

JAN 25 2017

DSHW-2016-015981

August 9, 2016 Kleinfelder Project No: 20170041.001A

Salt Lake Valley Solid Waste Management 6030 West California Avenue Salt Lake City, UT 84104

ATTENTION: Mr. John Ioannou Mr. Thomas M. Burrup

SUBJECT: LANDFILL HEIGHT CHANGE FEASIBILITY STUDY SALT LAKE COUNTY LANDFILL 6030 WEST CALIFORNIA AVE SALT LAKE CITY, UTAH

Dear Messrs. Ioannou & Burrup:

We are pleased to submit our landfill height change feasibility study for the Salt Lake County Landfill located at 6030 West California Ave in Salt Lake City, Utah. This investigation was performed in accordance with our proposal to you dated April 1, 2016.

Based on our geotechnical investigation and analysis, we have provided conclusions regarding settlement and slope stability for the proposed increase in landfill height. We appreciate the opportunity to provide geotechnical services to you on this project. Please contact Mr. Trent Parkhill at 801.261.3336, if you have any questions regarding this report or if we can provide assistance with other aspects of the project.

Respectfully submitted,

KLEINFELDER

Matthew Moriarty, EIT

Staff Geotechnical Engineer

Trent Parkhill, PE Sr. Principal Geotechnical Engineer

20170041.001A/SLC16R © 2016 Kleinfelder Page 1 of 1

LANDFILL HEIGHT CHANGE FEASIBILITY STUDY SALT LAKE COUNY LANDFILL 6030 WEST CALIFORNIA AVE SALT LAKE CITY, UTAH KLEINFELDER PROJECT NO. 20170041.001A

AUGUST 9, 2016

Copyright 2016 Kleinfelder All Rights Reserved

ONLY THE CLIENT OR ITS DESIGNATED REPRESENTATIVES MAY USE THIS DOCUMENT AND ONLY FOR THE SPECIFIC PROJECT FOR WHICH THIS REPORT WAS PREPARED.

20170041.001A/SLC16R © 2016 Kleinfelder Page i of iii

A Report prepared for:

Salt Lake Valley Solid Waste Management 6030 West California Ave Salt Lake City, UT 84104

LANDFILL HEIGHT CHANGE FEASIBILITY STUDY SALT LAKE COUNTY LANDFILL 6030 WEST CALIFORNIA AVE SALT LAKE CITY, UTAH

Prepared by:

Morrise Matthew Moriarty, EIT

Staff Geotechnical Engineer No. 81783 STUART TREE PARKHILI TEOFU zamman

Trent Parkhill, PE Sr. Principal Geotechnical Engineer

KLEINFELDER

849 West Levoy Drive, Suite 200 Salt Lake City, Utah 84123 Phone: 801.261.3336 Fax: 801.261.3306

August 9, 2016 Kleinfelder Project No. 20170041.001A

TABLE OF CONTENTS

Section

Page

1	INTRO	DUCTION	1
	1.1	GENERAL	1
	1.2	PROJECT DESCRIPTION	1
	1.3	PURPOSE AND SCOPE OF SERVICES	2
2	בובו ח	EXPLORATION AND LABORATORY TESTING	1
2	2.1	FIELD EXPLORATION	
	2.2	LABORATORY TESTING	
3		CONDITIONS	
	3.1	SURFACE	
	3.2	GEOLOGIC SETTING	
	3.3	GEOLOGIC HAZARDS	
		3.3.1 Seismicity and Faulting	
		3.3.2 Liquefaction and Lateral Spreading	
	3.4	GROUNDWATER	8
4	CONC	LUSIONS AND RECOMMENDATIONS	9
-	4.1	SETTLEMENT	
		4.1.1 Methodologies Used in Settlement Analyses	
	4.2	SLOPE STABILITY	
		4.2.1 Methodologies Used in Slope Stability Analyses1	
		4.2.2 Slope Stability Analysis Results1	
5		ATIONS1	4
v			
6	REFE	RENCES1	5

FIGURES

Landfill Grading Plan and Cross Sections 1

APPENDICES

- Site Vicinity Map and Exploration Location Map А
- Logs of Exploratory Borings, CPT Results, Geophysical Results, Survey В
- Laboratory Test Results Slope Stability Results С
- D
- Important Information about your Geotechnical Engineering Report Е

LANDFILL HEIGHT CHANGE FEASIBILITY STUDY SALT LAKE COUNTY LANDFILL 6030 WEST CALIFORNIA AVE SALT LAKE CITY, UTAH

1 INTRODUCTION

1.1 GENERAL

This report presents the results of Kleinfelder's feasibility study for the increase in height of the Salt Lake County Landfill located at 6030 West California Avenue in Salt Lake City, Utah. The location of the project site is shown on the Site Vicinity Map (Figure A-1) in Appendix A. Our services for this study were performed in accordance with the scope of work outlined in our April 1, 2016 proposal.

This feasibility study includes our conclusions relating to the anticipated settlement and slope stability of the landfill with the proposed height increase. The conclusions and recommendations stated in this report are based on the subsurface conditions encountered in our exploratory borings at the time they were performed. They also are subject to the limitations and provisions stated in Section 5 of this report.

1.2 PROJECT DESCRIPTION

We understand that in planning for the future operations and eventual closure of the landfill site, the Utah Division of Waste Management and Radiation Control has requested that Salt Lake Valley Solid Waste Management Facility (SLVSWMF) study the geotechnical feasibility of the current plan to raise the height of the existing landfill cells above the elevation currently specified and approved in the existing solid waste permit. Our understanding is that current landfill cells are approximately 60 feet in height and the new plan proposes to raise the landfill an additional 60 feet.

1.3 PURPOSE AND SCOPE OF SERVICES

The purpose of our feasibility study was to explore and evaluate subsurface conditions at the landfill in order to estimate the effects of increasing the landfill height in terms of settlement, strain in the landfill liner system, and slope stability. The conclusions presented in this study are based on our analyses of the data from our field exploration and laboratory testing programs.

Kleinfelder's scope of services included:

- Research and review historic geotechnical information available through SLVSWMF, adjacent Utah Department of Transportation Properties, surrounding commercial developments, and the Salt Lake City engineering office.
- Develop preliminary analysis models and perform preliminary analysis for settlement and slope stability based on compiled historic data and observations.
- Use results from the preliminary analysis to modify proposed explorations to better obtain beneficial data.
- Conduct Cone Penetration Tests (CPT) at 5 locations to depths ranging from approximately 50 to 150 feet bgs.
- Perform geophysical surveys at 2 locations using Multichannel Analysis of Surface Waves (MASW) and Refraction Microtremor (ReMi).
- Advance up to 6 exploratory borings to depths ranging from approximately 31.5 to 96.5 feet below the ground surface (bgs). Take samples and perform field vane shear tests (VST) at selected depths while advancing the borings.
- Test selected samples obtained during the field exploration to evaluate relevant engineering properties of the soil.
- Use results of field and laboratory exploration and testing to develop soil profiles and analysis models to perform analysis for settlement and slope stability.

• Preparation of this feasibility study report, which includes a description of the surface and subsurface site conditions found during our investigation, summaries of our analyses our conclusions.

2 FIELD EXPLORATION AND LABORATORY TESTING

2.1 FIELD EXPLORATION

Five Cone Penetration Tests (CPT) were performed at the site on May 9, 2016. The CPT involve pushing a conical-shaped probe into a soil deposit and recording the resistance of the soil to penetration. Test equipment consists of a cone assembly, a series of hollow sounding rods, a hydraulic frame to push the cone and rods into the soil, an electronic data processing unit, and a truck to transport the test equipment and provide thrust resistance. The data obtained from the CPT can be used to derive several significant soil parameters such as estimates of soil type, strength, compressibility, and shear wave velocity.

In addition to the shear wave velocity measured from the CPT soundings, geophysical surveys were performed on May 13, 2016 using MASW and ReMi methods. These methods use a linear array of geophones to measure the velocity of surface waves generated by dropping a 500-pound weight on the ground. These velocities are analyzed to estimate shear wave velocities with depth.

Kleinfelder drilled 6 exploratory borings at the site between May 16 and 23, 2016. The exploratory borings were located within approximately five feet of the corresponding CPT soundings. The borings were advanced using a truck-mounted drill rig equipped with 6-inch outside diameter (O.D.) mud rotary equipment. Relatively undisturbed samples of fine-grained soils were collected during exploration using a standard Shelby tube sampler (3-inch O.D.). Disturbed subsurface soil samples were obtained using a standard split-spoon sampler (2-inch O.D.) driven into the soil with blows from a 140-pound automatic hammer falling through a 30-inch drop. The raw blows required to drive the samplers into the soil are recorded on each of the boring logs. These blow counts are an indication of the relative density or consistency of the on-site soils. In addition to collecting undisturbed and disturbed samples, in-situ strength testing was performed using the field vane shear test (VST). The raw VST results are recorded on each of the boring logs.

Samples obtained during the field exploration were transported to the laboratory for further examination and testing. Samples will be retained for a period of 90 days from the date of this

feasibility study after which time samples will be discarded unless otherwise requested by SLVSWMF.

Approximate boring, CPT, and geophysical survey locations are shown on the Exploration Location Map (Figure A-2). Appendix B includes graphical boring logs, CPT soundings, and geophysical survey results. A key to the logs and a summary of the USCS (Unified Soil Classification System) soil descriptions are also contained in Appendix B. The lines defining boundaries between soil types on the logs are based upon Kleinfelder's field observations and are therefore approximate. Transition between soil types may be abrupt or may be gradual.

2.2 LABORATORY TESTING

Geotechnical laboratory tests were performed on selected soil samples to estimate their relative engineering properties. Testing for the following properties was performed in general accordance with recognized standards:

- Moisture Content / Dry Density (15 tests);
- Minus 200 Wash (25 tests);
- Sieve Analysis (2 tests);
- Atterberg Limits (24 tests);
- One-Dimensional Consolidation (15 test);

Gradation, percent passing the number 200 sieve, and Atterberg Limits analyses were performed to aid in classification of the soils encountered during the field investigation. The geotechnical laboratory tests results are included in Appendix C of this report. Selected geotechnical test results are also shown on the boring logs contained in Appendix B.

3 SITE CONDITIONS

3.1 SURFACE

The project site is located on the west side of Salt Lake City, at 6030 West California Avenue. The site is bounded on the north by Union Pacific Railroad tracks and on the south by California Avenue. It is bounded on the east and west primarily by undeveloped land. The southwest corner of the site is border by Waste Management's Mountain View Landfill. At the time of our investigation, the majority of the site was being used as an active landfill with offices located on the southeast end of the site and a small power plant fueled by collected landfill gases on the east end of the site.

3.2 GEOLOGIC SETTING

The site is located on the west side of the Salt Lake Valley. The Salt Lake Valley is within the Basin and Range Physiographic Province, which is characterized by approximately north-trending valleys and mountain ranges which have been formed by extensional tectonics and displacement along normal faults (Hunt, 1967). This valley is a deep, sediment-filled structural basin of Cenozoic age flanked by two uplifted blocks, the Wasatch Range on the east and the Oquirrh Mountains to the west. The Wasatch Range is the easternmost limit of the Basin and Range Physiographic Province.

The near-surface geology of the valley is dominated by sediments deposited by Lake Bonneville and the Jordan River during the late Pleistocene to Holocene Epochs. The native soils exposed at the surface in the vicinity of the site have been mapped as primarily of lacustrine and alluvial deposits consisting of clay and silt with minor sand and gravel (Solomon, Biek, and Smith, 2007). Native soils encountered at the site during our field investigation were generally consistent with the geologic mapping.

3.3 GEOLOGIC HAZARDS

3.3.1 Seismicity and Faulting

The proposed project site is located within the Intermountain Seismic Belt, a seismically active region that extends from Arizona to Montana (Smith and Arabasz, 1991). Solomon, Biek, and Smith (2007) have mapped traces of the Granger Fault approximately 1.3 miles east of the site. The USGS has mapped the Wasatch fault zone approximately 9.3 miles to the east of the site. Active faults in the region are potential sources for seismic loading hazards at the site. A fault is considered to be active if displacement has occurred within the past 10,000 years.

Based on our soils investigation and subsequent analysis the subsurface material at the site would correspond to a Site Class D. The design spectral response acceleration parameters, corresponding to a Site Class D, are $S_{DS} = 0.861g$ and $S_{D1} = 0.451g$ for short period and 1-second period, respectively. The peak ground acceleration for the site is 0.513. The PGA along with S_{DS} and S_{D1} values were used in our slope stability analysis for the seismic case. The intermediate values from ASCE 7 used to obtain the design parameters are contained below in Tables 1 and 2:

TABLE 1

DESIGN ACCELERATION FOR SHORT PERIODS

Ss	Sms	Sds
1.291	1.291	0.861

S_S = The mapped spectral accelerations for short periods (U.S. Geological Survey Seismic Design Maps, 2008)

 S_{MS} = The maximum considered earthquake spectral response accelerations for short periods

 $S_{DS} = 5$ percent damped design spectral response acceleration at short periods

TABLE 2DESIGN ACCELERATION FOR 1-SEC PERIOD

S ₁	S _{M1}	S _{D1}
0.431	0.676	0.451

S₁ = The mapped spectral accelerations for 1-second period (U.S. Geological Survey Seismic Design Maps, 2008)

 S_{M1} = The maximum considered earthquake spectral response accelerations for 1 second period

 $S_{D1} = 5$ percent damped design spectral response acceleration at 1 second period

3.3.2 Liquefaction and Lateral Spreading

Liquefaction is a phenomenon whereby loose, saturated, soil deposits lose a significant portion of their shear strength due to excess pore water pressure buildup resulting from dynamic loading, such as that caused by an earthquake. Among other effects, liquefaction can result in densification of such deposits causing settlements of overlying layers after an earthquake, as excess pore water pressures are dissipated. The primary factors affecting liquefaction potential of a soil deposit are: (1) level and duration of seismic ground motions; (2) soil type and consistency; and (3) depth-to-groundwater.

The site is mapped as having a high potential for liquefaction (Castleton, Elliott, & McDonald, 2011). However, based on information gathered during our subsurface investigation and subsequent analysis it appears that the landfill is underlain by soils which are not expected to liquefy.

3.4 GROUNDWATER

Groundwater was observed in the CPT soundings at depths ranging from 7 to 14.5 feet. Groundwater levels are dependent on seasonal precipitation, irrigation practices, land use and runoff conditions. As such, it is possible that the observed water level may fluctuate during dryer and wetter seasons of the year. A detailed study of site hydrogeologic conditions was beyond the scope of work of this investigation; as a result, we are unable to characterize potential groundwater fluctuations at the site.

4 CONCLUSIONS AND RECOMMENDATIONS

4.1 SETTLEMENT

Settlement analyses were performed using soil properties estimated from the site exploration and laboratory testing program. The total settlement resulting from adding approximately 120 feet of MSW near the perimeter of the landfill to a total of 215 feet of MSW at the center of the landfill is estimated to be approximately 6 feet. The total settlement resulting from adding approximately 120 feet of MSW to the landfill (i.e., no additional cap on top) is estimated to be approximately 3½ feet. Idealized cross sections for these two cases are shown in Figure 1 and Figure 2, respectively. These estimates are lower than was initially expected due to the relatively stiff soil properties found during laboratory testing. The soils were found to be consistently stiffer than in other areas near this part of the valley. This could be related to the historical use of the site as a tailings pond containing washed or milled ore (Solomon, Biek, & Smith 2007). However, we have not been able to verify this. With the low anticipated settlements we calculate strains in the liner under the landfill of less than 2%. According to literature, the liner material would not be expected to begin yielding at these levels of strain, and therefore, the strain is anticipated to be much less than the strain required to cause failure in the liner.

4.1.1 Methodologies Used in Settlement Analyses

Settlement analyses are performed using soil properties obtained during field and laboratory testing. Because of the very large size of the fill, properties were needed for soil layers below practical test boring depths. In order to develop these deeper soil properties, we used correlations from the literature between shear wave velocities in the soils and the settlement properties of the soil.

At the elevations where we were able to obtain samples of the soils, we primarily used the settlement properties from conventional consolidation tests (tests for settlement of clays.) However, in these shallower areas, we also used the correlations with shear wave velocity to aid in the interpretation of the soil properties.

In the deeper areas, where it was not practical to obtain soil samples, we used the correlations devolved with shear wave velocities to develop soil properties. The deeper shear wave velocities were obtained from the MASW and ReMi testing conducted on this site, and from a deeper shear wave velocity profile conducted by others, 4,800 ft. north of the landfill (Wilder & Stokoe).

In an effort to verify the settlement model, design drawings and survey data were obtained to look for older elevations. We hoped that we could find elevations of the same objects over time, allowing us to verify how the landfill has settled since its construction. This information would help us to further calibrate our settlement models. In particular, we looked for elevations at the bottoms of the leachate sumps. While we were able to find design plans with elevations noted, no as built drawings were found during our data search. Therefore we could not confirm that the sumps were placed exactly at the elevations noted in the design plans.

Survey data was obtained from a recent survey of the leachate sumps. The results of this survey are presented in Table 3. These data indicate that the leachate sumps are currently roughly 4 to 7 ft. below the as-designed sump elevations. Since it is very possible that the sumps were not placed at the design elevations, we cannot conclude that the settlement to date of the landfill is in the 4 to 7 ft. range. However, if the sumps were placed at the as-designed elevations, and these settlements are correct, then the calculated strains for the landfill liner at the future 120 ft. height, would still be on the order of 2% strain. Therefore, while there is uncertainty in these "measured" settlements, they do confirm the conclusion that the landfill liner will not reach rupture strains at the 120 ft. design height.

Leachate Sump	Design El. On EMCON Drawing #3 (11 Nov. 1991) (Leachate Collection and Removal System (LCRS) Plan (ft)	Top of Riser Elevation (ft)	Bottom of Leachate Riser Elevation (ft)
S-1	4217	4297.302	4212.90
S-2	4218.5	4332.02	4208.83
S-3	4216.5	4313.115	4211.55
S-4	4216.5	4325.623	4202.99
S-5	4218.5	4254.428	4214.54
S-6	4213	4300.192	4207.15
S-7	4213	4302.058	4206.24

TABLE 3

ELEVATION OF LECHATE SUMPS

The primary benchmark used for this work is the well-known benchmark at the southeast corner of the landfill, shown on the survey plan in Appendix B. Ensign Engineering checked the elevation of this benchmark against a higher accuracy benchmark, further from the landfill, and found that the benchmark in the southeast corner is 3.042 ft. higher than its official recorded elevation (El. 4233.119 vs. El. 4230.077). Knowing the error in this benchmark may be helpful in future surveys conducted at the landfill.

Now that good elevations have been determined for the bottom of the sumps, if confirmation of the estimated settlement and strain is desired, one could conduct future surveys of the bottom of sump elevations and compare the incremental movements with incremental calculated settlements.

4.2 SLOPE STABILITY

Slope stability failure can typically be described as a critical deep-seated deformation of a slope when the forces driving that deformation exceed the resisting forces from the underlying native soils. Driving forces include gravity and seismic loads, while resisting forces include soil shear strength and in some cases soil weight at the toe. In evaluating slope stability, it is convenient to convey the results of the analyses in terms of a factor of safety, which is defined as the ratio of the resisting forces to the driving forces.

4.2.1 Methodologies Used in Slope Stability Analyses

Slope stability analyses require assumptions, including development of soil strength parameters and geometry of subsurface conditions. These are developed based on results of field and laboratory investigations, review of existing published information, and previous experience in the site vicinity. Limit equilibrium slope stability analyses were performed using the computer program Slope/W by Geo-Slope International. Spencer's method of slices was used, which satisfies both moment and force equilibrium. The analyses employed entry-exit critical slip surface search routines using both circular and block failure surfaces.

Evaluation of slope stability involves developing a cross section of the existing topography and the proposed site grades; developing a generalized soil profile and soil strength parameters; and calculating the factor of safety under various stress conditions. Based on design drawings

provided by SLVSWMF (Emcon, 1991), current conditions, and our understanding of future plans for the landfill we understand that constructed slopes could range from 3 Horizontal (H): 1 Vertical (V) to 4H: 1V. Slope stability analysis was performed using the idealized cross section geometry shown in Figures 1 through 3.

Soil strength was modeled using isotropic Mohr Coulomb failure criteria in the granular deposits. The upper clay layers were modeled with anisotropic undrained shear strength failure criteria that account for the increase in undrained shear strength with depth. Soil strength properties for the clays under the landfill were developed using in-situ Field Vane Shear Tests conducted adjacent to the landfill, CPT correlations, and an approach known as SHANSEP (Stress History and Normalized Soil Engineering Properties).

A summary of the soil engineering parameters used in the slope stability analyses is presented in Table 4.

Material Type	Friction Angle (degrees)	Cohesion (psf)	Total Unit Weight (pcf)
Compacted Landfill Material *	32	300	60
HDPE Landfill Liner	22	-	60
Clay Landfill Liner	22	-	115
Upper Clay	-	1000 + 20 psf/ft.	122
Upper Sand	34	-	122
Middle Clay	-	2500	125

TABLE 4

SUMMARY OF SOIL ENGINEERING PARAMETERS USED IN SLOPE STABILITY ANALYSIS

Notes: psf = pounds per square feet; pcf = pounds per cubic feet

* Compacted Landfill Material properties are from Wong, W. W. Y. (2009).

4.2.2 Slope Stability Analysis Results

Slope stability analyses were performed for a static case and a seismic case. Our initial analysis using material properties from previous nearby investigations indicated that the proposed increase in landfill height would result in unstable to marginally stable slopes for the static case. However, the strengths determined from the Field Vane Shear Tests, CPT correlations, and SHANSEP were about 4 times the strengths measured with lab testing during the 1990's. With

the higher strengths determined by these more sophisticated testing methods, the landfill is expected to be stable for the following three cases:

- Case 1 Landfill raised to 120 ft. height at 3H:1V with additional 70 ft. of fill at 5% slope placed on top (215' MSW at center of landfill). See Figure 1 for idealized cross section.
- Case 2 Landfill raised to 120 ft. height (El. 4360') with 3H:1V slope (145' MSW at center of landfill). See Figure 2 for idealized cross section.
- Case 3 Landfill raised to 120 ft. height at 3H:1V after Module 8 is excavated to liner depth. See Figure 3 for idealized cross section.

The idealized geometry for these cases are shown in Figures 1 through 3. The factors of safety for both static and seismic conditions are summarized in Table 5. The model output for static conditions for each case are shown in Figures D-1 through D-3 in Appendix D.

Design Case	Description	Static Factor of Safety	Pseudo-Static Factor of Safety	
Case 1	Landfill raised to 120 ft. height at 3H: 1V with additional 70 ft. grade raise at 5% slope. (Figure 1)	1.66	0.65	
Case 2	Landfill raised to 120 ft. height at 3H:1V slope (Figure 2)	1.74	0.78	
Case 3	Landfill raised to 120 ft. height at 3H:1V slope after Module 8 is excavated to liner depth (Figure 3)	1.64	0.79	

TABLE 5

RESULTS OF SLOPE STABILITY ANALYSIS

The slope stability results shown in Table 5 are greater than 1.5 for the static case and indicate the cases are considered stable for static conditions. The results for the seismic (pseudo-static) cases indicate that the slope may fail during a larger magnitude seismic event. However, based on our seismic displacement analyses, we anticipate that the total movement of the slope would be approximately 1 foot or less.

KLEINFELDER Bright People. Right Solutions.

5 LIMITATIONS

This work was performed in a manner consistent with that level of care and skill ordinarily exercised by other members of Kleinfelder's profession practicing in the same locality, under similar conditions and at the date the services are provided. Our conclusions, opinions and recommendations are based on a limited number of observations and data. It is possible that conditions could vary between or beyond the data evaluated. Kleinfelder makes no other representation, guarantee or warranty, express or implied, regarding the services, communication (oral or written), report, opinion, or instrument of service provided. This report may be used only by the Client and the registered design professional in responsible charge and only for the purposes stated for this specific engagement within a reasonable time from its issuance, but in no event later than three years from the date of the report.

The scope of services was limited at the site. It should be recognized that definition and evaluation of subsurface conditions are difficult. Judgments leading to conclusions and recommendations are generally made with incomplete knowledge of the subsurface conditions present due to the limitations of data from field studies.

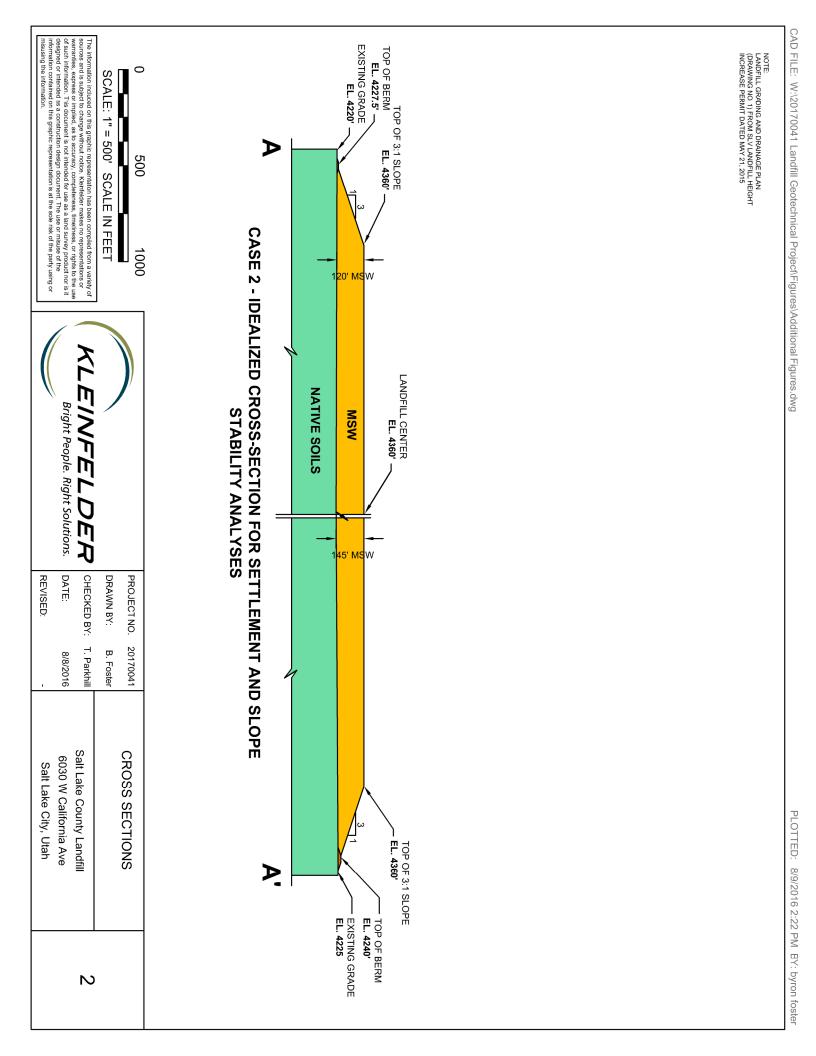
Kleinfelder offers various levels of investigative and engineering services to suit the varying needs of different clients. Although risk can never be eliminated, more detailed and extensive studies yield more information, which may help understand and manage the level of risk. Since detailed study and analysis involves greater expense, our clients participate in determining levels of service, which provide information for their purposes at acceptable levels of risk. The client and key members of the design team should discuss the issues covered in this report with Kleinfelder, so that the issues are understood and applied in a manner consistent with the owner's budget, tolerance of risk and expectations for future performance and maintenance. Kleinfelder cannot be responsible for interpretation by others of this report or the conditions encountered in the field.

