UTAH

Administrative Documentation

PM10 Exceptional Wind Event Cottonwood, Hawthorne, Lindon, & North Salt Lake Event Date – April 15, 2008

> State of Utah Department of Environmental Quality Division of Air Quality 195 N. 1950 West P.O. Box 144820 Salt Lake City, Utah 84114-4820 801-536-4000

> > July 12, 2010

UTAH PM10 Exceptional Wind Event - April 15, 2008

PM10 Exceptional Wind Event - April 15, 2008

ADMINISTRATIVE DOCUMENTATION Table of Contents

Proposed for Public Comment	
Text of Exceptional Event Demonstration, April 15, 2008	P – 1
Public Notice	
Summary of comments and responses, April 15, 2008	H – 2
Affidavit of newspaper notice, April 15, 2008	
Final Version	
Text of Exceptional Event Demonstration, April 15, 2008	E – 1

Certification

Proposed

Utah Division of Air Quality PM10 Exceptional Wind Event

Cottonwood, Hawthorne, Lindon & North Salt Lake

Event Date – April 15, 2008

EPA Submission Date –

Millard County, Utah Taken By Don Halterman June 2009

Table of Contents

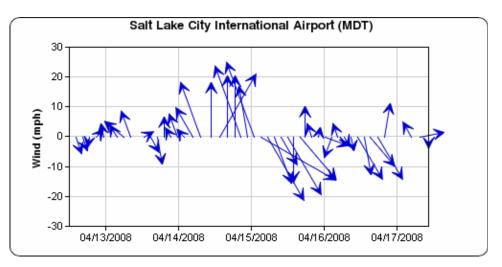
DEFINITION OF EVENT (40 CFR 50.1(J)) AND INTRODUCTION	1
Study Area Background	4
Soil Resources	
Climate	
AFFECT AIR QUALITY	
NOT REASONABLY CONTROLLABLE OR PREVENTABLE & NATURAL EVENT	
NORMAL HISTORICAL FLUCTUATION (40 CFR 50.14)	
PM10	
Ranking Lindon - LN - 49-049-4001	
Lindon - Lin - 49-049-4001 Cottonwood - CW - 49-035-0003	
Hawthorne - HW - 49-035-3006	
North Salt Lake - N2 - 49-035-0012	
Interguartile Range	
Lindon - LN - 49-049-4001	
Cottonwood - CW - 49-035-0003	
Hawthorne - HW - 49-035-3006	
North Salt Lake - N2 - 49-035-0012	
Lognormal Distribution	
Lindon - LN - 49-049-4001	
Cottonwood - CW - 49-035-0003	
Hawthorne - HW - 49-035-3006	25
North Salt Lake - N2 - 49-035-0012	26
WIND SPEED	
Regional Airport Data	
Ranking	
Lindon - LN - 49-049-4001	
Cottonwood - CW - 49-035-0003	
Hawthorne - HW - 49-035-3006	
North Salt Lake - N2 - 49-035-0012	29
CLEAR CAUSAL RELATIONSHIP (40 CFR 50.14)	
TRAJECTORY AND IMPACTED AREA	
Wind Storm Passed Over Wind Erosion Prone Soils in Utah	
SPECIATION	
Coarse Mass Composition	
Soil Aluminum-Silica Ratio	
No Exceedance or Violation But For the Event	
Wind Storm Event	
Coarse Mass Analysis	
Statistical Analysis	
CLEAR CAUSAL RELATIONSHIP AND BUT FOR THE EVENT SUMMARY	
MITIGATION (40 CFR 51.930)	
DIVISION OF AIR QUALITY STATE IMPLEMENTATION PLAN	
UTAH AIR RULES, PERMITTING	
COMPLIANCE	
CONTROL MEASURES DEMONSTRATION CASE STUDY - KENNECOTT MINE TAILING IMPOUNDMENTS	43
MOBILE SOURCES PARTICULATE REDUCTION	48
Automotive Inspection Maintenance Program	
Utah Clean Diesel Program	
Clean Fuel Vehicle Tax Credit and Loan Program	

Smoking Vehicles	49
Utah Clean City	49
Variable Message Signage	49
DIVISION OF AIR QUALITY COMMUNITY OUTREACH	49
Choose Clean Air	49
Dust Control Education	49
Clean Utah	50
Small Business Environmental Assistance Program	
Resource Development Coordinating Committee (RDCC)	
DIVISION OF WATER QUALITY	
UPDES Storm Water General Permit for Construction Activities	52
Nonpoint Source Pollution 319 Program	53
Agriculture	53
REPRESENTATIVE COUNTY DUST CONTROL PROGRAMS	
Salt Lake County	55
Davis County	55
Weber County	56
Cache County	56
Utah Air Quality Public Notifications	56
News Release to Media	57
PUBLIC COMMENT (PREAMBLE V.G.)	58
REFERENCES	59

APPENDIX A HOURLY DATA FROM REAL TIME MONITORS DURING THE EVENT. APPENDIX B PM2.5 SPECIATION FILTER DATA FOR LINDON ON APRIL 15, 2008

Definition of Event (40 CFR 50.1(j)) and Introduction

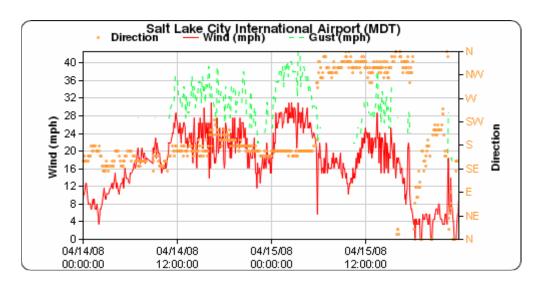
The Code of Federal Regulations (CFR) provides the definition and criteria for determining whether air quality data is impacted by an exceptional event. The 40 CFR 50.1 (j) definition states that "exceptional event means an event that affects air quality, is not reasonably controllable or preventable, is an event caused by human activity that is unlikely to recur at a particular location or a natural event, and is determined by the Administrator in accordance with 40 CFR 50.14 to be an exceptional event." The demonstration to justify data exclusion as outlined in 40 CFR 50.14(c)(3)(iv-v) specifies that evidence must be provided that:


- 1. The event meets the definition of an exceptional event;
- 2. The event is associated with a measured concentration in excess of normal historical fluctuations, including background;
- 3. There is a clear causal relationship between the measurements under consideration and the event that is claimed to have affected air quality in the area;
- 4. There would have been no exceedance or violation but for the event; and
- 5. The demonstration must include a public comment process and documentation of such to the Environmental Protection Agency (EPA).

This report documents that the event meets the above criteria and provides analyses to demonstrate that:

- The dust event was not reasonably controllable or preventable because a significant portion of the PM10 (approximately 80 -100 μg/m³) originated from desert playa, a non-anthropogenic source. Further, reasonable controls, based on EPA guidance, are in place for anthropogenic sources through regulatory structures and programs sponsored by state, federal and local agencies as described in the Mitigation Section;
- II. There is a clear-causal connection between the high wind event and the exceedances at the Wasatch Front monitoring stations;
- III. The measured PM10 concentrations and high winds were beyond normal historical levels; and
- IV. The exceedances would not have occurred "but for" the high winds.

On April 15, 2008, Utah experienced a natural high wind meteorological event associated with the passage of a storm pattern. Meteorological parameters for this storm event include:


a. Wind direction changed 90° (Source: MesoWest).

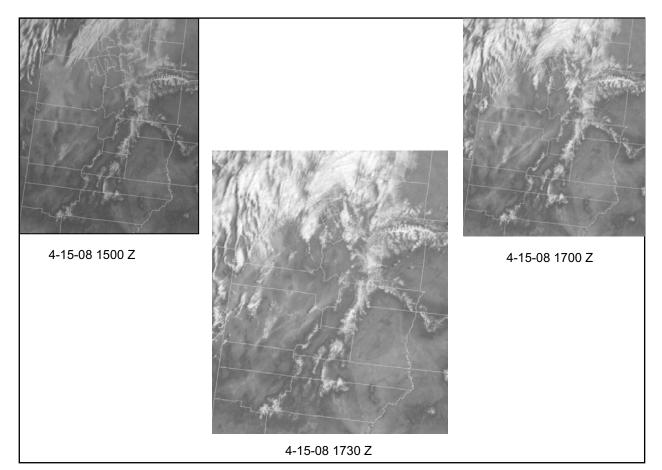
 Temperatures dropped 18°F within three hours, from 4 a.m. to 7 a.m. MDT on April 15, 2008. By 4 p.m. MDT, the temperature dropped to 37.4°F (Source: MesoWest, SLC airport).

04/15/08 04:00	66.2°F
04/15/08 06:00	59°F
04/15/08 07:00	48.2°F
04/15/08 16:00	37.4°F

c. Average maximum wind velocity measured at the SLC airport was 31 mph at 03:25 p.m. MDT, gusting to a maximum of 43 mph (Source: MesoWest).

This exceptional natural event entrained particulates into the air by high winds through a mechanism of surface erosion occurring in various locations up-wind and southwest of the Wasatch Front monitoring network.

The Salt Lake Tribune carried a full feature article on April 16, 2008 on the wind storm. The article included interviews with Division of Environmental Quality (DEQ), Utah State University, and Utah Farm Bureau personnel who were asked to explain the event. Possible contributing factors that were cited included drought conditions and the Milford Flats fire of 2007 that exposed 329,000 acres of soil subject to wind erosion, especially under gusting winds of 40-50 mph.


Dust storm blows through, temporarily muddles air By Judy Fahys The Salt Lake Tribune Article Last Updated: 04/16/2008 01:04:57 AM MDT

Wind pumped thick dust clouds into northern Utah early Tuesday ahead of a cold, rainy front that rolled in at midday. It was a sharp contrast to Monday's balmy, bluebird skies. Gusts swept in tiny dirt particles from the Sevier Dry Lake and the Sevier Desert on Tuesday morning, then began lifting dust from the salt flats west of the Great Salt Lake by afternoon, according to National Weather Service satellites.

The heavy plumes - along with high readings for PM 10 early Tuesday morning - prompted state air-quality officials to issue a health advisory for people in sensitive groups. The very old, the very young and people with heart and lung trouble needed to avoid exerting themselves in the dust, the advisory said. "This is a fairly typical dust storm that we have" in spring, said Bob Dalley, who oversees air monitoring for the state. Wind storms kick up the dust this way two or three times a year, he noted. But Bryce Bird, planning branch manager for the state Division of Air Quality, pointed out: "We're seeing some of the highest [PM 10] levels we've seen in a long time." Could last summer's wildfires and years of drought be partly to blame? It's too soon to tell for sure, said Bird. State air-quality experts will study the weather maps and wind patterns. They might need the data connecting Tuesday's storms to the northern Utah dust spikes to convince the U.S. Environmental Protection Agency that man-made pollution wasn't responsible for the high air-pollution readings. Alan Moller, a meteorologist with the Utah Climate Center at Utah State University, said the Milford Flats fire last summer and the drought "could be a factor." Hot temperatures over the weekend and on Monday might have left the top layers of soil vulnerable to widespread winds that gusted at around 50 mph in much of the state, he said. The winds came from the south, the direction of the fires, he added. "There's another clue the fires were contributing to the dust." It's a connection Randy Parker of the Utah Farm Bureau is also making. He was in Washington, D.C., with the Utah Partners for Conservation on Tuesday to make a pitch to Congress for mounting a war on cheatgrass, which is making Western landscapes susceptible to wildfire. He watched the dust blow into the Salt Lake Valley on Monday night during a son's soccer game. "You could probably assume that some of those areas - not just in last summer's fires in Milford Flats, but from the drought in the last decade - are part of it," he said of the dust. By Tuesday afternoon, snow was falling in valleys that had seen 70-degree temperatures the previous day, and air monitoring officials had called off the health alert in Utah, Salt Lake, Davis and Weber counties. The cold set in and promised to stick around through the night and into today, according to the weather service. Temperatures nearing freezing were expected overnight and daytime highs were expected to be in the mid-40s - about 10 degrees below normal - under partly cloudy skies. Snow showers were expected in the mountains. But things will warm up and the skies will clear beginning Thursday, the weather service said.

Mr. Randy Graham of the National Weather Service confirmed the source of the dust cited in the Tribune, "one plume was from the Sevier Lake bed and the other was from the Milford Flat burn scar. By mid-morning a plume is clearly visible all the way into Utah County, but the impact of the plume extended all the way in the Salt Lake Valley."

Satellite Images Provided by the National Weather Service Showing Dust Storm Sources

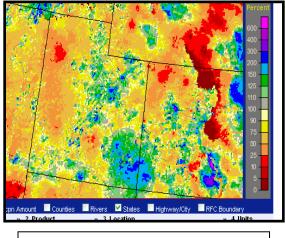
Study Area Background

Soil Resources

Soil resources within the study area have formed within one Major Land Resource Area (MLRA); MLRA 28A – The Great Salt Lake Area (USDA 2006).

MLRA 28A consists of the following soil orders: Aridisols, Entisols, and Mollisols. Aridisols are soils that develop in dry arid ecosystems. Entisols lack soil development and typically are shallow or sandy. Mollisols have a thick, dark, fertile surface layer (USDA 2006).

