day	2.0E+00	ug/l	2.84E-02 lbs/day
Pentachlorophenol	1.30E+01 ug/l	1.19E+02 lbs/day	2.0E+01	ug/l	2.84E-01 lbs/day
Toxephene	2.00E-04 ug/l	1.83E-03 lbs/day	7.3E-01	ug/l	1.04E-02 lbs/day

Effluent Targets for Pollution Indicators Based upon Water Quality Standards

In-stream criteria of downstream segments for Pollution Indicators will be met with an effluent limit as follows:

	1 Hour Average		
	Concentration	Loading	
Gross Beta (pCi/l)	50.0 pCi/L		
BOD (mg/l)	5.0 mg/l	45.9 lbs/day	
Nitrates as N	4.0 mg/l	36.8 lbs/day	
Total Phosphorus as P	0.05 mg/l	0.5 lbs/day	
Total Suspended Solids	90.0 mg/l	827.1 lbs/day	

Maximum Concentration

Note: Pollution indicator targets are for information purposes only,

Effluent Limitations for Protection of Human Health [Toxics Rule] Based upon Water Quality Standards (Most stringent of 1C or 3A & 3B as appropriate.)

In-stream criteria of downstream segments for Protection of Human Health [Toxics] will be met with an effluent limit as follows:

	waximum Q	oncentration
	Concentration	Load
Toxic Organics		
Acenaphthene	4.29E+03 ug/l	3.93E+01 lbs/day
Acrolein	1.24E+03 ug/l	1.14E+01 lbs/day
Acrylonitrile	1.05E+00 ug/l	9.61E-03 lbs/day
Benzene	1.13E+02 ug/l	1.03E+00 lbs/day
Benzidine	ug/l	lbs/day
Carbon tetrachloride	6.99E+00 ug/l	6.41E-02 lbs/day
Chlorobenzene	3.33E+04 ug/l	3.06E+02 lbs/day
1,2,4-Trichlorobenzene		
Hexachlorobenzene	1.22E-03 ug/l	1.12E-05 lbs/day
1,2-Dichloroethane	1.57E+02 ug/l	1.44E+00 lbs/day
1,1,1-Trichloroethane		
Hexachloroethane	1.41E+01 ug/i	1.30E-01 lbs/day
1,1-Dichloroethane		
1,1,2-Trichloroethane	6.67E+01 ug/l	6.12E-01 lbs/day
1,1,2,2-Tetrachloroethane	1.75E+01 ug/l	1.60E-01 lbs/day
Chloroethane		
Bis(2-chloroethyl) ether	2.22E+00 ug/l	2.04E-02 lbs/day
2-Chloroethyl vinyl ether		
2-Chloronaphthalene	6.83E+03 ug/l	6.26E+01 lbs/day
2,4,6-Trichlorophenol	1.03E+01 ug/l	9.47E-02 lbs/day
p-Chloro-m-cresol		
Chloroform (HM)	7.46E+02 ug/l	6.84E+00 lbs/day
2-Chlorophenol	6.35E+02 ug/l	5.82E+00 lbs/day
1,2-Dichlorobenzene	2,70E+04 ug/l	2.48E+02 lbs/day
1,3-Dichlorobenzene	4.13E+03 ug/l	3.79E+01 lbs/day

