

DSHW-2019-001602

Mr. Brad Maulding
Department of Environmental Quality
Division of Waste Management and Radiation Control
P.O. Box 144880
Salt Lake City, Utah 84114-4880

February 5, 2019 Project No.: 2249-001D

Div of Waste Management and Radiation Control

FEB - 8 2019

RE:

Corrective Action Plan Implementation Report Former Henries Dry Cleaner 1781 East Murray-Holladay Road Millcreek, Utah

Mr. Maulding,

On behalf of our client, Chasebrook Company, Wasatch Environmental, Inc. (Wasatch), is submitting the attached Corrective Action Plan (CAP) Implementation Report which documents corrective action and mitigation measures implemented to address residual chlorinated solvent impacts to soil and groundwater that were identified at the above referenced facility.

At this time, Wasatch would like to proceed with preparation of a Site Management Plan and Environmental Covenant and request regulatory closure of the release.

Please feel free to contact us with any questions, comments, or concerns you may have regarding Cottonwood Square project.

Best regards,

Michael Cronin, P.G.

Senior Geologist/Senior Project Manager

CORRECTIVE ACTION PLAN IMPLEMENTATION REPORT FORMER HENRIES DRY CLEANER COTTONWOOD SQUARE 1781 EAST MURRAY-HOLLADAY ROAD MILLCREEK, UTAH

Project No. 2249-001D

Prepared for:

Mr. Jay Larsen Chasebrook Company 154 Myrtle Avenue, Suite #303 Murray, Utah 84107

and

Mr. Rusty Lundberg, Acting Director
Utah Department of Environmental Quality
Division of Waste Management and Radiation Control
P.O. Box 144880
Salt Lake City, UT 84114-4880

Prepared by:

Wasatch Environmental, Inc. 2410 West California Avenue Salt Lake City, UT 84104

ROFESSION

CRONIN

Michael S. Cronin, P.G.

Senior Project Manager and Senior Geologist

February 5, 2019

TABLE OF CONTENTS

Section	<u> </u>	<u>Page No.</u>
1.	INTRODUCTION	1
	1.1 Facility Description	
	1.2 Facility Background	
	1.3 Facility Characteristics	
	1.4 Objectives	2
	1.5 Cleanup Levels	
	1.6 Corrective Action Measures	
	1.7 Engineering Controls and Proposed Institutional Controls	3
2.	PERMITTING AND NOTIFICATION REQUIREMENTS	3
	2.1 Blue Stake Utility Clearance	3
	2.2 Underground Injection Control Permit	
	2.3 Notification to Salt Lake County Health Department	3
	2.4 Division of Air Quality	
	2.5 Public Notice	4
3.	CORRECTIVE ACTION METHODS	4
	3.1 ISCR - ZVI Injections	4
	3.2 Installation of Passive VMS	5
	3.3 Installation of Vapor Barrier	
	3.4 Waste Characterization Sampling	
	3.5 Soil Confirmation Sampling	
	3.6 Emissions Sampling	
	3.7 Groundwater Sampling	
	3.8 Indoor Air Sampling	8
4.	CORRECTIVE ACTION RESULTS	
	4.1 ISCR - ZVI Injections	
	4.2 Installation of Passive VMS	
	4.3 Installation of Vapor Barrier	
	4.4 Waste Characterization Sampling	
	4.5 Soil Sampling	
	4.6 Emissions Sampling	
	4.7 Groundwater Sampling	
	4.8 Indoor Air Sampling	11
5.	CONCLUSIONS AND RECOMMENDATIONS	12

- TABLES
 Table 1 Historical Soil Analytical Data
- Table 2 Historical Groundwater Analytical Data
- Table 3 Historical Sub-Slab Soil Gas Analytical Data
- Table 4 Historical Indoor and Outdoor Air Analytical Data
- Table 5 Emissions Analytical Data

FIGURES

- Figure 1 Facility Location Map
- Figure 2 Facility Feature Map
- Figure 3 Historical Sample Location Map
- Figure 4 Remediation Map
- Figure 5 Pre/Post Remediation VOCs in Groundwater Map

APPENDICES

- Appendix A CAP Approval Letter
- Appendix B Blue Stake Utility Clearance Request

Appendix C - Underground Injection Control Permit and Related Documentation

Appendix D – Notification to Salt Lake County Health Department

Appendix E – Public Notice

Appendix F – Photographic Log

Appendix G – Zero Valent Iron Information and GeoTactical Summary Report

Appendix H – Passive Vapor Mitigation System Construction

Appendix I – Vapor Barrier Specifications Appendix J – Boring Logs

Appendix K – Soil Laboratory Analytical Report

Appendix L – Emissions Laboratory Analytical Report

Appendix M – Groundwater Laboratory Analytical Report

Appendix N – Indoor Air Laboratory Analytical Report

CORRECTIVE ACTION PLAN IMPLEMENTATION REPORT FORMER HENRIES DRY CLEANER COTTONWOOD SQUARE 1781 EAST MURRAY-HOLLADAY ROAD MILLCREEK, UTAH

1. INTRODUCTION

On behalf of Chasebrook Company (Chasebrook), the owner of Cottonwood Square (Facility) and the former Henries Dry Cleaner (release site), Wasatch Environmental, Inc., (Wasatch) has prepared this Corrective Action Plan (CAP) Implementation Report describing the measures taken to address residual chlorinated solvent impacts originating from the release site to soil and groundwater that have been identified at the Facility.

1.1 Release Site Description

The Cottonwood Square Facility, which Chasebrook acquired in December of 2017, is a retail development located at the northwest corner of the intersection of Murray-Holladay Road and Highland Avenue, in Millcreek, Utah (see Figure 1). The Facility occupies a single 4.31-acre parcel (Parcel Number 22-09-202-006-0000). The former Henries Dry Cleaner release site occupies a small portion (approximately 2,800 square feet) of the Cottonwood Square Facility. The former Henries Dry Cleaner release site is located at 1781 East Murray-Holladay Road. Henries Dry Cleaner occupied the northernmost of four tenant spaces in the strip mall building (Southwest Building) located near the southwest corner of the Cottonwood Square Facility (as depicted on Figure 2). The Facility and release site are surrounded by mixed commercial and residential land use. Facility features and surrounding land use are shown on Figure 2.

1.2 Release Site Background

Henries Dry Cleaner occupied the release site from 1982 until 2007 and performed dry cleaning on-site. The results of subsurface investigations indicated the presence of chlorinated solvent impacts to soil, groundwater, soil gas, and indoor air at the release site. The results of these investigations also indicate the presence of two, relatively small, source areas; one under the western portion of the former Henries Dry Cleaner tenant space, and one just outside and northwest of the former Henries Dry Cleaner tenant space. The results of the subsurface investigations indicate that groundwater at the release site and nearby areas have been impacted with chlorinated solvents at concentrations above the United States Environmental Protection Agency (U.S. EPA) Maximum Contaminant Levels (MCLs).

Chasebrook requested regulatory oversight from the Utah Department of Environmental Quality (DEQ), Division of Waste Management and Radiation Control (DWMRC) in June 2018. A CAP was submitted to the DWMRC on July 17, 2018; followed by the submittal of a revised CAP on July 26, 2018. The DWMRC approved the revised CAP in a letter dated August 9, 2018. A copy of the CAP approval letter is presented in Appendix A.

1.3 Release Site Characteristics

Soils at and near the release site generally consist of silts (ML) with varying gravel and cobble content from 0 to 5 feet below ground surface (bgs); silts (ML) and clayey silts (CL-ML) from 5 to 10 feet bgs; and clayey sand (SC), sand with gravel (SP), silt with sand (SM), and sand with silt and gravel (SW) from 10 to 20 feet bgs. The most significant residual chlorinated solvent contamination in soil was evident at depths of 7 to 16 feet (boring location S-2), 8 to 16 feet bgs (boring location S-3), at 5 feet (boring location S-5), and 16 feet (boring location S-6). None of the chlorinated solvent concentrations detected in soil exceeded the U.S. EPA Regional Screening Levels (RSLs) for Industrial Soil or the U.S. EPA RSLs for Residential Soil; however, the residual contaminant mass in soil was high enough to drive vapor intrusion risk and dissolved phase contaminant concentrations in groundwater exceeding the U.S. EPA MCLs and

Vapor Intrusion Screening Level (VISL) Commercial Target Groundwater Concentrations. Historical soil analytical data are presented in Table 1. Sampling locations are shown on Figure 3.

Chlorinated solvents have been detected in groundwater in monitoring well MW-1, located hydraulically cross-gradient from the release site; and monitoring wells MW-3 and MW-9, located hydraulically upgradient of the release site. These detections included vinyl chloride (VC) at concentrations exceeding the U.S. EPA MCL in monitoring wells MW-1 and MW-3. These data indicate a source of chlorinated solvent contamination in groundwater upgradient of the Facility and unrelated to the chlorinated solvent contamination emanating from the release site.

Depth to groundwater in and around the release site varies from approximately 6 to 11 feet bgs with a hydraulic gradient of 0.007 feet per foot to the west. All of the groundwater sampling locations in the vicinity of and within the release site (S-1, S-2, S-3, S-4, S-5, S-6, MW-6, MW-10, and MW-11) have exhibited chlorinated solvent concentrations in excess of the U.S. EPA MCLs for one or more of the following compounds: tetrachloroethene (PCE), trichloroethene (TCE), 1,1-dichloroethene (DCE), cis-1,2-dichloroethene (cis-1,2-DCE), trans-1,2-dichloroethene (trans-1,2-DCE), or VC. The highest concentrations of PCE and TCE were in source area sampling locations S-2 and S-3. Downgradient sampling locations B-3 and B-4 also exhibited chlorinated solvent concentrations in excess of the U.S. EPA MCLs. Sampling location B-3 exceeded the U.S. EPA MCLs for PCE, TCE, cis-1,2-DCE, and VC. Sampling location B-4 exceeded the U.S. EPA MCL for TCE. Historical groundwater analytical data are presented in Table 2. Sampling locations are shown on Figure 3.

PCE and TCE concentrations in sub-slab soil gas exceeded the U.S. EPA VISL Commercial Target Sub-slab and Exterior Concentration indicating a risk for vapor intrusion at the tenant space formerly occupied by Henries Dry Cleaner (sampling locations SSV-5, SSV-6, SS-1, and SS-2), as well as the tenant space two doors south of the former Henries Dry Cleaner (sample locations SSV-4 and SS-3). Although never sampled, a similar vapor intrusion risk is assumed for the nail salon tenant space located one door south of the former Henries Dry Cleaner. Historical sub-slab soil gas analytical data are presented in Table 3. Sampling locations are shown on Figure 3.

Concentrations of PCE in indoor air in the tenant space formerly occupied by Henries Dry Cleaner exceeded the U.S. EPA RSLs for Industrial Indoor Air at sample locations IA-4 (sample collected in 2012) and IA-1 (sample collected in 2017). Concentrations of TCE in indoor air in the tenant space formerly occupied by Henries Dry Cleaner has exceeded the U.S. EPA RSLs for Industrial Indoor Air at sample locations IA-4 and IA-5 (samples collected in 2012). No other instances of the U.S. EPA RSLs for Industrial Indoor Air having been exceeded have been documented for the other tenant spaces in the strip mall. Historical indoor air analytical data are presented in Table 4. Sampling locations are shown on Figure 3.

1.4 Objectives

Chasebrook intends to continue the current commercial land use at the Facility which includes the Southwest Building containing the release site for the foreseeable future; therefore, the objective of this corrective action is to remediate soil and groundwater and mitigate indoor air from impacts originating from the release site, to meet conditions acceptable for the continued commercial use of the property and to limit off-site migration of dissolved phase contamination. Wasatch anticipates a regulatory closure status of corrective action complete with controls (CACWC) due to the likelihood that the U.S. EPA MCLs and/or VISL Target Groundwater Concentrations may not be achieved in the short-term which will result in a requirement for groundwater monitoring, and that engineering controls (i.e., vapor barrier and subslab depressurization system, etc.) will be required to ensure that chlorinated solvent concentrations in indoor air are maintained at acceptable levels for the continued commercial use of the Southwest Building.

1.5 Cleanup Levels

The cleanup levels for this corrective action are the U.S. EPA RSLs for Industrial Soil for soil; U.S. EPA MCLs for groundwater to be protective relative to the groundwater ingestion exposure pathway and the U.S. EPA VISL Commercial Target Groundwater Concentrations for groundwater to be protective relative to the vapor intrusion exposure pathway; and the U.S. EPA RSLs for Industrial Indoor Air for indoor air. The referenced cleanup levels are presented on Tables 1, 2, 3, and 4.

1.6 Corrective Action Measures

Given the release site and general vicinity characteristics, nature and distribution of contaminants, and proposed future land use; Wasatch implemented *in situ* chemical reduction (ISCR) of the contaminants in the vadose zone and saturated zone by injection of a zero valent iron (ZVI) slurry into the two source areas. Details regarding these corrective action measures are provided in Sections 3 and 4 of this report.

1.7 Engineering Controls and Proposed Institutional Controls

Wasatch installed a vapor barrier and passive vapor mitigation system (VMS) in the tenant space formerly occupied by Henries Dry Cleaner. These engineering controls will reduce the potential for vapor intrusion into the strip mall structure. Details regarding these engineering controls are provided in Sections 3 and 4 of this report.

Wasatch anticipates that an environmental covenant (EC) and site management plan (SMP) will be required for regulatory closure of the release to reduce the probability of exposure to the contaminants by specifying how the area impacted by the release, to be specified within the SMP and EC as the Restricted Property, may and may not be used (e.g., forbidding the extraction and use of shallow groundwater and requiring vapor barriers for new structures). These controls would be protective of potential future occupants of the Restricted Property and would facilitate regulatory closure of the release with residual soil and/or groundwater contamination left in place. The EC and SMP would be subject to review and approval by the DWMRC and the SMP would also be subject to a 30-day public comment period.

2. PERMITTING AND NOTIFICATION REQUIREMENTS

2.1 Blue Stake Utility Clearance

Wasatch submitted a utility clearance request (Ticket Number A82470694-00A) to Blue Stake Utility Notification Center on September 4, 2018. The Blue Stake Ticket Number was communicated via email to the direct-push drilling contractor on the same date so that they could duplicate the request. A copy of the email confirmation from Blue Stake is presented in Appendix B.

2.2 Underground Injection Control Permit

Wasatch submitted an "Underground Injection Control (UIC) Inventory Form for Subsurface Environmental Remediation (SER) Injection Wells" to the Division of Water Quality (DWQ) on August 8, 2018. The DWQ approved the UIC permit by email on August 16, 2018. On October 3, 2018, following completion of the injections, Wasatch submitted a "Reporting Form for Change of Operating Status for Class V UIC Wells Authorized by Rule" to notify the DWQ that the injection wells were no longer in active use and had been abandoned. Documentation related to the UIC permit is presented in Appendix C.

2.3 Notification to Salt Lake County Health Department

Wasatch notified Mr. Gary Edwards, of the Salt Lake County Health Department, of the pending corrective action by email on August 23, 2018. The email was copied to Mr. Brad Maulding and Mr. Eric Baiden, both with the DWMRC. The notification stated that the corrective action would commence on September 10, 2018. A copy of the email notification is presented in Appendix D.

2.4 Division of Air Quality

Wasatch contacted Mr. Marty Gray, of the Division of Air Quality (DAQ), regarding the DAQ requirements for monitoring the emissions from the passive VMS. Mr. Gray stated that the DAQ currently requires monitoring of passive VMSs in accordance with R307-401-15. Wasatch is working with the DAQ to implement a rule change that would exempt passive VMSs from the monitoring and reporting requirements under R307-401-15; however, until an exemption is provided by rule, Wasatch will monitor and report emissions in accordance with R307-401-15 to the extent that the data support such reporting.

2.5 Public Notice

On August 16, 2018, Wasatch distributed written notices to the occupants of the neighboring tenant spaces notifying them of the pending corrective action and advising them of the schedule for the corrective action. A copy of the written notice is presented in Appendix E.

3. CORRECTIVE ACTION METHODS

3.1 ISCR - ZVI Injections

From September 10 through 15, 2018, Wasatch implemented ISCR of the contaminants in the vadose zone and saturated zone by injection of a ZVI slurry into the two source areas. See Appendix F for a photographic log of remediation activities. The ZVI product was provided by CERES Corporation (CERES), emplaced using specialized hydraulic fracturing and injection tooling by GeoTactical Remediation (GeoTactical), using direct-push drilling equipment operated by Direct Push Services (DPS), and with oversight by Wasatch. The ZVI product used for this project is Micro Blend (see Appendix G for additional information). The ZVI powder was mixed with water as specified by the manufacturer to form a slurry and then injected into the subsurface. The spacing of borehole locations and ZVI dosing was based on an assumed radius of influence of 4 feet in the vadose zone and an assumed radius of influence of 6.5 feet in the saturated zone. Actual boring locations were determined in the field based on the location of utilities and structures. The locations of the injection borings are shown on Figure 4.

Where injections were performed within the footprint of the strip mall structure, holes were cored through the concrete floor slab to facilitate drilling and injection. The holes were patched with cement following completion of the injections at each boring location.

Injections were first performed in the saturated zone (depths of 8 to 20 feet bgs). Saturated zone injections were performed in nine borehole locations. At three of the saturated zone injection boreholes minor surfacing occurred; therefore, Wasatch stepped out several feet and injected the remainder of the slurry at the appropriate depths. The ZVI slurry consisted of approximately 1.913 pounds of ZVI per gallon of water. At each borehole location, injections were performed top-down at seven injection intervals on approximately 2-foot vertical spacings between injection intervals. A total of approximately 530 gallons of ZVI slurry (containing 1013.9 pounds of ZVI) was planned for injection at each borehole location (or approximately 75.7 gallons of slurry containing 144.8 pounds of ZVI per injection interval). The total ZVI mass expected to be injected into the saturated zone at the release site was 9,125 pounds (4,770 gallons of ZVI slurry).

After injections into the saturated zone were completed, injections into the vadose zone (depths of 0 to 8 feet bgs) were performed. Saturated zone injections were performed in 22 borehole locations. At one of the vadose zone injection boreholes minor surfacing occurred; therefore, Wasatch stepped out several feet and injected the remainder of the slurry at the appropriate depths. The ZVI slurry consisted of approximately 1.440 pounds of ZVI per gallon of water. At each borehole location, injections were performed top-down at four injection intervals on approximately 2-foot vertical spacings between injection intervals. A total of approximately 80 gallons of ZVI slurry (containing 115.2 pounds of ZVI) was planned for injection at each borehole location (or approximately 3.64 gallons of slurry containing 5.24 pounds of

ZVI per injection interval). The total ZVI mass expected to be injected into the saturated zone at the release site was 10,140 pounds (7,040 gallons of ZVI slurry).

3.2 Installation of Passive VMS

On October 12 and 15, 2018, Wasatch installed a passive VMS, to be used in conjunction with a vapor barrier (as discussed below), to mitigate the accumulation of chlorinated solvent vapors beneath the floor slab of the strip mall structure following the ISCR injections. The passive VMS was constructed so as to be easily converted to an active VMS should the need arise. The VMS was installed near the southwest corner of the release site with the collection pipe penetrating the floor slab of the release site near the southwest corner of the release site. The approximate location of the VMS is shown on Figure 4. The passive VMS system consisted of 4-inch PVC piping that penetrated approximately 6 inches below the bottom of the concrete floor surface and extended to approximately four feet above the roof line of the building after being routed through the western exterior wall. The portion of the PVC pipe that extended below the concrete surface was perforated and coarse-grained sand was placed around the perforations. The concrete penetration was then sealed with silicone sealant and finally by the Retro-Coat® vapor barrier material. Additionally, a 4-inch ventilator turbine was attached to the top of the vent stack to promote advective air flow during winding conditions. The general construction of the passive VMS is presented in Appendix H.

3.3 Installation of Vapor Barrier

From November 12 through 27, 2018, Wasatch oversaw the installation of a vapor barrier covering the entire area of the floor slab in the former Henries Dry Cleaner tenant space. Prior to application of the primer coat, cracks and joints in the floor slab were filled and the surface of the floor slab was prepared in accordance with the manufacturer's recommendations. The vapor barrier consisted of a 20-mil layer of Retro-Coat® (two coats of 10-mil each) over a 6-mil primer coat. Retro-Coat® is a two-part epoxy-based coating that is highly durable. Sand was added to the Retro-Coat to provide a non-slip surface. The vapor barrier was installed by Russ Hall Floor Coverings, a contractor certified by the product manufacturer (Land Science Technologies). The vapor barrier was installed after confirmation soil sampling was been completed. The approximate location of the vapor barrier installation is shown on Figure 4. Specifications and installation instructions for the vapor barrier are provided in Appendix I.

3.4 Waste Characterization Sampling

A small quantity of soil and groundwater waste was generated during the soil confirmation sampling and groundwater monitoring activities.

Soil cuttings remaining after the soil confirmation sampling was completed were contained in a properly labeled 55-gallon drum. Due to the small volume of soil in the drum (approximately 1 cubic foot), and that fact that analyte concentrations in soil are known to be consistently below the RSLs for Residential Soil, the Utah DWMRC agreed that waste characterization sampling of the remaining soil was not required, and that the soil could be disposed in a nearby general waste dumpster located at the Facility.

Purge water generated during the groundwater monitoring activities was contained in a properly labeled 55-gallon drum. Approximately 3.5 gallons of purge water was generated during the groundwater monitoring activities. At the time of this report, water waste characterization sampling has not been completed. Wasatch plans to accumulate additional purge water before collecting the waste characterization samples, at which time, Wasatch will complete the appropriate waste profiles to be approved by the facility receiving the waste based on the waste characterization sample results.

Wasatch will arrange for proper transport and disposal of the waste groundwater.

3.5 Soil Confirmation Sampling

Although the proposed cleanup levels for the release site are the U.S. EPA RSLs for Industrial Soil, which are currently met, there is technical value in sampling soil at select locations at the release site to verify that contaminant mass reductions in soil are occurring, and that the ISCR approach has resulted in lower chlorinated solvent concentrations in soil, soil gas, and groundwater.

On October 15, 2018, Wasatch Project Hydrogeologist, Blake Downey, P.G., directed the completion of five soil borings (designated CS-1 through CS-5), using direct-push drilling techniques, to evaluate soil conditions at the release site post injection activities. For comparison purposes, Wasatch advanced our soil borings at the same location as the following historical boring locations, and Wasatch sampled at the same depth intervals:

- Historical sample location S-1 at a depth of 8 feet bgs (soil boring CS-4 completed at this location),
- Historical sample location S-2 at depths of 8 feet and 12 feet bgs (soil boring CS-3 completed at this location),
- Historical sample location S-3 at a depth of 8 feet bgs (soil boring CS-5 completed at this location),
- Historical sample location S-4 at depths of 3 feet and 12 feet bgs (soil boring CS-2 completed at this location), and
- Historical sample location S-5 at a depth of 5 feet bgs (soil boring CS-1 completed at this location).

DPS advanced the soil borings using a GeoProbe Model 7822 DT, track mounted, direct-push drill rig; and using a limited access attachment. The boring locations are shown on Figure 3.

Soil borings were advanced to a depth of 8 to 14 feet below ground surface (bgs). Soil samples from the borings were collected using 5-foot long, by 1.5-inch diameter, discrete interval push samplers equipped with disposable polybutyrate liners. Drill rods were decontaminated between each soil boring. The soil cores were field logged by an experienced geologist. The field logging included a description of color, consistency, odor, staining, and soil type based on the Unified Soil Classification System. The soil cores were screened in the field using a photoionization detector (PID) equipped with a 11.7 electron volt lamp. The PID was calibrated with a 100-parts per million isobutylene standard calibration gas. The PID is utilized to identify soils which may have been impacted by volatile VOCs such as those found in petroleum fuels and some solvents.

Soil samples were collected with gloved hands. Soil samples collected for VOC analysis were collected using U.S. EPA Method 5035A, using a disposable sampling device provided by the laboratory specifically for use with the closed-system purge and trap analytical method. VOC samples were collected from each sample interval for both low-range (0.5 to 250 micrograms per kilogram [µg/kg]) and high-range (>250 µg/kg) laboratory analysis of VOCs. Low-range samples were collected in 5-gram (g) aliquots and placed in laboratory-supplied, unpreserved, volatile organic analysis (VOA) bottles, and immediately placed in a cooler with dry ice. High-range samples were collected in 10g-aliquots, placed in laboratory-supplied VOA bottles preserved with methanol, and immediately placed in a cooler with ice. All soil VOC samples were delivered under chain-of-custody protocol to American West Analytical Laboratories (AWAL), a Utah-Certified analytical laboratory for analysis of VOCs by U.S. EPA Method 8260C.

All soil cuttings were containerized in a 55-gallon drum and labeled as "pending analysis."

The drill rods were decontaminated prior to the start of drilling activities and between boring locations. The equipment was decontaminated by pressure washing each piece of drill rod to remove gross contaminants. Next, the equipment was washed with an Alconox® and distilled water solution. Finally, the drill rod was double rinsed with distilled water.

Following the completion of sampling activities, the soil borings were backfilled with bentonite pellets, hydrated, and patched with concrete to match the existing surface at each boring location.

3.6 Emissions Sampling

Two monthly emissions samples (EM-1) have been collected from the vent stack of the passive sub-slab ventilation system. One sampling event was completed on November 29, 2018, and the second on January 2, 2019.

Prior to and following emissions sampling, the airflow, temperature, and PID readings of the vent stack were recorded. The air flow and temperature readings were collected using a Dwyer anemometer, and the PID reading was collected using the PID instrument described in Section 3.5. Additionally, a general observation of the outside wind speed and the vent stack ventilator turbine were completed for each sampling event.

A sample regulator equipped with a 30-minute flow restrictor and 6-liter Summa canister were provided by ALS Environmental (ALS) for each sample. A sample regulator was attached to the 6-liter Summa sample canister. The procedure for collecting each emissions sample began by checking the initial vacuum in each 6-liter Summa canister. Initial vacuums were recorded on the chain-of-custody forms provided by ALS. Tubing was connected directly to the vent stack using a barbed fitting that was screwed into the sample port on the vent stack. The opposite end of the tubing was connected to the sample regulator for the Summa canister. The valve for the Summa canister was then opened and a sample was collected for a period of approximately 30 minutes. The vacuum gauge on the sample regulator was monitored, with decreasing vacuum indicating that the sample was being collected into the Summa canisters. After 30 minutes the final vacuum on the Summa canister was recorded, the valve on the Summa canister was closed, the Summa canister was disconnected from the sample ports, and a brass dust cap was tightened to the inlet of the Summa canister. The canister was labeled with the appropriate sample location, as well as initial and final vacuum readings. Chain-of-custody documentation was completed, and the samples were delivered to ALS for VOC analysis using U.S. EPA Method TO-15.

3.7 Groundwater Sampling

From December 17 to 18, 2018, groundwater monitoring activities were completed at the release site and included collecting groundwater elevation data and the collection of groundwater samples from each of the following monitoring wells: MW-1, MW-2, MW-3, MW-6, MW-10, and MW-11. All monitoring well locations are presented on Figure 3.

Groundwater monitoring was conducted using low-flow sampling techniques following U.S. EPA guidelines, using a peristaltic pump and a multi-parameter, In-Situ® AquaTROLL® meter, to allow for the collection of additional geochemical data including temperature, specific conductivity, pH, oxidation-reduction potential (ORP), dissolved oxygen (DO), and turbidity.

The sampling procedure involved inserting ¼-inch outside diameter, low-density polyethylene (LDPE) tubing into each monitoring well. The tubing was run through a peristaltic pump, then to a flow cell to which a multi-parameter, AquaTroll meter was attached, and finally to a 5-gallon bucket to collect the purge water. Initial water levels were measured and recorded prior to the initiation of pumping. Once pumping was initiated, water levels, pumping rate, cumulative volume purged, water temperature, specific conductivity, pH, ORP, DO, and turbidity were recorded at five-minute intervals until stabilization was achieved. Pumping rates were maintained at a rate between 60 and 80 milliliters per minute to minimize drawdown. Stabilization was defined as three consecutive measurement intervals where temperature and specific conductivity were +/- 3%, pH was +/- 0.1, DO was +/-10% (or less than 0.5 milligrams per liter [mg/L]), and turbidity was +/- 10% (or less than 5 nephelometric turbidity units [NTUs]). After stabilization was achieved, the tubing was disconnected from the flow cell and the groundwater samples were dispensed into 40-milliliter capacity, glass vials with Teflon® septa caps. The vials, which were supplied by the analytical laboratory, contained several drops of hydrochloric acid as a preservative. The vials were filled slowly until a meniscus formed at the top of each vial, then each vial was sealed with a

septa cap. This procedure eliminates headspace within the vials and minimizes the loss of volatiles. The sample vials were each labeled with the analysis required, samplers name, sample identification, sample location, date, and time of sample collection. The samples were placed in a cooler with ice and transported under chain-of-custody protocol to AWAL for analysis. Groundwater samples were analyzed for VOCs using U.S. EPA Method 8260C. All groundwater sampling supplies were disposable; therefore, decontamination of sampling equipment was not required. Purge water was contained in a properly labeled 55-gallon drum for proper disposal.

3.8 Indoor Air Sampling

One indoor air sample (IA-8) was collected from the tenant space formerly occupied by Henries Dry Cleaner, one indoor air sample (IA-6) was collected from LA Nail Salon (adjoins the former Henries Dy Cleaner to the south), and one indoor air sample (IA-7) was collected from the vacant tenant space located immediately south of the LA Nail Salon. Each tenant space is located within the same strip mall structure. An outdoor air sample (OA-2) was also collected to allow for the evaluation of analyte concentrations present in ambient outdoor air.

Immediately prior to collecting indoor air samples, the tenant of the LA Nail salon was interviewed to ascertain whether or not dry cleaned clothing had been brought into the space, recent renovations have been completed, or carpets have been professionally cleaned, within the preceding two weeks. The manager of the LA Nails Salon stated that no dry-cleaned clothing had been brought in, no recent renovations had been completed, and there was no carpet in this tenant space. The other two tenant spaces sampled were vacant at the time of sampling.

Chemical inventories were also performed prior to sampling activities at each tenant space to identify and remove any consumer products containing chemicals of concern such as chlorinated solvents. These procedures were followed to reduce the potential for false positive results in the indoor air samples (i.e., the detection PCE in indoor air resulting from sources inside the tenant spaces rather than from beneath the floor slabs). No products containing chemicals of concern were observed within any of the sampled tenant spaces.

On December 17, 2018, Wasatch personnel collected the outdoor air and each of the indoor air samples from the described tenant spaces. The approximate sample locations are shown on Figure 3.

Techniques for collecting the indoor and outdoor air (ambient background sample) samples began by checking for a vacuum in each 6-liter Summa canister supplied by the laboratory. Initial vacuums were recorded on the chain-of-custody form. A 6-liter Summa canister was then be placed at an appropriate height (breathing zone) for sample collection at each indoor air sample location. A sample regulator with a flow restrictor was provided by the laboratory for each sample location. A sample regulator was attached to each 6-liter Summa canister. The vacuum gauge on the flow restrictor would be monitored, with decreasing vacuum indicating that ambient indoor air is being collected into the sample canister. The outdoor air sample was placed on the top of the roof of the strip mall structure near a main air intake unit. All samples were collected for approximately 8 hours. Final vacuums were recorded on the chain-of-custody form provided. The valves on the sample canisters were then closed, sample regulators were removed, and the brass dust caps tightened to the inlet of the sample canisters. Each canister was labeled with the appropriate sample location, as well as initial and final vacuum readings. Chain-of-custody documentation was completed, and the samples were delivered to ALS for the analysis of chlorinated solvents (VOX) by U.S. EPA Method TO-15.

4. CORRECTIVE ACTION RESULTS

The following sections of this report present the results of the corrective action conducted in connection with the documented release originating from the release site. All corrective action activities were performed by Wasatch and our subcontractors in accordance with Wasatch's general health and safety policy. A site-specific health and safety plan was prepared to address specific health and safety concerns

and establish protocols for conducting work related activities in a safe manner. The health and safety plan was on-site at all times during the corrective action. Daily health and safety tailgate meetings were conducted by Wasatch during the corrective action.

4.1 ISCR - ZVI Injections

The total volume of ZVI slurry injected at the release site was approximately 6,640 gallons containing a total of 19,200 pounds of ZVI. A total of 35 borehole locations (23 locations in the vadose zone and 12 locations within the saturated zone) were used to emplace the ZVI. Fluid surfacing was occasionally observed while injecting; however, Wasatch considers the volume of fluid that surfaced to be minor for the majority of the locations where surfacing occurred. See Table I of the GeoTactical report in Appendix G for the specific volume and ZVI mass emplaced at each injection interval.

4.2 Installation of Passive VMS

The passive VMS was successfully installed in the southwest portion of the former Henries Dry Cleaner tenant space (release site).

4.3 Installation of Vapor Barrier

The vapor barrier was successfully installed within the former Henries Dry Cleaner tenant space (release site) per manufacture specifications.

4.4 Waste Characterization Sampling

The Utah DWMRC agreed that waste characterization sampling of the remaining soil was not required, and that the soil could be disposed in a nearby general waste dumpster located at the Facility.

At the time of this report, no waste characterization sampling of the purge water has been completed.

4.5 Soil Sampling

Soils at the release site generally consist of sandy gravel fill (GW), silt/sandy silt (ML), and silty sand (SM). It appears the fill material is present within the top foot of soil beneath the strip mall building. Depth to groundwater was approximately 8 feet bgs. Black soil staining was observed in borings CS-1 and CS-2 at approximately 3.9 to 5 feet bgs. PID readings ranged from 0.0 to 193.1 ppm. Boring logs are presented in Appendix J.

For the purposes of data evaluation, soil analytical results were compared to the U.S. EPA RSLs for Industrial and Residential Soil (which are currently met). Historical soil analytical data are summarized in Table 1. Sampling locations are shown on Figure 3. The laboratory analytical report and chain of custody documentation are presented in Appendix K.

Soil samples CS-4-8' and CS-20-12' exhibited carbon disulfide concentrations of 2.53 μ g/kg and 4.69 μ g/kg, respectively. Both concentrations are well below the U.S. EPA RSL for Residential Soil of 770,000 μ g/kg. Carbon disulfide was not detected in any other soil sample.

Acetone was detected in soil samples CS-2-12' (17.6 μ g/kg), CS-3-12' (9.38 μ g/kg), CS-4-8' (34.3 μ g/kg), and CS-20-12' (11.1 μ g/kg) at concentrations below the U.S. EPA RSL for Residential Soil for acetone of 61,000,000 μ g/kg. Acetone was not detected in any other soil samples.

VC was detected in all soil samples, except CS-1-5' and CS-2-3', and ranged in concentration from 2.77 μ g/kg to 34.4 μ g/kg. All detected VC concentrations are well below the U.S. EPA RSL for Residential Soil for VC of 59 μ g/kg.

Trans-1,2-DCE was detected in all soil samples, except CS-2-3', CS-3-8', and CS-3-12', and ranged in concentration from 3.67 μ g/kg to 73.7 μ g/kg. All detected *trans*-1,2-DCE concentrations are well below the U.S. EPA RSL for Residential Soil for *trans*-1,2-DCE of 1,600,00 μ g/kg.

 $\it Cis$ -1,2-DCE was detected in all soil samples and ranged in concentration from 16.3 μg/kg to 8,170 μg/kg. All detected $\it cis$ -1,2-DCE concentrations are below the U.S. EPA RSL for Residential Soil for $\it cis$ -1,2-DCE of 160,000 μg/kg.

TCE was detected in all soil samples, except CS-2-12', CS-4-8', and CS-20-12', and ranged in concentration from 9.21 μ g/kg to 644 μ g/kg. All detected TCE concentrations are well below the U.S. EPA RSL for Residential Soil for TCE of 940 μ g/kg.

PCE was detected in all soil samples, except CS-4-8', and ranged in concentration from 2.88 μ g/kg to 1,690 μ g/kg. All detected PCE concentrations are well below the U.S. EPA RSL for Residential Soil for PCE of 24,000 μ g/kg.

Upon completion of the remediation and mitigation measures, analyte concentrations in soil remain below the U.S. EPA RSLs for Residential Soil. Soil sample CS-2-3' exhibited a decrease in all chlorinated solvent compounds compared to the pre-remediation soil sample S-4 collected at 3 feet bgs. Soil samples CS-3-8' and CS-3-12' exhibited a decrease in all chlorinated solvent compounds, except for VC, compared to the pre-remediation soil samples S-2 at 8 feet bgs and S-2 at 12 feet bgs, respectively. Soil sample CS-4-8' exhibited a decrease in all chlorinated solvent compounds, except for *cis*-1,2-DCE, compared to the pre-remediation soil sample S-1 at 8 feet bgs. Soil sample CS-2-12' exhibited a decrease in all chlorinated solvent compounds, except for PCE and VC, compared to the pre-remediation soil sample S-4 at 12 feet bgs. Soil sample CS-5-8' exhibited a decrease in all chlorinated solvent compounds, except for TCE and VC, compared to the pre-remediation soil sample S-3 at 8 feet bgs. Soil sample CS-1-5' exhibited a decrease in all chlorinated solvent compounds, except for PCE and TCE, compared to the pre-remediation soil sample S-5 at 5 feet bgs.

The short-term accumulation of PCE daughter products such as *cis*-1,2-DCE and VC is a common occurrence related to remediation approaches involving reductive dechlorination, as these compounds are created by the dechlorination of PCE and TCE. As the process of reductive dechlorination continues, the *cis*-1,2-DCE and VC concentrations in soil should continue to decrease.

It is Wasatch's opinion that the slight increases of PCE and TCE detected are likely the result of different collection methods used to sample the soil at and near the release site. Wasatch utilized the U.S. EPA 5035A soil sampling methods, whereas others utilized conventional soil sampling techniques for VOCs.

4.6 Emissions Sampling

Given that no airflow was detected during either of the emission sampling events, emission analytical results were not compared to the Threshold Limit Values (TLVS), Toxic Screening Levels (TSLs), or Emission Threshold Values (ETVs) as typically requested by the Utah DAQ. This is due to these screening levels being based on volume (which requires air flow to calculate) and not just concentrations. Several chlorinated solvent compounds were detected in the emissions samples. For convenience purposes, emissions analytical data are summarized in Table 5. Sampling locations are shown on Figure 3. The laboratory analytical report and chain of custody documentation are presented in Appendix L.

4.7 Groundwater Sampling

Analyte concentrations in groundwater were compared to the U.S. EPA Federal MCLs and VISL Commercial Target Groundwater Concentrations, where applicable. Historical analyte concentrations in groundwater are presented in Table 2. Sample locations and chlorinated solvent concentrations pre/post remediation are shown on Figure 5. The laboratory analytical report and chain of custody documentation are presented in Appendix M.

Groundwater sample MW-6 exhibited an acetone concentration of 13.6 micrograms per liter (μ g/L). This concentration is well below the VISL Commercial Target Groundwater Concentration for acetone of 94,500,000 μ g/L. Currently, no U.S. MCL has been established for acetone. Acetone was not detected in any other groundwater samples.

Groundwater samples MW-6 and MW-10 exhibited a 2-butanone concentration of 69.6 μ g/L and 16.9 μ g/L, respectively. These concentrations are well below the VISL Commercial Target Groundwater Concentration for 2-butanone of 9,410,000 μ g/L. Currently, no U.S. MCL has been established for 2-butanone. 2-butanone was not detected in any other groundwater samples.

Groundwater sample MW-10 exhibited a PCE concentration of 8.93 μ g/L. This concentration exceeds the U.S. EPA MCL of 5 μ g/L for PCE, but is below the VISL Commercial Target Groundwater Concentration of 65.2 μ g/L. PCE was not detected in any other groundwater samples.

Trans-1,2-DCE was detected in all groundwater samples, except MW-1 and MW-2, and ranged in concentration from 2.05 μ g/L to 44.6 μ g/L. All detected *trans*-1,2-DCE concentrations are well below the U.S. EPA MCL for *trans*-1,2-DCE of 100 μ g/L. Currently, no VISL Commercial Target Groundwater Concentration has been established for *trans*-1,2-DCE.

Cis-1,2-DCE was detected in groundwater samples MW-6 (486 μ g/L), MW-10 (1,720 μ g/L), and MW-11 (1,590 μ g/L) at concentrations that exceed the U.S. EPA MCL for cis-1,2-DCE of 70 μ g/L. cis-1,2-DCE was detected in groundwater samples MW-1 (2.41 μ g/L), MW-2 (4.50 μ g/L), and MW-3 (3.06 μ g/L) at concentrations below the U.S. EPA MCL for cis-1,2-DCE of 70 μ g/L. Currently, no VISL Commercial Target Groundwater Concentration has been established for cis-1,2-DCE.

VC was detected in all groundwater samples, except MW-3, and ranged in concentration from 4.33 μ g/L to 30.7 μ g/L. All detected VC concentrations exceed the U.S. EPA MCL and VISL Commercial Target Groundwater Concentration for VC of 2 μ g/L and 2.45 μ g/L, respectively.

No other VOCs were detected in groundwater at the locations sampled.

Upon completion of the remediation and mitigation measures, PCE concentrations in groundwater have dropped to concentrations below the laboratory detection limits in all monitoring wells except MW-10 (which at a concentration of 8.93 µg/L remains slightly above the MCL). TCE concentrations in groundwater have dropped to concentrations below the laboratory detection limits in all monitoring wells. C*is*-1,2-DCE and VC concentrations remain above the MCLs in groundwater and have increased in most of the monitoring wells. VC also remains at concentrations above the U.S. EPA Commercial VISL Target Groundwater Concentrations in all monitoring wells except MW-3. Wasatch anticipates that these concentrations will steadily decrease over time. The short-term accumulation of PCE daughter products such as *cis*-1,2-DCE and VC is a common occurrence related to remediation approaches involving reductive dechlorination, as these compounds are created by the dechlorination of PCE and TCE. As the process of reductive dechlorination continues, the *cis*-1,2-DCE and VC concentrations in groundwater should decrease to concentrations below the U.S. EPA MCLs.

4.8 Indoor Air Sampling

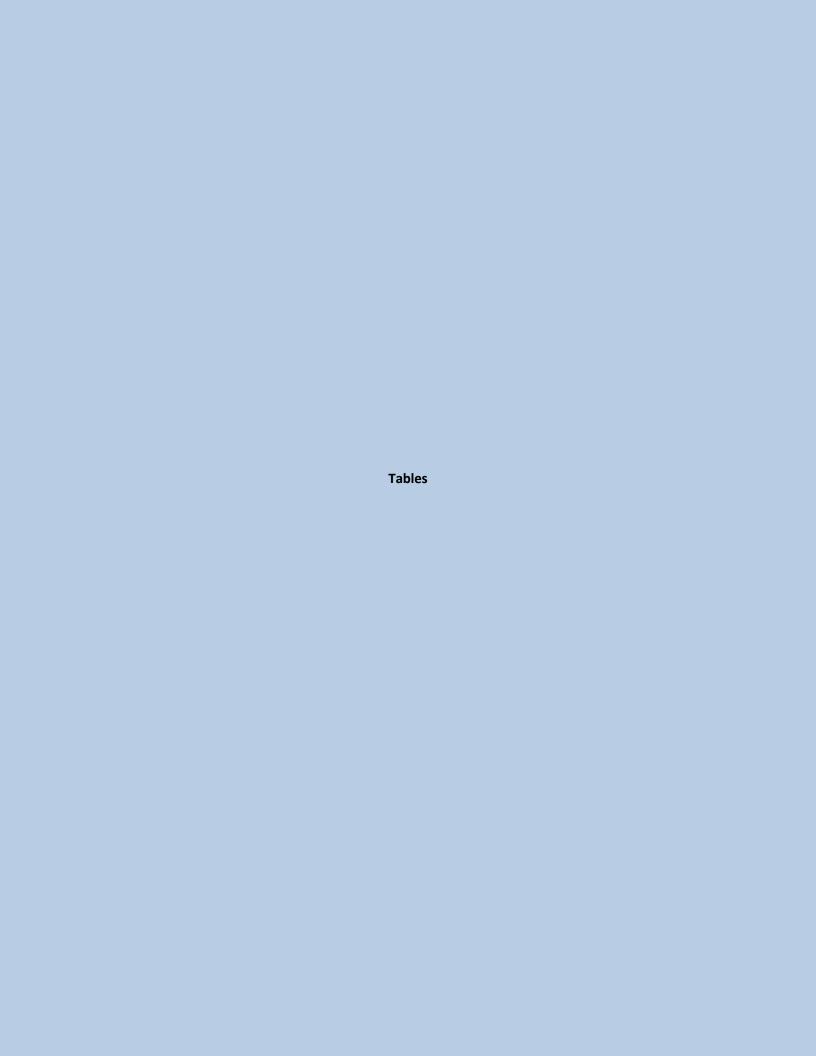
Wasatch successfully collected three indoor air samples within the strip mall building and one outdoor (ambient) air sample from the roof of the building. Analyte concentrations in indoor air were compared to the U.S. EPA RSLs for Industrial Indoor Air. Historical indoor air/outdoor air analytical data are summarized in Table 4. The laboratory analytical report and chain of custody documentation are presented in Appendix N.

PCE was detected in indoor air samples IA-6 (9.0 micrograms per cubic meter [μ g/m³]), IA-7 (1.9 μ g/m³), and IA-8 (6.5 μ g/m³). These concentrations are below the U.S. EPA RSL for Industrial Air of 47 μ g/m³ for PCE. PCE was not detected in the outdoor air sample OA-2.

No other chlorinated solvents were detected in the indoor air or outdoor air samples.

Upon completion of the remediation and mitigation measures, analyte concentrations in indoor air are below the U.S. EPA RSLs for Industrial Air. Only two historical sampling locations coincided with our recent indoor air samples. Both the former Henries tenant space and the vacant tenant space south of the LA Nail Salon were sampled during Wasatch's sampling event and the indoor air sampling event conducted by Partner Engineering. The indoor air sample collected within the former Henries tenant space dropped from a PCE concentration of 55.9 µg/m³ to 6.5 µg/m³. The indoor air sample collected within the vacant tenant space dropped from a PCE concentration of 4.28 µg/m³ to 1.9 µg/m³.

5. CONCLUSIONS AND RECOMMENDATIONS


Remediation and mitigation of chlorinated solvent impacts originating from the release site were completed in accordance with the approved CAP between September and November 2018. Upon completion of the remediation and mitigation measures, analyte concentrations in soil remain below the U.S. EPA RSLs for Residential Soil, PCE concentrations in groundwater have dropped to concentrations below the laboratory detection limits in all monitoring wells except MW-10 (which at a concentration of 8.93 µg/L remains slightly above the MCL), TCE concentrations in groundwater have dropped to concentrations below the laboratory detection limits in all monitoring wells, and indoor air concentrations are below the U.S. EPA RSLs for Industrial Indoor Air. Although *cis*-1,2-DCE and VC concentrations in groundwater remain above the MCLs, and VC remains at concentrations above the U.S. EPA Commercial VISL Target Groundwater Concentrations, Wasatch anticipates that these concentrations will steadily decrease over time. The short-term accumulation of PCE daughter products such as *cis*-1,2-DCE and VC is a common occurrence related to remediation approaches involving reductive dechlorination, as these compounds are created by the dechlorination of PCE and TCE. As the process of reductive dechlorination continues, the *cis*-1,2-DCE and VC concentrations in groundwater should decrease to concentrations below the U.S. EPA MCLs.

As of the issuance of the report, Wasatch has made two attempts to perform the emissions monitoring of the passive VMS in accordance with the requirements of R307-401-15 (as discussed in sections 3.6 and 4.6 of this report). Both attempts failed due to the lack of measurable air flow through the vent stack. Wasatch has communicated with the DAQ regarding this issue and will provide reports to the DAQ, to the extent that the data support such reporting. Wasatch will provide the DWMRC with copies of all reports issued to the DAQ. Wasatch will continue working with the DAQ to implement a rule change that would exempt passive VMSs from the monitoring and reporting requirements under R307-401-15.

The first groundwater monitoring event was performed in December 2018 (as discussed in sections 3.7 and 4.7 of this report). Wasatch proposes to continue sampling groundwater from monitoring wells MW-1, MW-2, MW-3, MW-6, MW-10, and MW-11 [or some subset of these wells] on a quarterly schedule for the remainder of 2019 with groundwater monitoring to be performed in March, June, and September of 2019. The groundwater monitoring requirements (i.e., schedule, monitoring wells sampled, and sampling methodologies, etc.) will be re-evaluated following the September 2019 groundwater monitoring event.

Wasatch anticipates that the next step toward regulatory closure of the release is authoring an EC and SMP limiting the Restricted Property to industrial and commercial uses, forbidding the extraction and use of shallow groundwater, and requiring vapor barriers for new structures. The EC and SMP would be subject to review and approval by the DWMRC, and the SMP would also be subject to a 30-day public comment period.

On behalf of the Facility owner Chasebrook, Wasatch is requesting regulatory closure of the release with a regulatory closure status of "corrective action complete with controls" pending completion and submittal of the EC and SMP, and pending recording of the EC.

Table 1 Historical Soil Analytical Data Cottonwood Square Former Henries Dry Cleaner 1781 East Murray-Holladay Road Millcreek, Utah All concentrations are expressed in micrograms per kilogram (µg/kg) except as noted otherwise

				All Col	icentrations a	re expressed	i ili microgra	ns per kiic	igram (µg/kg) ехсері аз по	oted otherwise	•				
								Vol	latile Organi	ic Compound	ls					
Sample I.D.	Depth (feet)	Sample Collection Date	Tetrachloroethene (PCE)	Trichloroethene (TCE)	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans 1,2- Dichloroethene	Vinyl chloride	Methylene chloride	Toluene	Acetone	2-Butanone	Carbon Disulfide	Benzene	Ethylbenzene	Xylenes
ļ		1					cor Internat		1			04	4.4	Т	1	
S-1	8 12	8/17/2007	9.2	11 3.7	4.5 <2.1	1,500 180	140 27	9.5	11 6.8	<4.1 <2.1	89 <11	<21 <11	<4.1 <2.1			
	7-8		1,900	300	3.1	2,300	14	5.3	10	<2.2	92	16	<2.2			
S-2	12	8/17/2007	410	71	<2.1	260	<2.1	2.1	6.2	<2.1	<11	<11	4.4			
	15-16		86	180	<2.1	70	<2.1	<1.0	11	3.2	15	<10	<4.4			
S-3	8 11	8/17/2007	1,000 73	110 13	2.5 <2.3	2,900 570	110 14	<1.2 <1.2	8.9 <5.8	3.6 <2.3	<12 <12	<12 <12	<2.4 <2.3			
	15-16	0/11/2007	72	92	<2.2	14	<2.2	<1.1	<5.6	<2.2	13	<11	4.7			
	3		360	29	<2.5	44	<2.5	<1.2	<6.2	<2.5	17	<12	<2.5			
S-4	12	8/24/2007	<2.4	<2.4	2.7	7,000	470	29	<5.9	<2.4	<12	<12	<2.4			
	15 5		<2.3	<2.3	<2.3	430	110	7.1	<5.7	<2.3	<11	<11	<2.3			
S-5	10	8/24/2007	1,000 5	280 <2.4	<2.4 <2.4	370 180	130 52	3.9 <1.2	<6.1 <5.9	<2.4 <2.4	<12 23	<12 <12	<2.4 <2.4			
	20		5.5	<3.5	<3.5	190	18	<1.7	9	<3.5	<17	<17	<3.5			
	3.5		290	<2.5	<2.5	4	<2.5	<1.2	<6.2	<2.5	<12	<12	<2.5			
S-6	7	8/24/2007	32	<2.5	<25	4,100	490	<13	<63	<25	290	<130	<25			
	16		<2.3	180	<2.3	850	230	10	<5.7	<2.3	<11	<11	4.8			
B-1	20	4/22/2008	<2.8	<2.8	<2.8	<2.8	<2.8	c July 200 <1.4	<6.9	<2.8	47	<14	<2.8			
	9.5		<2.4	<2.4	<2.4	<2.4	<2.4	<1.2	<6.0	<2.4	<12	<12	<2.4			
B-2	20	4/22/2008	<2.2	<2.2	<2.2	<2.2	<2.2	<1.1	<5.6	<2.2	<11	<11	4.0			
B-3	6.0	4/22/2008	<2.4	<2.4	<2.4	<2.4	<2.4	<1.2	<5.9	<2.4	<12	20	<2.4			
	20		<2.7	44	<2.7	36	3.9	<1.4	<6.8	<2.7	46	76	4.4			
B-4	20 12.5	4/22/2008	10 <2.3	4.2 <2.3	<2.3 <2.3	2.9 <2.3	<2.3 <2.3	<1.2 <1.1	<5.9 <5.7	<2.3 <2.3	<12 15	57 40	<2.3 11			
B-5	20	4/22/2008	<2.4	<2.4	<2.4	<2.4	<2.4	<1.2	<6.0	<2.4	<12	<12	<2.4			
MW-1	7.5	4/22/2008	<2.5	<2.5	<2.5	70	14	7.0	<6.3	<2.5	270	33	2.5			
	10		<2.2	<2.2	<2.2	16	2.5	2.5	<5.6	<2.2	52	<11	<2.2			
MW-2	7.5	4/22/2008	<2.6	<2.6	<2.6	4.9	<2.6	<1.3	<6.4	<2.6	490	50	5.3			
MW-3 MW-4	5.0 12.5	4/23/2008 4/23/2008	<2.8 <2.6	<2.8 <2.6	<2.8 <2.6	<2.8 <2.6	<2.8 <2.6	<1.4 <1.3	<6.9 <6.4	<2.8 <2.6	200 <13	22 13	3.6 <2.6			
IVIVV-4	12.0	4/23/2000	\Z. 0	₹2.0	\2.0		artner Engi			\2.0	V10	10	\Z. 0			
MW-5*																
B1 (MW-6)	9-10	3/28/2017	6.26	<1.17				<1.17		<5.86				<1.17	<1.17	<3.52
B2 (MW-7)	8-9	3/28/2017	<1.04	<1.04				<1.14		<5.21				<1.04	<1.04	<3.13
B3 (MW-8) B4 (MW-9)	9-10 12-13	3/28/2017 3/28/2017	<1.18 <1.22	<1.18 <1.22				<1.18 <1.22		<5.91 <6.09				<1.18 <1.22	<1.18 <1.22	<1.18 <3.65
	15-16		<1.19	<1.19				<1.19		<5.93				<1.19	<1.19	<3.56
B5	19-20	3/28/2017	<1.30	<1.30				<1.30		<6.51				<1.30	<1.30	<3.91
							artner Engi	neering J	uly 2017							
B6 (MW-10)	7-8	6/19/2017	<1.34	<1.34		1,280	18.5				72.1	20.8				
	15-16 7-8		<1.18 <75.2	<1.18 <75.2		1,310 4,690	23.5 151				59.1 <3,760	<1.18 <75.2				
B7 (MW-11)	13-14	6/19/2017	113	11.8		623	7.76				<63	<12.6				
							atch Enviro	nmental O	ctober 2018						·	
CS-1-5'	5	10-15-18	1,690	644	<1.99	63.5	3.67	<0.997	<4.98	<1.99	<9.97	<9.97	<1.99	<1.99	<1.99	<1.99
CS-2-3'	3	10-15-18	283	12.9	<2.04	16.3	<2.04	<1.02	<5.11	<2.04	<10.2	<10.2	<2.04	<2.04	<2.04	<2.04
CS-2-12' CS-3-8'	12	10-15-18 10-15-18	3.11 41.8	<1.83 9.21	<1.83 <2.32	5,570 242	63.3 <2.32	31.5 4.33	<4.58	<1.83 <2.32	17.6	<9.15	<1.83 <2.32	<1.83	<1.83 <2.32	<1.83 <2.32
CS-3-8' CS-3-12'	8 12	10-15-18	52.8	9.21 15.2	<2.32 <1.80	149	<1.80	2.77	<5.80 <4.51	<2.32 <1.80	<11.6 9.38	<11.6 <9.02	<1.80	<2.32 <1.80	<2.32	<1.80
CS-4-8'	8	10-15-18	<2.11	<2.11	<2.11	8,170	73.7	6.77	<5.28	<2.11	34.3	<10.6	2.53	<2.11	<2.11	<2.11
CS-5-8'	8	10-15-18	634	154	<2.31	1,280	17.5	2.78	<5.78	<2.31	<11.6	<11.6	<2.31	<2.31	<2.31	<2.31
CS-20-12'	12	10-15-18	2.88	<1.88	<1.88	4,340	53.7	34.4	<4.71	<1.88	11.1	<9.42	4.69	<1.88	<1.88	<1.88
		idential Soil	24,000	940	230,000	160,000	1,600,000	59	57,000	4,900,000	61,000,000	27,000,000	770,000	1,200	5,800	580,000
U.S. EPA NOTES:	KSL for In	dustrial Soil	100,000	6,000	1,000,000	2,300,000	23,000,000	1,700	1,000,000	47,000,000	670,000,000	190,000,000	3,500,000	5,100	25,000	2,500,000

NOTES:

Only analytes detected above laboratory reporting limits in one or more sample are presented

< = Concentration was below the laboratory reporting limit

BOLD = Measured concentration is greater than the applicable U.S. EPA RSL for Residential Soil

= Measured concentration is greater than the applicable U.S. EPA RSL for Industrial Soil

U.S. EPA RSL = United Stated Environmental Protection Agency Regional Screening Level

^{--- =} Not established

^{* &#}x27;MW-5 not listed in previous reports although listed in Partner 2017 as previously established Monitoring Well

Table 2 Historical Groundwater Analytical Data Former Henries Dry Cleaner Cottonwood Square 1781 East Murray-Holladay Road Millcreek, Utah

All concentrations are expressed in micrograms per liter (µg/L) except as noted otherwise

								All concer	itrations are	expressed	in microgran	ns per mer (ug/L) except	as noted of	iei wise										
									Volatile Organic Compounds										Geochemical Parameters						
Sample I.D.	Depth to Water (feet)	Sample Collection Date	Relative Ground Water Elevation (feet)	Tetrachloroethene (PCE)	Trichloroethene (TCE)	1,1-Dichloroethene (DCE)	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl chloride	Methylene Chloride	Toluene	Acetone	2-Butanone	Carbon Disulfide	Methyl t-butyl ether (MTBE)	Benzene	Naphthalene	Ethylbenzene	Xylenes	Temperature (degrees fahrenheit)	Hd	Specific Conductivity (microSiemens per centimeter)	Dissolved Oxygen (milligrams per liter)	Oxidation Reduction Potential (millivolts)	Turbidity (nephelometric turbidity unit)
	•			•		•	•	•	•	Seco	Internation	al October	2007			•	•		•			•			
S-1	12	8/17/07		32	11	<2.0	1,400	48	5.8	<2.0	<2.0	<10	<10	<2.0	<2.0		<2.0								
S-2	11.5	8/17/07		440	2,800	5.4	2,300	41	20	<2.0	<2.0	<10	<10	<2.0	<2.0		<2.0								
S-3	11.5	8/17/07		44	1,300	<2.0	300	13	1.3	<2.0	<2.0	<10	<10	<2.0	<2.0		<2.0								
S-4	11.2	8/24/07		80	4.0	4.5	4,400	310	94	<2.0	<2.0	<10	<10	<2.0	<2.0		<2.0								
S-5	11	8/24/07		2.4	4.0	<2.0	310	40	9.0	<2.0	<2.0	<10	<10	<2.0	<2.0		<2.0								
S-6	11.5	8/24/07		90	240	7.4	15,000	690	89	<2.0	<2.0	<10	<10	<2.0	<2.0		<2.0								
5.4	0.00	4/00/0000	20.00						1	0.0	Stantec J		40			1			1				1		
B-1 B-2	6.00	4/22/2008	88.82 87.53	<2.0 <2.0	<2.0 <2.0	<2.0	<2.0	<2.0 <2.0	<1.0	<2.0 <2.0	<2.0	<10	<10 <10	<2.0	<2.0		<2.0 <2.0								
B-2 B-3	7.10 5.91	4/22/2008 4/22/2008	87.53 88.61	<2.0 8.5	<2.0 69	<2.0 <2.0	<2.0 150	<2.0 5.7	<1.0 7.1	<2.0	<2.0 <2.0	<10 <10	<10	<2.0 <2.0	<2.0 <2.0		<2.0								
B-4	5.61	4/22/2008	88.59	2.7	29	<2.0	54	<2.0	<1.0	<2.0	<2.0	<10	<10	<2.0	<2.0		<2.0								
B-5	5.91	4/22/2008	88.39	2.0	2.7	<2.0	3.6	<2.0	<1.0	<2.0	<2.0	<10	<10	<2.0	<2.0		<2.0								
MW-1	10.99	4/24/2008	89.04	<2.0	<2.0	<2.0	5.2	<2.0	27	<2.0	<2.0	21	<10	<2.0	<2.0		<2.0								
MW-2	10.99	4/24/2008	89.01	<2.0	<2.0	<2.0	7.9	2.3	6.7	<2.0	<2.0	<10	<10	<2.0	3.4		<2.0								
MW-3	9.31	4/24/2008	89.72	<2.0	2.4	<2.0	6.2	3.9	2.0	<2.0	<2.0	<10	<10	<2.0	<2.0		<2.0								
MW-4	9.75	4/24/2008	89.24	<2.0	<2.0	<2.0	<2.0	<2.0	<1.0	<2.0	<2.0	<10	<10	<2.0	<2.0		<2.0								
Resident		4/22/2008		<2.0	<2.0	<2.0	<2.0	<2.0	<1.0	<2.0	<2.0	<10	<10	<2.0	<2.0		<2.0								
										Part	ner Enginee	ering May 20)17												
MW-1	12-17	3/29/2017		1.19	1.00		1.44	<1.0	<1.0		<1.0				<1.0	<1.0	<5.00	<1.0	<3.0						
MW-2	12-17	3/29/2017		<1.0	<1.0		3.51	1.23	<1.0		<1.0				<1.0	<1.0	<5.00	<1.0	<3.0						
MW-3	12-17	3/29/2017		<1.0	<1.0		2.75	1.84	<1.0		<1.0				<1.0	<1.0	<5.00	<1.0	<3.0						
MW-4	12-17	3/29/2017		<1.0	<1.0		<1.0	<1.0	<1.0		<1.0				<1.0	<1.0	<5.00	<1.0	<3.0						
MW-5*	12-17	3/29/2017		3.39	<1.0		<1.0	<1.0	<1.0		<1.0				<1.0	<1.0	<5.00	<1.0	<3.0						
B1 (MW-6)	12-17	3/29/2017		27.5	49.4		755	26.6	4.80		<1.0				<1.0	<1.0	<5.00	<1.0	<3.0						
B2 (MW-7)	12	3/29/2017		1.24	<1.0		<1.0	<1.0	<1.0		<1.0				<1.0	<1.0	<5.00	<1.0	<3.0						
B3 (MW-8)	12-17	3/29/2017		<1.0	<1.0		<1.0	<1.0	<1.0		<1.0				<1.0	<1.0	<5.00	<1.0	<3.0						
B4 (MW-9)	12-17	3/29/2017		2.80	1.50		1.36	<1.0	<1.0	 Port	<1.0	ering July 20			1.05	<1.0	<5.00	<1.0	<3.0						
B6 (MW-10)	12-17	6/20/2017		61.5	2.45	<1.0	143	38.8	9.56			<50			<1.0		<5.00								
B7 (MW-11)	12-17	6/20/2017		28.6	21.6	<1.0	1,200	86.8	23.5			<50 <50			<1.0		<5.00								
D/ (IVIVV-11)	12-17	0/20/2017		20.0	21.0	<1.0	1,200	00.0	23.3			ntal Decemi			<1.0		₹3.00								
MW-1	12.45			<2.00	<2.00	<2.00	2.41	<2.00	18.0	<2.00	<2.00	<10.0	<10.0	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	55.95	7.41	1,804	4.28	140.0	1.34
MW-2	11.65	10/17/001-		<2.00	<2.00	<2.00	4.50	<2.00	4.33	<2.00	<2.00	<10.0	<10.0	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	55.61	7.36	2,056	4.43	72.7	1.25
MW-3	10.93	12/17/2018		<2.00	<2.00	<2.00	3.06	2.05	<1.00	<2.00	<2.00	<10.0	<10.0	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	53.44	8.00	1,914	4.89	157	1.39
MW-6	12.57	1		<2.00	<2.00	<2.00	486	8.77	5.34	<2.00	<2.00	13.6	69.6	<2.00	<2.00	<2.00	2.16	<2.00	<2.00	48.85	7.56	1,632	5.02	38.8	1.73
MW-10	13.40	12/19/2019		8.93	<2.00	<2.00	1,720	44.6	30.7	<2.00	<2.00	<10.0	16.9	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	59.78	8.00	841.1	4.45	-164.0	1.24
MW-11	12.78	12/18/2018		<2.00	<2.00	<2.00	1,590	36.6	16.3	<2.00	<2.00	<10.0	<10.0	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	58.66	7.91	527.0	4.42	-12.5	1.93
U.S. EPA Co			ater Concentrations	65.2	7.43	821			2.45	9,230	80,700	94,500,000	9,410,000	5,210	1,970	6.93	4.59	15.2	1,620						
	U.	S. EPA Maximum (Contaminent Levels	5	5	7	70	100	2	5	1,000					5		700	10,000						

Only analytes detected above laboratory reporting limits in one or more sample are presented

VISL = Vapor Instrution Screening Level

BOLD = Measured concentration is greater than the applicable U.S. EPA Federal Maximum Contanninant Level

< = Concentration was below the laboratory reporting limit</p>
U.S. EPA = United States Environmental Protection Agency

Table 3 Historical Sub-Slab Soil Gas Analytical Data Cottonwood Square Former Henries Dry Cleaner 1781 East Murray-Holladay Road Millcreek, Utah

All concentrations are expressed in micrograms per cubic meter ($\mu g/m^3$) except as noted otherwise

Sample ID	Sample Collection Date	cis-1,2-Dichloroethene	trans -1,2-Dichloroethene	Tetrachloroethene (PCE)	Trichloroethene (TCE)	Vinyl chloride	Ethanol	Acetone	Carbon disulfide	2-Butanone	4-Ethyltoluene	Dichlorodifluoromethane	Isopropylbenzene	n-Hexane	Benzene	Cyclohexane	Methylene Chloride	2-Propanol	Propene	Heptane	Toluene	Tetrahydrofuran	Ethylbenzene	m,p-Xylene	o-Xylene	Styrene	1,3,5-Trimethylbenzene	1,2,4-Trimethylbenzene
										Arca	dis Septer	nber 2012																
SSV-1	8/21/2012	<3.9	<3.9	161	<5.2	<2.5																						
SSV-2	8/21/2012	<8.4	<8.4	157	<11.4	<5.4																						
SSV-3	8/21/2012	<27.1	<27.1	591	<36.6*	<17.4*																						
SSV-4	8/21/2012	<124	<124	7,120	332	<79.9*																						
SSV-5	8/21/2012	<23,700	<23,700	5,000,000	<32,000**	<15,200**																						
SSV-6	8/21/2012	<260	<260	3,170	<15,200**	<167**																						
										Partner	Engineeri	ng July 20	17															
SS-1	7/16/2017	<1.62	<1.59	2,280	74		146	1,260	3.93	<7.37	<1.96	1.98	<1.97	1.62	<1.28	<1.38	1.74	199	2.83	<81.8	3.36	<1.18	<1.73	<3.47	<1.73	<1.70	<1.96	<1.96
SS-2	7/16/2017	55.4	<1.59	253,000	196		565	1,390	15.6	<7.37	<1.96	1.98	<1.97	<17.6	<1.28	<1.38	<17.4	1,030	<17.2	<81.8	<18.8	<1.18	<1.73	<3.47	<1.73	<1.70	<1.96	<1.96
SS-3	7/16/2017	23.5	14	4,350	356		1,640	2,270	2.24	16.9	4.27	2.09	19.2	6.48	2.57	3.41	1.49	384	<1.38	1,030	60.7	2.43	54	204	105	4.35	3.76	6.31
U.S. EPA VISL Residential Targ	et Sub-Slab and Exterior Soil Gas Concentraion			360	16	5.6		1,100,000	24,000	5,200		24,000		24,000	12	210,000	3,400	7,000	100,000	14,000	170,000	70,000	37	3,500	3,500	35,000		2,100
U.S. EPA VISL Commercial Targ	et Sub-Slab and Exterior Soil Gas Concentraion			1,600	100	93		4,500,000	100,000	22,000		100,000		880,000	52	880,000	41,000	29,000	440,000	58,000	730,000	290,000	160	15,000	15,000	150,000		8,800

NOTES:

Only analytes that were detected at concentrations above the reporting limit in one or more samples are presented in the table.

BOLD = Measured concentration is greater than the applicable United States (U.S.) Environmental Protection Agency (EPA) Vapor Intrusion Screening Level (VISL) calculator spreadsheet, version 3.5.2, Residential Target Sub-slab Soil Gas Concentration (TCR = 1x10⁻⁶, THQ = 1)

< = Concentration was below the reporting limit

⁼ Measured concentration is greater than the applicable U.S. EPA VISL calculator spreadsheet, version 3.5.2, Commercial Target Sub-slab Soil Gas Concentration (TCR = 1x10⁻⁶, THQ = 1)

^{*=} Reporting limit is greater than the applicable U.S. EPA VISL calculator spreadsheet, version 3.5.2, Residential Target Sub-slab Soil Gas Concentration (TCR = 1x10-6, THQ = 1)

^{*** =} Reporting limit is greater than the applicable U.S. EPA VISL calculator spreadsheet, version 3.5.2, Commercial Target Sub-slab Soil Gas Concentration (TCR = 1x10-6, THQ = 1)

^{--- =} No U.S. EPA VISL Target Subslab Soil Gas Concentration has been established

Table 4 Historical Indoor and Outdoor Air Analytical Data Cottonwood Square Former Henries Dry Cleaner 1781 East Murray-Holladay Road Millcreek, Utah

All concentrations are expressed in micrograms per cubic meter (µg/m³)

Sampling Location	Date Sampled	Location	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Tetrachloroethene (PCE)	Trichloroethene (TCE)	1,1-Dichloroethene (DCE)	Vinyl chloride	Ethanol	Acetone	Chloromethane	2-Butanone	Methyl methacrylate	Dichlorodifluoromethane	n-Hexane	Benzene	Cyclohexane	2-Propanol	Heptane	Toluene	Tetrahydrofuran	Ethylbenzene	m,p-Xylene	o-Xylene	2,2,4-Trimethylpentane	1,2,4-Trimethylbenzene
			_							Arcadis	Septem	ber 2012														-
OA-1	8/20/2012	Outdoor	<0.081	<0.081	0.32	0.67		<0.052																		
IA-1	8/20/2012	Indoor	<0.077	<0.077	<0.13	<0.052		<0.050																		
IA-2	8/20/2012	Indoor	<0.081	<0.081	<0.14	<0.055		<0.052																		
IA-3	8/20/2012	Indoor	<0.081	<0.081	2	0.2		<0.052																		
IA-4	8/20/2012	Indoor	<4.1	<4.1	55.4	<5.5*		<2.6*																		
IA-5	8/20/2012	Indoor	<0.085	<0.085	20.7	4.5		<0.055																		
									P	artner En	gineerin	g July 20	17													
IA-1 (P)	6/17/2017	Indoor			55.9		<0.793		188	6,110	1.24	10.5	4.79	1.78	<0.705	<0.639*	<0.689	1,330	0.906	31.8	<0.590	<0.867	<1.73	<0.867	<4.66	<0.982
IA-2 (P)	6/17/2017	Indoor			4.28		<0.793		760	7,440	1.39	20.5	52.6	1.64	1.29	0.747	3.64	1640	2.18	43.4	5.88	1.12	4.23	1.55	1.12	1.36
OA-1 (P)	6/17/2017	Outdoor			<1.36		<0.793		10	41.5	1.13		<0.819	1.77	<0.705	<0.639*	<0.689	9.11	<0.818	1.84	<0.590	<0.867	<1.73	<0.867	<0.934	< 0.982
									Wasat	ch Enviro	nmental	Decemb	er 2018													
IA-6	12/17/2018	Indoor (LA Nails Salon)	<0.59	<0.59	9.0	<0.81	<0.59	<0.38*																		
IA-7	12/17/2018	Indoor (Vacant Space)	<0.59	<0.59	1.9	<0.81	<0.59	<0.38*																		
IA-8	12/17/2018	Indoor (Former Henries Space)	<0.59	<0.59	6.5	<0.81	<0.59	<0.38*																		
OA-2	12/17/2018	Outdoor (Roof)	< 0.59	<0.59	<1.0	<0.81	<0.59	<0.38*																		
	U.S. EPA I	Regional Screening Level for Residental Air			11	0.48	210	0.17		32,000	94	5,200	730	100	730	0.36	6,300	210	420	5,200	2,100	1.1	100	100		63
	U.S. EPA	Regional Screening Level for Industrial Air			47	3	880	2.8		140,000	390	22,000	3,100	440	3,100	1.6	26,000	880	1,800	22,000	8,800	4.9	440	440		260

NOTES:

BOLD = Measured concentration is greater than the applicible U.S. EPA Regional Screening Level for Residential Air

= Measured concentration is greater than the applicible U.S. EPA Regional Screening Level for Industrial Air

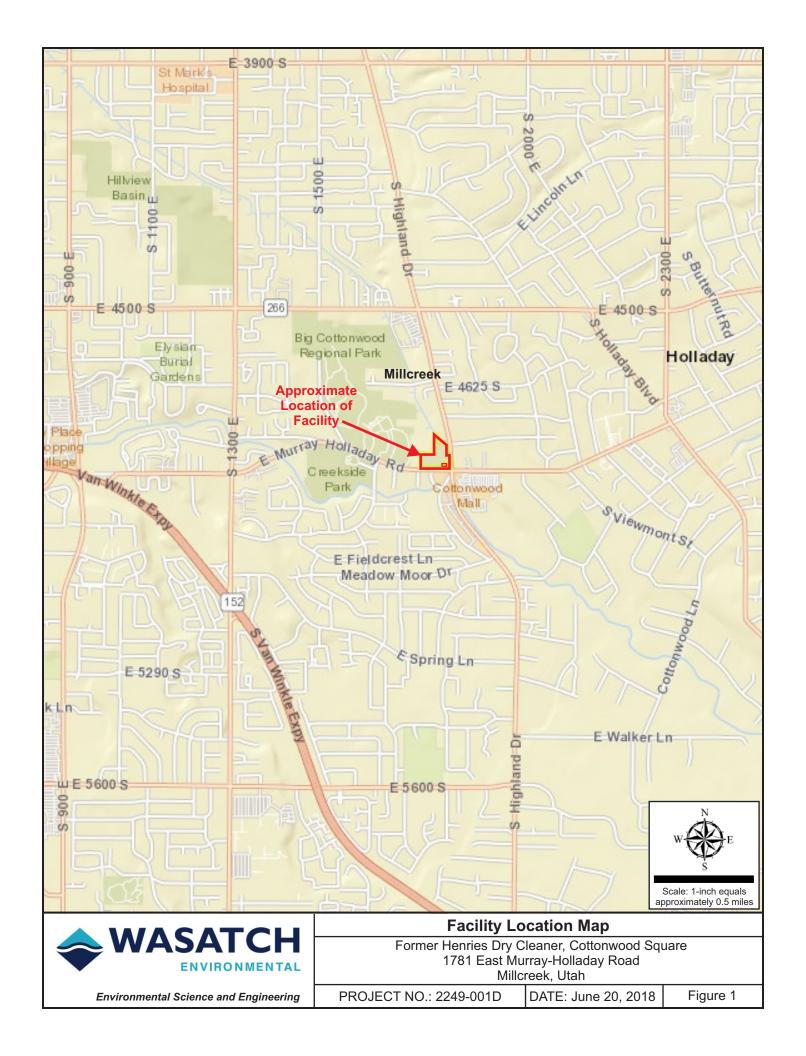
< = concentration was below the laboratory reporting limit

^{--- =} not established or not analyzed

^{*=} Reporting limit is greater than the applicible U.S. EPA Regional Screening Level for Residential Air

Table 5 Emissions Analytical Data Cottonwood Square Former Henries Dry Cleaner 1781 East Murray-Holladay Road Millcreek, Utah

All concentrations are presented in micrograms per cubic meter (µg/m³)


Sample ID	Sample Collection Date	Acetone	Carbon disulfide	Methylene Chloride	2-Butanone	cis-1,2-Dichloroethene	Tetrahydrofuran	Trichloroethene (TCE)	Tetrachloroethene (PCE)	4-Methyl-2-pentanone	Ethylbenzene	m,p-Xylene	o-Xylene
EM-1	11/29/18	340	140	260	230	60	2,200	140	5,600	170	12,000	30,000	18,000
EM-1	1/2/19	150	<9.3	<10	30	38	530	150	21,000	17	3,000	4,700	11,000

NOTES:

Only analytes that were detected at concentrations above the reporting limit in one or more samples are presented in the table.

< = Concentration was below the reporting limit

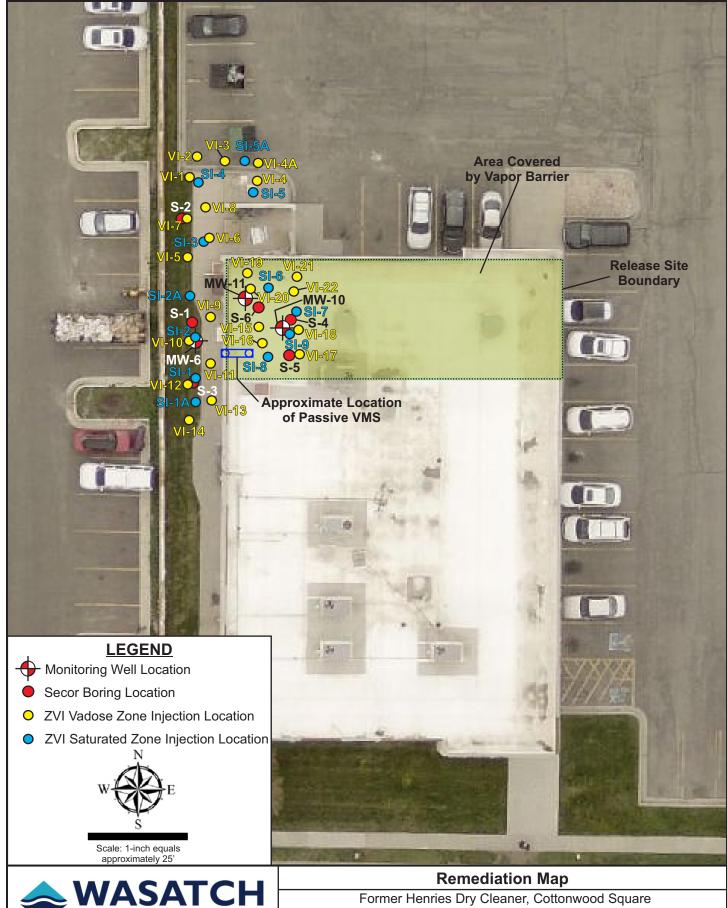
W E

Scale: 1-inch equals approximately 125'

Commercial Properties
Residential Properties

Release Site Boundary

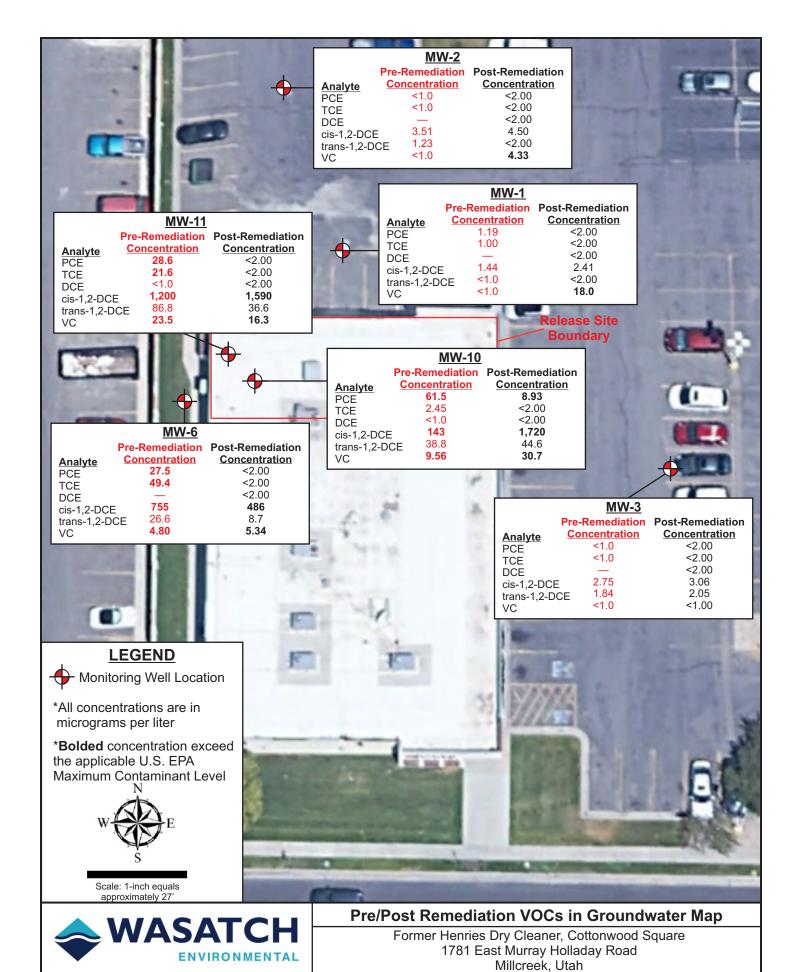
Cottonwood Square (Facility Boundary)



Environmental Science and Engineering

Former Henries Dry Cleaner Cottonwood Square 1781 East Murray-Holladay Road Millcreek, Utah

PROJECT NO. DRAWING DATE FIGURE 2249-001D June 20, 2018 2


Environmental Science and Engineering

1781 East Murray Holladay Road Millcreek, Utah

PROJECT NO.: 2249-001D

DATE: January 8, 2019

Figure 4

PROJECT NO.: 2249-001D

Environmental Science and Engineering

DATE: January 8, 2019

Figure 5

Appendix A

CAP Approval Letter

GARY R. HERBERT Governor

SPENCER J. COX Lieutenant Governor

Department of Environmental Quality

Alan Matheson
Executive Director

DIVISION OF WASTE MANAGEMENT AND RADIATION CONTROL Scott T. Anderson Director

August 9, 2018

Michael Cronin, P.G. Senior Geologist/Senior Project Manager Wasatch Environmental 2410 West California Avenue Salt Lake City, Utah 84104

RE:

Corrective Action Plan

Former Henries Dry Cleaners

Cottonwood Square 1781 East Murray - Holladay Road

Millcreek, Utah

Dear Mr. Cronin:

The Division of Waste Management and Radiation Control has completed its review of the revised Corrective Action Plan (CAP) submitted in behalf of the Chasebrook Company. The CAP has been prepared to address residual chlorinated solvent impacts to soil and groundwater at the former Henries Dry Cleaner facility.

The Division concurs with the proposal of an in-situ chemical reduction (ISCR) of the contaminants in the vadose zone and the saturated zone by injection of a zero valent iron (ZVI) slurry into the two source zones. The goal of the effort is to effectively reduce the mass of chlorinated compounds in contaminated zones by chemical redox reactions.

The proposed CAP is hereby approved for implementation. Please provide the Division a seven-day notice before conducting field activities to enable Division personnel to coordinate oversight of the effort. If you have any questions, or to provide notification of field activities, please call Eric Baiden at (80l) 536-0216.

Sincerely,

Scott T. Anderson, Director

Division of Waste Management and Radiation Control

(Over)

STA/EB/km

c: Gary Edwards, MS, Health Officer, Salt Lake County Health Dept. Royal DeLegge, MPA, EHS, Environmental Health Director, Salt Lake County Health Dept.

Appendix B

Blue Stake Utility Clearance Request

Michael Cronin

From:

Blake Downey

Sent:

Tuesday, September 04, 2018 10:45 AM

To:

'sean@directpushservices.com'

Cc:

Michael Cronin

Subject:

FW: UTAH EMLCFM 2018/09/04 #00693 A82470694-00A NORM NEW LREQ

Sean,

See the bluestakes ticket below for the upcoming injection work in Millcreek next week. Don't forget we need the fencing dropped off this Friday.

Thank you!

Blake Downey, P.G. Project Hydrogeologist Wasatch Environmental Cell: 435-760-8269

Office: 801-972-8400

Email: BD@wasatch-environmental.com

----Original Message----

From: noreply@bluestakes.org <noreply@bluestakes.org>

Sent: Tuesday, September 04, 2018 10:43 AM

To: Blake Downey <bd@wasatch-environmental.com>

Subject: UTAH EMLCFM 2018/09/04 #00693 A82470694-00A NORM NEW LREQ

EMLCFM 00693 UTAHa 09/04/18 10:43:15 A82470694-00A NORM NEW POLY

VISIT http://www.bluestakes.org/locate-requests-new BEFORE YOUR NEXT PROJECT!

DO IT YOURSELF ONLINE! — EXISTING TICKETS CAN BE UPDATED AND NEW TICKETS CAN BE CREATED ONLINE QUICKLY AND EASILY, 24 HOURS PER DAY. NO NEED TO WAIT ON HOLD!

Thank you for contacting Blue Stakes of Utah Utility Notification Center, Inc. regarding your upcoming digging project. Please review your locate request ticket (below) and save it for your records.

If any of the information is incorrect, please contact Blue Stakes ASAP by dialing 811 or 800-662-4111 and reference your ticket number. Agents are available Monday - Friday, 7 AM - 5 PM, except on Holidays.

For information about the next steps in the process or other pertinent details, please visit the Frequently Asked Questions section of our website:

http://www.bluestakes.org/faqs. Dig Safely!

Ticket: A82470694 Rev:00A Taken: 09/04/18 10:37 Old Tkt: A82470694 Taken: 09/04/18 10:37 Oper: RANDI

Submitted: 09/04/18 10:43 Oper: _RANDI Chan:ITE Legal date: 09/06/18 10:37 Good Thru: 09/18/18 10:37 Update By:

09/14/18 10:37

State: UT Cnty: SALT LAKE Place: MILLCREEK

Subdivision:

Address:

Street: Murray Holladay Rd

Cross 1: Highland Dr

Side of St: Side of Lot: Digging in Rd: N

Svc Side of St: Depth:

Location: FROM THE NORTHWEST CORNER OF THE MURRAY HOLLADAY ROAD AND HIGHLAND DRIVE INTERSECTION TRAVEL WEST 400 FT ALONG THE NORTHERN EDGE OF MURRAY HOLLADAY ROAD TO THE BEGINNING POINT. FROM THE BEGINNING POINT STK 215 FT TO THE NORTH AND 140 FEET TO THE WEST (TO THE RETAINING WALL BETWEEN A STRIP

MALL AND RESIDENTIAL APARTMENTS) STKG EVERYTHING WITHIN.

CALL BLAKE WITH ANY QUESTIONS.

. _..:

Grids: 4039A11150B 4039A11150C 4040D11150B 4040D11150C

P&D: N Work type: SOIL REMEDIATION

Ug/Oh/Both: U Expl/Blast: N Boring: N Railroad: Emergency: N Meet: N

Company: WASATCH ENVIRONMENTAL Phone: 435-760-8269 Co addr: 2410 WEST CALIFORNIA AVENUE

City: SALT LAKE CITY State: UT Zip: 84104

Caller: BLAKE DOWNEY Phone: 435-760-8269 Type: E Contact: BLAKE DOWNEY Phone: 435-760-8269

BestTime:

Email: BD@WASATCH-ENVIRONMENTAL.COM

Members:

Company

Code

CCUT3 COMCAST - SALT LAKE, TOOELE & UTAH CO CATV & FIBER MRKD BY STK CNTR STA-KE -CENTx8013641063

QGCOCL DOMINION ENERGY UTAH GAS MARKED BY ELM LOCATING ELM- LO-CATIX8887289343

FDIGIT FIRSTDIGITAL TELECOM PHONE NAT-HAN- MARx8016647362

Description

THORE MATHRIA MARKOUTUU4/302

HLDYWT HOLLIDAY WATER COMPANY CULINARY WATER MAR-LIN- SUNx8012772893

JVWTR JORDAN VALLEY WATER C.D. CULINARY WATER GOR-DON- BATx8015654300

MTOLY MOUNT OLYMPUS I.D. SEWER ZAC-K S-TEVEx8012622904

RMPJOR ROCKY MOUNTAIN POWER - JORDAN VALLEY ELECTRIC MRKD BY STAKE CENTER STA-KE -

CENTx8013641063

SLWTR SALT LAKE CITY PUBLIC UTILITIES STRM DRN, SWR & CULINARY WTR SLC- PU-BLICx8014836700

SYRINGAH SYRINGA NETWORKS FIBER & PHONE MRKD BY SYRINGA SYR-ING-A GIX8004547214

View map at:

http://map.bluestakes.org/?TRG=EBFnMcNeFnCi5nD-a

Appendix C

Underground Injection Control Permit and Related Documentation

State of Utah

Department of Environmental Quality
Division of Water Quality
Underground Injection Control (UIC) Program

195 North 1950 West Salt Lake City, Utah 84116

Reporting Form for Change of Operating Status for Class V UIC Wells Authorized by Rule

Owner / operators of Class V injection wells regulated by the Utah 1422 UIC Program are required to submit information on the operating status of Class V wells. Use this form to report a change in the operating status of an existing injection well relative to the operating status that was indicated on the originally submitted UIC Inventory Information Form. **Do not** use this form to submit original UIC Inventory Information.

submit origin	al UIC II	iventory init	ormation.										
FACILITY LOCATION													
Facility Name:	Former	Henries Dry C	eaner, Cottonwood	Square		UIC Facility II (if known)	11.1	JTU-35F-2A170E29					
Physical Address:	1781 Ea	st Murray-Ho	olladay Road					Millcreek (City)					
Geographic Location:			scribed in the Insti Ibmit the map alor				orm to	o acquire a map showing th	ne location of				
County: Salt Lake County													
INJECTION WELL(S) FOR WHICH CHANGE IN OPERATING STATUS IS BEING REPORTED													
Well Designation (# or Name) Operating Status Operating Status After Change Change													
All tempora subsurfac environmen remediation v (EPA Well Code at the site	e ntal wells e 5B6)		d □ Under Constructi Temporarily Abandon	ned			Temp	tion	9/14/2018				
			☐ Under Construction Temporarily Abandon				Temp	ion Active Abandoned porarily Abandoned					
			Under Construction				Temp	ion Active Abandoned porarily Abandoned					
* Check Other	er if Acti ginally re	ve well is Mo	dified but remains A	Active, or if (Com	position and/o	or Volu	ume of injectate changes sign	nificantly from that				
			SIGNATU	JRE OF (wc	NER / OPER	RATO	OR					
	Jay Larsen, Construction Manager (801) 364-2602 Name & Title (print or type) Phone Number												
		//4[Signature					October 3, 2018 Date Signed					

Instructions

Facility Location:

Physical Address: Enter street address of facility or other description of physical location of facility that would enable someone to drive to the location of the facility. You may also choose to provide a photocopy of a road map (no greater than 11" x 17", preferably 8 ½" x 11") with the facility location indicated if a street address is not available.

Geographic Location: Submit a map from Atlas Utah (https://atlas.utah.gov) or another online map service (Bing Maps, Google Maps, MapQuest)

To use the Atlas Utah to locate your facility, go to this web site https://atlas.utah.gov/ Use the stacked layer symbol in the upper right hand corner of the map to select the base map (Hybrid, Lite, Terrain, Topo, or Color IR) you would like to use in locating your facility. Then locate your facility by using the Find Address, Find Point of Interest or Find City in the search fields at the left of the map. Use the + and - signs in the upper left hand corner of the map to zoom to your facility boundary. Using the pull down menu for the blue Print button in the upper left hand corner of the screen, select either Portrait or Landscape orientation for the map of your facility. While the service is preparing the printout the Print button will be gray and read 'Printing'. Once the Printout is finished the button will read 'Printout'. Click on Printout to open the map.

Electronic Submittal of Change of Operating Status Form

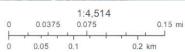
To submit the UIC Inventory Information Form using DWQ's Electronic Submissions web service:

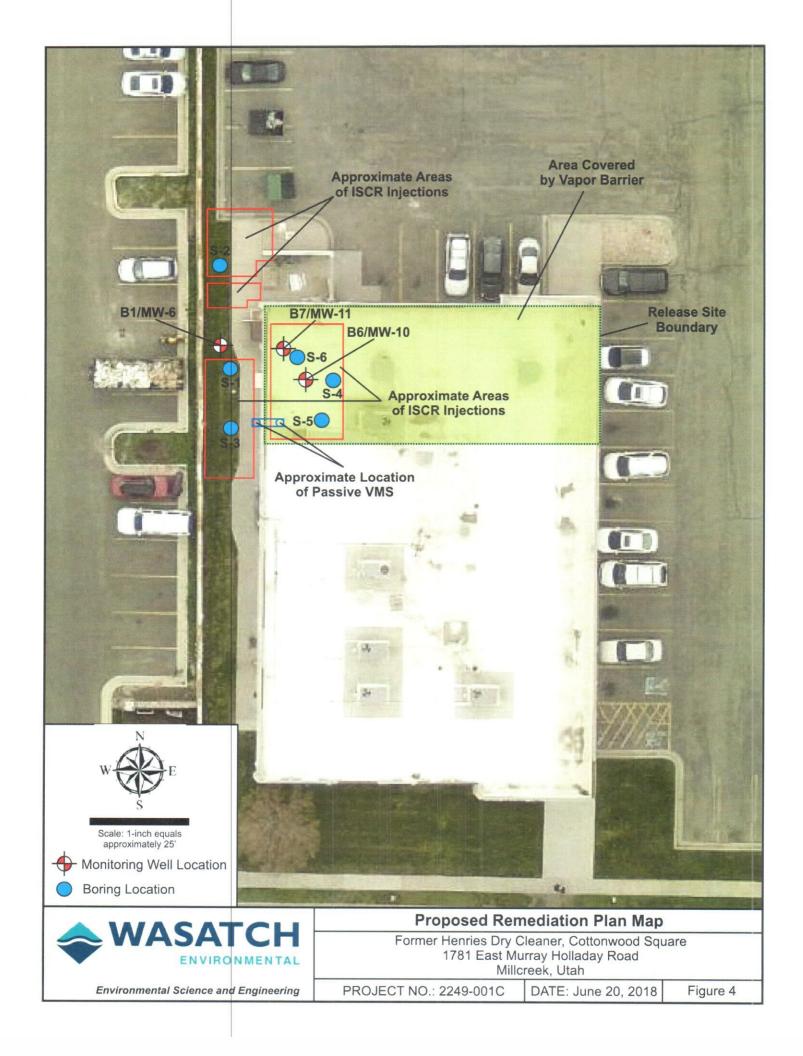
- 1. Scan your completed, signed, and dated Change of Operating Status Form and save as a .pdf document on your computer.
- 2. Go to this website: https://deq.utah.gov/ProgramsServices/services/submissions/index.htm
- 3. Enter 'UIC Inventory Information Form' in the 'Purpose of Submission' box.
- 4. Complete the 'Submitted By' section.
- 5. Select the file you created in Step 1, and hit the 'Click here to submit' button.

Submit Change of Operating Status by Mail

To submit the change of operating status form by mail, send your completed, signed and dated form to:

Utah Department of Environmental Quality


Division of Water Quality, ATTN: UIC


P.O. Box 144870

Salt Lake City, Utah 84114-4870

August 7, 2018

Michael Cronin

From:

Sent:

Thursday, August 16, 2018 3:28 PM

To:

jay@chasebrookco.com; Eric Baiden; Michael Cronin

Subject:

Class V Injection Well Authorization by Rule - former Henries Dry Cleaner

Attachments:

UPDATED change of operating status.docx

Mr. Jay Larsen Construction Manager Holladay Corner LLC 154 East Myrtle Avenue Suite 303 Murray, UT 84107

Dear Mr. Larsen:

Subject:

Approval of Class V Injection Well Authorization by Rule

Subsurface Environmental Remediation – EPA Well Code – 5B6

Former Henries Dry Cleaner, Cottonwood Square 1781 Wast Murray- Holladay Road; Millcreek, UT 84117

Utah UIC Facility Identification Number: UTU-35F-2A170E29

APPROVAL AND AUTHORIZATION

The Division of Water Quality (DWQ) has reviewed the information submitted on the Utah Underground Injection Control (UIC) Inventory Information form along with any additional details that may have been provided pertaining to the Class V wells at the **former Henries Dry Cleaner** located at **1781 East Murray-Holladay Road** in **Millcreek**, **Utah**. Approval is hereby granted to construct and operate the thirty-one (31) Class V wells under Authorization by Rule according to the Administrative Rules for the Utah UIC Program (Utah UIC Program Rules) R317-7.

The Class V wells are authorized as Subsurface Environmental Remediation Wells to inject Zero Valent Iron (ZVI) for the in-situ chemical reduction of chlorinated solvents on the property.

The construction and operation of any injection wells at this site for subsurface environmental remediation may be subject to additional requirements established by the Utah Division of Waste Management and Radiation Control (WMRC).

NOTICE - You are required to report any change in the operating status of these wells (e.g. date constructed, date active, date closed, etc.) on the attached 'Reporting Form for Change of Operating Status for Class V Injection Wells Authorized by Rule.' These wells are currently entered as proposed, you must complete and submit the form for each injection event and when they are closed/abandoned

This facility has been assigned a Utah UIC Facility Identification Number: **UTU-35F-2A170E29**. Please use this identification number when submitting any further information and correspondence regarding injection wells at this facility.

PROHIBITION OF UNAUTHORIZED INJECTION

Responsibility of the Utah Division of Water Quality According to the Utah UIC Program Rules, Class V injection wells are Authorized by Rule provided inventory information is submitted before injection commences. The Utah UIC Program Rules prohibit authorization of underground injections "which would allow movement of fluid containing any contaminant into underground sources of drinking water if the presence of that contaminant may cause a violation of any primary drinking water regulation (40 CFR Part 141 and Utah Public Drinking Water Rules R309-200), or which may adversely affect the health of persons" or which "may cause a violation of any ground water quality rules that

may be promulgated by the Utah Water Quality Board R317-6."

If at any time the Director of the Utah Division of Water Quality determines that a Class V well may cause a violation of primary drinking water rules, the Utah UIC Program Rules require the Director to take appropriate action to address such determination. The Director may require the injector to obtain an individual permit, require the injector to close the injection well, or take appropriate enforcement action including site remediation.

Responsibility of the Operator Once approval has been given to operate a Class V injection well under Authorization by Rule, it is the responsibility of the operator of the Class V injection well to implement appropriate Best Management Practices (BMPs) to ensure that the authorized injectate does not contain any contaminant that would cause a violation of any primary drinking water regulation or ground water quality rule or would otherwise adversely affect the health of persons. Additionally, no injectate other than that for which the well is authorized should be allowed to enter the well.

If you have any questions or comments, please feel free to contact me by phone at (801) 536-4351 or by email at bariotti@utah.gov.

Sincerely,

Brianna Ariotti

Environmental Scientist Underground Injection Control (UIC) Program

Attachments: Reporting Form for Change of Operating Status Class V ABR

Courtesy Copy Recipients: Eric Baiden, WMRC

Michael Cronin, Wasatch Environmental, Inc.

File: Groundwater\UIC Program\ Salt Lake County \former Henries Dry Cleaner

In	ventory Review Fee Payment Method:
	Online Order #
	Check #
	(For DWQ use only)

Utah Underground Injection Control (UIC)

Well Subclass:	
Facility ID: UTU-	
Date Entered:	Ву: _
(For DWQ	use only)

or DWQ use only) Inventory Information

Subsurface Environmental Remediation (SER) Injection Wells

Owners inventory	/ operators of existin information (UAC R31 complying w	g and new Clas 17-7-6). This for ith this require	orm is	desig	ned to	assi	st the	regulate	e shall submit d community in	
		FACILIT	Y LO	CATI	ON					
Facility Name:	Former Henries Dry Cle	ate: August 8, 2018								
Physical Address:	1781 East Murray-Holla	creek (City)								
Mailing Address:	Holladay Corner LLC 154 East Myrtle Avenue, Suite #303 Murray							(City) 84107 (Zip Code)		
Geographic Location:	Select a method described in the Instructions at the end of this form to acquire a map showing the location of your UIC facility. Submit the map along with this form.									
County:	Salt Lake County									
		FACILI	TY CO	NTA	СТ					
Contact Name:	Jay Larsen			Phon (801	e:) 364-2	602		Email: jay@chasebrookco.com		
Contact Type:	Owner/Operator		Оре	rator		☐ Facility Manager			☐ Developer	
(check all that	☐ Legal Representative	Official Represe	entative	С	ontracto		DEQ District Engineer / Project Manager			
apply)	Other									
Title:	Construction Manager		Organiz	ation:	Hollad	ay Co	rner LL	LC		
Mailing Address:	154 East Myrtle Avenue, Suite #303 Murray							(City) 84107 (Zip Code)		
Contact Name:	Michael Cronin			Phon (801	e:) 972-8	400		Email: mc@wa	satch-environmental.co	
Contact Type:	☐ Owner/Operator	Owner	Оре	rator		☐ Facility Manager			☐ Developer	
(check all that	☐ Legal Representative ☐ Official Representative ☐ Contractor						☐ DEQ District Engineer / Project Manager			
apply)	Other Environmental Consultant									
Title:	Senior Geologist/Senior Project Manager Organization: Wasatch						h Environmental, Inc.			
Mailing Address:	2410 West California Avenue Salt Lake						(City) 84104 (Zip Code)			
DWQ Use Only	for Date Received Stamp ar	nd eDocs Number:				Sy	stem Na] No	

			LA	ND OWNE	RSH	IP AT	FAC	CILIT	Υ			
Private – For Profit			☐ Private – Not for Profit			Private - Farm				☐ Private - Other		
Govt – Federal			Govt - State			Govt - Local				☐ Other		
				FACILITY (see				N				
6-Digit NAICS Code:		Corresponding Drycleaning NAICS Title: Operated)			-	and laundry services (except coin						
Describe the primary to The Facility is a reta Henries Dry Cleane	il shopp	ing ce has be	nter whi	ch includes a sted.	strip n						the strip mall was a	
		REN	IEDIAT	ION TYPE (see		uctio		GHT	AGEN	S Y		
	X	RCRA	RCRA Site?			CERCLA (Superfund) Site?				☐ Voluntary Clean Up?		
Is the proposed remediation associate	d ⊨	Number: <u>UTD144751500</u>				ID Number:				ID Number:		
with a(n):		☐ Independent Clean Up?				LUST?				Other?		
Regulatory Agency Pr		Numb	Number: Division of Waste Man			Number				Describe:		
Primary Oversight of the Remediation:			DIVISIO	II OI Waste Wa	anage	inent a	nu Na	ulation	Control			
Project Manager in Oversight Agency:	Eric Ba	aiden							Phone:	(801) 536-0216		
	RE	MEDI	ATION	ACTIVITY (see		OLVII		NJEC	TION V	WELLS		
Aquifer Test	☐ Trac	cer Tes	t	In-Situ Biorer	nediat	ion	☐ In	n-Situ C	hemical C	Oxidation	Air Sparging	
Bioventing / Biosp	arging		In Well	Air Stripping] In-Situ	ı Flushi	ing	☐ R	emediation V	Vaste Disposal	
Other: In-situ Ch	emical l	Reduct	ion (usir	ng zero valent	iron)							
INJEC	TION	WEL	L OPE	RATING S	TAT	US (ir	idicate i	number	of wells in	appropriate o	category)	
31												
Proposed	Und		Construction / Active			Temporarily Abandoned			Abandoned	d Permanently Abandoned		
II II	NJECT	ION	WELL			N AN		UBSU	IRFACE	DETAIL	S	
	injection in the value oot inter	ns have idose z vals, ir	e been of zone (0 to the sat	injections will completed. Tw to 8 feet below urated zone (8	be pe venty- v grou	rformed two bo	d using rings w ace).	vill be o Nine b	complete orings wi	d, and inject		
			IN	JECTATE (see		RACT uctio		ATIOI	N			
Zero valent iron (Z' cleaning), to harml in dry cleaning, to	ess brea	akdowr	produc	ts. Full reduc	tion (d	or de-ch	nlorina	tion) tr	ansforms	tetrachloro	ethene (PCE) used	

HYDROGEOLOGIC CHARACTERIZATION (see Instructions)

Soils at the Facility generally consist of silts (ML) with varying gravel and cobble content from 0 to 5 feet below ground surface (bgs); silts (ML) and clayey silts (CL-ML) from 5 to 10 feet bgs; and clayey sand (SC), sand with gravel (SP), silt with sand (SM), and sand with silt and gravel (SW) from 10 to 20 feet bgs. Depth to groundwater at the Facility varies from approximately 6 to 11 feet bgs with a hydraulic gradient of 0.007 feet per foot to the west. The nearest surface water body is Big Cottonwood Creek, located approximately 570 feet south of the Facility.

COMMENTS

Use this space for additional contact information and/or other important information about these SER wells.

SIGNATURE OF OWNER / OPERATOR or LEGAL REPRESENTATIVE

Jay Larsen, Construction Manager

Name & Title (print or type)

(801) 364-2602

Phone Number

anstruction Manager

Signature

August 8, 2018

Date Signed

Online Credit Card Payment of UIC Inventory Review Fee

To pay the UIC Inventory Review Fee online:

- 1. Go to this website: https://secure.utah.gov/cart/dwq_cart/products.html, the Products page.
- 2. Click on 'Payment for UIC Inventory Review Fee' under the UIC Inventory Review heading.
- 3. On the Product Detail page, enter the number of facilities (**not** the number of injection wells) for which you are submitting the UIC Inventory Review Fee. Click on the 'Add to cart' button.
- 4. On the Your Cart page, confirm the quantity and amount then click on the Checkout button.
- On the Enter Your Shipping Address page, enter the contact information for the owner / operator of the UIC facility listed on the first page of the UIC Inventory Information Form in the Please Enter Shipping Info block even though nothing will be shipped out.
- 6. In the Additional Information block at the bottom of the page, enter the UIC Facility Name from the first page of the UIC Inventory Information Form.
- 7. Click on 'Proceed to Payment' button and complete the credit card information then click on the 'Continue' button.

Electronic Submittal of UIC Inventory Information Form

To submit the UIC Inventory Information Form using DWQ's Electronic Submissions web service:

- 1. Scan your completed, signed, and dated UIC Inventory Information Form and save as a .pdf document on your computer.
- 2. Go to this website: https://deq.utah.gov/ProgramsServices/services/submissions/index.htm
- 3. Enter 'UIC Inventory Information Form' in the 'Purpose of Submission' box.
- 4. Complete the 'Submitted By' section.
- 5. Select the file you created in Step 1, and hit the 'Click here to submit' button.

Submit UIC Inventory Review Fee and Inventory Information Form by Mail

To submit both the form and fee by mail, send your completed, signed and dated form along with a check made payable to **Utah Division of Water Quality** to:

Utah Department of Environmental Quality Division of Water Quality, ATTN: UIC P.O. Box 144870 Salt Lake City, Utah 84114-4870

Instructions for Completing the Utah Underground Injection Control Inventory Information Form for

Subsurface Environmental Remediation (SER) Injection Wells

(UIC Well Code: 5B6)

Owners or operators of all Class V injection wells, existing and new, must submit inventory information according to Section R317-7-6.4(C) of the Utah Administrative Rules for the Underground Injection Control Program. Required information includes: facility name and location; name and address of legal contact; ownership of facility; nature and type of injection wells; and operating status of injection wells. The Utah UIC Inventory Information Form is designed to assist owners or operators to comply with this requirement, to collect sufficient information regarding the injection activity such that authorization-by-rule status can be assessed, and to coordinate UIC Program regulatory action with other agencies having regulatory authority over the subject facility. Inventory information must be submitted prior to injection for new wells.

This submission does not relieve the applicant of any liability for ground water cleanup or any claim for resource damage if ground water contamination is traced to the injection wells shown on this form. Nor does authorization-by-rule under the UIC Program relieve the applicant, in any way, of obligations to comply with other applicable regulatory requirements, or to obtain other necessary applicable permits or authorizations from local or other agencies. The applicant may contact the local health department for compliance with local requirements.

Facility Location:

Physical Address: Enter street address of facility or other description of physical location of facility that would enable someone to drive to the location of the facility. You may also choose to provide a photocopy of a road map (no greater than 11" x 17", preferably 8 ½" x 11") with the facility location indicated if a street address is not available.

Geographic Location: Submit a map from Atlas Utah (https://atlas.utah.gov) or another online map service (Bing Maps, Google Maps, MapQuest)

To use the Atlas Utah to locate your facility, go to this web site https://atlas.utah.gov/ Use the stacked layer symbol in the upper right hand corner of the map to select the base map (Hybrid, Lite, Terrain, Topo, or Color IR) you would like to use in locating your facility. Then locate your facility by using the Find Address, Find Point of Interest or Find City in the search fields at the left of the map. Use the + and – signs in the upper left hand corner of the map to zoom to your facility boundary. Using the 'pull down' menu for the blue Print button in the upper left hand corner of the screen, select either Portrait or Landscape orientation for the map of your facility. While the service is preparing the printout the Print button will be gray and read 'Printing'. Once the Printout is finished the button will read 'Printout'. Click on Printout to open the map.

Facility Contact:

At least one of the contacts listed must be the owner/operator or legal representative of the owner/operator of the Class V injection well(s) for which the UIC Inventory Information is being submitted. The owner/operator or the legal representative must be the signatory for the form. Provide additional contacts capable of providing reliable information regarding the operation of the facility.

Land Ownership at Facility:

Self-explanatory

Facility Description:

Enter the 6-digit 2017 North American Industry Classification System (NAICS) code and the title of the 6-digit code describing the primary activity at your facility. You can find your NAICS code using the search tools at: https://www.naics.com/search/ or you can download 2017 NAICS files at: https://www.census.gov/eos/www/naics/downloadables/downloadables.html

Include a description of the business activities performed at the facility. You may include the NAICS code description. You may wish to include additional narrative for clarity.

Remediation Type and Oversight Agency

Subsurface environmental remediation projects are conducted under the statutory authority of the federal Resource Conservation and Recovery Act (RCRA); the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), also known as Superfund; or some other statutory authority. Check the box that corresponds to the remediation type for this project and enter the ID number the regulatory oversight agency has assigned to this remediation project.

Primary regulatory oversight of subsurface environmental remediation projects is provided by programs and agencies other than the UIC Program and DWQ. Enter the oversight agency for the remediation project. Provide the name and contact information for the project manager in that agency.

Remediation Activity Involving Injection Wells:

Descriptions of a few of the commonly employed subsurface environmental remediation technologies involving injection wells are given below.

Air Sparging - Air sparging involves the injection of air or oxygen through a contaminated aquifer. Injected air traverses horizontally and vertically in channels through the soil column, creating an underground stripper that removes volatile and semivolatile organic contaminants by volatilization. The injected air helps to flush the contaminants into the unsaturated zone. SVE usually is implemented in conjunction with air sparging to remove the generated vapor-phase contamination from the vadose zone. Oxygen added to the contaminated groundwater and vadose-zone soils also can enhance biodegradation of contaminants below and above the water table.

Bioventing / Biosparging - Bioventing is a common form of in situ bioremediation. Oxygen is delivered to contaminated unsaturated soils by forced air movement (either extraction or injection of air) to increase oxygen concentrations and stimulate biodegradation.

In-Situ Bioremediation - Bioremediation uses microorganisms to degrade organic contaminants in soil, sludge, and solids either excavated or in situ. The microorganisms break down contaminants by using them as a food source or co-metabolizing them with a food source. Aerobic processes require an oxygen source, and the end products typically are carbon dioxide and water. Anaerobic processes are conducted in the absence of oxygen, and the end products can include methane, hydrogen gas, sulfide, elemental sulfur, and dinitrogen gas. In situ techniques stimulate and create a favorable environment for microorganisms to grow and use contaminants as a food and energy source. Generally, this means providing some combination of oxygen, nutrients, and moisture, and controlling the temperature and pH. Sometimes, microorganisms that have been adapted for degradation of specific contaminants are applied to enhance the process.

In-Situ Chemical Oxidation - Chemical oxidation typically involves reduction/oxidation (redox) reactions that chemically convert hazardous contaminants to nonhazardous or less toxic compounds that are more stable, less mobile, or inert. Redox reactions involve the transfer of electrons from one compound to another. Specifically, one reactant is oxidized (loses electrons) and one is reduced (gains electrons). The oxidizing agents most commonly used for treatment of hazardous contaminants in soil are ozone, hydrogen peroxide, hypochlorites, chlorine, chlorine dioxide, potassium permanganate, and Fentons reagent (hydrogen peroxide and iron). Cyanide oxidation and dechlorination are examples of chemical treatment. This method may be applied in situ or ex situ, to soils, sludges, sediments, and other solids, and may also be applied for the in situ treatment of groundwater.

In-Situ Flushing - For in situ soil flushing, large volumes of water, at times supplemented with surfactants, co-solvents, or treatment compounds, are applied to the soil or injected into the groundwater to raise the water table into the contaminated soil zone. Injected water and treatment agents are isolated within the underlying aquifer and recovered together with flushed contaminants.

Co-solvent flushing involves injecting a solvent mixture (e.g., water plus a miscible organic solvent such as alcohol) into either vadose zone, saturated zone, or both to extract organic contaminants. Co-solvent flushing can be applied to soils to dissolve either the source of contamination or the contaminant plume emanating from it. The co-solvent mixture is normally injected upgradient of the contaminated area, and the solvent with dissolved contaminants is extracted downgradient and treated above ground.

Recovered ground water and flushing fluids with the desorbed contaminants may need treatment to meet appropriate discharge standards prior to recycle or release to local, publicly owned wastewater treatment works or receiving streams. To the maximum extent practical, recovered fluids should be reused in the flushing process. The separation of surfactants from recovered flushing fluid, for reuse in the process, is a major factor in the cost of soil flushing. Treatment of the recovered fluids results in process sludges and residual solids, such as spent carbon and spent ion exchange resin, which must be appropriately treated before disposal. Air emissions of volatile contaminants from recovered flushing fluids should be collected and treated, as appropriate, to meet applicable regulatory standards. Residual flushing additives in the soil may be a concern and should be evaluated on a site-specific basis.

In-Situ Thermally Enhanced Recovery - Thermally enhanced recovery is an in situ treatment process that uses heat to increase the volatilization rate of organics and facilitate extraction. Volatilized contaminants are typically removed from the vadose zone using soil vapor extraction. Specific types of thermally enhanced recovery techniques include Contained Recovery of Oily Waste (CROWTM), radio frequency heating, conductive heating, steam heating, in situ steam stripping, hot air injection, dynamic underground stripping, in situ thermal desorption, and electrical resistance heating. Thermally enhanced recovery is usually applied to contaminated soil but may also be applied to groundwater.

In Well Air Stripping - Air is injected into a double screened well, lifting the water in the well and forcing it out the upper screen. Simultaneously, additional water is drawn in the lower screen. Once in the well, some of the VOCs in the contaminated ground water are transferred from the dissolved phase to the vapor phase by air bubbles. The contaminated air rises in the well to the water surface where vapors are drawn off and treated by a soil vapor extraction system.

Injection Well Operating Status

Self explanatory.

Injection Well Construction and Subsurface Details

Submit a plan view (not to exceed 11" x 17") of the facility property showing the location of the injection well(s). Also, submit a vertical cross-section (not to exceed 11" x 17") showing the details of the injection well(s). Include such details as unique injection well ID number; construction type; if pre-fab construction, indicate type; construction dimensions; depth of well if vertical construction; screened interval if vertical construction; and depth of engineered bottom if horizontal construction.

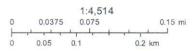
Injectate Characterization

In the space provided or on an attached sheet, provide a narrative describing what is being injected to achieve subsurface environmental remediation.

Hydrogeologic Characterization

In the space provided or on an attached sheet, provide information regarding the hydrogeology in the vicinity of the proposed remediation project such that DWQ can assess the potential for impact to groundwater and surface water resources. Include information such as depth to groundwater, distance to nearest surface water body, description of subsurface material, proximity to utility trenches, proximity to drinking water wells (public and private), etc.

Comments


Include additional contact information and/or any other relevant information not already addressed in the other sections of this form.

Signature of Owner / Operator

In keeping with the requirement of Section R317-7-6.4(C) of the Utah Administrative Rules for the Underground Injection Control Program that the owner or operator must submit inventory information, the UIC Inventory Information Form **must** be signed by the **owner or operator (or his/her legal representative)** of the injection well(s) for which the inventory information is being submitted.

August 7, 2018

Appendix D

Notification to Salt Lake County Health Department

Michael Cronin

From:

Michael Cronin

Sent:

Thursday, August 23, 2018 9:21 AM

To:

'gedwards@slco.org'; 'Eric Baiden'; 'bmaulding@utah.gov'

Cc:

Blake Downey; 'Jay Larsen'; Thom Williamsen

Subject:

Notification of Corrective Action - Former Henries Dry Cleaner, Cottonwood Square

Gentlemen,

This email serves as notification that Wasatch Environmental, Inc., will commence corrective action activities at the former Henries Dry Cleaner located at Cottonwood Square, 1781 East Murray-Holladay Road, Millcreek, Utah; on September 10, 2018. The corrective action is being conducted in accordance with a Corrective Action Plan (CAP) dated July 26, 2018. The CAP was approved by the Utah Department of Environmental Quality, Division of Waste Management and Radiation Control in a letter dated August 9, 2018. Please feel free to contact me at your convenience with any questions, comments, or concerns you may have regarding this corrective action.

Kind regards,

Michael S. Cronin, P.G.

Senior Geologist and Senior Project Manager Wasatch Environmental, Inc.

Office: (801) 972-8400 Cell: (801) 209-5211

Email: mc@wasatch-environmental.com

Appendix E

Public Notice

PUBLIC NOTICE

Former Henries Dry Cleaner-Cottonwood Square Project (Located at 1781 East Murray-Holladay Road, Millcreek, Utah)

Chasebrook Company will be beginning remedial activities of the chlorinated solvent-contaminated soil and groundwater at the former Henries Dry Cleaner. The environmental consultant for this project is Wasatch Environmental, Inc.

Site Description

The site is located at 1781 East Murray-Halladay Road, Millcreek, Utah. The facility most recently operated as a Henries Dry Cleaner. Henries Dry Cleaner occupied this site from 1982 until 2007 and performed dry cleaning on-site. The results of previous subsurface investigations have indicated the presence of chlorinated solvent impacts to soil, groundwater, soil gas, and indoor air at this site.

Cleanup Measures and Tentative Schedule

The proposed cleanup approach is *in-situ* injection of zero valent iron into the impacted soil and groundwater, and will consist of the following tentative schedule:

- 1. August 29, 2018, delivery and storage of zero valent iron material at the site.
- 2. September 10, 2018, through September 15, 2018, conduct injection activities.
- 3. October 15, 2018, complete soil confirmation sampling at the site using directpush drilling techniques, and complete concrete patching.
- 4. October 16, 2018, sub-slab passive vapor mitigation system installation.
- 5. November 15, 2018, through November 22, 2018, complete vapor barrier installation.

For More Information

Please contact:

Michael Cronin, Wasatch Environmental Project Manager (801-972-8400).

Or

Blake Downey, Wasatch Environmental Field Supervisor (801-972-8400).

Appendix F

Photographic Log

Photo 1 – Former drain pipe trench within the former Henries tenant space

Photo 3 – Additional pipe plugged within the former Henries tenant space

Photo 2 – Exposed trench pipe cut and plugged

Photo 4 – Toilet drain plugged within the former Henries tenant space

Photo 5 – Private utility locating subcontractor

Photo 7 – Utilities located the western portion of the release site

Photo 6 – Private utility locating subcontractor

Photo 8 – Utilities located the western portion of the release site

Photo 9 – Unloading the injection pump

Photo 11 – Storage of ZVI drums and bags

Photo 10 – Tote of gelling chemicals

Photo 12 – Injection mixing area fencing

Photo 13 – Water supply truck

Photo 15 – Mixing gel for injections

Photo 14 – Water storage bladder

Photo 16 – Mixing ZVI for injections

Photo 17 – Typical concrete coring to facilitate injections

Photo 19 – Typical temporary injection well head inside former Henries tenant space

Photo 18 – Typical temporary injection well head

Photo 20 – Typical concrete patch post injection activities

Photo 21 – Typical concrete coring for confirmation soil sampling activities

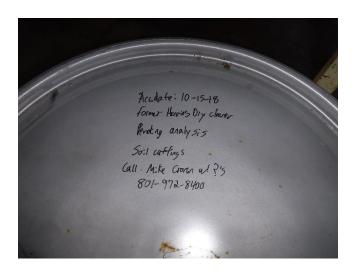


Photo 23 – Labeled soil drum containing soil cuttings from the soil sampling activities

Photo 22 – Typical drilling for confirmation soil sampling activities

Photo 24 – Typical groundwater sampling activities

Photo 25 – Groundwater sampling purge water drum located within the former Henries tenant space

Photo 27 – Core hole for the vapor mitigation system

Photo 26 – Perforated portion of the passive vapor mitigation system

Photo 28 – Interior piping for the vapor mitigation system

Photo 29 – Sampling ports for the vapor mitigation system

Photo 31 – Vapor barrier installation floor preparation

Photo 30 – Exterior piping and ventilation cap for the vapor mitigation system

Photo 32 – Typical vent sealing to facilitate the vapor barrier installation

Photo 33 – Typical crack and joint filling activities for the vapor barrier installation

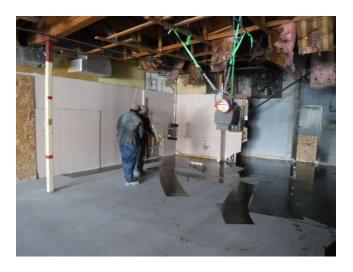


Photo 35 – Typical primer coat installation activities for the vapor barrier installation

Photo 34 – Typical crack and joint filling activities for the vapor barrier installation

Photo 36 - Primer coat installed

Photo 37 – Mixing Retro-Coat vapor barrier material

Photo 39 – Retro-Coat mostly installed

Photo 38 – Typical Retro-Coat installation activity

Photo 40 – Indoor air sample collected within the former Henries tenant space post Retro-Coat installation

Photo 41 – Indoor air sample collected from the LA Nail Salon

Photo 43 – Typical emission sampling activities

Photo 42 – Indoor air sample collected from the southern vacant tenant space

Appendix G

Zero Valent Iron Information GeoTactical Summary Report

Zero Valent Iron – High quality and purity iron powder and granules for water treatment or conditioning, permeable reactive barriers, and other soil remediation applications.

Benefits Include

Proven remediation technology since 1970's

Applicable in soil piles and insitu applications for groundwater treatment

Economical solution compared to other available products

Can combine with MTS for mixed contaminant plumes with metals and organics

Proven Field Applications

Permeable reactive barriers (PRBs) and Funnel and Gate

Direct Push Injection of micron scale particles into groundwater zone

Trenching and aggregate scale particles PRB design

Deep Soil Mixing Hydraulic Fracturing

Applicable to Treatment of many contaminants including:

Chlorinated Solvents
PCE, TCE, DCE
And degradation products
Other chlorinated compounds

Heavy Metals

Arsenic Selenium Hexavalent Chromium (CrVI) Other heavy metals

Other COCs Cyanide

Nitrate Uranium Technetium

Pesticides (DDT, DDD, and DDE)

Our Zero valent iron powder is manufactured from 100% recycled virgin iron residual material from trusted OEM manufacturers with iron content up to 99% depending on specification requirements. We use high quality raw materials and proprietary grinding and pulverizing technology to produce ZVI powder with no appreciable surface oxides.

Material	% Composition
Iron	up to 99%
Carbon	minimal %
Silicon	minimal %
Water	less than 1%

Physical Properties

Form: Fine Powder to aggregate

Density: 2.2-3.6 g/cm3

Odor: Odorless

Color: Gray

ZVI Size and Associated Application

ULTRA-FINE ZVI F	OWDER	STANDARD ZVI BLEND				
MICRO 20 (625 Me	sh)	MICRO BLEND (+/- 10%)				
>25 micron	<7%	88-177 micron	30-35%			
20-25 micron	>90%	88 micron	30-35%			
<20 micron	<7%	44-74 micron	30-35%			
		<44micron	<5%			
MICRO 40 (400 Me	sh)					
>44 micron	<5%	Other options	available to meet			
37-44 micron	>90%	specific design	criteria.			
<37 micron	<7%	We love made opportunities.	to order Let us help you!			

Technical support and reliable customer service available to all customers.

Wasatch Environmental, Inc. 2410 West California Ave Salt Lake City, Utah 84104 October 22, 2018 J1804

Attention: Mr. Michael Cronin, P.G. – Senior Project Manager

RE: REPORT ON THE ZERO-VALENT IRON EMPLACEMENT WORK FOR REMEDIATING CHLORINATED SOLVENTS AT THE FORMER HENRIES DRY CLEANER LOCATED IN MILLCREEK, UTAH

Dear Mr. Cronin, P.G.:

Geo Tactical Remediation Ltd. (Geo Tactical) is pleased to present the following letter report on behalf of Frac Rite Remediation Inc. to Wasatch Environmental, Inc. (Wasatch) for the zero-valent iron fracturing completed at the former Henries Dry Cleaner located at 1781 East Murray-Holladay Road, Millcreek, Utah.