The Great Salt Lake Area is comprised of nearly level



basins between widely separated mountain ranges trending north to south. The basins are bordered by long, gently sloping alluvial fans. The mountains are uplifted fault blocks with steep side slopes, and are not well dissected because of low rainfall. A large salt desert playa is located south and west of Great Salt Lake (prone to erosion). Most of the valleys are closed basins containing sinks or playa lakes. The soils in this area generally are well drained or somewhat excessively drained, loamy or loamy skeletal (lacking soil horizons and rocky), and very deep. Soils in this area commonly contain high calcium carbonate contents. Alkalinity commonly increases with depth. Soils along alluvial fans, lake plains, and flats often have high concentrations of salts and sodium (USDA 2006).

Climate

The average annual precipitation is 5 to 12 inches in the valleys. Most of the rainfall occurs as high-intensity, convective thunderstorms during the growing season. The driest period is from midsummer to early autumn. Precipitation in winter typically occurs as snow (USDA 2006).

The Delta weather station is located near the Sevier Lake bed, a region that contributed dust to the storm (based on National Weather Service information, back trajectory and surface wind directions during a segment of the event). Precipitation at Delta for March and April of 2008 was: March 2008 0.51 in., 60% of normal; and April 2008 0.10 in., 12% of normal (NOAA). Similarly, below normal precipitation occurred in February and January as well (NOAA). This data corroborates the drought conditions cited by Mr. Moller in the Salt Lake City Tribune article (page 3). Dry conditions enhance wind erosion conditions.

Utah Precipitation from Norm – February 2008 NOAA Advanced Hydrologic Prediction Service

Affect Air Quality

The Wasatch Front experienced an overnight dust storm resulting in PM10 levels in excess of the 24-hour standard (affecting the 95th percentile (%ile) values at some locations) and elevated PM2.5 levels. PM10 exceedances were measured at the North Salt Lake, Hawthorne, Cottonwood, and Lindon air monitoring stations. Figure 1 shows the locations of these monitoring stations, as well as the entire Utah monitoring network.

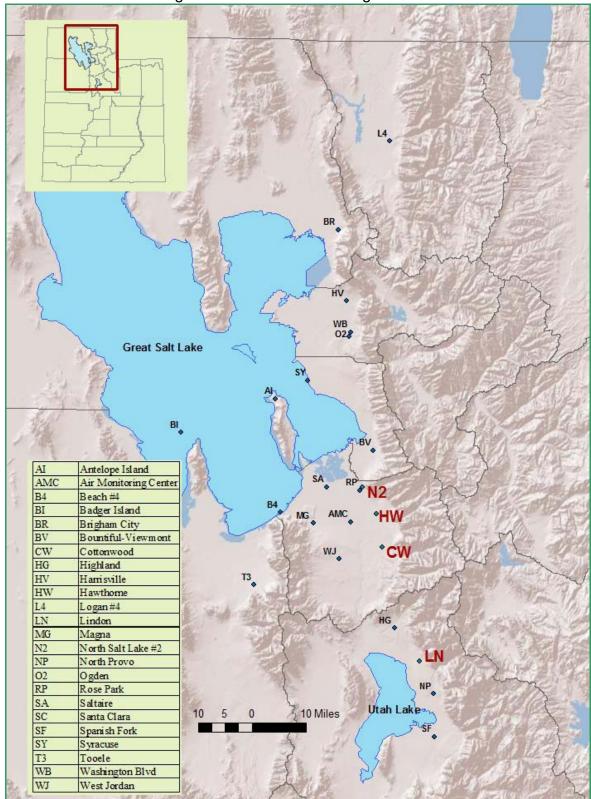


Figure 1 - Utah Air Monitoring Network

The National Ambient Air Quality Standards (NAAQS) exceedances for PM10 on April 15, 2008, are shown in Table 1 and Figure 2. Figure 2 also shows that the entire PM10 monitoring network measured greatly elevated values (including Logan, Ogden, Magna and North Provo).

Monitor	µg/m³	AQS Mon. #	Lat.	Long.
Lindon	164	49-049-4001	40.33952	-111.71344
Cottonwood	177	49-035-0003	40.64405	-111.84976
Hawthorne	166	49-035-3006	40.73436	-111.87201
North Salt Lake	188	49-035-0012	40.80536	-111.92101
North Salt Lake – Co Located	220	49-035-0012	40.80536	-111.92101

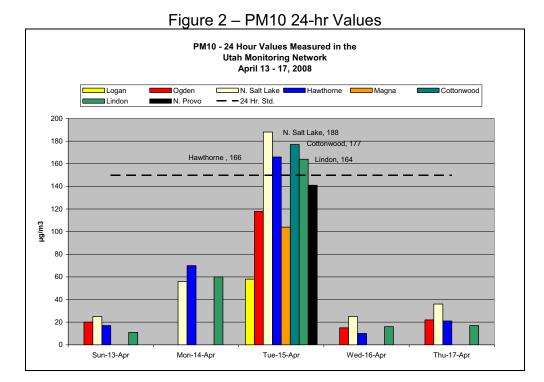
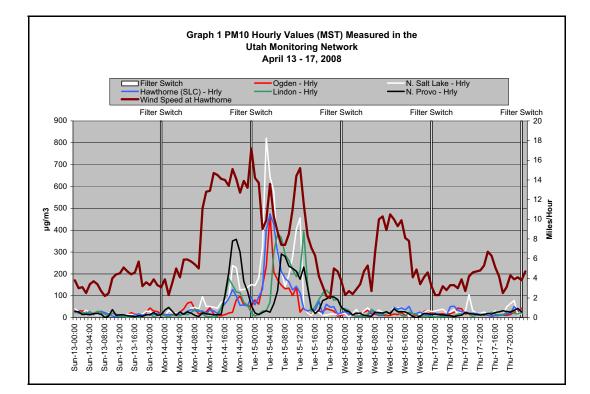


Image 1 presents an aerial view of monitoring sites in the valley, along with the PM10 24-hr concentrations. Higher PM10 levels were measured along the west side of the Wasatch Mountain range, than along the east side of the Oquirrh Mountains (Magna station location). When winds are from the south-southwest, there is a wind over flow component that occurs over the Oquirrh Mountains because they are only 3,000 ft. above the valley's base elevation. Winds on the eastern side of the valley tend to hug the Wasatch Front because these mountains are much higher at 5,000 ft above the valley's base elevation. These effects can cause higher PM10 levels on the eastern than western regions of the valley, which contributes to the lower PM10 at the Magna station.



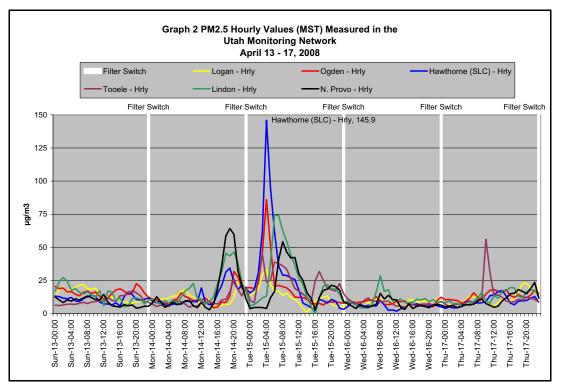
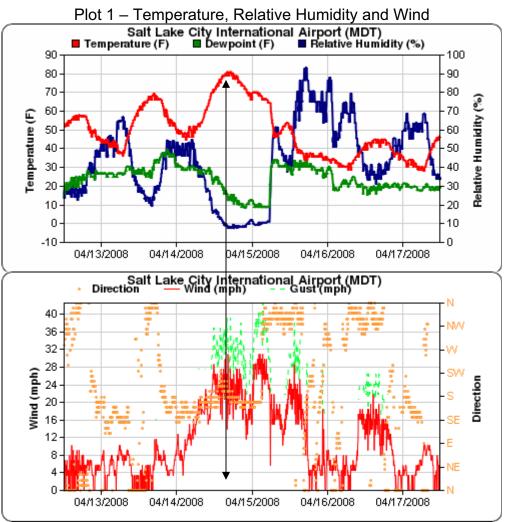


Image 1 – Aerial View of Select PM10 Levels

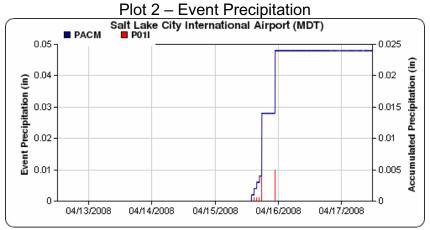
Graph 1 shows the hourly measurements for PM10, at available TEIOM monitors, and wind speed, measured at the Hawthorne station, beginning on Sunday 13, 2008, through Thursday 17, 2008. Graph 2 presents the measurements for PM2.5 for the same timeframe. It is evident from both graphs that particulate matter levels were stable from Sunday to Monday 16:00 MST, than were significantly elevated after 16:00 MST, peaking at around 20:00 MST on Monday. The wind speed shown in Graph 1 represents an excellent relationship between wind speed and PM10 levels. As the winds increased from 2-4 mph on Sunday and Monday to 15 mph and beyond, PM10 levels increased dramatically. High winds preceding and following the passage of a cold front caused the NAAQS exceedances.

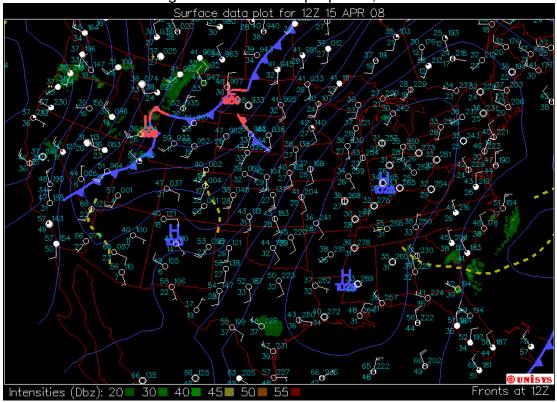
Precipitation from the cold front kept PM10 at normal levels despite increased winds on Wednesday.



Not Reasonably Controllable or Preventable & Natural Event

Rapidly developed cold fronts produce strong winds and dramatic temperature gradients over the Intermountain West (Shafer and Steenburgh 2008). As such, these storms are natural events. This seasonal spring occurrence creates the potential for wind eroded surface soils in the deserts of western Utah and eastern Nevada. Soil particles are susceptible to erosion when rapid heating releases it's adhesion to the strata and surface wind velocities are sufficient to suspend them into the air mass.


Plot 1 presents the 5-day temperature-relative humidity-dew point profile for the Salt Lake City airport for April 13-17, 2008. Plot 1 depicts the rapid temperature increase on the 14th with normal night time cooling. At the same time, the relative humidity and dew points plunged, indicating the passage of the dry line. This phenomenon is in fact the definition of a dry line, i.e., rising temperatures with sharp drop in dew point. Blowing dust and rising temperatures are characteristic effects during dry line fronts. As the cold front approached the Wasatch Front, the relative humidity dramatically increased.


Source: MesoWest

Aligning the 5-day temperature profile with the 5-day wind profile for the same period shows the increased wind associated with the dry line and subsequent cold front. The wind speed before the dry line passage on the 14th was below 10 mph. During the dry line, the wind increased from about 11-30 mph on the 15th (the day of the event), with winds gusting as high as 42 mph on the 15th.

As the relative humidity increased on the 15th, the temperature rapidly decreased and it began to rain. By the afternoon of the 15th, the rain changed to snow (refer to Plot 2). The airborne particulate levels also quickly receded, as shown on graphs 1 and 2 around 08:00 (MDT) on the 15th.

The Unisys composite surface map (Image 1) for April 15, 2008, at 6 a.m., shows the cold front moving into the Salt Lake Valley. The winds at this point were out of the south at 20.7-25.3 mph. This natural event could not be reasonably controllable or preventable.

Image 2 – Salt Lake Valley on April 15

Image 2 of the Salt lake Valley was taken by the Meteorological Solutions Incorporated. This image was taken at 7 a.m. on April 15, 2008. The Hawthorne monitoring station is located within the view to the lower right of the image.

Image 3 – Salt Lake Valley on April 15 Mid-afternoon

By mid-afternoon, the temperature was near freezing, as the cold front captured the valley. The storm initially brought rain that quickly turned to snow (Image 3).

Normal Historical Fluctuation (40 CFR 50.14)

Utah experiences naturally occurring wind storms, predominantly in the spring. These storms are typically caused by the passage of a cold front resulting in high winds passing over desert playa soils that are entrained in the wind and transported into the Salt Lake City valley causing elevated particulate levels. These natural events are included in the Exceptional Event rule even though they are recurring because they generate **unpreventable** and **uncontrollable** high wind.

PM10

Normal historical fluctuation for PM10 was computed in a three-step process in order to assess whether an observed value is in excess.

First, all historical PM10 values from each monitoring station were aligned from least to greatest. The location of the effected value in relation to the rest of the historically values is expressed as a %ile.

Second, a box plot analysis was preformed on the historical data. The interquartile range (IQR) was calculated. This was then compared to the event value.

Third, a lognormal distribution analysis was preformed on the historical data. The geometric mean, geometric standard deviation, and the 1st, 2nd, and 3rd geomantic standard deviations above the geometric mean where calculated. These where then compared to the event value.

In addition, an analysis is included showing that winds speeds during this event are not the norm.

Ranking

Guidance found at 72 Federal Register 55 March 22, 2007, pages 13560-81, states that a lesser amount of documentation would likely be necessary for "extremely high" concentrations (e.g. > 95^{th} %ile) than for concentrations that were closer to "typical levels" (e.g. < 75^{th} %ile.).

Lindon - LN - 49-049-4001

The data ranking described above for the Lindon monitoring station data collected from 1993 through 2008 verifies that the PM10 concentration on April 15, 2008, is above the 99th%ile. Consequently, we can conclude that the event day concentration is outside the normal historical fluctuation.

