Consolidated Guidance About Materials Licenses

Program-Specific Guidance About Academic, Research and Development, and Other Licenses of Limited Scope

Including Gas Chromatographs and X-Ray Fluorescence Analyzers

Final Report

Manuscript Completed: December 1999
Date Published: December 1999

Prepared by
Michael L. Fuller, Robert P. Hays,
A. Sattar Lodhi, Gary W. Purdy

Division of Industrial and Medical Nuclear Safety
Office of Nuclear Material Safety and Safeguards
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555-0001
ABSTRACT

As part of its redesign of the materials licensing process, the United States Nuclear Regulatory Commission (NRC) is consolidating and updating numerous guidance documents into a single comprehensive repository as described in NUREG - 1539, “Methodology and Findings of the NRC’s Materials Licensing Process Redesign,” dated April 1996, and draft NUREG - 1541, “Process and Design for Consolidating and Updating Materials Licensing Guidance,” dated April 1996. NUREG - 1556, Vol. 7, “Consolidated Guidance about Materials Licenses: Program - Specific Guidance about Academic, Research and Development, and Other Licenses of Limited Scope,” dated December 1999, is the seventh program-specific guidance developed for the new process and is intended for use by applicants, licensees, and NRC staff and will also be available to Agreement States. This document combines and updates the guidance for applicants and licensees previously found in: (1) Regulatory Guide 10.2, Revision 1, “Guidance To Academic Institutions Applying For Specific Byproduct Material Licenses of Limited Scope,” dated December 1976; (2) Regulatory Guide 10.7, “Guide For the Preparation of Applications For Licenses For Laboratory and Industrial Use of Small Quantities of Byproduct Material,” dated August 1979; and (3) Draft Regulatory Guide FC 405-4, “Guide for the Preparation of Applications for Licenses for the Use of Sealed Sources in Gas Chromatography Devices and X-Ray Fluorescence Analyzers,” dated February 1985. This report takes a more risk-informed, performance-based approach to the information needed to support an application for the use of byproduct material. When published this final report should be used in preparing academic, research and development, and other licenses of limited scope (ARDL) license applications. NRC staff will use this final report in reviewing these applications.
CONTENTS

ABSTRACT .. iii
FOREWORD .. ix
ACKNOWLEDGMENTS ... xi
ABBREVIATIONS ... xiii
1 PURPOSE OF REPORT .. 1-1
2 AGREEMENT STATES .. 2-1
3 MANAGEMENT RESPONSIBILITY .. 3-1
4 APPLICABLE REGULATIONS .. 4-1
5 HOW TO FILE .. 5-1
 5.1 PAPER APPLICATION .. 5-1
 5.2 ELECTRONIC APPLICATION .. 5-2
6 WHERE TO FILE .. 6-1
7 LICENSE FEES ... 7-1
8 CONTENTS OF AN APPLICATION .. 8-1
 8.1 ITEM 1: LICENSE ACTION TYPE .. 8-1
 8.2 ITEM 2: APPLICANT’S NAME AND MAILING ADDRESS 8-1
 8.3 ITEM 3: ADDRESS(ES) WHERE LICENSED MATERIAL WILL BE USED OR POSSESSED . 8-3
 8.4 ITEM 4: PERSON TO BE CONTACTED ABOUT THIS APPLICATION 8-5
 8.5 ITEM 5: RADIOACTIVE MATERIAL .. 8-5
 8.5.1 UNSEALED AND/OR SEALED BYPRODUCT MATERIAL 8-5
 8.5.2 FINANCIAL ASSURANCE AND RECORD KEEPING FOR DECOMMISSIONING . 8-9
 8.6 ITEM 6: PURPOSE(S) FOR WHICH LICENSED MATERIAL WILL BE USED 8-12
 8.7 ITEM 7: INDIVIDUAL(S) RESPONSIBLE FOR RADIATION SAFETY PROGRAM AND THEIR TRAINING AND EXPERIENCE ... 8-14
 8.7.1 RADIATION SAFETY OFFICER (RSO) .. 8-14
 8.7.2 AUTHORIZED USER .. 8-16
 8.8 ITEM 8: TRAINING FOR INDIVIDUALS WORKING IN OR FREQUENTING RESTRICTED AREAS (OCCUPATIONALLY EXPOSED INDIVIDUALS AND ANCILLARY PERSONNEL) 8-18
 8.9 ITEM 9: FACILITIES AND EQUIPMENT .. 8-19
 8.10 ITEM 10: RADIATION SAFETY PROGRAM ... 8-20
 8.10.1 AUDIT PROGRAM .. 8-20
 8.10.2 RADIATION MONITORING INSTRUMENTS 8-22
 8.10.3 MATERIAL RECEIPT AND ACCOUNTABILITY 8-25
 8.10.4 OCCUPATIONAL DOSE .. 8-31
 8.10.5 PUBLIC DOSE ... 8-35
 8.10.6 SAFE USE OF RADIONUCLIDES AND EMERGENCY PROCEDURES 8-37
 8.10.7 SURVEYS .. 8-42
 8.10.8 TRANSPORTATION .. 8-47
 8.10.9 MINIMIZATION OF CONTAMINATION .. 8-48
 8.11 ITEM 11: WASTE MANAGEMENT .. 8-49
 8.12 ITEM 12: FEES .. 8-55
 8.13 ITEM 13: CERTIFICATION .. 8-55
CONTENTS

9 AMENDMENTS AND RENEWALS TO A LICENSE ... 9-1
10 APPLICATIONS FOR EXEMPTIONS ... 10-1
11 TERMINATION OF ACTIVITIES ... 11-1

APPENDICES

A. List of Documents Considered in Development of this NUREG A-1
B. United States Nuclear Regulatory Commission Form 313 B-1
C. Suggested Format for Providing Information Requested in Items 5 through 11 of NRC Form 313 C-1
D. Gas Chromatography Devices and X-ray Fluorescence Analyzer Applications D-1
E. Information Needed for Transfer of Control Application .. E-1
F. Sample License ... F-1
G. Guidance on Decommissioning Funding Plan and Financial Assurance G-1
H. Considerations for Laboratory Animal and Veterinary Medicine Uses H-1
I. Radiation Safety Officer Duties and Responsibilities ... I-1
J. Radiation Safety Training Topics ... J-1
K. Facilities and Equipment Considerations ... K-1
L. Sample Audit Program ... L-1
M. Radiation Monitoring Instrument Specifications and Model Survey Instrument and Air Sampler Calibration Program ... M-1
N. Material Receipt and Accountability .. N-1
O. Public Dose ... O-1
P. General Topics for Safe Use of Radioisotopes and Model Emergency Procedures P-1
Q. Radiation Safety Survey Topics .. Q-1
R. Model Leak Test Procedures ... R-1
S. Transportation ... S-1
T. Model Waste Management Procedures .. T-1
U. Using the Internet to Obtain copies of NRC Documents and Other Information U-1
V. Addendum: Response to Comments on NUREG - 1556, Vol. 7 V-1
FIGURES

Figure 2.1 U.S. Map ... 2-2
Figure 8.1 Location of Use. .. 8-4
Figure 8.2 Methods of Certification of Financial Assurance for Decommissioning. 8-10
Figure 8.3 Types of Records That Must Be Maintained for Decommissioning 8-11
Figure 8.4 RSO Responsibilities. .. 8-14
Figure 8.5 Authorized User. ... 8-16
Figure 8.6 Examples of Portable Instruments Used in Laboratory Settings 8-23
Figure 8.7 Material Receipt and Accountability. .. 8-27
Figure 8.8 Annual Dose Limits for Occupationally Exposed Individuals 8-32
Figure 8.9 Calculating Public Dose ... 8-36
Figure 8.10 Use of Appropriate Shielding 8-39
Figure 8.11 Proper Handling of Incident 8-41
Figure 8.12 Types of Surveys .. 8-43
Figure 8.13 Personnel Surveys .. 8-44
Figure P.1 Storage of Food and Drink .. P-2
Figure Q.1 Laboratory Layout ... Q-7

TABLES

Table 2.1 Who Regulates the Activity? 2-1
Table 8.1 Types of Radioactive Materials 8-5
Table 8.2 Commonly Used Unsealed Licensed Materials Requiring Financial Assurance/Decommissioning Funding Plan ... 8-10
Table 8.3 Sample Format for Providing Information About Requested Radioisotopes 8-13
Table 8.4 Package Monitoring Requirements 8-26
Table 8.5 Record Maintenance .. 8-29
Table A.1 List of Documents Considered in the Preparation of this Report ... A-1
Table G.1 Isotopes With Half-lives Greater Than or Equal to 120 Days .. G-1
Table G.2 Sample Worksheet for Determining Need for a Decommissioning Funding Plan or Financial Assurance ... G-3
Table M.1 Typical Survey Instruments ... M-1
Table O.1 Standard Occupancy Factors O-3
Table Q.1 Suggested Contamination Survey Frequency Q-3
Table Q.2 Acceptable Surface Contamination Levels for Equipment .. Q-3
Table Q.3 Screening Values for Building Surface Contamination ... Q-4
FOREWORD

The United States Nuclear Regulatory Commission (NRC) is using Business Process Redesign (BPR) techniques to redesign its materials licensing process. This effort is described in NUREG - 1539, “Methodology and Findings of the NRC’s Materials Licensing Process Redesign,” dated April 1996. A critical element of the new process is consolidating and updating numerous guidance documents into a NUREG-series of reports. Below is a list of volumes currently included in the NUREG - 1556 series, “Consolidated Guidance About Materials Licenses”:

<table>
<thead>
<tr>
<th>Vol. No.</th>
<th>Volume Title</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Program-Specific Guidance About Portable Gauge Licenses</td>
<td>Final Report</td>
</tr>
<tr>
<td>2</td>
<td>Program-Specific Guidance About Radiography Licenses</td>
<td>Final Report</td>
</tr>
<tr>
<td>3</td>
<td>Applications for Sealed Source and Device Evaluation and Registration</td>
<td>Final Report</td>
</tr>
<tr>
<td>4</td>
<td>Program-Specific Guidance About Fixed Gauge Licenses</td>
<td>Final Report</td>
</tr>
<tr>
<td>5</td>
<td>Program-Specific Guidance About Self-Shielded Irradiators</td>
<td>Final Report</td>
</tr>
<tr>
<td>6</td>
<td>Program-Specific Guidance About 10 CFR Part 36 Irradiators</td>
<td>Final Report</td>
</tr>
<tr>
<td>7</td>
<td>Program-Specific Guidance About Academic, Research and Development, and Other Licenses of Limited Scope</td>
<td>Final Report</td>
</tr>
<tr>
<td>8</td>
<td>Program-Specific Guidance About Exempt Distribution Licenses</td>
<td>Final Report</td>
</tr>
<tr>
<td>9</td>
<td>Program-Specific Guidance About Medical Use Licenses</td>
<td>Draft for Comment</td>
</tr>
<tr>
<td>10</td>
<td>Program-Specific Guidance About Master Material Licenses</td>
<td>Draft for Comment</td>
</tr>
<tr>
<td>11</td>
<td>Program-Specific Guidance About Licenses of Broad Scope</td>
<td>Final Report</td>
</tr>
<tr>
<td>12</td>
<td>Program-Specific Guidance About Possession Licenses for Manufacturing and Distribution</td>
<td>Draft for Comment</td>
</tr>
<tr>
<td>13</td>
<td>Program-Specific Guidance About Commercial Radiopharmacy Licenses</td>
<td>Final Report</td>
</tr>
<tr>
<td>14</td>
<td>Program-Specific Guidance About Well Logging, Tracer, and Field Flood Study Licenses</td>
<td>Draft for Comment</td>
</tr>
<tr>
<td>15</td>
<td>Guidance About Changes of Control and About Bankruptcy Involving Byproduct, Source, or Special Nuclear Materials Licenses</td>
<td>Draft for Comment</td>
</tr>
<tr>
<td>16</td>
<td>Program-Specific Guidance About Licenses Authorizing Distribution to General Licensees</td>
<td>Draft for Comment</td>
</tr>
</tbody>
</table>

Since this report takes a risk-informed, performance-based approach to licensing, it specifies the amount of information needed from an applicant seeking to use sealed and unsealed byproduct material. NRC’s considerable experience with these licensees indicates that radiation exposures to workers are generally low, if the workers follow basic safety procedures.

A team composed of NRC staff from headquarters and regional offices I, II, and III drafted this document, drawing on their collective experience in radiation safety in general and as specifically applied to ARDL users of byproduct material. A representative of NRC’s Office of the General Counsel provided a legal perspective.

This report represents a step in the transition from the current paper-based process to the new electronic process. This document is available on the Internet at the following address: <http://www.nrc.gov/NRC/NUREGS/SR1556/V7/index.html>.

Josephine M. Piccone, Deputy Director
Division of Industrial and Medical Nuclear Safety
Office of Nuclear Material Safety and Safeguards
ACKNOWLEDGMENTS

The writing team thanks the individuals listed below for assisting in the development and review of the report. All participants provided valuable insights, observations, and recommendations.

The team also thanks Kay Avery, Judy Boykin, Randy Glantz, Rolonda Jackson, D.W. Benedict Llewellyn, Steven W. Schawaroch, Agi Seaton, Gina G. Thompson, and Nora Younger of Computer Sciences Corporation.

The Participants

Cain, Charles L.
Camper, Larry W.
Cool, Donald A.
Combs, Frederick C.
Decker, Thomas R.
Hosey, Charles M.
Johansen, Jenny M.
Jones, Cynthia G.
Kinneman, John D.
Merchant, Sally L.
Phillips, Monte P.
Piccone, Josephine M.
Roe, Mary Louise
Schwartz, Maria E.
Treby, Stuart A.
Vacca, Patricia C.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALARA</td>
<td>As low as is reasonably achievable</td>
</tr>
<tr>
<td>ALI</td>
<td>Annual Limit of Intake</td>
</tr>
<tr>
<td>AMAD</td>
<td>Activity Median Aerodynamic Diameter</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>ARDL</td>
<td>Academic, Research and Development, and other Licenses</td>
</tr>
<tr>
<td>AU</td>
<td>Authorized user</td>
</tr>
<tr>
<td>bkg</td>
<td>Background</td>
</tr>
<tr>
<td>BPR</td>
<td>Business Process Redesign</td>
</tr>
<tr>
<td>Bq</td>
<td>Becquerel</td>
</tr>
<tr>
<td>CDE</td>
<td>Committed Dose Equivalent</td>
</tr>
<tr>
<td>CEDE</td>
<td>Committed Effective Dose Equivalent</td>
</tr>
<tr>
<td>CD-ROM</td>
<td>Compact disk-read only memory</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>Ci</td>
<td>Curie</td>
</tr>
<tr>
<td>cpm</td>
<td>Counts per minute</td>
</tr>
<tr>
<td>DAC</td>
<td>Derived Air Concentration</td>
</tr>
<tr>
<td>DCF</td>
<td>Dose Conversion Factor</td>
</tr>
<tr>
<td>DDE</td>
<td>Deep Dose Equivalent</td>
</tr>
<tr>
<td>DFP</td>
<td>Decommissioning Funding Plan</td>
</tr>
<tr>
<td>DIS</td>
<td>Decay-in-storage</td>
</tr>
<tr>
<td>DOE</td>
<td>United States Department of Energy</td>
</tr>
<tr>
<td>DOT</td>
<td>United States Department of Transportation</td>
</tr>
<tr>
<td>dpm</td>
<td>Disintegrations per minute</td>
</tr>
<tr>
<td>dps</td>
<td>Disintegrations per second</td>
</tr>
<tr>
<td>EDE</td>
<td>Effective Dose Equivalent</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>F/A</td>
<td>Financial Assurance</td>
</tr>
<tr>
<td>FR</td>
<td>Federal Register</td>
</tr>
<tr>
<td>GBq</td>
<td>Gigabequerel</td>
</tr>
<tr>
<td>GC</td>
<td>Gas chromatograph</td>
</tr>
<tr>
<td>G-M</td>
<td>Geiger-Mueller</td>
</tr>
<tr>
<td>GPO</td>
<td>Government Printing Office</td>
</tr>
<tr>
<td>Gy</td>
<td>Gray</td>
</tr>
<tr>
<td>ICRP</td>
<td>International Commission on Radiological Protection</td>
</tr>
<tr>
<td>IN</td>
<td>Information Notice</td>
</tr>
<tr>
<td>LLW</td>
<td>Low Level Radioactive Waste</td>
</tr>
<tr>
<td>LSA</td>
<td>Low Specific Activity</td>
</tr>
<tr>
<td>LSC</td>
<td>Liquid Scintillation Counter</td>
</tr>
<tr>
<td>MBq</td>
<td>Megabequerel</td>
</tr>
<tr>
<td>mCi</td>
<td>Millicurie</td>
</tr>
<tr>
<td>mGy</td>
<td>Milligray</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mR</td>
<td>Milliroentgen</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>mrem</td>
<td>Millirem</td>
</tr>
<tr>
<td>mSv</td>
<td>Millisievert</td>
</tr>
<tr>
<td>mCi</td>
<td>Microcurie</td>
</tr>
<tr>
<td>mR</td>
<td>Microroentgen</td>
</tr>
<tr>
<td>NaI</td>
<td>Sodium iodide</td>
</tr>
<tr>
<td>NCRP</td>
<td>National Council on Radiation Protection and Measurements</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>NMSS</td>
<td>Office of Nuclear Material Safety and Safeguards</td>
</tr>
<tr>
<td>NRC</td>
<td>United States Nuclear Regulatory Commission</td>
</tr>
<tr>
<td>NVLAP</td>
<td>National Voluntary Laboratory Accreditation Program</td>
</tr>
<tr>
<td>OCFO</td>
<td>Office of the Chief Financial Officer</td>
</tr>
<tr>
<td>OCR</td>
<td>Optical character reader</td>
</tr>
<tr>
<td>OMB</td>
<td>Office of Management and Budget</td>
</tr>
<tr>
<td>OSP</td>
<td>Office of State Programs</td>
</tr>
<tr>
<td>P&GD</td>
<td>Policy and Guidance Directive</td>
</tr>
<tr>
<td>R</td>
<td>Roentgen</td>
</tr>
<tr>
<td>RAM</td>
<td>Radioactive Material</td>
</tr>
<tr>
<td>RG</td>
<td>Regulatory Guide</td>
</tr>
<tr>
<td>RPO</td>
<td>Radiation Protection Officer</td>
</tr>
<tr>
<td>RQ</td>
<td>Reportable Quantities</td>
</tr>
<tr>
<td>RSO</td>
<td>Radiation Safety Officer</td>
</tr>
<tr>
<td>SDE</td>
<td>Shallow Dose Equivalent</td>
</tr>
<tr>
<td>SI</td>
<td>International System of Units (abbreviated SI from the French Le Systeme Internationale d’Unites)</td>
</tr>
<tr>
<td>SS&D</td>
<td>Sealed Source and Devices</td>
</tr>
<tr>
<td>SSD</td>
<td>Sealed Source and Device</td>
</tr>
<tr>
<td>std</td>
<td>Standard</td>
</tr>
<tr>
<td>Sv</td>
<td>Sievert</td>
</tr>
<tr>
<td>TEDE</td>
<td>Total effective dose equivalent</td>
</tr>
<tr>
<td>TI</td>
<td>Transportation Index</td>
</tr>
<tr>
<td>TLD</td>
<td>Thermoluminescence dosimeters</td>
</tr>
<tr>
<td>TODE</td>
<td>Total Organ Dose Equivalent</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>XRF</td>
<td>X-Ray Fluorescence (Analyzer)</td>
</tr>
</tbody>
</table>
1 PURPOSE OF REPORT

This report provides guidance to an applicant in preparing an Academic, Research and Development and Other Licenses of Limited Scope (ARDL) application including gas chromatography devices (GC) and X-RAY fluorescence analyzers (XRF), as well as NRC criteria for evaluating the license application. It is not intended to address licenses of broad scope, licenses for manufacturing and distribution of byproduct material, or licenses for the use of source, or special nuclear material. Within this document, the phrases or terms, “byproduct material,” “licensed material,” or “radioactive material,” are used interchangeably.

This document is designed to be used by applicants for a license (not of broad scope) issued by the Commission pursuant to 10 CFR Part 30 that is characterized by a listing of the following specific items:

- Radionuclides
- Chemical/physical form
- Possession Limits
- Radiation Safety Officer
- Authorized Users
- Authorized locations.

Byproduct material, as defined in 10 CFR 30.4, is used for a variety of purposes in research, industry, and other fields. The following are typical uses:

- *In vivo* studies (labeling cells, studies involving animals, excluding humans)
- *In vitro* studies
- Analytical work/studies, including use of GCs and XRFs
- Veterinary medicine
- Calibration of applicant’s instruments
- Field studies.

NRC’s past practice was to issue a separate license to authorize the possession and use of self-shielded irradiators if any of the units exceeded 37 terabecquerels (1,000 curies). NRC may now authorize self-shielded irradiators on the same license as the licensee’s other licensed material. NUREG - 1556, Vol. 5, “Consolidated Guidance About Materials Licenses: Program-Specific Guidance About Self-Shielded Irradiator Licenses,” provides guidance on licensing self-shielded irradiators.
PURPOSE OF REPORT

This report identifies the information needed to complete NRC Form 313 (Appendix B), “Application for Material License,” for the use of byproduct material for ARDL applicants. The information collection requirements in 10 CFR Part 20, 30, 31, 32 and NRC Form 313 have been approved under the Office of Management and Budget (OMB) Clearance Nos. 3150-0014, 3150-0017, 3150-0016, 3150-0001 and 3150-0120, respectively.

The format within this document for each item of technical information is as follows:

• Regulations — references the regulations applicable to the item
• Criteria — outlines the criteria used to judge the adequacy of the applicant’s response
• Discussion — provides additional information on the topic sufficient to meet the needs of most readers
• Response from Applicant — provides suggested response(s), offers the option of an alternative reply, or indicates that no response is needed on that topic during the licensing process.

Notes and References are self-explanatory and may not be found for each item on NRC Form 313.

NRC Form 313 does not have sufficient space for applicants to provide full responses to Items 5 through 11; as indicated on the form, the answers to those items are to be provided on separate sheets of paper and submitted with the completed NRC Form 313. For the convenience of applicants and for streamlined handling of applications for ARDL licenses in the new materials licensing process, use Appendix C to provide supporting information, attach it to NRC Form 313, and submit it to NRC.

Appendix C is a checklist that NRC staff uses to review applications and applicants can use to check for completeness. Appendixes D through T contain additional information on various radiation safety topics. Appendix F is a sample ARDL license, containing the conditions most often found on these licenses, although not all licenses will have all conditions. Appendix U contains information about how to obtain NRC documents and related information from the NRC’s Internet web site.

Appendix D provides specific guidance for licensing gas chromatographs and X-Ray fluorescence analyzers.

In this document, dose or radiation absorbed dose includes: dose equivalent; effective dose equivalent (EDE); committed dose equivalent (CDE); committed effective dose equivalent (CEDE); or total effective dose equivalent (TEDE). These terms are defined in 10 CFR Part 20. Rem, and its SI [Systeme International-(international units)] equivalent, Sievert [0.01 Sievert (Sv) = 1 rem], is used to describe units of radiation exposure or dose. This is because 10 CFR Part 20 sets dose limits in terms of rem, not rad or roentgen (R).

2 AGREEMENT STATES

Certain states, called Agreement States (see Figure 2.1), have entered into agreements \{Section 274b, Atomic Energy Act, 1954, as amended\} with the NRC that give them the authority to license and inspect byproduct, source, or special nuclear materials used or possessed within their borders. Any applicant other than a Federal agency who wishes to possess or use licensed material in one of these Agreement States needs to contact the responsible officials in that State for guidance on preparing an application. File these applications with State officials, not with the NRC. Refer to the reference paragraph below for information for submitting an application to a particular state.

NRC’s materials licensees who wish to conduct operations at temporary jobsites in an Agreement State should contact that State’s radiation control program office for information about State regulations and questions of jurisdiction on Federal lands or facilities within that Agreement State’s boundaries. To ensure compliance with Agreement State reciprocity requirements, licensees should request authorization well in advance of scheduled use.

In the special situation of work at Federally-controlled sites in Agreement States, it is necessary to know the jurisdictional status of the land in order to determine whether NRC or the Agreement State has regulatory authority. NRC has regulatory authority over land determined to be “exclusive Federal jurisdiction,” while the Agreement State has jurisdiction over non-exclusive Federal jurisdiction land. Licensees are responsible for finding out, in advance, the jurisdictional status of the specific areas where they plan to conduct licensed operations. NRC recommends that licensees ask their local contact for the Federal agency controlling the site (e.g., contract officer, base environmental health officer, district office staff) to help determine the jurisdictional status of the land and to provide the information in writing, so that licensees can comply with NRC or Agreement State regulatory requirements, as appropriate. Additional guidance on determining jurisdictional status is found in All Agreement States Letter, SP-96-022, dated February 16, 1996, which is available as indicated below.

Table 2.1 provides a quick way to check on which agency has regulatory authority.

Table 2.1 Who Regulates the Activity?

<table>
<thead>
<tr>
<th>Applicant and Proposed Location of Work</th>
<th>Regulatory Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal agency regardless of location (except that Department of Energy [DOE] and, under most circumstances, its prime contractors are exempt from licensing [10 CFR 30.12])</td>
<td>NRC</td>
</tr>
<tr>
<td>Non-Federal entity in non-Agreement State, US territory, or possession</td>
<td>NRC</td>
</tr>
<tr>
<td>Non-Federal entity in Agreement State at non-Federally controlled site</td>
<td>Agreement State</td>
</tr>
<tr>
<td>Non-Federal entity in Agreement State at Federally-controlled site not subject to exclusive Federal jurisdiction</td>
<td>Agreement State</td>
</tr>
</tbody>
</table>
Applicant and Proposed Location of Work | Regulatory Agency
--- | ---
Non-Federal entity in Agreement State at Federally-controlled site subject to exclusive Federal jurisdiction | NRC

Locations of NRC Offices and Agreement States

Figure 2.1 U.S. Map. Location of NRC Offices and Agreement States.

Reference: A current list of Agreement States (including names, addresses, and telephone numbers of responsible officials) may be obtained upon request from NRC’s Regional or Field Offices. You can also visit the NRC Office of State Programs’ (OSP’s) Home Page <http://www.hsrd.ornl.gov/nrc> and choose “Directories,” then “State Program Directors.”

All Agreement States Letter, SP-96-022, on determining jurisdictional status at a Federal facility, dated February 16, 1996, is available on OSP’s home page <http://www.hsrd.ornl.gov/nrc/home.html>; choose “NRC-State Letters,” then scroll down to “Other Information - 1996” for SP-96-022. You can also request the letter from OSP by calling NRC’s toll free number (800) 368-5642, extension 415-3340.
3 MANAGEMENT RESPONSIBILITY

NRC recognizes that effective radiation safety program management is vital to achieving safe and compliant operations. NRC believes that consistent compliance with its regulations provides reasonable assurance that licensed activities will be conducted safely. NRC also believes that effective management will result in increased safety and compliance.

“Management” refers to the processes for conducting and controlling the radiation safety program and to the individuals who are responsible for those processes and who have authority to provide necessary resources to achieve regulatory compliance.

To ensure adequate management involvement, a management representative must sign the submitted application acknowledging management’s commitments and responsibility for the following:

- Radiation safety, security and control of radioactive materials, and compliance with regulations
- Completeness and accuracy of the radiation safety records and all information provided to NRC (10 CFR 30.9)
- Knowledge about the contents of the license and application
- Compliance with current NRC and Department of Transportation (DOT) regulations and the licensee’s operating and emergency procedures.
- Commitment to provide adequate resources (including space, equipment, personnel, time, and, if needed, contractors) to the radiation protection program to ensure that the public and workers are protected from radiation hazards and meticulous compliance with regulations is maintained
- Selection and assignment of a qualified individual to serve as the Radiation Safety Officer (RSO) with responsibility for the overall radiation safety program.
- Prohibition against discrimination of employees engaged in protected activities (10 CFR 30.7)
- Commitment to provide information to employees regarding the employee protection and deliberate misconduct provisions in 10 CFR 30.7 and 10 CFR 30.10, respectively.
- Obtaining NRC’s prior written consent before transferring control of the license.
- Notifying appropriate NRC regional administrator in writing, immediately following filing of petition for voluntary or involuntary bankruptcy.

For information on NRC inspection, investigation, enforcement, and other compliance programs, see “General Statement of Policy and Procedures for NRC Enforcement Actions,”
MANAGEMENT RESPONSIBILITY

NUREG - 1600, and Inspection Procedure 87110, Appendix A, “Industrial/Academic/Research Inspection Field Notes;” see Notice of Availability (on inside front cover of this report). In addition, NUREG - 1600 and Inspection Procedure 87110, Appendix A may be found at <http://www.nrc.gov>.
4 APPLICABLE REGULATIONS

It is the applicant’s or licensee’s responsibility to obtain up-to-date copies of applicable regulations, read and understand the requirements of each of these regulations, and comply with each applicable regulation.

The following Parts of 10 CFR Chapter I contain regulations applicable to the use of licensed material by ARDL licensees:

- 10 CFR Part 19, “Notices, Instructions and Reports to Workers: Inspection and Investigations”
- 10 CFR Part 20, “Standards for Protection Against Radiation”
- 10 CFR Part 21, “Reporting of Defects and Noncompliance”
- 10 CFR Part 30, “Rules of General Applicability to Domestic Licensing of Byproduct Material”
- 10 CFR Part 31, “General Domestic Licenses for Byproduct Material”
- 10 CFR Part 32, “Specific Domestic Licenses to Manufacture or Transfer Certain Items Containing Byproduct Material”
- 10 CFR Part 51, “Environmental Protection Regulations for Domestic Licensing and Related Regulatory Functions”
- 10 CFR Part 71, “Packaging and Transportation of Radioactive Material”

Part 71 requires that licensees or applicants who transport licensed material or who may offer such material to a carrier for transport must comply with the applicable requirements of the United States Department of Transportation (DOT) that are found in 49 CFR Parts 170 through 189. Copies of DOT regulations can be ordered from the Government Printing Office (GPO), whose address and telephone number are listed below.

- 10 CFR Part 170, “Fees for Facilities, Materials, Import and Export Licenses and Other Regulatory Services Under the Atomic Energy Act of 1954, as Amended”

APPLICABLE REGULATIONS

(GPO) at (202) 512-1803 for inquiries about costs of these documents and methods of payment. To obtain the two-volume bound version of Title 10, Code of Federal Regulations (10 CFR), Parts 0-50 and 51-199, contact the GPO, Superintendent of Documents, Post Office Box 371954, Pittsburgh, Pennsylvania 15250-7954. Single copies of the above documents may also be obtained from the NRC’s Regional or Field Office (see Figure 2.1 for addresses and telephone numbers). Note that amendments to NRC regulations are published frequently (monthly) in the Federal Register. In addition, the Federal Register is available at <http://www.gpo.gov>. Title 10 is also available at <http://www.nrc.gov>.
5 HOW TO FILE

5.1 PAPER APPLICATION

Applicants for a materials license should do the following:

- Be sure to use the most recent information in preparing an application.
- Complete NRC Form 313 (Appendix B) Items 1 through 4, 12, and 13 on the form itself.
- Complete NRC Form 313 Items 5 through 11 on supplementary pages or use Appendix C.
- For each separate sheet, other than Appendix C, that is submitted with the application, identify and key it to the item number on the application or the topic to which it refers.
- Submit all documents, including drawings, if practicable, on 8-1/2 x 11 inch paper. If submission of larger documents is necessary, fold them to 8-1/2 x 11 inches.
- Identify each drawing with drawing number, revision number, title, date, scale, and applicant’s name. Clearly indicate if drawings have been reduced or enlarged.
- Avoid submitting proprietary information unless it is absolutely necessary.
- Do not submit personal information about employees.
- Do not submit copies of NRC licenses.
- Submit an original, signed application and one copy.
- Retain one copy of the license application for future reference.

As required by 10 CFR 30.32(c), applications shall be signed by a duly authorized management representative; see section on “Certification.”

Using the suggested wording of responses and committing to using the model procedures in this NUREG - 1556, Vol. 7 will expedite NRC’s review.

All license applications will be available for review by the general public in NRC’s Public Document Rooms. If it is necessary to submit proprietary information, follow the procedure in 10 CFR 2.790. Failure to follow this procedure could result in disclosure of the proprietary information to the public or substantial delays in processing the application. Employee personal information, i.e., home address, home telephone number, social security number, date of birth, and radiation dose information, should not be submitted unless specifically requested by NRC.

As explained in the “Foreword,” NRC’s new licensing process will be faster and more efficient, in part, through acceptance and processing of electronic applications at some future date. NRC will continue to accept paper applications; however, these will be scanned and put through an
optical character reader (OCR) to convert them to electronic format. To ensure a smooth transition, applicants are requested to follow these suggestions:

- Submit printed or typewritten, not handwritten, text on smooth, crisp paper that will feed easily into the scanner.
- Choose typeface designs that are sans serif, such as Arial, Helvetica, Futura, Universe; the text of this document is in a serif font called Times New Roman.
- Choose 12-point or larger font size.
- Avoid stylized characters such as script, italic, etc.
- Be sure the print is clear and sharp.
- Be sure there is high contrast between the ink and paper (black ink on white paper is best).

5.2 ELECTRONIC APPLICATION

As the electronic licensing process develops, it is anticipated that NRC may provide mechanisms for filing applications via diskettes or CD-ROM, and through the Internet. Additional filing instructions will be provided as these new mechanisms become available.
6 WHERE TO FILE

Applicants wishing to possess or use licensed material in any State or U.S. territory or possession subject to NRC jurisdiction must file an application with the NRC Regional Office for the locale in which the material will be possessed and/or used. Figure 2.1 shows NRC’s four Regional Offices and their respective areas for licensing purposes and identifies Agreement States.

In general, applicants wishing to possess or use licensed material in Agreement States must file an application with the Agreement State, not NRC. If work will be conducted at Federally controlled sites in Agreement States, however, applicants must first determine the jurisdictional status of the land in order to determine whether NRC or the Agreement State has regulatory authority. See the section on “Agreement States” for additional information.
7 LICENSE FEES

Each application for which a fee is specified, must be accompanied by the appropriate fee. Refer to 10 CFR 170.31 to determine the amount of the fee. NRC will not issue the licensing action prior to fee receipt. Consult 10 CFR 170.11 for information on exemptions from these fees. Once technical review has begun, no fees will be refunded; application fees will be charged regardless of the NRC’s disposition of an application or the withdrawal of an application.

Most NRC licensees are also subject to annual fees; refer to 10 CFR 171.16. Consult 10 CFR 171.11 for information on exemptions from annual fees and 10 CFR 171.16(c) on reduced annual fees for licensees that qualify as “small entities.”

Direct all questions about NRC’s fees or completion of Item 12 of NRC Form 313 (Appendix B) to the Office of the Chief Financial Officer (OCFO) at NRC headquarters in Rockville, Maryland, (301) 415-7554. Information about fees may also be obtained by calling NRC’s toll free number (800) 368-5642, extension 415-7554. The e-mail address is fees@nrc.gov.
8 CONTENTS OF AN APPLICATION

The following comments apply to the indicated items on NRC Form 313 (Appendix B).

8.1 ITEM 1: LICENSE ACTION TYPE

THIS IS AN APPLICATION FOR (Check appropriate item)

<table>
<thead>
<tr>
<th>Type of Action</th>
<th>License No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] A. New License</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>[] B. Amendment</td>
<td>XX-XXXXXX-XX</td>
</tr>
<tr>
<td>[] C. Renewal</td>
<td>XX-XXXXXX-XX</td>
</tr>
</tbody>
</table>

Check box A if the application is for a new license

Check box B if the application is for an amendment\(^1\) to an existing license, and provide the license number.

Check box C if the application is for the renewal\(^1\) of an existing license, and provide the license number.

8.2 ITEM 2: APPLICANT’S NAME AND MAILING ADDRESS

List the legal name of the applicant’s corporation or other legal entity with direct control over use of the radioactive material; a division or department within a legal entity may not be a licensee. An individual may be designated as the applicant only if the individual is acting in a private capacity and the use of the radioactive material is not connected with employment in a corporation or other legal entity. Provide the mailing address where correspondence should be sent. A Post Office box number is an acceptable mailing address.

Notify NRC of changes in mailing address; these changes do not require a fee.

Note: NRC must be notified before control of the license is transferred or when bankruptcy proceedings have been initiated. See below for more details. NRC Information Notice

\(^1\) See “Amendments and Renewals to a License” later in this document. Licensees are required to request and obtain an amendment to the license before making changes in their radiation safety program. Examples of changes that require amendment are: change of Radiation Safety Officer (RSO), changes in approved radiation safety procedures, addition of authorized user(s), changes in areas of use, and changes in licensed material, including increases in possession limit of byproduct material.
(IN) 97-30, “Control of Licensed Material during Reorganizations, Employee-Management Disagreements, and Financial Crises,” dated June 3, 1997, discusses the potential for the security and control of licensed material to be compromised during periods of organizational instability.

Timely Notification of Transfer of Control

Regulations: 10 CFR 30.34(b).

Criteria: Licensees must provide full information and obtain NRC’s prior written consent before transferring control of the license, or, as some licensees call it, “transferring the license.”

Discussion: Transfer of control may be the result of mergers, buyouts, or majority stock transfers. Although it is not NRC’s intent to interfere with the business decisions of licensees, it is necessary for licensees to obtain NRC’s written consent before the transaction is finalized. This is to ensure the following:

- Radioactive materials are possessed, used, or controlled only by persons who have valid NRC licenses
- Materials are properly handled and secured
- Persons using these materials are competent and committed to implementing appropriate radiological controls
- A clear chain of custody is established to identify who is responsible for disposition of records and licensed material
- Public health and safety are not compromised by the use of such materials.

Response from Applicant: None from an applicant for a new license; Appendix D, excerpted from IN 89-25 (Revision 1), “Unauthorized Transfer of Ownership or Control of Licensed Activities,” dated December 7, 1994, identifies the information to be provided about transferring control.

Reference: See the Notice of Availability on the inside front cover of this report to obtain copies of:

Information Notices are available on NRC’s website at <http://www.nrc.gov/NRC/reference.html>
Notification of Bankruptcy Proceedings

Regulation: 10 CFR 30.34(h).

Criteria: Immediately following filing of voluntary or involuntary petition for bankruptcy for or against a licensee, the licensee must notify the appropriate NRC Regional Administrator, in writing, identifying the bankruptcy court in which the petition was filed and the date of filing.

Discussion: Even though a licensee may have filed for bankruptcy, the licensee remains responsible for all regulatory requirements. NRC needs to know when licensees are in bankruptcy proceedings in order to determine whether all licensed material is accounted for and adequately controlled, and whether there are any public health and safety concerns (e.g., contaminated facility). NRC shares the results of its determinations with other involved entities (e.g., trustee), so that health and safety issues can be resolved before bankruptcy actions are completed.

Response from Applicant: None at time of application for a new license. Generally, licensees should notify NRC within 24 hours of filing a bankruptcy petition.

Reference: See the Notice of Availability on the inside front cover of this report to obtain copies of:

- Inspection Procedure 87103, “Inspection of Material Licensees Involved in an Incident or Bankruptcy Filing.” Inspection Procedure 87103 is available on NRC’s website at <http://www.nrc.gov>.