1,4-Dichlorobenzene	4.13E+03 ug/l	3.79E+01 lbs/day
3,3'-Dichlorobenzidine	1.22E-01 ug/l	1.12E-03 lbs/day
1,1-Dichloroethylene	5.08E+00 ug/l	4.66E-02 lbs/day
1,2-trans-Dichloroethylene1		
2,4-Dichlorophenol	1.25E+03 ug/l	1.15E+01 lbs/day
1,2-Dichloropropane	6.19E+01 ug/l	5.68E-01 lbs/day
1,3-Dichloropropylene	2.70E+03 ug/l	2.48E+01 lbs/day
2,4-Dimethylphenol	3.65E+03 ug/l	3.35E+01 lbs/day
2,4-Dinitrotoluene	1.44E+01 ug/l	1.33E-01 lbs/day
2,6-Dinitrotoluene		-
1,2-Diphenylhydrazine	8.57E-01 ug/l	7.86E-03 lbs/day
Ethylbenzene	4.60E+04 ug/l	4.22E+02 lbs/day
Fluoranthene	5.87E+02 ug/l	5.39E+00 lbs/day
4-Chlorophenyl phenyl ether		
4-Bromophenyl phenyl ether		
Bis(2-chloroisopropyl) ether	2.70E+05 ug/l	2.48E+03 lbs/day
Bis(2-chloroethoxy) methane		·
Methylene chloride (HM)	2.54E+03 ug/l	2.33E+01 lbs/day
Methyl chloride (HM)		0
Methyl bromide (HM)		
Bromoform (HM)	5.72E+02 ug/l	5.24E+00 lbs/day
Dichlorobromomethane(HM)	3.49E+01 ug/l	3.20E-01 lbs/day
Chlorodibromomethane (HM)	5.40E+01 ug/l	4.95E-01 lbs/day
Hexachlorocyclopentadiene	2.70E+04 ug/l	2.48E+02 lbs/day
Isophorone	9.53E+02 ug/l	8.74E+00 lbs/day
Naphthalene	_	
Nitrobenzene	3.02E+03 ug/i	2.77E+01 lbs/day
2-Nitrophenol		
4-Nitrophenol		
2,4-Dinitrophenol	2.22E+04 ug/l	2.04E+02 lbs/day
4,6-Dinitro-o-cresol	1.21E+03 ug/l	1.11E+01 lbs/day
N-Nitrosodimethylamine	1.29E+01 ug/l	1.18E-01 lbs/day
N-Nitrosodiphenylamine	2.54E+01 ug/l	2.33E-01 lbs/day
N-Nitrosodi-n-propylamine	2.22E+00 ug/l	2.04E-02 lbs/day
Pentachlorophenol	1.30E+01 ug/l	1.19E-01 lbs/day
Phenol	7.30E+06 ug/l	6.70E+04 lbs/day
Bis(2-ethylhexyl)phthalate	9.37E+00 ug/l	8.59E-02 lbs/day
Butyl benzyl phthalate	8.26E+03 ug/l	7.57E+01 lbs/day
Di-n-butyl phthalate	1.91E+04 ug/l	1.75E+02 lbs/day
Di-n-octyl phthlate		
Diethyl phthalate	1.91E+05 ug/l	1.75E+03 lbs/day
Dimethyl phthlate	4.60E+06 ug/l	4.22E+04 lbs/day
Benzo(a)anthracene (PAH)	4.92E-02 ug/l	4.51E-04 lbs/day
Benzo(a)pyrene (PAH)	4.92E-02 ug/l	4.51E-04 lbs/day
Benzo(b)fluoranthene (PAH)	4.92E-02 ug/l	4.51E-04 lbs/day
Benzo(k)fluoranthene (PAH)	4.92E-02 ug/l	4.51E-04 lbs/day
Chrysene (PAH)	4.92E-02 ug/l	4.51E-04 lbs/day
Acenaphthylene (PAH)		-
Anthracene (PAH)		
Dibenzo(a,h)anthracene (PAH)	4.92E-02 ug/l	4.51E-04 lbs/day
Indeno(1,2,3-cd)pyrene (PAH)	4.92E-02 ug/l	4.51E-04 lbs/day
		-

