

Energy Fuels Resources (USA) Inc. 225 Union Blvd. Suite 600 Lakewood, CO, US, 80228 303 974 2140 www.energyfuels.com

February 22, 2017

Div of Waste Management and Radiation Control

FEB 2 4 2017

DRC-2017-001367

Sent VIA OVERNIGHT DELIVERY

Mr. Scott Anderson Director Division of Waste Management and Radiation Control Utah Department of Environmental Quality 195 North 1950 West P.O. Box 144880 Salt Lake City, UT 84114-4820

Re: Transmittal of 4th Quarter 2016 Nitrate Monitoring Report Stipulation and Consent Order Docket Number UGW12-04 White Mesa Uranium Mill

Dear Mr. Anderson:

Enclosed are two copies of the White Mesa Uranium Mill Nitrate Monitoring Report for the 4th Quarter of 2016 as required by the Stipulation and Consent Order Docket Number UGW12-04, as well as two CDs each containing a word searchable electronic copy of the report.

If you should have any questions regarding this report please contact me.

Yours very truly,

Karty Nerrel

ENERGY FUELS RESOURCES (USA) INC. Kathy Weinel Quality Assurance Manager

cc: David C. Frydenlund Logan Shumway Harold R. Roberts David E. Turk Scott Bakken

February 22, 2017

Sent VIA OVERNIGHT DELIVERY

Mr. Scott Anderson Director Division of Waste Management and Radiation Control Utah Department of Environmental Quality 195 North 1950 West P.O. Box 144880 Salt Lake City, UT 84114-4820

Re: Transmittal of 4th Quarter 2016 Nitrate Monitoring Report Stipulation and Consent Order Docket Number UGW12-04 White Mesa Uranium Mill

Dear Mr. Anderson:

Enclosed are two copies of the White Mesa Uranium Mill Nitrate Monitoring Report for the 4th Quarter of 2016 as required by the Stipulation and Consent Order Docket Number UGW12-04, as well as two CDs each containing a word searchable electronic copy of the report.

If you should have any questions regarding this report please contact me.

Yours very truly,

Karty Steenel

ENERGY FUELS RESOURCES (USA) INC. Kathy Weinel Quality Assurance Manager

cc: David C. Frydenlund Logan Shumway Harold R. Roberts David E. Turk Scott Bakken

White Mesa Uranium Mill

Nitrate Monitoring Report

State of Utah Stipulated Consent Agreement, December 2014 Docket No. UGW12-04

> 4th Quarter (October through December) 2016

> > Prepared by:

Energy Fuels Resources (USA) Inc. 225 Union Boulevard, Suite 600 Lakewood, CO 80228

February 22, 2017

TABLE OF CONTENTS

1.0	.0 INTRODUCTION		
2.0		JNDWATER NITRATE MONITORING	
2.1	Sam	ples and Measurements Taken During the Quarter	
	.1.1	Nitrate Monitoring	
	.1.2	Parameters Analyzed	
2	.1.3	Groundwater Head and Level Monitoring	
2.2		pling Methodology and Equipment and Decontamination Procedures	
	.2.1	Well Purging, Sampling and Depth to Groundwater	
	.2.2	Piezometer Sampling	
2.3		d Data	
2.4		th to Groundwater Data and Water Table Contour Map	
2.5		oratory Results	
	.5.1	Copy of Laboratory Results	
	.5.2	Regulatory Framework	
3.0		ITY ASSURANCE AND DATA VALIDATION	
3.1	Field	d QC Samples	6
3.2		erence to Mill Sampling SOPs	
3.3		lyte Completeness Review	
3.4		Validation	
	.4.1	Field Data QA/QC Evaluation	
	.4.2	Holding Time Evaluation	8
	.4.3	Analytical Method Checklist	
	.4.4	Reporting Limit Evaluation	
	.4.5	QA/QC Evaluation for Sample Duplicates	
	.4.6	Other Laboratory QA/QC	
	.4.7	Receipt Temperature Evaluation	9
	.4.8	Rinsate Check	
4.0 4.1			
	.1.1	pretation of Groundwater Levels, Gradients and Flow Directions Current Site Groundwater Contour Map	
	.1.1	Comparison of Current Groundwater Contour Map.	
-	.1.2	for Previous Quarter	
4	.1.4	Depth to Groundwater Measured and Groundwater Elevation	
4.2		ctiveness of Hydraulic Containment and Capture	
	.2.1	Hydraulic Containment and Control	
	.2.2	Current Nitrate and Chloride Isoconcentration Maps	
		nparison of Areal Extent	
	.2.3 COL	Nitrate and Chloride Concentration Trend Data and Graphs	
	.2.5	Interpretation of Analytical Data	
4.3		mation of Pumped Nitrate Mass and Residual Nitrate Mass within the Plu	ime
5.0	LONG	TERM PUMP TEST AT TWN-02, TW4-22, TW4-24, and TW4-25	
		ATIONS REPORT	23
5.1	Intro	oduction	23
5.2	Pum	ping Well Data Collection	24

5.3	3 Water Level Measurements	
5.4	4 Pumping Rates and Volumes	
	5.4.1 TW4-19	
	5.4.2 TW4-04	
	5.4.3 TW4-20	
	5.4.4 MW-26	
	5.4.5 TW4-21	
6.0	CORRECTIVE ACTION REPORT	
6.	1 Assessment of Previous Quarter's Corrective Actions	
7.0	CONCLUSIONS AND RECOMMENDATIONS	
8.0	ELECTRONIC DATA FILES AND FORMAT	
9.0	SIGNATURE AND CERTIFICATION	

LIST OF TABLES

Table 1	Summary of Well Sampling and Constituents for the Period
Table 2	Nitrate Mass Removal Per Well Per Quarter
Table 3	Nitrate Well Pumping Rates and Volumes
Table 4	Quarterly Calculation of Nitrate mass Removed and Total Volume of Water Pumped
Table 5	Nitrate Data Over Time for MW-30, MW-31, MW-5, and MW-11
Table 6	Slug Test Results
Table 7	Pre-Pumping Saturated Thickness
Table 8	Pre-Pumping Hydraulic Gradients and Flow Calculations
Table 9	Recalculated Background Flow

INDEX OF TABS

- Tab A Site Plan and Perched Well Locations White Mesa Site
- Tab B Order of Sampling and Field Data Worksheets
- Tab C
 Kriged Current Quarter Groundwater Contour Map and Weekly, Monthly and Quarterly Depth to Water Data
- Tab D Kriged Previous Quarter Groundwater Contour Map
- Tab E Hydrographs of Groundwater Elevations Over Time for Nitrate Monitoring Wells
- Tab F Depths to Groundwater and Elevations Over Time for Nitrate Monitoring Wells
- Tab G Laboratory Analytical Reports
- Tab H Quality Assurance and Data Validation Tables
 - H-1 Field Data QA/QC Evaluation
 - H-2 Holding Time Evaluation
 - H-3 Analytical Method Check
 - H-4 Reporting Limit Evaluation
 - H-5 QA/QC Evaluation for Sample Duplicates
 - H-6 QC Control limits for Analysis and Blanks
 - H-7 Receipt Temperature Evaluation
 - H-8 Rinsate Evaluation
- Tab I Kriged Current Quarter Nitrate and Chloride Isoconcentration Maps
- Tab J Analyte Concentration Data Over Time
- Tab K Nitrate and Chloride Concentration Trend Graphs
- Tab L CSV Transmittal Letter
- Tab M Residual Mass Estimate Analysis Figure

ACRONYM LIST

AWAL	American West Analytical Laboratory
CA	
	Consent Agreement
CAP	Corrective Action Plan
CIR	Contamination Investigation Report
DIFB	Deionized Field Blanks
DWMRC	Utah Division of Waste Management and Radiation Control
DRC	Utah Division of Radiation Control
EFRI	Energy Fuels Resources (USA) Inc.
ft amsl	feet above mean sea level
GWDP	Groundwater Discharge Permit
LCS	Laboratory Control Spike
MS	Matrix Spike
MSD	Matrix Spike Duplicate
QA	Quality Assurance
QAP	Groundwater Monitoring Quality Assurance Plan
QC	Quality Control
RPD	Relative Percent Difference
SCO	Stipulated Consent Order
SOPs	Standard Operating Procedures
UDEQ	Utah Department of Environmental Quality
VOC	Volatile Organic Compound

1.0 INTRODUCTION

The Utah Department of Environmental Quality ("UDEQ") Division of Waste Management and Radiation Control ("DWMRC") noted in a Request dated September 30, 2008 (the "Request"), for a Voluntary Plan and Schedule to Investigate and Remediate Nitrate Contamination at the White Mesa Uranium Mill (the "Mill") (the "Plan"), that nitrate levels have exceeded the State water quality standard of 10 mg/L in certain monitoring wells. As a result of the Request, Energy Fuels Resources (USA) Inc. ("EFRI") entered into a Stipulated Consent Agreement with the Utah Water Quality Board in January 2009 which directed the preparation of a Nitrate Contamination Investigation Report ("CIR"). A subsequent letter dated December 1, 2009, among other things, recommended that EFRI also address elevated chloride concentrations in the CIR. The Stipulated Consent Agreement was amended in August 2011. Under the amended Consent Agreement ("CA"), EFRI submitted a Corrective Action Plan ("CAP"), pursuant to the requirements of the Utah Groundwater Quality Protection Rules [UAC R317-6-6.15(C - E)] on November 29, 2011 and revised versions of the CAP on February 27, 2012 and May 7, 2012. On December 12, 2012, DWMRC signed the Stipulation and Consent Order ("SCO"), Docket Number UGW12-04, which approved the EFRI CAP, dated May 7, 2012. The SCO ordered EFRI to fully implement all elements of the May 7, 2012 CAP.

Based on the schedule included in the CAP and as delineated and approved by the SCO, the activities associated with the implementation of the CAP began in January 2013. The reporting requirements specified in the CAP and SCO are included in this quarterly nitrate report.

This is the Quarterly Nitrate Monitoring Report, as required under the SCO, State of Utah Docket No. UGW12-04 for the fourth quarter of 2016. This report meets the requirements of the SCO, State of UDEQ Docket No. UGW12-04 and is the document which covers nitrate corrective action and monitoring activities during the fourth quarter of 2016.

2.0 GROUNDWATER NITRATE MONITORING

2.1 Samples and Measurements Taken During the Quarter

A map showing the location of all groundwater monitoring wells, piezometers, existing wells, temporary chloroform contaminant investigation wells and temporary nitrate investigation wells is attached under Tab A. Nitrate samples and measurements taken during this reporting period are discussed in the remainder of this section.

2.1.1 Nitrate Monitoring

Quarterly sampling for nitrate monitoring parameters was performed in the following wells:

TWN-1	TW4-22*
TWN-2	TW4-24*
TWN-3	TW4-25*
TWN-4	Piezometer 1
TWN-7	Piezometer 2
TWN-18	Piezometer 3A**
	1

As discussed in Section 2.1.2 the analytical constituents required by the CAP are inorganic chloride and nitrate+nitrite as N (referred to as nitrate in this document)

* Wells TW4-22, TW4-24, TW4-25 are chloroform investigation wells (wells installed and sampled primarily for the chloroform investigation) and are sampled as part of the chloroform program. The analytical suite for these three wells includes nitrate, chloride and a select list of Volatile Organic Compounds ("VOCs") as specified in the chloroform program. These three wells are included here because they are being pumped as part of the remediation of the nitrate contamination as required by the SCO and the CAP. The nitrate and chloride data are included in this report as well as in the chloroform program quarterly report. The VOC data for these three wells will be reported in the chloroform quarterly monitoring report only.

** Piezometer 3 was abandoned and replaced with Piezometer 3A in March 2016.

The December 12, 2012 SCO approved the CAP, which specified the cessation of sampling in TWN-5, TWN-6, TWN-8, TWN-9, TWN-10, TWN-11, TWN-12, TWN-13, TWN-14, TWN-15, TWN-16, TWN-17, and TWN-19. The CAP and SCO also approved the abandonment of TWN-5, TWN-8, TWN-9, TWN-10, TWN-11, TWN-12, TWN-13, TWN-15, and TWN-17 within 1 year of the SCO approval. These wells were abandoned in accordance with the DWMRC-approved Well Abandonment Procedure on July 31, 2013. Wells TWN-6, TWN-14, TWN-16, and TWN-19 have been maintained for depth to groundwater monitoring only, as noted in the CAP.

Table 1 provides an overview of all locations sampled during the current period, along with the date samples were collected from each location, and the date(s) upon which analytical data were received from the contract laboratory. Table 1 also identifies rinsate samples collected, as well as sample numbers associated with any required duplicates.

As indicated in Table 1, nitrate monitoring was performed in the nitrate monitoring wells, chloroform wells TW4-22, TW4-24, TW4-25 and Piezometers 1, 2, and 3A. Analytical data for all of the above-listed wells, and the piezometers, are included in Tab G.

Nitrate and chloride are also monitored in all of the Mill's groundwater monitoring wells and chloroform investigation wells. Data from those wells for this quarter are incorporated in certain maps and figures in this report but are discussed in their respective programmatic reports.

2.1.2 Parameters Analyzed

Locations sampled during this reporting period were analyzed for the following constituents:

- Inorganic Chloride
- Nitrate plus Nitrite as Nitrogen (referred to herein as nitrate)

Use of analytical methods consistent with the requirements found in the White Mesa Mill Groundwater Quality Assurance Plan, ("QAP") Revision 7.2, dated June 7, 2012 was confirmed for all analytes, as discussed later in this report.

2.1.3 Groundwater Head and Level Monitoring

Depth to groundwater was measured in the following wells and/or piezometers, pursuant to Part I.E.3 of the Groundwater Discharge Permit ("GWDP") (dated August 24, 2012):

- The quarterly groundwater compliance monitoring wells
- Existing well MW-4 and all of the temporary chloroform investigation wells
- Piezometers P-1, P-2, P-3, P-4 and P-5
- MW-20, MW-22, and MW-34
- The DR piezometers that were installed during the Southwest Hydrogeologic Investigation
- Nitrate wells TWN-1, TWN-2, TWN-3, TWN-4, TWN-6, TWN-7, TWN-14, TWN-16, TWN-18 and TWN-19

In addition to the above, depth to water measurements are routinely observed in conjunction with sampling events for all wells sampled during quarterly and accelerated efforts, regardless of the sampling purpose.

All well levels used for groundwater contour mapping were measured and recorded within 5 calendar days of each other as indicated by the measurement dates in the summary sheet under Tab C. Field data sheets for groundwater measurements are also provided in Tab C.

Weekly and monthly depth to groundwater measurements were taken in the chloroform pumping wells MW-4, MW-26, TW4-1, TW4-2, TW4-11, TW4-19, TW4-20, TW4-4, TW4-21, TW4-37, TW4-39 (starting in December 2016), and the nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2.

In addition, monthly water level measurements were taken in non-pumping wells MW-27, MW-30, MW-31, TWN-1, TWN-3, TWN-4, TWN-7, and TWN-18 as required by the CAP.

2.2 Sampling Methodology and Equipment and Decontamination Procedures

The QAP provides a detailed presentation of procedures utilized for groundwater sampling activities under the GWDP (August 24, 2012).

The sampling methodology, equipment and decontamination procedures that were performed for the nitrate contaminant investigation, as summarized below, are consistent with the QAP.

2.2.1 Well Purging, Sampling and Depth to Groundwater

A list of the wells in order of increasing nitrate contamination is generated quarterly. The order for purging is thus established. The list is included with the Field Data Worksheets under Tab B. Mill personnel start purging with all of the nondetect wells and then move to the wells with detectable nitrate concentrations, progressing from the wells having the lowest nitrate contamination to wells with the highest nitrate contamination. Before leaving the Mill office, the pump and hose are decontaminated using the cleaning agents described in Attachment 2-2 of the QAP. Rinsate blanks are collected at a frequency of one rinsate per 20 field samples.

Purging is completed to remove stagnant water from the casing and to assure that representative samples of formation water are collected for analysis. There are three purging strategies specified in the QAP that are used to remove stagnant water from the casing during groundwater sampling at the Mill. The three strategies are as follows:

1. Purging three well casing volumes with a single measurement of field parameters

2. Purging two casing volumes with stable field parameters (within 10% Relative Percent Difference ["RPD"])

3. Purging a well to dryness and stability (within 10% RPD) of a limited list of field parameters after recovery.

Mill personnel proceed to the first well, which is the well with the lowest concentration (i.e. nondetect) of nitrate based on the previous quarter's sampling results. Well depth measurements are taken and the one casing volume is calculated. The purging strategy that will be used for the well is determined at this time based on the depth to water measurement and the previous production of the well. The Grundfos pump (a 6 to 10 gallon per minute [gpm] pump) is then lowered to the appropriate depth in the well and purging is started. At the first well, the purge rate is measured for the purging event by using a calibrated 5 gallon bucket. After the evacuation of the well has been completed, the well is sampled when possible, and the pump is removed from the well and the process is repeated at each well location moving from the least contaminated to most contaminated well. If sample collection is not possible due to the well being purged dry, a sample is collected after recovery using a disposable bailer and as described in Attachment 2-3 of the QAP. Sample collection follows the procedures described in Attachment 2-4 of the QAP.

After the samples have been collected for a particular well, the samples are placed into a cooler that contains ice. The well is then recapped and Mill personnel proceed to the next well. If a bailer has been used it is disposed of.

Decontamination of non-dedicated equipment, using the reagents in Attachment 2-2 of the QAP, is performed between each sample location, and at the beginning of each sampling day, in addition to the pre-event decontamination described above.

2.2.2 Piezometer Sampling

Samples are collected from Piezometers 1, 2 and 3A, if possible. Samples are collected from piezometers using a disposable bailer after one set of field measurements have been collected. Due to the difficulty in obtaining samples from the piezometers, the purging protocols set out in the QAP are not followed.

After samples are collected, the bailer is disposed of and samples are placed into a cooler containing ice for sample preservation and transit to the Mill's contract analytical laboratory, American West Analytical Laboratories ("AWAL").

2.3 Field Data

Attached under Tab B are copies of all Field Data Worksheets that were completed during the quarter for the nitrate investigation monitoring wells and piezometers identified in Section 2.1.1 and Table 1.

2.4 Depth to Groundwater Data and Water Table Contour Map

Depth-to-groundwater measurements that were utilized for groundwater contours are included on the Quarterly Depth to Water Sheet at Tab C of this Report along with the kriged groundwater contour map for the current quarter generated from this data. All well levels used for groundwater contour mapping were measured and recorded within 5 calendar days of each other as indicated by the measurement dates in the summary sheet under Tab C. A copy of the kriged groundwater contour map generated from the previous quarter's data is provided under Tab D.

2.5 Laboratory Results

2.5.1 Copy of Laboratory Results

The analytical results were provided by AWAL. Table 1 lists the dates when analytical results were reported to the Quality Assurance ("QA") Manager for each well or other sample.

Analytical results for the samples collected for this quarter's nitrate investigation and a limited list of chloroform investigation nitrate and chloride results are provided under Tab G of this Report. Also included under Tab G are the results of analyses for duplicate samples and rinsate samples for this sampling effort, as identified in Table 1. See the Groundwater Monitoring Report and Chloroform Monitoring Report for this quarter for nitrate and chloroform analytical results for the groundwater monitoring wells and chloroform investigation wells not listed in Table 1.

2.5.2 Regulatory Framework

As discussed in Section 1.0 above, the Request, Plan, and CA each triggered a series of actions on EFRI's part. Potential surficial sources of nitrate and chloride have been described in the December 30, 2009 CIR and additional investigations into potential sources were completed and discussed with DWMRC in 2011. Pursuant to the CA, the CAP was submitted to the Director of the Division Waste Management and Radiation Control (the "Director") on May 7, 2012. The CAP describes activities associated with the nitrate in groundwater. The CAP was approved by the Director on December 12, 2012. This quarterly report documents the monitoring consistent with the program described in the CAP.

3.0 QUALITY ASSURANCE AND DATA VALIDATION

EFRI's QA Manager performed a QA/Quality Control ("QC") review to confirm compliance of the monitoring program with the requirements of the QAP. As required in the QAP, data QA includes preparation and analysis of QC samples in the field, review of field procedures, an analyte completeness review, and QC review of laboratory data methods and data. Identification of field QC samples collected and analyzed is provided in Section 3.1. Discussion of adherence to Mill sampling Standard Operating Procedures ("SOPs") is provided in Section 3.2. Analytical completeness review results are provided in Section 3.3. The steps and tests applied to check field data QA/QC, holding times, receipt temperature and laboratory data QA/QC are discussed in Sections 3.4.1 through 3.4.7 below.

The analytical laboratory has provided summary reports of the analytical QA/QC measurements necessary to maintain conformance with National Environmental Laboratory Accreditation Conference certification and reporting protocol. The Analytical Laboratory QA/QC Summary Reports, including copies of the Mill's Chain of Custody and Analytical Request Record forms for each set of Analytical Results, follow the analytical results under Tab G. Results of the review of the laboratory QA/QC information are provided under Tab H and discussed in Section 3.4, below.

3.1 Field QC Samples

The following QC samples were generated by Mill personnel and submitted to the analytical laboratory in order to assess the quality of data resulting from the field sampling program.

Field QC samples for the nitrate investigation program consist of one field duplicate sample for each 20 samples, DI Field Blanks ("DIFB"), and equipment rinsate samples.

During the quarter, one duplicate sample was collected as indicated in Table 1. The duplicate was sent blind to the analytical laboratory and analyzed for the same parameters as the nitrate wells.

One rinsate blank sample was collected as indicated on Table 1. Rinsate samples are labeled with the name of the subsequently purged well with a terminal letter "R" added (e.g. TWN-7R).

The field QC sample results are included with the routine analyses under Tab G.

3.2 Adherence to Mill Sampling SOPs

The QA Manager review of Mill Personnel's adherence to the existing SOPs, confirmed that the QA/QC requirements established in the QAP and Chloroform QAP were met.

3.3 Analyte Completeness Review

All analyses required by the GWDP for nitrate monitoring for the period were performed.

3.4 Data Validation

The QAP and GWDP (August 24, 2012) identify the data validation steps and data QC checks required for the nitrate monitoring program. Consistent with these requirements, the QA Manager performed the following evaluations: a field data QA/QC evaluation, a holding time evaluation, an analytical method check, a reporting limit evaluation, a QC evaluation of sample duplicates, a QC evaluation of control limits for analysis and blanks, a receipt temperature

evaluation, and a rinsate evaluation. Because no VOCs are analyzed for the nitrate contamination investigation, no trip blanks are required in the sampling program. Each evaluation is discussed in the following sections. Data check tables indicating the results of each test are provided under Tab H.

3.4.1 Field Data QA/QC Evaluation

The QA Manager performs a review of all field recorded parameters to assess their adherence with QAP requirements. The assessment involved review of two sources of information: the Field Data Sheets and the Quarterly Depth to Water summary sheet. Review of the Field Data Sheets addresses well purging volumes and stability of five parameters: conductance, pH, temperature, redox potential, and turbidity. Review of the Depth to Water data confirms that all depth measurements used for development of groundwater contour maps were conducted within a five-day period of each other. The results of this quarter's review are provided under Tab H.

Based upon the review of the field data sheets, field work was completed in compliance with the QAP purging and field measurement requirements. A summary of the purging techniques employed and field measurements taken is described below:

Purging Two Casing Volumes with Stable Field Parameters (within 10% RPD)

Wells TWN-01, TWN-04, and TWN-18 were sampled after two casing volumes were removed. Field parameters pH, specific conductivity, turbidity, water temperature, and redox potential were measured during purging. All field parameters for this requirement were stable within 10% RPD.

Purging a Well to Dryness and Stability of a Limited List of Field Parameters

Wells TWN-03 and TWN-07 were purged to dryness before two casing volumes were evacuated. After well recovery, one set of measurements for the field parameters of pH, specific conductivity, and water temperature only were taken; the samples were collected, and another set of measurements for pH, specific conductivity, and water temperature were taken. Stabilization of pH, conductivity and temperature are required within 10% RPD under the QAP. All field parameters for this requirement were stable within 10% RPD.

Continuously Pumped Wells

Wells TWN-02, TW4-22, TW4-24, and TW4-25 are continuously pumped wells. These wells are pumped on a set schedule per the remediation plan and are considered sufficiently evacuated to immediately collect a sample. As previously noted, TW4-22, TW4-24, and TW4-25 are chloroform investigation wells and are sampled under the chloroform program. Data for nitrate and chloride are provided here for completeness purposes.

During review of the field data sheets, it was observed that sampling personnel consistently recorded depth to water to the nearest 0.01 foot.

All field parameters for all wells were within the QAP required limits, as indicated below.

The field data collected during the quarter were in compliance with QAP requirements.

3.4.2 Holding Time Evaluation

QAP Table 1 identifies the method holding times for each suite of parameters. Sample holding time checks are provided in Tab H. All samples were received and analyzed within the required holding time.

3.4.3 Analytical Method Checklist

All analytical methods reported by the laboratory were checked against the required methods enumerated in the QAP. Analytical method checks are provided in Tab H. All methods were consistent with the requirements of the QAP.

3.4.4 Reporting Limit Evaluation

All analytical method reporting limits ("RLs") reported by the laboratory were checked against the reporting limits enumerated in the QAP. Reporting Limit Checks are provided in Tab H. All analytes were measured and reported to the required reporting limits, with the exception of several samples that had increased reporting limits due to matrix interference or required dilution due to the sample concentration. However, in all of those cases the analytical results were greater than the reporting limit used.

3.4.5 QA/QC Evaluation for Sample Duplicates

Section 9.1.4 a) of the QAP states that RPDs will be calculated for the comparison of duplicate and original field samples. The QAP acceptance limits for RPDs between the duplicate and original field sample is less than or equal to 20% unless the measured results are less than 5 times the required detection limit. This standard is based on the EPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994, 9240.1-05-01 as cited in the QAP. The RPDs are calculated for duplicate pairs for all analytes regardless of whether or not the reported concentrations are greater than 5 times the required detection limits. However, data will be considered noncompliant only when the results are greater than 5 times the required detection limit and the RPD is greater than 20%.

All duplicate results were within 20% RPD for the quarterly samples. The duplicate results are provided under Tab H.

3.4.6 Other Laboratory QA/QC

Section 9.2 of the QAP requires that the laboratory's QA/QC Manager check the following items in developing data reports: (1) sample preparation information is correct and complete, (2) analysis information is correct and complete, (3) appropriate Analytical Laboratory procedures are followed, (4) analytical results are correct and complete, (5) QC samples are within established control limits, (6) blanks are within QC limits, (7) special sample preparation and analytical requirements have been met, and (8) documentation is complete. In addition to other laboratory checks described above, EFRI's QA Manager rechecks QC samples and blanks (items (5) and (6)) to confirm that the percent recovery for spikes and the relative percent difference for spike duplicates are within the method-specific required limits, or that the case narrative sufficiently explains any deviation from these limits. Results of this quantitative check are provided in Tab H.

The lab QA/QC results met these specified acceptance limits.

The QAP Section 8.1.2 requires that a Matrix Spike/Matrix Spike Duplicate ("MS/MSD") pair be analyzed with each analytical batch. The QAP does not specify acceptance limits for the MS/MSD pair, and the QAP does not specify that the MS/MSD pair be prepared on EFRI samples only. Acceptance limits for MS/MSDs are set by the laboratories. The review of the information provided by the laboratories in the data packages verified that the QAP requirement to analyze an MS/MSD pair with each analytical batch was met. While the QAP does not require it, the recoveries were reviewed for compliance with the laboratory established acceptance limits. The QAP does not require this level of review, and the results of this review are provided for information only.

The information from the Laboratory QA/QC Summary Reports indicates that the MS/MSDs recoveries and the associated RPDs for the samples were within acceptable laboratory limits for the regulated compounds except as indicated in Tab H. The MS/MSD recoveries that are outside the laboratory established acceptance limits do not affect the quality or usability of the data because recoveries above or below the acceptance limits are indicative of matrix interference. Matrix interferences are applicable to the individual sample results only. The requirement in the QAP to analyze a MS/MSD pair with each analytical batch was met and as such the data are compliant with the QAP.

The information from the Laboratory QA/QC Summary Reports indicates that the Laboratory Control Sample recoveries were acceptable, which indicate that the analytical system was operating properly.

The QAP Section 8.1.2 requires that each analytical batch shall be accompanied by a reagent blank. All analytical batches routinely contain a blank, which is a laboratory-grade water blank sample made and carried through all analytical steps. For the Mill samples, a method blank is prepared for all analytical methods. The information from the Laboratory QA/QC Summary Reports indicates that the method blanks did not contain detections of any target analytes above the Reporting Limit.

3.4.7 Receipt Temperature Evaluation

Chain of Custody sheets were reviewed to confirm compliance with the QAP requirement in QAP Table 1 that samples be received at 6°C or lower. Sample temperatures checks are provided in Tab H. All samples were received within the required temperature limit.

3.4.8 Rinsate Check

Rinsate checks are provided in Tab H. A comparison of the rinsate blank sample concentration levels to the QAP requirements – that rinsate sample concentrations be one order of magnitude lower than that of the actual well – indicated that all of the rinsate blank analytes met this criterion. All rinsate and DIFB blank samples were non-detect for the quarter.

4.0 INTERPRETATION OF DATA

4.1 Interpretation of Groundwater Levels, Gradients and Flow Directions.

4.1.1 Current Site Groundwater Contour Map

As stated above, a listing of groundwater level readings for the current quarter (shown as depth to groundwater in feet) is included under Tab C. The data from this tab has been interpreted (interpolated by kriging) and plotted in a water table contour map, provided under the same tab. The contour map is based on the current quarter's data for all wells.

The water level contour maps indicate that perched water flow ranges from generally southwesterly beneath the Mill site and tailings cells to generally southerly along the eastern and western margins of White Mesa south of the tailings cells. Perched water mounding associated with the wildlife ponds locally changes the generally southerly perched water flow patterns. For example, northeast of the Mill site, mounding associated with formerly used wildlife ponds disrupts the generally southwesterly flow pattern, to the extent that locally northerly flow occurs near MW-19 and PIEZ-1. The impact of the mounding associated with the northern ponds, to which water has not been delivered since March 2012, is diminishing and is expected to continue to diminish as the mound decays due to reduced recharge.

Not only has recharge from the wildlife ponds impacted perched water elevations and flow directions at the site, but the cessation of water delivery to the northern ponds, which are generally upgradient of the nitrate and chloroform plumes at the site, resulted in changing conditions that were expected to impact constituent concentrations and migration rates within the plumes. Specifically, past recharge from the ponds helped limit many constituent concentrations within the plumes by dilution while the associated groundwater mounding increased hydraulic gradients and contributed to plume migration. Since use of the northern ponds was discontinued in March, 2012, increases in constituent concentrations in many wells, and decreases in hydraulic gradients within the plumes, are attributable to reduced recharge and the decay of the associated groundwater mound. EFRI and its consultants anticipated these changes and discussed these and other potential effects during discussions with DWMRC in March 2012 and May 2013.

The impacts associated with cessation of water delivery to the northern ponds were expected to propagate downgradient (south and southwest) over time. Wells close to the ponds were generally expected to be impacted sooner than wells farther downgradient of the ponds. Therefore, constituent concentrations were generally expected to increase in downgradient wells close to the ponds before increases were detected in wells farther downgradient of the ponds. Although such increases were anticipated to result from reduced dilution, the magnitude and timing of the increases were anticipated to be and have been difficult to predict due to the complex permeability distribution at the site and factors such as pumping and the rate of decay of the groundwater mound. Because of these complicating factors, some wells completed in higher permeability materials were expected to be impacted sooner than other wells completed in lower permeability materials even though the wells completed in lower permeability materials were closer to the ponds.

In general, nitrate concentrations within and adjacent to the nitrate plume appear to have been impacted to a lesser extent than chloroform and nitrate concentrations within and in the vicinity of the chloroform plume. This behavior is reasonable considering that the chloroform plume is generally more directly downgradient of and more hydraulically connected (via higher permeability materials) to the wildlife ponds.

Localized increases in concentrations of constituents such as nitrate and chloride within and near the nitrate plume may occur even when the nitrate plume is under control based on the Nitrate CAP requirements. Ongoing mechanisms that can be expected to increase the concentrations of nitrate and chloride locally as a result of reduced wildlife pond recharge include but are not limited to:

- 1) Reduced dilution the mixing of low constituent concentration pond recharge into existing perched groundwater will be reduced over time.
- 2) Reduced saturated thicknesses dewatering of higher permeability zones receiving primarily low constituent concentration pond water will result in wells intercepting the zones receiving a smaller proportion of the low constituent concentration water.

The combined impact of the above two mechanisms was anticipated to be more evident at chloroform pumping wells MW-4, MW-26, TW4-4, TW4-19, and TW4-20; nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2; and non-pumped wells adjacent to the pumped wells. Impacts were also expected to occur over time at wells added to the chloroform pumping network during the first quarter of 2015 (TW4-1, TW4-2, TW4-11); at those added during the second quarter of 2015 (TW4-21 and TW4-37); and at TW4-39, added during the current quarter. The overall impact was expected to be generally higher constituent concentrations in these wells over time until mass reduction resulting from pumping and natural attenuation eventually reduces concentrations. Short-term changes in concentrations at pumping wells and wells adjacent to pumping wells are also expected to result from changes in pumping conditions.

In addition to changes in the flow regime caused by wildlife pond recharge, perched flow directions are locally influenced by operation of the chloroform and nitrate pumping wells. Well defined cones of depression are evident in the vicinity of all chloroform pumping wells except TW4-4, TW4-37, and TW4-39. TW4-4 began pumping in the first quarter of 2010; TW4-37 began pumping during the second quarter of 2015; and TW4-39 began pumping this quarter. Although operation of chloroform pumping well TW4-4 has depressed the water table in the vicinity of TW4-4, a well-defined cone of depression is not clearly evident. The lack of a well-defined cone of depression near TW4-4 likely results from 1) variable permeability conditions in the vicinity of TW4-4, and 2) persistent relatively low water levels at adjacent well TW4-14. The lack of well-defined cones of depression near TW4-37 and TW4-39 likely results from recent start-up and close proximity to other pumping wells.

Pumping of nitrate wells TW4-22, TW4-24, TW4-25, and TWN-2 began during the first quarter of 2013. Water level patterns near these wells are expected to be influenced by the presence of and the decay of the groundwater mound associated with the northern wildlife ponds, and by the persistently low water level elevation at TWN-7, which is located upgradient of the nitrate pumping wells.

Capture associated with nitrate pumping is expected to continue to increase over time as water levels decline due to pumping and to cessation of water delivery to the northern wildlife ponds. Interaction between nitrate and chloroform pumping is expected to enhance the capture of the nitrate pumping system. The long term interaction between the nitrate and chloroform pumping systems is evolving, and changes will be reflected in data collected during routine monitoring.

As discussed above, variable permeability conditions are one likely reason for the lack of a welldefined cone of depression near chloroform pumping well TW4-4. Changes in water levels at wells immediately south and southeast (downgradient) of TW4-4 resulting from TW4-4 pumping are expected to be muted because TW4-4 is located at a transition from relatively high to relatively low permeability conditions south and southeast of TW4-4. As will be discussed below, the permeability of the perched zone at TW4-6 and TW4-26, and relatively recently installed wells TW4-29, TW4-30, TW4-31, TW4-33, TW4-34, and TW4-35 is one to two orders of magnitude lower than at TW4-4, and the permeability at TW4-27 is approximately three orders of magnitude lower than at TW4-4. Detecting water level drawdowns in wells immediately south and southeast of TW4-4 resulting from TW4-4 pumping has also been complicated by the general, long-term increase in water levels in this area attributable to past wildlife pond recharge.

Between the fourth quarter of 2007 and the fourth quarter of 2009 (just prior to the start of TW4-4 pumping), water levels at TW4-4 and TW4-6 increased by nearly 2.7 and 2.9 feet at rates of approximately 1.2 feet/year and 1.3 feet/year, respectively. However, the rate of increase in water level at TW4-6 after the start of pumping at TW4-4 (first quarter of 2010) was reduced to less than 0.5 feet/year suggesting that TW4-6 is within the hydraulic influence of TW4-4.

Since the fourth quarter of 2013, water levels in all wells currently within the chloroform plume south of TW4-4 (TW4-6, TW4-29, and TW4-33) have been trending downward. This downward trend is attributable to the cessation of water delivery to the northern wildlife ponds and pumping. In contrast, until the first quarter of 2016, water level trends were generally upward in many wells located at the margin of the chloroform plume southeast of TW4-4 (TW4-14, TW4-27, TW4-30, and TW4-31). These wells appeared to be responding to past wildlife pond recharge and continuing expansion of the groundwater mound. Since the first quarter of 2016, however, water levels at these wells appear to be stabilizing (note: hydrographs for these wells are provided in the quarterly Chloroform Monitoring Report).

These spatially variable water level trends likely result from pumping conditions, the permeability distribution, and distance from the wildlife ponds. Wells that are relatively hydraulically isolated (due to completion in lower permeability materials or due to intervening lower permeability materials) and that are more distant from pumping wells and the wildlife ponds, are expected to respond more slowly to pumping and reduced recharge than wells that are less hydraulically isolated and are closer to pumping wells and the wildlife ponds. Wells that are more hydraulically isolated will also respond more slowly to changes in pumping.

The lack of a well-defined cone of depression at TW4-4 is also influenced by the persistent, relatively low water level at non-pumping well TW4-14, located east of TW4-4 and TW4-6. For the current quarter, the water level at TW4-14 (approximately 5533.5 feet above mean sea level ["ft amsl"]), is nearly 2 feet lower than the water level at TW4-6 (approximately 5535.4 ft amsl)

and nearly 6 feet lower than the water level at TW4-4 (approximately 5539.2 ft amsl), even though TW4-4 is pumping. However, water level differences among these wells are diminishing.

The static water levels at wells TW4-14 and downgradient well TW4-27 (installed south of TW4-14 in the fourth quarter of 2011) were similar (within 1 to 2 feet) until the third quarter of 2014; both appeared anomalously low. The current quarterly water level at TW4-27 (approximately 5528.4 ft amsl) is approximately 5 feet lower than the water level at TW4-14 (5533.5 ft amsl). Recent increases in water level differences between TW4-14 and TW4-27 are due to more rapid increases in water levels at TW4-14 resulting from past delivery of water to the northern wildlife ponds. The rate of water level increase at TW4-27 is smaller than at TW4-14 because TW4-27 is farther downgradient of the ponds.

Prior to the installation of TW4-27, the persistently low water level at TW4-14 was considered anomalous because it appeared to be downgradient of all three wells TW4-4, TW4-6, and TW4-26, yet chloroform had not been detected at TW4-14. Chloroform had apparently migrated from TW4-4 to TW4-6 and from TW4-6 to TW4-26. This suggested that TW4-26 was actually downgradient of TW4-6, and TW4-6 was actually downgradient of TW4-4, regardless of the flow direction implied by the low water level at TW4-14. The water level at TW4-26 (5534.0 feet amsl) is, however, lower than water levels at adjacent wells TW4-6 (5535.4 feet amsl), and TW4-23 (5536.9 feet amsl), as shown in the detail water level map under Tab C.

Hydraulic tests indicate that the permeability at TW4-27 is an order of magnitude lower than at TW4-6 and three orders of magnitude lower than at TW4-4 (see Hydro Geo Chem, Inc. [HGC], September 20, 2010: Hydraulic Testing of TW4-4, TW4-6, and TW4-26, White Mesa Uranium Mill, July 2010; and HGC, November 28, 2011: Installation, Hydraulic Testing, and Perched Zone Hydrogeology of Perched Monitoring Well TW4-27, White Mesa Uranium Mill Near Blanding, Utah). Past similarity of water levels at TW4-14 and TW4-27, and the low permeability estimate at TW4-27, suggested that both wells were completed in materials having lower permeability than nearby wells. The low permeability condition likely reduced the rate of long-term water level increase at TW4-14 and TW4-27 compared to nearby wells, yielding water levels that appeared anomalously low. This behavior is consistent with hydraulic test data collected from relatively recently installed wells TW4-29, TW4-30, TW4-31, TW4-33, TW4-34 and TW4-35, which indicate that the permeability of these wells is one to two orders of magnitude higher than the permeability of TW4-27 (see: HGC, January 23, 2014, Contamination Investigation Report, TW4-12 and TW4-27 Areas, White Mesa Uranium Mill Near Blanding, Utah; and HGC, July 1, 2014, Installation and Hydraulic Testing of TW4-35 and TW4-36, White Mesa Uranium Mill Near Blanding, Utah [As-Built Report]). Hydraulic tests also indicate that the permeability at TW4-36 is slightly higher than but comparable to the low permeability at TW4-27, suggesting that TW4-36, TW4-14 and TW4-27 are completed in a continuous low permeability zone.

4.1.2 Comparison of Current Groundwater Contour Map to Groundwater Contour Map for Previous Quarter

The groundwater contour maps for the Mill site for the previous quarter, as submitted with the Nitrate Monitoring Report for the previous quarter, are attached under Tab D. Small (<1 foot) changes in water levels were reported at the majority of site wells; water levels and water level

contours for the site have not changed significantly since the last quarter except for a few locations.

A comparison of the water table contour maps for the current quarter (fourth quarter of 2016) to the water table contour maps for the previous quarter (third quarter of 2016) indicates similar patterns of drawdowns associated with the pumping wells. Nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 were brought into operation during the first quarter of 2013 and their impact on water level patterns has been apparent since the fourth quarter of 2013. Although a large expansion in capture occurred with the addition of chloroform pumping wells TW4-1, TW4-2, TW4-11, TW4-21 and TW4-37 in 2015, a significant cone of depression associated with TW4-37 is not yet evident. Nor is a significant cone of depression yet evident at TW4-39 which began pumping this quarter.

Drawdowns at chloroform pumping wells MW-26, TW4-1, TW4-2 and nitrate pumping well TW4-22 decreased by more than 2 feet this quarter, with the drawdown at TW4-22 decreasing by more than 20 feet. The change at TW4-22 partially compensated for the 26 foot increase in drawdown last quarter. The drawdown in nitrate pumping well TW4-24 increased by more than 2 feet this quarter. Water level changes at other nitrate and chloroform pumping wells were less than 2 feet, although both increases (decreases in drawdown) and decreases (increases in drawdown) occurred. Water level fluctuations at pumping wells typically occur in part because of fluctuations in pumping conditions just prior to and at the time the measurements are taken. The reported water level for chloroform pumping well TW4-11 is below the depth of the Brushy Basin contact this quarter. Although both increases and decreases in drawdown occurred in pumping wells, the overall apparent capture of the combined pumping system is smaller than last quarter due to the relatively large decrease in drawdown at TW4-22 and decreases in drawdown at TW4-1 and TW4-2.

As discussed in Section 4.1.1, pumping at chloroform well TW4-4, which began in the first quarter of 2010, has depressed the water table near TW4-4, but a well-defined cone of depression is not clearly evident, likely due to variable permeability conditions near TW4-4 and the persistently low water level at adjacent well TW4-14.

Reported water level decreases of up to 0.4 feet at Piezometers 2, 4, and 5, and at TWN-1 and TWN-4, may result from cessation of water delivery to the northern wildlife ponds as discussed in Section 4.1.1 and the consequent continuing decay of the associated perched water mound. Reported water level decreases of approximately 0.34 feet at both piezometers 4 and 5 may also result from reduced recharge at the southern wildlife pond. Reported water level increases of approximately 0.41 feet and 0.59 feet at Piezometers 1 and 3A, respectively, may indicate a slowing in the decay of the groundwater mound.

The reported water level at MW-20 decreased by approximately 3.8 feet, and the water level at MW-37 increased by approximately 2.4 feet, respectively. Water level variability at MW-20 and MW-37 likely results from low permeability and variable intervals between purging/sampling and water level measurement.

Measurable water was not reported at DR-22. Although DR-22 is typically dry, measurable water was reported in the bottom of its casing between the second quarter of 2015 and last quarter.

4.1.3 Hydrographs

Attached under Tab E are hydrographs showing groundwater elevation in each nitrate contaminant investigation monitor well over time. Per the CAP, nitrate wells TWN-6, TWN-14, TWN-16, and TWN-19 have been maintained for depth to groundwater monitoring only. These hydrographs are also included in Tab E.

4.1.4 Depth to Groundwater Measured and Groundwater Elevation

Attached in Tab F are tables showing depth to groundwater measured and groundwater elevation over time for each of the wells listed in Section 2.1.1 above.

4.2 Effectiveness of Hydraulic Containment and Capture

4.2.1 Hydraulic Containment and Control

The CAP states that hydraulic containment and control will be evaluated in part based on water level data and in part on concentrations in wells downgradient of pumping wells TW4-22 and TW4-24.

As per the CAP, the fourth quarter of 2013 was the first quarter that hydraulic capture associated with nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 was evaluated. Hydraulic containment and control based on water level data is considered successful per the CAP if the entire nitrate plume upgradient of TW4-22 and TW4-24 falls within the combined capture of the nitrate pumping wells. Capture zones based on water level contours calculated by kriging the current quarter's water level data are provided on water level contour maps included under Tab C. The nitrate capture zones are defined by the bounding stream tubes associated with nitrate pumping wells. Each bounding stream tube represents a flow line parallel to the hydraulic gradient and therefore perpendicular to the intersected water level contours. Assuming that the stream tubes do not change over time, all flow between the bounding stream tubes associated with a particular pumping well is presumed to eventually reach and be removed by that well. Capture associated with chloroform pumping wells is also included on these maps because the influence of the chloroform and nitrate pumping systems overlap.

The specific methodology for calculating the nitrate capture zones is substantially the same as that used since the fourth quarter of 2005 to calculate the capture zones for the chloroform program, as agreed to by the DWMRC and EFRI. The procedure for calculating nitrate capture zones is as follows:

 Calculate water level contours by gridding the water level data on approximately 50-foot centers using the ordinary linear kriging method in SurferTM. Default kriging parameters are used that include a linear variogram, an isotropic data search, and all the available water level data for the quarter, including relevant seep and spring elevations.

- 2) Calculate the capture zones by hand from the kriged water level contours following the rules for flow nets:
 - from each pumping well, reverse track the stream tubes that bound the capture zone of each well,
 - maintain perpendicularity between each stream tube and the kriged water level contours.

Compared to last quarter, both increases and decreases in water levels occurred at nitrate and chloroform pumping wells. The water levels in chloroform pumping wells MW-4, TW4-4, TW4-11, TW4-20, TW4-21, and TW4-37 decreased by approximately 0.3, 1.2, 0.03, 0.5, 0.4, and 1.1 feet, respectively, while the water levels in chloroform pumping wells MW-26, TW4-1, TW4-2, and TW4-19 increased by approximately 3.3, 8.7, 3.7, and 0.03 feet, respectively. The water levels in nitrate pumping wells TW4-24 and TW4-25 each decreased by approximately 2 feet, while the water levels in nitrate pumping wells TW4-22 and TW4-22 and TWN-2 increased by approximately 20.5 and 1.3 feet, respectively. Overall, the apparent capture of the combined pumping systems has decreased compared to last quarter, primarily due to the relatively large decrease in drawdown at TW4-22 and TW4-2.

The capture associated with nitrate pumping wells and chloroform pumping wells added in 2015 and this quarter is expected to increase over time as water levels continue to decline due to pumping and to cessation of water delivery to the northern wildlife ponds. Slow development of hydraulic capture is consistent with and expected based on the relatively low permeability of the perched zone at the site. Furthermore, the presence of the perched groundwater mound, and the apparently anomalously low water level at TWN-7, will influence the definition of capture associated with the nitrate pumping system.

That pumping is likely sufficient to eventually capture the entire plume upgradient of TW4-22 and TW4-24 can be demonstrated by comparing the combined average pumping rates of all nitrate pumping wells for the current quarter to estimates of pre-pumping flow through the nitrate plume near the locations of TW4-22 and TW4-24. The pre-pumping flow calculation presented from the fourth quarter of 2013 through the second quarter of 2015 was assumed to represent a steady state 'background' condition that included constant recharge, hydraulic gradients, and saturated thicknesses; the calculation did not account for reduced recharge and saturated thickness caused by cessation of water delivery to the northern wildlife ponds since March, 2012. Because significant water level declines have occurred in upgradient portions of the nitrate plume due to reduced recharge, hydraulic gradients within the plume have been reduced independent of pumping. Changes related to reduced wildlife pond recharge have also resulted in reduced well productivity. Generally reduced productivities of nitrate pumping well TW4-24 and chloroform pumping well TW4-19 since the third quarter of 2014 are at least partly the result of reduced recharge.

The pre-pumping flow through the nitrate plume near TW4-22 and TW4-24 that was presented from the fourth quarter of 2013 through the second quarter of 2015 was estimated using Darcy's Law to lie within a range of approximately 1.31 gpm to 2.79 gpm. Calculations were based on an average hydraulic conductivity range of 0.15 feet per day (ft/day) to 0.32 ft/day (depending on the calculation method), a pre-pumping hydraulic gradient of 0.025 feet per foot (ft/ft), a plume width of 1,200 feet, and a saturated thickness (at TW4-22 and TW4-24) of 56 feet. The hydraulic conductivity range was estimated by averaging the results obtained from slug test data that were

collected automatically by data loggers from wells within the plume and analyzed using the KGS unconfined slug test solution available in AqtesolveTM (see Hydro Geo Chem, Inc. [HGC], August 3, 2005: Perched Monitoring Well Installation and Testing at the White Mesa Uranium Mill, April Through June 2005; HGC, March 10, 2009: Perched Nitrate Monitoring Well Installation and Hydraulic Testing, White Mesa Uranium Mill; and HGC, March 17 2009: Letter Report to David Frydenlund, Esq, regarding installation and testing of TW4-23, TW4-24, and TW4-25). These results are summarized in Table 6. Data from fourth quarter 2012 were used to estimate the pre-pumping hydraulic gradient and saturated thickness. These data are summarized in Tables 7 and 8.

The average hydraulic conductivity was estimated to lie within a range of 0.15 ft/day to 0.32 ft/day. Averages were calculated four ways. As shown in Table 6 arithmetic and geometric averages for wells MW-30, MW-31, TW4-22, TW4-24, TW4-25, TWN-2, and TWN-3 were calculated as 0.22 and 0.15 ft/day, respectively. Arithmetic and geometric averages for a subset of these wells (MW-30, MW-31, TW4-22, and TW4-24) were calculated as 0.32 and 0.31 ft/day, respectively. The lowest value, 0.15 ft/day, represented the geometric average of the hydraulic conductivity estimates for all the plume wells. The highest value, 0.32 ft/day, represented the arithmetic average for the four plume wells having the highest hydraulic conductivity estimates (MW-30, MW-31, TW4-24).

Pre-pumping hydraulic gradients were estimated at two locations; between TW4-25 and MW-31 (estimated as 0.023 ft/ft), and between TWN-2 and MW-30 (estimated as 0.027 ft/ft). These results were averaged to yield the value used in the calculation (0.025 ft/ft). The pre-pumping saturated thickness of 56 feet was an average of pre-pumping saturated thicknesses at TW4-22 and TW4-24.

As discussed above the hydraulic gradient and saturated thickness used in the pre-pumping calculations were assumed to represent a steady state 'background' condition that was inconsistent with the cessation of water delivery to the northern wildlife ponds, located upgradient of the nitrate plume. Hydraulic gradients and saturated thicknesses within the plume have declined since nitrate pumping began as a result of two factors: reduced recharge from the ponds, and the effects of nitrate pumping. A more representative 'background' flow condition that accounts for reduced wildlife pond recharge was presented in Attachment N (Tab N) of the third quarter 2015 Nitrate Monitoring report. The original pre-pumping 'background' flow range of 1.31 gpm to 2.79 gpm has been recalculated to range from 0.79 gpm to 1.67 gpm, as presented in Table 9. This calculation is still considered conservative because the high end of the range assumed an arithmetic average hydraulic conductivity of a subset of plume wells having the highest conductivities.

The cumulative volume of water removed by nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 during the current quarter was approximately 266,491 gallons. This equates to an average total extraction rate of approximately 2.06 gpm over the 90 day quarter. This average is similar to but larger than last quarter's average of approximately 1.7 gpm and accounts for time periods when pumps were off due to insufficient water columns in the wells. The current quarter's pumping (2.06 gpm) exceeds the high end of the recalculated 'background' flow range by approximately 0.39 gpm, or a factor of 1.2.

Although TW4-22, TW4-24, TW4-25, and TWN-2 are designated nitrate pumping wells, some chloroform pumping wells are also located within the nitrate plume because the northwest portion of the chloroform plume commingles with the central portion of the nitrate plume. While chloroform pumping wells TW4-19 and TW4-20 are only periodically within the nitrate plume, chloroform pumping wells TW4-21 and TW4-37 have been within the nitrate plume consistently since they started pumping in 2015. The volume of water removed by TW4-21, TW4-22, TW4-24, TW4-25, TW4-37, and TWN-2 this quarter is approximately 498,752 gallons, or approximately 3.85 gpm over the 90 day quarter, which exceeds the high end of the recalculated 'background' flow range by approximately 2.2 gpm, or a factor of 2.3.

Because the arithmetic average hydraulic conductivity of a subset of plume wells having the highest conductivities was used to calculate the high end of the 'background' flow range, the high end is considered less representative of actual conditions than using the geometric average conductivity of all of the plume wells. Therefore, nitrate pumping likely exceeds the actual flow through the plume by more than factors ranging from 1.2 to 2.3 as calculated above. Nitrate pumping is therefore considered adequate at the present time even with reduced productivity at TW4-24.

The CAP states that MW-5, MW-11, MW-30, and MW-31 are located downgradient of TW4-22 and TW4-24. MW-30 and MW-31 are within the plume near its downgradient edge and MW-5 and MW-11 are outside and downgradient of the plume. Per the CAP, hydraulic control based on concentration data will be considered successful if the nitrate concentrations in MW-30 and MW-31 remain stable or decline, and the nitrate concentrations in downgradient wells MW-5 and MW-11 do not exceed the 10 mg/L standard.

Table 5 presents the nitrate concentration data for MW-30, MW-31, MW-5 and MW-11, which are down-gradient of pumping wells TW4-22 and TW4-24. Based on these concentration data, the nitrate plume is under control.

The nitrate plume has not migrated downgradient to MW-5 or MW-11; nitrate was not detected at MW-11 and was detected at MW-5 at a concentration of approximately 0.24 mg/L this quarter. Between the previous and current quarters, nitrate concentrations decreased slightly in both MW-30 and MW-31. Nitrate in MW-30 decreased from 18 mg/L to 17.2 mg/L and nitrate in MW-31 decreased from 19.7 mg/L to 18.8 mg/L. Although short-term fluctuations have occurred, nitrate concentrations in MW-30 and MW-31 have been relatively stable, demonstrating that plume migration is minimal or absent.

Chloride has been relatively stable at MW-30 but is generally increasing at MW-31 (see Tab J and Tab K, discussed in Section 4.2.4). The apparent increase in chloride and relatively stable nitrate at MW-31 suggests a natural attenuation process that is affecting nitrate but not chloride. A likely process that would degrade nitrate but leave chloride unaffected is reduction of nitrate by pyrite. The likelihood of this process in the perched zone is discussed in HGC, December 7 2012; Investigation of Pyrite in the Perched Zone, White Mesa Uranium Mill Site, Blanding, Utah.

4.2.2 Current Nitrate and Chloride Isoconcentration Maps

Included under Tab I of this Report are current nitrate and chloride iso-concentration maps for the Mill site. Nitrate iso-contours start at 5 mg/L and chloride iso-contours start at 100 mg/L because those values appear to separate the plumes from background. All nitrate and chloride data used to develop these iso-concentration maps are from the current quarter's sampling events.

4.2.3 Comparison of Areal Extent

The area of the nitrate plume is slightly larger than last quarter due to a 'spur' in the plume extending from the vicinity of chloroform pumping well TW4-19 to the vicinity of TW4-10, caused by the addition of new chloroform well TW4-39, which has a nitrate concentration of approximately 21 mg/L.

TW4-18 remained outside the plume with a concentration of approximately 5 mg/L. TW4-18 was encompassed by an eastward-extending 'spur' in the plume during the third quarter of 2015, similar to an occurrence during the third quarter of 2013. Changes in nitrate concentrations near TW4-18 are expected to result from changes in pumping and from the cessation of water delivery to the northern wildlife ponds. The reduction in low-nitrate recharge from the ponds appeared to be having the anticipated effect of generally increased nitrate concentrations in some wells downgradient of the ponds.

However, decreasing to relatively stable nitrate concentrations at most wells in the vicinity of TW4-18 between the first quarter of 2014 and the second quarter of 2015 after previous increases suggested that conditions in this area had stabilized. Since the second quarter of 2015, concentrations at TW4-18 have been above and below 10 mg/L, but have remained below 10 mg/L since the third quarter of 2015. Over this same time period, concentrations at nearby wells TW4-3 and TW4-9 remained below 10 mg/L, concentrations at TW4-5 exceeded 10 mg/L only once (first quarter of 2016), and concentrations at TW4-10 remained above 10 mg/L.

Although increases in concentration in the area downgradient of the wildlife ponds have been anticipated as the result of reduced dilution, the magnitude and timing of the increases are difficult to predict due to the measured variations in hydraulic conductivity at the site and other factors. Nitrate in the area directly downgradient (south to south-southwest) of the northern wildlife ponds is associated with the chloroform plume, is cross-gradient of the nitrate plume as defined in the CAP, and is within the capture zone of the chloroform pumping system. Perched water flow in the area is to the southwest in the same approximate direction as the main body of the nitrate plume.

Nitrate concentrations at the downgradient edge of the plume (MW-30 and MW-31) have been relatively stable, demonstrating that nitrate plume migration is minimal or absent. As discussed in Section 4.2.1, stable nitrate at MW-30 and MW-31 is consistent with a natural attenuation process affecting nitrate but not chloride, as elevated chloride associated with the nitrate plume continues to migrate downgradient.

With regard to chloroform, changes in the boundary of the chloroform plume are attributable in part to the initiation of nitrate pumping. Once nitrate pumping started, the boundary of the chloroform plume migrated to the west toward nitrate pumping well TW4-24, and then to the southwest to reincorporate chloroform monitoring wells TW4-6 and TW4-16. Concentration increases leading to the reincorporation of these wells occurred first at TW4-24, then at TW4-16 and TW4-6. Subsequent contraction of the plume eastward away from TW4-24 and TW4-16

through the first quarter of 2016 is attributable in part to the start-up of additional chloroform pumping wells during the first half of 2015, and reduced productivity at TW4-24. More details regarding the chloroform data and interpretation are included in the Quarterly Chloroform Monitoring Report submitted under separate cover.

4.2.4 Nitrate and Chloride Concentration Trend Data and Graphs

Attached under Tab J is a table summarizing values for nitrate and chloride for each well over time.

Attached under Tab K are graphs showing nitrate and chloride concentration plots in each monitor well over time.

4.2.5 Interpretation of Analytical Data

Comparing the nitrate analytical results to those of the previous quarter, as summarized in the tables included under Tab J, the following observations can be made for wells within and immediately surrounding the nitrate plume:

- a) Nitrate concentrations have increased by more than 20% in the following wells compared to last quarter: TW4-16;
- b) Nitrate concentrations have decreased by more than 20% in the following wells compared to last quarter: TW4-25 and TW4-37;
- c) Nitrate concentrations have remained within 20% in the following wells compared to last quarter: MW-26, MW-27, MW-30, MW-31, TW4-3, TW4-5, TW4-9, TW4-10, TW4-11, TW4-18, TW4-19, TW4-20, TW4-21, TW4-22, TW4-24, TWN-1, TWN-2, TWN-3, TWN-4, and TWN-7;
- d) MW-11, MW-25 and MW-32 remained non-detect;
- e) TWN-18 increased from non-detect to approximately 0.5 mg/L; and
- f) New wells TW4-38 and TW4-39 have initial concentrations of approximately 11 and 21 mg/L, respectively.

