ATTACHMENT 16

OPEN BURNING/OPEN DETONATION OPERATIONS
TABLE OF CONTENTS

1.0 OB/OD DESIGN AND OPERATION .. 4

1.1 APPLICABILITY AS A MISCELLANEOUS UNIT .. 4

1.2 HAZARDOUS WASTE STORAGE AND VARIANCE .. 7

1.3 OPEN BURN (OB) ... 7

1.3.1 Appropriateness of Treatment Technology .. 7

1.3.2 Description of OB Unit .. 7

1.3.3 Leak Detection Provisions ... 9

1.3.4 Precipitation Cover ... 9

1.3.5 Control of Releases of Ashes and Residues During OB .. 9

1.3.6 Methods to Control Deterioration of Fabricated Devices 10

1.3.7 Prevention of Accumulated Precipitation Within Burn Pans 10

1.3.8 Handling of Precipitation Accumulated in Fabricated Devices 10

1.3.9 Controls to Prevent Wind Dispersion of Ash and Other Residue 10

1.3.10 Inspection, Monitoring, and Maintenance .. 11

1.3.11 Standing Operating Procedures .. 11

1.4 OPEN DETONATION (OD) .. 11

1.4.1 Appropriateness of Treatment Technology .. 11

1.4.2 Description and Operation of OD Unit .. 11

1.4.3 Monitoring, and Maintenance Plan ... 15

1.4.4 Runon and Runoff Management .. 15

1.4.5 Standard Operating Procedures (SOPs) ... 16

1.5 STATIC FIRING ... 16
LIST OF FIGURES AND TABLES

FIGURE 1. LOCATION OF OB/OD UNITS AT TEAD...5
FIGURE 2. OPERATION AREA AT THE OB/OD AREA AT TEAD...6
FIGURE 3. METEOROLOGICAL PARAMETERS FOR TEAD..8

TABLE 1. TEAD EXPLOSIVE LIMITS FOR THE 3.5-IN. ROCKET FRAGMENT MUNITIONS..........14
TABLE 2. DISTANCES FROM ABOVE-GROUND DETONATIONS TO UNPROTECTED PERSONNEL.....15
TABLE 3. BLAST OVERPRESSURE PROTECTION DISTANCES TO NONESSENTIAL PERSONNEL.....16

APPENDIX A DETAILED BURN PAN DRAWINGS
APPENDIX B DETAILED STATIC FIRE SILO DRAWINGS
APPENDIX C DETAILED OPEN DETONATION AREA DRAWINGS
1.0 OB/OD DESIGN AND OPERATION

1.1 Applicability as a Miscellaneous Unit

1.1.1 The Permittee conducts thermal treatment of conventional energetic material items at the Open Burn/Open Detonation (OB/OD) Area. The principal work activities at Tooele Army Depot (TEAD) are the shipping, receiving, maintenance and demilitarization of conventional munitions, and the testing and development of ammunition peculiar equipment and related demilitarization testing. The location of the OB/OD Area is shown in Figure 1 and a detailed map showing the OB/OD operations area is shown in Figure 2. Treatment by OB/OD falls under the miscellaneous units provisions in the Utah Admin. Code R315-264-600.

1.1.2 OB/OD is used for treatment of some energetic materials because this is the only safe and effective treatment process currently available for those energetic material items. The selection of OB/OD is based on energetic material item-specific information developed by the U.S. Army based on energetic material type and content, explosion potential, and historical experience. The U.S. Army is continuing to study and evaluate alternative treatment processes that may be used in the future, rather than OB/OD, to treat appropriate energetic materials. The Permittee reports progress in developing alternative technologies as part of the annual waste minimization certification.

1.1.3 Because the OB and OD treatment processes are a non-continuous (i.e., batch) process, the facility is not subject to steady-state or "normal" operating conditions. Wastes shall be treated by the Demil Team according to Standard Operating Procedures (SOPs). The SOPs detail the handling of the explosives from storage to unloading, the tools to be used, setting the charge, and, ultimately, burning or detonation.

