2017 Review
Water Quality Standards for Salinity
Colorado River System

June 2017 Draft
Colorado River Basin Salinity Control Forum
2017 Review

WATER QUALITY STANDARDS FOR SALINITY
COLORADO RIVER SYSTEM

June 2017 Draft

Prepared by
Colorado River Basin Salinity Control Forum
COLORADO RIVER BASIN SALINITY CONTROL FORUM

MEMBERS

ARIZONA
Clint Chandler, Assistant Director
Department of Water Resources
Krista Osterberg, Surface Water Section Manager, Water Quality Division
Department of Environmental Quality
Suzanne Ticknor, Director of Water Policy
Central Arizona Water Conservation District

CALIFORNIA
Bill Hasencamp, Manager, Colorado River Resources
Metropolitan Water District of Southern California
Thomas Howard, Executive Director
State Water Resources Control Board
Tanya Trujillo, Executive Director
Colorado River Board of California

COLORADO
James Eklund, Director
Colorado Water Conservation Board
Patrick Pfaltzgraff, Director, Water Quality Control Division
Department of Public Health and Environment
David W. Robbins, Attorney at Law

NEVADA
John J. Entsminger, General Manager
Southern Nevada Water Authority
Jayne Harkins, Executive Director
Colorado River Commission of Nevada
Jason King, State Engineer, Division of Water Resources
Department of Conservation and Natural Resources

NEW MEXICO
Tom Blaine, New Mexico State Engineer
Trais Kliphuis, Director, Water Protection Division
Environment Department

UTAH
Eric Millis, Director, Division of Water Resources
Department of Natural Resources
Kim Shelley, Assistant Director, Water Quality Division
Department of Environmental Quality
Gawain Snow, General Manager
Uintah Water Conservancy District

WYOMING
Chad Espenscheid, Engineer/Rancher
Patrick T. Tyrrell, Wyoming State Engineer
David Waterstreet, Program Manager, Water Quality Division
Department of Environmental Quality

FORUM
Don A. Barnett, Executive Director
Colorado River Basin Salinity Control Forum
The Colorado River Basin
(2012 Colorado River Basin Water Supply and Demand Study)
TRANSMITTAL LETTERS

The Federal Water Pollution Control Act requires that at least once every three years the Basin States review water quality standards relating to the salinity of the Colorado River. The states collectively initiated this review under direction of the Forum. The Forum prepared a draft review and, after holding public meetings, prepared this final 2017 triennial review.

After the Forum's adoption of the final review, the governors of each state will receive a copy for their independent action. The following governors in each of the Basin States shall receive this review:

Honorable Douglas A. Ducey  
Governor of Arizona  
State Capitol  
Phoenix, AZ  85007

Honorable Jerry Brown  
Governor of California  
State Capitol  
Sacramento, CA  95814

Honorable John W. Hickenlooper  
Governor of Colorado  
State Capitol  
Denver, CO  80203

Honorable Brian Sandoval  
Governor of Nevada  
State Capitol  
Carson City, NV  89701

Honorable Susana Martinez  
Governor of New Mexico  
State Capitol  
Santa Fe, NM  87503

Honorable Gary R. Herbert  
Governor of Utah  
State Capitol  
Salt Lake City, UT  84114

Honorable Matthew H. Mead  
Governor of Wyoming  
State Capitol  
Cheyenne, WY  82002
### LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>208 Plan</td>
<td>Section 208 of the Clean Water Act amendments of 1972 and 1977 requiring integrated area-wide plans and programs for dealing with water pollution problems</td>
</tr>
<tr>
<td>Basin</td>
<td>Colorado River Basin</td>
</tr>
<tr>
<td>Basin Funds</td>
<td>Lower Colorado River Basin Development Fund and Upper Colorado River Basin Fund</td>
</tr>
<tr>
<td>Basin States</td>
<td>Arizona, California, Colorado, Nevada, New Mexico, Utah, Wyoming</td>
</tr>
<tr>
<td>BSP</td>
<td>Basin States Program</td>
</tr>
<tr>
<td>Basinwide Program</td>
<td>Basinwide Salinity Control Program</td>
</tr>
<tr>
<td>BLM</td>
<td>United States Bureau of Land Management</td>
</tr>
<tr>
<td>Clean Water Act</td>
<td>P.L. 92-500</td>
</tr>
<tr>
<td>Congress</td>
<td>United States Congress</td>
</tr>
<tr>
<td>CRSS</td>
<td>Colorado River Simulation System</td>
</tr>
<tr>
<td>EQIP</td>
<td>Environmental Quality Incentives Program</td>
</tr>
<tr>
<td>EPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>Forum</td>
<td>Colorado River Basin Salinity Control Forum</td>
</tr>
<tr>
<td>Ktons</td>
<td>Thousand tons of salt</td>
</tr>
<tr>
<td>maf</td>
<td>million acre-feet</td>
</tr>
<tr>
<td>mgd</td>
<td>million gallons per day</td>
</tr>
<tr>
<td>mg/L</td>
<td>milligrams per liter</td>
</tr>
<tr>
<td>Mtons</td>
<td>Million tons of salt</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>NRCS</td>
<td>Natural Resources Conservation Service</td>
</tr>
<tr>
<td>Program</td>
<td>Colorado River Basin Salinity Control Program</td>
</tr>
<tr>
<td>Reclamation</td>
<td>United States Bureau of Reclamation</td>
</tr>
<tr>
<td>TDS</td>
<td>Total Dissolved Solids</td>
</tr>
<tr>
<td>TMDL</td>
<td>Total Maximum Daily Load</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
</tr>
<tr>
<td>WWTP</td>
<td>Waste Water Treatment Plant</td>
</tr>
</tbody>
</table>
FIGURES

Figure 1 2015 (Calendar Year) Generalized Flow and Salinity Concentrations Across the Colorado River Basin.................................................................................................... 8
Figure 2 Flow Weighted Average Annual Salt Concentrations at Numeric Criteria Stations .......... 9
Figure 3 Salinity Control Program Impact below Hoover Dam ...................................................... 14
Figure 4 Salinity Control Program Impact below Parker Dam ....................................................... 14
Figure 5 Salinity Control Program Impact at Imperial Dam............................................................ 15
Figure 6 Colorado River Basin Salinity Control Forum Project Areas........................................... 18
Figure 7 Projected Annual Average Salinity Concentration below Hoover Dam.......................... 30
Figure 8 Projected Annual Average Salinity Concentration below Parker Dam............................ 31
Figure 9 Projected Annual Average Salinity Concentration at Imperial Dam............................... 31

APPENDICES

Appendix A Flow Weighted Salinity Values at the Three Numeric Criteria Stations.................... A-1
Appendix B Forum Policies
Policy for Implementation of Colorado River Salinity Standards Through the NPDES Permit Program........................................................................................................... B-1
NPDES Permit Program Policy for Implementation of Colorado River Salinity Standards....................................................................................................................... B-5
Attachment 1 - Guidance on New Construction Determination .............................................. B-15
Policy for Use of Brackish and/or Saline Waters for Industrial Purposes ......................... B-16
Policy for Implementation of Colorado River Salinity Standards Through the NPDES Permit Program for Intercepted Groundwater ........................................... B-18
Policy for Implementation of Colorado River Salinity Standards Through the NPDES Permit Program for Fish Hatcheries ............................................ B-21
Appendix C States NPDES Permits List
Legend ........................................................................................................................................ C-1
List of NPDES Permits........................................................................................................... C-3
Appendix D EPA PDES Permits List
Legend ....................................................................................................................................... D-1
List of NPDES Permits........................................................................................................... D-3
Appendix E Colorado River Simulation System Model Description............................................ E-1
Appendix F Salinity Economic Impact Model Executive Summary ........................................... F-1
SUMMARY

This document is a review of the water quality standards for salinity in the Colorado River. Section 303 of the Clean Water Act amendments to the Federal Water Pollution Control Act require that water quality standards are reviewed every three years. Accordingly, the seven-state Colorado River Basin Salinity Control Forum has reviewed the existing state-adopted and EPA-approved water quality standards for salinity consisting of numeric criteria and a Plan of Implementation. Upon adoption by the Forum, this Review will be submitted to the governors of each of the Basin States for inclusion in their state water quality standards.

The Forum recommends no change in the numeric salinity criteria at the three stations located on the lower main stem of the Colorado River. The numeric criteria at these stations will remain:

<table>
<thead>
<tr>
<th>Station</th>
<th>Salinity in mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below Hoover Dam</td>
<td>723</td>
</tr>
<tr>
<td>Below Parker Dam</td>
<td>747</td>
</tr>
<tr>
<td>At Imperial Dam</td>
<td>879</td>
</tr>
</tbody>
</table>

The Plan of Implementation is intended to maintain the salinity concentrations at or below the numeric criteria while the Basin States continue to develop their compact-apportioned waters. The U.S. Bureau of Reclamation’s (Reclamation) computer modeling indicates less than 5 percent probability of exceeding the numeric criteria in the next three years. The Colorado River Basin Salinity Control Act requires the implementation of salinity control programs to reduce the salinity of the Colorado River. Reducing the salinity of the Colorado River water reduces economic impacts to its users. While the Plan of Implementation included in this Review ensures the numeric criteria will not be exceeded during the review period, the Forum will continue to evaluate opportunities for additional salinity control that will (1) increase the economic benefits realized in the Lower Basin, and (2) provide additional direct and indirect benefits to the Upper Basin.

The Forum’s Plan of Implementation includes:

1. Construction of salinity control measures by Reclamation, USDA, the Basin States Program and BLM to the extent that those measures remain viable and appropriately cost-effective.

2. State implementation of the Forum’s adopted policies for effluent limitations under the National Pollutant Discharge Elimination System (Appendix B of this Review).

3. Implementation of non-point source management plans developed by the states and approved by EPA.

---

1 Flow-weighted average annual salinity
Item 1 of the plan listed above is to be implemented by federal agencies in conjunction with state, local and private participants. The Forum works jointly with federal agencies on developing measures to be implemented. Items 2 and 3 are primarily implemented by the Colorado River Basin states.

The current Plan of Implementation approved by the Forum anticipates an additional 63,500 tons of annual salinity control over the next three years. The program to date has controlled over 1.33 million tons of salt annually and the current program funding levels would control 1.66 million tons annually by 2035. Reclamation’s numerical modeling indicates that there is less than 5 percent probability of exceeding the numerical criteria over the next three years with the current and planned salinity control projects. The Salinity Control Program continues to be a successful federal and state partnership that has environmental and economic benefits for users of Colorado River water.
PURPOSE OF THE REVIEW

The 2017 Review: *Water Quality Standards for Salinity, Colorado River System* (Review) is prepared and submitted in response to Section 303(c) of Public Law (P.L.) 92-500 (Clean Water Act) by the seven-state Colorado River Basin Salinity Control Forum (Forum) on behalf of the governors of their respective states. This review of the water quality standards includes the numeric criteria and the Plan of Implementation developed and adopted by the Forum. This is the 14th review conducted by the Forum. Section 303(c)(1) of the Clean Water Act requires that:

The governor of a state or the state water pollution control agency of such state shall from time to time (but at least once each three-year period beginning with the date of enactment of the Federal Water Pollution Control Act Amendments of 1972) hold public hearings for the purpose of reviewing applicable water quality standards and, as appropriate, modifying and adopting standards. Results of such review shall be made available to the Administrator [of the Environmental Protection Agency].

The scope of this Review is limited to the portion of the Colorado River Basin (Basin) above Imperial Dam and how this area of the Basin is in compliance with the water quality standards approved by the United States Environmental Protection Agency (EPA) in 1975 (Standards). This Review focuses on the 2018 to 2020 period (review period) and evaluates the appropriateness of the Standards in the Basin. Background information and activities regarding historical actions relative to the development and adoption of salinity standards are contained in the Forum report, *Water Quality Standards for Salinity, Including Numeric Criteria and Plan of Implementation for Salinity Control, Colorado River System*, Colorado River Basin Salinity Control Forum, June 1975.

Below Imperial Dam, salinity is controlled as a federal responsibility to meet the terms of the agreement with Mexico contained within Minute No. 242 of the International Boundary and Water Commission entitled "Permanent and Definitive Solution to the International Problem of the Salinity of the Colorado River." Minute No. 242 requires that measures be taken to assure that Colorado River water delivered to Mexico upstream from Morelos Dam will have an average annual salinity concentration of no more than 115 ± 30 parts per million total dissolved solids (TDS) higher than the average annual flow-weighted salinity concentration of the Colorado River water arriving at Imperial Dam.

Nothing in this Review shall be construed to alter, amend, repeal, interpret, modify or be in conflict with the provisions of the Boulder Canyon Project Act (45 Stat. 1057), the Boulder Canyon Project Adjustment Act (54 Stat. 774), the Colorado River Basin Project Act (82 Stat. 885), the Colorado River Compact, the Colorado River Storage Project Act (70 Stat. 105), the Upper Colorado River Basin Compact, or the Treaty with the United Mexican States (Treaty Series 994).
HISTORY AND BACKGROUND

The Colorado River Basin Salinity Control Program (Program) is a unique cooperative watershed effort between several federal agencies and seven states designated to meet national, international and state water quality objectives. The Forum participates with federal, state, local agencies and private participants to ensure the successful execution of the triennial Plan of Implementation through on-the-ground activities and encouraging legislative support for federal funding.

The Basin is 242,000 square miles\(^2\) (approximately 155 million acres) of the western United States and a small portion of northern Mexico. Currently, about 40 million\(^3\) people in the seven western states of Arizona, California, Nevada (Lower Basin States) and Colorado, New Mexico, Utah, and Wyoming (Upper Basin States), collectively referred to as the Basin States, rely on the Colorado River and its tributaries to provide some, if not all, of their municipal water needs. Additionally, water from the Colorado River system is utilized to irrigate nearly 5.5 million acres of land\(^4\) in the Basin, producing some 15 percent of the nation’s crops and about 13 percent of its livestock, which combined generate many billions of dollars a year in agricultural benefits.

The Colorado River also serves as the lifeblood for at least twenty-two federally recognized Native American Indian tribes, seven National Wildlife Refuges, four National Recreation Areas, and eleven National Park units. Hydropower facilities along the Colorado River supply more than 4,200 megawatts of electrical capacity to help meet the power needs of the West and reduce the use of fossil fuels. Finally, the Colorado River is vital to Mexico, supporting a thriving agricultural industry in the San Luis and Mexicali Valleys and providing municipal water supplies for communities in the Mexican States of Sonora and Baja California.

The Colorado River system is operated in accordance with the Law of the River\(^5\). Currently, apportioned water in the Basin exceeds the 109-year record (1906 through 2014) basinwide average long-term historical natural flow\(^6\) of about 16.1 million acre-feet (maf). However, the Upper Basin States have not fully developed use of their 7.5 maf apportionment, and total consumptive use and losses in the Basin have averaged approximately 15.3 maf\(^7\).

\(^3\) About 40 million people were estimated to be within the hydrologic boundaries of the Basin in the United States, as well as in the adjacent areas of the Basin States that receive Colorado River water, in 2015. See Colorado River Basin Water Supply and Demand Study - Technical Report C, U.S. Bureau of Reclamation, 2012.
\(^4\) It is estimated that there were 5.5 million irrigated acres in the hydrologic boundaries of the Basin in the United States, as well as in the adjacent areas of the Basin States that receive Colorado River water, in 2015 based on interpolated acreage data from Scenario A Current Projections. See Colorado River Basin Water Supply and Demand Study - Technical Report C, U.S. Bureau of Reclamation, 2012.
\(^5\) The treaties, compacts, decrees, statutes, regulations, contracts and other legal documents and agreements applicable to the allocation, appropriation, development, exportation and management of the waters of the Colorado River Basin are often collectively referred to as the “Law of the River.”
\(^6\) Natural flow represents the flow that would have occurred at the location had depletions and reservoir regulation not been present upstream of that location.
\(^7\) Basinwide consumptive use and losses estimated over the period 2002-2011, including the 1944 Treaty delivery to Mexico, reservoir evaporation, and other losses due to operational inefficiencies.
Salinity-caused impacts have long been a major concern in the United States and Mexico. The salinity in the river generally increases as it flows downstream. The Colorado River has carried an average salt load of approximately 9 million tons annually past Hoover Dam, the uppermost location at which numeric criteria have been established.

The salts in the Colorado River system are naturally occurring and pervasive. Many of the saline sediments of the Basin were deposited in prehistoric marine environments. Salts contained within the sedimentary rocks are easily eroded, dissolved, and transported into the river system.

In a 1971 study, EPA analyzed salt loading in the Basin and divided it into two categories, naturally occurring and human-caused. EPA concluded that about half (47 percent) of the salinity concentration measured in water arriving at Hoover Dam is from natural sources, including salt contributions from saline springs, groundwater discharge into the river system (excluding irrigation return flows), erosion and dissolution of sediments, and the concentrating effects of evaporation and transpiration. Other natural sources include salt contributions from non-point (excluding irrigated agriculture) or unidentified sources or from the vast, sparsely populated regions of the Basin, many of which are administered by the United States Bureau of Land Management (BLM) or other governmental agencies. Of the land within the Basin, about 75 percent is owned and administered by the federal government or held in trust for Indian tribes. The greatest portion of the naturally occurring salt load originates on these federally owned and administered lands.

Human activities, including livestock grazing, wildlife management, logging, mining, oil exploration, road building, recreation and urbanization can influence the rate of natural salt movement from rock formations and soils to the river system. EPA estimated that out-of-Basin exports (3 percent), agricultural irrigation (37 percent), reservoir evaporation and phreatophyte use (12 percent), and municipal and industrial uses (1 percent) account for 53 percent of the salinity concentration in water arriving at Hoover Dam. Much of the salt load contribution from irrigated agriculture is from federally developed irrigation projects.

In 1972, the federal government enacted the Clean Water Act that mandated efforts to develop and maintain water quality standards in the United States. At the same time, Mexico and the United States engaged in discussions to address the issue of increasing salinity in the Colorado River water being delivered to Mexico. The Basin States established the Forum in 1973. The Forum is composed of representatives from each of the Basin States appointed by the governors of the respective states. The Forum was created for interstate cooperation and to provide the states with the information necessary to comply with Section 303(a) and (b) of the Clean Water Act.

EPA promulgated a regulation in December 1974 which set forth a basinwide salinity control policy for the Basin. The regulation specifically stated that salinity control was to be implemented while the Basin States continue to develop their compact-apportioned water. This regulation also established a standards procedure and required the Basin States to adopt and submit for approval to EPA water quality standards for salinity, including numeric criteria and a Plan of Implementation, consistent with the policy stated in the regulation. In compliance with

---

8 The Mineral Quality Problem in the Colorado River, Summary Report, Environmental Protection Agency, Regions VIII and IX, 65pp., 1971
the regulation, the Forum selected three numeric criteria stations on the main stem of the lower Colorado River as being appropriate points to measure the salinity concentrations of the river. These stations are located at the following points: (1) below Hoover Dam, (2) below Parker Dam, and (3) at Imperial Dam. The Forum also adopted a water quality standard for the Colorado River Basin including both a Plan of Implementation and numeric criteria.

With the Plan of Implementation as proposed in this Review in place, the probability of exceeding the numeric criteria during the review period is very low based on Reclamation computer model simulations. The analysis indicates the probability of exceeding the numeric criteria with the Plan of Implementation in place in any of the next three years at the Hoover Dam, Parker Dam and Imperial Dam stations is 5 percent or less. This low probability of exceedance was an important factor in the Forum’s decision to adopt the Plan of Implementation accompanying this Review.

UNDERSTANDING THE SALINITY OF THE COLORADO RIVER

As with most large rivers, the natural flow of the Colorado River increases from its headwaters to its terminus. Today, however, the flow of the Colorado River decreases below Hoover Dam due to diversions. Imperial Dam is the last major diversion point for uses in the United States. In normal years, 1.5 maf is scheduled to pass Imperial Dam for deliveries to Mexico.

In general, the salinity concentration of the water in the Colorado River increases from the headwaters to the terminus. Much of the salt is picked up in the Upper Basin, and some of the tributary streams average higher concentrations of salt than the main stem.

Reclamation has developed a map of the Basin reflecting the relative flows and the corresponding salinity concentrations of the water across the Basin in calendar year 2015. This map is provided for general illustrative purposes as Figure 1. The average flow of the Colorado River and its important tributaries are indicated by the width of the line, and the salinity concentrations are illustrated by colors coded to ranges in TDS.
Figure 1 – 2015 (Calendar Year) Generalized Flow and Salinity Concentrations across the Colorado River Basin
In general, over the last thirty years the salinity concentrations have decreased at all three of the numeric criteria stations (see Figure 2). The values for the Observed Flow-Weighted Average Salinity at the Numeric Criteria Stations are provided in Appendix A. In this Review, the terms "salinity," "TDS" and "concentration," each in mg/L, are used interchangeably.

Figure 2 – Flow Weighted Average Annual Salt Concentrations at Numeric Criteria Stations
PROVISION FOR REVIEWING AND REVISING THE STANDARD

The Colorado River water quality standards for salinity and the approach taken by the Basin States in complying with the standards are unique. The salinity concentrations that are projected in the future have not been shown to have adverse effects on human health or wildlife. Thus, the Program is different from most other water quality standard compliance programs. The standards adopted by the Forum and the Basin States and approved by EPA consist of the numeric criteria and the Plan of Implementation. The numeric criteria portion of the water quality standards is established to protect against increases in economic damages to infrastructure and crop production. The Plan of Implementation is designed to maintain the flow-weighted average annual salinity at or below the numeric criteria while the Basin States continue to develop their compact-apportioned water supply.

The Program is a basinwide coordinated effort among federal, state and local agencies and participants to control salt loading. The Forum, in its statement of “Principles and Assumptions for Development of Colorado River Salinity Standards and Implementation Plan,” approved by the Forum on September 20, 1974, stated under Principle 7:

The Plan of Implementation shall be reviewed and modified as appropriate from time to time, but at least once every three years. At the same time, the (numeric) standards, as required by Section 303 (c) (1) of P.L. 92-500 shall be reviewed for the purpose of modifying and adopting standards consistent with the plan so that the Basin States may continue to develop their compact-apportioned waters while providing the best practicable water quality in the Colorado River Basin.9

NUMERIC CRITERIA

EPA promulgated a regulation that set forth a salinity control policy for the Basin. This policy required that the flow-weighted average annual salinity in the lower main stem of the Colorado River be maintained at or below the 1972 levels. The points in the lower main stem of the Colorado River where the flow-weighted average annual salinity is measured are at the following three stations: 1) below Hoover Dam, 2) below Parker Dam, and 3) at Imperial Dam. The basis for selecting these stations is their proximity to key diversion facilities on the lower Colorado River. Nevada diverts main stem water from Lake Mead for use in the Las Vegas area. The Metropolitan Water District of Southern California and the Central Arizona Project divert water from Lake Havasu, impounded behind Parker Dam, for millions of water users in southern California and central Arizona, respectively. The large agricultural areas in the Imperial and Coachella Valleys in California and the Yuma area in Arizona are served by diversions at Imperial Dam.

The numeric criteria for each of those stations as established in 1972 are as follows:

<table>
<thead>
<tr>
<th>Station</th>
<th>Numeric Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below Hoover Dam</td>
<td>723 mg/L</td>
</tr>
<tr>
<td>Below Parker Dam</td>
<td>747 mg/L</td>
</tr>
<tr>
<td>At Imperial Dam</td>
<td>879 mg/L</td>
</tr>
</tbody>
</table>

While the federal regulations provide for temporary increases above the numeric criteria levels if sufficient control measures are included in the Plan of Implementation, no temporary increases are anticipated during this review period.

The Forum believes the Review is the appropriate setting to recommend any changes to the numeric criteria. The Forum finds the current numeric criteria are adequate for the next three years and recommends no changes at this time. Because of the potential economic benefit to the Basin, the Forum believes there is justification to maintain salinity levels below the numeric criteria and remove additional salt from the Colorado River, thus saving several hundred million dollars in annual damages.

**PLAN OF IMPLEMENTATION**

**General**

The Plan of Implementation goal is designed to keep the flow-weighted average annual salinity concentrations at or below the 1972 numeric criteria levels while the Basin States continue to develop their compact-apportioned water supply. Measures in place are controlling 1.33 million tons of salt annually. The Plan of Implementation would implement practices to control an additional 63,500 tons of salt per year by 2020. Based on this level of control, Reclamation estimates there is less than a 5 percent probability that the numeric criteria will be exceeded in any year during the review period.

The Plan of Implementation is composed of many actions contemplated by the federal and state agencies and includes projects that remove the required salt tonnage to meet the Plan goal. This will principally be accomplished by reducing the salt contributions to the Colorado River from existing sources and minimizing future increases in salt load caused by human activities. For this Review, the Plan of Implementation can be briefly summarized as follows:

1. Implementation of salinity control measures by Reclamation, Natural Resources Conservation Service (NRCS), the BSP and BLM to the extent that those measures remain viable and appropriately cost effective.

2. Application of the Forum-adopted policies by each of the states. (The texts of the policies are included in Appendix B, and a list of National Pollutant Discharge Elimination System (NPDES) permits issued pursuant to these policies is found in Appendices C and D of this Review.)

3. Implementation of non-point source management plans developed by the states and approved by EPA (see the State Water Quality Management Plans section of this Review).

The Forum participates with federal, state and local agencies and private participants to ensure the Plan of Implementation is executed. The Forum also urges Congress to appropriate the funds needed for implementation and recommends legislative changes when necessary.
**Constructed Measures**

Congress enacted Public Law 93-320 in June of 1974 with the Forum's support. Title II of the Public Law created a water quality program for addressing salinity in the Colorado River in the United States above Imperial Dam. Primary responsibility for Title II was given to the Secretary of the Interior, with Reclamation being instructed to investigate and build the Paradox Valley, Grand Valley, Las Vegas Wash and Crystal Geyser salinity control units. The Secretary of Agriculture was also instructed to support the effort within existing authorities.

Public Law 93-320 has been amended several times. The amendments directed the Secretary of the Interior and the Secretary of Agriculture to give preference to the salinity control units with the least cost per unit of salinity reduction. The amendments established a BLM program, a voluntary on-farm salinity control program to be implemented by USDA (including the voluntary replacement of incidental fish and wildlife values foregone as a result of the on-farm measures) and the Basin States Program. Through implementation of these programs, many cost-effective salt-load reducing activities have been accomplished.

**USDOI-Reclamation**

The Act was amended by P.L. 104-20 to authorize the Basinwide Program. The Basinwide Program uses a competitive process that has greatly increased the federal cost effectiveness of salinity control. Reclamation may implement a variety of effective salinity control measures, but most projects concentrate on improving the efficiency of off-farm irrigation delivery systems. Reclamation solicits applications through a Funding Opportunity Announcement (FOA) for projects that will reduce the salinity of the Colorado River. Reclamation evaluates and ranks each application and awards grants to the highest ranking applications. Cost effectiveness is the prime criteria in the evaluation. The timing of the FOA is based on the need for more salinity control projects, and it relates to the amount of federal appropriation Reclamation receives to implement its portion of the Program. P.L. 104-20 and P.L. 106-459 increased the authorization ceiling for Reclamation’s salinity control program.

**USDA-NRCS**

The NRCS program generally concentrates on improving on-farm systems. NRCS salinity activities fall mainly under the authorities of EQIP. EQIP for Colorado River salinity control was authorized and initially funded under the 1996 Farm Bill and recently reauthorized by the 2014 Farm Bill. NRCS accepts applications under EQIP and evaluates, ranks and selects those applications that best meet the goals of the salinity control program. Based on the applications, NRCS provides technical and financial assistance to the producers. NRCS also offers financial assistance for voluntary replacement of fish and wildlife values foregone.

**USDOI - BLM**

The goal of the BLM program is to reduce the mobilization of salts to the Colorado River from BLM administered public lands. Salt reduction is achieved by controlling both point and non-point sources of salt contributions, recognizing that the majority of salt derived from public lands is of non-point source origin. Salt loading from non-point sources is mainly reduced by minimizing soil erosion.
Basin States Program

Public Law 110-246 amended the Act and created the BSP through which money from the Lower Colorado River Basin Development Fund and the Upper Colorado River Basin Fund (Basin Funds) is used for cost sharing in Reclamation and NRCS salinity control programs. These are administered by Reclamation in consultation with the Colorado River Basin Salinity Control Advisory Council. Cost share on federal appropriations expended by both Reclamation and NRCS for salinity control in the Basin is required by the Act. The money for the Basin Funds comes from levies assessed on users of power generated within the Basin. The required cost share on the original salinity control units of Paradox, Grand Valley and Las Vegas Wash is 25 percent of the project cost. Salinity control units and programs implemented subsequent to the original units require a 30 percent cost share from the Basin Funds.

For cost-share dollars generated by the federal expenditures under the Basinwide Program, Reclamation expends the required cost-share funding, together with appropriated funds in the Basinwide Program, through a public grant process. BSP funding generated by federal appropriations expended in EQIP is managed by Reclamation to administer the BSP and to enter into the following agreements: (1) NRCS for technical assistance, (2) other federal agencies for studies and research, (3) the states of Colorado, Utah and Wyoming to fund approved salinity control activities and projects, and (4) other entities for approved salinity control activities and salinity control projects. Each of the state agencies has the same goal of providing salinity control in the most cost-effective manner. The cost-share aspects of the BSP have proven very useful as a means of achieving additional cost effective salinity control. The BSP complements the NRCS and Reclamation programs in a comprehensive manner and facilitates local water user participation.

Accomplishments and Future Control

The Plan of Implementation recognizes that the Forum, participating federal agencies and the Basin States each have specific responsibilities for addressing salinity on the Colorado River. The Forum, in conjunction with the Colorado River Basin Salinity Control Advisory Council, will continue to provide overall coordination and a continuing review of salinity conditions and program effectiveness, and advise the participating federal agencies accordingly.

