Utah Division of Water Quality Statement of Basis ADDENDUM Wasteload Analysis and Antidegradation Level I Review

Date: April 29, 2019

NUS

Facility: Garland Wastewater Treatment Facility Garland, UT UPDES No. UT0026034

Receiving water: Malad River (2B, 3C)

This addendum summarizes the wasteload analysis that was performed to determine water quality based effluent limits (WQBEL) for this discharge. Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses (UAC R317-2-8). Projected concentrations are compared to numeric water quality standards to determine acceptability. The numeric criteria in this wasteload analysis may be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality.

Discharge

Outfall 001: Malad River \rightarrow Bear River

The maximum daily design discharge is 0.90 MGD and the maximum monthly design discharge is 0.45 MGD.

Receiving Water

The receiving water for Outfall 001 is the Malad River, which is tributary to Bear River, which drains to Bear River Bay of the Great Salt Lake.

Per UAC R317-2-13, the designated beneficial uses for Malad River and tributaries, from confluence with Bear River to state line are 2B and 3C.

- Class 2B Protected for infrequent primary contact recreation. Also protected for secondary contact recreation where there is a low likelihood of ingestion of water or a low degree of bodily contact with the water. Examples include, but are not limited to, wading, hunting, and fishing.
- Class 3C Protected for nongame fish and other aquatic life, including the necessary aquatic organisms in their food chain

Utah Division of Water Quality Wasteload Analysis Garland Wastewater Treatment Plant UPDES No. UT0026034

Typically, the critical flow for the wasteload analysis is considered the lowest stream flow for seven consecutive days with a ten year return frequency (7Q10). Due to a lack of flow records for the Malad River in Garland, the 20th percentile of flow measurements from monitoring site 4902720 Malad River above Tremonton WWTP was calculated to estimate seasonal critical flow in the receiving water (Table 1).

Table 1: Malad River critical low flow

Season	Flow (cfs)			
Summer	22.0			
Fall	20.6			
Winter	34.0			
Spring	42.8			

Total Maximum Daily Load (TMDL)

The immediate receiving water for Garland City's proposed discharge is the Malad River. Due to insufficient data, the Malad River was not assessed in the *Utah's 2016 Integrated Report* (DWQ).

The downstream receiving water, Bear River from Great Salt Lake to Malad River, was listed as impaired on the 2016 303(d) list for dissolved oxygen, total dissolved solids, and benthic macroinvertebrates. Refer to the Watershed Protection Section for the status of the Lower Bear River TMDL for dissolved oxygen.

Mixing Zone

The maximum allowable mixing zone is 15 minutes of travel time for acute conditions, not to exceed 50% of stream width, and 2,500 feet for chronic conditions, per UAC R317-2-5. Water quality standards must be met at the end of the mixing zone.

The mixing zone was not delineated as part of this WLA, but was assumed to remain within the maximum allowable mixing zone specified in the rule.

Parameters of Concern

The potential parameters of concern identified for the discharge and receiving waters were total suspended solids (TSS), dissolved oxygen (DO), BOD₅, total phosphorus (TP), total nitrogen (TN), total ammonia (TAM), and pH as determined in consultation with the UPDES Permit Writer.

Water Quality Modeling

A QUAL2Kw model of the Malad River downstream of the Tremonton WWTP was built and calibrated to synoptic survey data collected in August of 2011 by DWQ staff. The methods and results of the model calibration are summarized in the *QUAL2Kw Calibration Report for the Malad River* (DWQ 2019).

The calibrated model was extended approximately 5.5 kilometers upstream from the Tremonton WWTP to the Garland WWTP and continues downstream approximately 4.8 kilometers from the

Utah Division of Water Quality Wasteload Analysis Garland Wastewater Treatment Plant UPDES No. UT0026034

Tremonton WWTP to the crossing at West 8800 North.

Receiving water quality data was obtained from monitoring site 4902720 Malad River above Tremonton WWTP. The average seasonal value was calculated for each constituent with available data in the receiving water.

