Utah Division of Water Quality Statement of Basis ADDENDUM Wasteload Analysis and Antidegradation Level I Review

Date:	October 18, 2018
Prepared by:	Dave Wham A Standards and Technical Services
Facility:	Hyrum City WWTP UPDES No. UT-0023205
Receiving water:	Ditch => South Fork Spring Creek

This addendum summarizes the wasteload analysis that was performed to determine water quality based effluent limits (WQBEL) for this discharge. Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses (UAC R317-2-8). Projected concentrations are compared to numeric water quality standards to determine acceptability. The numeric criteria in this wasteload analysis may be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality.

Discharge

001 Treatment plant discharge 2.0 MGD

Receiving Water

Hyrum City's WWTP discharges into a ditch system that runs for approximately 3 miles before coalescing as the South Fork of Spring Creek at Highway 89. As per UAC R317-2-13.10, the receiving ditch is classed 2B, 3E. As per R317-2-13.3(a), the designated beneficial uses of Little Bear River and tributaries, from Cutler Reservoir to headwaters are 2B, 3A, 3D, 4.

- Class 2B Protected for infrequent primary contact recreation. Also protected for secondary contact recreation where there is a low likelihood of ingestion of water or a low degree of bodily contact with the water. Examples include, but are not limited to, wading, hunting, and fishing.
- Class 3A Protected for cold water species of game fish and other cold water aquatic life, including the necessary aquatic organisms in their food chain.
- Class 3D Protected for waterfowl, shore birds and other water-oriented wildlife not included in Classes 3A, 3B, or 3C, including the necessary aquatic organisms in their food chain.

Utah Division of Water Quality Wasteload Analysis Hyrum City WWTP UPDES No. UT-0023205

- *Class 3E- Severely habitat-limited waters. Narrative standards will be applied to protect these waters for aquatic wildlife.*
- Class 4 Protected for agricultural uses including irrigation of crops and stock watering.

Typically, the critical flow for the wasteload analysis is considered the lowest stream flow for seven consecutive days with a ten year return frequency (7Q10). Due to a lack of flow records, the 20th percentile of available flow measurements was calculated to approximate the 7Q10 low flow condition. Flow data was obtained from DWQ monitoring station #4904810, SPRING CK SC-9, for the period 2007-2015. The calculated critical low flow condition was 0.68 cfs. Ambient water quality for the receiving water was characterized using data from the same station and time period.

TMDL

According to Utah's 2016 303(d) assessment unit UT16010203-008 00, Spring Creek and tributaries from confluence with Little Bear River to headwaters are currently listed as impaired (TMDL required) for temperature and O/E Bioassessment. A TMDL was completed for Spring Creek in 2002 which addressed impairments for dissolved oxygen, ammonia, E. coli and total phosphorus (TP). The TP target/endpoint was set at 0.05 mg/l at the watershed outlet. Since that time, major upgrades have been made to both Hyrum City's WWTP and Swift Beef Company's treatment plant, resulting in greatly improved effluent quality. The 2015 intensive monitoring that occurred in the drainage showed the average TP concentration at the watershed outlet to be 0.086 mg/l, which is significantly lower than the 0.7 mg/l concentration that existed prior to the treatment plants improvements. Because of these significant water quality improvements, and the volume of TP reduction that has occurred, additional time is needed to realize the temporal impacts of these changes to be expressed in the monitoring data of the South Fork of Spring Creek. The TP concentration trend continues to decline over time and has not shown to be tapering off to date. At present, additional time and monitoring are needed to assess the full impacts of the improvements. As a result, TP for Hyrum City's WWTP has been set at an interim level of 1.0 mg/l for September through May and 0.1 mg/l June through August and TP for Swift Beef Company has been set at an interim level of 1.0 mg/l for the current permit cycle and will be reevaluated following the next intensive monitoring cycle scheduled to begin in 2020.

Mixing Zone

The maximum allowable mixing zone is 15 minutes of travel time for acute conditions, not to exceed 50% of stream width, and 2,500 feet for chronic conditions, per UAC R317-2-5. Water quality standards must be met at the end of the mixing zone.

Because the receiving water is a ditch that flows for several miles with multiple inputs, the combined flows are considered to be totally mixed. Chronic and acute limits were calculated using 100% of the seasonal critical low flow.

Utah Division of Water Quality Wasteload Analysis Hyrum City WWTP UPDES No. UT-0023205

Parameters of Concern

The potential parameters of concern identified for the discharge/receiving water were phosphorous and ammonia, as determined in consultation with the UPDES Permit Writer.

WET Limits

The percent of effluent in the receiving water in a fully mixed condition, and acute and chronic dilution in a not fully mixed condition are calculated in the WLA in order to generate WET limits. The LC₅₀ (lethal concentration, 50%) percent effluent for acute toxicity and the IC₂₅ (inhibition concentration, 25%) percent effluent for chronic toxicity, as determined by the WET test, needs to be below the WET limits, as determined by the WLA. The WET limit for LC₅₀ is typically 100% effluent and does not need to be determined by the WLA.

IC25 WET limits for Outfall 001 are 82% effluent.

Wasteload Allocation Methods

The QUAL2Kw model was used for determining the WQBELs for parameters related to eutrophication and in-stream DO criteria, as well as ammonia toxicity. Effluent concentrations were adjusted so that water quality standards were not exceeded in the receiving water. Where WQBELs exceeded secondary standards or technology based effluent limits (TBEL), the concentration in the model was set at the secondary standard or TBEL.

Effluent limits were determined for conservative constituents using a simple mass balance mixing analysis (UDWQ 2012). The mass balance analysis is summarized in the Wasteload Addendum.

Models and supporting documentation are available for review upon request.

Antidegradation Level I Review

The objective of the Level I ADR is to ensure the protection of existing uses, defined as the beneficial uses attained in the receiving water on or after November 28, 1975. No evidence is known that the existing uses deviate from the designated beneficial uses for the receiving water. Therefore, the beneficial uses will be protected if the discharge remains below the WQBELs presented in this wasteload.

A Level II Antidegradation Review (ADR) is not required for this facility. The proposed permit is a simple renewal of an existing UPDES permit. No increase in flow or concentration of pollutants over those authorized in the the existing permit is being requested.