1.1.4 There are major advantages for using OB and OD disposal practices. These include the following:

1.1.4.1 Safety is the most important consideration. Strict observance of proven OB and OD procedures has resulted in an excellent safety record being earned by the personnel who have helped to treat the many millions of pounds of waste military energetic materials safely over the last four decades at numerous Department of Defense (DOD) installations.

1.1.4.2 These types of operations are extremely versatile; large or small quantities of the myriad types of materials can be treated easily and safely.

1.1.4.3 Because of their inherent simplicity, OB and OD are extremely reliable processes not subject to equipment downtime.

1.1.4.4 Both OB and OD are very efficient treatments as demonstrated by testing. This is discussed in further detail in Attachment 17 (OB/OD Treatment Effectiveness, Alternative Technologies and Waste Minimization).
Figure 1
1.2. **Hazardous Waste Storage and Variance**

1.2.1 The Permittee shall not treat nonreactive waste at the OB/OD Units other than incidental packaging.

1.2.2 Currently the Permittee only accepts waste from Tooele Army Depot South Area (TEAD-S) for treatment at the OB/OD Units. Munitions are treated the same day that they are received at the OB/OD Units. In the case of weather delays, munitions are treated as soon as possible (generally within 24 hours). Should treatment be delayed, the munitions will be stored in place, in accordance with the OB/OD/SF Standard Operating Procedures, until conditions permit treatment to commence. Weekly inspections for the munitions stored in the OB/OD units will be conducted as outlined in Attachment 4 (Inspection Plan).

1.3. **OPEN BURN (OB)**

1.3.1 **Appropriateness of Treatment Technology**

The reason that OB is an appropriate treatment technology for unserviceable munitions is discussed in Section 1.1.

1.3.2 **Description of OB Unit**

1.3.2.1 OB occurs at the OB unit. The OB unit is about 200 feet directly south of the OD unit. Figures in Appendix A show the burn pans at the OB Unit. Treatment at the OB unit is accomplished by the use of 14 burn pans. Items typically treated are bulk propellants. No donor charges shall be used in OB.

1.3.2.2 The 14 burn pans are designed and constructed similarly. The dimensions of each of the 14 pans are approximately 16 ft x 4 ft x 11 inches deep. A schematic of a typical burn pan is provided in Appendix A. Appendix A also has the detailed drawings of the burn pans used at the Facility. The burn pans are approximately 60 feet apart. Each pan is elevated approximately 1 foot above the ground. The position of the legs of the structure allows for easy inspection of the bottom of each pan and the surface of the ground beneath them. The pans are constructed of steel, and covers are placed over them when they are not in use, or when propellant is being stored in place.

1.3.2.3 Prior to conducting OB, certain meteorological conditions must be met. Figure 3 lists the meteorological parameters for the Facility. The Demil Team Leader, or his/her designated representative, shall ensure that all firing has ceased when aircraft approach the area. Designated observers have effective communications with the Range Supervisor any time an aircraft approaches the area. OB shall not be initiated until 10:00 a.m. and not after 5:00 p.m. Meteorological data are obtained from the:

- Salt Lake City National Weather Services (http://nimbo.wrh.noaa.gov/slc); or
- AccuWeather (http://accuweather.com).
Figure 3. Meteorological Parameters for TEAD

<table>
<thead>
<tr>
<th>Parameters</th>
<th>TEAD Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind speed</td>
<td>3-20 mph/gusts to 30 mph</td>
</tr>
<tr>
<td>Cloud cover (see note)</td>
<td><80%</td>
</tr>
<tr>
<td>Ceiling</td>
<td>>2,000 ft.</td>
</tr>
<tr>
<td>Precipitation</td>
<td><75% chance</td>
</tr>
<tr>
<td>Thunderstorm/electrical storm</td>
<td><50% chance</td>
</tr>
<tr>
<td>Clearing index</td>
<td>>500</td>
</tr>
<tr>
<td>Visibility</td>
<td>1 mile</td>
</tr>
</tbody>
</table>

Note: Cloud cover and ceiling limits are in conjunction with each other. Operations shall not be carried out when the cloud cover is greater than 80% and the cloud ceiling is less than 2,000 ft.