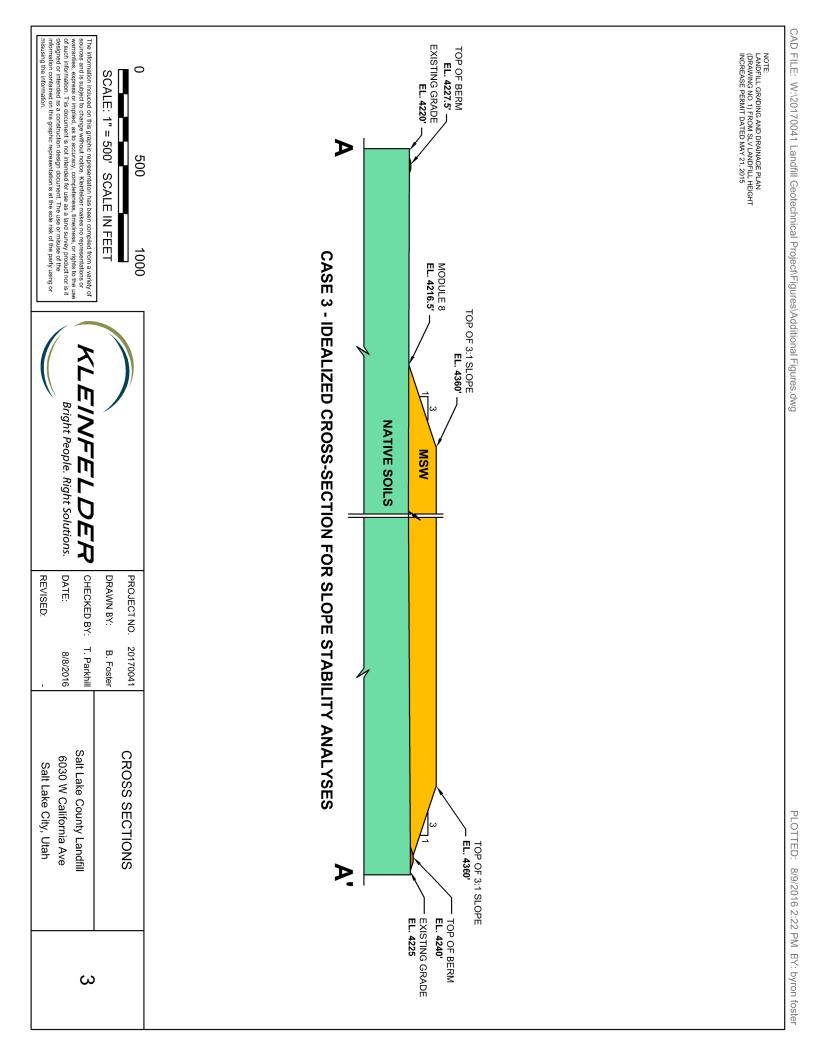
6 REFERENCES


- Biek, R.F. (2005). Geologic Map of the Jordan Narrows Quadrangle, Salt Lake and Utah Counties, Utah, Utah Geological Survey.
- Castleton, J.J., Elliott, A.H., and McDonald, G.N. (2011). Liquefaction Susceptibility Map of the Magna Quadrangle, Salt Lake County, Utah, Utah Geological Survey Special Study 137.
- Emcon (1991). Salt Lake Valley Landfill Master Plan, Salt Lake County, UT. Volume 2 Appendices.
- Hunt, C.B. (1967). Physiography of the United States: San Francisco, W.H. Freeman, 480 p.

International Code Council, International Building Code (IBC), 2012.

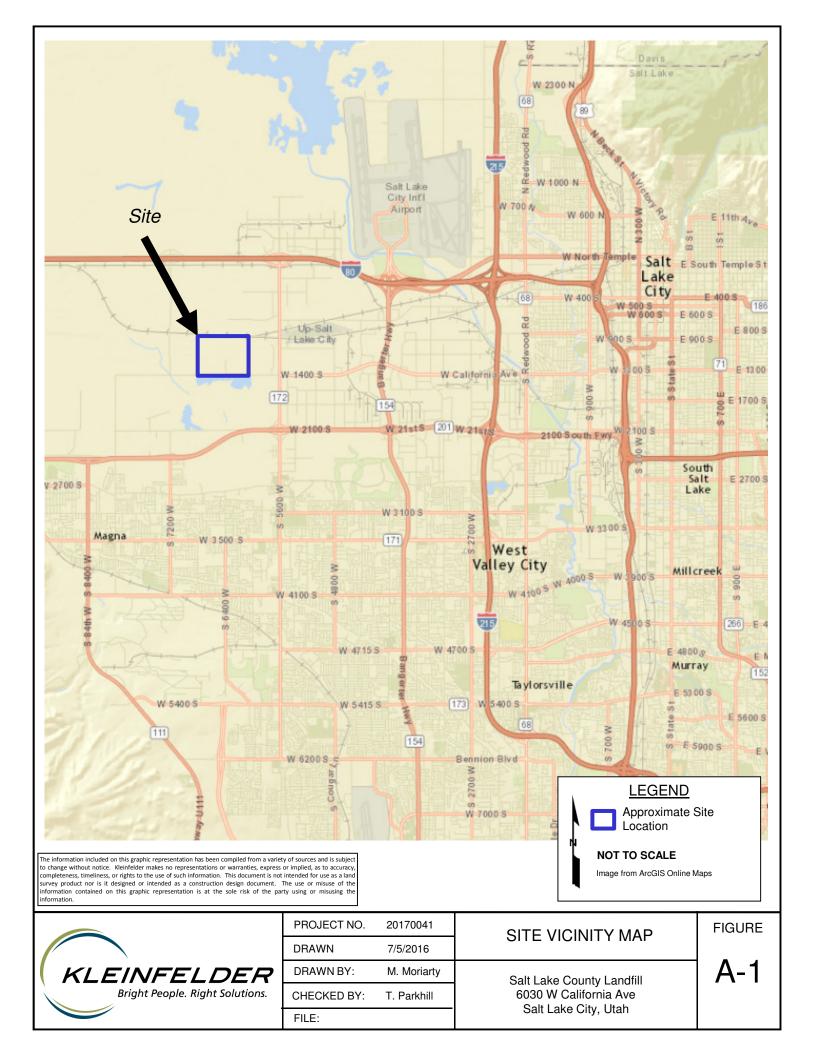
- Petersen, M.D., A.D. Frankel, S.C. Harmsen, C.S. Mueller, K.M. Haller, R.L. Wheeler, R.L. Wesson, Y. Zeng, O.S. Boyd, D.M. Perkins, N. Luco, E.H. Field, C.J. Wills, & K.S. Rukstales (2008), "Documentation for the 2008 Update of the United States National Seismic Hazard Maps," U.S. Geological Survey Open-File Report 2008-1128, 61 p.
- Smith, R. B., and Arabasz, W. J. (1991). Seismicity of the Intermountain Seismic Belt, in Slemmons, D. B., Engdahl, E. R., Zoback, M. D., and Blackwell, D. D., editors, Neotectonics of North America, Geological Society of America, Decade Map Volume 1, p. 185-228.
- Wilder, B. D. and Stokoe, K. SASW Testing in the Salt Lake Valley, UT Determine V_s Profiles, United States Geological Survey Award Number 06HQR0050.

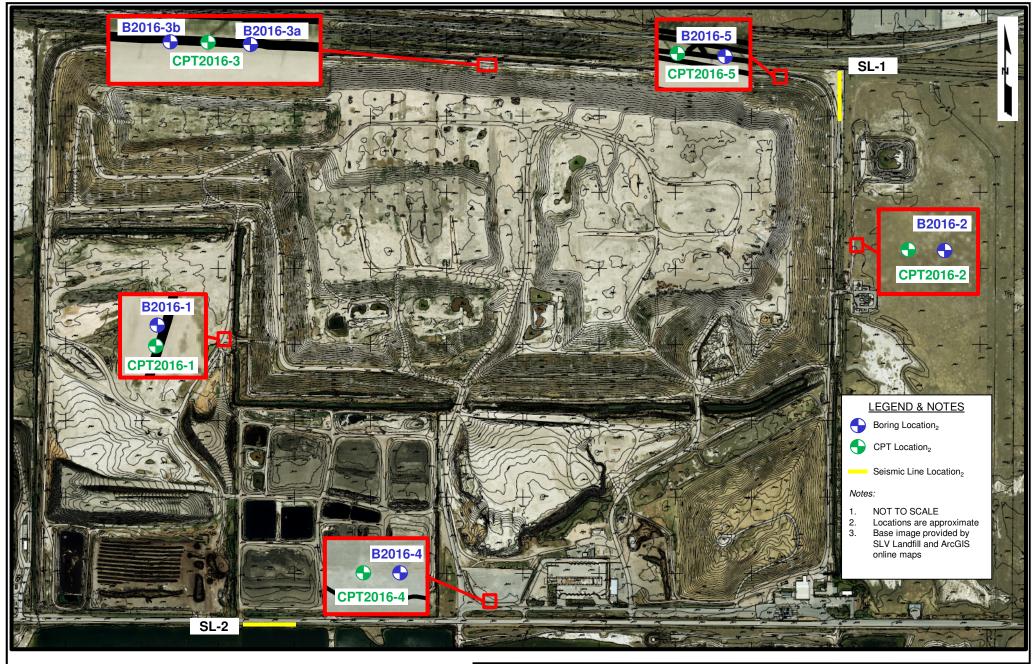

Wong, W. W. Y. (2009). Investigation of the Geotechnical Properties of Municipal Solid Waste as a Function of Placement Conditions, Thesis presented to California Polytechnic State University.



CAD FILE: W:\20170041 Landfill Geotechnical Project\Figures\Additional Figures.dwg

PLOTTED: 8/9/2016 2:21 PM EY: byron foster





APPENDIX A

Site Vicinity Map and Exploration Location Map

The information included on this graphic representation has been compiled from a variety of sources and is subject to change without notice. Kleinfelder makes no representations or warranties, express or implied, as to accuracy, completeness, timeliness, or rights to the use of such information. This document is not intended for use as a land survey product nor is it designed or intended as a construction design document. The use or misuse of the information contained on this graphic representation is at the sole risk of the party using or misuing the information.

	PROJECT NO.	20170041	EXPLORATION LOCATION	FIGURE
	DRAWN	7/5/2016	MAP	
KLEINFELDER	DRAWN BY:	M. Moriarty	Salt Lake County Landfill	A-2
Bright People. Right Solutions.	CHECKED BY: T. Parkhill		6030 W California Ave	
	FILE:		Salt Lake City, UT	

APPENDIX B

Logs of Exploratory Borings, CPT Results, Geophysical Results, Survey

SAMPLE/SAMPLER TYPE GRAPHICS		UNIF	IED S	SOIL CLAS	SSIFICAT	ION S	<u>YSTEM (/</u>	<u>ASTM D 2487)</u>		
SHELBY TUBE SAMPLER STANDARD PENETRATION SPLIT SPOON SAMPLER			ve)	CLEAN GRAVEL	Cu≥4 and 1≤Cc≤3		GW	WELL-GRADED GRAVELS GRAVEL-SAND MIXTURES LITTLE OR NO FINES		
(2 in. (50.8 mm.) outer diameter and 1-3/8 in. (34.9 mm.) inr diameter) VANE SHEAR	ner		ne #4 sieve)	WITH <5% FINES	Cu <4 and/ or 1>Cc >3		GP	POORLY GRADED GRAVE GRAVEL-SAND MIXTURES LITTLE OR NO FINES		
GROUND WATER GRAPHICS			larger than the		Cu≥4 and		GW-GM	WELL-GRADED GRAVELS GRAVEL-SAND MIXTURES LITTLE FINES		
 ✓ WATER LEVEL (level where first observed) ✓ WATER LEVEL (level after exploration completion) 			ion is larg	GRAVELS WITH	1≤Cc≤3		GW-GC	WELL-GRADED GRAVELS GRAVEL-SAND MIXTURES LITTLE CLAY FINES		
 ✓ WATER LEVEL (additional levels after exploration) ♦ OBSERVED SEEPAGE 		eve)	oarse frac	5% TO 12% FINES	Cu <4 and/		GP-GM	POORLY GRADED GRAVE GRAVEL-SAND MIXTURES LITTLE FINES		
NOTES • The report and graphics key are an integral part of these logs. A data and interpretations in this log are subject to the explanations a		SOILS (More than half of material is larger than the #200 sieve)	GRAVELS (More than half of coarse fraction is		or 1>Cc>3	0000	GP-GC	POORLY GRADED GRAVE GRAVEL-SAND MIXTURES LITTLE CLAY FINES		
 limitations stated in the report. Lines separating strata on the logs represent approximate boundaries only. Actual transitions may be gradual or differ from 		er than th	More than				GM	SILTY GRAVELS, GRAVEL MIXTURES	-SILT-SAND	
 No warranty is provided as to the continuity of soil or rock conditions between individual sample locations. 		ial is large	AVELS (I	GRAVELS WITH > 12% FINES			GC	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIX	TURES	
 Logs represent general soil or rock conditions observed at the point of exploration on the date indicated. In general, Unified Soil Classification System designations 		f of mater	GR				GC-GM	CLAYEY GRAVELS, GRAVEL-SAND-CLAY-SILT	MIXTURES	
presented on the logs were based on visual classification in the field and were modified where appropriate based on gradation and index property testing.		e than hal	(6)	SANDS	Cu <i>≥</i> 6 and 1≤Cc≤3	****	sw	WELL-GRADED SANDS, S MIXTURES WITH LITTLE (
 Fine grained soils that plot within the hatched area on the Plasticity Chart, and coarse grained soils with between 5% and 12% passing the No. 200 sieve require dual USCS symbols, ie., GW-GM, GP-GM, GW-GC, GP-GC, GC-GM, SW-SM, SP-SM, SW-SC, SP-SC 		IILS (Mor	half of coarse fraction is smaller than the #4 sieve)	WITH <5% FINES	Cu <6 and/ or 1>Cc >3		SP	POORLY GRADED SANDS SAND-GRAVEL MIXTURES LITTLE OR NO FINES		
 SC-SM. If sampler is not able to be driven at least 6 inches then 50/X indicates number of blows required to drive the identified sampler X 	×	AINED S(er than th		Cu≥6 and		SW-SM	WELL-GRADED SANDS, S MIXTURES WITH LITTLE F		
inches with a 140 pound hammer falling 30 inches.		COARSE GRAINED	n is small	SANDS WITH	1≤Cc≤3		SW-SC	WELL-GRADED SANDS, S MIXTURES WITH LITTLE (
		сод	'se fractio	5% TO 12% FINES	Cu <6 and/		SP-SM	POORLY GRADED SANDS SAND-GRAVEL MIXTURES LITTLE FINES		
			alf of coal		or 1>Cc>3		SP-SC	POORLY GRADED SANDS SAND-GRAVEL MIXTURES LITTLE CLAY FINES		
							SM	SILTY SANDS, SAND-GRA MIXTURES	VEL-SILT	
			SANDS (More than	SANDS WITH > 12% FINES			SC	CLAYEY SANDS, SAND-GI MIXTURES	RAVEL-CLAY	
			S				SC-SM	CLAYEY SANDS, SAND-SI MIXTURES	LT-CLAY	
	[_				N		RGANIC SILTS AND VERY FINE S YEY FINE SANDS, SILTS WITH S		
		ILS teria		SILTS AND		c	NOF	RGANIC CLAYS OF LOW TO MEDIUN YS, SANDY CLAYS, SILTY CLAYS, L	I PLASTICITY, GRAVELLY	
		o SO	han eve)	(Liquid L less than	imit 📶	CL	INOI	RGANIC CLAYS-SILTS OF LOW F YS, SANDY CLAYS, SILTY CLAYS	LASTICITY, GRAVELLY	
		INEC alf o	ller t 00 sid			- c	OR	GANIC SILTS & ORGANIC SIL1		
		SRA Ian h	sma ∍ #20					LOW PLASTICITY RGANIC SILTS, MICACEOUS		
		FINE GRAINED SOILS (More than half of material	is the	SILTS AND (Liquid L	CLAYS	y		TOMACEOUS FINE SAND OR RGANIC CLAYS OF HIGH PLA		
		ΞŠ		greater tha	in 50)			CLAYS GANIC CLAYS & ORGANIC SIL	TS OF	
	l					1	MEI	DIUM-TO-HIGH PLASTICITY		
	PROJI	ECT N	10.:	20170041		Ģ	GRAPHI	ICS KEY	APPENDIX	
	DRAW	/N BY	:	MDM						
KLEINFELDER	CHEC	KED E	BY:	тр		<u>م</u>	lt Laka V		B-1	
Pright People Pight Solutions		DATE: 7/1			7/1/2016			Salt Lake Valley Landfill 6030 W California Ave		

gINT FILE: PROJECTWISE: Salt Lake Valley Landfill, gpj gINT TEMPLATE: PROJECTWISE: KLF_STANDARD_GINT_LIBRARY_2016.GLB [GEO-LEGEND 1 (GRAPHICS KEY) WITH USCS]

ſ

-

REVISED:

Salt Lake City, Utah

GRAIN SIZE

DESCRIPTION		SIEVE SIZE	GRAIN SIZE	APPROXIMATE SIZE
Boulders		>12 in. (304.8 mm.)	>12 in. (304.8 mm.)	Larger than basketball-sized
Cobbles		3 - 12 in. (76.2 - 304.8 mm.)	3 - 12 in. (76.2 - 304.8 mm.)	Fist-sized to basketball-sized
Gravel	coarse	3/4 -3 in. (19 - 76.2 mm.)	3/4 -3 in. (19 - 76.2 mm.)	Thumb-sized to fist-sized
Graver	fine	#4 - 3/4 in. (#4 - 19 mm.)	0.19 - 0.75 in. (4.8 - 19 mm.)	Pea-sized to thumb-sized
	coarse	#10 - #4	0.079 - 0.19 in. (2 - 4.9 mm.)	Rock salt-sized to pea-sized
Sand	medium	#40 - #10	0.017 - 0.079 in. (0.43 - 2 mm.)	Sugar-sized to rock salt-sized
	fine	#200 - #40	0.0029 - 0.017 in. (0.07 - 0.43 mm.)	Flour-sized to sugar-sized
Fines		Passing #200	<0.0029 in. (<0.07 mm.)	Flour-sized and smaller

MUNSELL COLOR

ABBR
R
YR
Y
GY
G
BG
В
PB
Р
RP
Ν

PARTICLES PRESENT

Percentage <5

5-10

ANGULARITY

DESCRIPTION	CRITERIA				
Angular	Particles have sharp edges and relatively plane sides with unpolished surfaces	\square		$\overline{()}$	15.0
Subangular	Particles are similar to angular description but have rounded edges		لاس	E.	
Subrounded	Particles have nearly plane sides but have well-rounded corners and edges		\bigcirc		Ð
Rounded	Particles have smoothly curved sides and no edges	Rounded	Subrounded	Subangular	Angular

PLASTICITY

DESCRIPTION	LL	FIELD TEST
Non-plastic	NP	A 1/8-in. (3 mm.) thread cannot be rolled at any water content.
Low (L)	< 30	The thread can barely be rolled and the lump or thread cannot be formed when drier than the plastic limit.
Medium (M)	30 - 50	The thread is easy to roll and not much time is required to reach the plastic limit. The thread cannot be rerolled after reaching the plastic limit. The lump or thread crumbles when drier than the plastic limit
High (H)	> 50	It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump or thread can be formed without crumbling when drier than the plastic limit

APPARENT / RELATIVE DENSITY - COARSE-GRAINED SOIL

AFFARENT/ RELATIVE DENSITT - COARSE-GRAINED SOIL												
APPARENT DENSITY	SPT-N ₆₀ (# blows/ft)	MODIFIED CA SAMPLER (# blows/ft)	CALIFORNIA SAMPLER (# blows/ft)	RELATIVE DENSITY (%)	CONSISTENCY	UNCONFINED COMPRESSIVE STRENGTH (q_)(psf)	CRITERIA					
Very Loose	(# biows/it) <4	(# blows/it) <4	(# blows/it) <5	0 - 15	Very Soft	< 1000	Thumb will penetrate soil more than 1 in. (25 mm.)					
Loose	4 - 10	5 - 12	5 - 15	15 - 35	Soft	1000 - 2000	Thumb will penetrate soil about 1 in. (25 mm.)					
Medium Dense	10 - 30	12 - 35	15 - 40	35 - 65	Firm	2000 - 4000	Thumb will indent soil about 1/4-in. (6 mm.)					
Dense	30 - 50	35 - 60	40 - 70	65 - 85	Hard	4000 - 8000	Thumb will not indent soil but readily indented with thumbnail					
Very Dense	>50	>60	>70	85 - 100	Very Hard	> 8000	Thumbnail will not indent soil					

NOTE: AFTER TERZAGHI AND PECK, 1948

STRUCTURE

STRUCTURE			9	CEMENTATION		
DESCRIPTION	CRITERIA			DESCRIPTION	FIELD TEST	
Stratified	Alternating layers of varying material or colo at least 1/4-in. thick, note thickness	or with layers		Weakly	Crumbles or breaks with handling or sl finger pressure	ight
Laminated	Alternating layers of varying material or cold less than 1/4-in. thick, note thickness	or with the layer		Moderately	Crumbles or breaks with considerable finger pressure	
Fissured	Breaks along definite planes of fracture with to fracturing	n little resistance		Strongly	Will not crumble or break with finger pr	ressure
Slickensided	Fracture planes appear polished or glossy,	sometimes striate	d			
Blocky	Cohesive soil that can be broken down into lumps which resist further breakdown	small angular				
Lensed	Inclusion of small pockets of different soils, of sand scattered through a mass of clay; r		ses			
Homogeneous	Same color and appearance throughout					
		PROJECT NO .:	20170041	SOIL	DESCRIPTION KEY	APPENDIX
		DRAWN BY:	MDM			
KLE	EINFELDER	CHECKED BY:	TP	Salt	t Lake Valley Landfill	B-2
	Bright People. Right Solutions.	DATE:	7/1/2016		30 W California Ave alt Lake City, Utah	
		REVISED:	-			

	little	15-25
	some	30-45
	and	50
	mostly	50-100
ne touch		

Amount

trace

few

MOISTURE CONTENT

DESCRIPTION	FIELD TEST
Dry	Absence of moisture, dusty, dry to the touch
Moist	Damp but no visible water
Wet	Visible free water, usually soil is below water table

REACTION WITH HYDROCHLORIC ACID

DESCRIPTION	FIELD TEST
None	No visible reaction
Weak	Some reaction, with bubbles forming slowly
Strong	Violent reaction, with bubbles forming immediately

CONSISTENCY - FINE-GRAINED SOIL

Date Beg	gin - I	End:5/20/2016 D	Drilling Company:			5 Drillir	ng							BORING LOG B2016-1			
Logged	By:	M. Moriarty D	rill Crew:		J. Da	vis & (C. Dav	/is		I							
HorVer	t. Da	tum: Not Available D	rilling Equipme	ent:	CME-	-75			Hammer Type - Drop: 140 lb. Auto - 30 in.								
Plunge:			Drilling Method: Mud Rotary														
Weather	:	Cloudy & Windy Ex	Exploration Diameter: 6 in. O.D.														
		FIELD EXPLO	(PLORATION							LABORATORY RESULTS							
Depth (feet)	Graphical Log	Latitude: 40.74540° N Longitude: 112.04909° W Surface Condition: Perimeter Ro	ad L eruny		Blow Counts(BC)= Uncorr. Blows/6 in.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)	Additional Tests/ Remarks			
De	Gra	Lithologic Description	a V.	0	Blov Unc	Re((NF	US Syr	Co Co	Dry	Pa	Pa	Liq	NF (NF	Add			
	o h	Silty GRAVEL with Sand (GM)															
5-		Gravelly Lean CLAY (CL) bent shelby while pushing												-			
		Lean CLAY (CL): medium plasticity, brown very moist, very stiff Vane shear test performed with 2-inch van 600 in-lbs, Residual = 170 in-lbs. Vane shear test performed with 2-inch van	e. Peak =														
		400 in-lbs, Residual = 120 in-lbs.		-										-			
		Fat CLAY (CH): gray, very moist, medium				24"	СН	34.7	87.8		96	51	30	-			
- - -		Lean CLAY (CL): gray, very moist, very st Vane shear test performed with 2-inch van 600 in-lbs, Residual = 120 in-lbs.												-			
20-		Vane shear test performed with 2-inch van 500 in-lbs, Residual = 310 in-lbs.												-			
- 25-		Lean CLAY with Sand (CL): gray, very me stiff	bist, very			24"	CL	24.3	99.0		84	29	8	-			
- - -		Vane shear test performed with 2-inch van 600 in-lbs, Residual not measured.	e. Peak > 🔲											-			
30-		Vane shear test performed with 2-inch van 600 in-lbs, Residual not measured.	e. Peak >	3				GROU	JNDWAT	FRI	EVEL						
	-	The boring was terminated at approximate below ground surface. The boring was bac auger cuttings on May 20, 2016.						Depth techni <u>GENE</u>	to groun ques. RAL NO	dwat	er was	not ob	served	I due to mud rotary drilling			
			PROJECT NO. DRAWN BY:	.: 20	170041 MDM		Bori	RING LOG B2016-1					APPENDIX				
		EINFELDER Bright People. Right Solutions.	CHECKED BY: DATE: REVISED:	DATE: 7/1/2016 603					30 W California Ave salt Lake City, Utah					B-3			

mmoriarty	Date Beg		Ind:	5/16/2016	Drilling Com	pany		s Drilliı								BORI	NG LOG	B2016-2	
BY: mr	Logged E	-		M. Moriarty	Drill Crew:				C. Dav	/is									
	HorVert	. Dat	um:	Not Available	Drilling Equi						Ha	amme	r Typ	e - Dr	op: _	140 lb.	. Auto - 3	30 in	
3:23 F	Plunge:			-90 degrees	Drilling Meth		Mud		/										
16 03	Weather:			Partly Cloudy	Exploration I	Diam	eter: 6 in.	O.D.	1										
07/25/2016 03:23 PM				FIELD EX	PLORATION														
PLOTTED: 07/2	Depth (feet)	Graphical Log		Latitude: 40.74707° N Longitude: 112.03415° \ Surface Condition: Gra	W	l Sample Type	Blow Counts(BC)= Uncorr. Blows/6 in.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)		Additional Tests/ Remarks	2	
	Dep	Gra		Lithologic Descriptio	n	San	Blow	(NRec	USC	Wat	Dry	Pas	Pas	Liqu	(NP		Add Ren		
				ly Lean CLAY (CL): medium plas															
	- - 5- -		600 i	e shear test performed with 2.5-ind n-lbs, Residual not measured.				NR										- - - -	
	-		Lean verv	CLAY (CL): medium to high plas	ticity, tan, wet,														
	- 10—		Vane 430 i	e shear test performed with 2.5-ind n-lbs, Residual = 190. mes gray	ch vane. Peak =													-	
	- - - 15			shear test performed with 2-inch	vane. Peak =			24"	CL	35.7	86.7		99	49	30			- - - -	
[KLF_BORING/TEST PIT SOIL LOG]	- - 20- - -		4751	n-lbs, Residual = 175.														- - - - - -	
STANDARD_GINT_LIBRARY_2016.GLB [KLF_BC	- 25— - -																	- - - - - - - -	
BINT TEMPLATE: PROJECTWISE: KLF_STANDARD_GINT_	30 - - -			e shear test performed with 2-inch n-lbs, Residual = 75.	vane. Peak =	□												-	
JECTWIS					PROJECT	NO.:	20170041		E	BORI	NG L	.OG	B20 [°]	16-2			APP	ENDIX	
PRO	<i>(</i>				DRAWN B	Y:	MDM												
TEMPLATE:	K	KLEINFELDER Bright People. Right Solutions.) BY:	TP Salt Lake Valley Landfill 7/1/2016 6030 W California Ave Salt Lake City, Utah				ve			B	6-4				
gINT						REVISED: -											PAGE:	1 of 2	

	Date Begin - End:		End:	5/16/2016	Drilling Con	Drilling Company: Davis Drilling										BOR	ING LOG	B2016-2	
	Logged E	Зу:		M. Moriarty	Drill Crew:			J. Da	vis & (C. Dav	/is		L						
	HorVert	. Dat	um:	Not Available	Drilling Equ	rilling Equipment: CME-75							nme	r Type -	Drop:	140 I	b. Auto - 3	60 in.	
	Plunge:			-90 degrees	Drilling Met	hod:		Mud	Rotary	/									
L	Weather:			Partly Cloudy	Exploration	xploration Diameter: 6 in. O.D.													
				FIELD	EXPLORATION	ORATION								LABORATORY RESULTS					
	Depth (feet)	Graphical Log		Latitude: 40.74707 Longitude: 112.0341 Surface Condition: (15° W	Sample Type	-	Blow Counts(BC)= Uncorr. Blows/6 in.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Plasticity Index		Additional Tests/ Remarks		
	De	Grõ		Lithologic Descrip	otion	Sai		Blov Unc	Re((NF	Syı	Co Co	Dry	Ра;	Pa	Pla Fla		Add		
Γ				CLAY (CL): medium to high	plasticity, tan, wet,														
			600 i The l	stiff e shear test performed with 2-ii in-lbs, Residual not measured. boring was terminated at appro w ground surface. The boring er cuttings on May 16, 2016.	oximately 36.5 ft.		<u>1</u>				Depth technic GENE	to ground ques. RAL NOT	dwate <u>FES:</u>	EVEL INF er was not	observe	ed due t	o mud rotan	, drilling	
	50— - - - - - - - - - - - - - - - - - - -																		
	K	Ĺ		NFELDE ight People. Right Solut	tions. DATE:	BY: D BY:		0170041 MDM TP 7/1/2016		E	Salt I	Lake Va	alley liforr	B2016 ⁷ Landfill nia Ave , Utah				-5	
L					REVISED	J.		-									PAGE:	2 of 2	