8.3 ITEM 3: ADDRESS(ES) WHERE LICENSED MATERIAL WILL BE USED OR POSSESSED

Specify the street address, city, and state or other descriptive address (e.g., on Highway 10, 5 miles east of the intersection of Highway 10 and State Route 234, Anytown, State) for each facility at which licensed material will be used or stored (e.g., include locations for field studies or other off-site locations; list activities to be conducted at each location). A Post Office Box address is not acceptable, as illustrated in Fig. 8.1.
Figure 8.1 Location of Use. An acceptable location of use specifies street address, city, state, and zip code and does not include a post office box number.

An NRC-approved license amendment is required before receiving, using and storing licensed material at an address or location not included with the application or already listed on the license.

Granting of an NRC license does not relieve a licensee from complying with other applicable Federal, State, or local regulations (e.g., local zoning requirements; a local ordinance requiring registration of a radiation-producing device).

Note: As discussed later under “Financial Assurance and Record Keeping for Decommissioning,” licensees must maintain permanent records describing where licensed material was used or stored while the license was in force. This is important for making future determinations about the release of these locations for unrestricted use (e.g., before the license is terminated). Acceptable records are sketches, written descriptions of the specific locations or room numbers where licensed material is used or stored, and any records of spills or other unusual occurrences involving the spread of contamination in or around the licensee’s facilities.
8.4 ITEM 4: PERSON TO BE CONTACTED ABOUT THIS APPLICATION

Identify the individual(s) who can answer questions about the application and include telephone number(s). This is typically the proposed RSO, unless the applicant has named a different person. The NRC will contact this individual if there are questions about the application.

Notify NRC if the contact person or his or her telephone number changes so that NRC can contact the applicant or licensee in the future with questions, concerns, or information. This notice is for “information only” and does not require a license amendment or a fee.

As indicated on NRC Form 313 (Appendix B), Items 5 through 11 should be submitted on separate sheets of paper. Applicants may use Appendix C for this purpose and should note that using the suggested wording of responses and committing to using the model procedures in this report will expedite NRC’s review.

8.5 ITEM 5: RADIOACTIVE MATERIAL

8.5.1 UNSEALED AND/OR SEALED BYPRODUCT MATERIAL

Criteria: An application for a license will be approved if the requirements of 10 CFR 30.33 are met. In addition, licensees will be authorized to possess and use only those sealed sources and devices that are specifically approved or registered by NRC or an Agreement State.

Discussion: Each authorized radioisotope is listed on the NRC license by its element name, chemical and/or physical form, and the maximum possession limit, as shown in the sample license in Appendix F. Table 8.1 below shows the type of radioactive material covered by this report.

Table 8.1 Types of Radioactive Materials

<table>
<thead>
<tr>
<th>Type of Material</th>
<th>Covered by this Report</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byproduct (reactor-produced)</td>
<td>Yes</td>
<td>H-3, C-14, I-131, I-125, S-35, P-32, P-33, Ca-45, Ni-63, Cd-109, Cs-137</td>
</tr>
<tr>
<td>Source material</td>
<td>No</td>
<td>U, Th</td>
</tr>
</tbody>
</table>
The applicant should list each requested radioisotope by its element name and its mass number [e.g., carbon-14(C-14)] in item 5. It is necessary to specify whether the material will be acquired and used in unsealed or sealed form. The name of the specific chemical compound that contains the radioisotope is not required. For volatile radioactive material, however, it is necessary to specify whether the requested radioisotope will be acquired in free (volatile) or bound (non-volatile) form, because additional safety precautions are required when handling and using free form volatile material. For example, when requesting authorization to use tritium (H-3) or iodine-125 (I-125), the applicant must specify whether the material will be acquired in free form or bound form. If a radioisotope will be acquired in both free and bound forms, then separate possession limits for each form must be specified.

Applicants requesting an authorization to use volatile radioactive material must provide appropriate facilities, engineering controls, and radiation safety procedures for handling of such material.

If you plan to possess radioactive materials in excess of the quantities listed in 10 CFR 30.72 (Schedule C), then you must provide with the application either (1) an evaluation showing that the maximum off-site dose due to a release of radioactive materials would not exceed 0.01 Sv (1 rem) effective dose equivalent or 0.05 Sv (5 rem) to the thyroid, or (ii) an emergency response plan for responding to the release in accordance with the criteria listed in 10 CFR 30.32(i)(3). Refer to Regulatory Guide 3.67 and Policy and Guidance Directive 84-14 for additional information regarding emergency plans.

The anticipated possession limit in MBq (millicuries) or GBq (curies) for each radioisotope should also be specified. Possession limits must cover the total anticipated inventory, including licensed material in storage and waste, and should be commensurate with the applicant’s needs and facilities for safe handling. Applicants should review the requirements for submitting a certification for financial assurance for decommissioning before specifying possession limits of any radioisotope with a half life greater than 120 days. These requirements are discussed in the section on Financial Assurance and Decommissioning.
Requests to license naturally-occurring radioactive material (NORM) and accelerator-produced radioactive material should be made to the appropriate state regulatory agency. NRC does not regulate NORM or accelerator-produced radioactive material.

Before proceeding further, applicants should determine if their proposed uses of licensed material are in excess of the quantities specified in 10 CFR 30.71, Schedule B. It is not necessary to submit an application to NRC for quantities of byproduct material that are covered by the exemption in 10 CFR 30.18, provided that they are received from entities that are licensed to distribute them. Similarly, certain prepackaged units (typically called kits) containing byproduct material for conducting in vitro clinical or laboratory tests, are distributed to persons who are generally licensed. Regulations related to possession and use of such prepackaged kits under a general license are stated in 10 CFR 31.11. Persons eligible for this general license are limited to physicians, veterinarians in the practice of veterinary medicine, clinical laboratories, and hospitals; however, these persons are required to register with NRC before acquiring or using these units, unless they have an NRC license under 10 CFR Part 35.

Certain devices containing sealed sources of byproduct material, such as ECDs in GCs, are authorized by NRC or Agreement States for distribution to persons who are generally licensed as well as to persons who are specifically licensed. Generally licensed devices can be acquired by the users without obtaining a specific license from NRC. Regulatory requirements for such devices possessed under a general license are stated in 10 CFR 31.5. Distributors of such devices must provide users with appropriate information related to the acquisition, use, and transfer of these generally licensed devices.

A safety evaluation of sealed sources and devices is performed by NRC or an Agreement State before authorizing a manufacturer (or distributor) to distribute them to specific licensees. The safety evaluation is documented in a Sealed Source and Device (SSD) Registration Certificate. Information on SSD registration certificates may be obtained by contacting the Registration Assistant by calling NRC’s toll-free number (800) 368-5642, extension 415-7231. Before the formalization of the SSD registration process, some older sources or devices may have been specifically approved on a license. Licensees can continue to use those sources and devices specifically listed on their licenses. Applicants must provide the manufacturer’s name and model number for each requested sealed source and device so that NRC can verify that they have been evaluated in an SSD Registration Certificate or specifically approved on a license. See also NUREG - 1556, Vol. 3.

Consult with the proposed supplier, manufacturer, or distributor to ensure that requested sources and devices are compatible with and conform to the sealed source and device designations registered with NRC or an Agreement State. Licensees may not make any changes to the sealed source, device, or source/device combination that would alter the description or specifications from those indicated in the respective registration certificates, without obtaining NRC’s prior permission in a license amendment. To ensure that applicants use sources and devices according
to the registration certificates, they may want to get a copy of the certificate and review it or discuss it with the manufacturer.

Response from Applicant:

- For unsealed materials:
 - Provide element name with mass number, chemical and/or physical form, and maximum requested possession limit.

- For potentially volatile materials (e.g., I-125, I-131, H-3, Kr-85):
 - Specify whether the material will be free (volatile) or bound (non-volatile) and the requested possession limit for each form.

- For sealed materials:
 - Identify each radionuclide (element name and mass number) that will be used and specify the maximum activity per source. Also, specify the maximum number of sources or total activity for each radionuclide;
 - Provide the manufacturer’s (distributor’s) name and model number for each sealed source and device requested
 - Confirm that each sealed source, device, and source/device combination is registered as an approved sealed source or device by NRC or an Agreement State
 - Confirm that the activity per source and maximum activity in each device will not exceed the maximum activity listed on the approved certificate of registration issued by NRC or by an Agreement State

- Provide an Emergency Plan (if required)

8.5.2 FINANCIAL ASSURANCE AND RECORD KEEPING FOR DECOMMISSIONING

Regulations: 10 CFR 30.35, 10 CFR 30.34(b).

Criteria: A licensee authorized to possess licensed material in excess of the limits specified in 10 CFR 30.35 must submit a decommissioning funding plan (DFP) or provide a certification of financial assurance (F/A) for decommissioning. All licensees are required to maintain records of information important to the decommissioning of the facility in an identified location until the site is released for unrestricted use. Licensees must transfer these records either to the new licensee before licensed activities are transferred or assigned in accordance with 10 CFR 30.34(b) or to the appropriate NRC regional office before the license is terminated.

Discussion: NRC wants to ensure that decommissioning will be carried out with minimum impact on the public, occupational health and safety, and the environment. There are two parts to this rule: financial assurance that applies to some licensees, and record keeping that applies to all licensees.

NRC regulations requiring an F/A and/or a DFP are designed to provide reasonable assurance that the technical and environmental components of decommissioning are carried out and unrestricted use of the facilities is possible at the conclusion/termination of licensed activities. NRC wants to ensure that decommissioning will be carried out with minimum impact on public and occupational health and safety and on the environment. These requirements, if applicable, specify that a licensee either set aside funds for decommissioning activities or provide a guarantee through a third party that funds will be available (see Figure 8.2). Applicants are required to submit an F/A and/or a DFP when the possession of radioactive material of half life (T1/2) greater than 120 days exceeds certain limits. Criteria for determining whether an applicant is required to submit a DFP and/or an F/A (or neither) are stated in 10 CFR 30.35.

Table 8.2 is a partial list of radioisotopes of T1/2 > 120 days with their corresponding limits in excess of which an F/A or a DFP is required; however, it is NRC’s experience that most ARDL licensees use only a few of these radioisotopes and that the most frequently used radioisotopes are hydrogen-3 (H-3), C-14, chlorine-36 (Cl-36), and calcium-45 (Ca-45) in unsealed form. The amounts of such radioisotopes required by ARDL licensees rarely exceed the limits that require submitting a DFP or an F/A. See Table 8.2 for possession limits and guidance for submitting either a DFP or an F/A. Radioisotopes of T1/2 > 120 days are listed in column 1. Column 2 lists the corresponding possession limits of radioisotopes in unsealed form requiring an F/A. Column 3 lists the corresponding possession limits of radioisotopes in unsealed form requiring the submittal of a DFP. These limits apply when only one of these radioisotopes is possessed.
Figure 8.2 Methods of Certification of Financial Assurance for Decommissioning.

Applicants can use the data from Table 8.2 or the method given in Appendix G to determine if an F/A is required and the amount that is required when more than one of these radioisotopes is requested. Most of the ARDL licensees use a small number of these radioisotopes, and in many cases the use is limited to only H-3 and C-14. Such licensees may be able to adjust the amounts of these radioisotopes so that the financial assurance requirement is not applicable.

Table 8.2 Commonly Used Unsealed Licensed Materials Requiring Financial Assurance/Decommissioning Funding Plan

<table>
<thead>
<tr>
<th>Column 1: Radioisotope</th>
<th>Column 2: Limit for F/A (millicuries*)</th>
<th>Column 3: Limit for DFP (millicuries*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>calcium-45</td>
<td>10</td>
<td>1,000</td>
</tr>
<tr>
<td>carbon-14</td>
<td>100</td>
<td>10,000</td>
</tr>
<tr>
<td>chlorine-36</td>
<td>10</td>
<td>1,000</td>
</tr>
<tr>
<td>hydrogen-3</td>
<td>1,000</td>
<td>100,000</td>
</tr>
<tr>
<td>zinc-65</td>
<td>10</td>
<td>1,000</td>
</tr>
</tbody>
</table>

* 1 millicurie = 37 MBq

Record Keeping

The requirements for maintaining records important to decommissioning, including the type of information required, are stated in 10 CFR 30.35(g). All licensees are required to maintain these records in an identified location until the site is released for unrestricted use (see Figure 8.3). In the event that the licensed activities are transferred to another person or entity, these records shall
be transferred to the new licensee prior to transfer of the licensed activities. The new licensee is responsible for maintaining these records until the license is terminated. When the license is terminated, these records shall be transferred to NRC.

![Diagram of records categories]

Figure 8.3 Types of Records That Must Be Maintained for Decommissioning

10 CFR 30.35(g), Requirements for Disposition of Records Important to Decommissioning

- Before licensed activities are transferred or assigned according to 10 CFR 30.34(b), transfer to the new licensee

 OR

- Before the license is terminated, transfer records to the appropriate NRC regional office.

Response from Applicants: No response is needed from most applicants. If F/A or a DFP is required, submit the required documents as described in Regulatory Guide 3.66.

Reference: See the Notice of Availability on the inside front cover of this report to obtain copies of these documents:

CONTENTS OF AN APPLICATION

8.6 ITEM 6: PURPOSE(S) FOR WHICH LICENSED MATERIAL WILL BE USED

Regulations: 10 CFR 30.4, 10 CFR 30.33(a)(1), 10 CFR 51.21, 10 CFR 51.22.

Criteria: The applicant must specify the purpose of use for each sealed and/or unsealed radionuclide requested. All sealed sources and devices containing licensed material shall be used only for the purpose for which they are designed, and according to manufacturer’s (distributor’s) instructions and recommendations for use as specified in the SSD Registration Certificate.

Discussion: Applicants should clearly specify the purpose for which each radioisotope will be used. The description should be detailed enough to allow NRC to determine the potential for exposure to radiation and radioactive materials, to those working with radioactive materials and members of the public.

Research and development, as defined in 10 CFR 30.4, does not include research involving the use of licensed material in or on humans. Applicants intending to use licensed materials for medical research involving humans must be authorized to do so pursuant to a license issued under 10 CFR Part 35, and should refer to Regulatory Guide 10.8, Revision 2, “Guide for the Preparation of Applications for Medical Use Programs,” dated August 1987, for instructions.

Note: NUREG - 1556, Volume 9, “Consolidated Guidance About Material Licenses, Program Specific Guidance about Medical Use Licenses” will supercede Regulatory Guide 10.8, Revision 2 when published as final, and should be used at that time.

Applicants may use the format given in Table 8.3 to provide the requested information.
Table 8.3 Sample Format for Providing Information About Requested Radioisotopes

<table>
<thead>
<tr>
<th>Radioisotope</th>
<th>Chemical/Physical Form</th>
<th>Maximum Possession Limit</th>
<th>Proposed Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-3</td>
<td>unbound/volatile</td>
<td>100 millicuries</td>
<td>Labeling of compounds</td>
</tr>
<tr>
<td>H-3</td>
<td>bound/non-volatile</td>
<td>100 millicuries</td>
<td>In vitro studies; studies in small lab animals</td>
</tr>
<tr>
<td>P-32</td>
<td>Any</td>
<td>30 millicuries</td>
<td>In vitro studies; labeling of compounds</td>
</tr>
<tr>
<td>I-125</td>
<td>Unbound/volatile</td>
<td>30 millicuries</td>
<td>Protein iodination</td>
</tr>
<tr>
<td>I-125</td>
<td>Bound/non-volatile</td>
<td>50 millicuries</td>
<td>In vitro studies; studies in small lab animals; calibration of instruments</td>
</tr>
<tr>
<td>Cs-137</td>
<td>Sealed source, Mfg. name/ model number</td>
<td>20 millicuries</td>
<td>Calibration of instruments</td>
</tr>
</tbody>
</table>

Applicants should clearly specify if the licensed material will be used in animal studies and/or tracer studies. Use of licensed material in animals may be in research studies, or by veterinarians for diagnostic and therapeutic purposes. Applicants should also state whether the studies will be limited to small animals (e.g., rats, mice) or may also include larger animals (e.g., pigs, dogs, horses). Similarly, the veterinary use should specify whether the material will be used in pets (cats, dogs) or in farm animals (cattle, horses, pigs). Appendix H provides guidance for developing radiation safety procedures for these studies.

If the material will be used in tracer/field studies where licensed material is deliberately released into the environment, or in animal studies that may result in the release of licensed material into the environment, an environmental assessment (EA) may be needed according to 10 CFR 51.21. Revision 1, Supplement to Policy and Guidance Directive FC 84-20, “Impact of Revision of 10 CFR Part 51 on Materials License Actions,” dated March 1994, provides criteria for determining when an EA is not needed.

Applicants should note that authorization from NRC to use licensed material in animal and/or tracer studies does not relieve them of their responsibilities to comply with any other applicable Federal, state or local regulatory requirements.

Response from Applicant: List the specific use or purpose of each radioisotope.
8.7 ITEM 7: INDIVIDUAL(S) RESPONSIBLE FOR RADIATION SAFETY PROGRAM AND THEIR TRAINING AND EXPERIENCE

8.7.1 RADIATION SAFETY OFFICER (RSO)

Regulations: 10 CFR 30.33(a)(3).

Criteria: RSOs must have training and specific experience, with the types and quantities of licensed material to be authorized on the license.

Discussion: The person responsible for implementing the radiation protection program is called the Radiation Safety Officer, or RSO. This individual may also be called the Radiation Protection Officer (RPO). The RSO needs independent authority to stop operations that he or she considers unsafe. He or she must have sufficient time and commitment from management to fulfill certain duties and responsibilities to ensure that radioactive materials are used in a safe manner. Typical RSO duties are illustrated in Figure 8.4 and described in Appendix I. NRC requires the name of the RSO on the license to ensure that licensee management has identified a responsible, qualified person and that the named individual knows of his or her designation as RSO.

![Figure 8.4 RSO Responsibilities.](image-url)

For Licensed Materials
NRC believes that to demonstrate adequate training and experience, the RSO should have (1) as a minimum, a college degree at the bachelor level, or equivalent training and experience in physical, chemical, biological sciences, or engineering; and (2) training and experience commensurate with the scope of proposed activities. Training should include the following subjects:

- Radiation Protection Principles
- Characteristics of Ionizing Radiation
- Units of Radiation Dose and Quantities
- Radiation Detection Instrumentation
- Biological Hazards of Exposure to Radiation (appropriate to types and forms of byproduct material to be used)
- NRC Regulatory Requirements and Standards
- Hands-on use of radioactive materials.

The amount of training and experience needed will depend upon the type, form, quantity and proposed use of the licensed material requested. Ultimately, the proposed RSO’s training and experience should be sufficient to identify and control the anticipated radiation hazards. In addition, the RSO designee should have obtained the above training in a formal course designed for RSOs presented by an academic institution, commercial radiation safety consulting company, or a professional organization of radiation protection experts.

Response from Applicant: Provide the following:

- Name of the proposed RSO
- Information demonstrating that the proposed RSO is qualified by training and experience.

Applicants should provide information about the proposed RSO’s training and experience relative to the licensed material requested in the application. Applicants should not submit extraneous information such as unrelated lists of publications, research grants, committee and society memberships, etc. Submittal of unrelated material serves only to slow the review process.

Note: It is important to notify NRC, as soon as possible, of changes in the designation of the RSO. The name and qualifications of the replacement RSO must be submitted to NRC as part of an amendment request.
8.7.2 AUTHORIZED USER

Criteria: Authorized users (AUs) must have adequate training and experience with the types and quantities of licensed material that they propose to use.

Discussion: An AU (also known as “principal investigator”) is a person whose training and experience have been reviewed and approved by NRC, who is named on the license, and who uses or directly supervises the use of licensed material. The AU’s primary responsibility is to ensure that radioactive materials used in his or her particular lab or area are used safely and according to regulatory requirements (See Figure 8.5). The AU is also responsible to ensure that procedures and engineering controls are used to keep occupational doses and doses to members of the public ALARA.

Figure 8.5 Authorized User. The Authorized User is responsible for the safe use of licensed material in his or her laboratory or area.

AUs must have adequate and appropriate training to provide reasonable assurance that they will use licensed material safely, including maintaining security of, and access to, licensed material, and respond appropriately to events or accidents involving licensed material to prevent the spread of contamination.
NRC believes that to demonstrate adequate training and experience the AU should have (1) a college degree at the bachelor level, or equivalent training and experience in physical, chemical, or biological sciences or in engineering; and (2) training and experience commensurate with the scope of proposed activities. Training should include the following subjects:

- Radiation Protection Principles
- Characteristics of Ionizing Radiation
- Units of Radiation Dose and Quantities
- Radiation Detection Instrumentation
- Biological Hazards of Exposure to Radiation (appropriate to the types and forms of byproduct material to be used)
- Hands-on Use of Radioactive Materials.

The amount of training and experience needed will depend upon the type, form, quantity and proposed use of the licensed material requested, but it should cover the subjects stated.

An AU is considered to be supervising the use of radioactive materials when he/she directs personnel in operations involving the licensed material. Although the AU may delegate specific tasks to supervised users (e.g., conducting surveys, keeping records), he/she is responsible for the safe use of radioactive material to assure that areas are not contaminated.

Applicants must name at least one individual who is qualified to use the requested licensed materials. In general, AUs must demonstrate training and experience with the type and quantity of material that they propose to use. For example, someone with training and experience only with sealed radioactive sources may not be qualified to use or supervise the use of unsealed licensed material. In addition, someone with experience using only trace quantities may not understand the risks of working with much larger (e.g., 10 or 100 times larger) quantities of the same substance. Applicants should pay particular attention to the type of radiation involved. For example, someone experienced with gamma emitters may not have appropriate experience for high energy beta emitters.

Response from Applicant: Provide the following:

- Name of each proposed AU with the types and quantities of licensed material to be used
- Information demonstrating that each proposed AU is qualified by training and experience to use the requested licensed materials.
Applicants should provide information about the proposed AU’s training and experience relative to the licensed material requested in the application. Applicants should not submit extraneous information, such as unrelated lists of publications, research grants, committee and society memberships, etc. Submittal of unrelated material serves only to slow the review process.

8.8 ITEM 8: TRAINING FOR INDIVIDUALS WORKING IN OR FREQUENTING RESTRICTED AREAS (OCCUPATIONALLY EXPOSED INDIVIDUALS AND ANCILLARY PERSONNEL)

Criteria: Individuals whose assigned duties involve exposure to radiation and/or radioactive material (from both licensed and unlicensed sources), and in the course of their employment are likely to receive in a year an occupational dose of radiation greater than 1 mSv (100 mrem), must receive instruction commensurate with their duties and responsibilities, as required by 10 CFR 19.12.

Discussion: Before beginning work with licensed material, most individuals must receive radiation safety training commensurate with their assigned duties and specific to the licensee’s radiation safety program. Each individual should also receive periodic refresher training.

Licensees should not assume that safety instruction has been adequately covered by prior employment or academic training. Site-specific training should be provided for all individuals. Particular attention should be given to persons performing work with radioactive materials that may require special procedures, such as hot cell work, waste processing, and animal handling. Also, ancillary personnel (e.g., clerical, housekeeping, security) whose duties may require them to work in the vicinity of radioactive material (whether escorted or not) need to be informed about radiation hazards and the appropriate precautions. The licensee should assess each individual’s involvement with licensed material and cover each applicable subject appropriately.

Training may be in the form of lecture, demonstrations, videotape, or self-study, and should emphasize practical subjects important to the safe use of licensed material. The guidance in Appendix J may be used to develop a training program. The program should consider both the topics pertinent for each group of workers and the method and frequency of training.

The person conducting the training should be a qualified individual (e.g., a person who meets the qualifications for RSO or authorized user on the license and is familiar with the licensee’s program).
Response from Applicant: A description of the radiation safety training program, including topics covered, groups of workers, assessment of training, qualifications of instructors, and the method and frequency of training.

8.9 ITEM 9: FACILITIES AND EQUIPMENT

Criteria: Facilities and equipment must be adequate to protect health and minimize danger to life or property. They must minimize the possibility of contamination and keep exposures to workers and the public ALARA.

Discussion: Applicants must demonstrate that their facilities and equipment provide sufficient engineering controls and barriers to protect the health and safety of the public and its employees, keep exposures to radiation and radioactive materials ALARA, and minimize the danger to life and property from the uses of the types and quantities of radioactive materials to be used.

Applicants may delay completing facilities and acquiring equipment until after the application review is completed, in case changes are required as a result of the application review. This also ensures the adequacy of the facilities and equipment before the applicant makes a significant financial commitment. In all cases, the applicant may not possess or use licensed material until after the facilities are approved, equipment is procured, and the license is issued.

Applicants are reminded that records important to decommissioning include the following:

- As-built drawings and modifications of structures and equipment in restricted areas;
- As-built drawings and modifications of locations of possible inaccessible contamination such as buried pipes that may be subject to contamination;
- Records of spills and unusual occurrences that may result in contamination of the facility or site.

These records are required to be maintained in an identifiable location. Facilities are required to meet NRC criteria prior to release. Therefore, careful facility design is important to prevent contamination, or facilitate decontamination, reducing the costs needed for decommissioning. For further information, see the section entitled, “Financial Assurance and Record Keeping for Decommissioning.”

For additional guidance regarding facilities and equipment, refer to Appendix K.

If radioactive materials will be used with animals, include a description of the animal handling housing facilities. (See Appendix H.)
Response from Applicant: Describe the facilities and equipment to be made available at each location where radioactive material will be used (see Appendix K for topics to consider). Include a description of the area(s) assigned for the receipt, storage, security, preparation and measurement of radioactive materials. A diagram should be submitted showing the locations of shielding, the proximity of radiation sources to unrestricted areas, and other items related to radiation safety. When applicable to facilities where radioactive materials may become airborne, the diagrams should contain schematic descriptions of the ventilation systems, with pertinent airflow rates, pressures, filtration equipment, and monitoring systems. Diagrams should be drawn to a specified scale, or dimensions should be indicated. For facilities where it is anticipated that more than one laboratory or room may be used, a generic laboratory or room diagram may be submitted.

8.10 ITEM 10: RADIATION SAFETY PROGRAM

8.10.1 AUDIT PROGRAM

Criteria: Licensees must review the content and implementation of their radiation protection programs at least annually to ensure the following:

- Compliance with NRC and DOT regulations (as applicable), and the terms and conditions of the license;
- Occupational doses and doses to members of the public are ALARA (10 CFR 20.1101); and
- Records of audits and other reviews of program content are maintained for 3 years.

Discussion: Appendix L contains a suggested audit program that is specific to ARDL licensees and is acceptable to NRC. All areas indicated in Appendix L may not be applicable to every licensee and may not need to be addressed during each audit. For example, licensees do not need to address areas which do not apply to their activities, and activities which have not occurred since the last audit. Generally, audits are conducted at least once every 12 months.

Currently, the NRC’s emphasis in inspections is to perform actual observations of work in progress. As a part of their audit programs, applicants should consider performing unannounced audits of byproduct material users to determine if, for example, Safe Use and Emergency Procedures are available and are being followed.

If an audit identifies violations of NRC requirements, the licensee should first evaluate the safety significance of each violation to set priorities and identify resources to correct these violations. Information Notice (IN) 96-28, “Suggested Guidance Relating to Development and
Implementation of Corrective Action,” dated May 1, 1996, provides guidance on this subject. Certain identified problems or potential violations may require notification or a report to NRC. Licensees are encouraged to contact NRC for guidance if there is any uncertainty regarding a reporting requirement. NRC routinely reviews licensee’s records to verify if appropriate corrective actions were implemented in a timely manner to prevent recurrence. It is in the best interest of the licensee to identify potential violations of regulatory requirements and take necessary steps to correct them. NRC can exercise discretion and may elect not to cite the licensee for these violations if prompt and effective corrective actions are implemented. For information on NRC’s use of discretion on issuing a notice of violation, refer to the most recent version of NRC’s “General Statement of Policy and Procedures for NRC Enforcement Actions” (NUREG - 1600).

Licensees must maintain records of these audits and other reviews of program content and implementation for 3 years from the date of the record. Records of these audits should include the following information: date of audit, name of person(s) who conducted audit, persons contacted by the auditor(s), areas audited, audit findings, corrective actions, and follow-up. These records must be maintained for inspections by NRC.

Response From Applicant: The applicant is not required to, and should not, submit its audit program to the NRC for review during the licensing phase. However, this matter may be reviewed during NRC inspections.

References: See the Notice of Availability on the inside front cover of this report to obtain copies of:

- Inspection Procedure 87110, Appendix A, “Industrial/Academic/Research Inspection Field Notes,”
- NUREG - 1600, “General Statement of Policy and Procedures on NRC Enforcement Actions,”

8.10.2 RADIATION MONITORING INSTRUMENTS

Regulations: 10 CFR 20.1501, 10 CFR 20.2103(a), 10 CFR 30.33(a)(2).

Criteria: Licensees must possess, or have access to, radiation monitoring instruments that are necessary to protect health and minimize danger to life or property. Instruments used for quantitative radiation measurements must be calibrated periodically for the radiation measured.
Discussion: Licensees shall possess, or have access to, calibrated radiation detection/measurement instruments or licensed services to perform, as necessary the following:

- Package surveys
- Contamination surveys
- Sealed source leak tests
- Air sampling measurements
- Bioassay measurements
- Effluent release measurements
- Unrestricted area dose rate measurements.

For the purposes of this document, survey instruments are defined as any device used to measure the radiological conditions at a licensed facility. Some of the survey instruments that may be used to perform the above functions include:

- Portable or stationary count rate meters
- Portable or stationary dose rate or exposure rate meters
- Single or Multichannel Analyzers
- Liquid Scintillation Counters (LSC)
- Gamma Counters
- Proportional Counters
- Solid State Detectors.
Figure 8.6 Examples of Portable Instruments Used in Laboratory Settings.

The choice of instrument should be appropriate for the type of radiation to be measured, and for the type of measurement to be taken (count rate, dose rate, etc.). Figure 8.6 illustrates some
common survey instruments used for contamination surveys. Applications should include descriptions of the instrumentation available for use and instrumentation applicants intend to purchase prior to starting licensed activities. The description should include type of instrument and probe, and the instrument’s intended purpose.

Instruments used for qualitative surveys are only intended to detect contamination in the laboratory. Such instruments should be checked for operational response with an appropriate check source containing radioactive material, and can be calibrated with an electronic pulser instead of a radioactive source. However, these instruments cannot be used for measurement of surface contamination or radiation levels without a calibration with appropriate radioactive sources, as described in Appendix M.

NRC requires that calibrations be performed by the instrument manufacturer or a person specifically authorized by NRC or an Agreement State, unless the applicant specifically requests this authorization. Applicants seeking authorization to perform survey instrument calibrations shall submit procedures for review. Appendix M provides information about instrument specifications and model calibration procedures.

Response from Applicant: Provide one of the following:

A description of the instrumentation (as described above) that will be used to perform required surveys and a statement that: “We will use instruments that meet the radiation monitoring instrument specifications published in Appendix M to NUREG - 1556, Vol. 7, ‘Program-Specific Guidance About Academic, Research and Development, and Other Laboratory Licenses of Limited Scope,’ dated December 1999. We reserve the right to upgrade our survey instruments as necessary.”

OR

A description of the instrumentation (as described above) that will be used to perform required surveys and a statement that: “We will use instruments that meet the radiation monitoring instrument specifications published in Appendix M to NUREG - 1556, Vol. 7, ‘Program-Specific Guidance About Academic, Research and Development, and Other Licenses of Limited Scope,’ dated December 1999. Additionally, we will implement the model survey meter calibration program published in Appendix M to NUREG - 1556, Vol. 7, ‘Program-Specific Guidance About Academic, Research and Development, and Other Licenses of Limited Scope,’ dated December 1999. We reserve the right to upgrade our survey instruments as necessary.”

OR

A description of alternative equipment and/or procedures for ensuring that appropriate radiation monitoring equipment will be used during licensed activities and that proper calibration and
A model procedure for safely opening packages containing licensed materials is included in Appendix N.

In limited scope radiation safety programs, the RSO or his/her staff usually receives the incoming package directly from the carrier, and performs all verification, surveying, opening, and documentation for inventory. The package is then delivered to the AU, or the AU retrieves the package from the RSO. If the package is transported over public roads by the licensee, it must be repackaged and transported in accordance with DOT regulations.
If the package of licensed material is delivered to the licensed facility’s receiving department (Receiving), individuals working in that department should be trained to do the following:

- Identify the package as radioactive by labeling and shipping papers
- Segregate the package from other incoming items in a secured area until released by the RSO
- Notify the RSO.

When notified by Receiving that a package of licensed material has arrived, the RSO or his/her staff should retrieve the package and follow the safe opening procedures.

NRC regulations in 10 CFR 20.1906(b) and (c) state the requirements for monitoring packages containing licensed material. These requirements are described in Table 8.4, below.

Table 8.4 Package Monitoring Requirements

<table>
<thead>
<tr>
<th>Package</th>
<th>Contents</th>
<th>Survey Type</th>
<th>Survey Time*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labeled (White I, Yellow II,</td>
<td>Gas or Special Form Greater Than Type A</td>
<td>Radiation Level</td>
<td>As soon as practicable, but not later than 3 hours after receipt of package</td>
</tr>
<tr>
<td>Yellow III)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labeled (White I, Yellow II,</td>
<td>Not Gas Nor Special Form Greater Than Type A</td>
<td>Contamination</td>
<td>As soon as practicable, but not later than 3 hours after receipt of package</td>
</tr>
<tr>
<td>Yellow III)</td>
<td></td>
<td>Radiation Level</td>
<td></td>
</tr>
<tr>
<td>Labeled (White I, Yellow II,</td>
<td>Gas or Special Form Less Than Type A</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Yellow III)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labeled (White I, Yellow II,</td>
<td>Not Gas Nor Special Form Less Than Type A</td>
<td>Contamination</td>
<td>As soon as practicable, but not later than 3 hours after receipt of package</td>
</tr>
<tr>
<td>Yellow III)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Labeled</td>
<td>Licensed Material</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
CONTENTS OF AN APPLICATION

<table>
<thead>
<tr>
<th>Package</th>
<th>Contents</th>
<th>Survey Type</th>
<th>Survey Time*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damaged</td>
<td>Licensed Material</td>
<td>Contamination Radiation Level</td>
<td>As soon as practicable, but not later than 3 hours after receipt of package</td>
</tr>
</tbody>
</table>

* Assumes packages are received during normal working hours. If packages are received outside of normal working hours, the licensee has three hours after the beginning of the next work day to perform the required surveys.

10 CFR 20.1906(d) requires that the licensee immediately notify the final delivery carrier and, by telephone, telegram, mailgram, or facsimile, the Administrator of the appropriate NRC Regional Office listed in Appendix D to 10 CFR Part 20 when removable radioactive surface contamination exceeds the limits of 10 CFR 71.87(i); or external radiation levels exceed the limits of 10 CFR 71.47.

As illustrated in Figure 8.7, licensed materials must be tracked from “receipt to disposal” in order to ensure accountability and to ensure that possession limits listed on the license are not exceeded.

![Figure 8.7 Material Receipt and Accountability](image)

Figure 8.7 Material Receipt and Accountability. *Licensees must maintain records of receipt, transfer, and disposal of licensed material.*

Licensees frequently possess radioactive material, which is generally licensed or distributed to them as an exempt quantity in addition to that which is specifically listed on their license. 10 CFR Part 31 provides information regarding generally licensed devices. Any person who acquires, receives, possesses, uses, or transfers a generally licensed device must do so in accordance with the provisions of the general license. Generally licensed material possessed by a specific licensee may continue to be possessed under a general license. A specific license does not automatically remove general licensee status nor automatically “move” generally licensed material to the specific license. NRC recognizes that multiple authorizations can create some
confusion and, therefore, a specific licensee always has the option of receiving and possessing radioactive materials that “qualify” for a general license, by adding these to its specific license.

Similarly, radioactive material received by a specific licensee, that is distributed to them under an exemption from the requirements for a license, is not subject to the terms and conditions of the specific license. Any person may receive byproduct material that is exempt from the requirements of a license pursuant to the regulations in 30.11 through 30.21. Such materials may include “exempt quantities” of byproduct materials that do not exceed the applicable quantity listed in 10 CFR 30.71, as well as items such as smoke detectors and self-luminous watches, that are distributed in accordance with other NRC regulations. Most licensees do not possess or control these type of devices under the provisions of their specific license and NRC does not require or encourage this practice; however, as stated above, the specific licensee always has the option of adding these materials to its license, and controlling them under the conditions of the specific license. In any case, licensees are required to ensure that dose limits are not exceeded, whether or not the dose results from licensed sources or unlicensed sources.

Some facilities may have separate laboratories or locations which use material for in-vitro assay that may be possessed under the general license in 10 CFR 31.11. Each location is a separate general license from the other. The multiple locations are not considered to operate under a single general license and are not considered part of the specific license. The possession limit of 7.4 MBq (200 microcuries), only applies to a total amount of I-125, iodine-131 (I-131), selenium-75 (Se-75), and/or iron-59 (Fe-59) used and/or stored in one location.

It is recognized that loss, theft, or misplacement of licensed material can occur; however, licensees must have in place an accountability and control system for promptly detecting losses of licensed material.

Licensees who use and/or possess sealed sources are required by license condition to perform inventories of sealed sources every six months (see sample license, condition no. 16). Some sealed sources may not be in use or are rarely used and are placed in storage. In these cases, licensees should confirm that these sealed sources have not been disturbed at least every 6 months. Licensees are also required to conduct leak tests of sealed sources at 6-month intervals (or at longer intervals as specified in the SSD Registration Certificate). Since the leak tests require an individual to locate and work with the sealed source, records of leak tests may be used as part of an inventory and accountability program.

With regard to unsealed licensed material, licensees use various methods (e.g., computer programs, manual ledgers, log books) to account for receipt, use, transfer, disposal, and radioactive decay. These methods help to ensure that possession limits are not exceeded.

To ensure that only trained, experienced, and authorized individuals use or supervise the use of licensed material, the RSO should know who has requested an order of licensed material and the types and amounts of licensed materials requested. Control procedures should also be
established for the procurement of licensed materials that may be obtained outside the normal channels, e.g., through the loan or other transfer of materials without purchase or through surplus. A model procedure for Ordering and Receiving Radioactive Material is included in Appendix N.

NRC regulations applicable to transfers are stated in 10 CFR 30.41. Sample policy transfer statements are included in Appendix N. Transfer of licensed materials within the facility may require special procedures to ensure proper control. In many facilities, pieces of laboratory equipment or components including refrigerators and freezers will become contaminated. Removal of these items for maintenance, repair, or disposal should also be carefully controlled.

Licensees must maintain records of receipt, transfer, and disposal (as waste) of all licensed material. Table 8.5 below lists each type of record and how long the record must be maintained. Other records such as transfer records could be linked to radioactive material inventory records. Receipt records should also document cases where excessive radiation levels or radioactive contamination were found on packages or containers of material received and describe the action taken.