Documents:

WLA Document: Hyrum_WLADoc_10-18-18.docx Wasteload Analysis and Addendums: Hyrum WLA 10-18-18.xlsm

References:

Utah Division of Water Quality Wasteload Analysis Hyrum City WWTP UPDES No. UT-0023205

Utah Division of Water Quality. 2012. Utah Wasteload Analysis Procedures Version 1.0.

WASTELOAD ANALYSIS [WLA] Addendum: Statement of Basis SUMMARY

Discharging Facility: UPDES No:	Hyrum City UT-0023205			
Design Flow	2.00	MGD		
Receiving Water:	Ditch => Spr	ing Creek		
Stream Classification:	2B, 3A, 3D, 4			
Stream Flows [cfs]:	0.68	Summer (J	luly-Sept)	20th Percentile
	0.68	Fall (Oct-D	ec)	20th Percentile
	0.68	Winter (Ja	n-Mar)	20th Percentile
		Spring (Ap	r-June)	20th Percentile
		Average		
Stream TDS Values:		Summer (J		Average
		Fall (Oct-D		Average
		Winter (Jai	,	Average
	568.0	Spring (Ap	r-June)	Average
Effluent Limits:				WQ Standard:
Flow, MGD:	2.00	MGD	Design Flow	
BOD, mg/l:	25.0	Summer	•	Indicator
Dissolved Oxygen, mg/	5.0	Summer	6.5	30 Day Average
TNH3, Chronic, mg/l:	3.0	Summer	Varies	Function of pH and Temperature
TDS, mg/l:	1394.5	Summer	1200.0	

Modeling Parameters:

Acute River Width:	50.0%
Chronic River Width:	100.0%

Level 1 Antidegradation Level Completed: Level II Review not required.

Date: 10/15/2018

WASTELOAD ANALYSIS [WLA] Addendum: Statement of Basis

Facilities:	Hyrum City
Discharging to:	0.0

15-Oct-18
4:00 PM

UPDES No: UT-0023205

THIS IS A DRAFT DOCUMENT

I. Introduction

Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses [R317-2-8, UAC]. Projected concentrations are compared to numeric water quality standards to determine acceptability. The anti-degradation policy and procedures are also considered. The primary in-stream parameters of concern may include metals (as a function of hardness), total dissolved solids (TDS), total residual chlorine (TRC), un-ionized ammonia (as a function of pH and temperature, measured and evaluated interms of total ammonia), and dissolved oxygen.

Mathematical water quality modeling is employed to determine stream quality response to point source discharges. Models aid in the effort of anticipating stream quality at future effluent flows at critical environmental conditions (e.g., low stream flow, high temperature, high pH, etc).

The numeric criteria in this wasteload analysis may always be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality.

II. Receiving Water and Stream Classification

	2B, 3A, 3D, 4
Antidegradation Review:	Level I review completed. Level II review not required.

III. Numeric Stream Standards for Protection of Aquatic Wildlife

Total Ammonia (TNH3)	Varies as a function of Temperature and pH Rebound. See Water Quality Standards
Chronic Total Residual Chlorine (TRC)	0.011 mg/l (4 Day Average) 0.019 mg/l (1 Hour Average)
Chronic Dissolved Oxygen (DO)	6.50 mg/l (30 Day Average) 5.00 mg/l (7Day Average) 4.00 mg/l (1 Day Average
Maximum Total Dissolved Solids	1200.0 mg/l

Acute and Chronic Heavy Metals (Dissolved)

	4 Day Average (Chronic) Standard		1 Hour	1 Hour Average (Acute) Standard			
Parameter	Concentration	n Load'			Load*		
Aluminum	87.00 ug/l**	1.454 lb	os/dav 750.00	ug/l	12.532 lbs/day		
Arsenic	•	3.175 lb		- 3-	5.681 lbs/day		
Cadmium	•	0.010 lb		0	0.108 lbs/day		
Chromium III	210.87 ug/l	3.523 lb		-	73.718 lbs/day		
ChromiumVI	11.00 ug/l	0.184 lb	os/day 16.00	-	0.267 lbs/day		
Copper	23.73 ug/l	0.397 lb	os/day 39.19	-	0.655 lbs/day		
Iron			1000.00	-	16.709 lbs/day		
Lead	12.78 ug/l	0.214 lb	os/day 328.08	-	5.482 lbs/day		
Mercury	0.0120 ug/l	0.000 lb	os/day 2.40	_	0.040 lbs/day		
Nickel	131.46 ug/l	2.197 lb	os/day 1182.40	ug/l	19.757 lbs/day		
Selenium	4.60 ug/l	0.077 lb	os/day 20.00	ug/l	0.334 lbs/day		
Silver	N/A ug/l	N/A Ib	os/day 24.78	ug/l	0.414 lbs/day		
Zinc	302.39 ug/l	5.053 lb	os/day 302.39	ug/l	5.053 lbs/day		
* Allow	ved below discharge			-			

**Chronic Aluminum standard applies only to waters with a pH < 7.0 and a Hardness < 50 mg/l as CaCO3

Metals Standards Based upon a Hardness of 298.2 mg/l as CaCO3

Organics [Pesticides]

• • •	4 Day Averag	ge (Chron	ic) Standard		1 Hour A	verage (Acut	e) Standard
Parameter	Concent	tration	Loa	ıd*	Concentratio	1	Load*
Aldrin					1.500	ug/l	0.025 lbs/day
Chlordane	0.004	ug/l	0.087	lbs/day	1.200	ug/l	0.020 lbs/day
DDT, DDE	0.001	ug/l	0.020	lbs/day	0.550	ug/l	0.009 lbs/day
Dieldrin	0.002	ug/l	0.039	lbs/day	1.250	ug/l	0.021 lbs/day
Endosulfan	0.056	ug/l	1.139	lbs/day	0.110	ug/l	0.002 lbs/day
Endrin	0.002	ug/l	0.047	lbs/day	0.090	ug/l	0.002 lbs/day
Guthion					0.010	ug/l	0.000 lbs/day
Heptachlor	0.004	ug/l	0.077	lbs/day	0.260	ug/l	0.004 lbs/day
Lindane	0.080	ug/l	1.627	lbs/day	1.000	ug/l	0.017 lbs/day
Methoxychlor					0.030	ug/l	0.001 lbs/day
Mirex					0.010	ug/l	0.000 lbs/day
Parathion					0.040	ug/l	0.001 lbs/day
PCB's	0.014	ug/l	0.285	lbs/day	2.000	ug/l	0.033 lbs/day
Pentachlorophenol	13.00	ug/l	264.444	lbs/day	20.000	ug/l	0.334 lbs/day
Toxephene	0.0002	ug/l	0.004	lbs/day	0.7300	ug/l	0.012 lbs/day

