WASTELOAD ANALYSIS [WLA] Addendum: Statement of Basis SUMMARY

Discharging Facility: UPDES No:	Jordanelle Sp UT0022403	ecial Servi	ce District-Ke	eetley Water Treatment Plant
Current Flow:	12.00	MGD	Desian Flow	
Design Flow	12.00	MGD		
Receiving Water:	Jordanelle Re	servoir		
Lake Classification:	1C,2A,3A,4			
TDS (mg/l)	120.74		Average	
Hardness (mg/l)	306.28		Average	
pH	7.87		Average	
Temp (C)	10.371		Average	
Selected Effluent Limit Sum	mary:			WQ Standard:
Flow, MGD:	12.00	MGD	Design Flow	
BOD, mg/l:	25.0	All Season	5	Indicator
Dissolved Oxygen, mg/l:	5.00	All Season	6.50	30 Day Average
TNH3, Chronic, mg/l:	57.33	All Season	Varies	Function of pH and Temperature
TDS, mg/l:	3672.71	All Season	1200	
Zinc, ug/l	543.96	All Season	Varies	Function of Hardness
Copper, ug/l	55.66	All Season	Varies	Function of Hardness
Modeling Parameters:				
Acute Dilution Ratio	3.29	to 1		
Chronic Dilution Ratio:	18.81	to 1		

Level 1 Antidegradation Level Completed: Level II Review required - Class 1C drinking water source.

Date: 2/9/2023

•

Wasteload Analysis - Total Maximum Daily Load (Lake TMDL)

2/16/2023 8:16

Facility:Jordanelle Special Service District-Keetley Water Treatment Plant UPDES No: UT- UT0022403Discharging to:Jordanelle Reservoir

I. Introduction

Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on lake water quality. The wasteload analysis does not take into account downstream designated uses [R317-2-8, UAC]. Projected concentrations are compared to numeric water quality standards to determine acceptability. The anti-degradation policy and p 100 100 may include metals (as a function of hardness), total dissolved solids (TDS), total residual chlorine (TRC), unionized ammonia (as a function of pH and temperature, measured and evaluated interms of total ammonia), and dissolved oxygen.

Mathematical water quality modeling is employed to determine water quality response to point source discharges. Models aid in the effort of anticipating water quality at future effluent flows at critical environmental conditions (e.g., high temperature, high pH, etc).

The numeric criteria in this wasteload analysis may be modified by narrative criteria and other conditions as determined by staff of the Division of Water Quality.

II. Receiving Water and Lake / Reservoir Classification

Jordanelle Reservoir 1C,2A,3A,4

III. Numeric Water Quality Standards for Protection of Aquatic Wildlife

Total Ammonia (TNH3)	Function of Temperature and pH 1.54 mg/l as N (4 Day Average) 3.18 mg/l as N (1 Hour Average)	pH 8.70 8.30	Temp 10.3 10.3
Chronic Total Residual Chlorine (TRC)	0.011 mg/l (4 Day Average) 0.019 mg/l (1 Hour Average)		
Chronic Dissolved Oxygen (DO)	6.50 mg/l (30 Day Average)5.00 mg/l (7Day Average)4.00 mg/l (1 Day Average)		
Maximum Total Dissolved Solids [Class 4 Ag] Maximum Boron [Class 4 Ag]	1200 mg/l 750 mg/l		

Acute and Chronic Heavy Metals (Dissolved)

4 Day Average (Chronic) Standard		1 Hour Average (Acute) Standard		
Parameter	Concentration	Concentration		
Aluminum	87.000 ug/l	750	ug/l	
Antimony	ug/l		ug/l	
Arsenic	190.000 ug/l	360.00	ug/l	

Asbestos Barium Beryllium	ug/l ug/l ug/l	1000.00	ug/l ug/l ug/l
Cadmium	0.289 ug/l	3.47	ug/l
Chromium III	92.567 ug/l	1936.68	ug/l
ChromiumVI	11.000 ug/l	16.00	ug/l
Copper	10.051 ug/l	15.20	ug/l
Cyanide	ug/l		ug/l
Iron	ug/l	1000.00	ug/l
Lead	3.556 ug/l	91.24	ug/l
Mercury	0.012 ug/l	2.40	ug/l
Nickel	95.00 ug/l	505.13	ug/l
Selenium	5.000 ug/l	20.00	ug/l
Silver	ug/l	4.40	ug/l
Thallium			
Zinc	129.015 ug/l	129.01	ug/l
Based upon a Hardness of 109.1	12 mg/l as CaCO3	Based upon 1	61.32 mg/l as CaCO3

Organics [Pesticides]