The QUAL2Kw model was used for determining WQBELs related to eutrophication and low dissolved oxygen, including oxygen consumption associated with the nitrification of ammonia. Effluent concentrations were adjusted so that water quality standards were not exceeded in the receiving water.

The QUAL2Kw model was also used to determine the limits for ammonia. The water quality standard for chronic ammonia toxicity is dependent on temperature and pH, and the water quality standard for acute ammonia toxicity is dependent on pH. QUAL2Kw rates, input and output are summarized in Appendix A.

A mass balance mixing analysis was conducted for conservative constituents such as dissolved metals. The WQBELs determined using the mass balance mixing analysis are summarized in Appendix B.

Where WQBELs exceeded secondary standards or categorical limits, the concentration in the model was set at the secondary standard or categorical limit.

Models and supporting documentation are available for review upon request.

Whole Effluent Toxicity (WET) Limits

The percent of effluent in the receiving water in a fully mixed condition, and acute and chronic dilution in a not fully mixed condition are calculated in the WLA in order to generate WET limits. The LC₅₀ (lethal concentration, 50%) percent effluent for acute toxicity and the IC₂₅ (inhibition concentration, 25%) percent effluent for chronic toxicity, as determined by the WET test, needs to be below the WET limits, as determined by the WLA. The WET limit for LC₅₀ is typically 100% effluent and does not need to be determined by the WLA.

Table 2: WET Limits fo

Season	Percent Effluent
Summer	3%
Fall	3%
Winter	2%
Spring	2%

Effluent Limits

Eutrophication and dissolved oxygen in the receiving water were evaluated using the QUAL2Kw model. Significant algal growth was predicted downstream of the WWTP during critical conditions; however, the DO was not predicted to go below the criteria for 3C waters with limits as specified in Table 3 for DO and Utah Secondary Treatment Standards for BOD₅.

Utah Division of Water Quality Wasteload Analysis Garland Wastewater Treatment Plant UPDES No. UT0026034

		Acut	e	Chronic		
Effluent Constituent	Standard	Limit	Averaging Period	Standard	Limit	Averaging Period
Flow (MGD)		0.90	1 day		0.45	30 days
Ammonia (mg/L) ¹						
Summer		12			1.0	
Fall	Varies	17	1 hour	Varies	2.5	30 days
Winter		25			15	
Spring	[30			15	
Min. Dissolved Oxygen $(mg/L)^2$	3.0	5.0	Instantaneous	5.0	5.0	30 days
$BOD_5 (mg/L)^2$	None	35	7 days	None	25	30 days
 Limits due to toxicity criteria. Limits based on Utah Secondary Treatment 	nent Standard	s (UAC R31)	7-1-3.2).			

Table 3: Water Quality Based Effluent Limits Summary

Antidegradation Level I Review

The objective of the Level I ADR is to ensure the protection of existing uses, defined as the beneficial uses attained in the receiving water on or after November 28, 1975. No evidence is known that the existing uses deviate from the designated beneficial uses for the receiving water. Therefore, the beneficial uses will be protected if the discharge remains below the WQBELs presented in this wasteload.

Since Garland WWTP is a new discharge and the pollutant concentration and load are increasing to the receiving water, a Level II Antidegradation Review (ADR) is required.

<u>Prepared by:</u> Nicholas von Stackelberg, P.E. Watershed Protection Section

Documents:

WLA Document: garland_potw_wla_2019-04-29.docx QUAL2Kw Wasteload Model: garland_potw_wla_2016.xlsm

References:

Lower Bear River Watershed Restoration Action Strategy. 2002. Utah Division of Water Quality

Utah Wasteload Analysis Procedures Version 1.0. 2012. Utah Division of Water Quality.

Field Data Collection for QUAL2Kw Model Build and Calibration Standard Operating Procedures Version 1.0, 2012. Utah Division of Water Quality.

Using QUAL2K Modeling to Support Nutrient Criteria Development and Wasteload Analyses in Utah. 2013. Neilson, B.T., A.J. Hobson, N. von Stackelberg, M. Shupryt, and J.D. Ostermiller.