IV. Numeric Stream Standards for Protection of Agriculture

	4 Day Average (Chronic) Standard		1 Hour Average (Acute) Standard	
	Concentration	Load*	Concentration	Load*
Arsenic			100.0 ug/l	lbs/day
Boron			750.0 ug/l	lbs/day
Cadmium			10.0 ug/l	0.08 lbs/day
Chromium		2	100.0 ug/l	lbs/day
Copper			200.0 ug/l	lbs/day
Lead			100.0 ug/l	lbs/day
Selenium			50.0 ug/l	lbs/day
TDS, Summer			1200.0 mg/l	10.03 tons/day

V. Numeric Stream Standards for Protection of Human Health (Class 1C Waters)

4	Day Average (Chronic) S	Standard	1 Hour Average (Ac	ute) Standard
Metals	Concentration	Load*	Concentration	Load*
Arsenic			ug/l	lbs/day
Barium			ug/l	lbs/day
Cadmium			ug/l	lbs/day
Chromium			ug/l	lbs/day
Lead			ug/l	lbs/day
Mercury			ug/l	lbs/day
Selenium			ug/l	lbs/day
Silver			ug/l	lbs/day
Fluoride (3)			ug/l	lbs/day
to			ug/l	lbs/day
Nitrates as N			ug/l	lbs/day
Chlorophenoxy Herbicid	es			
2,4-D			ug/l	lbs/day
2,4,5-TP			ug/l	lbs/day
Endrin			ug/l	lbs/day
ocyclohexane (Lindane)			ug/l	lbs/day
Methoxychlor			ug/l	lbs/day
Toxaphene			ug/l	lbs/day

VI. Numeric Stream Standards the Protection of Human Health from Water & Fish Consumption [Toxics]

	Maximum Conc., ug/I - Acute Standards				
	Class 1C		(A, 3B	
Toxic Organics	[2 Liters/Day for 70 Kg Person over 70 Yr.]		[6.5 g for 70 Kg Person over 70 Yr.		
Acenaphthene	ug/l	lbs/day	2700.0	ug/l	54.92 lbs/day
Acrolein	ug/l	lbs/day	780.0	ug/l	15.87 lbs/day
Acrylonitrile	ug/l	lbs/day	0.7	ug/l	0.01 lbs/day
Benzene	ug/l	lbs/day	71.0	ug/l	1.44 lbs/day
Benzidine	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
Carbon tetrachloride	ug/l	Ibs/day	4.4	ug/l	0.09 lbs/day
Chlorobenzene	ug/l	lbs/day	21000.0	ug/l	427.18 lbs/day
1,2,4-Trichlorobenzene					
Hexachlorobenzene	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
1,2-Dichloroethane	ug/l	lbs/day	99.0	ug/l	2.01 lbs/day

1,1,1-Trichloroethane					
Hexachloroethane	ug/l	lbs/day	80	ug/l	0.18 lbs/day
1,1-Dichloroethane	ugn	105/udy	0.9	uyn	0.10 105/049
1,1,2-Trichloroethane	ug/l	lbs/day	42.0	ua/l	0.85 lbs/day
1,1,2,2-Tetrachloroethai	ug/l	lbs/day	11.0	-	0.03 lbs/day 0.22 lbs/day
Chloroethane	ugn	103/ddy		ug/l	0.22 lbs/day 0.00 lbs/day
Bis(2-chloroethyl) ether	ug/l	lbs/day		ug/l	0.03 lbs/day
2-Chloroethyl vinyl ether	ug/l	lbs/day		ug/l	0.00 lbs/day
2-Chloronaphthalene	ug/l	lbs/day	4300.0		87.47 lbs/day
2,4,6-Trichlorophenol	ug/l	lbs/day	6.5	•	0.13 lbs/day
p-Chloro-m-cresol	49.1	loo, day	0.0	•	0.00 lbs/day
Chloroform (HM)	ug/l	lbs/day	470.0	•	9.56 lbs/day
2-Chlorophenol	ug/l	lbs/day	400.0	•	8.14 lbs/day
1,2-Dichlorobenzene	ug/l	lbs/day	17000.0		345.81 lbs/day
1,3-Dichlorobenzene	ug/l	lbs/day	2600.0	ug/l	52.89 lbs/day
1,4-Dichlorobenzene	ug/l	lbs/day	2600.0	ug/l	52.89 lbs/day
3,3'-Dichlorobenzidine	ug/i	lbs/day	0.1	ug/l	0.00 lbs/day
1,1-Dichloroethylene	ug/l	lbs/day		ug/l	0.07 lbs/day
1,2-trans-Dichloroethyle	ug/l	lbs/day		ug/l	0.00 lbs/day
2,4-Dichlorophenol	ug/l	lbs/day	790.0		16.07 lbs/day
1,2-Dichloropropane	ug/l	lbs/day	39.0	-	0.79 lbs/day
1,3-Dichloropropylene	ug/l	lbs/day	1700.0	ug/i	34.58 lbs/day
2,4-Dimethylphenol	ug/l	lbs/day	2300.0	ug/i	46.79 lbs/day
2,4-Dinitrotoluene	ug/l	lbs/day	9.1	ug/l	0.19 lbs/day
2,6-Dinitrotoluene	ug/l	lbs/day		ug/l	0.00 lbs/day
1,2-Diphenylhydrazine	ug/l	lbs/day		ug/l	0.01 lbs/day
Ethylbenzene	ug/l	lbs/day	29000.0	ug/l	589.91 lbs/day
Fluoranthene	ug/l	lbs/day	370.0	-	7.53 lbs/day
4-Chlorophenyl phenyl ether			0,0.0	~g, i	1.00 100,043
4-Bromophenyl phenyl ether					
Bis(2-chloroisopropyl) e	ug/l	lbs/day	170000.0	ug/l	3458.12 lbs/day
Bis(2-chloroethoxy) met	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
Methylene chloride (HM	ug/l	lbs/day	1600.0	ug/l	32.55 lbs/day
Methyl chloride (HM)	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
Methyl bromide (HM)	ug/l	lbs/day	0.0	-	0.00 lbs/day
Bromoform (HM)	ug/l	lbs/day	360.0	•	7.32 lbs/day
Dichlorobromomethane	ug/l	lbs/day	22.0		0.45 lbs/day
Chlorodibromomethane	ug/l	lbs/day	34.0		0.69 lbs/day
Hexachlorobutadiene(c)	ug/l	lbs/day	50.0		1.02 lbs/day
Hexachlorocyclopentadi	ug/l	lbs/day	17000.0		345.81 lbs/day
Isophorone	ug/l	lbs/day	600.0	-	12.21 lbs/day
Naphthalene				•	,
Nitrobenzene	ug/l	lbs/day	1900.0	ug/l	38.65 lbs/day
2-Nitrophenol	ug/ł	lbs/day	0.0	ug/l	0.00 lbs/day
4-Nitrophenol	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
2,4-Dinitrophenol	ug/l	lbs/day	14000.0	ug/l	284.79 lbs/day
4,6-Dinitro-o-cresol	ug/l	lbs/day	765.0	ug/i	15.56 lbs/day
N-Nitrosodimethylamine	ug/l	lbs/day	8.1	ug/l	0.16 lbs/day
N-Nitrosodiphenylamine	ug/l	lbs/day	16.0	ug/l	0.33 lbs/day
N-Nitrosodi-n-propylami	ug/l	lbs/day		ug/l	0.03 lbs/day
Pentachlorophenol	ug/l	lbs/day		ug/l	0.17 lbs/day
		-		-	,