Cottonwood - CW - 49-035-0003

The data ranking for the Cottonwood monitoring station data collected from 1993 through verifies that the PM10 concentration on April 15, 2008, is above the 99th%ile. Consequently, we can conclude that the event day concentration is outside the normal historical fluctuation.

Hawthorne - HW - 49-035-3006

The data ranking for the Hawthorne monitoring station data collected from 1997 through 2008 verifies that the PM10 concentration on April 15, 2008, is above the 95th%ile. Consequently, we can conclude that the event day concentration is outside the normal historical fluctuation.

North Salt Lake - N2 - 49-035-0012

The data ranking for the North Salt Lake monitoring station data collected from 1993 through 2008 verifies that the PM10 concentration on April 15, 2008, is above the 95th%ile. Consequently, we can conclude that the event day concentration is outside the normal historical fluctuation.

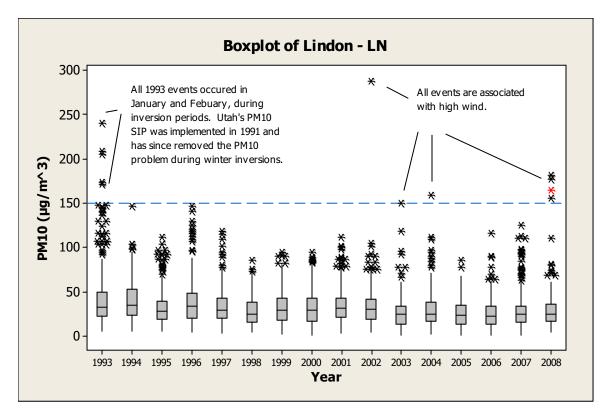
The co-located monitor at North Salt Lake was also elevated for PM10 on April 15, 2008. Monitoring at this station for PM10 began in January 2008; thus, insufficient data is presently available to conduct a detailed analysis but, of the 52 available data points, the measured value of 220 μ g/m³ is the highest value recorded for the monitor. Further more, it is the only exceedance recorded at the monitor.

Interquartile Range

The IQR is a measure of statistical dispersion, and is a "robust statistic." Robust statistics seek to provide methods that emulate classical methods, but which are not unduly affected by outliers or other small departures from model assumptions. The IQR was calculated on a quarterly basis and on a yearly basis.

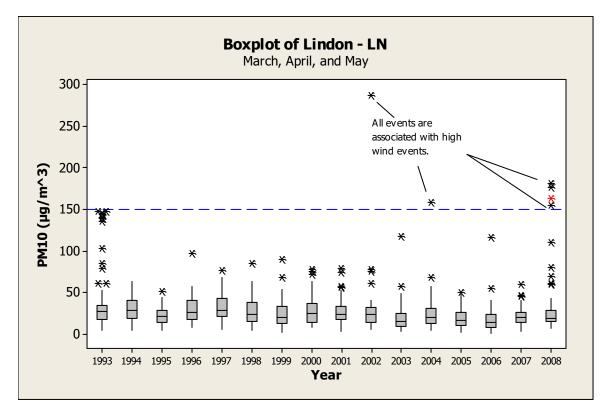
Lindon - LN - 49-049-4001

The following is the IQR for all Lindon data:


First Quartile (Q1): $17 \ \mu g/m^3$ Median (Q2): $27 \ \mu g/m^3$ Third Quartile (Q3): $40 \ \mu g/m^3$ IQR: $23 \ \mu g/m^3$

The IQR was calculated on a quarterly basis (shown in Table 2) along with the annual.

Quarter	Sample Size (N)	Q1	Q2	Q3	IQR
1	1366	15	27	49	34
2	1423	14	22	32	18
3	1357	25	33	43	18
4	1300	17	26	38	21
All	5446	17	27	40	23


Table – 2 Lindon	Interquartile	$(\mu g/m^3)$

The boxplot presents the historical PM10 values, by year; the event value is marked in red. The blue dashed line represents the current PM10 standard.

The boxplot whiskers extend to points (events) that are statistically considered to be outliers from the sample population, typically 1.5 times the IQR above the third quartile (Q3). All outliers that exceed the 24hr PM10 standard since 1994 are associated with high winds.

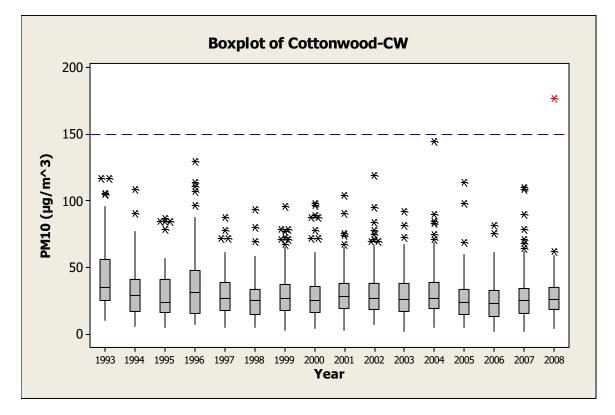
Because this event occurred during the second quarter, it may be more valuable to only focus on other PM10 values during the same time of the year, March-May. The revised boxplot presents the historical PM10 values, by year, during the 2nd quarter (March-May) of each year. The event value is marked in red. The blue dashed line represents the current PM10 standard.

Again, all events that exceed the current PM10 standard are associated with high wind events.

Analysis of the boxplot graphs permit us to conclude that the event concentration is outside of normal historical variation.

Cottonwood - CW - 49-035-0003

The following is the IQR for all Cottonwood data:


Q1: 17 μg/m³ Q2: 26 μg/m³ Q3: 38 μg/m³ IQR: 21 μg/m³

The IQR was calculated on a quarterly basis (shown in Table 3) along with the annual.

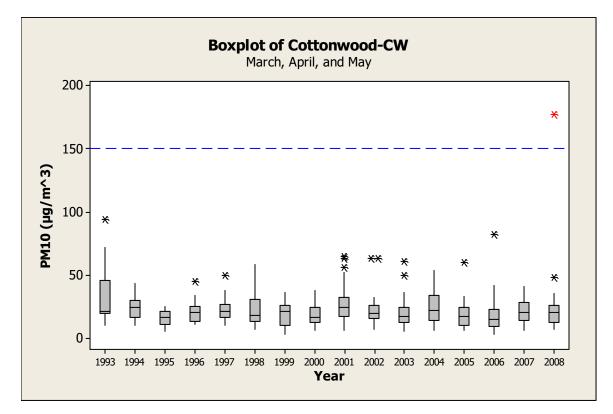

Quarter	Sample Size (N)	Q1	Q2	Q3	IQR	
1	564	16	28.5	48.75	32	
2	385	13	19	26	13	
3	382	25	32	40	15	
4	396	18	27	34	16	
All	1727	17	26	38	21	

Table – 3 Cottonwood	Interquartile	(ua/m^3)
	merquartie	(µg/III)

The boxplot presents the historical PM10 values, by year; the event value is marked in red. The blue dashed line represents the current PM10 standard.

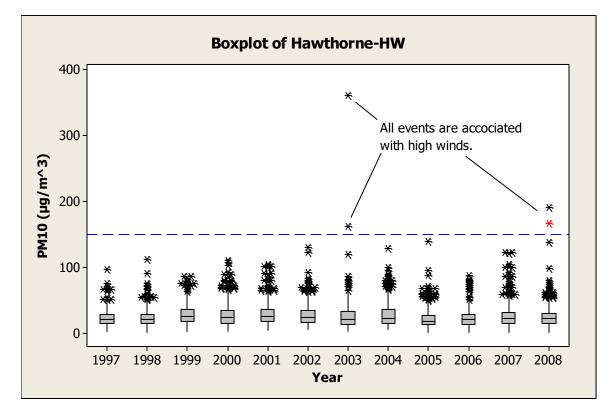
The only exceedance of the standard is the April 15, 2008, wind event. Because this event occurred during the second quarter, it may be more valuable to only focus on other PM10 values during the same time of the year, March-May. The revised boxplot presents the historical PM10 values, by year, during the 2nd quarter (March-May) of each year. The event value is marked in red. The blue dashed line represents the current PM10 standard.

Again, the only event that exceeds the current PM10 standard is the April 15, 2008, event.

Analysis of the boxplot graphs permit us to conclude that the event concentration is outside of normal historical variation.

Hawthorne - HW - 49-035-3006

The following is the IQR for all Hawthorne data:


Q1: 16 μg/m³ Q2: 23 μg/m³ Q3: 32 μg/m³ IQR: 16 μg/m³

The IQR was calculated on a quarterly basis (shown in Table 4) along with the annual.

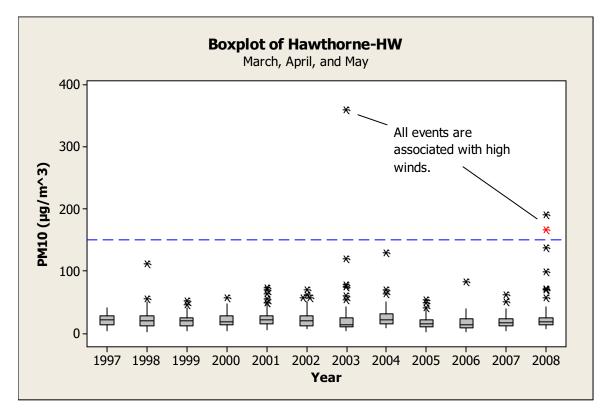

Quarter	Sample Size (N)	Q1	Q2	Q3	IQR
1	954	17	29	51	34
2	1034	12	18	26	14
3	1039	18	23	30	12
4	1012	16	24	32	16
All	4039	16	23	32	16

Table – 4 Hawthorne	Interquartile	(ua/m^3)
	interquartie	(µg/III)

The boxplot presents the historical PM10 values, by year; the event value is marked in red. The blue dashed line represents the current PM10 standard.

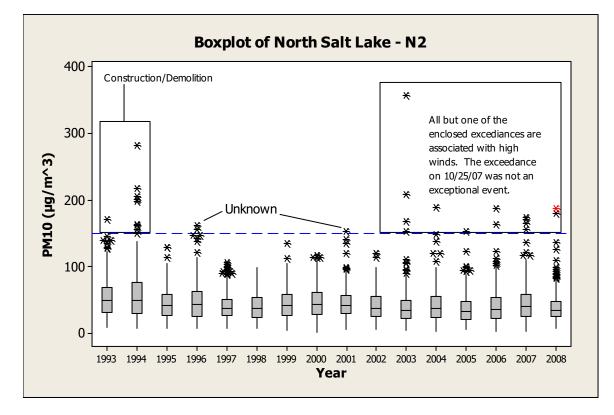
All outliers that exceed the 24hr PM10 standard are associated with high winds. Because this event occurred during the second quarter, it may be more valuable to only focus on other PM10 values during the same time of the year, March-May. The revised boxplot presents the historical PM10 values, by year, during the 2nd quarter (March-May) of each year. The event value is marked in red. The blue dashed line represents the current PM10 standard.

Again, all events that exceed the current PM10 standard are associated with high wind events.

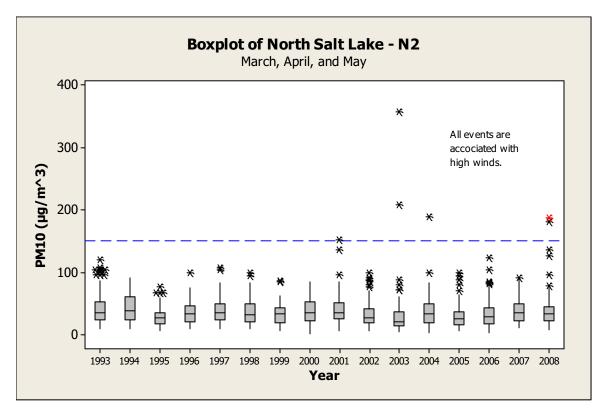
Analysis of the boxplot graphs permit us to conclude that the event concentration is outside of normal historical variation.

North Salt Lake - N2 - 49-035-0012

The following is the IQR for all North Salt Lake data:


Q1: 25 μg/m³ Q2: 40 μg/m³ Q3: 57 μg/m³ IQR: 32 μg/m³

The IQR was calculated on a quarterly basis (shown in Table 5) along with the annual.


Quarter	Sample Size (N)	Q1	Q2	Q3	IQR
1	1295	23	37	59	36
2	1408	20	32	47	27
3	1380	34	46	62	28
4	1349	26	42	62	36
All	5432	25	40	57	16

			Interquartile	(
i able – 5	INOLUL	Sall Lake	Interquartie	; (µg/m)

The boxplot presents the historical PM10 values, by year; the event value is marked in red. The blue dashed line represents the current PM10 standard.

All but one exceedances of the 24hr PM10 standard since 2002 are associated with high winds. Because this event occurred during the second quarter, it may be more valuable to only focus on other PM10 values during the same time of the year, March-May. The revised boxplot presents the historical PM10 values, by year, during the 2nd quarter (March-May) of each year. The event value is marked in red. The blue dashed line represents the current PM10 standard.