As indicated, nitrate concentrations for many of the wells with detected nitrate were within 20% of the values reported during the previous quarter, suggesting that variations are within the range typical for sampling and analytical error. The remaining wells had changes in concentration greater than 20%. The latter includes chloroform pumping well TW4-37; nitrate pumping well TW4-25; and non-pumping well TW4-16. Concentrations at TW4-16 and TW4-25 are less than 3 mg/L.

TW4-16 is adjacent to chloroform pumping wells MW-26 and TW4-11. Fluctuations in concentrations at pumping wells and wells adjacent to pumping wells likely result in part from the effects of pumping as discussed in Section 4.1.1.

The nitrate concentration in new chloroform pumping well TW4-39 was approximately 21 mg/L. Concentrations in chloroform pumping well TW4-19 and non-pumping well TW4-10 that were greater than or equal to 10 mg/L (10 mg/L and 14.8 mg/L, respectively) caused a southeast trending 'spur' in the plume to extend from the vicinity of TW4-19 to the vicinity of TW4-10, incorporating TW4-39. MW-27, located west of TWN-2, and TWN-18, located north of TWN-3, bound the nitrate plume to the west and north (See Figure I-1 under Tab I). In addition, the southernmost (downgradient) boundary of the plume remains between MW-30/MW-31 and MW-5/MW-11. Nitrate concentrations at MW-5 (adjacent to MW-11) and MW-11 have historically been low (< 1 mg/L) or non-detect for nitrate (See Table 5). Non-detectable nitrate at MW-11 is consistent with the relative stability of the downgradient margin of the plume. MW-25, MW-26, MW-32, TW4-3, TW4-5, TW4-9, TW4-11, TW4-16, TW4-18, TW4-25, TWN-1, and TWN-4 bound the nitrate plume to the east.

Nitrate concentrations outside the nitrate plume are greater than 10 mg/L at a few locations: TW4-10 (14.8 mg/L), TW4-12 (25.8 mg/L), TW4-26 (15 mg/L), TW4-27 (19.3 mg/L), TW4-28 (25.5 mg/L), and new well TW4-38 (11.2 mg/L). Concentrations at TW4-18 are also occasionally above 10 mg/L. Each of these wells is located southeast of the nitrate plume as defined in the CAP and is separated from the plume by a well or wells having nitrate concentrations that are either non-detect, or, if detected, are less than 10 mg/L. Concentrations at TW4-26, TW4-27 and TW4-28 are within 20% of last quarter's concentrations while the concentration at TW4-12 decreased by more than 20%.

Since 2010, nitrate concentrations at TW4-10 and TW4-18 have been above and below 10 mg/L Concentrations were below 10 mg/L between the first quarter of 2011 and second quarter of 2013, and mostly close to or above 10 mg/L between the second quarter of 2013 and third quarter of 2015. However, concentrations at TW4-18 have been below 10 mg/L over the last four quarters. Since 2010, concentrations at nearby well TW4-5 have exceeded 10 mg/L only twice, and concentrations at nearby wells TW4-3 and TW4-9 have remained below 10 mg/L. Nitrate at TW4-5, TW4-10, and TW4-18 is associated with the chloroform plume, and is within the capture zone of the chloroform pumping system. Elevated nitrate at TW4-12, TW4-26, TW4-27, TW4-28, and new well TW4-38 is likely related to former cattle ranching operations at the site.

Chloride concentrations are measured because elevated chloride (greater than 100 mg/L) is associated with the nitrate plume. Chloride concentrations at all sampled locations this quarter are within 20% of their respective concentrations during the previous quarter except at non-pumping well TWN-18, in which chloride increased from approximately 53 mg/L to approximately 67 mg/L. This change likely results from its position near the upgradient margin of the plume.

Piezometer Piez-3A was installed in the second quarter of 2016 as a replacement to piezometer PIEZ-3. The chloride concentration at piezometer PIEZ-3A (100 mg/L) was approximately three times higher this quarter than the pre-abandonment first quarter 2016 concentration at PIEZ-3 (approximately 33 mg/L). The nitrate concentration at PIEZ-3A (approximately 8.4 mg/L) was also higher this quarter than the pre-abandonment first quarter 2016 PIEZ-3 concentration (approximately 2.2 mg/L).

4.3 Estimation of Pumped Nitrate Mass and Residual Nitrate Mass within the Plume

Nitrate mass removed by pumping is summarized in Table 2, and includes mass removed by both chloroform and nitrate pumping wells. Table 3 shows the volume of water pumped at each well and Table 4 provides the details of the nitrate removal for each well. Mass removal calculations begin with the third quarter of 2010 because the second quarter, 2010 data were specified to be used to establish a baseline mass for the nitrate plume. As stated in the CAP, the baseline mass is to be calculated using the second quarter, 2010 concentration and saturated thickness data "within the area of the kriged 10 mg/L plume boundary." The second quarter, 2010 data set was considered appropriate because "the second quarter, 2010 concentration peak at TWN-2 likely identifies a high concentration zone that still exists but has migrated away from the immediate vicinity of TWN-2."

As shown in Table 2, a total of approximately 2,008 lb of nitrate has been removed from the perched zone since the third quarter of 2010. Prior to the first quarter of 2013, all direct nitrate mass removal resulted from operation of chloroform pumping wells MW-4, MW-26, TW4-4, TW4-19, and TW4-20. During the current quarter:

- A total of approximately 106 lb of nitrate was removed by the chloroform pumping wells and by nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2.
- Of the 106 lb removed during the current quarter, approximately 52 lb, (or 49 %), was removed by the nitrate pumping wells.

The calculated nitrate mass removed was slightly higher than last quarter's approximately 101 lbs.

As discussed in Section 4.3.1, achievable pumping rates are expected to diminish over time as saturated thicknesses are reduced by pumping and by cessation of water delivery to the northern wildlife ponds. Attachment N (Tab N) of the third quarter 2015 Nitrate Monitoring report provides an evaluation of reduced productivity at chloroform pumping well TW4-19 and nitrate pumping well TW4-24.

Baseline mass and current quarter mass estimates (nitrate + nitrite as N) for the nitrate plume are approximately 43,700 lb and 31,800 lbs, respectively. Mass estimates were calculated within the plume boundaries as defined by the kriged 10 mg/L isocon by 1) gridding (kriging) the nitrate concentration data on 50-foot centers; 2) calculating the volume of water in each grid cell based on the saturated thickness and assuming a porosity of 0.18; 3) calculating the mass of nitrate+nitrite as N in each cell based on the concentration and volume of water for each cell; and 4) totaling the mass of all grid cells within the 10 mg/L plume boundary. Data used in these calculations included data from wells listed in Table 3 of the CAP.

The nitrate mass estimate for the current quarter is lower than the baseline estimate by approximately 11,900 lb, and this difference is greater than the amount of nitrate mass removed directly by pumping. Changes in the quarterly mass estimates are expected to result primarily from 1) nitrate mass removed directly by pumping, 2) natural attenuation of nitrate, and 3) changes in nitrate concentrations in wells within the plume as a result of re-distribution of nitrate within the plume and changes in saturated thicknesses. Redistribution of nitrate within the plume

and changes in saturated thicknesses will be impacted by changes in pumping and in background conditions such as the decay of the perched water mound associated with the northern wildlife ponds. Cessation of water delivery to the northern wildlife ponds is expected to result in reduced saturated thicknesses and reduced dilution, which in turn is expected to result in increases in concentrations.

The mass estimate during the current quarter (31,800 lb) was smaller than the mass estimate during the previous quarter (32,230 lb) by 430 lb or approximately 1.3 %. This difference is attributable to slightly lower average nitrate concentrations within the plume which offset the slightly increased plume area resulting from the 'spur' extending southeast from TW4-19 to TW4-10 this quarter.

Nitrate mass removal by pumping and natural attenuation (expected to result primarily from pyrite oxidation/nitrate reduction) act to lower nitrate mass within the plume. Changes resulting from redistribution of nitrate within the plume are expected to result in both increases and decreases in concentrations at wells within the plume and therefore increases and decreases in mass estimates based on those concentrations, thus generating 'noise' in the mass estimates. Furthermore, because the sum of sampling and analytical error is typically about 20%, changes in the mass estimates from quarter to quarter of up to 20% could result from typical sampling and analytical error alone. Only longer-term analyses of the mass estimates that minimize the impacts of these quarter to quarter variations will provide useful information on plume mass trends. Over the long term, nitrate mass estimates are expected to trend downward as a result of direct removal by pumping and through natural attenuation.

As specified in the CAP, once eight quarters of data were collected (starting with the first quarter of 2013), a regression trend line was to be applied to the quarterly mass estimates and evaluated. The trend line was to be updated quarterly and reevaluated as additional quarters of data were collected. The evaluation was to determine whether the mass estimates were increasing, decreasing, or stable.

As the fourth quarter of 2014 constituted the eighth quarter as specified in the CAP, the mass estimates were plotted, and a regression line was fitted to the data and evaluated. The regression line has been updated each quarter since the fourth quarter of 2014 as shown in Figure M.1 of Tab M. The fitted line shows a decreasing trend in the mass estimates.

5.0 LONG TERM PUMP TEST AT TWN-02, TW4-22, TW4-24, and TW4-25 OPERATIONS REPORT

5.1 Introduction

Beginning in January 2013, EFRI began long term pumping of TW4-22, TW4-24, TW4-25, and TWN-02 as required by the Nitrate CAP, dated May 7, 2012 and the SCO dated December 12, 2012.

In addition, as a part of the investigation of chloroform contamination at the Mill site, EFRI has been conducting a Long Term Pump Test on MW-4, TW4-19, MW-26, and TW4-20, and, since January 31, 2010, TW4-4. In anticipation of the final approval of the GCAP, beginning on

January 14, 2015, EFRI began long term pumping of TW4-1, TW4-2, and TW4-11 and began long term pumping of TW4-21 and TW4-37 on June 9, 2015. The purpose of the test is to serve as an interim action that will remove a significant amount of chloroform-contaminated water while gathering additional data on hydraulic properties in the area of investigation.

Because wells MW-4, TW4-19, MW-26, TW4-4, TW4-20, TW4-01, TW4-02, TW4-11, TW4-21, TW4-37, and TW4-39 are pumping wells that may impact the removal of nitrate, they are included in this report and any nitrate removal realized as part of this pumping is calculated and included in the quarterly reports.

The following information documents the operational activities during the quarter.

5.2 Pumping Well Data Collection

Data collected during the quarter included the following:

- Measurement of water levels at MW-4, TW4-19, MW-26, and TW4-20 and, commencing regularly on March 1, 2010, TW4-4, on a weekly basis,
- Measurement of water levels weekly at TW4-22, TW4-24, TW4-25, and TWN-02 commencing January 28, 2013,
- Measurement of water levels weekly at TW4-01, TW4-02, and TW4-11 commencing on January 14, 2015,
- Measurement of water levels weekly at TW4-21 and TW4-37 commencing on June 9, 2015, and on a monthly basis selected temporary wells and permanent monitoring well,
- Measurement of water levels weekly at TW4-39 commencing on December 7, 2016.
- Measurement of pumping history, including:
 - pumping rates
 - total pumped volume
 - operational and non-operational periods.
- Periodic sampling of pumped water for chloroform and nitrate/nitrite analysis and other constituents

5.3 Water Level Measurements

Beginning August 16, 2003, water level measurements from chloroform pumping wells MW-4, MW-26, and TW4-19 were conducted weekly. From commencement of pumping TW4-20, and regularly after March 1, 2010 for TW4-4, water levels in these two chloroform pumping wells have been measured weekly. From commencement of pumping in January 2013, water levels in wells TW4-22, TW4-24, TW4-25, and TWN-02 have been measured weekly. From the commencement of pumping in December 2016, water levels in TW4-39 have been measured. Copies of the weekly Depth to Water monitoring sheets for MW-4, MW-26, TW4-19, TW4-20, TW4-4, TW4-22, TW4-24, TW4-25, TWN-02, TW4-01, TW4-02, TW4-11, TW4-21, TW4-37, and TW4-39 are included under Tab C.

Monthly depth to water monitoring is required for all of the chloroform contaminant investigation wells and non-pumping wells MW-27, MW-30, MW-31, TWN-1, TWN-3, TWN-4, TWN-7, and TWN-18. Copies of the monthly depth to Water monitoring sheets are included under Tab C.

5.4 **Pumping Rates and Volumes**

The pumping wells do not pump continuously, but are on a delay device. The wells purge for a set amount of time and then shut off to allow the well to recharge. Water from the pumping wells is either transferred to the Cell 1 evaporation pond or is used in the Mill process.

The pumped wells are fitted with a flow meter which records the volume of water pumped from the well in gallons. The flow meter readings shown in Tab C are used to calculate the gallons of water pumped from the wells each quarter as required by Section 7.2.2 of the CAP. The average pumping rates and quarterly volumes for each of the pumping wells are shown in Table 3. The cumulative volume of water pumped from each of the wells is shown in Table 4.

On November 15, 2016, all of the heat lamps for the pumping wells were turned on for the winter months. Other operational notations made by the field staff are summarized below.

5.4.1 TW4-19

On October 5, 2016, Mill Field Personnel noted during the routine weekly inspection that the TW4-19 had no power and was not operating. Mill Maintenance Personnel were notified and stated that the circuit breaker had tripped. The breaker was turned on and the well pumped with no additional issues noted. No official notifications to DWMRC were required as the issue was rectified within 24-hours.

5.4.2 TW4-04

On October 31, 2016, Mill Field Personnel noted during the routine weekly inspection that the flow meter on TW4-04 was malfunctioning. The flow meter was replaced. No official notifications to DWMRC were required as the issue was rectified within 24-hours and there was no loss of pumping.

On November 9, 2016, Mill Field Personnel noted during the routine weekly inspection that the pump on TW4-04 was not functioning. Mill Maintenance Personnel were notified and the pump was replaced. No official notifications to DWMRC were required as the issue was rectified within 24-hours.

5.4.3 TW4-20

On December 7, 2016, Mill Field Personnel noted during the routine weekly inspection that the heat lamp on TW4-20 had burned out. The lamp was replaced.

5.4.4 MW-26

On December 20 and December 27, 2016, Mill Field Personnel noted during the routine weekly inspection that the heat lamp on MW-26 had burned out. The lamp was replaced on both days.

5.4.5 TW4-21

On December 27, 2016, Mill Field Personnel noted during the routine weekly inspection that the heat lamp on TW4-21 had burned out. The lamp was replaced.

6.0 CORRECTIVE ACTION REPORT

There are no corrective actions required during the current monitoring period.

6.1 Assessment of Previous Quarter's Corrective Actions

There were no corrective actions required during the previous quarters' monitoring period.

7.0 CONCLUSIONS AND RECOMMENDATIONS

As per the CAP, the current quarter is the thirteenth quarter that hydraulic capture associated with nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 was evaluated. The apparent combined capture of the nitrate and chloroform pumping systems is slightly smaller than last quarter. Capture associated with nitrate pumping wells is expected to increase over time as water levels decline due to pumping and to cessation of water delivery to the northern wildlife ponds. Furthermore, the evaluation of the long term interaction between nitrate and chloroform pumping systems requires more data to be collected as part of routine monitoring. Slow development of hydraulic capture by the nitrate pumping system is consistent with and expected based on the relatively low permeability of the perched zone at the site. Definition of capture associated with the nitrate pumping system is also influenced by the perched groundwater mound and the apparently anomalously low water level at TWN-7.

Nitrate pumping is likely sufficient to eventually capture the entire nitrate plume upgradient of TW4-22 and TW4-24 even with reduced productivity at TW4-24. Hydraulic gradients and saturated thicknesses within the plume have declined since nitrate pumping began as a result of two factors: reduced recharge from the ponds, and the effects of nitrate pumping. A more representative 'background' flow condition that accounts for reduced wildlife pond recharge was presented in Attachment N (Tab N) of the third quarter, 2015 Nitrate Monitoring report. The original pre-pumping 'background' flow range of 1.31 gpm to 2.79 gpm was recalculated to range from 0.79 gpm to 1.67 gpm. This calculation is still considered conservative because the high end of the calculated range assumed an arithmetic average hydraulic conductivity of a subset of plume wells having the highest conductivities. The current nitrate pumping of approximately 2.06 gpm, based on water removed by TW4-22, TW4-24, TW4-25, and TWN-2, exceeds the high end of the recalculated 'background' range by 0.36 gpm, or a factor of approximately 1.2. If water removed by chloroform pumping wells TW4-21 and TW4-37 is included, the current nitrate pumping of approximately 3.85 gpm exceeds the high end of the recalculated 'background' range by 2.2 gpm, or a factor of approximately 2.3. Including TW4-21 and TW4-37 is appropriate because these wells have been within the nitrate plume consistently since they started pumping in 2015.

In addition, because the arithmetic average hydraulic conductivity of a subset of plume wells having the highest conductivities was used in recalculating the high end of the 'background' flow range, the high end is considered less representative of actual conditions than using the geometric average conductivity of all of the plume wells. Therefore, nitrate pumping likely exceeds flow through the plume by factors greater than 1.2 to 2.3 times the high end of the recalculated range. Nitrate pumping is considered adequate at the present time even with reduced productivity at TW4-24. Furthermore, as the groundwater mound associated with former water delivery to the northern wildlife ponds continues to decay, hydraulic gradients and saturated thicknesses will continue to decrease, and 'background' flow will be proportionally reduced, thereby reducing the amount of pumping needed.

Fourth quarter, 2016 nitrate concentrations at many of the wells within and adjacent to the nitrate plume were within 20% of the values reported during the previous quarter, suggesting that variations are within the range typical for sampling and analytical error. Changes in concentration greater than 20% occurred in chloroform pumping well TW4-37; nitrate pumping well TW4-25; and non-pumping well TW4-16. Concentrations at TW4-16 and TW4-25 are less than 3 mg/L. TW4-16 is adjacent to chloroform pumping wells MW-26 and TW4-11. Fluctuations in concentrations at pumping wells and wells adjacent to pumping wells likely result in part from the effects of pumping as discussed in Section 4.1.1. The nitrate concentrations in wells MW-25 and MW-32 remained non-detect.

As discussed in Section 4.2.3, the area of the nitrate plume is slightly larger than last quarter due to a 'spur' in the plume extending from the vicinity of chloroform pumping well TW4-19 to the vicinity of TW4-10, caused by the addition of new chloroform pumping well TW4-39, which has a nitrate concentration of approximately 21 mg/L. MW-27, located west of TWN-2, and TWN-18, located north of TWN-3, bound the nitrate plume to the west and north (See Figure I-1 under Tab I). In addition, the southernmost (downgradient) boundary of the plume remains between MW-30/MW-31 and MW-5/MW-11. Nitrate concentrations at MW-5 (adjacent to MW-11) and MW-11 have historically been low (< 1 mg/L) or non-detect for nitrate (See Table 5). Non-detectable nitrate at MW-11 is consistent with the relative stability of the downgradient margin of the plume. MW-25, MW-26, MW-32, TW4-3, TW4-5, TW4-9, TW4-11, TW4-16, TW4-18, TW4-25, TWN-1, and TWN-4 bound the nitrate plume to the east.

Although short-term fluctuations have occurred, nitrate concentrations in MW-30 and MW-31 have been relatively stable, demonstrating that plume migration is minimal or absent. Nitrate in MW-30 decreased from 18 mg/L to 17.2 mg/L and nitrate in MW-31 decreased from 19.7 mg/L to 18.8 mg/L. Based on the concentration data at MW-5, MW-11, MW-30, and MW-31, the nitrate plume is under control.

Chloride has been relatively stable at MW-30 but is generally increasing at MW-31. The apparent increase in chloride and relatively stable nitrate at MW-31 suggests a natural attenuation process that is affecting nitrate but not chloride. A likely process that would degrade nitrate but leave chloride unaffected is reduction of nitrate by pyrite. The likelihood of this process in the perched zone is discussed in HGC, December 7 2012; Investigation of Pyrite in the Perched Zone, White Mesa Uranium Mill Site, Blanding, Utah. Increases in chloride at MW-

30 are also expected to eventually occur as the nitrate/chloride plume continues to move downgradient.

Nitrate mass removal by pumping and natural attenuation (expected to result primarily from pyrite oxidation/nitrate reduction) act to lower nitrate mass within the plume. Changes resulting from redistribution of nitrate within the plume are expected to result in both increases and decreases in concentrations at wells within the plume and therefore increases and decreases in mass estimates based on those concentrations, thus generating 'noise' in the mass estimates. Furthermore, because the sum of sampling and analytical error is typically about 20%, changes in the mass estimates from quarter to quarter of up to 20% could result from typical sampling and analytical error alone. Longer-term analyses of the mass estimates that minimize the impact of these quarter to quarter variations are expected to provide useful information on plume mass trends. Over the long term, nitrate mass estimates are expected to trend downward as a result of direct removal by pumping and through natural attenuation.

As specified in the CAP, once eight quarters of data were collected (starting with the first quarter of 2013), a regression trend line was to be applied to the quarterly mass estimates and evaluated. The trend line was to be updated quarterly and reevaluated as additional quarters of data were collected. As the fourth quarter of 2014 constituted the eighth quarter as specified in the CAP, the mass estimates were plotted, and a regression line was fitted to the data and evaluated. The regression line was updated this quarter as shown in Figure M.1 of Tab M. The fitted line shows a decreasing trend in the mass estimates.

During the current quarter, a total of approximately 106 lb of nitrate was removed by the chloroform pumping wells and by nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2. Of the 106 lb removed during the current quarter, approximately 52 lb (or 49 %) was removed by the nitrate pumping wells.

The baseline nitrate (nitrate+nitrite as N) plume mass calculated as specified in the CAP (based on second quarter, 2010 data) was approximately 43,700 lb. The mass estimate during the current quarter (31,800 lb) was smaller than the mass estimate during the previous quarter (32,230 lb) by 430 lb or approximately 1.3 %. This difference is attributable to slightly lower average nitrate concentrations within the plume which offset the slightly increased plume area resulting from the 'spur' extending southeast from TW4-19 to TW4-10 this quarter.

Nitrate concentrations outside the nitrate plume are greater than 10 mg/L at a few locations: TW4-10 (14.8 mg/L), TW4-12 (25.8 mg/L), TW4-26 (15 mg/L), TW4-27 (19.3 mg/L), TW4-28 (25.5 mg/L), and new well TW4-38 (11.2 mg/L). Concentrations at TW4-18 are also occasionally above 10 mg/L. Each of these wells is located southeast of the nitrate plume as defined in the CAP and is separated from the plume by a well or wells having nitrate concentrations that are either non-detect, or, if detected, are less than 10 mg/L. Concentrations at TW4-26, TW4-27 and TW4-28 are within 20% of last quarter's concentrations while the concentration at TW4-12 decreased by more than 20%.

Since 2010, nitrate concentrations at TW4-10 and TW4-18 have been above and below 10 mg/L Concentrations were below 10 mg/L between the first quarter of 2011 and second quarter of 2013, and mostly close to or above 10 mg/L between the second quarter of 2013 and third

quarter of 2015. However, concentrations at TW4-18 have been below 10 mg/L over the last four quarters. Since 2010, concentrations at nearby well TW4-5 have exceeded 10 mg/L only twice, and concentrations at nearby wells TW4-3 and TW4-9 have remained below 10 mg/L. Nitrate at TW4-5, TW4-10, and TW4-18 is associated with the chloroform plume, and is within the capture zone of the chloroform pumping system. Elevated nitrate at TW4-12, TW4-26, TW4-27, TW4-28, and new well TW4-38 is likely related to former cattle ranching operations at the site.

Increases in both nitrate and chloride concentrations at wells near the northern wildlife ponds (for example TW4-18) were anticipated as a result of reduced dilution caused by cessation of water delivery to the northern wildlife ponds. However, decreasing nitrate concentrations at TW4-10 and TW4-18 from the first through third quarters of 2014 after previously increasing trends (interrupted in the first quarter of 2014) suggested that conditions in this area had stabilized. The temporary increase in nitrate concentration at TW4-18 in the third quarter of 2015 and the generally increased nitrate at TW4-5 and TW4-10 since the second quarter of 2015 suggest that reduced wildlife pond recharge is still impacting concentrations in downgradient wells.

EFRI and its consultants have raised the issues and potential effects associated with cessation of water delivery to the northern wildlife ponds in March, 2012 during discussions with DWMRC in March 2012 and May 2013. While past recharge from the ponds has helped limit many constituent concentrations within the chloroform and nitrate plumes by dilution, the associated groundwater mounding has increased hydraulic gradients and contributed to plume migration. Since use of the northern wildlife ponds ceased in March 2012, the reduction in recharge and decay of the associated groundwater mound was expected to increase many constituent concentrations within the plumes while reducing hydraulic gradients and rates of plume migration.

The net impact of reduced wildlife pond recharge is expected to be beneficial even though it was also expected to result in temporarily higher concentrations until continued mass reduction via pumping and natural attenuation ultimately reduce concentrations. Temporary increases in nitrate concentrations are judged less important than reduced nitrate migration rates. The actual impacts of reduced recharge on concentrations and migration rates will be defined by continued monitoring.

Nitrate mass removal from the perched zone was increased substantially by the start-up of nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 during the first quarter of 2013. Continued operation of these wells is therefore recommended. Pumping these wells, regardless of any short term fluctuations in concentrations detected at the wells, helps to reduce downgradient nitrate migration by removing nitrate mass and reducing average hydraulic gradients, thereby allowing natural attenuation to be more effective. Continued operation of the nitrate pumping system is expected to eventually reduce nitrate concentrations within the plume and to further reduce or halt downgradient nitrate migration.

8.0 ELECTRONIC DATA FILES AND FORMAT

EFRI has provided to the Director an electronic copy of all laboratory results for groundwater quality monitoring conducted under the nitrate contaminant investigation during the quarter, in

Comma Separated Values ("CSV") format. A copy of the transmittal e-mail is included under Tab L.

9.0 SIGNATURE AND CERTIFICATION

This document was prepared by Energy Fuels Resources (USA) Inc. on February 22, 2017.

Energy Fuels Resources (USA) Inc.

By:

-B-

Scott Bakken Senior Director Regulatory Affairs

Certification:

.

I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Scott Bakken Senior Director Regulatory Affairs Energy Fuels Resources (USA) Inc.

Tables

10

State of the state of the state		Ster A State
Well	Sample Collection Date	Date of Lab Report
Piezometer 01	10/11/2016	10/25/2016
Piezometer 02	10/11/2016	10/25/2016
Piezometer 03A	10/11/2016	10/25/2016
TWN-01	10/6/2016	10/25/2016
TWN-02	10/11/2016	10/25/2016
TWN-03	10/7/2016	10/25/2016
TWN-04	10/6/2016	10/25/2016
TWN-07	10/7/2016	10/25/2016
TWN-18	10/6/2016	10/25/2016
TWN-18R	10/6/2016	10/25/2016
TW4-22	10/12/2016	10/25/2016
TW4-24	10/12/2016	10/25/2016
TW4-25	10/12/2016	10/25/2016
TWN-60	10/13/2016	10/25/2016
TW4-60	11/10/2016	11/29/2016
TWN-65	10/6/2016	10/25/2016

 Table 1

 Summary of Well Sampling and Constituents for the Period

Note: All wells were sampled for Nitrate and Chloride.

TWN-60 is a DI Field Blank.

TWN-65 is a duplicate of TWN-18

TW4-60 is the chloroform program DI Field Blank.

Continuously pumped well.

NET C	MW-4	MW-26	TW4-19	TW4-20	TW4-4	TW4-22	TW4-24	TW4-25	TWN-02	TW4-01	TW4-02	TW4-11	TW4-21	TW4-37	TW4-39	Quarter
Quarter	(lbs.)	Totals (lbs.)														
Q3 2010	3.2	0.3	5.8	1.7	4.7	NA	15.69									
Q4 2010	3.8	0.4	17.3	1.4	5.1	NA	27.97									
Q1 2011	2.9	0.2	64.5	1.4	4.3	NA	73.30									
Q2 2011	3.5	0.1	15.9	2.7	4.7	NA	27.01									
Q3 2011	3.5	0.5	3.5	3.9	5.4	NA	16.82									
Q4 2011	3.8	0.8	6.2	2.5	6.4	NA	19.71									
Q1 2012	3.6	0.4	0.7	5.0	6.0	NA	15.86									
Q2 2012	3.7	0.6	3.4	2.1	5.2	NA	15.03									
Q3 2012	3.8	0.5	3.6	2.0	4.7	NA	14.67									
Q4 2012	3.2	0.4	5.4	1.8	4.2	NA	14.92									
Q1 2013	2.5	0.4	14.1	1.4	3.6	8.1	43.4	7.5	14.8	NA	NA	NA	NA	NA	NA	95.73
Q2 2013	2.5	0.4	5.6	1.6	3.4	10.7	37.1	6.4	23.9	NA	NA	NA	NA	NA	NA	91.71
Q3 2013	3.0	0.4	48.4	1.4	3.8	6.3	72.8	6.9	33.4	NA	NA	NA	NA	NA	NA	176.53
Q4 2013	3.1	0.3	15.8	1.6	3.9	9.4	75.2	6.4	46.3	NA	NA	NA	NA	NA	NA	162.07
Q1 2014	2.7	0.4	4.1	1.2	3.6	11.2	60.4	2.3	17.2	NA	NA	NA	NA	NA	NA	103.14
Q2 2014	2.4	0.3	3.3	0.9	3.0	9.5	63.4	1.3	17.8	NA	NA	NA	NA	NA	NA	101.87
Q3 2014	2.3	0.1	4.1	0.6	3.1	8.5	56.2	1.6	16.4	NA	NA	NA	NA	NA	NA	92.99
Q4 2014	2.7	0.2	7.8	1.0	3.8	11.0	53.2	0.9	28.0	NA	NA	NA	NA	NA	NA	108.57
Q1 2015	3.7	0.5	4.3	1.3	2.4	12.7	26.7	8.6	19.2	1.45	1.07	0.72	NA	NA	NA	82.61
Q2 2015	1.3	0.2	0.6	0.9	3.6	9.1	16.6	0.9	21.4	1.22	0.79	0.37	3.4	8.6	NA	68.86
Q3 2015	3.6	0.3	11.3	1.4	3.5	13.3	14.0	1.7	20.2	1.24	0.68	0.29	15.4	31.9	NA	118.63
Q4 2015	3.7	0.2	10.0	0.8	3.1	11.1	26.6	1.7	17.5	0.3	0.9	0.3	16.1	32.3	NA	124.50
Q1 2016	3.9	0.23	15.28	1.23	3.21	6.36	24.30	0.81	34.33	0.02	0.93	0.22	15.29	26.45	NA	132.55
Q2 2016	3.7	0.21	1.31	1.48	3.36	12.92	13.17	1.01	19.24	0.02	1.15	0.25	14.46	27.76	NA	99.98
Q3 2016	3.3	0.22	9.08	1.15	3.02	11.33	14.86	1.56	12.47	0.72	0.59	0.22	15.20	27.42	NA	101.12
Q4 2016	3.5	0.18	8.76	1.23	1.79	12.14	26.49	1.02	12.14	0.10	1.00	0.23	14.68	22.20	0.62	106.06
Well																
Totals																
(pounds)	82.81	8.95	290.15	43.86	102.81	163.68	624.39	50.67	354.20	5.04	7.15	2.54	94.44	176.59	0.62	2007.88

Table 2Nitrate Mass Removal Per Well Per Quarter

Pumping	Volume of Water	
Well	Pumped During the	
Name	Quarter (gals)	Average Pump Rate (gpm)
MW-4	85414.0	4.5
MW-26	18541.6	7.4
TW4-19	104919.4	18.0
TW4-20	12879.6	6.9
TW4-4	31656.0	14.2
TWN-2	44640.6	18.5
TW4-22	23646.8	16.2
TW4-24	99522.5	15.6
TW4-25	98681.2	14.4
TW4-01	16756.8	15.5
TW4-02	19740.6	16.6
TW4-11	3050.2	16.0
TW4-21	130311.3	16.0
TW4-37	101949.1	16.8
TW4-39	3589.3	16.6

Table 3 Well Pumping Rates and Volumes

 Table 4

 Table 4 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

			and the state of the	MW-4	ST LOUGH	a state of	THE TOTAL		1000000	3530	MW-26	the state	the state	
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Calculations and Data Origination	Total Gallons pumped for the quarter from the Flow Meter data	Concentration from the analytical data	Concentration in mg/LX1000 to convert to ug/L	Total pumped gallons/3.785 to conver to liters	Concentration in ug/L X total liters	Total ug/1000000 to convert to grams	Total grams/453. 592 to convert to pounds							
Q3 2010	79859.1	4.80	4800	302266.7	1450880129	1450.9	3.20	63850.0	0.60	600	241672.3	145003350	145	0.32
Q4 2010	90042.2	5.00	5000	340809.7	1704048635	1704.0	3.76	60180.0	0.70	700	227781.3	159446910	159	0.35
Q1 2011	76247.6	4.60	4600	288597.2	1327546964	1327.5	2.93	55130.0	0.50	500	208667.1	104333525	104	0.23
Q2 2011	85849.3	4.90	4900	324939.6	1592204042	1592.2	3.51	55800.6	0.30	300	211205.3	63361581	63	0.14
Q3 2011	85327.7	4.90	4900	322965.3	1582530188	1582.5	3.49	65618.0	0.90	900	248364.1	223527717	224	0.49
Q4 2011	89735.0	5.10	5100	339647.0	1732199573	1732.2	3.82	50191.3	2.00	2000	189974.1	379948141	380	0.84
Q1 2012	90376.4	4.80	4800	342074.7	1641958435	1642.0	3.62	31440.1	1.70	1700	119000.8	202301323	202	0.45
Q2 2012	90916.5	4.90	4900	344118.8	1686181940	1686.2	3.72	26701.2	2.50	2500	101064.1	252660294	253	0.56
Q3 2012	91607.0	5.00	5000	346732.5	1733662475	1733.7	3.82	25246.0	2.60	2600	95556.1	248445886	248	0.55
Q4 2012	78840.0	4.80	4800	298409.4	1432365120	1432.4	3.16	30797.0	1.46	1460	116566.6	170187302	170	0.38
Q1 2013	62943.7	4.78	4780	238241.9	1138796304	1138.8	2.51	22650.7	2.27	2270	85732.9	194613682	195	0.43
Q2 2013	71187.3	4.22	4220	269443.9	1137053387	1137.1	2.51	25343.4	2.11	2110	95924.8	202401263	202	0.45
Q3 2013	72898.8	4.89	4890	275922.0	1349258375	1349.3	2.97	25763.0	1.98	1980	97513.0	193075651	193	0,43
Q4 2013	70340.4	5.25	5250	266238.4	1397751674	1397.8	3.08	24207.6	1.38	1380	91625.8	126443557	126	0.28
Q1 2014	69833.8	4.70	4700	264320.9	1242308385	1242.3	2.74	23263.1	2.12	2120	88050.8	186667767	187	0.41
Q2 2014	71934.9	4.08	4080	272273.6	1110876274	1110.9	2.45	23757.5	1.42	1420	89922.1	127689435	128	0.28
Q3 2014	74788.2	3.70	3700	283073.3	1047371347	1047.4	2.31	24062.4	0.70	700	91076.2	63753329	64	0.14
Q4 2014	63093.0	5.07	5070	238807.0	1210751515	1210.8	2.67	21875.8	0.93	934	82799.9	77335109	77	0.17
Q1 2015	76454.3	5.75	5750	289379.5	1663932272	1663.9	3.67	24004.9	2.68	2680	90858.5	243500905	244	0.54
Q2 2015	60714.7	2.53	2530	229805.1	581407002.9	581.4	1.28	27804.6	0.85	845	105240.4	88928147	89	0.20
Q3 2015	89520.8	4.79	4790	338836.2	1623025532	1623.0	3.58	21042.0	1.75	1750	79644.0	139376948	139	0.31
Q4 2015	99633.4	4.43	4430	377112.4	1670608016	1670.6	3.68	19355.6	1.11	1110	73260.9	81319650	81	0.18
Q1 2016	90882.1	5.15	5150	343988.7	1771542055	1771.5	3.91	19150.8	1.45	1450	72485.8	105104378	105	0.23
Q2 2016	96540.5	4.54	4540	365405.8	1658942298	1658.9	3.66	22105.7	1.12	1120	83670.1	93710483	94	0.21
Q3 2016	79786.4	4.95	4950	301991.5	1494858044	1494.9	3,30	17149.5	1.57	1570	64910.9	101910046	102	0.22
Q4 2016	85414.0	4.88	4880	323292.0	1577664911	1577.7	3.48	18541.6	1.18	1180	70180.0	82812348	83	0.18

2010 2094767.05

82.81 825032.4

 Table 4

 Table 4 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

		25	1.42	TW4-19					I CARE	- 07	TW4-20			
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Calculations and Data Origination														
Q3 2010	116899.2	5.90	5900	442463.5	2.611E+09	2611	5.76	39098.3	5.30	5300	147987.1	784331447	784	1.73
Q4 2010	767970.5	2,70	2700	2906768.3	7.848E+09	7848	17.30	36752.5	4.60	4600	139108.2	639897778	640	1.41
Q1 2011	454607.9	17.00	17000	1720690.9	2.925E+10	29252	64.49	37187.5	4.40	4400	140754.7	619320625	619	1.37
Q2 2011	159238.9	12.00	12000	602719.2	7.233E+09	7233	15.95	67907.7	4.80	4800	257030.6	1.234E+09	1234	2.72
Q3 2011	141542.6	3.00	3000	535738.7	1.607E+09	1607	3.54	72311.2	6.50	6500	273697.9	1.779E+09	1779	3.92
Q4 2011	147647.2	5.00	5000	558844.7	2.794E+09	2794	6.16	72089.3	4.20	4200	272858.0	1.146E+09	1146	2.53
Q1 2012	148747.0	0.60	600	563007.4	337804437	338	0.74	76306.0	7.90	7900	288818.2	2.282E+09	2282	5.03
Q2 2012	172082.0	2.40	2400	651330.5	1.563E+09	1563	3.45	22956.4	11.00	11000	86890.1	955790963	956	2.11
Q3 2012	171345.0	2.50	2500	648540.8	1.621E+09	1621	3.57	22025.0	10.80	10800	83364.6	900337950	900	1.98
Q4 2012	156653.0	4.10	4100	592931.6	2.431E+09	2431	5.36	20114.0	11.00	11000	76131.5	837446390	837	1.85
Q1 2013	210908.0	7.99	7990	798286.8	6.378E+09	6378	14.06	18177.0	9.07	9070	68799.9	624015501	624	1.38
Q2 2013	226224.0	2.95	2950	856257.8	2.526E+09	2526	5.57	20252.4	9.76	9760	76655.3	748156060	748	1.65
Q3 2013	329460.1	17.60	17600	1247006.5	2.195E+10	21947	48.39	19731.0	8.65	8650	74681.8	645997873	646	1.42
Q4 2013	403974.0	4.70	4700	1529041.6	7.186E+09	7186	15.84	19280.2	9.64	9640	72975.6	703484369	703	1.55
Q1 2014	304851.0	1,62	1620	1153861.0	1.869E+09	1869	4.12	18781.6	7.56	7560	71088.4	537427971	537	1.18
Q2 2014	297660.0	1.34	1340	1126643.1	1.51E+09	1510	3.33	18462.4	5.95	5950	69880.2	415787095	416	0.92
Q3 2014	309742.0	1.60	1600	1172373.5	1.876E+09	1876	4.14	17237.9	4.30	4300	65245.5	280555441	281	0.62
Q4 2014	198331.0	4.72	4720	750682.8	3.543E+09	3543	7.81	16341.8	7.67	7670	61853.7	474417979	474	1.05
Q1 2015	60553.0	8.56	8560	229193.1	1.962E+09	1962	4.33	15744.7	9.80	9800	59593.7	584018157	584	1.29
Q2 2015	75102.8	0.92	916	284264.1	260385914	260	0.57	18754.1	5.76	5760	70984.3	408869387	409	0.90
Q3 2015	116503.9	11.60	11600	440967.3	5.115E+09	5115	11.28	17657.3	9.27	9270	66832.9	619540802	620	1.37
Q4 2015	112767.7	10.6	10600	426825.7	4.524E+09	4524	9.97	15547.4	6.23	6230	58846.9	366616243	367	0.81
Q1 2016	116597.0	15.7	15700	441319.6	6.929E+09	6929	15.28	14353.5	10.3	10300	54328.0	559578374	560	1.23
Q2 2016	123768.0	1.27	1270	468461.9	594946588	595	1.31	15818.3	11.2	11200	59872.3	670569374	671	1.48
Q3 2016	103609.0	10.5	10500	392160.1	4.118E+09	4118	9.08	12186.6	11.3	11300	46126.3	521226975	521	1.15
Q4 2016	104919.4	10	10000	397119.9	3.971E+09	3971	8.76	12879.6	11.4	11400	48749.3	555741860	556	1.23

2010 5531704.2

290.15 737953.7

 Table 4

 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

	a literation and	DI ESTIMA	There are a	TW4-4	The second	and the second			- 9	and the state	TW4-22		and the second	
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Calculations and Data Origination														
Q3 2010	76916.8	7.30	7300.00	291130.1	2.1E+09	2125.25	4.69	NA	NA	NA	NA	NA	NA	NA
Q4 2010	86872.1	7.10	7100.00	328810.9	2.3E+09	2334.56	5.15	NA	NA	NA	NA	NA	NA	NA
Q1 2011	73360.0	7.00	7000.00	277667.6	1.9E+09	1943.67	4.29	NA	NA	NA	NA	NA	NA	NA
Q2 2011	80334.6	7.00	7000.00	304066.5	2.1E+09	2128.47	4.69	NA	NA	NA	NA	NA	NA	NA
Q3 2011	97535.0	6.60	6600.00	369170.0	2.4E+09	2436.52	5.37	NA	NA	NA	NA	NA	NA	NA
Q4 2011	109043.5	7.00	7000.00	412729.6	2.9E+09	2889.11	6.37	NA	NA	NA	NA	NA	NA	NA
Q1 2012	101616.8	7.10	7100.00	384619.6	2.7E+09	2730.80	6.02	NA	NA	NA	NA	NA	NA	NA
Q2 2012	87759.1	7.10	7100.00	332168.2	2.4E+09	2358.39	5.20	NA	NA	NA	NA	NA	NA	NA
Q3 2012	80006.0	7.10	7100.00	302822.7	2.2E+09	2150.04	4.74	NA	NA	NA	NA	NA	NA	NA
Q4 2012	71596.0	7.00	7000.00	270990.9	1.9E+09	1896.94	4.18	NA	NA	NA	NA	NA	NA	NA
Q1 2013	58716.8	7.36	7360.00	222243.1	1.6E+09	1635.71	3.61	16677.4	58.00	58000.0	63124.0	3.7E+09	3661.2	8.07
Q2 2013	65603.4	6.30	6300.00	248308.9	1.6E+09	1564.35	3.45	25523.2	50.20	50200.0	96605.3	4.8E+09	4849.6	10.69
Q3 2013	63515.4	7.22	7220.00	240405.8	1.7E+09	1735.73	3.83	25592.9	29.70	29700.0	96869.1	2.9E+09	2877.0	6.34
Q4 2013	60233.6	7.84	7840.00	227984.2	1.8E+09	1787.40	3.94	24952.2	45.20	45200.0	94444.1	4.3E+09	4268.9	9.41
Q1 2014	58992.9	7.28	7280.00	223288.1	1.6E+09	1625.54	3.58	24532.0	54.60	54600.0	92853.6	5.1E+09	5069.8	11.18
Q2 2014	60235.3	5,91	5910.00	227990.6	1.3E+09	1347.42	2.97	24193.9	47.20	47200.0	91573.9	4.3E+09	4322.3	9.53
Q3 2014	69229.4	5.30	5300.00	262033.3	1.4E+09	1388.78	3.06	24610.9	41.50	41500.0	93152.3	3.9E+09	3865.8	8.52
Q4 2014	64422.6	7.02	7020.00	243839.5	1.7E+09	1711.75	3.77	23956.9	54.90	54900.0	90676.9	5.0E+09	4978.2	10.97
Q1 2015	36941.3	7.70	7700.00	139822.8	1.1E+09	1076.64	2.37	22046.9	69.20	69200.0	83447.5	5.8E+09	5774.6	12.73
Q2 2015	68162.8	6.33	6330.00	257996.2	1.6E+09	1633.12	3.60	23191.6	47.10	47100.0	87780.2	4.1E+09	4134.4	9.11
Q3 2015	64333.0	6.45	6450.00	243500.4	1.6E+09	1570.58	3.46	24619.9	64.70	64700.0	93186.3	6.0E+09	6029.2	13.29
Q4 2015	59235.1	6.27	6270.00	224204.9	1.4E+09	1405.76	3.10	23657.6	56.10	56100.0	89544.0	5.0E+09	5023.4	11.07
Q1 2016	57274.0	6.71	6710.00	216782.1	1.5E+09	1454.61	3.21	24517.8	31.10	31100.0	92799.9	2.9E+09	2886.1	6.36
Q2 2016	61378.0	6.56	6560.00	232315.7	1.5E+09	1523.99	3.36	26506.3	58.40	58400.0	100326.3	5.9E+09	5859.1	12.92
Q3 2016	50104.2	7.22	7220.00	189644.4	1.4E+09	1369.23	3.02	22144.1	61.30	61300.0	83815.4	5.1E+09	5137.9	11.33
Q4 2016	31656.0	6.77	6770.00	119818.0	8.1E+08	811.17	1.79	23646.8	61.50	61500.0	89503.1	5.5E+09	5504.4	12.14

2010 1795073.7

102.81 380370.4

 Table 4

 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

	122 2012 3	SAME	and the second	TW4-24	State States	M NA	1 martine		- Sharpen		TW4-25		- Inter	2-1-13
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Calculations and Data Origination														
Q3 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2013	144842.6	35.90	35900.0	548229.2	2.0E+10	19681.4	43.39	99369.9	9.00	9000.0	376115.1	3.4E+09	3385.0	7.46
Q2 2013	187509.3	23.70	23700.0	709722.7	1.7E+10	16820.4	37.08	147310.4	5.24	5240.0	557569.9	2.9E+09	2921.7	6.44
Q3 2013	267703.5	32.60	32600.0	1013257.7	3.3E+10	33032.2	72.82	145840.9	5.69	5690.0	552007.8	3.1E+09	3140.9	6.92
Q4 2013	260555.3	34.60	34600.0	986201.8	3.4E+10	34122.6	75.23	126576.5	6.10	6100.0	479092.1	2.9E+09	2922.5	6.44
Q1 2014	229063.9	31.60	31600.0	867006.9	2.7E+10	27397.4	60.40	129979.2	2.16	2160.0	491971.3	1.1E+09	1062.7	2.34
Q2 2014	216984.1	35.00	35000.0	821284.8	2.9E+10	28745.0	63.37	124829.8	1.21	1210.0	472480.8	5.7E+08	571.7	1.26
Q3 2014	213652.5	31,50	31500.0	808674.7	2.5E+10	25473.3	56.16	119663.9	1.60	1600.0	452927.9	7.2E+08	724.7	1.60
Q4 2014	178468.7	35.70	35700.0	675504.0	2.4E+10	24115.5	53.17	107416.1	1.03	1030.0	406569.9	4.2E+08	418.8	0.92
Q1 2015	92449.3	34,60	34600.0	349920.6	1.2E+10	12107.3	26.69	71452.4	14.40	14400.0	270447.3	3.9E+09	3894.4	8.59
Q2 2015	62664.2	31.80	31800.0	237184.0	7.5E+09	7542.5	16.63	91985.3	1.14	1140.0	348164.4	4.0E+08	396.9	0.88
Q3 2015	66313.2	25.30	25300.0	250995.5	6.4E+09	6350.2	14.00	124137.1	1.63	1630.0	469858.9	7.7E+08	765.9	1.69
Q4 2015	107799.1	29.60	29600.0	408019.6	1.2E+10	12077.4	26.63	116420.1	1.78	1780.0	440650.1	7.8E+08	784.4	1.73
Q1 2016	100063.2	29.10	29100.0	378739.2	1.1E+10	11021.3	24.30	115483.2	0.84	837.0	437103.9	3.7E+08	365.9	0.81
Q2 2016	65233.6	24.20	24200.0	246909.2	6.0E+09	5975.2	13.17	125606.0	0.96	959.0	475418.7	4.6E+08	455.9	1.01
Q3 2016	51765.8	34.40	34400.0	195933.6	6.7E+09	6740.1	14.86	104983.6	1.78	1780.0	397362.9	7.1E+08	707.3	1.56
Q4 2016	99522.5	31.90	31900.0	376692.7	1.2E+10	12016.5	26.49	98681.2	1.24	1240.0	373508.3	4.6E+08	463.2	1.02

2010 2344590.8

624.39 1849735.6

 Table 4

 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

	र्थाण चल्ल	and the set		TWN-02	Merca Product			i realt in			TW4-0	1	-	ALL PLAN
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Totai Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Calculations and Data Origination														
Q3 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2013	31009.4	57.30	57300.0	117370.6	6.7E+09	6725.3	14.83	NA	NA	NA	NA	NA	NA	NA
Q2 2013	49579.3	57.70	57700.0	187657.7	1.1E+10	10827.8	23.87	NA	NA	NA	NA	NA	NA	NA
Q3 2013	50036.5	80.00	80000.0	189388.2	1.5E+10	15151.1	33.40	NA	NA	NA	NA	NA	NA	NA
Q4 2013	49979.9	111.00	111000.0	189173.9	2.1E+10	20998.3	46.29	NA	NA	NA	NA	NA	NA	NA
Q1 2014	48320.4	42.60	42600.0	182892.7	7.8E+09	7791.2	17.18	NA	NA	NA	NA	NA	NA	NA
Q2 2014	47611.9	44.70	44700.0	180211.0	8.1E+09	8055.4	17.76	NA	NA	NA	NA	NA	NA	NA
Q3 2014	46927.2	42.00	42000.0	177619.5	7.5E+09	7460.0	16.45	NA	NA	NA	NA	NA	NA	NA
Q4 2014	47585.6	70.60	70600.0	180111.5	1.3E+10	12715.9	28.03	NA	NA	NA	NA	NA	NA	NA
Q1 2015	47262.2	48.60	48600.0	178887.4	8.7E+09	8693.9	19.17	24569.2	7.06	7060.0	92994.4	6.6E+08	656.5	1.45
Q2 2015	48497.3	52.80	52800.0	183562.3	9.7E+09	9692.1	21.37	23989.9	6.07	6070.0	90801.8	5.5E+08	551.2	1.22
Q3 2015	48617.4	49.70	49700.0	184016.9	9.1E+09	9145.6	20.16	23652.0	6.3	6280.0	89522.8	562203309.6	562.2	1.2
Q4 2015	46754.1	44.90	44900.0	176964.3	7.9E+09	7945.7	17.52	20764.3	1.55	1550.0	78592.9	1.2E+08	121.8	0.27
Q1 2016	47670.2	86.30	86300.0	180431.7	1.6E+10	15571.3	34.33	19255.6	0.15	148.0	72882.4	1.1E+07	10.8	0.02
Q2 2016	50783.0	45.40	45400.0	192213.7	8.7E+09	8726.5	19.24	19588.2	0.14	138.0	74141.3	1.0E+07	10.2	0.02
Q3 2016	42329.6	35.30	35300.0	160217.5	5.7E+09	5655.7	12.47	15613.5	5.49	5490.0	59097.1	3.2E+08	324.4	0,72
Q4 2016	44640.6	32.60	32600.0	168964.7	5.5E+09	5508.2	12.14	16756.8	0.75	746.0	63424.5	4.7E+07	47.3	0.10

2010 747604.6

354.20 164189.5

 Table 4

 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

	Alt and the	AP CHAR		TW4-02	2	19. 10 1			Part Arch	The second	TW4-1	THE REAL PROPERTY	1 AVA	Classifi -
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Calculations and Data Origination														
Q3 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2015	24156.7	5.32	5320.0	91433.1	4.9E+08	486.4	1.07	9898.7	8.72	8720.0	37466.6	3.3E+08	326.7	0.72
Q2 2015	22029.9	4.30	4300.0	83383.2	3.6E+08	358.5	0.79	5243.3	8.48	8480.0	19845.9	1.7E+08	168.3	0.37
Q3 2015	21586.9	3.8	3760.0	81706.4	307216126.0	307.2	0.7	3584.4	9.6	9610.0	13567.0	130378427.9	130.4	0.3
Q4 2015	21769.8	5.18	5180.0	82398.7	4.3E+08	426.8	0.94	4110.3	7.50	7500.0	15557.5	1.2E+08	116.7	0.26
Q1 2016	20944.6	5.30	5300.0	79275.3	4.2E+08	420.2	0.93	3676.2	7.13	7130.0	13914.4	9.9E+07	99.2	0.22
Q2 2016	20624.0	6.67	6670.0	78061.8	5.2E+08	520.7	1.15	3760.4	7.81	7810.0	14233.1	1.1E+08	111.2	0.25
Q3 2016	17487.4	4.07	4070.0	66189.8	2.7E+08	269.4	0.59	2953.8	8.83	8830.0	11180.1	9.9E+07	98.7	0.22
Q4 2016	19740.6	6.07	6070.0	74718.2	4.5E+08	453.5	1.00	3050.2	8.92	8920.0	11545.0	1.0E+08	103.0	0.23

2010 168339.9

7.15 36277.3

 Table 4

 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

	nNA <td< th=""><th>12,21,5</th><th>TW4-</th><th>37</th><th>Sol Black</th><th>L'ART</th></td<>								12,21,5	TW4-	37	Sol Black	L'ART	
Quarter	Pumped	and the second		Pumped	Total (ug)		and the second sec	Pumped	and the second of	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Calculations and Data Origination														
Q3 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2015	30743.7	13.1	13100.0	116364.9	1.5E+09	1524.4	3.4	29206.0	35.2	35200.0	110544.7	3.9E+09	3891.2	8.6
Q3 2015	125285.4	14.7	14700.0	474205.2	6970817013.3	6970.8	15.4	118063.9	32.4	32400.0	446871.9	14478648312.6	14478.6	31.9
Q4 2015	134774.9	14.30	14300.0	510123.0	7.3E+09	7294.8	16.08	111737.5	34.60	34600.0	422926.4	1.5E+10	14633.3	32.26
Q1 2016	125513.3	14.60	14600.0	475067.8	6.9E+09	6936.0	15.29	111591.0	28.40	28400.0	422371.9	1.2E+10	11995.4	26.45
Q2 2016	132248.7	13.10	13100.0	500561.3	6.6E+09	6557.4	14.46	119241.2	27.90	27900.0	451327.9	1.3E+10	12592.0	27.76
Q3 2016	110381.9	16.50	16500.0	417795.5	6.9E+09	6893.6	15.20	98377.6	33.40	33400.0	372359.2	1.2E+10	12436.8	27.42
Q4 2016	130311.3	13.50	13500.0	493228.3	6.7E+09	6658.6	14.68	101949.1	26.10	26100.0	385877.3	1.0E+10	10071.4	22.20

2010 789259.2

94.44 690166.3

Table 4 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

	1 Contraction	J.C.A.S.		TW4-39		103102	A CONTRACT OF	
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Removed by All Wells
Calculations and Data Origination								
Q3 2010	NA	NA	NA	NA	NA	NA	NA	15.69
Q4 2010	NA	NA	NA	NA	NA	NA	NA	27.97
Q1 2011	NA	NA	NA	NA	NA	NA	NA	73.30
Q2 2011	NA	NA	NA	NA	NA	NA	NA	27.01
Q3 2011	NA	NA	NA	NA	NA	NA	NA	16.82
Q4 2011	NA	NA	NA	NA	NA	NA	NA	19.71
Q1 2012	NA	NA	NA	NA	NA	NA	NA	15.86
Q2 2012	NA	NA	NA	NA	NA	NA	NA	15.03
Q3 2012	NA	NA	NA	NA	NA	NA	NA	14.67
Q4 2012	NA	NA	NA	NA	NA	NA	NA	14.92
Q1 2013	NA	NA	NA	NA	NA	NA	NA	95.73
Q2 2013	NA	NA	NA	NA	NA	NA	NA	91.71
Q3 2013	NA	NA	NA	NA	NA	NA	NA	176.53
Q4 2013	NA	NA	NA	NA	NA	NA	NA	162.07
Q1 2014	NA	NA	NA	NA	NA	NA	NA	103.14
Q2 2014	NA	NA	NA	NA	NA	NA	NA	101.87
Q3 2014	NA	NA	NA	NA	NA	NA	NA	92.99
Q4 2014	NA	NA	NA	NA	NA	NA	NA	108.57
Q1 2015	NA	NA	NA	NA	NA	NA	NA	82.61
Q2 2015	NA	NA	NA	NA	NA	NA	NA	68.86
Q3 2015	NA	NA	NA	NA	NA	NA	NA	118.63
Q4 2015	NA	NA	NA	NA	NA	NA	NA	124.50
Q1 2016	NA	NA	NA	NA	NA	NA	NA	132.55
Q2 2016	NA	NA	NA	NA	NA	NA	NA	99.98
Q3 2016	NA	NA	NA	NA	NA	NA	NA	101.12
Q4 2016	3589.3	20.70	20700.0	13585.5	2.8E+08	281.2	0.62	106.06

Totals Since Q3

2010 3589.30

0.62 2007.88

									141116	ne Data		IC IUI IVI	W-50, IVI	vv-51, 1vi	W-5, and	1 141 44 - 1 1											
Service in	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Location	2010	2010	2010	2011	2011	2011	2011	2012	2012	2012	2012	2013	2013	2013	2013	2014	2014	2014	2014	2015	2015	2015	2015	2016	2016	2016	2016
MW-30	15.8	15	16	16	17	16	16	17	16	17	18.5	21.4	18.8	17.6	19.5	18.4	19.4	16.8	16.2	14.9	17.0	17.9	16.3	20.0	17.3	18.0	17.2
MW-31	22.5	21	20	21	22	21	21	21	20	21	23.6	19.3	23.8	21.7	23.9	20.6	23.1	18.9	20.9	18.7	19.0	19.9	18.4	18.8	18.6	19.7	18.8
MW-5	ND	NS	0.2	NS	0.2	NS	0.2	NS	0.1	NS	ND	NS	ND	NS	0.279	NS	ND	NS	0.21	NS	0.142	NS	0.118	NS	0.156	NS	0.241
MW-11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.117	ND	ND								

 Table 5

 Nitrate Data Over Time for MW-30, MW-31, MW-5, and MW-11

ND = Not detected

NS = Not Sampled

TABLE 6 Slug Test Results (Using KGS Solution and Automatically Logged Data)

Well	K (cm/s)	K (ft/day)	
MW-30	1.0E-04	0.28	
MW-31	MW-31 7.1E-05		
TW4-22	0.36		
TW4-24	0.45		
TW4-25	0.16		
TWN-2	TWN-2 1.5E-05		
TWN-3	8.6E-06	0.024	
	Average 1	0.22	
	0.15		
	0.32		
	0.31		

Notes:

Average 1 = arithemetic average of all wells

Average 2 = geometric average of all wells

Average 3 = arithemetic average of MW-30, MW-31, TW4-22, and TW4-24

Average 4 = geometric average of MW-30, MW-31, TW4-22, and TW4-24

cm/s = centimeters per second

ft/day = feet per day

K = hydraulic conductivity

KGS = KGS Unconfined Slug Test Solution in AqtesolveTM.