Logged	-	End:	5/16/2016 M. Moriarty	Drilling Com Drill Crew:								BORING LOG B2016					
HorVer	-	um.	Not Available		Equipment: CME-75					Ha	140 lb. Auto - 30 in.						
Plunge:	. Dai	um.	-90 degrees		ing Method:Mud Rotary												
Weather	:		Partly Cloudy	Exploration													
				EXPLORATION	-						LA	ABORA	TOR	Y RESI	JLTS		
Depth (feet)	Graphical Log		Latitude: 40.7503 Longitude: 112.042 Surface Condition: Perin	99° W	Sample Type	Blow Counts(BC)= Uncorr. Blows/6 in.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)	Additional Tests/ Remarks		
De	Gr		Lithologic Descrip		Saı	Blov	Rec NF	Syr	So	D	Pa	Pa	Liq	E R	Add		
-			L :Silty GRAVEL with Sand (G htly moist, dense	M): light brown,													
-		Sa	ndy Lean CLAY (CL): gray, ver):		18"	CL				67	42	20			
- 5 -			y, very moist elby Tube bent on dense layer e	ncountered at 4 feet				CL				93	39	19			
- - 10		to v Vai 600	an CLAY (CL): medium plasticit wet, stiff to very stiff ne shear test performed with 2-i) in-lbs, Residual not measured.	nch vane. Peak >													
-			ne shear test performed with 2-i) in-lbs, Residual not measured.				24"	CL	23.0	95.9		92	35	17			
-15 - -			ne shear test performed with 2-i) in-lbs, Residual =100 in-lbs.	nch vane. Peak =													
- 20-			ne shear test performed with 2-i) in-lbs, Residual not measured.				24"										
- - 25-			ne shear test performed with 2-i) in-lbs, Residual =140 in-lbs.	nch vane. Peak =	Θ												
-			ne shear test performed with 2-i) in-lbs, Residual not measured.		Ξ												
30- - -		SA	ND and Silt Mixtures (SP-SM)	based on adiacent			24"	CL	35.6	87.2		96	47	28			
			T performed by ConeTec 5/9/20	016	NO -	20170041									APPENDI		
	DRAWN							В	URIN	NG LO	JGE	3201	6-38	a			
KLEINFELDER CHECKE Bright People. Right Solutions. DATE: REVISED REVISED						TP 7/1/2016		Salt Lake Valley Landfill 6030 W California Ave Salt Lake City, Utah									

mmoriarty	Date Begin - End:		End:	5/16/2016	Drilling Com	bany:	Davis	Drillir	ng						E	BORING LOG B2016-3a	
	Logged E	By:		M. Moriarty	Drill Crew:		J. Da	vis & (C. Dav	/is		l					
M BY:	HorVert	. Dat	um:	Not Available	Drilling Equip	omen	t: CME	-75			Ha	mme	r Type	e - Dr	op: _	140 lb. Auto - 30 in.	
23 PN	Plunge:			-90 degrees	Drilling Methe	od:	Mud	Rotary	,								
3 03:	Weather:			Partly Cloudy	Exploration [Diame	eter: 6 in.	D.D.									
5/2016				FIELD	EXPLORATION						LABORATORY RESULTS						
PLOTTED: 07/25/2016 03:23 PM	Depth (feet)	Graphical Log		Latitude: 40.7503 Longitude: 112.042 Surface Condition: Perin	99° W	I Sample Type	Blow Counts(BC)= Uncorr. Blows/6 in.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)	Additional Tests/ Remarks	
	Del	Grö		Lithologic Descrip	otion	Sar	Blov Unc	Rec (NF	US Syr	Col Col	Dry	Pa	Pa	Liq	(NF	Add Rei	
			CPT	D and Silt Mixtures (SP-SM): performed by ConeTec 5/9/20	based on adjacent											- - - - - - - - - - - - - - - - - - -	
PIT SOIL LOG]	- - 55			shear test performed with 2-i n-lbs, Residual not measured.	nch vane. Peak >			18"	CL	21.8	103.0		83	34	17	-	
gINT TEMPLATE: PROJECTWISE: KLF_STANDARD_GINT_LIBRARY_2016.GLB [KLF_BORING/TEST]	- - - - - - - 65- - - - - - - - -		belov	poring was terminated at approving vground surface. The boring r cuttings on May 16, 2016.	-					Depth techni <u>GENE</u>	ques. RAL NO	ndwate	er was	not ob	served	<u>2N:</u> due to mud rotary drilling I stratification	
ROJECTWIS					PROJECT DRAWN B		20170041 MDM		В	ORIN	NG LO) G E	3201	6-3a	1	APPENDIX	
INT TEMPLATE: F			NFELDE ght People. Right Solut		BY:	TP 7/1/2016 -	TP Salt Lake V					nia Av	B-7 PAGE: 2 of 2				

Date Beg	-		5/17/2016	Drilling Comp Drill Crew:			s Drillir ivis & (vie		l			E	
Logged	-		M. Moriarty					J. Dav	15			• T		or:	140 lb Auto - 20 !
HorVer	Dat	um:	Not Available	Drilling Equip				,		на	mme	гтур	e - Dr	ob: [–]	140 lb. Auto - 30 in
Plunge: Weather			-90 degrees	Drilling Metho			Rotary	,							
vveainer			Partly Cloudy	Exploration D EXPLORATION	ane		U.U.				17			' RESL	II TS
			FIELD				5				L/-	1			
Depth (feet)	Graphical Log		Latitude: 40.75035 Longitude: 112.0430 Surface Condition: Perim	3° W	Sample Type	Blow Counts(BC)= Uncorr. Blows/6 In.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)	Additional Tests/ Remarks
Dep	Gra		Lithologic Descrip	otion	Sar	Blow Unci	(NR NR	Syr	Cor	Dry	Рае	Pas	Liqu	R Plai	Add
	R	Silty	GRAVEL with Sand (GM)												
-		1	n CLAY with ocassional Grav ium plasticity, gray, very moist	el and Cobbles (CL):											
5 - -		490 wher	e shear test performed with 2-ir in-lbs, Residual =100 in-lbs. Tv n pushing 18 - inches n CLAY (CL): medium to high p	wo vanes bent, likely											
- 10-			stiff, trace coarse sand in uppe												
-			e shear test performed with 2-ir in-lbs, Residual not measured.	nch vane. Peak >	B										
- - 15-			e shear test performed with 2-ir in-lbs, Residual = 50 in-lbs.	nch vane. Peak =											
-			e shear test performed with 2-ir in-lbs, Residual = 60 in-lbs.	nch vane. Peak =											
- 20- -		320	e shear test performed with 2-ir in-lbs, Residual = 50 in-lbs. Sof Its consistent with softer drilling	fter vane shear											
- - - 25-			e shear test performed with 2-ir in-lbs, Residual = 100 in-lbs.	nch vane. Peak =			24"	CL	30.3	92.8		91	46	27	
-															
- 30 -		600	e shear test performed with 2-ir in-lbs, Residual not measured.												
-			D and Silt Mixtures (SP-SM): performed by ConeTec 5/9/20												
				PROJECT N DRAWN BY		20170041 MDM		В	ORIN	IG LO	DG E	3201	6-3t)	APPEND
(K	KLEINFELDER Bright People. Right Solutions.			BY:	TP 7/1/2016	TP Salt Lake Valley Landfill B-8									

mmoriarty	Date Begin - Ei	nd:	5/17/2016	Dr	Drilling Company: Davis Drilling										E	BORING LOG	B2016-3b
	Logged By:		M. Moriarty	Dr	ill Crew:		J. Da	vis & (C. Dav	vis		l					
1 ВҮ:	HorVert. Datu	m:	Not Available	Dr	illing Equip	men	t: CME	-75			На	Imme	r Type	e - Dr	ор: _	140 lb. Auto -	30 in.
03:23 PM	Plunge:		-90 degrees	Dr	illing Metho	d:	Mud	Rotary	,								
03:5	Weather:		Partly Cloudy	Ex	ploration D	iame	eter: 6 in.	O.D.									
/2016				FIELD EXPLOR	RATION							LA	ABORA	TORY	' RESL	ILTS	
PLOTTED: 07/25/2016	Depth (feet) Graphical Log			0.75035° N 12.04303° W n: Perimeter Roa	ad	Sample Type	Blow Counts(BC)= Uncorr. Blows/6 in.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)	Additional Tests/	narks
	Dep		Lithologic I	Description		San	Blow Unco	Rec	USC	Wat Con	Dry	Pas	Pas	Liqu	(NP	Add	Ken
STANDARD_GINT_LIBRARY_2016.GLB_[KLF_BORING/TEST PIT SOIL LOG]		45 50 Lean CLAY (CL): medium to high plasticity, gray, we very stiff Vane shear test performed with 2-inch vane. Peak = 450 in-lbs, Residual = 190 in-lbs. Vane shear test performed with 2-inch vane. Peak > 600 in-lbs, Residual not measured. Vane shear test performed with 2-inch vane. Peak > 600 in-lbs, Residual not measured. The boring was terminated at approximately 59 ft. below ground surface. The boring was backfilled wit auger cuttings on May 17, 2016.								GROU Depth technic	to grou ques. <u>RAL N(</u>	ndwate	er was	NFOR not ob	MATIC		· · · · · · · · · · · · · · · · · · ·
gINT TEMPLATE: PROJECTWISE: KLF_STANDARD_G		PROJECT	NO.:	20170041		B	ORIN	IGLO	DG E	3201	6-3t)	APF	PENDIX			
gINT TEMPLATE: PROJ	KLEINFELDER Bright People. Right Solutions.								alifor	nia Av	/e		PAGE:	3-9			
6	KLEINFELDER -	· 849 \	Vest Levoy Drive, S	uite 200 Tav	/lorsville, UT	841	23 PH: 8	PH: 801.261.3336 FAX: 801.261.3306 www.kleinfelder.com									

mmoriarty	Date Beg	gin - E	End:	5/23/2016	Drilling Comp	any	: Davis	Drillir	ng							BORI	NG LOG	B2016-4
	Logged	By:		M. Moriarty	Drill Crew:		J. Da	vis & (C. Dav	/is		l						
A BY:	HorVer	t. Dat	um:	Not Available	Drilling Equip	me	nt: <u>CME</u>	-75			Ha	Imme	r Type	e - Dr	ор: _	140 lb.	Auto - 3	30 in.
23 PN	Plunge:			-90 degrees	Drilling Metho	d:	Mud	Rotary	/									
03:2	Weather	:		Partly Cloudy	Exploration D	iam	eter: 6 in. (D.D.										
//2016				FIELD EX	PLORATION							LA	ABORA	TORY	' RESU	ILTS		
PLOTTED: 07/25/2016 03:23 PM	Depth (feet)	Graphical Log		Latitude: 40.74068° N Longitude: 112.04268° N Surface Condition: Asph	W	Sample Type	Blow Counts(BC)= Uncorr. Blows/6 in.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)		Additional Tests/ Remarks	
	Dep	Gra		Lithologic Descriptio	n	San	Unco	Rec(NR=	USC	Wat	Dry I	Pas	Pas	Liqu	Plas (NP:		Addi	
	5-	Lean CLAY (CL): medium plasticity, brown, moist, very stiff					BC=14 8 7	12"										- - - - - -
0G]	10-						BC=6 14 12	12"	SP-SM			88	11					-
IPJ _GINT_LIBRARY_2016.GLB [KLF_BORING/TEST PIT SOIL LOG]	20-		stiff Vane 600 i incre Vane	a CLAY (CL): medium plasticity, g e shear test performed with 2-inch in-lbs, Residual not measured. ease in sand content e shear test performed with 2-inch in-lbs, Residual not measured.	vane. Peak >													-
gINT FILE: PROJECTWISE: Salt Lake Valley Landfill.gpj gINT TEMPLATE: PROJECTWISE: KLF_STANDARD_GINT_I	30-	Vane shear test performed with 2-inch vane. Peak > 600 in-lbs, Residual not measured. Well-graded SAND with Silt (SW-SM): gray, wet, ven dense PROJEC			I): gray, wet, very				E	BORII	NG L	.OG	B201	16-4			APPI	- - - - - - - - - - - - - - - - - - -
gINT FILE: PROJECTV gINT TEMPLATE: PRO	KLEINFELDER CHECKI Bright People. Right Solutions. DATE:		ac.		MDM TP 7/1/2016 -	TP Salt Lake Valley Landfill 6030 W California Ave Salt Lake City, Utah				B-	- 10							

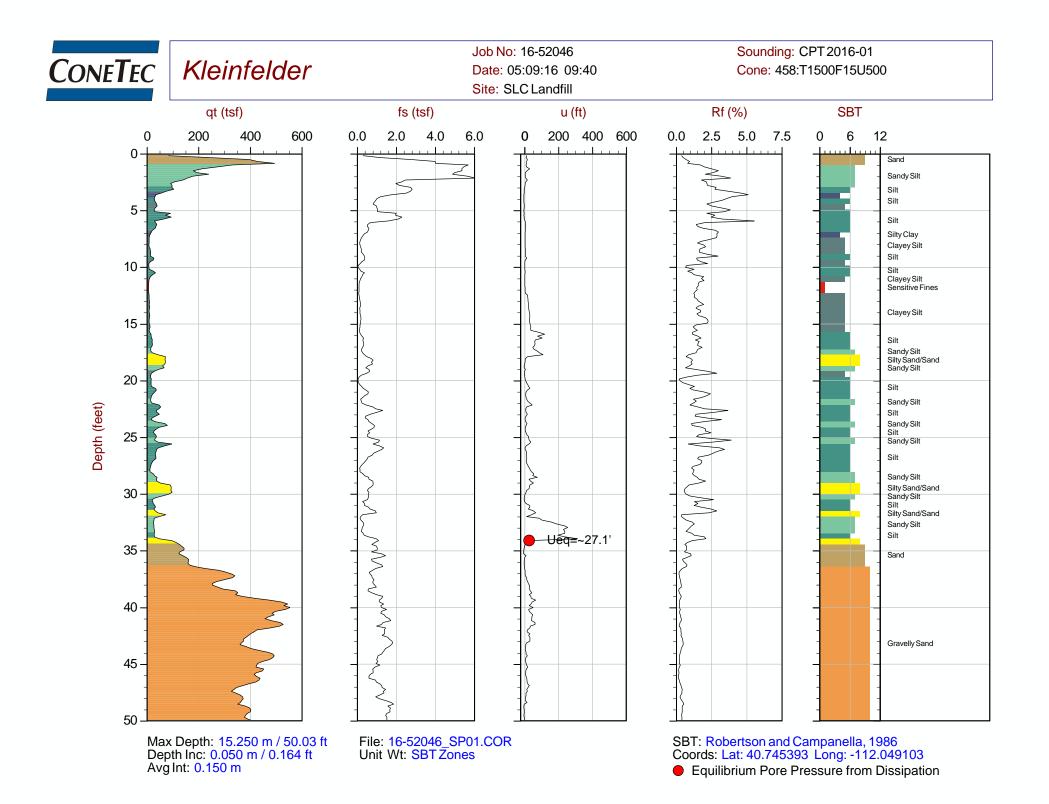
mmoriarty	Date Beg	in - E	Ind:	5/23/2016	Drilling Comp	bany	: Davi	s Drilliı	ng							BORING LOG B2016-4
	Logged E	By:		M. Moriarty	Drill Crew:		J. Da	ivis &	C. Dav	/is		l				
07/25/2016 03:23 PM BY:	HorVert	. Dat	um:	Not Available	Drilling Equip	me	nt: <u>CME</u>	-75			На	mme	r Typ	e - Dr	ор: _	140 lb. Auto - 30 in.
23 PN	Plunge:			-90 degrees	Drilling Metho	od:	Mud	Rotary	/							
6 03: 	Weather:			Partly Cloudy	Exploration D)iam	eter: 6 in.	O.D.								
5/2016				FIELD	EXPLORATION	_				-		LA	ABORA	TORY	' RESL	ILTS
PLOTTED: 07/26	Depth (feet)	Graphical Log		Latitude: 40.7406 Longitude: 112.042 Surface Condition: A	68° W	Sample Type	Blow Counts(BC)= Uncorr. Blows/6 In.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)	Additional Tests/ Remarks
	Dep	Gra		Lithologic Descri	ption	San	Unco	Rec (NR	US(Val Cor	Dry	Pas	Pas	Liqu	Plas NP	Adc
		Well-graded SAND with Silt (SW-SM): gray, wet, very dense Well-graded SAND with Silt (SW-SM): gray, wet, very dense Lean CLAY (CL): medium plasticity, gray, wet, stiff Vane shear test performed with 2-inch vane. Peak > 600 in-lbs, Residual not measured. Lean CLAY with Sand (CL): medium plasticity, gray, wet, stiff, occasional silt zones					BC=7 26 28		SW-SM		97.9	97	8.1 91 81	38 31 41	21 13 21	-
gINT FILE: PROJECTWISE: Salt Lake Valley Landfill, gpl gINT TEMPLATE: PROJECTWISE: KLF_STANDARD_GINT_LIBRARY_2016.GLB [KLF_BORING/TEST PIT SOIL LOG]			below	poring was terminated at appr v ground surface. The boring r cuttings and patched at surf	was backfilled with ace on May 23,		20170041			Depth technic <u>GENE</u> See th	ques. <u>RAL NC</u> le comp	ndwate	CPT fc	not ob	served	due to mud rotary drilling
PROJECTV				• · 	PROJECT		20170041 MDM		E	BORI	NG L	OG	B20 ⁻	16-4		APPENDIX
gINT FILE: PROJI gINT TEMPLATE:	K	KLEINFELDER Bright People. Right Solutions.		tions. DATE:	BY:	7/1/2016 6030			Lake \ 0 W C Ilt Lake	alifor	nia Av	/e		B-11		
gINT					REVISED:		-									PAGE: 2 of 2

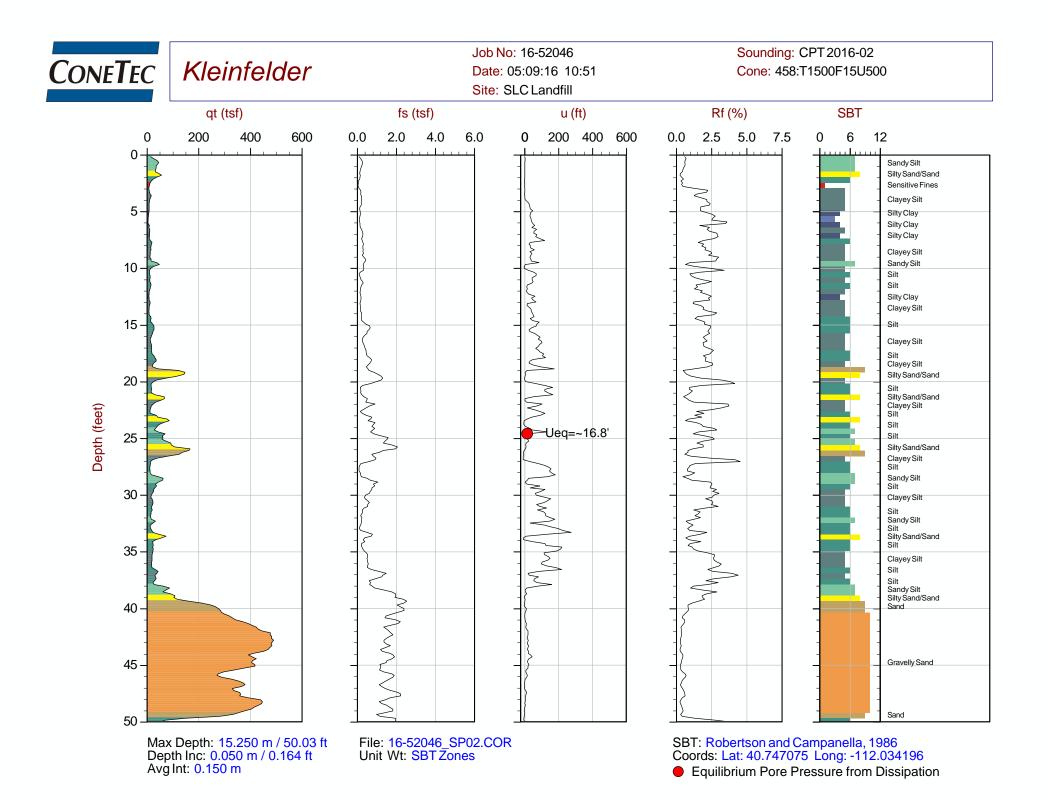
mmoriarty	Date Beg	jin - E	End:	5/18/2016 - 5/20/2016	Drilling Comp	bany	: Davis	s Drilliı	ng							BORING LOG B2016-5	i
	Logged	By:		M. Moriarty	Drill Crew:		J. Da	vis &	C. Dav	/is							_
A BY:	HorVer	t. Dat	um:	Not Available	Drilling Equip	ome	nt: CME	-75			На	mme	r Type	e - Dr	op: _1	140 lb. Auto - 30 in.	_
03:23 PM	Plunge:			-90 degrees	Drilling Metho	od:	Mud	Rotary	/								
	Weather			Sunny	Exploration D	liam	neter: 6 in.	O.D.									
/2016				FIELD EX	PLORATION			-				L	ABORA	TORY	RESU	LTS	
PLOTTED: 07/25/2016	Depth (feet)	Graphical Log		Latitude: 40.75010° N Longitude: 112.03565° Surface Condition: Perimete	W	Sample Type	Blow Counts(BC)= Uncorr. Blows/6 in.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)	Additional Tests/ Remarks	
	Dep	Gra		Lithologic Description	n	San	Ducc	Rec (NR	US(Vat Cor	Dry	Pas	Pas	Liqu	(NP NP	Ado Rer	
	-			GRAVEL with Sand (GM): light ;, dense	brown, slightly												-
	- - 5- -			ean CLAY with Sand (CL): medium to high plasticity, rayish brown, very moist, stiff ecomes gray to black, wet, very stiff			BC=4 4 5		CL				80	43	25		-
	-	becomes gray to black, wet, very stiff Vane shear test performed with 2-inch vane 600 in-lbs, Residual not measured.				E	1										-
	10-						-				a						_
	-		becor				-	12"	CL	29.8	88.5		83	42	23		1 1
	-			ne shear test performed with 2-inch vane. Peak =) in-lbs, Residual = 50 in-lbs.													1
	15-		Lean CLAY (CL): gray, wet, very stiff														
DG]	-			shear test performed with 2-inch n-lbs, Residual not measured.	ı vane. Peak >			24"	CL	25.8	98.5		90	34	17		
BORING/TEST PIT SOIL LOG	20						-										
[KLF_	- 25-			shear test performed with 2-inch n-lbs, Residual = 90 in-lbs.	vane. Peak =												-
BRARY_2016.GLF	-			D and Silt Mixtures (SP-SM): ba performed by ConeTec 5/9/2016	sed on adjacent												
gINT FILE: PROJECTWISE: Sait Lake Valley Landfill.gpj gINT TEMPLATE: PROJECTWISE: KLF_STANDARD_GINT_LIBRARY_2016.GLB	30- - -																
lit Lak SE: K																	
ROJECTWI					PROJECT		20170041 MDM		E	BORI	NG L	OG	B20 ²	16-5		APPENDIX	
FILE: PROJEC TEMPLATE: P	K	KLEINFELDER Bright People. Right Solutions.		ns. DATE:	BY:	TP 7/1/2016			603	Lake \ 0 W C It Lake	alifor	nia Av	/e		B-12		
gINT gINT		$\underline{\checkmark}$			REVISED:		-									PAGE: 1 of 3	

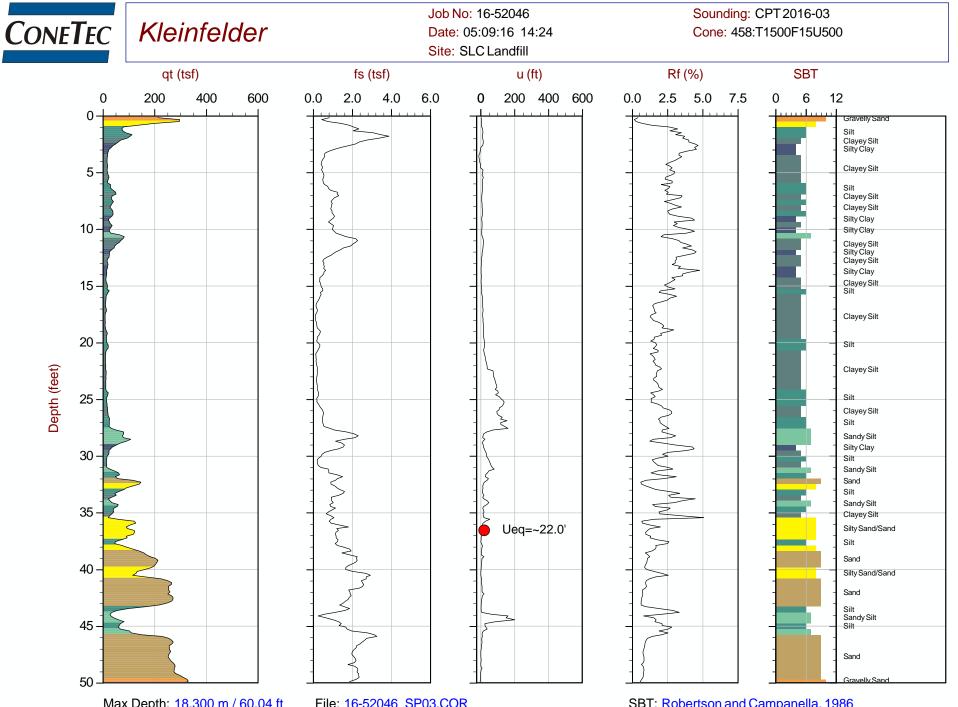
mmoriarty	Date Begin - E	nd:	5/18/2016 - 5/20/2016	Drilling Comp	any		s Drilliı								BORING LOG B2016	-5
	Logged By:		M. Moriarty	Drill Crew:		-		C. Dav	vis							
M BY:	HorVert. Date	um:	Not Available	Drilling Equip						Ha	mme	r Typ	e - Dr	op: _	140 lb. Auto - 30 in.	_
07/25/2016 03:23 PM	Plunge:		-90 degrees	Drilling Metho			Rotary	1								
16 03	Weather:		Sunny	Exploration D	iam	neter: 6 in.	0.D.									
5/20			FIELD EX	PLORATION		1					L	ABORA T	TORY	/ RESU	ILTS	
PLOTTED: 07/2	Depth (feet) Graphical Log		Latitude: 40.75010° N Longitude: 112.03565° ' Surface Condition: Perimete	W	Sample Type	Blow Counts(BC)= Uncorr. Blows/6 In.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)	Additional Tests/ Remarks	
	Gra Dep		Lithologic Descriptio	n	San	Ducc	Rec (NR	US(Vat Cor	Dry	Pas	Pas	Ligu	(NP	Ado Rer	
	-	Lean very	CLAY (CL): medium to high plas stiff	ticity, gray, wet,			18"	CL	27.5	97.5		95	44	24		
	40- - - - - - - -	45- Lean CLAY with Sand (CL): medium to his														-
	45-															-
		Vane shear test performed with 2-inch var 600 in-lbs, Residual not measured.		vane. Peak >	Π											-
	50-		,		Π		18"									_
06]								CL	23.9	98.1		76	37	19		-
SOIL LOG	55	Loon	CLAY (CL): modium to high place	ticity grow wat		BC=1	18"	CL				92	38	21		_
[KLF_BORING/TEST PIT {		very :	CLAY (CL): medium to high plas	aicity, gray, wet,		3	10	UL				92	30	21		
	60	Fat C	CLAY (CH): gray, wet, very stiff				18"	СН	40.7	75.4		98	71	49		_
alley Landfill.gpj STANDARD_GINT_LIBRARY_2016.GLB																-
Ifill.gpj .RD_GINT_	65	Sand	CLAY with Sand (CL): gray, we y Lean CLAY (CL): gray, wet, ve	ry stiff		BC=7 7 7	14"	CL CL				78 62	27 29	11 12		-
gINT FILE: PROJECTWISE: Saft Lake Valley Landfill.gpj gINT TEMPLATE: PROJECTWISE: KLF_STANDARD_G			n poorly graded sand zone in san	ipie			12"	CL	23.5	102.4		97	32	14		-
VISE: Salt JECTWIS					NO.:	20170041		E	BORI	NG L	OG	B20 ⁻	16-5	<u> </u>	APPENDIX	
ECTM PRO	ľ				r:	MDM										
NT FILE: PROJE NT TEMPLATE:		KLEINFELDER Bright People. Right Solutions.			BY:	TP 7/1/2016 -	Salt Lake Valley Landfill									
gll gll				REVISED:											PAGE: 2 of 3	

mmoriarty	Date Beg		nd:	5/18/2016 - 5/20/2016		illing Comp	any		s Drillir								BORING LOG B2016-5	
BY: mr	Logged E	-		M. Moriarty		ill Crew:				C. Dav	vis							
	HorVert	. Dat	um:	Not Available		illing Equip						Ha	Imme	r Typ	e - Dr	ор: _	140 lb. Auto - 30 in.	
07/25/2016 03:23 PM	Plunge:			-90 degrees	_	illing Metho			Rotary	,								
16 03	Weather:			Sunny		ploration D	iam	eter: 6 in.	0.D.									
5/201		-		FIEL	.D EXPLOF	RATION	_						LA		ATORY	/ RESL	JLTS I	
PLOTTED: 07/2	Depth (feet)	Graphical Log		Latitude: 40.750 Longitude: 112.03 Surface Condition: Per	3565° W	ad	Sample Type	Blow Counts(BC)≓ Uncorr. Blows/6 in.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)	Additional Tests/ Remarks	
	Dep	Gra		Lithologic Desc	ription		San	Blow	Rec (NR	US(Syn	Vat Cor	Dry	Pas	Pas	Liqu	(NP	Ado Rer	
:016.GLB [KLF_BORING/TEST PIT SOIL LOG]	C C Lithologic Description SAND and Silt Mixtures (SP-SM): based CPT performed by ConeTec 5/9/2016 75- - 80- - 90- - 90- - 90- - 90- - 90- - 90- - 90- - 90- - 90- - 90- - 90- - 90- - 90-					very stiff e		BC=4 9 15 BC=1 5 7	18"	CL-ML ML CL				78 52 87	27	7	Borehole caved between 70 and 80 feet. Re-drilled to 95 feet with thicker drilling mud mixture. Borehole caved again after taking sample at 95 feet. Boring was terminated due to caving soil in this zone.	-
pj LIBRARY_2016.GLB	- - 100—	The boring was terminated at approximal below ground surface. The boring was b auger cuttings on May 20, 2016.									comple GENE	dwater etion. RAL NO	was no <u>DTES:</u>	ot enco	ountere	ed durir	ng drilling or after I stratification	
gINT FILE: PROJECTWISE: Sait Lake Valley Landfill.gpj gINT TEMPLATE: PROJECTWISE: KLF_STANDARD_GI	- - -																	
ISE: Sa IECTW	\bigcirc			PROJECT	10.:	20170041		E	BORI	NG L	.0G	B20 ⁻	16-5		APPENDIX			
PRO				DRAWN BY	' :	MDM												
NT FILE: PROJE NT TEMPLATE: 1	KLEINFELDER Bright People. Right Solutions.						6030	_ake \) W C It Lake	alifori	nia Av	ve		B-14					
all g																	PAGE: 3 of 3	