4 Day Average (Chronic) Standard		onic) Standard	1 Hour Averag	ge (Acute) Standard
Parameter	r Concentration		Concentration	
Aldrin	1		1.500	ug/l
Chlordane	e 0.0043 ug/l		1.200	ug/l
DDT, DDF	E 0.001 ug/l		0.550	ug/l
Dieldrin	n 0.0056 ug/l		0.240	ug/l
Endosulfan, a & t	o 0.056 ug/l		0.110	ug/l
Endrir	n 0.036 ug/l		0.086	ug/l
Guthior	1			
Heptachlor & H. epoxide	e 0.0038 ug/l		0.260	ug/l
Lindane	e 0.08 ug/l		1.000	ug/l
Methoxychlor	r		0.030	ug/l
Mirez	K		0.001	ug/l
Parathior	n 0.0130 ug/l		0.066	ug/l
PCB	s 0.014 ug/l			
Pentachloropheno	1 15.00 ug/l		19.000	ug/l
Toxephene	e 0.0002 ug/l		0.730	ug/l

IV. Numeric Water Quality Standards for Protection of Agriculture

	Concentration		
TDS	1200	mg/l	
Arsenic	100	ug/l	
Boron	750	ug/l	
Cadmium	10	ug/l	
Chromium	100	ug/l	
Copper	200	ug/l	
Lead	100	ug/l	
Selenium	50	ug/l	
TDS	1200	mg/l	

V. Numeric Water Quality Standards for Protection of Human Health (Class 1C Waters)

1 Hour Average	(Acute) Standard
Concentration	
10	ug/l

ug/l

1 Hour Average (Acute) Standard

Metals	Concentration
Arsenic	10
Barium	1000

Cadmium	10	110/1
Chromium	50	ug/1
Chiomuni	50	ug/1
Lead	50	ug/l
Mercury	2	ug/l
Selenium	50	ug/l
Silver	50	ug/l
Fluoride (3)	1.4	ug/l
to	2.4	ug/l
Nitrates as N	10	ug/l
Chlorophenoxy Herbicides		
2,4-D	100	ug/l
2,4,5-TP	10	ug/l
Methoxychlor	100	ug/l

VI. Numeric Water Quality Standards the Protection of Human Health from Water & Fish Consumption [Toxics]

	Maximum Conc., ug/l - Acute Standard	ds
	Class 1C	Class 3A, 3B, 3C, 3D
	[2 Liters/Day for 70 Kg Person over 70 Yr.	[6.5 g for 70 Kg Persoi
Antimony	5.6 ug/l	640 ug/l
Arsenic	А	А
Beryllium	С	С
Cadmium	С	С
Chromium III	С	С
Chromium VI	С	С
Copper	1,300 ug/l	
Lead	C	С
Mercury	А	А
Nickel	100 ug/l	4,600 ug/l
Selenium	A	4,200 ug/l
Silver		
Thallium	0.24 ug/l	6.3 ug/l
Zinc	7400 ug/l	26,000 ug/l
Cyanide	140 ug/l	220,000 ug/l
Asbestos	7.00E+06 Fibers/L	
2,3,7,8-TCDD Dioxin	5.0 E-9 ug/l	5.1 E-9 ug/l
Acrolein	190 ug/l	290 ug/l
Acrylonitrile	0.051 ug/l	0.25 ug/l
Alachlor	2 ug/l	
Benzene	2.2 ug/l	51 B ug/l
Bromoform	4.3 ug/l	140.00 ug/l
Carbofuran	40	
Carbon Tetrachloride	0.23 ug/l	1.60 ug/l
Chlorobenzene	100 ug/l	21,000 ug/l
Chlorodibromomethane	0.4 ug/l	13.00 ug/l
Chloroethane		
2-Chloroethylvinyl Ether		
Chloroform	5.7 ug/l	470.00 ug/l
Dalapon	200 ug/l	
Di(2ethylhexl)adipate	400 ug/l	
Dichlorobromopropane	0.2	