Table 8.5 Record Maintenance

<table>
<thead>
<tr>
<th>Type of Record</th>
<th>How Long Record Must be Maintained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receipt</td>
<td>For as long as the material is possessed until 3 years after transfer or disposal</td>
</tr>
<tr>
<td>Transfer</td>
<td>For 3 years after transfer</td>
</tr>
<tr>
<td>Disposal</td>
<td>Until NRC terminates the license</td>
</tr>
<tr>
<td>Important to decommissioning</td>
<td>Until the site is released for unrestricted use</td>
</tr>
</tbody>
</table>

Receipt, transfer, and disposal records typically contain the following information:

- Radionuclide and activity (in units of becquerels or curies), and date of measurement of byproduct material
- For each sealed source, manufacturer, model number, location, and, if needed for identification, serial number and as appropriate, manufacturer and model number of device containing the sealed source
- Date of the transfer and name and license number of the recipient, and description of the affected radioactive material (e.g., radionuclide, activity, manufacturer’s name and model number, serial number)
- For licensed materials disposed of as waste, include the radionuclide, activity, date of disposal, and method of disposal (decay, sewer, etc.)
See the section on “Waste Disposal” for additional information.

Information about locations where licensed material is used or stored are among the records important to decommissioning and required by 10 CFR 30.35(g). See also the section on “Financial Assurance and Record Keeping for Decommissioning.”

Response from Applicant:

- Develop a procedure(s) for ensuring material accountability.

 AND

- Provide either of the following:
 - A statement that: “Physical inventories will be conducted at intervals not to exceed 6 months, to account for all sealed sources and devices received and possessed under the license.”

 OR

 - A description of the procedures for ensuring that no sealed sources have been lost, stolen, or misplaced

Note:

- No response is needed from applicants for package opening procedures. Package opening procedures will be reviewed during NRC inspections.
- Alternative responses will be evaluated using the criteria listed above.

Reference:

See the Notice of Availability on the inside front cover of this report to obtain a copy of:

- NUREG - 1516, “Management of Radioactive Material Safety Programs at Medical Facilities,”

Additional References:

• NCRP Report No. 48, “Radiation Protection For Medical and Allied Health Personnel,” (1976)

8.10.4 OCCUPATIONAL DOSE

Criteria: The use of individual monitoring devices for external dose is required for:

• Adults who are likely to receive an annual dose in excess of any of the following (each evaluated separately):
 — 5 mSv (0.5 rem) deep-dose equivalent.
 — 15 mSv (1.5 rems) eye dose equivalent.
 — 50 mSv (5 rems) shallow-dose equivalent to the skin.
 — 50 mSv (5 rems) shallow-dose equivalent to any extremity.

• Minors who are likely to receive an annual dose in excess of any of the following (each evaluated separately):
 — 0.5 mSv (0.05 rem) deep-dose equivalent.
 — 1.5 mSv (0.15 rem) eye dose equivalent.
 — 5 mSv (0.5 rem) shallow-dose equivalent to the skin.

2 Copies may be obtained from the National Council on Radiation Protection and Measurements, 7910 Woodmont Ave., Suite 800, Bethesda, MD 20814-3095 or ordered electronically at <http://www.nrpc.com>.
CONTENTS OF AN APPLICATION

— 5 mSv (0.5 rem) shallow-dose equivalent to any extremity.

- Declared pregnant women who are likely to receive an annual dose from occupational exposures in excess of 0.5 mSv (0.05 rem) deep-dose equivalent, although the dose limit applies to the entire gestation period.
- Individuals entering a high or very high radiation area.

Internal exposure monitoring (not necessarily individual monitoring devices) is required for:

- Adults likely to receive in 1 year an intake in excess of 10% of the applicable ALIs for ingestion and inhalation.
- Minors and declared pregnant women likely to receive in 1 year a committed effective dose equivalent in excess of 0.5 mSv (0.05 rem).

![Annual Dose Limits for Occupationally Exposed Individual](image)

Figure 8.8 Annual Dose Limits for Occupationally Exposed Individuals.

Discussion:

TOTAL EFFECTIVE DOSE EQUIVALENT (TEDE) = DEEP DOSE FROM EXTERNAL EXPOSURE + DOSE FROM INTERNALLY DEPOSITED RADIONUCLIDES

According to 10 CFR 20.1502, if an adult (individual) is likely to receive in 1 year a dose greater than 10% of any applicable limit (See Figure 8.8 for annual dose limits), monitoring for occupational exposure is required. The licensee should perform an evaluation of the dose the individual is likely to receive prior to allowing the individual to receive the dose. This evaluation need not be made for every individual; evaluations can be made for employees with
similar job functions or work areas. Further guidance on evaluating the need to provide monitoring is provided in Regulatory Guide 8.34, “Monitoring Criteria and Methods to Calculate Occupational Doses,” dated July 1992.

If this prospective evaluation shows that the individual’s dose is not likely to exceed 10% of any applicable regulatory limit, there are no recordkeeping or reporting requirements. For individuals who have received doses at other facilities in the current year, the previous dose need not be considered in this prospective evaluation. When determining the need for monitoring, only a dose that could be received at the facilities of the applicant or licensee performing the evaluation needs to be considered, including any recordkeeping and reporting requirements. If an evaluation determined that monitoring was not required and a subsequent evaluation indicates that the 10% regulatory threshold may or will be exceeded, the dose received by an individual when monitoring was not provided should be estimated, recorded, and reported (if required). These estimates can be based on any combination of work location radiation monitoring, survey results, monitoring results of individuals in similar work situations, or other estimates to produce a “best estimate” of the actual dose received.

If monitoring is not required to demonstrate compliance with all limits but is required relative to one or more specific limits, the licensee should enter “NR” for “Not Required in the blocks on NRC Forms 4 and 5 to indicate the areas for which monitoring was not required (e.g., extremity or skin doses). Where monitoring was provided but not measurable, the licensee should enter “ND” for “Not Detectable.”

If the prospective dose evaluation shows that the individual is likely to exceed 10% of an applicable limit, monitoring is required (10 CFR 20.1502). Recordkeeping of the results of monitoring performed regardless of the actual dose received, is required by 10 CFR 20.2106 (a).

A common method for dose evaluation is to monitor workers’ dose with whole body and extremity dosimetry (TLDs film, ring badge, etc.) provided by a National Voluntary Laboratory Accreditation Program (NVLAP)-approved dosimetry service. Workers are typically monitored for a year or more to determine actual annual dose. The monitoring results are then used to determine the need to continue monitoring workers. The dose to workers may need to be reevaluated if there are changes to the licensee’s program, such as procedures, frequency of use, quantity of licensed material used, isotopes used, etc.

For guidance about methodologies for determination of internal occupational dose and summation of occupational dose, refer to Regulatory Guide 8.34, “Monitoring Criteria and Methods to Calculate Occupational Doses,” dated July 1992, and Regulatory Guide 8.9, “Acceptable Concepts, Models, Equations, and Assumptions for a Bioassay Program,” dated July 1993. NRC also has additional Regulatory Guides that have been developed for specific isotopes such as H-3 and iodine. For copies of these guidance documents contact the appropriate NRC regional office or contact the NRC’s web site <http://www.nrc.gov>.
Response from Applicant: Provide either of the following:

- A statement that: “We have done a prospective evaluation and determined that unmonitored individuals are not likely to receive, in one year, a radiation dose in excess of 10% of the allowable limits in 10 CFR Part 20 or we will monitor individuals in accordance with the criteria in the section entitled ‘Radiation Safety Program - Occupational Dose’ in NUREG - 1556, Vol. 7, ‘Consolidated Guidance about Materials Licenses: Program-Specific Guidance about Academic, Research and Development and Other Licenses of Limited Scope,’” dated December 1999.

 OR

- A description of an alternate method for demonstrating compliance with the referenced regulations.

Note:

- Alternative responses will be evaluated using the criteria listed above.
- Some licensees choose to provide personnel dosimetry to their workers for reasons other than compliance with NRC requirements (e.g., to respond to worker requests).

Reference: See the Notice of Availability on the inside front cover of this report to obtain copies of:

- Regulatory Guide 8.9, “Acceptable Concepts, Models, Equations, and Assumptions for a Bioassay Program,” dated July 1993; and

8.10.5 PUBLIC DOSE

Criteria: Licensees must ensure that licensed material will be used, transported, stored, and disposed of in such a way that members of the public will not receive more than 1 mSv (100 mrem) in one year, and the dose in any unrestricted area will not exceed 0.02 mSv (2 mrem) in any one hour, from licensed operations.
Discussion: “Public dose” is defined in 10 CFR Part 20 as “the dose received by a member of the public from exposure to radiation and/or radioactive material released by a licensee, or to any other source of radiation under the control of a licensee.” Public dose excludes doses received from background radiation and from medical procedures. Whether the dose to an individual is an occupational dose or a public dose depends on the individual’s assigned duties. It does not depend on the area (restricted, controlled, or unrestricted) the individual is in when the dose is received.

For guidance about accepted methodologies for determining dose to members of public, please refer to Appendix O.

Figure 8.9 shows the steps to calculate the annual dose to an individual member of the public.
Figure 8.9 Calculating Public Dose. Steps to calculate the annual dose to an individual member of the public (see Appendix O for more information about occupancy factors).

There are many possible internal dose pathways that contribute to the TEDE. The TEDE can, however, be broken down into three major dose pathway groups:

- Airborne radioactive material
- Waterborne radioactive material
- External radioactive exposure.
The licensee should review these major pathways and decide which are applicable to its operations.

Licensees should design a monitoring program to ensure compliance with 10 CFR 20.1302(b). The extent and frequency of monitoring will depend upon each licensee’s needs. For additional guidance regarding monitoring of effluents, refer to the section entitled, “Radiation Safety Program - Surveys.”

10 CFR 20.2107 requires that licensees maintain records sufficient to demonstrate compliance with the dose limits for members of the public until the Commission terminates the license. Refer to Appendix O for additional guidance regarding compliance with the recordkeeping requirements.

Response from Applicant: No response is required from the applicant in a license application, but compliance will be examined during inspection. During NRC inspections, licensees must be able to demonstrate, by measurement or calculation, that the total effective dose equivalent to the individual likely to receive the highest dose from the licensed operation does not exceed the annual limit for members of the public. See Appendix O for examples of methods to demonstrate compliance.

8.10.6 SAFE USE OF RADIONUCLIDES AND EMERGENCY PROCEDURES

Criteria: Licensees are required to do all of the following:

- Keep radiation doses to workers and members of the public ALARA
- Ensure security of licensed material
- Make the required notifications of events to NRC

Discussion: Licensees are responsible for the security and safe use of all licensed material from the time it arrives at their facility until it is used, transferred, and/or disposed. Licensees should develop and maintain written procedures to ensure safe use of licensed material, and the procedures should also include operational and administrative guidelines. The written procedures should provide reasonable assurance that only appropriately trained personnel will handle and use licensed material without undue hazard to workers or members of the public.
General Safety Procedures

The written procedures should include the following elements:

- Contamination Controls
- Waste Disposal Practices
- Personnel and Area Monitoring (including limits)
- Use of Protective Clothing and Equipment
- Record Keeping Requirements
- Reporting Requirements
- Responsibilities.

These procedures should include policies for:

- Frequency of personnel monitoring
- Use of appropriate shielding (see Figure 8.10)
- Frequent change of gloves to minimize exposure to the individual and to avoid spread of contamination in the laboratory.

Applicants should also develop radioisotope-specific procedures based on the respective hazards associated with the radioisotopes. General safety guidelines are described in Appendix P. Applicants should use these guidelines to develop procedures for the safe use of radioisotopes.

Licensees should determine if they have areas that require posting in accordance with 10 CFR 20.1902, unless they meet the exemptions listed in 10 CFR 20.1903. Also, containers of licensed material (including radioactive waste) must be labeled in accordance with 10 CFR 20.1904, unless they meet the exemptions in 10 CFR 20.1905.
Security Procedures

All licensed materials that are stored in controlled or unrestricted areas must be secured from unauthorized access or removal, so that individuals who are not knowledgeable about radioactive materials can not be exposed to or contaminated by the material, and can not take the material. When any licensed materials are in use in controlled or unrestricted areas, they must be under constant surveillance so that the radiation worker can prevent others from becoming contaminated by or exposed to the material, or to prevent persons from removing the material from the area. Acceptable methods for securing material will vary from one facility to another. Some alternatives used by licensees include: storage and use of licensed materials only in restricted areas; limiting access to an entire facility or building or portion of the building only to radiation workers; providing storage areas that can be locked to prevent access to the material; and implementing procedures that require a radiation worker to be with “line of sight” of the materials whenever licensed materials are in use. Applicants should develop procedures that clearly state acceptable methods to secure licensed material at their facility. Particular attention may be required to security procedures at facilities which may have unusual needs due to the activities performed, such as hot cells, animal care facilities, and waste processing facilities.

Emergency Procedures
CONTENTS OF AN APPLICATION

Accidents and emergencies can happen during any operation with radioisotopes, including their transportation, use, transfer, and disposal. Such incidents can result in contamination or release of material to the environment, and unintended radiation exposure to workers and members of the public. In addition, loss or theft of licensed material, sabotage, fires, floods, etc., can adversely affect the safety of personnel and members of the public. It is therefore necessary to develop written procedures to minimize, as much as possible, the impact of these incidents on personnel, members of the public, and the environment. Applicants who plan to possess quantities of material in excess of the applicable amounts listed in 10 CFR 30.72 Schedule C may also be required to submit an “Emergency Response Plan for Responding to a Release.”

Applicants should establish written procedures to handle events ranging from a minor spill (see Figure 8.11) to a major accident that may require intervention by outside emergency response personnel. These procedures should include provisions for immediate response, after-hours notification, handling of each type of emergency, equipment, and the appropriate roles of users and the radiation safety staff. Except for minor spills or releases of radioactivity that can be controlled and cleaned up by the user, the licensee staff should have a clear understanding of their role in an emergency with step-by-step instructions and clear direction of whom to contact.

Licensees should have readily available a sufficient number of appropriate and calibrated survey instruments. Emergency spill kits should be strategically placed in well-marked locations for use by all users and the radiation safety staff. All equipment should be periodically inspected for proper operation and replenished as necessary. Appendix P includes model emergency procedures. Applicants may adopt these procedures or develop their own incorporating the safety features included in these model procedures.

Collection of Bioassay Samples

In the event of an emergency where an individual became contaminated and radioactive material was taken into the body through skin absorption or other means, or is suspected of having ingested or inhaled radioactive material, an estimate of the amount of material taken into the body may be required. Frequently, this estimate is made by performing bioassay of the individual. Bioassays may be performed through direct methods such as whole body counting or thyroid counting, where the radioactive material in the body can be directly measured using appropriate instruments. Bioassays may also be performed through indirect means by sampling urine or other excreta from the body, and calculating the intake from the amount of material detected in the samples, the time between suspected intake and sample collection, and knowledge of the rate of excretion of the compound and/or radionuclide from the body. While there are many ways to perform the calculations, including using computer models, the method of calculation is only as good as the quality of the samples and analyses performed. Because a dose estimate may be required, bioassay procedures for a suspected intake may differ from those in a routine bioassay screening program, and your radiation safety program should include procedures and equipment for appropriate sample collection in an emergency. The following items should be considered in developing your procedures:
- Type of bioassay that must be performed (direct or indirect);
- Number of samples or data points to be collected;
- Frequency of sampling (hourly, daily, weekly, once?, etc.);
- Size of the sample to be collected (24-hour urine collection?);
- Ease/difficulty of sample collection;
- Need for written instructions to be provided to the sample collector, who may be the contaminated individual.

Figure 8.11 Proper Handling of Incident. Panels 1 & 2 indicate how contamination can be spread if the incident is not handled properly as in panels 3 & 4.

Response from Applicant: The applicant must state that procedures for safe use, including security of materials, and emergencies have been developed, or will be developed before receipt of licensed material. If an “Emergency Response Plan” is required for your license pursuant to 10 CFR 30.32(i), submit it as a separate part of the application. If you want the option to make changes in the procedures, submit a statement that “Procedures may be revised only if 1) the changes are reviewed and approved by the licensee management and the RSO in writing; 2) the licensee staff is provided training in the revised procedures prior to implementation; 3) the
changes are in compliance with the NRC regulations and the license; and 4) the changes do not
degrade the effectiveness of the program.”

8.10.7 SURVEYS

Criteria: Licensees are required by 10 CFR 20.1501 to make surveys of potential radiological hazards in their workplace. NRC requires testing to determine whether there is any radioactive leakage from sealed sources. Records of surveys and leak tests results must be maintained.

Discussion: Surveys are evaluations of radiological conditions and potential hazards (See Figure 8.12). These evaluations may be measurements (e.g., radiation levels measured with survey instrument or results of wipe tests for contamination), calculation, or a combination of measurements and calculations. The selection and proper use of appropriate instruments is one of the most important factors in ensuring that surveys accurately assess the radiological conditions. In order to meet regulatory requirements for surveying, measurements of radiological quantities should be understood in terms of their properties (i.e., alpha, beta, gamma) and compared to the appropriate limits.

Figure 8.12 Types of Surveys. There are many different types of surveys performed by ARDL licensees.

Radiation surveys are used to detect and evaluate contamination of:
Surveys are also used to plan work in areas where licensed material or radiation exists and to evaluate doses to workers and individual members of the public.

Figure 8.13 Personnel Surveys. *Users of unsealed licensed material should check themselves for contamination (frisk) before leaving the laboratory.*

10 CFR 20.1501 states that surveys are required when it is reasonable under the circumstances to evaluate a radiological hazard and when necessary for the licensee to comply with the regulations. Many different types of surveys may need to be performed due to the particular use of licensed materials. The most important are as follows:

- Surveys for radioactive contamination that could be present on surfaces of floors, walls, laboratory furniture, and equipment.
- Measurements of radioactive material concentrations in air for areas where radioactive materials are handled or processed in unsealed form and where operations could expose workers to the inhalation of radioactive material or where licensed material is or could be released to unrestricted areas.
CONTENTS OF AN APPLICATION

- Measurements of radioactive material concentrations in water that is released to the environment or to the sanitary sewer.

- Bioassays to determine the kinds, quantities or concentration, and in some cases, the location of radioactive material in the human body. A bioassay can be made by direct measurement (in vivo counting) or by analysis and evaluation of material excreted or removed from the human body.

- Surveys of external radiation exposure levels in both restricted and unrestricted areas.

The frequency of routine surveys depends on the nature, quantity, and use of radioactive materials, as well as the specific protective facilities, equipment, and procedures that are designed to protect the worker from external and internal exposure. Also, the frequency of the survey depends on the type of survey, such as those listed above. (See Appendix Q)

Not all instruments can measure a given type of radiation. The presence of other radiation may interfere with a detector’s ability to measure the radiation of interest. Correct use of radiation detection and measurements is an important aspect of any radiation safety program.

10 CFR Part 20 does not specify limits for surface contamination. Each applicant should propose and justify what removable surface contamination limits will be allowable before decontamination will be performed in each work area. Table Q.5 and Table Q.6 in Appendix Q contain contamination limits that are acceptable to NRC.

Sealed Source and Plated Foil Leak Test

When issued, a license will require performance of leak tests of sealed and plated foil sources (e.g., GC/XRF) at intervals as approved by NRC or an Agreement State and specified by the SSD Registration Certificate. The measurement of the leak-test sample is a quantitative analysis requiring that instrumentation used to analyze the sample be capable of detecting 185 Bq (0.005 μCi) of the radioisotope contained in the source or foil.

Manufacturers, consultants, and other organizations may be authorized by NRC or an Agreement State to either perform the entire leak test sequence for other licensees or provide leak test kits to licensees. In the latter case, the licensee is expected to take the leak test sample according to the sealed source or plated foil manufacturer’s (distributor’s) and the kit supplier’s instructions and return it to the kit supplier for evaluation and reporting results. Leak test samples should be collected at the most accessible area where contamination would accumulate if the sealed source were leaking. Licensees may also be authorized to conduct the entire leak test sequence themselves.

Leak tests are not required if:

- Sources contain only H-3;
• Sources contain only byproduct material with a half-life of less than 30 days;
• Sources contain only a radioactive gas;
• Sources contain 3.7 MBq (100 μCi) or less of beta-emitting or gamma-emitting material or 370 kBq (10 μCi) or less of alpha-emitting material;
• Sources are stored and are not being used (must be leak tested before use or transfer).

For more information regarding leak tests, see Appendix R.

Response from Applicant: Choose one of the following:

• State: “We will survey our facility and maintain contamination levels in accordance with the survey frequencies and contamination levels published in Appendix Q to NUREG - 1556, Vol. 7, ‘Program-Specific Guidance About Academic, Research and Development, and Other Licenses of Limited Scope,’ dated December 1999. Leak tests will be performed at the intervals approved by NRC or an Agreement State and specified in the SSD Registration Certificate. Leak tests will be performed by an organization authorized by NRC or an Agreement State to provide leak testing services to other licensees or using a leak test kit supplied by an organization authorized by NRC or an Agreement State, to provide leak test kits to other licensees and according to the sealed source or plated foil manufacturer’s (distributor’s) and kit supplier’s instructions.”

OR

• State: “We will survey our facility and maintain contamination levels in accordance with the survey frequencies and contamination levels published in Appendix Q to NUREG - 1556, Vol. 7, ‘Program-Specific Guidance About Academic, Research and Development, and Other Licenses of Limited Scope,’ dated December 1999. Leak tests will be performed at the intervals approved by NRC or an Agreement State and specified in the SSD Registration Certificate. Leak tests will be performed by an organization authorized by NRC or an Agreement State to provide leak testing services to other licensees or using a leak test kit supplied by an organization authorized by NRC or an Agreement State, to provide leak test kits to other licensees and according to the sealed source or plated foil manufacturer’s (distributor’s) and kit supplier’s instructions. As an alternative, we will implement the model leak test program published in Appendix R to NUREG - 1556, Vol. 7, “Consolidated Guidance about Materials Licenses: ‘Program-Specific Guidance About Academic, Research and Development, and Other Licensees of Limited Scope’ dated December 1999.”
CONTENTS OF AN APPLICATION

OR

- Submit description of alternative equipment and/or procedures to evaluate a radiological hazard and for determining whether there is radioactive leakage from sealed sources or plated foil.

Note:

- Alternative responses will be reviewed using the criteria listed above.
- If a sealed source or plated foil is added to an existing license, that license might already authorize the licensee to perform the entire leak test sequence. In this case, the licensee may perform the leak testing on the sealed source or plated foil according to the procedures previously approved on its license.

8.10.8 TRANSPORTATION

Regulations: 10 CFR 71.5, 10 CFR 71.12, 10 CFR 71.13, 10 CFR 71.14, 71.47, 71.87, 49 CFR Parts 171-178, 10 CFR 20.1101, 10 CFR 30.41, 10 CFR 30.51.

Criteria: Applicants who will transport or ship licensed material, including radioactive waste, must develop, implement, and maintain safety programs for transport of radioactive material to ensure compliance with NRC and U.S. Department of Transportation (DOT) regulations.

Discussion: Packages shipped by ARDL licensees frequently meet the “Limited Quantity” criteria as described in 49 CFR 173.421, and therefore could be exempt from certain DOT requirements, but they may be subject to other, less restrictive DOT requirements (e.g., 49 CFR 173.422 and 173.424; also see Appendix S for more information).

If they are not exempted, however, licensed material, including radioactive waste, must be packaged and transported in accordance with NRC and the DOT requirements if the transportation involves common carriers or the use of public highways. Licensees should develop and maintain their own radiation safety procedures for transporting licensed material within their own facilities if it does not involve the use of public highways.

Licensees should consider the safety of all individuals who may handle or may come into contact with the packages containing licensed material. Therefore, the primary considerations in packaging licensed material should be to ensure that the package integrity is not compromised.
during transport, and that the radiation levels (including removable contamination levels) at the package surfaces not only meet the regulatory requirements of 10 CFR 71.47, but are ALARA.

All domestic shipping papers and labels must be in SI units only or must be in SI units first with English units in parenthesis.

Licensees shipping radioactive waste for disposal must prepare appropriate documentation as specified in 10 CFR 20, Appendix G.

Response from Applicant: No response is needed from applicants during the licensing phase. Transportation issues are reviewed during inspections.

8.10.9 MINIMIZATION OF CONTAMINATION

Regulations: 10 CFR 20.1406.

Criteria: Applicants must describe how facility design and procedures for operation will minimize, to the extent practicable, contamination of the facility and the environment, facilitate eventual decommissioning, and minimize, to the extent practicable, the generation of radioactive waste.

Discussion: When designing facilities and developing procedures for their safe use, applicants should think ahead and consider how to minimize radioactive contamination during operation, decontamination and decommissioning efforts, and radioactive waste generation. When submitting new applications, applicants should consider the following:

- Implementation of and adherence to good health physics practices in operations
- Minimization of areas, to the extent practicable, where licensed materials are used and stored
- Maximization of the frequency of surveys, within reason, to minimize spread of contamination in the event of a spill
- Choice of isotope to be used, whenever practical, in consideration of half-life and chemical composition
- Appropriate filtration of effluent streams
- Use of non-porous materials for laboratory bench tops, flooring, etc.
• Ventilation stacks and ductwork with minimal lengths and minimal abrupt changes in
direction
• Use of appropriate plumbing materials with minimal pipelengths and traps
• Minimization of the number of disposal sites (sinks) where liquid waste is disposed.

Sealed sources and devices that are approved by NRC or an Agreement State and located and
used according to their SS&D Registration Certificates usually pose little risk of contamination.
Leak tests performed as specified in the SS&D Registration Certificate should identify defective
sources. Leaking sources must be immediately withdrawn from use and decontaminated,
repaired, or disposed of according to NRC requirements. These steps minimize the spread of
contamination and reduce radioactive waste associated with decontamination efforts. Other
efforts to minimize radioactive waste do not apply to programs using only sealed sources and
devices that have not leaked.

Response from Applicant: The applicant does not need to provide a response to this item under
the following condition. NRC will consider that the above criteria have been met if the
applicant’s responses meet the criteria in the following sections: “Radioactive Material -
Unsealed and/or Sealed Sources,” “Facilities and Equipment,” “Radiation Safety Program - Safe
use of Radioisotopes and Emergency Procedures,” “Radiation Safety Program - Surveys,” and
“Radiation Safety Program - Waste Management.”

8.11 ITEM 11: WASTE MANAGEMENT

10 CFR 30.51, 10 CFR 61.52.

Criteria: Radioactive waste must be disposed of in accordance with regulatory requirements
and license conditions. Appropriate records of waste disposal must be maintained.

Discussion: Radioactive waste is normally generated when conducting licensed activities. Such
waste may include used or unused radioactive material, unusable items contaminated with
radioactive material, e.g., absorbent paper, gloves, etc. Licensees may not receive radioactive
waste from other licensees for processing, storage or disposal, unless specifically authorized to
do so by NRC.

All radioactive waste must be stored in appropriate containers until its disposal and the integrity
of the waste containers must be assured. Radioactive waste containers must be appropriately
labeled. All radioactive waste must be secured against unauthorized access or removal. NRC
requires ARDL licensees to manage radioactive waste generated at their facilities by one or more
of the following methods:
Contents of an Application

- Decay-in-storage (DIS)
- Release into sanitary sewerage
- Transfer to an authorized recipient
- Extended interim storage
- Disposal of waste as if it were not radioactive (specific wastes)
- Obtaining prior approval of NRC of any alternate method
- Release in effluents to unrestricted areas, other than into sanitary sewerage
- Incineration.

Licensees may choose any one or more of these methods to dispose of their radioactive waste. It has been NRC’s experience that most of the ARDL facilities store or dispose of radioactive waste by a combination of the first four methods, because of the types and amounts of licensed materials used by these facilities. Applicants wanting to dispose of radioactive waste by incineration should refer to Policy and Guidance Directive PG 8-10, “Disposal of Incinerator Ash as Ordinary Waste,” dated January 1997. Applicants should note that compliance with NRC regulations does not relieve them of their responsibility to comply with any other applicable Federal, state, or local regulations. Furthermore, some of the radioactive waste may also include additional hazards, (e.g., biohazard or chemical hazard). Such waste is called “mixed waste,” and its storage and disposal must also comply with all other applicable Federal, state, and local regulatory requirements.

Applicants should describe their program for management and disposal of radioactive waste. The program should include procedures for handling of waste, safe and secure storage, characterization, minimization, and disposal of radioactive waste. Appropriate training should be provided to waste handlers. Regulations require that licensees maintain all appropriate records of disposal of radioactive waste. The U.S. Environmental Protection Agency (EPA) issued guidance for developing a comprehensive program to reduce hazardous waste that, in many instances, may also include radioactive waste. NRC transmitted these guidelines to licensees in IN-94-23, “Guidance to Hazardous, Radioactive, and Mixed Waste Minimization Program,” dated March 1994.

Disposal By Decay-in-storage (DIS)

NRC has concluded that materials with half-lives of less than or equal to 120 days are appropriate for DIS. The minimum holding period for decay is ten half-lives of the longest-lived radioisotope in the waste. Such waste may be disposed of as ordinary trash if radiation surveys (performed in a low background area and without any interposed shielding) of the waste at the end of the holding period indicate that radiation levels are indistinguishable from background. All radiation labels must be defaced or removed from containers and packages prior to disposal.
as ordinary trash. If the decayed waste is compacted, all labels that are visible in the compacted mass must also be defaced or removed.

Applicants should assure that adequate space and facilities are available for the storage of such waste. Licensees can minimize the need for storage space, if the waste is segregated according to physical half-life. Waste containing radioisotopes of physical half-lives within a certain range may be stored in one container and allowed to decay for at least ten half-lives of the longest-lived radioisotope in the container. Procedures for management of such waste should include methods of segregation, surveys prior to disposal, and maintenance of records of disposal. Records should include the date when the waste was put in storage for decay, date when ten half-lives of the longest-lived radioisotope have transpired, date of disposal, and results of final survey before disposal as ordinary trash. Additionally, a model procedure for disposal of radioactive waste by DIS, which incorporates the above guidelines, is provided in Appendix T.

Release Into Sanitary Sewerage

10 CFR 20.2003 authorizes disposal of radioactive waste by release into a public sanitary sewerage system if each of the following conditions is met:

- Material is readily soluble (or is easily dispersible biological material) in water
- Quantity of licensed material that the licensee releases into the sewer each month averaged over the monthly volume of water released into the sewer does not exceed the concentration specified in 10 CFR Part 20, Appendix B, Table 3
- If more than one radioisotope is released, the sum of the ratios of the average monthly discharge of a radioisotope to the corresponding limit in 10 CFR Part 20, Appendix B, Table 3 cannot exceed unity
- Total quantity of licensed material released into the sanitary sewerage system in a year does not exceed 185 GBq (5 Ci) of H-3, 37 GBq (1 Ci) of C-14, and 37 GBq (1 Ci) of all other radioisotopes combined.

Licensees are responsible to demonstrate that licensed materials discharged into the public sewerage system are indeed readily soluble in water. NRC IN 94-07, “Solubility Criteria for Liquid Effluent Releases to Sanitary Sewerage Under the Revised 10 CFR 20,” dated January 1994, provides acceptable criteria for evaluating solubility of liquid waste. Liquid scintillation media and ash are examples of material that may or may not be “readily dispersible.” Careful consideration should be given to the possibility of reconcentration of radioisotopes that are released into the sewer. NRC alerted licensees to the potentially significant problem of reconcentration of radionuclides released to sanitary sewerage systems in IN 84-94, “Reconcentration of Radionuclides Involving Discharges into Sanitary Sewerage Systems Permitted Under 10 CFR 20.203 (now 10 CFR 20.2003),” dated December 1984.
The regulations in 10 CFR 20.2003 are not applicable for releases to a private sewerage treatment system, a septic system, or leach fields. Licensees may make releases to these systems as effluents released to unrestricted areas pursuant to 10 CFR 20.1301. However, if licensed material is released to a private sewage treatment system, septic system, or leach field, the sludge or other solids from these systems may become contaminated with radioactive material. Such sludges may be required to be disposed of as radioactive waste, using one of the methods described in Section 8.11 of this document.

Applicants should provide procedures that will ensure that all releases of radioactive waste into the sanitary sewerage meet the criteria stated in 10 CFR 20.2003 and do not exceed the monthly and annual limits specified in regulations. Licensees are required to maintain accurate records of all releases of licensed material into the sanitary sewerage. A model program for disposal of radioactive waste via sanitary sewer is described in Appendix T.

Transfer to an Authorized Recipient

Licensees may transfer radioactive waste to an authorized recipient for disposal. It is the licensee’s responsibility to verify that the intended recipient is authorized to receive the radioactive waste prior to making any shipment. Almost all radioactive waste generated at ARDL facilities consists of low specific activity (LSA) material. The waste must be packaged in approved containers for shipment, and each container must identify the radioisotopes and the amounts contained in the waste. Additionally, packages must comply with the requirements of the particular burial site’s license and state requirements. Each shipment must comply with all applicable NRC and DOT requirements. In some cases, the waste handling contractor may provide guidance to the licensee for packaging and transportation requirements; however, the licensee is ultimately responsible for ensuring compliance with all applicable regulatory requirements.

The shipper must provide all information required in NRC’s Uniform Low-Level Radioactive Waste Manifest, and transfer this recorded manifest information to the intended recipient in accordance with 10 CFR Part 20, Appendix G. Each shipment manifest must include a certification by the waste generator, as specified in Section II of the appendix. Each person involved in the transfer for disposal and disposal of waste, including waste generator, waste collector, waste processor, and disposal facility operator, must comply with requirements specified in Section III of Appendix G.

Licensees should implement procedures to reduce the volume of radioactive waste for final disposal in an authorized low-level radioactive waste (LLW) disposal facility. These procedures include volume reduction by segregating, consolidating, compacting, or allowing certain waste to decay in storage. Waste compaction or other treatments can reduce the volume of radioactive waste, but such processes may pose additional radiological hazards (e.g., airborne radioactivity) to workers and members of the public. The program should include adequate safety procedures to protect workers, members of the public, and the environment.
Disposal of Specific Waste As If It Were Not Radioactive

The following radioactive wastes may be disposed of as non-radioactive waste:

- Liquid scintillation media (including vials and other items contaminated with liquid scintillation media) containing no more than 1.85 kBq (0.05 \(\mu \text{Ci} \)) of H-3 or C-14 per gram of the medium; and

- Animal carcasses or animal tissue containing no more than 1.85 kBq (0.05 \(\mu \text{Ci} \)) of H-3 or C-14 per gram averaged over the weight of the entire animal.

Applicants should have procedures that will ensure that the above limits are not exceeded and that the disposal of animal tissue or carcasses containing licensed material is in a manner that will not permit their use either as food for humans or animals. Applicants must maintain accurate records of these disposals.

Alternate Methods

Applicants may also request alternate methods for the disposal of radioactive waste generated at their facilities. Such requests must describe the waste containing licensed material, including the physical and chemical properties that may be important to assess risks associated with the waste, and the proposed manner and conditions of waste disposal. Additionally, the applicant must submit its analysis and evaluation of pertinent information on the nature of the environment, nature and location of other affected facilities, and procedures to ensure that radiation doses are maintained ALARA and within regulatory limits.

Some licensees do not have an LLW disposal facility available to them and therefore must use on-site interim storage until such time that a facility becomes available. Licensees should exhaust all possible alternatives for disposal of radioactive waste and rely upon on-site extended interim storage of radioactive waste only as a last resort. The protection of workers and the public is enhanced by disposal rather than storage of waste. Licensees may also find it more economical to dispose of radioactive waste than to store it on-site because as the available capacity decreases, the cost of disposal of radioactive waste may continue to increase. Other than DIS, LLW should be stored only when disposal capacity is unavailable and for no longer than is necessary. NRC IN 90-09, “Extended Interim Storage of Low-Level Radioactive Waste by Fuel Cycle and Materials Licensees,” dated February 1990, provides guidance to licensees for requesting an amendment to authorize extended interim storage of LLW.

Response from Applicant:

Provide a statement that: “We will use the model waste procedures published in Appendix T to NUREG - 1556, Vol. 7, ‘Program-Specific Guidance About Academic, Research and Development, and Other Licenses of Limited Scope,’ dated December 1999.”
OR

If the applicant wishes to use only selected model procedures, provide a statement that “We will use the (specify either (1) Decay-In-Storage, or (2) Disposal of Liquids Into Sanitary Sewerage) model waste procedures that are published in Appendix T to NUREG - 1556, Vol. 7, ‘Program-Specific Guidance About Academic, Research and Development, and Other Licenses of Limited Scope,’ dated December 1999.”

OR

Provide procedures for waste collection, storage and disposal by any of the authorized methods described in this section. Applicants should contact appropriate Regional Office of the NRC for guidance to obtain approval of any method(s) of waste disposal other than those discussed in this section.

OR

If access to a radioactive waste burial site is unavailable, the applicant should request authorization for extended interim storage of waste. Applicant should refer to NRC IN 90-09, “Extended Interim Storage of Low-Level Radioactive Waste by Fuel Cycle and Materials Licensees,” dated February 1990, for guidance and submit the required information with the application.

Note: Applicants do not need to provide information to NRC if they plan to dispose of LLW via transfer to an authorized recipient or to dispose of liquid scintillation media or animals containing low levels of H-3 or C-14 as authorized by 10 CFR 20.2005.

Alternative responses will be reviewed using the criteria listed above.

References: See the Notice of Availability on the inside front cover of this report to obtain copies of:

Additional References:

8.12 ITEM 12: FEES

The next two items on NRC Form 313 are to be completed on the form itself.

On NRC Form 313, enter the appropriate fee category from 10 CFR 170.31 and the amount of the fee enclosed with the application.

8.13 ITEM 13: CERTIFICATION

Individuals acting in a private capacity are required to date and sign NRC Form 313. Otherwise, representatives of the corporation or legal entity filing the application should date and sign NRC Form 313. Representatives signing an application must be authorized to make binding commitments and to sign official documents on behalf of the applicant. As discussed previously in “Management Responsibility,” signing the application acknowledges management’s commitment and responsibilities for the radiation protection program. NRC will return all unsigned applications for proper signature.

Note:

- It is a criminal offense to make a willful false statement or representation on applications or correspondence (18 U.S.C. 1001).
- When the application references commitments, those items become part of the licensing conditions and regulatory requirements.
9 AMENDMENTS AND RENEWALS TO A LICENSE

It is the licensee’s obligation to keep the license current. If any of the information provided in the original application is to be modified or changed, the licensee must submit an application for a license amendment before the change takes place. Also, to continue the license after its expiration date, the licensee must submit an application for a license renewal at least 30 days before the expiration date (10 CFR 2.109, 10 CFR 30.36(a)).

Applications for license amendment, in addition to the following, must provide the appropriate fee. For renewal and amendment requests, applicants should do the following:

- Be sure to use the most recent guidance in preparing an amendment or renewal request.
- Submit, in duplicate, either an NRC Form 313 or a letter requesting amendment or renewal.
- Provide the license number.
- For renewals, provide a complete and up-to-date application, if many outdated documents are referenced or there have been significant changes in regulatory requirements, NRC’s guidance, the licensee’s organization, or radiation protection program. Alternatively, describe clearly the exact nature of the changes, additions, and deletions.
10 APPLICATIONS FOR EXEMPTIONS

Criteria: Licensees who request exemptions to regulations must demonstrate that the exemption is authorized by law, that it will not endanger life or property or the common defense and security, and that it is otherwise in the public interest.

Discussion: Various sections of NRC’s regulations address requests for exemptions (e.g., 10 CFR 19.31, 10 CFR 20.2301, 10 CFR 30.11(a)). These regulations state that NRC may grant an exemption, acting on its own initiative or on an application from an interested person.

Until NRC has granted an exemption in writing, NRC expects strict compliance with all applicable regulations.