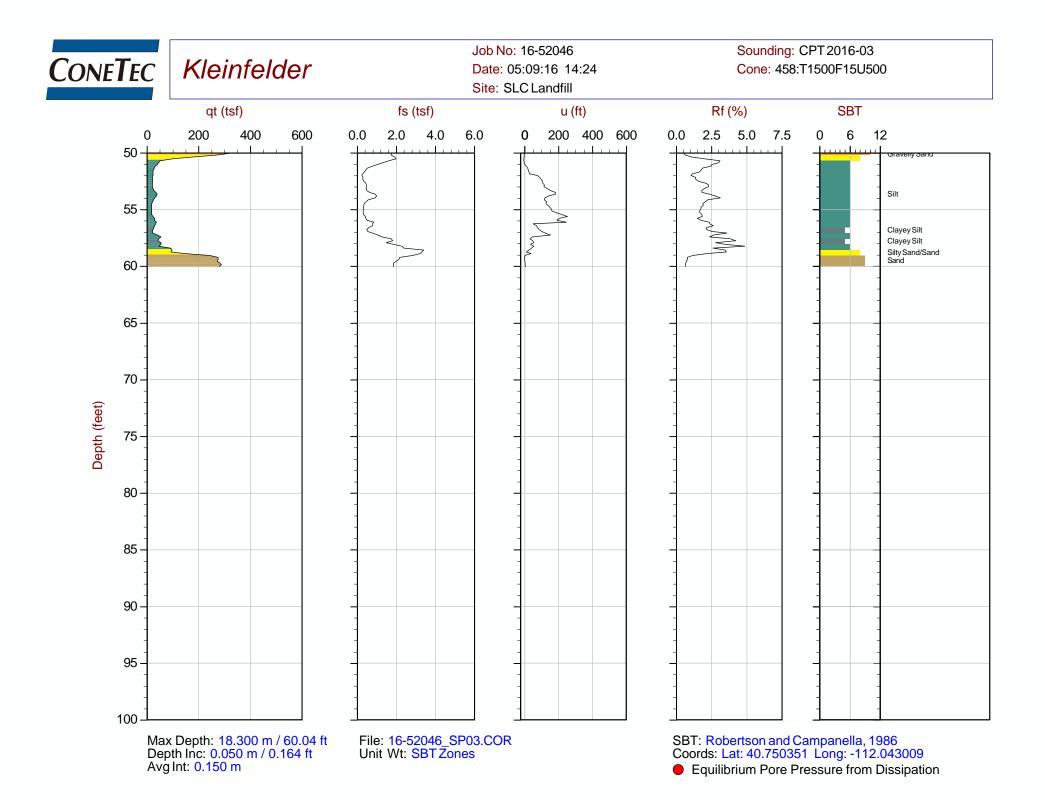
Cone Penetration Test Summary and Standard Cone Penetration Test Plots

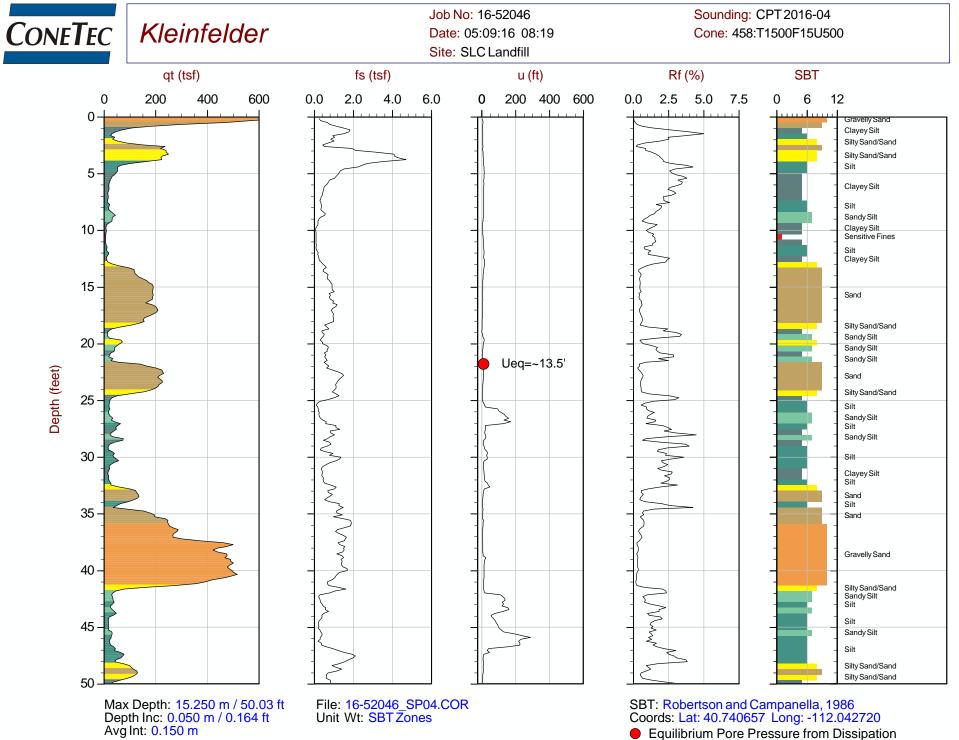

Job No:16-52046Client:KleinfelderProject:SLC LandfillStart Date:09-May-2016End Date:09-May-2016

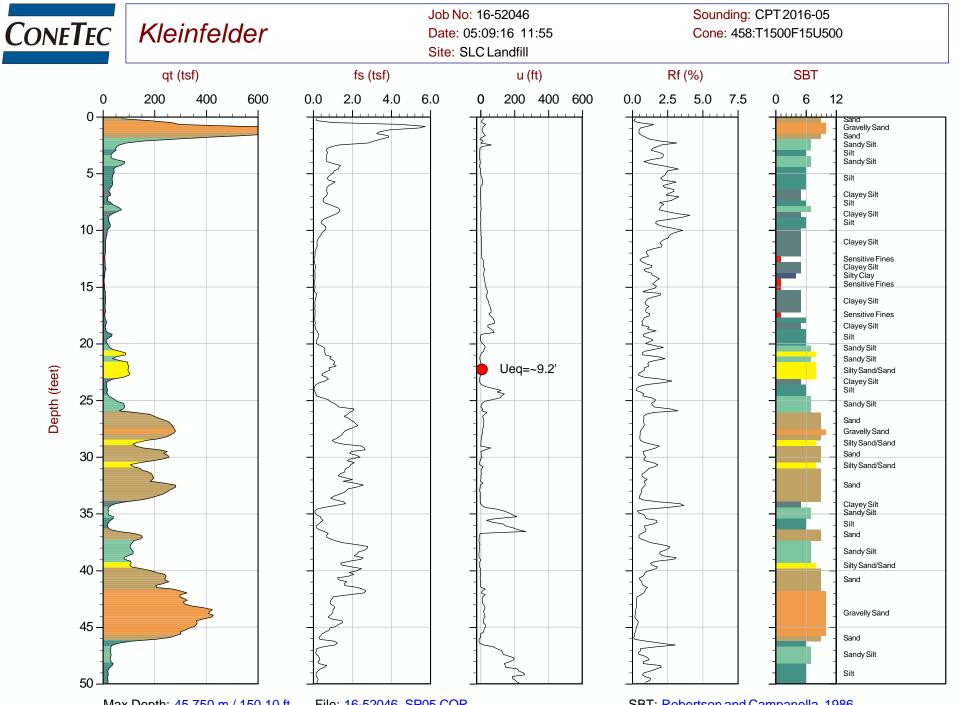

	CONE PENETRATION TEST SUMMARY										
Sounding ID	File Name	Date	Cone	Assumed Phreatic Surface ¹ (ft.)	Final Depth (ft.)	Latitude ²	Longitude	Elevation ³ (ft.)	Refer to Notation Number		
CPT 2016-01	16-52046_SP01	09-May-2016	458:T1500: F15:U500	7.0	50.03	40.745393	-112.049103	4231			
CPT 2016-02	16-52046_SP02	09-May-2016	458:T1500: F15:U500	7.8	50.03	40.747075	-112.034196	4243			
CPT 2016-03	16-52046_SP03	09-May-2016	458:T1500: F15:U500	14.6	60.04	40.750351	-112.043009	4251			
CPT 2016-04	16-52046_SP04	09-May-2016	458:T1500: F15:U500	8.3	50.03	40.740657	-112.042720	4235			
CPT 2016-05	16-52046_SP05	09-May-2016	458:T1500: F15:U500	13.1	150.10	40.750089	-112.035654	4253			


1. The assumed phreatic surface used in the CPT interpretations are based on the results of the shallowest pore pressure dissipation test performed within or nearest to the sounding.

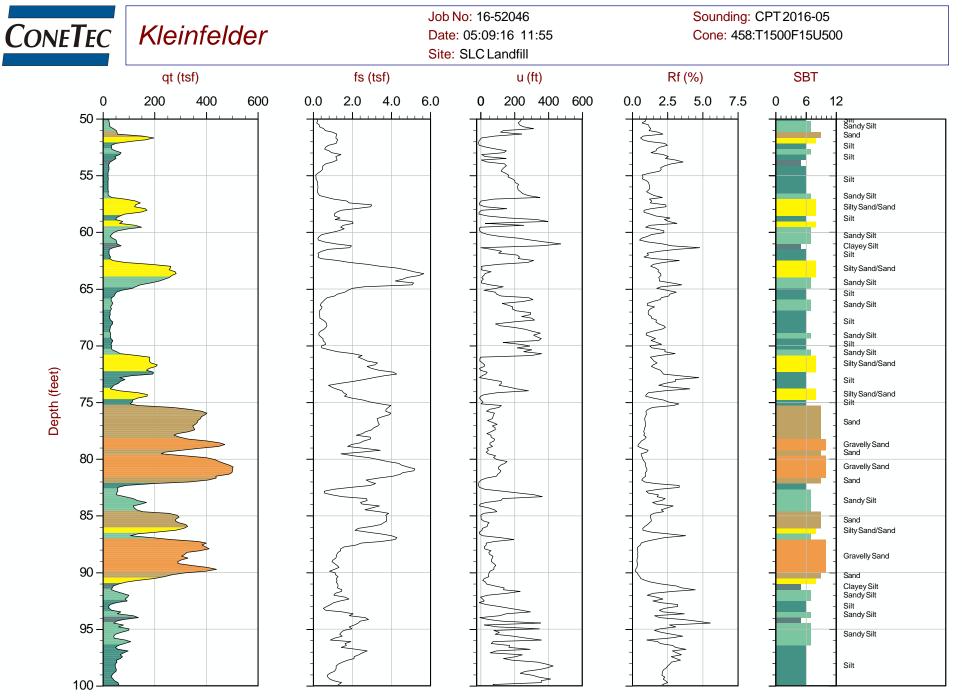
2. The coordinates are based on the WGS84 Datum and have an accuracy of ± 30 feet.

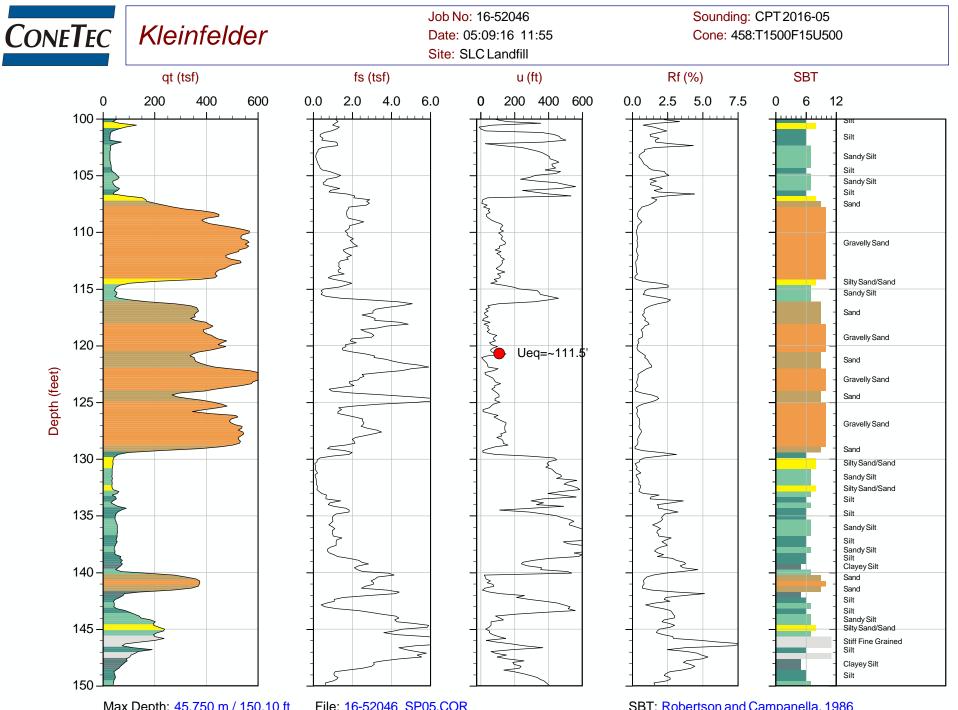

3. Elevations are referenced to the ground surface and are derived from the Google Earth Elevation for the recorded coordinates.



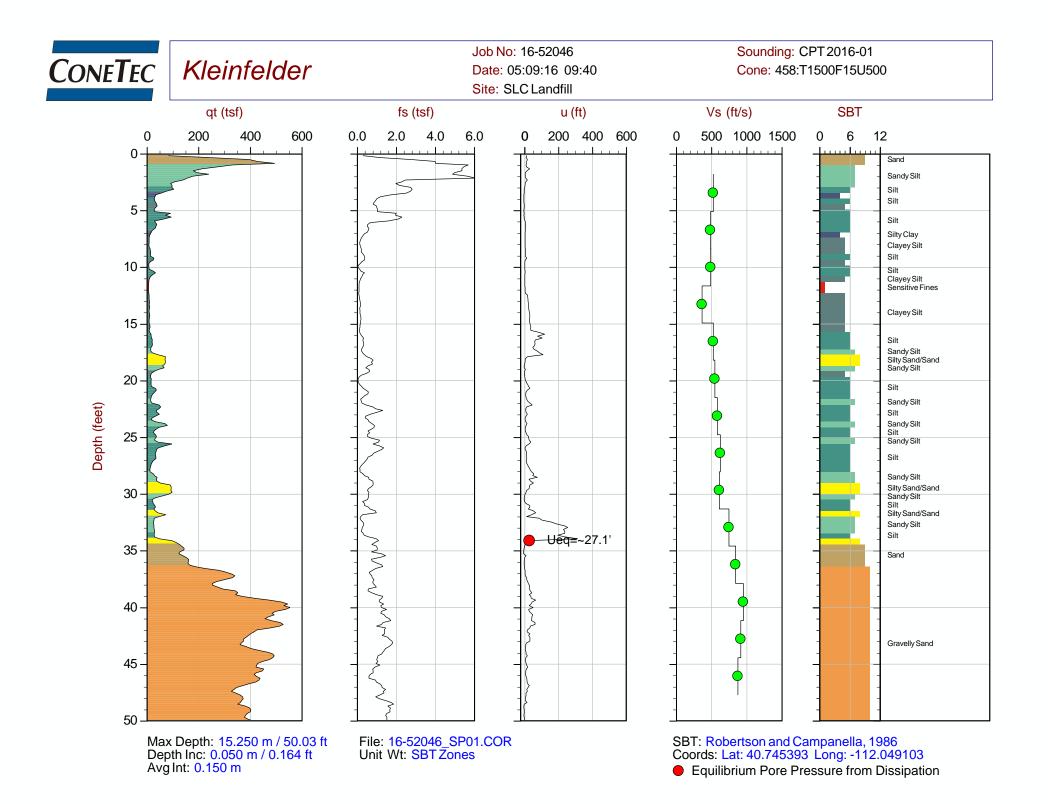


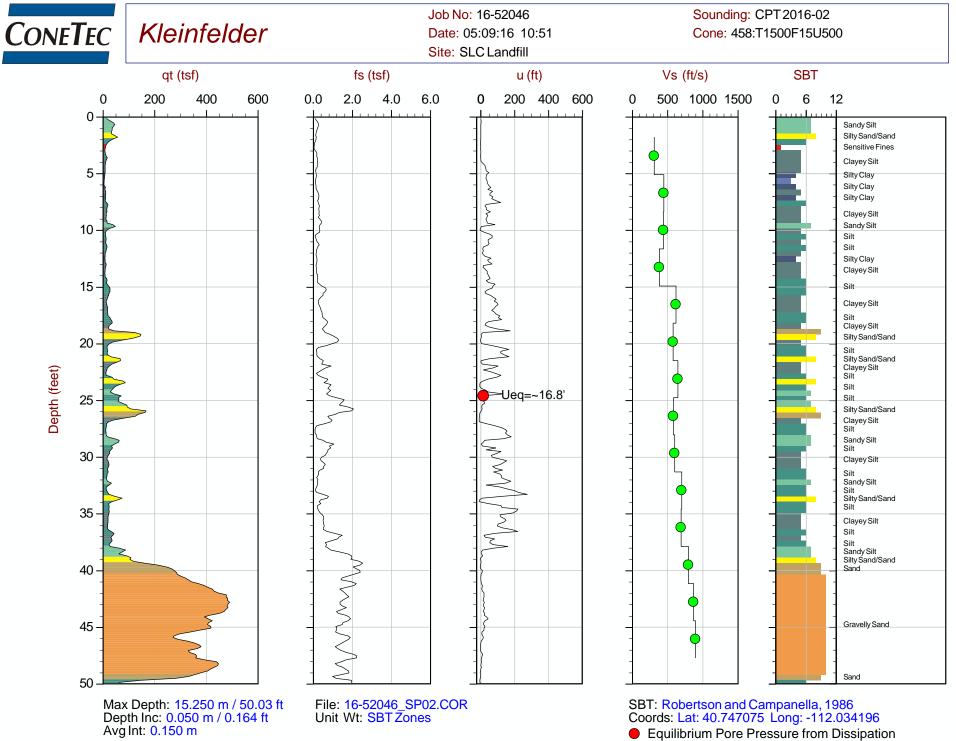
File: 16-52046_SP03.COR Unit Wt: SBT Zones



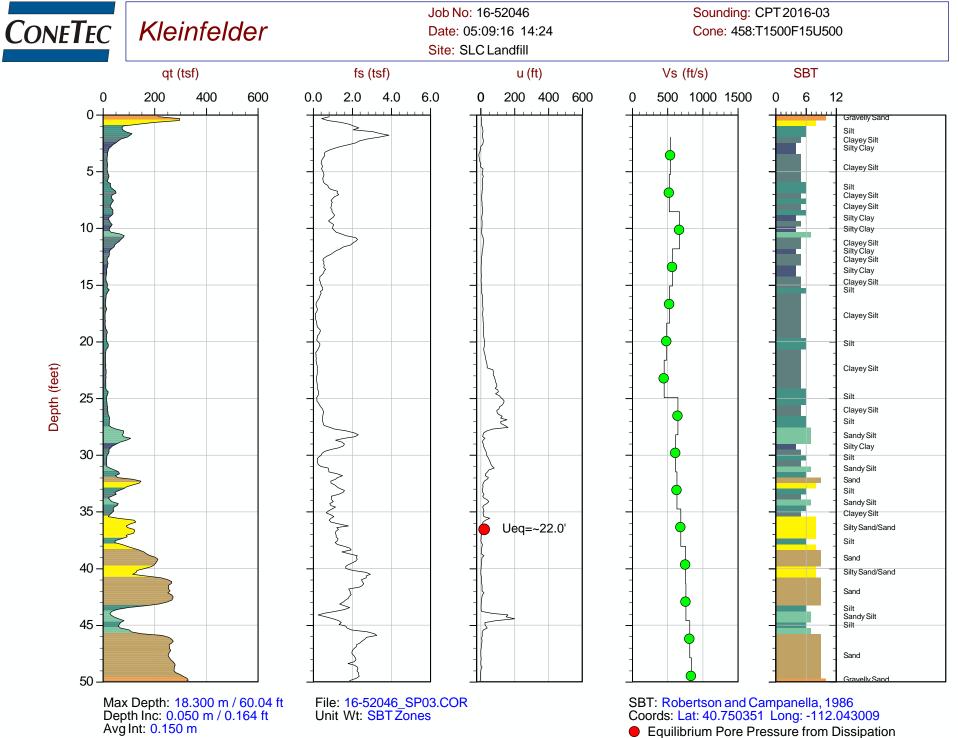

File: 16-52046_SP04.COR Unit Wt: SBT Zones

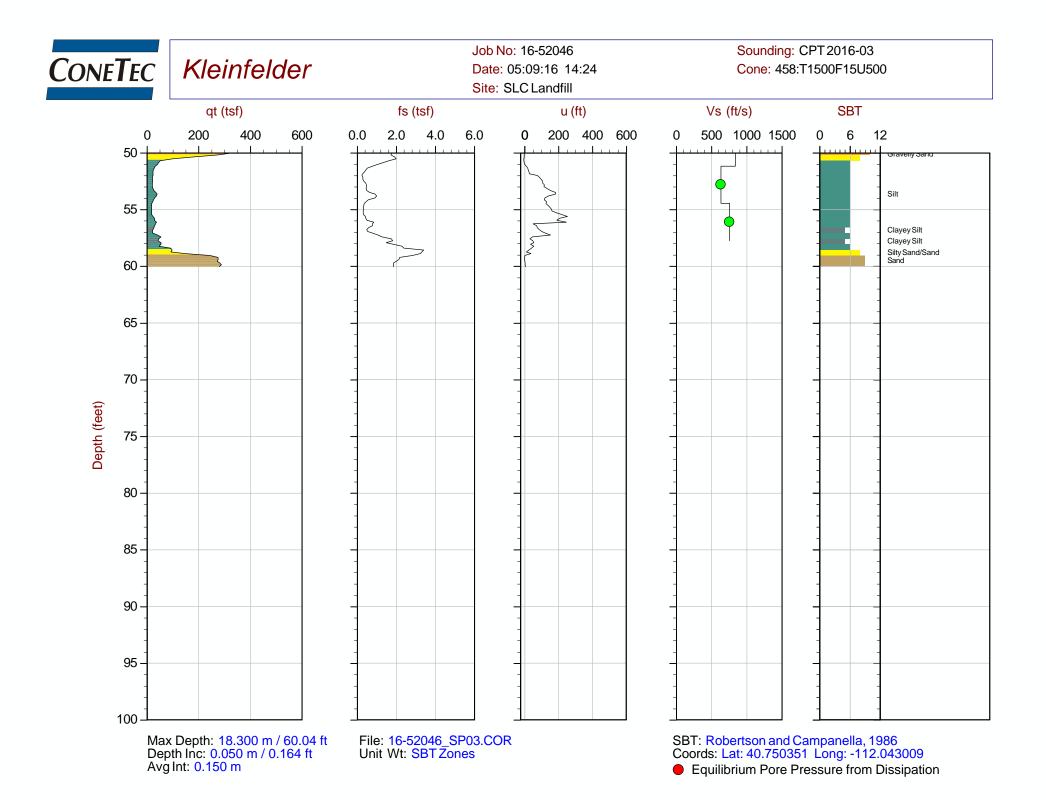
File: 16-52046_SP05.COR Unit Wt: SBT Zones