Dichlorobromomethane	0.55 ug/l		17.00 ug/l
1,1-Dichloroethane	0.29		27.00
1,2-Dichloroethane	0.38 ug/1		37.00 ug/l
Dichloroothylana (cis 1.2)	7 ug/1		5.20 ug/1
Dichloroethylene (cis-1,2)	70		
Dinosed	20		
Diquat	20		15.00
1,2-Dichlerennen and	0.5 ug/1		15.00 ug/l
1,3-Dichloropropene	0.34 ug/1		1,700 ug/I
Endouran	100 520 mm/l		20,000 //
Etnylbenzene	530 ug/1		29,000 ug/I
Ethylaibromide	0.05 ug/1		
Glyphosate	/00 ug/1	F	
Haloacetic acids	60 ug/l	E	1,500
Methyl Bromide	4/ ug/l		1,500 ug/l
Methyl Chloride	F		F
Methylene Chloride	4.6 ug/l		590.00 ug/l
Ocamyl (vidate)	200 ug/l		
Picloram	500 ug/l		
Simazine	4 ug/l		
Styrene	100 ug/l		
1,1,2,2-Tetrachloroethane	0.17 ug/l		4.00 ug/l
Tetrachloroethylene	0.69 ug/l		3.30 ug/l
Toluene	1000 ug/l		200,000 ug/l
1,2 -Trans-Dichloroethylene	100 ug/l		140,000 ug/l
1,1,1-Trichloroethane	200 ug/l		F
1,1,2-Trichloroethane	0.59 ug/l		16.00 ug/l
Trichloroethylene	2.5 ug/l		30.00 ug/l
Vinyl Chloride	0.025 ug/l		530.00 ug/l
Xylenes	10000 ug/l		
2-Chlorophenol	81 ug/l		150 ug/l
2,4-Dichlorophenol	77 ug/l		290 ug/l
2,4-Dimethylphenol	380 ug/l		850 ug/l
2-Methyl-4,6-Dinitrophenol	13 ug/l		280 ug/l
2,4-Dinitrophenol	69 ug/l		5,300 ug/l
2-Nitrophenol			
4-Nitrophenol			
3-Methyl-4-Chlorophenol			
Penetachlorophenol	0.27 ug/l		3.00 ug/l
Phenol	21000 ug/l		1,700,000 ug/l
2,4,6-Trichlorophenol	1.4 ug/l		2.40 ug/l
Acenaphthene	670 ug/l		990 ug/l
Acenaphthylene	ug/l		ug/l
Anthracene	8300 ug/l		40,000 ug/l
Benzidine	0.000086 ug/l	В	0.00 ug/l
BenzoaAnthracene	0.0038 ug/l		0.02 ug/l
BenzoaPyrene	0.0038 ug/l		0.02 ug/l
BenzobFluoranthene	0.0038 ug/l		0.02 ug/l
BenzoghiPerylene	ug/l		
BenzokFluoranthene	0.0038 ug/l		0.02 ug/l
Bis2-ChloroethoxyMethane	ug/l		
Bis2-ChloroethylEther	0.03 ug/l		0.53 ug/l
Bis2-Chloroisopropy1Ether	1400 ug/l		65,000 ug/l
Bis2-EthylbexylPhthalate	1.2 ug/l		2.20 ug/l

4-Bromophenyl Phenyl Ether	ug/	1	
Butylbenzyl Phthalate	1500 ug/	1	1,900 ug/l
2-Chloronaphthalene	1000 ug/	1	1,600 ug/l
4-Chlorophenyl Phenyl Ether	ug/	1	
Chrysene	0.0038 ug/	1	0.02 ug/l
Dibenzoa, hAnthracene	0.0038 ug/	1	0.02 ug/l
1,2-Dichlorobenzene	420 ug/	1	17,000 ug/l
1,3-Dichlorobenzene	320 ug/	1	960 ug/l
1,4-Dichlorobenzene	63 ug/	1	2,600 ug/l
3,3-Dichlorobenzidine	0.021 ug/	1	0.03 ug/l
Diethyl Phthalate	17000 ug/	1	44,000 ug/l
Dimethyl Phthalate	270000 ug/	1	1,100,000 ug/l
Di-n-Butyl Phthalate	2000 ug/	1	4,500 ug/l
2,4-Dinitrotoluene	0.11 ug/	1	3.40 ug/l
2.6-Dinitrotoluene	ug/	1	6
Di-n-Octyl Phthalate	ug/	1	
1,2-Diphenylhydrazine	0.036 ug/	1	0.20 ug/l
Fluoranthene	130 ug/	1	140.00 ug/l
Fluorene	1100 ug/	1	5.300 ug/l
Hexachlorobenzene	0.00028 ug/	1	0.00029 B ug/l
Hexachlorobutedine	0.44 µg/	1	18 00 ug/l
Hexachloroethane	1 4 ug/	1	3 30 µg/l
Hexachlorocyclopentadiene	40 ug/	1	17 000 µg/l
Ideno 1.2.3-cdPyrene	0.0038.ug/	1	0 02 µg/l
Isophorone	35 ug/	1 B	960.00 ug/l
Naphthalene	55 dg		500.00 dg/1
Nitrobenzene	17 עס/	1	690 ug/l
N-Nitrosodimethylamine	0 00069 ug/	1	3 00 ug/l
N-Nitrosodi-n-Propylamine	0.00009 ug/	1	0.51 µg/l
N-Nitrosodinhenvlamine	3 3 ug/	1	6.00 µg/l
Phenanthrene	5.5 ug	1	0.00 ug/1
Durana	830 110/	1	4 000 µg/l
1 2 4 Trichlorobenzene	260 ug/	1	4,000 ug/1 940 ug/1
1,2,4-Themorobelizene	200 ug/ 0.000049.ug/	1	0 000050 µg/l
alpha BUC	0.000049 ug/	1	0.000050 ug/1
bota BHC	0.0020 ug/	1	0.00 ug/l
gamma BHC (Lindana)	0.0091 ug/	1	0.02 ug/l
dolta BHC	0.2 ug/	1	0.00 ug/1
Chlordana	0.0008.119/	1	0.00.110/1
	0.0008 ug/	1	0.00 ug/l
4,4-DD1 4,4 DDE	0.00022 ug/	1	0.00 ug/l
4,4-DDE	0.00022 ug/	1	0.00 ug/l
4,4-DDD Dialdrin	0.00031 ug/	1 1 D	0.00 ug/1
oleho Endogulfon	0.000032 ug/		0.000034 ug/l
aipita-Endosultan	62 ug/	1	89 ug/1
Deta-Endosullan	62 ug/	1	89 ug/1
Endosultan Sultate	62 ug/	1	89 ug/l
Endrin Endria Aldala d	0.059 ug/	1	0.81 ug/l
Endrin Aldehyde	0.29 ug/		0.30 ug/l
Heptachlor	0.000079 ug/		0.000079 ug/l
Heptachlor Epoxide	0.000039 ug/	I B	0.000039 ug/l
Polychlorinated Biphenyls	0.000064 ug/	I B,D	0.000064 ug/l
Toxaphene	0.00028 ug/	1	0.00028 ug/l