TABLE 7
Pre-Pumping Saturated Thicknesses

Well	Depth to Brushy Basin (ft)	Depth to Water Fourth Quarter, 2012 (ft)	Saturated Thickness Above Brushy Basin (ft)
TW4-22	112	53	58
TW4-24	110	55	55

Notes:

ft = feet

TABLE 8 Pre-Pumping Hydraulic Gradients and Flow Calculations

Pathline Boundaries	Path Length	Head Change	Hydraulic Gradient
Patnine Boundaries	(ft) (ft)		(ft/ft)
TW4-25 to MW-31	2060	48	0.023
TWN-2 to MW-30	2450 67		0.027
		average	0.025
		¹ min flow (gpm)	1.31
		² max flow (gpm)	2.79

Notes:

ft = feet

ft/ft = feet per foot

gpm = gallons per minute

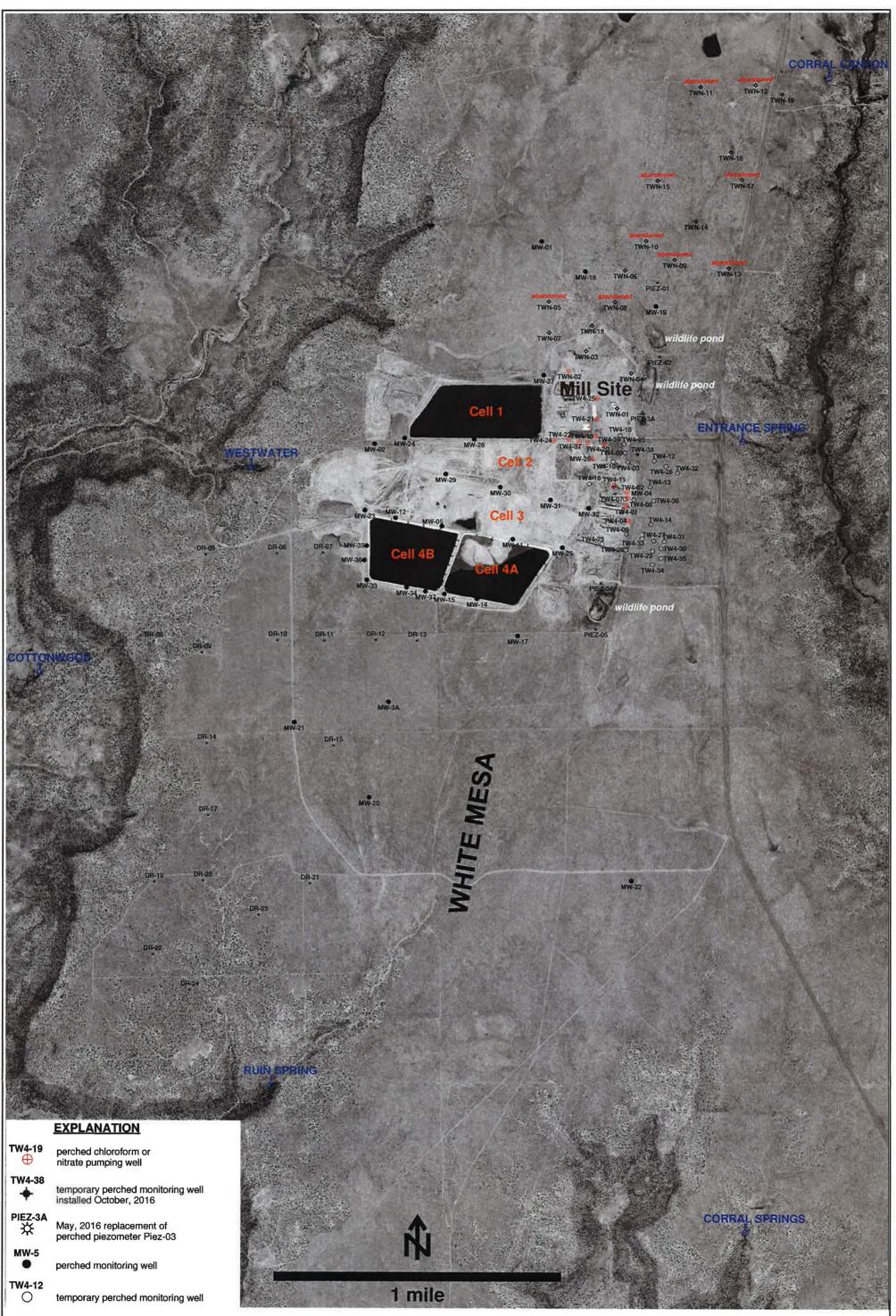
¹ assumes width = 1,200 ft; saturated thickness = 56 ft; K = 0.15 ft/day; and gradient = 0.025 ft/ft

² assumes width = 1,200 ft; saturated thickness = 56 ft; K = 0.32 ft/day; and gradient = 0.025 ft/ft

Table 9 *Recalculated Background Flow

	Background Flow (gpm)	*Recalculated Background Flow (gpm)
minimum	1.31	0.79
maximum	2.79	1.67

* recalculated based on reduced widlife pond recharge as presented in the third quarter, 2015 Nitrate Monitoring Report


gpm = gallons per minute

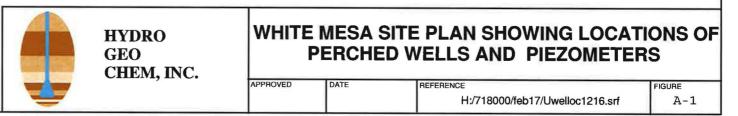
INDEX OF TABS

- Tab A Site Plan and Perched Well Locations White Mesa Site
- Tab B Order of Sampling and Field Data Worksheets
- Tab CKriged Current Quarter Groundwater Contour Map, Capture Zone Map, Capture Zone DetailsMap, and Weekly, Monthly and Quarterly Depth to Water Data
- Tab D Kriged Previous Quarter Groundwater Contour Map
- Tab E Hydrographs of Groundwater Elevations over Time for Nitrate Monitoring Wells
- Tab F Depths to Groundwater and Elevations over Time for Nitrate Monitoring Wells
- Tab G Laboratory Analytical Reports
- Tab H Quality Assurance and Data Validation Tables
 - H-1 Field Data QA/QC Evaluation
 - H-2 Holding Time Evaluation
 - H-3 Analytical Method Check
 - H-4 Reporting Limit Evaluation
 - H-5 QA/QC Evaluation for Sample Duplicates
 - H-6 QC Control Limits for Analyses and Blanks
 - H-7 Receipt Temperature Evaluation
 - H-8 Rinsate Evaluation
- Tab I Kriged Current Quarter Isoconcentration Maps
- Tab J Analyte Concentration Data over Time
- Tab K Concentration Trend Graphs
- Tab L CSV Transmittal Letter
- Tab M Residual Mass Estimate Analysis Figure

Tab A

Site Plan and Perched Well Locations White Mesa Site

TWN-7


temporary perched nitrate monitoring well

PIEZ-1

perched piezometer

RUIN SPRING

6 seep or spring

Tab B

-

-

- 41

Order of Sampling and Field Data Worksheets

Nitrate Order 4th Quarter 2016

	1	Nitrate	Samples		
Name	Nitrate Mg/L Previous Qrt.	Date/Purge	sample	Depth	Total Depth
TWN-18	D	10/6/16	1011		145
TWN-7	0.810	10/7/16	0701		105
TWN-1	1.76	10/6/2016	1128		112.5
TWN-4	3.14	10/6/2016	1231		125.7
TWN-3	16.8	10/7/16	0709		96
TWN-2	35.3	10/11/16	1250		96
	18	10/6/16	1011		
Rinsate DI Sample	WINI-60	10/13/16	0930		
Plez 1	6.78	10/11/16	1325		
Piez 2	0.669	10/11/16	1258		
Piez 3 🗛	8.83	10/11/16	BIR	_	

0

Ri	nsate Samj	oles
Name	Date	Sample
TWN-18R	10/6/16	0915
TWN-7R		I
TWN-1R		
TWN-4R		
TWN-3R		
TWN-2R		

x

 \bigcirc

Samplers:

Date: 06-06-12 Rev. 7.2 - Erra	Date:	06-06-12	Rev.	7.2	- Errat
--------------------------------	-------	----------	------	-----	---------

CFENERGY FUELS ATTACHME WHITE MESA URA FIELD DATA WORKSHEET	NIUM MILL See instruction
Description of Sampling Event: 4Th Quarter N	trate 2016
Location (well name): Picz-01	and initials: Tanner Holliday MH
P.cz-01_10112014	
Date and Time for Purging 10/11/2016 an	d Sampling (if different)
Well Purging Equip Used: Dpump or D bailer	Well Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Nitrate Prev.	Well Sampled in Sampling Event Piez - 03A
pH Buffer 7.0 7,0 p	H Buffer 4.0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft):
Depth to Water Before Purging 65,46 Casin	g Volume (V) $4''$ Well: \diamond (.653h)
	3" Well: 0 (.367h)
Weather Cond. Party cloudy	Ext'l Amb. Temp. °C (prior sampling event) /9°
Time J324 Gal. Purged O	Time Gal. Purged
Conductance 2163 pH 7.04	Conductance pH
Temp. °C 15,30	Temp. °C
Redox Potential Eh (mV) 457	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Mill - Groundwater Discharge Permit Groundwater Monitoring Quality Assurance	Plan (QAP)						Date: 06-06-	-12 Rev. 7.2 - Errata
Volume of Water Purged ∂ gallon(s)								
Pumping Rate Calculation								
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 =$ O $T = 2V/Q =$								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness, number of gallons evacuated								
Name of Certified Analytic	al Labora	atory if Otl	ner Than Energy Labs	ΛωΛι	-			
Type of Sample		le Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type		tive Added
	Y	N	specified below)	Y	N		Y	N
VOCs			3x40 ml			HCL		
Nutrients	Ľ		100 ml		Ľ	H2SO4	Ľ	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	Ľ		Sample volume		Ľ			M
Lhloridc If preservative is used, specify Type and Quantity of Preservative:								
Final Depth 66.85]	Sample T	ime 1325					
Comment						🧭 See	instruction	n
Arrived on site at	1322	TANAC	r and Garrin pr	csent	ts	collect sample	cs.	
Samples were ba.	icd an	d col	lected at 1325	LONG	Water	- was a liti	tic	
Murky with a l.g. Floating in valer.				rcus h	0000	LIKE Particle	2	
		_						

Piez-01 10-11-2016 Do not touch this cell (SheetName)

-

-

CEFENERGY FUELS ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction FIELD DATA WORKSHEET FOR GROUNDWATER								
Description of Sampling Event: 4Th Quarterly	Quarter Nitrate 2016							
Location (well name): ?:ez-02 Sampler Name and initials: Tanner Holliday ATH								
Field Sample ID P.cz - 02_10112016								
Date and Time for Purging $10/1/2016$ and	d Sampling (if different)							
Well Purging Equip Used: Dump or D bailer	Well Pump (if other than Bennet)							
Purging Method Used: 2 casings 3 casings								
Sampling Event Quarterly Nitrate Prev.	Well Sampled in Sampling Event TWN-02							
pH Buffer 7.0 7.0 p	H Buffer 4.0 Ч.0							
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft):							
Depth to Water Before Purging 40,05 Casin	g Volume (V) 4" Well: 0 (.653h)							
	3" Well: 0 (.367h)							
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event) 19*							
Time 1257 Gal. Purged 0	Time Gal. Purged							
Conductance 861 pH 7,05	Conductance pH							
Temp. °C 15.64	Temp. °C							
Redox Potential Eh (mV) 486	Redox Potential Eh (mV)							
Turbidity (NTU)	Turbidity (NTU)							
Time Gal. Purged	Time Gal. Purged							
Conductance pH	Conductance pH							
Temp. °C	Temp. °C							
Redox Potential Eh (mV)	Redox Potential Eh (mV)							
Turbidity (NTU)	Turbidity (NTU)							

Mill - Groundwater Discharge Permit
Groundwater Monitoring Quality Assurance Plan (QAP)

-

1

Date: 06-06-12 Rev. 7.2 - Errata

Volume of Water Purged Pumping Rate Calculation	0] gallon(s)						
Flow Rate (Q), in gpm. S/60 = 0 Time to evacuate two casing volumes (2V) T = 2V/Q = 0									
Number of casing volumes evacuated (if other than two)									
If well evacuated to dryness, number of gallons evacuated									
Name of Certified Analytical Laboratory if Other Than Energy Labs									
Type of Sample		le Taken	Sample Vol (indicate if other than as		ered	Preservative Type		tive Added	
	Y	N	specified below)	Y	N		Y	N	
VOCs			3x40 ml			HCL			
Nutrients	Ď		100 ml		Ľ	H2SO4	Ë		
Heavy Metals			250 ml			HNO3			
All Other Non Radiologics			250 ml			No Preserv.			
Gross Alpha			1,000 ml			HNO3			
Other (specify)	Ċ		Sample volume		凹			Ľ	
Chloridc If preservative is used, specify Type and Quantity of Preservative:									
Final Depth 41.43		Sample T	ime 1758						
Comment							instructio	n	
Arrived on site at 1255 Tanner and Garrin present to collect Samples Damples were Bailed and collected at 1258 Water was mostly clear									
Left site at 130	' 4								

1

Piez-02 10-11-2016 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction						
Description of Sampling Event: 4th Quarter Nitrate 2016						
Location (well name): P 22- J3A	and initials: Janner Hollidag/TH					
Field Sample ID Piez-03_10112016	Piez-03A_10112016					
Date and Time for Purging 10/11/2016 and	d Sampling (if different)					
Well Purging Equip Used: Dpump or D bailer	Well Pump (if other than Bennet)					
Purging Method Used: 2 casings 3 casings						
Sampling Event Quarterly Nitratc Prev.	Well Sampled in Sampling Event Piez- 02					
pH Buffer 7.0 7.0 p	H Buffer 4.0 닉. <i>O</i>					
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft):					
Depth to Water Before Purging 50,79 Casing Volume (V) 4" Well: 0 (.653h) 3" Well: 0 (.657h)						
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event) 19					
Taring Cloudy						
Time Till Gal. Purged 0	Time Gal. Purged					
Conductance 1323 pH 7,12	Conductance pH					
Temp. °C 15.53	Temp. °C					
Redox Potential Eh (mV) 469	Redox Potential Eh (mV)					
Turbidity (NTU)	Turbidity (NTU)					
Time Gal. Purged	Time Gal. Purged					
Conductance pH	Conductance pH					
Temp. °C	Temp. °C					
Redox Potential Eh (mV)	Redox Potential Eh (mV)					
Turbidity (NTU)	Turbidity (NTU)					

-

Date: 06-06-1	2 Rev. 7.	2 - Errata
---------------	-----------	------------

2			1					
Volume of Water Purged	0		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 =$ O $T = 2V/Q =$ O								
Number of casing volumes	Number of casing volumes evacuated (if other than two)							
If well evacuated to dryness	, number	of gallons	s evacuated	0				
Name of Certified Analytica	al Laborat	tory if Oth	ner Than Energy Labs	AWAL				
Type of Sample	Sample	e Taken N	Sample Vol (indicate if other than as specified below)	Filte	ered	Preservative Type	Preserva	ative Added
VOCs			3x40 ml			HCL		
Nutrients	Ď		100 ml		Ċ	H2SO4	đ	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	₫		Sample volume		ď			<u>ل</u>
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Final Depth 51.58 Sample Time 1312								
Comment See instruction								
Arrived on site at 1309 Tanner and Garrin present to collect samples. Sumples were bailed and collected at 1312 Water was mostly clear with Left site at 1314								
2012-20								

Piez-03A 10-11-2016 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction							
Description of Sampling Event: 4th Quarter Ni	trate 2016						
Location (well name): TWN-01 Sampler Name and initials: Tanner Holliday/TH							
Field Sample ID Tww-01_10062016							
Date and Time for Purging 10/6/2016 and	a Sampling (if different)						
Well Purging Equip Used: 🖆 pump or 🔲 bailer 🛛 V	Vell Pump (if other than Bennet)						
Purging Method Used: 2 casings 3 casings							
Sampling Event Quarterly Nitrate Prev.	Well Sampled in Sampling Event						
pH Buffer 7.0 7.0 pl	H Buffer 4.0						
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 112.50						
Depth to Water Before Purging 63,05 Casing Volume (V) 4" Well: 32,29 (.653h)							
	3" Well: • (.367h)						
Weather Cond. Sunn J	Ext'l Amb. Temp. °C (prior sampling event)						
Time 1125 Gal. Purged 50	Time 1126 Gal. Purged 60						
Conductance 882 pH 6.70	Conductance 883 pH 4.80						
Temp. °C 15.25	Temp. °C [5.73]						
Redox Potential Eh (mV)	Redox Potential Eh (mV) 393						
Turbidity (NTU)	Turbidity (NTU)						
Time 1127 Gal. Purged 70	Time 1128 Gal. Purged 80						
Conductance 883 pH 6.85	Conductance 883 pH 6.89						
Temp. °C [15.2]	Temp. °C						
Redox Potential Eh (mV) 395	Redox Potential Eh (mV) 399						
Turbidity (NTU)	Turbidity (NTU)						

Date: 06-06-12 Rev. 7.2 - Errata

Volume of Water Purged	80		gallon(s)					
] 8()					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 7. T = 2V/Q = 6.45								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness	s, number	r of gallons	s evacuated	0				
Name of Certified Analytics	al Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample		le Taken	Sample Vol (indicate if other than as		ered	Preservative Type	5 - Frid - Trint Angels - 1 - 1 -	ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs			3x40 ml			HCL		
Nutrients	17		100 ml		Ľ	H2SO4		
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	129		Sample volume		M			Ø
Chloridc If preservative is used, specify Type and Quantity of Preservative:								
Final Depth 103, Z Sample Time 1128								
Comment See instruction								
Arrived on site at 1117. Tanner and Garrin present for purge and sampling event								
Turge began at 1120, Purged well for a total 8 minutes Purge add								
Samples were collected at 1128. Water was clear								
Left site at 1132								

10

TWN-01 10-06-2016 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction							
Description of Sampling Event: 47 0 a-ter N t	rate 2016						
Location (well name): TWV-UZ Sampler Name and initials: Twv-UZ To acr Holl day MH							
Field Sample ID $TWN \cdot \partial Z_1 0 112016$							
Date and Time for Purging $10^{11}/20_{16}$ and Sampling (if different)							
Well Purging Equip Used: Dump or bailer Well Pump (if other than Bennet)							
Purging Method Used: 2 casings 3 casings							
Sampling Event Ourtely Vitrate Prev.	Well Sampled in Sampling Event TWN-03						
pH Buffer 7.0 7.0	H Buffer 4.0 4.0						
Specific Conductance µMHOS/ cm	Well Depth(0.01ft): 46.00						
Depth to Water Before Purging 34.23Casing Volume (V)4" Well: 40.33(.653h)3" Well: 0(.367h)							
Weather Cond. Pa HJ Cloudy Ext'l Amb. Temp. °C (prior sampling event) 19°							
Time 1249 Gal. Purged 0	Time Gal. Purged						
Conductance Z685 pH 6.90	Conductance pH						
Тетр. °С <u>15.06</u>	Temp. °C						
Redox Potential Eh (mV) S0% Redox Potential Eh (mV)							
Turbidity (NTU) 7.8	Turbidity (NTU)						
Time Gal. Purged	Time Gal. Purged						
Conductance pH Conductance pH PH							
Temp. °C Temp. °C							
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						

Mill - Groundwater	Discharge Permit

Groundwater Monitoring Quality Assurance Plan (QAP)

Date: 06-06-12 Rev. 7.2 - Errata

Volume of Water Purged)] gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 =$ 18.0 $T = 2V/Q =$ $+8.0$ -4.48 $Y = 18.0$ -4.48 -4.48								
Number of casing volumes	Number of casing volumes evacuated (if other than two)							
If well evacuated to dryness	s, numbe	r of gallons	s evacuated	0				
Name of Certified Analytic	al Labora	atory if Oth	ner Than Energy Labs	AWAL				
Type of Sample		le Taken	Sample Vol (indicate if other than as	Filte		Preservative Type		tive Added
	Y	N	specified below)	Y	N		Y	N
VOCs			3x40 ml			HCL		
Nutrients			100 ml		5	H2SO4	N	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	N		Sample volume		M			Ø
If preservative is used, specify Type and Quantity of Preservative:								
Final Depth 59.46 Sample Time 1250								
Comment See instruction								
Arrived on site at 1246 Tunner and Garrin present to collect samples.								
Samples collected at 1250 water was clear								
Left site at 1253								
				_				

TWN-02 10-11-2016 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction					
Description of Sampling Event: 4Th Quarter Nitrate 2016					
Location (well name): TWN-03	and initials: Tanner Holliday MH				
Tield Sample ID TWN-03_10072016					
Date and Time for Purging 10/6/2016 and Sa	ampling (if different) 10/7/2016				
Well Purging Equip Used: Dump or D bailer Well	ll Pump (if other than Bennet) Grundfis				
Purging Method Used: 2 casings 3 casings					
Sampling Event Quarter & Nitrate Prev. We	ell Sampled in Sampling Event				
pH Buffer 7.0 7.0 pH B	Buffer 4.0 4,0				
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 96.00				
Depth to Water Before Purging 40.65 Casing Volume (V) 4" Well: 36.14 (.653h) 3" Well: 0 (.367h)					
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event)				
Time 1404 Gal. Purged 65	Time Gal. Purged				
	Conductance pH				
22.81 Temp. ℃ 14.78	Temp. °C				
Redox Potential Eh (mV) 407	Redox Potential Eh (mV)				
Turbidity (NTU) 3 ⁻	Turbidity (NTU)				
Time 0709 Gal. Purged 0	Time 0710 Gal. Purged o				
Conductance Z143 pH 6.70	Conductance 2150 pH 6.68				
Temp. °C 14.50	Temp. °C 14.55				
Redox Potential Eh (mV)	Redox Potential Eh (mV)				
Turbidity (NTU)	Turbidity (NTU)				
Before	After				

Date: 06-06-12 Rev. 7.2 - Errata

Volume of Water Purged	65	-] gallon(s)						
Pumping Rate Calculation									
Flow Rate (Q), in gpm.			Time to evac	uate two	casing v	volumes (2V)			
S/60 = 10.0 $T = 2V/Q = 7.22$									
Number of casing volumes evacuated (if other than two)									
If well evacuated to dryness, number of gallons evacuated									
Name of Certified Analytic	al Labora	tory if Oth	her Than Energy Labs	AWA	L				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filtered		Preservative Type	Preserva	tive Added	
	Y	N	specified below)	Y	N		Y	N	
VOCs			3x40 ml			HCL			
Nutrients			100 ml		D	H2SO4	N		
Heavy Metals			250 ml			HNO3			
All Other Non Radiologics			250 ml			No Preserv.			
Gross Alpha			1,000 ml			HNO3			
Other (specify)	23		Sample volume		ø			-20	
Chloride If preservative is used, specify Type and Quantity of Preservative:									
Final Depth 93,12 Sample Time 0709									
Comment							instructio		
Arrived on site at 1	355	Tanner	and Garrin press	at fo	r pu	rac. Purae h	eaan at	1358	
Arrived on site at 1355 Tanner and Garrin present for purge. Purge began at 1358 Purged Well for a total of 6 m nutes 30 seconds. Purged Well dry. Purge ended at 1404 Water was murky. Left site at 1407									
Arrived on site at Water was 3906	706	Tanne Nrs h	r and Garrin pr	resent	to co	nect samples.	Depth	to	
	Juni		and all and a		0.10	- (V			

TWN-03 10-06-2016 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction								
Description of Sampling Event: 4th Quarter Nitrate 2016								
Location (well name): TWN-04 Sampler Name and initials: Tenner Holliday/TIF								
Field Sample ID TWN-04_10062016								
Date and Time for Purging 10/6/2015 and Sampling (if different)								
Well Purging Equip Used: Dump or D bailer	Vell Pump (if other than Bennet)							
Purging Method Used: 2 casings 3 casings								
Sampling Event Quartery N Prev.	Well Sampled in Sampling Event							
pH Buffer 7.0 7.0 pl	H Buffer 4.0 4.0							
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 125,70							
Depth to Water Before Purging 55.98 Casing								
	3" Well: 0 (.367h)							
Weather Cond. Sung	Ext'l Amb. Temp. °C (prior sampling event)							
]								
Time 1228 Gal. Purged 80	Time 1229 Gal. Purged 90							
Conductance 1088 pH G.61	Conductance 1086 pH 6.76							
Temp. °C 14.75	Temp. °C 14.76							
Redox Potential Eh (mV) 398	Redox Potential Eh (mV) 393							
Turbidity (NTU)	Turbidity (NTU)							
Time 17.30 Gal. Purged 100	Time 1231 Gal. Purged 110							
Conductance 1085 pH 6.83	Conductance 1085 pH 6.85							
Тетр. °С 1475	Temp. °C [14.74							
Redox Potential Eh (mV) 387	Redox Potential Eh (mV) 383							
Turbidity (NTU)	Turbidity (NTU)							

Mill - Groundwater Discharge Permit

Groundwater Monitoring Quality Assurance Plan (QAP) Volume of Water Purged 110 gallon(s) **Pumping Rate Calculation** Flow Rate (Q), in gpm. Time to evacuate two casing volumes (2V) 10.0 T = 2V/Q = | 9.10S/60 = Number of casing volumes evacuated (if other than two) 0 0 If well evacuated to dryness, number of gallons evacuated AWAL Name of Certified Analytical Laboratory if Other Than Energy Labs Sample Vol (indicate Sample Taken Filtered Preservative Added Type of Sample if other than as Preservative Type specified below) Y N Y Y N N HCL VOCs 3x40 ml T H2SO4 Ľ 100 ml Nutrients 250 ml HNO3 Heavy Metals All Other Non Radiologics 250 ml No Preserv. HNO3 1,000 ml Gross Alpha Other (specify) Sample volume E 2 E Conforide If preservative is used, specify Type and Quantity of Preservative: Final Depth _____7.2 1231 Sample Time 51.2 See instruction Comment Arived on site at 1217. Tanner and Garrin present for purge and sampling event Purga and 1220. Purged well for a total of 11 minutes. Purge ended and samples were collected at 1231. Water was mostly clear Left site at 1234

TWN-04 10-06-2016 Do not touch this cell (SheetName)

Date: 06-06-12 Rev. 7.2 - Errata

ATTACHMENT WHITE MESA URAN FIELD DATA WORKSHEET FO	IUM MILL See instruction						
Description of Sampling Event: 4th Quarter Nitr							
Location (well name): TWN-07	and initials: Tanner Hollidey/TH						
Field Sample ID TWN-07_100720/6							
Date and Time for Purging 10/6/2016 and S	Sampling (if different) 10/7/2016						
Well Purging Equip Used: Dump or D bailer We	ell Pump (if other than Bennet)						
Purging Method Used: 2 casings 3 casings							
Sampling Event Quarterly Nitrate Prev. W	Vell Sampled in Sampling Event TWN-18						
pH Buffer 7.0 7.0 pH	Buffer 4.0 닉,0						
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 105,00						
Depth to Water Before Purging 84.80 Casing Volume (V) 4" Well: 13.19 (.653h) 3" Well: 9 (.367h)							
Weather Cond. Sunn J	Ext'l Amb. Temp. °C (prior sampling event)						
Time 1051 Gal. Purged 2-3.33 23.33	Time Gal. Purged						
Conductance 12.69 pH 7.30	Conductance pH						
Temp. °C 14.96	Temp. °C						
Redox Potential Eh (mV) 291	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						
Time 0/0, Gal. Purged 0	Time 0707 Gal. Purged >						
Conductance 1245 pH 6.75	Conductance [12.50 pH 6, 79						
Temp. °C 15,70	Temp. °С <u>15,64</u>						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						
Beforc	Atter						

Mill - Groundwater Discharge Permit

Groundwater Monitoring Quality Assurance Plan (QAP)

Date: 06-06-12 Rev. 7.2 - Errata

Volume of Water Purged	23.3	33	gallon(s)						
Pumping Rate Calculation									
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 =$ 10.0 $T = 2V/Q =$ 2.63									
Number of casing volumes evacuated (if other than two)									
If well evacuated to dryness, number of gallons evacuated Z3,33									
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AW/H	_				
Type of Sample		e Taken	Sample Vol (indicate if other than as		ered	Preservative Type	Preservative Added		
	Y	N	specified below)	Y	N		Y	N	
VOCs			3x40 ml			HCL			
Nutrients	×.		100 ml		12	H2SO4			
Heavy Metals			250 ml			HNO3			
All Other Non Radiologics			250 ml			No Preserv.			
Gross Alpha			1,000 ml			HNO3			
Other (specify)	2		Sample volume		Ø			M	
Chloride If preservative is used, specify Type and Quantity of Preservative: Final Depth 103.11 Sample Time 0701									
See instruction									
Comment	10117	1.	. 10 1	ιr	-		,		
Arrived on site at 1047 Tanner and Garrin present for purge. Purge began at 1049 Purged well for a total of 2 minutes 20° Seconds. Purged well dry! Purge ended at 1051. Water was clear LCFI site at 1054									
Arrived on site at on water was 9571 5	658 T	anner a	and Garrin press	ent t	o colle	ct samples. I			

TWN-07 10-06-2016 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction								
Description of Sampling Event: YTh Quarter Nit	rate 2016							
Location (well name): TWひ-18	and initials: Tanner Holliday/TH							
Field Sample ID TWN-18_10062016								
Date and Time for Purging 10/6/2016 and	d Sampling (if different)							
Well Purging Equip Used: Dump or bailer	Vell Pump (if other than Bennet) Grundfos							
Purging Method Used: 2 casings 3 casings								
Sampling Event Quartery Nitrate Prev.	Well Sampled in Sampling Event TWN-18 R							
pH Buffer 7.0 7.0 pl	H Buffer 4.0 Ч.0							
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 145,00							
Depth to Water Before Purging 60,58 Casing	g Volume (V) 4" Well: 55, 7 (.653h) 3" Well: 0 (.367h)							
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 1) •							
Time 100% Gal. Purged 90	Time 1009 Gal. Purged 100							
Time 100% Gal. Purged 90	Time 1009 Gal. Purged 100							
Conductance Z397 pH 6.75	Conductance Z386 pH C. 77							
Temp. °C 14.37	Temp. °C 14,36							
Redox Potential Eh (mV) 350	Redox Potential Eh (mV) 348							
Turbidity (NTU)	Turbidity (NTU)							
Time 1010 Gal. Purged 110	Time 1311 Gal. Purged 120							
Conductance 2345 pH 6,78	Conductance 2381 pH 6.80							
Temp. ℃ 14.36	Temp. °C 14.36							
Redox Potential Eh (mV) 346	Redox Potential Eh (mV) 345							
Turbidity (NTU)	Turbidity (NTU)							

Mill - Groundwater Discharge Permit

Groundwater Monitoring Quality Assurance Plan (QAP)

Date: 06-06-12 Rev. 7.2 - Errata

Volume of Water Purged	120		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 10.0]		Time to evac T = $2V/Q$ =		casing v	volumes (2V)		
Number of casing volumes	evacuate	d (if other	than two)	0				
If well evacuated to drynes	s, number	r of gallon	s evacuated	٥				
Name of Certified Analytic	al Labora	atory if Otl	her Than Energy Labs	AWAL				
Type of Sample	Samp	le Taken	Sample Vol (indicate if other than as	e Filtered		Preservative Type	Preserva	ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs			3x40 ml			HCL		
Nutrients	M		100 ml			H2SO4	29	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	凶		Sample volume		M			ß
Chlor,de If preservative is used, specify Type and Quantity of Preservative:								
Final Depth 61.85	1	Sample T	ime 1011			See	instruction	n
Comment								
Arrived on site at Purce have h 09	0952	Tanne	r and Garrin pr	esent	for	purge and sa	mpling	event
Purge began at 09 Samples collected a	+ 1011	water	Was clear	12	MINUTO	es, turge ende	e and	
Left site at 101.								

100

TWN-18 10-06-2016 Do not touch this cell (SheetName)

.

ATTACHME WHITE MESA URA FIELD DATA WORKSHEET	NIUM MILL See instruction								
Description of Sampling Event: 4+2 Quarter	Description of Sampling Event: 4+4 Quarter Nitrate 2016								
Location (well name): TWN-182 Sampler Name and initials: Garrin Palmer/GP									
Field Sample ID TWN-18R-10062016									
Date and Time for Purging 10/6/2016 and Sampling (if different)									
Well Purging Equip Used: 🖾 pump or 🔲 bailer	Well Purging Equip Used: Dump or D bailer Well Pump (if other than Bennet)								
Purging Method Used: 2 casings 3 casings									
Sampling Event Quarterly Nitrate Prev.	Well Sampled in Sampling Event								
pH Buffer 7.0 7.0 p	H Buffer 4.0 4.0								
Specific Conductance μ MHOS/ cm	Well Depth(0.01ft):								
Depth to Water Before Purging Casing Volume (V) 4" Well: (.653h) 3" Well: (.367h)									
Weather Cond.	Ext'l Amb. Temp. °C (prior sampling event)								
Time O914 Gal. Purged 150	Time Gal. Purged								
Conductance Z.6 pH S.00	Conductance pH								
Temp. °С <u>15. 45</u>	Temp. °C								
Redox Potential Eh (mV) 323	Redox Potential Eh (mV)								
Turbidity (NTU)	Turbidity (NTU)								
Time Gal. Purged	Time Gal. Purged								
Conductance pH	Conductance pH								
Temp. °C	Temp. °C								
Redox Potential Eh (mV)	Redox Potential Eh (mV)								
Turbidity (NTU)	Turbidity (NTU)								

Date: 06-06-12 Rev. 7.2 - Errata

Volume of Water Purged <u>Pumping Rate Calculation</u>	1.5	0] gallon(s)						
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 =$ $U = 0$ $T = 2V/Q =$ O									
Number of casing volumes evacuated (if other than two)									
If well evacuated to dryness, number of gallons evacuated									
Name of Certified Analytica	al Labora	tory if Otl	her Than Energy Labs	Au	JAL				
Type of Sample	Sampl Y	e Taken	Sample Vol (indicate if other than as specified below)	Filt Y	ered N	Preservative Type	Preserva	ative Added	
VOC						UCI			
VOCs			3x40 ml			HCL			
Nutrients	M		100 ml		X	H2SO4			
Heavy Metals			250 ml			HNO3			
All Other Non Radiologics			250 ml			No Preserv.			
Gross Alpha			1,000 ml			HNO3			
Other (specify)			Sample volume						
Chloride If preservative is used, specify Type and Quantity of Preservative:									
Final Depth		Sample T	ime 0915						
Comment See instruction									
Arrived on sit	c at	085	7. Garrin Pri	csen t	· For	- rinsate.			
Rinsate began a	at C	900.	Pumped 50	Gallo	ons c	of soap L	sater	, 100	
								•	
Gallons of DI	. we	ter.	Rinsate en	ded	at	0918. San	ples	ware	
Collected at									

TWN-18R 10-06-2016 Do not touch this cell (SheetName)

-

- 10

ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction								
Description of Sampling Event: 4Th Quarter Chlo								
Location (well name): TWY-ZZ Sampler Name and initials: Tanner Holliday/TH								
Field Sample ID TW4-22_10122016								
Date and Time for Purging 10/12/2016 and	A Sampling (if different)							
Well Purging Equip Used: Dump or D bailer V	Vell Pump (if other than Bennet)							
Purging Method Used: 2 casings 3 casings								
Sampling Event Quarterly Chlorotorm Prev.	Well Sampled in Sampling Event							
pH Buffer 7.0 7.0 pH	H Buffer 4.0 4,0							
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 113,50							
Depth to Water Before Purging 58.40 Casing	Depth to Water Before Purging 58.40 Casing Volume (V) 4" Well: 35.98 (.653h) 3" Well: 0 (.367h)							
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) ²⁰							
Time 1343 Gal. Purged o	Time Gal. Purged							
Conductance 5333 pH 6,60	Conductance pH							
Temp. °C 15.85	Temp. °C							
Redox Potential Eh (mV) 480	Redox Potential Eh (mV)							
Turbidity (NTU)	Turbidity (NTU)							
Time Gal. Purged	Time Gal. Purged							
Conductance pH	Conductance pH							
Temp. °C 15,85 ·	Temp. °C							
Redox Potential Eh (mV)	Redox Potential Eh (mV)							
Turbidity (NTU)	Turbidity (NTU)							

-

Date: 06-06-12 Rev. 7.2 - Errata

Volume of Water Purged <u>Pumping Rate Calculation</u>	0] gallon(s)			۵. ا		
Flow Rate (Q), in gpm. S/60 = 17.0 17.0 Number of casing volumes evacuated (if other than two) I Time to evacuate two casing volumes (2V) T = 2V/Q = 4.23								
If well evacuated to dryness, number of gallons evacuated Name of Certified Analytical Laboratory if Other Than Energy Labs AWAL								
Type of Sample	Samp Y	le Taken	Sample Vol (indicate if other than as specified below)	Filt Y	ered N	Preservative Type	Y	tive Added
VOCs	Ó		3x40 ml			HCL	Ď	
Nutrients	b		100 ml		Ď	H2SO4	Ê	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
1 A A A A A A A A A A A A A A A A A A A								
Other (specify)			Sample volume		E			1
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Final Depth 93,25 Sample Time 1344								
Comment						See See	instruction	a
Arrived on site at 1341 Tanner and Garrin present for to collect samples.								
Samples collected	at	1344.	water was c	lear				
Left site at 13	357							

TW4-22 10-12-2016 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction								
Description of Sampling Event: 4Th Quarter Chloroform 2016								
Location (well name): TW4-Z4 and initials: Tonner Hollidoy/TH								
Field Sample ID TW4-24_ 10122016								
Date and Time for Purging 10/12/2016 and Sampling (if different)								
Well Purging Equip Used: Dump or D bailer	Well Pump (if other than Bennet)							
Purging Method Used: 2 casings 3 casings	[]							
Sampling Event Quartery Chloroform Pr	Prev. Well Sampled in Sampling Event TW4-25							
pH Buffer 7.0 7,0	pH Buffer 4.0							
Specific Conductance 1000 µMHOS/ cm Well Depth(0.01ft): 112,50								
Depth to Water Before Purging 61.70 Casing Volume (V) 4" Well: 33.17 (.653h)								
3" Well: <i>ð</i> (.367h)								
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) ての							
Time T335 Gal. Purged D	Time Gal. Purged							
Conductance 7270 pH 6.45	Conductance pH							
Temp. °C	Temp. °C							
Redox Potential Eh (mV) 511	Redox Potential Eh (mV)							
Turbidity (NTU)	Turbidity (NTU)							
Time Gal. Purged	Time Gal. Purged							
Conductance pH	Conductance pH							
Temp. °C	Temp. °C							
Redox Potential Eh (mV)	Redox Potential Eh (mV)							
Turbidity (NTU)	Turbidity (NTU)							

Volume of Water Purged	0] gallon(s)						
Pumping Rate Calculation									
Flow Rate (Q), in gpm. S/60 = -7.44 + 17 17.0 Time to evacuate two casing volumes (2V) T = 2V/Q = 3.90									
Number of casing volumes evacuated (if other than two) Ø If well evacuated to dryness, number of gallons evacuated Ø									
-		-							
Name of Certified Analytical	Labora	atory if Oth		AWAI	•				
Type of Sample		le Taken	Sample Vol (indicate if other than as	Filt		Preservative Type	Preserv	ative Added	
	<u>Y</u>	N	specified below)	Y	N		Y	N	
VOCs	Ċ		3x40 ml		đ	HCL	Ċ		
Nutrients	巾		100 ml		Ô	H2SO4	Ď		
Heavy Metals			250 ml			HNO3			
All Other Non Radiologics			250 ml			No Preserv.			
Gross Alpha			1,000 ml			HNO3			
Other (specify)	Ē		Sample volume		r			产	
Chloride If preservative is used, specify Type and Quantity of Preservative:									
Final Depth 69.92. Sample Time 1336									
Comment See instruction									
Arrived on site at 1333 Tanner and Garrin present to collect samples.									
Samples collected at	- 132	al h	bater was a lit	Hle r	nurky				
Left site at 134	0								

TW4-24 10-12-2016 Do not touch this cell (SheetName)

1

ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction									
Description of Sampling Event: 4Th Quarter Child									
Location (well name): TW4-25	and initials: Tanner Holliday/TH								
Field Sample ID TW4-25_10122016									
Date and Time for Purging 10/12/2016 and	d Sampling (if different)								
Well Purging Equip Used: Dump or D bailer	Well Pump (if other than Bennet)								
Purging Method Used: 2 casings 3 casings									
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event								
pH Buffer 7.0 7.0 p	H Buffer 4.0 Ч.О								
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 134.8								
Depth to Water Before Purging 65.36 Casin	g Volume (V) 4" Well: 45.34 (.653h) 3" Well: 0 (.367h)								
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 20°								
Time 1374 Gal. Purged 6	Time Gal. Purged								
Conductance 2733 pH 6.78	Conductance pH								
Temp. °C 16.04	Temp. °C								
Redox Potential Eh (mV) 504	Redox Potential Eh (mV)								
Turbidity (NTU)	Turbidity (NTU)								
Time Gal. Purged	Time Gal. Purged								
Conductance pH	Conductance pH								
Temp. °C	Temp. °C								
Redox Potential Eh (mV)	Redox Potential Eh (mV)								
Turbidity (NTU)	Turbidity (NTU)								

Volume of Water Purged Pumping Rate Calculation	0] gallon(s)								
Flow Rate (Q), in gpm. $S/60 = \boxed{14,50}$ Time to evacuate two casing volumes (2V) $T = 2V/Q = \boxed{6,25}$											
Number of casing volumes evacuated (if other than two)											
If well evacuated to dryness, number of gallons evacuated											
Name of Certified Analytical Laboratory if Other Than Energy Labs AWAL											
Type of Sample	Preservative Type		ative Added								
VOCs	Y	N	specified below)	Y	N D	HCL	Y	N			
			3x40 ml		E E						
Nutrients			100 ml			H2SO4					
Heavy Metals			250 ml			HNO3					
All Other Non Radiologics			250 ml			No Preserv.					
Gross Alpha			1,000 ml			HNO3					
Other (specify)	DX)		Sample volume					四			
Chloride If preservative is used, specify Type and Quantity of Preservative:											
Final Depth 79.8 Sample Time 1325											
Comment See instruction											
Arrived on site at 1321 Janner and Garrin present to collect samples											
Samples collected	at 13	75	Water Was Cl	ear							
Left site at	1328										

TW4-25 10-12-2016 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction										
Description of Sampling Event: 4th Quarter Nit										
Location (well name): TWN-60	and initials: Tanner Holl.day/TH									
Field Sample ID Tww-60_10132016										
Date and Time for Purging 10/13/2016 and	A Sampling (if different)									
Well Purging Equip Used: D pump or D bailer Well Pump (if other than Bennet)										
Purging Method Used: 2 casings 3 casings										
Sampling Event Quarterly Nitrate Prev.	Well Sampled in Sampling Event Piez-Ol									
pH Buffer 7.0 7.0 pl	pH Buffer 7.0 7.0 pH Buffer 4.0 4.0									
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft):									
Depth to Water Before Purging 0 Casing										
	3" Well: 0 (.367h)									
Weather Cond. Sund	Ext'l Amb. Temp. °C (prior sampling event)									
Time 0929 Gal. Purged 0	Time Gal. Purged									
Conductance 19 pH 7,70	Conductance pH									
Temp. °C 20.94	Temp. °C									
Redox Potential Eh (mV) 35	Redox Potential Eh (mV)									
Turbidity (NTU)	Turbidity (NTU)									
Time Gal. Purged	Time Gal. Purged									
Conductance pH	Conductance pH									
Temp. °C	Temp. °C									
Redox Potential Eh (mV)	Redox Potential Eh (mV)									
Turbidity (NTU)	Turbidity (NTU)									

Date: 06-06-12 Rev. 7.2 - Errata	Date:	06-06-12	Rev.	7.2 -	Errata
----------------------------------	-------	----------	------	-------	--------

Volume of Water Purged	Ø		gallon(s)						
Pumping Rate Calculation									
Flow Rate (Q), in gpm. S/60 = 0			Time to evac T = $2V/Q$ =		casing	volumes (2V)			
Number of casing volumes of	evacuate	d (if other	than two)	0					
If well evacuated to dryness	, numbe	r of gallons	s evacuated	٥					
Name of Certified Analytica	l Labora	atory if Oth	er Than Energy Labs	AWAL					
Type of Sample	le Taken	Sample Vol (indicate if other than as	÷	ered	Preservative Type	Preservative Added			
	Y	N	specified below)	Y	N		Y	N	
VOCs			3x40 ml			HCL			
Nutrients	Ø		100 ml		2	H2SO4	Ů		
Heavy Metals			250 ml			HNO3			
All Other Non Radiologics			250 ml			No Preserv.			
Gross Alpha			1,000 ml			HNO3			
Other (specify)			Sample volume		Ø			M	
Chloride						If preservative is use Type and Quantity of		ve:	
Final Depth 0		Sample T	ime 0930]					
Comment						See	instructio	n	
DI Blank									

TWN-60 10-13-2016 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction									
Description of Sampling Event: 4Th Quarter Chi									
Location (well name): TW4-60	and initials: Tanner Holliday /TH								
Field Sample ID TW4-60_11102016									
Date and Time for Purging 11/10/2016 and	A Sampling (if different)								
Well Purging Equip Used: D pump or D bailer	Vell Pump (if other than Bennet)								
Purging Method Used: 2 casings 3 casings									
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event TW4-39								
pH Buffer 7.0 7.0 pl	H Buffer 4.0 4.0								
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft):								
Depth to Water Before Purging D Casing	g Volume (V) 4" Well: 0 (.653h) 3" Well: 0 (.367h)								
	5 Wen. (.50/n)								
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 19*								
Time 0739 Gal. Purged 0	Time Gal. Purged								
Conductance 2,2 pH 7,52	Conductance pH								
Temp. °C 19.36	Temp. °C								
Redox Potential Eh (mV) 389	Redox Potential Eh (mV)								
Turbidity (NTU)	Turbidity (NTU)								
Time Gal. Purged	Time Gal. Purged								
Conductance pH	Conductance pH								
Temp. °C	Temp. °C								
Redox Potential Eh (mV)	Redox Potential Eh (mV)								
Turbidity (NTU)	Turbidity (NTU)								

Volume of Water Purged Pumping Rate Calculation	D] gallon(s)								
Flow Rate (Q), in gpm. S/60 = 0			T = 2V/Q =	٥	casing v	volumes (2V)					
Number of casing volumes evacuated (if other than two) • If well evacuated to dryness, number of gallons evacuated •											
Name of Certified Analytical Laboratory if Other Than Energy Labs											
Type of Sample	Samp Y	le Taken	Sample Vol (indicate if other than as specified below)	Filt Y	ered N	Preservative Type	Preserv Y	ative Added			
VOCs	D		3x40 ml		Ľ	HCL	Ø				
Nutrients	179		100 ml		位	H2SO4	e				
Heavy Metals			250 ml			HNO3					
All Other Non Radiologics			250 ml			No Preserv.					
Gross Alpha			1,000 ml			HNO3					
Other (specify)	2		Sample volume		13			2			
Chloride						If preservative is use Type and Quantity of		tive:			
Final Depth D Sample Time 0740											
Comment											
DI Blank											

TW4-60 11-10-2016 Do not touch this cell (SheetName)

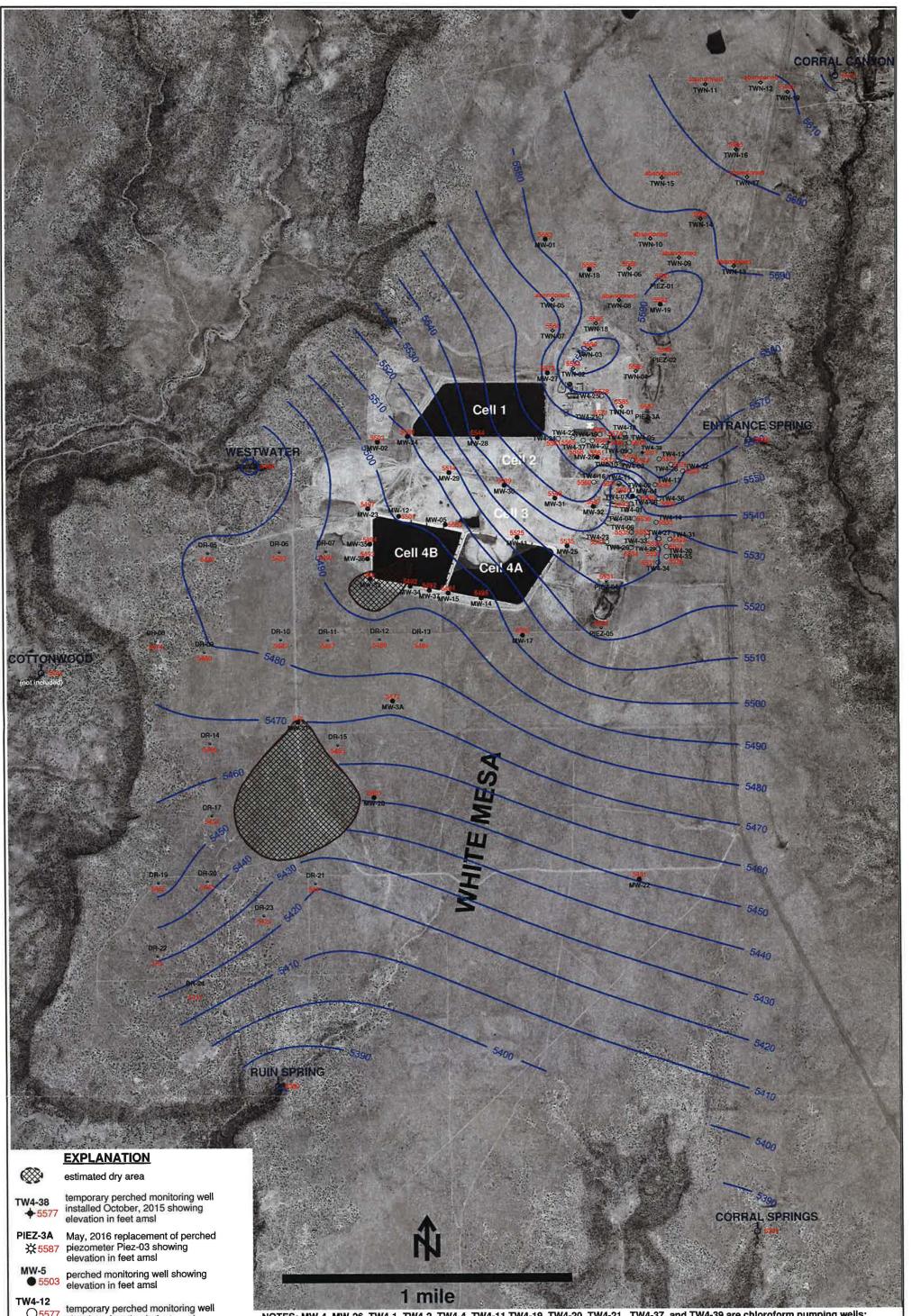
ATTACHMENT 1-2 WHITE MESA URANIUM MILL FIELD DATA WORKSHEET FOR GROUNDWATER									
Description of Sampling Event: 4Th Quarter Nit	rate 2016								
Location (well name): TWN 65	and initials: Tanner Holliday (77)								
Field Sample ID TWN-65_10062016									
Date and Time for Purging 10/6/2016 and	Sampling (if different)								
Well Purging Equip Used: Dump or D bailer W	Vell Pump (if other than Bennet) Grundtos								
Purging Method Used: 2 casings 3 casings									
Sampling Event Quarterly Nitrate Prev. N	Well Sampled in Sampling Event TWU-18 R								
pH Buffer 7.0 7.0 pH	H Buffer 4.0 4.0								
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 145.00								
Depth to Water Before Purging 60.58 Casing	Volume (V) 4" Well: 55,12 (.653h) 3" Well: 0 (.367h)								
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event)								
Time Gal. Purged	Time Gal. Purged								
Conductance pH	Conductance pH								
Temp. °C	Temp. °C								
Redox Potential Eh (mV)	Redox Potential Eh (mV)								
Turbidity (NTU)	Turbidity (NTU)								
Time Gal. Purged	Time Gal. Purged								
Conductance pH	Conductance pH								
Temp. °C	Temp. °C								
Redox Potential Eh (mV)	Redox Potential Eh (mV)								
Turbidity (NTU)	Turbidity (NTU)								

Mill - Groundwater Discharge Permit

Groundwater Monitoring Quality Assurance Plan (QAP)

Volume of Water Purged 120 00 gallon(s) Pumping Rate Calculation Time to evacuate two casing volumes (2V) Flow Rate (Q), in gpm. T = 2V/Q = 11.02S/60 =10.0 Number of casing volumes evacuated (if other than two) 0 0 If well evacuated to dryness, number of gallons evacuated AWAL Name of Certified Analytical Laboratory if Other Than Energy Labs Sample Vol (indicate Sample Taken Preservative Added Filtered Type of Sample if other than as Preservative Type specified below) Y N Y N Y N VOCs 3x40 ml HCL Π 2 ľ Nutrients Ľ9 100 ml H2SO4 250 ml Heavy Metals HNO3 No Preserv. All Other Non Radiologics 250 ml Gross Alpha 1,000 ml HNO3 Other (specify) Sample volume 029 D' X Chloride If preservative is used, specify Type and Quantity of Preservative: Final Depth 61.85 101 Sample Time See instruction Comment Duplicate of TWN-18

TWN-65 10-06-2016 Do not touch this cell (SheetName)


Tab C

Kriged Current Quarter Groundwater Contour Map, Capture Zone Map, Capture Zone Details Map, and Weekly, Monthly and Quarterly Depth to Water Data

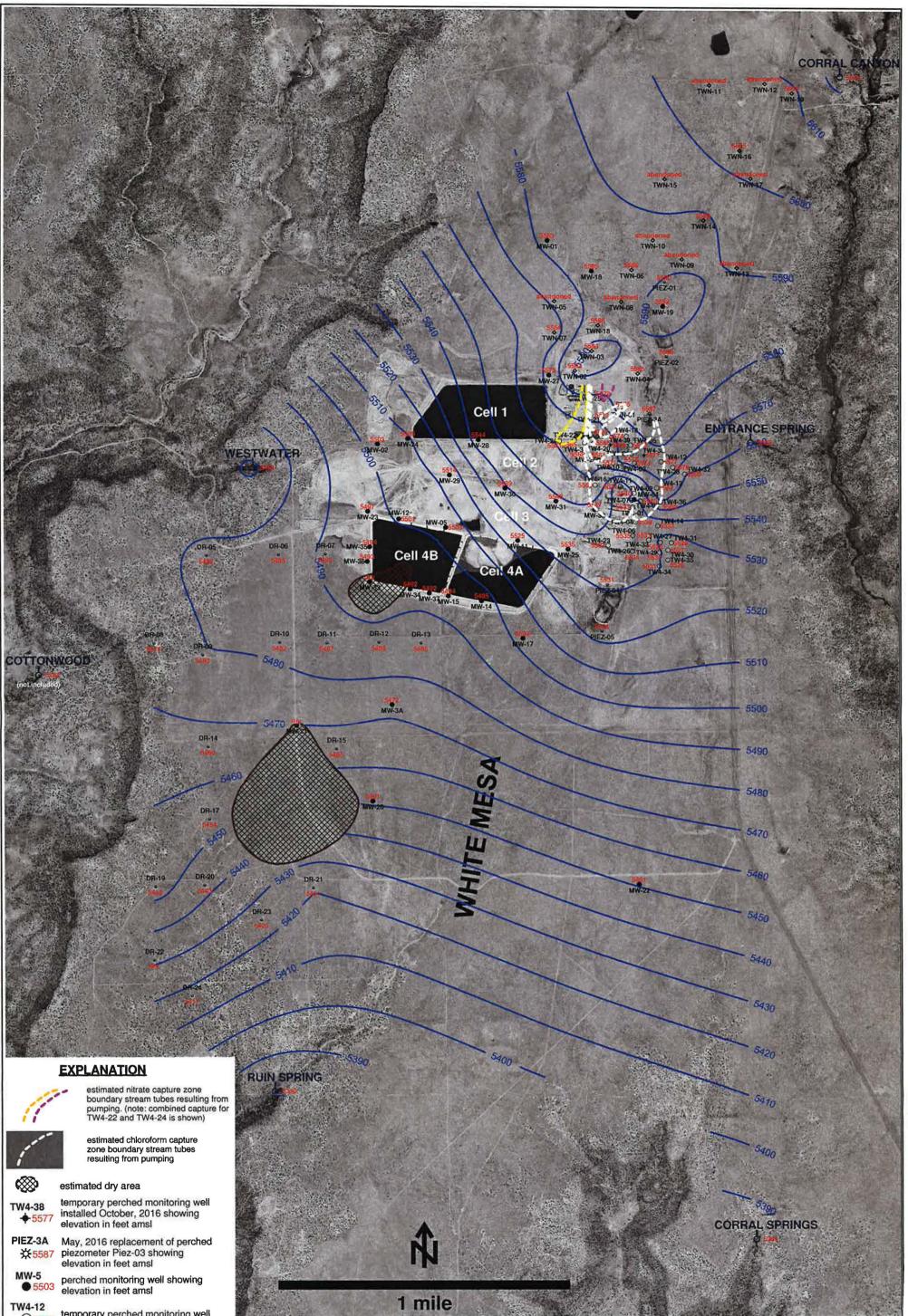
NAME: Garrin Palmer

12/21/2016

Time	Well	Depth to Water (ft)	Time	Well	Depth to Water (ft)	Time	Well	Depth to Water (ft)	Time	Well	Depth to Water (ft)
916	MW-1	64.46	1228	MW-4	81.68	844	PIEZ-1	65.14	NA	DR-1	Abandoned
1359	MW-2	109.95	1231	TW4-1	85.43	839	PIEZ-2	40.45	NA	DR-2	Abandoned
NA	MW-3	Abandoned	1225	TW4-2	84.32	836	PIEZ-3	50.31	1131	DR-5	83.20
725	MW-3A	84.62	700	TW4-3	58.00	710	PIEZ-4	60.34	1134	DR-6	94.20
1417	MW-5	106.22	1247	TW4-4	74.28	713	PIEZ-5	60.00	1424	DR-7	92.24
1447	MW-11	86.05	656	TW4-5	65.93	1506	TWN-1	63.54	1141	DR-8	51.30
1413	MW-12	108.35	707	TW4-6	73.40	1147	TWN-2	33.77	1139	DR-9	86.65
1432	MW-14	103.02	705	TW4-7	76.98	832	TWN-3	40.30	1136	DR-10	78.51
1435	MW-15	106.18	703	TW4-8	81.50	834	TWN-4	56.45	719	DR-11	98.25
731	MW-17	71.95	658	TW4-9	63.71	NA	TWN-5	Abandoned	722	DR-12	91.17
855	MW-18	72.15	654	TW4-10	63.30	853	TWN-6	78.91	728	DR-13	69.99
841	MW-19	62.73	1221	TW4-11	93.01	918	TWN-7	84.80	1123	DR-14	76.40
1146	MW-20	89.19	957	TW4-12	46.96	NA	TWN-8	Abandoned	1126	DR-15	92.98
1056	MW-22	66.80	1002	TW4-13	53.00	NA	TWN-9	Abandoned	NA	DR-16	Abandoned
1411	MW-23	114.58	1006	TW4-14	79.35	NA	TWN-10	Abandoned	1120	DR-17	64.98
1349	MW-24	112.86	1217	TW4-15	64.19	NA	TWN-11	Abandoned	NA	DR-18	Abandoned
1445	MW-25	77.80	1455	TW4-16	64.31	NA	TWN-12	Abandoned	1109	DR-19	63.05
1217	MW-26	64.19	1453	TW4-17	78.15	NA	TWN-13	Abandoned	1107	DR-20	55.87
1502	MW-27	54.99	1507	TW4-18	66.94	850	TWN-14	61.10	1101	DR-21	101.10
1351	MW-28	75.34	1236	TW4-19	63.98	NA	TWN-15	Abandoned	1112	DR-22	DRY
1356	MW-29	100.70	1213	TW4-20	64.60	848	TWN-16	47.70	1103	DR-23	70.60
1459	MW-30	75.44	1140	TW4-21	68.90	NA	TWN-17	Abandoned	1116	DR-24	44.25
1450	MW-31	68.60	1205	TW4-22	63.89	830	TWN-18	60.85	NA	DR-25	Abandoned
1453	MW-32	78.15	1009	TW4-23	70.51	1153	TWN-19	53.29			
1417	MW-33	DRY	1201	TW4-24	64.50						
1440	MW-34	107.85	1143	TW4-25	67.18						
1419	MW-35	112.35	1011	TW4-26	67.72						
1416	MW-36	110.61	736	TW4-27	79.50						
1437	MW-37	107.84	959	TW4-28	40.87						
	and a second sec		744	TW4-29	74.55	0					
			739	TW4-30	75.64						
			738	TW4-31	78.77						
			1000	TW4-32	52.09						
			734	TW4-33	73.34						
			743	TW4-34	72.60						
			741	TW4-35	74.25						
			1004	TW4-36	56.55						
			1209	TW4-37	63.50						
			1014	TW4-38	53.40						
			1254	TW4-39	63.17						
		-									

temporary perched monitoring well showing elevation in feet amsl

temporary perched nitrate monitoring well showing elevation in feet amsl


● 5590 elevation in feet amsl

RUIN SPRING

5380 seep or spring showing elevation in feet amsl

NOTES: MW-4, MW-26, TW4-1, TW4-2, TW4-4, TW4-11, TW4-19, TW4-20, TW4-21, TW4-37, and TW4-39 are chloroform pumping wells; TW4-22, TW4-24, TW4-25, and TWN-2 are nitrate pumping wells; TW4-11 water level is below the base of the Burro Canyon Formation

	HYDRO GEO CHEM, INC.	KRI	GED 4th	QUARTER, 2016 WATER LEV WHITE MESA SITE	/ELS
		APPROVED	DATE	REFERENCE H:/718000/feb17/WL/Uwl1116.srf	FIGURE
-					

temporary perched monitoring well showing elevation in feet amsl

TWN-7

temporary perched nitrate monitoring \$5564 well showing elevation in feet amsl

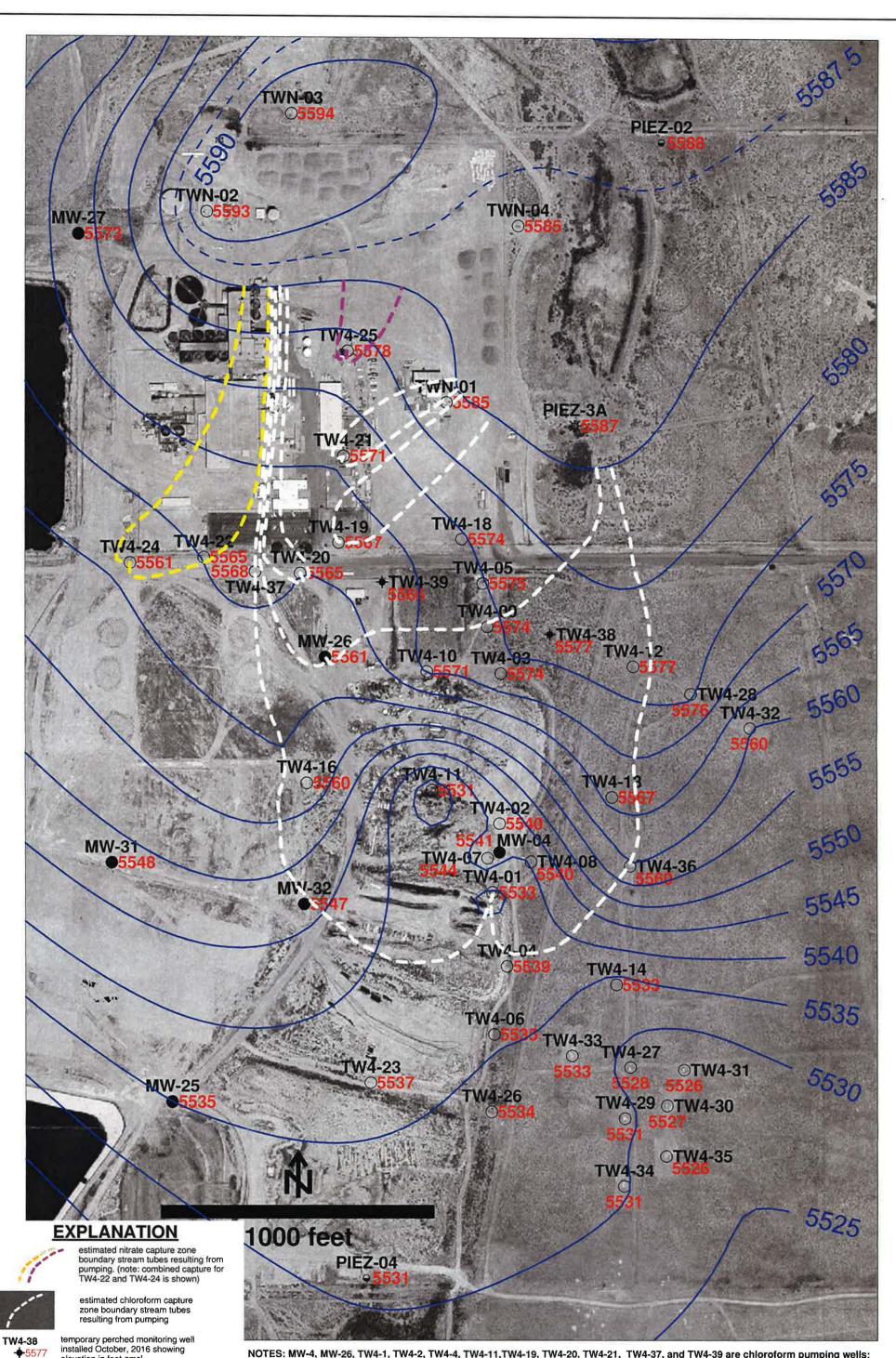
PIEZ-1

■ 5590 elevation in feet amsl

RUIN SPRING

5380 seep or spring showing elevation in feet amsl

NOTES: MW-4, MW-26, TW4-1, TW4-2, TW4-4, TW4-11, TW4-19, TW4-20, TW4-21, TW4-37, and TW4-39 are chloroform pumping wells; TW4-22, TW4-24, TW4-25, and TWN-2 are nitrate pumping wells; TW4-11 water level is below the base of the Burro Canyon Formation


HYDRO

CHEM, INC.