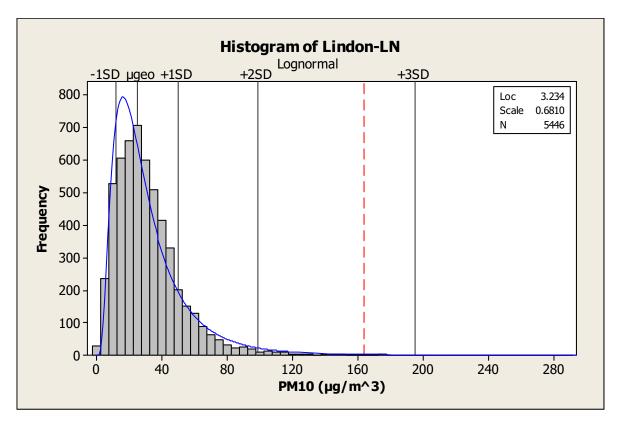
All exceedances of the current PM10 standard since 2002 are associated with High Wind events.

Analysis of the boxplot graphs permit us to conclude that the event concentration is outside of normal historical variation.

Lognormal Distribution

Lognormal distribution analysis was conducted to establish the normal historical fluctuations for the four subject stations (inclusive of exceptional event results). Lognormal distribution was selected because of its ability to accurately describe the distribution of measured concentrations of PM10. The geometric mean (µgeo) was calculated on a quarterly basis (shown in Table 6) and on an annual basis. The annual basis provides the greatest number of data points and is sufficiently similar to the spring quarterly value; thus, the annual geometric mean is used to reflect the normal historical values for the four stations.

Location	Quarter	N Quarterly	μgeo (μg/m³)	Annual μgeo (μg/m ³)
Lindon	1	1366	26.00	25.38
04/04/4000 :	2	1423	20.72	
01/01/1993 to 12/31/2008	3	1357	31.72	
12/01/2000	4	1300	24.53	
Cottonwood	1	564	27.30	25.10
04/04/4000 /	2	385	18.62	
01/01/1993 to 12/31/2008	3	382	30.69	
12/31/2000	4	396	24.58	
Hawthorne	1	954	28.62	22.48
00/04/4007/	2	1034	17.57	
03/01/1997 to 12/31/2008	3	1039	22.87	
	4	1012	22.67	
North Salt Lake	1	1295	35.87	37.42
	2	1408	30.72	
01/01/1993 to 12/31/2008	3	1380	45.24	
12/3 1/2000	4	1349	39.37	

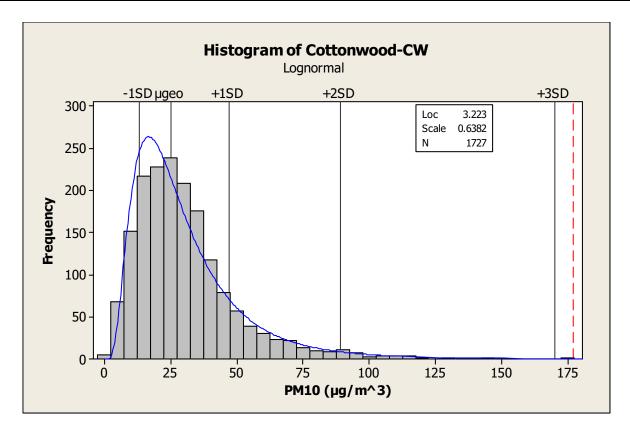

Table 6 -	Geometric Me	an of PM10
	Ocometric Me	

The annual values are far below the April 15^{th} event, which ranged from 164-220 μ g/m³.

Lindon - LN - 49-049-4001

The following are the calculations for the geometric mean, geometric standard deviation, and the upper boundary of the 1st, 2nd, and 3rd standard deviations from the geometric mean.

Geometric Mean (µgeo): Exp(Loc)=25.38 µg/m³ Geometric Standard Deviation (σ geo): Exp(Scale)= 1.9758 +1 Standard Deviation (+1SD): Exp(Loc +Scale)= µgeo* σ geo= 50.14 µg/m³ +2 Standard Deviation (+2SD): Exp(Loc +2*Scale)= µgeo* (σ geo)²= 99.08 µg/m³ +3 Standard Deviation (+3SD): Exp(Loc +3*Scale)= µgeo* (σ geo)³= 195.78 µg/m³ The histogram presents the historical values and the event value with a red dashed line. The blue line is a fitted line overlay of a lognormal distribution.


Noting that the normal historical values fall within the lognormal distribution, it is reasonable to utilize plus or minus 2SD above or below the geometric mean as the bounds of normal PM10 values. The event value **approaches 3SD.** The event value is clearly outside the normal historical fluctuation.

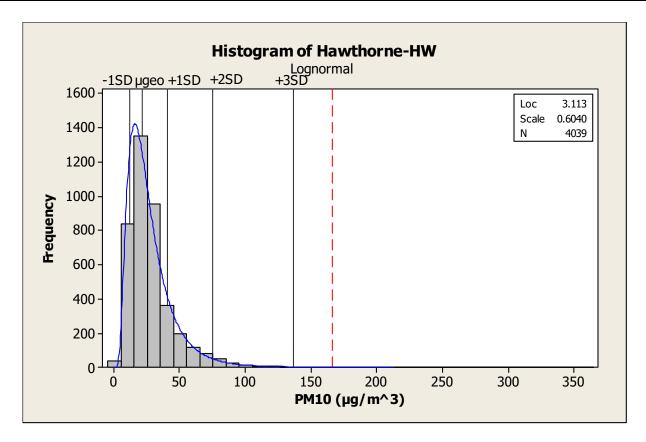
Cottonwood - CW - 49-035-0003

The following are the calculations for the geometric mean, geometric standard deviation, and the upper boundary of the 1st, 2nd, and 3rd standard deviations from the geometric mean.

The following are the statistical values: μ geo = 25.10 μ g/m³ σ geo = 1.893 +1SD = 47.52 μ g/m³ +2SD = 89.96 μ g/m³ +3SD = 170.30 μ g/m³

The histogram presents the historical values and the event value with a red dashed line. The blue line is a fitted line overlay of a lognormal distribution.

Because this station samples every 6-day's instead of daily, as in the case at Lindon, there is less than half the amount of data points at Cottonwood resulting in a larger data distribution.

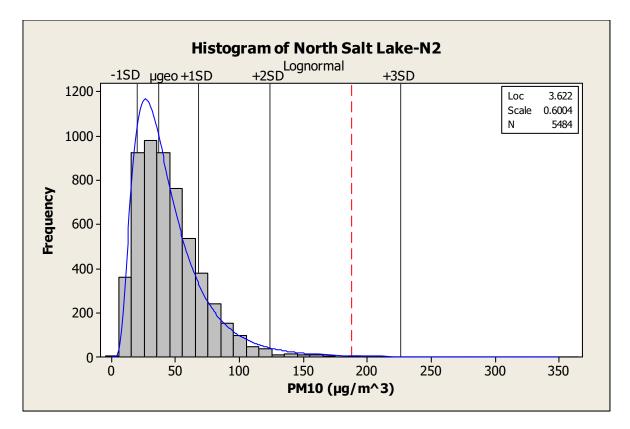

Noting that the normal historical values fall within the lognormal distribution, it is reasonable to utilize plus or minus 2SD above or below the geometric mean as the bounds of normal PM10 values. The event value **exceeds 3SD.** The event value is clearly outside the normal historical fluctuation.

Hawthorne - HW - 49-035-3006

The following are the calculations for the geometric mean, geometric standard deviation, and the upper boundary of the 1st, 2nd, and 3rd standard deviations from the geometric mean.

The following are the statistical values: $\mu geo = 22.48 \ \mu g/m^3$ $\sigma geo = 1.829$ $+1SD = 41.14 \ \mu g/m^3$ $+2SD = 75.26 \ \mu g/m^3$ $+3SD = 137.68 \ \mu g/m^3$

The histogram presents the historical values and the event value with a red dashed line. The blue line is a fitted line overlay of a lognormal distribution.


Noting that the normal historical values fall within the lognormal distribution, it is reasonable to utilize plus or minus 2SD above or below the geometric mean as the bounds of normal PM10 values. The event value **exceeds 3SD.** The event value is clearly outside the normal historical fluctuation.

North Salt Lake - N2 - 49-035-0012

The following are the calculations for the geometric mean, geometric standard deviation, and the upper boundary of the 1st, 2nd, and 3rd standard deviations from the geometric mean.

The following are the statistical values: $\mu geo = 37.42 \ \mu g/m^3$ $\sigma geo = 1.822$ $+1SD = 68.19 \ \mu g/m^3$ $+2SD = 124.33 \ \mu g/m^3$ $+3SD = 226.60 \ \mu g/m^3$

The histogram presents the historical values and the event value with a red dashed line. The blue line is a fitted line overlay of a lognormal distribution.

Noting that the normal historical values fall within the lognormal distribution, it is reasonable to utilize plus or minus 2SD above or below the geometric mean as the bounds of normal PM10 values. The event value **approaches 3SD**. The event value is clearly outside the normal historical fluctuation.

A co-located monitor also recorded an elevated level of PM10 at 220 μ g/m³, on April 15, 2008. Monitoring at this station for PM10 began in January 2008 thus, insufficient data is presently available to conduct a detailed analysis but, of the 52 available data points, the measured value of 220 μ g/m³ is the highest value recorded for the monitor. Further more, it is the only exceedance recorded at the monitor.

Wind Speed

The Exceptional Event Rule requires states to include "a historical typical wind speed levels for the season of the year that the event is claimed" (Federal Register Vol. 71, No. 55, Page 13566).

Regional Airport Data

Station	Jan	Feb	Mar	Apr	Мау	Jun	Annual	MesoWest Hourly Average on 4-15-0-8
Provo	4.9	6.0	7.2	7.9	7.4	7.3	6.3	17.5
Salt Lake City	6.9	7.6	8.9	9.8	9.2	9.6	8.6	16.5

Table 7 - Average Wind Speed in mph for 1996-2006

Data Source: Western Regional Climate Center

Weather measurements for April 15, 2008, at the Salt Lake City International Airport (KSLC) by the National Weather service as reported by MesoWest.

24 hr. maximum wind speed: 21 mph 24 hr. maximum wind gust: 32 mph

Ranking

A Ranked method was used to determine if the wind speed measured on April 15, 2008, was outside what is normally observed. All historical wind speeds from each monitoring station was aligned from least to greatest. The location of the effected value in relation to the rest of the historically values is expressed as a percentile (%ile). If we use the same format for wind as was used initially for PM10, it can be extrapolated that "extremely high" measurements are above the 95th%ile and that "typical levels" are closer to the 75th%ile.

Lindon - LN - 49-049-4001

The data ranking for the Lindon monitoring station for data collected since 1993 verifies that the daily maximum of the hourly wind speed measured on April 15, 2008, is above the 99th%ile. Consequently, we can conclude that the event day concentration is outside the normal historical fluctuation.

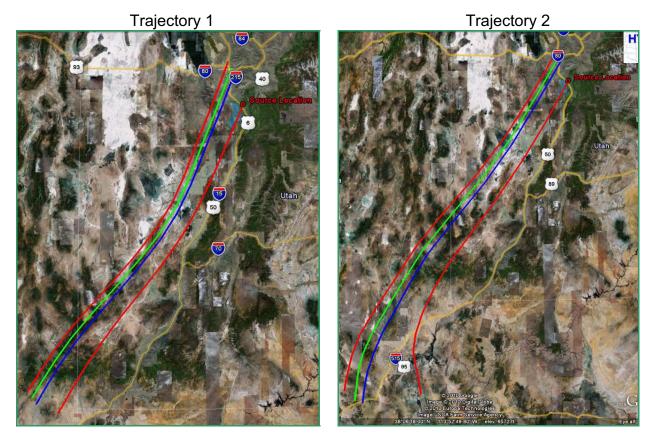
Cottonwood - CW - 49-035-0003

The data ranking for the Cottonwood monitoring station for data collected since 1993 verifies that the daily maximum of the hourly wind speed measured on April 15, 2008, is above the 97th%ile. Consequently, we can conclude that the event day concentration is outside the normal historical fluctuation.

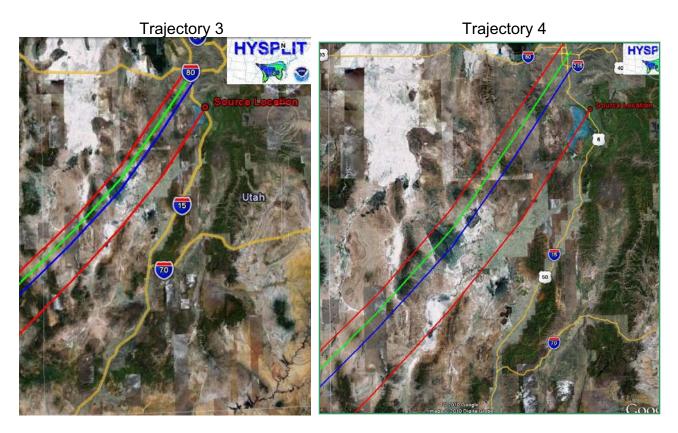
Hawthorne - HW - 49-035-3006

The data ranking for the Hawthorne monitoring station for data collected since 1997 verifies that the daily maximum of the hourly wind speed measured on April 15, 2008, is above the 96th%ile. Consequently, we can conclude that the event day concentration is outside the normal historical fluctuation.

North Salt Lake - N2 - 49-035-0012


The data ranking for the North Salt Lake monitoring station for data collected since 2005 verifies that the daily maximum of the hourly wind speed measured on April 15, 2008, is above the 97th%ile. Consequently, we can conclude that the event day concentration is outside the normal historical fluctuation.