There are additional standards that apply to this receiving water, but were not considered in this modeling/waste load allocation analysis.

VII. Mathematical Modeling of Water Quality Quality

Model configuration was accomplished utilizing standard modeling procedures. Data points were plotted and coefficients adjusted as required to match observed data as closely as possible.

The modeling approach used in this analysis included one or a combination of the following models.

(1) The Utah River Model, Utah Division of Water Quality, 1992. Based upon STREAMDO IV (Region VIII) and Supplemental Ammonia Toxicity Models; EPA Region VIII, Sept. 1990 and

QUAL2E (EPA, Athens, GA).

(2) Utah Ammonia/Chlorine Model, Utah Division of Water Quality, 1992.

(3) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644.

Coefficients used in the model were based, in part, upon the following references:

(1) Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling. Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens Georgia. EPA/600/3-85/040 June 1985.

(2) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644.

The Utah Reservoir and Lake Model is a simple round jet model which was received from EPA Region 8. It assumes a discharge expands into the receiving water as a 1/2 cone from the point of discharge with the appropriate dilution.

The dilution ratios for this waste	load analysis are as follows:
Acute Dilution Ratio:	3.3 to 1
Chronic Dilution Ration:	18.8 to 1

VIII. Modeling Information

The required information for the model may include the following information for both the lake and effluent conditions:

Temperature, Deg. C.	Total Residual Chlorine (TRC), mg/l
рН	Total NH3-N, mg/l
BOD5, mg/l	Total Dissolved Solids (TDS), mg/l
Metals, ug/l	Toxic Organics of Concern, ug/l

Page 7 Wasteload Allocation - Lake TMDL

D.O. mg/l

Other Conditions

In addition to the lake and effluent conditions, the models require a variety of physical and biological coefficients and other technical information. In the process of actually establishing the permit limits for an effluent, values are used based upon the available data, model calibration, literature values, site visits and best professional judgement.

Model Inputs

Lake Information	Temp.	pН	T-NH3	BOD	DO	TRC	TDS
	Deg. C		mg/l as N	mg/l	mg/l	mg/l	mg/l
	10.3	8.9	0.00	N/A	N/A	0.00	120.7
	Season		Flow, MGD	Temp.			

12.0

IX. Effluent Limitations based upon Water Quality Standards

Effluent Limitation for Flow

Discharge Information

All Seasons	
Not to Exceed:	

All Seasons

12.00 MGD	Daily Average
18.56 cfs	Daily Average

10.4

WET Requirements As determined by Permits & Compliance Branch

Effluent Limitation for Biological Oxygen Demand (BOD)

30 Day Average 30 Day Average Concentration 25.0 mg/l as BOD5 20.0 mg/l as CBOD5

Effluent Limitation for Dissolved Oxygen (DO)

Concentration 1 Day Average (Acute)

30 Day Average

5.00 mg/l

Effluent Limitation for Total Ammonia

4 Day Average [Chronic] Concentration

Load

All Seasons	57.33 mg/l as N	5736.3 lbs/day
	1 Hour Average [Acute] Concentration	Load
	25.0 mg/l as N	2504.6 lbs/day
Effluent Limitation for Total Residual Chlorin	ne	
	4 Day Average [Chronic] Concentration	Load
All Seasons	0.207 mg/l	20.7 lbs/day
	1 Hour Average [Acute] Concentration	Load