To date, it is estimated that the Program has reduced the annual salt loading in the Colorado River by approximately 1,330,000 tons, resulting in over 100 mg/L reduction in salinity concentrations in the Lower Basin. Figures 3 – 5 show the comparison of measured salinity levels as compared to what salinity levels would have been without implementation of the Program at the three numeric criteria stations. Table 1 gives a brief summary of the measures that have been implemented to date, the areas where those measures have occurred and the tons of salt controlled per year associated with each area.
Figure 3 – Salinity Control Program Impact below Hoover Dam

Figure 4 – Salinity Control Program Impact below Parker Dam
Figure 5 – Salinity Control Program Impact at Imperial Dam

Table 1
Control Measures in Place through 2017

<table>
<thead>
<tr>
<th>Tons/Year</th>
<th></th>
<th>Tons/Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Agricultural Measures</strong></td>
<td>1,040,200</td>
<td><strong>Non-Agricultural Measures</strong></td>
<td>289,800</td>
</tr>
<tr>
<td>Big Sandy</td>
<td>72,900</td>
<td>Paradox Valley Unit</td>
<td>100,900</td>
</tr>
<tr>
<td>Blacks Fork</td>
<td>1,100</td>
<td>Meeker Dome</td>
<td>48,000</td>
</tr>
<tr>
<td>Grand Valley</td>
<td>277,400</td>
<td>Las Vegas Wash</td>
<td>3,800</td>
</tr>
<tr>
<td>Green River</td>
<td>1,600</td>
<td>Ashley Valley WWTP</td>
<td>9,100</td>
</tr>
<tr>
<td>Henrys Fork</td>
<td>400</td>
<td>BLM</td>
<td>128,000</td>
</tr>
<tr>
<td>Lower Gunnison</td>
<td>218,300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mancos</td>
<td>4,700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manila</td>
<td>19,400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McElmo (Dolores)</td>
<td>54,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muddy Creek</td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paria</td>
<td>1,800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price-San Rafael</td>
<td>142,800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Juan</td>
<td>49,400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silt</td>
<td>2,400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uinta</td>
<td>183,700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USDA Tier 2</td>
<td>7,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unspecified Projects (USBR &amp; BSP)</td>
<td>1,700</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td></td>
<td><strong>TOTAL</strong></td>
<td>1,330,000</td>
</tr>
</tbody>
</table>

The Plan of Implementation assumes that measures currently in place continue to operate through the 2017 Review period and beyond. Improved water delivery and irrigation systems will need to be continually maintained and efficiently operated to provide reliable salinity control. Much of the financial burden of O&M and replacement of irrigation systems falls to salinity program participants, who are the agricultural producers in the basin. The Forum acknowledges the need for producers to maintain their improved irrigation practices through continued efforts and financial investment. The same is true for the non-agricultural measures as well. The best example may be the Paradox Valley Unit (PVU). The expected life and continued effectiveness of the PVU project is a matter of study by Reclamation and the Forum. The current EIS process and corresponding alternatives studies need to be completed, and an alternative implemented, in order to maintain the levels of salt control currently in place for the PVU.

The Plan of Implementation anticipates the continuation of the Program through the period of the Review. As presented in Table 2, it is anticipated that an additional 63,500 tons annually will be controlled by the Program as set forth in the 2017 Plan of Implementation, resulting in a total of 1,393,500 tons of annual reduction by 2020.

### Table 2  
**Additional Controls - Plan of Implementation 2020**

<table>
<thead>
<tr>
<th>Funding Source</th>
<th>Tons/Year as of 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECLAMATION (Basinwide Program)*</td>
<td>27,400</td>
</tr>
<tr>
<td>USDA NRCS (EQIP)</td>
<td>26,100</td>
</tr>
<tr>
<td>BLM</td>
<td>5,400</td>
</tr>
<tr>
<td>BASIN STATES PROGRAM (BSP)</td>
<td>4,600</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td><strong>63,500</strong></td>
</tr>
</tbody>
</table>

*Includes cost-share dollars from Basin States Program

This Plan of Implementation mainly focuses on the improvement of agricultural practices in the Upper Colorado River Basin. These improvements include both on-farm and off-farm activities. The majority of the salt reduction will occur in established salinity project areas, but some will occur outside those areas. Table 3 provides the salinity control project areas and an estimate of the potential salt reductions for both on- and off-farm projects that could occur in those areas. Figure 6 shows the established project areas.
The potential additional controllable salt remaining in all of the identified areas is estimated to be 332,000 tons annually, and thus the potential available tons exceed the 63,500 tons of additional annual salinity control identified by the Plan of Implementation.
Figure 6 – Colorado River Basin Salinity Control Forum Project Areas
Forum Policies and NPDES Permits

Important components of the Plan of Implementation are the Forum policies and NPDES permits which guide Basin States activities associated with the control of salt discharge to the Colorado River. In 1977, the Forum adopted the Policy for Implementation of Colorado River Salinity Standards through the NPDES Permit Program. This policy provides guidance for the regulation of municipal and industrial point source discharges of saline water. In 1980, the Forum adopted a policy to encourage the use of brackish and/or saline waters for industrial purposes where it is environmentally sound and economically feasible. A third policy dealing with intercepted groundwater was adopted by the Forum in 1982. In 1988, the Forum adopted a fourth policy which addresses the salinity of water discharges from fish hatcheries. The Forum subsequently updated its NPDES policy in 2002 to clarify the Forum policies for consistent implementation among the Basin States. In 2015, a Forum sub-committee found that the States are consistently implementing the policies. These policies are found in Appendix B of this report.

Each of the states has adopted the Forum policies presented in Appendix B. Salinity discharge requirements for these permits are evaluated and practicable controls are required during the permit process. A listing of NPDES permits and level of compliance of discharge facilities within the Basin are presented in Appendix C. Some NPDES permits are issued by EPA for federal facilities and on Indian reservations. The EPA also issues NPDES permits for the state of New Mexico, which are then adopted by the New Mexico Environment Department. Forum policies also apply to EPA-issued NPDES permits and hence, become a part of the Plan of Implementation. The NPDES permits issued by EPA can be found in Appendix D of this report.

During the period of this Review, the status of implementation of NPDES permits and water quality management plans in each of the states is as follows:

State Water Quality Management Plans

ARIZONA

Scope
The Colorado River enters Arizona and the Lower Basin near Page and travels through the Grand Canyon before turning southward at Lake Mead (Hoover Dam) and flowing to the Gulf of California. There are four major drainages in Arizona’s portion of the Basin: 1) the Little Colorado River; 2) the Virgin River; 3) the Bill Williams River, formed by the Big Sandy and the Santa Maria Rivers at Alamo Lake, which empties into the Colorado River above Parker Dam; and 4) the Gila River, which joins the Colorado River below Imperial Dam. Because the Gila River is below Imperial Dam, facilities that discharge to the Gila River or its tributaries do not require conformance with the Forum policies.

NPDES Permitting

The Water Quality Division of the Arizona Department of Environmental Quality (ADEQ) administers the Arizona Pollutant Discharge Elimination System (AZPDES) program on non-Indian country lands. All permits for domestic wastewater and industrial discharges, with direct river discharges, are written in conformance with associated Forum policies. ADEQ continues to evaluate and revise other discharge permits as information becomes available.
Currently there are 26 active individual discharge permit holders and one minor wastewater treatment plant with general permit coverage in Arizona’s non-tribal portion of the Colorado River system. Of these, 21 permits are for municipal or domestic wastewater discharges. The other 5 permits are for industrial discharges related to fish hatcheries, mines, water treatment or water delivery. A specific listing of the individual permits and the status of compliance with Forum policies is contained in Appendix C.

There are currently 10 stream segments in the Basin that are listed in the state’s 2016 Section 303(d) list as impaired (2 – Bill Williams, 5 – Colorado River Grand Canyon, 2 – Colorado River Lower Gila, 1 – Little Colorado River). No waters are currently listed for salinity, which only applies to the Colorado River. The primary causes of impairment are selenium (7), suspended sediment (3), *E. Coli* (3), copper (1) and ammonia (1). Complete assessment information can be found on ADEQ’s website.

**Watershed Planning**

ADEQ’s TMDL Program and the Water Quality Improvement Grant Program utilize comprehensive watershed-based plans, which contain EPA’s required nine elements, to help focus funding to those areas and projects that have the greatest chance for improving water quality. These plans contain implementation strategies for many of the impaired waters, as well as Best Management Practices to address existing and potential issues in the watershed. Recent activities within the Basin have been focused on reducing sediment in the Little Colorado River and the Colorado Grand Canyon.

Work plans are developed to secure grant funding under the Clean Water Act, Section 319(h) for watershed level planning and implementation. The work plans identify and coordinate efforts by state, federal and local agencies, along with watershed groups and private citizens, to reduce or prevent nonpoint source pollution through the use of Best Management Practices and “on-the-ground” projects.

**CALIFORNIA**

**Water Quality Management Planning**

The Water Quality Control Plan for the Colorado River Basin (Basin Plan) was adopted by the California Regional Water Quality Control Board, Colorado River Basin (Regional Water Board) in November 1993 and approved by the State Water Resources Control Board (State Water Board) in February 1994. The revised plan became effective upon approval by the Office of Administrative Law (OAL) in August 1994. Subsequent Basin Plan updates include amendments adopted by the State and Regional Water Boards and approved by OAL through March 2017. The salinity control component of the Basin Plan is consistent with the Forum’s Plan of Implementation for salinity control. The Regional Water Board collaborates with local entities and the Colorado River Board of California to ensure that implementation of the water quality plan is achieved.

Salinity control in ground and surface waters is a high priority for the State and Regional Water Boards and a very significant concern in arid areas like the Colorado River Basin Region, which relies heavily on water from the lower Colorado River for municipal and agricultural supply. To address rising salinities in groundwater, the State Water Board adopted a *Recycled Water Policy*
in February 2009 which requires the development of Salt and Nutrient Management Plans for groundwater basins throughout California. The plans require basinwide management of salts and nutrients from all sources in a manner that protects groundwater quality and beneficial uses. The salinity of the Colorado River is a critical factor in the development of Salt and Nutrient Management Plans for this region, given the large quantities of water that are diverted from the Colorado River to replenish the Coachella Valley municipal aquifer (over 3.2 million acre-feet to date), and to irrigate crops throughout the Imperial, Palo Verde, Bard and Coachella Valleys.

Controlling nonpoint source pollution generated from agricultural operations is also a top priority of the State and Regional Water Boards. Wastewater discharges from agricultural activities such as irrigation runoff, flows from tile drains and storm water runoff impact water quality by transporting pollutants - pesticides, sediment, nutrients, salts, pathogens, heavy metals and others - from cultivated fields into surface waters. To prevent agricultural discharges from impairing waters that receive these discharges, the State Water Board established the **Irrigated Lands Regulatory Program** in 2003. This program regulates discharges from irrigated agricultural lands by issuing waste discharge requirements (WDRs) or conditional waivers of WDRs (Orders) to growers. The Regional Water Board adopted Conditional Waivers of WDRs for Palo Verde Valley in 2012 and Bard Unit in 2013. Agricultural discharges in these areas are discharged to drains that are tributaries to the Colorado River. These Orders contain conditions requiring water quality monitoring of receiving waters and corrective actions when impairments are discovered.

**COLORADO**

**Scope**

Colorado’s portion of the Colorado River Basin is comprised of six major drainages: 1) the main stem of the Colorado River from the continental divide to the Utah border, 2) the Roaring Fork River Basin, 3) the Yampa/White River Basin which flows to the Green River in Utah, 4) the Gunnison River Basin, 5) the Dolores River which flows to the main stem in Utah, and 6) the San Juan Basin which flows into New Mexico and then to the main stem in Utah.

**NPDES Permitting**

The Colorado Department of Public Health and Environment, Water Quality Control Division, administers the NPDES permitting program in the Colorado River Basin, with the exception that EPA issues permits for point source discharges on the Southern Ute and Ute Mountain Ute Reservations, as well as for federally owned lands such as National Parks. This would include permits for discharges to groundwater that would contribute salinity to the Colorado River system through a hydrologic connection to surface waters. Permits for industrial and municipal discharges are written in conformance with the associated Forum policies. Colorado continues to issue stormwater permits to construction of oil and gas development sites and related infrastructure (e.g. roads) of one or more acres of disturbance, even though the Energy Policy Act had exempted this activity from the requirement to obtain a permit at the federal level.

Currently there are more than 250 active discharge permits in the Colorado portion of the Colorado River Basin where the salinity requirements have been applied. A specific listing of the individual permits and compliance status is contained in Appendix C.
Water Quality Assessments and TMDLs

The waters in Colorado’s portion of the Colorado River Basin, particularly at higher elevation, are generally of good quality. There are 279 water quality impaired stream segments, including provisional listings, in the Colorado River Basin in Colorado (Gunnison River Basin: 92 impaired segments; Upper and Lower Colorado River Basin: 152 impaired segments; San Juan River Basin: 35 impaired segments) which are included on the 2016 303d List of Impaired Waters. Of these, a significant majority in the lower ends of these basins are impaired for selenium. Water quality impairments in the mountainous portions of these basins are due to high concentrations of metals, primarily caused by the remnants of historic mining activities. No waters are currently listed for salinity related impacts.

The lower portions of each of these basins are underlain by bedrock deposits of the cretaceous period, most notably Mancos Shale and Dakota Sandstone. The Mancos Shale is a marine deposit and, as such, contains significant amounts of readily soluble constituent materials, including selenium. Groundwater which leaches to the relatively impermeable shale deposits tends to dissolve selenium and, as it flows atop the bedrock strata toward surface drainages, carries elevated levels of dissolved selenium with it. Various anthropogenic activities like sand and gravel extraction and agricultural and urban landscape irrigation accelerate the mobilization and transport of selenium from shale and shale-derived soil to surface water.

Watershed Planning - Colorado River Basin Selenium/Salinity Nonpoint Source Activities

Recent activities in the Basin range from watershed planning to Best Management Practices implementation for selenium and salinity reduction. The Middle Colorado Watershed Plan for the area from Glenwood Canyon to DeBeque Canyon has been completed and covers selenium impacted water bodies. The watershed stakeholders are now doing more detailed sampling and source characterization in a high priority sub-watershed. The Colorado Water Quality Control Division continues to monitor streams and lakes on or tributary to the main stem of the Colorado River and conduct outreach in preparation for developing TMDLs for impaired water bodies from DeBeque Canyon to the Utah state line.

Selenium reduction goals are highly dependent upon salinity control efforts occurring in the Basin where selenium is often found in conjunction with salinity. Numerous projects for selenium and salinity control are ongoing in the Basin. The Gunnison River Basin Selenium Management Program provides details of past, current and planned projects. Salinity reductions associated with this program are attributed to previous and on-going off-farm and on-farm salinity control efforts implemented through the Colorado River Basin Salinity Control Program, Environmental Quality Incentives Program, National Irrigation Water Quality Program, and Colorado Nonpoint Source Program. Of recent note is the marked increase in funding for the 2014 Lower Gunnison Project entitled, Modernizing Agricultural Water Management in the Lower Gunnison River Basin: A Cooperative Approach to Increased Water Use Efficiency and Water Quality Improvement through the U.S. Department of Agriculture, Natural Resources Conservation Service, Regional Conservation Partnership Program. This funding will significantly accelerate and expand control activities.
NEVADA

Scope

The Basin within Nevada consists of three major tributaries: 1) the Virgin River, 2) the Muddy River, and 3) the Las Vegas Wash. All of these tributaries flow into Lake Mead and provide nearly all of the inflow to the river from Nevada.

NPDES Permitting

The Nevada Division of Environmental Protection is the EPA delegated authority for the issuance of NPDES Permits. As of December 31, 2016, there were 94 active discharge permits in the Nevada portion of the Colorado River System. The largest dischargers, the City of Las Vegas, the Clark County Water Reclamation District, the City of Henderson, and the City of North Las Vegas are permitted to discharge a maximum flow up to 91 mgd, 150 mgd, 40 mgd, and 25 mgd respectively. The quality of the water affected by these permits is closely monitored and all necessary programs to protect water quality standards are being implemented. Nevada continues to apply the policies adopted by the Forum.

Water Quality Management Planning

Area-wide water quality management planning duties and powers have been vested to certain counties and entities. The Clark County Board of Commissioners was designated the Area-Wide Water Quality Management Planning organization within Clark County. The initial 208 Plan was adopted by the Clark County Board of Commissioners in 1978 and was approved by the EPA. Since that time, several 208 Plan revisions have been made as needed to address changing needs.

TMDLs

In 1987, the Nevada Division of Environmental Protection established total phosphorus and total ammonia Waste Load Allocations (WLAs) in the Las Vegas Wash at Northshore Road as needed to meet the Las Vegas Bay water quality standards. The WLAs set are applicable for only April through September and were based upon target concentrations (0.64 mg/L total phosphorus, 1.43 mg/L total ammonia) and average stream flows.

NEW MEXICO

Scope

New Mexico’s portion of the Basin above Imperial Dam is comprised of two major drainages: 1) the Rio Puerco, which is a tributary of the Little Colorado River, and 2) the San Juan River, which is a major tributary of the Colorado River.

NPDES Permitting

In New Mexico, authority for issuing permits is administered by EPA Region 6, except for facilities located on the Navajo Indian Reservation, which are administered by Region 9. Permits for industrial and municipal discharges are written in conformance with the associated Forum policies. The State of New Mexico Water Quality Standards for Interstate and Intrastate
Surface Waters 20.6.4.54 adopt the standards of the Colorado River Basin Salinity Control Forum by reference. Currently, there are 34 discharge permits (active and inactive) in the New Mexico portion of the Basin, of which Region 6 administers 21 permits and Region 9 administers 13 Navajo Reservation permits. Of these, 18 permits (14 non-Indian, 4 Navajo) are for industrial discharges and 16 permits (6 non-Indian, 1 Jicarilla Apache, 9 Navajo) are associated with municipal wastewater discharges.

**Water Quality Assessment and TMDLs**

The New Mexico Water Quality Control Commission has adopted the framework for water quality in New Mexico, which includes the State of New Mexico Water Quality Management Plan and the New Mexico Nonpoint Source Management Plan. Both plans cover the entire state, except for that portion of the tribal and pueblo lands lying therein. Planning within the reservations is the sole responsibility of the Tribes and Pueblos. Much of the Basin in New Mexico falls within the boundaries of the Navajo Tribe’s reservation.

The following TMDLs have been adopted by the New Mexico Water Quality Control Commission and approved by EPA within the New Mexico portion of the Basin at this time:

- Animas River: *E. coli*, nutrients
- Gallegos Canyon: selenium
- La Plata River: *E. coli*, siltation, dissolved oxygen
- San Juan River: *E. coli*, sedimentation/siltation

Sample collection for the most recent San Juan Basin Surface Water Quality Survey was completed in 2010 by the Surface Water Quality Bureau of the New Mexico Environment Department. A new survey for this basin begins March 2017 and will span 2 years for sampling throughout the basin. These surveys are normally scheduled throughout the various watersheds and basins in the state on a 7 to 8 year cycle.

**Watershed Planning**

Work plans are developed and grant funding secured under Clean Water Act Section 319(h) for watershed-associated development, riparian area restoration, certification of Section 404 permits, spill response and treatment of abandoned mines. The work plans identify and coordinate efforts by state, federal and local agencies, along with other groups and private citizens, to reduce or prevent non-point source pollution and implement Best Management Practices to reduce non-point source pollutants. The New Mexico Environment Department and the San Juan Watershed Group, an unincorporated citizen and interagency group funded by the Section 319(h) program, are working to improve water quality in the San Juan River by implementing Best Management Practices for non-point source contributors of nutrients and *E. coli*. State Revolving Loan Funds and other funds are authorized and available for use in funding salinity control projects. State actions in support of salinity control include: 1) inclusion of salinity control measures in the Section 208 plans, 2) dissemination of information on salinity sources and control, 3) consultation with industries on potential salinity reduction measures, 4) implementation of Forum policy through NPDES permits, and 5) maintaining a continuous water quality planning program whereby new or additional salinity control measures can be addressed.
UTAH

Scope

Utah’s portion of the Colorado River Basin is comprised of ten major sections: 1) the main stem of the Colorado River from the Colorado border to the Arizona Border in Lake Powell, 2) the Green River Basin from the Wyoming state line in Flaming Gorge Reservoir to the confluence with the Colorado River, 3) the Duchesne River Basin, 4) the lower Yampa and White River Basins which flow to the Green River in Utah, 5) the Price and San Rafael River Basins, 6) the Dirty Devil and Escalante Rivers, 7) the lower portion of the San Juan River Basin which flows into the main stem of the Colorado River in Utah, 8) the Paria River, 9) the Kanab Creek Basin to the Arizona State Line, and 10) the Virgin River Basin to the Arizona state line.

NPDES Permitting

The Utah Division of Water Quality (DWQ) within the Utah Department of Environmental Quality administers the NPDES permitting program in Utah. Permits for industrial and municipal discharges within the Colorado River Basin are written in conformance with the associated Forum policies and are available for viewing on line at: https://deq.utah.gov/Permits/water/updes/index.htm.

As of December 31, 2016, there are 74 discharge permits as issued by DWQ in the Utah portion of the Colorado River Basin. Of these, 32 are for municipal discharges and 42 are for industrial discharges, of which 6 industrial permits have been recently terminated. A specific listing of the individual permits and their compliance status is contained in Appendix C. Multiple discharge permits for coal mining operations in Utah were developed to offset salinity contributions from industrial sources in accordance with the Forum policy initially adopted as part of the 2002 Triennial Review. The salinity-offset project plans have been finalized previously, with projects implemented to offset salinity contributions in excess of the one ton per day requirement from those facilities.

Water Quality Assessments and TMDLs

The waters in Utah’s portion of the Colorado River Basin are generally of good quality. There have been 30 stream segments listed for impacts from salinity/TDS/chlorides. These segments are generally in the lower reaches of the respective basins and are the result of a combination of natural salt loadings and agricultural drainage. TMDLs have been developed to address these salinity/TDS/chloride impairments. For information about the completed studies and to view the current Utah 303(d) list of impaired water bodies, please visit: https://deq.utah.gov/ProgramsServices/programs/water/watersheds/index.htm.

Watershed Planning

Utah’s Watershed Protection program is focused on protecting and restoring the water quality of its streams, lakes and groundwater resources by employing the following key elements: Stewardship, Monitoring and Assessment, Coordination, Implementation of Best Management Practices and Watershed Planning. Although projects exist in other regions, currently the Upper Colorado Basin region in Utah has no watershed planning projects in progress to specifically
address Total Dissolved Solids. The Basin Plans for the Utah State Water Plan include water quality as part of the process and these plans are updated periodically.

**WYOMING**

**Scope**

Wyoming’s portion of the Basin is comprised of two major main stream drainages: 1) the Little Snake River, which is a tributary of the Yampa River in Colorado, and 2) the Green River, which empties into Flaming Gorge Reservoir on the Wyoming-Utah border.

**NPDES Permits**

Currently there are 32 active discharge permits in the Wyoming portion of the Colorado River system. All permits for industrial and municipal discharges are written in conformance with Forum policies. Of the 32 permits, 13 are for industrial discharges related to fish hatcheries, coal mines, power plants or oil and gas production facilities and 19 of the permits are associated with municipal wastewater discharges. These facilities serve a total population of approximately 50,000 people. A specific listing of the individual permits and compliance status is contained in Appendix C.

**Water Quality Assessments and TMDLs**

In general, water quality in the Upper Colorado River basin in Wyoming is good. There are currently only 11 streams and rivers identified as either impaired or threatened in the State’s 2014 Section 303(d) List (12 pollutant/segment combinations on 7 streams/rivers in the Green River Basin and 7 pollutant/segment combinations on 4 streams in the Little Snake River Basin). Of these impaired waters, Bitter Creek in the Green River Basin and Muddy Creek in the Little Snake River Basin are listed for salinity related impacts (chloride). A TMDL for Bitter Creek was initiated in 2012. A TMDL for Muddy Creek is not scheduled for development at this time. Complete assessment information can be found at [http://deq.wyoming.gov/wqd/watershed-protection/](http://deq.wyoming.gov/wqd/watershed-protection/).

**Watershed Planning**

Local watershed groups have conducted watershed planning activities for several of the impaired waters within the Green River and Little Snake River Basins. These groups have worked to implement the watershed plans through Wyoming’s Clean Water Act Section 319 Grant Program and other state and federal cost-share programs.

In 2010, the Wyoming Water Development Commission (WWDC) revised the river basin water plan for the Green River and Little Snake River drainages. This report updates information about the current uses and projected future uses of water in the basin and includes other useful information such as irrigated lands delineation, hydrologic modeling of major streams, estimated availability of surface and groundwater for future use, and recommendations and strategies for facing current and future water use challenges. Detailed information can be accessed at: [http://waterplan.state.wy.us](http://waterplan.state.wy.us).

In 2012, the WWDC completed a study to identify a consistent viewpoint and accounting
process for environmental and recreational water demands and to help guide river basin planning efforts in moving forward. The study identified the need for available data sources to be defined and analyzed in a way that would assess their interactions with traditional water uses throughout the State of Wyoming. The methodologies developed in the 2012 study are currently being employed in the Green River Basin. This study is scheduled to be completed in the fall of 2017.
CONCLUSION AND ADOPTION OF THE STANDARDS

The Standards consist of two components, the numeric criteria and the Plan of Implementation. No change has been made in the numeric criteria since their adoption in 1975 by the Basin States and approval by EPA. After having conducted this Review, the Forum has again found the numeric criteria to be appropriate and recommends no changes in these criteria. The Forum also finds that the updated Plan of Implementation is adequate to keep the salinity concentration of the Colorado River below the numeric criteria through 2020, thus providing significant benefits to the Basin. The effect of the Plan of Implementation on the Standard is that the probability of exceeding the numeric criteria is extremely low, less than 5 percent in any given year, for the review period and provides a measurable improvement to the quality of the Colorado River.

The Forum and the Basin States remain committed to continued improvement of the water quality of the Colorado River.

The Program is truly unique and it cannot be successful without cooperation from a multitude of agencies and governments involved at the local, state and federal levels. First, the Program is reliant on the cooperation of land owners in implementing important and cost-effective salinity control measures. Second, the Program is dependent on a multitude of agreements among the Basin States which have always been accomplished by consensus. Last, the Program depends on the cooperation of a number of federal agencies for its success. In addition to the three federal implementing agencies, there are other federal agencies which are involved in the Program, and cooperation and coordination with these agencies is also essential. Three notable agencies are: United States Fish & Wildlife Service, United States Geological Survey and EPA. All the federal agencies are a critical part of the Program. It is expected that by their involvement in the preparation of this Review, those federal agencies will support the Plan of Implementation and its programs.

Upon approval of this Review by the Forum, each of the Basin States will include these standards as a part of its own water quality standards through its own procedures and obtain approval of its own water quality standards from EPA. Because the Basin contains portions of three EPA regions, the States of Utah, Colorado and Wyoming submit their triennial reviews to EPA Region 8 in Denver, Colorado; New Mexico to EPA Region 6 in Dallas, Texas; and Nevada, Arizona and California to EPA Region 9 in San Francisco, California. It is anticipated that EPA, by approval of the states’ submittals, will fully support this salinity control effort.
FUTURE PROGRAM

As described in earlier sections of this report, the water quality standard for salinity in the Colorado River Basin is expected to be met during the review period (over the next three years, 2018-2020). Given average hydrology in the basin, the probability of exceeding the numeric criteria, while putting into practice the outlined Plan of Implementation, is well within the established water quality standard. Nonetheless, as water development continues to occur throughout the Basin, salinity concentrations and the associated economic damages are projected to increase. Therefore, this section will analyze the comparative changes in Colorado River salinity under different implementation scenarios from the present through 2035. The efforts of the Program are to minimize downstream economic damages while the Upper Basin States continue to develop their Compact-apportioned water supplies. This effort is increasingly challenging as economic damage levels and costs increase over time, thus placing greater burdens on Program implementation.

Reclamation used its Colorado River Simulation System (CRSS) model to project salinity levels for the period 2017 through 2035 with the varying levels of Program implementation. The CRSS model simulates 107 separate hydrologic traces for each year and then calculates the average annual salinity. A detailed description of the CRSS model and the model runs made for this Review are found in Appendix E.

The Forum requested that Reclamation analyze the effects on the salinity of the River for four levels of program implementation (tons of salt removed). The Forum chose the levels of implementation based on different assumptions regarding federal funding and state cost share and the tons of salt available for future control. Scenario 1 shows implementation ceasing new salinity control measures post 2017 without executing the Plan of Implementation described in the Review. Scenario 2 shows execution of the Plan of Implementation through 2020 and ceasing to implement new salinity control measures thereafter. Two additional scenarios evaluate the water quality improvement of the Colorado River with continued implementation of salinity control beyond 2020. These scenarios differ by levels of anticipated funding to support implementation. Scenario 3 assumes a consistent level of federal appropriation provided to the program as in recent years and implements measures to control an additional 270 Ktons by 2035. Scenario 4 targets longer term Forum goals to implement measures to control an additional 400 Ktons by 2035. These additional measures will require a 30% increase in Program funding above current levels (Scenario 3).

Table 4 shows the four scenarios modeled by Reclamation with the tons of annual salinity control in place by the year 2035.
Table 4
Plan of Implementation Levels Modeled by CRSS

<table>
<thead>
<tr>
<th>Description</th>
<th>Total Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1 - No additional controls beyond 2017 (does not implement the Plan of Implementation identified herein)</td>
<td>1.33M tons</td>
</tr>
<tr>
<td>Scenario 2 - No additional controls after this review period (i.e. Program ceases after 2020)</td>
<td>1.39M tons</td>
</tr>
<tr>
<td>Scenario 3 - Controls associated with recent Program funding levels through 2035</td>
<td>1.66M tons</td>
</tr>
<tr>
<td>Scenario 4 - Controls associated with expanded Program funding levels through 2035</td>
<td>1.79M tons</td>
</tr>
</tbody>
</table>

Note: “No additional controls” contemplates some continuing O&M expenditures to maintain existing facilities.

The modeling shows that the difference between no additional salinity controls (Scenario 1) and an optimistic level of Program implementation of 1.79 million tons (Scenario 4) is approximately 40 mg/L by the year 2035. These values are summarized in Figures 7, 8 and 9 below for the three numeric criteria points.

![Figure 7 – Projected Average Annual Salinity Concentration below Hoover Dam](image_url)
Figure 8 – Projected Average Annual Salinity Concentration below Parker Dam

Figure 9 – Projected Average Annual Salinity Concentration at Imperial Dam
To further understand the impacts of reducing the salinity concentrations in the Lower Basin, the Forum used Reclamation’s Salinity Economic Impact Model (SEIM), which is described in Appendix F, to estimate damages under the four Plan of Implementation alternatives. Damage estimates for each alternative are listed in Table 5 under the heading “Total Quantified Damages.” Estimated damage reductions resulting from lower salinity concentrations projected under each alternative were derived by subtracting the “Total Quantified Damages” from the base case of 1.33 Mtons removed, or $562.8M. These estimates are listed in Table 5 as “Annual Damage Reductions.” The SEIM model only estimates damages to the Lower Basin that can be reasonably quantified at the present time (see Appendix F). In addition to the currently unquantified damages in the Lower Basin, there are also benefits from the Program in the Upper Basin that have yet to be quantified.

Table 5
Annual Damages and Damage Reductions for Plan of Implementation Alternatives

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Salinity Reduction at Imperial Dam in 2035 (mg/L)</th>
<th>Total Quantified Damages (2014 Dollars)</th>
<th>Annual Damage Reductions as Compared to No Additional Future Controls Beyond 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.33 Mtons removed</td>
<td>--</td>
<td>$562.8M</td>
<td>--</td>
</tr>
<tr>
<td>1.39 Mtons removed</td>
<td>7</td>
<td>$544.2M</td>
<td>$18.6M</td>
</tr>
<tr>
<td>1.66 Mtons removed</td>
<td>29</td>
<td>$486.9M</td>
<td>$75.9M</td>
</tr>
<tr>
<td>1.79 Mtons removed</td>
<td>33</td>
<td>$478.4M</td>
<td>$84.4M</td>
</tr>
</tbody>
</table>

All damage and reduced-damage estimates correspond to year 2035.