1.3.2.4 An on-site meteorological tower provides site-specific data. A determination is made prior to burning whether to cease operations or to continue based on the meteorological data. This information shall be recorded on a form. The demil operations shall be determined “GO” or “NO GO” by weather forecasts as described above. When forecasts indicate a “GO” condition, demil operations proceed. However, if the weather conditions deteriorate as observed by the Demil Team Leader or his/her designated representative for the operation, he/she contacts the Demil Planner. A determination is made whether to continue the operation with the propellant already in the pan or to store the propellant in the pan and then burn it as soon as permit conditions allow. Propellant shall not be placed in the pan after weather conditions have deteriorated.

1.3.2.5 The Demil Planner annotates on the Demilitarization Approval Form that each organization has been notified. The Demil Planner takes this Demilitarization Approval Form to the Directorate of Ammunition Operations or his/her designated representative for approval/disapproval. The Demil Planner phones the Demil Team Leader to inform whether the mission has been approved /disapproved. The Demil Team Leader phones the Demil Planner to describe when charges have been set and when they are ready to burn.

1.3.2.6 The preliminary steps prior to the actual OB activities are similar to those for the OD practice. Dry grass, leaves, and other extraneous combustible material in amounts sufficient to spread fires shall be removed within a radius of 61 m (200 feet) from the pans. Meteorological data are checked, and trays are arranged so that the propellants burn in the opposite direction from which the wind is blowing. Telephone or two-way radio communications shall be established and shall remain in operation during the entire OB operation.

1.3.2.7 The propellant to be burned is loaded into the pans. The propellant is poured into the pans with extreme care taken to prevent the occurrence of spills. The propellant is placed in the pan to a thickness no greater than 7.5 cm (3 in.). The area is then cleared of all personnel.
except for those needed to install the igniting charge into the pans. When the area is
determined to be clear, the igniting charges are laid in the pans and activated.

1.3.2.8 The burn operation is observed from a safe position, and fire-fighting equipment is
made available to combat grass, brush, or equipment fires. Qualified personnel check pans
and ensure that all propellant has been burned. At the end of each day’s operation, all
extraneous operations materials shall be removed from the OB unit. Ash and residue are
gathered, containerized in an authorized container, labeled as hazardous waste, and stored at
the satellite accumulation area (SAA) at the OB/OD Area.

1.3.2.9 The Demil Team shall operate the OB unit in accordance with Standard Operating
Procedure (SOP) No. TE-0000-H-012. This SOP provides additional information on current
procedures.

1.3.3. Leak Detection Provisions

1.3.3.1 This section addresses the concern that ash/residue or wastes may be released from
the burn pan if it develops a leak, a break, or a crack. The potential for such a release shall be
minimized through pre-burn and post-burn inspections of burn pan integrity. The burn pan is
situated above ground on two I-beams to allow visual inspection for leaks. The use of I-beams
facilitates the conduct of routine integrity inspections of the burn pans.

1.3.3.2 Any pan showing any evidence of deterioration shall not be used. Damaged pans
shall be repaired prior to being returned to use. Additionally, the structural integrity of steel
pans has been shown to be reliable in previous U.S. Army tests at the Tooele Army Depot.

1.3.3.3 Any ejecta shall be collected during the post-burn inspection and shall be reburned
the same day.

1.3.4. Precipitation Cover

1.3.4.1 Each burn pan is equipped with a precipitation cover. The covers are tight fitting and
shall remain on the burn pans during non-operational or storage periods to prevent
accumulation of precipitation and wind dispersion of any ash and residue.

1.3.5 Control of Releases of Ash and Residue During OB

1.3.5.1 This section addresses the concern that the propellant, waste, or ashes will be ejected
from the burn pan onto the ground during burning operations, potentially resulting in
environmental contamination via the soil, surface water, and groundwater pathways. The
potential for contamination is minimized during OB by several measures. First, the burn pan
is of sufficient height to minimize the ejection of most waste. Second, post-burn inspection of
the area surrounding the pan would reveal the presence of ejected materials, which are
subsequently collected. A determination shall be made as to whether there is any remaining
contamination by having experienced personnel carefully inspect the pans and the surrounding
area after a burn.
1.3.5.2 It is considered unsafe to approach the burn pan for ash removal and inspection until a sufficient time has passed to allow all materials in the pan to cool. The pan shall be inspected after a burn to make sure that all the propellants have burned and the pan shall then be covered. Any visible ejecta from the pan shall be collected and placed back in the pan. Although every effort is made to pick up visible ejecta, it is possible that some very small particles may escape detection. After OB, pans are inspected, and any ash shall be collected and temporarily stored in appropriate containers at the SAA at the OB/OD Area. When the container is full, a composite sample shall be collected and analyzed. Full containers shall be removed within 3 days and taken to a 90-day or permitted storage unit.