GEO

KRIGED 4th QUARTER, 2016 WATER LEVELS AND ESTIMATED CAPTURE ZONES WHITE MESA SITE

APPROVED	DATE	REFERENCE	FIGURE
		H:/718000/feb17/WL/Uwl1116NTcz2.srf	C-2

NOTES: MW-4, MW-26, TW4-1, TW4-2, TW4-4, TW4-11, TW4-19, TW4-20, TW4-21, TW4-37, and TW4-39 are chloroform pumping wells; TW4-22, TW4-24, TW4-25, and TWN-2 are nitrate pumping wells; TW4-11 water level is below the base of the Burro Canyon Formation

elevation in feet amsl

elevation in feet amsl

elevation in feet amsl

May, 2016 replacement of perched piezometer Piez-03 showing

perched monitoring well showing elevation in feet amsl

showing elevation in feet amsl perched piezometer showing

temporary perched monitoring well

PIEZ-3A

MW-25

PIEZ-2 • 5588

₩5587

• 5535 TW4-7

○ 5544

HYDRO GEO CHEM, INC		KRIGED 4th QUARTER, 2016 WATER LEVELS AND ESTIMATED CAPTURE ZONES WHITE MESA SITE (detail map)						
	APPROVED	DATE	REFERENCE H:/718000/feb17/WL/UwI1116NTcz.srf	FIGURE C-3				

Date

10/5/16

Garrin / Tanner Name

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
	MW-4	81.35	Flow 4,5	Yes No
1-106		81.35	Meter 1152711.21	(res No
			Moter IIS 2 711.21	
1357	MW-26	64.40	Flow 8.0	Yes No
			Meter 114930.80	Tes No
1449	TW4-19	62.96	Flow 18.0	Yes No
			Meter 608424.30	Yes No
1353	TW4-20	63.29	Flow 6.7	Yes No
			Meter 156474.80	Cres No
1414	TW4-4	73.04	Flow 10.0	(Yes No
		10.01	Meter 428,99.90	(Yes No
1744	TWN-2	34.69	Flow 18.5	(Yes) No
1011		1 24.01	Meter 706460.10	Yes No
1350	TW4-22	58.10	Flow 17.0	des No
			Meter 358668.20	Ves No
1347	TW4-24	61.34	Flow 16.5	Nes No
			Meter 211889.90	Yes No
1341	TW4-25	64.48	Flow 14.2	(Tes No
			Meter 1754778.70	(Yes) No
1409	TW4-1	95.00	Flow 15.0	(Yes No
			Meter 148216.20	(Ye3) No
1403	TW4-2	82.30	Flow 16.2	(Yes) No
			Meter 144443.90	Yes No
1400	TW4-11	92.00	Flow 16.0	(Yes) No
			Meter 33473,40	(Yes) No
1337	TW4-21	67.40	Flow 16.0	(Yes) No
			Meter 668169.23	(Yes) No
1352	TW4-37	62.09	Flow 17.0	Cred No
			Meter 596301.50	(Yes) No

Operational Problems (Please list well number): were notified.

TW4-19 had no power. Electricians

Corrective Action(s) Taken (Please list well number): Breaker was found tripped and well was back in operation at 0720 on 10/6/16.

	Date	101
÷		

1

12/16-10/13/16 Name Garrin, Tanner

	Time	Well	Depth*	Comments	any problems/corrective actions)
	1437	MW-4	80.00		Yes No
				Meter 1159348.70	Tes No
	1415	MW-26	64.50	Flow 8.0	Yes) No
				Meter 116593.40	Yes No
13	0907	TW4-19	63.84	Flow 18.0	(Yes) No
				Meter 617136.40	Yes No
	1356	TW4-20	63.50	Flow 7.0	Yes No
				Meter 157473.90	Tes) No
13	0838	TW4-4	73.12	Flow 10.8	Yes No
0				Meter 430756.60	Yes No
	1323	TWN-2	35.22	Flow 18.5	Yes No
				Meter 709962.60	Yes No
	1342	TW4-22	58.40	Flow 17.0	Ves No
				Meter 360408.70	YES NO
	1328	TW4-24	61.70	Flow 17.4	Yes No
				Meter 216523.88	Tes No
	1317	TW4-25	65.36	Flow 14,5	No No
		_		Meter 1768464-50	Yes No
5	0823	TW4-1	88.50	Flow 16.0	Yes No
				Meter 150117.90	Ves No
	1422	TW4-2	80.85		Yes No
				Meter 151499.90	(Yes) No
412	42.71	TW4-11	92.71	Flow 16.0	Yes No
				Meter 33709.30	
	1310	TW4-21	67.84		No No
				Meter 677227,80	No No
3	1349	TW4-37	62.27	Flow 17.0	No No
				Meter 604478.40	Tes No

Operational Problems (Please list well number): Wells 19, 1, TW4-4 were done on 10/13/16. The rest were on 10/12/16

Corrective Action(s) Taken (Please list well number):

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
	MW-4	79.90	Flow 4.5	Yes No
			Meter 1164009.2080	Yes No
1210	MW-26	63.21	Flow S.D	Yes) No
			Meter 117681.96	(Yes) No
0830	TW4-19	63.85	Flow 18.0	Yes No
			Meter \$ 623487.00	(Yes) No
1207	TW4-20	64.00	Flow 6.2	Yes No
-			Meter 158180.40	(Yes) No
1226	TW4-4	74.18	Flow 10.7	Yes No
			Meter 433(11.20)	(Yes) No
1155	TWN-2	34.84	Flow 18.5	Yes No
			Meter 🕵 712319.90	(Yes) No
1201	TW4-22	58.58	Flow 15.6	Yes No
-			Meter 361879,66	des No
1158	TW4-24	68.12	Flow 17.0	Yes No
			Meter 21990590 000	Yes No
1152	TW4-25	63.83		Yes No
			Meter 1774848.30	Yes No
1227	TW4-1	88.0	Flow	Yes No
			Meter 150973.00	(Yes) No
1216	TW4-2	78.55		Yes No
_			Meter 152498.20	Yes No
1213	TW4-11	92.21	Flow 16.0 Meter 33986.90	Yes No
1148	TW4-21	68.55	Flow 17.0	Yes No
			Meter 683893.55	(Yes) No
1204	TW4-37	62.75	Flow 17.0	des No

Operational Problems (Please list well number):

Corrective Action(s) Taken (Please list well number):

* Depth is measured to the nearest 0.01 feet.

42.45

7457031

Date 10/24/16

16

Name Garrin, Tanuar

Time	Well	Depth*	Comments	any problems/corrective actions)
1349	MW-4	84.12	Flow 4.5	(Tes) No
			Meter 1170707.40	(res) No
1355	MW-26	64.44	Flow 6.4	(Yes) No
		-	Meter 114017.60	(res) No
1425	TW4-19	65.88	Flow 18.0	(Yes) No
			Meter 631124.90	Tes No
1357	TW4-20	63.92	Flow 6.4	(Yes) No
	-		Meter 159195, 50	(Yes) No
1343	TW4-4	72.87	Flow 11.2	(Tes) No
			Meter 437390.60	(Yes) No
1414	TWN-2	35.36	Flow 18.6	(Yes) No
			Meter 715810,80	(Yes) No
1404	TW4-22	92.38	Flow 16.0	Yes) No
			Meter 363744.80	Tes No
1406	TW4-24	78.80	Flow 14.1	(Tes) No
			Meter 224758.45	(Yes) No
1417	TW4-25	64.39	Flow 14.5	(Yes) No
			Meter 1783407.60	No No
1346	TW4-1	98.06	Flow 16.0	(Yes) No
			Meter 152161.60	(res) No
1349	TW4-2	86.25	Flow 16.0	(res) No
			Meter 153969.20	No No
1352	TW4-11	92.27	Flow 16.0	(res) No
			Meter 34119.80	(Tes) No
1421	TW4-21	97.60	Flow 15.4	(Yes) No
1			Meter 693062.64	Yes) No
1400	TW4-37	66.48	Flow 17.0	(Yes) No
			Meter 618218.20	(Yes) No

Operational Problems (Please list well number):

Corrective Action(s) Taken (Please list well number):

Date 10/31/16

Name Garrin Palmer, Tanar Holliday

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1409	MW-4	81.57	Flow 4,5	Yes No
			Meter 1177528.22	Yes No
1400	MW-26	64.03	Flow 7.6	res No
			Meter 120397,80	Yes No
1436	TW4-19	64.20	Flow 18.8	(Tes) No
			Meter 639803.50	Yes No
1357	TW4-20	63.68	Flow 6.5	(Tes No
			Meter 1601151.20	(Yes No
1415	TW4-4	79.66	Flow 8.0	(Yes) No
			Meter 437006.90	Res No
1345	TWN-2	35.30	Flow 18.5	(Yes) No
			Meter 719306.50	Yes No
1351	TW4-22	58.70	Flow 16.0	Yes No
			Meter 365568.60	Tes 10
1348	TW4-24	61.70	Flow 17.0	Yes No
			Meter 230248,15	(es) No
1342	TW4-25	64.57	Flow 14.6	Xes No
			Meter 1792/12,80	Tes No
1412	TW4-1	95.00	Flow 16.0	Yes No
			Meter 153412.00	Ves No
1406	TW4-2	82.46	Flow 17.0 Meter 155318.60	Yes No
	TALA		1200100	
1403	TW4-11	92.60	Flow 16.0 Meter 34355.06	Yes No
	TIMA Of	10-1		
1339	TW4-21	67.71	Flow 16.0 Meter 702561.09	Yes No
1250		ia		
1354	TW4-37	62.15	Flow 17.Z Meter 626330.50	Tes No

Operational Problems (Please list well number): <u>Twy-04 had a flow mater matternation</u> and was spinning backwards from water going back through

Corrective Action(s) Taken (Please list well number): <u>Value was shut off and main tenaase</u> is installing a new flow meter.

		Mc	onthly Dept	h Checl	< Form	
	Date 10	131/16		Name	Garrin, T	anner
	Time	Well	Depth*	Time	Well	Depth*
\bigcirc	1409	MW-4	81.57	0909	TWN-1	63.02
	1412	TW4-1	95.00	1345	TWN-2	35.30
	1406	TW4-2	82.46	0919	TWN-3	39.80
	0938	TW4-3	57.55	.6917	TWN-4	_56.00
	<u></u>	TW4-4	79.66	0924	TWN-7	85.15
	0942	TW4-5	65.30	0914	TWN-18	60.50
	1044	TW4-6	72.98	0925	MW-27	54,37
	0935	TW4-7	75.83	1220	MW-30	75.01
	0936	TW4-8	79.45	0730	MW-31	68.17
	0941	TW4-9	63.05			
	0944	TW4-10	62.60			
	1403	TW4-11	92.60			
	1240	TW4-12	46.68			
	1239	TW4-13	52.5	1242	TW4-28	40,56
	1236	TW4-14	79.10	1235	TW4-29	74.15
	1400	TW4-15	64.03	1230	TW4-30	75,45
0	0933	TW4-16	63.89	1229	TW4-31	78,64
5	0755	TW4-17	77.70	1243	TW4-32	77.70 51.60
	0911	TW4-18	66.07	1225	TW4-33	73.06
	1436	TW4-19	64.20	1233	TW4-34	72.20
	1357	TW4-20	63.68	1231	TW4-35	74.00
	1339	TW4-21	67.71	1238	TW4-36	56.21
	1351	TW4-22	58.30	1354	TW4-37	62.15
	1046	TW4-23	6200 70.a	5 0 939	TW 4-38	52.93
	1348	TW4-24	61.70	0945	TW 4-39	59,70
	1342	TW4-25	64.57			
	1048	TW4-26	67.38			· · · · · · · · · · · · · · · · · · ·
	1227	TW4-27	79.30			

Comments: (Please note the well number for any comments)

7517611

Date 11/9/16

Name Garrin, Tannor

Time	Well De	pth*	Comments	System Operational (If no note any problems/corrective actions)
	The second se	9.85 Flow	and a local day have been a second the second se	Yes No
		Mete	1 1185231.01	Yes No
1411	MW-26 63	S. ZO Flow	7.]	Yes No
		Mete	r 121830.60	CYes No
1438	TW4-19 6	1.18 Flow	18.0	Yes No
		Mete	r 6500 41.50	des No
1408	TW4-20 6	4.69 Flow	6-5	(Yes) No
		Mete	r 161456,47	(Yes) No
1427	TW4-4 7	1.89 Flow	16.5	MES NO
		Mete	r 441598,30	(Ves No
356	TWN-2 3.	5.70 Flow	18.6	Yes No
		Mete	r 723897.60	Yes No
402	TW4-22 84	.00 Flow	the second se	(Yes) No
		Mete	1 367972.00	Yes No
359	TW4-24 66	71 Flow	the second s	(Yes No
-		Mete	r 241109.27	(Yes) No
353	TW4-25 6	4.65 Flow	and the second se	Yes No
		Mete	r 1803306.90	Yes No
426	TW4-1 9:	3.81 Flow	and the second se	Yes No
		Mete	r 155855.60	(Yes No
1420	TW4-2 81	00 Flow	the second se	Yes No
		Mete	157290.00	Yes No
1417	TW4-11 9	3.10 Flow		Yes No
		Mete	r 34647.70	(Tes No
1350	TW4-21 6	8.14 Flow	and the second se	Yes No
		Mete	714003.47	Yeş No
405	TW4-37 89	64 Flow	17.0	Yes No
_	the second second	Mete	r 636617.90	res No

Operational Problems (Please list well number): was actified and sump will be replaced ASAP.

Pump on Twy 4 went out, Maintenance

Corrective Action(s) Taken (Please list well number): Pump was replaced on 11/10/16 and is back in operation.

Date <u>ulislik</u>

N

Name Garrin Palmer

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1414	MW-4	71.42	Flow 4.5	(Yes) No
			Meter 1190762.04	Yes No
1404	MW-26	63.45	Flow 7.1	(Tes) No
			Meter 122992.00	Ces No
1205	TW4-19	64.29	Flow 18.0	(Yes) No
			Meter 658471.91	Yes No
1352	TW4-20	66.72	Flow 6.6	(Yes) No
			Meter 162389,17	(Yes) No
1420	TW4-4	79.84	Flow 16.5	(Yes) No
			Meter 443145.50	Yes No
1241	TWN-2	33.41	Flow 18.5	(Yes No
			Meter 726879.50	(Yes' No
1343	TW4-22	84.62	Flow 16.0	Yes No
			Meter 369453.60	(Yes) No
1340	TW4-24	66.02	Flow 17.0	(Yes) No
			Meter 249160.37	Yes No
1237	TW4-25	64.50	Flow 14.7	(Yes) No
			Meter 1810557.70	(Yes)No
1417	TW4-1	92.99	Flow 16.0	Yes No
		1	Meter 156024.50	(Yes) No
1411	TW4-2	82.88	Flow 17.0	Yes No
			Meter 158659.60	Yes No
1408	TW4-11	92.98	Flow 16-0	Yes No
			Meter 34846.60	(Yes) No
1226	TW4-21	68.20	Flow 16.0	Yes No
			Meter 722855,77	Ces No
1348	TW4-37	90.14	Flow 17.0	Yes No
			Meter 642861.40	Yes No

Operational Problems (Please list well number):

Turned on heat lamps For winter

Corrective Action(s) Taken (Please list well number):

Date 11/23/16

Name Garrin Palmer, Tanar Holliday

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
0836	MW-4	81.03	Flow 4.5	(Yes) No
			Meter 1198321.77	Yes No
0824	MW-26	64.35	Flow 7.0	(Yes) No
			Meter 124388.10	(Yes) No
0900	TW4-19	64.87	Flow 18.0	(Yes) No
			Meter 667946.60	(Yes) No
0827	TW4-20	68.86	Flow 7.2	Ves No
			Meter : 163430-60	(Yes) No
0844	TW4-4	73.70	Flow 16.4	Kes No
			Meter 445038.80	(Yes) No
0759	TWN-2	36.40	Flow 18.6	(Yes) No
			Meter 730762.60	(Yes) No
0814	TW4-22	65.29	Flow 17.0	Yes No
			Meter 371-196,40	(Yes) No
0803	TW4-24	61.10	Flow 16.0	(Yes) No
-			Meter 249160.60	(Yes) No
0756	TW4-25	64.60	Flow 14.0	(Yes) No
		-	Meter 1820404.60	
0839	TW4-1	92.50	Flow 16.0 Meter 157513.70	(Yes) No (Yes) No
0833	TW4-2	81.10	Flow 17.0 Meter 160413.70	Yes No
	T34/4 44	0.0.00	the second s	
0830	TW4-11	98.72	Flow 16.0 Meter 35123.60	Yes No
	TIALA OI	10.10		
0752	TW4-21	68.69	Flow 16.0 Meter 734843.23	Yes No
	TM/4 07	41 74		Yes No
0817	TW4-37	66.74	Flow 17.0 Meter 651767.00	(Yes) No

Operational Problems (Please list well number):

Corrective Action(s) Taken (Please list well number):

Date 11/28/16

Name Garrin, Tamer

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1258	MW-4	81.98	Flow 4.5	(Yes) No
			Meter 1203503.18	Yes No
1307	MW-26	63.71	Flow 6.8	Yes) No
			Meter 125350.80	Yes No
1401	TW4-19	64.87	Flow 18.0	(Yes) No
			Meter 674430.50	(Tes) No
1310	TW4-20	63.21	Flow 7.4	(Yes No
			Meter 164160.60	Yes) No
12.52	TW4-4	73.35	Flow 17.0	Yes) No
			Meter 446455.70	Ves No
1328	TWN-2	35.30	Flow 18,6	Yes No
			Meter 733227.10	No No
1316	TW4-22	58.20	Flow 16.0	Yes No
			Meter 372167.90	Yes No
1314	TW4-24	62.21		Yes) No
			Meter 258341.69	Tes No
1325	TW4-25	65.10	Flow 14.6	(es No
			Meter 1827056.60	Yes No
12.55	TW4-1	84.53	Flow 15.0	(Yes No
			Meter 158590.90	(Ýeš) No
1301	TW4-2	107.58	Flow 16.0	(Yes) No
			Meter 161756.40	(Yes) No
1304	TW4-11	92.45	Flow 16.0 Meter 35397.50	Yes No
_				
1322	TW4-21	68.23	Flow 16.0	(Yes) No (Yes) No
_			Meter 743266.64	
1313	TW4-37	61.96	Flow 16.2	Ves No
			Meter 657636.40	(Yes)No

Operational Problems (Please list well number);

Corrective Action(s) Taken (Please list well number):

* Depth is measured to the nearest 0.01 feet.

7607989

		Ν	Ionthly Dept	onthly Depth Check Form					
	Date	11/29/16		Name	Garrin Pe	Imer			
	<u>Time</u>	<u>Well</u> MW-4	Depth*	<u>Time</u>	<u>Well</u> TWN-1	Depth*			
	1136	TW4-1	80.01		TWN-2	<u>63.02</u> 33.12			
	1139	TW4-1	90.66	1340	TWN-3				
		TW4-2	57.44		TWN-3	55.95			
	1237	TW4-3	72.88	1208	TWN-7				
	12.34	TW4-5	65.25	1342	TWN-18	60.48			
	12.24	TW4-6	72.86	1223	MW-27	54.27			
	1241	TW4-7	76.58	1301	MW-30	74.88			
	1240	TW4-8	80.52	1303	MW-31	68.08			
	1235	TW4-9	63.06						
	1232	TW4-10	62.55						
	1141	TW4-11	90.62						
	1326	TW4-12	46.70						
	1324	TW4-13	52.30	1329	TW4-28	40.60			
	1321	TW4-14	78.95	1319	TW4-29	74.10			
MW 26	1252	TW4-15	77,55 6402	1314	TW4-30	75.21			
0	1253	TW4-16	63.76	1312	TW4-31	78.41			
0	1144	TW4-17	77.66	1327	TW4-32	51.55			
	1158	TW4-18	66.05	1309	TW4-33	73.11			
	1002	TW4-19	63.87	1317	TW4-34	_72.15			
	1152	TW4-20	63.64	1316	TW4-35	73.85			
	1155	TW4-21	68.22	1322	TW4-36	56.39			
	1148	TW4-22	60 40	1035	TW4-37	62.46			
	1247	TW4-23	69.95	1337	TW4-38	52.79			
	1150	TW4-24	62.68	1336	TW4-39	60.16			
	1154	TW4-25	66.22			·			
	1246	TW4-26	67.38						
	1311_	TW4-27	79.00			· · · · · · · · · · · · · · · · · · ·			

Comments: (Please note the well number for any comments)

Date 12/7/16

Name Garrin Palmer

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
0931	MW-4	80.88	Flow 4.5	(Yes) No
			Meter 1212148,24	(Yes) No
0921	MW-26	64.00	Flow 6.8	(Yes) No
			Meter 126968, 20	(Yes) No
1007	TW4-19	63.96	Flow 18.0	(Yes No
			Meter 685476.20	(Yes) No
0918	TW4-20	63.40	Flow 7.4	(Yes) No
			Meter 166561.40	(Yes) No
0937	TW4-4	74.88	Flow 17.0	(Yes) No
			Meter 448697.40	(Tes) No
0906	TWN-2	36.94	Flow 18.5	(Yes No
			Meter 73777.60	(Yes) No
0912	TW4-22	60.17	Flow 16.0	(Yes No
			Meter 375191.30	(Yes) No
0909	TW4-24	64.36	Flow 14.0	CYes No
			Meter 273942.89	(Yes) No
0903	TW4-25	66.78	Flow 14.3	(Yes) No
			Meter 1837913.40	(Yes) No
0934	TW4-1	84.36	Flow 15.0	(Yes No
			Meter 160210.70	(Yes No
0927	TW4-2	98.79	Flow 16.0	(Yes) No
			Meter 163728,90	(Yes No
0924	TW4-11	92.88	Flow 16.0	Yes No
			Meter 35609.70	(Yes' No
0900	TW4-21	68.64	Flow 16.0	(Yes) No
			Meter 757436.00	(Yes) No
0915	TW4-37	63.65	Flow 16.4	(Yes) No
			Meter 66777.66	(Yes) No
0942	TW4-39	62.02	Flow 17.6	(Yes) No
			Meter 642.90	(Yes) No

Operational Problems (Please list well number):

Replaced burnt out heat lamp

ON TW4-20.

Corrective Action(s) Taken (Please list well number):

D	a	te	
_	-		

e 12/12/2016

Name Tanner Holliday

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1311	MW-4	84.93	Flow 4.3	(Yes No
-			Meter 1217223.29	(Yes) No
1300	MW-26	64.38	Flow 6.5	(Yes)No
1 20-		01.20	Meter +27769.0	(Yes) No
1330	TW4-19	64.20	Flow 18.0	Xes No
			Meter 691767,7	Yes No
1257	TW4-20	63.99	Flow 7,3	(Yes)No
			Meter 166220.15	(Yes)No
1317	TW4-4	73.98	Flow 17,0	(Yes) No
			Meter 449990.0	Yes No
1243	TWN-2	34.11	Flow 18.0	(Yes No
			Meter 7402 84.7	Yes No
1250	TW4-22	63.38	Flow 16,0	(Yes)No
CSO .			Meter 376449,0	(Yes)No
1247	TW4-24	64.41	Flow 14.0	Yes No
			Meter 282505.37	(Yes No
1239	TW4-25	66,52	Flow 145	(Yes) No
			Meter 1844428.9	Yes No
1314	TW4-1	85.42	Flow 15.0	(Yes) No
			Meter 161210.3	(Yes)No
1307	TW4-2	84.51	Flow 16.0	Yes No
		_	Meter 164913,7	(Yes) No
1304	TW4-11	92.59	Flow 16.0	Yes No
			Meter 35775.9	(Yes) No
1235	TW4-21	68.87	Flow 16.0	(Yes)No
			Meter 765681.89	(Yes)No
1253	TW4-37	63,56	Flow 16,5	Yes No
			Meter 673466.3	(Yes) No
1324	TW4-39	64.01	Flow 17.0	(Yes No
			Meter 15759.8	(Yes) No

Operational Problems (Please list well number):

Corrective Action(s) Taken (Please list well number):

Date 12/20/16

Name Garcia Palmer

Time	Well	Depth*	Comments	any problems/corrective actions)
1228	MW-4	81.68	Flow 4.4	(Tes) No
			Meter 1224703.03	(Tes) No
1217	MW-26	64.19	Flow 6.6	(Yes No
			Meter 130087.20	(Tes No
1236	TW4-19	63.98	Flow 18.0	Yes No
			Meter 701581.30	des No
1213	TW4-20	64.60	Flow 7.4	(Yes) No
			Meter 167322.21	Cres No
1247	TW4-4	74.28	Flow 17.0	(Tes) No
			Meter 451823.40	(Yes) No
1147	TWN-2	33.77	Flow 18.6	Yes No
			Meter 744111.20	(TES No
1205	TW4-22	63.89	Flow 16.0	(Tes) No
			Meter 378518.20	Yes No
1201	TW4-24	64.50	Flow 14.2	(Yes No
			Meter 293736.20	(Yes) No
1143	TW4-25	67.18	Flow 14.5	(Tes No
			Meter 1849736.70	(Tes) No
1231	TW4-1	85.43	Flow 15.0	(Tes) No
			Meter 162713.00	(es No
1225	TW4-2	84.32	Flow 16.0	Ves No
			Meter 166714,90	(Yes) No
1221	TW4-11	93.01	Flow 16.0	(res) No
			Meter 36041.00	Yes No
1140	TW4-21	68.90	Flow 16.0	(Yeŝ) No
			Meter 778329.66	(Yes No
1209	TW4-37	63.50	Flow 16.3	(Tes) No
			Meter 682213.00	Yes' No
1254	TW4-39	63.17	Flow 16.2	(Tes) No
			Meter 26476.30	(Yes) No

Operational Problems (Please list well number):

Replaced heat bulb in MW-26.

Corrective Action(s) Taken (Please list well number):

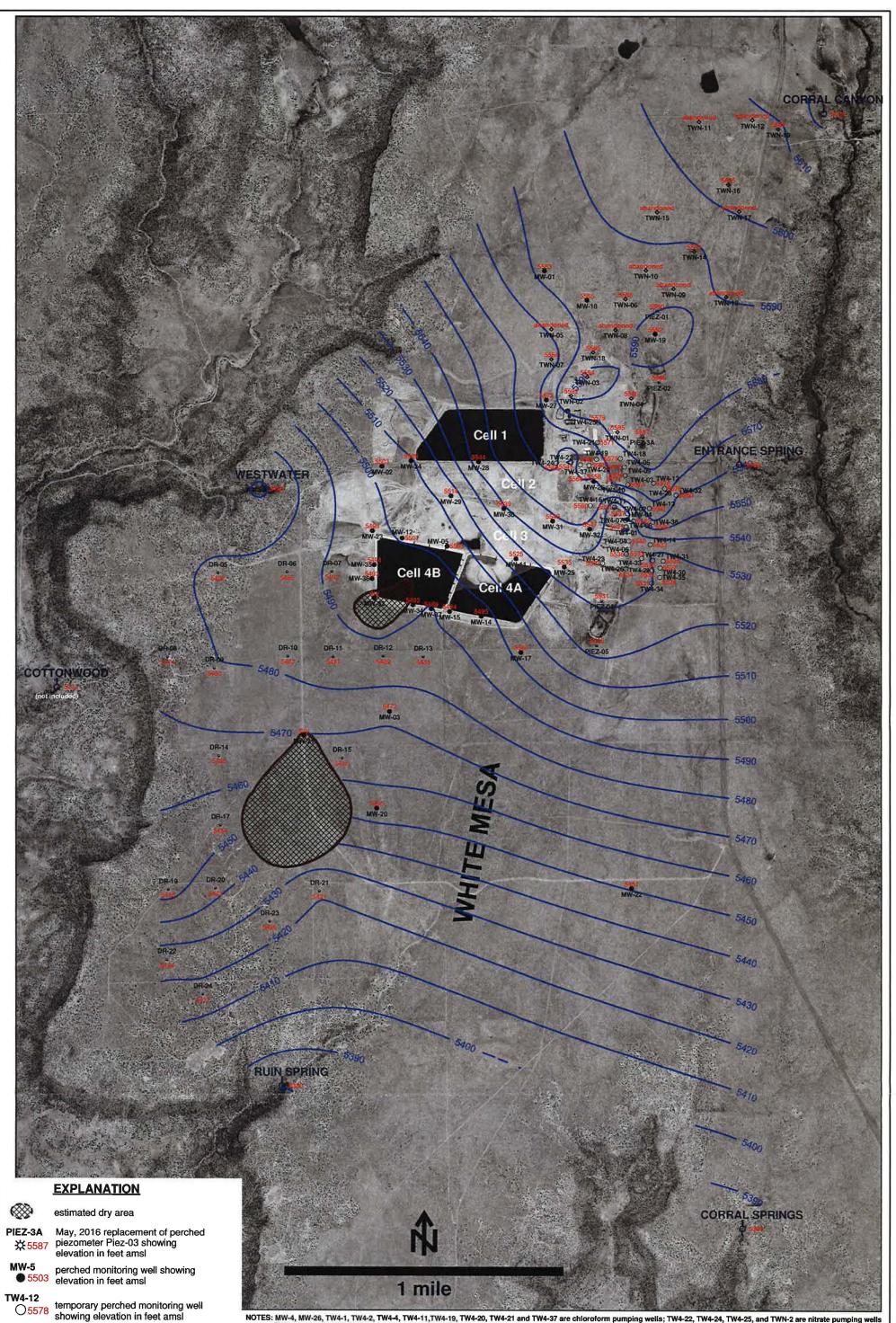
-4 3.5 59872 4B 2.22 66795

Date 12/27/2016

Name Janner Holliday

771459

Time	Well	Depth*	Comments	System Operational (If no not any problems/corrective actions)
1242	IMW-4	82.11	Flow 4.3	(Yes) No
			Meter 1231528.87	(Yes) No
1228	MW-26	65.78	Flow 10.9	(Yes) No
			Meter 132081,9	(Yes) No
1301	TW4-19	64.02	Flow 18.0	(Yes No
		1 Only 2	Meter 712512.8	(Yes)No
1225	TW4-20	64.78	Flow 7.4	(Yes) No
1245	111420	61.10	Meter 168343.41	(Yes No
			10.12 10 11	
1248	TW4-4	73.48	Flow 17.0	Yes No
			Meter 453609.0	(Yes No
1212	TWN-2	34.69	Flow 180	Yes No
			Meter 747604,6	(Yes) No
1219	TW4-22	63.97	Flow 16.0	Yes No
1211		02.11	Meter 380360,4	(Yes) No
	TIMA DA	C11 117		(Vac)Na
1216	TW4-24	64.82		Yes No
1207	TW4-25	67.10	Flow Gerero 14.5	Yes No
			Meter 1849735.6	Yes No
1245	TW4-1	84.97	Flow 15.0	(Yes No
			Meter 1641 89.5	(Yes) No
WAR?	TW4-2	34469	Flow 16.0	(Yes) No
1239		84.62	Meter 1416-1.6 1683	
1236	TW4-11	92,48	Flow 16.0	(Yes) No
della		16,10	Meter 36277,3	(Yes No
1203	TW4-21	68.95	Flow 16.6	Yes No
			Meter 789261.17	(Yes) No
1222	TW4-37	63,49	Flow 165	(Yes No
			Meter 690166.3	(Yes) No
1232	TW4-39	64,00	Flow 16.2	(Yes No
			Meter 3589.33	(Yes No


Operational Problems (Please list well number):

Heat Lamp Replaced on MW 26, TW4-21

Corrective Action(s) Taken (Please list well number):

Tab D

Kriged Previous Quarter Groundwater Contour Map

NOTES: MW-4, MW-26, TW4-1, TW4-2, TW4-4, TW4-11, TW4-19, TW4-20, TW4-21 and TW4-37 are chloroform pumping wells; TW4-22, TW4-24, TW4-25, and TWN-2 are nitrate pumping wells TW4-11 water level is below the base of the Burro Canyon Formation

TWN-7

\$5564 PIEZ-1

RUIN SPRING

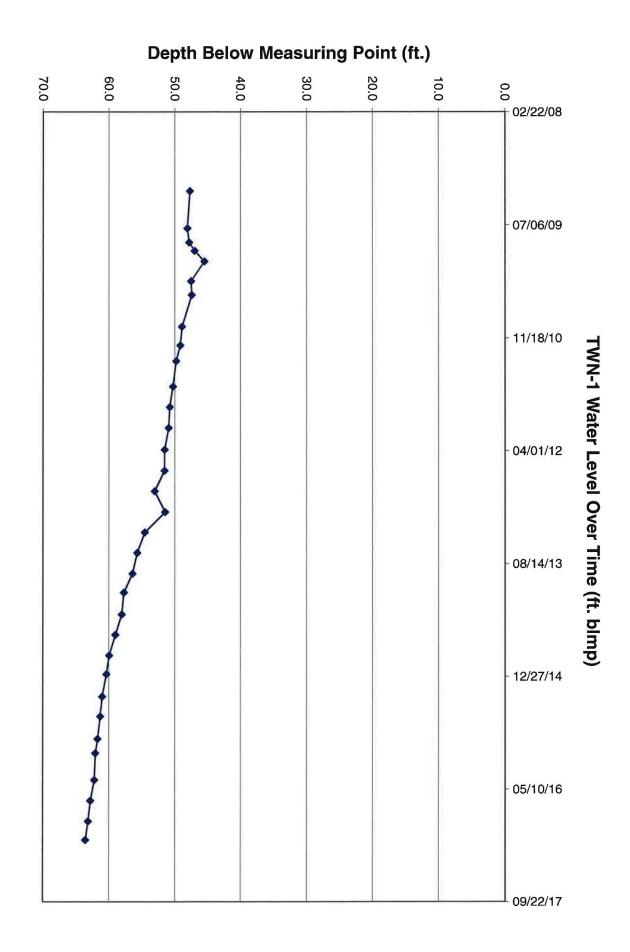
temporary perched nitrate monitoring well showing elevation in feet amsl

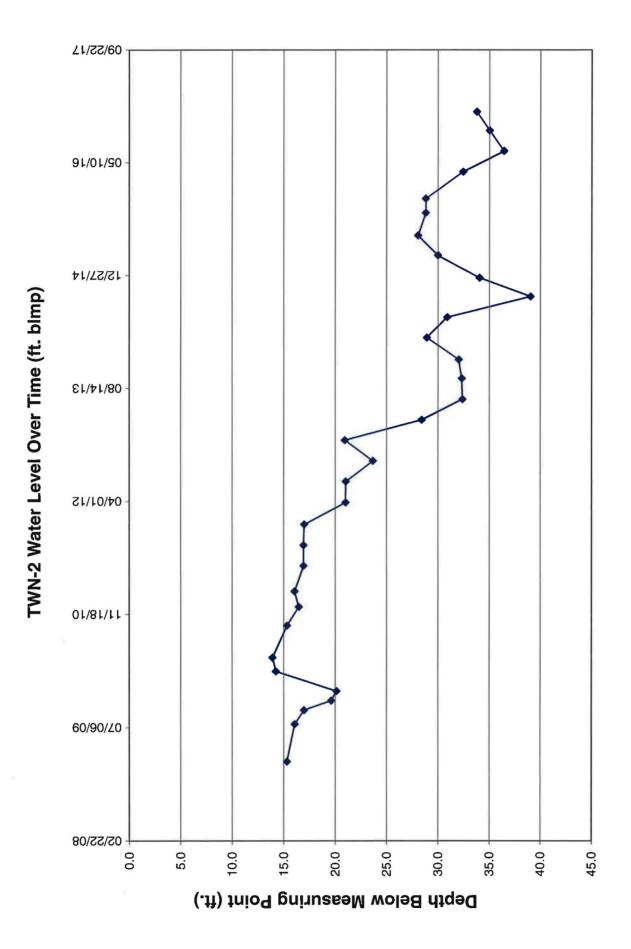
 PIEZ-1
 perched piezometer showing

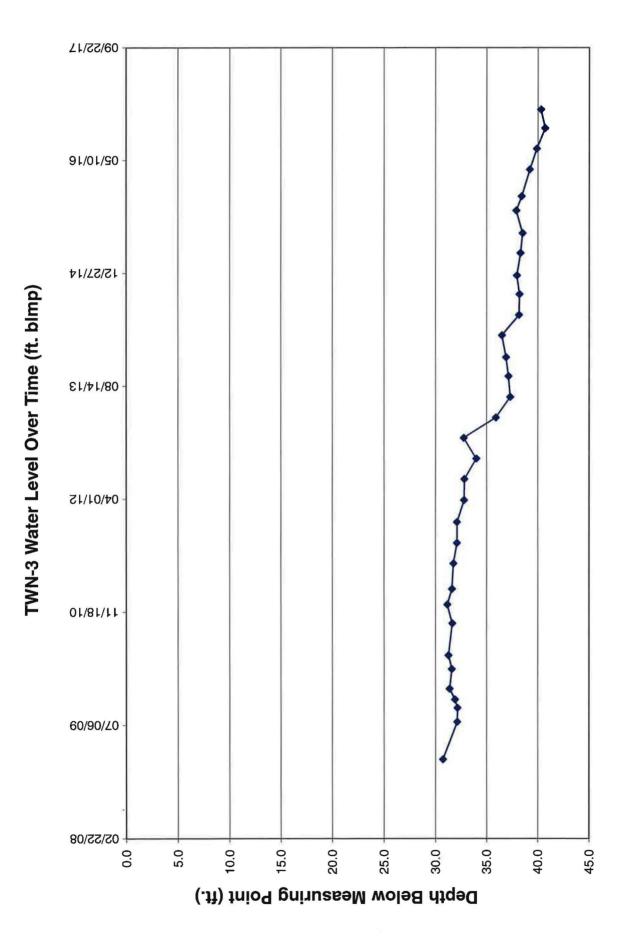
 ● 5590
 elevation in feet amsl

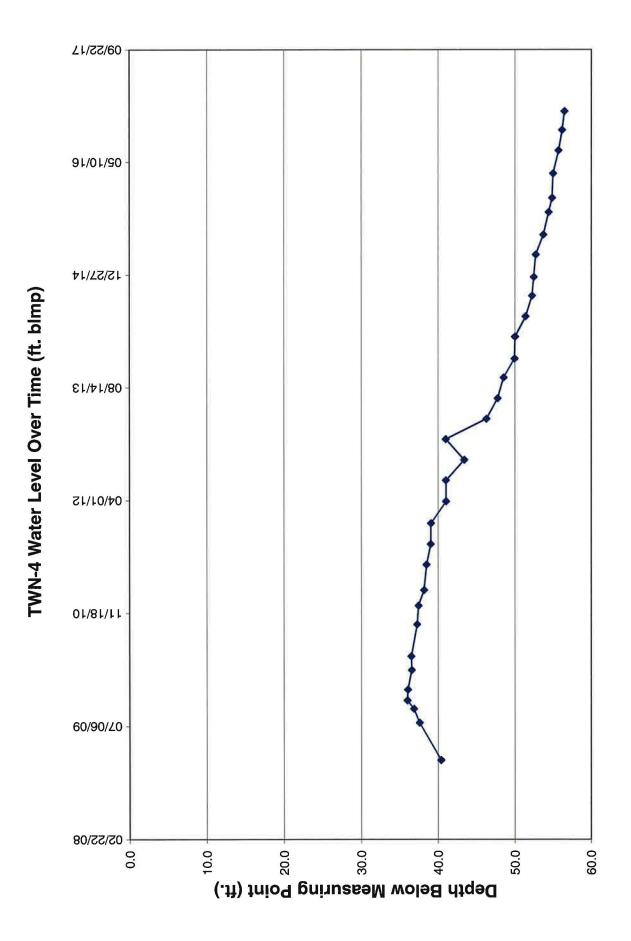
5380 seep or spring showing elevation in feet ams

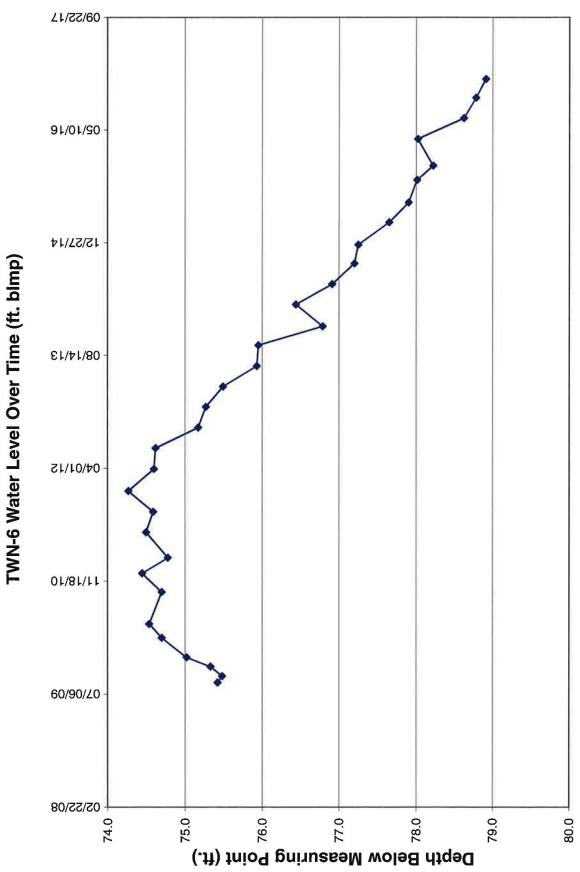
HYDRO GEO CHEM, INC.	KRI		ARTER, 2016 WATER LEV HITE MESA SITE	ELS
,	APPROVED	DATE	REFERENCE	FIGURE
			H:/718000/nov16/WL/Uwl0916_rev.srf	D-1

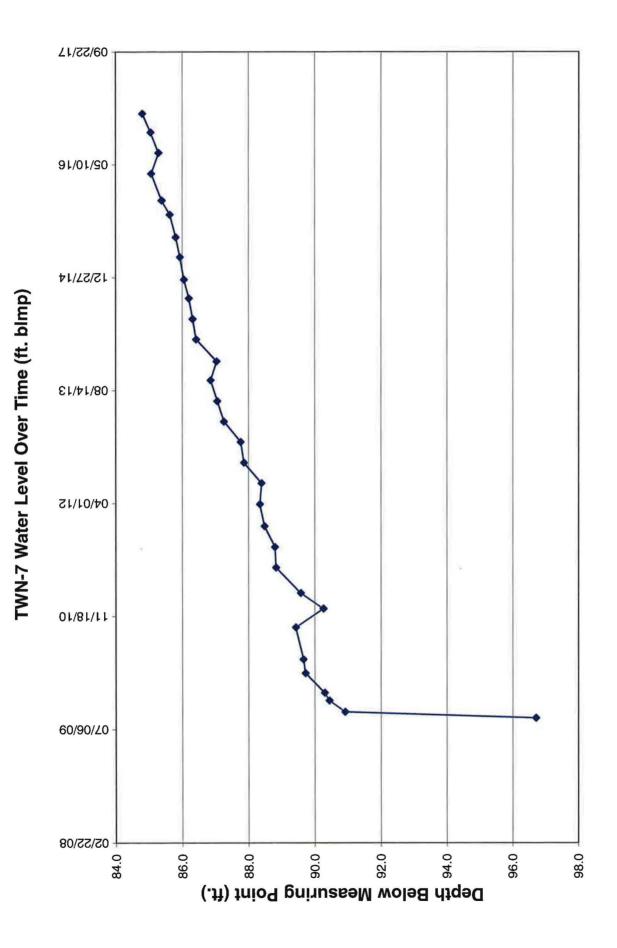

Tab E

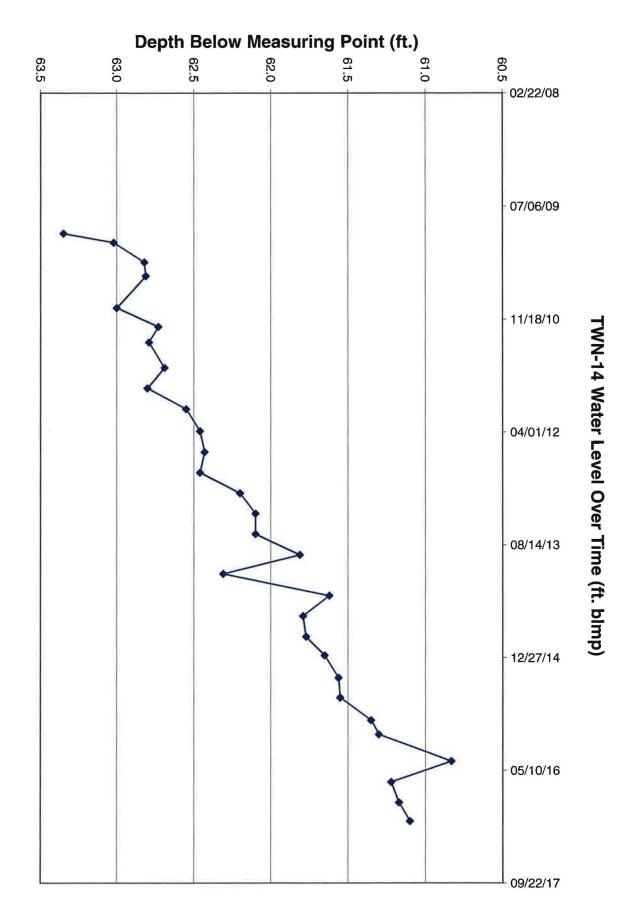

100

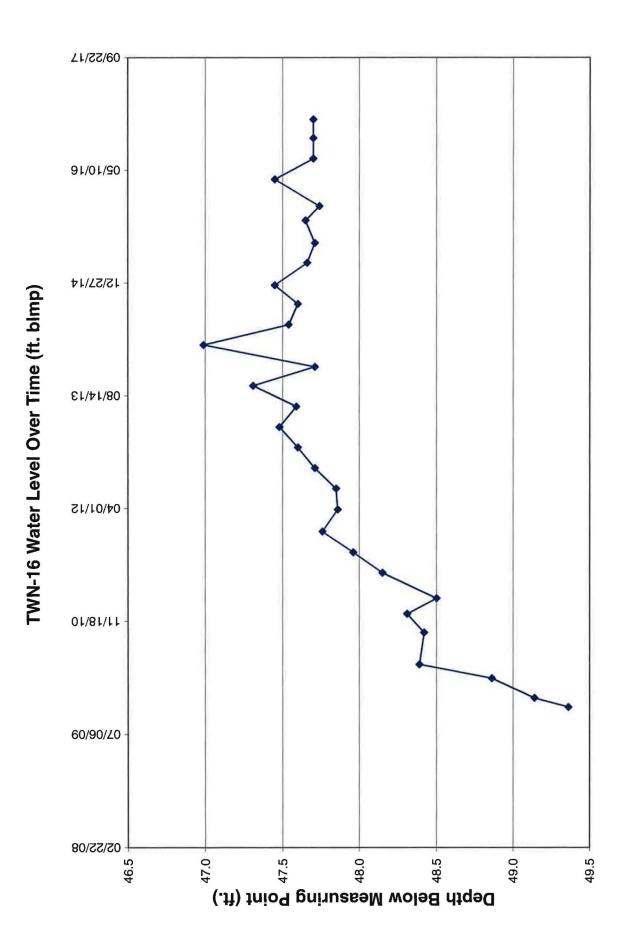

 $(-1)^{-1}$

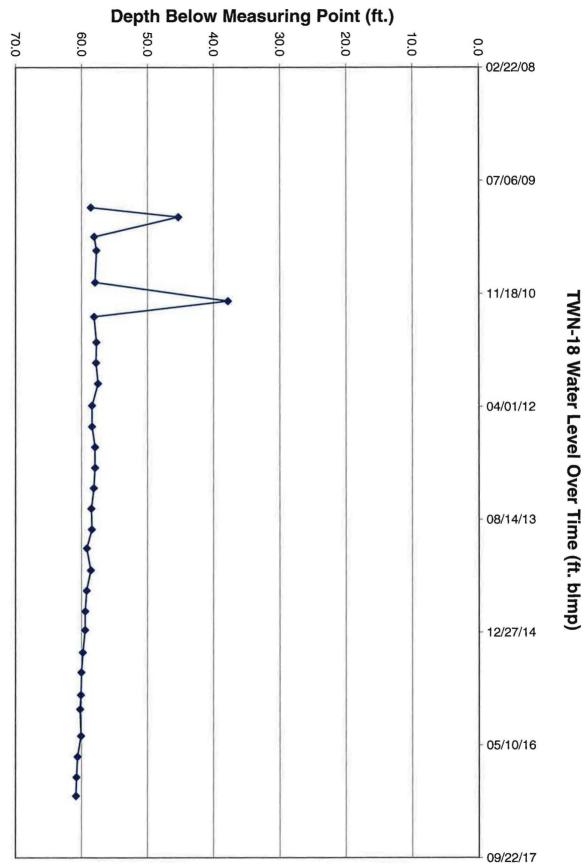

277

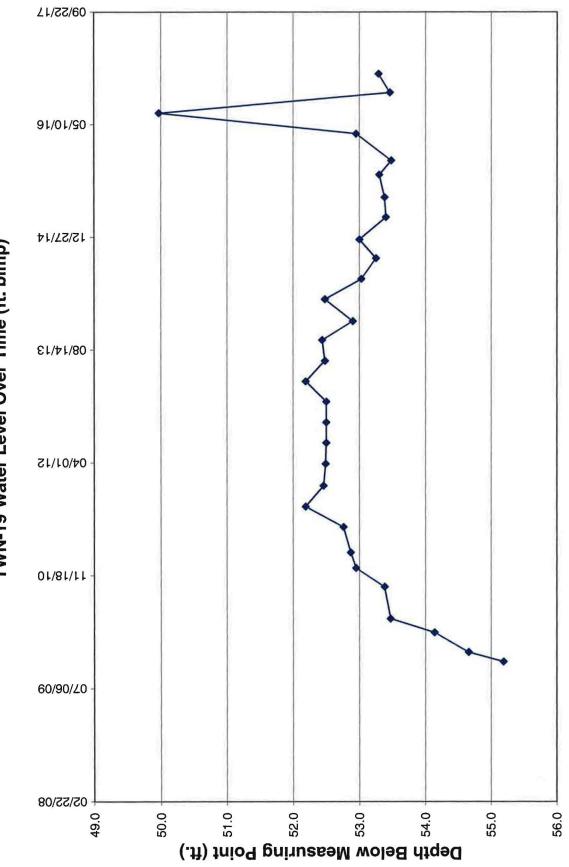

Hydrographs of Groundwater Elevations over Time for Nitrate Monitoring Wells

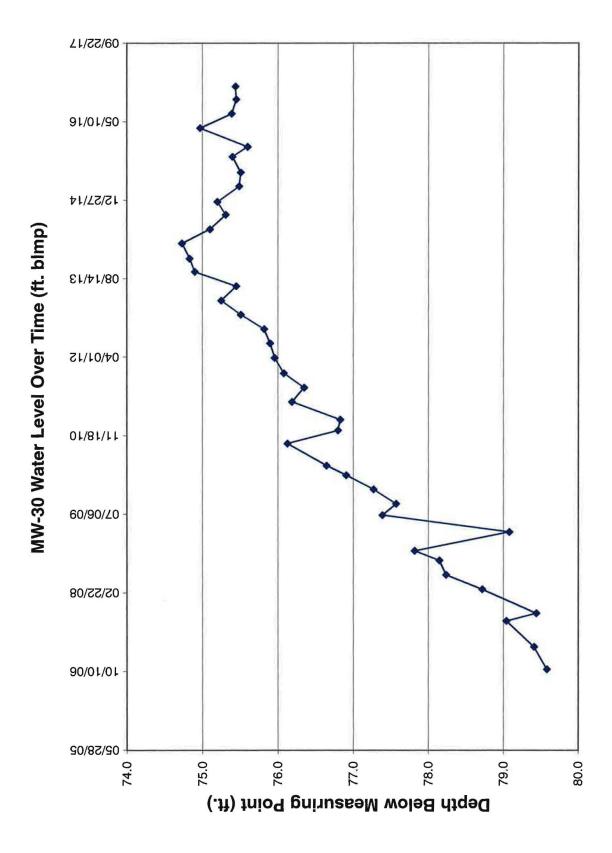


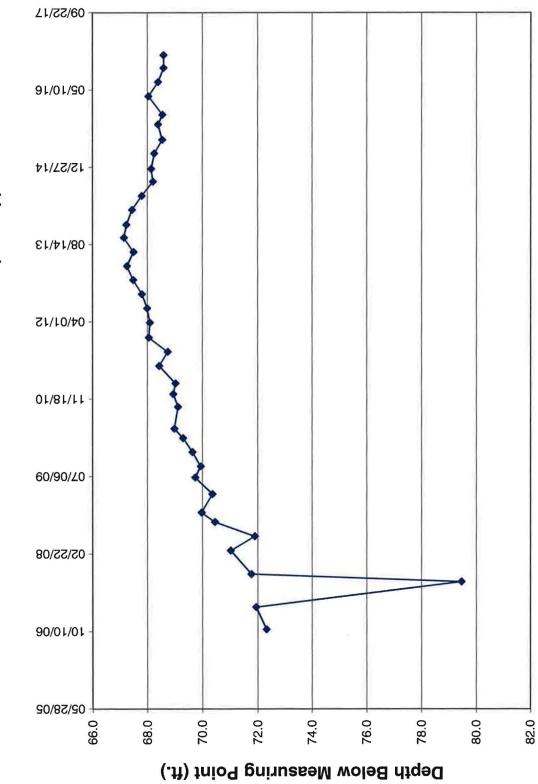









.