From these calculations, it can be seen that as more salinity control is implemented and the concentrations at the numeric criteria points are reduced, the quantified economic damages projected to be experienced annually by users in the Lower Basin are also reduced. For example, as indicated in Table 5, with the additional 63,500 tons of control (the difference between the 1.33 million ton and 1.39 million ton alternatives) annually, the quantified economic damages to agricultural and municipal and industrial water users are reduced by approximately $18.3 million annually.

While it is essential to continue to maintain salinity concentrations at or below the numeric criteria, the Forum will continue to focus on opportunities to further reduce future economic damages. The Forum believes a more robust salinity control program is needed to achieve the reductions indicated in Table 5. Two of the challenges facing the Forum in pursuing such a program are finding cost effective salinity control projects and acquiring the necessary funding to implement those projects. The Forum is committed to continue working with the federal
agencies to identify cost effective projects. The Forum is also committed to working with the federal agencies and Congress to seek additional appropriations and to generate the cost share revenues needed to support additional federal expenditures. The Forum determines that all of the alternatives evaluated above are economically justifiable. However, given the current financial constraints, the Forum, for this review period, will pursue a Program designed to remove at least 1.66 million tons annually by the year 2035. This may require legislation to alter the states’ cost share or other actions to meet the identified Program levels.
For additional information please contact:

Don A. Barnett
Executive Director
Colorado River Basin Salinity Control Forum
106 West 500 South, Suite 101
Bountiful, Utah  84010-6203
(801) 292-4663
dbarnett@barnettwater.com

Patrick Dent
Work Group Chairman
Colorado River Basin Salinity Control Forum
23636 N. Seventh Street
Phoenix, Arizona  85024
(623) 869-2581
pdent@cap-az.com
APPENDIX A

Flow Weighted Salinity Values
at the Three Numeric Criteria Stations
### Observed Flow-Weighted Average Salinity at the Numeric Criteria Stations

*(Total Dissolved Solids in mg/L)*

<table>
<thead>
<tr>
<th>Calendar Year (Numeric Criteria)</th>
<th>Below Hoover Dam (723 mg/L)</th>
<th>Below Parker Dam (747 mg/L)</th>
<th>At Imperial Dam (879 mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>743</td>
<td>760</td>
<td>896</td>
</tr>
<tr>
<td>1971</td>
<td>748</td>
<td>758</td>
<td>892</td>
</tr>
<tr>
<td>1972</td>
<td>724</td>
<td>734</td>
<td>861</td>
</tr>
<tr>
<td>1973</td>
<td>675</td>
<td>709</td>
<td>843</td>
</tr>
<tr>
<td>1974</td>
<td>681</td>
<td>702</td>
<td>834</td>
</tr>
<tr>
<td>1975</td>
<td>680</td>
<td>702</td>
<td>829</td>
</tr>
<tr>
<td>1976</td>
<td>674</td>
<td>690</td>
<td>822</td>
</tr>
<tr>
<td>1977</td>
<td>665</td>
<td>687</td>
<td>819</td>
</tr>
<tr>
<td>1978</td>
<td>678</td>
<td>688</td>
<td>812</td>
</tr>
<tr>
<td>1979</td>
<td>688</td>
<td>701</td>
<td>802</td>
</tr>
<tr>
<td>1980</td>
<td>691</td>
<td>712</td>
<td>760</td>
</tr>
<tr>
<td>1981</td>
<td>681</td>
<td>716</td>
<td>821</td>
</tr>
<tr>
<td>1982</td>
<td>679</td>
<td>713</td>
<td>827</td>
</tr>
<tr>
<td>1983</td>
<td>659</td>
<td>678</td>
<td>727</td>
</tr>
<tr>
<td>1984</td>
<td>598</td>
<td>611</td>
<td>675</td>
</tr>
<tr>
<td>1985</td>
<td>556</td>
<td>561</td>
<td>615</td>
</tr>
<tr>
<td>1986</td>
<td>517</td>
<td>535</td>
<td>577</td>
</tr>
<tr>
<td>1987</td>
<td>519</td>
<td>538</td>
<td>612</td>
</tr>
<tr>
<td>1988</td>
<td>529</td>
<td>540</td>
<td>648</td>
</tr>
<tr>
<td>1989</td>
<td>564</td>
<td>559</td>
<td>683</td>
</tr>
<tr>
<td>1990</td>
<td>587</td>
<td>600</td>
<td>702</td>
</tr>
<tr>
<td>1991</td>
<td>629</td>
<td>624</td>
<td>749</td>
</tr>
<tr>
<td>1992</td>
<td>657</td>
<td>651</td>
<td>767</td>
</tr>
<tr>
<td>1993</td>
<td>665</td>
<td>631</td>
<td>785</td>
</tr>
<tr>
<td>1994</td>
<td>667</td>
<td>673</td>
<td>796</td>
</tr>
<tr>
<td>1995</td>
<td>654</td>
<td>671</td>
<td>803</td>
</tr>
<tr>
<td>1996</td>
<td>618</td>
<td>648</td>
<td>768</td>
</tr>
<tr>
<td>1997</td>
<td>585</td>
<td>612</td>
<td>710</td>
</tr>
<tr>
<td>1998</td>
<td>559</td>
<td>559</td>
<td>655</td>
</tr>
<tr>
<td>1999</td>
<td>549</td>
<td>550</td>
<td>670</td>
</tr>
<tr>
<td>2000</td>
<td>539</td>
<td>549</td>
<td>661</td>
</tr>
<tr>
<td>2001</td>
<td>550</td>
<td>549</td>
<td>680</td>
</tr>
<tr>
<td>2002</td>
<td>561</td>
<td>572</td>
<td>689</td>
</tr>
<tr>
<td>2003</td>
<td>584</td>
<td>592</td>
<td>695</td>
</tr>
<tr>
<td>2004</td>
<td>625</td>
<td>644</td>
<td>729</td>
</tr>
<tr>
<td>2005</td>
<td>643</td>
<td>668</td>
<td>710</td>
</tr>
<tr>
<td>2006</td>
<td>646</td>
<td>671</td>
<td>720</td>
</tr>
<tr>
<td>2007</td>
<td>632</td>
<td>657</td>
<td>715</td>
</tr>
<tr>
<td>2008</td>
<td>620</td>
<td>644</td>
<td>733</td>
</tr>
<tr>
<td>2009</td>
<td>604</td>
<td>624</td>
<td>717</td>
</tr>
<tr>
<td>2010</td>
<td>577</td>
<td>600</td>
<td>690</td>
</tr>
<tr>
<td>2011</td>
<td>568</td>
<td>591</td>
<td>681</td>
</tr>
<tr>
<td>2012</td>
<td>548</td>
<td>569</td>
<td>677</td>
</tr>
<tr>
<td>2013</td>
<td>551</td>
<td>567</td>
<td>677</td>
</tr>
<tr>
<td>2014</td>
<td>581</td>
<td>598</td>
<td>695</td>
</tr>
<tr>
<td>2015</td>
<td>615</td>
<td>635</td>
<td>725</td>
</tr>
</tbody>
</table>

---

1 Determined by the USGS from data collected by Reclamation and USGS.

Salinity concentrations are based on TDS as the sum of constituents whenever possible. The sum of constituents is defined to include calcium, magnesium, sodium, chloride, sulfate, a measure of the carbonate equivalent of alkalinity and, if measured, silica and potassium.
APPENDIX B

Forum Policies
POLICY FOR IMPLEMENTATION OF COLORADO RIVER SALINITY STANDARDS THROUGH THE NPDES PERMIT PROGRAM

Adopted by
The Colorado River Basin Salinity Control Forum

February 28, 1977
Revised October 30, 2002

In November 1976, the United States Environmental Protection Agency Regional Administrators notified each of the seven Colorado River Basin states of the approval of the water quality standards for salinity for the Colorado River System as contained in the document entitled "Proposed Water Quality Standards for Salinity Including Numeric Criteria and Plan of Implementation for Salinity Control, Colorado River System, June 1975, and the supplement dated August 25, 1975. The salinity standards including numeric criteria and a plan of implementation provide for a flow weighted average annual numeric criteria for three stations in the lower main stem of the Colorado River: below Hoover Dam, below Parker Dam, and at Imperial Dam.

In 1977, the states of the Colorado River Basin adopted the "Policy for Implementation of Colorado River Salinity Standards through the NPDES Permit Program." The plan of implementation is comprised of a number of federal and non-federal projects and measures to maintain the flow- weighted average annual salinity in the Lower Colorado River at or below numeric criteria at the three stations as the Upper and Lower Basin states continue to develop their compact-apportioned waters. One of the components of the Plan consists of the placing of effluent limitations, through the National Pollutant Discharge Elimination System (NPDES) permit program, on industrial and municipal discharges.

NPDES Policy for Municipal and Industrial Discharges of Salinity in the Colorado River

The purpose of this policy is to provide more detailed guidance in the application of salinity standards developed pursuant to Section 303 and through the NPDES permitting authority in the regulation of municipal and industrial sources. (See Section 402 of the Federal Water Pollution Control Act.) The objective of the policy, as provided in Sections I.A. and I.B., is to achieve "no salt return" whenever practicable for industrial discharges and an incremental increase in salinity over the supply water for municipal discharges. This policy is applicable to discharges that would have an impact, either direct or indirect on the lower main stem of the Colorado River System. The lower main stem is defined as that portion of the River from Hoover Dam to Imperial Dam.

In October, 2002, the Forum substantially amended the NPDES policies relating to industrial discharges but made no changes to the procedures for municipal discharges. In the printing of the 2002 Review, however, the section relating to municipal discharges and an additional appendix entitled “Guidance on New Construction Determination” were inadvertently omitted.
Both errors have been corrected in this printing and the Forum reaffirms the validity of all of the policies as they appear in this document.

**NPDES Policies Separately Adopted by the Forum**

The Forum developed a separate and specific policy for the use of brackish and/or saline waters for industrial purposes on September 11, 1980. The Forum addressed the issue of intercepted ground water and adopted a specific policy dealing with that type of discharge on October 20, 1982. On October 28, 1988, the Forum adopted a specific policy addressing the water use and discharge associated with fish hatcheries. Each of these separately adopted policies is attached hereto.

**NPDES Policies for Specified Industrial Discharges – 2002 Amendments**

On October 30, 2002, the Forum amended this policy for implementation of Colorado River salinity standards through the NPDES permit program in order to address the following three additional types of industrial discharges: (1) water that has been used for once-through noncontact cooling water purposes; (2) new industrial sources that have operations and associated discharges at multiple locations; and (3) "fresh water industrial discharges" where the discharged water does not cause or contribute to exceedances of the salinity standards for the Colorado River System. This policy was also amended to encourage new industrial sources to conduct or finance one or more salinity-offset projects in cases where the permittee has demonstrated that it is not practicable to prevent the discharge of all salt from proposed new construction.

**Discharges Of Once-Through Noncontact Cooling Water**

Section I.C. of this policy has been added to address discharges of water that has been used for once-through noncontact cooling water purposes. The policy for such discharges shall be to permit these uses based upon a finding that the returned water does not contribute to the loading or the concentration of salts in the waters of the receiving stream beyond a *de minimis* amount. A *de minimis* amount is considered, for purposes of this policy, as an average annual increase of not more than 25 milligrams per liter (mg/L) in total dissolved solids measured at the discharge point or outfall prior to any mixing with the receiving stream in comparison to the total dissolved solids concentration measured at the intake monitoring point of the cooling process or facility. This policy is not intended to supersede any other water quality standard that applies to the receiving stream, including but not limited to narrative standards promulgated to prohibit impairment of designated uses of the stream. It is the intent of the Forum to permit the return of once-through noncontact cooling water only to the same stream from which the water was diverted. Noncontact cooling water is distinguished from blowdown water, and this policy specifically excludes blowdown or any commingling of once-through noncontact cooling water with another waste stream prior to discharge to the receiving stream. Sections I.A. and I.B. of this policy govern discharges of blowdown or commingled water.
New Industrial Sources with Operations and Discharges at Multiple Locations under Common or Affiliated Ownership or Management

Recently there has been a proliferation of new industrial sources that have operations and associated discharges at multiple locations. An example is the recent growth in the development of energy fuel and mineral resources that has occurred in the Upper Colorado River Basin. This type of industrial development may involve the drilling of relatively closely spaced wells into one or more geological formations for the purpose of extracting oil, gas or minerals in solution. Large-scale ground water remediation efforts involving multiple pump and treat systems operating for longer than one year may share similar characteristics. With such energy and mineral development and ground water remediation efforts there is the possibility of a single major industrial operation being comprised of numerous individual point source discharges under common or affiliated ownership or management that produce significant quantities of water as a waste product or byproduct over a long period. Given the large areal scope of these types of major industrial sources and the often elevated concentrations of salinity in their produced water, the total amount of salt loading that they could generate may be very large in comparison to the Forum's past and present salt removal projects. Relatively small quantities of this produced water could generate one ton per day in discharges to surface waters. Since salinity is a conservative water quality constituent, such discharges of produced water, if uncontrolled, could have an adverse effect on achieving the adopted numeric salinity standards for the Colorado River System.

These kinds of major industrial sources strain the conventional interpretation of the industrial source waiver for new construction set forth in Section I.A.1.a. of this policy, which authorizes a discharge of salinity from a single point source of up to one ton per day in certain circumstances. The Forum adopted this provision in 1977, well before most of the new major industrial sources that have operations and discharges at multiple locations began to appear in the Colorado River Basin. A new category of industrial sources is, therefore, warranted. NPDES permit requirements for New Industrial Sources with Operations and Discharges at Multiple Locations under Common or Affiliated Ownership or Management are set forth in Section I.D. of this policy. These new requirements are intended to apply to new industrial sources with operations that commence discharging after October 30, 2002.

For purposes of interpreting this policy, "common or affiliated ownership or management" involves the authority to manage, direct, superintend, restrict, regulate, govern, administer, or oversee, or to otherwise exercise a restraining or directing influence over activities at one or more locations that result in a discharge of salinity into the Colorado River System. Common or affiliated ownership or management may be through the ownership of voting securities or may be indicated where individual sources are related through one or more joint ventures, contractual relationships, landlord/tenant or lessor/lessee arrangements. Other factors that indicate two or more discharging facilities are under common or affiliated ownership or management include: sharing corporate executive officers, pollution control equipment and responsibilities, common
workforces, administrative functions, and/or payroll activities among operational facilities at different locations.

**Fresh Water Industrial Discharges**

Sections I.A. and I.B. of this policy have been amended to allow the permitting authority to authorize "fresh water industrial discharges" where the discharged water does not cause or contribute to exceedances of the adopted numeric salinity standards for the Colorado River System. Different end-of-pipe concentrations of salinity as shown in Table 1 of the policy, are appropriate for discharges to tributaries depending upon their location within the Basin. The concept of "benchmark concentrations" has been developed in order to address this need for different end-of-pipe concentrations. These benchmark concentrations are not to be interpreted as water quality standards. Rather, they are intended to serve solely for the establishment of effluent limits for implementing the waiver for "fresh water discharges." The allowance for freshwater discharges is intended to preserve flows from discharges in the Basin, which do not cause significant degradation of existing ambient quality with respect to salinity. Operations or individual discharges that qualify for the freshwater waiver shall not be subject to any further limitation on salt loading under this policy.

**Salinity-Offset Projects**

This policy has been amended to allow the permitting authority to authorize industrial sources of salinity to conduct or finance one or more salinity-offset projects when the permittee has determined that it is not practicable: (i) to prevent the discharge of all salt from proposed new construction; (ii) to reduce the salt loading to the Colorado River to less than one ton per day or 366 tons per year; or (iii) the proposed discharge is of insufficient quality in terms of TDS concentrations that it could be considered "fresh water" as defined below. Presently, the permitting authority can consider the costs and availability of implementing off-site salinity control measures to mitigate the adverse impacts of the permitted salt load. It is not intended that the applicant be required to develop or design an off-site salinity control project or establish a salt bank, but rather to assess the costs of conducting or buying into such projects where they are available. In the future the Forum or another entity may create a trading/banking institution to facilitate the implementation of a salinity-offset program, basin-wide. This would allow industrial sources to conduct or finance the most cost effective project available at the time an offset project is needed regardless of the project's location in the Basin.
NPDES PERMIT PROGRAM POLICY
FOR IMPLEMENTATION OF COLORADO RIVER SALINITY STANDARDS

I. Industrial Sources

The Salinity Standards state that "The objective for discharges shall be a no-salt return policy whenever practicable." This is the policy that shall be followed in issuing NPDES discharge permits for all new industrial sources, and upon the reissuance of permits for all existing industrial sources, except as provided herein. The following addresses those cases where "no discharge of salt" may be deemed not to be practicable.

A. New Construction

1. "New construction" is defined as any facility from which a discharge may occur, the construction of which is commenced after October 18, 1975. (Date of submittal of water quality standards as required by 40 CFR 120, December 11, 1974.) Attachment 1 provides guidance on new construction determination. "A new industrial source with operations and discharging facilities at multiple locations under common or affiliated ownership or management" shall be defined for purposes of NPDES permitting, as an industrial source that commenced construction on a pilot, development or production scale on or after October 30, 2002.

   a. The permitting authority may permit the discharge of salt upon a satisfactory demonstration by the permittee that:

      i. It is not practicable to prevent the discharge of all salt from the new construction or,

      ii. In cases where the salt loading to the Colorado River from the new construction is less than one ton per day or 366 tons per year, or

      iii. The proposed discharge from the new construction is of sufficient quality in terms of TDS concentrations that it can be considered "fresh water" that would have no adverse effect on achieving the adopted numeric standards for the Colorado River System. The permitting authority may consider a discharge to be fresh water if the maximum TDS concentration is: (i) 500 mg/L for discharges into the Colorado River and its tributaries upstream of Lees Ferry, Arizona; or, (ii) 90% of the applicable in-stream salinity standard at the appropriate benchmark monitoring station for discharges into the Colorado River downstream of Lees Ferry as shown in Table 1, below.
Table 1

<table>
<thead>
<tr>
<th>Benchmark Monitoring Station</th>
<th>Applicable Criteria</th>
<th>Freshwater Discharge (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Colorado River at Lees Ferry, Arizona</td>
<td>N/A</td>
<td>500</td>
</tr>
<tr>
<td>2 Colorado River below Hoover Dam</td>
<td>723</td>
<td>650</td>
</tr>
<tr>
<td>3 Colorado River below Parker Dam</td>
<td>747</td>
<td>675</td>
</tr>
<tr>
<td>4 Colorado River at Imperial Dam</td>
<td>879</td>
<td>790</td>
</tr>
</tbody>
</table>

b. Unless exempted under Sections I.A.1.a.ii. or iii., above, the demonstration by the applicant must include information on the following factors relating to the potential discharge:

i. Description of the proposed new construction.

ii. Description of the quantity and salinity of the water supply.

iii. Description of water rights, including diversions and consumptive use quantities.

iv. Alternative plans that could reduce or eliminate salt discharge. Alternative plans shall include:

(A) Description of alternative water supplies, including provisions for water reuse, if any;

(B) Description of quantity and quality of proposed discharge;

(C) Description of how salts removed from discharges shall be disposed of to prevent such salts from entering surface waters or groundwater aquifers;

(D) Costs of alternative plans in dollars per ton of salt removed; and
(E) Unless the permitting authority has previously determined through prior permitting or permit renewal actions that it is not practicable to prevent the discharge of all salt from the new construction in accordance with Section I.A.1.a.i., the applicant must include information on project options that would offset all or part of the salt loading to the Colorado River associated with the proposed discharge or that would contribute to state or interstate salinity control projects or salt banking programs.

v. A statement as to the one plan among the alternatives for reduction of salt discharge that is recommended by the applicant and also information as to which of the other evaluated alternatives are economically infeasible.

vi. Such other information pertinent to demonstration of non-practicability as the permitting authority may deem necessary.

c. In determining what permit conditions shall be required under I.A.1.a.i., above, the permit issuing authority shall consider, but not be limited to the following:

i. The practicability of achieving no-discharge of salt from the new construction.

ii. Where "no discharge" is determined not to be practicable:

(A) The impact of the total proposed salt discharge of each alternative on the lower main stem in terms of both tons per year and concentration.

(B) Costs per ton of salt removed from the discharge for each plan alternative.

(C) Capability of minimizing salinity discharge.

(D) If applicable under I.A.1.b.(iv)(E), costs and practicability of offsetting all or part of the salt load by the implementation of salt removal or salinity control projects elsewhere in the Colorado River Basin. The permittee shall evaluate the practicability of offsetting all or part of the salt load by comparing such factors as the cost per ton of salt removal for projects undertaken by the Colorado River Basin Salinity Control Forum and the costs in damages associated with increases in salinity concentration against the permittee's cost in conducting or buying into such projects where they are available.
iii. With regard to subparagraphs, (b) and (c) above, the permit issuing authority shall consider the compatibility of state water laws with either the complete elimination of a salt discharge or any plan for minimizing a salt discharge.

B. Existing Facilities or any discharging facility, the construction of which was commenced before October 18, 1975

1. The permitting authority may permit the discharge of salt upon a satisfactory demonstration by the permittee that it is not practicable to prevent the discharge of all salt from an existing facility.

2. The demonstration by the applicant must include, in addition to that required under Section I.A.1.b the following factors relating to the potential discharge:
   a. Existing tonnage of salt discharged and volume of effluent.
   b. Cost of modifying existing industrial plant to provide for no salt discharge.
   c. Cost of salt minimization.

3. In determining what permit conditions shall be required, the permit issuing authority shall consider the items presented under I.A.1.c.(ii), and in addition; the annual costs of plant modification in terms of dollars per ton of salt removed for:
   a. No salt return.
   b. Minimizing salt return.

4. The no-salt discharge requirement may be waived in those cases where:
   a. The discharge of salt is less than one ton per day or 366 tons per year, or
   b. The permitting authority determines that a discharge qualifies for a "fresh water waiver" irrespective of the total daily or annual salt load. The maximum TDS concentration considered to be fresh water is 500 mg/L for discharges into the Colorado River and its tributaries upstream of Lees Ferry, Arizona. For discharges into the Colorado River downstream of Lees Ferry the maximum TDS concentration considered to be fresh water shall be 90% of the applicable in-stream standard at the appropriate benchmark monitoring station shown in Table 1, above.

C. Discharge of Once-Through Noncontact Cooling Water

1. Definitions:
a. The terms "noncontact cooling water" and "blowdown" are defined as per 40CFR 401.11 (m) and (n).

b. "Noncontact cooling water" means water used for cooling that does not come into direct contact with any raw material, intermediate product, waste product or finished product.

c. "Blowdown" means the minimum discharge of recirculating water for the purpose of discharging materials contained in the water, the further buildup of which would cause concentration in amounts exceeding limits established by best engineering practice.

d. "Salinity" shall mean total dissolved solids as the sum of constituents.

2. Permits shall be authorized for discharges of water that has been used for once-through noncontact cooling purposes based upon a finding that the returned water does not contribute to the loading of salts or the concentration of salts in the waters of the receiving stream in excess of a de minimis amount.

3. This policy shall not supplant nor supersede any other water quality standard of the receiving stream adopted pursuant to the Federal Clean Water Act, including but not limited to impairment of designated uses of the stream as established by the governing water quality authority having jurisdiction over the waters of the receiving stream.

4. Noncontact cooling water shall be distinguished from blowdown, and Section 1.C. of this policy specifically excludes blowdown or any commingling of once-through noncontact cooling water with another waste stream prior to discharge to the receiving stream. Sections I.A. and I.B of this policy shall in all cases govern discharge of blowdown or commingled water.

5. Once-through noncontact cooling water shall be permitted to return only to the same stream from which the water was diverted.

6. Because the increase in temperature of the cooling water will result in some evaporation, a de minimis increase in the concentration of dissolved salts in the receiving water may occur. An annual average increase in total dissolved solids of not more than 25 milligrams per liter (mg/L) measured at the intake monitoring point, as defined below, of the cooling process or facility, subtracted from the effluent total dissolved solids immediately upstream of the discharge point to the receiving stream, shall be considered de minimis.

7. At the time of NPDES discharge permit issuance or reissuance, the permitting authority may permit a discharge in excess of the 25 mg/L increase based upon a satisfactory demonstration by the permittee pursuant to Section 1.A.1.a.
8. Once-through demonstration data requirements:
   
a. Description of the facility and the cooling process component of the facility.

b. Description of the quantity, salinity concentration and salt load of intake water sources.

c. Description of the discharge, covering location, receiving waters, quantity of salt load and salinity concentration of both the receiving waters and the discharge.

d. Alternative plans for minimizing salt discharge from the facility which shall include:
   
i. Description of alternative means to attain no discharge of salt.

   ii. Cost of alternative plans in dollars per ton of salt removed from discharge.

   iii. Such other information pertinent to demonstration of non-practicability as the permitting authority may deem necessary.

9. If, in the opinion of the permitting authority, the database for the salinity characteristics of the water source and the discharge is inadequate, the permit will require that the permittee monitor the water supply and the discharge for salinity. Such monitoring program shall be completed in two years and the permittee shall then present the once-through demonstration data as specified above.

10. All new and reissued NPDES permits for once-through noncontact cooling water discharges shall require at a minimum semiannual monitoring of the salinity of the intake water supply and the effluent, as provided below.

   a. The intake monitoring point shall be the point immediately before the point of use of the water.

   b. The effluent monitoring point shall be prior to the discharge point at the receiving stream or prior to commingling with another waste stream or discharge source.

   c. Discrete or composite samples may be required at the discretion of the permitting authority, depending on the relative uniformity of the salinity of the water supply.
d. Analysis for salinity may be either total dissolved solids or electrical conductivity where a satisfactory correlation with total dissolved solids has been established. The correlation shall be based on a minimum of five different samples.

D. Discharges of Salinity from a New Industrial Source with Operations and Discharging Facilities at Multiple Locations

1. The objective for discharges to surface waters from a new industrial source with operations and discharging facilities at multiple locations shall be to assure that such operations will have no adverse effect on achieving the adopted numeric salinity standards for the Colorado River System.

2. NPDES permit requirements for a new industrial source with operations and discharging facilities at multiple locations shall be defined, for purposes of establishing effluent limitations for salinity, as a single industrial source if these facilities meet the criteria:

a. The discharging facilities are interrelated or integrated in any way including being engaged in a primary activity or the production of a principle product; and

b. The discharging facilities are located on contiguous or adjacent properties or are within a single production area e.g. geologic basin, geohydrologic basin, coal or gas field or 8 digit hydrologic unit watershed area; and

c. The discharging facilities are owned or operated by the same person or by persons under common or affiliated ownership or management.

3. The permitting authority may permit the discharge of salt from a new industrial source with operations and discharging facilities at multiple locations if one or more of the following requirements are met:

a. The permittee has demonstrated that it is not practicable to prevent the discharge of all salt from the industrial source. This demonstration by the applicant must include detailed information on the factors set forth in Section I.A.1.b of the Policy for implementation of Colorado River Salinity Standards through the NPDES permit program; with particular emphasis on an assessment of salinity off-set options that would contribute to state or interstate salinity control projects or salt banking programs and offset all or part of the salt loading to the Colorado River associated with the proposed discharge.

b. In determining what permit conditions shall be required under I.A.1.a.i., above, the permit issuing authority shall consider the requirement for an offset project to be feasible if the cost per ton of salt removal in the offset
project options (i.e. the permittee's cost in conducting or buying into such projects where they are available) is less than or equal to the cost per ton of salt removal for projects undertaken by the Colorado River Basin Salinity Control Forum or less than the cost per ton in damages caused by salinity that would otherwise be cumulatively discharged from the outfalls at the various locations with operations controlled by the industrial source; or

c. The permittee has demonstrated that one or more of the proposed discharges is of sufficient quality in terms of TDS concentrations to qualify for a "fresh water waiver" from the policy of "no salt return, whenever practical." An individual discharge that can qualify for a fresh water waiver shall be considered to have no adverse effect on achieving the adopted numeric salinity standards for the Colorado River System.

4. For the purpose of determining whether a freshwater waiver can be granted, the quality of water discharged from the new industrial source with operations and discharging facilities at multiple locations, determined as the flow weighted average of salinity measurements at all outfall points, must meet the applicable benchmark concentration in accordance with Section I.A.1.a.iii., as set forth above.

5. Very small-scale pilot activities, involving 5 or fewer outfalls, that are sited in areas not previously developed or placed into production by a new industrial source operations and discharges at multiple locations under common or affiliated ownership or management, may be permitted in cases where the discharge of salt from each outfall is less than one ton per day or 366 tons per year. However, no later than the date of the first permit renewal after the pilot activities have become part of a larger industrial development or production scale effort, all discharging facilities shall be addressed for permitting purposes as a single industrial source with operations and discharges at multiple locations under common or affiliated ownership or management.

6. The public notice for NPDES permits authorizing discharges from operations at multiple locations with associated outfalls shall be provided promptly and in the most efficient manner to all member states in the Colorado River Basin Salinity Control Forum in relation to this policy.

II. Municipal Discharges

The basic policy is that a reasonable increase in salinity shall be established for municipal discharges to any portion of the Colorado River stream system that has an impact on the lower main stem. The incremental increase in salinity shall be 400 mg/L or less, which is considered to be a reasonable incremental increase above the flow weighted average salinity of the intake water supply.
F. The permitting authority may permit a discharge in excess of the 400 mg/L incremental increase at the time of issuance or reissuance of a NPDES discharge permit, upon satisfactory demonstration by the permittee that it is not practicable to attain the 400 mg/L limit.

G. Demonstration by the applicant must include information on the following factors relating to the potential discharge:

1. Description of the municipal entity and facilities.
2. Description of the quantity and salinity of intake water sources.
3. Description of significant salt sources of the municipal wastewater collection system, and identification of entities responsible for each source, if available.
4. Description of water rights, including diversions and consumptive use quantities.
5. Description of the wastewater discharge, covering location, receiving waters, quantity, salt load, and salinity.
6. Alternative plans for minimizing salt contribution from the municipal discharge. Alternative plans should include:
   a. Description of system salt sources and alternative means of control.
   b. Cost of alternative plans in dollars per ton, of salt removed from discharge.
7. Such other information pertinent to demonstration of non-practicability as the permitting authority may deem necessary.

H. In determining what permit conditions shall be required, the permit issuing authority shall consider the following criteria including, but not limited to:

1. The practicability of achieving the 400 mg/L incremental increase.
2. Where the 400 mg/L incremental increase is not determined to be practicable:
   a. The impact of the proposed salt input of each alternative on the lower main stem in terms of tons per year and concentration.
b. Costs per ton of salt removed from discharge of each alternative plan.

c. Capability of minimizing the salt discharge.

