

Energy Fuels Resources (USA) Inc. 225 Union Blvd. Suite 600 Lakewood, CO, US, 80228 303 974 2140

DRC-2020-001382

www.energyfuels.com

VIA Express Delivery

Div of Waste Management and Radiation Control

January 14, 2020

JAN 17 2020

Mr. Ty L. Howard
Director of Division of Waste Management and Radiation Control
Utah Department of Environmental Quality
195 North 1950 West
P.O. Box 144880
Salt Lake City, UT 84116

Re: Transmittal of Annual Seeps and Springs Monitoring Report

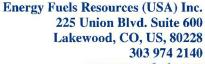
Groundwater Quality Discharge Permit UGW370004 White Mesa Uranium Mill

Dear Mr. Howard:

Enclosed are two copies of the White Mesa Uranium Mill Annual Seeps and Springs Monitoring Report for 2019 as required by the Groundwater Quality Discharge Permit UGW370004, as well as two CDs that contain a word searchable electronic copy of this report.

If you should have any questions regarding this report please contact me at 303-389-4134.

Yours very truly,


ENERGY FUELS RESOURCES (USA) INC.

Kathy Weinel

Quality Assurance Manager

CC: David Frydenlund

Scott Bakken Paul Goranson Terry Slade

VIA Express Delivery

January 14, 2020

Mr. Ty L. Howard
Director of Division of Waste Management and Radiation Control
Utah Department of Environmental Quality
195 North 1950 West
P.O. Box 144880
Salt Lake City, UT 84116

Re: Transmittal of Annual Seeps and Springs Monitoring Report

Groundwater Quality Discharge Permit UGW370004 White Mesa Uranium Mill

Dear Mr. Howard:

Enclosed are two copies of the White Mesa Uranium Mill Annual Seeps and Springs Monitoring Report for 2019 as required by the Groundwater Quality Discharge Permit UGW370004, as well as two CDs that contain a word searchable electronic copy of this report.

If you should have any questions regarding this report please contact me at 303-389-4134.

Yours very truly,

ENERGY FUELS RESOURCES (USA) INC.

Kathy Weinel

Quality Assurance Manager

CC:

David Frydenlund

Scott Bakken Paul Goranson Terry Slade

White Mesa Uranium Mill 2019 Annual Seeps and Springs Sampling Report

State of Utah

Groundwater Discharge Permit No. UGW370004

Prepared by:

Energy Fuels Resources (USA) Inc. 225 Union Blvd., Suite 600 Lakewood, CO 80228

January 4, 2020

Contents

1.0 INTRODUCTION	1
2.0 SAMPLING EVENTS	1
2.1 March 2019 Sampling	1
2.2 June 2019 Sampling	1
2.3 Repeat Visits to Dry Seeps and Springs	1
2.4 Sampling Procedures	2
2.5 Field Data	3
2.6 Field QC Samples	3
3.0 SEEPS AND SPRINGS SURVEY AND CONTOUR MAP	3
4.0 QUALITY ASSURANCE AND QUALITY CONTROL	4
4.1 Laboratory Results	4
4.2 DATA EVALUATION	4
4.3 Adherence to Sampling Plan and Permit Requirements	
4.4 Analyte Completeness Review	5
4.5 Data Validation	5
4.5.1 Field Data QA/QC Evaluation	5
4.5.2 Holding Time Evaluation	5
4.5.3 Laboratory Receipt Temperature Check	5
4.5.4 Analytical Method Check	6
4.5.5 Reporting Limit Evaluation	6
4.5.6 Trip Blank Evaluation	6
4.5.7 QA/QC Evaluation for Sample Duplicates	6
4.5.8 Radiologics Counting Error	7
4.5.9 Laboratory Matrix QC Evaluation	7
5.0 EVALUATION OF ANALYTICAL DATA	8
5.1 Evaluation of Analytical Results	9
5.1.1 Ruin Spring	9
5.1.2 Cottonwood Spring	9
5.1.3 Westwater Seep	9
5.1.4 Entrance Spring	10
6.0 CORRECTIVE ACTION REPORT	10

6.1 Assessment of Corrective Actions from Previous Period	10
7.0 ELECTRONIC DATA FILES AND FORMAT	10
8.0 SIGNATURE AND CERTIFICATION	12

LIST OF TABLES

Table 1	Summary of Seeps and Springs Sampling
Table 2A	Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells – Ruin Spring
Table 2B	Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells – Cottonwood Seep
Table 2C	Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells – Westwater Seep
Table 2D	Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells – Entrance Spring

INDEX OF TABS

- Tab A Seeps and Springs Field Data Sheets and Photographic Documentation
- Tab B Field Parameter Measurement Data
- Tab C Survey Data and Contour Map
- Tab D Analytical Laboratory Data
- Tab E Quality Assurance and Data Validation Tables
 - E-1 Holding Time Evaluation
 - E-2 Laboratory Receipt Temperature Check
 - E-3 Analytical Method Check
 - E-4 Reporting Limit Evaluation
 - E-5 Trip Blank Evaluation
 - E-6 QA/QC Evaluation for Sample Duplicates
 - E-7 Radiologics Counting Error
 - E-8 Laboratory Matrix QC Evaluation
- Tab F Comma Separated Values Transmittal

ACRONYM LIST

AWAL American West Analytical Laboratory

DR Dry Ridge Piezometers

DWMRC Utah Division of Waste Management and Radiation Control

EFRI Energy Fuels Resources (USA) Inc.

GEL Laboratories, Inc.

GWQS Groundwater Quality Standard LCS Laboratory Control Spike

Mill White Mesa Mill MS Matrix Spike

MSD Matrix Spike Duplicate

Permit State of Utah Groundwater Discharge Permit No. UGW370004

QA Quality Assurance

QAP Groundwater Monitoring Quality Assurance Plan

QC Quality Control

RPD Relative Percent Difference
TDS Total Dissolved Solids
VOCs Volatile Organic Compounds

ANNUAL SEEPS AND SPRINGS SAMPLING REPORT

1.0 INTRODUCTION

This is the 2019 Annual Seeps and Springs Sampling Report for the Energy Fuels Resources (USA) Inc. ("EFRI") White Mesa Mill (the "Mill"), as required under Part I.F.7 of the Mill's State of Utah Groundwater Discharge Permit No. UGW370004 (the "Permit") and the Mill's Sampling and Analysis Plan for Seeps and Springs, Revision: 2, July 8, 2016 (the "Sampling Plan").

The Sampling Plan for Seeps and Springs was revised in July 2016 to incorporate changes requested by the Division of Waste Management and Radiation Control ("DWMRC"). The Sampling Plan for Seeps and Springs, Revision: 2, July 8, 2016 was approved by DWMRC by letter dated August 8, 2016.

2.0 SAMPLING EVENTS

Seeps and springs which were identified near the Mill in the 1978 Environmental Report (Plate 2.6-10, Dames and Moore, January 30, 1978) are to be sampled annually in accordance with the Sampling Plan and Part I.E.6 of the Permit. The Sampling Plan specifies the following sample locations: Corral Canyon Seep, Corral Springs, Ruin Spring, Cottonwood Seep, Westwater Seep and Entrance Spring (also referred to as Entrance Seep).

2.1 March 2019 Sampling

In accordance with the DWMRC-approved Sampling Plan, once per calendar quarter, Westwater Seep, Corral Canyon Seep and Corral Springs are visited to determine if there is any water for sampling. If sufficient water is present, a sample is collected and no further visits are completed for the year. Westwater Seep, Corral Canyon Seep and Corral Springs were visited on March 20, 2019. No water was present for sampling during the March 20, 2019 site visit. On March 27, water was noted at Westwater seep and a sample was collected. Per the DWMRC-approved Sampling Plan, no further visits were made to Westwater seep in 2019.

2.2 June 2019 Sampling

In accordance with the Permit and the Sampling Plan, DWMRC was notified of the sampling. The DWMRC representative was present for this sampling event. On June 11, 2019, EFRI collected seeps and springs samples from Cottonwood Seep, Ruin Spring, Entrance Seep, and Back Spring (duplicate of Ruin Spring). The DWMRC representative collected a "split" sample on June 11, 2019 from the EFRI sampling equipment, using sample containers he provided. Corral Canyon Seep and Corral Springs were dry throughout 2019.

2.3 Repeat Visits to Dry Seeps and Springs.

The initial 2019 visit of Corral Canyon Seep and Corral Springs, was conducted in March 2019. Corral Canyon Seep and Corral Springs, were dry during the March 2019 visit, could not be sampled, and did not warrant development attempts with limited hand tool excavation at that

time. During the June 11, 2019 sampling event, Corral Canyon Seep and Corral Springs were dry, could not be sampled, and did not warrant development attempts with limited hand tool excavation at that time. Additional visits were made to Corral Canyon Seep and Corral Springs in August 2019 and October 2019. The additional two visits to Corral Canyon Seep and Corral Springs did not indicate any changes; i.e., there was no indication that development attempts would be successful. As previously noted, a sample was collected from Westwater Seep on on March 27, 2019 because water was present. The data from the March and June sampling events are included as Attachment D in this report.

2.4 Sampling Procedures

Samples were collected and analyzed for the parameters listed in Table 2 of the Permit.

Samples were collected from the locations indicated in Table 1. Sampling procedures for each seep or spring are determined by the site location and access.

The DWMRC-approved sampling procedures for seeps and springs at the Mill are contained in the Sampling Plan. Samples collected under this plan were collected either by direct collection which involves collecting the sample directly into the sample container from the surface water feature or from spring out-flow, or by using a stainless steel ladle to collect water until a sufficient volume is contained in the ladle for transfer to the sample bottle. Filtered parameters are pumped through a 0.45 micron filter prior to delivery to the sample bottle.

Ruin Spring

In the case of Ruin Spring, sample bottles for the analytes collected during the June sampling event (except gross alpha and heavy metals) were filled directly from the spring out-flow which is a pipe. Samples for heavy metals and gross alpha were collected by means of a peristaltic pump and delivered directly to the sample containers through a 0.45 micron filter. The appropriate preservatives for the analytical technique were added to the samples.

Westwater Seep

For Westwater Seep, all of the sample containers were filled by means of a peristaltic pump and delivered directly to the sample containers. Samples for heavy metals and gross alpha were collected by means of a peristaltic pump and delivered directly to the sample containers through a 0.45 micron filter. The appropriate preservatives for the analytical technique were added to the samples.

Cottonwood Seep and Entrance Spring

Cottonwood Seep and Entrance Spring were "developed" prior to the sampling event by Field Personnel. Development was completed by removing surrounding vegetation and clearing the sampling location in the spring or seep area. The sample containers were filled by means of a peristaltic pump and delivered directly to the sample containers. In the case of the samples for heavy metals and gross alpha, the samples were delivered by a peristaltic pump directly to the

sample containers through a 0.45 micron filter. The samples were preserved by the addition of the appropriate preservative for the analytical technique.

The tubing on the peristaltic pump that comes into contact with the sample water was disposed of between each sampling. As a result, no equipment required decontamination, and no rinsate samples were collected.

2.5 Field Data

Attached under Tab A are copies of the field data sheets recorded in association with the June and October seeps and springs monitoring events. Photographic documentation of the sampling sites is also included in Tab A. Sampling dates are listed in Table 1 and field parameters collected during the sampling program are included in Tab B.

2.6 Field QC Samples

The field Quality Control ("QC") samples generated during this sampling event included one duplicate per sampling event and one trip blank per shipment to each laboratory which received samples for VOCs. The duplicate samples (Back Spring) were submitted blind to the analytical laboratory. As previously stated, no rinsate blanks were collected during this sampling event as only disposable equipment was used for sample collection.

3.0 SEEPS AND SPRINGS SURVEY AND CONTOUR MAP

Part I.F.7(c) of the Permit requires that a water table contour map that includes the elevations for each well at the facility and the elevations of the phreatic surfaces observed for each of the seeps and springs sampled be submitted with this annual report. Tab C includes two contour maps. The contour map labeled C-1 shows the water table without the water level data associated with the dry ridge ("DR") investigation piezometers. The contour map labeled C-2 shows the water table with the water level data associated with the DR investigation piezometers. It is important to note that Cottonwood Seep is not included in any of the perched water level contouring, because there is no evidence to establish a hydraulic connection between Cottonwood Seep and the perched water system. Cottonwood Seep is located near the Brushy Basin Member/Westwater Canyon Member contact, approximately 230 feet below the base of the perched water system defined by the Burro Canyon Formation/Brushy Basin Member contact. The stratigraphic position of Cottonwood Seep indicates that its elevation is not representative of the perched potentiometric surface. Exclusion of the Cottonwood Seep from water level contouring is consistent with previous submissions. The contour map includes the corrected survey data from December 2009 as discussed below.

Part I.F.7 (g) of the Permit requires that survey data for the seeps and springs be collected prior to the collection of samples. DRC previously clarified that the requirement to submit survey data applies only to the first sampling event and not on an annual basis. The December 2009 and July 2010 seeps and springs survey data shown in Tab C will be used for reporting where seeps and springs locations and elevations are relevant.

A full discussion of the survey data and the hydrogeology of seeps and springs at the margins of White Mesa in the vicinity of the Mill and the relationship of these seeps and springs to the hydrogeology of the site, in particular to the occurrence of a relatively shallow perched groundwater zone beneath the site, is contained in *Hydrogeology of the Perched Groundwater Zone and Associated Seeps and Springs Near the White Mesa Uranium Mill Site*, dated November 12, 2010, prepared by Hydro Geo Chem, Inc. and submitted to the Director on November 15, 2010. Additional information is also contained in the *Second Revision Hydrogeology of the Perched Groundwater Zone in the Area Southwest of the Tailings Cells White Mesa Mill Site*, dated November 7, 2012, prepared by Hydro Geo Chem, Inc. and submitted to the Director on November 7, 2012.

4.0 QUALITY ASSURANCE AND QUALITY CONTROL

4.1 Laboratory Results

Analytical results are provided by the Mill's two contract analytical laboratories GEL Laboratories, Inc., ("GEL") and American West Analytical Laboratory ("AWAL").

The laboratories utilized during this investigation were certified under the Environmental Lab Certification Program administered by UDEQ Bureau of Lab Improvement for the analyses they completed.

The analytical data as well as the laboratory Quality Assurance ("QA")/QC summaries are included under Tab D.

4.2 DATA EVALUATION

The Permit requires that the annual seeps and springs sampling program be conducted in compliance with the requirements specified in the Mill's approved White Mesa Uranium Mill Groundwater Monitoring Quality Assurance Plan ("QAP"), the approved Sampling Plan and the Permit. To meet this requirement, the data validation completed for the seeps and springs sampling program verified that the program met the requirements outlined in the QAP, the Permit and the approved Sampling Plan. The Mill QA Manager performed a QA/QC review to confirm compliance of the monitoring program with requirements of the Permit and the QAP. As required in the QAP, data QA includes preparation and analysis of QC samples in the field, review of field procedures, an analyte completeness review, and quality control review of laboratory data methods and data. Identification of field QC samples collected and analyzed is provided in Section 4.5.1. Discussion of adherence to the Sampling Plan is provided in Section 4.3. Analytical completeness review results are provided in Section 4.4. The steps and tests applied to check laboratory data QA/QC are discussed in Sections 4.5.1 through 4.5.9 below.

The analytical laboratories have provided summary reports of the analytical QA/QC measurements necessary to maintain conformance with National Environmental Laboratory Accreditation Conference certification and reporting protocol. The analytical laboratory QA/QC Summary Reports, including copies of the Mill's Chain of Custody and Analytical Request Record forms for each set of analytical results, follow the analytical results under Tab D. Results

of the review of the laboratory QA/QC information are provided under Tab E and discussed in Section 4.5 below.

4.3 Adherence to Sampling Plan and Permit Requirements

On a review of adherence by Mill personnel to the Permit, the QA Manager observed that QA/QC requirements established in the Permit and the QAP were met and that the requirements were implemented as required except, as noted below.

The Permit only requires the measurement of the field parameters pH, conductivity and temperature. Field parameter measurements collected during this sampling event included pH, conductivity, temperature, redox potential, and turbidity.

4.4 Analyte Completeness Review

The analyses required by the Permit Table 2 were completed.

4.5 Data Validation

The QAP and the Permit identify the data validation steps and data quality control checks required for the seeps and springs monitoring program. Consistent with these requirements, the QA Manager performed the following evaluations: a field data QA/QC evaluation, a receipt temperature check, a holding time check, an analytical method check, a reporting limit check, a trip blank check, a QA/QC evaluation of sample duplicates, a gross alpha counting error evaluation and a review of each laboratory's reported QA/QC information. Each evaluation is discussed in the following sections. Data check tables indicating the results of each test are provided under Tab E.

4.5.1 Field Data QA/QC Evaluation

The QA Manager performs a review of field recorded parameters to assess their adherence with QAP and Permit requirements. The assessment involved review of the Field Data sheets. Review of the Field Data Sheets noted that the requirements for field data collection were met.

4.5.2 Holding Time Evaluation

QAP Table 1 identifies the method holding times for each suite of parameters. Sample holding time checks are provided under Tab E. The samples were received and analyzed within the required holding time.

4.5.3 Laboratory Receipt Temperature Check

Chain of Custody sheets were reviewed to confirm compliance with the sample receipt requirements specified in the QAP. Sample receipt temperature checks are provided under Tab E. The samples were received within the QAP required temperature limit.

4.5.4 Analytical Method Check

The analytical methods reported by both laboratories were checked against the required methods specified in Table 1 of the QAP. Analytical method check results are provided in Tab E.

4.5.5 Reporting Limit Evaluation

Reporting limits utilized by the laboratory were required to be equal to or lower than the GWQSs set out in Table 2 of the Permit. For Total Dissolved Solids ("TDS"), sulfate and chloride, for which Ground Water Quality Standards are not set out in Table 2 of the Permit, reporting limits specified in Part 1.E.6.e).(1) were used. Those reporting limits are 10 mg/L for TDS, and 1 mg/L for Sulfate and Chloride. The analytical method reporting limits reported by both laboratories were checked against the reporting limits specified in the Permit. Reporting limit evaluations are provided in Tab E. All analytes were measured and reported to the required reporting limits except the sample results that had the reporting limit raised due to sample dilution necessary to accommodate the analyte concentrations in the samples. In all cases the reported value for the analyte was higher than the increased detection limit.

4.5.6 Trip Blank Evaluation

The trip blank results were reviewed to identify any blank contamination. Trip blank evaluation is provided in Tab E. The trip blank results associated with the samples were less than reporting limit for the VOCs.

4.5.7 QA/QC Evaluation for Sample Duplicates

Section 9.1.4 a) of the QAP states that the Relative Percent Difference ("RPD") will be calculated for the comparison of duplicate and original field samples. The QAP acceptance limits for RPDs between the duplicate and original field sample is less than or equal to 20% unless the measured results (described as activities in the QAP) are less than 5 times the required detection limit. This standard is based on the United Stated Environmental Protection Agency Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994, 9240.1-05-01 as cited in the QAP. The RPDs are calculated for duplicate pairs for the analytes regardless of whether or not the reported concentrations are greater than 5 times the required detection limits; however, data will be considered noncompliant only when the results are greater than 5 times the required detection limit and the RPD is greater than 20%. RPDs are also only calculated when both the sample and the duplicate report a detection for any given analyte. If only one of the pair reports a detection, the RPD cannot be calculated. The additional duplicate information is provided for information purposes.

All duplicate results were within 20% RPD except for magnesium in the duplicate pair Ruin Spring/Back Spring. The magnesium RPD was greater than 20%, however the sample and duplicate results reported for Ruin Spring/Back Spring were not five times greater than the RLs, and, as such, the deviation from the 20% RPD requirement is acceptable.

The duplicate evaluation is provided in Tab E.

4.5.8 Radiologics Counting Error

Section 9.14 of the QAP requires that all gross alpha analysis reported with an activity equal to or greater than the Groundwater Compliance Limits set out in the Permit (for the seeps and springs samples the Groundwater Quality Standards ["GWQS"] will be used), shall have a counting variance that is equal to or less than 20% of the reported activity concentration. An error term may be greater than 20% of the reported activity concentration when the sum of the activity concentration and error term is less than or equal to the GWQS.

Section 9.4 of the QAP also requires a comparability check between the sample and field duplicate sample results utilizing the formula provided in the text.

All radiological results were reported were within acceptance limits. Results of routine radiologic sample QC are provided under Tab E.

4.5.9 Laboratory Matrix QC Evaluation

Section 9.2 of the QAP requires that the laboratory's QA/QC Manager check the following items in developing data reports: (1) sample preparation information is correct and complete, (2) analysis information is correct and complete, (3) appropriate analytical laboratory procedures are followed, (4) analytical results are correct and complete, (5) QC samples are within established control limits, (6) blanks are within QC limits, (7) special sample preparation and analytical requirements have been met, and (8) documentation is complete. In addition to other laboratory checks described above, EFRI's QA Manager rechecks QC samples and blanks (items (5) and (6)) to confirm that the percent recovery for spikes and the relative percent difference for spike duplicates are within the method-specific required limits, or that the case narrative sufficiently explains any deviation from these limits. Results of this quantitative check are provided under Tab E. The lab QA/QC results from both GEL and AWAL met these requirements except as described below.

A number of the seeps and springs samples had the reporting limit raised due to matrix interference and/or sample dilution. In all cases where the detection limit was increased, the concentration for the analyte was higher than the increased detection limit.

The check samples included at least the following: a method blank, a laboratory control spike ("LCS"), a matrix spike ("MS") and a matrix spike duplicate ("MSD"), or the equivalent, where applicable. It should be noted that:

- Laboratory fortified blanks are equivalent to LCSs.
- Laboratory reagent blanks are equivalent to method blanks.
- Post digestion spikes are equivalent to MSs.
- Post digestion spike duplicates are equivalent to MSDs.
- For method E900.1, used to determine gross alpha, a sample duplicate was used instead of a MSD.

The qualifiers, and the corresponding explanations reported in the QA/QC Summary Reports for any of the check samples for any of the analytical methods, were reviewed by the QA Manager.

The QAP does not specify acceptance limits for the MS/MSD pair, and the QAP does not specify that the MS/MSD pair be prepared on EFRI samples only. Acceptance limits for MS/MSDs are set by the laboratories. The review of the information provided by the laboratories in the data packages verified that the QAP requirement to analyze a MS/MSD pair with each analytical batch was met. While the QAP does not require it, the recoveries were reviewed for compliance with each laboratory's established acceptance limits. The QAP does not require this level of review and the results of this review are provided for information only.

The information from the Laboratory QA/QC Summary Reports indicates that the MS/MSD recoveries and the associated RPDs for the seeps and springs samples were within acceptable laboratory limits except as noted in Tab E. The MS/MSD recoveries that were outside the laboratory established acceptance limits do not affect the quality or usability of the data, because the recoveries and RPDs above or below the acceptance limits are indicative of matrix interference most likely caused by other constituents in the samples. Matrix interferences are applicable to the individual sample results only. The requirement in the QAPs to analyze a MS/MSD pair with each analytical batch was met and as such the data are compliant with the OAP.

The QAP specifies that surrogate compounds shall be employed for all organic analyses, but the QAP does not specify acceptance limits for surrogate recoveries. The analytical data associated with the routine quarterly sampling met the requirement specified in the QAP. The information from the Laboratory QA/QC Summary Reports indicates that the surrogate recoveries for the seeps and springs samples were within acceptable laboratory limits for all surrogate compounds.

The QAP Section 8.1.2 requires that each analytical batch shall be accompanied by a reagent blank. Contamination detected in analysis of reagent blanks/method blanks will be used to evaluate any analytical laboratory contamination of environmental samples. The QAP specified process for evaluation of reagent/method blanks states that nonconformance will exist when blanks are within an order of magnitude of the sample results. The information from the Laboratory QA/QC Summary Reports indicates that the reagent (method) blanks for the seeps and springs samples were non-detect and were therefore within the acceptance criteria specified in the QAP.

Laboratory duplicates are completed by the analytical laboratories as required by the analytical method specifications. Acceptance limits for laboratory duplicates are set by the laboratories. The QAP does not require the completion of laboratory duplicates or the completion of a QA assessment of them. EFRI reviews the QC data provided by the laboratories for completeness and to assess the overall quality of the data provided. Laboratory duplicate results are provided in Tab D.

5.0 EVALUATION OF ANALYTICAL DATA

As previously stated, the samples were analyzed for the groundwater compliance parameters found on Table 2 of the Permit. In addition to these laboratory parameters, the pH, temperature, conductivity, (and although not required, redox and turbidity) were measured and recorded in the field.

5.1 Evaluation of Analytical Results

The results of the March and June sampling events shows no evidence of Mill influence in the water produced by the seeps and springs sampled. The lack of Mill influence on seeps and springs is indicated by the fact that the parameters detected are within the ranges of concentrations for the on-site monitoring wells and for available historic data for the seeps and springs themselves. For those detected analytes, concentrations are shown in Tables 2A, 2B, 2C, and 2D. The data are compared to available historic data for each seep and spring as well as to on-site monitoring well data. Specific discussions about each seep or spring are included below.

5.1.1 Ruin Spring

No VOCs or radiologics were detected. Metals and major ions were the only analytes detected. The metals detections were minimal with only molybdenum, selenium and uranium having positive detections. A comparison of the 2009 through 2018 data to the 2019 data shows that the concentrations of most detected analytes remained approximately the same with only minor changes within the limits of normal analytical deviation. The reported values for calcium, fluoride, magnesium, nitrate, and molybdenum, increased from the 2018 sample results, but they are below the upper range of historic background values (where available) for the on-site monitoring wells. The differences are not significant and are most likely due to normal fluctuations due to flow rates or seasonal variations due to annual precipitation. Overall, the data reported for Ruin Spring are typical for a surface water sample with no indication of Mill influence.

5.1.2 Cottonwood Spring

No VOCs or radiologics were detected. Metals and major ions were the only analytes detected. The metals detections were minimal with only uranium having a positive detection. A comparison of the 2009 through 2018 data to the 2019 data shows that the concentrations of most detected analytes remained approximately the same with only minor changes within the limits of normal analytical deviation. The reported values for bicarbonate, calcium, magnesium, potassium, and sodium increased from the 2018 sample results, but they are below the upper range of historic background values (where available) for the on-site monitoring wells. The differences are not significant and are most likely due to normal fluctuations due to flow rates or seasonal variations due to annual precipitation. Overall, the data reported for Cottonwood Spring are typical for a surface water sample with no indication of Mill influence.

5.1.3 Westwater Seep

No radiologics or VOCs were detected. Metals and major ions were detected. The metals detections were minimal with only manganese, and uranium having positive detections. A comparison of the historic data to the 2019 data shows that the concentrations of most detected

analytes remained approximately the same with only minor changes within the limits of normal analytical deviation. The reported values for bicarbonate, chloride, potassium, and manganese increased from the 2018 sample results, but they are below the upper range of historic background values (where available) for the on-site monitoring wells. The differences are not significant and are most likely due to normal fluctuations due to flow rates or seasonal variations due to annual precipitation. Overall, the data reported for Westwater Seep are typical for a surface water sample with no indication of Mill influence.

5.1.4 Entrance Spring

Gross Alpha, toluene, metals, and major ions were the only analytes detected. The metals detections were minimal with only arsenic, iron, manganese, molybdenum and uranium having positive detections. A comparison of the 2009 through 2018 data to the 2019 data shows that the concentrations of most detected analytes remained approximately the same with only minor changes within the limits of normal analytical deviation. The reported values for bicarbonate, calcium, chloride, fluoride, magnesium, ammonia, potassium, sodium and total dissolved solids ("TDS") increased from the 2018 sample results. The detected concentrations are below the upper range of historic background values (were available) for the on-site monitoring wells. The differences are not significant and are most likely due to normal fluctuations due to flow rates or seasonal variations due to annual precipitation. In addition, the presence of livestock and livestock feces has likely affected the analytical results. Overall, the data reported for Entrance Spring are typical for a surface water sample with no indication of Mill influence.

6.0 CORRECTIVE ACTION REPORT

No corrective action reports are required for the 2019 annual sampling event.

6.1 Assessment of Corrective Actions from Previous Period

No corrective action reports were required for the 2018 annual sampling event.

7.0 ELECTRONIC DATA FILES AND FORMAT

EFRI has provided to the Director electronic copies of the laboratory results as part of the annual seeps and springs monitoring in Comma Separated Values, from the laboratory. A copy of the transmittal e-mail is included under Tab F.

8.0 SIGNATURE AND CERTIFICATION

This document was prepared by Energy Fuels Resources (USA) Inc. Energy Fuels Resources (USA) Inc.

By:

Scott A. Bakken

Senior Director Regulatory Affairs

12

Certification

I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Scott A. Bakken

Senior Director, Regulatory Affairs Energy Fuels Resources (USA) Inc. Tables

Table 1: Summary of Seeps and Springs Sampling

Location	Sample Date	Work Order No./Lab Set ID	Date of Lab Report
Cottonwood Spring	6/11/2019	AWAL = 1906343 GEL = 481772	AWAL = 7/05/2019 GEL = 7/10/2019
Entrance Seep	6/11/2019	AWAL = 1906343 GEL = 481772	AWAL = 7/05/2019 GEL = 7/10/2019
Back Spring (Duplicate of Ruin Spring)	6/11/2019	AWAL = 1906343 GEL = 481772	AWAL = 7/05/2019 GEL = 7/10/2019
Ruin Spring	6/11/2019	AWAL = 1906343 GEL = 481772	AWAL = 7/05/2019 GEL = 7/10/2019
Corral Spring	Not Sampled - Dry	Not Sampled - Dry	Not Sampled - Dry
Corral Canyon Seep	Not Sampled - Dry	Not Sampled - Dry	Not Sampled - Dry
Westwater Seep	3/27/2019	AWAL = 1903737 GEL = 475027	AWAL = 04/11/2019 GEL = 04/26/2019

Notes: Multiple dates shown for a single laboratory depict resubmission dates for the data. Resubmissions were required to correct reporting errors. When multiple dates are shown for a single laboratory, the final submission date is shown in *italics*.

Table 2A Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells

Ruin Spring														
Constituent	2009	2010	2011 May	2011 July	2012	2013	2014	2015	2016	2017	2018	2019	Range of Average Historic Values for Monitoring Wells ¹ *	Avg 2003 2004 ²
						Majo	r Ions (mg	/ 1)		1000				##W.F.19
Carbonate	<1	<1	<1	1	<1	<1	<1	<1	<1	<1	<1	<1		
Bicarbonate	233	254	241	239	237	208	204	200	193	208	202	202	-	
Calcium	151	136	145	148	147	149	150	162	138	145	158	165		
Chloride	28	23	25	44	28	26.3	27.1	27.4	24.4	27.4	29.9	23.9	ND - 213	27
Fluoride	0.5	0.53	0.45	0.5	0.52	0.538	<1	0.445	0.541	0.5	0.414	0.505	ND - 1.3	0.6
Magnesium	32.3	29.7	30.6	31.1	31.9	32.1	35.4	31.8	31.1	30.2	33.9	45.6		4
Nitrogen-Ammonia	0.09	< 0.05	ND	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		-
Nitrogen-Nitrate	1.4	1.7	1.7	1.6	1.6	1.56	1.54	1.31	1.64	1.55	1.35	1.56		-
Potassium	3.3	3.07	3.2	3.3	3.5	3.46	3.24	3.14	3.18	3.07	3.58	3.31		-
Sodium	104	93.4	110	111	115	118	119	126	105	113	128	128		
Sulfate	528	447	486	484	464	553	553	528	490	476	547	474	ND - 3455	521
TDS	1010	903	942	905	1000	952	984	1000	916	972	1000	900	1019 - 5548	1053
						Mo	etals (ug/l)				100-140			10
Arsenic	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5		() ()
Beryllium	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		-
Cadmium	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND - 4.78	0.01
Chromium	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	-	4.7
Cobalt	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	#	
Copper	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ID SATIN	-
Iron	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	ND - 7942	25
Lead	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2000年11月	-
Manganese	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ND - 34,550	5
Mercury	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		W-15
Molybdenum	17	17	16	17	16	16.1	16.0	18.3	17.8	17.2	18	20.2		#
Nickel	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	ND - 61	0.05

Table 2A Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells

		11361	ZA Detect		THE R		in Spring						TEAR MINE OF	브루사리
Constituent	2009	2010	2011 May	2011 July	2012	2013	2014	2015	2016	2017	2018	2019	Range of Average Historic Values for Monitoring Wells ¹ *	Avg 2003 2004 ²
Selenium	12.2	10	11.8	10.2	10.8	10.2	12	10	10	10.5	12.2	10.8	ND - 106.5	12.1
Silver	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		
Thallium	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5	14 - V	Str. And
Tin	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	-	-
Uranium	9.11	8.47	9.35	8.63	8.68	9.12	9.61	9.03	8.38	8.49	9.35	9.02	ND - 59.8	10
Vanadium	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	Maj = Alv	
Zinc	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		
			MALE IV		100	Radio	ologics (pC	i/l)						
Gross Alpha	<0.2	<0.2	<-0.3	<-0.05	<-0.09	<1.0	<1	<1.0	<1.0	<1.0	<1.57	<1.0	ND - 36	0.28
			Sept.	THE P		VC	CS (ug/L)			15.50	Service Control	1 15.0		100
Acetone	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	-	2 2
Benzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Carbon tetrachloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		-
Chloroform	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		-
Chloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		A 344 ST
MEK	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20		4
Methylene Chloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Naphthalene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		4
Tetrahydrofuran	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	亚克纳	4.
Toluene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Xylenes	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	

From Figure 3, Table 10 and Appendix B of the Revised Addendum, Background Groundwater Quality Report: New Wells for Denison Mines (USA) Corp's White Mesa Mill Site, San Juan County, Utah, April 30, 2008, prepared by INTERA, Inc. and Table 16 and Appendix D of the Revised Background Groundwater Quality Report: Existing Wells for Denison Mines (USA) Corp.'s White Mesa Uranium Mill Site, San Juan County, Utah, October 2007, prepared by INTERA, Inc.

² From Figure 9 of the Revised Addendum, Evaluation of Available Pre-Operational and Regional Background Data, Background Groundwater Quality Report: Existing Wells for Denison Mines (USA) Corp.'s White Mesa Mill Site, San Juan Couinty, Utah, November 16, 2007, prepared by INTERA, Inc.

^{*}Range of average historic values for On-Site Monitoring Wells as reported on April 30, 2008 (MW-1, MW-2, MW-3, MW-3A, MW-4, MW-5, MW-11, MW-12, MW-14, MW-15, MW-17, MW-18, MW-19, MW-20, MW-22, MW-23, MW-24, MW-25, MW-26, MW-27, MW-28, MW-29, MW-30, MW-31 and MW-32)²

Table 2B Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells

San Harris	arash A			WAR SE	CAY!		tonwood S			in one we	helias,	1	34 K S 45 S	
Constituent	2009	2010	2011 May	2011 July	2012	2013	2014	2015	2016	2017	2018	2019	Range of Average Historic Values for Monitoring Wells ¹ *	Avg 1977 1982 ¹
				Mark Street		Ma	ijor Ions (n	ng/l)						
Carbonate	<1	<1	<1	6	<1	<1	<1	<1	<1	<1	<1	<1	- 1	4
Bicarbonate	316	340	330	316	326	280	251	271	256	280	283	286		# .
Calcium	90.3	92.2	95.4	94.2	101	87.9	99.7	111	102	99.6	109	122		-
Chloride	124	112	113	134	149	118	128	133	138	129	153	138	ND - 213	31
Fluoride	0.4	0.38	0.34	0.38	0.38	0.417	<1	0.318	0.466	0.344	0.282	0.249	ND - 1.3	0.8
Magnesium	25	24.8	25.2	25.2	27.7	23.6	29.0	27.5	29.5	27.1	30.2	35.3		10-30
Nitrogen- Ammonia	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.0512	<0.05	<0.05	<0.05	<0.05		
Nitrogen-Nitrate	0.1	<0.1	0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	0.124	0.108	<0.1	+ 1	
Potassium	5.7	5.77	6	5.9	6.2	5.53	6.18	5.91	6.11	5.72	6.35	6.78		= ,
Sodium	205	214	229	227	247	217	227	251	221	213	234	268	0.45	
Sulfate	383	389	394	389	256	403	417	442	443	409	428	423	ND - 3455	230
TDS	1010	900	1030	978	1040	996	968	1020	1070	1080	1080	1010	1019 - 5548	811
				v ve i h			Metals (ug/	/I)						
Arsenic	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5		-
Beryllium	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	# #	
Cadmium	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	ND - 4.78	
Chromium	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25		-
Cobalt	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	-
Copper	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		
Iron	<30	<30	53	<30	<30	<30	<30	<30	<30	<30	<30	<30	ND - 7942	150
Lead	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.56	
Manganese	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ND - 34,550	580
Mercury	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5		2,54
Molybdenum	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		154
Nickel	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	ND - 61	
Selenium	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	<5	<5	<5	<5	ND - 106.5	-

Table 2B Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells

	SE SEALS			M. T.	SELECTION OF		tonwood S	pring	共享		AN PER			THE SHAPE
Constituent	2009	2010	2011 May	2011 July	2012	2013	2014	2015	2016	2017	2018	2019	Range of Average Historic Values for Monitoring Wells ¹ *	Avg 1977 1982 ¹
Silver	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		2.
Thallium	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<5	< 0.5	<0.5	<0.5		
Tin	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100		-
Uranium	8.42	8.24	7.87	8.68	8.17	8.95	9.62	9.12	8.84	9.17	10.3	10.1	ND - 59.8	
Vanadium	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	a promision	
Zinc	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	Con Laboratory	
						Rad	liologics (p	Ci/l)	Blave	(S. 1910)				
Gross Alpha	<0.2	<0.2	<0.1	<-0.1	<-0.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	ND - 36	7.2
成于 有效。	Car Disp					1 7 7	OCS (ug/	L)	W KYT	Tanger.				
Acetone	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	477	-
Benzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	- XIII	
Carbon tetrachloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Chloroform	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Chloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	No.	-
MEK	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20		
Methylene Chloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		-
Naphthalene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		-
Tetrahydrofuran	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		-
Toluene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		4- (
Xylenes	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	==

¹ From Figure 3, Table 10 and Appendix B of the Revised Addendum, Background Groundwater Quality Report: New Wells for Denison Mines (USA) Corp's White Mesa Mill Site, San Juan County, Utah, April 30, 2008, prepared by INTERA, Inc. and Table 16 and Appendix D of the Revised Background Groundwater Quality Report: Existing Wells for Denison Mines (USA) Corp.'s White Mesa Uranium Mill Site, San Juan County, Utah, October 2007, prepared by INTERA, Inc.

^{*}Range of average historic values for On-Site Monitoring Wells as reported on April 30, 2008 (MW-1, MW-2, MW-3A, MW-4, MW-5, MW-11, MW-12, MW-14, MW-15, MW-17, MW-18, MW-19, MW-20, MW-22, MW-23, MW-24, MW-25, MW-26, MW-27, MW-28, MW-29, MW-31, and MW-32)

Table 2C Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells

阿克里尼亚米岛	7 120-12	1a	DIE 2C DEIECIE	d Constituents	and Compariso Westw	vater Seep	ilues allu Milli S	nte Monto	ing wens	I Control	F18500 V (1)	846-76	Name of Street
Constituent	2009	2010	2011 May	2011 July	2012	2013	2014	2015	2016	2017	2018	2019	Range of Average Historic Values for Monitoring Wells ¹ *
	9-9-27	34 JULY 198			Major	Ions (mg/l)		18 DV					
Carbonate	<1	<1	<1					<1	<i< td=""><td><1</td><td><1</td><td><1</td><td></td></i<>	<1	<1	<1	
Bicarbonate	465	450	371					359	399	369	444	450	# /
Calcium	191	179	247					150	176	125	204	185	-
Chloride	41	40	21					32.6	38.0	27.5	36.2	41.6	ND - 213
Fluoride	0.7	0.6	0.54					0.424	0.618	0.574	0.659	0.505	ND - 1.3
Magnesium	45.9	44.7	34.7	Not Sampled	Not Sampled	Not Sampled	Not Sampled	34	47.3	31.7	56.6	43.7	- 4
Nitrogen-Ammonia	< 0.05	0.5	0.06	Dry	Dry	Dry	Dry	0.123	< 0.05	< 0.05	0.0832	< 0.05	(3.5.3)
Nitrogen-Nitrate	0.8	<0.1	<0.1					<0.1	< 0.1	< 0.1	<0.1	<0.1	#
Potassium	1.19	6.57	3.9					1.98	2.32	2.33	2.94	3.99	
Sodium	196	160	112					139	185	133	218	152	
Sulfate	646	607	354					392	573	318	580	436	ND - 3455
TDS	1370	1270	853	1				896	1060	820	1220	1110	1019 - 5548
					Meta	als (ug/l)		HAR					M10123
Arsenic	<5	<5	12.3					<5.0	<5.0	<5.0	<5.0	<5.0	-
Beryllium	<0.5	<0.5	0.91					<0.5	<0.5	<0.5	<0.5	<0.5	
Cadmium	<0.5	<0.5	0.9					<0.5	< 0.5	< 0.5	<0.5	<0.5	ND - 4.78
Chromium	<25	<25	<25					<25	<25	<25	<25	<25	op a tree
Cobalt	<10	<10	<10					<10	<10	<10	<10	<10	
Copper	<10	<10	16					<10	<10	<10	<10	<10	
Iron	89	56	4540					<30	40.1	181	575	1.20	ND - 7942
Lead	<1.0	<1.0	41.4					<1.0	<1.0	<1.0	<1.0	<1.0	
Manganese	37	87	268	N C	N-+ C1- 1	N-4 C1-3	N-4 Cl- d	171	55.5	144	312	528	ND - 34,550
Mercury	<0.5	<0.5	<0.5	Not Sampled Dry	Not Sampled Dry	Dry	Not Sampled Dry	<0.5	<0.5	<0.5	<0.5	<0.5	# 9 1
Molybdenum	29	29	<10] [27,	Dij	Dij.	<10	<10	<10	<10	<10	
Nickel	<20	<20	29					<20	<20	<20	<20	<20	ND - 61
Selenium	<5.0	<5.0	<5.0	1				<5.0	<5.0	<5.0	<5.0	<5.0	ND - 106.5
Silver	<10	<10	<10					<10	<10	<10	<10	<10	
Thallium	<0.5	<0.5	<0.5	1				<0.5	<0.5	<0.5	<0.5	<0.5	
Tin	<100	<100	<100	1				<100	<100	<100	<100	<100	100 E 6
Uranium	15.1	46.6	6.64					2.1	19.0	5.17	13.2	4.92	ND - 59.8
Vanadium	<15	<15	34					<15	<15	<15	<15	<15	Wir 120
Zinc	<10	<10	28					<10	<10	<10	<10	<10	- W- M

Table 2C Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells

					Westw	ater Seep				19 15 19 1	NEW TOWN	CALLED G	1907 522
Constituent	2009	2010	2011 May	2011 July	2012	2013	2014	2015	2016	2017	2018	2019	Range of Average Historic Values for Monitoring Wells ¹ *
	表有医验验	N. September			Radiolo	gics (pCi/l)							
Gross Alpha	< -0.1	<0.3	0.5	Not Sampled Dry	Not Sampled Dry	Not Sampled Dry	Not Sampled Dry	<1.0	<1.0	<1.0	<1.0	<1.0	ND - 36
			三体, 目	A DESIGNATION	VOC	S (ug/L)				M			
Acetone	<20	<20	<20					<20	<20	23.1	<20	<20	
Benzene	<1.0	<1.0	<1.0					<1.0	<1.0	<1.0	<1.0	<1.0	
Carbon tetrachloride	<1.0	<1.0	<1.0					<1.0	<1.0	<1.0	<1.0	<1.0	- 1
Chloroform	<1.0	<1.0	<1.0					<1.0	<1.0	<1.0	<1.0	<1.0	
Chloromethane	<1.0	<1.0	<1.0	<u></u>	N. C. I.I	N. C. 1.1	N. C. L.I	<1.0	<1.0	<1.0	<1.0	<1.0	200
MEK	<20	<20	<20	Not Sampled Dry	Not Sampled Dry	Not Sampled Dry	Not Sampled Dry	<20	<20	<20	<20	<20	
Methylene Chloride	<1.0	<1.0	<1.0	J 2.,	Dij	Dij	Dij	<1.0	<1.0	<1.0	<1.0	<1.0	() () () () () () () ()
Naphthalene	<1.0	<1.0	<1.0					<1.0	<1.0	<1.0	<1.0	<1.0	
Tetrahydrofuran	<1.0	<1.0	<1.0]				<1.0	<1.0	<1.0	<1.0	<1.0	*
Toluene	<1.0	<1.0	<1.0					<1.0	<1.0	<1.0	<1.0	<1.0	+
Xylenes	<1.0	<1.0	<1.0	1				<1.0	<1.0	<1.0	<1.0	<1.0	

From Figure 3, Table 10 and Appendix B of the Revised Addendum, Background Groundwater Quality Report: New Wells for Denison Mines (USA) Corp's White Mesa Mill Site, San Juan County, Utah, April 30, 2008, prepared by INTERA, Inc. and Table 16 and Appendix D of the Revised Background Groundwater Quality Report: Existing Wells for Denison Mines (USA)

Corp.'s White Mesa Uranium Mill Site, San Juan County, Utah, October 2007, prepared by INTERA, Inc.

^{*}Range of average historic values for On-Site Monitoring Wells as reported on April 30, 2008 (MW-1, MW-2, MW-3, MW-3A, MW-4, MW-5, MW-11, MW-12, MW-14, MW-15, MW-17, MW-18, MW-19, MW-20, MW-22, MW-23, MW-24, MW-25, MW-26, MW-27, MW-28, MW-29, MW-30, MW-31 and MW-32)

Table 2D Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells

THE STATE PROPERTY.	STEE SO	la siste	2D Detected	- January	2 2 2 2 2 2 2	ntrance S		A STATE	- Ale I Ale	State and a		NE SINUS	(共同社)分别处理
Constituent	2009	2010	2011 May	2011 July	2012	2013	2014	2015	2016	2017	2018	2019	Range of Average Historic Values for Monitoring Wells ¹ *
				ALT PRINC	M	ajor Ions	(mg/l)					Mist si	
Carbonate	<1	<1	<1	7	<1	<1	<1	<1	<1	<1	<1	<1	
Bicarbonate	292	332	270	299	298	292	247	324	340	402	236	480	(E807) 1944
Calcium	90.8	96.5	88.8	96.6	105	121	103	131	131	129	116	155	
Chloride	60	63	49	64	78	139	76.8	75.6	75	84.6	75.9	104	ND - 213
Fluoride	0.7	0.73	0.58	0.58	0.64	0.71	<1	0.606	0.668	0.615	0.454	0.912	ND - 1.3
Magnesium	26.6	28.9	26.4	28.4	32.7	43	34.9	33.3	38.6	36.4	42.4	48.0	
Nitrogen-Ammonia	0.28	< 0.05	< 0.05	0.32	< 0.05	< 0.05	< 0.05	0.202	0.0962	0.247	0.102	0.168	
Nitrogen-Nitrate	1.4	1	1.4	0.5	2.8	2.06	3.65	<0.1	0.403	<1	2.34	<1	E 1234 1205 1
Potassium	2.4	2.74	2.6	2.9	2	3.83	1.56	1.62	<1.0	3.88	3.64	4.66	克油 网络
Sodium	61.4	62.7	62.5	68.6	77.4	127	78.9	93.1	90.8	90.3	96	126	
Sulfate	178	179	166	171	171	394	219	210	245	187	243	160	ND - 3455
TDS	605	661	571	582	660	828	688	680	828	752	820	892	1019 - 5548
ESPECIAL SECTION OF THE SECTION OF T	A Proxi				4999	Metals (u	g/I)	CONTRACT OF THE PARTY OF THE PA			Pieles.		
Arsenic	<5	<5	<5	<5	<5	<5	<5	5.02	<5	9.16	<5	8.94	
Beryllium	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	Date of the last
Cadmium	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	ND - 4.78
Chromium	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	
Cobalt	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	Triple 18 CR
Copper	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	
Iron	<30	<30	37	55	34	162	37.2	295	94.4	371	<30	453	ND - 7942
Lead	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Manganese	54	11	47	84	<10	259	16.1	367	210	913	405	587	ND - 34,550
Mercury	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	
Molybdenum	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	14.30	
Nickel	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	ND - 61
Selenium	12.1	9.2	13.1	5.5	13.2	11.2	15.9	<5	<5	<5	15.3	<5	ND - 106.5
Silver	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	
Thallium	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5	
Tin	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	
Uranium	15.2	17.8	18.8	15.3	21.1	38.8	23.2	36	22.0	14.6	27.6	70.1	ND - 59.8
Vanadium	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	
Zinc	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	

Table 2D Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells

CONTROL ENTER		In the	2D Detected			ntrance S ₁	11.42	5 (6 . 357					例がFWE E
Constituent	2009	2010	2011 May	2011 July	2012	2013	2014	2015	2016	2017	2018	2019	Range of Average Historic Values for Monitoring Wells ¹ *
				10 10	Ra	diologics (pCi/l)	E November				VIEW TO	
Gross Alpha	0.9	< 0.5	1.5	1.6	0.5	2.3	<1	3.05	<1	2.53	<1	2.63	ND - 36
		REF E	St. 253	THE MES		VOCS (ug	/L)						
Acetone	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	
Benzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	SI CALL DE
Carbon tetrachloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Chloroform	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Chloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
MEK	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	
Methylene Chloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Naphthalene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	15-26-40 NOW I
Tetrahydrofuran	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Toluene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.32	<1.0	<1.0	13.1	<1.0	5.59	0.000年16月2
Xylenes	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	AS N #VEIRS

¹ From Figure 3, Table 10 and Appendix B of the Revised Addendum, Background Groundwater Quality Report: New Wells for Denison Mines (USA) Corp's White Mesa Mill Site, San Juan County, Utah, April 30, 2008, prepared by INTERA, Inc. and Table 16 and Appendix D of the Revised Background Groundwater Quality Report: Existing Wells for Denison Mines (USA) Corp.'s White Mesa Uranium Mill Site, San Juan County, Utah, October 2007, prepared by INTERA, Inc.

^{*}Range of average historic values for On-Site Monitoring Wells as reported on April 30, 2008 (MW-1, MW-2, MW-3, MW-3A, MW-4, MW-5, MW-11, MW-12, MW-14, MW-15, MW-17, MW-18, MW-19, MW-20, MW-22, MW-24, MW-25, MW-26, MW-27, MW-28, MW-29, MW-30, MW-31 and MW-32)

INDEX OF TABS

- Tab A Seeps and Springs Field Data Sheets and Photographic Documentation
- Tab B Field Parameter Measurement Data
- Tab C Survey Data and Contour Map
- Tab D Analytical Laboratory Data
- Tab E Quality Assurance and Data Validation Tables
 - E-1 Holding Time Evaluation
 - E-2 Laboratory Receipt Temperature Check
 - E-3 Analytical Method Check
 - E-4 Reporting Limit Evaluation
 - E-5 Trip Blank Evaluation
 - E-6 QA/QC Evaluation for Sample Duplicates
 - E-7 Radiologic Counting Error
 - E-8 Laboratory Matrix QC Evaluation

Tab F CSV Transmittal

Tab A

Seeps and Springs Field Data Sheets and Photographic Documentation

Field Data Record-Seeps and Springs Sampling

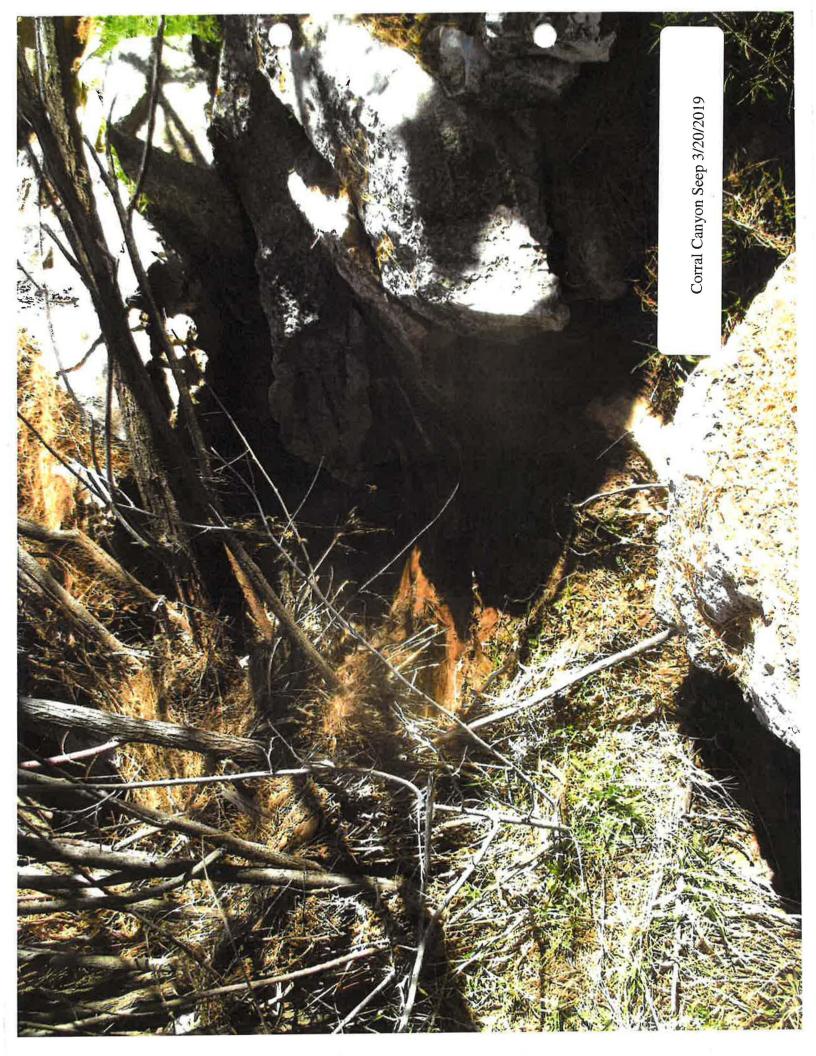
Seep or	r Spring I	Location	Cot	tonwo	od sp	oring		
Date Fo	or Initial	Samplin	g Visit:_	6/11/	2019	_Time:	0950	
ì	Sample Co	ollected:		No				
Date Fo	or Second	Sampli	ng Visit:_			Time:		
Š.	Sample Co	ollected:	□ Yes □	No -				
Date Fo	r Third S	Sampling	g Visit:		_	Time:		
S	Sample Co	ollected:	□ Yes □	No				
Samplin	ng Person	nel:	Tanner 1	Hollidan	Deen	yman, De	an Hen	desson
-	•			1000	Sunne		an Hend	WEL ZOIL
	ed Seep o				.50	GPM		
-pH -Tempo -Condu -Turbio -Redox	rameter 1 7.09 erature (°C activity µN lity (NTU Potential al Parame	C) MHOC/c.) (if mea Eh (mV	m/7 sured)) (if meas	oured) _			THE TOTAL	
	and the state of the	THE WAY STATE	· · · · · · · · · · · · · · · · · · ·	SECOND	10 25 - 11 - 1	The second liverage and the se	ng Meth	od
Parameter	Sample	Taken		建等性。	Direct -	Peristaltic	Lorde	Cathon
Parameter	Sample	Taken			Direct	Peristaltic Pump	Ladie	Other (describe in
Parameter VOCs	Sample Sample	Taken	□ Yes	⊠ No	Direct	AND THE PARTY WAS ARRESTED FOR THE PARTY OF	Ladle	(describe in notes section)
				™ No		Pump		(describe in
VOCs	⊠ Yes	□ No □ No □ No	□ Yes	□ No □ No		Pump D		(describe in a notes section):
VOCs Metals	⊠ Yes ⊠ Yes	□ No	□ Yes ⊠ Yes	□ No		Pump p		idescribe in interest section):
VOCs Metals Nutrients Other Non	⊠ Yes ⊠ Yes ⊠ Yes	□ No □ No □ No	□ Yes ⊠ Yes □ Yes	□ No □ No		Pump D D		(describe in) notes section):
VOCs Metals Nutrients Other Non Radiologics Gross Alpha QC Samp Rinsate Duplica Du Notes: Ar	✓ Yes ✓ Yes ✓ Yes ✓ Yes ✓ Yes ✓ Hes Assoc Blank te plicate Sa	□ No □ No □ No □ No □ No iated wi	□ Yes ☑ Yes □ Yes □ Yes □ Yes ☑ Yes ☑ Yes ☑ Yes ☑ Yes ☑ Yes	□ No □ No □ No ocation:	o o o o o o o o o o o o o o o o o o o	Pump © © ©	at c	(describe in a notes section)

Field Data Record-Seeps and Springs Sampling

Seep or	Spring I	Location	En	trance	Seep)		de de la companya de
Date Fo	or Initial	Samplin	g Visit:_	6/11/	2019	_ Time: <i>C</i>	1815	
\$	Sample Co	ollected:	☑ Yes □	No				
Date Fo	r Second	Sampli	ng Visit:			Time:		
\$	Sample Co	ollected:	□ Yes □	No .				
Date Fo	r Third S	ampling	g Visit:			Time:		
S	Sample Co	ollected:	□ Yes □	No				
Samplin	g Person	nel:	Tanner	Holliday	Deen L	yman, De	an Henr	derson
Weather	r Conditio				Sunny			-
							nt, no	visual flow
	rameter l					7		
rieid ru. -pH	7.09	viensure	ements:					
	erature (°C	C)	02					
-Condu	ctivity µN	ИНОС/с	m _/47					
			sured)					
-Redox	Potential	Eh (mV) (if meas	ured)	517			
Analytica	al Param	eters/Sa	mple Col	lection N	lethod:			
Parameter :	Sample	Taken	File	ered	\$#5 P			od /
Parameter	Sample	Taken	Filta	ered	Direct	Peristaltic		Other
Parameter	Sample	Taken	Filo	ered	Direct			Other (describe in
Parameter VOCs	Sample Sample	Taken	Filia — Yes	ered	Direct	Peristaltic		Other
VOCs Metals				ered ⊠ No □ No	With a	Peristnithe Pump	Ladle	Other (describe in notes section)
Metals Nutrients	⊠ Yes	□ No	□ Yes			Peristaltic Pump	Ladle	Other (describe in notes section)
Metals Nutrients Other Non Radiologics	⊠ Yes ⊠ Yes	□ No	□ Yes ⊠ Yes	□ No		Peristaltic Pump	Ladle	Other (describe in notes section)
Metals Nutrients Other Non	⊠ Yes ⊠ Yes ⊠ Yes	□ No □ No □ No	□ Yes ☑ Yes □ Yes	□ No No		Peristaltic Pump S S S	Ladle	Other (describe in notes section)
Metals Nutrients Other Non Radiologics	☑ Yes ☑ Yes ☑ Yes ☑ Yes ☑ Yes ☑ Yes	□ No □ No □ No □ No □ No	□ Yes □ Yes □ Yes □ Yes □ Yes	□ No □ No □ No		Peristaltic Pump S S S S	Ladle	Other (describe in notes section)
Metals Nutrients Other Non Radiologics Gross Alpha QC Samp Rinsate Duplicat	☑ Yes ☑ Yes ☑ Yes ☑ Yes ☑ Yes ☑ Yes ☑ Hes Assoc	□ No □ No □ No □ No □ No	□ Yes □ Yes □ Yes □ Yes □ Yes th this L	□ No □ No □ No		Peristaltic Pump S S S S	Ladle	Other (describe in notes section)

Seep or	r Spring I	Location	Bac	k spri	na -			
Date Fo	or Initial	Samplin	g Visit:_	6/11/	2019	_Time:(0850	
;	Sample Co	ollected:	⊠ Yes □	No				
Date Fo	r Second	Samplii	ng Visit:			Time:		
2	Sample Co	ollected:	□ Yes □	No .				
Date Fo	r Third S	Sampling	g Visit:			Time:		
S	Sample Co	ollected:	□ Yes □	No		7		
Samplin	g Person	nel:	Tanner	Hollidau	Deen L	yman, De	on Henry	derson
-	•				Sunn		res deut	AEI 20/
	ed Seep o					GPM		
-pH _ -Tempe -Condu -Turbid -Redox	lity (NTU Potential	C) 13 MHOC/cr) (if mea Eh (mV eters/Sa	m _/25'sured)_(if meas	sured) _	387 Method:			
Parameter	Sample	Taken	File	ered	Direct	Sampli Peristaltic Pump		Other (describe in s
VOCs	⊠ Yes	□ No	□ Yes	⊠ No	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			notes section)
Metals	₩ Yes	□ No	⊠ Yes	□ No		59		
Nutrients	⊠ Yes	□ No	□ Yes	₽ No	₩			
Other Non Radiologics	☑ Yes	□ No	□ Yes	⊠ No	Ø			
Gross Alpha	13 Yes	□ No	A Yes	□ No		<u> </u>		
QC Samp □ Rinsate ☑ Duplica Du	Blank			ocation:				

Seep or	Spring L	ocation:	Ruin	n Spr	ing			
Date Fo	r Initial S	Sampling	g Visit:	6/11/	2019	Time: 08	350	
S	ample Co	llected:	⊠ Yes □	No				
Date For	r Second	Samplin	g Visit:_			_ Time:		
S	ample Co	llected:	∃ Yes □	No .				
Date For	r Third S	ampling	Visit:			Time:		
S	ample Co	llected:	∃Yes □	No				
Samplin	g Personi	nel:	Tanner 1	tollidau	Deen L	yman, Dei	an Hend	lerson
Weather	Conditio					3		
_					O GPR			
-Tempe -Çondu -Turbid	7,40 erature (°C ctivity µN ity (NTU)	C) 13 MHOC/ci (if mean)	387		×	
	1911							79
Analytica	al Paramo	eters/Sai	mple Col	lection N	Aethod:		*	
Analytica		eters/Sar Taken	mple Col		(14) N 15 16		ng Metho	The state of the s
			_		Aethod: Direct	Sampli Peristaltic Pump	ng Metho Ladle	Other (describe in
			_		(14) N 15 16	Peristaltic	Micheller Committee Committee	Other
Parameter VOCs Metals	Sample	Taken	Filte	ered	Direct	Peristaltic Pump	Ladle	Other (describe in notes section)
VOCs Metals Nutrients	Sample	Taken □ No	Filta	ered	Direct	Peristaltic Pump	Ladle	Other (describe in notes section)
VOCs Metals Nutrients Other Non Radiologics	Sample Yes Yes	Taken □ No □ No	Filte ☐ Yes ☑ Yes	ered No □ No	Direct	Peristaltic Pump	Ladle	Other (describe in notes section)
VOCs Metals Nutrients Other Non	Sample Yes Yes Yes	Taken □ No □ No □ No	Filte ☐ Yes ☑ Yes ☐ Yes	E No □ No □ No	Direct	Peristaltic Pump	Ladle	Other (describe in notes section)
VOCs Metals Nutrients Other Non Radiologics Gross Alpha QC Samp □ Rinsate □ Duplica	Sample Sample Yes Yes Yes Yes Yes Syes In Yes Blank	□ No □ No □ No □ No □ No	☐ Yes ☑ Yes ☑ Yes ☐ Yes ☐ Yes ☐ Yes ☐ Hes ☐ Hes ☐ Hes	™ No No No No No	Direct S C C C C C C C C C C C C	Peristaltic Pump	Ladle	Other (describe in notes section)

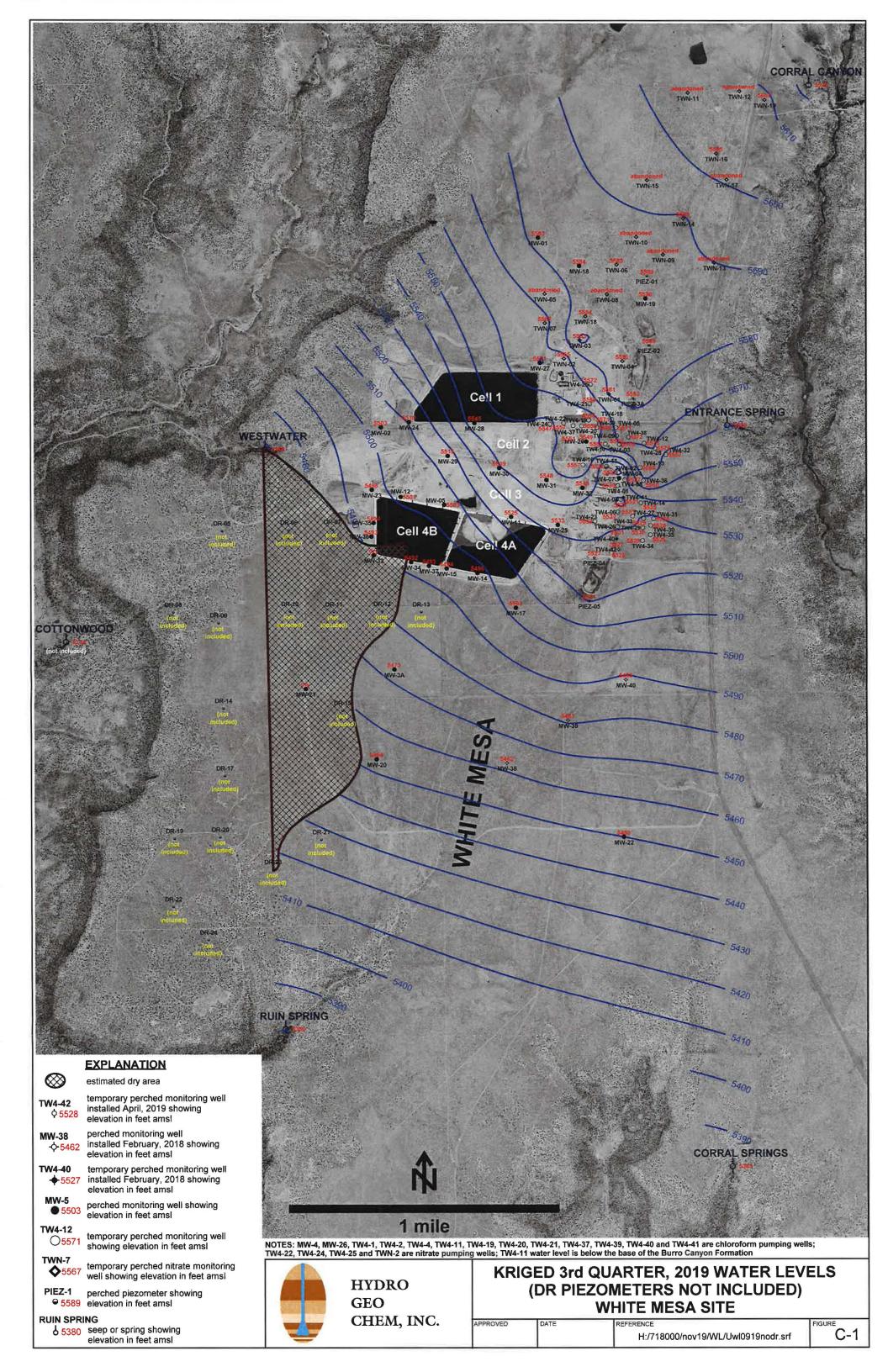


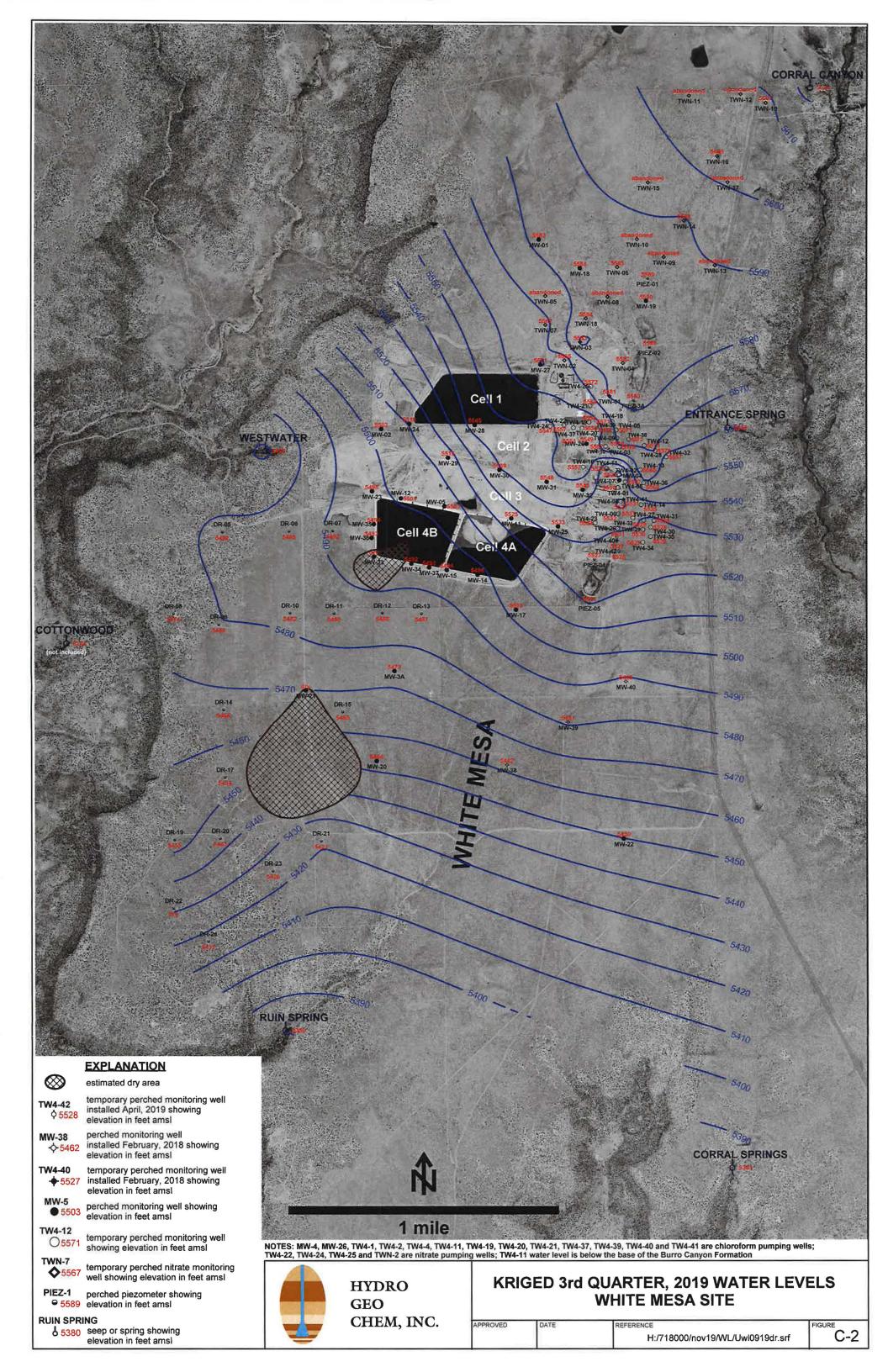
Seep or	Spring L	ocation:	We	stwat	er se	ep 20	019			
Date Fo	r Initial S	Sampling	g Visit:	3/20/2	2019	Time: 0	713			
S	Sample Co	ollected:	□ Yes 💌	No						
Date Fo	r Second	Samplin	g Visit:	3/27/2	2019	Time: <u>()</u>	930			
S	ample Co	llected:	ĭ Yes □	No						
Date For	r Third S	ampling	Visit:			Time:				
S	ample Co	llected:	⊃Yes □	No						
Samplin	g Person	nel:	Tanne	- Halli	day De	en Lyman	1			
Weather	Condition	ons at Ti								
Field Parameter Measurements: -pH7.14 -Temperature (°C)11.72 -Conductivity \(\text{pMHOC/cm} \) _16.28 -Turbidity (NTU) (if measured)11.7 -Redox Potential Eh (mV) (if measured)355 Analytical Parameters/Sample Collection Method:										
1		eters/Sar Taken		lection N			ng Meth	The second secon		
Analytica					Aethod: Direct	Sampli Peristaltic Pump		Other (describe in		
Analytica Parameter VOCs						Peristaltic		Other		
Parameter VOCs Metals	Sample ⊠ Yes □ Yes	□ No □ No	Filte □ Yes ⋈ Yes	M No □ No	Direct	Peristaltic Pump	Ladle	Other (describe in notes section)		
Parameter VOCs Metals Nutrients	Sample ⊠ Yes ☑ Yes ☑ Yes	□ No □ No □ No	Filte ☐ Yes ☑ Yes ☐ Yes	M No □ No ■ No	Direct	Peristaltic Pump	Ladle	Other (describe in notes section)		
Parameter VOCs Metals	Sample ⊠ Yes □ Yes	□ No □ No	Filte □ Yes ⋈ Yes	M No □ No	Direct	Peristaltic Pump	Ladle	Other (describe in notes section)		
VOCs Metals Nutrients Other Non	Sample ⊠ Yes ☑ Yes ☑ Yes	□ No □ No □ No	Filte ☐ Yes ☑ Yes ☐ Yes	M No □ No ■ No	Direct	Peristaltic Pump	Ladle	Other (describe in notes section)		
VOCs VOCs Metals Nutrients Other Non Radiologics Gross Alpha QC Samp Rinsate Duplica	Sample Sample Yes Yes Yes Yes Yes Blank	□ No □ No □ No □ No □ No	☐ Yes ☑ Yes ☐ Yes ☐ Yes ☐ Yes ☐ Yes ☐ Hes	M No □ No ■ No ■ No ■ No □ No	Direct	Peristaltic Pump	Ladie	Other (describe in notes section)		

Seep or	Spring L	ocation:	Cor	al c	Canyor	Seep		
Date For	r Initial S	ampling	Visit: 3	/20/2	019	Time:	946	
S	ample Co	llected:	□ Yes 🗵	No				
2 Date For	r Second	Samplin	g Visit:_	6/11/	2019	Time:l	231	
	ample Co							
3 Date For	r Third S	ampling	Visit:	8/7/2	2019	Time: 12	23	
	ample Co							
	g Personi							
-	_		me of Sa					
- Lurbid	ity (NTU)) (11 meas	surea)					
Analytica								
	al Paramo		mple Col	lection N	Aethod:	Sampli	ng Metho	
Analytica	al Paramo	eters/Sai	mple Col	lection N				Other (describe in
Analytica	al Paramo	eters/Sai	mple Col	lection N	Aethod:	Sampli Peristaltic		Other
Analytica Parameter VOCs Metals	al Paramo	eters/Sa	mple Col	lection N	Method: Direct	Sampli Peristaltic Pump	Ladle	Other (describe in notes section)
Analytica Parameter VOCs Metals Nutrients	Sample Sample Yes Yes Yes	Taken □ No □ No □ No	Filte	□ No □ No	Direct	Samplii Peristaltic Pump	Ladle	Other (describe in notes section)
Parameter VOCs Metals	Sample □ Yes □ Yes	Taken □ No □ No	Filte	ered No	Direct	Sampli Peristaltic Pump	Ladle	Other (describe in notes section)
Parameter VOCs Metals Nutrients Other Non	Sample Sample Yes Yes Yes	Taken □ No □ No □ No	Filte	□ No □ No	Direct	Samplii Peristaltic Pump	Ladle	Other (describe in notes section)
VOCs Metals Nutrients Other Non Radiologics Gross Alpha QC Samp	Sample Yes Yes Yes Yes Yes Yes Blank	□ No □ No □ No □ No □ No	□ Yes □ Yes □ Yes □ Yes □ Yes	□ No □ No □ No □ No	Direct	Samplii Peristaltic Pump	Ladle	Other (describe in notes section)

Seep or	Spring L	ocation	Co	rral	spring	(
Ql Date Fo	or Initial S	Samplin	g Visit:_	3/20/2	1019	Time:	933	
S	Sample Co	ollected:	□ Yes 🛚	No				-
	0.000			1	2019	Time:	214	
S	Sample Co	llected:	□ Yes 🕱	No	•			-
23 Date Fo	r Third S	ampling	g Visit:_{	3/7/3	2019	Time: 120	09	
S	Sample Co	llected:	□ Yes 🕡	No				
Samplin	g Person	nel:						
Weather	r Conditio	ons at Ti	ime of Sa	mpling:				
-Turbid	lity (NTU)) (if mea	sured)					
-Redox Analytica Parameter		eters/Sa	mple Col				ng Meth	od
Analytic	al Param	eters/Sa	mple Col	lection N			The second second second	Other (describe in
Analytica Parameter VOCs	al Param	eters/Sa	mple Col	lection N	Method:	Sampli Peristaltic	The state of the s	Other
Analytics Parameter VOCs Metals	Sample Sample	Taken □ No □ No	mple Col	ered.	Direct	Sampli Peristaltic Pump	Ladle	Other (describe in notes section)
Analytica Parameter VOCs Metals Nutrients	Sample Sample Yes Yes Yes	Taken No No No	□ Yes □ Yes	□ No □ No	Direct	Sampli Peristaltic Pump	Lädle	Other (describe in notes section)
Analytics Parameter VOCs Metals	Sample Sample	Taken □ No □ No	mple Col	ered.	Direct	Sampli Peristaltic Pump	Lädle	Other (describe in notes section)
VOCs Metals Nutrients Other Non	Sample Sample Yes Yes Yes	Taken No No No	□ Yes □ Yes	□ No □ No	Direct	Sampli Peristaltic Pump	Lädle	Other (describe in notes section)
VOCs VOCs Metals Nutrients Other Non Radiologics Gross Alpha QC Samp	□ Yes □ Yes □ Yes □ Yes □ Yes	□ No □ No □ No □ No	□ Yes □ Yes □ Yes □ Yes □ Yes	□ No □ No □ No □ No	Direct	Sampli Peristaltic Pump	Lädle	Other (describe in notes section)
VOCs VOCs Metals Nutrients Other Non Radiologics Gross Alpha QC Samp	□ Yes □ Yes □ Yes □ Yes □ Yes □ Yes □ Hes	□ No □ No □ No □ No □ No	□ Yes □ Yes □ Yes □ Yes □ Yes □ Yes	□ No □ No □ No □ No □ No □ No	Direct	Sampli Peristaltic Pump	Lädle	Other (describe in notes section)

Tab B Field Parameter Measurement Data


Field parameters


Location	Date Sampled	pН	Conductivity	Turbidity	Redox	Temperature
Cottonwood Spring	6/11/2019	7.09	1701	0	470	15.97
Entrance Seep	6/11/2019	7.09	1425	63.8	517	14.02
Back Spring (Duplicate of Ruin Spring)	6/11/2019	7.40	1254	0	387	13.66
Ruin Spring	6/11/2019	7.40	1254	0	387	13.66
Westwater Seep	3/27/2019	7.14	1628	11.7	355	11.72

Tab C Survey Data and Contour Map

Seeps and Springs Survey Locations

	Mid-December 2009 Survey										
Location	Latitude (N)	Longitude (W)	Elevation								
FROG POND	37°33'03.5358"	109°29'04.9552"	5589.56								
CORRAL CANYON	37°33'07.1392"	109°29'12.3907"	5623.97								
ENTRANCE SPRING	37°32'01.6487"	109°29'33.7005"	5559.71								
CORRAL SPRINGS	37°29'37.9192"	109°29'35.8201"	5383.35								
RUIN SPRING	37°30'06.0448"	109°31'23.4300"	5380.03								
COTTONWOOD	37°31'21.7002"	109°32'14.7923"	5234.33								
WESTWATER	37°31'58.5020"	109°31'25.7345"	5468.23								
	Verification Surv	ey July 2010									
RUIN SPRING	37°30'06.0456"	109°31'23.4181"	5380.01								
COTTONWOOD	37°31'21.6987"	109°32'14.7927"	5234.27								
WESTWATER	37°31'58.5013"	109°31'25.7357"	5468.32								

Tab D Analytical Laboratory Data

Client:

Energy Fuels Resources, Inc.

Annual Seeps and Springs 2019

Lab Sample ID:

1903737-001

Client Sample ID: Westwater Seep **Collection Date:**

3/27/2019 930h

Received Date: 3/29/2019 1000h

Analytical Results

DISSOLVED METALS

Contact: Tanner Holliday

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Arsenic	mg/L	4/5/2019 1023h	4/8/2019 1225h	E200.8	0.00500	< 0.00500	
	Beryllium	mg/L	4/5/2019 1023h	4/9/2019 1737h	E200.8	0.000500	< 0.000500	
	Cadmium	mg/L	4/5/2019 1023h	4/8/2019 1225h	E200.8	0.000500	< 0.000500	
Phone: (801) 263-8686	Calcium	mg/L	4/5/2019 1023h	4/10/2019 1316h	E200.7	10.0	185	
	Chromium	mg/L	4/5/2019 1023h	4/8/2019 1225h	E200.8	0.0250	< 0.0250	
Toll Free: (888) 263-8686	Cobalt	mg/L	4/5/2019 1023h	4/8/2019 1225h	E200.8	0.0100	< 0.0100	
Fax: (801) 263-8687	Copper	mg/L	4/5/2019 1023h	4/8/2019 1225h	E200.8	0.0100	< 0.0100	
e-mail: awal@awal-labs.com	Iron	mg/L	4/5/2019 1023h	4/10/2019 1523h	E200.8	0.100	1.20	
	Lead	mg/L	4/5/2019 1023h	4/9/2019 1737h	E200.8	0.00100	< 0.00100	
web: www.awal-labs.com	Magnesium	mg/L	4/5/2019 1023h	4/10/2019 1316h	E200.7	10.0	43.7	
	Manganese	mg/L	4/5/2019 1023h	4/8/2019 1225h	E200.8	0.0100	0.528	В
	Mercury	mg/L	4/4/2019 1830h	4/10/2019 830h	E245.1	0.000500	< 0.000500	
Kyle F. Gross	Molybdenum	mg/L	4/5/2019 1023h	4/8/2019 1225h	E200.8	0.0100	< 0.0100	
Laboratory Director	Nickel	mg/L	4/5/2019 1023h	4/9/2019 1728h	E200.8	0.0200	< 0.0200	
	Potassium	mg/L	4/5/2019 1023h	4/10/2019 1329h	E200.7	1.00	3.99	
Jose Rocha	Selenium	mg/L	4/5/2019 1023h	4/8/2019 1225h	E200.8	0.00500	< 0.00500	
QA Officer	Silver	mg/L	4/5/2019 1023h	4/9/2019 1728h	E200.8	0.0100	< 0.0100	
	Sodium	mg/L	4/5/2019 1023h	4/10/2019 1316h	E200.7	10.0	152	2
	Thallium	mg/L	4/5/2019 1023h	4/9/2019 1737h	E200.8	0.000500	< 0.000500	
	Tin	mg/L	4/5/2019 1023h	4/8/2019 1225h	E200.8	0.100	< 0.100	
	Uranium	mg/L	4/5/2019 1023h	4/9/2019 1741h	E200.8	0.000300	0.00492	
	Vanadium	mg/L	4/5/2019 1023h	4/10/2019 1329h	E200.7	0.0150	< 0.0150	
	Zinc	mg/L	4/5/2019 1023h	4/9/2019 1728h	E200.8	0.0100	< 0.0100	†

^{† -} Analyte(s) were observed above the reporting limit in the filter blank. The filter blank was acceptable, as any associated samples do not have results above the reporting limit/PQL.

² - Analyte concentration is too high for accurate matrix spike recovery and/or RPD.

B - The filter blank was acceptable, as the method blank result is less than 10% of the lowest reported sample concentration.

Contact: Tanner Holliday

Client: Energy Fuels Resources, Inc.

Project: Annual Seeps and Springs 2019

Lab Sample ID:1903737-001Client Sample ID:Westwater SeepCollection Date:3/27/2019930hReceived Date:3/29/20191000h

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Ammonia (as N)	mg/L	4/9/2019 1235h	4/9/2019 1649h	E350,1	0.0500	< 0.0500	
	Bicarbonate (as CaCO3)	mg/L		4/2/2019 749h	SM2320B	1.00	450	
	Carbonate (as CaCO3)	mg/L		4/2/2019 749h	SM2320B	1.00	< 1.00	
Phone: (801) 263-8686	Chloride	mg/L		4/10/2019 2248h	E300.0	5.00	41.6	
Toll Free: (888) 263-8686	Fluoride	mg/L		4/11/2019 227h	E300.0	0.100	0.505	
Fax: (801) 263-8687	Ion Balance	%		4/10/2019 1356h	Calc.	-100	0.902	
e-mail: awal@awal-labs.com	Nitrate/Nitrite (as N)	mg/L		3/29/2019 1326h	E353.2	0.100	< 0.100	
	Sulfate	mg/L		4/10/2019 2248h	E300.0	37.5	436	
web: www.awal-labs.com	Total Anions, Measured	meq/L		4/10/2019 1356h	Calc.		19.3	
	Total Cations, Measured	meq/L		4/10/2019 1356h	Calc.		19.6	
Vula E. Cross	Total Dissolved Solids	mg/L		3/29/2019 1145h	SM2540C	20.0	1,110	
Kyle F. Gross Laboratory Director	Total Dissolved Solids Ratio, Measured/Calculated			4/10/2019 1356h	Calc.		0.981	
Jose Rocha QA Officer	Total Dissolved Solids, Calculated	mg/L		4/10/2019 1356h	Calc.		1,130	
QA Officer								

Client:

Energy Fuels Resources, Inc.

Project:

Annual Seeps and Springs 2019

Lab Sample ID:

1903737-001A

Collection Date:

Client Sample ID: Westwater Seep

Received Date:

3/27/2019 930h 3/29/2019 1000h

Test Code: 8260-W-DEN100

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 3/29/2019 1207h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Tanner Holliday

SW8260C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
2-Butanone	78-93-3	20.0	< 20.0	
Acetone	67-64-1	20.0	< 20.0	
Benzene	71-43-2	1.00	< 1.00	
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	
Naphthalene	91-20-3	1.00	< 1.00	
Tetrahydrofuran	109-99-9	1.00	< 1.00	
Toluene	108-88-3	1.00	< 1.00	
Xylenes, Total	1330-20-7	1.00	< 1.00	

Surrogate	Units: µg/L	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dic	chloroethane-d4	17060-07-0	47.8	50.00	95.5	72-151	
Surr: 4-Brom	nofluorobenzene	460-00-4	51.3	50.00	103	80-152	
Surr: Dibron	ofluoromethane	1868-53-7	50.6	50.00	101	72-135	
Surr: Toluen	e-d8	2037-26-5	50.8	50.00	102	80-124	

Report Date: 4/11/2019 Page 7 of 26

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 26, 2019

DNMI00106

DNMI001

Company:

Energy Fuels Resources (USA), Inc.

Address:

225 Union Boulevard

Suite 600

Lakewood, Colorado 80228

Contact:

Ms. Kathy Weinel

Project:

Analytical for Annual Seeps and Spring 2019

Client Sample ID: Sample ID:

Westwater Seep

475027001

Matrix:

Ground Water 27-MAR-19 09:30

Collect Date: Receive Date:

01-APR-19

Collector:

Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time 1	Batch	Method
Rad Gas Flow Proporti	onal Counting	g											
GFPC, Total Alpha Ra	dium, Liquid	"As Rece	ived"										
3ross Radium Alpha	U	0.232	+/-0.270	0.982	1.00	pCi/L			JXC9	04/05/19	1228 1	863376	1
The following Analyti	cal Methods v	vere perfo	ormed:										
Method	Description						Analyst	Con	nments				
	EPA 903.0						•						
Surrogate/Tracer Reco	very Test				R	esult	Nomina	al	Recov	ery%	Accepta	able Li	mits
Barium Carrier	GFPC,	Total Alpha	Radium, Liquid "A	As Received"					ç	95.1	(25%	6-125%)	

Notes:

Counting Uncertainty is calculated at the 68% confidence level (1-sigma).

3RL = Sample Reporting Limit. For metals analysis only. When the sample is U qualified and ND, the SRL column reports the value which is he greater of either the adjusted MDL or the CRDL.

Column headers are defined as follows:

DF: Dilution Factor DL: Detection Limit Lc/LC: Critical Level PF: Prep Factor

MDA: Minimum Detectable Activity

RL: Reporting Limit

MDC: Minimum Detectable Concentration

SQL: Sample Quantitation Limit

Client:

Energy Fuels Resources, Inc.

Project:

Seeps and Springs 2019

Lab Sample ID:

1906343-002

Client Sample ID: Ruin Spring **Collection Date:**

Received Date:

6/11/2019 850h 6/13/2019 1054h

Analytical Results

DISSOLVED METALS

Contact: Tanner Holliday

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Arsenic	mg/L	6/14/2019 1410h	6/17/2019 1351h	E200.8	0.00500	< 0.00500	
	Beryllium	mg/L	6/14/2019 1410h	6/17/2019 1535h	E200.8	0.000500	< 0.000500	
	Cadmium	mg/L	6/14/2019 1410h	6/17/2019 1351h	E200.8	0.000500	< 0.000500	
Phone: (801) 263-8686	Calcium	mg/L	6/14/2019 1410h	6/28/2019 1518h	E200.7	10.0	165	
,	Chromium	mg/L	6/14/2019 1410h	6/17/2019 1351h	E200.8	0.0250	< 0.0250	
Toll Free: (888) 263-8686	Cobalt	mg/L	6/14/2019 1410h	6/17/2019 1351h	E200.8	0.0100	< 0.0100	
Fax: (801) 263-8687	Copper	mg/L	6/14/2019 1410h	6/17/2019 1351h	E200.8	0.0100	< 0.0100	
e-mail: awal@awal-labs.com	Iron	mg/L	6/14/2019 1410h	6/17/2019 1535h	E200.8	0.0300	< 0.0300	
	Lead	mg/L	6/14/2019 1410h	6/17/2019 1535h	E200.8	0.00100	< 0.00100	
web: www.awal-labs.com	Magnesium	mg/L	6/14/2019 1410h	6/28/2019 1518h	E200.7	10.0	45.6	
	Manganese	mg/L	6/14/2019 1410h	6/17/2019 1351h	E200.8	0.0100	< 0.0100	
	Mercury	mg/L	6/21/2019 1450h	6/24/2019 752h	E245.1	0.000500	< 0.000500	
Kyle F. Gross	Molybdenum	mg/L	6/14/2019 1410h	6/17/2019 1351h	E200.8	0.0100	0.0202	
Laboratory Director	Nickel	mg/L	6/14/2019 1410h	6/17/2019 1351h	E200.8	0.0200	< 0.0200	
	Potassium	mg/L	6/14/2019 1410h	6/28/2019 1705h	E200.7	1.00	3.31	
Jose Rocha	Selenium	mg/L	6/14/2019 1410h	6/17/2019 1351h	E200.8	0.00500	0.0108	
QA Officer	Silver	mg/L	6/14/2019 1410h	6/17/2019 1351h	E200.8	0.0100	< 0.0100	
	Sodium	mg/L	6/14/2019 1410h	6/28/2019 1518h	E200.7	10.0	128	
	Thallium	mg/L	6/14/2019 1410h	6/17/2019 1535h	E200.8	0.000500	< 0.000500	
	Tin	mg/L	6/14/2019 1410h	6/17/2019 1351h	E200.8	0.100	< 0.100	
	Uranium	mg/L	6/14/2019 1410h	6/17/2019 1550h	E200.8	0.000300	0.00902	
	Vanadium	mg/L	6/14/2019 1410h	6/28/2019 1705h	E200.7	0.0150	< 0.0150	
	Zinc	mg/L	6/14/2019 1410h	6/17/2019 1930h	E200.8	0.0100	< 0.0100	

Report Date: 7/5/2019 Page 7 of 35

Contact: Tanner Holliday

Client: Energy Fuels Resources, Inc.

Project: Seeps and Springs 2019

Lab Sample ID: 1906343-002
Client Sample ID: Ruin Spring
Collection Date: 6/11/2019 850h
Received Date: 6/13/2019 1054h

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Ammonia (as N)	mg/L	6/23/2019 2000h	6/24/2019 1127h	E350.1	0.0500	< 0.0500	
	Bicarbonate (as CaCO3)	mg/L		6/17/2019 739h	SM2320B	1.00	202	
	Carbonate (as CaCO3)	mg/L		6/17/2019 739h	SM2320B	1.00	< 1.00	
Phone: (801) 263-8686	Chloride	mg/L		6/28/2019 043h	E300.0	1.00	23.9	
Toll Free: (888) 263-8686	Fluoride	mg/L		6/28/2019 256h	E300.0	0.100	0.505	
Fax: (801) 263-8687	Ion Balance	%		6/28/2019 1847h	Calc.	-100	9.31	
e-mail: awal@awal-labs.com	Nitrate/Nitrite (as N)	mg/L		6/14/2019 1048h	E353.2	0.100	1.56	
	Sulfate	mg/L		6/27/2019 2139h	E300.0	37.5	474	
web: www.awal-labs.com	Total Anions, Measured	meq/L		6/28/2019 1847h	Calc.		14.6	
	Total Cations, Measured	meq/L		6/28/2019 1847h	Calc.		17.6	
Valo E. Cass	Total Dissolved Solids	mg/L		6/14/2019 1100h	SM2540C	20.0	900	
Kyle F. Gross Laboratory Director	Total Dissolved Solids Ratio, Measured/Calculated			6/28/2019 1847h	Calc.		0.935	
Jose Rocha QA Officer	Total Dissolved Solids, Calculated	mg/L		6/28/2019 1847h	Calc.		962	

Client:

Energy Fuels Resources, Inc.

Project:

Seeps and Springs 2019

Lab Sample ID:

1906343-002A

Client Sample ID: Ruin Spring **Collection Date:**

6/11/2019 850h

Received Date:

6/13/2019 1054h

Test Code: 8260-W-DEN100

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 6/13/2019 1437h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Tanner Holliday

SW8260C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Compound			CAS Number	Reporting Limit	Analytical Result	Qual
2-Butanone			78-93-3	20.0	< 20.0	
Acetone			67-64-1	20.0	< 20.0	
Benzene			71-43-2	1.00	< 1.00	
Carbon tetra	chloride		56-23-5	1.00	< 1.00	
Chloroform			67-66-3	1.00	< 1.00	
Chlorometha	ane		74-87-3	1.00	< 1.00	
Methylene c	hloride		75-09-2	1.00	< 1.00	
Naphthalene	;		91-20-3	1.00	< 1.00	
Tetrahydrofi	uran		109-99-9	1.00	< 1.00	
Toluene			108-88-3	1.00	< 1.00	
Xylenes, To	tal		1330-20-7	1.00	< 1.00	
Surrogate	Units: μg/L	CAS	Result Amount S	Spiked % REC	Limits	Qual

Surr: 1.2-Dichloroethane-d4 17060-07-0 51.3 50.00 103 72-151 Surr: 4-Bromofluorobenzene 460-00-4 64.8 50.00 130 80-152 Surr: Dibromofluoromethane 1868-53-7 45.2 50.00 90.3 72-135 Surr: Toluene-d8 2037-26-5 51.7 50.00 103 80-124

Report Date: 7/5/2019 Page 15 of 35

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

DNMI00106

DNMI001

July 8, 2019

Company:

Energy Fuels Resources (USA), Inc.

Address:

225 Union Boulevard

Suite 600

Lakewood, Colorado 80228

Contact:

Ms. Kathy Weinel

Project:

Client Sample ID:

Analytical forSeeps and Springs 2019 Ruin Spring

Sample ID:

481772002

Matrix:

Ground Water 11-JUN-19 08:50

Collect Date: Receive Date:

Collector:

13-JUN-19 Client

Parameter	Qualifier	Result Un	certainty	MDC	RL	Units	PF	DF .	Analyst Date	Time Batch	Method

Read Gas Flow Proportional Counting

3FPC, Total Alpha Radium, Liquid "As Received"

Fross Radium Alpha

-0.116

+/-0.106

0.642

1.00 pCi/L LXB3 06/28/19 1148 1888588

The following Analytical Methods were performed:

Method Description EPA 903.0

Analyst Comments

Project:

Client ID:

Surrogate/Tracer Recovery Test

Result Nominal Recovery% Acceptable Limits

3arium Carrier

GFPC, Total Alpha Radium, Liquid "As Received"

90.6 (25%-125%)

Counting Uncertainty is calculated at the 68% confidence level (1-sigma).

SRL = Sample Reporting Limit. For metals analysis only. When the sample is U qualified and ND, the SRL column reports the value which is he greater of either the adjusted MDL or the CRDL.

Column headers are defined as follows:

DF: Dilution Factor DL: Detection Limit Lc/LC: Critical Level PF: Prep Factor

MDA: Minimum Detectable Activity MDC: Minimum Detectable Concentration **RL**: Reporting Limit SQL: Sample Quantitation Limit

Client:

Energy Fuels Resources, Inc.

Project:

Seeps and Springs 2019

Lab Sample ID:

1906343-001

Collection Date:

Client Sample ID: Entrance Seep

Received Date:

6/11/2019 815h 6/13/2019 1054h

Analytical Results

DISSOLVED METALS

Contact: Tanner Holliday

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Arsenic	mg/L	6/14/2019 1410h	6/17/2019 1342h	E200.8	0.00500	0.00894	
	Beryllium	mg/L	6/14/2019 1410h	6/17/2019 1448h	E200.8	0.000500	< 0.000500	
	Cadmium	mg/L	6/14/2019 1410h	6/17/2019 1342h	E200.8	0.000500	< 0.000500	
Phone: (801) 263-8686	Calcium	mg/L	6/14/2019 1410h	6/28/2019 1507h	E200.7	10.0	155	2
Toll Free: (888) 263-8686	Chromium	mg/L	6/14/2019 1410h	6/17/2019 1342h	E200.8	0.0250	< 0.0250	
	Cobalt	mg/L	6/14/2019 1410h	6/17/2019 1342h	E200.8	0.0100	< 0.0100	
Fax: (801) 263-8687	Copper	mg/L	6/14/2019 1410h	6/17/2019 1342h	E200.8	0.0100	< 0.0100	
e-mail: awal@awal-labs.com	Iron	mg/L	6/14/2019 1410h	6/17/2019 1448h	E200.8	0.0300	0.453	
web: www.awal-labs.com	Lead	mg/L	6/14/2019 1410h	6/17/2019 1448h	E200.8	0.00100	< 0.00100	
	Magnesium	mg/L	6/14/2019 1410h	6/28/2019 1507h	E200.7	10.0	48.0	2
	Manganese	mg/L	6/14/2019 1410h	6/17/2019 1342h	E200.8	0.0100	0.587	
	Mercury	mg/L	6/21/2019 1450h	6/24/2019 758h	E245.1	0.000500	< 0.000500	
Kyle F. Gross	Molybdenum	mg/L	6/14/2019 1410h	6/17/2019 1342h	E200.8	0.0100	0.0143	
Laboratory Director	Nickel	mg/L	6/14/2019 1410h	6/17/2019 1342h	E200.8	0.0200	< 0.0200	
	Potassium	mg/L	6/14/2019 1410h	6/28/2019 1703h	E200.7	1.00	4.66	
Jose Rocha	Selenium	mg/L	6/14/2019 1410h	6/17/2019 1342h	E200.8	0.00500	< 0.00500	
QA Officer	Silver	mg/L	6/14/2019 1410h	6/17/2019 1342h	E200.8	0.0100	< 0.0100	
QIT OTHER	Sodium	mg/L	6/14/2019 1410h	6/28/2019 1507h	E200,7	10.0	126	2
	Thallium	mg/L	6/14/2019 1410h	6/17/2019 1448h	E200.8	0.000500	< 0.000500	
	Tin	mg/L	6/14/2019 1410h	6/17/2019 1342h	E200.8	0.100	< 0.100	
	Uranium	mg/L	6/14/2019 1410h	6/17/2019 1547h	E200.8	0.000300	0.0701	
	Vanadium	mg/L	6/14/2019 1410h	6/28/2019 1703h	E200.7	0.0150	< 0.0150	
	Zinc	mg/L	6/14/2019 1410h	6/17/2019 1927h	E200.8	0.0100	< 0.0100	

² - Analyte concentration is too high for accurate matrix spike recovery and/or RPD.

Contact: Tanner Holliday

Client:

Energy Fuels Resources, Inc.

Project:

Seeps and Springs 2019

Lab Sample ID:

1906343-001

Collection Date:

Client Sample ID: Entrance Seep 6/11/2019 815h

Received Date:

6/13/2019 1054h

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Ammonia (as N)	mg/L	6/23/2019 2000h	6/24/2019 1120h	E350.1	0.0500	0.168	1
	Bicarbonate (as CaCO3)	mg/L		6/17/2019 739h	SM2320B	1.00	480	
	Carbonate (as CaCO3)	mg/L		6/17/2019 739h	SM2320B	1.00	< 1.00	
Phone: (801) 263-8686	Chloride	mg/L		6/27/2019 2016h	E300.0	1.00	104	
Toll Free: (888) 263-8686	Fluoride	mg/L		6/28/2019 346h	E300.0	0.100	0.912	
Fax: (801) 263-8687	Ion Balance	%		6/28/2019 1847h	Calc.	-100	4.46	
e-mail: awal@awal-labs.com	Nitrate/Nitrite (as N)	mg/L		6/14/2019 1110h	E353.2	0.100	< 0.100	
	Sulfate	mg/L		6/27/2019 2016h	E300.0	7.50	160	
web: www.awal-labs.com	Total Anions, Measured	meq/L		6/28/2019 1847h	Calc.		15.9	
	Total Cations, Measured	meq/L		6/28/2019 1847h	Calc.		17.4	
Vula E Cuasa	Total Dissolved Solids	mg/L		6/14/2019 1100h	SM2540C	20.0	892	@
Kyle F. Gross Laboratory Director	Total Dissolved Solids Ratio, Measured/Calculated			6/28/2019 1847h	Calc.		1.01	
Jose Rocha QA Officer	Total Dissolved Solids, Calculated	mg/L		6/28/2019 1847h	Calc.		887	

^{@ -} High RPD due to suspected sample non-homogeneity or matrix interference.

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Client: Project: Energy Fuels Resources, Inc.

Seeps and Springs 2019

Lab Sample ID:

1906343-001A

Collection Date:

Client Sample ID: Entrance Seep 6/11/2019 815h

Received Date:

6/13/2019 1054h

Test Code: 8260-W-DEN100

Contact: Tanner Holliday

Analytical Results

μg/L

VOAs by GC/MS Method 8260C/5030C

Analyzed: 6/13/2019 1417h

Units:

Dilution Factor: 1

Method:

Reporting

SW8260C

Analytical

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha **QA** Officer

Compound	Number	Limit	Result	Qual
2-Butanone	78-93-3	20.0	< 20.0	
Acetone	67-64-1	20.0	< 20.0	
Benzene	71-43-2	1.00	< 1.00	
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	
Naphthalene	91-20-3	1.00	< 1.00	
Tetrahydrofuran	109-99-9	1.00	< 1.00	
Toluene	108-88-3	1.00	5.59	
Xylenes, Total	1330-20-7	1.00	< 1.00	

CAS

Surrogate	Units: μg/L	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dic	chloroethane-d4	17060-07-0	56.3	50.00	113	72-151	
Surr: 4-Brom	nofluorobenzene	460-00-4	53.1	50.00	106	80-152	
Surr: Dibron	nofluoromethane	1868-53-7	51.1	50.00	102	72-135	
Surr: Toluen	e-d8	2037-26-5	50.6	50.00	101	80-124	

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

DNMI00106

DNMI001

Project:

Client ID:

July 8, 2019

Company:

Energy Fuels Resources (USA), Inc.

Address:

225 Union Boulevard

Suite 600

Lakewood, Colorado 80228

Contact:

Ms. Kathy Weinel

Project:

Client Sample ID:

Analytical for Seeps and Springs 2019

Sample ID:

Entrance Seep 481772001

Matrix:

Ground Water

Collect Date: Receive Date:

11-JUN-19 08:15 13-JUN-19

Collector:

Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF A	nalys	st Date	Time	Batch	Method
Rad Gas Flow Proportion	onal Counting	g											
GFPC, Total Alpha Rad	lium, Liquid	"As Rece	ived"										
Gross Radium Alpha	9.00	2.63	+/-0.455	0.947	1.00	pCi/L		L	XB3	06/28/19	1148	1888588	1
The following Analytic	al Methods v	were perfo	rmed:										
Method	Description						Analyst	Comr	nents				
*	EPA 903.0												
Surrogate/Tracer Recov	ery Test				R	esult	Nomin	al F	Recov	ery%	Accep	table L	imits
Barium Carrier	GFPC,	Total Alpha	Radium, Liquid	"As Received"					8	9.9	(25	%-125%)	

Counting Uncertainty is calculated at the 68% confidence level (1-sigma).

SRL = Sample Reporting Limit. For metals analysis only. When the sample is U qualified and ND, the SRL column reports the value which is he greater of either the adjusted MDL or the CRDL.

Column headers are defined as follows:

DF: Dilution Factor DL: Detection Limit Lc/LC: Critical Level PF: Prep Factor RL: Reporting Limit

MDA: Minimum Detectable Activity MDC: Minimum Detectable Concentration

SQL: Sample Quantitation Limit

Client:

Energy Fuels Resources, Inc.

Project:

Seeps and Springs 2019

Lab Sample ID:

1906343-003

Collection Date:

Received Date:

Client Sample ID: Cottonwood Spring

6/11/2019 950h

6/13/2019 1054h

Analytical Results

DISSOLVED METALS

Contact: Tanner Holliday

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Arsenic	mg/L	6/14/2019 1410h	6/17/2019 1401h	E200.8	0.00500	< 0.00500	
	Beryllium	mg/L	6/14/2019 1410h	6/17/2019 1454h	E200.8	0.000500	< 0.000500	
	Cadmium	mg/L	6/14/2019 1410h	6/17/2019 1401h	E200.8	0.000500	< 0.000500	
Phone: (801) 263-8686	Calcium	mg/L	6/14/2019 1410h	6/28/2019 1527h	E200.7	10.0	122	
	Chromium	mg/L	6/14/2019 1410h	6/17/2019 1401h	E200.8	0.0250	< 0.0250	
Toll Free: (888) 263-8686	Cobalt	mg/L	6/14/2019 1410h	6/17/2019 1401h	E200.8	0.0100	< 0.0100	
Fax: (801) 263-8687	Copper	mg/L	6/14/2019 1410h	6/17/2019 1401h	E200.8	0.0100	< 0.0100	
e-mail: awal@awal-labs.com	Iron	mg/L	6/14/2019 1410h	6/17/2019 1454h	E200.8	0.0300	< 0.0300	
	Lead	mg/L	6/14/2019 1410h	6/17/2019 1454h	E200.8	0.00100	< 0.00100	
web: www.awal-labs.com	Magnesium	mg/L	6/14/2019 1410h	6/28/2019 1527h	E200.7	10.0	35.3	
	Manganese	mg/L	6/14/2019 1410h	6/17/2019 1401h	E200.8	0.0100	< 0.0100	
	Mercury	mg/L	6/21/2019 1450h	6/24/2019 800h	E245.1	0.000500	< 0.000500	
Kyle F. Gross	Molybdenum	mg/L	6/14/2019 1410h	6/17/2019 1401h	E200.8	0.0100	< 0.0100	
Laboratory Director	Nickel	mg/L	6/14/2019 1410h	6/17/2019 1401h	E200.8	0.0200	< 0.0200	
	Potassium	mg/L	6/14/2019 1410h	6/28/2019 1712h	E200.7	1.00	6.78	
Jose Rocha	Selenium	mg/L	6/14/2019 1410h	6/17/2019 1401h	E200.8	0.00500	< 0.00500	
QA Officer	Silver	mg/L	6/14/2019 1410h	6/17/2019 1401h	E200.8	0.0100	< 0.0100	
	Sodium	mg/L	6/14/2019 1410h	6/28/2019 1527h	E200.7	10.0	268	
	Thallium	mg/L	6/14/2019 1410h	6/17/2019 1454h	E200.8	0.000500	< 0.000500	
	Tin	mg/L	6/14/2019 1410h	6/17/2019 1401h	E200.8	0.100	< 0.100	
	Uranium	mg/L	6/14/2019 1410h	6/17/2019 1553h	E200.8	0.000300	0.0101	
	Vanadium	mg/L	6/14/2019 1410h	6/28/2019 1712h	E200.7	0.0150	< 0.0150	
	Zinc	mg/L	6/14/2019 1410h	6/17/2019 1939h	E200.8	0.0100	< 0.0100	

INORGANIC ANALYTICAL REPORT

Contact: Tanner Holliday

Client:

Energy Fuels Resources, Inc.

Project:

Seeps and Springs 2019

Lab Sample ID:

1906343-003

Collection Date:

Client Sample ID: Cottonwood Spring 6/11/2019 950h

Received Date:

6/13/2019 1054h

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Ammonia (as N)	mg/L	6/23/2019 2000h	6/24/2019 1128h	E350.1	0.0500	< 0.0500	
	Bicarbonate (as CaCO3)	mg/L		6/17/2019 739h	SM2320B	1.00	286	
	Carbonate (as CaCO3)	mg/L		6/17/2019 739h	SM2320B	1.00	< 1.00	
Phone: (801) 263-8686	Chloride	mg/L		6/27/2019 2156h	E300.0	5.00	138	
Toll Free: (888) 263-8686	Fluoride	mg/L		6/28/2019 403h	E300.0	0.100	0.249	
Fax: (801) 263-8687	Ion Balance	%		6/28/2019 1847h	Calc.	-100	6.19	
e-mail: awal@awal-labs.com	Nitrate/Nitrite (as N)	mg/L		6/14/2019 1111h	E353.2	0.100	< 0.100	
	Sulfate	mg/L		6/27/2019 2156h	E300.0	37.5	423	
web: www.awal-labs.com	Total Anions, Measured	meq/L		6/28/2019 1847h	Calc.		18.4	
	Total Cations, Measured	meq/L		6/28/2019 1847h	Calc,		20.9	
Vula E. Cuasa	Total Dissolved Solids	mg/L		6/14/2019 1100h	SM2540C	20.0	1,010	
Kyle F. Gross Laboratory Director	Total Dissolved Solids Ratio, Measured/Calculated			6/28/2019 1847h	Calc.		0.868	
Jose Rocha	Total Dissolved Solids,	mg/L		6/28/2019 1847h	Calc.		1,170	
QA Officer	Calculated							

ORGANIC ANALYTICAL REPORT

Client: Energy Fuels Resources, Inc.

Project: Seeps and Springs 2019

Lab Sample ID: 1906343-003A
Client Sample ID: Cottonwood Spring
Collection Date: 6/11/2019 950h
Received Date: 6/13/2019 1054h

Test Code: 8260-W-DEN100

Contact: Tanner Holliday

Analytical Results VOAs by GC/MS Method 8260C/5030C

Analyzed: 6/13/2019 1457h

Units: μg/L Dilution Factor: 1 Method: SW8260C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
2-Butanone	78-93-3	20.0	< 20.0	
Acetone	67-64-1	20.0	< 20.0	
Benzene	71-43-2	1.00	< 1.00	
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	
Naphthalene	91-20-3	1.00	< 1.00	
Tetrahydrofuran	109-99-9	1.00	< 1.00	
Toluene	108-88-3	1.00	< 1.00	
Xylenes, Total	1330-20-7	1.00	< 1.00	

Surrogate	Units: µg/L	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dic	chloroethane-d4	17060-07-0	51,2	50.00	102	72-151	
Surr: 4-Brom	ofluorobenzene	460-00-4	54,5	50.00	109	80-152	
Surr: Dibrom	ofluoromethane	1868-53-7	45.5	50.00	91.0	72-135	
Surr: Toluene	e-d8	2037-26-5	50.6	50.00	101	80-124	

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

DNMI00106

DNMI001

Project:

Client ID:

July 8, 2019

Company:

Energy Fuels Resources (USA), Inc.

Address:

225 Union Boulevard

Suite 600

Lakewood, Colorado 80228

Contact:

Ms. Kathy Weinel

Project:

Analytical forSeeps and Springs 2019

Client Sample ID:

Cottonwood Spring

Sample ID:

481772003

Matrix:

Ground Water 11-JUN-19 09:50

Collect Date: Receive Date:

13-JUN-19

Collector:

Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Rad Gas Flow Proportion	nal Counting	g									
3FPC, Total Alpha Radi	ium, Liquid	"As Rece	ived"								
3ross Radium Alpha	U	0.393	+/-0.257	0.833	1.00	pCi/L			LXB3 06/28/19	1149 1888588	1
The following Analytica	al Methods v	were perfe	ormed:								
Method	Description	1					Analyst	Con	nments		
	EPA 903.0										
Surrogate/Tracer Recove	ery Test				Re	esult	Nomina	ıl	Recovery%	Acceptable Li	mits
Barium Carrier	GFPC	Total Alpha	Radium Liquid "A	As Received"					76.6	(25%-125%)	

Notes:

Counting Uncertainty is calculated at the 68% confidence level (1-sigma).

SRL = Sample Reporting Limit. For metals analysis only. When the sample is U qualified and ND, the SRL column reports the value which is he greater of either the adjusted MDL or the CRDL.

Column headers are defined as follows:

DF: Dilution Factor DL: Detection Limit

Lc/LC: Critical Level PF: Prep Factor

MDA: Minimum Detectable Activity

RL: Reporting Limit

MDC: Minimum Detectable Concentration

SQL: Sample Quantitation Limit

11 015 000 101550

INORGANIC ANALYTICAL REPORT

Client:

Energy Fuels Resources, Inc.

Project:

Seeps and Springs 2019

Lab Sample ID: Client Sample ID: Back Spring

1906343-004

Collection Date: 6/11/2019 850h Received Date: 6/13/2019 1054h

Analytical Results

DISSOLVED METALS

Contact: Tanner Holliday

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Arsenic	mg/L	6/14/2019 1410h	6/17/2019 1404h	E200.8	0.00500	< 0.00500	
	Beryllium	mg/L	6/14/2019 1410h	6/17/2019 1508h	E200.8	0.000500	< 0.000500	
	Cadmium	mg/L	6/14/2019 1410h	6/17/2019 1404h	E200,8	0.000500	< 0.000500	
Phone: (801) 263-8686	Calcium	mg/L	6/14/2019 1410h	6/28/2019 1529h	E200.7	10.0	157	
, ,	Chromium	mg/L	6/14/2019 1410h	6/17/2019 1404h	E200,8	0.0250	< 0.0250	
Toll Free: (888) 263-8686	Cobalt	mg/L	6/14/2019 1410h	6/17/2019 1404h	E200.8	0.0100	< 0.0100	
Fax: (801) 263-8687	Copper	mg/L	6/14/2019 1410h	6/17/2019 1404h	E200.8	0.0100	< 0.0100	
e-mail: awal@awal-labs.com	Iron	mg/L	6/14/2019 1410h	6/17/2019 1508h	E200.8	0.0300	< 0.0300	
	Lead	mg/L	6/14/2019 1410h	6/17/2019 1508h	E200.8	0.00100	< 0.00100	
web: www.awal-labs.com	Magnesium	mg/L	6/14/2019 1410h	6/28/2019 1529h	E200.7	10.0	35.7	
	Manganese	mg/L	6/14/2019 1410h	6/17/2019 1404h	E200.8	0.0100	< 0.0100	
	Mercury	mg/L	6/21/2019 1450h	6/24/2019 802h	E245.1	0.000500	< 0.000500	
Kyle F. Gross	Molybdenum	mg/L	6/14/2019 1410h	6/17/2019 1404h	E200,8	0.0100	0.0187	
Laboratory Director	Nickel	mg/L	6/14/2019 1410h	6/17/2019 1404h	E200.8	0.0200	< 0.0200	
	Potassium	mg/L	6/14/2019 1410h	6/28/2019 1715h	E200.7	1.00	3.30	
Jose Rocha	Selenium	mg/L	6/14/2019 1410h	6/17/2019 1404h	E200.8	0.00500	0.00961	
QA Officer	Silver	mg/L	6/14/2019 1410h	6/17/2019 1404h	E200.8	0.0100	< 0.0100	
4	Sodium	mg/L	6/14/2019 1410h	6/28/2019 1529h	E200.7	10.0	119	
	Thallium	mg/L	6/14/2019 1410h	6/17/2019 1508h	E200.8	0.000500	< 0.000500	
	Tin	mg/L	6/14/2019 1410h	6/17/2019 1404h	E200.8	0.100	< 0.100	
	Uranium	mg/L	6/14/2019 1410h	6/17/2019 1557h	E200.8	0.000300	0.00901	
	Vanadium	mg/L	6/14/2019 1410h	6/28/2019 1715h	E200.7	0.0150	< 0.0150	
	Zinc	mg/L	6/14/2019 1410h	6/17/2019 1943h	E200.8	0.0100	< 0.0100	

Report Date: 7/5/2019 Page 9 of 35

INORGANIC ANALYTICAL REPORT

Contact: Tanner Holliday

Client: Energy Fuels Resources, Inc.

Project: Seeps and Springs 2019

 Lab Sample ID:
 1906343-004

 Client Sample ID:
 Back Spring

 Collection Date:
 6/11/2019
 850h

 Received Date:
 6/13/2019
 1054h

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Ammonia (as N)	mg/L	6/23/2019 2000h	6/24/2019 1129h	E350.1	0.0500	< 0.0500	
	Bicarbonate (as CaCO3)	mg/L		6/17/2019 739h	SM2320B	1.00	202	
	Carbonate (as CaCO3)	mg/L		6/17/2019 739h	SM2320B	1.00	< 1.00	
Phone: (801) 263-8686	Chloride	mg/L		6/28/2019 100h	E300,0	1.00	23.7	
Toll Free: (888) 263-8686	Fluoride	mg/L		6/28/2019 420h	E300.0	0.100	0.460	
Fax: (801) 263-8687	Ion Balance	%		6/28/2019 1847h	Calc.	-100	6.06	
e-mail: awal@awal-labs.com	Nitrate/Nitrite (as N)	mg/L		6/14/2019 1051h	E353.2	0.100	1.65	
	Sulfate	mg/L		6/27/2019 2213h	E300.0	37.5	455	
web: www.awal-labs.com	Total Anions, Measured	meq/L		6/28/2019 1847h	Calc.		14.2	
	Total Cations, Measured	meq/L		6/28/2019 1847h	Calc.		16.1	
Valo E Cusa	Total Dissolved Solids	mg/L		6/14/2019 1100h	SM2540C	20.0	816	
Kyle F. Gross Laboratory Director	Total Dissolved Solids Ratio, Measured/Calculated			6/28/2019 1847h	Calc.		0.889	
Jose Rocha	Total Dissolved Solids, Calculated	mg/L		6/28/2019 1847h	Calc.		918	
QA Officer								

ORGANIC ANALYTICAL REPORT

Client:

Energy Fuels Resources, Inc.

Project:

Seeps and Springs 2019

Lab Sample ID:

1906343-004A

Client Sample ID: Back Spring

Collection Date:

6/11/2019 850h

Received Date:

6/13/2019 1054h Test Code: 8260-W-DEN100

Analytical Results

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Surr: Toluene-d8

VOAs by GC/MS Method 8260C/5030C

Analyzed: 6/13/2019 1517h

Units: µg/L

Dilution Factor: 1

17060-07-0

460-00-4

1868-53-7

2037-26-5

Method:

Contact: Tanner Holliday

SW8260C

72-151

80-152

72-135

80-124

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha

QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
2-Butanone	78-93-3	20.0	< 20.0	
Acetone	67-64-1	20.0	< 20.0	
Benzene	71-43-2	1.00	< 1.00	
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	
Naphthalene	91-20-3	1.00	< 1.00	
Tetrahydrofuran	109-99-9	1.00	< 1.00	
Toluene	108-88-3	1.00	< 1.00	
Xylenes, Total	1330-20-7	1.00	< 1.00	
Surrogate Units: μg/L CAS	Result Amount S	Spiked % REC	Limits	Qual

51.4

55.2

45.6

51.5

50.00

50.00

50.00

50.00

103

110

91.3

103

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

DNMI00106

DNMI001

Project:

Client ID:

July 8, 2019

Company:

Energy Fuels Resources (USA), Inc.

Address:

225 Union Boulevard

Suite 600

Lakewood, Colorado 80228

Contact:

Ms. Kathy Weinel

Project:

Analytical forSeeps and Springs 2019

Client Sample ID:

Back Spring

Sample ID:

481772004

Matrix:

Ground Water 11-JUN-19 08:50

Collect Date: Receive Date:

13-JUN-19

Collector:

Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Rad Gas Flow Propor	tional Counting	g											
3FPC, Total Alpha R	adium, Liquid	"As Rece	ived"										
3ross Radium Alpha	U	0.201	+/-0.158	0.545	1.00	pCi/L			LXB3	07/02/19	0613	1888588	1
The following Analys	tical Methods v	were perfe	ormed:										
Method	Description	1					Analys	t Co	nments	3			
	EPA 903.0												
Surrogate/Tracer Reco	overy Test				R	esult	Nomir	nal	Recov	/ery%	Accep	otable L	imits
Barium Carrier	GFPC,	Total Alpha	Radium, Liquid "A	As Received"						91.3	(25	5%-125%)	

Notes:

Counting Uncertainty is calculated at the 68% confidence level (1-sigma).

SRL = Sample Reporting Limit. For metals analysis only. When the sample is U qualified and ND, the SRL column reports the value which is he greater of either the adjusted MDL or the CRDL.

Column headers are defined as follows:

DF: Dilution Factor DL: Detection Limit

Lc/LC: Critical Level PF: Prep Factor RL: Reporting Limit

MDA: Minimum Detectable Activity
MDC: Minimum Detectable Concentration

SQL: Sample Quantitation Limit

15 015 000 101550

ORGANIC ANALYTICAL REPORT

Client: Project: Energy Fuels Resources, Inc.

Annual Seeps and Springs 2019

Lab Sample ID:

1903737-002A

Client Sample ID: Trip Blank **Collection Date:**

3/27/2019 930h

Received Date:

3/29/2019 1000h Test Code: 8260-W-DEN100

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 3/29/2019 1227h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Tanner Holliday

SW8260C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
2-Butanone	78-93-3	20.0	< 20.0	
Acetone	67-64-1	20.0	< 20.0	
Benzene	71-43-2	1.00	< 1.00	
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	
Naphthalene	91-20-3	1.00	< 1.00	
Tetrahydrofuran	109-99-9	1.00	< 1.00	
Toluene	108-88-3	1.00	< 1.00	
Xylenes, Total	1330-20-7	1.00	< 1.00	

Surrogate	Units: µg/L	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dic	chloroethane-d4	17060-07-0	48.5	50.00	97.0	72-151	
Surr: 4-Brom	ofluorobenzene	460-00-4	52.2	50.00	104	80-152	
Surr: Dibron	nofluoromethane	1868-53-7	50.5	50.00	101	72-135	
Surr: Toluene	e-d8	2037-26-5	51.2	50.00	102	80-124	

Report Date: 4/11/2019 Page 8 of 26

ORGANIC ANALYTICAL REPORT

Client:

Energy Fuels Resources, Inc.

Seeps and Springs 2019

Project:

Lab Sample ID:

1906343-005A

Client Sample ID: Trip Blank

Collection Date:

6/11/2019 815h

Received Date:

6/13/2019 1054h Test Code: 8260-W-DEN100

Analytical Results

VOAs by GC/MS Method 8260C/5030C

Analyzed: 6/13/2019 1357h

Units: µg/L

Dilution Factor: 1

Method:

Contact: Tanner Holliday

SW8260C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com web: www.awal-labs.com

> Kyle F. Gross Laboratory Director

> > Jose Rocha

QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
2-Butanone	78-93-3	20.0	< 20.0	
Acetone	67-64-1	20.0	< 20.0	
Benzene	71-43-2	1.00	< 1.00	
Carbon tetrachloride	56-23-5	1.00	< 1.00	
Chloroform	67-66-3	1.00	< 1.00	
Chloromethane	74-87-3	1.00	< 1.00	
Methylene chloride	75-09-2	1.00	< 1.00	
Naphthalene	91-20-3	1.00	< 1.00	
Tetrahydrofuran	109-99-9	1.00	< 1.00	
Toluene	108-88-3	1.00	< 1.00	
Xylenes, Total	1330-20-7	1.00	< 1.00	
Surrogate Linits: µg/l	CAS Result Amount	Sniked % REC	Limits	Qual

Surrogate	Units: µg/L	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dic	chloroethane-d4	17060-07-0	50.9	50.00	102	72-151	
Surr: 4-Brom	nofluorobenzene	460-00-4	53.9	50.00	108	80-152	
Surr: Dibron	ofluoromethane	1868-53-7	45.4	50.00	90.9	72-135	
Surr: Toluen	e-d8	2037-26-5	50.2	50.00	100	80-124	

Report Date: 7/5/2019 Page 18 of 35

Tanner Holliday Energy Fuels Resources, Inc. 6425 South Hwy 191 Blanding, UT 84511

TEL: (435) 678-2221

RE: Annual Seeps and Springs 2019

Dear Tanner Holliday:

Lab Set ID: 1903737

3440 South 700 West Salt Lake City, UT 84119

American West Analytical Laboratories received sample(s) on 3/29/2019 for the analyses presented in the following report.

Phone: (801) 263-8686 Toll Free: (888) 263-8686 American West Analytical Laboratories (AWAL) is accredited by The National Environmental Laboratory Accreditation Program (NELAP) in Utah and Texas; and is state accredited in Colorado, Idaho, New Mexico, Wyoming, and Missouri.

Fax: (801) 263-8687 ₃-mail: awal@awal-labs.com

All analyses were performed in accordance to the NELAP protocols unless noted otherwise. Accreditation scope documents are available upon request. If you have any questions or concerns regarding this report please feel free to call.

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha

OA Officer

The abbreviation "Surr" found in organic reports indicates a surrogate compound that is intentionally added by the laboratory to determine sample injection, extraction, and/or purging efficiency. The "Reporting Limit" found on the report is equivalent to the practical quantitation limit (PQL). This is the minimum concentration that can be reported by the method referenced and the sample matrix. The reporting limit must not be confused with any regulatory limit. Analytical results are reported to three significant figures for quality control and calculation purposes.

Thank You.

Kyle F. Digitally signed by Kyle F. Gross Date:
2019.04.11
15:39:22 -06'00'

Approved by:

Laboratory Director or designee

SAMPLE SUMMARY

Contact: Tanner Holliday

Client:

Energy Fuels Resources, Inc.

Project:

Annual Seeps and Springs 2019

Lab Set ID:

1903737

Date Received:

3/29/2019 1000h

	Lab Sample ID	Client Sample ID	Date Collected	Matrix	Analysis
3440 South 700 West Salt Lake City, UT 84119	1903737-001A	Westwater Seep	3/27/2019 930h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1903737-001B	Westwater Seep	3/27/2019 930h	Aqueous	Alkalinity/ Bicarbonate/ Carbonate, Low Level
	1903737-001B	Westwater Seep	3/27/2019 930h	Aqueous	Anions, E300.0
Phone: (801) 263-8686	1903737-001C	Westwater Seep	3/27/2019 930h	Aqueous	Total Dissolved Solids, A2540C
Toll Free: (888) 263-8686	1903737-001D	Westwater Seep	3/27/2019 930h	Aqueous	Ammonia, Aqueous
Fax: (801) 263-8687	1903737-001D	Westwater Seep	3/27/2019 930h	Aqueous	Nitrite/Nitrate (as N), E353.2
e-mail: awal@awal-labs.com	1903737-001E	Westwater Seep	3/27/2019 930h	Aqueous	Mercury, Drinking Water Dissolved
web: www.awal-labs.com	1903737-001E	Westwater Seep	3/27/2019 930h	Aqueous	ICPMS Metals, Dissolved
Wor Williamar laboroth	1903737-001E	Westwater Seep	3/27/2019 930h	Aqueous	ICP Metals, Dissolved
	1903737-001E	Westwater Seep	3/27/2019 930h	Aqueous	Ion Balance
Kyle F. Gross	1903737-002A	Trip Blank	3/27/2019 930h	Aqueous	VOA by GC/MS Method 8260C/5030C
Laboratory Director					

Jose Rocha QA Officer

Inorganic Case Narrative

Client: Energy Fuels Resources, Inc.

Contact: Tanner Holliday

Project: Annual Seeps and Springs 2019

Lab Set ID: 1903737

3440 South 700 West

Salt Lake City, UT 84119

Sample Receipt Information:

Date of Receipt:3/29/2019Date(s) of Collection:3/27/2019Sample Condition:Intact

C-O-C Discrepancies: See Chain of Custody

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web; www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Holding Time and Preservation Requirements: The analysis and preparation for the samples were performed within the method holding times. The samples were properly preserved.

Preparation and Analysis Requirements: The samples were analyzed following the methods stated on the analytical reports.

Analytical QC Requirements: All instrument calibration and calibration check requirements were met. All internal standard recoveries met method criterion.

Batch QC Requirements: MB, LCS, MS, MSD, RPD, DUP:

Method Blanks (MB): No target analytes were detected above reporting limits, indicating that the procedure was free from contamination, with the following exceptions: Zinc and Manganese were observed above the reporting limit in the filter blank MB-FILTER-61769. The blank was acceptable, as any associated samples do not have results above the reporting limits.

Laboratory Control Samples (LCS): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicates (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, with the following exceptions:

Sample ID	Analyte	QC	Explanation
1903737-001E	Sodium	MSD	High analyte concentration

Duplicate (DUP): The parameters that required a duplicate analysis had RPDs within the control limits.

Corrective Action: None required.

Volatile Case Narrative

Client: Energy Fuels Resources, Inc.

Contact: Tanner Holliday

Project: Annual Seeps and Springs 2019

Lab Set ID: 1903737

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

J

Jose Rocha QA Officer **Sample Receipt Information:**

Date of Receipt:3/29/2019Date(s) of Collection:3/27/2019Sample Condition:Intact

C-O-C Discrepancies: See Chain of Custody
Method: SW-846 8260C/5030C

Analysis: Volatile Organic Compounds

General Set Comments: No target analytes were observed above reporting limits.

Holding Time and Preservation Requirements: All samples were received in appropriate containers and properly preserved. The analysis and preparation of all samples were performed within the method holding times following the methods stated on the analytical reports.

Analytical QC Requirements: All instrument calibration and calibration check requirements were met. All internal standard recoveries met method criterion.

Batch QC Requirements: MB, LCS, MS, MSD, RPD, and Surrogates:

Method Blanks (MBs): No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

Laboratory Control Sample (LCSs): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicate (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, indicating no apparent matrix interferences.

Surrogates: All surrogate recoveries were within established limits.

Corrective Action: None required.

A Morioan Wood

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1903737

Project: Annual Seeps and Springs 2019

Contact: Tanner Holliday

Dept: ME **QC Type:** LCS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:	LCS-61799	Date Analyzed:	04/10/201	19 1314h										
Test Code:	200.7-DIS	Date Prepared:	04/05/201	19 1023h										
Calcium		11.0	mg/L	E200.7	0.0937	1.00	10.00	0	110	85 - 115				
Magnesium		11.2	mg/L	E200.7	0.0439	1.00	10.00	0	112	85 - 115				
Potassium		11.1	mg/L	E200.7	0.134	1.00	10.00	0	111	85 - 115				
Sodium		11.1	mg/L	E200.7	0.187	1.00	10.00	0	111	85 - 115				
Vanadium		0.218	mg/L	E200.7	0.00138	0.00500	0.2000	0	109	85 - 115				
Lab Sample ID:	LCS-61800	Date Analyzed:	04/08/201	19 1221h										
Test Code:	200.8-DIS	Date Prepared:	04/05/201	19 1023h								71		
Arsenic		0.198	mg/L	E200,8	0.000298	0.00200	0.2000	0	98.8	85 - 115				
Beryllium		0.198	mg/L	E200.8	0.000198	0.00200	0.2000	0	99.2	85 - 115				
Cadmium		0.192	mg/L	E200_8	0.0000858	0.000500	0.2000	0	96.2	85 - 115				
Chromium		0.200	mg/L	E200.8	0.00191	0.00200	0.2000	0	99.9	85 - 115				
Cobalt		0.195	mg/L	E200.8	0.000300	0.00400	0.2000	0	97.4	85 - 115				
Copper		0.196	mg/L	E200.8	0.00282	0.00200	0.2000	0	97.9	85 - 115				
Iron		0.992	mg/L	E200.8	0.0496	0.100	1.000	0	99.2	85 - 115				
Lead		0.180	mg/L	E200.8	0.000448	0.00200	0.2000	0	90.1	85 - 115				
Manganese		0.200	mg/L	E200.8	0.00108	0.00200	0.2000	0	99.8	85 - 115				
Molybdenum		0.191	mg/L	E200.8	0.000652	0.00200	0.2000	0	95.6	85 - 115				
Selenium		0.197	mg/L	E200.8	0.000574	0.00200	0.2000	0	98.5	85 - 115				
Thallium		0.177	mg/L	E200.8	0.000154	0.00200	0.2000	0	88.7	85 - 115				
Tin		0.967	mg/L	E200.8	0.00116	0.00400	1.000	0	96.7	85 - 115				
Uranium		0.196	mg/L	E200.8	0.000176	0.00200	0.2000	0	97.8	85 - 115				
Lab Sample ID:	LCS-61800	Date Analyzed:	04/09/20	19 1725h										
Test Code:	200.8-DIS	Date Prepared:	04/05/201	19 1023h										
Nickel		0.189	mg/L	E200.8	0.00148	0.00200	0.2000	0	94.6	85 - 115				
Silver		0.194	mg/L	E200.8	0.000232	0.00200	0.2000	0	97.0	85 - 115				
Zinc		0.961	mg/L	E200.8	0.00418	0.00600	1.000	0	96.1	85 - 115				

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1903737

Project: Annual Seeps and Springs 2019

Energy Fuels Resources, Inc.

Contact: Tanner Holliday

Dept: ME

QC Type: LCS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qua
Lab Sample ID:	LCS-61789	Date Analyzed:	04/10/201	9 824h										
Test Code:	HG-DW-DIS-245.1	Date Prepared:	04/04/201	9 1830h										
Мегсигу		0.00361	mg/L	E245_1	0.0000396	0.0000900	0.003330	0	108	85 - 115				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1903737

Project: Annual Seeps and Springs 2019

Contact: Tanner Holliday

Dept: ME

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:		Date Analyzed:	04/10/201	9 1311h										
Test Code:	200.7-DIS	Date Prepared:	04/05/201	9 1023h										
Calcium		< 1.00	mg/L	E200.7	0.0937	1.00								
Magnesium		< 1.00	mg/L	E200.7	0.0439	1.00								
Potassium		< 1.00	mg/L	E200 ₋ 7	0.134	1.00								
Sodium		< 1.00	mg/L	E200.7	0.187	1.00								
Vanadium		< 0.00500	mg/L	E200.7	0.00138	0.00500						_		
Lab Sample ID:	MB-61800	Date Analyzed:	04/08/201	9 1218h										
Test Code:	200.8-DIS	Date Prepared:	04/05/201	9 1023h										
Arsenic		< 0.000200	mg/L	E200,8	0.0000298	0.000200								
Beryllium		< 0.000200	mg/L	E200.8	0.0000198	0.000200								
Cadmium		< 0.0000500	mg/L	E200.8	0.00000858	0.0000500								
Chromium		< 0.000200	mg/L	E200_8	0.000191	0.000200								
Cobalt		< 0.000400	mg/L	E200.8	0.0000300	0.000400								
Copper		< 0.000200	mg/L	E200.8	0.000282	0.000200								
Iron		< 0.0100	mg/L	E200.8	0.00496	0.0100								
Lead		< 0.000200	mg/L	E200.8	0.0000448	0.000200								
Manganese		< 0.000200	mg/L	E200.8	0.000108	0.000200								
Molybdenum		< 0.000200	mg/L	E200 ₈	0.0000652	0.000200								
Selenium		< 0.000200	mg/L	E200.8	0.0000574	0.000200								
Thallium		< 0.000200	mg/L	E200.8	0.0000154	0.000200								
Tin		< 0.000400	mg/L	E200.8	0.000116	0.000400								
Uranium		< 0.000200	mg/L	E200.8	0.0000176	0.000200								
Lab Sample ID:	MB-FILTER-61769	Date Analyzed:	04/08/201	9 1247h										
Test Code:	200.8-DIS	Date Prepared:	04/05/201	9 1023h										
Arsenic		< 0.00200	mg/L	E200.8	0.000298	0.00200								
Cadmium		< 0.000500	mg/L	E200_8	0.0000858	0.000500								
Chromium		< 0.00200	mg/L	E200 8	0.00191	0.00200								

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client:

Energy Fuels Resources, Inc.

Lab Set ID: 1903737

Project: Annual

Annual Seeps and Springs 2019

Contact: Tanner Holliday

Dept: ME

		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:	MB-FILTER-61769	Date Analyzed:	04/08/201	9 1247h										
Γest Code:	200.8-DIS	Date Prepared:	04/05/201	9 1023h										
Cobalt		< 0.00400	mg/L	E200.8	0.000300	0.00400								
Copper		< 0.00200	mg/L	E200.8	0.00282	0.00200								
Manganese		0.00538	mg/L	E200.8	0.00108	0.00200								В
Molybdenum		< 0.00200	mg/L	E200.8	0.000652	0.00200								
Selenium		< 0.00200	mg/L	E200_8	0.000574	0.00200								
Tin		< 0.00400	mg/L	E200.8	0.00116	0.00400								
Lab Sample ID:	MB-61800	Date Analyzed:	04/09/201	9 1722h										
Γest Code:	200.8-DIS	Date Prepared:	04/05/201	9 1023h										
Nickel		< 0.00200	mg/L	E200.8	0.00148	0.00200								
Silver		< 0.00200	mg/L	E200.8	0.000232	0.00200								
Zinc		< 0.00600	mg/L	E200.8	0.00418	0.00600								
Lab Sample ID:	MB-FILTER-61769	Date Analyzed:	04/09/201	9 1744h										
Гest Code:	200.8-DIS	Date Prepared:	04/05/201	9 1023h										
Beryllium		< 0.000200	mg/L	E200.8	0.0000198	0.000200								
Lead		< 0.000200	mg/L	E200_8	0.0000448	0.000200								
Nickel		< 0.000200	mg/L	E200_8	0.000148	0.000200								
Silver		< 0.000200	mg/L	E200_8	0.0000232	0.000200								
Thallium		< 0.000200	mg/L	E200.8	0.0000154	0.000200								
Uranium		< 0.000200	mg/L	E200.8	0.0000176	0.000200								
Zinc		0.000800	mg/L	E200.8	0.000418	0.000600								B†
	2.0 02	Date Analyzed:	04/10/201	9 1533h										
Lab Sample ID:	MB-FILTER-61769	Date Allalyzed.												
Lab Sample ID; Test Code:	MB-FILTER-61769 200.8-DIS	Date Prepared:	04/05/201	9 1023h										

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1903737

Project: Annual Seeps and Springs 2019

Contact: Tanner Holliday

Dept: ME

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:	MB-61789	Date Analyzed:	04/10/201	9 822h										
Test Code:	HG-DW-DIS-245.1	Date Prepared:	04/04/201	9 1830h										
Mercury		< 0.0000900	mg/L	E245.1	0.0000396	0.0000900								

^{† -} Analyte(s) were observed above the reporting limit in the filter blank. The filter blank was acceptable, as any associated samples do not have results above the reporting limit/PQL.

B - The filter blank was acceptable, as the method blank result is less than 10% of the lowest reported sample concentration.

American West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

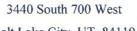
e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.


Lab Set ID: 1903737

Project: Annual Seeps and Springs 2019

Contact: Tanner Holliday

Dept: ME **QC Type:** MS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:	1903737-001EMS	Date Analyzed:	04/10/201								· · · · · · · · · · · · · · · · · · ·			
Test Code:	200.7-DIS	Date Prepared:	04/05/201	19 1023h										
Calcium		194	mg/L	E200.7	0.937	10.0	10.00	185	85.4	70 - 130				
Magnesium		53.6	mg/L	E200.7	0.439	10.0	10.00	43.7	99.7	70 - 130				
Sodium		162	mg/L	E200.7	1.87	10.0	10.00	152	103	70 - 130				
Lab Sample ID:	1903737-001EMS	Date Analyzed:	04/10/20	19 1336h										
Test Code:	200.7-DIS	Date Prepared:	04/05/201	19 1023h										
Potassium		15.5	mg/L	E200,7	0.134	1.00	10.00	3.99	115	70 - 130				
Vanadium		0.213	mg/L	E200,7	0.00138	0.00500	0.2000	0	107	70 - 130				
Lab Sample ID:	1903737-001EMS	Date Analyzed:	04/08/20	19 1234h										
Test Code:	200.8-DIS	Date Prepared:	04/05/201	19 1023h										
Arsenic		0.208	mg/L	E200.8	0.000298	0.00200	0.2000	0.00262	103	75 - 125				
Cadmium		0.191	mg/L	E200.8	0.0000858	0.000500	0,2000	0.0000868	95.5	75 - 125				
Chromium		0.196	mg/L	E200.8	0.00191	0.00200	0.2000	0	97.8	75 - 125				
Cobalt		0.192	mg/L	E200.8	0.000300	0.00400	0.2000	0,00128	95.3	75 - 125				
Copper		0.192	mg/L	E200.8	0.00282	0.00200	0.2000	0	95.8	75 - 125				
Manganese		0.711	mg/L	E200,8	0.00108	0.00200	0.2000	0.528	91.6	75 - 125				
Molybdenum		0.201	mg/L	E200.8	0.000652	0.00200	0.2000	0.003	98.9	75 - 125				
Selenium		0.200	mg/L	E200.8	0.000574	0.00200	0.2000	0.000832	99.5	75 - 125				
Tin		0.986	mg/L	E200.8	0.00116	0.00400	1,000	0	98.6	75 - 125				
Lab Sample ID:	1903737-001EMS	Date Analyzed:	04/09/20	19 1731h										
Test Code:	200.8-DIS	Date Prepared:	04/05/201	19 1023h										
Beryllium		0.200	mg/L	E200.8	0.000198	0.00200	0.2000	0	100	75 - 125		·		
Lead		0.187	mg/L	E200.8	0.000448	0.00200	0.2000	0	93.5	75 - 125				
Nickel		0.190	mg/L	E200.8	0.00148	0.00200	0.2000	0	95.0	75 - 125				
Silver		0.189	mg/L	E200.8	0.000232	0.00200	0.2000	0.000388	94.2	75 - 125				
Thallium		0.183	mg/L	E200.8	0.000154	0.00200	0.2000	0	91.4	75 - 125				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc. Client:

Lab Set ID: 1903737

Project: Annual Seeps and Springs 2019

Tanner Holliday Contact:

Dept: ME QC Type: MS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	1903737-001EMS 200.8-DIS	Date Analyzed: Date Prepared:	04/09/201 04/05/201											
Uranium Zinc		0.202 0.977	mg/L mg/L	E200.8 E200.8	0.000176 0.00418	0.00200 0.00600	0.2000 1,000	0.00491 0	98.5 97.7	75 - 125 75 - 125				
Lab Sample ID: Test Code:	1903737-001EMS 200.8-DIS	Date Analyzed: Date Prepared:	04/10/201 04/05/201											
Iron		2.25	mg/L	E200.8	0.0992	0.200	1.000	1.2	105	75 - 125				
Lab Sample ID: Test Code:	1903737-001EMS HG-DW-DIS-245.1	Date Analyzed: Date Prepared:	04/10/201 04/04/201											
Mercury		0.00364	mg/L	E245,1	0.0000396	0.0000900	0.003330	0	109	85 - 115				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1903737

D : 4 A 10

Project: Annual Seeps and Springs 2019

Contact: Tanner Holliday

Dept: ME **QC Type:** MSD

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:	1903737-001EMSD	Date Analyzed:	04/10/201											
Test Code:	200.7-DIS	Date Prepared:	04/05/201	9 1023h										
Calcium		198	mg/L	E200.7	0.937	10.0	10.00	185	123	70 - 130	194	1.93	20	
Magnesium		55.3	mg/L	E200,7	0.439	10.0	10.00	43.7	116	70 - 130	53.6	3.06	20	
Sodium		165	mg/L	E200,7	1.87	10.0	10.00	152	134	70 - 130	162	1.91	20	2
Lab Sample ID:	1903737-001EMSD	Date Analyzed:	04/10/201	9 1338h										
Test Code:	200.7-DIS	Date Prepared:	04/05/201	9 1023h										
Potassium		15.3	mg/L	E200.7	0.134	1.00	10.00	3.99	113	70 - 130	15,5	1.42	20	
Vanadium		0.211	mg/L	E200.7	0.00138	0.00500	0.2000	0	106	70 - 130	0.213	1.06	20	
Lab Sample ID:	1903737-001EMSD	Date Analyzed:	04/08/201	9 1237h										
Test Code:	200.8-DIS	Date Prepared:	04/05/201	9 1023h										
Arsenic		0.209	mg/L	E200.8	0.000298	0.00200	0.2000	0.00262	103	75 - 125	0.208	0.495	20	
Cadmium		0.188	mg/L	E200.8	0.0000858	0.000500	0.2000	0.0000868	94.2	75 - 125	0.191	1.46	20	
Chromium		0.192	mg/L	E200.8	0.00191	0.00200	0.2000	0	96.0	75 - 125	0.196	1.91	20	
Cobalt		0.189	mg/L	E200.8	0.000300	0.00400	0.2000	0.00128	93.6	75 - 125	0.192	1.77	20	
Copper		0.190	mg/L	E200.8	0.00282	0.00200	0.2000	0	94.8	75 - 125	0.192	1.02	20	
Manganese		0.702	mg/L	E200.8	0.00108	0.00200	0.2000	0.528	87.1	75 - 125	0.711	1,28	20	
Molybdenum		0.200	mg/L	E200.8	0.000652	0.00200	0.2000	0.003	98.3	75 - 125	0.201	0.529	20	
Selenium		0.199	mg/L	E200.8	0.000574	0.00200	0.2000	0.000832	99.0	75 - 125	0.2	0.451	20	
Tin		0.988	mg/L	E200.8	0.00116	0.00400	1.000	0	98.8	75 - 125	0.986	0.166	20	
Lab Sample ID:	1903737-001EMSD	Date Analyzed:	04/09/201	19 1734h										
Test Code:	200.8-DIS	Date Prepared:	04/05/201	9 1023h										
Beryllium		0.199	mg/L	E200.8	0.000198	0.00200	0.2000	0	99.4	75 - 125	0.2	0.823	20	
Lead		0.182	mg/L	E200.8	0.000448	0.00200	0.2000	0	90.9	75 - 125	0.187	2.81	20	
Nickel		0.187	mg/L	E200.8	0,00148	0.00200	0.2000	0	93.7	75 - 125	0.19	1.31	20	
Silver		0.189	mg/L	E200,8	0.000232	0.00200	0.2000	0.000388	94.1	75 - 125	0.189	0.0912	20	
Thallium		0.177	mg/L	E200.8	0.000154	0.00200	0.2000	0	88.6	75 - 125	0.183	3.14	20	

Report Date: 4/11/2019 Page 16 of 26

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1903737

Project: Annual Seeps and Springs 2019

Contact: Tanner Holliday

Dept: ME

QC Type: MSD

Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qua
Date Analyzed: Date Prepared:												
0.196 0.984	mg/L mg/L	E200.8 E200.8	0.000176 0.00418	0.00200 0.00600	0.2000 1.000	0.00491	95.5 98.4	75 - 125 75 - 125	0.202 0.977	3.04 0.741	20 20	
Date Analyzed: Date Prepared:												
2.22	mg/L	E200.8	0.0992	0.200	1.000	1.2	102	75 - 125	2.25	1.35	20	
,												
0.00374	mg/L	E245.1	0.0000396	0.0000900	0.003330	0	112	85 - 115	0.00364	2.67	20	
3)	Date Analyzed: Date Prepared: 0.196 0.984 Date Analyzed: Date Prepared: 2.22 Date Analyzed: Date Prepared:	Date Analyzed: 04/09/201 Date Prepared: 04/05/201 0.196 mg/L 0.984 mg/L Date Analyzed: 04/10/201 Date Prepared: 04/05/201 2.22 mg/L Date Analyzed: 04/10/201 1 Date Prepared: 04/04/201	Date Analyzed: 04/09/2019 1734h Date Prepared: 04/05/2019 1023h 0.196 mg/L E200.8 0.984 mg/L E200.8 Date Analyzed: 04/10/2019 1530h Date Prepared: 04/05/2019 1023h 2.22 mg/L E200.8 Date Analyzed: 04/10/2019 1830h Date Prepared: 04/04/2019 1830h	Date Analyzed: 04/09/2019 1734h Date Prepared: 04/05/2019 1023h 0.196 mg/L E200.8 0.000176 0.984 mg/L E200.8 0.00418 Date Analyzed: 04/10/2019 1530h Date Prepared: 04/05/2019 1023h 2.22 mg/L E200.8 0.0992 Date Analyzed: 04/10/2019 834h Date Prepared: 04/04/2019 1830h	Date Analyzed: 04/09/2019 1734h Date Prepared: 04/05/2019 1023h 0.196 mg/L E200.8 0.000176 0.00200 0.984 mg/L E200.8 0.00418 0.00600 Date Analyzed: 04/10/2019 1530h Date Prepared: 04/05/2019 1023h 2.22 mg/L E200.8 0.0992 0.200 Date Analyzed: 04/10/2019 834h Date Prepared: 04/04/2019 1830h	Date Analyzed: 04/09/2019 1734h Date Prepared: 04/05/2019 1023h 0.196 mg/L E200.8 0.000176 0.00200 0.2000 0.984 mg/L E200.8 0.00418 0.00600 1.000 Date Analyzed: 04/10/2019 1530h Date Prepared: 04/05/2019 1023h 2.22 mg/L E200.8 0.0992 0.200 1.000 Date Analyzed: 04/10/2019 834h Date Prepared: 04/04/2019 1830h	Date Analyzed: 04/09/2019 1734h Date Prepared: 04/05/2019 1023h 0.196 mg/L E200.8 0.000176 0.00200 0.2000 0.00491 0.984 mg/L E200.8 0.00418 0.00600 1.000 0 Date Analyzed: 04/10/2019 1530h Date Prepared: 04/05/2019 1023h 2.22 mg/L E200.8 0.0992 0.200 1.000 1.2 Date Analyzed: 04/10/2019 834h Date Prepared: 04/04/2019 1830h	Date Analyzed: 04/09/2019 1734h Date Prepared: 04/05/2019 1023h 0.196 mg/L E200.8 0.000176 0.00200 0.2000 0.00491 95.5 0.984 mg/L E200.8 0.00418 0.00600 1.000 0 98.4 Date Analyzed: 04/10/2019 1530h Date Prepared: 04/05/2019 1023h 2.22 mg/L E200.8 0.0992 0.200 1.000 1.2 102 Date Analyzed: 04/10/2019 834h Date Prepared: 04/04/2019 1830h	Date Analyzed: 04/09/2019 1734h Date Prepared: 04/05/2019 1023h 0.196 mg/L E200.8 0.000176 0.00200 0.2000 0.00491 95.5 75 - 125 0.984 mg/L E200.8 0.00418 0.00600 1.000 0 98.4 75 - 125 Date Analyzed: 04/10/2019 1530h Date Prepared: 04/05/2019 1023h 2.22 mg/L E200.8 0.0992 0.200 1.000 1.2 102 75 - 125 Date Analyzed: 04/10/2019 834h Date Prepared: 04/04/2019 1830h	Date Analyzed: 04/09/2019 1734h Date Prepared: 04/05/2019 1023h 0.196 mg/L E200.8 0.000176 0.00200 0.2000 0.00491 95.5 75 - 125 0.202 0.984 mg/L E200.8 0.00418 0.00600 1.000 0 98.4 75 - 125 0.977 Date Analyzed: 04/10/2019 1530h Date Prepared: 04/05/2019 1023h 2.22 mg/L E200.8 0.0992 0.200 1.000 1.2 102 75 - 125 2.25 Date Analyzed: 04/10/2019 834h Date Prepared: 04/04/2019 1830h	Date Analyzed: 04/09/2019 1734h Date Prepared: 04/05/2019 1023h 0.196 mg/L E200.8 0.000176 0.00200 0.2000 0.00491 95.5 75 - 125 0.202 3.04 0.984 mg/L E200.8 0.00418 0.00600 1.000 0 98.4 75 - 125 0.977 0.741 Date Analyzed: 04/10/2019 1530h Date Prepared: 04/05/2019 1023h 2.22 mg/L E200.8 0.0992 0.200 1.000 1.2 102 75 - 125 2.25 1.35 Date Analyzed: 04/10/2019 834h Date Prepared: 04/04/2019 1830h	Date Analyzed: 04/09/2019 1734h Date Prepared: 04/05/2019 1023h 0.196 mg/L E200.8 0.000176 0.00200 0.2000 0.00491 95.5 75 - 125 0.202 3.04 20 0.984 mg/L E200.8 0.00418 0.00600 1.000 0 98.4 75 - 125 0.977 0.741 20 Date Analyzed: 04/10/2019 1530h Date Prepared: 04/05/2019 1023h 2.22 mg/L E200.8 0.0992 0.200 1.000 1.2 102 75 - 125 2.25 1.35 20 Date Analyzed: 04/10/2019 834h Date Prepared: 04/04/2019 1830h

² - Analyte concentration is too high for accurate matrix spike recovery and/or RPD.

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1903737

Project: Annual Seeps and Springs 2019

Contact: Tanner Holliday

Dept: WC **QC Type:** DUP

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qua
Lab Sample ID: 1903737-001CDUP Test Code: TDS-W-2540C	Date Analyzed:	03/29/201	9 1145h										
Total Dissolved Solids	1,110	mg/L	SM2540C	16.0	20.0					1110	0.360	5	

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc. Client:

Lab Set ID: 1903737

Annual Seeps and Springs 2019 Project:

Tanner Holliday Contact:

Dept: WC QC Type: LCS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	LCS-R124526 300.0-W	Date Analyzed:	04/10/201	9 1943h										
Chloride		4.74	mg/L	E300,0	0.0386	0.100	5.000	0	94.7	90 - 110				
Fluoride		4.97	mg/L	E300.0	0.0240	0.100	5.000	0	99.3	90 - 110				
Sulfate		5.11	mg/L	E300,0	0.0557	0.750	5.000	0	102	90 - 110				
Lab Sample ID: Test Code:	LCS-R124168 ALK-W-2320B-LL	Date Analyzed:	04/02/201	9 749h										
Alkalinity (as Cad	CO3)	250	mg/L	SM2320B	0.781	1.00	250.0	0	100	90 - 110				
Lab Sample ID: Test Code:	LCS-61874 NH3-W-350.1	Date Analyzed: Date Prepared:	04/09/201 04/09/201											
Ammonia (as N)		10.8	mg/L	E350.1	0.0492	0.0500	10.00	0	108	90 - 110				
Lab Sample ID: Test Code:	LCS-R124079 NO2/NO3-W-353,2	Date Analyzed:	03/29/201	9 1312h										
Nitrate/Nitrite (as	N)	1.03	mg/L	E353.2	0.00363	0.0100	1.000	0	103	90 - 110				
Lab Sample ID: Test Code:	LCS-R124148 TDS-W-2540C	Date Analyzed:	03/29/201	9 1145h										

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1903737

Project: Annual Seeps and Springs 2019

Contact: Tanner Holliday

Dept: WC

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
•	MB-R124526 300.0-W	Date Analyzed:	04/10/201	9 1926h										
Chloride		< 0.100	mg/L	E300.0	0.0386	0.100								
Fluoride		< 0.100	mg/L	E300.0	0.0240	0.100								
Sulfate		< 0.750	mg/L	E300.0	0.0557	0.750								
-	MB-R124168 ALK-W-2320B-LL	Date Analyzed:	04/02/201	9 749h										
Bicarbonate (as Ca	CO3)	< 1.00	mg/L	SM2320B	0.781	1.00								
Carbonate (as CaC	O3)	< 1.00	mg/L	SM2320B	0.781	1.00								
Lab Sample ID: 1 Test Code: 1	MB-61874 NH3-W-350.1	Date Analyzed: Date Prepared:	04/09/201											
Ammonia (as N)		< 0.0500	mg/L	E350,1	0.0492	0.0500								
	MB-R124079 NO2/NO3-W-353.2	Date Analyzed:	03/29/201	9 1310h										
Nitrate/Nitrite (as I	N)	< 0.0100	mg/L	E353.2	0.00363	0.0100								
Lab Sample ID:	MB-R124148 TDS-W-2540C	Date Analyzed:	03/29/201	9 1145h										

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1903737

Project: Annual Seeps and Springs 2019

Contact: Tanner Holliday

Dept: WC

QC Type: MS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qua
Lab Sample ID: 19037 Test Code: 300.0	737-001BMS -W	Date Analyzed:	04/10/201	9 2305h										
Chloride Fluoride Sulfate		502 480 947	mg/L mg/L mg/L	E300.0 E300.0 E300.0	3.86 2.40 5.57	10.0 10.0 75.0	500.0 500.0 500.0	41.6 0 436	92.1 96.1 102	90 - 110 90 - 110 90 - 110				
	737-001BMS W-2320B-LL	Date Analyzed:	04/02/201	9 749h										
Alkalinity (as CaCO3)		1,450	mg/L	SM2320B	0.781	1.00	1,000	450	100	80 - 120				
Test Code: NH3-	737-001DMS W-350.1	Date Analyzed: Date Prepared:	04/09/201 04/09/201	9 1235h										
Ammonia (as N)		10.8	mg/L	E350.1	0.0492	0.0500	10.00	0	108	90 - 110				
	7 37-001DMS NO3-W-353.2	Date Analyzed:	03/29/201	9 1314h										
Nitrate/Nitrite (as N)		11.0	mg/L	E353.2	0.0363	0.100	10.00	0	110	90 - 110				§

^{§ -} QC limits are set with an accuracy of two significant figures, therefore the recovery rounds to an acceptable value within the control limits.

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Energy rueis resource

Lab Set ID: 1903737 **Project:** Annual S

Annual Seeps and Springs 2019

Contact: Tanner Holliday

Dept: WC **QC Type:** MSD

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1903737-0 Test Code: 300.0-W	Date Analyzed:	04/10/201	9 2322h										
Chloride Fluoride Sulfate	509 486 945	mg/L mg/L mg/L	E300,0 E300,0 E300,0	3.86 2.40 5.57	10.0 10.0 75.0	500.0 500.0 500.0	41.6 0 436	93.5 97.2 102	90 - 110 90 - 110 90 - 110	502 480 947	1,36 1.16 0.234	20 20 20	
Lab Sample ID: 1903737-0 Test Code: ALK-W-23	20B-LL	, vo. 42 section 140											
Alkalinity (as CaCO3) Lab Sample ID: 1903737-0 Test Code: NH3-W-35 Ammonia (as N)	•			0.781	0.0500	1,000	0	101	90 - 110	10.8	0.275	10	
Lab Sample ID: 1903737-0 Test Code: NO2/NO3-		03/29/201	9 1316h										
Nitrate/Nitrite (as N)	10.6	mg/L	E353.2	0.0363	0.100	10.00	0	106	90 - 110	11	3.70	10	

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc. Client:

Lab Set ID: 1903737

Project: Annual Seeps and Springs 2019

Tanner Holliday Contact:

MSVOA Dept: QC Type: LCS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: LCS VOC-2 032919A Test Code: 8260-W-DEN100	Date Analyzed:	03/29/201	9 743h										
Benzene	20.7	μg/L	SW8260C	0.147	1.00	20.00	0	104	82 - 132				
Chloroform	19.8	μg/L	SW8260C	0.166	1,00	20.00	0	99.2	85 - 124				
Methylene chloride	20.0	μg/L	SW8260C	0.448	1.00	20.00	0	99.8	65 - 154				
Naphthalene	16.6	μg/L	SW8260C	0.704	1.00	20.00	0	83.3	63 - 129				
Tetrahydrofuran	16,1	μg/L	SW8260C	0.436	1.00	20.00	0	80.4	59 - 125				
Toluene	20.8	μg/L	SW8260C	0.177	1.00	20.00	0	104	69 - 129				
Xylenes, Total	66.9	μg/L	SW8260C		1,00	60.00	0	111	66 - 124				
Surr: 1,2-Dichloroethane-d4	46.6	μg/L	SW8260C			50.00		93.3	80 - 136				
Surr: 4-Bromofluorobenzene	49.5	μg/L	SW8260C			50.00		99.0	85 - 121				
Surr: Dibromofluoromethane	50.2	μg/L	SW8260C			50.00		100	78 - 132				
Surr: Toluene-d8	51.8	μg/L	SW8260C			50.00		104	81 - 123				

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1903737

Project: Annual Seeps and Springs 2019

Contact: Tanner Holliday

Dept: MSVOA **QC Type:** MBLK

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: MB VOC-2 032919A Test Code: 8260-W-DEN100	Date Analyzed:	03/29/20	19 823h										
2-Butanone	< 20.0	μg/L	SW8260C	1.31	20.0								
Acetone	< 20.0	μg/L	SW8260C	2.87	20.0								
Benzene	< 1.00	μg/L	SW8260C	0.147	1.00								
Carbon tetrachloride	< 1.00	μg/L	SW8260C	0.262	1.00								
Chloroform	< 1.00	μg/L	SW8260C	0.166	1.00								
Chloromethane	< 1.00	μ g/L	SW8260C	0.832	1.00								
Methylene chloride	< 1.00	μg/L	SW8260C	0.448	1.00								
Naphthalene	< 1.00	μg/L	SW8260C	0.704	1.00								
Tetrahydrofuran	< 1.00	μg/L	SW8260C	0.436	1.00								
Toluene	< 1.00	μg/L	SW8260C	0.177	1.00								
Xylenes, Total	< 1.00	μg/L	SW8260C		1.00								
Surr: 1,2-Dichloroethane-d4	47.9	μg/L	SW8260C			50.00		95.9	80 - 136				
Surr: 4-Bromofluorobenzene	53.4	μg/L	SW8260C			50.00		107	85 - 121				
Surr: Dibromofluoromethane	49.0	μg/L	SW8260C			50.00		98.0	78 - 132				
Surr: Toluene-d8	51.0	μg/L	SW8260C			50.00		102	81 - 123				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1903737

Project: Annual Seeps and Springs 2019

Contact: Tanner Holliday

Dept: MSVOA

QC Type: MS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1903737-001AMS Test Code: 8260-W-DEN100	Date Analyzed:	03/29/201	19 1319h										
Benzene	21.3	μg/L	SW8260C	0.147	1.00	20.00	0	107	66 - 145				
Chloroform	20.5	μg/L	SW8260C	0.166	1.00	20.00	0	103	50 - 146				
Methylene chloride	20.5	μg/L	SW8260C	0.448	1.00	20.00	0	103	30 - 192				
Naphthalene	16.4	μg/L	SW8260C	0.704	1.00	20.00	0	81.8	41 - 131				
Tetrahydrofuran	17.8	μg/L	SW8260C	0.436	1.00	20.00	0	89.2	43 - 146				
Toluene	21.5	μg/L	SW8260C	0.177	1.00	20.00	0	108	18 - 192				
Xylenes, Total	68.8	μg/L	SW8260C		1.00	60.00	0	115	42 - 167				
Surr: 1,2-Dichloroethane-d4	47.8	μg/L	SW8260C			50.00		95.7	72 - 151				
Surr: 4-Bromofluorobenzene	50,2	μg/L	SW8260C			50.00		100	80 - 152				
Surr: Dibromofluoromethane	51.5	μg/L	SW8260C			50.00		103	72 - 135				
Surr: Toluene-d8	51.1	μg/L	SW8260C			50.00		102	80 - 124				

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1903737

Project: Annual Seeps and Springs 2019

Contact: Tanner Holliday

Dept: MSVOA **QC Type:** MSD

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1903737-001AMSD Test Code: 8260-W-DEN100	Date Analyzed:	03/29/20	19 1339h										
Benzene	20.8	μg/L	SW8260C	0.147	1.00	20.00	0	104	66 - 145	21.3	2,42	25	
Chloroform	20.0	μg/L	SW8260C	0.166	1.00	20.00	0	100	50 - 146	20.5	2.52	25	
Methylene chloride	20.0	μg/L	SW8260C	0.448	1.00	20.00	0	100	30 - 192	20.5	2.32	25	
Naphthalene	15.9	μg/L	SW8260C	0.704	1.00	20.00	0	79.4	41 - 131	16.4	3.10	25	
Tetrahydrofuran	18.7	μg/L	SW8260C	0.436	1.00	20.00	0	93.5	43 - 146	17.8	4.71	25	
Toluene	20.8	μg/L	SW8260C	0.177	1.00	20.00	0	104	18 - 192	21.5	3,26	25	
Xylenes, Total	66.5	μg/L	SW8260C		1.00	60.00	0	111	42 - 167	68.8	3.36	25	
Surr: 1,2-Dichloroethane-d4	47.3	μg/L	SW8260C			50.00		94.6	72 - 151				
Surr: 4-Bromofluorobenzene	49.5	μg/L	SW8260C			50.00		99.0	80 - 152				
Surr: Dibromofluoromethane	50.4	μg/L	SW8260C			50.00		101	72 - 135				
Surr: Toluene-d8	50.5	μg/L	SW8260C			50.00		101	80 - 124				

Rpt Emailed:

UL Denison

WORK ORDER Summary

Work Order: 1903737

Page 1 of 1

Client:

Energy Fuels Resources, Inc.

Due Date: 4/12/2019

Client ID:

ENE300

Contact:

Tanner Holliday

Project:

Annual Seeps and Springs 2019

QC Level: Ш WO Type: Project

QC 3 (no chromatograms). EDD-Denison. CC KWeinel@energyfuels.com.;

Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	
1903737-001A	Westwater Seep	3/27/2019 0930h	3/29/2019 1000h	8260-W-DEN100	Aqueous		VOCFridge	3
				Test Group: 8260-W-D	DEN100; # of Analytes: 11 / 1	of Surr: 4		
1903737-001B				300.0-W			df - wc	1
				3 SEL Analytes: CL F	SO4			
				ALK-W-2320B-LL			df - wc	
				2 SEL Analytes: ALKB	ALKC			
1903737-001C				TDS-W-2540C			df - tds	
				1 SEL Analytes: TDS				
1903737-001D				NH3-W-350.1			df - no2/no3 & nh3	
			27.75.5	1 SEL Analytes: NH3N				
				NH3-W-PR			df - no2/no3 & nh3	
				NO2/NO3-W-353.2			df - no2/no3 & nh3	
	· · · · · · · · · · · · · · · · · · ·	- Divine Committee Committee		1 SEL Analytes: NO3N	IO2N			
1903737-001E				200.7-DIS	(9)		df-met	
				5 SEL Analytes: CA M	GKNAV			
				200.7-DIS-PR			df-met	
				200.8-DIS			df-met	
				17 SEL Analytes: AS E TL SN U ZN	BE CD CR CO CU FE PB M	N MO NI SE AG		
				200.8-DIS-PR			df-met	
				HG-DW-DIS-245.1			df-met	
				1 SEL Analytes: HG	T-100			
				HG-DW-DIS-PR			df-met	
		311,72,73		IONBALANCE			df-met	
	The state of the s			5 SEL Analytes: BALA	INCE Anions Cations TDS-I	Balance TDS-Ca	lc	
1903737-002A	Trip Blank	3/27/2019 0930h	3/29/2019 1000h	8260-W-DEN100	Aqueous DEN100; # of Analytes: 11 /	. 600	VOCFridge	3

A

American West Analytical Laboratories

463 W. 3600 S. Salt Lake City, UT 84115
Phone # (801) 263-8686 Toll Free # (888) 263-8686

CH	A	IN	OF	CI	IST	0	DY
\mathbf{v}	1/ 1	u v			\sim 1	\sim	-

All analysis will be conducted using NELAP accredited methods and all data will be reported using AWAL's standard analyte lists and reporting limits (PQL) unless specifically requested otherwise on this Chain of Custody and/or attached documentation.

1903737 AWAL ab Sample Set #

Page Due Date: Fax # (801) 263-8687 Email awal@awal-labs.com QC Level: **Turn Around Time:** Unless other arrangements have been made, signed reports will be emailed by 5:00 pm on 3 the day they are due. www.awal-labs.com Standard Laboratory Use Only Energy Fuels Resources, Inc. Include EDD: Mo, LOCUS UPLOAD 6425 S. Hwy. 191 Ca EXCEL Address: Hg, X Field Filtered For: Mg, Blanding, UT 84511 **Dissolved Metals** Dissolved Metals (200.7/200.8/245.1) Mn, K, Tanner Holliday Contact: Na, Pb, For Compliance With: (435) 678-2221 □ NELAP Phone #: Temperature Zn, gpalmer@energyfuels.com; KWeinel@energyfuels.com; **RCRA** SO4 (4500 or 300.0) > □ CWA Email: tholliday@energyfuels.com Received Broken/Leaking SDWA U, (Improperly Sealed) Annual Seeps and Springs 2019 °, Project Name: (4500G or 350.1) ELAP / A2LA Carb/Bicarb (2320B) Sn, NLLAP Ç, Project #: Non-Compliance II, Other: Cd, (8260C) Ag, PO #: (2540C) Checked at bench ion Balance Be, NO2/NO3 Tanner Holliday Se, Sampler Name: Received Within Known Hazards Ċ As, Ni, Vocs TDS Date Time t of Sample Comments Sample ID: Sampled Sampled 3/27/2019 930 X x x x Westwater Seep x X X. X X 3/27/2019 930 Trip Blank COC Tage Was: Recent on Outer Packag Unbroken on Outer Pac Unbroken on Sample Discrepancies Between Sample Labels and COC Record? Received by: Special Instructions: 3/28/2019 Signature Signature Time: 1130 Print Name Sample containers for metals were field filtered. See the Received by: Relinguished by: Analytical Scope of Work for Reporting Limits and VOC analyte Signature Signature Time: Print Name Print Name: Received by Relinquished by: Signature Time: Print Name Relinquished by: Date: Signature Time: Print Name:

Lab Set ID:	1903737
pH Lot #:	5910

Preservation Check Sheet

Sample Set Extension and pH

			 	 Gain	pie set	LATCHSIO	n and p	A.A.	 	 	 -		
Analysis	Preservative	-001											
Ammonia	pH <2 H ₂ SO ₄	Ve5											
COD	pH <2 H ₂ SO ₄	11											
Cyanide	pH >12 NaOH												
Metals	pH <2 HNO ₃	YES											
NO ₂ /NO ₃	pH <2 H ₂ SO ₄	162											
O&G	pH <2 HCL	Π											
Phenols	pH <2 H ₂ SO ₄												
Sulfide	pH >9 NaOH, Zn Acetate												
TKN	pH <2 H ₂ SO ₄												
T PO ₄	pH <2 H ₂ SO ₄												
Cr VI+	pH >9 (NH ₄) ₂ SO ₄	=======================================					2						
					b								
											-		

Procedure:

- 1) Pour a small amount of sample in the sample lid
- 2) Pour sample from lid gently over wide range pH paper
- 3) Do Not dip the pH paper in the sample bottle or lid
- 4) If sample is not preserved, properly list its extension and receiving pH in the appropriate column above
- 5) Flag COC, notify client if requested
- 6) Place client conversation on COC
- 7) Samples may be adjusted

Frequency:

All samples requiring preservation

- * The sample required additional preservative upon receipt.
- The sample was received unpreserved.
- ▲ The sample was received unpreserved and therefore preserved upon receipt.
- # The sample pH was unadjustable to a pH \leq 2 due to the sample matrix.
- The sample pH was unadjustable to a pH > ____ due to the sample matrix interference.

a member of The GEL Group INC

PO Box 30712 Charleston, SC 29417 2040 Savage Road Charleston, SC 29407 P 843,556,8171 F 843.766.1178

gel.com

April 26, 2019

Ms. Kathy Weinel Energy Fuels Resources (USA), Inc. 225 Union Boulevard Suite 600 Lakewood, Colorado 80228

Re: Analytical for Annual Seeps and Spring 2019

Work Order: 475027

Dear Ms. Weinel:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on April 01, 2019. This revised data report has been prepared and reviewed in accordance with GEL's standard operating procedures. This package has been revised to show correct method.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Julie Robinson Project Manager

Purchase Order: DW16138

Enclosures

Energy Fuels Resources (USA), Inc. Analytical for SDG: 475027

a cia ana istaas i

This package has been revised to show correct method.

Receipt Narrative for Energy Fuels Resources (USA), Inc. SDG: 475027

April 26, 2019

Laboratory Identification:

GEL Laboratories LLC 2040 Savage Road Charleston, South Carolina 29407 (843) 556-8171

Summary:

Sample receipt: The sample arrived at GEL Laboratories LLC, Charleston, South Carolina on April 01, 2019 for analysis. The sample was delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Sample Identification: The laboratory received the following sample:

<u>Laboratory ID</u> <u>Client ID</u> 475027001 Westwater Seep

Case Narrative:

Sample analyses were conducted using methodology as outlined in GEL's Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

The enclosed data package contains the following sections: Case Narrative, Chain of Custody, Cooler Receipt Checklist, Data Package Qualifier Definitions and data from the following fractions: Radiochemistry.

Taylor Cannon for Julie Robinson Project Manager

2 C12 CDC (SC00SD 1

475027

Sheet 1	of	

CHAIN OF CUSTODY

<u> </u>	040 Savage Road harleston, SC 294 hain of Custo			Tanner Holliday Ph: 435 678 4115 tholliday@energyfuels.com
<u> </u>	harleston, SC 294			
	hain of Custo	1 10	A STATE OF THE STA	
Project		ody/Samp Samplers Na	oling Analysis Re	equest Samplers Signature
Annual Seeps and Spring	1000			- 1001
2019		Tanner Hollic	day	Janner Holliday
Sample ID D	ate Collected	Time Collected	Laborato	ry Analysis Requested
Westwater seep	3/27/2019	930		Gross Alpha
Comments:				404/1/19
Relinquished By:(Signature) Tannen Holliday arner Holliday	lan	Date/Time 3/28/2019 1130	Received By:(Signatu	34/1/19
Relinquished By:(Signature)	V	Date/Time	Received By:(\$ignatu	re) Date/Time

SAMPLE RECEIPT & REVIEW FORM

Client: DNMI s	SDG/AR/COC/Work Orger; 475027
Received By: ZKW	Date Received: 4/1/19
Carrier and Tracking Number	FedEx Express FedEx Ground UPS Field Services Courier Other 17 187 144 01 9117 9494
Suspected Hazard Information	If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
	lazard Class Shipped: UN#: UN2910, Is the Radioactive Shipment Survey Compliant? Yes No
B) Did the client designate the samples are to be received as radioactive?	OC notation or radioactive stickers on containers equal client designation.
	Jaximum Net Counts Observed* (Observed Counts - Area Background Counts):
hazardous?	OC notation or hazard labels on containers equal client designation.
	DO or E is yes, select Hazards below. CB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
Sample Receipt Criteria	Comments/Qualifiers (Required for Non-Conforming Items)
Shipping containers received intact and sealed?	Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
2 Chain of custody documents included with shipment?	Circle Applicable: Client contacted and provided COC COC created upon receipt
3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?*	Preservation Method: Wet Ice Ice Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP:
4 Daily check performed and passed on IR temperature gun?	Temperature Device Serial #: IR3-18 Secondary Temperature Device Serial # (If Applicable):
5 Sample containers intact and sealed?	Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
6 Samples requiring chemical preservation at proper pH?	Sample ID's and Containers Affected: If Preservation added, Lot#:
7 Do any samples require Volatile Analysis?	If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials free of headspace? Yes No NA Sample ID's and containers affected:
8 Samples received within holding time?	ID's and tests affected:
9 Sample ID's on COC match ID's on bottles?	ID's and containers affected:
Date & time on COC match date & time on bottles?	Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
Number of containers received match number indicated on COC?	Circle Applicable: No container count on COC Other (describe)
12 Are sample containers identifiable as GEL provided?	
COC form is properly signed in relinquished/received sections?	Circle Applicable: Not relinquished Other (describe)
Comments (Use Continuation Form if needed):	(210)

GEL Laboratories LLC - Login Review Report

Report Date: 26-APR-19 Work Order: 475027

Page 1 of 2

GEL Work Order/SDG: 475027

Annual Seeps and Spring 2019

Work Order Due Date: 29-APR-19

Collector: C

Client SDG:

475027

Package Due Date:

Prelogin #: 20190486669 27-APR-19

Project Manager:

Julie Robinson

29-APR-19

Project Workdef ID: 1329132

Project Name:

DNMI00106 Analytical for

EDD Due Date: QA Due Date:

29-APR-19

SDG Status: Closed

Purchase Order:

DW16138

Dде Date:

30-APR-19

Logged by:

Package Level:

LEVEL3

EDD Format: EIM_DNMI

GEL ID Client San	nple ID Client Sample D	Collect esc. Date & Time		ime # of Zone Cont.	Lab Matrix	Fax Due Date	Days to Process	CofC #	Prelog Group		
475027001 Westwater S	Seep	27-MAR-19 09:3	0 01-APR-19 08:55	-2 1	GROUND WATER	2	20		1		
Client Sample ID	Status Tests/Methods	Product Reference	Fax Date PM	Comments	3	A	ux Data			Rece Cod	
-001 Westwater Seep	REVW GFPC, Total Alpha R Liquid	adium, Gross Alpha									
Product: GFCTORAL	Workdef ID: 1461303	In Product Group?	No Group Name	:	Grou	ıp Reference:					
Metho	d: EPA 903.0					P	ath: Drinking \	Vater (903.0	or 9315)		
	n: GFPC, Total Alpha Radium, L	iquid					roduct Refere loisture Corre		the same state of the same sta		
	: All parmnames scheduled pro	pperly									
CAS#	Parmname	,	Client RDL PQL & Un	200		arm Includ oction in Samp		Custom List?			
	Gross Radium Alpha		1	·	pCi/L F	REG Y	Υ	No	En.		

Action	Product Name	Description	Samples

Contingent **Tests**

Login Requirements:

Include? Comments Requirement

GEL Laboratories LLC - Login Review Report

Report Date: 26-APR-19 Work Order: 475027

Page 2 of 2

Peer Review by:_____ Work Order (SDG#), PO# Checked?____ C of C signed in receiver location?_____

List of current GEL Certifications as of 26 April 2019

State	Certification
Alaska	17-018
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana NELAP	03046 (AI33904)
Louisiana SDWA	LA024
Maryland	270
Massachusetts	M-SC012
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122019-3
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	9904
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-19-15
Utah NELAP	SC000122018-27
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

Radiochemistry Technical Case Narrative Energy Fuels Resources (DNMI) SDG #: 475027

Product: GFPC, Total Alpha Radium, Liquid

Analytical Method: EPA 903.0

Analytical Procedure: GL-RAD-A-044 REV# 10

Analytical Batch: 1863376

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification	
475027001	Westwater Seep	
1204251123	Method Blank (MB)	
1204251124	475027001(Westwater Seep) Sample Duplicate (DUP)	
1204251125	475027001(Westwater Seep) Matrix Spike (MS)	
1204251126	475027001(Westwater Seep) Matrix Spike Duplicate (MSD)	
1204251127	Laboratory Control Sample (LCS)	
1204251125 1204251126	475027001(Westwater Seep) Matrix Spike (MS) 475027001(Westwater Seep) Matrix Spike Duplicate (MSI	D)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Preparation Information

Aliquot Reduced

Aliquots were reduced due to limited sample volume.

Miscellaneous Information

Additional Comments

The matrix spike and matrix spike duplicate, 1204251125 (Westwater SeepMS) and 1204251126 (Westwater SeepMSD), aliquots were reduced to conserve sample volume.

Certification Statement

0 010 000 100000 1

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Qualifier Definition Report for

DNMI001 Energy Fuels Resources (USA), Inc. Client SDG: 475027 GEL Work Order: 475027

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the CRDL.

Review/Validation

GEL requires all analytical data to be verified by a qualified data reviewer. In addition, all CLP-like deliverables receive a third level review of the fractional data package.

The following data validator verified the information presented in this data report:

Signature: Name: Theresa Austin

Date: 26 APR 2019 Title: Group Leader

10 C12 CDC 155005 D 1

GEL LABORATORIES LLC

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: April 26, 2019

Page 1 of

Energy Fuels Resources (USA), Inc.

225 Union Boulevard

Suite 600

Lakewood, Colorado

Contact:

Ms. Kathy Weinel

Workorder:

475027

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Gas Flow 3atch 1863376									
QC1204251124 475027001 DUP Gross Radium Alpha	U Uncertainty	0.232 +/-0.270	U	0.721 +/-0.313	pCi/L	N/A		N/A JXC9	04/05/19 12:2
QC1204251127 LCS Gross Radium Alpha	887 Uncertainty			780 +/-10.1	pCi/L		87.9	(75%-125%)	04/05/19 12:2
QC1204251123 MB Gross Radium Alpha	Uncertainty		U	0.249 +/-0.282	pCi/L				04/05/19 12:2
QC1204251125 475027001 MS Gross Radium Alpha	4450 U Uncertainty	0.232 +/-0.270		3780 +/-52.1	pCi/L		84.8	(75%-125%)	04/05/19 12:2
QC1204251126 475027001 MSD Gross Radium Alpha	4450 U Uncertainty	0.232 +/-0.270		3720 +/-50.7	pCi/L	1.45	83.5	(0%-20%)	04/05/19 12:2

Notes:

Counting Uncertainty is calculated at the 68% confidence level (1-sigma).

The Qualifiers in this report are defined as follows:

- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- F Estimated Value
- H Analytical holding time was exceeded
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- M M if above MDC and less than LLD

GEL LABORATORIES LLC

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 475027 Page 2 of NOM Sample Qual OC Units RPD% REC% Date Time **Parmname** Range Anlst Matrix Related Failure M N/A RPD or %Recovery limits do not apply. N1See case narrative Analyte concentration is not detected above the detection limit ND NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier One or more quality control criteria have not been met. Refer to the applicable narrative or DER. 0 R Sample results are rejected U Analyte was analyzed for, but not detected above the CRDL. Gamma Spectroscopy--Uncertain identification UI Gamma Spectroscopy--Uncertain identification UJ Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias. UL X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier Y QC Samples were not spiked with this compound

- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- h Preparation or preservation holding time was exceeded

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

* Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

10 010 ODG 185008 D

Tanner Holliday Energy Fuels Resources, Inc. 6425 South Hwy 191 Blanding, UT 84511

TEL: (435) 678-2221

RE: Seeps and Springs 2019

Dear Tanner Holliday:

Lab Set ID: 1906343

3440 South 700 West Salt Lake City, UT 84119

American West Analytical Laboratories received sample(s) on 6/13/2019 for the analyses presented in the following report.

Phone: (801) 263-8686 Toll Free: (888) 263-8686 American West Analytical Laboratories (AWAL) is accredited by The National Environmental Laboratory Accreditation Program (NELAP) in Utah and Texas; and is state accredited in Colorado, Idaho, New Mexico, Wyoming, and Missouri.

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

All analyses were performed in accordance to the NELAP protocols unless noted otherwise. Accreditation scope documents are available upon request. If you have any questions or concerns regarding this report please feel free to call.

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha OA Officer

The abbreviation "Surr" found in organic reports indicates a surrogate compound that is intentionally added by the laboratory to determine sample injection, extraction, and/or purging efficiency. The "Reporting Limit" found on the report is equivalent to the practical quantitation limit (PQL). This is the minimum concentration that can be reported by the method referenced and the sample matrix. The reporting limit must not be confused with any regulatory limit. Analytical results are reported to three significant figures for quality control and calculation purposes.

Thank You,

Jose G. Rocha
DN: cn=Jose G. Rocha, o=American West Analytical Laboratories, ou, email=jose@awal-labs.com, c=US
Date: 2019.07,05 14:33:52

Approved by:

Laboratory Director or designee

SAMPLE SUMMARY

Contact: Tanner Holliday

Client:

Energy Fuels Resources, Inc.

Project:

Seeps and Springs 2019

Lab Set ID:

1906343

Date Received:

6/13/2019 1054h

	Lab Sample ID	Client Sample ID	Date Colle	cted	Matrix	Analysis
3440 South 700 West 3alt Lake City, UT 84119	1906343-001A	Entrance Seep	6/11/2019	815h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1906343-001B	Entrance Seep	6/11/2019	815h	Aqueous	Anions, E300.0
	1906343-001B	Entrance Seep	6/11/2019	815h	Aqueous	Alkalinity/ Bicarbonate/ Carbonate, Low Level
Phone: (801) 263-8686	1906343-001C	Entrance Seep	6/11/2019	815h	Aqueous	Total Dissolved Solids, A25400
Toll Free: (888) 263-8686	1906343-001D	Entrance Seep	6/11/2019	815h	Aqueous	Nitrite/Nitrate (as N), E353.2
Fax: (801) 263-8687	1906343-001D	Entrance Seep	6/11/2019	815h	Aqueous	Ammonia, Aqueous
e-mail: awal@awal-labs.com	1906343-001E	Entrance Seep	6/11/2019	815h	Aqueous	Mercury, Drinking Water Dissolved
web: www.awal-labs.com	1906343-001E	Entrance Seep	6/11/2019	815h	Aqueous	Ion Balance
web. www.awar-labs.com	1906343-001E	Entrance Seep	6/11/2019	815h	Aqueous	ICP Metals, Dissolved
	1906343-001E	Entrance Seep	6/11/2019	815h	Aqueous	ICPMS Metals, Dissolved
Kyle F. Gross	1906343-002A	Ruin Spring	6/11/2019	850h	Aqueous	VOA by GC/MS Method 8260C/5030C
Laboratory Director	1906343-002B	Ruin Spring	6/11/2019	850h	Aqueous	Alkalinity/ Bicarbonate/ Carbonate, Low Level
Jose Rocha	1906343-002B	Ruin Spring	6/11/2019	850h	Aqueous	Anions, E300.0
QA Officer	1906343-002C	Ruin Spring	6/11/2019	850h	Aqueous	Total Dissolved Solids, A25400
Q11 0 111 0 11	1906343-002D	Ruin Spring	6/11/2019	850h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1906343-002D	Ruin Spring	6/11/2019	850h	Aqueous	Ammonia, Aqueous
	1906343-002E	Ruin Spring	6/11/2019	850h	Aqueous	Mercury, Drinking Water Dissolved
	1906343-002E	Ruin Spring	6/11/2019	850h	Aqueous	Ion Balance
	1906343-002E	Ruin Spring	6/11/2019	850h	Aqueous	ICP Metals, Dissolved
	1906343-002E	Ruin Spring	6/11/2019	850h	Aqueous	ICPMS Metals, Dissolved
	1906343-003A	Cottonwood Spring	6/11/2019	950h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1906343-003B	Cottonwood Spring	6/11/2019	950h	Aqueous	Anions, E300.0
	1906343-003B	Cottonwood Spring	6/11/2019	950h	Aqueous	Alkalinity/ Bicarbonate/ Carbonate, Low Level
	1906343-003C	Cottonwood Spring	6/11/2019	950h	Aqueous	Total Dissolved Solids, A25400
	1906343-003D	Cottonwood Spring	6/11/2019	950h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1906343-003D	Cottonwood Spring	6/11/2019	950h	Aqueous	Ammonia, Aqueous
	1906343-003E	Cottonwood Spring	6/11/2019	950h	Aqueous	Mercury, Drinking Water Dissolved
	1906343-003E	Cottonwood Spring	6/11/2019	950h	Aqueous	Ion Balance

Client:

Energy Fuels Resources, Inc.

Project:

Seeps and Springs 2019

Lab Set ID:

1906343

Date Received:

6/13/2019 1054h

	Lab Sample ID	Client Sample ID	Date Collected	Matrix	Analysis
	1906343-003E	Cottonwood Spring	6/11/2019 950h	Aqueous	ICP Metals, Dissolved
3440 South 700 West	1906343-003E	Cottonwood Spring	6/11/2019 950h	Aqueous	ICPMS Metals, Dissolved
Salt Lake City, UT 84119	1906343-004A	Back Spring	6/11/2019 850h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1906343-004B	Back Spring	6/11/2019 850h	Aqueous	Alkalinity/ Bicarbonate/ Carbonate, Low Level
Dhana (901) 262 9696	1906343-004B	Back Spring	6/11/2019 850h	Aqueous	Anions, E300.0
Phone: (801) 263-8686	1906343-004C	Back Spring	6/11/2019 850h	Aqueous	Total Dissolved Solids, A25400
Toll Free: (888) 263-8686	1906343-004D	Back Spring	6/11/2019 850h	Aqueous	Nitrite/Nitrate (as N), E353.2
Fax: (801) 263-8687	1906343-004D	Back Spring	6/11/2019 850h	Aqueous	Ammonia, Aqueous
e-mail: awal@awal-labs.com	1906343-004E	Back Spring	6/11/2019 850h	Aqueous	Ion Balance
	1906343-004E	Back Spring	6/11/2019 850h	Aqueous	ICP Metals, Dissolved
web: www.awal-labs.com	1906343-004E	Back Spring	6/11/2019 850h	Aqueous	ICPMS Metals, Dissolved
	1906343-004E	Back Spring	6/11/2019 850h	Aqueous	Mercury, Drinking Water Dissolved
Kyle F. Gross	1906343-005A	Trip Blank	6/11/2019 815h	Aqueous	VOA by GC/MS Method 8260C/5030C

Contact: Tanner Holliday

Jose Rocha QA Officer

Laboratory Director

Inorganic Case Narrative

Client: Contact: Project:

Lab Set ID:

Energy Fuels Resources, Inc.

Tanner Holliday

Seeps and Springs 2019

1906343

3440 South 700 West Salt Lake City, UT 84119

Sample Receipt Information:

Date of Receipt:

6/13/2019

Date of Collection:

6/11/2019

Sample Condition: C-O-C Discrepancies: Intact None

Toll Free: (888) 263-8686

Fax: (801) 263-8687

rax. (001) 203-000

Phone: (801) 263-8686

web: www.awal-labs.com

e-mail: awal@awal-labs.com

Holding Time and Preservation Requirements: The analysis and preparation of all samples were performed within the method holding times. All samples were properly preserved.

Preparation and Analysis Requirements: The samples were analyzed following the methods stated on the analytical reports.

Analytical QC Requirements: All instrument calibration and calibration check requirements were met. All internal standard recoveries met method criterion.

Batch QC Requirements: MB, LCS, MS, MSD, RPD, DUP:

Kyle F. Gross

Laboratory Director

Jose Rocha

QA Officer

Method Blanks (MB): No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

Laboratory Control Samples (LCS): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicates (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, with the following exceptions:

Sample ID	Analyte	QC	Explanation
190343-002E	Calcium	MS/MSD	High analyte concentrations
190343-002E	Magnesium	MS/MSD	High analyte concentrations
190343-002E	Sodium	MS/MSD	High analyte concentrations
1906343-0001D	Ammonia	MS/MSD	Sample matrix interference

Duplicate (DUP): The parameters that required a duplicate analysis had RPDs within the control limits, with the following exception: The RPD for TDS on sample 1906343-001C was outside of control limits due to suspected sample non-homogeneity or matrix interference.

Corrective Action: None required.

1

Volatile Case Narrative

Client: Contact: Project: Lab Set ID: Energy Fuels Resources, Inc.

Tanner Holliday

Seeps and Springs 2019

1906343

3440 South 700 West Salt Lake City, UT 84119 **Sample Receipt Information:**

Date of Receipt: Date of Collection: Sample Condition: 6/13/2019

6/11/2019 Intact

Sample Condition: C-O-C Discrepancies:

None

Method:

SW-846 8260C/5030C

Volatile Organic Compounds

Fax: (801) 263-8687

Phone: (801) 263-8686

Analysis:

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Toll Free: (888) 263-8686

General Set Comments: One target analyte was observed above its reporting limit.

Holding Time and Preservation Requirements: All samples were received in appropriate containers and properly preserved. The analysis and preparation of all samples were performed within the method holding times following the methods stated on the analytical reports.

Kyle F. Gross Laboratory Director **Analytical QC Requirements:** All instrument calibration and calibration check requirements were met. All internal standard recoveries met method criterion.

Jose Rocha OA Officer Batch QC Requirements: MB, LCS, MS, MSD, RPD, and Surrogates:

Method Blanks (MBs): No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

Laboratory Control Sample (LCSs): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicate (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, indicating no apparent matrix interferences.

Surrogates: All surrogate recoveries were within established limits.

Corrective Action: None required.

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client:

Energy Fuels Resources, Inc.

Lab Set ID: 1906343

Project: See

Seeps and Springs 2019

Contact: Tanner Holliday

Dept: ME

QC Type: LCS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:	LCS-63253	Date Analyzed:	06/28/201	9 1505h										
Test Code:	200.7-DIS	Date Prepared:	06/14/201	9 1410h										
Calcium		10.7	mg/L	E200,7	0.0937	1.00	10.00	0	107	85 - 115				
Magnesium		11.2	mg/L	E200.7	0.0439	1.00	10.00	0	112	85 - 115				
Potassium		10.9	mg/L	E200.7	0.134	1.00	10.00	0	109	85 - 115				
Sodium		11.3	mg/L	E200.7	0.187	1.00	10.00	0	113	85 - 115				
Vanadium		0.220	mg/L	E200.7	0.00138	0,00500	0.2000	0	110	85 - 115				
Lab Sample ID:	LCS-63254	Date Analyzed:	06/17/201	9 1339h										
Test Code:	200.8-DIS	Date Prepared:	06/14/201	9 1410h										
Arsenic		0.211	mg/L	E200.8	0.000298	0.00200	0.2000	0	106	85 - 115				
Beryllium		0.209	mg/L	E200.8	0.000198	0.00200	0.2000	0	105	85 - 115				
Cadmium		0.207	mg/L	E200.8	0,0000858	0.000500	0.2000	0	103	85 - 115				
Chromium		0.213	mg/L	E200.8	0.00191	0.00200	0.2000	0	107	85 - 115				
Cobalt		0.210	mg/L	E200.8	0.000300	0.00400	0.2000	0	105	85 - 115				
Copper		0.214	mg/L	E200.8	0.00282	0.00200	0.2000	0	107	85 - 115				
Iron		1.05	mg/L	E200.8	0.0496	0.100	1.000	0	105	85 - 115				
Lead		0.199	mg/L	E200.8	0.000448	0.00200	0.2000	0	99.3	85 - 115				
Manganese		0.215	mg/L	E200.8	0.00108	0.00200	0.2000	0	108	85 - 115				
Molybdenum		0.213	mg/L	E200.8	0.000652	0.00200	0.2000	0	106	85 - 115				
Nickel		0.211	mg/L	E200.8	0.00148	0.00200	0.2000	0	105	85 - 115				
Selenium		0.220	mg/L	E200.8	0.000574	0.00200	0.2000	0	110	85 - 115				
Silver		0.201	mg/L	E200.8	0.000232	0.00200	0.2000	0	100	85 - 115				
Thallium		0.197	mg/L	E200.8	0.000154	0.00200	0.2000	0	98.6	85 - 115				
Tin		1.05	mg/L	E200.8	0.00116	0.00400	1.000	0	105	85 - 115				
Uranium		0.211	mg/L	E200.8	0.000176	0.00200	0.2000	0	105	85 - 115				
Lab Sample ID:	LCS-63254	Date Analyzed:	06/17/201	9 1924h										
Test Code:	200.8-DIS	Date Prepared:	06/14/201	9 1410h										
Zinc		1.02	mg/L	E200.8	0.00418	0.00600	1,000	0	102	85 - 115				

Report Date: 7/5/2019 Page 19 of 35

American West

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1906343

Project: Seeps and Springs 2019

Contact: Tanner Holliday

Dept: ME

QC Type: LCS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qua
Lab Sample ID:	LCS-63387	Date Analyzed:	06/24/20	9 746h										
Test Code:	HG-DW-DIS-245.1	Date Prepared:	06/21/201	9 1450h										
Mercury		0.00317	mg/L	E245.1	0.0000396	0.0000900	0.003330	0	95.2	85 - 115				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross
Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1906343

Project: Seeps and Springs 2019

Contact: Tanner Holliday

Dept: ME **QC Type:** MBLK

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:	MB-63253	Date Analyzed:	06/28/20	19 1501h										
Test Code:	200.7-DIS	Date Prepared:	06/14/20	19 1410h										
Calcium		< 1.00	mg/L	E200.7	0.0937	1.00								
Magnesium		< 1.00	mg/L	E200.7	0.0439	1.00								
Potassium		< 1.00	mg/L	E200.7	0.134	1.00								
Sodium		< 1.00	mg/L	E200.7	0.187	1.00								
Vanadium		< 0.00500	mg/L	E200.7	0.00138	0.00500								
Lab Sample ID:	MB-63254	Date Analyzed:	06/17/20	19 1336h										
Test Code:	200.8-DIS	Date Prepared:	06/14/20	19 1410h										
Arsenic		< 0.000200	mg/L	E200.8	0.0000298	0.000200								
Beryllium		< 0.000200	mg/L	E200,8	0.0000198	0.000200								
Cadmium		< 0.0000500	mg/L	E200,8	0.00000858	0.0000500								
Chromium		< 0.000200	mg/L	E200.8	0.000191	0.000200								
Cobalt		< 0.000400	mg/L	E200,8	0.0000300	0.000400								
Copper		< 0.000200	mg/L	E200.8	0.000282	0.000200								
Iron		< 0.0100	mg/L	E200.8	0.00496	0.0100								
Lead		< 0.000200	mg/L	E200.8	0.0000448	0.000200								
Manganese		< 0.000200	mg/L	E200.8	0.000108	0.000200								
Molybdenum		< 0.000200	mg/L	E200.8	0.0000652	0.000200								
Nickel		< 0.000200	mg/L	E200.8	0.000148	0.000200								
Selenium		< 0.000200	mg/L	E200.8	0.0000574	0.000200								
Silver		< 0.000200	mg/L	E200.8	0.0000232	0.000200								
Thallium		< 0.000200	mg/L	E200.8	0.0000154	0.000200								
Tin		< 0.000400	mg/L	E200.8	0.000116	0.000400								
Uranium		< 0.000200	mg/L	E200.8	0.0000176	0.000200								
Lab Sample ID:	MB-63254	Date Analyzed:	06/17/20	19 1921h										
Test Code:	200.8-DIS	Date Prepared:	06/14/20	19 1410h										
Zinc		< 0.000600	mg/L	E200.8	0.000418	0.000600								

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha **QA** Officer

QC SUMMARY REPORT

Client:

Energy Fuels Resources, Inc.

Lab Set ID: 1906343

Project:

Seeps and Springs 2019

Contact:

Tanner Holliday

Dept:

ME

QC	Type:	MBLK
-----------	-------	-------------

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:	MB-63387	Date Analyzed:	06/24/201	9 744h										
Test Code:	HG-DW-DIS-245.1	Date Prepared:	06/21/201	9 1450h										_
Мегсигу		< 0.0000900	mg/L	E245.1	0.0000396	0.0000900								

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1906343

Project: Seeps and Springs 2019

Contact: Tanner Holliday

Dept: ME **QC Type:** MS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:	1906343-002EMS	Date Analyzed:	06/28/201	19 1514h										
Test Code:	200.7-DIS	Date Prepared:	06/14/201	9 1410h										
Calcium		161	mg/L	E200.7	0.937	10.0	10.00	165	-31.5	70 - 130				2
Magnesium		43.8	mg/L	E200.7	0.439	10.0	10.00	45.6	-17.7	70 - 130				2
Sodium		127	mg/L	E200.7	1.87	10.0	10.00	128	-5.56	70 - 130				2
Lab Sample ID:	1906343-002EMS	Date Analyzed:	06/28/201	19 1710h										
Test Code:	200.7-DIS	Date Prepared:	06/14/201	9 1410h										
Potassium		14.1	mg/L	E200.7	0.134	1.00	10.00	3.31	108	70 - 130				
Vanadium		0.217	mg/L	E200.7	0.00138	0.00500	0.2000	0	108	70 - 130				
Lab Sample ID:	1906343-002EMS	Date Analyzed:	06/17/201	19 1354h										
Test Code:	200.8-DIS	Date Prepared:	06/14/201	9 1410h										
Arsenic		0.208	mg/L	E200.8	0.000298	0.00200	0.2000	0.000569	104	75 - 125				
Beryllium		0.203	mg/L	E200.8	0.000198	0.00200	0.2000	0	101	75 - 125				
Cadmium		0.200	mg/L	E200,8	0.0000858	0.000500	0.2000	0	99.9	75 - 125				
Chromium		0.206	mg/L	E200.8	0.00191	0.00200	0.2000	0	103	75 - 125				
Cobalt		0.201	mg/L	E200.8	0.000300	0.00400	0.2000	0	101	75 - 125				
Copper		0.204	mg/L	E200.8	0.00282	0.00200	0.2000	0	102	75 - 125				
Iron		1.02	mg/L	E200.8	0.0496	0.100	1.000	0	102	75 - 125				
Lead		0.193	mg/L	E200.8	0.000448	0.00200	0.2000	0	96.3	75 - 125				
Manganese		0.209	mg/L	E200,8	0.00108	0.00200	0.2000	0	105	75 - 125				
Molybdenum		0.231	mg/L	E200.8	0.000652	0.00200	0.2000	0.0202	105	75 - 125				
Nickel		0.202	mg/L	E200_8	0.00148	0.00200	0.2000	0	101	75 - 125				
Selenium		0.227	mg/L	E200.8	0.000574	0.00200	0.2000	0.0108	108	75 - 125				
Silver		0.190	mg/L	E200.8	0.000232	0.00200	0.2000	0.00114	94.2	75 - 125				
Thallium		0.192	mg/L	E200.8	0.000154	0.00200	0.2000	0	96.0	75 - 125				
Tin		1.05	mg/L	E200.8	0.00116	0.00400	1.000	0	105	75 - 125				
Uranium		0.216	mg/L	E200.8	0.000176	0.00200	0.2000	0.00904	104	75 - 125				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross
Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy

Energy Fuels Resources, Inc.

Lab Set ID: 1906343

Project: Seeps

Seeps and Springs 2019

Contact: Tanner Holliday

Dept: ME

QC Type: MS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	1906343-002EMS 200.8-DIS	Date Analyzed: Date Prepared:	06/17/201 06/14/201											
Zinc		1.02	mg/L	E200.8	0.00418	0.00600	1.000	0.0068	101	75 - 125				
Lab Sample ID: Test Code:	1906343-002EMS HG-DW-DIS-245.1	Date Analyzed: Date Prepared:	06/24/201 06/21/201											
Mercury		0.00327	mg/L	E245_1	0.0000396	0.0000900	0.003330	0	98.2	85 - 115				

² - Analyte concentration is too high for accurate matrix spike recovery and/or RPD.

Report Date: 7/5/2019 Page 24 of 35

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1906343

Project: Seeps and Springs 2019

Contact: Tanner Holliday

Dept: ME
QC Type: MSD

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:	1906343-002EMSD	Date Analyzed:	06/28/201	9 1516h										
Test Code:	200.7-DIS	Date Prepared:	06/14/201	9 1410h										
Calcium		164	mg/L	E200_7	0.937	10.0	10.00	165	-8.21	70 - 130	161	1.43	20	2
Magnesium		46.4	mg/L	E200.7	0.439	10.0	10.00	45.6	8.40	70 - 130	43.8	5.79	20	2
Sodium		128	mg/L	E200.7	1.87	10.0	10.00	128	0.626	70 - 130	127	0.485	20	2
Lab Sample ID:	1906343-002EMSD	Date Analyzed:	06/28/201	9 1708h										
Test Code:	200.7-DIS	Date Prepared:	06/14/201	9 1410h										
Potassium		14.3	mg/L	E200.7	0.134	1.00	10.00	3.31	110	70 - 130	14.1	1.09	20	
Vanadium		0.214	mg/L	E200.7	0.00138	0.00500	0.2000	0	107	70 - 130	0.217	1.54	20	
Lab Sample ID:	1906343-002EMSD	Date Analyzed:	06/17/201	19 1358h										
Test Code:	200.8-DIS	Date Prepared:	06/14/201	9 1410h										
Arsenic		0.206	mg/L	E200,8	0.000298	0.00200	0.2000	0.000569	103	75 - 125	0.208	1.21	20	
Beryllium		0.201	mg/L	E200.8	0.000198	0.00200	0.2000	0	100	75 - 125	0,203	0.927	20	
Cadmium		0.196	mg/L	E200.8	0.0000858	0.000500	0.2000	0	98.1	75 - 125	0.2	1.80	20	
Chromium		0.208	mg/L	E200.8	0.00191	0.00200	0.2000	0	104	75 - 125	0.206	1.17	20	
Cobalt		0.201	mg/L	E200.8	0.000300	0.00400	0.2000	0	101	75 - 125	0.201	0.118	20	
Copper		0.203	mg/L	E200.8	0.00282	0.00200	0.2000	0	102	75 - 125	0.204	0.150	20	
Iron		1.02	mg/L	E200.8	0.0496	0.100	1.000	0	102	75 - 125	1.02	0.367	20	
Lead		0.190	mg/L	E200.8	0.000448	0.00200	0.2000	0	95.1	75 - 125	0.193	1.27	20	
Manganese		0.209	mg/L	E200.8	0.00108	0.00200	0.2000	0	104	75 - 125	0.209	0.313	20	
Molybdenum		0.228	mg/L	E200.8	0.000652	0.00200	0.2000	0.0202	104	75 - 125	0.231	1.15	20	
Nickel		0.204	mg/L	E200.8	0.00148	0.00200	0.2000	0	102	75 - 125	0,202	0.659	20	
Selenium		0.224	mg/L	E200.8	0.000574	0.00200	0.2000	0.0108	106	75 - 125	0,227	1.38	20	
Silver		0.189	mg/L	E200_8	0.000232	0.00200	0.2000	0.00114	94.1	75 - 125	0.19	0.157	20	
Thallium		0.191	mg/L	E200.8	0.000154	0.00200	0.2000	0	95.4	75 - 125	0.192	0.603	20	
Tin		1.04	mg/L	E200.8	0.00116	0.00400	1.000	0	104	75 - 125	1.05	1.31	20	
Uranium		0.215	mg/L	E200.8	0.000176	0.00200	0.2000	0.00904	103	75 - 125	0.216	0.417	20	

Report Date: 7/5/2019 Page 25 of 35

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686. Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1906343

Project: Seeps and Springs 2019

Contact: Tanner Holliday

Dept: ME

QC Type: MSD

-														
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:	1906343-002EMSD	Date Analyzed:												
Test Code:	200.8-DIS	Date Prepared:	06/14/201	9 1410h										
Zinc		1.02	mg/L	E200.8	0.00418	0.00600	1.000	0.0068	102	75 - 125	1.02	0.744	20	
Lab Sample ID:	1906343-002EMSD	Date Analyzed:	06/24/201	9 756h										
Test Code:	HG-DW-DIS-245.1	Date Prepared:	06/21/201	9 1450h										
Mercury		0.00324	mg/L	E245.1	0.0000396	0.0000900	0.003330	0	97.1	85 - 115	0.00327	1.08	20	

² - Analyte concentration is too high for accurate matrix spike recovery and/or RPD.

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client:

Energy Fuels Resources, Inc.

Lab Set ID: 1906343

Project: Seeps and Springs 2019

Contact:

Tanner Holliday

Dept: WC

QC Type: DUP

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID	: 1906343-001CDUP	Date Analyzed:	06/14/201	19 1100h										
Test Code:	TDS-W-2540C													
Total Dissolve	d Solids	1,010	mg/L	SM2540C	16.0	20.0					892	12.2	5	@

^{@ -} High RPD due to suspected sample non-homogeneity or matrix interference.

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1906343

Project: Seeps and Springs 2019

Contact: Tanner Holliday

Dept: WC
QC Type: LCS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	LCS-R127501 300.0-W	Date Analyzed:	06/27/201	9 1959h										
Chloride Fluoride		4.94 4.96	mg/L mg/L	E300.0 E300.0	0.0386 0.0240	0.100 0.100	5.000 5.000	0	98.8 99.1	90 - 110 90 - 110				
Sulfate		5.31	mg/L	E300.0	0.174	0.750	5.000	0	106	90 - 110				
Lab Sample ID: Test Code:	LCS-R127013 ALK-W-2320B-LL	Date Analyzed:	06/17/201	9 739h									=	
Alkalinity (as Ca0	CO3)	250	mg/L	SM2320B	0.781	1.00	250.0	0	99.8	90 - 110				
Lab Sample ID: Test Code:	LCS-63399 NH3-W-350.1	Date Analyzed: Date Prepared:	06/24/201 06/23/201											
Ammonia (as N)		10.1	mg/L	E350,1	0.0492	0.0500	10.00	0	101	90 - 110				
Lab Sample ID: Test Code:	LCS-R126960 NO2/NO3-W-353.2	Date Analyzed:	06/14/201	9 1028h										
Nitrate/Nitrite (as	N)	1.07	mg/L	E353.2	0.00363	0.0100	1.000	0	107	90 - 110				
Lab Sample ID: Test Code:	LCS-R127047 TDS-W-2540C	Date Analyzed:	06/14/201	9 1100h										
Total Dissolved S	olids	182	mg/L	SM2540C	8.00	10.0	205.0	0	88.8	80 - 120				

Report Date: 7/5/2019 Page 28 of 35

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1906343

Project: Seeps and Springs 2019

Contact: Tanner Holliday

Dept: WC

QC Type: MBLK

•														
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	MB-R127501 300.0-W	Date Analyzed:	06/27/201	9 1942h										
Chloride Fluoride Sulfate		< 0.100 < 0.100 < 0.750	mg/L mg/L mg/L	E300.0 E300.0 E300.0	0.0386 0.0240 0.174	0.100 0.100 0.750								
Lab Sample ID: Test Code:	MB-R127013 ALK-W-2320B-LL	Date Analyzed:	06/17/201	9 739h										
Bicarbonate (as Carbonate (as Ca		< 1.00 < 1.00	mg/L mg/L	SM2320B SM2320B	0.781 0.781	1.00 1.00								
Lab Sample ID: Test Code:	MB-63399 NH3-W-350.1	Date Analyzed: Date Prepared:	06/24/201 06/23/201											
Ammonia (as N)		< 0.0500	mg/L	E350,1	0.0492	0.0500								
Lab Sample ID: Test Code:	MB-R126960 NO2/NO3-W-353,2	Date Analyzed:	06/14/201	9 1027h										
Nitrate/Nitrite (as	s N)	< 0.0100	mg/L	E353.2	0.00363	0.0100								
Lab Sample ID: Test Code:	MB-R127047 TDS-W-2540C	Date Analyzed:	06/14/201	9 ¹ 1100h										
Total Dissolved S	Solids	< 10.0	mg/L	SM2540C	8.00	10.0								

Report Date: 7/5/2019 Page 29 of 35

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross
Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: En

Energy Fuels Resources, Inc.

Lab Set ID: 1906343

American West

Project: Seeps and Springs 2019

Contact:

Tanner Holliday WC

Dept: WC **QC Type:** MS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1906343-001BMS Test Code: 300.0-W	Date Analyzed:	06/27/201	9 2033h										
Chloride Fluoride Sulfate	209 98.6 262	mg/L mg/L mg/L	E300.0 E300.0 E300.0	0.772 0.480 3.48	2.00 2.00 15.0	100.0 100.0 100.0	104 0.912 160	105 97.7 102	90 - 110 90 - 110 90 - 110				
Lab Sample ID: 1906343-001BMS Test Code: ALK-W-2320B-LL	Date Analyzed:		9 739h SM2320B	0.781	1.00	1.000	480	99.6	80 - 120				
Alkalinity (as CaCO3) Lab Sample ID: 1906343-001DMS Test Code: NH3-W-350.1	1,480 Date Analyzed: Date Prepared:	mg/L 06/24/201 06/23/201	9 1120h	0.781	1.00	1,000	460	99.0	80 - 120				
Ammonia (as N)	12.1	mg/L	E350.1	0.0492	0.0500	10.00	0.168	120	90 - 110				, k
Lab Sample ID: 1906343-001DMS Test Code: NO2/NO3-W-353.2	Date Analyzed:	06/14/201	9 1120h										
Nitrate/Nitrite (as N)	1.02	mg/L	E353.2	0.00363	0.0100	1.000	0.0125	101	90 - 110				

¹- Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

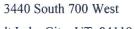
Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1906343


Project: Seeps and Springs 2019

Contact: Tanner Holliday

Dept: WC **QC Type:** MSD

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	1906343-001BMSD 300.0-W	Date Analyzed:	06/27/201	9 2049h										
Chloride Fluoride Sulfate		207 97.3 269	mg/L mg/L mg/L	E300.0 E300.0 E300.0	0.772 0.480 3.48	2.00 2.00 15.0	100.0 100.0 100.0	104 0.912 160	103 96.4 109	90 - 110 90 - 110 90 - 110	209 98.6 262	0.907 1.29 2.79	20 20 20	
Lab Sample ID: Test Code:	1906343-001BMSD ALK-W-2320B-LL	Date Analyzed:	06/17/201	9 739h										
Alkalinity (as Ca	CO3)	1,480	mg/L	SM2320B	0.781	1,00	1,000	480	100	80 - 120	1480	0.406	10	
Lab Sample ID: Test Code:	1906343-001DMSD NH3-W-350.1	Date Analyzed: Date Prepared:	06/24/201 06/23/201											
Ammonia (as N)		12.7	mg/L	E350.1	0.0492	0.0500	10.00	0.168	125	90 - 110	12.1	4.67	10	ř.
Lab Sample ID: Test Code:	1906343-001DMSD NO2/NO3-W-353.2	Date Analyzed:	06/14/201	9 1121h										
Nitrate/Nitrite (as	N)	1.06	mg/L	E353.2	0.00363	0.0100	1.000	0.0125	104	90 - 110	1.02	3.28	10	

^{&#}x27;- Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1906343

Project: Seeps and Springs 2019

Contact: Tanner Holliday

Dept: MSVOA **QC Type:** LCS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: LCS VOC-3 061319A Test Code: 8260-W-DEN100	Date Analyzed:	06/13/201	9 742h										
Benzene	20.5	μg/L	SW8260C	0.147	1.00	20.00	0	103	82 - 132				
Chloroform	19.3	μg/L	SW8260C	0.166	1.00	20.00	0	96.6	85 - 124				
Methylene chloride	20.1	μg/L	SW8260C	0.448	1.00	20.00	0	101	65 - 154				
Naphthalene	18.2	μg/L	SW8260C	0.704	1.00	20.00	0	91.2	63 - 129				
Tetrahydrofuran	15.6	μg/L	SW8260C	0.436	1.00	20.00	0	77.9	59 - 125				
Toluene	20.2	μg/L	SW8260C	0.177	1.00	20.00	0	101	69 - 129				
Xylenes, Total	63.0	μg/L	SW8260C	0.253	1.00	60.00	0	105	66 - 124				
Surr: 1,2-Dichloroethane-d4	52.0	μg/L	SW8260C			50.00		104	80 - 136				
Surr: 4-Bromofluorobenzene	51.3	μg/L	SW8260C			50.00		103	85 - 121				
Surr: Dibromofluoromethane	48.0	μg/L	SW8260C			50.00		95.9	78 - 132				
Surr: Toluene-d8	49.1	μg/L	SW8260C			50.00		98.3	81 - 123				

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc. Client:

Lab Set ID: 1906343

Project: Seeps and Springs 2019

Tanner Holliday Contact:

MSVOA Dept: QC Type: MBLK

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: MB VOC-3 061319A Test Code: 8260-W-DEN100	Date Analyzed:	06/13/201	9 802h										
2-Butanone	< 20.0	μg/L	SW8260C	1.31	20.0								
Acetone	< 20.0	μg/L	SW8260C	2.87	20.0								
Benzene	< 1.00	μg/L	SW8260C	0.147	1.00								
Carbon tetrachloride	< 1.00	μg/L	SW8260C	0.262	1.00								
Chloroform	< 1.00	μg/L	SW8260C	0.166	1.00								
Chloromethane	< 1.00	μg/L	SW8260C	0.832	1.00								
Methylene chloride	< 1.00	μg/L	SW8260C	0.448	1.00								
Naphthalene	< 1.00	μg/L	SW8260C	0.704	1.00								
Tetrahydrofuran	< 1.00	μg/L	SW8260C	0.436	1.00								
Toluene	< 1.00	μg/L	SW8260C	0.177	1.00								
Xylenes, Total	< 1.00	μg/L	SW8260C	0,253	1.00								
Surr: 1,2-Dichloroethane-d4	49.0	μg/L	SW8260C			50.00		98.1	80 - 136				
Surr: 4-Bromofluorobenzene	53.9	μg/L	SW8260C			50.00		108	85 - 121				
Surr: Dibromofluoromethane	44.1	μg/L	SW8260C			50.00		88.2	78 - 132				
Surr: Toluene-d8	50.5	μg/L	SW8260C			50.00		101	81 - 123				

American West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Contact:

Tanner Holliday

Lab Set ID: 1906343

Dept: MSVOA

Project: Seeps and Springs 2019

QC Type: MS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1906343-001AMS Test Code: 8260-W-DEN100	Date Analyzed:	06/13/2019	9 1540h										
Benzene	19.4	μg/L	SW8260C	0.147	1.00	20.00	0	97.0	66 - 145				
Chloroform	18.2	μg/L	SW8260C	0.166	1.00	20.00	0	90.9	50 - 146				
Methylene chloride	18.9	μg/L	SW8260C	0.448	1.00	20.00	0	94.4	30 - 192				
Naphthalene	17.6	μg/L	SW8260C	0.704	1.00	20.00	0	88.2	41 - 131				
Tetrahydrofuran	12.1	μg/L	SW8260C	0.436	1.00	20.00	0	60.4	43 - 146				
Toluene	22.0	μg/L	SW8260C	0.177	1.00	20.00	5.59	82.0	18 - 192				
Xylenes, Total	56.3	μg/L	SW8260C	0.253	1.00	60.00	0	93.9	42 - 167				
Surr: 1,2-Dichloroethane-d4	53.5	μg/L	SW8260C			50.00		107	72 - 151				
Surr: 4-Bromofluorobenzene	51.2	μg/L	SW8260C			50.00		102	80 - 152				
Surr: Dibromofluoromethane	48.5	μg/L	SW8260C			50.00		97.0	72 - 135				
Surr: Toluene-d8	44.1	μg/L	SW8260C			50,00		88.2	80 - 124				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1906343

Project: Seeps and Springs 2019

Contact: Tanner Holliday

Dept: MSVOA **QC Type:** MSD

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1906343-001AMSD Test Code: 8260-W-DEN100	Date Analyzed:	06/13/20	19 1600h										
Benzene	21.7	μg/L	SW8260C	0.147	1.00	20.00	0	108	66 - 145	19.4	11.1	25	
Chloroform	19.5	μg/L	SW8260C	0.166	1.00	20.00	0	97.5	50 - 146	18.2	7.06	25	
Methylene chloride	18.5	μ g/ L	SW8260C	0.448	1.00	20.00	0	92.3	30 - 192	18.9	2.30	25	
Naphthalene	18.5	μg/L	SW8260C	0.704	1.00	20.00	0	92.4	41 - 131	17.6	4.71	25	
Tetrahydrofuran	14.5	μg/L	SW8260C	0.436	1.00	20.00	0	72.4	43 - 146	12.1	18.0	25	
Toluene	24,5	μg/L	SW8260C	0.177	1.00	20.00	5.59	94.8	18 - 192	22	10.9	25	
Xylenes, Total	58.6	μg/L	SW8260C	0.253	1.00	60.00	0	97.7	42 - 167	56.3	4.04	25	
Surr: 1,2-Dichloroethane-d4	55.2	μg/L	SW8260C			50.00		110	72 - 151				
Surr: 4-Bromofluorobenzene	50.8	μg/L	SW8260C			50.00		102	80 - 152				
Surr: Dibromofluoromethane	52.3	μg/L	SW8260C			50.00		105	72 - 135				
Surr: Toluene-d8	48.4	μg/L	SW8260C			50.00		96.8	80 - 124				

WORK ORDER Summary

Work Order: 1906343

Page 1 of 3

Client:

Energy Fuels Resources, Inc.

Due Date: 6/27/2019

Client ID:

ENE300

Contact:

Tanner Holliday

Project:

Seeps and Springs 2019

QC Level:

III

WO Type: Project

	-		_	r
	L	٦	С	۷.
	٩	1	1	м

Comments:	QC 3 (no chromatograms). EDD-Deni	ison. CC KWeinel@e	energyfuels.com;	(USE PROJECT for	special DLs). Do not use "*R_"	samples as MS/MSD.;	an
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel Storage	
1906343-001A	Entrance Seep	6/11/2019 0815h	6/13/2019 1054h	8260-W-DEN100	Aqueous	VOCFridge	3
				Test Group: 8260-V	V-DEN100; # of Analytes: 11 / # of Surr	: 4	
1906343-001B				300.0-W		df - wc	1
				3 SEL Analytes: CL	. F SO4		
				ALK-W-2320B-LL		df - wc	
				2 SEL Analytes: AL	KB ALKC		
1906343-001C				TDS-W-2540C		df - tds	-
				1 SEL Analytes: TL	OS .		
1906343-001D				NH3-W-350.1		df - no2/no3 & nh3	
				1 SEL Analytes: NI	H3N		
				NH3-W-PR		df - no2/no3 & nh3	
	·			NO2/NO3-W-353.2		df - no2/no3 & nh3	
				I SEL Analytes: NO	O3NO2N		
1906343-001E				200.7-DIS		df-met	
				5 SEL Analytes: CA	A MG K NA V		
24				200.7-DIS-PR		df-met	
				200.8-DIS		df-met	
				17 SEL Analytes: A TL SN U ZN	AS BE CD CR CO CU FE PB MN MO N	I SE AG	
				200.8-DIS-PR		df-met	
				HG-DW-DIS-245.1		df-met	
				1 SEL Analytes: He	G		
				HG-DW-DIS-PR		df-met	
				IONBALANCE		df-met	
	4.1.			5 SEL Analytes: BA	ALANCE Anions Cations TDS-Balance T	TDS-Calc	
1906343-002A	Ruin Spring	6/11/2019 0850h	6/13/2019 1054h	8260-W-DEN100	Aqueous	VOCFridge	3
				Test Group: 8260-	W-DEN100; # of Analytes: 11 / # of Sur	r: 4	
1906343-002B				300.0-W		df - wc	1
				3 SEL Analytes: C.	LFSO4		
				ALK-W-2320B-LL		df - wc	-
				2 SEL Analytes: A.	LKB ALKC		
1906343-002C	*			TDS-W-2540C		df - tds	
	_			I SEL Analytes: T.	DS		
Printed: 06/14/19 17:12	LABORATORY CHECK: %M	RT CN	TAT _ QC _	гло 🗆 но	к нок нок_	COC Emailed	

WORK ORDER Summary

Client:

Energy Fuels Resources, Inc.