Phenol	ug/l	lbs/day	4.6E+06	ug/l	9.36E+04 lbs/day
Bis(2-ethylhexyl)phthala	ug/l	lbs/day	5.9	ug/l	0.12 lbs/day
Butyl benzyl phthalate	ug/l	lbs/day	5200.0	ug/l	105.78 lbs/day
Di-n-butyl phthalate	ug/l	lbs/day	12000.0	ug/l	244.10 lbs/day
Di-n-octyl phthlate					-
Diethyl phthalate	ug/l	lbs/day	120000.0	ug/l	2441.02 lbs/day
Dimethyl phthlate	ug/l	lbs/day	2.9E+06	ug/l	5.90E+04 lbs/day
Benzo(a)anthracene (P/	ug/i	lbs/day	0.0	ug/l	0.00 lbs/day
Benzo(a)pyrene (PAH)	ug/l	lbs/day	0.0	-	0.00 lbs/day
Benzo(b)fluoranthene (F	ug/l	lbs/day		ug/l	0.00 lbs/day
Benzo(k)fluoranthene (F	ug/l	lbs/day	0.0	-	0.00 lbs/day
Chrysene (PAH)	ug/l	lbs/day		ug/l	0.00 lbs/day
Acenaphthylene (PAH)	5	······································		- 3.	0.00 (20, 44)
Anthracene (PAH)	ug/l	lbs/day	0.0	ua/l	0.00 lbs/day
Dibenzo(a,h)anthracene	ug/l	lbs/day		ug/l	0.00 lbs/day
Indeno(1,2,3-cd)pyrene	ug/l	lbs/day		ug/l	0.00 lbs/day
Pyrene (PAH)	ug/i	lbs/day		ug/l	223.76 lbs/day
Tetrachloroethylene	ug/l	lbs/day		ug/l	0.18 lbs/day
Toluene	ug/l	lbs/day		ug/l	4068.37 lbs/day
Trichloroethylene	ug/l	lbs/day		-	-
Vinyl chloride	_			ug/l	1.65 lbs/day
vinyi chionae	ug/l	lbs/day	525.0	ug/l	10.68 lbs/day
Pesticides					lbs/day
Aldrin	110/1	lbo/dou	0.0		lbs/day
Dieldrin	ug/l	lbs/day	0.0	-	0.00 lbs/day
	ug/i	lbs/day		ug/l	0.00 lbs/day
	ug/i	lbs/day		ug/l	0.00 lbs/day
4,4'-DDT	ug/l	lbs/day	0.0	-	0.00 lbs/day
4,4'-DDE	ug/l	lbs/day	0.0		0.00 lbs/day
4,4'-DDD	ug/l	lbs/day	0.0		0.00 lbs/day
alpha-Endosulfan	ug/l	lbs/day	2.0		0.04 lbs/day
beta-Endosulfan	ug/l	lbs/day	2.0	ug/l	0.04 lbs/day
Endosulfan sulfate	ug/l	lbs/day		ug/l	0.04 lbs/day
Endrin	ug/l	lbs/day	0.8	ug/l	0.02 lbs/day
Endrin aldehyde	ug/l	lbs/day	0.8	ug/l	0.02 lbs/day
Heptachlor	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
Heptachlor epoxide					
PCB's					
PCB 1242 (Arochlor 124	ug/i	lbs/day	0.0	ug/l	0.00 lbs/day
PCB-1254 (Arochlor 12)	ug/l	lbs/day	0.0	-	0.00 lbs/day
PCB-1221 (Arochlor 122	ug/l	lbs/day	0.0		0.00 lbs/day
PCB-1232 (Arochlor 12:	ug/l	lbs/day	0.0		0.00 lbs/day
PCB-1248 (Arochlor 124	ug/l	lbs/day	0.0	-	0.00 lbs/day
PCB-1260 (Arochlor 126	ug/l	lbs/day	0.0	-	0.00 lbs/day
PCB-1016 (Arochlor 10'	ug/i	lbs/day	0.0		0.00 lbs/day
	ug/i	Ibbruay	0.0	ugn	0.00 105/049
Pesticide					
Toxaphene	ug/l		0.0	ug/l	0.00 lbs/day
Dioxin					
Dioxin (2,3,7,8-TCDD)	ug/l	lbs/day			
	3				

Metals				
Antimony	ug/l	lbs/day		
Arsenic	ug/l	lbs/day	4300.00 ug/l	87.47 lbs/day
Asbestos	ug/ł	lbs/day	C	
Beryllium	-			
Cadmium				
Chromium (III)				
Chromium (VI)				
Copper				
Cyanide	ug/l	lbs/day	2.2E+05 ug/l	4475.21 lbs/day
Lead	ug/l	lbs/day	-	
Mercury		-	0.15 ug/l	0.00 lbs/day
Nickel			4600.00 ug/l	93.57 lbs/day
Selenium	ug/l	lbs/day	U U	
Silver	ug/l	lbs/day		
Thallium		÷	6.30 ug/l	0.13 lbs/day
Zinc				

There are additional standards that apply to this receiving water, but were not considered in this modeling/waste load allocation analysis.