0.063 mg/l

6.3 lbs/day

Effluent Limitations for Metals

	4 Day Average (Chronic)		1 Hour Average	(Acute)
	Concentration	Load	Concentration	Load
Aluminum	1190.99 ug/l*	119.2 lbs/day	2411.05 ug/l	241.2
Arsenic	2776.43 ug/l	277.8 lbs/day	1113.25 ug/l*	111.4
Barium			3291.11 ug/l	329.3
Cadmium	0.00 ug/l*	0.0 lbs/day	9.40 ug/l	0.9
Chromium III	1452.61 ug/l*	145.3 lbs/day	2768.45 ug/l	277.0
ChromiumVI	206.87 ug/l	20.7 lbs/day	52.66 ug/l*	5.3
Copper	74.63 ug/l	7.5 lbs/day	55.66 ug/l*	5.6
Iron			3205.92 ug/l	320.8
Lead	21.52 ug/l*	2.2 lbs/day	352.84 ug/l	35.3
Mercury	0.17 ug/l*	0.017 lbs/day	7.89 ug/l	0.8
Nickel	1008.50 ug/l*	100.9 lbs/day	2303.74 ug/l	230.5
Selenium	77.61 ug/l	7.8 lbs/day	59.41 ug/l*	5.9
Silver			21.81 ug/l	2.2
Zinc	30824.06 ug/l	3,084.3 lbs/day	543.96 ug/l*	54.4

* Most stringent between Chronic & Acute Effluent Limitations

Effluent Limitations for Organics [Pesticides]

4 Day Averag		ige	1 Hour Average	
Pesticide	Concentration	Load	Concentration	Load
Aldrin			4.9367 ug/l	0.319
Chlordane	0.0809 ug/l*	0.005 lbs/day	3.9493 ug/l	0.255
DDT, DDE	0.0188 ug/l*	0.001 lbs/day	1.8101 ug/l	0.117
Dieldrin	0.1053 ug/l*	0.007 lbs/day	0.7899 ug/l	0.051
Endosulfan	1.0532 ug/l	0.068 lbs/day	0.3620 ug/l*	0.023
Endrin	0.6770 ug/l	0.044 lbs/day	0.2830 ug/l*	0.018

Guthion			0.0000 ug/l	0.000
Heptachlor	0.0715 ug/l*	0.005 lbs/day	0.8557 ug/l	0.055
Lindane	1.5045 ug/l*	0.097 lbs/day	3.2911 ug/l	0.213
Methoxychlor			0.0987 ug/l	0.006
Mirex			0.0033 ug/l	0.000
Parathion			0.2172 ug/l	0.014
PCB's	0.2633 ug/l	0.017 lbs/day	0.0000 ug/l*	0.000
Pentachlorophenol	282.0948 ug/l	18.246 lbs/day	62.5310 ug/l*	4.045
Toxephene	0.0038 ug/l*	0.000 lbs/day	2.4025 ug/l	0.155

Effluent Limitations for Protection of Human Health (Class 1C Waters)

	1 Hour Average (Acute) Standard		
Metals	Concentration	Load	
Arsenic	32.91 ug/l	2.13	
Barium	3291.11 ug/l	212.87	
Cadmium	32.91 ug/l	2.13	
Chromium	164.56 ug/l	10.64	
Lead	164.56 ug/l	10.64	
Mercury	6.58 ug/l	0.43	
Selenium	164.56 ug/l	10.64	
Silver	164.56 ug/l	10.64	
Fluoride	4.61 ug/l	0.30	
to	7.90 ug/l	0.51	
Nitrates as N	32.91 ug/l	2.13	
Pesticides			
2,4-D	329.11 ug/l	21.29	
2,4,5-TP	32.91 ug/l	2.13	
Methoxychlor	329.11 ug/l	21.29	

Effluent Limitations for Protection of Human Health [Toxics Rule] Based upon Water Quality Standards (Most stringent of 1C or 3A & 3B as appropriate.)

	Maximum Conc., ug/l - Acute Standards			
	Class 1C [2 Liters/Day for 70 Kg Person over 70 Yr.		Class 3A, 3B [6.5 g for 70 Kg Person over 70 Yr. P	
Toxics Rule Parameters				
Antimony	18.43 ug/l	1.19 lbs/day	18.43 ug/l	1.2
Arsenic				
Beryllium				
Cadmium				
Chromium III				
Chromium VI				
Copper	4278.44 ug/l	276.73 lbs/day	4278.44 ug/l	276.7
Lead				
Mercury		lbs/day	329.11 ug/l	21.3
Nickel	329.11 ug/l	21.29 lbs/day		
Selenium			24354.18 ug/l	1575.2
Silver			460.75 ug/l	29.8
Thallium	0.79 ug/l	0.05 lbs/day		
Zinc	24354.18 ug/l	1575.23 lbs/day	625.31 ug/l	40.4