Utah's 2016 Final Integrated Report. 2016. Utah Division of Water Quality.

QUAL2Kw Calibration Report for the Malad River. 2019. Utah Division of Water Quality.

WASTELOAD ANALYSIS [WLA] Appendix A: QUAL2Kw Analysis Results

Date: 7/12/2016

Discharging Facility:	Garland WW	/TP	
UPDES No:	New		
Permit Flow [MGD]:	0.90	Max. Daily	
	0.45	Max. Monthly Average	
Receiving Water:	Malad River		
Stream Classification:	2B, 3C		
Stream Flows [cfs]:	22.00	Summer (July-Sept)	Critical Low Flow
	20.60	Fall (Oct-Dec)	
	34.04	Winter (Jan-Mar)	
	42.80	Spring (Apr-June)	
Instantaneously Fully Mixed:	No	i l	
Acute River Width:	50%		
Chronic River Width:	100%		

Modeling Information

A QUAL2Kw model was used to determine these effluent limits.

Model Inputs

The following is upstream and discharge information that was utilized as inputs for the analysis. Dry washes are considered to have an upstream flow equal to the flow of the discharge.

Summer	Fall	Winter	Spring
22.0	20.6	34.0	42.8
21.2	9.9	2.7	14.2
4,664	4,360	3,695	4,207
80.5	43.6	31.2	85.6
8.1	11.1	11.4	9.2
3.3	2.0	2.0	2.0
3.8	2.3	1.8	4.0
1.867	1.867	1.867	1.867
0.052	0.055	0.049	0.098
2,392	1.342	1.153	1.730
0.076	0.030	0.059	0.109
0.017	0.021	0.038	0.028
35.0	35.0	35.0	35.0
16.6	7.4	4.3	17.9
363	363	363	363
8.2	8.2	8.2	8.2
	Summer 22.0 21.2 4,664 80.5 8.1 3.3 3.8 1.867 0.052 2.392 0.076 0.017 35.0 16.6 363 8.2	Summer Fall 22.0 20.6 21.2 9.9 4,664 4,360 80.5 43.6 81 11.1 3.3 2.0 3.8 2.3 1.867 1.867 0.052 0.055 2.392 1.342 0.076 0.030 0.017 0.021 35.0 35.0 16.6 7.4 363 363 8.2 8.2	SummerFallWinter22.020.634.021.29.92.74,6644,3603,69580.543.631.28.111.111.43.32.02.03.82.31.81.8671.8671.8670.0520.0550.0492.3921.3421.1530.0760.0300.0590.0170.0210.03835.035.035.016.67.44.33633633638.28.28.2