VII. Mathematical Modeling of Stream Quality

Model configuration was accomplished utilizing standard modeling procedures. Data points were plotted and coefficients adjusted as required to match observed data as closely as possible.

The modeling approach used in this analysis included one or a combination of the following models.

(1) The Utah River Model, Utah Division of Water Quality, 1992. Based upon STREAMDO IV (Region VIII) and Supplemental Ammonia Toxicity Models; EPA Region VIII, Sept. 1990 and QUAL2E (EPA, Athens, GA).

- (2) Utah Ammonia/Chlorine Model, Utah Division of Water Quality, 1992.
- (3) AMMTOX Model, University of Colorado, Center of Limnology, and EPA Region 8
- (4) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644.

Coefficients used in the model were based, in part, upon the following references:

(1) Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling. Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens Georgia. EPA/600/3-85/040 June 1985.

(2) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644.

VIII. Modeling Information

The required information for the model may include the following information for both the upstream conditions at low flow and the effluent conditions:

mg/l
Residual Chlorine (TRC), mg/l
NH3-N, mg/l
Dissolved Solids (TDS), mg/l
Organics of Concern, ug/l

Other Conditions

In addition to the upstream and effluent conditions, the models require a variety of physical and biological coefficients and other technical information. In the process of actually establishing the permit limits for an effluent, values are used based upon the available data, model calibration, literature values, site visits and best professional judgement.

Model Inputs

The following is upstream and discharge information that was utilized as inputs for the analysis. Dry washes are considered to have an upstream flow equal to the flow of the discharge.

Current Upstream								
	Stream Critical Low							
	Flow	Temp.	рН	T-NH3	BOD5	DO	TRC	TDS
	cfs	Deg. C		mg/I as N	mg/l	mg/l	mg/l	mg/l
Summer (Irrig. Season)	0.68	15.3	8.4	0.10	1.00	7.64	0.00	315.0
Fall	0.68	6.3	8.2	0.10	1.00		0.00	583.0
Winter	0.68	4.8	8.0	0.10	1.00		0.00	687.0
Spring	0.68	11.9	8.3	0.10	1.00		0.00	568.0
Dissolved	AI	As	Cd	CrIII	CrVI	Copper	Fe	Pb
Metals		ug/l	ug/i	ug/l	ug/l	ug/l	ug/l	ug/l
All Seasons	2.385*	0.795*	0.0795*	0.795*	3.975*	0.8*	1.25*	0.795*
Dissolved		Ni	Se	Ag	Zn	Boron		
Metals	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l		
All Seasons	0.0000	0.795*	1.59*	0.15*	0.0795*	1.59*	* ~8	0% MDL

Projected Discharge Information

Season	Flow, MGD	Temp.
Summer	2.00000	19.6
Fall	2.00000	17.0
Winter	2.00000	12.3
Spring	2.00000	13.2

All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality.

IX. Effluent Limitations

Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9).

Other conditions used in the modeling effort coincide with the environmental conditions expected at low stream flows.

Effluent Limitation for Flow based upon Water Quality Standards

In-stream criteria of downstream segments will be met with an effluent flow maximum value as follows:

Season	Daily Average	
Summer	2.000 MGD	3.094 cfs
Fall	2.000 MGD	3.094 cfs
Winter	2.000 MGD	3.094 cfs
Spring	2.000 MGD	3.094 cfs

Flow Requirement or Loading Requirement

The calculations in this wasteload analysis utilize the maximum effluent discharge flow of 2 MGD. If the discharger is allowed to have a flow greater than 2 MGD during 7Q10 conditions, and effluent limit concentrations as indicated, then water quality standards will be violated. In order to prevent this from occuring, the permit writers must include the discharge flow limititation as indicated above; or, include loading effluent limits in the permit.

Effluent Limitation for Whole Effluent Toxicity (WET) based upon WET Policy

Effluent Toxicity will not occur in downstream segements if the values below are met.

WET Requirements	LC50 >	100.0% Effluent	[Acute]
	IC25 >	82.0% Effluent	[Chronic]

Effluent Limitation for Biological Oxygen Demand (BOD) based upon Water Quality Standards or Regulations

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent BOD limitation as follows:

Season	Concentration	
Summer	25.0 mg/l as BOD5	416.9 lbs/day
Fall	25.0 mg/l as BOD5	416.9 lbs/day
Winter	25.0 mg/l as BOD5	416.9 lbs/day
Spring	25.0 mg/l as BOD5	416.9 lbs/day

Effluent Limitation for Dissolved Oxygen (DO) based upon Water Quality Standards

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent D.O. limitation as follows:

Season	Concentration
Summer	5.00
Fall	5.00
Winter	5.00
Spring	5.00

Effluent Limitation for Total Ammonia based upon Water Quality Standards

In-stream criteria of downstream segments for Total Ammonia will be met with an effluent limitation (expressed as Total Ammonia as N) as follows:

Seas	on			
	Concentr	ation	Loa	d
Summer	4 Day Avg Chronic	2.99 mg/l as N	49.8	lbs/day
	1 Hour Avg Acute	9.6 mg/l as N	160.2	lbs/day
Fall	4 Day Avg Chronic	4.4 mg/l as N	73.7	lbs/day
	1 Hour Avg Acute	10.8 mg/l as N	179.3	lbs/day
Winter	4 Day Avg Chronic	6.0 mg/l as N	99.3	lbs/day
	1 Hour Avg Acute	12.7 mg/l as N	212.3	lbs/day
Spring	4 Day Avg Chronic	4.4 mg/l as N	73.3	lbs/day
	1 Hour Avg Acute	10.6 mg/l as N	177.0	lbs/day

Acute limit calculated with an Acute Zone of Initial Dilution (ZID) to be equal to 100.%.

