ATTACHMENT 13 PROCESS CONTROL EQUIPMENT

Description of Waste Feed Cut Off

- 1.0 Waste feed cut off for the upgraded deactivation furnace (APE 1236) is controlled by an Allen-Bradley SLC 5/05 programmable logic controller (PLC).
- 1.1 The rotary kiln feed end and afterburner outlet temperatures shall be monitored by the PLC. Alarm set points are stored in the PLC memory registers. When the monitored temperature exceeds the specified limits, waste feeding shall be stopped. The baghouse temperature is monitored by the PLC and alarms in the same way.
- 1.2 The draft pressure at the feed end of the retort shall be monitored by the PLC. The draft pressure at the outlet of the afterburner shall be monitored by the PLC. When alarm set points are exceeded, the feeding shall stop. The baghouse differential pressure transmitter shall be monitored by the PLC and when alarm conditions exist, the feeding shall stop.
- 1.3 Auxiliary contacts on all of the fan motors determine the alarm status. When a fan motor fails, the waste feeding shall stop.
- 1.4 Motion sensors determine the alarm status of the two conveyors. The rotary kiln rotation shall be monitored. When motion stops, the PLC shall stop the feeding process.
- 1.5 Auxiliary contacts on the two double tipping valves determine the alarm status of the baghouse and cyclone motors. Feeding shall stop when a double tipping valve fails.
- 1.6 The PLC shall continually monitor for Waste Feed Cut Off (WFC) errors and Wonderware reports the status on the screen. When errors occur, the PLC shall stop the feeding process and send a signal to the Wonderware. At the same time visual and audible alarms activate.
- 1.7 The CEMS equipment shall monitor the CO and the oxygen emissions from the stack. The CO level is communicated to the PLC. The PLC corrects the CO level to 7% oxygen. When the corrected CO level rises above 100 ppm, the feeding shall stop.
- 1.8 When the weight on the scale exceeds the maximum levels, the waste feed rate monitoring system shall not function (feeding stops).
- 1.9 The following parameters shall be recorded on the hard drive:
 - 1. Rotary kiln feed end temperature (°F).
 - 2. Rotary kiln burner end temperature (°F).
 - 3. Burner flameout.
 - 4. Kiln rotation (rpm).
 - 5. Kiln pressure (inches W.C.).
 - 6. Afterburner temperature (°F).
 - 7. Afterburner flameout.
 - 8. Baghouse inlet temperature (°F).
 - 9. Baghouse differential pressure (inches W.C.).
 - 10. CO low range corrected value (ppm).
 - 11. CO high range corrected value (ppm).
 - 12. O₂ level (%).
 - 13. Stack gas emission velocity (ft/s).

- 14. Stack outlet temperature (°F.)
- 15. Fuel oil consumed (running total) (gal).
- 16. Feed rate, hourly avg. (lb/hr).
- 17. Emergency stop status.
- 1.10 These readings shall be taken in the following manner:
 - 1.10.1 CO shall be recorded every 15 seconds by the PLC. Four consecutive values shall be averaged to determine a one minute value which shall be recorded on the computer hard drive. The readings shall be averaged every minute and the PLC shall compute an hourly rolling average.
 - 1.10.2 Waste Feed Rate inputs shall be monitored continuously. Hourly average shall be calculated and recorded every push off.
 - 1.10.3 Stack Gas Temperature and Stack Gas Velocity shall be continuously read and recorded every minute in the data bank.
 - 1.10.4 Currently, the only available options for the baghouse monitoring are ΔP monitoring and manual inspection of the baghouse. A more detailed description of the ΔP operation and a reference to inspection frequency are given below.
- 1.11 The data recorded on the hard drive shall be archived on electronic media.
- 2.0 BAGHOUSE FILTER ELEMENT MONITORING
- 2.1 Baghouse filter element condition monitoring shall be done by watching the differential (delta) pressure (ΔP) value across the baghouse. ΔP is solely dependent upon the air flow resistance through the filter elements.
- 2.2 ΔP is the difference in pressure measured across the baghouse taken on each side of the filter elements. Both readings are negative values created by the draft fan and measured in inches of water with the outlet side having the greater negative value. Too high of a reading indicates plugged or "blinded" condition in which filter element material becomes permanently coated with combustion residue and the pulse-jet cleaning cycle cannot release the material. Too low of a reading indicates an open element condition indicating a breach in the baghouse material. An experienced operator will know the "Steady State" ΔP reading during normal furnace operation and filter element cleaning cycles and will know immediately if an abnormal change occurs such as filter blinding or a breach in the filter element. An operator knowing the steady state reading of his furnace can easily monitor filter element condition.
- ΔP on the APE 1236M2 baghouse shall be measured by a differential pressure transmitter which provides an analog input to the PLC.
- 3.0 FILTER MATERIAL
- 3.1 The filter elements are made from Cerafil XS-3000 ceramic material.
- 4.0 INSPECTION SCHEDULE

4.1 The entire APE-1236 furnace system shall receive a complete visual inspection prior to each start-up. The periodic checks and services specified in the Preventative Maintenance Section of the current Operation Manual shall be performed. The minimum Preventative Maintenance Service outlined in Table 13-1 below shall be performed.