1.3.6. Methods to Control Deterioration of Fabricated Devices

1.3.6.1 The most serious deterioration or malfunction during OB would be loss of burn pan integrity such as a burn pan leak. However, routine pan integrity inspections are conducted prior to and after each OB treatment event. In the event of an accidental release of waste propellants before or during a burn event, the released waste materials shall be collected and re-treated in a different burn pan. Specific response procedures are established and are contained in Attachment 7 (Contingency Plan). Procedures to prevent hazards are discussed in Attachment 6 (Preparedness and Prevention Plan).

1.3.7. Prevention of Accumulated Precipitation in Burn Pans

1.3.7.1 Precipitation accumulation in the burn pan during non-operational periods is prevented through the use of a precipitation cover. Covers are tight fitting, shall be secured in place over the pans, and shall remain on the pans during non-operational periods. Precipitation accumulation in the pan during OB events and cool downs is minimized by conducting OB events only at times when precipitation is not expected. OB treatment operations are not conducted during low overcast sky (i.e., cloud cover of 80% or more and cloud ceiling of less than 2,000 feet) and during precipitation or forecasted high probability of precipitation (greater than 75%). Following a waiting period (based on safety considerations) after the burn, the pan shall be inspected and its cover replaced.

1.3.7.2 If water has accumulated in the pans, it shall be drained out into an appropriate container prior to a burn. The drained water shall be sampled by Environmental Management Division personnel and placed into hazardous waste storage until the analysis can be reviewed to determine the correct disposition of the water.

1.3.8. Handling of Precipitation Accumulated in Fabricated Devices

1.3.8.1 If precipitation accumulates in the ash while the ash is in the burn pan prior to being removed the precipitation shall be removed with the ash and shall be considered part of the waste.

1.3.9. Controls to Prevent Wind Dispersion of Ash and Other Residue
1.3.9.1 Certain administrative controls shall be used to protect human health and the environment. These include controls to prevent wind dispersion of ash and other residue, such as operating only during moderate wind speeds (i.e., greater than 3 mph to less than 20 mph) to reduce the potential of fugitive particulate emissions. The propellants are generally in the form of pellets, and other energetic materials are contained in casings. Thus, wind dispersion of these energetic wastes is not a problem. The high walls of the burn pan minimize the potential for fugitive wind erosion of these materials.

1.3.9.2 The cover of the burn pan shall be replaced after completion of the burn (after a wait time for safety reasons). In addition, the high sides of the burn pan reduce the potential for wind erosion during pre- and post-burn conditions when the cover is off.

1.3.10. Inspection, Monitoring, and Maintenance

1.3.10.1 The OB unit shall be inspected before and after use in accordance with Attachment 4 (Inspection Plan).

1.3.11. Standing Operating Procedures

1.3.11.1 All OB activities at the Facility are conducted by the Demil Team in accordance with SOP No. TE-0000-H-012. The SOP prescribes the responsibilities, policies, and procedures for the operation of the OB unit. This SOP shall be amended, as necessary, to reference and be consistent with all conditions of RCRA. The SOP retains the environmental performance standards specified in this permit.

1.3.11.2 The Demil office shall maintain the official file for all treatment activities in the OB unit. As stated in Attachment 2 (Waste Analysis Plan) ash residue analysis results shall be maintained by the Environmental Management Division.

1.4 OPEN DETONATION (OD)

1.4.1. Appropriateness of Treatment Technology

1.4.1.1 The reason that OD is an appropriate treatment technology for unserviceable munitions is discussed in Section 1.1.