Clear Causal Relationship (40 CFR 50.14)


Trajectory and Impacted Area

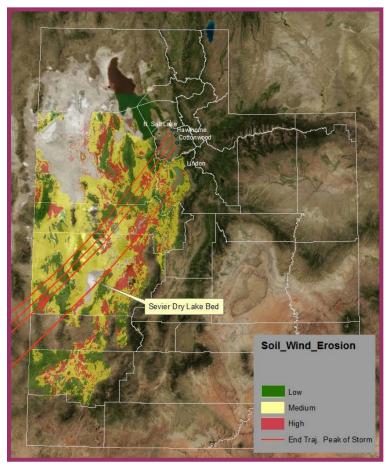
Backwards trajectory analysis using the NOAA HYSPLIT model was used to project the winds before, during and after the storm event. The four stations were modeled (EDAS meteorological data) at 1000 meters, 12 hour back trajectory (MDT) and plotted onto Google Earth satellite images for visual enhancement of the salt desert playa described in the Soil Resources section. A height of 1000 meters was selected to represent the steering height of the air mass over the complex terrain.

The first wind trajectory is for the day before the storm on April 14, 2008, showing the winds from the south, crossing the Nevada-Utah desert regions and following the I-15 and Wasatch Front mountain range.

The second trajectory is at the beginning of the storm on April 15, 2008 at midnight. Note the shift to the north-west across the Sevier Desert.

Trajectory 3 is at 4 a.m. MDT on April 15, 2008, at the height of the storm, corresponding with the maximum hourly values shown on Graphs 1 and 2. The winds continued their passage over desert playa. Trajectory 4 is a close-up of Trajectory 3 clearly showing the desert regions.

Trajectory 5


The final image is at 8 a.m. MDT on April 15, 2008, showing the wind shift as a result of the cold front with declining wind speed.

Wind Storm Passed Over Wind Erosion Prone Soils in Utah

The U. S. Department of Agriculture, Natural Resources Conservation Service (NRCS), developed a wind erosion GIS map of Major Land Resource Area 28A for the DEQ using

the Wind Erodibility Index that assigns an erosion rate to soil.

The NRCS categorized soil wind erosion into three categories; low, medium and high erodibility. The HYSPLIT wind trajectory for the height of the storm event (same as Trajectory 3 above) has been layered on to the wind erosion GIS map. All four station trajectories, at this point of the storm, passed over salt desert playa regions consistent with the news report by the Salt Lake Tribute ("Gusts swept in tiny dirt particles from the Sevier Dry Lake and the Sevier Desert on Tuesday morning....)"

Speciation

Coarse Mass Composition

Studies conducted in national parks on coarse mass (2.5-10 um) indicates the composition of course mass consists of crustal minerals, carbonaceous material and salts. Sampling sites were selected to be representative of the continental United States and were operated according to IMPROVE protocol analytical procedures. Crustal minerals (soil) were reported to be the single largest contributor, followed by organic mass, nitrates and sulfates.

Crustal Minerals	34-74%
Organic Mass	20-59%
Nitrates	10-12%
Sulfates	≈ 5%
(Malm, et al, 2007).	

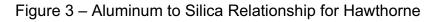
Speciation samples of PM2.5 are collected at the Hawthorne monitoring station every third day and one was collected on April 15, 2008. DEQ also included a special speciation

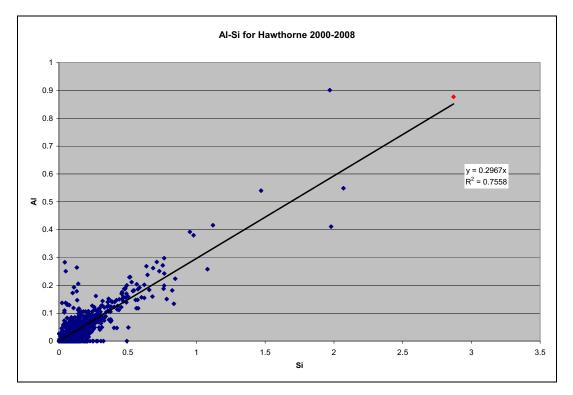
request for the Lindon PM2.5 sample because of the exceedance on that day. The analytes were tabulated according to the classifications above (Table 8).

Crustal minerals – soil minerals SiO2, Al2O3, CaO, Fe2O3, K2O, MgO, FeO, Na2O, TiO2, SO2, P2O5, and Ba were tabulated using their elemental components (Pettijohn 1975).

		-)	
	Hawthorne %	Lindon %	Published Values
Crustal Minerals	28	36*	34-74%
Total Carbon	30^	No Analysis	20-59%
Nitrate	2	2	10-12%
Sulfate	4	4	≈ 5%

Table 8 –	Coarse	Mass	Analysis	for F	Event Day
	000150	111000	/ 11019010		


*Potassium value not available. Percentage is slightly under stated. ^Carbon data flagged for flow restriction, value likely under stated.

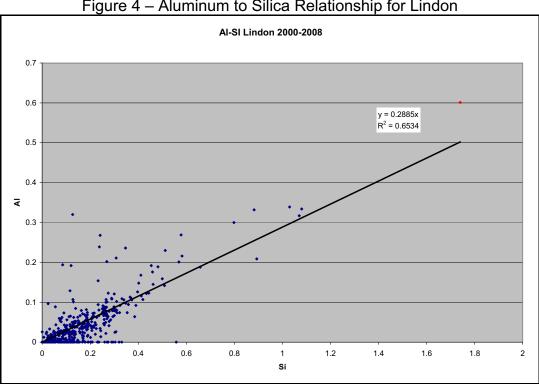

This analysis suggests that both dust samples collected during the exceptional event are consistent with coarse mass (soil).

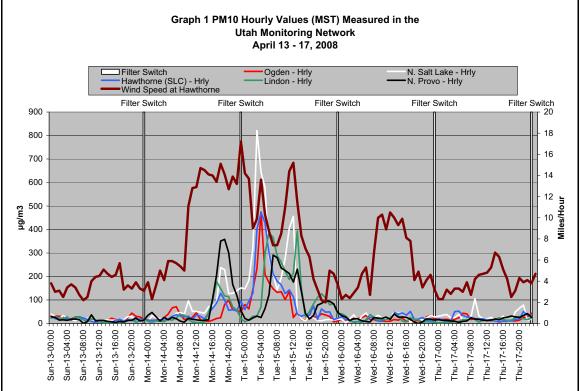
Heterotrophic bacteria decompose organic matter, releasing ammonia, which can subsequently be nitrified to nitrate by nitrifying bacteria. Nitrate is poorly adsorbed to soils and is readily leached. Since organic matter is limited in arid regions and because nitrate levels in soil is normally low, one would expect that arid dust associated with high wind events would be low in nitrate level. Consequently, it is reasonable to conclude that these low nitrate levels support the premise that the sources of the windborne dust are primarily non-anthropogenic.

Soil Aluminum-Silica Ratio

Aluminum is highly reactive and does not occur freely in nature. Instead, it is bound up as aluminum silicate in clay, minerals, and rocks. There is a strong observed relationship when aluminum is plotted against silica. An internal IMPROVE memo by Bob Eldred (June 20, 2003) described the relationship he observed when he plotted IMPROVE Al-Si data from December 1999 to November 2000. The plot was an excellent relationship with a slope of 0.46 with R²=0.96. When Eldred plotted earlier data, he observed a slope of 0.60. Eldred attributed this difference to migration of Sahara dust to the continental U.S, influencing the natural Al-Si ratio common to North America. When we plot the Hawthorne Al-Si data from 2000-2008 (Figure 3), we observe a slope of 0.3. The red data point represents the exceptional event of April 15, 2008.

Plotting the Lindon data (Figure 4), we observe a slope of 0.29, essentially identical to the Hawthorne plot.




Figure 4 – Aluminum to Silica Relationship for Lindon

Aluminum's relationship to silica may be helpful in determining if soils have been anthropogenically enriched. We can infer from Eldred's research that we should be able to detect anthropogenic enrichment of soils when the Al-Si ratio deviates upward significantly from 0.46. Our lower slope **may** suggest that anthropogenic dust sources are not major components.

No Exceedance or Violation But For the Event

Wind Storm Event

There were no unusual local anthropogenic emissions reported before, during, and after the event. Figure 5 is a plot of the wind speed measured at the Hawthorne monitoring station along with the PM10 hourly values for the northern monitoring stations starting on April 13 through April 17, 2008. We have plotted PM10 levels before and after the event to demonstrate that PM10 levels at all of these stations were substantially below the 24-hr standard of 150 ug/m³, even on Sunday the 13th, despite dry conditions and slight wind. The increased wind speed (and south-southeasterly direction), starting on April 14 at 1100, correspond accordingly with the PM10 peaks for all stations until April 16 at 2100. The cold front brought with it precipitation and wind but the wet conditions reduced wind blown dust on April 16 and 17. If not for the storm event and associated winds from the southsoutheast, crossing the salt desert playa regions, PM10 values in the network would not have been elevated and PM10 levels would not have exceeded the 24-hr standard at North Salt Lake, Hawthorne, Cottonwood and Lindon.

We substantiate the "but not for" wind storm position based on the demonstration made in the following Mitigation section, that the Utah Division of Air Quality, together with Utah counties and federal agencies, has established reasonably well-controlled dust programs, consistent with EPA guidance. Further, there were no smoke reports or other complaints at the time that would impact the network to this degree. Anthropogenic emissions remained constant before and after the event. Figure 5 shows that the PM10 levels averaged between 24-38 ug/m³ for April 13, 14, 16, and 17, in comparison to event levels of 164-220 ug/m³. This indicates that the significant increase was not due to anthropogenic emissions activity, but more related to high wind.

Coarse Mass Analysis

The same coarse mass analysis was conducted for the Hawthorne and Lindon stations for PM2.5, before and after the wind storm event.

	Hawthorne 3-days Before EE	Lindon 3-days Before EE	Published Values Malm et al 2007	Hawthorne EE Day	Lindon EE Day
Crustal Minerals	9%	9%	34-74%	28%	36 [*] %
Total Carbon	73%	100 [#] %	20-59%	30%	No Analysis
Nitrate	25%	37%	10-12%	2%	2%
Sulfate	12%	11%	≈ 5%	4%	4%

Table 9 – Coarse Mass Analysis, Pre and During Event

Notes: # error in TC analysis. *Potassium value not available, % slightly under stated.

The crustal mineral contents 3-days before the event were only 9%, than escalated to 28-36% the day of the event, clearly proving that the entrained dust was carried along from the salt desert playa regions as projected by the HYSPLIT model.

Kim (et al 2007) concluded that nitrate in PM2.5 is highly correlated with anthropogenic species such as ammonium [ammonium nitrate is the stable form]. Nitrate is often a major component of fine particles, especially in more polluted urban areas (Finlayson-Pitts and Pitts, 2000). The California Regional PM10 and PM2.5 Air Quality Study (CRPAQS), Factors Limiting the Formation of Secondary Nitrate and Sulfate, December 10, 2002, is a study of PM during winter pollution episodes. The report concluded that, "analysis of the chemical composition of PM during winter pollution episodes indicates high levels of nitrate, modest levels of sulfate, and levels of ammonium sulficient for these two anions to exist primarily as ammonium nitrate and ammonium sulfate in atmospheric aerosols. The nitrate and sulfate found in PM are believed to be secondary because there are no known primary emission sources with significant emission rates of these compounds and because there are known chemical reactions that lead to their formation in the atmosphere. "As a group, the secondary inorganic species (nitrate, sulfate, and ammonium) can account for up to

70% of PM2.5 mass and up to 50% of PM10 mass in extreme wintertime pollution events in California's San Joaquin Valley (SJV). These species represent such a large portion of the PM that it is essential to characterize the factors influencing and, especially, limiting their formation."

These studies support that PM nitrate and sulfate are primarily associated with anthropogenic emissions. The vast change in nitrate and sulfate levels in our data indicates anthropogenic sources before the event (nitrate 25-37%, sulfate 11-12%). While the total carbon data was not always reliable, it too provides a general indication supporting anthropogenic dominance before the storm, 73% at Hawthorn, than less so the day of the storm, 30%, which is in line with Malm's et al findings of soils in the rural U.S.

Statistical Analysis

A statistical analysis approach was taken to estimate the amount of PM10 contributed by the wind storm. The analysis calculated the difference between PM10 and PM2.5 measured at Hawthorne (HW), Cottonwood (CW), and Lindon (LN). A PM2.5 monitor is not located at N2; however, it can be assumed that the results would be similar. All coinciding data available for PM10 and PM2.5 at each monitoring location was used. This analysis is severely limited since it does not take into account the effect of the dust on PM2.5. The resultants over estimate the expected amount of PM10 had the event not occurred.

Location	Loc	Scale	Ν	µgeo	σgeo	+1SD	+2SD
LN	2.639	0.9243	3290	14.00	2.5201	35.28	88.91
CW	2.610	0.7808	1112	13.60	2.1832	29.69	64.82
HW	2.573	0.7299	3224	13.11	2.0749	27.19	56.42

Table 10 – Lognormal Descriptive Statistics of the Difference between PM10 and PM2.5

When the differences calculated in Table 10 are applied to the measured concentration of PM2.5 on April 15, 2008, several estimates for the expected PM10 value can be made.

Table 11 – Measu	urad and Evpaata	d DM10 Valuaa fa	xr Anril 15 2000
	lieu anu Expecie	a Fivillo values id	JI ADHI 15. ZUUO

	Meas	sured	Expected											
Location	PM10	PM2.5	PM2.5 + µgeo	PM2.5 + 1SD	PM2.5 + 2SD									
LN	164	24.5	38.50	41.02	76.30									
CW	177	26	39.60	41.78	71.47									
HW	166	26.8	39.91	41.98	69.17									
N2	141													

Using the calculated expected PM10, PM2.5+2SD, we can attribute approximately **80-100** μ g/m³ of PM10 to the wind event. If it had not been for the wind event, PM10 would not have exceeded the standard.