TWN-19 Water Level Over Time (ft. blmp)

MW-31 Water Level Over Time (ft. blmp)

Tab F

Depths to Groundwater and Elevations over Time for Nitrate Monitoring Wells

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,646.96	5,648.09	1.13		(01111111)	(01///202)	112.5
5,600.38				02/06/09	47.71	46.58	
5,599.99				07/21/09	48.10	46.97	
5,600.26				09/21/09	47.83	46.70	
5,601.10				10/28/09	46.99	45.86	
5,602.59				12/14/09	45.50	44.37	
5,600.55				03/11/10	47.54	46.41	
5,600.66				05/11/10	47.43	46.30	
5,599.18				09/29/10	48.91	47.78	
5,598.92				12/21/10	49.17	48.04	
5,598.29				02/28/11	49.80	48.67	
5,597.80				06/21/11	50.29	49.16	
5,597.32				09/20/11	50.77	49.64	
5,597.15				12/21/11	50.94	49.81	
5,596.54				03/27/12	51.55	50.42	
5,596.52				06/28/12	51.57	50.44	
5,595.03				09/27/12	53.06	51.93	
5,596.62				12/28/12	51.47	50.34	
5,593.54				03/28/13	54.55	53.42	
5,592.38				06/27/13	55.71	54.58	
5,591.65				09/27/13	56.44	55.31	
5,590.34				12/20/13	57.75	56.62	
5,590.03				03/27/14	58.06	56.93	
5,589.09				06/25/14	59.00	57.87	
5,588.15				09/25/14	59.94	58.81	
5,587.74				12/17/14	60.35	59.22	
5,587.09				03/26/15	61.00	59.87	
5,586.79				06/22/15	61.30	60.17	
5,586.39				09/30/15	61.70	60.57	
5,586.05				12/02/15	62.04	60.91	
5,585.89				03/30/16	62.20	61.07	
5,585.30				06/30/16	62.79	61.66	
5,584.95				09/29/16	63.14	62.01	
5,584.55				12/21/16	63.54	62.41	

Water Levels and Data over Time White Mesa Mill - Well TWN-1

Water Levels and Data over Time	
White Mesa Mill - Well TWN-2	
Total or	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,625.75	5,626.69	0.94				95
5,611.37				02/06/09	15.32	14.38	
5,610.63				07/21/09	16.06	15.12	
5,609.73				09/21/09	16.96	16.02	
5,607.08				11/02/09	19.61	18.67	
5,606.57				12/14/09	20.12	19.18	
5,612.45				03/11/10	14.24	13.30	
5,612.78				05/11/10	13.91	12.97	
5,611.37				09/29/10	15.32	14.38	
5,610.24				12/21/10	16.45	15.51	
5,610.64				02/28/11	16.05	15.11	
5,609.78				06/21/11	16.91	15.97	
5609.79				09/20/11	16.90	15.96	
5609.72				12/21/11	16.97	16.03	
5,605.69				03/27/12	21.00	20.06	
5,605.67				06/28/12	21.02	20.08	
5,603.03				09/27/12	23.66	22.72	
5,605.76				12/28/12	20.93	19.99	
5,598.28				03/28/13	28.41	27.47	
5,594.32				06/27/13	32.37	31.43	
5,594.38				09/27/13	32.31	31.37	
5,594.68				12/20/13	32.01	31.07	
5,597.79				03/27/14	28.90	27.96	
5,595.80				06/25/14	30.89	29.95	
5,587.67				09/25/14	39.02	38.08	
5,592.66				12/17/14	34.03	33.09	
5,596.71				03/26/15	29.98	29.04	
5,598.64				06/22/15	28.05	27.11	
5,597.89				09/30/15	28.80	27.86	
5,597.89				12/02/15	28.80	27.86	
5,594.25				03/30/16	32.44	31.50	
5,590.26				06/30/16	36.43	35.49	
5,591.67				09/29/16	35.02	34.08	
5592.92				12/21/2016	33.77	32.83	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
<u>(</u>)	5,633.64	5,634.50	0.86		((110
5,603.77				02/06/09	30.73	29.87	
5,602.37				07/21/09	32.13	31.27	
5,602.34				09/21/09	32.16	31.30	
5,602.60				10/28/09	31.90	31.04	
5,603.12				12/14/09	31.38	30.52	
5,602.90				03/11/10	31.60	30.74	
5,603.23				05/11/10	31.27	30.41	
5,602.86				09/29/10	31.64	30.78	
5,603.35				12/21/10	31.15	30.29	
5,602.89				02/28/11	31.61	30.75	
5,602.75				06/21/11	31.75	30.89	
5,602.40				09/20/11	32.10	31.24	
5,602.40				12/21/11	32.10	31.24	
5,601.70				03/27/12	32.80	31.94	
5,601.67				06/28/12	32.83	31.97	
5,600.50				09/27/12	34.00	33.14	
5,601.74				12/28/12	32.76	31.90	
5,598.60				03/28/13	35.90	35.04	
5,597.18				06/27/13	37.32	36.46	
5,597.36				09/27/13	37.14	36.28	
5,597.60				12/20/13	36.90	36.04	
5,598.00				03/27/14	36.50	35.64	
5,596.34				06/25/14	38.16	37.30	
5,596.30				09/25/14	38.20	37.34	
5,596.55				12/17/14	37.95	37.09	
5,596.20				03/26/15	38.30	37.44	
5,596.00				06/22/15	38.50	37.64	
5,596.61				09/30/15	37.89	37.03	
5,596.09				12/02/15	38.41	37.55	
5,595.29				03/30/16	39.21	38.35	
5,594.61				06/30/16	39.89	39.03	
5,593.79				09/29/16	40.71	39.85	
5,594.20				12/21/2016	40.3	39.44	

Water Levels and Data over Time White Mesa Mill - Well TWN-3

		Measuring			Total or Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,641.04	5,641.87	0.83	0			136
5,601.47				02/06/09	40.40	39.57	
5,604.26				07/21/09	37.61	36.78	
5,605.02				09/21/09	36.85	36.02	
5,605.87				10/28/09	36.00	35.17	
5,605.81				12/14/09	36.06	35.23	
5,605.31				03/11/10	36.56	35.73	
5,605.36				05/11/10	36.51	35.68	
5,604.59				09/29/10	37.28	36.45	
5,604.42				12/21/10	37.45	36.62	
5,603.69				02/28/11	38.18	37.35	
5,603.36				06/21/11	38.51	37.68	
5,602.82				09/20/11	39.05	38.22	
5,602.79				12/21/11	39.08	38.25	
5,600.82				03/27/12	41.05	40.22	
5,600.84				06/28/12	41.03	40.20	
5,598.47				09/27/12	43.40	42.57	
5,600.86				12/28/12	41.01	40.18	
5,595.57				03/28/13	46.30	45.47	
5,594.12				06/27/13	47.75	46.92	
5,593.33				09/27/13	48.54	47.71	
5,591.92				12/20/13	49.95	49.12	
5,591.85				03/27/14	50.02	49.19	
5,590.49				06/25/14	51.38	50.55	
5,589.64				09/25/14	52.23	51.40	
5,589.42				12/17/14	52.45	51.62	
5,589.17				03/26/15	52.70	51.87	
5,588.17				06/22/15	53.70	52.87	
5,587.48				09/30/15	54.39	53.56	
5,587.02				12/02/15	54.85	54.02	
5,586.90				03/20/16	54.97	54.14	
5,586.18				06/30/16	55.69	54.86	
5,585.72				09/29/16	56.15	55.32	
5585.42				12/21/2016	56.45	55.62	

Water Levels and Data over Time White Mesa Mill - Well TWN-4

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
-	5,663.03	5,664.94	1.91				135
5,589.52				08/25/09	75.42	73.51	
5,589.46				09/22/09	75.48	73.57	
5,589.61				11/03/09	75.33	73.42	
5,589.92				12/14/09	75.02	73.11	
5,590.24				03/11/10	74.70	72.79	
5,590.40				05/11/10	74.54	72.63	
5,590.24				09/29/10	74.70	72.79	
5,590.49				12/21/10	74.45	72.54	
5,590.16				02/28/11	74.78	72.87	
5,590.44				06/21/11	74.50	72.59	
5,590.35				09/20/11	74.59	72.68	
5,590.67				12/21/11	74.27	72.36	
5,590.34				03/27/12	74.60	72.69	
5,590.32				06/28/12	74.62	72.71	
5,589.77				09/27/12	75.17	73.26	
5,589.67				12/28/12	75.27	73.36	
5,589.45				03/28/13	75.49	73.58	
5,589.01				06/27/13	75.93	74.02	
5,588.99				09/27/13	75.95	74.04	
5,588.15				12/20/13	76.79	74.88	
5,588.50				03/27/14	76.44	74.53	
5,588.03				06/25/14	76.91	75.00	
5,587.74				09/25/14	77.20	75.29	
5,587.69				12/17/14	77.25	75.34	
5,587.29				03/26/15	77.65	75.74	
5,587.04				06/22/15	77.90	75.99	
5,586.93				09/30/15	78.01	76.10	
5,586.72				12/02/15	78.22	76.31	
5,586.92				03/30/16	78.02	76.11	
5,586.32				06/30/16	78.62	76.71	
5,586.16				09/29/16	78.78	76.87	
5586.03				12/21/2016	78.91	77.00	

Water Levels and Data over Time White Mesa Mill - Well TWN-6 Total or

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,647.39	5,649.26	1.87				120
5,552.56				08/25/09	96.70	94.83	
5,558.34				09/21/09	90.92	89.05	
5,558.82				11/10/09	90.44	88.57	
5,558.96				12/14/09	90.30	88.43	
5,559.54				03/11/10	89.72	87.85	
5,559.60				05/11/10	89.66	87.79	
5,559.83				09/29/10	89.43	87.56	
5,559.00				12/21/10	90.26	88.39	
5,559.68				02/28/11	89.58	87.71	
5,560.43				06/21/11	88.83	86.96	
5,560.46				09/20/11	88.80	86.93	
5,560.78				12/21/11	88.48	86.61	
5,560.92				03/27/12	88.34	86.47	
5,560.87				06/28/12	88.39	86.52	
5,561.40				09/27/12	87.86	85.99	
5,561.50				12/28/12	87.76	85.89	
5,562.01				03/28/13	87.25	85.38	
5,562.21				06/27/13	87.05	85.18	
5,562.41				09/27/13	86.85	84.98	
5,562.23				12/20/13	87.03	85.16	
5,562.85				03/27/14	86.41	84.54	
5,562.95				06/25/14	86.31	84.44	
5,563.06				09/25/14	86.20	84.33	
5,563.21				12/17/14	86.05	84.18	
5,563.33				03/26/15	85.93	84.06	
5,563.46				06/22/15	85.80	83.93	
5,563.64				09/30/15	85.62	83.75	
5,563.88				12/02/15	85.38	83.51	
5,564.19				03/30/16	85.07	83.20	
5,563.97				06/30/16	85.29	83.42	
5,564.21				09/29/16	85.05	83.18	
5,564.46				12/21/16	84.80	82.93	

Water Levels and Data over Time White Mesa Mill - Well TWN-7 Total

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,647.80	5,649.53	1.73				135
5,586.18				11/04/09	63.35	61.62	
5,586.51				12/14/09	63.02	61.29	
5,586.71				03/11/10	62.82	61.09	
5,586.72				05/11/10	62.81	61.08	
5,586.53				09/29/10	63.00	61.27	
5,586.80				12/21/10	62.73	61.00	
5,586.74				02/28/11	62.79	61.06	
5,586.84				06/21/11	62.69	60.96	
5,586.73				09/20/11	62.80	61.07	
5,586.98				12/21/11	62.55	60.82	
5,587.07				03/27/12	62.46	60.73	
5,587.10				06/28/12	62.43	60.70	
5,587.07				09/27/12	62.46	60.73	
5,587.33				12/28/12	62.20	60.47	
5,587.43				03/28/13	62.10	60.37	
5,587.43				06/27/13	62.10	60.37	
5,587.72				09/27/13	61.81	60.08	
5,587.22				12/20/13	62.31	60.58	
5,587.91				03/27/14	61.62	59.89	
5,587.74				06/25/14	61.79	60.06	
5,587.76				09/25/14	61.77	60.04	
5,587.88				12/17/14	61.65	59.92	
5,587.97				03/26/15	61.56	59.83	
5,587.98				06/22/15	61.55	59.82	
5,588.18				09/30/15	61.35	59.62	
5,588.23				12/02/15	61.30	59.57	
5,588.70				03/30/16	60.83	59.10	
5,588.31				06/30/16	61.22	59.49	
5,588.36				09/29/16	61.17	59.44	
5588.43				12/21/2016	61.1	59.37	

Water Levels and Data over Time White Mesa Mill - Well TWN-14 Total

	Water Levels and Data over Time
	White Mesa Mill - Well TWN-16
	Total or
100	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,651.07	5,652.70	1.63				100
5,603.34				11/04/09	49.36	47.73	
5,603.56				12/14/09	49.14	47.51	
5,603.84				03/11/10	48.86	47.23	
5,604.31				05/11/10	48.39	46.76	
5,604.28				09/29/10	48.42	46.79	
5,604.39				12/21/10	48.31	46.68	
5,604.20				02/28/11	48.50	46.87	
5,604.55				06/21/11	48.15	46.52	
5,604.74				09/20/11	47.96	46.33	
5,604.94				12/21/11	47.76	46.13	
5,604.84				03/27/12	47.86	46.23	
5,604.85				06/28/12	47.85	46.22	
5,604.99				09/27/12	47.71	46.08	
5,605.10				12/28/12	47.60	45.97	
5,605.22				03/28/13	47.48	45.85	
5,605.11				06/27/13	47.59	45.96	
5,605.39				09/27/13	47.31	45.68	
5,604.99				12/20/13	47.71	46.08	
5,605.71				03/27/14	46.99	45.36	
5,605.16				06/25/14	47.54	45.91	
5,605.10				09/25/14	47.60	45.97	
5,605.25				12/17/14	47.45	45.82	
5,605.04				03/26/15	47.66	46.03	
5,604.99				06/22/15	47.71	46.08	
5,605.05				09/30/15	47.65	46.02	
5,604.96	(7)			12/02/15	47.74	46.11	
5,605.25				03/30/16	47.45	45.82	
5,605.00				06/30/16	47.70	46.07	
5,605.00				09/29/16	47.70	46.07	
5605.00				12/21/2016	47.70	46.07	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,643.95	5,645.45	1.50				100
5,586.85				11/02/09	58.60	57.10	
5,600.14				12/14/09	45.31	43.81	
5,587.36				03/11/10	58.09	56.59	
5,587.71				05/11/10	57.74	56.24	
5,587.50				09/29/10	57.95	56.45	
5,607.66				12/21/10	37.79	36.29	
5,587.35				02/28/11	58.10	56.60	
5,587.71				06/21/11	57.74	56.24	
5,587.65				09/20/11	57.80	56.30	
5,587.95				12/21/11	57.50	56.00	
5,587.05				03/27/12	58.40	56.90	
5,587.05				06/28/12	58.40	56.90	
5,587.50				09/27/12	57.95	56.45	
5,587.50				12/28/12	57.95	56.45	
5,587.32				03/28/13	58.13	56.63	
5,586.95				06/27/13	58.50	57.00	
5,587.02				09/27/13	58.43	56.93	
5,586.26				12/20/13	59.19	57.69	
5,586.87				03/27/14	58.58	57.08	
5,586.23				06/25/14	59.22	57.72	
5,586.02				09/25/14	59.43	57.93	
5,585.99				12/17/14	59.46	57.96	
5,585.66				03/26/15	59.79	58.29	
5,585.45				06/22/15	60.00	58.50	
5,585.37				09/30/15	60.08	58.58	
5,585.24				12/02/15	60.21	58.71	
5,585.38				03/30/16	60.07	58.57	
5,584.85				6/30/2016	60.60	59.10	
5,584.69				9/29/2016	60.76	59.26	
5584.60				12/21/2016	60.85	59.35	

Water Levels and Data over Time White Mesa Mill - Well TWN -18 Total

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,659.59	5,661.36	1.77				110
5,606.17				11/02/09	55.19	53.42	
5,606.70				12/14/09	54.66	52.89	
5,607.22				03/11/10	54.14	52.37	
5,607.89				05/11/10	53.47	51.70	
5,607.98				09/29/10	53.38	51.61	
5,608.41				12/21/10	52.95	51.18	
5,608.49				02/28/11	52.87	51.10	
5,608.60				06/21/11	52.76	50.99	
5,609.17				09/20/11	52.19	50.42	
5,608.90				12/21/11	52.46	50.69	
5,608.87				03/27/12	52.49	50.72	
5,608.86				06/28/12	52.50	50.73	
5,608.86				09/27/12	52.50	50.73	
5,608.86				12/28/12	52.50	50.73	
5,609.17				03/28/13	52.19	50.42	
5,608.88				06/27/13	52.48	50.71	
5,608.92				09/27/13	52.44	50.67	
5,608.46				12/20/13	52.90	51.13	
5,608.88				03/27/14	52.48	50.71	
5,608.33				06/25/14	53.03	51.26	
5,608.11				09/25/14	53.25	51.48	
5,608.36				12/17/14	53.00	51.23	
5,607.96				03/26/15	53.40	51.63	
5,607.98				06/22/15	53.38	51.61	
5,608.06				09/30/15	53.30	51.53	
5,607.88				12/02/15	53.48	51.71	
5,608.41				03/30/16	52.95	51.18	
5,611.39				06/30/16	49.97	48.20	
5,607.90				09/29/16	53.46	51.69	
5,608.07				12/21/2016	53.29	51.52	

Water Levels and Data over Time White Mesa Mill - Well TWN-19 Total

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,613.34	5,614.50	1.16				110
5,534.92				10/24/2006	79.58	78.42	
5,535.09				3/16/2007	79.41	78.25	
5,535.46				8/27/2007	79.04	77.88	
5,535.06				10/15/2007	79.44	78.28	
5,535.78				3/15/2008	78.72	77.56	
5,536.26				6/15/2008	78.24	77.08	
5,536.35				9/15/2008	78.15	76.99	
5,536.68				11/15/2008	77.82	76.66	
5,535.42				3/15/2009	79.08	77.92	
5,537.11				6/30/2009	77.39	76.23	
5,536.93				9/10/2009	77.57	76.41	
5,537.23				12/11/2009	77.27	76.11	
5,537.59				3/11/2010	76.91	75.75	
5,537.85				5/11/2010	76.65	75.49	
5,538.37				9/29/2010	76.13	74.97	
5537.70				12/21/2010	76.8	75.64	
5537.67				2/28/2011	76.83	75.67	
5538.31				6/21/2011	76.19	75.03	
5538.15				9/20/2011	76.35	75.19	
5538.42				12/21/2011	76.08	74.92	
5538.54				3/27/2012	75.96	74.8	
5538.60				6/28/2012	75.9	74.74	
5538.68				9/27/2012	75.82	74.66	
5538.99				12/28/2012	75.51	74.35	
5539.25				3/28/2013	75.25	74.09	
5539.05				6/27/2013	75.45	74.29	
5539.60				9/27/2013	74.90	73.74	
5539.67				12/20/2013	74.83	73.67	
5539.77				3/27/2014	74.73	73.57	
5539.40				6/25/2014	75.10	73.94	
5539.19				9/25/2014	75.31	74.15	
5539.30				12/17/2014	75.20	74.04	
5539.01				3/26/2015	75.49	74.33	
5538.99				6/22/2015	75.51	74.35	
5539.10				9/30/2015	75.40	74.24	
5538.90				12/2/2015	75.60	74.44	
5539.53				3/30/2016	74.97	73.81	
5539.11				6/30/2016	75.39	74.23	
5539.05				9/29/2016	75.45	74.29	
5539.06				12/21/2016	75.44	74.28	

Water Levels and Data over Time White Mesa Mill - Well MW-30 Total or

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,615.26	5,616.40	1.14				130
5,544.07				10/24/2006	72.33	71.19	
5,544.45				3/16/2007	71.95	70.81	
5,536.94				8/27/2007	79.46	78.32	
5,544.62				10/15/2007	71.78	70.64	
5,545.37				3/15/2008	71.03	69.89	
5,544.50				6/15/2008	71.90	70.76	
5,545.94				9/15/2008	70.46	69.32	
5,546.42				11/15/2008	69.98	68.84	
5,546.03				3/15/2009	70.37	69.23	
5,546.65				6/30/2009	69.75	68.61	
5,546.45				9/10/2009	69.95	68.81	
5,546.75				12/11/2009	69.65	68.51	
5,547.09				3/11/2010	69.31	68.17	
5,547.41				5/11/2010	68.99	67.85	
5,547.28				9/29/2010	69.12	67.98	
5547.45				12/21/2010	68.95	67.81	
5547.37				2/28/2011	69.03	67.89	
5547.96				6/21/2011	68.44	67.3	
5547.65				9/20/2011	68.75	67.61	
5548.34				12/21/2011	68.06	66.92	
5548.30				3/27/2012	68.10	66.96	
5548.40				6/28/2012	68.00	66.86	
5548.59				9/27/2012	67.81	66.67	
5548.91				12/28/2012	67.49	66.35	
5549.14				3/28/2013	67.26	66.12	
5548.90				6/27/2013	67.50	66.36	
5549.25				9/27/2013	67.15	66.01	
5549.16				12/20/2013	67.24	66.10	
5548.95				3/27/2014	67.45	66.31	
5548.60				6/25/2014	67.80	66.66	
5548.19				9/25/2014	68.21	67.07	
5548.25				12/17/2014	68.15	67.01	
5548.14				3/26/2015	68.26	67.12	
5547.85				6/22/2015	68.55	67.41	
5548.00				9/30/2015	68.40	67.26	
5547.84				12/2/2015	68.56	67.42	
5548.35				3/30/2016	68.05	66.91	
5548.00				6/30/2016	68.40	67.26	
5547.80				9/29/2016	68.60	67.46	
5547.80				12/21/2016	68.60	67.46	

Water Levels and Data over Time White Mesa Mill - Well MW-31 Total or

Tab G

Laboratory Analytical Reports

INORGANIC ANALYTICAL REPORT

Energy Fuels Resources, Inc. 4th Quarter Nitrate 2016 Lab Sample ID: 1610271-010 Client Sample ID: PIEZ-01_10112016 **Collection Date:** 10/11/2016 1325h **Received Date:** 10/14/2016 1025h

Contact: Garrin Palmer

Analytical Results

Client:

Project:

3440 South 70	0 West
Salt Lake City, UT	84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		10/18/2016 656h	E300.0	10.0	58.1	
Nitrate/Nitrite (as N)	mg/L		10/19/2016 2041h	E353.2	0.100	6.42	1

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha

QA Officer

Report Date: 10/25/2016 Page 13 of 19

All analyses applicable to the CWA, SDWA. and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report

INORGANIC ANALYTICAL REPORT

Energy Fuels Resources, Inc. 4th Quarter Nitrate 2016 1610271-011 Client Sample ID: PIEZ-02_10112016 10/11/2016 1258h

10/14/2016 1025h

Contact: Garrin Palmer

Analytical Results

Lab Sample ID:

Collection Date:

Received Date:

Client:

Project:

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
t Lake City, UT 84119	Chloride	mg/L		10/18/2016 714h	E300.0	5.00	13.4	
	Nitrate/Nitrite (as N)	mg/L		10/19/2016 2044h	E353.2	0.100	0.732	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

Salt

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha

QA Officer

Report Date: 10/25/2016 Page 14 of 19

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report

Contact: Garrin Palmer

Energy Fuels Resources, Inc. 4th Quarter Nitrate 2016 **Project:** 1610271-012 Lab Sample ID: Client Sample ID: PIEZ-03A_10112016 **Collection Date:** 10/11/2016 1312h **Received Date:** 10/14/2016 1025h

Analytical Results

Client:

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		10/18/2016 731h	E300.0	10.0	100	
	Nitrate/Nitrite (as N)	mg/L		10/19/2016 2045h	E353.2	0.100	8.44	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 10/25/2016 Page 15 of 19

All analyses applicable to the CWA. SDWA. and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report in connection with the re-publication of the rest o

Date

Analyzed

10/18/2016 402h

10/19/2016 2024h

Date

Prepared

Contact: Garrin Palmer

Reporting

Limit

10.0

0.100

Analytical

Result

33.0

1.98

Qual

Method

Used

E300.0

E353.2

Client:Energy Fuels Resources, Inc.Project:4th Quarter Nitrate 2016Lab Sample ID:1610271-004Client Sample ID:TWN-01_10062016Collection Date:10/6/201610/6/20161128hReceived Date:10/14/2016

Units

mg/L

mg/L

Analytical Results

Nitrate/Nitrite (as N)

Compound

Chloride

3440 South 700) West
Salt Lake City, UT	84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha

QA Officer

Report Date: 10/25/2016 Page 7 of 19

All analyses applicable to the CWA. SDWA. and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report in connection with the re-publication of this report in connection with the advertisement.

Energy Fuels Resources, Inc. 4th Quarter Nitrate 2016 1610271-007 Lab Sample ID: Client Sample ID: TWN-02_10112016 **Collection Date:** 10/11/2016 1250h **Received Date:** 10/14/2016 1025h

Contact: Garrin Palmer

Analytical Results

Client:

Project:

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		10/18/2016 604h	E300.0	10.0	69.8	
	Nitrate/Nitrite (as N)	mg/L	;	10/19/2016 2101h	E353.2	1.00	32.6	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 10/25/2016 Page 10 of 19

All analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report

Contact: Garrin Palmer

Energy Fuels Resources, Inc. 4th Quarter Nitrate 2016 **Project:** 1610271-006 Lab Sample ID: Client Sample ID: TWN-03 10072016 **Collection Date:** 10/7/2016 709h **Received Date:** 10/14/2016 1025h

Analytical Results

Client:

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		10/18/2016 512h	E300.0	10.0	113	
	Nitrate/Nitrite (as N)	mg/L	-	10/19/2016 2026h	E353.2	0.100	15.8	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha

QA Officer

Report Date: 10/25/2016 Page 9 of 19

All analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report in connection with the re-publication of this report in connection with the advertisement.

Energy Fuels Resources, Inc. 4th Quarter Nitrate 2016 1610271-005 Client Sample ID: TWN-04 10062016

10/6/2016 1231h

10/14/2016 1025h

Contact: Garrin Palmer

Analytical Results

Lab Sample ID:

Collection Date:

Received Date:

Client:

Project:

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		10/18/2016 454h	E300.0	5.00	31.3	
	Nitrate/Nitrite (as N)	mg/L		10/19/2016 2025h	E353.2	0.100	3.09	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 10/25/2016 Page 8 of 19

All analyses applicable to the CWA. SDWA. and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement. promotion or sale of any product or process, or in connection with the re-publication of this report is provided for the exclusive use of the name of the name of the name of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement.

Contact: Garrin Palmer

Client:Energy Fuels Resources, Inc.Project:4th Quarter Nitrate 2016Lab Sample ID:1610271-003Client Sample ID:TWN-07_10072016Collection Date:10/7/2016Neceived Date:10/14/201610/14/20161025h

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
t Lake City, UT 84119	Chloride	mg/L		10/18/2016 345h	E300.0	1.00	6.17	
	Nitrate/Nitrite (as N)	mg/L		10/19/2016 2018h	E353.2	0.100	0.698	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 >-mail: awal@awal-labs.com

Salt La

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 10/25/2016 Page 6 of 19

All analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report

Energy Fuels Resources, Inc.Cont4th Quarter Nitrate 2016

Date

Analyzed

10/18/2016 253h

10/19/2016 2017h

Contact: Garrin Palmer

Reporting

Limit

10.0

0.100

Analytical

Result

67.4

0.501

Qual

Method

Used

E300.0

E353.2

Analytical Results

Nitrate/Nitrite (as N)

Compound

Chloride

Lab Sample ID:

Collection Date:

Received Date:

1610271-002

10/6/2016 1011h

10/14/2016 1025h

Units

mg/L

mg/L

Date

Prepared

Client Sample ID: TWN-18 10062016

Client:

Project:

	3440	Sout	h 700) West
Salt	Lake	City,	UT	84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 2-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 10/25/2016 Page 5 of 19

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report

Energy Fuels Resources, Inc. 4th Quarter Nitrate 2016 Lab Sample ID: 1610271-001 Client Sample ID: TWN-18R 10062016 **Collection Date:** 10/6/2016 915h **Received Date:** 10/14/2016 1025h

Contact: Garrin Palmer

Analytical Results

Client:

Project:

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		10/18/2016 235h	E300.0	1.00	< 1.00	
	Nitrate/Nitrite (as N)	mg/L		10/19/2016 2015h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 10/25/2016 Page 4 of 19

All analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report.

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2016

 Lab Sample ID:
 1610270-010

 Client Sample ID:
 TW4-22_10122016

 Collection Date:
 10/12/2016 1344h

 Received Date:
 10/14/2016 1025h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L	1	10/17/2016 2311h	E300.0	100	588	
	Nitrate/Nitrite (as N)	mg/L	1	10/19/2016 2051h	E353.2	1.00	61.5	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2016

 Lab Sample ID:
 1610270-002

 Client Sample ID:
 TW4-24_10122016

 Collection Date:
 10/12/2016 1336h

 Received Date:
 10/14/2016 1025h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		10/17/2016 1825h	E300.0	100	1,010	
	Nitrate/Nitrite (as N)	mg/L		10/19/2016 2050h	E353.2	0.200	31.9	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 >-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement. promotion or sale of any product or process, or in connection with the re-publication of this report

Energy Fuels Resources, Inc. 4th Quarter Chloroform 2016 Lab Sample ID: 1610270-001 Client Sample ID: TW4-25 10122016 **Collection Date:** 10/12/2016 1325h **Received Date:** 10/14/2016 1025h

Contact: Garrin Palmer

Analytical Results

Client:

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		10/17/2016 2039h	E300.0	10.0	59.8	
	Nitrate/Nitrite (as N)	mg/L		10/19/2016 1953h	E353.2	0.100	1.24	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report

Contact: Garrin Palmer

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Nitrate 2016

 Lab Sample ID:
 1610271-009

 Client Sample ID:
 TWN-60_10132016

 Collection Date:
 10/13/2016 930h

 Received Date:
 10/14/2016 1025h

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		10/18/2016 639h	E300.0	1.00	< 1.00	
	Nitrate/Nitrite (as N)	mg/L		10/19/2016 2035h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 2-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha

QA Officer

Report Date: 10/25/2016 Page 12 of 19

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or side of any product or process, or in connection with the re-publication of this report

Energy Fuels Resources, Inc. **Project:** 4th Quarter Chloroform 2016 Lab Sample ID: 1611262-004 Client Sample ID: TW4-60 11102016 **Collection Date:** 11/10/2016 740h **Received Date:** 11/11/2016 1035h

Contact: Garrin Palmer

Analytical Results

Client:

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/15/2016 1556h	E300.0	1.00	< 1.00	
	Nitrate/Nitrite (as N)	mg/L		11/17/2016 1741h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 >-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report

Contact: Garrin Palmer

Client:Energy Fuels Resources, Inc.Project:4th Quarter Nitrate 2016Lab Sample ID:1610271-008Client Sample ID:TWN-65_10062016Collection Date:10/6/201610/6/20161011hReceived Date:10/14/2016

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		10/18/2016 621h	E300.0	5.00	65.7	
	Nitrate/Nitrite (as N)	mg/L		10/19/2016 2033h	E353.2	0.100	0.488	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 >-mail: awal@awal-labs.com

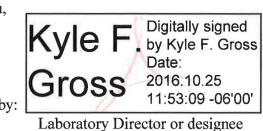
web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 10/25/2016 Page 11 of 19

All analyses applicable to the CWA. SDWA. and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report in connection with the re-publication of this report in connection.



Garrin Palmer Energy Fuels Resources, Inc. 6425 S. Hwy 191 Blanding, UT 84511 TEL: (303) 389-4134

RE: 4th Quarter Nitrate 2016

3440 South 700 West	Dear Garrin Palmer:	Lab Set ID:	1610271					
Salt Lake City, UT 84119	American West Analytical Laboratories receive analyses presented in the following report.	ed sample(s) on 10/14/201	6 for the					
Phone: (801) 263-8686 Toll Free: (888) 263-8686	American West Analytical Laboratories (AWA Environmental Laboratory Accreditation Progr state accredited in Colorado, Idaho, New Mexi	ram (NELAP) in Utah and	Texas; and is					
Fax: (801) 263-8687 5-mail: awal@awal-labs.com web: www.awal-labs.com	All analyses were performed in accordance to the NELAP protocols unless noted otherwise. Accreditation scope documents are available upon request. If you have any questions or concerns regarding this report please feel free to call.							
Kyle F. Gross Laboratory Director Jose Rocha	The abbreviation "Surr" found in organic report intentionally added by the laboratory to determ purging efficiency. The "Reporting Limit" fou practical quantitation limit (PQL). This is the preported by the method referenced and the sam confused with any regulatory limit. Analytical	ine sample injection, extra nd on the report is equival minimum concentration th ple matrix. The reporting results are reported to three	nction, and/or ent to the at can be limit must not be					
OA Officer	figures for quality control and calculation purp	oses.						

Thank You,

Approved by:

SAMPLE SUMMARY

Contact: Garrin Palmer

Client:Energy Fuels Resources, Inc.Project:4th Quarter Nitrate 2016Lab Set ID:1610271Date Received:10/14/2016 1025h

1610271-012A

1610271-012B

PIEZ-03A 10112016

PIEZ-03A 10112016

Lab Sample ID Client Sample ID **Date Collected** Matrix Analysis 3440 South 700 West 1610271-001A TWN-18R 10062016 10/6/2016 915h Aqueous Anions, E300.0 Salt Lake City, UT 84119 1610271-001B TWN-18R 10062016 10/6/2016 915h Nitrite/Nitrate (as N), E353.2 Aqueous 1610271-002A TWN-18 10062016 10/6/2016 1011h Aqueous Anions, E300.0 1610271-002B TWN-18 10062016 10/6/2016 1011h Aqueous Nitrite/Nitrate (as N), E353.2 10/7/2016 1610271-003A TWN-07 10072016 701h Aqueous Anions, E300.0 Phone: (801) 263-8686 1610271-003B TWN-07 10072016 10/7/2016 701h Nitrite/Nitrate (as N), E353.2 Aqueous Toll Free: (888) 263-8686 1610271-004A TWN-01 10062016 10/6/2016 1128h Aqueous Anions, E300.0 Fax: (801) 263-8687 1610271-004B TWN-01 10062016 10/6/2016 1128h Aqueous Nitrite/Nitrate (as N), E353.2 e-mail: awal@awal-labs.com 1610271-005A TWN-04 10062016 10/6/2016 1231h Aqueous Anions, E300.0 1610271-005B TWN-04 10062016 10/6/2016 1231h Nitrite/Nitrate (as N), E353.2 Aqueous web: www.awal-labs.com 1610271-006A TWN-03_10072016 10/7/2016 709h Aqueous Anions, E300.0 1610271-006B TWN-03 10072016 10/7/2016 709h Aqueous Nitrite/Nitrate (as N), E353.2 10/11/2016 1250h 1610271-007A TWN-02 10112016 Aqueous Anions, E300.0 Kyle F. Gross 1610271-007B 10/11/2016 1250h Nitrite/Nitrate (as N), E353.2 TWN-02_10112016 Aqueous Laboratory Director Anions, E300.0 1610271-008A TWN-65 10062016 10/6/2016 1011h Aqueous 1610271-008B TWN-65 10062016 10/6/2016 1011h Nitrite/Nitrate (as N), E353.2 Aqueous Jose Rocha 1610271-009A TWN-60 10132016 10/13/2016 930h Aqueous Anions, E300.0 **QA** Officer 1610271-009B TWN-60 10132016 10/13/2016 930h Aqueous Nitrite/Nitrate (as N), E353.2 1610271-010A PIEZ-01 10112016 10/11/2016 1325h Aqueous Anions, E300.0 1610271-010B PIEZ-01 10112016 10/11/2016 1325h Nitrite/Nitrate (as N), E353.2 Aqueous 1610271-011A PIEZ-02 10112016 10/11/2016 1258h Anions, E300.0 Aqueous 1610271-011B 10/11/2016 1258h Nitrite/Nitrate (as N), E353.2 PIEZ-02 10112016 Aqueous

Report Date: 10/25/2016 Page 2 of 19

All analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report in connection with the advertisement.

10/11/2016 1312h

10/11/2016 1312h

Aqueous

Aqueous

Anions, E300.0

Nitrite/Nitrate (as N), E353.2

Inorganic Case Narrative

American West	Client:	Energy Fuels Resources, Inc.						
	Contact:	Garrin Palmer						
	Project:	4th Quarter Nitrate 2016						
	Lab Set ID:	1610271						
3440 South 700 West	Sample Receipt Information:							
Salt Lake City, UT 84119	Date of Receipt:	10/14/2016						
	Date(s) of Collection:	10/06-10/13/2016						
	Sample Condition:	Intact						
	C-O-C Discrepancies:	None						
Phone: (801) 263-8686								
Toll Free: (888) 263-8686		uirements: The analysis and preparation for the						
Fax: (801) 263-8687	samples were performed within the mo	ethod holding times. The samples were properly						
e-mail: awal@awal-labs.com	preserved.							
0	Preparation and Analysis Requirem	ents: The samples were analyzed following the						
web: www.awal-labs.com	methods stated on the analytical reports.							
	Analytical QC Requirements: All requirements were met. All internal stand	Il instrument calibration and calibration check dard recoveries met method criterion.						
Kyle F. Gross								
Laboratory Director	Batch QC Requirements: MB, LCS, N	AS, MSD, RPD, DUP:						
Jose Rocha		rget analytes were detected above reporting limits,						
	indicating that the procedure wa	s free from contamination.						
QA Officer		(LCS): All LCS recoveries were within control ation and analysis were in control.						
2	RPDs (Relative Percent Diffe following exceptions: the MS control limits for Nitrate/Nitrite	Duplicates (MS/MSD): All percent recoveries and rences) were inside established limits, with the and MSD percent recoveries were outside of the e (as N) on sample 1610271-010B due to sample d is in control as indicated by the LCS.						
	Duplicate (DUP): The parame within the control limits.	eters that required a duplicate analysis had RPDs						

Corrective Action: None required.

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Lab Set ID:		nc.					Contact: Dept:	Garrin Pa WC	lmer					
Project:	4th Quarter Nitrate 2016						QC Type:	LCS						
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample II Test Code:	D: LCS-R94916 300.0-W	Date Analyzed:	10/18/201	l6 035h										
Chloride		5.20	mg/L	E300.0	0.00516	0.100	5.000	0	104	90 - 110				
Lab Sample II Test Code:	D: LCS-R94983 NO2/NO3-W-353.2	Date Analyzed:	10/19/20	l6 1952h										
Nitrate/Nitrite	(as N)	0.956	mg/L	E353.2	0.00833	0.0100	1.000	0	95.6	90 - 110				
Lab Sample II Test Code:	D: LCS-R94984 NO2/NO3-W-353.2	Date Analyzed:	10/19/20	l6 2032h							ž.			
Nitrate/Nitrite	(as N)	0.947	mg/L	E353_2	0.00833	0.0100	1.000	0	94.7	90 - 110				

analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of ne of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client:	Energy Fuels Resources, In	nc.					Contact:	Garrin Pa	llmer					
Lab Set ID:	1610271						Dept:	WC						
Project:	4th Quarter Nitrate 2016						QC Type:	MBLK						
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID Test Code:	: MB-R94916 300.0-W	Date Analyzed:	10/18/201	5 019h										
Chloride		< 0.100	mg/L	E300.0	0.00516	0.100								
Lab Sample ID Test Code:	: MB-R94983 NO2/NO3-W-353.2	Date Analyzed:	10/19/201	6 1950h										
Nitrate/Nitrite ((as N)	< 0.0100	mg/L	E353.2	0.00833	0.0100								
Lab Sample ID Test Code:	: MB-R94984 NO2/NO3-W-353.2	Date Analyzed:	10/19/201	5 2031h										
Nitrate/Nitrite ((as N)	< 0.0100	mg/L	E353.2	0.00833	0.0100								

Report Date: 10/25/2016 Page 17 of 19

analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of ne of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client:	Energy Fuels Resources	s, Inc.					Contact:	Garrin Pa	lmer					
Lab Set ID:	1610271						Dept:	WC						
Project:	4th Quarter Nitrate 201	6					QC Type:	MS						
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID Test Code:	1610271-002AMS 300.0-W	Date Analyzed:	10/18/20	16 310h										
Chloride		171	mg/L	E300.0	0.103	2.00	100.0	67.4	103	90 - 110				
Lab Sample ID Test Code:	1610271-004AMS 300.0-W	Date Analyzed:	10/18/20	16 420h										
Chloride		138	mg/L	E300.0	0.103	2.00	100.0	33	105	90 - 110				
Lab Sample ID Test Code:	• 1610270-010BMS NO2/NO3-W-353.2	Date Analyzed:	10/19/20	16 2057h										
Nitrate/Nitrite	(as N)	160	mg/L	E353.2	0.833	1.00	100.0	61.5	98.8	90 - 110				
Lab Sample ID Test Code:	1610271-007BMS NO2/NO3-W-353.2	Date Analyzed:	10/19/20	16 2102h										
Nitrate/Nitrite	(as N)	131	mg/L	E353.2	0.833	1.00	100.0	32.6	98.2	90 - 110				
Lab Sample ID Test Code:	1610271-010BMS NO2/NO3-W-353.2	Date Analyzed:	10/19/20	16 2042h										
Nitrate/Nitrite	(as N)	18.3	mg/L	E353.2	0.0833	0.100	10.00	6.42	119	90 - 110				1

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Report Date: 10/25/2016 Page 18 of 19

analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use o ne of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client:	Energy Fuels Resources,	, Inc.					Contact:	Garrin Pa	lmer					
Lab Set ID:							Dept:	WC						
Project:	4th Quarter Nitrate 2016	5					QC Type:	MSD						
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample II Test Code:	D: 1610271-002AMSD 300.0-W	Date Analyzed:	10/18/201	l6 328h										
Chloride		169	mg/L	E300.0	0.103	2.00	100.0	67.4	102	90 - 110	171	0.794	20	
Lab Sample II Test Code:	D: 1610271-004AMSD 300.0-W	Date Analyzed:	10/18/201	16 437h										
Chloride		137	mg/L	E300.0	0.103	2.00	100.0	33	104	90 - 110	138	0.664	20	
Lab Sample II Test Code:	D: 1610270-010BMSD NO2/NO3-W-353.2	Date Analyzed:	10/19/201	l6 2058h										
Nitrate/Nitrite	e (as N)	162	mg/L	E353.2	0.833	1.00	100.0	61.5	101	90 - 110	160	1.05	10	
Lab Sample II Test Code:	D: 1610271-007BMSD NO2/NO3-W-353.2	Date Analyzed:	10/19/201	l6 2103h										
Nitrate/Nitrite	e (as N)	138	mg/L	E353,2	0.833	1.00	100.0	32.6	106	90 - 110	131	5.72	10	
Lab Sample II Test Code:	D: 1610271-010BMSD NO2/NO3-W-353.2	Date Analyzed:	10/19/201	16 2043h										
Nitrate/Nitrite	e (as N)	17.5	mg/L	E353.2	0.0833	0.100	10.00	6.42	111	90 - 110	18.3	4.40	10	ŧ.

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

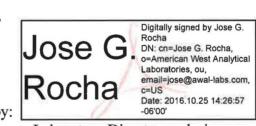
Report Date: 10/25/2016 Page 19 of 19

analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of ne of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This

3 A. A	UL Denisor
Work Order: 16102	71 Page 1 of 2
Due Date: 10/25/201	6
WO Type: Project	
g/L, NO2/NO3 @ 0.1 mg/L. Run NO2/NO3 a E RUN BY 4500, THEY MUST BE RUN BY	
Matrix Sel Stora	ge
Aqueous df - c	
	o2/no3
103N02N	
Aqueous df - c	
L df a	o2/no3
103NO2N	02/1105
Aqueous df-c	1
df - 1 103NO2N	o2/no3
Aqueous df-c	1
CL III	0/ 0
at - 1 NO3NO2N	o2/no3
Aqueous df-o	1
and the second	102/no3
NO3NO2N	
Aqueous df-o	4
	no2/no3
Aqueous df-	51
	2/203
	102/1103
ND	
53.2 ptes: 1	ntes: CL 9 53.2 df-1 ntes: NO3NO2N НОК НОК СОС Ен

WORK O	RDER Summary					Work Order: 1610271	Page 2 of 2
Client:	Energy Fuels Resources, Inc.					Due Date: 10/25/2016	
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel Storage	
1610271-008A	TWN-65_10062016	10/6/2016 1011h	10/14/2016 1025h	300.0-W 1 SEL Analytes: CL	Aqueous	df - cl	1
1610271-008B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		df - no2/no3	
1610271-009A	TWN-60_10132016	10/13/2016 0930h	10/14/2016 1025h	300.0-W 1 SEL Analytes: CL	Aqueous	df - cl	1
1610271-009B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		df - 102/103	
1610271-010A	PIEZ-01_10112016	10/11/2016 1325h	10/14/2016 1025h	300.0-W 1 SEL Analytes: CL	Aqueous	df- cl	
1610271-010B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		df - no2/no3	
1610271-011A	PIEZ-02_10112016	10/11/2016 1258h	10/14/2016 1025h	300.0-W 1 SEL Analytes: CL	Aqueous	df - cl	
1610271-011B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N	2	df - no2/no3	
1610271-012A	PIEZ-03A_10112016	10/11/2016 1312h	10/14/2016 1025h	300.0-W 1 SEL Analytes: CL	Aqueous	df - cl	
1610271-012B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		df - no2/no3	

American V Analytical Labo 463 W. 3600 S. Salt Lake Phone # (801) 263-8686 Toll F		CHAIN OF CUSTODY All analysis will be conducted using NELAP accredited methods and all data will be reported using AWAL's standard analyte lists and report limits (PQL) unless specifically requested otherwise on this Chain of Custody and/or attached documentation.											/ (6 / (1 2 7) AWAL Lab Sample Set # Page 1 of 1	
Phone # (801) 263-8686 Toll F Fax # (801) 263-8687 Email www.awal-labs				Q	C Leve	əl:			Turn Around Time: Standard				Unless other arrangements have been made, signed reports will be emailed by 5:00 pm on the day they are due.	Due Date:
Cleant Energy Fuels Resources, Inc.			Π	Т	T	T	TT						W hat de CDD	Laboratory Use Only
6425 S Hum 191	-												X Include EDD: LOCUS UPLOAD	
Address: 6423 S. Hwy. 191 Blanding, UT 84511													EXCEL Field Filtered For:	Samples Were: UP5
Contact: Garrin Palmer														1 Shipped or hand delivered 2 Ambient or Chilles
Phone #: (435) 678-2221 Cell gpalmer@energyfuels.com; KWeinel@energy													For Compliance With:	3 Temperature 3.4 +0
Email: dturk@energyfuels.com Project Name: 4th Guarter Nitrate 2016	6												CWA SDWA ELAP/A2LA	4 Received Broken/Leaking (Improperly Sealed) Y N
Project #:				8	(0)								NLLAP Non-Compliance	5 Ecoperty Preserved
PO #:			μŋ	353	-300								Other:	(Y) N Clascked at bench
Sampler Name: Tanner Holliday			talner	Matrix VOS ((4500 or 300.0)									Y N 6 Rečeived Within
Sample ID:	Date Sampled	Time Sampled	# of Con	Sample Matrix NO2 /NO3 (35.3.2)	CI (45)								Known Hazards & Sample Comments	Holding Times N
rwn-18r_10062016	10/6/2016	915 ·	2 1	V X	x x									•
rwn-18_10062016	10/6/2016	1014	2 V	v >	x x									COC Tape Was:
FWN-07_10072016	10/7/2016	701	2 V	v y	(x									1 Present on Outer Package Y N NA
rwn-01_10062016	10/6/2016	1128	2 V	v 3	x x									2 Hebroken on Outer Package
FWN-04_10062016	10/6/2016	1231	2 V	V 2	x x									Y N NA
TWN-03_10072016	10/7/2016	709	2 V	V 2	x x									3 Present on Sample Y N (NA)
TWN-02_10112016	10/11/2016	1250	2 1	V 2	x x									4 Unbroken on Sample
TWN-65_10062016	10/6/2016	1011	2 1	V 2	x x									Y N (NA)
TWN-60_10132016	10/13/2016	930	2 1	V 2	x x									Discrepancies Between Sample
PIEZ-01_10112016	10/11/2016	1325	2 1	V Z	x x									Labels and COC Record?
PIEZ-02_10112016	10/11/2016	1258	2 1	N 3	x x	:								
PIEZ-03A_10112016	10/11/2016	1312	2 1	X 2	K X									and the state of the
TEMP BLANK	10/13/2016		1 1	N										Carl and the second
Relinquished by: Janer Holludary	Date: 10/13/2016	Received by: Signature							Date:				Special Instructions:	
Print Name: TANNER HOLLIDAY	Time:	Print Name:							Time:					
Reliquished by: Signature	Date:	Received by: Signature							Date:	10/1	4/16		1	
Print Nama:	Time:	Print Name:							Time		025			
Relinquished by: Signature	Date:	Received by: Signature							Date:					
Ngradure Signature Signature Print Name:							Time	1						
erini varie: Plinquished by: grature Signature			2.9				Date:							
gnature Signature Signature Int Name: Print Name:			Time:					Time	2					



Garrin Palmer Energy Fuels Resources, Inc. 6425 S. Hwy 191 Blanding, UT 84511 TEL: (303) 389-4134

RE: 4th Quarter Chloroform 2016

3440 South 700 West	Dear Garrin Palmer:	Lab Set ID:	1610270						
Salt Lake City, UT 84119	American West Analytical Laboratories received sample analyses presented in the following report.	(s) on 10/14/203	6 for the						
Phone: (801) 263-8686 Toll Free: (888) 263-8686	American West Analytical Laboratories (AWAL) is accr Environmental Laboratory Accreditation Program (NEL state accredited in Colorado, Idaho, New Mexico, Wyon	AP) in Utah and	Texas; and is						
Fax: (801) 263-8687 3-mail: awal@awal-labs.com web: www.awal-labs.com	All analyses were performed in accordance to the NELAP protocols unless noted otherwise. Accreditation scope documents are available upon request. If you have any questions or concerns regarding this report please feel free to call.								
Kyle F. Gross Laboratory Director Jose Rocha QA Officer	The abbreviation "Surr" found in organic reports indicate intentionally added by the laboratory to determine sample purging efficiency. The "Reporting Limit" found on the practical quantitation limit (PQL). This is the minimum reported by the method referenced and the sample matrix confused with any regulatory limit. Analytical results are figures for quality control and calculation purposes.	e injection, extra report is equival concentration the concentration the concentration the second se	action, and/or lent to the nat can be limit must not be						

Thank You,

Approved by:

Laboratory Director or designee

Report Date: 10/25/2016 Page 1 of 40

SAMPLE SUMMARY

Contact: Garrin Palmer

Energy Fuels Resources, Inc. 4th Quarter Chloroform 2016 Lab Set ID: 1610270 **Date Received:** 10/14/2016 1025h

	Lab Sample ID	Client Sample ID	Date Collected	Matrix	Analysis
3440 South 700 West	1610270-001A	TW4-25_10122016	10/12/2016 1325h	Aqueous	Anions, E300.0
Salt Lake City, UT 84119	1610270-001B	TW4-25_10122016	10/12/2016 1325h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1610270-001C	TW4-25_10122016	10/12/2016 1325h	Aqueous	VOA by GC/MS Method 8260C/5030C
Phone: (801) 263-8686	1610270-002A	TW4-24_10122016	10/12/2016 1336h	Aqueous	Anions, E300.0
	1610270-002B	TW4-24_10122016	10/12/2016 1336h	Aqueous	Nitrite/Nitrate (as N), E353.2
Toll Free: (888) 263-8686 Fax: (801) 263-8687	1610270-002C	TW4-24_10122016	10/12/2016 1336h	Aqueous	VOA by GC/MS Method 8260C/5030C
e-mail: awal@awal-labs.com	1610270-003A	TW4-21_10122016	10/12/2016 1316h	Aqueous	Anions, E300.0
	1610270-003B	TW4-21_10122016	10/12/2016 1316h	Aqueous	Nitrite/Nitrate (as N), E353.2
web: www.awal-labs.com	1610270-003C	TW4-21_10122016	10/12/2016 1316h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1610270-004A	TW4-01_10132016	10/13/2016 832h	Aqueous	Anions, E300.0
Kyle F. Gross	1610270-004B	TW4-01_10132016	10/13/2016 832h	Aqueous	Nitrite/Nitrate (as N), E353.2
Laboratory Director	1610270-004C	TW4-01_10132016	10/13/2016 832h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1610270-005A	TW4-04_10132016	10/13/2016 841h	Aqueous	Anions, E300.0
Jose Rocha	1610270-005B	TW4-04_10132016	10/13/2016 841h	Aqueous	Nitrite/Nitrate (as N), E353.2
QA Officer	1610270-005C	TW4-04_10132016	10/13/2016 841h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1610270-006A	MW-04_10122016	10/12/2016 1441h	Aqueous	Anions, E300.0
	1610270-006B	MW-04_10122016	10/12/2016 1441h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1610270-006C	MW-04_10122016	10/12/2016 1441h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1610270-007A	TW4-02_10122016	10/12/2016 1429h	Aqueous	Anions, E300.0
	1610270-007B	TW4-02_10122016	10/12/2016 1429h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1610270-007C	TW4-02_10122016	10/12/2016 1429h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1610270-008A	MW-26_10122016	10/12/2016 1413h	Aqueous	Anions, E300.0
	1610270-008B	MW-26_10122016	10/12/2016 1413h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1610270-008C	MW-26_10122016	10/12/2016 1413h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1610270-009A	TW4-11_10122016	10/12/2016 1421h	Aqueous	Anions, E300.0
	1610270-009B	TW4-11_10122016	10/12/2016 1421h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1610270-009C	TW4-11_10122016	10/12/2016 1421h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1610270-010A	TW4-22_10122016	10/12/2016 1344h	Aqueous	Anions, E300.0
	1610270-010B	TW4-22_10122016	10/12/2016 1344h	Aqueous	Nitrite/Nitrate (as N), E353.2

Report Date: 10/25/2016 Page 2 of 40 All analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2016Lab Set ID:1610270Date Received:10/14/2016 1025h

Contact: Garrin Palmer

	Lab Sample ID	Client Sample ID	Date Collected	Matrix	Analysis
2440 South 700 West	1610270-010C	TW4-22_10122016	10/12/2016 1344h	Aqueous	VOA by GC/MS Method 8260C/5030C
3440 South 700 West	1610270-011A	TW4-19_10132016	10/13/2016 910h	Aqueous	Anions, E300.0
Salt Lake City, UT 84119	1610270-011B	TW4-19_10132016	10/13/2016 910h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1610270-011C	TW4-19_10132016	10/13/2016 910h	Aqueous	VOA by GC/MS Method 8260C/5030C
Dhamay (801) 262 8686	1610270-012A	TW4-37_10122016	10/12/2016 1358h	Aqueous	Anions, E300.0
Phone: (801) 263-8686	1610270-012B	TW4-37_10122016	10/12/2016 1358h	Aqueous	Nitrite/Nitrate (as N), E353.2
Toll Free: (888) 263-8686 Fax: (801) 263-8687	1610270-012C	TW4-37_10122016	10/12/2016 1358h	Aqueous	VOA by GC/MS Method 8260C/5030C
३-mail: awal@awal-labs.com	1610270-013A	TW4-20_10122016	10/12/2016 1405h	Aqueous	Anions, E300.0
	1610270-013B	TW4-20_10122016	10/12/2016 1405h	Aqueous	Nitrite/Nitrate (as N), E353.2
web: www.awal-labs.com	1610270-013C	TW4-20_10122016	10/12/2016 1405h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1610270-014A	Trip Blank	10/12/2016	Aqueous	VOA by GC/MS Method 8260C/5030C

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Inorganic Case Narrative

American West	Client: Contact: Project: Lab Set ID:	Energy Fuels Resources, Inc. Garrin Palmer 4th Quarter Chloroform 2016 1610270
3440 South 700 West	Sample Receipt Information:	
Salt Lake City, UT 84119	Date of Receipt: Dates of Collection: Sample Condition: C-O-C Discrepancies:	10/14/2016 10/12-10/13/2016 Intact None
Phone: (801) 263-8686		
Toll Free: (888) 263-8686 Fax: (801) 263-8687		nents: The analysis and preparation for the holding times. The samples were properly
e-mail: awal@awal-labs.com	L	
web: www.awal-labs.com	Preparation and Analysis Requirements: methods stated on the analytical reports.	The samples were analyzed following the
Kala D. Curre	Analytical QC Requirements: All instruction requirements were met. All internal standard in	strument calibration and calibration check recoveries met method criterion.
Kyle F. Gross Laboratory Director	Batch QC Requirements: MB, LCS, MS, N	ISD, RPD, DUP:
Jose Rocha	Method Blanks (MB): No target a indicating that the procedure was free	nalytes were detected above reporting limits, from contamination.
QA Officer	Laboratory Control Samples (LCS limits, indicating that the preparation	S): All LCS recoveries were within control and analysis were in control.
		cates (MS/MSD): All percent recoveries and were inside established limits, indicating no
	Duplicate (DUP): The parameters within the control limits.	that required a duplicate analysis had RPDs

Corrective Action: None required.