Exemptions are not intended to revise regulations, are not intended for large classes of licenses, and are generally limited to unique situations. Exemption requests must be accompanied by descriptions of the following:

- Exemption and why it is needed
- Proposed compensatory safety measures intended to provide a level of health and safety equivalent to the regulation for which the exemption is being requested
- Alternate methods for complying with the regulation and why they are not feasible.

As an example, exemptions to certain regulations are necessary when teletherapy-type units are converted from human use to use for the irradiation of materials or objects. See NUREG - 1556, Vol. 6, “Consolidated Guidance about Materials Licenses: Program-Specific Guidance About 10 CFR Part 36 Irradiators,” for more information about this special case.

Reference: See the Notice of Availability on the inside cover of this report to obtain copies of NUREG - 1556, Vol. 6, “Consolidated Guidance about Materials Licenses: Program-Specific Guidance about 10 CFR Part 36 Irradiators.”
11 TERMINATION OF ACTIVITIES

Regulations: 10 CFR 20.1402, 10 CFR 20.1403, 10 CFR 30.34(b), 10 CFR 30.35(g), 10 CFR 30.36(d), 10 CFR 30.36(g), 10 CFR 30.36(h), 10 CFR 30.36(j), 10 CFR 30.51(f).

Criteria: The licensee must do the following:

- Notify NRC, in writing, within 60 days of:
 - the expiration of its license
 - a decision to cease licensed activities permanently at the *entire site* (regardless of contamination levels)
 - a decision to cease licensed activities permanently in *any separate building or outdoor area*, if they contain residual radioactivity making them unsuitable for release according to NRC requirements.
 - no principal activities having been conducted at the *entire site* under the license for a period of 24 months.
 - no principal activities having not been conducted for a period of 24 months in *any separate building or outdoor area*, if they contain residual radioactivity making them unsuitable for release according to NRC requirements.

- Submit a decommissioning plan, if required by 10 CFR 30.36(g).
- Conduct decommissioning, as required by 10 CFR 30.36(h) and 10 CFR 30.36(j).
- Submit, to the appropriate NRC regional office, completed NRC Form 314, “Certificate of Disposition of Materials” (or equivalent information) and a demonstration that the premises are suitable for release for unrestricted use (e.g., results of final survey).
- Before a license is terminated, send the records important to decommissioning to the appropriate NRC regional office. If licensed activities are transferred or assigned in accordance with 10 CFR 30.34(b), transfer records important to decommissioning to the new licensee.

Discussion: As noted in several instances discussed in “Criteria,” before a licensee can decide whether it must notify NRC, the licensee must determine whether residual radioactivity is present and, if so, whether the levels make the building or outdoor area unsuitable for release, according to NRC requirements. A licensee’s determination that a facility is not contaminated is subject to verification by NRC inspection.

For guidance on the disposition of licensed material, see the section on “Waste Management.” For guidance on decommissioning records, see the section on “Radioactive Materials - Financial Assurance and Record Keeping for Decommissioning.”
Response from Applicant: The applicant’s obligations in this matter begin when the license expires or at the time the licensee ceases operations, whichever is earlier. These obligations are to undertake the necessary decommissioning activities, to submit NRC Form 314 or equivalent information, and to perform any other actions as summarized in the Criteria.

Reference: Copies of NRC Form 314, “Certificate of Disposition of Materials,” are available upon request from NRC’s Regional or Field Offices. (See Figure 2.1 for addresses and telephone numbers).
Appendix A

List of Documents Considered in Development of this NUREG
List of Documents Considered in Development of this NUREG

This report incorporates and updates the guidance previously found in the Regulatory Guides (RG) 10.2 and 10.7. In addition, this report references other RGs, Policy and Guidance Directives (P&GD), Information Notices (IN), Inspection Procedure (IP), and Technical Assistance Requests (TAR) used in its preparation. The guidance incorporated and referenced is listed in Table A.1.

Table A.1 List of Documents Considered in the Preparation of this Report

<table>
<thead>
<tr>
<th>Document Identification</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI N42.18</td>
<td>Specification and Performance of On-site Instrumentation for Continuously Monitoring Radioactive Effluents</td>
<td>1991</td>
</tr>
<tr>
<td>ANSI N323A</td>
<td>Radiation Protection Instrumentation Test and Calibration</td>
<td>1997</td>
</tr>
<tr>
<td>IN 89-25, Revision 1</td>
<td>Unauthorized Transfer of Ownership or Control of Licensed Activities</td>
<td>12/94</td>
</tr>
<tr>
<td>IN 90-09</td>
<td>Extended Interim Storage of Low-Level Radioactive Waste by Fuel Cycle and Materials Licensees</td>
<td>2/90</td>
</tr>
<tr>
<td>IN 94-07</td>
<td>Solubility Criteria for Liquid Effluent Releases to Sanitary Sewerage Under the Revised 10 CFR 20</td>
<td>2/94</td>
</tr>
<tr>
<td>IN 96-28</td>
<td>Suggested Guidance Relating to Development and Implementation of Corrective Action</td>
<td>5/96</td>
</tr>
<tr>
<td>IN 97-30</td>
<td>Control of Licensed Material During Reorganizations, Employee-Management Disagreements and Financial Crises</td>
<td>6/97</td>
</tr>
<tr>
<td>Document Identification</td>
<td>Title</td>
<td>Date</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>IP 87103</td>
<td>Inspection of Material Licensees Involved in an Incident or Bankruptcy Filing</td>
<td>6/97</td>
</tr>
<tr>
<td>IP 87110, Appendix A</td>
<td>Industrial/Academic/Research Inspection Field Notes</td>
<td>2/97</td>
</tr>
<tr>
<td>NUREG - 1549</td>
<td>Decision Methods for Dose Assessment to Comply with Radiological Criteria for License Termination</td>
<td>07/98</td>
</tr>
<tr>
<td>NUREG - 1600</td>
<td>General Statement of Policy and Procedures on NRC Enforcement Actions</td>
<td>6/95</td>
</tr>
<tr>
<td>NUREG - 1516</td>
<td>Management of Radioactive Material Safety Programs at Medical Facilities</td>
<td>4/97</td>
</tr>
<tr>
<td>NUREG - 1400</td>
<td>Air Sampling in the Workplace</td>
<td>8/93</td>
</tr>
<tr>
<td>NUREG/CR - 4884</td>
<td>Interpretation of Bioassay Measurements</td>
<td>7/87</td>
</tr>
<tr>
<td>NUREG/CR - 5512</td>
<td>Residual Radioactive Contamination From Decommissioning, Parameter Analysis</td>
<td>04/25/96</td>
</tr>
<tr>
<td>P&GD, FC 85-5*</td>
<td>Standard Review Plan for Applications for Licenses for the Use of Sealed Sources in Gas Chromatography Devices and X-Ray Fluorescence Analyzers</td>
<td>2/85</td>
</tr>
<tr>
<td>P&GD, FC 90-2, Revision 1</td>
<td>Standard Review Plan for Evaluating Compliance with Decommissioning Requirements</td>
<td>4/91</td>
</tr>
<tr>
<td>P&GD, PG 94-05</td>
<td>Updated Guidance on Decay-In-Storage</td>
<td>10/94</td>
</tr>
<tr>
<td>P&GD, PG 8-11</td>
<td>NMSS Procedures for Reviewing Declarations of Bankruptcy</td>
<td>8/96</td>
</tr>
<tr>
<td>P&GD, PG 8-10</td>
<td>Disposal of Incinerator Ash as Ordinary Waste</td>
<td>1/97</td>
</tr>
<tr>
<td>NCRP Commentary No. 3</td>
<td>Screening Techniques for Determining Compliance with Environmental Standards</td>
<td>1989/ addendum (1989)</td>
</tr>
<tr>
<td>NCRP Report No. 32</td>
<td>Radiation Protection in Educational Institutions</td>
<td>1966</td>
</tr>
<tr>
<td>Document Identification</td>
<td>Title</td>
<td>Date</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>NCRP Report No. 48</td>
<td>Radiation Protection For Medical and Allied Health Personnel</td>
<td>1976</td>
</tr>
<tr>
<td>NCRP Report No. 59</td>
<td>Operational Radiation Safety Program</td>
<td>1978</td>
</tr>
<tr>
<td>NCRP Report No. 105</td>
<td>Radiation Protection For Medical and Allied Health Personnel</td>
<td>1989</td>
</tr>
<tr>
<td>RG 4.20</td>
<td>Constraints on Release of Airborne Radioactive Materials to the Environment for Licensees Other Than Power Reactors</td>
<td>2/96</td>
</tr>
<tr>
<td>RG 8.7, Revision 1</td>
<td>Instructions for Recording and Reporting Occupational Radiation Exposure Data</td>
<td>6/92</td>
</tr>
<tr>
<td>RG 8.9</td>
<td>Acceptable Concepts, Models, Equations, and Assumptions for a Bioassay Program</td>
<td>7/1/93</td>
</tr>
<tr>
<td>RG 8.25, Revision 1</td>
<td>Air Sampling in the Workplace</td>
<td>6/92</td>
</tr>
<tr>
<td>RG 8.32</td>
<td>Criteria for Establishing a Tritium Bioassay Program</td>
<td>7/98</td>
</tr>
<tr>
<td>RG 8.34</td>
<td>Monitoring Criteria and Methods to Calculate Occupational Radiation Doses</td>
<td>7/92</td>
</tr>
<tr>
<td>RG 8.37</td>
<td>ALARA Levels for Effluents from Materials Facilities</td>
<td>7/93</td>
</tr>
<tr>
<td>RG 10.2,* Revision 1</td>
<td>Guidance to Academic Institutions Applying for Specific Byproduct Material Licenses of Limited Scope</td>
<td>7/84</td>
</tr>
<tr>
<td>RG 10.7*</td>
<td>Guide for the Preparation of Applications for Licenses for Laboratory and Industrial Use of Small Quantities of Byproduct Material</td>
<td>8/79</td>
</tr>
<tr>
<td>SP-96-022</td>
<td>All Agreement States Letter</td>
<td>6/92</td>
</tr>
<tr>
<td></td>
<td>“Air Sampling Instruments,” American Conference of Governmental Industrial Hygienists, 7th Edition</td>
<td>1989</td>
</tr>
</tbody>
</table>
APPENDIX A

<table>
<thead>
<tr>
<th>Document Identification</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
</table>

* When this report is issued in final form, these documents will be considered superseded and should not be used.
Appendix B

United States Nuclear Regulatory Commission
Form 313
United States Nuclear Regulatory Commission Form 313

Replace this page with Form 313. Make sure we have the most recent version!
APPLICATION FOR MATERIAL LICENSE

INSTRUCTIONS: SEE THE APPROPRIATE LICENSE APPLICATION GUIDE FOR DETAILED INSTRUCTIONS FOR COMPLETING APPLICATION. SEND TWO COPIES OF THE ENTIRE COMPLETED APPLICATION TO THE NRC OFFICE SPECIFIED BELOW.

APPLICATION FOR DISTRIBUTION OF EXEMPT PRODUCTS FILE APPLICATIONS WITH:

DIVISION OF INDUSTRIAL AND MEDICAL NUCLEAR SAFETY
OFFICE OF NUCLEAR MATERIALS SAFETY AND SAFEGUARDS
U.S. NUCLEAR REGULATORY COMMISSION
WASHINGTON, DC 20555-0001

ALL OTHER PERSONS FILE APPLICATIONS AS FOLLOWS:

IF YOU ARE LOCATED IN:

CONNECTICUT, DELAWARE, DISTRICT OF COLUMBIA, MAINE, MARYLAND, MASSACHUSETTS, NEW HAMPSHIRE, NEW JERSEY, NEW YORK, PENNSYLVANIA, RHODE ISLAND, OR VERMONT, SEND APPLICATIONS TO:

LICENSING ASSISTANT SECTION
NUCLEAR MATERIALS SAFETY BRANCH
U.S. NUCLEAR REGULATORY COMMISSION, REGION I
475 ALLENDALE ROAD
KING OF PRUSSIA, PA 19406-1415

ALABAMA, FLORIDA, GEORGIA, KENTUCKY, MISSISSIPPI, NORTH CAROLINA, PUERTO RICO, SOUTH CAROLINA, TENNESSEE, VIRGINIA, VIRGIN ISLANDS, OR WEST VIRGINIA, SEND APPLICATIONS TO:

SAM NUNN ATLANTA FEDERAL CENTER
U. S. NUCLEAR REGULATORY COMMISSION, REGION II
61 FORSYTH STREET, S.W., SUITE 23T85
ATLANTA, GEORGIA 30303-8931

PERSONS LOCATED IN AGREEMENT STATES SEND APPLICATIONS TO THE U.S. NUCLEAR REGULATORY COMMISSION ONLY IF THEY WISH TO POSSESS AND USE LICENSED MATERIAL IN STATES SUBJECT TO U.S.NUCLEAR REGULATORY COMMISSION JURISDICTIONS.

1. THIS IS AN APPLICATION FOR (Check appropriate item)

 A. NEW LICENSE
 B. AMENDMENT TO LICENSE NUMBER
 C. RENEWAL OF LICENSE NUMBER

2. NAME AND MAILING ADDRESS OF APPLICANT (Include ZIP code)

3. ADDRESS WHERE LICENSED MATERIAL WILL BE USED OR POSSESSED

4. NAME OF PERSON TO BE CONTACTED ABOUT THIS APPLICATION

5. RADIOACTIVE MATERIAL
 a. Element and mass number; b. chemical and/or physical form; and c. maximum amount

6. PURPOSE(S) FOR WHICH LICENSED MATERIAL WILL BE USED.

7. INDIVIDUAL(S) RESPONSIBLE FOR RADIATION SAFETY PROGRAM AND THEIR TRAINING EXPERIENCE.

8. TRAINING FOR INDIVIDUALS WORKING IN OR FREQUENTING RESTRICTED AREAS.

9. FACILITIES AND EQUIPMENT.

10. RADIATION SAFETY PROGRAM.

11. WASTE MANAGEMENT.

12. LICENSE FEES (See 10 CFR 170 and Section 170.31)

13. CERTIFICATION. (Must be completed by applicant) THE APPLICANT UNDERSTANDS THAT ALL STATEMENTS AND REPRESENTATIONS MADE IN THIS APPLICATION ARE BINDING UPON THE APPLICANT AND ANY OFFICIAL EXECUTING THIS CERTIFICATION ON BEHALF OF THE APPLICANT, NAMED IN ITEM 2, CERTIFY THAT THIS APPLICATION IS PREPARED IN CONFORMITY WITH TITLE 10, CODE OF FEDERAL REGULATIONS, PARTS 30, 32, 33, 34, 35, 36, 39, AND 40, AND THAT ALL INFORMATION CONTAINED HEREIN IS TRUE AND CORRECT TO THE BEST OF THEIR KNOWLEDGE AND BELIEF.

WARNING: 18 U.S.C. SECTION 1001 ACT OF JUNE 25, 1948 62 STAT. 749 MAKES IT A CRIMINAL OFFENSE TO MAKE A WILLFULLY FALSE STATEMENT OR REPRESENTATION TO CERTIFYING OFFICER -- TYPED/PRINTED NAME AND TITLE

FOR NRC USE ONLY

APPROVED BY

TYPE OF FEE

FEE LOG

FEE CATEGORY

AMOUNT RECEIVED $

CHECK NUMBER

COMMENTS

APPROVED BY

DATE

NRC FORM 313 (10-2002)
Appendix C

Suggested Format for Providing Information Requested in Items 5 through 11 of NRC Form 313
Suggested Format for Providing Information Requested in Items 5 through 11 of NRC Form 313

The table below is designed to help applicants develop their applications. In some instances it is acceptable to simply indicate, by checking the box in the third column (Yes), that applicant commits to adopting the model procedures that are referenced. If the third column contains an asterisk (*), the licensee is expected to describe its program or submit its procedures for the particular item. In this instance, the applicant is requested to check the box in the fourth column indicating that the described program and/or procedures are attached to the application (NRC Form 313). If the third column contains an “N/A,” the licensee is not required to describe or submit its programs and/or procedures during the licensing phase. However, these program areas may be reviewed during an inspection.

The table below may also be used as a License Reviewer Checklist for applications for ARDL licenses.
APPENDIX C

RADIOACTIVE MATERIAL

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Suggested Response</th>
<th>Yes</th>
<th>Description Attached</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>RADIOACTIVE MATERIAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unsealed and/or Sealed Sources</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• For unsealed materials:</td>
<td>*</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td>– Provide element name with mass number, chemical and/or physical form, and maximum requested possession limit.</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– For potentially volatile materials (e.g., I-125, I-131, H-3), specify whether the material will be free (volatile) or bound (non-volatile) and the requested possession limit for each form.</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• For sealed materials:</td>
<td>*</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td>– Identify each Radionuclide (element name and mass number) that will be used in each source.</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Provide the manufacturer’s (distributor’s) name and model number for each sealed source and device requested.</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Confirm that each sealed source, device, and source/device combination is registered as an approved sealed source or device by NRC or an Agreement State.</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Confirm that the activity per source and maximum activity in each device will not exceed the maximum activity listed on the approved certificate of registration issued by NRC or by an Agreement State.</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Provide an Emergency Plan (if required).</td>
<td>[]</td>
<td></td>
</tr>
</tbody>
</table>

Financial Assurance and Recordkeeping for Decommissioning

No response is needed from most applicants. If F/A or a DFP is required, submit the required documents as described in Regulatory Guide 3.66.

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Suggested Response</th>
<th>Yes</th>
<th>Description Attached</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>PURPOSE FOR WHICH LICENSED MATERIAL WILL BE USED</td>
<td>*</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td>List the specific use or purpose of each radioisotope.</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Item No.</td>
<td>Suggested Response</td>
<td>Yes</td>
<td>Description Attached</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------</td>
<td>-----</td>
<td>----------------------</td>
</tr>
<tr>
<td>7.</td>
<td>INDIVIDUALS RESPONSIBLE FOR RADIATION SAFETY PROGRAM AND THEIR TRAINING AND EXPERIENCE</td>
<td>✳</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td>RSO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Provide the name of the proposed RSO and information demonstrating that the proposed RSO is qualified by training and experience.</td>
<td>✳</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td>AUs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Provide the name of each proposed AU, with the types and quantities of licensed material to be used. Also provide information demonstrating that each proposed AU is qualified by training and experience to use the requested licensed materials.</td>
<td>✳</td>
<td>[]</td>
</tr>
<tr>
<td>8.</td>
<td>TRAINING FOR INDIVIDUALS WORKING IN OR FREQUENTING RESTRICTED AREAS (Occupationally Exposed Individuals and Ancillary Personnel)</td>
<td>✳</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td>Submit a description of the radiation safety training program, including topics covered, groups of workers, assessment of training, qualifications of instructors, and the method and frequency of training.</td>
<td>✳</td>
<td>[]</td>
</tr>
</tbody>
</table>
FACILITIES AND EQUIPMENT

Describe the facilities and equipment to be made available at each location where radioactive material will be used. Include a description of the area(s) assigned for the receipt, storage, preparation and measurement of radioactive materials. Submit a diagram showing the locations of shielding, the proximity of radiation sources to unrestricted areas, and other items related to radiation safety. When applicable to facilities where radioactive materials may become airborne, the diagrams should contain schematic descriptions of the ventilation systems, with pertinent airflow rates, pressures, filtration equipment, and monitoring systems. Diagrams should be drawn to a specified scale, or dimensions should be indicated. For facilities where it is anticipated that more than one laboratory or room may be used, a generic laboratory or room diagram may be submitted.

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Suggested Response</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FACILITIES AND EQUIPMENT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Audit Program</th>
</tr>
</thead>
</table>

The applicant is not required to, and should not, submit its audit program to the NRC for review during the licensing phase.

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Suggested Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.</td>
<td>RADIATION SAFETY PROGRAM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Audit Program</th>
</tr>
</thead>
</table>

The applicant is not required to, and should not, submit its audit program to the NRC for review during the licensing phase.

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Suggested Response</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FACILITIES AND EQUIPMENT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Audit Program</th>
</tr>
</thead>
</table>

The applicant is not required to, and should not, submit its audit program to the NRC for review during the licensing phase.
<table>
<thead>
<tr>
<th>Item No.</th>
<th>Suggested Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.</td>
<td>RADIATION SAFETY PROGRAM (Cont’d)</td>
</tr>
<tr>
<td></td>
<td>Radiation Monitoring Instruments</td>
</tr>
<tr>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Describe the instrumentation that will be used to perform required surveys and state that: “We will use instruments that meet the radiation monitoring instrument specifications published in Appendix M to NUREG - 1556, Vol. 7, ‘Program-Specific Guidance About Academic, Research and Development, and Other Licenses of Limited Scope,’ dated December 1999. We reserve the right to upgrade our survey instruments as necessary.”</td>
</tr>
<tr>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>Describe the instrumentation that will be used to perform required surveys and state that: “We will use instruments that meet the radiation monitoring instrument specifications published in Appendix M to NUREG - 1556, Vol. 7, ‘Program-Specific Guidance About Academic, Research and Development, and Other Licenses of Limited Scope,’ dated December 1999. Additionally, we will implement the model survey meter calibration program published in Appendix M to NUREG - 1556, Vol. 7, ‘Program-Specific Guidance About Academic, Research and Development, and Other Licenses of Limited Scope,’ dated December 1999. We reserve the right to upgrade our survey instruments as necessary.”</td>
</tr>
<tr>
<td></td>
<td>Material Receipt and Accountability</td>
</tr>
<tr>
<td></td>
<td>Develop and maintain procedures for ensuring material accountability,</td>
</tr>
<tr>
<td></td>
<td>AND</td>
</tr>
<tr>
<td></td>
<td>State that: “Physical inventories will be conducted at intervals not to exceed 6 months, to account for all sealed sources and devices received and possessed under the license.”</td>
</tr>
</tbody>
</table>

* []
APPENDIX C

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Suggested Response</th>
<th>Yes</th>
<th>Description Attached</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.</td>
<td>RADIATION SAFETY PROGRAM (Cont’d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Occupational Dose</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>State that: “we have done a prospective evaluation and determined that unmonitored individuals are not likely to receive, in one year, a radiation dose in excess of 10% of the allowable limits in 10 CFR Part 20,” or “we will monitor individuals in accordance with the criteria in the section entitled ‘Radiation Safety Program - Occupational Dose’ in NUREG - 1556, Vol. 7, ‘Consolidated Guidance about Materials Licenses: Program-Specific Guidance about Academic, Research and Development and Other Licenses of Limited Scope,’” dated December 1999.”</td>
<td>✳️</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td>Public Dose</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No response is required from the applicant in a license application.</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Safe Use of Radionuclides and Emergency Procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Develop and maintain procedures for safe use and emergencies. State that such procedures have been developed.</td>
<td>✳️</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td>If an emergency response plan is needed, submit it as a separate part of the application.</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>
Item No.

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Suggested Response</th>
<th>Yes</th>
<th>Description Attached</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.</td>
<td>RADIATION SAFETY PROGRAM (Cont’d)</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Survey</td>
<td>State that: “We will survey our facility and maintain contamination levels in accordance with the survey frequencies and contamination levels published in Appendix Q to NUREG - 1556, Vol. 7, ‘Program-Specific Guidance About Academic, Research and Development, and Other Licenses of Limited Scope,’ dated December 1999. Leak tests will be performed at the intervals approved by NRC or an Agreement State and specified in the SSD Registration Certificate. Leak tests will be performed by an organization authorized by NRC or an Agreement State to provide leak testing services to other licensees or using a leak test kit supplied by an organization authorized by NRC or an Agreement State to provide leak test kits to other licensees and according to the sealed source or plated foil manufacturer’s (distributor’s) and kit supplier’s instructions.”</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Item No.</td>
<td>Suggested Response</td>
<td>Yes</td>
<td>Description Attached</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-----</td>
<td>-----------------------</td>
</tr>
<tr>
<td>10.</td>
<td>RADIATION SAFETY PROGRAM (Cont’d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>State that: “We will survey our facility and maintain contamination levels in accordance with the survey frequencies and contamination levels published in Appendix Q to NUREG - 1556, Vol. 7, ‘Program-Specific Guidance About Academic, Research and Development, and Other Licenses of Limited Scope,’ dated December 1999. Leak tests will be performed at the intervals approved by NRC or an Agreement State and specified in the SSD Registration Certificate. Leak tests will be performed by an organization authorized by NRC or an Agreement State to provide leak testing services to other licensees or using a leak test kit supplied by an organization authorized by NRC or an Agreement State to provide leak test kits to other licensees and according to the sealed source or plated foil manufacturer’s (distributor’s) and kit supplier’s instructions. As an alternative, we will implement the model leak test program published in Appendix R to NUREG - 1556, Vol. 7, ‘Consolidated Guidance about Materials Licenses: ‘Program-Specific Guidance About Academic, Research and Development, and Other Licensees of Limited Scope,’ dated December 1999.”</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transportation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No response is needed from applicants during the licensing phase.</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
APPENDIX C

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Suggested Response</th>
<th>Yes</th>
<th>Description Attached</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.</td>
<td>RADIATION SAFETY PROGRAM (Cont’d)
Minimization of Contamination
The applicant does not need to provide a response to this item under the following condition. NRC will consider that the above criteria have been met if the applicant’s responses meet the criteria in the following sections: “Radioactive Material - Unsealed and/or Sealed Sources,” “Facilities and Equipment,” “Radiation Safety Program - Safe use of Radioisotopes and Emergency Procedures,” “Radiation Safety Program - Surveys,” and “Radiation Safety Program - Waste Management.”</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>11.</td>
<td>WASTE MANAGEMENT
State that: “We will use the model waste procedures published in Appendix T to NUREG - 1556, Vol. 7, ‘Program-Specific Guidance About Academic, Research and Development, and Other Licenses of Limited Scope,’ dated December 1999.”

OR

“We will use the (specify either (1) Decay-In-Storage, (2) Disposal of Liquids Into Sanitary Sewerage) model waste procedures that are published in Appendix T to NUREG - 1556, Vol. 7, ‘Program-Specific Guidance About Academic, Research and Development, and Other Licenses of Limited Scope,’ dated December 1999.”</td>
<td>✦</td>
<td>[] []</td>
</tr>
</tbody>
</table>
Appendix D

Gas Chromatography Devices and X-ray Fluorescence Analyzer Applications
Gas Chromatography Devices and X-ray Fluorescence Analyzer Applications

This appendix is designed either to assist the applicant with obtaining a separate license for a gas chromatograph (GC) and/or an X-RAY fluorescence analyzer (XRF) or to be used as part of a license application that may contain other requested radioisotopes and proposed uses.

Regulations

Licensees are subject to all applicable provisions of the regulations in 10 CFR Parts 20, 21, 30, 71, 170 as they pertain to GC and XRFs.

Information for completing Items 1 through 4 of the application have already been provided in this NUREG.

Additional information for Item 3 is requested below.

Item 3: Address(es) Where Licensed Material Will Be Used or Possessed

Specify the street address, city, and state or other descriptive address (e.g., on Highway 10, 5 miles east of the intersection of Highway 10 and State Route 234, Anytown, State) for each facility at which licensed material will be used or stored. A Post Office Box address is not acceptable. In addition, state whether GC/XRFs will be used at temporary jobsites.

Item 5: Material to Be Possessed

1. Provide the radioisotopes(s) that will be used in each GC/XRF.

2. Provide the manufacturer and model number of the detector cell, foil source, plated source, or sealed source that will be used in each GC/XRF.

3. Specify the quantity (activity) of radioactive material that will be in each foil source, plated source, or other sealed source. Provide the number of sources of each foil source, plated source or sealed source that will be possessed, if known. If the total number for each type of source is unknown, provide an anticipated total.

Note: GCs that contain titanium tritide foils or scandium tritide foils require operating temperature control mechanisms and venting to the outside. Provide information on operating temperature controls and venting information with the application, if these kinds of foils are requested in the application. See license condition no. 15 of the sample GC at the end of this appendix.
Item 6: Purpose For Which Licensed Material Will Be Used

Specify the purpose for which each GC/XRF will be used.

Note: For use of portable GCs and/or XRFs, refer to NUREG - 1556, Vol. 1, for additional guidance about portable devices containing licensed material.

Item 7: Individual(s) Responsible For Radiation Safety Program And Their Training And Experience - Radiation Safety Officer

Provide the name of the person(s) who will be responsible for the GCs/ XRFs. That person(s) will be specifically named on the license.

If no repair or maintenance on the GC/XRFs is proposed by the applicant, then no specific training and experience in the use and handling of radioactive materials is necessary for individuals who will use the device(s) or supervise its use. No special training or experience is needed to perform leak tests using a leak-test kit or to clean detector cells used in GC devices, provided the source or foil is not removed from the detector cell.

If the applicant proposes to perform any operations that involve removal of sources containing radioactive material from the device or maintenance and repair of a device that involves the source, then they must ensure a “responsible individual” performs these operations. The responsible individual shall have received instruction and training in the principles and practices of radiation safety, the use of radiation detection instruments, and the performance of these operations. Such training may normally be accomplished in 1 or 2 days. In the application, provide the following information:

- Name of each responsible individual who will perform the operations
- Outline of the instruction and training each responsible individual has received in the principles and practices of radiation safety, the use of radiation detection instruments, and the operations that will be performed, including actual practice in performing the operations. The amount of time spent on each topic in the training should be specified.

Item 8: Training Provided to Other Users

Persons who will only use a GC or XRF under the supervision of the responsible individual named in Item 7 need no special training and their names do not need to be submitted. These supervised individuals should not be permitted to perform any maintenance or repair operations. Only responsible individuals specifically named in Item 7 shall perform such operations.
Item 9: Facilities And Equipment

10 CFR 30.33(a)(2) states that an application will be approved if the applicant’s proposed equipment and facilities are adequate to protect health and to minimize danger to life or property. 10 CFR 20.1801 and 20.1802 also state that licensed material stored in an unrestricted area must be secured from unauthorized removal, and licensed materials in an unrestricted area and not in storage must be under the constant surveillance and immediate control of the licensee.

The room, laboratory, or storage area in which the device is located should be (1) accessible only to persons authorized to use the device and (2) locked when an authorized person is not physically present. The application should state that the laboratory or area will be locked or secured when an authorized person is not present. The room, laboratory, or storage area cannot be considered a restricted area if it is accessible to unauthorized persons.

Item 10: Radiation Safety Program

10.1 Audit Program

Licensees must review the content and implementation of their radiation protection programs annually, to ensure compliance with NRC regulations and with the terms and conditions of the license. Appendix J contains a suggested audit program that is acceptable to NRC. All areas indicated in Appendix J may not be applicable to every licensee and may not need to be addressed during each audit.

10.2 Radiation Detection Instruments

A survey meter for routine uses of GC/XRF is not required.

If maintenance and repair operations are proposed as described in Item 7, and the operations involve the sealed source, provide information about what surveys will be performed, what type of survey meter will be used for conducting surveys, the range of the survey instrument, and calibration information including frequency of calibration. It is not necessary to specify the manufacturer and model number of the survey meter. For more information on survey meters, see “Radiation Safety Program - Instruments,” in the main body of this NUREG.

10.3 Material Receipt and Accountability

Licensees are required to maintain records of receipt, transfer, and disposal of licensed material. Loss, theft, or misplacement of licensed material can occur; therefore control and accountability of GC/XRFs must be ensured. Licensees who use and/or possess sealed sources are required by license conditions to perform inventories of sealed sources every six months (see sample license, condition no. 16). Some sealed sources may not be in use or are rarely used and are placed in
storage. In these cases, licensees should confirm that these sealed sources have not been disturbed at least every 6 months.

10.4 Personnel Monitoring Equipment

Personnel monitoring devices are not required for the following:

- Routine use and normal operation of GC/XRFs
- Maintenance and repair operations described in Item 7, if the radiation source in the GC/XRF is in a gaseous form or is nickel-63 (Ni-63).

If proposed uses of GC/XRFs include the maintenance and repair operations described in Item 7, and these operations involve sealed sources other than in gaseous form or Ni-63, an evaluation for personnel monitoring devices is required for persons performing these operations.

The application should indicate that maintenance and/or repair personnel will be provided with either film badges or thermoluminescence dosimeters (TLDs) for use while performing service operations or provide a dose evaluation which indicates that personnel will not be required to wear monitoring devices.

10.5 Leak-Testing

NRC requires testing to determine whether there is any radioactive leakage from sealed/plated foil sources. Records of surveys and leak tests results must be maintained.

When issued, a license will require performance of leak tests of sealed/plated foil sources at intervals as approved by NRC or an Agreement State and specified by the SSD Registration Certificate. The measurement of the leak-test sample is a quantitative analysis requiring that instrumentation used to analyze the sample be capable of detecting 185 Bq (0.005 μCi) of radioactivity.

Manufacturers, consultants, and other organizations may be authorized by NRC or an Agreement State either to perform the entire leak test sequence for other licensees or to provide leak test kits to licensees. In the latter case, the licensee is expected to take the leak test sample according to the sealed source or plated foil manufacturer’s (distributor’s) and the kit supplier’s instructions and return it to the kit supplier for evaluation and reporting results. Leak test samples should be collected at the most accessible area where contamination would accumulate if the sealed source were leaking. Licensees may also be authorized to conduct the entire leak test sequence themselves. For more information about leak testing sealed/plated foil sources, see “Radiation Safety Program - Surveys,” in the main body of this NUREG.
10.6 Maintenance and Repair

If authorization has been requested to perform maintenance and repair operations as stated in Item 7, then state in the application that the written procedures provided by the device manufacturer will be followed for each such operation requested. If a procedure will be followed other than that provided by the device manufacturer, submit a proposed procedure to use for each operation requested.

10.7 Transportation

If authorization has been requested in the application to use GC/XRFs at a temporary jobsite, the applicant must take into consideration DOT regulations, particularly blocking and bracing the device containing licensed material. The applicant is not required to submit transportation information with the application.

10.8 Minimization of contamination

New license applicants are required by 10 CFR 20.1406 to describe how facility design and procedures for operation will minimize, to the extent practicable, contamination of the facility and the environment, facilitate eventual decommissioning, and minimize, to the extent practicable, the generation of radioactive waste.

Item 11: Waste Management

Because of the nature of the licensed material contained in GC/XRF devices, the usual disposal option is to transfer the licensed material to an authorized recipient. State in the application that disposal will be by transfer of the radioactive material to a licensee specifically authorized to possess it, or provide information for an alternate method of disposal for NRC review.

Authorized recipients are the original supplier of the device, a commercial firm licensed by NRC or an Agreement State to accept radioactive waste from other persons, or another specific licensee authorized to possess the licensed material. No one else is authorized to receive licensed material.
Suggested Format for Providing Information Requested in Items 1 through 4 of NRC Form 313

D.1 ITEM 1: ACTION TYPE

<table>
<thead>
<tr>
<th>ACTION TYPE:</th>
<th>ADMINISTRATIVE REVIEW:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] New</td>
<td>[] Current Guidance Used</td>
</tr>
<tr>
<td>[] Amendment</td>
<td>[] References in Application Based On Current Regulations</td>
</tr>
<tr>
<td>[] Renewal</td>
<td>[] All Attachments Referenced Included</td>
</tr>
<tr>
<td></td>
<td>[] Signature on Application</td>
</tr>
</tbody>
</table>

D.2 ITEM 2: LEGAL IDENTITY

NAME:

D.3 ITEMS 2 & 3: ADDRESS

<table>
<thead>
<tr>
<th>STORAGE & LOCATION OF USE ADDRESS:</th>
<th>MAILING ADDRESS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporary Job Sites [] YES [] NO</td>
<td></td>
</tr>
</tbody>
</table>

D.4 ITEM 4: PERSON TO BE CONTACTED ABOUT THIS APPLICATION

<table>
<thead>
<tr>
<th>CONTACT PERSON:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TELEPHONE NUMBER:</td>
<td></td>
</tr>
</tbody>
</table>
Suggested Format for Providing Information Requested in Items 5 through 11 of NRC Form 313.