Background

- The site is a former dry cleaner.
- Soil and groundwater are contaminated with chlorinated solvents.
- The contamination is present between surface and 20 ft below ground surface (bgs).
- The soil stratigraphy at the site is variable; clay, silt, sand, and gravel are present at various depths.

Objective

The objective of the field program was to emplace zero-valent iron (ZVI) in the subsurface to assist in the degradation of chlorinated solvents that are present in the shallow soil and groundwater underlying the site.

Design

Two vertical zones were identified for ZVI treatment: the vadose zone between surface and 8 ft bgs, and the saturated zone between 8 and 20 ft bgs. The design areas were also identified as: north, west, and inside (see Figure 1).

The ZVI loading for each treatment zone in each design area was provided by C.E.R.E.S. Corporation. The ZVI mass for each zone and area are shown in Table 1 below.

Table 1: ZVI Design Mass

Design Area	n Area North West		est	Ins	Total		
Treatment Vadose		Saturated	Vadose	Saturated	Vadose	Saturated	Mass
ZVI Mass (lbs)	3,800	3,450	2,850	2,600	3,400	3,100	19,200

Field Program

The ZVI emplacement work was completed between September 10 and 13, 2018. Direct push drilling and concrete coring services were provided by Direct Push Services (DPS). Drilling was completed using their Geoprobe 7822DT drill rig.

The ZVI slurry was batch mixed aboard Geo Tactical's EF9300 fracturing unit (Photo 1) using potable water (provided by DPS) and Geo Tactical's GTR Enviro high viscosity fluid system. The high viscosity slurry carries the ZVI in suspension for even distribution throughout the fracture.

The emplacement process began with DPS driving Geo Tactical's fracture tool to the first emplacement depth. Geo Tactical's pressure rated hose and wellhead assembly were then connected to the direct push rods (Photo 2). The ZVI slurry was then pumped from the EF9300 through the rods to the fracture tool and propagated away from the borehole until the predetermined volume of ZVI slurry was emplaced or fluid surfacing was observed. When the pumping ceased, the rods were advanced to the next emplacement depth and the process repeated until all the desired fractures were completed at the borehole. The rods and tooling were subsequently removed from the borehole and moved to the next location. Following ZVI emplacement, DPS abandoned the boreholes using hydrated bentonite.

During all pumping events at the site, pumping pressure and pump rate data were monitored and recorded.

Results

A total of 158 ZVI fractures were initiated and propagated from 35 borehole locations (23 vadose and 12 saturated). The vadose fracture depths ranged from 2 to 8 ft bgs and the saturated fracture depths ranged from 8 to 20 ft bgs. The total volume of ZVI slurry pumped was approximately 6,640 gal and contained 19,200 lbs of ZVI. Table 2 shows the summary results of the ZVI emplacement program, a detailed table is attached (Table i).

Design Area Inside North West Total Treatment Vadose Saturated Vadose Saturated Vadose Saturated Zone # Borehole 9 4 6 4 8 4 35 Locations **ZVI Mass** 3,785 3,100 3,465 2,745 2,705 3,400 19,200 Pumped (lbs) Slurry Vol 634 1,654 472 1,129 638 2,112 6,639 Pumped (gal)

Table 2: Summary of ZVI Pumping

Fluid surfacing occurred during ZVI emplacement activities. A total of approximately 120 gal of ZVI slurry was lost to the surface. The surfacing was from either remote locations or from a loss of the annular seal around the direct push rods.

Fill-in borehole locations were used when significant fluid surfacing was observed at a borehole. The fill-in boreholes were located close to the original borehole. Four fill-in borehole locations were used at the site: one in the north-vadose area (VI4a), one in the north-saturated area (SI5a), and two in the west-saturated area (SI1a and SI2a). These borehole locations had limited to no fluid surfacing.

Four vadose borehole locations in the saturated zone in the north and west areas were used to emplace ZVI that was not pumped as planned at saturated depths. This mass was emplaced at 12 ft bgs at the four vadose borehole locations. The following boreholes were used to make up the saturated zone mass: VI1 and VI6 (north-vadose boreholes), and VI9 and VI13 (west-vadose boreholes).

Summary

The total volume of ZVI slurry pumped at the site was approximately 6,640 gal and contained 19,200 lbs of ZVI. A total of 35 borehole locations were used to emplace the ZVI. Fluid surfacing was observed while pumping at most borehole locations. However, the total surfacing volume was only 120 gal because pumping was ceased when surfacing was observed. Fill-in boreholes were successful in emplacing ZVI in areas with significant fluid surfacing.

Closure

Geo Tactical has extensive experience in advanced, *in situ* fracture and permeation emplacement of a wide variety of treatment amendments. However, Geo Tactical does not warrant or guarantee the long-term success of enhanced *in situ* remediation using any treatment amendment provided by third party vendors. Geo Tactical guarantees that the quality of its work is of the highest standard using our best practices and technical protocols.

J1804 3 Geo Tactical Remediation Ltd.

Operational sites, or sites where past environmental impacts have been documented, may pose a continuous and ongoing risk of contaminant leakage and/or contaminant migration. Geo Tactical will not be held responsible for achieving any standard of remediation in consideration of the potential for on-going or future contaminant releases at the site.

We trust that this report meets your requirements. Should you have any questions or comments, please contact the undersigned. Thank you for retaining Geo Tactical on this innovative remedial project.

Yours truly,

Geo Tactical Remediation Ltd.

Heather A. Sturm, P.Eng. Environmental Engineer

P.Eng. Gordon T. Guest, P.Geol.

Good Guest

Principal

Attachments: Figure 1, Photo 1 and 2, and Table i.

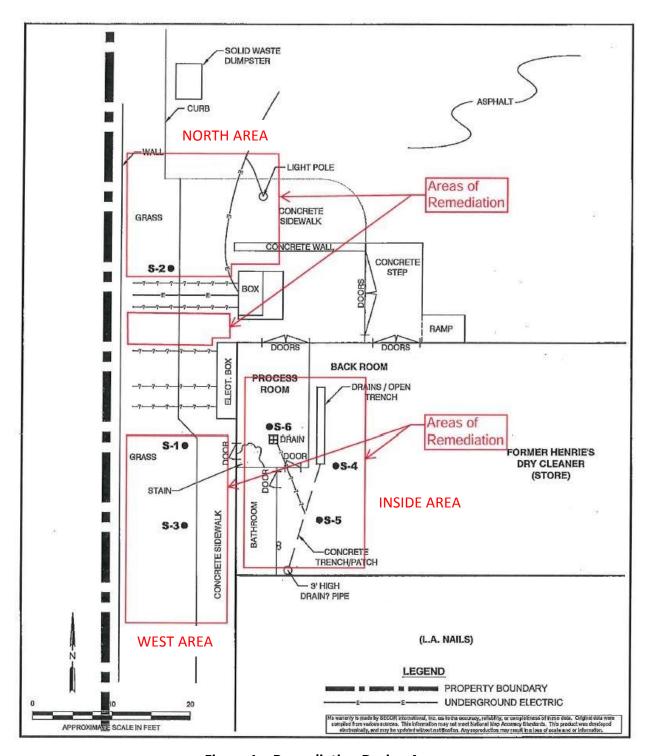


Figure 1 - Remediation Design Areas

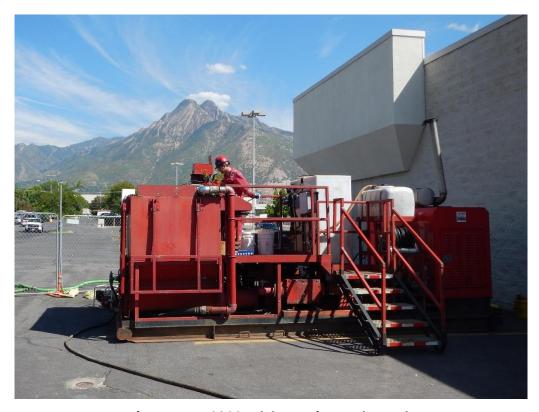


Photo 1 – EF9300 Mixing and Pumping Unit

Photo 2 – Wellhead Assembly

TABLES

Table i - ZVI Emplacement Results

Design Area	Treatment Zone	Fracture Borehole	Fracture I.D.	Date	Depth (ft bgs)	Slurry Pumped (gal)	ZVI Mass Pumped (lbs)	Vent Volume (gal)	Emplaced Slurry Vol (gal)	ZVI Emplaced (lbs)
			VI1-1		2	20	118	2	18	106
			VI1-2		4	4	24	1	3	18
		VI1	VI1-3	11-Sep-18	6	34	204	0	34	204
			VI1-4		8	20	118	0	20	118
			VI1-5		12	36	212	0	36	212
			VI2-1		2	20	119	1	19	113
		VI2	VI2-2	11-Sep-18	4	7	40	2	5	28
			VI2-3		6	26	158	0	26	158
			VI2-4		8	26	158	0.25	25.75	157
			VI3-1		2	13	79	0.1	12.9	79
		VI3	VI3-2	11-Sep-18	4	7	40	0.1	6.9	39
			VI3-3	<u>'</u>	6	33	198	0.1	32.9	197
			VI3-4		8	26	158	0.5	25.5	155
			VI4-1		2	3	16	3	0	0
		VI4	VI4-2	11-Sep-18	4	3	16	2	1	5
			VI4-3		6	34	206	4	30	182
			VI4-4		8	13	79	4	9	55
North	Vadose	VI4a	VI4a-1	11-Sep-18	4	26	158	6	20	122
			VI5-1		2	20	119	0	20	119
		VI5	VI5-2	11-Sep-18	4	20	119	0	20	119
			VI5-3	1	6	20	119	0	20	119
			VI5-4		8	20	119	0	20	119
			VI6-1	11-Sep-18	2	20	118	1	19	112
		\/IC	VI6-2		4	4	24	1	3	18
		VI6	VI6-3		6	24	141	1 0.25	23	135
			VI6-4 VI6-5		8	32	188 204	0.25	31.75	187 204
			VIO-3		12	34		0	34	
					2	20	119 119	0	20	119
		VI7	VI7-2	11-Sep-18	4	20			19	113
			VI7-3 VI7-4		6 8	20	119	1 5	19	113 89
						20	119		15	
			VI8-1	-	2	20	119	0	20	119
		VI8	VI8-2 VI8-3	11-Sep-18	4 6	1 29	8 174	0.5	28.5	0 171
			VI8-3	+	8	29	174	0.5	29.3	174
			North-Vac	lose Total	O	704	4200	38	666	3978
			SI3-1	,03C 10tai	8	66	119	0	66	119
			SI3-2	1	10	42	76	3	39	71
			SI3-3	1	12	90	162	0	90	162
		SI3	SI3-4	10-Sep-18	14	66	119	0	66	119
		J.5	SI3-5	1 5-7	16	106	190	0	106	190
			SI3-6	1	18	79	143	0	79	143
			SI3-7	1	20	79	143	0	79	143
			SI4-1		8	66	119	0	66	119
			SI4-2	1	10	55	100	1	54	98
			SI4-3	1	12	77	138	0	77	138
		SI4	SI4-4	11-Sep-18	14	66	119	0	66	119
North	Saturated		SI4-5	1	16	106	190	0	106	190
			SI4-6	1	18	79	143	0	79	143
			SI4-7	1	20	79	143	0	79	143

Table i - ZVI Emplacement Results

Design Area	Treatment Zone	Fracture Borehole	Fracture I.D.	Date	Depth (ft bgs)	Slurry Pumped (gal)	ZVI Mass Pumped (Ibs)	Vent Volume (gal)	Emplaced Slurry Vol (gal)	ZVI Emplaced (lbs)
			SI5-1		8	33	72	1	32	70
		SI5	SI5-2	11 Can 10	10	24	52	2	22	47
		313	SI5-3	11-Sep-18	12	17	37	2	15	33
			SI5-4		14	13	29	2	11	24
			SI5a-1		12	98	213	0	98	213
			SI5a-2		14	53	115	4	49	106
		SI5a	SI5a-3	11-Sep-18	16	26	58	0	26	58
			SI5a-4		18	132	288	0	132	288
			SI5a-5		20	132	288	0	132	288
			North-Satu	rated Total		1584	3050	15	1569	3024

		North Area Total				2288	7250	53	2235	7002		
	•											
			VI9-1		2	20	110	0	20	110		
			VI9-2		4	20	110	0	20	110		
		VI9	VI9-3	12-Sep-18	6	20	110	0	20	110		
			VI9-4		8	20	110	0	20	110		
			VI9-5		12	33	184	0	33	184		
			VI10-1		2	20	119	1	19	113		
		VI10	VI10-2	12-Sep-18	4	20	119	1	19	113		
		AITO	VI10-3	12-3ep-16	6	20	119	0	20	119		
			VI10-4		8	20	119	1	19	113		
			VI11-1		2	20	119	0	20	119		
		VI11	VI11-2	12 Can 10	4	20	119	2	18	107		
		AITT	VI11-3	12-Sep-18	6	8	48	3	5	30		
Most	Vadasa		VI11-4		8	32	190	1	31	184		
West	Vadose		VI12-1		2	20	119	0	20	119		
		VI12	VI12-2	12 Con 10	4	16	95	2	14	83		
		VIIZ	VI12-3	12-Sep-18	6	9	55	2	7	43		
			VI12-4		8	34	206	3	31	188		
			VI13-1		2	20	110	0.1	19.9	110		
			VI13-2	12-Sep-18	4	20	110	1	19	105		
		VI13	VI13-3		6	20	110	1	19	105		
			VI13-4		8	13	74	5	8	45		
			VI13-5		12	40	221	0	40	221		
			VI14-1		2	20	119	0.5	19.5	116		
		VI14	VI14-2	12 Can 10	4	20	119	0	20	119		
		V114	VI14-3	12-Sep-18	6	20	119	0	20	119		
			VI14-4		8	20	119	1	19	113		
			West-Vad	ose Total		545	3150	25	520	3008		
			SI1-1		8	46	101	3	43	94		
			SI1-2		10	17	37	1	16	35		
		SI1	SI1-3	10 Son 10	14	99	214	1	98	212		
ĺ		311	SI1-4	10-Sep-18	10-Sep-18	10-Sep-18	16	102	223	0	102	223
			SI1-5		18	99	216	0	99	216		
			SI1-6		20	99	216	0	99	216		
\M/oct	Caturated	SI1a	SI1a-1	10-Sep-18	12	66	144	0	66	144		
West	Saturated		SI2-1		8	40	86	1	39	84		
ĺ		SI2	SI2-2	10-Sep-18	10	34	75	1	33	73		
		312	SI2-3	10-26h-19	14	58	127	127 0		127		
			SI2-4		16	46	101	0	46	101		

Table i - ZVI Emplacement Results

Design Area	Treatment Zone	Fracture Borehole	Fracture I.D.	Date	Depth (ft bgs)	Slurry Pumped (gal)	ZVI Mass Pumped (lbs)	Vent Volume (gal)	Emplaced Slurry Vol (gal)	ZVI Emplaced (lbs)
			SI2a-1		12	132	288	0	132	288
		SI2a	SI2a-2	10-Sep-18	18	132	288	0	132	288
			SI2a-3		20	86	187	0	86	187
			West-Satur	ated Total		1056	2300	7	1049	2288

	ĺ	West Asses Total				4654			4500	
			West Ar	ea Total		1601	5450	32	1569	5296
			r	1		T	1	7	r	7
			VI15-1	4	2	13	71	0.25	12.75	70
		VI15	VI15-2	13-Sep-18	4	4	21	0.25	3.75	20
			VI15-3		6	42	227	4	38	205
			VI15-4		8	20	106	1	19	100
			VI16-1	1	2	13	71	0.5	12.5	70
		VI16	VI16-2	13-Sep-18	4	9	50	0.5	8.5	45
			VI16-3		6	37	198	0.5	36.5	195
			VI16-4		8	20	106	0.1	19.9	105
			VI17-1	-	2	20	106	0	20	105
		VI17	VI17-2	13-Sep-18	4	20	106	0	20	105
			VI17-3		6	20	106	0	20	105
			VI17-4		8	20	106	4	16	85
			VI18-1		2	3	14	0.5	2.5	10
		VI18	VI18-2	13-Sep-18	4	37	198	0.5	36.5	195
			VI18-3]	6	20	106	3	17	90
Inside	Vadose		VI18-4		8	20	106	3	17	90
	744000		VI19-1		2	20	106	0	20	105
		VI19	VI19-2	13-Sep-18	4	3	14	0.5	2.5	10
		1.25	VI19-3	10 000 10	6	17	92	1	16	85
			VI19-4		8	40	213	3	37	195
		VI20	VI20-1		2	20	106	2	18	95
			VI20-2	13-Sep-18	4	20	106	4	16	85
			VI20-3	10 000 10	6	3	14	3	0	0
			VI20-4		8	37	198	0.1	36.9	200
			VI21-1		2	20	106	0	20	105
		VI21	VI21-2	13-Sep-18	4	3	14	1	2	10
		V121	VI21-3	13 3cp 10	6	37	198	0.5	36.5	195
			VI21-4		8	20	106	0	20	105
			VI22-1]	2	20	106	0	20	105
		VI22	VI22-2	13-Sep-18	4	20	106	0	20	105
		* 122	VI22-3	15 500 15	6	20	106	0	20	105
			VI22-4		8	20	106	0	20	105
			Inside-Va	dose Total		638	3400	33	605	3205
			SI6-1		8	36	52	0.5	35.5	50
			SI6-2]	10	83	122	0.5	82.5	120
			SI6-3]	12	79	116	0.25	78.75	115
		SI6	SI6-4	12-Sep-18	14	66	97	0.1	65.9	95
			SI6-5]	16	106	155	1	105	155
			SI6-6]	18	79	116	0	79	115
			SI6-7		20	79	116	0	79	115

Table i - ZVI Emplacement Results

Design Area	Treatment Zone	Fracture Borehole	Fracture I.D.	Date	Depth (ft bgs)	Slurry Pumped (gal)	ZVI Mass Pumped (lbs)	Vent Volume (gal)	Emplaced Slurry Vol (gal)	ZVI Emplaced (lbs)	
			SI7-1		8	66	97	0.05	65.95	95	
			SI7-2		10	21	31	0.5	20.5	30	
			SI7-3		12	111	163	0.5	110.5	160	
		SI7	SI7-4	12-Sep-18	14	66	97	0	66	95	
			SI7-5	_		16	106	155	0	106	155
			SI7-6		18	79	116	0	79	115	
Inside	Saturated		SI7-7		20	79	116	0	79	115	
IIIsiue	Saturateu		SI8-1		8	66	97	0	66	95	
			SI8-2		10	66	97	0	66	95	
			SI8-3	13-Sep-18	12	66	97	0	66	95	
		SI8	SI8-4		15	66	97	0	66	95	
			SI8-5		16.5	106	155	0	106	155	
			SI8-6		18	79	116	0	79	115	
			SI8-7		20	79	116	0	79	115	
			SI9-1		8	66	97	0	66	95	
			SI9-2		10	66	97	0.1	65.9	95	
			SI9-3		12	66	97	0	66	95	
		SI9	SI9-4	13-Sep-18	14	66	97	0	66	95	
			SI9-5		16	106	155	0	106	155	
			SI9-6		18	79	116	0	79	115	
			SI9-7		20	79	116	0	79	115	
<u> </u>			Inside-Satu	rated Total		2112	3100	4	2109	3060	
	Inside Area Total				2750	6500	37	2713	6265		

6639

19200

121

6518

18563

Notes: Saturated ZVI mass and volume emplaced using vadose boreholes.

SITE TOTAL

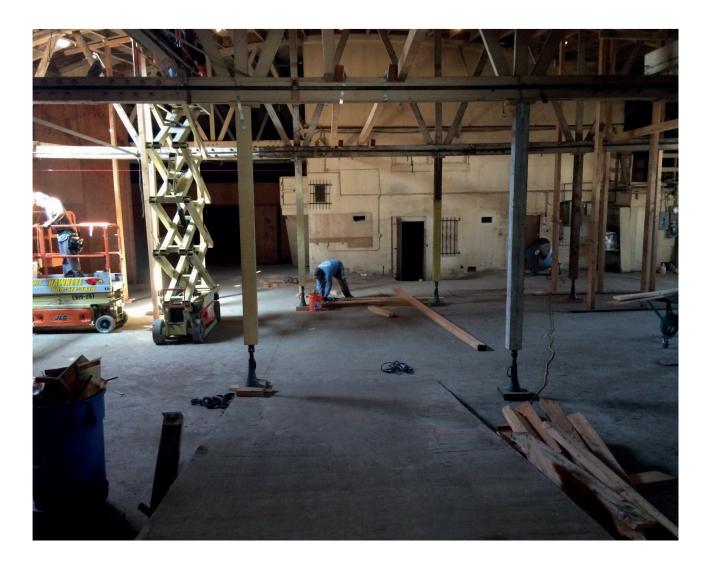
Appendix H

Passive Vapor Mitigation System Construction

Cottonwood Square - Passive Vapor Mitigation System Design WEI 2249-001D Discharge point to be located a minimum of 3' above roof line Free Flow Exhaust and a minimum of 4' from widows, doors, and air intakes Cap, 4" Sch 40 PVC (Radon Supplies FF440 or equivalent) Ventilator, Turbine, 4" (Empire TV04G or equivalent) 4" Flexible Coupler, 4" x 4" 4" Schedule 40 PVC Pipe and Vent Stack 4" Pipe Clamps, Unistrut, and Brackets (as required to secure vent stack and system piping) **Existing Roof Structure** Allow minimum clearance of 3" between pipe and exterior surface of **Existing Exterior Wall** wall to allow for mounting a Fantech FR-150 fan if required Sample port with 1/8" NPT-male, brass, removable pipe plug located on building exterior and accessible from ground level 1/2" EMT Electrical New or Existing Breaker Panel or Conduit (on interior) Junction Box (fan to be wired to a new, dedicated, circuit breaker with lock-out, ½" Liquitite Flexible **Electrical Conduit** label breaker panel position (on exterior) "Vapor Mitigation System, Do Not Turn Off") (as required to protect all electrical wiring) Flexible Reducer Coupler 4" x 6" (2 places) Fantech FR-150 Fan (or equivalent) Seal all wall and floor penetrations using urethane calk or urethane expanding sealant as appropriate to form an air-tight seal 9-1/2" Long Section of 4" Sch 40 PVC Pipe to allow for easy installation of Fantech FR-150 fan if required **Existing Concrete** 4" Flexible Coupler, 4" x 4" Floor Slab (2 Places) **Building Interior Building Exterior** Existing concrete footing and foundation wall Fully penetrated concrete floor slab such that 4" pipe extends into gravel under the slab and is slotted below the slab Note: System components and notations shown in red are for converting Drawing is not to scale the passive vapor mitigation system to an active vapor mitigation system. Appendix H Passive Vapor Mitigation System Design

Appendix I

Vapor Barrier Specifications

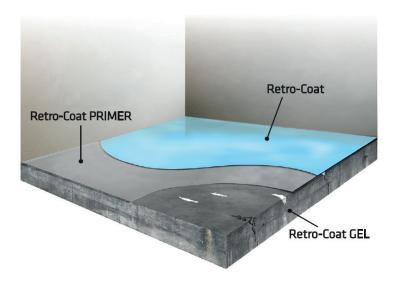

Vapor Intrusion Coating System **for Existing Structures**

Product Description

The Retro-Coat™ Vapor Intrusion Coating System is a complete product line that consists of chemically resistant materials to properly protect existing structures from the threat of contaminant vapor intrusion without the need for additional concrete protection. Developed by the R&D team of Land Science®, the Retro-Coat system has been subjected to rigorous testing procedures to prove its ability to combat the most aggressive chemical vapors. The main component of the Retro-Coat system is the Retro-Coat coating which is a two part, odorless, no VOC, 100% solids coating.

Retro-Coat finishes to a high gloss, easy-to-clean surface that is impervious to vapor and moisture transmission. Available in a variety of colors, Retro-Coat can be applied on damp as well as dry concrete, concrete masonry units, tile, brick and metal. For enhanced slip resistance, a suitable aggregate can be added. In addition, other additives or materials can be utilized to achieve a desired performance or aesthetic look.

Typical Application


Retro-Coat is suitable as a barrier to block contaminated vapors from entering existing structures. Particular uses include coating the horizontal surfaces of existing structures where contamination under, or adjacent to, a structure can potentially migrate inside the structure and create a vapor encroachment condition. This condition is most commonly found when the existing structure was operated as a dry cleaner, gas station, manufacturing facility or located in close proximity to any structure where carcinogenic chemicals were utilized.

A typical application consists of a minimum 20 mil thick system; consisting of two 10 mil coats of Retro-Coat at 160 SF/gallon per coat and is recommended along with a 6 mil coat of Retro-Coat PRIMER. The typical 20 mil application can withstand forklift traffic, other machinery and even act as secondary containment. However, if Retro-Coat is exposed to harsh conditions over a longer period of time and/or used for a unique application, please consult with a LST representative to discuss options and a recommended approach.

Retro-Coat Advantages

- Our R&D team developed all of the Retro-Coat system components specifically for vapor intrusion protection in existing structures
- Retro-Coat is resistant to both TCE and PCE, the vast majority of coatings cringe at such aggressive chemicals
- Retro-Coat is a wearing surface, meaning no additional concrete protection is necessary
- No odor and fast cure time reduce building downtime
- Carpet, tile, linoleum or other floor coverings can be applied directly over Retro-Coat, if desired

- Eliminates the need to remove the existing slab and when combined with *in situ* treatment, lowers overall remediation cost
- Retro-Coat can increase the performance of an existing active sub-slab depressurization system
- Retro-Coat can aid in the retiring of existing active systems
- Available and installed by Land Science certified contractors

Installation

Particular care must be taken to follow those instructions precisely to assure proper installation. These instructions pertain to a standard 20 mil application; please contact us if the desired application is different.

- 1. New concrete should be allowed to cure a minimum of 28 days and/or be checked with a rubber mat or plastic sheet to ensure adequate curing time has occurred.
- 2. All surfaces to be covered should be power washed, shot blasted, acid etched, scarified or sanded to present a clean, sound substrate to which to bond to. The prepared surface should have a ph of 7.
- 3. Any bugholes and cracks wider than 1/8" should be filled with Retro-Coat PREP and allowed to dry before coating. More severely damaged concrete or other special conditions will require the proper Retro-Coat product.
- 4. When installing the standard 20 mil application of Retro-Coat, apply a 6 mil coat of Retro-Coat PRIMER and allow to dry prior to applying the initial coat of Retro-Coat. Priming may not be necessary when Retro-Coat is applied to a thickness greater than 20 mils. On new concrete or old concrete with an open porosity and on wood surfaces apply Retro-Coat PRIMER and allow to dry.
- 5. The two Retro-Coat ingredients should be mixed in the prescribed ratios, using a low speed "jiffy-style" mixer, (maximum 750 rpm). Mix Part A for about 1 minute then, add Part B and mix until uniform in color and consistency (at least one additional minute.)
- 6. Do not mix less than the prescribed amount of any ingredient or add any solvent to the mix.
- 7. Apply the mixed Retro-Coat material with a short nap roller, a squeegee or a brush. Apply approximately 160 SF per gallon per coat to achieve 10 mils of coating.
- 8. Apply a second coat while the first coat is still tacky if using spike shoes or dry enough to walk on, but before 7 hours at 75°F. If the first coat has set and is no longer tacky then the first coat should be sanded before recoating.
- 9. A suitable aggregate may be broadcast onto the surface after backrolling to provide more anti-slip profile to the finished surface. It is advisable to test various types and sizes of aggregate to achieve the desired finished profile.

Product Specification

The specified area shall receive an application of Retro-Coat as manufactured by Land Science. The material shall be installed by precisely following the manufacturer's published recommendations pertaining to surface preparation, mixing and application. The material shall be a low odor, two part, solvent free 100% solids, high gloss flexibilized system with good resilience to resist thermal and mechanical shock. It should be able to be roller applied at a minimum of 10 mils thickness per coat on vertical surfaces without sagging (at ambient conditions). The system must adhere to damp as well as dry concrete, wood, metal tile, terrazzo and sound existing epoxy and urethane coatings. It shall have tensile elongation of at least 6.0% when tested under ASTM-638. Its bond strength to quarry tile shall exceed 1000 psi when tested with an Elcometer pull test. Its hardness shall not exceed 83, as measured on the Shore D scale. The system shall be unaffected by oils and greases and shall withstand chemical attack for at least 72 hours against 98% sulfuric, 50% hydrofluoric acid, glacial acetic acid and acrylonitrile.

Precautions

- 1. This is a fast reacting product; immediately pour onto floor after mixing and spread with notched squeegee. Recoat window without sanding at 70°F: 8 hours
- 2. A severe skin and eye irritant; check MSDS before use
- 3. Do not apply below 50°F

Note: Failure to follow the above instruction, unless expressly authorized by a Land Science Representative, will void our material warranty.

Chemical Resistance

Retro-Coat[™] is considered chemically resistant to neat concentrated acids, caustics and solvents. For permeation or diffusion coefficients please contact Land Science.

Physical Properties

Tensile Strength (ASTM D-638): 9800 psi

Tensile Elongation (D-638): 6.0%

Flexural Strength (D-790): 7035 psi

Hardness, Shore D (D-2240): 83

Bond Strength to Quarry Tile: >1000 psi

Vapor Transmission Rate (E-96): .027 perms

Water Absorption (D-570): 0.2% in 24hrs.

Taber Abrasion (D-1044): 86 mg loss.

Gardner Impact Strength (D-2794): 80 in. lbs. 60° Gloss: 100

Physical Characteristics

Density, lbs/gal.	Mixing Ratios	By Volume	By Weight	
Pt. A: 11.0	Pt. A: Pt. B	2:1	2.3:1	
Pt. B: 8.9				
A&B Mixed: 9.3	Curing Times @	50° F	77°F	90°F
Viscosity @ 77°F, cps	Pot Life	35 min.	30 min.	20 min.
Pt. A: 18,400	Working Times	20 min.	20 min.	15 min.
Pt. B: 500	Hard, Foot Traffic	14 hrs.	7 hrs.	3 ½ hrs.
A&B Mixed : 4800	Maximum hardness and chemica	ıl resistance are a	chieved after 7 d	ays at 77°F

Packaging and Coverage Rates (for 20 mil coverage)

Color Availability

Standard colors: beige, black, blue, dark gray, 4 Gallon Kit : 320 SF green, gray, red, white, yellow 20 Gallon Kit : 1600 SF Shelf Life: 1 Year at 77°F in unopened containers 100 Gallon Kit : 8,000 SF

The data, statements and recommendations set forth in this product information sheet are based on testing, research and other development work which has been carefully conducted by Land Science, and we believe such data, statements and recommendations will serve as reliable guidelines. However, this product is subject to numerable uses under varying conditions over which we have no control, and accordingly, we do NOT warrant that this product is suitable for any particular use. Users are advised to test the product in advance to make certain it is suitable for their particular production conditions and particular use or uses.

WARRANTY – All products manufactured by us are warranted to be first class material and free from defects in material and workmanship.

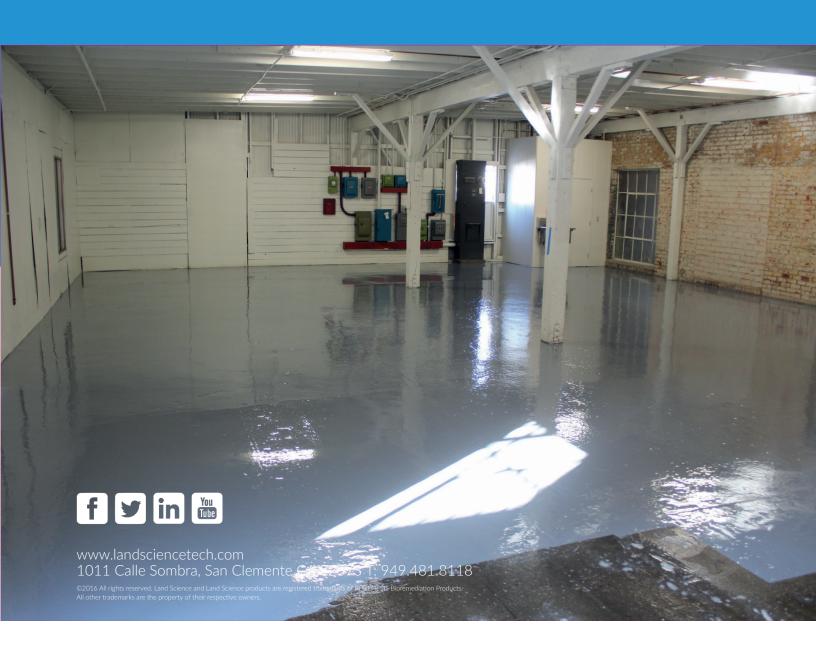
Liability under this warranty is limited to the net purchase price of any such products proven defective or, at our option, to the repair or replacement of said products upon their return to us transportation prepaid. All claims hereunder on defective products must be made in writing within 30 days after the receipt of such products in your plant and prior to further processing or combining with other materials and products. WE MAKE NO WARRANTY, EXPRESS OR IMPLIED, AS TO THE SUITABILITY OF ANY OF OUR PRODUCTS FOR ANY PARTICULAR USE, AND WE SHALL NOT BE SUBJECT TO LIABILITY FROM ANY DAMAGES RESULTING FROM THEIR USE IN OPERATIONS NOT UNDER OUR DIRECT CONTROL.

THIS WARRANTY IS EXCLUSIVE OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, AND NO REPRESENTATIVE OF OURS OR ANY OTHER PERSON IS AUTHORIZED TO ASSUME FOR US ANY OTHER LIABILITY IN CONNECTION WITH THE SALE OF OUR PRODUCTS

World Class Clients

Environmental consultants, engineers, and real estate professionals trust Land Science to produce results knowing our expertise and industry knowledge has been proven time and again at the job site. Our world class clients include leaders in the food, banking, government, and housing industries.

Get Started Today


To recieve a custom vapor intrusion solution, please call 949.481.8118 or email info@landsciencetech.com

One of our Technical Solutions Managers will review your project details and provide you with a customized vapor intrusion solution designed to achieve your goals.

EXPERTS IN VAPOR INTRUSION MITIGATION

Land Science® develops vapor intrusion mitigation solutions that protect people and invigorate renewal of contaminated properties.

We leverage our industry expertise to assist clients in developing site specific solutions that are technically sound and cost-effective.

Land Science Technologies Specifications for Retro-Coat™ Version 1.0

Part 1 - Scope

1.1 Product and Application

This specification describes the application of the Retro-Coat[™] System. The minimum thickness of the system is between 25-30 mils, including a 20 mil minimum application of Retro-Coat.

1.2 Acceptable Manufacturers

A. Retro-Coat as manufactured by Land Science Technologies San Clemente, CA.

1.3 Performance Criteria

- A. Retro-Coat as manufactured by Land Science Technologies San Clemente, CA.
 - 1. Diffusion Coefficient (Columbia Labs)

PCE: 7.6 x 10⁻¹⁴ m²/s TCE: 8.2 x 10⁻¹⁴ m²/s

2. Tensile Elongation (ASTM D-638)

Minimum: 6000 psi

3. Tensile Elongation (ASTM D-638)

Minimum: 6 %

4. Flexural Strength (ASTM D-790)

Minimum: 7000 psi

5. Hardness, Shore D (ASTM D-2240)

Maximum: 85

6. Gardner Impact (ASTM D-2794)

Minimum: 80 inch-pounds

7. Bond Strength to Quarry Tile

Minimum: 1000 psi

8. Vapor Transmission Rate (ASTM E-96)

Maximum: .07 perms

9. Water Absorption (ASTM D-570)

Maximum: .02% in 24 hours

10. 60° Gloss

Minimum: 100.

1.4 Materials

- A. Retro-Coat "A" shall be a modified epoxy containing special flexibilizers and specially formulated resins for superior chemical resistance and enhanced resilience. No solvents are allowed.
- B. Retro-Coat "B" shall be customized blend of hardeners specifically formulated to maximize chemical resistance. No solvents are allowed.

1.5 Applicator

A. Applicator must be a certified contractor of Land Science Technologies.

Part 2 – Application

2.1 Surface Preparation

- A. All existing surfaces that will be covered with the systems specified herein should be mechanically ground, shot blasted or sand blasted to yield a minimum 60 grit surface texture. All loosely adhered coatings will be removed. Any grease and other contaminants found on the concrete must also be removed.
- B. All open cracks 1/2" and greater should be v-notched to a 3/4" width by 1/2" depth and cleaned of any debris. Such cracks should be filled with Retro-Coat Gel and struck off flush with the surrounding surface.
- C. Cut back and/or remove any expansion joint backing or filler strips to a minimum of 1 ½" deep. Insert disposable filler in the joints to prevent filling with the overlayment materials and to allow for accurate location of final saw cuts in the overlayment.

2.2 Material Application

A. Retro-Coat CAULK

- Apply Retro-Coat CAULK around the base of all pipe penetrations making sure to fill any gap between the penetration and concrete slab
- Apply Retro-Coat CAULK to the joint created between horizontal and vertical transitions. The caulking material should be applied and pressed into the joint filling any gaps that might be present.

B. Retro-Coat PRIMER

Apply Retro-Coat PRIMER to all areas at a thickness of 6 mil and allow to dry tack free. In areas where
the concrete surface is in need of slight repair or needs to be leveled, a slurry form of Retro-Coat PRIMER
called Retro-Coat PRIMER-S can be applied with a flat squeegee. Retro-Coat PRIMER-S is self priming
and does not need to be primed again.

C. Retro-Coat

- 1. Mix Retro-Coat, Part A with a low-speed (<750 rpm) jiffy-style mixer for about 30 seconds, or until uniform in color, then mix in Retro-Coat Coating, Part B for another 30-60 seconds.
- Dump contents onto floor in a ribbon pattern, squeegee, and then back roll at a coverage rate of 160 SF/gallon to achieve a film thickness of 10 mils.
- Apply second coat 10 mil coat to achieve a total thickness of 20 mils. Repeat as necessary to achieve specified thickness.
- 4. If a flooring material will be placed over Retro-Coat after it is applied, or appearance is not a priority, (1) 20 mil coat can be applied.

2.3 Protection of Finished Work

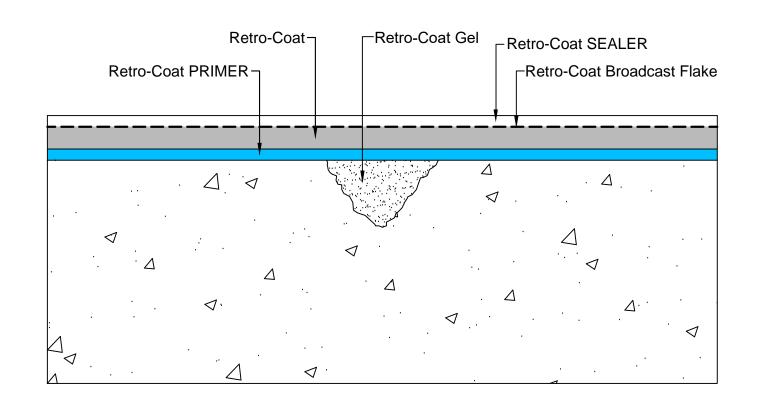
- A. Prohibit foot traffic on floor for 24 hours after laying (at 70°F). At 50°F, this time should be extended to 48 hours.
- B. Rinse off any chemicals that may come in contact within 7 days of installation with the freshly laid floor immediately.

2.4 Cleanup

- Properly dispose of all unused and waste materials.
- B. Tools can be washed in warm, soapy water when wet, but after drying, can only be cleaned by grinding or with a paint stripper.
- C. Unused resin can be set off with proper amount of hardener and disposed of in regular trash bins.

Part 3 – Quality Control

3.1 Warranty


- A. Installer shall provide a one year warranty against delamination, chemical attack and normal wear and tear.
- B. Manufacturer will provide a one year material warranty.

3.2 Quality Control

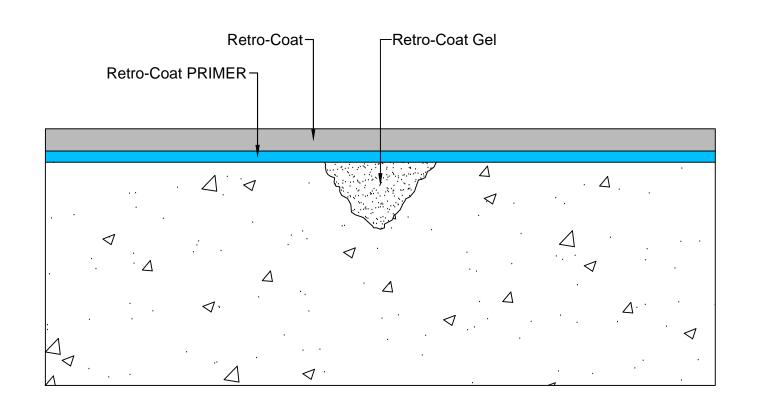
- A. Installer shall use a notched squeegee to apply Retro-Coat to the specified mil thickness and calculations shall be done to determine if the correct amount of material has been applied. Retro-Coat contains 100% solids at the time of application; therefore no material shrinkage will occur during the curing process. One gallon will cover 80 square feet.
- B. A wet mil film gauge can be used to spot check the Retro-Coat thickness to make certain the minimum 20 mil thickness has been applied, though some discretion should be used because high points or low points on the underlying surface can adversely affect the thickness measurements.

3.3 Floor Care

- A. The standard smooth surface of Retro-Coat should be cleaned on a regular basis by damp mopping the floor with conventional commercial cleaners. It is important to first remove any grease or oils by a suitable cleaner, preferably a citrus based cleaner. Rinse with clear water to help eliminate film buildup and then allow to dry. Never use abrasive powder cleaners like Ajax or Comet as they tend to scratch the floor.
- B. Additional steps can also be taken to prolong the look and life of a seamless floor:
 - 1. Protect the floor during transference of heavy equipment
 - Educate the drivers inside the building the importance of avoiding "jack-rabbit" starts and stops, as well as keeping the metal forks lifted
 - 3. Regular cleaning should take place as to not allow the buildup of abrasive material, such as sand or dirt, on the coating
 - 4. Eliminate all metal wheels
 - 5. Change over to light-colored polyurethane wheels
 - 6. Do not slide heavy metal totes, drums or bins across the floor
 - 7. Immediately hose down chemical spills, especially on newly laid floors.

© 2012 Land Science Technologies

Drn by


Ch by

App by

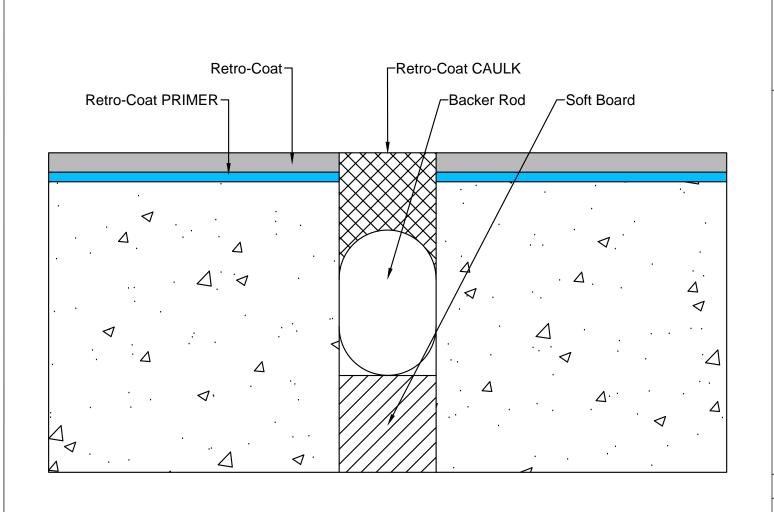
Date

Scale

Crack Repair

© 2012 Land Science Technologies

Drn by


Ch by

App by

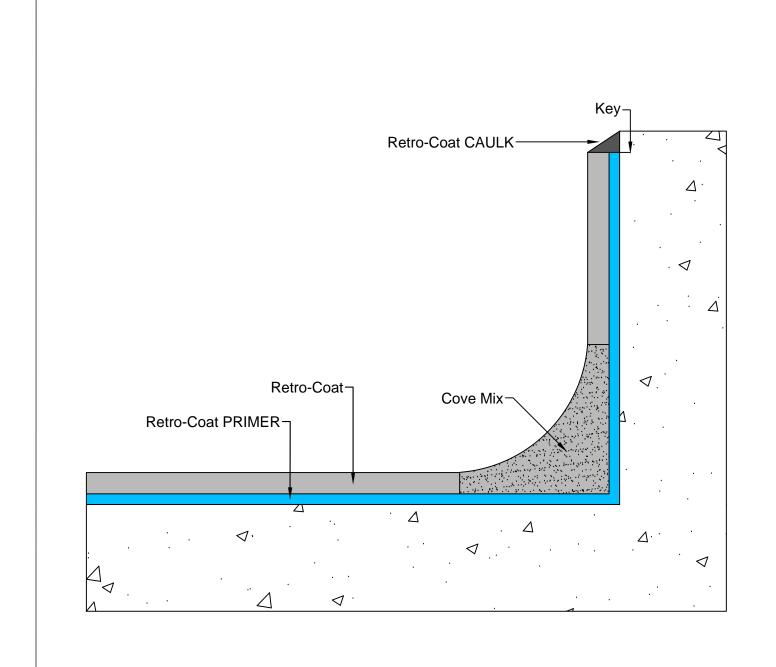
Date

Scale

Crack Repair

© 2012 Land Science Technologies

Drn by


Ch by

App by

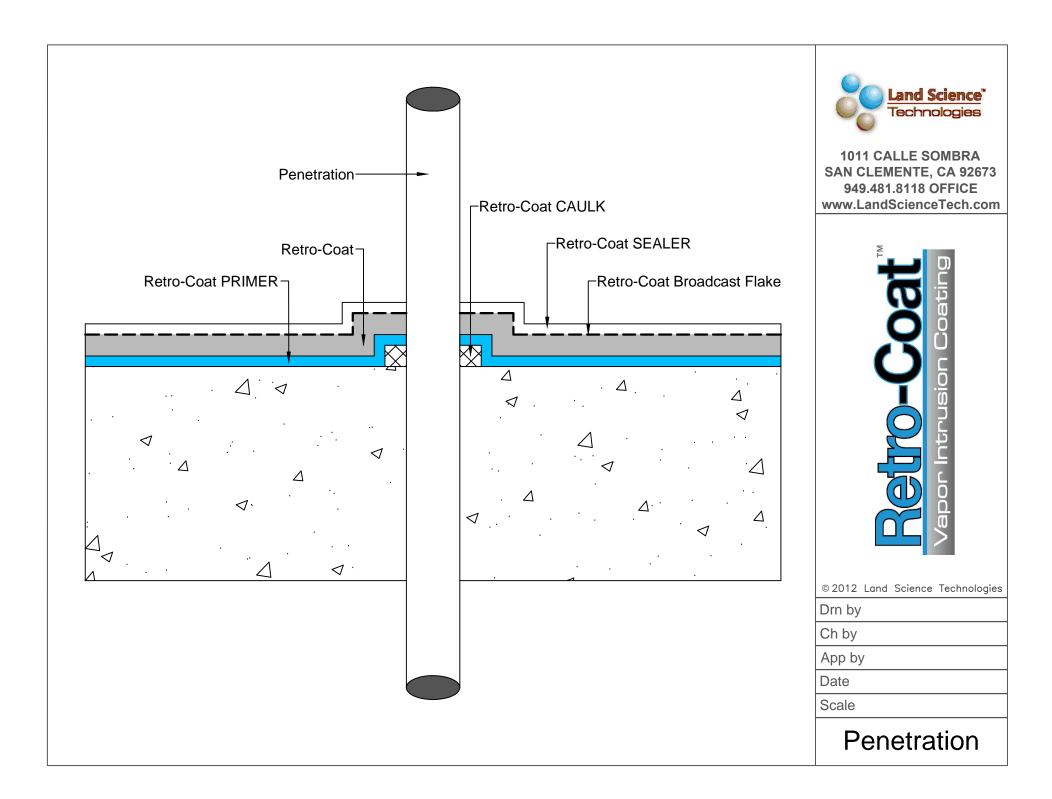
Date

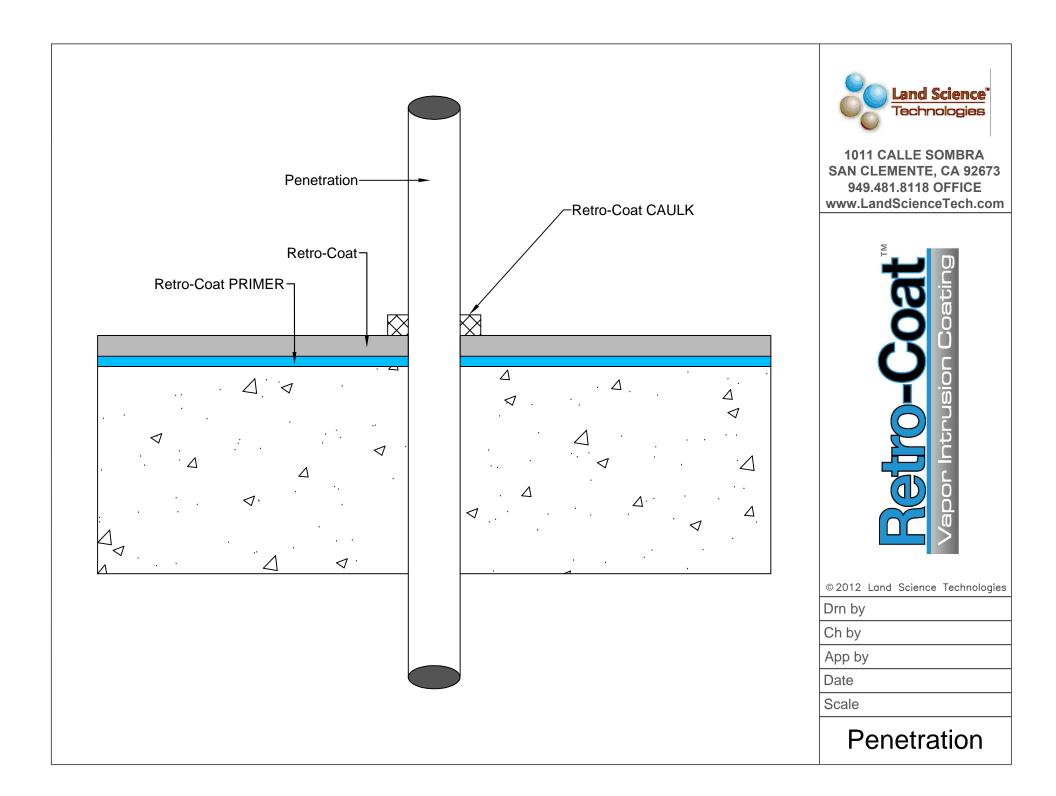
Scale

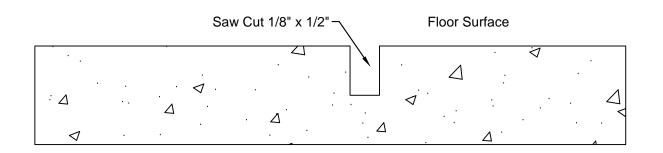
Expansion Joint

© 2012 Land Science Technologies

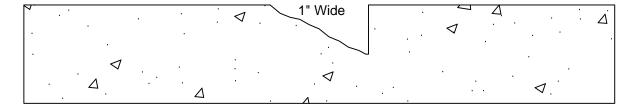
Drn by

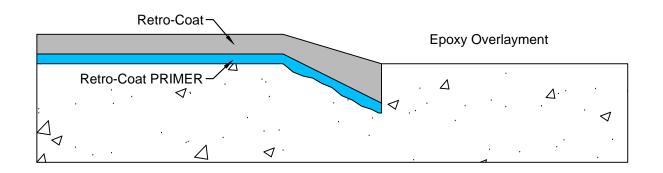

Ch by


App by


Date

Scale


Horizontal to Vertical Transition

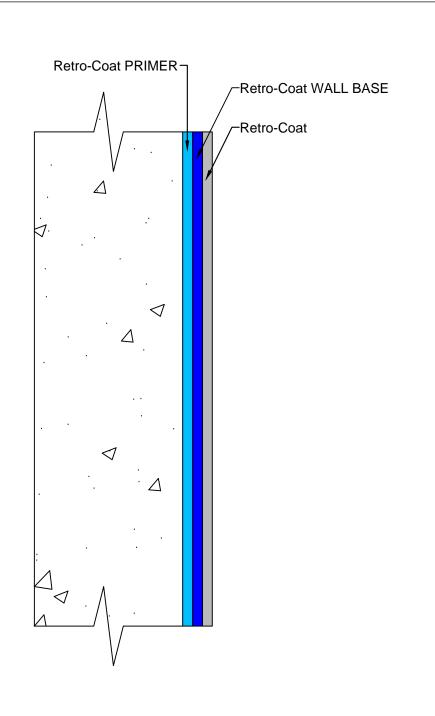


Chip Away Inside Edge

1011 CALLE SOMBRA SAN CLEMENTE, CA 92673 949.481.8118 OFFICE www.LandScienceTech.com

© 2012 Land Science Technologies

Drn by


Ch by

App by

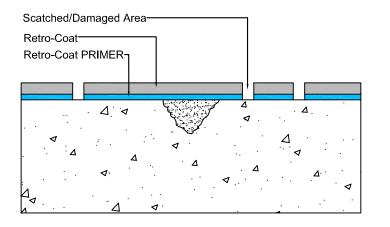
Date

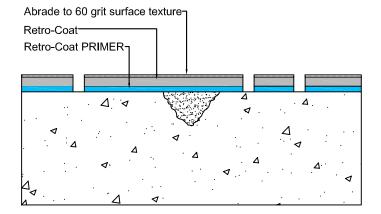
Scale

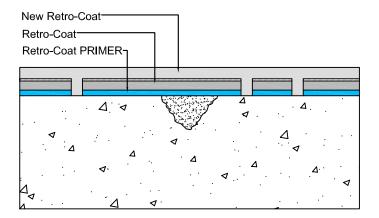
Permiter Key

© 2012 Land Science Technologies

Drn by


Ch by


App by


Date

Scale

Wall Detail

Land Science

Technologies

1011 CALLE SOMBRA

Retro-Coat Repair Seq

Step 1:

Step 2:

Step 3:

Appendix J

Boring Logs

DATE DRILLED: October 15, 2018									
LOGGED BY: Blake Downey, P.G.	LOGGED BY: Blake Downey, P.G.								
REFERENCE ELEVATION: NA									
DRILL RIG: Geoprobe 7822DT									
TOTAL DEPTH: 8'									Temporary Well
DEPTH TO GROUNDWATER: 6'								_	Construction
DESCRIPTION AND CLASSIFICATI	DESCRIPTION AND CLASSIFICATION						u)	eve	
DEGORII HONAND GEAGGII IOAH				Depth (feet)	Sampler	Blows/Foot	PID (ppm)	Water Level	
		Soil		Оер	Sam	Blov	유	Wat	
Description and Remarks Concrete top 5"	Color	Type	Consist.	\vdash		_			
Sandy Gravel (fill): fine to coarse-grained sand, small to medium sub-angular/round gravel, moist	Light	GW	Loose	- 1—					
Silty Sand: fine-grained sand, some small sub-round gravel,	Brown Light	SM	Medium						
moist, black staining present from 3.9' to 4.5'	Brown		Dense	2-			3.1		
				3-					
				-					
1-inch layer of coarse-grained sand	Black			4-			27.1		
	Light Brown			5—					
				_			66.7		
Silt: some fine-grained sand, saturated	Light	ML	Medium	6-				_	
	Brown Dark		Dense	7—					
	Grey			- 8—			54.5		
End of Boring				° -					
				9—					
				10-					
				-					
				11—					
				12—					
				- 13—					
				-					
				14—					
				15—					
				-					
				16—					
				17—					
				- 18—					
				-					
				19—					
				20—					
						ELL.	LO	G	
WASATCH		Forr		enries Dry Cleaner, Cottonwood Square					
ENVIRONMENTAL			1781						lay Road
Environmental Science and Engineering PROJECT NO.: 2249					Millcreek, Utah 249-001D BORING NO.: CS-1				
Environmental Science and Engineering	, ,,,		BOKING NO CS-1						

DATE DRILLED: October 15, 2018											
LOGGED BY: Blake Downey, P.G.											
REFERENCE ELEVATION: NA											
DRILL RIG: Geoprobe 7822DT											
TOTAL DEPTH: 14'											
DEPTH TO GROUNDWATER: 6'											
DESCRIPTION AND CLASSIFICATION						oot	n)	eve			
DESCRIPTION AND GEAGGIFTOAT				th (f	ple	vs/F	(ppr	Water Level			
Description and Remarks	Color	Soil Type	Consist.	Depth (feet)	Sampler	Blows/Foot	PID (ppm)	Wat			
Concrete top 5" Sandy Gravel (fill): fine to coarse-grained sand, small to	Light	GW	Loose	_				·			
medium sub-angular/round gravel, moist Silty Sand: fine-grained sand, some small sub-round gravel,	Brown Light	SM	Medium	1—							
moist, black staining present from 3.9' to 4.5'	Brown	SIVI	Dense	2-			9.3				
				-							
				3-	\angle		10.0				
1-inch layer of coarse-grained sand	Black			4—							
	Light Brown			5—							
	BIOWII			-							
Silt: some fine-grained sand, saturated	Light	ML	Medium	6- -			27.0	<u>*</u>			
	Brown Dark		Dense	7—							
	Grey			- 8–							
Silty Sand/Sandy Silt: fine to medium-grained sand, some small sub-round gravel, saturated	Brown	SM/ML ML/SM	Medium Dense	-							
	Light Grey			9-			145.5				
				10—			145				
	Light Brown			- 11—							
				-			_				
				12—	\angle		193.1				
				13—							
				- 14—			0.51				
End of Boring				14 -							
				15—							
				16—							
				- 17—							
				''-							
				18—							
				19—							
				-							
				20—	<u>и</u>	 F	LO.	G			
WASATCH		es C				Cottonwood Square					
ENVIRONMENTAL	1781					81 East Murray-Holladay Road Millcreek, Utah					
Environmental Science and Engineering PROJECT NO.: 2249											
•											

DATE DRILLED: October 15, 2018										
LOGGED BY: Blake Downey, P.G.										
REFERENCE ELEVATION: NA										
DRILL RIG: Geoprobe 7822DT										
TOTAL DEPTH: 14'										
DEPTH TO GROUNDWATER: 10'	ا ت		Ť		<u></u>					
DESCRIPTION AND CLASSIFICATION						Blows/Foot	m)	Water Level		
				Depth (feet)	Sampler	/SM	PID (ppm)	ter		
Description and Remarks	Color	Soil Type	Consist.	De	Saı	Bic	PIC	Wa		
Grass/Roots top 2"	1	1,760	00110101.							
Silty Sand: fine to medium-grained, moist, 10% recovery for the top 5'	Dark Brown	SM	Medium Dense	1—			0.24			
			2000	2—						
				-						
				3-						
				4-						
	1			5—						
	Light Brown			5-						
Sandy Silt: fine-grained sand, moist	Dark	ML	Medium	6—						
Ganay Gill. Tille gramed Gana, moist	Grey	""-	Dense	7-						
				-						
Silty Sand: fine to coarse-grained, some small sub-round gravel, moist, saturated at 10'	Light Brown	SM	Medium Dense	8-	\angle		28.3			
graver, mores, cararated at 10			2000	9—						
				10-				lacksquare		
				-			14.7			
				11-						
				12—			13.7			
				- 13—	_					
				-			4.4			
End of Boring	1			14-						
, and the second				15—						
				- 16—						
				-						
				17—						
				18—						
				-						
				19 -						
				20-						
▲ WASATCH							L LOG			
WASATCH		Forr						Cottonwood Square bladay Road		
ENVIRONMENTAL	ENVIRONMENTAL					Millcreek, Utah				
Environmental Science and Engineering	Environmental Science and Engineering PROJECT NO.: 2249					19-001D BORING NO.: CS-3				

DATE DRILLED: October 15, 2018										
LOGGED BY: Blake Downey, P.G.										
REFERENCE ELEVATION: NA										
DRILL RIG: Geoprobe 7822DT										
TOTAL DEPTH: 10'										
DEPTH TO GROUNDWATER: 10'					_					
DESCRIPTION AND CLASSIFICATION						Blows/Foot	m)	Water Level		
				Depth (feet)	Sampler	NS/F	PID (ppm)	er L		
Description and Demonts		Soil	0	Dep	San	Blo	PID	Wat		
Description and Remarks Grass/Roots top 2"	Color	туре	Consist.							
Silty Sand: fine to coarse-grained, moist	Dark	SM	Medium	1—						
	Brown Light		Dense	_			0.40			
	Brown			2-						
				3-						
				4_						
				-						
				5-			9.5			
Sandy Silt: fine-grained sand, moist, some black staining	Dark	ML	Medium	6-						
	Grey		Dense	7_						
Silty Sand: fine to coarse-grained, some small sub-round	Light	SM	Medium	-			3			
gravel, moist, saturated at 10'	Brown		Dense	8-	\angle		121.3			
				9—						
				10 -			57.1	lacksquare		
End of Boring				-						
				11-						
				12—						
				- 13—						
				-						
				14-						
				15—						
				- 16—						
				-						
				17—						
				18—						
				10						
				19 -						
				20—						
WASATCH							. LO			
								Cottonwood Square bladay Road		
ENVIRONMENTAL						Millcreek, Utah				
Environmental Science and Engineering	Engineering PROJECT NO.: 224					49-001D BORING NO.: CS-4				

	DATE DRILLED: October 15, 2018						
LOGGED BY: Blake Downey, P.G.							
REFERENCE ELEVATION: NA							
DRILL RIG: Geoprobe 7822DT							
TOTAL DEPTH: 10'							
DEPTH TO GROUNDWATER: 10'					_		
DESCRIPTION AND CLASSIFICATION	eet)	Ĺ	oot	m)	eve		
BEGGIN HONYING GERGON IGANIGA		Depth (feet)	Sampler	Blows/Foot	PID (ppm)	Water Level	
Soil Soil		Dep	San	Blo	PID	Wat	
Description and Remarks Color Typ Grass/Roots top 2"	ce Consist.		_				
Silty Sand: fine to coarse-grained, moist Dark Brown	Medium Dense	1—					
Light Brown		2-			3.3		
		3—					
		- 4—					
		- 5—			6.8		
3-inch clean medium-grained sand layer		_					
Sandy Silt: fine-grained sand, moist, some black staining Dark ML	I	6—			18.7		
Grey	Dense	7—		,			
		8-			19.8		
Silty Sand: fine to coarse-grained, some small sub-round gravel, moist, saturated at 10'	M Medium Dense	9—					
		-			15.7	lacksquare	
End of Boring		10 -					
		11—					
		12-					
		- 13—					
		-					
		14—					
		15—					
		16 -					
		-					
		17— -					
		18—					
		19 					
		-					
		20—		FI I	LO.	G	
SECTION ■ FO		lenries Dry Cleaner, Cottonwood Square					
ENVIRONMENTAL	1781					olladay Road Itah	
Environmental Science and Engineering PROJECT	Millcreek, Utah 249-001D BORING NO.: CS-5						

Appendix K

Soil Laboratory Analytical Report

Mike Cronin Wasatch Environmental 2410 West California Avenue Salt Lake City, UT 84104

TEL: (801) 972-8400

Dear Mike Cronin:

RE: Former Henries / 2249-001d

3440 South 700 West

Salt Lake City, UT 84119

American West Analytical Laboratories received sample(s) on 10/15/2018 for the analyses presented in the following report.

American West Analytical Laboratories (AWAL) is accredited by The National

state accredited in Colorado, Idaho, New Mexico, Wyoming, and Missouri.

Lab Set ID: 1810374

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

All analyses were performed in accordance to the NELAP protocols unless noted otherwise. Accreditation scope documents are available upon request. If you have any questions or concerns regarding this report please feel free to call.

Environmental Laboratory Accreditation Program (NELAP) in Utah and Texas; and is

Kyle F. Gross Laboratory Director

> Jose Rocha **OA** Officer

The abbreviation "Surr" found in organic reports indicates a surrogate compound that is intentionally added by the laboratory to determine sample injection, extraction, and/or purging efficiency. The "Reporting Limit" found on the report is equivalent to the practical quantitation limit (PQL). This is the minimum concentration that can be reported by the method referenced and the sample matrix. The reporting limit must not be confused with any regulatory limit. Analytical results are reported to three significant figures for quality control and calculation purposes.

Thank You,

Digitally signed by Jose G. Rocha Jose G DN: cn=Jose G. Rocha, o=American West Analytical Laboratories, ou, email=jose@awal-labs.com, Date: 2018.10.22 15:46:32

Approved by:

Laboratory Director or designee

Report Date: 10/22/2018 Page 1 of 59

Volatile Case Narrative

Client: Wasatch Environmental

Contact: Mike Cronin

Project: Former Henries / 2249-001d

Lab Set ID: 1810374

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha
OA Officer

Sample Receipt Information:

Date of Receipt:10/15/2018Date(s) of Collection:10/15/2018Sample Condition:IntactC-O-C Discrepancies:None

Method: SW-846 8260C/5035A (solid)

SW-846 8260C/5030C (aqueous)

Analysis: Volatile Organic Compounds

General Set Comments: Multiple target analytes were observed above reporting limits.

Holding Time and Preservation Requirements: All samples were received in appropriate containers and properly preserved. The analysis and preparation of all samples were performed within the method holding times following the methods stated on the analytical reports.

Analytical QC Requirements: All instrument calibration and calibration check requirements were met. All internal standard recoveries met method criterion.

Batch QC Requirements: MB, LCS, MS, MSD, RPD, and Surrogates:

Method Blanks (MBs): No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

Laboratory Control Sample (LCSs): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicate (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, indicating no apparent matrix interferences.

Surrogates: All surrogate recoveries were within established limits.

Corrective Action: None required.

Report Date: 10/22/2018 Page 2 of 59

Client: Wasatch Environmental Contact: Mike Cronin

Former Henries / 2249-001d **Project:**

1810374-001A Lab Sample ID:

Client Sample ID: CS-1-5'

Analyzed: 10/16/2018 1631h

Collection Date: 10/15/2018 1000h **Received Date:** 10/15/2018 1553h

VOAs AWAL List by GC/MS Method 8260C

Test Code: 8260-S

Analytical Results

3440 South 700 West

Salt Lake City, UT 84119

Units: μg/kg-dry **Dilution Factor: 46.95** Method: SW8260C

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
Tetrachloroethene	127-18-4	110	1,690	~
Trichloroethene	79-01-6	110	644	~

Surrogate	Units: μg/kg-dry	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dich	nloroethane-d4	17060-07-0	3,110	2,753	113	51-170	
Surr: 4-Bromo	ofluorobenzene	460-00-4	2,620	2,753	95.2	50-140	
Surr: Dibromo	ofluoromethane	1868-53-7	2,810	2,753	102	50-140	
Surr: Toluene-	-d8	2037-26-5	2,660	2,753	96.8	50-140	

^{~ -} The reporting limits were raised due to high analyte concentrations. Sampling and analytical preparation performed by method 5035A.

Analyzed: 10/16/2018 1346h

Dilution Factor: 0.85 Method: SW8260C Units: μg/kg-dry

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Compound	CAS Number	Reporting Limit	Analytical Result Qual
1,1,1-Trichloroethane	71-55-6	1.99	< 1.99
1,1,2,2-Tetrachloroethane	79-34-5	1.99	< 1.99
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	1.99	< 1.99
1,1,2-Trichloroethane	79-00-5	1.99	< 1.99
1,1-Dichloroethane	75-34-3	1.99	< 1.99
1,1-Dichloroethene	75-35-4	1.99	< 1.99
1,2,4-Trichlorobenzene	120-82-1	1.99	< 1.99
1,2-Dibromo-3-chloropropane	96-12-8	4.98	< 4.98
1,2-Dibromoethane	106-93-4	1.99	< 1.99
1,2-Dichlorobenzene	95-50-1	1.99	< 1.99
1,2-Dichloroethane	107-06-2	1.99	< 1.99
1,2-Dichloropropane	78-87-5	1.99	< 1.99
1,3-Dichlorobenzene	541-73-1	1.99	< 1.99
1,4-Dichlorobenzene	106-46-7	1.99	< 1.99
2-Butanone	78-93-3	9.97	< 9.97
2-Hexanone	591-78-6	4.98	< 4.98
4-Methyl-2-pentanone	108-10-1	4.98	< 4.98

Report Date: 10/22/2018 Page 3 of 59

Lab Sample ID: 1810374-001A **Client Sample ID:** CS-1-5'

Analyzed: 10/16/2018 1346h

Units: μg/kg-dry Dilution Factor: 0.85 Method: SW8260C

Actone	American West	Compound					porting Limit	Analytical Result	Qual
Bromodichloromethane 75-27-4 1.99 < 1.99 < 1.99		Acetone			67	-64-1	9.97	< 9.97	
Bromoform		Benzene			71	-43-2	1.99	< 1.99	
3440 South 700 West Bromomethane 74-83-9 4.98 < 4.98 Salt Lake City, UT 84119 Carbon disulfide 75-15-0 1.99 < 1.99		Bromodichlo	romethane		75	-27-4	1.99	< 1.99	
Carbon disulide		Bromoform			75	-25-2	1.99	< 1.99	
Carbon tetrachloride 56-23-5 1.99 < 1.99 Phone: (801) 263-8686 Chlorocthane 108-90-7 1.99 < 1.99 Phone: (801) 263-8686 Chlorocthane 75-00-3 1.99 < 1.99 Phone: (801) 263-8686 Chlorocthane 75-00-3 1.99 < 1.99 Fax: (801) 263-8687 Chloromethane 74-87-3 2.99 < 2.99 Fax: (801) 263-8687 Chloromethane 156-59-2 1.99 < 1.99 Web: www.awal-labs.com 65-63-1,3-Dichlorocthene 110-81-7 1.99 < 1.99 Web: www.awal-labs.com Cyclohexane 110-82-7 1.99 < 1.99 Dibromochloromethane 124-48-1 1.99 < 1.99 Dichlorodifluoromethane 124-48-1 1.99 < 1.99 Ethylbenzne 100-41-4 1.99 < 1.99 Ethylbenzne 1634-04-4 1.99 < 1.99 Methyl kectate 79-20-9 4.98 < 4.98 Methyler-butyl ether 1634-04-4 1.99 < 1.99 Methylene chloride 75-09-2 4.98 < 4.98 Methylene chloride 75-09-2 4.99 < 1.99 Toluene 100-42-5 1.99 < 1.99 Toluene 100-42-5 1.99 < 1.99 Trichlorofluoromethane 75-69-4 1.99 < 1	3440 South 700 West	Bromomethan	ne		74	-83-9	4.98	< 4.98	
Phone: (801) 263-8686 Chloroethane 75-00-3 1.99 1.99 1.99 Toll Free: (888) 263-8686 Chloroform 67-66-3 1.99 2.199 1.99 Fax: (801) 263-8687 Chloromethane 74-87-3 2.90 2.99 2.99 web: www.awal-labs.com Cis-1,2-Dichloroethene 156-59-2 1.99 63.5 Cis-1,3-Dichloropropene 10061-01-5 1.99 2.199 Web: www.awal-labs.com Ciyclohexane 110-82-7 1.99 2.199 2.199 Dibromochloromethane 124-48-1 1.99 2.199 Ethylenzene 100-41-4 1.99 2.199 2.199 Methyl Acetate 75-71-8 1.99 2.199 2.199 Methyl Acetate 79-20-9 4.98 2.498 4.98 Methylene chloride 75-09-2 4.98 2.498 4.98 Methylene chloride 75-09-2 4.98 2.498 2.498 Methylene chloride 75-09-2 4.98 2.498 2.498 Naphthalene 91-20-3 1.99 2.199 2.199 Toluene 100-42-5 1.99 2.199 2.199 Toluene 100-42-5 1.99 2.199 2.199 Trichlorofluoromethane 75-69-4 1.99 2.199 2.199 2.199 Trichlorofluoromethane 75-69-4 1.99 2.199 2.	Salt Lake City, UT 84119	Carbon disulf	fide		75	-15-0	1.99	< 1.99	
Phone: (801) 263-8686 Chloroethane 75-00-3 1.99 < 1.99 Toll Free: (888) 263-8686 Chloroform 67-66-3 1.99 < 1.99 Fax: (801) 263-8687 Chloromethane 74-87-3 2.99 < 2.99 Earnii: awal@awal-labs.com cis-l,2-Dichloroethene 156-59-2 1.99 63.5 cis-l,3-Dichloropropene 10061-01-5 1.99 < 1.99 Cyclohexane Till-82-7 1.99		Carbon tetrac	chloride		56	-23-5	1.99	< 1.99	
Toll Free: (888) 263-8686 Chloroform		Chlorobenzer	ne		108	3-90-7	1.99	< 1.99	
Fax: (801) 263-8687 Chloromethane 74-87-3 2.99 < 2.99	Phone: (801) 263-8686	Chloroethane			75	-00-3	1.99	< 1.99	
Cis-1,2-Dichloroethene 156-59-2 1.99 63.5 1.99	Toll Free: (888) 263-8686	Chloroform			67	-66-3	1.99	< 1.99	
Cis-I,3-Dichloropropene 10061-01-5 1.99 < 1.99	Fax: (801) 263-8687	Chloromethai	ne		74	-87-3	2.99	< 2.99	
web: www.awal-labs.com Cyclohexane 110-82-7 1.99 < 1.99 Dibromochloromethane 124-48-1 1.99 < 1.99	e-mail: awal@awal-labs.com	cis-1,2-Dichle	oroethene		156	5-59-2	1.99	63.5	
Dibromochloromethane 124-48-1 1.99 < 1.99		cis-1,3-Dichle	oropropene		1006	51-01-5	1.99	< 1.99	
Dichlorodifluoromethane 75-71-8 1.99 < 1.99	web: www.awal-labs.com	Cyclohexane			110)-82-7	1.99	< 1.99	
Laboratory Director Laboratory Directo		Dibromochlo	romethane		124	1-48-1	1.99	< 1.99	
Laboratory Director Isopropylbenzene 100-41-4 1.99 < 1.99	W.L.E.G	Dichlorodiflu	oromethane		75	-71-8	1.99	< 1.99	
Methyl Acetate 79-20-9 4.98 < 4.98	·	Ethylbenzene	:		100)-41-4	1.99	< 1.99	
Methyl tert-butyl ether 1634-04-4 1.99 < 1.99	Laboratory Director	Isopropylben	zene		98	-82-8	1.99	< 1.99	
Methyl tert-butyl ether 1634-04-4 1.99 < 1.99	Jose Deche	Methyl Aceta	ite		79	-20-9	4.98	< 4.98	
Methylcyclohexane 108-87-2 1.99 < 1.99 Methylene chloride 75-09-2 4.98 < 4.98		Methyl tert-b	utyl ether		163	4-04-4	1.99	< 1.99	
Naphthalene 91-20-3 1.99 < 1.99 Styrene 100-42-5 1.99 < 1.99 Toluene 108-88-3 1.99 < 1.99 trans-1,2-Dichloroethene 156-60-5 1.99 3.67 trans-1,3-Dichloropropene 10061-02-6 1.99 < 1.99 Trichlorofluoromethane 75-69-4 1.99 < 1.99 Vinyl chloride 75-01-4 0.997 < 0.997 Xylenes, Total 1330-20-7 1.99 < 1.99 Surrogate Units: μg/kg-dry CAS Result Amount Spiked REC Limits Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 59.4 49.84 119 51-170 Surr: 4-Bromofluorobenzene 460-00-4 49.2 49.84 98.8 50-140 Surr: Dibromofluoromethane 1868-53-7 51.9 49.84 104 50-140	QA Officer	Methylcycloh	nexane		108	8-87-2	1.99	< 1.99	
Styrene 100-42-5 1.99 < 1.99 Toluene 108-88-3 1.99 < 1.99		Methylene ch	loride		75	-09-2	4.98	< 4.98	
Toluene 108-88-3 1.99 < 1.99 trans-1,2-Dichloroethene 156-60-5 1.99 3.67 trans-1,3-Dichloropropene 10061-02-6 1.99 < 1.99		Naphthalene			91	-20-3	1.99	< 1.99	
trans-1,2-Dichloroethene 156-60-5 1.99 3.67 trans-1,3-Dichloropropene 10061-02-6 1.99 < 1.99 Trichlorofluoromethane 75-69-4 1.99 < 1.99 Vinyl chloride 75-01-4 0.997 < 0.997 Xylenes, Total 1330-20-7 1.99 < 1.99 Surrogate Units: μg/kg-dry CAS Result Amount Spiked % REC Limits Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 59.4 49.84 119 51-170 Surr: 4-Bromofluorobenzene 460-00-4 49.2 49.84 98.8 50-140 Surr: Dibromofluoromethane 1868-53-7 51.9 49.84 104 50-140		Styrene			100)-42-5	1.99	< 1.99	
trans-1,3-Dichloropropene 10061-02-6 1.99 < 1.99 Trichlorofluoromethane 75-69-4 1.99 < 1.99 Vinyl chloride 75-01-4 0.997 < 0.997 Xylenes, Total 1330-20-7 1.99 < 1.99 Surrogate Units: μg/kg-dry CAS Result Amount Spiked % REC Limits Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 59.4 49.84 119 51-170 Surr: 4-Bromofluorobenzene 460-00-4 49.2 49.84 98.8 50-140 Surr: Dibromofluoromethane 1868-53-7 51.9 49.84 104 50-140		Toluene			108	3-88-3	1.99	< 1.99	
Trichlorofluoromethane 75-69-4 1.99 < 1.99 Vinyl chloride 75-01-4 0.997 < 0.997 Xylenes, Total 1330-20-7 1.99 < 1.99 Surrogate Units: μg/kg-dry CAS Result Amount Spiked REC Limits Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 59.4 49.84 119 51-170 Surr: 4-Bromofluorobenzene 460-00-4 49.2 49.84 98.8 50-140 Surr: Dibromofluoromethane 1868-53-7 51.9 49.84 104 50-140		trans-1,2-Dic	hloroethene		156	5-60-5	1.99	3.67	
Vinyl chloride 75-01-4 0.997 < 0.997 Xylenes, Total 1330-20-7 1.99 < 1.99 Surrogate Units: μg/kg-dry CAS Result Amount Spiked % REC Limits Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 59.4 49.84 119 51-170 Surr: 4-Bromofluorobenzene 460-00-4 49.2 49.84 98.8 50-140 Surr: Dibromofluoromethane 1868-53-7 51.9 49.84 104 50-140		trans-1,3-Dic	hloropropene		1006	61-02-6	1.99	< 1.99	
Surrogate Units: μg/kg-dry CAS Result Amount Spiked % REC Limits Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 59.4 49.84 119 51-170 Surr: 4-Bromofluorobenzene 460-00-4 49.2 49.84 98.8 50-140 Surr: Dibromofluoromethane 1868-53-7 51.9 49.84 104 50-140		Trichlorofluo	romethane		75	-69-4	1.99	< 1.99	
Surrogate Units: μg/kg-dry CAS Result Amount Spiked % REC Limits Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 59.4 49.84 119 51-170 Surr: 4-Bromofluorobenzene 460-00-4 49.2 49.84 98.8 50-140 Surr: Dibromofluoromethane 1868-53-7 51.9 49.84 104 50-140		Vinyl chlorid	e		75	-01-4	0.997	< 0.997	
Surr: 1,2-Dichloroethane-d4 17060-07-0 59.4 49.84 119 51-170 Surr: 4-Bromofluorobenzene 460-00-4 49.2 49.84 98.8 50-140 Surr: Dibromofluoromethane 1868-53-7 51.9 49.84 104 50-140		Xylenes, Tota	al		133	0-20-7	1.99	< 1.99	
Surr: 4-Bromofluorobenzene 460-00-4 49.2 49.84 98.8 50-140 Surr: Dibromofluoromethane 1868-53-7 51.9 49.84 104 50-140		Surrogate	Units: μg/kg-dry	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: Dibromofluoromethane 1868-53-7 51.9 49.84 104 50-140									

Sampling and analytical preparation performed by method 5035A.

Report Date: 10/22/2018 Page 4 of 59

Client: Wasatch Environmental Contact: Mike Cronin

Project: Former Henries / 2249-001d

Lab Sample ID: 1810374-002A

Client Sample ID: CS-2-3'

Collection Date: 10/15/2018 1015h **Received Date:** 10/15/2018 1553h

VOAs AWAL List by GC/MS Method 8260C

Test Code: 8260-S

Analytical Results

VOID INVITE BISCOY GOVIND INTERIOR 0200

Analyzed: 10/16/2018 1732h

,,2000 10,10,2010 1,02

Units: μg/kg-dry Dilution Factor: 45.87 Method: SW8260C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686

Toll Free: (888) 263-8686 Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Compound				CAS ımber	Reporting Limit	Analytical Result	Qual
Tetrachloroe	thene		12′	7-18-4	112	283	~
Surrogate	Units: μg/kg-dry	CAS	Result	Amount Spi	ked % RE	C Limits	Qual
Surr: 1,2-Dicl	hloroethane-d4	17060-07-0	3,210	2,789	115	51-170	
Surr: 4-Brome	ofluorobenzene	460-00-4	2,680	2,789	96.1	50-140	
Surr: Dibrome	ofluoromethane	1868-53-7	2,880	2,789	103	50-140	
Surr: Toluene	:-d8	2037-26-5	2,700	2,789	96.8	50-140	

^{~ -} The reporting limits were raised due to high analyte concentrations. Sampling and analytical preparation performed by method 5035A.

Analyzed: 10/16/2018 1448h

Units: μg/kg-dry Dilution Factor: 0.84 Method: SW8260C

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result Qual
1,1,1-Trichloroethane	71-55-6	2.04	< 2.04
1,1,2,2-Tetrachloroethane	79-34-5	2.04	< 2.04
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.04	< 2.04
1,1,2-Trichloroethane	79-00-5	2.04	< 2.04
1,1-Dichloroethane	75-34-3	2.04	< 2.04
1,1-Dichloroethene	75-35-4	2.04	< 2.04
1,2,4-Trichlorobenzene	120-82-1	2.04	< 2.04
1,2-Dibromo-3-chloropropane	96-12-8	5.11	< 5.11
1,2-Dibromoethane	106-93-4	2.04	< 2.04
1,2-Dichlorobenzene	95-50-1	2.04	< 2.04
1,2-Dichloroethane	107-06-2	2.04	< 2.04
1,2-Dichloropropane	78-87-5	2.04	< 2.04
1,3-Dichlorobenzene	541-73-1	2.04	< 2.04
1,4-Dichlorobenzene	106-46-7	2.04	< 2.04
2-Butanone	78-93-3	10.2	< 10.2
2-Hexanone	591-78-6	5.11	< 5.11
4-Methyl-2-pentanone	108-10-1	5.11	< 5.11
Acetone	67-64-1	10.2	< 10.2

Report Date: 10/22/2018 Page 5 of 59

Lab Sample ID: 1810374-002A Client Sample ID: CS-2-3'

Analyzed: 10/16/2018 1448h

Units: μg/kg-dry Dilution Factor: 0.84 Method: SW8260C

American West	Compound					porting Limit	Analytical Result	Qual
	Benzene			71	-43-2	2.04	< 2.04	
	Bromodichlo	promethane		75	-27-4	2.04	< 2.04	
	Bromoform			75	-25-2	2.04	< 2.04	
	Bromometha	ine		74	-83-9	5.11	< 5.11	
3440 South 700 West	Carbon disul	fide		75	-15-0	2.04	< 2.04	
Salt Lake City, UT 84119	Carbon tetra	chloride		56	-23-5	2.04	< 2.04	
	Chlorobenze	ne		108	3-90-7	2.04	< 2.04	
	Chloroethan	e		75	-00-3	2.04	< 2.04	
Phone: (801) 263-8686	Chloroform			67	-66-3	2.04	< 2.04	
Toll Free: (888) 263-8686	Chlorometha	ne		74	-87-3	3.06	< 3.06	
Fax: (801) 263-8687	cis-1,2-Dich	loroethene		156	5-59-2	2.04	16.3	
e-mail: awal@awal-labs.com	cis-1,3-Dichl	loropropene		1006	51-01-5	2.04	< 2.04	
	Cyclohexane	;		110	0-82-7	2.04	< 2.04	
web: www.awal-labs.com	Dibromochlo	oromethane		124	4-48-1	2.04	< 2.04	
	Dichlorodiflo	uoromethane		75	-71-8	2.04	< 2.04	
W.L.F.C	Ethylbenzen	e		100)-41-4	2.04	< 2.04	
Kyle F. Gross	Isopropylber	nzene		98	-82-8	2.04	< 2.04	
Laboratory Director	Methyl Acet	ate		79	-20-9	5.11	< 5.11	
Jose Rocha	Methyl tert-b	outyl ether		163	4-04-4	2.04	< 2.04	
QA Officer	Methylcyclo	hexane		108	8-87-2	2.04	< 2.04	
QA Officer	Methylene cl	hloride		75	-09-2	5.11	< 5.11	
	Naphthalene			91	-20-3	2.04	< 2.04	
	Styrene			100)-42-5	2.04	< 2.04	
	Toluene			108	8-88-3	2.04	< 2.04	
	trans-1,2-Dio	chloroethene		156	5-60-5	2.04	< 2.04	
	trans-1,3-Dio	chloropropene		1006	61-02-6	2.04	< 2.04	
	Trichloroeth	ene		79	-01-6	2.04	12.9	
	Trichlorofluc	oromethane		75	-69-4	2.04	< 2.04	
	Vinyl chloric	le		75	-01-4	1.02	< 1.02	
	Xylenes, Tot	al		133	0-20-7	2.04	< 2.04	
	Surrogate	Units: μg/kg-dry	CAS	Result	Amount Spiked	% REC	Limits	Qual
		hloroethane-d4	17060-07-0	61.0	51.08	119	51-170	
		ofluorobenzene ofluoromethane	460-00-4 1868-53-7	50.7 53.0	51.08 51.08	99.3 104	50-140 50-140	
	Surr: Toluene		2037-26-5	47.3	51.08	92.5	50-140	

Sampling and analytical preparation performed by method 5035A.

Report Date: 10/22/2018 Page 6 of 59

Client: Wasatch Environmental Contact: Mike Cronin

Project: Former Henries / 2249-001d

Lab Sample ID: 1810374-003A Client Sample ID: CS-2-12'

Collection Date: 10/15/2018 1035h **Received Date:** 10/15/2018 1553h

VOAs AWAL List by GC/MS Method 8260C

Test Code: 8260-S

Analyzed: 10/16/2018 1753h

Analytical Results

Units: μg/kg-dry Dilution Factor: 42.96 Method: SW8260C

3440 South 700 West Salt Lake City, UT 84119

CAS Reporting **Analytical** Compound Number Limit Result Qual cis-1,2-Dichloroethene 156-59-2 101 5,570 Surrogate Units: µg/kg-dry CAS Result **Amount Spiked** % REC Limits Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 2,930 2,521 116 51-170 Surr: 4-Bromofluorobenzene 460-00-4 2,430 2,521 96.4 50-140 Surr: Dibromofluoromethane 1868-53-7 2,510 2,521 99.7 50-140 Surr: Toluene-d8 2037-26-5 2,340 2,521 93.0 50-140

Toll Free: (888) 263-8686 Fax: (801) 263-8687

Phone: (801) 263-8686

e-mail: awal@awal-labs.com

web: www.awal-labs.com

~ - The reporting limits were raised due to high analyte concentrations. Sampling and analytical preparation performed by method 5035A.

Analyzed: 10/16/2018 1508h

Units: μg/kg-dry Dilution Factor: 0.78 Method: SW8260C

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result Qual
1,1,1-Trichloroethane	71-55-6	1.83	< 1.83
1,1,2,2-Tetrachloroethane	79-34-5	1.83	< 1.83
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	1.83	< 1.83
1,1,2-Trichloroethane	79-00-5	1.83	< 1.83
1,1-Dichloroethane	75-34-3	1.83	< 1.83
1,1-Dichloroethene	75-35-4	1.83	< 1.83
1,2,4-Trichlorobenzene	120-82-1	1.83	< 1.83
1,2-Dibromo-3-chloropropane	96-12-8	4.58	< 4.58
1,2-Dibromoethane	106-93-4	1.83	< 1.83
1,2-Dichlorobenzene	95-50-1	1.83	< 1.83
1,2-Dichloroethane	107-06-2	1.83	< 1.83
1,2-Dichloropropane	78-87-5	1.83	< 1.83
1,3-Dichlorobenzene	541-73-1	1.83	< 1.83
1,4-Dichlorobenzene	106-46-7	1.83	< 1.83
2-Butanone	78-93-3	9.15	< 9.15
2-Hexanone	591-78-6	4.58	< 4.58
4-Methyl-2-pentanone	108-10-1	4.58	< 4.58
Acetone	67-64-1	9.15	17.6

Report Date: 10/22/2018 Page 7 of 59

Lab Sample ID: 1810374-003A Client Sample ID: CS-2-12'

Analyzed: 10/16/2018 1508h

Units: μg/kg-dry **Dilution Factor:** 0.78 Method: SW8260C

American West	Compound					porting Limit	Analytical Result	Qual
	Benzene			71	-43-2	1.83	< 1.83	
	Bromodichlor	omethane		75	-27-4	1.83	< 1.83	
	Bromoform			75	-25-2	1.83	< 1.83	
	Bromomethan	ne		74	-83-9	4.58	< 4.58	
3440 South 700 West	Carbon disulf	ide		75	-15-0	1.83	< 1.83	
Salt Lake City, UT 84119	Carbon tetracl	hloride		56	-23-5	1.83	< 1.83	
	Chlorobenzen	e		108	3-90-7	1.83	< 1.83	
	Chloroethane			75	-00-3	1.83	< 1.83	
Phone: (801) 263-8686	Chloroform			67	-66-3	1.83	< 1.83	
Toll Free: (888) 263-8686	Chloromethan	ie		74	-87-3	2.75	< 2.75	
Fax: (801) 263-8687	cis-1,3-Dichlo	propropene		1006	51-01-5	1.83	< 1.83	
e-mail: awal@awal-labs.com	Cyclohexane			110)-82-7	1.83	< 1.83	
	Dibromochlor	omethane		124	1-48-1	1.83	< 1.83	
web: www.awal-labs.com	Dichlorodiflu	oromethane		75	-71-8	1.83	< 1.83	
	Ethylbenzene			100)-41-4	1.83	< 1.83	
W 1 F C	Isopropylbenz	zene		98	-82-8	1.83	< 1.83	
Kyle F. Gross	Methyl Aceta	te		79	-20-9	4.58	< 4.58	
Laboratory Director	Methyl tert-bu	ıtyl ether		163	4-04-4	1.83	< 1.83	
Jose Rocha	Methylcycloh	exane		108	3-87-2	1.83	< 1.83	
QA Officer	Methylene ch	loride		75	-09-2	4.58	< 4.58	
QA Officer	Naphthalene			91	-20-3	1.83	< 1.83	
	Styrene			100)-42-5	1.83	< 1.83	
	Tetrachloroet	hene		127	7-18-4	1.83	3.11	
	Toluene			108	3-88-3	1.83	< 1.83	
	trans-1,2-Dich	nloroethene		156	5-60-5	1.83	63.3	
	trans-1,3-Dich	nloropropene		1006	51-02-6	1.83	< 1.83	
	Trichloroethe	ne		79	-01-6	1.83	< 1.83	
	Trichlorofluor	romethane		75	-69-4	1.83	< 1.83	
	Vinyl chloride	e		75	-01-4	0.915	31.5	
	Xylenes, Tota	1		133	0-20-7	1.83	< 1.83	
	Surrogate	Units: μg/kg-dry	CAS	Result	Amount Spiked	% REC	Limits	Qual
	Surr: 1,2-Dich		17060-07-0	53.9	45.76	118	51-170	
	Surr: 4-Bromo Surr: Dibromo		460-00-4 1868-53-7	44.5 46.4	45.76 45.76	97.3 101	50-140 50-140	
	Surr: Toluene-		2037-26-5	41.1	45.76	89.8	50-140	

Sampling and analytical preparation performed by method 5035A.

Report Date: 10/22/2018 Page 8 of 59

Client: Wasatch Environmental Contact: Mike Cronin

Former Henries / 2249-001d **Project:**

1810374-004A Lab Sample ID:

Client Sample ID: CS-3-8'

Collection Date: 10/15/2018 1155h **Received Date:** 10/15/2018 1553h

Test Code: 8260-S VOAs AWAL List by GC/MS Method 8260C

Analyzed: 10/16/2018 1529h

Analytical Results

Chloroethane

Chloromethane

cis-1.2-Dichloroethene

Chloroform

Dilution Factor: 0.92 Method: SW8260C Units: µg/kg-dry

3440 South 700 West Salt Lake City, UT 84119

CAS Reporting **Analytical** Compound Number Limit Result Qual 1,1,1-Trichloroethane 71-55-6 2.32 < 2.321,1,2,2-Tetrachloroethane 79-34-5 2.32 < 2.32Phone: (801) 263-8686 1,1,2-Trichloro-1,2,2-trifluoroethane 76-13-1 2.32 < 2.32Toll Free: (888) 263-8686 1,1,2-Trichloroethane 79-00-5 2.32 < 2.32Fax: (801) 263-8687 1.1-Dichloroethane 75-34-3 2.32 < 2.32e-mail: awal@awal-labs.com 1,1-Dichloroethene 75-35-4 2.32 < 2.32< 2.32 1,2,4-Trichlorobenzene 120-82-1 2.32 web: www.awal-labs.com 1,2-Dibromo-3-chloropropane 96-12-8 5.80 < 5.80 1,2-Dibromoethane 106-93-4 2.32 < 2.32 1,2-Dichlorobenzene 95-50-1 2.32 < 2.32Kyle F. Gross 1,2-Dichloroethane 107-06-2 2.32 < 2.32 Laboratory Director 1,2-Dichloropropane 78-87-5 2.32 < 2.32 1,3-Dichlorobenzene 541-73-1 2.32 < 2.32 Jose Rocha 1.4-Dichlorobenzene 106-46-7 2.32 < 2.32 **OA** Officer 2-Butanone 78-93-3 11.6 < 11.6 591-78-6 2-Hexanone 5.80 < 5.80 4-Methyl-2-pentanone 108-10-1 5.80 < 5.80 67-64-1 < 11.6 Acetone 11.6 71-43-2 2.32 < 2.32Benzene 75-27-4 Bromodichloromethane 2.32 < 2.32Bromoform 75-25-2 2.32 < 2.32 Bromomethane 74-83-9 5.80 < 5.80 Carbon disulfide 75-15-0 2.32 < 2.32Carbon tetrachloride 56-23-5 2.32 < 2.32Chlorobenzene 108-90-7 2.32 < 2.32

Report Date: 10/22/2018 Page 9 of 59

< 2.32

< 2.32

< 3.48

242

75-00-3

67-66-3

74-87-3

156-59-2

2.32

2.32

3.48

2.32

3440 South 700 West

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Salt Lake City, UT 84119

Lab Sample ID: 1810374-004A **Client Sample ID:** CS-3-8'

Analyzed: 10/16/2018 1529h

Units: μg/kg-dry Dilution Factor: 0.92 Method: SW8260C

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
cis-1,3-Dichloropropene	10061-01-5	2.32	< 2.32	
Cyclohexane	110-82-7	2.32	< 2.32	
Dibromochloromethane	124-48-1	2.32	< 2.32	
Dichlorodifluoromethane	75-71-8	2.32	< 2.32	
Ethylbenzene	100-41-4	2.32	< 2.32	
Isopropylbenzene	98-82-8	2.32	< 2.32	
Methyl Acetate	79-20-9	5.80	< 5.80	
Methyl tert-butyl ether	1634-04-4	2.32	< 2.32	
Methylcyclohexane	108-87-2	2.32	< 2.32	
Methylene chloride	75-09-2	5.80	< 5.80	
Naphthalene	91-20-3	2.32	< 2.32	
Styrene	100-42-5	2.32	< 2.32	
Tetrachloroethene	127-18-4	2.32	41.8	
Toluene	108-88-3	2.32	< 2.32	
trans-1,2-Dichloroethene	156-60-5	2.32	< 2.32	
trans-1,3-Dichloropropene	10061-02-6	2.32	< 2.32	
Trichloroethene	79-01-6	2.32	9.21	
Trichlorofluoromethane	75-69-4	2.32	< 2.32	
Vinyl chloride	75-01-4	1.16	4.33	
Xylenes, Total	1330-20-7	2.32	< 2.32	
Surrogate Units: μg/kg-dry	CAS Result Amount S	Spiked % REC	Limits	Qual

Laboratory Director

Jose Rocha
QA Officer

Kyle F. Gross

Surrogate	Units: μg/kg-dry	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dio	chloroethane-d4	17060-07-0	66.6	58.03	115	51-170	
Surr: 4-Bron	nofluorobenzene	460-00-4	57.3	58.03	98.7	50-140	
Surr: Dibron	nofluoromethane	1868-53-7	58.2	58.03	100	50-140	
Surr: Toluen	e-d8	2037-26-5	55.4	58.03	95.5	50-140	

Sampling and analytical preparation performed by method 5035A.

Report Date: 10/22/2018 Page 10 of 59

Client: Wasatch Environmental Contact: Mike Cronin

Project: Former Henries / 2249-001d

Lab Sample ID: 1810374-005A Client Sample ID: CS-3-12'

Collection Date: 10/15/2018 1205h **Received Date:** 10/15/2018 1553h

Analytical Results VOAs AWAL List by GC/MS Method 8260C

Analyzed: 10/16/2018 1550h

Units: μg/kg-dry Dilution Factor: 0.78 Method: SW8260C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result Qual
1,1,1-Trichloroethane	71-55-6	1.80	< 1.80
1,1,2,2-Tetrachloroethane	79-34-5	1.80	< 1.80
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	1.80	< 1.80
1,1,2-Trichloroethane	79-00-5	1.80	< 1.80
1,1-Dichloroethane	75-34-3	1.80	< 1.80
1,1-Dichloroethene	75-35-4	1.80	< 1.80
1,2,4-Trichlorobenzene	120-82-1	1.80	< 1.80
1,2-Dibromo-3-chloropropane	96-12-8	4.51	< 4.51
1,2-Dibromoethane	106-93-4	1.80	< 1.80
1,2-Dichlorobenzene	95-50-1	1.80	< 1.80
1,2-Dichloroethane	107-06-2	1.80	< 1.80
1,2-Dichloropropane	78-87-5	1.80	< 1.80
1,3-Dichlorobenzene	541-73-1	1.80	< 1.80
1,4-Dichlorobenzene	106-46-7	1.80	< 1.80
2-Butanone	78-93-3	9.02	< 9.02
2-Hexanone	591-78-6	4.51	< 4.51
4-Methyl-2-pentanone	108-10-1	4.51	< 4.51
Acetone	67-64-1	9.02	9.38
Benzene	71-43-2	1.80	< 1.80
Bromodichloromethane	75-27-4	1.80	< 1.80
Bromoform	75-25-2	1.80	< 1.80
Bromomethane	74-83-9	4.51	< 4.51
Carbon disulfide	75-15-0	1.80	< 1.80
Carbon tetrachloride	56-23-5	1.80	< 1.80
Chlorobenzene	108-90-7	1.80	< 1.80
Chloroethane	75-00-3	1.80	< 1.80
Chloroform	67-66-3	1.80	< 1.80
Chloromethane	74-87-3	2.71	< 2.71
cis-1,2-Dichloroethene	156-59-2	1.80	149

Report Date: 10/22/2018 Page 11 of 59

Test Code: 8260-S

Lab Sample ID: 1810374-005A Client Sample ID: CS-3-12'

Analyzed: 10/16/2018 1550h

Units: µg/kg-dry **Dilution Factor:** 0.78 Method: SW8260C

American West	Compound	CAS Number	Reporting Limit	Analytical Result Qual
	cis-1,3-Dichloropropene	10061-01-5	1.80	< 1.80
	Cyclohexane	110-82-7	1.80	< 1.80
	Dibromochloromethane	124-48-1	1.80	< 1.80
	Dichlorodifluoromethane	75-71-8	1.80	< 1.80
3440 South 700 West	Ethylbenzene	100-41-4	1.80	< 1.80
t Lake City, UT 84119	Isopropylbenzene	98-82-8	1.80	< 1.80
	Methyl Acetate	79-20-9	4.51	< 4.51
	Methyl tert-butyl ether	1634-04-4	1.80	< 1.80
Phone: (801) 263-8686	Methylcyclohexane	108-87-2	1.80	< 1.80
ll Free: (888) 263-8686	Methylene chloride	75-09-2	4.51	< 4.51
Fax: (801) 263-8687	Naphthalene	91-20-3	1.80	< 1.80
nail: awal@awal-labs.com	Styrene	100-42-5	1.80	< 1.80
	Tetrachloroethene	127-18-4	1.80	52.8
eb: www.awal-labs.com	Toluene	108-88-3	1.80	< 1.80
	trans-1,2-Dichloroethene	156-60-5	1.80	< 1.80
	trans-1,3-Dichloropropene	10061-02-6	1.80	< 1.80
Kyle F. Gross	Trichloroethene	79-01-6	1.80	15.2
Laboratory Director	Trichlorofluoromethane	75-69-4	1.80	< 1.80
	Vinyl chloride	75-01-4	0.902	2.77
Jose Rocha QA Officer	Xylenes, Total	1330-20-7	1.80	< 1.80
Q/1 Officer	Surrogate Units: μg/kg-dry CA	S Result Amount S	Spiked % REC	Limits Qual

Surrogate	Units: μg/kg-dry	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dic	hloroethane-d4	17060-07-0	53.9	45.09	120	51-170	
Surr: 4-Brom	ofluorobenzene	460-00-4	45.0	45.09	99.8	50-140	
Surr: Dibrom	ofluoromethane	1868-53-7	47.8	45.09	106	50-140	
Surr: Toluene	e-d8	2037-26-5	43.7	45.09	97.0	50-140	

Sampling and analytical preparation performed by method 5035A.

Report Date: 10/22/2018 Page 12 of 59

Client: Wasatch Environmental Contact: Mike Cronin

Project: Former Henries / 2249-001d

Lab Sample ID: 1810374-006A

Client Sample ID: CS-4-8'

Collection Date: 10/15/2018 1230h **Received Date:** 10/15/2018 1553h

VOAs AWAL List by GC/MS Method 8260C

Test Code: 8260-S

Analytical Results

Analyzed: 10/16/2018 1915h **Units:** μg/kg-dry **Dilution Factor:** 48.83 **Method:** SW8260C

3440 South 700 West Salt Lake City, UT 84119

CAS Reporting **Analytical** Compound Number Limit Result Qual cis-1,2-Dichloroethene 156-59-2 126 8,170 Surrogate Units: µg/kg-dry CAS Result **Amount Spiked** % REC Limits Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 3,780 3,144 120 51-170 Surr: 4-Bromofluorobenzene 460-00-4 3,040 3,144 96.7 50-140 Surr: Dibromofluoromethane 1868-53-7 3,290 3,144 105 50-140 Surr: Toluene-d8 2037-26-5 3,040 3,144 96.7 50-140

Toll Free: (888) 263-8686 Fax: (801) 263-8687

Phone: (801) 263-8686

e-mail: awal@awal-labs.com

~ - The reporting limits were raised due to high analyte concentrations. Sampling and analytical preparation performed by method 5035A.

web: www.awal-labs.com

Analyzed: 10/16/2018 1611h

Units: µg/kg-dry Dilution Factor: 0.82 Method: SW8260C

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result Qual
1,1,1-Trichloroethane	71-55-6	2.11	< 2.11
1,1,2,2-Tetrachloroethane	79-34-5	2.11	< 2.11
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.11	< 2.11
1,1,2-Trichloroethane	79-00-5	2.11	< 2.11
1,1-Dichloroethane	75-34-3	2.11	< 2.11
1,1-Dichloroethene	75-35-4	2.11	< 2.11
1,2,4-Trichlorobenzene	120-82-1	2.11	< 2.11
1,2-Dibromo-3-chloropropane	96-12-8	5.28	< 5.28
1,2-Dibromoethane	106-93-4	2.11	< 2.11
1,2-Dichlorobenzene	95-50-1	2.11	< 2.11
1,2-Dichloroethane	107-06-2	2.11	< 2.11
1,2-Dichloropropane	78-87-5	2.11	< 2.11
1,3-Dichlorobenzene	541-73-1	2.11	< 2.11
1,4-Dichlorobenzene	106-46-7	2.11	< 2.11
2-Butanone	78-93-3	10.6	< 10.6
2-Hexanone	591-78-6	5.28	< 5.28
4-Methyl-2-pentanone	108-10-1	5.28	< 5.28
Acetone	67-64-1	10.6	34.3

Report Date: 10/22/2018 Page 13 of 59

Lab Sample ID: 1810374-006A Client Sample ID: CS-4-8'

Analyzed: 10/16/2018 1611h

Units: μg/kg-dry Dilution Factor: 0.82 Method: SW8260C

American West	Compound				CAS Romber	eporting Limit	Analytical Result	Qual
	Benzene			71	-43-2	2.11	< 2.11	
	Bromodichlo	romethane		75	-27-4	2.11	< 2.11	
	Bromoform			75	-25-2	2.11	< 2.11	
	Bromometha	ne		74	-83-9	5.28	< 5.28	
3440 South 700 West	Carbon disul	fide		75	-15-0	2.11	2.53	
Salt Lake City, UT 84119	Carbon tetrac	chloride		56	-23-5	2.11	< 2.11	
	Chlorobenzer	ne		108	3-90-7	2.11	< 2.11	
	Chloroethane	:		75	-00-3	2.11	< 2.11	
Phone: (801) 263-8686	Chloroform			67	-66-3	2.11	< 2.11	
Toll Free: (888) 263-8686	Chlorometha	ne		74	-87-3	3.17	< 3.17	
Fax: (801) 263-8687	cis-1,3-Dichl	oropropene		1006	51-01-5	2.11	< 2.11	
e-mail: awal@awal-labs.com	Cyclohexane			110)-82-7	2.11	< 2.11	
	Dibromochlo	romethane		124	1-48-1	2.11	< 2.11	
web: www.awal-labs.com	Dichlorodiflu	oromethane		75	-71-8	2.11	< 2.11	
	Ethylbenzene	•		100)-41-4	2.11	< 2.11	
W 1 P 6	Isopropylben	zene		98	-82-8	2.11	< 2.11	
Kyle F. Gross	Methyl Aceta	nte		79	-20-9	5.28	< 5.28	
Laboratory Director	Methyl tert-b	utyl ether		163	4-04-4	2.11	< 2.11	
Jose Rocha	Methylcyclol	nexane		108	3-87-2	2.11	< 2.11	
	Methylene ch	nloride		75	-09-2	5.28	< 5.28	
QA Officer	Naphthalene			91	-20-3	2.11	< 2.11	
	Styrene			100)-42-5	2.11	< 2.11	
	Tetrachloroet	thene		127	7-18-4	2.11	< 2.11	
	Toluene			108	8-88-3	2.11	< 2.11	
	trans-1,2-Dic	hloroethene		156	5-60-5	2.11	73.7	
	trans-1,3-Dic	hloropropene		1006	61-02-6	2.11	< 2.11	
	Trichloroethe	ene		79	-01-6	2.11	< 2.11	
	Trichlorofluc	promethane		75	-69-4	2.11	< 2.11	
	Vinyl chlorid	le		75	-01-4	1.06	6.77	
	Xylenes, Tota	al		133	0-20-7	2.11	< 2.11	
	Surrogate	Units: μg/kg-dry	CAS	Result	Amount Spike	d % REC	Limits	Qual
		nloroethane-d4	17060-07-0	62.9	52.79	119	51-170	
		ofluorobenzene	460-00-4	51.9	52.79	98.2	50-140	
	Surr: Dibromo Surr: Toluene	ofluoromethane -d8	1868-53-7 2037-26-5	54.7 50.0	52.79 52.79	104 94.6	50-140 50-140	

Sampling and analytical preparation performed by method 5035A.

Report Date: 10/22/2018 Page 14 of 59

Client: Wasatch Environmental Contact: Mike Cronin

Project: Former Henries / 2249-001d

Lab Sample ID: 1810374-007A

Client Sample ID: CS-5-8'

Collection Date: 10/15/2018 1245h **Received Date:** 10/15/2018 1553h

VOAs AWAL List by GC/MS Method 8260C

Test Code: 8260-S

Analytical Results
Analyzed: 10/17/2018 1431h

Units: μg/kg-dry Dilution Factor: 47.21 Method: SW8260C

3440 South 700 West Salt Lake City, UT 84119

CAS Reporting **Analytical** Number Compound Limit Result Qual cis-1,2-Dichloroethene 156-59-2 119 1,280 Tetrachloroethene 127-18-4 119 634

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Surrogate	Units: μg/kg-dry	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dic	hloroethane-d4	17060-07-0	3,400	2,964	115	51-170	
Surr: 4-Brom	ofluorobenzene	460-00-4	2,900	2,964	97.8	50-140	
Surr: Dibrom	ofluoromethane	1868-53-7	3,060	2,964	103	50-140	
Surr: Toluene	e-d8	2037-26-5	2,930	2,964	98.7	50-140	

~ - The reporting limits were raised due to high analyte concentrations. Sampling and analytical preparation performed by method 5035A.

Analyzed: 10/16/2018 1834h

Units: μg/kg-dry Dilution Factor: 0.92 Method: SW8260C

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result Qu	ıal
1,1,1-Trichloroethane	71-55-6	2.31	< 2.31	
1,1,2,2-Tetrachloroethane	79-34-5	2.31	< 2.31	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.31	< 2.31	
1,1,2-Trichloroethane	79-00-5	2.31	< 2.31	
1,1-Dichloroethane	75-34-3	2.31	< 2.31	
1,1-Dichloroethene	75-35-4	2.31	< 2.31	
1,2,4-Trichlorobenzene	120-82-1	2.31	< 2.31	
1,2-Dibromo-3-chloropropane	96-12-8	5.78	< 5.78	
1,2-Dibromoethane	106-93-4	2.31	< 2.31	
1,2-Dichlorobenzene	95-50-1	2.31	< 2.31	
1,2-Dichloroethane	107-06-2	2.31	< 2.31	
1,2-Dichloropropane	78-87-5	2.31	< 2.31	
1,3-Dichlorobenzene	541-73-1	2.31	< 2.31	
1,4-Dichlorobenzene	106-46-7	2.31	< 2.31	
2-Butanone	78-93-3	11.6	< 11.6	
2-Hexanone	591-78-6	5.78	< 5.78	
4-Methyl-2-pentanone	108-10-1	5.78	< 5.78	

Report Date: 10/22/2018 Page 15 of 59

Lab Sample ID: 1810374-007A Client Sample ID: CS-5-8'

Analyzed: 10/16/2018 1834h

American West	Compound					eporting Limit	Analytical Result	Qual
	Acetone			67	-64-1	11.6	< 11.6	
	Benzene			71	-43-2	2.31	< 2.31	
	Bromodichlo	romethane		75	-27-4	2.31	< 2.31	
	Bromoform			75	-25-2	2.31	< 2.31	
3440 South 700 West	Bromometha	ne		74	-83-9	5.78	< 5.78	
Salt Lake City, UT 84119	Carbon disul	fide		75	-15-0	2.31	< 2.31	
	Carbon tetrac	chloride		56	-23-5	2.31	< 2.31	
	Chlorobenzer	ne		108	8-90-7	2.31	< 2.31	
Phone: (801) 263-8686	Chloroethane	:		75	-00-3	2.31	< 2.31	
Toll Free: (888) 263-8686	Chloroform			67	-66-3	2.31	< 2.31	
Fax: (801) 263-8687	Chlorometha	ne		74	-87-3	3.47	< 3.47	
e-mail: awal@awal-labs.com	cis-1,3-Dichl	oropropene		1006	51-01-5	2.31	< 2.31	
	Cyclohexane			110)-82-7	2.31	< 2.31	
web: www.awal-labs.com	Dibromochlo	romethane		124	1-48-1	2.31	< 2.31	
	Dichlorodiflu	oromethane		75	-71-8	2.31	< 2.31	
	Ethylbenzene			100	0-41-4	2.31	< 2.31	
Kyle F. Gross	Isopropylben	zene		98	-82-8	2.31	< 2.31	
Laboratory Director	Methyl Aceta	nte		79	-20-9	5.78	< 5.78	
Jose Rocha	Methyl tert-b	utyl ether		163	4-04-4	2.31	< 2.31	
	Methylcyclol	nexane		108	8-87-2	2.31	< 2.31	
QA Officer	Methylene ch	nloride		75	-09-2	5.78	< 5.78	
	Naphthalene			91	-20-3	2.31	< 2.31	
	Styrene			100)-42-5	2.31	< 2.31	
	Toluene			108	8-88-3	2.31	< 2.31	
	trans-1,2-Dic	hloroethene		156	5-60-5	2.31	17.5	
	trans-1,3-Dic	hloropropene		1006	61-02-6	2.31	< 2.31	
	Trichloroethe	ene		79	-01-6	2.31	154	
	Trichlorofluc	oromethane		75	-69-4	2.31	< 2.31	
	Vinyl chlorid	le		75	-01-4	1.16	2.78	
	Xylenes, Tota	al		133	0-20-7	2.31	< 2.31	
	Surrogate	Units: μg/kg-dry	CAS	Result	Amount Spiked	i % REC	Limits	Qual
		nloroethane-d4	17060-07-0	72.6	57.77	126	51-170	
		ofluorobenzene ofluoromethane	460-00-4	60.2	57.77	104	50-140	
	Surr: Dibromo		1868-53-7 2037-26-5	64.3 57.7	57.77 57.77	111 99.8	50-140 50-140	

Report Date: 10/22/2018 Page 16 of 59

Client: Wasatch Environmental Contact: Mike Cronin

Project: Former Henries / 2249-001d

Lab Sample ID: 1810374-008A **Client Sample ID:** CS-20-12'

Collection Date: 10/15/2018 930h **Received Date:** 10/15/2018 1553h

Test Code: 8260-S

Analytical Results

VOAs AWAL List by GC/MS Method 8260C

Analyzed: 10/17/2018 1532h

Units: μg/kg-dry Dilution Factor: 45.25 Method: SW8260C

1868-53-7

2037-26-5

3440 South 700 West Salt Lake City, UT 84119

CAS Reporting **Analytical** Compound Number Limit Result Qual cis-1,2-Dichloroethene 156-59-2 109 4,340 Surrogate Units: µg/kg-dry CAS Result **Amount Spiked** % REC Limits Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 3,250 2,732 119 51-170 Surr: 4-Bromofluorobenzene 460-00-4 2,510 2,732 91.9 50-140

2,770

2,570

2,732

2,732

Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

Phone: (801) 263-8686

~ - The reporting limits were raised due to high analyte concentrations.

web: www.awal-labs.com

Analyzed: 10/16/2018 1855h

Surr: Dibromofluoromethane

Surr: Toluene-d8

Units: μg/kg-dry Dilution Factor: 0.78

Sampling and analytical preparation performed by method 5035A.

Method: SW8260C

50-140

50-140

102

94.0

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result Qual
1,1,1-Trichloroethane	71-55-6	1.88	< 1.88
1,1,2,2-Tetrachloroethane	79-34-5	1.88	< 1.88
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	1.88	< 1.88
1,1,2-Trichloroethane	79-00-5	1.88	< 1.88
1,1-Dichloroethane	75-34-3	1.88	< 1.88
1,1-Dichloroethene	75-35-4	1.88	< 1.88
1,2,4-Trichlorobenzene	120-82-1	1.88	< 1.88
1,2-Dibromo-3-chloropropane	96-12-8	4.71	< 4.71
1,2-Dibromoethane	106-93-4	1.88	< 1.88
1,2-Dichlorobenzene	95-50-1	1.88	< 1.88
1,2-Dichloroethane	107-06-2	1.88	< 1.88
1,2-Dichloropropane	78-87-5	1.88	< 1.88
1,3-Dichlorobenzene	541-73-1	1.88	< 1.88
1,4-Dichlorobenzene	106-46-7	1.88	< 1.88
2-Butanone	78-93-3	9.42	< 9.42
2-Hexanone	591-78-6	4.71	< 4.71
4-Methyl-2-pentanone	108-10-1	4.71	< 4.71
Acetone	67-64-1	9.42	11.1

Report Date: 10/22/2018 Page 17 of 59

Lab Sample ID: 1810374-008A Client Sample ID: CS-20-12'

Analyzed: 10/16/2018 1855h

Units: μg/kg-dry Dilution Factor: 0.78 Method: SW8260C

American West	Compound					eporting Limit	Analytical Result	Qual
	Benzene			71	-43-2	1.88	< 1.88	
	Bromodichlo	romethane		75	-27-4	1.88	< 1.88	
	Bromoform			75	-25-2	1.88	< 1.88	
	Bromometha	ne		74	-83-9	4.71	< 4.71	
3440 South 700 West	Carbon disul	fide		75	-15-0	1.88	4.69	
Salt Lake City, UT 84119	Carbon tetrac	chloride		56	5-23-5	1.88	< 1.88	
	Chlorobenze	ne		108	8-90-7	1.88	< 1.88	
	Chloroethane	•		75	-00-3	1.88	< 1.88	
Phone: (801) 263-8686	Chloroform			67	-66-3	1.88	< 1.88	
Toll Free: (888) 263-8686	Chlorometha	ne		74	-87-3	2.83	< 2.83	
Fax: (801) 263-8687	cis-1,3-Dichl	oropropene		1006	61-01-5	1.88	< 1.88	
e-mail: awal@awal-labs.com	Cyclohexane			110	0-82-7	1.88	< 1.88	
	Dibromochlo	romethane		124	4-48-1	1.88	< 1.88	
web: www.awal-labs.com	Dichlorodiflu	ioromethane		75	-71-8	1.88	< 1.88	
	Ethylbenzene	e		100	0-41-4	1.88	< 1.88	
	Isopropylben	zene		98	-82-8	1.88	< 1.88	
Kyle F. Gross	Methyl Aceta	ate		79	-20-9	4.71	< 4.71	
Laboratory Director	Methyl tert-b	outyl ether		163	4-04-4	1.88	< 1.88	
Jose Rocha	Methylcyclol	nexane		108	8-87-2	1.88	< 1.88	
	Methylene ch	nloride		75	-09-2	4.71	< 4.71	
QA Officer	Naphthalene			91	-20-3	1.88	< 1.88	
	Styrene			100	0-42-5	1.88	< 1.88	
	Tetrachloroe	thene		127	7-18-4	1.88	2.88	
	Toluene			108	8-88-3	1.88	< 1.88	
	trans-1,2-Dic	hloroethene		150	6-60-5	1.88	53.7	
	trans-1,3-Dic	hloropropene		1000	61-02-6	1.88	< 1.88	
	Trichloroethe	ene		79	-01-6	1.88	< 1.88	
	Trichlorofluc	oromethane		75	-69-4	1.88	< 1.88	
	Vinyl chlorid	le		75	-01-4	0.942	34.4	
	Xylenes, Tot	al		133	0-20-7	1.88	< 1.88	
	Surrogate	Units: μg/kg-dry	CAS	Result	Amount Spiked	l % REC	Limits	Qual
		hloroethane-d4	17060-07-0	57.7	47.09	122	51-170	
		ofluorobenzene ofluoromethane	460-00-4 1868-53-7	46.9 49.7	47.09 47.09	99.6 106	50-140 50-140	
	Surr: Toluene		2037-26-5	43.0	47.09	91.3	50-140	
	-							

Report Date: 10/22/2018 Page 18 of 59

Client: Wasatch Environmental Contact: Mike Cronin

Project: Former Henries / 2249-001d

Lab Sample ID: 1810374-009A **Client Sample ID:** Trip Blank **Collection Date:** 10/15/2018

Received Date: 10/15/2018 1553h Test Code: 8260-W

Analytical Results VOAs AWAL List by GC/MS Method 8260C/5030C

Analyzed: 10/16/2018 1333h

Units: μg/L Dilution Factor: 1 Method: SW8260C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686
Toll Free: (888) 263-8686
Fax: (801) 263-8687
e-mail: awal@awal-labs.com

web: www.awal-labs.com

Laboratory Director

Jose Rocha QA Officer

Kyle F. Gross

Compound	CAS Number	Reporting Limit	Analytical Result Qual
1,1,1-Trichloroethane	71-55-6	2.00	< 2.00
1,1,2,2-Tetrachloroethane	79-34-5	2.00	< 2.00
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.00	< 2.00
1,1,2-Trichloroethane	79-00-5	2.00	< 2.00
1,1-Dichloroethane	75-34-3	2.00	< 2.00
1,1-Dichloroethene	75-35-4	2.00	< 2.00
1,2,4-Trichlorobenzene	120-82-1	2.00	< 2.00
1,2-Dibromo-3-chloropropane	96-12-8	5.00	< 5.00
1,2-Dibromoethane	106-93-4	2.00	< 2.00
1,2-Dichlorobenzene	95-50-1	2.00	< 2.00
1,2-Dichloroethane	107-06-2	2.00	< 2.00
1,2-Dichloropropane	78-87-5	2.00	< 2.00
1,3-Dichlorobenzene	541-73-1	2.00	< 2.00
1,4-Dichlorobenzene	106-46-7	2.00	< 2.00
2-Butanone	78-93-3	10.0	< 10.0
2-Hexanone	591-78-6	5.00	< 5.00
4-Methyl-2-pentanone	108-10-1	5.00	< 5.00
Acetone	67-64-1	10.0	< 10.0
Benzene	71-43-2	2.00	< 2.00
Bromodichloromethane	75-27-4	2.00	< 2.00
Bromoform	75-25-2	2.00	< 2.00
Bromomethane	74-83-9	5.00	< 5.00
Carbon disulfide	75-15-0	2.00	< 2.00
Carbon tetrachloride	56-23-5	2.00	< 2.00
Chlorobenzene	108-90-7	2.00	< 2.00
Chloroethane	75-00-3	2.00	< 2.00
Chloroform	67-66-3	2.00	< 2.00
Chloromethane	74-87-3	5.00	< 5.00
cis-1,2-Dichloroethene	156-59-2	2.00	< 2.00

Report Date: 10/22/2018 Page 19 of 59

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

Kyle F. Gross

Jose Rocha QA Officer

Laboratory Director

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Lab Sample ID: 1810374-009A **Client Sample ID:** Trip Blank

Analyzed: 10/16/2018 1333h

Units: μg/L Dilution Factor: 1

Method: SW8260C

Compound	CAS Number	Reporting Limit	Analytical Result Qual
cis-1,3-Dichloropropene	10061-01-5	2.00	< 2.00
Cyclohexane	110-82-7	2.00	< 2.00
Dibromochloromethane	124-48-1	2.00	< 2.00
Dichlorodifluoromethane	75-71-8	2.00	< 2.00
Ethylbenzene	100-41-4	2.00	< 2.00
Isopropylbenzene	98-82-8	2.00	< 2.00
Methyl Acetate	79-20-9	5.00	< 5.00
Methyl tert-butyl ether	1634-04-4	2.00	< 2.00
Methylcyclohexane	108-87-2	2.00	< 2.00
Methylene chloride	75-09-2	2.00	< 2.00
Naphthalene	91-20-3	2.00	< 2.00
Styrene	100-42-5	2.00	< 2.00
Tetrachloroethene	127-18-4	2.00	< 2.00
Toluene	108-88-3	2.00	< 2.00
trans-1,2-Dichloroethene	156-60-5	2.00	< 2.00
trans-1,3-Dichloropropene	10061-02-6	2.00	< 2.00
Trichloroethene	79-01-6	2.00	< 2.00
Trichlorofluoromethane	75-69-4	2.00	< 2.00
Vinyl chloride	75-01-4	1.00	< 1.00
Xylenes, Total	1330-20-7	2.00	< 2.00
Surrogate Units: μg/L	CAS Result Amount S	Spiked % REC	Limits Qual

Surrogate	Units: µg/L	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dic	chloroethane-d4	17060-07-0	55.8	50.00	112	72-151	
Surr: 4-Brom	nofluorobenzene	460-00-4	56.4	50.00	113	80-152	
Surr: Dibron	nofluoromethane	1868-53-7	51.5	50.00	103	72-135	
Surr: Toluen	e-d8	2037-26-5	49.6	50.00	99.1	80-124	

Insufficient sample volume was received to perform MS/MSD analysis. An LCSD was added to provide precision data.