1.4.2. Description and Operation of OD Unit

1.4.2.1 The OD pits are in the southwestern corner of the Facility. The entire OB/OD Area is approximately 780 acres. OD is conducted in 19 pits. These pits are numbered 1 through 19. The figures in Appendix C show the location of the pits in relation to the static fire silos and burn pans. The area is a broad dissected alluvial fan emanating from the Stansbury Mountains. OD is conducted in subsurface pits that are covered with native soil. The depth of the pits is determined by the quantity of munitions treated. There are no engineered features at this OD unit to detect or prevent releases. Due to the nature of OD, engineered features could be destroyed by detonation.
1.4.2.2 Prior to conducting OD, certain meteorological conditions must be met. Acceptable meteorological conditions for conducting OD are indicated in Figure 3 and in the SOP. OD shall not be initiated until at least 10:00 a.m. and shall conclude at or before 5:00 p.m.. Meteorological data are obtained from the:

- Salt Lake City National Weather Services (http://nimbo.wrh.noaa.gov/slc); or
- AccuWeather (http://accuweather.com).

1.4.2.3 The Demil Team Leader or his/her designated representative shall ensure that all firing has ceased when aircraft approach the area. Designated observers have effective communications with the Range Supervisor any time an aircraft approaches the area.

1.4.2.4 An on-site meteorological tower provides site-specific data. A determination is made prior to detonation whether to cease operations or to continue based on meteorological data. This information shall be recorded on a form. The demil operations shall be determined “GO” or “NO GO” by weather forecasts as described above. When forecasts indicate a “GO” condition, demil operations proceed. However, if the weather conditions deteriorate as observed by the Demil Team Leader or his/her designated representative he/she contacts the Demil Planner. A determination is made whether to continue the operation with the ammunition already in the pit or to store the ammunition in the pit and detonate it as soon as permit conditions allow. Ammunition shall not be placed in the pit after weather conditions have deteriorated.

1.4.2.5 The Demil Planner annotates on the Demilitarization Approval Form that each organization has been notified. The Demil Planner takes the Demilitarization Approval Form to the Directorate of Ammunition Operations or his/her designated representative for approval/disapproval. The Demil Planner phones the Demil Team Leader to inform whether the mission has been approved/disapproved. The Demil Team Leader phones the Demil Planner to tell when charges have been set and when the team is ready to detonate.

1.4.2.6 The design elements that are used to provide protection of human health and the environment include: using the appropriate burial depth depending on treatment quantity; burying the munitions to appropriate depths; locating the OD unit far from public roads and inhabited housing; limiting the treatment amounts to 750 lbs. NEW per pit, per event (including donor); only treating appropriate reactive materials; re-treating any unexploded ordnance (UXO); operating only during appropriate weather conditions; and restricting access to the unit by the use of warning signs, gates, and a surveillance team. A treatment event is defined as a day of open detonation operations with limits of 750 pounds per pit and ten pits per day assuming 7,500 pounds per hour worst case scenario as modeled in the HHRA.

1.4.2.7 The Permittee is limited to the pit explosive limits specified in Condition VI.B.4. and Table 1 for the 3.5-in. rocket fragment munitions. Any additional munitions shall be considered on a case-by-case basis for explosive limits. If it is determined that the munitions are of greater explosive quantity or different type, additional tests shall be conducted to determine debris/fragment throw range. A 20% factor is added to the maximum throw range as a safety factor.
1.4.2.8 Earth cover for the detonations is also specified in SOP No. TE-0000-G-010. Requirements are as follows:

- 0-50 lbs. NEW (including donor) requires no earth cover
- 51-750 lbs. NEW (including donor) requires 15 feet of earth cover.

1.4.2.9 TEAD OD SOP No. TE-0000-G-010 also specifies the distances that are required from above-ground (unburied) detonations to unprotected personnel. This is specified in Table 2. If the OD materials are buried, Table 3 is used. In lieu of the formula specified in Table 3, column A of Table 3 may be used for above-ground detonations. If the materials to be detonated are buried, the reduced distance provided by columns B through I of Table 3 can be used.

1.4.2.10 Prior to conducting OD operations, as in OB operations, dry grass, leaves, and other combustible materials are cleared within a 61 m (200 ft) radius from the pits.