Report Date: 10/25/2016 Page 4 of 40

All analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Lab Set ID:	Energy Fuels Resources 610270 Ith Quarter Chloroform						Contact: Dept: QC Type	Garrin Pa WC : LCS	lmer					
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Quai
Lab Sample ID Test Code:	LCS-R94915 300.0-W	Date Analyzed:	10/17/201	l6 1321h										
Chloride		5.23	mg/L	E300.0	0.00516	0.100	5.000	0	105	90 - 110				
Lab Sample ID Test Code:	LCS-R94983 NO2/NO3-W-353.2	Date Analyzed:	10/19/201	l6 1952h										
Nitrate/Nitrite (as N)	0.956	mg/L	E353.2	0.00833	0.0100	1.000	0	95.6	90 - 110				

Report Date: 10/25/2016 Page 33 of 40

analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Lab Set ID: 10	nergy Fuels Resources 610270 th Quarter Chloroform						Contact: Dept: QC Type	Garrin Pa WC : MBLK						
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	MB-R94915 300.0-W	Date Analyzed:	10/17/201	l6 1305h										
Chloride		< 0.100	mg/L	E300.0	0.00516	0.100								
Lab Sample ID: Test Code:	MB-R94983 NO2/NO3-W-353.2	Date Analyzed:	10/19/201	l6 1950h										
Nitrate/Nitrite (a	s N)	< 0.0100	mg/L	E353.2	0.00833	0.0100								

Report Date: 10/25/2016 Page 34 of 40

analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the ne of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Lab Set ID: Project:	Energy Fuels Resource 1610270 4th Quarter Chloroform						Contact: Dept: QC Type:	Garrin Pa WC MS	lmer					
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample II Test Code:	1610270-002AMS 300.0-W	Date Analyzed:	10/17/20	16 1842h										
Chloride		2,090	mg/L	E300.0	1.03	20.0	1,000	1010	108	90 - 110				
Lab Sample II Test Code:	1610270-003AMS 300.0-W	Date Analyzed:	10/17/20	16 2006h										
Chloride		1,490	mg/L	E300.0	1.03	20.0	1,000	439	105	90 - 110				
Lab Sample II Test Code:	D: 1610270-010BMS NO2/NO3-W-353.2	Date Analyzed:	10/19/20	16 2057h										
Nitrate/Nitrite	(as N)	160	mg/L	E353.2	0.833	1.00	100.0	61.5	98.8	90 - 110				
Lab Sample II Test Code:	D: 1610271-007BMS NO2/NO3-W-353.2	Date Analyzed:	10/19/20	16 2102h										
Nitrate/Nitrite	(as N)	131	mg/L	E353.2	0.833	1.00	100.0	32.6	98.2	90 - 110				

Report Date: 10/25/2016 Page 35 of 40

analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the ne of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Lab Set ID: 1	nergy Fuels Resource: 610270 th Quarter Chloroform						Contact: Dept: QC Type:	Garrin Pa WC MSD	lmer					
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	1610270-002AMSD 300.0-W	Date Analyzed:	10/17/201	6 1858h										
Chloride		2,070	mg/L	E300.0	1.03	20.0	1,000	1010	106	90 - 110	2090	0.939	20	
Lab Sample ID: Test Code:	1610270-003AMSD 300.0-W	Date Analyzed:	10/17/201	6 2023h										
Chloride		1,490	mg/L	E300.0	1.03	20.0	1,000	439	105	90 - 110	1490	0.153	20	
Lab Sample ID: Test Code:	1610270-010BMSD NO2/NO3-W-353.2	Date Analyzed:	10/19/201	l6 2058h										
Nitrate/Nitrite (a	s N)	162	mg/L	E353.2	0.833	1.00	100.0	61.5	101	90 - 110	160	1.05	10	
Lab Sample ID: Test Code:	1610271-007BMSD NO2/NO3-W-353.2	Date Analyzed:	10/19/201	l6 2103h										
Nitrate/Nitrite (a	is N)	138	mg/L	E353.2	0.833	1.00	100.0	32.6	106	90 - 110	131	5.72	10	

Report Date: 10/25/2016 Page 36 of 40

analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the ne of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This

American	West Analytical Laborate	ories			н _і		UL Denison
	DER Summary					1610270	Page 1 of 3
Client:	Energy Fuels Resources, Inc.				Due Date:	10/25/2016	
Client ID:	DEN100		Contact:	Garrin Palmer			
Project:	4th Quarter Chloroform 2016		QC Level		WO Type	-	_
Comments:	PA Rush. QC 3 (Summary/No chromatogr levels provided by client - see Jenn. J-flag					at a 10X dilution.	Expected
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel Storage	-
1610270-001A	TW4-25_10122016	10/12/2016 1325h	10/14/2016 1025h	300.0-W I SEL Analytes: CL	Aqueous	df - wc	1
1610270-001B	2			NO2/NO3-W-353.2		df - no2/no3	
				1 SEL Analytes: NO3NO2N			
1610270-001C	1. A			8260-W-DEN100 Test Group: 8260-W-DEN100); # of Analytes: 4 / # of Surr: 4	VOCFridge	3
1610270-002A	TW4-24_10122016	10/12/2016 1336h	10/14/2016 1025h		Aqueous	df - wc	1
1610270-002B	3			1 SEL Analytes: CL NO2/NO3-W-353.2		df - no2/no3	
1010270-0028			e	1 SEL Analytes: NO3NO2N		u - 102/105	
1610270-002C				8260-W-DEN100		VOCFridge	3
				Test Group: 8260-W-DEN10	0; # of Analytes: 4 / # of Surr: 4	4	
1610270-003A	TW4-21_10122016	10/12/2016 1316h	10/14/2016 1025h	300.0-W 1 SEL Analytes: CL	Aqueous	df - wc	
1610270-003B				NO2/NO3-W-353.2	r.	df - no2/no3	
				1 SEL Analytes: NO3NO2N			
1610270-003C				8260-W-DEN100 Test Group: 8260-W-DEN10	0; # of Analytes: 4 / # of Surr:	VOCFridge	3
1610270-004A	TW4-01_10132016	10/13/2016 0832h	10/14/2016 1025h		Aqueous	df - wc	1
1610370 004D	······			1 SEL Analytes: CL		df - no2/no3	
1610270-004B				NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N		di - h02/h03	
1610270-004C				8260-W-DEN100		VOCFridge	:
				Test Group: 8260-W-DEN10	0; # of Analytes: 4 / # of Surr:	4	
1610270-005A	TW4-04_10132016	10/13/2016 0841h	10/14/2016 1025h	300.0-W I SEL Analytes: CL	Aqueous	df - wc	
1610270-005B		0		NO2/NO3-W-353.2		df - no2/no3	
	·			1 SEL Analytes: NO3NO2N			
1610270-005C				8260-W-DEN100 Test Group: 8260-W-DEN10	0; # of Analytes: 4 / # of Surr:	VOCFridge	
Printed: 10/14/2016	FOR LABORATORY USE ONLY [fill out on page 1]:	%M 🗆 RT 🗔		· · · · · · · · · · · · · · · · · · ·	нок нок	COC Emailed	

	RDER Summary		X			1610270	Page 2 of 3
Client: Sample ID	Energy Fuels Resources, Inc. Client Sample ID	Collected Date	Received Date	Test Code	Due Date: Matrix	10/25/2016 Sel Storage	
1610270-006A	MW-04_10122016	10/12/2016 1441h	10/14/2016 1025h	300.0-W 1 SEL Analytes: CL	Aqueous	df - wc	3
1610270-006B				NO2/NO3-W-353.2		df - no2/no3	
1610270-006C				1 SEL Analytes: NO3NO2N 8260-W-DEN100 Test Group: 8260-W-DEN10	0; # of Analytes: 4 / # of Surr: 4	VOCFridge	3
1610270-007A	TW4-02_10122016	10/12/2016 1429h	10/14/2016 1025h	300.0-W 1 SEL Analytes: CL	Aqueous	df - wc	
1610270-007B				NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N		df - no2/no3	
1610270-007C				8260-W-DEN100	0; # of Analytes: 4 / # of Surr: 4	VOCFridge	
1610270-008A	MW-26_10122016	10/12/2016 1413h	10/14/2016 1025h	300.0-W 1 SEL Analytes: CL	Aqueous	df - wc	
1610270-008B				NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N		df - no2/no3	
1610270-008C				8260-W-DEN100	0; # of Analytes: 4 / # of Surr:	VOCFridge	
1610270-009A	TW4-11_10122016	10/12/2016 1421h	10/14/2016 1025h	300.0-W 1 SEL Analytes: CL	Aqueous	df - wc	
1610270-009B				NO2/NO3-W-353.2		df - no2/no3	
1610270-009C				1 SEL Analytes: NO3NO2N 8260-W-DEN100 Test Group: 8260-W-DEN10	00; # of Analytes: 4 / # of Surr:	VOCFridge	3
1610270-010A	TW4-22_10122016	10/12/2016 1344h	10/14/2016 1025h	300.0-W 1 SEL Analytes: CL	Aqueous	df - wc	
1610270-010B				NO2/NO3-W-353.2		df - no2/no3	
1610270-010C				1 SEL Analytes: NO3NO2N 8260-W-DEN100 Test Group: 8260-W-DEN10	00; # of Analytes: 4 / # of Surr:	VOCFridge	1
1610270-011A	TW4-19_10132016	10/13/2016 0910h	10/14/2016 1025h	300.0-W 1 SEL Analytes: CL	Aqueous	df - wc	į
1610270-011B				NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N		df - no2/no3	
Printed: 10/14/2016	FOR LABORATORY USE ONLY [fill out on page 1]:	%M 🗌 RT 🗌			нок нок	COC Emailed	

WORK O	RDER Summary				Work Or	rder: 1610270	Page 3 of 3
Client:	Energy Fuels Resources, Inc.				Due D	Date: 10/25/2016	
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel Storage	-
1610270-011C	TW4-19_10132016	10/13/2016 0910h	10/14/2016 1025h	8260-W-DEN100 Test Group: 8260-W-1	Aqueous DEN100; # of Analytes: 4 / # of St	VOCFridge urr: 4	3
1610270-012A	TW4-37_10122016	10/12/2016 1358h	10/14/2016 1025h	300.0-W 1 SEL Analytes: CL	Aqueous	df - wc	1
1610270-012B				NO2/NO3-W-353.2 1 SEL Analytes: NO31	NO2N	df - no2/no3	
1610270-012C				8260-W-DEN100 Test Group: 8260-W-J	DEN100; # of Analytes: 4 / # of S	VOCFridge	3
1610270-013A	TW4-20_10122016	10/12/2016 1405h	10/14/2016 1025h	300.0-W 1 SEL Analytes: CL	Aqueous	df - wc	1
1610270-013B				NO2/NO3-W-353.2 I SEL Analytes: NO3.	NO2N	df - no2/no3	
1610270-013C			5	8260-W-DEN100 Test Group: 8260-W	DEN100; # of Analytes: 4 / # of S	VOCFridge Surr: 4	3
1610270-014A	Trip Blank	10/12/2016	10/14/2016 1025h	8260-W-DEN100 Test Group: 8260-W-	Aqueous DEN100; # of Analytes: 4 / # of S	VOCFridge Surr: 4	3

Analytical Labo 463 W. 3600 S. Salt Lake C	American West Analytical Laboratories 463 W. 3600 S. Salt Lake City, UT 84115 Phone # (801) 263-8686 Toll Free # (888) 263-8686 Fax # (801) 263-8687 Email awal@awal-labs.com						CHAIN OF CUSTODY All analysis will be conducted using NELAP accredited methods and all data will be reported using AWAL's standard analyte lists and reportin limits (PQL) unless specifically requested otherwise on this Chain of Custody and/or attached documentation.									
Fax # (801) 263-8687 Email a	awal@awal-labs.com		QC Level:				Turn Around Time:			Unless other arrangements have been made signed reports will be emailed by 5:00 pm or						
www.awal-labs.	com		3				Standard			the day they are due.						
Client: Energy Fuels Resources, Inc.												X Include EDD:	Laboratory Use Only			
Address: 6425 S. Hwy. 191												LOCUS UPLOAD EXCEL	Samples Were: UP7			
Blanding, UT 84511												Field Filtered For:	1 Shipped of hand delivered			
Contact: Garrin Palmer													2 Ambient or Chilled			
Phone #: (435) 678-2221 Cell #												For Compliance With:	3 Temperature 2.9 °C			
gpalmer@energyfuels.com; KWeinel@energyf Email: dturk@energyfuels.com	iels.com;											CWA	4 Received Broken/Leaking			
Project Name: 4TH Quarter Chloroform 2016												SDWA	(Improperly Sealed) Y (N)			
Project #:					3 8	3						NLLAP Non-Compliance	5 Properly Preserved			
PO #:			_	C L	353.2		3					Cother:	N Checked at bench			
Sampler Name: Tanner Holliday			tainers	Matrix	03 (0	(JUBGB)	2200						Y N 6 Received Within			
Sample ID:	Date Sampled	Time Sampled		Sample N	NO2/NO3 (353.2) C1 (4500 or 300 0)		VOCS					Known Hazards & Sample Comments	Holding Times			
TW4-25_10122016	10/12/2016	1325	5 V	-	x x	-	x		1				14년 김 관광 관광 이 같아.			
TW4-24_10122016	10/12/2016	1336	5 🛛	v	x y	K 3	x						COC Tape Was:			
TW4-21_10122016	10/12/2016	1316	5 v	v	x	x 3	x						1 Present on Outer Package (Y) N NA			
TW4-01_10132016	10/13/2016	832	5 V	v	x ,	K 3	x						2 -Unbroken on Outer Package			
TW4-04_10132016	10/13/2016	841	5 v	v	x 2	x :	x						N NA			
MW-04_10122016	10/12/2016	1441	5 V	v	x 2	x :	x						3 Present on Sample Y N N			
TW4-02_10122016	10/12/2016	1429	5 V	v	x z	x :	x						4 Unbroken on Sample			
MW-26_10122016	10/12/2016	1413	5 v	v	x ,	x :	x						Y N NA			
TW4-11_10122016	10/12/2016	1421	5 v	N	x y	x :	x						Discrepancies Between Sample			
TW4-22_10122016	10/12/2016	1344	5 v	N	x z	x :	x						Labels and COC Record?			
T\$\$4-19_10132016	10/13/2016	910	5 V	N	x 2	x :	x									
TW4-37_10122016	10/12/2016	1358	5 V	N	x z	x i	x						승규는 가지 않는			
TW4-20_10122016	10/12/2016	1405	5 v	N	x	x :	x									
Relinquished by: Signature Durnese Hollidamy	Date: 10/13/2016	Received by: Signature							Date	:		Special Instructions:				
Print Name: TANNER HOLLIDAY	Time:	Print Name:				/			Time	9:			-			
quished by: Date:		Received by:	In		-16			/	Date	10/1	4/16	See the Analytical Scope of V analyte list.	Vork for Reporting Limits and VO			
Print Name:	Time:				Ý.	Hone	en	1	Time		25					
Relinquished by: · · · · · · · · · · · · · · · · · · ·	Date:	Received by: Signature	Kali			7		7	Date							
Print Name:	Time:	Print Name:							Time	9:						
Relinquished by: Signature	nquished by: Date: Received by:						Date:									
Print Name:	Time:	Print Name:	Time:					Time	9:							

Λ	American West Analytical Laboratories 463 W. 3600 S. Salt Lake City, UT 84115 Phone # (801) 263-8686 Toll Free # (888) 263-8686 Fax # (801) 263-8687 Email awal@awal-labs.com									accredit	ed methods	s and all d	ata wili be		Y ing AWAL's standard analyte lists and reporting and/or attached documentation.	L610270 AWAL Lab Sample Set # Page 2 01 2
					(QC Le	evel:	2			Turn A	Around	Time:		Unless other arrangements have been made,	Due Date:
	www.awai-labs.co	om				3	l				S	tandard	1		signed reports will be emailed by 5:00 pm on the day they are due.	
Cllent:	Energy Fuels Resources, Inc.			Π	Τ										X Include EDD:	Laboratory Use Only
Address:	6425 S. Hwy. 191														LOCUS UPLOAD EXCEL	Samples Were: u P5
	Blanding, UT 84511														Field Filtered For:	1 Shipped o hand delivered
Contact:	Garrin Palmer															2 Ambient Chilled
Phone #:	(435) 678-2221 Cell #:														For Compliance With:	3 Temperature 2.9 °C
Email:	gpalmer@energyfuels.com; KWeinel@energyfue dturk@energyfuels.com	els.com;													CWA	4 Received Broken/Leaking
Project Name:	4TH Quarter Chloroform 2016														C SDWA ELAP/A2LA	(Improperly Sealed) Y
Project #:	Project #:				1	6	0.0)								NLLAP Non-Compliance	5 Property Preserved
PO #:				e	j	(353	r 30(ĝ							C Other:	Cbecked at bench
Sampler Name:	Tanner Holliday			Containers	Sample Matrix	NO2/NO3 (353.2)	CI (4500 or 300.0)	(8260C)							Known Hazards	Y N 6 Received Within
		Date	Time	Š	mple	02/1	1 (45	VOC9							&	Holding Times
	Sample ID:	Sampled	Sampled		_	ž	-	_	_	-		_			Sample Comments	
1 TRIP BLANK		10/12/2016			W	_	\rightarrow	x			- +	_				
2 TEMP BLANK		10/13/2016		$\frac{\mu}{\mu}$	W	+	\rightarrow	_		-			_			COC Tape Was:
3				\mathbb{H}	+	-			-	-		_	-			
4				\vdash	+	\rightarrow	-	_	_	-		_				2 Portoken on Outer Package Y N NA
5				\mathbb{H}	+	-	_	_								3 Present on Sample
6				\vdash	+	+	-	_		-		_	_			Y N NA
				\vdash	+	-	-	_	_			-				4 Unbroken on Sample Y N (NA)
9				$\left \cdot \right $	+	-	-	+	_			_				
	1			$\left - \right $	╋	-	-	-					_			Discrepancies Between Sample Labels and COC Record?
10				⊢⊦	╋			_						<u> </u>		- · (~)
11				$\left \right $	+	-	-	-		-			-			- · ·
13				\vdash	+	-	-	-		-	-		-			
Relinquished by:		Date:	Received by:					-			Date:					
Signature 👟	Samer Halling	10/13/2016 Time:				-				_	Time:				Special Instructions:	
Print Name: Relinguished by:	TANNER HOLLIDAY		Print Name: Received by: 0					4	1	1		7	1		See the Analytical Scope of W	ork for Reporting Limits and VOC
Signature		Time:	Signature		1her	-	Hay	,	1		Date: /((analyte list.	The second
Print Name: Relinquished by:		Date:	Print Name: 2 Received by:	10	26	-1	Ha	lac	-4		Dale:	021				
Signature							Time:									
Print Name: Relingulshed by:	Print Name:		8:					Date;	_			-				
Signature	Signature						Time:									
Print Name:	דוייה: Print Name: Print Name:															

Lab Set ID: 1610270 pH Lot 5003

Preservation Check Sheet

Sample Set Extension and pH

Analysis	Preservative	1	2	3	4	5	6	7	8	9	10	11	12	13				
Ammonia	pH <2 H ₂ SO ₄												1		10			
COD	pH <2 H ₂ SO ₄				E.													
Cyanide	pH>12 NaOH																	
Metals	pH <2 HNO ₃																	
NO ₂ & NO ₃	$pH < 2 H_2SO_4$	Yes	Ves	Jes	Yes	Yes	Yes	Ves	Yes	Ves	1/es	Ves	Ves	Ves				
0&G	pH <2 HCL	1	1	1	1	1	-		1		1	1	1	1				
Phenols	pH <2 H ₂ SO ₄																	
Sulfide	pH > 9NaOH, Zn Acetate																	
TKN	pH <2 H ₂ SO ₄																	
T PO ₄	pH <2 H ₂ SO ₄																	
								-										
			-													-	 1000	
																		+
			_	P				_										
								-										1

Procedure:

1) Pour a small amount of sample in the sample lid

2) Pour sample from Lid gently over wide range pH paper

3) Do Not dip the pH paper in the sample bottle or lid

4) If sample is not preserved, properly list its extension and receiving pH in the appropriate column above

5) Flag COC, notify client if requested

6) Place client conversation on COC

7) Samples may be adjusted

Frequency: All samples requiring preservation

- * The sample required additional preservative upon receipt.
- + The sample was received unpreserved.
- ▲ The sample was received unpreserved and therefore preserved upon receipt.
- # The sample pH was unadjustable to a pH < 2 due to the sample matrix.
- The sample pH was unadjustable to a pH > _____ due to the sample matrix interference.

Garrin Palmer Energy Fuels Resources, Inc. 6425 S. Hwy 191 Blanding, UT 84511 TEL: (303) 389-4134

RE: 4th Quarter Chloroform 2016

3440 South 700 West	Dear Garrin Palmer:	Lab Set ID:	1611262
Salt Lake City, UT 84119	American West Analytical Laboratories received sam analyses presented in the following report.	ple(s) on 11/11/201	6 for the
Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 ▷-mail: awal@awal-labs.com web: www.awal-labs.com	American West Analytical Laboratories (AWAL) is a Environmental Laboratory Accreditation Program (NI state accredited in Colorado, Idaho, New Mexico, Wy All analyses were performed in accordance to the NEL otherwise. Accreditation scope documents are available questions or concerns regarding this report please feel	ELAP) in Utah and roming, and Missou LAP protocols unle ple upon request. I	Texas; and is ari. ess noted
Kyle F. Gross Laboratory Director Jose Rocha QA Officer	The abbreviation "Surr" found in organic reports indic intentionally added by the laboratory to determine san purging efficiency. The "Reporting Limit" found on t practical quantitation limit (PQL). This is the minimu- reported by the method referenced and the sample ma- confused with any regulatory limit. Analytical results figures for quality control and calculation purposes.	nple injection, extra he report is equival im concentration the trix. The reporting	action, and/or ent to the at can be limit must not be

Thank You,

Kyle F. Digitally signed by Kyle F. Gross Date: 2016.11.29 14:00:40 14:09:10 -07'00'

Approved by:

Laboratory Director or designee

SAMPLE SUMMARY

Contact: Garrin Palmer

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2016Lab Set ID:1611262Date Received:11/11/2016 1035h

	Lab Sample ID	Client Sample ID	Date Collected	Matrix	Analysis
3440 South 700 West	1611262-001A	TW4-38R_11092016	11/9/2016 915h	Aqueous	Anions, E300.0
Salt Lake City, UT 84119	1611262-001B	TW4-38R_11092016	11/9/2016 915h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1611262-001C	TW4-38R_11092016	11/9/2016 915h	Aqueous	VOA by GC/MS Method 8260C/5030C
Phone: (801) 263-8686	1611262-002A	TW4-38_11102016	11/10/2016 700h	Aqueous	Anions, E300.0
	1611262-002B	TW4-38_11102016	11/10/2016 700h	Aqueous	Nitrite/Nitrate (as N), E353.2
Toll Free: (888) 263-8686 Fax: (801) 263-8687	1611262-002C	TW4-38_11102016	11/10/2016 700h	Aqueous	VOA by GC/MS Method 8260C/5030C
e-mail: awal@awal-labs.com	1611262-003A	TW4-39_11102016	11/10/2016 715h	Aqueous	Anions, E300.0
	1611262-003B	TW4-39_11102016	11/10/2016 715h	Aqueous	Nitrite/Nitrate (as N), E353.2
web: www.awal-labs.com	1611262-003C	TW4-39_11102016	11/10/2016 715h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1611262-004A	TW4-60_11102016	11/10/2016 740h	Aqueous	Anions, E300.0
Kyle F. Gross	1611262-004B	TW4-60_11102016	11/10/2016 740h	Aqueous	Nitrite/Nitrate (as N), E353.2
Laboratory Director	1611262-004C	TW4-60_11102016	11/10/2016 740h	Aqueous	VOA by GC/MS Method 8260C/5030C
Jose Rocha	1611262-005A	Trip Blank	11/9/2016	Aqueous	VOA by GC/MS Method 8260C/5030C

QA Officer

Report Date: 11/29/2016 Page 2 of 21

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report

Inorganic Case Narrative

American West	Client: Contact: Project: Lab Set ID:	Energy Fuels Resources, Inc. Garrin Palmer 4th Quarter Chloroform 2016 1611262
3440 South 700 West	Sample Receipt Information:	
Salt Lake City, UT 84119	Date of Receipt: Date(s) of Collection: Sample Condition: C-O-C Discrepancies:	11/11/2016 11/9-11/10/2016 Intact None
Phone: (801) 263-8686	C-O-C Discrepancies.	None
Toll Free: (888) 263-8686	Holding Time and Preservation Requirem	
Fax: (801) 263-8687	samples were performed within the method preserved.	holding times. The samples were properly
e-mail: awal@awal-labs.com	preserved.	
web: www.awal-labs.com	Preparation and Analysis Requirements: methods stated on the analytical reports.	The samples were analyzed following the
Kulo E. Cross	Analytical QC Requirements: All ins requirements were met. All internal standard r	strument calibration and calibration check recoveries met method criterion.
Kyle F. Gross	Batch QC Requirements: MB, LCS, MS, M	ISD. RPD. DUP:
Laboratory Director		
Jose Rocha	Method Blanks (MB): No target a indicating that the procedure was free	nalytes were detected above reporting limits, from contamination.
QA Officer		
	Laboratory Control Samples (LCS limits, indicating that the preparation	S): All LCS recoveries were within control and analysis were in control.
*		cates (MS/MSD): All percent recoveries and s) were inside established limits, with the

Sample ID	Analyte	QC	Explanation
1611262-001B	Nitrate-Nitrite	MS	Sample matrix interference
1611263-001D	Nitrate-Nitrite	MS/MSD	Sample matrix interference

Duplicate (DUP): The parameters that required a duplicate analysis had RPDs within the control limits.

Corrective Action: None required.

Report Date: 11/29/2016 Page 3 of 21

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client:	Energy Fuels Resources,	, Inc.					Contact:	Garrin Pa	lmer					
Lab Set ID:	611262						Dept:	WC						
Project:	th Quarter Chloroform	2016					QC Type	LCS						
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID Test Code:	LCS-R95919 300.0-W	Date Analyzed:	11/15/20	16 1415h										
Chloride		5.33	mg/L	E300.0	0.00516	0.100	5.000	0	107	90 - 110				
Lab Sample ID Test Code:	LCS-R95979 NO2/NO3-W-353.2	Date Analyzed:	11/17/20	16 1731h										
Nitrate/Nitrite (as N)	0.999	mg/L	E353.2	0.00833	0.0100	1.000	0	99.9	90 - 110				

Report Date: 11/29/2016 Page 14 of 21

analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the ne of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Lab Set ID:	Energy Fuels Resources 611262 Ith Quarter Chloroform						Contact: Dept: QC Type	Garrin Pa WC :: MBLK	lmer					
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID Test Code:	MB-R95919 300.0-W	Date Analyzed:	11/15/201	6 1359h										
Chloride		< 0.100	mg/L	E300.0	0.00516	0.100								
Lab Sample ID Test Code:	MB-R95979 NO2/NO3-W-353.2	Date Analyzed:	11/17/201	6 1730h										
Nitrate/Nitrite (as N)	< 0.0100	mg/L	E353.2	0.00833	0.0100								

Report Date: 11/29/2016 Page 15 of 21

analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the ne of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Lab Set ID:	Energy Fuels Resources 1611262 4th Quarter Chloroform						Contact: Dept: QC Type	Garrin Pa WC : MS	lmer					
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID Test Code:	1611262-004AMS 300.0-W	Date Analyzed:	11/15/201	6 1613h										
Chloride		5.34	mg/L	E300.0	0.00516	0.100	5.000	0.00675	107	90 - 110				
Lab Sample ID Test Code:	D: 1611262-001BMS NO2/NO3-W-353.2	Date Analyzed:	11/17/201	6 1736h										
Nitrate/Nitrite	(as N)	11.1	mg/L	E353_2	0.0833	0.100	10.00	0	111	90 - 110				¥.
Lab Sample II Test Code:	1611263-001DMS NO2/NO3-W-353.2	Date Analyzed:	11/17/201	.6 1743h										
Nitrate/Nitrite	(as N)	11.5	mg/L	E353.2	0.0833	0.100	10.00	0.0847	114	90 - 110				1

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Report Date: 11/29/2016 Page 16 of 21

analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the ne of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Lab Set ID:	Energy Fuels Resources 1611262 4th Quarter Chloroform						Contact: Dept: QC Type	Garrin Pa WC : MSD	lmer					
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID Test Code:	1611262-004AMSD 300.0-W	Date Analyzed:	11/15/201	6 1630h										
Chloride		5.49	mg/L	E300,0	0.00516	0.100	5.000	0.00675	110	90 - 110	5.34	2.86	20	
Lab Sample ID Test Code:	1611262-001BMSD NO2/NO3-W-353.2	Date Analyzed:	11/17/201	6 1737h										
Nitrate/Nitrite	(as N)	10.6	mg/L	E353.2	0.0833	0.100	10.00	0	106	90 - 110	11.1	4.33	10	
Lab Sample ID Test Code:	D: 1611263-001DMSD NO2/NO3-W-353.2	Date Analyzed:	11/17/201	l6 1744h										
Nitrate/Nitrite	(as N)	12.2	mg/L	E353.2	0.0833	0.100	10.00	0.0847	121	90 - 110	11.5	5.24	10	1

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Report Date: 11/29/2016 Page 17 of 21

analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the ne of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This

WORK O	RDER Summary				Work Orde	r: 1611262	Page 1 of 1
Client:	Energy Fuels Resources, Inc.				Due Dat	e: 11/22/2016	
Client ID:	DEN100		Contact:	Garrin Palmer			
Project:	4th Quarter Chloroform 2016		QC Level	: 111	WO Ty	pe: Project	
Comments:	PA Rush. QC 3 (Summary/No chro levels provided by client - see Jenn					03 at a 10X dilution.	Expected
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel Storage	
1611262-001A	TW4-38R_11092016	11/9/2016 0915h	11/11/2016 1035h	300.0-W I SEL Analytes: CL	Aqueous	df-wc	1
1611262-001B				NO2/NO3-W-353.2		df - no2/no3	
				I SEL Analytes: NO3NO2N	1		
1611262-001C				8260-W-DEN100 Test Group: 8260-W-DEN1	00; # of Analytes: 4 / # of Sur	VOCFridge	3
1611262-002A	TW4-38_11102016	11/10/2016 0700h	11/11/2016 1035h	300.0-W I SEL Analytes: CL	Aqueous	df - wc	а
1611262-002B				NO2/NO3-W-353.2		df - no2/no3	
				1 SEL Analytes: NO3NO2N	/		
1611262-002C				8260-W-DEN100 Test Group: 8260-W-DEN	100; # of Analytes: 4 / # of Sur	VOCFridge r: 4	
1611262-003A	TW4-39_11102016	11/10/2016 0715h	11/11/2016 1035h		Aqueous	df - wc	
1611262-003B				1 SEL Analytes: CL NO2/NO3-W-353.2		df - 102/103	
1011202 00555				1 SEL Analytes: NO3NO21	v		
1611262-003C				8260-W-DEN100 Test Group: 8260-W-DEN	100; # of Analytes: 4 / # of Sur	VOCFridge r: 4	
1611262-004A	TW4-60_11102016	11/10/2016 0740h	11/11/2016 1035h		Aqueous	df - wc	
1611262-004B				1 SEL Analytes: CL NO2/NO3-W-353.2		df - no2/no3	
1011202 0012				1 SEL Analytes: NO3NO2	V		
1611262-004C				8260-W-DEN100 Test Group: 8260-W-DEN	100; # of Analytes: 4 / # of Sur	VOCFridge r: 4	
1611262-005A	Trip Blank	11/9/2016	11/11/2016 1035h	8260 W DEN100	Aqueous	VOCFridge	

Printed: 11/11/2016 FOR LABORATORY USE ONLY [fill out on page 1]: % M C RT CN TAT QC HOK_HOK_HOK_COC Emailed //////6

_

 \sim

	American W Analytical Labor 463 W. 3600 S. Salt Lake Cit Phone # (801) 263-8696 Toil Free		All a	nalysi	is will be lin	condu mits (P	icled usir QL) unle	ng NELAP	accredite	d metho	ds and all	data will be	TOD ¹ reported us of Custody a	Y ing AWAL's standard analyte lists and reporting Ind/or attached documentation,	AWAL Lab Sample Set #. Page 1 of 1	
	Fax # (801) 263-8687 Email a www.awal-labs.c	wal@awal-labs.com				QC Le						Aroun Standa	d Time: rd		Unless other arrangements have been made, signed reports will be emailed by 5:00 pm on the day they are due.	Due Date:
Client:	Energy Fuels Resources, Inc.			Π					2						X Include EDD: LOCUS UPLOAD	Laboratory Use Only
Address:	6425 S. Hwy. 191 Blanding, UT 84511														EXCEL Field Filtered For:	Samples Ware: U 195 1 Shipped or hand-delivered
Contact:	Garrin Palmer						ę.,								÷	2 Arribient of Chilled
Phone #:	(435) 678-2221 gpaimer@energyfuels.com; KWeinel@energyfu dturk@energyfuels.com	els,com;													For Compliance With:	3 Temperature 4 Received Broken/Leaking
Project Name:	4TH Guarter Chloroform 2016														SDWA ELAP/A2LA	(Improperty Sealed) Y
Project #: PO #:	15			ø		NO2/NO3 (353.2)	C1 (4500 or 300.0))C)							NLLAP Non-Compliance Other:	5 Beparty Preserved Y N Cirecked at bench
Sampler Name:	Tanner Holliday			Containers	Matrix	103	000	(8260C)							Known Hazards	Y N 6 Received Within
	Sample ID:	Date Sampled	Time Sampled	# of Co	Sample Metrix	N02/F	CI (45	VOC8	-						& Sample Comments	Holding Times
TW4-38R_110920	016	11/9/2016	915	5	w	x	x	x		K.						
TW4-38_1110201	6	11/10/2016	700	5	w		x	х				_	_			COC Tape Was:
TW4-39_1110201	6	11/10/2016	715	+	W		x	x	_				_			1 Present on Outer Package
TW4-60_1110201	6	11/10/2016	740		-	x	x	X	_	-		_	_			2 Unbroken on Outer Package N NA
TRIP BLANK		11/9/2016	,***	3	w		_	x	_	_		_				N NA 3 Present on Sample
TEMP BLANK	14	11/10/2016		\mathbb{H}	+	-	-	_		-						Y N (MA)
				Н	+		_	_	_	-	_				2	4 Unbroken on Sample Y. N (NA)
				\vdash	+	-	92	+	_	1.						V
0				Η	+					-			-			Discrepancies Between Sample Labels and COC Record?
×	· · · · · · · · · · · · · · · · · · ·			Η	+		-			T						
1				Π												
2				÷				18							4 × ×	지않는 것 않는 생물
Relinquished by:	Jurnere Hallehy	Date: 11/10/2016 Time:	Received by: Signature								Date: Time:				Special Instructions:	*
Print Name: Relinquished by:	Tanner Holliday		Print Name: Received by:	1			1			-	Date:	7			See the Analytical Scope of W	ork for Reporting Limits and VOC
Signature		Time;	Signature	N		4	to all		A	_	l Time:	111	116		analyte list.	
Print Name: Relinquished by:		Dale:	Received by:	14	-	- 7	Ne	145	7		Date:	/0	35			
Signature		Time:	Signature								Time;					
Print Name: Relinquished by:	Date: Received by:		e:				Date:									
Signature Print Name:	Time:									Time;				-		
THE INGLING.					_		-									

Lab Set ID: ///262 pH Lot #: 5005

Preservation Check Sheet

Sample Set Extension and pH

Analysis	Preservative	1	2	3	4										
Ammonia	pH <2 H ₂ SO ₄					<i>p</i>									
COD	pH <2 H ₂ SO ₄												-		
Cyanide	pH>12 NaOH									 		 			
Metals	pH <2 HNO3			1											
NO ₂ & NO ₃	pH <2 H₂SO4	Yes	Ves	Yes	Xos										
0&G	pH <2 HCL	1										1			
Phenols	pH <2 H ₂ SO ₄										1				
Sulfide	pH >9 NaOH, Zn Acetate														
TKN	pH <2 H ₂ SO ₄						1	1							
T PO ₄	pH <2 H₂SO₄														
									 	 	 	 		-	
									-		1	 			
									 	1	 				
	- C														
				-					 			 	-		
								dura -		 2	No. 11	 			1

Pour a small amount of sample in the sample lid Procedure: 1)

2) Pour sample from lid gently over wide range pH paper

3) Do Not dip the pH paper in the sample bottle or lid

If sample is not preserved, properly list its extension and receiving pH in the appropriate column above 4)

5) Flag COC, notify client if requested

Place client conversation on COC 6)

7) Samples may be adjusted

Frequency: All samples requiring preservation

- * The sample required additional preservative upon receipt.
- The sample was received unpreserved. +
- The sample was received unpreserved and therefore preserved upon receipt.
- # The sample pH was unadjustable to a pH < 2 due to the sample matrix.
- The sample nH was unadjustable to a nH > 1۰ due to the sample matrix interference

Tab H

Quality Assurance and Data Validation Tables

H-1 Field Data QA/QC Evaluation

Location		2x Casing Volume	Volume Pumped	Volume Check	Cond	uctivity	RPD	p	н	RPD	Te	mp	RPD	Redox I	otential	RPD	Tu	rbidity	RPD
Piezometer 1	NA				2	163	NC	7.	04	NC	15	.30	NC	4	57	NC		45	NC
Piezometer 2	NA				8	61	NC	7.	05	NC	15	.64	NC	4	36	NC		4.9	NC
Piezometer 3A	NA				13	323	NC	7.	12	NC	15	.53	NC	40	59	NC		6.8	NC
TWN-1	32.29	64.58	80.00	OK	883	883	0.00	6.85	6.89	0.58	15.21	15.24	0.20	395	399	1.01	4.2	4.3	2.35
TWN-2	40.33	Continuo	usly Pumped	l Well	20	585	NC	6.	90	NC	15	.06	NC	50)8	NC		7.8	NC
TWN-3	36.14	72.28	65.00	Pumped Dry	2143	2150	0.33	6.70	6.68	0.30	14.50	14.55	0.34	N	М	NC		NM	NC
TWN-4	45.52	91.04	110.00	OK	1085	1085	0.00	6.83	6.85	0.29	14.75	14.74	0.07	387	383	1.04	0.0	0.0	0.00
TWN-7	13.19	26.38	23.33	Pumped Dry	1245	1250	0.40	6.75	6.79	0.59	15.70	15.64	0.38	N	М	NC	1 States	NM	NC
TWN-18	55.12	110.24	120.00	OK	2345	2381	1.52	6.78	6.80	0.29	14.36	14.36	0.00	346	345	0.29	9.9	9.8	0.00
TW4-22	35.98	Continuo	usly pumped	l well	53	333	NC	6.	60	NC	15	.85	NC	4	30	NC	12. Street	0.0	NC
TW4-24	33.17	Continuo	usly pumped	d well	73	270	NC	6.	45	NC	15	.79	NC	5	1	NC		21.0	NC
TW4-25	45.34	Continuo	usly pumped	d well	27	733	NC	6.	78	NC	16	.04	NC	50)4	NC		0.0	NC

NC = Not Calculated

TWN-2, TW4-22, TW4-24, and TW4-25 are continuously pumping wells.

Piezometers 1, 2, and 3A were not pumped, only one set of parameters were taken.

TWN-3 and TWN-7 were pumped dry and sampled after recovery.

The QAP states that turbidity should be less than 5 Nephelometric Turbidity Units ("NTU") prior to sampling unless the well is characterized by water that has a higher turbidity. The QAP does not require that turbidity measurements be less than 5 NTU prior to sampling. As such, the noted observations regarding turbidity measurements less than 5 NTU below are included for information purposes only.

NM = Not Measured. The QAP does not require the measurement of redox potential or turbidity in wells that were purged to dryness.

H-2: Holding Time Evaluation

100

Location ID	Parameter Name	Sample Date	Analysis Date	Hold Time (Days)	Allowed Hold Time (Days)	Hold Time Check
PIEZ-01	Chloride	10/11/2016	10/18/2016	7	28	OK
PIEZ-01	Nitrate/Nitrite (as N)	10/11/2016	10/19/2016	8	28	OK
PIEZ-02	Chloride	10/11/2016	10/18/2016	7	28	OK
PIEZ-02	Nitrate/Nitrite (as N)	10/11/2016	10/19/2016	8	28	OK
PIEZ-03A	Chloride	10/11/2016	10/18/2016	7	28	OK
PIEZ-03A	Nitrate/Nitrite (as N)	10/11/2016	10/19/2016	8	28	OK
TWN-01	Chloride	10/6/2016	10/18/2016	12	28	OK
TWN-01	Nitrate/Nitrite (as N)	10/6/2016	10/19/2016	13	28	OK
TWN-02	Chloride	10/11/2016	10/18/2016	7	28	OK
TWN-02	Nitrate/Nitrite (as N)	10/11/2016	10/19/2016	8	28	OK
TWN-03	Chloride	10/7/2016	10/18/2016	11	28	OK
TWN-03	Nitrate/Nitrite (as N)	10/7/2016	10/19/2016	12	28	OK
TWN-04	Chloride	10/6/2016	10/18/2016	12	28	OK
TWN-04	Nitrate/Nitrite (as N)	10/6/2016	10/19/2016	13	28	OK
TWN-07	Chloride	10/7/2016	10/18/2016	11	28	OK
TWN-07	Nitrate/Nitrite (as N)	10/7/2016	10/19/2016	12	28	OK
TWN-18	Chloride	10/6/2016	10/18/2016	12	28	OK
TWN-18	Nitrate/Nitrite (as N)	10/6/2016	10/19/2016	13	28	OK
TWN-18R	Chloride	10/6/2016	10/18/2016	12	28	OK
TWN-18R	Nitrate/Nitrite (as N)	10/6/2016	10/19/2016	13	28	OK
TWN-60	Chloride	10/13/2016	10/18/2016	5	28	OK
TWN-60	Nitrate/Nitrite (as N)	10/13/2016	10/19/2016	6	28	OK
TWN-65	Chloride	10/6/2016	10/18/2016	12	28	OK
TWN-65	Nitrate/Nitrite (as N)	10/6/2016	10/19/2016	13	28	OK

H-3: Analytical Method Check

Parameter	Method	Method Used by Lab
Nitrate	E353.1 or E353.2	E353.2
	A4500-Cl B or A4500-Cl E	
Chloride	or E300.0	E300.0

Both Nitrate and Chloride were analyzed with the correct analytical method.

H-4 Reporting Limit Check

Location	Analyte	Lab Reporting Limit	Units	Qualifier	Dilution Factor	Required Reporting Limit	RL Check
PIEZ-01	Chloride	10	mg/L		10	1	OK
PIEZ-01	Nitrate/Nitrite (as N)	0.1	mg/L		10	0.1	OK
PIEZ-02	Chloride	5	mg/L		5	1	OK
PIEZ-02	Nitrate/Nitrite (as N)	0.1	mg/L		10	0.1	OK
PIEZ-03A	Chloride	10	mg/L		10	1	OK
PIEZ-03A	Nitrate/Nitrite (as N)	0.1	mg/L		10	0.1	OK
TWN-01	Chloride	10	mg/L		10	1	OK
TWN-01	Nitrate/Nitrite (as N)	0.1	mg/L		10	0.1	OK
TWN-02	Chloride	10	mg/L		10	1	OK
TWN-02	Nitrate/Nitrite (as N)	1	mg/L		100	0.1	OK
TWN-03	Chloride	10	mg/L		10	1	OK
TWN-03	Nitrate/Nitrite (as N)	0.1	mg/L		10	0.1	OK
TWN-04	Chloride	5	mg/L		5	1	OK
TWN-04	Nitrate/Nitrite (as N)	0.1	mg/L		10	0.1	OK
TWN-07	Chloride	1	mg/L		1	1	OK
TWN-07	Nitrate/Nitrite (as N)	0.1	mg/L		10	0.1	OK
TWN-18	Chloride	10	mg/L		10	1	OK
TWN-18	Nitrate/Nitrite (as N)	0.1	mg/L		10	0.1	OK
TWN-18R	Chloride	1	mg/L	U	1	1	OK
TWN-18R	Nitrate/Nitrite (as N)	0.1	mg/L	U	10	0.1	OK
TWN-60	Chloride	1	mg/L	U	1	1	OK
TWN-60	Nitrate/Nitrite (as N)	0.1	mg/L	U	10	0.1	OK
TWN-65	Chloride	5	mg/L		5	1	OK
TWN-65	Nitrate/Nitrite (as N)	0.1	mg/L		10	0.1	OK

U = Value was reported by the laboratory as nondetect.

H-5 QA/QC Evaluation for Sample Duplicates

Constituent	TWN-18	TWN-65	%RPD
Chloride	67.4	65.7	2.55
Nitrogen	0.501	0.488	2.63

ND - non-detect

NC - not calculated. The RPD was not calucated, because the duplicate sample was reported as non-detect.

-

-

H-6 QC Control Limits for Analysis and Blanks

Method Blank Detections

All Method Blanks for the quarter were non-detect.

Matrix Spike % Recovery Comparison

						REC	
Lab Report	Lab Sample ID	Well	Analyte	MS %REC	MSD %REC	Range	RPD
1610271	1610271-010BMS	PIEZ-01	Nitrate	119	111	90-110	4.40
1611262	1611262-001BMS	TW4-38R	Nitrate	111	106	90-110	4.33
1611262	1611263-001DMS	N/A	Nitrate	114	121	90-110	5.24

* - Recovery was not calculated because the analyte of the sample was greater than 4 times the spike amount

N/A - QC was not performed on an EFRI sample.

NC - Not calculated

Laboratory Control Sample

All Laboratory Control Samples were within acceptance limits for the quarter.

H-7 Receipt Temperature Evaluation

Sample Batch	Wells in Batch	Temperature
1610271	Piezometer 1, Piezometer 2, Piezometer 3A, TWN-1, TWN-2, TWN-3, TWN-4, TWN-7, TWN-18R, TWN-18, TWN-60, TWN-65	3.4 °C
1610270	TW4-22, TW4-24, TW4-25	2.9 °C
1611262	TW4-60	1.8 °C

-

H-8 Rinsate Evaluation

.

All rinsate and DI blank samples were non-detect for the quarter.

Lab Set ID: 16/027/ pH Lot 5003

Preservation Check Sheet

Sample Set Extension and nH

	in the second second				D D	ampie c	JUL DAIL	noron al	na hu									1 million 1
Preservative	1	2	3	4	5	6	7	8	9	10	11	12						
pH <2 H ₂ SO ₄																		
pH <2 H ₂ SO ₄									-									
pH >12					14													
pH <2 H ₂ SO ₄	Yes	Yes	Yes	Yes	Yes	Ver	Yes	Yes	yes	Ves	Yes	Ves						
pH <2 HCL	7			-	/			/		1		1						
pH > 9NaOH,						-					-			-				
Zn Acetate																		
pH <2 H ₂ SO ₄		-					· · · · · · · · ·											
pH <2 H ₂ SO ₄										_								
				1				1		-								
											1							
																1		
						1					1							
			1															
	$pH <2 H_2SO_4$ $pH <2 H_2SO_4$ pH >12 NaOH $pH <2 HNO_3$ $pH <2 H_2SO_4$ $pH <2 H_2SO_4$ $pH <2 H_2SO_4$ pH > 9NaOH, Zn Acetate $pH <2 H_2SO_4$	pH <2 H_2SO4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Preservative / χ 3 $4'_{1}$ 5 6 7 8 9 10 $11'_{12}$ 12 pH <2 H_2SO4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Procedure:

Pour a small amount of sample in the sample lid 1)

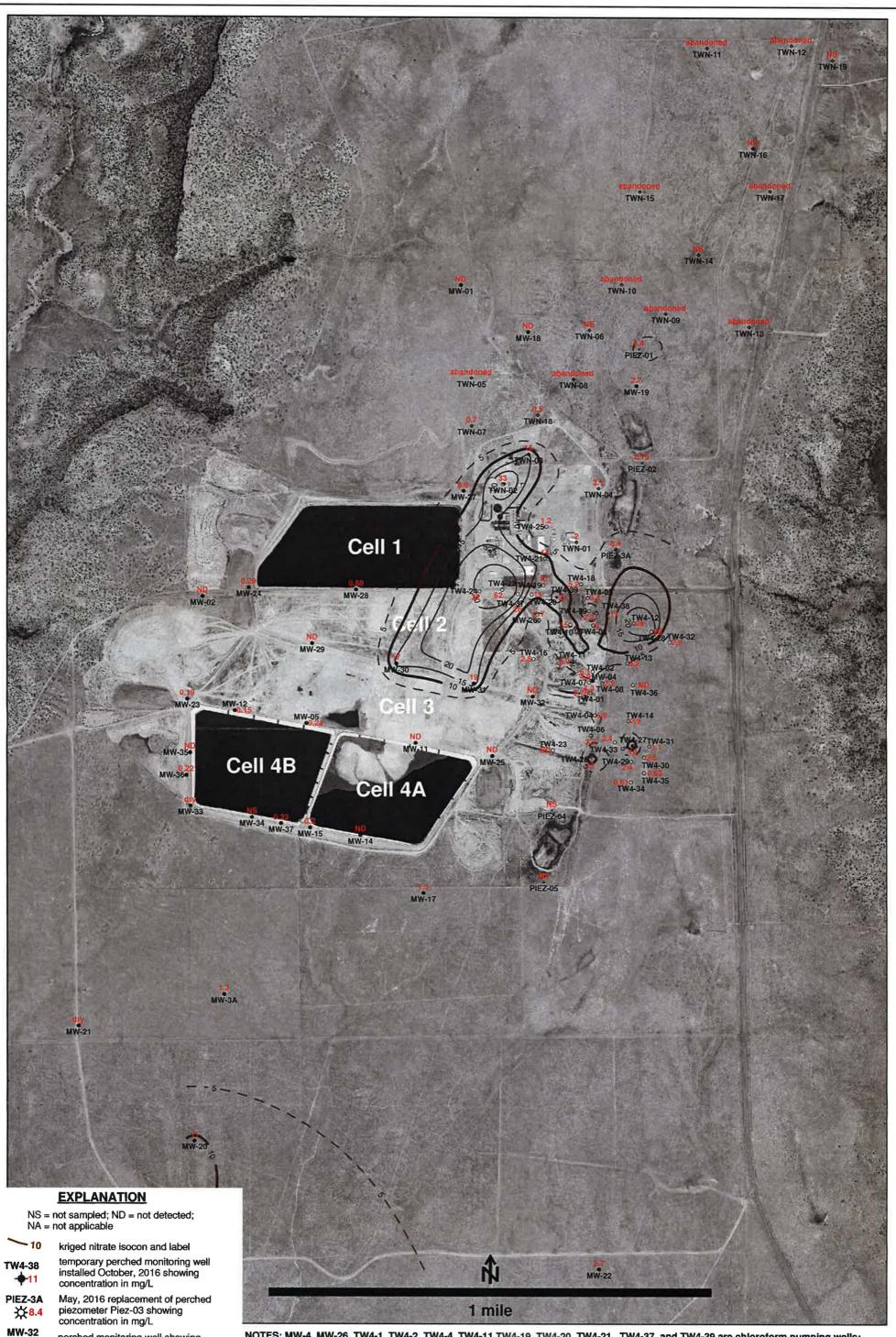
2) 3) Pour sample from Lid gently over wide range pH paper

Do Not dip the pH paper in the sample bottle or lid

If sample is not preserved, properly list its extension and receiving pH in the appropriate column above

4) 5) Flag COC, notify client if requested

6) Place client conversation on COC


7) Samples may be adjusted

Frequency: All samples requiring preservation

- * The sample required additional preservative upon receipt.
- +The sample was received unpreserved.
- The sample was received unpreserved and therefore preserved upon receipt.
- # The sample pH was unadjustable to a pH < 2 due to the sample matrix.
- The sample pH was unadjustable to a pH > _____ due to the sample matrix interference.