Utah Division of Water Quality

Tremonton WWTP Information	Summer	Fall	Winter	Spring
Flow (cfs)	1.8	1.2	1.4	1.7
Temperature (deg C)	19.9	15.5	10.7	14.6
Specific Conductance (µmhos)	1,476	1,532	1,486	1,444
Inorganic Suspended Solids (mg/L)	4.5	4.5	11.2	5.1
Dissolved Oxygen (mg/L)	6.7	7.4	7.8	7.2
CBOD ₅ (mg/L)	8.1	6.3	16.2	5.1
Organic Nitrogen (mg/L)	3.170	3.170	3.170	3.170
NH4-Nitrogen (mg/L)	1.755	5.378	5.117	5.153
NO3-Nitrogen (mg/L)	2.007	2.020	2.635	4.147
Organic Phosphorus (mg/L)	1.436	1.523	1.565	1.495
Inorganic Ortho-Phosphorus (mg/L)	0.479	0.508	0.522	0.498
Phytoplankton (µg/L)	0.000	0.000	0.000	0.000
Detritus [POM] (mg/L)	0.000	0.000	0.000	0.000
Alkalinity (mg/L)	383	383	383	383
рН	7.8	7.7	7.6	7.7
Discharge Information				
Acute	Summer	Fall	Winter	Spring
Flow (cfs)	0.9	0.9	0.9	0.9
Temperature (deg C)	19.9	15.5	10.7	14.6
Specific Conductance (µmhos)	1,476	1,532	1,486	1,444
Inorganic Suspended Solids (mg/L)	15.0	15.0	15.0	15.0
Dissolved Oxygen (mg/L)	5.0	5.0	5.0	5.0
CBOD ₅ (mg/L)	35.0	35.0	35.0	35.0
Organic Nitrogen (mg/L)	2.200	2.200	2.200	2.200
NH4-Nitrogen (mg/L)	12.000	17.000	25.000	30.000
NO3-Nitrogen (mg/L)	5.000	5.000	5.000	5.000
Organic Phosphorus (mg/L)	0.750	0.750	0.750	0.750
Inorganic Ortho-Phosphorus (mg/L)	0.250	0.250	0.250	0.250
Phytoplankton (µg/L)	0.000	0.000	0.000	0.000
Detritus [POM] (mg/L)	0.000	0.000	0.000	0.000
Alkalinity (mg/L)	383	383	383	383
pH	8.1	8.1	8.1	8.1
Chronic	Summer	Fall	Winter	Spring
Flow (cfs)	0.45	0.45	0.45	0.45
Temperature (deg C)	19.9	15.5	10.7	14.6
Specific Conductance (µmhos)	1,476	1,532	1,486	1,444
Inorganic Suspended Solids (mg/L)	15.0	15.0	15.0	15.0
Dissolved Oxygen (mg/L)	5.0	5.0	5.0	5.0
CBOD ₅ (mg/L)	25.0	25.0	25.0	25.0
Organic Nitrogen (mg/L)	2.200	2.200	2.200	2.200
NH4-Nitrogen (mg/L)	1.000	2.500	15.000	15.000
NO3-Nitrogen (mg/L)	5.000	5.000	5.000	5.000
Organic Phosphorus (mg/L)	0.750	0.750	0.750	0.750
Inorganic Ortho-Phosphorus (mg/L)	0.250	0.250	0.250	0.250
Phytoplankton (µg/L)	0.000	0.000	0.000	0.000
Detritus [POM] (mg/L)	0.000	0.000	0.000	0.000
Alkalinity (mg/L)	383	383	383	383
pH	7.6	7.6	7.6	7.6

All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality.

Effluent Limitations

Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9).

Other conditions used in the modeling effort reflect the environmental conditions expected at low stream flows.

Effluent Limitation for Biological Oxygen Demand (BOD₅) based upon Secondary Standards

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent BOD5 limitation as follows:

	Concent	tration	
Season	Chronic	Acute	
Summer	25.0	35.0	mg/L as CBOD5
Fall	25.0	35.0	mg/L as CBOD5
Winter	25.0	35.0	mg/L as CBOD5
Spring	25.0	35.0	mg/L as CBOD5

Effluent Limitation for Dissolved Oxygen (DO) based upon Secondary Standards

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent DO limitation as follows:

Concentration					
Season	Chronic	Acute			
Summer	5.0	5.0	mg/L		
Fall	5.0	5.0	mg/L		
Winter	5.0	5.0	mg/L	÷	
Spring	5.0	5.0	mg/L		

Effluent Limitation for Total Ammonia based upon Water Quality Standards

In-stream criteria of downstream segments for Total Ammonia will be met with an effluent limitation (expressed as Total Ammonia as N) as follows:

Total Ammonia					
Season	Chronic	Acute			
Summer	1.0	12.0	mg/L as N		
Fall	2.5	17.0	mg/L as N		
Winter	15.0	25.0	mg/L as N		
Spring	15.0	30.0	mg/L as N		

Summary Comments

The mathematical modeling and best professional judgement indicate that violations of receiving water beneficial uses with their associated water quality standards, including important down-stream segments, will not occur for the evaluated parameters of concern as discussed above if the effluent limitations indicated above are met.