Report Date: 10/22/2018 Page 20 of 59

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha **QA** Officer

QC SUMMARY REPORT

Client: Wasatch Environmental

Lab Set ID: 1810374

Project: Former Henries / 2249-001d

Mike Cronin **Contact:** Dept: **MSVOA** QC Type: LCS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:LCS VOC-3 101618ATest Code:8260-S	Date Analyzed:	10/16/20	18 1225h										
1,1,1-Trichloroethane	20.1	μg/kg	SW8260C	0.125	2.00	20.00	0	100	70 - 140				
1,1-Dichloroethene	15.9	μg/kg	SW8260C	0.329	2.00	20.00	0	79.3	36 - 147				
1,2-Dichlorobenzene	15.4	μg/kg	SW8260C	0.0742	2.00	20.00	0	77.0	62 - 137				
1,2-Dichloroethane	20.3	μg/kg	SW8260C	0.157	2.00	20.00	0	102	79 - 126				
1,2-Dichloropropane	19.6	μg/kg	SW8260C	0.113	2.00	20.00	0	97.8	77 - 126				
Benzene	17.2	μg/kg	SW8260C	0.174	2.00	20.00	0	85.9	69 - 135				
Chlorobenzene	16.0	μg/kg	SW8260C	0.109	2.00	20.00	0	80.2	59 - 127				
Chloroform	19.6	μg/kg	SW8260C	0.138	2.00	20.00	0	98.2	68 - 128				
Ethylbenzene	14.9	μg/kg	SW8260C	1.95	2.00	20.00	0	74.7	52 - 147				
Isopropylbenzene	15.1	μg/kg	SW8260C	0.131	2.00	20.00	0	75.5	44 - 140				
Methyl tert-butyl ether	19.1	μg/kg	SW8260C	0.182	2.00	20.00	0	95.3	73 - 135				
Methylene chloride	17.9	μg/kg	SW8260C	1.53	5.00	20.00	0	89.4	47 - 172				
Naphthalene	14.4	μg/kg	SW8260C	0.272	2.00	20.00	0	72.2	57 - 140				
Toluene	16.6	$\mu g/kg$	SW8260C	0.393	2.00	20.00	0	83.0	63 - 135				
Trichloroethene	16.5	μg/kg	SW8260C	0.185	2.00	20.00	0	82.7	51 - 150				
Xylenes, Total	46.4	μg/kg	SW8260C	0.393	2.00	60.00	0	77.3	50 - 145				
Surr: 1,2-Dichloroethane-d4	54.6	μg/kg	SW8260C			50.00		109	72 - 140				
Surr: 4-Bromofluorobenzene	48.0	μg/kg	SW8260C			50.00		96.1	67 - 145				
Surr: Dibromofluoromethane	50.0	μg/kg	SW8260C			50.00		99.9	70 - 130				
Surr: Toluene-d8	48.1	μg/kg	SW8260C			50.00		96.2	61 - 134				
Lab Sample ID:LCS VOC-3 101718ATest Code:8260-S	Date Analyzed:	10/17/20	18 1219h										
1,1,1-Trichloroethane	22.8	μg/kg	SW8260C	0.125	2.00	20.00	0	114	70 - 140				
1,1-Dichloroethene	19.0	μg/kg	SW8260C	0.329	2.00	20.00	0	95.2	36 - 147				
1,2-Dichlorobenzene	17.6	μg/kg	SW8260C	0.0742	2.00	20.00	0	88.0	62 - 137				
1,2-Dichloroethane	21.6	μg/kg	SW8260C	0.157	2.00	20.00	0	108	79 - 126				
1,2-Dichloropropane	21.2	μg/kg	SW8260C	0.113	2.00	20.00	0	106	77 - 126				

Report Date: 10/22/2018 Page 21 of 59

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross
Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Wasatch Environmental

Lab Set ID: 1810374

Client:

Project: Former Henries / 2249-001d

Contact: Mike Cronin
Dept: MSVOA
QC Type: LCS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: LCS VOC-3 101718A Test Code: 8260-S	Date Analyzed:	10/17/20	18 1219h										
Benzene	18.8	μg/kg	SW8260C	0.174	2.00	20.00	0	93.9	69 - 135				
Chlorobenzene	18.0	μg/kg	SW8260C	0.109	2.00	20.00	0	90.2	59 - 127				
Chloroform	21.0	μg/kg	SW8260C	0.138	2.00	20.00	0	105	68 - 128				
Ethylbenzene	17.4	μg/kg	SW8260C	1.95	2.00	20.00	0	87.0	52 - 147				
Isopropylbenzene	17.9	μg/kg	SW8260C	0.131	2.00	20.00	0	89.3	44 - 140				
Methyl tert-butyl ether	20.5	μg/kg	SW8260C	0.182	2.00	20.00	0	103	73 - 135				
Methylene chloride	19.3	μg/kg	SW8260C	1.53	5.00	20.00	0	96.4	47 - 172				
Naphthalene	15.7	μg/kg	SW8260C	0.272	2.00	20.00	0	78.4	57 - 140				
Tetrahydrofuran	15.2	μg/kg	SW8260C	1.55	2.00	20.00	0	76.2	53 - 138				
Toluene	18.2	μg/kg	SW8260C	0.393	2.00	20.00	0	90.8	63 - 135				
Trichloroethene	18.4	μg/kg	SW8260C	0.185	2.00	20.00	0	91.8	51 - 150				
Xylenes, Total	53.6	μg/kg	SW8260C	0.393	2.00	60.00	0	89.3	50 - 145				
Surr: 1,2-Dichloroethane-d4	58.0	μg/kg	SW8260C			50.00		116	72 - 140				
Surr: 4-Bromofluorobenzene	46.9	μg/kg	SW8260C			50.00		93.9	67 - 145				
Surr: Dibromofluoromethane	53.4	μg/kg	SW8260C			50.00		107	70 - 130				
Surr: Toluene-d8	47.9	μg/kg	SW8260C			50.00		95.8	61 - 134				

Report Date: 10/22/2018 Page 22 of 59

Lab Set ID: 1810374

Wasatch Environmental

Former Henries / 2249-001d

Client:

Project:

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross
Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact: Mike Cronin
Dept: MSVOA

QC Type: MBLK

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: MB VOC-3 101618A Test Code: 8260-S	Date Analyzed:	10/16/20	18 1305h										
1,1,1-Trichloroethane	< 2.00	μg/kg	SW8260C	0.125	2.00								
1,1,2,2-Tetrachloroethane	< 2.00	μg/kg	SW8260C	0.159	2.00								
1,1,2-Trichloro-1,2,2-trifluoroethane	< 2.00	μg/kg	SW8260C	1.93	2.00								
1,1,2-Trichloroethane	< 2.00	μg/kg	SW8260C	0.127	2.00								
1,1-Dichloroethane	< 2.00	μg/kg	SW8260C	0.0988	2.00								
1,1-Dichloroethene	< 2.00	μg/kg	SW8260C	0.329	2.00								
1,2,4-Trichlorobenzene	< 2.00	μg/kg	SW8260C	0.161	2.00								
1,2-Dibromo-3-chloropropane	< 5.00	μg/kg	SW8260C	0.632	5.00								
1,2-Dibromoethane	< 2.00	μg/kg	SW8260C	0.186	2.00								
1,2-Dichlorobenzene	< 2.00	μg/kg	SW8260C	0.0742	2.00								
1,2-Dichloroethane	< 2.00	μg/kg	SW8260C	0.157	2.00								
1,2-Dichloropropane	< 2.00	μg/kg	SW8260C	0.113	2.00								
1,3-Dichlorobenzene	< 2.00	μg/kg	SW8260C	0.105	2.00								
1,4-Dichlorobenzene	< 2.00	μg/kg	SW8260C	0.244	2.00								
2-Butanone	< 10.0	μg/kg	SW8260C	1.40	10.0								
2-Hexanone	< 5.00	μg/kg	SW8260C	0.705	5.00								
4-Methyl-2-pentanone	< 5.00	μg/kg	SW8260C	1.08	5.00								
Acetone	< 10.0	μg/kg	SW8260C	3.90	10.0								
Benzene	< 2.00	μg/kg	SW8260C	0.174	2.00								
Bromodichloromethane	< 2.00	μg/kg	SW8260C	0.158	2.00								
Bromoform	< 2.00	μg/kg	SW8260C	0.164	2.00								
Bromomethane	< 5.00	μg/kg	SW8260C	1.58	5.00								
Carbon disulfide	< 2.00	μg/kg	SW8260C	0.170	2.00								
Carbon tetrachloride	< 2.00	μg/kg	SW8260C	0.197	2.00								
Chlorobenzene	< 2.00	μg/kg	SW8260C	0.109	2.00								
Chloroethane	< 2.00	μg/kg	SW8260C	0.644	2.00								
Chloroform	< 2.00	μg/kg	SW8260C	0.138	2.00								

Report Date: 10/22/2018 Page 23 of 59

American West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Jose Rocha

QA Officer

Laboratory Director

Kyle F. Gross

QC SUMMARY REPORT

Client: Wasatch Environmental

Lab Set ID: 1810374

Project: Former Henries / 2249-001d

Contact: Mike Cronin
Dept: MSVOA

QC Type: MBLK

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: MB VOC-3 101618A Test Code: 8260-S	Date Analyzed:	10/16/20	18 1305h										•
Chloromethane	< 3.00	μg/kg	SW8260C	0.572	3.00								
cis-1,2-Dichloroethene	< 2.00	μg/kg	SW8260C	0.194	2.00								
cis-1,3-Dichloropropene	< 2.00	μg/kg	SW8260C	0.153	2.00								
Cyclohexane	< 2.00	μg/kg	SW8260C	0.302	2.00								
Dibromochloromethane	< 2.00	μg/kg	SW8260C	0.137	2.00								
Dichlorodifluoromethane	< 2.00	μg/kg	SW8260C	0.142	2.00								
Ethylbenzene	< 2.00	μg/kg	SW8260C	1.95	2.00								
Isopropylbenzene	< 2.00	μg/kg	SW8260C	0.131	2.00								
Methyl Acetate	< 5.00	μg/kg	SW8260C	1.33	5.00								
Methyl tert-butyl ether	< 2.00	μg/kg	SW8260C	0.182	2.00								
Methylcyclohexane	< 2.00	μg/kg	SW8260C	0.420	2.00								
Methylene chloride	< 5.00	μg/kg	SW8260C	1.53	5.00								
Naphthalene	< 2.00	μg/kg	SW8260C	0.272	2.00								
Styrene	< 2.00	μg/kg	SW8260C	0.170	2.00								
Tetrachloroethene	< 2.00	μg/kg	SW8260C	0.287	2.00								
Toluene	< 2.00	μg/kg	SW8260C	0.393	2.00								
trans-1,2-Dichloroethene	< 2.00	μg/kg	SW8260C	0.196	2.00								
trans-1,3-Dichloropropene	< 2.00	μg/kg	SW8260C	0.170	2.00								
Trichloroethene	< 2.00	μg/kg	SW8260C	0.185	2.00								
Trichlorofluoromethane	< 2.00	μg/kg	SW8260C	0.101	2.00								
Vinyl chloride	< 1.00	μg/kg	SW8260C	0.121	1.00								
Xylenes, Total	< 2.00	μg/kg	SW8260C	0.393	2.00								
Surr: 1,2-Dichloroethane-d4	58.7	μg/kg	SW8260C			50.00		117	72 - 140				
Surr: 4-Bromofluorobenzene	49.7	μg/kg	SW8260C			50.00		99.5	67 - 145				
Surr: Dibromofluoromethane	53.7	μg/kg	SW8260C			50.00		107	70 - 130				
Surr: Toluene-d8	48.9	μg/kg	SW8260C			50.00		97.8	61 - 134				

Report Date: 10/22/2018 Page 24 of 59

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross
Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Wasatch Environmental

Lab Set ID: 1810374

Project: Former Henries / 2249-001d

Contact: Mike Cronin
Dept: MSVOA
QC Type: MBLK

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: MB VOC-3 101718A Test Code: 8260-S	Date Analyzed:	10/17/201	18 1300h										
cis-1,2-Dichloroethene	< 2.00	μg/kg	SW8260C	0.194	2.00								
Tetrachloroethene	< 2.00	μg/kg	SW8260C	0.287	2.00								
Surr: 1,2-Dichloroethane-d4	59.2	μg/kg	SW8260C			50.00		118	72 - 140				
Surr: 4-Bromofluorobenzene	48.1	μg/kg	SW8260C			50.00		96.1	67 - 145				
Surr: Dibromofluoromethane	53.2	μg/kg	SW8260C			50.00		106	70 - 130				
Surr: Toluene-d8	48.6	μg/kg	SW8260C			50.00		97.2	61 - 134				

Report Date: 10/22/2018 Page 25 of 59

Former Henries / 2249-001d

Client:

Project:

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha **QA** Officer

QC SUMMARY REPORT

Wasatch Environmental **Lab Set ID:** 1810374

Mike Cronin **Contact:** Dept: **MSVOA**

QC Type: MS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1810374-001AMS Test Code: 8260-S	Date Analyz	ed: 10/16/201	8 1652h										•
			CW/02 CO C					400					
1,1,1-Trichloroethane	1,190	μg/kg-dry	SW8260C	6.88	110	1,101	0	108	20 - 144				
1,1-Dichloroethene	986	μg/kg-dry	SW8260C	18.1	110	1,101	0	89.5	24 - 174				
1,2-Dichlorobenzene	1,030	μg/kg-dry	SW8260C	4.09	110	1,101	0	93.9	10 - 148				
1,2-Dichloroethane	1,130	μg/kg-dry	SW8260C	8.64	110	1,101	0	102	54 - 133				
1,2-Dichloropropane	1,120	μg/kg-dry	SW8260C	6.22	110	1,101	0	102	28 - 140				
Benzene	1,060	μg/kg-dry	SW8260C	9.58	110	1,101	0	96.7	17 - 138				
Chlorobenzene	989	μg/kg-dry	SW8260C	6.00	110	1,101	0	89.8	13 - 150				
Chloroform	1,110	μg/kg-dry	SW8260C	7.60	110	1,101	0	101	21 - 147				
Ethylbenzene	989	μg/kg-dry	SW8260C	107	110	1,101	0	89.9	10 - 164				
Isopropylbenzene	1,030	μg/kg-dry	SW8260C	7.21	110	1,101	0	93.5	26 - 146				
Methyl tert-butyl ether	1,100	μg/kg-dry	SW8260C	10.0	110	1,101	0	99.8	28 - 137				
Methylene chloride	1,100	μg/kg-dry	SW8260C	84.2	275	1,101	0	100	10 - 217				
Naphthalene	991	μg/kg-dry	SW8260C	15.0	110	1,101	0	90.0	13 - 156				
Toluene	986	μg/kg-dry	SW8260C	21.6	110	1,101	0	89.5	23 - 168				
Trichloroethene	1,720	μg/kg-dry	SW8260C	10.2	110	1,101	644	97.3	14 - 161				
Xylenes, Total	3,060	μg/kg-dry	SW8260C	21.6	110	3,303	0	92.5	10 - 160				
Surr: 1,2-Dichloroethane-d4	3,220	μg/kg-dry	SW8260C			2,753		117	51 - 170				
Surr: 4-Bromofluorobenzene	2,540	μg/kg-dry	SW8260C			2,753		92.3	50 - 140				
Surr: Dibromofluoromethane	2,890	μg/kg-dry	SW8260C			2,753		105	50 - 140				
Surr: Toluene-d8	2,610	μg/kg-dry	SW8260C			2,753		95.0	50 - 140				
Lab Sample ID: 1810374-007AMS Test Code: 8260-S	Date Analyz	ed: 10/17/201	8 1451h										
1,1,1-Trichloroethane	1,260	μg/kg-dry	SW8260C	7.41	119	1,186	0	106	20 - 144				
1,1-Dichloroethene	1,060	μg/kg-dry	SW8260C	19.5	119	1,186	0	89.5	24 - 174				
1,2-Dichlorobenzene	1,080	μg/kg-dry	SW8260C	4.40	119	1,186	0	90.9	10 - 148				
1,2-Dichloroethane	1,180	μg/kg-dry	SW8260C	9.31	119	1,186	0	99.5	54 - 133				
1,2-Dichloropropane	1,120	μg/kg-dry	SW8260C	6.70	119	1,186	0	94.2	28 - 140				

Report Date: 10/22/2018 Page 26 of 59

Lab Set ID: 1810374

Wasatch Environmental

Former Henries / 2249-001d

Client:

Project:

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact: Mike Cronin

QC Type: MS

MSVOA

Dept:

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1810374-007AMS Test Code: 8260-S	Date Analyz	zed: 10/17/201	8 1451h										
Benzene	1,050	μg/kg-dry	SW8260C	10.3	119	1,186	0	88.1	17 - 138				
Chlorobenzene	1,050	μg/kg-dry	SW8260C	6.46	119	1,186	0	88.7	13 - 150				
Chloroform	1,150	μg/kg-dry	SW8260C	8.18	119	1,186	0	96.8	21 - 147				
Ethylbenzene	1,010	μg/kg-dry	SW8260C	116	119	1,186	0	85.5	10 - 164				
Isopropylbenzene	1,090	μg/kg-dry	SW8260C	7.77	119	1,186	0	92.1	26 - 146				
Methyl tert-butyl ether	1,050	μg/kg-dry	SW8260C	10.8	119	1,186	0	88.3	28 - 137				
Methylene chloride	1,080	μg/kg-dry	SW8260C	90.7	296	1,186	0	90.7	10 - 217				
Naphthalene	924	μg/kg-dry	SW8260C	16.1	119	1,186	0	77.9	13 - 156				
Tetrahydrofuran	851	μg/kg-dry	SW8260C	91.9	119	1,186	0	71.7	10 - 136				
Toluene	1,040	μg/kg-dry	SW8260C	23.3	119	1,186	0	87.7	23 - 168				
Trichloroethene	1,220	μg/kg-dry	SW8260C	11.0	119	1,186	154	90.1	14 - 161				
Xylenes, Total	3,250	μg/kg-dry	SW8260C	23.3	119	3,557	0	91.2	10 - 160				
Surr: 1,2-Dichloroethane-d4	3,290	μg/kg-dry	SW8260C			2,964		111	51 - 170				
Surr: 4-Bromofluorobenzene	2,620	μg/kg-dry	SW8260C			2,964		88.2	50 - 140				
Surr: Dibromofluoromethane	3,030	μg/kg-dry	SW8260C			2,964		102	50 - 140				
Surr: Toluene-d8	2,810	μg/kg-dry	SW8260C			2,964		94.7	50 - 140				

Report Date: 10/22/2018 Page 27 of 59

American West

Lab Set ID: 1810374

Wasatch Environmental

Former Henries / 2249-001d

Client:

Project:

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact: Mike Cronin

QC Type: MSD

MSVOA

Dept:

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1810374-001AMSD	Date Analyz	ed: 10/16/201	8 1712h										
Test Code: 8260-S													
1,1,1-Trichloroethane	1,120	μg/kg-dry	SW8260C	6.88	110	1,101	0	102	20 - 144	1190	5.73	35	
1,1-Dichloroethene	966	μg/kg-dry	SW8260C	18.1	110	1,101	0	87.8	24 - 174	986	1.97	35	
1,2-Dichlorobenzene	1,010	μg/kg-dry	SW8260C	4.09	110	1,101	0	91.4	10 - 148	1030	2.70	35	
1,2-Dichloroethane	1,070	μg/kg-dry	SW8260C	8.64	110	1,101	0	97.5	54 - 133	1130	4.81	35	
1,2-Dichloropropane	1,070	μg/kg-dry	SW8260C	6.22	110	1,101	0	97.1	28 - 140	1120	4.63	35	
Benzene	1,000	μg/kg-dry	SW8260C	9.58	110	1,101	0	90.8	17 - 138	1060	6.29	35	
Chlorobenzene	964	μg/kg-dry	SW8260C	6.00	110	1,101	0	87.5	13 - 150	989	2.59	35	
Chloroform	1,050	μg/kg-dry	SW8260C	7.60	110	1,101	0	95.0	21 - 147	1110	5.73	35	
Ethylbenzene	962	μg/kg-dry	SW8260C	107	110	1,101	0	87.4	10 - 164	989	2.76	35	
Isopropylbenzene	1,000	μg/kg-dry	SW8260C	7.21	110	1,101	0	91.2	26 - 146	1030	2.55	35	
Methyl tert-butyl ether	1,030	μg/kg-dry	SW8260C	10.0	110	1,101	0	93.3	28 - 137	1100	6.74	35	
Methylene chloride	1,040	μg/kg-dry	SW8260C	84.2	275	1,101	0	94.5	10 - 217	1100	5.66	35	
Naphthalene	910	μg/kg-dry	SW8260C	15.0	110	1,101	0	82.6	13 - 156	991	8.57	35	
Toluene	962	μg/kg-dry	SW8260C	21.6	110	1,101	0	87.4	23 - 168	986	2.37	35	
Trichloroethene	1,600	μg/kg-dry	SW8260C	10.2	110	1,101	644	86.8	14 - 161	1720	6.98	35	
Xylenes, Total	3,000	μg/kg-dry	SW8260C	21.6	110	3,303	0	90.8	10 - 160	3060	1.91	35	
Surr: 1,2-Dichloroethane-d4	2,960	μg/kg-dry	SW8260C			2,753		108	51 - 170				
Surr: 4-Bromofluorobenzene	2,530	μg/kg-dry	SW8260C			2,753		92.0	50 - 140				
Surr: Dibromofluoromethane	2,780	μg/kg-dry	SW8260C			2,753		101	50 - 140				
Surr: Toluene-d8	2,660	$\mu g/kg$ -dry	SW8260C			2,753		96.8	50 - 140				
Lab Sample ID: 1810374-007AMSD	Date Analyz	ed: 10/17/201	8 1512h										
Test Code: 8260-S													
1,1,1-Trichloroethane	1,160	μg/kg-dry	SW8260C	7.41	119	1,186	0	97.4	20 - 144	1260	8.87	35	
1,1-Dichloroethene	943	μg/kg-dry	SW8260C	19.5	119	1,186	0	79.5	24 - 174	1060	11.9	35	
1,2-Dichlorobenzene	1,070	μg/kg-dry	SW8260C	4.40	119	1,186	0	90.2	10 - 148	1080	0.718	35	
1,2-Dichloroethane	1,130	μg/kg-dry	SW8260C	9.31	119	1,186	0	94.9	54 - 133	1180	4.73	35	
1,2-Dichloropropane	1,070	μg/kg-dry	SW8260C	6.70	119	1,186	0	90.0	28 - 140	1120	4.61	35	

Report Date: 10/22/2018 Page 28 of 59

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Wasatch Environmental

Lab Set ID: 1810374

Client:

Project: Former Henries / 2249-001d

Contact: Mike Cronin
Dept: MSVOA
QC Type: MSD

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1810374-007AMSD Test Code: 8260-S	Date Analyz	zed: 10/17/201	8 1512h										
Benzene	963	μg/kg-dry	SW8260C	10.3	119	1,186	0	81.2	17 - 138	1050	8.15	35	
Chlorobenzene	1,030	μg/kg-dry	SW8260C	6.46	119	1,186	0	87.1	13 - 150	1050	1.76	35	
Chloroform	1,070	μg/kg-dry	SW8260C	8.18	119	1,186	0	90.5	21 - 147	1150	6.67	35	
Ethylbenzene	1,000	μg/kg-dry	SW8260C	116	119	1,186	0	84.6	10 - 164	1010	1.06	35	
Isopropylbenzene	1,040	μg/kg-dry	SW8260C	7.77	119	1,186	0	88.0	26 - 146	1090	4.55	35	
Methyl tert-butyl ether	1,040	μg/kg-dry	SW8260C	10.8	119	1,186	0	87.5	28 - 137	1050	0.910	35	
Methylene chloride	1,010	μg/kg-dry	SW8260C	90.7	296	1,186	0	84.9	10 - 217	1080	6.61	35	
Naphthalene	982	μg/kg-dry	SW8260C	16.1	119	1,186	0	82.8	13 - 156	924	6.09	35	
Tetrahydrofuran	881	μg/kg-dry	SW8260C	91.9	119	1,186	0	74.3	10 - 136	851	3.49	35	
Toluene	1,010	μg/kg-dry	SW8260C	23.3	119	1,186	0	85.3	23 - 168	1040	2.77	35	
Trichloroethene	1,110	μg/kg-dry	SW8260C	11.0	119	1,186	154	80.7	14 - 161	1220	9.50	35	
Xylenes, Total	3,130	μg/kg-dry	SW8260C	23.3	119	3,557	0	87.9	10 - 160	3250	3.76	35	
Surr: 1,2-Dichloroethane-d4	3,270	μg/kg-dry	SW8260C			2,964		110	51 - 170				
Surr: 4-Bromofluorobenzene	2,730	μg/kg-dry	SW8260C			2,964		92.0	50 - 140				
Surr: Dibromofluoromethane	2,900	μg/kg-dry	SW8260C			2,964		98.0	50 - 140				
Surr: Toluene-d8	2,810	μg/kg-dry	SW8260C			2,964		94.9	50 - 140				

Report Date: 10/22/2018 Page 29 of 59

Lab Set ID: 1810374

Wasatch Environmental

Former Henries / 2249-001d

Client:

Project:

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha **QA** Officer

QC SUMMARY REPORT

Mike Cronin **Contact:**

> Dept: QC Type: LCS

MSVOA

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: LCS VOC-1 101618A Test Code: 8260-W	Date Analyzed:	10/16/20	18 1123h										
1,1,1-Trichloroethane	23.5	μg/L	SW8260C	0.142	2.00	20.00	0	118	73 - 139				
1,1-Dichloroethene	20.7	$\mu g/L$	SW8260C	0.275	2.00	20.00	0	104	37 - 144				
1,2-Dichlorobenzene	20.4	$\mu g/L$	SW8260C	0.105	2.00	20.00	0	102	70 - 130				
1,2-Dichloroethane	22.1	$\mu g/L$	SW8260C	0.0988	2.00	20.00	0	110	76 - 132				
1,2-Dichloropropane	21.2	$\mu g/L$	SW8260C	0.0968	2.00	20.00	0	106	81 - 121				
Benzene	20.7	$\mu g/L$	SW8260C	0.0956	2.00	20.00	0	104	82 - 132				
Chlorobenzene	19.7	$\mu g/L$	SW8260C	0.0832	2.00	20.00	0	98.7	74 - 126				
Chloroform	22.1	$\mu g/L$	SW8260C	0.0998	2.00	20.00	0	111	85 - 124				
Ethylbenzene	19.9	$\mu g/L$	SW8260C	0.103	2.00	20.00	0	99.4	67 - 118				
Isopropylbenzene	20.2	$\mu g/L$	SW8260C	0.131	2.00	20.00	0	101	68 - 127				
Methyl tert-butyl ether	21.2	$\mu g/L$	SW8260C	0.206	2.00	20.00	0	106	58 - 131				
Methylene chloride	21.8	$\mu g/L$	SW8260C	0.400	2.00	20.00	0	109	65 - 154				
Naphthalene	14.4	$\mu g/L$	SW8260C	0.159	2.00	20.00	0	72.1	63 - 129				
Toluene	20.1	$\mu g/L$	SW8260C	0.0858	2.00	20.00	0	101	69 - 129				
Trichloroethene	20.5	$\mu g/L$	SW8260C	0.105	2.00	20.00	0	103	75 - 136				
Xylenes, Total	61.1	$\mu g/L$	SW8260C	0.310	2.00	60.00	0	102	66 - 124				
Surr: 1,2-Dichloroethane-d4	56.9	$\mu g/L$	SW8260C			50.00		114	80 - 136				
Surr: 4-Bromofluorobenzene	48.7	$\mu g/L$	SW8260C			50.00		97.4	85 - 121				
Surr: Dibromofluoromethane	53.0	$\mu g/L$	SW8260C			50.00		106	78 - 132				
Surr: Toluene-d8	48.9	$\mu g/L$	SW8260C			50.00		97.8	81 - 123				

Report Date: 10/22/2018 Page 30 of 59

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Wasatch Environmental

Lab Set ID: 1810374

Client:

Project: Former Henries / 2249-001d

Contact: Mike Cronin
Dept: MSVOA
QC Type: LCSD

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:LCSD VOC-1 101618ATest Code:8260-W	Date Analyzed:	10/16/20	18 1234h										
1,1,1-Trichloroethane	21.2	μg/L	SW8260C	0.142	2.00	20.00	0	106	73 - 139	23.5	10.2	25	
1,1-Dichloroethene	18.6	μg/L	SW8260C	0.275	2.00	20.00	0	92.8	37 - 144	20.7	11.0	25	
1,2-Dichlorobenzene	19.5	μg/L	SW8260C	0.105	2.00	20.00	0	97.7	70 - 130	20.4	4.45	25	
1,2-Dichloroethane	21.4	μg/L	SW8260C	0.0988	2.00	20.00	0	107	76 - 132	22.1	3.08	25	
1,2-Dichloropropane	20.4	μg/L	SW8260C	0.0968	2.00	20.00	0	102	81 - 121	21.2	3.61	25	
Benzene	19.4	μg/L	SW8260C	0.0956	2.00	20.00	0	96.8	82 - 132	20.7	6.69	25	
Chlorobenzene	19.1	μg/L	SW8260C	0.0832	2.00	20.00	0	95.4	74 - 126	19.7	3.35	25	
Chloroform	20.8	μg/L	SW8260C	0.0998	2.00	20.00	0	104	85 - 124	22.1	6.06	25	
Ethylbenzene	19.2	μg/L	SW8260C	0.103	2.00	20.00	0	95.8	67 - 118	19.9	3.79	25	
Isopropylbenzene	19.0	μg/L	SW8260C	0.131	2.00	20.00	0	94.8	68 - 127	20.2	6.14	25	
Methyl tert-butyl ether	20.8	μg/L	SW8260C	0.206	2.00	20.00	0	104	58 - 131	21.2	2.00	25	
Methylene chloride	21.0	μg/L	SW8260C	0.400	2.00	20.00	0	105	65 - 154	21.8	3.60	25	
Naphthalene	14.8	μg/L	SW8260C	0.159	2.00	20.00	0	74.1	63 - 129	14.4	2.67	25	
Toluene	19.1	μg/L	SW8260C	0.0858	2.00	20.00	0	95.5	69 - 129	20.1	5.15	25	
Trichloroethene	18.9	μg/L	SW8260C	0.105	2.00	20.00	0	94.6	75 - 136	20.5	8.21	25	
Xylenes, Total	58.0	μg/L	SW8260C	0.310	2.00	60.00	0	96.7	66 - 124	61.1	5.22	25	
Surr: 1,2-Dichloroethane-d4	55.0	μg/L	SW8260C			50.00		110	80 - 136				
Surr: 4-Bromofluorobenzene	48.6	μg/L	SW8260C			50.00		97.2	85 - 121				
Surr: Dibromofluoromethane	51.1	μg/L	SW8260C			50.00		102	78 - 132				
Surr: Toluene-d8	49.3	μg/L	SW8260C			50.00		98.6	81 - 123				

Report Date: 10/22/2018 Page 31 of 59

Lab Set ID: 1810374

Wasatch Environmental

Former Henries / 2249-001d

Client:

Project:

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha **QA** Officer

QC SUMMARY REPORT

Mike Cronin **Contact:**

> Dept: QC Type: MBLK

MSVOA

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:MB VOC-1 101618ATest Code:8260-W	Date Analyzed:	10/16/20	18 1202h										
1,1,1-Trichloroethane	< 2.00	μg/L	SW8260C	0.142	2.00								
1,1,2,2-Tetrachloroethane	< 2.00	μg/L	SW8260C	0.0872	2.00								
1,1,2-Trichloro-1,2,2-trifluoroethane	< 2.00	μg/L	SW8260C	0.322	2.00								
1,1,2-Trichloroethane	< 2.00	μg/L	SW8260C	0.0847	2.00								
1,1-Dichloroethane	< 2.00	μg/L	SW8260C	0.116	2.00								
1,1-Dichloroethene	< 2.00	μg/L	SW8260C	0.275	2.00								
1,2,4-Trichlorobenzene	< 2.00	μg/L	SW8260C	0.271	2.00								
1,2-Dibromo-3-chloropropane	< 5.00	μg/L	SW8260C	0.312	5.00								
1,2-Dibromoethane	< 2.00	μg/L	SW8260C	0.0828	2.00								
1,2-Dichlorobenzene	< 2.00	μg/L	SW8260C	0.105	2.00								
1,2-Dichloroethane	< 2.00	μg/L	SW8260C	0.0988	2.00								
1,2-Dichloropropane	< 2.00	μg/L	SW8260C	0.0968	2.00								
1,3-Dichlorobenzene	< 2.00	μg/L	SW8260C	0.118	2.00								
1,4-Dichlorobenzene	< 2.00	μg/L	SW8260C	0.272	2.00								
2-Butanone	< 10.0	μg/L	SW8260C	0.587	10.0								
2-Hexanone	< 5.00	μg/L	SW8260C	0.215	5.00								
4-Methyl-2-pentanone	< 5.00	μg/L	SW8260C	0.238	5.00								
Acetone	< 10.0	μg/L	SW8260C	1.13	10.0								
Benzene	< 2.00	μg/L	SW8260C	0.0956	2.00								
Bromodichloromethane	< 2.00	μg/L	SW8260C	0.0819	2.00								
Bromoform	< 2.00	μg/L	SW8260C	0.131	2.00								
Bromomethane	< 5.00	μg/L	SW8260C	3.45	5.00								
Carbon disulfide	< 2.00	μg/L	SW8260C	0.293	2.00								
Carbon tetrachloride	< 2.00	μg/L	SW8260C	0.178	2.00								
Chlorobenzene	< 2.00	μg/L	SW8260C	0.0832	2.00								
Chloroethane	< 2.00	μg/L	SW8260C	1.01	2.00								
Chloroform	< 2.00	$\mu g \! / L$	SW8260C	0.0998	2.00								

Report Date: 10/22/2018 Page 32 of 59

Lab Set ID: 1810374

Wasatch Environmental

Former Henries / 2249-001d

Client:

Project:

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha **QA** Officer

QC SUMMARY REPORT

Mike Cronin **Contact:**

MSVOA

Dept: QC Type: MBLK

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: MB VOC-1 101618A Test Code: 8260-W	Date Analyzed:	10/16/2018 1202h											
Chloromethane	< 5.00	μg/L	SW8260C	0.836	5.00								
cis-1,2-Dichloroethene	< 2.00	μg/L	SW8260C	0.129	2.00								
cis-1,3-Dichloropropene	< 2.00	μg/L	SW8260C	0.114	2.00								
Cyclohexane	< 2.00	μg/L	SW8260C	0.488	2.00								
Dibromochloromethane	< 2.00	μg/L	SW8260C	0.0924	2.00								
Dichlorodifluoromethane	< 2.00	μg/L	SW8260C	0.163	2.00								
Ethylbenzene	< 2.00	μg/L	SW8260C	0.103	2.00								
Isopropylbenzene	< 2.00	μg/L	SW8260C	0.131	2.00								
Methyl Acetate	< 5.00	μg/L	SW8260C	1.21	5.00								
Methyl tert-butyl ether	< 2.00	μg/L	SW8260C	0.206	2.00								
Methylcyclohexane	< 2.00	μg/L	SW8260C	0.282	2.00								
Methylene chloride	< 2.00	μg/L	SW8260C	0.400	2.00								
Naphthalene	< 2.00	μg/L	SW8260C	0.159	2.00								
Styrene	< 2.00	μg/L	SW8260C	0.149	2.00								
Tetrachloroethene	< 2.00	μg/L	SW8260C	0.170	2.00								
Toluene	< 2.00	μg/L	SW8260C	0.0858	2.00								
trans-1,2-Dichloroethene	< 2.00	μg/L	SW8260C	0.327	2.00								
trans-1,3-Dichloropropene	< 2.00	μg/L	SW8260C	0.127	2.00								
Trichloroethene	< 2.00	μg/L	SW8260C	0.105	2.00								
Trichlorofluoromethane	< 2.00	μg/L	SW8260C	0.180	2.00								
Vinyl chloride	< 1.00	μg/L	SW8260C	0.184	1.00								
Xylenes, Total	< 2.00	μg/L	SW8260C	0.310	2.00								
Surr: 1,2-Dichloroethane-d4	56.5	μg/L	SW8260C			50.00		113	80 - 136				
Surr: 4-Bromofluorobenzene	53.4	μg/L	SW8260C			50.00		107	85 - 121				
Surr: Dibromofluoromethane	52.4	μg/L	SW8260C			50.00		105	78 - 132				
Surr: Toluene-d8	50.4	μg/L	SW8260C			50.00		101	81 - 123				

Report Date: 10/22/2018 Page 33 of 59

Quantitation Report (QT Reviewed)

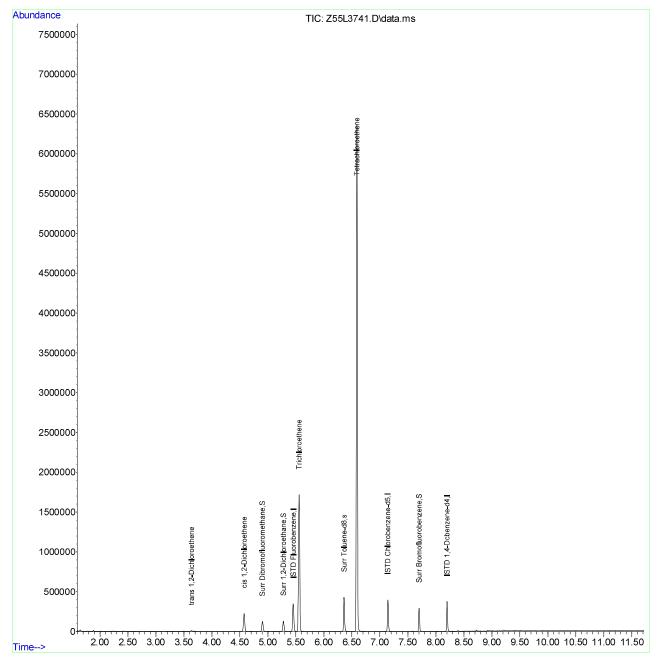
Data Path : D:\MassHunter\GCMS\1\data\0CT18-3\160CT18A\

Data File : Z55L3741.D

: 16 Oct 2018 01:46 pm Acq On

Operator :

Sample : 1810374-001A


: SAMP Misc SOIL 33.71 - 27.86 = 5.85GDG

ALS Vial : 7 Sample Multiplier: 0.85

Quant Time: Oct 16 13:58:43 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA3S_141.M

Quant Title : VOA Calibration QLast Update : Tue Sep 25 16:40:45 2018 Response via : Initial Calibration

VOA3S_141.M Tue Oct 16 15:43:49 2018

Page: 4

Report Date: 10/22/2018 Page 34 of 59

Quantitation Report (QT Reviewed)

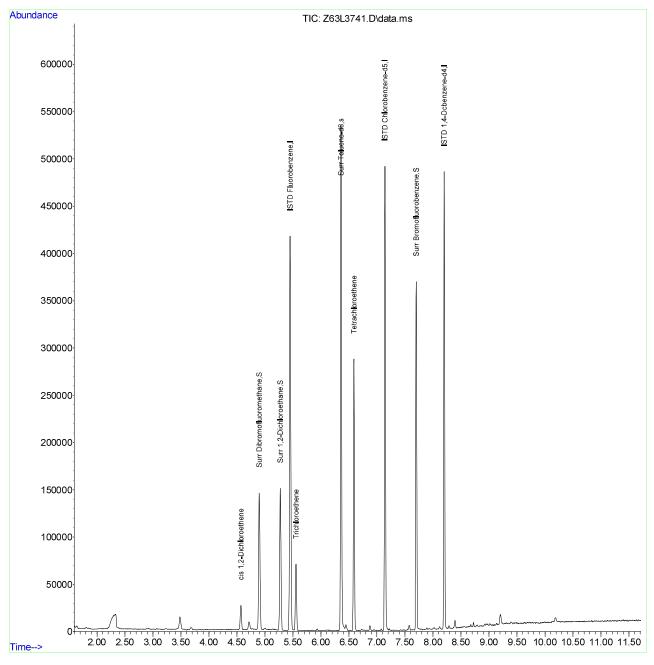
Data Path : D:\MassHunter\GCMS\1\data\0CT18-3\160CT18A\

Data File : Z63L3741.D

Acq On : 16 Oct 2018 04:31 pm

Operator :

Sample : 1810374-001A


: SAMP Misc SOIL $42.28 - 31.63 = 10.65G \ 100\mu L/5ML$ DG

ALS Vial : 15 Sample Multiplier: 46.95

Quant Time: Oct 16 16:43:27 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA3S_141.M

Quant Title : VOA Calibration QLast Update : Tue Sep 25 16:40:45 2018 Response via : Initial Calibration

VOA3S_141.M Tue Oct 16 16:50:58 2018

Page: 4

Report Date: 10/22/2018 Page 35 of 59

Quantitation Report (QT Reviewed)

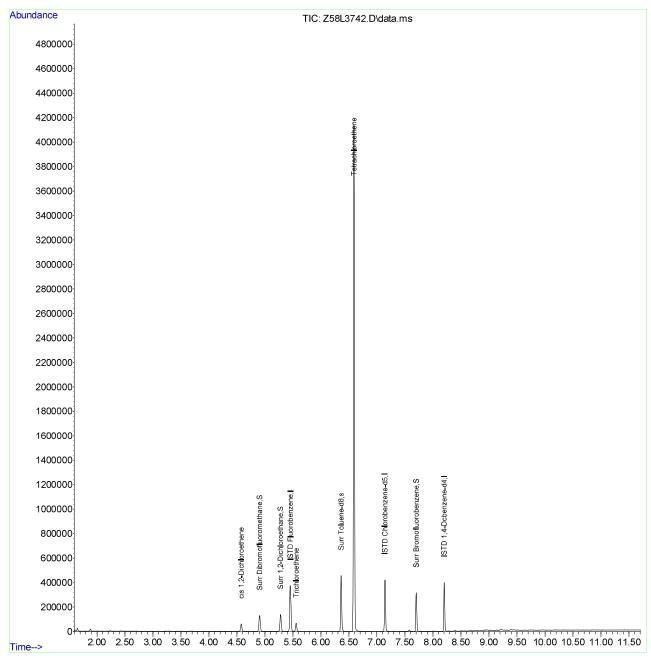
Data Path : D:\MassHunter\GCMS\1\data\0CT18-3\160CT18A\

Data File : Z58L3742.D

: 16 Oct 2018 02:48 pm Acq On

Operator :

Sample : 1810374-002A


: SAMP SOIL Misc 33.70 - 27.73 = 5.97GDG

ALS Vial : 10 Sample Multiplier: 0.84

Quant Time: Oct 16 15:00:02 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA3S_141.M

Quant Title : VOA Calibration QLast Update : Tue Sep 25 16:40:45 2018 Response via : Initial Calibration

VOA3S_141.M Tue Oct 16 15:47:30 2018

Page: 4

Report Date: 10/22/2018 Page 36 of 59

Quantitation Report (Not Reviewed)

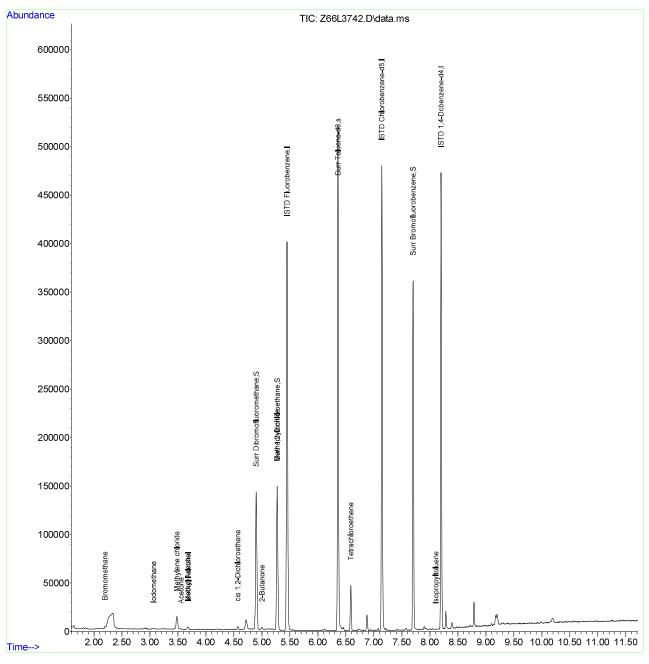
Data Path : D:\MassHunter\GCMS\1\data\0CT18-3\160CT18A\

Data File : Z66L3742.D

Acq On : 16 Oct 2018 05:32 pm

Operator :

Sample : 1810374-002A


: SAMP Misc SOIL 42.63 - 31.73 = 10.90G100μL/5ML DG

ALS Vial : 18 Sample Multiplier: 45.87

Quant Time: Oct 16 17:44:36 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA3S_141.M

Quant Title : VOA Calibration QLast Update : Tue Sep 25 16:40:45 2018 Response via : Initial Calibration

VOA3S_141.M Wed Oct 17 13:59:15 2018

Page: 4

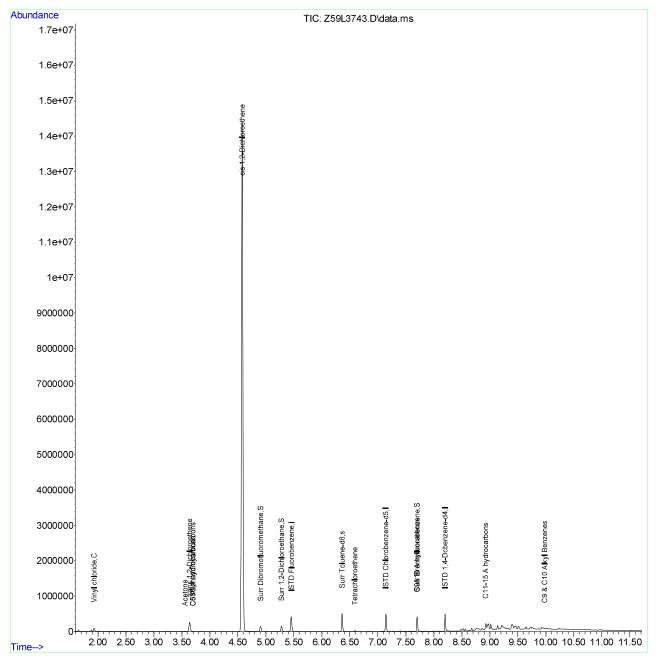
Data Path : D:\MassHunter\GCMS\1\data\0CT18-3\160CT18A\

Data File : Z59L3743.D

Acq On : 16 Oct 2018 03:08 pm

Operator :

Sample : 1810374-003A


: SAMP SOIL Misc 34.18 - 27.74 = 6.44GDG

ALS Vial : 11 Sample Multiplier: 0.78

Quant Time: Oct 16 15:20:46 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA3S_141.M

Quant Title : VOA Calibration QLast Update : Tue Sep 25 16:40:45 2018 Response via : Initial Calibration

VOA3S_141.M Tue Oct 16 15:49:25 2018

Page: 4

Report Date: 10/22/2018 Page 38 of 59

Data Path : D:\MassHunter\GCMS\1\data\0CT18-3\160CT18A\

Data File : Z67L3743.D

Acq On : 16 Oct 2018 05:53 pm

Operator :

Sample : 1810374-003A

: SAMP Misc SOIL 43.34 - 31.70 = 11.64G100μL/5ML DG

ALS Vial : 19 Sample Multiplier: 42.96

Quant Time: Oct 16 18:04:55 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA3S_141.M

Quant Title : VOA Calibration QLast Update : Tue Sep 25 16:40:45 2018 Response via : Initial Calibration

VOA3S_141.M Wed Oct 17 14:00:58 2018

Page: 4

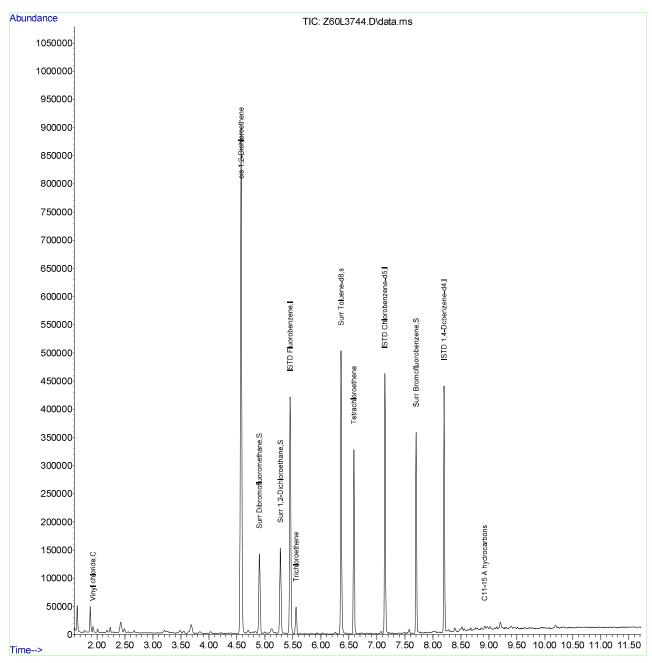
Data Path : D:\MassHunter\GCMS\1\data\0CT18-3\160CT18A\

Data File : Z60L3744.D

Acq On : 16 Oct 2018 03:29 pm

Operator :

Sample : 1810374-004A


: SAMP Misc SOIL 33.04 - 27.58 = 5.46GDG

ALS Vial : 12 Sample Multiplier: 0.92

Quant Time: Oct 16 15:41:32 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA3S_141.M

Quant Title : VOA Calibration QLast Update : Tue Sep 25 16:40:45 2018 Response via : Initial Calibration

VOA3S_141.M Tue Oct 16 15:50:54 2018

Page: 4

Report Date: 10/22/2018 Page 40 of 59

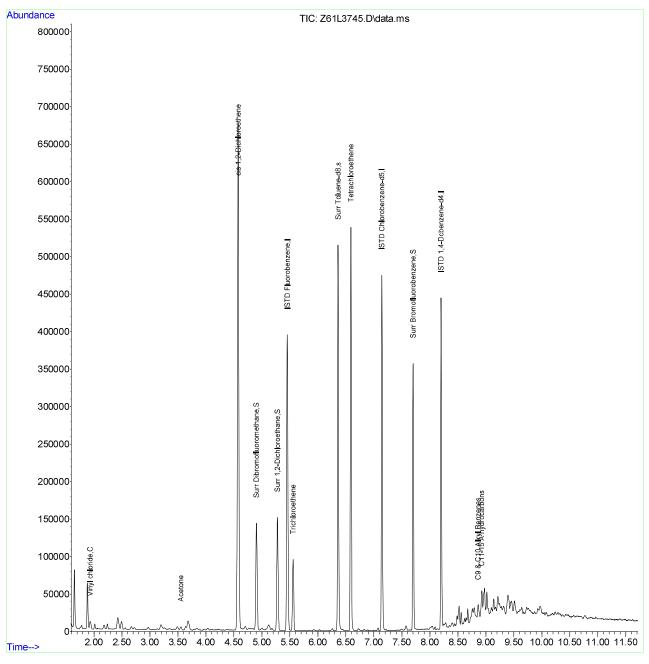
Data Path : D:\MassHunter\GCMS\1\data\0CT18-3\160CT18A\

Data File : Z61L3745.D

Acq On : 16 Oct 2018 03:50 pm

Operator :

Sample : 1810374-005A


: SAMP Misc SOIL 34.08 - 27.65 = 6.43GDG

ALS Vial : 13 Sample Multiplier: 0.78

Quant Time: Oct 16 16:02:14 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA3S_141.M

Quant Title : VOA Calibration QLast Update : Tue Sep 25 16:40:45 2018 Response via : Initial Calibration

VOA3S_141.M Tue Oct 16 16:11:25 2018

Page: 4

Report Date: 10/22/2018 Page 41 of 59

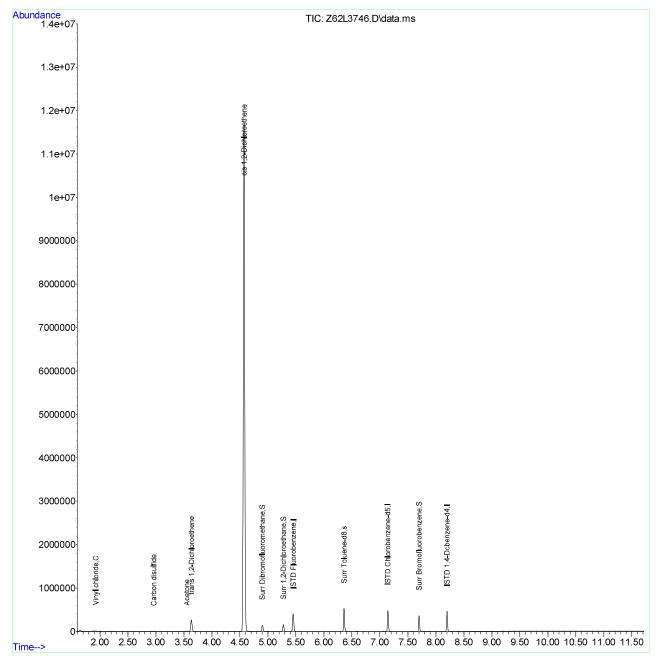
Data Path : D:\MassHunter\GCMS\1\data\0CT18-3\160CT18A\

Data File : Z62L3746.D

: 16 Oct 2018 04:11 pm Acq On

Operator :

Sample : 1810374-006A


: SAMP SOIL Misc 34.07 - 27.97 = 6.10GDG

ALS Vial : 14 Sample Multiplier: 0.82

Quant Time: Oct 16 16:22:59 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA3S_141.M

Quant Title : VOA Calibration QLast Update : Tue Sep 25 16:40:45 2018 Response via : Initial Calibration

VOA3S_141.M Tue Oct 16 16:34:44 2018

Page: 4

Report Date: 10/22/2018 Page 42 of 59

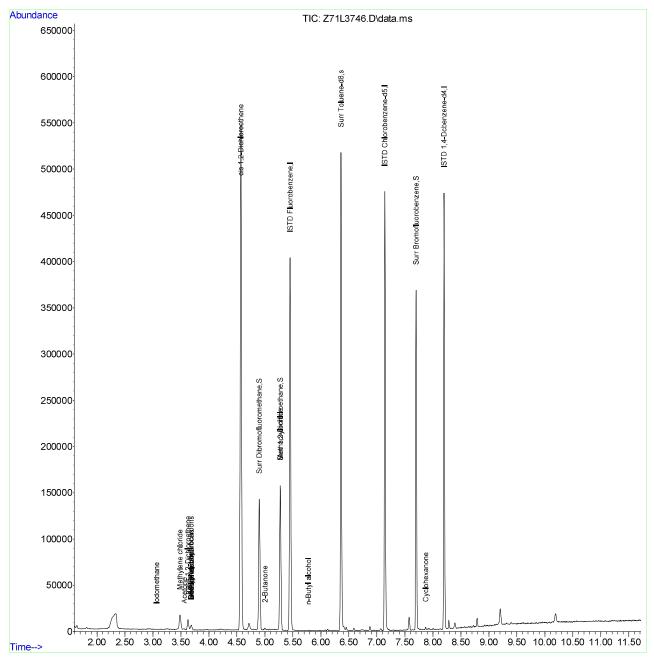
Data Path : D:\MassHunter\GCMS\1\data\0CT18-3\160CT18A\

Data File : Z71L3746.D

Acq On : 16 Oct 2018 07:15 pm

Operator :

Sample : 1810374-006A


: SAMP Misc SOIL 41.85 - 31.61 = 10.24G 100μL/5ML DG

ALS Vial : 23 Sample Multiplier: 48.83

Quant Time: Oct 16 19:27:14 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA3S_141.M

Quant Title : VOA Calibration QLast Update : Tue Sep 25 16:40:45 2018 Response via : Initial Calibration

VOA3S_141.M Thu Oct 18 09:59:04 2018

Page: 4

Report Date: 10/22/2018 Page 43 of 59

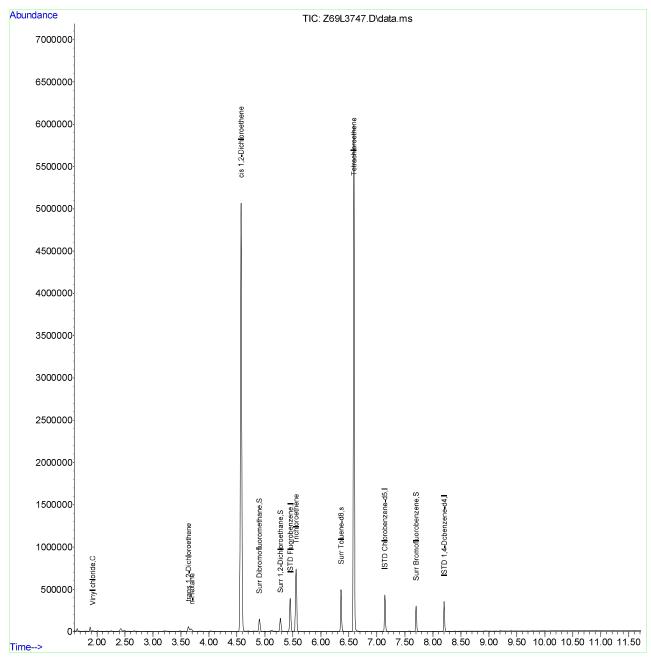
Data Path : D:\MassHunter\GCMS\1\data\0CT18-3\160CT18A\

Data File : Z69L3747.D

: 16 Oct 2018 06:34 pm Acq On

Operator :

Sample : 1810374-007A


: SAMP SOIL Misc 33.47 - 28.02 = 5.45GDG

ALS Vial : 21 Sample Multiplier: 0.92

Quant Time: Oct 16 18:46:10 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA3S_141.M

Quant Title : VOA Calibration QLast Update : Tue Sep 25 16:40:45 2018 Response via : Initial Calibration

VOA3S_141.M Wed Oct 17 14:03:34 2018

Page: 4

Report Date: 10/22/2018 Page 44 of 59

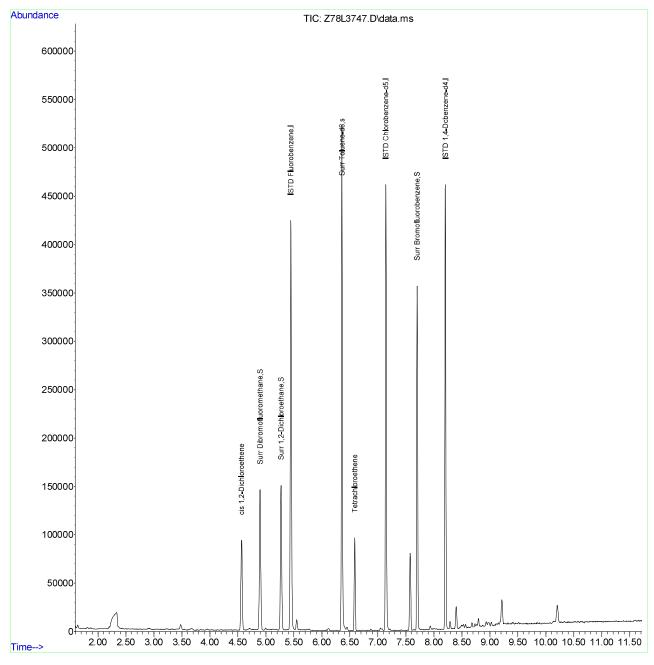
Data Path : D:\MassHunter\GCMS\1\data\0CT18-3\170CT18A\

Data File : Z78L3747.D

Acq On : 17 Oct 2018 02:31 pm

Operator :

Sample : 1810374-007A


: SAMP Misc SOIL $42.28 - 31.69 = 10.59G 100\mu L/5ML$ DG

ALS Vial : 6 Sample Multiplier: 47.21

Quant Time: Oct 17 14:43:15 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA3S_141.M

Quant Title : VOA Calibration QLast Update : Tue Sep 25 16:40:45 2018 Response via : Initial Calibration

VOA3S_141.M Thu Oct 18 10:06:40 2018

Page: 4

Report Date: 10/22/2018 Page 45 of 59

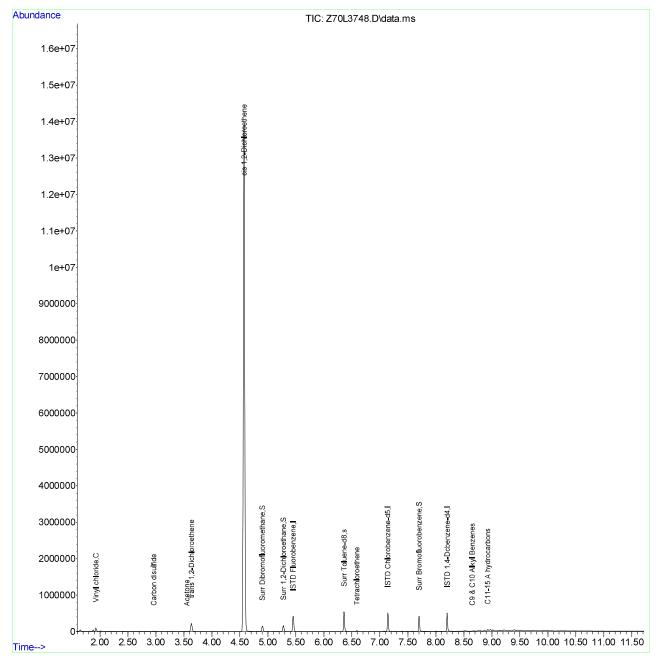
Data Path : D:\MassHunter\GCMS\1\data\0CT18-3\160CT18A\

Data File : Z70L3748.D

Acq On : 16 Oct 2018 06:55 pm

Operator :

: 1810374-008A Sample


: SAMP Misc SOIL 33.96 - 27.57 = 6.39GDG

ALS Vial : 22 Sample Multiplier: 0.78

Quant Time: Oct 16 19:06:58 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA3S_141.M

Quant Title : VOA Calibration QLast Update : Tue Sep 25 16:40:45 2018 Response via : Initial Calibration

VOA3S_141.M Wed Oct 17 14:06:31 2018

Page: 4

Report Date: 10/22/2018 Page 46 of 59

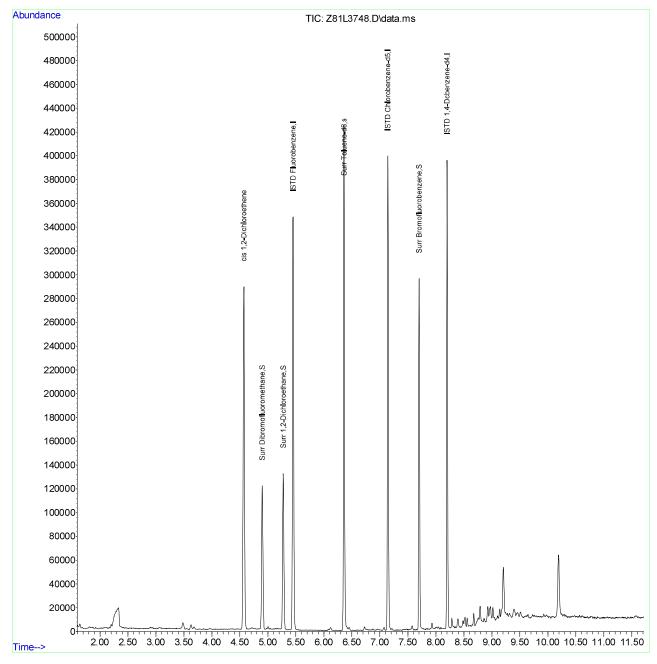
Data Path : D:\MassHunter\GCMS\1\data\0CT18-3\170CT18A\

Data File : Z81L3748.D

: 17 Oct 2018 03:32 pm Acq On

Operator :

Sample : 1810374-008A


: SAMP Misc SOIL 42.78 - 31.73 = 11.05G

ALS Vial : 9 Sample Multiplier: 45.25

Quant Time: Oct 17 15:44:19 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA3S_141.M

Quant Title : VOA Calibration QLast Update : Tue Sep 25 16:40:45 2018 Response via : Initial Calibration

VOA3S_141.M Thu Oct 18 10:09:09 2018

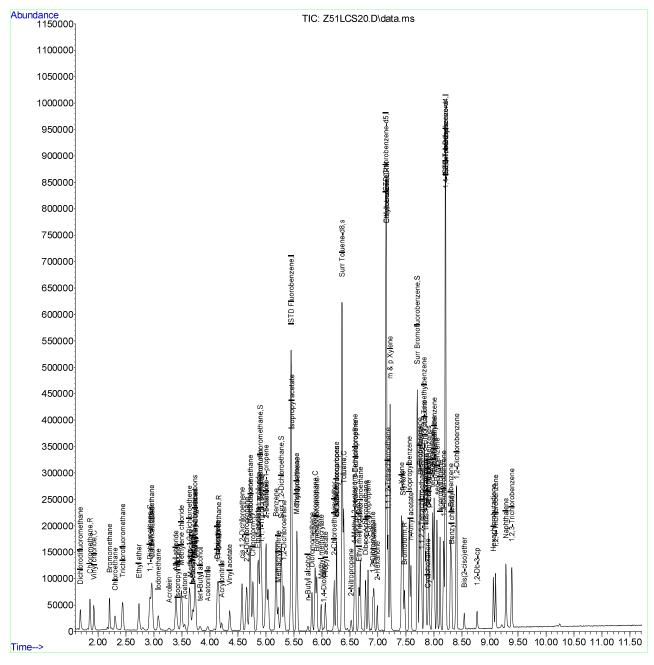
Page: 4

Report Date: 10/22/2018 Page 47 of 59

Data Path : D:\MassHunter\GCMS\1\data\OCT18-3\160CT18A\

Data File : Z51LCS20.D

Acq On : 16 Oct 2018 12:25 pm Operator Sample : LCS VOC-3 101618A


Misc : LCS SEE COVERSHEET FOR ID AND AMOUNTS DG

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Oct 16 12:37:10 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA3S_141.M

Quant Title : VOA Calibration QLast Update : Tue Sep 25 16:40:45 2018 Response via : Initial Calibration

VOA3S_141.M Tue Oct 16 12:57:21 2018

Page: 4

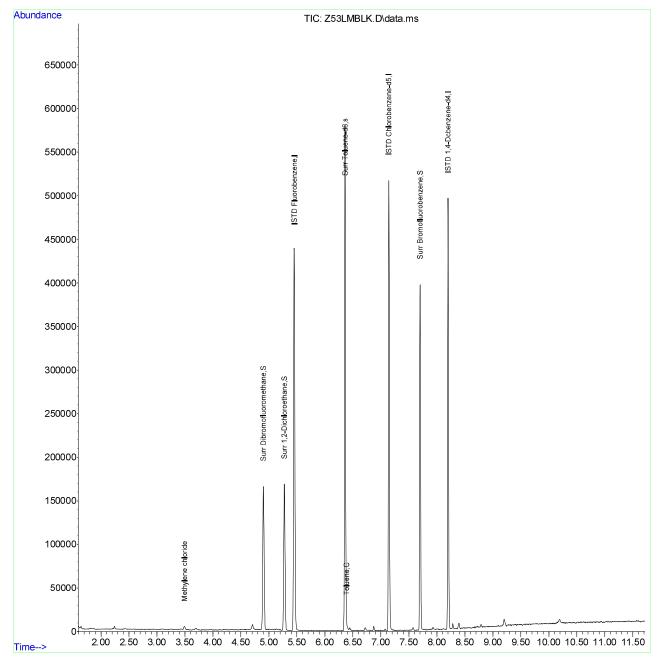
Report Date: 10/22/2018 Page 48 of 59

Data Path : D:\MassHunter\GCMS\1\data\0CT18-3\160CT18A\

Data File : Z53LMBLK.D

: 16 Oct 2018 01:05 pm Acq On Operator :

: MB VOC-3 101618A Sample


Misc : MBLK SOIL 5.0ML DG

ALS Vial : 5 Sample Multiplier: 1

Quant Time: Oct 16 13:17:43 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA3S_141.M

Quant Title : VOA Calibration QLast Update : Tue Sep 25 16:40:45 2018 Response via : Initial Calibration

VOA3S_141.M Tue Oct 16 15:39:39 2018

Page: 4

Report Date: 10/22/2018 Page 49 of 59

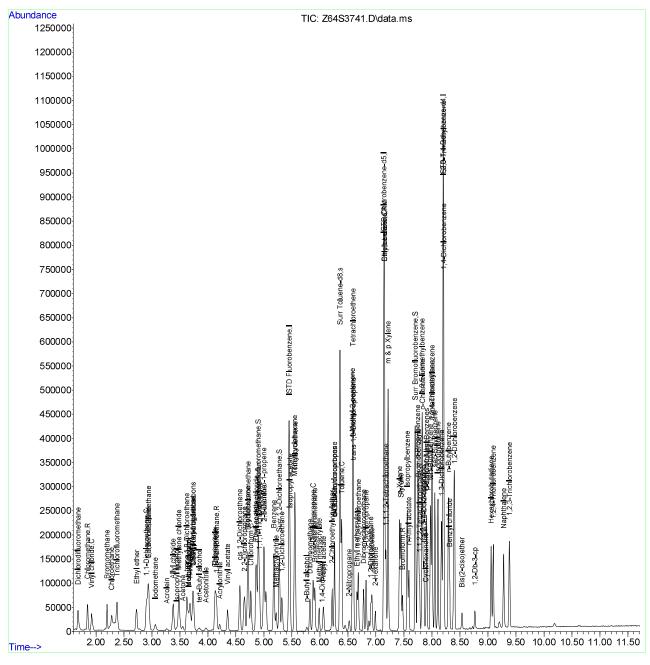
Data Path : D:\MassHunter\GCMS\1\data\OCT18-3\160CT18A\

Data File : Z64S3741.D

Acq On : 16 Oct 2018 04:52 pm

Operator

Sample : 1810374-001AMS


Misc : MS SOIL $42.28 - 31.63 = 10.65G \ 100\mu L/5ML$ DG

ALS Vial : 16 Sample Multiplier: 46.95

Quant Time: Oct 16 17:03:53 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA3S_141.M

Quant Title : VOA Calibration QLast Update : Tue Sep 25 16:40:45 2018 Response via : Initial Calibration

VOA3S_141.M Tue Oct 16 17:16:47 2018

Page: 4

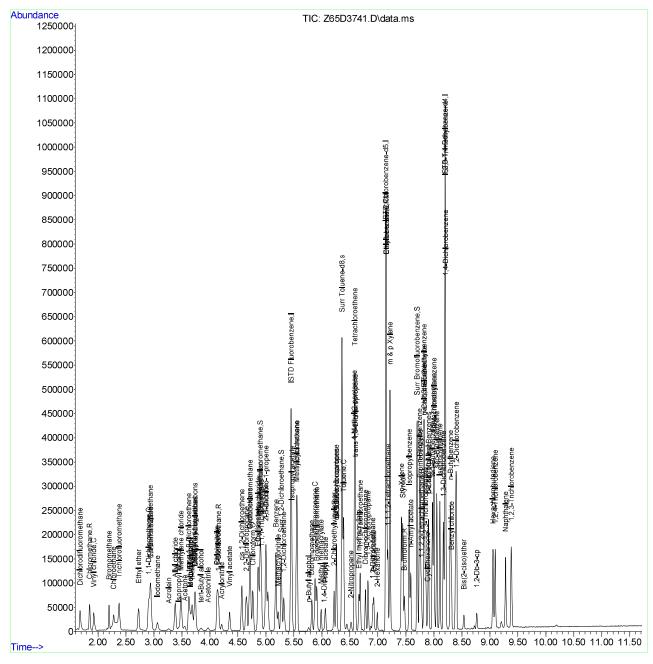
Report Date: 10/22/2018 Page 50 of 59

Data Path : D:\MassHunter\GCMS\1\data\OCT18-3\160CT18A\

Data File : Z65D3741.D

Acq On : 16 Oct 2018 05:12 pm Operator

: 1810374-001AMSD Sample


: MSD Misc SOIL 42.28 - 31.63 = 10.65G 100μL/5ML DG

ALS Vial : 17 Sample Multiplier: 46.95

Quant Time: Oct 16 17:24:11 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA3S_141.M

Quant Title : VOA Calibration QLast Update : Tue Sep 25 16:40:45 2018 Response via : Initial Calibration

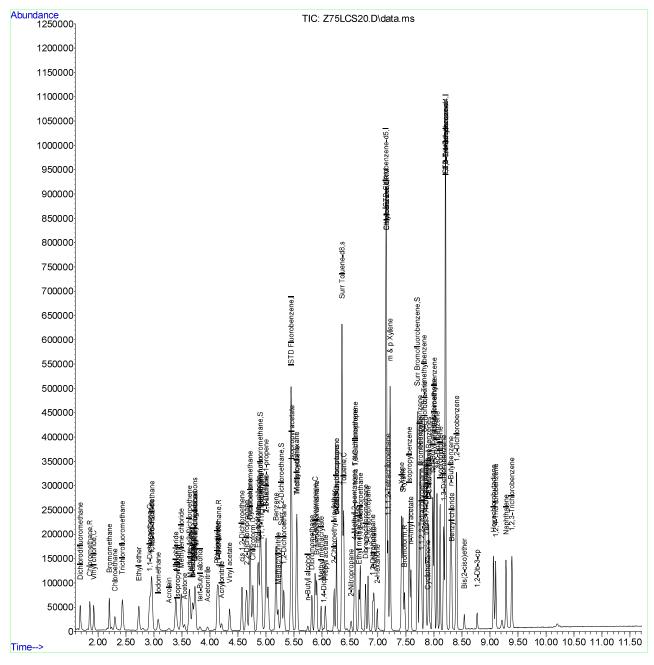
VOA3S_141.M Tue Oct 16 17:24:35 2018

Page: 4

Data Path : D:\MassHunter\GCMS\1\data\OCT18-3\170CT18A\

Data File : Z75LCS20.D

Acq On : 17 Oct 2018 12:19 pm Operator Sample : LCS VOC-3 101718A


Misc : LCS SEE COVERSHEET FOR ID AND AMOUNTS DG

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Oct 17 12:31:32 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA3S_141.M

Quant Title : VOA Calibration QLast Update : Tue Sep 25 16:40:45 2018 Response via : Initial Calibration

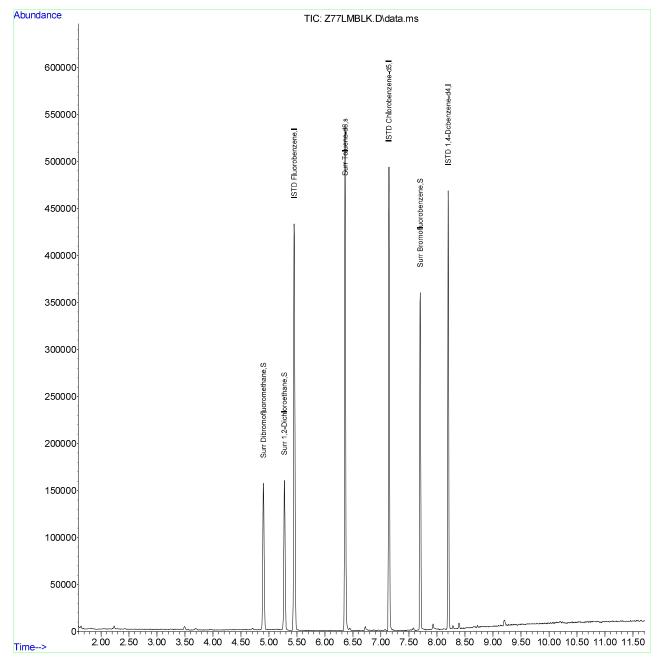
VOA3S_141.M Wed Oct 17 14:16:33 2018

Page: 4

Data Path : D:\MassHunter\GCMS\1\data\OCT18-3\170CT18A\

Data File : Z77LMBLK.D

: 17 Oct 2018 01:00 pm Acq On Operator : : MB VOC-3 101718A Sample


Misc : MBLK SOIL 5.0ML DG

ALS Vial : 5 Sample Multiplier: 1

Quant Time: Oct 17 13:12:11 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA3S_141.M

Quant Title : VOA Calibration QLast Update : Tue Sep 25 16:40:45 2018 Response via : Initial Calibration

VOA3S_141.M Thu Oct 18 10:05:46 2018

Page: 4

Report Date: 10/22/2018 Page 53 of 59

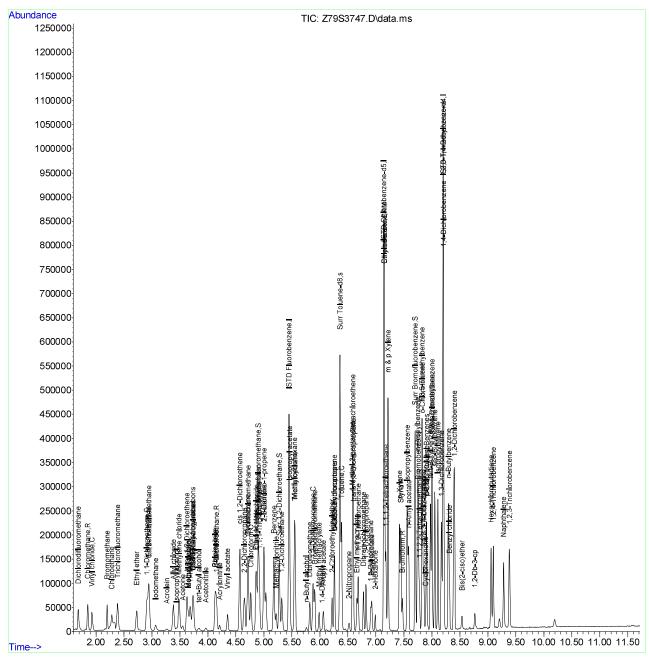
Data Path : D:\MassHunter\GCMS\1\data\OCT18-3\170CT18A\

Data File : Z79S3747.D

: 17 Oct 2018 02:51 pm Acq On

Operator

: 1810374-007AMS Sample


Misc : MS SOIL 42.28 - 31.69 = 10.59G 100μL/5ML DG

ALS Vial : 7 Sample Multiplier: 47.21

Quant Time: Oct 17 15:03:34 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA3S_141.M

Quant Title : VOA Calibration QLast Update : Tue Sep 25 16:40:45 2018 Response via : Initial Calibration

VOA3S_141.M Thu Oct 18 10:07:10 2018

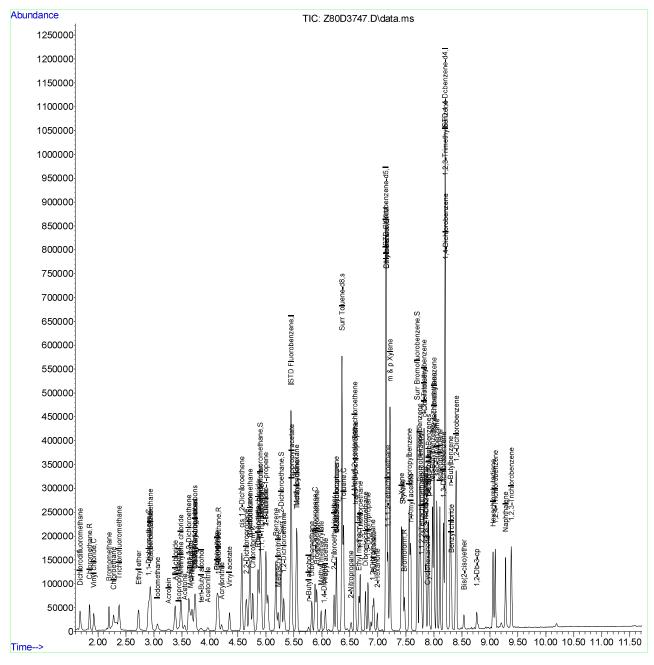
Page: 4

Data Path : D:\MassHunter\GCMS\1\data\OCT18-3\170CT18A\

Data File : Z80D3747.D

Acq On : 17 Oct 2018 03:12 pm Operator

Sample : 1810374-007AMSD


Misc : MSD SOIL 42.28 - 31.69 = 10.59G 100μL/5ML DG

ALS Vial : 8 Sample Multiplier: 47.21

Quant Time: Oct 17 15:23:54 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA3S_141.M

Quant Title : VOA Calibration QLast Update : Tue Sep 25 16:40:45 2018 Response via : Initial Calibration

VOA3S_141.M Thu Oct 18 10:07:30 2018

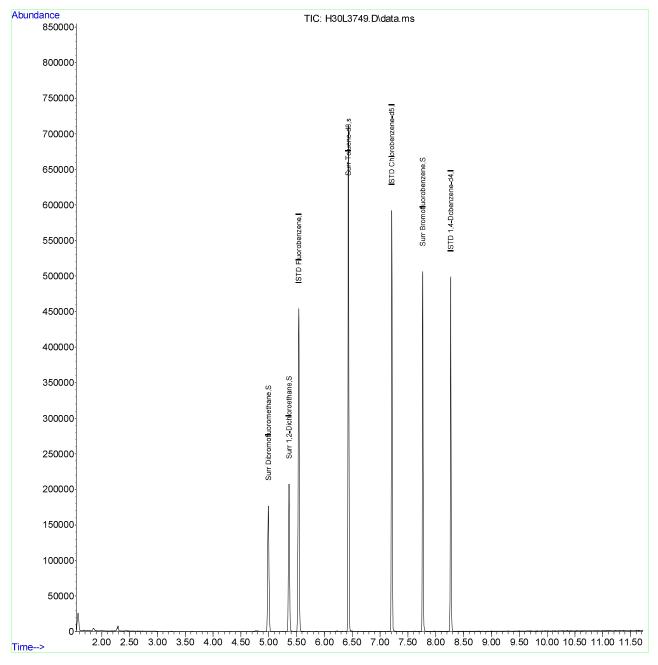
Page: 4

Data Path : C:\MassHunter\GCMS\1\data\0CT18-1\160CT18A\

Data File : H30L3749.D

Acq On : 16 Oct 2018 01:33 pm

Operator :


Sample : 1810374-009A

: SAMP Misc 5.0ML 10F3 DG ALS Vial : 9 Sample Multiplier: 1

Quant Time: Oct 16 13:45:33 2018

Quant Method : C:\MassHunter\GCMS\1\methods\VOA1W_129.M

Quant Title : VOA Calibration QLast Update : Mon Oct 15 11:03:16 2018 Response via : Initial Calibration

VOA1W_129.M Tue Oct 16 14:44:09 2018

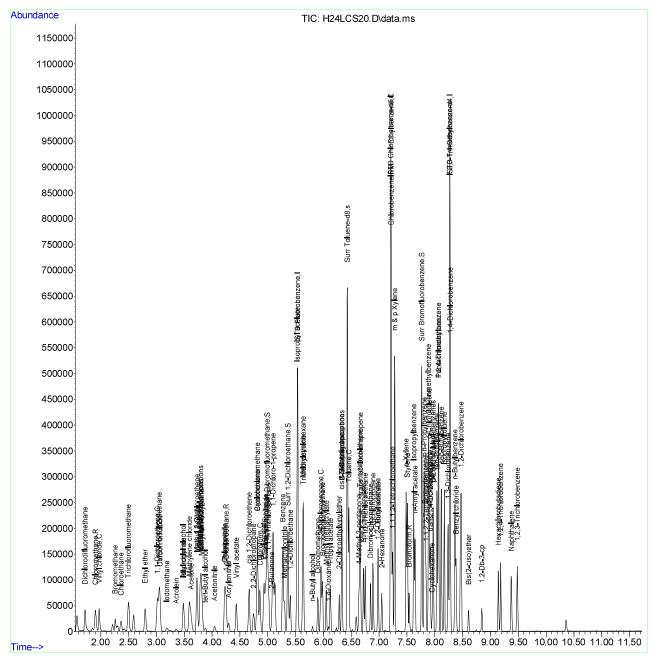
Page: 4

Report Date: 10/22/2018 Page 56 of 59

Data Path : C:\MassHunter\GCMS\1\data\OCT18-1\160CT18A\

Data File : H24LCS20.D

Acq On : 16 Oct 2018 11:23 am Operator Sample : LCS VOC-1 101618A


Misc : LCS SEE COVERSHEET FOR ID AND AMOUNTS DG

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Oct 16 11:34:54 2018

Quant Method : C:\MassHunter\GCMS\1\methods\VOA1W_129.M

Quant Title : VOA Calibration QLast Update : Mon Oct 15 11:03:16 2018 Response via : Initial Calibration

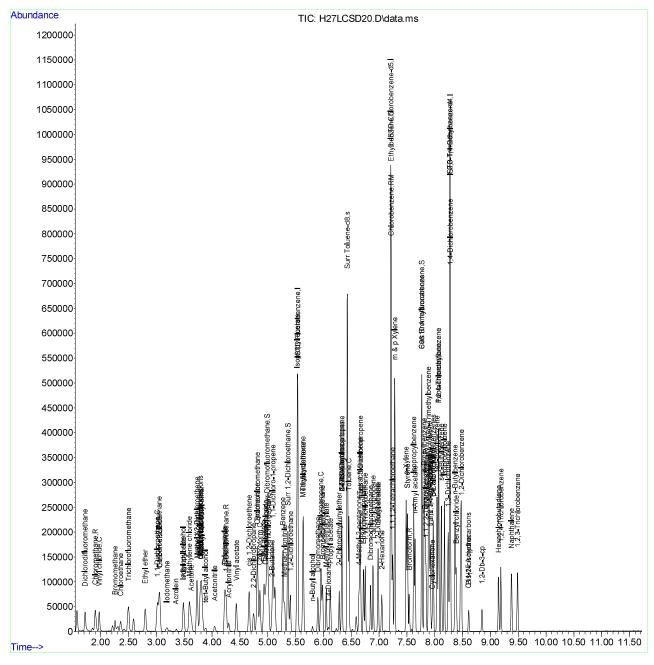
VOA1W_129.M Tue Oct 16 12:17:06 2018

Page: 4

Data Path : C:\MassHunter\GCMS\1\data\OCT18-1\160CT18A\

Data File : H27LCSD20.D

Acq On : 16 Oct 2018 12:34 pm Operator : LCSD VOC-1 101618A Sample


Misc : LCSD SEE COVERSHEET FOR ID AND AMOUNTS DG

ALS Vial : 6 Sample Multiplier: 1

Quant Time: Oct 16 12:46:48 2018

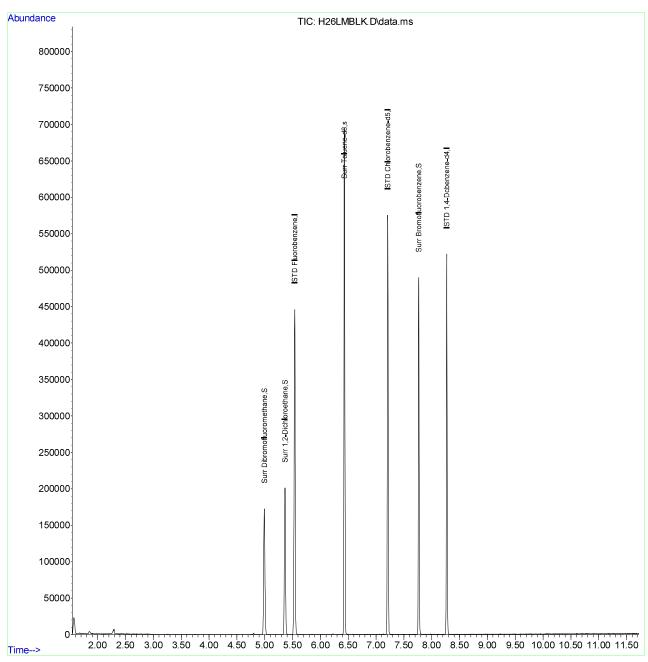
Quant Method : C:\MassHunter\GCMS\1\methods\VOA1W_129.M

Quant Title : VOA Calibration QLast Update : Mon Oct 15 11:03:16 2018 Response via : Initial Calibration

VOA1W_129.M Tue Oct 16 14:20:02 2018

Page: 4

Data Path : C:\MassHunter\GCMS\1\data\0CT18-1\160CT18A\


Data File : H26LMBLK.D

: 16 Oct 2018 12:02 pm Acq On Operator : : MB VOC-1 101618A Sample Misc : MBLK 5.0ML DG ALS Vial : 5 Sample Multiplier: 1

Quant Time: Oct 16 12:14:08 2018

Quant Method : C:\MassHunter\GCMS\1\methods\VOA1W_129.M

Quant Title : VOA Calibration QLast Update : Mon Oct 15 11:03:16 2018 Response via : Initial Calibration

VOA1W_129.M Tue Oct 16 14:22:23 2018

Page: 4

American West Analytical Laboratories

WORK ORDER Summary

Work Order: 1810374

Page 1 of 1

Client:

Wasatch Environmental

Due Date: 10/24/2018

Client ID:

WAS580

Contact:

Mike Cronin

Project:

Former Henries / 2249-001d

QC Level: III WO Type: Standard

Comments:

PA Rush / QC3 - samples were collected using 5035 method.;

Comments.	TA Rush / QC3 - samples were concered	a doing 5 055 memor	.,			<u> </u>	
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel Storage	
1810374-001A	CS-1-5'	10/15/2018 1000h	10/15/2018 1553h		Soil # of Analytes: 49 / # of Surr: 4	Purge	8
1810374-002A	CS-2-3'	10/15/2018 1015h	10/15/2018 1553h		Soil # of Analytes: 49 / # of Surr: 4	Purge Purge	6
1810374-003A	CS-2-12'	10/15/2018 1035h	10/15/2018 1553h		Soil # of Analytes: 49 / # of Surr: 4	Purge	6
1810374-004A	CS-3-85	10/15/2018 1155h	10/15/2018 1553h		Soil # of Analytes: 49 / # of Surr: 4	Purge Purge	6
1810374-005A	CS-3-12'	10/15/2018 1205h	10/15/2018 1553h		Soil # of Analytes: 49 / # of Surr: 4	Purge	6
1810374-006A	CS-4-8'	10/15/2018 1230h	10/15/2018 1553h		Soil # of Analytes: 49 / # of Surr: 4	Purge	6
1810374-007A	CS-5-8'	10/15/2018 1245h	10/15/2018 1553h		Soil : # of Analytes: 49 / # of Surr: 4	Purge	6
1810374-008A	CS-20-12'	10/15/2018 0930h	10/15/2018 1553h		Soil ; # of Analytes: 49 / # of Surr: 4	Purge	6
1810374-009A	Trip Blank	10/15/2018	10/15/2018 1553h	8260-W	Aqueous L; # of Analytes: 49 / # of Surr: 4	Purge	3

A

Signature

American West Analytical Laboratories 3440 S. 700 W. Salt Lake City, UT 84119

3440 S. 700 W. Salt Lake City, UT 84119 Thone # (801) 263-8686 Toll Free # (888) 263-8686

		42,0	ļ	
86	760-	CF	HAIN OF	CUSTODY
435				

All analysis will be conducted using NELAP accredited methods and all data will be reported using AWAL's standard analyte lists and

AWAL Lab Sa

18/03 74 AWAL Lab Sample Set #

Phone # (801) 263-8686 Toll Free # (8	888) 263-8686			reporting limits (PQL) unless specifically requested other				uested otl	therwise on this Chain of Custody and/or attached documentation.			Page of		
Fax # (801) 263-8687 Email awal@a	Fax # (801) 263-8687				QC Le	evel:			Tu	rn Aroı	ınd Tir	ne:	Unless other arrangements have been made, signed reports will be emailed by	Due Date:
www.awal-labs.com	www.awal-labs.com			1 2 2+ 3 3+ 1 2 3			2 3 4	5 Sfind 5:00 pm on the day they are due.			10/24			
Client: Wasatth Entranmente Address: 2410 W. California Ave. City, State, Zip: 5LC, UT, Stlord Contact: Michael Carnin Phone #: 801-972-8400 Cell #:— E-mail: Mco wasatth— announce. Project Name: Forme: Henries Project #: 249-000				8260-	5 - VOC 15	05							Report down to the MDL Include EDD: Lab Filter for: Field Filtered For: For Compliance With: NELAP RCRA CWA SDWA ELAP / A2LA NLLAP Non-Compliance Other:	Laboratory Use Only COC Tape Was: 1 Present on Outer Package Y N 2 Unbroken on Outer Package Y 3 Present on Sample Y 4 Unbroken on Sample Y
PO#: 2249- 9/10 Sampler Name: Blake Day 1994	-		ainers		2 0	(m5								Samples Were: 1 Shipped of hand delivered
Sample ID:	Date Sampled	Time Sampled	# of Containers	Sample Matrix	30/08	MS							Known Hazards & Sample Comments	2 Ambient o Chilled CM / CC 3 Temperature 5.6 °C
C5-1-5'	10-15-18	lode	8	3	X	X							<u> </u>	4 Received Intact
C5-a-3'	4	1015	6	5	X									
CS-2-121		1035	6	5	χ									
cs-3-81		1155	6	5	χ									5 Properly Preserved Y N Checked at bench
(5-3-12'		1205	6	5	χ									
C5-4-8'	4	1230	6	5	X									
(5-5-8'	10-15-18	1245	6	5	X				\top					6 Received Within Holding Times
(5-20-12)	10-15-18	()93()	6	5	Ý.									Y
1270	10 10 10	<u> </u>	Ľ				-		-					$\parallel \bigcirc$
			<u> </u>						1	<u> </u>	\vdash			
Trip Blank 10/8/15-	BL								and the second		-	na gerinterio par	attled per Blake	Sample Labels and COC Record Match?
		Management and the Control of the Co	ni delimination		, samesanene		······································	10	1					
					İ	<u> </u>	15	76					·	
					certpace									
Relinquished by:	10°+5+8	Received by: Signature Awf	V		W	h		ken		1	Date:	1518	Special Instructions:	
Print Name: Blake B. Connex	Time 553		lon	<u> </u>	<u>J-4</u>	4.10	- / -	-/				53		
Relinquished by:	Date:	Received by: Signature	(.~	, ,,	1		7			Date:			
	Time:										Time:			
Print Name: Relinquished by:	Date:	Print Name: Received by:									Date:			

Signature

Print Name:

Time:

Appendix L

Emissions Laboratory Analytical Report

Blake Downey

Wasatch Environmental 2410 California Ave

Salt Lake City, UT 84104

ANALYTICAL REPORT

Report Date: January 08, 2019

Phone: (435) 760-8269

E-mail: bd@wasatch-environmental.com

Workorder: **34-1900227**

Project ID: Millcreek Henries/2249-001d

Purchase Order: 2249-001d Project Manager Jessica Helland

Client Sample ID	Lab ID	Collect Date	Receive Date	Sampling Site
EM-1	1900227001	01/02/19	01/02/19	Millcreek Henries

ADDRESS 960 West LeVoy Drive, Salt Lake City, Utah, 84123 USA | PHONE +1 801 266 7700 | FAX +1 801 268 9992 ALS GROUP USA, CORP. An ALS Limited Company

Environmental 🔈

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Page 1 of 5 Tue, 01/08/19 4:16 PM ENVREP-V4.8

Workorder: 34-1900227

Client: Wasatch Environmental, Inc.

Project Manager: Jessica Helland

Analytical Results

Sample ID: EM-1 Sampling Site: Millcreek Henries Collected: 01/02/2019

Media: Summa 6 Liter Canister Lab ID: 1900227001 Received: 01/02/2019

Sampling Parameter: NA Matrix: Air

Analysis Method - EPA TO-15 Preparation: Not Applicable			Analysis: EPA TO-1	5 Air	Instrum	ent ID: 5975-K
Treparation: Not Applicable			Batch: IVOA/4209			Solid: NA
			Analyzed: 01/07/2019		Report	Basis: Wet
		Result				
Analyte	Result (ppb)	(ug/m³)	MDL (ppb)	RL (ppb)	Dilution	Qual
Dichlorodifluoromethane	ND	<15	3.0	10	20	U
Chloromethane	ND	<6.2	3.0	10	20	U
Freon 114	ND	<21	3.0	10	20	U
Vinyl chloride	ND	<7.7	3.0	10	20	U
1,3-Butadiene	ND	<6.6	3.0	10	20	U
Bromomethane	ND	<12	3.0	10	20	U
Chloroethane	ND	<7.9	3.0	10	20	U
Freon 11	ND	<17	3.0	10	20	U
Freon 113	ND	<23	3.0	10	20	U
1,1-Dichloroethene	ND	<12	3.0	10	20	U
Acetone	64	150	6.0	20	20	
Carbon disulfide	ND	<9.3	3.0	10	20	U
Methylene chloride	ND	<10	3.0	10	20	U
trans-1,2-Dichloroethene	ND	<12	3.0	10	20	U
Methyl t-butyl ether	ND	<11	3.0	10	20	U
Vinyl acetate	ND	<14	4.0	10	20	U
2-Butanone	10	30	3.0	10	20	
cis-1,2-Dichloroethene	9.5	38	3.0	10	20	J
1,1-Dichloroethane	ND	<12	3.0	10	20	U
Ethyl acetate	ND	<22	6.0	20	20	U
Hexane	ND	<11	3.0	10	20	U
Chloroform	ND	<15	3.0	10	20	U
Tetrahydrofuran	180	530	3.0	10	20	
1,2-Dichloroethane	ND	<12	3.0	10	20	U
1,1,1-Trichloroethane	ND	<16	3.0	10	20	U
Carbon tetrachloride	ND	<19	3.0	10	20	U
Benzene	ND	<9.6	3.0	10	20	U
Cyclohexane	ND	<10	3.0	10	20	U
Trichloroethene	28	150	3.0	10	20	
1,2-Dichloropropane	ND	<15	3.0	10	20	U
Bromodichloromethane	ND	<20	3.0	10	20	U
Heptane	ND	<12	3.0	10	20	U
cis-1,3-Dichloropropene	ND	<14	3.0	10	20	U
4-Methyl-2-pentanone	4.1	17	3.0	10	20	J

Results Continued on Next Page

Workorder: 34-1900227

Client: Wasatch Environmental, Inc.

Project Manager: Jessica Helland

Analytical Results

1-Propene, 2-methyl-

Butane

Sample ID: EM-1 Sampling Site: Millcreek Henries Collected: 01/02/2019

Lab ID: 1900227001 Media: Summa 6 Liter Canister Received: 01/02/2019

Sampling Parameter: NA Matrix: Air

IVIALITA. AII		Camping i	arameter. NA			
Analysis Method - EPA TO-15						
Preparation: Not Applicable			Analysis: EPA TO-1 Batch: IVOA/4209 Analyzed: 01/07/2019	9 (HBN: 230691)	Percent	ent ID: 5975-K Solid: NA Basis: Wet
		Result				
Analyte	Result (ppb)	(ug/m³)	MDL (ppb)	RL (ppb)	Dilution	Qual
trans-1,3-Dichloropropene	ND	<14	3.0	10	20	U
1,1,2-Trichloroethane	ND	<16	3.0	10	20	U
Toluene	ND	<11	3.0	10	20	U
2-Hexanone	ND	<26	6.4	20	20	U
Tetrachloroethene	3200	21000	3.0	10	20	E
Dibromochloromethane	ND	<26	3.0	10	20	U
1,2-Dibromoethane	ND	<23	3.0	10	20	U
Chlorobenzene	ND	<14	3.0	10	20	U
Ethyl benzene	690	3000	3.0	10	20	
m,p-Xylene	1100	4700	6.0	20	20	
o-Xylene	2600	11000	3.0	10	20	E
Styrene	ND	<26	6.0	20	20	U
Bromoform	ND	<62	6.0	20	20	U
1,1,2,2-Tetrachloroethane	ND	<21	3.0	10	20	U
4-Ethyl toluene	ND	<29	6.0	20	20	U
1,3,5-Trimethylbenzene	ND	<29	6.0	20	20	U
1,2,4-Trimethylbenzene	ND	<29	6.0	20	20	U
1,3-Dichlorobenzene	ND	<36	6.0	20	20	U
1,4-Dichlorobenzene	ND	<36	6.0	20	20	U
Benzyl chloride	ND	<38	7.4	20	20	U
1,2-Dichlorobenzene	ND	<36	6.0	20	20	U
1,2,4-Trichlorobenzene	ND	<62	8.4	20	20	U
Hexachlorobutadiene	ND	<64	6.0	20	20	U
Analysis Method - EPA TO-15						
Preparation: Not Applicable			Analysis: EPA TO-1 Batch: IVOA/4209 Analyzed: 01/07/2019	9 (HBN: 230691)	Percent	ent ID: 5975-K Solid: NA Basis: Wet
Tentatively Identified Compound	Result (ppb)	Retention Time	Dilution	Qual		
Propene	240	5.04	20	J		
Isobutane	280	5.39	20	J		

ENVREP-V4.8 Page 3 of 5 Tue, 01/08/19 4:16 PM

5.59

5.68

20

20

J

140

99

Workorder: 34-1900227

Client: Wasatch Environmental,

lnc.

Project Manager: Jessica Helland

Comments

Workorder: 1900227

TO-15 Comment; Compounds flagged with an "E" qualifier should be considered semiquantitative.

Quality Control: EPA TO-15 - (HBN: 230691)

The LCS/LSCD percent recovery did not meet performance limits for all compounds. This is not a method a requirement.

Report Authorization (/S/ is an electronic signature that complies with 21 CFR Part 11)

Method	Analyst	Peer Review
EPA TO-15	/S/ Benson Boy	/S/ Lisa M. Reid
EFA 10-13	01/08/2019 08:57	01/08/2019 15:57

Laboratory Contact Information

ALS Environmental Phone: (801) 266-7700

960 W Levoy Drive Email: alslt.lab@ALSGlobal.com

Salt Lake City, Utah 84123 Web: www.alsslc.com

Page 4 of 5 Tue, 01/08/19 4:16 PM ENVREP-V4.8

Workorder: 34-1900227

Client: Wasatch Environmental,

Inc.

Project Manager: Jessica Helland

General Lab Comments

The results provided in this report relate only to the items tested.

Samples were received in acceptable condition unless otherwise noted.

Samples have not been blank corrected unless otherwise noted.

This test report shall not be reproduced, except in full, without written approval of ALS.

ALS provides professional analytical services for all samples submitted. ALS is not in a position to interpret the data and assumes no responsibility for the quality of the samples submitted.

All quality control samples processed with the samples in this report yielded acceptable results unless otherwise noted.

ALS is accredited for specific fields of testing (scopes) in the following testing sectors. The quality system implemented at ALS conforms to accreditation requirements and is applied to all analytical testing performed by ALS. The following table lists testing sector, accreditation body, accreditation number and website. Please contact these accrediting bodies or your ALS project manager for the current scope of accreditation that applies to your analytical testing.

Testing Sector	Accreditation Body	Certificate Number	Website
Environmental	PJLA (DoD ELAP)		
	Utah (TNI)		
	Nevada Oklahoma		
	lowa		

Result Symbol Definitions

MDL = Method Detection Limit, a statistical estimate of method/media/instrument sensitivity.

RL = Reporting Limit, a verified value of method/media/instrument sensitivity.

CRDL = Contract Required Detection Limit

Reg. Limit = Regulatory Limit.

ND = Not Detected, testing result not detected above the MDL or RL.

- < This testing result is less than the numerical value.
- ** No result could be reported, see sample comments for details.

Qualifier Symbol Definitions

- U = Qualifier indicates that the analyte was not detected above the MDL.
- J = Qualifier Indicates that the analyte value is between the MDL and the RL. It is also used to indicate an estimated value for tentatively identified compounds in mass spectrometry where a 1:1 response is assumed.
- B = Qualifier indicates that the analyte was detected in the blank.
- E = Qualifier indicates that the analyte result exceeds calibration range.
- P = Qualifier indicates that the RPD between the two columns is greater than 40%.

Page 5 of 5 Tue, 01/08/19 4:16 PM ENVREP-V4.8

Report Date: December 05, 2018

Blake Downey Wasatch Environmental 2410 California Ave

2410 California Ave Salt Lake City, UT 84104 Phone: (435) 760-8269

E-mail: bd@wasatch-environmental.com

Workorder: **34-1833349**

Project ID: 2249-001d Purchase Order: 2249-001d Project Manager Jessica Helland

Client Sample ID	Lab ID	Collect Date	Receive Date	Sampling Site
EM-1	1833349001	NA	11/29/18	2249-001d

ADDRESS 960 West LeVoy Drive, Salt Lake City, Utah, 84123 USA | PHONE +1 801 266 7700 | FAX +1 801 268 9992 ALS GROUP USA, CORP. An ALS Limited Company

Environmental 🔈

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Page 1 of 5 Wed, 12/05/18 12:59 PM ENVREP-V4.8

Workorder: 34-1833349

Client: Wasatch Environmental, Inc.

Project Manager: Jessica Helland

Analytical Results

Sample ID: EM-1 Sampling Site: 2249-001d Received: 11/29/2018

Media: Summa 6 Liter Canister Lab ID: 1833349001

Sampling Parameter: NA Matrix: Air

Analysis Method - EPA TO-15						
Preparation: Not Applicable			Analysis: EPA TO-1 Batch: IVOA/4180 Analyzed: 12/04/2018) (HBN: 228587)	Percent	ent ID: 5975-K Solid: NA Basis: Wet
Analyte	Result (ppb)	Result (ug/m³)	MDL (ppb)	RL (ppb)	Dilution	Qual
Dichlorodifluoromethane	ND	<74	15	50	100	U
Chloromethane	ND	<31	15	50	100	U
Freon 114	ND	<100	15	50	100	U
Vinyl chloride	ND	<38	15	50	100	U
1,3-Butadiene	ND	<33	15	50	100	U
Bromomethane	ND	<58	15	50	100	U
Chloroethane	ND	<40	15	50	100	U
Freon 11	ND	<84	15	50	100	U
Freon 113	ND	<110	15	50	100	U
1,1-Dichloroethene	ND	<59	15	50	100	U
Acetone	140	340	30	100	100	
Carbon disulfide	44	140	15	50	100	J
Methylene chloride	76	260	15	50	100	
trans-1,2-Dichloroethene	ND	<59	15	50	100	U
Methyl t-butyl ether	ND	<54	15	50	100	U
Vinyl acetate	ND	<70	20	50	100	U
2-Butanone	76	230	15	50	100	
cis-1,2-Dichloroethene	15	60	15	50	100	J
1,1-Dichloroethane	ND	<61	15	50	100	U
Ethyl acetate	ND	<110	30	100	100	U
Hexane	ND	<53	15	50	100	U
Chloroform	ND	<73	15	50	100	U
Tetrahydrofuran	730	2200	15	50	100	
1,2-Dichloroethane	ND	<61	15	50	100	U
1,1,1-Trichloroethane	ND	<82	15	50	100	U
Carbon tetrachloride	ND	<94	15	50	100	U
Benzene	ND	<48	15	50	100	U
Cyclohexane	ND	<52	15	50	100	U
Trichloroethene	25	140	15	50	100	J
1,2-Dichloropropane	ND	<73	15	50	100	U
Bromodichloromethane	ND	<100	15	50	100	U
Heptane	ND	<61	15	50	100	U
cis-1,3-Dichloropropene	ND	<68		50	100	U
4-Methyl-2-pentanone	42	170		50	100	J

Results Continued on Next Page

Workorder: 34-1833349

Client: Wasatch Environmental, Inc.

Project Manager: Jessica Helland

Analytical Results

Sample ID: EM-1 Sampling Site: 2249-001d Received: 11/29/2018

Lab ID: 1833349001 Media: Summa 6 Liter Canister

Matrix: Air Sampling Parameter: NA

Matrix: Air		Sampling Pa	arameter: NA			
Analysis Method - EPA TO-15						
Preparation: Not Applicable			Analysis: EPA TO-1 Batch: IVOA/4180 Analyzed: 12/04/2018) (HBN: 228587)	Percent	ent ID: 5975-K Solid: NA Basis: Wet
Analyte	Result (ppb)	Result (ug/m³)	MDL (ppb)	RL (ppb)	Dilution	Qual
trans-1,3-Dichloropropene	ND	<68	15	50	100	U
1,1,2-Trichloroethane	ND	<82	15	50	100	U
Toluene	ND	<57	15	50	100	U
2-Hexanone	ND	<130	32	100	100	U
Tetrachloroethene	830	5600	15	50	100	
Dibromochloromethane	ND	<130	15	50	100	U
1,2-Dibromoethane	ND	<120	15	50	100	U
Chlorobenzene	ND	<69	15	50	100	U
Ethyl benzene	2800	12000	15	50	100	
m,p-Xylene	6900	30000	30	100	100	
o-Xylene	4000	18000	15	50	100	
Styrene	ND	<130	30	100	100	U
Bromoform	ND	<310	30	100	100	U
1,1,2,2-Tetrachloroethane	ND	<100	15	50	100	U
4-Ethyl toluene	ND	<150	30	100	100	U
1,3,5-Trimethylbenzene	ND	<150	30	100	100	U
1,2,4-Trimethylbenzene	ND	<150	30	100	100	U
1,3-Dichlorobenzene	ND	<180	30	100	100	U
1,4-Dichlorobenzene	ND	<180	30	100	100	U
Benzyl chloride	ND	<190	37	100	100	U
1,2-Dichlorobenzene	ND	<180	30	100	100	U
1,2,4-Trichlorobenzene	ND	<310	42	100	100	U
Hexachlorobutadiene	ND	<320	30	100	100	U
Analysis Method - EPA TO-15						
Preparation: Not Applicable			Analysis: EPA TO-1 Batch: IVOA/4180 Analyzed: 12/04/2018) (HBN: 228587)	Percent	ent ID: 5975-K Solid: NA Basis: Wet
Tentatively Identified Compound	Result (ppb)	Retention Time	Dilution	Qual		
Propene	570	5.04	100	J		
Isobutane	930	5.40	100	J		
1-Propene, 2-methyl-	340	5.59	100	J		
Butane	230	5.69	100	J		

ENVREP-V4.8 Page 3 of 5 Wed, 12/05/18 12:59 PM

Workorder: 34-1833349

Client: Wasatch Environmental,

Inc.

Project Manager: Jessica Helland

Report Authorization (/S/ is an electronic signature that complies with 21 CFR Part 11)

Method	Analyst	Peer Review
EPA TO-15	/S/ Benson Boy	/S/ Lisa M. Reid
EFA 10-13	12/04/2018 18:40	12/05/2018 12:52

Laboratory Contact Information

ALS Environmental Phone: (801) 266-7700

960 W Levoy Drive Email: alslt.lab@ALSGlobal.com

Salt Lake City, Utah 84123 Web: www.alsslc.com

General Lab Comments

The results provided in this report relate only to the items tested.

Samples were received in acceptable condition unless otherwise noted.

Samples have not been blank corrected unless otherwise noted.

This test report shall not be reproduced, except in full, without written approval of ALS.

ALS provides professional analytical services for all samples submitted. ALS is not in a position to interpret the data and assumes no responsibility for the quality of the samples submitted.

All quality control samples processed with the samples in this report yielded acceptable results unless otherwise noted.

ALS is accredited for specific fields of testing (scopes) in the following testing sectors. The quality system implemented at ALS conforms to accreditation requirements and is applied to all analytical testing performed by ALS. The following table lists testing sector, accreditation body, accreditation number and website. Please contact these accrediting bodies or your ALS project manager for the current scope of accreditation that applies to your analytical testing.

Testing Sector	Accreditation Body	Certificate Number	Website	
Environmental	PJLA (DoD ELAP)			
	Utah (TNI)			
	Nevada Oklahoma			
	lowa			

Page 4 of 5 Wed, 12/05/18 12:59 PM ENVREP-V4.8

Workorder: 34-1833349

Client: Wasatch Environmental, Inc.

Project Manager: Jessica Helland

Result Symbol Definitions

MDL = Method Detection Limit, a statistical estimate of method/media/instrument sensitivity.

RL = Reporting Limit, a verified value of method/media/instrument sensitivity.

CRDL = Contract Required Detection Limit

Reg. Limit = Regulatory Limit.

ND = Not Detected, testing result not detected above the MDL or RL.

- < This testing result is less than the numerical value.
- ** No result could be reported, see sample comments for details.

Qualifier Symbol Definitions

U = Qualifier indicates that the analyte was not detected above the MDL.

- J = Qualifier Indicates that the analyte value is between the MDL and the RL. It is also used to indicate an estimated value for tentatively identified compounds in mass spectrometry where a 1:1 response is assumed.
- B = Qualifier indicates that the analyte was detected in the blank.
- E = Qualifier indicates that the analyte result exceeds calibration range.
- P = Qualifier indicates that the RPD between the two columns is greater than 40%.

ENVREP-V4.8 Page 5 of 5 Wed. 12/05/18 12:59 PM

Appendix M

Groundwater Laboratory Analytical Report

Blake Downey Wasatch Environmental 2410 West California Avenue Salt Lake City, UT 84104

TEL: (801) 972-8400

RE: Millcreek Henries / 2249-001D

3440 South 700 West

Salt Lake City, UT 84119

Dear Blake Downey: Lab Set ID: 1812377

American West Analytical Laboratories received sample(s) on 12/18/2018 for the analyses presented in the following report.

American West Analytical Laboratories (AWAL) is accredited by The National

state accredited in Colorado, Idaho, New Mexico, Wyoming, and Missouri.

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

- -----

web: www.awal-labs.com

All analyses were performed in accordance to the NELAP protocols unless noted otherwise. Accreditation scope documents are available upon request. If you have any questions or concerns regarding this report please feel free to call.

Environmental Laboratory Accreditation Program (NELAP) in Utah and Texas; and is

Kyle F. Gross Laboratory Director

Jose Rocha
OA Officer

The abbreviation "Surr" found in organic reports indicates a surrogate compound that is intentionally added by the laboratory to determine sample injection, extraction, and/or purging efficiency. The "Reporting Limit" found on the report is equivalent to the practical quantitation limit (PQL). This is the minimum concentration that can be reported by the method referenced and the sample matrix. The reporting limit must not be confused with any regulatory limit. Analytical results are reported to three significant figures for quality control and calculation purposes.

Thank You,

Digitally signed by Jose G. Rocha DN: cn=Jose G. Rocha, o=American West Analytical Laboratories, ou, email=jose@awal-labs.com, c=US Date: 2018.12.19 13:49:08 -07'00'

Approved by:

Laboratory Director or designee

Volatile Case Narrative

Client: Wasatch Environmental

Contact: Mike Cronin

Project: Millcreek Henries / 2249-001d

Lab Set ID: 1812377

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha OA Officer

Sample Receipt Information:

Date of Receipt:12/18/2018Date(s) of Collection:12/18/2018Sample Condition:IntactC-O-C Discrepancies:None

Method: SW-846 8260C/5030C Analysis: Volatile Organic Compounds

General Set Comments: Multiple target analytes were observed above reporting limits.

Holding Time and Preservation Requirements: All samples were received in appropriate containers and properly preserved. The analysis and preparation of all samples were performed within the method holding times following the methods stated on the analytical reports.

Analytical QC Requirements: All instrument calibration and calibration check requirements were met. All internal standard recoveries met method criterion.

Batch QC Requirements: MB, LCS, MS, MSD, RPD, and Surrogates:

Method Blanks (MBs): No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

Laboratory Control Sample (LCSs): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicate (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, indicating no apparent matrix interferences.

Surrogates: All surrogate recoveries were within established limits.

Corrective Action: None required.