D. If, in the opinion of the permitting authority, the data base for the municipal waste discharger is inadequate, the permit will contain the requirement that the municipal waste discharger monitor the water supply and the wastewater discharge for salinity. Such monitoring program shall be completed within 2 years and the discharger shall then present the information as specified above.

E. Requirements for establishing incremental increases may be waived in those cases where the incremental salt load reaching the main stem of the Colorado River is less than one ton per day or 366 tons per year. Evaluation will be made on a case-by-case basis.

F. All new and reissued NPDES permits for all municipalities shall require monitoring of the salinity of the intake water supply and the wastewater treatment plant effluent in accordance with the following guidelines:

<table>
<thead>
<tr>
<th>Treatment Plant Design Capacity</th>
<th>Monitoring Frequency</th>
<th>Type of Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;1.0 MGD*</td>
<td>Quarterly</td>
<td>Discrete</td>
</tr>
<tr>
<td>1.0 - 5.0 MGD</td>
<td>Monthly</td>
<td>Composite</td>
</tr>
<tr>
<td>&gt;5.0 - 50.0 MGD</td>
<td>Weekly</td>
<td>Composite</td>
</tr>
<tr>
<td>50.0 MGD</td>
<td>Daily</td>
<td>Composite</td>
</tr>
</tbody>
</table>

1. Analysis for salinity may be either as total dissolved solids (TDS) or be electrical conductivity where a satisfactory correlation with TDS has been established. The correlation should be based on a minimum of five different samples.

2. Monitoring of the intake water supply may be at a reduced frequency where the salinity of the water supply is relatively uniform.
Attachment 1

Guidance on New Construction Determination

For purposes of determining a new construction, a source should be considered new if by October 18, 1975, there has not been:

I. Significant site preparation work such as major clearing or excavation; and/or

II. Placement, assembly or installation of unique facilities or equipment at the premises where such facilities or equipment will be used; and/or

III. Any contractual obligation to purchase unique facilities or equipment. Facilities and equipment shall include only the major items listed below, provided that the value of such items represents a substantial commitment to construct the facility:

A. structures; or
B. structural materials; or
C. machinery; or
D. process equipment; or
E. construction equipment.

IV. Contractual obligation with a firm to design, engineer, and erect a completed facility (i.e., a turnkey plant).
POLICY FOR USE OF
BRACKISH AND/OR SALINE WATERS
FOR INDUSTRIAL PURPOSES

Adopted by
The Colorado River Basin Salinity Control Forum

September 11, 1980

The states of the Colorado River Basin, the Federal Executive Department, and the Congress have all adopted as a policy that the salinity in the lower main stem of the Colorado River shall be maintained at or below the flow-weighted average values found during 1972, while the Basin states continue to develop their compact-apportioned waters. In order to achieve this policy, all steps which are practical and within the framework of the administration of states’ water rights must be taken to reduce the salt load of the river. One such step was the adoption in 1975 by the Forum of a policy regarding effluent limitations for industrial discharges with the objective of “no-salt return” wherever practicable. Another step was the Forum’s adoption in 1977 of the “Policy for Implementation of Colorado River Salinity Standards through the NPDES Permit Program.” These policies are part of the basinwide plan of implementation for salinity control which has been adopted by the seven Basin states.

The Forum finds that the objective of maintaining 1972 salinity levels would be served by the exercise of all feasible measures including, wherever practicable, the use of brackish and/or saline waters for industrial purposes.

The summary and page 32 of the Forum’s 1978 Revision of the Water Quality Standards for Salinity state: “The plan also contemplates the use of saline water for industrial purposes whenever practicable,...” In order to implement this concept and thereby further extend the Forum’s basic salinity policies, the Colorado River Basin states support the Water and Power Resources Service (WPRS) appraisal study of saline water collection, pretreatment and potential industrial use.

The Colorado River Basin contains large energy resources which are in the early stages of development. The WPRS study should investigate the technical and financial feasibility of serving a significant portion of the water requirements of the energy industry and any other industries by the use of Basin brackish and/or saline waters. The Forum recommends that:

I. The Colorado River Basin states, working with federal agencies, identify, locate and quantify such brackish and/or saline water sources.

II. Information on the availability of these waters be made available to all potential users.

III. Each state encourage and promote the use of such brackish and/or saline waters, except where it would not be environmentally sound or economically feasible, or would significantly increase consumptive use of Colorado River System water in the state above that which would otherwise occur.
IV. The WPRS, with the assistance of the states, encourages and promotes the use of brackish return flows from federal irrigation projects in lieu of fresh water sources, except where it would not be environmentally sound or economically feasible, or would significantly increase consumptive use of Colorado River System water.

V. The WPRS considers a federal contribution to the costs of industrial use of brackish and/or saline water, where cost-effective, as a joint private-government salinity control measure. Such activities shall not delay the implementation of the salinity control projects identified in Title II of P.L. 93-320.
POLICY FOR IMPLEMENTATION OF COLORADO RIVER SALINITY STANDARDS THROUGH THE NPDES PERMIT PROGRAM FOR INTERCEPTED GROUND WATER

Adopted by
The Colorado River Basin Salinity Control Forum

October 20, 1982

The States of the Colorado River Basin in 1977 agreed to the “Policy for Implementation of Colorado River Salinity Standards through the NPDES Permit Program" with the objective for industrial discharge being “no-salt return" whenever practicable. That policy required the submittal of information by the applicant on alternatives, water rights, quantity, quality, and costs to eliminate or minimize the salt discharge. The information is for use by the NPDES permit-issuing agency in evaluating the practicability of achieving "no-salt" discharge.

There are mines and wells in the Basin which discharge intercepted ground waters. The factors involved in those situations differ somewhat from those encountered in other industrial discharges. Continued development will undoubtedly result in additional instances in which permit conditions must deal with intercepted ground water.

The discharge of intercepted ground water needs to be evaluated in a manner consistent with the overall objective of "no-salt return" whenever practical. The following provides more detailed guidance for those situations where ground waters are intercepted with resultant changes in ground-water flow regime.

I. The “no-salt" discharge requirement may be waived at the option of the permitting authority in those cases where the discharged salt load reaching the main stem of the Colorado River is less than one ton per day or 366 tons per year. Evaluation will be made on a case-by-case basis.

II. Consideration should be given to the possibility that the ground water, if not intercepted, normally would reach the Colorado River System in a reasonable time frame. An industry desiring such consideration must provide detailed information including a description of the topography, geology, and hydrology. Such information must include direction and rate of ground-water flow; chemical quality and quantity of ground water; and the location, quality, and quantity of surface streams and springs that might be affected. If the information adequately demonstrates that the ground water to be intercepted normally would reach the river system in a reasonable time frame and would contain approximately the same or greater salt load than if intercepted, and if no significant

---

1The term “intercepted ground water" means all ground water encountered during mining or other industrial operations.
localized problems would be created, then the permitting agency may waive the “no-salt" discharge requirement.

III. In those situations where the discharge does not meet the criteria in I or II above, the applicant will be required to submit the following information for consideration:

A. Description of the topography, geology, and hydrology. Such information must include the location of the development, direction and rate of ground-water flow, chemical quality and quantity of ground water, and relevant data on surface streams and springs that are or might be affected. This information should be provided for the conditions with and without the project.

B. Alternative plans that could substantially reduce or eliminate salt discharge. Alternative plans must include:

1. Description of water rights, including beneficial uses, diversions, and consumptive use quantities.

2. Description of alternative water supplies, including provisions for water reuse, if any.

3. Description of quantity and quality of proposed discharge.

4. Description of how salts removed from discharges shall be disposed of to prevent their entering surface waters or ground-water aquifers.

5. Technical feasibility of the alternatives.

6. Total construction, operation, and maintenance costs; and costs in dollars per ton of salt removed from the discharge.

7. Closure plans to ensure termination of any proposed discharge at the end of the economic life of the project.

8. A statement as to the one alternative plan for reduction of salt discharge that the applicant recommends be adopted, including an evaluation of the technical, economic, and legal Practicability of achieving no discharge of salt.

9. Such information as the permitting authority may deem necessary.

IV. In determining whether a “no-salt" discharge is Practicable, the Permit-issuing authority shall consider, but not be limited to, the water rights and the technical, economic, and legal practicability of achieving no discharge of salt.
V. Where “no-salt” discharge is determined not to be Practicable the permitting authority shall, in determining permit conditions, consider:

A. The impact of the total proposed salt discharge of each alternative on the lower main stem in terms of both tons per year and concentration.

B. Costs per ton of salt removed from the discharge for each plan alternative.

C. The compatibility of state water laws with each alternative.

D. Capability of minimizing salinity discharge.

E. The localized impact of the discharge.

F. Minimization of salt discharges and the preservation of fresh water by using intercepted ground water for industrial processes, dust control, etc. whenever it is economically feasible and environmentally sound.
POLICY FOR IMPLEMENTATION OF COLORADO RIVER SALINITY STANDARDS THROUGH THE NPDES PERMIT PROGRAM FOR FISH HATCHERIES

Adopted by
The Colorado River Basin Salinity Control Forum

October 28, 1988

The states of the Colorado River Basin in 1977 adopted the “Policy for Implementation of Colorado River Salinity Standards through the NPDES Permit Program.” The objective was for “no-salt return” whenever practicable for industrial discharges and an incremental increase in salinity over the supply water for municipal discharges. The Forum addressed the issue of intercepted ground water under the 1977 policy, and adopted a specific policy dealing with that type of discharge.

A specific water use and associated discharge which has not been here-to-fore considered is discharges from fish hatcheries. This policy is limited exclusively to discharges from fish hatcheries within the Colorado River Basin. The discharges from fish hatcheries need to be addressed in a manner consistent with the 1977 and 1980 Forum policies.

The basic policy for discharges from fish hatcheries shall permit an incremental increase in salinity of 100 mg/L or less above the flow weighted average salinity of the intake supply water. The 100 mg/L incremental increase may be waived if the discharged salt load reaching the Colorado River system is less than one ton per day, or 366 tons per year. Evaluation is to be made on a case-by-case basis.

I. The permitting authority may permit a discharge in excess of the 100 mg/L incremental increase at the time of issuance or reissuance of a NPDES discharge permit. Upon satisfactory demonstration by the permittee that it is not practicable to attain the 100 mg/L limit.

II. Demonstration by the applicant must include information on the following factors relating to the potential discharge:

A. Description of the fish hatchery and facilities.

B. Description of the quantity and salinity of intake water sources.

C. Description of salt sources in the hatchery.

D. Description of water rights, including diversions and consumptive use quantities.

E. Description of the discharge, covering location, receiving waters, quantity salt load, and salinity.
F. Alternative plans for minimizing salt discharge from the hatchery. Alternative plans should include:

1. Description of alternative means of salt control.
2. Cost of alternative plans in dollars per ton, of salt removed from discharge.

G. Such other information pertinent to demonstration of non-practicability as the permitting authority may deem necessary.

III. In determining what permit conditions shall be required, the permit-issuing authority shall consider the following criteria including, but not limited to:

A. The practicability of achieving the 100 mg/L incremental increase.

B. Where the 100 mg/L incremental increase is not determined to be practicable:

1. The impact of the proposed salt input of each alternative on the lower main stem in terms of tons per year and concentration.
2. Costs per ton of salt removed from discharge of each alternative plan.
3. Capability of minimizing the salt discharge.

IV. If, in the opinion of the permitting authority, the database for the hatchery is inadequate, the permit will contain the requirement that the discharger monitor the water supply and the discharge for salinity. Such monitoring program shall be completed within two years and the discharger shall then present the information as specified above.

V. All new and reissued NPDES permits for all hatcheries shall require monitoring of the salinity of the intake water supply and the effluent at the time of peak fish population.

A. Analysis for salinity may be either as total dissolved solids (TDS) or be electrical conductivity where a satisfactory correlation with TDS has been established. The correlation should be based on a minimum of five different samples.
APPENDIX C

States NPDES Permits List
NPDES permits are reviewed under two different criteria under Forum policy; these being municipal and industrial. In order for a permittee to be in compliance under the municipal criteria, the increase in concentration between inflow and outflow cannot be greater than 400 mg/L. Forum industrial criteria requires that no industrial user discharges more than 1.00 ton/day. Under Forum policy there can be granted exceptions to these limitations by the states. The following gives an explanation of the current status of the NPDES permits. Because at any given time many of the permits identified in this list are being reviewed, reissued, and/or terminated, and new discharge permits are being filed, this list must be considered as being subject to frequent change.

**MUNICIPAL**

- (M) Municipal user in compliance with Forum policy.
- (M-A) Municipal user in compliance with the 400 mg/L incremental increase provision.
- (M-B) Municipal user in compliance with the 1 ton per day or 366 tons per year provision for intermittent discharges.
- (M-1)* Permit has expired or been revoked. No discharge.
- (M-2) Permittee did not discharge during the reporting period.
- (M-3) Measurement of TDS is not currently required, but the state and/or EPA plans to require measurements of both inflow and outflow when the permit is reissued.

**INDUSTRIAL**

- (I) Industrial user in compliance with Forum policy.
- (I-A) Industrial user in compliance with the Forum’s salinity offset policy.
- (I-B) Industrial user in compliance with the 1 ton per day or 366 tons per year provision for intermittent discharges.
- (I-1)* Permit has expired or been revoked. No discharge.
- (I-2) Permittee did not discharge during the reporting period.
- (I-3) Measurement of TDS is not currently required, but the state and/or EPA plans to require measurements of both volume and concentration of outflow when the permit is reissued.
- (I-4) Either concentration or volume of outflow are not currently being reported, thus the permittee is in violation of Forum policy. It is not known if the discharge is in excess of the <1.00 ton/day requirement.

**Measurements of inflow are not consistent with Forum policy:**

- (M-4A) Therefore, it is not known whether or not this municipal user is in compliance.
- (M-4B) However, since outflow concentration is less than 500 mg/L it is presumed that this permit is not in violation of the ≤400 mg/L increase.

**Measurements of outflow are not consistent with Forum policy:**

- (M-5) Permittee is in violation of Forum policy in that there is an increase in concentration of >400 mg/L over the source waters. No provision has been made allowing this violation of Forum policy.
- (M-5A) The state and/or EPA is currently working to bring permittee into compliance.
- (M-5B) Though discharge is >400 mg/L over source waters, in keeping with Forum policy the permittee has demonstrated the salt reduction is not practicable and the requirement has been waived.

**Measurements of both inflow and outflow are not consistent with Forum policy:**

- (M-6) This permit requires no discharge or discharge only under rare and extreme hydrologic conditions. Thus, flow and concentration measurements are not required.
- (M-7) Insufficient data to know the current status of this permit.

* Permits that have been expired or revoked and listed with the M-1 and I-1 explanation codes shall be removed from the NPDES list during the subsequent triennial review.
In order to provide a better understanding of the location of the various NPDES permits and the geographical sequence in the Colorado River System, each of the following NPDES permits is identified with a Colorado River reach number. The reach numbers have their origin in the old CRSS river model. Though this model is no longer used, the reach numbers assist in understanding the general location of the permits. The reaches are defined as:

<table>
<thead>
<tr>
<th>Reach</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Upper Main Stem</td>
<td>from headwaters of Colorado River to Colorado River near Cameo</td>
</tr>
<tr>
<td>190</td>
<td>Taylor Park</td>
<td>from headwaters of Gunnison River to above Blue Mesa Reservoir</td>
</tr>
<tr>
<td>200</td>
<td>Blue Mesa</td>
<td>from above Blue Mesa Reservoir to below Blue Mesa Dam</td>
</tr>
<tr>
<td>210</td>
<td>Morrow Point</td>
<td>from below Blue Mesa Dam to Crystal Reservoir</td>
</tr>
<tr>
<td>220</td>
<td>Lower Gunnison</td>
<td>from Crystal Reservoir to confluence with Colorado River</td>
</tr>
<tr>
<td>300</td>
<td>Grand Valley</td>
<td>from Colorado River near Cameo to confluence with Green River</td>
</tr>
<tr>
<td>310</td>
<td>Dolores River</td>
<td>from headwaters of Dolores River to confluence with Colorado River</td>
</tr>
<tr>
<td>401</td>
<td>Fontenelle</td>
<td>from headwaters of Green River to Green River near Green River, WY</td>
</tr>
<tr>
<td>411</td>
<td>Flaming Gorge</td>
<td>from Green River near Green River, WY to confluence with White and Duchesne Rivers</td>
</tr>
<tr>
<td>500</td>
<td>Yampa River</td>
<td>from headwaters of Yampa River to confluence with Green River</td>
</tr>
<tr>
<td>510</td>
<td>White River</td>
<td>from headwaters of White River to confluence with Green River</td>
</tr>
<tr>
<td>600</td>
<td>Green River</td>
<td>Green River from confluence with White and Duchesne Rivers to confluence with Colorado River</td>
</tr>
<tr>
<td>610</td>
<td>Duchesne River</td>
<td>from headwaters of Duchesne River to confluence with Green River</td>
</tr>
<tr>
<td>700</td>
<td>Lake Powell</td>
<td>Colorado River from confluence of with Green River to Lees Ferry</td>
</tr>
<tr>
<td>710</td>
<td>San Rafael River</td>
<td>from headwaters of San Rafael River to confluence with Green River</td>
</tr>
<tr>
<td>801</td>
<td>Upper San Juan River</td>
<td>from headwaters of San Juan River to San Juan near Bluff</td>
</tr>
<tr>
<td>802</td>
<td>Lower San Juan River</td>
<td>from San Juan near Bluff to confluence with Lake Powell</td>
</tr>
<tr>
<td>900</td>
<td>Glen Canyon to Lake Mead</td>
<td>Colorado River from Lees Ferry to backwaters of Lake Mead</td>
</tr>
<tr>
<td>905</td>
<td>Virgin River</td>
<td>from headwaters of Virgin River to backwaters of Lake Mead</td>
</tr>
<tr>
<td>910</td>
<td>Lake Mead</td>
<td>from backwaters of Lake Mead to Colorado River below Hoover Dam</td>
</tr>
<tr>
<td>920</td>
<td>Lake Mohave</td>
<td>Colorado River from below Hoover Dam down to I-40 bridge</td>
</tr>
<tr>
<td>930</td>
<td>Lake Havasu</td>
<td>Colorado River from I-40 bridge to below Parker Dam</td>
</tr>
<tr>
<td>940</td>
<td>Parker Dam to Imperial Dam</td>
<td>Colorado River from below Parker Dam to above Imperial Dam</td>
</tr>
<tr>
<td>945</td>
<td>Imperial Dam</td>
<td>Colorado River from above Imperial Dam to Gila and Yuma users</td>
</tr>
<tr>
<td>NPDES PERMIT#</td>
<td>REACH</td>
<td>NAME of Discharging Facility</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>AZ0025224</td>
<td>900</td>
<td>APACHE-SITGREAVES NATIONAL FOREST BLACK MESA</td>
</tr>
<tr>
<td>AZ0025399</td>
<td>900</td>
<td>BISON RANCH</td>
</tr>
<tr>
<td>AZ0024015</td>
<td>900</td>
<td>CANYON-VALLE AIRPORT WWTP</td>
</tr>
<tr>
<td>AZ0025755</td>
<td>900</td>
<td>CITY OF WILLIAMS - WASTEWATER TREATMENT PLANT</td>
</tr>
<tr>
<td>AZ00213639</td>
<td>900</td>
<td>FLAGSTAFF, CITY OF RIO DE FLAG POTW</td>
</tr>
<tr>
<td>AZ0020427</td>
<td>900</td>
<td>FLAGSTAFF, CITY OF WILDCAT HILL POTW</td>
</tr>
<tr>
<td>AZ0024279</td>
<td>900</td>
<td>HIGH COUNTRY PINES</td>
</tr>
<tr>
<td>AZ0025542</td>
<td>900</td>
<td>HOLBROOK, CITY OF PAINTED MESA POTW</td>
</tr>
<tr>
<td>AZ0025437</td>
<td>900</td>
<td>PINETOP LAKESIDE SANITARY DISTRICT WWTP</td>
</tr>
<tr>
<td>AZ0024422</td>
<td>900</td>
<td>SANDERS SCHOOL DISTRICT NO. 6 WWTP</td>
</tr>
<tr>
<td>AZ0023841</td>
<td>900</td>
<td>SHOW LOW, CITY OF POTW</td>
</tr>
<tr>
<td>AZ0026034</td>
<td>900</td>
<td>SNOWFLAKE, CITY OF POTW</td>
</tr>
<tr>
<td>AZ0023612</td>
<td>900</td>
<td>USNPS/GRAND CANYON/ DESERT VIEW</td>
</tr>
<tr>
<td>AZ0026069</td>
<td>900</td>
<td>USBR/GLEN CANYON WWTP</td>
</tr>
<tr>
<td>AZ0025666</td>
<td>900</td>
<td>USBR/GLEN CANYON PPDS</td>
</tr>
<tr>
<td>AZ0023834</td>
<td>900</td>
<td>VIRGIN RIVER DOMESTIC WASTEWATER IMP DISTRICT</td>
</tr>
<tr>
<td>AZ00225152</td>
<td>900</td>
<td>USNPS/GRAND CANYON/SOUTH RIM WWTP</td>
</tr>
<tr>
<td>AZ0023655</td>
<td>905</td>
<td>USNPS/GRAND CANYON/SOUTH RIM WWTP</td>
</tr>
<tr>
<td>AZ0000132</td>
<td>910</td>
<td>USBR/HOOVER DAM</td>
</tr>
<tr>
<td>AZ0023523</td>
<td>920</td>
<td>USNPS/KATHERINE'S LANDING WTP</td>
</tr>
<tr>
<td>AZ0023990</td>
<td>930</td>
<td>CAWCD-HAVASU PUMPING PLANT</td>
</tr>
<tr>
<td>AZ0026018</td>
<td>930</td>
<td>KINGMAN, CITY OF DOWNTOWN POTW</td>
</tr>
<tr>
<td>AZ0022756</td>
<td>930</td>
<td>PETRO STOP CENTER/KINGMAN</td>
</tr>
<tr>
<td>AZ0022268</td>
<td>930</td>
<td>FREEPORT-McMoRan BAGOAD Inc.</td>
</tr>
<tr>
<td>AZ0023752</td>
<td>940</td>
<td>QUARTZSITE, CITY OF POTW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NPDES PERMIT#</th>
<th>REACH</th>
<th>NAME of Discharging Facility</th>
<th>TDS Conc. AVG (Mg/L)</th>
<th>Flow Rate AVG (MGD)</th>
<th>Salt Load Tons/Day</th>
<th>Explanation Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO0000051</td>
<td>100</td>
<td>Iles Dome Unit Production</td>
<td>1743.33</td>
<td>0.728</td>
<td>5.292</td>
<td>I-5</td>
</tr>
<tr>
<td>CO0000230</td>
<td>100</td>
<td>Henderson Mill</td>
<td></td>
<td></td>
<td></td>
<td>I-2</td>
</tr>
<tr>
<td>CO0000248</td>
<td>930</td>
<td>Climax Mine</td>
<td>1258.167</td>
<td>24.857</td>
<td>130.412</td>
<td>I-5B</td>
</tr>
<tr>
<td>CO0020451</td>
<td>100</td>
<td>Frisco Sanitation District WWTF</td>
<td>438.200</td>
<td>0.624</td>
<td>1.141</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0020699</td>
<td>100</td>
<td>Granby Sanitation District</td>
<td></td>
<td></td>
<td></td>
<td>M-7</td>
</tr>
<tr>
<td>CO0020826</td>
<td>100</td>
<td>Blue River WWTF</td>
<td>398.618</td>
<td>1.122</td>
<td>2.042</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0021369</td>
<td>100</td>
<td>Vail WWTF</td>
<td>388.455</td>
<td>1.369</td>
<td>2.218</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0021385</td>
<td>100</td>
<td>Red Cliff WWTF</td>
<td>202.000</td>
<td>0.039</td>
<td>0.032</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0021539</td>
<td>100</td>
<td>Farmers Korner WWTF</td>
<td>353.313</td>
<td>1.193</td>
<td>1.757</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0021598</td>
<td>100</td>
<td>Copper Mtn Cons Metro District WWTF</td>
<td>342.333</td>
<td>0.284</td>
<td>0.405</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0023086</td>
<td>100</td>
<td>Snowmass Water Sanitation Dist WWTF</td>
<td>264.515</td>
<td>0.738</td>
<td>0.814</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0023876</td>
<td>100</td>
<td>Arapahoe Basin Ski Area</td>
<td>736.333</td>
<td>0.009</td>
<td>0.026</td>
<td>M-5/M-B</td>
</tr>
<tr>
<td>CO0024431</td>
<td>100</td>
<td>Avon WWTF</td>
<td></td>
<td></td>
<td></td>
<td>M-2</td>
</tr>
<tr>
<td>CO0026051</td>
<td>100</td>
<td>Winter Park Water and Sanitation District WWTF</td>
<td></td>
<td></td>
<td></td>
<td>M-7</td>
</tr>
<tr>
<td>CO0026069</td>
<td>100</td>
<td>Eisenhower Tunnel</td>
<td>0.363</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>CO0026387</td>
<td>100</td>
<td>Aspen Consolidated San District WWTF</td>
<td>580.774</td>
<td>1.261</td>
<td>3.054</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0029955</td>
<td>100</td>
<td>Summit County Snake River WWTF</td>
<td>328.152</td>
<td>0.595</td>
<td>0.815</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0037311</td>
<td>100</td>
<td>Edwards WWTF</td>
<td>365.538</td>
<td>0.967</td>
<td>1.475</td>
<td>M-5</td>
</tr>
</tbody>
</table>