Effluent Limitation for Total Residual Chlorine based upon Water Quality Standards

In-stream criteria of downstream segments for Total Residual Chlorine will be met with an effluent limitation as follows:

Seas	on	Concentra	ation	Load	1
Summer	4 Day Avg Chronic	0.013	mg/l	0.22	lbs/day
	1 Hour Avg Acute	0.023	mg/l	0.38	lbs/day
Fall	4 Day Avg Chronic	0.013	mg/l	0.22	lbs/day
	1 Hour Avg Acute	0.023	mg/l	0.38	lbs/day
Winter	4 Day Avg Chronic	0.013	mg/l	0.22	lbs/day
	1 Hour Avg Acute	0.023	mg/l	0.38	lbs/day
Spring	4 Day Avg Chronic	0.013	mg/l	0.22	lbs/day
	1 Hour Avg Acute	0.023	mg/l	0.38	lbs/day

Effluent Limitations for Total Dissolved Solids based upon Water Quality Standards

Seas	on	Concentr	ation	Load	d
Summer	Maximum, Acute	1394.5	mg/l	11.63	tons/day
Fall	Maximum, Acute	1335.6	mg/l	11.14	tons/day
Winter	Maximum, Acute	1312.7	mg/l	10.95	tons/day
Spring	Maximum, Acute	1338.9	mg/l	11.16	tons/day
Colorado S	alinity Forum Limits	Determine	d by Permit	ting Section	

Effluent Limitations for Total Recoverable Metals based upon Water Quality Standards

æ.

In-stream criteria of downstream segments for Dissolved Metals will be met with an effluent limitation as follows (based upon a hardness of 298.2 mg/l):

	Concen	4 Day Average tration	Load	1 Hour A Concentration	verage	Load
					23	
Aluminum*	N/A		N/A	832.2	ug/l	13.9 lbs/day
Arsenic*	231.58	•	2.5 lbs/day	377.3	ug/l	6.3 lbs/day
Cadmium	0.72	ug/l	0.0 lbs/day	7.2	ug/l	0.1 lbs/day
Chromium III	257.05	ug/l	2.8 lbs/day	4,896.6	ug/l	81.8 lbs/day
Chromium VI*	12.54	ug/l	0.1 lbs/day	17.3	ug/l	0.3 lbs/day
Copper	28.77	ug/l	0.3 lbs/day	43.4	ug/l	0.7 lbs/day
Iron*	N/A		N/A	3,433.6	ug/l	57.4 lbs/day
Lead	15.42	ug/l	0.2 lbs/day	364.0	ug/l	6.1 lbs/day
Mercury*	0.01	ug/l	0.0 lbs/day	2.7	ug/l	0.0 lbs/day
Nickel	160.18	ug/l	1.7 lbs/day	1,312.2	ug/l	21.9 lbs/day
Selenium*	5.26	ug/l	0.1 lbs/day	22.0	ug/l	0.4 lbs/day
Silver	N/A	ug/l	N/A lbs/day	27.5	ug/l	0.5 lbs/day

Zinc	368.83 ug/l	4.0 lbs/day	335.6	ug/l	5.6 lbs/day
Cyanide*	6.34 ug/l	0.1 lbs/day	24.4	ug/l	0.4 lbs/day

*Limits for these metals are based on the dissolved standard.

Effluent Limitations for Heat/Temperature based upon Water Quality Standards

Summer	17.7 Deg. C.	63.9 Deg. F
Fall	8.7 Deg. C.	47.7 Deg. F
Winter	7.2 Deg. C.	45.0 Deg. F
Spring	14.4 Deg. C.	57.8 Deg. F

Effluent Limitations for Organics [Pesticides] Based upon Water Quality Standards

In-stream criteria of downstream segments for Organics [Pesticides] will be met with an effluent limit as follows:

	4 Day Average		1 Hour Average		
	Concentration	Load	Concentration	•	Load
Aldrin			* 1.5E+00	ug/l	3.88E-02 lbs/day
Chlordane	4.30E-03 ug/l	7.17E-02 lbs/day	1.2E+00	ug/l	3.10E-02 lbs/day
DDT, DDE	1.00E-03 ug/l	1.67E-02 lbs/day	5.5E-01	ug/l	1.42E-02 lbs/day
Dieldrin	1.90E-03 ug/l	3.17E-02 lbs/day	1.3E+00	ug/l	3.23E-02 lbs/day
Endosulfan	5.60E-02 ug/l	9.34E-01 lbs/day	1.1E-01	ug/l	2.84E-03 lbs/day
Endrin	2.30E-03 ug/l	3.84E-02 lbs/day	9.0E-02	ug/l	2.33E-03 lbs/day
Guthion	0.00E+00 ug/l	0.00E+00 lbs/day	1.0E-02	ug/l	2.58E-04 lbs/day
Heptachlor	3.80E-03 ug/l	6.34E-02 lbs/day	2.6E-01	ug/l	6.72E-03 lbs/day
Lindane	8.00E-02 ug/l	1.33E+00 lbs/day	1.0E+00	ug/l	2.58E-02 lbs/day
Methoxychlor	0.00E+00 ug/l	0.00E+00 lbs/day	3.0E-02	ug/l	7.75E-04 lbs/day
Mirex	0.00E+00 ug/l	0.00E+00 lbs/day	1.0E-02	ug/l	2.58E-04 lbs/day
Parathion	0.00E+00 ug/l	0.00E+00 lbs/day	4.0E-02	ug/l	1.03E-03 lbs/day
PCB's	1.40E-02 ug/l	2.33E-01 lbs/day	2.0E+00	ug/l	5.17E-02 lbs/day
Pentachlorophenol	1.30E+01 ug/l	2.17E+02 lbs/day	2.0E+01	ug/l	5.17E-01 lbs/day
Toxephene	2.00E-04 ug/l	3.34E-03 lbs/day	7.3E-01	ug/l	1.89E-02 lbs/day

Effluent Targets for Pollution Indicators Based upon Water Quality Standards

1

In-stream criteria of downstream segments for Pollution Indicators will be met with an effluent limit as follows:

	1 Hour Average		
	Concentration	Loading	
Gross Beta (pCi/l)	50.0 pCi/L		
BOD (mg/l)	5.0 mg/l	83.5 lbs/day	
Nitrates as N	4.0 mg/l	66.8 lbs/day	
Total Phosphorus as P	0.05 mg/l	0.8 lbs/day	
Total Suspended Solids	90.0 mg/l	1503.8 lbs/day	

Note: Pollution indicator targets are for information purposes only.

Effluent Limitations for Protection of Human Health [Toxics Rule] Based upon Water Quality Standards (Most stringent of 1C or 3A & 3B as appropriate.)