Clear Causal Relationship and But For the Event Summary

A "clear and casual relationship" and "but for the event" demonstration has been made based on:

- The cold front produced storms with high winds and dust clouds that is a natural event;
- PM10 and PM2.5 concentration patterns correspond directly to the storm event, inclined due to high winds, than declined due to cold front precipitation, showing direct relationship;
- Backwards trajectory modeling is consistent with the National Weather Service report and images that dust sources included the Sevier Lake bed and Milford Flat burn scar. It also correlates with hourly PM increases;
- Speciation analysis for crustal matter (increase in crustal mass with reduction in nitrate and sulfate mass) and Al-Si ratio suggests that the source(s) of the PM samples are primarily non-anthropogenic;
- Wind speed and PM10 concentrations correlate well; and
- ✤ Statistical analysis attribute about 80-100 µg/m³ of PM10 to the wind event.

Mitigation (40 CFR 51.930)

The Exceptional Events Rule requires states to "take appropriate and reasonable actions to protect public health from exceedances or violations of the national ambient air quality standards." The intent of this section is to describe the State of Utah's dust control and public health protection programs.

Division of Air Quality State Implementation Plan

The Exceptional Events Rule Preamble states that, "where high wind events results in exceedances or violations of the particulate matter standards, EPA proposed that they be treated as natural events if..., and if anthropogenic activities which contribute to particulate matter emissions in conjunction with the high wind event are **reasonably well-controlled**."

The State of Utah has developed a comprehensive program of controls for airborne fugitive dust implemented through existing Utah Air Quality Rules, stationary source permitting, and State Implementation Plans (approved by EPA). This system of control techniques for fugitive dust has been in place since 1992 when the current Utah PM10 SIP was developed. The SIP requires control measures for both specific and general PM10 fugitive dust sources along the Wasatch Front. The SIP process introduced Reasonably Available Control Technology (RACT) and Best Available Control Measures (RACM) for sources that existed prior to the SIP process and required Best Available Control Technology (BACT) for new sources and modifications of existing sources. BACT requirements are enforced through Utah administrative rule R307-401. Since 1992, the state has implemented and continually updated two administrative rules that control fugitive dust throughout the state. R307-205 and R307-309 which, taken together, apply to all significant fugitive dust sources in the state. These rules require each significant fugitive dust source to develop and implement a site-specific fugitive dust control plan. In effect, an approved dust plan defines Best Available Control Measures (BACM) for a source, and provides a flexible mechanism

for controlling airborne dust. Under the Utah SIP requirements and the Air Quality Rules, all eligible sources in Utah are subject to emission controls defined by RACT, BACT or BACM.

Utah Air Rules, Permitting

R307-205: Fugitive Emissions and Fugitive Dust

This rule applies statewide to all sources of fugitive emissions and fugitive dust, except for agricultural or horticultural activities. Fugitive emissions may not exceed 20% opacity. The rule applies to construction activities that disturb an area greater than 1/4 acre in size. The rule also applies to roadway emission controls, mining activities and tailings piles and ponds. While a permit, known as an Approval Order, is not required from the Executive Secretary of the Air Quality Board, steps need to be taken to minimize fugitive dust. Control measures may include; watering, chemical stabilization, synthetic cover, vegetative cover, windbreaks, minimizing the area of disturbed tailings, restricting the speed of vehicles in and around operations and other techniques approvable by the executive secretary. These control measures are in keeping with the USEPA document titled Fugitive Dust Background Document and Technical information Document for Best Available Control Measures.

Treatment effectiveness is based on EPA's AP-42 Factors:

Section 11.19.1.2 states:

"Wet suppression techniques include application of water, chemicals and/or foam, usually at crusher or conveyor feed and/or discharge points. Such spray systems at transfer points and on material handling operations have been estimated to reduce emissions 70 to 95 percent. Spray systems can also reduce loading and wind erosion emissions from storage piles of various materials 80 to 90 percent. Control efficiencies depend upon local climatic conditions, source properties and duration of control effectiveness. Wet suppression has a carryover effect downstream of the point of application of water or other wetting agents, as long as the surface moisture content is high enough to cause the fines to adhere to the larger rock particles."

Section 13.2.4.4 "Controls", states:

"Watering and the use of chemical wetting agents are the principal means for control of aggregate storage pile emissions. Enclosure or covering of inactive piles to reduce wind erosion can also reduce emissions. Watering is useful mainly to reduce emissions from vehicle traffic in the storage pile area. Watering of the storage piles themselves typically has only a very temporary slight effect on total emissions. A much more effective technique is to apply chemical agents (such as surfactants) that permit more extensive wetting. Continuous chemical treating of material loaded onto piles, coupled with watering or treatment of roadways, can reduce total particulate emissions from aggregate storage operations by up to 90 percent."

Table B.2-3 Particle Size: 0 - 2.5 6 - 10 2.5 - 6 Efficiency: Dust suppression by water sprays 40% 65% 90% Efficiency: Dust suppression by chemical stabilizer or wetting agents 90% 40%

65%

R307-309: Nonattainment and Maintenance Areas for PM10: Fugitive Emissions and Fugitive Dust.

This rule establishes minimum work practices and emission standards for sources of fugitive emissions and fugitive dust for sources listed in the State SIP or located in a PM10 nonattainment and maintenance areas to meet the reasonably available control measures for PM10. A fugitive dust control plan must be submitted to the Executive Secretary at the Utah Division of Air Quality for review and approval prior to commencement of a project.

For temporary aggregate processing projects, portable permits are issued for the specific equipment. A permit application, known as a Notice of Intent must be submitted to the Executive Secretary at the Utah Division of Air Quality before project initiation and must include a dust control plan.

Fugitive emissions from stationary sources may not exceed 15%. Opacity caused by fugitive dust must not exceed 10% at a property boundary and 20% on site, with the exclusion when wind speed exceeds 25 mph and the owner/operator is taking appropriate actions to control fugitive dust. Appropriate measures include an approved dust control plan.

Any person owning or operating a new or existing source of fugitive dust, including storage, hauling or handling operations, or engaging in clearing or leveling of land one-quarter acre or greater in size, earthmoving, excavation, or movement of trucks or construction equipment over cleared land one-quarter acre or greater in size or access haul roads, or engaging in demolition activities including razing homes, buildings or other structures shall submit a plan to control fugitive dust to the executive secretary no later than 30 days after the source becomes subject to R307-309. The plan shall address fugitive dust control strategies for the following operations as applicable:

- Material Storage;
- Material handling and transfer;
- Material processing;
- Road ways and yard areas;
- Material loading and dumping;
- Hauling of materials;
- Drilling, blasting and pushing operations;
- Clearing and leveling;
- Earth moving and excavation;
- Exposed surfaces;
- Any other source of fugitive dust;
- Strategies to control fugitive dust may include;
- Wetting or watering;
- Chemical stabilization;
- Enclosing or covering operations;
- Planting vegetative cover;
- Providing synthetic cover;
- Wind breaks;
- Reducing vehicular traffic;

- Reducing vehicular speed;
- Cleaning haul trucks before leaving loading area;
- Limiting pushing operations to wet seasons;
- Paving or cleaning road ways;
- Covering loads;
- Conveyor systems;
- Boots on drop points;
- Reducing the height of drop areas;
- Using dust collectors;
- Reducing production;
- Mulching;
- Limiting the number and power of blasts;
- Limiting blasts to non-windy days and wet seasons;
- Hydro drilling;
- Wetting materials before processing;
- Using a cattle guard before entering a paved road;
- Washing haul trucks before leaving the loading site;
- Terracing; or
- Cleaning the materials that may create fugitive dust on a public or private paved road promptly; or Preventing, to the maximum extent possible, material from being deposited onto any paved road other than a designated deposit site.

Each source must comply with all provisions of the fugitive dust control plan as approved by the executive secretary.

Any person owning, operating or maintaining a new or existing material storage, handling or hauling operation must prevent, to the maximum extent possible, material from being deposited onto any paved road other than a designated deposit site. Any such person who deposits materials that may create fugitive dust on a public or private paved road must clean the road promptly.

Any person engaging in clearing or leveling of land with an area of one-quarter acre or more, earthmoving, excavating, construction, demolition, or moving trucks or construction equipment over cleared land or access haul roads must prevent, to the maximum extent possible, material from being deposited onto any paved road other than a designated deposit site. Any such person who deposits materials that may create fugitive dust on a public or private paved road shall clean the road promptly.

Any person responsible for construction or maintenance of any existing road or having right-of-way easement or possessing the right to use the same whose activities result in fugitive dust from the road must minimize fugitive dust to the maximum extent possible. Any such person who deposits materials that may create fugitive dust on a public or private paved road must clean the road promptly.

Unpaved Roads - any person responsible for construction or maintenance of any new or existing unpaved road must prevent, to the maximum extent possible, the deposit of material from the unpaved road onto any intersecting paved road during construction or

maintenance. Any person who deposits materials that may create fugitive dust on a public or private paved road must clean the road promptly.

Any person who owns or operates a mining operation shall minimize fugitive dust as an integral part of site preparation, mining activities, and reclamation operations. The fugitive dust control measures to be used may include:

- Periodic watering of unpaved roads;
- Chemical stabilization of unpaved roads;
- Paving of roads;
- Prompt removal of coal, rock minerals, soil, and other dust-forming debris from roads and frequent scraping and compaction of unpaved roads to stabilize the road surface;
- Restricting the speed of vehicles in and around the mining operation;
- Revegetating, mulching, or otherwise stabilizing the surface of all areas adjoining roads that are a source of fugitive dust;
- Restricting the travel of vehicles on other than established roads;
- Enclosing, covering, watering, or otherwise treating loaded haul trucks and railroad cars, to minimize loss of material to wind and spillage;
- Substitution of conveyor systems for haul trucks and covering of conveyor systems when conveyed loads are subject to wind erosion;
- Minimizing the area of disturbed land;
- Prompt revegetation of regraded lands;
- Planting of special windbreak vegetation at critical points in the permit area;
- Control of dust from drilling, using water sprays, hoods, dust collectors or other controls approved by the executive secretary;
- Restricting the areas to be blasted at any one time;
- Reducing the period of time between initially disturbing the soil and revegetating or other surface stabilization;
- Restricting fugitive dust at spoil and coal transfer and loading points; or
- Control of dust from storage piles through use of enclosures, covers, or stabilization and other equivalent methods or techniques as approved by the executive secretary, or Other techniques as determined necessary by the executive secretary.

Any person owning or operating an existing tailings operation where fugitive dust results from grading, excavating, depositing, or natural erosion or other causes in association with such operation must take steps to minimize fugitive dust from such activities. Such controls may include:

- Watering,
- Chemical stabilization,
- Synthetic covers,
- Vegetative covers,
- Wind breaks,
- Minimizing the area of disturbed tailings,
- Restricting the speed of vehicles in and around the tailings operation, or other equivalent methods or techniques which may be approvable by the executive secretary.

Utah R307-202-3

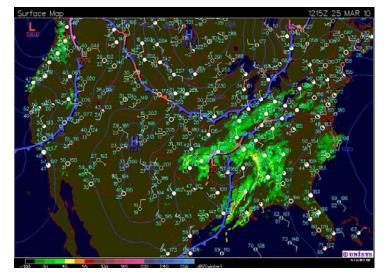
Prohibits burning of trash and other waste and salvage operations by open burning. Persons/agencies wishing to open burn tree cuttings, slash in forest areas etc., must seek a permit from DEQ that include control measures.

Compliance

The seven DEQ inspectors conduct daily surveillance inspections and have been advised to include in their routes dust prone areas and areas with particularly dust prone industries, such as aggregate industries (quarries, concrete manufacturing, etc.) during the dust season. Construction sites are also subject to inspection and verification.

A Compliance Advisory Notice is delivered to sources that appear to be out of compliance and provides an opportunity for DEQ and the regulated source to discuss the findings of the inspection. If a source is issued a Compliance Advisory Notice and responds by promptly returning to compliance, a reduced penalty may be offered for their expedient cooperation (fines are \$2,000-7,000 for dust violations). Dust control violations are typically quickly resolved upon receipt of a Compliance Advisory Notice. However, the DEQ is able to proceed with Notices of Violation and Orders to Comply, if necessary.

TASK	2009
Annual Inspections Completed (19 inspectors)	978
Temporary Relocations Accepted	103
Fugitive Dust Control Plans Accepted, Mostly Construction	57
Complaints Received	149
VOC Inspections	73
Warning Letters	16
Notices of Violations	3
Compliance Advisories, 7 Directly Related to Dust	65
Settlements	43
Penalties Assessed	\$569,543
85% Compliance measured via inspection stack testing	ns, reports and


2009 DEQ Compliance Summary

Control Measures Demonstration Case Study - Kennecott Mine Tailing Impoundments

Successful implementation of Utah's PM10 SIP is perhaps best demonstrated by the lack of dust generated at the Kennecott Copper Mine tailing impoundments during a dust storm event that occurred on March 25, 2010.

A natural spring dust storm was generated on March 25 by an approaching cold front that arrived into Utah the next day, akin to this report event date of April 15, 2008.

High western winds traversed the Western Desert and Great Salt Lake, entraining dust that traveled across the lake and into the Salt Lake valley. Figure 6 shows the hourly PM10 values across the valley before, during and after the dust storm. The highest PM10 values were in the northern

portions of the valley consistent with the dust storm location and general directional movement.