ORGANIC ANALYTICAL REPORT

Client: Wasatch Environmental Contact: Blake Downey

Project: Millcreek Henries / 2249-001D

Lab Sample ID: 1812377-001A

Client Sample ID: MW-10

Collection Date: 12/18/2018 956h **Received Date:** 12/18/2018 1100h

Analytical Results VOAs AWAL List by GC/MS Method 8260C/5030C

Analyzed: 12/18/2018 1519h

Units: μg/L Dilution Factor: 100 Method: SW8260C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686

Fax: (801) 263-8687

Toll Free: (888) 263-8686

e-mail: awal@awal-labs.com

CAS Reporting **Analytical** Compound Number Limit Result Qual cis-1,2-Dichloroethene 156-59-2 200 1,720 Surrogate Units: µg/L CAS Result **Amount Spiked** % REC Limits Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 5,140 5,000 103 72-151 Surr: 4-Bromofluorobenzene 460-00-4 5,490 5,000 110 80-152 Surr: Dibromofluoromethane 1868-53-7 5,120 5,000 102 72-135 Surr: Toluene-d8 2037-26-5 5,260 5,000 105 80-124

~ - The reporting limits were raised due to high analyte concentrations.

web: www.awal-labs.com Analyzed: 12/18/2018 1352h

Units: μg/L Dilution Factor: 1

Dilution Factor: 1 **Method:** SW8260C

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result Qual
1,1,1-Trichloroethane	71-55-6	2.00	< 2.00
1,1,2,2-Tetrachloroethane	79-34-5	2.00	< 2.00
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.00	< 2.00
1,1,2-Trichloroethane	79-00-5	2.00	< 2.00
1,1-Dichloroethane	75-34-3	2.00	< 2.00
1,1-Dichloroethene	75-35-4	2.00	< 2.00
1,2,3-Trichlorobenzene	87-61-6	2.00	< 2.00
1,2,4-Trichlorobenzene	120-82-1	2.00	< 2.00
1,2-Dibromo-3-chloropropane	96-12-8	5.00	< 5.00
1,2-Dibromoethane	106-93-4	2.00	< 2.00
1,2-Dichlorobenzene	95-50-1	2.00	< 2.00
1,2-Dichloroethane	107-06-2	2.00	< 2.00
1,2-Dichloropropane	78-87-5	2.00	< 2.00
1,3-Dichlorobenzene	541-73-1	2.00	< 2.00
1,4-Dichlorobenzene	106-46-7	2.00	< 2.00
1,4-Dioxane	123-91-1	50.0	< 50.0
2-Butanone	78-93-3	10.0	16.9
2-Hexanone	591-78-6	5.00	< 5.00

Report Date: 12/19/2018 Page 3 of 22

Test Code: 8260-W

Lab Sample ID: 1812377-001A **Client Sample ID:** MW-10

Analyzed: 12/18/2018 1352h

Units: μg/L Dilution Factor: 1 Method: SW8260C

American West	Compound	CAS Number	Reporting Limit	Analytical Result	Qual
	4-Methyl-2-pentanone	108-10-1	5.00	< 5.00	
	Acetone	67-64-1	10.0	< 10.0	
	Benzene	71-43-2	2.00	< 2.00	
	Bromochloromethane	74-97-5	2.00	< 2.00	
3440 South 700 West	Bromodichloromethane	75-27-4	2.00	< 2.00	
Salt Lake City, UT 84119	Bromoform	75-25-2	2.00	< 2.00	
	Bromomethane	74-83-9	5.00	< 5.00	
	Carbon disulfide	75-15-0	2.00	< 2.00	
Phone: (801) 263-8686	Carbon tetrachloride	56-23-5	2.00	< 2.00	
Toll Free: (888) 263-8686	Chlorobenzene	108-90-7	2.00	< 2.00	
Fax: (801) 263-8687	Chloroethane	75-00-3	2.00	< 2.00	
e-mail: awal@awal-labs.com	Chloroform	67-66-3	2.00	< 2.00	
	Chloromethane	74-87-3	3.00	< 3.00	
web: www.awal-labs.com	cis-1,3-Dichloropropene	10061-01-5	2.00	< 2.00	
	Cyclohexane	110-82-7	2.00	< 2.00	
	Dibromochloromethane	124-48-1	2.00	< 2.00	
Kyle F. Gross	Dichlorodifluoromethane	75-71-8	2.00	< 2.00	
Laboratory Director	Ethylbenzene	100-41-4	2.00	< 2.00	
I D 1	Isopropylbenzene	98-82-8	2.00	< 2.00	
Jose Rocha	m,p-Xylene	179601-23-1	2.00	< 2.00	
QA Officer	Methyl Acetate	79-20-9	5.00	< 5.00	
	Methyl tert-butyl ether	1634-04-4	2.00	< 2.00	
	Methylcyclohexane	108-87-2	2.00	< 2.00	
	Methylene chloride	75-09-2	2.00	< 2.00	
	Naphthalene	91-20-3	2.00	< 2.00	
	o-Xylene	95-47-6	2.00	< 2.00	
	Styrene	100-42-5	2.00	< 2.00	
	Tetrachloroethene	127-18-4	2.00	8.93	
	Toluene	108-88-3	2.00	< 2.00	
	trans-1,2-Dichloroethene	156-60-5	2.00	44.6	
	trans-1,3-Dichloropropene	10061-02-6	2.00	< 2.00	
	Trichloroethene	79-01-6	2.00	< 2.00	
	Trichlorofluoromethane	75-69-4	2.00	< 2.00	
	Vinyl chloride	75-01-4	1.00	30.7	

Lab Sample ID: 1812377-001A Client Sample ID: MW-10

Analyzed: 12/18/2018 1352h

Surr: Toluene-d8

Units: µg/L **Dilution Factor:** 1 Method: SW8260C Surrogate CAS % REC Units: $\mu g/L$ Result **Amount Spiked** Limits Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 49.9 50.00 99.9 72-151 Surr: 4-Bromofluorobenzene 460-00-4 52.8 50.00 106 80-152 Surr: Dibromofluoromethane 1868-53-7 51.0 50.00 102 72-135

51.2

50.00

102

80-124

2037-26-5

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

ORGANIC ANALYTICAL REPORT

Client: Wasatch Environmental Contact: Blake Downey

Project: Millcreek Henries / 2249-001D

Lab Sample ID: 1812377-002A

Client Sample ID: MW-11

Analytical Results

Collection Date: 12/18/2018 1033h **Received Date:** 12/18/2018 1100h

VOAs AWAL List by GC/MS Method 8260C/5030C

Test Code: 8260-W

Analyzed: 12/18/2018 1619h

Units: μg/L Dilution Factor: 100 Method: SW8260C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686

Fax: (801) 263-8687

Toll Free: (888) 263-8686

e-mail: awal@awal-labs.com

CAS Reporting **Analytical** Compound Number Limit Result Qual cis-1,2-Dichloroethene 156-59-2 200 1,590 Surrogate Units: µg/L CAS Result **Amount Spiked** % REC Limits Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 5,030 5,000 101 72-151 Surr: 4-Bromofluorobenzene 460-00-4 5,380 5,000 108 80-152 Surr: Dibromofluoromethane 1868-53-7 5,100 5,000 102 72-135 Surr: Toluene-d8 2037-26-5 5,180 5,000 104 80-124

~ - The reporting limits were raised due to high analyte concentrations.

web: www.awal-labs.com

Analyzed: 12/18/2018 1412h

Units: μg/L Dilution Factor: 1 Method: SW8260C

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result Qual
1,1,1-Trichloroethane	71-55-6	2.00	< 2.00
1,1,2,2-Tetrachloroethane	79-34-5	2.00	< 2.00
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.00	< 2.00
1,1,2-Trichloroethane	79-00-5	2.00	< 2.00
1,1-Dichloroethane	75-34-3	2.00	< 2.00
1,1-Dichloroethene	75-35-4	2.00	< 2.00
1,2,3-Trichlorobenzene	87-61-6	2.00	< 2.00
1,2,4-Trichlorobenzene	120-82-1	2.00	< 2.00
1,2-Dibromo-3-chloropropane	96-12-8	5.00	< 5.00
1,2-Dibromoethane	106-93-4	2.00	< 2.00
1,2-Dichlorobenzene	95-50-1	2.00	< 2.00
1,2-Dichloroethane	107-06-2	2.00	< 2.00
1,2-Dichloropropane	78-87-5	2.00	< 2.00
1,3-Dichlorobenzene	541-73-1	2.00	< 2.00
1,4-Dichlorobenzene	106-46-7	2.00	< 2.00
1,4-Dioxane	123-91-1	50.0	< 50.0
2-Butanone	78-93-3	10.0	< 10.0
2-Hexanone	591-78-6	5.00	< 5.00

Report Date: 12/19/2018 Page 6 of 22

Lab Sample ID: 1812377-002A **Client Sample ID:** MW-11

Analyzed: 12/18/2018 1412h

	emis. µg/L	nution ractor. 1	witchiou.	5 W 6200C
American West	Compound	CAS Number	Reporting Limit	Analytical Result Qual
	4-Methyl-2-pentanone	108-10-1	5.00	< 5.00
	Acetone	67-64-1	10.0	< 10.0
	Benzene	71-43-2	2.00	< 2.00
	Bromochloromethane	74-97-5	2.00	< 2.00
3440 South 700 West	Bromodichloromethane	75-27-4	2.00	< 2.00
Salt Lake City, UT 84119	Bromoform	75-25-2	2.00	< 2.00
	Bromomethane	74-83-9	5.00	< 5.00
	Carbon disulfide	75-15-0	2.00	< 2.00
Phone: (801) 263-8686	Carbon tetrachloride	56-23-5	2.00	< 2.00
Toll Free: (888) 263-8686	Chlorobenzene	108-90-7	2.00	< 2.00
Fax: (801) 263-8687	Chloroethane	75-00-3	2.00	< 2.00
e-mail: awal@awal-labs.com	Chloroform	67-66-3	2.00	< 2.00
	Chloromethane	74-87-3	3.00	< 3.00
web: www.awal-labs.com	cis-1,3-Dichloropropene	10061-01-5	2.00	< 2.00
	Cyclohexane	110-82-7	2.00	< 2.00
	Dibromochloromethane	124-48-1	2.00	< 2.00
Kyle F. Gross	Dichlorodifluoromethane	75-71-8	2.00	< 2.00
Laboratory Director	Ethylbenzene	100-41-4	2.00	< 2.00
T D 1	Isopropylbenzene	98-82-8	2.00	< 2.00
Jose Rocha	m,p-Xylene	179601-23-1	2.00	< 2.00
QA Officer	Methyl Acetate	79-20-9	5.00	< 5.00
	Methyl tert-butyl ether	1634-04-4	2.00	< 2.00
	Methylcyclohexane	108-87-2	2.00	< 2.00
	Methylene chloride	75-09-2	2.00	< 2.00
	Naphthalene	91-20-3	2.00	< 2.00
	o-Xylene	95-47-6	2.00	< 2.00
	Styrene	100-42-5	2.00	< 2.00
	Tetrachloroethene	127-18-4	2.00	< 2.00
	Toluene	108-88-3	2.00	< 2.00
	trans-1,2-Dichloroethene	156-60-5	2.00	36.6
	trans-1,3-Dichloropropene	10061-02-6	2.00	< 2.00
	Trichloroethene	79-01-6	2.00	< 2.00
	Trichlorofluoromethane	75-69-4	2.00	< 2.00
	Vinyl chloride	75-01-4	1.00	16.3

Lab Sample ID: 1812377-002A Client Sample ID: MW-11

Analyzed: 12/18/2018 1412h

Units: µg/L **Dilution Factor: 1** Method: SW8260C Surrogate CAS % REC Units: $\mu g/L$ Result **Amount Spiked** Limits Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 50.8 50.00 102 72-151 Surr: 4-Bromofluorobenzene 460-00-4 55.0 50.00 110 80-152 Surr: Dibromofluoromethane 1868-53-7 51.0 50.00 102 72-135 Surr: Toluene-d8 2037-26-5 52.5 50.00 105 80-124

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

American West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

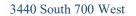
Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Wasatch Environmental

Lab Set ID: 1812377


Project: Millcreek Henries / 2249-001D

Contact: Blake Downey **Dept:** MSVOA

QC Type: LCS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:LCS VOC-2 121818ATest Code:8260-W	Date Analyzed:	12/18/20	18 1020h										
1,1,1-Trichloroethane	19.1	μg/L	SW8260C	0.142	2.00	20.00	0	95.5	73 - 139				
1,1-Dichloroethene	22.7	μg/L	SW8260C	0.275	2.00	20.00	0	114	37 - 144				
1,2-Dichlorobenzene	19.5	$\mu g/L$	SW8260C	0.105	2.00	20.00	0	97.6	70 - 130				
1,2-Dichloroethane	18.5	$\mu g/L$	SW8260C	0.0988	2.00	20.00	0	92.4	76 - 132				
1,2-Dichloropropane	22.5	$\mu g/L$	SW8260C	0.0968	2.00	20.00	0	112	81 - 121				
Benzene	20.9	$\mu g/L$	SW8260C	0.0956	2.00	20.00	0	104	82 - 132				
Chlorobenzene	19.6	$\mu g/L$	SW8260C	0.0832	2.00	20.00	0	98.0	74 - 126				
Chloroform	20.1	$\mu g/L$	SW8260C	0.0998	2.00	20.00	0	101	85 - 124				
Ethylbenzene	19.6	$\mu g/L$	SW8260C	0.103	2.00	20.00	0	97.8	67 - 118				
Isopropylbenzene	19.5	$\mu g/L$	SW8260C	0.131	2.00	20.00	0	97.4	68 - 127				
Methyl tert-butyl ether	19.5	$\mu g/L$	SW8260C	0.206	2.00	20.00	0	97.6	58 - 131				
Methylene chloride	21.2	$\mu g/L$	SW8260C	0.400	2.00	20.00	0	106	65 - 154				
Naphthalene	16.3	$\mu g/L$	SW8260C	0.159	2.00	20.00	0	81.4	63 - 129				
Toluene	20.3	$\mu g/L$	SW8260C	0.0858	2.00	20.00	0	102	69 - 129				
Trichloroethene	19.8	$\mu g/L$	SW8260C	0.105	2.00	20.00	0	98.8	75 - 136				
Surr: 1,2-Dichloroethane-d4	50.2	$\mu g/L$	SW8260C			50.00		100	80 - 136				
Surr: 4-Bromofluorobenzene	50.0	$\mu g/L$	SW8260C			50.00		100	85 - 121				
Surr: Dibromofluoromethane	51.1	$\mu g/L$	SW8260C			50.00		102	78 - 132				
Surr: Toluene-d8	51.6	$\mu g/L$	SW8260C			50.00		103	81 - 123				

Report Date: 12/19/2018 Page 9 of 22

Wasatch Environmental

Client:

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha **QA** Officer

QC SUMMARY REPORT

Blake Downey **Contact:**

Lab Set ID: 1812377 **MSVOA** Dept: QC Type: MBLK **Project:** Millcreek Henries / 2249-001D

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:MB VOC-2 121818ATest Code:8260-W	Date Analyzed:	12/18/201	8 1100h										
1,1,1-Trichloroethane	< 2.00	μg/L	SW8260C	0.142	2.00								
1,1,2,2-Tetrachloroethane	< 2.00	μg/L	SW8260C	0.0872	2.00								
1,1,2-Trichloro-1,2,2-trifluoroethane	< 2.00	μg/L	SW8260C	0.322	2.00								
1,1,2-Trichloroethane	< 2.00	μg/L	SW8260C	0.0847	2.00								
1,1-Dichloroethane	< 2.00	μg/L	SW8260C	0.116	2.00								
1,1-Dichloroethene	< 2.00	μg/L	SW8260C	0.275	2.00								
1,2,3-Trichlorobenzene	< 2.00	μg/L	SW8260C	0.220	2.00								
1,2,4-Trichlorobenzene	< 2.00	μg/L	SW8260C	0.271	2.00								
1,2-Dibromo-3-chloropropane	< 5.00	μg/L	SW8260C	0.312	5.00								
1,2-Dibromoethane	< 2.00	μg/L	SW8260C	0.0828	2.00								
1,2-Dichlorobenzene	< 2.00	μg/L	SW8260C	0.105	2.00								
1,2-Dichloroethane	< 2.00	μg/L	SW8260C	0.0988	2.00								
1,2-Dichloropropane	< 2.00	μg/L	SW8260C	0.0968	2.00								
1,3-Dichlorobenzene	< 2.00	μg/L	SW8260C	0.118	2.00								
1,4-Dichlorobenzene	< 2.00	μg/L	SW8260C	0.272	2.00								
1,4-Dioxane	< 50.0	μg/L	SW8260C	11.9	50.0								
2-Butanone	< 10.0	μg/L	SW8260C	0.587	10.0								
2-Hexanone	< 5.00	μg/L	SW8260C	0.215	5.00								
4-Methyl-2-pentanone	< 5.00	μg/L	SW8260C	0.238	5.00								
Acetone	< 10.0	μg/L	SW8260C	1.13	10.0								
Benzene	< 2.00	μg/L	SW8260C	0.0956	2.00								
Bromochloromethane	< 2.00	μg/L	SW8260C	0.146	2.00								
Bromodichloromethane	< 2.00	μg/L	SW8260C	0.0819	2.00								
Bromoform	< 2.00	μg/L	SW8260C	0.131	2.00								
Bromomethane	< 5.00	μg/L	SW8260C	3.45	5.00								
Carbon disulfide	< 2.00	$\mu g/L$	SW8260C	0.293	2.00								
Carbon tetrachloride	< 2.00	$\mu g/L$	SW8260C	0.178	2.00								

A

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross
Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Wasatch Environmental

Lab Set ID: 1812377

Project: Millcreek Henries / 2249-001D

Contact: Blake Downey

Dept: MSVOA **QC Type:** MBLK

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: MB VOC-2 121818A Test Code: 8260-W	Date Analyzed:	12/18/201	8 1100h										
Chlorobenzene	< 2.00	μg/L	SW8260C	0.0832	2.00								
Chloroethane	< 2.00	μg/L	SW8260C	1.01	2.00								
Chloroform	< 2.00	μg/L	SW8260C	0.0998	2.00								
Chloromethane	< 3.00	μ g/L	SW8260C	0.836	3.00								
cis-1,2-Dichloroethene	< 2.00	μ g/L	SW8260C	0.129	2.00								
cis-1,3-Dichloropropene	< 2.00	μ g/L	SW8260C	0.114	2.00								
Cyclohexane	< 2.00	μ g/L	SW8260C	0.488	2.00								
Dibromochloromethane	< 2.00	$\mu g/L$	SW8260C	0.0924	2.00								
Dichlorodifluoromethane	< 2.00	$\mu g/L$	SW8260C	0.163	2.00								
Ethylbenzene	< 2.00	$\mu g/L$	SW8260C	0.103	2.00								
Isopropylbenzene	< 2.00	$\mu g/L$	SW8260C	0.131	2.00								
m,p-Xylene	< 2.00	$\mu g/L$	SW8260C	0.205	2.00								
Methyl Acetate	< 5.00	$\mu g/L$	SW8260C	1.21	5.00								
Methyl tert-butyl ether	< 2.00	$\mu g/L$	SW8260C	0.206	2.00								
Methylcyclohexane	< 2.00	$\mu g/L$	SW8260C	0.282	2.00								
Methylene chloride	< 2.00	$\mu g/L$	SW8260C	0.400	2.00								
Naphthalene	< 2.00	$\mu g/L$	SW8260C	0.159	2.00								
o-Xylene	< 2.00	$\mu g/L$	SW8260C	0.119	2.00								
Styrene	< 2.00	$\mu g/L$	SW8260C	0.149	2.00								
Tetrachloroethene	< 2.00	$\mu g/L$	SW8260C	0.170	2.00								
Toluene	< 2.00	$\mu g/L$	SW8260C	0.0858	2.00								
trans-1,2-Dichloroethene	< 2.00	$\mu g/L$	SW8260C	0.327	2.00								
trans-1,3-Dichloropropene	< 2.00	$\mu g/L$	SW8260C	0.127	2.00								
Trichloroethene	< 2.00	$\mu g/L$	SW8260C	0.105	2.00								
Trichlorofluoromethane	< 2.00	$\mu g/L$	SW8260C	0.180	2.00								
Vinyl chloride	< 1.00	$\mu g/L$	SW8260C	0.184	1.00								
Surr: 1,2-Dichloroethane-d4	51.3	$\mu g/L$	SW8260C			50.00		103	80 - 136				

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross
Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Wasatch Environmental

Lab Set ID: 1812377

Project: Millcreek Henries / 2249-001D

Contact: Blake Downey
Dept: MSVOA

Dept: MSVOA **QC Type:** MBLK

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:MB VOC-2 121818ATest Code:8260-W	Date Analyzed:	12/18/201	8 1100h										
Surr: 4-Bromofluorobenzene	53.6	μg/L	SW8260C			50.00		107	85 - 121				
Surr: Dibromofluoromethane	51.8	$\mu g/L$	SW8260C			50.00		104	78 - 132				
Surr: Toluene-d8	52.1	$\mu g/L$	SW8260C			50.00		104	81 - 123				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross
Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client:

Project:

Lab Set ID: 1812377

Wasatch Environmental

Millcreek Henries / 2249-001D

Contact: Blake Downey

Dept: MSVOA

QC Type: MS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1812377-001AMS Test Code: 8260-W	Date Analyzed:	12/18/20	18 1539h										
1,1,1-Trichloroethane	1,860	μg/L	SW8260C	14.2	200	2,000	0	93.2	67 - 147				
1,1-Dichloroethene	1,910	μg/L	SW8260C	27.5	200	2,000	0.34	95.7	51 - 152				
1,2-Dichlorobenzene	1,910	μg/L	SW8260C	10.5	200	2,000	0	95.6	70 - 130				
1,2-Dichloroethane	1,850	μg/L	SW8260C	9.88	200	2,000	0	92.6	39 - 162				
1,2-Dichloropropane	2,160	μg/L	SW8260C	9.68	200	2,000	0	108	59 - 135				
Benzene	2,100	μg/L	SW8260C	9.56	200	2,000	0.55	105	66 - 145				
Chlorobenzene	1,960	μg/L	SW8260C	8.32	200	2,000	0	98.2	63 - 140				
Chloroform	2,010	μg/L	SW8260C	9.98	200	2,000	0	101	50 - 146				
Ethylbenzene	1,950	μg/L	SW8260C	10.3	200	2,000	0.7	97.6	69 - 133				
Isopropylbenzene	1,940	μg/L	SW8260C	13.1	200	2,000	0	96.8	60 - 147				
Methyl tert-butyl ether	1,540	μg/L	SW8260C	20.6	200	2,000	0	76.8	37 - 189				
Methylene chloride	2,120	μg/L	SW8260C	40.0	200	2,000	0	106	30 - 192				
Naphthalene	1,540	$\mu g/L$	SW8260C	15.9	200	2,000	0.96	77.1	41 - 131				
Toluene	2,060	$\mu g/L$	SW8260C	8.58	200	2,000	1.76	103	18 - 192				
Trichloroethene	1,880	$\mu g/L$	SW8260C	10.5	200	2,000	0.63	94.1	61 - 153				
Surr: 1,2-Dichloroethane-d4	4,980	$\mu g/L$	SW8260C			5,000		99.6	72 - 151				
Surr: 4-Bromofluorobenzene	5,230	$\mu g/L$	SW8260C			5,000		105	80 - 152				
Surr: Dibromofluoromethane	5,070	μg/L	SW8260C			5,000		101	72 - 135				
Surr: Toluene-d8	5,220	μg/L	SW8260C			5,000		104	80 - 124				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Wasatch Environmental

Lab Set ID: 1812377

Project: Millcreek Henries / 2249-001D

Contact: Blake Downey **Dept:** MSVOA

QC Type: MSD

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1812377-001AMSD Test Code: 8260-W	Date Analyzed:	12/18/20	18 1559h										
1,1,1-Trichloroethane	1,930	μg/L	SW8260C	14.2	200	2,000	0	96.4	67 - 147	1860	3.43	25	
1,1-Dichloroethene	1,990	μg/L	SW8260C	27.5	200	2,000	0.34	99.5	51 - 152	1910	3.94	25	
1,2-Dichlorobenzene	1,970	μg/L	SW8260C	10.5	200	2,000	0	98.6	70 - 130	1910	3.09	25	
1,2-Dichloroethane	1,880	$\mu g/L$	SW8260C	9.88	200	2,000	0	93.8	39 - 162	1850	1.34	25	
1,2-Dichloropropane	2,200	μg/L	SW8260C	9.68	200	2,000	0	110	59 - 135	2160	2.11	25	
Benzene	2,120	μg/L	SW8260C	9.56	200	2,000	0.55	106	66 - 145	2100	0.995	25	
Chlorobenzene	1,990	μg/L	SW8260C	8.32	200	2,000	0	99.6	63 - 140	1960	1.47	25	
Chloroform	2,050	μg/L	SW8260C	9.98	200	2,000	0	103	50 - 146	2010	1.97	25	
Ethylbenzene	1,980	$\mu g/L$	SW8260C	10.3	200	2,000	0.7	98.8	69 - 133	1950	1.17	25	
Isopropylbenzene	1,970	$\mu g/L$	SW8260C	13.1	200	2,000	0	98.3	60 - 147	1940	1.54	25	
Methyl tert-butyl ether	1,510	$\mu g/L$	SW8260C	20.6	200	2,000	0	75.6	37 - 189	1540	1.58	25	
Methylene chloride	2,110	μg/L	SW8260C	40.0	200	2,000	0	105	30 - 192	2120	0.473	25	
Naphthalene	1,560	$\mu g/L$	SW8260C	15.9	200	2,000	0.96	77.8	41 - 131	1540	0.904	25	
Toluene	2,080	$\mu g/L$	SW8260C	8.58	200	2,000	1.76	104	18 - 192	2060	0.919	25	
Trichloroethene	1,930	$\mu g/L$	SW8260C	10.5	200	2,000	0.63	96.5	61 - 153	1880	2.57	25	
Surr: 1,2-Dichloroethane-d4	4,960	$\mu g/L$	SW8260C			5,000		99.2	72 - 151				
Surr: 4-Bromofluorobenzene	5,160	$\mu g/L$	SW8260C			5,000		103	80 - 152				
Surr: Dibromofluoromethane	5,130	$\mu g/L$	SW8260C			5,000		103	72 - 135				
Surr: Toluene-d8	5,210	$\mu g/L$	SW8260C			5,000		104	80 - 124				

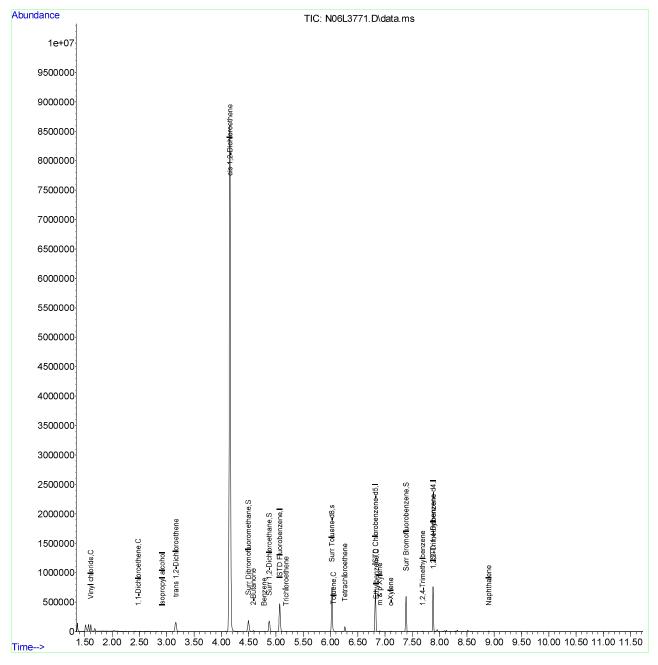
Quantitation Report (QT Reviewed)

Data Path : D:\MassHunter\GCMS\1\data\DEC18-2\18DEC18A\

Data File : N06L3771.D

Acq On : 18 Dec 2018 01:52 pm

Operator :


: 1812377-001A Sample

: SAMP Misc 5.0ML 10F3 DG ALS Vial : 9 Sample Multiplier: 1

Quant Time: Dec 18 14:04:22 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA2W_78.M

Quant Title : VOA Calibration QLast Update : Thu Sep 20 09:34:09 2018 Response via : Initial Calibration

VOA2W_78.M Tue Dec 18 14:21:52 2018

Page: 4

Report Date: 12/19/2018 Page 15 of 22

Quantitation Report (Not Reviewed)

Data Path : D:\MassHunter\GCMS\1\data\DEC18-2\18DEC18A\

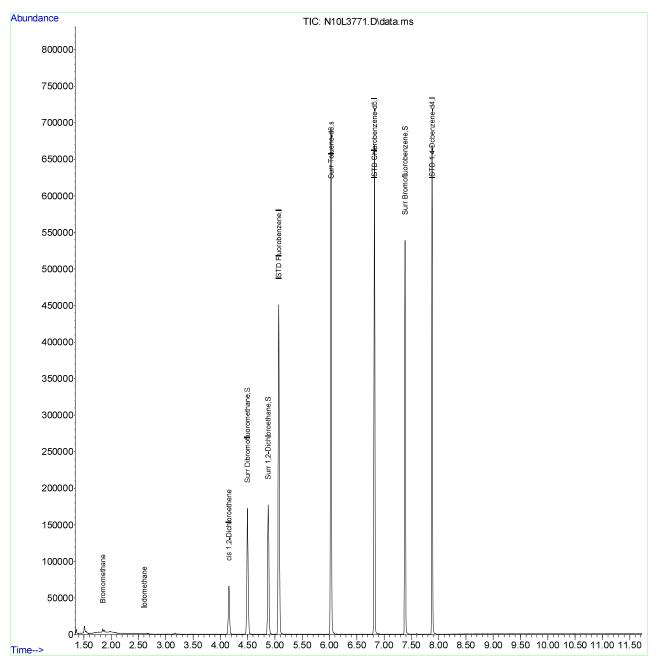
Data File : N10L3771.D

: 18 Dec 2018 03:19 pm Acq On

Operator :

Sample

: 1812377-001A


: SAMP Misc 500µL/50ML 20F3 DG

ALS Vial : 13 Sample Multiplier: 100

Quant Time: Dec 18 15:31:27 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA2W_78.M

Quant Title : VOA Calibration QLast Update : Thu Sep 20 09:34:09 2018 Response via : Initial Calibration

VOA2W_78.M Wed Dec 19 08:47:32 2018

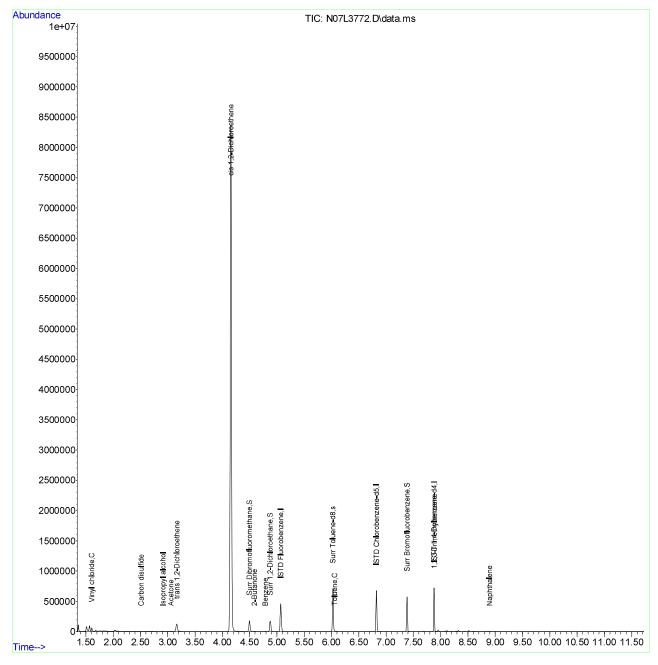
Quantitation Report (QT Reviewed)

Data Path : D:\MassHunter\GCMS\1\data\DEC18-2\18DEC18A\

Data File : N07L3772.D

Acq On : 18 Dec 2018 02:12 pm

Operator :


Sample : 1812377-002A

: SAMP 5.0ML Misc 10F3 DG ALS Vial : 10 Sample Multiplier: 1

Quant Time: Dec 18 14:24:07 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA2W_78.M

Quant Title : VOA Calibration QLast Update : Thu Sep 20 09:34:09 2018 Response via : Initial Calibration

VOA2W_78.M Wed Dec 19 08:45:13 2018

Quantitation Report (Not Reviewed)

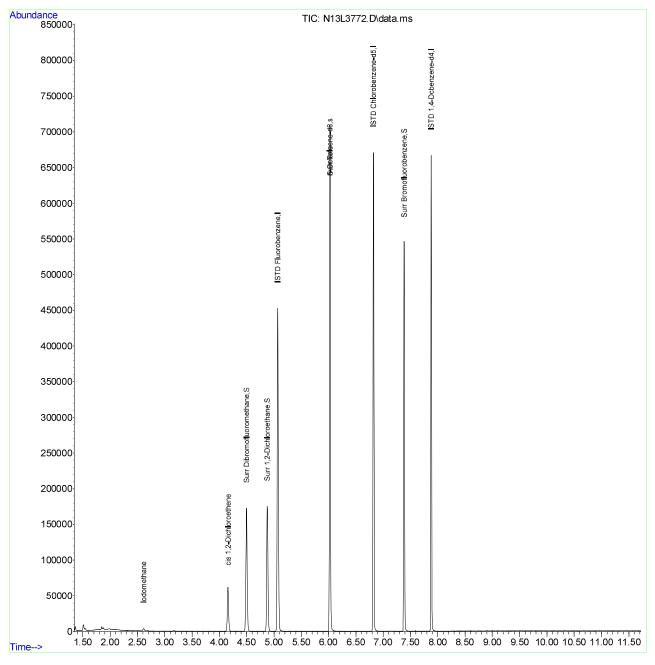
Data Path : D:\MassHunter\GCMS\1\data\DEC18-2\18DEC18A\

Data File : N13L3772.D

: 18 Dec 2018 04:19 pm Acq On

Operator :

Sample : 1812377-002A


: SAMP Misc 500µL/50ML 20F3 DG

ALS Vial : 16 Sample Multiplier: 100

Quant Time: Dec 18 16:31:00 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA2W_78.M

Quant Title : VOA Calibration QLast Update : Thu Sep 20 09:34:09 2018 Response via : Initial Calibration

VOA2W_78.M Wed Dec 19 09:41:01 2018

Page: 4

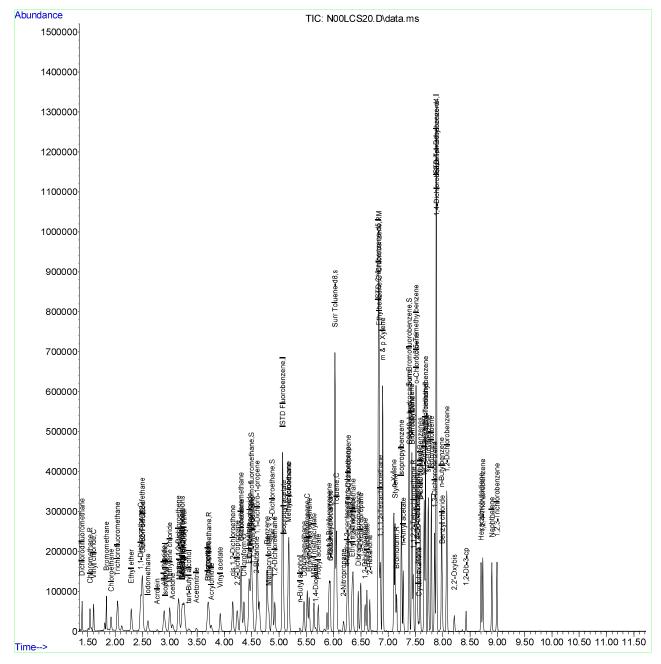
Report Date: 12/19/2018 Page 18 of 22

Quantitation Report (Not Reviewed)

Data Path : D:\MassHunter\GCMS\1\data\DEC18-2\18DEC18A\

Data File : N00LCS20.D

Acq On : 18 Dec 2018 10:20 am Operator : Sample : LCS VOC-2 121818A


Misc : LCS SEE COVERSHEET FOR ID AND AMOUNTS DG

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Dec 18 10:32:41 2018

Quant Method : D:\MassHunter\GCMS\1\methods\ $VOA2W_78.M$

Quant Title : VOA Calibration QLast Update : Thu Sep 20 09:34:09 2018 Response via : Initial Calibration

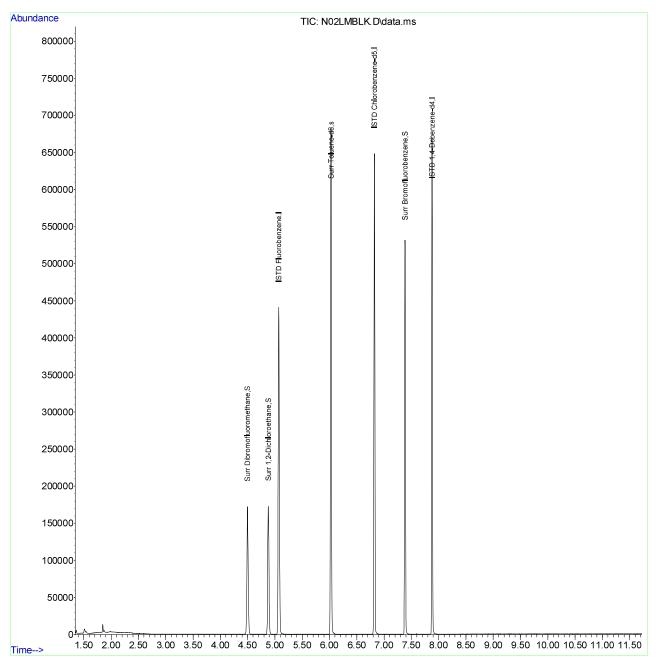
VOA2W_78.M Tue Dec 18 13:39:14 2018

Page: 4

Quantitation Report (QT Reviewed)

Data Path : D:\MassHunter\GCMS\1\data\DEC18-2\18DEC18A\

Data File : N02LMBLK.D


: 18 Dec 2018 11:00 am Acq On Operator :

: MB VOC-2 121818A Sample Misc : MBLK 5.0ML DG ALS Vial : 5 Sample Multiplier: 1

Quant Time: Dec 18 11:12:15 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA2W_78.M

Quant Title : VOA Calibration QLast Update : Thu Sep 20 09:34:09 2018 Response via : Initial Calibration

VOA2W_78.M Tue Dec 18 14:06:18 2018

Report Date: 12/19/2018 Page 20 of 22

Quantitation Report (Not Reviewed)

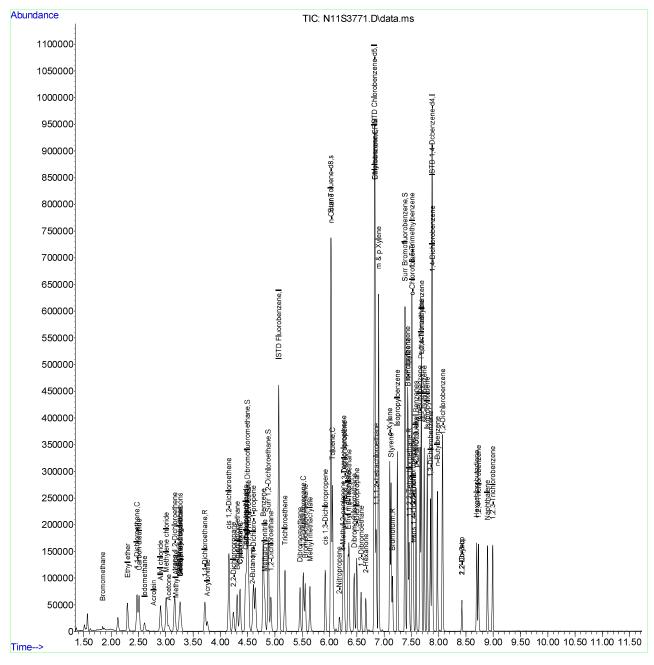
Data Path : D:\MassHunter\GCMS\1\data\DEC18-2\18DEC18A\

Data File : N11S3771.D

Acq On : 18 Dec 2018 03:39 pm

Operator

Sample


: 1812377-001AMS

: MS Misc 500µL/50ML 20F3 DG ALS Vial : 14 Sample Multiplier: 100

Quant Time: Dec 18 15:51:15 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA2W_78.M

Quant Title : VOA Calibration QLast Update : Thu Sep 20 09:34:09 2018 Response via : Initial Calibration

VOA2W_78.M Wed Dec 19 08:48:06 2018

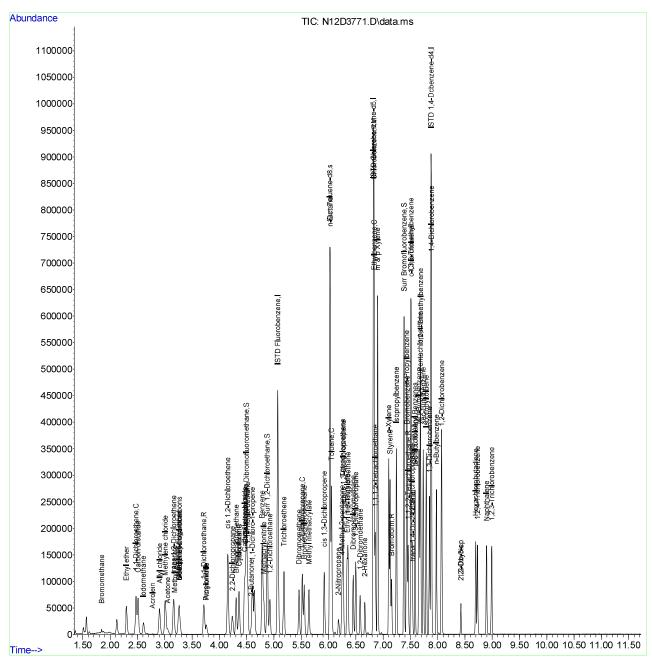
Page: 4

Quantitation Report (Not Reviewed)

Data Path : D:\MassHunter\GCMS\1\data\DEC18-2\18DEC18A\

Data File : N12D3771.D

Acq On : 18 Dec 2018 03:59 pm


Operator Sample : 1812377-001AMSD

: MSD Misc 20F3 DG 500µL/50ML ALS Vial : 15 Sample Multiplier: 100

Quant Time: Dec 18 16:11:10 2018

Quant Method : D:\MassHunter\GCMS\1\methods\VOA2W_78.M

Quant Title : VOA Calibration QLast Update : Thu Sep 20 09:34:09 2018 Response via : Initial Calibration

VOA2W_78.M Wed Dec 19 09:39:49 2018

Page: 4

WORK ORDER Summary

Work Order: **1812377**

Page 1 of 1

Client:

Wasatch Environmental

Due Date: 1/2/2019

Client ID:

WAS580

PA Rush; QC 3;

Contact:

Blake Downey

Project:

Comments:

Millcreek Henries / 229-001D

QC Level:

II+ MDL

WO Type: Standard

Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel Storage	
1812377-001A	MW-10	12/18/2018 0956h	12/18/2018 1100h	8260-W	Aqueous	VOCFridge	3
•				Test Group: 8260-	W-AWAL;	Surr: 4	
1812377-002A	MW-11	12/18/2018 1033h	12/18/2018 1100h	8260-W	Aqueous	VOCFridge	3
	-			Test Group: 8260-	W-AWAL;	Surr: 4	

HOK_

American West Analytical Laboratories

1817277

3440 S. 700 W. Salt Lake City, U'															<u>6011</u>
Phone # (801) 263-8686 Toll Free # (8			Al	l analysi rer	is will b	e conduc	ted using	g NELAP a	accredited	d metho	ods and all	data will l	be reported using AWAL's standard analyte lists and n of Custody and/or attached documentation.		Sample Set #
	·		_				QL) druce	л ореспис						Page	of
Fax # (801) 263-8687 Email awal@	awal-labs.com				QC L			Ш	Turn	Arou	and Tim	ie:	Unless other arrangements have been made, signed reports will be emailed by	Due Date:	
www.awal-labs.com	m			1	2 2+	ઉંઃ	+	Ш	1 2	3 4	5 % fn	a)	5:00 pm on the day they are due.	$\parallel \parallel \parallel \parallel \parallel \parallel \parallel$	119
and comment of the		or.					Ī		T	T			☐ Report down to the MDL	 	+
Client: WASATELL ENVERONME	NOW		-										☐ Include EDD:	Laboratory	y Use Only
Address: 2410 W CMIFMAA City, State, Zip: SLC, UT, 8410 Y	thi											İ	☐ Lab Filter for:	COC Tape Was:	
City, State, Zip: SLC, UT, 84154			.		2				}				☐ Field Filtered For:	1 Present on Outer Y N	Package NA
Contact: BLAKE DOWNEY			_		260								F. C. II. WILL	2 Unbroken on Ou	ter Parkage
Phone #: 801 972 8400 Cell #: ~					100							•	For Compliance With: □ NELAP	Y	(MA)
E-mail: BOD WAS ATEU - ENKIRON NO	MYL COM	A.	1		2								□ RCRA	3 Present on Samp	
Project Name: MILL (NEEL HENRIES		•	1		CAHON				1				□ CWA □ SDWA	Y '	NA I
Project #: 2149 ~ 001 D			-		5				1 1				□ ELAP/A2LA □ NLLAP	4 Unbroken on San Y	(ple NAA
			1		٤								☐ Non-Compliance ☐ Other:		
PO#:			ers	ίż	,									Samples Were:	
Sampler Name: SLAVE DOWNEY			Container	Sample Matrix	~								Known Hazards	1 Shipped or hand	delivered
Sample ID:	Date	Time	# of Cc	ımple	787								&	2 Ambient or Chill	
*	Sampled	Sampled	_	_					-				Sample Comments	3 Temperature	4.6 °C
MW-10	12-18-18		3	3	8				1					4 Received Intact	
Mw-11	12-18-18	1033	3	8	۷	_	_								N
										_		_			
								١,						5 Properly Preserve	ed Checked at bench
							- /	7						11 💛 "	Checked at Delich
	d													1	-
y.	0					7								6 Received Within	
Δ,			-	-				_	1					Holding Times	N
2 = 10		The state of the s	+				$\neg \vdash$		++	\dashv				\parallel	
· · · · · · · · · · · · · · · · · · ·			╂	-		<i>y</i>								4	1
A.D			-		4			_				_		-	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			-	y*	A 25	-	_		$\perp$					Sample Labels and CO	
					4	360									N
					٠.										
														1	
			$\vdash$	$\neg$			्रेक		$\perp$			,		1	
Relinquished by:	12/8/8	Received by:	<u> </u>	A .s	in	n 1	3	1			Date: ic-	(C	Special Instructions:		
Chi a A	10/7878 Timel 100	Signature		<u> </u>	<u>is</u>	***	ر م	<u>~</u>			Date: 18- 17-18- Timo: 16-2	78	opecial histractions.		
Relinquished by:	III/C Ddte:	Print Name: Received by:	<u>/C</u>	Y \V'	<u>~</u>	<u> </u>	<u>ا اح</u>	hu	y)		Timer U Date:	1			
ignature	Time:	Signature													
Print Name: Relinquished by:		Print Name:									Time:				
veunquisneu oij: ignature	Date:	Received by: Signature								[	Date:				
	Time:	I									Time:				

CHAIN OF CUSTODY



Mike Cronin Wasatch Environmental 2410 West California Avenue Salt Lake City, UT 84104

TEL: (801) 972-8400

RE: Millcreek Henries / 2249-001d

3440 South 700 West

Salt Lake City, UT 84119

Dear Mike Cronin: Lab Set ID: 1812358

American West Analytical Laboratories received sample(s) on 12/17/2018 for the analyses presented in the following report.

American West Analytical Laboratories (AWAL) is accredited by The National

state accredited in Colorado, Idaho, New Mexico, Wyoming, and Missouri.

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

All analyses were performed in accordance to the NELAP protocols unless noted otherwise. Accreditation scope documents are available upon request. If you have any questions or concerns regarding this report please feel free to call.

Environmental Laboratory Accreditation Program (NELAP) in Utah and Texas; and is

Kyle F. Gross Laboratory Director

Jose Rocha
OA Officer

The abbreviation "Surr" found in organic reports indicates a surrogate compound that is intentionally added by the laboratory to determine sample injection, extraction, and/or purging efficiency. The "Reporting Limit" found on the report is equivalent to the practical quantitation limit (PQL). This is the minimum concentration that can be reported by the method referenced and the sample matrix. The reporting limit must not be confused with any regulatory limit. Analytical results are reported to three significant figures for quality control and calculation purposes.

Thank You,

Jose G.
Rocha
DN: cn=Jose G. Rocha,
o=American West Analytical
Laboratories, ou,
email=jose@awal-labs.com,
c=US
Date: 2018.12.19 13:47:10
-07'00'

Approved by:

Laboratory Director or designee



# **Volatile Case Narrative**

Client: Wasatch Environmental

**Contact:** Mike Cronin

**Project:** Millcreek Henries / 2249-001d

**Lab Set ID:** 1812358

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha OA Officer

### **Sample Receipt Information:**

Date of Receipt:12/17/2018Date(s) of Collection:12/17/2018Sample Condition:IntactC-O-C Discrepancies:None

Method: SW-846 8260C/5030C Analysis: Volatile Organic Compounds

General Set Comments: Multiple target analytes were observed above reporting limits.

**Holding Time and Preservation Requirements:** All samples were received in appropriate containers and properly preserved. The analysis and preparation of all samples were performed within the method holding times following the methods stated on the analytical reports.

**Analytical QC Requirements:** All instrument calibration and calibration check requirements were met. All internal standard recoveries met method criterion.

Batch QC Requirements: MB, LCS, MS, MSD, RPD, and Surrogates:

**Method Blanks (MBs):** No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

**Laboratory Control Sample (LCSs):** All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicate (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, indicating no apparent matrix interferences.

**Surrogates:** All surrogate recoveries were within established limits.

Corrective Action: None required.



## **ORGANIC ANALYTICAL REPORT**

Client: Wasatch Environmental Contact: Mike Cronin

**Project:** Millcreek Henries / 2249-001d

**Lab Sample ID:** 1812358-001A

Client Sample ID: MW-3

**Collection Date:** 12/17/2018 1023h **Received Date:** 12/17/2018 1335h

Analytical Results VOAs AWAL List by GC/MS Method 8260C/5030C

**Analyzed:** 12/17/2018 1500h

Units: μg/L Dilution Factor: 1 Method: SW8260C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686
Toll Free: (888) 263-8686
Fax: (801) 263-8687
e-mail: awal@awal-labs.com
web: www.awal-labs.com

Laboratory Director

Jose Rocha

QA Officer

Kyle F. Gross

Compound	CAS Number	Reporting Limit	Analytical Result Qual
1,1,1-Trichloroethane	71-55-6	2.00	< 2.00
1,1,2,2-Tetrachloroethane	79-34-5	2.00	< 2.00
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.00	< 2.00
1,1,2-Trichloroethane	79-00-5	2.00	< 2.00
1,1-Dichloroethane	75-34-3	2.00	< 2.00
1,1-Dichloroethene	75-35-4	2.00	< 2.00
1,2,3-Trichlorobenzene	87-61-6	2.00	< 2.00
1,2,4-Trichlorobenzene	120-82-1	2.00	< 2.00
1,2-Dibromo-3-chloropropane	96-12-8	5.00	< 5.00
1,2-Dibromoethane	106-93-4	2.00	< 2.00
1,2-Dichlorobenzene	95-50-1	2.00	< 2.00
1,2-Dichloroethane	107-06-2	2.00	< 2.00
1,2-Dichloropropane	78-87-5	2.00	< 2.00
1,3-Dichlorobenzene	541-73-1	2.00	< 2.00
1,4-Dichlorobenzene	106-46-7	2.00	< 2.00
1,4-Dioxane	123-91-1	50.0	< 50.0
2-Butanone	78-93-3	10.0	< 10.0
2-Hexanone	591-78-6	5.00	< 5.00
4-Methyl-2-pentanone	108-10-1	5.00	< 5.00
Acetone	67-64-1	10.0	< 10.0
Benzene	71-43-2	2.00	< 2.00
Bromochloromethane	74-97-5	2.00	< 2.00
Bromodichloromethane	75-27-4	2.00	< 2.00
Bromoform	75-25-2	2.00	< 2.00
Bromomethane	74-83-9	5.00	< 5.00
Carbon disulfide	75-15-0	2.00	< 2.00
Carbon tetrachloride	56-23-5	2.00	< 2.00
Chlorobenzene	108-90-7	2.00	< 2.00
Chloroethane	75-00-3	2.00	< 2.00

Report Date: 12/19/2018 Page 3 of 33

Test Code: 8260-W



**Lab Sample ID:** 1812358-001A

Client Sample ID: MW-3

**Analyzed:** 12/17/2018 1500h

American West	Compound					eporting Limit	Analytical Result	Qual	
	Chloroform			67	-66-3	2.00	< 2.00		
	Chloromethane			74	-87-3	3.00	< 3.00		
	cis-1,2-Dichloroet	hene		156	5-59-2	2.00	3.06		
	cis-1,3-Dichloropa	ropene		1006	51-01-5	2.00	< 2.00		
3440 South 700 West	Cyclohexane			110	)-82-7	2.00	< 2.00		
Salt Lake City, UT 84119	Dibromochlorome	thane		124	1-48-1	2.00	< 2.00		
	Dichlorodifluoron	nethane		75	-71-8	2.00	< 2.00		
	Ethylbenzene			100	)-41-4	2.00	< 2.00		
Phone: (801) 263-8686	Isopropylbenzene			98	-82-8	2.00	< 2.00		
Toll Free: (888) 263-8686	m,p-Xylene	m,p-Xylene				2.00	< 2.00		
Fax: (801) 263-8687	Methyl Acetate	79	-20-9	5.00	< 5.00				
e-mail: awal@awal-labs.com	Methyl tert-butyl	ether		1634-04-4		2.00	< 2.00		
	Methylcyclohexar	e		108-87-2		2.00	< 2.00		
web: www.awal-labs.com	Methylene chlorid	e		75	-09-2	2.00	< 2.00		
	Naphthalene			91	-20-3	2.00	< 2.00		
	o-Xylene			95	-47-6	2.00	< 2.00 < 2.00		
Kyle F. Gross	Styrene			100	)-42-5	2.00			
Laboratory Director	Tetrachloroethene			127	7-18-4	2.00	< 2.00		
	Toluene			108	3-88-3	2.00	< 2.00		
Jose Rocha	trans-1,2-Dichloro	ethene		156	5-60-5	2.00	2.05		
QA Officer	trans-1,3-Dichloro	propene		1006	61-02-6	2.00	< 2.00		
	Trichloroethene			79	-01-6	2.00	< 2.00		
	Trichlorofluorome	thane		75	-69-4	2.00	< 2.00		
	Vinyl chloride			75	-01-4	1.00	< 1.00		
	Surrogate U	nits: μg/L	CAS	Result	Amount Spiked	I % REC	Limits	Qual	
	Surr: 1,2-Dichloroet	hane-d4	17060-07-0	56.1	50.00	112	72-151		
	Surr: 4-Bromofluoro		460-00-4	55.2	50.00	110	80-152		
	Surr: Dibromofluoro Surr: Toluene-d8	omethane	1868-53-7 2037-26-5	49.5 49.0	50.00 50.00	99.0 98.0	72-135 80-124		
	Sail. Totache-do		2031-20-3	77.0	50.00	70.0	00-124		

Report Date: 12/19/2018 Page 4 of 33



## **ORGANIC ANALYTICAL REPORT**

Client: Wasatch Environmental Contact: Mike Cronin

**Project:** Millcreek Henries / 2249-001d

**Lab Sample ID:** 1812358-002A

Client Sample ID: MW-2

**Collection Date:** 12/17/2018 1109h **Received Date:** 12/17/2018 1335h

Analytical Results VOAs AWAL List by GC/MS Method 8260C/5030C

**Analyzed:** 12/17/2018 1519h

Units: μg/L Dilution Factor: 1 Method: SW8260C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686
Toll Free: (888) 263-8686
Fax: (801) 263-8687
e-mail: awal@awal-labs.com
web: www.awal-labs.com

Laboratory Director

Jose Rocha QA Officer

Kyle F. Gross

Compound	CAS Number	Reporting Limit	Analytical Result Qual
1,1,1-Trichloroethane	71-55-6	2.00	< 2.00
1,1,2,2-Tetrachloroethane	79-34-5	2.00	< 2.00
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.00	< 2.00
1,1,2-Trichloroethane	79-00-5	2.00	< 2.00
1,1-Dichloroethane	75-34-3	2.00	< 2.00
1,1-Dichloroethene	75-35-4	2.00	< 2.00
1,2,3-Trichlorobenzene	87-61-6	2.00	< 2.00
1,2,4-Trichlorobenzene	120-82-1	2.00	< 2.00
1,2-Dibromo-3-chloropropane	96-12-8	5.00	< 5.00
1,2-Dibromoethane	106-93-4	2.00	< 2.00
1,2-Dichlorobenzene	95-50-1	2.00	< 2.00
1,2-Dichloroethane	107-06-2	2.00	< 2.00
1,2-Dichloropropane	78-87-5	2.00	< 2.00
1,3-Dichlorobenzene	541-73-1	2.00	< 2.00
1,4-Dichlorobenzene	106-46-7	2.00	< 2.00
1,4-Dioxane	123-91-1	50.0	< 50.0
2-Butanone	78-93-3	10.0	< 10.0
2-Hexanone	591-78-6	5.00	< 5.00
4-Methyl-2-pentanone	108-10-1	5.00	< 5.00
Acetone	67-64-1	10.0	< 10.0
Benzene	71-43-2	2.00	< 2.00
Bromochloromethane	74-97-5	2.00	< 2.00
Bromodichloromethane	75-27-4	2.00	< 2.00
Bromoform	75-25-2	2.00	< 2.00
Bromomethane	74-83-9	5.00	< 5.00
Carbon disulfide	75-15-0	2.00	< 2.00
Carbon tetrachloride	56-23-5	2.00	< 2.00
Chlorobenzene	108-90-7	2.00	< 2.00
Chloroethane	75-00-3	2.00	< 2.00

Report Date: 12/19/2018 Page 5 of 33

Test Code: 8260-W



**Lab Sample ID:** 1812358-002A

Client Sample ID: MW-2

**Analyzed:** 12/17/2018 1519h

American West	Compound		CAS Number	Reporting Limit	Analytical Result	Qual					
	Chloroform		67-66-3	2.00	< 2.00						
	Chloromethane		74-87-3	3.00	< 3.00						
	cis-1,2-Dichloroethene		156-59-2	2.00	4.50						
	cis-1,3-Dichloropropene		10061-01-5	2.00	< 2.00						
3440 South 700 West	Cyclohexane		110-82-7	2.00	< 2.00						
Salt Lake City, UT 84119	Dibromochloromethane		124-48-1	2.00	< 2.00						
	Dichlorodifluoromethane		75-71-8	2.00	< 2.00						
	Ethylbenzene		100-41-4	2.00	< 2.00						
Phone: (801) 263-8686	Isopropylbenzene		98-82-8	2.00	< 2.00						
Toll Free: (888) 263-8686	m,p-Xylene		179601-23-1	2.00	< 2.00						
Fax: (801) 263-8687	Methyl Acetate		79-20-9	5.00	< 5.00						
e-mail: awal@awal-labs.com	Methyl tert-butyl ether		1634-04-4	2.00	< 2.00						
Ü	Methylcyclohexane		108-87-2	2.00	< 2.00						
web: www.awal-labs.com	Methylene chloride		75-09-2	2.00	< 2.00						
	Naphthalene		91-20-3	2.00	< 2.00						
	o-Xylene		95-47-6	2.00	< 2.00						
Kyle F. Gross	Styrene		100-42-5	2.00	< 2.00						
Laboratory Director	Tetrachloroethene		127-18-4	2.00	< 2.00						
I D 1	Toluene		108-88-3	2.00	< 2.00						
Jose Rocha	trans-1,2-Dichloroethene		156-60-5	2.00	< 2.00						
QA Officer	trans-1,3-Dichloropropene		10061-02-6	2.00	< 2.00						
	Trichloroethene		79-01-6	2.00	< 2.00						
	Trichlorofluoromethane		75-69-4	2.00	< 2.00						
	Vinyl chloride		75-01-4	1.00	4.33						
	Surrogate Units: μg/L	CAS	Result Amoun	t Spiked % REC	Limits	Qual					
	Surr: 1,2-Dichloroethane-d4	17060-07-0	57.4 50	.00 115	72-151						
	Surr: 4-Bromofluorobenzene Surr: Dibromofluoromethane	460-00-4		111	80-152						
	Surr: Toluene-d8	1868-53-7 2037-26-5		1.00 103 1.00 96.8	72-135 80-124						



# ORGANIC ANALYTICAL REPORT

**Client:** Wasatch Environmental Contact: Mike Cronin

Millcreek Henries / 2249-001d **Project:** 

Lab Sample ID: 1812358-003A

Client Sample ID: MW-1

Bromoform

Bromomethane

Carbon disulfide

Chlorobenzene

Chloroethane

Carbon tetrachloride

**Collection Date:** 12/17/2018 1153h **Received Date:** 12/17/2018 1335h

VOAs AWAL List by GC/MS Method 8260C/5030C **Analytical Results** 

75-25-2

74-83-9

75-15-0

56-23-5

108-90-7

75-00-3

2.00

5.00

2.00

2.00

2.00

2.00

**Analyzed:** 12/17/2018 1539h

Units: µg/L **Dilution Factor:** 1 Method: SW8260C

3440 South 700 West Salt Lake City, UT 84119

**CAS** Reporting **Analytical** Compound Number Limit Result Qual 1,1,1-Trichloroethane 71-55-6 2.00 < 2.001,1,2,2-Tetrachloroethane 79-34-5 2.00 < 2.00Phone: (801) 263-8686 1,1,2-Trichloro-1,2,2-trifluoroethane 76-13-1 2.00 < 2.00Toll Free: (888) 263-8686 1,1,2-Trichloroethane 79-00-5 2.00 < 2.00Fax: (801) 263-8687 1.1-Dichloroethane 75-34-3 2.00 < 2.00e-mail: awal@awal-labs.com 1,1-Dichloroethene 75-35-4 2.00 < 2.001,2,3-Trichlorobenzene 87-61-6 2.00 < 2.00web: www.awal-labs.com 1,2,4-Trichlorobenzene 120-82-1 2.00 < 2.001,2-Dibromo-3-chloropropane 96-12-8 5.00 < 5.00 106-93-4 1,2-Dibromoethane 2.00 < 2.00Kyle F. Gross 1,2-Dichlorobenzene 95-50-1 2.00 < 2.00 Laboratory Director 1,2-Dichloroethane 107-06-2 2.00 < 2.00 78-87-5 1,2-Dichloropropane 2.00 < 2.00Jose Rocha 1,3-Dichlorobenzene 541-73-1 2.00 < 2.00 **OA** Officer 1,4-Dichlorobenzene 106-46-7 2.00 < 2.00 1,4-Dioxane 123-91-1 50.0 < 50.0 2-Butanone 78-93-3 10.0 < 10.0 2-Hexanone 591-78-6 5.00 < 5.00 4-Methyl-2-pentanone 108-10-1 5.00 < 5.00 Acetone 67-64-1 10.0 < 10.0 Benzene 71-43-2 2.00 < 2.00 Bromochloromethane 74-97-5 2.00 < 2.00Bromodichloromethane 75-27-4 2.00 < 2.00

Report Date: 12/19/2018 Page 7 of 33

< 2.00

< 5.00

< 2.00

< 2.00

< 2.00

< 2.00

Test Code: 8260-W



**Lab Sample ID:** 1812358-003A

Client Sample ID: MW-1

**Analyzed:** 12/17/2018 1539h

Units:  $\mu g/L$  Dilution Factor: 1 Method: SW8260C

American West	Compound					porting Limit	Analytical Result	Qual	
	Chloroform			67	-66-3	2.00	< 2.00		
	Chlorometha	ne		74	-87-3	3.00	< 3.00		
	cis-1,2-Dichl	oroethene		156	5-59-2	2.00	2.41		
	cis-1,3-Dichl	oropropene		1006	51-01-5	2.00	< 2.00		
3440 South 700 West	Cyclohexane			110	)-82-7	2.00	< 2.00		
Salt Lake City, UT 84119	Dibromochlo	romethane		124	1-48-1	2.00	< 2.00		
	Dichlorodiflu	ioromethane		75	-71-8	2.00	< 2.00		
	Ethylbenzene	<b>;</b>		100	)-41-4	2.00	< 2.00		
Phone: (801) 263-8686	Isopropylben	zene		98	-82-8	2.00	< 2.00		
Toll Free: (888) 263-8686	m,p-Xylene			1796	01-23-1	2.00	< 2.00		
Fax: (801) 263-8687	Methyl Aceta	nte		79	-20-9	5.00	< 5.00		
e-mail: awal@awal-labs.com	Methyl tert-b	utyl ether		163	4-04-4	2.00	< 2.00		
• 11mm u mar@u mar 1mesidein	Methylcyclol	nexane		108	3-87-2	2.00	< 2.00		
web: www.awal-labs.com	Methylene ch	nloride		75	-09-2	2.00	< 2.00		
	Naphthalene			91	-20-3	2.00	< 2.00		
	o-Xylene			95-47-6		2.00	< 2.00		
Kyle F. Gross	Styrene			100	)-42-5	2.00	< 2.00		
Laboratory Director	Tetrachloroet	thene		127	7-18-4	2.00	< 2.00		
	Toluene			108	3-88-3	2.00	< 2.00		
Jose Rocha	trans-1,2-Dic	hloroethene		156	5-60-5	2.00	< 2.00		
QA Officer	trans-1,3-Dic	hloropropene		1006	61-02-6	2.00	< 2.00		
	Trichloroethe	• •		79	-01-6	2.00	< 2.00		
	Trichlorofluc	promethane		75	-69-4	2.00	< 2.00		
	Vinyl chlorid	le		75	-01-4	1.00	18.0		
	Surrogate	Units: μg/L	CAS	Result	Amount Spiked	% REC	Limits	Qual	
	Surr: 1,2-Dicl	nloroethane-d4	17060-07-0	57.2	50.00	114	72-151		
	Surr: 4-Brome	ofluorobenzene	460-00-4	54.6	50.00	109	80-152		
		ofluoromethane	1868-53-7	49.9	50.00	99.7	72-135		
	Surr: Toluene	-d8	2037-26-5	47.8	50.00	95.5	80-124		

Report Date: 12/19/2018 Page 8 of 33



## **ORGANIC ANALYTICAL REPORT**

Client: Wasatch Environmental Contact: Mike Cronin

**Project:** Millcreek Henries / 2249-001d

**Lab Sample ID:** 1812358-004A

**Client Sample ID: MW-6** 

**Collection Date:** 12/17/2018 1245h **Received Date:** 12/17/2018 1335h

Analytical Results VOAs AWAL List by GC/MS Method 8260C/5030C

**Analyzed:** 12/18/2018 1220h

Units: μg/L Dilution Factor: 20 Method: SW8260C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686

Fax: (801) 263-8687

Toll Free: (888) 263-8686

e-mail: awal@awal-labs.com

**CAS** Reporting **Analytical** Compound Number Limit Result Qual cis-1,2-Dichloroethene 156-59-2 40.0 486 Surrogate Units: µg/L CAS Result **Amount Spiked** % REC Limits Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 1,120 1,000 112 72-151 Surr: 4-Bromofluorobenzene 460-00-4 1,060 1,000 106 80-152 Surr: Dibromofluoromethane 1868-53-7 1,020 1,000 102 72-135 Surr: Toluene-d8 2037-26-5 961 1,000 96.1 80-124

~ - The reporting limits were raised due to high analyte concentrations.

web: www.awal-labs.com

**Analyzed:** 12/17/2018 1559h

Units: μg/L Dilution Factor: 1 Method: SW8260C

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result Qual
1,1,1-Trichloroethane	71-55-6	2.00	< 2.00
1,1,2,2-Tetrachloroethane	79-34-5	2.00	< 2.00
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.00	< 2.00
1,1,2-Trichloroethane	79-00-5	2.00	< 2.00
1,1-Dichloroethane	75-34-3	2.00	< 2.00
1,1-Dichloroethene	75-35-4	2.00	< 2.00
1,2,3-Trichlorobenzene	87-61-6	2.00	< 2.00
1,2,4-Trichlorobenzene	120-82-1	2.00	< 2.00
1,2-Dibromo-3-chloropropane	96-12-8	5.00	< 5.00
1,2-Dibromoethane	106-93-4	2.00	< 2.00
1,2-Dichlorobenzene	95-50-1	2.00	< 2.00
1,2-Dichloroethane	107-06-2	2.00	< 2.00
1,2-Dichloropropane	78-87-5	2.00	< 2.00
1,3-Dichlorobenzene	541-73-1	2.00	< 2.00
1,4-Dichlorobenzene	106-46-7	2.00	< 2.00
1,4-Dioxane	123-91-1	50.0	< 50.0
2-Butanone	78-93-3	10.0	69.6
2-Hexanone	591-78-6	5.00	< 5.00

Report Date: 12/19/2018 Page 9 of 33

Test Code: 8260-W



**Lab Sample ID:** 1812358-004A

Client Sample ID: MW-6

**Analyzed:** 12/17/2018 1559h

Units: μg/L Dilution Factor: 1 Method: SW8260C

American West	Compound	CAS Number	Reporting Limit	Analytical Result Qual
	4-Methyl-2-pentanone	108-10-1	5.00	< 5.00
	Acetone	67-64-1	10.0	13.6
	Benzene	71-43-2	2.00	< 2.00
	Bromochloromethane	74-97-5	2.00	< 2.00
3440 South 700 West	Bromodichloromethane	75-27-4	2.00	< 2.00
Salt Lake City, UT 84119	Bromoform	75-25-2	2.00	< 2.00
	Bromomethane	74-83-9	5.00	< 5.00
	Carbon disulfide	75-15-0	2.00	< 2.00
Phone: (801) 263-8686	Carbon tetrachloride	56-23-5	2.00	< 2.00
Toll Free: (888) 263-8686	Chlorobenzene	108-90-7	2.00	< 2.00
Fax: (801) 263-8687	Chloroethane	75-00-3	2.00	< 2.00
e-mail: awal@awal-labs.com	Chloroform	67-66-3	2.00	< 2.00
	Chloromethane	74-87-3	3.00	< 3.00
web: www.awal-labs.com	cis-1,3-Dichloropropene	10061-01-5	2.00	< 2.00
	Cyclohexane	110-82-7	2.00	< 2.00
	Dibromochloromethane	124-48-1	2.00	< 2.00
Kyle F. Gross	Dichlorodifluoromethane	75-71-8	2.00	< 2.00
Laboratory Director	Ethylbenzene	100-41-4	2.00	< 2.00
I D 1	Isopropylbenzene	98-82-8	2.00	< 2.00
Jose Rocha	m,p-Xylene	179601-23-1	2.00	< 2.00
QA Officer	Methyl Acetate	79-20-9	5.00	< 5.00
	Methyl tert-butyl ether	1634-04-4	2.00	< 2.00
	Methylcyclohexane	108-87-2	2.00	< 2.00
	Methylene chloride	75-09-2	2.00	< 2.00
	Naphthalene	91-20-3	2.00	2.16
	o-Xylene	95-47-6	2.00	< 2.00
	Styrene	100-42-5	2.00	< 2.00
	Tetrachloroethene	127-18-4	2.00	< 2.00
	Toluene	108-88-3	2.00	< 2.00
	trans-1,2-Dichloroethene	156-60-5	2.00	8.77
	trans-1,3-Dichloropropene	10061-02-6	2.00	< 2.00
	Trichloroethene	79-01-6	2.00	< 2.00
	Trichlorofluoromethane	75-69-4	2.00	< 2.00
	Vinyl chloride	75-01-4	1.00	5.34



**Lab Sample ID:** 1812358-004A

Client Sample ID: MW-6

**Analyzed:** 12/17/2018 1559h

Surrogate	Units: µg/L	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dic	chloroethane-d4	17060-07-0	56.9	50.00	114	72-151	
Surr: 4-Brom	nofluorobenzene	460-00-4	52.6	50.00	105	80-152	
Surr: Dibron	nofluoromethane	1868-53-7	50.7	50.00	101	72-135	
Surr: Toluen	e-d8	2037-26-5	48.2	50.00	96.5	80-124	

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

### 3440 South 700 West

Phone: (80 e-m

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross
Laboratory Director

Jose Rocha QA Officer

### **QC SUMMARY REPORT**

Client: Wasatch Environmental

**Lab Set ID:** 1812358

**Project:** Millcreek Henries / 2249-001d

Contact: Mike Cronin
Dept: MSVOA
QC Type: LCS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:LCS VOC-1 121718ATest Code:8260-W	Date Analyzed:	12/17/20	18 934h										
1,1,1-Trichloroethane	22.4	μg/L	SW8260C	0.142	2.00	20.00	0	112	73 - 139				
1,1-Dichloroethene	20.4	μg/L	SW8260C	0.275	2.00	20.00	0	102	37 - 144				
1,2-Dichlorobenzene	20.2	μg/L	SW8260C	0.105	2.00	20.00	0	101	70 - 130				
1,2-Dichloroethane	22.8	μg/L	SW8260C	0.0988	2.00	20.00	0	114	76 - 132				
1,2-Dichloropropane	20.0	μg/L	SW8260C	0.0968	2.00	20.00	0	99.8	81 - 121				
Benzene	19.7	μg/L	SW8260C	0.0956	2.00	20.00	0	98.6	82 - 132				
Chlorobenzene	19.9	μg/L	SW8260C	0.0832	2.00	20.00	0	99.5	74 - 126				
Chloroform	21.3	μg/L	SW8260C	0.0998	2.00	20.00	0	106	85 - 124				
Ethylbenzene	19.9	μg/L	SW8260C	0.103	2.00	20.00	0	99.6	67 - 118				
Isopropylbenzene	20.4	μg/L	SW8260C	0.131	2.00	20.00	0	102	68 - 127				
Methyl tert-butyl ether	23.3	μg/L	SW8260C	0.206	2.00	20.00	0	117	58 - 131				
Methylene chloride	20.2	μg/L	SW8260C	0.400	2.00	20.00	0	101	65 - 154				
Naphthalene	15.9	μg/L	SW8260C	0.159	2.00	20.00	0	79.4	63 - 129				
Toluene	19.7	μg/L	SW8260C	0.0858	2.00	20.00	0	98.6	69 - 129				
Trichloroethene	20.8	μg/L	SW8260C	0.105	2.00	20.00	0	104	75 - 136				
Surr: 1,2-Dichloroethane-d4	56.5	μg/L	SW8260C			50.00		113	80 - 136				
Surr: 4-Bromofluorobenzene	50.1	μg/L	SW8260C			50.00		100	85 - 121				
Surr: Dibromofluoromethane	51.3	μg/L	SW8260C			50.00		103	78 - 132				
Surr: Toluene-d8	48.6	$\mu g/L$	SW8260C			50.00		97.2	81 - 123				
Lab Sample ID:LCS VOC-1 121818ATest Code:8260-W	Date Analyzed:	12/18/20	18 1022h										
1,1,1-Trichloroethane	23.1	μg/L	SW8260C	0.142	2.00	20.00	0	116	73 - 139				
1,1-Dichloroethene	20.6	μg/L	SW8260C	0.275	2.00	20.00	0	103	37 - 144				
1,2-Dichlorobenzene	19.6	μg/L	SW8260C	0.105	2.00	20.00	0	98.0	70 - 130				
1,2-Dichloroethane	22.4	μg/L	SW8260C	0.0988	2.00	20.00	0	112	76 - 132				
1,2-Dichloropropane	20.0	μg/L	SW8260C	0.0968	2.00	20.00	0	100	81 - 121				
Benzene	19.9	μg/L	SW8260C	0.0956	2.00	20.00	0	99.6	82 - 132				



American West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

# **QC SUMMARY REPORT**

Client: Wasatch Environmental

**Lab Set ID:** 1812358

**Project:** Millcreek Henries / 2249-001d

Contact: Mike Cronin
Dept: MSVOA
QC Type: LCS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:LCS VOC-1 121818ATest Code:8260-W	Date Analyzed:	12/18/20	18 1022h										
Chlorobenzene	19.8	μg/L	SW8260C	0.0832	2.00	20.00	0	99.0	74 - 126				
Chloroform	21.5	μg/L	SW8260C	0.0998	2.00	20.00	0	107	85 - 124				
Ethylbenzene	20.5	μg/L	SW8260C	0.103	2.00	20.00	0	103	67 - 118				
Isopropylbenzene	20.9	μg/L	SW8260C	0.131	2.00	20.00	0	104	68 - 127				
Methyl tert-butyl ether	22.1	μg/L	SW8260C	0.206	2.00	20.00	0	110	58 - 131				
Methylene chloride	19.4	μg/L	SW8260C	0.400	2.00	20.00	0	96.9	65 - 154				
Naphthalene	15.1	μg/L	SW8260C	0.159	2.00	20.00	0	75.6	63 - 129				
Tetrahydrofuran	16.4	μg/L	SW8260C	0.681	2.00	20.00	0	81.8	59 - 125				
Toluene	19.9	μg/L	SW8260C	0.0858	2.00	20.00	0	99.3	69 - 129				
Trichloroethene	21.2	μg/L	SW8260C	0.105	2.00	20.00	0	106	75 - 136				
Xylenes, Total	61.4	μg/L	SW8260C	0.310	2.00	60.00	0	102	66 - 124				
Surr: 1,2-Dichloroethane-d4	56.1	μg/L	SW8260C			50.00		112	80 - 136				
Surr: 4-Bromofluorobenzene	48.2	μg/L	SW8260C			50.00		96.4	85 - 121				
Surr: Dibromofluoromethane	50.7	μg/L	SW8260C			50.00		101	78 - 132				
Surr: Toluene-d8	47.4	μg/L	SW8260C			50.00		94.9	81 - 123				



Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross
Laboratory Director

Jose Rocha QA Officer

# **QC SUMMARY REPORT**

Client: Wasatch Environmental

**Lab Set ID:** 1812358

**Project:** Millcreek Henries / 2249-001d

Contact: Mike Cronin
Dept: MSVOA
QC Type: MBLK

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: MB VOC-1 121718A Test Code: 8260-W	Date Analyzed:	12/17/20	18 1013h										
1,1,1-Trichloroethane	< 2.00	μg/L	SW8260C	0.142	2.00								
1,1,2,2-Tetrachloroethane	< 2.00	μg/L	SW8260C	0.0872	2.00								
1,1,2-Trichloro-1,2,2-trifluoroethane	< 2.00	μg/L	SW8260C	0.322	2.00								
1,1,2-Trichloroethane	< 2.00	μg/L	SW8260C	0.0847	2.00								
1,1-Dichloroethane	< 2.00	μg/L	SW8260C	0.116	2.00								
1,1-Dichloroethene	< 2.00	μg/L	SW8260C	0.275	2.00								
1,2,3-Trichlorobenzene	< 2.00	μg/L	SW8260C	0.220	2.00								
1,2,4-Trichlorobenzene	< 2.00	μg/L	SW8260C	0.271	2.00								
1,2-Dibromo-3-chloropropane	< 5.00	μg/L	SW8260C	0.312	5.00								
1,2-Dibromoethane	< 2.00	μg/L	SW8260C	0.0828	2.00								
1,2-Dichlorobenzene	< 2.00	μg/L	SW8260C	0.105	2.00								
1,2-Dichloroethane	< 2.00	μg/L	SW8260C	0.0988	2.00								
1,2-Dichloropropane	< 2.00	$\mu g/L$	SW8260C	0.0968	2.00								
1,3-Dichlorobenzene	< 2.00	$\mu g/L$	SW8260C	0.118	2.00								
1,4-Dichlorobenzene	< 2.00	$\mu g/L$	SW8260C	0.272	2.00								
1,4-Dioxane	< 50.0	$\mu g/L$	SW8260C	11.9	50.0								
2-Butanone	< 10.0	$\mu g/L$	SW8260C	0.587	10.0								
2-Hexanone	< 5.00	$\mu g/L$	SW8260C	0.215	5.00								
4-Methyl-2-pentanone	< 5.00	$\mu g/L$	SW8260C	0.238	5.00								
Acetone	< 10.0	μg/L	SW8260C	1.13	10.0								
Benzene	< 2.00	μg/L	SW8260C	0.0956	2.00								
Bromochloromethane	< 2.00	$\mu g/L$	SW8260C	0.146	2.00								
Bromodichloromethane	< 2.00	μg/L	SW8260C	0.0819	2.00								
Bromoform	< 2.00	$\mu g/L$	SW8260C	0.131	2.00								
Bromomethane	< 5.00	$\mu g/L$	SW8260C	3.45	5.00								
Carbon disulfide	< 2.00	$\mu g/L$	SW8260C	0.293	2.00								
Carbon tetrachloride	< 2.00	$\mu g\!/L$	SW8260C	0.178	2.00								



American West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

# **QC SUMMARY REPORT**

Client: Wasatch Environmental

**Lab Set ID:** 1812358

**Project:** Millcreek Henries / 2249-001d

Contact: Mike Cronin
Dept: MSVOA
QC Type: MBLK

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: MB VOC-1 121718 Fest Code: 8260-W	Date Analyzed:	12/17/20	18 1013h										•
Chlorobenzene	< 2.00	μg/L	SW8260C	0.0832	2.00								
Chloroethane	< 2.00	μg/L	SW8260C	1.01	2.00								
Chloroform	< 2.00	μg/L	SW8260C	0.0998	2.00								
Chloromethane	< 3.00	μg/L	SW8260C	0.836	3.00								
cis-1,2-Dichloroethene	< 2.00	μg/L	SW8260C	0.129	2.00								
cis-1,3-Dichloropropene	< 2.00	μg/L	SW8260C	0.114	2.00								
Cyclohexane	< 2.00	μg/L	SW8260C	0.488	2.00								
Dibromochloromethane	< 2.00	μg/L	SW8260C	0.0924	2.00								
Dichlorodifluoromethane	< 2.00	μg/L	SW8260C	0.163	2.00								
Ethylbenzene	< 2.00	μg/L	SW8260C	0.103	2.00								
Isopropylbenzene	< 2.00	μg/L	SW8260C	0.131	2.00								
m,p-Xylene	< 2.00	μg/L	SW8260C	0.205	2.00								
Methyl Acetate	< 5.00	μg/L	SW8260C	1.21	5.00								
Methyl tert-butyl ether	< 2.00	μg/L	SW8260C	0.206	2.00								
Methylcyclohexane	< 2.00	μg/L	SW8260C	0.282	2.00								
Methylene chloride	< 2.00	μg/L	SW8260C	0.400	2.00								
Naphthalene	< 2.00	μg/L	SW8260C	0.159	2.00								
o-Xylene	< 2.00	μg/L	SW8260C	0.119	2.00								
Styrene	< 2.00	μg/L	SW8260C	0.149	2.00								
Tetrachloroethene	< 2.00	μg/L	SW8260C	0.170	2.00								
Toluene	< 2.00	μg/L	SW8260C	0.0858	2.00								
trans-1,2-Dichloroethene	< 2.00	μg/L	SW8260C	0.327	2.00								
trans-1,3-Dichloropropene	< 2.00	μg/L	SW8260C	0.127	2.00								
Trichloroethene	< 2.00	μg/L	SW8260C	0.105	2.00								
Trichlorofluoromethane	< 2.00	μg/L	SW8260C	0.180	2.00								
Vinyl chloride	< 1.00	μg/L	SW8260C	0.184	1.00								
Surr: 1,2-Dichloroethane-d4	55.4	$\mu g/L$	SW8260C			50.00		111	80 - 136				



Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha **QA** Officer

# **QC SUMMARY REPORT**

**Client:** Wasatch Environmental

**Lab Set ID:** 1812358

**Project:** Millcreek Henries / 2249-001d

Mike Cronin **Contact:** Dept: **MSVOA** 

QC Type: MBLK

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:MB VOC-1 121718ATest Code:8260-W	Date Analyzed:	12/17/20	18 1013h										
Surr: 4-Bromofluorobenzene	54.2	μg/L	SW8260C			50.00		108	85 - 121				
Surr: Dibromofluoromethane	50.1	$\mu g/L$	SW8260C			50.00		100	78 - 132				
Surr: Toluene-d8	48.3	$\mu g/L$	SW8260C			50.00		96.5	81 - 123				
Lab Sample ID: MB VOC-1 121818A	Date Analyzed:	12/18/20	I										
Test Code: 8260-W	Date Allaryzed.	12/16/20	18 110111										
•	< 2.00	μg/L	SW8260C	0.129	2.00								
Test Code: 8260-W	•			0.129	2.00	50.00		111	80 - 136				
Test Code: 8260-W cis-1,2-Dichloroethene	< 2.00	μg/L	SW8260C	0.129	2.00	50.00 50.00		111 106	80 - 136 85 - 121				
Test Code: 8260-W  cis-1,2-Dichloroethene  Surr: 1,2-Dichloroethane-d4	< 2.00 55.5	μg/L μg/L	SW8260C SW8260C	0.129	2.00								

### 3440 South 700 West

American West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

# **QC SUMMARY REPORT**

Client: Wasatch Environmental

**Lab Set ID:** 1812358

**Project:** Millcreek Henries / 2249-001d

Contact: Mike Cronin
Dept: MSVOA
QC Type: MS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:         1812358-001AMS           Test Code:         8260-W	Date Analyzed:	12/17/20	18 1618h										
1,1,1-Trichloroethane	22.8	μg/L	SW8260C	0.142	2.00	20.00	0	114	67 - 147				
1,1-Dichloroethene	21.3	μg/L	SW8260C	0.275	2.00	20.00	0	107	51 - 152				
1,2-Dichlorobenzene	19.7	μg/L	SW8260C	0.105	2.00	20.00	0	98.3	70 - 130				
1,2-Dichloroethane	22.2	μg/L	SW8260C	0.0988	2.00	20.00	0	111	39 - 162				
1,2-Dichloropropane	19.5	μg/L	SW8260C	0.0968	2.00	20.00	0	97.6	59 - 135				
Benzene	19.8	μg/L	SW8260C	0.0956	2.00	20.00	0	99.2	66 - 145				
Chlorobenzene	19.6	μg/L	SW8260C	0.0832	2.00	20.00	0	97.9	63 - 140				
Chloroform	21.0	μg/L	SW8260C	0.0998	2.00	20.00	0	105	50 - 146				
Ethylbenzene	19.8	μg/L	SW8260C	0.103	2.00	20.00	0	99.0	69 - 133				
Isopropylbenzene	20.3	μg/L	SW8260C	0.131	2.00	20.00	0	102	60 - 147				
Methyl tert-butyl ether	21.7	μg/L	SW8260C	0.206	2.00	20.00	0	108	37 - 189				
Methylene chloride	20.0	μg/L	SW8260C	0.400	2.00	20.00	0	100	30 - 192				
Naphthalene	14.1	μg/L	SW8260C	0.159	2.00	20.00	0	70.6	41 - 131				
Toluene	19.6	μg/L	SW8260C	0.0858	2.00	20.00	0	98.0	18 - 192				
Trichloroethene	20.8	μg/L	SW8260C	0.105	2.00	20.00	0	104	61 - 153				
Surr: 1,2-Dichloroethane-d4	56.0	μg/L	SW8260C			50.00		112	72 - 151				
Surr: 4-Bromofluorobenzene	50.2	μg/L	SW8260C			50.00		100	80 - 152				
Surr: Dibromofluoromethane	50.7	μg/L	SW8260C			50.00		101	72 - 135				
Surr: Toluene-d8	47.6	μg/L	SW8260C			50.00		95.2	80 - 124				
Lab Sample ID:         1812358-004AMS           Test Code:         8260-W	Date Analyzed:	12/18/20	18 1239h										
1,1,1-Trichloroethane	479	μg/L	SW8260C	2.84	40.0	400.0	0	120	67 - 147				
1,1-Dichloroethene	427	μg/L	SW8260C	5.50	40.0	400.0	0	107	51 - 152				
1,2-Dichlorobenzene	390	μg/L	SW8260C	2.10	40.0	400.0	0	97.6	70 - 130				
1,2-Dichloroethane	457	μg/L	SW8260C	1.98	40.0	400.0	0	114	39 - 162				
1,2-Dichloropropane	405	μg/L	SW8260C	1.94	40.0	400.0	0	101	59 - 135				
Benzene	406	μg/L	SW8260C	1.91	40.0	400.0	0	102	66 - 145				



American West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

# **QC SUMMARY REPORT**

Client: Wasatch Environmental

**Lab Set ID:** 1812358

**Project:** Millcreek Henries / 2249-001d

Contact: Mike Cronin
Dept: MSVOA
QC Type: MS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:         1812358-004AMS           Test Code:         8260-W	Date Analyzed:	12/18/20	18 1239h										
Chlorobenzene	401	μg/L	SW8260C	1.66	40.0	400.0	0	100	63 - 140				
Chloroform	435	μg/L	SW8260C	2.00	40.0	400.0	0	109	50 - 146				
Ethylbenzene	402	$\mu g/L$	SW8260C	2.06	40.0	400.0	0	101	69 - 133				
Isopropylbenzene	414	$\mu g/L$	SW8260C	2.62	40.0	400.0	0	103	60 - 147				
Methyl tert-butyl ether	468	$\mu g/L$	SW8260C	4.12	40.0	400.0	0	117	37 - 189				
Methylene chloride	403	$\mu g/L$	SW8260C	8.00	40.0	400.0	0	101	30 - 192				
Naphthalene	302	$\mu g/L$	SW8260C	3.18	40.0	400.0	28	68.5	41 - 131				
Tetrahydrofuran	360	$\mu g/L$	SW8260C	13.6	40.0	400.0	0	90.1	43 - 146				
Toluene	394	$\mu g/L$	SW8260C	1.72	40.0	400.0	0	98.6	18 - 192				
Trichloroethene	424	$\mu g/L$	SW8260C	2.10	40.0	400.0	0	106	61 - 153				
Xylenes, Total	1,230	μg/L	SW8260C	6.20	40.0	1,200	0	103	42 - 167				
Surr: 1,2-Dichloroethane-d4	1,120	μg/L	SW8260C			1,000		112	72 - 151				
Surr: 4-Bromofluorobenzene	941	$\mu g/L$	SW8260C			1,000		94.1	80 - 152				
Surr: Dibromofluoromethane	1,020	$\mu g/L$	SW8260C			1,000		102	72 - 135				
Surr: Toluene-d8	932	$\mu g/L$	SW8260C			1,000		93.2	80 - 124				

### 3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha **QA** Officer

# **QC SUMMARY REPORT**

**Client:** Wasatch Environmental

**Lab Set ID:** 1812358

**Project:** Millcreek Henries / 2249-001d

Mike Cronin **Contact:** Dept: **MSVOA** QC Type: MSD

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:         1812358-001AMSD           Test Code:         8260-W	Date Analyzed:	12/17/20	18 1638h										
1,1,1-Trichloroethane	21.9	μg/L	SW8260C	0.142	2.00	20.00	0	109	67 - 147	22.8	3.90	25	
1,1-Dichloroethene	20.4	μg/L	SW8260C	0.275	2.00	20.00	0	102	51 - 152	21.3	4.46	25	
1,2-Dichlorobenzene	18.9	μg/L	SW8260C	0.105	2.00	20.00	0	94.6	70 - 130	19.7	3.84	25	
1,2-Dichloroethane	20.6	μg/L	SW8260C	0.0988	2.00	20.00	0	103	39 - 162	22.2	7.44	25	
1,2-Dichloropropane	18.9	μg/L	SW8260C	0.0968	2.00	20.00	0	94.6	59 - 135	19.5	3.12	25	
Benzene	19.1	μg/L	SW8260C	0.0956	2.00	20.00	0	95.4	66 - 145	19.9	3.90	25	
Chlorobenzene	18.8	μg/L	SW8260C	0.0832	2.00	20.00	0	93.8	63 - 140	19.6	4.23	25	
Chloroform	20.0	μg/L	SW8260C	0.0998	2.00	20.00	0	100	50 - 146	21	4.73	25	
Ethylbenzene	18.6	μg/L	SW8260C	0.103	2.00	20.00	0	93.0	69 - 133	19.8	6.30	25	
Isopropylbenzene	19.6	μg/L	SW8260C	0.131	2.00	20.00	0	97.9	60 - 147	20.3	3.86	25	
Methyl tert-butyl ether	20.6	μg/L	SW8260C	0.206	2.00	20.00	0	103	37 - 189	21.7	4.91	25	
Methylene chloride	18.6	μg/L	SW8260C	0.400	2.00	20.00	0	93.3	30 - 192	20	7.19	25	
Naphthalene	13.4	μg/L	SW8260C	0.159	2.00	20.00	0	67.0	41 - 131	14.1	5.23	25	
Toluene	18.8	$\mu g/L$	SW8260C	0.0858	2.00	20.00	0	93.8	18 - 192	19.6	4.38	25	
Trichloroethene	20.3	μg/L	SW8260C	0.105	2.00	20.00	0	102	61 - 153	20.8	2.53	25	
Surr: 1,2-Dichloroethane-d4	55.2	μg/L	SW8260C			50.00		110	72 - 151				
Surr: 4-Bromofluorobenzene	49.5	μg/L	SW8260C			50.00		98.9	80 - 152				
Surr: Dibromofluoromethane	50.3	μg/L	SW8260C			50.00		101	72 - 135				
Surr: Toluene-d8	47.2	$\mu g/L$	SW8260C			50.00		94.5	80 - 124				
Lab Sample ID:         1812358-004AMSD           Test Code:         8260-W	Date Analyzed:	12/18/20	18 1259h										
1,1,1-Trichloroethane	472	μg/L	SW8260C	2.84	40.0	400.0	0	118	67 - 147	479	1.30	25	
1,1-Dichloroethene	438	μg/L	SW8260C	5.50	40.0	400.0	0	110	51 - 152	427	2.64	25	
1,2-Dichlorobenzene	402	μg/L	SW8260C	2.10	40.0	400.0	0	101	70 - 130	390	2.93	25	
1,2-Dichloroethane	462	μg/L	SW8260C	1.98	40.0	400.0	0	116	39 - 162	457	1.04	25	
1,2-Dichloropropane	419	μg/L	SW8260C	1.94	40.0	400.0	0	105	59 - 135	405	3.25	25	
Benzene	413	μg/L	SW8260C	1.91	40.0	400.0	0	103	66 - 145	406	1.56	25	



American West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

# **QC SUMMARY REPORT**

Client: Wasatch Environmental

**Lab Set ID:** 1812358

**Project:** Millcreek Henries / 2249-001d

Contact: Mike Cronin
Dept: MSVOA

QC Type: MSD

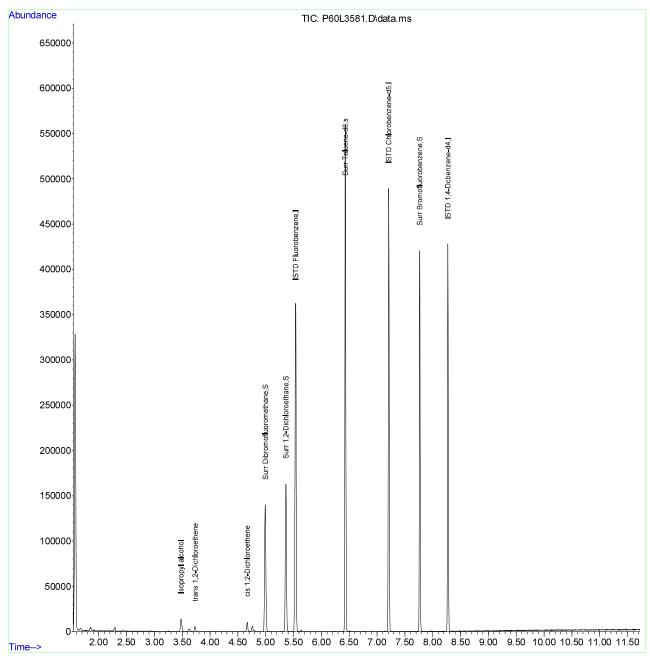
Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:         1812358-004AMSD           Test Code:         8260-W	Date Analyzed:	12/18/20	18 1259h										
Chlorobenzene	415	μg/L	SW8260C	1.66	40.0	400.0	0	104	63 - 140	401	3.33	25	
Chloroform	435	$\mu g/L$	SW8260C	2.00	40.0	400.0	0	109	50 - 146	435	0.0460	25	
Ethylbenzene	418	$\mu g/L$	SW8260C	2.06	40.0	400.0	0	105	69 - 133	402	3.85	25	
Isopropylbenzene	428	μg/L	SW8260C	2.62	40.0	400.0	0	107	60 - 147	414	3.52	25	
Methyl tert-butyl ether	466	μg/L	SW8260C	4.12	40.0	400.0	0	116	37 - 189	468	0.429	25	
Methylene chloride	413	μg/L	SW8260C	8.00	40.0	400.0	0	103	30 - 192	403	2.50	25	
Naphthalene	309	μg/L	SW8260C	3.18	40.0	400.0	28	70.4	41 - 131	302	2.42	25	
Tetrahydrofuran	373	$\mu g/L$	SW8260C	13.6	40.0	400.0	0	93.3	43 - 146	360	3.55	25	
Toluene	407	$\mu g/L$	SW8260C	1.72	40.0	400.0	0	102	18 - 192	394	3.14	25	
Trichloroethene	440	$\mu g/L$	SW8260C	2.10	40.0	400.0	0	110	61 - 153	424	3.79	25	
Xylenes, Total	1,260	μg/L	SW8260C	6.20	40.0	1,200	0	105	42 - 167	1230	2.29	25	
Surr: 1,2-Dichloroethane-d4	1,110	μg/L	SW8260C			1,000		111	72 - 151				
Surr: 4-Bromofluorobenzene	956	μg/L	SW8260C			1,000		95.6	80 - 152				
Surr: Dibromofluoromethane	1,020	μg/L	SW8260C			1,000		102	72 - 135				
Surr: Toluene-d8	951	$\mu g/L$	SW8260C			1,000		95.1	80 - 124				

Data Path : C:\MassHunter\GCMS\1\data\DEC18-1\17DEC18A\

Data File : P60L3581.D

Acq On : 17 Dec 2018 03:00 pm

Operator :


Sample : 1812358-001A

: SAMP 5.0ML Misc 10F3 DG ALS Vial : 19 Sample Multiplier: 1

Quant Time: Dec 17 15:11:57 2018

Quant Method : C:\MassHunter\GCMS\1\methods\VOA1W_129.M

Quant Title : VOA Calibration QLast Update : Mon Oct 15 11:03:16 2018 Response via : Initial Calibration



VOA1W_129.M Tue Dec 18 08:29:26 2018

Page: 4

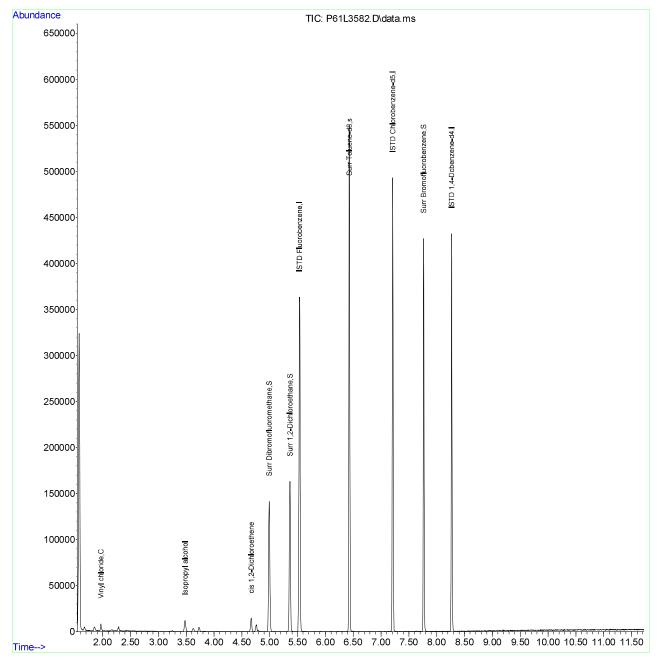
Report Date: 12/19/2018 Page 21 of 33

Data Path : C:\MassHunter\GCMS\1\data\DEC18-1\17DEC18A\

Data File : P61L3582.D

Acq On : 17 Dec 2018 03:19 pm

Operator :


Sample : 1812358-002A

: SAMP 5.0ML Misc 10F3 DG ALS Vial : 20 Sample Multiplier: 1

Quant Time: Dec 17 15:31:39 2018

Quant Method : C:\MassHunter\GCMS\1\methods\VOA1W_129.M

Quant Title : VOA Calibration QLast Update : Mon Oct 15 11:03:16 2018 Response via : Initial Calibration



VOA1W_129.M Tue Dec 18 08:30:44 2018

Page: 4

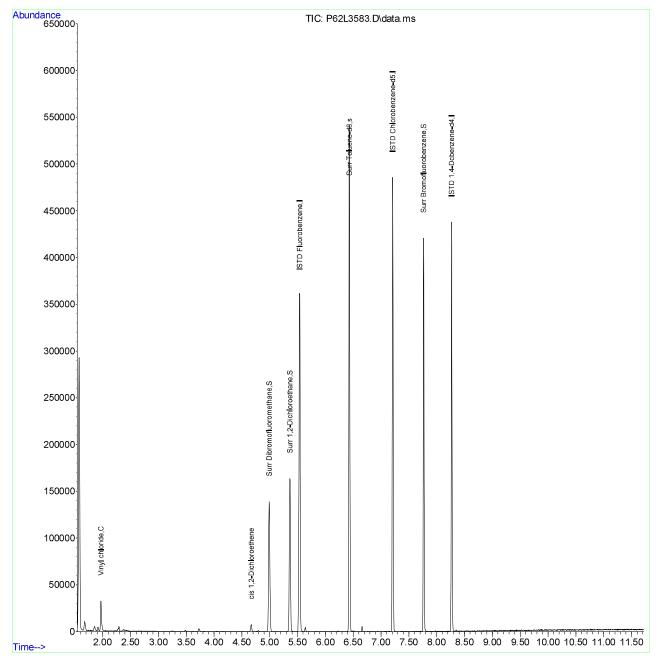
Report Date: 12/19/2018 Page 22 of 33

Data Path : C:\MassHunter\GCMS\1\data\DEC18-1\17DEC18A\

Data File : P62L3583.D

Acq On : 17 Dec 2018 03:39 pm

Operator :


Sample : 1812358-003A

Misc : SAMP 5.0ML 10F3 DG ALS Vial : 21 Sample Multiplier: 1

Quant Time: Dec 17 15:51:21 2018

Quant Method : C:\MassHunter\GCMS\1\methods\VOA1W_129.M

Quant Title : VOA Calibration QLast Update : Mon Oct 15 11:03:16 2018 Response via : Initial Calibration



VOA1W_129.M Tue Dec 18 09:05:21 2018

Page: 4

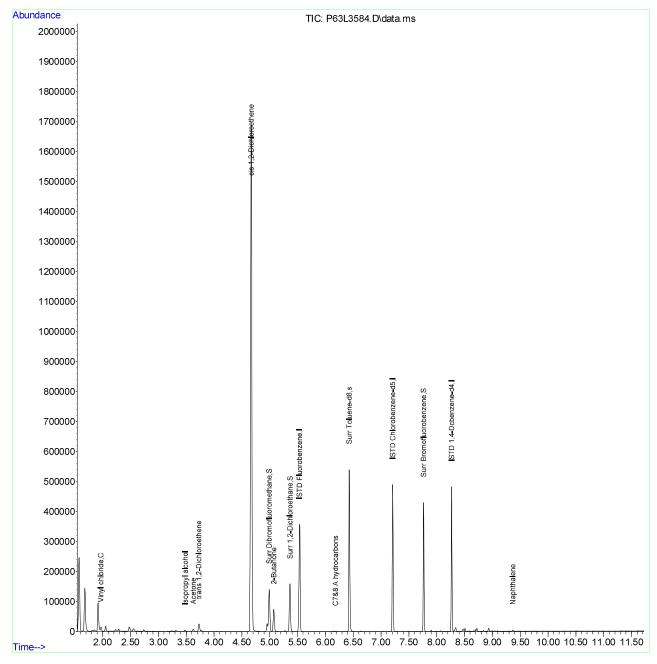
Report Date: 12/19/2018 Page 23 of 33

Data Path : C:\MassHunter\GCMS\1\data\DEC18-1\17DEC18A\

Data File : P63L3584.D

Acq On : 17 Dec 2018 03:59 pm

Operator :


Sample : 1812358-004A

: SAMP Misc 5.0ML 10F3 DG ALS Vial : 22 Sample Multiplier: 1

Quant Time: Dec 17 16:10:59 2018

Quant Method : C:\MassHunter\GCMS\1\methods\VOA1W_129.M

Quant Title : VOA Calibration QLast Update : Mon Oct 15 11:03:16 2018 Response via : Initial Calibration



VOA1W_129.M Tue Dec 18 09:06:54 2018

Page: 4

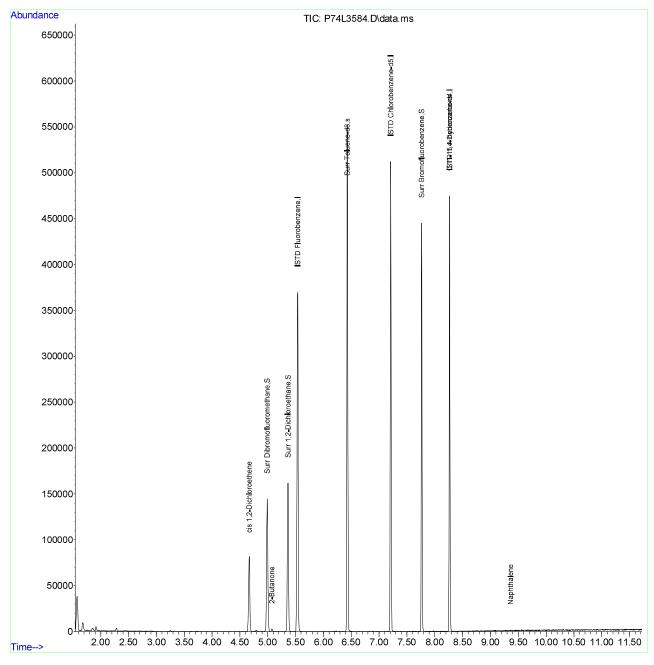
Report Date: 12/19/2018 Page 24 of 33

Data File : P74L3584.D

Acq On : 18 Dec 2018 12:20 pm

Operator :

Sample : 1812358-004A


Misc : SAMP 2.5ML/50ML 20F3 DG

ALS Vial : 9 Sample Multiplier: 20

Quant Time: Dec 18 12:32:10 2018

Quant Method : C:\MassHunter\GCMS\1\methods\VOA1W_129.M

Quant Title : VOA Calibration QLast Update : Mon Oct 15 11:03:16 2018 Response via : Initial Calibration



VOA1W_129.M Tue Dec 18 13:17:06 2018

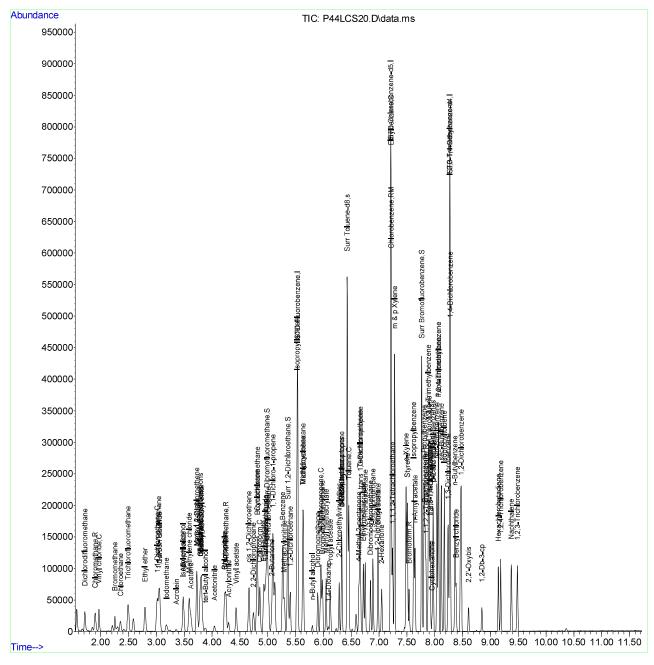
Page: 4

Report Date: 12/19/2018 Page 25 of 33

Data Path : C:\MassHunter\GCMS\1\data\DEC18-1\17DEC18A\

Data File : P44LCS20.D

Acq On : 17 Dec 2018 09:34 am Operator Sample : LCS VOC-1 121718A


Misc : LCS SEE COVERSHEET FOR ID AND AMOUNTS DG

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Dec 17 09:45:54 2018

Quant Method : C:\MassHunter\GCMS\1\methods\VOA1W_129.M

Quant Title : VOA Calibration QLast Update : Mon Oct 15 11:03:16 2018 Response via : Initial Calibration

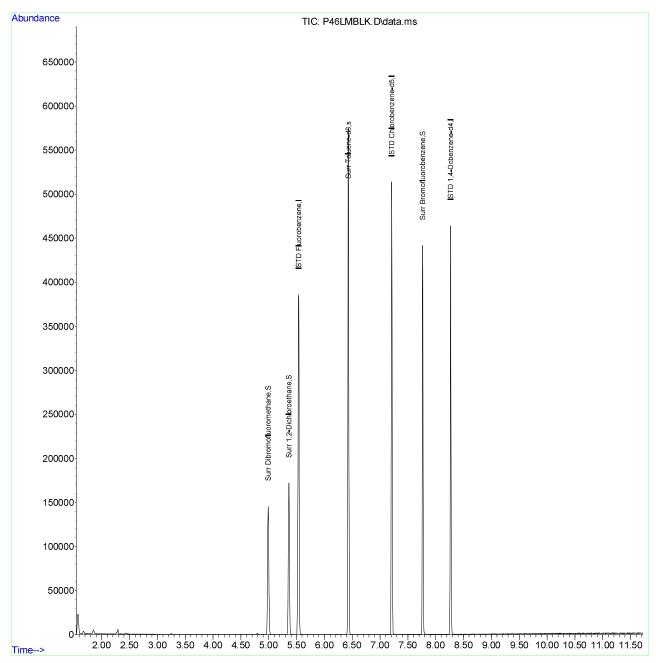


VOA1W_129.M Mon Dec 17 09:53:39 2018

Page: 4

Report Date: 12/19/2018 Page 26 of 33

Data Path : C:\MassHunter\GCMS\1\data\DEC18-1\17DEC18A\


Data File : P46LMBLK.D

Acq On : 17 Dec 2018 10:13 am Operator : : MB VOC-1 121718A Sample Misc : MBLK 5.0ML DG ALS Vial : 5 Sample Multiplier: 1

Quant Time: Dec 17 10:25:04 2018

Quant Method : C:\MassHunter\GCMS\1\methods\VOA1W_129.M

Quant Title : VOA Calibration QLast Update : Mon Oct 15 11:03:16 2018 Response via : Initial Calibration



VOA1W_129.M Mon Dec 17 10:43:28 2018

Page: 4

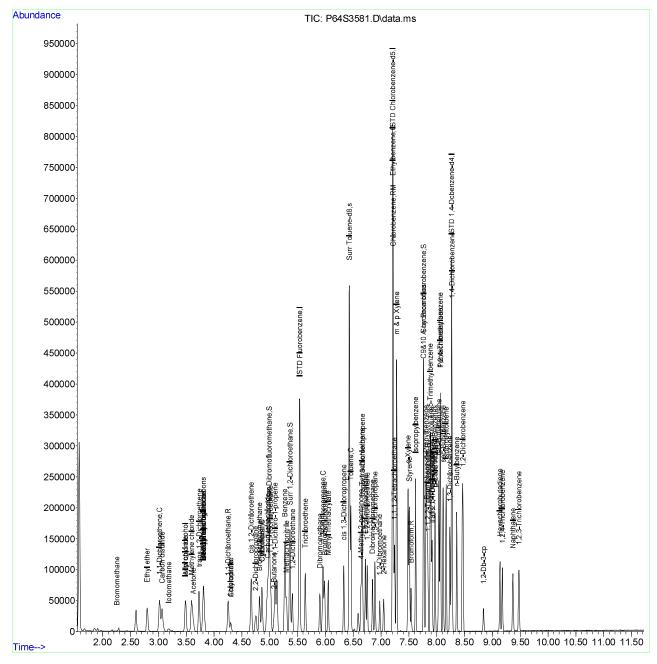
Report Date: 12/19/2018 Page 27 of 33

Data Path : C:\MassHunter\GCMS\1\data\DEC18-1\17DEC18A\

Data File : P64S3581.D

Acq On : 17 Dec 2018 04:18 pm

Operator


Sample : 1812358-001AMS

: MS Misc 5.0ML 20F3 DG ALS Vial : 23 Sample Multiplier: 1

Quant Time: Dec 17 16:30:39 2018

Quant Method : C:\MassHunter\GCMS\1\methods\VOA1W_129.M

Quant Title : VOA Calibration QLast Update : Mon Oct 15 11:03:16 2018 Response via : Initial Calibration



VOA1W_129.M Tue Dec 18 09:22:39 2018

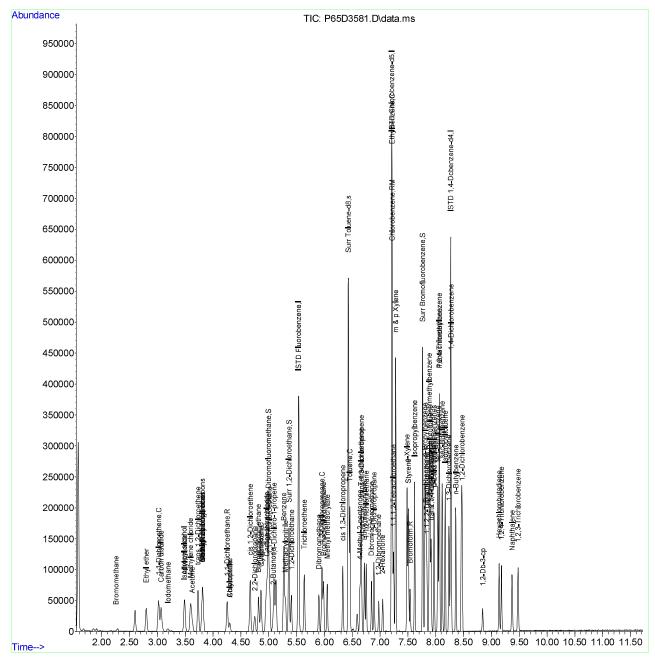
Page: 4

Report Date: 12/19/2018 Page 28 of 33

Data Path : C:\MassHunter\GCMS\1\data\DEC18-1\17DEC18A\

Data File : P65D3581.D

Acq On : 17 Dec 2018 04:38 pm Operator


Sample : 1812358-001AMSD

: MSD Misc 5.0ML 30F3 DG ALS Vial : 24 Sample Multiplier: 1

Quant Time: Dec 17 16:50:19 2018

Quant Method : C:\MassHunter\GCMS\1\methods\VOA1W_129.M

Quant Title : VOA Calibration QLast Update : Mon Oct 15 11:03:16 2018 Response via : Initial Calibration



VOA1W_129.M Tue Dec 18 09:23:11 2018

Page: 4

Report Date: 12/19/2018 Page 29 of 33

Data Path : C:\MassHunter\GCMS\1\data\DEC18-1\18DEC18A\

Data File : P68LCS20.D

Acq On : 18 Dec 2018 10:22 am Operator Sample : LCS VOC-1 121818A

Misc : LCS SEE COVERSHEET FOR ID AND AMOUNTS DG

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Dec 18 10:34:04 2018

Quant Method : C:\MassHunter\GCMS\1\methods\VOA1W_129.M

Quant Title : VOA Calibration QLast Update : Mon Oct 15 11:03:16 2018 Response via : Initial Calibration



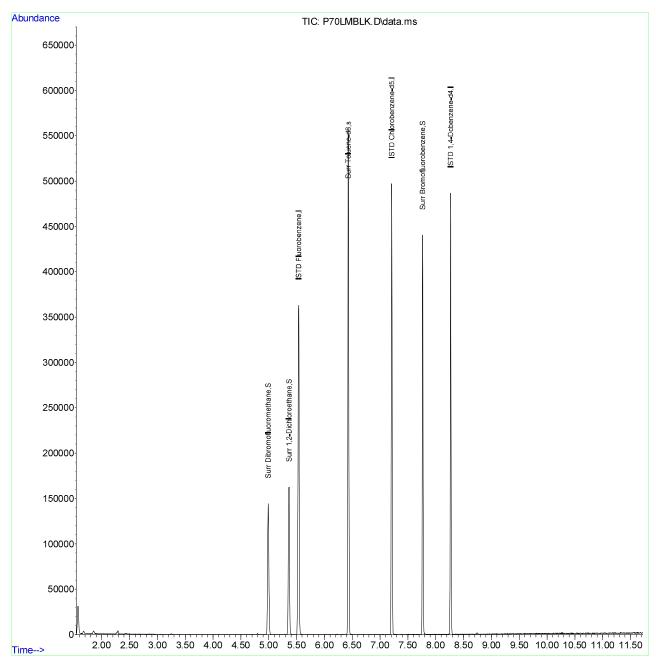
VOA1W_129.M Tue Dec 18 13:07:28 2018

Page: 4

Report Date: 12/19/2018 Page 30 of 33

Data Path : C:\MassHunter\GCMS\1\data\DEC18-1\18DEC18A\

Data File : P70LMBLK.D


Acq On : 18 Dec 2018 11:01 am Operator :

: MB VOC-1 121818A Sample Misc : MBLK 5.0ML DG ALS Vial : 5 Sample Multiplier: 1

Quant Time: Dec 18 11:13:23 2018

Quant Method : C:\MassHunter\GCMS\1\methods\VOA1W_129.M

Quant Title : VOA Calibration QLast Update : Mon Oct 15 11:03:16 2018 Response via : Initial Calibration



VOA1W_129.M Tue Dec 18 13:08:22 2018

Page: 4

Report Date: 12/19/2018 Page 31 of 33

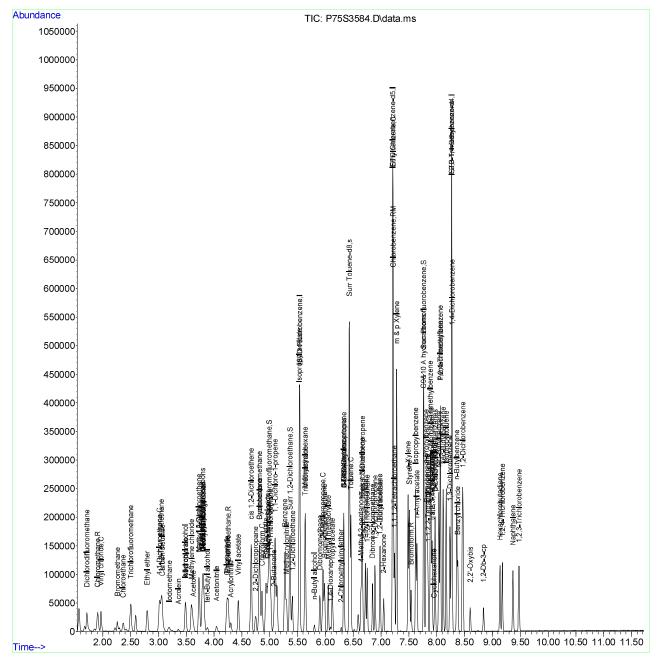
Data Path : C:\MassHunter\GCMS\1\data\DEC18-1\18DEC18A\

Data File : P75S3584.D

Acq On : 18 Dec 2018 12:39 pm

Operator

Sample : 1812358-004AMS


: MS Misc 2.5ML/50ML 20F3 DG

ALS Vial : 10 Sample Multiplier: 20

Quant Time: Dec 18 12:51:48 2018

Quant Method : C:\MassHunter\GCMS\1\methods\VOA1W_129.M

Quant Title : VOA Calibration QLast Update : Mon Oct 15 11:03:16 2018 Response via : Initial Calibration



VOA1W_129.M Tue Dec 18 13:18:26 2018

Page: 4

Report Date: 12/19/2018 Page 32 of 33

Data Path : C:\MassHunter\GCMS\1\data\DEC18-1\18DEC18A\

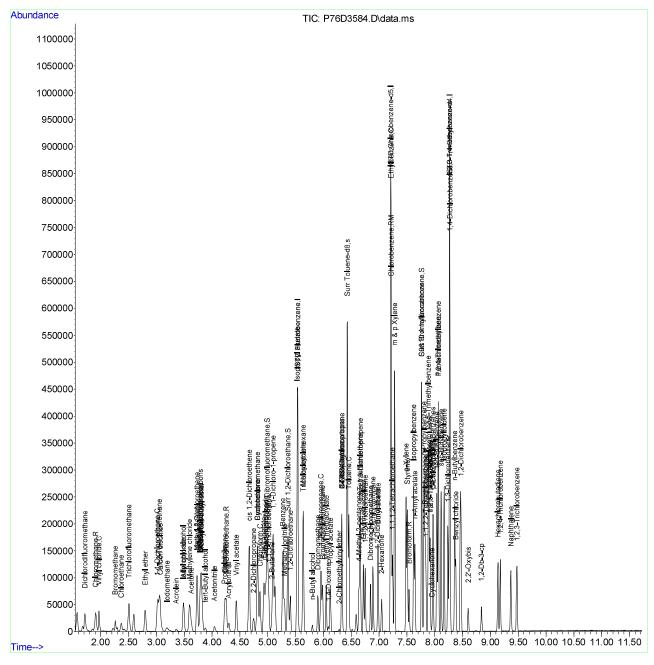
Data File : P76D3584.D

Acq On : 18 Dec 2018 12:59 pm

Operator

: 1812358-004AMSD

Sample : MSD Misc


2.5ML/50ML 20F3 DG

ALS Vial : 11 Sample Multiplier: 20

Quant Time: Dec 18 13:11:24 2018

Quant Method : C:\MassHunter\GCMS\1\methods\VOA1W_129.M

Quant Title : VOA Calibration QLast Update : Mon Oct 15 11:03:16 2018 Response via : Initial Calibration



VOA1W_129.M Tue Dec 18 13:18:53 2018

Page: 4

Report Date: 12/19/2018 Page 33 of 33

D

**WORK ORDER Summary** 

Work Order: **1812358** 

Page 1 of 1

Client:

Wasatch Environmental

Mike Cronin

Due Date: 12/28/2018

Client ID: Project:

**WAS580** 

Millcreek Henries / 2249-001d

**Contact:** QC Level:

Ш

WO Type: Standard

Comments:	PA Rush / QC3;					· 4/	
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel Storage	_
1812358-001A	MW-3	12/17/2018 1023h	12/17/2018 1335h		Aqueous 	Purge 'Surr: 4	3
1812358-002A	MW-2	12/17/2018 1109h	12/17/2018 1335h		Aqueous O-W-AWAL; # of Analytes: 53 / # of	Purge Surr: 4	3
1812358-003A	MW-1	12/17/2018 1153h	12/17/2018 1335h	<b>8260-W</b> Test Group: 8260	Aqueous O-W-AWAL; # of Analytes: 53 / # of	Purge Surr: 4	3
1812358-004A	MW-6	12/17/2018 1245h	12/17/2018 1335h	<b>8260-W</b> Test Group: 8260	Aqueous 0-W-AWAL; # of Analytes: 53 / # of	Purge	3

HOK_

Relinquished by

Signature

Print Name.

# American West

Time:

Date

Time:

Print Name:

Received by:

Signature

Print Name:

# CHAIN OF CUSTODY

Time:

Time:

Analytical Laboratories 3440 S. 700 W. Salt Lake City, UT 84119 All analysis will be conducted using NELAP accredited methods and all data will be reported using AWAL's standard analyte lists and Phone # (801) 263-8686 Toll Free # (888) 263-8686 reporting limits (PQL) unless specifically requested otherwise on this Chain of Custody and/or attached documentation. Unless other arrangements have been made, signed Fax # (801) 263-8687 Email awal@awal-labs.com OC Level: Due Date: Turn Around Time: reports will be emailed by www.awal-labs.com 1 2 2+ 1 2 3 4 5 Stnd 5:00 pm on the day they are due. Client: Wasartch Environ mental Address: 3410 W. California Ave. ☐ Report down to the MDL Laboratory Use Only ☐ Include EDD: ☐ Lab Filter for: COC Tape Was: ☐ Field Filtered For: 1 Present on Outer Package 2 Unbroken on Outer Package For Compliance With: Phone #: 801-972-8400 □ NELAP □ RCRA E-mail: Mcoursatch-envisonmental.com Present on Sample □ CWA Millorek Henries □ SDWA □ ELAP / A2LA 4 Unbroken on Sample  $\square$  NLLAP ☐ Non-Compliance 2249-0010 ☐ Other: Sampler Name: Blake 1 Shipped or hand delivered Known Hazards Date Time Sample ID: Sampled Sampled Sample Comments Checked at bench 6 Received Within Sample Labels and COC Record Match? Special Instructions:

# Appendix N

**Indoor Air Laboratory Analytical Report** 



### Case Narrative

Method: TO15 Client: Wasatch Environmental, Inc.

Analysis: VOA Matrix: Air

**Preparation SOP #: IH-AN-014** 

Work Order: 1835293

<u>Analysis / Method:</u> Method TO15 is an EPA method used in the analysis of air samples for volatile organics by GC/MS, which have been sampled in a silonized canister.

General Set Information: ALS received four summa canisters for VOA analysis. The samples were analyzed within thirty days of sampling. Recoveries of target analytes are reported on the Analytical Report in units of ppb v/v and  $\mu g/m^3$ .

<u>Sample Preparation:</u> This method has no extraction procedure for air samples. The sample preparation date is the same as the date of analysis. Two hundred milliliters of air sample and 100 milliliters of Internal Standard were trapped using an Entech 7200 microscale purge and trap concentrator.

<u>Instrument Calibration:</u> The GC/MS was hardware tuned to meet the criteria for 4-Bromofluorobenzene as specified in the SOP. This tune check is valid for 24 hours.

<u>Initial and Continuing Calibration Verification:</u> The initial calibration curve, which was analyzed prior to sample analysis, met the specified criteria of the SOP. For the initial calibration curve, the %RSD of the response factors for the TO-15 analytes were checked. The ICV that was analyzed with the curve met the specified criteria of the SOP.

A continuing calibration standard (CCS) was analyzed prior to sample analysis. The CCS met the criteria as specified in the SOP.

<u>Method Blank Analysis:</u> A laboratory method blank was prepared using 200 milliliters of humidified ultra high purity nitrogen and 100 milliliters of Internal Standards and analyzed prior to sample analysis. The blank was free of volatile organic contaminants below the reporting limit.

**Data Qualifier Codes:** A "J" qualifier indicates that the result is greater than the MDL but less than the PQL. Analytes found in field samples, which also appear in the method blank above the PQL are reported with a "B" qualifier in the flag column. The "E" qualifier indicates a reported value above the analytical linear range.

**LCS/LCSD:** An LCS and LCSD pair was analyzed for the analytical batch.

**Dilutions:** None.

ADDRESS 960 West LeVoy Drive, Salt Lake City Utah 84123 USA | PHONE +1 801 266 7700 | FAX +1 801 268 9992

ALS GROUP USA, CORP. Part of the ALS Group An ALS Limited Company





NC/CAR: None.

<u>Miscellaneous Comments:</u> Instrument designation is 5975-K. Field samples were analyzed using auto sampler positions that were free from volatile contaminants.

**Sample Calculations:** Target Compounds

Relative Response Factor: 
$$RRF = \begin{bmatrix} A_x \\ A_{is} \end{bmatrix} \begin{bmatrix} C_{is} \\ C_x \end{bmatrix}$$

Where  $A_x$  is the area of the characteristic ion for the compound to be measured,  $A_{is}$  is the area of the characteristic ion for the internal standard,  $C_{is}$  is the concentration of the internal standard, and  $C_x$  is the concentration of the compound to be measured.

Concentration in ppb v/v: 
$$C = \left[ \frac{(A_x) (I_s) (Df)}{(A_{is}) (RRF)} \right]$$

Concentration in ug/m³: C = ppb v/v (MW/24.45)

Where I_s is the amount of internal standard spiked in ppb, **Df** is a dilution factor (1 if no dilutions are made), **RRF** is the relative response factor (assumed to be 1 for non target analytes) and **MW** is the molecular weight of the compound of interest.



Blake Downey

Wasatch Environmental 2410 California Ave

Salt Lake City, UT 84104

### **ANALYTICAL REPORT**

Report Date: December 27, 2018

Phone: (435) 760-8269

E-mail: bd@wasatch-environmental.com

Workorder: **34-1835293** 

Project ID: 2249-cold/Millcreek Henres

Purchase Order: NA

Project Manager Jessica Helland

Client Sample ID	Lab ID	Collect Date	Receive Date	Sampling Site
IA-8	1835293001	NA	12/18/18	Millcreek Henres
OA-2	1835293002	NA	12/18/18	Millcreek Henres
IA-6	1835293003	NA	12/18/18	Millcreek Henres
IA-7	1835293004	NA	12/18/18	Millcreek Henres

ADDRESS 960 West LeVoy Drive, Salt Lake City, Utah, 84123 USA | PHONE +1 801 266 7700 | FAX +1 801 268 9992 ALS GROUP USA, CORP. An ALS Limited Company

Environmental 🔈

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Page 1 of 5 Thu, 12/27/18 2:46 PM ENVREP-V4.8



Workorder: 34-1835293

Client: Wasatch Environmental, Inc.

Project Manager: Jessica Helland

## **Analytical Results**

Sample ID: IA-8 Sampling Site: Millcreek Henres Received: 12/18/2018

Lab ID: 1835293001 Media: Summa 6 Liter Canister

Sampling Parameter: NA Matrix: Air

		. 0				
Analysis Method - EPA TO-15						
Preparation: Not Applicable			Analysis: EPA TO-1	5, Air	Instrum	ent ID: 5975-K
			Batch: IVOA/420	1 (HBN: 229851)	Percent	Solid: NA
			Analyzed: 12/20/201	8 08:42	Report	Basis: Wet
		Result				
Analyte	Result (ppb)	(ug/m³)	MDL (ppb)	RL (ppb)	Dilution	Qual
Vinyl chloride	ND	<0.38	0.15	0.50	1	U
1,1-Dichloroethene	ND	<0.59	0.15	0.50	1	U
trans-1,2-Dichloroethene	ND	<0.59	0.15	0.50	1	U
cis-1,2-Dichloroethene	ND	<0.59	0.15	0.50	1	U
1,1-Dichloroethane	ND	<0.61	0.15	0.50	1	U
1,2-Dichloroethane	ND	<0.61	0.15	0.50	1	U
Trichloroethene	ND	<0.81	0.15	0.50	1	U
Tetrachloroethene	0.97	6.5	0.15	0.50	1	

Sample ID: OA-2 Sampling Site: Millcreek Henres Received: 12/18/2018

Media: Summa 6 Liter Canister Lab ID: 1835293002

Matrix: Air Sampling Parameter: NA

Analysis Method - EPA TO-15						
Preparation: Not Applicable			Analysis: EPA TO-	15, Air	Instrum	ent ID: 5975-K
			Batch: IVOA/420	1 (HBN: 229851)	Percent	Solid: NA
			Analyzed: 12/20/201	8 01:02	Report	Basis: Wet
		Result				
Analyte	Result (ppb)	(ug/m³)	MDL (ppb)	RL (ppb)	Dilution	Qual
Vinyl chloride	ND	<0.38	0.15	0.50	1	U
1,1-Dichloroethene	ND	<0.59	0.15	0.50	1	U
trans-1,2-Dichloroethene	ND	<0.59	0.15	0.50	1	U
cis-1,2-Dichloroethene	ND	<0.59	0.15	0.50	1	U
1,1-Dichloroethane	ND	<0.61	0.15	0.50	1	U
1,2-Dichloroethane	ND	<0.61	0.15	0.50	1	U
Trichloroethene	ND	<0.81	0.15	0.50	1	U
Tetrachloroethene	ND	<1.0	0.15	0.50	1	U

ENVREP-V4.8 Thu, 12/27/18 2:46 PM Page 2 of 5



Workorder: 34-1835293

Client: Wasatch Environmental, Inc.

Project Manager: Jessica Helland

### **Analytical Results**

Sampling Site: Millcreek Henres Sample ID: IA-6 Received: 12/18/2018

Lab ID: 1835293003 Media: Summa 6 Liter Canister

Sampling Parameter: NA Matrix: Air

		9				
Analysis Method - EPA TO-15						
Preparation: Not Applicable			Analysis: EPA TO-	15, Air	Instrum	ent ID: 5975-K
			Batch: IVOA/420	01 (HBN: 229851)	Percent	Solid: NA
			Analyzed: 12/20/20	18 09:19	Report	Basis: Wet
		Result				
Analyte	Result (ppb)	(ug/m³)	MDL (ppb)	RL (ppb)	Dilution	Qual
Vinyl chloride	ND	<0.38	0.15	0.50	1	U
1,1-Dichloroethene	ND	<0.59	0.15	0.50	1	U
trans-1,2-Dichloroethene	ND	<0.59	0.15	0.50	1	U
cis-1,2-Dichloroethene	ND	<0.59	0.15	0.50	1	U
1,1-Dichloroethane	ND	<0.61	0.15	0.50	1	U
1,2-Dichloroethane	ND	<0.61	0.15	0.50	1	U
Trichloroethene	ND	<0.81	0.15	0.50	1	U
Tetrachloroethene	1.3	9.0	0.15	0.50	1	

Sampling Site: Millcreek Henres Received: 12/18/2018 Sample ID: IA-7

Media: Summa 6 Liter Canister Lab ID: 1835293004

Matrix: Air Sampling Parameter: NA

		1 3				
Analysis Method - EPA TO-15						
Preparation: Not Applicable			Analysis: EPA TO-1	15, Air	Instrum	ent ID: 5975-K
			Batch: IVOA/420	1 (HBN: 229851)	Percent	Solid: NA
			Analyzed: 12/20/201	8 01:42	Report	Basis: Wet
		Result				
Analyte	Result (ppb)	(ug/m³)	MDL (ppb)	RL (ppb)	Dilution	Qual
Vinyl chloride	ND	<0.38	0.15	0.50	1	U
1,1-Dichloroethene	ND	<0.59	0.15	0.50	1	U
trans-1,2-Dichloroethene	ND	<0.59	0.15	0.50	1	U
cis-1,2-Dichloroethene	ND	<0.59	0.15	0.50	1	U
1,1-Dichloroethane	ND	<0.61	0.15	0.50	1	U
1,2-Dichloroethane	ND	<0.61	0.15	0.50	1	U
Trichloroethene	ND	<0.81	0.15	0.50	1	U
Tetrachloroethene	0.28	1.9	0.15	0.50	1	J

### Comments

Quality Control: EPA TO-15 - (HBN: 229851)

The LCS/LSCD percent recovery did not meet performance limits for all compounds. This is not a method a requirement.

ENVREP-V4.8 Thu, 12/27/18 2:46 PM Page 3 of 5



Workorder: 34-1835293

Client: Wasatch Environmental,

Inc.