Page 10 Wasteload Allocation - Lake TMDL

Cyanide	460.75 ug/l	29.80 lbs/day	0.17 ug/l	0.0
Asbestos	23037741.33 ug/l	1.49E+06 lbs/day	14.15 ug/l	0.9
0	0.00 ug/l	0.00 lbs/day	Ũ	
2,3,7,8-TCDD Dioxin	0.00 ug/l	0.00 lbs/day	329.11 ug/l	21.3
Acrolein	625.31 ug/l	40.45 lbs/day	1.32 ug/l	0.1
Acrylonitrile	0.17 ug/l	0.01 lbs/day		
Benzene	7.24 ug/l	0.47 lbs/day		
Bromoform	14.15 ug/l	0.92 lbs/day	18.76 ug/l	1.2
Carbon Tetrachloride	0.00 ug/l	0.00 lbs/day		
Chlorobenzene	329.11 ug/l	21.29 lbs/day		
Chlorodibromomethane	1.32 ug/l	0.09 lbs/day	1.25 ug/l	0.1
Chloroethane	0.00 ug/l	0.00 lbs/day	23.04 ug/l	1.5
2-Chloroethylvinyl Ether	0.00 ug/l	0.00 lbs/day	1.65 ug/l	0.1
Chloroform	18.76 ug/l	1.21 lbs/day	1.12 ug/l	0.1
Dichlorobromomethane	1.81 ug/l	0.12 lbs/day	154.68 ug/l	10.0
1,1-Dichloroethane	0.00 ug/l	0.00 lbs/day	-	
1,2-Dichloroethane	1.25 ug/l	0.08 lbs/day	15.14 ug/l	1.0
1,1-Dichloroethylene	23.04 ug/l	1.49 lbs/day	0.56 ug/l	0.0
1,2-Dichloropropane	1.65 ug/l	0.11 lbs/day	3291.11 ug/l	212.9
1,3-Dichloropropene	1.12 ug/l	0.07 lbs/day	1.94 ug/l	0.1
Ethylbenzene	1744.29 ug/l	112.82 lbs/day	8.23 ug/l	0.5
Methyl Bromide	154.68 ug/l	10.00 lbs/day	0.08 ug/l	0.0
Methyl Chloride	0.00 ug/l	0.00 lbs/day	266.58 ug/l	17.2
Methylene Chloride	15.14 ug/l	0.98 lbs/day	253.42 ug/l	16.4
1.1.2.2-Tetrachloroethane	0.56 ug/l	0.04 lbs/day	1250.62 ug/l	80.9
Tetrachloroethylene	2.27 ug/l	0.15 lbs/day	42.78 ug/l	2.8
Toluene	3291.11 ug/l	212.87 lbs/day		
1.2 -Trans-Dichloroethylene	329.11 ug/l	21.29 lbs/day		
1.1.1-Trichloroethane	0.00 ug/l	0.00 lbs/day	0.89 ug/l	0.1
1,1,2-Trichloroethane	1.94 ug/l	0.13 lbs/day	69113.22 ug/l	4470.2
Trichloroethylene	8.23 ug/l	0.53 lbs/day	4.61 ug/l	0.3
Vinvl Chloride	0.08 ug/l	0.01 lbs/day	2205.04 ug/l	142.6
2-Chlorophenol	266.58 ug/l	17.24 lbs/day		
2.4-Dichlorophenol	253.42 ug/l	16.39 lbs/day	27316.18 ug/l	1766.8
2.4-Dimethylphenol	1250.62 ug/l	80.89 lbs/day		
2-Methyl-4.6-Dinitrophenol	42.78 ug/l	2.77 lbs/day	0.01 ug/l	0.0
2.4-Dinitrophenol	227.09 ug/l	14.69 lbs/day	0.01 ug/l	0.0
2-Nitrophenol	0.00 ug/l	0.00 lbs/day	0.01 ug/l	0.0
4-Nitrophenol	0.0000 ug/l	0.0000 lbs/day		
3-Methyl-4-Chlorophenol	0.0000 ug/l	0.0000 lbs/day	0.01 ug/l	0.001
Penetachlorophenol	0.8886 ug/l	0.0575 lbs/day		
Phenol	69113.2240 ug/l	4.47E+03 lbs/day	0.10 ug/l	0.006
2.4.6-Trichlorophenol	4.6075 ug/l	0.2980 lbs/day	4607.55 ug/l	298.016
Acenaphthene	2205.04 ug/l	142.62 lbs/day	1007100 49,1	_>0.010
Acenaphthylene	0.00 ug/l	0.00 lbs/day	4936.66 ug/l	319.3
Anthracene	27316 18 ug/l	1766 81 lbs/day	3291 11 µg/l	212.9
Benzidine	0.00 ug/l	0.00 lbs/day	02) 1111 Gg/1	
BenzoaAnthracene	0.01 ug/l	0.00 lbs/day	0.01 ug/l	0.0
BenzoaPvrene	0.01 ug/l	0.00 lbs/day	0.0 110/1	0.0
BenzobFluoranthene	0.01 ug/l	0.00 lbs/day	1382.26 ug/l	89.4
BenzoghiPervlene	0.00 ug/l	0.00 lbs/day	1053.15 µg/l	68 1
BenzokFluoranthene	0.00 461	5.00 100, au j	ug/1	00.1
Bis2-ChloroethoxyMethane				
Bis2-ChloroethylEther	0.0987 ug/l	0.00639 lbs/dav	5.59E+04 ug/l	3.62E+03
				2.012.00