Table 1. TEAD explosive limits for the 3.5-in. rocket fragment munitions

<table>
<thead>
<tr>
<th>Pit no.</th>
<th>Distance boundary</th>
<th>Non frag</th>
<th>Less than 5”</th>
<th>Untested 5” or greater</th>
<th>Tested 5” or greater</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2912 Feet</td>
<td>750 lbs.</td>
<td>750 lbs.</td>
<td>0 lbs.</td>
<td>750 lbs.</td>
</tr>
<tr>
<td>2</td>
<td>2992 Feet</td>
<td>750 lbs.</td>
<td>750 lbs.</td>
<td>0 lbs.</td>
<td>750 lbs.</td>
</tr>
<tr>
<td>3</td>
<td>3091 Feet</td>
<td>750 lbs.</td>
<td>750 lbs.</td>
<td>0 lbs.</td>
<td>750 lbs.</td>
</tr>
<tr>
<td>4</td>
<td>3194 Feet</td>
<td>750 lbs.</td>
<td>750 lbs.</td>
<td>0 lbs.</td>
<td>750 lbs.</td>
</tr>
<tr>
<td>5</td>
<td>3168 Feet</td>
<td>750 lbs.</td>
<td>750 lbs.</td>
<td>0 lbs.</td>
<td>750 lbs.</td>
</tr>
<tr>
<td>6</td>
<td>3141 Feet</td>
<td>750 lbs.</td>
<td>750 lbs.</td>
<td>0 lbs.</td>
<td>750 lbs.</td>
</tr>
<tr>
<td>7</td>
<td>3115 Feet</td>
<td>750 lbs.</td>
<td>750 lbs.</td>
<td>0 lbs.</td>
<td>750 lbs.</td>
</tr>
<tr>
<td>8</td>
<td>3058 Feet</td>
<td>750 lbs.</td>
<td>750 lbs.</td>
<td>0 lbs.</td>
<td>750 lbs.</td>
</tr>
<tr>
<td>9</td>
<td>3000 Feet</td>
<td>750 lbs.</td>
<td>750 lbs.</td>
<td>0 lbs.</td>
<td>750 lbs.</td>
</tr>
<tr>
<td>10</td>
<td>2945 Feet</td>
<td>750 lbs.</td>
<td>750 lbs.</td>
<td>0 lbs.</td>
<td>750 lbs.</td>
</tr>
<tr>
<td>11</td>
<td>2879 Feet</td>
<td>750 lbs.</td>
<td>750 lbs.</td>
<td>0 lbs.</td>
<td>750 lbs.</td>
</tr>
<tr>
<td>12</td>
<td>2814 Feet</td>
<td>750 lbs.</td>
<td>750 lbs.</td>
<td>0 lbs.</td>
<td>750 lbs.</td>
</tr>
<tr>
<td>13</td>
<td>2745 Feet</td>
<td>750 lbs.</td>
<td>750 lbs.</td>
<td>0 lbs.</td>
<td>750 lbs.</td>
</tr>
<tr>
<td>14</td>
<td>2676 Feet</td>
<td>750 lbs.</td>
<td>750 lbs.</td>
<td>0 lbs.</td>
<td>750 lbs.</td>
</tr>
<tr>
<td>15</td>
<td>2608 Feet</td>
<td>750 lbs.</td>
<td>750 lbs.</td>
<td>0 lbs.</td>
<td>750 lbs.</td>
</tr>
<tr>
<td>16</td>
<td>2521 Feet</td>
<td>750 lbs.</td>
<td>750 lbs.</td>
<td>0 lbs.</td>
<td>750 lbs.</td>
</tr>
<tr>
<td>17</td>
<td>2348 Feet</td>
<td>750 lbs.</td>
<td>0 lbs.</td>
<td>0 lbs.</td>
<td>0 lbs.</td>
</tr>
<tr>
<td>18</td>
<td>2213 Feet</td>
<td>750 lbs.</td>
<td>0 lbs.</td>
<td>0 lbs.</td>
<td>0 lbs.</td>
</tr>
<tr>
<td>19</td>
<td>2362 Feet</td>
<td>750 lbs.</td>
<td>0 lbs.</td>
<td>0 lbs.</td>
<td>0 lbs.</td>
</tr>
</tbody>
</table>