D.5 ITEMS 5 & 6: MATERIALS TO BE POSSESSED AND PROPOSED USES

<table>
<thead>
<tr>
<th>Radioisotope</th>
<th>Mfg/model No.</th>
<th>Quantity</th>
<th>Purpose of Use</th>
<th>Specify Other Uses Not Listed on SSD Certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen-3(^1)</td>
<td>Sealed sources in a compatible device as specified in Sealed Source and Device Registration Sheet</td>
<td>Not to exceed maximum activity per source as specified in Sealed Source and Device Registration Sheet</td>
<td>Measure Physical Properties of Materials</td>
<td>[] Not applicable</td>
</tr>
<tr>
<td>Nickel-63</td>
<td>Sealed sources in compatible device as specified in Sealed Source and Device Registration Sheet</td>
<td>Not to exceed maximum activity per source as specified in Sealed Source and Device Registration Sheet</td>
<td>Measure Physical Properties of Materials</td>
<td>[] Not applicable</td>
</tr>
<tr>
<td>Americium-241</td>
<td>Sealed sources in compatible device as specified in Sealed Source and Device Registration Sheet</td>
<td>Not to exceed maximum activity per source as specified in Sealed Source and Device Registration Sheet</td>
<td>Measure Physical Properties of Materials</td>
<td>[] Not applicable</td>
</tr>
</tbody>
</table>
D.6 ITEMS 7 THROUGH 11: TRAINING AND EXPERIENCE, FACILITIES AND EQUIPMENT, RADIATION SAFETY PROGRAM, AND WASTE DISPOSAL

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Title and Criteria</th>
<th>Yes</th>
<th>Description Attached</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>INDIVIDUAL(S) RESPONSIBLE FOR RADIATION SAFETY PROGRAM AND THEIR TRAINING EXPERIENCE</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td>RSO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Name: ___________________________</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Before obtaining licensed materials, the proposed RSO will have successfully completed the training described in Appendix D, in NUREG - 1556, Vol. 7.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Before being named as the RSO, future RSOs will have successfully completed the training described in Appendix D, in NUREG - 1556, Vol. 7.</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>TRAINING FOR INDIVIDUALS WORKING IN OR FREQUENTING RESTRICTED AREAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Individuals working under the supervision of a responsible person named in item 7, above, are not required to have any specific radiation safety training prior to using a GC/XRF.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Item No.</td>
<td>Title and Criteria</td>
<td>Yes</td>
<td>Description Attached</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>-----</td>
<td>----------------------</td>
</tr>
<tr>
<td>9</td>
<td>FACILITIES AND EQUIPMENT</td>
<td></td>
<td>Submit description with application.</td>
</tr>
<tr>
<td></td>
<td>Describe the facilities where GC/XRFs will be used and stored. Additional information regarding the use and storage of GC/XRFs at a temporary jobsite should also be included in the response.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>RADIATION SAFETY PROGRAM</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Audit Program</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The applicant is not required to, and should not, submit its audit program to the NRC for review during the licensing phase.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Survey Instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No survey instrument is required if proposed use involves neither the removal of sources from the device nor any maintenance and repair of a device that involves the source.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If the applicant proposes to perform operations that involve the removal of sources from the device or maintenance and repair of a device that involves the source, we will possess or have access to a radiation survey meter that meets the requirements in the procedures for performing removal or repair of the sources.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Material Receipt and Accountability</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical inventories will be conducted at intervals not to exceed 6 months, to account for all sealed sources and devices received and possessed under the license.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item No.</td>
<td>Title and Criteria</td>
<td>Yes</td>
<td>Description Attached</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>-----</td>
<td>----------------------</td>
</tr>
<tr>
<td>10</td>
<td>RADIATION SAFETY PROGRAM (Cont’d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Occupational Dosimetry</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No personnel monitoring is required if proposed use does not involve the removal of sources from the device or any maintenance and repair of a device that involves the source.</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If the applicant proposes to perform operations that involve the removal of sources from the device or maintenance and repair of a device that involves a source (other than in gaseous form, H-3 or Ni-63), we will maintain, for inspection by NRC, documentation demonstrating that unmonitored individuals are not likely to receive a radiation dose in excess of 10% of the allowable limits in 10 CFR Part 20, or “we will provide dosimetry processed and evaluated by a NVLAP-approved processor that is exchanged at a frequency recommended by the processor.”</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td>Public Dose</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The applicant is not required to submit a response to the public dose section during the licensing phase. This matter will be examined during an inspection.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leak Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leak tests will be performed at intervals specified in the Sealed Source and Device Registration Certificate. Leak tests will be performed by an organization authorized by NRC or an Agreement State to provide leak testing services for other licensees or using a leak test kit supplied by an organization authorized by NRC or an Agreement State to provide leak test kits to other licensees.</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Item No.</td>
<td>Title and Criteria</td>
<td>Yes</td>
<td>Description Attached</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-----</td>
<td>----------------------</td>
</tr>
<tr>
<td>10</td>
<td>RADIATION SAFETY PROGRAM (Cont’d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maintenance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If authorization has been requested to perform the maintenance and repair operations described in Item 7, state in the application that the written procedures provided by the device manufacturer will be followed for each such operation requested.</td>
<td></td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If a procedure will be followed other than that provided by the device manufacturer, submit a proposed procedure to use for each operation</td>
<td></td>
<td>[] []</td>
</tr>
<tr>
<td></td>
<td>Transportation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The applicant is not required to submit its response to transportation during the licensing process; however, this issue will be reviewed during inspection.</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Minimization of Contamination</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The applicant is not required to submit a response to the minimization of contamination section if the applicant’s responses meet the criteria for the following sections: “Radiation Safety Program - Leak Tests,” “Facilities and Equipment,” and “Waste Management.”</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>11</td>
<td>WASTE MANAGEMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GC/XRFs Disposal & Transfer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The applicant is not required to submit a response to waste management during the licensing process. The licensee should, however, develop, implement, and maintain GC/XRF transfer and disposal procedures in its radiation safety program.</td>
<td></td>
<td>N/A</td>
</tr>
</tbody>
</table>
MATERIALS LICENSE

Pursuant to the Atomic Energy Act of 1954, as amended, the Energy Reorganization Act of 1974 (Public Law 93-438), and Title 10, Code of Federal Regulations, Chapter I, Parts 30, 31, 32, 33, 34, 35, 36, 39, 40, and 70, and in reliance on statements and representations heretofore made by the licensee, a license is hereby issued authorizing the licensee to receive, acquire, possess, and transfer byproduct, source, and special nuclear material designated below; to use such material for the purpose(s) and at the place(s) designated below; to deliver or transfer such material to persons authorized to receive it in accordance with the regulations of the applicable Part(s). This license shall be deemed to contain the conditions specified in Section 183 of the Atomic Energy Act of 1954, as amended, and is subject to all applicable rules, regulations, and orders of the Nuclear Regulatory Commission now or hereafter in effect and to any conditions specified below.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic, R&D Other Labs, Inc.</td>
<td>99-12345-01</td>
<td>May 31, 2008</td>
<td>030-56789</td>
</tr>
<tr>
<td>2. 999 Research Boulevard Universityville, Any State 98765</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Byproduct, source, and/or special nuclear material</th>
<th>7. Chemical and/or physical form</th>
<th>8. Maximum amount that licensee may possess at any one time under this license</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Nickel-63</td>
<td>A. Foils or plated sources registered either with NRC under 10 CFR 32.210 or with an Agreement State and incorporated in a compatible gas chromatograph as specified in Item 9 of this license</td>
<td>A. No single source to exceed the maximum activity specified in the certificate of registration issued by the U.S. Nuclear Regulatory Commission or an Agreement State</td>
</tr>
<tr>
<td>B. Hydrogen-3</td>
<td>B. Foils registered either with NRC under 10 CFR 32.210 or with an Agreement State and incorporated in a compatible gas chromatograph as specified in Item 9 of this license</td>
<td>B. No single source to exceed the maximum activity specified in the certificate of registration issued by the U.S. Nuclear Regulatory Commission or an Agreement State</td>
</tr>
</tbody>
</table>

9. Authorized use

A. and B. To be used for sample analysis in compatible gas chromatography devices that have been registered either with NRC under 10 CFR 32.210 or with an Agreement State and have been distributed in accordance with an NRC or Agreement State specific license authorizing distribution to persons specifically authorized by an NRC or Agreement State license to receive, possess, and use the devices.

10. Licensed material shall be used only at the licensee's facilities located at 999 Research Boulevard, Universityville, Any State.
11. A. Licensed material shall be used by, or under the supervision of, P. Sellers, Ph.D., J. Lemmon, Ph.D., or W. Matthau, M.S.

B. The Radiation Safety Officer for this license is W. Matthau, M.S.

12. Detector cells containing licensed material shall not be opened or the foil sources removed from the detector cell by the licensee.

13. A. Sealed sources shall be tested for leakage and/or contamination at intervals not to exceed the intervals specified in the certificate of registration issued by the U.S. Nuclear Regulatory Commission under 10 CFR 32.210 or under equivalent regulations of an Agreement state.

B. In the absence of a certificate from a transferor indicating that a leak test has been made, within the intervals specified in the certificate of registration issued by the U.S. Nuclear Regulatory Commission under 10 CFR 32.210 or under equivalent regulations of an Agreement state, prior to the transfer, a sealed source received from another person shall not be put into use until tested and the test results received.

C. Sealed sources need not be leak tested if they contain only hydrogen-3; or they contain only a radioactive gas; or the half-life of the isotope is 30 days or less; or they contain no more than 100 μCi of beta and/or gamma emitting material or not more than 10 μCi of alpha emitting material.

D. Sealed sources need not be tested if they are in storage, and are not being used. However, when they are removed from storage for use or transferred to another person, and have not been tested within the required leak test interval, they shall be tested before use or transfer. No sealed source shall be stored for a period of more than 10 years without being tested for leakage and/or contamination.

E. The leak test shall be capable of detecting the presence of 0.005 μCi (185 becquerels) of radioactive material on the test sample. If the test reveals the presence of 0.005 μCi (185 becquerels) or more of removable contamination, a report shall be filed with the U.S. Nuclear Regulatory Commission in accordance with 10 CFR 30.50(c)(2), and the source shall be removed immediately from service and decontaminated, repaired, or disposed of in accordance with Commission regulations.

F. Tests for leakage and/or contamination, limited to leak test sample collection, shall be performed by the licensee or by other persons specifically licensed by the U.S. Nuclear Regulatory Commission or an Agreement State to perform such services.

G. Records of leak test results shall be kept in units of microcuries and shall be maintained for 3 years.

14. Maintenance, repair, cleaning, replacement, and disposal of foils contained in detector cells shall be performed only by the device manufacturer or other persons specifically authorized by the U.S. Nuclear Regulatory Commission or an Agreement State to perform such services.
15. A. Detector cells containing a titanium tritide foil or a scandium tritide foil shall only be used in conjunction with a properly operating temperature control mechanism which prevents the foil temperature from exceeding that specified in the certificate of registration issued by the NRC pursuant to 10 CFR 32.210 or equivalent regulations from an Agreement State.

B. When in use, detector cells containing a titanium tritide foil or a scandium tritide foil shall be vented to the outside.

16. The licensee shall conduct a physical inventory every 6 months, or at other intervals approved by the U.S. Nuclear Regulatory Commission, to account for all sources and/or devices received and possessed under the license. Records of inventories shall be maintained for 5 years from the date of each inventory, and shall include the radionuclides, quantities, manufacturer's name and model numbers, and the date of the inventory.

17. In addition to the possession limits in Item 8, the licensee shall further restrict the possession of licensed material to quantities below the minimum limit specified in 10 CFR 30.35(d) for establishing decommissioning financial assurance.

18. Except as specifically provided otherwise in this license, the licensee shall conduct its program in accordance with the statements, representations, and procedures contained in the documents, including any enclosures, listed below. The U.S. Nuclear Regulatory Commission's regulations shall govern unless the statements, representations, and procedures in the licensee's application and correspondence are more restrictive than the regulations.

A. Application dated April 12, 1998, and;
B. Letter dated May 5, 1998

FOR THE U.S. NUCLEAR REGULATORY COMMISSION

Date: __________________________ By: __________________________
NRC License Reviewer
Nuclear Materials Licensing Branch
Appendix E

Information Needed for Transfer of Control Application
Information Needed for Transfer of Control Application

Licensees must provide full information and obtain NRC’s prior written consent before transferring control of the license; some licensees refer to this as “transferring the license.” Provide the following information concerning changes of control by the applicant (transferor and/or transferee, as appropriate). If any items are not applicable, so state.

1. The new name of the licensed organization. If there is no change, the licensee should so state.

2. The new licensee contact and telephone number(s) to facilitate communications.

3. Any changes in personnel having control over licensed activities (e.g., officers of a corporation) and any changes in personnel named in the license such as radiation safety officer, authorized users, or any other persons identified in previous license applications as responsible for radiation safety or use of licensed material. The licensee should include information concerning the qualifications, training, and responsibilities of new individuals.

4. An indication of whether the transferor will remain in non-licensed business without the license.

5. A complete, clear description of the transaction, including any transfer of stocks or assets, mergers, etc., so that legal counsel is able, when necessary, to differentiate between name changes and transferring control.

6. A complete description of any planned changes in organization, location, facility, equipment, or procedures (i.e., changes in operating or emergency procedures).

7. A detailed description of any changes in the use, possession, location, or storage of the licensed materials.

8. Any changes in organization, location, facilities, equipment, procedures, or personnel that would require a license amendment even without transferring control.

9. An indication of whether all surveillance items and records (e.g., calibrations, leak tests, surveys, inventories, and accountability requirements) will be current at the time of transfer. Provide a description of the status of all surveillance requirements and records.

10. Confirmation that all records concerning the safe and effective decommissioning of the facility, pursuant to 10 CFR 30.35(g), 40.36(f), 70.25(g), and 72.30(d); public dose; and waste disposal by release to sewers, incineration, radioactive material spills, and on-site burials, have been transferred to the new licensee, if licensed activities will continue at the same location, or to NRC for license terminations.
11. A description of the status of the facility. Specifically, the presence or absence of contamination should be documented. If contamination is present, will decontamination occur before transfer? If not, does the successor company agree to assume full liability for the decontamination of the facility or site?

12. A description of any decontamination plans, including financial assurance arrangements of the transferee, as specified in 10 CFR 30.35, 40.36, and 70.25. Include information about how the transferee and transferor propose to divide the transferor’s assets, and responsibility for any cleanup needed at the time of transfer.

13. Confirmation that the transferee agrees to abide by all commitments and representations previously made to NRC by the transferor. These include, but are not limited to: maintaining decommissioning records required by 10 CFR 30.35(g); implementing decontamination activities and decommissioning of the site; and completing corrective actions for open inspection items and enforcement actions.

With regard to contamination of facilities and equipment, the transferee should confirm, in writing, that it accepts full liability for the site, and should provide evidence of adequate resources to fund decommissioning; or the transferor should provide a commitment to decontaminate the facility before transferring control.

With regard to open inspection items, etc., the transferee should confirm, in writing, that it accepts full responsibility for open inspection items and/or any resulting enforcement actions; or the transferee proposes alternative measures for meeting the requirements; or the transferor provides a commitment to close out all such actions with NRC before license transfer.

14. Documentation that the transferor and transferee agree to transferring control of the licensed material and activity, and the conditions of transfer; and the transferee is made aware of all open inspection items and its responsibility for possible resulting enforcement actions.

15. A commitment by the transferee to abide by all constraints, conditions, requirements, representations, and commitments identified in the existing license. If not, the transferee must provide a description of its program, to ensure compliance with the license and regulations.

Reference: See the Notice of Availability on the inside front cover of this report to obtain copies. Information Notice 89-25, Revision 1, “Unauthorized Transfer of Ownership or Control ofLicensed Activities.”
Appendix F

Sample License
Sample License

A sample license appears on the following pages.
Pursuant to the Atomic Energy Act of 1954, as amended, the Energy Reorganization Act of 1974 (Public Law 93-438), and Title 10, Code of Federal Regulations, Chapter I, Parts 30, 31, 32, 33, 34, 35, 36, 39, 40, and 70, and in reliance on statements and representations heretofore made by the licensee, a license is hereby issued authorizing the licensee to receive, acquire, possess, and transfer byproduct, source, and special nuclear material designated below; to use such material for the purpose(s) and at the place(s) designated below; to deliver or transfer such material to persons authorized to receive it in accordance with the regulations of the applicable Part(s). This license shall be deemed to contain the conditions specified in Section 183 of the Atomic Energy Act of 1954, as amended, and is subject to all applicable rules, regulations, and orders of the Nuclear Regulatory Commission now or hereafter in effect and to any conditions specified below.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic, R&D Other Labs, Inc.</td>
<td>99-12345-01</td>
<td>May 31, 2008</td>
<td>030-56789</td>
<td></td>
</tr>
<tr>
<td>999 Research Boulevard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Universityville, Any State 98765</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Byproduct, source, and/or special nuclear material

<table>
<thead>
<tr>
<th>7. Chemical and/or physical form</th>
<th>8. Maximum amount that licensee may possess at any one time under this license</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Any</td>
<td>A. 50 millicuries</td>
</tr>
<tr>
<td>B. Any</td>
<td>B. 25 millicuries</td>
</tr>
<tr>
<td>C. Any</td>
<td>C. 10 millicuries</td>
</tr>
<tr>
<td>D. Any</td>
<td>D. 10 millicuries</td>
</tr>
<tr>
<td>E. 5 millicuries</td>
<td></td>
</tr>
<tr>
<td>F. 10 millicuries</td>
<td></td>
</tr>
<tr>
<td>G. 30 millicuries</td>
<td></td>
</tr>
<tr>
<td>H. No single source to exceed the maximum activity specified in the certificate of registration issued by the U.S. Nuclear Regulatory Commission or an Agreement State</td>
<td></td>
</tr>
</tbody>
</table>

Authorized use

A. through G. Research and development as defined in 10 CFR 30.4; animal studies; teaching and training of students.
H. To be used for sample analysis in compatible gas chromatography devices that have been registered either with NRC under 10 CFR 32.210 or with an Agreement State and have been distributed in accordance with an NRC or Agreement State specific license authorizing distribution to persons specifically authorized by an NRC or agreement State license to receive, possess, and use the devices.

I. For calibration of licensee’s instruments.

10. Licensed material shall be used only at the licensee’s facilities located at 999 Research Boulevard, Universityville, Any State.

11. In accordance with the requirements set forth in 10 CFR 30.36(d), 40.42(d), and 70.38(d), the licensee shall promptly notify the Nuclear Regulatory Commission, in writing, of a decision not to complete the facility, acquire equipment, or possess and use authorized material.

12. A. Licensed material shall be used by, or under the supervision of Peter Sellers, Ph.D., Jack Lemmon, Ph.D., and Walter Matthau, M.S.

 B. The Radiation Safety Officer for this license is Walter Matthau, M.S.

13. Licensed material shall not be used in or on human except as provided otherwise by specific condition of this license.

14. The licensee shall not use licensed material in field applications where activity is released except as provided otherwise by specific condition of this license.

15. Experimental animals, or the products from experimental animals, that have been administered licensed materials shall not be used for human consumption.

16. The licensee shall conduct a physical inventory every 6 months, or at other intervals approved by the U.S. Nuclear Regulatory Commission, to account for all sources and/or devices received and possessed under the license. Records of inventories shall be maintained for 5 years from the date of each inventory, and shall include the radionuclides, quantities, manufacturer’s name and model numbers, and the date of the inventory.

17. Maintenance, repair, cleaning, replacement, and disposal of foils contained in detector cells shall be performed only by the device manufacturer or other persons specifically authorized by the Commission or an Agreement State to perform such services.

18. Sealed sources or detector cells containing licensed material shall not be opened or sources removed from the source holder by the licensee.

19. A. Sealed sources shall be tested for leakage and/or contamination at intervals not to exceed the intervals specified in the certificate of registration issued by the U.S. Nuclear Regulatory Commission under 10 CFR 32.210 or under equivalent regulations of an Agreement State.
B. In the absence of a certificate from a transferor indicating that a leak test has been made, within the intervals specified in the certificate of registration issued by the U.S. Nuclear Regulatory Commission under 10 CFR 32.210 or under equivalent regulations of an Agreement state, prior to the transfer, a sealed source received from another person shall not be put into use until tested and the test results received.

C. Sealed sources need not be leak tested if they contain only hydrogen-3; or they contain only a radioactive gas; or the half-life of the isotope is 30 days or less; or they contain no more than 100 microcuries of beta and/or gamma emitting material or not more than 10 microcuries of alpha emitting material.

D. Sealed sources need not be tested if they are in storage, and are not being used. However, when they are removed from storage for use or transferred to another person, and have not been tested within the required leak test interval, they shall be tested before use or transfer. No sealed source shall be stored for a period of more than 10 years without being tested for leakage and/or contamination.

E. The leak test shall be capable of detecting the presence of 0.005 microcurie (185 becquerels) of radioactive material on the test sample. If the test reveals the presence of 0.005 microcurie (185 becquerels) or more of removable contamination, a report shall be filed with the U.S. Nuclear Regulatory Commission in accordance with 10 CFR 30.50(c)(2), and the source shall be removed immediately from service and decontaminated, repaired, or disposed of in accordance with Commission regulations.

F. Tests for leakage and/or contamination, limited to leak test sample collection, shall be performed by the licensee or by other persons specifically licensed by the U.S. Nuclear Regulatory Commission or an Agreement State to perform such services.

G. Records of leak test results shall be kept in units of microcuries and shall be maintained for 3 years.

20. The licensee is authorized to transport licensed material only in accordance with the provisions of 10 CFR Part 71, “Packaging and Transportation of Radioactive Material.”

21. The licensee is authorized to hold radioactive material with a physical half-life of less than 120 days for decay-in-storage before disposal in ordinary trash, provided:

A. Waste to be disposed of in this manner shall be held for decay a minimum of ten half-lives.

B. Before disposal as ordinary trash, the waste shall be surveyed at the container surface with the appropriate survey instrument set on its most sensitive scale and with no interposed shielding to determine that its radioactivity cannot be distinguished from background. All radiation labels shall be removed or obliterated.
C. A record of each such disposal permitted under this License Condition shall be retained for three years. The record must include the date of disposal, the date on which the byproduct material was placed in storage, the radionuclides disposed, the survey instrument used, the background dose rate measured at the surface of each waste container, and the name of the individual who performed the disposal.

22. In addition to the possession limits in item 8, the licensee shall further restrict the possession of licensed material to quantities below the minimum limit specified in 10 CFR 30.35 (d) for establishing decommissioning financial assurance.

23. Except as specifically provided otherwise in this license, the licensee shall conduct its program in accordance with the statements, representations, and procedures contained in the documents, including any enclosures, listed below. The Nuclear Regulatory Commission’s regulations shall govern unless the statements, representations, and procedures in the licensee’s application and correspondence are more restrictive than the regulations.

A. Application dated April 12, 1998

B. Letter dated May 5, 1998

FOR THE U.S. NUCLEAR REGULATORY COMMISSION

Date: (insert license issue date) By: (insert reviewer’s name) (Original signed by)

NRC License Reviewer
Nuclear Materials Licensing Branch
Appendix G

Guidance on Decommissioning Funding Plan and Financial Assurance
Guidance on Decommissioning Funding Plan and Financial Assurance

Table G.1 and the worksheet in Table G.2 are used to determine the need for certification of financial assurance (F/A) for decommissioning or a decommissioning funding plan (DFP), as required by 10 CFR 30.35. Table G.1 is a listing of isotopes with a half-life of greater than or equal to 120 days. If the applicant proposes to use isotopes with a half-life greater than or equal to 120 days, divide the requested possession limit (in mCi)\(^3\) of the isotope by the value for that isotope in Table G.1. If the material requested is in an unsealed form, use the value in the unsealed column. If the material requested is in a sealed form, use the value in the sealed column. Place the fraction in the proper column in worksheet G.2. Add the fractions in the column and place the total in the row labeled total (i.e., “sum of the ratios”).

Table G.1 Isotopes With Half-lives Greater Than or Equal to 120 Days

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Unsealed (μCi)</th>
<th>Sealed (μCi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>americium-241</td>
<td>10</td>
<td>1 x 10^6</td>
</tr>
<tr>
<td>antimony-125</td>
<td>10000</td>
<td>1 x 10^11</td>
</tr>
<tr>
<td>barium-133</td>
<td>10000</td>
<td>1 x 10^11</td>
</tr>
<tr>
<td>cadmium-109</td>
<td>10000</td>
<td>1 x 10^11</td>
</tr>
<tr>
<td>calcium-45</td>
<td>10000</td>
<td>1 x 10^11</td>
</tr>
<tr>
<td>carbon-14</td>
<td>100000</td>
<td>1 x 10^12</td>
</tr>
<tr>
<td>cerium-144</td>
<td>1000</td>
<td>1 x 10^10</td>
</tr>
<tr>
<td>cesium-134</td>
<td>1000</td>
<td>1 x 10^10</td>
</tr>
<tr>
<td>cesium-135</td>
<td>10000</td>
<td>1 x 10^11</td>
</tr>
<tr>
<td>cesium-137</td>
<td>10000</td>
<td>1 x 10^11</td>
</tr>
<tr>
<td>chlorine-36</td>
<td>10000</td>
<td>1 x 10^11</td>
</tr>
<tr>
<td>cobalt-60</td>
<td>1000</td>
<td>1 x 10^10</td>
</tr>
<tr>
<td>europium-152 13 yr</td>
<td>1000</td>
<td>1 x 10^10</td>
</tr>
<tr>
<td>europium-154</td>
<td>1000</td>
<td>1 x 10^10</td>
</tr>
<tr>
<td>europium-155</td>
<td>10000</td>
<td>1 x 10^11</td>
</tr>
<tr>
<td>gadolinium-153</td>
<td>10000</td>
<td>1 x 10^11</td>
</tr>
</tbody>
</table>

\(^3\) 1 Curie = 37 gigabecquerels
APPENDIX G

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Unsealed (μCi)</th>
<th>Sealed (μCi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gold-198</td>
<td>100000</td>
<td>1 x 10^{12}</td>
</tr>
<tr>
<td>hydrogen-3</td>
<td>1000000</td>
<td>1 x 10^{13}</td>
</tr>
<tr>
<td>indium-115</td>
<td>10000</td>
<td>1 x 10^{11}</td>
</tr>
<tr>
<td>iodine-129</td>
<td>100</td>
<td>1 x 10^{9}</td>
</tr>
<tr>
<td>iron-55</td>
<td>1000000</td>
<td>1 x 10^{12}</td>
</tr>
<tr>
<td>krypton-85</td>
<td>1000000</td>
<td>1 x 10^{12}</td>
</tr>
<tr>
<td>manganese-54</td>
<td>10000</td>
<td>1 x 10^{11}</td>
</tr>
<tr>
<td>nickel-59</td>
<td>1000000</td>
<td>1 x 10^{12}</td>
</tr>
<tr>
<td>nickel-63</td>
<td>10000</td>
<td>1 x 10^{11}</td>
</tr>
<tr>
<td>niobium-93m</td>
<td>10000</td>
<td>1 x 10^{11}</td>
</tr>
<tr>
<td>platinum-193</td>
<td>1000000</td>
<td>1 x 10^{12}</td>
</tr>
<tr>
<td>polonium-210</td>
<td>100</td>
<td>1 x 10^{9}</td>
</tr>
<tr>
<td>promethium-147</td>
<td>10000</td>
<td>1 x 10^{11}</td>
</tr>
<tr>
<td>rubidium-87</td>
<td>10000</td>
<td>1 x 10^{11}</td>
</tr>
<tr>
<td>ruthenium-106</td>
<td>1000</td>
<td>1 x 10^{10}</td>
</tr>
<tr>
<td>silver-110m</td>
<td>1000</td>
<td>1 x 10^{10}</td>
</tr>
<tr>
<td>strontium-90</td>
<td>100</td>
<td>1 x 10^{9}</td>
</tr>
<tr>
<td>technetium-97</td>
<td>1000000</td>
<td>1 x 10^{12}</td>
</tr>
<tr>
<td>technetium-99</td>
<td>10000</td>
<td>1 x 10^{11}</td>
</tr>
<tr>
<td>thallium-204</td>
<td>1000000</td>
<td>1 x 10^{12}</td>
</tr>
<tr>
<td>thulium-170</td>
<td>10000</td>
<td>1 x 10^{11}</td>
</tr>
<tr>
<td>thulium-171</td>
<td>10000</td>
<td>1 x 10^{11}</td>
</tr>
<tr>
<td>tungsten-181</td>
<td>10000</td>
<td>1 x 10^{11}</td>
</tr>
<tr>
<td>zinc-65</td>
<td>10000</td>
<td>1 x 10^{11}</td>
</tr>
<tr>
<td>zirconium-93</td>
<td>10000</td>
<td>1 x 10^{11}</td>
</tr>
</tbody>
</table>

Any alpha emitting Radionuclides not listed above with a half-life greater than or equal to 120 days.

10 | 1 x 10^{6}
APPENDIX G

Any radionuclide other than alpha emitting radionuclides, not listed above with a half-life greater than or equal to 120 days.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Unsealed (μCi)</th>
<th>Sealed (μCi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>1×10^9</td>
</tr>
</tbody>
</table>

Table G.2 Sample Worksheet for Determining Need for a Decommissioning Funding Plan or Financial Assurance

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Unsealed Byproduct Material Activity (μCi) (\div) Unsealed Value from Table G.1</th>
<th>Sealed Byproduct Material Activity (μCi) (\div) Sealed Value from Table G.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funds required</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX G

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Unsealed Byproduct Material Activity ((\muCi))</th>
<th>Sealed Byproduct Material Activity ((\muCi))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\div) Unsealed Value from Table G.1</td>
<td>(\div) Sealed Value from Table G.1</td>
</tr>
</tbody>
</table>

If \(\leq 1.0\), enter $0
If \(> 1.0\) but \(\leq 10.0\), enter $150,000
If \(> 10.0\), but \(\leq 100.0\), enter $750,000
If \(> 100.0\), enter “DFP only”

If the sum of the fractions is less than or equal to 1, the applicant does not need to submit certification of F/A or a DFP. If the sum of the fractions is greater than 1 but less than or equal to 100, the applicant will need to submit certification of F/A (in the amount shown above) or a DFP. If the sum of the fractions is greater than 100, the applicant must submit a DFP.

Appendix H

Considerations for Laboratory Animal and Veterinary Medicine Uses
Considerations for Laboratory Animal and Veterinary Medicine Uses

This Appendix provides additional information on the use of byproduct materials in laboratory animals, in animals used for research in the environment, and by veterinarians.

Laboratory Animals

Training

Before allowing an individual to care for animals used in studies with or treated with licensed material, the Radiation Safety Officer (RSO), Authorized User (AU), and/or veterinarian must ensure that he or she has sufficient training and experience to maintain doses ALARA, control contamination, handle waste appropriately, etc.

Classroom training may be in the form of lecture, videotape, or self-study and should cover the following subject areas:

- Principles and practices of radiation protection
- Radioactivity measurements, monitoring techniques, and using instruments
- Mathematics and calculations basic to using and measuring radioactivity
- Biological effects of radiation.

Appropriate on-the-job-training should consist of:

- Observing authorized personnel using survey equipment, using proper contamination control techniques, and proper disposal of radioactive material
- Using survey equipment, proper contamination control techniques, and proper disposal of radioactive material procedures under the supervision of, and in the physical presence of, an individual authorized to handle animals treated with licensed material or otherwise containing licensed material.

Contamination Control and Waste Handling

In order to minimize the spread of contamination, animals used in studies with or treated with licensed material should be housed in cages or stalls separate from other animals. The facilities, stalls, or cages shall be secured to prevent unauthorized access to the animals. Individuals caring for these animals should reduce the chance of personal contamination by wearing gloves, lab coat, and eye protection, as appropriate.
Special care should be observed when cleaning the cage or stall. The cage or stall, the bedding, and waste from the animal may contain radioactive material. Any radioactive material should be properly disposed of as described in Section 8.11, “Waste Management.”

Disposal of laboratory animals that contain radioactive material require special procedures. Animal carcasses that contain less than 1.85 kBq/gram (0.05 microcuries/gram) of carbon-14 or hydrogen-3 may be disposed of by the same method as non-radioactive animal carcasses. Animal carcasses that contain byproduct material with a half-life of less than 120 days may be allowed to decay-in-storage in a freezer dedicated for radioactive material. Animal carcasses must be held for a minimum of 10 half-lives of the longest lived isotope. After 10 half-lives, the animal carcasses may be disposed as non-radioactive, if radiation surveys (performed in a low background area and without any interposed shielding) of the carcasses at the end of the holding period indicate that radiation levels are indistinguishable from background (See section 8.11, “Waste Management”).

Animals Used for Research in the Environment

Before a researcher releases an animal that has been injected with a radiopharmaceutical or has had radioactive seeds implanted, the researcher will ensure that the dose that members of the public will receive from the animal is within limits of 10 CFR 20.1301. 10 CFR 20.1301 requires that the total effective dose equivalent to an individual member of the public from the licensed operation does not exceed 1 mSv (0.1 rem) in a year and that the dose in any unrestricted area from external sources does not exceed 0.02 mSv (0.002 rem) in any one hour. Further, the researcher may be required to perform an assessment of the impact the byproduct material will have on the environment (See section “Purpose(s) for Which Licensed Material Will Be Used”).

Veterinary Use

Training

NRC believes that to demonstrate adequate training and experience, the veterinarian should have training and experience commensurate with the scope of proposed activities. Training should include the following subjects:

- Radiation Protection Principles
- Characteristics of Ionizing Radiation
- Units of Radiation Dose and Quantities
- Radiation Detection Instrumentation
• Biological Hazards of Exposure to Radiation (appropriate to the types and forms of byproduct material to be used)

• Hands-on Use of Radioactive Materials.

The length of the training (usually 40 hours) will depend upon the type, form, quantity and proposed use of the licensed material requested, but training shall cover the subjects stated.

Contamination Control and Waste Handling

See above section, “Laboratory Animals.”

Release of Animals

Before a veterinarian releases an animal that has been injected with a radiopharmaceutical or has had radioactive seeds implanted, the veterinarian must ensure that the dose that members of the public (including the animal’s caretaker) will receive from the animal is within limits of 10 CFR 20.1301. 10 CFR 20.1301 requires that the total effective dose equivalent to an individual member of the public from the licensed operation does not exceed 1 mSv (0.1 rem) in a year and the dose in any unrestricted area from external sources does not exceed 0.02 mSv (0.002 rem) in any one hour. Furthermore, licensees should provide instructions to the animal’s caretaker to keep doses ALARA.

Instructions to Animal Caretaker Upon Release

The instructions should be specific to the type of treatment given, such as permanent implants or radioiodine for hyperthyroidism or thyroid carcinoma, and they may include additional information for individual situations. The instructions should not, however, interfere with or contradict the best medical judgment of the veterinarian. The instructions should include the name of a knowledgeable person to contact and that person’s telephone number, in case the caretaker has any questions. Additional instructions appropriate for each modality, as shown in examples below, may be provided.
Sample Instructions to Caretakers of Animals Administered Radiopharmaceuticals or Other Unsealed Materials

Radiopharmaceutical instructions, to the caretaker, should include the following topics:

- Maintaining distance from people
- Minimizing time in public places (e.g., walks on public sidewalk, parks, beaches, grooming salon)
- Precautions to reduce the spread of radioactive contamination, including animal excreta (which may need to be held for decay)\(^4\).
- The length of time each of the precautions should be in effect.

Example Radiopharmaceutical Instructions

The animal has been treated with radioactive material (isotope) and still possesses a low level of radioactivity. The present level of radioactivity is below the regulatory agency level necessary for isolating the animal from humans. Because some radioactivity will be present for the next few days, it is necessary that the following safety precautions be exercised for the next ______ days:

1. The animal should be kept inside or in his cage/stall following hospital discharge.
2. The animal should not be permitted to have prolonged contact with children under the age of 12 for ___ days following hospital discharge. Close contact should be limited to less than ___ minutes per day.
3. Pregnant women should avoid ANY contact with the animal or its urine and/or feces for at least ___ days after discharge.
4. Family members should not be permitted to sleep with the animal for ___ days after discharge. They also should limit close contact with the animal (being within 1 meter or 3 feet of the animal) for the next ___ day(s) to no more than ___ minutes a day. Preferably, contact with the animal should be kept to a distance of more than 1 meter or 3 feet for this period.
5. Use a plastic litter pan liners and a scoopable litter (for cats).
6. Disposable gloves should be worn whenever changing the litter box for the next ______ days after discharge.
7. Wash hands after contact with the animal or the litter.
8. Call ___________________________ to discuss any other radiation safety concerns.

\(^4\) Many solid waste disposal facilities have installed radiation detectors, at the entrance, to prevent the disposal of byproduct material at landfills. If the detectors indicate that there is radioactive material in the waste truck, the waste disposal facility staff or a contractor must search the truck and remove the radioactive material, which is a costly and time-consuming process. Although it is proper to dispose of animal excreta in a landfill, caretakers should consider storing animal excreta in a remote location to allow the radioactive material to decay. If applicable, caretakers should contact the veterinarian for further information about the length of time that animal excreta should be held for decay.
Sample Instructions to Caretakers of Animals Implanted with Sealed Sources

A small radioactive source has been placed (implanted) inside the animal. The source is actually many small metallic pellets or seeds, which are each about 1/4" to 1/3" long, similar in size and shape to a grain of rice. The following precautions should be taken for ___ days, to minimize exposure to radiation to humans from the source inside the animal:

- Stay at a distance of ____ feet from ____.
- Maintain separate sleeping arrangements.
- Minimize time with children and pregnant women.
- Do not hold or cuddle pet.
- Avoid public transportation.
- Examine any bandages that come into contact with the implant site for any pellets or seeds that may have come out of the implant site.

If a seed or pellet has fallen out, do the following:

- Do not handle it with fingers. Use something like a spoon or tweezers to place it in a jar or other container that can be closed with a lid.
- Place the container with the seed or pellet in a location away from people.

Telephone ________________ at ______.
Appendix I

Radiation Safety Officer Duties and Responsibilities
Radiation Safety Officer Duties and Responsibilities

The RSO’s duties and responsibilities include ensuring radiological safety and compliance with NRC and DOT regulations and the conditions of the license; see Figure 8.1. Typically, these duties and responsibilities include the following:

- Ensure that licensed material possessed by the licensee is limited to the types and quantities of byproduct material listed on the license.
- Maintain documentation that demonstrates that the dose to individual members of the public does not exceed the limit specified in 10 CFR 20.1301.
- Ensure security of radioactive material.
- Ensure that licensed material is transported in accordance with applicable NRC and DOT requirements.
- Ensure that radiation exposures are “ALARA.”
- Oversee all activities involving radioactive material, including monitoring and surveys of all areas in which radioactive material is used.
- Act as liaison with NRC and other regulatory authorities.
- Provide necessary information on all aspects of radiation protection to personnel at all levels of responsibility, pursuant to 10 CFR Parts 19 and 20, and any other applicable regulations.
- Oversee proper delivery, receipt, and conduct of radiation surveys for all shipments of radioactive material arriving at or leaving from the institution, as well as packaging and labeling all radioactive material leaving the institution.
- Determine the need for personnel monitoring, distribute and collect personnel radiation monitoring devices, evaluate bioassays, monitor personnel radiation exposure and bioassay records for trends and high exposures, notify individuals and their supervisors of radiation exposures approaching the limits, and recommend appropriate remedial action.
- Conduct training programs and otherwise instruct personnel in the proper procedures for handling radioactive material prior to use, at periodic intervals (refresher training), and as required by changes in procedures, equipment, regulations, etc.
- Supervise and coordinate the radioactive waste disposal program, including effluent monitoring and recordkeeping on waste storage and disposal records.
- Oversee the storage of radioactive material not in current use, including waste.
- Perform or arrange for leak tests on all sealed sources and calibration of radiation survey instruments.
Maintain an inventory of all radioisotopes possessed under the license and limit the quantity to the amounts authorized by the license.

Immediately terminate any unsafe condition or activity that is found to be a threat to public health and safety or property.

Supervise decontamination and recovery operations.

Maintain other records not specifically designated above, for example, records of receipts, transfers, and surveys as required by 10 CFR 30.51 and 10 CFR 20, Subpart L, “Records.”

Hold periodic meetings with, and provide reports to, licensee management.

Ensure that all users are properly trained.

Perform periodic audits of the radiation safety program to ensure that the licensee is complying with all applicable NRC regulations and the terms and conditions of the license (e.g., leak tests, inventories, use limited to trained, approved users, etc.), the content and implementation of the radiation safety program to achieve occupational doses and doses to members of the public that are ALARA in accordance with 10 CFR 20.1101 and required records are maintained.

Ensure that the results of audits, identification of deficiencies, and recommendations for change are documented (and maintained for at least 3 years) and provided to management for review; ensure that prompt action is taken to correct deficiencies.

Ensure that the audit results and corrective actions are communicated to all personnel who use licensed material.

Ensure that all incidents, accidents, and personnel exposure to radiation in excess of ALARA or Part 20 limits are investigated and reported to NRC and other appropriate authorities, if required, within the required time limits.

Maintain understanding of and up-to-date copies of NRC regulations, the license, revised licensee procedures, and ensure that the license is amended whenever there are changes in licensed activities, responsible individuals, or information or commitments provided to NRC during the licensing process.
Appendix J

Radiation Safety Training Topics
Radiation Safety Training Topics

This Appendix is intended only as a guide for developing a training program. Individuals working with radioisotopes may not require training on every topic provided. For example, housekeeping staff may need to know only what symbols to look for, which waste cans to empty, or which areas to enter or avoid. Conversely, laboratory technicians may require detailed information on particular topics. As a result, instruction for some individuals may be provided by providing a simple hand-out, whereas others may require extensive training, including a written exam to assess retention of the topics presented.

Frequency of Training

A. Before assuming duties with, or in the vicinity of, radioactive materials
B. Whenever there is a significant change in duties, regulations, or the terms of the license
C. Annually (refresher training).

General Information

A. Radiation safety
 1. radiation vs. contamination
 2. internal vs. external exposure
 3. biological effects of radiation
 4. ALARA concept
 5. use of time, distance, and shielding to minimize exposure.

B. Regulatory requirements
 1. RSO
 2. material control and accountability
 3. personnel dosimetry
 4. radiation safety program audits
 5. transfer and disposal
 6. record keeping
 7. surveys
 8. postings
9. labeling of containers
10. handling and reporting of incidents or events
11. licensing and inspection by NRC
12. need for complete and accurate information
13. employee protection
14. deliberate misconduct.