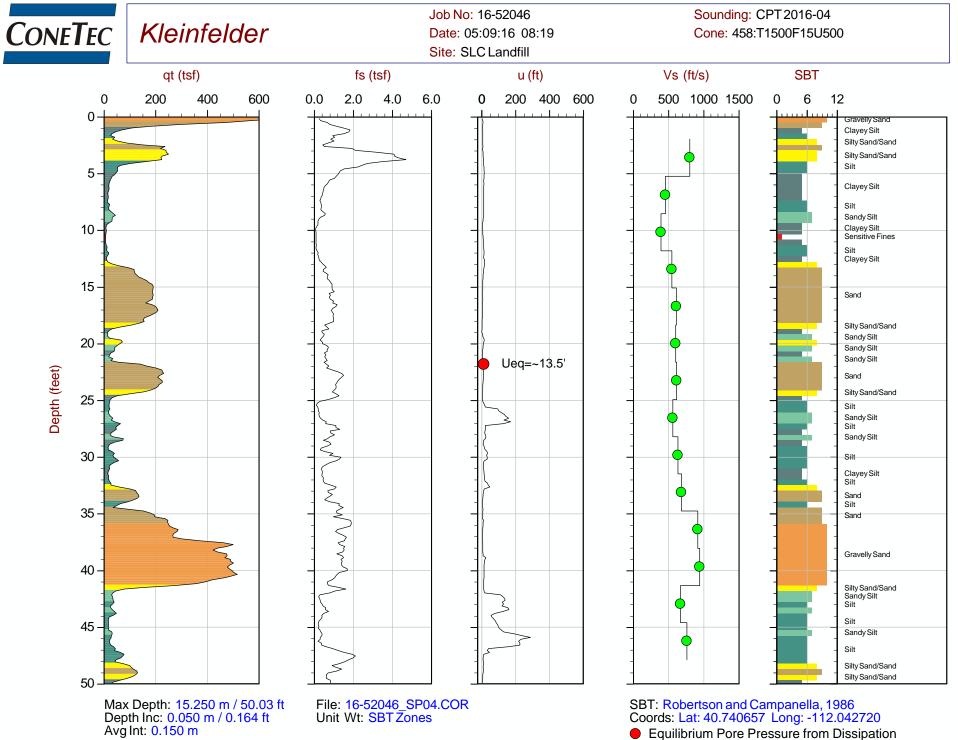

File: 16-52046_SP05.COR Unit Wt: SBTZones

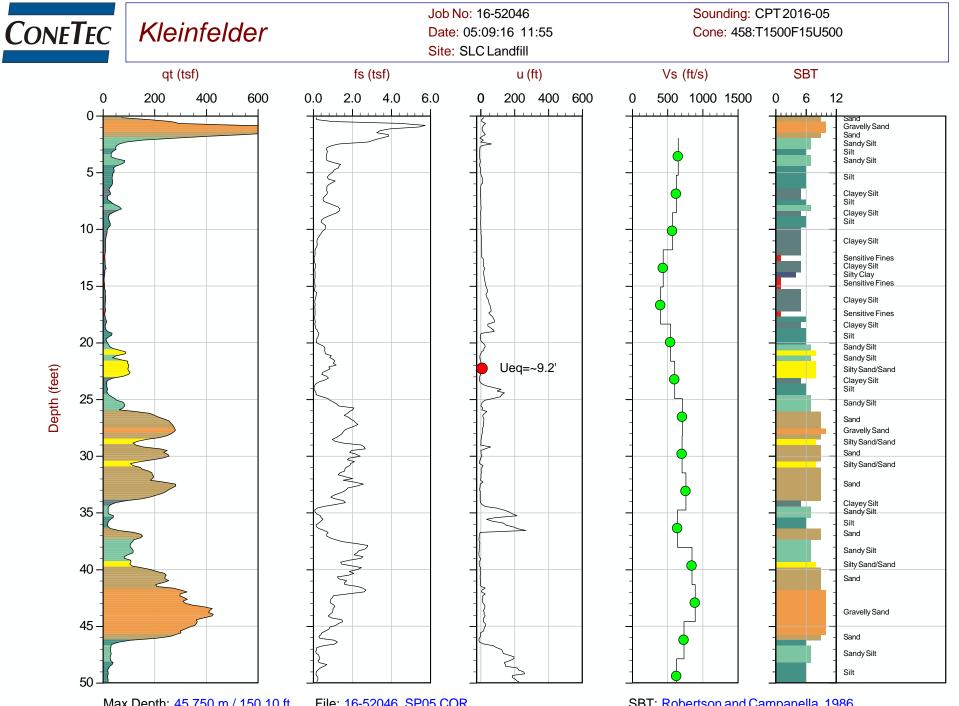


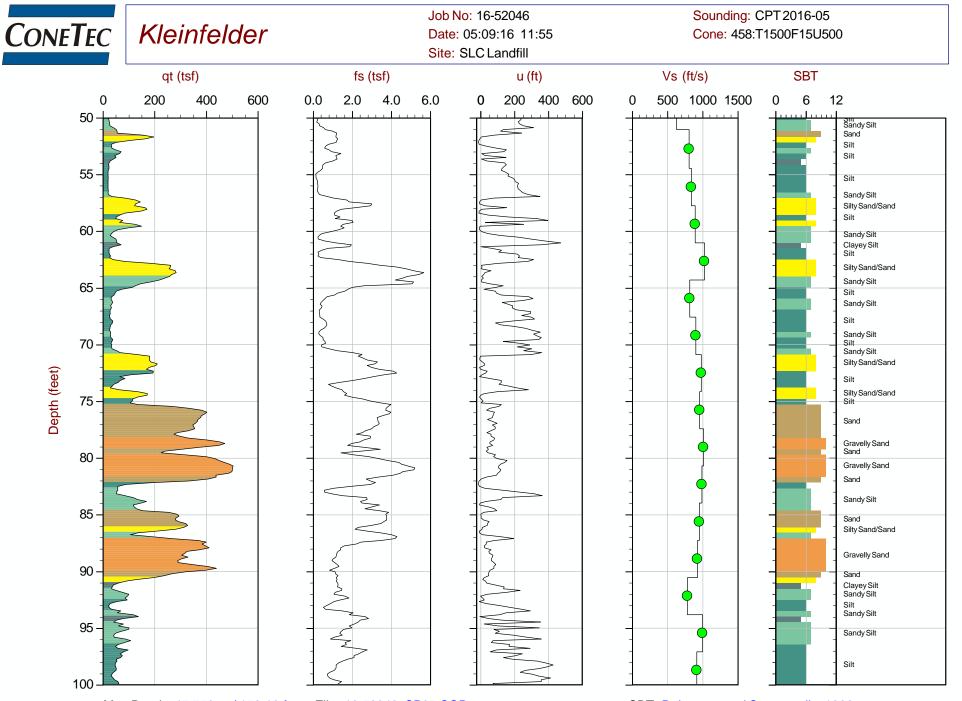
File: 16-52046_SP05.COR Unit Wt: SBT Zones

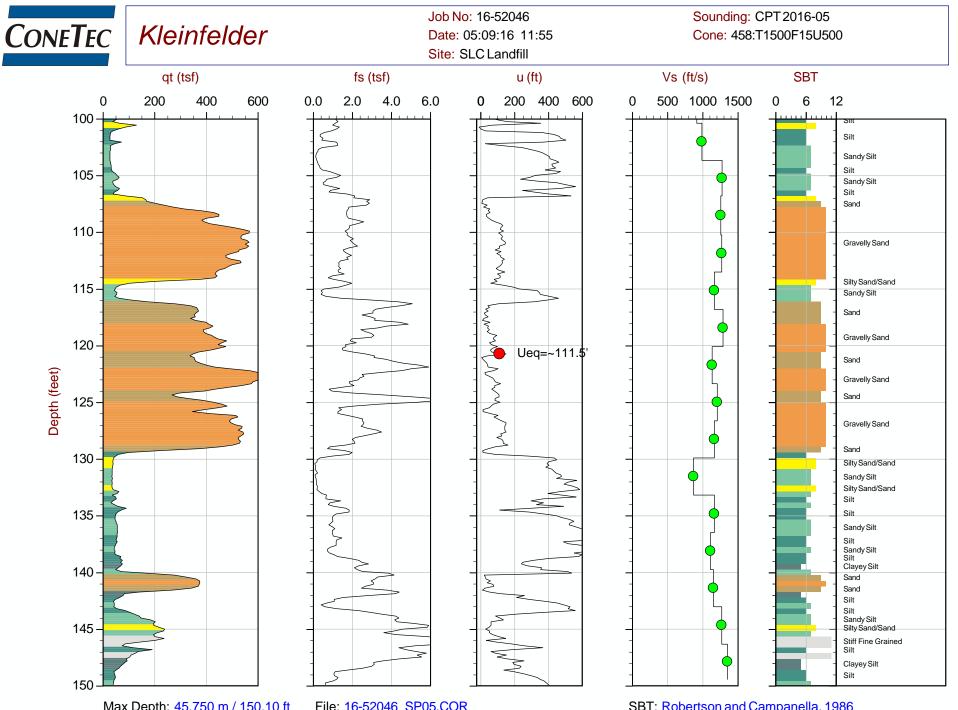

Seismic Cone Penetration Test Plots






Equilibrium Pore Pressure from Dissipation




Equilibrium Pore Pressure from Dissipation

File: 16-52046_SP05.COR Unit Wt: SBT Zones

File: 16-52046_SP05.COR Unit Wt: SBT Zones

File: 16-52046_SP05.COR Unit Wt: SBT Zones

Seismic Cone Penetration Test Tabular Results

Job No:	16-52046
Client:	Kleinfelder
Project:	SLC Landfill
Sounding ID:	CPT 2016-01
Date:	09-May-2016
<u> </u>	

Seismic Source:	Beam
Source Offset (ft):	1.50
Source Depth (ft):	0.00
Geophone Offset (ft):	0.66

S	SCPTu SHEAF	R WAVE VEL	OCITY TEST	RESULTS - V	s
Tip Depth (ft)	Geophone Depth (ft)	Ray Path (ft)	Ray Path Difference (ft)	Travel Time Interval (ms)	Interval Velocity (ft/s)
2.46	1.80	2.35			
5.74	5.09	5.30	2.96	5.63	525
9.02	8.37	8.50	3.20	6.58	486
12.30	11.65	11.74	3.24	6.62	490
15.58	14.93	15.00	3.26	8.93	365
18.86	18.21	18.27	3.27	6.23	524
22.15	21.49	21.54	3.27	5.96	549
25.43	24.77	24.82	3.27	5.62	582
28.71	28.05	28.09	3.28	5.26	623
31.99	31.33	31.37	3.28	5.36	611
35.27	34.61	34.65	3.28	4.39	746
38.55	37.89	37.92	3.28	3.89	843
41.83	41.17	41.20	3.28	3.45	950
45.11	44.46	44.48	3.28	3.57	918
48.39	47.74	47.76	3.28	3.75	873

Job No:	16-52046
Client:	Kleinfelder
Project:	SLC Landfill
Sounding ID:	CPT 2016-02
Date:	09-May-2016
Seismic Source	

Seismic Source:	Beam
Source Offset (ft):	1.50
Source Depth (ft):	0.00
Geophone Offset (ft):	0.66

SCPTu SHEAR WAVE VELOCITY TEST RESULTS - Vs					
Tip Depth (ft)	Geophone Depth (ft)	Ray Path (ft)	Ray Path Difference (ft)	Travel Time Interval (ms)	Interval Velocity (ft/s)
2.46	1.80	2.35			
5.74	5.09	5.30	2.96	9.50	311
9.02	8.37	8.50	3.20	7.13	449
12.30	11.65	11.74	3.24	7.28	445
15.58	14.93	15.00	3.26	8.47	385
18.86	18.21	18.27	3.27	5.25	622
22.15	21.49	21.54	3.27	5.63	581
25.43	24.77	24.82	3.27	5.05	648
28.71	28.05	28.09	3.28	5.59	586
31.99	31.33	31.37	3.28	5.46	601
35.27	34.61	34.65	3.28	4.67	702
38.55	37.89	37.92	3.28	4.73	694
41.83	41.17	41.20	3.28	4.11	797
45.11	44.46	44.48	3.28	3.76	871
48.39	47.74	47.76	3.28	3.65	899

Job No:	16-52046
Client:	Kleinfelder
Project:	SLC Landfill
Sounding ID:	CPT 2016-03
Date:	09-May-2016
Seismic Source	

Seismic Source:	Beam
Source Offset (ft):	1.50
Source Depth (ft):	0.00
Geophone Offset (ft):	0.66

S	SCPTu SHEAF	R WAVE VEL	OCITY TEST	RESULTS - V	s
Тір	Geophone	Ray	Ray Path	Travel Time	Interval
Depth	Depth	Path	Difference	Interval	Velocity
(ft)	(ft)	(ft)	(ft)	(ms)	(ft/s)
2.62	1.97	2.47			
5.91	5.25	5.46	2.98	5.51	541
9.19	8.53	8.66	3.20	6.11	524
12.47	11.81	11.91	3.24	4.85	669
15.75	15.09	15.17	3.26	5.72	570
19.03	18.37	18.43	3.27	6.17	529
22.31	21.65	21.71	3.27	6.70	488
25.59	24.93	24.98	3.27	7.24	452
28.87	28.22	28.26	3.28	5.07	647
32.15	31.50	31.53	3.28	5.31	617
35.43	34.78	34.81	3.28	5.16	635
38.71	38.06	38.09	3.28	4.75	690
41.99	41.34	41.37	3.28	4.33	757
45.28	44.62	44.64	3.28	4.30	763
48.56	47.90	47.92	3.28	4.02	816
51.84	51.18	51.20	3.28	3.91	838
55.12	54.46	54.48	3.28	5.17	634
58.40	57.74	57.76	3.28	4.33	757

Job No:	16-52046
Client:	Kleinfelder
Project:	SLC Landfill
Sounding ID:	CPT 2016-04
Date:	09-May-2016
Seismic Source	

Seismic Source:	Beam
Source Offset (ft):	1.50
Source Depth (ft):	0.00
Geophone Offset (ft):	0.66

SCPTu SHEAR WAVE VELOCITY TEST RESULTS - Vs					
Tip Depth (ft)	Geophone Depth (ft)	Ray Path (ft)	Ray Path Difference (ft)	Travel Time Interval (ms)	Interval Velocity (ft/s)
2.62	1.97	2.47			
5.91	5.25	5.46	2.98	3.72	803
9.19	8.53	8.66	3.20	6.99	458
12.47	11.81	11.91	3.24	8.21	395
15.75	15.09	15.17	3.26	5.94	549
19.03	18.37	18.43	3.27	5.36	610
22.31	21.65	21.71	3.27	5.42	604
25.59	24.93	24.98	3.27	5.33	614
28.87	28.22	28.26	3.28	5.83	561
32.15	31.50	31.53	3.28	5.16	635
35.43	34.78	34.81	3.28	4.79	684
38.71	38.06	38.09	3.28	3.58	916
41.99	41.34	41.37	3.28	3.47	945
45.28	44.62	44.64	3.28	4.90	670
48.56	47.90	47.92	3.28	4.30	762

Job No:	16-52046
Client:	Kleinfelder
Project:	SLC Landfill
Sounding ID:	CPT 2016-05
Date:	09-May-2016

Beam
1.50
0.00
0.66

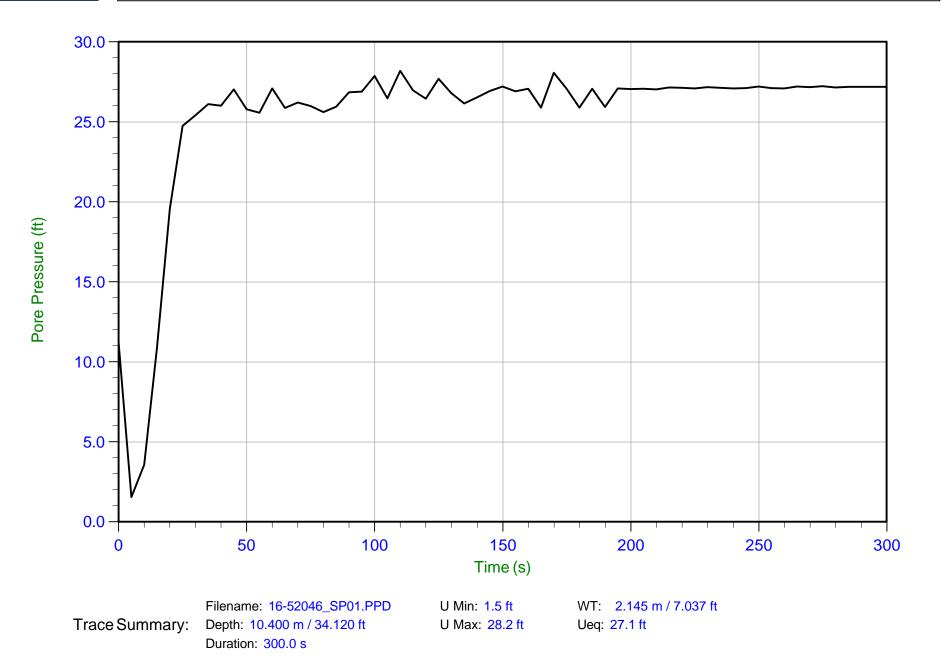
SCPTu SHEAR WAVE VELOCITY TEST RESULTS - Vs					
Tip Depth (ft)	Geophone Depth (ft)	Ray Path (ft)	Ray Path Difference (ft)	Travel Time Interval (ms)	Interval Velocity (ft/s)
2.62	1.97	2.47	(**)	(110)	(19,0)
5.91	5.25	5.46	2.98	4.59	650
9.19	8.53	8.66	3.20	5.14	623
12.47	11.81	11.91	3.24	5.69	571
15.75	15.09	15.17	3.26	7.45	438
19.03	18.37	18.43	3.27	8.12	402
22.31	21.65	21.71	3.27	6.03	542
25.59	24.93	24.98	3.27	5.42	604
28.87	28.22	28.26	3.28	4.61	711
32.15	31.50	31.53	3.28	4.64	706
35.43	34.78	34.81	3.28	4.29	763
38.71	38.06	38.09	3.28	5.11	641
41.99	41.34	41.37	3.28	3.86	849
45.28	44.62	44.64	3.28	3.67	894
48.56	47.90	47.92	3.28	4.46	735
51.67	51.02	51.04	3.12	4.95	630
55.12	54.46	54.48	3.44	4.28	805
58.40	57.74	57.76	3.28	3.91	840
61.68	61.02	61.04	3.28	3.68	891
64.96	64.30	64.32	3.28	3.20	1025
68.24	67.58	67.60	3.28	4.02	816
71.52	70.87	70.88	3.28	3.65	900
74.80	74.15	74.16	3.28	3.35	980
78.08	77.43	77.44	3.28	3.42	958
81.36	80.71	80.72	3.28	3.24	1012
84.65	83.99	84.00	3.28	3.31	990
87.93	87.27	87.28	3.28	3.44	953
91.21	90.55	90.56	3.28	3.54	927
94.49	93.83	93.84	3.28	4.18	784
97.77	97.11	97.12	3.28	3.28	999

Job No:	16-52046
Client:	Kleinfelder
Project:	SLC Landfill
Sounding ID:	CPT 2016-05
Date:	09-May-2016

Beam
1.50
0.00
0.66

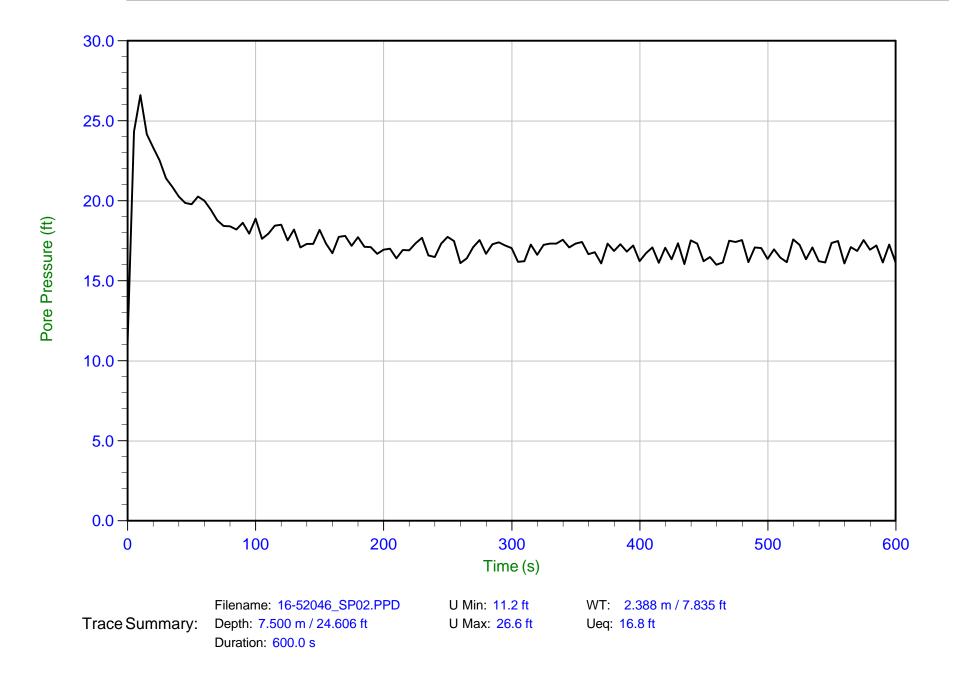
SCPTu SHEAR WAVE VELOCITY TEST RESULTS - Vs										
Тір	Geophone	Ray	Ray Path	Travel Time	Interval					
Depth	Depth	Path	Difference	Interval	Velocity					
(ft)	(ft)	(ft)	(ft)	(ms)	(ft/s)					
101.05	100.39	100.40	3.28	3.57	918					
104.33	103.67	103.69	3.28	3.31	990					
107.45	106.79	106.80	3.12	2.45	1274					
110.89	110.24	110.25	3.44	2.74	1259					
114.17	113.52	113.53	3.28	2.58	1270					
117.45	116.80	116.81	3.28	2.82	1164					
120.73	120.08	120.09	3.28	2.55	1288					
124.02	123.36	123.37	3.28	2.89	1136					
127.30	126.64	126.65	3.28	2.72	1207					
130.58	129.92	129.93	3.28	2.82	1164					
133.86	133.20	133.21	3.28	3.77	870					
137.14	136.48	136.49	3.28	2.82	1164					
140.42	139.76	139.77	3.28	2.96	1110					
143.70	143.04	143.05	3.28	2.85	1150					
146.98	146.33	146.33	3.28	2.58	1271					
150.10	149.44	149.45	3.12	2.31	1350					

Pore Pressure Dissipation Summary and Pore Pressure Dissipation Plots

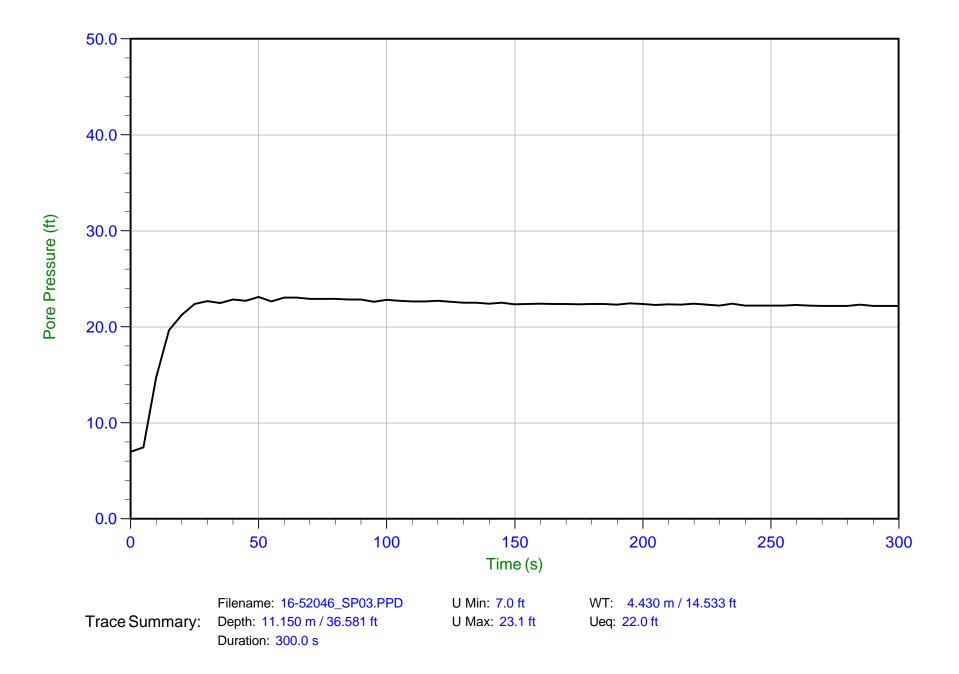

Job No:16-52046Client:KleinfelderProject:SLC LandfillStart Date:09-May-2016End Date:09-May-2016

CPTu PORE PRESSURE DISSIPATION SUMMARY									
Sounding ID	File Name	Cone Area (cm²)	Duration (s)	Test Depth (ft.)	Estimated Equilibrium Pore Pressure U _{eq} (ft.)	Calculated Phreatic Surface (ft.)	Refer to Notation Number		
CPT 2016-01	16-52046_SP01	15	300	34.12	27.1	7.0			
CPT 2016-02	16-52046_SP02	15	600	24.61	16.8	7.8			
CPT 2016-03	16-52046_SP03	15	300	36.58	22.0	14.5			
CPT 2016-04	16-52046_SP04	15	800	21.82	13.5	8.3			
CPT 2016-05	16-52046_SP05	15	400	22.31	9.2	13.1			
		15	800	120.73	111.5	9.3			

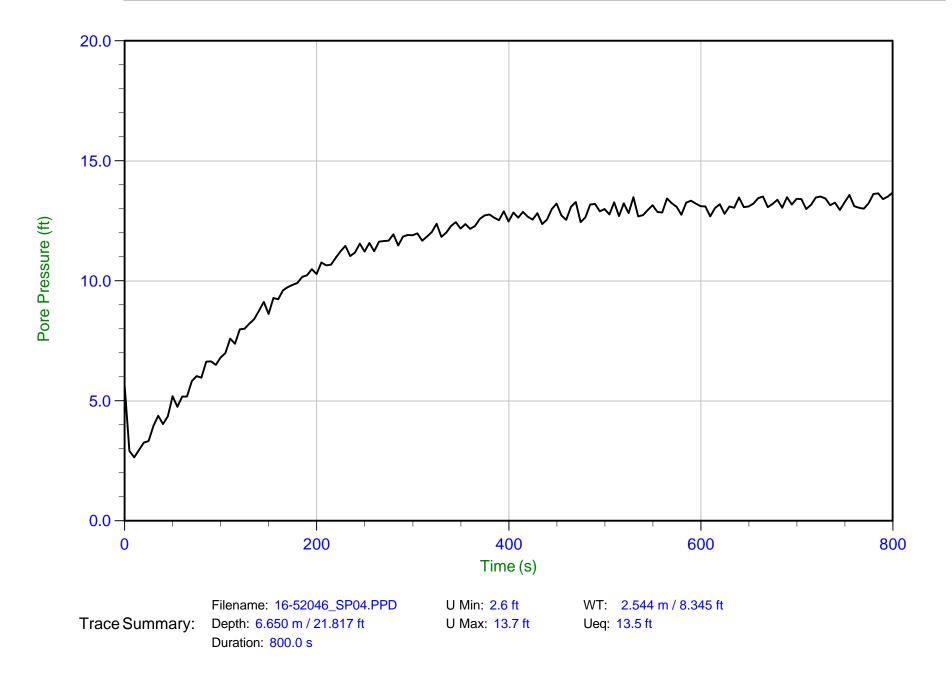
1. Dissipation test stopped by client.



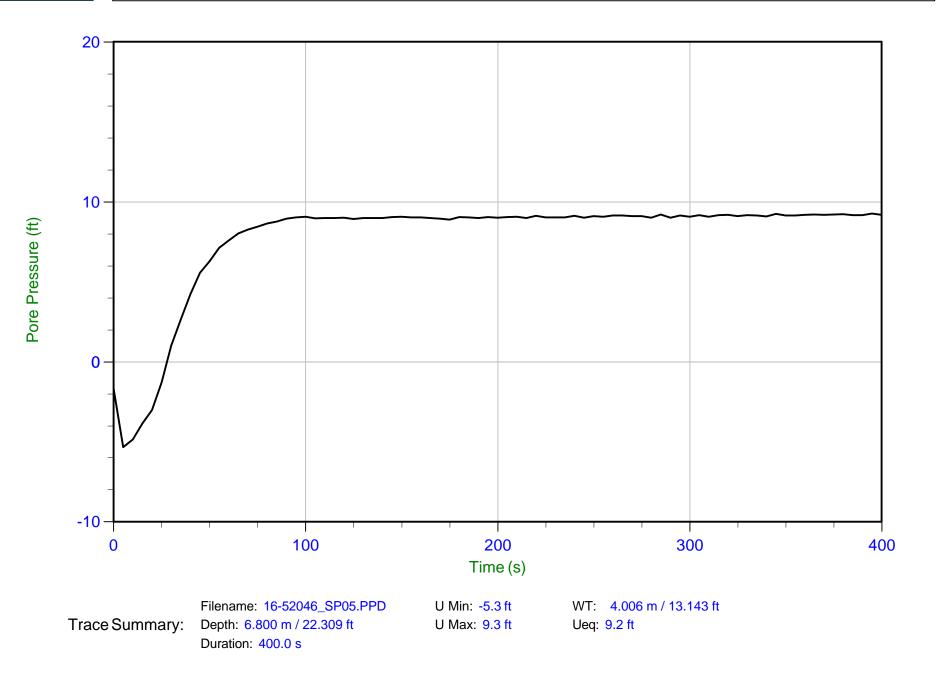
Job No: 16-52046 Date: 05/09/2016 09:40 Site: SLC Landfill Sounding: CPT2016-01 Cone: 458:T1500F15U500 Cone Area: 15 sq cm



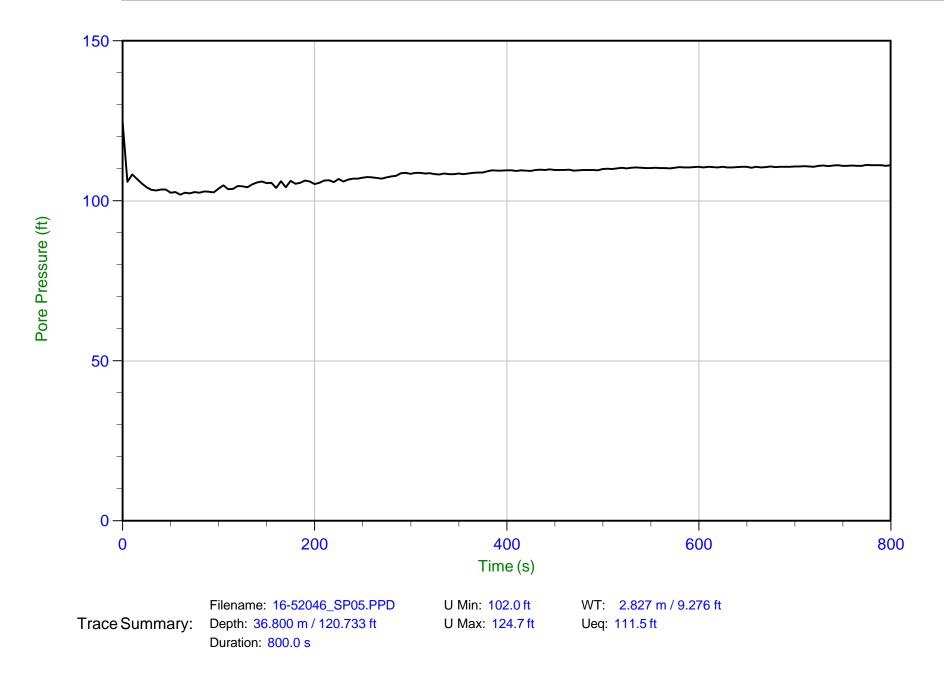
Job No: 16-52046 Date: 05/09/2016 10:51 Site: SLC Landfill Sounding: CPT2016-02 Cone: 458:T1500F15U500 Cone Area: 15 sq cm



Job No: 16-52046 Date: 05/09/2016 14:24 Site: SLC Landfill Sounding: CPT2016-03 Cone: 458:T1500F15U500 Cone Area: 15 sq cm



Job No: 16-52046 Date: 05/09/2016 08:19 Site: SLC Landfill Sounding: CPT2016-04 Cone: 458:T1500F15U500 Cone Area: 15 sq cm



Job No: 16-52046 Date: 05/09/2016 11:55 Site: SLC Landfill Sounding: CPT2016-05 Cone: 458:T1500F15U500 Cone Area: 15 sq cm

Job No: 16-52046 Date: 05/09/2016 11:55 Site: SLC Landfill Sounding: CPT2016-05 Cone: 458:T1500F15U500 Cone Area: 15 sq cm

May 13, 2016

IN-SITU SHEAR WAVE VELOCITY TEST – SALT LAKE VALLEY SOLID WASTE RE: FACILITY REV1

Based on the project objective and site conditions, Sage Earth Science conducted two shear wave velocity tests at the Northern Utah site. The objective of the tests is to determine the shear wave velocity in the top 200 feet or to the greatest depth possible of the subsurface

Seismic Velocity Survey

Seismic Surface Waves methods such as MASW (Multichannel Analysis of Surface Waves) and Refraction Microtremor use the dispersive characteristics of surface waves to determine the variation of the seismic shear wave velocity with depth. Velocity data are acquired by analyzing seismic surface waves generated by random sources or by a controlled impulsive source and received by a linear array of geophones.