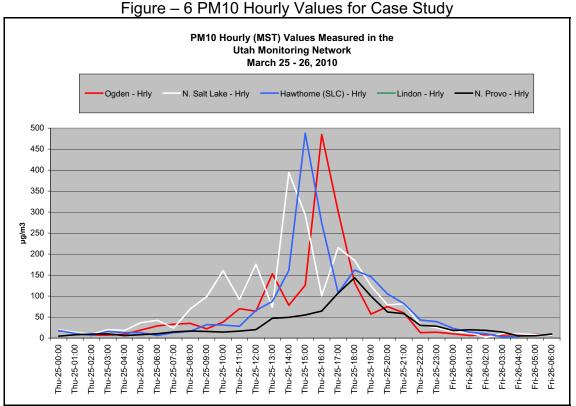


Image 4 shows the locations of the Western Desert, Kennecott tailings impoundments and the Saltaire concert venue that is located on the shore of the Great Salt Lake (lake visible in black/blue and white shore areas).

Image 4 – locations of Western Desert and Kennecott Impoundments

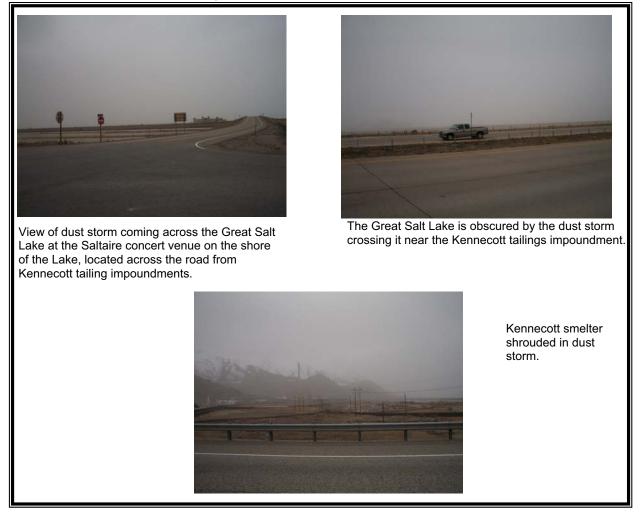

Image 5 provides an aerial view of the Kennecott impoundments which are hundreds of thousands of acres in size and the Great Salt Lake shoreline.

Image 5 – Aerial View of Kennecott Tailing Impoundments-Great Salt Lake Shoreline and Wind Vector at 2100Z March 25, 2010

The impoundments were a major source of particulate matter in the Salt Lake valley until Kennecott implemented a fugitive dust abatement program that was first implemented in

1997 and revised July 2002, as mandated by DEQ through permitting and compliance. The program effectiveness can be seen through a series of photographs that were taken of the March 25, 2010 dust storm as it came across the Great Salt Lake and traversed across the Kennecott property on its way to the Salt Lake valley.

March 25, 2010 Dust Storm Photo Documentation

The first photograph is of the dust storm crossing the southeast shore of the Great Salt Lake heading towards Kennecott in the afternoon around 3 p.m. MDT. The Saltaire concert venue located on the lake shore is visible in the background. The second photograph is of a truck traveling on Interstate 80 along the lake and across from the impoundments. Notice the Lake is not visible behind the truck. The last photograph in this series shows how the dust storm moved onto land shrouding the Kennecott smelter. Wind speed ranged from 20-25 mph with visibility limited to half mile at times (per Kennecott, measurements are required in their dust suppression plan).

March 25, 2010 Dust Storm Photo Documentation

The top photographs are of the impoundments, showing the dust storm but no contribution from the impoundments. The bottom photograph is of the Salt Lake valley shrouded by the dust storm.

This case study demonstrates:

- Natural storm events in Utah generate high winds that traverse desert playa regions entraining arid surface soils creating dust storms. In this case, high winds were caused by an advancing cold front. The winds generated the dust storm as they traveled from the west to southeast across the Western Desert and the Great Salt Lake.
- 2. Photo documentation was made that the dust storm was in full force before landing on the lake southeast shore before reaching Kennecott.
- 3. Monitoring data confirms very high PM10 levels associated with the storm event starting around 1-2 p.m. MDT, consistent with dust storm observations made at Kennecott.
- 4. Photo documentation was made that the massive impoundments did not contribute to the dust storm; thus verifying that DEQ enforcement control measures are reasonably effective and consistent with the intent of the Exceptional Events Rule Preamble on this matter.

Mobile Sources Particulate Reduction

Automotive Inspection Maintenance Program

Utah is required by Section 182 of the Clean Air Act to implement an inspection maintenance program in Salt Lake County that is at least as effective as the EPA's Basic Performance Standard. Salt Lake County began its program in 1984. The program exceeds the Basic inspection maintenance performance standard for all pollutants and in doing so, mitigates PM.

Utah Clean Diesel Program

Agriculture: Diesel engines are a major source of pollution, emitting particulates, amongst other pollutants. DAQ applied for and received \$750,000 from the American Recovery and Reinvestment Act to replace 11 agricultural vehicles and equipment, repower 21 engines in agricultural vehicles and equipment, and install 30 Auxiliary Power Units on agricultural vehicles. DAQ collaborated with the Utah Department of Agriculture and Food and Utah State University to identify agricultural operators whose operations are negatively impacting non-attainment areas in the state. The project's scope of replacing, repowering, and installing more fuel efficient technology on agricultural vehicles and equipment will ensure that stricter emissions standards requirements are met and yield more diesel fuel conservation.

School Bus Project: In 2007, DAQ started the Utah Clean School Bus Project in conjunction with Utah Office of Education, local school districts, county and municipal governments, as well as community and non-profit organizations. This coalition is working together to secure funding sources for school districts to purchase emission reducing technologies for buses statewide. The application of these technologies is expected to reduce particulate matter by 30%. As of 2009, a total of 247 buses have been retrofitted. By the fall of 2010, 454 buses will be retrofitted.

Clean Diesel Trucking Initiative: DAQ initiated the Clean Diesel Grant Program to install APUs (Auxiliary Power Units) on 48 long-haul tractors that will reduce diesel emissions and fuel usage from diesel-powered, long-haul trucks that travel and idle within the non-attainment areas of the Wasatch Front. The funding was provided by a State allocation of \$352,941 through EPA's National Clean Diesel Campaign and a State match of \$235,294, for a total of \$588,235. EPA awarded DAQ a grant in 2010 to continue installation of APUs.

Clean Fuel Vehicle Tax Credit and Loan Program

The Utah Clean Fuels and Vehicle Technology Grant and Loan Program, funded through the Clean Fuels and Vehicle Technology Fund, provides grants to assist businesses and government entities in covering:

- 1) The cost of converting a vehicle to operate on clean fuels.
- 2) The incremental cost of purchasing an Original Equipment Manufacturer (OEM) clean fuel vehicle.
- 3) The cost of retrofitting diesel vehicles with EPA verified closed crankcase filtration devices, diesel oxidation catalysts, and/or diesel particulate filters.

The Clean-Fuels Grant and Loan Program also provides loans for the cost of converting a vehicle to operate on a clean fuel, for the purchase of OEM clean fuel vehicle, and for the purchase of fueling equipment for public/private sector business and government vehicles. Finally, the program can provide grants and loans to serve as matching funds for federal and non-federal grants for the purpose of converting vehicles to operate on a clean fuel, purchasing OEM clean fuel vehicles, or retrofitting diesel vehicles.

Smoking Vehicles

Vehicles emitting excessive smoke contribute to airborne particles. Five local health departments (Cache, Davis, Salt Lake, Utah and Weber Counties) operate smoking vehicle education and notification programs. People who spot a vehicle producing excessive smoke can report it through their respective county health department.

In 2009, 724 vehicles were reported to Salt Lake County Health Department alone. The County issued 490 notices.

Utah Clean City

Utah's Clean Cities Coalition is one of 85 coalitions around the country that's part of the U.S. Department of Energy's strategy to reduce America's dependence on imported foreign oil. The Utah coalition sponsored Idle Free Awareness Week which included educating school bus drivers on the air quality value of limiting idling.

Variable Message Signage

The Utah Department of Transportation (UDOT), in conjunction with the DEQ air quality forecasting program, issues air quality warnings on electronic message boards placed along Utah's highways. The signage asks drivers to limit their driving on high alert days. An informal study conducted this winter by UDOT during 6-days with and without air quality alerts indicates that there was a 3-5% auto traffic reduction (per Glen Blackwelder, UDOT Traffic Operations Engineer).

Division of Air Quality Community Outreach

Choose Clean Air

An interactive source of information about ways individuals can help improve air quality by making smart choices in their personal lives can be found on the DEQ website. The site includes 50 suggestions for daily life.

The UDEQ also offers an electronic mail server (Listserv). Subscribers are automatically notified by e-mail when unhealthy air pollution levels are forecast for the Wasatch Front.

Dust Control Education

The DEQ website includes a page on dust control and the aggregate industry. The page is intended to educate the public about dust, control methods and community aggregate locations near them by providing links to aggregate firms Approval Orders containing fugitive dust control conditions.

Clean Utah

DEQ is committed to working with businesses to ensure the ongoing protection of public health and the environment. Clean Utah is a program that encourages and rewards business and other permit holders for going beyond compliance to preserve and protect Utah's environment.

Small Business Environmental Assistance Program

The Small Business Environmental Assistance Program helps small businesses with permitting assistance, emission calculations, technical issues, regulatory interpretation, and pollution prevention techniques. For example, this program provides businesses with tools to understand and meet Utah's environmental requirements. For example, see the best management practices pamphlet below.

Resource Development Coordinating Committee (RDCC)

The RDCC is a clearinghouse for information and coordination of state response on activities affecting state and public lands (including federal lands) throughout Utah. The RDCC includes representatives from the state agencies that are involved or impacted by public lands management. The RDCC coordinates the review of technical and policy actions that may affect the physical resources of the state and facilitates the exchange of information on those actions among federal, state, and local government agencies. The types of projects that are submitted for RDCC approval include oil and gas drilling and exploration, stream alteration, natural gas pipelines, transportation and construction projects of all sorts, forest fuel management, potable water management projects and recreational project development. The DEQ is a permanent agency member of the RDCC and as such, RDCC project approvals must include DEQ concurrence. Since the vast majority of the projects submitted for RDCC approval are of substantial size and scope, most projects include soil disturbance with the potential to generate fugitive dust. The DEQ assures that all projects receiving RDCC approval with the potential to generate fugitive dust include conditions that the projects will meet Utah air quality regulations and include fugitive dust management plans.

Year	Projects Reviewed
2004	533
2005	1236
2006	1245
2007	1256
2008	1251
2009	810
Total	6331+

DEQ RDCC Project Reviews

Division of Water Quality

The Utah Division of Water Quality is responsible for a variety of programs that monitor, assess, and protect the surface and ground waters of the state. These programs overlap with the DEQ, to some degree, in regard to soil and sediment nonpoint sources pollution prevention.

UPDES Storm Water General Permit for Construction Activities

Utah R317-8-3.9(6)(d)(l0) and R317-8-3.9(6)(e)(l), require a UPDES storm water permit when construction activities disturb one or more acres of land. Permit requirements include the development and approval of a pollution prevention plan (PPP) to control and mitigate erosion and sediment migration. The PPP must include slope and wind erosion controls for material piles at construction sites.

Nonpoint Source Pollution 319 Program

Section 319 of the Clean Water Act deals with nonpoint sources (NPS) of pollution. Land use activities such as agricultural production, road and building construction, mining, and forestry operations can all potentially be NPS polluters. The 1987 reauthorization of the Clean Water Act authorized the U.S. Environmental Protection Agency to fund individual state programs designed to control and eliminate NPS problems. Utah's Nonpoint Source Task Force has spent the past decade or more setting up local areas of the state to take on demonstration projects in specific watershed areas. Some of the largest watershed efforts have taken place in the Little Bear River in Cache County, Chalk Creek in Summit County, and Otter Creek in Piute and Sevier counties.

Agriculture

Recognizing the problems associated with soil erosion on agricultural cropland, rangeland and other environmentally sensitive cropland areas, the U.S. Department of Agriculture (USDA) included conservation provisions in the Farm Security and Rural Investment Act of 2002 (Farm Bill). The conservation provisions of the legislation are designed to assist farmers and ranchers with a number of voluntary programs including cost-share, land rental, incentive payments, and technical assistance. The conservation programs of the Farm Bill are administered by the NRCS.

The Farm Bill legislation created and reauthorized three programs that are designed to reduce erodible land:

- Conservation Reserve Program (CRP)
- Conservation Survey Program (CSP)
- Environmental Quality Incentives Program (EQIP)

The Conservation Reserve Program (CRP) encourages farmers to enter into contracts with USDA to place erodible cropland and other environmentally sensitive land into long-term conservation reserve. The reserves are generally 10 to 15 years in duration and the reserve is established by the implementation of environmental practices to reduce soil erosion.