Bis2-Chloroisopropy1Ether	4607.5483 ug/l	2.98E+02 lbs/day	8.89E+05 ug/l	5.75E+04
Bis2-EthylbexylPhthalate	3.9493 ug/l	0.25544 lbs/day	6582.21181 ug/l	425.73746
4-Bromophenyl Phenyl Ether	0.0000 ug/l	0.00000 lbs/day	0.36202 ug/l	0.02342
Butylbenzyl Phthalate	4936.6589 ug/l	3.19E+02 lbs/day		
2-Chloronaphthalene	3291.1059 ug/l	212.86873 lbs/day		
4-Chlorophenyl Phenyl Ether	0.0000 ug/l	0.00000 lbs/day	0.11848 ug/l	0.00766
Chrysene	0.0125 ug/l	0.00081 lbs/day	427.84377 ug/l	27.67293
Dibenzoa, hAnthracene	0.0125 ug/l	0.00081 lbs/day	3620.21649 ug/l	234.15560
1,2-Dichlorobenzene	1382.2645 ug/l	89.40487 lbs/day	0.00092 ug/l	0.00006
1,3-Dichlorobenzene	1053.1539 ug/l	68.11799 lbs/day	1.44809 ug/l	0.09366
1,4-Dichlorobenzene	207.3397 ug/l	13.41073 lbs/day	4.60755 ug/l	0.29802
3,3-Dichlorobenzidine				
Diethyl Phthalate				
Dimethyl Phthalate				
Di-n-Butyl Phthalate	6582.21181 ug/l	425.73746 lbs/day		
2,4-Dinitrotoluene	0.36202 ug/l	0.02342 lbs/day	55.948800 ug/l	3.618768
2,6-Dinitrotoluene	0.00000 ug/1	0.00000 lbs/day	0.002271 ug/l	0.000147
Di-n-Octyl Phthalate	0.00000 ug/l	0.00000 lbs/day	0.016456 ug/l	0.001064
1,2-Diphenylhydrazine	0.11848 ug/l	0.00766 lbs/day	10.860649 ug/l	0.702467
Fluoranthene	427.84377 ug/l	27.67293 lbs/day		
Fluorene	3620.21649 ug/l	234.15560 lbs/day	2.73E+03 ug/l	1.77E+02
Hexachlorobenzene				
Hexachlorobutedine				
Hexachloroethane	4.61 ug/l	0.30 lbs/day		
Hexachlorocyclopentadiene				
Ideno 1,2,3-cdPyrene				
Isophorone	115.19 ug/l	7.45 lbs/day		
Naphthalene				
Nitrobenzene				
N-Nitrosodimethylamine	0.00 ug/l	0.00 lbs/day		
N-Nitrosodi-n-Propylamine	0.02 ug/l	0.00 lbs/day	0.00 ug/l	0.0
N-Nitrosodiphenylamine	1.09E+01 ug/l	7.02E-01 lbs/day		
Phenanthrene	0.00 ug/l	0.00 lbs/day	204.05 ug/l	13.2
Pyrene	2731 62 µg/l	176 68 lbs/day	-	
1 2 4-Trichlorobenzene	2751.02 42/1	170.00 103/day	204.05 µg/l	13.2
Aldrin			0.19.ug/l	19.2
alpha-BHC	0.00855688.ug/l	0.000553 lbs/day	0.19 48/1	0.0
beta-BHC	0.02994906 ug/l	0.001937 lbs/day		
gamma-BHC (Lindane)	0.65822118 ug/l	0.042574 lbs/day		
delta-BHC	0.05022110 ug/1	0.00000 lbs/day		
Chlordane	0.00263288.ug/l	0.000170 lbs/day		
4 4-DDT	0.000203200 ug/1	0.000047 lbs/day		
4 4-DDF	0 00072404 110/1	0.000047 lbs/day		
עס ד,ד תחת_1 /	0.00072104 ug/1	0.00000000000000000000000000000000000		
Dieldrin	0.0010202 + ug/1	0.000000 lbs/day		
alpha-Fndosulfan	204 05 110/1	13 198 lbs/day		
heta-Endosulfan	204.05 ug/1 204.05 ug/1	13.198 lbs/day		
Fndosulfan Sulfate	204.05 ug/1 204.05 ug/1	13.190 105/day		
Endosunan Sunat	0 19417525 ug/l	0.013 lbs/day		
Liiuilli	0.17711323 ug/1	0.015 105/uay		

0 Toxaphene	0.00000000 ug/l 0.00092151 ug/l	0.000000 lbs/day 0.000060 lbs/day		
Toxaphene	0.00092151 ug/l	0.000060 lbs/day		
Specific Parameter: TDS	0 ug/l	0.000000 lbs/day	3672.71 mg/l	237.6

Effluent Limitations for the Protection of Agriculture

is for the frotection of fightentiale				
-	1 Hour Average (Acute)	1 Hour Average (Acute) Standard		
	Concentration	Load		
Arsenic	329.11 ug/l	21.29		
Boron	2468.33 ug/l	159.65		
Cadmium	32.91 ug/l	2.13		
Chromium	329.11 ug/l	21.29		
Copper	658.22 ug/l	42.57		
Lead	329.11 ug/l	21.29		
Selenium	164.56 ug/l	10.64		