Work Order: 1906343

Page 2 of 3

Due Date: 6/27/2019

Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel Storage
906343 - 002D	Ruin Spring	6/11/2019 0850h	6/13/2019 1054h	NH3-W-350.1	Aqueous	df - no2/no3 & nh3
	-			I SEL Analytes: NH3N		
				NH3-W-PR		df - no2/no3 & nh3
				NO2/NO3-W-353.2		df - no2/no3 & nh3
				1 SEL Analytes: NO3N	IO2N	
906343 - 002E				200.7-DIS		df-met
				5 SEL Analytes: CA M	G K NA V	
				200.7-DIS-PR		df-met
	:			200.8-DIS		df-met
				17 SEL Analytes: AS B TL SN U ZN	BE CD CR CO CU FE PB M	'N MO NI SE AG
	-			200.8-DIS-PR		df-met
	***************************************			HG-DW-DIS-245.1		df-met
				1 SEL Analytes: HG		
				HG-DW-DIS-PR		df-met
			IONBALANCE		df-met	
				5 SEL Analytes: BALA	NCE Anions Cations TDS-1	Balance TDS-Calc
1906343-003A	Cottonwood Spring	6/11/2019 0950h	6/13/2019 1054h	8260-W-DEN100	Aqueous	VOCFridge
				Test Group: 8260-W-L	DEN100; # of Analytes: 11/	'# of Surr: 4
906343-003B				300.0-W		df - wc
	**			3 SEL Analytes: CL F	SO4	
				ALK-W-2320B-LL		df - wc
	,			2 SEL Analytes: ALKE	B ALKC	
1906343-003C		*		TDS-W-2540C		df - tds
				1 SEL Analytes: TDS		
906343-003D		74		NH3-W-350.1		df - no2/no3 & nh3
	-			1 SEL Analytes: NH31	N	
				NH3-W-PR		df - no2/no3 & nh3
				NO2/NO3-W-353.2		df - no2/no3 & nh3
				1 SEL Analytes: NO3	NO2N	
1906343-003E				200.7-DIS		df-met
			-	5 SEL Analytes: CA M	AG K NA V	
				200.7-DIS-PR		df-met
				200.8-DIS		df-met
				17 SEL Analytes: AS I TL SN U ZN	BE CD CR CO CU FE PB M	AN MO NI SE AG
				200.8-DIS-PR		df-met
	+	-		200.8-DIS-PR HG-DW-DIS-245.1		df-met

WORK ORDER Summary

Work Order: 1906343

Page 3 of 3

Freray Fuels Resources Inc

Due Date: 6/27/2019

Client:	Energy Fuels Resources, Inc.			Due Date: 6/27/2019						
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel S	torage			
906343-003E	Cottonwood Spring	6/11/2019 0950h	6/13/2019 1054h	HG-DW-DIS-PR	Aqueous		df-met	1		
				IONBALANCE			df-met			
				5 SEL Analytes: BAL	ANCE Anions Cations TDS-Ba	lance TDS-Calc				
1906343-004A	Back Spring	6/11/2019 0850h	6/13/2019 1054h	8260-W-DEN100	Aqueous		VOCFridge	3		
				Test Group: 8260-W-	DEN100; # of Analytes: 11 / #	of Surr: 4				
1906343-004B	-			300.0-W			df - wc	1		
				3 SEL Analytes: CL F	SO4					
	*			ALK-W-2320B-LL			df - wc			
	.07			2 SEL Analytes: ALK	B ALKC					
906343-004C				TDS-W-2540C			df - tds			
	4			1 SEL Analytes: TDS						
1906343-004D				NH3-W-350.1			df - no2/no3 & nh3			
				1 SEL Analytes: NH3	N					
			NH3-W-PR			df - no2/no3 & nh3				
	-			NO2/NO3-W-353.2			df - no2/no3 & nh3			
				1 SEL Analytes: NO3	NO2N	2				
1906343-004E	-			200.7-DIS			df-met			
				5 SEL Analytes: CA	MG K NA V					
				200.7-DIS-PR			df-met			
	-			200.8-DIS			df-met			
				17 SEL Analytes: AS TL SN U ZN	BE CD CR CO CU FE PB M	N MO NI SE AG				
				200.8-DIS-PR			df-met			
	(A)			HG-DW-DIS-245.1			df-met			
				1 SEL Analytes: HG						
			72	HG-DW-DIS-PR			df-met			
				IONBALANCE			df-met			
			11111	5 SEL Analytes: BAL	ANCE Anions Cations TDS-B	alance TDS-Calc				
1906343-005A	Trip Blank	6/11/2019 0815h	6/13/2019 1054h	8260-W-DEN100	Aqueous		VOCFridge			
				Test Group: 8260-W	-DEN100; # of Analytes: 11 /	# of Surr: 4				

American West Analytical Laboratories

463 W. 3600 S. Salt Lake City, UT 84115

CHAIN OF CUSTODY

ted using NELAP accredited methods and all data will be reported using AWAL's standard analyte lists and	i	

All analysis will be conduct reporting limits (PQL) unless specifically requested otherwise on this Chain of Custody and/or attached documentation. Phone # (801) 263-8686 Toll Free # (888) 263-8686 Page Due Date: QC Level: **Turn Around Time:** Unless other arrangements have been made signed reports will be emailed by 5:00 pm on www.awal-labs.com 3 Standard the day they are due. Laboratory Use Only Energy Fuels Resources, Inc. X Include EDD: Mo, LOCUS UPLOAD 6425 S. Hwy. 191 Ca Address: EXCEL Hg, Mg, X Field Filtered For: Blanding, UT 84511 **Dissolved Metals** Shipped or Dissolved Metals (200.7/200.8/245.1) Mn, 7, Contact: Tanner Holliday Ambient of Chilled Na, Pb, For Compliance With: (435) 678-2221 Phone #: □ NELAP 3 Temperature Zn, gpalmer@energyfuels.com; KWeinel@energyfuels.com; ☐ RCRA (4500 or 300.0) □ CWA
□ SDWA Email: tholliday@energyfuels.com > SDWA D, Seeps and Springs 2019 350.1) ပ္ပိ Project Name: ELAP / A2LA (2320B) Sn, NLLAP ç, Project #: Non-Compliance Cd, (8260C) Ag, PO#: (2540C) Carb/Bicarb Balance NO2/NO3 **Tanner Holliday** Se, Sampler Name: 6 Received Within Known Hazards ರ As, Ni, NH3 TDS Date Time Ē Sample Comments Sample ID: Sampled Sampled 6/11/2019 815 x 1 Entrance Seep X X \mathbf{x} \mathbf{x} \mathbf{x} X X X x 6/11/2019 2 Ruin Spring 850 X X x x x X COC Tape Was: ent on Outer Package 3 Cottonwood Spring 6/11/2019 950 X X X x x X X X x x 4 Back Spring 6/11/2019 850 x X X x X X X X X \mathbf{x} ubroken on Outer Package 5 Trip Blank 6/11/2019 815 w 3 Present on Sample 4 Unbroken on Sample Discrepancies Between Sample Labels and COC Record? Special Instructions: 6/12/2019 Signature Sample containers for metals were field filtered. See the Analytical Scope of Work for Reporting Limits and VOC analyte Signature Signature Time: Relinquished by: Signature Relinquished by: Signature O Print Name

Lab Set ID:	1906343	
pH Lot #:	5912	

Preservation Check Sheet

Sample Set Extension and pH

Analysis	Preservative	-001	-002	-003	-004											
Ammonia	pH <2 H ₂ SO ₄	NO	400	as	yes					1						
COD	pH <2 H ₂ SO ₄	18	0	1	0											
Cyanide	pH>12 NaOH		İ													
Metals	pH <2 HNO ₃	W	400	wo	wa									- N		
NO ₂ & NO ₃	pH <2 H ₂ SO ₄	yes	yes	0	ges											
O&G	pH <2 HCL															
Phenols	pH <2 H ₂ SO ₄			a Laboratoria								-				
Sulfide	pH >9 NaOH, Zn Acetate															
TKN	pH <2 H ₂ SO ₄															
T PO ₄	pH <2 H ₂ SO ₄															
			-	-												
K																
													-	-	2.	
	-		1				-					1				
										1	1	1				1

Procedure:

- 1) Pour a small amount of sample in the sample lid
- 2) Pour sample from lid gently over wide range pH paper
- 3) Do Not dip the pH paper in the sample bottle or lid
- 4) If sample is not preserved, properly list its extension and receiving pH in the appropriate column above
- 5) Flag COC, notify client if requested
- 6) Place client conversation on COC
- 7) Samples may be adjusted

Frequency:

All samples requiring preservation

- * The sample required additional preservative upon receipt.
- + The sample was received unpreserved.
- ▲ The sample was received unpreserved and therefore preserved upon receipt.
- # The sample pH was unadjustable to a pH \leq 2 due to the sample matrix.
- The sample all was unadjustable to a all > due to the sample matrix interference

PO Box 30712 Charleston, SC 29417 2040 Savage Road Charleston, SC 29407 P 843.556,8171 F 843.766,1178

gel.com

July 10, 2019

Ms. Kathy Weinel Energy Fuels Resources (USA), Inc. 225 Union Boulevard Suite 600 Lakewood, Colorado 80228

Re: Analytical for Seeps and Springs 2019

Work Order: 481772

Dear Ms. Weinel:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on June 13, 2019. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Julie Robinson Project Manager

Purchase Order: DW16138

Enclosures

Energy Fuels Resources (USA), Inc. Analytical for SDG: 481772

A C18 ODG 101880

Receipt Narrative for Energy Fuels Resources (USA), Inc. SDG: 481772

July 10, 2019

Laboratory Identification:

GEL Laboratories LLC 2040 Savage Road Charleston, South Carolina 29407 (843) 556-8171

Summary:

<u>Sample receipt:</u> The samples arrived at GEL Laboratories LLC, Charleston, South Carolina on June 13, 2019 for analysis. The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Sample Identification: The laboratory received the following samples:

Laboratory ID	Client ID
481772001	Entrance Seep
481772002	Ruin Spring
481772003	Cottonwood Spring
481772004	Back Spring

Case Narrative:

Sample analyses were conducted using methodology as outlined in GEL's Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

The enclosed data package contains the following sections: Case Narrative, Chain of Custody, Cooler Receipt Checklist, Data Package Qualifier Definitions and data from the following fractions: Radiochemistry.

Julie Robinson Project Manager

relie Roberson

Shoot 1	of 1
oneer r	U

CHAIN OF CUSTODY

Samples Shipped to:	Gel Laboratories		Contact:	Tanner Hollic		
	2040 Savage Road			Ph: 435 678		
	Charleston, SC 294	07		tholliday@en	ergyfuels.com	
	Chain of Custo	ody/Samp	oling Analysis R	nalysis Request		
Project		Samplers Na	ame	Sampl	ers Signature	
Seeps and Springs 2019		Tanner Hollid	day I	Dugner	Holling	
Commis ID	Data Callagtad	Time	Labarrata	- A - L - L - D -		
Sample ID	Date Collected	Collected		ory Analysis Re	questea	
Entrance Seep	6/11/2019			Gross Alpha		
Ruin Spring	6/11/2019			Gross Alpha		
Cottonwood Spring	6/11/2019			Gross Alpha		
Back Spring	6/11/2019	850	WATER CONTROL OF THE PARTY OF T	Gross Alpha		
Comments:						
D-lii-td D-/0it		Data /Time	Descined Du/Oleset		IDete/Fine	
Relinquished By:(Signatur Tanner Hollida		Date/Time 6/12/2019 1130	Received By:(Signatu	ire)	Date/Time	
) annere Holash	N N		Descined Description	-	1 2 1	
Relinquished By:(Signatur	e ₎	Date/Time	Received By:(Signatu	ле)	Date/Time	
			All Marks and Al			

GEL Laboratories 11.0	GEL	Laboratories LLC
-----------------------	-----	------------------

SAMPLE RECEIPT & REVIEW FORM

Client: DIVIMI			SDO	G/AR/COC/Work Order: 481772							
Received By: ZKW			Dat	te Received: 10 13/19							
Carrier and Tracking Number				FedEx Express FedEx Ground UPS Field Services Courier Other							
Suspected Hazard Information	Yes	No	*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.								
A)Shipped as a DOT Hazardous?		_		ard Class Shipped: N2910, Is the Radioactive Shipment Survey Compliant? YesNo	No						
B) Did the client designate the samples are to be received as radioactive?	nt designate the samples are to be			C notation or radioactive stickers on containers equal elient designation							
C) Did the RSO classify the samples as radioactive?				timum Net Counts Observed* (Observed Counts - Area Background Counts):	CPM/mR/Hr						
D) Did the client designate samples are hazardous?		7	CO	notation or hazard labels on containers equal client designation							
E) Did the RSO identify possible hazards?		-	If D PCE	or E is yes, select Hazards below. I's Flammable Foreign Soil RCRA Asbestos Beryllium Other:							
Sample Receipt Criteria	Yes	NA	2	Comments/Qualifiers (Required for Non-Conformi	ng Items)						
1 Shipping containers received intact and sealed?	-			Circle Applicable: Seals broken Damaged container Leaking container Other (descr	ibe)						
2 Chain of custody documents included with shipment?	١			Circle Applicable: Client contacted and provided COC COC created upon receipt							
3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?*		L	-	Preservation Method: Wet Ice Ice Packs Dry ice None Other: *all temperatures are recorded in Celsius	TEMP: Z3°C						
4 Daily check performed and passed on IR temperature gun?	/			Temperature Device Serial #: IR3-18 Secondary Temperature Device Serial # (If Applicable):							
5 Sample containers intact and sealed?	_			Circle Applicable: Seals broken Damaged container Leaking container Other (desci	ibe)						
6 Samples requiring chemical preservation at proper pH?	7	_		Sample ID's and Containers Affected: If Preservation added, Lut#:							
7 Do any samples require Volatile Analysis?			_		ke to VOA Freezer) vn, select No)						
8 Samples received within holding time?	_			ID's and tests affected:							
9 Sample ID's on COC match ID's on bottles?	_			ID's and containers affected:							
Date & time on COC match date & time on bottles?	-			Circle Applicable: No dates on containers No times on containers COC missing	g info Other (describe)						
Number of containers received match number indicated on COC?	_	20 = 1 30 10		Circle Applicable: No container count on COC Other (describe)							
Are sample containers identifiable as GEL provided?	/			Circle Applicable: Not relinquished Other (describe)							
COC form is properly signed in relinquished/received sections?	1			Cricle Applicable. Not reiniquished. Onle (describe)	* *						
Comments (Use Continuation Form if needed):											

PM (or PMA) review: Initials TINC Date 6 HA 19 Page 1 of 1

GEL Laboratories LLC - Login Review Report

Report Date: 10-JUL-19 Work Order: 481772 Page 1 of 2

Path: Drinking Water (903.0 or 9315)

Moisture Correction: "As Received"

Product Reference: Gross Alpha

GEL Work Order/SDG: 481772 Seeps and Springs 2019 Work Order Due Date: 11-JUL-19 Collector: C

Client SDG: 481772 Package Due Date: 09-JUL-19 Prelogin #: 20190486669

Project Manager: Julie Robinson **EDD Due Date:** 11-JUL-19 Project Workdef ID: 1329132 11-JUL-19 **Project Name: DNMI00106** Analytical for QA Due Date: SDG Status: Closed

Purchase Order: DW16138 Dx€Date: 12-JUL-19 Logged by: LEVEL3

Package Level: **EDD Format:** EIM DNMI

GEL ID	Client Sample	ID	Client Sample Desc.	Collect Date & Time	Receive Date & Time	Time Zone	# of Cont.	Lab Matrix	Fax Due Date	Days to Process	CofC #		Lab Field QC QC
481772001	Entrance Seep			11-JUN-19 08:15	13-JUN-19 09:50	-2	1	GROUND WATER		19		1	
481772002	Ruin Spring			11-JUN-19 08:50	13-JU N -19 09:50	-2	1	GROUND WATER		19		1	
481772003	Cottonwood Sprir	ıg		11-JUN-19 09:50	13-JUN-19 09:50	-2	1	GROUND WATER		19		1	
481772004	Back Spring			11-JUN-19 08:50	13-JUN-19 09:50	-2	1	GROUND WATER		19		1	
Clien	t Sample ID	Status	Tests/Methods	Product Reference F	-ax Date PI	VI Com	ments		A	ux Data			Receive Codes
-001 Entrar	тсе Ѕеер	REVW	And the second s	Gross Alpha									
-002 Ruin S	Spring	REVW	Liquid GFPC, Total Alpha Radium, Liquid	Gross Alpha									
-003 Cotto	nwood Spring	REVW	GFPC, Total Alpha Radium,	Gross Alpha									

Product: GFCTORAL Workdef ID: 1461303 In Product Group? No **Group Name: Group Reference:**

Gross Alpha

Method: EPA 903.0 Product Description: GFPC, Total Alpha Radium, Liquid

Liquid

Liquid

GFPC, Total Alpha Radium,

Samples: 001, 002, 003, 004

REVW

Parmname Check: All parmnames scheduled properly Client RDL or Included Custom Reporting Parm Included PQL & Unit CAS# Units Function in Sample? in QC? List? **Parmname**

Υ Y Nο 1 pCi/L REG Gross Radium Alpha

Action **Product Name** Description **Samples**

Contingent **Tests**

-004 Back Spring

GEL Laboratories LLC - Login Review Report

Report Date: 10-JUL-19 Work Order: 481772 Page 2 of 2

Login Requirements: Requirement	Include? Comments	
Peer Review by:	Work Order (SDG#), PO# Checked?	C of C signed in receiver location?

List of current GEL Certifications as of 10 July 2019

State	Certification
Alaska	17-018
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-0025
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122019-3
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	9904
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-19-15
Utah NELAP	SC000122018-27
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

Radiochemistry Technical Case Narrative Energy Fuels Resources SDG #: 481772

Product: GFPC, Total Alpha Radium, Liquid

Analytical Method: EPA 903.0

Analytical Procedure: GL-RAD-A-044 REV# 10

Analytical Batch: 1888588

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
481772001	Entrance Seep
481772002	Ruin Spring
481772003	Cottonwood Spring
481772004	Back Spring
1204312433	Method Blank (MB)
1204312434	481772004(Back Spring) Sample Duplicate (DUP)
1204312435	481772004(Back Spring) Matrix Spike (MS)
1204312436	481772004(Back Spring) Matrix Spike Duplicate (MSD)
1204312437	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Preparation Information

Aliquot Reduced

aliquots were reduced due to limited sample volume.

Technical Information

Recounts

Samples 1204312435 (Back SpringMS), 1204312436 (Back SpringMSD) and 1204312437 (LCS) were recounted due to low recovery. The recounts are reported. Samples 1204312434 (Back SpringDUP) and 481772004 (Back Spring) were recounted due to high MDCs. The recounts are reported.

Miscellaneous Information

Additional Comments

The matrix spike and matrix spike duplicate, 1204312435 (Back SpringMS) and 1204312436 (Back SpringMSD), aliquots were reduced to conserve sample volume.

0 015 000 101550

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

- 10 015 000 10155

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Qualifier Definition Report for

DNMI001 Energy Fuels Resources (USA), Inc. Client SDG: 481772 GEL Work Order: 481772

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the CRDL.

Review/Validation

GEL requires all analytical data to be verified by a qualified data reviewer. In addition, all CLP-like deliverables receive a third level review of the fractional data package.

The following data validator verified the information presented in this data report:

Signature: Name: Theresa Austin

Date: 08 JUL 2019 Title: Group Leader

11 018 000 101880

GEL LABORATORIES LLC

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: July 8, 2019

Page 1 of

Energy Fuels Resources (USA), Inc.

225 Union Boulevard

Suite 600

Lakewood, Colorado

Contact:

Ms. Kathy Weinel

Workorder:

481772

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anist	Date Time
Rad Gas Flow Batch 1888588									
QC1204312434 481772004 DUP									
Gross Radium Alpha	U	0.201	U	0.478	pCi/L	N/A		N/A LXB3	07/02/19 06:1
	Uncertainty	+/-0.158		+/-0.212					
QC1204312437 LCS									
Gross Radium Alpha	555			505	pCi/L		91.1	(75%-125%)	07/01/19 09:4
	Uncertainty			+/-5.10					
QC1204312433 MB									
Gross Radium Alpha			U	0.824	pCi/L				06/28/19 11:4
	Uncertainty			+/-0.357					
OC1204312435 481772004 MS									
Gross Radium Alpha	4470 U	0.201		3690	pCi/L		82.5	(75%-125%)	07/01/19 09:4
	Uncertainty	+/-0.158		+/-45.0					
QC1204312436 481772004 MSD									
Gross Radium Alpha	4470 U	0.201		3640	pCi/L	1.41	81.4	(0%-20%)	07/01/19 09:4
	Uncertainty	+/-0.158		+/-40.5					

Notes:

Counting Uncertainty is calculated at the 68% confidence level (1-sigma).

The Qualifiers in this report are defined as follows:

- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- F Estimated Value
- H Analytical holding time was exceeded
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- M M if above MDC and less than LLD

17 018 000 101880

GEL LABORATORIES LLC

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 481772 Page 2 of Parmname NOM Sample Qual OC Units RPD% REC% Range Anlst Date Time Matrix Related Failure M N/A RPD or %Recovery limits do not apply. N1 See case narrative Analyte concentration is not detected above the detection limit ND NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier One or more quality control criteria have not been met. Refer to the applicable narrative or DER. 0 R Sample results are rejected U Analyte was analyzed for, but not detected above the CRDL. UI Gamma Spectroscopy--Uncertain identification UJ Gamma Spectroscopy--Uncertain identification Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias. UL X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier Y QC Samples were not spiked with this compound RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.

h Preparation or preservation holding time was exceeded

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

* Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Tab E

Quality Assurance and Data Validation Tables

Table E-1 Holding Time Evaluation

	Required Holding Time	Cottonwood Spring	Entrance Seep	Back Spring (duplicate of Ruin Spring)	Ruin Spring	West Water Seep
Carbonate	14 days	OK	OK	OK	OK	ОК
Bicarbonate	14 days	OK	OK	ОК	OK	OK
Calcium	6 months	OK	OK	ОК	OK	OK
Chloride	28 days	OK	OK	ОК	OK	OK
Fluoride	28 days	OK	OK	ОК	ОК	OK
Magnesium	6 months	OK	OK	ОК	OK	OK
Nitrogen-Ammonia	28 days	OK	OK	OK	OK	OK
Nitrogen-Nitrate	28 days	OK	OK	ОК	OK	OK
Potassium	6 months	OK	OK	ОК	OK	OK
Sodium	6 months	OK	OK	ОК	ОК	OK
Sulfate	28 days	OK	OK	OK	OK	OK
pH (s.u.)	N/A	OK	OK	OK	OK	OK
TDS	7 days	ОК	OK	OK	OK	OK
Metals	6 months (except mercury which is 28 days)	ОК	OK	ОК	OK	OK
Radiologics	6 months	OK	OK	OK	OK	OK
VOCS (including THF)	14 days	OK	OK	ОК	OK	OK

^{* -} Corral Spring, and Corral Canyon were all dry and no samples were collected.

E-2 Laboratory Receipt Temperature Check

Work Order Number/Lab Set ID	Receipt Temp
AWAL - 1906343	0.3°C
GEL - 481772	N/A
AWAL - 1903737	0.3°C
GEL - 475027	N/A

N/A = These shipments contained samples for the analysis of Gross Alpha only. Per Table 1 in the approved QAP, samples submitted for Gross Alpha analyses do not have a sample temperature requirement.

E-3: Analytical Method Check - Routine Samples

Parameter	QAP/Permit Method	Method Used by Lab		
Ammonia (as N)	A4500-NH3 G or E350.1	E350.1		
Nitrate + Nitrite (as N)	E 353.1 or E353.2	E353.2		
Metals	E 200.7 or E200.8	E200.7, E200.8		
Mercury	E200.7 or E200.8 or E245.1	Ę245.1		
Gross Alpha	E900.0 or E900.1 or E903.0	E903.0		
VOCs	SW8260B or SW8260C	SW8260C		
Chloride	A4500-Cl B, A4500-Cl E, or E300.0	E300.0		
Fluoride	A4500-F C or E300.0	E300.0		
Sulfate	A4500-SO4 E or E300.0	E300.0		
TDS	A2540C	A2540C		
Carbonate as CO3, Bicarbonate as HCO3	A2320B	A2320B		
Calcium, Magnesium, Potassium, Sodium	E200.7	E200.7		

E-4 Reporting Limit Evaluation

Parameter Parameter	Permit-Specified RL		
Ammonia (as N)	25 mg/L		
Nitrate + Nitrite (as N)	10 mg/L		
Metals ug/L			
Arsenic	50		
Beryllium	4		
Cadmium	5		
Chromium	100		
Cobalt	730		
Copper	1300.		
Iron	11000		
Lead	15		
Manganese	800		
Mercury	2 -		
Molybdenum	40		
Nickel	100		
Selenium	50		
Silver	100		
Thallium	2		
Tin	17000		
Uranium	30		
Vanadium	60		
Zinc	5000		
Gross Alpha	15		
VOCs ug/L			
Acetone	700		
Benzene	5		
Carbon tetrachloride	5		
Chloroform	70		
Chloromethane	30		
MEK	4000		
Methylene Chloride	5		
Naphthalene	100		
Tetrahydrofuran	46		
Toluene	1000		
Xylenes	10000		
Major Ions mg/L			
Chloride	1		
Fluoride	4		
Sulfate	1		
TDS	10		
Carbonate as CO3, Bicarbonate as HCO3	Not Specified		
Calcium, Magnesium, Potassium, Sodium	Not Specified		

All analyses were reported to the required RLs unless noted in the text.

E-5: Trip Blank Evaluation

The trip blanks for the 2019 sampling program were nondetect.

Blank	Sample Date	Laboratory
1906343	6/11/2019	AWAL
1903737	3/27/2019	AWAL

E-6 Duplicate Sample Relative Percent Difference

Major Ions (mg/l)	Ruin Spring	Back Spring (Duplicate of Ruin Spring)	RPD %
Carbonate	<1.0	<1.0	N/C
Bicarbonate	202	202	0.0
Calcium	165	157	5.0
Chloride	23.9	23.7	0.8
Fluoride	0.505	0.46	9.3
Magnesium	45.6	35.7	24.4
Nitrogen-Ammonia	< 0.05	< 0.05	N/C
Nitrogen-Nitrate	1.56	1.65	5.6
Potassium	3.31	3.30	0.3
Sodium	128	119	7.3
Sulfate	474	455	4.1
TDS	900	816	9.8
Metals (ug/l)	B THE PLANT		
Arsenic	<5.0	<5.0	N/C
Beryllium	<0.5	<0.5	N/C
Cadmium	<0.5	<0.5	N/C
Chromium	<25	<25	N/C
Cobalt	<10	<10	N/C
Copper	<10	<10	N/C
Iron	<30	<30	N/C
Lead	<1.0	<1.0	N/C
Manganese	<10	<10	N/C
Mercury	<0.5	<0.5	N/C
Molybdenum	20.2	18.7	7.7
Nickel	<20	<20	N/C
Selenium	10.8	9.61	11.7
Silver	<10	<10	N/C
Thallium	<0.5	<0.5	N/C
Tin	<100	<100	N/C
Uranium	9.02	9.01	0.1
Vanadium	<15	<15	N/C
Zinc	<10	<10	N/C
Radiologics (pCi/l)	Maria April 19 April		
Gross Alpha	<1.00	<1.00	N/C
VOCS (ug/L)			
Acetone	<20.0	<20.0	N/C
Benzene	<1.00	<1.00	N/C
Carbon tetrachloride	<1.00	<1.00	N/C
Chloroform	<1.00	<1.00	N/C
Chloromethane	<1.00	<1.00	N/C
MEK	<20.0	<20.0	N/C
Methylene Chloride	<1.00	<1.00	N/C

E-6 Duplicate Sample Relative Percent Difference

Major Ions (mg/l)	Ruin Spring	Back Spring (Duplicate of Ruin Spring)	RPD %
Naphthalene	<1.00	<1.00	N/C
Tetrahydrofuran	<1.00	<1.00	N/C
Toluene	<1.00	<1.00	N/C
Xylenes	<1.00	<1.00	N/C

N/C = Not Calculated

Per the approved QAP, an RPD greater than 20% is acceptable if the reported results are less than 5 times the RL. These results are provided for information only.

^{*} Duplicate checks reported for gross alpha minus RN and U are not %RPD. Calculated values are based on the formula in the approved GWDP and QAP.

E-7 Radiologics Counting Error

Sample ID	Gross Alpha minus Rn & U	Gross Alpha minus Rn & U Precision (±)	Counting Error ≤ 20%	GWQS	Within GWQS
Cottonwood Spring	<1.0	0.257	N/A	15	N/A
Entrance Seep	2.63	0.455	Y	15	N/A
Back Spring (duplicate of Ruin Spring)	<1.0	0.158	N/A	15	N/A
Ruin Spring	<1.0	0.106	N/A	15	N/A
Westwater Seep	<1.0	0.270	N/A	15	N/A

N/A - The sample results are non-detect and the QAP required checks are not applicable.

Matrix Spike % Recovery Comparison

Lab Report	Well	Analyte	MS %REC	MSD %REC	REC Range	RPD	RPD LIMIT
1906343	Ruin Spring	Calcium*	NC	NC	70 - 130	NC	20
1906343	Ruin Spring	Magnesium*	NC	NC	70 - 130	NC	20
1906343	Ruin Spring	Sodium*	NC	NC	70 - 130	NC	20
1906343	Entrance Seep	Ammonia (as N)	120	125	90-110	12.1	10
1903737	Westwater Seep	Sodium*	NC	NC	70 -130	NC	20

^{*} Recovery was not calculated as the analyte level in the sample was greater than 4 times the spike amount.

Laboratory Duplicate % Recovery Comparison

Lab Report	Well	Analyte	Sample Result (mg/L)	Lab Duplicate Result (mg/L)	RPD %	RPD Range %
1906343	Entrance Seep	TDS	1010	892	12.2	5

Surrogate % Recovery

All surrogate recoveries were within the laboratory established acceptance limits.

Method/Laboratory Reagent Blank detections

All method blank results were within the laboratory established acceptance limits.

NA = QC was not performed on an EFRI sample.

Tab F
CSV Transmittal

Kathy Weinel

From: Kathy Weinel

Sent: Tuesday, January 14, 2020 12:43 PM

To: Phillip Goble

Cc: 'Dean Henderson'; Paul Goranson; David Frydenlund; Terry Slade; Logan Shumway; Scott

Bakken

Subject: Transmittal of CSV Files White Mesa Mill 2019 Annual Seeps and Springs Monitoring

Attachments: 475027.csv; 481772.csv; 1903737-report-EDD.csv; 1906343-report-EDD.csv

Dear Mr. Goble,

Attached to this e-mail are the electronic copies of laboratory results for the annual seeps and springs monitoring conducted at the White Mesa Mill during 2019, in Comma Separated Value (CSV) format.

Please contact me at 303-389-4134 if you have any questions on this transmittal.

Yours Truly

Kathy Weinel

Kathy Weinel

Quality Assurance Manager

t: 303.389.4134 | f: 303.389.4125 225 Union Blvd., Suite 600 Lakewood, CO 80228

http://www.energyfuels.com

This e-mail is intended for the exclusive use of person(s) mentioned as the recipient(s). This message and any attached files with it are confidential and may contain privileged or proprietary information. If you are not the intended recipient(s) please delete this message and notify the sender. You may not use, distribute print or copy this message if you are not the intended recipient(s).