Coefficients and Other Model Information

Parameter		Value	Units
Stoichiometry:			
Carbon		40	gC
Nitrogen		7.2	gN
Phosphorus	-	1	gP
Dry weight	,	100	gD
Chlorophyll		1	gA
Inorganic suspended solids:			
Settling velocity		0.001	m/d
Oxvaen:			
Reaeration model		Churchill	
Temp correction		1 024	
Reperation wind effect		None	
Ω^2 for carbon ovidation		2 60	a02/aC
O2 for NLL4 nitrification		2.09	gO2/gC
Oz IOI NH4 Intrincation	at a s	4.5/	gO2/gN
Oxygen Innib model CBOD oxid		Exponential	1/1000
Oxygen innib parameter CBOD	bxidation	0.60	L/mgO2
Oxygen inhib model nitrification		Exponential	
Oxygen inhib parameter nitrifica	tion	0.60	L/mgO2
Oxygen enhance model denitrific	cation	Exponential	
Oxygen enhance parameter den	itrification	0.60	L/mgO2
Oxygen inhib model phyto resp		Exponential	
Oxygen inhib parameter phyto re	esp	0.60	L/mgO2
Oxygen enhance model bot alg	resp	Exponential	
Oxygen enhance parameter bot	alg resp	0.60	L/mgO2
Slow CBOD:			
Hydrolysis rate		0	/d
Temp correction		1.047	
Oxidation rate		0.103	/d
Temp correction		1.047	
Fast CBOD:			
Oxidation rate		10	/d
Temp correction		1 047	/ G
Organic N:		1.047	
Hydrolyeis		0 2003475	/d
Tomp correction		1 07	/u
Settling velocity		0.040150	m/d
		0.242158	m/a
Ammonium:		0.0000 105	44
Nitrification		0.2693435	/d
l emp correction		1.07	
Nitrate:			
Denitrification		1.6900865	/d
Temp correction		1.07	
Sed denitrification transfer coeff		0.21487	m/d
Temp correction		1.07	
Organic P:			
Hydrolysis		0.228215	/d
Temp correction		1.07	
Settling velocity		0.05548	m/d
Inorganic P:			
Settling velocity			
		N 86904	m/d
Cod D avagen attended by the	at accestory	0.85204	m/d

Utah Division of Water Quality

	Phytoplankton:					
	Max Growth rate				2.8944	/d
	Temp correction				1.07	
	Respiration rate				0.480803	/d
	Temp correction				1.07	
	Death rate				0.86518	/d
	Temp correction				1	
	Nitrogen half sat constant				15	ugN/L
	Phosphorus half sat constant				2	ugP/L
	Inorganic carbon half sat constant				1.30E-05	moles/L
	Phytoplankton use HCO3- as substrat	е			Yes	
	Light model				Smith	
	Light constant				57.6	langleys/d
	Ammonia preference				25.4151	ugN/L
	Settling velocity				0.05	m/d
	Bottom Plants:					
	Growth model				Zero-order	
	Max Growth rate				72.858765	gD/m2/d or /d
	Temp correction				1.07	
	First-order model carrying capacity				100	gD/m2
	Basal respiration rate				0.1996688	/d
	Photo-respiration rate parameter				0.01	unitless
	Temp correction				1.07	3 x 2
	Excretion rate				0.225035	/d
	Temp correction				1.07	<i>(</i>)
	Death rate				1.1864	/d
	Temp correction				1.07	
	External nitrogen nair sat constant				424.656	ugin/L
	External prosphorus haif sat constant				63.89/25	ugP/L
	Rettern algae use HCO2, se substrate				3.89E-05	moles/L
	Light model				Smith	
	Light constant				02 / 196	maO^2/I
	Ammonia preference				10 602	IngO ^{2/L}
	Subsistence queta for nitrogen				0 3701502	mgN/aD
	Subsistence quota for phosphorus				0.3791332	mgR/gD
	Maximum untake rate for nitrogen				1474 3665	mgN/gD/d
	Maximum uptake rate for phosphorus				111 866	mgR/gD/d
	Internal nitrogen half sat ratio				3 167674	ingi /gb/d
	Internal phosphorus half sat ratio				2 9784295	
	Nitrogen uptake water column fraction				1	
	Phosphorus uptake water column frac	tion			1	
	Detritus (POM):					
	Dissolution rate				0.168998	/d
	Temp correction				1.07	2128-2283
	Settling velocity				0.206573	m/d
	pH:					
	Partial pressure of carbon dioxide				370	ppm
Atmo	spheric Inputs:	Summer	F	ali Winte	r Spring	I
Max.	Air Temperature, F	89.1	47	.7 38.8	70.4	
Min. A	Air Temperature, F	58.6	26	.6 20.7	44.2	
Dew F	Point, Temp., F	57.2	34	.0 28.6	47.3	
Wind,	ft./sec. @ 21 ft.	7.7	6	.1 6.2	7.8	
Cloud	Cover, %	0.1	0	.1 0.1	0.1	
Othe	r Inputs:					
Bottor	n Algae Coverage	10.0%				
Bottor	n SOD Coverage	100.0%				
Presc	ribed SOD	0.0	gO2/m2/d			