Tab I

Kriged Current Quarter Isoconcentration Maps

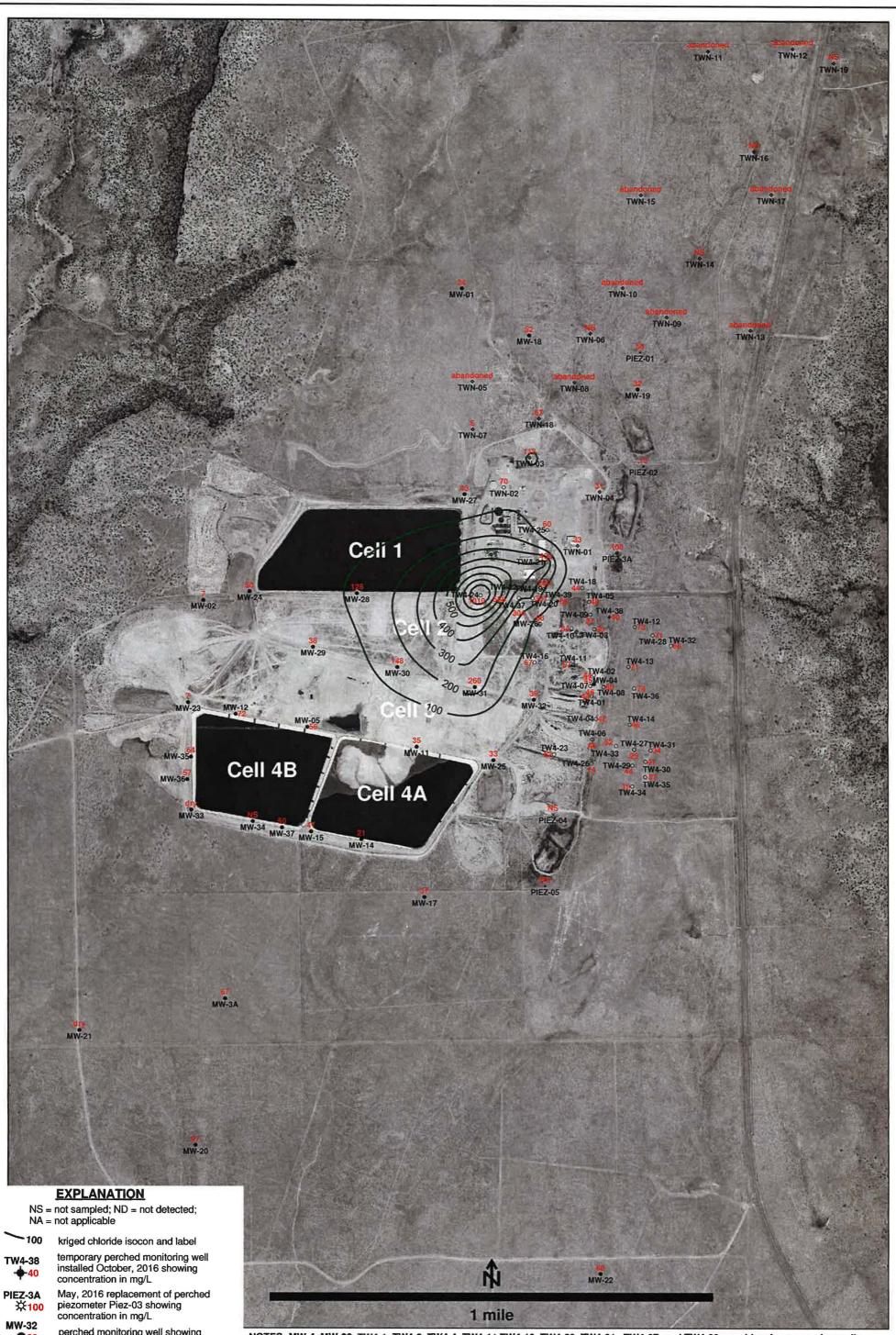
TW4-7

perched monitoring well showing concentration in mg/L

temporary perched monitoring well showing concentration in mg/L

4.3 TWN-1 **\$2.0**

PIEZ-1


€6.4

temporary perched nitrate monitoring well showing concentration in mg/L

perched piezometer showing concentration in mg/L

NOTES: MW-4, MW-26, TW4-1, TW4-2, TW4-4, TW4-11, TW4-19, TW4-20, TW4-21, TW4-37, and TW4-39 are chloroform pumping wells; TW4-22, TW4-24, TW4-25, and TWN-2 are nitrate pumping wells

HYDRO GEO CHEM, INC.	KR		QUARTER, 2016 NITRATE (m TRATE + NITRITE AS N) WHITE MESA SITE	ig/L)
,	APPROVED	DATE	REFERENCE H:/718000/feb17/nitrate/Unt1116_rev.srf	FIGURE I-1

perched monitoring well showing concentration in mg/L

temporary perched monitoring well **O46** showing concentration in mg/L

TWN-1 **\$33**

temporary perched nitrate monitoring well showing concentration in mg/L

PIEZ-1 perched piezometer showing **⊖ 58** concentration in mg/L

NOTES: MW-4, MW-26, TW4-1, TW4-2, TW4-4, TW4-11, TW4-19, TW4-20, TW4-21, TW4-37, and TW4-39 are chloroform pumping wells; TW4-22, TW4-24, TW4-25, and TWN-2 are nitrate pumping wells

HYDRO GEO CHEM, INC.	KRIC	GED 4th	QUARTER, 2016 CHLORIDE (WHITE MESA SITE	mg/L)
,	APPROVED	DATE	REFERENCE H:/718000/feb17/chloride/Ucl1116_rev.srf	FIGURE I-2

Tab J

Analyte Concentrations over Time

Piezometer 1

Date	Nitrate (mg/l)	Chloride (mg/l)
2/19/2009	6.8	NA
7/14/2009	6.8	60
9/22/2009	7.3	78
10/27/2009	7.4	61
6/2/2010	7.2	52
7/19/2010	6.8	52
12/10/2010	6.5	60
1/31/2011	7	60
4/25/2011	6.8	58
7/25/2011	7	53
10/19/2011	6.6	55
1/11/2012	7.1	78
4/20/2012	6.6	58
7/27/2012	7.2	56
10/17/2012	7.66	55
2/18/2013	8.11	56.7
4/24/2013	8.88	53.3
8/28/2013	7.83	55.1
10/16/2013	6.68	54.1
1/13/2014	6.79	56.2
5/7/2014	7.57	52.1
8/6/2014	5.1	55
10/8/2014	5.75	57.6
2/18/2015	6.41	55.9
5/12/2015	5.95	57.5
8/26/2015	4.96	64.2
10/14/2015	6.17	54.4
2/23/2016	8.31	56.5
5/17/2016	6.33	59.1
7/19/2016	6.78	53.9
10/11/2016	6.42	58.1

Piezometer 2

Date	Nitrate (mg/l)	Chloride (mg/l)
2/19/2009	0.500	NA
7/14/2009	0.500	7.0
9/22/2009	0.500	17.0
10/27/2009	0.600	7.0
6/2/2010	0.600	8.0
7/19/2010	0.600	8.0
12/10/2010	0.200	6.0
1/31/2011	0.300	9.0
4/25/2011	0.300	8.0
7/25/2011	0.100	9.0
10/19/2011	0.100	8.0
1/11/2012	0.100	9.0
4/20/2012	0.200	8.0
7/27/2012	0.200	9.0
10/17/2012	0.192	9.5
2/19/2013	0.218	9.7
4/24/2013	0.172	10.3
8/28/2013	0.198	9.7
10/16/2013	0.364	9.2
1/13/2014	0.169	11.4
5/7/2014	0.736	11.4
8/6/2014	0.800	12.0
10/8/2014	0.755	12.2
2/18/2015	0.749	12.6
5/12/2015	0.646	13.1
8/26/2015	0.662	15.5
10/14/2015	0.692	13.3
2/23/2016	0.615	13.4
5/17/2016	0.665	14.0
7/19/2016	0.669	12.4
10/11/2016	0.732	13.4

Piezometer 3A				
Date	Nitrate (mg/l)	Chloride (mg/l)		
5/17/2016	8.23	109		
7/19/2016	8.83	93.8		
10/11/2016	8.44	100		

TWN-1			
Date	Nitrate (mg/l) Chloride (mg		
2/6/2009	0.7 19		
7/21/2009	0.4 17		
9/21/2009	0.4	19	
10/28/2009	0.5	18	
3/17/2010	0.5	17	
5/26/2010	0.6 20		
9/27/2010	0.6	19	
12/7/2010	0.6	14	
1/26/2011	0.5	17	
4/20/2011	0.5	19	
7/26/2011	0.5	14	
10/17/2011	0.5	10	
1/9/2012	0.6	15	
4/18/2012	0.6	17	
7/24/2012	0.6	17	
10/15/2012	0.432	17.5	
2/18/2013	0.681	17.6	
4/23/2013	0.84	17.4	
8/27/2013	1.24	24.1	
10/16/2013	1.61	26.8	
1/14/2014	1.47	29.2	
5/6/2014	1.63	31.1	
8/5/2014	1.7	28	
10/8/2014	1.46 27.6		
2/18/2015	1.37 27.8		
5/13/2015	0.65 29.2		
8/25/2015	0.324 33.2		
10/13/2015	1.35	27.7	
2/23/2016	1.51	30.3	
5/17/2016	1.73	32.1	
7/20/2016	1.76	29.6	
10/6/2016	1.98	33.0	

TWN-2		
Date	Nitrate (mg/l)	Chloride (mg/l)
2/6/2009	25.4	29
7/21/2009	25	25
9/21/2009	22.6	17
11/2/2009	20.8	55
3/24/2010	62.1	85
6/2/2010	69	97
9/29/2010	69	104
12/9/2010	48	93
2/1/2011	43	93
4/28/2011	40	85
7/28/2011	33	74
10/20/2011	33	76
1/12/2012	31	86
4/20/2012	48	103
7/31/2012	54	93
10/17/2012	22.1	79
2/19/2013	57.3	80.5
4/24/2013	57.7	82.1
8/27/2013	80	75.9
10/16/2013	111	70.4
1/13/2014	42.6	72.4
5/7/2014	44.7	84.9
8/6/2014	42	80
10/8/2014	70.6	81
2/18/2015	48.6	84.8
5/12/2015	52.8	82.6
8/25/2015	49.7	87.8
10/14/2015	44.9	74.9
2/23/2016	86.3	73.9
5/17/2016	45.4	74.5
7/19/2016	35.3	68.8
10/11/2016	32.6	69.8

TWN-3			
Date	Nitrate (mg/l)	Chloride (mg/l)	
2/6/2009	23.6	96	
7/21/2009	25.3	96	
9/21/2009	27.1	99	
11/2/2009	29	106	
3/25/2010	25.3	111	
6/3/2010	26	118	
7/15/2010	27	106	
12/10/2010	24	117	
2/1/2011	24	138	
4/28/2011	26	128	
7/29/2011	25	134	
10/20/2011	25	129	
1/12/2012	25	143	
4/20/2012	24	152	
7/31/2012	27	158	
10/17/2012	12.1	149	
2/19/2013	22.2	157	
4/24/2013	27.2	158	
8/28/2013	20.9	171	
10/17/2013	23.5	163	
1/15/2014	19.6	160	
5/7/2014	23.6	168	
8/6/2014	19.5	174	
10/9/2014	19.1	153	
2/19/2015	19.4	164	
5/14/2015	17.2	141	
8/26/2015	16.2	156	
10/14/2015	16.3	129	
2/24/2016	16.8	128	
5/18/2016	13.5	116	
7/19/2016	16.8	110	
10/7/2016	15.8	113	

TWN-4		
Date	Nitrate (mg/l)	Chloride (mg/l)
2/6/2009	1.00	13.0
7/21/2009	0.05	12.0
9/21/2009	0.40	13.0
10/28/2009	0.40	11.0
3/16/2010	0.90	22.0
5/27/2010	1.00	22.0
9/27/2010	0.90	19.0
12/8/2010	1.00	21.0
1/25/2011	0.90	21.0
4/20/2011	0.90	21.0
7/26/2011	1.10	35.0
10/18/2011	0.90	20.0
1/9/2012	0.90	20.0
4/18/2012	1.10	24.0
7/25/2012	1.40	25.0
10/15/2012	1.45	26.4
2/18/2013	1.51	25.3
4/23/2013	1.63	24.4
8/27/2013	1.58	27.2
10/16/2013	1.69	29.4
1/14/2014	1.41	28.4
5/6/2014	1.55	29.6
8/5/2014	2.00	28.0
10/8/2014	1.44	30.7
2/18/2015	1.48	31.5
5/13/2015	0.73	31.9
8/25/2015	0.97	35.2
10/13/2015	1.58	28.4
2/23/2016	2.02	30.7
5/17/2016	2.97	31.7
7/20/2016	3.14	28.0
10/6/2016	3.09	31.3

TWN-7		
Date	Nitrate (mg/l)	Chloride (mg/l)
8/25/2009	ND	11.00
9/21/2009	ND	7.00
11/10/2009	0.100	7.00
3/17/2010	0.800	6.00
5/28/2010	1.200	6.00
7/14/2010	1.600	7.00
12/10/2010	1.000	4.00
1/27/2011	1.300	6.00
4/21/2011	1.700	6.00
7/29/2011	0.700	5.00
10/19/2011	2.200	6.00
1/11/2012	2.300	5.00
4/20/2012	1.200	6.00
7/26/2012	0.900	6.00
10/16/2012	0.641	5.67
2/19/2013	0.591	5.68
4/24/2013	1.160	5.88
8/28/2013	0.835	6.96
10/16/2013	0.986	5.70
1/15/2014	0.882	5.75
5/7/2014	0.564	5.26
8/6/2014	0.900	6.00
10/9/2014	0.968	5.93
2/19/2015	1.040	5.58
5/14/2015	0.779	6.18
8/26/2015	0.348	6.12
10/14/2015	0.672	5.84
2/24/2016	0.240	6.06
5/18/2016	0.732	6.26
7/21/2016	0.810	5.97
10/7/2016	0.698	6.17

TWN-18		
Date	Nitrate (mg/l)	Chloride (mg/l)
11/2/2009	1.300	57.0
3/17/2010	1.600	42.0
6/1/2010	1.800	63.0
9/27/2010	1.800	64.0
12/9/2010	1.600	59.0
1/27/2011	1.400	61.0
4/26/2011	1.800	67.0
7/28/2011	1.800	65.0
10/18/2011	1.900	60.0
1/10/2012	1.900	64.0
4/19/2012	2.100	64.0
7/26/2012	2.300	67.0
10/16/2012	1.950	67.5
2/18/2013	2.270	68.7
4/23/2013	2.320	64.3
8/27/2013	2.040	70.4
10/16/2013	2.150	67.3
1/14/2014	2.330	68.4
5/6/2014	2.180	76.5
8/5/2014	1.800	70.0
10/8/2014	1.470	74.8
2/18/2015	1.000	73.3
5/13/2015	1.350	76.6
8/25/2015	0.350	81.3
10/13/2015	0.668	69.0
2/23/2016	0.648	67.6
5/17/2016	0.497	69.9
7/20/2016	0.100	52.7
10/6/2016	0.501	67.4

TW4-19			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
7/22/2002	42.80	12/7/2005	81
9/12/2002	47.60	3/9/2006	86
3/28/2003	61.40	7/20/2006	123
6/23/2003	11.40	11/9/2006	134
7/15/2003	6.80	2/28/2007	133
8/15/2003	4.00	8/15/2007	129
9/12/2003	5.70	10/10/2007	132
9/25/2003	9.20	3/26/2008	131
10/29/2003	7.70	6/25/2008	128
11/9/2003	4.80	9/10/2008	113
8/16/2004	9.91	10/15/2008	124
9/17/2004	4.50	3/4/2009	127
3/16/2005	5.30	6/23/2009	132
6/7/2005	5.70	9/14/2009	43
8/31/2005	4.60	12/14/2009	124
12/1/2005	0.10	2/17/2010	144
3/9/2006	4.00	6/9/2010	132
6/14/2006	5.20	8/16/2010	142
7/20/2006	4.30	10/11/2010	146
11/9/2006	4.60	2/17/2011	135
2/28/2007	4.00	6/7/2011	148
8/15/2007	4.10	8/17/2011	148
10/10/2007	4.00	11/17/2011	148
3/26/2008	2.20	1/23/2012	138
6/25/2008	2.81	6/6/2012	149
9/10/2008	36.20	9/5/2012	149
10/15/2008	47.80	10/3/2012	150
3/4/2009	3.20	2/11/2013	164
6/23/2009	2.40	6/5/2013	148
9/14/2009	0.10	9/3/2013	179
12/14/2009	26.70	10/29/2013	206
2/17/2010	2.00	1/27/2014	134
6/9/2010	4.40	5/19/2014	152
8/16/2010	5.90	8/11/2014	140
10/11/2010	2.70	10/21/2014	130
2/17/2011	17.00	3/9/2015	238
6/7/2011	12.00	6/8/2015	180
8/17/2011	3.00	8/31/2015	326
11/17/2011	5.00	10/19/2015	252
1/23/2012	0.60	3/9/2016	276
6/6/2012	2.40	5/23/2016	201
9/5/2012	2.50	7/25/2016	214
10/3/2012	4.10	10/13/2016	200
2/11/2013	7.99		
6/5/2013	2.95		

TW4-19			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
9/3/2013	17.60		
10/29/2013	4.70		
1/27/2014	1.62		
5/19/2014	1.34		
8/11/2014	1.60		
10/21/2014	4.72		
3/9/2015	8.56		
6/8/2015	0.92		
8/31/2015	11.60		
10/19/2015	10.60		
3/9/2016	15.7		
5/23/2016	1.27		
7/25/2016	10.50		
10/13/2016	10.00		

The sampling program for TW4-19 was updated in the fourth quarter of 2005 to include analysis for chloride as well as nitrate. This change accounts for the different number of data points represented above.

TW4-21			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
5/25/2005	14.6	12/7/2005	353
8/31/2005	10.1	3/9/2006	347
11/30/2005	9.6	7/20/2006	357
3/9/2006	8.5	11/8/2006	296
6/14/2006	10.2	2/28/2007	306
7/20/2006	8.9	6/27/2007	327
11/8/2006	8.7	8/15/2007	300
2/28/2007	8.7	10/10/2007	288
6/27/2007	8.6	3/26/2008	331
8/15/2007	8.6	6/25/2008	271
10/10/2007	8.3	9/10/2008	244
3/26/2008	14.3	10/15/2008	284
6/25/2008	8.8	3/11/2009	279
9/10/2008	7.6	6/24/2009	291
10/15/2008	8.0	9/15/2009	281
3/11/2009	8.3	12/22/2009	256
6/24/2009	8.1	2/25/2010	228
9/15/2009	9.2	6/10/2010	266
12/22/2009	8.4	8/12/2010	278
2/25/2010	8.4	10/13/2010	210
6/10/2010	12.0	2/22/2011	303
8/12/2010	14.0	6/1/2011	297
10/13/2010	7.0	8/17/2011	287
2/22/2011	9.0	11/16/2011	276
6/1/2011	13.0	1/19/2012	228
8/17/2011	14.0	6/13/2012	285
11/16/2011	13.0	9/13/2012	142
1/19/2012	15.0	10/4/2012	270
6/13/2012	11.0	2/13/2013	221
9/13/2012	13.0	6/18/2013	243
10/4/2012	14.0	9/12/2013	207
2/13/2013	11.8	11/13/2013	206
6/18/2013	13.8	2/5/2014	200
9/12/2013	10.3	5/22/2014	243
11/13/2013	9.0	8/27/2014	230
2/5/2014	11.4	10/29/2014	252
5/22/2014	11.5	3/12/2015	255
8/27/2014 10/29/2014	7.1	6/8/2015 8/21/2015	494
10/29/2014	10.0	8/31/2015	499

TW4-21			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
3/12/2015	10.9	10/19/2015	413
6/8/2015	13.1	3/9/2016	452
8/31/2015	14.7	5/23/2016	425
10/19/2015	14.3	7/25/2016	457
3/9/2016	14.6	10/12/2016	439
5/23/2016	13.1		
7/25/2016	16.5		
10/12/2016	13.5		

The sampling program for TW4-21 was updated in the fourth quarter of 2005 to include analysis for chloride as well as nitrate. This change accounts for the different number of data points represented above.

TIA/A 34

TW4-22

Date	Nitrate (mg/l)	Chloride (mg/l)
2/28/2007	20.9	347
6/27/2007	19.3	273
8/15/2007	19.3	259
10/10/2007	18.8	238
3/26/2008	39.1	519
6/25/2008	41.9	271
9/10/2008	38.7	524
10/15/2008	36.3	539
3/11/2009	20.7	177
6/24/2009	20.6	177
9/15/2009	40.3	391
12/29/2009	17.8	175
3/3/2010	36.6	427
6/15/2010	19	134
8/12/2010	18	127
8/24/2010	15	130
10/13/2010	16	134
2/23/2011	18	114
6/1/2011	17	138
8/17/2011	15	120
11/16/2011	19	174
1/19/2012	14	36
6/13/2012	12.8	35
9/12/2012	7	121
10/4/2012	14	130
2/11/2013	58	635
6/5/2013	50.2	586
9/3/2013	29.7	487
10/29/2013	45.2	501
1/27/2014	54.6	598
5/19/2014	47.2	614
8/11/2014	41.5	540
10/21/2014	54.9	596
3/9/2015	69.2	675
6/8/2015	47.1	390
8/31/2015	64.7	557
10/19/2015	56.1	567
3/9/2016	31.1	583
5/23/2016	58.4	598
7/25/2016	61.3	619
10/12/2016	61.5	588

TW4-24		
Date	Nitrate (mg/l)	Chloride (mg/l)
6/27/2007	26.1	770
8/15/2007	29	791
10/10/2007	24.7	692
3/26/2008	24.4	740
6/25/2008	45.3	834
9/10/2008	38.4	1180
10/15/2008	44.6	1130
3/4/2009	30.5	1010
6/24/2009	30.4	759
9/15/2009	30.7	618
12/17/2009	28.3	1080
2/25/2010	33.1	896
6/9/2010	30	639
8/11/2010	32	556
8/24/2010	31	587
10/6/2010	31	522
2/17/2011	31	1100
5/26/2011	35	1110
8/17/2011	34	967
11/16/2011	35	608
1/18/2012	37	373
6/6/2012	37	355
8/30/2012	37	489
10/3/2012	38	405
2/11/2013	35.9	1260
6/5/2013	23.7	916
9/3/2013	32.6	998
10/29/2013	34.6	1030
1/27/2014	31.6	809
5/19/2014	35	1020
8/11/2014	31.5	1150
10/21/2014	35.7	1050
3/9/2015	34.6	944
6/8/2015	31.8	1290
8/31/2015	25.3	788
10/19/2015	29.6	909
3/9/2016	29.1	989
5/23/2016	24.2	771
7/25/2016	34.4	1,180
10/12/2016	31.9	1,010

TW4-25			
Date	Nitrate (mg/l)	Chloride (mg/l)	
6/27/2007	17.1	395	
8/15/2007	16.7	382	
10/10/2007	17	356	
3/26/2008	18.7	374	
6/25/2008	22.1	344	
9/10/2008	18.8	333	
10/15/2008	21.3	366	
3/4/2009	15.3	332	
6/24/2009	15.3	328	
9/15/2009	3.3	328	
12/16/2009	14.2	371	
2/23/2010	14.4	296	
6/8/2010	16	306	
8/10/2010	14	250	
10/5/2010	15	312	
2/16/2011	15	315	
5/25/2011	16	321	
8/16/2011	16	276	
11/15/2011	16	294	
1/18/2012	16	304	
5/31/2012	16	287	
9/11/2012	17	334	
10/3/2012	17	338	
2/11/2013	9.04	190	
6/5/2013	5.24	136	
9/3/2013	5.69	119	
10/29/2013	6.10	88.6	
1/27/2014	2.16	85.7	
5/19/2014	1.21	51.1	
8/11/2014	1.6	67	
10/21/2014	1.03	58.1	
3/9/2015	14.4	310	
6/8/2015	1.14	58.3	
8/31/2015	1.63	69.2	
10/21/2015	1.78	93.7	
3/9/2016	0.837	62.7	
5/23/2016	0.959	75.5	
7/25/2016	1.78	74.1	
10/12/2016	1.24	59.8	

MW-30			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
6/22/2005	12.4	6/22/2005	125
9/22/2005	12.8	9/22/2005	125
12/14/2005	13.6	12/14/2005	128
3/22/2006	13.8	3/22/2006	125
6/21/2006	14.5	6/21/2006	124
9/13/2006	14.1	9/13/2006	118
10/25/2006	14.6	10/25/2006	124
3/15/2007	14.4	3/15/2007	125
8/22/2007	14.6	8/22/2007	126
10/24/2007	14.9	10/24/2007	122
3/19/2008	14.8	3/19/2008	118
6/3/2008	18.7	6/3/2008	125
8/4/2008	17.3	8/4/2008	121
11/5/2008	15.6	11/5/2008	162
2/3/2009	15.3	2/3/2009	113
5/13/2009	15.1	5/13/2009	122
8/24/2009	20.9	8/24/2009	118
10/14/2009	15.0	10/14/2009	129
1/20/2010	15.4	1/20/2010	106
2/9/2010	16.1	2/9/2010	127
4/27/2010	15.8	4/27/2010	97
5/24/2010	17.0	9/14/2010	111
6/15/2010	15.3	11/9/2010	126
8/24/2010	16.0	2/1/2011	134
9/14/2010	15.0	4/11/2011	134
10/19/2010	15.0	5/10/2011	128
11/9/2010	15.0	6/20/2011	127
12/14/2010	16.0	7/5/2011	127
1/10/2011	15.0	8/3/2011	126
2/1/2011	16.0	9/7/2011	145
3/14/2011	17.0	10/4/2011	129
4/11/2011	16.0	11/8/2011	122
5/10/2011	16.0	12/12/2011	124
6/20/2011	17.0	1/24/2012	124
7/5/2011	17.0	2/14/2012	126
8/3/2011	14.0	3/14/2012	128
9/7/2011	16.0	4/10/2012	128
10/4/2011	16.0	5/2/2012	124
11/8/2011	16.0	6/18/2012	131
12/12/2011	16.0	7/10/2012	128
1/24/2012	17.0	8/7/2012	139
2/14/2012	17.0	9/19/2012	130
3/14/2012	18.0	10/23/2012	135
4/10/2012	17.0	11/13/2012	114
5/2/2012	16.0	12/26/2012	122

DateNitrate (mg/l)DateChloride (mg/l)6/18/201215.01/23/20131287/10/201217.02/26/20131298/7/201218.03/20/20131269/19/201216.04/17/201311710/23/201216.25/15/201311911/13/201218.56/25/201312712/26/201217.27/10/20131301/23/201319.28/20/20131262/26/201321.49/18/20131313/20/201314.310/22/20131284/17/201316.811/20/20131245/15/201318.812/18/20131346/25/201316.11/8/20141317/10/201317.62/25/20141358/20/201316.43/11/20141449/18/201316.94/23/201415410/22/201319.75/14/201412811/20/201319.75/14/201412812/18/201320.77/29/20141363/11/201421.310/7/20141363/11/201421.310/7/20141386/3/201418.49/9/20141363/11/201415.62/4/20151447/29/201416.83/3/20151329/9/201416.83/3/20151329/9/201416.83/3/201514210/7/201413.83/3/201514210/7/201416.26/24/2015142 <th>MW-30</th> <th></th> <th></th> <th></th> <th></th>	MW-30				
7/10/201217.0 $2/26/2013$ 129 $8/7/2012$ 18.0 $3/20/2013$ 126 $9/19/2012$ 16.0 $4/17/2013$ 117 $10/23/2012$ 16.2 $5/15/2013$ 119 $11/13/2012$ 18.5 $6/25/2013$ 127 $12/26/2012$ 17.2 $7/10/2013$ 130 $1/23/2013$ 19.2 $8/20/2013$ 126 $2/26/2013$ 21.4 $9/18/2013$ 131 $3/20/2013$ 14.3 $10/22/2013$ 128 $4/17/2013$ 16.8 $11/20/2013$ 124 $5/15/2013$ 16.1 $1/8/2014$ 131 $7/10/2013$ 17.6 $2/25/2014$ 135 $8/20/2013$ 16.4 $3/11/2014$ 144 $9/18/2013$ 16.9 $4/23/2014$ 154 $10/22/2013$ 16.4 $3/11/2014$ 128 $11/20/2013$ 19.7 $5/14/2014$ 128 $11/20/2013$ 19.7 $6/3/2014$ 128 $12/18/2013$ 20.7 $7/29/2014$ 136 $3/11/2014$ 21.3 $10/7/2014$ 136 $4/23/2014$ 18.3 $11/10/2014$ 136 $4/23/2014$ 18.3 $11/10/2014$ 154 $5/14/2014$ 17.9 $12/10/2014$ 138 $6/3/2014$ 19.4 $1/21/2015$ 144 $7/29/2014$ 16.8 $4/8/2015$ 142 $10/7/2014$ 11.0 $5/12/2015$ 142 $10/7/2014$ 16.8 $4/8/2015$ 142 $10/7/2014$ 16.2 $6/24/2015$ 142 $10/7/2014$ 16.2<	Date	Nitrate (mg/l)	Date	Chloride (mg/l)	
8/7/201218.0 $3/20/2013$ 126 $9/19/2012$ 16.0 $4/17/2013$ 117 $10/23/2012$ 16.2 $5/15/2013$ 119 $11/13/2012$ 18.5 $6/25/2013$ 127 $12/26/2012$ 17.2 $7/10/2013$ 130 $1/23/2013$ 19.2 $8/20/2013$ 126 $2/26/2013$ 21.4 $9/18/2013$ 131 $3/20/2013$ 14.3 $10/22/2013$ 128 $4/17/2013$ 16.8 $11/20/2013$ 124 $5/15/2013$ 18.8 $12/18/2013$ 134 $6/25/2013$ 16.1 $1/8/2014$ 131 $7/10/2013$ 17.6 $2/25/2014$ 135 $8/20/2013$ 16.4 $3/11/2014$ 144 $9/18/2013$ 16.9 $4/23/2014$ 154 $10/22/2013$ 19.7 $5/14/2014$ 128 $11/20/2013$ 19.7 $5/14/2014$ 128 $12/18/2013$ 20.7 $7/29/2014$ 136 $3/11/2014$ 20.3 $8/20/2014$ 136 $3/11/2014$ 21.3 $10/7/2014$ 136 $4/23/2014$ 18.3 $11/10/2014$ 154 $5/14/2014$ 17.9 $12/10/2014$ 138 $6/3/2014$ 19.4 $1/21/2015$ 144 $7/29/2014$ 15.6 $2/4/2015$ 136 $8/20/2014$ 13.8 $3/3/2015$ 132 $9/9/2014$ 16.8 $4/8/2015$ 142 $10/7/2014$ 11.0 $5/12/2015$ 145 $11/10/2014$ 16.2 $6/2/2015$ 142 $10/7/2014$ 16.2 <td>6/18/2012</td> <td>15.0</td> <td>1/23/2013</td> <td>128</td> <td></td>	6/18/2012	15.0	1/23/2013	128	
9/19/201216.0 $4/17/2013$ 117 $10/23/2012$ 16.2 $5/15/2013$ 119 $11/13/2012$ 18.5 $6/25/2013$ 127 $12/26/2012$ 17.2 $7/10/2013$ 130 $1/23/2013$ 19.2 $8/20/2013$ 126 $2/26/2013$ 21.4 $9/18/2013$ 131 $3/20/2013$ 14.3 $10/22/2013$ 128 $4/17/2013$ 16.8 $11/20/2013$ 124 $5/15/2013$ 16.8 $11/20/2013$ 134 $6/25/2013$ 16.1 $1/8/2014$ 131 $7/10/2013$ 17.6 $2/25/2014$ 135 $8/20/2013$ 16.4 $3/11/2014$ 144 $9/18/2013$ 16.9 $4/23/2014$ 154 $10/22/2013$ 19.7 $5/14/2014$ 128 $11/20/2013$ 19.5 $6/3/2014$ 128 $12/18/2013$ 20.7 $7/29/2014$ 140 $1/8/2014$ 20.3 $8/20/2014$ 136 $3/11/2014$ 18.3 $11/10/2014$ 136 $4/23/2014$ 18.3 $11/10/2014$ 154 $5/14/2014$ 17.9 $12/10/2014$ 136 $4/23/2014$ 18.3 $11/10/2014$ 154 $5/14/2014$ 17.9 $12/10/2014$ 138 $6/3/2014$ 19.4 $1/21/2015$ 144 $7/29/2014$ 16.8 $4/8/2015$ 132 $9/9/2014$ 16.8 $4/8/2015$ 142 $10/7/2014$ 11.0 $5/12/2015$ 145 $11/10/2014$ 16.2 $6/24/2015$ 142 $10/7/2014$ 16.	7/10/2012	17.0	2/26/2013	129	
10/23/201216.2 $5/15/2013$ 119 $11/13/2012$ 18.5 $6/25/2013$ 127 $12/26/2012$ 17.2 $7/10/2013$ 130 $1/23/2013$ 19.2 $8/20/2013$ 126 $2/26/2013$ 21.4 $9/18/2013$ 131 $3/20/2013$ 14.3 $10/22/2013$ 128 $4/17/2013$ 16.8 $11/20/2013$ 124 $5/15/2013$ 16.8 $11/20/2013$ 134 $6/25/2013$ 16.1 $1/8/2014$ 131 $7/10/2013$ 17.6 $2/25/2014$ 135 $8/20/2013$ 16.4 $3/11/2014$ 144 $9/18/2013$ 16.9 $4/23/2014$ 154 $10/22/2013$ 19.7 $5/14/2014$ 128 $11/20/2013$ 19.5 $6/3/2014$ 128 $11/20/2013$ 19.5 $6/3/2014$ 136 $3/11/2014$ 20.3 $8/20/2014$ 136 $3/11/2014$ 21.3 $10/7/2014$ 136 $4/23/2014$ 18.3 $11/10/2014$ 154 $5/14/2014$ 17.9 $12/10/2014$ 136 $3/11/2014$ 17.9 $12/10/2014$ 138 $6/3/2014$ 19.4 $1/21/2015$ 144 $7/29/2014$ 16.8 $4/8/2015$ 132 $9/9/2014$ 16.8 $4/8/2015$ 142 $10/7/2014$ 11.0 $5/12/2015$ 145 $11/10/2014$ 16.2 $6/24/2015$ 145 $11/10/2014$ 16.2 $6/24/2015$ 145 $11/20/2014$ 17.1 $7/7/2015$ 145 $11/20/2014$ 19.	8/7/2012	18.0	3/20/2013	126	
11/13/2012 18.5 $6/25/2013$ 127 $12/26/2012$ 17.2 $7/10/2013$ 130 $1/23/2013$ 19.2 $8/20/2013$ 126 $2/26/2013$ 21.4 $9/18/2013$ 131 $3/20/2013$ 14.3 $10/22/2013$ 128 $4/17/2013$ 16.8 $11/20/2013$ 124 $5/15/2013$ 16.8 $11/20/2013$ 134 $6/25/2013$ 16.1 $1/8/2014$ 131 $7/10/2013$ 17.6 $2/25/2014$ 135 $8/20/2013$ 16.4 $3/11/2014$ 144 $9/18/2013$ 16.9 $4/23/2014$ 154 $10/22/2013$ 19.7 $5/14/2014$ 128 $11/20/2013$ 19.5 $6/3/2014$ 128 $11/20/2013$ 20.7 $7/29/2014$ 140 $1/8/2014$ 20.3 $8/20/2014$ 136 $3/11/2014$ 21.3 $10/7/2014$ 136 $4/23/2014$ 18.4 $9/9/2014$ 136 $3/11/2014$ 21.3 $10/7/2014$ 136 $4/23/2014$ 18.3 $11/10/2014$ 154 $5/14/2014$ 17.9 $12/10/2014$ 138 $6/3/2014$ 19.4 $1/21/2015$ 144 $7/29/2014$ 16.8 $4/8/2015$ 142 $10/7/2014$ 11.0 $5/12/2015$ 142 $10/7/2014$ 16.2 $6/24/2015$ 142 $11/10/2014$ 16.2 $6/24/2015$ 142 $12/10/2014$ 17.1 $7/7/2015$ 145 <tr<< td=""><td>9/19/2012</td><td>16.0</td><td>4/17/2013</td><td>117</td><td></td></tr<<>	9/19/2012	16.0	4/17/2013	117	
12/26/2012 17.2 $7/10/2013$ 130 $1/23/2013$ 19.2 $8/20/2013$ 126 $2/26/2013$ 21.4 $9/18/2013$ 131 $3/20/2013$ 14.3 $10/22/2013$ 128 $4/17/2013$ 16.8 $11/20/2013$ 124 $5/15/2013$ 16.8 $11/20/2013$ 124 $5/15/2013$ 16.1 $1/8/2014$ 131 $7/10/2013$ 17.6 $2/25/2014$ 135 $8/20/2013$ 16.4 $3/11/2014$ 144 $9/18/2013$ 16.9 $4/23/2014$ 154 $10/22/2013$ 19.7 $5/14/2014$ 128 $11/20/2013$ 19.7 $5/14/2014$ 128 $11/20/2013$ 19.7 $5/14/2014$ 128 $11/20/2013$ 19.7 $5/14/2014$ 128 $12/18/2013$ 20.7 $7/29/2014$ 140 $1/8/2014$ 20.3 $8/20/2014$ 136 $3/11/2014$ 21.3 $10/7/2014$ 136 $4/23/2014$ 18.4 $9/9/2014$ 136 $3/11/2014$ 21.3 $10/7/2014$ 136 $4/23/2014$ 19.4 $1/21/2015$ 144 $7/29/2014$ 15.6 $2/4/2015$ 132 $9/9/2014$ 16.8 $4/8/2015$ 142 $10/7/2014$ 11.0 $5/12/2015$ 142 $10/7/2014$ 16.2 $6/24/2015$ 142 $10/7/2014$ 16.2 $6/24/2015$ 142 $12/10/2014$ 17.1 $7/7/2015$ 145 <t< td=""><td>10/23/2012</td><td>16.2</td><td>5/15/2013</td><td>119</td><td></td></t<>	10/23/2012	16.2	5/15/2013	119	
1/23/2013 19.2 $8/20/2013$ 126 $2/26/2013$ 21.4 $9/18/2013$ 131 $3/20/2013$ 14.3 $10/22/2013$ 128 $4/17/2013$ 16.8 $11/20/2013$ 124 $5/15/2013$ 18.8 $12/18/2013$ 134 $6/25/2013$ 16.1 $1/8/2014$ 131 $7/10/2013$ 17.6 $2/25/2014$ 135 $8/20/2013$ 16.4 $3/11/2014$ 144 $9/18/2013$ 16.9 $4/23/2014$ 154 $10/22/2013$ 19.7 $5/14/2014$ 128 $11/20/2013$ 19.5 $6/3/2014$ 128 $12/18/2013$ 20.7 $7/29/2014$ 140 $1/8/2014$ 20.3 $8/20/2014$ 139 $2/25/2014$ 18.4 $9/9/2014$ 136 $3/11/2014$ 21.3 $10/7/2014$ 136 $4/23/2014$ 18.3 $11/10/2014$ 154 $5/14/2014$ 17.9 $12/10/2014$ 138 $6/3/2014$ 19.4 $1/21/2015$ 144 $7/29/2014$ 15.6 $2/4/2015$ 136 $8/20/2014$ 13.8 $3/3/2015$ 132 $9/9/2014$ 16.8 $4/8/2015$ 142 $10/7/2014$ 11.0 $5/12/2015$ 145 $11/10/2014$ 16.2 $6/24/2015$ 142 $12/10/2014$ 17.1 $7/7/2015$ 145 $1/21/2015$ 14.9 $9/15/2015$ 165	11/13/2012	18.5	6/25/2013	127	
2/26/201321.49/18/20131313/20/201314.310/22/20131284/17/201316.811/20/20131245/15/201318.812/18/20131346/25/201316.11/8/20141317/10/201317.62/25/20141358/20/201316.43/11/20141449/18/201316.94/23/201415410/22/201319.75/14/201412811/20/201319.56/3/201412812/18/201320.77/29/20141401/8/201420.38/20/20141392/25/201418.49/9/20141363/11/201421.310/7/20141364/23/201418.311/10/20141545/14/201417.912/10/20141386/3/201419.41/21/20151447/29/201415.62/4/20151368/20/201413.83/3/20151329/9/201416.84/8/201514210/7/201411.05/12/201514511/10/201416.26/24/201514210/7/201417.17/7/201514511/10/201416.26/24/201514212/10/201417.17/7/20151451/21/201519.58/11/20151652/4/201514.99/15/2015165	12/26/2012	17.2	7/10/2013	130	
3/20/2013 14.3 $10/22/2013$ 128 $4/17/2013$ 16.8 $11/20/2013$ 124 $5/15/2013$ 18.8 $12/18/2013$ 134 $6/25/2013$ 16.1 $1/8/2014$ 131 $7/10/2013$ 17.6 $2/25/2014$ 135 $8/20/2013$ 16.4 $3/11/2014$ 144 $9/18/2013$ 16.9 $4/23/2014$ 154 $10/22/2013$ 19.7 $5/14/2014$ 128 $11/20/2013$ 19.5 $6/3/2014$ 128 $11/20/2013$ 20.7 $7/29/2014$ 140 $1/8/2014$ 20.3 $8/20/2014$ 139 $2/25/2014$ 18.4 $9/9/2014$ 136 $3/11/2014$ 21.3 $10/7/2014$ 136 $4/23/2014$ 18.3 $11/10/2014$ 154 $5/14/2014$ 17.9 $12/10/2014$ 138 $6/3/2014$ 19.4 $1/21/2015$ 144 $7/29/2014$ 15.6 $2/4/2015$ 136 $8/20/2014$ 13.8 $3/3/2015$ 132 $9/9/2014$ 16.8 $4/8/2015$ 142 $10/7/2014$ 11.0 $5/12/2015$ 145 $11/10/2014$ 16.2 $6/24/2015$ 142 $12/10/2014$ 17.1 $7/7/2015$ 145 $1/21/2015$ 19.5 $8/11/2015$ 165 $2/4/2015$ 14.9 $9/15/2015$ 165	1/23/2013	19.2	8/20/2013	126	
4/17/201316.8 $11/20/2013$ 124 $5/15/2013$ 18.8 $12/18/2013$ 134 $6/25/2013$ 16.1 $1/8/2014$ 131 $7/10/2013$ 17.6 $2/25/2014$ 135 $8/20/2013$ 16.4 $3/11/2014$ 144 $9/18/2013$ 16.9 $4/23/2014$ 154 $10/22/2013$ 19.7 $5/14/2014$ 128 $11/20/2013$ 19.5 $6/3/2014$ 128 $12/18/2013$ 20.7 $7/29/2014$ 140 $1/8/2014$ 20.3 $8/20/2014$ 139 $2/25/2014$ 18.4 $9/9/2014$ 136 $3/11/2014$ 21.3 $10/7/2014$ 136 $4/23/2014$ 18.3 $11/10/2014$ 154 $5/14/2014$ 17.9 $12/10/2014$ 138 $6/3/2014$ 19.4 $1/21/2015$ 144 $7/29/2014$ 15.6 $2/4/2015$ 136 $8/20/2014$ 13.8 $3/3/2015$ 132 $9/9/2014$ 16.8 $4/8/2015$ 142 $10/7/2014$ 11.0 $5/12/2015$ 145 $11/10/2014$ 16.2 $6/24/2015$ 142 $12/10/2014$ 17.1 $7/7/2015$ 145 $1/21/2015$ 19.5 $8/11/2015$ 165 $2/4/2015$ 14.9 $9/15/2015$ 165	2/26/2013	21.4	9/18/2013	131	
5/15/201318.8 $12/18/2013$ 134 $6/25/2013$ 16.1 $1/8/2014$ 131 $7/10/2013$ 17.6 $2/25/2014$ 135 $8/20/2013$ 16.4 $3/11/2014$ 144 $9/18/2013$ 16.9 $4/23/2014$ 154 $10/22/2013$ 19.7 $5/14/2014$ 128 $11/20/2013$ 19.5 $6/3/2014$ 128 $12/18/2013$ 20.7 $7/29/2014$ 140 $1/8/2014$ 20.3 $8/20/2014$ 139 $2/25/2014$ 18.4 $9/9/2014$ 136 $3/11/2014$ 21.3 $10/7/2014$ 136 $4/23/2014$ 18.3 $11/10/2014$ 154 $5/14/2014$ 17.9 $12/10/2014$ 138 $6/3/2014$ 19.4 $1/21/2015$ 144 $7/29/2014$ 15.6 $2/4/2015$ 136 $8/20/2014$ 13.8 $3/3/2015$ 132 $9/9/2014$ 16.8 $4/8/2015$ 142 $10/7/2014$ 11.0 $5/12/2015$ 145 $11/10/2014$ 16.2 $6/24/2015$ 142 $12/10/2014$ 17.1 $7/7/2015$ 145 $1/21/2015$ 19.5 $8/11/2015$ 165 $2/4/2015$ 14.9 $9/15/2015$ 165	3/20/2013	14.3	10/22/2013	128	
6/25/201316.1 $1/8/2014$ 131 $7/10/2013$ 17.6 $2/25/2014$ 135 $8/20/2013$ 16.4 $3/11/2014$ 144 $9/18/2013$ 16.9 $4/23/2014$ 154 $10/22/2013$ 19.7 $5/14/2014$ 128 $11/20/2013$ 19.5 $6/3/2014$ 128 $12/18/2013$ 20.7 $7/29/2014$ 140 $1/8/2014$ 20.3 $8/20/2014$ 139 $2/25/2014$ 18.4 $9/9/2014$ 136 $3/11/2014$ 21.3 $10/7/2014$ 136 $4/23/2014$ 18.3 $11/10/2014$ 154 $5/14/2014$ 17.9 $12/10/2014$ 138 $6/3/2014$ 19.4 $1/21/2015$ 144 $7/29/2014$ 15.6 $2/4/2015$ 136 $8/20/2014$ 13.8 $3/3/2015$ 132 $9/9/2014$ 16.8 $4/8/2015$ 142 $10/7/2014$ 11.0 $5/12/2015$ 145 $11/10/2014$ 16.2 $6/24/2015$ 142 $12/10/2014$ 17.1 $7/7/2015$ 145 $1/21/2015$ 19.5 $8/11/2015$ 165 $2/4/2015$ 14.9 $9/15/2015$ 165	4/17/2013	16.8	11/20/2013	124	
7/10/2013 17.6 $2/25/2014$ 135 $8/20/2013$ 16.4 $3/11/2014$ 144 $9/18/2013$ 16.9 $4/23/2014$ 154 $10/22/2013$ 19.7 $5/14/2014$ 128 $11/20/2013$ 19.5 $6/3/2014$ 128 $12/18/2013$ 20.7 $7/29/2014$ 140 $1/8/2014$ 20.3 $8/20/2014$ 139 $2/25/2014$ 18.4 $9/9/2014$ 136 $3/11/2014$ 21.3 $10/7/2014$ 136 $4/23/2014$ 18.3 $11/10/2014$ 154 $5/14/2014$ 17.9 $12/10/2014$ 138 $6/3/2014$ 19.4 $1/21/2015$ 144 $7/29/2014$ 15.6 $2/4/2015$ 136 $8/20/2014$ 13.8 $3/3/2015$ 132 $9/9/2014$ 16.8 $4/8/2015$ 142 $10/7/2014$ 11.0 $5/12/2015$ 145 $11/10/2014$ 16.2 $6/24/2015$ 142 $12/10/2014$ 17.1 $7/7/2015$ 145 $1/21/2015$ 19.5 $8/11/2015$ 165 $2/4/2015$ 14.9 $9/15/2015$ 165	5/15/2013	18.8	12/18/2013	134	
8/20/201316.4 $3/11/2014$ 144 $9/18/2013$ 16.9 $4/23/2014$ 154 $10/22/2013$ 19.7 $5/14/2014$ 128 $11/20/2013$ 19.5 $6/3/2014$ 128 $12/18/2013$ 20.7 $7/29/2014$ 140 $1/8/2014$ 20.3 $8/20/2014$ 139 $2/25/2014$ 18.4 $9/9/2014$ 136 $3/11/2014$ 21.3 $10/7/2014$ 136 $4/23/2014$ 18.3 $11/10/2014$ 154 $5/14/2014$ 17.9 $12/10/2014$ 138 $6/3/2014$ 19.4 $1/21/2015$ 144 $7/29/2014$ 15.6 $2/4/2015$ 136 $8/20/2014$ 13.8 $3/3/2015$ 132 $9/9/2014$ 16.8 $4/8/2015$ 142 $10/7/2014$ 11.0 $5/12/2015$ 145 $11/10/2014$ 16.2 $6/24/2015$ 142 $12/10/2014$ 17.1 $7/7/2015$ 145 $1/21/2015$ 19.5 $8/11/2015$ 165 $2/4/2015$ 14.9 $9/15/2015$ 165	6/25/2013	16.1	1/8/2014	131	
9/18/2013 16.9 $4/23/2014$ 154 $10/22/2013$ 19.7 $5/14/2014$ 128 $11/20/2013$ 19.5 $6/3/2014$ 128 $12/18/2013$ 20.7 $7/29/2014$ 140 $1/8/2014$ 20.3 $8/20/2014$ 139 $2/25/2014$ 18.4 $9/9/2014$ 136 $3/11/2014$ 21.3 $10/7/2014$ 136 $4/23/2014$ 18.3 $11/10/2014$ 154 $5/14/2014$ 17.9 $12/10/2014$ 138 $6/3/2014$ 19.4 $1/21/2015$ 144 $7/29/2014$ 15.6 $2/4/2015$ 136 $8/20/2014$ 13.8 $3/3/2015$ 132 $9/9/2014$ 16.8 $4/8/2015$ 142 $10/7/2014$ 11.0 $5/12/2015$ 145 $11/10/2014$ 16.2 $6/24/2015$ 145 $12/10/2014$ 17.1 $7/7/2015$ 145 $1/21/2015$ 19.5 $8/11/2015$ 165 $2/4/2015$ 14.9 $9/15/2015$ 165	7/10/2013	17.6	2/25/2014	135	
10/22/2013 19.7 $5/14/2014$ 128 $11/20/2013$ 19.5 $6/3/2014$ 128 $12/18/2013$ 20.7 $7/29/2014$ 140 $1/8/2014$ 20.3 $8/20/2014$ 139 $2/25/2014$ 18.4 $9/9/2014$ 136 $3/11/2014$ 21.3 $10/7/2014$ 136 $4/23/2014$ 18.3 $11/10/2014$ 154 $5/14/2014$ 17.9 $12/10/2014$ 138 $6/3/2014$ 19.4 $1/21/2015$ 144 $7/29/2014$ 15.6 $2/4/2015$ 136 $8/20/2014$ 13.8 $3/3/2015$ 132 $9/9/2014$ 16.8 $4/8/2015$ 142 $10/7/2014$ 11.0 $5/12/2015$ 145 $11/10/2014$ 16.2 $6/24/2015$ 142 $12/10/2014$ 17.1 $7/7/2015$ 145 $1/21/2015$ 19.5 $8/11/2015$ 165 $2/4/2015$ 14.9 $9/15/2015$ 165	8/20/2013	16.4	3/11/2014	144	
11/20/2013 19.5 $6/3/2014$ 128 $12/18/2013$ 20.7 $7/29/2014$ 140 $1/8/2014$ 20.3 $8/20/2014$ 139 $2/25/2014$ 18.4 $9/9/2014$ 136 $3/11/2014$ 21.3 $10/7/2014$ 136 $4/23/2014$ 18.3 $11/10/2014$ 154 $5/14/2014$ 17.9 $12/10/2014$ 138 $6/3/2014$ 19.4 $1/21/2015$ 144 $7/29/2014$ 15.6 $2/4/2015$ 136 $8/20/2014$ 13.8 $3/3/2015$ 132 $9/9/2014$ 16.8 $4/8/2015$ 142 $10/7/2014$ 11.0 $5/12/2015$ 145 $11/10/2014$ 16.2 $6/24/2015$ 142 $12/10/2014$ 17.1 $7/7/2015$ 145 $1/21/2015$ 19.5 $8/11/2015$ 165 $2/4/2015$ 14.9 $9/15/2015$ 165	9/18/2013	16.9	4/23/2014	154	
12/18/2013 20.7 $7/29/2014$ 140 $1/8/2014$ 20.3 $8/20/2014$ 139 $2/25/2014$ 18.4 $9/9/2014$ 136 $3/11/2014$ 21.3 $10/7/2014$ 136 $4/23/2014$ 18.3 $11/10/2014$ 154 $5/14/2014$ 17.9 $12/10/2014$ 138 $6/3/2014$ 19.4 $1/21/2015$ 144 $7/29/2014$ 15.6 $2/4/2015$ 136 $8/20/2014$ 13.8 $3/3/2015$ 132 $9/9/2014$ 16.8 $4/8/2015$ 142 $10/7/2014$ 11.0 $5/12/2015$ 145 $11/10/2014$ 16.2 $6/24/2015$ 142 $12/10/2014$ 17.1 $7/7/2015$ 145 $1/21/2015$ 19.5 $8/11/2015$ 165 $2/4/2015$ 14.9 $9/15/2015$ 165	10/22/2013	19.7	5/14/2014	128	
1/8/2014 20.3 $8/20/2014$ 139 $2/25/2014$ 18.4 $9/9/2014$ 136 $3/11/2014$ 21.3 $10/7/2014$ 136 $4/23/2014$ 18.3 $11/10/2014$ 154 $5/14/2014$ 17.9 $12/10/2014$ 138 $6/3/2014$ 19.4 $1/21/2015$ 144 $7/29/2014$ 15.6 $2/4/2015$ 136 $8/20/2014$ 13.8 $3/3/2015$ 132 $9/9/2014$ 16.8 $4/8/2015$ 142 $10/7/2014$ 11.0 $5/12/2015$ 145 $11/10/2014$ 16.2 $6/24/2015$ 142 $12/10/2014$ 17.1 $7/7/2015$ 145 $1/21/2015$ 19.5 $8/11/2015$ 165 $2/4/2015$ 14.9 $9/15/2015$ 165	11/20/2013	19.5	6/3/2014	128	
2/25/2014 18.4 $9/9/2014$ 136 $3/11/2014$ 21.3 $10/7/2014$ 136 $4/23/2014$ 18.3 $11/10/2014$ 154 $5/14/2014$ 17.9 $12/10/2014$ 138 $6/3/2014$ 19.4 $1/21/2015$ 144 $7/29/2014$ 15.6 $2/4/2015$ 136 $8/20/2014$ 13.8 $3/3/2015$ 132 $9/9/2014$ 16.8 $4/8/2015$ 142 $10/7/2014$ 11.0 $5/12/2015$ 145 $11/10/2014$ 16.2 $6/24/2015$ 142 $12/10/2014$ 17.1 $7/7/2015$ 145 $1/21/2015$ 19.5 $8/11/2015$ 165 $2/4/2015$ 14.9 $9/15/2015$ 165	12/18/2013	20.7	7/29/2014	140	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/8/2014	20.3	8/20/2014	139	
4/23/201418.3 $11/10/2014$ 154 $5/14/2014$ 17.9 $12/10/2014$ 138 $6/3/2014$ 19.4 $1/21/2015$ 144 $7/29/2014$ 15.6 $2/4/2015$ 136 $8/20/2014$ 13.8 $3/3/2015$ 132 $9/9/2014$ 16.8 $4/8/2015$ 142 $10/7/2014$ 11.0 $5/12/2015$ 145 $11/10/2014$ 16.2 $6/24/2015$ 142 $12/10/2014$ 17.1 $7/7/2015$ 145 $1/21/2015$ 19.5 $8/11/2015$ 165 $2/4/2015$ 14.9 $9/15/2015$ 165	2/25/2014	18.4	9/9/2014	136	
5/14/2014 17.9 $12/10/2014$ 138 $6/3/2014$ 19.4 $1/21/2015$ 144 $7/29/2014$ 15.6 $2/4/2015$ 136 $8/20/2014$ 13.8 $3/3/2015$ 132 $9/9/2014$ 16.8 $4/8/2015$ 142 $10/7/2014$ 11.0 $5/12/2015$ 145 $11/10/2014$ 16.2 $6/24/2015$ 142 $12/10/2014$ 17.1 $7/7/2015$ 145 $1/21/2015$ 19.5 $8/11/2015$ 165 $2/4/2015$ 14.9 $9/15/2015$ 165	3/11/2014	21.3	10/7/2014	136	
6/3/2014 19.4 $1/21/2015$ 144 $7/29/2014$ 15.6 $2/4/2015$ 136 $8/20/2014$ 13.8 $3/3/2015$ 132 $9/9/2014$ 16.8 $4/8/2015$ 142 $10/7/2014$ 11.0 $5/12/2015$ 145 $11/10/2014$ 16.2 $6/24/2015$ 142 $12/10/2014$ 17.1 $7/7/2015$ 145 $1/21/2015$ 19.5 $8/11/2015$ 165 $2/4/2015$ 14.9 $9/15/2015$ 165	4/23/2014	18.3	11/10/2014	154	
7/29/201415.6 $2/4/2015$ 136 $8/20/2014$ 13.8 $3/3/2015$ 132 $9/9/2014$ 16.8 $4/8/2015$ 142 $10/7/2014$ 11.0 $5/12/2015$ 145 $11/10/2014$ 16.2 $6/24/2015$ 142 $12/10/2014$ 17.1 $7/7/2015$ 145 $1/21/2015$ 19.5 $8/11/2015$ 165 $2/4/2015$ 14.9 $9/15/2015$ 165	5/14/2014	17.9	12/10/2014	138	
8/20/201413.83/3/20151329/9/201416.84/8/201514210/7/201411.05/12/201514511/10/201416.26/24/201514212/10/201417.17/7/20151451/21/201519.58/11/20151652/4/201514.99/15/2015165	6/3/2014	19.4	1/21/2015	144	
9/9/201416.84/8/201514210/7/201411.05/12/201514511/10/201416.26/24/201514212/10/201417.17/7/20151451/21/201519.58/11/20151652/4/201514.99/15/2015165	7/29/2014	15.6	2/4/2015	136	
10/7/201411.05/12/201514511/10/201416.26/24/201514212/10/201417.17/7/20151451/21/201519.58/11/20151652/4/201514.99/15/2015165	8/20/2014	13.8	3/3/2015	132	
11/10/201416.26/24/201514212/10/201417.17/7/20151451/21/201519.58/11/20151652/4/201514.99/15/2015165	9/9/2014	16.8	4/8/2015	142	
12/10/201417.17/7/20151451/21/201519.58/11/20151652/4/201514.99/15/2015165	10/7/2014	11.0	5/12/2015	145	
1/21/201519.58/11/20151652/4/201514.99/15/2015165	11/10/2014	16.2	6/24/2015	142	
2/4/2015 14.9 9/15/2015 165	12/10/2014	17.1	7/7/2015	145	
	1/21/2015	19.5		165	
3/3/2015 17.3 10/7/2015 137		14.9	9/15/2015	165	
o, o, 1, io 10, i 10,	3/3/2015	17.3	10/7/2015	137	

MW-30			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
4/8/2015	17.0	11/11/2015	140
5/12/2015	16.1	12/9/2015	144
6/24/2015	15.8	1/20/2016	143
7/7/2015	15.3	2/10/2016	145
8/11/2015	17.9	3/2/2016	142
9/15/2015	17.3	4/13/2016	144
10/7/2015	19.1	5/4/2016	139
11/11/2015	16.3	6/14/2016	142
12/9/2015	18.2	7/13/2016	137
1/20/2016	14.6	8/18/2016	150
2/10/2016	20.0	9/14/2016	146
3/2/2016	17.8	11/3/2016	143
4/13/2016	18.0		
5/4/2016	17.3		
6/14/2016	18.5		
7/13/2016	16.1		
8/18/2016	18.0		
9/14/2016	17.0		
11/3/2016	18.0		

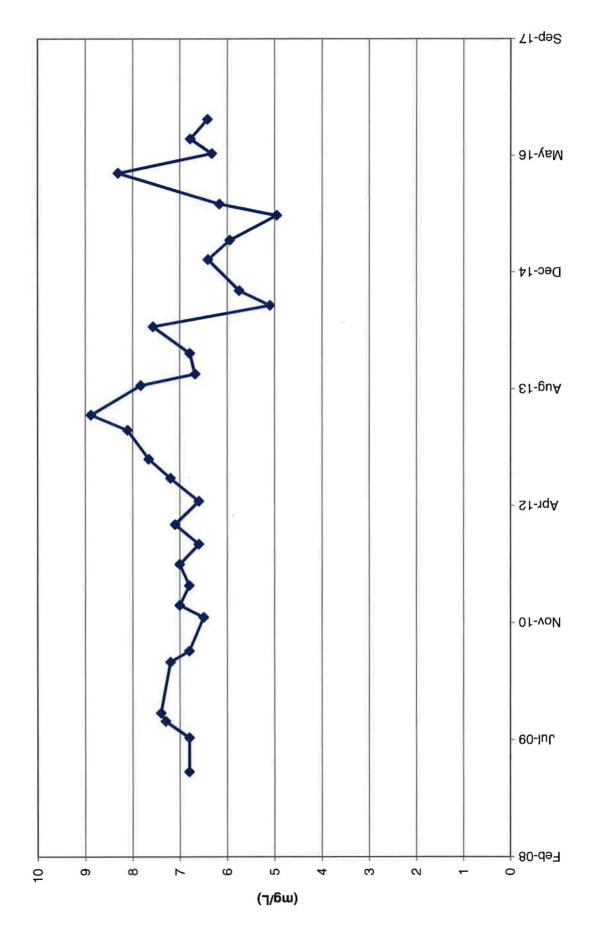
Under the groundwater sampling program, accelerated monitoring for nitrate began in MW-30 prior to when the accelerated monitoring for chloride began. This difference accounts for the different number of data points represented above.