1.4.2.11 The placement of the initiating charges and the amount of initiating charge are determined by the amount and nature of material being treated and are specified in Army manuals. Munitions are detonated by either non-electrical or electrical methods. The only residues generated as a result of OD operations are metallic materials such as shell fragments (shrapnel) and occasionally pieces of energetic materials or UXO that were not completely
treated during OD. The OD unit is inspected for these materials following OD. After each
day of detonation operations, a search of the surrounding area shall be made for unexploded
munitions. Unexploded residue or items or material such as lumps of explosives or unfuzed
ammunition shall be picked up and stored in a pit for the next detonation. Recovery and
detonation of fuzed ammunition or suspected live munition items shall be treated in
accordance with SOP No. TE-0000-G-010. All items or material (fuzed, unfuzed, and live
munitions) found must be detonated within two working days of the time they are recovered or
stored in the pit(s) until conditions of the permit are met to allow detonations.

1.4.2.12 Analysis of the OD treatment residue is not conducted at the Facility. The Permittee
periodically recovers scrap metal, casing, fragment, and related items from the OD grounds as
resources allow, and based on the Demil Team Leader’s judgment regarding safe operation of
the range. The recovered material is disposed of through the Defense Logistics Agency
(DLA) Disposition Services. The Demil team shall inspect and document the recovered
material to ensure it is explosive free. The Ammunition Surveillance Inspector shall verify the
documentation. Management of ash and residues is discussed further in Attachment 2 (Waste
Analysis Plan).

1.4.2.13 The munitions are on pallets that are transported to the OD pit via forklift or roller
conveyor. The palletized munitions are positioned in such a manner to ensure complete
detonation. The palletized munitions requiring unpacking are removed to the unpack
operation near or within the demolition pit using a forklift. A minimum of 10 feet of
separation is maintained between unpack operations and materials stacked in the OD pit.
Information about the specific item being treated is used to determine appropriate treatment.
For example, bombs and mortar projectiles are as much as 80% (by weight) explosives and
have relatively thin walls, as compared with artillery shells, which are 10 to 15% explosives
and have relatively heavy walls. The Demil Team personnel maintain an extensive collection
of Army Technical Manuals to provide guidance on appropriate OD procedures for specific
items (e.g., Technical Manual - Ammunition and Explosives Standards, TM 9-1300-206,
Headquarters, Department of the Army, August 1973).

Table 2. Distances from above-ground detonations to unprotected personnel

<table>
<thead>
<tr>
<th>Material to detonate</th>
<th>Blast distance</th>
<th>Fragment/debris</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-frag explosive material</td>
<td>D = 328W^{1/3}</td>
<td>1,250 feet</td>
</tr>
<tr>
<td>Bombs and projectile with a diameter less than 5 inches</td>
<td>D = 328W^{1/3}</td>
<td>2,500 feet</td>
</tr>
<tr>
<td>Bombs and projectiles with a diameter of 5 inches or more</td>
<td>D = 328W^{1/3}</td>
<td>4,000 feet</td>
</tr>
<tr>
<td>All other ammunition</td>
<td>D = 328W^{1/3}</td>
<td>2,500 feet</td>
</tr>
</tbody>
</table>

Note: W is the net explosive weight in pounds.
Table 3. Required blast overpressure protection distances to nonessential personnel*

<table>
<thead>
<tr>
<th>NEW in lbs.</th>
<th>Distance in feet for various burial depth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 FT COL A</td>
</tr>
<tr>
<td>1</td>
<td>328</td>
</tr>
<tr>
<td>5</td>
<td>561</td>
</tr>
<tr>
<td>10</td>
<td>707</td>
</tr>
<tr>
<td>20</td>
<td>890</td>
</tr>
<tr>
<td>30</td>
<td>1019</td>
</tr>
<tr>
<td>40</td>
<td>1122</td>
</tr>
<tr>
<td>50</td>
<td>1208</td>
</tr>
<tr>
<td>100</td>
<td>1522</td>
</tr>
<tr>
<td>150</td>
<td>1743</td>
</tr>
</tbody>
</table>

*Required Blast Overpressure protection distances to nonessential personnel from ranges used for detonating ammunition for the purposes of demilitarization, demonstration, or explosives ordnance disposal.