Project Manager: Jessica Helland

Report Authorization (/S/ is an electronic signature that complies with 21 CFR Part 11)

Method	Analyst	Peer Review
EPA TO-15	/S/ Benson Boy	/S/ Lisa M. Reid
EPA 10-13	12/20/2018 15:29	12/27/2018 14:39

## **Laboratory Contact Information**

ALS Environmental Phone: (801) 266-7700

960 W Levoy Drive Email: alslt.lab@ALSGlobal.com

Salt Lake City, Utah 84123 Web: www.alsslc.com

### **General Lab Comments**

The results provided in this report relate only to the items tested.

Samples were received in acceptable condition unless otherwise noted.

Samples have not been blank corrected unless otherwise noted.

This test report shall not be reproduced, except in full, without written approval of ALS.

ALS provides professional analytical services for all samples submitted. ALS is not in a position to interpret the data and assumes no responsibility for the quality of the samples submitted.

All quality control samples processed with the samples in this report yielded acceptable results unless otherwise noted.

ALS is accredited for specific fields of testing (scopes) in the following testing sectors. The quality system implemented at ALS conforms to accreditation requirements and is applied to all analytical testing performed by ALS. The following table lists testing sector, accreditation body, accreditation number and website. Please contact these accrediting bodies or your ALS project manager for the current scope of accreditation that applies to your analytical testing.

Testing Sector	Accreditation Body	Certificate Number	Website	
Environmental	PJLA (DoD ELAP)			
	Utah (TNI)			
	Nevada			
	Oklahoma			
	Iowa			

Page 4 of 5 Thu, 12/27/18 2:46 PM ENVREP-V4.8



Workorder: 34-1835293

Client: Wasatch Environmental, Inc.

Project Manager: Jessica Helland

### **Result Symbol Definitions**

MDL = Method Detection Limit, a statistical estimate of method/media/instrument sensitivity.

RL = Reporting Limit, a verified value of method/media/instrument sensitivity.

CRDL = Contract Required Detection Limit

Reg. Limit = Regulatory Limit.

ND = Not Detected, testing result not detected above the MDL or RL.

- < This testing result is less than the numerical value.
- ** No result could be reported, see sample comments for details.

### **Qualifier Symbol Definitions**

U = Qualifier indicates that the analyte was not detected above the MDL.

- J = Qualifier Indicates that the analyte value is between the MDL and the RL. It is also used to indicate an estimated value for tentatively identified compounds in mass spectrometry where a 1:1 response is assumed.
- B = Qualifier indicates that the analyte was detected in the blank.
- E = Qualifier indicates that the analyte result exceeds calibration range.
- P = Qualifier indicates that the RPD between the two columns is greater than 40%.

Thu. 12/27/18 2:46 PM ENVREP-V4.8 Page 5 of 5



# Quality Control Sample Batch Report

### **Analysis Information**

Workorder: 1835293

Limits: Historical/Performance Preparation: NA Analysis: EPA TO-15

Basis: ALS Laboratory Group Batch: NA Batch: IVOA/4201 (HBN: 229851)

Prepared By: NA Analyzed By: Benson Boy

### Blank

MB: 633626

Analyzed: 12/19/2018 16:01

Units: ppb

Offics. ppb			
Analyte	Result	MDL	RL
Vinyl chloride	ND	0.15	0.500
1,1-Dichloroethene	ND	0.15	0.500
trans-1,2-Dichloroethene	ND	0.15	0.500
cis-1,2-Dichloroethene	ND	0.15	0.500
1,1-Dichloroethane	ND	0.15	0.500
1,2-Dichloroethane	ND	0.15	0.500
Trichloroethene	ND	0.15	0.500
Tetrachloroethene	ND	0.15	0.500

### **Laboratory Control Sample - Laboratory Control Sample Duplicate**

LCS: 633627 LCSD: 633628

Analyzed: 12/19/2018 12:21 Analyzed: 12/19/2018 13:01

Dilution: 1
Units: ppb
Dilution: 1
Units: ppb

Analyte	Result	Target	% Rec	QC L	imits	Result	% Rec	RPD	QC L	imits
Vinyl chloride	11.0	10.0	110	51.9	146.1	10.5	105	4.59	0.0	25.0
1,1-Dichloroethene	9.53	10.0	95.3	53.6	144.6	9.49	94.9	0.410	0.0	25.0
trans-1,2-Dichloroethene	9.08	10.0	90.8	62.5	139.3	9.05	90.5	0.238	0.0	25.0
cis-1,2-Dichloroethene	9.16	10.0	91.6	63.7	141.6	9.09	90.9	0.785	0.0	25.0
1,1-Dichloroethane	9.29	10.0	92.9	62.2	134.2	9.29	92.9	0.0151	0.0	25.0
1,2-Dichloroethane	8.83	10.0	88.3	52.7	143.7	8.88	88.8	0.591	0.0	25.0
Trichloroethene	8.36	10.0	83.6	70.9	137.0	8.48	84.8	1.36	0.0	25.0
Tetrachloroethene	8.05	10.0	80.5	60.0	146.0	8.02	80.2	0.386	0.0	25.0

### **Surrogate Recoveries**

Surrogate	4-Bromofluor	obenzene	
QC Limits	67.7	129.	9
Units	ppb		
Lab ID	Result	Target	% Recovery
633627-LCS	19.4	20.0	97.0
633628-LCSD	19.4	20.0	97.2
633626-MB	19.1	20.0	95.7
1835379001	20.0	20.0	99.8
1835379002	20.1	20.0	100
1835379003	20.1	20.0	101
1835379004	20.0	20.0	99.9
1835379005	19.9	20.0	99.6
1835290001	19.3	20.0	96.6



# Quality Control Sample Batch Report

### **Analysis Information**

Workorder: 1835293

Limits: Historical/Performance Preparation: NA Analysis: EPA TO-15

Basis: ALS Laboratory Group Batch: NA Batch: IVOA/4201 (HBN: 229851)

Prepared By: NA Analyzed By: Benson Boy

### **Surrogate Recoveries**

Surrogate	4-Bromofluor	obenzene	
QC Limits	67.7	129.9	9
Units	ppb		
Lab ID	Result	Target	% Recovery
1835290002	18.9	20.0	94.5
1835290003	19.5	20.0	97.3
1835290004	19.0	20.0	95.1
1835293002	19.1	20.0	95.6
1835293004	19.1	20.0	95.4
1835256003	18.7	20.0	93.3
1835293001	18.6	20.0	93.0
1835293003	18.1	20.0	90.7

### **Comments**

The LCS/LSCD percent recovery did not meet performance limits for all compounds. This is not a method a requirement.

### QC Report Authorization (/S/ is an electronic signature that complies with 21 CFR Part 11)

Analyst	Peer Review
/S/ Benson Boy	/S/ Lisa M. Reid
12/20/2018 15:31	12/27/2018 14:39

### **Symbols and Definitions**

* - Analyte above reporting limit or outside of control limits

▲- Sample result is greater than 4 times the spike added

Sample and Matrix Duplicate less than 5 times the reporting limit

Result is above the calibration range

# - The Matrix Spike, Matrix Spike duplicate or Matrix Duplicate is reported for your information only. The sample matrix may be inappropriate for the method selected. RPD - Relative % Difference (Spike / Spike Duplicate)

ND - Not Detected (U - Qualifier also flags analyte as not detected)

NA - Not Applicable

QC results are not adjusted for moisture correction, where applicable

**Environmental Division** 

# **Canister Chain of Custody**

Client: WASSETS (monwenter)

> Project/Job/Task: Millorade Henres

Please do not apply adhesive labels directly on Canisters Canister Serial No.: Manilla tags are provided, attached to Canisters for your convenience, to apply adhesive labels Relinquished By: VFR Serial No.: **LD** 784 200 440r 90 00/0 (Signature) 12/18/18 2 Date Cleaned 13/18/16 / 14/3/18 Date/Time Initial Vacuum (inches of Hg vacuum) 10937111 Received By: (Signature) 5:37 Original Field Sample Chain-of-Custody VFR flow rate (ml/min) 3 7 Initials: Field Vacuum before sampling (inches of Hg vacuum) Reason for Transfer/Storage Location Ţ Final Vacuum after sampling (Inches of Hg vacuum) やを Client Sample Identification hoed act シロメナカル かかけ Other Client Information Salt Lake City, UT 84123 960 W. LeVoy Drive Return to: ALS Laboratory Group use only ALS

cans, in addition to the cost of the initial shipping, a \$40 weekly rental fee will be charged for each unused can until they are returned to ALS. If canisters are kept for longer than the original project schedu/ed-śampling, a \$40 per cah - per week rental fee will be assessed. If a project is cancelled after ALS has shipped

# Batch Worklist -

HBN: 229851

Batch: IVOA/ 4201	/ 4201	Created:	Created: 12/20/2018 09:25	Instrument: 5975-K	5975-K
Rule: EPA TO-15, Air	ro-15, Air	Analyst: B. Boy	B. Boy	Status:	RE
Workorder:	Norkorder: 1835256 [ENV_LVL1]				
Workorder:	Vorkorder: 1835290 [ENV_LVL2]				
Workorder:	Norkorder: 1835293 [ENV_LVL4]				
Workorder:	Vorkorder: 1835379 [ENV_LVL4]				

Pos Lab ID	Sample ID		Prep Initial	Prep Final	Dust Weight	Type Mx	Mx Container	Procedure	Expire Mgr Date	Due Date	Run Date
1 633626	MB for HBN 229851 [IVOA/4201]	51 [IVOA/4201]				MB 1		ET0151Q	6216	12/20/2018	12/19/2018
2 633627	LCS for HBN 229851 [IVOA/4201]	851 [IVOA/4201]				LCS 1		ET0151Q	6216	12/20/2018 12/19/2018	12/19/2018
3 633628	LCSD for HBN 229851 [IVOA/4201	9851 [IVOA/4201				LCSD 1		ET0151Q	6216	12/20/2018	12/19/2018
4 633629	RLVS for HBN 229851 [IVOA/4201	9851 [IVOA/4201				RLVS 1		ET0151Q	6216	12/20/2018	12/19/2018
5 1835379001	Air 1		AND THE TANK THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S	METODO UN OPPRESENTATION OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRACTOR OF A STANDARD CONTRAC		SAMPLE 1	1835379001-A	ET0151	5975	12/20/2018	12/19/2018
6 1835379002	Air 3					SAMPLE 1	1835379002-A	ET0151	5975	12/20/2018 12/19/2018	12/19/2018
7 1835379003	Air 4					SAMPLE 1	1835379003-A	ETO151	5975	12/20/2018	12/19/2018
8 1835379004	AirS					SAMPLE 1	1835379004-A	ET0151	5975	12/20/2018	12/19/2018
9 1835379005	Air 6					SAMPLE 1	1835379005-A	ET0151	5975	12/20/2018	12/19/2018
10 1835290001	SV-1					SAMPLE 1	1835290001-A	ET0151	6171	12/27/2018	
11 1835290002	SV-2					SAMPLE 1	1835290002-A	ET0151	6171	12/27/2018	
12 1835290003	SV-3					SAMPLE 1	1835290003-A	ETO151	6171	12/27/2018	
13 1835290004	SV-4					SAMPLE 1	1835290004-A	ET0151	6171	12/27/2018	
14 1835293001	LA-8					SAMPLE 1	1835293001-A	ET0151	6171	12/27/2018	
15 1835293002	0A-2 5 CM/L	م				SAMPLE 1	1835293002-A	ET0151	6171	12/27/2018	
16 1835293003		/				SAMPLE 1	1835293003-A	ETO151	6171	12/27/2018	
17 1835293004	IA-7					SAMPLE 1	1835293004-A	ET0151	6171	12/27/2018	
18 1835256003	KT181212-1	350				SAMPLE 1	1835256003-A	ET0151	5875	12/27/2018	



## **Analyst Notebook**

TO15
Workerder #'s/Sample #'s:

HBN: 229851

Workorder #'s/Sample #'s: 1835379001-005 1835290001-004 1835293001-004 1835256003

Date of analysis/extraction: 12/19/18

Analyst: BB

Instrument: 5975-K

QC/QD: 45202 (200ml) RLVS: 45202 (10 ml) ISTD; 44228 (100 ml)

Column: DB-1

Inst. Program: TO-15; Initial 40 °C for 4 min; 10 °C/min to 220 °C hold for 3 mins.

Run time: 26 min for 5975-K

Carrier Gas: Helium

**Cold Trap Dehydration** 

Initial Calibration Curve/Quantitation method: TO15KH18 (HBN: 227674) ICV; 44731

Dilutions: none

### Comments:

The percent difference for target compounds in the CCV standard must be less than 30% relative to the target. The following compound(s) did not meet this criteria; estimates.

The LCS/LSCD percent recovery did not meet performance limits for all compounds. This is not a method a requirement.

ADDRESS 960 West LeVoy Drive, Salt Lake City, Utah, USA 84123 | PHONE +1 801 266 7700 | FAX +1 801 268 9992 ALS GROUP USA, CORP. Part of the ALS Laboratory Group A Campbell Brothers Limited Company



# 5.6 GC/MS Technical Review

Note: It is the peer reviewer's responsibility to ensure that appropriate criteria are used as defined in the HORIZON PROFILE. The evaluation criteria are prioritized as per Section 2.2 of this SOP. These items must be checked for all projects. The following checklist will be completed by both the analyst and the peer reviewer and scanned into the HBN folder with the raw data.

GC/MS Technical Review Criteria	Analyst Initials	Reviewer Initials
Batch(es)/SDG: 279651		
Sample Set IDs if Applicable: 1435293		
GC/MS Tuning passed criteria (BFB or DFTPP)	313	
Calibration standards analyzed and meets criteria	BB	
Standards traceability checked and meets criteria	BB	
Standard curve coefficient evaluated and meets criteria	1343	
ICVs analyzed and meet acceptance criteria	1313	
CCVs analyzed and meet acceptance criteria	F313	
Method Blanks analyzed and meet acceptance criteria	1313	
Review of spectral assignments	313	
Relative Retention Time checked	BB	
Internal Standards checked	13:13	
Surrogate recoveries checked and appropriately addressed	313	
Sample Frequency - Analyzed within appropriate tune window	13.8	
Method Preparation Blanks analyzed and meet acceptance criteria	BB	
MSs, MSDs, and/or MDs analyzed and calculations checked; applicable flags applied on QC reports; LCSs analyzed and meet acceptance criteria when performed	BB	
RLVS analyzed	153	
Preparation and analysis hold times met	1313	
Preparation deviations and re-preparations noted when performed	1513	
Analysis deviations and re-analyses noted when performed	80	
Sample dilution factors noted on reports		
Electronic records in HBN transcription accuracy and completeness	1313	
Checked  Description and each gig coloulations checked	77	
Preparation and analysis calculations checked  NCRs are completed as necessary  NC/CAR#	133	
	MA	
Report forms are complete and accurate	13/13	
Manual integrations checked	1513	

```
segnce
                                                3| 25.99| 1 | WATER | BFB
           |12/19/2018 11:42|BB | TO15KH18|
KE52BFB
           COMMENTS: 44228
           |12/19/2018 12:21|BB | TO15KH18|
                                                2 | 25.99 | 1 | WATER | 10 PPB LCS
 KE53LCS
            277824
           |COMMENTS: (200ml) 45202 44228
 KE54LCSD | 12/19/2018 13:01|BB | T015KH18|
                                                2 | 25,99 | 1 | WATER | 10 PPB LCSD
            280576
           |COMMENTS: (200ml) 45202 44228
 KE55RLVS | 12/19/2018 13:39 | BB | T015KH18 |
                                                2 | 25.99 | 1 | WATER | 0.5 PPB RLVS
            256960
           | COMMENTS: (10ml) 45202 44228
                                                3| 25.99| 1 | WATER | BLANK
           |12/19/2018 14:18|BB | TO15KH18|
KE56BLK
            235200
           |COMMENTS: 44228
           |12/19/2018 16:01|BB | TO15KH18|
                                                3| 25.99| 1 | WATER | BLANK
 KE57BLK
            225536
           |COMMENTS: 44228
 KE58I001 | 12/19/2018 17:01 | BB | TO15KH18 |
                                                4 | 25.99 | 1 | WATER | 1835379001
            221312
           COMMENTS:
                                               14| 25.99| 1 | WATER | 1835379002
 KE59I002 |12/19/2018 17:41|BB | T015KH18|
            230912
           | COMMENTS:
 KE60I003 | 12/19/2018 18:21 | BB | T015KH18 |
                                               15 | 25.99 | 1 | WATER | 1835379003
            232640
           COMMENTS:
| KE61I004 |12/19/2018 19:01|BB | T015KH18|
                                               16 | 25.99 | 1 | WATER | 1835379004
            232064
           | COMMENTS:
 KE62I005 |12/19/2018 19:41|BB | T015KH18|
                                                3 | 25.99 | 1 | WATER | 1835379005
          238272
           | COMMENTS:
 KE63I001 |12/19/2018 21:43|BB | T015KH18|
                                                9 | 25.99 | 1 | WATER | 1835290001
            2428161
           |COMMENTS:
 KE64I002 |12/19/2018 22:24|BB | T015KH18|
                                               10| 25.99| 1 | WATER | 1835290002
            265344
           | COMMENTS:
                                               11 | 25.99 | 1 | WATER | 1835290003
| KE65I003 |12/19/2018 23:04|BB | T015KH18|
            2872321
           COMMENTS:
 KE66I002 | 12/19/2018 23:42|BB | T015KH18|
                                               10 | 25.99 | 1 | WATER | 1835290002
            267520
           |COMMENTS: 1:20 dil 10ml
                                              12| 25.99| 1 |WATER | 1835290004
 KE67I004 | 12/20/2018 00:21 | BB | T015KH18 |
             2599041
           COMMENTS:
```

Page 1

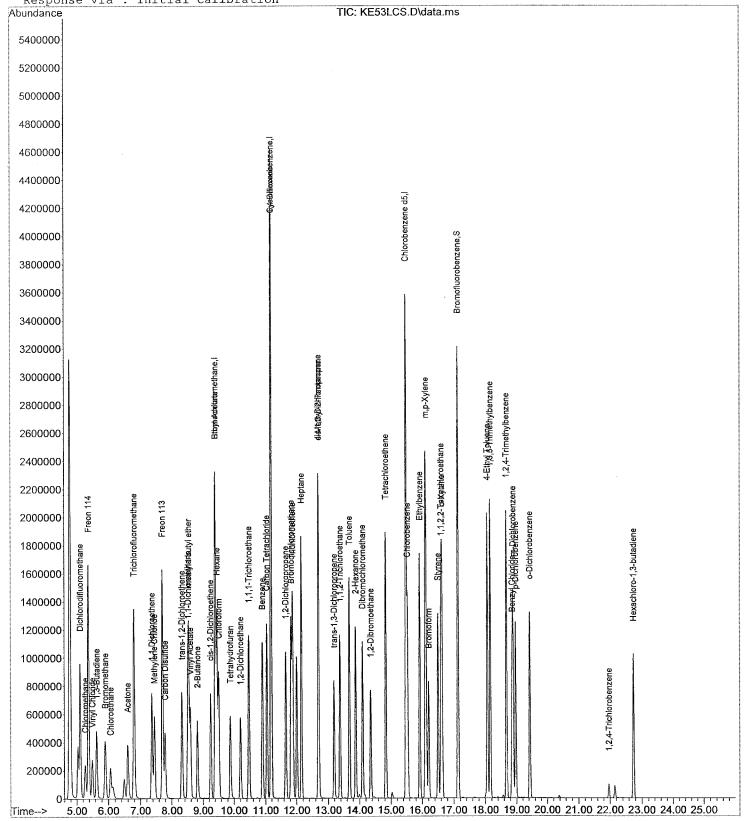
## segnce

```
| KE68I002 | 12/20/2018 01:02|BB | T015KH18|
                                               6 | 25.99 | 1 | WATER | 1835293002
          247232
           COMMENTS:
 KE69I004 | 12/20/2018 01:42|BB | T015KH18|
                                              8 | 25.99 | 1 | WATER | 1835293004
         277184
           |COMMENTS:
 KE70I001 |12/20/2018 02:23|BB | T015KH18|
                                              13 | 25.99 | 1 | WATER | 1835256003
         334592
           | COMMENTS:
 KE71I001 |12/20/2018 03:02|BB | T015KH18|
                                              13 | 25.99 | 1 | WATER | 1835256003
          249856
           |COMMENTS: 1:20 DIL 10ML
 KE72I003 |12/20/2018 03:40|BB | T015KH18|
                                               7 | 25.99 | 1 | WATER | 1835293003
          241280
           | COMMENTS: 1:20 dil 10ml
| KE74I004 |12/20/2018 07:57|BB | TO15KH18|
                                               8 | 25.99 | 1 | WATER | 1835293004
                  0
           |COMMENTS: 1:20 dil 10ml
| KE75I001 |12/20/2018 08:42|BB | TO15KH18|
                                               4| 25.99| 1 | WATER | 1835293001
            240128
           | COMMENTS:
| KE76I003 |12/20/2018 09:19|BB | T015KH18|
                                               7 | 25.99 | 1 | WATER | 1835293003
            279808
           |COMMENTS:
| KE77I001 | 12/20/2018 09:58|BB | T015KH18| 16| 25.99| 1 | WATER | 1835288001
            219264
           |COMMENTS: 1:1000 dil 20ml of 100x
```

Data File : P:\K-5975-K\2018\DEC18\T9DEC18\KE53LCS.D Vial: 2

Acq Time : 12/19/2018 12:21 Operator: BB

Sample : 10 PPB LCS Inst : 5975-K


Misc : (200ml) 45202 44228 Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Dec 19 13:06:58 2018 Results File: TO15KH18.RES

Method : P:\K-5975-K\METHODS\TO15KH18.m (RTE Integrator)

Title : TO-15



Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE53LCS.D Vial: 2
Acq Time : 12/19/2018 12:21 Operator: BB

Sample : 10 PPB LCS Inst : 5975-K Misc : (200ml) 45202 44228 Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Dec 19 13:06:58 2018 Results File: T015KH18.RES

Quant Method: I:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

Last Update : Wed Dec 05 10:49:41 2018 Response via : Initial Calibration

DataAcq Meth : TO-15.M

Internal Standards	R.T.	QIon	Response	Conc Units	Area%
1) Bromochloromethane	9.40		277824	20.00 ppb	92.07
21) 1,4-Difluorobenzene	11.19		3704571		98.42
44) Chlorobenzene d5	15.49	117	2871380	20.00 ppb	102.26
System Monitoring Compounds				% F	Recovery
52) Bromofluorobenzene	17.13	95	1565078	19.40 ppb	96.99%
-Target Compounds					Qvalue
2) Dichlorodifluoromethane	5.11	8.5	1531046	10.0030 ppb	99
3) Chloromethane	5.28	50	481821	11.5137 ppb	100
4) Freon 114	5.38		1128276	10.5124 ppb	100
5) Vinyl Chloride	5.50	62	528178	10.9681 ppb	100
6) 1,3-Butadiene	5.64	54	410786	10.8475 ppb	98
7) Bromomethane	5.90	94	486965	10.6315 ppb	99
8) Chloroethane	6.07	64	319855	10.3725 ppb	99
9) Acetone	6.59	43	807883	9.3544 ppb	99
<ol><li>Trichlorofluoromethane</li></ol>	6.79		1283976	9.4155 ppb	100
<pre>11) 1,1-Dichloroethene</pre>	7.37		794693	9.5312 ppb	97
12) Methylene Chloride	7.45		397694	8.6801 ppb	95
13) Freon 113	7.71		746572	8.8270 ppb	95
14) Carbon Disulfide	7.79		1080344	9.6051 ppb	100
15) trans-1,2-Dichloroethene	8.32		454980	9.0761 ppb	97
16) 1,1-Dichloroethane	8.50		867816	9.2906 ppb	99
17) methyl t-butyl ether	8.53		1240559	8.8422 ppb	99
18) Vinyl Acetate	8.59		119257	9.4001 ppb	91
19) 2-Butanone	8.81		1032035	9.3630 ppb	99
20) cis-1,2-Dichloroethene	9.25		479439	9.1642 ppb	97
22) Ethyl Acetate	9.40		170879	8.8336 ppb	94
23) Hexane	9.46 9.52		849881	9.1407 ppb	99 99
24) Chloroform	9.88		961909 559727	8.6507 ppb 9.1003 ppb	97
<ul><li>25) Tetrahydrofuran</li><li>26) 1,2-Dichloroethane</li></ul>	10.21		660938	8.8280 ppb	99
27) 1,1,1-Trichloroethane	10.21		1003486	8.6336 ppb	98
28) Benzene	10.90		1314751	8.5300 ppb	99
29) Carbon Tetrachloride	11.05		1047348	8.9792 ppb	100
30) Cyclohexane	11.18		674234	8.6423 ppb	96
31) 1,2-Dichloropropane	11.66		520900	8.6670 ppb	100
32) Bromodichloromethane	11.83		941587	8.8138 ppb	100
33) Trichloroethene	11.88		657101	8.3623 ppb	99
34) Heptane	12.15		519478	8.7510 ppb	. 96
35) cis-1,3-Dichloropropene	12.69	75	734424		100
36) 4-Methyl-2-Pentanone	12.70	43	1316985	9.0054 ppb	99
37) trans-1,3-Dichloropropene	13.19	75	618179	8.9373 ppb	99
38) 1,1,2-Trichloroethane	13.38	97	514760	8.2505 ppb	99
39) Toluene	13.68	91	1557661	8.4976 ppb	100
40) 2-Hexanone	13.88	43	1136281	8.8637 ppb	100
41) Dibromochloromethane	14.10	129	835630	8.7988 ppb	99
42) 1,2-Dibromoethane	14.36	107	739642	8.3896 ppb	100
43) Tetrachloroethene	14.83		731013	8.0494 ppb	97
45) Chlorobenzene	15.54	112	1094024	7.8142 ppb	100
46) Ethylbenzene	15.93	91	1761663	7.7135 ppb	99
47) m,p-Xylene	16.12	91	2738207	15.1145 ppb	100
48) Bromoform	16.21		537341	7.8889 ppb	100
49) Styrene	16.51		921943	7.5617 ppb	100
50) 1,1,2,2-Tetrachloroethane	16.60	83	925718	7.6608 ppb	99

(#) = qualifier out of range (m) = manual integration KE53LCS.D TO15KH18.m Thu Dec 20 09:27:02 2018

Data File: P:\K-5975-K\2018\DEC18\19DEC18\KE53LCS.D Vial: 2

 Acq Time
 : 12/19/2018 12:21
 Operator: BB

 Sample
 : 10 PPB LCS
 Inst : 5975-K

 Misc
 : (200ml) 45202 44228
 Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Dec 19 13:06:58 2018 Results File: TO15KH18.RES

Quant Method: I:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

Last Update : Wed Dec 05 10:49:41 2018

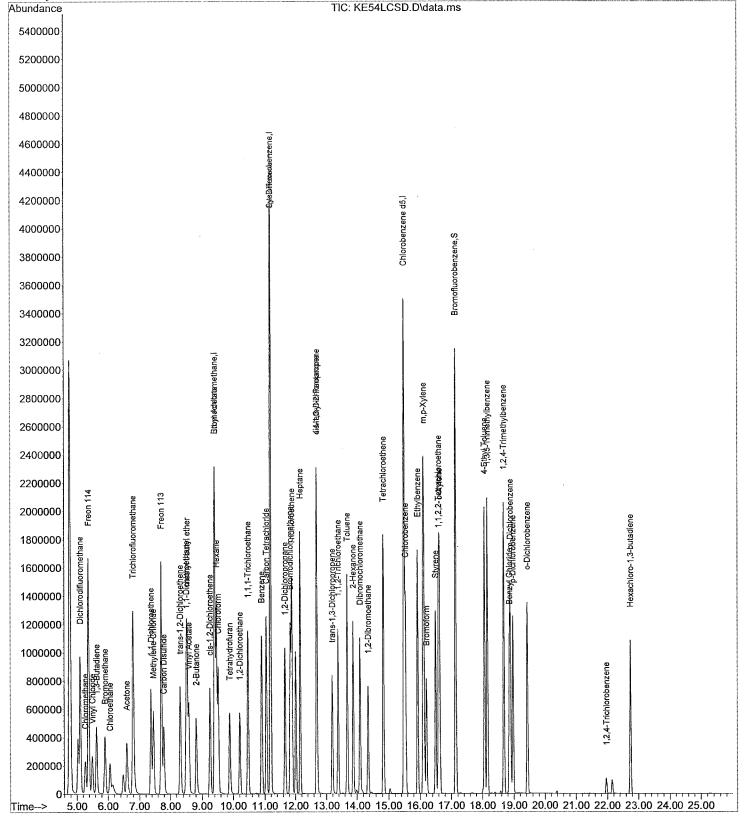
Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Unit	Qvalue
51) o-Xylene 53) 4-Ethyl Toluene 54) 1,3,5-Trimethylbenzene 55) 1,2,4-Trimethylbenzene	16.63 18.07 18.16 18.68	91 105 105 105	1297657 1870020 1652935 1635286	7.3322 ppb 8.2967 ppb 8.0234 ppb 8.5807 ppb	99 100 100 99
56) Benzyl Chloride 57) m-Dichlorobenzene	18.85 18.88 18.97	91 146 146	797531 864446 771887	9.4430 ppb 9.0395 ppb 9.4866 ppb	99 99 98
58) p-Dichlorobenzene 59) o-Dichlorobenzene 60) 1,2,4-Trichlorobenzene 61) Hexachloro-1,3-butadiene	19.43 21.97 22.74	146 146 180 225	828428 47122 233210	9.1660 ppb 5.9945 ppb 7.4295 ppb	99 98 99

Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE54LCSD.D Vial: 2

Acq Time : 12/19/2018 13:01 Operator: BB

Sample : 10 PPB LCSD Inst : 5975-K


Misc : (200ml) 45202 44228 Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Dec 19 16:45:32 2018 Results File: T015KH18.RES

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15



Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE54LCSD.D Vial: 2 Operator: BB Acq Time : 12/19/2018 13:01 Sample : 10 PPB LCSD Misc : (200ml) 45202 44228 Inst : 5975-K Multiplr: 1.00

MS Integration Params: rteint.p

Results File: TO15KH18.RES Quant Time: Dec 19 16:45:32 2018

Quant Method : I: $\K-5975-K\METHODS\T015KH18.m$  (RTE Integrator )

Title : TO-15

Last Update : Wed Dec 05 10:49:41 2018

Response via : Initial Calibration

Inte	rnal Standards	R.T.	QIon	Response	Conc Units	Area%
1)	Bromochloromethane	9.40	130	280576	20.00 ppb	92.98
21)	1,4-Difluorobenzene	11.19	114		20.00 ppb	97.42
44)	Chlorobenzene d5	15.49	117	2804694	20.00 ppb	99.89
Syst	em Monitoring Compounds				%R	ecovery
	Bromofluorobenzene	17.13	95	1531492	19.43 ppb	97.17%
Tarq	et Compounds					Qvalue
	Dichlorodifluoromethane	5.11	8.5	1534992	9.9304 ppb	100
3)	Chloromethane	5.27	50	463750	10.9732 ppb	100
4)	Freon 114	5.37	135	1125542	10.3840 ppb	98
5)	Vinyl Chloride	5.50	62	509488	10.4762 ppb	100
6)	1,3-Butadiene	5.64	54	398630	10.4232 ppb	98
7)	Bromomethane	5.90	94	479702	10.3702 ppb	99
8)	Chloroethane	6.06	64	317605	10.1985 ppb	99
9)	Acetone	6.59	43	811055	9.2991 ppb	100
10)	Trichlorofluoromethane	6.79	101	1286222	9.3395 ppb	100
-	1,1-Dichloroethene	7.37	61	799278	9.4922 ppb	98
	Methylene Chloride	7.45	84	401004	8.6665 ppb	94
	Freon 113	7.71	151	755289	8.8425 ppb	96
,	Carbon Disulfide	7.79	76	1094344	9.6341 ppb	100
	trans-1,2-Dichloroethene	8.31	96	458394	9.0545 ppb	96
,	•	8.50	63	876276	9.2891 ppb	99
	methyl t-butyl ether	8.53	73	1250861	8.8282 ppb	99
	Vinyl Acetate	8.59	86	119393	9.3185 ppb	89
	2-Butanone	8.81	43	1036687	9.3130 ppb	98 97
	cis-1,2-Dichloroethene	9.25	96	480401	9.0925 ppb	
	Ethyl Acetate	9.40	61	173334	9.0525 ppb	95 99
		9.46 9.51	57 83	851205 962504	9.2489 ppb 8.7449 ppb	100
	Chloroform	9.88	42	557955	9.1646 ppb	98
	Tetrahydrofuran 1,2-Dichloroethane	10.21	62		8.8803 ppb	99
	1,1,1-Trichloroethane	10.21	97	1004406	8.7302 ppb	98
	Benzene	10.90	78	1315396	8.6217 ppb	99
	Carbon Tetrachloride	11.05	117	1044351	9.0454 ppb	100
	Cyclohexane	11.18	84	669624	8.6713 ppb	94
	1,2-Dichloropropane	11.66	63	517898	8.7055 ppb	99
	Bromodichloromethane	11.83	83	937309	8.8638 ppb	100
	Trichloroethene	11.88	130	659357	8.4771 ppb	99
	Heptane	12.15	71	517241	8.8028 ppb	96
	cis-1,3-Dichloropropene	12.69	75	735178	8.8187 ppb	99
	4-Methyl-2-Pentanone	12.70	43	1326926	9.1666 ppb	99
37)	trans-1,3-Dichloropropene	13.19	75	617528	9.0195 ppb	99
	1,1,2-Trichloroethane	13.38	97	509822	8.2553 ppb	99
	Toluene	13.68	91	1545257	8.5165 ppb	100
40)	2-Hexanone	13.88	43	1147120	9.0401 ppb	100
41)	Dibromochloromethane	14.10	129	830151	8.8308 ppb	100
42)	1,2-Dibromoethane	14.36	107	738877	8.4669 ppb	99
	Tetrachloroethene	14.83	166	720798	8.0184 ppb	97
45)	Chlorobenzene	15.54	112	1084114	7.9275 ppb	99
46)	Ethylbenzene	15.93	91	1742882	7.8127 ppb	99
47)	m,p-Xylene	16.12	91	2711144	15.3210 ppb	100
48)	Bromoform	16.21	173	535801	8.0533 ppb	100
	Styrene	16.51	104	920341	7.7280 ppb	100
50)	1,1,2,2-Tetrachloroethane	16.60	83	930827	7.8863 ppb	100

^(#) = qualifier out of range (m) = manual integration KE54LCSD.D T015KH18.m Thu Dec 20 09:27:06 2018

Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE54LCSD.D Vial: 2

Acq Time : 12/19/2018 13:01 Operator: BB

Sample : 10 PPB LCSD Inst : 5975-K

Misc : (200ml) 45202 44228 Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Dec 19 16:45:32 2018 Results File: TO15KH18.RES

Quant Method : I:\K-5975-K\METHODS\T015KH18.m (RTE Integrator )

Title : TO-15

Last Update : Wed Dec 05 10:49:41 2018

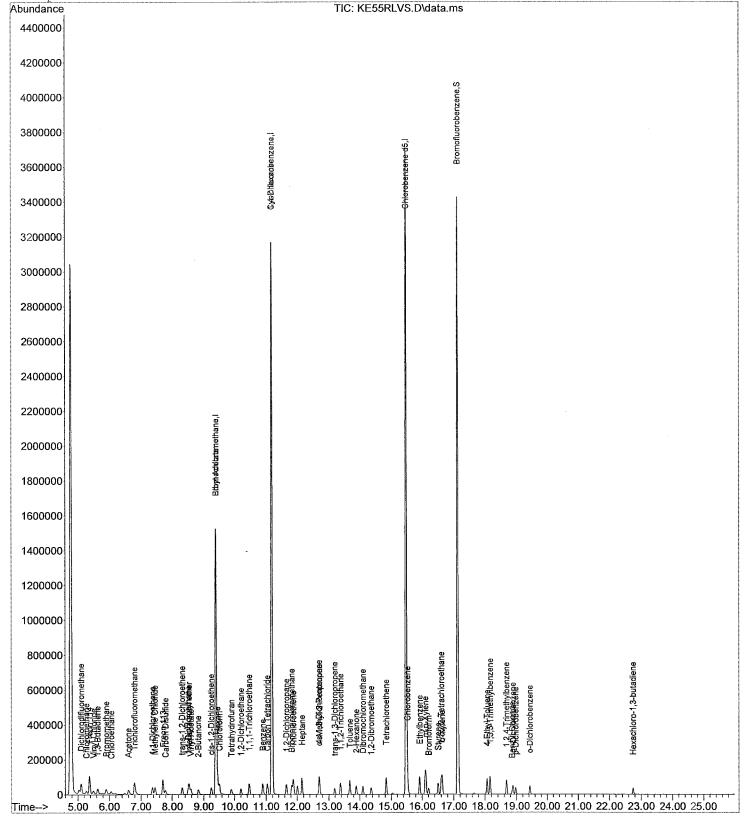
Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Unit	Qvalue
51) o-Xylene	16.63	91	1280902	7.4096 ppb	100
53) 4-Ethyl Toluene	18.07	105	1869704	8.4925 ppb	100
54) 1,3,5-Trimethylbenzene	18.16	105	1655053	8.2247 ppb	99
55) 1,2,4-Trimethylbenzene	18.68	105	1643345	8.8280 ppb	99
56) Benzyl Chloride	18.85	91	807810	9.7921 ppb	99
57) m-Dichlorobenzene	18.88	146	869292	9.3063 ppb	99
58) p-Dichlorobenzene	18.97	146	772349	9.7179 ppb	99
59) o-Dichlorobenzene	19.43	146	825714	9.3532 ppb	99
60) 1,2,4-Trichlorobenzene	21.96	180	50246	6.5438 ppb	98
61) Hexachloro-1,3-butadiene	22.74	225	239666	7.8167 ppb	100

Data File : P:\K-5975-K\2018\DEC18\T9DEC18\KE55RLVS.D Vial: 2

Acq Time : 12/19/2018 13:39 Operator: BB

Sample : 0.5 PPB RLVS Inst : 5975-K


Misc : (10ml) 45202 44228 Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Dec 19 16:45:38 2018 Results File: TO15KH18.RES

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15



MS Integration Params: rteint.p

Quant Time: Dec 19 16:45:38 2018 Results File: T015KH18.RES

Quant Method: I:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

Last Update : Wed Dec 05 10:49:41 2018 Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Uni	.ts	Area%
1) Bromochloromethane	9.40	130	256960	20.00 ppb	)	85.15
21) 1,4-Difluorobenzene	11.19	114	3463997	20.00 pph		92.03
44) Chlorobenzene d5	15.49	117	2925244	20.00 pph		04.18
,						
System Monitoring Compounds					%Re	ecovery
52) Bromofluorobenzene	17.13	95	1668337	20.30 ppb	) 1	.01.49%
Target Compounds	г 11	0.5	0.01.07	0 (200 ~	h	Qvalue
2) Dichlorodifluoromethane	5.11	85 50	89187	0.6300 p		99 99
3) Chloromethane 4) Freon 114	5.27 5.37		28249 65121	0.7299 p		99
5) Vinyl Chloride	5.50	62	29533	0.6631 p		99
6) 1,3-Butadiene	5.63	54	23358	0.6669 p		97
7) Bromomethane	5.90	94	27653	0.6527 p		98
8) Chloroethane	6.06	64	18052	0.6329 p		99
9) Acetone	6.60	43	57929	0.7252 p		100
10) Trichlorofluoromethane	6.79		71796	0.5692 p		99
11) 1,1-Dichloroethene	7.37		42738	0.5542 r	~	98
12) Methylene Chloride	7.46	84	27510	0.6492 p	opb	92
13) Freon 113	7.71	151	40060	0.5121 p		93
14) Carbon Disulfide	7.79	76	50559	0.4860 p	pb	99
15) trans-1,2-Dichloroethene	8.32	96	24037	0.5184 p		95
<pre>16) 1,1-Dichloroethane</pre>	8.49	63	47740	0.5526 p		98
17) methyl t-butyl ether	8.53		64175	0.4946 p	-	100
18) Vinyl Acetate	8.58		5452	0.4646 p		56
19) 2-Butanone	8.82		59341	0.5821 p		# 96
20) cis-1,2-Dichloroethene	9.25		26078	0.5389 p		97
22) Ethyl Acetate	9.40		8860	0.4898 p		85
23) Hexane	9.46		43904	0.5050 p		97
24) Chloroform	9.51		53185	0.5115 p		97 95
25) Tetrahydrofuran	9.90		28729 36916	0.4995 p 0.5273 p		96
26) 1,2-Dichloroethane	10.21 10.46		53409	0.3273 g		97
27) 1,1,1-Trichloroethane 28) Benzene	10.40		72955	0.5062 p	-	99
29) Carbon Tetrachloride	11.04		51033	0.4679 p		99
30) Cyclohexane	11.18		40089	0.5495		# 1
31) 1,2-Dichloropropane	11.66		29031	0.5166	-	99
32) Bromodichloromethane	11.83		45755	0.4580 p		99
33) Trichloroethene	11.88		34855	0.4744 p		95
34) Heptane	12.15		26078	0.4698		97
35) cis-1,3-Dichloropropene	12.68	75	33325	0.4232 p	gpb	99
36) 4-Methyl-2-Pentanone	12.70	43	65907	0.4820 H		96
37) trans-1,3-Dichloropropene	13.19	75	26416	0.4084 p		96
38) 1,1,2-Trichloroethane	13.37		28786	0.4934 p		98
39) Toluene	13.68		79893	0.4661 _I	-	100
40) 2-Hexanone	13.88		51262	0.4276 r		97
41) Dibromochloromethane	14.10		35975	0.4051 p		99
42) 1,2-Dibromoethane	14.36		37518	0.4551 p		99
43) Tetrachloroethene	14.83		36988	0.4356		95 96
45) Chlorobenzene	15.54		64151	0.4498		96 98
46) Ethylbenzene	15.93		99740 155369	0.4287 g 0.8418 g		98 99
47) m,p-Xylene 48) Bromoform	16.11 16.21		22641	0.3263		98
48) Bromotorm 49) Styrene	16.51		45727	0.3681		98
50) 1,1,2,2-Tetrachloroethane	16.60		54021	0.4388		99
July 1,1,2,2 recraciii di decinane	10.00	0.5	V1021	0.1000 ]	. r	

^{(#) =} qualifier out of range (m) = manual integration
KE55RLVS.D T015KH18.m Thu Dec 20 09:27:11 2018

Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE55RLVS.D Vial: 2

Acq Time : 12/19/2018 13:39 Operator: BB

Sample : 0.5 PPB RLVS Inst : 5975-K

Misc : (10ml) 45202 44228 Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Dec 19 16:45:38 2018 Results File: TO15KH18.RES

Quant Method :  $I:\K-5975-K\METHODS\T015KH18.m$  (RTE Integrator )

Title : TO-15

Last Update : Wed Dec 05 10:49:41 2018

Response via: Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
51)	o-Xylene	16.63	91	79969	0.4435 ppb	97
53)	4-Ethyl Toluene	18.07	105	82267	0.3583 ppb	97
54)	1,3,5-Trimethylbenzene	18.16	105	82216	0.3917 ppb	98
55)	1,2,4-Trimethylbenzene	18.68	105	68793	0.3543 ppb	96
56)	Benzyl Chloride	18.85	91	15455	0.1796 ppb	92
57)	m-Dichlorobenzene	18.89	146	31628	0.3246 ppb	98
58)	p-Dichlorobenzene	18.97	146	24626	0.2971 ppb	97
59)	o-Dichlorobenzene	19.43	146	29911	0.3249 ppb	98
60)	1,2,4-Trichlorobenzene	0.00	180		Not Detected	d
61)	Hexachloro-1,3-butadiene	22.74	225	9242	0.2890 ppb	<b>9</b> 5

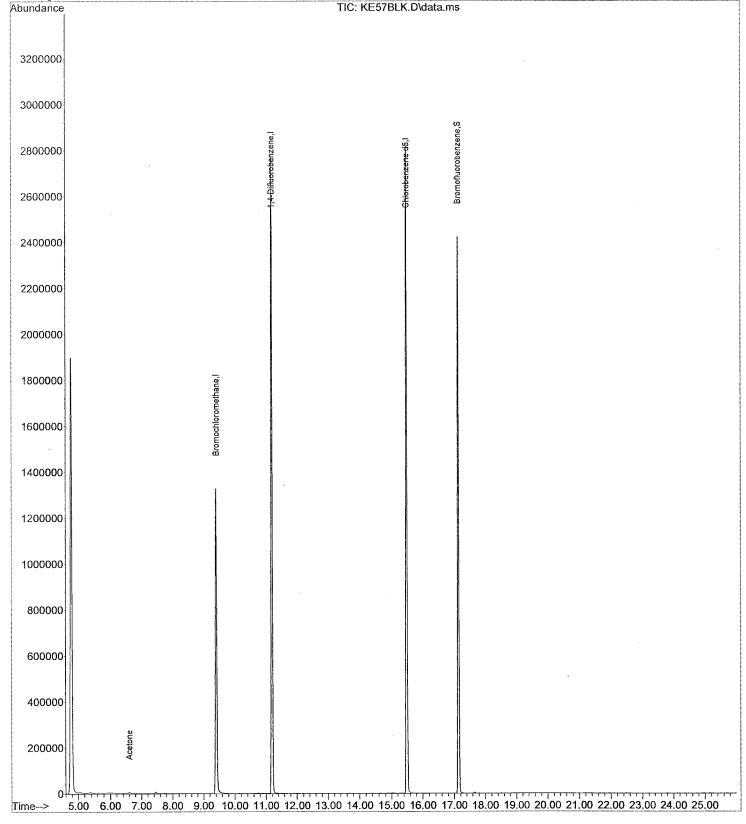
Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE57BLK.D Vial: 3

Acq Time : 12/19/2018 16:01

Operator: BB

 Sample
 : BLANK
 Inst : 5975-K

 Misc
 : 44228
 Multiplr: 1.00


MS Integration Params: rteint.p

Quant Time: Dec 19 16:38:15 2018

Results File: TO15KH18.RES

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15



Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE57BLK.D Vial: 3

Acq Time : 12/19/2018 16:01 Operator: BB

Sample : BLANK Inst : 5975-K

Misc : 44228 Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Dec 19 16:38:15 2018 Results File: TO15KH18.RES

Quant Method: I:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

Last Update : Wed Dec 05 10:49:41 2018 Response via : Initial Calibration

Inte	rnal Standards	R.T.	QIon	Response	Conc	Units	Area%
1)	Bromochloromethane	9.41	130	225536	20.00	 dag	74.74
-	1,4-Difluorobenzene	11.19	114		20.00		80.23
	Chlorobenzene d5	15.49	117		20.00		79.38
•							
	em Monitoring Compounds					%Re	covery
52)	Bromofluorobenzene	17.13	95	1198691	19.14	ppb	95.70%
M =	- t Commounds						Ovalue
	et Compounds Dichlorodifluoromethane	0.00	85		Not.	Detected	~
,	Chloromethane	0.00	50			Detected	
	Freon 114	0.00	135			Detected	
,	Vinyl Chloride	0.00	62			Detected	
	1,3-Butadiene	0.00	54			Detected	
,		0.00	94			Detected	
	Bromomethane	0.00	64			Detected	
	Chloroethane	6.60	43	12611		99 ppb	98
	Acetone		101	12011		Detected	
•	Trichlorofluoromethane	0.00					
•	1,1-Dichloroethene	0.00	61			Detected	
	Methylene Chloride	0.00	84			Detected	
	Freon 113	0.00	151			Detected	
	Carbon Disulfide	0.00	76			Detected	
	trans-1,2-Dichloroethene	0.00	96			Detected	
	1,1-Dichloroethane	0.00	63			Detected	
	methyl t-butyl ether	0.00	73			Detected	
	Vinyl Acetate	0.00	86			Detected	
	2-Butanone	0.00	43			Detected	
	cis-1,2-Dichloroethene	0.00	96			Detected	
	Ethyl Acetate	0.00	61			Detected	
· ·	Hexane	0.00	57			Detected	
	Chloroform	0.00	83			Detected	
	Tetrahydrofuran	0.00	42			Detected	
	1,2-Dichloroethane	0.00	62			Detected	
	1,1,1-Trichloroethane	0.00	97			Detected	
	Benzene	0.00	78			Detected	
	Carbon Tetrachloride	0.00	117			Detected	
	Cyclohexane	0.00	84			Detected	
	1,2-Dichloropropane	0.00	63			Detected	
	Bromodichloromethane	0.00	83			Detected	
	Trichloroethene	0.00	130			Detected	
	Heptane	0.00	71			Detected	
	cis-1,3-Dichloropropene	0.00	75			Detected	
•	4-Methyl-2-Pentanone	0.00	43		-	Detected	
	trans-1,3-Dichloropropene	0.00	75			Detected	
38)	1,1,2-Trichloroethane	0.00	97			Detected	
39)	Toluene	0.00	91			Detected	
40)	2-Hexanone	0.00	43			Detected	
41)	Dibromochloromethane	0.00	129			Detected	
42)	1,2-Dibromoethane	0.00	107			Detected	
43)	Tetrachloroethene	0.00	166			Detected	
45)		0.00	112			Detected	
	Ethylbenzene	0.00	91			Detected	
	m,p-Xylene	0.00	91			Detected	
	Bromoform	0.00	173			Detected	
	Styrene	0.00	104			Detected	
50)	1,1,2,2-Tetrachloroethane	0.00	83		Not	Detected	1

^{(#) =} qualifier out of range (m) = manual integration KE57BLK.D TO15KH18.m Thu Dec 20 09:27:16 2018

Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE57BLK.D Vial: 3

Acq Time : 12/19/2018 16:01 Operator: BB
Sample : BLANK Inst : 5975-K
Misc : 44228 Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Dec 19 16:38:15 2018 Results File: T015KH18.RES

Quant Method: I:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

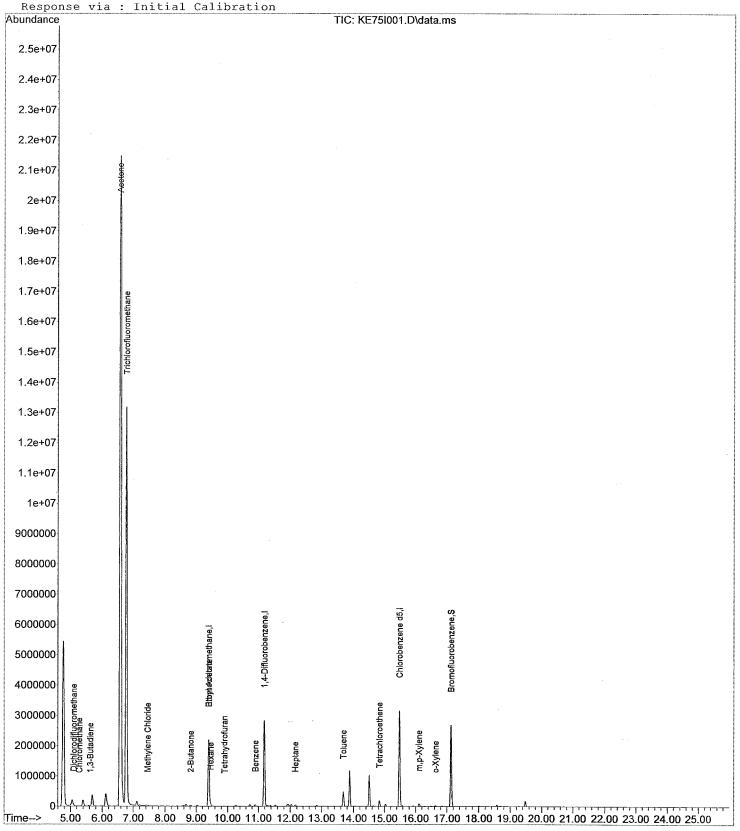
Title : TO-15

Last Update : Wed Dec 05 10:49:41 2018

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Unit	Qvalue
51) o-Xylene	0.00	91		Not Detecte	
53) 4-Ethyl Toluene	0.00	105		Not Detecte	ed.
54) 1,3,5-Trimethylbenzene	0.00	105		Not Detecte	ed
55) 1,2,4-Trimethylbenzene	0.00	105		Not Detecte	ed
56) Benzyl Chloride	0.00	91		Not Detecte	ed
57) m-Dichlorobenzene	0.00	146		Not Detecte	ed
58) p-Dichlorobenzene	0.00	146		Not Detecte	ed
59) o-Dichlorobenzene	0.00	146		Not Detecte	ed
60) 1,2,4-Trichlorobenzene	0.00	180		Not Detecte	ed
61) Hexachloro-1,3-butadiene	0.00	225		Not Detecte	ed

Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE75I001.D Vial: 4


MS Integration Params: rteint.p

Quant Time: Dec 20 14:51:09 2018 Results File: TO15KH18.RES

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

Last Update : Wed Dec 05 10:49:41 2018



Data File: P:\K-5975-K\2018\DEC18\19DEC18\KE75I001.D Vial: 4 Acq Time : 12/20/2018 08:42 Operator: BB Sample : 1835293001 Misc : Inst : 5975-K Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Dec 20 14:51:09 2018 Results File: TO15KH18.RES

Quant Method : I:\K-5975-K\METHODS\T015KH18.m (RTE Integrator )

Title : TO-15
Last Update : Wed Dec 05 10:49:41 2018
Response via : Initial Calibration

DataAcq Meth : TO-15.M

Internal Standards	R.T.	QIon	Respons	e Conc Units	Area%	
1) Bromochloromethane	9.40		240128	20.00 ppb	79.58	
21) 1,4-Difluorobenzene	11.19	114	3028147		80.45	
44) Chlorobenzene d5	15.49	117	2493547	20.00 ppb	88.81	
System Monitoring Compounds				% R.	ecovery	
52) Bromofluorobenzene	17.13	95	1303805	18.61 ppb	93.04%	
			100000	10.01 ppb	33.010	
Target Compounds					Qvalue	
<ol><li>Dichlorodifluoromethane</li></ol>	5.11	85	66637	0.5037 ppb	99	
3) Chloromethane	5.28	50	22057	0.6098 ppb	96	
4) Freon 114	0.00	135		Not Detected		
5) Vinyl Chloride	0.00	62		Not Detected	d	. 7
6) 1,3-Butadiene	5.63	54	5342	0.1632 ppb	# 17	1.1
7) Bromomethane	0.00	94		Not Detected	d	1000
8) Chloroethane	0.00	64		Not Detected	d 18	(1)
9) Acetone	6.56			526.5003 ppb	m 0751/	1
10) Trichlorofluoromethane	6.78	101	32393	0.2748 ppb	99 ' '	12/10/18
11) 1,1-Dichloroethene	0.00	61		Not Detected	-	
12) Methylene Chloride	7.46	84	17442	0.4405 ppb	91	
13) Freon 113	0.00	151		Not Detected		
14) Carbon Disulfide	0.00	76		Not Detected		
15) trans-1,2-Dichloroethene	0.00	96		Not Detected		
16) 1,1-Dichloroethane	0.00	63		Not Detected		
17) methyl t-butyl ether 18) Vinyl Acetate	0.00	73		Not Detected		
19) 2-Butanone	0.00 8.82	86	CC2.42	Not Detected		
20) cis-1,2-Dichloroethene	0.00	43	66243	0.6953 ppb	96	
22) Ethyl Acetate	9.40	96 61	180073	Not Detected		
23) Hexane	9.46	57	35452	11.3884 ppb 0.4665 ppb	87 91	
24) Chloroform	0.00	83	33432	Not Detected		
25) Tetrahydrofuran	9.89	<b>4</b> 2	7876	0.1567 ppb		
26) 1,2-Dichloroethane	0.00	62		Not Detected		
27) 1,1,1-Trichloroethane	0.00	97		Not Detected		
28) Benzene	10.90	78	59956	0.4759 ppb	99	
29) Carbon Tetrachloride	0.00	117		Not Detected		
30) Cyclohexane	0.00	84		Not Detected		
31) 1,2-Dichloropropane	0.00	63		Not Detected	Ė	
32) Bromodichloromethane	0.00	83		Not Detected	· É	
33) Trichloroethene	0.00	130		Not Detected	Ė	
34) Heptane	12.15	71	11769	0.2425 ppb	90	
35) cis-1,3-Dichloropropene	0.00	75		Not Detected	Í	
36) 4-Methyl-2-Pentanone	0.00	43		Not Detected	i	
37) trans-1,3-Dichloropropene	0.00	75		Not Detected		
38) 1,1,2-Trichloroethane	0.00	97		Not Detected		·
39) Toluene	13.68	91	465419	3.1062 ppb	99	
40) 2-Hexanone	0.00	43		Not Detected		
41) Dibromochloromethane	0.00	129		Not Detected		
42) 1,2-Dibromoethane 43) Tetrachloroethene	0.00	107	71.05.0	Not Detected		
45) Chlorobenzene	14.83	166	71656	0.9653 ppb	96	
46) Ethylbenzene	0.00	112 91		Not Detected Not Detected		
47) m,p-Xylene	16.10	91	83540			
48) Bromoform	0.00	173	03340	0.5310 ppb Not Detected	98	
49) Styrene	0.00	104		Not Detected		
50) 1,1,2,2-Tetrachloroethane	0.00	83		Not Detected		
					-	

^{(#) =} qualifier out of range (m) = manual integration KE75I001.D T015KH18.m Thu Dec 20 14:53:15 2018

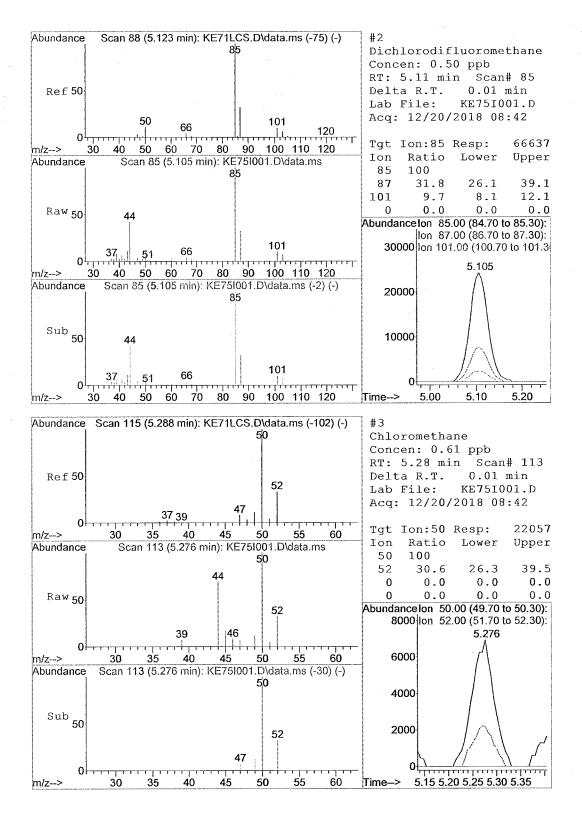
MS Integration Params: rteint.p

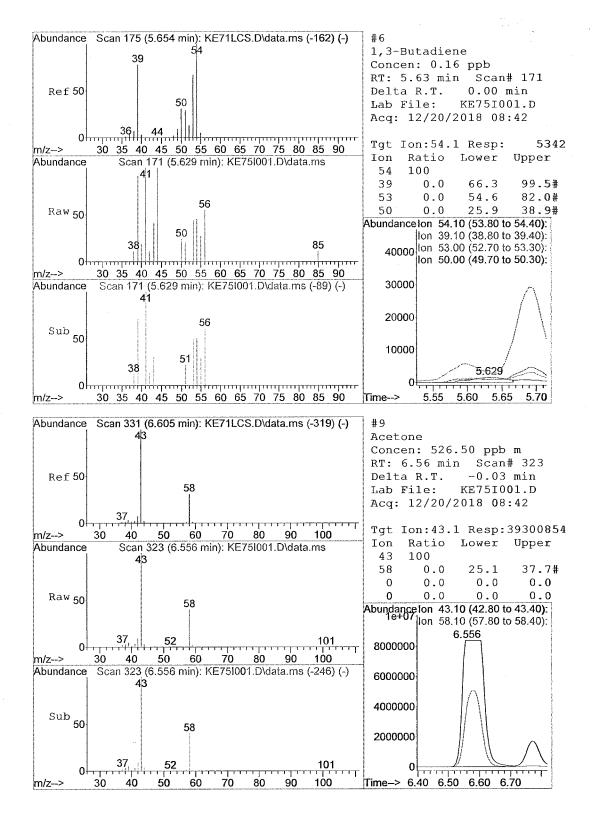
Quant Time: Dec 20 14:51:09 2018 Results File: T015KH18.RES

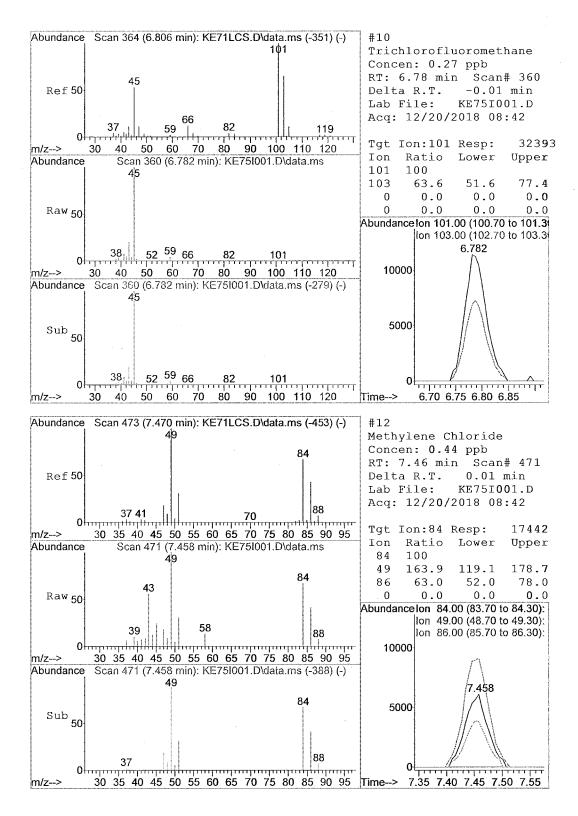
Quant Method: I:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

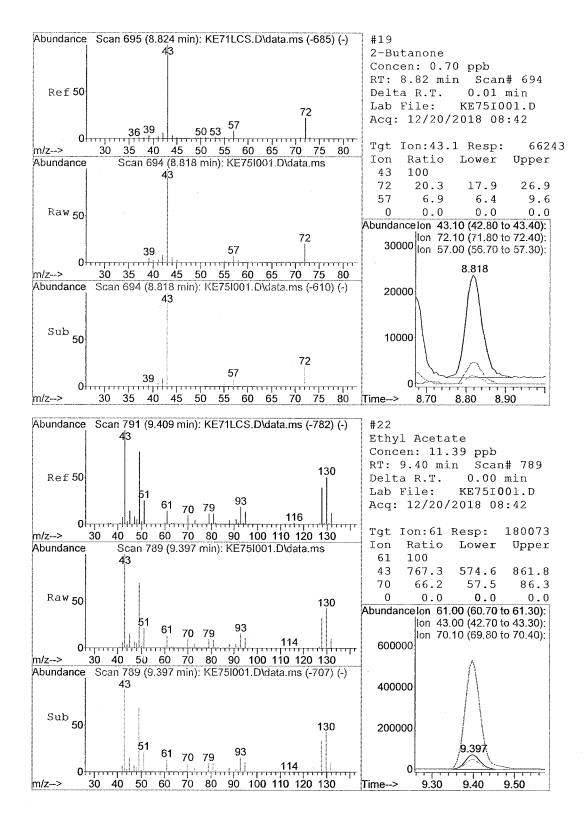
Title : TO-15

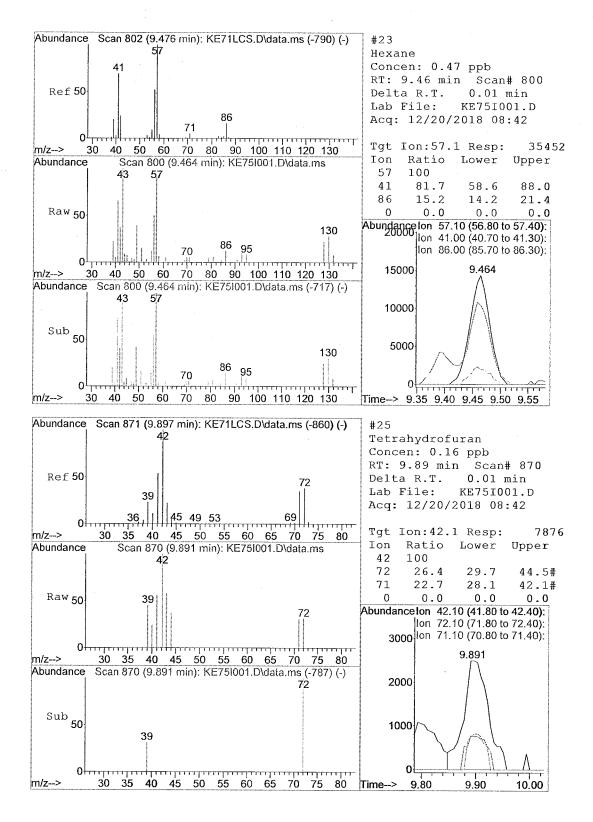
Last Update : Wed Dec 05 10:49:41 2018

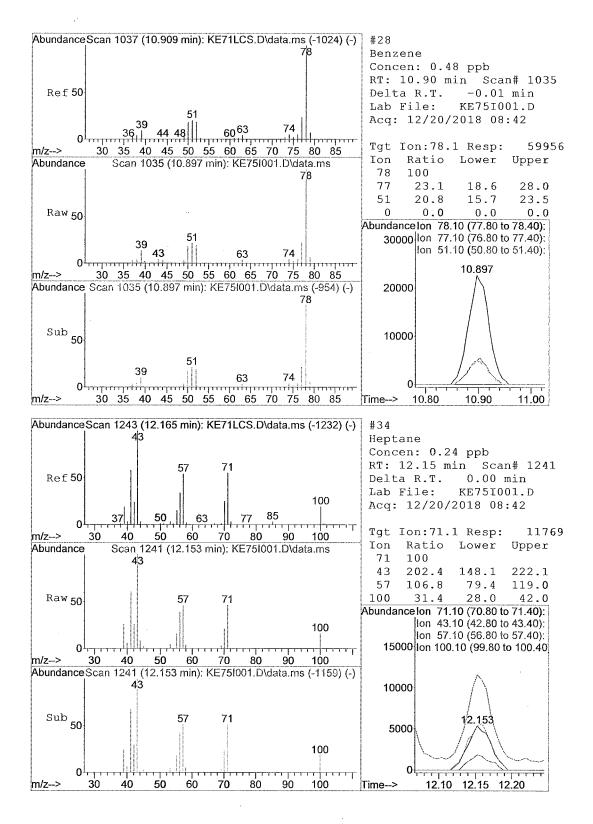

Response via : Initial Calibration

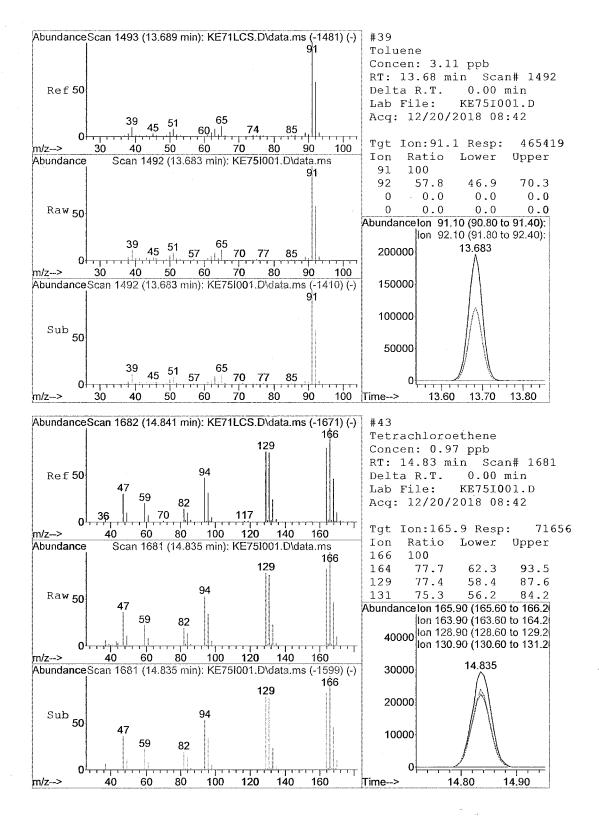

DataAcq Meth : TO-15.M

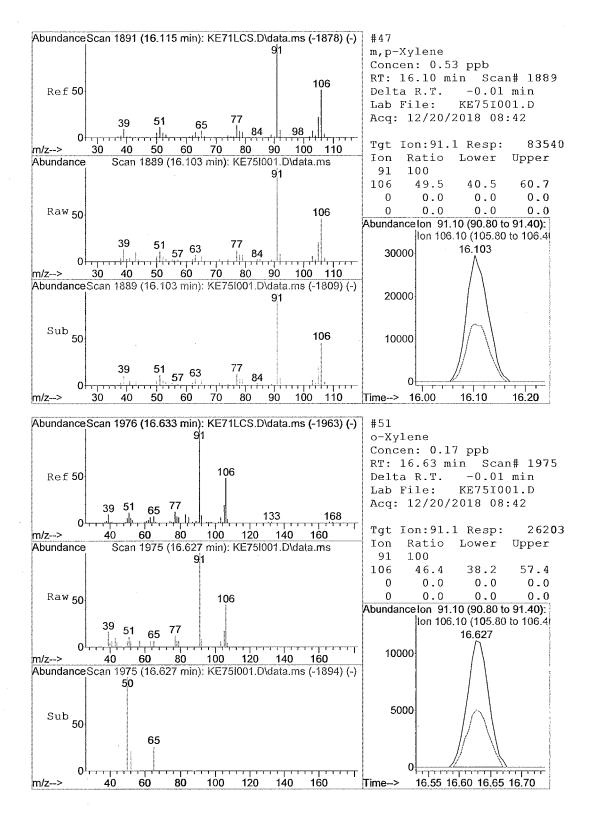

Compound		R.T.	QIon	Response	Conc Unit	Qvalue
51) o-Xylene	_	16.63	91	26203	0.1705 ppb	98
53) 4-Ethyl Toluer 54) 1,3,5-Trimethy		0.00	105 105		Not Detected	-
55) 1,2,4-Trimethy 56) Benzyl Chlorid		0.00	105 91	ř	Not Detected	
57) m-Dichlorobenz		0.00	146		Not Detected	
58) p-Dichlorobenz 59) o-Dichlorobenz		0.00	$\frac{146}{146}$		Not Detected	
60) 1,2,4-Trichlor	·	0.00	180		Not Detected	
61) Hexachloro-1,3	-butadiene	0.00	225		Not Detected	d


______


Data Path : P:\K-5975-K\2018\DEC18\19DEC18\ Data File: KE75I001.D MANUAL RE-INTEGRATION : 12/20/2018 08:42 Acq On Operator : BB M-missed peak assignment : 1835293001 Sample ☐ assigned incorrect name to peak : 5975-K Inst Misc ☐ over-integrated peak's area ALS Vial Sample Multiplier: 1 ☐ under-integrated peak's area  $\square$  other_ Quant Time: Dec 20 09:12:24 2018 date_12/20/14 Quant Method: I:\K-5975-K\METHODS\T015KH18.m initials BN Quant Title : TO-15 QLast Update: Wed Dec 05 10:49:41 2018 Response via: Initial Calibration Ion 43.10 (42.80 to 43.40): KE75I001.D\data.ms Abundance Ion 58.10 (57.80 to 58.40): KE75I001.D\data.ms 1.2e+07 1e+07 6.556 8000000 6000000 4000000 2000000 5.40 5.50 5.60 5.70 5.80 5.90 6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.70 6.80 6.90 7.00 7.10 7.20 7.30 7.40 7.50 7.60 7.70 7.80 Time--> Abundance Scan 323 (6.556 min): KE75I001.D\data.ms 5000000 58 39 36 101 70 75 30 35 50 55 60 65 80 90 95 100 105 110 40 45 m/z-->Scan 331 (6.605 min): KE71LCS.D\data.ms (-319) (-) Abundance 43 5000 58 m/z--> 30 35 40 45 50 55 80 85 90 95 100 105 110 TIC: KE75I001.D\data.ms (9) Acetone 6.556min (-0.030) 526.50 ppb m response 39300854 Ion Exp% Act% 43.10 100.00 100.00 0.00# 58.10 31.40 0.00 0.00 0.00 0.00 0.00 0.00









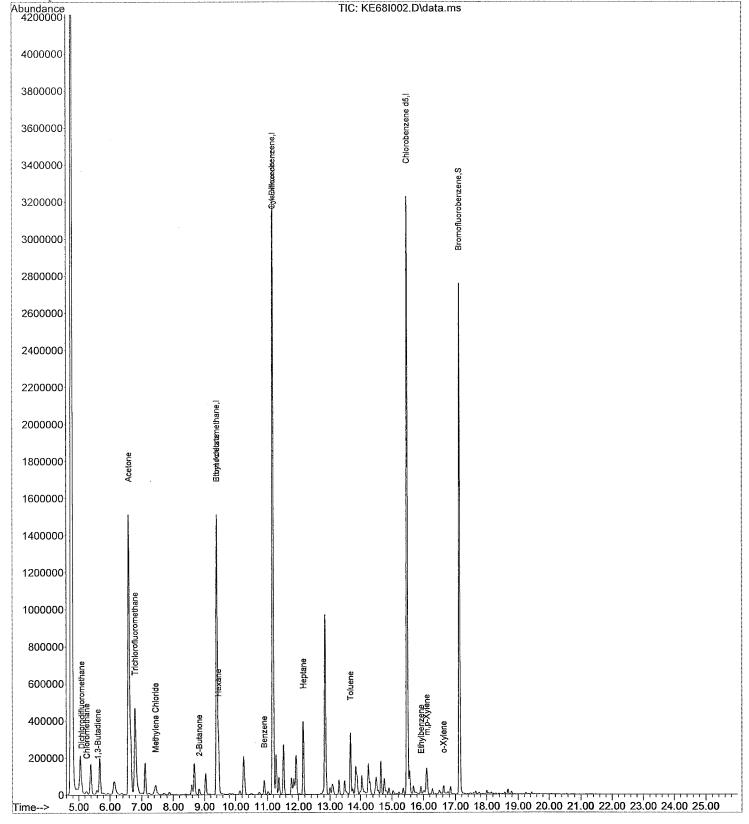





Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE68I002.D Vial: 6

Acq Time : 12/20/2018 01:02 Operator: BB

Sample : 1835293002 Inst : 5975-K


Misc : Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Dec 20 14:46:53 2018 Results File: TO15KH18.RES

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15



Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE68I002.D Vial: 6 Acq Time : 12/20/2018 01:02 Operator: BB Sample : 1835293002 Misc : Inst : 5975-K Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Dec 20 14:46:53 2018 Results File: TO15KH18.RES

Quant Method : I: $K-5975-K\METHODS\T015KH18.m$  (RTE Integrator )

Title : TO-15
Last Update : Wed Dec 05 10:49:41 2018

Response via : Initial Calibration

Inte	rnal Standards	R.T.	QIon	Response	Conc Units	Area%
1)	Bromochloromethane	9.40	130	247232		31.93
21)	1,4-Difluorobenzene	11.19	114	3355268	20.00 ppb	39.14
44)	Chlorobenzene d5	15.49	117	2534724	20.00 ppb	90.27
	em Monitoring Compounds				%Re	covery
52)	Bromofluorobenzene	17.13	95	1361537	19.12 ppb	95.58%
	et Compounds				(	Qvalue
2)	Dichlorodifluoromethane	5.10	85	75107	0.5514 ppb	99
	Chloromethane	5.26	50	23345	0.6269 ppb	100
,	Freon 114	0.00	135		Not Detected	
	Vinyl Chloride	0.00	62		Not Detected	
6)	1,3-Butadiene	5.62	54	5100	0.1513 ppb	‡ 17
	Bromomethane	0.00	94		Not Detected	
8)	Chloroethane	0.00	64		Not Detected	
9)	Acetone	6.59	43	3401791	44.2632 ppb	97
	Trichlorofluoromethane	6.79	101	31207	0.2572 ppb	100
	1,1-Dichloroethene	0.00	61		Not Detected	
	Methylene Chloride	7.45	84	32739	0.8030 ppb	94
13)	Freon 113	0.00	151		Not Detected	
14)	Carbon Disulfide	0.00	76		Not Detected	
	trans-1,2-Dichloroethene	0.00	96		Not Detected	
16)	1,1-Dichloroethane	0.00	63		Not Detected	
17)	methyl t-butyl ether	0.00	73		Not Detected	
18)	Vinyl Acetate	0.00	86		Not Detected	
19)	2-Butanone	8.82	43	67391	0.6870 ppb	95
20)	cis-1,2-Dichloroethene	0.00	96		Not Detected	
22)	Ethyl Acetate	9.40	61	10995	0.6276 ppb	93
23)	Hexane	9.46	57	180367	2.1419 ppb	97
24)	Chloroform	0.00	83		Not Detected	
25)	Tetrahydrofuran	0.00	42		Not Detected	
26)	1,2-Dichloroethane	0.00	62		Not Detected	
27)	1,1,1-Trichloroethane	0.00	97		Not Detected	
28)	Benzene	10.90	78	88926	0.6370 ppb	99
29)	Carbon Tetrachloride	0.00	117		Not Detected	
30)	Cyclohexane	11.18	84	237853	3.3662 ppb	84
31)	1,2-Dichloropropane	0.00	63		Not Detected	
32)	Bromodichloromethane	0.00	83		Not Detected	
33)	Trichloroethene	0.00	130		Not Detected	
34)	Heptane	12.16	71	109707	2.0405 ppb	94
35)	cis-1,3-Dichloropropene	0.00	75		Not Detected	
36)	4-Methyl-2-Pentanone	0.00	43		Not Detected	
	trans-1,3-Dichloropropene	0.00	75		Not Detected	
38)	1,1,2-Trichloroethane	0.00	97		Not Detected	
39)	Toluene	13.68	91	314871	1.8966 ppb	98
40)	2-Hexanone	0.00	43		Not Detected	
41)	Dibromochloromethane	0.00	129		Not Detected	
42)	1,2-Dibromoethane	0.00	107		Not Detected	
	Tetrachloroethene	0.00	166		Not Detected	
45)	Chlorobenzene	0.00	112		Not Detected	
46)	Ethylbenzene	15.93	91	38689	0.1919 ppb	99
	m,p-Xylene	16.10	91	121445	0.7594 ppb	98
	Bromoform	0.00	173		Not Detected	
	Styrene	0.00	104		Not Detected	
49)	DCYTCHC					

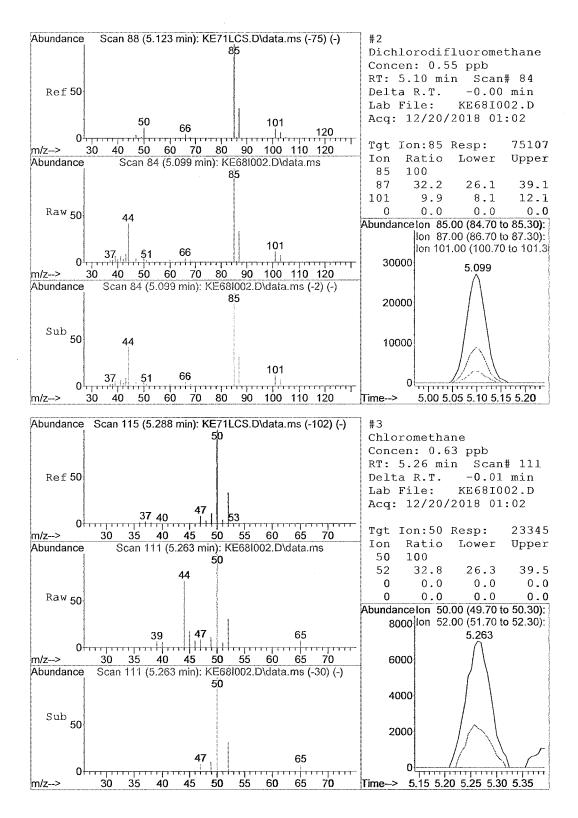
^{(#) =} qualifier out of range (m) = manual integration KE68I002.D T015KH18.m Thu Dec 20 14:52:50 2018

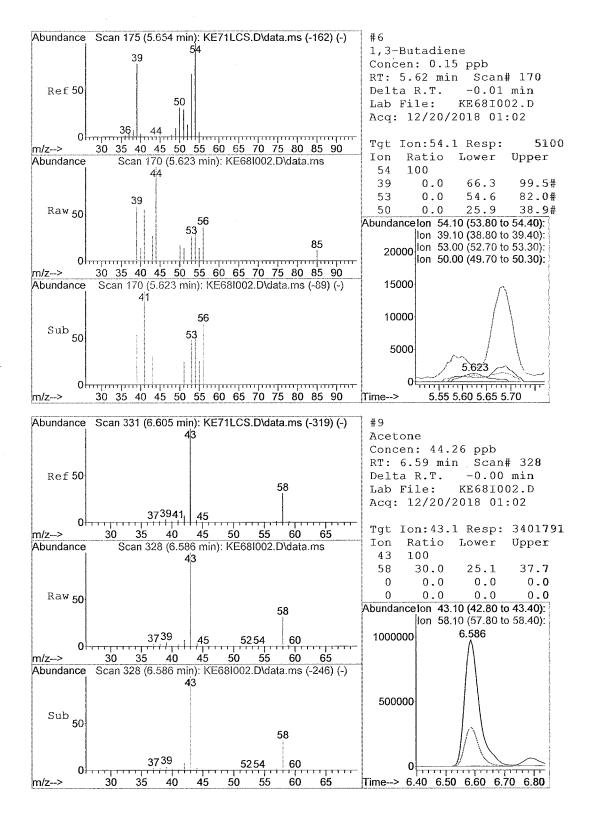
Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE68I002.D Vial: 6 Operator: BB Acq Time : 12/20/2018 01:02 Inst : 5975-K Multiplr: 1.00 Sample : 1835293002 Misc :

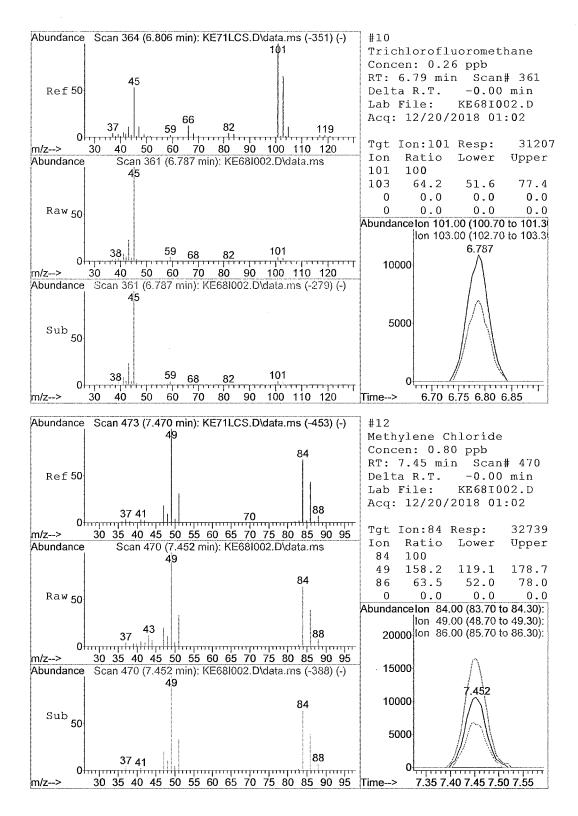
MS Integration Params: rteint.p

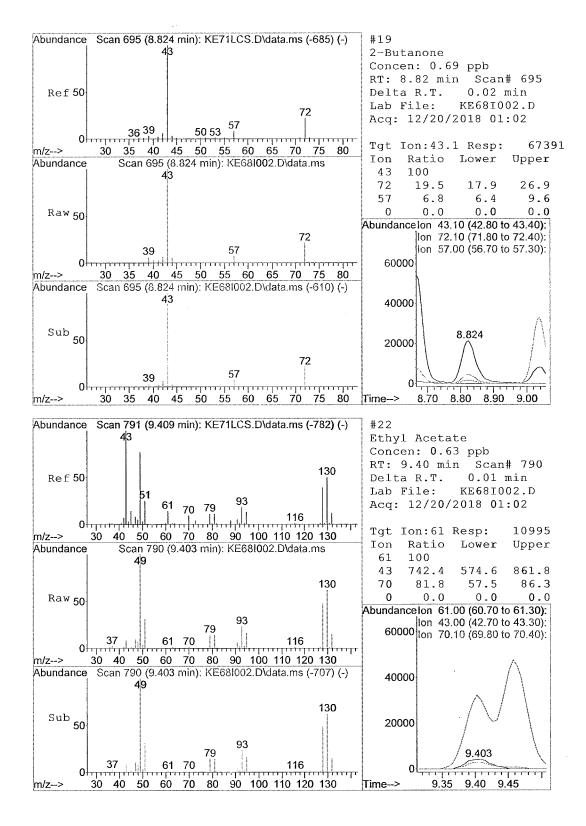
Quant Time: Dec 20 14:46:53 2018 Results File: TO15KH18.RES

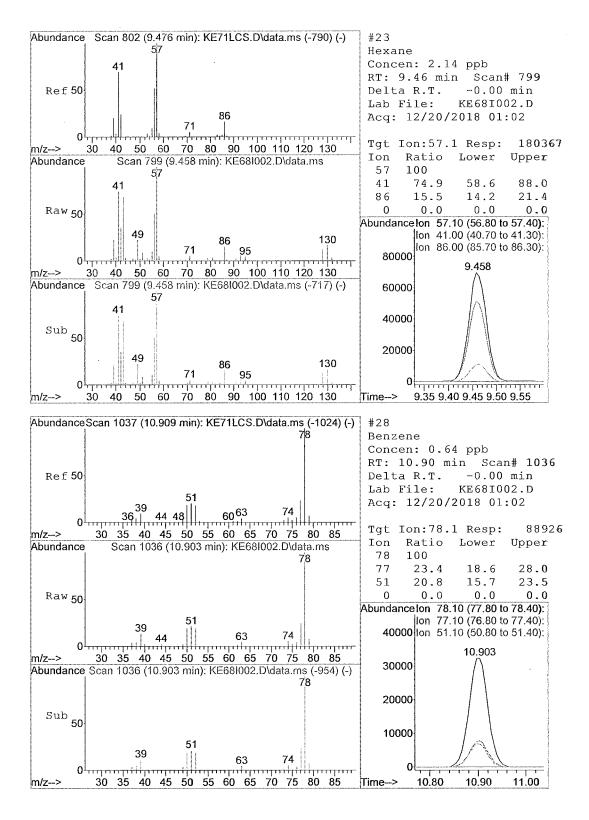
Quant Method: I:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

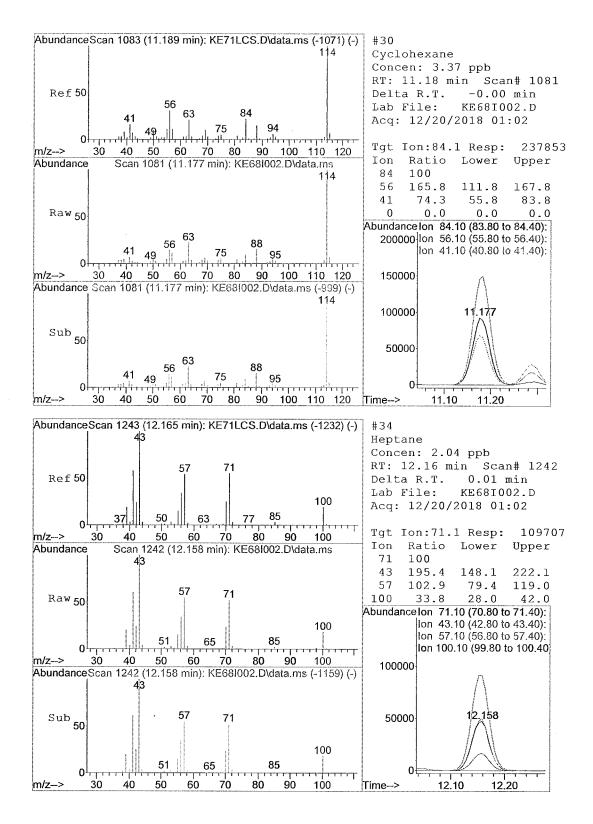

: TO-15 Title

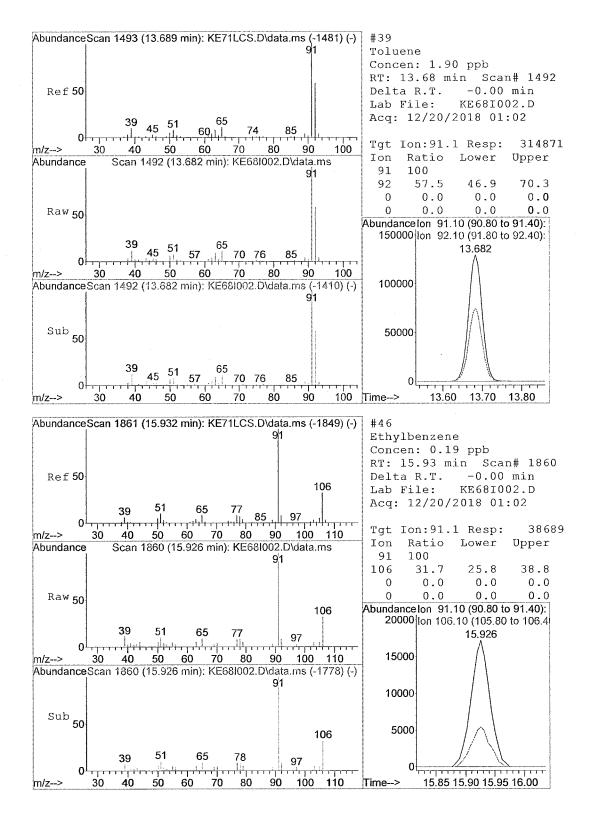

Last Update : Wed Dec 05 10:49:41 2018

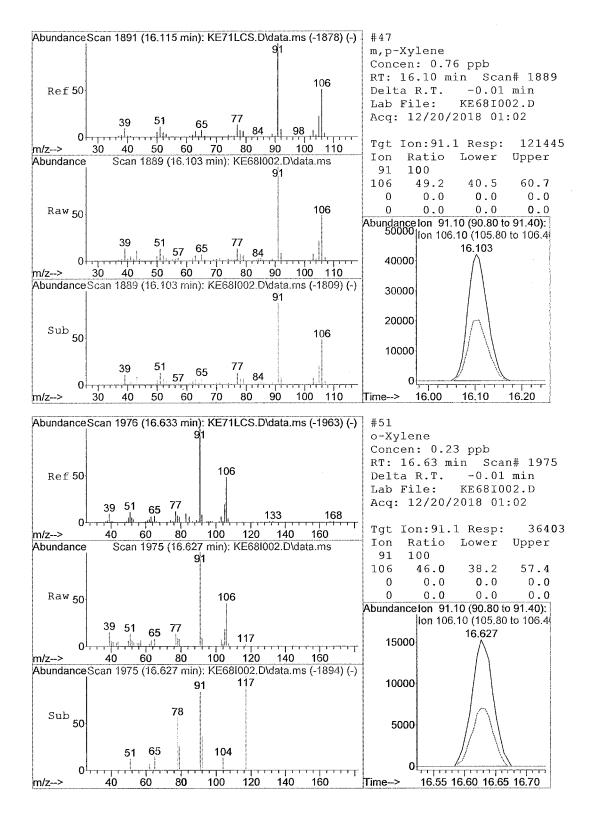

Response via : Initial Calibration DataAcq Meth : TO-15.M


	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
53) 54) 55) 56) 57) 58) 59)	o-Xylene 4-Ethyl Toluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene Benzyl Chloride m-Dichlorobenzene p-Dichlorobenzene o-Dichlorobenzene 1,2,4-Trichlorobenzene	16.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00	91 105 105 105 105 91 146 146 146 180	36403	0.2330 ppb Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected	d d d d d
61)	Hexachloro-1,3-butadiene	0.00	225		Not Detected	d


_____











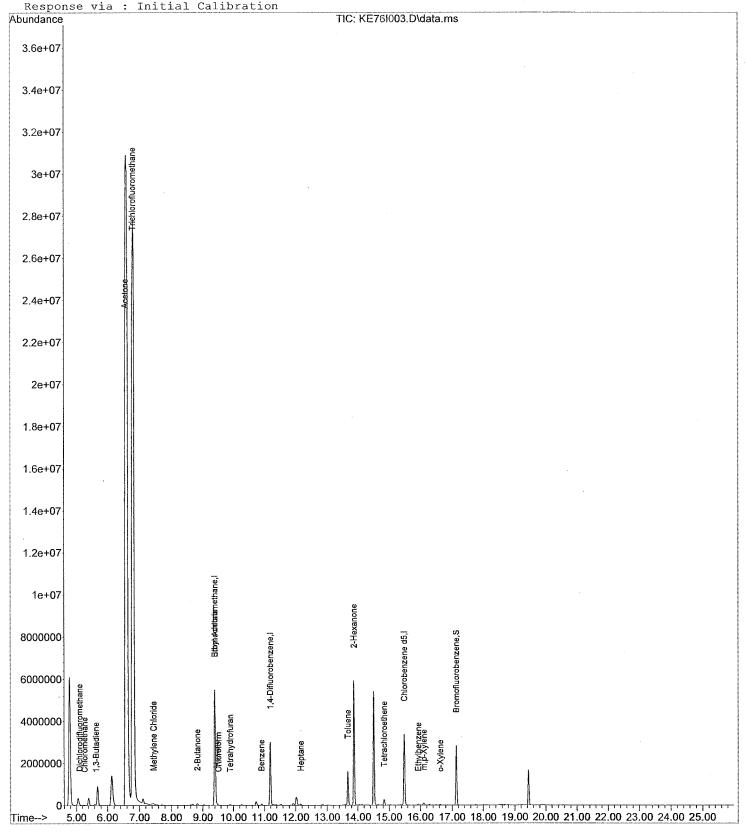



Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE76I003.D Vial: 7

Acq Time : 12/20/2018 09:19 Operator: BB

Sample : 1835293003 Inst : 5975-K

Misc : Multiplr: 1.00


MS Integration Params: rteint.p

Quant Time: Dec 20 14:51:49 2018 Results File: TO15KH18.RES

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

Last Update: Wed Dec 05 10:49:41 2018



Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE76I003.D Vial: 7

Acq Time : 12/20/2018 09:19 Operator: BB

Sample : 1835293003 Inst : 5975-K

Misc : Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Dec 20 14:51:49 2018 Results File: TO15KH18.RES

Quant Method :  $I:\K-5975-K\METHODS\T015KH18.m$  (RTE Integrator )

Title : TO-15

Last Update : Wed Dec 05 10:49:41 2018

Response via : Initial Calibration

Internal Standards			-	Conc Units	Area%	
1) Bromochloromethane	9.40	130	279808	20.00 ppb	92.73	•
21) 1,4-Difluorobenzene	11.19	114	3231665	20.00 ppb	85.86	
44) Chlorobenzene d5	15.49	117	2661733	20.00 ppb	94.80	
System Monitoring Compounds				%R	ecovery	
52) Bromofluorobenzene	17.13	95	1356992	18.14 ppb	90.72%	
T						
Target Compounds 2) Dichlorodifluoromethane	E 11	0.5	66500	0 4220 mmh	Qvalue	
3) Chloromethane	5.11 5.28	85 50	66589 27027	0.4320 ppb 0.6413 ppb	99 97	
4) Freon 114	0.00	135	21021	Not Detecte		
•	0.00	62		Not Detecte	d	
5) Vinyl Chloride		54	9/01		u #17	, ir holic
6) 1,3-Butadiene	5.64		8491	0.2226 ppb	# 1/	laulic
7) Bromomethane	0.00	94		Not Detecte	a a	121/2
8) Chloroethane	0.00	64	E0060400	Not Detecte	a	7
9) Acetone	6.54			677.9515 ppb	m 0/1	
10) Trichlorofluoromethane	6.78	101	33875	0.2466 ppb		
11) 1,1-Dichloroethene	0.00	61	20000	Not Detecte		
12) Methylene Chloride	7.46	84	32020	0.6939 ppb	92	
13) Freon 113	0.00	151		Not Detecte		
14) Carbon Disulfide	0.00	76		Not Detecte		
15) trans-1,2-Dichloroethene	0.00	96		Not Detecte		
<pre>16) 1,1-Dichloroethane</pre>	0.00	63		Not Detecte		
17) methyl t-butyl ether	0.00	73		Not Detecte		
18) Vinyl Acetate	0.00	86		Not Detecte		
19) 2-Butanone	8.82	43	160063	1.4419 ppb	98	
20) cis-1,2-Dichloroethene	0.00	96		Not Detecte		
22) Ethyl Acetate	9.40	61	848967	50.3099 ppb	91	
23) Hexane	9.46	57	38177	0.4707 ppb	99	
24) Chloroform	9.52	83	17720	0.1827 ppb	100	
25) Tetrahydrofuran	9.90	42	36455	0.6794 ppb	93	
26) 1,2-Dichloroethane	0.00	62		Not Detecte	d	
27) 1,1,1-Trichloroethane	0.00	97		Not Detecte	d	
28) Benzene	10.90	78	70624	0.5253 ppb	99	
29) Carbon Tetrachloride	0.00	117		Not Detecte	d	
30) Cyclohexane	0.00	84		Not Detecte	d	
31) 1,2-Dichloropropane	0.00	63		Not Detecte	d	
32) Bromodichloromethane	0.00	83		Not Detecte	d	
33) Trichloroethene	0.00	130		Not Detecte	d	
34) Heptane	12.16	71	16692	0.3223 ppb	84	
35) cis-1,3-Dichloropropene	0.00	75		Not Detecte	d	
36) 4-Methyl-2-Pentanone	0.00	43		Not Detecte	d	
37) trans-1,3-Dichloropropene	0.00	75		Not Detecte	d	
38) 1,1,2-Trichloroethane	0.00	97		Not Detecte	d	
39) Toluene	13.68	91	1544333	9.6578 ppb	100	
40) 2-Hexanone	13.88	43	200276	1.7909 ppb	# 71	
41) Dibromochloromethane	0.00	129		Not Detecte		
42) 1,2-Dibromoethane	0.00	107		Not Detecte		
43) Tetrachloroethene	14.83	166	105372	1.3301 ppb	97	
45) Chlorobenzene	0.00	112		Not Detecte		
46) Ethylbenzene	15.93	91	31844	0.1504 ppb	95	
47) m,p-Xylene	16.10	91	94545	0.5630 ppb	100	
· · · · · -	0.00	173	21010	Not Detecte		
48) Bromoform						
48) Bromoform 49) Styrene	0.00	104		Not Detecte		

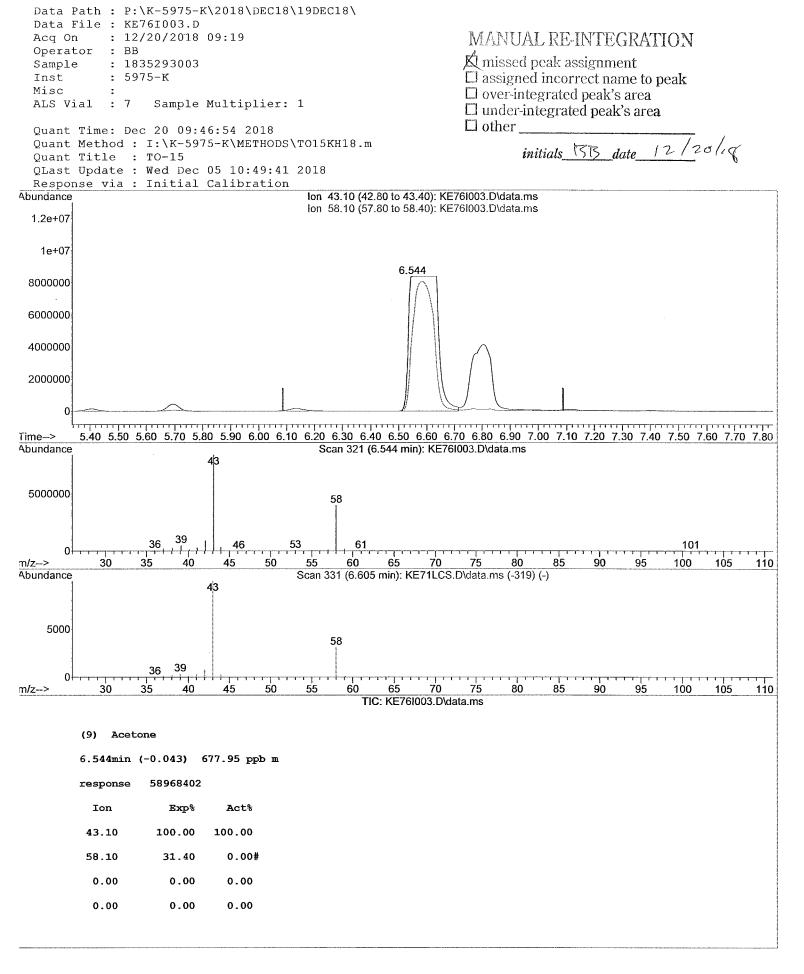
^{(#) =} qualifier out of range (m) = manual integration KE76I003.D T015KH18.m Thu Dec 20 14:53:25 2018

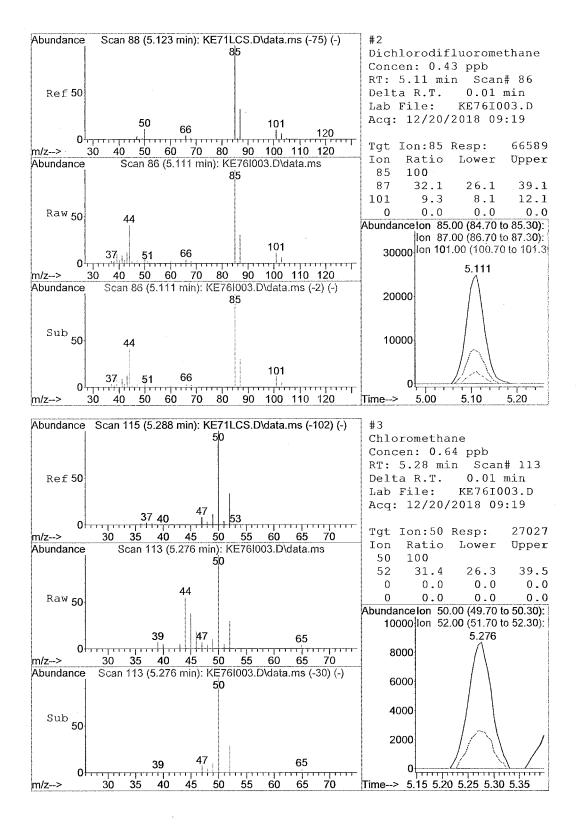
Data File: P:\K-5975-K\2018\DEC18\19DEC18\KE76I003.D Vial: 7

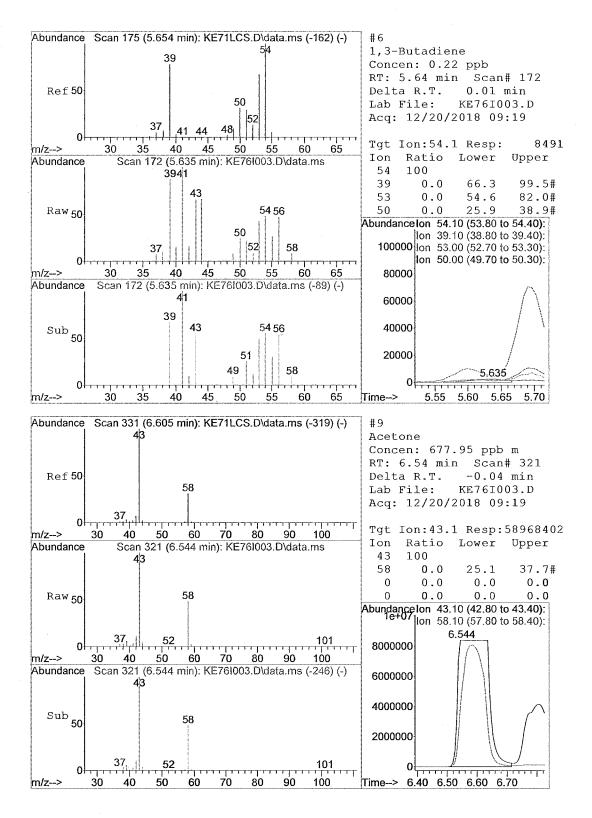
Acq Time : 12/20/2018 09:19 Operator: BB

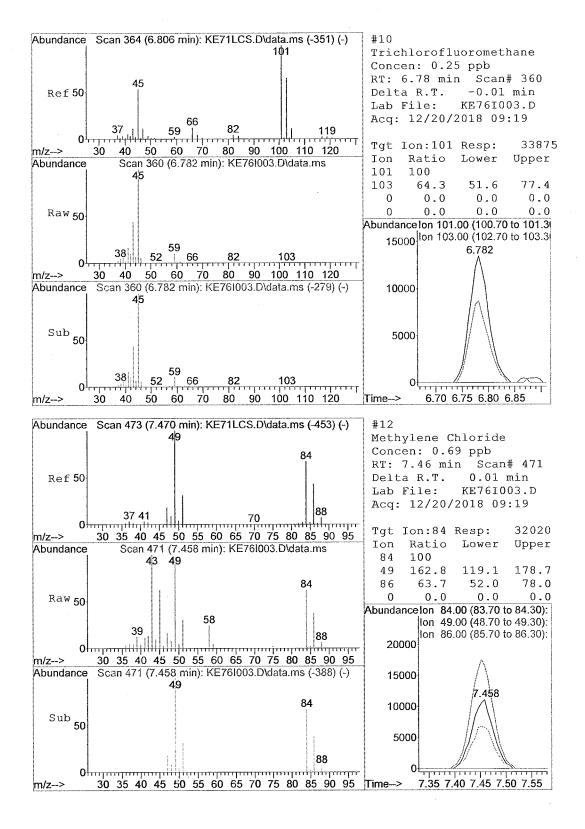
MS Integration Params: rteint.p

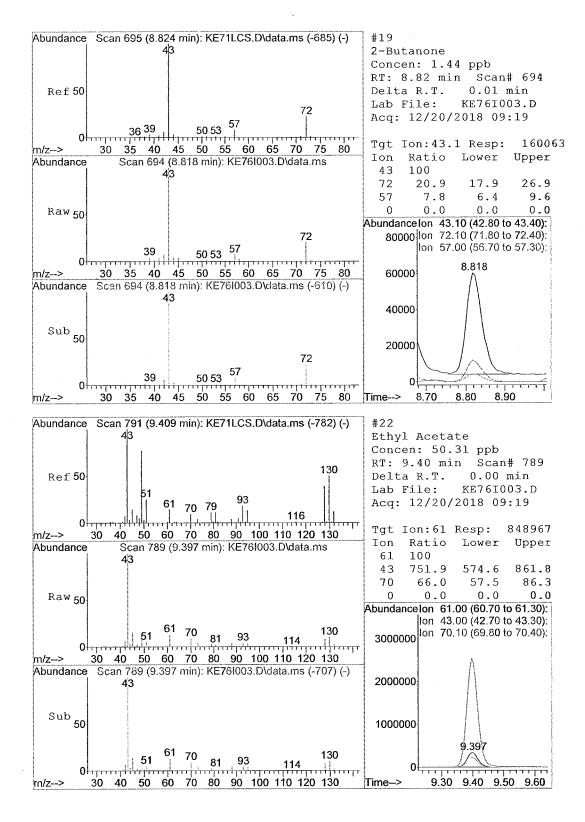
Quant Time: Dec 20 14:51:49 2018 Results File: T015KH18.RES

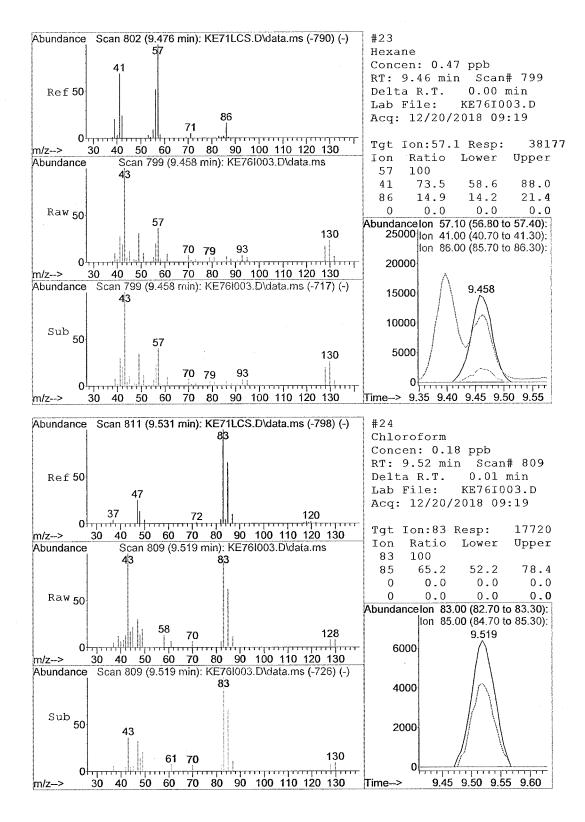

Quant Method: I:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

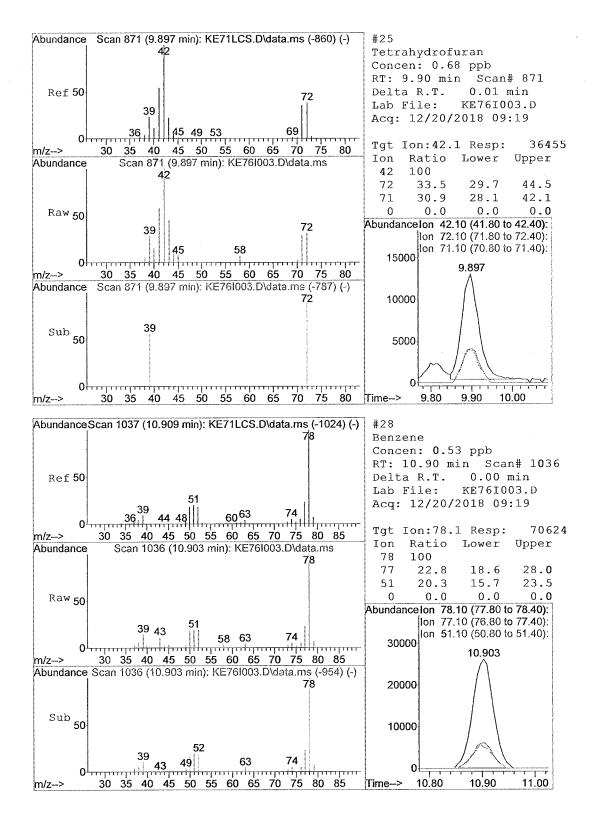

Title : TO-15

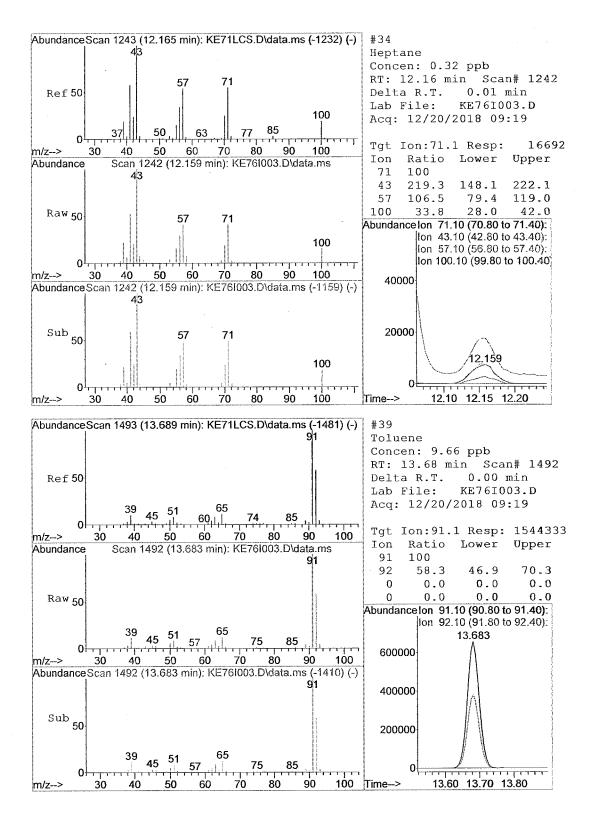

Last Update : Wed Dec 05 10:49:41 2018

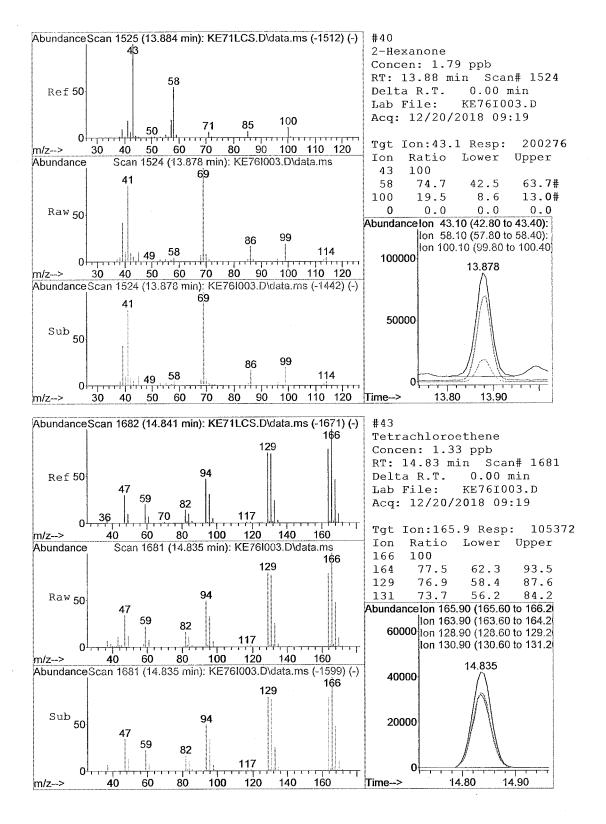

Response via : Initial Calibration

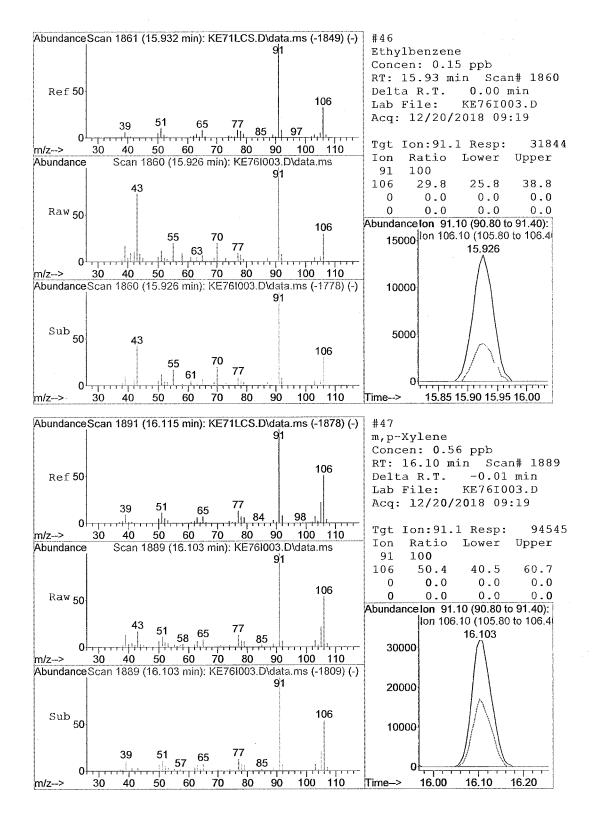

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
•	o-Xylene	16.63	91	30068	0.1833 ppb Not Detected	97
54)	4-Ethyl Toluene 1,3,5-Trimethylbenzene	0.00	105 105		Not Detected	
	1,2,4-Trimethylbenzene	0.00	105		Not Detected	
•	Benzyl Chloride m-Dichlorobenzene	0.00	91 146		Not Detected	
•	p-Dichlorobenzene	0.00	146		Not Detected	_
59)	o-Dichlorobenzene	0.00	146		Not Detected	i
60)	1,2,4-Trichlorobenzene	0.00	180		Not Detected	
61)	Hexachloro-1,3-butadiene	0.00	225		Not Detected	i.

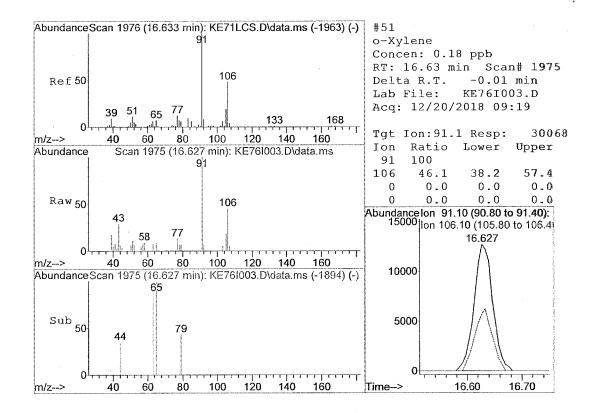










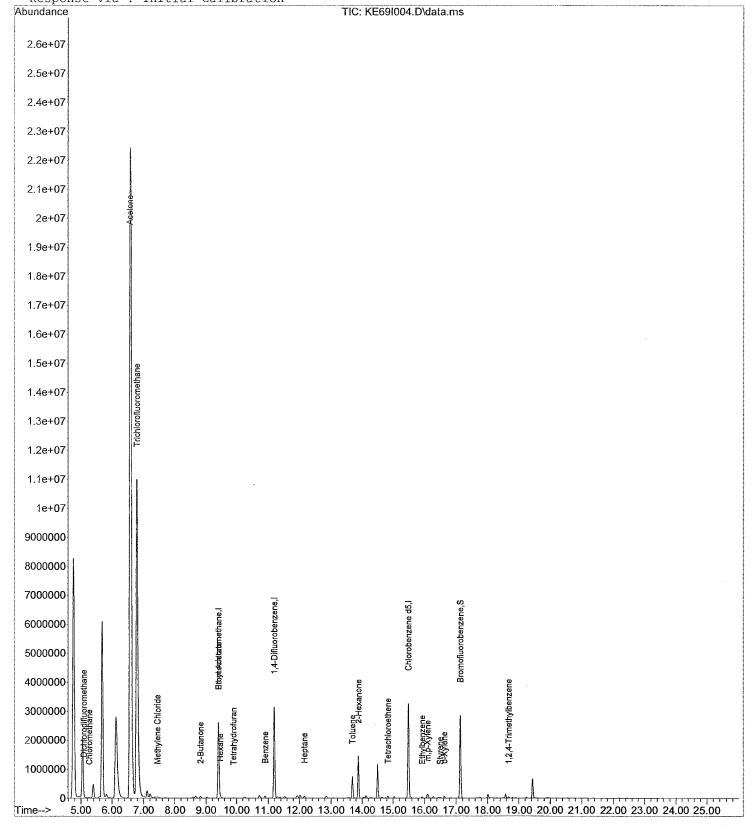



Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE69I004.D Vial: 8

Acq Time : 12/20/2018 01:42 Operator: BB

Sample : 1835293004 Inst : 5975-K

Misc : Multiplr: 1.00


MS Integration Params: rteint.p

Quant Time: Dec 20 14:47:35 2018 Results File: TO15KH18.RES

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

Last Update : Wed Dec 05 10:49:41 2018 Response via : Initial Calibration



MS Integration Params: rteint.p

Quant Time: Dec 20 14:47:35 2018 Results File: TO15KH18.RES

Quant Method :  $I:\K-5975-K\METHODS\T015KH18.m$  (RTE Integrator )

Title : TO-15

Last Update : Wed Dec 05 10:49:41 2018 Response via : Initial Calibration

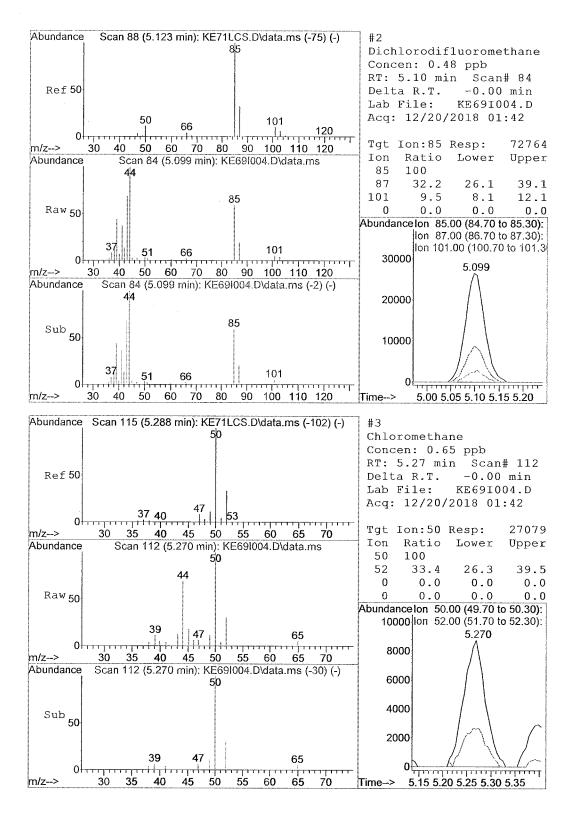
Internal Standards	R.T.	QIon	Response	e Conc Units	Area%	
1) Bromochloromethane	9.40	130	277184	20.00 ppb	91.86	
21) 1,4-Difluorobenzene	11.19		3371825	20.00 ppb	89.58	
44) Chlorobenzene d5	15.49		2595226	20.00 ppb	92.43	
,						
System Monitoring Compounds				%Re	covery	
52) Bromofluorobenzene	17.13	95	1391020	19.08 ppb	95.38%	
Target Compounds					Qvalue 99 99 11 11 11 11 11 11 11 11 11 11 11	
<ol><li>Dichlorodifluoromethane</li></ol>	5.10	85	72764	0.4765 ppb	99	
<ol><li>Chloromethane</li></ol>	5.27	50	27079	0.6486 ppb	99 1 2/14	
4) Freon 114	0.00	135		Not Detected	1 (2)	
5) Vinyl Chloride	0.00	62		Not Detected	73 · 1	
6) 1,3-Butadiene	0.00	54		Not Detected		Q
7) Bromomethane	0.00	94		Not Detected	2111	v
8) Chloroethane	0.00	64	40004000	Not Detected	1617	
9) Acetone	6.56				m 0 \ /	
10) Trichlorofluoromethane	6.79	101	35699	0.2624 ppb		
11) 1,1-Dichloroethene	0.00	61	10455	Not Detected	95	
12) Methylene Chloride	7.45	84	18455	0.4037 ppb		
13) Freon 113 14) Carbon Disulfide	0.00	151 76		Not Detected Not Detected		
·	0.00	96		Not Detected		
15) trans-1,2-Dichloroethene 16) 1,1-Dichloroethane	0.00	63		Not Detected		
17) methyl t-butyl ether	0.00	73		Not Detected		
18) Vinyl Acetate	0.00	86		Not Detected		
19) 2-Butanone	8.82	43	118815	1.0804 ppb	98	
20) cis-1,2-Dichloroethene	0.00	96	110010	Not Detected		
22) Ethyl Acetate	9.40	61	235790	13.3921 ppb	88	
23) Hexane	9.46	57	45974	0.5433 ppb	93	
24) Chloroform	0.00	83		Not Detected	l	
25) Tetrahydrofuran	9.90	42	14262	0.2548 ppb	# 85	
26) 1,2-Dichloroethane	0.00	62		Not Detected	1	
27) 1,1,1-Trichloroethane	0.00	97		Not Detected	1	
28) Benzene	10.90	78	83503	0.5952 ppb	99	
29) Carbon Tetrachloride	0.00	117		Not Detected	l ·	
30) Cyclohexane	0.00	84		Not Detected	l	
31) 1,2-Dichloropropane	0.00	63		Not Detected	l	
32) Bromodichloromethane	0.00	83		Not Detected		
33) Trichloroethene	0.00	130		Not Detected		
34) Heptane	12.16	71	20334	0.3763 ppb	90	
35) cis-1,3-Dichloropropene	0.00			Not Detected		
36) 4-Methyl-2-Pentanone	0.00	43		Not Detected		
37) trans-1,3-Dichloropropene	0.00	75		Not Detected		
38) 1,1,2-Trichloroethane	0.00	97	70000	Not Detected		
39) Toluene	13.68	91	723290	4.3352 ppb	100	
40) 2-Hexanone	13.88	43	70047	0.6003 ppb	# 91	
41) Dibromochloromethane	0.00	129		Not Detected		
42) 1,2-Dibromoethane	0.00 14.83	107 166	23412	Not Detected 0.2832 ppb	95	
43) Tetrachloroethene 45) Chlorobenzene	0.00	112	23412	Not Detected		
46) Ethylbenzene	15.93		39570	0.1917 ppb	100	
47) m,p-Xylene	16.10	91	132679	0.1917 ppb 0.8103 ppb	97	
48) Bromoform	0.00		102010	Not Detected		
49) Styrene	16.51		16952	0.1538 ppb	98	
50) 1,1,2,2-Tetrachloroethane	0.00	83	10002	Not Detected		

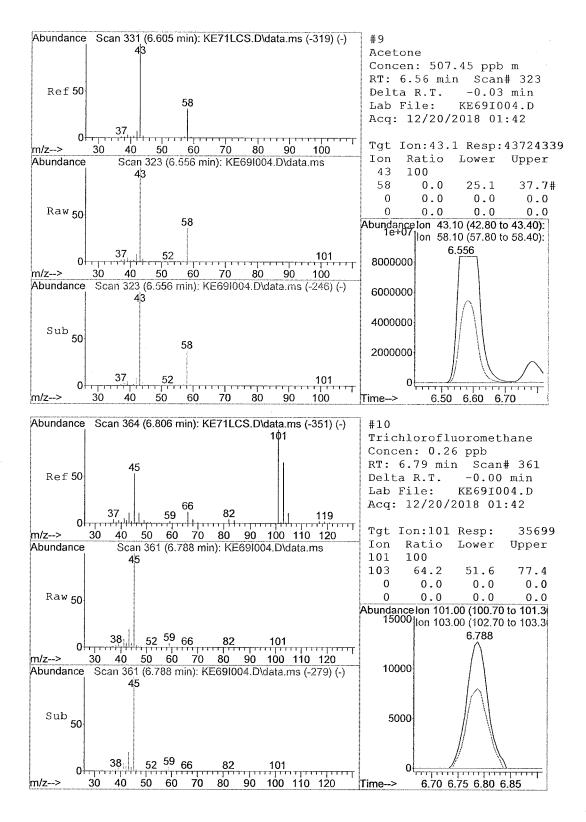
^{(#) =} qualifier out of range (m) = manual integration KE691004.D T015KH18.m Thu Dec 20 14:53:02 2018

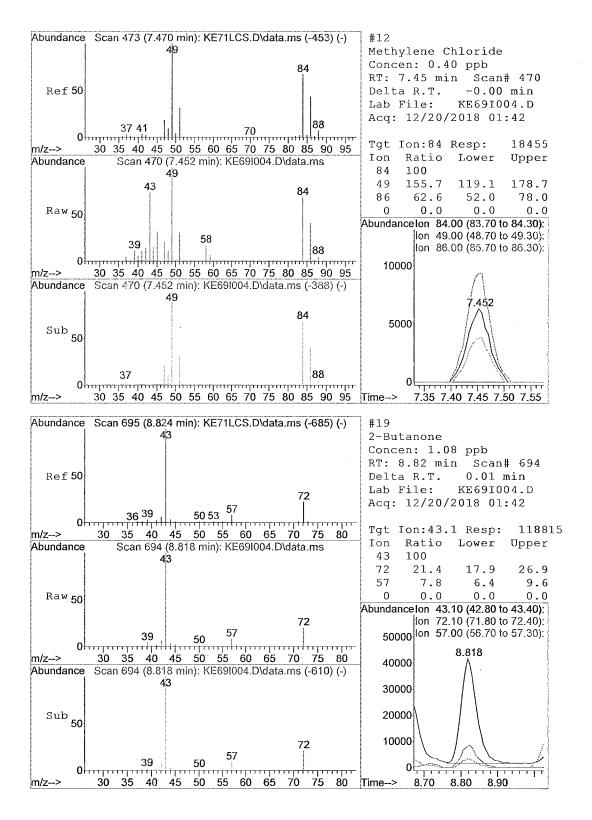
Data File: P:\K-5975-K\2018\DEC18\19DEC18\KE69I004.D Vial: 8 Acq Time : 12/20/2018 01:42 Operator: BB Sample : 1835293004 Misc : Inst : 5975-K

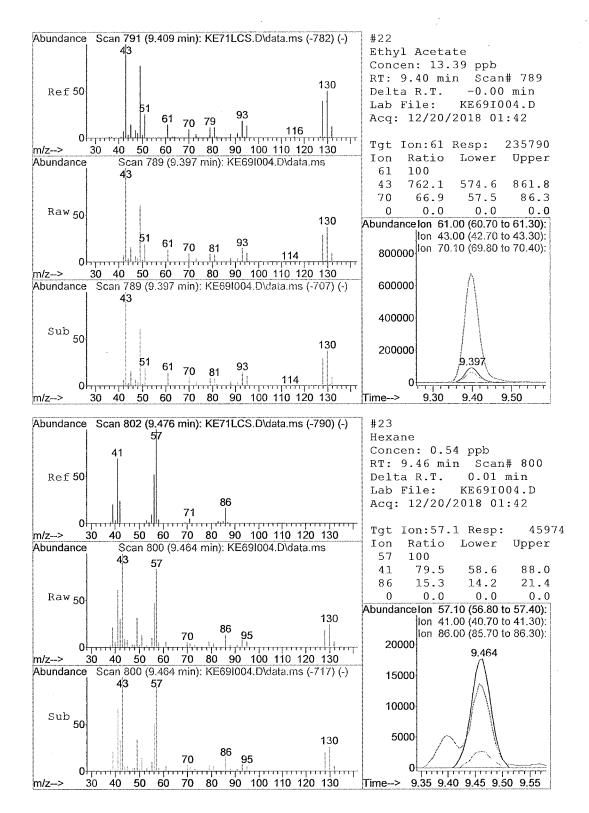
Multiplr: 1.00

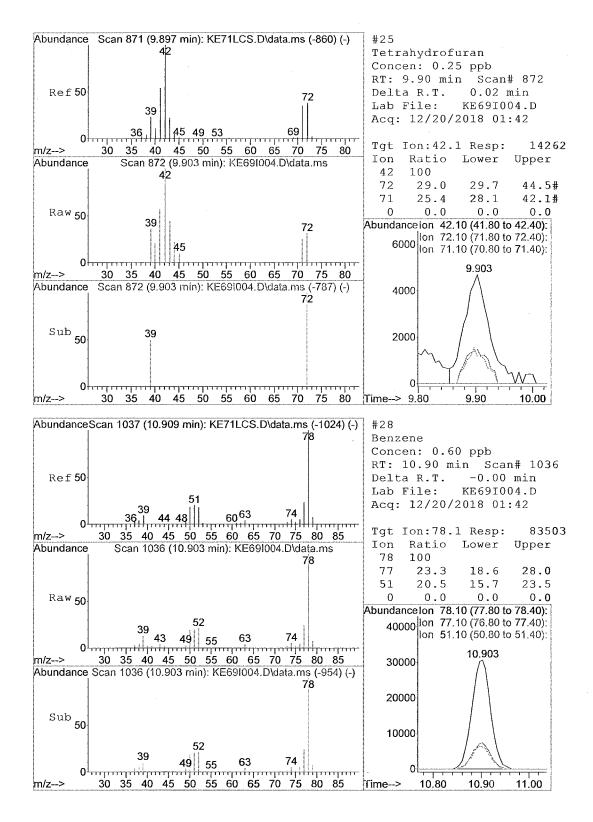
MS Integration Params: rteint.p

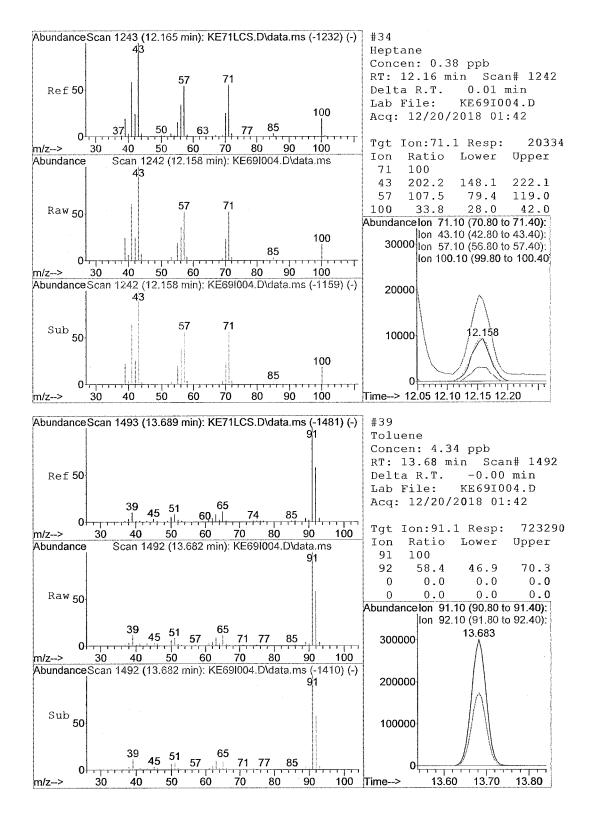

Quant Time: Dec 20 14:47:35 2018 Results File: TO15KH18.RES

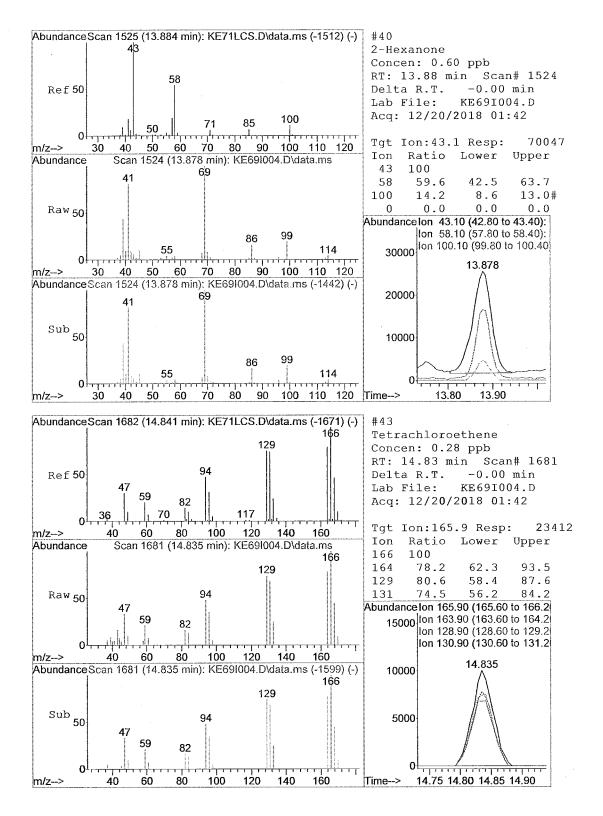

Quant Method :  $I:\K-5975-K\METHODS\T015KH18.m$  (RTE Integrator )

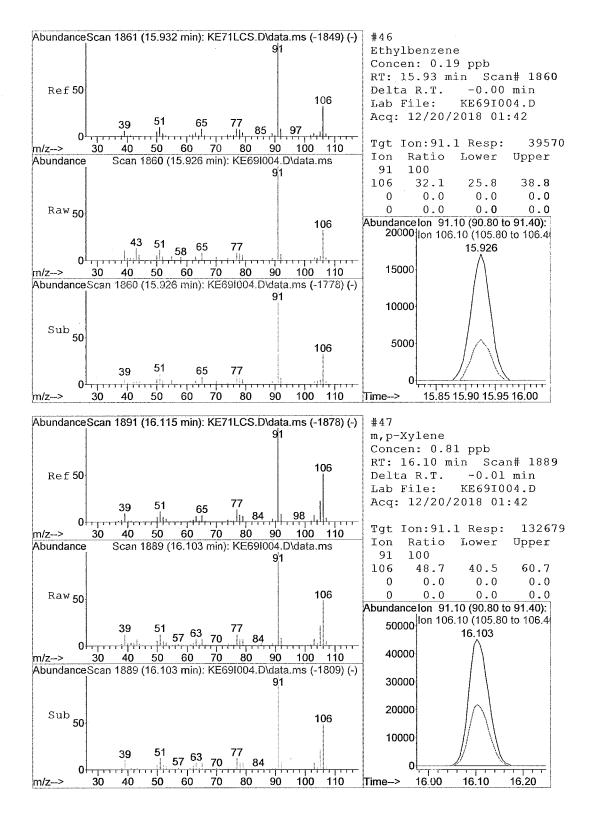

Title : TO-15
Last Update : Wed Dec 05 10:49:41 2018
Response via : Initial Calibration
DataAcq Meth : TO-15.M

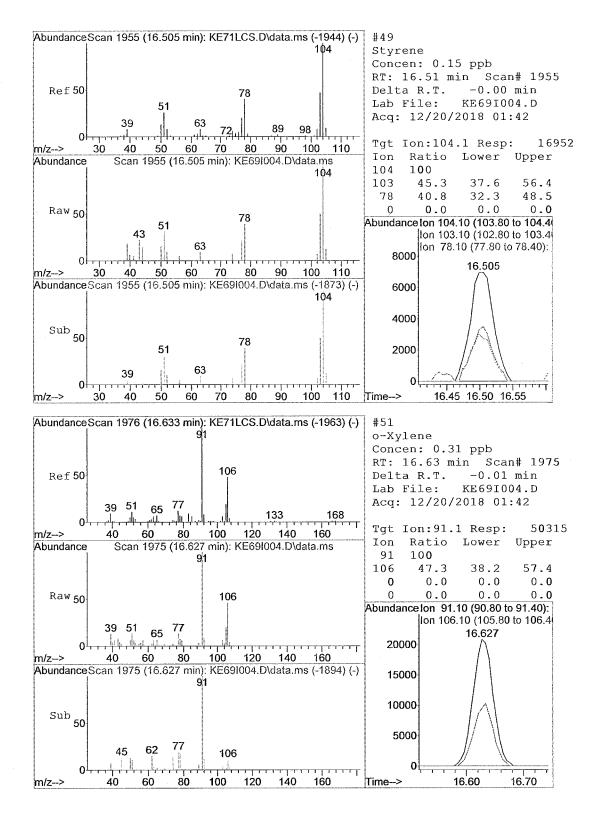

Compound	R.T.	QIon	Response	Conc Unit	Qvalue
o-Xylene	16.63	91	50315	0.3145 ppb	99
4-Ethyl Toluene	0.00	105		Not Detected	İ
1,3,5-Trimethylbenzene	0.00	105		Not Detected	i
1,2,4-Trimethylbenzene	18.68	105	31621	0.1836 ppb	96
Benzyl Chloride	0.00	91		Not Detected	i
m-Dichlorobenzene	0.00	146		Not Detected	Ė
p-Dichlorobenzene	0.00	146		Not Detected	i
o-Dichlorobenzene	0.00	146		Not Detected	Ė
1,2,4-Trichlorobenzene	0.00	180		Not Detected	Í
Hexachloro-1,3-butadiene	0.00	225		Not Detected	Ĺ
	Compound	o-Xylene 16.63 4-Ethyl Toluene 0.00 1,3,5-Trimethylbenzene 0.00 1,2,4-Trimethylbenzene 18.68 Benzyl Chloride 0.00 m-Dichlorobenzene 0.00 p-Dichlorobenzene 0.00 o-Dichlorobenzene 0.00 1,2,4-Trichlorobenzene 0.00	o-Xylene 16.63 91 4-Ethyl Toluene 0.00 105 1,3,5-Trimethylbenzene 0.00 105 1,2,4-Trimethylbenzene 18.68 105 Benzyl Chloride 0.00 91 m-Dichlorobenzene 0.00 146 p-Dichlorobenzene 0.00 146 o-Dichlorobenzene 0.00 146 1,2,4-Trichlorobenzene 0.00 180	o-Xylene 16.63 91 50315 4-Ethyl Toluene 0.00 105 1,3,5-Trimethylbenzene 18.68 105 31621 Benzyl Chloride 0.00 91 m-Dichlorobenzene 0.00 146 p-Dichlorobenzene 0.00 146 o-Dichlorobenzene 0.00 146 1,2,4-Trichlorobenzene 0.00 180	o-Xylene         16.63         91         50315         0.3145 ppb           4-Ethyl Toluene         0.00         105         Not Detected           1,3,5-Trimethylbenzene         0.00         105         Not Detected           1,2,4-Trimethylbenzene         18.68         105         31621         0.1836 ppb           Benzyl Chloride         0.00         91         Not Detected           m-Dichlorobenzene         0.00         146         Not Detected           p-Dichlorobenzene         0.00         146         Not Detected           0-Dichlorobenzene         0.00         146         Not Detected           1,2,4-Trichlorobenzene         0.00         180         Not Detected

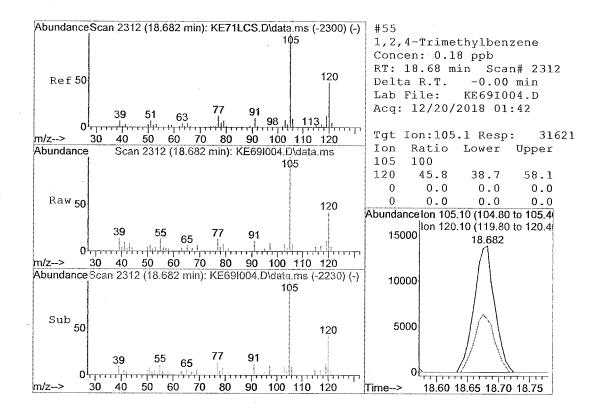

Data Path : P:\K-5975-K\2018\DEC18\19DEC18\ Data File: KE69I004.D MANUAL RE-INTEGRATION Acq On : 12/20/2018 01:42 : BB Operator 🛛 missed peak assignment 1835293004 Sample ☐ assigned incorrect name to peak Inst 5975-K □ over-integrated peak's area Misc ALS Vial : 8 Sample Multiplier: 1 ☐ under-integrated peak's area □ other _ Quant Time: Dec 20 07:35:14 2018 date 12/20/14 Quant Method: I:\K-5975-K\METHODS\T015KH18.m Quant Title : TO-15 QLast Update : Wed Dec 05 10:49:41 2018 Response via: Initial Calibration Abundance Ion 43.10 (42.80 to 43.40): KE69I004.D\data.ms Ion 58.10 (57.80 to 58.40): KE69I004.D\data.ms 1.2e+07 1e+07 6.556 8000000 6000000 4000000 2000000 5.40 5.50 5.60 5.70 5.80 5.90 6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.70 6.80 6.90 7.00 7.10 7.20 7.30 7.40 7.50 7.60 7.70 7.80 Fime--> Scan 323 (6.556 min): KE69l004.D\data.ms Abundance 5000000 58 39 36 53 46 61 101 45 50 70 n/z--> 30 35 40 55 60 65 75 80 100 90 105 110 Abundance Scan 331 (6.605 min): KE71LCS.D\data.ms (-319) (-) 43 5000 58 39 36 35 n/z--> 30 40 45 50 55 65 70 75 80 100 105 110 TIC: KE69I004.D\data.ms (9) Acritone 6.556min (-0.030) 507.45 ppb m response 43724339 Ion Ехр% Act% 43.10 100.00 100.00 58.10 31.40 0.00# 0.00 0.00 0.00 0.00 0.00 0.00














```
segnce
           |11/12/2018 17:26|BB | TO15KH18|
                                                4| 25.99| 1 |WATER | 20 PPB
| KD73S20
             297152
           | COMMENTS: (400ml) 44730
           |11/12/2018 18:05|BB | TO15KH18|
                                                4| 25.99| 1 | WATER | 10 PPB
 KD74S10
            301760
           |COMMENTS: (200ml) 44730
                                                4| 25.99| 1 | WATER | 5 PPB
           |11/12/2018 18:44|BB | TO15KH18|
 KD75S5
             299584
           | COMMENTS: (100ml) 44730
           |11/12/2018 19:22|BB | TO15KH18|
                                                4| 25.99| 1 |WATER | 2 PPB
KD76S2
             288320
            |COMMENTS: (40ml) 44730
                                                4| 25.99| 1 |WATER | 1 PPB
            |11/12/2018 20:00|BB | TO15KH18|
 кD77s1
             281216
            [COMMENTS: (20ml) 44730
           |11/12/2018 20:38|ВВ | ТО15КН18|
274304|
                                                4 | 25.99 | 1 | WATER | 05 PPB
 KD78S05
            |COMMENTS: (10ml) 44730
                                                6| 25.99| 1 |WATER | 10 ppb ICV
 KD79SICV |11/12/2018 21:17|BB | T015KH18|
| 287232|
            [COMMENTS: (200m]) 44731
                                                6| 25.99| 1 | WATER | 10 ppb QD
            |11/12/2018 21:57|BB | TO15KH18|
 KD80QD
             292864
            [COMMENTS: (200ml) 44731
                                                3| 25.99| 1 | WATER | BLANK
 KD81BLAN | 11/12/2018 22:37 | BB | TO15KH18 |
             268288
            COMMENTS:
 KD82I001 |11/13/2018 06:24|BB | TO15KH18|
                                               10 | 25.99 | 1 | WATER | 1831002001
             256960
            |COMMENTS: hds 1:10 dil 20ml
                                               11 | 25.99 | 1 | WATER | 1831002002
  KD83I001 |11/13/2018 07:03|BB | T015KH18|
             266880
            |COMMENTS: hds 1:10 dil 20ml
 KD84I002 |11/13/2018 07:42|ВВ | ТО15КН18|
| 282752|
                                               12 | 25.99 | 1 | WATER | 1831002003
            |COMMENTS: hds 1:10 dil 20ml
  KD85I004 |11/13/2018 08:22|BB | TO15KH18|
                                               13 | 25.99 | 1 | WATER | 1831002004
             287296
            |COMMENTS: hds 1:10 dil 20ml
                                               14| 25.99| 1 | WATER | 1831002005
| KD86I005 |11/13/2018 09:01|ВВ | ТО15КН18|
             287488
            |COMMENTS: hds 1:10 dil 20ml
 KD88S50 |11/13/2018 10:59|BB | TO15KH18|
                                               4| 25.99| 1 |50 PPB
 [00m]) 44734 44116
  KD89SICV |11/13/2018 14:13|BB | T015KH18|
                                              6| 25.99| 1 |10 ppb ICV
 |00ml) 44731 44116|
```

Data File : P:\K-5975-K\2018\NOV18\12NOV18\KD73S20.D Vial: 4 Operator: BB Acq Time : 11/12/2018 17:26 Sample : 20 PPB
Misc : (400ml) 44730 Inst : 5975-K Multiplr: 1.00

MS Integration Params: rteint.p

Results File: TO15KH18.RES Quant Time: Nov 13 09:52:44 2018

Quant Method :  $P:\K-5975-K\METHODS\T015KH18.m$  (RTE Integrator )

Title : TO-15

Last Update : Tue Nov 13 05:59:36 2018 Response via : Initial Calibration DataAcq Meth : TO-15.M

Internal Standards	R.T.	QIon	Response	Conc Units	Area%
1) Bromochloromethane	9.40	130	297152	20.00 ppb	98.47
21) 1,4-Difluorobenzene	11.19	114	3649987	20.00 ppb	96.97
44) Chlorobenzene d5	15.49	117	2732575	20.00 ppb	97.32
System Monitoring Compounds				%R	tecovery
52) Bromofluorobenzene	17.13	95	1487620	19.36 ppb	96.80동
Target Compounds					Qvalue
2) Dichlorodifluoromethane	5.10	85	2921803	17.6751 ppb	100
3) Chloromethane	5.26	50	820074	18.0488 ppb	100
4) Freon 114	5.37	135	2163733	18.7064 ppb	99
5) Vinyl Chloride	5.49	62	1001450	19.2614 ppb	100
6) 1,3-Butadiene	5.62	5 <b>4</b>	787778	19.3847 ppb	100
<ol><li>7) Bromomethane</li></ol>	5.89	94	938079	19.0717 ppb	100
<li>8) Chloroethane</li>	6.06	64	604111	18.3142 ppb	99
9) Acetone	6.58	43	1660469	17.9419 ppb	100
<ol><li>Trichlorofluoromethane</li></ol>	6.79	101	2708799	19.0128 ppb	100
11) 1,1-Dichloroethene	7.37	61	1689805	19.2648 ppb	100
12) Methylene Chloride	7.45	84	867695	17.6023 ppb	99
13) Freon 113	7.71	151	1687974	19.0709 ppb	99
14) Carbon Disulfide	7.79	76	2478352	21.1003 ppb	100
<pre>15) trans-1,2-Dichloroethene</pre>	8.31	96	1019242	19.2920 ppb	99
16) 1,1-Dichloroethane	8.49	63	1885378	19.2834 ppb	99
17) methy1 t-butyl ether	8.53	73	2842286	19.4722 ppb	100 99
18) Vinyl Acetate	8.58	86	271037	20.4574 ppb	100
19) 2-Butanone	8.81	43	2209757	18.8717 ppb 19.4141 ppb	100
20) cis-1,2-Dichloroethene	9.25 9.40	96	1070000 371131	19.4141 ppb 19.8738 ppb	98
22) Ethyl Acetate	9.40	61 57	1789100	20.1269 ppb	99
23) Hexane	9.40 9.51		2087098	19.3806 ppb	100
24) Chloroform	9.88	42	1181139	19.7135 ppb	100
25) Tetrahydrofuran	10.21	62	1410493	19.4159 ppb	. 100
<pre>26) 1,2-Dichloroethane 27) 1,1,1-Trichloroethane</pre>	10.21	97	2214432	19.8259 ppb	100
28) Benzene	10.90	78	2898809	19.3959 ppb	100
29) Carbon Tetrachloride	11.05	117	2299121	20.7548 ppb	
30) Cyclohexane	11.18	84	1427863	18.8053 ppb	98
31) 1,2-Dichloropropane	11.66	63	1135565	19.5506 ppb	99
32) Bromodichloromethane	11.83	83	2135418	21.1756 ppb	100
33) Trichloroethene	11.88	130	1486448	19.7807 ppb	100
34) Heptane	12.16	71	1158709	20.5116 ppb	99
35) cis-1,3-Dichloropropene	12.69	75	1737062	21.9785 ppb	100
36) 4-Methyl-2-Pentanone	12.70	43	2906827	20.6066 ppb	100
37) trans-1,3-Dichloropropene	13.19	75	1479700	22.6314 ppb	100
38) 1,1,2-Trichloroethane	13.38	97	1159095	19.1512 ppb	100
39) Toluene	13.68	91	3495299	19.8687 ppb	100
40) 2-Hexanone	13.88	43	2608275	21.1962 ppb	99
41) Dibromochloromethane	14.10	129	1978148	22.1581 ppb	
42) 1,2-Dibromoethane	14.36	107	1717533	20.2695 ppb	
43) Tetrachloroethene	14.83	166	173973 <b>0</b>	20.0834 ppb	
45) Chlorobenzene	15.54	112	2460079	19.0922 ppb	
46) Ethylbenzene	15.93	91	4026576	19.2713 ppb	
47) m,p-Xylene	16.12	91	638190 <b>0</b>	38.7821 ppb	
48) Bromoform	16.21	173	1318877	21.6085 ppb	
49) Styrene	16.51	104	2156218	19.2427 ppb	
50) 1,1,2,2-Tetrachloroethane	16.60	83	1925641	16.7061 ppb	100

^{(#) =} qualifier out of range (m) = manual integration KD73S20.D T015KH18.m Tue Nov 20 10:28:30 2018

Data File : P:\K-5975-K\2018\NOV18\12NOV18\KD73S20.D Vial: 4

Operator: BB Acq Time : 11/12/2018 17:26 Sample : 20 PPB Misc : (400ml) 44730 Inst : 5975-K Multiplr: 1.00

MS Integration Params: rteint.p

Results File: TO15KH18.RES Quant Time: Nov 13 09:52:44 2018

Quant Method :  $P:\K-5975-K\METHODS\TO15KH18.m$  (RTE Integrator )

Title : TO-15
Last Update : Tue Nov 13 05:59:36 2018 Response via: Initial Calibration

		D 00	ΩΥ	Daananaa	Conc Unit	Ovalue
	Compound	R.T.	Qion	Response		Qvarue
51)	o-Xylene	16.63	91	2987576	18.3011 ppb	100
	4-Ethyl Toluene	18.07	105	3808088	17.9236 ppb	100
54)	1,3,5-Trimethylbenzene	18.16	105	3271069	16.6022 ppb	9 <b>9</b>
55)	1,2,4-Trimethylbenzene	18.68	105	3132769	17.0769 ppb	100
56)	Benzyl Chloride	18.85	91	2263914	30.7810 ppb	100
57)	m-Dichlorobenzene	18.89	146	1845978	20.4087 ppb	100
58)	p-Dichlorobenzene	18.97	146	1704197	22.4004 ppb	100
59)	o-Dichlorobenzene	19.43	146	1658727	18.8463 ppb	100
60)	1,2,4-Trichlorobenzene	21.96	180	252915	41.0628 ppb	100
	Hexachloro-1,3-butadiene	22.74	225	743204	25.0689 ppb	99

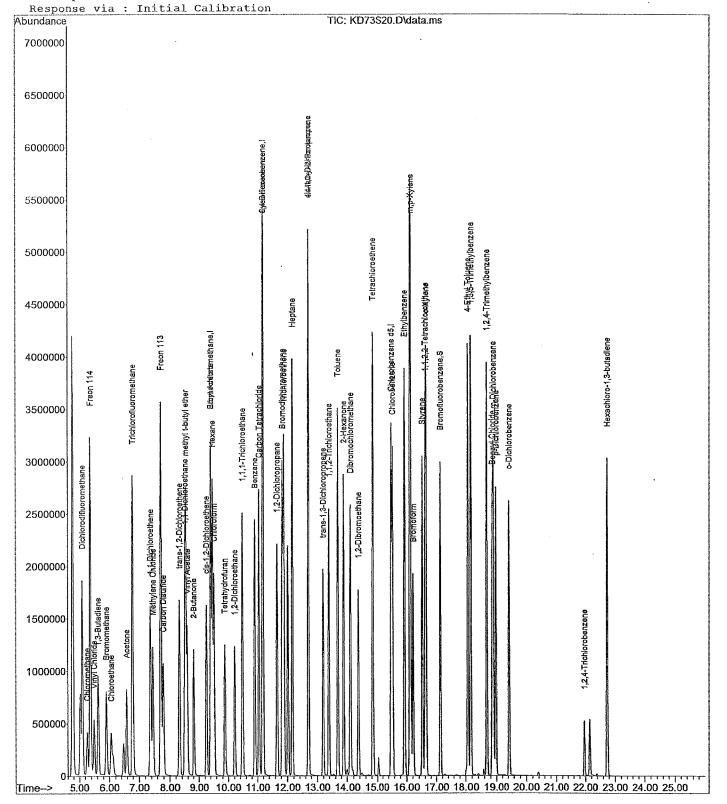
Data File : P:\K-5975-K\2018\NOV18\12NOV18\KD73S20.D Vial: 4

Acq Time : 11/12/2018 17:26 Operator: BB

Sample : 20 PPB Inst : 5975-K

Misc : (400ml) 44730 Multiplr: 1.00

MS Integration Params: rteint.p


Quant Time: Nov 13 09:52:44 2018

Results File: TO15KH18.RES

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

Last Update : Tue Nov 13 11:55:11 2018



Data File : P:\K-5975-K\2018\NOV18\12NOV18\KD74S10.D Vial: 4 Operator: BB Acq Time : 11/12/2018 18:05 Sample : 10 PPB Misc : (200ml) 44730 Inst : 5975-K Multiplr: 1.00

MS Integration Params: rteint.p

Results File: TO15KH18.RES Quant Time: Nov 13 09:52:52 2018

Quant Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator )

Title : TO-15
Last Update : Tue Nov 13 05:59:36 2018 Response via: Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Area%
1) Bromochloromethane	9.40	130	301760	20.00 ppb	100.00
21) 1,4-Difluorobenzene	11.19	114	3764084	20.00 ppb	100.00
44) Chlorobenzene d5	15.49	117	2807860	20.00 ppb	100.00
System Monitoring Compounds				ક	Recovery
52) Bromofluorobenzene	17.13	95	1545744	19.58 ppb	97.88%
Target Compounds					Qvalue
2) Dichlorodifluoromethane	5.10	85	1607442	9.5756 ppb	
3) Chloromethane	5.27	50	461619	10.0045 ppb	
4) Freon 114	5.37	135	1150941	9.7985 ppb	100
5) Vinyl Chloride	5.50	62	540428	10.2356 ppb	
6) 1,3-Butadiene	5.63	54	423436	10.2603 ppb	100
7) Bromomethane	5.90	94	499702	10.0041.ppb	100
8) Chloroethane	6.06	64	328442	9.8050 ppb	100
9) Acetone	6.59	43	875076	9.3111 ppb	100
10) Trichlorofluoromethane	6.79	101	1409155	9.7397 ppb	100
11) 1,1-Dichloroethene	7.37	61	869873	9.7656 ppb	100
12) Methylene Chloride	7.45	84	442743	8.8444 ppb	100
13) Freon 113	7.71	151	870913	9.6894 ppb	100
14) Carbon Disulfide	7.79	76	1252114	10.4975 ppb	
15) trans-1,2-Dichloroethene	8.31	96	524867	9.7828 ppb	100
16) 1,1-Dichloroethane	8.49	63	959456	9.6633 ppb	
17) methyl t-butyl ether	8.53	73	1455815	9.8213 ppb	
18) Vinyl Acetate	8.58	86	138841	10.3194 ppb	
19) 2-Butanone	8.81	43	1129587	9.4995 ppb	
20) cis-1,2-Dichloroethene	9.25	96	549892	9.8249 ppb	
22) Ethyl Acetate	9.40	61	190717	9.9032 ppb	
23) Hexane	9.46	57	906257	9.8861 ppb	
24) Chloroform	9.51	83	1077302	9.7005 ppb	
25) Tetrahydrofuran	9.88	42	609816	9.8695 ppb	
26) 1,2-Dichloroethane	10.21	62	731034	9.7579 ppb	
27) 1,1,1-Trichloroethane	10.47	97	1138058	9.8802 ppb	
28) Benzene	10.90	78	1496613	9.7103 ppb	
29) Carbon Tetrachloride	11.05	117	1169259	10.2353 ppb	
30) Cyclohexane	11.18	84	746644	9.5354 ppb	
31) 1,2-Dichloropropane	11.66	63	585958	9.7824 pph	
32) Bromodichloromethane	11.83	83	1065599	10.2466 ppb	
33) Trichloroethene	11.88	130	761724	9.8293 ppb	
34) Heptane	12.15	71	581414	9.9803 ppb	
35) cis-1,3-Dichloropropene	12.69	75	851354	10.4454 pph	
36) 4-Methyl-2-Pentanone	12.70	43	1431679	9.8416 ppt	
37) trans-1,3-Dichloropropene		75	732601	10.8652 ppb	
38) 1,1,2-Trichloroethane	13.38	97	595338	9.5383 ppb	
39) Toluene	13.68	91	1791147	9.8730 pph 10.2921 pph	
40) 2-Hexanone	13.88	43	1306076	10.2921 ppt	
41) Dibromochloromethane	14.10	129	985575	10.7052 ppt	
42) 1,2-Dibromoethane	14.36	107	874488	9.9353 ppt	
43) Tetrachloroethene	14.83	166	887546		
45) Chlorobenzene	15.54	112	1283491	9.6938 ppb 9.6783 ppb	
46) Ethylbenzene	15.93	91	2077909		
47) m,p-Xylene	16.11	91	3246353	19.1988 ppt	
48) Bromoform	16.21	173	667801		
49) Styrene	16.51	104	1134476	9.8529 ppt	
50) 1,1,2,2-Tetrachloroethane		83	1112930	9.3965 ppb	, 100

^(#) = qualifier out of range (m) = manual integration KD74S10.D T015KH18.m Tue Nov 20 10:28:34 2018

Data File: P:\K-5975-K\2018\NOV18\12NOV18\KD74S10.D Vial: 4

Acq Time : 11/12/2018 18:05
Sample : 10 PPB
Misc : (200ml) 44730 Operator: BB Inst : 5975-K Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Nov 13 09:52:52 2018 Results File: TO15KH18.RES

Quant Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator )

Title : TO-15
Last Update : Tue Nov 13 05:59:36 2018
Response via : Initial Calibration

DataAcq Meth : TO-15.M

Compound	R.T.	QIon	Response	Conc Unit	Qvalue
51) o-Xylene	16.63	91	1560892	9.3052 ppb	100
53) 4-Ethyl Toluene	18.07	105	2267189	10.3849 ppb	100
54) 1,3,5-Trimethylbenzene	18.16	105	1984921	9.8043 ppb	100
55) 1,2,4-Trimethylbenzene	18.68	105	1997537	10.5968 ppb	100
56) Benzyl Chloride	18.85	91	1043026	13.8011 ppb	100
57) m-Dichlorobenzene	18.89	146	1104521	11.8839 ppb	10 <b>0</b>
58) p-Dichlorobenzene	18.97	146	974646	12.4675 ppb	100
59) o-Dichlorobenzene	19.43	146	1065336	11.7797 ppb	100
60) 1,2,4-Trichlorobenzene	21.96	180	88934	14.0520 ppb	100
61) Hexachloro-1,3-butadiene	22.74	225	346665	11.3798 ppb	100

_____

Data File : P:\K-5975-K\2018\NOV18\12NOV18\KD74S10.D

Vial: 4 Operator: BB

Acq Time : 11/12/2018 18:05 : 10 PPB

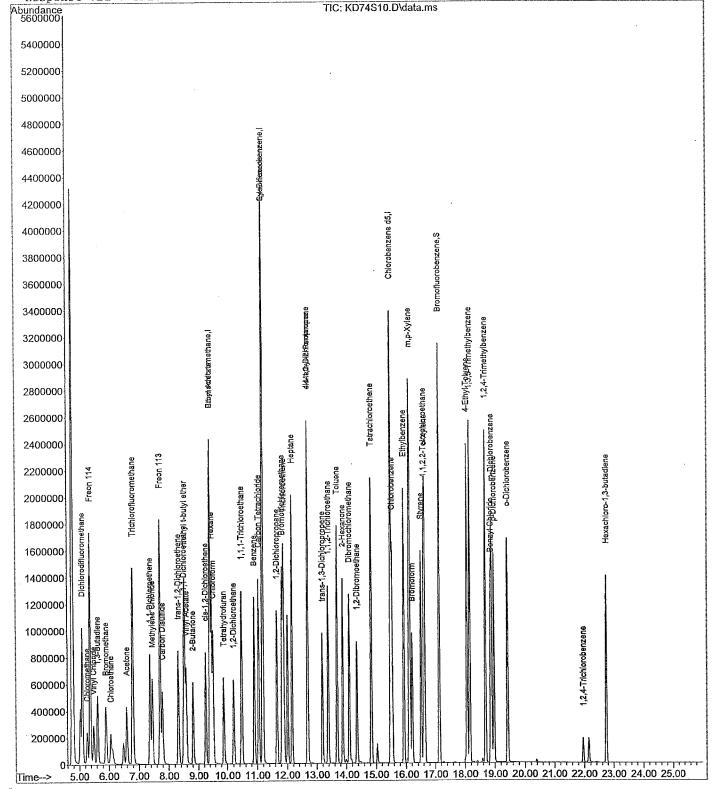
: 5975-K Inst Multiplr: 1.00

: (200ml) 44730 MS Integration Params: rteint.p

Quant Time: Nov 13 09:52:52 2018

Results File: TO15KH18.RES

Method


: P:\K-5975-K\METHODS\TO15KH18.m (RTE Integrator)

: TO-15 Title

Sample

Last Update : Tue Nov 13 11:55:11 2018

Response via : Initial Calibration



Data File : P:\K-5975-K\2018\NOV18\12NOV18\KD75S5.D Vial: 4 Acq Time : 11/12/2018 18:44
Sample : 5 PPB
Misc : (100ml) 44730 Operator: BB Inst : 5975-K Multiplr: 1.00

MS Integration Params: rteint.p

Results File: TO15KH18.RES Quant Time: Nov 13 09:53:00 2018

Quant Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator )

Title : TO-15
Last Update : Tue Nov 13 05:59:36 2018
Response via : Initial Calibration
DataAcq Meth : TO-15.M

Internal Standards	R.T.	QLon	Response	Conc Units	Area%
1) Bromochloromethane	9.40	130	299584	20.00 ppb	99.28
21) 1,4-Difluorobenzene	11.19	114	3705702	20.00 ppb	98.45
44) Chlorobenzene d5	15.49	117	2781394	20.00 ppb	99.06
System Monitoring Compounds				81	Recovery
52) Bromofluorobenzene	17.13	95	1651793	21.12 ppb	105.59%
Target Compounds					Qvalue
2) Dichlorodifluoromethane	5.10	85	821177	4.9273 ppb	99
3) Chloromethane	5.26	50	223685	4.8831 ppb	99
4) Freon 114	5.37	135	567910	4.8700 ppb	99
5) Vinyl Chloride	5.49	62	255882	4.8816 ppb	99
6) 1,3-Butadiene	5.63	54	208288	5.0837 ppb	99
<ol><li>7) Bromomethane</li></ol>	5.90	94	248198	5.0051 ppb	98
<ol><li>8) Chloroethane</li></ol>	6.06	64	159609	4.7994 ppb	100
9) Acetone	6.59	43	447387	4.7949 ppb	99 100
10) Trichlorofluoromethane	6.79	101	701922	4.8867 ppb	100
11) 1,1-Dichloroethene	7.37	61	430513	4.8683 ppb 4.6004 ppb	99
12) Methylene Chloride	7.45	84	228631	4.8708 ppb	100
13) Freon 113	7.71	151	434646	5.0559 ppb	100
14) Carbon Disulfide	7.79	76 06	598699 262423	4.9268 ppb	100
15) trans-1,2-Dichloroethene	8.31 8.49	96 63	483730	4.9200 ppb	99
16) 1,1-Dichloroethane	8.53	73	722121	4.9070 ppb	99
17) methyl t-butyl ether	8.59	86	68035	5.0935 ppb	100
18) Vinyl Acetate	8.81	43	567502	4.8072 ppb	100
<pre>19) 2-Butanone 20) cis-1,2-Dichloroethene</pre>	9.25	96	274853	4.9464 ppb	99
22) Ethyl Acetate	9.40	61	92549	4.8814 ppb	
23) Hexane	9.46	57	450974	4.9971 ppb	
24) Chloroform	9.51	83	539451	4.9340 ppb	
25) Tetrahydrofuran	9.88	42	304537	5.0064 ppb	99
26) 1,2-Dichloroethane	10.21	62	363198	4.9244 ppb	100
27) 1,1,1-Trichloroethane	10.47	97	568238	5.0110 ppb	100
28) Benzene	10.90	78	753395	4.9652 ppb	
29) Carbon Tetrachloride	11.04	117	568466	5.0545 ppb	
30) Cyclohexane	11.18	84	370418	4.8051 ppb	
31) 1,2-Dichloropropane	11.66	63	290312	4.9231 ppb	
32) Bromodichloromethane	11.83	83	513291	5.0135 ppb	
33) Trichloroethene	11.88		378254	4.9579 ppb	
34) Heptane	12.15		287509	5.0130 ppb	
35) cis-1,3-Dichloropropene	12.69		407546	5.0790 ppb	
36) 4-Methyl-2-Pentanone	12.70		698897	4.8800 ppb	
37) trans-1,3-Dichloropropene	13.19		348567	5.2510 ppb	
38) 1,1,2-Trichloroethane	13.38		298651	4.8603 ppb	
39) Toluene	13.68		889778	4.9818 ppb	
40) 2-Hexanone	13.88	43	631773	5.0569 ppb	
41) Dibromochloromethane	14.10		464857	5.1288 ppb	
42) 1,2-Dibromoethane	14.36		436147	5.0698 ppb 4.9162 ppb	
43) Tetrachloroethene	14.83		432365	4.9456 pph	
45) Chlorobenzene	15.54 15.93		648636 1055053	4.9609 pph	
46) Ethylbenzene	16.12		1650649	9.8548 ppt	
47) m,p-Xylene	16.12		327055	5.2644 pph	
48) Bromoform	16.21		598373	5.2463 pph	
49) Styrene			614800	5.2402 ppt	
50) 1,1,2,2-Tetrachloroethane	10.00	0.5			

^{(#) =} qualifier out of range (m) = manual integration KD75S5.D T015KH18.m Tue Nov 20 10:28:38 2018

Data File : P:\K-5975-K\2018\NOV18\12NOV18\KD75S5.D Vial: 4 Operator: BB

Acq Time : 11/12/2018 18:44 Inst : 5975-K Sample : 5 PPB Multiplr: 1.00 : (100ml) 44730 Misc

MS Integration Params: rteint.p

Quant Time: Nov 13 09:53:00 2018 Results File: TO15KH18.RES

Quant Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator )

Title : TO-15
Last Update : Tue Nov 13 05:59:36 2018 Response via : Initial Calibration

Compound R.T. QIon Response Conc U	
51) o-Xylene 16.63 91 811535 4.8840 53) 4-Ethyl Toluene 18.07 105 1236483 5.7176 54) 1,3,5-Trimethylbenzene 18.16 105 1120443 5.5870 55) 1,2,4-Trimethylbenzene 18.68 105 1070556 5.7332 56) Benzyl Chloride 18.85 91 382997 5.1160 57) m-Dichlorobenzene 18.88 146 542811 5.8959 58) p-Dichlorobenzene 18.97 146 449563 5.8054 59) o-Dichlorobenzene 19.43 146 519441 5.7983	ppb 100 ppb 100 ppb 99 ppb 100 ppb 99 ppb 99
60) 1,2,4-Trichlorobenzene 21.97 180 28230 4.5029 61) Hexachloro-1,3-butadiene 22.74 225 156706 5.1930	**

Data File : P:\K-5975-K\2018\NOV18\12NOV18\KD75S5.D

Vial: 4 Operator: BB

Acq Time : 11/12/2018 18:44

: 5975-K Inst

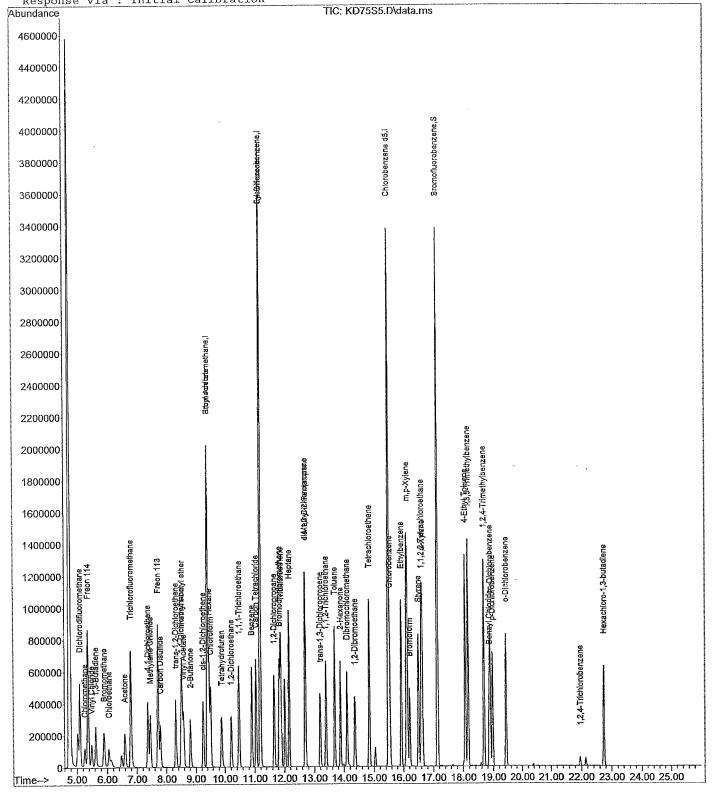
Sample : 5 PPB

: (100ml) 44730

Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Nov 13 09:53:00 2018


Results File: TO15KH18.RES

Method : TO-15

: P:\K-5975-K\METHODS\TO15KHl8.m (RTE Integrator)

Title

Last Update : Tue Nov 13 11:55:11 2018 Response via : Initial Calibration



Data File : P:\K-5975-K\2018\NOV18\12NOV18\KD76S2.D

Acq Time : 11/12/2018 19:22 Sample : 2 PPB Misc : (40ml) 44730 Operator: BB Inst : 5975-K

Vial: 4

Multiplr: 1.00

MS Integration Params: rteint.p

Results File: TO15KH18.RES Quant Time: Nov 13 09:53:07 2018

Quant Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator )

: TO-15

Last Update : Tue Nov 13 05:59:36 2018 Response via: Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Area%
1) Bromochloromethane	9.40	130	288320	20.00 ppb	95.55
21) 1,4-Difluorobenzene	11.19	114	3618893	20.00 ppb	96.14
44) Chlorobenzene d5	15.49	117	2770806	20.00 ppb	98.68
44) CHIOLOBERZONO GO					
System Monitoring Compounds				%R	gecovery
52) Bromofluorobenzene	17.13	95	1659835	21.30 ppb	106.51%
32) 210110121021					_
Target Compounds					Qvalue
2) Dichlorodifluoromethane	5.09	85	335790	2.0936 ppb	100
3) Chloromethane	5.26	50	90024	2.0420 ppb	99
4) Freon 114	5.37	135	229864	2.0482 ppb	100
5) Vinyl Chloride	5.48	62	100740	1.9969 ppb	100
6) 1,3-Butadiene	5.62	54	76848	1.9489 ppb	99
7) Bromomethane	5.89	94	95179	1.9943 ppb	100
8) Chloroethane	6.06	64	66097	2.0652 ppb	99
9) Acetone	6.59	.43	191685	2.1347 ppb	99
10) Trichlorofluoromethane	6.78	101	281533	2.0366 ppb	100
11) 1,1-Dichloroethene	7.37	61	172727	2.0295 ppb	100 99
12) Methylene Chloride	7.45	84	97464	2.0377 ppb	99 99
13) Freon 113	7.71	151	177138	2.0626 ppb	
14) Carbon Disulfide	7.79	76	231243	2.0291 ppb	100
15) trans-1,2-Dichloroethene	8.31	96	105434	2.0568 ppb	100 99
16) 1,1-Dichloroethane	8.49	63	194842	2.0539 ppb	99
17) methyl t-butyl ether	8.53	73	289595	2.0448 ppb	99 98
18) Vinyl Acetate	8.58	86	26421	2.0553 ppb	99
19) 2-Butanone	8.81	43	226195	1.9909 ppb	100
20) cis-1,2-Dichloroethene	9.25	96	109002	2.0383 ppb 2.0423 ppb	99
22) Ethyl Acetate	9.40	61	37814	2.0423 ppb 2.0311 ppb	98
23) Hexane	9.46	57	179013 217378	2.0311 ppb 2.0359 ppb	100
24) Chloroform	9.51	83	123018	2.0333 pps 2.0708 pps	99
25) Tetrahydrofuran	9.89	42 62	148336	2.0594 ppb	
26) 1,2-Dichloroethane	10.21	97	227000	2.0498 ppb	
27) 1,1,1-Trichloroethane	10.47	78	303598	2.0488 ppb	
28) Benzene	10.90 11.04	117	222580	2.0266 ppb	
29) Carbon Tetrachloride	11.18	84	153845	2.0436 ppb	
30) Cyclohexane	11.66		118168	2.0519 ppb	
31) 1,2-Dichloropropane	11.83		200376	2.0041 ppb	
32) Bromodichloromethane	11.88		152751	2.0502 ppb	
33) Trichloroethene	12.15		114638	2.0468 ppb	
<pre>34) Heptane 35) cis-1,3-Dichloropropene</pre>	12.69		158661	2.0247 ppb	
36) 4-Methyl-2-Pentanone	12.70		283518	2.0271 ppb	
37) trans-1,3-Dichloropropene	13.19		128580	1.9835 ppb	
38) 1,1,2-Trichloroethane	13.38		122464	2.0408 ppb	
	13.68	91	355959	2.0408 ppb	100
39) Toluene 40) 2-Hexanone	13.88		241924	1.9829 ppb	
40) 2-Hexanone 41) Dibromochloromethane	14.10		176526	1.9943 ppb	
42) 1,2-Dibromoethane	14.36		173856	2.0694 ppb	99
43) Tetrachloroethene	14.83		172636	2.0100 ppb	98
45) Chlorobenzene	15.54		268903	2.0581 ppb	
46) Ethylbenzene	15.93		431733	2.0378 ppb	99
47) m,p-Xylene	16.12			4.1055 ppb	100
48) Bromoform	16.21			1.9439 ppb	
49) Styrene	16.51				
50) 1,1,2,2-Tetrachloroethane	16.60			2.1811 pph	100
50, 4,4,5,5					

^{(#) =} qualifier out of range (m) = manual integration KD76S2.D T015KH18.m Tue Nov 20 10:28:41 2018

Data File : P:\K-5975-K\2018\NOV18\12NOV18\KD76S2.D Vial: 4

Operator: BB Acq Time : 11/12/2018 19:22 Sample : 2 PPB Inst : 5975-K Misc Multiplr: 1.00 : (40ml) 44730

MS Integration Params: rteint.p

Results File: TO15KH18.RES Quant Time: Nov 13 09:53:07 2018

Quant Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator )

: TO-15

Last Update : Tue Nov 13 05:59:36 2018

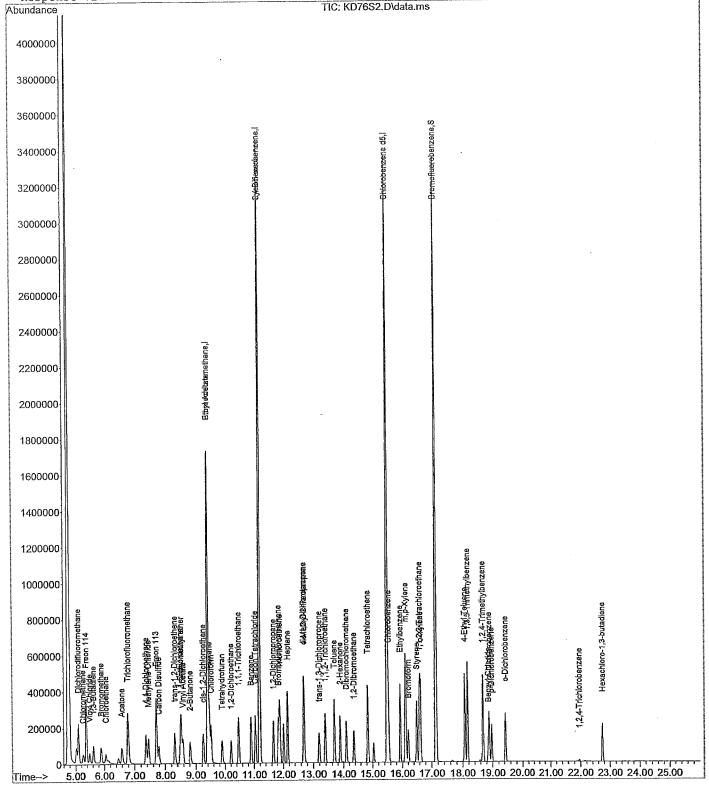
Response via : Initial Calibration DataAcq Meth : TO-15.M

Compound	R.T.	QIon	Response	Conc Unit	Qvalue
51) o-Xylene	16.63	91	346383	2.0926 ppb	100
53) 4-Ethyl Toluene	18.07	105	446590	2.0730 ppb	99
54) 1,3,5-Trimethylbenzene	18.16	105	438138	2.1931 ppb	99
55) 1,2,4-Trimethylbenzene	18.68	105	392507	2.1101 ppb	98
56) Benzyl Chloride	18.85	91	96374	1.2923 ppb	97
57) m-Dichlorobenzene	18.88	146	164168	1.7900 ppb	9 <b>9</b>
58) p-Dichlorobenzene	18.97	146	127416	1.6517 ppb	99
59) o-Dichlorobenzene	19.43	146	171896	1.9261 ppb	99
60) 1,2,4-Trichlorobenzene	21.96	180	5766	0.9232 ppb	# 93
61) Hexachloro-1,3-butadiene	22.74	225	52760	1.7551 ppb	100

Data File : P:\K-5975-K\2018\NOV18\12NOV18\KD76S2.D

Vial: 4 Operator: BB Acq Time : 11/12/2018 19:22

: 5975-K Inst : 2 PPB Sample Multiplr: 1.00 : (40ml) 44730 Misc


MS Integration Params: rteint.p

Results File: TO15KH18.RES Quant Time: Nov 13 09:53:07 2018

: P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator) Method

Title : TO-15

Last Update : Tue Nov 13 11:55:11 2018 Response via: Initial Calibration



Data File : P:\K-5975-K\2018\NOV18\12NOV18\KD77S1.D Vial: 4 Acq Time : 11/12/2018 20:00
Sample : 1 PPB
Misc : (20m1) 44730 Operator: BB Inst : 5975-K Multiplr: 1.00

MS Integration Params: rteint.p

Results File: TO15KH18.RES Quant Time: Nov 13 09:53:14 2018

Quant Method: P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15
Last Update : Tue Nov 13 05:59:36 2018 Response via : Initial Calibration
DataAcq Meth : TO-15.M

Internal Standards	R.T.	QIon	Response	Conc Units	Area%
1) Bromochloromethane	9.40	130	281216	20.00 ppb	93.19
21) 1,4-Difluorobenzene	11.19	114	3592459	20.00 ppb	95.44
44) Chlorobenzene d5	15.49	117	2833200	20.00 ppb	100.90
System Monitoring Compounds				% F	Recovery
52) Bromofluorobenzene	17.13	95	1550493	19.46 ppb	97.31%
Target Compounds					Qvalue
2) Dichlorodifluoromethane	5.10	85	162593	1.0393 ppb	99
<ol><li>Chloromethane</li></ol>	5.26	50	43732	1.0170 ppb	100
4) Freon 114	5.36	135	110955	1.0136 ppb	99
5) Vinyl Chloride	5.48	62	49172	0.9993 ppb	98
6) 1,3-Butadiene	5.63	54	38150	0.9919 ppb	99
<ol><li>Bromomethane</li></ol>	5.89	94	46595	1.0010 ppb	100
8) Chloroethane	6.06	64	31721	1.0161 ppb	100
9) Acetone	6.60	43	100325	1.1455 ppb	99
10) Trichlorofluoromethane	6.78		137071	1.0166 ppb	100
<pre>11) 1,1-Dichloroethene</pre>	7.37		84220	1.0146 ppb	100
12) Methylene Chlori <b>d</b> e	7.45	84	49386	1.0586 ppb	99
13) Freon 113	7.71		85375	1.0192 ppb	100
14) Carbon Disulfide	7.79	76	105553	0.9496 ppb	100
<pre>15) trans-1,2-Dichloroethene</pre>	8.31		49380	0.9876 ppb	98
16) 1,1-Dichloroethane	8.49	63	94186	1.0179 ppb	100
17) methyl t-butyl ether	8.53	73	135969	0.9843 ppb	99
18) Vinyl Acetate	8.59	86	12236	0.9759 ppb	90
19) 2-Butanone	8.82	43	114553	1.0337 ppb	98
20) cis-1,2-Dichloroethene	9.25		53189	1.0197 ppb	99
22) Ethyl Acetate	9.40	61	18123	0.9860 ppb	92
23) Hexane	9.46		85567	0.9780 ppb	97 98
24) Chloroform	9.51		108171	1.0206 ppb	98 99
25) Tetrahydrofuran	9.90		57937	0.9825 ppb	99
26) 1,2-Dichloroethane	10.21		71939	1.0061 ppb 0.9844 ppb	99
27) 1,1,1-Trichloroethane	10.47		108223 149547	1.0166 ppb	100
28) Benzene	10.90		104184	0.9556 ppb	98
29) Carbon Tetrachloride	11.05 11.18		76804	1.0277 ppb	# 53
30) Cyclohexane	11.16		57861	1.0277 ppb 1.0121 ppb	π 98
31) 1,2-Dichloropropane	11.83		96489	0.9721 ppb	98
32) Bromodichloromethane	11.88		73897	0.9991 ppb	98
33) Trichloroethene	12.15		54018	0.9715 ppb	100
34) Heptane 35) cis-1,3-Dichloropropene	12.69		71474	0.9188 ppb	99
36) 4-Methyl-2-Pentanone	12.70		136003	0.9796 ppb	98
37) trans-1,3-Dichloropropene	13.19		56063	0.8712 ppb	99
38) 1,1,2-Trichloroethane	13.38		60300	1.0123 ppb	99
39) Toluene	13.68		173543	1.0023 ppb	99
40) 2-Hexanone	13.88		109991	0.9082 ppb	97
41) Dibromochloromethane	14.10		79382	0.9034 ppb	99
42) 1,2-Dibromoethane	14.36		79632	0.9548 ppb	98
43) Tetrachloroethene	14.83		85438	1.0021 ppb	98
45) Chlorobenzene	15.54		131906	0.9873 ppb	# 83
46) Ethylbenzene	15.93		215293	0.9938 ppb	99
47) m,p-Xylene	16.12		340863	1.9978 ppb	100
48) Bromoform	16.21		52522	0.8300 ppb	99
49) Styrene	16.51		107365	0.9241 ppb	99
50) 1,1,2,2-Tetrachloroethane	16.60		119862	1.0029 ppb	100
50, 1,1,2,2 10010010101000110110					

^{(#) =} qualifier out of range (m) = manual integration KD77S1.D TO15KH18.m Tue Nov 20 10:28:45 2018

Data File : P:\K-5975-K\2018\NOV18\12NOV18\KD77S1.D

Vial: 4 Operator: BB Acq Time : 11/12/2018 20:00

Sample : 1 PPB : (20ml) 44730 Misc

Inst : 5975-K Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Nov 13 09:53:14 2018

Results File: TO15KH18.RES

Quant Method: P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15
Last Update : Tue Nov 13 05:59:36 2018
Response via : Initial Calibration

DataAcq Meth: TO-15.M

Compound	R.T.	QIon	Response	Conc Unit	Qvalue
51) o-Xylene 53) 4-Ethyl Toluene 54) 1,3,5-Trimethylbenzene 55) 1,2,4-Trimethylbenzene 56) Benzyl Chloride 57) m-Dichlorobenzene 58) p-Dichlorobenzene 59) o-Dichlorobenzene 60) 1,2,4-Trichlorobenzene 61) Hexachloro-1,3-butadiene	16.63 18.07 18.16 18.68 18.85 18.88 18.97 19.43 21.97 22.74	91 105 105 105 91 146 146 146 180 225	174734 195026 199284 168293 31381 67243 50981 69079 1146 21284	1.0324 ppb 0.8853 ppb 0.9755 ppb 0.8848 ppb 0.4115 ppb 0.7170 ppb 0.6463 ppb 0.7570 ppb 0.1795 ppb 0.6924 ppb	100 99 98 98 95 99 100 # 18

Data File : P:\K-5975-K\2018\NOV18\12NOV18\KD77S1.D

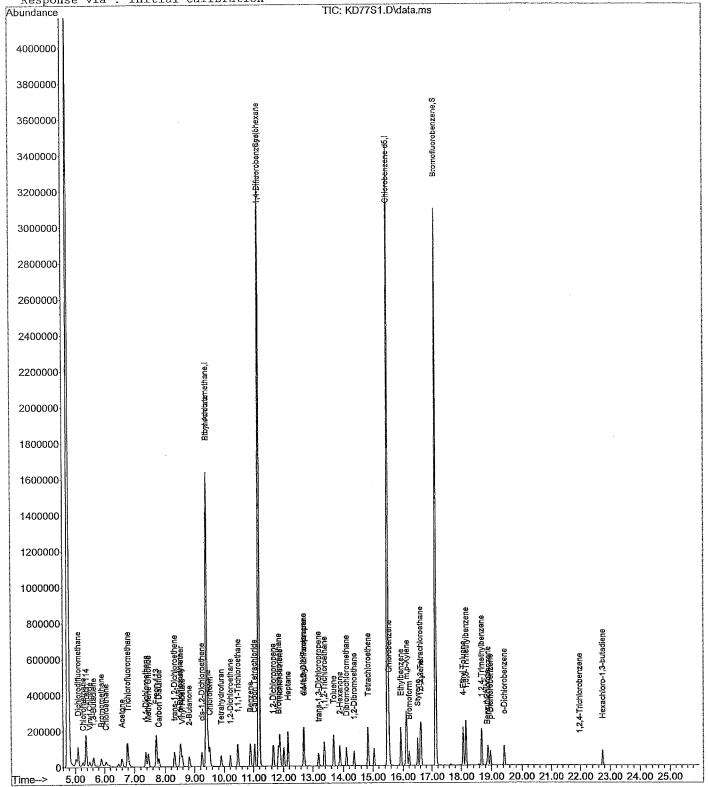
Vial: 4 Operator: BB

Acq Time : 11/12/2018 20:00 Sample : 1 PPB

: 5975-K Inst Multiplr: 1.00

: (20ml) 44730 Misc MS Integration Params: rteint.p

Quant Time: Nov 13 09:53:14 2018


Results File: T015KH18.RES

Method : TO-15

: P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title

Last Update : Tue Nov 13 11:55:11 2018 Response via : Initial Calibration



Data File : P:\K-5975~K\2018\NOV18\12NOV18\KD78S05.D Vial: 4 Acq Time : 11/12/2018 20:38
Sample : 05 PPB
Misc : (10ml) 44730 Operator: BB Inst : 5975-K Multiplr: 1.00

MS Integration Params: rteint.p

Results File: TO15KH18.RES Quant Time: Nov 13 09:53:21 2018

Quant Method: P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15
Last Update : Tue Nov 13 05:59:36 2018 Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Area%
1) Bromochloromethane	9.40	130	274304	20.00 ppb	90.90
21) 1,4-Difluorobenzene	11.19	114	3522449	20.00 ppb	93.58
44) Chlorobenzene d5	15.49	117	2738572	20.00 ppb	97.53
System Monitoring Compounds				%F	ecovery
52) Bromofluorobenzene	17.13	95	1477113	19.18 ppb	95.90%
52) Bromorracionement					0 1
Target Compounds	E 00	85	82945	0.5436 ppb	Qvalue 99
2) Dichlorodifluoromethane	5.09 5.26	50	22654	0.5401 ppb	97
3) Chloromethane	5.37	135	57292	0.5366 ppb	100
4) Freon 114	5.48	62	24939	0.5196 ppb	100
5) Vinyl Chloride	5.62	54	19162	0.5108 ppb	99
6) 1,3-Butadiene	5.89	94	23766	0.5234 ppb	99
7) Bromomethane	6.05	64	16674	0.5476 ppb	96
8) Chloroethane	6.59	43	60806	0.7118 ppb	98
<ul><li>9) Acetone</li><li>10) Trichlorofluoromethane</li></ul>	6.79	101	69911	0.5316 ppb	100
11) 1,1-Dichloroethene	7.36	61	42802	0.5286 ppb	99
12) Methylene Chloride	7.45	84	28164	0.6189 ppb	99
13) Freon 113	7.71	151	43009	0.5264 ppb	99
13) Freom 113	7.78	76	49872	0.4600 ppb	97
15) trans-1,2-Dichloroethene	8.31	96	25745	0.5279 ppb	<b>9</b> 9
16) 1,1-Dichloroethane	8.49	63	47076	0.5216 ppb	99
17) methyl t-butyl ether	8.53	73	71156	0.5281 ppb	100
18) Vinyl Acetate	8.59	86	5644	0.4615 ppb	59
19) 2-Butanone	8.82	43	60305	0.5579 ppb	98
20) cis-1,2-Dichloroethene	9.25	96	25912	0.5093 ppb	98
22) Ethyl Acetate	9.41	61	9304	0.5163 ppb	90
23) Hexane	9.46	57	43409	0.5060 ppb	96
24) Chloroform	9.51	83	53815	0.5178 ppb	99
25) Tetrahydrofuran	9.90	42	29148	0.5041 ppb	99
26) 1,2-Dichloroethane	10.21	62	36200	0.5163 ppb	<b>9</b> 9
27) 1,1,1-Trichloroethane	10.47	97	54388	0.5046 ppb	99
28) Benzene	10.90	78	73926	0.5125 ppb	99
29) Carbon Tetrachloride	11.05	117	51260	0.4795 ppb	99
30) Cyclohexane	11.18	84	40142	0.5478 ppb	# 7
31) 1,2-Dichloropropane	11.66	63	28630	0.5108 ppb	98
32) Bromodichloromethane	11.83	83	45725	0.4698 ppb	98
33) Trichloroethene	11.88	130	36705	0.5061 ppb	
34) Heptane	12.15	71	26682	0.4894 ppb	
35) cis-1,3-Dichloropropene	12.69	75	34687		
36) 4-Methy1-2-Pentanone	12.70	43	69181	0.5082 ppb	
37) trans-1,3-Dichloropropene	13.19	75	27409	0.4344 ppb	
38) 1,1,2-Trichloroethane	13.38	97	31654	0.5419 ppb	100
39) Toluene	13.68	91	84905	0.5001 ppb	
40) 2-Hexanone	13.89	43	55659	0.4687 ppb	
41) Dibromochloromethane	14.10	129	38564	0.4476 ppb	
42) 1,2-Dibromoethane	14.36	107	40163	0.4911 ppb	
43) Tetrachloroethene	14.83	166	42299	0.5060 ppb 0.5353 ppb	
45) Chlorobenzene	15.54	112	69120	0.5353 ppn 0.5319 pph	
46) Ethylbenzene	15.93	91	111375	1.0597 pph	
47) m,p-Xylene	16.11		174770	0.4043 ppb	
48) Bromoform	16.21		24732		
49) Styrene	16.51		52514		
50) 1,1,2,2-Tetrachloroethane	16.60	83	62583	0.5418 ppb	99

^{(#) =} qualifier out of range (m) = manual integration KD78S05.D T015KH18.m Tue Nov 20 10:28:48 2018

Data File : P:\K-5975-K\2018\NOV18\12NOV18\KD78S05.D Vial: 4 Operator: BB

Acq Time : 11/12/2018 20:38 Inst : 5975-K Sample : 05 PPB Misc : (10m1) 44730 Multiplr: 1.00

MS Integration Params: rteint.p

. Quant Time: Nov 13 09:53:21 2018 Results File: TO15KH18.RES

Quant Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator )

Title : TO-15
Last Update : Tue Nov 13 05:59:36 2018
Response via : Initial Calibration

DataAcq Meth: TO-15.M

C	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
51) o 53) 4 54) 1 55) 1 56) E 57) n 58) p 59) o	p-Xylene A-Ethyl Toluene A-Ethyl Toluene A-3,5-Trimethylbenzene Benzyl Chloride A-Dichlorobenzene D-Dichlorobenzene	16.63 18.07 18.16 18.68 18.85 18.89 18.97	91 105 105 105 91 146 146	89899 93617 97338 79545 12814 32432 24592 32837	0.5495 ppb 0.4397 ppb 0.4930 ppb 0.4327 ppb 0.1738 ppb 0.3578 ppb 0.3225 ppb 0.3723 ppb Not Detecte	100 98 99 98 94 98 99
	L,2,4-Trichlorobenzene Hexachloro-1,3-butadiene	0.00 22.74	180 225	10397	0.3499 ppb	u 97

Data File : P:\K-5975-K\2018\NOV18\12NOV18\KD78S05.D

Vial: 4 Operator: BB

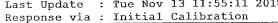
Acq Time : 11/12/2018 20:38 : 05 PPB Sample

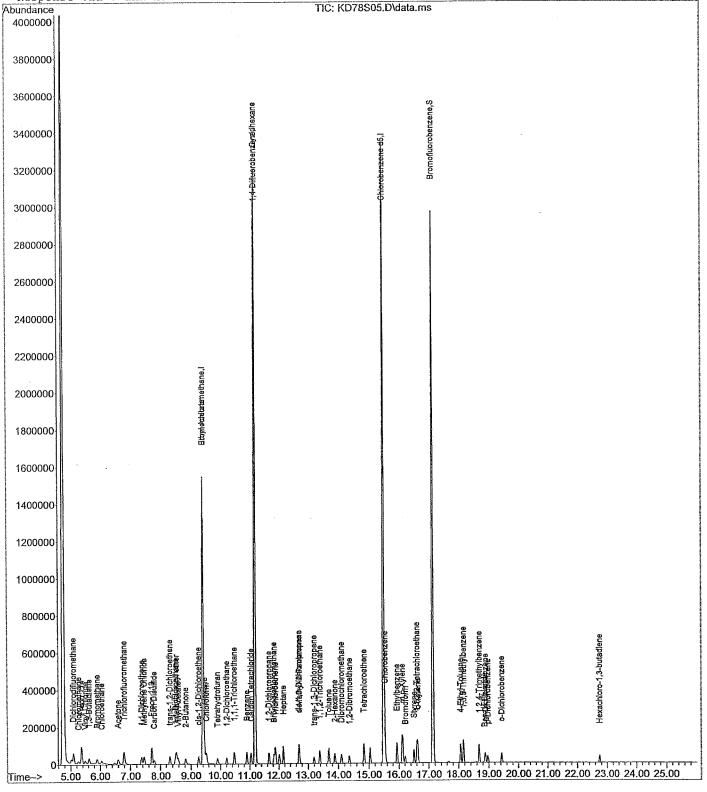
Inst : 5975-K Multiplr: 1.00

: (10ml) 44730 Misc

MS Integration Params: rteint.p

Quant Time: Nov 13 09:53:21 2018


Results File: TO15KH18.RES


Method

: P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

: TO-15 Title

Last Update : Tue Nov 13 11:55:11 2018





Data File : P:\K-5975-K\2018\NOV18\12NOV18\KD88S50.D Vial: 4 Operator: BB Acq Time : 11/13/2018 10:59 Sample : 50 PPB Misc : (200ml) 44734 44116 Inst : 5975-K Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Nov 13 11:54:32 2018 Results File: TO15KH18.RES

Quant Method : I:\K-5975-K\METHODS\T015KH18.m (RTE Integrator )

Title : TO-15
Last Update : Tue Nov 13 05:59:36 2018 Response via: Initial Calibration

Inter	nal Standards	R.T.	QIon	Response	Conc Ur	nits	Area%
1).	Bromochloromethane	9.40	130	327360	20.00 pg		108.48
21)	1,4-Difluorobenzene	11.19	114	4075187	20.00 pg		108.27
44)	Chlorobenzene d5	15.49	117	2771610	20.00 p	o <b>b</b>	98.71
Syste	em Monitoring Compounds						Recovery
52)	Bromofluorobenzene	17.13	95	1550188	19.89 pr	ob	99.45%
Targe	et Compounds						Qvalue
2)	Dichlorodifluoromethane	5.10	85	8488942	46.6142		100
3)	Chloromethane	5.26	50	2241560	44.7816		99
-	Freon 114	5.37	135	6034851	47.3595		94
5)	Vinyl Chloride	5.49	62	2676343	46.7255		99
6)	1,3-Butadiene	5.62	54	2186375	48.8353		98
	Bromomethane	5.90	94	2633659	48.6030		99
8)	Chloroethane	6.06	64	1815429	49.9577		99
	Acetone	6.58	43	5039875	49.4323		100
	Trichlorofluoromethane	6.78	101	9152225	58.3108		100
	1,1-Dichloroethene	7.37	61	5395844	55.8392		99
	Methylene Chloride	7.45	84	2603285	47.9376		99
	Freon 113	7.71		5627913	57.7174		98
	Carbon Disulfide	7.79	76	7566843	58.4781		100
	trans-1,2-Dichloroethene	8.31	96	3212749	55.1987		98
	1,1-Dichloroethane	8.50	63	6208659	57.6416		100
	methyl t-butyl ether	8.53	73	9618755	59.8163		100
	Vinyl Acetate	8.58	86	853376	58.4675		96 100
	2-Butanone	8.81	43	6757970	52.3884		100 98
	cis-1,2-Dichloroethene	9.25	96	3360294	55.3430 57.2110		98
	Ethyl Acetate	9.40	61	1192836			96
	Hexane	9.46	57	6023792	60.6954		100
	Chloroform	9.52	83	6741133	56.0662		100
	Tetrahydrofuran	9.88	42	3612497	54.0026		99
	1,2-Dichloroethane	10.21	62	4492822	55.3924		100
	1,1,1-Trichloroethane	10.47	97	7338963	58.8504		100
	Benzene	10.90	78	9284027	55.6378 63.1058		100
	Carbon Tetrachloride	11.05	117	7804928	54.3215		
	Cyclohexane	11.18	84	4605045	56.8264		
	1,2-Dichloropropane	11.66		3685172	65.3182		
	Bromodichloromethane	11.84		7354235	60.5962		
	Trichloroethene	11.88	130	5084060	62.3724		
	Heptane	12.16		3933900	67.4755		
	cis-1,3-Dichloropropene	12.69		5954156	57.5070		
	4-Methyl-2-Pentanone	12.70		9057109 4731146	64.8109		
	trans-1,3-Dichloropropene	13.19	73 97	3749322	55.4847		
	1,1,2-Trichloroethane	13.38		11651220	59.3199		
	Toluene	13.68			57.9277		97
•	2-Hexanone	13.89	130	7958638	66.8476		
41)	Dibromochloromethane	14.10		6662980	58.7905		
	1,2-Dibromoethane	14.37	107	5561933	61.5238		
43)	Tetrachloroethene	14.84	166	5950361 8090975	61.9080		
	Chlorobenzene	15.54	112		64.0779		
46)	<b>→</b> _	15.93		13579813			
47)	. = -	16.12					
48)		16.21		4247436	68.6101		
	Styrene	16.51			60.6427		
50)	1,1,2,2-Tetrachloroethane	16.61	83	5750023	49.1824	aqq	100

^{(#) =} qualifier out of range (m) = manual integration KD88S50.D T015KH18.m Tue Nov 20 10:28:51 2018

Data File : P:\K-5975-K\2018\NOV18\12NOV18\KD88S50.D Vial: 4

Acq Time : 11/13/2018 10:59 Operator: BB Inst : 5975-K Sample : 50 PPB
Misc : (200ml) 44734 44116 Multiplr: 1.00

MS Integration Params: rteint.p

Results File: TO15KH18.RES Quant Time: Nov 13 11:54:32 2018

Quant Method : I:\K-5975-K\METHODS\T015KH18.m (RTE Integrator )

Title : TO-15
Last Update : Tue Nov 13 05:59:36 2018 Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Ur	nit	Qvalue
53) 54) 55) 56) 57) 58) 59)	o-Xylene 4-Ethyl Toluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene Benzyl Chloride m-Dichlorobenzene p-Dichlorobenzene o-Dichlorobenzene 1,2,4-Trichlorobenzene Hexachloro-1,3-butadiene	16.63 18.07 18.16 18.68 18.86 18.89 18.97 19.43 21.96	-	10117338 11394263 9696901 8668860 5806856 4756496 4270313 3854478 714536 1572225	61.1032 52.8741 48.5231 46.5890 77.8402 51.8461 55.3395 43.1775 114.3768 52.2855	ppb ppb ppb ppb ppb ppb ppb	99 100 100 99 99 99 100
67)	HEXACITATOTAT, 2-Duragrene	22.17	223	10,2220	02.2000	L. P.	

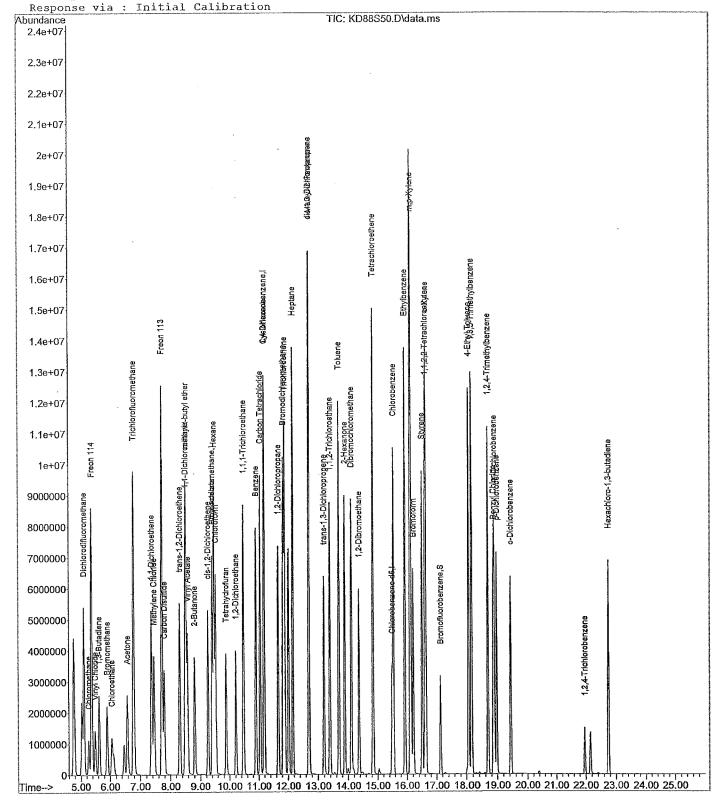
Data File : P:\K-5975-K\2018\NOV18\12NOV18\KD88S50.D Vial: 4

Acq Time : 11/13/2018 10:59 Operator: BB

Sample : 50 PPB Inst : 5975-K

Sample : 50 PPB Inst : 5975 Misc : (200ml) 44734 44116 Multiplr: 1.00

MS Integration Params: rteint.p


Quant Time: Nov 13 11:54:32 2018

Results File: TO15KH18.RES

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

Last Update : Tue Nov 13 11:55:11 2018



Data File : P:\K-5975-K\2018\NOV18\12NOV18\KD89SICV.D Vial: 6 Operator: BB Acq Time : 11/13/2018 14:13 Inst : 5975-K Sample : 10 ppb ICV Multiplr: 1.00

: (200ml) 44731 44116 Misc MS Integration Params: rteint.p

Quant Time: Nov 13 15:21:29 2018 Results File: TO15KH18.RES

Quant Method : I: $K-5975-K\METHODS\TO15KH18.m$  (RTE Integrator )

Title : TO-15
Last Update : Tue Nov 13 11:55:11 2018
Response via : Initial Calibration

Internal Standards	R.T.	ΩIon	Response	Conc Units	Area%
1) Bromochloromethane	9.40	130	311744	20.00 ppb	103.31
21) 1,4-Difluorobenzene	11.19	114	3863528	20.00 ppb	102.64
44) Chlorobenzene d5	15.49		2940679	20.00 ppb	104.73
44) Chiolobenzene do					
System Monitoring Compounds				용]	Recovery
52) Bromofluorobenzene	17.13	95	1605807	19.43 ppb	97.17%
- ··· <b>,</b>			:		
Target Compounds					Qvalue
<ol><li>Dichlorodifluoromethane</li></ol>	5.10	85	1577698	9.1862 ppb	100
<ol><li>Chloromethane</li></ol>	5.27	50	436543	9.2967 ppb	99
4) Freon 114	5.37	135	1161764	9.6466 ppb	97
5) Vinyl Chloride	5.49	62	518901	9.6030 ppb	99 98
6) 1,3-Butadiene	5.63	54	415263	9.7725 ppb 9.7620 ppb	100
7) Bromomethane	5.90 6.06	94 64	501731 354604	10.2482 ppb	99
8) Chloroethane	6.59	43	838068	8.6481 ppb	100
<ol> <li>9) Acetone</li> <li>10) Trichlorofluoromethane</li> </ol>	6.79	101	1488694	9.7289 ppb	100
	7.37	61	910365	9.7306 ppb	99
<pre>11) 1,1-Dichloroethene 12) Methylene Chloride</pre>	7.45	84	470846	9.1586 ppb	99
13) Freon 113	7.71	151	880966	9.2827 ppb	99
14) Carbon Disulfide	7.79	76	944271	7.4818 ppb	100
15) trans-1,2-Dichloroethene	8.31	96	488552	8.6853 ppb	99
16) 1,1-Dichloroethane	8.49	63	1006513	9.6030 ppb	99
17) methyl t-butyl ether	8.53	73	1479205	9.3960 ppb	100
18) Vinyl Acetate	8.58	86	146364	10.2814 ppb	98
19) 2-Butanone	8.81	43	1184032	9.5732 ppb	100
20) cis-1,2-Dichloroethene	9.25	96	57502 <b>0</b>	9.7953 ppb	100
22) Ethyl Acetate	9.40	61	192461	9.5400 ppb	
23) Hexane	9.46	57	892835	9.2076 ppb	
24) Chloroform	9.51	83	1137022	9.8048 ppb	
25) Tetrahydrofuran	9.88	42	670396	10.4511 ppb	
26) 1,2-Dichloroethane	10.21	62	786690		
27) 1,1,1-Trichloroethane	10.47	97	1225045	10.1061 ppb	
28) Benzene	10.90	78	1604920	9.9841 ppb	
29) Carbon Tetrachloride	11.05	117	1235647	10.1577 ppb 9.4606 ppb	
30) Cyclohexane	11.18	84	769747	9.4606 ppb 9.9521 ppb	
31) 1,2-Dichloropropane	11.66	63	623804 1168860	10.4911 ppb	
32) Bromodichloromethane	11.83 11.88	83 130	805548	9.8296 ppb	
33) Trichloroethene	12.16	71	617748	9.9783 ppb	
34) Heptane 35) cis-1,3-Dichloropropene	12.10	75	930887	10.5981 ppb	
35) cis-1,3-Dichloropropene 36) 4-Methyl-2-Pentanone	12.70	43	1486532	9.7466 ppb	
37) trans-1,3-Dichloropropene	13.19	75	792890	10.9915 ppb	
38) 1,1,2-Trichloroethane	13.38	97	646395	9.9341 ppb	
39) Toluene	13.68	91	1951870	10.2101 ppb	100
40) 2-Hexanone	13.88	43	1311938	9.8129 ppb	
41) Dibromochloromethane	14.10	129	1070362	10.8067 ppb	100
42) 1,2-Dibromoethane	14.36	107	952187	10.3561 ppb	99
43) Tetrachloroethene	14.83	166	947574	10.0048 pph	
45) Chlorobenzene	15.54	112	1421108	9.91 <b>1</b> 2 ppb	
46) Ethylbenzene	15.93	91	2326439	9.9464 ppb	
47) m,p-Xylene	16.12	91	3615156	19.4849 ppb	
48) Bromoform	16.21	<b>1</b> 73	654168	9.3777 pph	
49) Styrene	16.51	104	1230788	9.8569 ppt	
50) 1,1,2,2-Tetrachloroethane	16.60	83	1147689	9.2739 pph	100
				<del></del>	

^{(#) =} qualifier out of range (m) = manual integration KD89SICV.D T015KH18.m Tue Nov 20 10:28:54 2018

Data File : P:\K-5975-K\2018\NOV18\12NOV18\KD89SICV.D Vial: 6

Acq Time : 11/13/2018 14:13 Operator: BB

Sample : 10 ppb ICV Inst : 5975-K

Sample : 10 ppb ICV Inst : 5975-Misc : (200ml) 44731 44116 Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Nov 13 15:21:29 2018 Results File: TO15KH18.RES

Quant Method : I:\K-5975-K\METHODS\T015KH18.m (RTE Integrator )

Title : TO-15

Last Update : Tue Nov 13 11:55:11 2018
Response via : Initial Calibration

(	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
51)	o-Xylene	16.63	91	1729544	9.5422 ppb	99
53)	4-Ethyl Toluene	18.07	105	2376749	10.2964 ppb	100
54)	1,3,5-Trimethylbenzene	18.16	105	2012540	9.5387 ppb	100
55)	1,2,4-Trimethylbenzene	18.68	105	1958032	10.0321 ppb	99
56) 1	Benzyl Chloride	18.85	91	1091183	12.6155 ppb	100
57) ı	m-Dichlorobenzene	18.89	146	1056909	10.7916 ppb	100
58)	p-Dichlorobenzene	18.97	146	945600	11.3476 ppb	99
59)	o-Dichlorobenzene	19.43	146	987130	10.6645 ppb	100
60)	1,2,4-Trichlorobenzene	21.96	180	84650	10.5147 ppb	99
61)	Hexachloro-1,3-butadiene	22.71	225	357594	11.1236 ppb	99

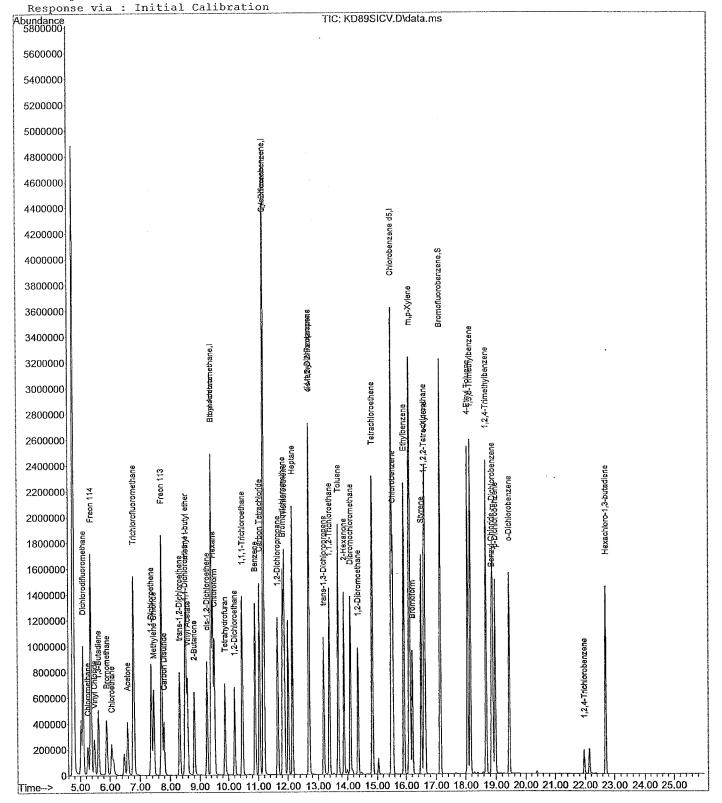
Data File : P:\K-5975-K\2018\NOV18\12NOV18\KD89SICV.D Vial: 6

Acq Time : 11/13/2018 14:13 Operator: BB

Sample : 10 ppb ICV Inst : 5975-K

Misc : (200ml) 44731 44116 Multiplr: 1.00

MS Integration Params: rteint.p


Quant Time: Nov 13 15:21:29 2018

Results File: TO15KH18.RES

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

Last Update : Tue Nov 13 11:55:11 2018



# **Batch Worklist**

Batch: IVOA/ 4201 Rule: EPA TO-15, Air

**Created:** 12/20/2018 09:25 **Analyst:** B. Boy

Instrument: 5975-K Status: RE

HBN: 229851

Workorder: 1835290 [ENV_LVL2] Workorder: 1835293 [ENV_LVL4] Workorder: 1835379 [ENV_LVL4] Workorder: 1835256 [ENV_LVL1]

Pos LabiD	Sample ID	Prep Initial	Prep Final	Dust Weight	Type M:	Mx Container	Procedure	Expire Mgr Date	Due Date	Run Date
1 633626	MB for HBN 229851 [IVOA/4201]				MB 1		ET0151Q	6216	12/20/2018	12/19/2018
2 633627	LCS for HBN 229851 [IVOA/4201]				LCS 1		ET0151Q	6216	12/20/2018	12/19/2018
3 633628	LCSD for HBN 229851 [IVOA/4201	1			LCSD 1		ETO151Q	6216	12/20/2018	12/19/2018
4 633629	RLVS for HBN 229851 [IVOA/420]	1			RLVS 1		ET0151Q	6216	12/20/2018	12/19/2018
5 1835379001	Air 1				SAMPLE 1	1835379001-A	ET0151	5975	12/20/2018	12/19/2018
6 1835379002	Air 3				SAMPLE 1	1835379002-A	ETO151	5975	12/20/2018	12/19/2018
7 1835379003	Air 4				SAMPLE 1	1835379003-A	ETO151	5975	12/20/2018	12/19/2018
8 1835379004	Air S				SAMPLE 1	1835379004-A	ET0151	5975	12/20/2018	12/19/2018
9 1835379005	Air 6				SAMPLE 1	1835379005-A	ETO151	5975	12/20/2018	12/19/2018
10 1835290001	SV.1				SAMPLE 1	1835290001-A	ET0151	6171	12/27/2018	
11 1835290002	SV-2				SAMPLE 1	1835290002-A	ETO151	6171	12/27/2018	
12 1835290003	SV-3				SAMPLE 1	1835290003-A	ET0151	6171	12/27/2018	
13 1835290004	SV-4				SAMPLE 1	1835290004-A	ETO151	6171	12/27/2018	
14 1835293001	LA-8				SAMPLE 1	1835293001-A	ETO151	6171	12/27/2018	
15 1835293002	OA-2				SAMPLE 1	1835293002-A	ETO151	6171	12/27/2018	
16 1835293003	1A-6				SAMPLE 1	183 <i>5</i> 293003-A	ET0151	6171	12/27/2018	
17 1835293004	IA-7				SAMPLE 1	1835293004-A	ETO151	6171	12/27/2018	
18 1835256003	KT181212-1				SAMPLE 1	1 <b>8</b> 35256003-A	ETO151	5875	12/27/2018	



# **Analyst Notebook**

Workorder #'s/Sample #'s:

1835379001-005

1835290001-004

1835293001-004

1835256003

TO15

Date of analysis/extraction: 12/19/18

Analyst: BB

Instrument: 5975-K

QC/QD: 45202 (200ml)

RLVS: 45202 (10 ml)

ISTD; 44228 (100 ml)

HBN: 229851

Column: DB-1

Inst. Program: TO-15; Initial 40 °C for 4 min; 10 °C/min to 220 °C hold for 3 mins.

Run time: 26 min for 5975-K

Carrier Gas: Helium

Cold Trap Dehydration

Initial Calibration Curve/Quantitation method: TO15KH18 (HBN: 227674) ICV; 44731

Dilutions: none

# Comments:

The percent difference for target compounds in the CCV standard must be less than 30% relative to the target. The following compound(s) did not meet this criteria; estimates.

The LCS/LSCD percent recovery did not meet performance limits for all compounds. This is not a method a requirement.

ADDRESS 960 West LeVoy Drive, Salt Lake City, Utah, USA 84123 | PHONE +1 801 266 7700 | FAX +1 801 268 9992 ALS GROUP USA, CORP. Part of the ALS Laboratory Group A Campbell Brothers Limited Company



# 5.6 GC/MS Technical Review

Note: It is the peer reviewer's responsibility to ensure that appropriate criteria are used as defined in the HORIZON PROFILE. The evaluation criteria are prioritized as per Section 2.2 of this SOP. These items must be checked for all projects. The following checklist will be completed by both the analyst and the peer reviewer and scanned into the HBN folder with the raw data.

GC/MS Technical Review Criteria	Analyst Initials	<u>Reviewer</u> <u>Initials</u>
Batch(es)/SDG: 22965 \ Sample Set IDs if Applicable: 1835256,5243	5290	9
GC/MS Tuning passed criteria (BFB or DFTPP)	313	
Calibration standards analyzed and meets criteria	BB	
Standards traceability checked and meets criteria	罗罗	
Standard curve coefficient evaluated and meets criteria	BIS	
ICVs analyzed and meet acceptance criteria	1313	
CCVs analyzed and meet acceptance criteria	1313	
Method Blanks analyzed and meet acceptance criteria	1313	
Review of spectral assignments	513	
Relative Retention Time checked	BB	
Internal Standards checked	1313	
Surrogate recoveries checked and appropriately addressed	313	11.24 111
Sample Frequency – Analyzed within appropriate tune window	BB	
Method Preparation Blanks analyzed and meet acceptance criteria	B13	
MSs, MSDs, and/or MDs analyzed and calculations checked; applicable flags applied on QC reports; LCSs analyzed and meet acceptance criteria when performed	BB	
RLVS analyzed	1513	
Preparation and analysis hold times met	1313	
Preparation deviations and re-preparations noted when performed	1513	
Analysis deviations and re-analyses noted when performed	BB	
Sample dilution factors noted on reports		
Electronic records in HBN transcription accuracy and completeness	<u>55</u>	
<u>checked</u>	77	
Preparation and analysis calculations checked	1313	
NCRs are completed as necessary NC/CAR#	MA	
Report forms are complete and accurate	7513	
Manual integrations checked	1515	

```
seance
                                              3| 25.99| 1 |WATER | BFB
KE52BFB
          112/19/2018 11:42|BB | T015KH18|
                 0
           |COMMENTS: 44228
                                              2 | 25.99 | 1 | WATER | 10 PPB LCS
          |12/19/2018 12:21|BB | TO15KH18|
KE53LCS
         2778241
           |COMMENTS: (200ml) 45202 44228
                                              2 | 25.99 | 1 | WATER | 10 PPB LCSD
KE54LCSD |12/19/2018 13:01|BB | T015KH18|
            2805761
           |COMMENTS: (200ml) 45202 44228
                                               2| 25.99| 1 | WATER | 0.5 PPB RLVS
 KE55RLVS | 12/19/2018 13:39 | BB | T015KH18 |
           2569601
           |COMMENTS: (10ml) 45202 44228
                                               3| 25.99| 1 | WATER | BLANK
         |12/19/2018 14:18|BB | TO15KH18|
 KE56BLK
            235200
           COMMENTS: 44228
          |12/19/2018 16:01|BB | TO15KH18|
                                               3| 25.99| 1 | WATER | BLANK
 KE57BLK
           225536
           COMMENTS: 44228
                                               4| 25.99| 1 | WATER | 1835379001
 KE58I001 |12/19/2018 17:01|BB | T015KH18|
           221312
           COMMENTS:
 KE59I002 |12/19/2018 17:41|BB | T015KH18|
                                              14| 25.99| 1 | WATER | 1835379002
           230912
           | COMMENTS:
                                              15| 25.99| 1 | WATER | 1835379003
 KE60I003 |12/19/2018 18:21|BB | T015KH18|
          232640
           COMMENTS:
| KE61I004 |12/19/2018 19:01|BB | T015KH18|
                                              16 | 25.99 | 1 | WATER | 1835379004
           2320641
           COMMENTS:
                                               3 | 25.99 | 1 | WATER | 1835379005
 KE62I005 | 12/19/2018 19:41 | BB | T015KH18 |
          238272
           |COMMENTS:
                                               9| 25.99| 1 | WATER | 1835290001
 KE63I001 |12/19/2018 21:43|BB | T015KH18|
            242816
           | COMMENTS:
 KE64I002 |12/19/2018 22:24|BB | T015KH18|
                                              10 | 25.99 | 1 | WATER | 1835290002
            265344
           COMMENTS:
 KE65I003 | 12/19/2018 23:04 | BB | T015KH18 |
                                              11 | 25.99 | 1 | WATER | 1835290003
            2872321
           COMMENTS:
KE66I002 |12/19/2018 23:42|BB | T015KH18|
                                              10 | 25.99 | 1 | WATER | 1835290002
           267520
           COMMENTS: 1:20 dil 10ml
 KE67I004 |12/20/2018 00:21|BB | T015KH18| 12| 25.99| 1 |WATER |1835290004
            259904
           | COMMENTS:
                                      Page 1
```

### seqnce

```
| KE68I002 | 12/20/2018 01:02|BB | T015KH18|
                                              6 | 25.99 | 1 | WATER | 1835293002
          2472321
           COMMENTS:
KE69I004 |12/20/2018 01:42|BB | T015KH18|
                                              8 | 25.99 | 1 | WATER | 1835293004
          277184
           COMMENTS:
KE70I001 |12/20/2018 02:23|BB | T015KH18|
                                             13 | 25.99 | 1 | WATER | 1835256003
           334592
           COMMENTS:
KE71I001 |12/20/2018 03:02|BB | T015KH18|
                                             13 | 25.99 | 1 | WATER | 1835256003
          249856
           |COMMENTS: 1:20 DIL 10ML
 KE72I003 |12/20/2018 03:40|BB | T015KH18|
                                              7 | 25.99 | 1 | WATER | 1835293003
          241280
           |COMMENTS: 1:20 dil 10ml
| KE74I004 | 12/20/2018 07:57|BB | TO15KH18|
                                              8 | 25.99 | 1 | WATER | 1835293004
                  0
           |COMMENTS: 1:20 dil 10ml
| KE75I001 |12/20/2018 08:42|BB | T015KH18|
                                               4 | 25.99 | 1 | WATER | 1835293001
           240128
           COMMENTS:
| KE76I003 | 12/20/2018 09:19|BB | T015KH18|
                                              7 | 25.99 | 1 | WATER | 1835293003
          279808
           |COMMENTS:
| KE771001 | 12/20/2018 09:58|BB | TO15KH18| 16| 25.99| 1 | WATER | 1835288001
            219264
           |COMMENTS: 1:1000 dil 20ml of 100x
```

MS Integration Params: rteint.p

Quant Time: Dec 20 14:42:07 2018 Results File: TO15KH18.RES

Quant Method : I:\K-5975-K\METHODS\T015KH18.m (RTE Integrator )

Title : TO-15

Last Update : Wed Dec 05 10:49:41 2018 Response via : Initial Calibration

Inte	rnal Standards	R.T.	QIon	Response	Conc Units	Area%
1)	Bromochloromethane	9.40	130	242816	20.00 ppb 8	80.47
21)	1,4-Difluorobenzene	11.19	114	3226327		35.71
44)	Chlorobenzene d5	15.49	117	2636656	20.00 ppb 9	3.90
Syst	em Monitoring Compounds				%Rec	covery
52)	Bromofluorobenzene	17.13	95	1431353	19.32 ppb 9	6.60%
ľarg	et Compounds				Ç	value
	Dichlorodifluoromethane	5.10	85	66562	0.4976 ppb	96
3)	Chloromethane	0.00	50		Not Detected	
4)	Freon 114	0.00	135		Not Detected	
	Vinyl Chloride	0.00	62		Not Detected	
	1,3-Butadiene	0.00	54		Not Detected	
•	Bromomethane	0.00	94		Not Detected	
	Chloroethane	0.00	64		Not Detected	
	Acetone	6.59	43	1244452	16.4869 ppb	99
	Trichlorofluoromethane	6.78	101	26639	0.2235 ppb	100
	1,1-Dichloroethene	0.00	61	0704	Not Detected	0.6
	Methylene Chloride	7.46	84	9704	0.2423 ppb	96
,	Freon 113	0.00	151		Not Detected	
	Carbon Disulfide	0.00	76 96		Not Detected Not Detected	
	trans-1,2-Dichloroethene 1,1-Dichloroethane	0.00	63		Not Detected	
	methyl t-butyl ether	0.00	73		Not Detected	
	Vinyl Acetate	0.00	86		Not Detected	
	2-Butanone	8.82	43	102658	1.0656 ppb	98
	cis-1,2-Dichloroethene	0.00	96	102030	Not Detected	50
	Ethyl Acetate	0.00	61		Not Detected	
	Hexane	9.46	57	26068	0.3219 ppb	92
•	Chloroform	0.00	83		Not Detected	-
-	Tetrahydrofuran	9.90	42	33628	0.6278 ppb	98
	1,2-Dichloroethane	0.00	62		Not Detected	
	1,1,1-Trichloroethane	10.48	97	76875	0.7594 ppb	98
	Benzene	10.90	78	68560	0.5107 ppb	99
29)	Carbon Tetrachloride	0.00	117		Not Detected	
30)	Cyclohexane	0.00	84		Not Detected	
31)	1,2-Dichloropropane	0.00	63		Not Detected	
32)	Bromodichloromethane	0.00	83		Not Detected	
33)	Trichloroethene	0.00	130		Not Detected	
	Heptane	12.16	71	10206	0.1974 ppb #	82
35)	cis-1,3-Dichloropropene	0.00	75		Not Detected	
36)	4-Methyl-2-Pentanone	0.00	43		Not Detected	
	trans-1,3-Dichloropropene	0.00	75		Not Detected	
	1,1,2-Trichloroethane	0.00	97		Not Detected	
	Toluene	13.68	91	208144	1.3038 ppb	98
	2-Hexanone	0.00	43		Not Detected	
	Dibromochloromethane	0.00	129		Not Detected	
	1,2-Dibromoethane	0.00	107	10000	Not Detected	0-
-	Tetrachloroethene	14.84	166	13220	0.1671 ppb	95
	Chlorobenzene	0.00	112	45506	Not Detected	0.0
	Ethylbenzene	15.93	91	47706	0.2275 ppb	98
	m,p-Xylene	16.10	91 172	177574	1.0674 ppb	98
	Bromoform	0.00	173	70207	Not Detected	0.0
	Styrene	16.51	104	72397	0.6467 ppb	98
50)	1,1,2,2-Tetrachloroethane	0.00	83		Not Detected	

^{(#) =} qualifier out of range (m) = manual integration KE63I001.D T015KH18.m Thu Dec 20 14:54:38 2018

MS Integration Params: rteint.p

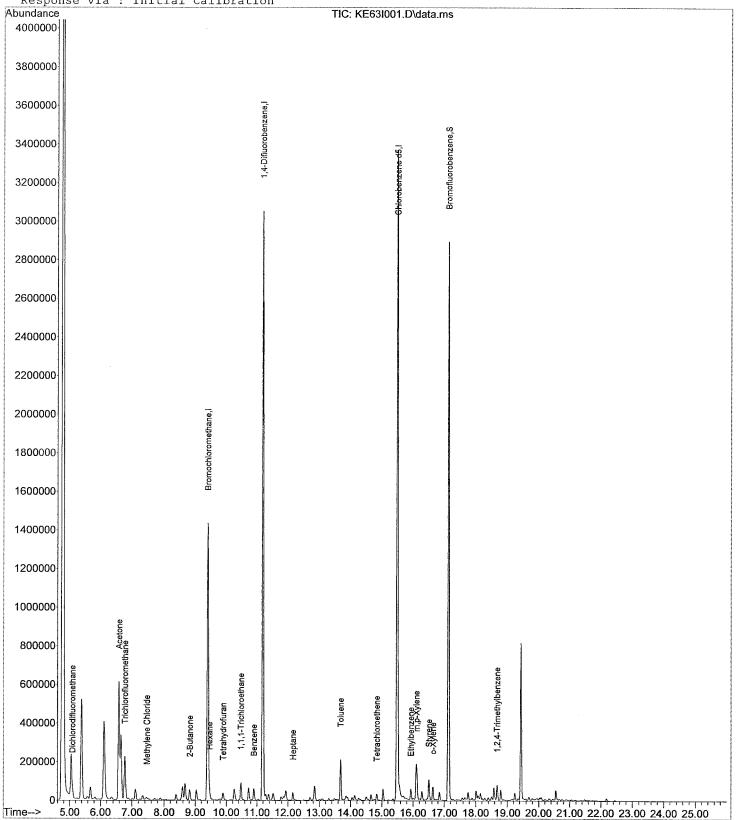
Quant Time: Dec 20 14:42:07 2018 Results File: T015KH18.RES

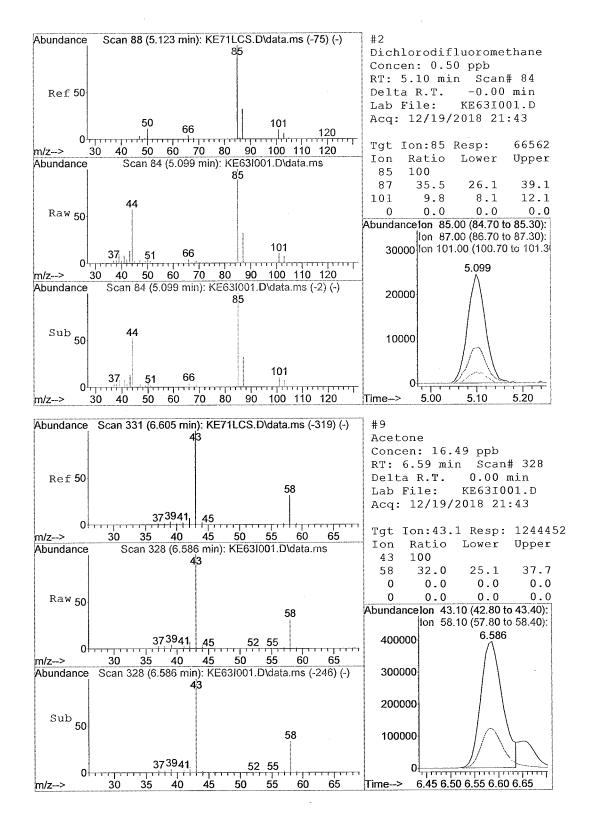
Quant Method :  $I:\K-5975-K\METHODS\T015KH18.m$  (RTE Integrator )

Title : TO-15

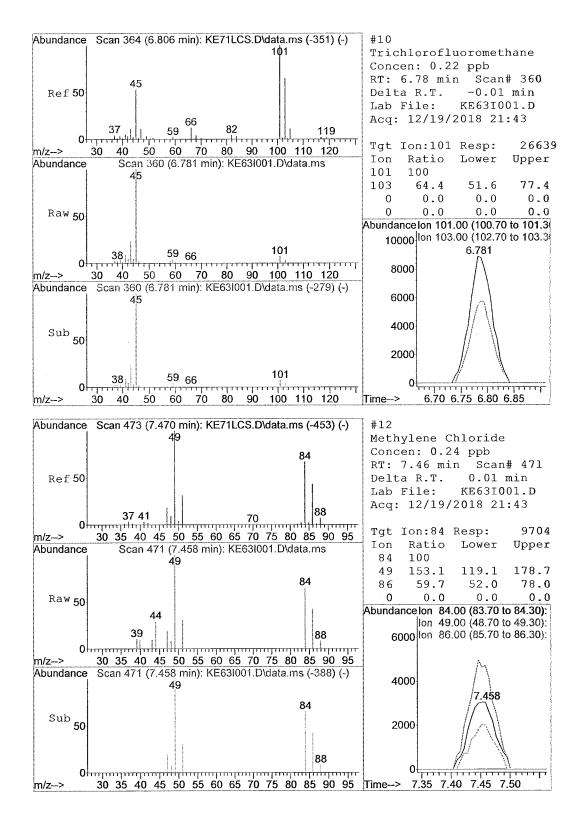
Last Update : Wed Dec 05 10:49:41 2018 Response via : Initial Calibration

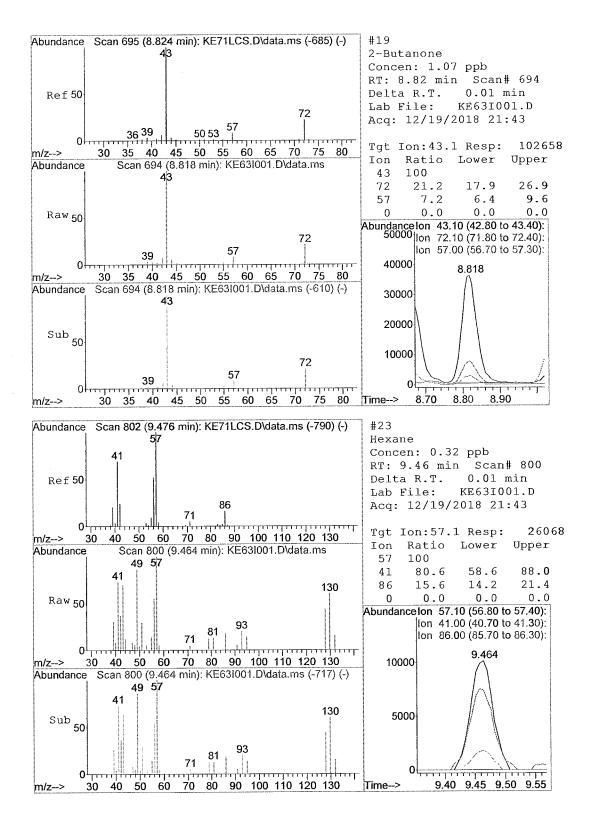
	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
51	.) o-Xylene	16.63	91	57296	0.3526 ppb	97
53	3) 4-Ethyl Toluene	0.00	105		Not Detected	i
54	l) 1,3,5-Trimethylbenzene	0.00	105		Not Detected	i i
5.5	5) 1,2,4-Trimethylbenzene	18.68	1.05	58167	0.3324 ppb	98
56	5) Benzyl Chloride	0.00	91		Not Detected	i i
57	) m-Dichlorobenzene	0.00	1.46		Not Detected	Ė
58	3) p-Dichlorobenzene	0.00	146		Not Detected	Ė
5 9	) o-Dichlorobenzene	0.00	146		Not Detected	i i
60	)) 1,2,4-Trichlorobenzene	0.00	180		Not Detected	Ė
61	) Hexachloro-1,3-butadiene	0.00	225		Not Detected	i

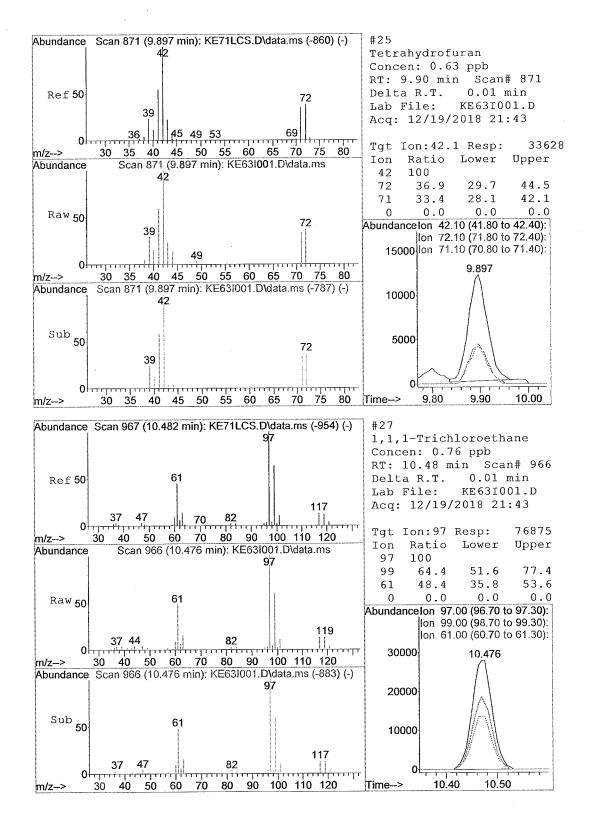

MS Integration Params: rteint.p

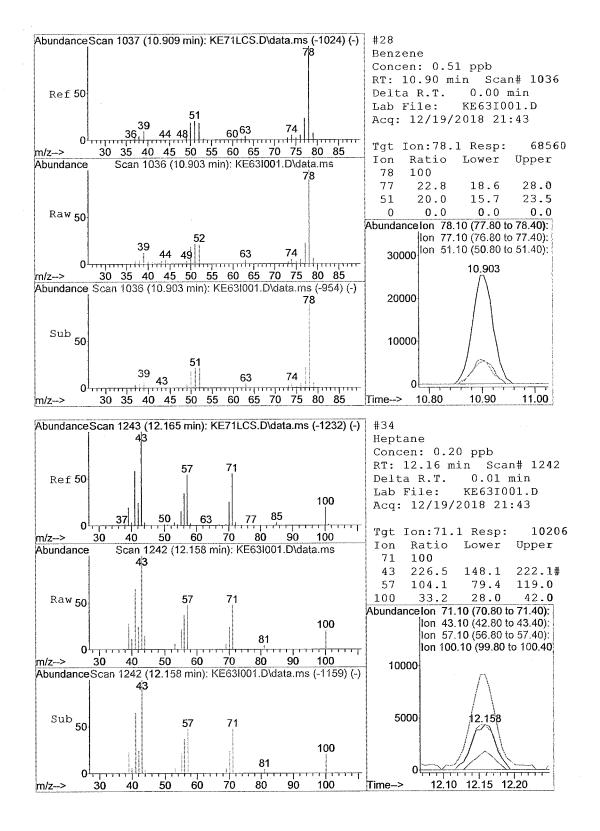

Quant Time: Dec 20 14:42:07 2018 Results File: TO15KH18.RES

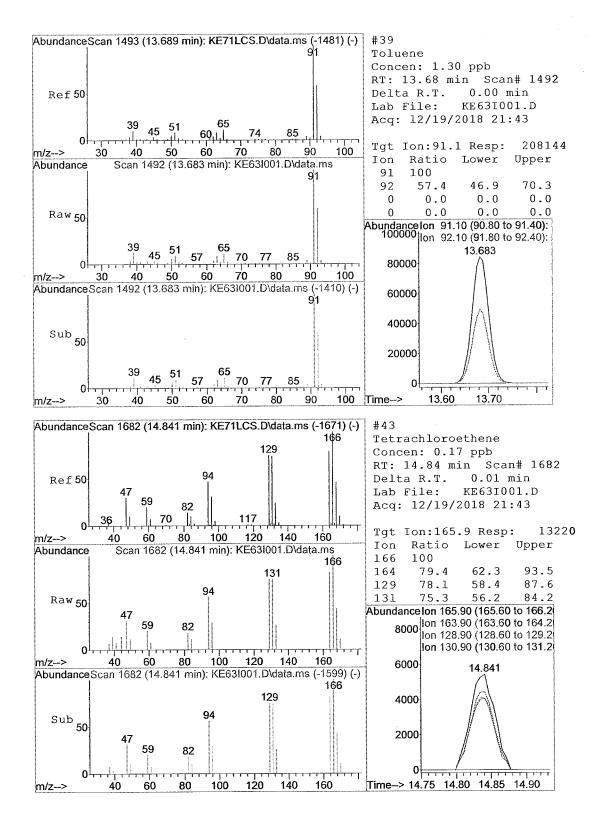
Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

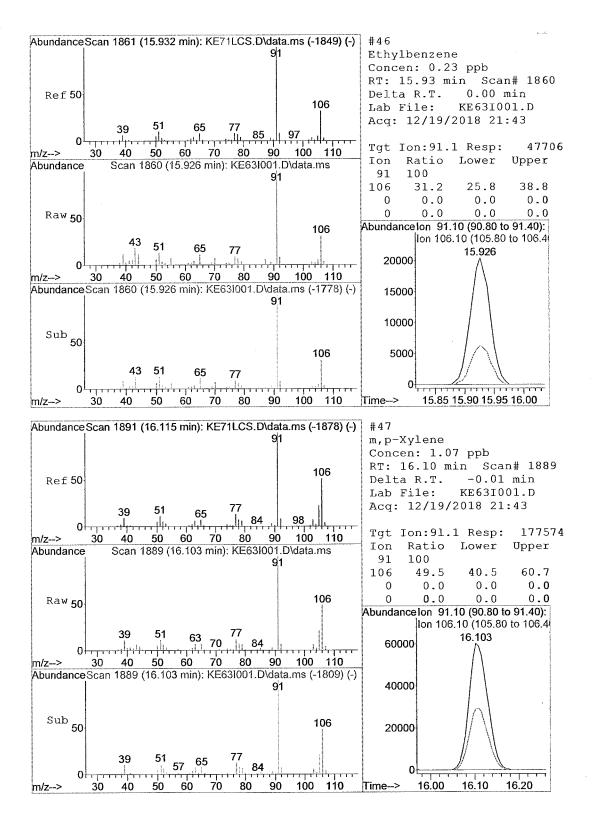

Title : TO-15


Last Update : Wed Dec 05 10:49:41 2018 Response via : Initial Calibration

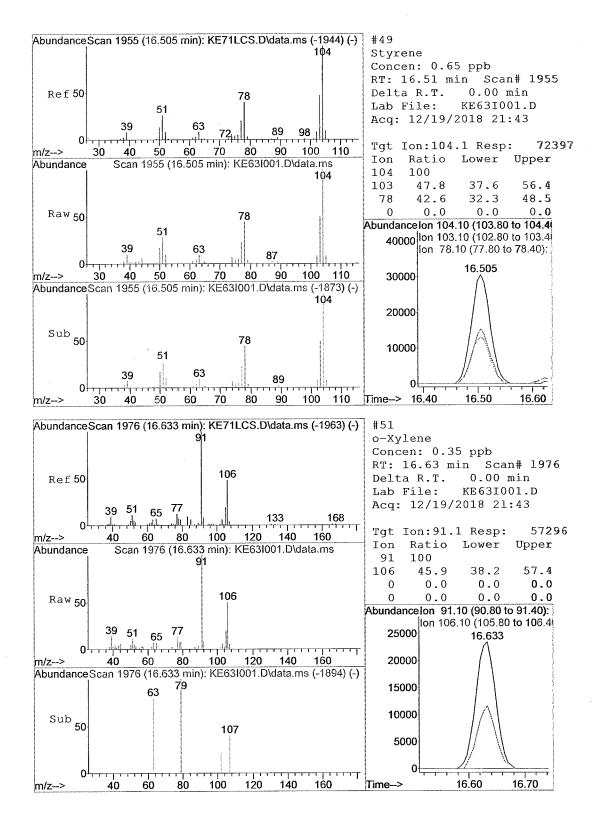


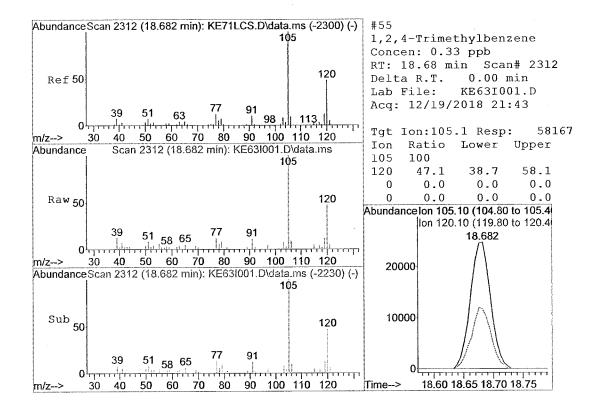


TO15KH18.m 5975-K










T015KH18.m 5975-K 18352900**0**1 Page 10



TO15KH18.m 5975-K 1835290001 Page 11



Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE63I001.D Via1: 9 Acq Time : 12/19/2018 21:43 Operator: BB Inst : 5975-K Multiplr: 1.00 Sample : 1835290001 Misc

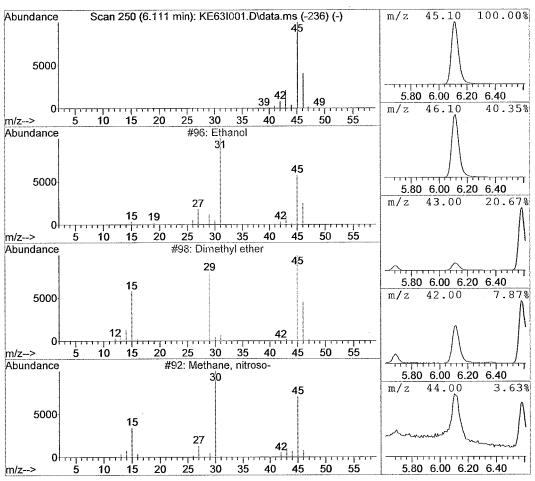
Misc : MS Integration Par	ams: rteint.p		Multip	lr: 1.00
Method : P:\K-59 Title : TO-15 Library : C:\DATA	75-K\METHODS\TO BASE\NIST11.L	15KH18.m (RTE )	Integrator)	·
R.T. Conc	Area	Relative to	ISTD	ISTD Area
5.39 7.54 ppb	1589466	Bromochloromet	thane	4216670
Hit# of 20	Tentative ID	Ref#	CAS#	Qual
<pre>1 Isobutane 2 5-Methyloxazolidi: 3 Propane 4 Isopropylsulfonyl 5 Cyclobutylamine</pre>		1878 78 19275	000075-28-5 058328-22-6 000074-98-6 010147-37-2 002516-34-9	9.00 4.00 4.00
5000	91 min): KE63I001.D\da 43 39 50 57 35 40 45 50 55 60 69 #235: Isobutane 43	walion kasaka ka /z 43.05 5.00 5.20 5.40 m/z 41.10	•	
m/z> 5 10 15 20 25 30	39   53 57 	5 70 75 80 85 90 95	5.00 5.20 5.40 m/z 42.10	
5000 15 30 0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	56 35 40 45 50 55 60 65 #78: Propane	72 86 	5.00 5.20 5.40 m/z 39.10 5.00 5.20 5.40	19.87%
5000			m/z 44.00	11.20%

15

m/z-->

39

15 0 | 15 | 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 | 5.00 5.20 5.40 5.60 5.80


Data File: P:\K-5975-K\2018\DEC18\19DEC18\KE63I001.D Vial: 9 Operator: BB Acq Time : 12/19/2018 21:43 : 5975-K : 1835290001 Inst Sample Multiplr: 1.00 Misc

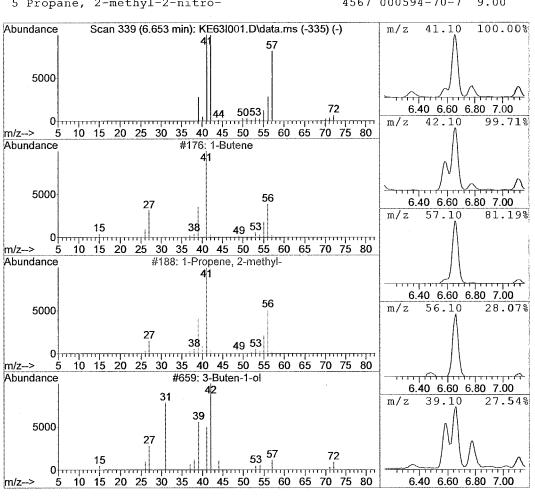
MS Integration Params: rteint.p

: P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

R.T.	Conc	Area	Relative to	ISTD	ISTD Area
6.11	6.91 ppb	1457542	Bromochlorome	thane	421667 <b>0</b>
Hit# of	20	Tentative ID	Ref#	CAS#	Qual
	thyl ether ne, nitroso-		98 92 100	000064-17-5 000115-10-6 000865-40-7 000064-18-6 000144-62-7	9.00 4.00 4.00
Abusalasas	C 250 (C 11	1 min): KEC21001 Did	oto mo ( 226) ( )	l m / m / A F 10	100 008



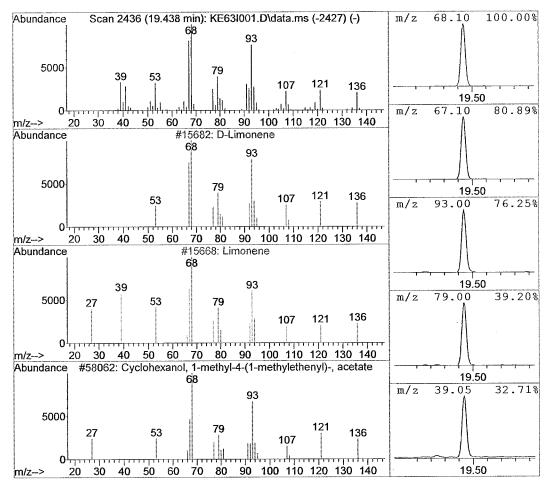

Data File : P:\K-5975-K\2018\DEC18\T9DEC18\KE63I001.D Vial: 9
Acq Time : 12/19/2018 21:43 Operator: BB
Sample : 1835290001 Inst : 5975-K
Misc : Multiplr: 1.00

MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

R.T.	Conc	Area	Relative	to IS	STD	ISTD Area
6.65	4.17 ppb	878589	Bromochloro	metha	ne	421667 <b>0</b>
Hit# of	20	Tentative ID	Re	£#	CAS#	Qual
1 1-Bute	ene	71- Jan	$\overline{U}_{1}^{}$	76 00	00106-98-9	14.00
2 1-Pro	pene, 2-methy	$1 \lambda \theta^{\prime\prime}$	' 1	88 00	0115-11-7	10.00
3 3-But		Charles	6	59 00	00627-27-0	9.00
4 Cyclo	butane	11	1	79 00	00287-23-0	9.00
5 Propa	ne, 2-methyl-	-2-nitro-	45	67 00	0594-70-7	9.00
Abundance	Coop 220 (6 6)	E2 min). KEC21001 DId	to me ( 225) ( )	1	1/z 41.10	100.00%
Abundance	Scan 339 (6.6)	53 min): KE63l001.D\da	ata.ms (-333) (-)	II	n/z 41.10	100.00




MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

R.T.	Conc	Area	Relative to	ISTD	ISTD Area
19.44	4.14 ppb	1798244	Chlorobenzene	<b>d</b> 5	8680269
Hit# of	20	Tentative ID	Ref#	CAS#	Qual
4 Cyclo	ene hexanol, 1-me hexene, 1-met	thyl-4-(1-methy hyl-4-(1-methy ane, 7,7-dimetl	15668 yle 58062 let 15879	005989-27-5 000138-86-3 010198-23-9 005989-54-8 000471-84-1	89.00 80.00 74.00



## Quantitation Report

Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE64I002.D Vial: 10 Acq Time : 12/19/2018 22:24 Operator: BB Sample : 1835290002 Inst : 5975-K Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Dec 20 14:43:14 2018 Results File: TO15KH18.RES

Quant Method : I:\K-5975-K\METHODS\T015KH18.m (RTE Integrator )

Title : TO-15

Last Update : Wed Dec 05 10:49:41 2018 Response via : Initial Calibration

DataAcq Meth : TO-15.M

Internal Standards	R.T.	QIon	Response	Conc Units Are	a%
1) Bromochloromethane	9.40	130	265344	20.00 ppb 87.9	3 .
21) 1,4-Difluorobenzene	11.19	114	3520895		4
44) Chlorobenzene d5	15.49	117	2833140	20.00 ppb 100.9	0
System Monitoring Compounds				%Recove	ry
52) Bromofluorobenzene	17.13	95	1505222	18.91 ppb 94.5	4%
Target Compounds				Qval	ue
2) Dichlorodifluoromethane	5.10	85	63031	0.4312 ppb	100
3) Chloromethane	0.00	50		Not Detected	
4) Freon 114	0.00	135		Not Detected	
5) Vinyl Chloride	0.00	62		Not Detected	
6) 1,3-Butadiene	5.62	54	29325	0.8108 ppb #	30 0875, 2/20/18
7) Bromomethane	0.00	94		Not Detected	10016
8) Chloroethane	0.00	64		Not Detected A	2/2000
9) Acetone	6.54		51600985	625.5876 ppb m	04517
10) Trichlorofluoromethane	6.78	101	107023	0.8217 ppb	99
11) 1,1-Dichloroethene	0.00	61		Not Detected	
12) Methylene Chloride	7.45	84	9042	0.2066 ppb	89
13) Freon 113	0.00	151		Not Detected	
14) Carbon Disulfide	7.79	76	31929	0.2972 ppb	97
15) trans-1,2-Dichloroethene	0.00	96	01000	Not Detected	
16) 1,1-Dichloroethane	0.00	63		Not Detected	
17) methyl t-butyl ether	0.00	73		Not Detected	
18) Vinyl Acetate	0.00	86		Not Detected	
19) 2-Butanone	8.82	43	125918	1.1961 ppb	97
•	0.00	96	123310	Not Detected	3,
20) cis-1,2-Dichloroethene	0.00	61		Not Detected	
22) Ethyl Acetate 23) Hexane	9.46	57	60518	0.6848 ppb	87
	0.00	83	00310	Not Detected	07
24) Chloroform		42	18971	0.3245 ppb #	92
25) Tetrahydrofuran	9.88	62	109/1	<u></u>	92
26) 1,2-Dichloroethane	0.00			Not Detected Not Detected	
27) 1,1,1-Trichloroethane	0.00	97 70	202676		98
28) Benzene	10.90	78	293676	2.0047 ppb	90
29) Carbon Tetrachloride	0.00	117		Not Detected	
30) Cyclohexane	0.00	84		Not Detected	
31) 1,2-Dichloropropane	0.00	63		Not Detected	
32) Bromodichloromethane	0.00	83		Not Detected	
33) Trichloroethene	0.00	130		Not Detected	0.3
34) Heptane	12.16	71	20806	0.3688 ppb	93
35) cis-1,3-Dichloropropene	0.00	75		Not Detected	
36) 4-Methyl-2-Pentanone	12.71			113.8801 ppb 'V'	98
37) trans-1,3-Dichloropropene				Not Detected	
38) 1,1,2-Trichloroethane	0.00	97		Not Detected	
39) Toluene	13.68	91	407322	2.3380 ppb	99
40) 2-Hexanone	0.00	43		Not Detected	
41) Dibromochloromethane	0.00	129		Not Detected	
42) 1,2-Dibromoethane	0.00	107		Not Detected	<u>.</u>
43) Tetrachloroethene	0.00	166		Not Detected	. /
45) Chlorobenzene	0.00	112		Not Detected	199 73 R.F. 2/20/19
46) Ethylbenzene	15.93	91	7155513	31.7536 ppb	199 0 120/14
47) m,p-Xylene	16.10	91	33009870	184.6693 ppb m 7'	73/8/7 101
48) Bromoform	0.00	173		Not Detected	VI 1
49) Styrene	16.51	104	30032	0.2496 ppb	92
50) 1,1,2,2-Tetrachloroethane	0.00	83		Not Detected	

^{(#) =} qualifier out of range (m) = manual integrationKE64I002.D T015KH18.m Thu Dec 20 14:54:52 2018

Quantitation Report

Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE64I002.D Vial: 10
Acq Time : 12/19/2018 22:24 Operator: BB
Sample : 1835290002 Inst : 5975-K
Misc : Multiplr: 1.00

Misc :
MS Integration Params: rteint.p

Quant Time: Dec 20 14:43:14 2018 Results File: T015KH18.RES

Quant Method: I:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

Last Update : Wed Dec 05 10:49:41 2018

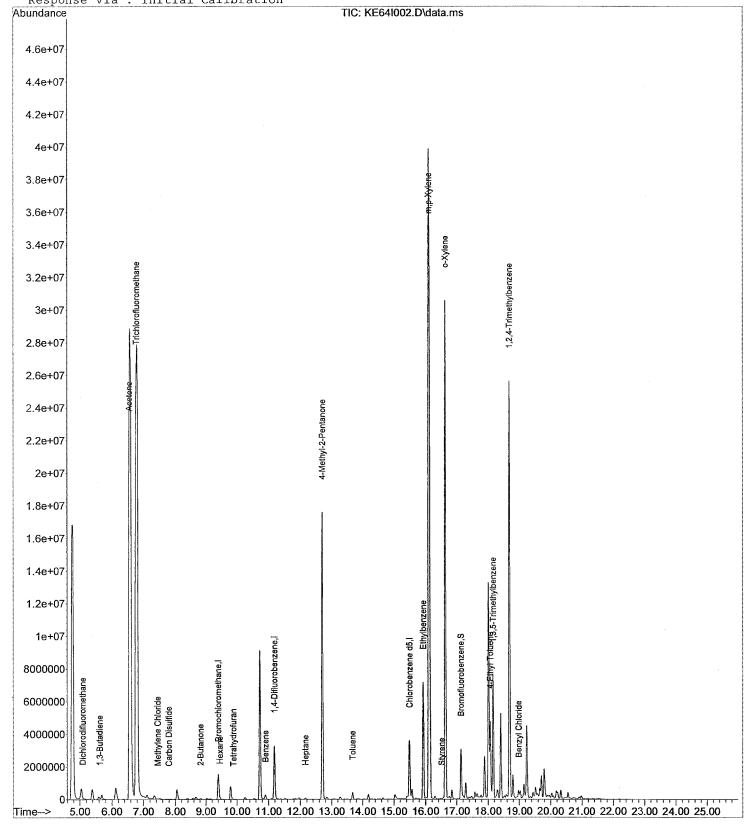
Response via : Initial Calibration

DataAcq Meth : TO-15.M

	Compound	R.T.	QIon	Response	e Conc Unit	Qvalue
51)	o-Xylene	16.63	91	22867470	130.9534 ppb	90 T, C
53)	4-Ethyl Toluene	18.07	105	3524289	15.8472 ppb	100
54)	1,3,5-Trimethylbenzene	18.16	105	5379475	26.4645 ppb	100
55)	1,2,4-Trimethylbenzene	18.68	105	19197293	102.0921 ppb	980,0
56)	Benzyl Chloride	18.97	91	-322698	- 3.8724 ppb	# 55
57)	m-Dichlorobenzene	0.00	146		Not Detecte	d
58)	p-Dichlorobenzene	0.00	146		Not Detecte	d
59)	o-Dichlorobenzene	0.00	146		Not Detecte	d ·
60)	1,2,4-Trichlorobenzene	0.00	180		Not Detecte	d
61)	Hexachloro-1,3-butadiene	0.00	225		Not Detecte	d ·

#### Quantitation Report

Data File : P:\K-5975-K\2018\DEC18\T9DEC18\KE64I002.D Vial: 10
Acq Time : 12/19/2018 22:24 Operator: BB
Sample : 1835290002 Inst : 5975-K
Misc : Multiplr: 1.00


MS Integration Params: rteint.p

Quant Time: Dec 20 14:43:14 2018 Results File: T015KH18.RES

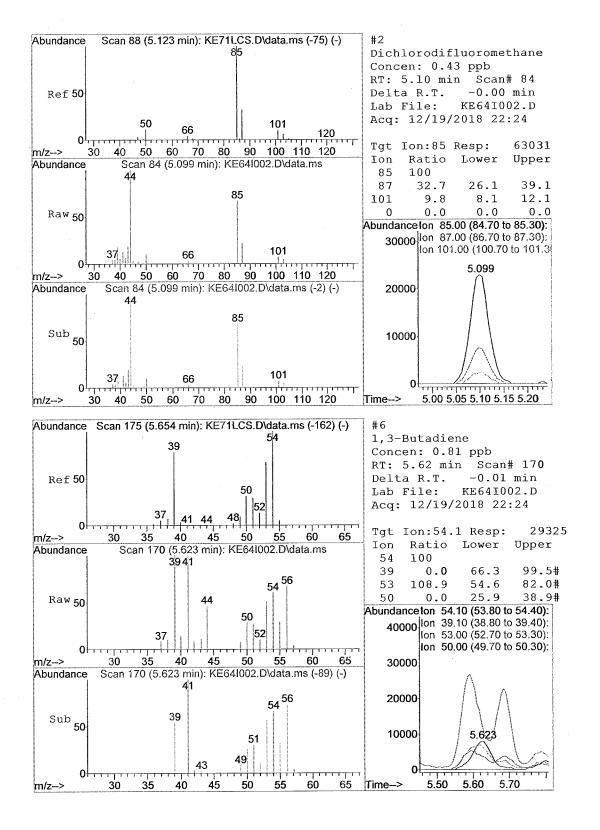
Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

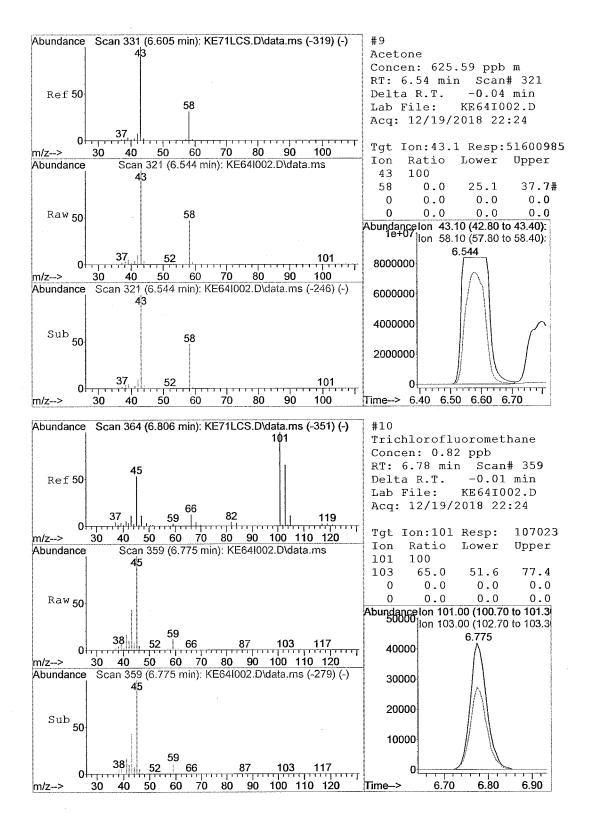
Title : TO-15

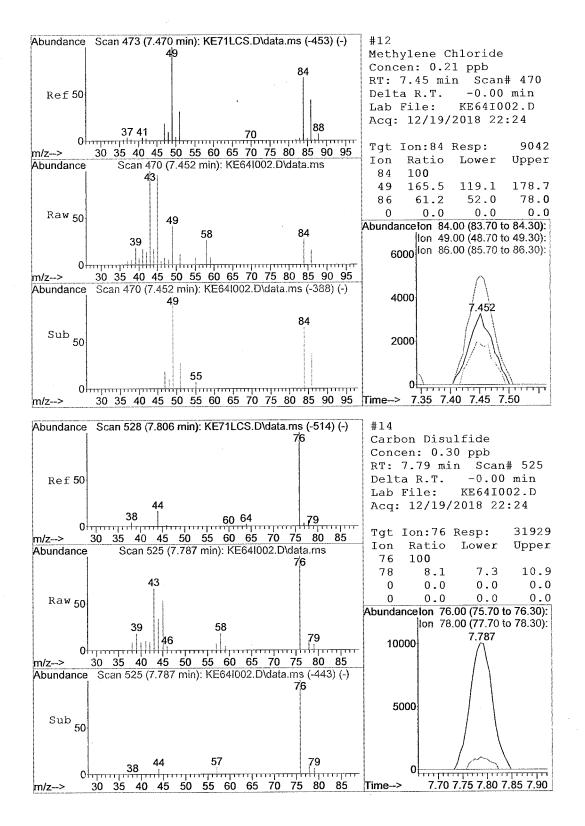
Last Update : Wed Dec 05 10:49:41 2018 Response via : Initial Calibration

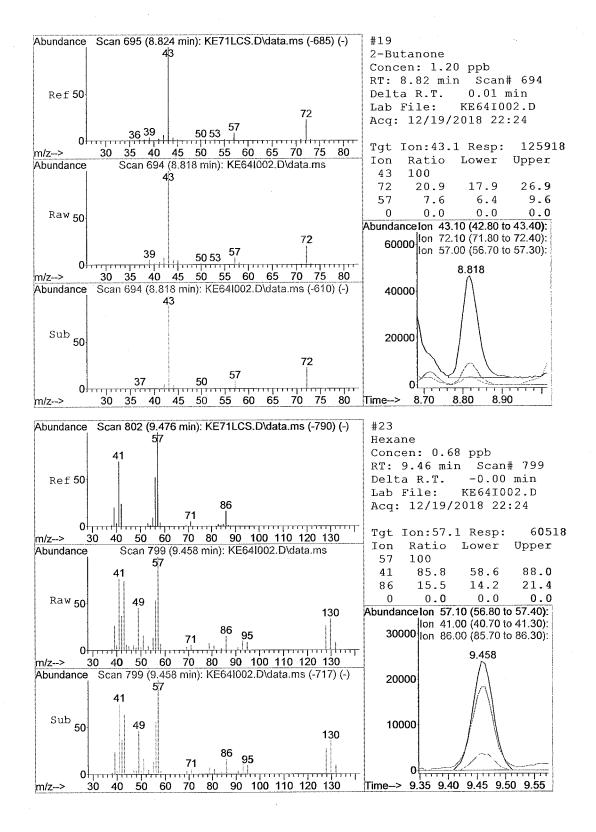


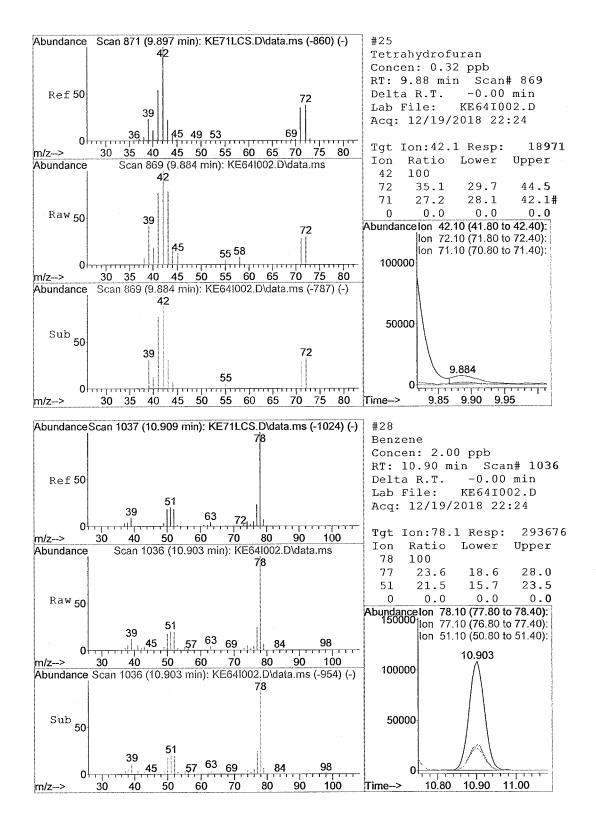
Data Path: P:\K-5975-K\2018\DEC18\19DEC18\ Data File: KE64I002.D MANUAL RE-INTEGRATION Acq On : 12/19/2018 22:24 missed peak assignment : BB Operator 1835290002 Sample assigned incorrect name to peak Inst 5975-K □ over-integrated peak's area Misc ☐ under-integrated peak's area : 10 Sample Multiplier: 1 ALS Vial other | Quant Time: Dec 20 07:29:48 2018 Quant Method: I:\K-5975-K\METHODS\T015KH18.m Quant Title : TO-15 QLast Update: Wed Dec 05 10:49:41 2018 Response via: Initial Calibration Ion 43.10 (42.80 to 43.40): KE64I002.D\data.ms Abundance Ion 58.10 (57.80 to 58.40): KE64I002.D\data.ms 1.2e+07 1e+07 6.544 8000000 6000000 4000000 2000000 5.40 5.50 5.60 5.70 5.80 5.90 6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.70 6.80 6.90 7.00 7.10 7.20 7.30 7.40 7.50 7.60 7.70 7.80 Time--> Scan 321 (6.544 min): KE64I002.D\data.ms Abundance 5000000 58 39 101 36 60 100 35 50 70 75 80 85 90 95 105 110 m/z---> 30 40 45 55 65 Scan 331 (6.605 min): KE71LCS.D\data.ms (-319) (-) Abundance 43 5000 58 39 36 35 75 110 55 70 80 90 95 100 105 m/z--> 30 40 45 50 60 65 85 TIC: KE64I002.D\data.ms Acetone 6.544min (-0.043) 625.59 ppb m response 51600985 Ion Act% Exp% 100.00 43.10 100.00 58.10 31.40 0.00# 0.00 0.00 0.00 0.00 0.00 0.00

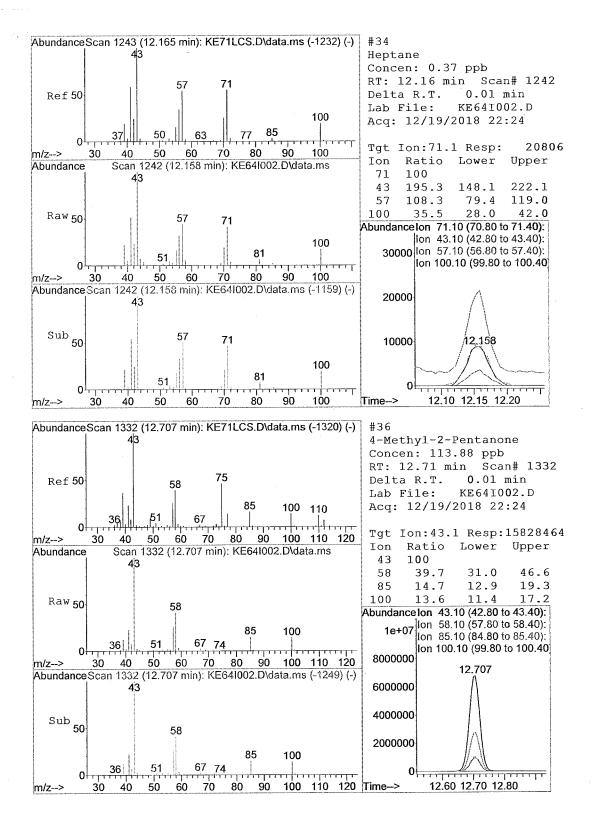

Quantitation Report (Qedit) Data Path : P:\K-5975-K\2018\DEC18\19DEC18\ Data File: KE64I002.D MANUAL RE-INTEGRATION Acq On : 12/19/2018 22:24 Operator : BB 🔀 missed peak assignment : 1835290002 Sample assigned incorrect name to peak Inst : 5975-K Misc ☐ over-integrated peak's area ALS Vial : 10 Sample Multiplier: 1 ☐ under-integrated peak's area □ other Quant Time: Dec 20 07:29:48 2018 12/20/14 Quant Method: I:\K-5975-K\METHODS\T015KH18.m initials 13 13 Quant Title : TO-15 QLast Update: Wed Dec 05 10:49:41 2018 Response via: Initial Calibration Ion 91.10 (90.80 to 91.40): KE64I002.D\data.ms Abundance Ion 106.10 (105.80 to 106.40); KE64I002.D\data.ms 1e+07 16.097 8000000 6000000 4000000 2000000 15.00 15.40 Time--> 15.20 15.60 15.80 16.00 16.20 16.40 16.60 16.80 17.00 17.20 Abundance Scan 1888 (16.097 min): KE64I002.D\data.ms 91 106 5000000

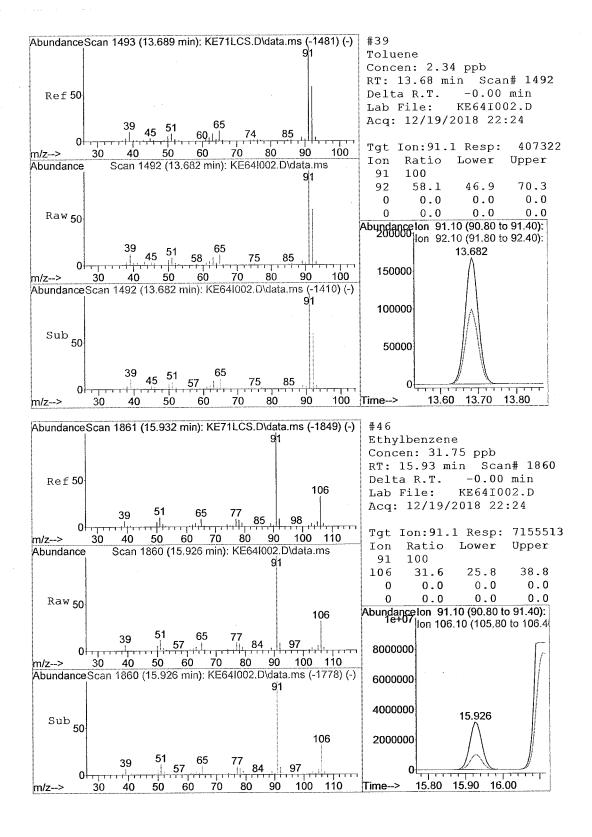

0		39	43	51	55	61,	65   6	69 <b>7</b> 3	77	81	87			98 10	)2	111	1	119	126	)		14	2	
m/z>	30 35	40	45	50	55	60	65	70	75	80	85	90	95	100	105	110	115	120	125	130	135	140	145	150
Abundance		*****			••••••		Scar	1891	(16.1	15 m	nin): Kl	E71L0	CS.D	data.r	ns (-18	378) (	-)						***************************************	
5000												91			106									
0		39	45	51	55	61	65	73	77	<del>                                     </del>	87			98 10	)2			******	11311					
m/z->	30 35	40	45	50	55	60	65	70		80 FIC: I	85 (E6410	90 002.D	95 \data	100 .ms	105	110	115	120	125	130	135	140	145	150

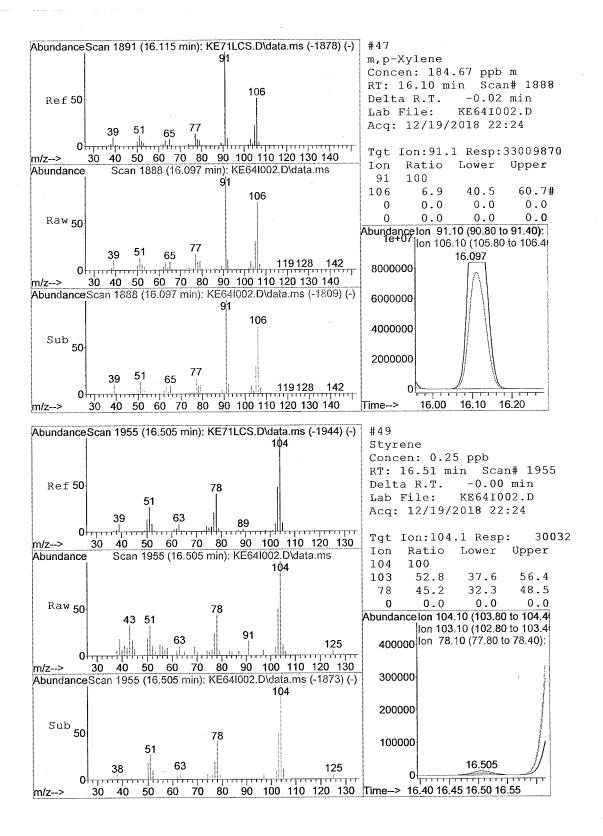

#### (47) m,p-Xylene

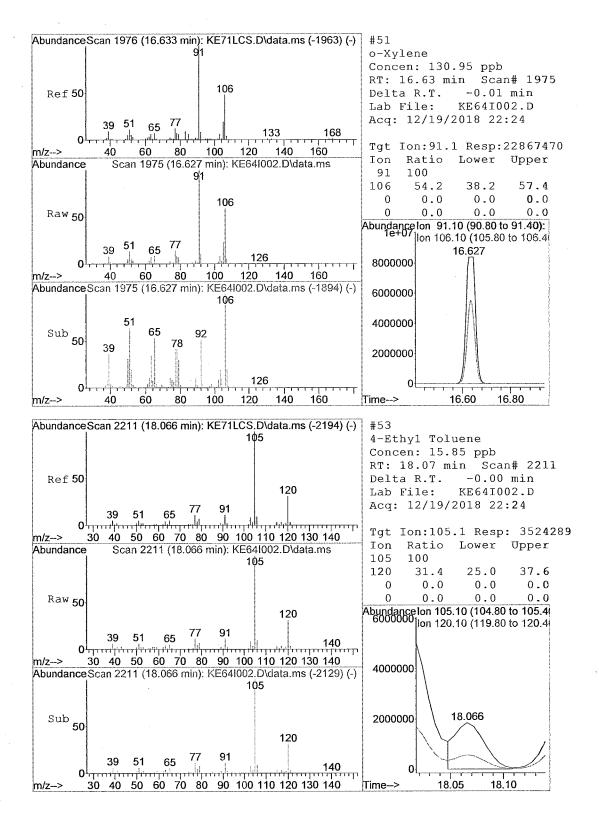

16.097min (-0.018) 184.67 ppb m

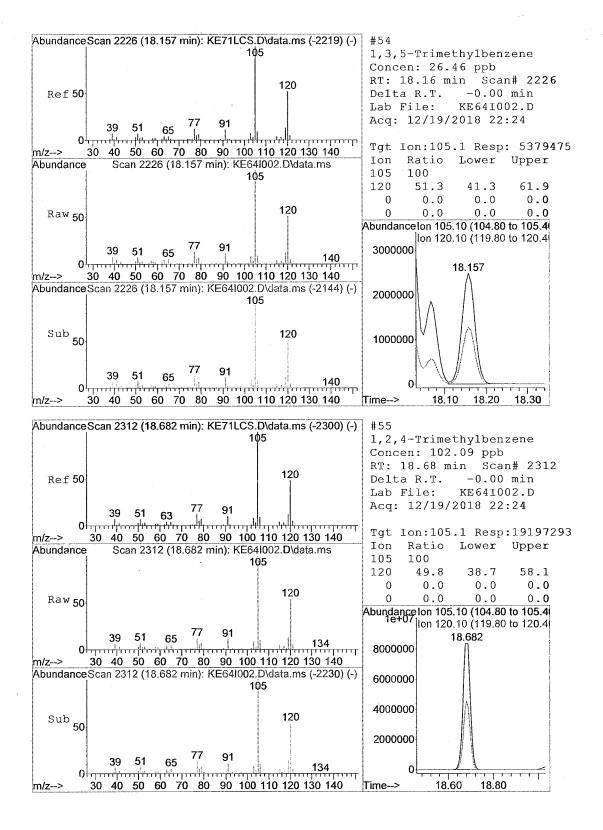

response	33009870	
Ion	Exp%	Act%
91.10	100.00	100.00
106.10	50.60	6.86#
0.00	0.00	0.00
0.00	0.00	0.00



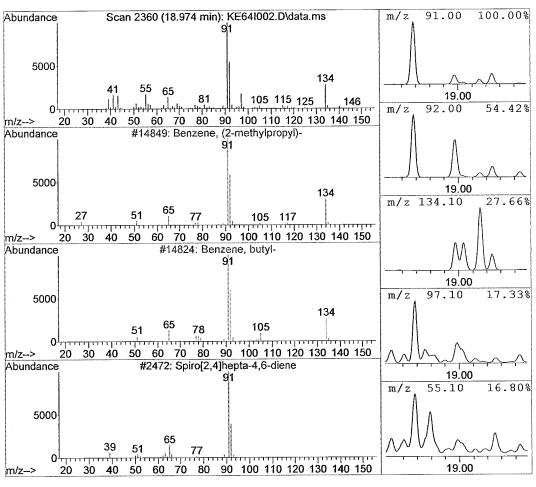












Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE64I002.D Vial: 10
Acq Time : 12/19/2018 22:24 Operator: BB
Sample : 1835290002 Inst : 5975-K
Misc : Multiplr: 1.00

MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

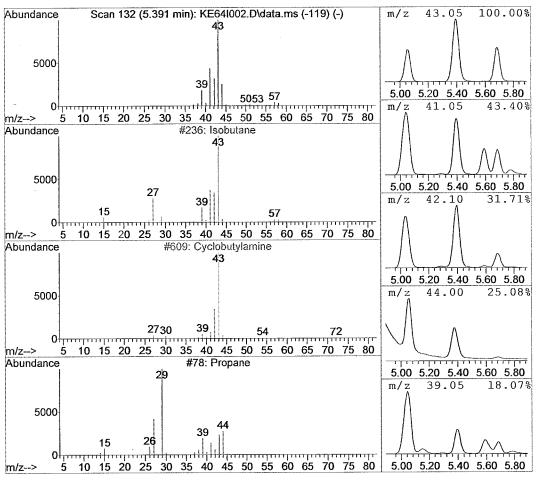
R.T.	Conc	Area	Relative to	ISTD	ISTD Area
18.98	2.99 ppb	1344520	Chlorobenzene	d5	8984912
Hit# of	20	Tentative ID	Ref#	CAS#	Qual
2 Benze: 3 Spiro 4 Benze:	ne, (2-methyl ne, butyl- [2,4]hepta-4, ne, (ethoxyme -Cycloheptatr	6-diene thyl)-	14824 2472 16404	000538-93-2 000104-51-8 000765-46-8 000539-30-0 000544-25-2	80.00 52.00 50.00



Data File : P:\K-5975-K\2018\DEC18\T9DEC18\KE64I002.D Vial: 10

Acq_Time : 12/19/2018 22:24 Operator: BB

Sample : 1835290002 Inst : 5975-K

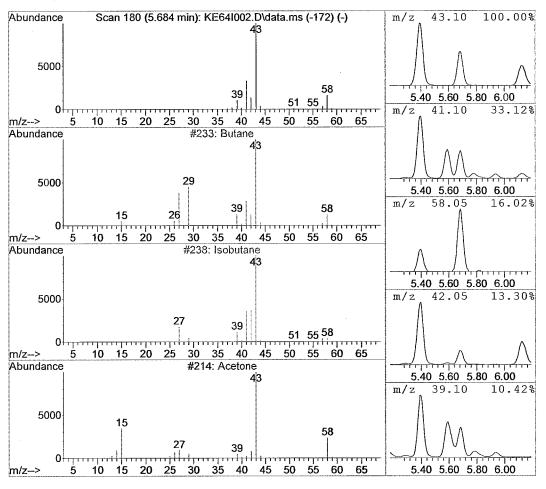

Misc : Multiplr: 1.00

MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

R.T.	Conc	Area	Relative to	ISTD	ISTD Area
5.39	8.47 ppb	1942290	Bromochloromet	thane	4584874
Hit# c	f 20	Tentative ID	Ref#	CAS#	Qual
3 Prop 4 Isop	obutylamine		609 78 19275	000075-28-5 002516-34-9 000074-98-6 010147-37-2 000513-36-0	53.00 9.00 4.00 4.00 4.00



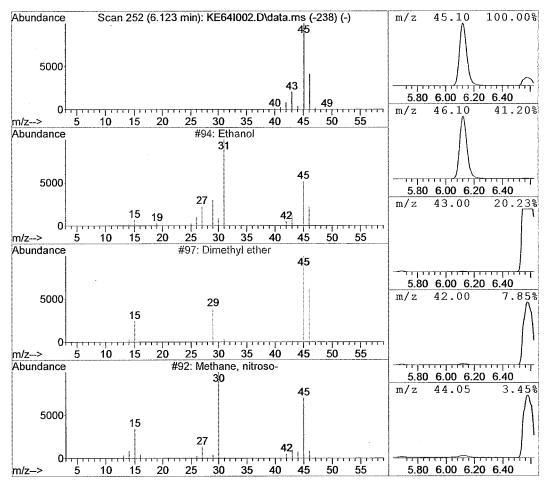

MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

R.T. Co	onc	Area	Relative to	ISTD	ISTD Area
5.68	3.67 ppb	841865	Bromochloromet	han <b>e</b>	458487 <b>4</b>
Hit# of 20	) 	Tentative ID	Ref#	CAS#	Qual
1 Butane 2 Isobutar 3 Acetone 4 Propyler 5 Propanal	ne oxide		238 214 225	000106-97-8 000075-28-5 000067-64-1 000075-56-9 000123-38-6	9.00 5.00 4.00




Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE64I002.D Vial: 10
Acq Time : 12/19/2018 22:24 Operator: BB
Sample : 1835290002 Inst : 5975-K
Misc : Multiplr: 1.00

MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

R.T.	Conc	Area	Relative to	ISTD	ISTD Area
6.12	10.98 ppb	2517828	Bromochloromet	chane	4584874
Hit# of	20	Tentative ID	Ref#	CAS#	Qual
	hyl ether ne, nitroso- c acid		97 92 100	$\begin{array}{c} 000064 - 17 - 5 \\ 000115 - 10 - 6 \\ 000865 - 40 - 7 \\ 000064 - 18 - 6 \\ 000144 - 62 - 7 \end{array}$	9.00 4.00 4.00



Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE64I002.D Vial: 10 Acq Time : 12/19/2018 22:24 Operator: BB : 5975-к Sample : 1835290002 Inst Multiplr: 1.00 Misc

Abundance

m/z-->

5000

15 45 55, 0 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

#8728: Propanoic acid, 2-methoxy-, methyl ester

0 43 47 55 75 88 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

27

	MS Inte	gration Params	: rteint.p			
		: P:\K-5975- : TO-15 : C:\DATABAS		15KH18.m (RTE ]	Integrator)	
	R.T.	Conc	Area	Relative to	ISTD	ISTD Area
_	7.34	2.79 ppb	640134	Bromochloromet	chane	4584874
	Hit# of	20, , ]	entative ID	Ref#	CAS#	Qual
-	1 2-Prop	anol, 2-methyl		859	000075-65-0	72.00
	2 3-Pent	anol		2090	000584-02-1	40.00
	3 Propan	oic acid, 2-me	thoxy-, meth	yl 8728	017639-76-8	9.00
	4 1,2-Bu				000584-03-2	9.00
	5 Formam	ide, N-methyl-		245	000123-39-7	4.00
	n/z> 5 Abundance	37/ 	nin): KE641002.D\d. 59 41 46 50 55 60 65 12-Propanol, 2-met	67 5 70 75 80 85 90 95	7.00 7.20 7.4 m/z 41.10	10 7.60 27.08%
5	5000 0 m/z> 5	15 27 37 10 15 20 25 30 35 4	41 55 40 45 50 55 60 65 \$2090: 3-Pentanol	5 70 75 80 85 90 95	7.00 7.20 7.4 m/z 43.05	10 7.60
-	Dundance	•	59		7.00 7.20 7.4	
i	5000	31			m/z 39.05	

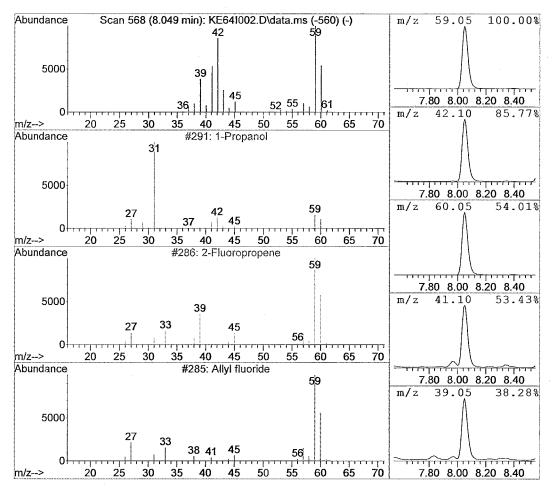
7.00 7.20 7.40 7.60

11.54%

57**.10** 

7.00 7.20 7.40 7.60

m/z


Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE64I002.D Vial: 10
Acq Time : 12/19/2018 22:24 Operator: BB
Sample : 1835290002 Inst : 5975-K
Misc : Multiplr: 1.00

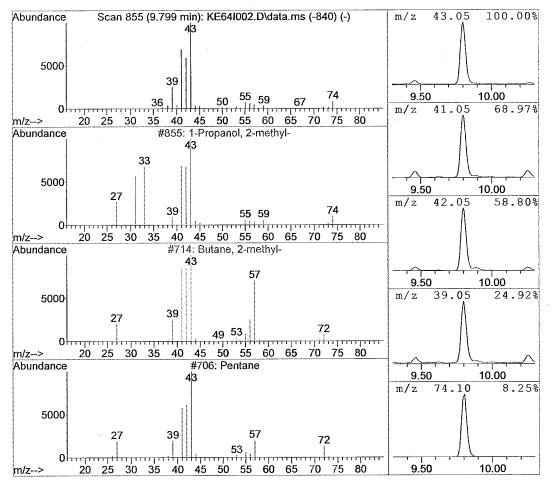
MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KHl8.m (RTE Integrator)

Title : TO-15

R.T.	Conc	Area	Relative to	ISTD	ISTD Area
8.05	7.64 ppb	1750727	Bromochloromet	thane	45848 <b>74</b>
Hit# of	20	Tentative ID	Ref#	CAS#	Qual
3 Allyl 4 Metha	oropropene fluoride	roxy-N-methyl- xy-	286 285 311	000071-23-8 001184-60-7 000818-92-8 005725-96-2 053778-72-6	52.00 38.00 12.00



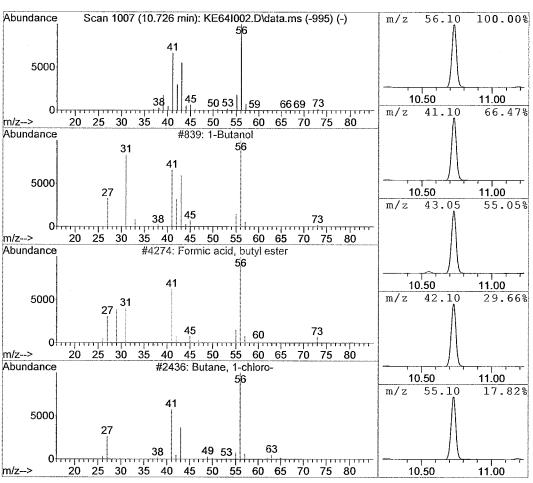

Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE64I002.D Vial: 10
Acq Time : 12/19/2018 22:24 Operator: BB
Sample : 1835290002 Inst : 5975-K
Misc : Multiplr: 1.00

MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

R.T.	Conc	Area	Relative to	ISTD	ISTD Area
9.80	9.39 ppb	2153354	Bromochloromet	chane	4584874
Hit# of	20	Tentative ID	Ref#	CAS#	Qual
2 Butan 3 Penta 4 Isobu	tylene epoxid	-	714 706 687	000078-83-1 000078-78-4 000109-66-0 000558-30-5 001679-49-8	59.00 59.00 25.00




MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

R.T.	Conc	Area	Relati	ve to	ISTD	ISTD Ar	ea
10.73	54.52 ppb	22500942	1,4-Difl	uorobe	enzene	8254726	5
Hit# of	20	Tentative I	D	Ref#	CAS#	Qual	
3 Butan 4 Oxeta	anol c acid, butyl e, 1-chloro- ne, 3,3-dimet ne, 2,3,4-tri	hyl-	alpha	4274 2436 1773	000071-36-3 000592-84-7 000109-69-3 006921-35-3 032347-12-9	91.00 9.00 9.00 9.00 9.00	



Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE64I002.D Vial: 10

Acq Time : 12/19/2018 22:24

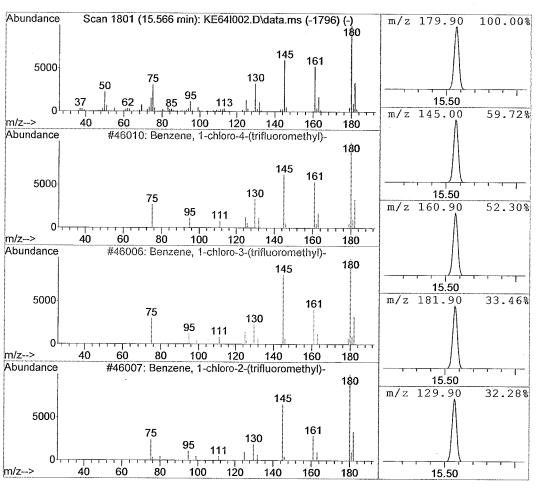
2/19/2018 22:24

Operator: BB Inst : 5975-K

Misc :

Sample

: 1835290002

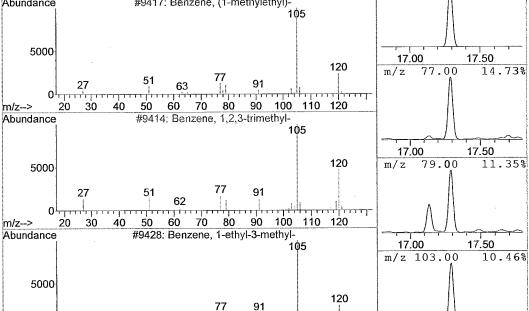

Multiplr: 1.00

MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\TO15KH18.m (RTE Integrator)

Title : TO-15

R.T.	Conc	Area	Relative to	ISTD	ISTD Area
15.57	3.08 ppb	1383058	Chlorobenzene	d5	8984912
Hit# of	20 	Tentative ID	Ref#	CAS#	Qual
2 Benzer 3 Benzer 4 Phenyl	ne, 1-chloro- ne, 1-chloro- lamine, N,4,5	4-(trifluoromet 3-(trifluoromet 2-(trifluoromet -trimethyl-2-ni xaldehyde, 2,4-	thy 46006 thy 46007 itr 46177	000098-56-6 000098-15-7 000088-16-4 017978-54-0 010209-57-1	91.00 91.00 25.00




Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE64I002.D Vial: 10
Acq Time : 12/19/2018 22:24 Operator: BB
Sample : 1835290002 Inst : 5975-K
Misc : Multiplr: 1.00

MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Method Title Library	: P:\K-597 : TO-15 : C:\DATAB		O15KH18.m (RTE ]	(ntegrator)	
R.T.	Conc	Area	Relative to	ISTD	ISTD Area
17.29	5.36 ppb	2409305	Chlorobenzene	d5	8984912
Hit# of	20	Tentative ID	Ref#	CAS#	Qual
1 Benzer	ne, (1-methyl	ethyl)-		000098-82-8	
2 Benzer	ne, 1,2,3-tri	methy1-		000526-73-8	
	ne, 1-ethyl-3			000620-14-4	
	ne, 1-ethyl-4	-		000622-96-8	
5 Benzer	ne, 1,2,4-tri	methyl-	9410	000095-63-6	80.00
5000  m/z-> 20  Abundance	39 51 		105 120 91 98	m/z 105.00 17.00 m/z 120.00	17.50
5000	27 51	63   5	120	17.00 m/z 77.00	17.50 14.73%



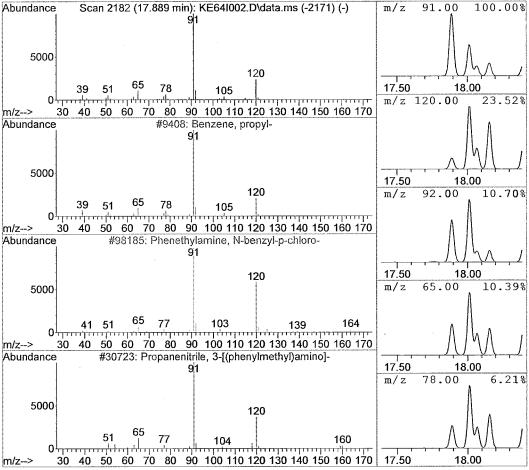
40 50 60 70 80 90 100 110 120

17.00

17.50

20 30

m/z--->

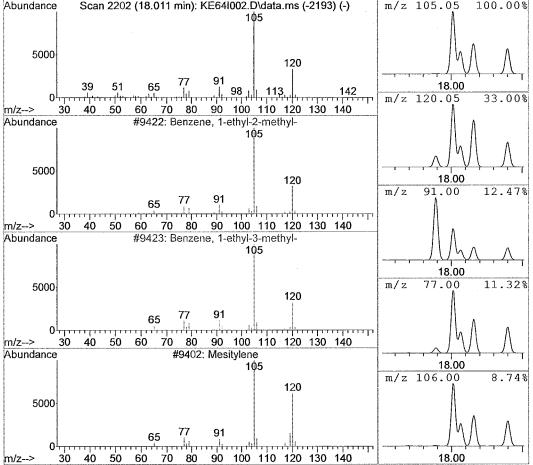

Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE64I002.D Vial: 10
Acq Time : 12/19/2018 22:24 Operator: BB
Sample : 1835290002 Inst : 5975-K
Misc : Multiplr: 1.00

MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

R.T.	Conc	Area	Relative to	ISTD	ISTD Area
17.89	12.86 ppb	5776644	Chlorobenzene	d5	8984912
Hit# of	20	Tentative ID	Ref#	CAS#	Qual
1 Benzer	000103-65-1 013622-43-0				
3 Propar	nenitrile, 3-	-benzyl-p-chlor -{(phenylmethyl	) am 30723	000706-03-6	72.00
•	thanediamine, zyl-2-pheneth	000140-28-3 003647-71-0			
Abundance	Scan 2182 (17.8	389 min): KE64I002.D\d	ata.ms (-2171) (-)	m/z 91.00	100.00%
		ချ၊		1	

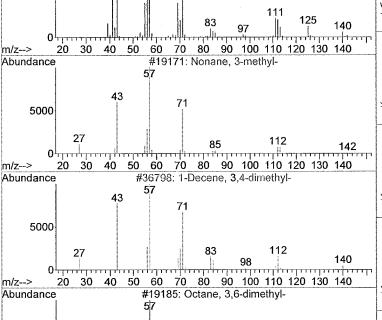


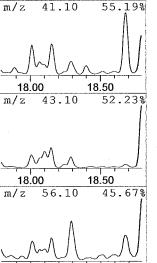

MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

Librar	cy : C:\DATAI	BASE\NIST11.L			
R.T.	Conc	Area	Relative to	ISTD	ISTD Area
18.01	65.33 ppb	29349659	Chlorobenzene	d5	8984912
Hit# of	20	Tentative ID	Ref#	CAS#	Qual
1 Benzene, 1-ethyl-2-methyl- 9422 000611-14-3 95					
	ene, 1-ethyl-3	3-methyl-		000620-14-4	
3 Mesit	:ylene			000108-67-8	
4 Benze	ene, 1-ethyl-4	1-methyl-	9430	000622-96-8	91.00
5 Benze	ene, 1,2,3-tri	imethyl-	9412	000526-73-8	90.00
Δ.	0 0000 /40 6	M44:-> KEC41000 D)	I-t ( 2402) ( )	105.05	100 008
Abundance	Scan 2202 (18.0	011 min): KE64l002.D\d 105	iata.nis (-2195) (-)	m/z 105.05	100.00%
					Į.
5000					ΛΛ
			120		$\langle \Lambda \rangle \langle \Lambda \rangle   \Gamma \rangle$





Data File : P:\K-5975-K\2018\DEC18\BC18\KE64I002.D Vial: 10
Acq Time : 12/19/2018 22:24 Operator: BB
Sample : 1835290002 Inst : 5975-K
Misc : Multiplr: 1.00

MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15	-K\METHODS\TO. SE\NIST11.L	ISKHI8.m (RTE )	integrator)	
R.T. Conc	Area	Relative to	ISTD	ISTD Area
18.29 3.53 ppb	1584079	Chlorobenzene	d5	8984912
Hit# of 20	Tentative ID	Ref#	CAS#	Qual
1 Nonane, 3-methyl- 2 1-Decene, 3,4-dimet 3 Octane, 3,6-dimethy 4 Tridecane, 7-methyl 5 2-Ethylhexyl mercap	36798 19185 59891	005911-04-6 050871-03-9 015869-94-0 026730-14-3 007659-86-1	43.00 43.00 43.00	
57 5000 41 5000 0 m/z> 20 30 40 50 60		111   125 140   110 120 130 140	m/z 57.10 18.00 m/z 71.10	18.50





18.50

18.50

18.00

18.00

85

113

43

5000

m/z-->

Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE64I002.D Vial: 10
Acq Time : 12/19/2018 22:24 Operator: BB
Sample : 1835290002 Inst : 5975-K
Misc : Multiplr: 1.00

MS Integration Params: rteint.p

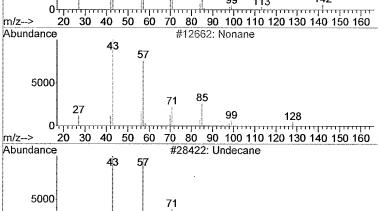
Title : TO-	K-5975-K\METHODS\T 15 DATABASE\NIST11.L	ro15KH18.m (RTE ]	Integrator)	
R.T. Conc	Area	Relative to	ISTD	ISTD Area
18.40 25.46 p	pb 11437072	Chlorobenzene	d5	8984912
Hit# of 20	Tentative II	D Ref#	CAS#	Qual
1 Benzene, 1-et. 2 Mesitylene 3 Benzene, 1-et. 4 Benzene, 1,2, 5 Benzene, 1-et.	hyl-3-methyl- 4-trimethyl-	9399 9423 9420	000611-14-3 000108-67-8 000620-14-4 000095-63-6 000622-96-8	90.00 90.00 90.00
Abundance Scan 226	6 (18.401 min): KE641002.0	D\data.ms (-2257) (-) 1∮5	m/z 105.00	100.0 <b>0</b> %
	51 ₅₈ 65 77 91 <del> </del>	98 1 114	18.00 18 m/z 120.00	32.41%
Abundance Abundance	#9425: Benzene, 1-ethyl-	2-methyl-		
5000	65 77 9 <u>1</u>	·	18.00 18 m/z 91.00	3.50 12.02%
	7 60 70 80 90		.	
Abundance 5000	#9399: Mesitylen		18.00 18 m/z 77.00	3.50
	59 65 77 9 50 60 70 80 90 #9423: Benzene, 1-ethyl-	100 110 120	18.00 18 m/z 106.00	3.50
5000		120	)	
	65 77 9		$\int \int $	

60 70 80 90 100 110 120

18.50

30 40 50

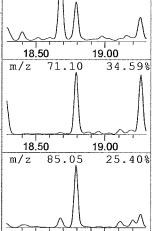
m/z-->


Data File: P:\K-5975-K\2018\DEC18\19DEC18\KE64I002.D * Via1: 10 Acq Time : 12/19/2018 22:24 Operator: BB Inst : 5975-K : 1835290002 Sample

Misc

Multiplr: 1.00

MS Integration Params: rteint.p


Method : P:\K-597 Title : TO-15 Library : C:\DATAB	5-K\METHODS\TO1 ASE\NIST11.L	.5KH18.m (RTE ]	Integrator)	
R.T. Conc	Area	Relative to	ISTD	ISTD Area
18.79 7.32 ppb	3290234	Chlorobenzene	d5	8984912
Hit# of 20	Tentative ID	Ref#	CAS#	Qual
1 Decane 2 Nonane 3 Undecane 4 Octane	Can loo	12662 28422	000124-18-5 000111-84-2 001120-21-4 000111-65-9	90.00 72.00
5 Undecane, 2,7-dime Abundance Scan 2330 (18.79)	thy1- 91 min): KE64I002.D\da		017301-24-5 m/z 57.10	
5000 0 1 1 1 1 1 1 1 1 1 1 1 1 1	71   85   99 113   70 80 90 100 110 1	125 142 154	18.50	19.00
Abundance 43 57 5000 27	#19157: Decane  71  85		18.50 m/z 41.10	19.00 47.41%
0 1111111111111111111111111111111111111	99 113	142 	1	



85

98 113 127 156

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

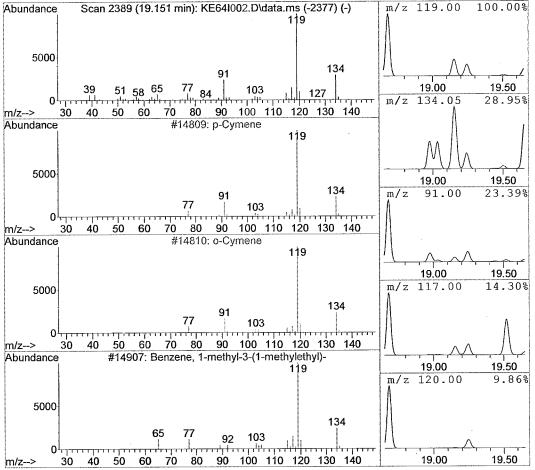


19.00

18.50

27

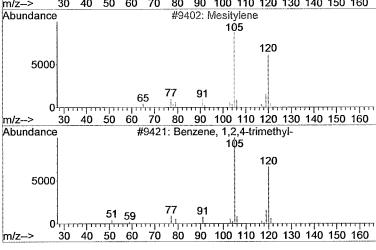
m/z-->


Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE64I002.D Vial: 10
Acq Time : 12/19/2018 22:24 Operator: BB
Sample : 1835290002 Inst : 5975-K
Misc : Multiplr: 1.00

MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15


	-				
R.T.	Conc	Area	Relative to	ISTD	ISTD Area
19.15	4.96 ppb	2228605	Chlorobenzene	d5	8984912
Hit# o	f 20	Tentative ID	Ref#	CAS#	Qual
1 p-Cymene 2 o-Cymene 3 Benzene, 1-methyl-3-(1-methylethyl) 4 Benzene, 1-ethyl-2,3-dimethyl- 5 Benzene, 4-ethyl-1,2-dimethyl- 14888 000934-80-5 91.00					97.00 95.00 91.00
Abundance	Scan 2389 (19.1	151 min): KE64l002.D\d	ata.ms (-2377) (-) 119	m/z 119.00	100.00%

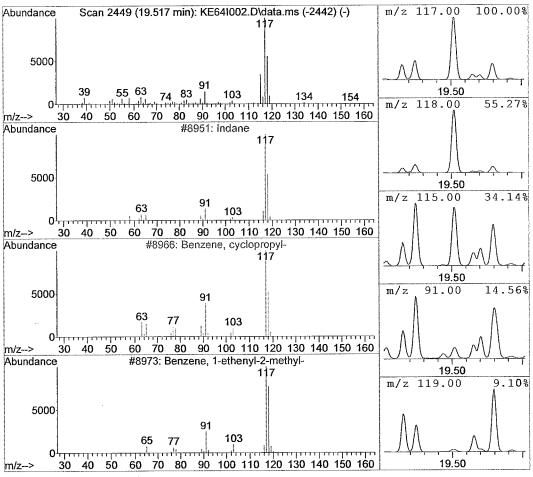


Data File : P:\K-5975-K\2018\DEC18\T9DEC18\KE64I002.D Vial: 10
Acq Time : 12/19/2018 22:24 Operator: BB
Sample : 1835290002 Inst : 5975-K
Misc : Multiplr: 1.00

MS Integration Params: rteint.p

<del>-</del>	_			
<pre>Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator) Title : TO-15 Library : C:\DATABASE\NIST11.L</pre>				
R.T. Conc	Area	Relative to	ISTD	ISTD Area
19.24 23.41 ppb	10518843	Chlorobenzene	d5	8984912
Hit# of 20	Tentative ID	Ref#	CAS#	Qual
1 Benzene, 1,2,3-tr 2 Mesitylene 3 Benzene, 1,2,4-tr 4 Benzene, 1-ethyl- 5 Benzene, 1-ethyl-	imethyl- 2-methyl-	9402 9421 9422	000526-73-8 000108-67-8 000095-63-6 000611-14-3 000622-96-8	97.00 94.00 90.00
5000 39 51 65 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	242 min): KE64I002.D\d 105 1 77 91 70 80 90 100 110 1 418: Benzene, 1,2,3-trim	20 	m/z 105.00 19.00 m/z 120.10	19.50
5000 0 m/z-> 30 40 50 60 3 Abundance	77 91 70 80 90 100 110 1 #9402: Mesitylene	20   	19.00 m/z 119.00	19.50 15.07%



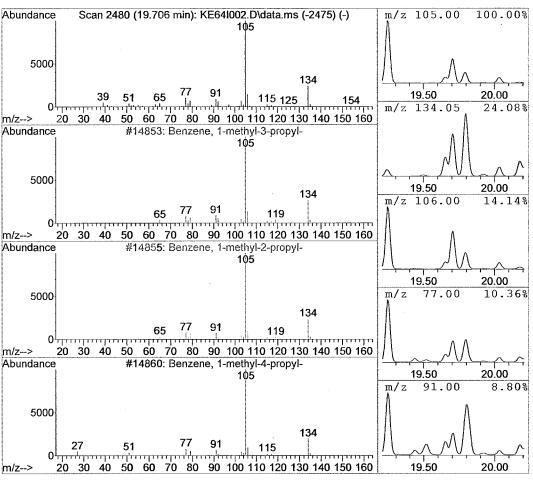

Data File : P:\K-5975-K\2018\DEC18\T9DEC18\KE64I002.D Vial: 10
Acq Time : 12/19/2018 22:24 Operator: BB
Sample : 1835290002 Inst : 5975-K
Misc : Multiplr: 1.00

MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

R.T.	Conc	Area	Relative to	ISTD	ISTD Area
19.52	2.78 ppb	1250381	Chlorobenzene	d5	8984912
Hit# of 2	20	Tentative ID	Ref#	CAS#	Qual
3 Benzene 4 Benzene	e, cyclopropy e, 1-ethenyl- e, 2-propenyl yclo[3.3.1.0	8966 8973 8961	000496-11-7 000873-49-4 000611-15-4 000300-57-2 1000191-13-	74.00 72.00 64.00	
Abundance	m/z 117.00	100.00%			



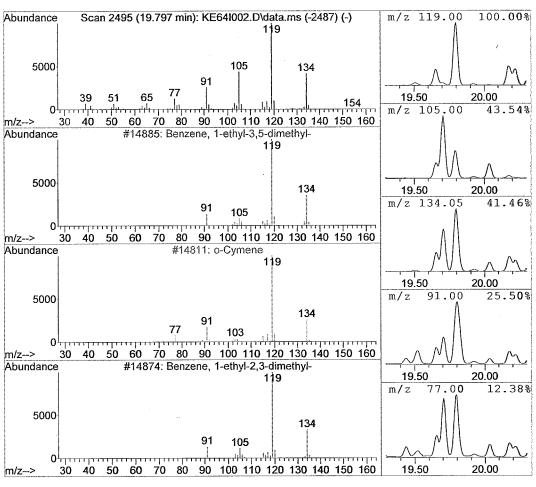

MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

R.T. 0	Conc	Area	Relative to	ISTD	ISTD Area
19.71	6.14 ppb	2759992	Chlorobenzene	<b>d</b> 5	8984912
Hit# of 2	20	Tentative ID	Ref#	CAS#	Qua1
2 Benzene 3 Benzene 4 Benzene	e, 1-methy1-3 e, 1-methy1-2 e, 1-methy1-4 e, (1-methylp eacetaldehyde	-propyl- -propyl-	14855 14860 14848	001074-43-7 001074-17-5 001074-55-1 000135-98-8 000093-53-8	90.00 90.00 90.00
Abundance	Scan 2480 (19.706	m/z 105.00	100.00%		




Data File : P:\K-5975-K\2018\DEC18\T9DEC18\KE64I002.D Vial: 10
Acq Time : 12/19/2018 22:24 Operator: BB
Sample : 1835290002 Inst : 5975-K
Misc : Multiplr: 1.00

MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

R.T.	Conc	Area	Relative to	ISTD	ISTD Area
19.80	9.66 ppb	4339908	Chlorobenzene	d5	8984912
Hit# of	20	Tentative ID	Ref#	CAS#	Qua1
2 o-Cyme	ene	3,5-dimethyl-	14811	000934-74-7 000527-84-4	93.00
4 Benzen	•	2,3-dimethyl- 1,2-dimethyl- tetramethyl-	14888	000933-98-2 000934-80-5 000488-23-3	91.00
Abundance		797 min): KE641002.D\d		m/z 119.00	100.00%



Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE66I002.D Vial: 10 Acq Time : 12/19/2018 23:42 Operator: BB Inst : 5975-K Sample : 1835290002 : 1:20 dil 10ml Multiplr: 1.00 Misc

MS Integration Params: rteint.p

MS Integration Params: rteint.p					1	1 A
Quant Time: Dec 20 14:45:12 2018		Resu	lts File:	TO15KH18.RE	s 1971	1 contonel
Quant Method: I:\K-5975-K\METHODS Title: TO-15 Last Update: Wed Dec 05 10:49:4		KH18.m	(RTE Inte	egrator )	t c	Acetorl  1-methyl-2-Pentanone  M,P-xylene  0-xylene
Response via : Initial Calibration DataAcq Meth : TO-15.M					_	M.D. Kylene
2						o-xylene
Internal Standards	R.T.	QIon	Response	Conc Units	Area%	1,2, LI - Trimethy but tang
1) Bromochloromethane	9.41	130	267520	20.00 ppb	88.65	ante
21) 1,4-Difluorobenzene	11.19	114	3519239	20.00 ppb	93 <b>.50</b>	7/ 1.1
44) Chlorobenzene d5	15.49	117	3013585	20.00 ppb	107.33	only evaluated

	Bromochloromethane	9.41	130	267520	20.00 ppb	88.65
21)	1,4-Difluorobenzene	11.19	114	3519239	20.00 ppb	93 <b>.</b> 5 <b>0</b>
44)	Chlorobenzene d5	15.49	117	3013585	20.00 ppb	107.33
	em Monitoring Compounds	45 40	0.5	1545050		ecovery
52)	Bromofluorobenzene	17.13	95	1747870	20.64 ppb	103.21%
m	at Camanunda					Qvalue
_	et Compounds	0.00	85		Not Detecte	_
•	Dichlorodifluoromethane	0.00	50		Not Detecte	
	Chloromethane		135		Not Detecte	
	Freon 114	0.00			Not Detecte	
	Vinyl Chloride	0.00	62			
	1,3-Butadiene	0.00	54		Not Detecte	
,	Bromomethane	0.00	94		Not Detecte	
•	Chloroethane	0.00	64	10075040	Not Detecte	
	Acetone	6.59		100/5842	121.1615 ppb	100
	Trichlorofluoromethane	0.00	101		Not Detecte	
-	1,1-Dichloroethene	0.00	61		Not Detecte	
	Methylene Chloride	0.00	84		Not Detecte	
	Freon 113	0.00	151		Not Detecte	
•	Carbon Disulfide	0.00	76		Not Detecte	
	trans-1,2-Dichloroethene	0.00	96		Not Detecte	
	1,1-Dichloroethane	0.00	63		Not Detecte	
	methyl t-butyl ether	0.00	73		Not Detecte	
	Vinyl Acetate	0.00	86		Not Detecte	
	2-Butanone	0.00	43		Not Detecte	
	cis-1,2-Dichloroethene	0.00	96		Not Detecte	
•	Ethyl Acetate	0.00	61		Not Detecte	
•	Hexane	0.00	57		Not Detecte	
	Chloroform	0.00	. 83		Not Detecte	
	Tetrahydrofuran	0.00	42		Not Detecte	
	1,2-Dichloroethane	0.00	62		Not Detecte	
	1,1,1-Trichloroethane	0.00	97		Not Detecte	
	Benzene	0.00	78		Not Detecte	
•	Carbon Tetrachloride	0.00	117		Not Detecte	
	Cyclohexane	0.00	84		Not Detecte	
		0.00	63		Not Detecte	
	Bromodichloromethane	0.00	83		Not Detecte	
	Trichloroethene	0.00	130		Not Detecte	
	Heptane	0.00	71		Not Detecte	
	cis-1,3-Dichloropropene	0.00	75	850484	Not Detecte	
	4-Methyl-2-Pentanone	12.70	43	752171	5.4141 ppb	97
37)	trans-1,3-Dichloropropene	0.00	75		Not Detecte	
38)		0.00	97		Not Detecte	
39)	Toluene	0.00	91		Not Detecte	
40)	2-Hexanone	0.00	43		Not Detecte	_
41)		0.00	129		Not Detecte	
42)	•	0.00	107		Not Detecte	
43)		0.00	166		Not Detecte	
45)		0.00	112		Not Detecte	
46)	Ethylbenzene	15.93	91	374589	1.5628 ppb	98
47)		16.10	91	2030103	10.6771 ppb	99
48)	Bromoform	0.00	173		Not Detecte	
49)	-	0.00	104		Not Detecte	
50)	1,1,2,2-Tetrachloroethane	0.00	83		Not Detecte	ed

^(#) = qualifier out of range (m) = manual integration KE661002.D T015KH18.m Thu Dec 20 14:54:09 2018

Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE66I002.D Vial: 10 Acq Time : 12/19/2018 23:42 Operator: BB Sample : 1835290002 Misc : 1:20 dil 10ml Inst : 5975-K Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Dec 20 14:45:12 2018 Results File: TO15KH18.RES

Quant Method : I:\K-5975-K\METHODS\T015KH18.m (RTE Integrator )

Title : TO-15
Last Update : Wed Dec 05 10:49:41 2018

Response via : Initial Calibration

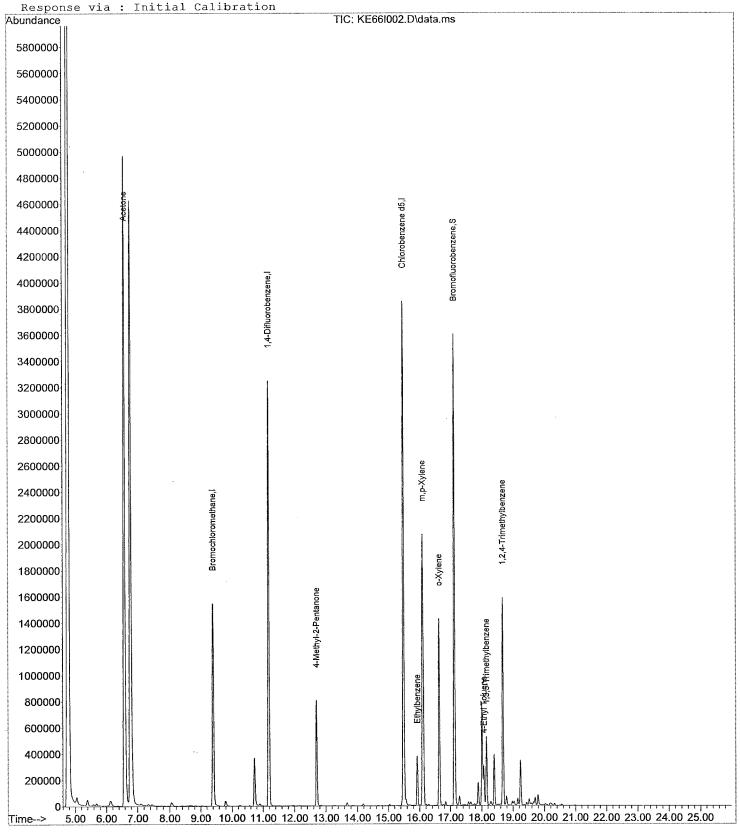
	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
51)	o-Xylene	16.63	91	1196391	6.4410 ppb	99
•	4-Ethyl Toluene	18.07	105	218498	0.9237 ppb	100
54)	1,3,5-Trimethylbenzene	18.16	105	394906	1.8264 ppb	99
55)	1,2,4-Trimethylbenzene	18.68	105	1239863	6.1988 ppb	99
56)	Benzyl Chloride	0.00	91		Not Detecte	d
57)	m-Dichlorobenzene	0.00	146		Not Detecte	d
58)	p-Dichlorobenzene	0.00	146		Not Detecte	d
59)	o-Dichlorobenzene	0.00	146		Not Detecte	d
60)	1,2,4-Trichlorobenzene	0.00	180		Not Detecte	d
61)	Hexachloro-1,3-butadiene	0.00	225		Not Detecte	d

Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE66I002.D Vial: 10

Acq Time : 12/19/2018 23:42 Operator: BB

Sample : 1835290002 Inst : 5975-K

Misc : 1:20 dil 10ml Multiplr: 1.00


MS Integration Params: rteint.p

Quant Time: Dec 20 14:45:12 2018 Results File: T015KH18.RES

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

Last Update: Wed Dec 05 10:49:41 2018



Data Path : P:\K-5975-K\2018\DEC18\19DEC18\

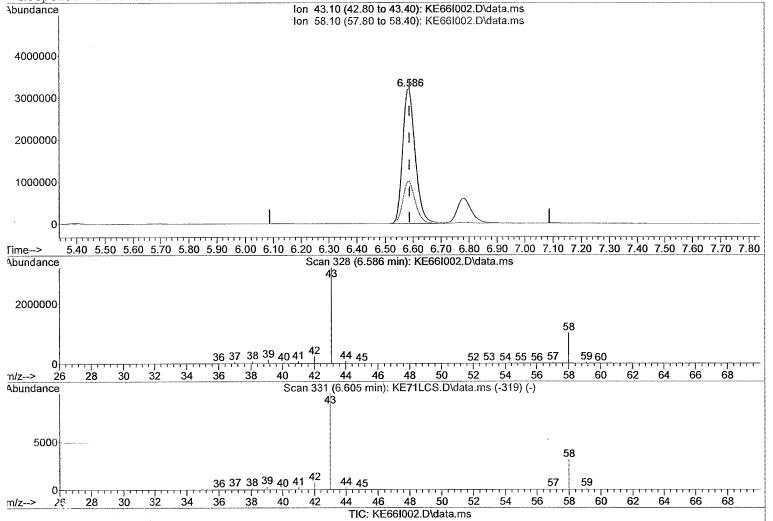
Data File: KE66I002.D

Acq On : 12/19/2018 23:42

Operator : BB

Sample : 1835290002 Inst : 5975-K Misc : 1:20 dil 10ml

ALS Vial : 10 Sample Multiplier: 1


Quant Time: Dec 20 07:34:21 2018

Quant Method: I:\K-5975-K\METHODS\T015KH18.m

Quant Title : TO-15

QLast Update : Wed Dec 05 10:49:41 2018

Response via : Initial Calibration



## (9) Acetone

6.586min (-0.000) 121.16 ppb

response	10075842	
Ion	Ехр%	Act%
43.10	100.00	100.00
58.10	31.40	31.14
0.00	0.00	0.00
0.00	0.00	0.00

Data Path : P:\K-5975-K\2018\DEC18\19DEC18\

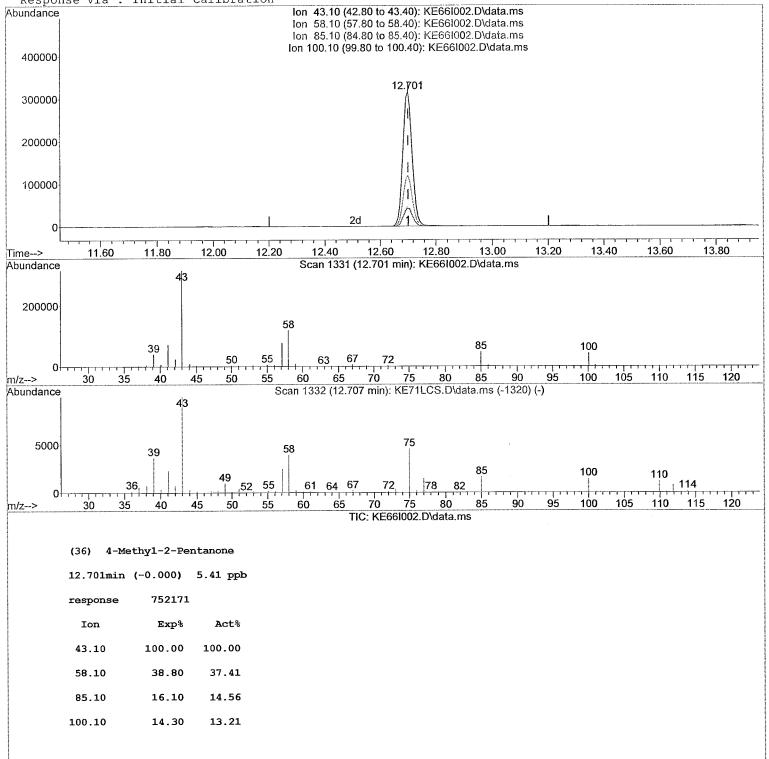
Data File: KE66I002.D

Acq On : 12/19/2018 23:42

Operator : BB

Sample : 1835290002 Inst : 5975-K Misc : 1:20 dil 10ml

ALS Vial: 10 Sample Multiplier: 1


Quant Time: Dec 20 07:34:21 2018

Quant Method: I:\K-5975-K\METHODS\T015KH18.m

Quant Title : TO-15

QLast Update : Wed Dec 05 10:49:41 2018

Response via: Initial Calibration



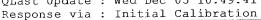
```
Data Path : P:\K-5975-K\2018\DEC18\19DEC18\
```

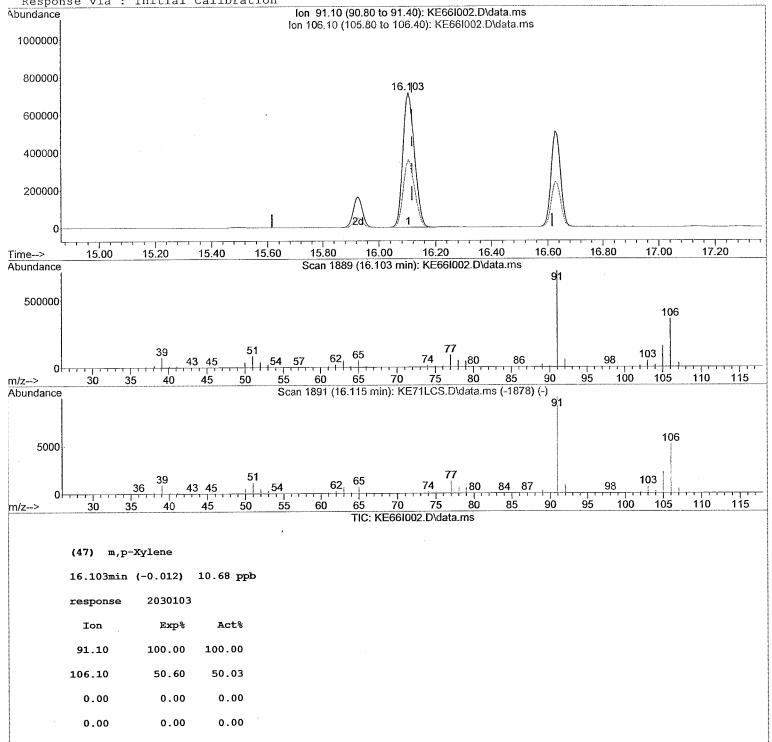
Data File : KE66I002.D

Acq On : 12/19/2018 23:42

Operator : BB

Sample : 1835290002 Inst : 5975-K Misc : 1:20 dil 10ml


ALS Vial : 10 Sample Multiplier: 1


Quant Time: Dec 20 07:34:21 2018

Quant Method: I:\K-5975-K\METHODS\T015KH18.m

Quant Title : TO-15

QLast Update : Wed Dec 05 10:49:41 2018





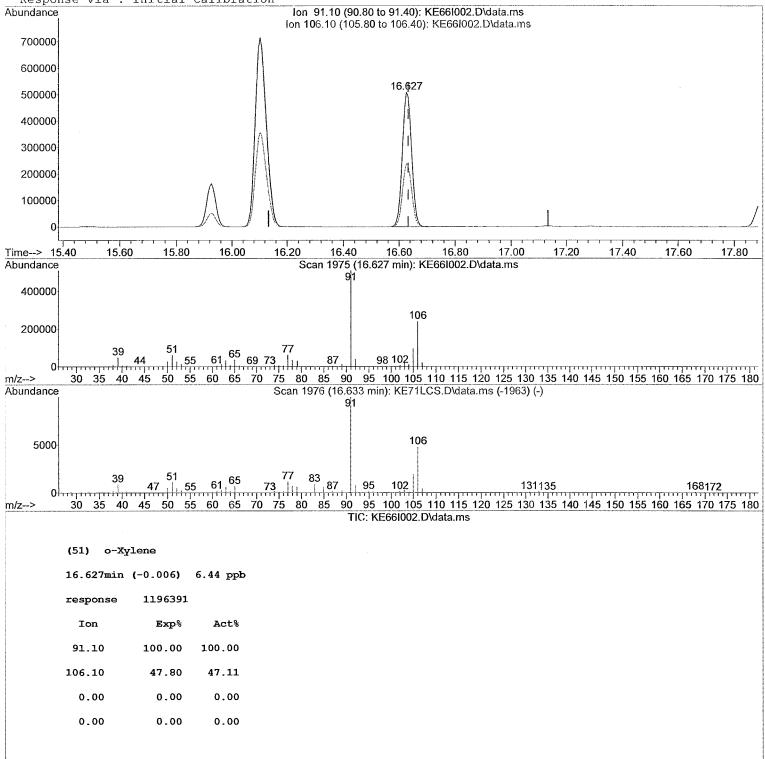
Data Path : P:\K-5975-K\2018\DEC18\19DEC18\

Data File : KE66I002.D Acq On : 12/19/2018 23:42

Operator : BB

Sample : 1835290002 Inst : 5975-K Misc : 1:20 dil 10ml

ALS Vial : 10 Sample Multiplier: 1


Ouant Time: Dec 20 07:34:21 2018

Quant Method: I:\K-5975-K\METHODS\T015KH18.m

Quant Title : TO-15

QLast Update : Wed Dec 05 10:49:41 2018

Response via : Initial Calibration



Data Path : P:\K-5975-K\2018\DEC18\19DEC18\

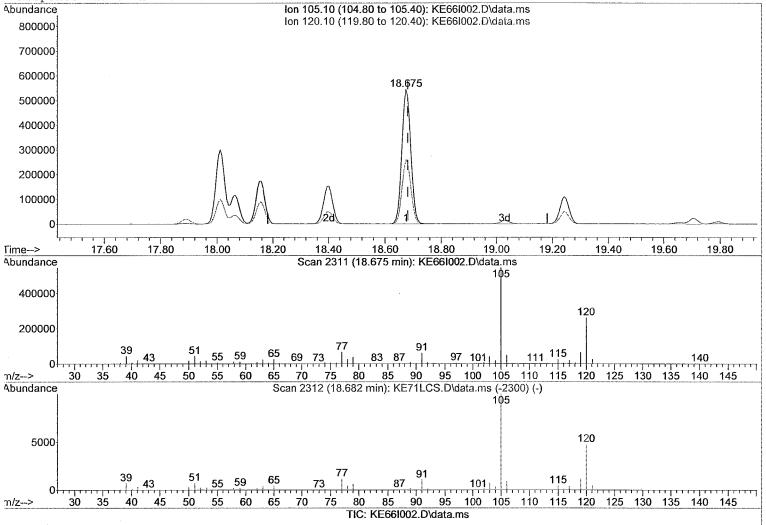
Data File : KE66I002.D

Acq On : 12/19/2018 23:42

Operator : BB

Sample : 1835290002 Inst : 5975-K Misc : 1:20 dil 10ml

ALS Vial: 10 Sample Multiplier: 1


Ouant Time: Dec 20 07:34:21 2018

Quant Method: I:\K-5975-K\METHODS\T015KH18.m

Quant Title : TO-15

QLast Update: Wed Dec 05 10:49:41 2018

Response via : Initial Calibration



## (55) 1,2,4-Trimethylbenzene

18.675min (-0.006) 6.20 ppb

response	1239863	
Ion	Ехр%	Act%
105.10	100.00	100.00
120.10	48.40	47.63
0.00	0.00	0.00
0.00	0.00	0.00

Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE65I003.D Vial: 11
Acq Time : 12/19/2018 23:04 Operator: BB
Sample : 1835290003 Inst : 5975-K
Misc : Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Dec 20 14:44:11 2018 Results File: TO15KH18.RES

Quant Method :  $I:\K-5975-K\METHODS\T015KHl8.m$  (RTE Integrator )

Title : TO-15

Last Update : Wed Dec 05 10:49:41 2018 Response via : Initial Calibration

Inte	rnal Standards	R.T.	QIon	Response	e Conc Units	Area%
1)	Bromochloromethane	9.41	130	287232		5.19
	1,4-Difluorobenzene	11.19	114	3820246		1.49
44)	Chlorobenzene d5	15.49	117	3166860	20.00 ppb 11:	2.79
	em Monitoring Compounds					overy
52)	Bromof1uorobenzene	17.13	95	1731283	19.46 ppb 9	7.28%
Targ	et Compounds				Q·	value
2)	Dichlorodif1uoromethane	5.10	85	71123	0.4495 ppb	99
3)	Chloromethane	0.00	50		Not Detected	
	Freon 114	0.00	135		Not Detected	
	Vinyl Chloride	0.00	62		Not Detected	
6)	1,3-Butadiene	5.63	54	54978	1.4042 ppb #	30
	Bromomethane	0.00	94		Not Detected	
	Chloroethane	0.00	64		Not Detected	
	Acetone	6.58			173.6410 ppb	100
	Trichlorofluoromethane	6.79	101	27912	0.1980 ppb	98
	1,1-Dichloroethene	0.00	61		Not Detected	
	Methylene Chloride	7.45	84	9278	0.1959 ppb	92
-	Freon 113	0.00	151		Not Detected	
,	Carbon Disulfide	7.79	76	93208	0.8015 ppb	100
	trans-1,2-Dichloroethene	0.00	96		Not Detected	
	1,1-Dichloroethane	0.00	63		Not Detected	
	methyl t-butyl ether	0.00	73		Not Detected	
	Vinyl Acetate	0.00	86	1.405006	Not Detected	
	2-Butanone	8.81	43	1405896	12.3370 ppb	98
	cis-1,2-Dichloroethene	0.00	96		Not Detected	
	Ethyl Acetate	0.00	61	102002	Not Detected	0.0
	Hexane	9.46	57	123923	1.2925 ppb	92
	Chloroform	0.00	83	15460	Not Detected	0.0
	Tetrahydrofuran	9.90	42	15469	0.2439 ppb	92
	1,2-Dichloroethane	0.00	62		Not Detected	
	1,1,1-Trichloroethane	0.00	97	171516	Not Detected	0.7
	Benzene	10.90	78	171546	1.0793 ppb	97
	Carbon Tetrachloride	0.00	$\begin{array}{c} 117 \\ 84 \end{array}$		Not Detected	
	Cyclohexane	0.00	63		Not Detected	
	1,2-Dichloropropane	0.00			Not Detected	
	Bromodichloromethane	0.00	83 130		Not Detected Not Detected	
	Trichloroethene Heptane	12.16	71	48578	0.7936 ppb	95
	cis-1,3-Dichloropropene	0.00	75	40370	Not Detected	93
-	4-Methyl-2-Pentanone	12.70	43	169393	1.1232 ppb	97
	trans-1,3-Dichloropropene	0.00		109393	Not Detected	91
	1,1,2-Trichloroethane	0.00	97		Not Detected Not Detected	
	Toluene	13.68	91	284966	1.5075 ppb	100
	2-Hexanone	13.88	43	1157222	8.7537 ppb	98
	Dibromochloromethane	0.00	129	1137222	Not Detected	30
-	1,2-Dibromoethane	0.00	107		Not Detected	
	Tetrachloroethene	0.00	166		Not Detected	
	Chlorobenzene	0.00	112		Not Detected	
	Ethylbenzene	15.93		66453	0.2638 ppb	99
•	m,p-Xylene	16.10	91	238734	1.1948 ppb	98
	Bromoform	0.00	173	230734	Not Detected	20
•	Styrene	16.51	104	34688	0.2580 ppb	99
	1,1,2,2-Tetrachloroethane	0.00	83	24000	Not Detected	22
30)	1,1,2,2 iccluditoroechane				NOT DECECTED	

^{(#) =} qualifier out of range (m) = manual integration KE65I003.D T015KH18.m Thu Dec 20 14:55:18 2018

Data File: P:\K-5975-K\2018\DEC18\19DEC18\KE65I003.D Vial: 11 Acq Time : 12/19/2018 23:04 Sample : 1835290003 Operator: BB Inst : 5975-K Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Dec 20 14:44:11 2018 Results File: TO15KH18.RES

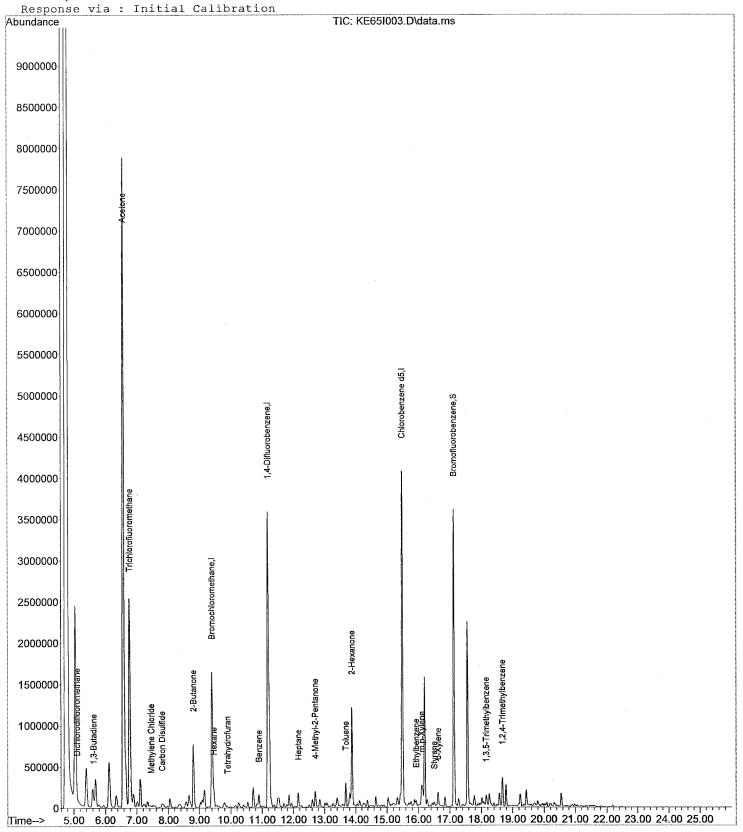
Quant Method: I:\K-5975-K\METHODS\T015KHl8.m (RTE Integrator)

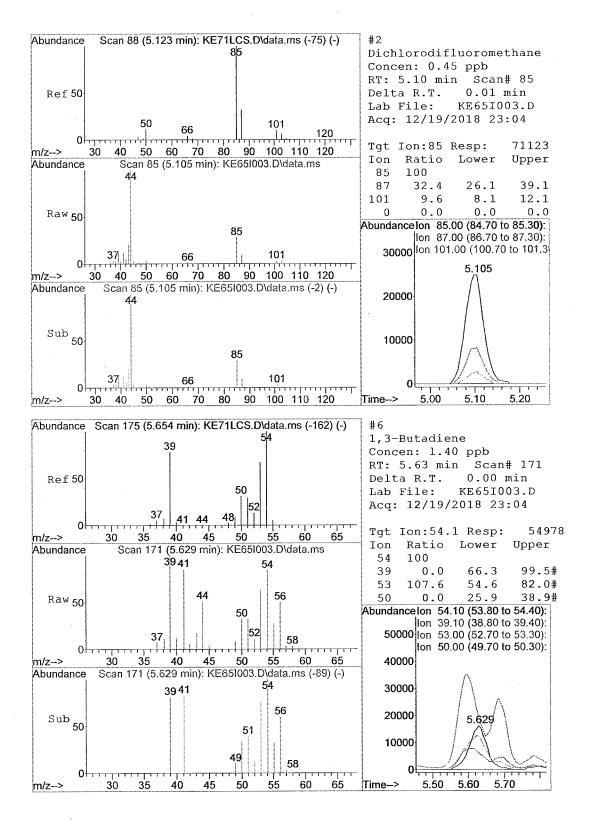
Title : TO-15
Last Update : Wed Dec 05 10:49:41 2018

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Unit	Qvalue
51) o-Xylene 53) 4-Ethyl Toluene	16.63 0.00	91 105	109149	0.5592 ppb Not Detected	98
54) 1,3,5-Trimethylbenzene	18.16	105	84715	0.3728 ppb	98
55) 1,2,4-Trimethylbenzene	18.68	105	265830	1.2647 ppb	98
56) Benzyl Chloride	0.00	91		Not Detected	l
57) m-Dichlorobenzene	0.00	146		Not Detected	l
58) p-Dichlorobenzene	0.00	146		Not Detected	l
59) o-Dichlorobenzene	0.00	146		Not Detected	l
60) 1,2,4-Trichlorobenzene	0.00	180		Not Detected	l
61) Hexachloro-1,3-butadiene	0.00	225		Not Detected	i

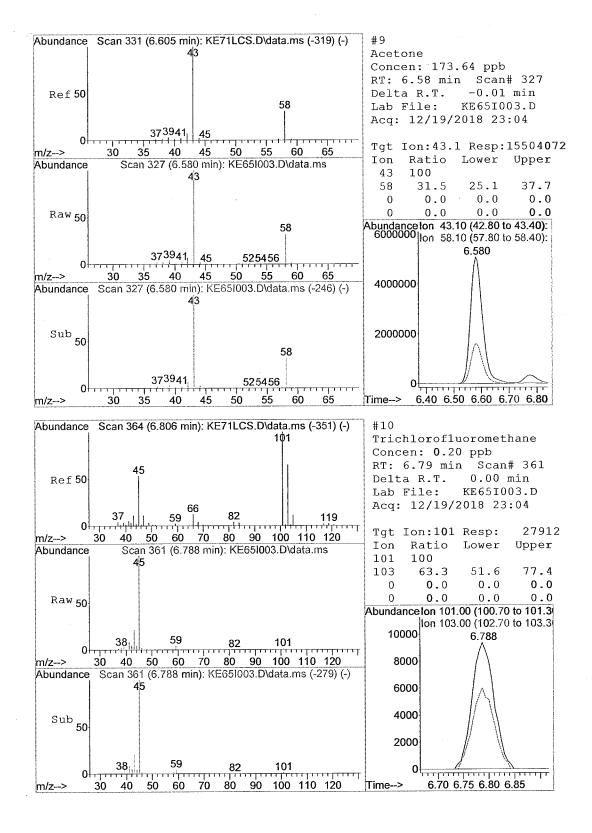
Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE65I003.D Vial: 11
Acq Time : 12/19/2018 23:04 Operator: BB
Sample : 1835290003 Inst : 5975-K
Misc : Multiplr: 1.00

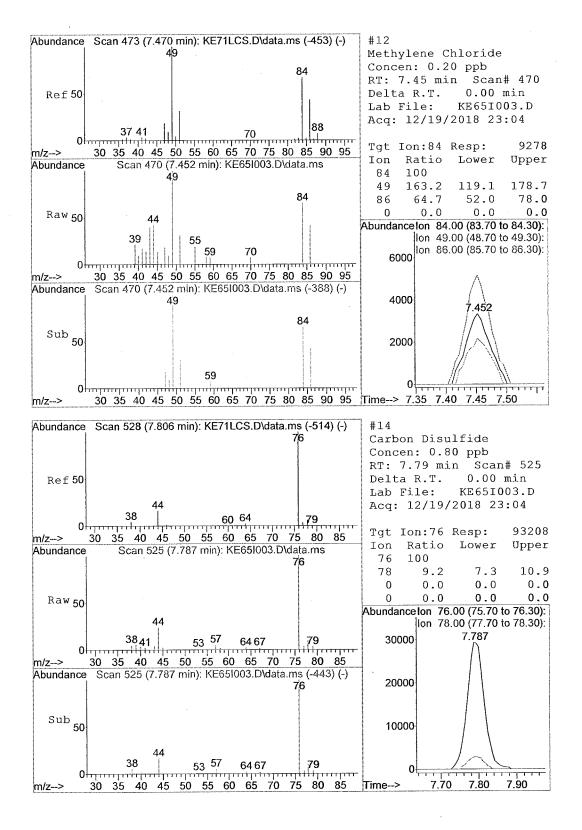

MS Integration Params: rteint.p

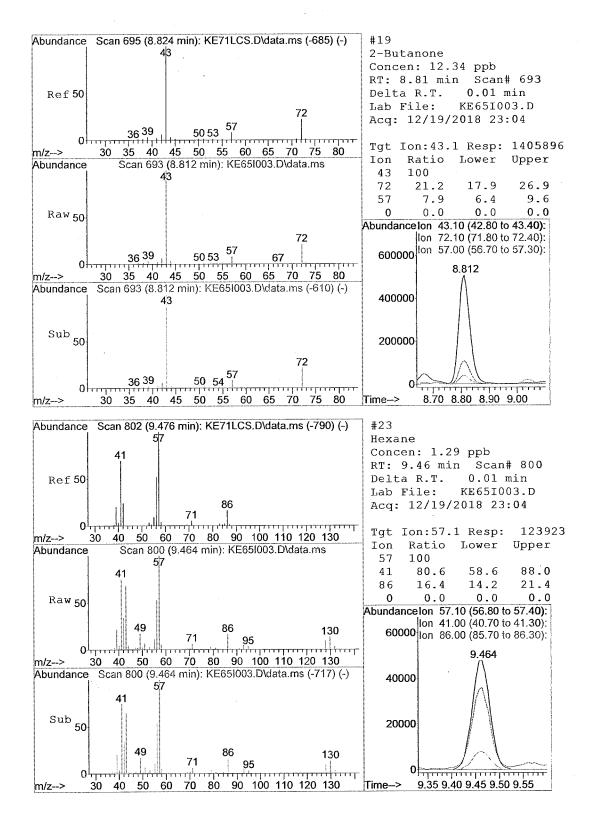

Quant Time: Dec 20 14:44:11 2018 Results File: T015KH18.RES

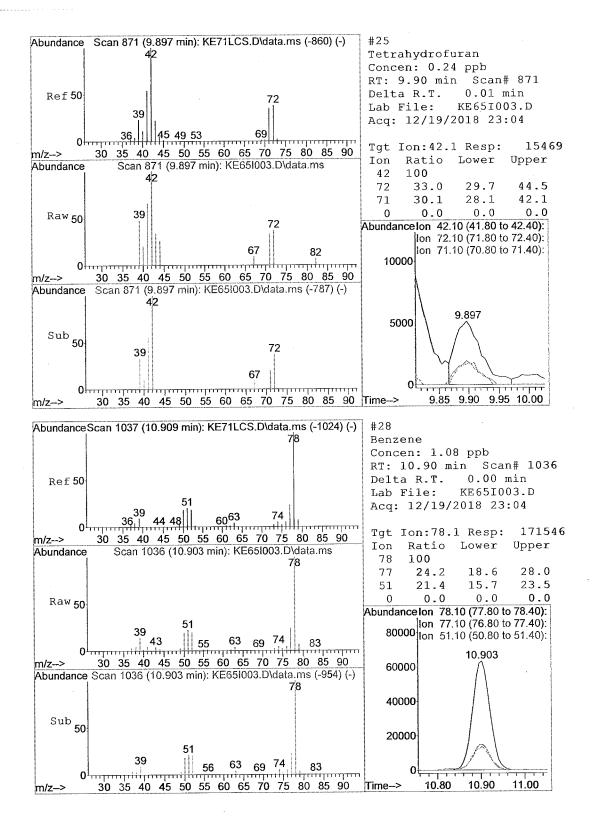
Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

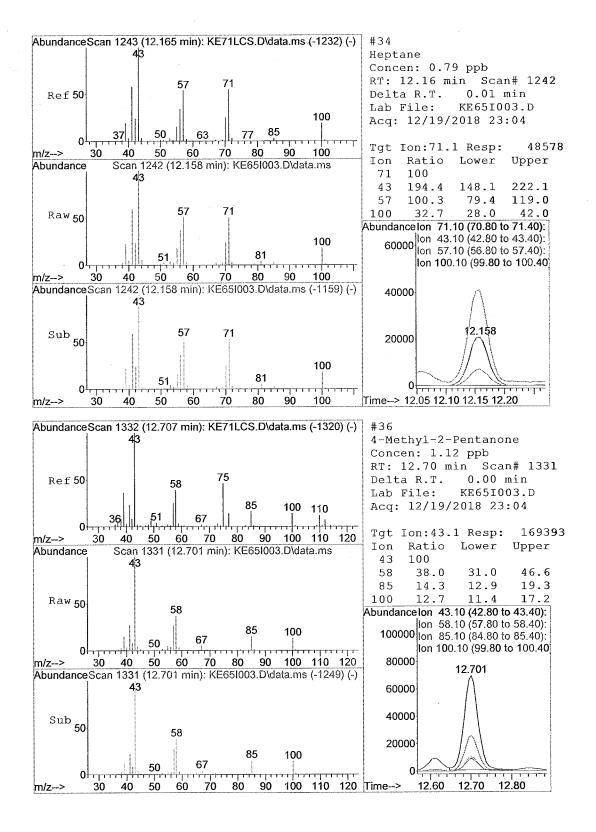
Title : TO-15

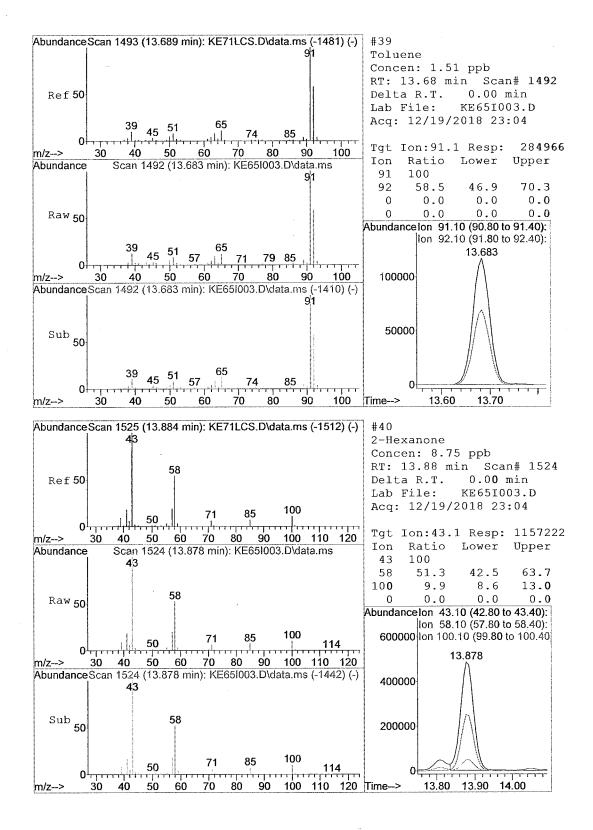

Last Update: Wed Dec 05 10:49:41 2018

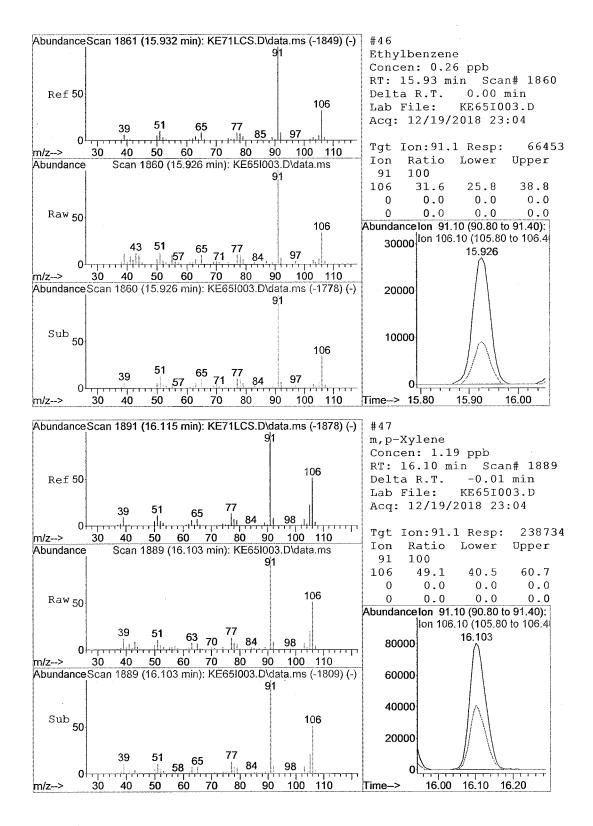


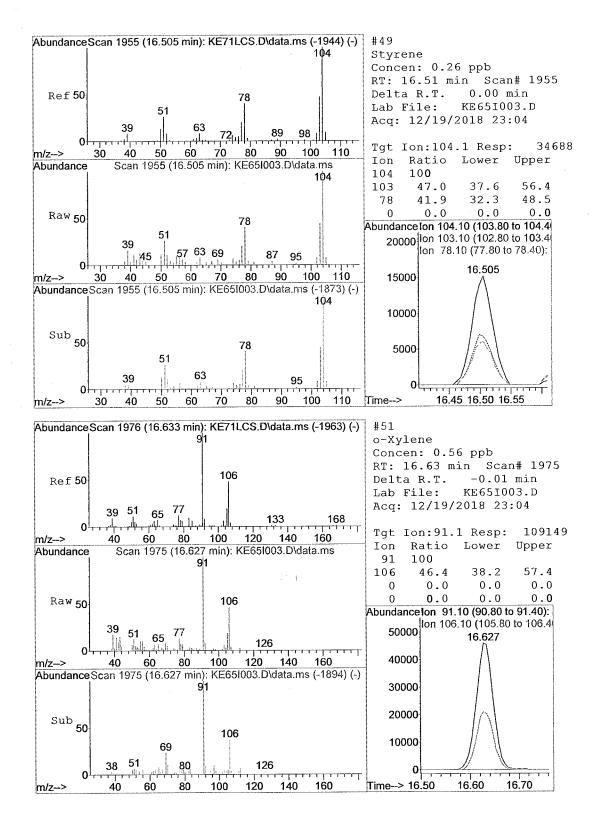



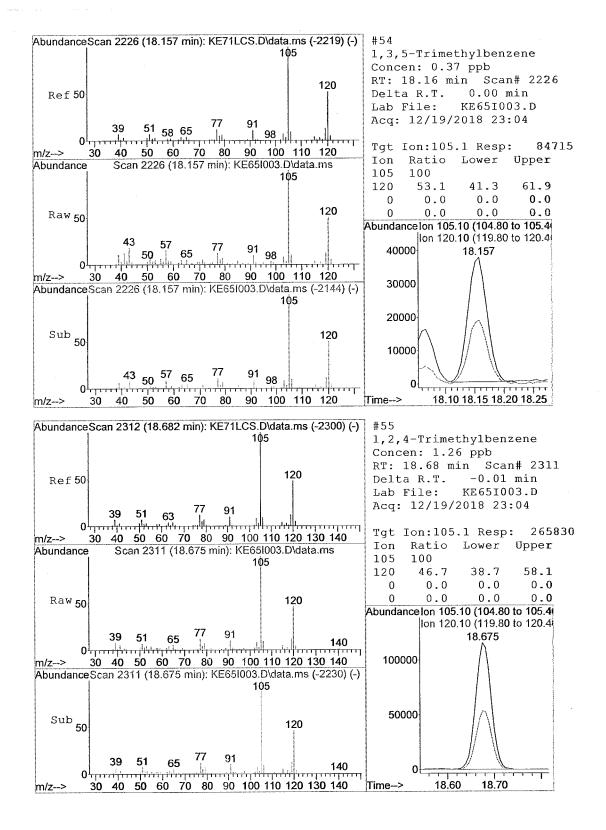


Page 4


TO15KH18.m 5975-K



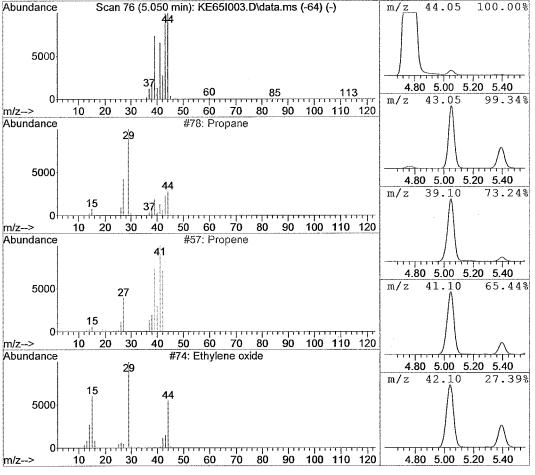












Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE65I003.D Vial: 11 Operator: BB Acq Time : 12/19/2018 23:04 : 1835290003 : 5975-K Sample Inst Misc Multiplr: 1.00

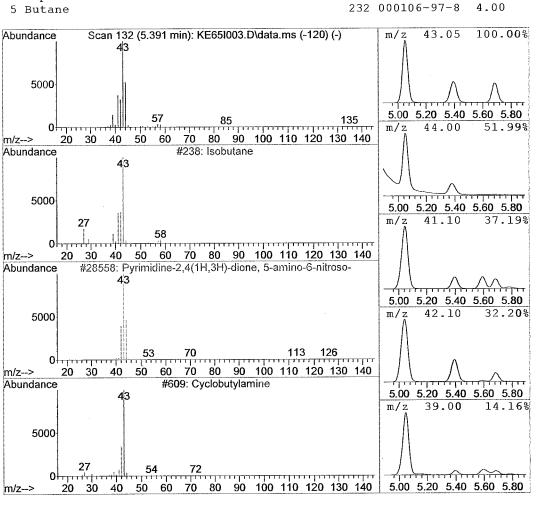
MS Integration Params: rteint.p

: P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator) Method

Title : TO-15
Library : C:\DATABASE\NIST11.L

R.T.	Conc	Area	Relative to	ISTD	ISTD Area
5.05	31.44 ppb	8201425	Bromochlorome	thane	5217250
Hit# of	20	Tentative ID	Ref#	CAS#	Qual
1 Propar				000074-98-6 000115-07-1	
-	ene oxide		74	000075-21-8	5.00
4 1-Proj	panol, 2-ami	no-, (.+/)-	905	006168-72-5	2.00
5 Cyclopropene			50	002781-85-3	2.00
Abundance	Scan 76 (5.0	50 min): KE651003.D\da 44	ata.ms (-64) (-)	m/z 44.05	100.00%




Data File : P:\K-5975-K\2018\DEC18\T9DEC18\KE65I003.D Vial: 11
Acq Time : 12/19/2018 23:04 Operator: BB
Sample : 1835290003 Inst : 5975-K
Misc : Multiplr: 1.00

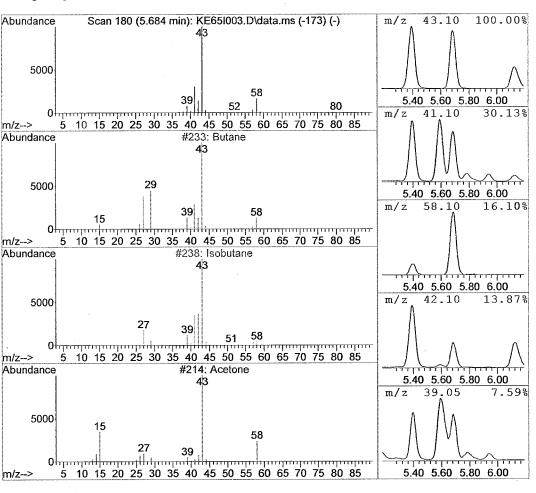
MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

R.T.	Conc	Area	Re	elative to	ISTD	ISTD Area
5.39	6.21 ppb	1620489	Bro	nochloromet	chane	5217250
Hit# of	20	Tentative	[ D	Ref#	CAS#	Qual
-	idine-2,4(1H, butylamine tamine	3H)-dione, 5	5-amin	28558 609 15555	000075-28-5 1000270-67-7 002516-34-9 000300-62-9 000106-97-8	




Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE65I003.D Vial: 11
Acq Time : 12/19/2018 23:04 Operator: BB
Sample : 1835290003 Inst : 5975-K
Misc : Multiplr: 1.00

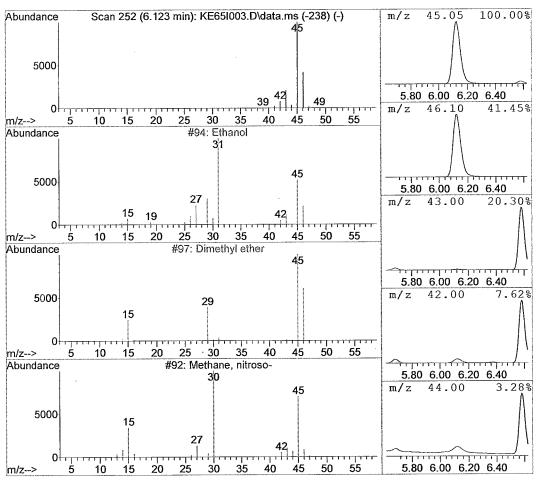
MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

R.T.	Conc	Area	Relative to	ISTD	ISTD Area
5.68	3.96 ppb	1032361	Bromochloromethane		5217250
Hit# of	20	Tentative ID	Ref#	CAS#	Qua1
-	tane		238 214 609	000106-97-8 000075-28-5 000067-64-1 002516-34-9 007782-79-8	9.00 7.00 4.00




Data File : P:\K-5975-K\2018\DEC18\T9DEC18\KE65I003.D Vial: 11
Acq Time : 12/19/2018 23:04 Operator: BB
Sample : 1835290003 Inst : 5975-K
Misc : Multiplr: 1.00

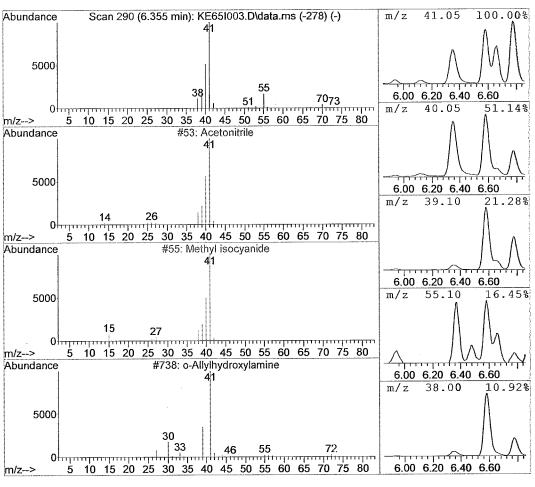
MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

R.T.	Conc	Area	Relative to	ISTD	ISTD Area
6.12	7.91 ppb	2064363	Bromochloromethane		5217250
Hit# of	20	Tentative ID	Ref#	CAS#	Qua1
	hyl ether ne, nitroso- c acid		97 92 100	$\begin{array}{c} 000064 - 17 - 5 \\ 000115 - 10 - 6 \\ 000865 - 40 - 7 \\ 000064 - 18 - 6 \\ 000144 - 62 - 7 \end{array}$	9.00 4.00 4.00




Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE65I003.D Vial: 11
Acq Time : 12/19/2018 23:04 Operator: BB
Sample : 1835290003 Inst : 5975-K
Misc : Multiplr: 1.00

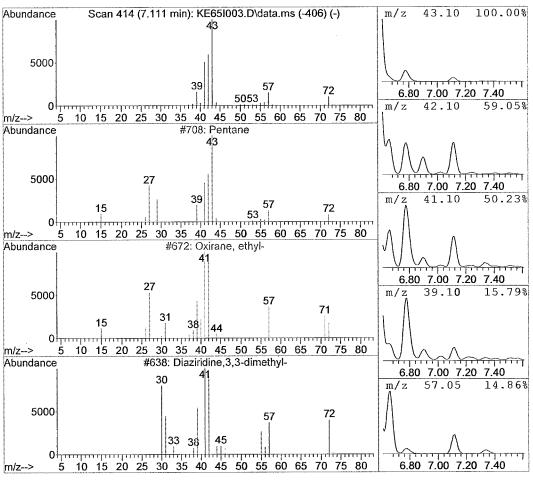
MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

R.T.	Conc	Area	Relative to	ISTD	ISTD Area
6.35	2.07 ppb	538920	Bromochloromet	5217250	
Hit# of	20	Tentative ID	Ref#	CAS#	Qual
1 Acetonitrile 2 Methyl isocyanide 3 o-Allylhydroxylamine 4 Borane, ethyldimethyl- 5 3-Aminopropionitrile			55 738 505	000075-05-8 000593-75-9 006542-54-7 001113-22-0 000151-18-8	45.00 9.00 4.00 4.00 3.00




Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE65I003.D Vial: 11
Acq Time : 12/19/2018 23:04 Operator: BB
Sample : 1835290003 Inst : 5975-K
Misc : Multiplr: 1.00

MS Integration Params: rteint.p

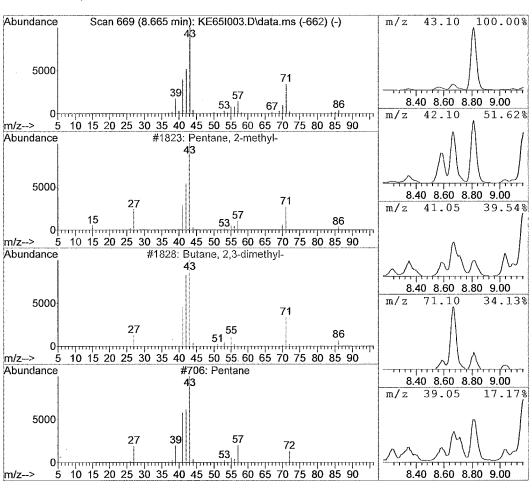
Method: P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

R.T.	Conc	Area	Relative to	ISTD	ISTD Area		
7.11	3.53 ppb	919851	Bromochloromet	5217250			
Hit# of	20	Tentative ID	Ref#	CAS#	Qual		
3 Diazi	ne, ethyl- ridine,3,3-d butane, meth	_	672 638 575	000109-66-0 000106-88-7 004901-76-2 000598-61-8 000075-28-5	9.00 9.00 9.00		
Abundance Scan 414 (7 111 min): KE651003 D\data ms (-406) (-) m/y 43 10 100 00%							



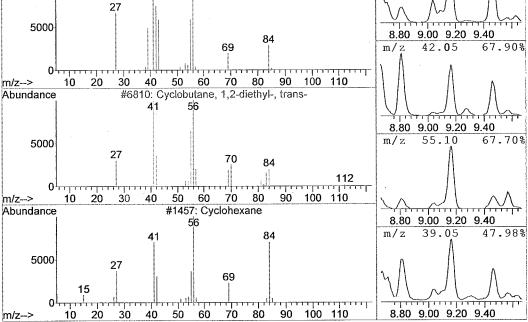
Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE65I003.D Vial: 11 Acq Time : 12/19/2018 23:04 Operator: BB : 1835290003 : 5975-K Sample Inst Multiplr: 1.00


Misc

MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\TO15KH18.m (RTE Integrator)

Title : TO-15


R.T.	Conc	Area	Relative to	ISTD	ISTD Area
8.67	2.25 ppb	587336	Bromochloromet	5217250	
Hit# of	20	Tentative ID	Ref#	CAS#	Qual
2 Butan 3 Penta: 4 1-But	ne, 2-methyl- e, 2,3-dimeth ne anol, 2,3-dimene, 2-bromo-	•	1828 706 4476	000107-83-5 000079-29-8 000109-66-0 019550-30-2 000107-81-3	47.00 43.00 38.00



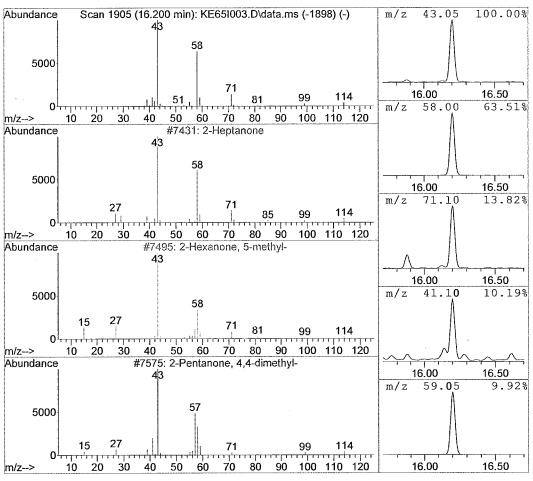
Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE65I003.D Vial: 11 Acq Time : 12/19/2018 23:04 Sample : 1835290003 Operator: BB Inst : 5975-K Multiplr: 1.00 Misc

MS Integration Params: rteint.p

110 1110	egracion rara				
Title	: P:\K-597 : TO-15 : C:\DATAB	5-K\METHODS\TO] ASE\NISTl1.L	15KH18.m (RTE 1	Integrator)	
R.T.	Conc	Area	Relative to	ISTD	ISTD Area
9.17	2.35 ppb	612444	Bromochloromet	chane	521725 <b>0</b>
Hit# of		Tentative ID		CAS#	Qua1
1 1-Hex	ene	iethyl-, trans-	1453	000592-41-6	
3 Cyclo		reenyr, crans		000110-82-7	
	butane, 1,2-d	iethvl-		061141-83-1	
	tene, 2-methy		1487	000763-29-1	50.00
5000 0 m/z> Abundance	41		34	8.80 9.00 9.2 m/z 41.10	93.69%
5000 0 m/z>	10 20 30 40	69 		8.80 9.00 9.2 m/z 42.05	0 9.40
Abundance	#6810: 0	Cyclobutane, 1,2-diethy	/I-, trans-		$\wedge$



m/z-->


Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE651003.D Vial: 11
Acq Time : 12/19/2018 23:04 Operator: BB
Sample : 1835290003 Inst : 5975-K
Misc : Multiplr: 1.00

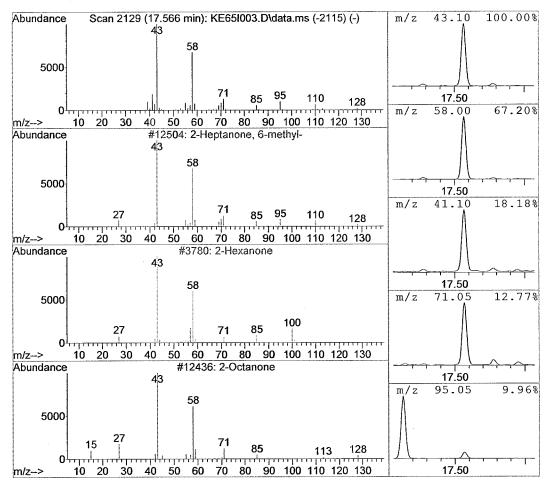
MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KHl8.m (RTE Integrator)

Title : TO-15

R.	т.	Conc		Area	Relative to	ISTD	ISTD Area
16.	20	6.48	ppb	3487201	Chlorobenzene	d5	10758112
Hit	# of	20		Tentative ID	Ref#	CAS#	Qual
2 2 3 2 4 2	-Hexa -Pent -Hexa	anone,	4-meth	imethyl-	7495 7575 7496	000110-43-0 000110-12-3 000590-50-1 000105-42-0 062338-17-4	64.00 50.00 50.00




Data File : P:\K-5975-K\2018\DEC18\T9DEC18\KE65I003.D Vial: 11
Acq Time : 12/19/2018 23:04 Operator: BB
Sample : 1835290003 Inst : 5975-K
Misc : Multiplr: 1.00

MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

R.T.	Conc	Area	Relative to	ISTD	ISTD Area
17.57	9.38 ppb	5045112	Chlorobenzene	d5	10758112
Hit# of	20	Tentative ID	Ref#	CAS#	Qual
1 2-Heptanone, 6-methyl- 2 2-Hexanone			3780	000928-68-7 000591-78-6	59.00
	anone imidamide propyl-5-oxol	nexanal	1617	000111-13-7 000107-90-4 015303-46-5	50.00



Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE67I004.D Vial: 12 Acq Time : 12/20/2018 00:21 Sample : 1835290004 Operator: BB Inst : 5975-K Multiplr: 1.00 Misc

MS Integration Params: rteint.p

Quant Time: Dec 20 14:46:04 2018 Results File: TO15KH18.RES

Quant Method : I:\K-5975-K\METHODS\TO15KHl8.m (RTE Integrator )

Title : TO-15
Last Update : Wed Dec 05 10:49:41 2018
Response via : Initial Calibration

