Statement of Data Evaluation

To: Worthy Glover, San Juan Public Health;

Utah Department of Environmental Quality, Division of Drinking Water

From: Craig J. Dietrich, Ph.D., DABT

Toxicologist

Utah Department of Health, Environmental Epidemiology Program

This statement is provided by the Utah Department of Health (UDOH) Environmental Epidemiology Program (EEP). It is a written summary of an analysis of San Juan River, UT water testing carried out by the Utah Department of Environmental Quality on August 10th, 2015.

Data were compared to screening values for both human-health based effects (**Table 2**) and agricultural use (**Table 3**).

Screening values are taken from Agency for Toxic Substance and Disease Registry (ATSDR) comparison values (CVs) for drinking water when available. Those values can be found here: http://health.utah.gov/enviroepi/appletree/Drinking_Water_CV.pdf.

When ATSDR values were not available, EPA Regional Screening Levels (RSLs) for residential tap water were used. EPA RSLs can be found here:

http://www.epa.gov/reg3hwmd/risk/human/rb-

concentration table/Generic Tables/docs/restap sl table run JUNE2015 rev.pdf

Total metal data was used for assessment of human-health based effects.

Agricultural Screening Values are derived from National Academy of Science (NAS) Water Quality Criteria, 1972 (the Blue Book). Those guidelines are reprinted in EPA's Guidelines for the Reuse of Waters for Irrigation found here: http://nepis.epa.gov/Adobe/PDF/30006MKD.pdf. Dissolved metal values were used for the assessment of agricultural use waters.

Contaminants that do not exceed screening values are not considered to pose a risk of adverse health effects.

The current data set (collected 8/10/2015) can be found here: http://www.deq.utah.gov/Topics/Water/goldkingmine/docs/2015/08Aug/GoldHill081120151.pdf

Results

For agricultural use, no dissolved metal contaminants exceeded screening values.

For public use, six contaminants exceeded screening values: aluminum, arsenic, barium, iron, lead, and manganese.

Contaminants that exceed screening levels are then evaluated for recreational exposures. UDOH defines a standard recreational exposure as 60 days/year for two hours/day. It considers skin contact and accidental ingestion of river waters during recreation (50 mL/hr).

Exposure evaluation uses the 95% upper confidence limit (95% UCL) for the samples of a particular contaminant. Calculated contaminant 95% UCLs that fall below screening levels are not considered for further evaluation. For this data set, the 95% UCL for barium fell below screening levels and was not evaluated futher.

A standard ATSDR exposure calculation is used that incorporates the type of contaminant, contaminant concentration, amount of exposure (time), intake/exposure rate, and body weight. To be as protective as possible of the most sensitive populations, exposures are evaluated for children. Estimated exposure doses are then compared to ATSDR Minimal Risk Levels (MRLs) when available, or EPA reference doses (RfDs) in **Table 1**.

Table 1. Exposure evaluation for contaminants exceeding public use screening values.

Contaminant	Concentration	Estimated Child	Health-based	Source of guideline
	[95% UCL]	Exposure Dose	dose guideline	
	(µg/L)	(mg/kg/day)	(mg/kg/day)	
Aluminum	73,976	7.86E-02 ^O	1.0E+00	ATSDR Chronic MRL
		$7.34E-02^{D}$		
		$1.52E-01^{T}$		
Arsenic	17.36	1.84E-05 ^O	5.00E-03	ATSDR Acute MRL
		1.72E-06 ^D		
		$2.01E-05^{T}$		
Barium	1953	Not considered for further evaluation,		
		(95% UCL below screening value)		
Iron	38,474	$4.09E-02^{T}$	8.75E-01	Provisional based upon
				EPA RSL*
Lead	122	1.30E-04 ^o	9.37E-04	Provisional based upon
		9.11E-07 ^D		EPA MCL**
		$1.31E-04^{T}$		
Manganese	2,298	2.45E-03 ^O	1.4E-01 ^O	EPA RfD (oral)
		2.28E-04 ^D	$5.00E-02^{D}$	EPA RfD (dermal)
				·

o: oral exposure

Estimated recreational exposure dosages fall below health-based guidelines for these contaminants. Therefore, the EEP currently finds that exposure to the contaminants of the San Juan River tested on August 10th, 2015 by UDEQ are not expected to result in adverse health effects for people recreating in the waters, nor for livestock or crops watered by the San Juan River.

The EEP does recommend that recreational users carry their own drinking water and not rely on filtering or purifying river waters.

Further evaluations and updated findings will be provided as new data is collected.

D: dermal exposure

^T: total combined (if applicable)

^{*:} No established iron guideline exists. Guideline based upon EPA RSL, value indicates chronic drinking water ingestion exposure dosage at screening level.

^{**:} No established lead guideline exists for short-term exposures. Guideline based on EPA MCL action level, value indicates chronic drinking water ingestion exposure dosage at MCL action level.

 Table 2. Health-based comparison values for San Juan River contaminants.

Drinking Water CV (ppb)					
Contaminant	Health-Based Comparison Value for Water Ingestion (CV) [Total Metals]	CV Type and Source			
Aluminum	10,000	Child Intermediate EMEG			
Antimony	4	Child RMEG			
Arsenic	3	Child RMEG & Chronic EMEG			
Barium	2,000	Child Intermediate EMEG			
Beryllium	20	Child RMEG & Chronic EMEG			
Cadmium	5	Child Intermediate EMEG			
Calcium	-	No CVs available			
Chromium	60	Child RSL, non-cancer, Cr(VI)			
Cobalt	100	Child Intermediate EMEG			
Copper	100	Child Intermediate EMEG			
Iron	14,000	Child RSL, non-cancer			
Lead	15	Child non-carcinogenic RSL			
Magnesium	-	No CVs available			
Manganese	500	Child RMEG			
Molyebdenum	50	Child RMEG			
Nickel	200	Child RMEG			
Potassium	-	No CVs available			
Selenium	50	Child RMEG			
Silver	50	Child RMEG			
Sodium	-	No CVs available			
Thallium	0.2	Child non-carcinogenic RSL			
Vanadium	100	Child Intermediate EMEG			
Zinc	3,000	Child Intermediate EMEG			
Mercury	0.63	Child non-carcinogenic RSL, elemental Hg, µg/L			

 Table 3. Agricultural use of water screening values.

Irrigation Waters (ug/L) [NAS, 1972]					
Contaminant	Long-Term	Short-Term			
Aluminum	5,000	20,000			
Antimony	No Data Available	No Data Available			
Arsenic	100	2,000			
Barium	No Data Available	No Data Available			
Beryllium	No Data Available	No Data Available			
Cadmium	10	50			
Calcium	No Data Available	No Data Available			
Chromium	100	1,000			
Cobalt	50	5,000			
Copper	200	5,000			
Iron	5,000	20,000			
Lead	5,000	10,000			
Magnesium	No Data Available	No Data Available			
Manganese	200	10,000			
Molyebdenum	10	50			
Nickel	200	2,000			
Potassium	No Data Available	No Data Available			
Selenium	20	20			
Silver	No Data Available	No Data Available			
Sodium	No Data Available	No Data Available			
Thallium	No Data Available	No Data Available			
Vanadium	100	1,000			
Zinc	2,000	10,000			
Mercury	10	10			
pН	4.5-9	4.5-9			