Pyrene (PAH)	1.75E+04 ug/l	1.60E+02 lbs/day
Tetrachloroethylene	1.41E+01 ug/l	1.30E-01 lbs/day
Toluene	3.18E+05 ug/l	2.91E+03 lbs/day
Trichloroethylene	1.29E+02 ug/l	1.18E+00 lbs/day
Vinyl chloride	8.34E+02 ug/l	7.65E+00 lbs/day
Pesticides		
Aldrin	2.22E-04 ug/l	2.04E-06 lbs/day
Dieldrin	2.22E-04 ug/l	2.04E-06 lbs/day
Chlordane	9.37E-04 ug/l	8.59E-06 lbs/day
4,4'-DDT	9.37E-04 ug/l	8.59E-06 lbs/day
4,4'-DDE	9.37E-04 ug/l	8.59E-06 lbs/day
4,4'-DDD	1.33E-03 ug/l	1.22E-05 lbs/day
alpha-Endosulfan	3.18E+00 ug/l	2.91E-02 lbs/day
beta-Endosulfan	3.18E+00 ug/l	2.91E-02 lbs/day
Endosulfan sulfate	3.18E+00 ug/l	2.91E-02 lbs/day
Endrin	1.29E+00 ug/l	1.18E-02 lbs/day
Endrin aldehyde	1.29E+00 ug/l	1.18E-02 lbs/day
Heptachlor	3.33E-04 ug/l	3.06E-06 lbs/day
Heptachlor epoxide		
PCB's		
PCB 1242 (Arochlor 1242)	7.14E-05 ug/l	6.55E-07 lbs/day
PCB-1254 (Arochlor 1254)	7.14E-05 ug/l	6.55E-07 lbs/day
PCB-1221 (Arochlor 1221)	7.14E-05 ug/l	6.55E-07 lbs/day
PCB-1232 (Arochlor 1232)	7.14E-05 ug/l	6.55E-07 lbs/day
PCB-1248 (Arochlor 1248)	7.14E-05 ug/l	6.55E-07 lbs/day
PCB-1260 (Arochlor 1260)	7.14E-05 ug/l	6.55E-07 lbs/day
PCB-1016 (Arochlor 1016)	7.14E-05 ug/l	6.55E-07 lbs/day
Pesticide		
Toxaphene	1.19E-03 ug/l	1.09E-05 lbs/day
Metals		
Antimony	ug/l	lbs/day
Arsenic	ug/l	lbs/day
Asbestos	ug/l	lbs/day
Beryllium		
Cadmium		
Chromium (III)		
Chromium (VI)	ug/l	lba/day
Copper Cyanide	ug/l	lbs/day
Lead	ug/l	lbs/day
Mercury	ug/i	lbs/day
Nickel	ug/l	lbs/day
Selenium		··· -···,
Silver		
Thallium	ug/l	lbs/day
Zinc	-	

Dioxin

Dioxin (2,3,7,8-TCDD)

2.22E-08 ug/l

Metals Effluent Limitations for Protection of All Beneficial Uses Based upon Water Quality Standards and Toxics Rule

9 3	Class 4 Acute Agricultural ug/l	Class 3 Acute Aquatic Wildlife ug/l	Acute Toxics Drinking Water Source ug/l	Acute Toxics Wildlife ug/l	1C Acute Health Criteria ug/l	Acute Most Stringent ug/l	Class 3 Chronic Aquatic Wildlife ug/l
Aluminum		968.9				968.9	N/A
Antimony				6826.9		6826.9	
Arsenic	158.8	439.0			0.0	158.8	299.8
Barium						0.0	
Beryllium						0.0	
Cadmium	15.8	8.7			0.0	8.7	1.0
Chromium (III)		5883.5			0.0	5883.5	344.5
Chromium (VI)	158.2	20.4			0.0	20.41	16.88
Copper	316.8	52.1				52.1	38.1
Cyanide		28.5	349282.5			28.5	8.3
Iron	Q.	1293.8				1293.8	
Lead	158.6	444.9			0.0	158.6	21.2
Mercury		3.11		0.24	0.0	0.24	0.019
Nickel		1577.7		7303.2		1577.7	213.9
Selenium	79.1	25.7			0.0	25.7	7.0
Silver		34.1	×		0.0	34.1	
Thallium				10.0		10.0	
Zinc		400.7				400.7	489.3
Boron	1190.6					1190.6	

Summary Effluent Limitations for Metals [Wasteload Allocation, TMDL]

[If Acute is more stringent than Chronic, then the Chronic takes on the Acute value.]