MW-31

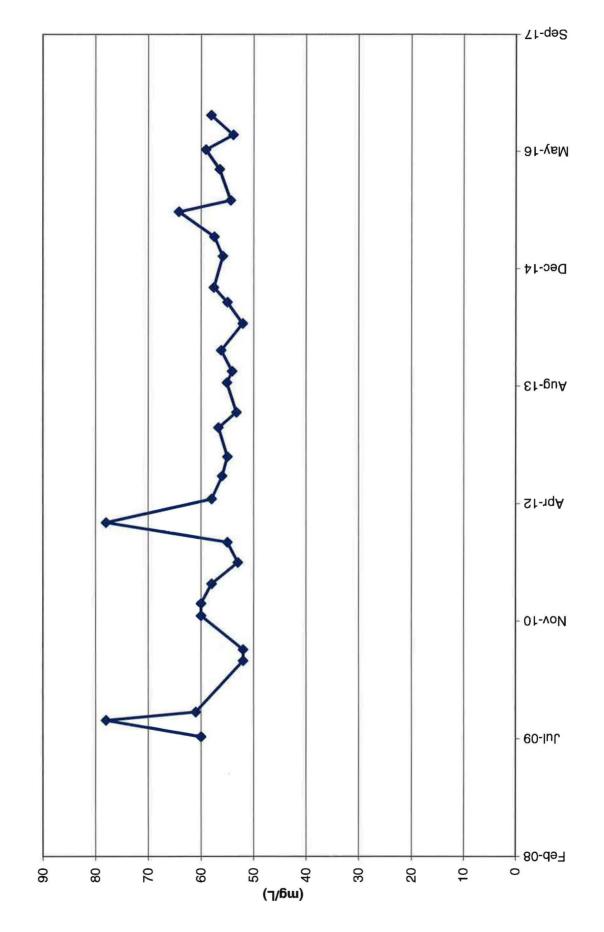
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
6/22/2005	24.2	6/22/2005	139
9/22/2005	22.4	9/22/2005	136
12/14/2005	23.8	12/14/2005	135
3/22/2006	24.1	3/22/2006	133
6/21/2006	25.3	6/21/2006	138
9/13/2006	24.6	9/13/2006	131
10/25/2006	25.1	10/25/2006	127
3/15/2007	23.2	3/15/2007	132
3/15/2007	22.0	3/15/2007	132
8/27/2007	23.3	8/27/2007	136
10/24/2007	24.6	10/24/2007	122
3/19/2008	25.0	3/19/2008	124
6/3/2008	29.3	6/3/2008	128
8/4/2008	28.7	8/4/2008	124
11/11/2008	29.9	11/11/2008	119
2/3/2009	23.4	2/3/2009	115
5/13/2009	22.4	5/13/2009	124
8/24/2009	15.4	8/24/2009	122
10/14/2009	22.6	10/14/2009	138
2/9/2010	21.7	2/9/2010	128
4/20/2010	22.5	4/20/2010	128
5/21/2010	23.0	9/13/2010	139
6/15/2010	21.1	11/9/2010	138
8/24/2010	22.0	2/1/2011	145
9/13/2010	21.0	4/1/2011	143
10/19/2010	20.0	5/10/2011	143
11/9/2010	20.0	6/20/2011	145
12/14/2010	20.0	7/5/2011	148
1/10/2011	19.0	8/2/2011	148
2/1/2011	21.0	9/6/2011	148
3/14/2011	22.0	10/3/2011	145
4/1/2011	21.0	11/8/2011	145
5/10/2011	20.0	12/12/2011	148
6/20/2011	22.0	1/24/2012	155
7/5/2011	22.0	2/13/2012	150
8/2/2011	20.0	3/13/2012	152
9/6/2011	21.0	4/9/2012	160
10/3/2011	21.0	5/2/2012	151
11/8/2011	21.0	6/18/2012	138
12/12/2011	21.0	7/9/2012	161
1/24/2012	21.0	8/6/2012	175
2/13/2012	21.0	9/18/2012	172
3/13/2012	22.0	10/22/2012	157
4/9/2012	21.0	11/6/2012	189
5/2/2012	20.0	12/18/2012	170

MW-31

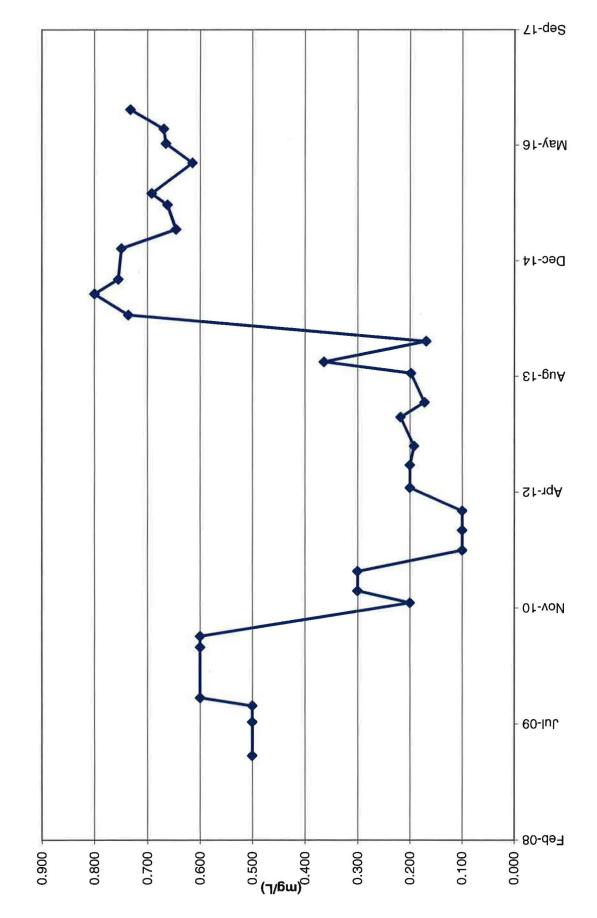
Nitrate (mg/l)	Date	Chloride (mg/l)
21.6	1/22/2013	176
21.0	2/19/2013	174
21.0	3/19/2013	168
21.0	4/16/2013	171
18.0	5/13/2013	169
23.6	6/24/2013	179
22.2	7/9/2013	182
22.8	8/19/2013	183
19.3	9/17/2013	193
19.1	10/23/2013	188
18.8	11/18/2013	174
23.8	12/17/2013	203
20.0	1/7/2014	194
21.7	2/17/2014	197
16.0	3/10/2014	230
21.2	4/28/2014	230
21.2	5/13/2014	200
23.9	6/2/2014	173
24.2		200
24.0	8/18/2014	210
20.6	9/3/2014	210
26.2		205
19.1	11/4/2014	204
23.3		215
		226
		211
		209
		211
		225
		228
17.0	7/6/2015	222
20.9	8/10/2015	264
18.7		231
19.8	10/6/2015	222
	21.6 21.0 21.0 21.0 23.6 22.2 22.8 19.3 19.1 18.8 23.8 20.0 21.7 16.0 21.2 21.2 23.9 24.2 24.0 20.6 26.2 19.1 23.3 23.1 19.0 15.2 18.9 15.9 20.9 17.0 20.9	21.6 $1/22/2013$ 21.0 $2/19/2013$ 21.0 $3/19/2013$ 21.0 $4/16/2013$ 18.0 $5/13/2013$ 23.6 $6/24/2013$ 22.2 $7/9/2013$ 22.2 $7/9/2013$ 22.8 $8/19/2013$ 19.3 $9/17/2013$ 19.3 $9/17/2013$ 19.1 $10/23/2013$ 18.8 $11/18/2013$ 23.8 $12/17/2013$ 20.0 $1/7/2014$ 21.7 $2/17/2014$ 16.0 $3/10/2014$ 21.2 $4/28/2014$ 21.2 $5/13/2014$ 23.9 $6/2/2014$ 24.2 $7/28/2014$ 24.0 $8/18/2014$ 20.6 $9/3/2014$ 26.2 $10/6/2014$ 19.1 $11/4/2014$ 23.3 $12/9/2014$ 23.1 $1/20/2015$ 19.0 $2/2/2015$ 15.2 $3/3/2015$ 18.9 $4/7/2015$ 15.9 $5/11/2015$ 20.9 $6/23/2015$ 17.0 $7/6/2015$ 20.9 $8/10/2015$ 18.7 $9/15/2015$

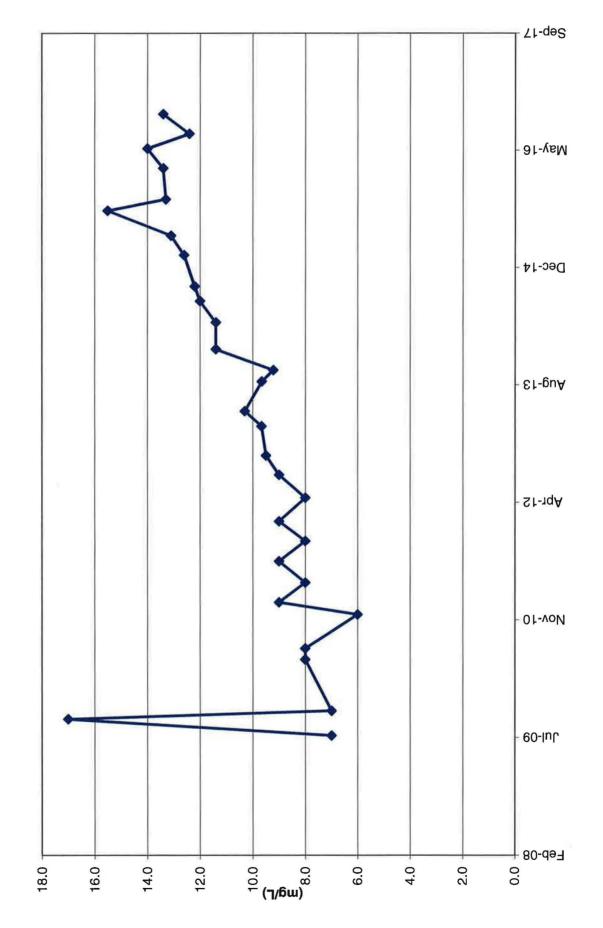

MW-31

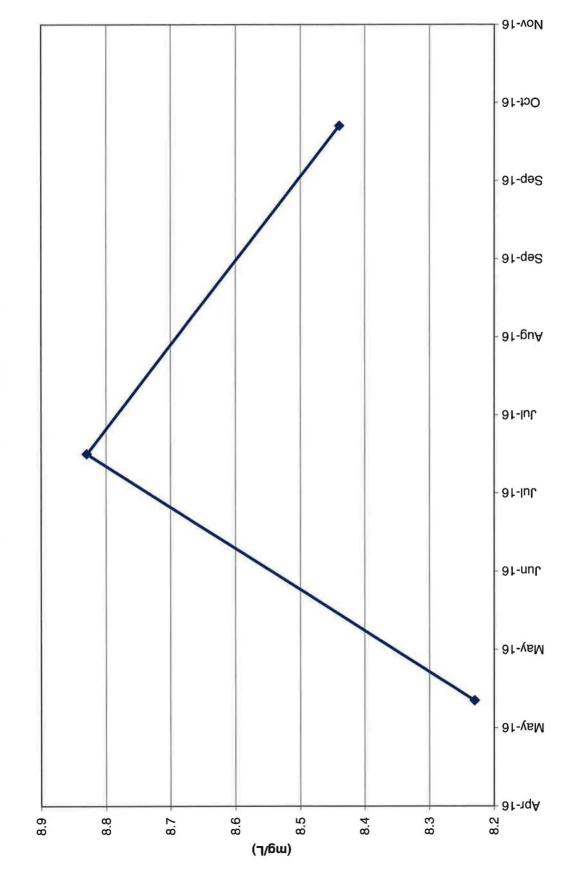
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
4/7/2015	19.0	11/9/2015	215
5/11/2015	18.4	12/8/2015	231
6/23/2015	18.0	1/19/2016	228
7/6/2015	18.8	2/15/2016	246
8/10/2015	19.9	3/2/2016	228
9/15/2015	18.9	4/12/2016	254
10/6/2015	22.0	5/3/2016	243
11/9/2015	18.4	6/15/2016	252
12/8/2015	19.5	7/12/2016	241
1/19/2016	18.9	8/16/2016	272
2/15/2016	18.8	9/13/2016	254
3/2/2016	18.0	11/1/2016	267
4/12/2016	22.8		
5/3/2016	18.6		
6/15/2016	19.2		
7/12/2016	17.4		
8/16/2016	19.7		
9/13/2016	18.6		
11/1/2016	19.8		


Under the groundwater sampling progran, accelerated monitoring for nitrate began in MW-31 prior to when the accelerated monitoring for chloride began. This difference accounts for the different number of data points represented above. Tab K

Concentration Trend Graphs

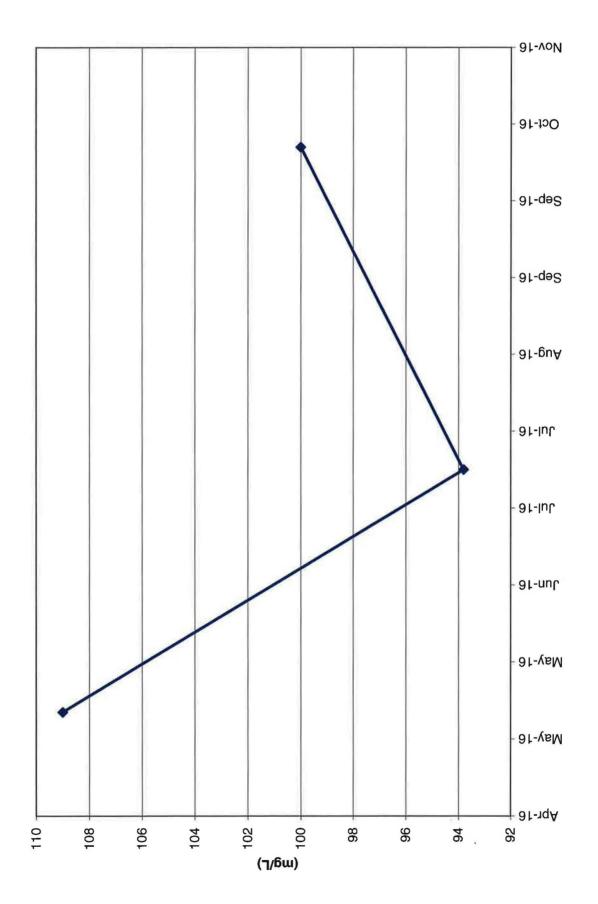

0

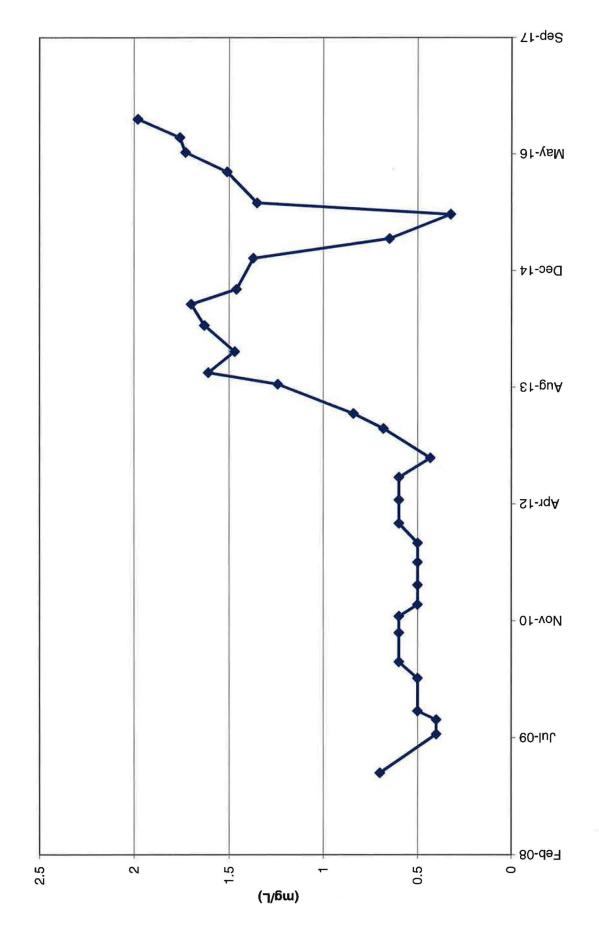

Piezometer 1 Nitrate Concentrations

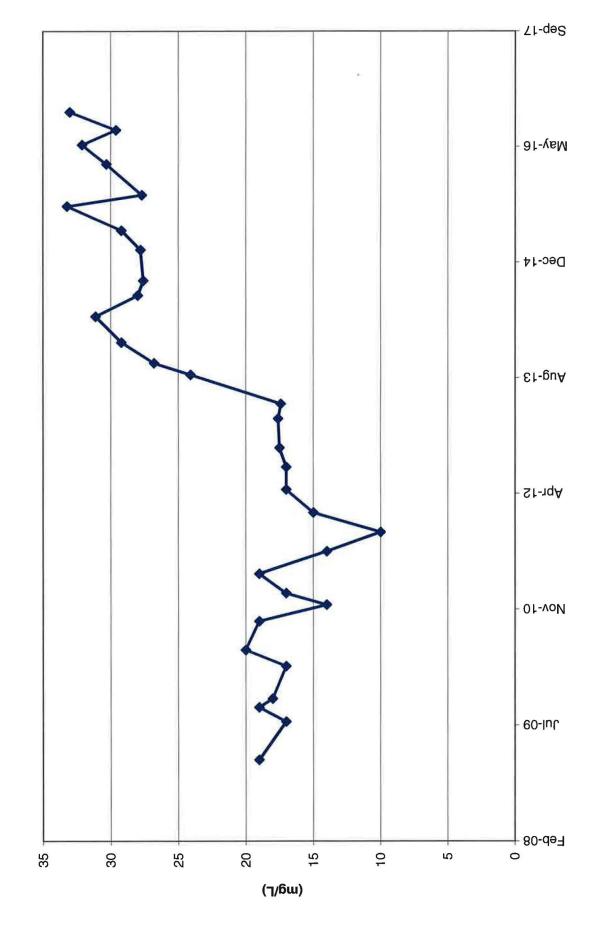

Piezometer 1 Chloride Concentrations



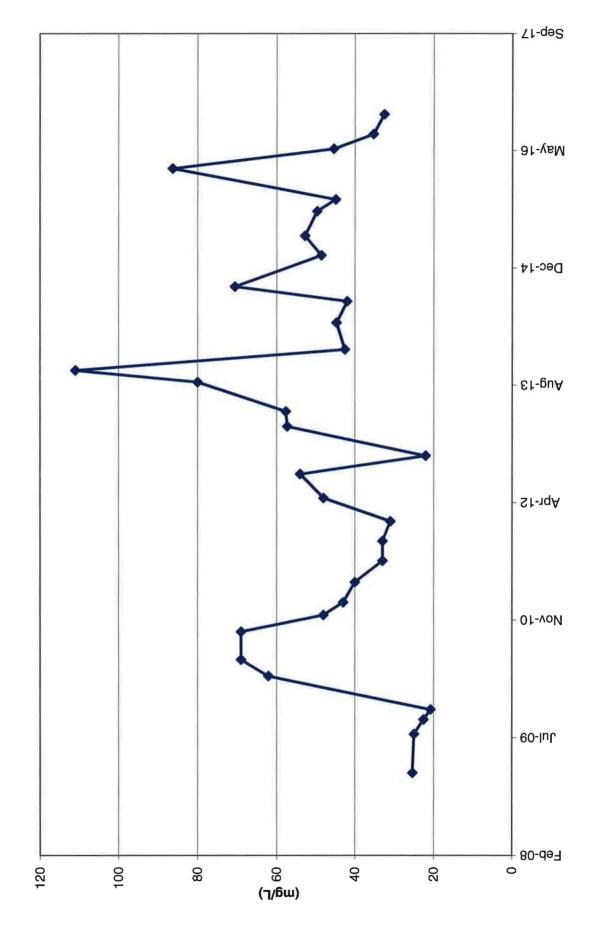
Piezometer 2 Nitrate Concentrations

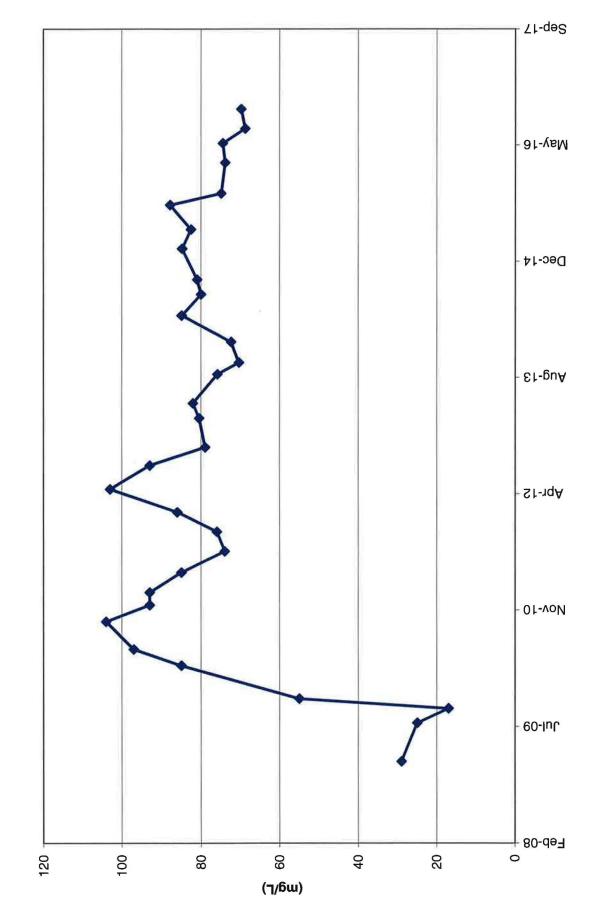


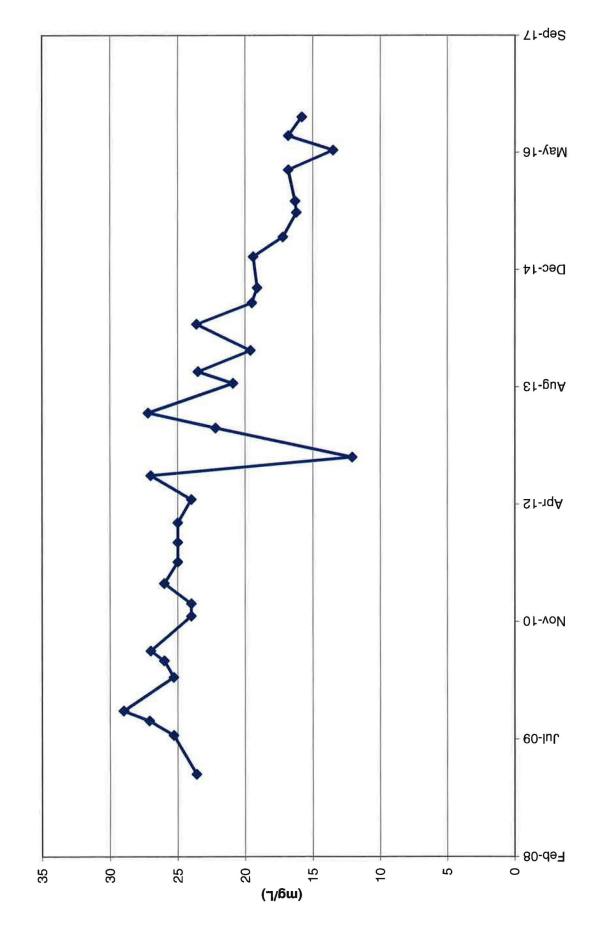

Piezometer 2 Chloride Concentrations

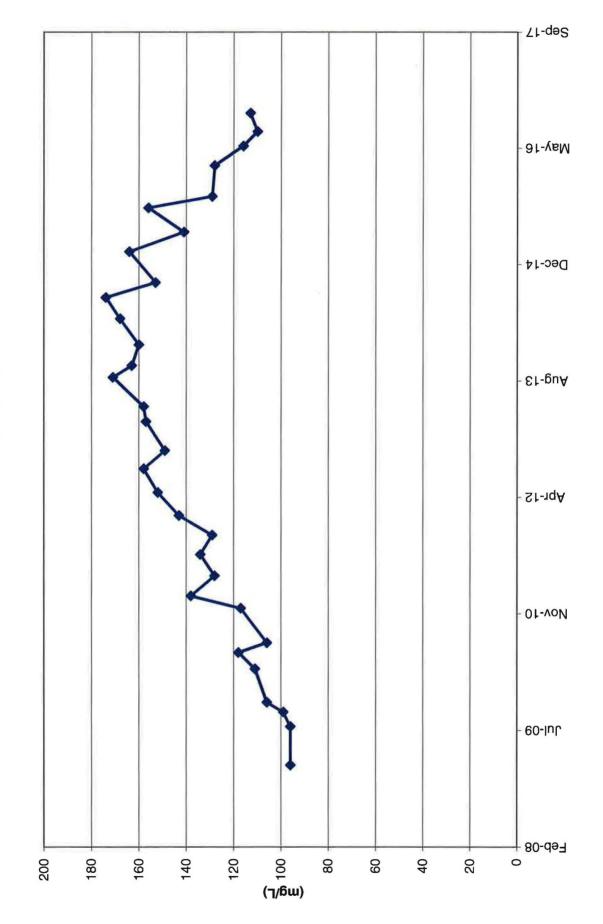


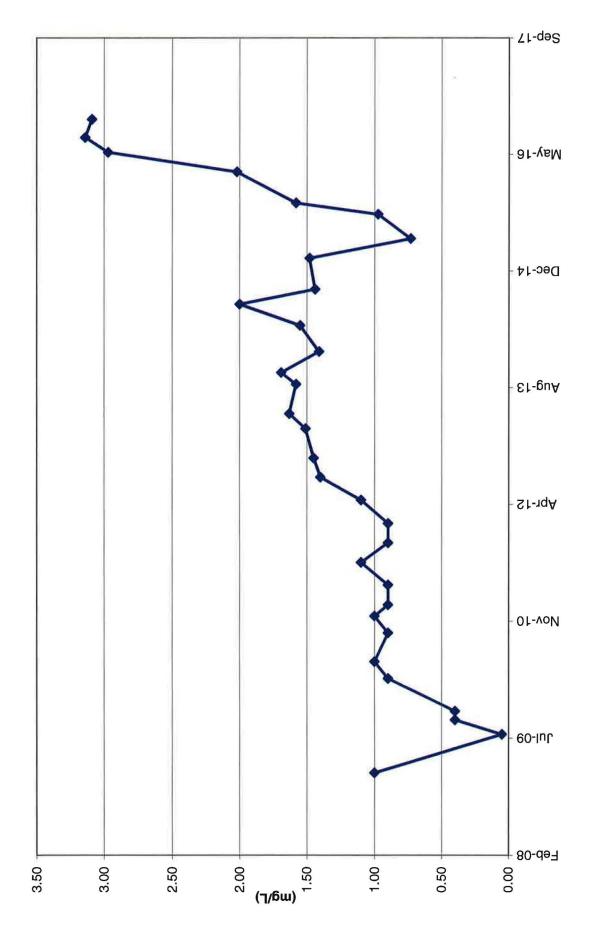
Piezometer 3A Chloride Concentrations

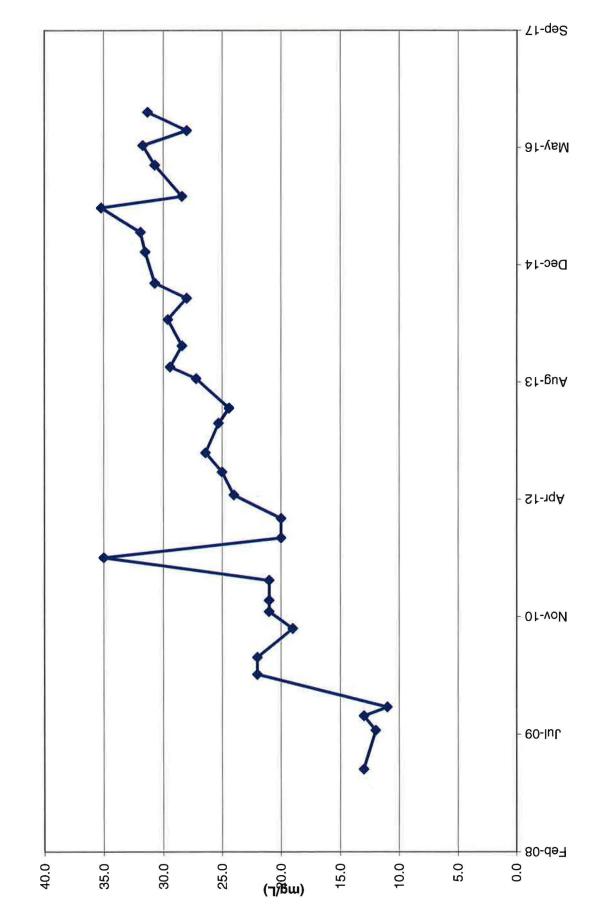




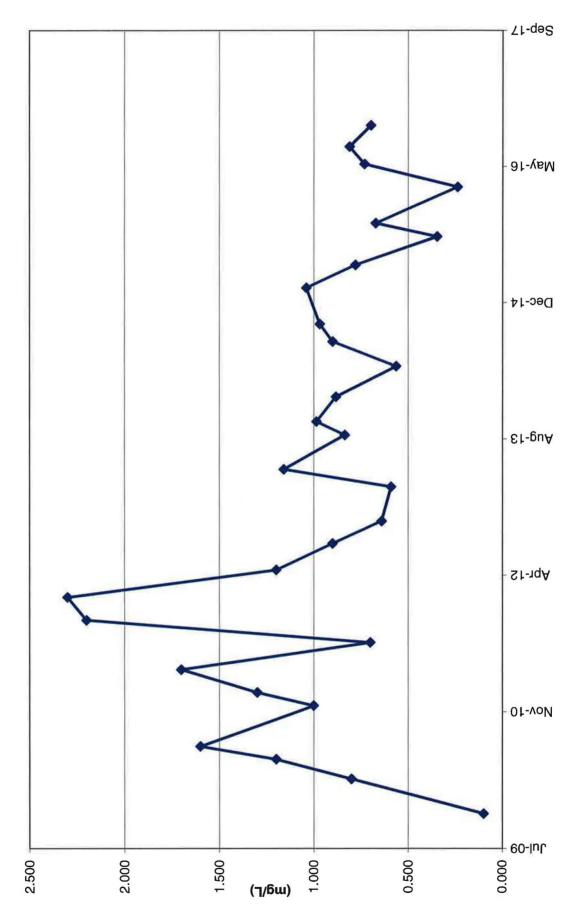

TWN-1 Chloride Concentrations

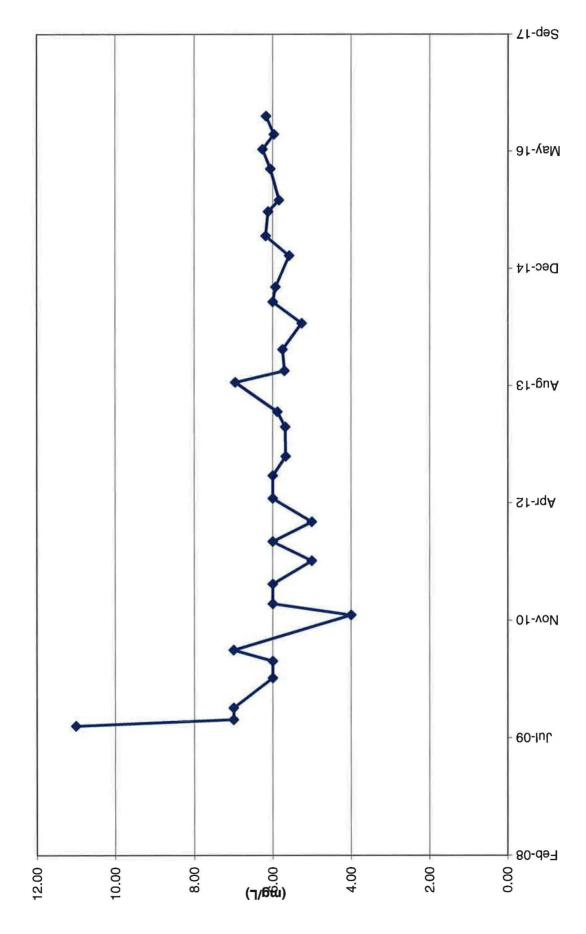

TWN-2 Nitrate Concentrations

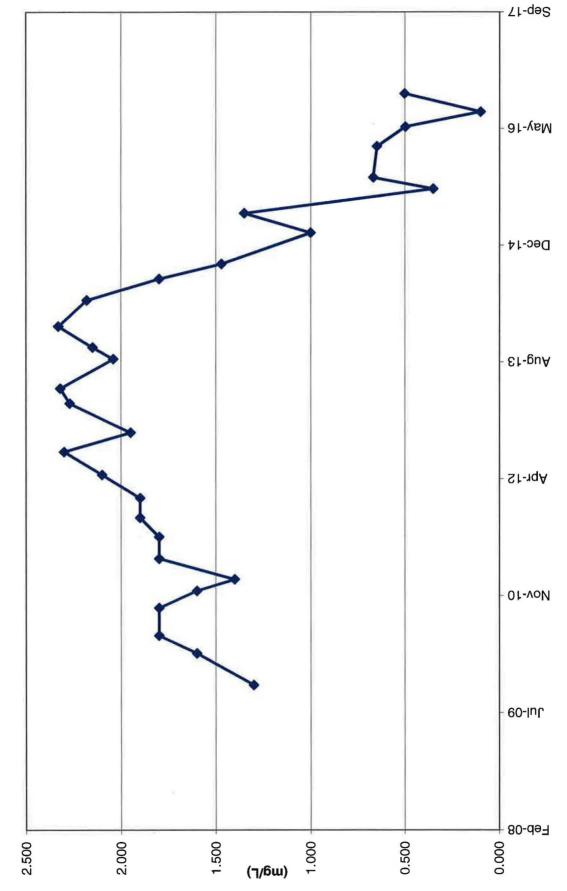

TWN-2 Chloride Concentrations

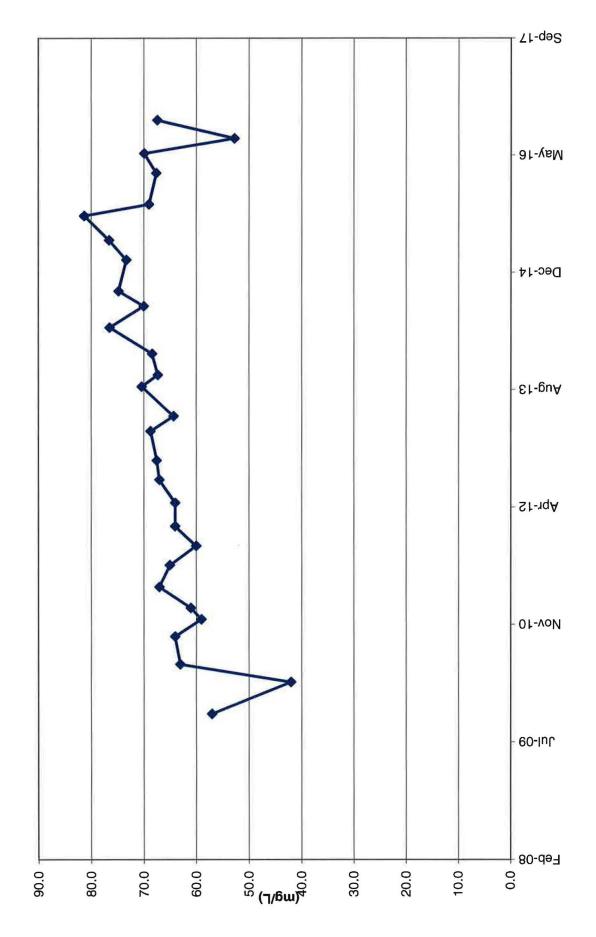


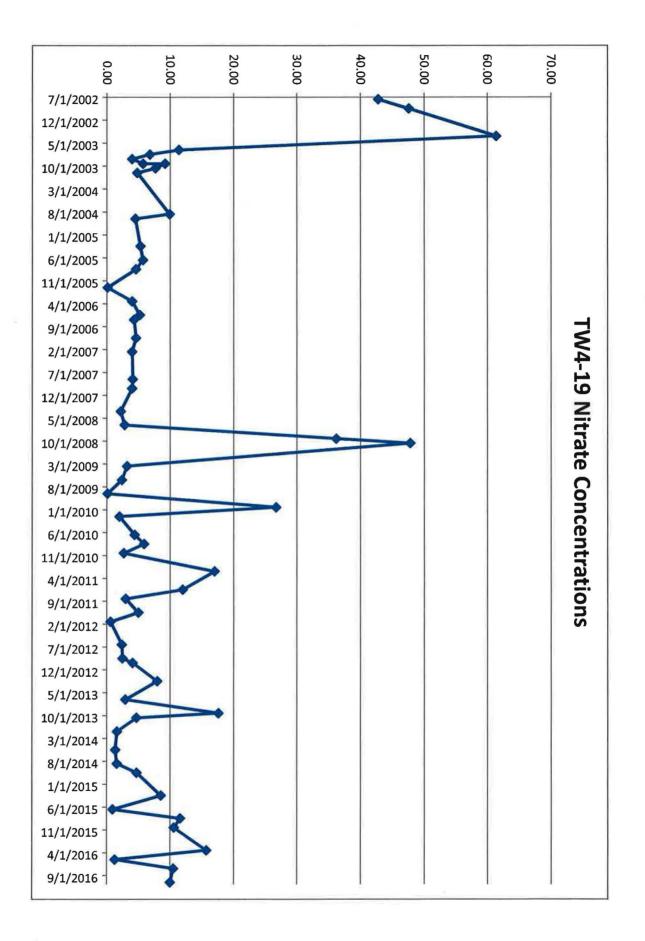
TWN-3 Chloride Concentrations

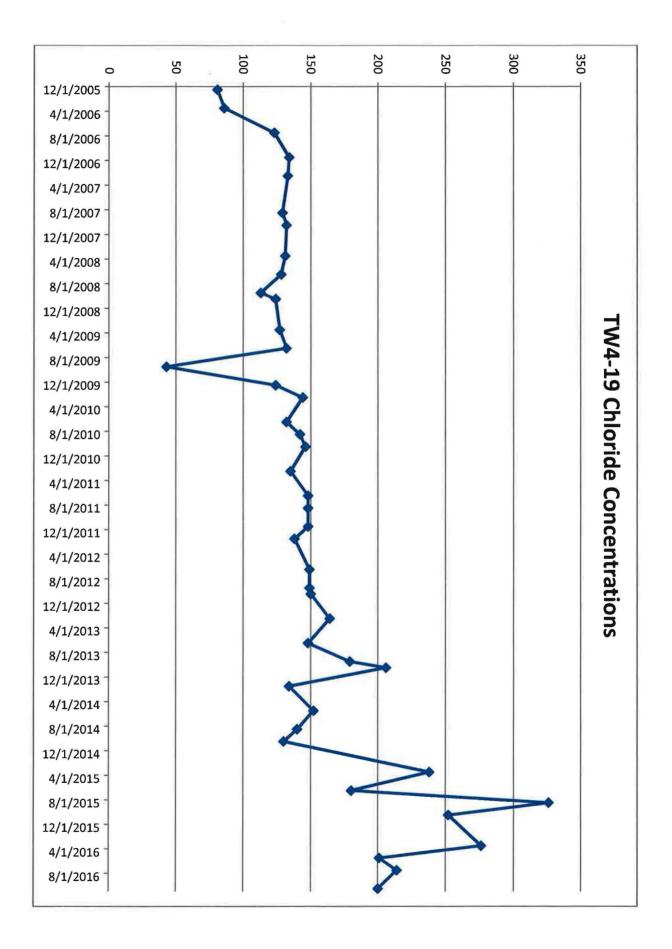


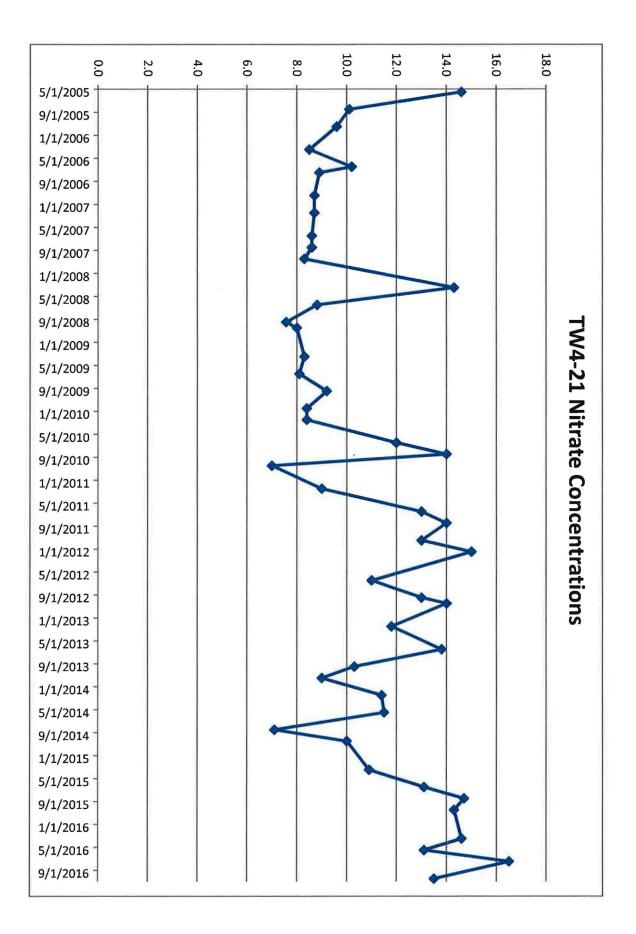

TWN-4 Nitrate Concentrations

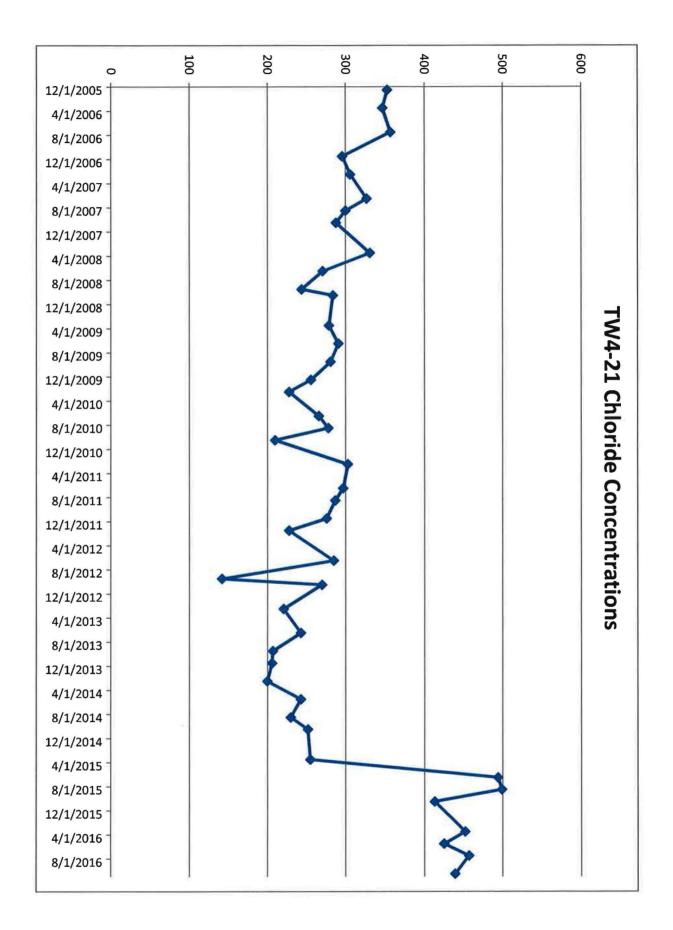

TWN-4 Chloride Concentrations

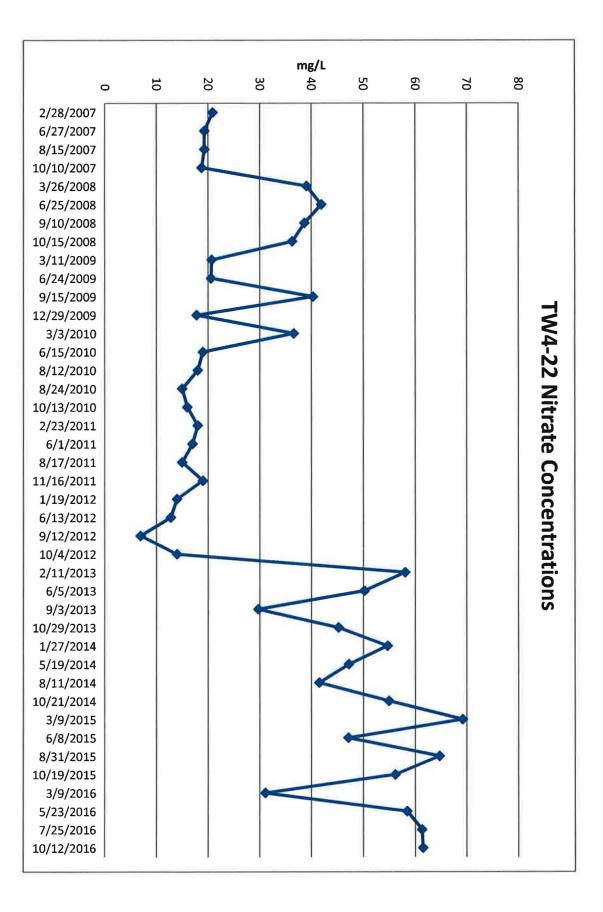


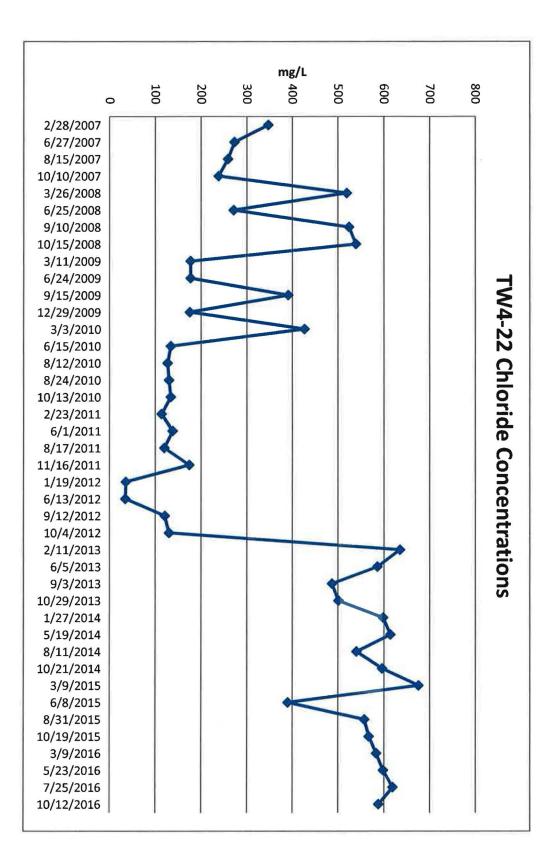

TWN-7 Chloride Concentrations

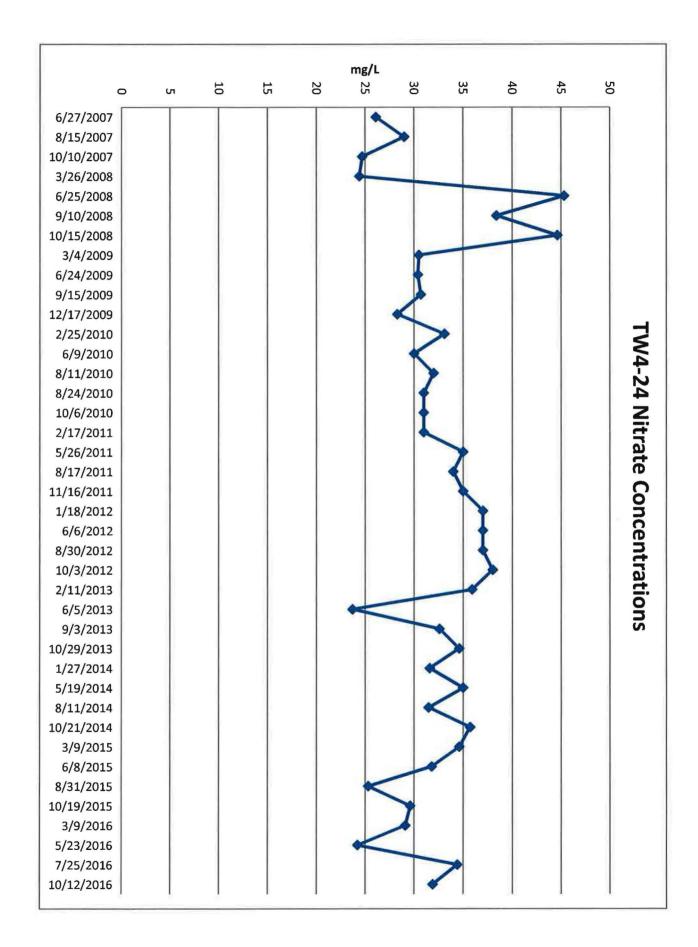


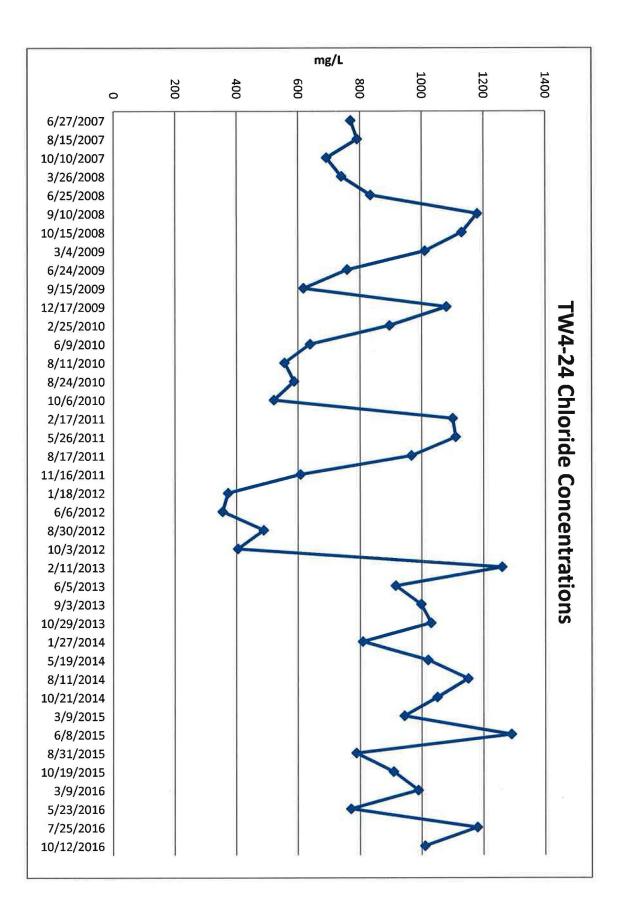

TWN-18 Nitrate Concentrations

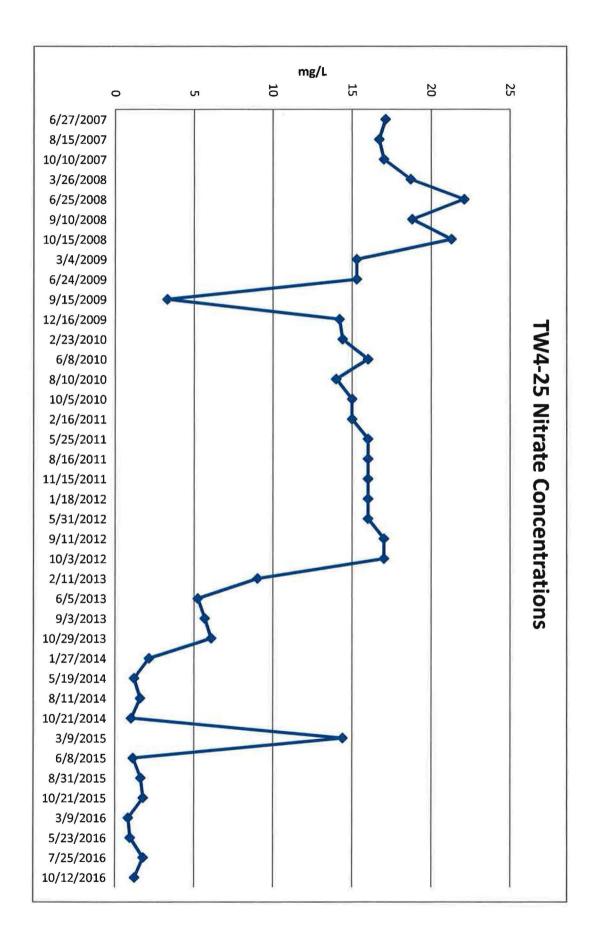


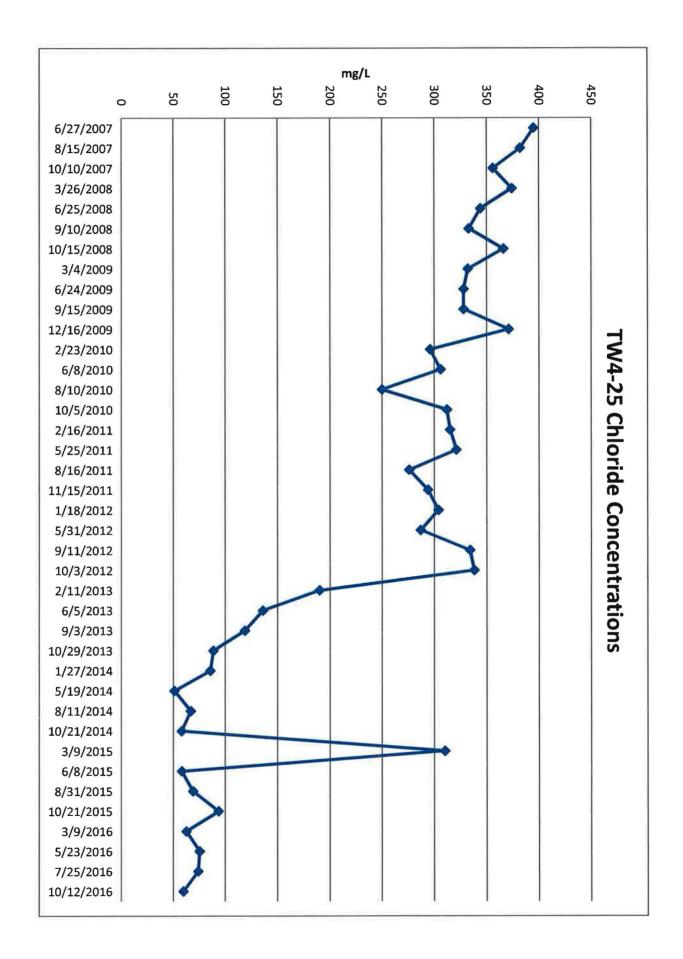

TWN-18 Chloride Concentrations

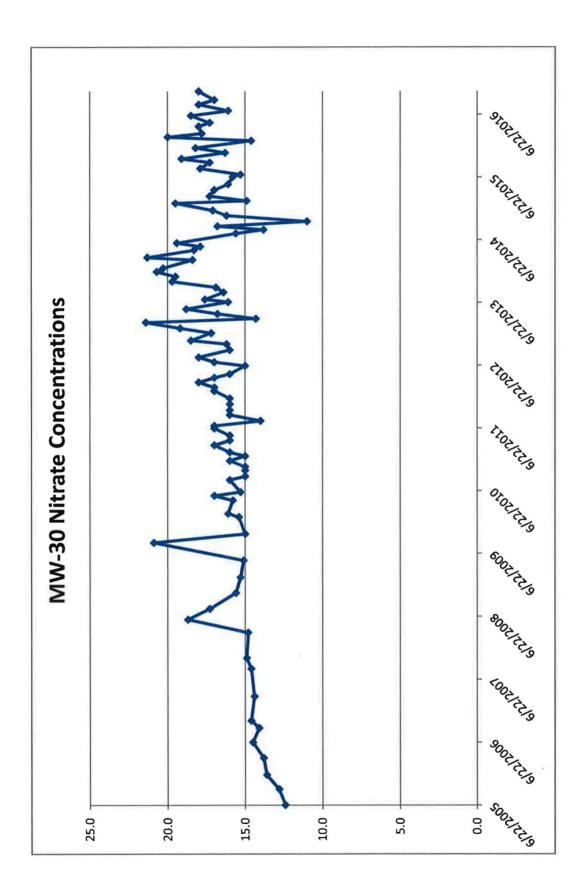


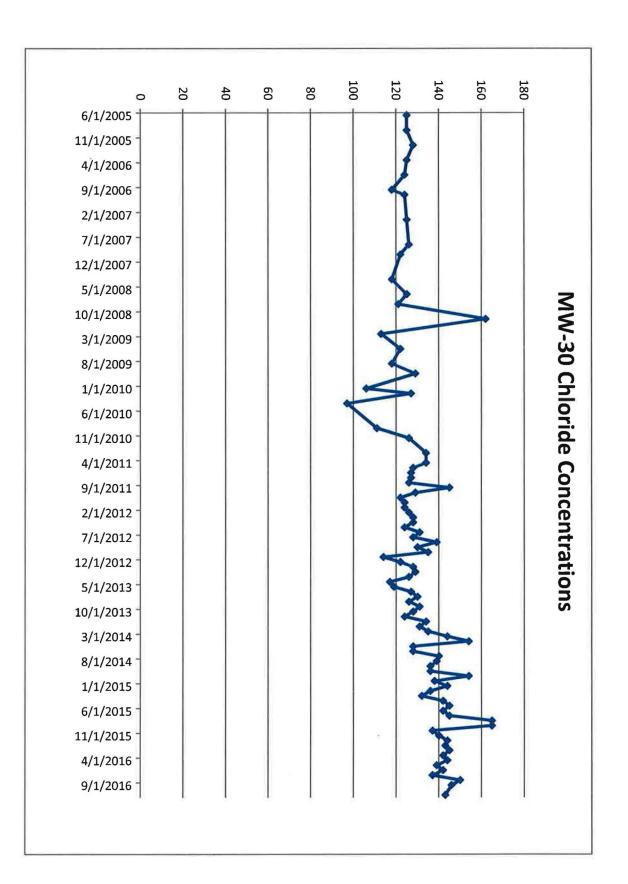


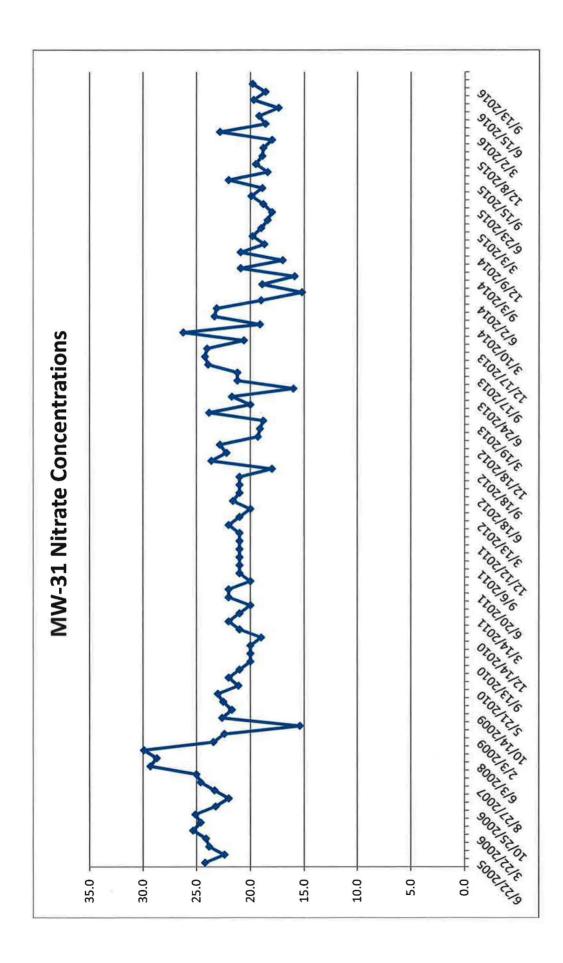


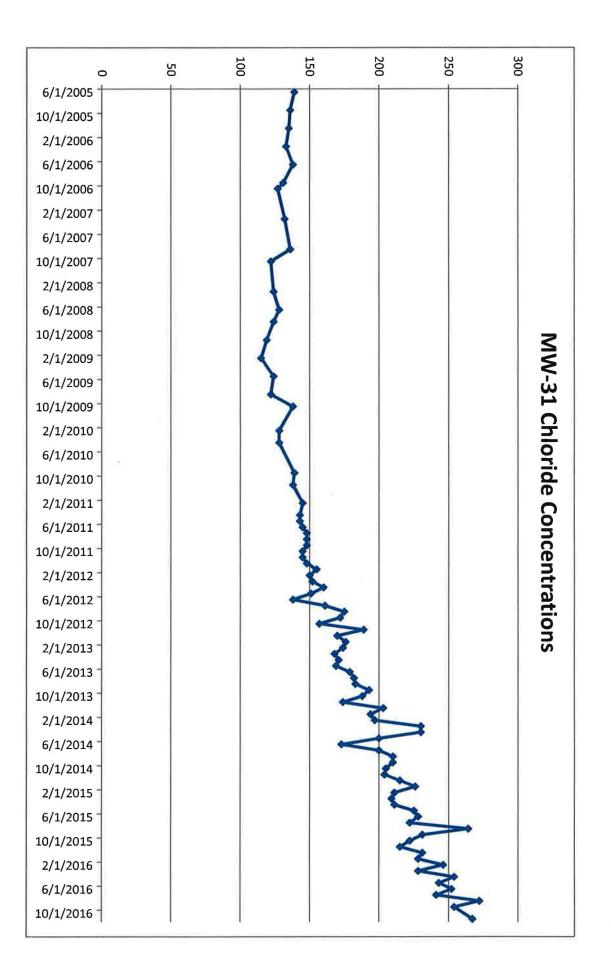












*

Tab L

CSV Transmittal Letter

*

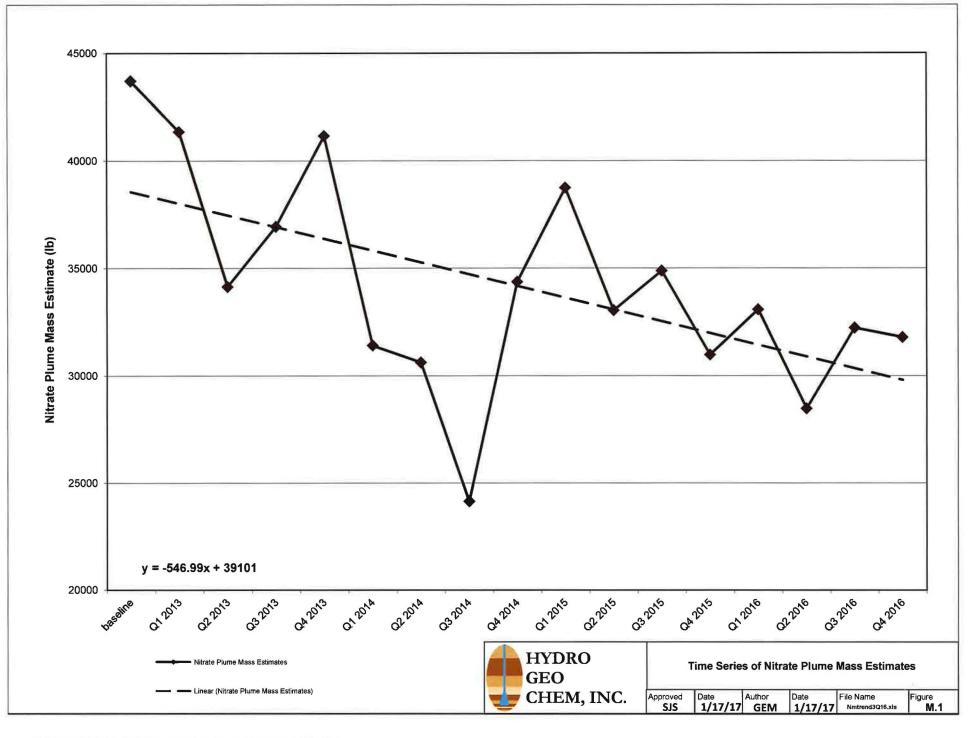
Kathy Weinel

athy Weinel
Vednesday, February 22, 2017 7:26 AM
Phillip Goble'
Dean Henderson'; Mark Chalmers; David Turk; Scott Bakken; Logan Shumway; David
rydenlund
ransmittal of CSV Files White Mesa Mill 2016 Q4 Nitrate Monitoring
610271-report-EDD.csv; Q4 2016 Nitrate DTWs.csv; Q4 2016 Nitrate Field
Aeasurements.csv

Mr. Goble,

Attached to this e-mail is an electronic copy of laboratory results for nitrate monitoring conducted at the White Mesa Mill during the fourth quarter of 2016, in Comma Separated Value (CSV) format.

Please contact me at 303-389-4134 if you have any questions on this transmittal.


Yours Truly

Kathy Weinel

Tab M

Residual Mass Estimate Analysis Figure

Tab M – Figures

Tab M - Tables

The Residual Mass Estimate Analysis Tables

	residual
	plume
quarter	mass (lb)
baseline	43700
Q1 2013	41350
Q2 2013	34140
Q3 2013	36930
Q4 2013	41150
Q1 2014	31410
Q2 2014	30620
Q3 2014	24140
Q4 2014	34370
Q1 2015	38740
Q2 2015	33042
Q3 2015	34880
Q4 2015	30980
Q1 2016	33083
Q2 2016	28465
Q3 2016	32230
Q4 2016	31798

Table M.1 Residual Nitrate Plume Mass

Notes:

lbs = pounds