WASTELOAD ANALYSIS [WLA] Appendix B: Simple Mixing Analysis for Conservative Constituents

Discharging Facility: UPDES No:	Garland WWTP New
Permit Flow [MGD]:	0.45 Maximum Monthly Flow
	0.90 Maximum Daily Flow
Receiving Water:	Malad River
Stream Classification:	2B, 3C
Stream Flows [cfs]:	22.0 Summer (July-Sept) Critical Low Flow
	20.6 Fall (Oct-Dec)
	34.0 Winter (Jan-Mar)
	42.8 Spring (Apr-June)
Instantaneously Fully Mixed:	No
Acute River Width:	50%
Chronic River Width:	100%

Modeling Information

A simple mixing analysis was used to determine these effluent limits.

Model Inputs

The following is upstream and discharge information that was utilized as inputs for the analysis. Dry washes are considered to have an upstream flow equal to the flow of the discharge.

Headwater/Upstream Information	
	Malad River
	cfs
Chronic	20.6
Acute	10.3
Effluent Information	
	Flow
	MGD
Maximum Monthly	0.45
Maximum Daily	0.90
Mixed Information	
	Flow
	cfs
Chronic	21.3

Acute

All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality.

Effluent Limitations

Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9).

11.7

Other conditions used in the modeling effort reflect the environmental conditions expected at low stream flows.

Date:

7/12/2016

Effluent Limitations for Protection of Recreation (Class 2B Waters)

Physical		
Parameter		Maximum Concentration
	pH Minimum	6.5
	pH Maximum	9.0

Bacteriological

E. coli (30 Day Geometric Mean)	206 (#/100 mL)
E. coli (Maximum)	668 (#/100 mL)

Effluent Limitations for Protection of Aquatic Wildlife (Class 3C Waters)

Physical

Parameter		Maximum Concentration	
Temper	27		
Temperature Ch	ange (deg C)	4	
Inorganics		Maximum Concentration	
	Parameter	Standard	
Phenol (mg/L)		0.010	

Phenol (mg/L)0.010Hydrogen Sulfide (Undissociated) [m0.002

Metals (µg/L)		Dissolved			Total Reco	verable
	Chronic Standard				Conversion	
	(4 Day Average) ¹	Standard	Background	Limit	Factor	Limit
	Aluminum	N/A	15.0	N/A	1.000	N/A
	Arsenic	150.0	22.0	6,092	1.000	6,092
	Cadmium	0.6	0.5	7.6	0.851	8.9
	Chromium VI	11.0	5.6	264	1.000	264
	Chromium III	230.7	5.6	10,660	0.860	12,395
	Copper	29.3	6.0	1,111	0.960	1,157
	Cyanide ²	5.2	3.5	87	1.000	87
	Lead	10.9	1.5	449	0.589	763
	Mercury ²	0.012	0.008	0.200	1.000	0.200
	Nickel	168.0	5.0	7,723	0.997	7,747
	Selenium	4.6	3.3	66.6	1.000	66.6
	Tributylin ²	0.072	0.048	1.199	1.000	1.199
	Zinc	382,4	19.3	17,214	0.986	17,458