Metals Effluent Limitations for Protection of All Beneficial Uses Based upon Water Quality Standards and Toxics Rules

	Class 4 Acute Agricultural ug/l	Class 3 Acute Aquatic Wildlife ug/l	Acute Toxics Drinking Water Source ug/l	Acute Toxics Wildlife ug/l	1C Acute Health Criteria ug/l	Acute Most Stringent ug/l	Class 3 Chronic Aquatic Wildlife ug/l
Aluminum		2411.05				2411.05	1190.99
Antimony			18.43			18.43	
Arsenic	329.11	1113.25			32.91	32.91	2776.43
Asbestos							
Barium		3291.11			3291.11	3291.11	
Cadmium	32.91	9.40			32.91	9.40	0.00
Chromium (III)		2768.5			164.56	164.56	1452.61
Chromium (VI)	329.11	52.66				52.66	206.87
Copper	658.22	55.66				55.66	74.63
Cyanide				460.75		460.75	
Iron		3205.92				3205.92	
Lead	329.11	352.84			164.56	164.56	21.52
Mercury		7.8918			6.58	6.58	0.1723
Nickel		2303.74		329.11		329.11	1008.50
Selenium	164.56	59.41			164.56	59.41	77.61
Silver		21.81			164.56	21.81	
Thallium				0.79		0.79	
Zinc		543.96				543.96	30824.06

Summary Effluent Limitations for Metals [Wasteload Allocation, TMDL]

		Acute		Chronic	
	ug/l	lbs/day	ug/l	lbs/day	
Aluminum	2411.05	241.2	1190.99	119.2	
Antimony	18.43	1.8			
Arsenic	32.91	3.3	2776.43	277.8	
Asbestos					
Cadmium	9.40	0.9	0.00	0.0	
Chromium (III)	164.56	16.5	1452.61	145.3	
Chromium (VI)	52.66	5.3	206.87	20.7	
Copper	55.66	5.6	74.63	7.5	
Cyanide	460.75	46.1			
Iron	3205.92	320.8			
Lead	164.56	16.5	21.52	2.2	
Mercury	6.58	0.7	0.17	0.0	
Nickel	329.11	32.9	1008.50	100.9	
Selenium	59.41	5.9	77.61	7.8	
Silver	21.81	2.2			
Zinc	543.96	54.4	30824.06	3084.3	

Effluent Indicators / Targets for Pollution Indicators

Water quality targets for pollution Indicators will be met with an effluent limit as follows:

	Indicator / Target	Targ	et
	mg/l	mg/l	lbs/day
Gross Beta (pCi/l)	50.0 pCi/L		
BOD	5.0	16.46	1668.03
Nitrates as N	4.0	13.16	1334.43
Total Phosphorus as P	0.05	0.16	16.68
Total Suspended Solids	90.0	296.20	30024.58

Other Effluent Limitations are based upon R317-1.

X. Antidegradation Considerations

The Utah Antidegradation Policy allows for degradation of existing quality where it is determined that such lowering of water quality is necessary to accommodate important economic or social development in the area in which the waters are protected [R317-2-3]. It has been determined that development in the area in which the waters are protected [R317-2-3]. It has been determined that certain chemical parameters introduced by this discharge will cause an increase of the concentration of said parameters in the receiving waters. Under no conditions will the increase in concentration be allowed to interfer with existing water users.

Category III waters fall under special rules for the determination of effluent limits. These rules allow more stringent effluent limitations based upon additional factors, including: "blue-ribbon" fisheries, special recreation areas, and drinking water sources.

XI. Colorado River Salinity Forum Considerations

Discharges in the Colorado River Basin are required to have their discharge at a TDS loading of less than 1.00 tons/day unless shown that this is not attainable. Refer to the Forum's Guidelines for additional information.

The permit writers may utilize other information to adjust these limits and/or to determine other limits based upon best available technology and other considerations.

XII. Summary Comments

The mathematical modeling and best professional judgement indicate that violations of receiving wataer benefical uses with their associated water quality standards, including important downstream segments, will not occur for the evaluated parameters of concern as discussed above if the effluent limitations indicated above are met.

The permit writers may utilize other information to adjust these limits or to determine other limite based upon best available technology and other considerations. Under no circumstances however, may those alterations allow for the violation of water quality standards by the permitee.

XIII. Notice of UPDES Requirement

This Addendum to the Statement of Basis does not authorize any entity or party to discharge to the waters of the State of Utah. That authority is granted through a UPDES permit issued by the Utah Division of Water Quality. The numbers presented here may be changed as a function of other factors. Dischargers are strongly urged to contact the Permits Section for further information.

XIV. Notice of Availability of Information

All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality.

Prepared by: Christopher L Shope, PhD Utah Division of Water Quality 801-536-4309

Jordanelle_DW_WLA_2023_Jet_Model.xlsm