A dispersion curve is calculated from the data that shows the phase velocity of the surface wave as a function of frequency or wavelength. A shear wave velocity profile (a 1-D sounding of velocity as a function of depth) is then modeled from the dispersion curve and the shear velocity of near surface is calculated.

Both MASW (active) and refraction microtremor data (passive) were acquired. Results to significantly greater depth were achieved using the microtremor passive approach. The results of the refraction microtremor data are presented here.

Table 1 Test recording parameters – test date 2016/05/13						
Test location	Salt Lake Valley Solid Waste Facility					
Recording instrument	Bison 9024					
S/N	6-93913					
geophone natural period	4.5 Hz.					
geophone/station spacing	Variable (3.3-16.4 ft.)					
number of channels	24					
spread length	252 ft.					
sample rate	2 millisecond					
number of samples	10,000 per channel					
record length	20 seconds					
total recording time	8,000 seconds (40-20 sec. records)					
low pass filter	120 Hz.					
low cut filter	4 Hz.					
seismic source	passive, refraction microtremor					
source location	NA					
Analysis software	SurfSeis™ Geometrics, Inc.					

Table 1 Test recording recreations test data 2016/05/12

Figure 1. seismic source – 500 lb

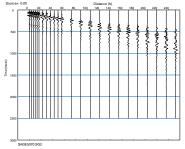


Figure 2. Field record (weight drop)

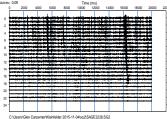


Figure 3. Field record (1 of 40 total 20 second recordings)

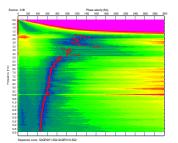
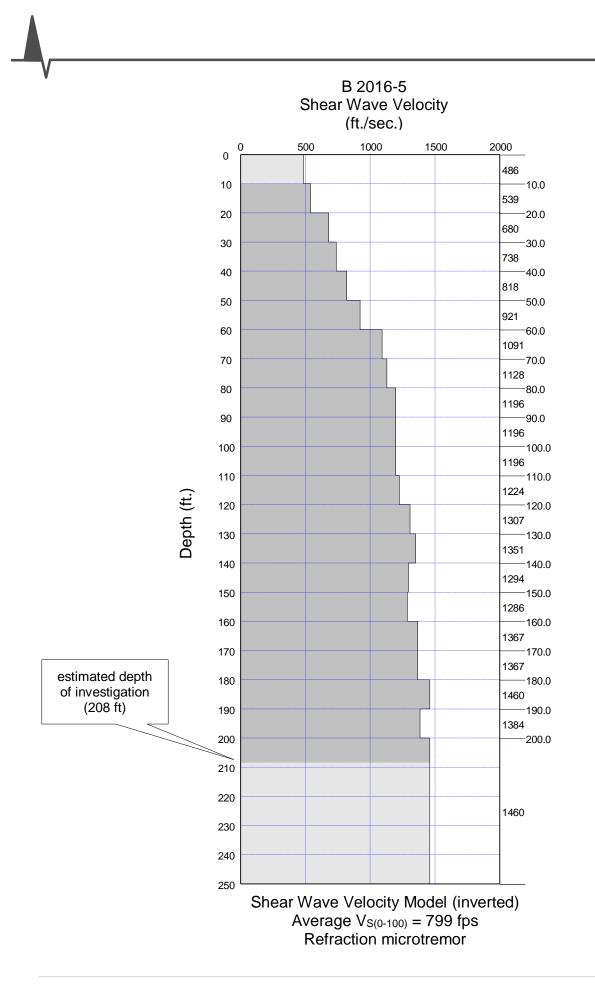


Figure 4 Phase vs. velocity plot



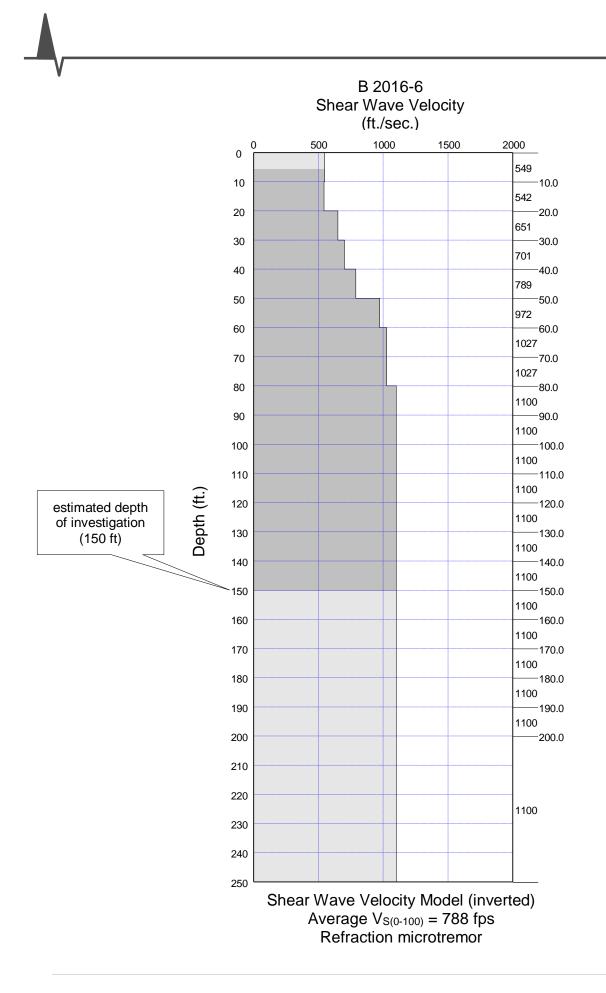
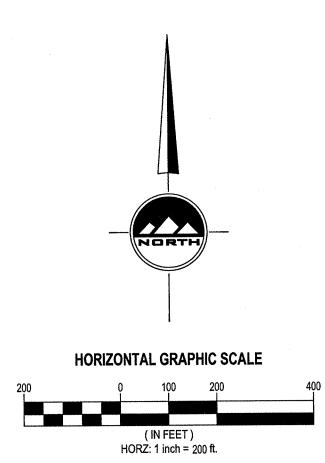

Figure 5. Test location – B 2016-5 (scale and location approximate).

Figure 5. Test location – B 2016-6 (scale and location approximate).

Glen Carpenter / principal

SURVEYOR'S NARRATIVE

The purpose of this survey is to establish a vertical control network at various Leachate Risers located at the Salt Lake County Landfill at approximately 5600 West and 2100 South streets in Salt Lake City. A survey was performed to transfer nearby high quality NGS vertical values to the Landfill site to create a vertical control network for Kleinfelder's work at certain Leachate Risers and to compare the published NGS vertical datum against the vertical datum of an existing survey to verify if the current NGS vertical values are congruent with the existing survey. The benchmark for this survey is NGS Point - R 174, PID LP0219, a First Order Vertical adjusted value monument. This benchmark was verified against NGS Point - AA3687 - MUHAR a high accuracy Cooperative Base Network Control Station. Measured values of these monuments checked within 0.04' of each other and the published value of R 174 was held as the vertical basis for this survey. The Basis of Bearing for this survey is Geodetic North and a local coordinate of 10,000, 10,000 was assigned to AA3687 - MUHAR. The vertical datum was transferred to local benchmarks nearby each individual Leachate Riser with a combination of static GPS observations and the mean value of multiple control quality RTK GPS observations. Elevations were again transferred to a designated mark established by Kleinfelder on the side of each individual Leachate Riser with a reflectorless total station.Vertical values are accurate to within +0.20'.


SURVEYOR'S CERTIFICATE

I, William L. Clark, do hereby certify that I am a Professional Land Surveyor and that I hold License No. 5251265 as prescribed by the laws of the State of Utah and represent that I have made a survey transferring vertical benchmarks to locations at the Salt Lake County Landfill and the results of said survey are correct depicted hereon.

6-1-2016 Date

William Cark William Clark License no. 5251265

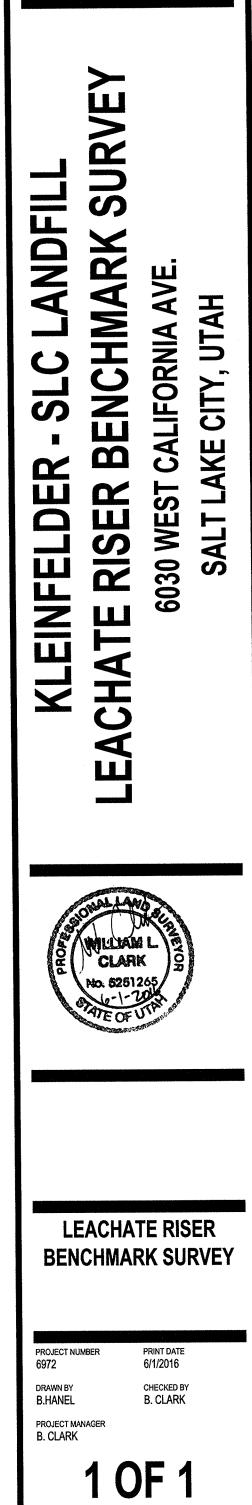
	NO.	NORTHING	EASTING	ELEVATION	DESCRIPTION
ſ	1	10000.000	10000.000	4245.749	MUHAR
Γ	2	13652.813	9380.261	4235.820	R 174
ſ	3	14926.043	6673.747	4233.119	N 1/4 14
ſ	400	16948.358	3403.625	4291.458	MARK on S-7
ſ	401	16970.279	5589.542	4284.742	MARK on S-1
ſ	402	17591.168	5556.899	4313.240	MARK on S-2
	403	17620.284	4846.320	4300.685	MARK on S-3
ſ	404	16973.980	4827.763	4283.602	MARK on S-6
ſ	405	17626.268	3425.416	4307.983	MARK on S-4
	406	17627.203	2606.595	4237.118	MARK on S-5

SALT LAKE CITY 45 W. 10000 S., Suite 500 Sandy, UT 84070 Phone: 801.255.0529 Fax: 801.255.4449

LAYTON

Phone: 801.547.1100

Phone: 435.843.3590

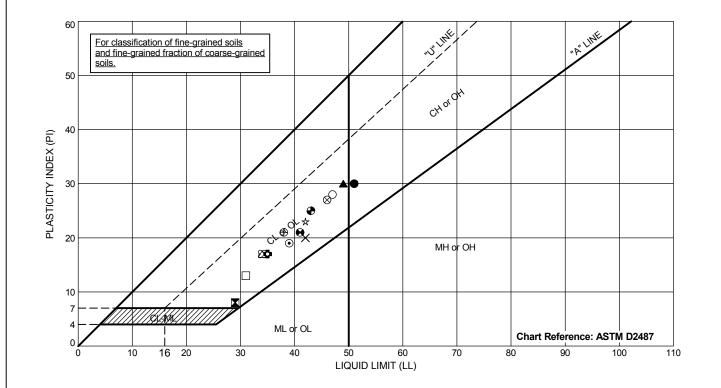

CEDAR CITY Phone: 435.865.1453

RICHFIELD Phone: 435.590.0187 www.ensignutah.com

FOR:

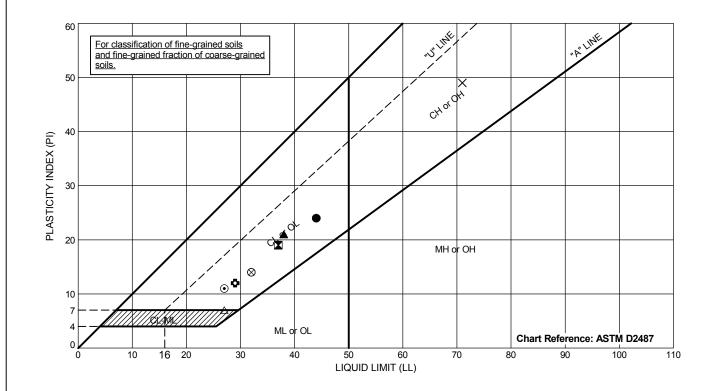
KLEINFELDER 849 LEVOY DR. #200 SALT LAKE CITY, UTAH 84123

CONTACT: TRENT PARKHILL PHONE: 801-261-3336 FAX:



APPENDIX C

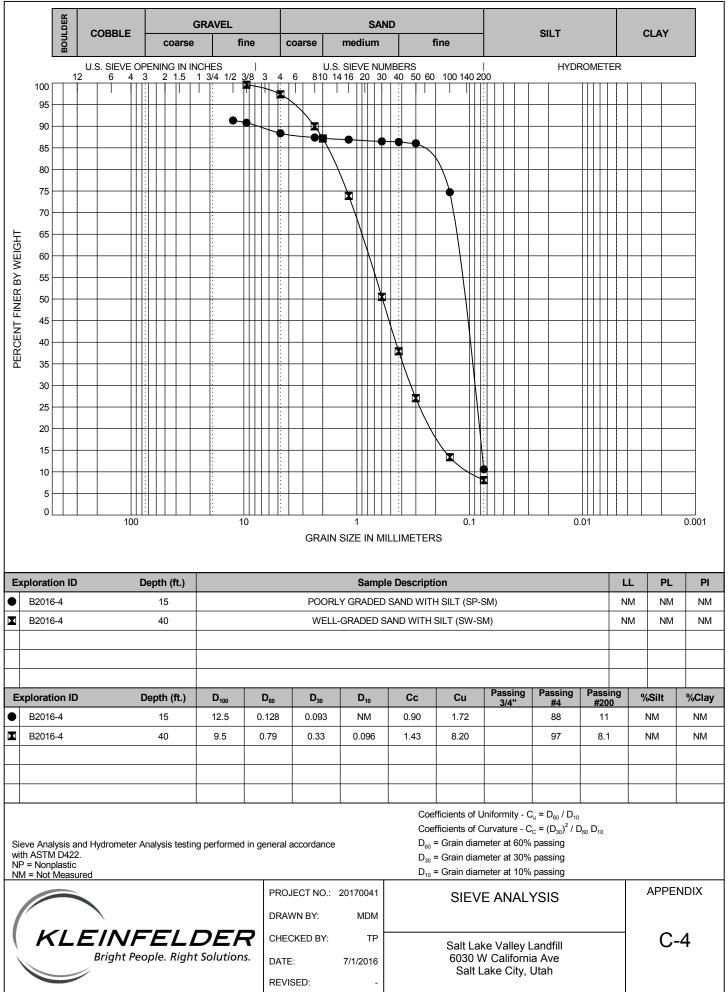
Laboratory Test Results


Sample Description ((CH) ((CH) ((CL) (CL) (CL) (CL) (CL) (CL) (CL) (C	% 34.7 24.3 35.7 23.0 35.6 21.8 30.3	87.8 95.9 87.2 103.0	Passing 3/4"	Passing #4	base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base base bas bas bas bas bas bas bas bas bas bas b	Lidnid Limit 29 49 42 39 35	Image: Description Image: Description 12 12 12 12 12 12 12 12 12 12 12 12 12 12 13 12 14 12 15 12 16 12 17 12 18 12 19 12 10 12 10 12 10 12 10 12	300 300 199	Additional Tests
AY WITH SAND (CL) AY (CL) EAN CLAY (CL) AY (CL) AY (CL) AY (CL) AY WITH SAND (CL) AY (CL) GRADED SAND WITH SILT (SP-SM)	34.7 24.3 35.7 23.0 35.6 21.8	99.0 86.7 95.9 87.2 103.0	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	84 99 67 93	51 29 49 42 39	21 19 22 20	8 30 20	· · · · · · · · · · · · · · · · · · ·
AY (CL) EAN CLAY (CL) AY (CL) AY (CL) AY (CL) AY WITH SAND (CL) AY (CL) GRADED SAND WITH SILT (SP-SM)	35.7 23.0 35.6 21.8	86.7 95.9 87.2 103.0	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	99 67 93	49 42 39	19 22 20	30 20	
EAN CLAY (CL) AY (CL) AY (CL) AY (CL) AY WITH SAND (CL) AY (CL) GRADED SAND WITH SILT (SP-SM)	23.0 35.6 21.8	95.9 87.2 103.0	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	67 93	42 39	22 20	20	
AY (CL) AY (CL) AY (CL) AY WITH SAND (CL) AY (CL) GRADED SAND WITH SILT (SP-SM)	35.6	87.2 103.0	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	93		20		
AY (CL) AY (CL) AY WITH SAND (CL) AY (CL) GRADED SAND WITH SILT (SP-SM)	35.6	87.2 103.0	· · · · · · · · · · · · · · · · · · ·					19	
AY (CL) AY WITH SAND (CL) AY (CL) GRADED SAND WITH SILT (SP-SM)	35.6	87.2 103.0	 		92				
AY WITH SAND (CL) AY (CL) GRADED SAND WITH SILT (SP-SM)	21.8	103.0					18	17	
AY (CL) GRADED SAND WITH SILT (SP-SM)					96	47	19	28	
GRADED SAND WITH SILT (SP-SM)	30.3				83	34	 17	17	
		92.8			91	46		27	
ADED SAND WITH SILT (SW-SM)				88	11				
				97	8.1				
AY (CL)					91	38		21	
AY WITH SAND (CL)	25.1	97.9			81			13	
AY (CL)	32.7	87.9			100	41	20	21	
AY WITH SAND (CL)					80	43	 18	25	
AY WITH SAND (CL)	29.8	88.5			83	42	 19	23	
	25.8	98.5			90		 17	17	
AY (CL)	27.5	97.5			95		20	24	
AY WITH SAND (CL)	23.9	98.1			76	37		19	
AY (CL)					92	38		21	
((CH)	40.7	75.4			98	 71	22	49	
AY WITH SAND (CL)						27	16	11	
EAN CLAY (CL)					62	 29	 17	12	
	23.5	102.4			 97		 18	14	
AY WITH SAND (CL-ML)						27	20	7	
ILT (ML)					52				
AY (CL)						32			
	AY WITH SAND (CL) AY WITH SAND (CL) AY (CL) AY (CL) AY (CL) AY (CL) Y (CH) AY WITH SAND (CL) EAN CLAY (CL) AY (CL) AY WITH SAND (CL-ML) ILT (ML) AY (CL)	AY WITH SAND (CL) 29.8 AY (CL) 25.8 AY (CL) 27.5 AY WITH SAND (CL) 23.9 AY (CL) 40.7 AY WITH SAND (CL) 23.5 AY (CL) 23.5 AY WITH SAND (CL-ML) 23.5	AY WITH SAND (CL) 29.8 88.5 AY (CL) 25.8 98.5 AY (CL) 27.5 97.5 AY WITH SAND (CL) 23.9 98.1 AY (CL) 23.9 98.1 AY (CL) 40.7 75.4 AY WITH SAND (CL) 23.5 102.4 AY (CL) 23.5 102.4 AY WITH SAND (CL-ML) 11.7 11.7	AY WITH SAND (CL) 29.8 88.5 AY (CL) 25.8 98.5 AY (CL) 27.5 97.5 AY WITH SAND (CL) 23.9 98.1 AY (CL) 40.7 75.4 AY WITH SAND (CL) 23.5 102.4 AY (CL) 23.5 102.4 AY (CL) 23.5 102.4	AY WITH SAND (CL) 29.8 88.5 AY (CL) 25.8 98.5 AY (CL) 27.5 97.5 AY WITH SAND (CL) 23.9 98.1 AY (CL) 40.7 75.4 AY WITH SAND (CL) 23.5 102.4 AY (CL) 23.5 102.4	AY WITH SAND (CL) 29.8 88.5 83 AY (CL) 25.8 98.5 90 AY (CL) 27.5 97.5 95 AY WITH SAND (CL) 23.9 98.1 76 AY (CL) 23.9 98.1 76 AY (CL) 40.7 75.4 98 AY WITH SAND (CL) 40.7 75.4 98 AY WITH SAND (CL) 62 78 62 AY (CL) 23.5 102.4 97 AY WITH SAND (CL-ML) 78 52 52	AY WITH SAND (CL) 29.8 88.5 83 42 AY (CL) 25.8 98.5 90 34 AY (CL) 27.5 97.5 95 44 AY WITH SAND (CL) 23.9 98.1 76 37 AY (CL) 23.9 98.1 76 37 AY (CL) 40.7 75.4 98 71 AY WITH SAND (CL) 40.7 75.4 98 71 AY WITH SAND (CL) 62 29 38 Y (CL) 23.5 102.4 97 32 AY (CL) 23.5 102.4 97 32 AY WITH SAND (CL-ML) 52 52 52	AY WITH SAND (CL) 29.8 88.5 83 42 19 AY (CL) 25.8 98.5 90 34 17 AY (CL) 27.5 97.5 95 44 20 AY WITH SAND (CL) 23.9 98.1 76 37 18 AY (CL) 23.9 98.1 76 37 18 AY (CL) 40.7 75.4 98 71 22 AY WITH SAND (CL) 40.7 75.4 98 71 22 AY WITH SAND (CL) 62 29 17 AY (CL) 23.5 102.4 97 32 18 AY WITH SAND (CL-ML) 78 27 20 17 ILT (ML) 52 102.4 52 102.4	AY WITH SAND (CL) 29.8 88.5 83 42 19 23 AY (CL) 25.8 98.5 90 34 17 17 AY (CL) 27.5 97.5 95 44 20 24 AY WITH SAND (CL) 23.9 98.1 76 37 18 19 AY (CL) 40.7 75.4 98 71 22 49 AY WITH SAND (CL) 78 27 16 11 EAN CLAY (CL) 23.5 102.4 97 32 18 14 AY WITH SAND (CL-ML) 78 27 20 7 11 ILT (ML) 52 5 5 5 5 5 5

E	xploration ID	Depth (ft.)	Sample Description	Passing #200	LL	PL	PI
	B2016-1	12.5	FAT CLAY (CH)	96	51	21	30
	B2016-1	23.3	LEAN CLAY with SAND (CL)	84	29	21	8
	B2016-2	12.5	LEAN CLAY (CL)	99	49	19	30
×	B2016-3a	2.5	SANDY LEAN CLAY (CL)	67	42	22	20
\odot	B2016-3a	3.3	LEAN CLAY (CL)	93	39	20	19
0	B2016-3a	12.5	LEAN CLAY (CL)	92	35	18	17
0	B2016-3a	30	LEAN CLAY (CL)	96	47	19	28
	B2016-3a	55	LEAN CLAY with SAND (CL)	83	34	17	17
\otimes	B2016-3b	25	LEAN CLAY (CL)	91	46	19	27
\oplus	B2016-4	47.5	LEAN CLAY (CL)	91	38	17	21
	B2016-4	47.9	LEAN CLAY with SAND (CL)	81	31	18	13
•	B2016-4	50	LEAN CLAY (CL)	100	41	20	21
•	B2016-5	2.5	LEAN CLAY with SAND (CL)	80	43	18	25
*	B2016-5	10	LEAN CLAY with SAND (CL)	83	42	19	23
ន	B2016-5	17.5	LEAN CLAY (CL)	90	34	17	17

Testing perfomed in general accordance with ASTM D4318. NP = Nonplastic NM = Not Measured

\bigcirc	PROJECT NO .:	20170041	ATTERBERG LIMITS	APPENDIX
	DRAWN BY:	MDM		
KLEINFELDER	CHECKED BY:	TP	Salt Lake Valley Landfill	C-2
Bright People. Right Solutions.	DATE:	7/1/2016	6030 W California Ave Salt Lake City, Utah	
	REVISED:	-	Sait Lake City, Oldi	


I	Exploration ID	Depth (ft.)	Sample Description	Passing #200	LL	PL	PI
	B2016-5	35	LEAN CLAY (CL)	95	44	20	24
	B2016-5	51.2	LEAN CLAY with SAND (CL)	76	37	18	19
, 🔺	B2016-5	55	LEAN CLAY (CL)	92	38	17	21
×	B2016-5	60	FAT CLAY (CH)	98	71	22	49
	B2016-5	65	LEAN CLAY with SAND (CL)	78	27	16	11
	B2016-5	65.5	SANDY LEAN CLAY (CL)	62	29	17	12
С	B2016-5	67.5	LEAN CLAY (CL)	97	32	18	14
	B2016-5	83	SILTY CLAY with SAND (CL-ML)	78	27	20	7
	B2016-5	95	LEAN CLAY (CL)	87	32	18	14
		·					•

Testing perfomed in general accordance with ASTM D4318. NP = Nonplastic NM = Not Measured

	PROJECT NO .:	20170041	ATTERBERG LIMITS	APPENDIX
	DRAWN BY:	MDM		
KLEINFELDER	CHECKED BY:	TP	Salt Lake Valley Landfill	C-3
Bright People. Right Solutions.	DATE:	7/1/2016	6030 W California Ave Salt Lake City, Utah	
	REVISED:	-	Sait Lake City, Otan	

KLEINFELDER - 849 West Levoy Drive, Suite 200 | Taylorsville, UT 84123 | PH: 801.261.3336 | FAX: 801.261.3306 | www.kleinfelder.com

KLEINFELDER - 849 West Levoy Drive, Suite 200 | Taylorsville, UT 84123 | PH: 801.261.3336 | FAX: 801.261.3306 | www.kleinfelder.com

(ASTM D2435)

By: JDF

Project: Kleinfelder No: M00194-044 (20170041) Location: SLC Landfill Date: 5/31/2016

Boring No.: B-2016-1 Sample: Depth: 12.5'

Sample Description: Grey fat clay

Engineering Classification: Not requested

Dial (in.)

0.0000

0.0002

0.0023

0.0061

0.0123

0.0215

0.0373

0.0673

0.1034

0.1434

0.1838

0.1807

0.1659

0.1439

0.1236

Stress (psf)

Seating

100

200

400

800

1600

3200

6400

12800

25600

51200

25600

6400

1600

400

Sample type: Undisturbed-trimmed from Shelby tube

1-D ϵ_{v} (%)

0.00

0.03

0.25

0.66

1.34

2.34

4.05

7.31

11.24

15.59

19.98

19.64

18.03

15.64

13.43

 H_{c} (in.)