Table 13-1
Preventive Maintenance Service

DESCRIPTION	INTERVAL PROCEDURE		
Lubricate	In accordance with Operation Manual	In accordance with Operation Manual	
Fuel Supply	Before start-up	Ensure adequate fuel supply for current job.	
Propane	Before start-up	Ensure adequate fuel supply for current job.	
Enclosure Door Seals	Monthly	Ensure a weather tight seal.	
Enclosure Lights	Daily	Condition	
Waste Feed Monitor	Weekly	Test by placing a test weight (10% over max.) and ensuring that the red over-limit indicator light comes on and the system automatically prevents feeding.	
Calibrate Gas Monitoring System	Each usage	System checks itself during each start-up.	
Archive data on hard disk	Monthly or as required	enthly or as required Ensure all necessary data is archived prior to exceeding the capacity of the hard disk.	
Air Compressor	Daily	Check automatic drain system.	
.Feed Conveyor	Monthly	Check/adjust support rollers, links, bearings, sprockets, and associated hardware.	

Discharge Conveyor Monthly/Daily Check/adjust support rollers, links,

bearings, sprockets, and associated

hardware. Remove foreign

metal/material daily.

Retort Chains Monthly Check/adjust retort drive chains,

bearings, and sprockets. Replace as

required.

Draft Fan Drive Belts Bi-monthly Check/adjust drive belts. Replace

as necessary.

Cyclone and Baghouse Double Tipping Valves

Monthly

clogged and that the valves work

Ensure that the hopper is not

freely.

Baghouse As indicated by change

in baghouse pressure

Inspect bag condition by opening the access door and visually inspecting elements for excess contamination (blinding) or holes. Replace individual elements as

required.

5.0 **CALIBRATION SCHEDULE**

- 5.1 Table 13-2 summarizes the calibration audit schedule for the APE-1236 furnace system instruments. In all cases, the minimum calibration audit frequency shall be at least that recommended by the manufacturer.
- 5.2 A calibration audit shall be conducted by a qualified organization at the intervals indicated in Table 13-2. The weigh scale shall be calibrated by operators using calibrated certified weights. The O₂ and CO monitors shall be calibrated daily during operations and quarterly by operators using certified gases. An annual audit of the O₂ and CO monitors shall be conducted by a qualified organization. The other instruments shall be audited annually by a qualified organization. Instruments found to be out of calibration shall be replaced with a calibrated instrument of the same type.
- 5.3 A separate maintenance file shall be maintained for each instrument/monitor. The file shall contain all work, maintenance, calibration, testing, and inspection data as required for each instrument.

Table 13-2 Calibration Schedule

DESCRIPTION	MEASUREMENT DEVICE	MANUFACTURER	MODEL NUMBER	CALIBRATION FREQUENCY
Baghouse Δp	pressure transmitter/differential pressure, 0-15" WC	Foxboro	IDP10- D22A11FM1B1	annually
system draft pressure	pressure transmitter/gage pressure, 0-5" WC	Foxboro	IGP20- D12A11FM1B1	annually
rotary kiln feed end draft	pressure transmitter/gage pressure, 0-0.5" WC	Foxboro	IGP20- D12A11FM1B1	annually
rotary kiln feed end temperature	panelmeter, thermocouple with transmitter	Newport	INFCT-0001	annually
afterburner temperature	panelmeter, thermocouple with transmitter	Newport	INFCT-0001	annually
baghouse inlet temperature	panelmeter, thermocouple with transmitter	Newport	INFCT-0001	annually
baghouse outlet temperature	panelmeter, thermocouple with transmitter	Newport	INFCT-0001	annually
rotary kiln burner end temperature	panelmeter, thermocouple with transmitter	Newport	INFCT-0001	annually
stack air flow	insertion mass flow meter Series 454FT	Kurz	756004-13-23-00- 0000-13-14-01-28- 20-01-12	annually
stack temperature	insertion mass flow meter Series 454FT	Kurz	756004-13-23-00- 0000-13-14-01-28- 20-01-12	annually
O ₂ monitor	see Attachment 15	Southern Technologies	see Attachment 15	daily, quarterly, annually
CO monitor	see Attachment 15	Southern Technologies	see Attachment 15	daily, quarterly, annually
CO monitor	see Attachment 15	Southern Technologies	see Attachment 15	daily, quarterly, annually
waste feed scale	explosion proof electronic platform scale.	Hardy Instruments Scale	HI1746WS	weekly