C-3
<table>
<thead>
<tr>
<th>NPDES PERMIT#</th>
<th>REACH</th>
<th>NAME of Discharging Facility</th>
<th>TDN Conc. AVG (mg/L)</th>
<th>Flow Rate AVG (MGD)</th>
<th>Salt Load Tons/Day</th>
<th>Explanation Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO0037681</td>
<td>100</td>
<td>Willow Creek Lagoons</td>
<td>315.833</td>
<td>0.451</td>
<td>0.595</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0038342</td>
<td>100</td>
<td>McClane Canyon Mine</td>
<td>868.000</td>
<td>0.076</td>
<td>0.274</td>
<td>I-B</td>
</tr>
<tr>
<td>CO0038598</td>
<td>100</td>
<td>Sunlight WWTF</td>
<td>380.875</td>
<td>0.005</td>
<td>0.007</td>
<td>I-B</td>
</tr>
<tr>
<td>CO0040142</td>
<td>100</td>
<td>Upper Fraser Valley Treatment Plant</td>
<td></td>
<td>0.762</td>
<td></td>
<td>M-7</td>
</tr>
<tr>
<td>CO0040487</td>
<td>100</td>
<td>Valleywide Sewerage System</td>
<td>823.000</td>
<td>0.076</td>
<td>0.260</td>
<td>M-5/M-B</td>
</tr>
<tr>
<td>CO0042447</td>
<td>100</td>
<td>Rifle Station</td>
<td>1893.667</td>
<td>0.027</td>
<td>0.215</td>
<td>I-B</td>
</tr>
<tr>
<td>CO0042480</td>
<td>100</td>
<td>Eagle Mine Remediation WWTF</td>
<td>3112.000</td>
<td>0.308</td>
<td>3.993</td>
<td>I-5B</td>
</tr>
<tr>
<td>CO0044750</td>
<td>100</td>
<td>Roaring Fork Water and San District WWTF</td>
<td></td>
<td>839.917</td>
<td>0.066</td>
<td>0.232</td>
</tr>
<tr>
<td>CO0045411</td>
<td>100</td>
<td>Crooked Creek Ranch</td>
<td>956.667</td>
<td>0.009</td>
<td>0.037</td>
<td>M-5/M-B</td>
</tr>
<tr>
<td>CO0045420</td>
<td>100</td>
<td>Iowa Hill Water Reclamation</td>
<td>396.771</td>
<td>0.397</td>
<td>0.657</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0045501</td>
<td>100</td>
<td>Tabernash Meadows WSD WWTF</td>
<td></td>
<td></td>
<td>0.044</td>
<td>M-7</td>
</tr>
<tr>
<td>CO0045802</td>
<td>100</td>
<td>Oak Meadows WWTF</td>
<td>700.167</td>
<td>0.016</td>
<td>0.046</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0046124</td>
<td>100</td>
<td>Spring Valley Sanitation Dist WWTF</td>
<td></td>
<td>829.750</td>
<td>0.031</td>
<td>0.107</td>
</tr>
<tr>
<td>CO0046175</td>
<td>100</td>
<td>Gilsonite Refinery Sand And Gravel Facility</td>
<td></td>
<td></td>
<td></td>
<td>I-2</td>
</tr>
<tr>
<td>CO0046370</td>
<td>100</td>
<td>Redstone Water Sanitation Dist WWTF</td>
<td></td>
<td>535.000</td>
<td>0.025</td>
<td>0.056</td>
</tr>
<tr>
<td>CO0046566</td>
<td>100</td>
<td>Devil's Thumb Ranch</td>
<td>456.400</td>
<td>0.013</td>
<td>0.024</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0048119</td>
<td>100</td>
<td>Golden Wonder Mine</td>
<td>4014.750</td>
<td>0.000</td>
<td>0.004</td>
<td>I-B</td>
</tr>
<tr>
<td>CO0048135</td>
<td>100</td>
<td>Debeque WWTF</td>
<td>917.833</td>
<td>0.044</td>
<td>0.169</td>
<td>M-B</td>
</tr>
<tr>
<td>CO0048151</td>
<td>100</td>
<td>Rifle Regional WW Reclamation Facility</td>
<td></td>
<td>1171.619</td>
<td>0.790</td>
<td>3.859</td>
</tr>
<tr>
<td>CO0048233</td>
<td>100</td>
<td>North Thompson Creek Mines</td>
<td></td>
<td></td>
<td>0.283</td>
<td>I-2</td>
</tr>
<tr>
<td>CO0048241</td>
<td>100</td>
<td>Eagle WWTF</td>
<td>624.800</td>
<td>0.512</td>
<td>1.335</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0048437</td>
<td>100</td>
<td>Kremmling Sanitation District WWTF</td>
<td></td>
<td>238.518</td>
<td>0.119</td>
<td>0.119</td>
</tr>
<tr>
<td>CO0048577</td>
<td>100</td>
<td>Redstone Well Z1-9 Geothermal Project</td>
<td></td>
<td>21200.000</td>
<td>0.489</td>
<td>43.219</td>
</tr>
<tr>
<td>CO0048815</td>
<td>100</td>
<td>South Canyon Landfill</td>
<td></td>
<td></td>
<td></td>
<td>I-2</td>
</tr>
<tr>
<td>CO0048823</td>
<td>100</td>
<td>Avalanche Ranch</td>
<td>1354.068</td>
<td>0.122</td>
<td>0.691</td>
<td>I-B</td>
</tr>
<tr>
<td>CO0048830</td>
<td>100</td>
<td>Gypsum WWTF</td>
<td>331.417</td>
<td>0.420</td>
<td>0.580</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0048847</td>
<td>100</td>
<td>Cameo Eagle Travel Center</td>
<td>438.182</td>
<td>0.004</td>
<td>0.007</td>
<td>I-B</td>
</tr>
<tr>
<td>CO0048852</td>
<td>100</td>
<td>Glenwood Springs Regional WWTF</td>
<td></td>
<td>727.500</td>
<td>0.915</td>
<td>2.777</td>
</tr>
<tr>
<td>CO0048901</td>
<td>100</td>
<td>Eagle Valley Clean Energy LLC</td>
<td></td>
<td>12.300</td>
<td>0.115</td>
<td>0.006</td>
</tr>
<tr>
<td>CO0048952</td>
<td>100</td>
<td>Lib 4</td>
<td>241.875</td>
<td>0.174</td>
<td>0.175</td>
<td>I-B</td>
</tr>
<tr>
<td>CO0048958</td>
<td>100</td>
<td>Glenwood Hot Spgs Lodge and Pool</td>
<td></td>
<td>16300.000</td>
<td>3.057</td>
<td>207.793</td>
</tr>
<tr>
<td>CO0048999</td>
<td>100</td>
<td>Steamboat Springs Health and Recreation Association</td>
<td></td>
<td>888.000</td>
<td>0.250</td>
<td>0.926</td>
</tr>
<tr>
<td>COG130001</td>
<td>100</td>
<td>Crystal River Fish Hatchery</td>
<td>5.831</td>
<td></td>
<td></td>
<td>I-5D</td>
</tr>
<tr>
<td>COG130007</td>
<td>100</td>
<td>Finger Rock Rearing Unit</td>
<td>2.565</td>
<td></td>
<td></td>
<td>I-5D</td>
</tr>
<tr>
<td>COG130011</td>
<td>100</td>
<td>Rifle Falls Fish Hatchery</td>
<td>5.485</td>
<td></td>
<td></td>
<td>I-5D</td>
</tr>
<tr>
<td>COG315285</td>
<td>100</td>
<td>NGL Release Bargath Parachute Facility</td>
<td></td>
<td>1245.000</td>
<td>0.004</td>
<td>0.023</td>
</tr>
<tr>
<td>COG500003</td>
<td>100</td>
<td>Latham-Burkett Pit</td>
<td></td>
<td></td>
<td></td>
<td>I-2</td>
</tr>
<tr>
<td>COG500062</td>
<td>100</td>
<td>Williams Fork Pit</td>
<td></td>
<td></td>
<td></td>
<td>I-2</td>
</tr>
<tr>
<td>COG500088</td>
<td>100</td>
<td>Eagle West Pit</td>
<td>1226.333</td>
<td>0.603</td>
<td>3.081</td>
<td>I-5</td>
</tr>
<tr>
<td>COG500119</td>
<td>100</td>
<td>Rifle Pit (Chambus Pit)</td>
<td>1339.250</td>
<td>6.527</td>
<td>36.453</td>
<td>I-5</td>
</tr>
<tr>
<td>COG500216</td>
<td>100</td>
<td>River Road Pit</td>
<td>3737.500</td>
<td>0.275</td>
<td>4.292</td>
<td>I-5</td>
</tr>
<tr>
<td>COG500299</td>
<td>100</td>
<td>Railhead Gravel Pit</td>
<td>7153.333</td>
<td>0.102</td>
<td>3.034</td>
<td>I-5</td>
</tr>
<tr>
<td>COG500342</td>
<td>100</td>
<td>Gypsum Ranch Pit</td>
<td></td>
<td></td>
<td></td>
<td>I-2</td>
</tr>
<tr>
<td>COG500356</td>
<td>100</td>
<td>Yule Marble Quarry</td>
<td></td>
<td></td>
<td></td>
<td>I-2</td>
</tr>
<tr>
<td>COG500380</td>
<td>100</td>
<td>Monument View Gravel Pit</td>
<td>5177.333</td>
<td>0.650</td>
<td>14.033</td>
<td>I-5</td>
</tr>
<tr>
<td>COG500433</td>
<td>100</td>
<td>Maryland Creek Ranch Pit</td>
<td>143.600</td>
<td>7.649</td>
<td>4.580</td>
<td>I-5</td>
</tr>
<tr>
<td>COG500437</td>
<td>100</td>
<td>15 Road Pit</td>
<td>2812.857</td>
<td>0.168</td>
<td>1.970</td>
<td>I-5</td>
</tr>
<tr>
<td>COG500467</td>
<td>100</td>
<td>Glens Pit</td>
<td>1240.333</td>
<td>0.235</td>
<td>1.218</td>
<td>I-5</td>
</tr>
<tr>
<td>COG500482</td>
<td>100</td>
<td>North Bank Pit</td>
<td>796.071</td>
<td>1.688</td>
<td>5.605</td>
<td>I-5</td>
</tr>
<tr>
<td>COG500497</td>
<td>100</td>
<td>15.5 Road Pit</td>
<td>560.000</td>
<td>4.650</td>
<td>10.859</td>
<td>I-5</td>
</tr>
<tr>
<td>COG501534</td>
<td>100</td>
<td>Steamboat Sand and Gravel Fisker Trail</td>
<td></td>
<td>1.613</td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG501590</td>
<td>100</td>
<td>Hayden Pit</td>
<td>0.054</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG588006</td>
<td>100</td>
<td>Riverbend Subdivision</td>
<td>1588.727</td>
<td>0.007</td>
<td>0.048</td>
<td>M-B</td>
</tr>
<tr>
<td>COG588008</td>
<td>100</td>
<td>West Glenwood Springs Sanitation Dist WWTF</td>
<td></td>
<td>318.597</td>
<td>0.274</td>
<td>0.364</td>
</tr>
<tr>
<td>NPDES PERMIT#</td>
<td>REACH</td>
<td>NAME of Discharging Facility</td>
<td>TDS Conc. AVG (Mg/L)</td>
<td>Flow Rate AVG (MGD)</td>
<td>Salt Load Tons/Day</td>
<td>Explanation Code</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>------------------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>COG588029</td>
<td>100</td>
<td>El Rocko Mhp</td>
<td>461.792</td>
<td>0.004</td>
<td>0.007</td>
<td>M-A</td>
</tr>
<tr>
<td>COG588035</td>
<td>100</td>
<td>H Lazy F Mhp WWTF</td>
<td>816.583</td>
<td>0.021</td>
<td>0.070</td>
<td>M-A</td>
</tr>
<tr>
<td>COG588041</td>
<td>100</td>
<td>Ouray Ranch Homeowners Assn WWTF</td>
<td>216.167</td>
<td>0.008</td>
<td>0.007</td>
<td>M-A</td>
</tr>
<tr>
<td>COG588046</td>
<td>100</td>
<td>Silt WWTF</td>
<td>738.417</td>
<td>0.147</td>
<td>0.452</td>
<td>M-A</td>
</tr>
<tr>
<td>COG588049</td>
<td>100</td>
<td>Lazy Glen HOA WWTF</td>
<td>407.364</td>
<td>0.030</td>
<td>0.052</td>
<td>M-A</td>
</tr>
<tr>
<td>COG588050</td>
<td>100</td>
<td>Carbondale WWTF</td>
<td>322.833</td>
<td>0.520</td>
<td>0.700</td>
<td>M-A</td>
</tr>
<tr>
<td>COG588051</td>
<td>100</td>
<td>Ranch At Roaring Fork HOA WWTF</td>
<td>413.818</td>
<td>0.048</td>
<td>0.083</td>
<td>M-A</td>
</tr>
<tr>
<td>COG588061</td>
<td>100</td>
<td>Talbott Enterprises WWTF</td>
<td>1248.000</td>
<td>0.066</td>
<td>0.342</td>
<td>M-5/M-B</td>
</tr>
<tr>
<td>COG588062</td>
<td>100</td>
<td>New Castle WWTF</td>
<td>790.083</td>
<td>0.241</td>
<td>0.793</td>
<td>M-5/M-B</td>
</tr>
<tr>
<td>COG588063</td>
<td>100</td>
<td>Basalt Sanitation District WWTF</td>
<td>402.364</td>
<td>0.455</td>
<td>0.763</td>
<td>M-A</td>
</tr>
<tr>
<td>COG588067</td>
<td>100</td>
<td>Grizzly Creek Rest Area WWTF</td>
<td>763.775</td>
<td>0.002</td>
<td>0.005</td>
<td>M-A</td>
</tr>
<tr>
<td>COG588070</td>
<td>100</td>
<td>Two Rivers Village Metro Dist WWTF</td>
<td>416.909</td>
<td>0.022</td>
<td>0.039</td>
<td>M-A</td>
</tr>
<tr>
<td>COG588072</td>
<td>100</td>
<td>C Lazy U Ranch</td>
<td>325.917</td>
<td>0.008</td>
<td>0.010</td>
<td>M-A</td>
</tr>
<tr>
<td>COG588074</td>
<td>100</td>
<td>Blue Creek Ranch</td>
<td>786.727</td>
<td>0.011</td>
<td>0.038</td>
<td>M-5/M-B</td>
</tr>
<tr>
<td>COG588075</td>
<td>100</td>
<td>Bair Ranch Rest Area</td>
<td>1184.808</td>
<td>0.001</td>
<td>0.006</td>
<td>M-5/M-B</td>
</tr>
<tr>
<td>COG588076</td>
<td>100</td>
<td>Hanging Lake Rest Area WWTF</td>
<td>754.000</td>
<td>0.002</td>
<td>0.005</td>
<td>M-A</td>
</tr>
<tr>
<td>COG588079</td>
<td>100</td>
<td>East River Regional Sanitation Dist WWTF</td>
<td>281.042</td>
<td>0.050</td>
<td>0.058</td>
<td>M-A</td>
</tr>
<tr>
<td>COG588083</td>
<td>100</td>
<td>Rock Gardens MHP &amp; Campground</td>
<td>362.917</td>
<td>0.004</td>
<td>0.006</td>
<td>M-A</td>
</tr>
<tr>
<td>COG588084</td>
<td>100</td>
<td>Hot Sulphur Springs WWTF</td>
<td>374.509</td>
<td>0.076</td>
<td>0.119</td>
<td>M-A</td>
</tr>
<tr>
<td>COG588085</td>
<td>100</td>
<td>Aspen Village</td>
<td>422.909</td>
<td>0.034</td>
<td>0.059</td>
<td>M-A</td>
</tr>
<tr>
<td>COG588103</td>
<td>100</td>
<td>Woody Creek Mobile Home Park</td>
<td>394.000</td>
<td>0.017</td>
<td>0.027</td>
<td>M-5/M-B</td>
</tr>
<tr>
<td>COG588105</td>
<td>100</td>
<td>Mid Valley Metro Dist WWTF</td>
<td>414.364</td>
<td>0.395</td>
<td>0.683</td>
<td>M-A</td>
</tr>
<tr>
<td>COG588116</td>
<td>100</td>
<td>Roundup River Ranch WWTF</td>
<td>1203.417</td>
<td>0.006</td>
<td>0.032</td>
<td>M-A</td>
</tr>
<tr>
<td>COG589067</td>
<td>100</td>
<td>Nucla WWTF</td>
<td>960.400</td>
<td>0.080</td>
<td>0.320</td>
<td>M-5/M-B</td>
</tr>
<tr>
<td>COG589086</td>
<td>100</td>
<td>Battlement Mesa Metro Dist WWTF</td>
<td>619.417</td>
<td>0.405</td>
<td>1.045</td>
<td>M-A</td>
</tr>
<tr>
<td>COG589094</td>
<td>100</td>
<td>Frutta WWTF</td>
<td>882.625</td>
<td></td>
<td></td>
<td>M-2</td>
</tr>
<tr>
<td>COG589110</td>
<td>100</td>
<td>Cottonwood Springs Mhp WWTF</td>
<td>811.636</td>
<td>0.035</td>
<td>0.118</td>
<td>M-A</td>
</tr>
<tr>
<td>COG603008</td>
<td>100</td>
<td>Founders Garage Eagle</td>
<td>525.818</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG603012</td>
<td>100</td>
<td>Ski and Bike Kare Project</td>
<td>334.000</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG603013</td>
<td>100</td>
<td>Winter Park Base Area</td>
<td>91.250</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG603031</td>
<td>100</td>
<td>Parking Garage Pitkin Co</td>
<td>505.556</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG603050</td>
<td>100</td>
<td>Little Nell Well City Well 4</td>
<td>158.686</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG603076</td>
<td>100</td>
<td>Mountain Plaza Parking Garage (Formerly Vail's Front Door)</td>
<td>280.000</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG603117</td>
<td>100</td>
<td>Frisco Sanitation District WWTP</td>
<td>214.250</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG603127</td>
<td>100</td>
<td>Ritz-Carlton Residences And Club At Vail</td>
<td>1.169</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG603151</td>
<td>100</td>
<td>Arrabelle Hotel</td>
<td>599.208</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG603155</td>
<td>100</td>
<td>Solaris</td>
<td>892.625</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG603170</td>
<td>100</td>
<td>Fraser Crossing Founders Pointe</td>
<td>91.250</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG603205</td>
<td>100</td>
<td>Passport Parking Garage</td>
<td>637.091</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG603217</td>
<td>100</td>
<td>Snowmass Base Village</td>
<td>384.929</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG603219</td>
<td>100</td>
<td>Springs Lodge</td>
<td>194.167</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG603220</td>
<td>100</td>
<td>Keystone Lodge And Argentine Condos</td>
<td>150.955</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG603222</td>
<td>100</td>
<td>Manor Vail Lodge</td>
<td>786.909</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG603223</td>
<td>100</td>
<td>Red Hawk Lodge</td>
<td>123.727</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG603295</td>
<td>100</td>
<td>Strata Vail Residences</td>
<td>982.200</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG603318</td>
<td>100</td>
<td>Copper Mountain Alluvial Well No 4</td>
<td>226.000</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG605009</td>
<td>100</td>
<td>Covered Bridge Building</td>
<td>270.500</td>
<td>0.036</td>
<td>0.041</td>
<td>I-8</td>
</tr>
<tr>
<td>COG605015</td>
<td>100</td>
<td>Main St Station Breckenridge</td>
<td>813.000</td>
<td>0.113</td>
<td></td>
<td>I-7</td>
</tr>
<tr>
<td>COG641006</td>
<td>100</td>
<td>Dillon Straight Creek WTP</td>
<td>132.000</td>
<td>0.421</td>
<td>0.232</td>
<td>I-8</td>
</tr>
<tr>
<td>COG641019</td>
<td>100</td>
<td>Hot Sulphur Springs WTP</td>
<td>146.158</td>
<td>0.005</td>
<td>0.003</td>
<td>I-8</td>
</tr>
<tr>
<td>COG641052</td>
<td>100</td>
<td>Red Mountain WTP</td>
<td>266.138</td>
<td>0.045</td>
<td>0.050</td>
<td>I-8</td>
</tr>
<tr>
<td>COG641066</td>
<td>100</td>
<td>Castle Creek WTP</td>
<td>90.055</td>
<td>0.040</td>
<td>0.015</td>
<td>I-8</td>
</tr>
<tr>
<td>COG641072</td>
<td>100</td>
<td>Gateway Metro WTP</td>
<td>820.182</td>
<td>0.003</td>
<td>0.011</td>
<td>I-8</td>
</tr>
</tbody>
</table>
### NPDES PERMITS

**Colorado River Basin Salinity Control Forum**

January 1, 2014 through December 31, 2016

<table>
<thead>
<tr>
<th>NPDES PERMIT#</th>
<th>REACH</th>
<th>NAME of Discharging Facility</th>
<th>TDS Conc. AVG (Mg/L)</th>
<th>Flow Rate AVG (MGD)</th>
<th>Salt Load Tons/Day</th>
<th>Explanation Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>COG641092</td>
<td>100</td>
<td>New Castle WTP</td>
<td>708.500</td>
<td>0.003</td>
<td>0.007</td>
<td>I-B</td>
</tr>
<tr>
<td>COG641095</td>
<td>100</td>
<td>Basalt Springs WTP</td>
<td>96.091</td>
<td>0.003</td>
<td>0.001</td>
<td>I-B</td>
</tr>
<tr>
<td>COG641105</td>
<td>100</td>
<td>Edwards WTP</td>
<td></td>
<td></td>
<td></td>
<td>I-2</td>
</tr>
<tr>
<td>COG641108</td>
<td>100</td>
<td>Beaver Creek WTP</td>
<td>187.817</td>
<td>0.148</td>
<td>0.116</td>
<td>I-B</td>
</tr>
<tr>
<td>COG641112</td>
<td>100</td>
<td>Silt WTP</td>
<td>540.909</td>
<td>0.002</td>
<td>0.003</td>
<td>I-B</td>
</tr>
<tr>
<td>COG641135</td>
<td>100</td>
<td>Red Sky Ranch WTP</td>
<td>515.667</td>
<td>0.012</td>
<td>0.025</td>
<td>I-B</td>
</tr>
<tr>
<td>COG641154</td>
<td>100</td>
<td>Hamilton Creek Metropolitan District</td>
<td></td>
<td>0.014</td>
<td>I-4</td>
<td></td>
</tr>
<tr>
<td>COG641181</td>
<td>100</td>
<td>Peak 9 Water Plant</td>
<td>57.000</td>
<td>0.058</td>
<td>0.014</td>
<td>I-B</td>
</tr>
<tr>
<td>COG840002</td>
<td>100</td>
<td>Greenback Schaeffer Ranch</td>
<td></td>
<td></td>
<td></td>
<td>I-2</td>
</tr>
<tr>
<td>CO0020443</td>
<td>190</td>
<td>Crested Butte WWTF</td>
<td></td>
<td></td>
<td>0.195</td>
<td>M-7</td>
</tr>
<tr>
<td>CO0022756</td>
<td>190</td>
<td>Pitch Reclamation Project</td>
<td>791.500</td>
<td>0.543</td>
<td>1.791</td>
<td>I-5B</td>
</tr>
<tr>
<td>CO0027171</td>
<td>190</td>
<td>Mt Crested Butte WSD WWTF</td>
<td>262.161</td>
<td>0.324</td>
<td>0.354</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0035394</td>
<td>190</td>
<td>Mt Emmons Project</td>
<td>797.083</td>
<td>0.550</td>
<td>1.827</td>
<td>I-5</td>
</tr>
<tr>
<td>CO0045217</td>
<td>190</td>
<td>Irwin Mountain Lodge</td>
<td></td>
<td></td>
<td></td>
<td>M-2</td>
</tr>
<tr>
<td>CO0048900</td>
<td>190</td>
<td>Bear Ranch</td>
<td>403.556</td>
<td>0.001</td>
<td>0.001</td>
<td>M-B</td>
</tr>
<tr>
<td>COG130004</td>
<td>190</td>
<td>Pitkin State Fish Hatchery</td>
<td>4.405</td>
<td></td>
<td></td>
<td>I-5D</td>
</tr>
<tr>
<td>COG130006</td>
<td>190</td>
<td>Roaring Judy Fish Hatchery</td>
<td>5.099</td>
<td></td>
<td></td>
<td>I-5D</td>
</tr>
<tr>
<td>COG500010</td>
<td>190</td>
<td>Gunnison Pit</td>
<td>605.200</td>
<td>0.452</td>
<td>1.142</td>
<td>I-5</td>
</tr>
<tr>
<td>COG500420</td>
<td>190</td>
<td>Sea Horse No 2 Pit</td>
<td>224.286</td>
<td>1.329</td>
<td>1.243</td>
<td>I-5</td>
</tr>
<tr>
<td>COG500464</td>
<td>190</td>
<td>Anderson Pit</td>
<td>1405.000</td>
<td>1.702</td>
<td>9.972</td>
<td>I-5</td>
</tr>
<tr>
<td>COG500498</td>
<td>190</td>
<td>Tri County Pit</td>
<td>2191.000</td>
<td>0.830</td>
<td>7.583</td>
<td>I-5</td>
</tr>
<tr>
<td>COG501510</td>
<td>190</td>
<td>Scott Pit</td>
<td>990.667</td>
<td>1.393</td>
<td>5.756</td>
<td>I-5</td>
</tr>
<tr>
<td>COG588012</td>
<td>190</td>
<td>Almont WWTF</td>
<td>411.088</td>
<td>0.013</td>
<td>0.022</td>
<td>M-A</td>
</tr>
<tr>
<td>COG588045</td>
<td>190</td>
<td>Crested Butte South Metro Dist WWTF</td>
<td>316.004</td>
<td>0.072</td>
<td>0.095</td>
<td>M-A</td>
</tr>
<tr>
<td>COG588109</td>
<td>190</td>
<td>Ute Trail Ranch</td>
<td>489.425</td>
<td>0.002</td>
<td>0.005</td>
<td>M-A</td>
</tr>
<tr>
<td>COG588123</td>
<td>190</td>
<td>Camp Red Cloud</td>
<td>514.450</td>
<td>0.000</td>
<td>0.000</td>
<td>M-B</td>
</tr>
<tr>
<td>COG588132</td>
<td>190</td>
<td>Vickers Horse River Ranch</td>
<td>427.977</td>
<td>0.007</td>
<td>0.013</td>
<td>M-5/M-B</td>
</tr>
<tr>
<td>COG588138</td>
<td>190</td>
<td>Taylor River Canyon LLC</td>
<td>302.500</td>
<td>0.005</td>
<td>0.006</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0040673</td>
<td>200</td>
<td>Lake City WWTF</td>
<td>321.181</td>
<td>0.068</td>
<td>0.091</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0043133</td>
<td>200</td>
<td>Blue Mesa Recreation Ranch</td>
<td></td>
<td></td>
<td></td>
<td>I-2</td>
</tr>
<tr>
<td>COG588052</td>
<td>200</td>
<td>L and N Inc</td>
<td>710.600</td>
<td>0.003</td>
<td>0.009</td>
<td>M-A</td>
</tr>
<tr>
<td>COG589091</td>
<td>200</td>
<td>Elk Meadows</td>
<td>500.583</td>
<td>0.004</td>
<td>0.009</td>
<td>M-A</td>
</tr>
<tr>
<td>COG603287</td>
<td>200</td>
<td>Montrose Community Recreation Center and Park</td>
<td>2656.167</td>
<td></td>
<td>I-4</td>
<td></td>
</tr>
<tr>
<td>COG603285</td>
<td>210</td>
<td>Town of Hotchkiss Drain Seep Line</td>
<td>1679.500</td>
<td></td>
<td>I-4</td>
<td></td>
</tr>
<tr>
<td>CO0000132</td>
<td>220</td>
<td>Sanborn Crk &amp; Elk Crk Mines</td>
<td></td>
<td></td>
<td></td>
<td>I-2</td>
</tr>
<tr>
<td>CO0020907</td>
<td>220</td>
<td>Olathe WWTF</td>
<td>1888.833</td>
<td>0.249</td>
<td>1.960</td>
<td>M-5B</td>
</tr>
<tr>
<td>CO0022969</td>
<td>220</td>
<td>Morrison Creek Metro WSD WWTF</td>
<td>432.575</td>
<td>0.065</td>
<td>0.118</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0030449</td>
<td>220</td>
<td>West Montrose Sanitation Dist WWTF</td>
<td>575.583</td>
<td>0.288</td>
<td>0.691</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0031984</td>
<td>220</td>
<td>Cedaredge WWTF</td>
<td>330.875</td>
<td>0.144</td>
<td>0.198</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0037206</td>
<td>220</td>
<td>Ruby Trust Mine</td>
<td>191.900</td>
<td>0.021</td>
<td>0.017</td>
<td>I-8</td>
</tr>
<tr>
<td>CO0037729</td>
<td>220</td>
<td>Crawford WWTF</td>
<td>288.727</td>
<td>0.024</td>
<td>0.029</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0038776</td>
<td>220</td>
<td>West Elk Mine</td>
<td>0.010</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>CO0039624</td>
<td>220</td>
<td>Montrose WWTF</td>
<td>967.735</td>
<td>2.231</td>
<td>9.003</td>
<td>M-5/M-B</td>
</tr>
<tr>
<td>CO0039641</td>
<td>220</td>
<td>Delta WWTF</td>
<td>1321.088</td>
<td>0.957</td>
<td>5.274</td>
<td>M-5</td>
</tr>
<tr>
<td>CO0041530</td>
<td>220</td>
<td>Gunnison WWTF</td>
<td>411.040</td>
<td>1.085</td>
<td>1.859</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0042617</td>
<td>220</td>
<td>Horizon Health Care &amp; Retirement Community</td>
<td>373.000</td>
<td>0.009</td>
<td>0.014</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0043397</td>
<td>220</td>
<td>Duray WWTF</td>
<td>710.900</td>
<td>0.248</td>
<td>0.735</td>
<td>M-5/M-B</td>
</tr>
<tr>
<td>CO0044776</td>
<td>220</td>
<td>Bowie No. 2 Mine</td>
<td>668.565</td>
<td>0.011</td>
<td>0.032</td>
<td>I-8</td>
</tr>
<tr>
<td>CO0044903</td>
<td>220</td>
<td>Hotchkiss WWTF</td>
<td>1005.411</td>
<td>0.142</td>
<td>0.594</td>
<td>M-5/M-B</td>
</tr>
<tr>
<td>CO0047431</td>
<td>220</td>
<td>Paonia WWTF</td>
<td>808.167</td>
<td>0.163</td>
<td>0.548</td>
<td>M-5/M-B</td>
</tr>
<tr>
<td>COG500127</td>
<td>220</td>
<td>No 500 Pit</td>
<td>1471.556</td>
<td>0.040</td>
<td>0.245</td>
<td>I-8</td>
</tr>
<tr>
<td>COG500210</td>
<td>220</td>
<td>Mule Farm Gravel Pit</td>
<td>840.000</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG500444</td>
<td>220</td>
<td>Delta Paving Pit</td>
<td></td>
<td></td>
<td></td>
<td>I-2</td>
</tr>
<tr>
<td>COG500458</td>
<td>220</td>
<td>Janet Pit</td>
<td>1176.000</td>
<td>1.640</td>
<td>8.042</td>
<td>I-5</td>
</tr>
<tr>
<td>NPDES PERMIT#</td>
<td>REACH</td>
<td>NAME of Discharging Facility</td>
<td>TDS Conc. AVG (Mg/L)</td>
<td>Flow Rate AVG (MOD)</td>
<td>Salt Load Tons/Day</td>
<td>Explanation Code</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>COG501532</td>
<td>220</td>
<td>Gunnison River Gravel Pit S</td>
<td>0.290</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG501615</td>
<td>220</td>
<td>Western Gravel Inc</td>
<td></td>
<td></td>
<td></td>
<td>I-2</td>
</tr>
<tr>
<td>COG588032</td>
<td>220</td>
<td>Delta Correctional Center</td>
<td>480.727</td>
<td>0.031</td>
<td>0.063</td>
<td>M-A</td>
</tr>
<tr>
<td>COG588066</td>
<td>220</td>
<td>Riversbend Apartments</td>
<td>787.583</td>
<td>0.001</td>
<td>0.003</td>
<td>M-A</td>
</tr>
<tr>
<td>COG588112</td>
<td>220</td>
<td>Camp Gunnison Church Camp</td>
<td>312.673</td>
<td>0.003</td>
<td>0.004</td>
<td>M-A</td>
</tr>
<tr>
<td>COG600544</td>
<td>220</td>
<td>Ouray Hot Springs Pool</td>
<td>1644.385</td>
<td>0.328</td>
<td>2.246</td>
<td>I-5</td>
</tr>
<tr>
<td>COG641015</td>
<td>220</td>
<td>Cedaredge WTP</td>
<td>73.677</td>
<td>0.009</td>
<td>0.003</td>
<td>I-B</td>
</tr>
<tr>
<td>COG641081</td>
<td>220</td>
<td>Orchard City WTP</td>
<td>47.691</td>
<td>0.027</td>
<td>0.005</td>
<td>I-B</td>
</tr>
<tr>
<td>COG641104</td>
<td>220</td>
<td>Spaulding Peak Treatment Plant</td>
<td>104.600</td>
<td>0.052</td>
<td>0.023</td>
<td>I-B</td>
</tr>
<tr>
<td>COG641134</td>
<td>220</td>
<td>Paonia WTP aka Lower Plant</td>
<td>0.021</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG641170</td>
<td>220</td>
<td>Dos Rios WTF</td>
<td>0.003</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>CO00000112</td>
<td>300</td>
<td>Palisade WWTF</td>
<td>317.000</td>
<td>0.215</td>
<td>0.284</td>
<td>M-B</td>
</tr>
<tr>
<td>CO0023485</td>
<td>300</td>
<td>Grande Mesa Metro Dist 2 WWTF</td>
<td>320.000</td>
<td>0.017</td>
<td>0.022</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0027146</td>
<td>300</td>
<td>Roadside North &amp; South Mines</td>
<td>1245.000</td>
<td>0.396</td>
<td>2.056</td>
<td>I-5B</td>
</tr>
<tr>
<td>CO0033791</td>
<td>300</td>
<td>Clifton Sanitation District WWTF</td>
<td>602.222</td>
<td>1.105</td>
<td>2.775</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0040053</td>
<td>300</td>
<td>Persigo WWTF</td>
<td>836.576</td>
<td>8.584</td>
<td>29.946</td>
<td>M-5</td>
</tr>
<tr>
<td>CO0047562</td>
<td>300</td>
<td>Whirlwind Project</td>
<td></td>
<td></td>
<td></td>
<td>I-2</td>
</tr>
<tr>
<td>CO0048143</td>
<td>300</td>
<td>Mesa Water And San Dist WWTF</td>
<td>795.000</td>
<td>0.008</td>
<td>0.027</td>
<td>M-B</td>
</tr>
<tr>
<td>CO0048854</td>
<td>300</td>
<td>Fruita Wastewater Reclamation Facility</td>
<td>519.194</td>
<td>0.873</td>
<td>1.890</td>
<td>M-A</td>
</tr>
<tr>
<td>COG500001</td>
<td>300</td>
<td>Bunn Ranch Pit</td>
<td>668.000</td>
<td>0.144</td>
<td>0.401</td>
<td>I-B</td>
</tr>
<tr>
<td>COG500114</td>
<td>300</td>
<td>Silt Pit</td>
<td></td>
<td></td>
<td></td>
<td>I-2</td>
</tr>
<tr>
<td>COG500161</td>
<td>300</td>
<td>South Fruita Pit Arcubry Pit</td>
<td>3351.667</td>
<td>0.753</td>
<td>10.524</td>
<td>I-5</td>
</tr>
<tr>
<td>COG500229</td>
<td>300</td>
<td>West Rifle Pit</td>
<td></td>
<td></td>
<td></td>
<td>I-2</td>
</tr>
<tr>
<td>COG500252</td>
<td>300</td>
<td>Loesch Pit</td>
<td></td>
<td></td>
<td></td>
<td>I-2</td>
</tr>
<tr>
<td>COG500308</td>
<td>300</td>
<td>Feuerborn Gravel Pit</td>
<td></td>
<td></td>
<td></td>
<td>I-2</td>
</tr>
<tr>
<td>COG500364</td>
<td>300</td>
<td>Soaring Eagle Gravel Pit</td>
<td>1932.727</td>
<td>0.293</td>
<td>2.363</td>
<td>I-5</td>
</tr>
<tr>
<td>COG500408</td>
<td>300</td>
<td>Mamm Creek Gravel Pit</td>
<td></td>
<td></td>
<td></td>
<td>I-2</td>
</tr>
<tr>
<td>COG500435</td>
<td>300</td>
<td>D Road Gravel Pit</td>
<td></td>
<td></td>
<td></td>
<td>I-2</td>
</tr>
<tr>
<td>COG501505</td>
<td>300</td>
<td>Una Pit</td>
<td>765.636</td>
<td>0.890</td>
<td>2.842</td>
<td>I-5</td>
</tr>
<tr>
<td>COG501525</td>
<td>300</td>
<td>Gehrmann Pit</td>
<td>312.000</td>
<td>0.911</td>
<td>1.185</td>
<td>I-5</td>
</tr>
<tr>
<td>COG501542</td>
<td>300</td>
<td>Debeque Pit No 2</td>
<td>2930.000</td>
<td>0.755</td>
<td>9.219</td>
<td>I-5</td>
</tr>
<tr>
<td>COG501567</td>
<td>300</td>
<td>Otter Creek Pit</td>
<td>5547.273</td>
<td>0.492</td>
<td>11.381</td>
<td>I-5</td>
</tr>
<tr>
<td>COG501614</td>
<td>300</td>
<td>Breeze Basin Sand and Gravel Pit</td>
<td>0.864</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG501617</td>
<td>300</td>
<td>5 Mile Pit</td>
<td></td>
<td></td>
<td></td>
<td>I-2</td>
</tr>
<tr>
<td>COG588086</td>
<td>300</td>
<td>SW Mesa County Rural Public Improvement District WWTF</td>
<td>1142.000</td>
<td>0.022</td>
<td>0.107</td>
<td>M-A</td>
</tr>
<tr>
<td>COG589139</td>
<td>300</td>
<td>Canyon Creek Estates</td>
<td>829.333</td>
<td>0.010</td>
<td>0.035</td>
<td>M-B</td>
</tr>
<tr>
<td>COG603260</td>
<td>300</td>
<td>Bank of the West GJ</td>
<td>5761.444</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG603314</td>
<td>300</td>
<td>Xcel Energy Mesa Service Center Groundwater Management System</td>
<td>4300.000</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG641068</td>
<td>300</td>
<td>Battlement Mesa Metro Dist WTP</td>
<td></td>
<td></td>
<td></td>
<td>I-7</td>
</tr>
<tr>
<td>COG840020</td>
<td>300</td>
<td>Elk Springs 3 Water Disposal</td>
<td>4780.000</td>
<td>14.355</td>
<td>286.132</td>
<td>I-5</td>
</tr>
<tr>
<td>CO00000003</td>
<td>310</td>
<td>Revenue Mine</td>
<td>223.600</td>
<td>0.668</td>
<td>0.623</td>
<td>I-8</td>
</tr>
<tr>
<td>CO0000213</td>
<td>310</td>
<td>New Horizon Mine</td>
<td>2420.667</td>
<td>0.472</td>
<td>4.760</td>
<td>I-5B</td>
</tr>
<tr>
<td>CO0000540</td>
<td>310</td>
<td>Nucla Station</td>
<td>1658.917</td>
<td>0.163</td>
<td>1.126</td>
<td>I-5B</td>
</tr>
<tr>
<td>CO0024007</td>
<td>310</td>
<td>Naturita WWTF</td>
<td>608.666</td>
<td>0.027</td>
<td>0.069</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0036251</td>
<td>310</td>
<td>Jd-7 And Jd-9 Mines</td>
<td></td>
<td></td>
<td></td>
<td>I-2</td>
</tr>
<tr>
<td>COG588047</td>
<td>310</td>
<td>Ridgway WWTF</td>
<td>466.182</td>
<td>0.085</td>
<td>0.165</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0000221</td>
<td>500</td>
<td>Seneca Mine Complex</td>
<td>2279.655</td>
<td>0.166</td>
<td>1.582</td>
<td>I-5B</td>
</tr>
<tr>
<td>CO0020834</td>
<td>500</td>
<td>Steamboat Springs WWTF</td>
<td>345.966</td>
<td>2.482</td>
<td>3.581</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0027154</td>
<td>500</td>
<td>Mines I&amp;2 And Eckman Park Mine</td>
<td>2830.345</td>
<td>0.167</td>
<td>1.970</td>
<td>I-5B</td>
</tr>
<tr>
<td>CO0030635</td>
<td>500</td>
<td>Yampa WWTF</td>
<td>438.258</td>
<td>0.032</td>
<td>0.059</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0031062</td>
<td>500</td>
<td>Whitman School</td>
<td>297.167</td>
<td>0.002</td>
<td>0.003</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0032115</td>
<td>500</td>
<td>Trapper Mine</td>
<td>0.172</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>CO0034142</td>
<td>500</td>
<td>Williams Fork Mine</td>
<td>1604.167</td>
<td>0.008</td>
<td>0.052</td>
<td>I-8</td>
</tr>
<tr>
<td>NPDES PERMIT#</td>
<td>REACH</td>
<td>NAME of Discharging Facility</td>
<td>TDN Conc. AVG (mg/L)</td>
<td>Flow Rate AVG (MGD)</td>
<td>Salt Load Tons/Day</td>
<td>Explanation Code</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>------------------------------------------------------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>CO0035556</td>
<td>500</td>
<td>Steamboat Lake Water &amp; Sanitation Dist WWTF</td>
<td>474.000</td>
<td>0.051</td>
<td>0.100</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0036684</td>
<td>500</td>
<td>Fish Creek Tippie</td>
<td>3818.000</td>
<td>0.020</td>
<td>0.315</td>
<td>I-B</td>
</tr>
<tr>
<td>CO0040037</td>
<td>500</td>
<td>Craig WWTF</td>
<td>618.667</td>
<td>0.842</td>
<td>2.171</td>
<td>M-4B</td>
</tr>
<tr>
<td>CO0040959</td>
<td>500</td>
<td>Hayden WWTF</td>
<td>453.450</td>
<td>0.195</td>
<td>0.370</td>
<td>M-5/M-B</td>
</tr>
<tr>
<td>CO0041106</td>
<td>500</td>
<td>Oak Creek WWTF</td>
<td>501.636</td>
<td>0.194</td>
<td>0.405</td>
<td>M-5/M-B</td>
</tr>
<tr>
<td>CO0042161</td>
<td>500</td>
<td>Foidel Creek Mine</td>
<td>3132.333</td>
<td>0.048</td>
<td>0.626</td>
<td>I-B</td>
</tr>
<tr>
<td>CO0045161</td>
<td>500</td>
<td>Colowyo Mine</td>
<td>2090.308</td>
<td>0.049</td>
<td>0.423</td>
<td>I-B</td>
</tr>
<tr>
<td>CO0047449</td>
<td>500</td>
<td>Milner Community WWTF</td>
<td>661.636</td>
<td>0.015</td>
<td>0.041</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0048275</td>
<td>500</td>
<td>Sage Creek Mine Complex</td>
<td>3821.885</td>
<td>0.201</td>
<td>3.205</td>
<td>I-5B</td>
</tr>
<tr>
<td>CO0048623</td>
<td>500</td>
<td>Barn Spring WTP</td>
<td>2040.000</td>
<td>0.018</td>
<td>0.149</td>
<td>I-B</td>
</tr>
<tr>
<td>COG500243</td>
<td>500</td>
<td>Hogue River Pit</td>
<td>371.000</td>
<td>0.595</td>
<td>0.921</td>
<td>I-B</td>
</tr>
<tr>
<td>COG500267</td>
<td>500</td>
<td>Sievers Ranch Pit</td>
<td>295.625</td>
<td>0.039</td>
<td>0.048</td>
<td>I-B</td>
</tr>
<tr>
<td>COG500312</td>
<td>500</td>
<td>Mesa Gravel Pit</td>
<td></td>
<td></td>
<td></td>
<td>I-2</td>
</tr>
<tr>
<td>COG500350</td>
<td>500</td>
<td>Tellier Pit</td>
<td>342.286</td>
<td>0.546</td>
<td>0.779</td>
<td>I-B</td>
</tr>
<tr>
<td>COG500396</td>
<td>500</td>
<td>Camilletti Milner Pit No2</td>
<td>291.400</td>
<td>1.145</td>
<td>1.391</td>
<td>I-5</td>
</tr>
<tr>
<td>COG500419</td>
<td>500</td>
<td>Deakins Pit</td>
<td>2011.800</td>
<td>1.000</td>
<td>8.389</td>
<td>I-5</td>
</tr>
<tr>
<td>COG501522</td>
<td>500</td>
<td>Lyster Pit</td>
<td>1146.889</td>
<td>0.093</td>
<td>0.447</td>
<td>I-B</td>
</tr>
<tr>
<td>COG501524</td>
<td>500</td>
<td>Wand Pit</td>
<td>687.000</td>
<td>1.000</td>
<td>2.865</td>
<td>I-5</td>
</tr>
<tr>
<td>COG589026</td>
<td>500</td>
<td>Routt County for Phippsburg Community WWTF</td>
<td>623.455</td>
<td>0.019</td>
<td>0.050</td>
<td>M-A</td>
</tr>
<tr>
<td>COG589040</td>
<td>500</td>
<td>Maybell WWTF</td>
<td>385.333</td>
<td>0.002</td>
<td>0.003</td>
<td>M-A</td>
</tr>
<tr>
<td>COG603045</td>
<td>500</td>
<td>Lake Catamount WWTF</td>
<td>245.333</td>
<td></td>
<td></td>
<td>I-4</td>
</tr>
<tr>
<td>COG850054</td>
<td>500</td>
<td>Foidel Creek Mine</td>
<td>908.000</td>
<td>0.003</td>
<td>0.012</td>
<td>I-B</td>
</tr>
<tr>
<td>CO0000010</td>
<td>510</td>
<td>Rangely WWTF</td>
<td>679.100</td>
<td>0.205</td>
<td>0.581</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0038024</td>
<td>510</td>
<td>Deserado Mine</td>
<td>5439.111</td>
<td>0.119</td>
<td>2.710</td>
<td>I-5</td>
</tr>
<tr>
<td>CO0047139</td>
<td>510</td>
<td>Meeker Sanitation District WWTF</td>
<td>609.292</td>
<td>0.121</td>
<td>0.307</td>
<td>M-A</td>
</tr>
<tr>
<td>CO0048739</td>
<td>510</td>
<td>Bopco Lp Yellow Creek Water Management Facility</td>
<td></td>
<td></td>
<td></td>
<td>I-2</td>
</tr>
<tr>
<td>CO0048859</td>
<td>510</td>
<td>Corral Gulch WWTF</td>
<td></td>
<td></td>
<td></td>
<td>I-2</td>
</tr>
<tr>
<td>COG500484</td>
<td>510</td>
<td>White River City Pit</td>
<td>839.909</td>
<td>0.091</td>
<td>0.319</td>
<td>I-B</td>
</tr>
</tbody>
</table>