Licensee-Specific Program Elements

A. Authorized users and supervised users.
B. Ordering and receiving radioisotopes.
C. Applicable regulations and license conditions.
D. Areas where radioactive material is used or stored.
E. Potential hazards associated with radioactive material in each area where the individuals will work.
F. Appropriate radiation safety procedures.
G. Licensee’s in-house work rules. (For instructions on laboratory safety and uses of radioisotopes, see Section IV.)
H. Each individual’s obligation to report unsafe conditions to the RSO.
I. Appropriate response to spills, emergencies or other unsafe conditions.
J. Worker’s right to be informed of occupational radiation exposure and bioassay results, if applicable.
K. Locations where the licensee has posted or made available: notices, copies of pertinent regulations, and copies of pertinent licenses and license conditions (including applications and applicable correspondence), as required by 10 CFR Part 19.
L. Emergency procedures:
 1. RSO name and telephone number
 2. immediate steps to prevent or control spread of contamination
 3. clean-up instructions, decontamination.
M. Survey program:
 1. survey instrument accessibility
 2. who is responsible
 3. types, contamination and area
 4. frequency
 5. levels of contamination
 6. personnel, hands, shoes
 7. records.

N. Waste
 1. liquid
 2. solids
 3. sanitary sewer
 4. burial (transfer to low level waste repository)
 5. storage
 6. decay-in-storage
 7. waste storage surveys
 8. incineration
 9. records.

O. Dosimetry
 1. whole body
 2. extremities
 3. lost or replacement badges and dose assessment
 4. bioassay procedures
 5. records.

P. Instrumentation
 1. survey meters-use, calibration frequency, use of check sources
 2. analytical instruments-gas chromatographs, liquid scintillation counters.
APPENDIX J

Q. Procedures for receiving packages containing radioactive materials.
 1. normal
 2. off-duty
 3. notification of user and RSO
 4. security
 5. exposure levels
 6. possession limit
 7. receipt of damaged packages.

R. Procedures for opening and examining packages
 1. leakage and contamination
 2. monitoring packages
 3. monitoring packing materials
 4. gloves
 5. transferring material to users.

S. Animal experiments
 1. description of facilities
 2. safety instructions, including handling of animals, waste, carcasses, and cleaning and decontamination of cages
 3. security.

T. Sealed sources
 1. leak test requirements
 2. inventory requirements
 3. exempt quantities
 4. records.

U. Other topics, as applicable
V. Question and answer period.
For Laboratory Safety and Use of Radioisotopes

A. Control procedures for obtaining permission to use radioactive materials at the facility; give limitations on quantity to be handled per user, allowed per experiment, etc.

B. Protective clothing and what laboratory apparel to wear and what equipment to use.

C. Limitations and conditions relative to handling unsealed licensed material and what laboratory equipment to use when working with such material. As an example, discuss which licensed materials and what procedures should be confined to radiochemical fume hoods or gloveboxes. Explain what shielding or remote handling equipment is to be used when beta and/or gamma emitting licensed materials are handled.

D. Routine survey and monitoring procedures to be followed for contamination control. Include where and how contaminated articles and glassware are to be handled and stored.

E. Emergency procedures concerning spills, fires, release of material, and/or accidental contamination of personnel.

F. Decontamination procedures to use and whom to contact in case of an emergency.

G. Instructions concerning transfer of licensed materials between rooms, halls, or corridors, if applicable.

H. Requirements for storage, labeling of containers, and identification of areas where licensed materials are used.

I. Personnel monitoring devices to use, where to obtain them, and exchange procedures and exposure results.

J. Waste disposal procedures to follow, limitations for disposal of liquid or solid wastes, and procedures to use for waste storage. If program involves experiments with animals, procedures for cleaning animal quarters and handling animal excreta and carcasses for disposal.

K. Records to be maintained on use and disposal of licensed materials.

L. Prohibition of pipetting by mouth, eating, smoking, and drinking in areas where licensed materials are used.
Appendix K

Facilities and Equipment Considerations
Facilities and Equipment Considerations

Below is a list of topics that should be considered when developing a description of the facilities and equipment that an ARDL licensee will use or otherwise have available. Not every ARDL applicant will need to address each topic in its application.

- Restricted areas are defined as areas to which access is limited by the licensee to protect individuals against undue risks from exposure to radiation and radioactive materials. The application should contain detailed descriptions and diagrams of the facilities, including information about the shielding properties of the construction materials used. Scaled drawings and sketches should be submitted showing the relationship between restricted areas and unrestricted areas and the location of all pertinent safety-related equipment.

- Bench top or open work areas may be used for sealed sources, for small quantities of solid materials in a form not likely to become airborne or dispersed, and for small quantities of liquids of such low volatility as not to cause airborne contamination or toxicity problems. Trays and/or absorbent surface covers to catch and retain spilled liquids should be used on these open work surfaces and inside closed systems discussed below. Surfaces should be smooth and non-porous, to facilitate decontamination.

- Radioactive materials that are handled or used in unsealed forms should be confined to control the release of material and to prevent the spread of contamination. Gaseous, volatile, and fine particulate solid materials should be handled in closed or isolated systems such as fume hoods or glove boxes with controlled, and possibly filtered, exhaust systems.

 Chemical-type fume hoods provide a working area with controlled inward airflow from the room to the hood exhaust system. Hoods are used for gases, for unsealed volatile licensed materials, and for processes such as evaporation that may release gases and vapors. Fume hoods provide emergency ventilation and exhaust for unplanned releases, such as accidental spills and ruptures, as well as routine exhaust of effluents. Filters may be required in the exhaust stream unless monitoring and/or calculations demonstrate that any planned or likely effluent will be in accordance with the limits found in 10 CFR 20, Appendix B. Glove boxes are sealed boxes with transparent viewing windows, sealable ports or doors for transferring materials and equipment, and gloves sealed to the box through which licensed materials are handled. Glove boxes are used for the containment during storage and use of liquids and solids that can become airborne particulates or aerosols. Glove boxes can be closed or exhausted, with filtration systems if appropriate, to prevent contamination.

- Sink faucets should be designed, where possible, for operation by foot, knee, or elbow rather than by hand.

- Plumbing and ductwork should be designed to avoid radioactive contamination build-up. This build-up of contamination can create external radiation exposure hazards and problems for decommissioning.
Shielding consisting of lead or other high-density material in the form of bricks, panels, L-shields, storage containers, or other shapes may be used on bench tops, in fume hoods or in glove boxes to reduce radiation exposure from gamma-emitting radioactive materials. Similarly, shielding of low atomic number material, such as high-density plastic, may be used to reduce the exposure from high-energy beta-emitting materials. Shielded shipping containers are frequently used for continued storage after receipt of materials.

A particular sink should be designated for disposal of liquid radioactive waste to the sanitary sewerage system. In some cases, depending on number of users and distance between areas of use, more than one sink may need to be designated.

Labeled waste containers should be used. These containers may be shielded as necessary, placed near the waste-generating areas and away from areas frequently occupied by personnel. Additionally, these containers should be effectively enclosed to prevent airborne contamination from radioactive materials deposited.

Remote handling tools, such as forceps or extension handles, should be used to provide distance in the handling of radioactive materials (ALARA). In addition, shielded handling devices, such as shielded syringes, can be used to protect workers from materials that cannot be handled remotely. Pipetting should be done using appropriate devices. Pipetting by mouth should be strictly forbidden.

Where appropriate, ventilation systems should be designed such that, in the event of an accident, they can be shut down to prevent the spread of radioactivity.

Designated areas should be provided for coats and personal belongings, to avoid contamination.

Areas with background radiation levels should be designated for personnel dosimetry storage when not in use.

Areas of use should be well-lighted to avoid spills and other accidents that could result in contamination build-up.

Observation of activities conducted behind shielding with remote tools (or with extended arms and hands, within limits consistent with permissible occupational exposures) can be accomplished by mirrors, through shielded (e.g., leaded glass) windows, through transparent plastic beta shields, or by remote video monitoring.

The combination of containment, shielding, and handling devices proposed for any use of radioactive materials should be appropriate to the type and quantity of materials to be used and to the type and duration of operations to be conducted.

If respiratory protective equipment will be used to limit inhalation of airborne licensed material, follow the provisions of 10 CFR Part 20, Subpart H.

If compaction of waste is performed, ensure that facilities are adequate for the ventilation of the area where the waste is compacted. In addition, also ensure that air sampling for internal exposures is available, if needed per 10 CFR 20.1204.
Appendix L

Sample Audit Program
Sample Audit Program

An audit is conducted, in part, to fulfill the requirements of 10 CFR 20.1101 for an annual review of the content and implementation of the licensee’s radiation protection program. It should also identify program weaknesses and allow licensees to take early corrective actions (before an NRC inspection). During an audit, the auditor needs to keep in mind not only the requirements of NRC’s regulations, but also the licensee’s commitments in its applications and other correspondence with NRC. The auditor should also evaluate whether the licensee is maintaining exposures to workers and the general public as low as is reasonably achievable (ALARA) and, if not, make suggestions for improvement.

The form in this Appendix can be used to document the annual audit of the radiation protection program. Guidance follows on completing each section of the form. In the “remarks” portions of the form, note any deficiencies that were identified and the corrective actions taken (or to be taken).

Section 1, Audit History. Enter the date of the last audit, whether any deficiencies were identified, and whether actions were taken to correct the deficiencies.

Section 2, Organization and Scope of Program. Give a brief description of the organizational structure, noting any changes in personnel. Describe the scope of licensed activities at the audited location. Check whether the Radiation Safety Officer (RSO) is the person identified in the license and fulfills the duties specified in the license.

Section 3, Training, Retraining, and Instructions to Workers. Ensure that workers have received the training required by 10 CFR 19.12. Be sure that, before being permitted to use byproduct material, the user has received training and has a copy of the licensee’s safe use and emergency procedures. Note whether refresher training is conducted in accordance with licensee commitments. Ensure that each worker has a copy of the licensee’s procedures, and by interview and/or observation of selected workers that he/she can implement them.

Section 4, Audits. Verify that audits fulfill the requirements of 10 CFR 20.1101, are conducted in accordance with licensee commitments, and are properly documented.

Section 5, Facilities. Verify that the licensee’s facilities are as described in its license documents.

Section 6, Materials. Verify that the license authorizes the quantities and types of byproduct material that the licensee possesses.

Section 7, Leak Tests. Verify that all sealed/plated foil sources are tested for leakage at the prescribed frequency and in accordance with licensee commitments. Records of results should be maintained.
Section 8, Inventories. Verify that inventories are conducted at least once every 6 months to account for all sources; inventory records should be maintained.

Section 9, Radiation Surveys. Verify that the licensee has appropriate, operable and calibrated survey instruments available, that the instruments are calibrated (at the required frequency) in accordance with license conditions and in accordance with 10 CFR 20.2103. Calibration records must be retained for 3 years after the record is made. Check that radiation levels in areas adjacent to use are within regulatory limits and in accordance with 10 CFR 20.2103. Verify compliance with 10 CFR 20.1301. Records of surveys must be retained for 3 years after the record is made.

Section 10, Receipt and Transfer of Radioactive Material (Includes Waste Disposal). Verify that packages containing byproduct material, received from others, are received, opened, and surveyed in accordance with 10 CFR 20.1906. Ensure that transfers are performed in accordance with 10 CFR 30.41. Records of surveys, receipt, and transfer must be maintained in accordance with 10 CFR 20.2103 and 30.51.

Section 11, Transportation. Determine compliance with Department of Transportation (DOT) requirements. Verify that radioactive packages are prepared, marked, and labeled in accordance with 49 CFR Parts 172 and 173 requirements. Verify that shipping papers are prepared, that they contain all needed information, and that they are readily accessible during transport (49 CFR 172.200, 201, 202, 203, 204 and 177.718).

Section 12, Personnel Radiation Protection. Evaluate the licensee’s determination that unmonitored personnel are not likely to receive more than 10 percent of the allowable limits. Alternately, if personnel dosimetry is provided and required, verify that it complies with 10 CFR 20.1501(c) and licensee commitments. Review personnel monitoring records; compare exposures of individuals doing similar work; determine reasons for significant differences in exposures. If any worker declared her pregnancy in writing, evaluate the licensee’s compliance with 10 CFR 20.1208. Check whether records are maintained as required by 10 CFR 20.2101, 2102, 2103, 2104 and 2106.

Section 13, Auditor’s Independent Measurements (If Made). The auditor should make independent survey measurements and compare the results with those made or used by the licensee.

Section 14, Notification and Reports. Check on the licensee’s compliance with the notification and reporting requirements in 10 CFR Parts 19, 20, and 30. Ensure that the licensee is aware of the telephone number for NRC’s Emergency Operations Center; (301) 816-5100.

Section 15, Posting and Labeling. Check for compliance with the posting and labeling requirements of 10 CFR 19.11, 20.1902, 20.1904, and 21.6.
Section 16, Recordkeeping for Decommissioning. Check to determine compliance with 10 CFR 30.35(g).

Section 17, Bulletins and Information Notices. Check to determine if the licensee is receiving bulletins, information notices, NMSS Newsletters, etc., from NRC. Check whether the licensee took appropriate action in response to NRC mailings.

Section 18, Special License Conditions or Issues. Verify compliance with any special conditions on the licensee’s license. If the licensee has any unusual aspect of its work, review and evaluate compliance with regulatory requirements.

Section 19, Continuation of Report Items. This section is self-explanatory.

Section 20, Problems or Deficiencies Noted; Recommendations. This section is self-explanatory.

Section 21, Evaluation of Other Factors. Evaluate licensee management’s involvement with the radiation safety program, whether the RSO has sufficient time to perform his/her duties, and whether the licensee has sufficient staff to handle the workload and maintain compliance with regulatory requirements.

Note: All areas indicated in audit notes may not be applicable to every license and may not need to be addressed during each audit.
Sample Checklist

Audit Report No. _____________________ License No. ________________

Licensee’s name and mailing address:

Audit of activities at (Address):

Contact at Audit Location _____________ Telephone No. ________________

Date of this Audit ______________________

Summary of Findings and Action:

[] No deficiencies
[] Deficiencies
[] Action on previous deficiencies

Recommendations:

Auditor: _____________________________ Date: ________________________

(Signature)
1. AUDIT HISTORY [] N/A (N/A means “Not applicable” - Initial Audit)

 A. Last audit of this location conducted ________________
 B. Problems/deficiencies identified during last two audits or two years, whichever is longer [] Y [] N
 C. Open problems/deficiencies from previous audits:

<table>
<thead>
<tr>
<th>Status</th>
<th>Requirement</th>
<th>Prob./Def.</th>
<th>Corrective Action Taken (Y/N)</th>
<th>Open/Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 D. Any previous problem/deficiency not corrected or repeated [] Y [] N [] N/A
 Explain:

2. ORGANIZATION AND SCOPE OF PROGRAM

 A. Briefly describe organizational structure

 1. Structure is as described in license documents [] Y [] N
 2. Multiple authorized locations of use [] Y [] N
 3. Briefly describe scope of activities involving byproduct material, frequency of use, staff size, etc. [] Y [] N

 B. Radiation Safety Officer [] Y [] N

 1. Authorized on license [] Y [] N
 2. Fulfills duties as RSO [] Y [] N

 C. Use only by authorized individuals [] Y [] N

Remarks:
APPENDIX L

3. TRAINING, RETRAINING, AND INSTRUCTIONS TO WORKERS

A. Instructions to workers per [10 CFR 19.12] [] Y [] N
B. Training program required [] Y [] N
C. Training records maintained [] Y [] N
D. Evaluation of individuals’ understanding of procedures and regulations based on interviews, observation of selected workers [] Y [] N

 1. Each has an up-to-date copy of the licensee’s safe use and emergency procedures
 2. Adequate understanding of:
 Current safe use procedures [] Y [] N
 Emergency procedures [] Y [] N

E. Revised Part 20

Workers cognizant of requirements for:

 1. Radiation Safety Program [20.1101] [] Y [] N
 2. Annual dose limits [20.1301, 20.1302] [] Y [] N
 3. New NRC Forms 4 and 5 [] Y [] N
 4. 10% monitoring threshold [20.502] [] Y [] N
 5. Dose limits to embryo/fetus and declared pregnant women [20.1208] [] Y [] N
 6. Procedures for opening packages [20.1906] [] Y [] N

Remarks:

4. INTERNAL AUDITS, REVIEWS OR INSPECTIONS

A. Audits are conducted [] Y [] N

 1. Audits conducted by___
 2. Frequency___

B. Content and implementation of the radiation protection program reviewed annually [20.1101(c)] [] Y [] N

C. Records maintained [20.2102] [] Y [] N
5. FACILITIES

A. Facilities as described in license application

Remarks:

6. MATERIALS

Isotopes, quantities, and use as authorized on license

[] Y [] N

Remarks:

7. LEAK TESTS

A. Leak test performed as described in correspondence with NRC (consultant; leak test kit; licensee performed)

[] Y [] N

B. Frequency: every 6 months or other interval, as approved by NRC or Agreement State

[] Y [] N

C. Records with appropriate information maintained

[] Y [] N

Remarks:

8. INVENTORIES

A. Conducted at 6-month intervals

[] Y [] N

B. Records with appropriate information maintained

[] Y [] N

Remarks:

9. RADIATION SURVEYS

A. Instruments and Equipment:

[] Y [] N

1. Appropriate operable survey instrumentation possessed or readily available

[] Y [] N

2. Calibrated as required [20.1501]

[] Y [] N

3. Calibration records maintained [20.2103(a)]

[] Y [] N
APPENDIX L

B. Briefly describe survey requirements [20.1501(a)]:
C. Performed as required [20.1501(a)] [] Y [] N
 1. Radiation levels within regulatory limits [] Y [] N
 2. Corrective action taken and documented [] Y [] N

D. Records maintained [20.2103] [] Y [] N
E. Protection of members of the public
 1. Adequate surveys made to demonstrate either (a) that the TEDE to the individual likely to receive the highest dose does not exceed 100 mrem in a year, or (b) that if an individual were continuously present in an unrestricted area, the external dose would not exceed 2 mrem in any hour and 50 mrem in a year [20.1301(a)(1), 20.1302(b)] [] Y [] N
 2. Unrestricted area radiation levels do not exceed 2 mrem in any one hour [20.1301(a)(2)] [] Y [] N
 3. Records maintained [20.2103, 20.2107] [] Y [] N

Remarks:

10. RECEIPT AND TRANSFER OF RADIOACTIVE MATERIAL (INCLUDES WASTE DISPOSAL)

A. Procedures describe how packages are received and by whom: [] Y [] N
B. Written package opening procedures established and followed [20.1906(e)] [] Y [] N
C. If package shows evidence of degradation, monitor for contamination and radiation levels [] Y [] N [] N/A
D. Monitoring of degraded packages performed within time specified [20.1906(c)] [] Y [] N [] N/A
E. Transfer(s) between licensees (including “disposal”) performed per [30.41] [] Y [] N [] N/A
F. Records of receipt/transfer maintained [20.2103(a), 30.51] [] Y [] N
G. Transfers within licensee’s authorized users or locations performed as required [L/C] [] Y [] N [] N/A
H. Package receipt/distribution activities evaluated for compliance with [20.1301, 20.1302] [] Y [] N [] N/A

Remarks:
APPENDIX L

11. TRANSPORTATION (10 CFR 71.5(a) and 49 CFR 170-189) [] N/A

A. Licensee shipments are:

1. delivered to common carriers [] Y [] N [] N/A
2. transported in licensee’s own private vehicle [] Y [] N [] N/A
3. no shipments since last audit [] Y [] N [] N/A

B. Packages [] N/A

1. Authorized packages used [173.415, 173.416(b)] [] Y [] N [] N/A
2. Closed and sealed during transport [173.475(f)] [] Y [] N

C. Shipping Papers [] N/A

1. Prepared and used [172.200(a)] [] Y [] N
2. Proper {Shipping name, Hazard Class, UN Number, Quantity, Package Type, Nuclide, RQ, Radioactive Material, Physical and Chemical Form, Activity, Category of label, T1, Shipper’s Name, Certification and Signature, Emergency Response Phone Number, “Cargo Aircraft Only” (if applicable)} [172.200-204] [] Y [] N
3. Readily accessible during transport [177.718(e)] [] Y [] N

D. Vehicles [] Y [] N

1. Cargo blocked and braced [177.842(d)] [] Y [] N
2. Placarded, if needed [172.504] [] Y [] N
3. Proper overpacks, if used (shipping name, UN Number, labeled, statement indicating that inner package complies with specification package) [173.25] [] Y [] N

E. Any incidents reported to DOT [171.15, 171.16] [] Y [] N

Remarks:

12. PERSONNEL RADIATION PROTECTION

A. ALARA considerations are incorporated into the Radiation Protection Program [20.1101(b)] [] Y [] N
APPENDIX L

B. Adequate documentation of determination that unmonitored occupationally individuals are not likely to receive >10% of allowable limit [20.1502(a)]

[] Y [] N [] N/A

OR

C. External dosimetry provided and required

[] Y [] N [] N/A

1. Supplier ___________ Frequency ____________________________

2. Supplier is NVLAP-approved [20.1501(c)] [] Y [] N

3. Dosimeters exchanged at required frequency [L/C] [] Y [] N

D. Occupational intake monitored and assessed [20.1502(b)]

[] Y [] N [] N/A

E. Reports

[] N/A

1. Reviewed by ______________ Frequency ____________________________

2. Auditor reviewed personnel monitoring records for period __________________ to __________________

3. Prior dose determined for individuals likely to receive doses [20.2104] [] Y [] N

4. Maximum exposures TEDE _________ Other ____________________________

5. NRC Forms or equivalent [20.2104(d), 20.2106(c)]

a. NRC Form 4 “Cumulative Occupational Exposure History”

Complete: [] Y [] N

b. NRC Form 5 “Occupational Exposure Record for a Monitoring Period”

Complete: [] Y [] N

6. Worker declared her pregnancy in writing during inspection period (review records)

If yes, determine compliance with [20.1208] [] Y [] N

check for records per [20.2106(e)] [] Y [] N

F. Records of exposures, surveys, monitoring, and evaluations maintained [20.2102, 20.2103, 20.2106, L/C]

[] Y [] N

Remarks:
13. AUDITOR’S INDEPENDENT MEASUREMENTS (IF MADE)

A. Survey instrument Serial No. Last calibration

B. Auditor’s measurements compared to licensee’s

C. Describe the type, location, and results of measurements:

14. NOTIFICATION AND REPORTS

A. Licensee in compliance with [19.13, 30.50] (reports to individuals, public and occupational, monitored to show compliance with Part 20)

B. Licensee in compliance with [20.2201, 30.50] (theft or loss)

C. Licensee in compliance with [20.2202, 30.50] (incidents)

D. Licensee in compliance with [20.2203, 30.50] (overexposures and high radiation levels)

E. Licensee aware of telephone number for NRC Emergency Operations Center [(301) 816-5100]

15. POSTING AND LABELING

A. NRC-Form 3 “Notice to Workers” is posted [19.11]

B. Parts 19, 20, 21, Section 206 of Energy Reorganization Act, procedures adopted pursuant to Part 21, and license documents are posted, or a notice indicating where documents can be examined is posted [19.11, 21.6]

C. Other posting and labeling per [20.1902, 1904] and the license is not exempted by [20.1903, 1905]

Remarks:

16. RECORD KEEPING FOR DECOMMISSIONING (if needed)

A. Records of information important to the safe and effective decommissioning of the facility maintained in an independent and identifiable location until license termination

B. Records include all information outlined in [30.35(g)]

Remarks:
APPENDIX L

17. BULLETINS AND INFORMATION NOTICES

A. Receipt of NRC Bulletins, NRC Information Notices, NMSS Newsletters, etc. [] Y [] N
B. Appropriate action taken in response to Bulletins, Information Notices, etc. [] Y [] N

Remarks:

18. SPECIAL LICENSE CONDITIONS OR ISSUES [] N/A

A. Review special license conditions or other issues, and describe findings:

B. Problems/deficiencies identified at licensee facilities other than at audit location:

C. Evaluation of compliance:

19. CONTINUATION OF REPORT ITEMS [] N/A
(If more space is needed, use separate sheets and attach to report.)

20. PROBLEMS OR DEFICIENCIES NOTED; RECOMMENDATIONS [] N/A

Note: Briefly state (1) the requirement and (2) how and when violated. Provide recommendations for improvement.

21. EVALUATION OF OTHER FACTORS

A. Senior licensee management is appropriately involved with the radiation safety program and/or Radiation Safety Officer (RSO) oversight [] Y [] N
B. RSO has sufficient time to perform his/her radiation safety duties and is not too busy with other assignments [] Y [] N
C. Licensee has sufficient staff [] Y [] N

Remarks/recommendations:
Appendix M

Radiation Monitoring Instrument Specifications and Model Survey Instrument and Air Sampler Calibration Program
Radiation Monitoring Instrument Specifications and Model Survey Instrument and Air Sampler Calibration Program

Radiation Monitoring Instrument Specifications

The specifications in Table M.1 will help applicants and licensees choose the proper radiation detection equipment for monitoring the radiological conditions at their facility(ies).

Table M.1 Typical Survey Instruments¹ (Instruments used to measure radiological conditions at licensed facilities.)

| Portable Instruments Used for Contamination and Ambient Radiation Surveys |
|---|---|---|
| Detectors | Radiation | Energy Range | Efficiency |
| Exposure Rate Meters | Gamma, X-Ray | µR-R | N/A |
| Count Rate Meters | | | |
| GM | Alpha | All energies (dependent on window thickness) | Moderate |
| | Beta | All energies (dependent on window thickness) | Moderate |
| | Gamma | All energies | < 1% |
| NaI Scintillator | Gamma | All energies (dependent on crystal thickness) | Moderate |
| Plastic Scintillator | Beta | C-14 or higher (dependent on window thickness) | Moderate |

| Stationary Instruments Used to Measure Wipe, Bioassay, and Effluent Samples |
|---|---|---|
| Detectors | Radiation | Energy Range | Efficiency |
| LSC* | Alpha | All energies | High |
| | Beta | All energies | High |
| | Gamma | | Moderate |
| Gamma Counter (NaI)* | Gamma | All energies | High |
| Gas Proportional | Alpha | All energies | High |
| | Beta | All energies | Moderate |
| | Gamma | All energies | < 1% |

¹ Table from The Health Physics & Radiological Health Handbook, Revised Edition, Edited by Bernard Shleien, 1992 (except for * items).
Model Instrument Calibration Program

Training

Before allowing an individual to perform survey instrument calibrations, the RSO will ensure that he or she has sufficient training and experience to perform independent survey instrument calibrations.

Classroom training may be in the form of lecture, videotape, or self-study and will cover the following subject areas:

- Principles and practices of radiation protection
- Radioactivity measurements, monitoring techniques, and using instruments
- Mathematics and calculations basic to using and measuring radioactivity
- Biological effects of radiation.

Appropriate on-the-job-training consists of the following:

- Observing authorized personnel performing survey instrument calibration
- Conducting survey meter calibrations under the supervision and in the physical presence of an individual authorized to perform calibrations.

Facilities and Equipment for Calibration of Dose Rate or Exposure Rate Instruments

- To reduce doses received by individuals not calibrating instruments, calibrations will be conducted in an isolated area of the facility or at times when no one else is present.
- Individuals conducting calibrations will wear assigned dosimetry.
- Individuals conducting calibrations will use a calibrated and operable survey instrument to ensure that unexpected changes in exposure rates are identified and corrected.
Model Procedure for Calibrating Survey Instruments

A radioactive sealed source(s) used for calibrating survey instruments will:

- Approximate a point source
- Have its apparent source activity or the exposure rate at a given distance traceable by documented measurements to a standard certified by National Institutes of Standards and Technology (NIST)
- Approximate the same energy and type of radiation as the environment in which the calibrated device will be employed
- For dose rate and exposure rate instruments, the source should be strong enough to give an exposure rate of at least about 7.7×10^{-6} coulombs/kilogram/hour (30 mR/hr) at 100 cm [e.g., 3.1 gigabecquerels (85 mCi) of cesium-137 or 7.8×10^{2} megabecquerels (21 mCi) of cobalt-60]

The three kinds of scales frequently used on dose or dose rate survey meters are calibrated as follows:

- Linear readout instruments with a single calibration control for all scales shall be adjusted at the point recommended by the manufacturer or at a point within the normal range of use. Instruments with calibration controls for each scale shall be adjusted on each scale. After adjustment, the response of the instrument shall be checked at approximately 20% and 80% of full scale. The instrument’s readings shall be within ± 15% of the conventionally true values for the lower point and ± 10% for the upper point.
- Logarithmic readout instruments, which commonly have a single readout scale spanning several decades, normally have two or more adjustments. The instrument shall be adjusted for each scale according to site specifications or the manufacturer’s specifications. After adjustment, calibration shall be checked at a minimum of one point on each decade. Instrument readings shall have a maximum deviation from the conventionally true value of no more than 10% of the full decade value.
- Meters with a digital display device shall be calibrated the same as meters with a linear scale.
- Readings above 2.58×10^{-4} coulomb/kilogram/hour (1 R/hr) need not be calibrated, but such scales should be checked for operation and response to radiation.
- The inverse square and radioactive decay law should be used to correct changes in exposure rate due to changes in distance or source decay.
Surface Contamination Measurement Instruments

- Survey meters’ efficiency must be determined by using radiation sources with similar energies and types of radiation that the survey instrument will be used to measure.
- If each scale has a calibration potentiometer, the reading shall be adjusted to read the conventionally true value at approximately 80% of full scale, and the reading at approximately 20% of full scale shall be observed. If only one calibration potentiometer is available, the reading shall be adjusted at mid-scale on one of the scales, and readings on the other scales shall be observed. Readings shall be within 20% of the conventionally true value.

Model Procedures for Calibrating, Liquid Scintillation Counters, Gamma Counters, Gas Flow Proportional Counters, and Multichannel Analyzers

A radioactive sealed source used for calibrating instruments will do the following:

- Approximate the geometry of the samples to be analyzed
- Have its apparent source activity traceable by documented measurements to a standard certified by National Institutes of Standards and Technology (NIST)
- Approximate the same energy and type of radiation as the samples that the calibrated device will be used to measure.

Calibration

- Calibration must produce readings within ± 20 per cent of the actual values over the range of the instrument.
- Calibration of liquid scintillation counters will include quench correction.

Calibration Records

Calibration records, for all survey instruments, will should indicate the procedure used and the data obtained. The description of the calibration will should include:

- The owner or user of the instrument
- A description of the instrument, including the manufacturer’s name, model number, serial number, and type of detector

A description of the calibration source, including the exposure rate at a specified distance or activity on a specified date

For each calibration point, the calculated exposure rate or count rate, the indicated exposure rate or count rate, the deduced correction factor (the calculated exposure rate or count rate divided by the indicated exposure rate or count rate), and the scale selected on the instrument

For instruments with external detectors, the angle between the radiation flux field and the detector (i.e., parallel or perpendicular)

For instruments with internal detectors, the angle between radiation flux field and a specified surface of the instrument

For detectors with removable shielding, an indication whether the shielding was in place or removed during the calibration procedure

The exposure rate or count rate from a check source, if used

The name of the person who performed the calibration and the date it was performed.

The following information should be attached to the instrument as a calibration sticker or tag:

For exposure rate meters, the source isotope used to calibrate the instrument (with correction factors) for each scale

The efficiency of the instrument, for each isotope the instrument will be used to measure (if efficiency is not calculated before each use)

For each scale or decade not calibrated, an indication that the scale or decade was checked only for function but not calibrated

The date of calibration and the next calibration due date

The apparent exposure rate or count rate from the check source, if used.

Air Sampler Calibration

In order to assess accurately the air concentration of radioactive materials in a given location, the volume of air sampled and the quantity of contaminant in the sample must be determined. Accurate determination of the volume of air sampled requires standard, reproducible, and periodic calibration of the air metering devices that are used with air sampling instruments.

The publication entitled “Air Sampling Instruments” found in the 7th Edition, American Conference of Governmental Industrial Hygienists, 1989, provides guidance on total air sample volume calibration methods acceptable to NRC staff, as supplemented below.
APPENDIX M

Frequency of Calibration

- A licensee committed to a routine or emergency air sampling program should perform an acceptable calibration of all airflow or volume metering devices at least annually (See Regulatory Guide 8.25).

- Special calibrations should be performed at any time there is reason to believe that the operating characteristics of a metering device have been changed, by repair or alteration, or whenever system performance is observed to have changed significantly.

- Routine instrument maintenance should be performed as recommended by the manufacturer.

- Primary or secondary standard instruments used to calibrate air sampling instruments should be inspected frequently for consistency of performance.

Error Limit For Measurement of Air Sample Volume

Most methods of calibrating airflow or air volume metering devices require direct comparison to a primary or secondary standard instrument, to determine a calibration curve or a correction factor. An example of a primary standard is a spirometer that measures total air volume directly with high precision by liquid displacement. An example of a secondary standard is a wet-test meter that has been calibrated against a primary standard. Primary standards are usually accurate to within ±1% and secondary standards to within ±2%.

The following are significant errors associated with determining the total air volume sampled:

E_C: The error in determining the calibration factor. (An acceptable estimate is the percentage error associated with the standard instrument used in the calibration.)

E_S: Intrinsic error in reading the meter scale. (An acceptable estimate is the percentage equivalent of one-half of the smallest scale division, compared to the scale reading.)

E_t: The percentage error in measurement of sampling time that should be kept within 1%.

E_V: The most probable value of the cumulative percentage error in the determination of the total air volume sampled.

6 The calibration factor should be based on two kinds of determinations. First, correction factors should be determined at several flow rates distributed over the full-scale range. Each flow rate correction factor should be determined while adjusting flow rates upscale and again while adjusting flow rates downscale, and the two sets of data should be compared. Second, subsequent calibrations should compare the new correction factors to those determined during the previous calibration. If observed differences are significant compared to the overall volume error limit of 20 per cent, an additional error term should be included in the calculation above.
E_{V} can be calculated from the following equation, provided there are no additional significant sources of errors:

$$E_{V} = \left[E_{S}^{2} + E_{C}^{2} + E_{t}^{2} \right]^{1/2}$$

The most probable value of the cumulative error E_{V}, in the determination of total volume, should be less than 20%.

A sample calculation of the most probable value of the cumulative error in total volume measured is as follows: If accuracies of the scale reading, the calibration factor, and sample time are ± 4, 2, and 1 per cent, respectively, and there are no other significant sources of error, the cumulative error would be:

$$E_{V} = \left[4^{2} + 2^{2} + 1^{2} \right]^{1/2} = 4.58\% \text{ or approx. } 5\%$$

If there are significant differences in pressure and temperature between the calibration site and the sampling site, appropriate corrections should be made using the ideal gas laws provided below:

$$V_{s} = V_{1} \times \left(\frac{P_{1}}{760} \right) \times \left(\frac{273}{T_{1}} \right)$$

where V_{s} = volume at standard conditions (760 mm & 0°C)
V_{1} = volume measured at conditions P_{1} and T_{1}
T_{1} = temperature of V_{1} in °K
P_{1} = pressure of V_{1} in mm Hg

Documentation of Calibration of Air Metering Devices

The licensee should maintain records of all routine and special calibrations of airflow or volume metering devices, including the primary or secondary standard used, method employed, and estimates of accuracy of the calibrated metering devices. All instruments should be clearly labeled as to the date and results of the most recent calibration and should include the appropriate correction factors to be used.

References: See the Notice of Availability on the inside front cover of this report to obtain a copy of:

1. Regulatory Guide 8.25, Revision 1, “Air Sampling in the Workplace.”
2. NUREG - 1400, “Air Sampling in the Workplace”
APPENDIX M

Additional References:

3. The Health Physics & Radiological Health Handbook, Revised Edition, Edited by Bernard Shleien,

4. ANSI N323A-1997, “Radiation Protection Instrumentation Test and Calibration.” Copies may be obtained from the American National Standards Institute, 1430 Broadway, New York, NY 10018 or ordered electronically at the following address: <http://www.ansi.org>.

5. “Air Sampling Instruments,” American Conference of Governmental Industrial Hygienists, 1987
Appendix N

Material Receipt and Accountability
Material Receipt and Accountability

Sample Model Procedure for Ordering and Receiving Radioactive Material

- The RSO should approve or place all orders for radioactive material and should ensure that the requested material, quantities, manufacturer, and model are authorized by the license and that the possession limits are not exceeded.

- During normal working hours, carriers should be instructed to deliver radioactive packages directly to the Radiation Safety Office (or designated receiving area).

- During off-duty hours, security or other designated trained personnel should accept delivery of radioactive packages in accordance with the procedure outlined in the sample memorandum below:

Sample Memorandum

Memorandum for Security Personnel

From: RSO, President, Vice President, etc.

Subject: Procedures for Receipt of Packages Containing Radioactive Material

If the package appears to be damaged, immediately contact the RSO. Ask the carrier to remain at the facility until it can be determined that neither the carrier nor the vehicle is contaminated.

Any packages containing radioactive material that arrive between (state times, e.g., 4:30 p.m. and 7:00 a.m. or on Saturdays or Sundays) shall be signed for by the security guard (or other designated trained individual) on duty and taken immediately to the designated receiving area. Security personnel (or other designated trained individual) should unlock the door, place the package in the designated secured storage area and re-lock the door.

Radiation Safety Officer (RSO): ________________________________

Office Phone: ________________________________

Home Phone: ________________________________
Sample Instructions to Personnel Involved in Material Receipt

Shipping and Receiving Personnel

During normal working hours, immediately upon receipt of any package of licensed material, each package must be visually inspected for any signs of shipping damage such as crushed or punctured containers or signs of dampness. Any obvious damage must be reported to the RSO immediately. Do not touch any package suspected of leaking. Request the person delivering the package to remain until monitored by the RSO.

Outside of normal working hours (e.g., nights, weekends, and holidays), deliveries will usually be handled by security personnel (or other trained individuals) as described in the above procedures. Since certain packages of licensed material will have detectable external radiation, they should be sent immediately to a designated storage area, where they will be checked for contamination and external radiation level as soon as practical. They should not be allowed to remain in the receiving area any longer than necessary, as they may be a source of exposure for receiving personnel.

If the instructions are not clear, or if there are questions regarding receiving packages containing radioactive material, please contact:

Name __

Phone __

For additional information on worker training, see the section entitled Training for Individuals Working In or Frequenting Restricted Areas.

Sample Model Procedure for Safely Opening Packages Containing Licensed Materials

For packages received under the specific license, authorized individuals shall implement procedures for opening each package, as follows:

- Wear gloves to prevent hand contamination.
- Visually inspect the package for any sign of damage (e.g. crushed, punctured). If damage is noted, stop and notify the RSO.
- Check DOT White I, Yellow II, or Yellow III label or packing slip for activity of contents, so shipment does not exceed license possession limits.
- Monitor the external surfaces of a labeled package according to specifications in Table 8.4, Section 13.14, Item 10.
• Open the outer package (following supplier’s directions if provided) and remove packing slip. Open inner package to verify contents (compare requisition, packing slip and label on the bottle or other container). Check integrity of the final source container (e.g., inspecting for breakage of seals or vials, loss of liquid, discoloration of packaging material, high count rate on smear). Again check that the shipment does not exceed license possession limits. If you find anything other than expected, stop and notify the RSO.

• Survey the packing material and packages for contamination before discarding. If contamination is found, treat as radioactive waste. If no contamination is found, obliterate the radiation labels prior to discarding in the regular trash.

• Maintain records of receipt, package survey, and wipe test results.

• Notify the final carrier and by telephone, telegram, mailgram, or facsimile, the Administrator of the appropriate NRC Regional Office listed in 10 CFR 20, Appendix D when removable radioactive surface contamination exceeds the limits of 10 CFR 71.87(I); or external radiation levels exceed the limits of 10 CFR 71.47.