	WLA Acute ug/l	WLA Chronic ug/l	
Aluminum	968.9	N/A	
Antimony	6826.88		
Arsenic	158.8	299.8	Acute Controls
Asbestos	0.00E+00		
Barium			
Beryllium			
Cadmium	8.7	1.0	
Chromium (III)	5883.5	345	
Chromium (VI)	20.4	16.9	
Copper	52.1	38.1	

Cyanide	28.5	8.3	
Iron	1293.8		
Lead	158.6	21.2	
Mercury	0.238	0.019	
Nickel	1577.7	214	
Selenium	25.7	7.0	
Silver	34.1	N/A	
Thallium	10.0		
Zinc	400.7	489.3	
Boron	1190.64		

Acute Controls

Other Effluent Limitations are based upon R317-1. E. coli

126.0 organisms per 100 ml

X. Antidegradation Considerations

The Utah Antidegradation Policy allows for degradation of existing quality where it is determined that such lowering of water quality is necessary to accommodate important economic or social development in the area in which the waters are protected [R317-2-3]. It has been determined that certain chemical parameters introduced by this discharge will cause an increase of the concentration of said parameters in the receiving waters. Under no conditions will the increase in concentration be allowed to interfere with existing instream water uses.

The antidegradation rules and procedures allow for modification of effluent limits less than those based strictly upon mass balance equations utilizing 100% of the assimilative capacity of the receiving water. Additional factors include considerations for "Blue-ribbon" fisheries, special recreational areas, threatened and endangered species, and drinking water sources.

An Antidegradation Level I Review was conducted on this discharge and its effect on the receiving water. Based upon that review, it has been determined that an Antidegradation Level II Review is not required. Basic renewal, no increase in effluent flow or concentration.

XI. Colorado River Salinity Forum Considerations

Discharges in the Colorado River Basin are required to have their discharge at a TDS loading of less than 1.00 tons/day unless certain exemptions apply. Refer to the Forum's Guidelines for additional information allowing for an exceedence of this value.

XII. Summary Comments

The mathematical modeling and best professional judgement indicate that violations of receiving water beneficial uses with their associated water quality standards, including important downstream segments, will not occur for the evaluated parameters of concern as discussed above if the effluent limitations indicated above are met.

XIII. Notice of UPDES Requirement

This Addendum to the Statement of Basis does not authorize any entity or party to discharge to the waters of the State of Utah. That authority is granted through a UPDES permit issued by the Utah Division of Water Quality. The numbers presented here may be changed as a function of other factors. Dischargers are strongly urged to contact the Permits Section for further information. Permit writers may utilize other information to adjust these limits and/or to determine other limits based upon best available technology and other considerations provided that the values in this wasteload analysis [TMDL] are not compromised. See special provisions in Utah Water Quality Standards for adjustments in the Total Dissolved Solids values based upon background concentration.

XIV. TMDL Requirements

Moroni WWTP discharges to a segment of the San Pitch River that is 303(d) listed for total dissolved solids (TDS). A TDS TMDL was completed for the San Pitch River on November 18, 2003. The TMDL allocates a load limit of 1,177 tons TDS during the critical season (March 1 - September 30), or 2,009 tons per year which is equivalent to the WWTP's design capacity of 1.1 million gallons per day multiplied by the 1,200 mg/L water quality standard.

Antidegredation Review

An antidegradation review (ADR) was conducted to determine whether the proposed activity complies with the applicable antidegradation requirements for receiving waters that may be affected. The Level I ADR evaluated the criteria of R317-2-3.5(b) and determined that the proposed discharge will not require a Level II Antidegradation Review. The Proposed permit is a simple renewal. No increase in effluent flow or concentration.