0.9200

0.9198

0.9177

0.9139

0.9077

0.8985

0.8827

0.8527

0.8166

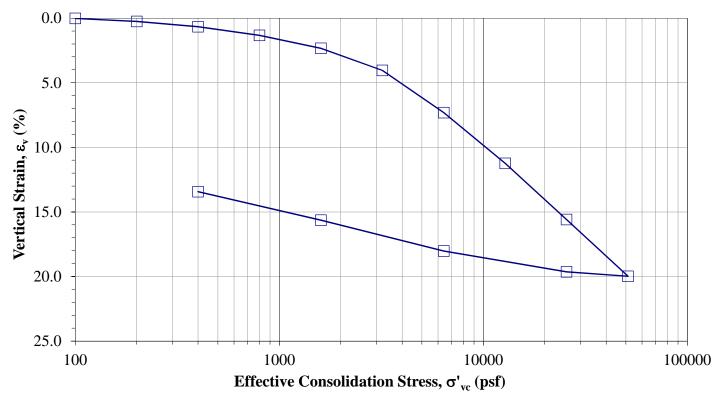
0.7766

0.7362

0.7393

0.7541

0.7761


0.7964

Test method:	А	
Inundation stress (psf), timing:	Seating	Beginning
Specific gravity, G _s	2.70	Assumed

Water type used for inundation Tap					
	Initial (o)	Final (f)			
Sample height, H (in.)	0.920	0.7964			
Sample diameter, D (in.)	2.416	2.416			
Wt. rings + wet soil (g)	177.22	168.94			
Wt. rings/tare (g)	46.34	46.34			
Moist unit wt., γ_m (pcf)	118.2	127.92			
Wet soil $+$ tare (g)	452.40	250.17			
Dry soil + tare (g)	375.13	224.72			
Tare (g)	152.32	127.44			
Water content, w (%)	34.7	26.2			
Dry unit wt., γ_d (pcf)	87.8	101.4			
Saturation	1.00	1.00			

*Note: C_v, C_c, C_r , and σ_p' to be determined

by Geotechnical Engineer.

Entered:	
Reviewed:	

e

0.9203

0.9198

0.9154

0.9076

0.8946

0.8754

0.8425

0.7799

0.7045

0.6210

0.5366

0.5431

0.5740

0.6199

(ASTM D2435)

By: NB

Project: Kleinfelder No: M00194-044 (20170041) Location: SLC Landfill Date: 5/31/2016

Boring No.: B-2016-1 Sample: 2 Depth: 23.5'

Sample Description: Grey lean clay with sand

Engineering Classification: Not requested

Dial (in.)

0.0000

0.0002

0.0017

0.0046

0.0091

0.0160

0.0258

0.0431

0.0694

0.1014

0.1355

0.1334

0.1263

0.1166

0.1058

Stress (psf)

Seating 100

200

400

800

1600

3200

6400

12800

25600

51200

25600

6400

1600

400

Sample type: Undisturbed-trimmed from Shelby tube

1-D ϵ_{v} (%)

0.00

0.02

0.18

0.50

0.99

1.74

2.80

4.69

7.54

11.02

14.73

14.50

13.73

12.67

11.50

 H_{c} (in.)

0.9200

0.9198

0.9183

0.9154

0.9109

0.9040

0.8942

0.8769

0.8507

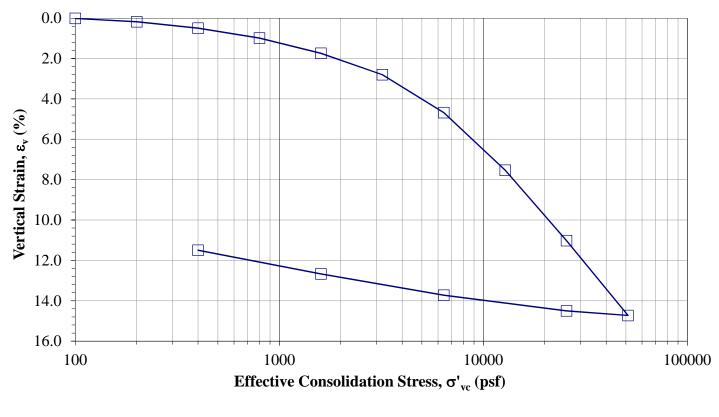
0.8186

0.7845

0.7866

0.7937

0.8034


0.8142

Test method:	А	
Inundation stress (psf), timing:	Seating	Beginning
Specific gravity, G _s	2.70	Assumed

Water type used for inundation Tap					
	Initial (o)	Final (f)			
Sample height, H (in.)	0.920	0.8142			
Sample diameter, D (in.)	2.416	2.416			
Wt. rings + wet soil (g)	178.58	175.02			
Wt. rings/tare (g)	42.27	42.27			
Moist unit wt., γ_m (pcf)	123.1	135.49			
Wet soil $+$ tare (g)	247.28	247.21			
Dry soil + tare (g)	222.56	224.34			
Tare (g)	120.86	115.76			
Water content, w (%)	24.3	21.1			
Dry unit wt., γ_d (pcf)	99.0	111.9			
Saturation	0.94	1.00			

*Note: C_v , C_c , C_r , and σ_p ' to be determined

by Geotechnical Engineer.

e

0.7018

0.7015

0.6987

0.6933

0.6849

0.6721

0.6541

0.6220

0.5735

0.5142

0.4511

0.4550

0.4682

0.4861

(ASTM D2435)

By: JDF

Project: Kleinfelder No: M00194-043 (20170041) Location: SLC Landfill Date: 5/24/2016

Boring No.: B-2016-2 Sample: Depth: 12.5'

Sample Description: Grey lean clay

Engineering Classification: Not requested

Dial (in.)

0.0000

-0.0001

0.0009

0.0025

0.0097

0.0201

0.0339

0.0590

0.0950

0.1345

0.1766

0.1748

0.1611

0.1439

0.1242

Stress (psf)

Seating

100

200

400

800

1600

3200

6400

12800

25600

51200

25600

6400

1600

400

Sample type: Undisturbed-trimmed from Shelby tube

 H_{c} (in.)

0.9200

0.9201

0.9191

0.9175

0.9103

0.8999

0.8861

0.8610

0.8251

0.7855

0.7434

0.7452

0.7589

0.7761

0.7958

1-D ϵ_{v} (%)

0.00

-0.01

0.09

0.28

1.06

2.19

3.68

6.41

10.32

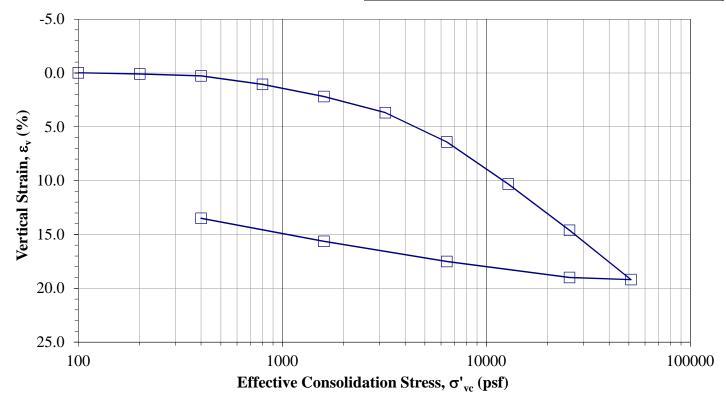
14.62

19.20

19.00

17.51

15.64


13.50

Test method:	Α	
Inundation stress (psf), timing:	Seating	Beginning
Specific gravity, G _s	2.70	Assumed

Water type used for inundation Tap					
	Initial (o) Final (f				
Sample height, H (in.)	0.920	0.7958			
Sample diameter, D (in.)	2.416	2.416			
Wt. rings + wet soil (g)	172.05	163.41			
Wt. rings/tare (g)	41.74	41.74			
Moist unit wt., γ_m (pcf)	117.7	127.05			
Wet soil $+$ tare (g)	322.78	249.36			
Dry soil + tare (g)	271.63	223.50			
Tare (g)	128.46	126.75			
Water content, w (%)	35.7	26.7			
Dry unit wt., γ_d (pcf)	86.7	100.3			
Saturation 1.00 1.00					

*Note: C_v , C_c , C_r , and σ_p ' to be determined

by Geotechnical Engineer.

Comments: Specimen swelled upon inundation, and at the 100 psf loading.

Entered:	
Reviewed:	

e

0.9437

0.9439

0.9419

0.9383

0.9231

0.9012

0.8721

0.8191

0.7431

0.6595

0.5706

0.5744

0.6033

0.6397

(ASTM D2435)

Project: Kleinfelder No: M00194-043 (20170041) Location: SLC Landfill Date: 5/24/2016 By: JDF

Boring No.: B-2016-3a Sample: Depth: 12.5'

Sample Description: Brown lean clay

Engineering Classification: Not requested

Dial (in.)

0.0000

-0.0001

0.0022

0.0074

0.0159

0.0287

0.0470

0.0713

0.0996

0.1292

0.1610

0.1587

0.1503

0.1380

0.1237

Stress (psf)

Seating

100

200

400

800

1600

3200

6400

12800

25600

51200

25600

6400

1600

400

Sample type: Undisturbed-trimmed from Shelby tube

 H_c (in.)

0.9200

0.9201

0.9178

0.9126

0.9041

0.8913

0.8730

0.8487

0.8204

0.7908

0.7590

0.7613

0.7697

0.7820

0.7963

1-D \mathcal{E}_{v} (%)

0.00

-0.01

0.24

0.80

1.73

3.12

5.11

7.75

10.82

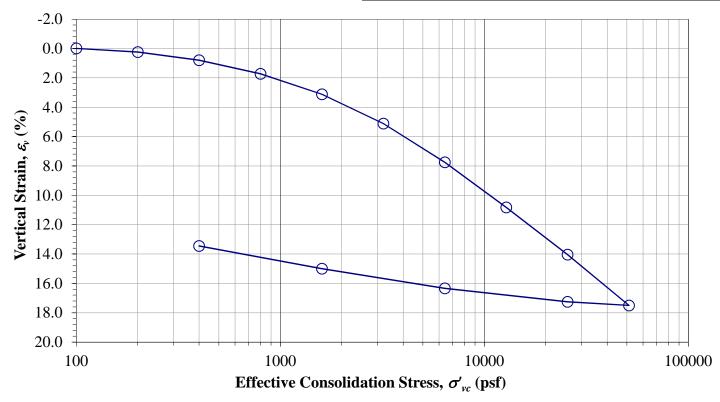
14.04

17.50

17.25

16.34

15.00


13.45

Test method:	В	
Inundation stress (psf), timing:	Seating	Beginning
Specific gravity, G_s	2.70	Assumed

Water type used for inundation Tap				
	Initial (o)	Final (f)		
Sample height, H (in.)	0.920	0.7963		
Sample diameter, D (in.)	2.416	2.416		
Wt. rings + wet soil (g)	175.71	172.92		
Wt. rings/tare (g)	45.06	45.06		
Total unit wt., γ (pcf)	118.0	133.43		
Wet soil $+$ tare (g)	343.97	278.02		
Dry soil + tare (g)	301.56	256.58		
Tare (g)	117.44	151.53		
Water content, ω (%)	23.0	20.4		
Dry unit wt., γ_d (pcf)	95.9	110.8		
Saturation, $S = 0.82$ 1.00				

*Note: C_v , C_c , C_r , and σ_p ' to be determined

by Geotechnical Engineer.

Comments: Specimen swelled upon inundation, and at the 100 psf loading.

е

0.7573

0.7574

0.7531

0.7432

0.7270

0.7026

0.6675

0.6211

0.5671

0.5105

0.4498

0.4542

0.4702

0.4937

(ASTM D2435)

By: JDF

Project: Kleinfelder No: M00194-043 (20170041) Location: SLC Landfill Date: 5/24/2016

Boring No.: B-2016-3a Sample:

Sample Description: Grey lean clay

Engineering Classification: Not requested

Dial (in.)

0.0000

-0.0002

0.0024

0.0041

0.0081

0.0170

0.0294

0.0576

0.0983

0.1463

0.1936

0.1908

0.1758

0.1517

0.1273

Stress (psf)

Seating

100

200

400

800

1600

3200

6400

12800

25600

51200

25600

6400

1600

400

Sample type: Undisturbed-trimmed from Shelby tube

 H_{c} (in.)

0.9200

0.9202

0.9176

0.9159

0.9119

0.9030

0.8906

0.8624

0.8217

0.7737

0.7264

0.7292

0.7442

0.7683

0.7927

1-D ϵ_{v} (%)

0.00

-0.02

0.26

0.44

0.88

1.84

3.20

6.26

10.68

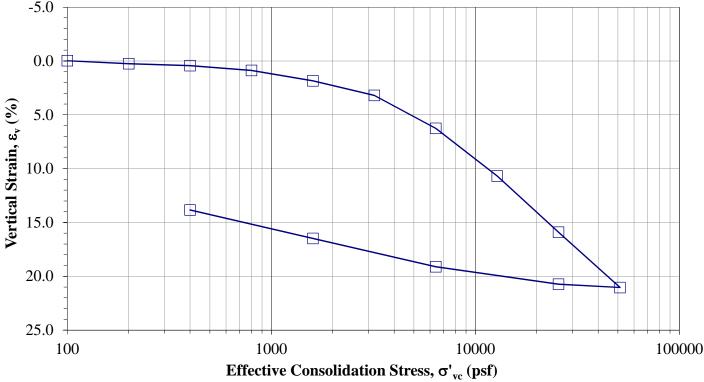
15.90

21.04

20.74

19.11

16.49


13.84

Test method:	А	
Inundation stress (psf), timing:	Seating	Beginning
Specific gravity, G _s	2.70	Assumed

Water type used for inundation Tap					
	Initial (o) Final (f				
Sample height, H (in.)	0.920	0.7927			
Sample diameter, D (in.)	2.416	2.416			
Wt. rings + wet soil (g)	173.98	166.68			
Wt. rings/tare (g)	43.01	43.01			
Moist unit wt., γ_m (pcf)	118.3	129.64			
Wet soil $+$ tare (g)	504.64	248.89			
Dry soil + tare (g)	405.48	222.32			
Tare (g)	127.02	127.59			
Water content, w (%)	35.6	28.0			
Dry unit wt., γ_d (pcf)	87.2	101.2			
Saturation 1.00 1.00					

*Note: C_v, C_c, C_r , and σ_p' to be determined

by Geotechnical Engineer.

Comments: Specimen swelled upon inundation, and at the 100 psf loading.

Entered:	
Reviewed:	

e

0.9322

0.9326

0.9272

0.9237

0.9153

0.8966

0.8704

0.8113

0.7258

0.6250

0.5256

0.5315

0.5630

0.6136

0.6649

Depth: 30'

(ASTM D2435)

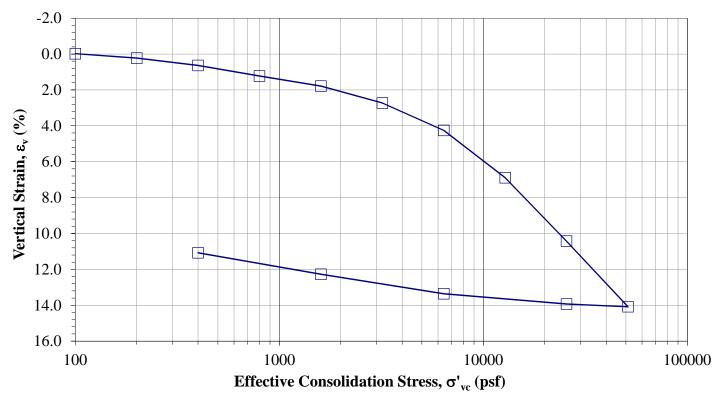
Project: Kleinfelder No: M00194-043 (20170041) Location: SLC Landfill Date: 5/24/2016

By: JDF

Boring No.: B-2016-3a Sample:

Sample Description: Grey lean clay with sand

Engineering Classification: Not requested


Sample type: Undisturbed-trimmed from Shelby tube

Test method:	Α	
Inundation stress (psf), timing:	Seating	Beginning
Specific gravity, G _s	2.70	Assumed

Water type used for inundation Tap					
	Initial (o) Final (f)				
Sample height, H (in.)	0.920	0.8181			
Sample diameter, D (in.)	2.416	2.416			
Wt. rings + wet soil (g)	181.15	178.20			
Wt. rings/tare (g)	42.24	42.24			
Moist unit wt., γ_m (pcf)	125.5	138.10			
Wet soil $+$ tare (g)	574.22	245.74			
Dry soil + tare (g)	494.42	224.23			
Tare (g)	128.14	112.19			
Water content, w (%)	21.8	19.2			
Dry unit wt., γ_d (pcf)	103.0	115.9			
Saturation 0.92 1.00					

*Note: C_v, C_c, C_r , and σ_p' to be determined

by Geotechnical Engineer.

Comments: Specimen swelled upon inundation, and at the 100 psf loading.

Entered:	
Reviewed:	

Depth: 55'

Stress (psf)	Dial (in.)	1-D ϵ_{v} (%)	H _c (in.)	e
Seating	0.0000	0.00	0.9200	0.6361
100	-0.0001	-0.02	0.9201	0.6363
200	0.0021	0.23	0.9179	0.6324
400	0.0058	0.64	0.9142	0.6257
800	0.0113	1.22	0.9087	0.6160
1600	0.0164	1.78	0.9036	0.6069
3200	0.0251	2.73	0.8949	0.5914
6400	0.0392	4.26	0.8808	0.5664
12800	0.0635	6.90	0.8565	0.5232
25600	0.0960	10.43	0.8241	0.4654
51200	0.1296	14.09	0.7904	0.4056
25600	0.1282	13.93	0.7918	0.4081
6400	0.1229	13.36	0.7971	0.4175
1600	0.1129	12.27	0.8071	0.4353
400	0.1019	11.08	0.8181	0.4549

(ASTM D2435)

Project: Kleinfelder No: M00194-043 (20170041) Location: SLC Landfill Date: 5/24/2016 By: JDF

Boring No.: B-2016-3b Sample: Depth: 25'

Sample Description: Grey lean clay

Engineering Classification: Not requested

Dial (in.)

0.0000

0.0000

0.0019

0.0077

0.0142

0.0223

0.0353

0.0598

0.0968

0.1384

0.1777

0.1755

0.1654

0.1506

0.1344

Stress (psf)

Seating

100

200

400

800

25600

51200

25600

6400

1600

400

Sample type: Undisturbed-trimmed from Shelby tube

 H_{c} (in.)

0.9200

0.9200

0.9181

0.9123

0.9059

0.8977

0.8847

0.8602

0.8232

0.7816

0.7423

0.7445

0.7546

0.7694

0.7856

1-D ϵ_{v} (%)

0.00

0.00

0.21

0.83

1.54

2.43

3.83

6.50

10.52

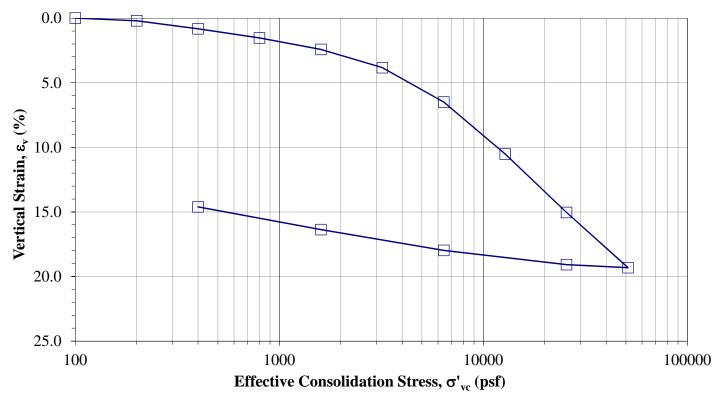
15.04

19.32

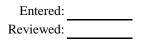
19.08

17.98

16.37


14.61

Test method:	Α	
Inundation stress (psf), timing:	Seating	Beginning
Specific gravity, G _s	2.70	Assumed


Water type used for inundation Tap		
	Initial (o)	Final (f)
Sample height, H (in.)	0.920	0.7856
Sample diameter, D (in.)	2.416	2.416
Wt. rings + wet soil (g)	175.97	168.34
Wt. rings/tare (g)	42.15	42.15
Moist unit wt., γ_m (pcf)	120.9	133.48
Wet soil $+$ tare (g)	576.30	243.65
Dry soil + tare (g)	474.98	220.26
Tare (g)	140.46	117.93
Water content, w (%)	30.3	22.9
Dry unit wt., γ_d (pcf)	92.8	108.6
Saturation	1.00	1.00

*Note: C_v, C_c, C_r , and σ_p' to be determined

by Geotechnical Engineer.

Comments: Specimen swelled upon inundation, and at the 100 psf loading.

e

0.8169

0.8169

0.8130

0.8017

0.7889

0.7728

0.7472

0.6988

0.6257

0.5435

0.4659

0.4703

0.4902

0.5194

0.5514

1600 3200 6400 12800

(ASTM D2435)

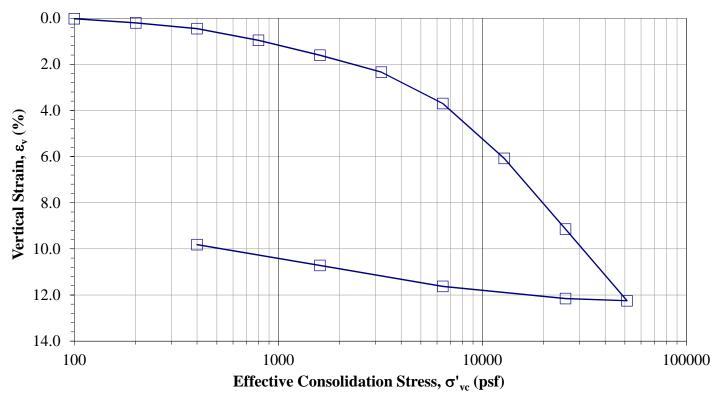
By: JDF

Project: Kleinfelder No: M00194-044 (20170041) Location: SLC Landfill Date: 5/31/2016

Boring No.: B-2016-4 Sample: Depth: 47.9'

Sample Description: Brown lean clay with sand

Engineering Classification: Not requested


Sample type: Undisturbed-trimmed from Shelby tube

Test method:	Α	
Inundation stress (psf), timing:	Seating	Beginning
Specific gravity, G _s	2.70	Assumed

Water type used for inundation Tap		
	Initial (o)	Final (f)
Sample height, H (in.)	0.920	0.8297
Sample diameter, D (in.)	2.416	2.416
Wt. rings + wet soil (g)	180.79	176.73
Wt. rings/tare (g)	45.24	45.24
Moist unit wt., γ_m (pcf)	122.4	131.70
Wet soil + tare (g)	328.77	259.45
Dry soil + tare (g)	287.28	236.39
Tare (g)	122.00	128.39
Water content, w (%)	25.1	21.4
Dry unit wt., γ_d (pcf)	97.9	108.5
Saturation	0.94	1.00

*Note: C_v, C_c, C_r , and σ_p ' to be determined

by Geotechnical Engineer.

Stress (psf)	Dial (in.)	1-D ϵ_{v} (%)	H _c (in.)	e
Seating	0.0000	0.00	0.9200	0.7223
100	0.0002	0.03	0.9198	0.7218
200	0.0019	0.21	0.9181	0.7187
400	0.0042	0.46	0.9158	0.7144
800	0.0089	0.97	0.9111	0.7057
1600	0.0148	1.61	0.9052	0.6946
3200	0.0216	2.35	0.8984	0.6819
6400	0.0341	3.70	0.8859	0.6585
12800	0.0559	6.08	0.8641	0.6176
25600	0.0841	9.14	0.8359	0.5648
51200	0.1127	12.25	0.8073	0.5113
25600	0.1118	12.15	0.8082	0.5130
6400	0.1070	11.63	0.8130	0.5220
1600	0.0987	10.72	0.8214	0.5376
400	0.0904	9.82	0.8297	0.5531

(ASTM D2435)

Project: Kleinfelder No: M00194-044 (20170041) Location: SLC Landfill Date: 5/31/2016

By: JDF

Boring No.: B-2016-4 Sample: Depth: 50.0'

Sample Description: Brown lean clay

Engineering Classification: Not requested

Dial (in.)

0.0000

0.0005

0.0020

0.0057

0.0111

0.0190

0.0324

0.0557

0.0871

0.1232

0.1597

0.1577

0.1492

0.1362

0.1243

Stress (psf)

Seating

100

200

400

800

1600

3200

6400

12800

25600

51200

25600

6400

1600

400

Sample type: Undisturbed-trimmed from Shelby tube

1-D ϵ_{v} (%)

0.00

0.05

0.22

0.62

1.20

2.07

3.52

6.05

9.47

13.39

17.36

17.14

16.22

14.80

13.51

 H_{c} (in.)

0.9200

0.9195

0.9180

0.9143

0.9089

0.9010

0.8876

0.8643

0.8329

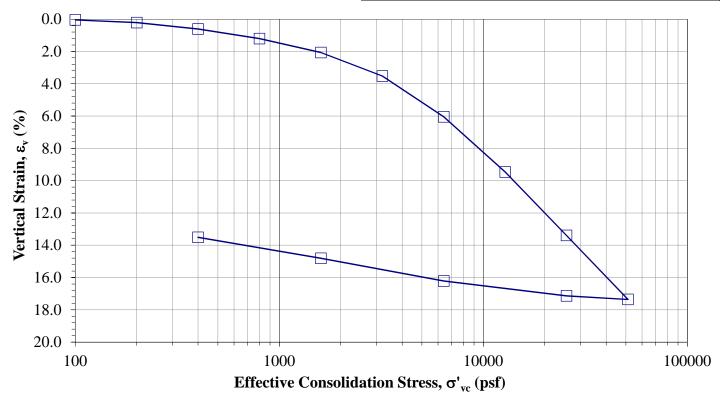
0.7968

0.7603

0.7623

0.7708

0.7838


0.7957

Test method:	А	
Inundation stress (psf), timing:	Seating	Beginning
Specific gravity, G _s	2.70	Assumed

Water type used for inundation Tap		
	Initial (o)	Final (f)
Sample height, H (in.)	0.920	0.7957
Sample diameter, D (in.)	2.416	2.416
Wt. rings + wet soil (g)	172.37	164.84
Wt. rings/tare (g)	43.28	43.28
Moist unit wt., γ_m (pcf)	116.6	126.94
Wet soil + tare (g)	445.07	247.93
Dry soil + tare (g)	363.10	223.33
Tare (g)	112.19	124.64
Water content, w (%)	32.7	24.9
Dry unit wt., γ_d (pcf)	87.9	101.6
Saturation	0.96	1.00

*Note: C_v , C_c , C_r , and σ_p ' to be determined

by Geotechnical Engineer.

e

0.9178

0.9169

0.9136

0.9060

0.8948

0.8782

0.8503

0.8018

0.7362

0.6610

0.5849

0.5891

0.6068

0.6339

(ASTM D2435)

By: JDF

Project: Kleinfelder No: M00194-043 (20170041) Location: SLC Landfill Date: 5/24/2016

Boring No.: B-2016-5 Sample:

Engineering Classification: Not requested

Dial (in.)

0.0000

-0.0001

0.0016

0.0074

0.0183

0.0341

0.0567

0.0856

0.1182

0.1531

0.1905

0.1878

0.1749

0.1567

0.1354

Stress (psf)

Seating

100

200

400

800

1600

3200

6400

12800

25600

51200

25600

6400

1600

400

Sample type: Undisturbed-trimmed from Shelby tube

 H_{c} (in.)