1.4.3. Monitoring, and Maintenance Plan

1.4.3.1 The OD area shall be inspected before and after use in accordance with Attachment 4 (Inspection Plan).

1.4.3.2 After each day of detonation operations, a search of the surrounding area shall be made for unexploded munitions. Items or material such as lumps of explosives or unfuzed ammunition shall be be picked up and prepared for the next detonation. Recovery and detonation of fuzed ammunition or suspected live munition items are treated in accordance with SOP No. TE-0000-G-010. All items or material (fuzed, unfuzed, and live munitions) found shall be detonated within two working days of the day they are found, or be stored within the pits(s) until permit conditions allow them to be detonated.

1.4.4. Run on and Runoff Management

1.4.4.1 Precipitation should not contact the waste during OD because OD is not conducted during or prior to rain. Should conditions create delays, once the pits have been loaded, munitions will be stored and remain in place until detonations are permitted. After OD the only remaining material, shrapnel, shall be visually inspected to make certain it does not contain any UXO. If UXO is found, the material shall be retreated.
1.4.5. **Standard Operating Procedures (SOPs)**

1.4.5.1 OD operations are conducted in accordance with TEAD SOP (SOP No. TE-0000-G-010). This SOP is periodically reviewed and updated. The SOP will be revised, as necessary, to be commensurate with conditions of this permit.

1.5. **Static Firing**

1.5.1 Static firing of rockets and missiles is similar to open burning as only the propellant is burned and the metal from the rocket or missile is recycled. The static firing unit is located mid-way between the demolition pits and the open burn pans. Appendix B shows the static firing silos at the OB/OD Area. Treatment is accomplished by the use of six silos. Items typically treated are solid propellant rockets and missiles. No donor charges are used in static firing.

1.5.2 The silos are located, in two rows 40 feet apart and 20 feet between each silo, on a rebar-reinforced concrete pad 52 feet by 10 feet deep. Covers shall be placed over the silos when they are not in use or when items are being stored in place. Prior to conducting static firing, the same meteorological conditions as for open burning and open detonation must be met see Figure 3.

1.5.3 Operating procedures prior to the actual static firing activity are similar to those used in open burning. Dry grass, leaves and other extraneous combustible material in amounts sufficient to spread fires shall be removed within a radius of 61 meters (200 feet) from the silos. Meteorological conditions shall be checked and the silos inspected before each event. Carousels designed for each rocket are prepared and lowered into the silos. Rocket motors are lowered into the carousels and secured in place. The area is then cleared of all personnel except for those needed to install the firing wire to the rocket or missile igniter. When the area is determined to be clear, the rocket motors are electrically ignited from a safe position.

1.5.4 Firefighting equipment shall be available to combat grass, brush or equipment fires. Qualified personnel check the silos to ensure that all of the propellant has been burned.

1.5.5 Demil personnel shall operate the Static Fire Area in accordance with SOP No. TE-0000-J-168. This SOP provides additional information on current operating procedures.
PARTS LIST

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RAIL RIGHT SIDE COVER</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>SKIN LEFT SIDE COVER</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>SOCKET HEX SOFT SEAL RUBBER WASHER</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>RESIST</td>
<td>20</td>
</tr>
</tbody>
</table>

NOTE

Suggested spacing for self-tapping sealant screws.

Diagram

[Diagram of OB/OD Units with dimensions and notes]

Attachment 16 – OB/OD Units
Tooele Army Depot
Appendix A
February 2, 2017
UT3213820894
APPENDIX B
STATIC FIRE SILOS DRAWINGS
Attachment 16 – OB/OD Units
Tooele Army Depot
Appendix B
February 2, 2017
UT3213820894

NOTES:
1. SILO TUBES AND DEADMAN TIE Downs TO BE FURNISHED BY TOOELE ARMY DEPOT. SEE DWG T101-005T AND T101-008A FOR FABRICATION DETAILS.
2. SEE DWG T101-0006 FOR GROUNDING PROTECTION DETAILS.
APPENDIX C
DETONATION PITS DRAWINGS