Inte	rnal Standards	R.T.	QIon	Response	Conc Units	Area%
1)	Bromochloromethane	9.41	130	259904		6.13
21)	1,4-Difluorobenzene	11.19	114	3536835		3.96
44)	Chlorobenzene d5	15.49	117	2790991	20.00 ppb 9	9.40
Svst	em Monitoring Compounds				%Rec	overy
	Bromofluorobenzene	17.13	95	1491581	19.02 ppb 9	5.10%
Tarq	et Compounds				Q	value
	Dichlorodifluoromethane	5.10	85	68421	0.4778 ppb	100
,	Chloromethane	0.00	50		Not Detected	
	Freon 114	0.00	135		Not Detected	
	Vinyl Chloride	0.00	62		Not Detected	
	1,3-Butadiene	5.62	54	31397	0.8863 ppb #	17
	Bromomethane	0.00	94		Not Detected	
	Chloroethane	0.00	64		Not Detected	
	Acetone	6.59	43	4777324	59.1304 ppb	98
	Trichlorofluoromethane	6.79	101	28675	0.2248 ppb	98
	1,1-Dichloroethene	0.00	61		Not Detected	
	Methylene Chloride	7.46	84	10000	0.2333 ppb	91
	Freon 113	0.00	151		Not Detected	
14)	Carbon Disulfide	7.79	76	679464	6.4575 ppb	99
15)	trans-1,2-Dichloroethene	0.00	96		Not Detected	
16)	1,1-Dichloroethane	0.00	63		Not Detected	
17)	methyl t-butyl ether	0.00	73		Not Detected	
18)	Vinyl Acetate	0.00			Not Detected	
19)	2-Butanone	8.82		456669	4.4287 ppb	100
20)	cis-1,2-Dichloroethene	0.00	96		Not Detected	
22)	Ethyl Acetate	0.00			Not Detected	
23)	Hexane	9.46		91809	1.0343 ppb	94
24)	Chloroform	9.52		42723	0.4024 ppb	97
	Tetrahydrofuran	9.90		45318	0.7717 ppb	92
	1,2-Dichloroethane	0.00			Not Detected	0.77
	1,1,1-Trichloroethane	10.47		17179	0.1548 ppb	97
	Benzene	10.90		210676	1.4317 ppb	98
	Carbon Tetrachloride	11.05		29675	0.2665 ppb	99
	Cyclohexane	0.00			Not Detected	
	1,2-Dichloropropane	0.00			Not Detected	
	Bromodichloromethane	0.00			Not Detected	
	Trichloroethene	0.00		02207	Not Detected	0.2
•	Heptane	12.15		23397	0.4128 ppb	93
	cis-1,3-Dichloropropene	0.00		60560	Not Detected	98
	4-Methyl-2-Pentanone	12.70		62563	0.4481 ppb	90
	trans-1,3-Dichloropropene	0.00			Not Detected	
	1,1,2-Trichloroethane	0.00		250210	Not Detected	99
,	Toluene	13.68		258218	1.4755 ppb 0.7069 ppb ‡	
	2-Hexanone	13.88		86522	Not Detected	† 03
	Dibromochloromethane	0.00			Not Detected	
	1,2-Dibromoethane	0.00			Not Detected	
	Tetrachloroethene	0.00			Not Detected	
	Chlorobenzene			51001	0.2297 ppb	98
	Ethylbenzene	15.93 16.10		156670	0.8897 ppb	97
	m,p-Xylene	0.00		120010	Not Detected	91
	Bromoform	16.51		34903	0.2945 ppb	98
	Styrene	0.00		34303	Not Detected	20
50)	1,1,2,2-Tetrachloroethane	0.00			not beceed	

^(#) = qualifier out of range (m) = manual integration KE67I004.D T015KH18.m Thu Dec 20 14:55:36 2018

Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE67I004.D Vial: 12
Acq Time : 12/20/2018 00:21 Operator: BB
Sample : 1835290004 Inst : 5975-K
Misc : Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Dec 20 14:46:04 2018 Results File: T015KH18.RES

Quant Method: I:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

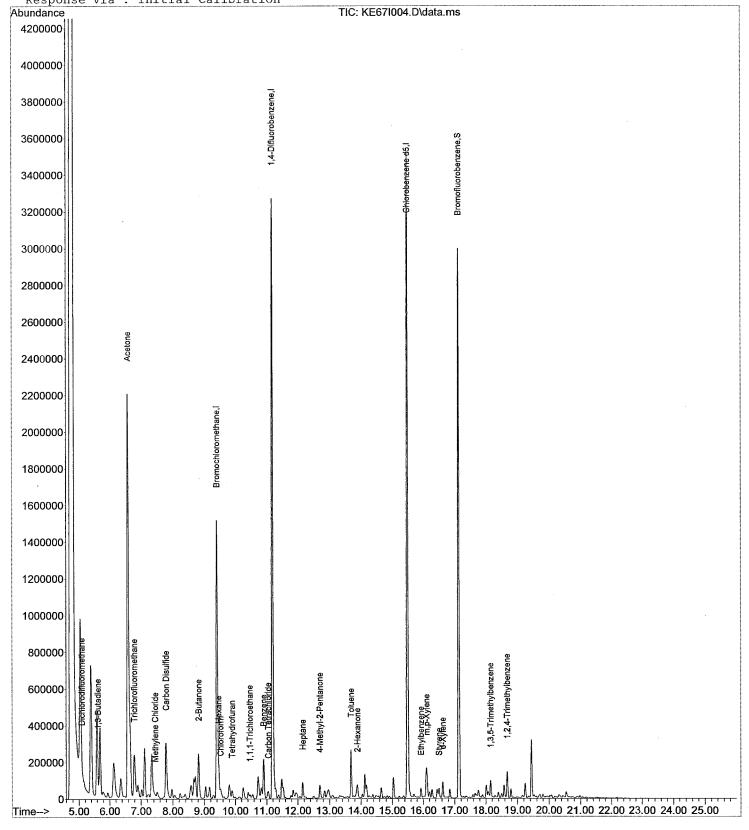
Title : TO-15

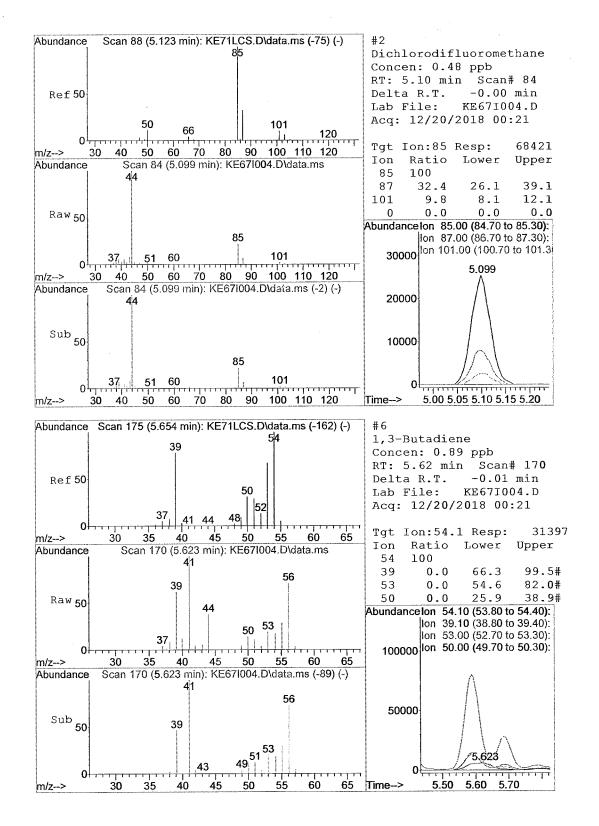
Last Update: Wed Dec 05 10:49:41 2018

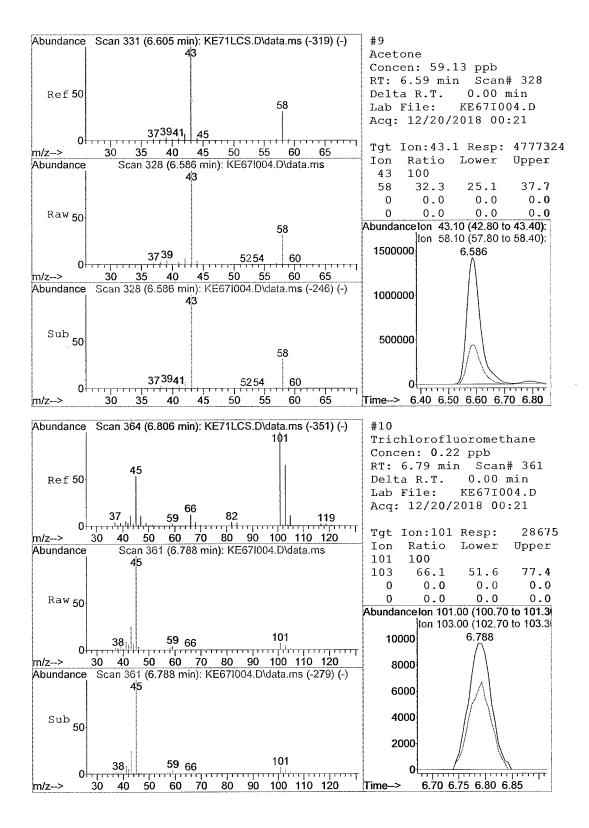
Response via : Initial Calibration

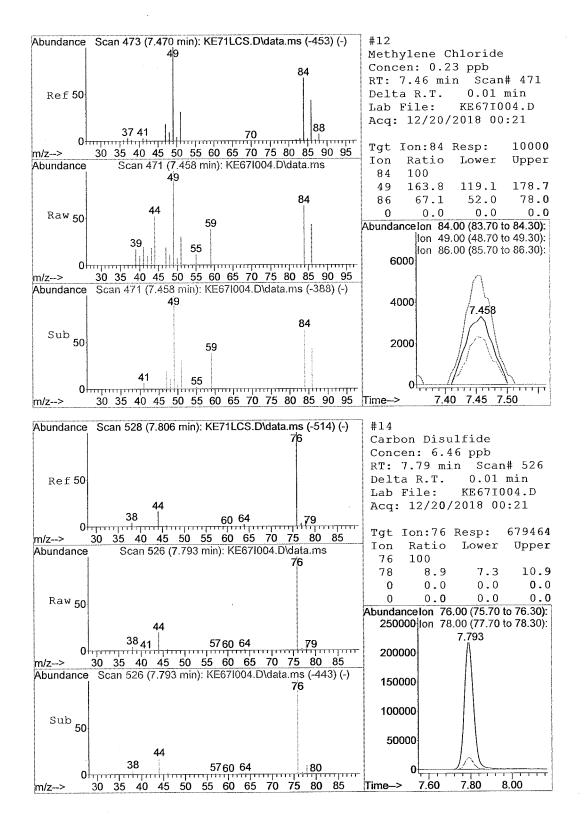
Compound		R.T.	QIon	Response	Conc Unit	Qvalue
51) o-Xylene 53) 4-Ethyl Tol	uene	16.63	91 105	65041	0.3781 ppb Not Detected	98 l
54) 1,3,5-Trime	thylbenzene	18.16	105	33291	0.1662 ppb	97
55) 1,2,4-Trime		18.68	105	100948	0.5450 ppb	98
56) Benzyl Chlo		0.00	91		Not Detected	ì
57) m-Dichlorob	enzene	0.00	146		Not Detected	ì
58) p-Dichlorob	enzene	0.00	146		Not Detected	i
59) o-Dichlorob	enzene	0.00	146		Not Detected	i
60) 1,2,4-Trich	lorobenzene	0.00	180		Not Detected	i
61) Hexachloro-	-1,3-butadiene	0.00	225		Not Detected	i

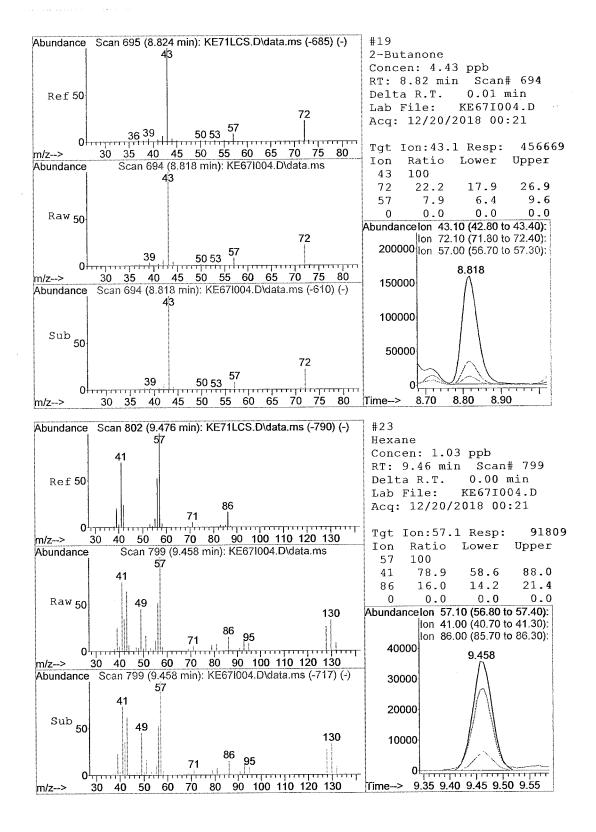
Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE67I004.D Vial: 12
Acq Time : 12/20/2018 00:21 Operator: BB
Sample : 1835290004 Inst : 5975-K
Misc : Multiplr: 1.00

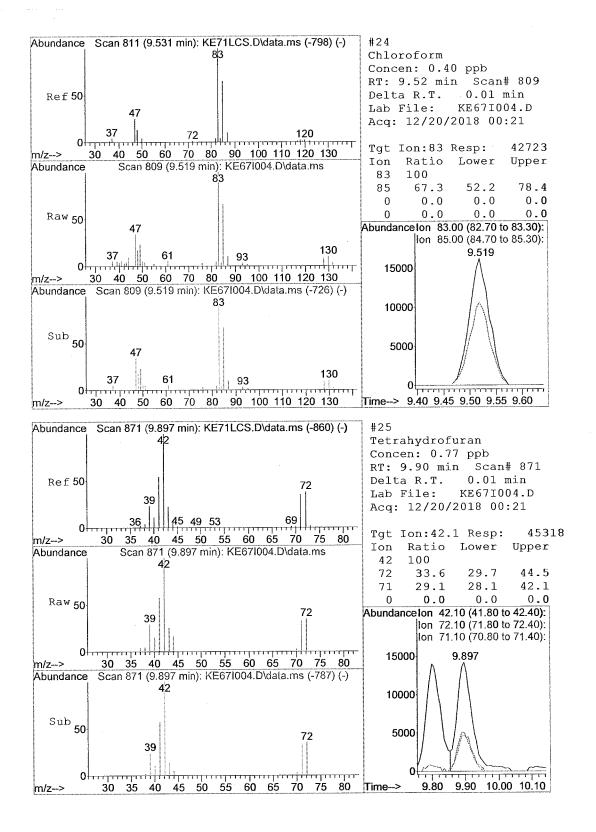

MS Integration Params: rteint.p

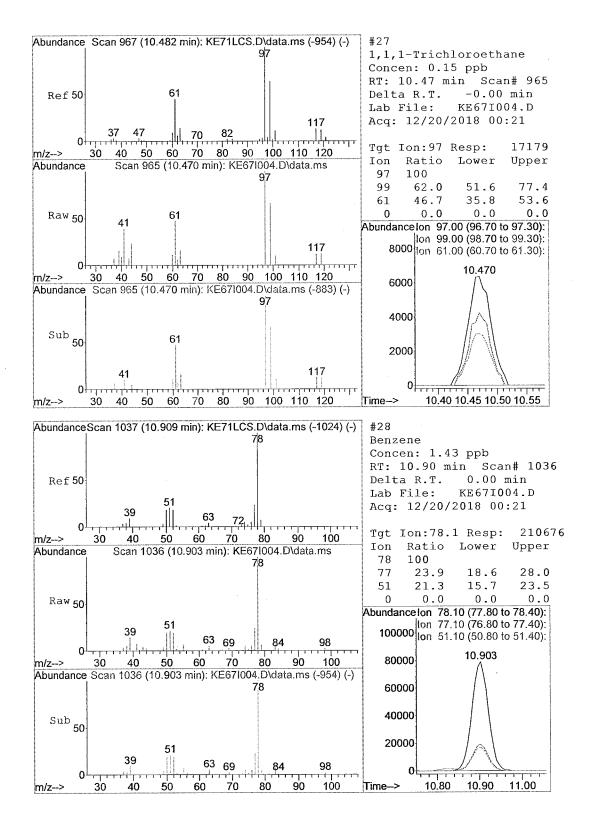

Quant Time: Dec 20 14:46:04 2018 Results File: TO15KH18.RES

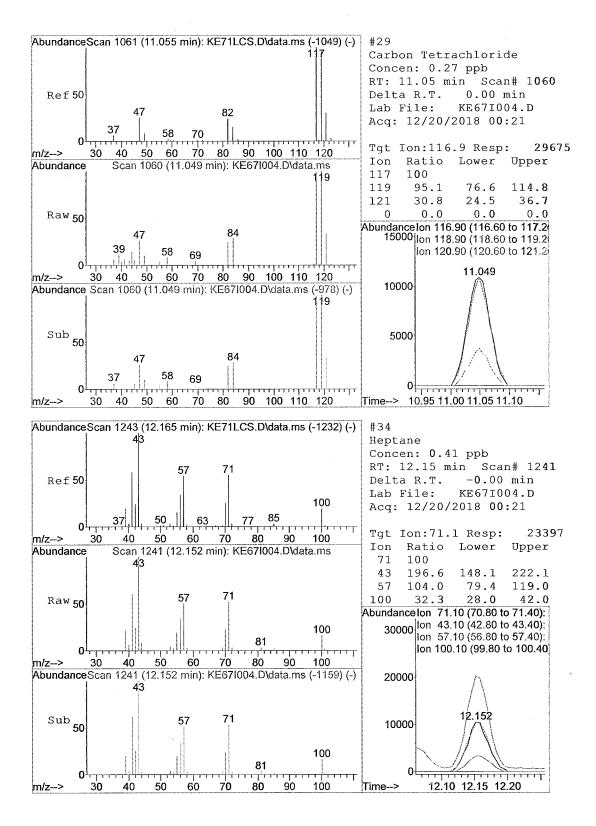

Method : P:\K-5975-K\METHODS\TO15KH18.m (RTE Integrator)


Title : TO-15

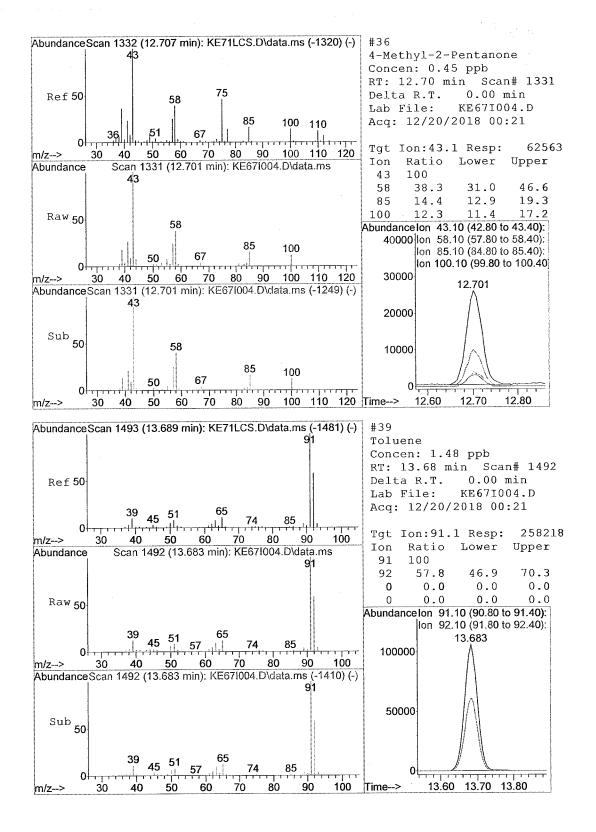

Last Update : Wed Dec 05 10:49:41 2018 Response via : Initial Calibration

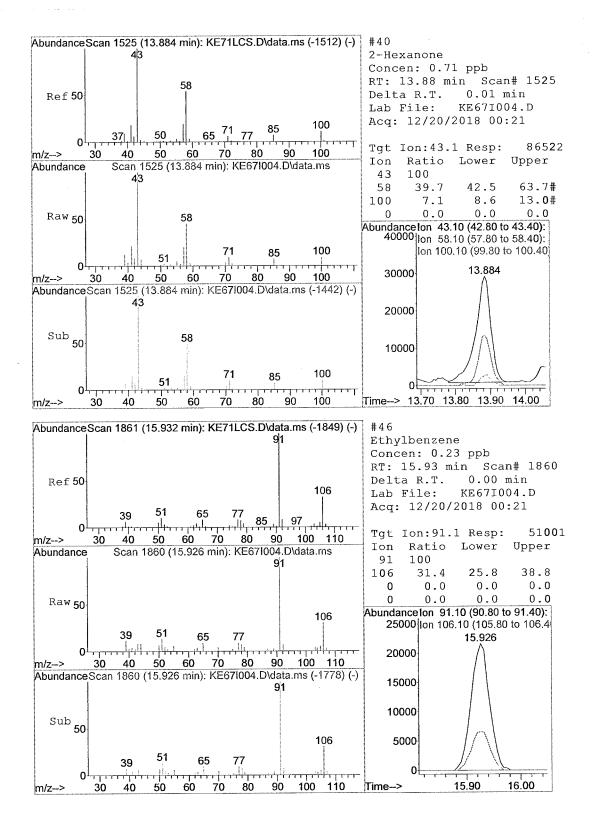


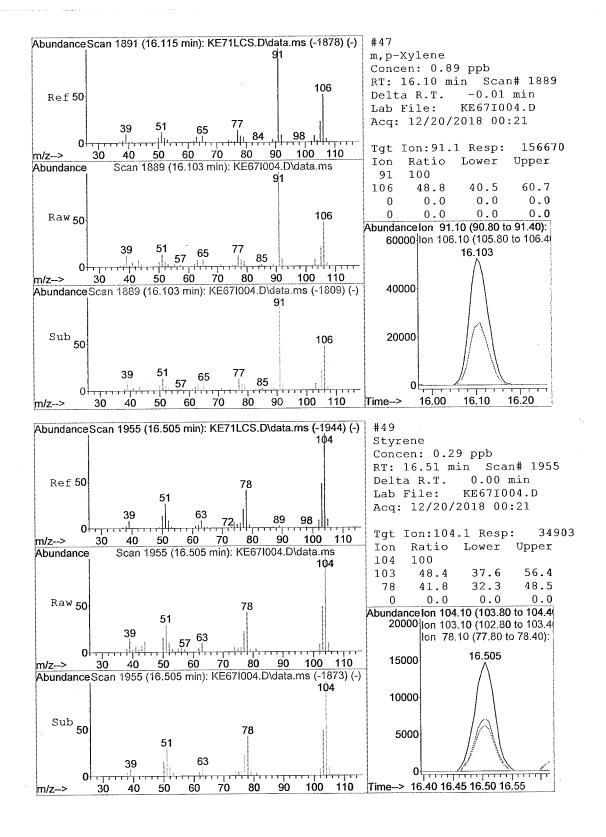



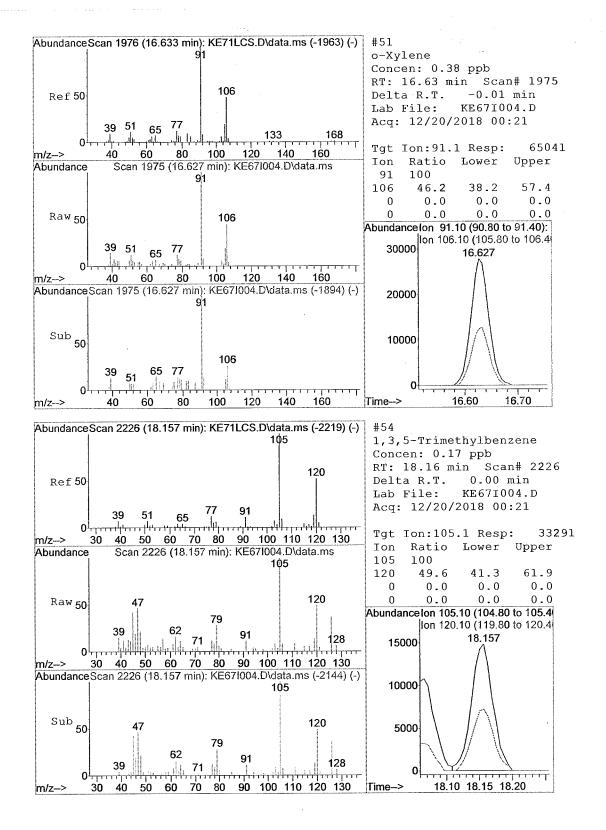



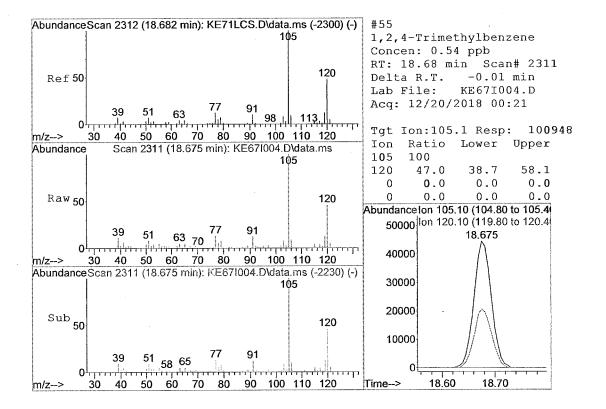




TO15KH18.m 5975-K 1835290004 Page 10

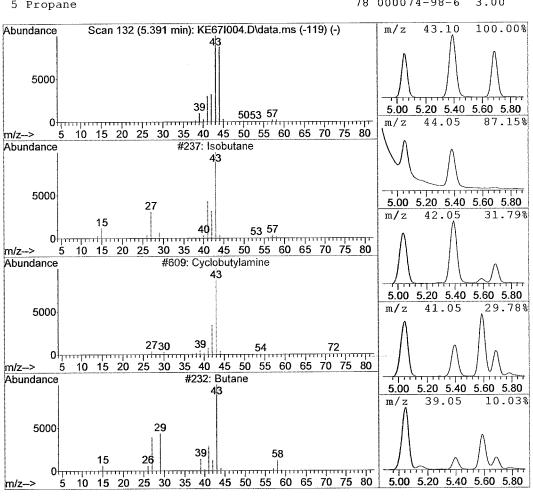











Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE67I004.D Vial: 12
Acq Time : 12/20/2018 00:21 Operator: BB
Sample : 1835290004 Inst : 5975-K
Misc : Multiplr: 1.00

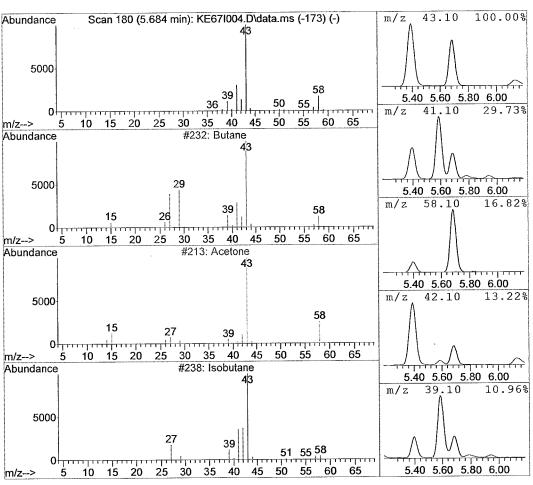
MS Integration Params,: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

R.T. Conc	Area	Relative to	ISTD	ISTD Area
5.39 11.10 ppb	2652179	Bromochloromethane		4778948
Hit# of 20	Tentative ID	Ref#	CAS#	Qual
1 Isobutane 2 Cyclobutylamine 3 Butane 4 Carbon dioxide 5 Propane		609 232 81	000075-28-5 002516-34-9 000106-97-8 000124-38-9 000074-98-6	4.00 4.00 3.00




Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE67I004.D Vial: 12
Acq Time : 12/20/2018 00:21 Operator: BB
Sample : 1835290004 Inst : 5975-K
Misc : Multiplr: 1.00

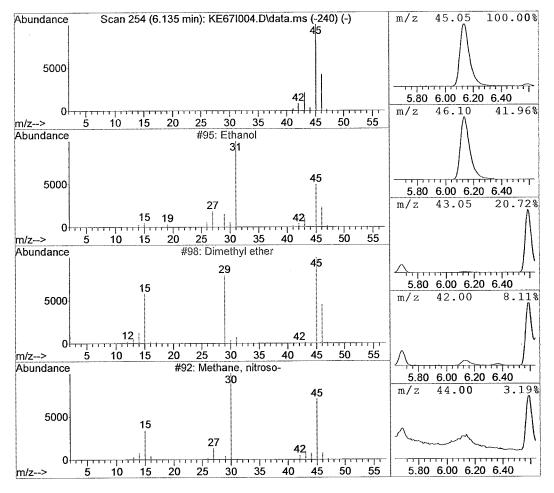
MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

R.T. Conc	Area	Relative to	ISTD	ISTD Area
5.68 4.87 ppb	1162976	Bromochloromet	hane	4778948
Hit# of 20	Tentative ID	Ref#	CAS#	Qual
1 Butane 2 Acetone 3 Isobutane 4 Propylene oxide 5 Hydrogen azide		213 238 225	000106-97-8 000067-64-1 000075-28-5 000075-56-9 007782-79-8	45.00 9.00 4.00




Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE67I004.D Vial: 12
Acq Time : 12/20/2018 00:21 Operator: BB
Sample : 1835290004 Inst : 5975-K
Misc : Multiplr: 1.00

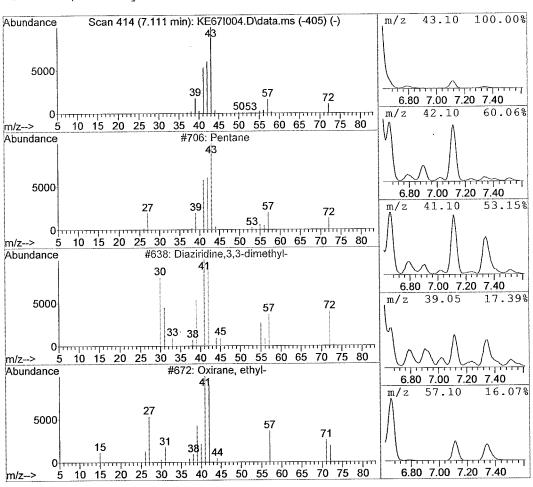
MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

R.T.	Conc	Area	Relative to	ISTD	ISTD Area
6.14	3.65 ppb	871396	Bromochloromet	chane	4778948
Hit# of	20	Tentative ID	Ref#	CAS#	Qual
	hyl ether ne, nitroso- c acid		98 92 100	$\begin{array}{c} 000064 - 17 - 5 \\ 000115 - 10 - 6 \\ 000865 - 40 - 7 \\ 000064 - 18 - 6 \\ 000144 - 62 - 7 \end{array}$	9.00 4.00 4.00




Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE67I004.D Vial: 12
Acq Time : 12/20/2018 00:21 Operator: BB
Sample : 1835290004 Inst : 5975-K
Misc : Multiplr: 1.00

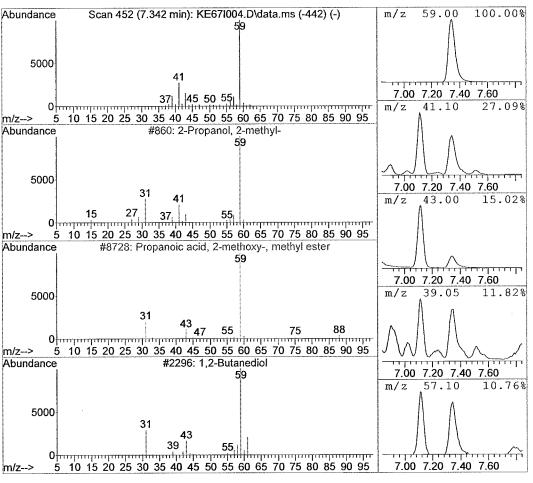
MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

R.T.	Conc	Area	Relative to	ISTD	ISTD Area
7.11	3.15 ppb	753784	Bromochloromet	chane	4778948
Hit# of	20	Tentative ID	Ref#	CAS#	Qual
3 Oxira 4 Propa	ne ridine,3,3-di ne, ethyl- nal, 2-methyl- e, 2-methyl-		638 672 689	000109-66-0 004901-76-2 000106-88-7 000078-84-2 000078-78-4	25.00 9.00 7.00




Data File : P:\K-5975-K\2018\DEC18\T9DEC18\KE671004.D Vial: 12
Acq Time : 12/20/2018 00:21 Operator: BB
Sample : 1835290004 Inst : 5975-K
Misc : Multiplr: 1.00

MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

R.T.	Conc	Area	Relative to	ISTD	ISTD Area
7.34	3.90 ppb	931648	Bromochloromet	thane	4778948
Hit# of	20	Tentative ID	Ref#	CAS#	Qual
2 Propa 3 1,2-B 4 (3,3-	utanediol Dimethyloxira	-methoxy-, methy	71 8728 2296 4327	000075-65-0 017639-76-8 000584-03-2 1000306-71-7 000594-61-6	39.00 38.00 7 9.00



Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE70I001.D Vial: 13 Acq Time : 12/20/2018 02:23 Sample : 1835256003 Operator: BB Inst : 5975-K Multiplr: 1.00 Misc

MS Integration Params: rteint.p

Quant Time: Dec 20 14:48:54 2018 Results File: T015KH18.RES

Quant Method : I: $K-5975-K\METHODS\T015KH18.m$  (RTE Integrator )

Title : TO-15
Last Update : Wed Dec 05 10:49:41 2018
Response via : Initial Calibration

DataAcq Meth : TO-15.M

Internal Standar				Response	e Conc Units	Area%
1) Bromochloro	omethane	9.40	130	334592	20.00 ppb	110.88
21) 1,4-Difluor	obenzene	11.19	114	3469271	20.00 ppb	92.17
44) Chlorobenze	ne d5	15.49	117	2880309	20.00 ppb	102.58
ystem Monitorir	a Compounds				%R	ecovery
52) Bromofluoro	-	17.13	95	1510234	18.66 ppb	93.30%
						01
arget Compounds 2) Dichlorodif		5.10	85	67139	0.3642 ppb	Qvalue 100
3) Chlorometha		5.26	50	31572		97
4) Freon 114	ine	0.00	135	310,2	Not Detecte	
5) Vinyl Chlor	ide.	0.00	62		Not Detecte	
6) 1,3-Butadie		0.00	54		Not Detecte	
		0.00	94		Not Detecte	
7) Bromomethar		0.00	64		Not Detected	
8) Chloroethar	ıe	6.58		27461180	264.0238 ppb	م راهوو ^۵
9) Acetone	woromothers	6.79		83033		100
10) Trichlorofl				03033		
11) 1,1-Dichlor		0.00	61	10560	Not Detecte	a 92
12) Methylene (	nioriae	7.45	84	12562		
13) Freon 113	1611	0.00	151		Not Detecte	
14) Carbon Dist		0.00	76		Not Detecte	
15) trans-1,2-I		0.00	96		Not Detecte	
16) 1,1-Dichlor		0.00	63		Not Detecte	
17) methyl t-bu	_	0.00	73		Not Detecte	
18) Vinyl Aceta	ate	0.00	86	4.54504	Not Detecte	
19) 2-Butanone		8.81	43	1451794	10.9366 ppb	98
20) cis-1,2-Dio		0.00	96		Not Detecte	997, L
22) Ethyl Aceta	ate	9.40	61	2736807	151.0759 ppb	
23) Hexane		0.00	57		Not Detecte	
24) Chloroform		0.00	83		Not Detecte	
25) Tetrahydro	furan	9 <b>.9</b> 1	42	10218		# 51
26) 1,2-Dichlor	coethane	0.00	62		Not Detecte	
27) 1,1,1-Trick	nloroethane	0.00	97		Not Detecte	d
28) Benzene		0.00	78		Not Detecte	
29) Carbon Teta	cachloride	0.00	117		Not Detecte	
30) Cyclohexane	е	11.18	84	140511		# 70
31) 1,2-Dichlor	copropane	11.67	63	8 <b>9</b> 56	0.1591 ppb	9 <b>8</b>
32) Bromodichlo		0.00	83		Not Detecte	d
33) Trichloroet		0.00	130		Not Detecte	
34) Heptane		12.16	71	1578242	28.3900 ppb	96
35) cis-1,3-Die	chloropropene	0.00	75		Not Detecte	d Ol
36) 4-Methyl-2		12.70	43	13989558	102.1476 ppb	98 (V. L
	Dichloropropene	0.00	75		Not Detecte	98 P. L d d P. Z m 0 0 1 1 5
38) 1,1,2-Tricl		0.00	97		Not Detecte	d 7, V 12
39) Toluene		13.67		27317475	159.1349 ppb	m , 0 (λ)λ
40) 2-Hexanone		0.00	43		Not Detecte	d
41) Dibromochle	oromethane	0.00	129		Not Detecte	
42) 1,2-Dibrom		0.00	107		Not Detecte	
43) Tetrachlor		0.00	166		Not Detecte	
45) Chlorobenz		0.00			Not Detecte	
46) Ethylbenzer		0.00			Not Detecte	
		16.10				97
47) m,p-Xylene		0.00			Not Detecte	
48) Bromoform		0.00			Not Detecte	
49) Styrene	trachloroothano	0.00			Not Detecte	
$50)$ $\pm$ , $\pm$ , $\angle$ , $\angle$ -Te	trachloroethane	0.0 <b>0</b>			MOC Dececte	

^{(#) =} qualifier out of range (m) = manual integration KE70I001.D T015KH18.m Thu Dec 20 14:56:16 2018

Data File: P:\K-5975-K\2018\DEC18\19DEC18\KE70I001.D Vial: 13 Acq Time : 12/20/2018 02:23 Sample : 1835256003 Misc : Operator: BB Inst : 5975-K Multiplr: 1.00

MS Integration Params: rteint.p

Results File: TO15KH18.RES Quant Time: Dec 20 14:48:54 2018

Quant Method : I:\K-5975-K\METHODS\TO15KH18.m (RTE Integrator )

Title : TO-15
Last Update : Wed Dec 05 10:49:41 2018
Response via : Initial Calibration

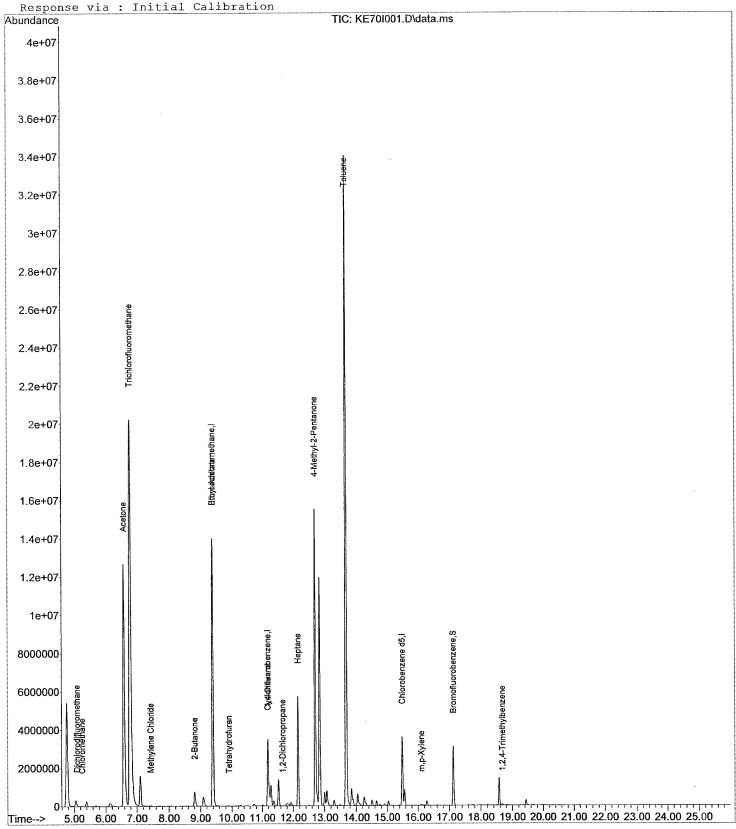
DataAcq Meth : TO-15.M

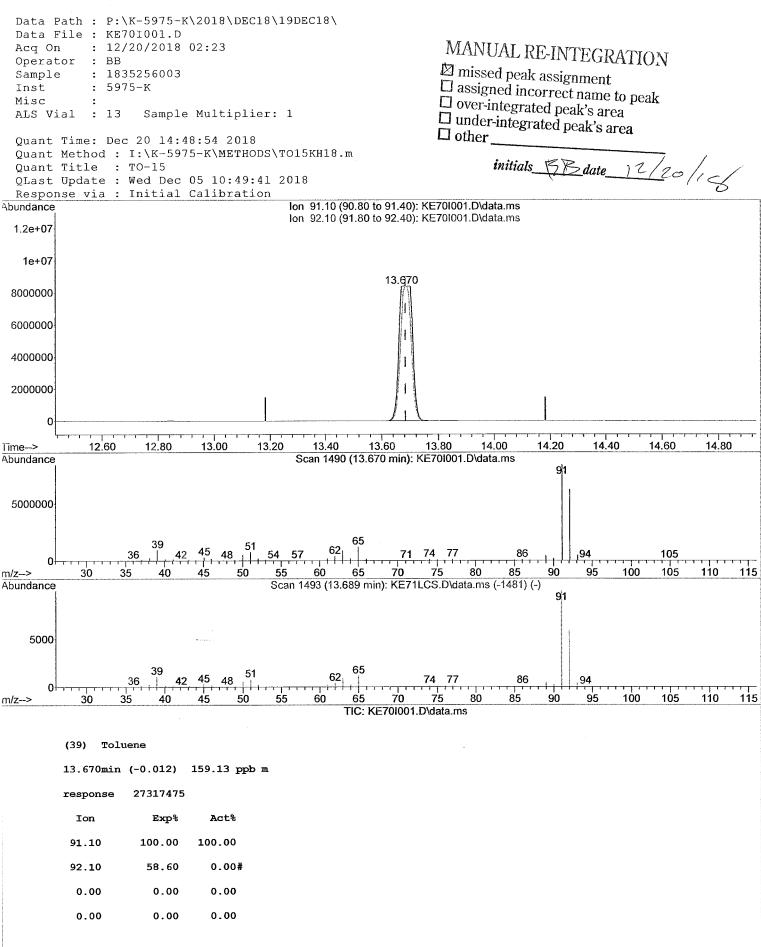
	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
	o-Xylene 4-Ethyl Toluene	0.00	91 105		Not Detected	
	1,3,5-Trimethylbenzene	0.00	105		Not Detected	
55)	1,2,4-Trimethylbenzene	18.68	105	56813	0.2972 ppb	99
56)	Benzyl Chloride	0.00	91		Not Detected	1
57)	m-Dichlorobenzene	0.00	146		Not Detected	1
58)	p-Dichlorobenzene	0.00	146		Not Detected	1
59)	o-Dichlorobenzene	0.00	146		Not Detected	1
60)	1,2,4-Trichlorobenzene	0.00	180		Not Detected	1
61)	Hexachloro-1,3-butadiene	0.00	225		Not Detected	Ė

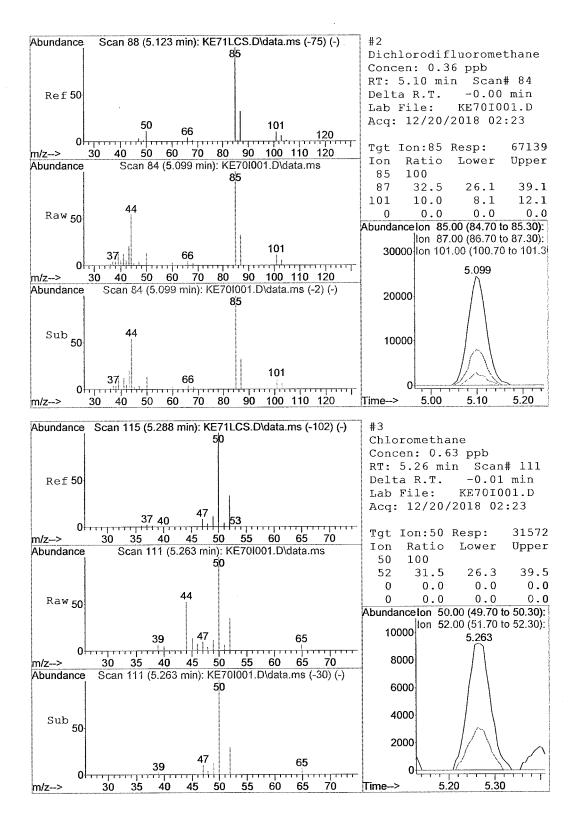
Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE70I001.D

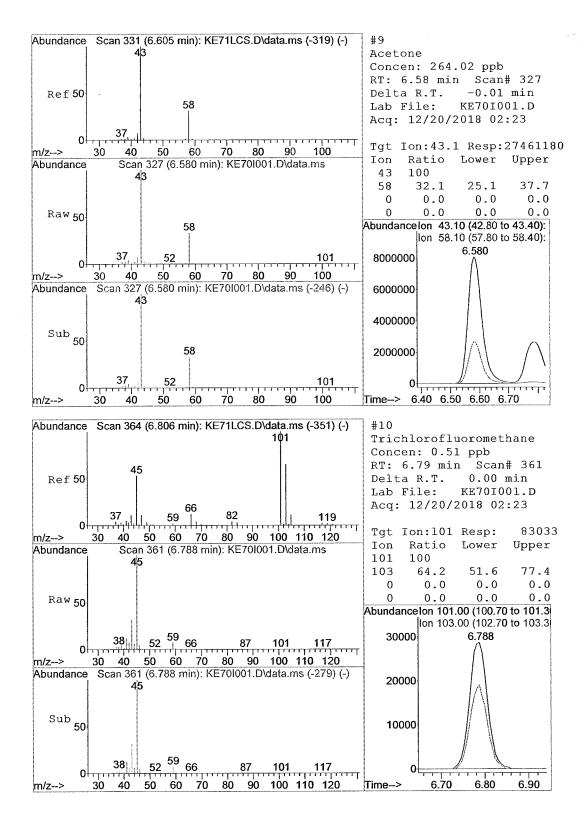
Operator: BB

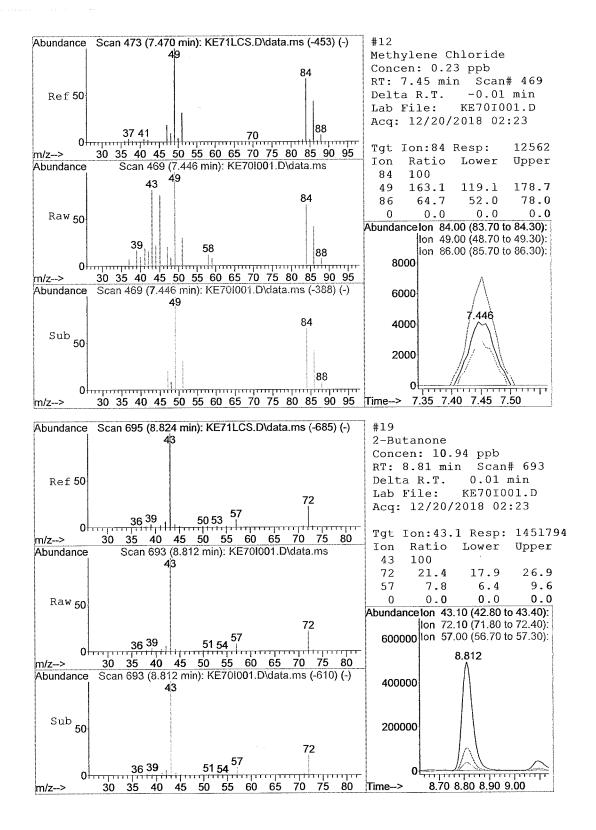
Acq Time : 12/20/2018 02:23 Inst : 5975-K Sample : 1835256003 Multiplr: 1.00 Misc

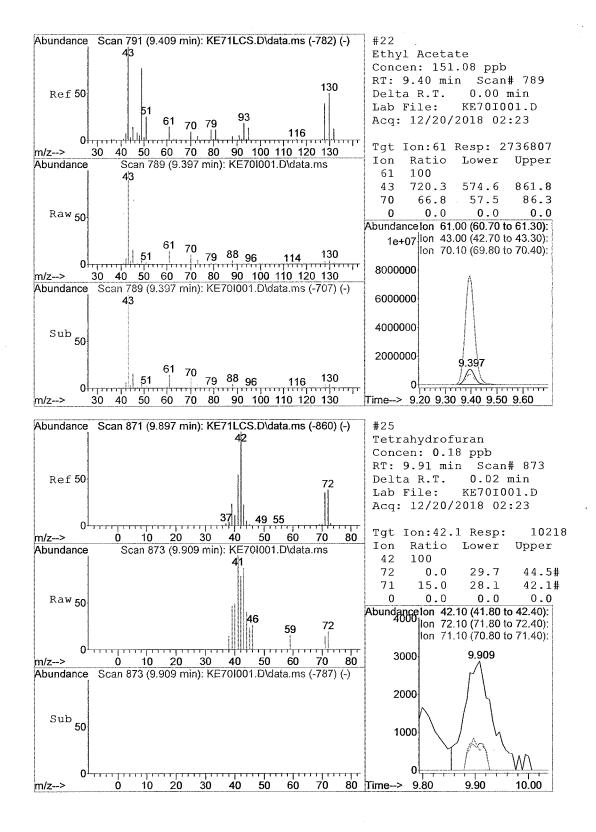

MS Integration Params: rteint.p

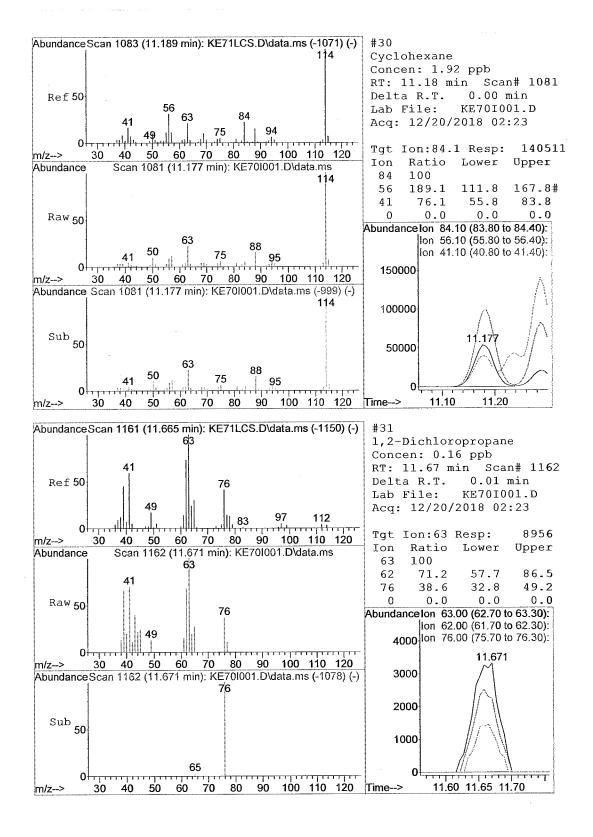

Results File: TO15KH18.RES Quant Time: Dec 20 14:48:54 2018

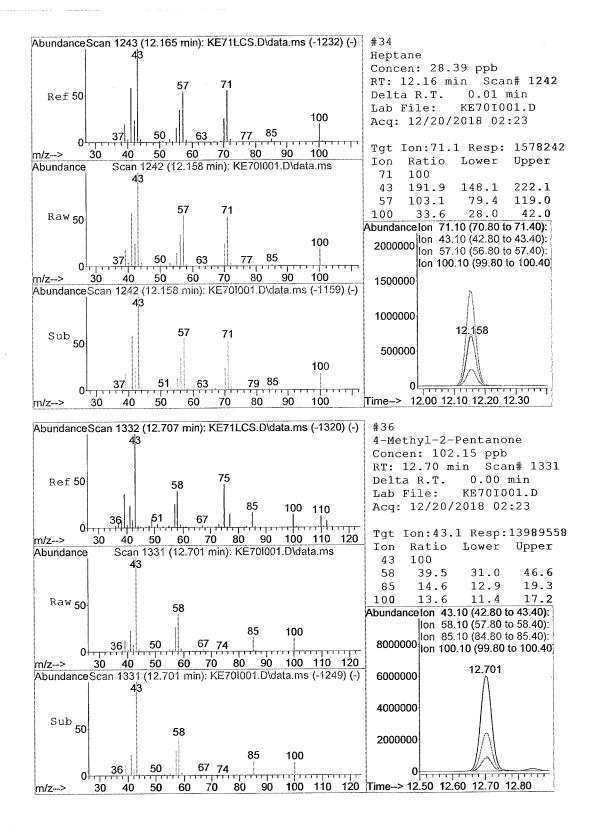

: P:\K-5975-K\METHODS\TO15KH18.m (RTE Integrator) Method

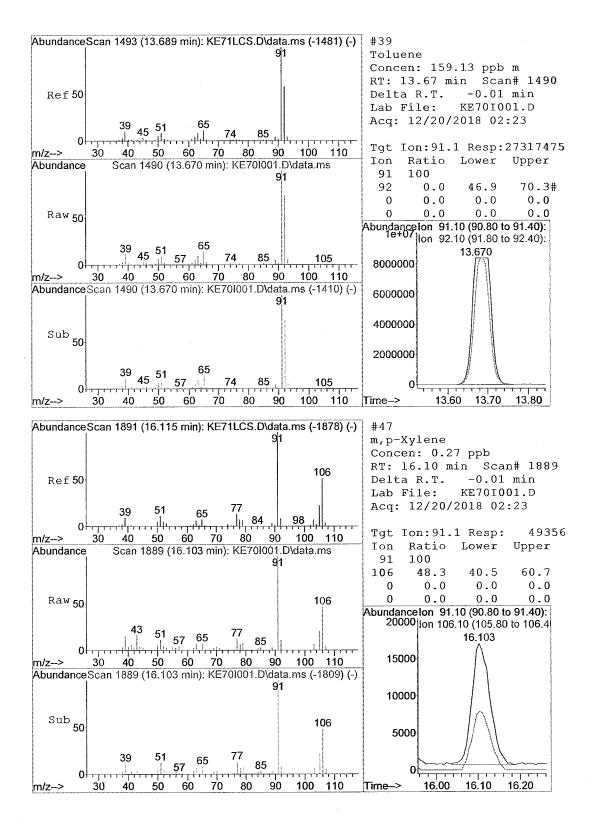

Title : TO-15

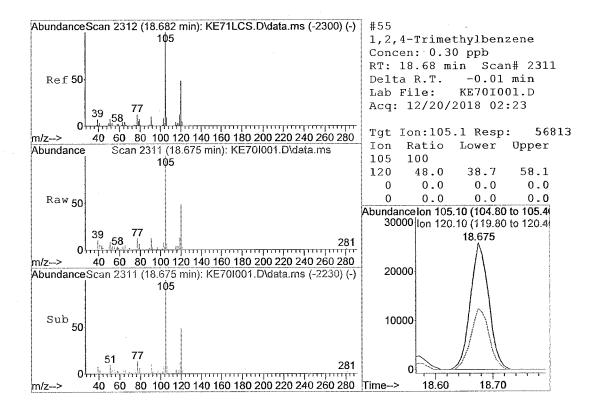

Last Update : Wed Dec 05 10:49:41 2018









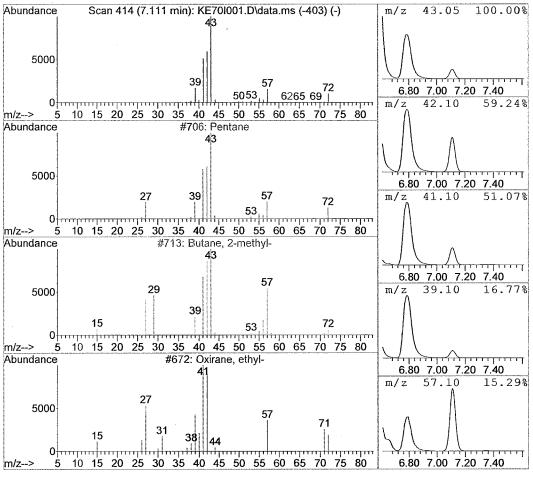





Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE70I001.D Vial: 13

Acq Time : 12/20/2018 02:23 Operator: BB

Sample : 1835256003 Inst : 5975-K


Misc : Multiplr: 1.00

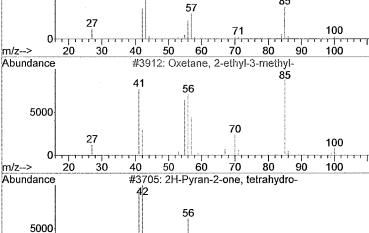
MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

R.T.	Conc	Area	Relative to	ISTD	ISTD Area
7.11	2.35 ppb	4315853	Bromochloromet	thane	36683840
Hit# of	20	Tentative ID	Ref#	CAS#	Qual
1 Penta	 ne		706	000109-66-0	91.00
2 Butan	e, 2-methyl-		713	000078-78-4	38.00
3 Oxira	ne, ethyl-		672	000106-88-7	9.00
4 Butan	e, 2,3-dimeth	nyl-	1831	000079-29-8	9.00
5 Butan	al, 2,2-dimet	hyl-	3861	002094-75-9	9.00
Abundance Scan 414 (7.111 min): KE70I001.D\data.ms (-403) (-)   m/z 43.0					100.00%




Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE70I001.D Vial: 13

Operator: BB

Acq Time : 12/20/2018 02:23 Sample : 1835256003 Misc : Inst : 5975-K Multiplr: 1.00

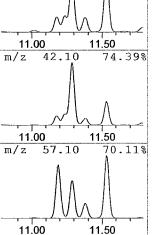
MS Integration Params: rteint.p

Title : TO-	K-5975-K\METHODS\TO 15 DATABASE\NIST11.L	15KH18.m (RTE I	integrator)	
R.T. Conc	Area	Relative to	ISTD	ISTD Area
11.29 4.90 p	pb 2483976	1,4-Difluorobe	enzene i	10130523
Hit# of 20	Tentative ID	Ref#	CAS#	Qual
1 Hexane, 2-met	hyl-	3976	000591-76-4	80.00
2 Oxetane, 2-et	hyl-3-methyl-	3912	053778-62-4	47.00
3 2H-Pyran-2-on	e, tetrahydro-	3705	000542-28-9	43.00
4 Pentane, 2,2-	dimethyl-	3995	000590-35-2	43.00
5 2H-Pyran, tet	rahydro-2-methyl-	3944	010141-72-7	40.00
Abundance Scan 109 5000 0 100 100 100 100 100 100 100 100	99 (11.287 min): KE70I001.D\da 43 57 51 70 77 40 50 60 70 8 #3976: Hexane, 2-methy	100 100 30 90 100	m/z 85.10 11.00 m/z 43.10	100.00% 11.50 85.65%
5000	57	<b>85</b>	11.00	11.50



49 50

60


40

70

70

80

90



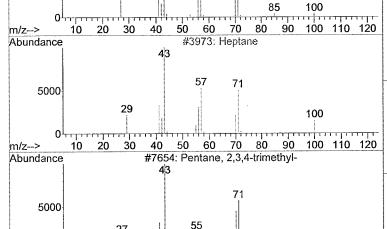
m/z

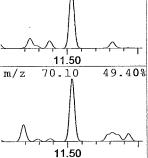
41.10

85.15%

100

100


20


m/z-->

Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE70I001.D Vial: 13
Acq Time : 12/20/2018 02:23 Operator: BB
Sample : 1835256003 Inst : 5975-K
Misc : Multiplr: 1.00

MS Integration Params: rteint.p

Method : P:\K-5975 Title : TO-15 Library : C:\DATABA	•	5KH18.m (RTE I	ntegrator)	
R.T. Conc	Area	Relative to	ISTD	ISTD Area
11.53 6.64 ppb	3361572	1,4-Difluorobe	enzene 1	0130523
Hit# of 20	Tentative ID	Ref#	CAS#	Qual
1 Hexane, 3-methyl-			000589-34-4	
2 Heptane			000142-82-5	
3 Pentane, 2,3,4-trim	ethyl-		000565-75-3	
4 Pentane, 3-ethyl-			000617-78-7	
5 Heptane, 3,4-dimeth	yl-	12682	000922-28-1	50.00
5000 0 m/z> 10 20 30 40		5 100 90 100 110 120	m/z 43.05 11.50 m/z 41.05	
5000	57 <b>70</b>		11.50	





m/z

m/z

57.05

<u>11.5</u>0

71.10

53.70%

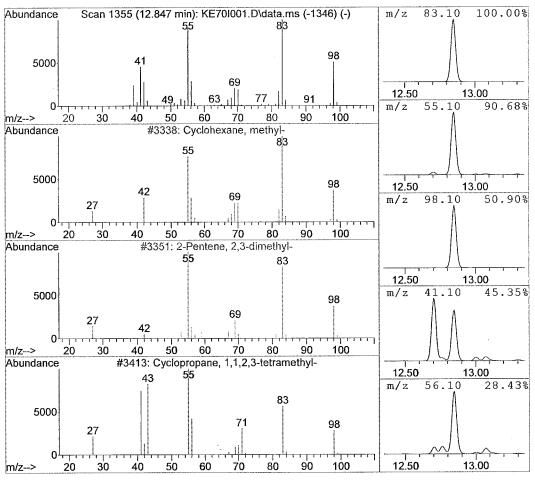
53.56%

114 0 50 60 70 80 90 100 110 120

15

m/z-->

10 20 30 40 50 60


Data File : P:\K-5975-K\2018\DEC18\T9DEC18\KE701001.D Vial: 13
Acq Time : 12/20/2018 02:23 Operator: BB
Sample : 1835256003 Inst : 5975-K
Misc : Multiplr: 1.00

MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

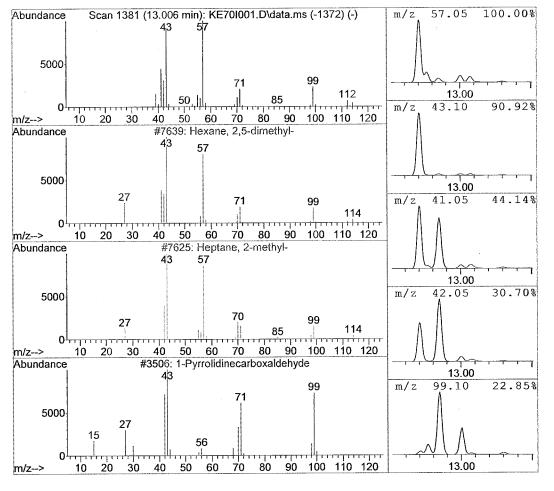
Title : TO-15

R.T.	Conc	Area	Relative to	ISTD	ISTD Area
12.85	56.16 ppb	28447547	1,4-Difluorobe	enzene	10130523
Hit# of	20	Tentative ID	Ref#	CAS#	Qual
2 2-Pen 3 Cyclo 4 Furan		ethyl- 2,3-tetramethy: -2,5-dimethyl-	3351 1- 3413 3271	000108-87-2 010574-37-5 074752-93-5 059242-27-2 004914-92-5	72.00 72.00 64.00



Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE70I001.D Vial: 13

Acq Time : 12/20/2018 02:23 Operator: BB


Sample : 1835256003 Inst : 5975-K

MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

R.T.	Conc	Area	Relative to	ISTD	ISTD Area
13.01	3.25 ppb	1646500	1,4-Difluorobe	enzene	10130523
Hit# of	20	Tentative ID	Ref#	CAS#	Qual
2 Hepta 3 1-Pyr 4 Hydro	e, 2,5-dimethene, 2-methyl-rolidinecarboxylamine, 0-propyl-4H-oxa	oxaldehyde (3-methylbutyl)	7625 3506 - 4619	000592-13-2 000592-27-8 003760-54-3 019411-65-5 1000190-01-	3 87.00 L 47.00 5 43.00



Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE70I001.D Vial: 13 Acq Time : 12/20/2018 02:23 Sample : 1835256003 Misc : Operator: BB Inst : 5975-K Multiplr: 1.00

Misc : MS Integration Params: rteint.p	Mulcipii: 1.00
<pre>Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator) Title : TO-15 Library : C:\DATABASE\NIST11.L</pre>	
R.T. Conc Area	Relative to ISTD ISTD Area
13.07 4.27 ppb 2161872	1,4-Difluorobenzene 10130523
Hit# of 20 Tentative ID	Ref# CAS# Qual
1 Hexane, 2,4-dimethy1- 2 Oxalic acid, buty1 isohexyl ester 3 Heptane, 3,4,5-trimethy1- 4 Sulfurous acid, hexyl heptyl ester 5 Pentane, 2,2,3,4-tetramethy1-	7633 000589-43-5 96.00 r 85744 1000309-32-7 72.00 19204 020278-89-1 64.00
Abundance Scan 1392 (13.073 min): KE70I001.D\d	ata.ms (-1386) (-) m/z 43.10 100.00%
m/z> 20 30 40 50 60 70 80 90 100 11 Abundance #7633: Hexane, 2,4-dimet	0 120 130 140 150
5000 27 71 71 71 71 71 71 71 71 71 71 71 71 71	10 120 130 140 150
5000 85 69 27 97 m/z-> 20 30 40 50 60 70 80 90 100 17 Abundance #19204: Heptane, 3,4,5-trim	10 120 130 140 150 July 13.00
5700	m/z 56.10 42.08%

20 30 40 50 60 70 80 90 100 110 120 130 140 150

13.00

# Library Search Compound Report

Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE70I001.D Vial: 13 Acq Time : 12/20/2018 02:23 Sample : 1835256003 Operator: BB Inst : 5975-K Multip1r: 1.00 Misc Misc :
MS Integration Params: rteint.p

MS Integration P	arams: rteint.p			
	5975-K\METHODS\T01	5KH18.m (RTE I	ntegrator)	
Title : TO-15 Library : C:\DA	TARASE\NTST11 T.			
Hibrary . C. (bi)	IMBROD (NICITIO			
R.T. Conc	Area	Relative to	ISTD	ISTD Area
13.85 4.58 ppb	2021527	Chlorobenzene	d5	882562 <b>9</b>
Hit# of 20	Tentative ID	Ref#	CAS#	Qual
1 Heptane, 2-meth	v1-	7625	000592-27-8	95.00
2 Hexane, 2,5-dim	ethyl-	7639	000592-13-2	80.00
3 Butane, 1-chlor		5030	000107-84-6	50.00
4 Butane, 1-(ethe	nyloxy)-3-methyl-		039782-38-2	
5 Heptane, 3-ethy	1-	12668	015869-80-4	32.00
1500 (	10.050 : \ KE701004 D\-1-4	(4544) ()	1 / - 42 10	100 008
Abundance Scan 1520 (	13.853 min): KE70I001.D\dat 5l7	a.ms (-1511) (-)	m/z 43.10	100.00%
49	5/		1	1
	j		] [	Λĺ
5000	ļ		1 / 17	/\
	70	00	I JW \	
	54 h	99   114		14.00
0 37 11	51_    7785	<del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>	m/z 57.10	98.22%
m/z> 20 30 40	50 60 70 80 90			and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t
Abundance	#7625: Heptane, 2-methyl	<del>-</del>	1	
43	57			٨
111111111111111111111111111111111111111	an and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second an		1	/\
5000				
A THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE	70			14.00 47.59%
27	70	99 : 114	m/z 41.10	47.598
0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**************************************		1 / A	
m/z> 20 30 40	50 60 70 80 90	0 100 110 120	]	٨
Abundance	#7639: Hexane, 2,5-dimeth	yl-	1 11 14	// //
43	57		1-1-1-1	
***************************************			13.50	14.00
5000			m/z 42.05	
27			1	
2'	71	99 . 114	1 1	
0	<del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>			
m/z> 20 30 40	50 60 70 80 90	0 100 110 120 <u> </u>	1 00/	$\wedge$ $\wedge$
	5030: Butane, 1-chloro-3-me	ethyl-	42.50	14.00
43			13.50 m/z 70.10	14.00 20.80%
TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE TO THE TABLE			1 10.10	20.000
5000	55 70		1 , M	
27	1 19		1 / [*]	

80 <u>90</u> 100 11**0** 120

90 100 110 120

13.50

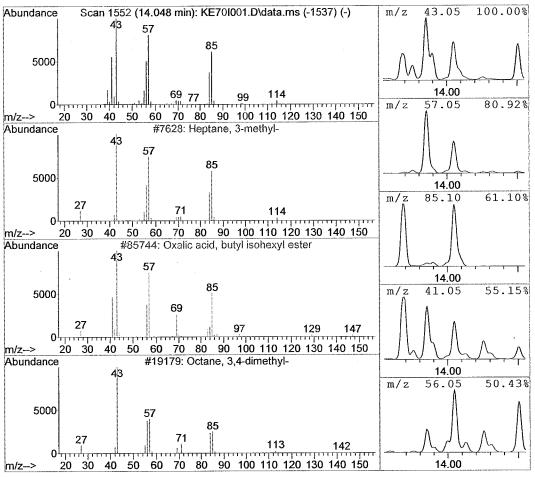
14.00

m/z-->

50 60 70

Multiplr: 1.00

Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE70I001.D Vial: 13
Acq Time : 12/20/2018 02:23 Operator: BB
Sample : 1835256003 Inst : 5975-K


Misc : MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

Library : C:\DATABASE\NIST11.L

R.T.	Conc	Area	Relative to	ISTD	ISTD Area
14.05	3.73 ppb	1645336	Chlorobenzene	d5	8825629
Hit# of	20	Tentative ID	Ref#	CAS#	Qual
2 Oxali 3 Octan 4 Nonan	ne, 3-methyl- c acid, butyl e, 3,4-dimeth e, 5-methyl- ne, 3-ethyl-2	isohexyl este: yl-	r 85744 19179 19165	000589-81-1 1000309-32- 015869-92-8 015869-85-9 001068-87-7	7 78.00 72.00 64.00



# Library Search Compound Report

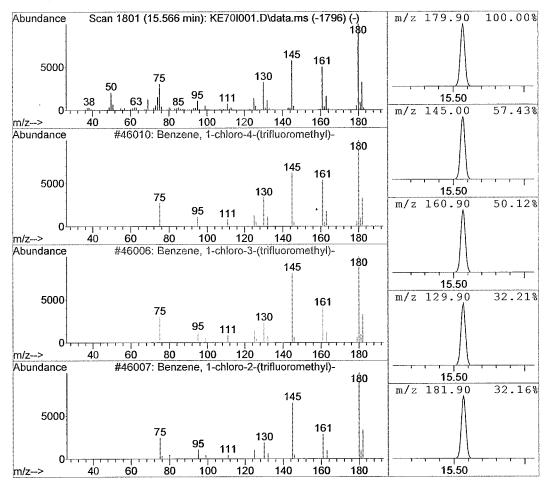
Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE70I001.D Vial: 13 Operator: BB Acq Time : 12/20/2018 02:23 : 1835256003 Inst : 5975-K Sample Multiplr: 1.00 Misc

MS Integration Params: rteint.p

MS Int	egration	n Params	: rteint	. p				
Method	1 - p.	\ K-5975-	-к/метног	S\T015	КН18.п	n (RTE 1	[ntegrator]	1
Title	: TO		11 (11111101	.5 (1010	10111011	. (21222 2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Librar			SE\NIST11	. L				
R.T.	Conc		Area	ι	Relat	tive to	ISTD	ISTD Area
14.26	2.52	- <b>-</b> ppb	111027	'3 C	hlorok	oenzene	d5	8825629
Hit# of	20		entative	e ID		Ref#	CAS#	Qual
1 Cyclo	hexane,	1,3-dim	methyl-,	cis-		6807	000638-04-	-0 97.00
2 Cyclo	hexane,	1,3-din	nethyl-			6744	000591-21-	-9 95.00
			nethyl-,	trans-			002207-04-	
	hexane,						000589-90-	
5 Cyclo	hexane,	1,3-din	nethyl-,	trans-		6813	002207-03-	-6 91.00
						> / >	, , ,	100 000
Abundance	Scan 15		min): KE7010	)01.D\data	15-) a.ms حام	(11) (-)	m/z 97.1	10 100.00%
		5: 	5		9/			
		į						
5000								11
		41				112		
		. ].	, 69	00	1		14.00	14.50
		<u></u>	63	77 83 9	1			
	20 30	40 50	60 70	80 90	100	110 120		10 00.55
Abundance			clohexane, 1					
		5		, , ,	97			
							Λ.	14
							11 M	
5000						110	14.00	14.50
	27	42	69			112	m/z 112.	
				83	1.			٨
<b>0</b> L	بينيهين		+ + + + + + + + + + + + + + + + + + +					1
	20 30	40 50	60 70	80 90		110 120		
Abundance			Cyclohexane,	1,3-dime				14
		5	5		97			/
-					İ		14.00	14.50
5000							m/z 41.	10 30.45%
						112	1 1	
1	27	42	69				A	
			<del> </del>	83			.1 // //	
m/z>	<del>~~~~~~</del> 20 30	40 50	60 70	80 90		110 120		$\Lambda$
Abundance			lohexane, 1,4				14 7	
1		² 5		•	97		14.00	14.50
1							m/z 56.	10 20.18%
							<b>1</b> 1	٨
5000						112	1 1	1
	27	42	69		1			· //
	ĺ	42	ļ Ī,	83	li.		11/4/6	14 /1 n 1
<b>0</b> 1	ستبست	<del></del>	<del>Ч</del>	<del>, , ,   , , , ,</del>	<del></del>	440 455	44.00	14.50
m/z>	20 30	40 50	60 70	80 90	100	110 120	14.00	14.50

### Library Search Compound Report

Data File : P:\K-5975-K\2018\DEC18\T9DEC18\KE701001.D Vial: 13
Acq Time : 12/20/2018 02:23 Operator: BB
Sample : 1835256003 Inst : 5975-K
Misc : Multiplr: 1.00


MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

Library : C:\DATABASE\NIST11.L

R.T.	Conc	Area	Relative to	ISTD	ISTD Area
15.57	4.17 ppb	1837942	Chlorobenzene	d5	8825629
Hit# of	20	Tentative ID	Ref#	CAS#	Qual
2 Benze 3 Benze 4 2-Flu	ne, 1-chloro- ne, 1-chloro- oro-5-(triflu	4-(trifluorome 3-(trifluorome 2-(trifluorome oromethyl)pheno- trimethyl-2-n	thy 46006 thy 46007 ol 46021	000098-56-6 000098-15-7 000088-16-4 141483-15-0 017978-54-0	96.00 91.00 37.00



Quantitation Report

Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE71I001.D Vial: 13 Acq Time : 12/20/2018 03:02 Operator: BB : 1835256003 Inst : 5975-K Sample Multiplr: 1.00 : 1:20 DIL 10ML Misc

MS Integration Params: rteint.p

Quant Time: Dec 20 14:49:41 2018 Results File: TO15KH18.RES

Quant Method: I:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

: TO-15 Title

Last Update : Wed Dec 05 10:49:41 2018 Response via : Initial Calibration

DataAcq Meth : TO-15.M

ONLy tretone

ONLy tretone

Othyl Acetate

U-methyl-2-Pentamone

reas Toluene

.80
.60
.60
.51

Internal Standards	R.T.	QIon	Response	Conc Units	Area%
1) Bromochloromethane	9.41	130	249856	20.00 ppb	82.80
21) 1,4-Difluorobenzene	11.19	114	3259633		86.60
44) Chlorobenzene d5	15.49	117	2794025		99.51
11) Chiolopenzene do	10.15	22.	2,31020		
System Monitoring Compounds				%Re	covery
52) Bromofluorobenzene	17.13	95	1563080	19.91 ppb	99.55%
,					
Target Compounds				•	Qvalue
<ol><li>Dichlorodifluoromethane</li></ol>	0.00	85		Not Detected	
3) Chloromethane	0.00	50		Not Detected	
4) Freon 114	0.00	135		Not Detected	
5) Vinyl Chloride	0.00	62		Not Detected	
6) 1,3-Butadiene	0.00	54		Not Detected	
7) Bromomethane	0.00	94		Not Detected	
8) Chloroethane	0.00	64	1000674	Not Detected	
9) Acetone	6.59	43	1233674	15.8836 ppb	99
10) Trichlorofluoromethane	0.00	101		Not Detected Not Detected	
11) 1,1-Dichloroethene	0.00	61 84		Not Detected	
12) Methylene Chloride	0.00	151		Not Detected	
13) Freon 113 14) Carbon Disulfide	0.00	76		Not Detected	
15) trans-1,2-Dichloroethene	0.00	96		Not Detected	
16) 1,1-Dichloroethane	0.00	63		Not Detected	
17) methyl t-butyl ether	0.00	73		Not Detected	
18) Vinyl Acetate	0.00	86		Not Detected	
19) 2-Butanone	8.82	43	72449	0.7309 ppb	95
20) cis-1,2-Dichloroethene	0.00	96		Not Detected	
22) Ethyl Acetate	9.40	61	105735	6.2121 ppb	91
23) Hexane	0.00	57		Not Detected	
24) Chloroform	0.00	83		Not Detected	
25) Tetrahydrofuran	0.00	42		Not Detected	
26) 1,2-Dichloroethane	0.00	62		Not Detected	
27) 1,1,1-Trichloroethane	0.00	97		Not Detected	
28) Benzene	0.00	78		Not Detected	
29) Carbon Tetrachloride	0.00			Not Detected	
30) Cyclohexane	0.00			Not Detected	
31) 1,2-Dichloropropane	0.00			Not Detected	
32) Bromodichloromethane	0.00			Not Detected	
33) Trichloroethene	0.00		60764	Not Detected	
34) Heptane	12.16		62764	1.2016 ppb	<b>9</b> 2
35) cis-1,3-Dichloropropene	0.00		676973	Not Detected 5.2610 ppb	97
36) 4-Methyl-2-Pentanone 37) trans-1,3-Dichloropropene	12.70		0/09/3	Not Detected	
	0.00			Not Detected	
38) 1,1,2-Trichloroethane 39) Toluene	13.68		1435617	8.9009 ppb	99
40) 2-Hexanone	0.00		1433017	Not Detected	
41) Dibromochloromethane	0.00			Not Detected	
42) 1,2-Dibromoethane	0.00			Not Detected	
43) Tetrachloroethene	0.00			Not Detected	
45) Chlorobenzene	0.00			Not Detected	
46) Ethylbenzene	0.00			Not Detected	
47) m,p-Xylene	0.00			Not Detected	
48) Bromoform	0.00	173		Not Detected	
49) Styrene	0.00	104		Not Detected	
50) 1,1,2,2-Tetrachloroethane	0.00	83		Not Detected	

^(#) = qualifier out of range (m) = manual integration KE71I001.D T015KH18.m Thu Dec 20 14:54:14 2018

Quantitation Report

Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE71I001.D Vial: 13 Acq Time : 12/20/2018 03:02 Sample : 1835256003 Operator: BB Inst : 5975-K : 1:20 DIL 10ML Multiplr: 1.00 Misc

MS Integration Params: rteint.p

Results File: TO15KH18.RES Quant Time: Dec 20 14:49:41 2018

Quant Method : I:\K-5975-K\METHODS\T015KH18.m (RTE Integrator )

Title : TO-15
Last Update : Wed Dec 05 10:49:41 2018

Response via : Initial Calibration

DataAcq Meth : TO-15.M

	Compound	R.T.	QIon	Response	Conc Unit Qvalue
51)	o-Xylene	0.00	91		Not Detected
53)	4-Ethyl Toluene	0.00	105		Not Detected
54)	1,3,5-Trimethylbenzene	0.00	105		Not Detected
55)	1,2,4-Trimethylbenzene	0.00	105		Not Detected
56)	Benzyl Chloride	0.00	91		Not Detected
57)	m-Dichlorobenzene	0.00	146		Not Detected
58)	p-Dichlorobenzene	0.00	146		Not Detected
59)	o-Dichlorobenzene	0.00	146		Not Detected
60)	1,2,4-Trichlorobenzene	0.00	180		Not Detected
61)	Hexachloro-1,3-butadiene	0.00	225		Not Detected

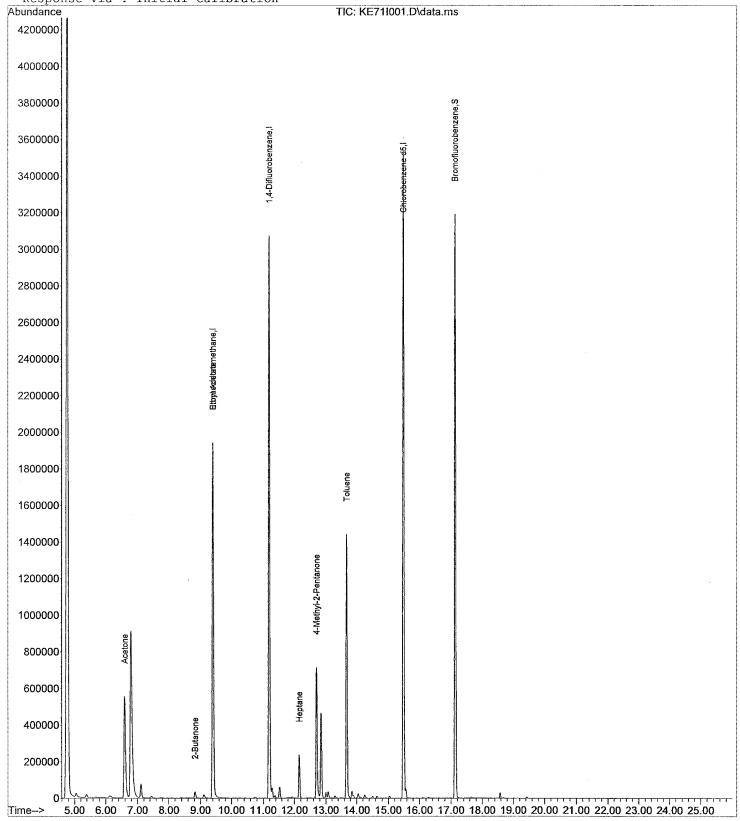
### Quantitation Report

Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE711001.D Vial: 13

Acq Time : 12/20/2018 03:02 Operator: BB

Sample : 1835256003 Inst : 5975-K

Misc : 1:20 DIL 10ML Multiplr: 1.00


MS Integration Params: rteint.p

Quant Time: Dec 20 14:49:41 2018 Results File: TO15KH18.RES

Method : P:\K-5975-K\METHODS\TO15KH18.m (RTE Integrator)

Title : TO-15

Last Update : Wed Dec 05 10:49:41 2018 Response via : Initial Calibration



Data File : KE71I001.D

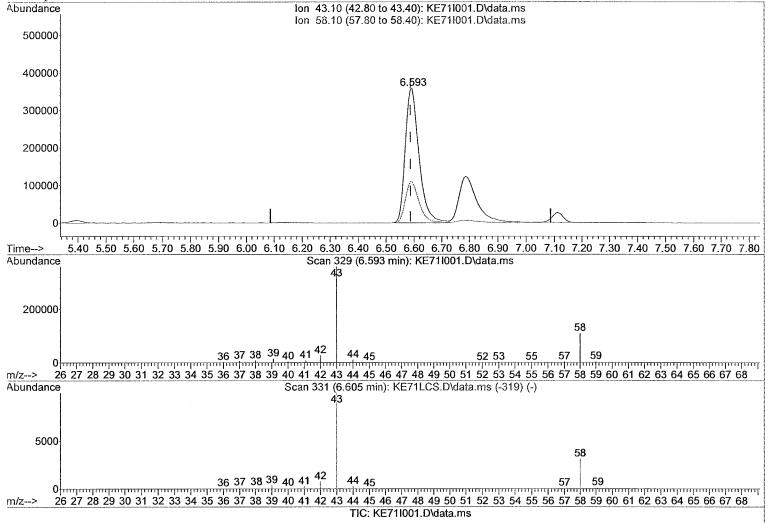
: 12/20/2018 03:02 Acq On

: BB Operator

Sample : 1835256003 : 5975-K Inst : 1:20 DIL 10ML Misc

ALS Vial : 13

Sample Multiplier: 1


Quant Time: Dec 20 07:37:49 2018

Quant Method: I:\K-5975-K\METHODS\T015KH18.m

Quant Title : TO-15

QLast Update: Wed Dec 05 10:49:41 2018

Response via: Initial Calibration



### (9) Acetone

6.593min (+ 0.006) 15.88 ppb

response	1233674	
Ion	Exp%	Act%
43.10	100.00	100.00
58.10	31.40	30.81
0.00	0.00	0.00
0.00	0.00	0.00

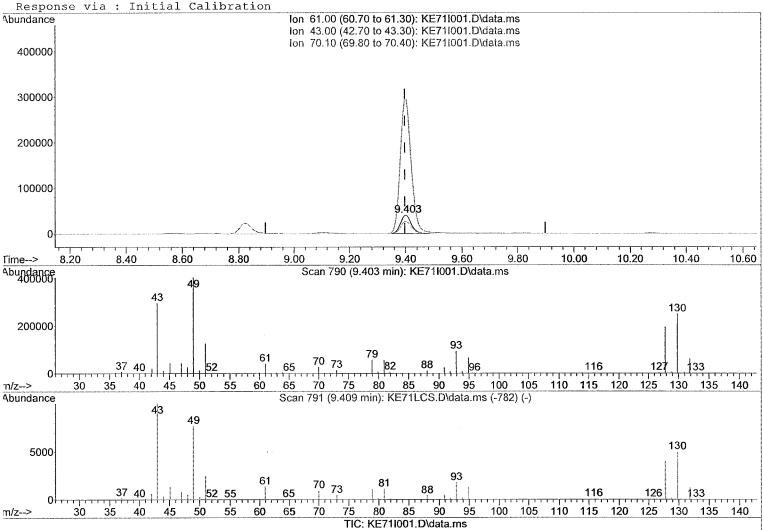
Data File : KE71I001.D

Acq On : 12/20/2018 03:02

Operator : BB

Sample : 1835256003
Inst : 5975-K

Misc : 1:20 DIL 10ML


ALS Vial : 13 Sample Multiplier: 1

Quant Time: Dec 20 07:37:49 2018

Quant Method: I:\K-5975-K\METHODS\T015KH18.m

Quant Title : TO-15

QLast Update: Wed Dec 05 10:49:41 2018



### (22) Ethyl Acetate

9.403min (+ 0.006) 6.21 ppb

response	105735	
Ion	Exp%	Act%
61.00	100.00	100.00
43.00	718.20	752.13
70.10	71.90	66. <b>6</b> 7
0.00	0.00	0.00

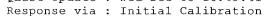
Data File : KE71I001.D

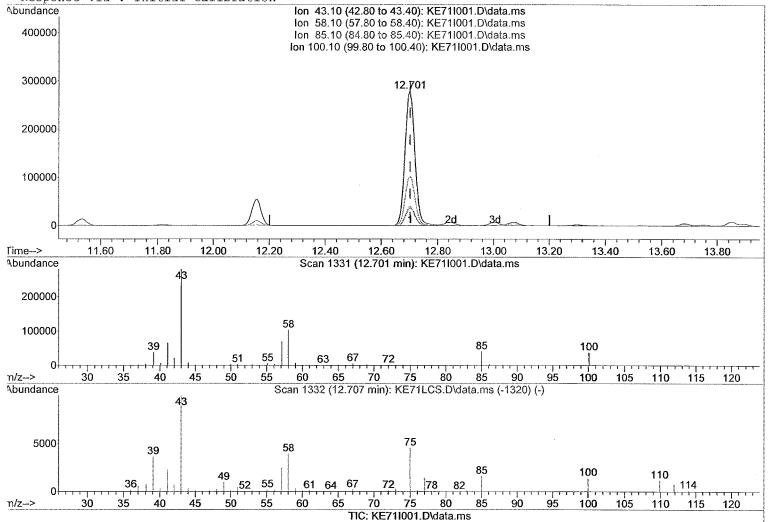
Acq On : 12/20/2018 03:02

Operator : BB

Sample : 1835256003 : 5975-K Inst

: 1:20 DIL 10ML Misc


: 13 Sample Multiplier: 1


Quant Time: Dec 20 07:37:49 2018

Quant Method: I:\K-5975-K\METHODS\T015KH18.m

Quant Title : TO-15

QLast Update: Wed Dec 05 10:49:41 2018





## (36) 4-Methyl-2-Pentanone

12.701min (+ 0.000) 5.26 ppb

response	676973	
Ion	Exp%	Act%
43.10	100.00	100.00
58.10	38.80	37.34
85.10	16.10	14.24
100.10	14.30	12.82

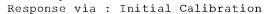
Data File : KE71I001.D

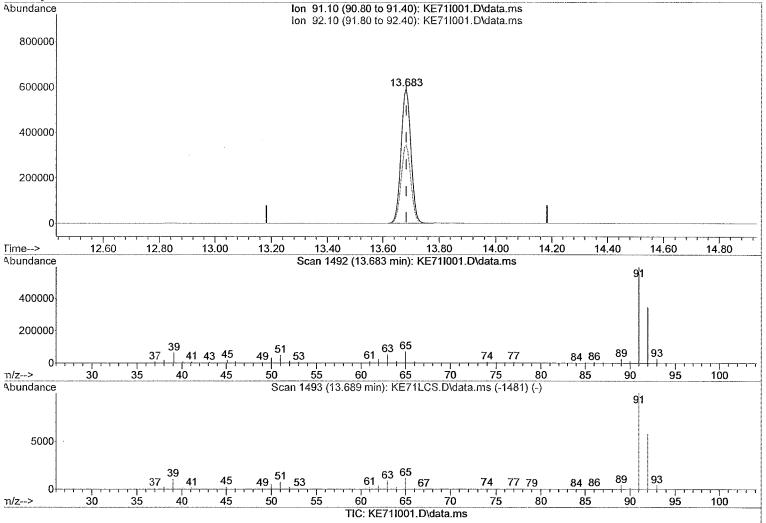
Acq On : 12/20/2018 03:02

Operator : BB

Sample : 1835256003 Inst : 5975-K Misc : 1:20 DIL 10ML

HISC . 1.20 DIE TORE


ALS Vial : 13 Sample Multiplier: 1


Quant Time: Dec 20 07:37:49 2018

Quant Method : I:\K-5975-K\METHODS\T015KH18.m

Quant Title : TO-15

QLast Update : Wed Dec 05 10:49:41 2018





### (39) Toluene

13.683min (+ 0.000) 8.90 ppb

response	1435617	
Ion	$\mathbf{Exp}^{g}$	Act%
91.10	100.00	100.00
92.10	58.60	58.12
0.00	0.00	0.00
0.00	0.00	0.00

# Batch Worklist .

Batch: IVOA/ 4201

Rule: EPA TO-15, Air

Workorder: 1835256 [ENV_LVL1]

Workorder: 1835290 [ENV_LVL2] Workorder: 1835293 [ENV_LVL4] Workorder: 1835379 [ENV_LVL4]

Created: 12/20/2018 09:25 Analyst: B. Boy

Instrument: 5975-K Status:

HBN: 229851

Pos Lab 🗅 🐬	Sample ID	Q) e	Fred Initial	Final	Weight Type		Mx Container	Procedure	Mgr Date	Date	Date
633626	MB for HI	MB for HBN 229851 [IVOA/4201]	OA/4201]		MB	1	Andrew Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the Commencer of the	ETO151Q	6216	12/20/2018	12/19/2018
633627	LCS for H	LCS for HBN 229851 [TVOA/4201]	O4/4201]		LOS			ET0151Q	6216	12/20/2018	12/19/2018
633628	LCSD for	CCSD for HBN 229851 [IVOA/4201	IVOA/4201		CSD	-		ET0151Q	6216	12/20/2018	12/19/2018
633629	RLVS for	RLVS for HBN 229851 [TVOA/420]	VOA/4201		RLVS			ETO1510	6216	12/20/2018	12/19/2018
1835379001	Air 1				SAMPLE	LE 1	1835379001-A	ET0151	5975	12/20/2018	12/19/2018
1835379002	Air 3				SAMPLE	TE 1	1835379002-A	ET0151	5975	12/20/2018	12/19/2018
1835379003	Air 4		And the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t	To be a second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o	SAMPLE	LE 1	1835379003-A	ETO151	5975	12/20/2018	12/19/2018
1835379004	ALES				SAMPLE	1	1835379004-A	ET0151	5975	12/20/2018	12/19/2018
1835379005	Air 6				SAMPLE	LE 1	1835379005-A	ET0151	5975	12/20/2018	12/19/2018
1835290001	Sv.1				SAMPLE	LE 1	1835290001-A	ET0151	6171	12/27/2018	
1835290002	SV-2	120		-	SAMPLE	LE 1	1835290002-A	ETO151	6171	12/27/2018	interestination for the professor of
1835290003	SV:3	, , ,			SAMPLE	9	[835290003-A	ETOIS	6171	12/27/2018	
1835290004	SV-4		TOTAL STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE		SAMPLE	LE 1	1835290004-A	ET0151	6171	12/27/2018	to the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following
1835293001	LA-8				SAMPLE	LE 1	1835293001-A	ET0151	6171	12/27/2018	
1835293002	OA-2				SAMPLE	LE 1	1835293002-A	ETO151	6171	12/27/2018	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
1835293003	TA-6				SAMPLE	, E	1835293003-A	ET0151	6171	12/27/2018	
. 1835293004	IA-7			A seed of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control	SAMPLE	LE 1	1835293004-A	ETO151	6171	12/27/2018	
1835256003	KT181212-11-	/ / ·			SAMPLE	1,11	1835256003-A	ETOIS	5875	12/27/2018	

# 5.6 GC/MS Technical Review

Note: It is the peer reviewer's responsibility to ensure that appropriate criteria are used as defined in the HORIZON PROFILE. The evaluation criteria are prioritized as per Section 2.2 of this SOP. These items must be checked for all projects. The following checklist will be completed by both the analyst and the peer reviewer and scanned into the HBN folder with the raw data.

Batch(es)/SDG: 27965 \ BB   1/16	Analyst Initials	<u>Reviewer</u> Initials
2/16/	3	EAR EVECTOR
Batch(es)/SDG: 27965 AB		
Sample Set IDs if Applicable: 18 35256,5243	5296	ا ا
GC/MS Tuning passed criteria (BFB or DFTPP)	813	i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l
Calibration standards analyzed and meets criteria	BB	of the second
Standards traceability checked and meets criteria	<b>B</b> B	R
Standard curve coefficient evaluated and meets criteria	1513	R
ICVs analyzed and meet acceptance criteria	1313	R
CCVs analyzed and meet acceptance criteria	1313	L
Method Blanks analyzed and meet acceptance criteria	1313	Ra
Review of spectral assignments	313	R
Relative Retention Time checked	BB	Pa
Internal Standards checked	1313	Z
Surrogate recoveries checked and appropriately addressed	313	1
Sample Frequency - Analyzed within appropriate tune window	BB	K
Method Preparation Blanks analyzed and meet acceptance criteria	BB	R
MSs, MSDs, and/or MDs analyzed and calculations checked; applicable flags applied on QC reports; LCSs analyzed and meet acceptance criteria when performed	BB	P
RLVS analyzed	内乃	R
Preparation and analysis hold times met	1313	K
Preparation deviations and re-preparations noted when performed	1313	Ro
Analysis deviations and re-analyses noted when performed	BB	R
Sample dilution factors noted on reports	<b>冯</b> 罗	K_
Electronic records in HBN transcription accuracy and completeness	1313	
<u>checked</u>	.,,	K_
Preparation and analysis calculations checked	BB	K
NCRs are completed as necessary NC/CAR#	MA	NA
Report forms are complete and accurate	7513	L
Manual integrations checked	1513	L

# Batch Worklist .

Rule: EPA TO-15, Air Batch: IVOA/ 4201

Workorder: 1835290 [ENV_LVL2] Workorder: 1835293 [ENV_LVL4] Workorder: 1835379 [ENV_LVL4]

Workorder: 1835256 [ENV_LVL1]

Created: 12/20/2018 09:25 Analyst: B. Boy

Instrument: 5975-K Status:

HBN: 229851

Pos	Pos Lab ID	Sample ID	2	Prep Initial	Prep Final	Dust Weight. Type	Wx Container	Procedure	Mgr	Expire Due Date	Run Date
	633626	MB for HBN	MB for HBN 229851 [IVOA/4201]	\/4201]		MB		ET0151Q	6216	12/20/2018	12/19/2018
2	633627	LCS for HBN 229851 [IVOA/4201]	229851 [TVO.	A/4201]		LOS		ETOIS1Q	6216	12/20/2016	2/20/2018 12/19/2018
3	633628	LCSD for HBI	CSD for HBN 229851 [IVOA/4201	OA/4201		CSD	1	ET0151Q	6216	12/20/2018	12/19/2018
7.	633629	RLVS for HBN 229851 [TVOA/420]	N 229851 [TV(	QA/4201		RLVS		ET0151Q	6216	12/20/2018	12/19/2018
5	1835379001	Air 1				SAMPLE	1 1835379001-A	ETO151	5975	12/20/2018	12/19/2018
9	1835379002	Аш 3				SAMPLE	1 835379002-A	ETO151	5975	12/20/2018	12/19/2018
7	1835379003	Air 4				SAMPLE	1 1835379003-A	ET0151	5975	12/20/2018	12/19/2018
<b>∞</b>	1835379004	AirS				SAMPLE	1 835379004-A	ET0151	5975	12/20/2018	12/19/2018
6	1835379005	Air 6				SAMPLE	_	ET0151	5975	12/20/2018	12/19/2018
0	1835290001	8V-1				SAMPLE	1 1835290001-A	ETO151	6171	12/27/2018	
11	1835290002	SV-2	120			SAMPLE	1 1835290002-A	ET0151	6171	12/27/2018	
7	1835290003	SV:3				SAMPLE	1.1835290003-A	ETO151	6171	12/27/2018	
13	1835290004	SV-4				SAMPLE	1 1835290004-A	ET0151	6171	12/27/2018	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon
14	1835293001	.TA-8				SAMPLE	1 1835293001-A	ET0151	6171	12/27/2018	
15	1835293002	OA-2				SAMPLE	1 1835293002-A	ET0151	6171	12/27/2018	
16	1835293003	1A-6				SAMPLE	1835293003-A	ETO151	1719	12/27/2018	
17.	1835293004	IA-7	_			SAMPLE	1 1835293004-A	ETO151	6171	12/27/2018	
00	1835256003	KT/812/2-1	\ \ \			SAMPLE	1835256003-A	ETO15	5875	12/27/2018	
laid veinadalit	international contention in the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the	mires reina substitutivanishinesevist in ni m	A Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Comp	i peri da indinak pedalem beranik dikarengan kisa. Tersabilan	alitino de 1900 a Calo de Calo de Calo de Calo de Calo de Calo de Calo de Calo de Calo de Calo de Calo de Calo	ale de l'appropriet de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la comp	o de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio del companio de la companio de la companio del companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio del companio de la companio de la companio de la companio del companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio della companio de la companio della companio della companio della companio della companio della companio della companio della companio della companio della companio della companio della compan	elektrise in der elektrise in Waste in 1900 der elektrise			

# 5.6 GC/MS Technical Review

Note: It is the peer reviewer's responsibility to ensure that appropriate criteria are used as defined in the HORIZON PROFILE. The evaluation criteria are prioritized as per Section 2.2 of this SOP. These items must be checked for all projects. The following checklist will be completed by both the analyst and the peer reviewer and scanned into the HBN folder with the raw data.

GC/MS Technical Review Criteria	Analyst Initials	Reviewer Initials
Batch(es)/SDG: 27965	}	
Sample Set IDs if Applicable: 1635293		
GC/MS Tuning passed criteria (BFB or DFTPP)	373	7.
Calibration standards analyzed and meets criteria	BB	7
Standards traceability checked and meets criteria	BB	1
Standard curve coefficient evaluated and meets criteria	B13	R
ICVs analyzed and meet acceptance criteria	1313	R
CCVs analyzed and meet acceptance criteria	1313	R
Method Blanks analyzed and meet acceptance criteria	1313	R
Review of spectral assignments	313	R
Relative Retention Time checked	B13	1
Internal Standards checked	1313	0
Surrogate recoveries checked and appropriately addressed	313	R
Sample Frequency – Analyzed within appropriate tune window	13.13	R
Method Preparation Blanks analyzed and meet acceptance criteria	BB	L
MSs, MSDs, and/or MDs analyzed and calculations checked; applicable flags applied on QC reports; LCSs analyzed and meet acceptance criteria when performed	BB	L
RLVS analyzed	153	2
Preparation and analysis hold times met	1313	R
Preparation deviations and re-preparations noted when performed	1513	12
Analysis deviations and re-analyses noted when performed	BB	R
Sample dilution factors noted on reports	1	R
Electronic records in HBN transcription accuracy and completeness checked	1313 1313	R
Preparation and analysis calculations checked	BB	K
NCRs are completed as necessary NC/CAR#	MA	MA
Report forms are complete and accurate	1313	P
Manual integrations checked	1513	1

Last Update : Tue Nov 13 11:55:11 2018 Response Via : Initial Calibration

073820.D	; !	1 1																												
	Д	; † 1	23								12							77												
70	%RS	 	•			φ.	4.	o,		4	.'	ú	. 7	. 7	<u>ن</u>	Ø	.40	7		7	4.		ω.	a.	Η.	П	φ.	9	4.70 0.00	•
Ð.		[ ]	日日								日日		Н					田口											_	1
KD74S10	Avg	i	.10	3.013	. 72	.46	. 72	2	. 22	. 21	98	00,	. 29	.08	მ	.60	. 72	.01	1	93	.76	1	110	.50	.60	. 33	40	. 62	0.832	
10 =	50	1 1 1 1	.03	2.739	.37	.27	.67	.21	.21	.15	.11	.59	.18	.87	24	. 92	.58	.17	.04	.25	.10	! !	1	150	.66	5	.44	. 72	0.911	
585.D	20	1 1 1 1	<b>ن</b>	2.760	.28	.37	.65	.15	.03	.58	.91	. 68	92	.68	.34	.43	.34	95	91	.43	. 60	1 1 1	10	4.0	.57	. 32	38	.60	0.794	) •
=KD7.	10	i I I I	0	3.066	. 62	.58	.80	.31	.17	.80	. 93	. 76	.93	.77	. 29	.47	.35	.96	. 92	.48	. 64	1 1	.10	.48	.57	.32	.38	. 60	0.795	0
Ŋ		i EST	960	$\infty$	53	41	78	37	13	97	93	74	05	80	ο O	50	45	96	9	57	67	H	70	84	50	32	რ ტ	61	813	<del> </del>
2 D. D	Ŋ	I [		2 2.	_	w	<b>(</b> 1	സ	(7	ល	0	Ŋ	സ	Ŋ	7	സ	Ø	0	0	7	m	1	0	0	0	0	0	0	о о о	)
KD768	7	1 1 1 1 1 1 1 1	1.16	3.12	7.97	3.49	2.66	3.30	2.29	6.64	0.97	5.99	3.38	6.14	8.02	3.65	6.75	1.00	0.91	7.84	3.78	1 1	.10	4. 9	.60	.34	.41	. 62	0.83	H
CJ 	r-1	1   1   1		.11	9	4.9	.71	.31	.25	.13	.97	9	.51	.07	.50	.51	69	.96	.87	.14	. 78	 	10	.47	.60	. 32	.40	. 60	0.833	, 0
S1.D		i i i	1.2	30	.35	.63	.79	.46	43		.01	6.242	.10	.27	.27	.75	.86	.03	.82	. 79	.77	O	0.10	4	.61	. 33	.41	.61	0.830 0.00	0
n Files 05.D l =KD77 50.D	und	omochloromethane	codifluo	loromethane	on 114	yl Chloride	-Butadiene	momethane	Chloroethane	tone	chlorofluor	-Dichloroet	hylene Chlo	on 113	bon Disulfide	ns-1,2-Dich	-Dichloroet	hyl t-butyl	yl Acetate	anone	-1,2-Dichlo		Acetate		oroform	rahydrofuran	hlor	,1-Trichlor	nzene	٠.
bration =KD78S0 =KD88S5		i A i A i	ΠŢΩ	-	Fre	Vinyl	1,3	Bro	Ch1	Ace	Tri	1,1	Met	Fre	Car	tra	7,7	met	Vin	2-B	cis-1		Ethy1	Hexan	Chl	$\mathtt{Tetrah}_\mathtt{J}$	1,2	1,1	Ben	
Calibrat .5 = KD7 50 = KD8		H	) ()	3)	_	_	_	_	. —	~	0	. —	5	(m)	4	5	9	<u></u>	8				) (1						28)	

0.400 0.397 0.391 0.452 0.421 6.25 0.313 0.311 0.362 0.324 5.44 0.554 0.566 0.585 0.722 0.577 11.66 0.408 0.405 0.405 0.407 0.499 0.424 7.90 0.408 0.405 0.405 0.407 0.499 0.424 7.90 0.440 0.309 0.317 0.386 0.320 14.11 0.754 0.761 0.405 0.406 0.889 0.793 14.47 0.320 0.376 0.389 0.793 14.47 0.320 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.327 0.328 0.327 0.328 0.327 0.328 0.327 0.328 0.327 0.328 0.327 0.328 0.327 0.328 0.327 0.328 0.327 0.328 0.327 0.328 0.327 0.328 0.327 0.225 0.225 0.227 0.225 0.227 0.228 0.027 0.225 0.227 0.227 0.228 0.027 0.228 0.027 0.225 0.227 0.227 0.228 0.225 0.227 0.227 0.228	
0.400 0.397 0.391 0.452 0.421 6.313 0.311 0.311 0.362 0.324 5.0 408 0.408 0.405 0.407 0.499 0.424 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	
0.400 0.397 0.391 0.452 0.421 0.313 0.311 0.362 0.324 0.554 0.566 0.585 0.722 0.324 0.408 0.408 0.405 0.409 0.424 0.310 0.365 0.722 0.577 0.408 0.405 0.405 0.409 0.424 0.310 0.362 0.320 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326	
0.400 0.397 0.391 0.452 0.42 0.313 0.313 0.311 0.311 0.362 0.32 0.408 0.408 0.408 0.405 0.405 0.409 0.409 0.408 0.408 0.405 0.405 0.409 0.409 0.310 0.300 0.310 0.309 0.409 0.409 0.309 0.309 0.409 0.409 0.309 0.309 0.309 0.309 0.409 0.309 0.309 0.309 0.309 0.309 0.409 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.	1
0.400 0.397 0.391 0.452 0.654 0.566 0.585 0.722 0.6408 0.408 0.405 0.407 0.499 0.6310 0.310 0.310 0.362 0.6408 0.408 0.405 0.407 0.499 0.6310 0.320 0.317 0.386 0.647 0.452 0.407 0.452 0.400 0.310 0.309 0.317 0.386 0.632 0.322 0.318 0.405 0.464 0.682 0.694 0.715 0.784 0.682 0.694 0.715 0.784 0.654 0.682 0.694 0.715 0.784 0.654 0.682 0.694 0.715 0.784 0.654 0.682 0.693 0.914 0.905 1.168 1.607 1.187 1.156 1.168 1.607 1.187 1.156 1.168 1.607 1.167 1.112 1.093 1.460 1.167 1.112 1.093 1.460 1.167 1.112 1.093 1.460 1.399 1.1611 1.414 1.1197 1.399 1.116 1.540 0.551 0.783 0.615 0.647 0.694 0.624 0.616 0.675 0.725 0.727 0.227 0.227 0.225	
0.400 0.397 0.391 0.450 0.313 0.311 0.311 0.36 0.554 0.566 0.585 0.72 0.311 0.311 0.36 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.376 0.389 0.476 0.58 0.950 0.471 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.471 0.58 0.93 0.914 0.903 1.46 1.167 1.112 1.093 1.46 1.69 1.414 1.112 1.093 1.46 1.615 1.394 1.615 1.394 1.615 1.394 1.615 1.394 1.615 1.394 1.615 1.394 1.615 1.394 1.615 1.394 1.64 1.25 0.787 0.658 0.99 0.787 0.787 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0	1
0.400 0.397 0.391 0.313 0.313 0.311 0.311 0.311 0.311 0.311 0.310 0.354 0.566 0.585 0.0440 0.452 0.455 0.0440 0.452 0.475 0.050 0.352 0.358 1.050 0.352 0.358 1.051 0.352 0.358 1.051 0.471 0.053 0.953 0.471 0.053 0.953 0.471 0.053 0.954 0.156 1.156 1.156 1.156 1.156 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.157 1.15	ı
0.400 0.313 0.313 0.311 0.354 0.3511 0.311 0.311 0.311 0.311 0.311 0.311 0.311 0.311 0.311 0.311 0.311 0.311 0.312 0.316 0.322 0.376 0.389 0.471 0.467 0.952 0.952 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960	1
0.313 0.313 0.313 0.313 0.3143 0.3143 0.3140 0.310 0.310 0.310 0.310 0.310 0.310 0.310 0.310 0.310 0.322 0.3060 0.322 0.310 0.452 0.502 0.604 0.741 0.741 0.740 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.861 0.862 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863	1
00.00000000000000000000000000000000000	1
00000000000000000000000000000000000000	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i
000000000000000000000000000000000000000	1
	ł
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1
	ŀ
$\wedge$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$	1
ж	
	1
E	1.
1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975	
17. Septiment of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the	1 1 1
: I:\K- : TO15K TO-15 hexane dichloro dichloro dichloro hyl-2-P -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1,3-Dich -1	1 1 1
h: I:\K e: TO-15 lobexane -Dichlor chloroet chloroet chloroet chloroet -1,3-Dic chloroe chloroe chloroe chloroe chloroe chloroe chloroe chloroe chloroe chloroe chloroe chlorob chlorob chloro chlorob chlorob chlorob chlorob chlorob chlorob chlorob chlorob chlorob chlorob chlorob chlorob chlorob chlorob chlorob chlorob chlorob chlorob chlorob chlorob	1 1 1
X N D D D D N M D X H K O D D H H L A N D D D D N D D D D D D D D D D D D D	!!!
ма У Я Я Э Э Э Э В В В В В В В В В В В В В В	!!!
t t t t t t t t t t t t t t t t t t t	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1

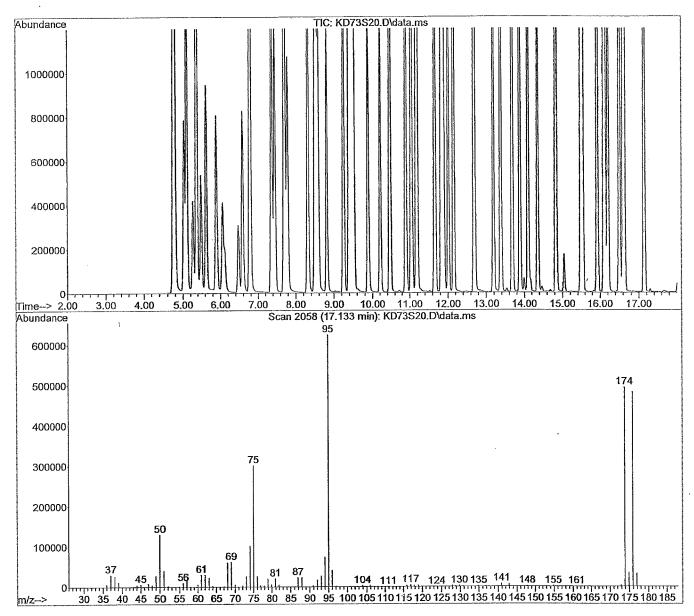
^{(#) =} Out of Range

BFB

Data File : P:\K-5975-K\2018\NOV18\12NOV18\KD73S20.D

Acq Time : 11/12/2018 17:26

Vial: 4
Operator: BB
Inst : 5975-K


Sample : 20 PPB

Inst : 5975-K Multiplr: 1.00

Misc : (400ml) 44730 MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15

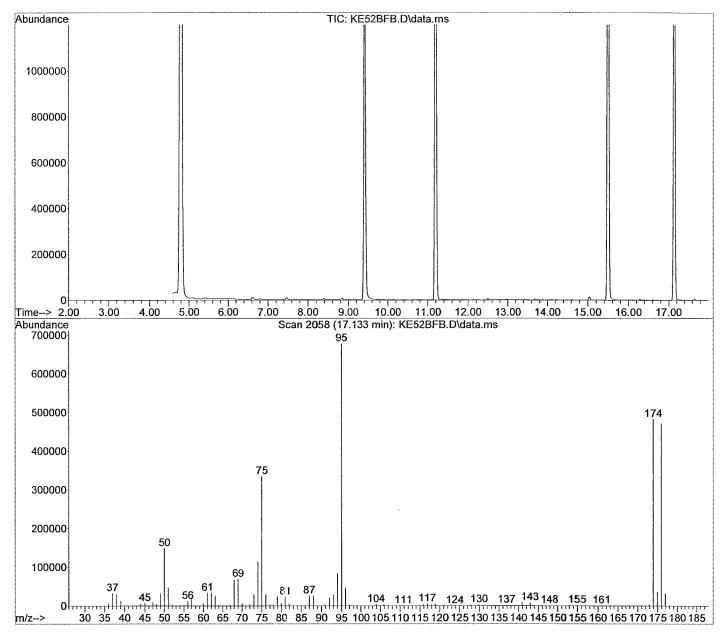


Peak Apex is scan: Scan 2058

l I	Target Mass	l i	Rel. to Mass	1	Lower Limit%	1	Upper Limit%		Rel. Abn%	l	Raw Abn	1	Result Pass/Fail	1
 I	50	 	95	1	8	1	30	1	20.77		129664	ı	PASS	1
i	75	i	95	i	30	ĺ	66	İ	48.22	1	301056	I	PASS	ı
i	95	į	95	i	100	1	100	1	100.00	I	624320	1	PASS	1
i	96	i	95	i	5	Ī	9	1	6.54	1	40816	1	PASS	1
i	173	Í	174	Ť	0.00	1	2	1	0.61	1	2991	1	PASS	1
i	174	1	95	ı	50	1	120	1	79.13	1	494016	1	PASS	
i	175	ĺ	174	1	5	1	9	1	7.03	1	34728	١	PASS	
i	176	i	174	1	93	1	101	1	97.53	1	481792	1	PASS	1
i	177	İ	176	j	5	I	9	1	6.70	l	32288	1	PASS	1

РВ	
m/z	Abundance
36.00	5784.0
37.00	29920.0
38.10	26176.0
39.10	11047.0
39.90	670.0 780.0
43.10 44.00	4287.0
45.00	5821.0
46.10	365. <b>0</b>
47.00	8078.0
48.00	3772.0
49.00	26976.0 129664.0
50.00 51.00	39952.0
52.00	1785.0 1534.0
55.00 56.00	1534.0
56.00	10029.0
57.00	18488.0
58.00 60.00	916.0 5689.0
61.00	29784.0
62.00	29760.0
63.00	22456.0
64.00	2214.0
65.00	384.0 1573.0
67.00 68.00	59856.0
69.00	59856.0 61440.0
70.00	5137.0
72.00	2758.0
73.00	25728.0
74.00	101488.0 301056.0
75. <b>00</b> 76.00	26200.0
76.90	3068.0
77.90	2150.0
78.90	19496.0
79.90 80.90	5 <b>473.0</b> 2011 <b>2.0</b>
81.90	4060.0
82.90	784.0
86.00	694.0
86.90	23072.0
87.90 9 <b>0.</b> 90	22648.0 3070.0
92.00	16768.0
93.00	26760.0
94.00	73592.0
95. <b>0</b> 0	624320.0
96.00 97.00	40816.0 1535.0
102.80	457 0
103.90	3032 <b>.</b> 0
10490	TTZ/-0
105.90 106.80	288 <b>0.0</b> 748.0
109.90	567.0
110.80	665.0
111.80	639.0
112.90	662.0
114.80 115.90	656.0
116.90	2315.0 4373.0
117.80	2645.0
118.90	3567.0
123.80	382.0
127.90 128.80	2232 <b>.0</b> 999 <b>.0</b>
129.80	2283.0
130.80	936 <b>.0</b>
134.90	1295.0
136.80 139.80	1075.0 353.0
140.90	6950.0
141.90	804 <b>.0</b>
142.90	6571.0
143.90	495.0 681.0
144.90 145.80	834.0
146.80	423 <b>.0</b>
147.80	1616.0
148.90	35 <b>0.0</b> 45 <b>8.0</b>
149.70 153.00	358.0
153.90	382.0
154.80	1395.0
156.90	1135.0 638.0
158.90 160.90	704.0
_00100	,

172.10	409.0
172.90	2991.0
173.90	494016.0
174.90	34728.0
175.90	481792.0
176.90	37288.0
177 90	968.0


Data File : P:\K-5975-K\2018\DEC18\19DEC18\KE52BFB.D Vial: 3

Acq Time : 12/19/2018 11:42 Operator: BB

MS Integration Params: rteint.p

Method : P:\K-5975-K\METHODS\T015KH18.m (RTE Integrator)

Title : TO-15



Peak Apex is scan: Scan 2058

   	Target Mass		Rel. to	   	Lower Limit%	   	Upper Limit%	 	Rel. Abn%	1	Raw Abn	1	Result Pass/Fail	1
1	5 <b>0</b>	1	95	ı	8	ı	30	1	21.90	1	148352	1	PASS	1
j	75	1	95	1	30	1	66	1	49.37	1	334400	-1	PASS	1
1	95	1	95	-	100	1	100	1	100.00	1	677376	-1	PASS	1
1	96	i	95	Ī	5	ļ	9	1	6.76	1	4580 <b>0</b>	1	PASS	1
1	173	1	174	1	0.00	1	2	1	0.61	1	2928	-1	PASS	-
İ	174	i	95	İ	50	1	120	1	71.19	1	482240	1	PASS	1
İ	175	ı	174	ı	5	1	9	1	7.26	1	34992	1	PASS	ĺ
ı	176	ı	174	1	93	-	101	-	97.61	1	470720	1	PASS	l
1	177	ı	176	1	5	1	9	1	6.58	1	30960	1	PASS	I

,	
m/z	Abundance
36.00	5497.0
37.00	32384.0
38.00	29216.0
39.10	12561.0
40.00	767.0
43.00	418.0
44.00	4864.0
45.00	6490.0
46.00	575.0
47.00	8668.0
47.90	3966.0
49.00	30880.0
50.00	148352.0
51.00	46280.0
52,10	1595.0
55.00	2000.0
56.00	11889.0
57.0 <b>0</b>	21952.0
57.9 <b>0</b>	915.0
60.00	6138.0
61.00	33032.0
62.00	32728.0
63.00	25064.0
64.00	2267.0
66.90	1783.0
68.00	66440.0
69.00	69064.0
70.00	5365.0
72.00	3321.0
73.00	29496.0
74.00	113376.0
75.00	334400.0
76.00	28832.0
77.10	2982.0
77.90	2047.0
78.90	23456.0
79.90	6101.0
80.90	23304.0
81.90	5 <b>115.0</b>
82.90	565.0
86. <b>0</b> 0	658.0
87.00	25712.0
88.00	2519 <b>2.0</b>
90.90	2684.0
92.00	19408.0
93.00	28712.0
94.00	83376.0
95.00	677376.0
96.00	45800.0
97.00	1570.0
103.90	3566.0
104.90	1024:0
105.90	3222.0
106.90	723.0
109.80	593.0
110.80	779.0
111.80	568.0 879.0
112.90 114.90	738.0
115.90	2900.0
116.90	5111.0
117.90	2659.0
118.90	4189.0
123.80	380.0
127.80	2455.0
128.80	1317.0
129.90	2710.0
130.80	1003.0
134.80	1230.0
136.90	1444.0 388.0
139.80 140.90	7829.0
141.90	880.0
142.90	8021.0
143.80	502.0 803.0
144.90 145.80	815.0
146.80	450.0
147.90	1343.0
148.90	<b>369.0</b>
149.80	721.0
152.80	576.0
153.90	453.0
154.90	1495.0
156.90	1074.0
158.90	700.0
160.90	728.0
172.90	2928.0
173.90	482240.0
113.50	102270.0

174.90 34992.0 175.90 470720.0 176.90 30960.0 177.90 913.0

•

# Evaluate Continuing Calibration Report

Data Path : P:\K-5975-K\2018\DEC18\19DEC18\

Data File : KE53LCS.D

Acq On : 12/19/2018 12:21 Operator : BB

Sample : 10 PPB LCS Inst : 5975-K

: (200ml) 45202 44228 Misc ALS Vial : 2 Sample Multiplier: 1

Quant Time: Dec 19 13:06:58 2018

Quant Method: I:\K-5975-K\METHODS\T015KH18.m

Quant Title : TO-15 QLast Update : Wed Dec 05 10:49:41 2018

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. Rel. Area : 150% Max. RRF Dev : 30%

	Compound	AvgRF	CCRF	%Dev Are	ea%	Dev(min)
1 I	Bromochloromethane	1.000	1.000	0.0	92	0.00
2	Dichlorodifluoromethane	11.018	11.022	-0.0	95	0.01
3	Chloromethane	3.013	3.469	-15.1 1	04	0.00
4	Freon 114	7.726	8.122	-5.1	98	0.01
5	Vinyl Chloride	3.467	3.802	-9.7	98	0.00
6	1,3-Butadiene	2.726	2.957	-8.5	97	0.00
7	Bromomethane	3.297	3.506	-6.3	97	0.00
8	Chloroethane	2.220	2.303	-3.7	97	0.00
9	Acetone	6.217	5.816	6.5	92	0.00
10	Trichlorofluoromethane	9.817	9.243	5.8	91	0.00
11	1,1-Dichloroethene	6.002	5.721	4.7	91	0.00
12	Methylene Chloride	3.298	2.863	13.2	90	0.00
13	Freon 113	6.089	5.374	11.7	86	0.00
14	Carbon Disulfide	8.097	7.777	4.0	86	0.00
15	trans-1,2-Dichloroethene	3.609	3.275	9.3	87	0.00
16	1,1-Dichloroethane	6.724	6.247	7.1	90	0.00
17	methyl t-butyl ether	10.100	8.931	11.6	85	0.00
18	Vinyl Acetate	0.913	0.859	5.9	86	0.00
19	2-Butanone	7.935	7.429	6.4	91	0.00
20	cis-1,2-Dichloroethene	3.766	3.451	8.4	87	0.00
21 I	1,4-Difluorobenzene	1.000	1.000	0.0	98	0.00
22	Ethyl Acetate	0.104	0.092	11.5	90	0.00
23	Hexane	0.502	0.459	8.6	94	0.00
24	Chloroform	0.600	0.519	13.5	89	0.00
25	Tetrahydrofuran	0.332	0.302	9.0	92	0.00
26	1,2-Dichloroethane	0.404	0.357	11.6	90	0.00
27	1,1,1-Trichloroethane	0.627	0.542	13.6	88	0.00
28	Benzene	0.832	0.710	14.7	88	0.00
29	Carbon Tetrachloride	0.630	0.565	10.3	90	0.00
30	Cyclohexane	0.421	0.364	13.5	90	0.00
31	1,2-Dichloropropane	0.324	0.281	13.3	89	0.00
32	Bromodichloromethane	0.577	0.508	12.0	88	0.00
33	Trichloroethene	0.424	0.355	16.3	86	0.00
34	Heptane	0.320	0.280	12.5	89	0.00
35	cis-1,3-Dichloropropene	0.455	0.396	13.0	86	0.00
36	4-Methyl-2-Pentanone	0.790	0.711	10.0	92	0.00
37	trans-1,3-Dichloropropene	0.373	0.334	10.5	84	0.00
38	1,1,2-Trichloroethane	0.337	0.278	17.5	86	0.00
39	Toluene	0.990	0.841	15.1	87	0.00
40	2-Hexanone	0.692	0.613	11.4	87	0.00
41	Dibromochloromethane	0.513	0.451	12.1	85	0.00
42	1,2-Dibromoethane	0.476	0.399	16.2	85	0.00
43	Tetrachloroethene	0.490	0.395	19.4	82	0.00

		4 000	1 000	0 0	1.00	0 00
44 I	Chlorobenzene d5	1.000	1.000	0.0	102	0.00
45	Chlorobenzene	0.975	0.762	21.8	85	0.00
46	Ethylbenzene	1.591	1.227	22.9	85	0.00
47	m,p-Xylene	1.262	0.954	24.4	84	0.00
48	Bromoform	0.474	0.374	21.1	80	0.00
49	Styrene	0.849	0.642	24.4	81	0.00
50	1,1,2,2-Tetrachloroethane	0.842	0.645	23.4	83	0.00
51	o-Xylene	1.233	0.904	26.7	83	0.00
52 S	Bromofluorobenzene	0.562	0.545	3.0	101	0.00
53	4-Ethyl Toluene	1.570	1.303	17.0	82	0.00
54	1,3,5-Trimethylbenzene	1.435	1.151	19.8	83	0.00
55	1,2,4-Trimethylbenzene	1.327	1.139	14.2	82	0.00
56	Benzyl Chloride	0.588	0.556	5.4	76	0.00657
57	m-Dichlorobenzene	0.666	0.602	9.6	78	0.00
58	p-Dichlorobenzene	0.567	0.538	5.1	79	0.00
59	o-Dichlorobenzene	0.630	0.577	8.4	78	0.00
60	1,2,4-Trichlorobenzene	0.055	0.033	40.0#	53	0.00 BST
61	Hexachloro-1,3-butadiene	0.219	0.162	26.0	67	0.00 est

(#) = Out of Range SPCC's out = 0 CCC's out = 0

015KH18.m Thu Dec 20 09:21:22 2018

# GC/MS QA-QC Check Report

une File : P:\K-5975-K\2018\DEC18\19DEC18\KE53LCS.D

une Time : 19 Dec 2018 12:21 pm

aily Calibration File: P:\K-5975-K\2018\DEC18\19DEC18\KE53LCS.D

				277824	3704570	2871380
ile	Sample	Surrogate Recovery	응 	Internal	Standard	Responses
E54LCSD	10 PPB LCS	97		280576	3666931	2804 <b>69</b> 4
E55RLVS	.D 0.5 PPB RL			256960	3463997	2925 <b>244</b>
E57BLK.				225536	3019956	2228811
E68I002	1835293002			247232	3355268	25 <b>34724</b>
E69I004				277184	3371825	25 <b>95226</b>
	18352 <b>9</b> 3003	97		241280	3118895	2668385
E74I004				224192	2966214	252 <b>237</b> 5
	18352 <b>9</b> 3001	93		240128		
E76I003						2661733
fails)		time check * - fa	ils c	criteria		

is rails will time check rails crices

Created: Thu Dec 27 07:33:42 2018 5975-K