0.9200

0.9201

0.9184

0.9126

0.9017

0.8859

0.8633

0.8344

0.8018

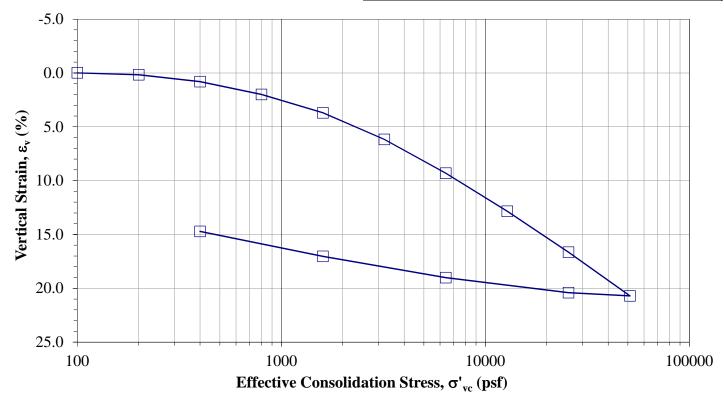
0.7669

0.7295

0.7322

0.7451

0.7633


0.7846

Test method:	А	
Inundation stress (psf), timing:	Seating	Beginning
Specific gravity, G _s	2.70	Assumed

Water type used for inundation Tap		
	Initial (o)	Final (f)
Sample height, H (in.)	0.920	0.7846
Sample diameter, D (in.)	2.416	2.416
Wt. rings + wet soil (g)	171.72	168.47
Wt. rings/tare (g)	44.52	44.52
Moist unit wt., γ_m (pcf)	114.9	131.28
Wet soil + tare (g)	328.17	249.46
Dry soil + tare (g)	282.09	224.13
Tare (g)	127.57	128.56
Water content, w (%)	29.8	26.5
Dry unit wt., γ_d (pcf)	88.5	103.8
Saturation	0.89	1.00

*Note: C_v, C_c, C_r , and σ_p' to be determined

by Geotechnical Engineer.

Comments: Specimen swelled upon inundation, and at the 100 psf loading.

Entered:	
Reviewed:	

e

0.9046

0.9047

0.9013

0.8893

0.8666

0.8341

0.7871

0.7273

0.6599

0.5876

0.5102

0.5158

0.5425

0.5802

0.6243

Depth: 10' Sample Description: Brown lean clay with sand

1-D ϵ_{v} (%)

0.00

-0.01

0.17

0.80

1.99

3.70

6.17

9.31

12.85

16.64

20.71

20.41

19.01

17.03

(ASTM D2435)

Project: Kleinfelder No: M00194-043 (20170041) Location: SLC Landfill Date: 5/24/2016 By: JDF

Boring No.: B-2016-5 Sample: Depth: 17.5'

Sample Description: Grey lean clay

Engineering Classification: Not requested

Dial (in.)

0.0000

0.0004

0.0028

0.0082

0.0156

0.0234

0.0336

0.0515

0.0782

0.1114

0.1456

0.1436

0.1344

0.1222

0.1067

Stress (psf)

Seating

100

200

400

800

1600

3200

6400

12800

25600

51200

25600

6400

1600

400

Sample type: Undisturbed-trimmed from Shelby tube

1-D ϵ_{v} (%)

0.00

0.05

0.31

0.89

1.70

2.54

3.65

5.60

8.50

12.11

15.83

15.61

14.61

13.28

11.60

 H_{c} (in.)

0.9200

0.9196

0.9172

0.9118

0.9044

0.8966

0.8864

0.8685

0.8418

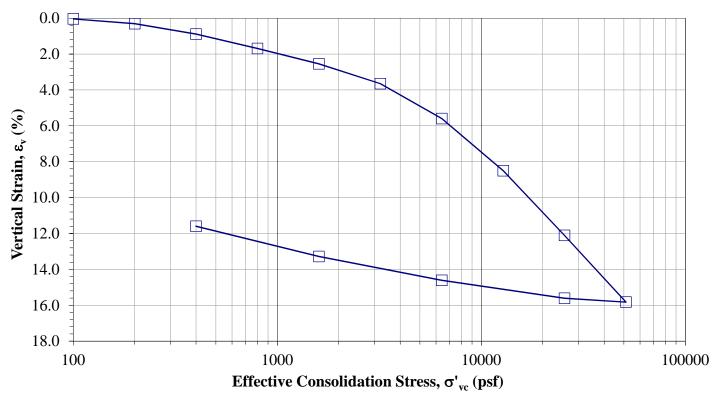
0.8086

0.7744

0.7764

0.7856

0.7978


0.8133

Test method:	Α	
Inundation stress (psf), timing:	Seating	Beginning
Specific gravity, G _s	2.70	Assumed

Water type used for inundation Tap		
	Initial (o)	Final (f)
Sample height, H (in.)	0.920	0.8133
Sample diameter, D (in.)	2.416	2.416
Wt. rings + wet soil (g)	182.07	178.19
Wt. rings/tare (g)	44.86	44.86
Moist unit wt., γ_m (pcf)	123.9	136.22
Wet soil $+$ tare (g)	407.34	253.40
Dry soil + tare (g)	350.03	229.51
Tare (g)	127.69	121.98
Water content, w (%)	25.8	22.2
Dry unit wt., γ_d (pcf)	98.5	111.5
Saturation	0.98	1.00

*Note: C_v, C_c, C_r , and σ_p' to be determined

by Geotechnical Engineer.

Entered:	
Reviewed:	

e

0.7106

0.7098

0.7053

0.6953

0.6816

0.6671

0.6481

0.6148

0.5652

0.5035

0.4399

0.4436

0.4607

0.4834

(ASTM D2435)

Project: Kleinfelder No: M00194-043 (20170041) Location: SLC Landfill Date: 5/24/2016 By: JDF

Boring No.: B-2016-5 Sample: Depth: 35'

Sample Description: Grey lean clay

Engineering Classification: Not requested

Dial (in.)

0.0000

-0.0002

0.0001

0.0025

0.0064

0.0121

0.0196

0.0349

0.0614

0.0933

0.1278

0.1271

0.1180

0.1055

0.0892

Stress (psf)

Seating

100

200

400

800

1600

3200

25600

6400

1600

400

Sample type: Undisturbed-trimmed from Shelby tube

 H_{c} (in.)

0.9200

0.9202

0.9199

0.9175

0.9136

0.9079

0.9004

0.8851

0.8586

0.8267

0.7922

0.7929

0.8020

0.8145

0.8308

1-D ϵ_{v} (%)

0.00

-0.02

0.01

0.27

0.70

1.31

2.13

3.79

6.67

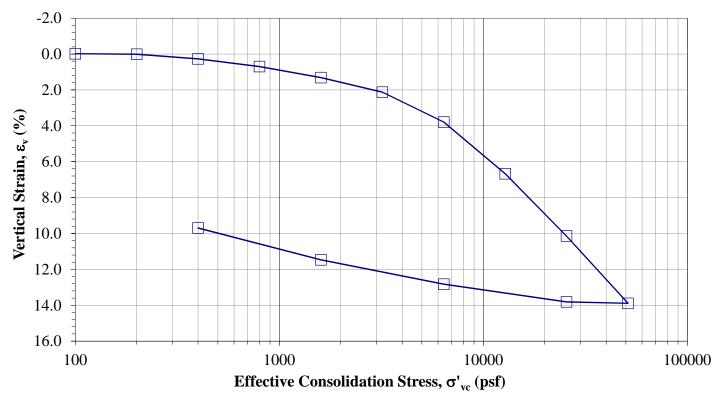
10.14

13.89

13.82

12.83

11.47


9.69

Test method:	А	
Inundation stress (psf), timing:	Seating	Beginning
Specific gravity, G _s	2.70	Assumed

Water type used for inundation Tap			
	Initial (o)	Final (f)	
Sample height, H (in.)	0.920	0.8308	
Sample diameter, D (in.)	2.416	2.416	
Wt. rings + wet soil (g)	182.41	176.74	
Wt. rings/tare (g)	44.78	44.78	
Moist unit wt., γ_m (pcf)	124.3	131.98	
Wet soil $+$ tare (g)	411.78	260.00	
Dry soil + tare (g)	349.10	235.91	
Tare (g)	120.85	127.44	
Water content, w (%)	27.5	22.2	
Dry unit wt., γ_d (pcf)	97.5	108.0	
Saturation	1.00	1.00	

*Note: C_v, C_c, C_r , and σ_p' to be determined

by Geotechnical Engineer.

Comments: Specimen swelled upon inundation, and at the 100 psf loading.

Entered:	
Reviewed:	

e 0.7282

0.7285

0.7281

0.7235

0.7161

0.7056

0.6915

0.6627

0.6129

0.5530

0.4882

0.4895

0.5066

0.5300

0.5607

6400 12800 25600 51200

(ASTM D2435)

By: JDF

Project: Kleinfelder No: M00194-044 (20170041) Location: SLC Landfill Date: 5/31/2016

Boring No.: B-2016-5 Sample: Depth: 51.2'

Sample Description: Brown lean clay with sand

Engineering Classification: Not requested

Dial (in.)

0.0000

0.0001

0.0031

0.0076

0.0129

0.0187

0.0263

0.0430

0.0689

0.1035

0.1394

0.1383

0.1297

0.1171

0.1033

Stress (psf)

Seating 100

200

400

800

1600

3200

6400

12800

25600

51200

25600

6400

1600

400

Sample type: Undisturbed-trimmed from Shelby tube

1-D ϵ_{v} (%)

0.00

0.02

0.34

0.82

1.40

2.03

2.86

4.67

7.48

11.25

15.15

15.03

14.10

12.73

11.23

 H_{c} (in.)

0.9200

0.9199

0.9169

0.9124

0.9072

0.9013

0.8937

0.8770

0.8512

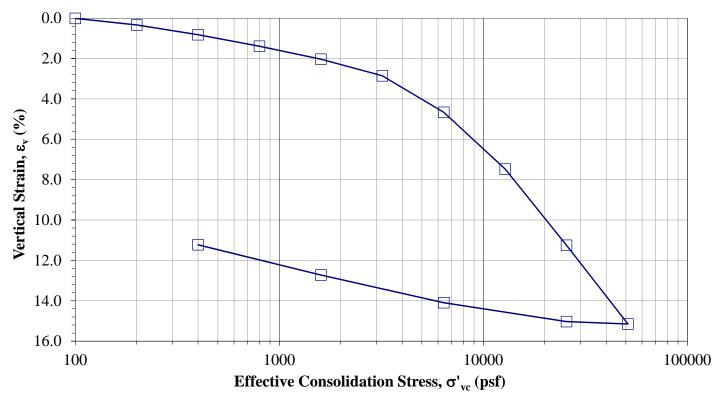
0.8165

0.7806

0.7817

0.7903

0.8029


0.8167

Test method:	А	
Inundation stress (psf), timing:	Seating	Beginning
Specific gravity, G _s	2.70	Assumed

Water type used for inundation Tap			
	Initial (o)	Final (f)	
Sample height, H (in.)	0.920	0.8167	
Sample diameter, D (in.)	2.416	2.416	
Wt. rings + wet soil (g)	180.04	178.31	
Wt. rings/tare (g)	45.44	45.44	
Moist unit wt., γ_m (pcf)	121.6	135.20	
Wet soil $+$ tare (g)	343.94	283.34	
Dry soil + tare (g)	300.24	259.74	
Tare (g)	117.48	154.02	
Water content, w (%)	23.9	22.3	
Dry unit wt., γ_d (pcf)	98.1	110.5	
Saturation	0.90	1.00	

*Note: C_v, C_c, C_r , and σ_p' to be determined

by Geotechnical Engineer.

e

0.7179

0.7176

0.7121

0.7038

0.6939

0.6830

0.6687

0.6377

0.5894

0.5246

0.4576

0.4597

0.4757

0.4993

(ASTM D2435)

Project: Kleinfelder No: M00194-043 (20170041) Location: SLC Landfill Date: 5/24/2016 By: JDF

Boring No.: B-2016-5 Sample: Depth: 60'

Sample Description: Light brown fat clay

Engineering Classification: Not requested

Dial (in.)

0.0000

0.0007

0.0019

0.0040

0.0082

0.0137

0.0214

0.0370

0.0778

0.1340

0.1904

0.1877

0.1763

0.1621

0.1503

Stress (psf)

Seating

100

200

400

800

1600

3200

6400

12800

25600

51200

25600

6400

1600

400

Sample type: Undisturbed-trimmed from Shelby tube

 H_c (in.)

0.9200

0.9193

0.9181

0.9160

0.9118

0.9063

0.8986

0.8830

0.8422

0.7860

0.7296

0.7323

0.7437

0.7579

0.7697

1-D \mathcal{E}_{v} (%)

0.00

0.07

0.21

0.44

0.89

1.49

2.32

4.02

8.45

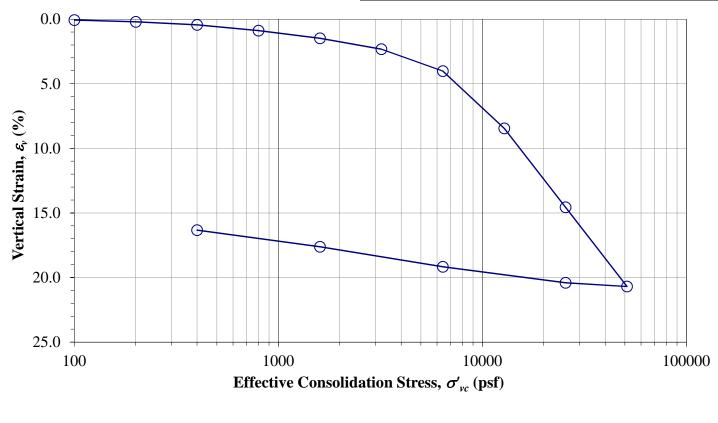
14.57

20.70

20.40

19.16

17.62


16.34

Test method:	В	
Inundation stress (psf), timing:	Seating	Beginning
Specific gravity, G_s	2.70	Assumed

Water type used for inundation Tap		
	Initial (o)	Final (f)
Sample height, H (in.)	0.920	0.7697
Sample diameter, D (in.)	2.416	2.416
Wt. rings + wet soil (g)	159.99	152.64
Wt. rings/tare (g)	42.49	42.49
Total unit wt., γ (pcf)	106.1	118.92
Wet soil $+$ tare (g)	472.26	239.67
Dry soil + tare (g)	372.75	212.84
Tare (g)	128.30	128.74
Water content, ω (%)	40.7	31.9
Dry unit wt., γ_d (pcf)	75.4	90.2
Saturation, S	0.89	0.99

*Note: C_v , C_c , C_r , and σ_p ' to be determined

by Geotechnical Engineer.

е

1.2347

1.2331

1.2301

1.2249

1.2148

1.2015

1.1828

1.1448

1.0458

0.9092

0.7722

0.7788

0.8065

0.8409

(ASTM D2435)

Project: Kleinfelder No: M00194-043 (20170041) Location: SLC Landfill Date: 5/24/2016 By: JDF

Boring No.: B-2016-5 Sample: Depth: 67.5'

Sample Description: Brown lean clay

Engineering Classification: Not requested

Dial (in.)

0.0000

0.0000

0.0006

0.0035

0.0076

0.0129

0.0222

0.0350

0.0554

0.0811

0.1118

0.1101

0.1048

0.0931

0.0810

Stress (psf)

Seating

100

200

400

800

1600

3200

6400

12800

25600

Sample type: Undisturbed-trimmed from Shelby tube

 H_{c} (in.)

0.9200

0.9200

0.9194

0.9165

0.9124

0.9071

0.8978

0.8850

0.8646

0.8390

0.8082

0.8099

0.8152

0.8269

0.8390

1-D ϵ_{v} (%)

0.00

0.00

0.07

0.38

0.83

1.41

2.41

3.81

6.02

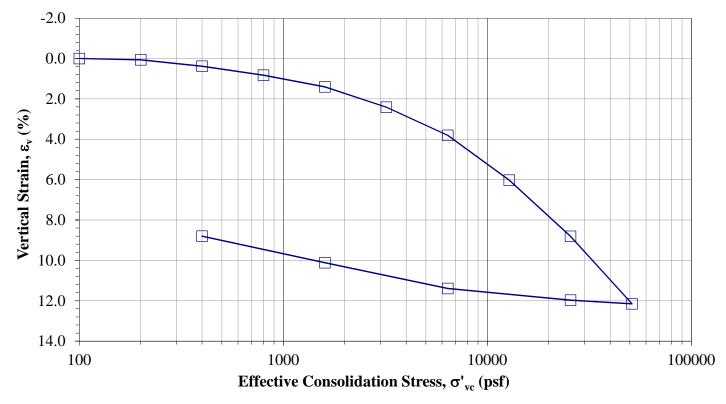
8.81

12.15

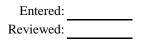
11.97

11.39

10.12


8.80

Test method:	Α	
Inundation stress (psf), timing:	Seating	Beginning
Specific gravity, G _s	2.70	Assumed


Water type used for inundation Tap			
	Initial (o)	Final (f)	
Sample height, H (in.)	0.920	0.8390	
Sample diameter, D (in.)	2.416	2.416	
Wt. rings + wet soil (g)	183.27	178.99	
Wt. rings/tare (g)	43.21	43.21	
Moist unit wt., γ_m (pcf)	126.5	134.48	
Wet soil $+$ tare (g)	420.48	288.43	
Dry soil + tare (g)	364.76	266.01	
Tare (g)	127.66	152.34	
Water content, w (%)	23.5	19.7	
Dry unit wt., γ_d (pcf)	102.4	112.3	
Saturation	0.98	1.00	

*Note: C_v, C_c, C_r , and σ_p' to be determined

by Geotechnical Engineer.

Comments: Specimen swelled upon inundation, and at the 100 psf loading.

e

0.6455

0.6455

0.6444

0.6392

0.6318

0.6223

0.6058

0.5828

0.5464

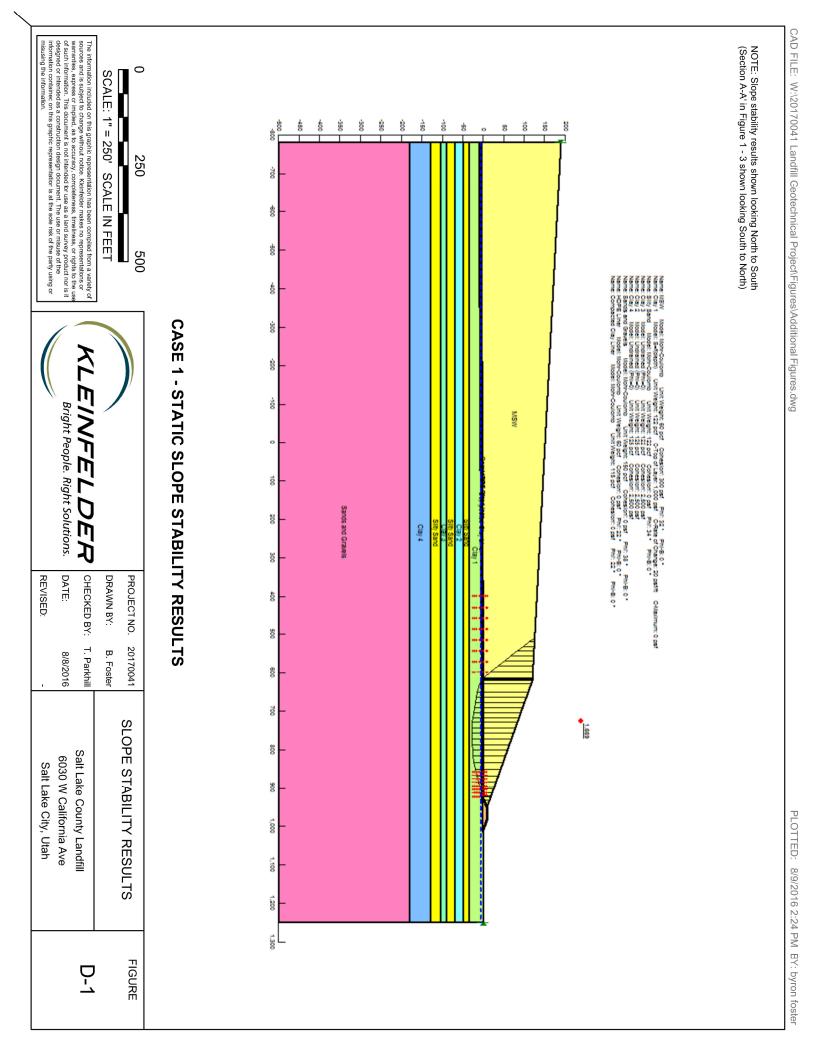
0.5005

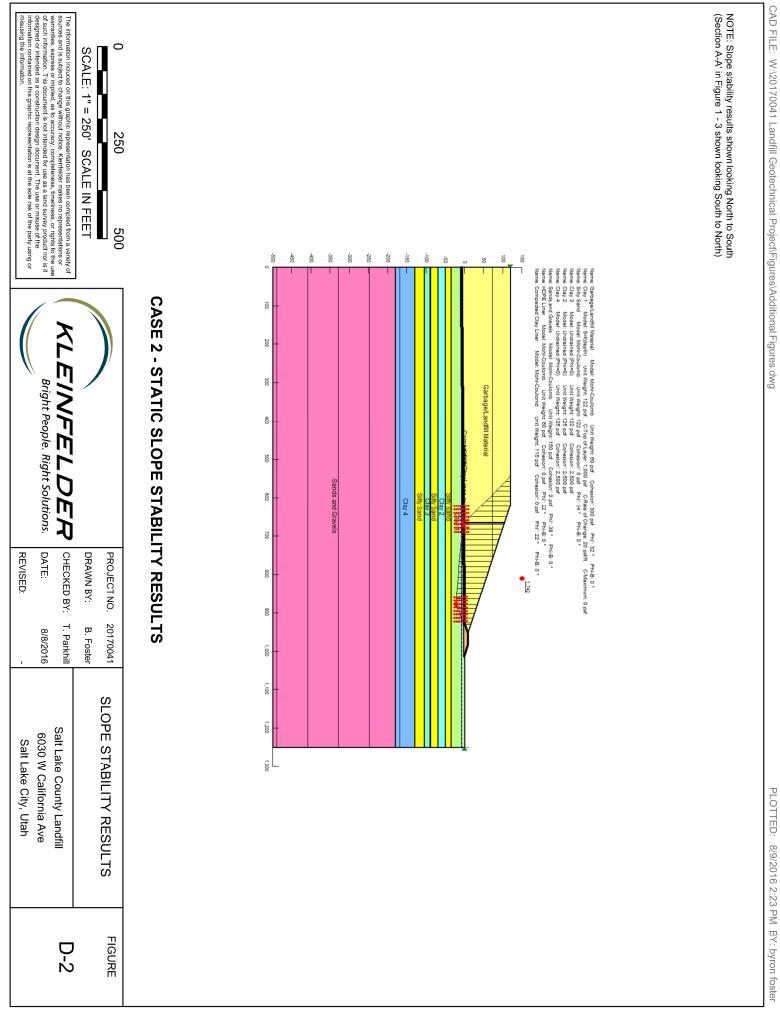
0.4455

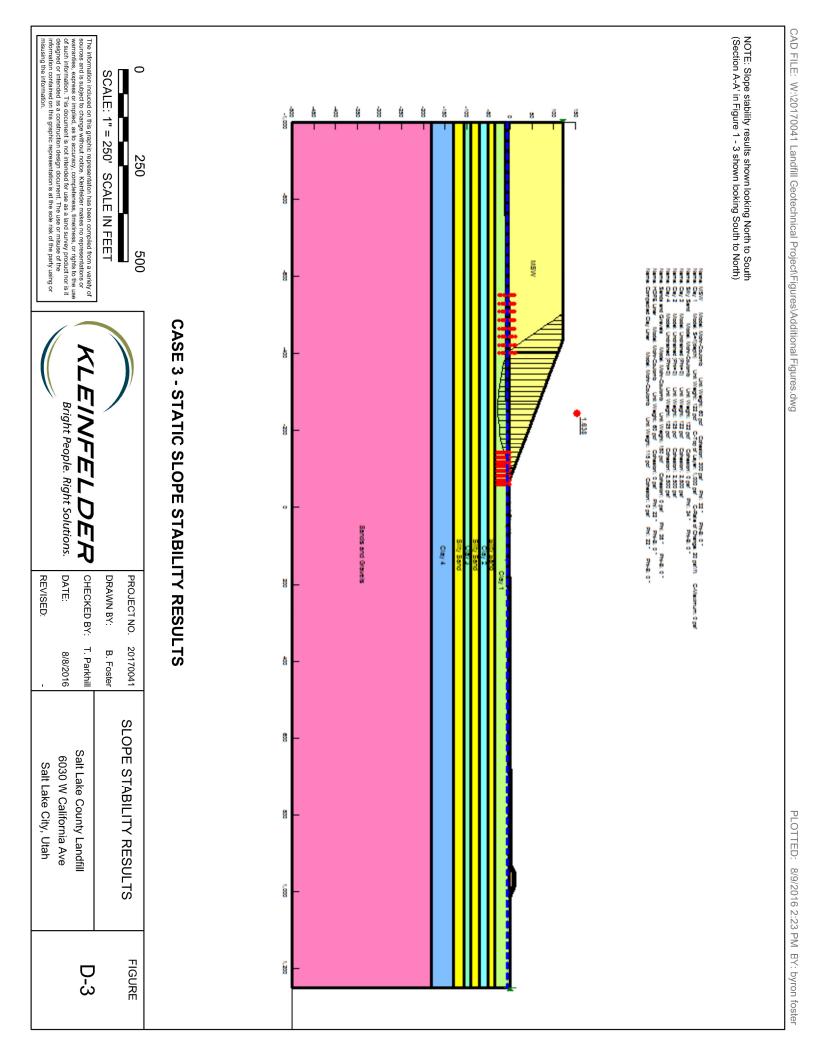
0.4486

0.4580

0.4790


0.5006


51200 25600 6400 1600 400


APPENDIX D

Slope Stability Results

CAD FILE: W:\20170041 Landfill Geotechnical Project\Figures\Additional Figures.dwg

APPENDIX E

Important Information about your Geotechnical Engineering Report

Important Information about This Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you - assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, clients can benefit from a lowered exposure to the subsurface problems that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed below, contact your GBA-member geotechnical engineer. Active involvement in the Geoprofessional Business Association exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Geotechnical-Engineering Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical-engineering study conducted for a given civil engineer will not likely meet the needs of a civilworks constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnicalengineering report is unique, prepared *solely* for the client. *Those who rely on a geotechnical-engineering report prepared for a different client can be seriously misled*. No one except authorized client representatives should rely on this geotechnical-engineering report without first conferring with the geotechnical engineer who prepared it. *And no one – not even you – should apply this report for any purpose or project except the one originally contemplated*.

Read this Report in Full

Costly problems have occurred because those relying on a geotechnicalengineering report did not read it *in its entirety*. Do not rely on an executive summary. Do not read selected elements only. *Read this report in full*.

You Need to Inform Your Geotechnical Engineer about Change

Your geotechnical engineer considered unique, project-specific factors when designing the study behind this report and developing the confirmation-dependent recommendations the report conveys. A few typical factors include:

- the client's goals, objectives, budget, schedule, and risk-management preferences;
- the general nature of the structure involved, its size, configuration, and performance criteria;
- the structure's location and orientation on the site; and
- other planned or existing site improvements, such as retaining walls, access roads, parking lots, and underground utilities.

Typical changes that could erode the reliability of this report include those that affect:

- the site's size or shape;
- the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light-industrial plant to a refrigerated warehouse;
- the elevation, configuration, location, orientation, or weight of the proposed structure;
- the composition of the design team; or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes – even minor ones – and request an assessment of their impact. *The geotechnical engineer who prepared this report cannot accept responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.*

This Report May Not Be Reliable

Do not rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it; e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, that it could be unwise to rely on a geotechnical-engineering report whose reliability may have been affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If your geotechnical engineer has not indicated an "apply-by" date on the report, ask what it should be*, and, in general, *if you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying it. A minor amount of additional testing or analysis – if any is required at all – could prevent major problems.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface through various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing were performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgment to form opinions about subsurface conditions throughout the site. Actual sitewide-subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team from project start to project finish, so the individual can provide informed guidance quickly, whenever needed.

This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, *they are not final*, because the geotechnical engineer who developed them relied heavily on judgment and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* revealed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmationdependent recommendations if you fail to retain that engineer to perform construction observation*.

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a full-time member of the design team, to:

- confer with other design-team members,
- help develop specifications,
- review pertinent elements of other design professionals' plans and specifications, and
- be on hand quickly whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform construction observation.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note conspicuously that you've included the material for informational purposes only.* To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report, but they may rely on the factual data relative to the specific times, locations, and depths/elevations referenced. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, *only* from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and *be sure to allow enough time* to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnicalengineering report does not usually relate any environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures*. If you have not yet obtained your own environmental information, ask your geotechnical consultant for risk-management guidance. As a general rule, *do not rely on an environmental report prepared for a different client, site, or project, or that is more than six months old.*

Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, none of the engineer's services were designed, conducted, or intended to prevent uncontrolled migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, *proper implementation of the geotechnical engineer's recommendations will not of itself be sufficient to prevent moisture infiltration*. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. *Geotechnical engineers are not buildingenvelope or mold specialists*.

Telephone: 301/565-2733 e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2016 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent