Div of Waste Management and Radiation Control

FEB 2 3 2023 Energy Fuels Resources (USA) Inc. 225 Union Blvd. Suite 600 Lakewood, CO, US, 80228 303 974 2140 www.energyfuels.com

DRC-2023-001738

VIA Expedited Delivery

February 20, 2023

Mr. Doug Hansen Director of Division of Waste Management and Radiation Control Utah Department of Environmental Quality 195 North 1950 West P.O. Box 144880 Salt Lake City, UT 84116

Re: Transmittal of Annual Seeps and Springs Monitoring Report Groundwater Quality Discharge Permit UGW370004 White Mesa Uranium Mill

Dear Mr. Hansen:

Enclosed are two copies of the White Mesa Uranium Mill Annual Seeps and Springs Monitoring Report for 2022 as required by the Groundwater Quality Discharge Permit UGW370004, as well as two CDs that contain a word searchable electronic copy of this report.

If you should have any questions regarding this report please contact me at 303-389-4134.

Yours very truly,

Katty Wund

ENERGY FUELS RESOURCES (USA) INC. Kathy Weinel Director, Regulatory Compliance

CC: David Frydenlund Scott Bakken Logan Shumway Garrin Palmer Jordan App John Uhrie

VIA Expedited Delivery

February 20, 2023

Mr. Doug Hansen Director of Division of Waste Management and Radiation Control Utah Department of Environmental Quality 195 North 1950 West P.O. Box 144880 Salt Lake City, UT 84116

Re: Transmittal of Annual Seeps and Springs Monitoring Report Groundwater Quality Discharge Permit UGW370004 White Mesa Uranium Mill

Dear Mr. Hansen:

Enclosed are two copies of the White Mesa Uranium Mill Annual Seeps and Springs Monitoring Report for 2022 as required by the Groundwater Quality Discharge Permit UGW370004, as well as two CDs that contain a word searchable electronic copy of this report.

If you should have any questions regarding this report please contact me at 303-389-4134.

Yours very truly,

Katty Wund

ENERGY FUELS RESOURCES (USA) INC. Kathy Weinel Director, Regulatory Compliance

CC: David Frydenlund Scott Bakken Logan Shumway Garrin Palmer Jordan App John Uhrie

White Mesa Uranium Mill 2022 Annual Seeps and Springs Sampling Report

State of Utah

Groundwater Discharge Permit No. UGW370004

Prepared by:

Energy Fuels Resources (USA) Inc. 225 Union Blvd., Suite 600 Lakewood, CO 80228 191

10011 001 0141

February 20, 2023

1.0 INTRODUCTION
2.0 SAMPLING EVENTS
2.2 2022 Sampling1
2.3 Repeat Visits to Dry Seeps and Springs
2.4 Sampling Procedures1
2.5 Field Data
2.6 Field QC Samples
3.0 SEEPS AND SPRINGS SURVEY AND CONTOUR MAP
4.0 QUALITY ASSURANCE AND QUALITY CONTROL
4.1 Laboratory Results
4.2 DATA EVALUATION
4.3 Adherence to Sampling Plan and Permit Requirements
4.4 Analyte Completeness Review
4.5 Data Validation
4.5.1 Field Data QA/QC Evaluation
4.5.2 Holding Time Evaluation
4.5.3 Laboratory Receipt Temperature Check
4.5.4 Analytical Method Check
4.5.5 Reporting Limit Evaluation
4.5.6 Trip Blank Evaluation
4.5.7 QA/QC Evaluation for Sample Duplicates
4.5.8 Radiologics Counting Error
4.5.9 Laboratory Matrix QC Evaluation
5.0 EVALUATION OF ANALYTICAL DATA
5.1 Evaluation of Analytical Results
5.1.1 Ruin Spring
5.1.2 Cottonwood Spring
5.1.3 Westwater Seep
5.1.4 Entrance Spring
6.0 CORRECTIVE ACTION REPORT
6.1 Assessment of Corrective Actions from Previous Period

Contents

1 10 - 10 - 10 HA

1.4. 4

7.0 ELECTRONIC DATA FILES AND FORMAT	11
8.0 SIGNATURE AND CERTIFICATION	12

LIST OF TABLES

Table 1	Summary of Seeps and Springs Sampling
Table 2A	Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells – Ruin Spring
Table 2B	Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells – Cottonwood Seep
Table 2C	Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells – Westwater Seep
Table 2D	Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells – Entrance Spring

INDEX OF TABS

Tab A Seeps and Springs Field Data Sheets and Photographic Documentation

- Tab B Field Parameter Measurement Data
- Tab C Survey Data and Contour Map
- Tab D Analytical Laboratory Data
- Tab E Quality Assurance and Data Validation Tables
 - E-1 Holding Time Evaluation
 - E-2 Laboratory Receipt Temperature Check
 - E-3 Analytical Method Check
 - E-4 Reporting Limit Evaluation
 - E-5 Trip Blank Evaluation
 - E-6 QA/QC Evaluation for Sample Duplicates
 - E-7 Radiologics Counting Error
 - E-8 Laboratory Matrix QC Evaluation

Tab F Comma Separated Values Transmittal

ACRONYM LIST

AWAL	American West Analytical Laboratory	
DR	Dry Ridge Piezometers	
DWMRC	Utah Division of Waste Management and Radiation Control	
EFRI	Energy Fuels Resources (USA) Inc.	
GEL	GEL Laboratories, Inc.	
GWQS	Groundwater Quality Standard	
LCS	Laboratory Control Spike	
Mill	White Mesa Mill	
MS	Matrix Spike	
MSD	Matrix Spike Duplicate	
Permit	State of Utah Groundwater Discharge Permit No. UGW370004	
QA	Quality Assurance	
QAP	Groundwater Monitoring Quality Assurance Plan	
QC	Quality Control	
RPD	Relative Percent Difference	
TDS	Total Dissolved Solids	
VOCs	Volatile Organic Compounds	

i.

101

ANNUAL SEEPS AND SPRINGS SAMPLING REPORT

1.0 INTRODUCTION

This is the 2022 Annual Seeps and Springs Sampling Report for the Energy Fuels Resources (USA) Inc. ("EFRI") White Mesa Mill (the "Mill"), as required under Part I.F.7 of the Mill's State of Utah Groundwater Discharge Permit No. UGW370004 (the "Permit") and the Mill's *Sampling and Analysis Plan for Seeps and Springs*, Revision: 2, July 8, 2016 (the "Sampling Plan").

The Sampling Plan for Seeps and Springs was revised in July 2016 to incorporate changes requested by the Division of Waste Management and Radiation Control ("DWMRC"). The Sampling Plan for Seeps and Springs, Revision: 2, July 8, 2016 was approved by DWMRC by letter dated August 8, 2016.

2.0 SAMPLING EVENTS

Seeps and springs which were identified near the Mill in the 1978 Environmental Report (Plate 2.6-10, Dames and Moore, January 30, 1978) are to be sampled annually in accordance with the Sampling Plan and Part I.E.6 of the Permit. The Sampling Plan specifies the following sample locations: Corral Canyon Seep, Corral Springs, Ruin Spring, Cottonwood Seep, Westwater Seep and Entrance Spring (also referred to as Entrance Seep).

2.2 2022 Sampling

In accordance with the Permit and the Sampling Plan, DWMRC was notified of the annual sampling events. On March 28, 2022 EFRI collected the Westwater Seep sample. On May 10, 2022, EFRI collected seeps and springs samples from Cottonwood Seep, Ruin Spring, Entrance Seep, and Back Spring (duplicate of Cottonwood Seep). The DWMRC representative was present for May 10, 2022 sampling event and collected a "split" sample from the EFRI sampling equipment, using sample containers he provided. Corral Canyon Seep and Corral Springs were dry during the annual sampling event.

2.3 Repeat Visits to Dry Seeps and Springs.

Corral Canyon Seep and Corral Springs, were visited once per calendar quarter in 2022. The visits were conducted in March, May, August and November 2022. Corral Canyon Seep and Corral Springs, were dry during all of the visits, could not be sampled, and did not warrant development attempts with limited hand tool excavation at that time.

2.4 Sampling Procedures

Samples were collected and analyzed for the parameters listed in Table 2 of the Permit.

Samples were collected from the locations indicated in Table 1. Sampling procedures for each seep or spring are determined by the site location and access.

The DWMRC-approved sampling procedures for seeps and springs at the Mill are contained in the Sampling Plan. Samples collected under this plan were collected either by direct collection which involves collecting the sample directly into the sample container from the surface water feature or from spring out-flow, or by using a stainless steel ladle to collect water until a sufficient volume is contained in the ladle for transfer to the sample bottle. Filtered parameters are pumped through a 0.45 micron filter prior to delivery to the sample bottle.

Ruin Spring

In the case of Ruin Spring, sample bottles for the analytes collected during the May sampling event (except gross alpha and heavy metals) were filled directly from the spring out-flow which is a pipe. Samples for heavy metals and gross alpha were collected by means of a peristaltic pump and delivered directly to the sample containers through a 0.45 micron filter. The appropriate preservatives for the analytical technique were added to the samples.

Westwater Seep

Westwater Seep, was "developed" prior to the sampling event by Field Personnel. Development was completed by removing surrounding vegetation and clearing the sampling location in the spring or seep area. All of the sample containers were filled by means of a peristaltic pump and delivered directly to the sample containers. Samples for heavy metals and gross alpha were collected by means of a peristaltic pump and delivered directly to the sample containers through a 0.45 micron filter. The appropriate preservatives for the analytical technique were added to the samples.

Cottonwood Seep and Entrance Spring

Cottonwood Seep and Entrance Spring were "developed" prior to the sampling event by Field Personnel. Development was completed by removing surrounding vegetation and clearing the sampling location in the spring or seep area. The sample containers were filled by means of a peristaltic pump and delivered directly to the sample containers. In the case of the samples for heavy metals and gross alpha, the samples were delivered by a peristaltic pump directly to the sample containers through a 0.45 micron filter. The samples were preserved by the addition of the appropriate preservative for the analytical technique.

The tubing on the peristaltic pump that comes into contact with the sample water was disposed of between each sampling. As a result, no equipment required decontamination, and no rinsate samples were collected.

in Po

2.5 Field Data

Attached under Tab A are copies of the field data sheets recorded in association with the March and May seeps and springs monitoring events. Photographic documentation of the sampling sites is also included in Tab A. Sampling dates are listed in Table 1 and field parameters collected during the sampling program are included in Tab B.

2.6 Field QC Samples

The field Quality Control ("QC") samples generated during the March and May sampling events included one trip blank per shipment to each laboratory which received samples for VOCs. The May sampling event included one duplicate to each laboratory which received samples for VOCs. The duplicate samples (Back Spring) were submitted blind to the analytical laboratory. As previously stated, no rinsate blanks were collected during this sampling event as only disposable equipment was used for sample collection.

3.0 SEEPS AND SPRINGS SURVEY AND CONTOUR MAP

Part I.F.7(c) of the Permit requires that a water table contour map that includes the elevations for each well at the facility and the elevations of the phreatic surfaces observed for each of the seeps and springs sampled be submitted with this annual report. Tab C includes two contour maps. The contour map labeled C-1 shows the water table without the water level data associated with the dry ridge ("DR") investigation piezometers. The contour map labeled C-2 shows the water table with the water level data associated with the DR investigation piezometers. It is important to note that Cottonwood Seep is not included in any of the perched water level contouring, because there is no evidence to establish a hydraulic connection between Cottonwood Seep and the perched water system. Cottonwood Seep is located near the Brushy Basin Member/Westwater Canyon Member contact, approximately 230 feet below the base of the perched water system defined by the Burro Canyon Formation/Brushy Basin Member contact. The stratigraphic position of Cottonwood Seep indicates that its elevation is not representative of the perched potentiometric surface. Exclusion of the Cottonwood Seep from water level contouring is consistent with previous submissions. The contour map includes the corrected survey data from December 2009 as discussed below.

Part I.F.7 (g) of the Permit requires that survey data for the seeps and springs be collected prior to the collection of samples. DRC previously clarified that the requirement to submit survey data applies only to the first sampling event and not on an annual basis. The December 2009 and July 2010 seeps and springs survey data shown in Tab C will be used for reporting where seeps and springs locations and elevations are relevant.

A full discussion of the survey data and the hydrogeology of seeps and springs at the margins of White Mesa in the vicinity of the Mill and the relationship of these seeps and springs to the hydrogeology of the site, in particular to the occurrence of a relatively shallow perched groundwater zone beneath the site, is contained in *Hydrogeology of the Perched Groundwater Zone and Associated Seeps and Springs Near the White Mesa Uranium Mill Site*, dated November 12, 2010, prepared by Hydro Geo Chem, Inc. and submitted to the Director on November 15, 2010. Additional information is also contained in the Second Revision Hydrogeology of the Perched Groundwater Zone in the Area Southwest of the Tailings Cells White Mesa Mill Site, dated November 7, 2012, prepared by Hydro Geo Chem, Inc. and submitted to the Director on November 7, 2012.

4.0 QUALITY ASSURANCE AND QUALITY CONTROL

4.1 Laboratory Results

Analytical results are provided by the Mill's two contract analytical laboratories GEL Laboratories, Inc., ("GEL") and CHEMTECH-FORD Laboratories ("CTF").

The laboratories utilized during this investigation were certified under the Environmental Lab Certification Program administered by UDEQ Bureau of Lab Improvement for the analyses they completed.

The analytical data as well as the laboratory Quality Assurance ("QA")/QC summaries are included under Tab D.

4.2 DATA EVALUATION

The Permit requires that the annual seeps and springs sampling program be conducted in compliance with the requirements specified in the Mill's approved White Mesa Uranium Mill Groundwater Monitoring Quality Assurance Plan ("QAP"), the approved Sampling Plan and the Permit. To meet this requirement, the data validation completed for the seeps and springs sampling program verified that the program met the requirements outlined in the QAP, the Permit and the approved Sampling Plan. The Mill Director, Regulatory Compliance performed a QA/QC review to confirm compliance of the monitoring program with requirements of the Permit and the QAP. As required in the QAP, data QA includes preparation and analysis of QC samples in the field, review of field procedures, an analyte completeness review, and quality control review of laboratory data methods and data. Identification of field QC samples collected and analyzed is provided in Section 4.5.1. Discussion of adherence to the Sampling Plan is provided in Section 4.3. Analytical completeness review results are provided in Section 4.4. The steps and tests applied to check laboratory data QA/QC are discussed in Sections 4.5.1 through 4.5.9 below.

The analytical laboratories have provided summary reports of the analytical QA/QC measurements necessary to maintain conformance with National Environmental Laboratory Accreditation Conference certification and reporting protocol. The analytical laboratory QA/QC Summary Reports, including copies of the Mill's Chain of Custody and Analytical Request Record forms for each set of analytical results, follow the analytical results under Tab D. Results of the review of the laboratory QA/QC information are provided under Tab E and discussed in Section 4.5 below.

4.3 Adherence to Sampling Plan and Permit Requirements

On a review of adherence by Mill personnel to the Permit, the Director, Regulatory Compliance observed that QA/QC requirements established in the Permit and the QAP were met and that the requirements were implemented as required except, as noted below.

The Permit only requires the measurement of the field parameters pH, conductivity and temperature. Field parameter measurements collected during this sampling event included pH, conductivity, temperature, redox potential, and turbidity.

4.4 Analyte Completeness Review

The analyses required by the Permit Table 2 were completed.

4.5 Data Validation

The QAP and the Permit identify the data validation steps and data quality control checks required for the seeps and springs monitoring program. Consistent with these requirements, the Director, Regulatory Compliance performed the following evaluations: a field data QA/QC evaluation, a receipt temperature check, a holding time check, an analytical method check, a reporting limit check, a trip blank check, a QA/QC evaluation of sample duplicates, a gross alpha counting error evaluation and a review of each laboratory's reported QA/QC information. Each evaluation is discussed in the following sections. Data check tables indicating the results of each test are provided under Tab E.

4.5.1 Field Data QA/QC Evaluation

The Director, Regulatory Compliance performs a review of field recorded parameters to assess their adherence with QAP and Permit requirements. The assessment involved review of the Field Data sheets. Review of the Field Data Sheets noted that the requirements for field data collection were met.

4.5.2 Holding Time Evaluation

QAP Table 1 identifies the method holding times for each suite of parameters. Sample holding time checks are provided under Tab E. The samples were received and analyzed within the required holding time.

4.5.3 Laboratory Receipt Temperature Check

Chain of Custody sheets were reviewed to confirm compliance with the sample receipt requirements specified in the QAP. Sample receipt temperature checks are provided under Tab E. The samples were received within the QAP required temperature limit.

4.5.4 Analytical Method Check

The analytical methods reported by both laboratories were checked against the required methods specified in Table 1 of the QAP. Analytical method check results are provided in Tab E.

CTF analyzed ammonia by method A4500-NH3 H. Table 1 of the QAP specifies A4500-NH3 G or E350.1. The method used by CTF is not included in the approved QAP however, method A4500-NH3 H is equivalent to E350.1. The difference between A4500-NH3 H and E350.1 is the originating and publishing entity. Method A4500-NH3 H is published in Standard Methods for the Examination of Water

and Wastewater and E350.1 is an EPA published method. The analytical data generation methods for both methods are similar and therefore, the data for the two methods are equivalent, comparable and usable for the intended purpose. There is no adverse effect on the data due to the use of an alternative method. The laboratory has been reminded to use only QAP listed methods.

4.5.5 Reporting Limit Evaluation

Reporting limits utilized by the laboratory were required to be equal to or lower than the GWQSs set out in Table 2 of the Permit. For Total Dissolved Solids ("TDS"), sulfate and chloride, for which Ground Water Quality Standards are not set out in Table 2 of the Permit, reporting limits specified in Part 1.E.6.e).(1) were used. Those reporting limits are 10 mg/L for TDS, and 1 mg/L for Sulfate and Chloride. The analytical method reporting limits reported by both laboratories were checked against the reporting limits specified in the Permit. Reporting limit evaluations are provided in Tab E. All analytes were measured and reported to the required reporting limits except the sample results that had the reporting limit raised due to sample dilution necessary to accommodate the analyte concentrations in the samples. In all cases the reported value for the analyte was higher than the increased detection limit.

It is important to note that the CTF reported some analytes lower than the GWDP required limits (equivalent to the GWQSs). All previous data were reported to the GWQS as required by the GWDP. These lower RLs resulted in detections being reported in 2022 that have never been reported before. These detections are not indicative of increasing analyte concentrations, but are indicative of lower RLs and low level detections.

4.5.6 Trip Blank Evaluation

The trip blank results were reviewed to identify any VOC sample contamination which is the result of sample handling and shipment. Trip blank evaluation is provided in Tab E. The trip blank results associated with the samples were less than the reporting limit for the VOCs.

4.5.7 QA/QC Evaluation for Sample Duplicates

Section 9.1.4 a) of the QAP states that the Relative Percent Difference ("RPD") will be calculated for the comparison of duplicate and original field samples. The QAP acceptance limits for RPDs between the duplicate and original field sample is less than or equal to 20% unless the measured results (described as activities in the QAP) are less than 5 times the required detection limit. This standard is based on the United Stated Environmental Protection Agency Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994, 9240.1-05-01 as cited in the QAP. The RPDs are calculated for duplicate pairs for the analytes regardless of whether or not the reported concentrations are greater than 5 times the required detection limits; however, data will be considered noncompliant only when the results are greater than 5 times the required detection limit and the RPD is greater than 20%. RPDs are also only calculated when both the sample and the duplicate report a detection for any given analyte. If only one of the pair reports a detection, the RPD cannot be calculated. The additional duplicate information is provided for information purposes.

All duplicate results were within 20% RPD. The duplicate evaluation is provided in Tab E.

4.5.8 Radiologics Counting Error

Section 9.14 of the QAP requires that all gross alpha analysis reported with an activity equal to or greater than the Groundwater Compliance Limits set out in the Permit (for the seeps and springs samples the Groundwater Quality Standards ["GWQS"] will be used), shall have a counting variance that is equal to or less than 20% of the reported activity concentration. An error term may be greater than 20% of the reported activity concentration when the sum of the activity concentration and error term is less than or equal to the GWQS.

Section 9.4 of the QAP also requires a comparability check between the sample and field duplicate sample results utilizing the formula provided in the text.

All radiological results were reported were non-detect and therefore within acceptance limits. Results of routine radiologic sample QC are provided under Tab E.

4.5.9 Laboratory Matrix QC Evaluation

Section 9.2 of the QAP requires that the laboratory's QA/QC Manager check the following items in developing data reports: (1) sample preparation information is correct and complete, (2) analysis information is correct and complete, (3) appropriate analytical laboratory procedures are followed, (4) analytical results are correct and complete, (5) QC samples are within established control limits, (6) blanks are within QC limits, (7) special sample preparation and analytical requirements have been met, and (8) documentation is complete. In addition to other laboratory checks described above, EFRI's Director, Regulatory Compliance rechecks QC samples and blanks (items (5) and (6)) to confirm that the percent recovery for spikes and the relative percent difference for spike duplicates are within the method-specific required limits, or that the case narrative sufficiently explains any deviation from these limits. Results of this quantitative check are provided under Tab E. The lab QA/QC results from both GEL and CTF met these requirements except as described below.

A number of the seeps and springs samples had the reporting limit raised due to matrix interference and/or sample dilution. In all cases where the detection limit was increased, the concentration for the analyte was higher than the increased detection limit.

The check samples included at least the following: a method blank, a laboratory control spike ("LCS"), a matrix spike ("MS") and a matrix spike duplicate ("MSD"), or the equivalent, where applicable. It should be noted that:

- Laboratory fortified blanks are equivalent to LCSs.
- Laboratory reagent blanks are equivalent to method blanks.
- Post digestion spikes are equivalent to MSs.
- Post digestion spike duplicates are equivalent to MSDs.
- For method E900.1, used to determine gross alpha, a sample duplicate was used instead of a MSD.

The qualifiers, and the corresponding explanations reported in the QA/QC Summary Reports for any of the check samples for any of the analytical methods, were reviewed by the Director, Regulatory Compliance.

The QAP Section 8.1.2 requires that a MS/MSD pair be analyzed with each analytical batch. The QAP does not specify acceptance limits for the MS/MSD pair, and the QAP does not specify that the MS/MSD pair be prepared on EFRI samples only. Acceptance limits for MS/MSDs are set by the laboratories. The review of the information provided by the laboratories in the data packages verified that the QAP requirement to analyze a MS/MSD pair with each analytical batch was met. While the QAP does not require it, the recoveries were reviewed for compliance with each laboratory's established acceptance limits. The QAP does not require this level of review and the results of this review are provided for information only.

The information from the Laboratory QA/QC Summary Reports indicates that the MS/MSD recoveries and the associated RPDs for the seeps and springs samples were within acceptable laboratory limits except as noted in Tab E. The MS/MSD recoveries that were outside the laboratory established acceptance limits do not affect the quality or usability of the data, because the recoveries and RPDs above or below the acceptance limits are indicative of matrix interference most likely caused by other constituents in the samples. Matrix interferences are applicable to the individual sample results only. The requirement in the QAPs to analyze a MS/MSD pair with each analytical batch was met and as such the data are compliant with the QAP.

The information from the Laboratory QA/QC Summary Reports indicates that there were low LCS recoveries in one analytical batch as indicated in Tab E.

A low LCS recovery for TDS and chloromethane were reported in analytical batch 22C2426. The low LCSs in batch 22C2426 affected sample Westwater Seep.

The data were flagged in accordance with EPA protocols. The data are usable for the intended purpose because TDS concentrations are within historic values and are variable based on ambient conditions present during sample collection. Chloromethane data are usable because chloromethane, as well as other volatiles, are not frequently detected and the non-detects are likely accurate.

The information from the Laboratory QA/QC Summary Reports indicates that there was a low Continuing Calibration Verification ("CCV") recovery for chloromethane. The low CCV recovery affected all samples in the analytical batch.

The data were flagged in accordance with the changes specified in EPA Method 8260D. The flagging requirements are new to the revised method and do not adversely affect the data. The data are usable for the intended purpose because the seeps and springs do not have historical detections of volatiles and the nondetect data are likely accurate.

The QAP specifies that surrogate compounds shall be employed for all organic analyses, but the QAP does not specify acceptance limits for surrogate recoveries. The analytical data associated

with the routine quarterly sampling met the requirement specified in the QAP. The information from the Laboratory QA/QC Summary Reports indicates that the surrogate recoveries for the seeps and springs samples were within acceptable laboratory limits for all surrogate compounds.

The QAP Section 8.1.2 requires that each analytical batch shall be accompanied by a reagent blank. Contamination detected in analysis of reagent blanks/method blanks will be used to evaluate any analytical laboratory contamination of environmental samples. The QAP specified process for evaluation of reagent/method blanks states that nonconformance will exist when blanks are within an order of magnitude of the sample results. The information from the Laboratory QA/QC Summary Reports indicates that the reagent (method) blanks for the seeps and springs samples were non-detect and were therefore within the acceptance criteria specified in the QAP.

Laboratory duplicates are completed by the analytical laboratories as required by the analytical method specifications. Acceptance limits for laboratory duplicates are set by the laboratories. The QAP does not require the completion of laboratory duplicates or the completion of a QA assessment of them. EFRI reviews the QC data provided by the laboratories for completeness and to assess the overall quality of the data provided. Laboratory duplicate results are provided in Tab D.

5.0 EVALUATION OF ANALYTICAL DATA

As previously stated, the samples were analyzed for the groundwater compliance parameters found on Table 2 of the Permit. In addition to these laboratory parameters, the pH, temperature, conductivity, (and although not required, redox, dissolved oxygen ["DO"] and turbidity) were measured and recorded in the field.

5.1 Evaluation of Analytical Results

The results of the March and May sampling events show no evidence of Mill influence in the water produced by the seeps and springs sampled. The lack of Mill influence on seeps and springs is indicated by the fact that the parameters detected are within the ranges of concentrations for the on-site monitoring wells and for available historic data for the seeps and springs themselves. For those detected analytes, concentrations are shown in Tables 2A, 2B, 2C, and 2D. The data are compared to available historic data for each seep and spring as well as to on-site monitoring well data. Specific discussions about each seep or spring are included below.

5.1.1 Ruin Spring

No VOCs or radiologics were detected. Metals and major ions were the only analytes detected. The metals detections were minimal with only calcium, magnesium, potassium, sodium, chromium, molybdenum, nickel, selenium, uranium and vanadium having positive detections. The major ions detected include bicarbonate, chloride, fluoride, ammonia, nitrate, sulfate and TDS. A comparison of the 2009 through 2021 data to the 2022 data shows that the concentrations of most detected analytes remained approximately the same with only minor changes within the limits of normal analytical deviation. The RLs and the reported values for chromium, nickel, and vanadium were below the GWDP required RL as noted in Section 4.5.5.

The reported values for chloride fluoride, ammonia, sulfate, and selenium increased slightly from the 2021 sample results and remain below the upper range of historic background values of this location and/or below the upper range of historic background values (where available) for the onsite monitoring wells. The differences are not significant and are most likely due to normal fluctuations due to flow rates or seasonal variations due to annual precipitation. Overall, the data reported for Ruin Spring are typical for a surface water sample with no indication of Mill influence.

5.1.2 Cottonwood Spring

No VOCs or radiologics were detected. Metals and major ions were the only analytes detected. The metals detections were minimal with calcium, magnesium, potassium, sodium, arsenic, chromium, manganese, selenium, uranium and vanadium having a positive detection. The major ions detected include bicarbonate, chloride, fluoride, sulfate, and TDS. A comparison of the 2009 through 2021 data to the 2022 data shows that the concentrations of most detected analytes remained approximately the same with only minor changes within the limits of normal analytical deviation. The RLs and the reported values for arsenic, chromium, manganese, molybdenum, selenium, and vanadium were below the GWDP required RL as noted in Section 4.5.5. The reported values for, TDS and sulfate, increased from the 2021 sample results, and remain below the upper range of historic background values of this location and/or below the upper range of historic background values (where available) for the on-site monitoring wells. The differences are not significant and are most likely due to normal fluctuations due to flow rates or seasonal variations due to annual precipitation. Overall, the data reported for Cottonwood Spring are typical for a surface water sample with no indication of Mill influence.

5.1.3 Westwater Seep

No VOCs or radiologics were detected. Metals and major ions were the only analytes detected. The metals detections were minimal with calcium, magnesium, potassium, sodium, arsenic, chromium, cobalt, iron, manganese, molybdenum, nickel, selenium, vanadium and uranium having positive detections. The major ions detected include bicarbonate, chloride, fluoride, sulfate, and TDS. A comparison of the historic data to the 2022 data shows that the concentrations of most detected analytes remained approximately the same with only minor changes within the limits of normal analytical deviation. The RLs and the reported values for arsenic, chromium, cobalt, molybdenum, nickel, selenium, and vanadium were below the GWDP required RL as noted in Section 4.5.5. The reported value for fluoride increased from the 2021 sample results and the reported value remain below the upper range of historic background values of this location and/or below the upper range of historic background values (where available) for the on-site monitoring wells. The differences are not significant and are most likely due to normal fluctuations due to flow rates or seasonal variations due to annual precipitation. Overall, the data reported for Westwater Seep are typical for a surface water sample with no indication of Mill influence.

5.1.4 Entrance Spring

No VOCs or radiologics were detected. Metals and major ions were the only analytes detected. The metals detections were minimal with only calcium, magnesium, potassium, sodium, arsenic,

chromium, cobalt, iron, molybdenum, nickel, uranium, manganese and selenium having positive detections. The major ions detected include bicarbonate, chloride, fluoride, nitrate, sulfate, and A comparison of the 2009 through 2021 data to the 2022 data shows that the TDS. concentrations of most detected analytes remained approximately the same with only minor changes within the limits of normal analytical deviation. The RLs and the reported values for arsenic, chromium, cobalt, molybdenum, nickel, and vanadium were below the GWDP required RL as noted in Section 4.5.5. The reported values for fluoride, potassium, sodium, TDS, bicarbonate, chloride, iron, and manganese increased from the 2021 sample results. The detected concentrations and the reported value remain below the upper range of historic background values of this location and/or below the upper range of historic background values (where available) for the on-site monitoring wells. As stated in Section 2.4 above Entrance Spring is "developed" prior to the sampling event by Field Personnel. Development was completed the day prior to sampling by removing surrounding vegetation and clearing the sampling location in the spring or seep area. A shovel or trowel is used to dig a hole in the soil, which is allowed to fill with water. The standing water was sampled. Field Personnel noted the area was muddy and there is livestock activity in the area. The Entrance Spring sample data and constituent concentrations are likely affected by the muddy site conditions and livestock activity in the sampling area.

Overall, the data reported for Entrance Spring are typical for a surface water sample with no indication of Mill influence.

6.0 CORRECTIVE ACTION REPORT

No corrective action reports are required for the 2022 annual sampling event.

6.1 Assessment of Corrective Actions from Previous Period

No corrective action reports were required for the 2021 annual sampling event.

7.0 ELECTRONIC DATA FILES AND FORMAT

EFRI has provided to the Director electronic copies of the laboratory results as part of the annual seeps and springs monitoring in Comma Separated Values, from the laboratory. A copy of the transmittal e-mail is included under Tab F.

8.0 SIGNATURE AND CERTIFICATION

This document was prepared by Energy Fuels Resources (USA) Inc. Energy Fuels Resources (USA) Inc.

By:

~63m

Scott A. Bakken Vice President, Regulatory Affairs

2/20/23

Date

Certification

I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

<07 mm

Scott A. Bakken Vice President, Regulatory Affairs Energy Fuels Resources (USA) Inc. Tables

and there are an

Location	Sample Date	Work Order No./Lab Set ID	Date of Lab Report				
Cottonwood Spring	5/10/2022	CTF = 22E1012 GEL = 580063	CTF = 6/3/2022 GEL = 6/14/2022				
Entrance Seep	5/10/2022	CTF = 22E1012 GEL = 580063	CTF = 6/3/2022 GEL = 6/14/2022				
Back Spring (Duplicate of Ruin Spring)	5/10/2022	CTF = 22E1012 GEL = 580063	CTF = 6/3/2022 GEL = 6/14/2022				
Ruin Spring	5/10/2022	CTF = 22E1012 GEL = 580063	CTF = 6/3/2022 GEL = 6/14/2022				
Corral Spring	Not Sampled - Dry	Not Sampled - Dry	Not Sampled - Dry				
Corral Canyon Seep	Not Sampled - Dry	Not Sampled - Dry	Not Sampled - Dry				
Westwater Seep	3/28/2022	CTF = 22C2426 GEL = 575649	CTF = 4/18/2022 GEL = 5/3/2022				

Table 1: Summary of Seeps and Springs Sampling

÷.

١

	1.0.0	1310				3 1		Ruin		12		Monitorin		and the second	10.018		
Constituent	2009	2010	2011 May	2011 July	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	Range of Average Historic Values for Monitoring Wells ¹ *	Avg 2003 2004 ²
C. Jean S.	ALC ENT	1.1.2	1.11	Market Street			200 P	Major Io	ns (mg/l)					-	a		
Carbonate	<1	<1	<1	1	<1	<1	<1	<1	<]	<1	<1	<1	<1	<1	<1	-	
Bicarbonate	233	254	241	239	237	208	204	200	193	208	202	202	186	200	185	-	-
Calcium	151	136	145	148	147	149	150	162	138	145	158	165	169	154	141	- 1	
Chloride	28	23	25	44	28	26.3	27.1	27.4	24.4	27.4	29,9	23.9	25.8	28.1	28.4	ND - 213	27
Fluoride	0.5	0.53	0,45	0,5	0.52	0.538	<]	0.445	0.541	0.5	0.414	0.505	0.473	0.468	0.5	ND - 1.3	0.6
Magnesium	32.3	29.7	30.6	31.1	31.9	32.1	35.4	31.8	31,1	30.2	33.9	45.6	36.9	34.8	32.9		
Nitrogen-Ammonia	0.09	<0.05	ND	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	0.2		-
Nitrogen-Nitrate	1.4	1.7	1.7	1.6	1.6	1.56	1.54	1.31	1.64	1,55	1.35	1,56	1.39	1.26	1.2		
Potassium	3,3	3.07	3.2	3,3	3.5	3.46	3.24	3.14	3,18	3.07	3.58	3.31	4,09	3.83	3.2		
Sodium	104	93.4	110	111	115	118	119	126	105	113	128	128	139	119	117	-	-
Sulfate	528	447	486	484	464	553	553	528	490	476	547	474	469	557	595	ND - 3455	521
TDS	1010	903	942	905	1000	952	984	1000	916	972	1000	900	1240	1080	992	1019 - 5548	1053
		1.		181		1.1.1		Metals	(ug/l)					Marine.			Acres 1
Arsenic	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<0.5	-	-
Beryllium	< 0.5	< 0.5	< 0.5	< 0,5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
Cadmium	<0.5	<0,5	<0.5	<0.5	<0.5	<0,5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	ND - 4.78	0.01
Chromium	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	4.2	-	-
Cobalt	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<0.5	-	-
Copper	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<1.0	-	-
Iron	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<20	ND - 7942	25
Lead	<1.0	<1.0	<1.0	<1.0	<1.0	<1,0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.5	-	-
Manganese	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<0.5	ND - 34,550	5
Mercury	<0.5	<0.5	<0,5	<0.5	<0.5	<0,5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	-	-
Molybdenum	17	17	16	17	16	16.1	16.0	18.3	17.8	17.2	18	20.2	18.7	18.7	17.7		
Nickel	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	0.6	ND - 61	0.05
Selenium	12.2	10	11.8	10.2	10.8	10.2	12	10	10	10.5	12,2	10.8	10,5	11.2	11.7	ND - 106.5	12.1
Silver	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<0.5		
Thallium	<0.5	<0,5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	-	-
Tin	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<20	-	
Uranium	9.11	8.47	9.35	8,63	8.68	9,12	9.61	9.03	8.38	8.49	9.35	9,02	9.32	9.31	9.1	ND - 59.8	10
Vanadium	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	1,3	-	-
Zinc	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		-

		1.1	State.	Saula inte	1.28	1.00		Ruin S	Spring					2.25			1111
Constituent	2009	2010	2011 May	2011 July	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	Range of Average Historic Values for Monitoring Wells ¹ *	Avg 2003 2004 ²
			-			(VIE	- A	Radiologi	cs (pCi/l)				1.0.22				
Gross Alpha	<0.2	<0.2	<-0.3	<-0.05	<-0.09	<1.0	<1	<1.0	<1.0	<1.0	<1.57	<1.0	<1.0	<1.0	<1.0	ND - 36	0.28
								VOCS	(ug/L)								
Acetone	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<10		-
Benzene	<1.0	<1.0	<1.0	<1,0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	17	
Carbon Tetrachloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	4
Chloroform	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1,0	<1.0	<1.0	<1.0	<1.0	-	-
Chloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		-
MEK	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<10	-	- C 🖬
Methylene Chloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1,0	<1.0	<1.0	<1.0	<1,0	<1,0	<1.0	<1.0	<2.0		1
Naphthalene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		-
Tetrahydrofuran	<1,0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1,0	3	
Toluene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	
Xylenes	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	- 5	-

² From Figure 9 of the Revised Addendum, Evaluation of Available Pre-Operational and Regional Background Data, Background Groundwater Quality Report: Existing Wells for Denison Mines (USA) Corp.'s White Mesa Mill Site, San Juan Couinty, Utah, November 16, 2007, prepared by INTERA, Inc.

*Range of average historic values for On-Site Monitoring Wells as reported on April 30, 2008 (MW-1, MW-2, MW-3, MW-3A, MW-4, MW-5, MW-11, MW-12, MW-14, MW-15, MW-17, MW-18, MW-19, MW-20, MW-22, MW-23, MW-24, MW-25, MW-26, MW-27, MW-28, MW-29, MW-30, MW-31 and MW-32)²

A PRES PROVIDE			100						ood Spring				0	V. Philippi	1000		
Constituent	2009	2010	2011 May	2011 July	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	Range of Average Historic Values for Monitoring Wells ¹ *	Avg 1977 1982 ¹
								Major I	ons (mg/l)					1200	nied al		
Carbonate	<1	<]	<1	6	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1		-
Bicarbonate	316	340	330	316	326	280	251	271	256	280	283	286	280	298	267		
Calcium	90.3	92.2	95.4	94.2	101	87.9	99.7	111	102	99.6	109	122	120	108	99.0		
Chloride	124	112	113	134	149	118	128	133	138	129	153	138	146	143	143	ND - 213	31
Fluoride	0.4	0.38	0.34	0.38	0.38	0.417	<1	0.318	0.466	0.344	0.282	0.249	0.233	0.317	0.3	ND - 1.3	0.8
Magnesium	25	24.8	25.2	25.2	27.7	23.6	29.0	27.5	29.5	27.1	30.2	35.3	32.9	31.3	28.5	-	
Nitrogen- Ammonia	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.0512	<0.05	<0,05	<0.05	<0.05	<0.05	<0.05	<0.2		-
Nitrogen-Nitrate	0.1	<0.1	0,1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	0.124	0.108	<0.1	<0.1	<0.1	<0.1		
Potassium	5.7	5.77	6	5.9	6.2	5.53	6.18	5.91	6,11	5.72	6.35	6.78	7.14	7.40	5.9		-
Sodium	205	214	229	227	247	217	227	251	221	213	234	268	273	223	214		1. A.
Sulfate	383	389	394	389	256	403	417	442	443	409	428	423	417	443	528	ND - 3455	230
TDS	1010	900	1030	978	1040	996	968	1020	1070	1080	1080	1010	860	1110	1130	1019 - 5548	811
			1.11		3			Meta	ls (ug/l)	11. 11.		STATES.			in all	M	
Arsenic	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	1.8	-	-
Beryllium	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-
Cadmium	<0,5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	ND - 4.78	
Chromium	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	6.6	-	-
Cobalt	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<0.5	-	-
Copper	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<1.0		
Iron	<30	<30	53	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<20	ND - 7942	150
Lead	<1.0	<1.0	<1.0	<1.0	<1,0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0,5		+
Manganese	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	0.9	ND - 34,550	580
Mercury	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	-	-
Molybdenum	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	1.4		
Nickel	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<0.5	ND - 61	-
Selenium	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	<5	<5	<5	<5	<5	<5	1.4	ND - 106.5	1 44
Silver	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<0.5	-	-
Thallium	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2		
Tin	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<20		
Uranium	8.42	8.24	7.87	8.68	8.17	8.95	9.62	9.12	8.84	9.17	10.3	10.1	10.5	10.6	9.7	ND - 59.8	
Vanadium	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	2,4		
Zinc	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	1.1 <u>-</u> -

								Cottonw	ood Spring								
Constituent	2009	2010	2011 May	2011 July	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	Range of Average Historic Values for Monitoring Wells ¹ *	Avg 1977 1982 ¹
				32.01				Radiolog	gics (pCi/l)					1.14			
Gross Alpha	<0.2	<0.2	<0.1	<-0.1	<-0.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	ND - 36	7.2
and the set								VOC	S (ug/L)				Sec. 1	200	-		
Acetone	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<10	-	
Benzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	
Carbon tetrachloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	
Chloroform	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Chloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	
MEK	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<10	11 -	
Methylene Chloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0		
Naphthalene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Tetrahydrofuran	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		1.2-1.2
Toluene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-+	~
Xylenes	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	- 1-	

*Range of average historic values for On-Site Monitoring Wells as reported on April 30, 2008 (MW-1, MW-2, MW-3, MW-3A, MW-4, MW-5, MW-11, MW-12, MW-14, MW-15, MW-17, MW-18, MW-19, MW-20, MW-22, MW-23, MW-24, MW-25, MW-26, MW-27, MW-28, MW-29, MW-30, MW-31 and MW-32)

Table 2C Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells

Constituent	2009							11-22-24	1				1		1-1-1-1-1-1		
and the second		2010	2011 May	2011 July	2012	2013	2014	2015	2016	2017	2018	2019	2020 (March)	2020 (June)	2021	2022	Range of Average Historic Values for Monitoring Wells ¹ *
						М	lajor lons (mg/	and the second s									
Carbonate	<1	<]	<1					<	<1	<1	<1	<1	<1	<1	<1	<]	-
Bicarbonate	465	450	371					359	399	369	444	450	270	450	320	257	
Calcium	191	179	247					150	176	125	204	185	118	204	125	104	- 1
Chloride	41	40	21					32.6	38.0	27.5	36,2	41.6	26.6	40.6	29.2	21.9	ND - 213
Fluoride	0.7	0.6	0.54				- 2	0.424	0.618	0.574	0.659	0.505	0.555	0.429	0.473	0,5	ND - 1.3
Magnesium	45,9	44.7	34.7	Not Sampled	Not Sampled	Not Sampled	Not Sampled	34	47.3	31.7	56.6	43.7	30.8	54.6	30.9	26,4	-
Nitrogen-Ammonia	<0.05	0.5	0.06	Dry	Dry	Dry	Dry	0.123	<0.05	<0.05	0.0832	<0.05	0.0593	<0.05	<0.05	<0.2	
Nitrogen-Nitrate	0,8	<0.1	<0.1					<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0,1	
Potassium	1.19	6.57	3.9					1.98	2.32	2.33	2.94	3.99	1.76	5.28	1.78	1,3	-
Sodium	196	160	112					139	185	133	218	152	117	245	111	98.7	
Sulfate	646	607	354					392	573	318	580	436	307	460	340	278	ND - 3455
TDS	1370	1270	853					896	1060	820	1220	1110	1200	1480	876	672	1019 - 5548
							Metals (ug/l)					10-5	10.00				
Arsenic	<5	<5	12,3					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	1.8	-
Beryllium	<0.5	<0.5	0.91					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Cadmium	<0.5	<0.5	0.9					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	ND - 4.78
Chromium	<25	<25	<25					<25	<25	<25	<25	<25	<25	<25	<25	1,4	
Cobalt	<10	<10	<10					<10	<10	<10	<10	<10	<10	<10	<10	1	-
Copper	<10	<10	16	1				<10	<10	<10	<10	<10	<10	<10	<10	<1.0	-
Iron	89	56	4540					<30	40.1	181	575	1200	401	<30	948	920	ND - 7942
Lead	<1.0	<1.0	41.4	1				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.5	-
Manganese	37	87	268		·			171	55.5	144	312	528	369	35.4	432	206	ND - 34,550
Mercury	<0.5	<0.5	<0.5	A DOMESTIC PROPERTY OF	Not Sampled			<0.5	< 0.5	<0.5	< 0.5	<0,5	< 0.5	< 0.5	< 0.5	<0.2	6
Molybdenum	29	29	<10	Dry	Dry	Dry	Dry	<10	<10	<10	<10	<10	<10	<10	<10	1.4	
Nickel	<20	<20	29	1				<20	<20	<20	<20	<20	<20	<20	<20	1.7	ND - 61
Selenium	<5.0	<5.0	<5.0					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	1.4	ND - 106.5
Silver	<10	<10	<10	1				<10	<10	<10	<10	<10	<10	<10	<10	<0.5	-
Thallium	<0.5	<0.5	<0.5					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	-
Tin	<100	<100	<100					<100	<100	<100	<100	<100	<100	<100	<100	<20	-
Uranium	15.1	46.6	6.64	1				2.1	19.0	5.17	13.2	4.92	2.34	12.90	2.07	1.4	ND - 59.8
Vanadium	<15	<15	34	1				<15	<15	<15	<15	<15	<15	<15	<15	0.6	-
Zinc	<10	<10	28	1				<10	<10	<10	<10	<10	<10	<10	<10	<10	-

Table 2C Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells

						1	Vestwater Seep)		1.4.15				1		and the second	
Constituent	2009	2010	2011 May	2011 July	2012	2013	2014	2015	2016	2017	2018	2019	2020 (March)	2020 (June)	2021	2022	Range of Average Historic Values for Monitoring Wells ¹ *
						Ri	idiologics (pCi	/l)									
Gross Alpha	< -0.1	<0.3	0.5	Not Sampled Dry	Not Sampled Dry	Not Sampled Dry	Not Sampled Dry	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	ND - 36
			1				VOCS (ug/L)										Section 201
Acetone	<20	<20	<20					<20	<20	23.1	<20	<20	<20	<20	<20	<10	-
Benzene	<1.0	<1.0	<1.0					<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1,0	<1.0	<0.4	
Carbon tetrachloride	<1.0	<1.0	<1,0					<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Chloroform	<1.0	<1,0	<1.0]				<1.0	<1.0	<1.0	<1,0	<1:0	<1.0	<1.0	<1.0	<1.0	
Chloromethane	<1.0	<1.0	<1.0		N . 0 1 1			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
MEK	<20	<20	<20	Drv	Not Sampled Dry	Not Sampled Dry	Not Sampled Dry	<20	<20	<20	<20	<20	<20	<20	<20	<10	-
Methylene Chloride	<1.0	<1.0	<1.0		5.5	219	Dij	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	-
Naphthalene	<1.0	<1.0	<1.0					<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	100 <u>-</u> 10
Tetrahydrofuran	<1.0	<1.0	<1.0]				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Toluene	<1.0	<1.0	<1,0]				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Xylenes	<1.0	<1.0	<1.0					<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1-1-10

*Range of average historic values for On-Site Monitoring Wells as reported on April 30, 2008 (MW-1, MW-2, MW-3, MW-3, MW-4, MW-5, MW-11, MW-12, MW-14, MW-15, MW-17, MW-18, MW-19, MW-20, MW-22, MW-23, MW-24, MW-25, MW-26, MW-27, MW-28, MW-29, MW-30, MW-31 and MW-32)

THE REAL REPORT OF THE ADDRESS AND ADDRESS ADDRESS

Table 2D Detected Constituents and Comparison to Historic Values and Mill Site Monit	oring Wells

							Entra	nce Spring								
Constituent	2009	2010	2011 May	2011 July	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	Range of Averag Historic Values for Monitoring Wells ¹ *
	in the second						Major	lons (mg/l)					-		1.1.2.1.3	
Carbonate	<1	<1	<1	7	<1	<1	<1	<]	<1	<1	<1	<1	<1	<1	<1	
Bicarbonate	292	332	270	299	298	292	247	324	340	402	236	480	242	260	308	
Calcium	90.8	96.5	88.8	96.6	105	121	103	131	131	129	116	155	144	138	123	
Chloride	60	63	49	64	78	139	76.8	75.6	75	84.6	75.9	104	76.7	90.3	91.8	ND - 213
Fluoride	0.7	0.73	0.58	0.58	0.64	0.71	<1	0.606	0.668	0.615	0.454	0.912	0.638	0.625	0.8	ND - 1.3
Magnesium	26.6	28.9	26.4	28.4	32.7	43	34.9	33.3	38.6	36.4	42.4	48.0	45.1	47.7	44.8	
Nitrogen-Ammonia	0.28	< 0.05	< 0.05	0.32	< 0.05	< 0.05	< 0.05	0.202	0.0962	0.247	0.102	0.168	< 0.05	< 0.05	< 0.2	
Nitrogen-Nitrate	1.4	1	1.4	0.5	2.8	2.06	3.65	<0.1	0.403	<1	2.34	<1	2,46	1.55	0.2	
Potassium	2.4	2.74	2.6	2.9	2	3.83	1.56	1.62	<1.0	3.88	3.64	4.66	4.31	4.04	4.5	
Sodium	61.4	62.7	62.5	68.6	77.4	127	78.9	93.1	90.8	90.3	96	126	108	98.3	100	900 100
Sulfate	178	179	166	171	171	394	219	210	245	187	243	160	317	362	323	ND - 3455
TDS	605	661	571	582	660	828	688	680	828	752	820	892	964	888	904	1019 - 5548
			1000		1.15.10		Met	als (ug/l)		1						
Arsenic	<5	<5	<5	<5	<5	<5	<5	5.02	<5	9.16	<5	8.94	<5	<5	3.1	-
Beryllium	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	
Cadmium	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.2	ND - 4.78
Chromium	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	5.5	
Cobalt	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	1	
Copper	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<1.0	
Iron	<30	<30	37	55	34	162	37.2	295	94.4	371	<30	453	<30	<30	390	ND - 7942
Lead	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.5	0.0.0.0
Manganese	54	11	47	84	<10	259	16.1	367	210	913	405	587	56.3	27.2	629	ND - 34,550
Mercury	< 0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.2	
Molybdenum	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	14.30	<10	<10	1.8	
Nickel	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	1.0	ND - 61
Selenium	12.1	9.2	13.1	5.5	13.2	11.2	15.9	<5	<5	<5	15.3	<5	15	13.6	5.2	ND - 106.5
Silver	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	< 0.5	
Thallium	< 0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.2	
Tin	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<20	
Uranium	15.2	17.8	18.8	15.3	21.1	38.8	23.2	36	22.0	14.6	27.6	70.1	24.7	36.1	17.5	ND - 59.8
Vanadium	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	3.4	- 19 - 1
Zinc	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	

	Table 2D Detected	Constituents and Comparison 1	o Historic Values and Mi	I Site Monitoring Wells
--	-------------------	-------------------------------	--------------------------	-------------------------

					5. 34		Entra	nce Spring		in the second				Sec. 2.		
Constituent	2009	2010	2011 May	2011 July	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	Range of Average Historic Values for Monitoring Wells ¹ *
	1	1					Radiol	ogies (pCi/l)			11.1.5				
Gross Alpha	0.9	< 0.5	1.5	1.6	0.5	2.3	<1	3.05	<1	2.53	<1	2.63	<1	<1	<1	ND - 36
							VOC	CS (ug/L)								
Acetone	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<10	
Benzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	44
Carbon tetrachloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Chloroform	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Chloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1
MEK	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<10	
Methylene Chloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	
Naphthalene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Tetrahydrofuran	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Toluene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.32	<1.0	<1.0	13.1	<1.0	5.59	<1.0	<1.0	<1.0	
Xylenes	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	

*Range of average historic values for On-Site Monitoring Wells as reported on April 30, 2008 (MW-1, MW-2, MW-3, MW-3A, MW-4, MW-5, MW-11, MW-12, MW-14, MW-15, MW-17, MW-18, MW-19, MW-20, MW-22, MW-23, MW-24, MW-25, MW-26, MW-27, MW-28, MW-29, MW-30, MW-31 and MW-32)

INDEX OF TABS

- Tab A Seeps and Springs Field Data Sheets and Photographic Documentation
- Tab B Field Parameter Measurement Data
- Tab C Survey Data and Contour Map
- Tab D Analytical Laboratory Data
- Tab E Quality Assurance and Data Validation Tables
 - E-1 Holding Time Evaluation
 - E-2 Laboratory Receipt Temperature Check
 - E-3 Analytical Method Check
 - E-4 Reporting Limit Evaluation
 - E-5 Trip Blank Evaluation
 - E-6 QA/QC Evaluation for Sample Duplicates
 - E-7 Radiologic Counting Error
 - E-8 Laboratory Matrix QC Evaluation

Tab F CSV Transmittal

Tab A

Seeps and Springs Field Data Sheets and Photographic Documentation

.

THE PERIOD AND TO BE

E - 181 111

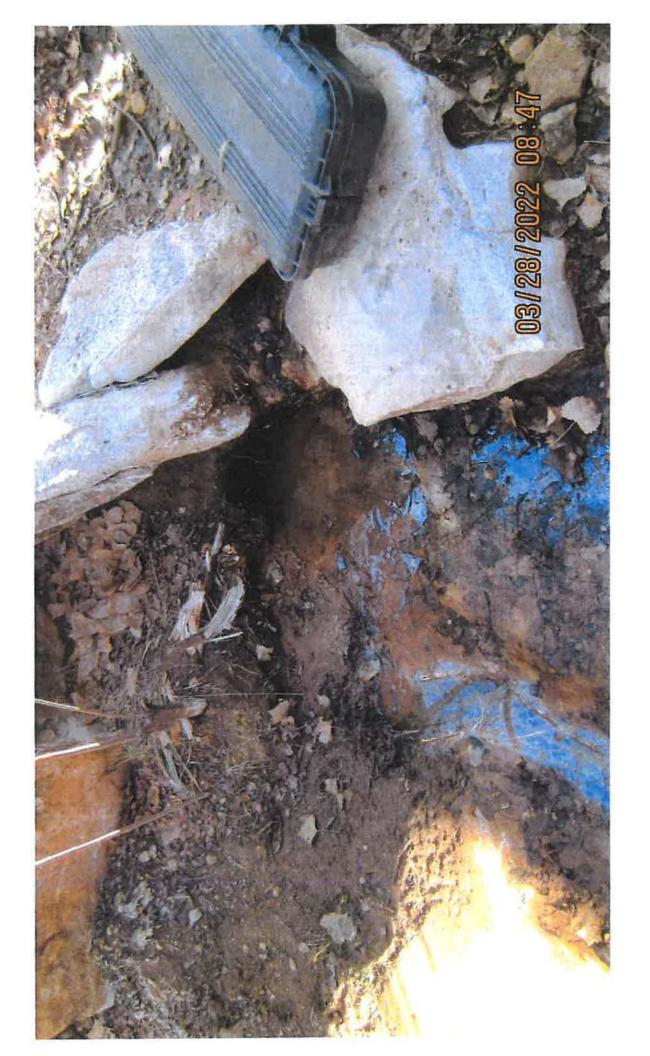
Field Data Record-Seeps and Springs Sampling

Date For Initial Sampling Visit: 3/28/2022 Time: 0850	_
Sample Collected: 🖗 Yes 🗆 No	
Date For Second Sampling Visit: Time:	
Sample Collected: Yes No	
Date For Third Sampling Visit: Time:	_
Sample Collected: \Box Yes \Box No	
Date For Fourth Sampling Visit: Time:	
Sample Collected: Ves No	
Sampling Personnel:	
Weather Conditions at Time of Sampling:	_
Estimated Seep or Spring Flow Rate:	_
Field Parameter Measurements: -pH 7.09	
-Temperature (°C) 10.7/	
-Conductivity µMHOC/cm <u>1209</u> -Turbidity (NTU) (if measured) 0.9	

-Redox Potential Eh (mV) (if measured) 2.59

Analytical Parameters/Sample Collection Method:

Parameter	Sample	Taken	Filte	ered		Sampli	ng Metho	bd
					Direct	Peristaltic Pump	Ladle	Other (describe in notes section)
VOCs	ĭ Yes	🗆 No	🗆 Yes	IS No		52		
Metals	🖪 Yes	🗆 No	🕱 Yes	🗆 No		SZ1		
Nutrients	🖪 Yes	🗆 No	□ Yes	DZ No		NC)		
Other Non Radiologics	🛿 Yes	🗆 No	🗆 Yes	DS No		Ş		
Gross Alpha	🖸 Yes	🗆 No	D Yes	🗆 No		V		


QC Samples Associated with this Location:

Rinsate	Blank
Misaic	Dialik

Duplicate

Duplicate Sample Name:

Notes: Arrived on site at 0846. Samples collected at 0850 Water had a Glossy film on the surface. Left site at 0855

Field Data Record-Seeps and Springs Sampling

Seep or	Spring I	Location	E	atran	ce spri	nq		
Date Fo	or Initial	Samplin	g Visit:	5/10/2	022		1820	
ŝ	Sample C	ollected:	🛚 Yes 🗆	No				
Date Fo	r Second	Samplin	ng Visit:			Time:		
S	Sample Co	ollected:		No				
	r Third S					Time:		
			□Yes □	No				
	r Fourth					Time:		
		-	-	No				
	-		⊃Yes □		· ·			
-	g Person					Dean H.		
Weather	Conditi	ons at Ti	me of Sa	mpling:	Partly C	loudy		
Estimate	ed Seep o	r Spring	Flow Ra	ite:(),10	U		
Field Pa	rameter]	Measure	ments:					
	rature (°C	and the second s						
			m <u>135</u>					
			sured) 2	and the second se				
-Redox	Potential		00 68.3		63			
Analytica	l Param				fethod:			
Distant	Commit	Tokowi	T THE DELL	1. 1. A. 1. A. 1. A.	m'association	Sampli		
Tarameter .	Sample	Taken	1 S CHU	TCU TO A				od Other
	ALL ALL ALL	Cash Ag	新生产		Star 1	Pump	Ladie	(describe in
Still months in the		an interests	A 16 . 4 .	the state	B. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	State 4	APL A	< notes section)
VOCs	😡 Yes	🗆 No	□ Yes	DS No	D	Ş2		
Metals	🛙 Yes	🗆 No	🕸 Yes	🗆 No		₽		0
Nutrients	🕱 Yes	🗆 No	□ Yes	🕸 No		5 7		
Other Non Radiologics	🕸 Yes	🗆 No	□ Yes	₽ No		۵¢		
Gross Alpha	🕸 Yes	🗆 No	🕸 Yes	🗆 No		R)		

QC Samples Associated with this Location:

- □ Rinsate Blank
- □ Duplicate

Duplicate Sample Name:

Notes: Arrived on site at 0808 Tanner, Deen and Dean Henderson & Phil Goble with the DWMRC on site for sampling. Samples collocted at 0820 Ainimals have been Wallowing in the area. Left site at 0833

sampling point was further east do flow rate and animal sign.

Field Data Record-Seeps and Springs Sampling

Seep or	Spring L	ocation	_Cott	onwood	spring				
Date For	r Initial S	amplin	g Visit:	5/10/2	022	Time:	945		_
S	ample Co	llected:	⊠Yes □	No					
Date For	Second	Samplin	ng Visit:_			Time:			_
S	ample Co	llected:	🗆 Yes 🗆	No					
Date For	Third S	ampling	g Visit:			Time:			2
S	ample Co	llected:	□Yes □	No					
Date For	Fourth S	Samplin	g Visit:_			Time:			
Sa	imple Col	lected:	∃Yes □	No					
Sampling	g Personn	el:	Tanner	H. D	een L, 1	Dean H,	Ohili i	Phil Goble	
Weather	Conditio					Cloudy w			2
					0.45 6				
-Temper -Conduc -Turbidi	7.20 rature (°C xtivity µM ty (NTU)) IHOC/cr (if meas	10 m <u>1737</u>		2111				
-Redux .	l Otentiai .) (II IIIcas		10.5				
Analytica	l Parame	ters/Sa	mple Col	lection N	Aethod:				
rameter 🤅	Sample	Taken ³	Eilte	red 🚿	the second se	· · · · Sampli	and the second states of the second	And the second se	ene.
			A A	Sine Kat	Direct	Peristaltic V. Pump	8 - 13.25 - 24 8 - 19 - 1	Other 3 (describe i notes sectio	n
VOCa	- SZ	- NT	MARTINE STREET	and h T	W. C. S. M. S. S. S. S. S. S. S.	CHARLES STATE & MAN	a manufal (1)	A HOLES SCOM	u)s

VOCs	🔯 Yes	🗆 No	□ Yes	DS No		52	
Metals	X Yes	🗆 No	🕸 Yes	🗆 No	D	55	
Nutrients	🗴 Yes	🗆 No	□ Yes	No No		12	
Other Non Radiologics	🔁 Yes	🗆 No	□ Yes	🕸 No		50	
Gross Alpha	🕫 Yes	🗆 No	🕸 Yes	🗆 No		A	

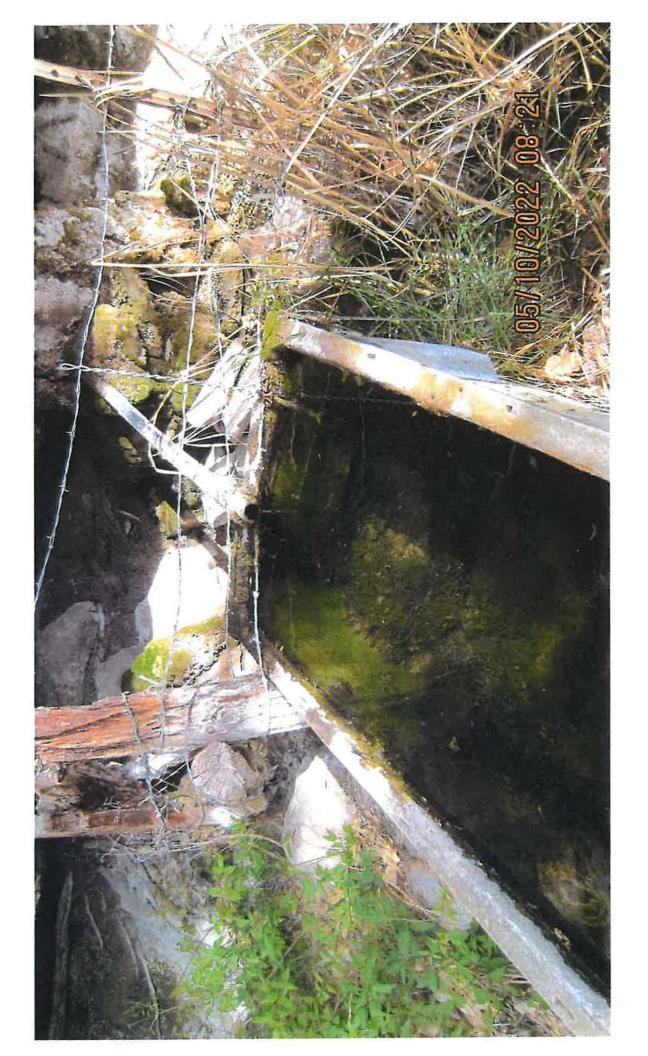
QC Samples Associated with this Location:

- □ Rinsate Blank
- Duplicate

Duplicate Sample Name:

Notes: Arrived on site at 0934 Tann	r, Deen and Dean Henderson &
Phil Goble with the DWMRC on site for.	sampling event. DWMRC
Phil Goble with the DWMRC on site for split sampled were spring. Left site at 100	o samples collected at 0945

PUBLIC DAME OF BUILDING


Seep or	Spring I	location	Ruin	n Sprin	pq			
Date Fo	or Initial	Samplin	g Visit:	5/10/2	022		855	
S	Sample Co	ollected:	⊠Yes □	No				
Date Fo	r Second	Samplir	ng Visit:_					
S	Sample Co	ollected:	🗆 Yes 🗆	No				
Date Fo	r Third S	ampling	g Visit:	-		Time:		
S	ample Co	ollected:	□Yes □	No				
	-					Time:		
			⊐Yes □			-		
Samplin	-					11 5		1-1-
-	0					ean H, F		
					0	()		
Estimate	ed Seep o	r Spring	Flow Ra	ite:	,25 GF	M		
Field Par	rameter l	Measure	ments:					
-pH _		11						
-Tempe	rature (°() <u>13.4</u>	13					
-Condu -Turbid	ity (NTI)	/HOC/CI	$m _14.38$	0				
-Redox	Potential	Eh (mV) (if meas	ured) 2	41			
	191		0 87.0					
Analytica	al Param	eters/Sa	mple Col	lection N	Aethod:			
Parameter	Sample	Taken	Car Filt	ered	天新出 生活	and Sampli	ng Meth	od at the set
举 认之前	and a l	State G			Direct	Peristaltic	Ladle	Other T
	1		The second			Pump		(describe in)
Noral Victoria	101-101-102	するないの	1 31 32	Signa Caren	Balesciptic	和生活的		* notes section) +
VOCs	₩ Yes		□ Yes		59			
Metals	12 Yes	□ No	🔯 Yes	□ No		53		
Nutrients	👿 Yes	□ No	□ Yes	No No	₽			
Other Non Radiologics	₿ Yes	🗆 No	□ Yes	₽ No				
Gross Alpha	f Yes	T No	K Yes	T No	П	154		

QC Samples Associated with this Location:

- Rinsate Blank
- □ Duplicate

Duplicate Sample Name:

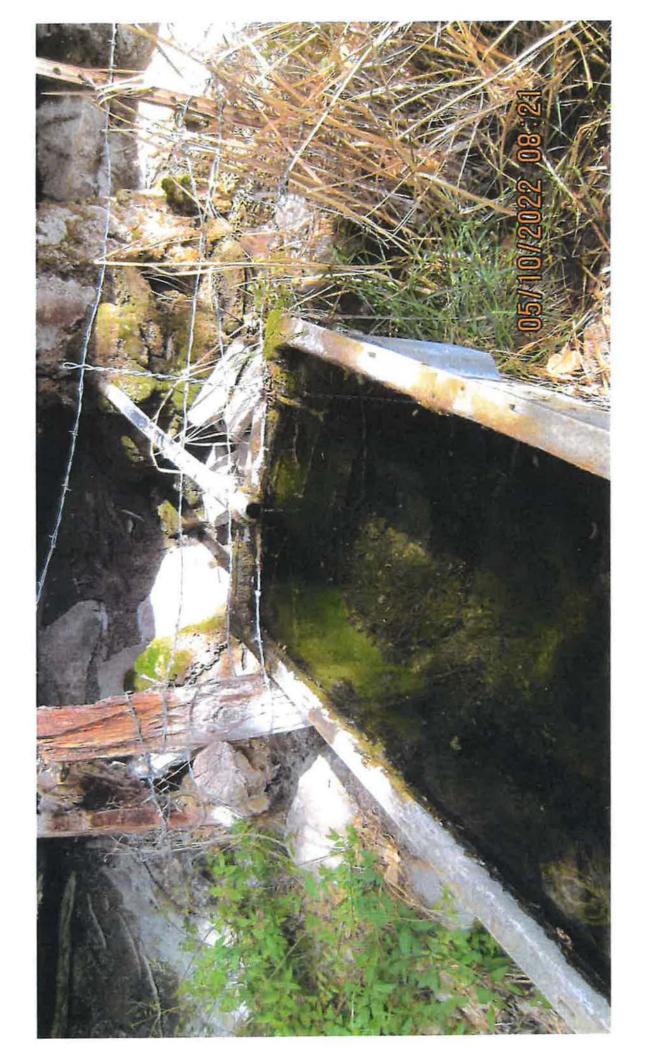
Notes: Arrived on site at 0847 Tanner, Deen and Dean Henderson & Phil Goble with DWMRC on site for sampling event. Samples collected at 0855 Left site at 09/1

Seep or Spring Location: Back Spring	
Date For Initial Sampling Visit: 5/10/2022	Time: 0855
Sample Collected: 🛛 Yes 🗆 No	
Date For Second Sampling Visit:	Time:
Sample Collected: ☐ Yes ☐ No	
Date For Third Sampling Visit:	Time:
Sample Collected: \Box Yes \Box No	
Date For Fourth Sampling Visit:	Time:
Sample Collected: \Box Yes \Box No	
Sampling Personnel: Tanner H, Deen L,	Dean H, Phil Goble
Weather Conditions at Time of Sampling: Partly	Cloudy
Estimated Seep or Spring Flow Rate: 0.25	V
Field Parameter Measurements:	

P11		
-Temperature (°C)	13.43	
-Conductivity µMHC)C/cm	1438
-Turbidity (NTU) (if	measure	ed) O
-Redox Potential Eh	(mV) (if	measured) 241
	00	87.0
- letter l'Deserve et en	. /0 1	Collection Methods

Analytical Parameters/Sample Collection Method:

Parameter VOCs	Sámple Taken		Filtered		Sampling Method				
				D		Peristaltic Pump	Ladle	Other (describe in notes section)	
	😡 Yes	🗆 No	🗆 Yes	🖪 No	RC)		D		
Metals	K Yes	🗆 No	🛱 Yes	🗆 No		()a			
Nutrients	🕅 Yes	🗆 No	🗆 Yes	🛛 No	59				
Other Non Radiologics	🖪 Yes	🗆 No	□ Yes	🗭 No	SØ				
Gross Alpha	🕫 Yes	🗆 No	🕸 Yes	🗆 No		×			


QC Samples Associated with this Location:

П	Rinsate	Blank
_	Truncere	The restriction

Duplicate

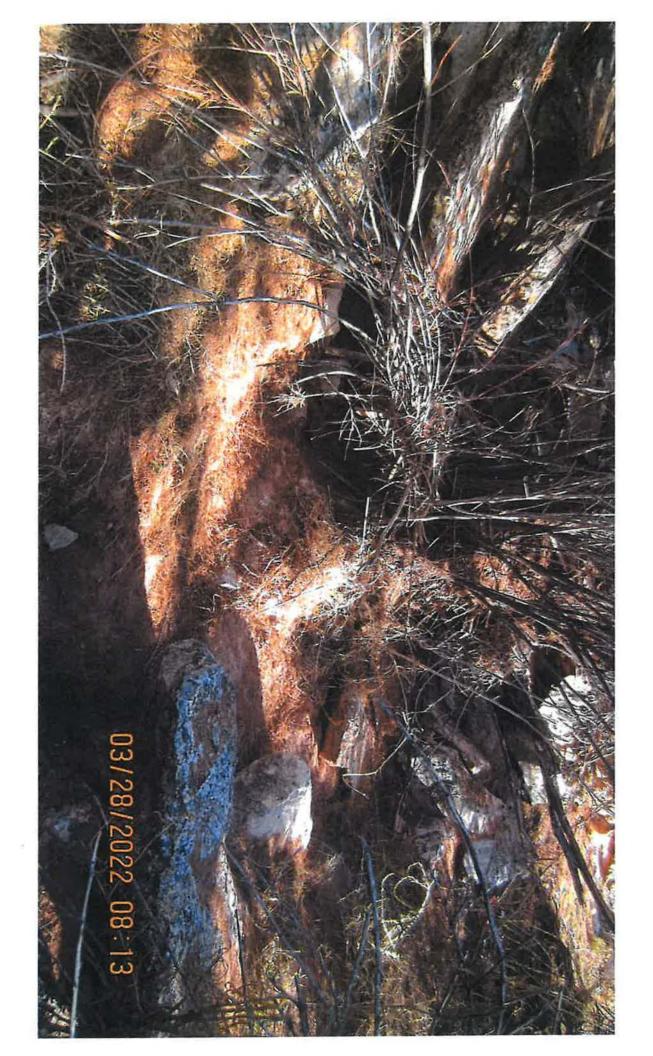
Duplicate Sample Name: Back Spring

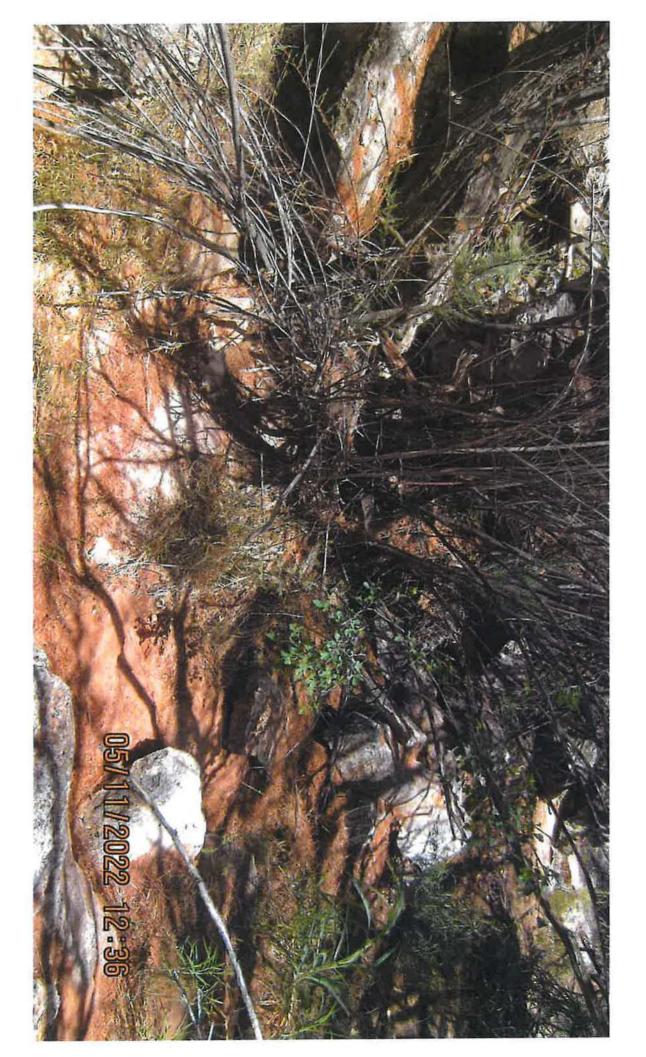
Notes: Arrived on site at 0847 Tanner Deen and DWMRC on site for sampling event. Duplicate of Ruin spring

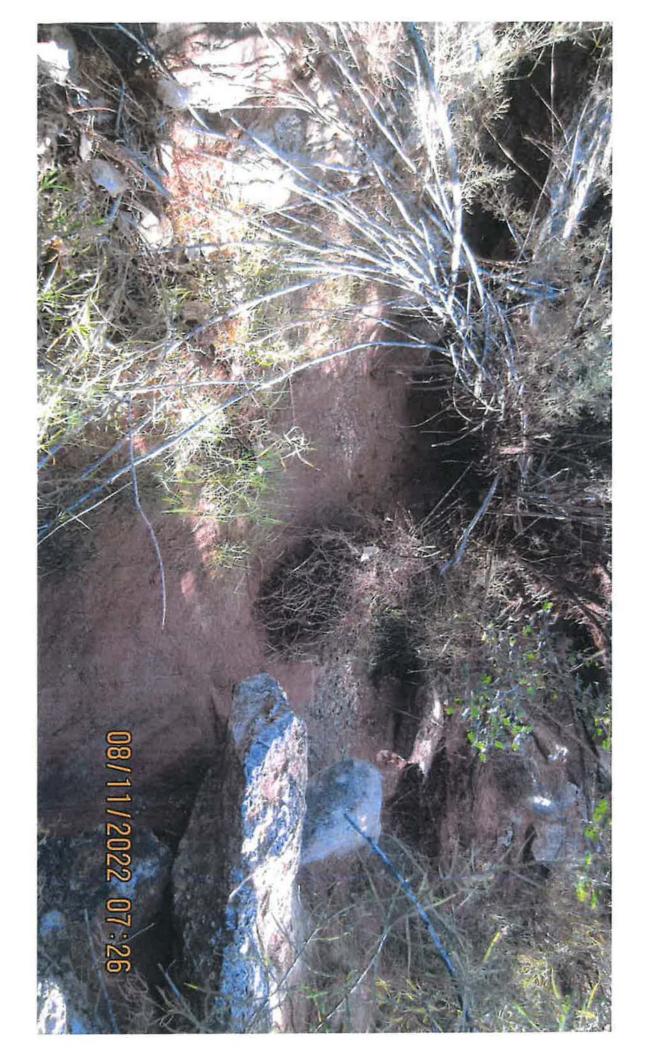
Seep or Spring Location: Coral Canyon	spring
Date For Initial Sampling Visit: 3/28/2027	Time: 0813
Sample Collected: Yes X No	
Date For Second Sampling Visit: 5/11/2022	Time: 1236
Sample Collected: ☐ Yes 🛱 No	
Date For Third Sampling Visit: 8/11/2027	Time:0726
Sample Collected: Ves No	
Date For Fourth Sampling Visit: 11/25/2022	Time: 0800
Sample Collected: ☐ Yes 🙀 No	
Sampling Personnel:	
Weather Conditions at Time of Sampling:	
Estimated Seep or Spring Flow Rate:	
Field Parameter Measurements: -pH	
-Temperature (°C)	
-Conductivity µMHOC/cm	
-Turbidity (NTU) (if measured)	
-Redox Potential Eh (mV) (if measured)	

Analytical Parameters/Sample Collection Method:

Parameter	Sample Taken		Filtered		Sampling Method				
VOCs				Direc		Direct Peristaltic Pump	Ladle	Other (describe in notes section)	
	🗆 Yes	🗆 No	🗆 Yes	🗆 No					
Metals	🗆 Yes	🗆 No	□ Yes	🗆 No					
Nutrients	□ Yes	🗆 No	🗆 Yes	🗆 No					
Other Non Radiologics	🗆 Yes	🗆 No	□ Yes	🗆 No					
Gross Alpha	🗆 Yes	🗆 No	🗆 Yes	🗆 No					


QC Samples Associated with this Location:


- □ Rinsate Blank
- Duplicate


Duplicate Sample Name:

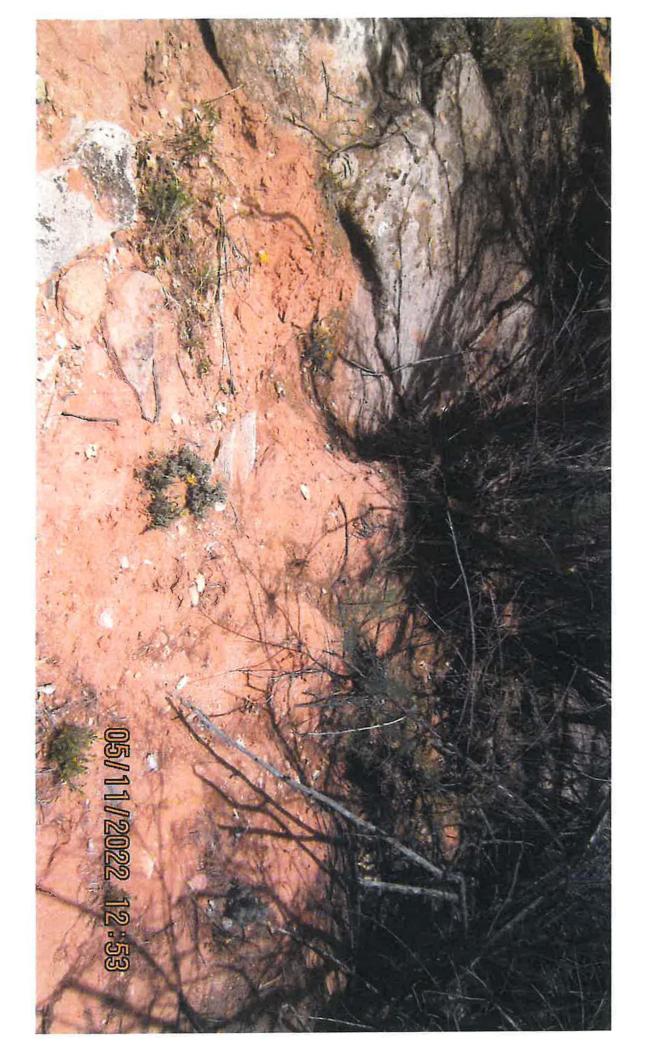
Notes: 3/28/2022 - spring was dry! 5/11/2022 - spring was dry! 8/11/2022 - Spring was dr 11/25/ 2022 Spring AS

111

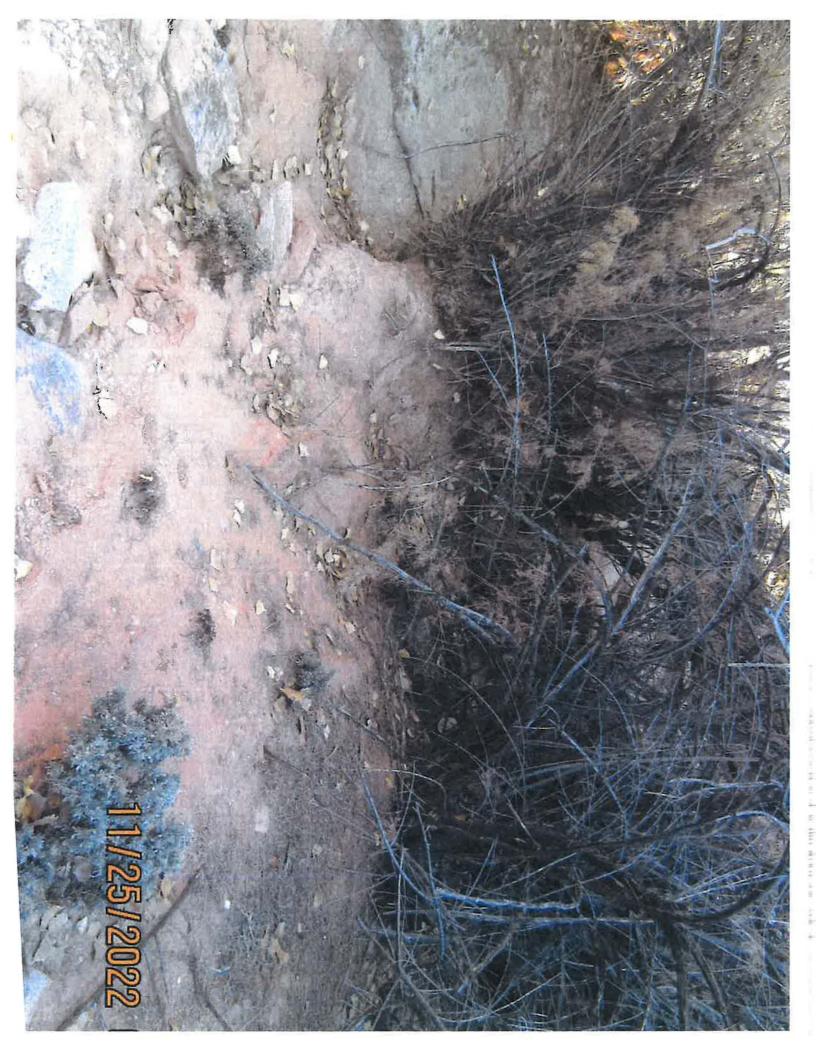
Seep or Spring Location: Corral Spring
Date For Initial Sampling Visit: 3/28/2022 Time: 0830
Sample Collected: Yes N No
Date For Second Sampling Visit: 5/11/2022 Time: 1253
Sample Collected: Yes 10 No
Date For Third Sampling Visit: 8/11/2022 Time: 0653
Sample Collected: Sample Yes No
Date For Fourth Sampling Visit: 11/25/2022 Time: 0830
Sample Collected: Yes 12 No
Sampling Personnel:
Weather Conditions at Time of Sampling:
Estimated Seep or Spring Flow Rate:
Field Parameter Measurements: -pH
-Temperature (°C)
-Conductivity µMHOC/cm
-Turbidity (NTU) (if measured)
-Redox Potential Eh (mV) (if measured)

Analytical Parameters/Sample Collection Method:

Parameter	Sample Taken		Filtered		Sampling Method				
VOCs					Direct	Peristaltic Pump	Ladle	Other (describe in notes section)	
	□ Yes	🗆 No	🗆 Yes	🗆 No					
Metals	🗆 Yes	🗆 No	🗆 Yes	🗆 No					
Nutrients	🗆 Yes	🗆 No	□ Yes	🗆 No					
Other Non Radiologics	🗆 Yes	🗆 No	🗆 Yes	🗆 No			D		
Gross Alpha	🗆 Yes	🗆 No	□ Yes	🗆 No					


QC Samples Associated with this Location:

- □ Rinsate Blank
- Duplicate


Duplicate Sample Name:

Notes: 3/28/2022 - Spring Wasdry 5/11/2022 - Spring wasdry 8/11/2022 - Spring wasdry. 11/25/2022 - Spring wasdry

Tab B

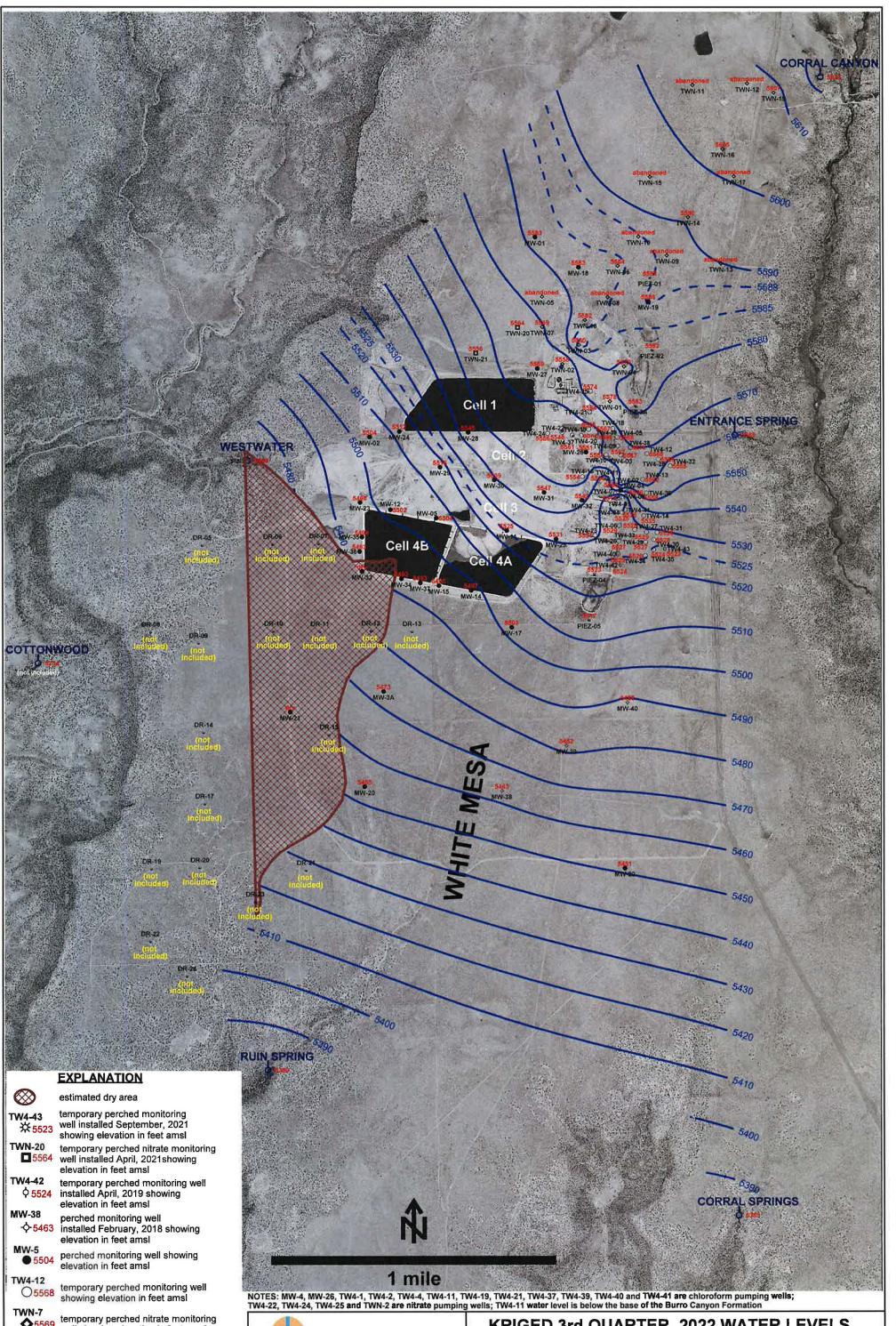
÷

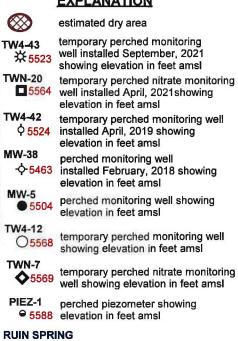
5

Field Parameter Measurement Data

			rieu parameters				
Location	Date Sampled	рН	Conductivity	Turbidity	Redox	Temperature	DO
Cottonwood Spring	5/10/2022	7.21	1737	0	314	14.90	40.5
Entrance Seep	5/10/2022	6.45	1351	2.1	363	11.41	68.3
Back Spring (Duplicate of Ruin Spring)	5/10/2022	7.41	1438	0	241	13.43	87.0
Ruin Spring	5/10/2022	7.41	1438	0	241	13.43	87.0
Westwater Seep	3/28/2022	7.09	1209	0.9	259	10.71	24.3

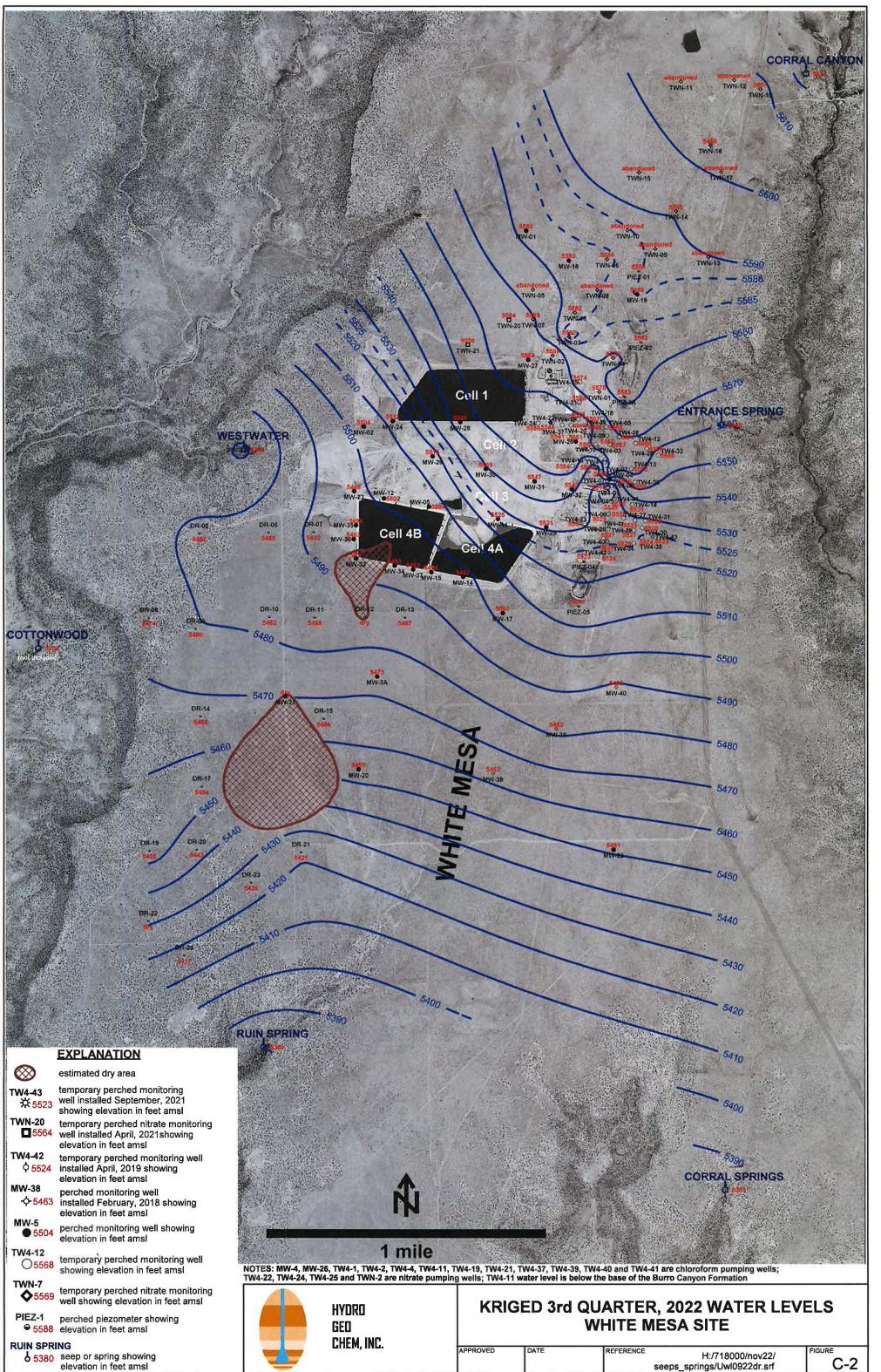
Field parameters


.


Tab C

Survey Data and Contour Map

	Mid-December	2009 Survey	
Location	Latitude (N)	Longitude (W)	Elevation
FROG POND	37°33'03.5358"	109°29'04.9552"	5589.56
CORRAL CANYON	37°33'07.1392"	109°29'12.3907"	5623.97
ENTRANCE SPRING	37°32'01.6487"	109°29'33.7005"	5559.71
CORRAL SPRINGS	37°29'37.9192"	109°29'35.8201"	5383.35
RUIN SPRING	37°30'06.0448"	109°31'23.4300"	5380.03
COTTONWOOD	37°31'21.7002"	109°32'14.7923"	5234.33
WESTWATER	37°31'58.5020"	109°31'25.7345"	5468.23
	Verification Surv	ey July 2010	
RUIN SPRING	37°30'06.0456"	109°31'23.4181"	5380.01
COTTONWOOD	37°31'21.6987"	109°32'14.7927"	5234.27
WESTWATER	37°31'58.5013"	109°31'25.7357"	5468.32


Seeps and Springs Survey Locations

5380 seep or spring showing elevation in feet amsl

KRIGED 3rd QUARTER, 2022 WATER LEVELS HYDRO (Dr-series piezometer water levels not included) GED WHITE MESA SITE CHEM, INC. APPROVED DATE REFERENCE FIGURE H:/718000/nov22/ C-1 seeps_springs/Uwl0922nodr.srf

elevation in feet amsl

Tab D

Analytical Laboratory Data

-20

25

*

Serving the Intermountain West Since 1953

9632 South 500 West Sandy, UT 84070 O:(801) 262-7299 F: (866) 792-0093 www.ChemtechFord.com

Lab ID: 22E1012-02

Certificate of Analysis

Energy Fuel	s Resources, Inc.	PO#:	
Tanner Holli	day	Receipt:	5/12/22 12:27 @ 2.1 °C
6425 South	Highway 191	Date Reported:	6/3/2022
Blanding, U	T 84511	Project Name:	Seeps and Springs 2022

Sample ID: Ruin Spring

Matrix: Water

Date Sampled: 5/10/22 8:55			5	Lad ID: Z	2E1012-02		
	Result	<u>Units</u>	Minimum Reporting <u>Limit</u>	Method	Preparation <u>Date/Time</u>	Analysis <u>Date/Time</u>	Flag(s)
Calculations							
Anions, Total	16.2	meq/L		SM 1030 E	5/31/22	5/31/22	
Cation/Anion Balance	-4.2	%		SM 1030 E	5/31/22	5/31/22	
Cations, Total	14.9	meq/L		5M 1030 E	5/31/22	5/31/22	
TDS Ratio	0.96	None		SM 2340 B	5/31/22	5/31/22	
Inorganic							
Alkalinity - Bicarbonate (as CaCO3)	185	mg/L	1.0	SM 2320 B	5/13/22	5/13/22	
Alkalinity - Carbonate (as CaCO3)	< 1.0	mg/L	1.0	SM 2320 B	5/13/22	5/13/22	
Ammonia as N	0.2	mg/L	0.2	SM 4500 NH3 H	5/19/22	5/19/22	
Chloride	28.4	mg/L	1.0	EPA 300.0	5/16/22	5/16/22	
Fluoride	0.5	mg/L	0.1	EPA 300.0	5/16/22	5/16/22	
Nitrate + Nitrite, Total, as N	1.2	mg/L	0.1	EPA 353.2	5/16/22	5/16/22	
Sulfate	595	mg/L	10.0	EPA 300.0	5/16/22	5/16/22	
Total Dissolved Solids (TDS)	992	mg/L	20	SM 2540 C	5/13/22	5/13/22	
TDS, Calculated	1030	mg/L	5	SM 2540 C	5/31/22	5/31/22	
Metals							
Arsenic, Dissolved	< 0.0005	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22	
Beryllium, Dissolved	< 0.0005	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22	
Cadmium, Dissolved	< 0.0002	mg/L	0.0002	EPA 200.8	5/20/22	5/20/22	
Calcium, Dissolved	141	mg/L	0.2	EPA 200.7	5/19/22	5/19/22	
Chromium, Dissolved	0.0042	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22	
Cobalt, Dissolved	< 0.0005	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22	
Copper, Dissolved	< 0.0010	mg/L	0.0010	EPA 200.8	5/20/22	5/20/22	
Iron, Dissolved	< 0.02	mg/L	0.02	EPA 200.7	5/19/22	5/19/22	
Lead, Dissolved	< 0.0005	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22	
Magnesium, Dissolved	32.9	mg/L	0.2	EPA 200.7	5/19/22	5/19/22	
Manganese, Dissolved	< 0.0005	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22	
Mercury, Dissolved	< 0.0002	mg/L	0.0002	EPA 245.1	5/16/22	5/17/22	
Molybdenum, Dissolved	0.0177	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22	
Nickel, Dissolved	0.0006	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22	
Potassium, Dissolved	3.2	mg/L	0.5	EPA 200.7	5/19/22	5/19/22	
Selenium, Dissolved	0.0117	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22	
Silver, Dissolved	< 0.0005	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22	
Sodium, Dissolved	117	mg/L	0.5	EPA 200.7	5/19/22	5/19/22	
Fhallium, Dissolved	< 0.0002	mg/L	0.0002	EPA 200.8	5/20/22	5/20/22	
fin, Dissolved	< 0.02	mg/L	0.02	EPA 200.7	5/19/22	5/19/22	
Vanadium, Dissolved	0.0013	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22	
Linc, Dissolved	< 0.01	mg/L	0.01	EPA 200.8	5/20/22	5/20/22	
		-					

Serving the Intermountain West Since 1953

Lab ID: 22E1012-02

Certificate of Analysis

PO#:
Receipt: 5/12/22 12:27 @ 2.1 °C
Date Reported: 6/3/2022
Project Name: Seeps and Springs 2022

Sample ID: Ruin Spring (cont.)

Matrix: Water

Date Sampled: 5/10/22 8:55			5	Sampled By: Tanner Ho	olliday		
	<u>Result</u>	<u>Units</u>	Minimum Reporting <u>Limit</u>	Method	Preparation <u>Date/Time</u>	Analysis Date/Time	Flag(s)
Metals (cont.)							
Uranium, Dissolved	0.0091	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22	
Volatile Organic Compounds							
Acetone	< 10.0	ug/L	10.0	EPA 8260D /5030A	5/19/22	5/19/22	
Benzene	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	
Carbon Tetrachloride	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	
Chloroform	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	
Chloromethane	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	J-LOW
Methyl Ethyl Ketone	< 10.0	ug/L	10.0	EPA 8260D /5030A	5/19/22	5/19/22	
Methylene Chloride	< 2.0	ug/L	2.0	EPA 8260D /5030A	5/19/22	5/19/22	
Naphthalene	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	
Tetrahydrofuran	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	A-01
Toluene	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	
Xylenes, total	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	

1911-1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

									Rep	ort Date:	June	e 14, 2	022
	Company : Address :	Energy Fue 6425 S. Hig	els Resources (U ghway 191	SA), Inc.									
	Contact: Project:	Mr. Garrin	Jtah 84511 Palmer forSeeps and Spi	rings 2022									
	Client Sample ID: Sample ID:	Ruin Spring 580063002					roject: lient ID):	DNM DNM	I00106 I001			
	Matrix: Collect Date:	Ground Wa 10-MAY-2	2 08:55										
	Receive Date: Collector:	16-MAY-2 Client	2										
Parameter	Quali	fier Resu	t Uncertainty	MDC	RL	Uņits	PF	DF	Analy	vst Date	Time]	Batch	Method
Rad Gas Fl	ow Proportional Cou	inting											
GFPC, Tota Gross Radium	al Alpha Radium, Li Alpha	quid "As Reo U 0.07		0.711	1.00	pCi/L			JXC9	05/24/22	1312 2	268525	1
The follow	ving Analytical Meth	ods were per	formed:										
Method 1	Descri EPA 90						Analys	t Co	nment	5			
Surrogate/7	Tracer Recovery	Test			Re	sult	Nomin	al	Reco	very%	Accepta	able Li	imits
Barium Carrie		FPC, Total Alp	ha Radium, Liquid "	As Received"						108	(25%	5-125%)	l

Notes:

Counting Uncertainty is calculated at the 68% confidence level (1-sigma).

SRL = Sample Reporting Limit. For metals analysis only. When the sample is U qualified and ND, the SRL column reports the value which is the greater of either the adjusted MDL or the CRDL.

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

MDC: Minimum Detectable Concentration

Lc/LC: Critical Level PF: Prep Factor RL: Reporting Limit SQL: Sample Quantitation Limit

Serving the Intermountain West Since 1953

9632 South 500 West Sandy, UT 84070 O:(801) 262-7299 F: (866) 792-0093 www.ChemtechFord.com

Certificate of Analysis

Energy Fuels Resources, Inc. Tanner Holliday 6425 South Highway 191 Blanding, UT 84511	day Receipt: 5/12/22 12:27 @ 2.1 °C Highway 191 Date Reported: 6/3/2022							
Sample ID: Cottonwood Spring						Leb ID: 2	2E1012-03	
Date Sampled: 5/10/22 9:45				Sampled By: Tanner He	olliday	Lad ID: 2	2E1012-03	
	<u>Result</u>	<u>Units</u>	Minimum Reporting <u>Limit</u>	Method	Preparation <u>Date/Time</u>	Analysis <u>Date/Time</u>	<u>Flag(s)</u>	
Calculations Anions, Total	19.4	meq/L		SM 1030 E	5/31/22	5/31/22		
Cation/Anion Balance	-7.3	%		SM 1030 E SM 1030 E	5/31/22	5/31/22		
Cations, Total	16.7	meq/L		SM 1030 E SM 1030 E	5/31/22	5/31/22		
TDS Ratio	0.96	None		SM 2340 B	5/31/22	5/31/22		
Inorganic	0.70							
Alkalinity - Bicarbonate (as CaCO3)	267	mg/L	1.0	SM 2320 B	5/13/22	5/13/22		
Alkalinity - Carbonate (as CaCO3)	< 1.0	mg/L	1.0	SM 2320 B	5/13/22	5/13/22		
Ammonia as N	< 0.2	mg/L	0.2	SM 4500 NH3 H	5/19/22	5/19/22		
Chloride	143	mg/L	1.0	EPA 300.0	5/16/22	5/16/22		
Fluoride	0.3	mg/L	0.1	EPA 300.0	5/16/22	5/16/22		
Nitrate + Nitrite, Total, as N	< 0.1	mg/L	0.1	EPA 353.2	5/16/22	5/16/22		
Sulfate	528	mg/L	10.0	EPA 300.0	5/16/22	5/16/22		
Total Dissolved Solids (TDS)	1130	mg/L	20	SM 2540 C	5/13/22	5/13/22		
TDS, Calculated	1180	mg/L	5	SM 2540 C	5/31/22	5/31/22		
Metals		2 . D 10.02			والمتعرفة والإستان			
Arsenic, Dissolved	0.0018	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22		
Beryllium, Dissolved	< 0.0005	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22		
Cadmium, Dissolved	< 0.0002	mg/L	0.0002	EPA 200.8	5/20/22	5/20/22		
Calcium, Dissolved	99.0	mg/L	0.2	EPA 200.7	5/19/22	5/19/22		
Chromium, Dissolved	0.0066	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22		
Cobalt, Dissolved	< 0.0005	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22		
Copper, Dissolved	< 0.0010	mg/L	0.0010	EPA 200.8	5/20/22	5/20/22		
Iron, Dissolved	< 0.02	mg/L	0.02	EPA 200.7	5/19/22	5/19/22		
Lead, Dissolved	< 0.0005	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22		
Magnesium, Dissolved	28.5	mg/L	0.2	EPA 200.7	5/19/22	5/19/22		
Manganese, Dissolved	0.0009	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22		
Mercury, Dissolved	< 0.0002	mg/L	0.0002	EPA 245.1	5/16/22	5/17/22		
Molybdenum, Dissolved	0.0014	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22		
Nickel, Dissolved	< 0.0005	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22		
Potassium, Dissolved	5.9	mg/L	0.5	EPA 200.7	5/19/22	5/19/22		
Selenium, Dissolved	0.0014	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22		
Silver, Dissolved	< 0.0005	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22		
Sodium, Dissolved	214	mg/L	0.5	EPA 200.7	5/19/22	5/19/22		
Thallium, Dissolved	< 0.0002	mg/L	0.0002	EPA 200.8	5/20/22	5/20/22		
Tin, Dissolved	< 0.02	mg/L	0.02	EPA 200.7	5/19/22	5/19/22		
Vanadium, Dissolved	0.0024	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22		
Zinc, Dissolved	< 0.01	mg/L	0.01	EPA 200.8	5/20/22	5/20/22		

Serving the Intermountain West Since 1953

9632 South 500 West Sandy, UT 84070 O:(801) 262-7299 F: (866) 792-0093 www.ChemtechFord.com

Lab ID: 22E1012-03

Certificate of Analysis

Energy Fuels Resources, Inc.PO#:Tanner HollidayReceipt: 5/12/22 12:27 @ 2.1 °C6425 South Highway 191Date Reported: 6/3/2022Blanding, UT 84511Project Name: Seeps and Springs 2022

Sample ID: Cottonwood Spring (cont.)

Matrix: Water Date Sampled: 5/10/22 9:45

	Result	Units	Minimum Reporting <u>Limit</u>	Method	Preparation <u>Date/Time</u>	Analysis <u>Date/Time</u>	<u>Flag(s)</u>
Metals (cont.)							
Uranium, Dissolved	0.0097	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22	
Volatile Organic Compounds							
Acetone	< 10.0	ug/L	10.0	EPA 8260D /5030A	5/19/22	5/19/22	
Benzene	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	
Carbon Tetrachloride	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	
Chloroform	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	
Chloromethane	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	J-LOW
Methyl Ethyl Ketone	< 10.0	ug/L	10.0	EPA 8260D /5030A	5/19/22	5/19/22	
Methylene Chloride	< 2.0	ug/L	2.0	EPA 8260D /5030A	5/19/22	5/19/22	
Naphthalene	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	
Tetrahydrofuran	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	A-01
Toluene	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	
Xylenes, total	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	

Sampled By: Tanner Holliday

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date

June 14, 2022

Notes:													
Barium Carrie	er C	GFPC, Total Alpha	Radium, Liquid "A	s Received"						106	(259	%-125%)	
Surrogate/7	Fracer Recovery	Test]	Result	Nomina	al	Recov	ery%	Accep	table L:	imits
1	EPA 90	3.0											
Method	Descri	ption					Analyst	Cor	nments				
The follow	ving Analytical Meth	ods were perfe	ormed:										
Gross Radium	n Alpha	U -0.0850	+/-0.212	0.890	1.00	pCi/L			JXC9	05/24/22	1312	2268525	1
	al Alpha Radium, Li		ived"										
Rad Gas Fl	low Proportional Cou	unting											
Parameter	Quali	fier Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
	Collector:	Client											
	Receive Date:	16-MAY-22											
	Collect Date:	10-MAY-22	09:45										
	Matrix:	Ground Wate	er										
	Sample ID:	580063003				C	lient ID	2	DNMI	001			
	Client Sample ID:	Cottonwood	Spring			Р	roject:		DNMI	00106			
	Contact: Project:	Mr. Garrin Pa Analytical fo	almer rSeeps and Spri	ings 2022									
		Blanding, Ut											
	Company : Address :	Energy Fuels 6425 S. High	Resources (US way 191	SA), Inc.									
									P				

Counting Uncertainty is calculated at the 68% confidence level (1-sigma).

SRL = Sample Reporting Limit. For metals analysis only. When the sample is U qualified and ND, the SRL column reports the value which is the greater of either the adjusted MDL or the CRDL.

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level **DL: Detection Limit** PF: Prep Factor MDA: Minimum Detectable Activity **RL:** Reporting Limit MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Serving the Intermountain West Since 1953

9632 South 500 West Sandy, UT 84070 O:(801) 262-7299 F: (866) 792-0093 www.ChemtechFord.com

Certificate of Analysis

Energy Fuels Resources, Inc. Tanner Holliday 6425 South Highway 191 Blanding, UT 84511		11:00 @ 2.6 °C 2 Springs 2022								
Sample ID: Westwater Spring Matrix: Water Date Sampled: 3/28/22 8:50	Lab ID: 22C2420									
	<u>Result</u>	<u>Units</u>	Minimum Reporting <u>Limit</u>	Method	Preparation <u>Date/Time</u>	Analysis <u>Date/Time</u>	Flag(s)			
Calculations										
Anions, Total	10.7	meq/L		SM 1030 E	4/15/22	4/15/22				
Cation/Anion Balance	4.4	%		SM 1030 E	4/15/22	4/15/22				
Cations, Total	11.7	meq/L		SM 1030 E	4/15/22	4/15/22				
TDS Ratio	0.970			SM 2340 B	4/7/22	4/18/22				
Inorganic										
Alkalinity - Bicarbonate (as CaCO3)	257	mg/L	1.0	SM 2320 B	4/1/22	4/1/22				
Alkalinity - Carbonate (as CaCO3)	< 1.0	mg/L	1.0	SM 2320 B	4/1/22	4/1/22				
Ammonia as N	< 0.2	mg/L	0.2	SM 4500 NH3 H	4/4/22	4/4/22				
Chloride	21.9	mg/L	5.0	EPA 300.0	4/5/22	4/5/22				
Fluoride	0.5	mg/L	0.1	EPA 300.0	4/5/22	4/5/22				
Nitrate + Nitrite, Total, as N	< 0.1	mg/L	0.1	EPA 353.2	4/11/22	4/11/22				
Sulfate	278	mg/L	5.0	EPA 300.0	4/5/22	4/5/22				
Total Dissolved Solids (TDS)	672	mg/L	20	SM 2540 C	4/1/22	4/1/22	J-LOW			
TDS, Calculated	693	mg/L	5	SM 2540 C	4/7/22	4/18/22				
Metals										
Arsenic, Dissolved	0.0018	mg/L	0.0005	EPA 200.8	4/8/22	4/8/22				
Beryllium, Dissolved	< 0.0005	mg/L	0.0005	EPA 200.8	4/8/22	4/8/22				
Cadmium, Dissolved	< 0.0002	mg/L	0.0002	EPA 200.8	4/8/22	4/8/22				
Calcium, Dissolved	104	mg/L	0.2	EPA 200.7	4/7/22	4/7/22				
Chromium, Dissolved	0.0014	mg/L	0.0005	EPA 200.8	4/8/22	4/8/22				
Cobalt, Dissolved	0.001	mg/L	0.0005	EPA 200.8	4/8/22	4/8/22				
Copper, Dissolved	< 0.0010	mg/L	0.0010	EPA 200.8	4/8/22	4/8/22				
Iron, Dissolved	0.92	mg/L	0.02	EPA 200.7	4/7/22	4/7/22				
Lead, Dissolved	< 0.0005	mg/L	0.0005	EPA 200.8	4/8/22	4/8/22				
Magnesium, Dissolved	26.4	mg/L	0.2	EPA 200.7	4/7/22	4/7/22				
Manganese, Dissolved	0.206	mg/L	0.0005	EPA 200.8	4/8/22	4/8/22				
Mercury, Dissolved	< 0.0002	mg/L	0.0002	EPA 245.1	4/14/22	4/15/22				
Aolybdenum, Dissolved	0.0014	mg/L	0.0005	EPA 200.8	4/8/22	4/8/22				
lickel, Dissolved	0.0017	mg/L	0.0005	EPA 200.8	4/8/22	4/8/22				
otassium, Dissolved	1.3	mg/L	0.5	EPA 200.7	4/7/22	4/7/22				
elenium, Dissolved	0.0014	mg/L	0.0005	EPA 200.8	4/8/22	4/8/22				
lver, Dissolved	< 0.0005	mg/L	0.0005	EPA 200.8	4/8/22	4/8/22				
odium, Dissolved	98.7	mg/L	0.5	EPA 200.7	4/7/22	4/7/22				
allium, Dissolved	< 0.0002	mg/L	0.0002	EPA 200.8	4/8/22	4/8/22				
n, Dissolved	< 0.02	mg/L	0.02	EPA 200.7	4/7/22	4/7/22				
nadium, Dissolved	0.0006	mg/L	0.0005	EPA 200.8	4/8/22	4/8/22				
ic, Dissolved	< 0.01	mg/L	0.01	EPA 200.8	4/8/22	4/8/22				

West of the

Serving the Intermountain West Since 1953

9632 South 500 West Sandy, UT 84070 O:(801) 262-7299 F: (866) 792-0093 www.ChemtechFord.com

Lab ID: 22C2426-01

Certificate of Analysis

Energy Fuels Resources, Inc.	PO#:
Tanner Holliday	Receipt: 3/31/22 11:00 @ 2.6 °C
6425 South Highway 191	Date Reported: 4/18/2022
Blanding, UT 84511	Project Name: Seeps & Springs 2022

Sample ID: Westwater Spring (cont.)

Matrix: Water

Date Sampled: 3/28/22 8:50		Sampled By: Tanner Holliday											
	<u>Result</u>	<u>Units</u>	Minimum Reporting <u>Limit</u>	Method	Preparation Date/Time	Analysis <u>Date/Time</u>	Flag(s)						
Metals (cont.)													
Uranium, Dissolved	0.0014	mg/L	0.0005	EPA 200.8	4/8/22	4/8/22							
Volatile Organic Compounds													
Acetone	< 10.0	ug/L	10.0	EPA 8260B/C /5030A	4/2/22	4/2/22							
Benzene	< 0.4	ug/L	0.4	EPA 8260B/C /5030A	4/2/22	4/2/22							
Carbon Tetrachloride	< 1.0	ug/L	1.0	EPA 8260B/C /5030A	4/2/22	4/2/22							
Chloroform	< 1.0	ug/L	1.0	EPA 8260B/C /5030A	4/2/22	4/2/22							
Chloromethane	< 1.0	ug/L	1.0	EPA 8260B/C /5030A	4/2/22	4/2/22							
Methyl Ethyl Ketone	< 10.0	ug/L	10.0	EPA 8260B/C /5030A	4/2/22	4/2/22							
Methylene Chloride	< 2.0	ug/L	2.0	EPA 8260B/C /5030A	4/2/22	4/2/22							
Naphthalene	< 1.0	ug/L	1.0	EPA 8260B/C /5030A	4/2/22	4/2/22							
Tetrahydrofuran	< 1.0	ug/L	1.0	EPA 8260B/C /5030A	4/2/22	4/2/22							
Toluene	< 1.0	ug/L	1.0	EPA 8260B/C /5030A	4/2/22	4/2/22							
Xylenes, total	< 1.0	ug/L	1.0	EPA 8260B/C /5030A	4/2/22	4/2/22							

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

3

	÷		cert	meate	of a kindle	<u>y 313</u>			Report Date:	April 29, 2	2022
	Company : Address :	Energy Fuels 225 Union Bo Suite 600	Resources (US oulevard	A), Inc.							
	~		olorado 80228								
	Contact: Project:	Ms. Kathy W White Mesa M									
	Client Sample ID:	Westwater Sp	oring			Pro	ject:		DNMI00100		
	Sample ID:	575649001				Cli	ent ID	:	DNMI001		
	Matrix:	Ground Wate	r								
	Collect Date:	28-MAR-22 (08:50								
	Receive Date:	06-APR-22									
	Collector:	Client									
Parameter	Quali	fier Result	Uncertainty	MDC	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Rad Gas Fl	ow Proportional Cou	inting						0.00			
GFPC, Tota	al Alpha Radium, Li	quid "As Recei	ved"								
Gross Radium	Alpha	U 1.00	+/-0.109	0.460	1.00	pCi/L			JXC9 04/19/22	1151 2252110	1

The following Analytical Methods were performed:

Method	Description		Analyst Co	omments	
1	EPA 903.0				
Surrogate/Tracer F	Recovery Test	Result	Nominal	Recovery%	Acceptable Limits
Barium Carrier	GFPC, Total Alpha Radium, Liquid "As Received"			99.9	(25%-125%)

Notes:

Counting Uncertainty is calculated at the 68% confidence level (1-sigma).

SRL = Sample Reporting Limit. For metals analysis only. When the sample is U qualified and ND, the SRL column reports the value which is the greater of either the adjusted MDL or the CRDL.

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

MDC: Minimum Detectable Concentration

Lc/LC: Critical Level PF: Prep Factor **RL: Reporting Limit** SQL: Sample Quantitation Limit

Chemtech-Ford Laboratories

Serving the Intermountain West Since 1953

9632 South 500 West Sandy, UT 84070 O:(801) 262-7299 F: (866) 792-0093 www.ChemtechFord.com

Certificate of Ar	a	lysis
-------------------	---	-------

				••••••••••••••••••••••••••••••••••••••							
Energy Fuels Resources, Inc. Tanner Holliday 6425 South Highway 191 Blanding, UT 84511	PO#: Receipt: 5/12/22 12:27 @ 2.1 °C Date Reported: 6/3/2022 Project Name: Seeps and Springs 2022										
Sample ID: Entrance Spring											
Matrix: Water						Lah ID: 2	2E1012-01				
Date Sampled: 5/10/22 8:20											
			Minimum	Sampled By: Tanner Ho							
			Reporting		Preparation	Analysis					
	Result	Units	Limit	Method	Date/Time	Date/Time	Flag(s)				
Calculations				And the second second							
Anions, Total	14.4	meq/L		SM 1030 E	5/31/22	5/31/22					
Cation/Anion Balance	-0.2	%		SM 1030 E	5/31/22	5/31/22					
Cations, Total	14.3	meq/L		SM 1030 E	5/31/22	5/31/22					
TDS Ratio	1.0	None		SM 2340 B	5/31/22	5/31/22					
Inorganic											
Alkalinity - Bicarbonate (as CaCO3)	308	mg/L	1.0	SM 2320 B	5/13/22	5/13/22					
Alkalinity - Carbonate (as CaCO3)	< 1.0	mg/L	1.0	SM 2320 B	5/13/22	5/13/22					
Ammonia as N	< 0.2	mg/L	0.2	SM 4500 NH3 H	5/19/22	5/19/22					
Chloride	91.8	mg/L	1.0	EPA 300.0	5/16/22	5/16/22					
Fluoride	0.8	mg/L	0.1	EPA 300.0	5/16/22	5/16/22					
Nitrate + Nitrite, Total, as N	0.2	mg/L	0.1	EPA 353.2	5/16/22	5/16/22					
Sulfate	323	mg/L	10.0	EPA 300.0	5/16/22	5/16/22					
Total Dissolved Solids (TDS)	904	mg/L	20	SM 2540 C	5/13/22	5/13/22					
TDS, Calculated	872	mg/L	5	SM 2540 C	5/31/22	5/31/22					
Metals											
Arsenic, Dissolved	0.0031	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22					
Beryllium, Dissolved	< 0.0005	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22					
Cadmium, Dissolved	< 0.0002	mg/L	0.0002	EPA 200.8	5/20/22	5/20/22					
Calcium, Dissolved	123	mg/L	0.2	EPA 200.7	5/19/22	5/19/22					
Chromium, Dissolved	0.0055	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22					
Cobalt, Dissolved	0.001	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22					
Copper, Dissolved	< 0.0010	mg/L	0.0010	EPA 200.8	5/20/22	5/20/22					
Iron, Dissolved	0.39	mg/L	0.02	EPA 200.7	5/19/22	5/19/22					
Lead, Dissolved	< 0.0005	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22					
Magnesium, Dissolved	44.8	mg/L	0.2	EPA 200.7	5/19/22	5/19/22					
Manganese, Dissolved	0.629	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22					
Mercury, Dissolved	< 0.0002	mg/L	0.0002	EPA 245.1	5/16/22	5/17/22					
Molybdenum, Dissolved	0.0018	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22					
Nickel, Dissolved	0.0010	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22					
Potassium, Dissolved	4.5	mg/L	0.5	EPA 200.7	5/19/22	5/19/22					
Selenium, Dissolved	0.0052	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22					
Silver, Dissolved	< 0.0005	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22					
Sodium, Dissolved	100	mg/L	0.5	EPA 200.7	5/19/22	5/19/22					
Thallium, Dissolved	< 0.0002	mg/L	0.0002	EPA 200.8	5/20/22	5/20/22					
Tin, Dissolved	< 0.02	mg/L	0.02	EPA 200.7	5/19/22	5/19/22					
Vanadium, Dissolved	0.0034	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22					
Zinc, Dissolved	< 0.01	mg/L	0.01	EPA 200.8	5/20/22	5/20/22					

Tetrahydrofuran

Xylenes, total

Toluene

Chemtech-Ford Laboratories

< 1.0

< 1.0

< 1.0

ug/L

ug/L

ug/L

1.0

1.0

1.0

EPA 8260D /5030A

EPA 8260D /5030A

EPA 8260D /5030A

Serving the Intermountain West Since 1953

9632 South 500 West Sandy, UT 84070 O:(801) 262-7299 F: (866) 792-0093 www.ChemtechFord.com

Certificate of Analysis

Energy Fuels Resources, Inc. Tanner Holliday 6425 South Highway 191	l2:27 @ 2.1 ℃						
Blanding, UT 84511				Project Name: Seeps ar	nd Springs 2022		
Sample ID: Entrance Spring (co	ont.)						AE1013 01
Matrix: Water				Sampled By: Tanner Ho		Lab ID: 4	22E1012-01
Date Sampled: 5/10/22 8:20							
	Result	Units	Minimum Reporting <u>Limit</u>	Method	Preparation Date/Time	Analysis Date/Time	Flag(s)
Metals (cont.)							
Uranium, Dissolved	0.0175	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22	
Volatile Organic Compounds							The second states
Acetone	< 10.0	ug/L	10.0	EPA 8260D /5030A	5/19/22	5/19/22	MS-Low
Benzene	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	
Carbon Tetrachloride	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	
Chloroform	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	MS-Low
Chloromethane	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	J-LOW
Methyl Ethyl Ketone	< 10.0	ug/L	10.0	EPA 8260D /5030A	5/19/22	5/19/22	
Methylene Chloride	< 2.0	ug/L	2.0	EPA 8260D /5030A	5/19/22	5/19/22	MS-Low
Naphthalene	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	MS-Low

5/19/22

5/19/22

5/19/22

5/19/22

5/19/22

5/19/22

A-01

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

				-				1010			Rep	ort Date:	Ju	ne 14, 20	022
	Company : Address :	-	gy Fuels S. Highy	Resource way 191	s (USA), Inc.									
			0.	uh 84511											
	Contact:		Garrin Pa												
	Project:	Analy	/tical for	Seeps and	d Spring	gs 2022									
	Client Sample ID:	Entra	nce Spri	ng				F	roject:		DNM	100106			
	Sample ID:	58006	53001					Client ID: DNMI001			I001				
	Matrix:	Grour	nd Water	г											
	Collect Date:	10-M	AY-22 (08:20											
	Receive Date:	16-M	AY-22												
	Collector:	Client	t												
-		<i>a</i>													
Parameter	Qualit		Result	Uncertain	nty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
	w Proportional Cou	•													
GFPC, Tota Gross Radium	l Alpha Radium, Li	quid "A	As Recei 0.534	ved" +/-0.2	775	0.873	1.00	pCi/L			IXCO	05/24/22	1217	2268525	1
	ing Analytical Meth	0			215	0.875	1.00	pent			JACJ	05/24/22	1512	2200525	
Method	Descri								Analys	t Cor	nment	\$			
1	EPA 90	1/1/2000													
Surrogate/Tr	racer Recovery	Test					R	lesult	Nomir	al	Reco	very%	Accep	ptable Li	mits
Barium Carrier	G	FPC, To	tal Alpha	Radium, Lic	uid "As	Received"						106	(25	5%-125%)	
Notes: Counting Ui	ncertainty is calcula	ted at t	he 68%	confidenc	e level	(1-sigma).						,			
the greater o	ole Reporting Limit of either the adjusted aders are defined as	1 MDL	or the C		y. When	the samp	le is U qua	alified and	d ND, tł	ie SR	L colu	mn repor	ts the	value wl	hich is
DF: Dilution		TOHOWS	5.	Lc/LC:	Critical	Level									
DL: Detecti				PF: Prep											
					2										

MDA: Minimum Detectable Activity MDC: Minimum Detectable Concentration PF: Prep Factor RL: Reporting Limit SQL: Sample Quantitation Limit

Serving the Intermountain West Since 1953

9632 South 500 West Sandy, UT 84070 O:(801) 262-7299 F: (866) 792-0093 www.ChemtechFord.com

Certificate of Analysis

Energy Fuels Resources, Inc. Tanner Holliday 6425 South Highway 191 Blanding, UT 84511								
Sample ID: Back Spring								
Matrix: Water Date Sampled: 5/10/22 8:55				Sampled By: Tanner Ho	olliday	Lab ID: 22E1012-04		
	<u>Result</u>	<u>Units</u>	Minimum Reporting <u>Limit</u>	Method	Preparation Date/Time	Analysis <u>Date/Time</u>	<u>Flag(s)</u>	
Calculations		- 1914 y						
Anions, Total	15.6	meq/L		SM 1030 E	5/31/22	5/31/22		
Cation/Anion Balance	-2.2	%		SM 1030 E	5/31/22	5/31/22		
Cations, Total	14.9	meq/L		SM 1030 E	5/31/22	5/31/22		
TDS Ratio	1.0	None		SM 2340 B	5/31/22	5/31/22		
Inorganic					ومنا المرجعاتهما			
Alkalinity - Bicarbonate (as CaCO3)	184	mg/L	1.0	SM 2320 B	5/13/22	5/13/22		
Alkalinity - Carbonate (as CaCO3)	< 1.0	mg/L	1.0	SM 2320 B	5/13/22	5/13/22		
Ammonia as N	< 0.2	mg/L	0.2	SM 4500 NH3 H	5/19/22	5/19/22		
Chloride	28.5	mg/L	10.0	EPA 300.0	5/12/22	5/12/22		
Fluoride	0.5	mg/L	0.1	EPA 300.0	5/16/22	5/16/22		
Nitrate + Nitrite, Total, as N	1.2	mg/L	0.1	EPA 353.2	5/16/22	5/16/22		
Sulfate	565	mg/L	10.0	EPA 300.0	5/16/22	5/16/22		
Total Dissolved Solids (TDS)	1030	mg/L	20	SM 2540 C	5/13/22	5/13/22		
TDS, Calculated	998	mg/L	5	SM 2540 C	5/31/22	5/31/22		
Metals								
Arsenic, Dissolved	< 0.0005	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22		
Beryllium, Dissolved	< 0.0005	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22		
Cadmium, Dissolved	< 0.0002	mg/L	0.0002	EPA 200.8	5/20/22	5/20/22		
Calcium, Dissolved	141	mg/L	0.2	EPA 200.7	5/19/22	5/19/22		
Chromium, Dissolved	0.0043	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22		
Cobalt, Dissolved	< 0.0005	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22		
Copper, Dissolved	< 0.0010	mg/L	0.0010	EPA 200.8	5/20/22	5/20/22		
Iron, Dissolved	< 0.02	mg/L	0.02	EPA 200.7	5/19/22	5/19/22		
Lead, Dissolved	< 0.0005	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22		
Magnesium, Dissolved	32.9	mg/L	0.2	EPA 200.7	5/19/22	5/19/22		
Manganese, Dissolved	< 0.0005	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22		
Mercury, Dissolved	< 0.0002	mg/L	0.0002	EPA 245.1	5/16/22	5/17/22		
Molybdenum, Dissolved	0.0177	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22		
Nickel, Dissolved	0.0005	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22		
Potassium, Dissolved	3.2	mg/L	0.5	EPA 200.7	5/19/22	5/19/22		
Selenium, Dissolved	0.0117	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22		
Silver, Dissolved	< 0.0005	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22		
Sodium, Dissolved	117	mg/L	0.5	EPA 200.7	5/19/22	5/19/22		
Thallium, Dissolved	< 0.0002	mg/L	0.0002	EPA 200.8	5/20/22	5/20/22		
Tin, Dissolved	< 0.02	mg/L	0.02	EPA 200.7	5/19/22	5/19/22		
Vanadium, Dissolved	0.0014	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22		
Zinc, Dissolved	< 0.01	mg/L	0.01	EPA 200.8	5/20/22	5/20/22		
			0.01	511120010	5. = 0. = 0			

Serving the Intermountain West Since 1953

Certificate of Analysis

Energy Fuels Resources, Inc. Tanner Holliday 6425 South Highway 191 Blanding, UT 84511	PO#: Receipt: 5/12/22 12:27 @ 2.1 °C Date Reported: 6/3/2022 Project Name: Seeps and Springs 2022								
Sample ID: Back Spring (cont.)									
Matrix: Water Date Sampled: 5/10/22 8:55				Sampled By: Tanner Ho	lliday	Lab ID:	22E1012-04		
	<u>Result</u>	Units	Minimum Reporting <u>Limit</u>	Method	Preparation Date/Time	Analysis <u>Date/Time</u>	<u>Flag(s)</u>		
Metals (cont.)	The Barriel								
Uranium, Dissolved	0.0090	mg/L	0.0005	EPA 200.8	5/20/22	5/20/22			
Volatile Organic Compounds				Contraction of the		State Barrier			
Acetone	< 10.0	ug/L	10.0	EPA 8260D /5030A	5/19/22	5/19/22			
Benzene	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22			
Carbon Tetrachloride	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22			
Chloroform	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22			
Chloromethane	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	J-LOW		
Methyl Ethyl Ketone	< 10.0	ug/L	10.0	EPA 8260D /5030A	5/19/22	5/19/22			
Methylene Chloride	< 2.0	ug/L	2.0	EPA 8260D /5030A	5/19/22	5/19/22			
Naphthalene	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22			
Tetrahydrofuran	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	A-01		
Toluene	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22			
Xylenes, total	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

										Rep	ort Date:	Ju	ne 14, 2	.022
	Company : Address :		rgy Fuels 5 S. High	Resources (US way 191	SA), Inc.									
	Contact:		nding, Uta Garrin Pa											
	Project:	Ana	lytical for	rSeeps and Spr	rings 2022									
	Client Sample ID: Sample ID:	580	k Spring 063004					Project: Client ID	:	DNM DNM	100106 1001			
	Matrix:		und Wate											
	Collect Date:		MAY-22 (08:55										
	Receive Date: Collector:	16-f Clie	MAY-22											
Parameter	Qualit	fier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	e Batch	Method
Rad Gas Fle	ow Proportional Cou	inting	E.										-	
	al Alpha Radium, Li	_	-	ved"										
Gross Radium	Alpha	Û	-0.00560	+/-0.198	0.876	1.00	pCi/l	<u>_</u>		JXC9	05/24/22	1312	2268525	1
The follow	ing Analytical Meth	ods v	vere perfo	rmed:										
Method	Descri							Analys	Cor	nments	5			
1	EPA 90.													
		Γest				F	Result	Nomin	al	Recov			otable L	
Barium Carrie	r G	FPC,	Fotal Alpha	Radium, Liquid "A	As Received"						106	(25	5%-125%)	
Notes: Counting U	ncertainty is calcula	ted at	the 68%	confidence lev	vel (1-sigma).									
	ple Reporting Limit.				hen the sampl	le is U qu	alified an	d ND, th	e SR	L colu	mn repoi	ts the	value w	hich is

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity MDC: Minimum Detectable Concentration Lc/LC: Critical Level PF: Prep Factor RL: Reporting Limit SQL: Sample Quantitation Limit

Chemtech-Ford Laboratories

Serving the Intermountain West Since 1953

9632 South 500 West Sandy, UT 84070 O:(801) 262-7299 F: (866) 792-0093 www.ChemtechFord.com

Lab ID: 22C2426-02

Certificate of Analysis

Energy Fuels Resources, Inc. Tanner Holliday 6425 South Highway 191 Blanding, UT 84511

PO#: Receipt: 3/31/22 11:00 @ 2.6 °C Date Reported: 4/18/2022 Project Name: Seeps & Springs 2022

Sample ID: Trip Blank

Matrix: Water Date Sampled: 3/28/22 8:50

=

Date Sampled: 3/28/22 8:50				Sampled By: Tanner Ho	lliday		
	Result	<u>Units</u>	Minimum Reporting <u>Limit</u>	Method	Preparation Date/Time	Analysis <u>Date/Time</u>	Flag(s)
Volatile Organic Compounds					and the second	and the second second	
Acetone	< 10.0	ug/L	10.0	EPA 8260B/C /5030A	4/2/22	4/2/22	
Benzene	< 0.4	ug/L	0.4	EPA 8260B/C /5030A	4/2/22	4/2/22	
Carbon Tetrachloride	< 1.0	ug/L	1.0	EPA 8260B/C /5030A	4/2/22	4/2/22	
Chloroform	< 1.0	ug/L	1.0	EPA 8260B/C /5030A	4/2/22	4/2/22	
Chloromethane	< 1.0	ug/L	1.0	EPA 8260B/C /5030A	4/2/22	4/2/22	
Methyl Ethyl Ketone	< 10.0	ug/L	10.0	EPA 8260B/C /5030A	4/2/22	4/2/22	
Methylene Chloride	< 2.0	ug/L	2.0	EPA 8260B/C /5030A	4/2/22	4/2/22	
Naphthalene	< 1.0	ug/L	1.0	EPA 8260B/C /5030A	4/2/22	4/2/22	
Tetrahydrofuran	< 1.0	ug/L	1.0	EPA 8260B/C /5030A	4/2/22	4/2/22	
Toluene	< 1.0	ug/L	1.0	EPA 8260B/C /5030A	4/2/22	4/2/22	
Xylenes, total	< 1.0	ug/L	1.0	EPA 8260B/C /5030A	4/2/22	4/2/22	

Chemtech-Ford Laboratories

Serving the Intermountain West Since 1953

9632 South 500 West Sandy, UT 84070 O:(801) 262-7299 F: (866) 792-0093 www.ChemtechFord.com

Certificate of Analysis

Energy Fuels Resources, Inc. Tanner Holliday 6425 South Highway 191 Blanding, UT 84511

Sample ID: Trip Blank

Matrix: Water Date Sampled: 5/11/22 8:20 PO#: Receipt: 5/12/22 12:27 @ 2.1 °C Date Reported: 6/3/2022 Project Name: Seeps and Springs 2022

Sampled By: Tanner Holliday

 $\mathsf{Lab}\;\mathsf{ID}:\;22E1012\text{--}05$

			Minimum Reporting		Preparation	Analysis	
	<u>Result</u>	<u>Units</u>	Limit	Method	Date/Time	Date/Time	Flag(s)
Volatile Organic Compounds							
Acetone	< 10.0	ug/L	10.0	EPA 8260D /5030A	5/19/22	5/19/22	
Benzene	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	
Carbon Tetrachloride	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	
Chloroform	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	
Chloromethane	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	J-LOW
Methyl Ethyl Ketone	< 10.0	ug/L	10.0	EPA 8260D /5030A	5/19/22	5/19/22	
Methylene Chloride	< 2.0	ug/L	2.0	EPA 8260D /5030A	5/19/22	5/19/22	
Naphthalene	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	
Tetrahydrofuran	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	A-01
Toluene	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	
Xylenes, total	< 1.0	ug/L	1.0	EPA 8260D /5030A	5/19/22	5/19/22	

4/18/2022

Work Order: 22C2426 Project: Seeps & Springs 2022

Energy Fuels Resources, Inc. Attn: Tanner Holliday 6425 South Highway 191 Blanding, UT 84511

Client Service Contact: 801.262.7299

The analyses presented on this report were performed in accordance with the National Environmental Laboratory Accreditation Program (NELAP) unless noted in the comments, flags, or case narrative. If the report is to be used for regulatory compliance, it should be presented in its entirety, and not be altered.

Approved By:

TEAR

Patrick Noteboom, Project Manager

9632 South 500 West

801.262.7299 Main

866.792.0093 Fax

Energy Fuels Resources, Inc.

Project: Seeps & Springs 2022 Project Manager: Tanner Holliday

Laboratory IDSample Name22C2426-01Westwater Spring22C2426-02Trip Blank

Work Order Report Narrative

Sample Preparation

All samples were prepared within method specified holding times. No preparation issues were noted.

Method Blanks

All blank values were within method acceptance criteria. No blank values exceeded the minimum reporting limit for any analysis in this work order.

Laboratory Control Samples

All laboratory control samples were within method acceptance criteria.

Method Spikes

All method spike recoveries were within method acceptance criteria, except as noted by qualifying flags.

Method Spike Duplicates

All method spike duplicates were within method acceptance criteria, except as noted by qualifying flags.

Corrective Actions

There are no corrective actions associated with this work order.

Chemtech-Ford Laboratories

Serving the Intermountain West Since 1953

Certificate of Analysis

Energy Fuels Resources, Inc. Tanner Holliday 6425 South Highway 191 Blanding, UT 84511 PO#: Receipt: **3/31/22 11:00 @ 2.6** °C Date Reported: 4/18/2022 Project Name: **Seeps & Springs 2022**

Report Footnotes

Abbreviations

ND = Not detected at the corresponding Minimum Reporting Limit (MRL).

1 mg/L = one milligram per liter or 1 mg/kg = one milligram per kilogram = 1 part per million.

1 ug/L = one microgram per liter or 1 ug/kg = one microgram per kilogram = 1 part per billion.

l ng/L = one nanogram per liter or l ng/kg = one nanogram per kilogram = l part per trillion.

Flag Descriptions

J-LOW = Estimated low due to low recovery of LCS or CCV

Λ	American We Analytical Labora 463 W. 3600 S. Selt Leke City, Phone # (801) 263-8686 Toll Free #	atories		All a					ing NEL	AP acc	redited	method	is and a	II data v	vill be r	PDY aported using AWAL's standard analyte lists and Custody and/or attached documentation.	22 <u>C</u> 2 <u>4</u> 2 AWAL Lab Sample Set # Page 1 of 1
A	Fax # (801) 263-8687 Email aw www.awal-labs.co	•		Γ		QC	Level 3	1:			Turr	n Aro Stan	und T Idard	lme:		Unless other arrangements have been made, signed reports will be emailed by 5:00 pm on the day they are due.	Due Date:
Address: Contact: Phone #: Email: Project Name: PO #: Sampler Name: 2.2.C.	Energy Fuels Resources, Inc. 6425 S. Hwy. 191 Blanding, UT 84511 Tanner Holliday (435) 678-2221 Cell #: tholliday@energyfuels.com; kweinel@energyfue Seeps and Springs 2022 Tanner Holliday 2_4 2 @ Sample ID:	Date Sampled	Time Sampled	t # of Containers	Sample Matrix	NO2/NO3 (353.2)	NH3. (4500G or 350.1)	F1, C1, 804 (4500 or 300.0)	TDS (2540C)	Carb/Bicarb (2320B)	Dissolved Metals (200.7/200.8/245.1)	As, Be, Cd, Cr, Co, Cu, Fe, Pb, Mn, Hg, Mo	Ni, Se, Ag, Tl, Sn, U, V, Zn, Na, K, Mg, Ca	Ion Balance	VOCs (8260C) ~	X Include EDD: LOCUS UPLOAD EXCEL X Field Filtered For: Dissolved Metals For Compliance With: NELAP RCRA CWA SDWA ELAP / A2LA NULAP Non-Compliance Other: Known Hazards & Sample Comments	Laboratory Use Only Samples Were: UPS 1 Shipped or hand delivered 2 Ambien or Chilled 3 Temperature 2 b c 4 Received Broken/Leaking (Improperly Sealed) Y N 5 Properly Preserved Y N 6 Received Within Holding Times Y N
Westwater Spring		3/28/2022	850 850	3	w	x	×	x	x	x	x	x	x	x	x		
3		0/20/2022		ľ													COC Tape Was: 1 Present on Outer Package Y N NA
5				┝	\vdash	-		-	-		_						2 Unbroken on Outer Package Y N NA
6 7 8																	3 Present on Sample Y N NA 4 Unbroken on Sample Y N NA
9 10 11 12							1										Discrepancies Between Sample Labels and COC Record? Y N
Relinquished by:	en Gyman -	Date: 3/30/2022	Received by: Signature	n,	2.5	in	QU	Br	110	5	-	Date:	31	2	2	Special Instructions:	
Print Name: Relinquished by: Signature Print Name:	Deen Lyman	lime:	Print Name: Received by: Signature Print Name:	Se	* r	US US	× I	31	au	M		Time Date: Time:	111	loc		Sample containers for metals w Analytical Scope of Work for Re list.	vere field filtered. See the eporting Limits and VOC analyte
Relinquished by: Signature		Date	Received by: Signature									Date:					
Print Name: Relinquished by: Signature		fime: Date: fime:	Print Name: Received by: Signature			_	1					Time: Date: Time:				UPS-12 187	Y4Y 03 9288 2978
Print Name:		ning.	Print Name:				_					fund:			_		Page 7 of 21

Work Or	der #	2242	4	2	(1			CHEMTECH FORD LABORATORIES Sample Receipt	A start
Delivery Ma	ethod: USPS Chemtech Co Customer Co		samples	Preserved by Client/Third Party	Preserved in Receiving/Laboratory	d by Client		Receiving Temperature <u>2.6</u> °C	CHEMTECH-FORD LABORATORIES Sample Condition (check if yes)
Sample #	Container	Chemtech Lot # or Preservative	Number of Subsamples	Preserved by (Preserved in R	Filtered In Field by Client	Misc Volume (oz/mL)	Comments	Containers Intact
-02	$ \begin{array}{c} Ap\\ M\\ Ah\\ N\\ W(3)\\ W(3)\\ \end{array} $							client containers	Received on Ice Correct Containers(s) Sufficent Sample Volume Headspace Present (VOC) Temperature Blank Received within Holding Time Plastic Containers A. Plastic Unpreserved B. Miscellaneous Plastic C. Cyande Qt (VaOH) E. Coliforn/Ecoli/HPC F. Sulfide Qt (Zn Acetate) L. Mercury I631 M. Nutrient Plnt (HI2S04) R. Radiological (HNO3) S. Sludge Cups/Tubs Q. Plastic Bag
									Glass Containers D- 625 (Na2S203) G- Glass Unpreserved H- HAAG (NH4CI) J- 508/515/525 (Na2S03) K- 515.3 Herbicides O- 01 & Grease (HCI) P. Phenols (H2SO4) T- TOC/TOX (H3P04) U- 531 (MCAA, Na2S203) V- 524/THMs (Ascorbic Acid) W- 8260 VOC (1.1 HCI) X. Vial Unpreserved V- 624/S04 (Na2S203) Z. Miscellaneous Glass

	QC	Report for	Work Ord	er (WO) -	22C2426	i			
Analyte	% Rec	RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
		B	lank - EPA	200.7					
QC Sample ID: BWD0248-BLK1	Batch:	BWD0248							
Date Prepared: 04/07/2022	Date A	nalyzed: 04/	/07/2022						
Calcium, Dissolved					ND			0.2	1.00
Iron, Dissolved					ND			0.02	1.00
Magnesium, Dissolved					ND			0.2	1.00
Potassium, Dissolved					ND			0.5	1.00
Sodium, Dissolved					ND			0.5	1.00
Tin, Dissolved					ND			0.02	1.00
		L	CS - EPA	200.7					
QC Sample ID: BWD0248-BS1	Batch:	BWD0248							
Date Prepared: 04/07/2022	Date A	nalyzed: 04/	/07/2022						
Calcium, Dissolved	96.2	•	85 - 115		9.8		10.2	0.2	1.00
Iron, Dissolved	106		85 - 115		0.212		0.200	0.02	1.00
Magnesium, Dissolved	101		85 - 115		10.3		10.2	0.2	1.00
Potassium, Dissolved	103		85 - 115		10.3		10.0	0.5	1.00
Sodium, Dissolved	99.7		85 - 115		10.0		10.0	0.5	1.00
Tin, Dissolved	93.6		85 - 155		0.19		0.200	0.02	1.00
		Matri	x Spike - E	PA 200.7					
QC Sample ID: BWD0248-MS1	Batch:	BWD0248	QC S	ource Samp	le: XXXX	XXX-XX			
Date Prepared: 04/07/2022	Date A	nalyzed: 04/	-						
Calcium, Dissolved	94.8		70 - 130		58.7	49.1	10.2	0.2	1.00
Iron, Dissolved	109		70 - 130		0.218	ND	0.200	0.02	1.00
Magnesium, Dissolved	102		70 - 130		24.4	14.0	10.2	0.2	1.00
Potassium, Dissolved	105		70 - 130		12.2	1.7	10.0	0.5	1.00
Sodium, Dissolved	99.2		70 - 130		23.9	14.0	10.0	0.5	1.00
Tin, Dissolved	93.6		70 - 130		0.19	0.003	0.200	0.02	1.00
QC Sample ID: BWD0248-MS2	Batch:	BWD0248	QC S	ource Samp	le: 22C242	6-01			
Date Prepared: 04/07/2022	Date A	nalyzed: 04/		1					
Calcium, Dissolved	87.1		70 - 130		113	104	10.2	0.2	1.00
Iron, Dissolved	105		70 - 130		1.13	0.918	0.200	0.02	1.00
Magnesium, Dissolved	102		70 - 130		36.7	26.4	10.2	0.2	1.00
Potassium, Dissolved	106		70 - 130		11.8	1.3	10.0	0.5	1.00
Sodium, Dissolved	86.2		70 - 130		107	98.7	10.0	0.5	1.00
Tin, Dissolved	97.2		70 - 130		0.20	0.003	0.200	0.02	1.00
		Matrix S	Spike Dup	- EPA 200	.7				
QC Sample ID: BWD0248-MSD1	Batch:	BWD0248	QC S	ource Samp	le: XXXXX	XXX-XX			
Date Prepared: 04/07/2022		nalyzed: 04/	-						
Calcium, Dissolved	95.6	0.135	70 - 130	20	58.8	49.1	10.2	0.2	1.00
Iron, Dissolved	108	1.24	70 - 130	20	0.216	ND	0.200	0.02	1.00
Magnesium, Dissolved	102	0.0176	70 - 130	20	24.4	14.0	10.2	0.2	1.00
Potassium, Dissolved	105	0.172	70 - 130	20	12.2	1.7	10.0	0.5	1.00
Sodium, Dissolved	99.2	0.00377	70 - 130	20	23.9	14.0	10.0	0.5	1.00
Tin, Dissolved	97.0	3.42	70 - 130	20	0.20	0.003	0.200	0.02	1.00
QC Sample ID: BWD0248-MSD2	Batch:	BWD0248	OC S	ource Samp	le: 22C242	6-01			
Date Prepared: 04/07/2022		nalyzed: 04/	-	p					
Calcium, Dissolved	81.6	0.495	70 - 130	20	113	104	10.2	0.2	1.00
Iron, Dissolved	103	0.320	70 - 130	20	1.12	0.918	0.200	0.2	1.00
Magnesium, Dissolved	99.7	0.522	70 - 130	20	36.5	26.4	10.2	0.2	1.00
Potassium, Dissolved	106	0.00591	70 - 130	20	11.8	1.3	10.0	0.5	1.00
Sodium, Dissolved	83.9	0.221	70 - 130	20	107	98.7	10.0	0.5	1.00

CtF WO#: 22C2426

www.ChemtechFord.com

	QC R	eport for	r Work Orde	er (WO) - 2	22C2426				
Analyte	% Rec	RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
	Ма	atrix Spil	ke Dup - EP	A 200.7 (c	ont.)				
QC Sample ID: BWD0248-MSD2	Batch: H	3WD0248	QC So	ource Sampl	e: 22C242	6-01			
Date Prepared: 04/07/2022	Date An	alyzed: 04	/07/2022						
Tin, Dissolved	98.8	1.71	70 - 130	20	0.20	0.003	0.200	0.02	1.00

		ort for Work Order (W	-	•			55
Analyte	% Rec	RPD Limits RPD Blank - EPA 200.8	Max Result	Source Conc	Spk Value	MRL	DF
QC Sample ID: BWD0313-BLK1	Batch: BW		,				
Date Prepared: 04/08/2022		zed: 04/08/2022					
	Date Analy.	zcu. 04/00/2022	ND			0.0005	1.00
Arsenic, Dissolved			ND			0.0005	1.00 1.00
Beryllium, Dissolved Cadmium, Dissolved			ND			0.0003	1.00
Chromium, Dissolved			ND			0.0002	1.00
Cobalt, Dissolved			ND			0.0005	1.00
Copper, Dissolved			ND			0.0000	1.00
Lead, Dissolved			ND			0.0005	1.00
Manganese, Dissolved			ND			0.0005	1.00
Maliganese, Dissolved Molybdenum, Dissolved			ND			0.0005	1.00
Nickel, Dissolved			ND			0.0005	1.00
Selenium, Dissolved			ND			0.0005	1.00
Silver, Dissolved			ND			0.0005	1.00
Thallium, Dissolved			ND			0.0002	1.00
Uranium, Dissolved			ND			0.0002	1.00
Vanadium, Dissolved			ND			0.0005	1.00
Zinc, Dissolved			ND			0.000	1.00
		LCS - EPA 200.8				0.01	1.00
QC Sample ID: BWD0313-BS1	Batch: BW						
Date Prepared: 04/08/2022		zed: 04/08/2022					
	99.6	85 - 115	0.040		0.0400	0.0005	1.00
Arsenic, Dissolved		85 - 115	0.040		0.0400	0.0005	
Beryllium, Dissolved	96.4 99.1	85 - 115				0.0005	1.00
Cadmium, Dissolved		85 - 115	0.040		0.0400	0.0002	1.00
Chromium, Dissolved Cobalt, Dissolved	98.8 99.4	85 - 115	0.040 0.040		0.0400 0.0400	0.0005	1.00 1.00
	99.4 96.1	85 - 115	0.040		0.0400	0.0005	1.00
Copper, Dissolved Lead, Dissolved	105	85 - 115	0.038		0.0400	0.0005	1.00
Manganese, Dissolved	100	85 - 115	0.042		0.0400	0.0005	1.00
Maligariese, Dissolved Molybdenum, Dissolved	99.7	85 - 115	0.040		0.0400	0.0005	1.00
Nickel, Dissolved	94.0	85 - 115	0.0376		0.0400	0.0005	1.00
Selenium, Dissolved	99.9	85 - 115	0.040		0.0400	0.0005	1.00
Silver, Dissolved	99.7	85 - 115	0.040		0.0400	0.0005	1.00
Thallium, Dissolved	105	85 - 115	0.042		0.0400	0.0002	1.00
Uranium, Dissolved	107	85 - 115	0.043		0.0400	0.0002	1.00
Vanadium, Dissolved	98.0	85 - 115	0.039		0.0400	0.0005	1.00
Zinc, Dissolved	96.7	85 - 115	0.04		0.0400	0.01	1.00
	30.7	Matrix Spike - EPA 20			0.0400	0.01	1.00
QC Sample ID: BWD0313-MS1	Batch: BWI		Sample: 22C2426	-01			
Date Prepared: 04/08/2022		zed: 04/08/2022					
Arsenic, Dissolved	103		0.042	0.000	0.0400	0.0005	1.00
Arsenic, Dissolved Beryllium, Dissolved	98.6	70 - 130 70 - 130	0.043 0.039	0.002 ND	0.0400 0.0400	0.0005	1.00 1.00
Cadmium, Dissolved	98.8 98.7	70 - 130 70 - 130	0.039	ND	0.0400	0.0003	1.00
Chromium, Dissolved	95.0	70 - 130	0.039	0.001	0.0400	0.0002	
Cobalt, Dissolved	95.0 94.5	70 - 130	0.039	0.001	0.0400	0.0005	1.00 1.00
Copper, Dissolved	94.5 88.5	70 - 130	0.039	0.0006	0.0400	0.0003	1.00
Lead, Dissolved	101	70 - 130	0.030	0.0000 ND	0.0400	0.0005	1.00
Manganese, Dissolved	89.0	70 - 130	0.040	0.206	0.0400	0.0005	1.00
Malganese, Dissolved Molybdenum, Dissolved	104	70 - 130	0.242	0.200	0.0400	0.0005	1.00
Nickel, Dissolved	88.3	75 - 125	0.043	0.0017	0.0400	0.0005	1.00
Selenium, Dissolved	106	70 - 130	0.044	0.0017	0.0400	0.0005	1.00
Silver, Dissolved	94.9	70 - 130	0.044	ND	0.0400	0.0005	1.00
	34.3	70-150	0.000		0.0400	0.0000	1.00

CtF WO#: 22C2426

www.ChemtechFord.com

QC Report for Work Order (WO) - 22C2426

de report							
% Rec RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
Matrix	Spike - EPA	200.8 (con	t.)				
Batch: BWD03	13 QC S	ource Sample	: 22C242	6-01			
Date Analyzed:	04/08/2022						
103	70 - 130		0.041	ND	0.0400	0.0002	1.00
107	70 - 130		0.044	0.001	0.0400	0.0005	1.00
97.9	70 - 130		0.040	0.0006	0.0400	0.0005	1.00
99.6	70 - 130		0.04	ND	0.0400	0.01	1.00
	% Rec RPD Matrix Batch: BWD03 Date Analyzed: 103 107 97.9	% Rec RPD Limits Matrix Spike - EPA Batch: BWD0313 QC S Date Analyzed: 04/08/2022 103 103 70 - 130 107 70 - 130 97.9 70 - 130	% Rec RPD Limits RPD Max Matrix Spike - EPA 200.8 (con Batch: BWD0313 QC Source Sample Date Analyzed: 04/08/2022 103 70 - 130 107 70 - 130 97.9 70 - 130	% Rec RPD Limits RPD Max Result Matrix Spike - EPA 200.8 (cont.) Matrix Spike - EPA 200.8 (cont.) Eastername Result Eastername Eastername <th< td=""><td>Matrix Spike - EPA 200.8 (cont.) Batch: BWD0313 QC Source Sample: 22C2426-01 Date Analyzed: 04/08/2022 103 70 - 130 0.041 ND 107 70 - 130 0.044 0.001 97.9 70 - 130 0.040 0.0006</td><td>% Rec RPD Limits RPD Max Result Source Conc Spk Value Matrix Spike - EPA 200.8 (cont.) </td><td>% Rec RPD Limits RPD Max Result Source Conc Spk Value MRL Matrix Spike - EPA 200.8 (cont.) Matrix Spike - EPA 200.8 (cont.) Matrix Matrix Spike - EPA 200.8 (cont.) Max <t< td=""></t<></td></th<>	Matrix Spike - EPA 200.8 (cont.) Batch: BWD0313 QC Source Sample: 22C2426-01 Date Analyzed: 04/08/2022 103 70 - 130 0.041 ND 107 70 - 130 0.044 0.001 97.9 70 - 130 0.040 0.0006	% Rec RPD Limits RPD Max Result Source Conc Spk Value Matrix Spike - EPA 200.8 (cont.)	% Rec RPD Limits RPD Max Result Source Conc Spk Value MRL Matrix Spike - EPA 200.8 (cont.) Matrix Spike - EPA 200.8 (cont.) Matrix Matrix Spike - EPA 200.8 (cont.) Max Max <t< td=""></t<>

	QC R	eport for	Work Ord	er (WO) -	22C2426				
Analyte	% Rec	RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
		BI	ank - EPA	245.1					
QC Sample ID: BWD0573-BLK1	Batch: I	BWD0573							
Date Prepared: 04/14/2022	Date Ar	nalyzed: 04/	15/2022						
Mercury, Dissolved					ND			0.0002	1.00
		L	CS - EPA 2	245.1					
QC Sample ID: BWD0573-BS1	Batch: I	BWD0573							
Date Prepared: 04/14/2022	Date Ar	nalyzed: 04/	15/2022						
Mercury, Dissolved	96.3		85 - 115		0.0048		0.00500	0.0002	1.00
		Matri	x Spike - E	PA 245.1					
QC Sample ID: BWD0573-MS1	Batch: I	BWD0573	QC S	ource Samp	le: 22C242	6-01			
Date Prepared: 04/14/2022	Date Ar	nalyzed: 04/	15/2022						
Mercury, Dissolved	104		75 - 125		0.0052	ND	0.00500	0.0002	1.00
		Matrix S	Spike Dup	- EPA 245	5.1				
QC Sample ID: BWD0573-MSD1	Batch: I	BWD0573	QC S	ource Samp	le: 22C242	6-01			
Date Prepared: 04/14/2022	Date Ar	nalyzed: 04/	15/2022						
Mercury, Dissolved	99.4	4.88	75 - 125	20	0.0050	ND	0.00500	0.0002	1.00

 (\mathbf{r})

Analyse % Rec RPD Limit RPD Max Result Source Conc Spk Value MRL DF Blank - EPA 300.0 Blank - EPA 300.0 Image: Concent of Concen			Report for	r Work Orde	er (WO) -	22C2426	i			
QC Sample ID: BWD0139-BLK1 Batch: BWD0139 Date Prepared: 04/05/2022 Date Analyzed: 04/05/2022 Chioride ND 1.0 Fluoride ND 1.0 Sulfate ND 1.0 CS sample ID: BWD0139-BS1 Batch: BWD0139 Date Analyzed: 04/05/2022 Date Analyzed: 04/05/2022 Chioride 98.2 90 - 110 4.6 5.00 1.0 1.00 Sulfate 95.6 90 - 110 4.6 5.00 1.0 1.00 Sulfate 95.6 90 - 110 4.7 80.0 1.00 1.00 Sulfate 95.6 90 - 110 4.7 80.0 1.00 1.00 QC Sample ID: BWD0139-MS1 Batch: BWD0139 QC Source Sample: 22C4/26-01 Date Analyzed: 04/05/2022 Date Analyzed: 04/05/2022 Date Analyzed: 04/05/2022 Chioride 9.2 80 - 120 7.6 0.5 5.00 0.5 1.00 QL Sample ID: BWD0139-MS2 Batch: BWD0139 QC Source Sample: XXXXXXX-XX Date Analyzed: 04/05/2022 Date Analyzed: 04/05/2022	Analyte	% Rec	RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
Date Prepared: 04/05/2022 Date Analyzed: 04/05/2022 Chloride ND 1.0 1.00 Fluoride ND 1.0 1.00 Sulfate ND 1.0 1.00 QC Sample ID: BWD0139-BS1 Batch: BWD0139 Date Analyzed: 04/05/2022 Chioride 98.2 90 - 110 4.6 50.0 1.0 1.00 Fluoride 91.3 90 - 110 4.6 50.0 1.0 1.00 Sulfate 95.6 90 - 110 4.7.8 50.0 1.0 1.00 Date Prepared: 04/05/2022 Date Analyzed: 04/05/2022 Cosuree Sample: 22C3426-01 Date Analyzed: 04/05/2022 Cosure Analyzed: 04/05/2022 Cosure Analyzed: 04/05/2022 Cosure Analyzed: 04/05/2022 Chioride 99.2 80 - 120 7.5 2.1.9 5.0 0.5 5.0 0.5 1.00 GM-RPD - The recovery was outside acceptance limits for the MS and/or MSD. The RPD between the MS and MSD was acceptable and indicates the recovery is due to matrix interference. The batch was accepted based on the acceptable recovery of the LCS and the RPD. Sulfate 88.3 80 - 120 30			В	lank - EPA 3	300.0					
Chloride ND 1.0 1.0 1.00 Fluoride ND 0.1 1.00 Sulfate ND 1.0 1.00 QC Sample ID: BWD0139-BS1 Batch: BWD0139 ECS - EPA 300.0 QC Sample ID: BWD0139-BS1 Batch: BWD0139 0.0 1.00 1.00 Chloride 98.2 90 - 110 49.1 50.0 1.0 1.00 Fluoride 91.3 90 - 110 4.6 5.00 0.1 1.00 Sulfate 95.6 90 - 110 4.7.8 50.0 1.0 1.00 QC Sample ID: BWD0139-MS1 Batch: BWD0139 QC Source Sample: 22C2426-01 Date Prepared: 04/05/2022 Date Analyzed: 04/05/2022 Chloride 99.2 80 - 120 7.6 0.5 5.00 0.5 1.00 GM-RPD - The recovery usa outaide acceptance limits for the MS and/or MSD. The RPD between the MS and MSD was acceptable and indicates the recovery is due to matrix interforence. The batch was acceptade based on the acceptable recovery or the LCS and the RPD. Sulfate 86.3 80 - 120 30500 11	QC Sample ID: BWD0139-BLK1	Batch:	BWD0139							
Fluoride ND 0.1 1.00 Sulfate ND 1.0 1.00 QC Sample ID: BWD0139-BS1 Batch: BWD0139 1.00 1.00 1.00 Pluoride 98.2 90 - 110 49.1 50.0 1.0 1.00 Sulfate 98.2 90 - 110 4.6 50.0 0.1 1.00 Sulfate 95.6 90 - 110 47.8 50.0 1.0 1.00 Sulfate 95.6 90 - 110 47.8 50.0 1.0 1.00 Date Prepared: 04/05/2022 Date Analyzed: 04/05/2022 7.6 0.5 5.00 0.5 1.00 QM-RPD - The recovery was outside acceptance limits for the MS and/or MSD. The RPD between the MS and MSD was acceptable and indicates the recovery is due to matrix interference. The batch was accepted based on the acceptable recovery of the LCS and the RPD. Sulfate 88.3 80 - 120 322 278 50.0 5.5 1.00 QC Sample ID: BWD0139-MS2 Batch: BWD0139 QC Source Sample: XXXXXXX XX V V	Date Prepared: 04/05/2022	Date A	nalyzed: 04	/05/2022						
Sulfate ND 1.0 1.00 QC Sample ID: BWD0139-BS1 Batch: BWD0139 Batch: BWD0139 Batch: BWD0139 Date Prepared: 04/05/2022 Date Analyzed: 04/05/2022 90 - 110 4.9, 1 50.0 1.0 1.00 Fluoride 96.2 90 - 110 4.6 5.00 0.1 1.00 Sulfate 95.6 90 - 110 4.7.8 50.0 1.0 1.00 QC Sample ID: BWD0139-MS1 Batch: BWD0139 QC Source Sample: 22C2426-01 Date Analyzed: 04/05/2022 Choride 99.2 80 - 120 7.1.5 21.9 50.0 5.5 1.00 Pluoride 99.2 80 - 120 7.6 0.5 5.00 0.5 1.00 QC Sample ID: BWD0139-MS2 Batch: BWD0139 QC Source Sample: XXXXXXX-XX Date Chalayzed: 04/05/2022 Choride 99.2 80 - 120 322 278 50.0 5.5 1.00 QC Sample ID: BWD0139-MS2 Batch: BWD0139 QC Source Sample: XXXXXXX-XX Date Analyzed: 04/05/2022 Choride 98.3 80 - 120 3050	Chloride					ND			1.0	1.00
LCS - EPA 300.0 QC Sample ID: BWD0139-BS1 Batch: BWD0139 Date Prepared: 04/05/2022 Date Analyzed: 04/05/2022 Chloride 98.2 90 - 110 49.1 50.0 1.0 100 Fluoride 91.3 90 - 110 47.8 50.0 1.0 1.00 Sulfate 95.6 90 - 110 47.8 50.0 1.0 1.00 QC Sample ID: BWD0139-MS1 Batch: BWD0139 QC Source Sample: 22C2426-01 Date Analyzed: 04/05/2022 Date Analyzed: 04/05/2022 Chloride 99.2 80 - 120 71.5 21.9 50.0 5.5 1.00 QC Sample ID: BWD0139-MS1 Batch: BWD0139 QC Source Sample: 22C2426-01 Date Analyzed: 04/05/2022 Chloride 99.2 80 - 120 7.6 0.5 5.00 0.5 1.00 QM-RPD - The recovery was outside acceptance limits for the MS and/or MSD. The RPD between the MS and MSD was acceptable and indicates the recovery is due to matrix interference. The batch was acceptad based on the acceptable recovery of the LCS and the RPD. Sulfate 88.3 80 - 120 3050 1100 1110 1.00	Fluoride					ND			0.1	1.00
QC Sample ID: BWD0139-BS1 Batch: BWD0139 Date Prepared: 04/05/2022 Date Analyzed: 04/05/2022 Chloride 98,2 90 - 110 49,1 50.0 1.0 1.00 Sulfate 95.6 90 - 110 47.8 50.0 1.0 1.00 QC Sample ID: BWD0139-MS1 Batch: BWD0139 QC Source Sample: 22C2426-01 Date Analyzed: 04/05/2022 Chloride 99.2 80 - 120 71.5 21.9 50.0 5.5 1.00 OM-RPD - The recovery was outside acceptance limits for the MS and/or MSD. The RPD between the MS and MSD was acceptable and indicates the recovery is due to matrix interference. The batch was acceptable based on the acceptable recovery of the LCS and the RPD. 5.5 1.00 QC Sample ID: BWD0139-MS2 Batch: BWD0139 QC Source Sample: XXXXXXX-XX Date Analyzed: 04/05/2022 Chloride 5.5 1.00 QC Sample ID: BWD0139-MS2 Batch: BWD0139 QC Source Sample: XXXXXXX-XX Date Analyzed: 04/05/2022 Chloride 5.5 1.00 QC Sample ID: BWD0139-MS2 Batch: BWD0139 QC Source Sample: 22C2426-01 Date Analyzed: 04/05/2022 Chloride 50.0 5.5 1.00	Sulfate					ND			1.0	1.00
Date Prepared: 04/05/2022 Date Analyzed: 04/05/2022 Chioride 98.2 90 - 110 4.9.1 50.0 1.0 Fluoride 91.3 90 - 110 4.6 50.0 0.1 1.00 Sulfate 95.6 90 - 110 47.8 50.0 1.0 1.00 QC Sample ID: BWD0139-MS1 Batch: BWD0139 QC Source Sample: 22C2426-01 Date Analyzed: 04/05/2022 0.5 5.00 0.5 1.00 Chioride 99.2 80 - 120 7.6 0.5 5.00 0.5 1.00 QC Sample ID: BWD0139-MS2 Batch: BWD0139 QC Source Sample: XXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			L	CS - EPA 3	00.0					
Chloride 98.2 90 - 110 49.1 50.0 1.0 1.00 Fluoride 91.3 90 - 110 4.6 5.00 0.1 1.00 Sulfate 95.6 90 - 110 4.78 50.0 1.0 1.00 QC Sample ID: BWD0139-MS1 Batch: BWD0139 QC Source Sample: 22C2426-01 1.00 5.5 5.00 5.5 1.00 Pluoride 99.2 80 - 120 7.1.5 21.9 50.0 5.5 1.00 QM-RPD - The recovery was outside acceptance limits for the MS and/or MSD. The RPD between the MS and MSD was acceptable recovery of the LCS and the RPD. Sulfate 88.3 80 - 120 322 278 50.0 5.5 1.00 QC Sample ID: BWD0139-MS2 Batch: BWD0139 QC Source Sample: XXXXXX-XX Date Analyzed: 04/05/2022 Chloride 98.3 80 - 120 30500 19500 11100 1110 1.00 Sulfate 98.3 80 - 120 903 ND 1110 1110 1.00	QC Sample ID: BWD0139-BS1	Batch:	BWD0139							
Chloride 98.2 90 - 110 49.1 50.0 1.0 1.00 Fluoride 91.3 90 - 110 4.6 5.00 0.1 1.00 Sulfate 95.6 90 - 110 4.78 50.0 1.0 1.00 QC Sample ID: BWD0139-MS1 Batch: BWD0139 QC Source Sample: 22C2426-01 1.00 5.5 5.00 5.5 1.00 Pluoride 99.2 80 - 120 7.1.5 21.9 50.0 5.5 1.00 QM-RPD - The recovery was outside acceptance limits for the MS and/or MSD. The RPD between the MS and MSD was acceptable recovery of the LCS and the RPD. Sulfate 88.3 80 - 120 322 278 50.0 5.5 1.00 QC Sample ID: BWD0139-MS2 Batch: BWD0139 QC Source Sample: XXXXXX-XX Date Analyzed: 04/05/2022 Chloride 98.3 80 - 120 30500 19500 11100 1110 1.00 Sulfate 98.3 80 - 120 903 ND 1110 1110 1.00	Date Prepared: 04/05/2022	Date A	nalyzed: 04	/05/2022						
Fluoride 91.3 90 - 110 4.6 5.00 0.1 1.00 Sulfate 95.6 90 - 110 47.8 50.0 1.0 1.00 QC Sample ID: BWD0139-MS1 Batch: BWD0139 QC Source Sample: 22C2426-01 Date Analyzed: 04/05/2022 Choride 99.2 80 - 120 71.5 21.9 50.0 5.5 1.00 Fluoride 142 80 - 120 7.6 0.5 5.00 0.5 1.00 QM-RPD - The recovery us outside acceptance limits for the MS and/Or MSD. The RPD between the MS and MSD was acceptable and indicates the recovery is due to matrix interference. The batch was accepted based on the acceptable recovery of the LCS and the RPD. Sulfate 88.3 80 - 120 322 278 50.0 5.5 1.00 QC Sample ID: BWD0139-MS2 Batch: BWD0139 QC Source Sample: XXXXXX-XX Date Prepared: 04/05/2022 Date Analyzed: 04/05/2022 Chioride 98.3 80 - 120 30500 19500 11100 110 1.00 Fluoride 91.3 80 - 120 13300 1370 11100 110 1.00 Sulfate	-					49.1		50.0	1.0	1.00
Matrix Spike - EPA 300.0 QC Sample ID: BWD0139-MS1 Batch: BWD0139 QC Source Sample: 22C2426-01 Date Prepared: 04/05/2022 Date Analyzed: 04/05/2022 Chloride 99.2 80 - 120 71.5 21.9 50.0 5.5 1.00 Fluoride 142 80 - 120 7.6 0.5 5.00 0.5 1.00 QM-RPD - The recovery was outside acceptance limits for the MS and/or MSD. The RPD between the MS and MSD was acceptable and indicates the recovery is due to matrix interference. The batch was accepted based on the acceptable recovery of the LCS and the RPD. 5.0 5.5 1.00 QC Sample ID: BWD0139-MS2 Batch: BWD0139 QC Source Sample: XXXXXXX-XX Date Prepared: 04/05/2022 Date Analyzed: 04/05/2022 Chloride 98.3 80 - 120 903 ND 1110 1110 1.00 Sulfate 89.8 80 - 120 903 ND 1110 1110 1.00 QC Sample ID: BWD0139-MSD1 Batch: BWD0139 QC Source Sample: 22C2426-01 Date Analyzed: 04/05/2022 Chloride 99.9 0.525 80 - 120 20 71.8 21.9 50.0	Fluoride			90 - 110		4.6		5.00		1.00
QC Sample ID: BWD0139-MS1 Batch: BWD0139 QC Source Sample: 22C2426-01 Date Prepared: 04/05/2022 Date Analyzed: 04/05/2022 Choride 99.2 80 - 120 71.5 21.9 50.0 5.5 1.00 GM-RPD - The recovery was outside acceptance limits for the MS and/or MSD. The RPD between the MS and MSD was acceptable and indicates the recovery is due to matrix interference. The batch was accepted based on the acceptable recovery of the LCS and the RPD. Suifate 88.3 80 - 120 322 278 50.0 5.5 1.00 QC Sample ID: BWD0139-MS2 Batch: BWD0139 QC Source Sample: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Sulfate	95.6		90 - 110		47.8		50.0	1.0	1.00
Date Prepared: 04/05/2022 Date Analyzed: 04/05/2022 Chloride 99.2 80 - 120 71.5 21.9 50.0 5.5 1.00 Fluoride 142 80 - 120 7.6 0.5 5.00 0.5 1.00 QM-RPD - The recovery was outside acceptance limits for the MS and/SD. The RPD between the MS and MSD was acceptable and indicates the recovery is due to matrix interference. The batch was accepted based on the acceptable recovery of the LCS and the RPD. 88.3 80 - 120 322 278 50.0 5.5 1.00 QC Sample ID: BWD0139-MS2 Batch: BWD0139 QC Source Sample: XXXXXXX-XX Date Analyzed: 04/05/2022 Chloride 98.3 80 - 120 30500 19500 11100 1110 1.00 Fluoride 81.3 80 - 120 30500 19500 11100 1110 1.00 Sulfate 89.8 80 - 120 11300 1370 11100 1110 1.00 Sulfate 89.9 0.525 80 - 120 20 71.8 21.9 50.0 5.5 1.00 QC Sample ID: BWD0139-MSD1 Bat			Matri	ix Spike - El	PA 300.0					
Date Prepared: 04/05/2022 Date Analyzed: 04/05/2022 Chloride 99.2 80 - 120 71.5 21.9 50.0 5.5 1.00 Fluoride 142 80 - 120 7.6 0.5 5.00 0.5 1.00 QM-RPD - The recovery was outside acceptance limits for the MS and/or MSD. The RPD between the MS and MSD was acceptable and indicates the recovery is due to matrix interference. The batch was accepted based on the acceptable recovery of the LCS and the RPD. Sulfate 88.3 80 - 120 322 278 50.0 5.5 1.00 QC Sample ID: BWD0139-MS2 Batch: BWD0139 QC Source Sample: XXXXXXX-XX Date Analyzed: 04/05/2022 Chloride 98.3 80 - 120 30500 19500 11100 1110 1.00 Sulfate 89.8 80 - 120 30500 19500 11100 1110 1.00 Sulfate 89.8 80 - 120 11300 1370 11100 1110 1.00 Sulfate 89.9 0.525 80 - 120 20 71.8 21.9 50.0 5.5 1.00 QC Sample ID: BWD01	OC Sample ID: BWD0139-MS1	Batch:	BWD0139	OC So	urce Samp	le: 22C242	6-01			
Chloride 99.2 80 - 120 71.5 21.9 50.0 5.5 1.00 Fluoride 142 80 - 120 7.6 0.5 5.00 0.5 1.00 QM-RPD - The recovery was outside acceptance limits for the MS and/or MSD. The RPD between the MS and MSD was acceptable and indicates the recovery is due to matrix interference. The batch was accepted based on the acceptable recovery of the LCS and the RPD. Sulfate 88.3 80 - 120 322 278 50.0 5.5 1.00 QC Sample ID: BWD0139-MS2 Batch: BWD0139 QC Source Sample: XXXXXX-XX Date Analyzed: 04/05/2022 0.0500 19500 11100 1110 1.00 QC Sample ID: BWD0139-MS2 Batch: BWD0139 QC Source Sample: XXXXXX-XX Date Analyzed: 04/05/2022 0.030500 19500 11100 1110 1.00 Sulfate 89.8 80 - 120 30500 19500 11100 1110 1.00 Sulfate 89.8 80 - 120 20 71.8 21.9 50.0 5.5 1.00 QC Sample ID: BWD0139-MSD1 Batch: BWD0139 QC Source Sample: 22C2426-01 <td></td> <td>Date A</td> <td>nalyzed: 04</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Date A	nalyzed: 04							
Fluoride 142 80 - 120 7.6 0.5 5.00 0.5 1.00 QM-RPD - The recovery was outside acceptance limits for the MS and/or MSD. The RPD between the MS and MSD was acceptable and indicates the recovery is due to matrix interference. The batch was accepted based on the acceptable recovery of the LCS and the RPD. Suifate 88.3 80 - 120 322 278 50.0 5.5 1.00 QC Sample ID: BWD0139-MS2 Batch: BWD0139 QC Source Sample: XXXXXXX-XX XXXXXXX-XX Date Analyzed: 04/05/2022 Date Analyzed: 04/05/2022 Chloride 98.3 80 - 120 30500 19500 11100 1110 1.00 Fluoride 98.3 80 - 120 30500 19500 11100 1110 1.00 Fluoride 98.3 80 - 120 903 ND 1110 1110 1.00 Fluoride 98.8 80 - 120 11300 1370 11100 1110 1110 1.00 GC Sample ID: BWD0139-MSD1 Batch: BWD0139 QC Source Sample: 22C2426-01 Date Analyzed: 04/05/2022 Chloride 99.9 0.525 80 - 120 20	-		,			71.5	21.9	50.0	5.5	1.00
OM-RPD - The recovery was outside acceptance limits for the MS and/or MSD. The RPD between the MS and MSD was acceptable and indicates the recovery is due to matrix interference. The batch was accepted based on the acceptable recovery of the LCS and the RPD. Sulfate 88.3 80 - 120 322 278 50.0 5.5 1.00 QC Sample ID: BWD0139-MS2 Batch: BWD0139 QC Source Sample: XXXXXXX-XX Date Analyzed: 04/05/2022 Chloride 98.3 80 - 120 30500 11100 1110 1110 1110 1110 1110 110 100 Water XSXXXXX XXXXXXXXX Date Analyzed: 04/05/2022 Chloride 98.8 80 - 120 903 ND 11100 1110 1110 1110 1110 1110 1110 1110 110 Mater XSpike Dup - EPA 300.0 Water XSpi				80 - 120						1.00
QC Sample ID: BWD0139-MS2 Batch: BWD0139 QC Source Sample: XXXXXX-XX Date Prepared: 04/05/2022 Date Analyzed: 04/05/2022 Chloride 98.3 80 - 120 30500 19500 11100 1110 1.00 Fluoride 81.3 80 - 120 903 ND 1110 111 1.00 Sulfate 89.8 80 - 120 11300 1370 11100 1110 1.00 QC Sample ID: BWD0139-MSD1 Batch: BWD0139 QC Source Sample: 22C2426-01 Date Analyzed: 04/05/2022 Date Analyzed: 04/05/2022 Chloride 99.9 0.525 80 - 120 20 71.8 21.9 50.0 5.5 1.00 Fluoride 143 0.391 80 - 120 20 7.6 0.5 5.00 0.5 1.00 QM-RPD - The recovery was outside acceptance limits for the MS and/or MSD. The RPD between the MS and MSD was acceptable and indicates the recovery is due to matrix interference. The batch was accepted based on the acceptable recovery of the LCS and the RPD. Sulfate 84.4 0.618 80 - 120 20 320 278 50.0	acceptable and indicates the recovery								/ery	
Date Prepared: 04/05/2022 Date Analyzed: 04/05/2022 Chloride 98.3 80 - 120 30500 19500 11100 1110 1.00 Fluoride 81.3 80 - 120 903 ND 1110 111 1.00 Sulfate 89.8 80 - 120 11300 1370 11100 1110 100 Matrix Spike Dup - EPA 300.0 QC Sample ID: BWD0139-MSD1 Batch: BWD0139 QC Source Sample: 22C2426-01 Date Analyzed: 04/05/2022 Date Analyzed: 04/05/2022 Chloride 99.9 0.525 80 - 120 20 71.8 21.9 50.0 5.5 1.00 GM-RPD - The recovery was outside acceptance limits for the MS and/or MSD. The RPD between the MS and MSD was acceptable and indicates the recovery is due to matrix interference. The batch was accepted based on the acceptable recovery of the LCS and the RPD. Sulfate 84.4 0.618 80 - 120 20 320 278 50.0 5.5 1.00 QC Sample ID: BWD0139-MSD2 Batch: BWD0139 QC Source Samp	Sulfate	88.3		80 - 120		322	278	50.0	5.5	1.00
Chloride 98.3 80 - 120 30500 19500 11100 1110 1.00 Fluoride 81.3 80 - 120 903 ND 1110 111 1.00 Sulfate 89.8 80 - 120 11300 1370 11100 1111 1.00 Sulfate 89.8 80 - 120 11300 1370 11100 1110 1.00 QC Sample ID: BWD0139-MSD1 Batch: BWD0139 QC Source Sample: 22C2426-01 Date Analyzed: 04/05/2022 Date Analyzed: 04/05/2022 Chloride 99.9 0.525 80 - 120 20 71.8 21.9 50.0 5.5 1.00 GM-RPD - The recovery was outside acceptance limits for the MS and/or MSD. The RPD between the MS and MSD was acceptable and indicates the recovery is due to matrix interference. The batch was accepted based on the acceptable recovery of the LCS and the RPD. Sulfate 84.4 0.618 80 - 120 20 320 278 50.0 5.5 1.00 QC Sample ID: BWD0139-MSD2 Batch: BWD0139 QC Source Sample: XXXXXXXX-XX Date Analyzed: 04/05/2022 Chloride 99.9 0.615 80	QC Sample ID: BWD0139-MS2	Batch:	BWD0139	QC So	urce Samp	le: XXXXX	XXX-XX			
Fluoride 81.3 80 - 120 903 ND 1110 111 1.00 Sulfate 89.8 80 - 120 11300 1370 11100 1110 1110 1.00 Matrix Spike Dup - EPA 300.0 QC Sample ID: BWD0139-MSD1 Batch: BWD0139 QC Source Sample: 22C2426-01 Date Prepared: 04/05/2022 Date Analyzed: 04/05/2022 Odd/05/2022 State Sta	Date Prepared: 04/05/2022	Date A	nalyzed: 04	/05/2022						
Sulfate 89.8 80 - 120 11300 1370 11100 1110 1.00 Matrix Spike Dup - EPA 300.0 QC Sample ID: BWD0139-MSD1 Batch: BWD0139 QC Source Sample: 22C2426-01 Date Prepared: 04/05/2022 Date Analyzed: 04/05/2022 71.8 21.9 50.0 5.5 1.00 Fluoride 99.9 0.525 80 - 120 20 7.6 0.5 5.00 0.5 1.00 QM-RPD - The recovery was outside acceptance limits for the MS and/or MSD. The RPD between the MS and MSD was acceptable and indicates the recovery is due to matrix interference. The batch was accepted based on the acceptable recovery of the LCS and the RPD. Sulfate 84.4 0.618 80 - 120 20 320 278 50.0 5.5 1.00 QC Sample ID: BWD0139-MSD2 Batch: BWD0139 QC Source Sample: XXXXXXX-XX Date Prepared: 04/05/2022 320 278 50.0 5.5 1.00 QC Sample ID: BWD0139-MSD2 Batch: BWD0139 QC Source Sample: XXXXXXXX-XXX Date Prepared: 04/05/2022 Date Analyzed: 04/05/2022 30700 19500 1110 110 10.0	Chloride	98.3		80 - 120		30500	19500	11100	1110	1.00
Matrix Spike Dup - EPA 300.0 QC Sample ID: BWD0139-MSD1 Batch: BWD0139 QC Source Sample: 22C2426-01 Date Prepared: 04/05/2022 Chloride 99.9 0.525 80 - 120 20 71.8 21.9 5.00 5.5 1.00 Fluoride 99.9 0.525 80 - 120 20 7.6 0.5 5.00 0.5 1.00 Fluoride 143 0.391 80 - 120 20 7.6 0.5 5.00 0.5 1.00 Fluoride MM RPD. The recovery was outside acceptance limits for the MS and/or MSD. The RPD between the MS and MSD was acceptable and indicates the recovery is due to matrix interference. The batch was accepted based on the acceptable recovery of the LCS and the RPD. Sulfate 84.4 0.618 80 - 120 20 320 278 50.0 5.5 1.00 Q	Fluoride	81.3		80 - 120		903	ND	1110	111	1.00
QC Sample ID: BWD0139-MSD1 Batch: BWD0139 QC Source Sample: 22C2426-01 Date Prepared: 04/05/2022 Date Analyzed: 04/05/2022 Chloride 99.9 0.525 80 - 120 20 71.8 21.9 50.0 5.5 1.00 Fluoride 143 0.391 80 - 120 20 7.6 0.5 5.00 0.5 1.00 QM-RPD - The recovery was outside acceptance limits for the MS and/or MSD. The RPD between the MS and MSD was acceptable and indicates the recovery is due to matrix interference. The batch was accepted based on the acceptable recovery of the LCS and the RPD. Sulfate 84.4 0.618 80 - 120 20 320 278 50.0 5.5 1.00 QC Sample ID: BWD0139-MSD2 Batch: BWD0139 QC Source Sample: XXXXXX-XX Date Analyzed: 04/05/2022 Chloride 99.9 0.615 80 - 120 20 30700 19500 11100 1110 1.00 Fluoride 80.1 1.50 80 - 120 20 890 ND 1110 111 1.00	Sulfate	89.8		80 - 120		11300	1370	11100	1110	1.00
Date Prepared: 04/05/2022 Date Analyzed: 04/05/2022 Chloride 99.9 0.525 80 - 120 20 71.8 21.9 50.0 5.5 1.00 Fluoride 143 0.391 80 - 120 20 7.6 0.5 5.00 0.5 1.00 QM-RPD - The recovery was outside acceptance limits for the MS and/or MSD. The RPD between the MS and MSD was acceptable and indicates the recovery is due to matrix interference. The batch was accepted based on the acceptable recovery of the LCS and the RPD. Sulfate 84.4 0.618 80 - 120 20 320 278 50.0 5.5 1.00 QC Sample ID: BWD0139-MSD2 Batch: BWD0139 QC Source Sample: XXXXXXX-XX VXXXXXXX-XX VXXXXXXX-XX VXXXXXX-XX Date Prepared: 04/05/2022 Date Analyzed: 04/05/2022 20 30700 19500 11100 1110 1.00 Fluoride 99.9 0.615 80 - 120 20 890 ND 1110 111 1.00			Matrix \$	Spike Dup -	EPA 300	.0				
Chloride 99.9 0.525 80 - 120 20 71.8 21.9 50.0 5.5 1.00 Fluoride 143 0.391 80 - 120 20 7.6 0.5 5.00 0.5 1.00 QM-RPD - The recovery was outside acceptance limits for the MS and/or MSD. The RPD between the MS and MSD was acceptable and indicates the recovery is due to matrix interference. The batch was accepted based on the acceptable recovery of the LCS and the RPD. Sulfate 84.4 0.618 80 - 120 20 320 278 50.0 5.5 1.00 QC Sample ID: BWD0139-MSD2 Batch: BWD0139 QC Source Sample: XXXXXX-XX QC Sulfate 99.9 0.615 80 - 120 20 30700 19500 11100 1110 1.00 Fluoride 99.9 0.615 80 - 120 20 30700 19500 11100 1110 1.00 Fluoride 80.1 1.50 80 - 120 20 30700 19500 11100 1110 1.00	QC Sample ID: BWD0139-MSD1	Batch:	BWD0139	QC So	urce Samp	le: 22C242	6-01			
Fluoride 143 0.391 80 - 120 20 7.6 0.5 5.00 0.5 1.00 QM-RPD - The recovery was outside acceptance limits for the MS and/or MSD. The RPD between the MS and MSD was acceptable and indicates the recovery is due to matrix interference. The batch was accepted based on the acceptable recovery of the LCS and the RPD. Sulfate 84.4 0.618 80 - 120 20 320 278 50.0 5.5 1.00 QC Sample ID: BWD0139-MSD2 Batch: BWD0139 QC Source Sample: XXXXXX-XX QC Source Sample: XXXXX-XX V	Date Prepared: 04/05/2022	Date A	nalyzed: 04	/05/2022						
Fluoride 143 0.391 80 - 120 20 7.6 0.5 5.00 0.5 1.00 QM-RPD - The recovery was outside acceptance limits for the MS and/or MSD. The RPD between the MS and MSD was acceptable and indicates the recovery is due to matrix interference. The batch was accepted based on the acceptable recovery of the LCS and the RPD. Sulfate 84.4 0.618 80 - 120 20 320 278 50.0 5.5 1.00 QC Sample ID: BWD0139-MSD2 Batch: BWD0139 QC Source Sample: XXXXXX-XX QC Source Sample: XXXXX-XX V	Chloride	99.9	0.525	80 - 120	20	71.8	21.9	50.0	5.5	1.00
acceptable and indicates the recovery is due to matrix interference. The batch was accepted based on the acceptable recovery of the LCS and the RPD. Sulfate 84.4 0.618 80 - 120 20 320 278 50.0 5.5 1.00 QC Sample ID: BWD0139-MSD2 Batch: BWD0139 QC Source Sample: XXXXXX-XX QC Source Sample: XXXXXX-XX Date Prepared: 04/05/2022 Date Analyzed: 04/05/2022 V <t< td=""><td>Fluoride</td><td>143</td><td></td><td>80 - 120</td><td>20</td><td></td><td></td><td></td><td></td><td></td></t<>	Fluoride	143		80 - 120	20					
QC Sample ID: BWD0139-MSD2 Batch: BWD0139 QC Source Sample: XXXXXX-XX Date Prepared: 04/05/2022 Date Analyzed: 04/05/2022 Chloride 99.9 0.615 80 - 120 20 30700 19500 1110 1110 1.00 Fluoride 80.1 1.50 80 - 120 20 890 ND 1110 111 1.00	acceptable and indicates the recovery								/ery	
Date Prepared: 04/05/2022 Date Analyzed: 04/05/2022 Chloride 99.9 0.615 80 - 120 20 30700 19500 11100 1110 1.00 Fluoride 80.1 1.50 80 - 120 20 890 ND 1110 111 1.00	Sulfate	84.4	0.618	80 - 120	20	320	278	50.0	5.5	1.00
Chloride99.90.61580 - 1202030700195001110011101.00Fluoride80.11.5080 - 12020890ND11101111.00	QC Sample ID: BWD0139-MSD2	Batch:	BWD0139	QC So	urce Samp	le: XXXXX	XXX-XX			
Chloride99.90.61580 - 1202030700195001110011101.00Fluoride80.11.5080 - 12020890ND11101111.00	-				· ·					
Fluoride 80.1 1.50 80 - 120 20 890 ND 1110 111 1.00					20	30700	19500	11100	1110	1.00

	QC R % Rec	RPD	r Work Orc	der (WO) - 2 RPD Max			Onto Malua		DF
Analyte	% Rec				Result	Source Conc	Spk Value	MRL	DF
		B	lank - EPA	353.2					
QC Sample ID: BWD0378-BLK1	Batch: I	3WD0378							
Date Prepared: 04/11/2022	Date Ar	alyzed: 04	/11/2022						
Nitrate + Nitrite, Total, as N					ND			0.1	1.00
		L	CS - EPA	353.2					
QC Sample ID: BWD0378-BS1	Batch: I	3WD0378							
Date Prepared: 04/11/2022	Date An	alyzed: 04	/11/2022						
Nitrate + Nitrite, Total, as N	98.8		80 - 120		2.0		2.00	0.1	1.00
		Matri	ix Spike - E	EPA 353.2					
QC Sample ID: BWD0378-MS1	Batch: H	3WD0378	QC S	Source Sampl	e: 22C242	26-01			
Date Prepared: 04/11/2022	Date An	alyzed: 04	/11/2022						
Nitrate + Nitrite, Total, as N	105		80 - 120		1.0	ND	1.00	0.1	1.00
QC Sample ID: BWD0378-MS2	Batch: I	3WD0378	QC S	Source Sampl	e: XXXX	XXX-XX			
Date Prepared: 04/11/2022	Date An	alyzed: 04	/11/2022						
Nitrate + Nitrite, Total, as N	100		80 - 120		7.3	6.3	1.00	0.5	5.00
		Matrix 3	Spike Dup	- EPA 353.	2				
QC Sample ID: BWD0378-MSD1	Batch: f	3WD0378	QC S	Source Sampl	e: 22C242	26-01			
Date Prepared: 04/11/2022	Date An	alyzed: 04	/11/2022						
Nitrate + Nitrite, Total, as N	110	5.12	80 - 120	20	1.1	ND	1.00	0.1	1.00
QC Sample ID: BWD0378-MSD2	Batch: H	3WD0378	QC S	Source Sampl	e: XXXX	XXX-XX			
Date Prepared: 04/11/2022	-	1 1.04	111/0000						
Date 1 10parea. 04/11/2022	Date An	alyzed: 04	/11/2022						

Analyte	QC I % Rec	Report for RPD	Work Ord	er (WO) - 2 RPD Max	22C2426 Result	Source Conc	Spk Value	MRL	DF
Analyte	76 Rec		EPA 8260			Source Conc	Spk value	MIRL	DF
QC Sample ID: BWD0069-BLK1	Batch	BWD0069			-				
Date Prepared: 04/02/2022		nalyzed: 04/	/02/2022						
Acetone	Duters	nury 200. 04/	02/2022		ND			10.0	1.00
Benzene					ND			0.4	1.0
Carbon Tetrachloride									
Chloroform					ND			1.0	1.0 1.0
					ND			1.0	
Chloromethane					ND			1.0	1.0
Methyl Ethyl Ketone					ND			10.0	1.0
Methylene Chloride					ND			2.0	1.0
Naphthalene					ND			1.0	1.0
Tetrahydrofuran					ND			1.0	1.0
Toluene					ND			1.0	1.0
Kylenes, total					ND			1.0	1.0
		LCS -	EPA 8260B	/C /5030A					
QC Sample ID: BWD0069-BS1		BWD0069							
Date Prepared: 04/02/2022	Date A	nalyzed: 04/	/02/2022						
Acetone	96.6		80 - 120		96.6		100	10.0	1.0
Benzene	92.4		80 - 120		9.24		10.0	0.4	1.0
Carbon Tetrachloride			80 - 120		9.22			1.0	1.0
Chloroform	85.4		80 - 120		8.54		10.0	1.0	1.0
Chloromethane	76.7		80 - 120		7.67		10.0	1.0	1.0
QM-11 - The Laboratory Control Sam recovery of the Method Spike.	ple recovery	was outside	e acceptance	limits. The a		atch was accep		n the	
Methyl Ethyl Ketone	115		80 - 120		115		100	10.0	1.0
Methylene Chloride	80.9		80 - 120		8.09		10.0	2.0	1.0
Naphthalene	102		80 - 120		10.2		10.0	1.0	1.0
Toluene	91.3		80 - 120		9.13		10.0	1.0	1.0
Kylenes, total	51.5		80 - 120 80 - 120		28.7		10.0	1.0	1.0
	N	latrix Spil	ke - EPA 82	60B/C /50				1.0	1.0
QC Sample ID: BWD0069-MS1		BWD0069		ource Sample		6-01			
Date Prepared: 04/02/2022		nalyzed: 04/		uree Sampt	. 220272	0-01			
Acetone	99.2		0 - 200		496	ND	500	50.0	1.00
Benzene	85.6		70 - 130		430	ND	50.0	2.0	1.00
Carbon Tetrachloride	0.00						50.0		
	00.0		0 - 200		41.4	ND	50.0	5.0	1.0
Chloroform	82.2		0 - 200		41.1	ND	50.0	5.0	1.0
SI 1 11					94.0	ND	50.0	5.0	1.0
	67.9		0 - 200		34.0				
Methyl Ethyl Ketone	113		0 - 200		566	ND	500	50.0	
Methyl Ethyl Ketone Methylene Chloride	113 76.0		0 - 200 0 - 200		566 38.0	ND ND	50.0	10.0	1.0
Chloromethane Methyl Ethyl Ketone Methylene Chloride Naphthalene	113 76.0 102		0 - 200 0 - 200 0 - 200		566 38.0 51.2	ND ND ND	50.0 50.0	10.0 5.0	1.0 1.0
Methyl Ethyl Ketone Methylene Chloride Naphthalene Foluene	113 76.0		0 - 200 0 - 200 0 - 200 70 - 130		566 38.0 51.2 42.6	ND ND ND ND	50.0	10.0 5.0 5.0	1.0 1.0 1.0
Aethyl Ethyl Ketone Aethylene Chloride Naphthalene Toluene	113 76.0 102		0 - 200 0 - 200 0 - 200		566 38.0 51.2	ND ND ND	50.0 50.0	10.0 5.0	1.00 1.00 1.00
/lethyl Ethyl Ketone /lethylene Chloride Naphthalene Toluene	113 76.0 102 85.2	rix Spike	0 - 200 0 - 200 0 - 200 70 - 130	8260B/C /	566 38.0 51.2 42.6 132	ND ND ND ND	50.0 50.0	10.0 5.0 5.0	1.00 1.00 1.00 1.00 1.00
Methyl Ethyl Ketone Methylene Chloride Naphthalene Foluene Kylenes, total QC Sample ID: BWD0069-MSD1	113 76.0 102 85.2 Mat Batch:	BWD0069	0 - 200 0 - 200 0 - 200 70 - 130 0 - 200 Dup - EPA QC Sc	8260B/C /	566 38.0 51.2 42.6 132 5030A	ND ND ND ND ND	50.0 50.0	10.0 5.0 5.0	1.00 1.00 1.00
Methyl Ethyl Ketone Methylene Chloride Naphthalene Foluene Kylenes, total QC Sample ID: BWD0069-MSD1	113 76.0 102 85.2 Mat Batch:	-	0 - 200 0 - 200 0 - 200 70 - 130 0 - 200 Dup - EPA QC Sc		566 38.0 51.2 42.6 132 5030A	ND ND ND ND ND	50.0 50.0	10.0 5.0 5.0	1.00 1.00 1.00
Methyl Ethyl Ketone Methylene Chloride Naphthalene Foluene Kylenes, total QC Sample ID: BWD0069-MSD1 Date Prepared: 04/02/2022	113 76.0 102 85.2 Mat Batch:	BWD0069	0 - 200 0 - 200 0 - 200 70 - 130 0 - 200 Dup - EPA QC Sc		566 38.0 51.2 42.6 132 5030A	ND ND ND ND ND	50.0 50.0	10.0 5.0 5.0	1.0 1.0 1.0
Methyl Ethyl Ketone Methylene Chloride Naphthalene Toluene Kylenes, total QC Sample ID: BWD0069-MSD1 Date Prepared: 04/02/2022 Acetone	113 76.0 102 85.2 Mat Batch: Date A	BWD0069 nalyzed: 04/	0 - 200 0 - 200 0 - 200 70 - 130 0 - 200 Dup - EPA QC Sc 02/2022	ource Sample	566 38.0 51.2 42.6 132 5030A e: 22C242	ND ND ND ND ND	50.0 50.0 50.0	10.0 5.0 5.0 5.0	1.0 1.0 1.0 1.0
Methyl Ethyl Ketone Methylene Chloride Naphthalene Foluene Kylenes, total QC Sample ID: BWD0069-MSD1 Date Prepared: 04/02/2022 Acetone Benzene	113 76.0 102 85.2 Mat Batch: Date A: 95.7	BWD0069 nalyzed: 04/ 3.55	0 - 200 0 - 200 70 - 130 0 - 200 Dup - EPA QC Sc 02/2022 0 - 200 70 - 130	ource Sample 200 20	566 38.0 51.2 42.6 132 5030A e: 22C242 479 42.7	ND ND ND ND ND 6-01 ND ND	50.0 50.0 50.0	10.0 5.0 5.0 5.0 5.0	1.00 1.00 1.00 1.00 1.00
Methyl Ethyl Ketone Methylene Chloride Naphthalene Toluene Kylenes, total QC Sample ID: BWD0069-MSD1 Date Prepared: 04/02/2022 Acetone Benzene Carbon Tetrachloride	113 76.0 102 85.2 Mat Batch: Date A: 95.7 85.4	BWD0069 nalyzed: 04/ 3.55 0.234	0 - 200 0 - 200 70 - 130 0 - 200 Dup - EPA QC Sc 02/2022 0 - 200 70 - 130 0 - 200	200 200 20 200	566 38.0 51.2 42.6 132 5030A e: 22C242 479 42.7 41.8	ND ND ND ND ND 6-01 ND ND ND	50.0 50.0 50.0 50.0 500 50.0	10.0 5.0 5.0 5.0 5.0 50.0 2.0 5.0	1.00 1.00 1.00 1.00 1.00 1.00
Methyl Ethyl Ketone Methylene Chloride Naphthalene Foluene Kylenes, total QC Sample ID: BWD0069-MSD1 Date Prepared: 04/02/2022 Acetone Benzene Carbon Tetrachloride Chloroform	113 76.0 102 85.2 Mat Batch: Date A: 95.7 85.4 81.2	BWD0069 nalyzed: 04/ 3.55 0.234 1.22	0 - 200 0 - 200 70 - 130 0 - 200 Dup - EPA QC Sc 02/2022 0 - 200 70 - 130 0 - 200 0 - 200 0 - 200	200 200 20 200 200 200	566 38.0 51.2 42.6 132 5030A : 22C242 479 42.7 41.8 40.6	ND ND ND ND ND 6-01 ND ND ND ND ND	50.0 50.0 50.0 500 50.0 50.0	10.0 5.0 5.0 5.0 50.0 2.0 5.0 5.0	1.00 1.00 1.00 1.00 1.00 1.00 1.00
Methyl Ethyl Ketone Methylene Chloride	113 76.0 102 85.2 Mat Batch: Date A: 95.7 85.4	BWD0069 nalyzed: 04/ 3.55 0.234	0 - 200 0 - 200 70 - 130 0 - 200 Dup - EPA QC Sc 02/2022 0 - 200 70 - 130 0 - 200	200 200 20 200	566 38.0 51.2 42.6 132 5030A e: 22C242 479 42.7 41.8	ND ND ND ND ND 6-01 ND ND ND	50.0 50.0 50.0 50.0 500 50.0	10.0 5.0 5.0 5.0 5.0 50.0 2.0 5.0	1.00 1.00 1.00

CtF WO#: 22C2426

www.ChemtechFord.com

	QC R	leport for	Work Orde	er (WO) -	22C2426						
Analyte	% Rec	RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF		
Matrix Spike Dup - EPA 8260B/C /5030A (cont.)											
QC Sample ID: BWD0069-MSD1	Batch: I	BWD0069	QC So	ource Samp	le: 22C242	6-01					
Date Prepared: 04/02/2022	Date Ar	nalyzed: 04	/02/2022								
Naphthalene	93.7	8.78	0 - 200	200	46.8	ND	50.0	5.0	1.00		
Toluene	83.6	1.90	70 - 130	20	41.8	ND	50.0	5.0	1.00		
Xylenes, total			0 - 200	200	130	ND		5.0	1.00		

.

	QC R	eport for	r Work Ord	er (WO) - 2	22C2426	5			
Analyte	% Rec	RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
		В	lank - SM 2	320 B					
QC Sample ID: BWD0046-BLK1	Batch: I	3WD0046							
Date Prepared: 04/01/2022	Date Ar	alyzed: 04	/01/2022						
Alkalinity - Bicarbonate (as CaCO3)					ND			1.0	1.00
Alkalinity - Carbonate (as CaCO3)					ND			1.0	1.00
		Dup	olicate - SN	2320 B	*				
QC Sample ID: BWD0046-DUP1	Batch: I	3WD0046	QC S	ource Sampl	e: 22C242	26-01			
Date Prepared: 04/01/2022	Date Ar	alyzed: 04	/01/2022						
Alkalinity - Bicarbonate (as CaCO3)		0.621		20	258	257		1.0	1.00
Alkalinity - Carbonate (as CaCO3)				20	ND	ND		1.0	1.00
Alkalinity - Hydroxide (as CaCO3)				20	ND	ND		1.0	1.00
Alkalinity - Total (as CaCO3)		0.621		20	258	257		1.0	1.00
QC Sample ID: BWD0046-DUP2	Batch: I	Batch: BWD0046 QC Source Sample: XXXXXXX-XX							
Date Prepared: 04/01/2022	Date Ar	Date Analyzed: 04/01/2022							
Alkalinity - Bicarbonate (as CaCO3)		0.200		20	301	300		1.0	1.00
Alkalinity - Carbonate (as CaCO3)				20	ND	ND		1.0	1.00
Alkalinity - Hydroxide (as CaCO3)				20	ND	ND		1.0	1.00
Alkalinity - Total (as CaCO3)		0.200		20	301	300		1.0	1.00
QC Sample ID: BWD0046-DUP3	Batch: 1	3WD0046	QC S	ource Sampl	e: XXXX	XXX-XX			ŧ
Date Prepared: 04/01/2022	Date Ar	alyzed: 04	/01/2022						
Alkalinity - Bicarbonate (as CaCO3)		0.154		20	260	260		1.0	1.00
Alkalinity - Carbonate (as CaCO3)				20	ND	ND		1.0	1.00
Alkalinity - Hydroxide (as CaCO3)				20	ND	ND		1.0	1.00
Alkalinity - Total (as CaCO3)		0.154		20	260	260		1.0	1.00
		L	.CS - SM 23	320 B					
QC Sample ID: BWD0046-BS1	Batch: I	3WD0046							
Date Prepared: 04/01/2022	Date Ar	alyzed: 04	/01/2022						
Alkalinity - Total (as CaCO3)	97.7		90 - 110		231		236	1.0	1.00

QC Report for Work Order (WO) - 22C2426									
Analyte	% Rec	RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
		Blank	k - SM 2	540 C					
QC Sample ID: BWD0016-BLK1	Batch: BV	WD0016							
Date Prepared: 04/01/2022	Date Ana	lyzed: 04/01/2	2022						
Total Dissolved Solids (TDS)					ND			10	1.00
J-LOW - Estimated low due to low recover	ery of LCS of	or CCV							
		Duplica	ate - SM	2540 C					
QC Sample ID: BWD0016-DUP1	Batch: BV	WD0016	QC Sc	ource Sampl	e: XXXXX	XXX-XX			
Date Prepared: 04/01/2022	Date Ana	lyzed: 04/01/2	2022						
Total Dissolved Solids (TDS)		2		10	2320	2360		20	1.00
J-LOW - Estimated low due to low recover	ery of LCS of	or CCV							
QC Sample ID: BWD0016-DUP2	Batch: BV	WD0016	QC Sc	ource Sampl	e: 22C242	6-01			
Date Prepared: 04/01/2022	Date Ana	lyzed: 04/01/2	2022						
Total Dissolved Solids (TDS)		3		10	652	672		20	1.00
J-LOW - Estimated low due to low recover	ery of LCS of	or CCV							
		LCS	- SM 25	40 C					
QC Sample ID: BWD0016-BS1	Batch: BV	WD0016							
Date Prepared: 04/01/2022	Date Ana	lyzed: 04/01/2	2022						
Total Dissolved Solids (TDS)	80	9	0 - 110		320		400	20	1.00
J-LOW - Estimated low due to low recover	ery of LCS of	or CCV							

	QC R	eport for	Work Ord	er (WO) - 3	22C2426	6			
Analyte	% Rec	RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
		Blar	nk - SM 450	0 NH3 H					
QC Sample ID: BWD0067-BLK1	Batch: E	3WD0067							
Date Prepared: 04/04/2022	Date An	alyzed: 04	/04/2022						
Ammonia as N					ND			0.2	1.00
		LCS	S - SM 4500	NH3 H			1		
QC Sample ID: BWD0067-BS1	Batch: E	3WD0067							
Date Prepared: 04/04/2022	Date An	alyzed: 04	/04/2022						
Ammonia as N	97.2		90 - 110		4.86		5.00	0.2	1.00
		Matrix S	Spike - SM 4	4500 NH3	Н				
QC Sample ID: BWD0067-MS1	Batch: E	3WD0067	QC So	ource Sampl	e: 22C242	26-01			
Date Prepared: 04/04/2022	Date An	alyzed: 04	/04/2022						
Ammonia as N	106		80 - 120		0.53	ND	0.500	0.2	1.00
	М	atrix Spi	ke Dup - Sl	M 4500 Nł	13 H				
QC Sample ID: BWD0067-MSD1	Batch: E	3WD0067	QC So	ource Sampl	e: 22C242	26-01			
Date Prepared: 04/04/2022	Date An	alyzed: 04	/04/2022						
Ammonia as N	105	0.756	80 - 120	20	0.53	ND	0.500	0.2	1.00

.

COLUMN TWO IS NOT

IT REPERTION IN THE CO. P. S. CO.

A TONY - B

Surrogates Report for Work Order (WO) - 22C2426

QC ID	Analyte	% Rec	LCL	UCL	Result	Spk Value	Batch	DF
		Blank - El	PA 8260B/	C /5030	Α			
BWD0069-BLK1	1,2-Dichloroethane-d4	104	64.2	126	10.4	10.0	BWD0069	1.00
BWD0069-BLK1	4-Bromofluorobenzene	97.1	71.4	122	9.71	10.0	BWD0069	1.00
BWD0069-BLK1	Toluene-d8	100	63.2	129	10.0	10.0	BWD0069	1.00
		LCS - EP	A 8260B/C	/5030A				
BWD0069-BS1	1,2-Dichloroethane-d4	106	64.2	126	10.6	10.0	BWD0069	1.00
BWD0069-BS1	4-Bromofluorobenzene	101	71.4	122	10.1	10.0	BWD0069	1.00
BWD0069-BS1	Toluene-d8	98.9	63.2	129	9.89	10.0	BWD0069	1.00
		Matrix Spike	- EPA 8260	0B/C /50)30A			
BWD0069-MS1	1,2-Dichloroethane-d4	106	64.2	126	52.8	50.0	BWD0069	1.00
BWD0069-MS1	4-Bromofluorobenzene	100	71.4	122	50.2	50.0	BWD0069	1.00
BWD0069-MS1	Toluene-d8	100	63.2	129	50.0	50.0	BWD0069	1.00
		Matrix Spike Du	.p - EPA 8	260B/C	/5030A			
BWD0069-MSD1	1,2-Dichloroethane-d4	99.6	64.2	126	49.8	50.0	BWD0069	1.00
BWD0069-MSD1	4-Bromofluorobenzene	102	71.4	122	51.0	50.0	BWD0069	1.00
BWD0069-MSD1	Toluene-d8	100	63.2	129	50.0	50.0	BWD0069	1.00

Surrogate Recoveries (Field Samples)

LabNumber	Analyte	<u>Result</u>	SpkLvi	<u>%Rec</u>	<u>LCL</u>	UCL	Qualifier
8260E	B Low Level Volatiles						
22C2426-01	Toluene-d8	10.0	10.0	100	63.2	129	
22C2426-01	4-Bromofluorobenzene	10.0	10.0	100	71.4	122	
22C2426-01	1,2-Dichloroethane-d4	10.2	10.0	102	64.2	126	
8260E	Low Level Volatiles						
22C2426-02	Toluene-d8	9.71	10.0	97.1	63.2	129	
22C2426-02	4-Bromofluorobenzene	10.1	10.0	101	71.4	122	
22C2426-02	1,2-Dichloroethane-d4	9.85	10.0	98.5	64.2	126	

i

THE REPORT OF THE PARTY OF THE

ē

a member of The GEL Group INC

PO Box 30712 Charleston, SC 29417 2040 Savage Road Charleston, SC 29407 P S43 556, 8171 F S45 766, 1178

gel.com

May 03, 2022

Ms. Kathy Weinel Energy Fuels Resources (USA), Inc. 225 Union Boulevard Suite 600 Lakewood, Colorado 80228

Re: White Mesa Mill GW Work Order: 575649

Dear Ms. Weinel:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on April 06, 2022. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Julie Roberson

Julie Robinson Project Manager

Purchase Order: DW16138 Enclosures

Energy Fuels Resources (USA), Inc. White Mesa Mill GW SDG: 575649

•

.

Receipt Narrative for Energy Fuels Resources (USA), Inc. SDG: 575649

May 03, 2022

Laboratory Identification:

GEL Laboratories LLC 2040 Savage Road Charleston, South Carolina 29407 (843) 556-8171

Summary:

Sample receipt: The sample arrived at GEL Laboratories LLC, Charleston, South Carolina on April 06, 2022 for analysis. The sample was delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Sample Identification: The laboratory received the following sample:

Laboratory ID	<u>Client ID</u>
575649001	Westwater Spring

Case Narrative:

Sample analyses were conducted using methodology as outlined in GEL's Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

The enclosed data package contains the following sections: Case Narrative, Chain of Custody, Cooler Receipt Checklist, Data Package Qualifier Definitions and data from the following fractions: Radiochemistry.

Julie Roberson

Julie Robinson Project Manager

575649

Sheet 1 of 1

Date/Time

CHAIN OF CUSTODY

Contact:

Samples Shipped to:

GEL Laboratories, LLC 2040 Savage Road Charleston, SC 29407 (843) 556 8171 Tanner Holliday Ph: 435 678 2221 tholliday@energyfuels.com

Chain of Custody/Sampling Analysis Request

Project		Samplers Name	Samplers Signature		
Seeps and Springs 2022		Tanner Holliday			
		Time			
Sample ID	Date Collected	Collected	Laboratory Analysis Requested		
Westwater Spring	3/28/2022	850	Gross Alpha		
and the second					
free and the second second					
Comments: Please send	report to Kathy We	inel at kweinel@energ	jyfuels.com		
Relinquished By:(Signatur	е)		ived By:(Signature) Date/Time		
A	Deen Lyman	3/30/2022	A/6/72		
Pres Landa Aug	Deen Lyman	1100			

Date/Time

Redeived By:(Signature)

Relinquished By;(Signature)

Client:	PNMI			Icn	SAMPLE RECEIFT & REVIEW FORM	
	PE		-		te Received: 4-6-22	
Received By Carrier	and Tracking Number				FećEx Express FedEx Ground UPS Field Services Courier	Other
Suspected H	zard Information	Yes	No		2/87 144 03 9225 0187 Net Counts > 100cpm on sumples not marked "radioactive", contact the Radiation Safety Group for	further inves
Suspected II.			2	-	zard Class Shipped: UN#:	
A)Shipped as	DOT Hazardous?			1	If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No	
B) Did the clic received as ma	nt designate the samples are to be ioactive?			CO	C notation or radioactive stickers on containers equal elient designation.	
C) Did the RS radioactive?	O classify the samples as		1	Ma	usimum Net Counts Observed ⁹ (Observed Counts - Area Background Counts):	nR/Hr
D) Did the cli	nt designate samples are hazardous?		1	co	C notation or hazard labels on containers equal client designation.	
	O identify possible hazards?		K	IfI	D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:	
	mple Receipt Criteria	Yes	Įž	12	Comments/Qualifiers (Required for Non-Conforming Items)	
	containers received intact and	1	N SHE	Z	Circle Applicable: Scals broken Damaged container Leaking cuntainer Other (describe)	÷.
	custody documents included ment?	1			Circle Applicable: Client contacted and provided COC COC created upon receipt	
3 Samples	requiring cold preservation		5	Ĩ	Preservation Method: Wet loe loe Packs Dry ice None Other: *all temperatures are recorded in Celsius Ti	EMP:
d Daily ch	eck performed and passed on IR ure gun?	V	Bull of	-	Temperature Device Serial #: <u>IR2-21</u> Secondary Temperature Device Serial # (If Applicable):	- 1.s
5 Sample o	containers intact and sealed?	5			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)	
6 Samples	requiring chemical preservation pH?	T	- Sellin	1	Sample ID's and Containers Affected:	· · · · ·
7 Do 2	ny samples require Volatile Analysis?		語が読む	1	If Yes, and Encores of Kits present for solids? YesNoNA(If yes, take to VOA F Do liquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA Sample ID's and containers affected:	
8 Samples	received within holding time?	1	No.	-	ID's and tests affected:	1
	D's on COC mutch ID's on			-	ID's and containers affected:	
	m≥ on COC match date & time	1		-	Circle Applicable: No dates on containers No times on containers COC missing info Other	.s. (describe)
Number	of containers received match	1		\vdash	Circle Applicable: No container count on COC Other (describe)	
Are same	ndicated on COC? le containers identifiable as	1				·.
13 COC for	vided by use of GEL labels? n is properly signed in med/received sections?	1			Circle Applicable: Not relinquished Other (describe)	<u>.</u> `
	Continuation Form if needed):			L		
					(85) 	

GEL Laboratories LLC - Login Review Report

Work Order: 575649

									Pag	ge 1 of	2
GEL Work Order/SD	G: 575649 Seeps and Spi	rings 2022	Work Order	Due Date:	04-MAY-22	2		Collecto	or: C		
Client SDG:	575649		Package Du	e Date:	04-MAY-22	2	1	Prelogin	#: 2019048	37484	
Project Manager:	Julie Robinson		EDD Due Da	ate:	04-MAY-22	2	Project W	orkdef I	D: 1294356	5	
Project Name:	DNMI00100 White Mesa Mill G	W	Due Date:		04-MAY-22	2	SE	G Status	s: Closed		
Purchase Order:	DW16138		NG1				L	ogged by	v:		
Package Level:	LEVEL3						_	- 33 ,	-		
EDD Format:	EIM_DNMI										
GEL ID Client Sam	ple ID Client Sample Desc.	Collect Date & Time	Receive Date & Time	Time # of Zone Cont	and the second			ys to ocess	CofC #		Lab Field QC QC
575649001 Westwater Sp	pring	28-MAR-22 08:50	06-APR-22 10:00	-2 1	GROUND WA	ATER		20		1	
Client Sample ID	Status Tests/Methods	Product Reference	Fax Date PI	M Comment	s		Aux D	ata			Receive Codes
-001 Westwater Spring	REVW GFPC, Total Alpha Radium, Liquid	Gross Alpha									
Product: GFCTORAL	Workdef ID: 1458614	In Product Group? No	o Group Nam	ne:	(Group Refe	rence:				
Method	I: EPA 903.0 I: GFPC, Total Alpha Radium, Liquid	In Product Group? N	o Group Nam	ie:	(Group Refe	Path: Produ	ct Referen	Vater (903.0 n ce: Gross A ction: "As R	Alpha	
Method Product Description	I: EPA 903.0 I: GFPC, Total Alpha Radium, Liquid I: 001	In Product Group? N	·				Path: Produ Moist	ct Referen	nce: Gross A ction: "As R	Alpha	
Method Product Description Samples	l: EPA 903.0 I: GFPC, Total Alpha Radium, Liquid I: 001	In Product Group? N	o Group Nam Client RD PQL & U	L or	(Reporting Units	Parm	Path: Produ	ct Referen	nce: Gross A ction: "As R	Alpha	

Action **Product Name** Description Samples Contingent Tests SDG 575649 Login Requirements: Page 6 of 13

Requirement

Include? Comments

GEL Laboratories LLC – Login Review	v Report	Report Date: 03-MAY-22 Work Order: 575649
		Page 2 of 2
Peer Review by:	Work Order (SDG#), PO# Checked?	C of C signed in receiver location?

State	Certification			
Alabama	42200			
Alaska	17-018			
Alaska Drinking Water	SC00012			
Arkansas	88-0651			
CLIA	42D0904046			
California	2940			
Colorado	SC00012			
Connecticut	PH-0169			
DoD ELAP/ ISO17025 A2LA	2567.01			
Florida NELAP	E87156			
Foreign Soils Permit	P330-15-00283, P330-15-00253			
Georgia	SC00012			
Georgia SDWA	967			
Hawaii	SC00012			
Idaho	SC00012			
Illinois NELAP	200029			
Indiana	C-SC-01			
Kansas NELAP	E-10332			
Kentucky SDWA	90129			
Kentucky Wastewater	90129			
Louisiana Drinking Water	LA024			
Louisiana NELAP	03046 (AI33904)			
Maine	2019020			
Maryland	270			
Massachusetts	M-SC012			
Massachusetts PFAS Approv	Letter			
Michigan	9976			
Mississippi	SC00012			
Nebraska	NE-OS-26-13			
Nevada	SC000122021-1			
New Hampshire NELAP	2054			
New Jersey NELAP	SC002			
New Mexico	SC002 SC00012			
New York NELAP	11501			
North Carolina				
North Carolina SDWA	233 45709			
North Dakota	R-158			
Oklahoma	2019-165			
Pennsylvania NELAP	68-00485			
Puerto Rico	SC00012			
S. Carolina Radiochem	10120002			
Sanitation Districts of L	9255651			
South Carolina Chemistry	10120001			
Tennessee	TN 02934			
Texas NELAP	T104704235-22-20			
Utah NELAP	SC000122021-36			
Vermont	VT87156			
Virginia NELAP	460202			
Washington	C780			

List of current GEL Certifications as of 03 May 2022

Radiochemistry Technical Case Narrative Energy Fuels Resources SDG #: 575649

Product: GFPC, Total Alpha Radium, Liquid Analytical Method: EPA 903.0 Analytical Procedure: GL-RAD-A-044 REV# 10 Analytical Batch: 2252110

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
575649001	Westwater Spring
1205063056	Method Blank (MB)
1205063057	575649001(Westwater Spring) Sample Duplicate (DUP)
1205063058	575649001(Westwater Spring) Matrix Spike (MS)
1205063059	575649001(Westwater Spring) Matrix Spike Duplicate (MSD)
1205063060	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

The matrix spike and matrix spike duplicate, 1205063058 (Westwater SpringMS) and 1205063059 (Westwater SpringMSD), aliquots were reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Qualifier Definition Report for

DNMI001 Energy Fuels Resources (USA), Inc.

Client SDG: 575649 GEL Work Order: 575649

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the CRDL.

Review/Validation

GEL requires all analytical data to be verified by a qualified data reviewer. In addition, all CLP-like deliverables receive a third level review of the fractional data package.

The following data validator verified the information presented in this data report:

unchalla (totan Signature:

Date: 29 APR 2022

Name: Kenshalla Oston Title: Analyst I

'age 10 of 13 SDG: 575649

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

(

Report Date: April 29, 2022

Page 1 of

10. 2011

11.11.11.11

Energy Fuels Resources (USA), Inc. 225 Union Boulevard Suite 600 Lakewood, Colorado Ms. Kathy Weinel

Contact: Ms. Katl

Workorder: 575649 'armname NOM Sample Qual OC Units RPD% REC% Range Anlst Date Time ad Gas Flow 2252110 atch QC1205063057 575649001 DUP **Gross Radium Alpha** U 0.0551 U 0.139 pCi/L N/A N/A JXC9 04/19/22 11:: Uncertainty +/-0.109 +/-0.106 QC1205063060 LCS **Fross Radium Alpha** 531 424 pCi/L 79.8 (75%-125%) 04/19/22 11:: +/-4.85 Uncertainty QC1205063056 MB U **Gross Radium Alpha** 0.207 pCi/L 04/19/22 11:: Uncertainty +/-0.169 QC1205063058 575649001 MS 2150 U 04/19/22 11:: **Fross Radium Alpha** 0.0551 1650 pCi/L 76.7 (75%-125%) Uncertainty +/-0.109 +/-17.7 QC1205063059 575649001 MSD 2130 U 78.6 04/19/22 11:: 0.0551 1670 pCi/L 1.32 (0% - 20%)**Fross Radium Alpha** Uncertainty +/-0.109 +/-18.7

Notes:

Counting Uncertainty is calculated at the 68% confidence level (1-sigma).

The Qualifiers in this report are defined as follows:

- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- F Estimated Value
- H Analytical holding time was exceeded
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- M M if above MDC and less than LLD

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workor	der: 575649										Pag	e 2 of
'armnar	ne	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Tim
М	Matrix Related Failure											
N/A	RPD or %Recovery lim	its do not apply.										
N1	See case narrative											
ND	Analyte concentration is	s not detected above the	detection lin	nit								
NJ	Consult Case Narrative,	Data Summary package	, or Project	Manager	concerning	this qualifi	er					
Q	One or more quality cor	ntrol criteria have not be	en met. Refe	r to the ap	plicable na	rrative or I	DER.					
R	Sample results are reject	ted										
U	Analyte was analyzed for	or, but not detected abov	e the CRDL									
UI	Gamma Spectroscopy	Uncertain identification										
UJ	Gamma Spectroscopy	Uncertain identification										
UL	Not considered detected	I. The associated number	is the repor	ted conce	ntration, wl	nich may be	e inaccurate	due to a low	bias.			
Х	Consult Case Narrative,	Data Summary package	, or Project	Manager	concerning	this qualifi	er					
Y	QC Samples were not sp	piked with this compour	d									
^	RPD of sample and dup	licate evaluated using +,	-RL. Conce	ntrations	are <5X the	RL. Qual	ifier Not Ap	plicable for 1	Radiochem	istry.		
h	Preparation or preservat	ion holding time was ex	ceeded									
^ The Re five time	icates that spike recovery elative Percent Differences (5X) the contract requi the DUP result.	e (RPD) obtained from t ired detection limit (RL)	he sample di	uplicate (DUP) is ev	aluated aga	inst the acco	ptance criter	ria when the	e sample i	s greater	than

1

* Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

.

6/3/2022

Work Order: 22E1012 Project: Seeps and Springs 2022

Energy Fuels Resources, Inc. Attn: Tanner Holliday 6425 South Highway 191 Blanding, UT 84511

Client Service Contact: 801.262.7299

The analyses presented on this report were performed in accordance with the National Environmental Laboratory Accreditation Program (NELAP) unless noted in the comments, flags, or case narrative. If the report is to be used for regulatory compliance, it should be presented in its entirety, and not be altered.

Approved By:

MeliCas

Melissa Connolly, Project Manager

9632	South	500	West	
------	-------	-----	------	--

801.262.7299 Main

Serving the Intermountain West since 1953

Energy Fuels Resources, Inc.

Project: Seeps and Springs 2022 **Project Manager:** Tanner Holliday

Laboratory ID	Sample Name
22E1012-01	Entrance Spring
22E1012-02	Ruin Spring
22E1012-03	Cottonwood Spring
22E1012-04	Back Spring
22E1012-05	Trip Blank

Work Order Report Narrative

Set Comments

Due to laboratory error during the 8260D analysis, the LCS, MS, and MSD were not spiked for Tetrahydrofuran. The samples were analyzed for spectral evidence of Tetrahydrofuran.

Sample Preparation

All samples were prepared within method specified holding times. No preparation issues were noted.

Method Blanks

All blank values were within method acceptance criteria. No blank values exceeded the minimum reporting limit for any analysis in this work order.

Laboratory Control Samples

All laboratory control samples were within method acceptance criteria.

Method Spikes

All method spike recoveries were within method acceptance criteria, except as noted by qualifying flags.

Method Spike Duplicates

All method spike duplicates were within method acceptance criteria, except as noted by qualifying flags.

Corrective Actions

The corrective action required with this workorder is to implement a new procedure to verify which analytes need to be spiked if they are not included in the laboratory standard spiking solution.

Chemtech-Ford Laboratories

Serving the Intermountain West Since 1953

9632 South 500 West Sandy, UT 84070 O:(801) 262-7299 F: (866) 792-0093 www.ChemtechFord.com

Certificate of Analysis

Energy Fuels Resources, Inc. Tanner Holliday 6425 South Highway 191 Blanding, UT 84511 PO#: Receipt: **5/12/22 12:27** @ **2.1** °C Date Reported: 6/3/2022 Project Name: **Seeps and Springs 2022**

Report Footnotes

Abbreviations

ND = Not detected at the corresponding Minimum Reporting Limit (MRL).

1 mg/L = one milligram per liter or 1 mg/kg = one milligram per kilogram = 1 part per million.

1 ug/L = one microgram per liter or 1 ug/kg = one microgram per kilogram = 1 part per billion.

1 ng/L = one nanogram per liter or 1 ng/kg = one nanogram per kilogram = 1 part per trillion.

Flag Descriptions

A-01 = The sample was analyzed for spectral evidence of THF and none was detected.

J-LOW = Estimated low due to low recovery of LCS or CCV

MS-Low = Estimated low due to Matrix Spike recovery.

American W Analytical Labor 463 W. 3600 S. Salt Leke Cit Phone # (801) 263-8686 Toil Free Fax # (801) 263-8687 Email an www.awal-labs.co	Catories y, UT 84115 # (888) 263-8686 wal@awal-labs.com		All an	repor	QC L		3L) unio	ing NEL	AP acc	redited r request Turn	nelhod ed olhe Aro	is and a	ll data v n this C	vill be r	eported using AWAL's standard analyte lists and Custody and/or attached documentation. Unless other arrangements have been made, signed reports will be emailed by 5:00 pm on the day they are due,	$\frac{22 \pm 1012}{AWAL Lab Sample Set #}$ $\frac{Page_1 of 1}{Due Date:}$
Client: Energy Fuels Resources, Inc. Address: 6425 S. Hwy. 191 Blanding, UT 84511 Blanding, UT 84511 Contact: Tanner Holliday Phone #: (435) 678-2221 Cell #: Email: tholliday@energyfuels.com; kweinel@energyfu Project Name: Seeps and Springs 2022 Sampler Name: Tanner Holliday	els.com	Time	Containers	Matri	NO2/NO3 (353.2) ←	3 (4500G or 350.1) <	Ći, soá (4500 or 300.0)	s (2540C)	Carb/Bicarb (2320B)	Dissolved Metals (200.7/200.8/245.1)	As, Be, Cd, Cr, Co, Cu, Fe, Pb, Mn, Hg, Mo,	Ní, Se, Ag, TÍ, Sn, U, V, Zn, Na, K, Mg, Ca	ton Balance	(8260C) ~	X Include EDD: LOCUS UPLOAD EXCEL X Field Filtered For: Dissolved Metals For Compliance With: NELAP RCRA CWA SUWA ELAP / A2LA NLLAP Non-Compliance Other: Known Hazards &	Laboratory Use Only Samples Were: 1 Shipped or hand delivered 2 Ambient or Chilled 3 Temperature 2 Arnbient or Chilled 3 Temperature 4 Received Broken/Leaking (Improperty Sealed) Y *C 5 Property Preserved Y N 5 Property Preserved Y N 6 Received Within Holding Times N
Sample ID: Entrace Spring	Sampled 5/10/2022	Sampled 820		-	NON	X NH3	x FI,	x	x Car	x Dis	x	x	x Ion	x vocs	Sample Comments	Y N
Ruin Spring Cottonwood Spring Back Spring Trip Blank	5/10/2022 5/10/2022 5/10/2022 5/10/2022	855 945 855 820	7	w	x x x	x x x	x x x	x x x	x x	x x x	x x x	x x	x x x	x x x x		COC Tape Was: 1 Present on Outer Package Y N NA 2 Unbroken on Outer Package Y N NA 3 Present on Sample Y N NA 4 Unbroken on Sample Y N NA
Relinquished by:	Date	Received by:									Date:					Discrepancies Between Sample Labels and COC Record? Y N
Print Name: Relinquished by: Signature Print Name: Relinquished by: Signature Print Name Relinquished by: Signature Print Name	5/11/2022 Time:	Signature Print Name: Received by: Signature	li Li	1.	He	the	y	d	Ą		Time: Date:	100			Special Instructions: Sample containers for metals w Analytical Scope of Work for Re list.	

		2	26101	2						
	Work Oı	rder # <u></u>	2 E 1 01. 2 E 102 (3	_~	1			CHEMTECH FORD LABORATORIES Sample Receipt	0
12 187 Y	Delivery Ma UPS FedEx Walk-in	USPS Chemtech Co Customer Co	ourier	af Subsamples	reserved by Cllent/Third Party	eserved in Receiving/Laboratory	in Field by Client		Receiving Temperature <u></u> C	CHEMTECH-FORD LABORATORIES Sample Condition (check if yes)
	Sample #	Container	Chemtech Lot # or Preservative	Number of Subs	Preserved by Cl	Preserved in Re	Filtered in Field	Misc Volume (oz/mL)	Comments	Containers Intact
	01-04	Ar N Ah Wi(?)	client client client client client							
		· · · · · · · · · · · · · · · · · · ·								Glass Containers D: 625 (Na25203) G: Glass Unpreserved H: HAAs (NH4C1) 1: 508/515/525 (Na2503) K: 515,3 Herbicides O: Oil & Grease (HC1) P: Phenois (H2504) T: T0C/T0X (H3P04) U: 531 (MCAA, Na25203) V: 524/THMs (Ascorbic Acid) W: 8260 VOC (1:1 HC1) X: Vial Unpreserved Y: 624/504 (Na25203)

7 Miscellaneous Glass

Date Prepared: 05/19/2022 Date Analyzed: 05/19/2022 Calcium, Dissolved ND 0.2 1.00 Iron, Dissolved ND 0.02 1.00 Magnesium, Dissolved ND 0.2 1.00 Potassium, Dissolved ND 0.2 1.00 Potassium, Dissolved ND 0.5 1.00 Sodium, Dissolved ND 0.5 1.00 Sodium, Dissolved ND 0.5 1.00 Sodium, Dissolved ND 0.5 1.00 Tin, Dissolved ND 0.5 1.00 Date Prepared: 05/19/2022 Date Analyzed: 05/19/2022 1.00 0.02 1.00 QC Sample ID: BWE0967-BS1 Batch: BWE0967 Batch: BWE0967 9.2 10.2 0.2 1.00 Date Prepared: 05/19/2022 Date Analyzed: 05/19/2022 Date Analyzed: 05/19/2022 10.2 0.2 1.00 Iron, Dissolved 90.2 85 - 115 9.7 10.2 0.2 1.00 Iron, Dissolved 96.4 85 - 115 9.6 10.0 0.5 1.00 Potassium, Dissolved <th></th> <th></th> <th>-</th> <th>r Work Orde</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>			-	r Work Orde						
QC Sample ID: BWE0967-BLK1 Batch: BWE0967 Duer Prepared: 05/19/2022 Date Analyzed: 05/19/2022 Calclum, Dissolved ND 0.02 1.00 Mognesium, Dissolved ND 0.02 1.00 Mognesium, Dissolved ND 0.02 1.00 Sodium, Dissolved ND 0.55 1.00 Sodium, Dissolved ND 0.02 1.00 CS Ample ID: BWE0967-BS1 Batch: BWE0967 Date Analyzed: 03/19/2022 0.02 1.00 Calculum, Dissolved 90.2 85 - 115 9.2 10.2 0.2 1.00 Magnesium, Dissolved 97.6 85 - 115 9.6 10.0 0.5 1.00 Potassium, Dissolved 96.4 85 - 115 9.6 1.00 0.5 1.00 Potassium, Dissolved 94.6 85 - 155 0.18 0.200 0.02 1.00 Dotassium, Dissolved 91.6 70 - 130 1.02 0.2 1.00 Calcum, Dissolved 91.6 70 - 130 1.02 0.2 </td <td>Analyte</td> <td>% Rec</td> <td></td> <td></td> <td></td> <td>Result</td> <td>Source Conc</td> <td>Spk Value</td> <td>MRL</td> <td>DF</td>	Analyte	% Rec				Result	Source Conc	Spk Value	MRL	DF
Date Prepried: Date Analyzed: 05/19/2022 ND 0.2 1.00 Calcium, Dissolved ND 0.2 1.00 Mognesium, Dissolved ND 0.2 1.00 Solutor, Dissolved ND 0.5 1.00 Solutor, Dissolved ND 0.5 1.00 Solutor, Dissolved ND 0.5 1.00 Dissolved ND 0.5 1.00 Dissolved ND 0.5 1.00 Dissolved ND 0.5 1.00 Dissolved 90.2 85 - 115 9.7 10.2 0.2 1.00 Magnesium, Dissolved 96.4 85 - 115 9.7 10.2 0.2 1.00 Solutor, Dissolved 96.4 85 - 115 9.5 1.00 0.5 1.00 Solutor, Dissolved 96.4 85 - 115 9.5 1.00 0.5 1.00 Calcium, Dissolved 9.3 85 - 155 9.0 0.2 1.00 Calcium, Dissol	3			slank - EPA 2	200.7					
Calcian, Dissolved ND 0,2 1,00 Icen, Dissolved ND 0,2 1,00 Protassiun, Dissolved ND 0,2 1,00 Protassiun, Dissolved ND 0,2 1,00 Sodiun, Dissolved ND 0,2 1,00 Tri, Dissolved ND 0,2 1,00 Sodiun, Dissolved ND 0,22 1,00 Tri, Dissolved 90,2 86 - 115 9,2 0,2 0,2 1,00 Calciun, Dissolved 90,2 86 - 115 9,8 10,0 0,5 1,00 Magnesiun, Dissolved 96,4 85 - 115 9,6 10,0 0,5 1,00 Sodium, Dissolved 96,4 85 - 115 9,6 10,0 0,5 1,00 Sodium, Dissolved 90,3 85 - 15 0,18 0,200 0,2 1,00 Dissolved 9,5 0,18 0,020 1,00 0,5 1,00 Dissolved 9,1 7,0 130	QC Sample ID: BWE0967-BLK1	Batch:	BWE0967							
Inn, Dissolved ND 0.02 1.00 Magnesium, Dissolved ND 0.55 1.00 Sodium, Dissolved ND 0.55 1.00 Sodium, Dissolved ND 0.52 1.00 Sodium, Dissolved ND 0.52 1.00 Dissolved ND 0.52 1.00 Dissolved Sodium, Dissolved 90.2 85 - 115 9.2 1.02 0.2 1.00 Magnesium, Dissolved 96.4 65 - 115 9.7 10.2 0.2 1.00 Magnesium, Dissolved 96.4 65 - 115 9.7 10.0 0.5 1.00 Sodium, Dissolved 96.4 65 - 115 9.6 1.00 0.5 1.00 Sodium, Dissolved 96.4 65 - 115 9.5 1.00 0.5 1.00 Colamp, Dissolved 96.4 70 - 130 130 123 10.2 0.2 1.00 Colamp, Dissolved 91.0 70 - 130 130 123 10.2	Date Prepared: 05/19/2022	Date A	nalyzed: 05	5/19/2022						
Magnesium, Dissolved ND 0.2 1.00 Ordiasium, Dissolved ND 0.05 1.00 Sodium, Dissolved ND 0.02 1.00 Tin, Dissolved ND 0.02 1.00 CS ample ID: BWE0967-BS1 Batch: BWE0967 UCS - EPA 200.7 1.02 0.22 1.02 0.22 1.02 0.22 1.00 Ordiaum, Dissolved 90.2 85 - 115 9.2 1.02 0.22 1.00 Magnesium, Dissolved 96.4 85 - 115 9.6 1.00 0.5 1.00 Polassium, Dissolved 96.4 85 - 115 9.6 1.00 0.5 1.00 Regressium, Dissolved 96.4 85 - 115 0.18 0.200 0.02 1.00 Tin, Dissolved 90.3 65 - 155 0.18 0.200 0.02 1.00 Tin, Dissolved 91.3 70 - 130 130 123 10.2 0.2 1.00 Tin, Dissolved 91.0 70 - 130 6.47 0.288<	Calcium, Dissolved					ND			0.2	1.00
Polasisum, Dissolved ND 0.5 1.00 Sodium, Dissolved ND 0.55 1.00 Sodium, Dissolved ND 0.02 1.00 LCS - EPA 201.7 LCS - EPA 201.7 CCS ample ID: BWE0967-IBS1 Batch: BWE0967 Calcium, Dissolved 90.2 65 - 115 9.2 10.2 0.2 1.00 Magnesium, Dissolved 96.6 65 - 115 9.5 10.0 0.65 10.0 Optassium, Dissolved 94.6 65 - 115 9.5 10.0 0.5 10.0 Sodium, Dissolved 94.6 85 - 115 9.5 10.0 0.5 10.0 Sodium, Dissolved 94.6 85 - 115 9.5 10.0 0.2 1.00 Calcium, Dissolved 94.6 70 - 130 0.87 0.38 0.02 0.02 1.00 Calcium, Dissolved 71.0 70 - 130 6.72 0.38 0.2 0.2 1.00 Calcium, Dissolved	Iron, Dissolved					ND			0.02	1.00
Sodium, Dissolved ND 0.5 1.00 Tin, Dissolved ND 0.5 1.00 QC Sample ID: BWE0967-BS1 Batch: BWE0967 0.2 0.2 1.02 0.2 1.00 Calcium, Dissolved 90.2 85 - 115 9.2 10.2 0.2 1.00 Magnesium, Dissolved 96.4 85 - 115 9.6 10.0 0.5 1.00 Potassium, Dissolved 96.4 85 - 115 9.6 10.0 0.5 1.00 Sodium, Dissolved 96.4 85 - 115 9.6 0.00 0.5 1.00 Sodium, Dissolved 94.6 85 - 115 9.6 0.00 0.00 1.00 Date Prepared: 05/19/2022 Date Analyzet: 05/19/2022 Cate Analyzet: 05/19/2022 1.00 0.5 1.00 Calcium, Dissolved 91.6 70 - 130 0.572 0.389 0.200 0.02 1.00 Iren, Dissolved 91.0 70 - 130 0.14 4.4 4.5 1.00 0.5 1.00 <t< td=""><td>Magnesium, Dissolved</td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td>0.2</td><td>1.00</td></t<>	Magnesium, Dissolved					ND			0.2	1.00
Tin, Dissolved ND 0.02 1.00 LCS - EPA 200.7 LCS - EPA 200.7 LCS - EPA 200.7 LCS - EPA 200.7 Date Analyzed: 05/19/2022 Date Analyzed	Potassium, Dissolved					ND			0.5	1.00
LCS - EPA 200.7 QC Sample ID: BWE0967-BS1 Batch: BWE0967 Date Prepared: 05/19/2022 Date Analyzed: 05/19/2022 10.2 0.2 1.00 Calcium, Dissolved 97.6 85 - 115 9.7 10.2 0.2 1.00 Magnesium, Dissolved 96.4 85 - 115 9.6 10.0 0.5 1.00 Sodium, Dissolved 96.4 85 - 115 9.6 10.0 0.5 1.00 Sodium, Dissolved 96.4 85 - 115 9.6 10.0 0.5 1.00 Sodium, Dissolved 96.3 85 - 155 0.18 0.200 0.02 1.00 Tr, Dissolved 90.3 Batch: BWE0967 QC Source Sample: 22E1012-01 Date Prapared: 05/19/2022 1.00 0.55 1.00 Calcium, Dissolved 73.5 70 - 130 1.30 1.23 1.0.2 0.2 1.00 Tro, Dissolved 91.0 70 - 130 0.44 80.20 0.02 1.00 Galaum, Dissolved 91.0 70 - 130 0.18<	Sodium, Dissolved					ND			0.5	1.00
QC Sample ID: BWE0967-BS1 Batch: BWE0967 Date Prepared: 05/19/2022 Date Analyzed: 05/19/2022 Calcium, Dissolved 90.2 85 - 115 9.2 10.2 0.2 1.00 Magnesium, Dissolved 97.6 85 - 115 9.7 10.2 0.2 1.00 Magnesium, Dissolved 96.4 85 - 115 9.6 10.0 0.5 1.00 Sodium, Dissolved 90.3 85 - 155 0.18 0.200 0.02 1.00 Otassium, Dissolved 90.3 85 - 155 0.18 0.200 0.02 1.00 Oc Sample ID: BWE0967-MS1 Batch: BWE0967 QC Saurce Sample: 22E1012-01 Date Prepared: 05/19/2022 Date Analyzed: 05/19/2022 Calcium, Dissolved 73.5 70 - 130 130 123 10.2 0.2 1.00 Ortos, Dissolved 91.0 70 7130 130 124 4.5 10.0 0.5 1.00 Ortos, Dissolved 97.0 70 7130 14.2 4.5 10.0 0.5 1.00 1	Tin, Dissolved					ND			0.02	1.00
Date Prepared: Date Analyzed: 05/19/2022 0.2 0.5 10.2 0.2 10.0 Calcium, Dissolved 97.6 85 - 115 9.7 10.2 0.2 1.00 Magnesium, Dissolved 95.3 85 - 115 9.6 10.0 0.5 1.00 Potassium, Dissolved 96.4 85 - 115 9.5 10.0 0.5 1.00 Sodium, Dissolved 94.6 85 - 115 9.5 10.0 0.5 1.00 Th, Dissolved 94.6 85 - 115 9.5 10.0 0.5 1.00 Th, Dissolved 90.3 85 - 155 0.18 0.200 0.02 1.00 Thr, Dissolved 91.6 70 - 130 10.2 0.2 1.00 Tho, Dissolved 91.6 70 - 130 14.2 4.5 10.0 0.5 1.00 Potassium, Dissolved 91.0 70 - 130 14.2 4.5 10.0 0.5 1.00 Potassium, Dissolved 91.0 70 - 130 10.8<				LCS - EPA 2	00.7					
Calcium, Dissolved 90.2 85 - 115 9.2 10.2 0.2 1.00 Iron, Dissolved 97.6 85 - 115 0.195 0.20 0.02 1.00 Magnesium, Dissolved 96.4 85 - 115 9.7 10.2 0.2 1.00 Potassium, Dissolved 96.4 85 - 115 9.5 10.0 0.5 1.00 Sodium, Dissolved 94.6 85 - 115 9.5 10.0 0.5 1.00 Date Preparet: 05/19/2022 Date Analyzed: 05/19/2022 Calcium, Dissolved 73.5 70 - 130 130 123 10.2 0.2 1.00 Magnesium, Dissolved 91.6 70 - 130 54.0 44.8 10.0 0.5 1.00 Magnesium, Dissolved 97.0 70 - 130 14.2 4.5 10.0 0.2 1.00 Tin, Dissolved 90.4 70 - 130 14.2 4.5 10.0 0.2 1.00 Calcium, Dissolved 97.2 70 - 130 69.6 60.7	QC Sample ID: BWE0967-BS1	Batch:	BWE0967							
Iron, Dissolved 97.6 85 - 115 0.195 0.200 0.02 1.00 Magnesium, Dissolved 96.3 85 - 115 9.7 10.2 0.2 1.00 Sodium, Dissolved 96.4 85 - 115 9.6 10.0 0.5 1.00 Sodium, Dissolved 94.6 85 - 115 9.6 10.0 0.5 1.00 Sodium, Dissolved 90.3 85 - 155 0.18 0.200 0.02 1.00 Cast Option Math: SWE0967 QC Source Sample: 22E1012-01 Vertain Solid 1.00 0.02 1.00 Date Prepared: 05/19/2022 Date Analyzed: 05/19/2022 Cast 10.2 0.2 1.00 Conc, Dissolved 91.0 70 - 130 14.2 4.5 10.0 0.5 1.00 Dissolved 91.0 70 - 130 14.2 4.5 10.0 0.5 1.00 Sodium, Dissolved 92.4 70 - 130 10.8 0.004 0.200 0.02 1.00 <tr< td=""><td>Date Prepared: 05/19/2022</td><td>Date A</td><td>nalyzed: 05</td><td>5/19/2022</td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	Date Prepared: 05/19/2022	Date A	nalyzed: 05	5/19/2022						
Magnesium, Dissolved 95.3 85 - 115 9.7 10.2 0.2 1.00 Potassium, Dissolved 96.4 85 - 115 9.6 10.0 0.5 1.00 Sodium, Dissolved 94.6 85 - 115 9.5 10.0 0.5 1.00 Th, Dissolved 90.3 85 - 155 0.18 0.200 0.02 1.00 CC Sample ID: BWE0967-MS1 Batch: BWE0967 QC Source Sample: 22E1012-01 U 2.2 1.00 0.02 1.00 Cont, Dissolved 73.5 70 - 130 130 123 10.2 0.2 1.00 Magnesium, Dissolved 91.0 70 - 130 54.0 44.8 10.2 0.2 1.00 Magnesium, Dissolved 97.0 70 - 130 14.2 4.5 10.0 0.5 1.00 Sodium, Dissolved 90.4 70 - 130 0.18 0.004 0.200 0.02 1.00 Tin, Dissolved 90.4 70 - 130 0.18 0.004 0.20 0.2 1.00	Calcium, Dissolved	90.2		85 - 115		9.2		10.2	0.2	1.00
Polassium, Dissolved 96.4 85 - 115 9.6 10.0 0.5 1.00 Sodium, Dissolved 94.6 85 - 115 9.6 10.0 0.5 1.00 Sodium, Dissolved 94.6 85 - 115 9.5 0.18 0.200 0.02 1.00 Th, Dissolved 90.3 85 - 155 0.18 0.200 0.02 1.00 Date Prepared: 05/19/2022 Date Amalyzed: 05/19/2022 0.02 1.00 Galdum, Dissolved 91.6 70 - 130 130 123 10.2 0.2 1.00 Magnesium, Dissolved 91.0 70 - 130 0.572 0.389 0.200 0.02 1.00 Sodium, Dissolved 91.0 70 - 130 14.2 4.5 10.0 0.5 1.00 Sodium, Dissolved 95.3 70 - 130 109 100 10.0 0.5 1.00 Ortan, Dissolved 95.3 70 - 130 69.6 60.7 10.2 0.2 1.00 Ortan,	Iron, Dissolved	97.6		85 - 115		0.195		0.200	0.02	1.00
Sodium, Dissolved 94.6 85 - 115 9.5 10.0 0.5 1.00 Tin, Dissolved 90.3 85 - 155 0.18 0.200 0.02 1.00 Matrix Spike - EPA 200.7 QC Sample ID: BWE0967-MS1 Batch: BWE0967 QC Source Sample: 22E1012-01 0.20 0.02 1.00 Date Prepared: 05/19/2022 Date Analyzed: 05/19/2022 Calcium, Dissolved 91.6 7.0 - 130 130 123 10.2 0.2 1.00 Magnesium, Dissolved 91.6 7.0 - 130 0.572 0.389 0.200 0.02 1.00 Magnesium, Dissolved 91.0 7.0 - 130 0.54.0 44.8 10.2 0.2 1.00 Sodium, Dissolved 90.4 70 - 130 14.2 4.5 10.0 0.5 1.00 CS ample ID: BWE0967-MS2 Batch: BWE0967 QC Source Sample: XXXXXX-XX Date Prepared: 05/19/2022 Date Analyzed: 05/19/2022 1.00 1.00 0.20 0.02 1.00 Icolum, Dissolved 95.3 70 - 130 11.1 <td>Magnesium, Dissolved</td> <td>95.3</td> <td></td> <td>85 - 115</td> <td></td> <td>9.7</td> <td></td> <td>10.2</td> <td>0.2</td> <td>1.00</td>	Magnesium, Dissolved	95.3		85 - 115		9.7		10.2	0.2	1.00
Tin, Dissolved 90.3 85 - 155 0.18 0.200 0.02 1.00 Matrix Spike - EPA 200.7 QC Sample ID: BWE0967-MS1 Batch: BWE0967 QC Source Sample: 22E1012-01 1.00 Date Analyzed: 05/19/202 1.00 0.57 0.389 0.200 0.02 1.00 inon, Dissolved 91.6 70 - 130 130 123 10.2 0.2 1.00 0.50 1.00 Dots 1.00 D	Potassium, Dissolved	96.4		85 - 115		9.6		10.0	0.5	1.00
Matrix Spike - EPA 200.7 QC Sample ID: BWE0967-MS1 Batch: BWE0967 QC Source Sample: 22E1012-01 Date Prepared: 05/19/2022 Date Analyzed: 05/19/2022 0.00 Calcium, Dissolved 73.5 70 - 130 130 123 10.2 0.2 1.00 Magnesium, Dissolved 91.6 70 - 130 54.0 44.8 10.2 0.2 1.00 Potassium, Dissolved 97.0 70 - 130 54.0 44.8 10.2 0.2 1.00 Sodium, Dissolved 97.0 70 - 130 14.2 4.5 10.0 0.5 1.00 Optassium, Dissolved 90.4 70 - 130 10.9 100 10.0 0.5 1.00 Date Prepared: 05/19/2022 Date Analyzed: 05/19/2022 Co Source Sample: XXXXXX-XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Sodium, Dissolved	94.6		85 - 115		9.5		10.0	0.5	1.00
QC Sample ID: BWE0967-MS1 Batch: BWE0967 QC Source Sample: 22E1012-01 Date Prepared: 05/19/2022 Date Analyzed: 05/19/2022 CSource Sample: 22E1012-01 Calcium, Dissolved 73.5 70 - 130 130 123 10.2 0.2 1.00 forn, Dissolved 91.6 70 - 130 0.572 0.389 0.200 0.02 1.00 Magnesium, Dissolved 91.0 70 - 130 14.2 4.5 10.0 0.5 1.00 Sodium, Dissolved 97.0 70 - 130 14.2 4.5 10.0 0.5 1.00 QC Sample ID: BWE0967-MS2 Batch: BWE0967 QC Source Sample: XXXXXX-XX Date Prepared: 05/19/2022 Calcium, Dissolved 87.2 70 - 130 69.6 60.7 10.2 0.2 1.00 Magnesium, Dissolved 95.3 70 - 130 30.5 20.8 10.2 0.2 1.00 Magnesium, Dissolved 99.2 70 - 130 11.1 1.2 10.0 0.5 1.00 Sodium, Dissolved 93.5 70 - 130 0.1	Tin, Dissolved	90.3		85 - 155		0.18		0.200	0.02	1.00
Date Prepared: 05/19/2022 Date Analyzed: 05/19/2022 Calcium, Dissolved 73.5 70 - 130 130 123 10.2 0.2 1.00 Iron, Dissolved 91.6 70 - 130 0.572 0.389 0.200 0.02 1.00 Magnesium, Dissolved 91.0 70 - 130 14.2 4.5 10.0 0.5 1.00 Potassium, Dissolved 97.0 70 - 130 14.2 4.5 10.0 0.5 1.00 Sodium, Dissolved 85.8 70 - 130 10.9 100 10.0 0.5 1.00 QC Sample ID: BWE0967-MS2 Batch: BWE0967 QC Source Sample: XXXXXX-XX XX XXX 20 1.00 Iron, Dissolved 87.2 70 - 130 69.6 60.7 10.2 0.2 1.00 Magnesium, Dissolved 95.3 70 - 130 30.5 20.8 10.2 0.2 1.00 Magnesium, Dissolved 91.3 70 - 130 11.1 1.2 10.0 0.5 1.00 S			Matr	ix Spike - EF	PA 200.7					
Calcium, Dissolved 73.5 70 - 130 130 123 10.2 0.2 1.00 Magnesium, Dissolved 91.6 70 - 130 0.572 0.389 0.200 0.02 1.00 Magnesium, Dissolved 91.0 70 - 130 14.2 4.5 10.0 0.5 1.00 Potassium, Dissolved 85.8 70 - 130 14.2 4.5 10.0 0.5 1.00 QC Sample ID: BWE0967-MS2 Batch: BWE0967 QC Source Sample: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	QC Sample ID: BWE0967-MS1	Batch:	BWE0967	QC So	urce Samp	ple: 22E1012	2-01			
Calcium, Dissolved 73.5 70 - 130 130 123 10.2 0.2 1.00 Magnesium, Dissolved 91.6 70 - 130 0.572 0.389 0.200 0.02 1.00 Magnesium, Dissolved 91.0 70 - 130 14.2 4.5 10.0 0.5 1.00 Potassium, Dissolved 85.8 70 - 130 14.2 4.5 10.0 0.5 1.00 QC Sample ID: BWE0967-MS2 Batch: BWE0967 QC Source Sample: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Date Prepared: 05/19/2022	Date A	nalyzed: 05	5/19/2022						
Iron, Dissolved 91.6 70 - 130 0.572 0.389 0.200 0.02 1.00 Magnesium, Dissolved 91.0 70 - 130 54.0 44.8 10.2 0.22 1.00 Potassium, Dissolved 97.0 70 - 130 14.2 4.5 10.0 0.5 1.00 Sodium, Dissolved 85.8 70 - 130 0.18 0.004 0.200 0.02 1.00 QC Sample ID: BWE0967-MS2 Batch: BWE0967 QC Source Sample: XXXXXX-XX VXXXXX-XX VXXXXX-XX VXXXXXX-XX Date Prepared: 05/19/2022 Date Analyzed: 05/19/2022 70 - 130 0.203 ND 0.200 0.02 1.00 Magnesium, Dissolved 95.3 70 - 130 0.13 0.20 0.02 1.00 Magnesium, Dissolved 91.3 70 - 130 11.1 1.2 10.0 0.5 1.00 Sodium, Dissolved 91.5 70 - 130 0.19 ND 0.200 0.02 1.00 Sodium, Dissolved 95.5 0.314 70 - 130<	-					130	123	10.2	0.2	1.00
Magnesium, Dissolved 91.0 70 - 130 54.0 44.8 10.2 0.2 1.00 Potassium, Dissolved 97.0 70 - 130 14.2 4.5 10.0 0.5 1.00 Sodium, Dissolved 85.8 70 - 130 109 100 10.0 0.5 1.00 QC Sample ID: BWE0967-MS2 Batch: BWE0967 QC Source Sample: XXXXXX-XX XXXXXXX-X V 1.00 0.20 0.20 1.00 Iro, Dissolved 87.2 70 - 130 69.6 60.7 10.2 0.2 1.00 Iron, Dissolved 95.3 70 - 130 30.5 20.8 10.2 0.2 1.00 Magnesium, Dissolved 91.3 70 - 130 30.5 20.8 10.0 0.5 1.00 Sodium, Dissolved 91.3 70 - 130 0.19 ND 0.200 0.02 1.00 Sodium, Dissolved 91.3 70 - 130 0.19 ND 0.20 0.20 1.00 Sodium, Dissolved 95.5 0.314										
Potassium, Dissolved 97.0 70 - 130 14.2 4.5 10.0 0.5 1.00 Sodium, Dissolved 85.8 70 - 130 109 100 10.0 0.55 1.00 QC Sample ID: BWE0967-MS2 Batch: BWE0967 QC Source Sample: XXXXXX-XXX VXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX										
Sodium, Dissolved 85.8 70 - 130 109 100 10.0 0.5 1.00 Tin, Dissolved 90.4 70 - 130 0.18 0.004 0.200 0.02 1.00 QC Sample ID: BWE0967-MS2 Batch: BWE0967 QC Source Sample: XXXXXX-XX XXXXXXX-XX V Date Prepared: 05/19/2022 Date Analyzed: 05/19/2022 Ge Sample ID: BWE0967-MS2 Batch: BWE0967 QC Source Sample: XXXXXXX-XX Date Prepared: 05/19/2022 Date Analyzed: 05/19/2022 Ge Sample ID: BWE0967 10.2 0.2 1.00 Galdium, Dissolved 95.3 70 - 130 0.203 ND 0.200 0.02 1.00 Magnesium, Dissolved 91.3 70 - 130 30.5 20.8 10.2 0.2 1.00 Sodium, Dissolved 91.3 70 - 130 0.19 ND 0.200 0.02 1.00 Sodium, Dissolved 91.3 70 - 130 0.19 ND 0.200 0.02 1.00 Out Matrix Butch: BWE0967 QC Source Sample: 22E1012-01 Date	-									
Tin, Dissolved 90.4 70 - 130 0.18 0.004 0.200 0.02 1.00 QC Sample ID: BWE0967-MS2 Batch: BWE0967 QC Source Sample: XXXXXX-XX V	PC									
QC Sample ID: BWE0967-MS2 Batch: BWE0967 QC Source Sample: XXXXXX-XX Date Prepared: 05/19/2022 Date Analyzed: 05/19/2022 Calcium, Dissolved 87.2 70 - 130 69.6 60.7 10.2 0.2 1.00 Iron, Dissolved 101 70 - 130 0.203 ND 0.200 0.02 1.00 Magnesium, Dissolved 95.3 70 - 130 30.5 20.8 10.2 0.2 1.00 Potassium, Dissolved 99.2 70 - 130 30.5 20.8 10.2 0.2 1.00 Sodium, Dissolved 91.3 70 - 130 45.0 35.8 10.0 0.5 1.00 Sodium, Dissolved 93.5 70 - 130 0.19 ND 0.200 0.02 1.00 Matrix Spike Dup - EPA 200.7 QC Source Sample: 22E1012-01 Date Analyzed: 05/19/2022 Date Analyzed: 05/19/2022 Calcium, Dissolved 69.5 0.314 70 - 130 20 130 123 10.2 0.2 1.00 QM-AX - The spike recovery was outside of QC acceptance limits for the MS and										
Date Prepared: 05/19/2022 Date Analyzed: 05/19/2022 Calcium, Dissolved 87.2 70 - 130 69.6 60.7 10.2 0.2 1.00 Iron, Dissolved 101 70 - 130 0.203 ND 0.200 0.02 1.00 Magnesium, Dissolved 95.3 70 - 130 30.5 20.8 10.2 0.2 1.00 Potassium, Dissolved 99.2 70 - 130 30.5 20.8 10.2 0.2 1.00 Sodium, Dissolved 91.3 70 - 130 45.0 35.8 10.0 0.5 1.00 Sodium, Dissolved 93.5 70 - 130 0.19 ND 0.200 0.02 1.00 Date Analyzed: 05/19/2022 Date Analyzed: 05/19/2022 0.02 1.00 Calcium, Dissolved 69.5 0.314 70 - 130 20 130 123 10.2 0.2 1.00 QM-4X - The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was			BWE0967	10.1.1.00 (Secondar	urce Samr					
Calcium, Dissolved 87.2 70 - 130 69.6 60.7 10.2 0.2 1.00 Iron, Dissolved 101 70 - 130 0.203 ND 0.200 0.02 1.00 Magnesium, Dissolved 95.3 70 - 130 30.5 20.8 10.2 0.2 1.00 Potassium, Dissolved 99.2 70 - 130 11.1 1.2 10.0 0.5 1.00 Sodium, Dissolved 91.3 70 - 130 11.1 1.2 10.0 0.5 1.00 Sodium, Dissolved 91.3 70 - 130 0.19 ND 0.200 0.02 1.00 Tin, Dissolved 93.5 70 - 130 0.19 ND 0.200 0.02 1.00 Date Prepared: 05/19/2022 Date Analyzed: 05/19/2022 Date Analyzed: 05/19/2022 Calcium, Dissolved 69.5 0.314 70 - 130 20 130 123 10.2 0.2 1.00 QM-4X - The spike recovery was outside of QCa acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. Th					uree Samp	JIC. MAMA	MA-AA			
Iron, Dissolved 101 70 - 130 0.203 ND 0.200 0.02 1.00 Magnesium, Dissolved 95.3 70 - 130 30.5 20.8 10.2 0.2 1.00 Potassium, Dissolved 99.2 70 - 130 11.1 1.2 10.0 0.5 1.00 Sodium, Dissolved 91.3 70 - 130 45.0 35.8 10.0 0.5 1.00 Sodium, Dissolved 93.5 70 - 130 0.19 ND 0.200 0.02 1.00 Tin, Dissolved 93.5 70 - 130 0.19 ND 0.200 0.02 1.00 Tin, Dissolved 93.5 70 - 130 QC Source Sample: I2EI012-01 Ince ND 0.200 0.02 1.00 QC Sample ID: BWE0967-MSD1 Batch: BWE0967 QC Source Sample: I2EI012-01 Ince Ince <td></td> <td></td> <td></td> <td></td> <td></td> <td>60.6</td> <td>60.7</td> <td>10.2</td> <td>0.2</td> <td>1 00</td>						60.6	60.7	10.2	0.2	1 00
Magnesium, Dissolved 95.3 70 - 130 30.5 20.8 10.2 0.2 1.00 Potassium, Dissolved 99.2 70 - 130 11.1 1.2 10.0 0.5 1.00 Sodium, Dissolved 91.3 70 - 130 45.0 35.8 10.0 0.5 1.00 Tin, Dissolved 93.5 70 - 130 0.19 ND 0.200 0.02 1.00 Matrix Spike Dup - EPA 200.7 Watrix Spike Dup - EPA 200.7 QC Sample ID: BWE0967-MSD1 Batch: BWE0967 QC Source Sample: 22E1012-01 0.2 1.00 Date Analyzed: 05/19/2022 Date Analyzed: 05/19/2022 0.2 1.00 0.2 1.00 QM-4X - The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits. 0.0586 0.389 0.200 0.02 1.00 Magnesium, Dissolved 95.4 1.32 70 - 130 20 0.580 0.389 0.200 0.02 1.00										
Potassium, Dissolved 99.2 70 - 130 11.1 1.2 10.0 0.5 1.00 Sodium, Dissolved 91.3 70 - 130 45.0 35.8 10.0 0.5 1.00 Tin, Dissolved 93.5 70 - 130 0.19 ND 0.200 0.02 1.00 Matrix Spike Dup - EPA 200.7 QC Sample ID: BWE0967-MSD1 Batch: BWE0967 QC Source Sample: 22E1012-01 0.20 0.2 1.00 Date Prepared: 05/19/2022 Date Analyzed: 05/19/2022 Date Analyzed: 05/19/2022 0.2 1.00 0.2 1.00 QM-4X - The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits. 0.580 0.389 0.200 0.02 1.00 Ion, Dissolved 95.4 1.32 70 - 130 20 54.1 44.8 10.2 0.2 1.00 Magnesium, Dissolved 99.8 1.94 70 - 130 20 54.1 44.8 10.2 0.2 1.00<										
Sodium, Dissolved 91.3 70 - 130 45.0 35.8 10.0 0.5 1.00 Tin, Dissolved 93.5 70 - 130 0.19 ND 0.200 0.02 1.00 Matrix Spike Dup - EPA 200.7 QC Sample ID: BWE0967-MSD1 Batch: BWE0967 QC Source Sample: 22E1012-01 Vertice Vertice Vertice Vertice 0.12 0.2 0.2 1.00 QC Sample ID: BWE0967-MSD1 Batch: BWE0967 QC Source Sample: 22E1012-01 Vertice Vertice 0.2 1.00 0.2 0.2 1.00 QM-4X - The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits. Vertice 1.00 Magnesium, Dissolved 95.4 1.32 70 - 130 20 0.389 0.200 0.02 1.00 Magnesium, Dissolved 91.3 0.0586 70 - 130 20 0.41.5 4.5 10.0 0.5 1.00 Not, Dissolved 91.3 0.0586										
Tin, Dissolved 93.5 70 - 130 0.19 ND 0.200 0.02 1.00 Matrix Spike Dup - EPA 200.7 QC Sample ID: BWE0967-MSD1 Batch: BWE0967 QC Source Sample: 22E1012-01 Date Prepared: 05/19/2022 Date Analyzed: 05/19/2022 Old Sample ID: BWE0967 Old Sample ID: BWE0967-MSD1 Batch: BWE0967 OC Source Sample: 22E1012-01 Calcium, Dissolved 69.5 0.314 70 - 130 20 130 123 10.2 0.2 1.00 QM-4X - The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration at 4 times and to many term of the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration at 4 times acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or due to many term or due the many concent										
Matrix Spike Dup - EPA 200.7 QC Sample ID: BWE0967-MSD1 Batch: BWE0967 QC Source Sample: 22E1012-01 Date Prepared: 05/19/2022 Date Analyzed: 05/19/2022 10.0 0.2 1.00 Calcium, Dissolved 69.5 0.314 70 - 130 20 130 123 10.2 0.2 1.00 QM-4X - The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits. 20 0.580 0.389 0.200 0.02 1.00 Magnesium, Dissolved 95.4 1.32 70 - 130 20 0.580 0.389 0.200 0.02 1.00 Magnesium, Dissolved 91.3 0.0586 70 - 130 20 54.1 44.8 10.2 0.2 1.00 Sodium, Dissolved 91.3 0.0586 70 - 130 20 14.5 4.5 10.0 0.5 1.00 Sodium, Dissolved 91.3 0.391 70 - 130 20 109 100 10.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
QC Sample ID: BWE0967-MSD1 Batch: BWE0967 QC Source Sample: 22E1012-01 Date Prepared: 05/19/2022 Date Analyzed: 05/19/2022 0.2 1.00 Calcium, Dissolved 69.5 0.314 70 - 130 20 130 123 10.2 0.2 1.00 QM-4X - The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits. 0.580 0.389 0.200 0.02 1.00 Iron, Dissolved 95.4 1.32 70 - 130 20 54.1 44.8 10.2 0.2 1.00 Magnesium, Dissolved 91.3 0.0586 70 - 130 20 54.1 44.8 10.2 0.2 1.00 Sodium, Dissolved 91.3 0.0586 70 - 130 20 14.5 4.5 10.0 0.5 1.00 Sodium, Dissolved 91.3 0.391 70 - 130 20 109 100 10.0 0.5 1.00 Sodium, Dissolved 92.6 2.47 <td></td> <td>93.5</td> <td>Matrix</td> <td></td> <td>EPA 200</td> <td></td> <td>ND</td> <td>0.200</td> <td>0.02</td> <td>1.00</td>		93.5	Matrix		EPA 200		ND	0.200	0.02	1.00
Date Prepared: 05/19/2022 Date Analyzed: 05/19/2022 Calcium, Dissolved 69.5 0.314 70 - 130 20 130 123 10.2 0.2 1.00 QM-4X - The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits. 0.580 0.389 0.200 0.02 1.00 Magnesium, Dissolved 95.4 1.32 70 - 130 20 54.1 44.8 10.2 0.2 1.00 Magnesium, Dissolved 91.3 0.0586 70 - 130 20 54.1 44.8 10.2 0.2 1.00 Potassium, Dissolved 99.8 1.94 70 - 130 20 14.5 4.5 10.0 0.5 1.00 Sodium, Dissolved 92.6 2.47 70 - 130 20 109 100 10.0 0.5 1.00 QC Sample ID: BWE0967-MSD2 Batch: BWE0967 QC Source Sample: XXXXXX-XX Date Analyzed: 05/19/2022 Date Analyzed: 05/19/2022 0.2 0.2	OC Sample ID: RWE0067 MSD1	Ratah					2_01			
Calcium, Dissolved 69.5 0.314 70 - 130 20 130 123 10.2 0.2 1.00 QM-4X - The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits. 0.580 0.389 0.200 0.02 1.00 Iron, Dissolved 95.4 1.32 70 - 130 20 0.580 0.389 0.200 0.02 1.00 Magnesium, Dissolved 91.3 0.0586 70 - 130 20 54.1 44.8 10.2 0.2 1.00 Potassium, Dissolved 99.8 1.94 70 - 130 20 14.5 4.5 10.0 0.5 1.00 Sodium, Dissolved 92.6 2.47 70 - 130 20 109 100 10.0 0.5 1.00 QC Sample ID: BWE0967-MSD2 Batch: BWE0967 QC Source Sample: XXXXXX-XX Date Analyzed: 05/19/2022 05/19/2022 0.2 1.00 Calcium, Dissolved 85.8 0.203 70 - 130 20 69.4 60.7 10.2 0.2 1.00 <					uree Sailif	. 22E1012	2-01			
QM-4X - The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.Iron, Dissolved95.41.3270 - 130200.5800.3890.2000.021.00Magnesium, Dissolved91.30.058670 - 1302054.144.810.20.21.00Potassium, Dissolved99.81.9470 - 1302014.54.510.00.51.00Sodium, Dissolved92.62.4770 - 1302010910010.00.51.00In, Dissolved92.62.4770 - 130200.190.0040.2000.021.00QC Sample ID: BWE0967-MSD2Batch: BWE0967QC Source Sample: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	•		•		20	130	123	10.2	02	1 00
Iron, Dissolved95.41.3270 - 130200.5800.3890.2000.021.00Magnesium, Dissolved91.30.058670 - 1302054.144.810.20.21.00Potassium, Dissolved99.81.9470 - 1302014.54.510.00.51.00Sodium, Dissolved81.50.39170 - 1302010910010.00.51.00Sodium, Dissolved92.62.4770 - 130200.190.0040.2000.021.00QC Sample ID: BWE0967-MSD2Batch: BWE0967QC Source Sample: XXXXXXX-XXQC Source Sample: XXXXXXX-XXUU1.000.201.00Qc Saiple ID: BWE0967-MSD2Date Analyzed: 05/19/2022Date Analyzed: 05/19/2022QC Source Sample: XXXXXXX-XXUU1.00Calcium, Dissolved85.80.20370 - 1302069.460.710.20.21.00	QM-4X - The spike recovery was outsi or greater the spike concentration. The	ide of QC a	cceptance li	mits for the MS	and/or N	ISD due to a	analyte concent	ration at 4 tir	nes	1.00
Magnesium, Dissolved 91.3 0.0586 70 - 130 20 54.1 44.8 10.2 0.2 1.00 Potassium, Dissolved 99.8 1.94 70 - 130 20 14.5 4.5 10.0 0.5 1.00 Sodium, Dissolved 81.5 0.391 70 - 130 20 109 100 10.0 0.5 1.00 Sodium, Dissolved 92.6 2.47 70 - 130 20 0.19 0.004 0.200 0.02 1.00 QC Sample ID: BWE0967-MSD2 Batch: BWE0967 QC Source Sample: XXXXXX-XX Date Analyzed: 05/19/2022 Date Analyzed: 05/19/2022 0.21 1.00 0.2 1.00 Calcium, Dissolved 85.8 0.203 70 - 130 20 69.4 60.7 10.2 0.2 1.00		95 4	1.32	70 - 130	20	0.580	0.389	0.200	0.02	1.00
Potassium, Dissolved 99.8 1.94 70 - 130 20 14.5 4.5 10.0 0.5 1.00 Sodium, Dissolved 81.5 0.391 70 - 130 20 109 100 10.0 0.5 1.00 Tin, Dissolved 92.6 2.47 70 - 130 20 0.19 0.004 0.200 0.02 1.00 QC Sample ID: BWE0967-MSD2 Batch: BWE0967 QC Source Sample: XXXXXX-XX Date Analyzed: 05/19/2022 0.19 0.004 0.200 0.02 1.00 QC lacium, Dissolved 85.8 0.203 70 - 130 20 69.4 60.7 10.2 0.2 1.00										
Sodium, Dissolved 81.5 0.391 70 - 130 20 109 100 10.0 0.5 1.00 Tin, Dissolved 92.6 2.47 70 - 130 20 0.19 0.004 0.200 0.02 1.00 QC Sample ID: BWE0967-MSD2 Batch: BWE0967 QC Source Sample: XXXXXX-XX Date Analyzed: 05/19/2022 Date Analyzed: 05/19/2022 0.20 0.21 1.00 Calcium, Dissolved 85.8 0.203 70 - 130 20 69.4 60.7 10.2 0.2 1.00										
Tin, Dissolved 92.6 2.47 70 - 130 20 0.19 0.004 0.200 0.02 1.00 QC Sample ID: BWE0967-MSD2 Batch: BWE0967 QC Source Sample: XXXXXX-XX QC Source Sample: XXXXXX-XX Date Analyzed: 05/19/2022 Date Analyzed: 05/19/2022 Date Analyzed: 05/19/2022 0.20 69.4 60.7 10.2 0.2 1.00										
QC Sample ID: BWE0967-MSD2 Batch: BWE0967 QC Source Sample: XXXXXX-XX Date Prepared: 05/19/2022 Date Analyzed: 05/19/2022 Calcium, Dissolved 85.8 0.203 70 - 130 20 69.4 60.7 10.2 0.2 1.00										
Date Prepared: 05/19/2022 Date Analyzed: 05/19/2022 Calcium, Dissolved 85.8 0.203 70 - 130 20 69.4 60.7 10.2 0.2 1.00								0.200	0.02	1.00
Calcium, Dissolved 85.8 0.203 70 - 130 20 69.4 60.7 10.2 0.2 1.00					urce Samp		лл- л л			
Iron, Dissolved 99.7 1.64 70 - 130 20 0.199 ND 0.200 0.02 1.00										
	Iron, Dissolved	99.7	1.64	70 - 130	20	0.199	ND	0.200	0.02	1.00

CtF WO#: 22E1012

www.ChemtechFord.com

QC Report for Work Order (WO) - 22E1012

Analyte	% Rec	RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
	М	atrix Spik	e Dup - EP	A 200.7 (d	cont.)				
QC Sample ID: BWE0967-MSD2	Batch:	BWE0967	QC S	ource Sampl	e: XXXX	XXX-XX			
Date Prepared: 05/19/2022	Date A	nalyzed: 05/	/19/2022						
Magnesium, Dissolved	94.5	0.262	70 - 130	20	30.4	20.8	10.2	0.2	1.00
Potassium, Dissolved	98.2	0.908	70 - 130	20	11.0	1.2	10.0	0.5	1.00
Sodium, Dissolved	90.0	0.274	70 - 130	20	44.8	35.8	10.0	0.5	1.00
Tin, Dissolved	93.6	0.0535	70 - 130	20	0.19	ND	0.200	0.02	1.00

A			(WO) - 22E1012	Sauraa (2000		MRL	DF
Analyte	% Rec RPD	ank - EPA 20	RPD Max Result	Source Conc	Spk Value	MRL	DF
		alik - EFA 20	0.0				
QC Sample ID: BWE1024-BLK1	Batch: BWE1024	20/2022					
Date Prepared: 05/20/2022	Date Analyzed: 05/	20/2022					
Arsenic, Dissolved			ND			0.0005	1.00
Beryllium, Dissolved			ND			0.0005	1.00
Cadmium, Dissolved			ND			0.0002	1.00
Chromium, Dissolved			ND			0.0005	1.00
Cobalt, Dissolved			ND			0.0005	1.00
Copper, Dissolved			ND			0.0010	1.00
Lead, Dissolved			ND			0.0005	1.00
Manganese, Dissolved			ND			0.0005	1.00
Molybdenum, Dissolved			ND			0.0005	1.00
Nickel, Dissolved			ND			0.0005	1.00
Selenium, Dissolved			ND			0.0005	1.00
Silver, Dissolved			ND			0.0005	1.00
Thallium, Dissolved			ND			0.0002	1.00
Uranium, Dissolved			ND			0.0005	1.00
Vanadium, Dissolved			ND			0.0005	1.00
Zinc, Dissolved			ND			0.01	1.00
	L	CS - EPA 200	.8			Second and	
QC Sample ID: BWE1024-BS1	Batch: BWE1024						
Date Prepared: 05/20/2022	Date Analyzed: 05/	20/2022					
Arsenic, Dissolved	97.9	85 - 115	0.039		0.0400	0.0005	1.00
Beryllium, Dissolved	102	85 - 115	0.041		0.0400	0.0005	1.00
Cadmium, Dissolved	97.2	85 - 115	0.039		0.0400	0.0002	1.00
Chromium, Dissolved	98.8	85 - 115	0.040		0.0400	0.0005	1.00
Cobalt, Dissolved	97.0	85 - 115	0.039		0.0400	0.0005	1.00
Copper, Dissolved	97.3	85 - 115	0.039		0.0400	0.0010	1.00
Lead, Dissolved	99.6	85 - 115	0.040		0.0400	0.0005	1.00
Manganese, Dissolved	97.0	85 - 115	0.039		0.0400	0.0005	1.00
Molybdenum, Dissolved	98.9	85 - 115	0.040		0.0400	0.0005	1.00
Nickel, Dissolved	97.9	85 - 115	0.0392		0.0400	0.0005	1.00
Selenium, Dissolved	99.8	85 - 115	0.040		0.0400	0.0005	1.00
Silver, Dissolved	96.8	85 - 115	0.039		0.0400	0.0005	1.00
Thallium, Dissolved	101	85 - 115	0.040		0.0400	0.0002	1.00
Uranium, Dissolved	101	85 - 115	0.041		0.0400	0.0005	1.00
Vanadium, Dissolved	94.1	85 - 115	0.038		0.0400	0.0005	1.00
Zinc, Dissolved	98.2	85 - 115	0.04		0.0400	0.01	1.00
	Matrix	k Spike - EPA	200.8				
QC Sample ID: BWE1024-MS1	Batch: BWE1024	QC Source	e Sample: 22E1012-	-01			
Date Prepared: 05/20/2022	Date Analyzed: 05/2		-				
Arsenic, Dissolved	102	70 - 130	0.044	0.003	0.0400	0.0005	1.00
Beryllium, Dissolved	105	70 - 130	0.042	ND	0.0400	0.0005	1.00
Cadmium, Dissolved	96.6	70 - 130	0.039	0.00002	0.0400	0.0002	1.00
Chromium, Dissolved	92.9	70 - 130	0.043	0.005	0.0400	0.0005	1.00
Cobalt, Dissolved	93.8	70 - 130	0.039	0.001	0.0400	0.0005	1.00
Copper, Dissolved	99.2	70 - 130	0.040	0.0005	0.0400	0.0010	1.00
Lead, Dissolved	99.4	70 - 130	0.040	ND	0.0400	0.0005	1.00
Manganese, Dissolved	58.3	70 - 130	0.653	0.629	0.0400	0.0005	1.00
QM-4X - The spike recovery was outside							
or greater the spike concentration. The Q limits.	•						
Molybdenum, Dissolved	103	70 - 130	0.043	0.002	0.0400	0.0005	1.00

CtF WO#: 22E1012 www.ChemtechFord.com

QC Report for Work Order (WO) - 22E1012

			,					
Analyte	% Rec RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
	Matrix Sp	ike - EPA	200.8 (coi	nt.)				
QC Sample ID: BWE1024-MS1	Batch: BWE1024	QC S	ource Sampl	le: 22E1012	2-01			
Date Prepared: 05/20/2022	Date Analyzed: 05/2	20/2022						
Nickel, Dissolved	93.3	75 - 125		0.0383	0.0010	0.0400	0.0005	1.00
Selenium, Dissolved	103	70 - 130		0.047	0.005	0.0400	0.0005	1.00
Silver, Dissolved	81.5	70 - 130		0.033	ND	0.0400	0.0005	1.00
Thallium, Dissolved	101	70 - 130		0.041	ND	0.0400	0.0002	1.00
Uranium, Dissolved	103	70 - 130		0.059	0.017	0.0400	0.0005	1.00
Vanadium, Dissolved	94.1	70 - 130		0.041	0.003	0.0400	0.0005	1.00
Zinc, Dissolved	157	70 - 130		0.06	0.001	0.0400	0.01	1.00
QM-07 - The spike recovery was ou	itside acceptance limits for	the MS and/	or MSD. Th	ne batch wa	is accepted bas	sed on		

acceptable LCS recovery.

	QC R	eport for	Work Orde	er (WO) -	22E1012				
Analyte	% Rec	RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
		В	lank - EPA 2	245.1					
QC Sample ID: BWE0705-BLK1	Batch: E	3WE0705							
Date Prepared: 05/16/2022	Date An	alyzed: 05	/17/2022						
Mercury, Dissolved					ND			0.0002	1.00
		L	.CS - EPA 2	45.1					
QC Sample ID: BWE0705-BS1	Batch: E	3WE0705							
Date Prepared: 05/16/2022	Date An	alyzed: 05	/17/2022						
Mercury, Dissolved	108		85 - 115		0.0054		0.00500	0.0002	1.00
		Matri	x Spike - El	PA 245.1					
QC Sample ID: BWE0705-MS1	Batch: E	3WE0705	QC Sc	urce Samp	le: 22E1012	2-01			
Date Prepared: 05/16/2022	Date An	alyzed: 05	/17/2022						
Mercury, Dissolved	115		75 - 125		0.0058	ND	0.00500	0.0002	1.00
		Matrix S	Spike Dup -	EPA 245	.1				
QC Sample ID: BWE0705-MSD1	Batch: E	3WE0705	QC Sc	urce Samp	le: 22E1012	2-01			
Date Prepared: 05/16/2022	Date An	alyzed: 05	/17/2022						
Mercury, Dissolved	113	2.19	75 - 125	20	0.0056	ND	0.00500	0.0002	1.00

Analyta	QC F % Rec	Report for	r Work Ord	er (WO)		Source Conc	Sole Volum	MRL	DF
Analyte	70 Kec		lank - EPA		Result	Source Conc	Spk Value	WITCL	DF
QC Sample ID: BWE0580-BLK1	Batch	BWE0580		500.0					
Date Prepared: 05/12/2022		nalyzed: 05.	/12/2022						
Chloride	Date A	naryzeu. 05.	12/2022		ND			1.0	1.00
	Detale	DWE0720			ND			1.0	1.00
QC Sample ID: BWE0730-BLK1		BWE0730	/16/2022						
Date Prepared: 05/16/2022 Chloride	Date A	nalyzed: 05	10/2022		ND			1.0	1.00
Fluoride					ND			0.1	1.00
Sulfate					ND			1.0	1.00
		L	.CS - EPA 3	800.0					
QC Sample ID: BWE0580-BS1	Batch	BWE0580							
Date Prepared: 05/12/2022		nalyzed: 05/	/12/2022						
Chloride	100	nury200. 05/	90 - 110		50.1		50.0	1.0	1.00
QC Sample ID: BWE0730-BS1		BWE0730	00 110		00.1		00.0	1.0	1.00
Date Prepared: 05/16/2022		nalyzed: 05/	/16/2022						
Chloride	101	uaryzou. 03/	90 - 110		50.5		50.0	1.0	1.00
Fluoride	98.4		90 - 110 90 - 110		4.9		5.00	0.1	1.00
Sulfate	101		90 - 110		50.5		50.0	1.0	1.00
		Matri	x Spike - E	PA 300.0					
QC Sample ID: BWE0580-MS1	Batch:	BWE0580			ple: XXXXX	XX-XX			
Date Prepared: 05/12/2022		nalyzed: 05/	-	Juree Sump					
Chloride	66.8	uurj200, 00,	80 - 120		30500	27200	5000	550	1.00
QM-010 - The MS recovery was outs		ce limits but		icate Spike					
accepted based on the acceptability	of the MSD a	s the batch	Spike.						
QC Sample ID: BWE0580-MS2	Batch:	BWE0580	QC So	ource Samp	ple: XXXXX	XX-XX			
Date Prepared: 05/12/2022	Date A	nalyzed: 05/	/12/2022						
Chloride	98.9		80 - 120		29000	24000	5000	550	1.00
QC Sample ID: BWE0730-MS1	Batch:	BWE0730	QC So	ource Samp	ple: 22E1012	2-01			
Date Prepared: 05/16/2022	Date A	nalyzed: 05/	/16/2022						
Chloride	107		80 - 120		199	91.8	100	11.0	1.00
Fluoride	109		80 - 120		11.7	0.8	10.0	1.1	1.00
Sulfate	97.7		80 - 120		421	323	100	11.0	1.00
QC Sample ID: BWE0730-MS2	Batch:	BWE0730	QC So	ource Samp	ple: XXXXX	XX-XX			
Date Prepared: 05/16/2022	Date A	nalyzed: 05/	/16/2022						
Chloride	104		80 - 120		30200	25000	5000	550	1.00
Fluoride	115		80 - 120		577	ND	500	55.0	1.00
Sulfate	115		80 - 120		10600	4910	5000	550	1.00
		Matrix S	Spike Dup	- EPA 300	0.0				
QC Sample ID: BWE0580-MSD1		BWE0580		ource Samp	ole: XXXXX	XXX-XX			
Date Prepared: 05/12/2022		nalyzed: 05/							
Chloride	97.3	4.86	80 - 120	20	32000	27200	5000	550	1.00
QC Sample ID: BWE0580-MSD2	Batch:	BWE0580	QC Sc	ource Samp	ole: XXXXX	XX-XX			
Date Prepared: 05/12/2022	Date A	nalyzed: 05/	/12/2022						
Chloride	97.2	0.288	80 - 120	20	28900	24000	5000	550	1.00
QC Sample ID: BWE0730-MSD1	Batch:	BWE0730	QC Sc	ource Samp	ole: 22E1012	2-01			
Date Prepared: 05/16/2022		nalyzed: 05/		1					
Chloride	103	2.02	80 - 120	20	195	91.8	100	11.0	1.00
Fluoride	104	4.46	80 - 120	20	11.2	0.8	10.0	1.1	1.00
Sulfate	98.9	0.278	80 - 120	20	422	323	100	11.0	1.00
CtF WO#: 22E1012									

CtF WO#: 22E1012

www.ChemtechFord.com

	QC I	Report for	Work Ord	er (WO) -	22E1012				
Analyte	% Rec	RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
	M	atrix Spil	ke Dup - EF	PA 300.0 (cont.)				
QC Sample ID: BWE0730-MSD2	Batch:	BWE0730	QC S	ource Samp	le: XXXXX	XXX-XX			
Date Prepared: 05/16/2022	Date A	nalyzed: 05	/16/2022						
Chloride	104	0.0164	80 - 120	20	30200	25000	5000	550	1.00
Fluoride	97.1	17.2	80 - 120	20	485	ND	500	55.0	1.00
Sulfate	114	0.285	80 - 120	20	10600	4910	5000	550	1.00

QC F % Rec	Report for	r Work Ord	ler (WO) - 3	22E1012	2			
% Rec		1.1						
/01100	RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
	B	lank - EPA	353.2					
Batch:	BWE0707							
Date An	nalyzed: 05	/16/2022						
				ND			0.1	1.00
	L	CS - EPA	353.2					
Batch: I	BWE0707							
Date An	nalyzed: 05	/16/2022						
100		80 - 120		2.0		2.00	0.1	1.00
	Matri	ix Spike - E	EPA 353.2					
Batch:	BWE0707	QC S	ource Sampl	e: XXXX	XXX-XX			
Date Ar	nalyzed: 05	/16/2022						
116		80 - 120		2.6	1.4	1.00	0.1	1.00
Batch: I	BWE0707	QC S	ource Sampl	e: 22E101	2-01			
Date Ar	nalyzed: 05	/16/2022						
104		80 - 120		1.2	0.2	1.00	0.1	1.00
	Matrix \$	Spike Dup	- EPA 353	2				
Batch: I	BWE0707	QC S	ource Sampl	e: XXXX	XXX-XX			
Date Ar	nalyzed: 05	/16/2022						
107	3.56	80 - 120	20	2.5	1.4	1.00	0.1	1.00
Batch: I	BWE0707	QC S	ource Sampl	e: 22E101	2-01			
Date Ar	nalyzed: 05	/16/2022						
103	0.563	80 - 120	20	1.2	0.2	1.00	0.1	1.00
	Date An Batch: I Date An 100 Batch: I Date An 116 Batch: I Date An 104 Batch: I Date An 107 Batch: I Date An	Batch: BWE0707 Date Analyzed: 05 Date Analyzed: 05 Date Analyzed: 05 100 Matri Batch: BWE0707 Date Analyzed: 05 116 Batch: BWE0707 Date Analyzed: 05 104 Matrix 9 Batch: BWE0707 Date Analyzed: 05 107 3.56 Batch: BWE0707 Date Analyzed: 05	Batch: BWE0707 Date Analyzed: $05/16/2022$ LCS - EPA 3Batch: BWE0707Date Analyzed: $05/16/2022$ 10080 - 120Matrix Spike - EBatch: BWE0707QC SDate Analyzed: $05/16/2022$ 11680 - 120Batch: BWE0707QC SDate Analyzed: $05/16/2022$ 10480 - 120Batch: BWE0707QC SDate Analyzed: $05/16/2022$ 104 $80 - 120$ Batch: BWE0707QC SDate Analyzed: $05/16/2022$ 107 3.56 $80 - 120$ Batch: BWE0707QC SDate Analyzed: $05/16/2022$ 107 3.56 Batch: BWE0707QC SDate Analyzed: $05/16/2022$ 3.56 Batch: BWE0707QC SDate Analyzed: $05/16/2022$	Batch: BWE0707Date Analyzed: $05/16/2022$ Batch: BWE0707Date Analyzed: $05/16/2022$ 100 $80 - 120$ Matrix Spike - EPA 353.2Batch: BWE0707QC Source SampleDate Analyzed: $05/16/2022$ 11680 - 12020Batch: BWE0707QC Source SampleDate Analyzed: $05/16/2022$ 1048atch: BWE0707QC Source SampleDate Analyzed: $05/16/2022$ 104Batch: BWE0707QC Source SampleDate Analyzed: $05/16/2022$ 104104 $80 - 120$ Batch: BWE0707QC Source SampleDate Analyzed: $05/16/2022$ 20Batch: BWE0707QC Source SampleDate Analyzed: $05/16/2022$ 20Batch: BWE0707QC Source SampleDate Analyzed: $05/16/2022$ 20Batch: BWE0707QC Source SampleDate Analyzed: $05/16/2022$ 20	Batch: BWE0707 Date Analyzed: 05/16/2022NDLCS - EPA 353.2Batch: BWE0707 Date Analyzed: 05/16/202210080 - 1202.0Matrix Spike - EPA 353.2Batch: BWE0707QC Source Sample: XXXX Date Analyzed: 05/16/202211680 - 1202.6Batch: BWE0707QC Source Sample: 22E101 Date Analyzed: 05/16/202211680 - 1201.2Batch: BWE0707QC Source Sample: 22E101 Date Analyzed: 05/16/202210480 - 1201.2Matrix Spike Dup - EPA 353.2Batch: BWE0707QC Source Sample: 22E101 Date Analyzed: 05/16/202210480 - 1201.2105QC Source Sample: 22E101 Date Analyzed: 05/16/20221073.5680 - 12020202.5Batch: BWE0707QC Source Sample: 22E101 Date Analyzed: 05/16/2022	Batch: BWE0707 ND LCS - EPA 353.2 Batch: BWE0707 Date Analyzed: 05/16/2022 100 80 - 120 2.0 Matrix Spike - EPA 353.2 Batch: BWE0707 QC Source Sample: XXXXXXX-XXX Date Analyzed: 05/16/2022 116 80 - 120 2.6 1.4 Batch: BWE0707 QC Source Sample: 22E1012-01 Date Analyzed: 05/16/2022 104 80 - 120 1.2 0.2 Matrix Spike Dup - EPA 353.2 Batch: BWE0707 QC Source Sample: 22E1012-01 0.2 Date Analyzed: 05/16/2022 1.2 0.2 104 80 - 120 1.2 0.2 Matrix Spike Dup - EPA 353.2 Batch: BWE0707 QC Source Sample: XXXXXXXXXXX XX Date Analyzed: 05/16/2022 1.2 0.2 107 3.56 80 - 120 2.5 1.4 Batch: BWE0707 QC Source Sample: 22E1012-01 Date Analyzed: 05/16/2022 1.4 <td>Batch: BWE0707 ND LCS - EPA 353.2 Batch: BWE0707 Date Analyzed: 05/16/2022 100 80 - 120 2.0 2.00 Matrix Spike - EPA 353.2 Batch: BWE0707 QC Source Sample: XXXXXX-XX Date Analyzed: 05/16/2022 2.6 1.4 1.00 Batch: BWE0707 QC Source Sample: 22E1012-01 Date Analyzed: 05/16/2022 1.2 0.2 1.00 Batch: BWE0707 QC Source Sample: 22E1012-01 Date Analyzed: 05/16/2022 1.00 1.2 0.2 1.00 Batch: BWE0707 QC Source Sample: XXXXXXXX-XX Date Analyzed: 05/16/2022 1.00 1.00 Batch: BWE0707 QC Source Sample: XXXXXXX-XX Date Analyzed: 05/16/2022 1.00 Batch: BWE0707 QC Source Sample: XXXXXXXX-XX Date Analyzed: 05/16/2022 1.4 1.00 Batch: BWE0707 QC Source Sample: 22E1012-01 Date Analyzed: 05/16/2022 1.4 1.00 Batch: BWE0707 QC Source Sample: 22E1012-01 Date Analyzed: 05/16/2022 1.4 1.00 Batch: BWE0707 QC Source Sample: 22E1012-01</td> <td>Batch: BWE0707 ND 0.1 LCS - EPA 353.2 Batch: BWE0707 0.1 Date Analyzed: 05/16/2022 2.0 2.00 0.1 Matrix Spike - EPA 353.2 2.00 0.1 Matrix Spike - EPA 353.2 2.00 0.1 Batch: BWE0707 QC Source Sample: XXXXXXX-XX 2.00 0.1 Matrix Spike - EPA 353.2 2.00 0.1 Batch: BWE0707 QC Source Sample: XXXXXXX-XX 2.00 0.1 Batch: BWE0707 QC Source Sample: 22E1012-01 0.1 Batch: BWE0707 QC Source Sample: 22E1012-01 0.1 Date Analyzed: 05/16/2022 1.2 0.2 1.00 0.1 Matrix Spike Dup - EPA 353.2 1.2 0.2 1.00 0.1 Batch: BWE0707 QC Source Sample: XXXXXXX-XX X X XXXXXXXX-XX Date Analyzed: 05/16/2022 1.2 0.2 1.00 0.1 Batch: BWE0707 QC Source Sample: XXXXXXXX-XX X X X X Date Analyzed: 05/16/2022 1.4 1.00 0.1 Batch: BWE0707 QC Source Sample: 22</td>	Batch: BWE0707 ND LCS - EPA 353.2 Batch: BWE0707 Date Analyzed: 05/16/2022 100 80 - 120 2.0 2.00 Matrix Spike - EPA 353.2 Batch: BWE0707 QC Source Sample: XXXXXX-XX Date Analyzed: 05/16/2022 2.6 1.4 1.00 Batch: BWE0707 QC Source Sample: 22E1012-01 Date Analyzed: 05/16/2022 1.2 0.2 1.00 Batch: BWE0707 QC Source Sample: 22E1012-01 Date Analyzed: 05/16/2022 1.00 1.2 0.2 1.00 Batch: BWE0707 QC Source Sample: XXXXXXXX-XX Date Analyzed: 05/16/2022 1.00 1.00 Batch: BWE0707 QC Source Sample: XXXXXXX-XX Date Analyzed: 05/16/2022 1.00 Batch: BWE0707 QC Source Sample: XXXXXXXX-XX Date Analyzed: 05/16/2022 1.4 1.00 Batch: BWE0707 QC Source Sample: 22E1012-01 Date Analyzed: 05/16/2022 1.4 1.00 Batch: BWE0707 QC Source Sample: 22E1012-01 Date Analyzed: 05/16/2022 1.4 1.00 Batch: BWE0707 QC Source Sample: 22E1012-01	Batch: BWE0707 ND 0.1 LCS - EPA 353.2 Batch: BWE0707 0.1 Date Analyzed: 05/16/2022 2.0 2.00 0.1 Matrix Spike - EPA 353.2 2.00 0.1 Matrix Spike - EPA 353.2 2.00 0.1 Batch: BWE0707 QC Source Sample: XXXXXXX-XX 2.00 0.1 Matrix Spike - EPA 353.2 2.00 0.1 Batch: BWE0707 QC Source Sample: XXXXXXX-XX 2.00 0.1 Batch: BWE0707 QC Source Sample: 22E1012-01 0.1 Batch: BWE0707 QC Source Sample: 22E1012-01 0.1 Date Analyzed: 05/16/2022 1.2 0.2 1.00 0.1 Matrix Spike Dup - EPA 353.2 1.2 0.2 1.00 0.1 Batch: BWE0707 QC Source Sample: XXXXXXX-XX X X XXXXXXXX-XX Date Analyzed: 05/16/2022 1.2 0.2 1.00 0.1 Batch: BWE0707 QC Source Sample: XXXXXXXX-XX X X X X Date Analyzed: 05/16/2022 1.4 1.00 0.1 Batch: BWE0707 QC Source Sample: 22

Analyte	QC Repor % Rec RP	t for Work Order (WC		Source Conc	Spk Value	MRL	DF
Analyte		lank - EPA 8260D /50		Source Conc	Spk value	WIRL	DF
QC Sample ID: BWE0982-BLK1	Batch: BWE0	982					
Date Prepared: 05/19/2022	Date Analyze	d: 05/19/2022					
Acetone	j		ND			10.0	1.0
Benzene			ND			1.0	1.0
Carbon Tetrachloride			ND			1.0	1.0
Chloroform						1.0	1.0
Chloromethane			ND				
			ND			1.0	1.0
J-LOW - Estimated low due to low re	covery of LCS of Co	JV	ND			10.0	4.0
Methyl Ethyl Ketone			ND			10.0	1.0
Methylene Chloride			ND			2.0	1.0
Naphthalene			ND			1.0	1.0
Tetrahydrofuran			ND			1.0	1.0
Toluene			ND			1.0	1.0
Kylenes, total			ND			1.0	1.0
	L	CS - EPA 8260D /503	0A				
QC Sample ID: BWE0982-BS1	Batch: BWE0	982					
Date Prepared: 05/19/2022	Date Analyze	d: 05/19/2022					
Acetone	77.8	70 - 130	77.8		100	10.0	1.0
Benzene	114	70 - 130	11.4		10.0	0.4	1.0
Carbon Tetrachloride	113	70 - 130	11.3		10.0	1.0	1.0
Chloroform	93.8	70 - 130	9.38		10.0	1.0	1.0
Chloromethane	83.6	70 - 130	8.36		10.0	1.0	1.0
J-LOW - Estimated low due to low re							
Methyl Ethyl Ketone	108	70 - 130	108		100	10.0	1.0
Methylene Chloride	107	70 - 130	10.7		10.0	2.0	1.0
Naphthalene	102	70 - 130	10.2		10.0	1.0	1.0
Tetrahydrofuran	102	70 - 130	ND		20.0	1.0	1.0
Toluene	113	70 - 130	11.3		10.0	1.0	1.0
Xylenes, total	119	70 - 130	35.6		30.0	1.0	1.0
		x Spike - EPA 8260D			50.0	1.0	1.0
C Sample ID: BWE0982-MS1	Batch: BWE0		ample: 22E1012	-01		_	-
			ample. 22121012	-01			
Date Prepared: 05/19/2022	Date Analyze			~~~~~			
Acetone	64.7	70 - 130	323	ND	500	50.0	1.0
MS-Low - Estimated low due to Matri							
Benzene	79.9	70 - 130	40.0	ND	50.0	2.0	1.0
Carbon Tetrachloride	75.1	70 - 130	37.6	ND	50.0	5.0	1.0
Chloroform	53.9	70 - 130	27.0	ND	50.0	5.0	1.0
MS-Low - Estimated low due to Matri	x Spike recovery.						
Chloromethane	38.3	70 - 130	19.2	ND	50.0	5.0	1.0
J-LOW - Estimated low due to low re-	covery of LCS or CO	CV					
Nethyl Ethyl Ketone	87.5	70 - 130	438	ND	500	50.0	1.0
Nethylene Chloride	55.7	70 - 130	27.8	ND	50.0	10.0	1.0
MS-Low - Estimated low due to Matri	x Spike recovery.						
Japhthalene	63.7	70 - 130	31.8	ND	50.0	5.0	1.0
MS-Low - Estimated low due to Matri	x Spike recovery.						
Tetrahydrofuran	-	70 - 130	ND	ND	100	5.0	1.0
Toluene	79.4	70 - 130	39.7	ND	50.0	5.0	1.0
(ylenes, total	81.8	70 - 130	123	ND	150	5.0	1.0
-		pike Dup - EPA 8260					
C Sample ID: BWE0982-MSD1	Batch: BWE0		mple: 22E1012-	_01			
Date Prepared: 05/19/2022	Date Analyzed	•	imple. 22E1012	-01			

CtF WO#: 22E1012 www.ChemtechFord.com

	QC Report for Work Order (WO) - 22E1012											
Analyte	% Rec	RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF			
	Matrix	Spike Du	ip - EPA 82	260D /5030)A (cont	.)						
QC Sample ID: BWE0982-MSD1	Batch: 1	BWE0982	QC S	ource Sampl	e: 22E101	2-01						
Date Prepared: 05/19/2022	Date Ar	nalyzed: 05/	19/2022									
Acetone	68.1	5.14	70 - 130	20	340	ND	500	50.0	1.00			
MS-Low - Estimated low due to Matrix S	oike recov	ery.										
Benzene	83.2	4.05	70 - 130	20	41.6	ND	50.0	2.0	1.00			
Carbon Tetrachloride	78.2	4.04	70 - 130	20	39.1	ND	50.0	5.0	1.00			
Chloroform	57.5	6.46	70 - 130	20	28.8	ND	50.0	5.0	1.00			
MS-Low - Estimated low due to Matrix Sp	oike recov	very.										
Chloromethane	39.9	4.09	70 - 130	20	20.0	ND	50.0	5.0	1.00			
J-LOW - Estimated low due to low recover	ery of LCS	S or CCV										
Methyl Ethyl Ketone	92.4	5.47	70 - 130	20	462	ND	500	50.0	1.00			
Methylene Chloride	59.9	7.27	70 - 130	20	30.0	ND	50.0	10.0	1.00			
MS-Low - Estimated low due to Matrix Sp	oike recov	ery.										
Naphthalene	72.3	12.6	70 - 130	20	36.2	ND	50.0	5.0	1.00			
Tetrahydrofuran			70 - 130	20	ND	ND	100	5.0	1.00			
Toluene	81.5	2.61	70 - 130	20	40.8	ND	50.0	5.0	1.00			
Xylenes, total	82.5	0.812	70 - 130	20	124	ND	150	5.0	1.00			

	QC R	eport for	Work Ord	er (WO) - :	22E1012	2			
Analyte	% Rec	RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
		BI	ank - SM 2	320 B					
QC Sample ID: BWE0648-BLK1	Batch: I	BWE0648							
Date Prepared: 05/13/2022	Date Ar	halyzed: 05/	/13/2022						
Alkalinity - Bicarbonate (as CaCO3)					ND			1.0	1.00
Alkalinity - Carbonate (as CaCO3)					ND			1.0	1.00
		Dup	licate - SN	2320 B					
QC Sample ID: BWE0648-DUP1	Batch: I	3WE0648	QC S	ource Sampl	e: 22E101	2-01			
Date Prepared: 05/13/2022	Date Ar	alyzed: 05/	/13/2022						
Alkalinity - Bicarbonate (as CaCO3)		0.551		20	309	308		1.0	1.00
Alkalinity - Carbonate (as CaCO3)				20	ND	ND		1.0	1.00
Alkalinity - Hydroxide (as CaCO3)				20	ND	ND		1.0	1.00
Alkalinity - Total (as CaCO3)		0.551		20	309	308		1.0	1.00
QC Sample ID: BWE0648-DUP2	Batch: I	3WE0648	QC S	ource Sampl	e: XXXX	XXX-XX			
Date Prepared: 05/13/2022	Date Ar	alyzed: 05/	/13/2022						
Alkalinity - Bicarbonate (as CaCO3)		0.188		20	106	106		1.0	1.00
Alkalinity - Carbonate (as CaCO3)				20	ND	ND		1.0	1.00
Alkalinity - Hydroxide (as CaCO3)				20	ND	ND		1.0	1.00
Alkalinity - Total (as CaCO3)		0.188		20	106	106		1.0	1.00
		L	CS - SM 23	320 B					
QC Sample ID: BWE0648-BS1	Batch: H	3WE0648							
Date Prepared: 05/13/2022	Date An	alyzed: 05/	/13/2022						
Alkalinity - Total (as CaCO3)	98.6		90 - 110		233		236	1.0	1.00

	QC Report	for Work Ord	ler (WO) -	22E1012	2			
Analyte	% Rec RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
QC Sample ID: BWE0637-BLK1	Batch: BWE06	37						
Date Prepared: 05/13/2022	Date Analyzed:	05/13/2022						
Total Dissolved Solids (TDS)				ND			10	1.00
QC Sample ID: BWE0637-BS1	Batch: BWE06	37						
Date Prepared: 05/13/2022	Date Analyzed:	05/13/2022						
Total Dissolved Solids (TDS)	98	90 - 110		392		400	20	1.00
QC Sample ID: BWE0637-DUP1	Batch: BWE06	37 QC S	Source Samp	le: 22E101	2-01			
Date Prepared: 05/13/2022	Date Analyzed:	05/13/2022						
Total Dissolved Solids (TDS)	0		10	904	904		20	1.00
QC Sample ID: BWE0637-DUP2	Batch: BWE06	37 QC S	Source Samp	le: XXXX	XXX-XX			
Date Prepared: 05/13/2022	Date Analyzed:	05/13/2022						
Total Dissolved Solids (TDS)	0.2		10	1800	1810		20	1.00

	QC R	eport for	Work Orde	er (WO) - 2	22E1012	2			
Analyte	% Rec	RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
		Blan	k - SM 450	0 NH3 H					
QC Sample ID: BWE0909-BLK1	Batch: B	WE0909							
Date Prepared: 05/19/2022	Date Ana	alyzed: 05/	/19/2022						
Ammonia as N					ND			0.2	1.00
		LCS	6 - SM 4500	NH3 H					
QC Sample ID: BWE0909-BS1	Batch: B	WE0909							
Date Prepared: 05/19/2022	Date Ana	alyzed: 05/	19/2022						
Ammonia as N	100		90 - 110		5.01		5.00	0.2	1.00
		Matrix S	pike - SM 4	4500 NH3	H				
QC Sample ID: BWE0909-MS1	Batch: B	WE0909	QC Sc	ource Sampl	e: 22E101	2-01			
Date Prepared: 05/19/2022	Date Ana	alyzed: 05/	19/2022						
Ammonia as N	105		80 - 120		0.59	0.07	0.500	0.2	1.00
7	Ma	atrix Spil	ke Dup - Sl	M 4500 NH	13 H				
QC Sample ID: BWE0909-MSD1	Batch: B	WE0909	QC Sc	ource Sampl	e: 22E101	2-01			
Date Prepared: 05/19/2022	Date Ana	alyzed: 05/	19/2022						
Ammonia as N	104	0.966	80 - 120	20	0.59	0.07	0.500	0.2	1.00

Surrogates Report for Work Order (WO) - 22E1012

QC ID	Analyte	% Rec	LCL	UCL	Result	Spk Value	Batch	DF
		Blank - EPA	8260D /	5030A				
BWE0982-BLK1	1,2-Dichloroethane-d4	85.3	64.2	126	8.53	10.0	BWE0982	1.00
BWE0982-BLK1	4-Bromofluorobenzene	102	71.4	122	10.2	10.0	BWE0982	1.00
BWE0982-BLK1	Toluene-d8	100	63.2	129	10.0	10.0	BWE0982	1.00
		LCS - EPA	8260D /5	5030A				
BWE0982-BS1	1,2-Dichloroethane-d4	80.9	64.2	126	8.09	10.0	BWE0982	1.00
BWE0982-BS1	4-Bromofluorobenzene	101	71.4	122	10.1	10.0	BWE0982	1.00
BWE0982-BS1	Toluene-d8	98.6	63.2	129	9.86	10.0	BWE0982	1.00
		Matrix Spike - E	EPA 8260	DD /5030	A			
BWE0982-MS1	1,2-Dichloroethane-d4	70.0	64.2	126	35.0	50.0	BWE0982	1.00
BWE0982-MS1	4-Bromofluorobenzene	81.6	71.4	122	40.8	50.0	BWE0982	1.00
BWE0982-MS1	Toluene-d8	100	63.2	129	50.0	50.0	BWE0982	1.00
		Matrix Spike Dup	- EPA 82	260D /50	30A			
BWE0982-MSD1	1,2-Dichloroethane-d4	75.0	64.2	126	37.5	50.0	BWE0982	1.00
BWE0982-MSD1	4-Bromofluorobenzene	84.6	71.4	122	42.3	50.0	BWE0982	1.00
BWE0982-MSD1	Toluene-d8	89.9	63.2	129	45.0	50.0	BWE0982	1.00

CREWS SKIEL

THE PROPERTY AND A DRIVEN AND A DRIVENA AND A

11.00 1

Surrogate Recoveries (Field Samples)

LabNumber	Analyte	<u>Result</u>	<u>SpkLvl</u>	<u>%Rec</u>	LCL	UCL	<u>Qualifier</u>
8260	Low Level Volatiles						
22E1012-01	Toluene-d8	10.0	10.0	100	63.2	129	
22E1012-01	4-Bromofluorobenzene	10.3	10.0	103	71.4	122	
22E1012-01	1,2-Dichloroethane-d4	8.73	10.0	87.3	64.2	126	
8260	Low Level Volatiles						
22E1012-02	Toluene-d8	10.0	10.0	100	63.2	129	
22E1012-02	4-Bromofluorobenzene	9.79	10.0	97.9	71.4	122	
22E1012-02	1,2-Dichloroethane-d4	8.37	10.0	83.7	64.2	126	
8260	Low Level Volatiles						
22E1012-03	Toluene-d8	9.69	10.0	96.9	63.2	129	
22E1012-03	4-Bromofluorobenzene	9.53	10.0	95.3	71.4	122	
22E1012-03	1,2-Dichloroethane-d4	7.94	10.0	79.4	64.2	126	
8260	Low Level Volatiles						
22E1012-04	Toluene-d8	10.0	10.0	100	63.2	129	
22E1012-04	4-Bromofluorobenzene	10.2	10.0	102	71.4	122	
22E1012-04	1,2-Dichloroethane-d4	8.35	10.0	83.5	64.2	126	
8260	Low Level Volatiles						
22E1012-05	Toluene-d8	10.0	10.0	100	63.2	129	
22E1012-05	4-Bromofluorobenzene	10.0	10.0	100	71.4	122	
22E1012-05	1,2-Dichloroethane-d4	7.71	10.0	77.1	64.2	126	

a member of The GEL Group INC

PO Box 30712 Charleston, SC 29417 2040 Savage Road Charleston, SC 29407 P 843 556,3171 F 845,766,1178

gel.com

June 14, 2022

Mr. Garrin Palmer Energy Fuels Resources (USA), Inc. 6425 S. Highway 191 Blanding, Utah 84511

Re: Analytical for Seeps and Springs 2022 Work Order: 580063

Dear Mr. Palmer:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on May 16, 2022. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Julie Roberson

Julie Robinson Project Manager

Purchase Order: DW16138 Enclosures

Energy Fuels Resources (USA), Inc. Analytical for SDG: 580063

Receipt Narrative for Energy Fuels Resources (USA), Inc. SDG: 580063

June 14, 2022

Laboratory Identification:

GEL Laboratories LLC 2040 Savage Road Charleston, South Carolina 29407 (843) 556-8171

Summary:

Sample receipt: The samples arrived at GEL Laboratories LLC, Charleston, South Carolina on May 16, 2022 for analysis. The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Sample Identification: The laboratory received the following samples:

Laboratory ID	Client ID
580063001	Entrance Spring
580063002	Ruin Spring
580063003	Cottonwood Spring
580063004	Back Spring

Case Narrative:

Sample analyses were conducted using methodology as outlined in GEL's Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

The enclosed data package contains the following sections: Case Narrative, Chain of Custody, Cooler Receipt Checklist, Data Package Qualifier Definitions and data from the following fractions: Radiochemistry.

Julie Roberson

Julie Robinson Project Manager

580063

Sheet 1 of 1

CHAIN OF CUSTODY

Contact:

Samples Shipped to:

GEL Laboratories, LLC 2040 Savage Road Charleston, SC 29407 (843) 556 8171 Tanner Holliday Ph: 435 678 2221 tholliday@energyfuels.com

Chain of Custody/Sampling Analysis Request

Project		Samplers Name	Samplers Signature
Seeps and Springs 2022		Tanner Holliday	Danner Hollesty
and the second se			
Sample ID	Date Collected	Time Collected	Laboratory Analysis Requested
Entrance Spring	5/10/2022	820	Gross Alpha
Ruin Spring	5/10/2022	855	Gross Alpha
Cottonwood Spring	5/10/2022	945	Gross Alpha
Back Spring	5/10/2022	855	Gross Alpha

 Relinquished By:(Signature)
 Date/Time
 Received By:(Signature)
 Date/Time

 Darrer Holliday
 Date/Time
 Received By:(Signature)
 Date/Time

 Relinquished By:(Signature)
 Date/Time
 Received By:(Signature)
 Date/Time

 Relinquished By:(Signature)
 Date/Time
 Received By:(Signature)
 Date/Time

 Relinquished By:(Signature)
 Date/Time
 Received By:(Signature)
 Date/Time

Laboratories ac				SAMPLE RECEIPT & REVIEW FORM
Client: TZNMI			cor	SARVIEDE RECEILT & REFERENCE STATUTE STATUTE DE RECEILT & REFERENCE STATUTE ST
		-		511027
Received By: TYE		-	Dat	e Received: DIVE England Ender Contrapolities
		1		FedEx Express FedEx Ground UPS Field Services Courier Other
Carrier and Tracking Number				± •
			-	100 111110 0100 1057.2
			1.	2 187 444 12 9132 (1503
Suspected Hazard Information	Ycs	No	*161	Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
AND and an DOT Unserland?		V	Flaz;	ard Cluss Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes Nu
A)Shipped as a DOT Hazardous? B) Did the client designate the samples are to be		V	cod	C notation or radioactive stickers on containers equal client designation.
received as radioactive?		1	Max	timum Net Counts Observed* (Observed Counts - Area Background Counts):
C) Did the RSO classify the samples as radioactive?		V	1	Classified as: Rad I Rad 2 Rad 3
D) Did the client designate samples are hazardous?		V	1/	notation or huzard labels on containers equal client designation.
E) Did the RSO identify possible hazards?		V	ITD	or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
Sample Receipt Criteria	Yes	E	12	Comments/Qualifiers (Required for Non-Conforming Items)
Shipping containers received intact and	V	É	F	Circle Applicable: Seals broken Damaged container. Leaking container Other (describe)
2 Chain of custody documents included	V		-	Circle Applicable: Client contacted and provided COC · COC created upon receipt
with shipment?	1	E.	V	Preservation Method: Wet Ice Ice Packs Dry ice (None) Other:
3 Samples requiring cold preservation within $(0 \le 6 \text{ deg. C})$?*		~	1	*all temperatures are recorded in Celsius
4 Daily check performed and passed on IR temperature gun?	V			Temperature Device Serial #: <u>IR2-20</u> Secondary Temperature Device Serial # (If Applicable);
5 Sample containers intact and sealed?	V		1	Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
6 Samples requiring chemical preservation at proper pH?	V	1		Sample ID's and Containers Affected: If Breservation added, Lot/I:
	F	Sis		Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer)
7 Do any samples require Volatile			V	Do liquid VOA vials contain acid preservation? Yes No NA(If unknown, select No) Are liquid VOA vials free of headspace? Yes No NA
Analysis?			1	Are liquid VOA viuls free of headspace? Yes No NA Sample ID's and containers affected:
	-	k	1_	ID's and tests affected:
8 Samples received within holding time?	1			to said tests and tests and tests
9 Sample ID's on COC match ID's on bottles?	V			ID's and containers affected:
Date & time on COC match date & time		-	-	Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
10 on bottles?	V	V		
II Number of containers received match number indicated on COC?	1			Circle Applicable: No container count on COC Other (describe)
Are sample containers identifiable as	-	La constante	1.	
GEL provided by use of GEL labels?		No.	1	
13 COC form is properly signed in relinquished/received sections?	1	機		Circle Applicable: Not relinquished Other (describe)
Comments (Use Continuation Form if needed):		JEX.	1	
				\cap i i
			-	White Shalan
PM (or PM	ιA) r	evier	v: Ini	tials Date Date Page of

5

1. 5.5

10

.

GEL Laboratories LLC - Login Review Report

GEL Work Order/SDG: 580063

Seeps and Springs 2022

Report Date: 14-JUN-22
Work Order: 580063

Page 1 of 2

Collector: C

Project Manager: Project Name: Purchase Order: Package Level:	580063 Julie Robi DNMi0010 DW16138 LEVEL3 EIM_DNM	6 Analytical for		Package Du EDD Due Da Due Date: JAR1			14-JUN-22 14-JUN-22 14-JUN-22		s	Prelogin i Workdef II DG Status Logged by): 1329132 :: Closed		
GEL ID Client Sample	e ID	Client Sample Desc.	Collect Date & Time	Receive Date & Time	Time Zone	# of Cont.	Lab Matrix	Du		ays to ocess	CofC #		Lab Field QC QC
80063001 Entrance Spring			10-MAY-22 08:20	16-MAY-22 09:15	-2	1	GROUND WA	TER		20		1	
80063002 Ruin Spring			10-MAY-22 08:55	16-MAY-22 09:15	-2	1	GROUND WA	TER		20		1	
80063003 Cottonwood Spr	ing		10-MAY-22 09:45	16-MAY-22 09:15	-2	1	GROUND WA	TER		20		1	
80063004 Back Spring			10-MAY-22 08:55	16-MAY-22 09:15	-2	1	GROUND WA	TER		20		1	
Client Sample ID	Status To	ests/Methods	Product Reference F	ax Date Pi	M Com	ments			Aux	Data		5	Receive Codes
-001 Entrance Spring		PC, Total Alpha Radium,	Gross Alpha										
-002 Ruin Spring		quid FPC, Total Alpha Radium,	Gross Alpha										
-003 Cottonwood Spring		quid FPC, Total Alpha Radium,	Gross Alpha										
-004 Back Spring	Lic REVW GF	quid FPC, Total Alpha Radium, quid	Gross Alpha										
Product: GFCTORAL	Workdef ID	: 1461303	In Product Group? No	Group Nam	ne:		G	iroup Refe	erence:				
Method: Product Description: Samples:									Prod	: Drinking V uct Referer	ice: Gross	Alpha	
Parmname Check:	All parmnam	nes scheduled properly		Client RD	lor		Peneting	Parm	Included	Included	Custom		
CAS #	Parmname			PQL & U			Reporting Units		in Sample'		List?		
	Gross Radiu	um Alpha		1			pCi/L	REG	Y	Y	No		

Work Order Due Date: 14–JUN–22

Action Product Name Description Samples
Contingent
Tests

GEL Laborat	tories LLC – Login Review	w Report	Report Date: 14-JUN-22 Work Order: 580063 Page 2 of 2
Login Requirement	s:		
	Requirement	Include? Comments	
Peer Review by:_		Work Order (SDG#), PO# Checked?	C of C signed in receiver location?

State	Certification					
Alabama	42200					
Alaska	17-018					
Alaska Drinking Water	SC00012					
Arkansas	88-0651					
CLIA	42D0904046					
California	2940					
Colorado	SC00012					
Connecticut	PH-0169					
DoD ELAP/ ISO17025 A2LA	2567.01					
Florida NELAP	E87156					
Foreign Soils Permit	P330-15-00283, P330-15-00253					
Georgia	SC00012					
Georgia SDWA	967					
Hawaii	SC00012					
Idaho	SC00012					
Illinois NELAP	200029					
Indiana	C-SC-01					
Kansas NELAP	E-10332					
Kentucky SDWA	90129					
Kentucky Wastewater	90129					
Louisiana Drinking Water	LA024					
Louisiana NELAP	03046 (AI33904)					
Maine	2019020					
Maryland	270					
Massachusetts	M-SC012					
Massachusetts PFAS Approv	Letter					
Michigan	9976					
Mississippi	SC00012					
Nebraska	NE-OS-26-13					
Nevada	SC000122022-4					
New Hampshire NELAP	2054					
New Jersey NELAP	SC002					
New Mexico	SC00012					
New York NELAP	11501					
North Carolina	233					
North Carolina SDWA	45709					
North Dakota	R-158					
Oklahoma	2019–165					
Pennsylvania NELAP	68-00485					
Puerto Rico	SC00012					
S. Carolina Radiochem	10120002					
Sanitation Districts of L	9255651					
South Carolina Chemistry	10120001 TDI 02024					
Tennessee	TN 02934					
Texas NELAP	T104704235-22-20					
Utah NELAP	SC000122021-36					
Vermont	VT87156					
Virginia NELAP	460202					
Washington	C780					

List of current GEL Certifications as of 14 June 2022

Radiochemistry Technical Case Narrative Energy Fuels Resources SDG #: 580063

Product: GFPC, Total Alpha Radium, Liquid Analytical Method: EPA 903.0 **Analytical Procedure:** GL-RAD-A-044 REV# 10 **Analytical Batch:** 2268525

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
580063001	Entrance Spring
580063002	Ruin Spring
580063003	Cottonwood Spring
580063004	Back Spring
1205096974	Method Blank (MB)
1205096975	578558001(NonSDG) Sample Duplicate (DUP)
1205096976	578558001(NonSDG) Matrix Spike (MS)
1205096977	578558001(NonSDG) Matrix Spike Duplicate (MSD)
1205096978	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Preparation Information

Homogenous Matrix

Sample had light sandy sediment and a sulfur odor. 1205096975 (Non SDG 578558001DUP), 1205096976 (Non SDG 578558001MS) and 1205096977 (Non SDG 578558001MSD).

Quality Control (QC) Information

Matrix Spike (MS) Recovery

Matrix spike (See Below) recovery requirement not met due to the matrix of the sample.

Sample	Analyte	Value
1205096976 (Non SDG 578558001MS)	Gross Radium Alpha	51.3* (75%-125%)

Matrix Spike Duplicate (See Below) recovery requirement not met due to the matrix of the sample.

Sample	Analyte	Value
1205096977 (Non SDG 578558001MSD)	Gross Radium Alpha	58.8* (75%-125%)

Miscellaneous Information

Additional Comments

The matrix spike and matrix spike duplicate, 1205096976 (Non SDG 578558001MS) and 1205096977 (Non SDG 578558001MSD), aliquots were reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Qualifier Definition Report for

DNMI001 Energy Fuels Resources (USA), Inc.

Client SDG: 580063 GEL Work Order: 580063

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the CRDL.

Review/Validation

GEL requires all analytical data to be verified by a qualified data reviewer. In addition, all CLP-like deliverables receive a third level review of the fractional data package.

The following data validator verified the information presented in this data report:

Lant Signature:

Name: Theresa Austin

Title: Group Leader

Date: 14 JUN 2022

GEL LABORATORIES LLC

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: June 14, 2022

Page 1 of

1

12

11.10

Energy Fuels Resources (USA), Inc. 6425 S. Highway 191 Blanding, Utah Contact: Mr. Garrin Palmer

Workorder: 580063

'armname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
ad Gas Flow atch 2268525										
QC1205096975 578558001 DUP										
Fross Radium Alpha		2.05	U	0.952	pCi/L	73.3		(0% - 100%)	JXC9	05/24/22 13:
	Uncertainty	+/-0.439		+/-0.287						
QC1205096978 LCS										
Fross Radium Alpha	522			407	pCi/L		78.1	(75%-125%)		05/24/22 13:
	Uncertainty			+/-5.60						
QC1205096974 MB										
Fross Radium Alpha			U	-0.151	pCi/L					05/24/22 13:
	Uncertainty			+/-0.0878					4	
QC1205096976 578558001 MS										
Gross Radium Alpha	2150	2.05		1100	pCi/L		51.3*	(75%-125%)		05/24/22 13:
	Uncertainty	+/-0.439		+/-18.3						
QC1205096977 578558001 MSD										
Jross Radium Alpha	2070	2.05		1220	pCi/L	10.2	58.8*	(0%-20%)		05/24/22 13:
	Uncertainty	+/-0.439		+/-19.1						

Notes:

Counting Uncertainty is calculated at the 68% confidence level (1-sigma). The Qualifiers in this report are defined as follows:

- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- F Estimated Value
- H Analytical holding time was exceeded
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- M M if above MDC and less than LLD
- M Matrix Related Failure

GEL LABORATORIES LLC

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

				X U NU		J						
Workor	der: 580063										Pag	e 2 of
'armna	me	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time
N/A	RPD or %Recovery limits do	o not apply.										
N1	See case narrative											1
ND	Analyte concentration is not	detected above the	detection lin	nit								
NJ	Consult Case Narrative, Data	a Summary packag	e, or Project	Manager c	oncerning	this qualifie	er					
Q	One or more quality control	criteria have not be	en met. Refe	r to the ap	plicable na	rrative or D	DER.					
R	Sample results are rejected											
U	Analyte was analyzed for, bu	at not detected above	ve the CRDL									
UI	Gamma SpectroscopyUnce	rtain identification	l									
UJ	Gamma SpectroscopyUnce	ertain identification	L									
UL	Not considered detected. The	e associated numbe	er is the repor	ted concer	itration, wh	ich may be	inaccurate	due to a low	bias.			
Х	Consult Case Narrative, Data	a Summary packag	e, or Project l	Manager c	oncerning	his qualifie	er					
Y	QC Samples were not spiked	l with this compour	nd									
^	RPD of sample and duplicate	e evaluated using +	-/-RL. Conce	ntrations a	are <5X the	RL. Qual	ifier Not Ap	plicable for H	Radiochemi	istry.		
h	Preparation or preservation h	olding time was en	ceeded									
^ The Ra	icates that spike recovery limi elative Percent Difference (RI es (5X) the contract required c	PD) obtained from	the sample di	iplicate (I	OUP) is eva	luated aga	inst the acce	ptance criter	ia when the	e sample is	s greater	than

evaluate the DUP result.

* Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Tab E

 $\hat{\kappa}$

Quality Assurance and Data Validation Tables

	Required Holding Time	Cottonwood Spring	Entrance Seep	Back Spring (duplicate of Ruin Spring)	Ruin Spring	West Water Seep
Carbonate	14 days	ОК	OK	ОК	ОК	ОК
Bicarbonate	14 days	OK	OK	OK	OK	OK
Calcium	6 months	OK	OK	OK	OK	OK
Chloride	28 days	OK	OK	OK	ОК	ОК
Fluoride	28 days	OK	OK	ОК	OK	OK
Magnesium	6 months	OK	OK	OK	ОК	OK
Nitrogen-Ammonia	28 days	OK	OK	ОК	OK	OK
Nitrogen-Nitrate	28 days	OK	OK	ОК	OK	ОК
Potassium	6 months	OK	OK	OK	ОК	OK
Sodium	6 months	OK	OK	ОК	OK	OK
Sulfate	28 days	OK	OK	OK	ОК	OK
pH (s.u.)	N/A	OK	OK	OK	OK	OK
TDS	7 days	OK	OK	OK	ОК	OK
Metals	6 months (except mercury which is 28 days)	ОК	ОК	ОК	OK	OK
Radiologics	6 months	ОК	OK	ОК	OK	OK
VOCS (including THF)	14 days	ОК	OK	OK	OK	OK

.

Table E-1 Holding Time Evaluation

* - Corral Spring, and Corral Canyon were all dry and no samples were collected.

Work Order Number/Lab Set ID	Receipt Temp
CTF - 22E1012	2.1°C
CTF - 22C2426	2.6°C
GEL - 575649	N/A
GEL - 580063	N/A

(a) (a)

E-2 Laboratory Receipt Temperature Check

N/A = These shipments contained samples for the analysis of Gross Alpha only. Per Table 1 in the approved QAP, samples submitted for Gross Alpha analyses do not have a sample temperature requirement.

Parameter	QAP/Permit Method	Method Used by Lab
Ammonia (as N)	A4500-NH3 G or E350.1	A4500-NH3 H
Nitrate + Nitrite (as N)	E 353.1 or E353.2	E353.2
Metals	E 200.7 or E200.8	E200.7, E200.8
Mercury	E200.7 or E200.8 or E245.1	E245.1
Gross Alpha	E900.0 or E900.1 or E903.0	E903.0
VOCs	SW8260B or SW8260C or SW8260D	SW8260B/C, SW8260D
Chloride	A4500-Cl B, A4500-Cl E, or E300.0	E300.0
Fluoride	A4500-F C or E300.0	E300.0
Sulfate	A4500-SO4 E or E300.0	E300.0
TDS	A2540C	A2540C
Carbonate as CO3, Bicarbonate as HCO3	A2320B	A2320B
Calcium, Magnesium, Potassium, Sodium	E200.7	E200.7

E-3: Analytical Method Check - Routine Samples

Parameter	Permit-Specified RL
Ammonia (as N)	25 mg/L
Nitrate + Nitrite (as N)	10 mg/L
Metals ug/L	
Arsenic	50
Beryllium	4
Cadmium	5
Chromium	100
Cobalt	730
Copper	1300
Iron	11000
Lead	15
Manganese	800
Mercury	2
Molybdenum	40
Nickel	100
Selenium	50
Silver	100
Thallium	2
Tin	17000
Uranium	30
Vanadium	60
Zinc	5000
Gross Alpha	15
VOCs ug/L	
Acetone	700
Benzene	5
Carbon tetrachloride	5
Chloroform	70
Chloromethane	30
МЕК	4000
Methylene Chloride	5
Naphthalene	100
Tetrahydrofuran	46
Toluene	1000
Xylenes	10000
Major Ions mg/L	
Chloride	1
Fluoride	4
Sulfate	1
TDS	10
Carbonate as CO3, Bicarbonate as HCO3	Not Specified
Calcium, Magnesium, Potassium, Sodium	Not Specified

E-4 Reporting L	imit Evaluation
-----------------	-----------------

All analyses were reported to the required RLs unless noted in the text.

E-5: Trip Blank Evaluation

Blank	Sample Date	Analyte	Result (ug/L)
		Acetone	ND
		Benzene	ND
		Carbon tetrachloride	ND
		Chloroform	ND
		Chloromethane	ND
22C2426	3/28/2022	Methylene chloride	ND
		Methyl Ethyl Ketone	ND
		Naphthalene	ND
		Tetrahydrofuran	ND
		Toluene	ND
		Xylenes, Total	ND
	Acetone	Acetone	ND
		Benzene	ND
		Carbon tetrachloride	ND
		Chloroform	ND
		Chloromethane	ND
22E1012	5/11/2022	Methylene chloride	ND
		Methyl Ethyl Ketone	ND
		Naphthalene	ND
		Tetrahydrofuran	ND
		Toluene	ND
		Xylenes, Total	ND

Major Ions (mg/l)	or Ions (mg/l) Ruin Spring		RPD %	
Carbonate	<1.0	<1.0	N/C	
Bicarbonate	185	184	0.5	
Calcium	141	141	0.0	
Chloride	28.4	28.5	0.4	
Fluoride	0.5	0.5	0.0	
Magnesium	32.9	32.9	0.0	
Nitrogen-Ammonia	0.2	<0.2	N/C	
Nitrogen-Nitrate	1.2	1.2	0.0	
Potassium	3.2	3.2	0.0	
Sodium	117	117	0.0	
Sulfate	595	565	5.2	
TDS	992	1030	3.8	
Metals (ug/l)	1 2 - A - A		1 Sugar	
Arsenic	<0.5	<0.5	N/C	
Beryllium	<0.5	<0.5	N/C	
Cadmium	<0.2	<0.2	N/C	
Chromium	4.2	4.3	2.4	
Cobalt	<0.5	<0.5	N/C	
Copper	<1.0	<1.0	N/C	
Iron	<20	<20	N/C	
Lead	<0.5	<0.5	N/C	
Manganese	<0.5	<0.5	N/C	
Mercury	<0.2	<0.2	N/C	
Molybdenum	17.7	17.7	0.0	
Nickel	0.6	0.5	18.2	
Selenium	11.7	11.7	0.0	
Silver	<0.5	<0.5	N/C	
Thallium	<0.2	<0.2	N/C	
Tin	<20	<20	N/C	
Uranium	9.1	9.0	1.1	
Vanadium	1.3	1.4	7.4	
Zinc	<10	<10	N/C	
Radiologics (pCi/l)			1.	
Gross Alpha	<1.00	<1.00	N/C	
VOCS (ug/L)			-120	
Acetone	<10	<10	N/C	
Benzene	<1.0	<1.0	N/C	
Carbon tetrachloride	<1.0	<1.0	N/C	
Chloroform	<1.0	<1.0	N/C	
Chloromethane	<1.0	<1.0	N/C	
MEK	<10	<10	N/C	
Methylene Chloride	<2.0	<2.0	N/C	

E-6 Duplicate Sample Relative Percent Difference

Major Ions (mg/l)	Ruin Spring	Back Spring (Duplicate of Ruin Spring)	RPD %
Naphthalene	<1.0	<1.0	N/C
Tetrahydrofuran	<1.0	<1.0	N/C
Toluene	<1.0	<1.0	N/C
Xylenes	<1.0	<1.0	N/C

E-6 Duplicate Sample Relative Percent Difference

N/C = Not Calculated

Sample ID	Gross Alpha minus Rn & U	Gross Alpha minus Rn & U Precision (±)	Counting Error ≤ 20%	GWQS	Within GWQS?
Cottonwood					
Spring	<1.0	0.212	N/A	15	N/A
Entrance Seep	<1.0	0.275	N/A	15	N/A
Back Spring (duplicate of Cottonwodd Spring)	<1.0	0.198	N/A	15	N/A
Ruin Spring	<1.0	0.178	N/A	15	N/A
Westwater Seep	<1.0	0.109	N/A	15	N/A

E-7 Radiologics Counting Error

N/A - The sample results are non-detect and the QAP required checks are not applicable.

E-8: Laboratory Matrix QC

Lab Report	Well	Analyte	MS %REC	MSD %REC	REC Range	RPD	RPD LIMIT
22E1012	NA	Chloride*	66.8	97.3	80-120	4.86	20
22E1012 Entra		Calcium*	NC	NC	70-130	NC	20
		Manganese*	NC	**	70-130	**	**
		Zinc	157	**	70-130	**	**
	E to a la	Acetone	64.7	68.1	70-130	5.14	20
	Entrance Spring	Chloroform	53.9	57.5	70-130	6.46	20
		Chloromethane	38.3	39.9	70-130	4.09	20
		Methylene Chloride	55.7	59.9	70-130	7.27	20
	¥	Naphthalene	63.7	72.3	70-130	12.6	20
22C2426	Westwater Spring	Fluoride	142	143	80-120	0.391	20
580063	NA	Gross Alpha	51.3	58.8	75-125	10.2	20

Matrix Spike % Recovery Comparison

* Recovery was not calculated as the analyte level in the sample was greater than 4 times the spike amount

** CTF routine QC does not include a MDS for metals analyzed by 200.8. Precision is determined by other QC samples as allowable by the analytical method.

NA = QC was not performed on an EFRI sample.

Laboratory Duplicate % Recovery Comparison

All Laboratory Duplicate Recoveries were within the laboratory established acceptance limits.

Laboratory Control Sample

Lab Report	Analyte	LCS %REC	REC Range
22C2426	Chloromethane	76.7	80-120
	TDS	80	90-110

Surrogate % Recovery

All surrogate recoveries were within the laboratory established acceptance limits.

Method/Laboratory Reagent Blank detections

All method blank results were within the laboratory established acceptance limits.

Tab F

CSV Transmittal

1.0

Kathy Weinel

From:	Kathy Weinel
Sent:	Monday, February 20, 2023 12:21 PM
То:	Phillip Goble
Cc:	'Dean Henderson'; David Frydenlund; Garrin Palmer; Logan Shumway; Scott Bakken;
	Jordan Christine App; John Uhrie PE PhD
Subject:	Transmittal of CSV Files White Mesa Mill 2022 Annual Seeps and Springs Monitoring
Attachments:	22C2426 FINAL EnergyFuels-Client 18 Apr 22 1600.csv; 22E1012 FINAL EnergyFuels-
	Client 03 Jun 22 1037.csv; 575649.csv; 580063.csv

Dear Mr. Goble,

Attached to this e-mail are the electronic copies of laboratory results for the annual seeps and springs monitoring conducted at the White Mesa Mill during 2022, in Comma Separated Value (CSV) format.

Please contact me at 303-389-4134 if you have any questions on this transmittal.

Yours Truly

Kathy Weinel

Kathy Weinel Director, Regulatory Compliance

t:303.389.4134 | c: | f:303.389.4125 KWeinel@energyfuels.com

225 Union Blvd., Suite 600 Lakewood, CO 80228

http://www.energyfuels.com

This e-mail is intended for the exclusive use of person(s) mentioned as the recipient(s). This message and any attached files with it are confidential and may contain privileged or proprietary information. If you are not the intended recipient(s) please delete this message and notify the sender. You may not use, distribute print or copy this message if you are not the intended recipient(s).