Sample Transfer Policy Statements

Internal Transfers

Licensed materials that may be transferred from one department or laboratory or AU’s control to another should have prior approval from the RSO. A written transfer procedure should be developed by the RSO to ensure that transfers are done in accordance with the conditions of the license. All transfers shall be done in a way that minimizes the probability of spillage or breakage. Double containers should be used, including suitable shielding, for such transfers.

External Transfers

Licensed material shall not be transferred or shipped from one institution to another without the approval of the RSO. Such transfers/shipments must be packaged and labeled in accordance with DOT, NRC, or U.S. Postal Service Regulations, whichever is applicable.

Gifts

On occasion, licensees may be offered or have donated licensed materials by other individuals as gifts (e.g., a retiring medical practitioner donating his cesium needles to the university medical center). All such gifts of radioactive materials must be transferred to the licensee and handled in accordance with NRC requirements and the conditions of the license. In any case, the RSO should approve the gift prior to the transfer.
Appendix O

Public Dose
Public Dose

This appendix describes methods for determining radiation doses to members of the public.

Licensees must ensure that:

- The radiation dose received by individual members of the public does not exceed 1 millisievert (mSv) [100 millirem (mrem)] in one calendar year resulting from the licensee’s possession and/or use of licensed materials.
- The radiation dose in unrestricted areas does not exceed 0.02 mSv (2 mrem) in any one hour.

Members of the public include persons who live, work, study, or may be near locations where byproduct material is used or stored and employees whose assigned duties do not include the use of byproduct material but may work in the vicinity where such materials are used or stored.

<table>
<thead>
<tr>
<th>Doses to Members of the Public</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCLUDES doses from:</td>
</tr>
<tr>
<td>• Radiation and/or radioactive material released by a licensee</td>
</tr>
<tr>
<td>• Sources of radiation under the control of a licensee</td>
</tr>
<tr>
<td>• Air effluents from sources of licensed radioactive materials</td>
</tr>
<tr>
<td>DOES NOT INCLUDE doses from:</td>
</tr>
<tr>
<td>• Sanitary sewerage discharges from licensees</td>
</tr>
<tr>
<td>• Natural background radiation</td>
</tr>
<tr>
<td>• Medical administration of radioactive material</td>
</tr>
<tr>
<td>• Voluntary participation in medical research</td>
</tr>
</tbody>
</table>

Typical unrestricted areas may include offices, shops, laboratories (where licensed material is not used or stored), areas outside buildings, property, and storage areas. The licensee does not control access to these areas for purposes of controlling exposure to radiation or radioactive materials, but the licensee may control access to these areas for other reasons, such as security.

The licensee may show compliance with the annual dose limit for individual members of the public by:

- Demonstrating by measurement or calculation that the TEDE to the individual likely to receive the highest dose at the boundary of the unrestricted area does not exceed 1 mSv (100 mrem)
- Demonstrating that the annual average concentration of radioactive material released in gaseous and liquid effluents at the boundary of the unrestricted area does not exceed the values specified in Table 2 of Appendix B to Part 20; and if an individual were continuously
present in an unrestricted area the dose from external sources would not exceed 0.02 mSv (2 mrem) in an hour and 0.5 mSv (0.05 rem) in a year.

- Demonstrating that air emissions of radioactive materials do not result in doses greater than the constraint limit of 0.1 mSv (10 mrem) TEDE.

In order to perform a dose assessment, licensees should identify all potential sources of external and internal radiation exposure to members of the public and all locations of use, transport, and storage of radioactive material at their facilities. Licensees must then take radiation measurements or perform calculations to demonstrate compliance.

Measurements

The licensee may use measurements to demonstrate that the average annual releases are within regulatory limits, as well as to demonstrate that the TEDE to the individual likely to receive the highest dose at the boundary of the unrestricted area does not exceed 1 mSv (100 mrem). These measurements may include:

- Dose rate surveys for radiation exposures from external radiation sources
- Measurements of radionuclides in air and water effluent.

The method used to measure dose will depend upon the nature of the radiation source. If the source of radiation is constant, it may be adequate to measure the dose rate and integrate it over time. If the source of radiation differs or changes over time, it may be necessary to perform continuous measurements.

Radioactivity releases may be determined by effluent monitoring or by effluent sampling and analysis. Airborne effluents may be discharged when volatile materials are used, such as during iodinations, but the discharge itself is usually not continuous since volatile materials are often used periodically rather than continuously. Liquid effluents may be discharged continuously or may be stored and subsequently discharged on a batch basis. For each type of source and for each route of potential exposure, consider the location of measurement points, whether continuous or periodic monitoring is required, the frequency of sampling and measurement, and any additional information. For discharges of airborne radionuclides, for example, it may be necessary to obtain information on the efficiency of filters and the air flow rate of the discharge system, as well as meteorological data and the distance to the nearest individual member of the public.

Calculation Method

Using a calculation method, the licensee must determine the highest dose an individual is likely to receive at the boundary of the unrestricted area. The licensee must take into account the
individual’s exposure from external sources and the concentration of radionuclides in gaseous and liquid releases. In practice, the licensee may wish to make conservative assumptions to simplify the dose calculation.

The public dose limit applies to the individual who is likely to receive the highest dose from licensed operations. Therefore, the dose calculations must consider the location with the potential for the highest internal and external exposures. A conservative calculation should assume that the individual was continuously present 24 hours a day, 365 days a year, or an occupancy factor of 1 (see Table K.1). If the result of the calculation using an occupancy factor of 1 demonstrates that the public dose limit is not exceeded, then there is no need for further evaluation.

If the calculation demonstrates that the public dose limit is exceeded with an occupancy factor of 1, then more realistic assumptions of the individual’s occupancy at the points of highest internal and external exposures may be made. The licensee may use the occupancy factors in Table K.1 or may calculate a specific occupancy factor by determining the likely fraction of time that the individual is present.

<table>
<thead>
<tr>
<th>Occupancy Factor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Work areas such as offices, laboratories, shops, and occupied space in nearby buildings or outdoor areas</td>
</tr>
<tr>
<td>1/4</td>
<td>Corridors, lounges, elevators using operators, unattended parking lots</td>
</tr>
<tr>
<td>1/16</td>
<td>Waiting rooms, rest rooms, stairways, unattended elevators, janitor’s closets, outside areas used only for pedestrians or vehicular traffic</td>
</tr>
</tbody>
</table>

Records

The licensee must maintain records to demonstrate compliance with the dose limit for individual members of the public until the Commission terminates the license. In general, survey and monitoring records of ambient radiation and effluent radioactivity should be adequate.

Records demonstrating the dose to an individual member of the public should identify the instruments used in the survey, the name of the surveyor, the date of the survey, the location of the survey(s) including a description or drawing of the area surveyed, survey results, and if applicable, the occupancy factors used and justification for their use. In addition, records demonstrating the dose to an individual member of the public that involve effluent sampling analysis should include information on concentrations of specific radionuclides, minimum detectable activity of the system and the estimated uncertainty of measurements.
Appendix P

General Topics for Safe Use of Radioisotopes and Model Emergency Procedures
General Topics for Safe Use of Radioisotopes and Model Emergency Procedures

General Topics for Safe Use of Radioisotopes

Each laboratory or area where radioactive material is used or stored should have general rules, so that workers know what is required. Typical instructions should include:

- Wear a laboratory coat or other protective clothing at all times in areas where licensed materials are used.
- Wear disposable gloves at all times when handling licensed materials.
- After each procedure or before leaving the area, monitor hands, shoes, and clothing for contamination in a low-background area.
- Do not eat, drink, smoke or apply cosmetics in any area where licensed material is stored or used.
- Do not store food, drink or personal effects in areas where licensed material is stored or used (see Figure P.1).
- Wear personnel monitoring devices, if required, at all times while in areas where licensed materials are used or stored.
- Dispose of radioactive waste only in designated, labeled and properly shielded receptacles.
- Never pipette by mouth.
- Store radioactive solutions in clearly labeled containers.
- Secure all licensed material when it is not under the constant surveillance and immediate control of the user(s).
Figure P.1 Storage of Food and Drink. Food or drink shall not be stored in refrigerators with radioisotopes.

Radionuclides-specific Procedures

Licensees should develop written procedures for use of different radionuclides so that users know the types of shielding, protective clothing, survey instruments, surveys, and decontamination activities that are required. Examples of such procedures are included below.

Example 1:

If requesting more than 37 MBq (1 mCi) of iodine-125 or iodine-131, special safety instructions should be provided to users, including the following:

- A mandatory radiation survey and wipe test for radioactive contamination after each use
- Bioassay procedures for individuals working with millicurie quantities of radioiodine
- The use of vented hoods for iodination and for the storage of millicurie quantities of radioiodine
- A dry run prior to the performance of unfamiliar procedures, in order to preclude unexpected complications. In addition, it is recommended that the RSO be present during new procedures.
- Procedures for measuring the concentration of radioiodine effluents from the hoods.
Example 2:

If requesting more than 37 MBq (1 mCi) of phosphorus-32, special safety instructions should be provided to users, including the following:

- The use of low-density plastic shielding in order to keep bremsstrahlung radiation to a minimum
- A mandatory radiation survey and wipe test for radioactive contamination after each use
- The use of extremity monitors for procedures that involve one millicurie or more
- A dry run prior to the performance of unfamiliar procedures in order to preclude unexpected complications. In addition, it is recommended that the RSO be present during new procedures
- The use of eye protection for procedures that involve 10 millicuries or more.

Model Procedures for Handling Emergencies

Appropriate first aid and other immediate medical needs of injured individuals should not be neglected, delayed, or ignored due to suspected contamination.

General Safety Procedures to Handle Spills

- Name and telephone number of RSO or an alternate person(s) should be posted conspicuously in areas of use, so that it is readily available to workers in case of emergencies. Licensee should have emergency equipment readily available for handling spills. Spill kits should include the following:
 — Disposable gloves
 — Housekeeping gloves
 — Disposable lab coats
 — Disposable head coverings
 — Disposable shoe covers
 — Roll of absorbent paper with plastic backing
 — Masking tape
 — Plastic trash bags with twist ties
 — “Radioactive Material” labeling tape
 — Marking pen
Minor Spills of Liquids and Solids

Instructions to Workers

- Notify persons in the area that a spill has occurred.
- Prevent the spread of contamination by covering the spill with absorbent paper. (Paper should be dampened if solids are spilled).
- Clean up the spill, wearing disposable gloves and using absorbent paper.
- Carefully fold the absorbent paper with the clean side out and place in a plastic bag for transfer to a radioactive waste container. Put contaminated gloves and any other contaminated disposable material in the bag.
- Survey the area with an appropriate low-range radiation detector survey meter or other appropriate technique. Check the area around the spill for contamination. Also check hands, clothing, and shoes for contamination.
- Report the incident to the Radiation Safety Officer (RSO) promptly.
- Allow no one to return to work in the area unless approved by the RSO.
- Cooperate with RSO/RSO staff (e.g., investigation of root cause, provision of requested bioassay samples).
- Follow the instructions of the RSO/RSO staff (e.g., decontamination techniques, surveys, provision of bioassay samples, requested documentation).

Reminders to RSO

- Follow up on the decontamination activities and document the results.
- As appropriate, determine cause and corrective actions needed; consider bioassays if licensed material may have been ingested, inhaled, and/or absorbed through the skin.
- If necessary, notify NRC.
Major Spills of Liquids and Solids

• Instructions to Workers
 — Clear the area. If appropriate, survey all persons not involved in the spill and vacate the room.
 — Prevent the spread of contamination by covering the spill with absorbent paper (paper should be dampened if solids are spilled), but do not attempt to clean it up. To prevent the spread of contamination, limit the movement of all personnel who may be contaminated.
 — Shield the source only if it can be done without further contamination or significant increase in radiation exposure.
 — Close the room and lock or otherwise secure the area to prevent entry. Post the room with a sign to warn anyone trying to enter that a spill of radioactive material has occurred.
 — Notify the RSO immediately.
 — Survey all personnel who could possibly have been contaminated. Decontaminate personnel by removing contaminated clothing and flushing contaminated skin with lukewarm water and then washing with a mild soap.
 — Allow no one to return to work in the area unless approved by the RSO.
 — Cooperate with RSO/RSO staff (e.g., investigation of root cause, provision of requested bioassay samples).
 — Follow the instructions of the RSO/RSO staff (e.g., decontamination techniques, surveys, provision of bioassay samples, requested documentation).

• Reminders to RSO
 — Confirm decontamination of personnel. If decontamination of personnel was not fully successful, consider inducing perspiration by covering the area with plastic. Then wash the affected area again to remove any contamination that was released by the perspiration.
 — Supervise decontamination activities and document the results. Documentation should include location of surveys and decontamination results.
 — Determine cause and needed corrective actions; consider need for bioassays if licensed material may have been ingested, inhaled, and/or absorbed through the skin.
 — If necessary, notify NRC.
Incidents Involving Radioactive Dusts, Mists, Fumes, Organic Vapors, and Gases

- **Instructions to Workers**
 - Notify all personnel to vacate the room immediately.
 - Shut down ventilation system, if appropriate, to prevent the spread of contamination throughout system and other parts of facility.
 - Vacate the room. Seal the area, if possible.
 - Notify the RSO immediately.
 - Ensure that all access doors to the area are closed and posted with radiation warning signs, or post guards (trained) at all access doors to prevent accidental opening of the doors or entry to the area.
 - Survey all persons who could have possibly been contaminated. Decontaminate as directed by the RSO.
 - Promptly report suspected inhalations and ingestions of licensed material to the RSO.
 - Decontaminate the area only when advised and/or supervised by the RSO.
 - Allow no one to return to work in the area unless approved by the RSO.
 - Cooperate with RSO/RSO staff (e.g., investigation of root cause, provision of requested bioassay samples).
 - Follow the instructions of the RSO/RSO staff (e.g., decontamination techniques, surveys, provision and collection of bioassay samples, requested documentation).

- **Reminders to RSO**
 - Supervise decontamination activities.
 - Perform air sample surveys in the area before permitting resumption of work with licensed materials.
 - Provide written directions to potentially contaminated individuals about providing and collecting urine, breath, blood, or fecal samples, etc.
 - Consider need for medical exam and/or whole body count before permitting involved individuals to return to work with licensed material.
 - Determine cause and corrective actions needed; consider need for bioassays if licensed material may have been ingested, inhaled, and/or absorbed through the skin. Document incident.
 - If necessary, notify NRC.

Minor Fires
• Instructions to Workers
 — Immediately attempt to put out the fire by approved methods (i.e., fire extinguisher) if other fire hazards or radiation hazards are not present.
 — Notify all persons present to vacate the area and have one individual immediately call the RSO and fire department (as instructed by RSO).
 — Once the fire is out, isolate the area to prevent the spread of possible contamination.
 — Survey all persons involved in combating the fire for possible contamination.
 — Decontaminate personnel by removing contaminated clothing and flushing contaminated skin with lukewarm water, then washing with a mild soap.
 — In consultation with the RSO, determine a plan of decontamination and the types of protective devices and survey equipment that will be necessary to decontaminate the area.
 — Allow no one to return to work in the area unless approved by the RSO.
 — Cooperate with RSO/RSO staff (e.g., investigation of root cause, provision of requested bioassay samples).
 — Follow the instructions of the RSO/RSO staff (e.g., decontamination techniques, surveys, provision of bioassay samples, requested documentation).

• Reminders to RSO
 — Supervise decontamination activities.
 — If decontamination of personnel was not fully successful, consider inducing perspiration by covering the area with plastic. Then wash the affected area again to remove any contamination that was released by the perspiration.
 — Consult with fire safety officials to assure that there are no other possibilities of another fire starting.
 — Determine cause and needed corrective actions; consider need for bioassays if licensed material may have been ingested, inhaled, and/or absorbed through the skin. Document incident.
 — If necessary, notify NRC.

Fires, Explosions, or Major Emergencies

• Instructions to Workers
 — Notify all persons in the area to leave immediately.
 — Notify the fire department.
— Notify the RSO and other facility safety personnel.

— Upon arrival of firefighters, inform them where radioactive materials are stored or where radioisotopes were being used; inform them of the present location of the licensed material and the best possible entrance route to the radiation area, as well as any precautions to avoid exposure or risk of creating radioactive contamination by use of high pressure water, etc.

— Cooperate with RSO/RSO staff (e.g., investigation of root cause, provision of requested bioassay samples).

— Allow no one to return to work in the area unless approved by the RSO.

— Follow the instructions of the RSO/RSO staff (e.g., decontamination techniques, surveys, provision of bioassay samples, requested documentation).

• Reminders to RSO

— Coordinate activities with facility’s industrial hygienist or environmental health & safety office, and with local fire department.

— Consult with the firefighting personnel and set up a controlled area where the firefighters can be surveyed for contamination of their protective clothing and equipment after the fire is extinguished.

— Once the fire is extinguished, do not allow the firefighters to enter the radiation area until a thorough evaluation and survey are performed to determine the extent of the damage to the licensed material use and storage areas.

— Perform thorough contamination surveys of the firefighters and their equipment before they leave the controlled area and decontaminate, if necessary.

— Supervise decontamination activities.

— Consider bioassays if licensed material may have been ingested, inhaled, and/or absorbed through the skin. Document incident.

— If necessary, notify NRC.

Copies of emergency procedures should be provided to all users. Post a current copy in each laboratory or other area where radioactive material is used.
Appendix Q

Radiation Safety Survey Topics
Radiation Safety Survey Topics

This Appendix provides applicants and licensees with additional information on surveys, including training requirements, survey frequency, contamination limits, and bioassays.

Training

Before allowing an individual to perform surveys, the RSO will ensure that he or she has sufficient training and experience to perform surveys independently.

Academic training may be in the form of lecture, videotape, or self-study and will cover the following subject areas:

- Principles and practices of radiation protection
- Radioactivity measurements, monitoring techniques, and using instruments
- Mathematics and calculations basic using and measuring radioactivity
- Biological effects of radiation.

Appropriate on-the-job-training consists of the following:

- Observing authorized personnel using survey equipment, collecting samples, and analyzing samples
- Using survey equipment, collecting samples, and analyzing samples under the supervision and in the physical presence of an individual authorized to perform surveys.

Facilities and Equipment

- To ensure achieving the required sensitivity of measurements, survey samples will be analyzed in a low-background area.
- A gamma counter system with a single or multi-channel analyzer can be used to count samples containing gamma-emitters (e.g., cesium-137, cobalt-60).
- A liquid scintillation or gas-flow proportional counting system can be used to count samples containing alpha-emitters, beta-emitters, and gamma-emitters (if efficiency is great enough to achieve the required sensitivity for measurements).
Ambient Radiation Level Surveys

- Dose-rate surveys, at a minimum, should be performed in locations where workers are exposed to radiation levels that might result in radiation doses in excess of 10% of the occupational dose limits or where an individual is working in a dose rate of 0.025 mSv (2.5 mrem/hr) or more (50 mSv/year divided by 2,000 hr/year).

- 10 CFR 20.1301 requires that the total effective dose equivalent to an individual member of the public from the licensed operation does not exceed 1 mSv (0.1 rem) in a year and the dose in any unrestricted area from external sources does not exceed 0.02 mSv (2 mrem) in any one hour.

The frequency of ambient surveys depends on the quantity and use of radioactive materials, as well as the specific protective facilities, equipment, and procedures that are designed to protect the worker and members of the public from external exposure to radiation. While the regulations do not specify a specific survey frequency, the licensee is required to ensure that the dose rate limits are not exceeded.

Contamination Surveys

Licensees’ contamination surveys should be sufficient to identify areas of contamination that might result in doses to workers or to the public. Combined removable and fixed contamination should be surveyed using appropriate radiation detection equipment. Removable contamination can be detected and measured through a wipe test of the surface, which is counted in an appropriate counting instrument, such as a liquid scintillation counter, a sodium iodide or germanium gamma counter, or a proportional alpha/beta counter.

Contamination surveys should be performed:

- To evaluate radioactive contamination that could be present on surfaces of floors, walls, laboratory furniture, and equipment
- After any spill or contamination event
- When procedures or processes have changed
- To evaluate the potential contamination of users and the immediate work area, at the end of the day or prior to leaving the area of use, when licensed material is used
- In unrestricted areas at frequencies consistent with the types and quantities of materials in use but generally not less frequently than quarterly
- In areas adjacent to restricted areas and in all areas through which licensed materials are transferred and temporarily stored before shipment.

Contamination Survey Frequency
Personnel should survey for contamination in locations where individuals are working with an unsealed form of radioactive material. These surveys should be done at a frequency appropriate to the types and quantities of radioactive materials in use. If the activity used is greater than or equal to the smallest annual limit on intake (ALI) (for either inhalation or ingestion) as identified in 10 CFR Part 20, Appendix B, then documented surveys should be performed at least daily in accordance with 10 CFR 20.2103.

Table Q.1 contains suggested contamination survey frequencies based on ALIs. The suggested frequency of surveys is based upon the amount of licensed material “in use” at any one time at any particular location. If licensed material it has not been used for a period of time greater than the required survey frequency, then it is considered to be “not in use.”

Table Q.1 Suggested Contamination Survey Frequency

<table>
<thead>
<tr>
<th></th>
<th>< 0.1 ALI</th>
<th>≥ 0.1 ALI < 1.0</th>
<th>≥ 1.0 ALI</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Use</td>
<td>Monthly</td>
<td>Weekly</td>
<td>Daily</td>
</tr>
<tr>
<td>Not in Use</td>
<td>Every 6 Months</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contamination in Unrestricted Areas

Contamination found in unrestricted areas should be immediately decontaminated to background levels. When it is not possible to get to background levels, the licensee must ensure that the amounts do not exceed the contamination levels listed in Table Q.2.

Table Q.2 Acceptable Surface Contamination Levels for Equipment

<table>
<thead>
<tr>
<th>Nuclidea</th>
<th>Averageb,c</th>
<th>Maximumb,d</th>
<th>Removableb,e</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-125, I-129</td>
<td>1.7 Bq*/100 cm² (100 dpm/100 cm²)</td>
<td>5.0 Bq/100 cm² (300 dpm/100 cm²)</td>
<td>0.3 Bq/100 cm² (20 dpm/100 cm²)</td>
</tr>
<tr>
<td>I-126, I-131, I-133, Sr-90</td>
<td>16.7 Bq/100cm² (1,000 dpm/100 cm²)</td>
<td>50.0 Bq/100cm² (3,000 dpm/100 cm²)</td>
<td>3.3 Bq/100cm² (200 dpm/100 cm²)</td>
</tr>
<tr>
<td>Beta-gamma emitters (nuclides with decay modes other than alpha emission or spontaneous fission) except Sr-90 and others noted above.</td>
<td>83.3 Bq*/100 cm² (5,000 dpm/100 cm²)</td>
<td>250 Bq/100 cm² (15,000 dpm/100 cm²)</td>
<td>16.7 Bq/100 cm² (1,000 dpm/100 cm²)</td>
</tr>
</tbody>
</table>
Where surface contamination by both alpha- and beta-gamma-emitting nuclides exists, the limits established for alpha- and beta-gamma-emitting nuclides should apply independently.

As used in this table, dpm (disintegration per minute) means the rate of emission by radioactive material as determined by correcting the counts per minute observed by an appropriate detector for background, efficiency, and geometric factors associated with the instrumentation.

Measurements of average contaminant should not be averaged over more than 1 square meter. For objects of less surface area, the average should be derived for each such object.

The maximum contamination level applies to an area of not more than 100 cm².

The amount of removable radioactive material per 100 cm² of surface area should be determined by wiping that area with filter or soft absorbent paper, applying moderate pressure, and assessing the amount of radioactive material on the wipe with an appropriate instrument of known efficiency. When removable contamination on objects of less surface area is determined, the pertinent levels should be reduced proportionally and the entire surface should be wiped.

* 1 Bq = 1 Disintegration per second

When equipment or facilities that are potentially contaminated are to be released for unrestricted use, Table Q.2 provides the maximum acceptable residual levels for equipment and Table Q.3 provides screening values for building surface contamination. To the extent practicable, it is appropriate to decontaminate to below these levels. Surface contamination surveys should be conducted for both removable and fixed contamination before these facilities or equipment are released from restricted to unrestricted use, to ensure that they meet these limits.

A standardized method for smear testing of a relatively uniform area should be used to aid in comparing contamination at different times and places. A smear taken from an area of about 100 cm² is acceptable to indicate levels of removable contamination.

Table Q.3 Screening Values for Building Surface Contamination

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Symbol</th>
<th>Screening levels for unrestricted release (dpm/100 cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen-3 (Tritium)</td>
<td>H-3</td>
<td>1.2×10^8</td>
</tr>
<tr>
<td>Carbon-14</td>
<td>C-14</td>
<td>3.7×10^6</td>
</tr>
<tr>
<td>Sodium-22</td>
<td>Na-22</td>
<td>9.5×10^3</td>
</tr>
<tr>
<td>Sulfur-35</td>
<td>S-35</td>
<td>1.3×10^7</td>
</tr>
<tr>
<td>Chlorine-36</td>
<td>Cl-36</td>
<td>5.0×10^5</td>
</tr>
<tr>
<td>Manganese-54</td>
<td>Mn-54</td>
<td>3.2×10^4</td>
</tr>
<tr>
<td>Iron-55</td>
<td>Fe-55</td>
<td>4.5×10^6</td>
</tr>
<tr>
<td>Cobalt-60</td>
<td>Co-60</td>
<td>7.1×10^3</td>
</tr>
<tr>
<td>Nickel-63</td>
<td>Ni-63</td>
<td>1.8×10^6</td>
</tr>
<tr>
<td>Radionuclide</td>
<td>Symbol</td>
<td>Screening levels for unrestricted release (dpm/100 cm²)</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>Strontium-90</td>
<td>Sr-90</td>
<td>8.7 x 10³</td>
</tr>
<tr>
<td>Technetium-99</td>
<td>Tc-99</td>
<td>1.3 x 10⁶</td>
</tr>
<tr>
<td>Iodine-129</td>
<td>I-129</td>
<td>3.5 x 10⁴</td>
</tr>
<tr>
<td>Cesium-137</td>
<td>Cs-137</td>
<td>2.8 x 10⁴</td>
</tr>
<tr>
<td>Iridium-192</td>
<td>Ir-192</td>
<td>7.4 x 10⁴</td>
</tr>
</tbody>
</table>

1 Screenin levels are based on the assumption that the fraction of removable surface contamination is equal to 0.1. For cases when the fraction of removable contamination is undetermined or higher than 0.1, users may assume, for screening purposes, that 100% of surface contamination is removable; and therefore the screening levels should be decreased by a factor of 10. Alternatively, users having site-specific data on the fraction of removable contamination (e.g., within 10% to 100% range) may calculate site-specific screening levels using DandD Version 1.

Table Q.3 does not include screening values for radionuclides that emit alpha particles, or for soil contamination. The NRC staff is assessing current screening approaches for sites with alpha emitters and for soil contamination. For such sites, licensees are encouraged to use, in the interim period, site-specific dose assessment based on actual site physical and environmental conditions.

Units are disintegrations per minute per 100 square centimeters (dpm/100 cm²). 1 dpm is equivalent to 0.0167 becquerel (Bq). The screening values represent surface concentrations of individual radionuclides that would be deemed in compliance with the 0.25 mSv/yr (25 mrem/yr) unrestricted release dose limit in 10 CFR 20.1402. For radionuclides in a mixture, the “sum of fractions” rule applies; see 10 CFR Part 20, Appendix B, Note 4. Refer to NRC Draft Guidance DG-4006 for further information on application of the values in this table.

Table Q.3 was derived using the DandD screening code, Version 1, and its default input parameters. Table Q.3 provides criteria which permit licensees to demonstrate compliance with the unrestricted release dose criterion in the License Termination Rule. The values correspond to screening “derived concentration guidelines” for each specific radionuclide based on the methodology described in Draft Regulatory Guide DG-4006, “Demonstrating Compliance with the Radiological Criteria for License Termination,” dated August 1998. Sites with building surface contamination levels below those listed in Table Q.3 would be deemed acceptable for release for unrestricted use in accordance with the dose criteria in 10CFR 20.1402, provided that residual radioactivity has been reduced to ALARA levels. The table is intended for use as criteria to facilitate license termination for many simple routine decommissioning cases without a site-specific dose assessment. For facilities with contamination levels above those in Table Q.3, additional site-specific dose assessments may be necessary, and licensees should refer to DG-4006 regarding acceptable methods for conducting the appropriate dose assessment.

Survey Record Requirements

Each survey record should include the following:

- A diagram of the area surveyed (See Figure Q.1)
- A list of items and equipment surveyed
- Specific locations on the survey diagram where wipe test was taken
- Ambient radiation levels with appropriate units
- Contamination levels with appropriate units
- Make and model number of instruments used
- Background levels
- Name of the person making the evaluation and recording the results and date.

Licensees should record contamination levels observed and procedures followed for incidents involving contamination of individuals. The record should include names of individuals involved, description of work activities, calculated dose, probable causes (including root causes), steps taken to reduce future incidents of contamination, times and dates, and the surveyor’s signature.
Figure Q.1 Laboratory Layout. *This is an example of a laboratory survey map.*

Air Monitoring in the Workplace

Air sampling can be used to do the following:

- Determine whether the confinement of radioactive materials is effective
- Measure airborne radioactive material concentrations in the workplace
- Estimate worker intakes of radioactive material
- Determine posting requirements
- Determine what protective equipment and measures are appropriate
- Warn of significantly elevated levels of airborne radioactive materials.

If bioassay measurements are used to determine worker doses of record, air sampling may be used to determine time of intake and to determine which workers should have bioassay measurements. The use of engineering controls and a good air sampling program may eliminate need for bioassays.

Airborne Effluent Release Monitoring

When practicable, airborne radioactive effluents should be released from monitored release points (e.g., monitored stacks, discharges, vents) to provide accurate measurements to estimate public exposure. Licensees should verify the performance of effluent monitoring systems by regular calibration (at least annually) to ensure their reliability.

Regulatory Guide 4.20, “Constraints on Release of Airborne Radioactive Materials to the Environment for Licensees Other Than Power Reactors,” dated December 1996, provides guidance on methods acceptable (calculation or COMPLY code) to NRC for compliance with the constraint on air emissions to the environment.

For release points for which monitoring is not practicable, the licensee should estimate the magnitude of the unmonitored effluents. These unmonitored releases will occur anytime unsealed material is handled outside a fume hood or other device that will control the releases. The licensee should include these estimates when demonstrating compliance with dose limits and ALARA goals. Unmonitored releases may be estimated based on the quantity of material used in these areas or the number of procedures performed or other appropriate methods. The unmonitored effluents should not exceed 30% of the total estimated effluent releases or 10% of the permissible air effluent concentrations found on column 1 of Table 2 in 10 CFR Part 20, Appendix B, whichever is greater.

Liquid Effluent Release Monitoring

The licensee should evaluate the concentrations of radioactive material in water that is released to the environment and to the sanitary sewer. The licensee must show that these releases meet the limits in 10 CFR 20.1301 and 20.2003, respectively.

The topic of sanitary sewerage releases is more fully discussed in Appendix T.
Bioassay Monitoring

Frequency of Required Bioassay Measurements

Determining the appropriate frequency of routine bioassay measurements depends upon the exposure potential and the physical and chemical characteristics of the radioactive material and the route of entry to the body. Consider the following elements:

- Potential exposure of the individual
- Retention and excretion characteristics of the Radionuclides
- Sensitivity of the measurement technique
- Acceptable uncertainty in the estimate of intake and committed dose equivalent.

Bioassay measurements used for demonstrating compliance with the occupational dose limits should be conducted often enough to identify and quantify potential exposures and resultant intakes that, during any year, are likely to collectively exceed 0.1 times the ALI. The 10% ALI criterion is consistent with 10 CFR 20.1502(b), which requires licensees to monitor intakes and assess occupational doses for exposed individuals who are likely to exceed 10 per cent of the applicable limit (i.e., intakes likely to exceed 0.1 ALI for adults).

Separate categories of bioassay measurements, routine measurements and special measurements further determine the frequency and scope of measurements.

Routine Measurements

Routine measurements include baseline measurements, periodic measurements, and termination measurements. These measurements should be conducted to confirm that appropriate controls exist and to assess dose. The method of bioassay selected (for example, whole body counting, urinalysis, etc) and the samples collected will vary according to the radionuclide and the compound to which it is attached. Sample collection procedures should be developed to ensure that appropriate types, sizes, and numbers of samples are collected that will provide appropriate physiological information for the dose assessment.

An individual’s baseline measurement of radioactive material within the body should be conducted before beginning work that involves exposure to radiation or radioactive materials for which monitoring is required.

In addition to the baseline measurements, periodic bioassay measurements should be performed. The frequency of periodic measurements should be based on the likelihood of significant exposure of the individual. In determining the worker’s likely exposure, consider such information as the worker’s access, work practices, measured levels of airborne radioactive
material, and exposure time. Periodic measurements should be made when the cumulative exposure to airborne radioactivity, since the most recent bioassay measurement, is > 0.02 ALI (40 DAC hours). Noble gases and airborne particulates with a radioactive half-life of less than 2 hours should be excluded from the evaluation, since external exposure generally controls these radionuclides.

At a minimum, periodic measurements should be conducted annually. Periodic measurements provide additional information on any long-term accumulation and retention of radioactive material in the body, especially for exposures to concentrations of airborne radioactive material below monitoring thresholds.

When an individual is no longer subject to the bioassay program, because of change in employment status, termination bioassay measurement should be made, when practicable, to ensure that any unknown intakes are quantified.

Special Monitoring

Because of uncertainty in the time of intakes and the absence of other data related to the exposure (e.g., physical and chemical forms, exposure duration), correlating positive results to actual intakes for routine measurements can sometimes be difficult. Abnormal and inadvertent intakes from situations such as a failed respiratory protective device, inadequate engineering controls, inadvertent ingestion, contamination of a wound, or skin absorption, should be evaluated on a case-by-case basis. When determining whether potential intakes should be evaluated, consider the following circumstances:

- The presence of unusually high levels of facial and/or nasal contamination
- Entry into airborne radioactivity areas without appropriate exposure controls
- Operational events with a reasonable likelihood that a worker was exposed to unknown quantities of airborne radioactive material (e.g., loss of system or container integrity)
- Known or suspected incidents of a worker ingesting radioactive material
- Incidents that result in contamination of wounds or other skin absorption
- Evidence of damage to or failure of a respiratory protective device.

References: See the Notice of Availability on the inside front cover of this report to obtain a copy of:

• Regulatory Guide 8.25, Revision 1, “Air Sampling in the Workplace,” dated June 1992

• NUREG - 1400, “Air Sampling in the Workplace,” dated September 1993

• NUREG/CR - 4884, “Interpretation of Bioassay Measurements,” dated July 1987

• Additional References

Appendix R

Model Leak Test Procedures
Model Leak Test Procedures

This appendix provides applicants and licensees with model leak test procedures and sample calculations for determining activity on a wipe test sample.

Frequency for Conducting Leak Tests of Sealed Sources

Leak tests will be conducted at the frequency specified in the respective SSD Registration Certificate.

Procedure for Performing Leak Testing and Analysis

For each source to be tested, list identifying information such as manufacturer, model number, serial number, radionuclides, and activity.

- If available, use a survey meter to monitor exposure.
- Prepare a separate wipe sample (e.g., cotton swab or filter paper) for each source.
- Number each wipe to correlate with identifying information for each source.
- Wipe the most accessible area (but not directly from the surface of a source) where contamination would accumulate if the sealed source were leaking.
- Select an instrument that is sensitive enough to detect 185 becquerels (0.005 microcurie) of the Radionuclides and ensure that its calibration is current.
- Using the selected instrument, count and record background count rate.
- Calculate efficiency.
For example: \[
\frac{(cpm\ from\ std) - (cpm\ from\ bkg)}{\text{activity of std in Bq}} = \text{efficiency in cpm/Bq}
\]

where: \(cpm = \text{counts per minute}\)
\(std = \text{standard}\)
\(bkg = \text{background}\)
\(Bq = \text{becquerel}\)

- Count each wipe sample; determine net count rate.
- For each sample, calculate and record estimated activity in becquerels (or microcuries).

For example: \[
\frac{(cpm\ from\ wipe\ sample) - (cpm\ from\ bkg)}{\text{efficiency in cpm/Bq}} = \text{Bq on wipe sample}
\]

- Sign and date the list of sources, data and calculations. Retain records for 3 years (10 CFR 20.2103(a)).
- If the wipe test activity is 185 Bq (0.005 μCi) or greater, notify the RSO, so that the source can be withdrawn from use and disposed of properly.
- Also notify NRC.
Appendix S
Transportation

Part 1:
Major DOT Regulations
Transportation

The major areas in the DOT regulations that are most relevant for transportation of licensed material shipped as Type A quantities are as follows:

- Hazardous Materials Table, 49 CFR 172.101, App. A, list of hazardous substances and reportable quantities (RQ), Table 2: Radionuclides
- Shipping Papers 49 CFR 172.200-204: General entries, description, additional description requirements, shipper’s certification
- Training, Subpart H, 49 CFR 172.702, 49 CFR 172.704: Applicability and responsibility for training and testing, training requirements
- Carriage by Public Highway - General Information and Regulations, Subpart A, 49 CFR 177.816, 49 CFR 177.817, 49 CFR 177.834(a), 49 CFR 177.842: Driver training,
APPENDIX S

shipping paper, general requirements (secured against movement), Class 7 (radioactive) material.
Appendix S, Part 2

Sample Shipping Documents, Placards and Labels
Hazard Communications for Class 7 (Radioactive) Materials

DOT Shipping Papers (49 CFR 172.200-205)

NOTE: IAEA, ICAO, and IMO may require additional hazard communication information for international shipments

This table must not be used as a substitute for the DOT and NRC regulations on the transportation of radioactive materials

Entries Always Required Unless Excepted

- The basic description, In sequence:
 - **Proper Shipping Name**, Hazard Class (7), U.N. Identification Number
- 24 hour emergency response telephone number
- Name of shipper
- Proper page numbering (Page 1 of 4)
- Except for empty and bulk packages, the total quantity (mass, or volume for liquid), in appropriate units (lbs, mL,...)
- If not special form, chemical and physical form
- The name of each Radionuclides (95% rule) and total package activity. The activity must be in SI units (e.g., Bq, TBq), or both SI units and customary units (e.g., Ci, mCi). However, for domestic shipments, the activity **may** be expressed in terms of customary units only, until 4/1/97.
- For each labeled package:
 - The **category of label** used;
 - The **transport index** of each package with a Yellow-II or Yellow-III label
- Shipper’s certification (not required of private carriers)

Additional Entries Sometimes Required

Materials-Based Requirements:

- If hazardous substance, “RQ” as part of the basic description
- The LSA or SCO group (e.g., LSA-II)
- “Highway Route Controlled Quantity” as part of the basic description, if HRCQ
- Fissile material information (e.g., “Fissile Exempt,” controlled shipment statement [see §172.203(d)(7)])
- If the material is considered hazardous waste and the word waste does not appear in the shipping name, then “waste” must precede the shipping name (e.g., Waste Radioactive Material, nos, UN2982)
- “Radioactive Material” if not in proper shipping name

Package-Based Requirements:

- Package identification for DOT Type B or NRC certified packages
- IAEA CoC ID number for export shipments or shipments using foreign-made packaging (see §173.473)

Administrative-Based Requirements:

- “Exclusive Use-Shipment”
- Instructions for maintenance of exclusive use-shipment controls for LSA/SCO strong-tight or NRC certified LSA (§ 173.427)
- If a DOT exemption is being used, “DOT-E” followed by the exemption number

Optional Entries

- The type of packaging (e.g., Type A, Type B, IP-1,)
- The Technical/chemical name may be included (if listed in §172.203(k), in parentheses between the proper shipping name and hazard class; otherwise inserted in parenthesis after the basic description)
- Other information is permitted (e.g., functional description of the product), provided it does not confuse or detract from the proper shipping name or other required information
- For fissile radionuclides, except Pu-238, Pu-239, and Pu-241, the weight in grams or kilograms may be used in place of activity units. For Pu-238, Pu-239, and Pu-241, the weight in grams or kilograms may optionally be entered in addition to activity units [see § 172.203(d)(4)]
- Emergency response hazards and guidance information (§§ 172.600-604) may be entered on the shipping papers, or may be carried with the shipping papers [§ 172.602(b)]

Some Special Considerations/Exceptions for Shipping Paper Requirements

- Shipments of Radioactive Material, excepted packages, under UN2910 (e.g., Limited Quantity, Empty packages, and Radioactive Instrument and Article), are excepted from shipping papers. For limited quantities (§173.421), this is only true if the limited quantity is not a hazardous substance (RQ) or hazardous waste (40 CFR 262)
- Shipping papers must be in the pocket on the left door, or readily visible to person entering driver’s compartment and within arm’s reach of the driver
- For shipments of multiple cargo types, any HAZMAT entries must appear as the first entries on the shipping papers, be designated by an “X” (or “RQ”) in the hazardous material column, or be highlighted in a contrasting color
Hazard Communications for Class 7 (Radioactive) Materials

Marking Packages (49 CFR 172.300-338)

NOTE: IAEA, ICAO, and IMO may require additional hazard communication information for international shipments. This table must not be used as a substitute for the DOT and NRC regulations on the transportation of radioactive materials.