**Nevada**

<table>
<thead>
<tr>
<th>NPDES PERMIT#</th>
<th>REACH</th>
<th>NAME of Discharging Facility</th>
<th>TDN Conc. AVG (mg/L)</th>
<th>Flow Rate AVG (MGD)</th>
<th>Salt Load Tons/Day</th>
<th>Explanation Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>NV0000060</td>
<td>910</td>
<td>Titanium Metals Corporation</td>
<td>780.0</td>
<td>0.150</td>
<td>0.488</td>
<td>I</td>
</tr>
<tr>
<td>NV0020192</td>
<td>910</td>
<td>NDOW - Lake Mead Fish Hatchery</td>
<td>0.000</td>
<td></td>
<td>0.000</td>
<td>I-5D</td>
</tr>
<tr>
<td>NV0021750</td>
<td>910</td>
<td>Las Vegas Hilton Hotel and Casino Parking Garage</td>
<td>0.003</td>
<td></td>
<td></td>
<td>I-7</td>
</tr>
<tr>
<td>NV0022195</td>
<td>910</td>
<td>Valley Hospital Medical Center</td>
<td>130.77</td>
<td>0.006</td>
<td>0.004</td>
<td>I-SE</td>
</tr>
<tr>
<td>NV0022691</td>
<td>910</td>
<td>Lake Las Vegas Resort (Dam)</td>
<td>0.0</td>
<td>0.000</td>
<td>0.000</td>
<td>I-1</td>
</tr>
<tr>
<td>NV0022772</td>
<td>910</td>
<td>Sterling/Squire/Crescendo HOA (formerly Saxton)</td>
<td>4704.0</td>
<td>0.621</td>
<td>12.190</td>
<td>I-SE</td>
</tr>
<tr>
<td>NV0022781</td>
<td>910</td>
<td>Shanghai Partners - Tomiyasu Residence</td>
<td>2400.0</td>
<td>0.010</td>
<td>0.100</td>
<td>I-SE</td>
</tr>
<tr>
<td>NV0022837</td>
<td>910</td>
<td>Conoco Phillips Company - Circle K Store No. 0695</td>
<td>2950.0</td>
<td>0.000</td>
<td>0.001</td>
<td>I-SE</td>
</tr>
<tr>
<td>NV0022870</td>
<td>910</td>
<td>7-Eleven Store # 19653</td>
<td>0.0</td>
<td>0.000</td>
<td>0.000</td>
<td>I-1</td>
</tr>
<tr>
<td>NV0022888</td>
<td>910</td>
<td>Las Vegas Sands-Venetian Casino Resort</td>
<td>1462.0</td>
<td>0.094</td>
<td>0.573</td>
<td>I-SE</td>
</tr>
<tr>
<td>NV0022942</td>
<td>910</td>
<td>Lloyd D. George Federal Courthouse</td>
<td>2240.0</td>
<td>0.025</td>
<td>0.234</td>
<td>I-SE</td>
</tr>
<tr>
<td>NV0022985</td>
<td>910</td>
<td>Planet Hollywood Resort Casino (formerly Aladdin Resort)</td>
<td>91.0</td>
<td>0.000</td>
<td>0.000</td>
<td>I-SE</td>
</tr>
<tr>
<td>NV0023035</td>
<td>910</td>
<td>Neonopolis Project</td>
<td>1130.0</td>
<td>0.013</td>
<td>0.061</td>
<td>I</td>
</tr>
<tr>
<td>NV0023043</td>
<td>910</td>
<td>Maryland Villas Apartment Complex</td>
<td>1598.0</td>
<td>0.056</td>
<td>0.373</td>
<td>I</td>
</tr>
<tr>
<td>NV0023060</td>
<td>910</td>
<td>Tronox LLC</td>
<td>3900.0</td>
<td>1.350</td>
<td>21.970</td>
<td>I</td>
</tr>
<tr>
<td>NV0023159</td>
<td>910</td>
<td>Clark County Regional Justice Center</td>
<td>1391.0</td>
<td>0.008</td>
<td>0.046</td>
<td>M</td>
</tr>
<tr>
<td>NV0023191</td>
<td>910</td>
<td>Caesar's Palace Hotel and Casino</td>
<td>2166.0</td>
<td>0.070</td>
<td>0.633</td>
<td>I</td>
</tr>
<tr>
<td>NV0023221</td>
<td>910</td>
<td>7-Eleven Store # 27607</td>
<td>0.0</td>
<td>0.000</td>
<td>0.000</td>
<td>I-1</td>
</tr>
<tr>
<td>NV0023256</td>
<td>910</td>
<td>The Stirling Club</td>
<td>2500.0</td>
<td>0.046</td>
<td>0.480</td>
<td>I</td>
</tr>
<tr>
<td>NV0023477</td>
<td>910</td>
<td>Sky Las Vegas Master Association</td>
<td>671.0</td>
<td>0.052</td>
<td>0.146</td>
<td>I</td>
</tr>
<tr>
<td>NV0023485</td>
<td>910</td>
<td>Las Vegas Academy</td>
<td>2600.0</td>
<td>0.002</td>
<td>0.026</td>
<td>M</td>
</tr>
<tr>
<td>NV0023507</td>
<td>910</td>
<td>NNSA/NSD North Las Vegas Facility</td>
<td>1460.0</td>
<td>0.003</td>
<td>0.017</td>
<td>M</td>
</tr>
<tr>
<td>NV0023515</td>
<td>910</td>
<td>The Cosmopolitan Resort &amp; Casino</td>
<td>1800.0</td>
<td>0.049</td>
<td>0.368</td>
<td>I</td>
</tr>
<tr>
<td>NPDES PERMIT#</td>
<td>REACH</td>
<td>NAME of Discharging Facility</td>
<td>TDS Concent (AVG.(Mg/L))</td>
<td>Flow Rate (AVG.(MGD))</td>
<td>Salt Load Tons/Day</td>
<td>Explanation Code</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>---------------------------------------------------------------</td>
<td>--------------------------</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>NV0023523</td>
<td>910</td>
<td>Terrible's Hotel and Casino</td>
<td>2500.0</td>
<td>0.000</td>
<td>0.002</td>
<td>I</td>
</tr>
<tr>
<td>NV0023558</td>
<td>910</td>
<td>Panorama Towers</td>
<td>2160.0</td>
<td>0.003</td>
<td>0.027</td>
<td>I</td>
</tr>
<tr>
<td>NV0023566</td>
<td>910</td>
<td>Fountainbleau Casino and Resort</td>
<td>2565.0</td>
<td>0.169</td>
<td>1.809</td>
<td>I-5E</td>
</tr>
<tr>
<td>NV0023604</td>
<td>910</td>
<td>Howard Hughes Office Complex</td>
<td>2370.0</td>
<td>0.011</td>
<td>0.109</td>
<td>I</td>
</tr>
<tr>
<td>NV0023621</td>
<td>910</td>
<td>Echelon Resort</td>
<td>2100.0</td>
<td>0.269</td>
<td>2.357</td>
<td>I-5E</td>
</tr>
<tr>
<td>NV0023647</td>
<td>910</td>
<td>City of North Las Vegas Water Reclamation Facility</td>
<td>1040.0</td>
<td>17.100</td>
<td>74.159</td>
<td>M-4A</td>
</tr>
<tr>
<td>NV0023663</td>
<td>910</td>
<td>Former Conoco Station No. 28003</td>
<td>1600.0</td>
<td>0.001</td>
<td>0.007</td>
<td>I</td>
</tr>
<tr>
<td>NV0023701</td>
<td>910</td>
<td>City Center Land</td>
<td>2600.0</td>
<td>0.052</td>
<td>0.564</td>
<td>I</td>
</tr>
<tr>
<td>NV0023744</td>
<td>910</td>
<td>Baymont Inn and Suites (formerly Holiday Inn Hotel)</td>
<td>254.03</td>
<td>0.0134</td>
<td>0.014</td>
<td>I-5A</td>
</tr>
<tr>
<td>NV0023761</td>
<td>910</td>
<td>McCarran International Airport</td>
<td>1254.0</td>
<td>0.0310</td>
<td>0.162</td>
<td>I</td>
</tr>
<tr>
<td>NV0023809</td>
<td>910</td>
<td>Terrible Herbst #225</td>
<td>1000.0</td>
<td>0.0073</td>
<td>0.030</td>
<td>I</td>
</tr>
<tr>
<td>NV0023841</td>
<td>910</td>
<td>Hudson Cleaners</td>
<td>2400.0</td>
<td>0.0325</td>
<td>0.325</td>
<td>I-5E</td>
</tr>
<tr>
<td>NV0023931</td>
<td>910</td>
<td>Mendenhall Center - UNLV</td>
<td>3022.0</td>
<td>0.0044</td>
<td>0.055</td>
<td>I-7</td>
</tr>
<tr>
<td>NV0024112</td>
<td>910</td>
<td>American Pacific Corp AGTS</td>
<td>2700.0</td>
<td>1.0700</td>
<td>12.050</td>
<td>I-7</td>
</tr>
<tr>
<td>NV0024202</td>
<td>910</td>
<td>Sunset Regional Park Splash Pad</td>
<td>588</td>
<td>0.0900</td>
<td>0.221</td>
<td>I-7</td>
</tr>
<tr>
<td>NV0024206</td>
<td>910</td>
<td>The Waterhole</td>
<td>5187.0</td>
<td>0.0130</td>
<td>0.340</td>
<td>I-7</td>
</tr>
<tr>
<td>NV0024210</td>
<td>910</td>
<td>Las Vegas Wash Channel Improvement Project</td>
<td>6120.0</td>
<td>0.0050</td>
<td>0.128</td>
<td>I-2</td>
</tr>
<tr>
<td>NV0022845</td>
<td>910</td>
<td>Harrahs Las Vegas Hotel &amp; Casino</td>
<td>0.0</td>
<td>0.0000</td>
<td>0.000</td>
<td>I-1</td>
</tr>
<tr>
<td>NV0023094</td>
<td>910</td>
<td>Former Union 76 Station No. 4616</td>
<td></td>
<td></td>
<td></td>
<td>I-1</td>
</tr>
<tr>
<td>NV0023183</td>
<td>910</td>
<td>City Center Place</td>
<td></td>
<td></td>
<td></td>
<td>M-1</td>
</tr>
<tr>
<td>NV0023230</td>
<td>910</td>
<td>Kinder Morgan Las Vegas Terminal</td>
<td></td>
<td></td>
<td></td>
<td>I-1</td>
</tr>
<tr>
<td>NV0023248</td>
<td>910</td>
<td>Riviera Hotel and Casino</td>
<td></td>
<td></td>
<td></td>
<td>I-1</td>
</tr>
<tr>
<td>NV0023396</td>
<td>910</td>
<td>7-Eleven Store # 20826</td>
<td></td>
<td></td>
<td></td>
<td>I-1</td>
</tr>
<tr>
<td>NV0023787</td>
<td>910</td>
<td>Tesoro Refining &amp; Marketing Co LLC #05326</td>
<td></td>
<td></td>
<td></td>
<td>I-1</td>
</tr>
<tr>
<td>NV0023833</td>
<td>910</td>
<td>Southern Nevada Water Authority - 5 Upper Wash Weirs</td>
<td></td>
<td></td>
<td></td>
<td>I-1</td>
</tr>
<tr>
<td>NV0023876</td>
<td>910</td>
<td>SNWA - Three Kids (Demonstration Replacement) Weir</td>
<td>0.0</td>
<td>0.0000</td>
<td>0.000</td>
<td>I-1</td>
</tr>
<tr>
<td>NV0023914</td>
<td>910</td>
<td>SNWA - Historic Lateral Weir Expansion</td>
<td>3523.6</td>
<td>0.4689</td>
<td>6.890</td>
<td>I-1</td>
</tr>
<tr>
<td>NV0023949</td>
<td>910</td>
<td>Former Texaco Service Station</td>
<td>655.3</td>
<td>0.0012</td>
<td>0.003</td>
<td>I-1</td>
</tr>
<tr>
<td>NV0024082</td>
<td>910</td>
<td>Whitney Mesa Trails &amp; Trailhead</td>
<td>0.0</td>
<td>0.0000</td>
<td>0.000</td>
<td>I-1</td>
</tr>
<tr>
<td>NV0024155</td>
<td>910</td>
<td>Pecos Express Sinclair</td>
<td></td>
<td></td>
<td></td>
<td>I-1</td>
</tr>
<tr>
<td>NV0024180</td>
<td>910</td>
<td>Maryland Parkway Lift Station Decommissioning</td>
<td></td>
<td></td>
<td></td>
<td>I-1</td>
</tr>
<tr>
<td>NV0024198</td>
<td>910</td>
<td>Tropicana East Shopping Center</td>
<td></td>
<td></td>
<td></td>
<td>I-1</td>
</tr>
<tr>
<td>NV0024200</td>
<td>910</td>
<td>Central Plant Membranes Phase 2</td>
<td></td>
<td></td>
<td></td>
<td>I-1</td>
</tr>
<tr>
<td>NV0024209</td>
<td>910</td>
<td>Section Seven Community Association</td>
<td></td>
<td></td>
<td></td>
<td>I-1</td>
</tr>
<tr>
<td>NV0024211</td>
<td>910</td>
<td>Cooper Street Bridge Improvements</td>
<td>0.0000</td>
<td></td>
<td></td>
<td>I-1</td>
</tr>
<tr>
<td>NV0020133</td>
<td>910</td>
<td>City of Las Vegas</td>
<td>1080.0</td>
<td>43.400</td>
<td>195.570</td>
<td>M-A</td>
</tr>
<tr>
<td>NV0021261</td>
<td>910</td>
<td>Clark County Water Reclamation District - AWT Plant</td>
<td>1070.0</td>
<td>87.350</td>
<td></td>
<td>M-A</td>
</tr>
<tr>
<td>NV0021563</td>
<td>910</td>
<td>Clark County Water Reclamation District - Laughlin Plant</td>
<td>1150.0</td>
<td>1.650</td>
<td>7.917</td>
<td>M-A</td>
</tr>
<tr>
<td>NV0022098</td>
<td>910</td>
<td>Kurt Segler Water Reclamation Facility - City of Henderson</td>
<td>1139.5</td>
<td>17.310</td>
<td>63.631</td>
<td>M-A</td>
</tr>
<tr>
<td>NV0022993</td>
<td>910</td>
<td>Golden Nugget Hotel and Casino</td>
<td>1130.0</td>
<td>0.0000</td>
<td>0.000</td>
<td>I-1</td>
</tr>
<tr>
<td>NV0023311</td>
<td>910</td>
<td>7-Eleven Store # 25586</td>
<td>0.0</td>
<td>0.014</td>
<td>0.000</td>
<td>I-2</td>
</tr>
<tr>
<td>NV0023671</td>
<td>910</td>
<td>Former Cappy's Cleaners</td>
<td>5700.0</td>
<td>0.144</td>
<td>3.425</td>
<td>I</td>
</tr>
<tr>
<td>NV0023736</td>
<td>910</td>
<td>Bowman Reservoir &amp; Muddy River Outfalls</td>
<td></td>
<td></td>
<td></td>
<td>M-1</td>
</tr>
<tr>
<td>NV0023817</td>
<td>910</td>
<td>Alfred Merritt Smith WTF</td>
<td>665.0</td>
<td>0.152</td>
<td>5.546</td>
<td>M-A</td>
</tr>
<tr>
<td>NV0024074</td>
<td>910</td>
<td>7-Eleven Store # 29643</td>
<td>0.0157</td>
<td></td>
<td></td>
<td>I-1</td>
</tr>
<tr>
<td>NV0024121</td>
<td>910</td>
<td>City of North Las Vegas Utilities Water System O&amp;M</td>
<td>0.0050</td>
<td>-</td>
<td></td>
<td>I-7</td>
</tr>
<tr>
<td>NV0024139</td>
<td>910</td>
<td>City of Henderson Water Systems and Facilities</td>
<td>335</td>
<td>0.1130</td>
<td>-</td>
<td>M-B</td>
</tr>
<tr>
<td>NV0021911</td>
<td>910</td>
<td>Las Vegas Valley MS4</td>
<td></td>
<td>0.00</td>
<td></td>
<td>I-7</td>
</tr>
<tr>
<td>NV0024214</td>
<td>910</td>
<td>Las Vegas Wash &amp; Flamingo Wash</td>
<td>2000.0</td>
<td>1.4000</td>
<td>11.68</td>
<td>I-5A</td>
</tr>
<tr>
<td>NV0024222</td>
<td>910</td>
<td>Low Lake Level Pumping Station</td>
<td>665</td>
<td>0.00</td>
<td></td>
<td>M-B</td>
</tr>
<tr>
<td>NV0024104</td>
<td>910</td>
<td>LVVWD/SNWA Operations and Maintenance</td>
<td>665</td>
<td>0.00</td>
<td></td>
<td>M-A</td>
</tr>
<tr>
<td>NV0024201</td>
<td>910</td>
<td>STATEWIDE VAULT MAINTENANCE DEWATERING</td>
<td>0.00015</td>
<td></td>
<td></td>
<td>I-7</td>
</tr>
<tr>
<td>NV0024220</td>
<td>910</td>
<td>VILLAGE SHOP #4/SINCLAIR STATION</td>
<td>1016</td>
<td>0.0288</td>
<td>0.12</td>
<td>I-7</td>
</tr>
</tbody>
</table>
# NPDES PERMITS

## Colorado River Basin Salinity Control Forum

January 1, 2014 through December 31, 2016

<table>
<thead>
<tr>
<th>NPDES PERMIT#</th>
<th>REACH</th>
<th>NAME of Discharging Facility</th>
<th>TDS Conc. AVG.(Mg/L)</th>
<th>Flow Rate AVG.(MGD)</th>
<th>Salt Load Tons/Day</th>
<th>Explanation Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM0028762</td>
<td>801</td>
<td>Aztec, City of / WTP</td>
<td>407.5</td>
<td>0.1625</td>
<td>0.1614</td>
<td>I</td>
</tr>
<tr>
<td>NM0020168</td>
<td>801</td>
<td>Aztec, City of / WWTP</td>
<td>253</td>
<td>0.584</td>
<td>0.61</td>
<td>M</td>
</tr>
<tr>
<td>NM00209319</td>
<td>801</td>
<td>Central Consolidated School District</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I-1</td>
</tr>
<tr>
<td>NM0020770</td>
<td>801</td>
<td>Bloomfield, City of / WWTP</td>
<td>315</td>
<td>0.85</td>
<td>1.11</td>
<td>M</td>
</tr>
<tr>
<td>NM00080045</td>
<td>801</td>
<td>Farmington, City of / Animas Steam Plant</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I-1</td>
</tr>
<tr>
<td>NM0031135</td>
<td>801</td>
<td>Farmington Electric Utility System (FEUS)</td>
<td>NA</td>
<td>NA</td>
<td>2000</td>
<td>I</td>
</tr>
<tr>
<td>NM0028258</td>
<td>801</td>
<td>Farmington Sand &amp; Gravel Co.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I-1</td>
</tr>
<tr>
<td>NM0020583</td>
<td>801</td>
<td>Farmington WWTP</td>
<td>420.54</td>
<td>5.15</td>
<td>9.03</td>
<td>M-SA</td>
</tr>
<tr>
<td>NM0029025</td>
<td>801</td>
<td>Harper Valley Subd.</td>
<td>372.4</td>
<td>0.4</td>
<td>0.05</td>
<td>M-SA</td>
</tr>
<tr>
<td>NM0030953</td>
<td>801</td>
<td>Navajo Dam DWC &amp; NSW, Inc.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I-2</td>
</tr>
<tr>
<td>NM0027995</td>
<td>801</td>
<td>Oldcastle SW Group, Inc.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I-1</td>
</tr>
<tr>
<td>NM0028806</td>
<td>801</td>
<td>Public Service Co of NM - San Juan</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I-1</td>
</tr>
<tr>
<td>NM0028555</td>
<td>801</td>
<td>San Juan Coal Company - La Plata</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I-3</td>
</tr>
<tr>
<td>NM0028746</td>
<td>801</td>
<td>San Juan Coal Company - San Juan</td>
<td>0</td>
<td>0</td>
<td>4000</td>
<td>I</td>
</tr>
<tr>
<td>NM0029432</td>
<td>801</td>
<td>Yampa Mining Co. (De-na-zin Mine)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I-1</td>
</tr>
<tr>
<td>NM0029475</td>
<td>801</td>
<td>Yampa Mining Co. (Gatew.)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I-1</td>
</tr>
<tr>
<td>NM0031160</td>
<td>801</td>
<td>Bloomfield, City of - Primary Raw Water Source</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I-2</td>
</tr>
<tr>
<td>NM0020672</td>
<td>900</td>
<td>Gallup WWTP</td>
<td>NA</td>
<td>2.25</td>
<td>9.97</td>
<td>M-4A</td>
</tr>
<tr>
<td>NM0020524</td>
<td>900</td>
<td>Quivira Mining Company - Church Rock</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I-1</td>
</tr>
<tr>
<td>NM0023396</td>
<td>900</td>
<td>Ramah Water &amp; Sanitation Dist.</td>
<td>580</td>
<td>0.03</td>
<td>0.045</td>
<td>M-5</td>
</tr>
</tbody>
</table>

*Permits in New Mexico are issued by the U.S. EPA and certified by the State of New Mexico Environmental Department.