In-stream criteria of downstream segments for Protection of Human Health [Toxics] will be met with an effluent limit as follows:

	Maximum (Concentration
	Concentration	Load
Toxic Organics	ouncentration	LUau
Acenaphthene	3.29E+03 ug/l	5.49E+01 lbs/day
Acrolein	9.51E+02 ug/l	1.59E+01 lbs/day
Acrylonitrile	8.05E-01 ug/l	1.34E-02 lbs/day
Benzene	8.66E+01 ug/l	1.44E+00 lbs/day
Benzidine	ug/l	lbs/day
Carbon tetrachloride	5.37E+00 ug/l	8.95E-02 lbs/day
Chlorobenzene	2.56E+04 ug/l	4.27E+02 lbs/day
1,2,4-Trichlorobenzene	2.002.01 ug/1	1.27 E 02 100/day
Hexachlorobenzene	9.39E-04 ug/l	1.57E-05 lbs/day
1,2-Dichloroethane	1.21E+02 ug/l	2.01E+00 lbs/day
1,1,1-Trichloroethane		
Hexachloroethane	1.09E+01 ug/l	1.81E-01 lbs/day
1,1-Dichloroethane	5	,
1,1,2-Trichloroethane	5.12E+01 ug/l	8.54E-01 lbs/day
1,1,2,2-Tetrachloroethane	1.34E+01 ug/l	2.24E-01 lbs/day
Chloroethane	5	,
Bis(2-chloroethyl) ether	1.71E+00 ug/l	2.85E-02 lbs/day
2-Chloroethyl vinyl ether	5	
2-Chloronaphthalene	5.25E+03 ug/l	8.75E+01 lbs/day
2,4,6-Trichlorophenol	7.93E+00 ug/l	1.32E-01 lbs/day
p-Chloro-m-cresol	-	
Chloroform (HM)	5.73E+02 ug/l	9.56E+00 lbs/day
2-Chlorophenol	4.88E+02 ug/l	8.14E+00 lbs/day
1,2-Dichlorobenzene	2.07E+04 ug/l	3.46E+02 lbs/day
1,3-Dichlorobenzene	3.17E+03 ug/l	5.29E+01 lbs/day
		-

1,4-Dichlorobenzene	3.17E+03 ug/l	5.29E+01 lbs/day
3,3'-Dichlorobenzidine	9.39E-02 ug/l	1.57E-03 lbs/day
1,1-Dichloroethylene	3.90E+00 ug/l	6.51E-02 lbs/day
1,2-trans-Dichloroethylene1		
2,4-Dichlorophenol	9.64E+02 ug/l	1.61E+01 lbs/day
1,2-Dichloropropane	4.76E+01 ug/l	7.93E-01 lbs/day
1,3-Dichloropropylene	2.07E+03 ug/l	3.46E+01 lbs/day
2,4-Dimethylphenol	2.81E+03 ug/l	4.68E+01 lbs/day
2,4-Dinitrotoluene	1.11E+01 ug/l	1.85E-01 lbs/day
2,6-Dinitrotoluene		
1,2-Diphenylhydrazine	6.59E-01 ug/l	1.10E-02 lbs/day
Ethylbenzene	3.54E+04 ug/l	5.90E+02 lbs/day
Fluoranthene	4.51E+02 ug/l	7.53E+00 lbs/day
4-Chlorophenyl phenyl ether		
4-Bromophenyl phenyl ether		
Bis(2-chloroisopropyl) ether	2.07E+05 ug/l	3.46E+03 lbs/day
Bis(2-chloroethoxy) methane		
Methylene chloride (HM)	1.95E+03 ug/l	3.25E+01 lbs/day
Methyl chloride (HM)	8. j.	
Methyl bromide (HM)		
Bromoform (HM)	4.39E+02 ug/l	7.32E+00 lbs/day
Dichlorobromomethane(HM)	2.68E+01 ug/l	4.48E-01 lbs/day
Chlorodibromomethane (HM)	4.15E+01 ug/l	6.92E-01 lbs/day
Hexachlorocyclopentadiene	2.07E+04 ug/l	3.46E+02 lbs/day
Isophorone	7.32E+02 ug/l	1.22E+01 lbs/day
Naphthalene		
Nitrobenzene	2.32E+03 ug/l	3.86E+01 lbs/day
2-Nitrophenol		
4-Nitrophenol		
2,4-Dinitrophenol	1.71E+04 ug/l	2.85E+02 lbs/day
4,6-Dinitro-o-cresol	9.33E+02 ug/l	1.56E+01 lbs/day
N-Nitrosodimethylamine	9.88E+00 ug/l	⁶ 1.65E-01 lbs/day
N-Nitrosodiphenylamine	1.95E+01 ug/l	3.25E-01 lbs/day
N-Nitrosodi-n-propylamine	1.71E+00 ug/l	2.85E-02 lbs/day
Pentachlorophenol	1.00E+01 ug/l	1.67E-01 lbs/day
Phenol	5.61E+06 ug/l	9.36E+04 lbs/day
Bis(2-ethylhexyl)phthalate	7.20E+00 ug/l	1.20E-01 lbs/day
Butyl benzyl phthalate	6.34E+03 ug/l	1.06E+02 lbs/day
Di-n-butyl phthalate	1.46E+04 ug/l	2.44E+02 lbs/day
Di-n-octyl phthlate		
Diethyl phthalate	1.46E+05 ug/I	2.44E+03 lbs/day
Dimethyl phthlate	3.54E+06 ug/l	5.90E+04 lbs/day
Benzo(a)anthracene (PAH)	3.78E-02 ug/l	6.31E-04 lbs/day
Benzo(a)pyrene (PAH)	3.78E-02 ug/l	6.31E-04 lbs/day
Benzo(b)fluoranthene (PAH)	3.78E-02 ug/l	6.31E-04 lbs/day
Benzo(k)fluoranthene (PAH)	3.78E-02 ug/l	6.31E-04 lbs/day
Chrysene (PAH)	3.78E-02 ug/l	6.31E-04 lbs/day
Acenaphthylene (PAH)	-	
Anthracene (PAH)		
Dibenzo(a,h)anthracene (PAH)	3.78E-02 ug/l	6.31E-04 lbs/day
Indeno(1,2,3-cd)pyrene (PAH)	3.78E-02 ug/l	6.31E-04 lbs/day
	_	,