<table>
<thead>
<tr>
<th>Markings Always Required Unless Excepted</th>
<th>Additional Markings Sometimes Required</th>
<th>Optional Markings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Bulk Packages</td>
<td>Materials-Based Requirements:</td>
<td></td>
</tr>
<tr>
<td>• Proper shipping name</td>
<td>• If in excess of 110 lbs (50 kg), Gross Weight</td>
<td></td>
</tr>
<tr>
<td>• U.N. identification number</td>
<td>• If non-bulk liquid package, underlined double arrows indicating upright orientation (two opposite sides) [ISO Std 780-1985 marking]</td>
<td></td>
</tr>
</tbody>
</table>
| • Name and address of consignor or consignee, *unless:*
 - highway only and no motor carrier transfers, or
 - part of carload or truckload lot or freight container load, and entire contents of railcar, truck, or freight container are shipped from one consignor to one consignee [see §172.301(d)] | • If a Hazardous substance in non-bulk package, the letters “RQ” in association with the proper shipping name |
| **Bulk Packages** (i.e., net capacity greater than 119 gallons as a receptacle for liquid, or 119 gallons and 882 pounds as a receptacle for solid, or water capacity greater than 1000 lbs, with no consideration of intermediate forms of containment) | **Package-Based Requirements:**
• The package type if Type A or Type B (½” or greater letters)
• The specification-required markings [e.g., for Spec. 7A packages: “DOT 7A Type A” and “Radioactive Material” (see §178.350-353)] | • “IP-1,” “IP-2,” or “IP-3” on industrial packaging is recommended |
| • U.N. identification number, on orange, rectangular panel (see §172.332) - some exceptions exist | **Administrative-Based Requirements:**
• For approved packages, the certificate ID number (e.g., USA/9166/B(U), USA/9150/B(U)-85, ...)
• If Type B, the trefoil (radiation) symbol per Part 172 App. B [size: outer radius ≥ 20 mm (0.8 in)]
• For NRC certified packages, the model number, gross weight, and package ID number (10 CFR 71.85) | • Both the name and address of consignor and consignee are recommended |

Some Special Considerations/Exceptions for Marking Requirements

- Marking is required to be: (1) durable, (2) printed on a package, label, tag, or sign, (3) unobscured by labels or attachments, (4) isolated from other marks, and (5) be representative of the hazmat contents of the package.
- Limited Quantity (§173.421) packages and Articles Containing Natural Uranium and Thorium (§173.426) must bear the marking “radioactive” on the outside of the inner package or the outer package itself, and are excepted from other marking. The excepted packages shipped under UN 2910 must also have the accompanying statement that is required by §173.422.
- Empty (§173.428) and Radioactive Instrument and Article (§173.424) packages are excepted from marking.
- Shipment of LSA or SCO required by §173.427 to be consigned as exclusive use are excepted from marking except that the exterior of each nonbulk package must be marked “Radioactive-LSA” or “Radioactive-SCO,” as appropriate. Example: “of this category are domestic, strong-tight containers with less than an A2 quantity, and domestic NRC certified LSA/SCO packages using 10 CFR 71.52.
- For bulk packages, marking may be required on more than one side of the package (see 49 CFR 172.302(a)).
Hazard Communications for Class 7 (Radioactive) Materials

Labeling Packages (49 CFR 172.400-450)

NOTE: IAEA, ICAO, and IMO may require additional hazard communication information for international shipments
This table must not be used as a substitute for the DOT and NRC regulations on the transportation of radioactive materials

Placement of Radioactive Labels

- Labeling is required to be: (1) placed near the required marking of the proper shipping name, (2) printed or affixed to the package surface (not the bottom), (3) in contrast with its background, (4) unobscured by markings or attachments, (5) within color, design, and size tolerance, and (6) representative of the HAZMAT contents of the package
- For labeling of radioactive materials packages, two labels are required on opposite sides excluding the bottom

Determination of Required Label

<table>
<thead>
<tr>
<th>Size:</th>
<th>Sides:</th>
<th>Border:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface radiation level</td>
<td>> 100 mm (3.9 in.)</td>
<td>5-6.3 mm (0.2-0.25 in.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Label</th>
<th>Required when:</th>
</tr>
</thead>
<tbody>
<tr>
<td>49 CFR 172.436</td>
<td>Surface radiation level < 0.005 mSv/hr (0.5 mrem/hr)</td>
</tr>
<tr>
<td>49 CFR 172.438</td>
<td>0.005 mSv/hr (0.5 mrem/hr) < surface radiation level ≤ 0.5 mSv/hr (50 mrem/hr)</td>
</tr>
</tbody>
</table>
| 49 CFR 172.440 | 0.5 mSv/hr (50 mrem/hr) < surface radiation level ≤ 2 mSv/hr (200 mrem/hr) [Note: 10 mSv/hr (1000 mrem/hr) for exclusive-use closed vehicle (§173.441(b))]
| 49 CFR 172.450 | The EMPTY label is required for shipments of empty Class 7 (radioactive) packages made pursuant to §173.428. It must cover any previous labels, or they must be removed or obliterated. |

Or: TI = 0 [1 meter dose rate < 0.0005 mSv/hr (0.05 mrem/hr)]

Or: TI < 1 [1 meter dose rate < 0.01 mSv/hr (1 mrem/hr)]

Or: TI < 10 [1 meter dose rate < 0.1 mSv/hr (10 mrem/hr)] [Note: There is no package TI limit for exclusive-use]

Notes:
- Any package containing a Highway Route Controlled Quantity (HRCQ) must bear YELLOW-III label
- Although radiation level transport indices (TIs) are shown above, for fissile material, the TI is typically determined on the basis of criticality control

Content on Radioactive Labels

- RADIOACTIVE Label must contain (entered using a durable, weather-resistant means):
 1. The radionuclides in the package (with consideration of available space). Symbols (e.g., Co-60) are acceptable
 2. The activity in SI units (e.g., Bq, TBq), or both SI units with customary units (e.g., Ci, mCi) in parenthesis. However, for domestic shipments, the activity may be expressed in terms of customary units only, until 4/1/97.
 3. The Transport Index (TI) in the supplied box. The TI is entered only on YELLOW-II and YELLOW-III labels

Some Special Considerations/Exceptions for Labeling Requirements

- For materials meeting the definition of another hazard class, labels for each secondary hazard class need to be affixed to the package. The subsidiary label may not be required on opposite sides, and must not display the hazard class number
- Radioactive Material, excepted packages, under UN2910 (e.g., Limited Quantity, Empty packages, and Radioactive Instrument and Article), are excepted from labeling. However, if the excepted quantity meets the definition for another hazard class, it is re-classed for that hazard. Hazard communication requirements for the other class are required
- Labeling exceptions exist for shipment of LSA or SCO required by § 173.427 to be consigned as exclusive use
- The “Cargo Aircraft Only” label is typically required for radioactive materials packages shipped by air (§ 172.402(c))
Placarding Vehicles (49 CFR 172.500-560)

NOTE: IAEA, ICAO, and IMO may require additional hazard communication information for international shipments. This table must not be used as a substitute for the DOT and NRC regulations on the transportation of radioactive materials.

Visibility and Display of Radioactive Placard

- Placards are required to be displayed:
 - on four sides of the vehicle
 - visible from the direction they face, (for the front side of trucks, tractor-front, trailer, or both are authorized)
 - clear of appurtenances and devices (e.g., ladders, pipes, tarpaulins)
 - at least 3 inches from any markings (such as advertisements) which may reduce placard’s effectiveness
 - upright and on-point such that the words read horizontally
 - in contrast with the background, or have a lined-border which contrasts with the background
 - such that dirt or water from the transport vehicle’s wheels will not strike them
 - securely attached or affixed to the vehicle, or in a holder.

- Placard must be maintained by carrier to keep color, legibility, and visibility.

Conditions Requiring Placarding

- Placards are required for any vehicle containing package with a RADIOACTIVE Yellow-III label.
- Placards are required for shipment of LSA or SCO required by §173.427 to be consigned as exclusive use. Examples of this category are domestic, strong-tight containers with less than an A₃ quantity, and domestic NRC certified LSA/SCO packages using 10 CFR 71.52. Also, for bulk packages of these materials, the orange panel marking with the UN Identification number is not required.
- Placards are required any vehicle containing package with a Highway Route Controlled Quantity (HRCQ). In this case, the placard must be placed in a square background as shown below (see §173.507(a)).

Radioactive Placard

Size Specs:

- **Sides:** ≥ 273 mm (10.8 in.)
- **Solid line Inner border:** About 12.7 mm (0.5 in.) from edges
- **Lettering:** ≥ 41 mm (1.6 in.)
- **Square for HRCQ:** 387 mm (15.25 in.) outside length by 25.4 mm (1 in.) thick

Base of yellow solid area:

<table>
<thead>
<tr>
<th>Domestic</th>
<th>International</th>
</tr>
</thead>
<tbody>
<tr>
<td>49 CFR 172.556</td>
<td>IAEA SS 6 (1985) paras. 443-444</td>
</tr>
<tr>
<td>RADIOACTIVE PLACARD</td>
<td>RADIOACTIVE PLACARD</td>
</tr>
<tr>
<td>(Domestic)</td>
<td>(International)</td>
</tr>
<tr>
<td>Base of yellow solid area: 29 ± 5 mm (1.1 ± 0.2 in.) above horizontal centerline</td>
<td></td>
</tr>
</tbody>
</table>

See 49 CFR 172.527 AND 556

RADIOACTIVE PLACARD FOR HIGHWAY ROUTE CONTROLLED QUANTITY

(either domestic or international placard could be in middle)

Some Special Considerations/Exceptions for Placarding Requirements

- Domestically, substitution of the UN ID number for the word “RADIOACTIVE” on the placard is prohibited for Class 7 materials. However, some import shipments may have this substitution in accordance with international regulations.
- Bulk packages require the orange, rectangular panel marking containing the UN ID number, which must be placed adjacent to the placard (see §172.332) [NOTE: except for LSA/SCO exclusive use under §173.427, as above]
- If placarding for more than one hazard class, subsidiary placards must not display the hazard class number. Uranium Hexafluoride (UF₆) shipments > 454 kg (1001 lbs) require both RADIOACTIVE and CORROSIVE (Class 8) placarding.
- For shipments of radiography cameras in convenience overpacks, if the overpack does not require a RADIOACTIVE-YELLOW III label, vehicle placarding is not required (regardless of the label which must be placed on the camera).
Minimum Required Packaging For Class 7 (Radioactive) Materials

This table must not be used as a substitute for the DOT and NRC regulations on the transportation of radioactive materials.

<table>
<thead>
<tr>
<th>Quantity:</th>
<th>Limited Quantity</th>
<th>A₁/A₂ value</th>
<th>1 rem/hr at 3 m, unshielded</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 70 Bq/g</td>
<td>(< 0.002 Ci/g)</td>
<td>(§173.421)</td>
<td>(§173.435)</td>
</tr>
</tbody>
</table>

Non-LSA/SCO:

- **Domestic or International LSA/SCO:**
 - LSA-I solid, (liquid)¹
 - SCO-I
 - LSA-I Liquid
 - LSA-II Solid, (liquid or gas)¹
 - LSA-II Liquid or Gas
 - LSA-II Liquid or Gas
 - LSA-III

Domestic (only) LSA/SCO:

- LSA-I, II, III; SCO-I, II

Excepted

- Type A
- Type B³

1. For entries in parentheses, exclusive use is required for shipment in an IP (e.g., shipment of LSA-I liquid in an IP-I packaging would require exclusive use consignment).
2. Exclusive use required for strong-tight container shipments made pursuant to §173.427(b)(2)
3. Subject to conditions in Certificate, if NRC package
4. Exclusive use required, see §173.427(b)(4). Use of these packages expires on 4/1/99 (10 CFR 71.52)

Package and Vehicle Radiation Level Limits (49 CFR 173.441)¹

This table must not be used as a substitute for the DOT and NRC regulations on the transportation of radioactive materials.

<table>
<thead>
<tr>
<th>Transport Vehicle Use:</th>
<th>Non-Exclusive</th>
<th>Exclusive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport Vehicle Type:</td>
<td>Open or Closed</td>
<td>Open (flat-bed)</td>
</tr>
</tbody>
</table>

Package (or freight container) Limits:

- **External Surface:**
 - Non-Exclusive: 2 mSv/hr (200 mrem/hr)
 - Exclusive: 10 mSv/hr (1000 mrem/hr)

- **Transport Index (TI)²**
 - Non-Exclusive: 10
 - Exclusive: no limit

Roadway or Railway Vehicle (or freight container) Limits:

- **Any point on the outer surface**
 - N/A
 - 2 mSv/hr (200 mrem/hr)
- **Vertical planes projected from outer edges**
 - N/A
 - 2 mSv/hr (200 mrem/hr)
- **Top of… load:**
 - N/A
 - 2 mSv/hr (200 mrem/hr)
 - enclosure: 2 mSv/hr (200 mrem/hr)
 - vehicle: 2 mSv/hr (200 mrem/hr)
- **2 meters from…**
 - N/A
 - 0.1 mSv/hr (10 mrem/hr)
 - vertical planes: 0.1 mSv/hr (10 mrem/hr)
- **Underside**
 - N/A
 - 2 mSv/hr (200 mrem/hr)
- **Occupied position**
 - N/A
 - 0.02 mSv/hr (2 mrem/hr)³
- **Sum of package TI's**
 - 50
 - no limit

A. The limits in this table do not apply to excepted packages - see 49 CFR 173.421-426
B. Securely attached (to vehicle), access-limiting enclosure; package personnel barriers are considered as enclosures
C. For nonfissile radioactive materials packages, the dimensionless number equivalent to maximum radiation level at 1m (3.3 feet) from the exterior package surface, in millirem/hour
D. No dose limit is specified, but separation distances apply to Radioactive Yellow-II or Radioactive Yellow-III labeled packages
E. Does not apply to private carrier wearing dosimetry if under radiation protection program satisfying 10 CFR 20 or 49 CFR 172 Subpart I
F. Some fissile shipments may have combined conveyance TI limit of 100 - see 10 CFR 71.59 and 49 CFR 173.457
Package and Vehicle Contamination Limits (49 CFR 173.443)

This table must not be used as a substitute for the DOT and NRC regulations on the transportation of radioactive materials.

NOTE: All values for contamination in DOT rules are to be averaged over each 300 cm².

Sufficient measurements must be taken in the appropriate locations to yield representative assessments.

&\(means the sum of beta emitters, gamma emitters, and low-toxicity alpha emitters

" means the sum of all other alpha emitters (i.e., other than low-toxicity alpha emitters)

<table>
<thead>
<tr>
<th>The Basic Contamination Limits for All Packages: 49 CFR 173.443(a), Table 11</th>
<th>General Requirement: Non-fixed (removable) contamination must be kept as low as reasonably achievable (ALARA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>&: (0.4 \text{ Bq/cm}^2 = 40 \text{ Bq/100 cm}^2 = 1 \times 10^{-5} \text{ Ci/cm}^2 = 2200 \text{ dpm/100 cm}^2)</td>
<td></td>
</tr>
<tr>
<td>": (0.04 \text{ Bq/cm}^2 = 4 \text{ Bq/100 cm}^2 = 1 \times 10^{-6} \text{ Ci/cm}^2 = 220 \text{ dpm/100 cm}^2)</td>
<td></td>
</tr>
</tbody>
</table>

The following exceptions and deviations from the above basic limits exist:

<table>
<thead>
<tr>
<th>Deviation from Basic Limits</th>
<th>Regulation 49 CFR §§</th>
<th>Applicable Location and Conditions Which Must Be Met:</th>
</tr>
</thead>
</table>
| 10 times the basic limits | 173.443(b) and 173.443(c) Also see 177.843 (highway) | On any external surface of a package in an exclusive use shipment, during transport including end of transport. Conditions include:
(1) Contamination levels at beginning of transport must be below the basic limits.
(2) Vehicle must not be returned to service until radiation level is shown to be < 0.005 mSv/hr (0.5 mrem/hr) at any accessible surface, and there is no significant removable (non-fixed) contamination. |
| 10 times the basic limits | 173.443(d) Also see 177.843 (highway) | On any external surface of a package, at the beginning or end of transport, if a closed transport vehicle is used, solely for transporting radioactive materials packages. Conditions include:
(1) A survey of the interior surfaces of the empty vehicle must show that the radiation level at any point does not exceed 0.1 mSv/hr (10 mrem/hr) at the surface, or 0.02 mSv/hr (2 mrem/hr) at 1 meter (3.3 ft).
(2) Exterior of vehicle must be conspicuously stenciled, “For Radioactive Materials Use Only” in letters at least 76 mm (3 inches) high, on both sides.
(3) Vehicle must be kept closed except when loading and unloading. |
| 100 times the basic limits | 173.428 | Internal contamination limit for excepted package-empty packaging. Class 7 (Radioactive) Material, shipped in accordance with 49 CFR 173.428. Conditions include:
(1) The basic contamination limits (above) apply to external surfaces of package.
(2) Radiation level must be < 0.005 mSv/hr (0.5 mrem/hr) at any external surface.
(3) Notice in §173.422(a)(4) must accompany shipment.
(4) Package is in unimpaired condition & securely closed to prevent leakage.
(5) Labels are removed, obliterated, or covered, and the “empty” label (§172.450) is affixed to the package. |

In addition, **after any incident** involving spillage, breakage, or suspected contamination, the modal-specific DOT regulations (§177.861(a), highway; §174.750(a), railway; and §175.700(b), air) specify that vehicles, buildings, areas, or equipment have “no significant removable surface contamination,” before being returned to service or routinely occupied. The carrier must also notify the offer or at the earliest practicable moment after incident.
Example Certificate Enclosed In/or on Package, Included with the Packing List or Otherwise Forwarded with the Package

This package conforms to the conditions, and limitations specified in 49 CFR 173.424 for radioactive material, excepted package-instruments or articles, UN2910.

(Signed) Radiation Safety Officer
Appendix T

Model Waste Management Procedures
Model Waste Management Procedures

General Guidelines

- All radioactivity labels must be defaced or removed from containers and packages prior to disposal in ordinary (non-radioactive) waste. If waste is compacted, all labels that are visible in the compacted mass must be defaced or removed.
- Remind workers that non-radioactive waste such as leftover reagents, boxes, and packaging material should not be mixed with radioactive waste.
- Occasionally monitor all procedures to ensure that radioactive waste is not created unnecessarily. Review all new procedures to ensure that waste is handled in a manner consistent with established procedures.
- In all cases, consider the entire impact of various available disposal routes. Consider occupational and public exposure to radiation, other hazards associated with the material and routes of disposal (e.g., toxicity, carcinogenicity, pathogenicity, flammability), and costs.
- Waste management program should include waste handling procedures for the users within their laboratories or assigned areas, and for waste handlers who may collect waste from areas of use to bring to the storage area for eventual disposal.
- Housekeeping staff should be provided adequate training to avoid the possibility of unauthorized disposal or exposure of these individuals to radioactive materials or to radiation.

Model Procedure for Disposal by Decay-in-storage (DIS)

- Only short-lived waste (physical half-life of less than or equal to 120 days) may be disposed of by DIS.
- Short-lived waste should be segregated from long-lived waste (half-life greater than 120 days) at the source.
- Waste should be stored in suitable well-marked containers, and the containers should provide adequate shielding.
- Liquid and solid wastes must be stored separately.
- When the container is full, it should be sealed. The sealed container should be identified with a label affixed or attached to it.
- The identification label should include the date when the container was sealed, the longest-lived radioisotope in the container, date when ten half-lives of the longest-lived radioisotope will have transpired, and the initials of the individual who sealed the container. The container may be transferred to the DIS area.
- The contents of the container should be allowed to decay for at least 10 half-lives of the longest-lived radioisotope in the container.
Prior to disposal as ordinary trash, each container should be monitored as follows:

- Check the radiation detection survey meter for proper operation.
- Survey the contents of each container in a low background area.
- Remove any shielding from around the container.
- Monitor all surfaces of the container.
- Discard the contents as ordinary trash only if the surveys of the contents indicate no residual radioactivity, i.e., surface readings are indistinguishable from background.
- If the surveys indicate residual radioactivity, return the container to DIS area and contact the RSO for further instructions.

If the surveys indicate no residual radioactivity, record the date when the container was sealed, the disposal date, type of waste (used or unused material, gloves, etc.), survey instrument used, and the initials of the individual performing surveys and disposing of the waste.

Model Procedure for Disposal of Liquids Into Sanitary Sewerage

- Confirm that sewerage system is a public system, not a private sewerage system, septic system, or leach field.
- Confirm that the liquid waste being discharged is soluble or biological material that is readily dispersible in water.
- Calculate the amount of each radioisotope that can be discharged by using the information from prior, similar discharges and the information in 10 CFR 20, Appendix B.
- Make sure that the amount of each radioisotope does not exceed the monthly and annual discharge limits specified in 10 CFR 20.2003(a)(4) and 10 CFR 20, Appendix B.
- Record the date, radioisotope(s), estimated activity of each radioisotope, location where the material is discharged, and the initials of the individual discharging the waste.
- Liquid waste should be discharged only via designated sinks, toilets or release points.
- Discharge liquid waste slowly to with water running from the faucet to dilute it.
- Survey the sink and surrounding work surfaces to confirm that no residual material or contamination remained in the sink or on work surfaces.
- Prior to leaving the area, decontaminate all areas or surfaces, if found to be contaminated.
- Maintain records of each radioisotope and its quantity and concentration that is released into the sanitary sewer system.
Appendix U

Using the Internet to Obtain Copies of NRC Documents and Other Information
Using the Internet to Obtain copies of NRC Documents and Other Information

In an effort to make NRC documents and information readily available to licensees and the general public, NRC is placing documents and information on its Internet web site.

Many of the reference sections of this NUREG refer to a world wide web address on the Internet (e.g., <http://www.nrc.gov>). Applicants and licensees who have Internet access may use the referenced address to find more information on a topic, the referenced document, or information on obtaining the referenced document.

To access the referenced site, type the address into the location box of the Internet browser software and press the enter key. Sometimes the given address does not go directly to the necessary page; however, the addressed page will have links to the information referenced in this NUREG. Generally, links appear either as blue text or as a picture in the document. To use a link, place the pointer on the blue text or picture. The pointer will change from an arrow to a hand with the index finger extended. By double-clicking the mouse on the blue text or picture, the Internet browser will go to the selected page. For example, if you wanted to review the definitions in 10 CFR Part 20, type <http://www.nrc.gov> in the location box of your browser and press the enter key. After the NRC homepage comes up, place the pointer on the reference library icon. The arrow will change to a hand with the index finger extended. Double-click the pointing device button. Next, place the pointer on the blue text, “Title 10 of the Code of Federal Regulations” and double-click the mouse. Place the pointer on the blue text “20” and double-click. Finally, place the pointer on the blue text “Definitions” and double-click.
Appendix V

Addendum: Response to Comments on NUREG - 1556, Vol. 7
Addendum: Response to Comments on NUREG - 1556, Vol. 7

Comments from: State of Illinois, Department of Nuclear Safety, received on September 22, 1998

<table>
<thead>
<tr>
<th>Comment #</th>
<th>Page</th>
<th>Subject</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>XRF Devices</td>
<td>The Purpose of Report should clarify use of XRFs to those which are not portable. XRF devices that are portable should be addressed by NUREG - 1556, Vol 1. Alternately, if the NRC intends to use this NUREG for portable XRF’s, additional information should be included in the NUREG to address this type of use (e.g., concerns regarding temporary job sites, need for usage logs, specific emergency procedures related to transportation, etc.)</td>
</tr>
</tbody>
</table>

NRC Staff Response: The comment has validity and should be considered when NUREG - 1556, Vol. 1 is revised. The appendix was revised to add a note referencing Vol. 1 for portable devices.

| 2. | 5-1 | | The page references NUREG - 556, Vol. 8, which should be corrected to Vol. 7. | |

NRC Staff Response: Page 5-1 was corrected as suggested.

| 3. | | Generic | Throughout the guidance the NUREG should offer the applicant the option of adopting referenced procedures found in the appendices (e.g., safe use of materials, emergency procedures, survey criteria, etc.) which are not currently addressed. |

NRC Staff Response: As discussed in the “Foreword” section of the document, NUREG - 1556, Vol. 7, takes, where applicable, a more risk-informed and performance-based approach to licensing. In an effort to be less prescriptive and to provide appropriate flexibility, applicants are given the opportunity to develop procedures specific to the needs of their programs. In some instances, very specific procedures are provided, such as, calibration procedures and leak test procedures, and may be adopted by the applicant as part of the application process. The later approach is used when the procedures are based upon well established industry standards.
<table>
<thead>
<tr>
<th>Comment #</th>
<th>Page</th>
<th>Subject</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td>Suggest more consistent usage of the format used for point 8.5.1 Item 5 throughout the guidance where regulations and criteria are noted and a discussion of the topic is included, followed by the necessary response from the applicant (where necessary).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NRC Staff Response: The format referenced in the comment appears to be used consistently throughout the “Contents of an Application” sections. The overall format is the same for each volume of this NUREG series.</td>
</tr>
<tr>
<td>5.</td>
<td>8-6</td>
<td></td>
<td>Suggest including H-3 on page 8-6 as an additional example of material that is volatile and expand the entry for materials to also include gases (e.g., Kr-85, tritium, etc.). Editorial Note: Last sentence of paragraph 1 on page 8-6 is incomplete.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NRC Staff Response: The intent of this discussion was to provide a good example of a commonly used, potentially volatile radioisotope. This section was changed to reflect volatile and gaseous materials such as H-3 and Kr-85 as examples. It was not the intent of the writing team to provide an exhaustive list of such materials. The last sentence was revised to make it a complete sentence.</td>
</tr>
<tr>
<td>6.</td>
<td>Schedule B of 10 CFR 30</td>
<td>Suggest including a note regarding the “sum of the fractions rule” when referencing Schedule B of 10 CFR 30 as well as the need for obtaining this material from someone authorized to distribute the material under an Exempt Distribution license. Guidance should also reference 10 CFR 40.13 with respect to possession of source material deemed to be an unimportant quantity for which a specific license is unnecessary.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NRC Staff Response: The writing team assumes that the commenter is referring to 10 CFR 30, Appendix B, rather than Schedule B. NUREG - 1556, Vol. 7, Appendix G provides the applicant with the sum-of-the-fractions method, for financial assurance, in a worksheet format, and is referenced on page 8-9. The second part of this comment has to do specifically with source material and is outside the scope of NUREG - 1556, Vol. 7, (as stated on page 1-1).</td>
</tr>
<tr>
<td>7.</td>
<td>8-7</td>
<td>Paragraph 2</td>
<td>Paragraph 2 of page 8-7 should also note that Agreement States also authorize distribution of generally licensed devices, not just the NRC.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NRC Staff Response: Page 8-7 corrected as suggested.</td>
</tr>
<tr>
<td>Comment #</td>
<td>Page</td>
<td>Subject</td>
<td>Comment</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>8.</td>
<td>SSD</td>
<td>Recommend</td>
<td>including a note that SSD evaluations can also be obtained from the NRC’s web site. This site lists SSDs by the manufacturer/distributor’s name. The site address is <www.hsrd.ornl.gov/nrc/ssdr/ssdrinex.htm>.</td>
</tr>
<tr>
<td></td>
<td>WEB</td>
<td>site</td>
<td>NRC Staff Response: The referenced web-site’s data base is incomplete and in some cases, inaccurate. Efforts are currently underway for the data base to be updated. However, at the time of the writing of this NUREG - 1556 volume, the web-site data base is not a reliable source to make a licensing determination, therefore no change was made to this NUREG.</td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td>The regulatory</td>
<td>citations for 8.5.2 should also include Schedules B and C of Part 30.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>citations</td>
<td>NRC Staff Response: As in the response to comment number six, the writing team assumes that the commenter is referencing 10 CFR 30, Appendices B and C. 10 CFR 30.35 is referenced and includes specific instructions about how to use the information contained in the appendices.</td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td>May want to</td>
<td>include an additional description on use of radioactive material for field studies such as the need for submission of experimental protocols, decontamination at the end of experiments, and expected off site doses (if any). This would be consistent with the Broad Scope License application guidance previously published for comment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>include an</td>
<td>NRC Staff Response: While not discussed separately in a particular section, all of these issues are discussed in some detail in the appropriate sections of NUREG - 1556, Vol. 7.</td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td>description on</td>
<td>It is not clear why it is necessary to establish the duties and responsibilities of the Radiation Safety Officer if they are not required or requested for submission in the application process. It is recommended that this submission be required and the appendix be formatted such that it can take the form of a commitment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>use of radioactive</td>
<td>NRC Staff Response: As discussed in the “Foreword” section of the document, NUREG - 1556, Vol. 7, takes, where applicable, a more risk-informed and performance-based approach to licensing. In an effort to be less prescriptive and to provide appropriate flexibility, applicants are given the opportunity to develop policies and procedures specific to the needs of their programs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>material</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>for field studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>such as the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>need for submission</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>of experimental protocols,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>decontamination at the end of experiments,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and expected off site doses (if any). This would be</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>consistent with the Broad Scope License</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>application guidance previously published for comment.</td>
<td></td>
</tr>
<tr>
<td>Comment #</td>
<td>Page</td>
<td>Subject</td>
<td>Comment</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>12.</td>
<td>8.9</td>
<td>for item 9</td>
<td>Under 8.9 for item 9, Facilities and Equipment, one of the criteria for facilities and equipment should be security of radioactive material through engineered controls. The need for securing radioactive materials from unauthorized access is not mentioned in Appendix K, (10 CFR 20, subpart I). The reference to Appendix H in this section is of little value as animal handling facilities themselves are not as important whereas the procedures followed for use of radioactive material in animals is paramount. Suggest relocating this section under the general rules for safe use of radioactive material.</td>
</tr>
<tr>
<td>13</td>
<td>Appendix 8.9</td>
<td>If the applicant will be performing their own instrument calibrations, additional information regarding facilities to be used should be submitted. Without Vol. 4, of NUREG - 1556 being published yet, it is not clear if specific program usage of this type of material should be included in Vol. 7, or simply referenced. The appendix contains good information; however 8.9 does not specify submission of this information.</td>
<td></td>
</tr>
</tbody>
</table>

NRC Response: The writing team believes that the issue of security is important and the Facilities and Equipment and Safe Use of Radionuclides and Emergency Procedures sections have been modified, however Appendix H and K were not modified or changed. The security of radioactive material is now addressed in several sections throughout the document.

NRC Staff Response: As discussed in the “Foreword” section of the document, NUREG - 556, Vol. 7, takes, where applicable, a more risk-informed and performance-based approach to licensing. In an effort to be less prescriptive and to provide appropriate flexibility, applicants are given the opportunity to develop policies and procedures specific to the needs of their programs. With regard to the comment about NUREG - 1556, Vol. 4, the writing team is unclear about the relevance of fixed gauges to calibration of instruments.
<table>
<thead>
<tr>
<th>Comment #</th>
<th>Page</th>
<th>Subject</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.</td>
<td>14</td>
<td>Item 8.10.1</td>
<td>Item 8.10.1 is unnecessary and far too rigorous. 10 CFR 20.2101 provides an opportunity for the NRC to be truly performance based and rely on the results of its inspections to determine compliance with the regulations. The all encompassing audit described in Appendix L of the NUREG is unnecessary for any radiation protection program that is worthwhile and should be deleted. The entry under this point in the text could be greatly reduced to a simple point to remind licensees of their obligations under the regulations, if not eliminated in its entirety.</td>
</tr>
<tr>
<td>15.</td>
<td>15</td>
<td>8.10.7</td>
<td>The applicant should make a submission regarding 8.10.7 for surveys. This submission should also specify the detection limits of the equipment to ensure that it is adequate for assessing contamination levels as specified in the regulations.</td>
</tr>
<tr>
<td>16.</td>
<td>16</td>
<td></td>
<td>Recommend that procedures regarding opening of packages be submitted rather than reviewed at the time of inspection. This is an easy item for the applicant to prepare particularly in light of the guidance provided. Submission of this item would relieve the inspection staff of what could otherwise be a troublesome compliance item (similar to performance specifications of equipment or the procedures to be followed for demonstrating adequate equipment performance.)</td>
</tr>
</tbody>
</table>

NRC Staff Response: The section on “Audits” is included in an effort to inform the applicant about the requirements for review of licensed programs. There are numerous notes in both the section write-up and the appendix that cautions the applicant that the audit programs should be developed to meet their specific needs. With regard to Appendix L, the checklist is included as a tool, that if used at all, should be modified to meet the needs of the individual licensee.

NRC Staff Response: As discussed in the “Foreword” section of the document, NUREG - 1556, Vol. 7, takes, where applicable, a more risk-informed and performance-based approach to licensing. In an effort to be less prescriptive and to provide appropriate flexibility, applicants are given the opportunity to develop policies and procedures specific to the needs of their programs. The writing team believes that the use of the appropriate instruments for the types and amounts of licensed material used is an issue to be addressed during an inspection.

NRC Staff Response: See Response to Comment #15, above.
APPENDIX V

<table>
<thead>
<tr>
<th>Comment #</th>
<th>Page</th>
<th>Subject</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.</td>
<td></td>
<td>Emergency Procedures</td>
<td>Under emergency procedures, an entry should be included for emergencies which involve injuries to personnel. It needs to be emphasized that first aid and other immediate medical needs should be met regardless of suspected contamination. The appendix containing these procedures should be separated from the general rules for safe use of radioactive material as they are important enough to stand by themselves for emphasis, and they should be made available as an opportunity for the applicant to adopt.</td>
</tr>
</tbody>
</table>

NRC Staff Response: The writing team agrees that medical needs of injured individuals should be the priority when appropriate. A conspicuous statement was added to the appendix to caution licensees not to ignore injuries in an attempt to respond to contamination. The writing team believes that applicants should consider their specific programs when developing procedures for responding to an accident or incident.

| 18. | | | Recommend making evaluations of test samples for leakage from sealed sources a separate entry in the application process such that equipment to be used, procedures to be followed, and qualifications of the responsible individuals can be reviewed and evaluated. |

NRC Staff Response: As discussed in the “Foreword” section of the document, NUREG - 1556, Vol. 7, takes, where applicable, a more risk-informed and performance-based approach to licensing. In an effort to be less prescriptive and to provide appropriate flexibility, applicants are given the opportunity to develop policies and procedures specific to the needs of their programs.
<table>
<thead>
<tr>
<th>Comment #</th>
<th>Page</th>
<th>Subject</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.</td>
<td></td>
<td></td>
<td>Bioassays which are included under “surveys” in Appendix Q as referenced in 8.10.7 should more correctly be incorporated as a separate item or as part of the section regarding dosimetry and occupational dose.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NRC Staff Response: The writing team believes that Bioassays are a specific type of survey and were therefore included in that section for discussion. Bioassay issues are addressed in other parts of NUREG - 1556, Vol.7, as well, and are believed to be referenced appropriately, as needed.</td>
</tr>
<tr>
<td>20.</td>
<td>8.10.9</td>
<td></td>
<td>Inclusion of 8.10.9 would appear to be very confusing as an applicant. This issue is intertwined throughout the radiation protection program and is an integral part of occupational and public dose evaluations and the general ALARA philosophy. Its mention as an individual section seems unnecessary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NRC Staff Response: 10 CFR 20.1406 is a relatively new regulation and the writing team included this section in an attempt to provide emphasis on the subject.</td>
</tr>
<tr>
<td>21.</td>
<td></td>
<td></td>
<td>It is not clear why an applicant must request authorization to dispose of material as currently authorized by regulation (e.g., disposal by sanitary sewer or transfer to an authorized recipient).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NRC Staff Response: Applicants are not required to request separate authorization for disposal of waste that is currently authorized by regulation. The section on waste management states explicitly that 10 CFR Part 20 authorizes the disposal of waste by specific means, as long as certain conditions are met. Those conditions are explained to the applicant in the section write-up.</td>
</tr>
<tr>
<td>22.</td>
<td></td>
<td></td>
<td>Good idea to include hints and suggestions for using the NRC Form 313; however, the format being used seems rather awkward and confusing. Appendix C should be clarified with additional instructions as these responses could become commitments by the applicant to abide by the various model programs. In particular those items for which no response is necessary should be eliminated from the appendix.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NRC Staff Response: The writing team agrees that this appendix can be confusing to the applicant. A paragraph was added in the beginning of the appendix to clarify its intended use.</td>
</tr>
<tr>
<td>Comment #</td>
<td>Page</td>
<td>Subject</td>
<td>Comment</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>23.</td>
<td></td>
<td></td>
<td>It is a little confusing as to why the applicant is asked to identify the form of the unsealed radioactive material if, as evidenced by the sample license, the form may be any (except for the case of I-125) even though H-3, C-14 and S-35 can all be found in volatile and gaseous forms and no such limitations are identified.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NRC Staff Response: The applicant is requested to provide the form of the unsealed licensed material in order to adequately evaluate the applicants radiation safety program. The form is specified “ANY” if the radiation safety program has adequate safe handling procedures for such material.</td>
</tr>
<tr>
<td>24.</td>
<td></td>
<td>Appendix F</td>
<td>Condition 22 of the sample license in Appendix F should be changed to a period of 120 days to parallel statements made in the text of the NUREG.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NRC Staff Response: The sample license is revised to include this change.</td>
</tr>
</tbody>
</table>