### Utah

<table>
<thead>
<tr>
<th>NPDES PERMIT#</th>
<th>REACH</th>
<th>NAME of Discharging Facility</th>
<th>TDS Conc. AVG.(Mg/L)</th>
<th>Flow Rate AVG.(MGD)</th>
<th>Salt Load Tons/Day</th>
<th>Explanation Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT0025828</td>
<td>300</td>
<td>Capitol Wash Water</td>
<td>788.4</td>
<td>0.019</td>
<td>0.062</td>
<td>I-B</td>
</tr>
<tr>
<td>UT0025712</td>
<td>300</td>
<td>Energy Queen Mine</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>I-2</td>
</tr>
<tr>
<td>UT0025917</td>
<td>300</td>
<td>Harley Dome</td>
<td>207.5</td>
<td>0.19</td>
<td>0.16</td>
<td>I</td>
</tr>
<tr>
<td>UT0020419</td>
<td>300</td>
<td>Moab, City of</td>
<td>364</td>
<td>0.987</td>
<td>1.49</td>
<td>M</td>
</tr>
<tr>
<td>UT0023922</td>
<td>300</td>
<td>Rim Mine</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>I-2</td>
</tr>
<tr>
<td>UT0025810</td>
<td>300</td>
<td>Velvet Mine</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>I-2</td>
</tr>
<tr>
<td>UTG640027</td>
<td>411</td>
<td>Ashely Valley WTP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>M-6</td>
</tr>
<tr>
<td>UTG640003</td>
<td>411</td>
<td>Ashley Springs WTP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>M-6</td>
</tr>
<tr>
<td>UT0025348</td>
<td>411</td>
<td>Ashley Valley Water &amp; Sewer, Mechanical</td>
<td>494.4</td>
<td>2.8</td>
<td>5.77</td>
<td>M-5B</td>
</tr>
<tr>
<td>UTG640014</td>
<td>411</td>
<td>Dutch John WTP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>M-5</td>
</tr>
<tr>
<td>UT0000035</td>
<td>411</td>
<td>Golden State Operating</td>
<td>1235</td>
<td>1.09</td>
<td>5.61</td>
<td>I-5B</td>
</tr>
<tr>
<td>UT0024015</td>
<td>411</td>
<td>Intermountain Concrete</td>
<td>257.9</td>
<td>0.018</td>
<td>0.019</td>
<td>I-B</td>
</tr>
<tr>
<td>UTG640023</td>
<td>411</td>
<td>Manilla WTP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>M-6</td>
</tr>
<tr>
<td>UT0020338</td>
<td>411</td>
<td>USBOR-Flaming Gorge Dam</td>
<td>856</td>
<td>0.0012</td>
<td>0.004</td>
<td>M</td>
</tr>
<tr>
<td>UTG130001</td>
<td>411</td>
<td>USFWS-Jones Hole Fish Hatchery</td>
<td>188</td>
<td>6.38</td>
<td>5.001</td>
<td>I-5D</td>
</tr>
<tr>
<td>UT0000124</td>
<td>411</td>
<td>Western Energy Operating-Pan American Lease</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>I-1</td>
</tr>
<tr>
<td>UTG040007</td>
<td>600</td>
<td>Andalex Wildcat Loadout</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>I-2</td>
</tr>
<tr>
<td>UTG790028</td>
<td>600</td>
<td>Bill Barrett Corp-Nine Mile Compressor Station</td>
<td>458.7</td>
<td>0.034</td>
<td>0.065</td>
<td>I</td>
</tr>
<tr>
<td>UTG040011</td>
<td>600</td>
<td>Canyon Fuel Co - Banning Loadout</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>I-2</td>
</tr>
<tr>
<td>UT0025593</td>
<td>600</td>
<td>Canyon Fuel Co.-Dugout Mine</td>
<td>1091.7</td>
<td>0.64</td>
<td>2.91</td>
<td>I-A</td>
</tr>
<tr>
<td>UT0023540</td>
<td>600</td>
<td>Canyon Fuel Co.-Skyline Mine</td>
<td>553.9</td>
<td>3.56</td>
<td>8.22</td>
<td>I-A</td>
</tr>
<tr>
<td>UT0023680</td>
<td>600</td>
<td>Canyon Fuel Co.-Soldier Creek Coal</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>I-2</td>
</tr>
<tr>
<td>UTG040028</td>
<td>600</td>
<td>Carbon Resources-Kinney No. 2 Mine</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>I-2</td>
</tr>
<tr>
<td>UTG640012</td>
<td>600</td>
<td>E. Carbon City-Sunnyside CWTP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>M-6</td>
</tr>
<tr>
<td>UTG640017</td>
<td>600</td>
<td>Green River WTP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>M-6</td>
</tr>
<tr>
<td>UT0025771</td>
<td>600</td>
<td>Green River, City of</td>
<td>4841.3</td>
<td>0.95</td>
<td>19.17</td>
<td>M-6</td>
</tr>
<tr>
<td>UT0023094</td>
<td>600</td>
<td>Hiawatha Coal Co.</td>
<td>583.5</td>
<td>0.192</td>
<td>0.467</td>
<td>I-B</td>
</tr>
<tr>
<td>UTG040019</td>
<td>600</td>
<td>Horizon Coal</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>I-2</td>
</tr>
<tr>
<td>UTG040024</td>
<td>600</td>
<td>Lila Canyon Mine</td>
<td>3682</td>
<td>0.106</td>
<td>1.82</td>
<td>I-A</td>
</tr>
<tr>
<td>UTG040010</td>
<td>600</td>
<td>NEICO</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>I-1</td>
</tr>
<tr>
<td>UTG790014</td>
<td>600</td>
<td>Olsen-Durrant (Former Bulk Fuel Facility)</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>I-1</td>
</tr>
<tr>
<td>UT0000094</td>
<td>600</td>
<td>PacificCorp-Carbon Plant</td>
<td>1980.8</td>
<td>1.87</td>
<td>15.44</td>
<td>I-5B</td>
</tr>
<tr>
<td>UTG640035</td>
<td>600</td>
<td>Price City WTP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>M-6</td>
</tr>
<tr>
<td>UT0021814</td>
<td>600</td>
<td>Price River Water Imp. Dist.</td>
<td>1085</td>
<td>1.52</td>
<td>6.87</td>
<td>M-A</td>
</tr>
<tr>
<td>UTG640034</td>
<td>600</td>
<td>Price River WID</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>M-6</td>
</tr>
<tr>
<td>NPDES PERMIT#</td>
<td>REACH</td>
<td>NAME of Discharging Facility</td>
<td>TDS Conc. AVG.(Mg/L)</td>
<td>Flow Rate AVG.(MGD)</td>
<td>Salt Load Time/Day</td>
<td>Explanation Code</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>------------------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>UTG040005</td>
<td>600</td>
<td>Savage Industries Coal Terminal (CV-Spur)</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>I-2</td>
</tr>
<tr>
<td>UTG040025</td>
<td>600</td>
<td>Star Point Refuse Pile (Sunnyside Cogen)</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>I-1</td>
</tr>
<tr>
<td>UT0024759</td>
<td>600</td>
<td>Sunnyside Cogen.</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>I-2</td>
</tr>
<tr>
<td>UT0025640</td>
<td>600</td>
<td>West Ridge Resources Mine</td>
<td>1030.1</td>
<td>2.32</td>
<td>9.96</td>
<td></td>
</tr>
<tr>
<td>UT0020095</td>
<td>610</td>
<td>Duchesne City Corp.</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>M-2</td>
</tr>
<tr>
<td>UT0025801</td>
<td>610</td>
<td>Duchesne Valley WTP</td>
<td>352.8</td>
<td>0.147</td>
<td>0.216</td>
<td>M-B</td>
</tr>
<tr>
<td>UTG640008</td>
<td>610</td>
<td>Myton Community Water System</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>M-6</td>
</tr>
<tr>
<td>UT0023001</td>
<td>610</td>
<td>Neola Town Water &amp; Sewer Assoc.</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>M-2</td>
</tr>
<tr>
<td>UTG640026</td>
<td>610</td>
<td>Consolodated Coal Co.-Hidden Valley Mine Site</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>I-1</td>
</tr>
<tr>
<td>UTG130003</td>
<td>610</td>
<td>UDWR-Egan/Bicknell Fish Hatchery</td>
<td>93.2</td>
<td>9.43</td>
<td>5.16</td>
<td>I-5D</td>
</tr>
<tr>
<td>UTG130007</td>
<td>600</td>
<td>UDWR-Loa Fish Hatchery</td>
<td>156.8</td>
<td>8.18</td>
<td>5.41</td>
<td>I-5D</td>
</tr>
<tr>
<td>UTG640004</td>
<td>600</td>
<td>USNPS-Glen Canyon Hite WTP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>M-6</td>
</tr>
<tr>
<td>UT0023683</td>
<td>710</td>
<td>Castle Valley SSD-Castle Dale</td>
<td>591.3</td>
<td>0.25</td>
<td>0.616</td>
<td>M-B</td>
</tr>
<tr>
<td>UT0020052</td>
<td>710</td>
<td>Castle Valley SSD-Ferron</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>M-2</td>
</tr>
<tr>
<td>UT0021296</td>
<td>710</td>
<td>Castle Valley SSD-Huntington</td>
<td>3905</td>
<td>0.216</td>
<td>3.52</td>
<td>M-2</td>
</tr>
<tr>
<td>UTG640030</td>
<td>710</td>
<td>Emery WTP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>M-6</td>
</tr>
<tr>
<td>UTG640039</td>
<td>710</td>
<td>Ferron WTP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>M-6</td>
</tr>
<tr>
<td>UT0024368</td>
<td>710</td>
<td>Genwal Resources, Inc.-Crandall Canyon Mine</td>
<td>550.2</td>
<td>0.437</td>
<td>1.002</td>
<td>I-A</td>
</tr>
<tr>
<td>UTG640040</td>
<td>710</td>
<td>Huntington WTP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>M-6</td>
</tr>
<tr>
<td>UT0025534</td>
<td>710</td>
<td>James Canyon Well System</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>I-2</td>
</tr>
<tr>
<td>UTG640031</td>
<td>710</td>
<td>Orangeville WTP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>M-6</td>
</tr>
<tr>
<td>UT0023604</td>
<td>710</td>
<td>PacifCorp-Deer Creek Mine</td>
<td>546.1</td>
<td>1.55</td>
<td>3.53</td>
<td>I-5B</td>
</tr>
<tr>
<td>UTG640009</td>
<td>710</td>
<td>PacifCorp-Hunter Plant Coal Prep &amp; Blend Facility</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>I-1</td>
</tr>
<tr>
<td>UT0025607</td>
<td>710</td>
<td>PacifCorp-Huntington Plant</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>I-1</td>
</tr>
<tr>
<td>UT0025728</td>
<td>710</td>
<td>PacifCorp-Trail Mountain Mine</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>I-2</td>
</tr>
<tr>
<td>UT0022896</td>
<td>710</td>
<td>PacifCorp-Wilberg Mine</td>
<td>682.8</td>
<td>0.028</td>
<td>0.079</td>
<td>1</td>
</tr>
<tr>
<td>UTG640019</td>
<td>802</td>
<td>Blanding Culinary Water Treatment</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>M-6</td>
</tr>
<tr>
<td>UT0024503</td>
<td>802</td>
<td>Monticello</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>M-2</td>
</tr>
<tr>
<td>UTG640015</td>
<td>802</td>
<td>Monticello City (Culinary WTP)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>M-6</td>
</tr>
<tr>
<td>UT0025992</td>
<td>900</td>
<td>Alton Coal Development</td>
<td>537</td>
<td>0.011</td>
<td>0.024</td>
<td>1</td>
</tr>
<tr>
<td>UT0025224</td>
<td>905</td>
<td>Springdale</td>
<td>958.8</td>
<td>0.419</td>
<td>1.67</td>
<td>M-A</td>
</tr>
<tr>
<td>UTG640021</td>
<td>905</td>
<td>St. George WTP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>M-6</td>
</tr>
<tr>
<td>UT0024686</td>
<td>905</td>
<td>St. George, City of</td>
<td>1218.6</td>
<td>9.31</td>
<td>47.31</td>
<td>M-5B</td>
</tr>
<tr>
<td>WY0000027</td>
<td>401</td>
<td>Green River-Rock Springs JPW Water Plant</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>M-2</td>
</tr>
<tr>
<td>WY0000086</td>
<td>401</td>
<td>Daniel Fish Hatchery</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>I-1</td>
</tr>
<tr>
<td>WY0000094</td>
<td>401</td>
<td>Boulder Rearing Station</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I-5D</td>
</tr>
<tr>
<td>WY0020133</td>
<td>401</td>
<td>Big Piney Wastewater Lagoon</td>
<td>93.3</td>
<td>0.07</td>
<td>0.03</td>
<td>M-A</td>
</tr>
<tr>
<td>WY0020656</td>
<td>401</td>
<td>Pinedale Wastewater Lagoons</td>
<td>166</td>
<td>0.73</td>
<td>0.51</td>
<td>M-4B</td>
</tr>
<tr>
<td>WY0021806</td>
<td>401</td>
<td>Superior Waste Water Lagoon</td>
<td>225</td>
<td>-</td>
<td>0</td>
<td>M-B</td>
</tr>
<tr>
<td>WY0021997</td>
<td>401</td>
<td>Marblenton Wastewater Lagoon</td>
<td>231</td>
<td>0.3</td>
<td>0.3</td>
<td>M-A</td>
</tr>
<tr>
<td>WY0022080</td>
<td>401</td>
<td>LaBarge Wastewater Lagoon</td>
<td>578</td>
<td>0.024</td>
<td>0.06</td>
<td>M-B</td>
</tr>
<tr>
<td>WY0022128</td>
<td>401</td>
<td>B &amp; R Mobile Home Village</td>
<td>400</td>
<td>0.05</td>
<td>0.08</td>
<td>M-B</td>
</tr>
<tr>
<td>WY0022357</td>
<td>401</td>
<td>Rock Springs WWTP</td>
<td>812</td>
<td>2.41</td>
<td>8.16</td>
<td>M-5B</td>
</tr>
<tr>
<td>WY0023124</td>
<td>401</td>
<td>Daniels Mobile Home Park</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>M-2</td>
</tr>
<tr>
<td>WY0023825</td>
<td>401</td>
<td>Stansbury Mine</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>I-2</td>
</tr>
<tr>
<td>WY0028886</td>
<td>401</td>
<td>Leucite Hills Mine</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I-2</td>
</tr>
<tr>
<td>WY0003026</td>
<td>401</td>
<td>Black Butte Mine</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I-2</td>
</tr>
<tr>
<td>WY0003050</td>
<td>401</td>
<td>Jim Bridger Mine</td>
<td>1558</td>
<td>1</td>
<td>1</td>
<td>I-B</td>
</tr>
<tr>
<td>WY0054224</td>
<td>401</td>
<td>Jensen Disposal Facility - New Fork Discharge</td>
<td>128</td>
<td>0.17</td>
<td>0.09</td>
<td>I-1</td>
</tr>
<tr>
<td>WY0054232</td>
<td>401</td>
<td>Jensen Disposal Facility - Sand Draw Discharge</td>
<td>150</td>
<td>-</td>
<td>-</td>
<td>I-2</td>
</tr>
<tr>
<td>WY0020443</td>
<td>411</td>
<td>Green River Wastewater Lagoon</td>
<td>355</td>
<td>1.05</td>
<td>1.61</td>
<td>M-A</td>
</tr>
<tr>
<td>WY0056499</td>
<td>411</td>
<td>Pioneer Cryogenic Gas Plant</td>
<td>2000</td>
<td>0.025</td>
<td>0.22</td>
<td>1</td>
</tr>
<tr>
<td>WY0022896</td>
<td>411</td>
<td>Mountain View Wastewater Lagoon</td>
<td>393</td>
<td>0.2</td>
<td>0.33</td>
<td>M-B</td>
</tr>
<tr>
<td>WY0000051</td>
<td>411</td>
<td>Kemmerer Mine</td>
<td>0</td>
<td>0</td>
<td>0.26</td>
<td>I-B</td>
</tr>
<tr>
<td>NPDES PERMIT#</td>
<td>REACH</td>
<td>NAME of Discharging Facility</td>
<td>TDS Conc. AVG(Mg/L)</td>
<td>Flow Rate AVG(MGD)</td>
<td>Salt Load Tons/Day</td>
<td>Explanation Code</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>-------------------------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>WY0000116</td>
<td>411</td>
<td>Kemmerer Water Treatment Plant</td>
<td>500</td>
<td>0.31</td>
<td>0.98</td>
<td>M-4B</td>
</tr>
<tr>
<td>WY0020117</td>
<td>411</td>
<td>Lyman Wastewater Lagoon</td>
<td>508</td>
<td>0.3</td>
<td>0.56</td>
<td>M-B</td>
</tr>
<tr>
<td>WY0020311</td>
<td>411</td>
<td>Naughton Plant</td>
<td>1300</td>
<td>2.32</td>
<td>19</td>
<td>I-5B</td>
</tr>
<tr>
<td>WY0020320</td>
<td>411</td>
<td>Kemmerer Wastewater Treatment</td>
<td>735</td>
<td>0.31</td>
<td>0.95</td>
<td>M-5B</td>
</tr>
<tr>
<td>WY0022071</td>
<td>411</td>
<td>Fort Bridger Sewer District</td>
<td>562</td>
<td>0.2</td>
<td>0.47</td>
<td>M-B</td>
</tr>
<tr>
<td>WY0022373</td>
<td>411</td>
<td>Granger Wastewater Lagoon</td>
<td>0</td>
<td>0</td>
<td>M-2</td>
<td></td>
</tr>
<tr>
<td>WY0032897</td>
<td>411</td>
<td>Carter Creek Gas Plant</td>
<td>0</td>
<td>0</td>
<td>I-2</td>
<td></td>
</tr>
<tr>
<td>WY0036153</td>
<td>411</td>
<td>Ft. Bridger Travel Stop</td>
<td>0</td>
<td>0</td>
<td>I-2</td>
<td></td>
</tr>
<tr>
<td>WY0034811</td>
<td>411</td>
<td>Haystack Coal</td>
<td>0</td>
<td>0</td>
<td>I-2</td>
<td></td>
</tr>
<tr>
<td>WY0021938</td>
<td>500</td>
<td>Dixon Wastewater Lagoon</td>
<td>269</td>
<td>0.05</td>
<td>0.04</td>
<td>M-A</td>
</tr>
<tr>
<td>WY0022888</td>
<td>500</td>
<td>Baggs Wastewater Lagoons</td>
<td>733</td>
<td>0.06</td>
<td>0.19</td>
<td>M-B</td>
</tr>
<tr>
<td>WY0042145</td>
<td>500</td>
<td>Cow Creek Unit</td>
<td>2130</td>
<td>0.05</td>
<td>0.44</td>
<td>I</td>
</tr>
<tr>
<td>WY0054038</td>
<td>500</td>
<td>Cow Creek CBNG Project</td>
<td>0</td>
<td>0</td>
<td>I-2</td>
<td></td>
</tr>
<tr>
<td>WY0056847</td>
<td>500</td>
<td>Morgan Run Unit II</td>
<td>0</td>
<td>0</td>
<td>I-2</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX D

EPA NPDES Permits List
NPDES permits are reviewed under two different criteria under Forum policy; these being municipal and industrial. In order for a permittee to be in compliance under the municipal criteria, the increase in concentration between inflow and outflow cannot be greater than 400 mg/L. Forum industrial criteria requires that no industrial user discharges more than 1.00 ton/day. Under Forum policy there can be granted exceptions to these limitations by the states. The following gives an explanation of the current status of the NPDES permits. Because at any given time many of the permits identified in this list are being reviewed, reissued, and/or terminated, and new discharge permits are being filed, this list must be considered as being subject to frequent change.

### MUNICIPAL

1. **(M)** Municipal user in compliance with Forum policy.
2. **(M-A)** Municipal user in compliance with the 400 mg/L incremental increase provision.
3. **(M-B)** Municipal user in compliance with the 1 ton per day or 366 tons per year provision for intermittent discharges.
4. **(M-1)** Permit has expired or been revoked. No discharge.
5. **(M-2)** Permittee did not discharge during the reporting period.
6. **(M-3)** Measurement of TDS is not currently required, but the state and/or EPA plans to require measurements of both inflow and outflow when the permit is reissued.

**Measurements of inflow are not consistent with Forum policy:**

- **(M-4A)** Therefore, it is not known whether or not this municipal user is in compliance.
- **(M-4B)** However, since outflow concentration is less than 500 mg/L it is presumed that this permit is not in violation of the ≤400 mg/L increase.

- **(M-5)** Permittee is in violation of Forum policy in that there is an increase in concentration of >400 mg/L over the source waters. No provision has been made allowing this violation of Forum policy.
- **(M-5A)** The state and/or EPA is currently working to bring permittee into compliance.
- **(M-5B)** Though discharge is >400 mg/L over source waters, in keeping with Forum policy the permittee has demonstrated the salt reduction is not practicable and the requirement has been waived.
- **(M-6)** This permit requires no discharge or discharge only under rare and extreme hydrologic conditions. Thus, flow and concentration measurements are not required.
- **(M-7)** Insufficient data to know the current status of this permit.

### INDUSTRIAL

1. **(I)** Industrial user in compliance with Forum policy.
2. **(I-A)** Industrial user in compliance with the Forum’s salinity offset policy.
3. **(I-B)** Industrial user in compliance with the 1 ton per day or 366 tons per year provision for intermittent discharges.
4. **(I-1)** Permit has expired or been revoked. No discharge.
5. **(I-2)** Permittee did not discharge during the reporting period.
6. **(I-3)** Measurement of TDS is not currently required, but the state and/or EPA plans to require measurements of both volume and concentration of outflow when the permit is reissued.
7. **(I-4)** Either concentration or volume of outflow are not currently being reported, thus the permittee is in violation of Forum policy. It is not known if the discharge is in excess of the <1.00 ton/day requirement.

- **(I-5)** Permittee is in violation of Forum policy in that discharge of salts is >1.00 ton/day. No provision has been made allowing this violation of Forum policy.
- **(I-5A)** The state and/or EPA is currently working to bring permittee into compliance.
- **(I-5B)** Though discharge is >1.00 ton/day, in keeping with Forum policy the permittee has demonstrated the salt reduction is not practicable and the requirement has been waived.
- **(I-5C)** The use of ground water under this permit is for geothermal energy and only heat is extracted. The intercepted salt and water are naturally tributary to the Colorado River System and hence, this discharge does not increase salt in the river. The permit is covered by the Forum's policy on intercepted ground waters.
- **(I-5D)** This permit is in compliance with the Forum’s policy for fish hatcheries. The use of the water is a one-time pass through, and the incremental increase in salinity is ≤ 100 mg/L.
- **(I-5E)** This permit is for the interception and passage of ground waters and thus is excepted under the Forum's policy on intercepted ground waters.

- **(I-6)** This permit requires no discharge or discharge only under rare and extreme hydrologic conditions. Thus, flow and concentration measurements are not required.
- **(I-7)** Insufficient data to know the current status of this permit.

---

* Permits that have been expired or revoked and listed with the M-1 and I-1 explanation codes shall be removed from the NPDES list during the subsequent triennial review.
In order to provide a better understanding of the location of the various NPDES permits and the geographical sequence in the Colorado River System, each of the following NPDES permits is identified with a Colorado River reach number. The reach numbers have their origin in the old CRSS river model. Though this model is no longer used, the reach numbers assist in understanding the general location of the permits. The reaches are defined as:

<table>
<thead>
<tr>
<th>Reach</th>
<th>Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Upper Main Stem</td>
<td>from headwaters of Colorado River to Colorado River near Cameo</td>
</tr>
<tr>
<td>190</td>
<td>Taylor Park</td>
<td>from headwaters of Gunnison River to above Blue Mesa Reservoir</td>
</tr>
<tr>
<td>200</td>
<td>Blue Mesa</td>
<td>from above Blue Mesa Reservoir to below Blue Mesa Dam</td>
</tr>
<tr>
<td>210</td>
<td>Morrow Point</td>
<td>from below Blue Mesa Dam to Crystal Reservoir</td>
</tr>
<tr>
<td>220</td>
<td>Lower Gunnison</td>
<td>from Crystal Reservoir to confluence with Colorado River</td>
</tr>
<tr>
<td>300</td>
<td>Grand Valley</td>
<td>from Colorado River near Cameo to confluence with Green River</td>
</tr>
<tr>
<td>310</td>
<td>Dolores River</td>
<td>from headwaters of Dolores River to confluence with Colorado River</td>
</tr>
<tr>
<td>401</td>
<td>Fontenelle</td>
<td>from headwaters of Green River to Green River near Green River, WY</td>
</tr>
<tr>
<td>411</td>
<td>Flaming Gorge</td>
<td>from Green River near Green River, WY to confluence with White and Duchesne Rivers</td>
</tr>
<tr>
<td>500</td>
<td>Yampa River</td>
<td>from headwaters of Yampa River to confluence with Green River</td>
</tr>
<tr>
<td>510</td>
<td>White River</td>
<td>from headwaters of White River to confluence with Green River</td>
</tr>
<tr>
<td>600</td>
<td>Green River</td>
<td>Green River from confluence with White and Duchesne Rivers to confluence with Colorado River</td>
</tr>
<tr>
<td>610</td>
<td>Duchesne River</td>
<td>from headwaters of Duchesne River to confluence with Green River</td>
</tr>
<tr>
<td>700</td>
<td>Lake Powell</td>
<td>Colorado River from confluence of with Green River to Lees Ferry</td>
</tr>
<tr>
<td>710</td>
<td>San Rafael River</td>
<td>from headwaters of San Rafael River to confluence with Green River</td>
</tr>
<tr>
<td>801</td>
<td>Upper San Juan River</td>
<td>from headwaters of San Juan River to San Juan near Bluff</td>
</tr>
<tr>
<td>802</td>
<td>Lower San Juan River</td>
<td>from San Juan near Bluff to confluence with Lake Powell</td>
</tr>
<tr>
<td>900</td>
<td>Glen Canyon to Lake Mead</td>
<td>Colorado River from Lees Ferry to backwaters of Lake Mead</td>
</tr>
<tr>
<td>905</td>
<td>Virgin River</td>
<td>from headwaters of Virgin River to backwaters of Lake Mead</td>
</tr>
<tr>
<td>910</td>
<td>Lake Mead</td>
<td>from backwaters of Lake Mead to Colorado River below Hoover Dam</td>
</tr>
<tr>
<td>920</td>
<td>Lake Mohave</td>
<td>Colorado River from below Hoover Dam down to I-40 bridge</td>
</tr>
<tr>
<td>930</td>
<td>Lake Havasu</td>
<td>Colorado River from I-40 bridge to below Parker Dam</td>
</tr>
<tr>
<td>940</td>
<td>Parker Dam to Imperial Dam</td>
<td>Colorado River from below Parker Dam to above Imperial Dam</td>
</tr>
<tr>
<td>945</td>
<td>Imperial Dam</td>
<td>Colorado River from above Imperial Dam to Gila and Yuma users</td>
</tr>
</tbody>
</table>
### EPA ADMINISTERED NPDES PERMITS

**Colorado River Basin Salinity Control Forum**  
January 1, 2014 through December 31, 2016

<table>
<thead>
<tr>
<th>NPDES PERMIT #</th>
<th>REACH</th>
<th>NAME of Discharging Facility</th>
<th>TDS Conc. AVG. (Mg/L)</th>
<th>Flow Rate AVG. (MGD)</th>
<th>Salt Load Tons/Day</th>
<th>Explanation Code</th>
</tr>
</thead>
</table>

* Permit issued to a federal agency or an Indian tribe and the responsibility of EPA  
** Issued by a tribal entity with delegation of the NPDES program

#### Region 8 Permits

Permits in New Mexico are issued by the U.S. EPA and certified by the State of New Mexico Environment Department as reported in Appendix B.