Pyrene (PAH) Tetrachloroethylene Toluene Trichloroethylene Vinyl chloride	1.34E+04 ug/l 1.09E+01 ug/l 2.44E+05 ug/l 9.88E+01 ug/l 6.40E+02 ug/l	2.24E+02 lbs/day 1.81E-01 lbs/day 4.07E+03 lbs/day 1.65E+00 lbs/day 1.07E+01 lbs/day
Pesticides Aldrin Dieldrin Chlordane 4,4'-DDT 4,4'-DDE 4,4'-DDD alpha-Endosulfan beta-Endosulfan Endosulfan sulfate Endrin Endrin aldehyde Heptachlor Heptachlor epoxide	1.71E-04 ug/l 1.71E-04 ug/l 7.20E-04 ug/l 7.20E-04 ug/l 7.20E-04 ug/l 1.02E-03 ug/l 2.44E+00 ug/l 2.44E+00 ug/l 9.88E-01 ug/l 9.88E-01 ug/l 2.56E-04 ug/l	2.85E-06 lbs/day 2.85E-06 lbs/day 1.20E-05 lbs/day 1.20E-05 lbs/day 1.20E-05 lbs/day 1.71E-05 lbs/day 4.07E-02 lbs/day 4.07E-02 lbs/day 1.65E-02 lbs/day 1.65E-02 lbs/day 4.27E-06 lbs/day
PCB's PCB 1242 (Arochlor 1242) PCB-1254 (Arochlor 1254) PCB-1221 (Arochlor 1221) PCB-1232 (Arochlor 1232) PCB-1248 (Arochlor 1248) PCB-1260 (Arochlor 1260) PCB-1016 (Arochlor 1016)	5.49E-05 ug/l 5.49E-05 ug/l 5.49E-05 ug/l 5.49E-05 ug/l 5.49E-05 ug/l 5.49E-05 ug/l 5.49E-05 ug/l	9.15E-07 lbs/day 9.15E-07 lbs/day 9.15E-07 lbs/day 9.15E-07 lbs/day 9.15E-07 lbs/day 9.15E-07 lbs/day 9.15E-07 lbs/day
Pesticide Toxaphene	9.15E-04 ug/l	1.53E-05 lbs/day
Metals Antimony Arsenic Asbestos Beryllium Cadmium Chromium (III) Chromium (VI)	ug/l ug/l ug/l	lbs/day lbs/day lbs/day
Copper Cyanide	ug/l ug/l	lbs/day lbs/day
Lead Mercury Nickel Selenium Silver	ug/l ug/l	lbs/day lbs/day
Thallium Zinc	ug/l	lbs/day

Dioxin

Dioxin (2,3,7,8-TCDD)

1.71E-08 ug/l

Metals Effluent Limitations for Protection of All Beneficial Uses Based upon Water Quality Standards and Toxics Rule

	Class 4 Acute Agricultural ug/l	Class 3 Acute Aquatic Wildlife ug/l	Acute Toxics Drinking Water Source ug/l	Acute Toxics Wildlife ug/l	1C Acute Health Criteria ug/l	Acute Most Stringent ug/l	Class 3 Chronic Aquatic Wildlife ug/l
Aluminum		832.2				832.2	N/A
Antimony				5245.1		5245.1	
Arsenic	122.0	377.3				122.0	231.6
Barium							
Beryllium						0.0	
Cadmium	12.2	7.2				7.2	0.7
Chromium (III)		4896.6				4896.6	257.0
Chromium (VI)	121.8	17.3				17.32	12.54
Соррег	243.8	43.4				43.4	28.8
Cyanide		24.4	268351.6			24.4	6.3
Iron		3433.6				3433.6	
Lead	121.8	364.0				121.8	15.4
Mercury		2.66		0.18		0.18	0.015
Nickel		1312.2		5611.0		1312.2	160.2
Selenium	60.6	22.0				22.0	5.3
Silver		27.5				27.5	
Thallium				7.7		7.7	
Zinc		335.6				335.6	368.8
Boron	914.8					914.8	
Sulfate	2439.6					2439.6	

Summary Effluent Limitations for Metals [Wasteload Allocation, TMDL]

[If Acute is more stringent than Chronic, then the Chronic takes on the Acute value.]

	WLA Acute ug/l	WLA Chronic ug/l	
Aluminum	832.2	N/A	
Antimony	5245.05		
Arsenic	122.0	231.6	Acute Controls
Asbestos			
Barium			
Beryllium			
Cadmium	7.2	0.7	
Chromium (III)	4896.6	257	
Chromium (VI)	17.3	12.5	
Copper	43.4	28.8	

Cyanide	24.4	6.3	
Iron	3433.6	9. 2 5	
Lead	121.8	15.4	
Mercury	0.183	0.015	
Nickel	1312.2	160	
Selenium	22.0	5.3	
Silver	27.5	N/A	
Thallium	7.7		
Zinc	335.6	368.8	Acute Controls
Boron	914.84		
Sulfate	2439.6	3	N/A at this Waterbody

Other Effluent Limitations are based upon R317-1.

E. coli

126.0 organisms per 100 ml

X. Antidegradation Considerations

The Utah Antidegradation Policy allows for degradation of existing quality where it is determined that such lowering of water quality is necessary to accommodate important economic or social development in the area in which the waters are protected [R317-2-3]. It has been determined that certain chemical parameters introduced by this discharge will cause an increase of the concentration of said parameters in the receiving waters. Under no conditions will the increase in concentration be allowed to interfere with existing instream water uses.

An Antidegradation Level I Review was conducted on this discharge and its effect on the receiving water. Based upon that review, it has been determined that an Antidegradation Level II Review is not required. The proposed permit is a simple renewal, with no increase in flow or concentration over that which was approved in the existing permit.

XI. Colorado River Salinity Forum Considerations

Discharges in the Colorado River Basin are required to have their discharge at a TDS loading of less than 1.00 tons/day unless certain exemptions apply. Refer to the Forum's Guidelines for additional information allowing for an exceedence of this value.

XII. Summary Comments

The mathematical modeling and best professional judgement indicate that violations of receiving water beneficial uses with their associated water quality standards, including important down-stream segments, will not occur for the evaluated parameters of concern as discussed above if the effluent limitations indicated above are met.