1: Based upon a Hardness of 400 mg/l as CaCO3

2: Background concentration assumed 67% of chronic standard

3: Where the pH is equal to or greater than 7.0 and the hardness is equal to or greater than 50 ppm as CaC0₃ in the receiving water after mixing, the 87 ug/L chronic criterion (expressed as total recoverable) will not apply, and aluminum will be regulated based on compliance with the 750 ug/L acute aluminum criterion (expressed as total recoverable).

Utah Division of Water Quality

Metals (µg/L)			Dissolved	Total Recoverable			
	Acute Standard				Conversion		
	(1 Hour Average) ¹	Standard	Background ²	Limit	Factor	Limit	
	Aluminum	750.0	15.0	19,144	1.000	19,144	
	Arsenic	340.0	22.0	8,331	1.000	8,331	
	Cadmium	7.7	0.5	190	0.886	214	
	Chromium VI	7.7	5.6	72.8	1.000	72.8	
	Chromium III	16.0	5.6	288	0.316	910	
	Copper	49.6	6.0	1,152	0.960	1,200	
	Cyanide ²	22.0	3.5	492	1.000	492	
	Iron	1000.0	47.0	24,908	1.000	24,908	
	Lead	280.8	1.5	7,263	0.589	12,331	
	Mercury ²	2.400	0.0	62.2	1.000	62.2	
	Nickel	1512.9	5.0	39,195	0.998	39,274	
	Selenium	18.4	3.3	403	1.000	403	
	Silver	34.9	1.0	884	0.850	1,040	
	Tributylin ²	0.460	0.048	10.8	1.000	10.8	
	Zinc	379.3	19.3	9,414	0.978	9,625	

1: Based upon a Hardness of 50 mg/l as CaCO3

2: Background concentration assumed 67% of chronic standard

Organics [Pesticides] (µg/L)	Chronic Standard (4 Day Average)			Acute Sta	Acute Standard (1 Hour Average)		
Parameter	Standard	Background ¹	Limit	Standard	Background ¹	Limit	
Acrolein	3.0	2.0	50.0	3.0	2.0	31.9	
Aldrin				1.5	1.0	16.0	
Chlordane	0.0043	0.0029	0.0716	1.2	0.0	31.1	
DDT, DDE	0.001	0.001	0.017	0.55	0.00	14.3	
Diazinon	0.17	0.11	2.83	0.17	0.11	1.81	
Dieldrin	0.0056	0.0038	0.0933	0.24	0.00	6.15	
Endosulfan, a & b	0.056	0.038	0.933	0.11	0.04	2.00	
Endrin	0.036	0.024	0.600	0.086	0.024	1.68	
Heptachlor & H. epoxide	0.0038	0.0025	0.0633	0.26	0.00	6.70	
Lindane	0.08	0.05	1.33	1.0	0.1	24.8	
Methoxychlor (Maximum)				0.03	0.02	0.32	
Mirex (Maximum)				0.001	0.001	0.011	
Nonylphenol	6.6	4.4	110	28.0	4.4	626	
Parathion	0.0130	0.0087	0.2165	0.066	0.009	1.52	
PCB's	0.014	0.009	0.233				
Pentachlorophenol	15.0	10.1	250	19.0	10.1	264	
Toxephene	0.0002	0.0001	0.0033	0.73	0.00	19.0	

1: Background concentration assumed 67% of chronic standard

Radiological	Maximum Concentration				
	Parameter	Standard	Background ¹	Limit	
	Gross Alpha (pCi/L)	15	10.1	159.7	
d . De alsouras and a a		70/ of share's of	and and TDO is h	and an abase	

1: Background concentration assumed 67% of chronic standard; TDS is based on observed ambient data