<table>
<thead>
<tr>
<th>PERMIT</th>
<th>REACH</th>
<th>NAME of Discharging Facility</th>
<th>TDS Conc. AVG. (Mg/L)</th>
<th>Flow Rate AVG. (MGD)</th>
<th>Salt Load Tons/Day</th>
<th>Explanation Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO00034975*</td>
<td>190</td>
<td>USNS - Colorado National Monument</td>
<td>M-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO0000086*</td>
<td>220</td>
<td>HOTCHKISS NTL. FISH HATCHERY</td>
<td>19</td>
<td>4.31</td>
<td>0.341</td>
<td>I-50</td>
</tr>
<tr>
<td>CO0022835*</td>
<td>801</td>
<td>SOUTHERN UTE INDIAN TRIBE(E)</td>
<td>323</td>
<td>0.321</td>
<td>0.432</td>
<td>M</td>
</tr>
<tr>
<td>CO0034398*</td>
<td>801</td>
<td>USDI NPS-MESA VERDE NAT PARK (E)</td>
<td>326</td>
<td>0.034</td>
<td>0.046</td>
<td>M</td>
</tr>
<tr>
<td>CO0034622*</td>
<td>801</td>
<td>USDI NPS-MESA VERDE NAT PARK (E)</td>
<td>0.044</td>
<td></td>
<td></td>
<td>M-3</td>
</tr>
<tr>
<td>CO0034665*</td>
<td>801</td>
<td>FOUR CORNER MATERIALS</td>
<td>154</td>
<td>1.251</td>
<td>0.803</td>
<td></td>
</tr>
<tr>
<td>CO0034959*</td>
<td>801</td>
<td>IGNAICIO PEAK WASTEWATER LAGOON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO0034967*</td>
<td>801</td>
<td>SOUTHERN UTE WATER TREATMENT PLNT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COG589201*</td>
<td>801</td>
<td>TOWAOC WASTEWATER LAGOON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COG589202*</td>
<td>801</td>
<td>WHITE MESA WASTEWATER LAGOONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COG589203*</td>
<td>801</td>
<td>TOWAOC WASTEWATER LAGOON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UT0000167*</td>
<td>510</td>
<td>American Gilsonite Co.</td>
<td>2,714</td>
<td>0.385</td>
<td>4.357</td>
<td>I-7</td>
</tr>
<tr>
<td>UT0025259*</td>
<td>510</td>
<td>American Gilsonite Co.</td>
<td></td>
<td></td>
<td>19.080</td>
<td>I-2</td>
</tr>
</tbody>
</table>

#### Region 9 Permits

<table>
<thead>
<tr>
<th>PERMIT</th>
<th>REACH</th>
<th>NAME of Discharging Facility</th>
<th>TDS Conc. AVG. (Mg/L)</th>
<th>Flow Rate AVG. (MGD)</th>
<th>Salt Load Tons/Day</th>
<th>Explanation Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ0222560*</td>
<td>900</td>
<td>BIA/KEAMS CANYON</td>
<td>0.03</td>
<td></td>
<td></td>
<td>M-1</td>
</tr>
<tr>
<td>AZ0024619*</td>
<td>900</td>
<td>HOPI INDIAN NATION/ UPPER VILLAGE OF MOENKOPI WWTP</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>AZ0021415*</td>
<td>940</td>
<td>COLORADO RIVER JOINT VENTURE</td>
<td>&lt;400</td>
<td>1.2</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>NN0110094**</td>
<td>801</td>
<td>BIA/TEEC NOS POS TIIS NAS BAZ SCHOOL</td>
<td>&lt;400</td>
<td>0.08</td>
<td></td>
<td>M-1</td>
</tr>
<tr>
<td>NN0000019</td>
<td>801</td>
<td>APS Four Corners Power Plant</td>
<td></td>
<td></td>
<td>4.2</td>
<td>I-7</td>
</tr>
<tr>
<td>NN0028193</td>
<td>801</td>
<td>NTEC Navajo Mine</td>
<td></td>
<td></td>
<td></td>
<td>I-7</td>
</tr>
<tr>
<td>NN0020869</td>
<td>801</td>
<td>BIA Crystal Boarding School</td>
<td>0.015</td>
<td></td>
<td></td>
<td>M-6</td>
</tr>
<tr>
<td>NN0021016</td>
<td>801</td>
<td>BIA Lake Valley Boarding School</td>
<td>0.012</td>
<td></td>
<td></td>
<td>M-6</td>
</tr>
<tr>
<td>NN0020800</td>
<td>801</td>
<td>BIA Nenahnezad Community School</td>
<td>0.024</td>
<td></td>
<td></td>
<td>M-6</td>
</tr>
<tr>
<td>NN0020991</td>
<td>801</td>
<td>BIA Pueblo Pintado</td>
<td>0.016</td>
<td></td>
<td></td>
<td>M-6</td>
</tr>
<tr>
<td>NN0028584</td>
<td>801</td>
<td>Consolidation Coal Co Burnham Mine</td>
<td></td>
<td></td>
<td></td>
<td>I-7</td>
</tr>
<tr>
<td>NN0020621</td>
<td>801</td>
<td>NTUA Shiprock</td>
<td>1</td>
<td></td>
<td></td>
<td>M-6</td>
</tr>
<tr>
<td>NN0020265**</td>
<td>802</td>
<td>NTUA/CHINLE</td>
<td>&lt;400</td>
<td>0.783</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>NN0020281**</td>
<td>802</td>
<td>NTUA/KAYENTA</td>
<td>&lt;400</td>
<td>0.9</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>NN0110043**</td>
<td>802</td>
<td>BIA/NATZILIN BOARDING SCHOOL</td>
<td>&lt;400</td>
<td>0.013</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>NN0020133</td>
<td>803</td>
<td>NACOGDOCHES OIL &amp; GAS</td>
<td>&lt;400</td>
<td>0.01</td>
<td></td>
<td>I-1</td>
</tr>
<tr>
<td>NN0020250**</td>
<td>900</td>
<td>NTUA/TUBA CITY</td>
<td>&lt;400</td>
<td>1.1</td>
<td></td>
<td>M-6</td>
</tr>
<tr>
<td>NN0021555**</td>
<td>900</td>
<td>NTUA/WINDOW ROCK-FT.DEFIANCE</td>
<td>&lt;400</td>
<td>1.32</td>
<td></td>
<td>M-6</td>
</tr>
<tr>
<td>NN0021610**</td>
<td>900</td>
<td>CAMERON TRADING POST</td>
<td>0.054</td>
<td></td>
<td></td>
<td>M-6</td>
</tr>
<tr>
<td>NN0022179**</td>
<td>900</td>
<td>PEABODY WESTERN COAL COMPANY/BLACK MESA COMPLEX</td>
<td></td>
<td></td>
<td></td>
<td>M-6</td>
</tr>
<tr>
<td>NN0022195**</td>
<td>900</td>
<td>NTUA/GANADO</td>
<td>&lt;400</td>
<td>0.4</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>NN0024228**</td>
<td>900</td>
<td>NTUA/PINON WWTP</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>NN0020337**</td>
<td>900</td>
<td>BIA/LOW MOUNTAIN BOARDING SCHOOL</td>
<td>&lt;400</td>
<td>0.014</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>NN0110167**</td>
<td>900</td>
<td>BIA/HUNTERS POINT SCHOOL</td>
<td>&lt;400</td>
<td>0.014</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>NN0110183**</td>
<td>900</td>
<td>BIA/SEBA DALKAI BOARDING SCHOOL</td>
<td>&lt;400</td>
<td>0.01</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>NN0020958</td>
<td>900</td>
<td>BIA Wingate School</td>
<td>0.1</td>
<td></td>
<td></td>
<td>M-6</td>
</tr>
<tr>
<td>NN0029386</td>
<td>900</td>
<td>Chevron Mining, Inc. / McKinley Mine</td>
<td></td>
<td></td>
<td></td>
<td>I-7</td>
</tr>
<tr>
<td>NN0030335</td>
<td>900</td>
<td>NTUA Navajo Townsite</td>
<td>0.32</td>
<td></td>
<td></td>
<td>M-6</td>
</tr>
<tr>
<td>NN0030325</td>
<td>900</td>
<td>Ramah Navajo School Board - Pine Hill</td>
<td>0.035</td>
<td></td>
<td></td>
<td>M-6</td>
</tr>
<tr>
<td>NN0025178</td>
<td>900</td>
<td>RIG Inc. - Gouldings Lodge</td>
<td>0.072</td>
<td></td>
<td></td>
<td>M-6</td>
</tr>
<tr>
<td>NN0030342</td>
<td>900</td>
<td>NTUA Canee Valley</td>
<td>0.001</td>
<td></td>
<td></td>
<td>M-1</td>
</tr>
<tr>
<td>NN0030339**</td>
<td>900</td>
<td>BIA/LUKACHUKAI COMMUNITY SCHOOL</td>
<td></td>
<td></td>
<td></td>
<td>M-6</td>
</tr>
<tr>
<td>NN0030341**</td>
<td>900</td>
<td>BIA/TORREON DAY SCHOOL</td>
<td></td>
<td></td>
<td></td>
<td>M-6</td>
</tr>
<tr>
<td>NN0030343</td>
<td>900</td>
<td>NTUA Northern Edge Casino</td>
<td>0.03</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>NN0030344</td>
<td>900</td>
<td>NTUA Twin Arrows Casino</td>
<td>0.13</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>NN0030345</td>
<td>900</td>
<td>Navajo Engineering &amp; Construction Authority (NECA)</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>NN0030346</td>
<td>900</td>
<td>Mariano Lake Waterline Project</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
</tbody>
</table>
APPENDIX E

Colorado River Simulation System Model Description
COLORADO RIVER SIMULATION SYSTEM
MODEL DESCRIPTION

The Colorado River Simulation System (CRSS) is the official long-term basin-wide planning model used by Reclamation’s Upper Colorado and Lower Colorado Regions to simulate future Colorado River system conditions. The model framework used for this process is commercial software called RiverWare™, a generalized river basin modeling software package developed by the University of Colorado through a cooperative arrangement with Reclamation, the Tennessee Valley Authority and the U.S. Army Corps of Engineers.

CRSS was originally developed by Reclamation in the early 1970s and was implemented in RiverWare™ in 1996. The model projects future river and reservoir conditions on a monthly timestep over a period of decades into the future. CRSS has been used for most major modeling studies on the Colorado River, including several National Environmental Policy Act Environmental Impact Statements (EIS), the Colorado River Interim Guidelines for Lower Basin Shortages and Coordinated Operations for Lake Powell and Lake Mead EIS. CRSS was also the primary modeling tool for system projections in Reclamation’s Colorado River Basin Water Supply and Demand Study under WaterSMART.

There are numerous inputs to, and assumptions made by, CRSS with respect to future conditions on the Colorado River. The input data for CRSS includes hydrologic inflows, various physical process parameters such as the evaporation rates for each reservoir, initial reservoir conditions, and the future diversion and depletion schedules for entities in the Basin States and for Mexico. These future schedules are based on demand and depletion projections prepared and submitted by the Basin States. The rules of operation of the Colorado River mainstream reservoirs, including Lakes Powell and Mead, are also provided as input to the model. These sets of operating rules describe how water is released and delivered under various hydrologic and system conditions.

As the period of analysis increases, the uncertainty in these inputs and assumptions also increases. Therefore, a large amount of uncertainty in the corresponding outputs is expected. Consequently, CRSS is not used to predict future conditions, but rather to simulate what might occur. CRSS is especially useful in making a relative comparison between hydrologic and salinity concentration impacts from different alternatives by holding constant most inputs, as well as other key modeling assumptions, so as to isolate the differences due to each alternative. Additionally, sensitivity analyses that answer the question, “What is the sensitivity of the output to a particular set of inputs or assumptions?” are commonly performed.

Future conditions of the Colorado River system are most sensitive to assumptions with respect to future inflows. Because it is impossible to predict the actual future inflows into the system, a range of possible future inflows are analyzed and used to quantify the probability of occurrences of particular events (e.g., higher or lower lake elevations). This technique involves running multiple hydrologic sequences for each scenario or operational alternative. These sequences can be derived from a number of techniques. Reclamation has used techniques based on (1) the historical observed natural flow record (1906-2012), (2) the paleo record derived from tree-rings...
The CRSS RiverWare™ model includes a salinity module to analyze salinity concentrations throughout the Colorado River Basin. The salinity model simulates the effects of water development projects and the salinity control program (SCP) on future salinity concentration levels in the Colorado River. The salinity control criteria are purposely designed to be long-term and non-degradational goals, rather than exceedance standards such as those used for industry or drinking water. Efforts of the SCP are designed to meet the criteria by implementing, as needed, the most cost effective salinity control projects. This ensures that the salinity control numeric criteria will continue to be met in the future, even with the salinity impacts produced by increasing Upper Basin depletions.

Salinity module inputs include salinity accompanying hydrologic inflows, initial reservoir salinity concentrations, estimates of salt loading due to agricultural return flows and salt removed by salinity control projects. Model results simulate annual average salinity concentrations at the numeric criteria stations downstream of Hoover Dam and Parker Dam and at Imperial Dam and can be used to analyze the probability of exceeding the numeric criteria in future years.

The salinity module within CRSS is intended for long-term (15 to 20 years) simulation and it is highly sensitive to initial conditions during the first 10 to 12 years. The model assumes salinity is a conservative water quality parameter, and reservoirs are modeled as fully mixed systems.

**Modeling Assumptions for the 2017 Triennial Review**

The following lists major modeling assumptions in a bulleted format for the 2017 Triennial Review. These assumptions reflect the January 2017 Configuration of CRSS. Documents referenced in these assumptions include the Final Environmental Impact Statement (Final EIS), Record of Decision (ROD) for Colorado River Interim Guidelines for Lower Basin Shortages and the Coordinated Operations for Lake Powell and Lake Mead and the Prairie and Rajagopalan (2007) article entitled “A basin wide stochastic salinity model.” Refer to these documents for additional detail regarding specific assumptions. All runs were performed using the CRSS long-term planning model.

**Key Assumptions Common to All Scenarios Updated Since the 2014 Triennial Review**

- Simulations performed from January 2017 through December 2035 at a monthly time step
- Initial conditions for all reservoirs are 2016 end-of-calendar year (EOCY) actual values
  - Includes pool elevation and reservoir salt concentration
- For modeling purposes, certain provisions (i.e., Shortage, Surplus, and Coordinated Operations) of the Interim Guidelines as adopted in the ROD (Section XI.G.) were extended from 2026 through 2035.
- Future water demands for Upper Division water users are based on depletion projections prepared by the Upper Division states in coordination with the Upper Colorado River Commission (UCRC) dated December 2007.

(762-2005), and (3) 112 downscaled Global Climate Model (GCM) projections based on 16 unique GCMs.
Future water demands for the Lower Division States (during Normal Conditions) are according to the schedules provided for the 2007 FEIS for the Colorado River Interim Guidelines modeling with updates to Nevada’s demands in December 2016.

Intentionally Created Surplus (ICS)
- ICS creation and delivery schedules were updated in 2009, 2012, and 2016 by the Lower Division states. Initial ICS balances were updated January 2017
- Rules for ICS activity remain unchanged from the ROD

Water Quality Improvement Projects (WQIP) have been updated to reflect historical and projected control levels.

**Description of Four 2017 Triennial Review Scenarios**

<table>
<thead>
<tr>
<th>Without Additional Controls 2017: 1.33M Tons</th>
<th>1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• No additional future control beyond 2017</td>
<td></td>
</tr>
<tr>
<td>• 1,330,000 tons of control in 2035</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plan of Implementation 2020: 1.39M Tons</th>
<th>2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• No additional controls after this review period beyond 2020</td>
<td></td>
</tr>
<tr>
<td>• 1,394,000 tons of control in 2035</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plan of Implementation 2035: 1.66M Tons</th>
<th>3.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Controls associated with recent Program funding levels</td>
<td></td>
</tr>
<tr>
<td>• 1,662,000 tons of control in 2035</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plan of Implementation 2035: 1.79M Tons</th>
<th>4.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Controls associated with preferred Program control levels</td>
<td></td>
</tr>
<tr>
<td>• 1,786,000 tons of control in 2035</td>
<td></td>
</tr>
</tbody>
</table>

**Other Assumptions Common to All Scenarios**

1. Future hydrologic inflows are generated at 29 separate inflow points or nodes in the Colorado River watershed using the Indexed Sequential Method (Final Interim Guidelines EIS, Chapter 4.2.5). This technique is applied to the 107-year (1906 through 2012) historical record of calculated natural flows to produce 107 hydrologic inflow sequences or traces for each scenario.

2. Future salinity concentrations are generated at 20 nodes in the Colorado River watershed using Reclamation’s nonparametric natural salt model. The natural salt model includes annual (Upper Basin) and monthly (Lower Basin) regressions built with 1971-2012 natural flow and salt mass data. The natural salt model provides salt mass based on flows. Salt concentrations are computed from flow and salt mass. Prairie and Rajagopalan (2007) describes the methods used in the basin-wide salinity modeling framework.

3. Annual salt loading values from agriculture are assumed constant throughout the simulation horizon. Variations in salt mass resulting from variation in flow conditions (high and low) are not considered; therefore, when computing natural salt we expect negative natural salt values.
4. Reservoirs upstream of Lake Powell are generally operated to meet monthly storage targets or downstream demands (Final EIS, Appendix A).

5. Lake Mead flood control procedures are always in effect.

6. Except during flood control conditions, Lake Mead is operated to meet downstream demands under the applicable water supply condition (Normal, Surplus, or Shortage).

7. If Lake Mead elevation falls below 1,000 feet, delivery to the Southern Nevada Water Authority (SNWA) is reduced to zero for that month.

8. Lake Mohave and Lake Havasu are operated in accordance with their existing rule curves.

9. Future water demands for Lower Division water users are based on depletion schedules prepared by the Lower Division states for the Final EIS (Final EIS, Appendix D).

10. Future water deliveries to Mexico are made as follows:
    a. CRSS accounts for the entire delivery to Mexico at the Northerly International Boundary (NIB).
    b. Mexico’s annual delivery schedule is set to 1,500 kaf.
    c. An additional 70 kaf is delivered at the NIB for a total annual delivery to Mexico of 1,570 kaf.
    d. Mexico’s annual delivery schedule is set to 1,700 kaf during Flood Control.

11. Non-storable flows arriving at NIB are assumed to be 70 kaf (1964 through 2015 average excluding flood years) for all years except the first year of the model simulation. In the first model year, the non-storable flows arriving at NIB are assumed to be 30 kaf. Bypass of return flows from the Wellton-Mohawk Irrigation and Drainage District to the Cienega de Santa Clara in Mexico is assumed to be 113 kaf annually (historical average from 1990 through 2016) and is not counted as part of the 1944 Treaty delivery to Mexico.

12. Yuma Desalting Plant is assumed to not operate.
APPENDIX F

Salinity Economic Impact Model Executive Summary
The Salinity Economic Impact Model (SEIM) estimates the annual quantified damages (economic impacts) incurred in metropolitan and agricultural areas in the Lower Colorado River Basin (LCRB) that depend, either wholly or in part, on Colorado River water.

The SEIM is the current version of a salinity model that was originally developed in the late 1980s by the Milliken Chapman Research Group, Inc. (Lohman, 1988) to quantify the economic impacts of salinity from projects improving water efficiency in the Lower Colorado River basin. Strategies to improve agricultural water efficiency included concrete-lining canals and retrofitting flood irrigation systems with drip or sprinkler irrigation systems. Prior to the use of salinity models such as the SEIM, the impacts of the salinity reduction on the economies of Lower Colorado River water users were unknown.

The model development in the 1980s was funded by the Bureau of Reclamation to quantify the efforts of the Colorado River Basin Salinity Control Advisory Council (Advisory Council). The Advisory Council’s function is to:

“…advise the Secretaries of the Departments of the Interior and Agriculture…on all matters relating to efficient and timely planning and execution of salinity control measures…specified in the Colorado River Basin Salinity Control Act.”

The original salinity model estimated the economic impact due to salinity by considering five economic sectors that may be impacted by high-salinity Colorado River water. Over time, the original salinity model was updated and modified as new data became available. Brummer and Yahnke (1999) provided improved agricultural economic impact procedures for all areas except the Metropolitan Water District (MWD) service area. The MWD service area improvements are documented in MWD and Bureau of Reclamation (1999) and included updated procedures and data across all economic sectors.

A second salinity model was developed in the early 2000s based on this revised salinity model to improve the representation of the Central Arizona portion of the original model and support salinity economic impact analysis for the Central Arizona Salinity Study (Bureau of Reclamation, 2003). From 2003 until 2016, these two salinity models were run in tandem whenever an economic impact analysis was needed. In 2016, these two models were combined into a single Excel workbook model or the SEIM.

The SEIM was reviewed by representatives from Arizona, California, and Nevada to provide recommendations on redefining model regions and updating data for use in the 2017 triennial review. Another objective of the SEIM review was to improve usability, efficiency and transparency of the SEIM.

Where possible, published data has been used in the SEIM. In some cases, current published data are not available, so historical data has been indexed to 2014 dollars using either the Consumer Price Index (Bureau of Labor Statistics, 2017) or the Producer Price Index (Bureau of Labor Statistics, 2017).
The SEIM estimates economic impact attributed to salinity levels greater than a baseline value of 500 mg/L total dissolved solids (TDS) on household water-using appliances, the treatment and infrastructure replacement costs in the commercial, industrial and water utilities sectors, and income losses to agriculture. It also estimates the additional costs related to meeting California water quality standards for groundwater and recycled and publicly-owned treatment work (POTW) water use in the MWD service area. The model does not calculate an absolute value of the economic impacts due to salinity. The model estimates salinity impacts from the baseline condition and then calculates the change in economic impacts when salinity rises or declines in the Colorado River water used in the LCRB.

The SEIM accepts salinity concentrations, either measured from actual sampling or projected from the Colorado River Simulation System (CRSS), from three diversion points along the mainstem Lower Colorado River. Quantified damages due to salinity concentration are estimated for seven economic sectors across five regions. Table 1 summarizes the diversion points, economic sectors and regions that are included in SEIM.

<table>
<thead>
<tr>
<th>Diversion Points</th>
<th>Economic Sectors</th>
<th>Regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoover Dam</td>
<td>Agriculture</td>
<td>Central Arizona</td>
</tr>
<tr>
<td>Parker Dam</td>
<td>Residential</td>
<td>Mainstem Arizona</td>
</tr>
<tr>
<td>Imperial Dam</td>
<td>Commercial</td>
<td>Mainstem Nevada</td>
</tr>
<tr>
<td></td>
<td>Utility</td>
<td>Mainstem California, Non-MWD</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td>MWD Service Area</td>
</tr>
<tr>
<td></td>
<td>Groundwater²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recycling &amp; POTW²</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 lists the subdivision of the regions as subareas. It should be noted that some subarea names are county names and the subarea may not include the entire county, only the portion that received Lower Colorado River mainstem waters.

<table>
<thead>
<tr>
<th>Region</th>
<th>Subarea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Arizona</td>
<td>Phoenix AMA³, Pinal AMA, Tucson AMA</td>
</tr>
<tr>
<td>Mainstem Arizona</td>
<td>Mohave County, La Paz County, Yuma County</td>
</tr>
<tr>
<td>Mainstem Nevada</td>
<td>Clark County</td>
</tr>
<tr>
<td>Mainstem California Non-MWD</td>
<td>Imperial County, San Bernardino County, Riverside County</td>
</tr>
<tr>
<td>MWD</td>
<td>Northwest, Los Angeles, West Basin, Central Basin, San Gabriel, Chino Basin, Orange County, Western Riverside, San Diego, Eastern Riverside</td>
</tr>
</tbody>
</table>

¹ U.S. EPA’s secondary drinking water quality standard  
² Only applies to MWD Service Area  
³ These are active management areas (AMA) in Central Arizona in which groundwater use is strictly regulated by the Arizona Department of Water Resources. Nearly 80% of Arizona’s population resides in these 3 AMAs.
The SEIM estimates the annual quantitative damages by diversion point, economic sector for each region and subarea listed above. Table 3 presents the impacted items that are included in each economic sector’s categories.

<table>
<thead>
<tr>
<th>Economic Sector</th>
<th>Impact Category Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>Water Pipes, Water Heater, Faucet, Garbage Disposal, Clothes Washer, Dishwasher,</td>
</tr>
<tr>
<td></td>
<td>Water Softener, Detergent</td>
</tr>
<tr>
<td>Commercial</td>
<td>Sanitary, Cooling, Irrigation, Kitchen, Laundry, Misc.</td>
</tr>
<tr>
<td>Industrial</td>
<td>Process Water, Cooling Tower, Boiler, Sanitation, Irrigation</td>
</tr>
<tr>
<td>Water Utilities</td>
<td>Treatment Plant, Distribution System</td>
</tr>
<tr>
<td>Groundwater</td>
<td>Direct Recharge, Indirect Recharge, Incidental Recharge</td>
</tr>
<tr>
<td>Recycled Water &amp; POTW</td>
<td>Irrigation, Direct Groundwater Recharge, Indirect Groundwater Recharge</td>
</tr>
<tr>
<td>Agriculture</td>
<td><strong>MWD Subareas Crops:</strong> Strawberry, Nursery, Cut Flowers, Misc. Vegetable, Citrus, Avocado, Vineyard, Pasture/grain, Deciduous, Field Crops</td>
</tr>
<tr>
<td></td>
<td><strong>All Other Subareas Crops:</strong> Head Lettuce, Leaf Lettuce, Romaine Lettuce, Broccoli, Cauliflower, Alfalfa Hay, Onions, Avocados, Cantaloupe, Carrots, Oranges, Tangerines, Lemon/Limes, Grapefruit, Table Grapes, Potatoes, Corn, Wheat, Cotton, Barley, Olives, Honeydews, Tomatoes, Leaching Management Costs</td>
</tr>
</tbody>
</table>

The SEIM estimates damages (economic impact) on household, industrial, commercial, water utilities, agriculture sectors, groundwater, recycled and POTW. A general description of how each sector is calculated in the SEIM model is provided below.

**Household Damage Calculation**
The SEIM model estimates damages for 10 household items that have reduced useful life due to salinity. Each area in the model was updated with the best available data for the number of units per household and average cost per unit. Useful life functions based on given salinity values were developed from previous salinity research and can be found in the Milliken-Chapman study (1988). The SEIM model estimates the annual cost per household for each area based on the reduced useful life from increased salinity during the year of interest.

**Commercial Damage Calculation**
Commercial damages are calculated using one of two methods, which is determined by the data available for commercial water users. Method 1: Areas where commercial water use data resolution aligned with the five SEIM commercial categories are calculated as the product of the annual water use and the salinity cost function for each commercial category. The salinity cost functions were developed by MWD specifically for the SEIM. Method 2: Areas without the commercial water use data resolution required to use the salinity cost functions use an alternative approach based on the relationship between commercial and household water use. The relationship is the average ratio of annual commercial water use to annual residential water use. The commercial costs for these areas are calculated as the product of the commercial water use ratio and the cost of residential damages.

**Industrial Damage Calculation**
Salinity damages are estimated in the SEIM for five major types of industrial water use. Damage functions developed for these categories are applied to the amount of industrial water use by
category for each area in the model. Industries with processes requiring better quality water have larger costs associated with increasing salinity.

**Water Utilities Damage Calculation**
The SEIM estimates the damages to water utilities using two methods, depending on if per capita or total capital investment replacement costs are available. Method 1: In subareas with per capita costs of capital improvement replacement of water production and distribution facilities due to salinity, the damages are estimated using useful life functions of water production and distribution facilities that were developed by MWD. The per capita costs for water production and distribution costs are divided by the average life of the facilities based on the given salinity level and then multiplied by the metropolitan population for the year of interest. Method 2: In subareas with total capital improvement costs, the damages are estimated using only the useful life functions of distribution facilities that were developed by MWD. The total distribution costs are divided by the average life of the facilities based on the given salinity level. Under method two, water utility distribution replacement costs are not available.

**Agriculture Damage Calculation**
Agriculture damages are estimated in the SEIM through changes in gross revenue due to reduced crop yields of salt sensitive crops. Crop yield functions for the most common types of agriculture were developed or used from available research. The number of acres and current crop price per acre were updated with best available data in the current SEIM model. The gross crop revenue is estimated based on the crop yield per acre at a given salinity level and the price per acre for that crop. The revenue of the projected salinity is compared to the baseline TDS based revenue to determine the reduced revenue from increases in salinity for each area in the model. Areas that have more acres of crops sensitive to salinity changes have the largest amount of damages from reduced crop yields.

**Groundwater, Recycling and Public-Owned Treatment Works**
In the MWD service area, the SEIM calculates the costs of removing salts to maintain water quality requirements for groundwater and recycled water that are used extensively in the service area. MWD estimates the amount of water that drains into the groundwater system and the amount that is used for recycled water purposes. Salinity cost functions (costs to desalt these sources of water) estimate the costs at given salinity levels.
Figure 1 presents a map of the regions included in the SEIM with shading indicating the portion of each subarea that receives Colorado River mainstem waters, along with the economic sectors impacted within each respective subarea. The commercial and utilities economic sectors have two methods available to calculate economic impact. The map indicates whether method 1 or method 2 was used within each subarea.
The impacts or damages estimated by the SEIM are based on the change in impacts from the 500 mg/L baseline with the projected increase in salinity from another modeling effort conducted by Reclamation, which includes incorporation of current and future salinity control projects mainly in the Upper Colorado River Basin. The model applies projected diversion point salinity to projected demographics and future water supply portfolios for each subarea. Reclamation collects projected demographics and water supply portfolios from Forum members. Collected data include projected population, housing and employment, along with projected residential, commercial and industrial water demands by subarea. The model currently projects annual damages for any year between 2015 and 2040.

The latest SEIM dated 04/17/17 was used during the 2017 Triennial Review to estimate quantified damages in the Lower Colorado River Basin. Table 4 presents the diversion point projected salinity concentrations from CRSS and the SEIM average annual quantified damages for the years 2017 and 2035.

<p>| Table 4 |</p>
<table>
<thead>
<tr>
<th>CRSS Projected Average Annual Concentration and the SEIM Economic Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>2017</strong></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>1.33M tons removed</td>
</tr>
<tr>
<td>1.39M tons removed</td>
</tr>
<tr>
<td>1.66M tons removed</td>
</tr>
<tr>
<td>1.79M tons removed</td>
</tr>
<tr>
<td><strong>2035</strong></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>1.33M tons removed</td>
</tr>
<tr>
<td>1.39M tons removed</td>
</tr>
<tr>
<td>1.66M tons removed</td>
</tr>
<tr>
<td>1.79M tons removed</td>
</tr>
</tbody>
</table>
Table 5 presents the annual reduction in salinity concentration and quantified damages as compared to the No Additional Future Controls Beyond 2017 (1.33M tons removed) alternative at each diversion point and as a LCRB total.

### Table 5
**Annual Reduction in Salinity Concentration and Quantified Damages as Compared to the No Additional Future Controls Beyond 2017 (1.33M tons removed)**

<table>
<thead>
<tr>
<th>Alternative</th>
<th>2017 Annual Concentration Reduction (mg/L)</th>
<th>2017 Annual Quantified Damage Reduction ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hoover</td>
<td>Parker</td>
</tr>
<tr>
<td>1.33M tons removed</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.39M tons removed</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1.66M tons removed</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>1.79M tons removed</td>
<td>0.6</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alternative</th>
<th>2035 Annual Concentration Reduction (mg/L)</th>
<th>2035 Annual Quantified Damage Reduction ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hoover</td>
<td>Parker</td>
</tr>
<tr>
<td>1.33M tons removed</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.39M tons removed</td>
<td>5.7</td>
<td>5.9</td>
</tr>
<tr>
<td>1.66M tons removed</td>
<td>23.4</td>
<td>24.2</td>
</tr>
<tr>
<td>1.79M tons removed</td>
<td>26.5</td>
<td>27.4</td>
</tr>
</tbody>
</table>
References