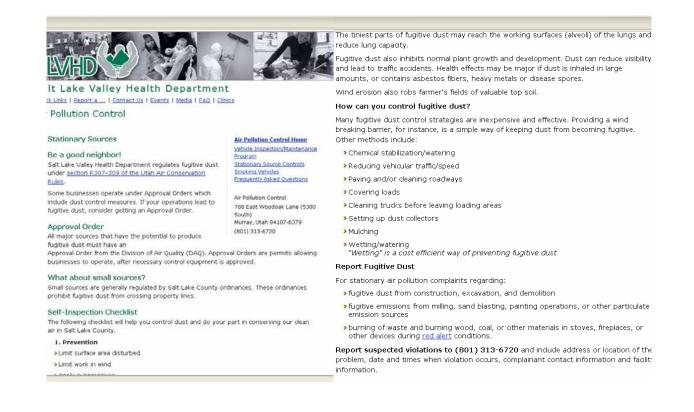
The CRP systematically reduces soil erosion by planting vegetative cover on highly erodible lands (HEL). In Utah, HEL soils are normally on steeper valley side slopes subject to erosion from washing or open areas vulnerable to high wind events. In exchange, landowners receive annual rental payments for the land and cost-sharing assistance for the established practices. In the early years of the program, the emphasis was on HEL soils. Since 1996, there is an additional authorization to address wild life habitat and air quality. The more recent authorization includes additional conservation practices including windbreaks, riparian buffers and wetland mitigation which are instrumental in reducing soil erosion. Furthermore, the USDA and DEQ conducted an analysis of eligible parcels for the 2010 awards to preferentially select parcels that are in or adjacent to nonattainment areas in order to maximize program benefits. There are 127,262 acres in this program in Utah.

The Conservation Security Program (CSP) is a newer approach to agricultural land protection authorized under the 2002 Farm Bill that rewards agricultural producers who have already undertaken conservation practices and commit to additional efforts. The CSP program, unlike other conservation programs, is available on pastureland, rangelands and all types of cropland including orchards, vegetable, and dry agriculture prevalent in Utah. The program has designated three watershed areas as eligible to participate in the program including two, Lower Bear-Malad (Cache County) and San Pitch Watershed (Sanpete County) that are within the north and south high-wind corridors identified by DAQ' source attribution model. There are 232,847 acres in the CSP program in Utah.

The Environmental Quality Incentives Program (EQIP) is a voluntary program that assists farmers and ranchers, who face existing soil and water resource degradation. The EQIP promotes agricultural production in a manner that allows producers to meet federal, state and local environmental requirements. Some of the stated aims of the program are as follows:

- Reduction of non-point source pollution, such as nutrients, pesticides;
- Reduction of emissions including particulate matter, nitrogen oxides, ozone precursors, and volatile organic compounds that can contribute to degradation air quality standards; and
- Reduction in soil erosion and sedimentation on agricultural lands.

In general, NRCS programs encourage agricultural practices that improve topsoil and prevent wind blown dust during high-wind events. Notable examples of techniques and practices advocated include:


- Planting of cover crops and perennials to protect agricultural soils with emphasis on HEL soils;
- NRCS encourages the use of perennial crops and existing weeds on corners and non-utilized areas of agricultural land to resist soil erosion;
- NRCS "costs shares" on conservation practices with local farmers to prevent soil erosion; and
- NRCS works with Utah State University to identify agricultural techniques and practices to minimize soil erosion.

A primary aim of this process is to reduce soil erosion on agricultural land, which in turn reduces wind blown dust during high-wind events. This program is open to attainment and nonattainment areas in Utah. There are 1,133,687 acres in this program in Utah.

Representative County Dust Control Programs

Salt Lake County

Salt Lake Valley Health Department regulates fugitive dust under section R307-309 of the Utah Air Conservation Rules. The County enforces fugitive dust from construction, aggregate industries, sand blasting, painting and burning. The web site includes information on reporting violations. County inspectors actively inspect dust prone activities.

Davis County

Davis, like Salt Lake County, enforces fugitive dust through Utah R307-309 and also maintains a fugitive dust web page and violation reporting. Inspectors have been known to park themselves all day long on Beck Street to enforce compliance. Beck Street contains refineries and very large aggregate industries that are a source of fugitive dust.

The following is taken from the Davis County 2009 Annual Report:

"The Staff of the Air Quality Bureau is composed of both Environmental Health Scientists and employees of the Inspection/Maintenance program. Some of the activities in this bureau are to investigate any air related discharge from fuel and other volatile organic compounds (VOC) such as spills and fuel transfer operations. To investigate smoke of any kind, including open burning, point or stack emissions and mobile source violations."

Air Quality	2009	2008	2007
Environmental Investigations in Air Quality	70	441	64
Open Burning Activities	28	18	21
Air Quality Complaints	31	10	70
Air Quality Consultations with the Public	297	156	422

Selected Statistics Taken From Annual Report

Weber County

Weber County has its own Excavation Ordinance for construction that includes dust control. Application must be made and approved before construction. An application fee includes the cost for reviewing engineering plans and site inspection.

Cache County

Cache County maintains zoning ordnances that include dust controls.

Utah Air Quality Public Notifications

In order to improve the presentation of air quality information to the public, DAQ has improved our air quality forecasting webpage. The web page now shows the air quality forecast for today and the next two days. The Air Monitoring Center (AMC) provides air pollution information based on daily air quality status. The AMC data is used to determine the relationship of existing pollutant concentrations to the National Ambient Air Quality Standards. There is a three tiered air quality alert system: Green, Yellow (alert days), and Red (actions days) that is used to implement winter and summer controls on the use of wood and coal burning stoves, fire places, and motor vehicles. There are five health advisory categories: good, moderate, unhealthy advisories A and B, and very unhealthy. The AMC advisory is calculated for five major pollutants including ground-level ozone, particulate pollution (particulate matter), carbon monoxide, sulfur dioxide, and nitrogen dioxide. The new index now also incorporates recommendations for actions to take on days when concentrations are in the red zone, to mitigate the effects of pollution for affected groups and recommendations for industry and citizens that help reduce pollution levels. The outreach program information consolidated in the three day forecast includes the Summer and Winter Control Programs and Choose Clean Air information.

The web site includes additional information on wind blown dust.

News Release to Media

In additional to web site alerts, DEQ also notifies the media in order to maximize public distribution.

Air Monitoring Manager, Robert Dalley, notified DEQ staff via e-mail of RED alert day.

From:Robert DalleyTo:EQ ALL DEPTDate:4/15/2008 8:11 AMSubject:Air Quality RED Alert blowing dust

The Utah Department of Environmental Quality has issued a RED air quality ALERT today April 15, 2008 because of blowing dust in Davis, Salt Lake, Utah and Weber Counties. A Health Advisory is issued for sensitive people, those with respiratory disease or heart disease, the elderly and children should avoid prolonged or heavy exertion outdoors and avoid dusty situations. Conditions will improve late tonight and tomorrow.

A similar notice was sent to the media by Mr. Dalley as indicated below from the Salt Lake Tribune.

Utah posts rare spring air alert because of blowing dust The Salt Lake Tribune Article Last Updated: 04/15/2008 09:38:47 AM MDT

Updated: 9:37 AM- Blowing dust this morning has prompted the Utah Department of Environmental Quality to issue a red air quality alert in Davis, Salt Lake, Weber and Utah counties. A Health Advisory is issued for sensitive people, those with respiratory disease or heart disease, the elderly and children should avoid prolonged or heavy exertion outdoors and avoid dusty situations. DEQ officials say conditions will improve late tonight and tomorrow.

Public Comment (Preamble V.G.)

The DEQ established a 30-day comment period from June 1, 2010 through June 30, 2010. The announcement of the comment period was published in the Salt Lake Tribune and Deseret News on May 17, 2010 and June 1, 2010.

Affidavit of publication will be inserted in final documentation.

All comments received will be inserted in the final documentation.

References

Bob Eldred, Internal IMPROVE, June 20, 2003, Evaluation of the Equation for Soil Composite,

http://vista.cira.colostate.edu/improve/Publications/GrayLit/023_SoilEquation/Soil_Eq_Eval uation.pdf

Barbara J. Finlayson-Pitts and James N. Pitts, Jr., *Chemistry of the Upper and Lower Atmosphere*, (Academic press, 2000)

N.K. Kim, Y.P. Kim, C.H. Kang and K.C. Moon, October, 2007, Major factors affecting the ambient particulate nitrate level at Gosan, Korea, Atmospheric Research, Volume 90, Issues 2-4, Pages 104-114.

Land Resource Regions and Major Land Resource Area of the United States, the Caribbean, and the Pacific Basin. *United States Department of Agriculture Handbook* 296, 2006.

Malm, W.C., M.L. Pitchford, C. McDade, and L.L. Ashbaugh. 2007. Coarse particle speciation at selected locations in the rural continental United States. *Atmospheric Environment*, 41 (10): 2225-2239.

NOAA,

Http://water.weather.gov/index.php?layer[]=0&layer[]=1&layer[]=4&timetype=YM&loctype= STATE&units=engl&timeframe=current&timeYYYY=2008&timeMM=3&product=per_normal &loc=conus

Pettijohn, F.J., Sedimentary Rocks, (NY, Harper & Row, 1949, 1957, and 1975).

Shafer, J.C., and W.J. Steenburgh, 2008: Climatology of Strong Intermountain Cold Fronts. *Monthly Weather Review*, 136, 784-807.

Appendix A

Hourly data from real time monitors during the event.

Cition Control																					150																					150				
	۱C	35	35	35	35 26	35 35	35	35	35	35	35	35 25	35	35	35	ŝ	35 25	35	35	35	35	35	35	35	35	35	35 35	35	35	35	35	35	35 25	35	35	35	35	35	35	35 35	35	35	35	35 25	50 10	35 35
	. 7	10.36	œ	10.39 0.10	9.48	10.34	11.95	13.32	12.01	10.53	10.35	14.41 8.68	5.96	5.4	4.89	0./3 7.00	5.93 6.47	4 07	4.67	5.61	5.54	8.28	12.73	8.84 	4.77	6.29 9.25	0.0 77 A	7.76	9.55	10.04	5.88	5.08	8.66 1 7	2.91	7.64	19.22	36.33	58.7	64.17	32.83 32.13	21.09	10.92	3.74	4.67		4.53 3.82
	16.9	23.9	27.3	24.6	17.5	16.1	14.8	16.4	14	12.5	17.4 7.0	0.0	16.2	9.7	11.9	2.C	9 °	0.11	10.9	7.3	10.3	10.8	8.4	2	10	8.7	10.1	12.2	17.3	18.9	22.8	11.5	10.8	9.3 0.3	12.9	23.2	31.5	45.5	43.5	40.0 37.9	23.5	16.6	5.7	6.8 0		11.9 13.2
ŝ			6.5	7.1	7.1	7.8	8.5	7.6	8.7	9.2	9.2	9.0 101	10	9.3	13.5	13.7	17.4	15.7	13.6	9.2	8.4	7	5.4	6.3	5.9 •	0.0 4.0	0.0 2	9.1	7.1	4.8		4.3	хо ц a	0.0 9.2	7.7	7.3	10.3	10.8	16.6	20.2 18	13.4	20.1	9.9	8.3 0.3	0.02	44.8 23.8
		12.8	11.7	11.2	12.1 0.6	9.2 9.2	11.2	12.8	13.9	12.9	0.0 7	0.7 6 P	6.9 9.9	8.1	5.8	12.1	10.3	10.6	10.1	10.9	11.7	9.4	8.2	9.5 9.5	6.7	1.0	7.3	7.1	9.2	9.2	9.1	6,	19.4 0.4	6.7	8	15.4	21.3	31.4	34.4	24.1 18	21.8	18.5	15.7	18	30.7 60 F	62.5 145.9
	лен - пп пал 20.5	18.9	19.3	16.4	16.6 11 6	13.5	16	17	15.2	16.4	12.9	1 a 11	15.4	17.9	18.7	10.9	14.4 17.6	22.6	20.1	15.5	12.4	10.9	10.3	8.6 2 0	8. r	1.1	10.2	15.6	12.9	11.6	9.9	10.1	10.3	8.8	4.4	5	8.8	8.3	13.3	31.8 27.6	18.8	19.6	19.6	19	0.77	46.1 86
	Logari - Firi Ogueri - Firi Frawiri Offie 12 3 20 5 13 3	17.6	20	16.2	18.3	21.5	21.8	18.7	18.3	19.3	13.6	10.7	12.4	11.7	10.1	0.N	2.0 α	0.0 2 0	9.4	9.5	9.7	10.1	10	10.9	11.1	11.9	13.3	17	18.1	13.9	12.5	10.4	7.9	 10.6	5.6	4.8	6.5	7.2	7.1	77 4 27 4	20.8	14.3	13.3	16.8	5.71	29.7 33.2
_	0.00 0.00	1:00	2:00	3:00	4:00 5:00	0.00 9:00	7:00	8:00	00:6	10:00	00:01	13-00	14:00	15:00	16:00	00:71	18:00	20.00	21:00	22:00	23:00	0:00	1:00	2:00	3:00	4:00	00:c	7:00	8:00	9:00	10:00	11:00	12:00	14:00	15:00	16:00	17:00	18:00	19:00	21:00	22:00	23:00	00:0	1:00	2.00	3:00 4:00

:	Filter Switch																						006																						006					
	24 Hr Std Fill 150	150	150	150	150	150	150	150	150	150	150	091	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150
	, σ	26 26	5 4	16	13	18	19	16	0 0	j œ	37	= \$	<u>5</u> 6	<u>ე</u> თ	7	4	6	9	13	14	24	£ :	14	35	47	28	10 26	707	01 26	0, 0	10	2 10	22	17	16	13	5 5	105	206	351	358	300	165	120	55	22	13	24	31	25
:	don - Hr N. 23	28	24	21	28	13	29	24	16	ω ζ	17	<u>6</u>	o ₹		4	с	4	5	12	15	5	12	9	ωı	Ω,	; 1	01 0	o 5	0 ₹	10	385	35	17	9	4	ლი I	ດເ	4 7 2 0	170	149	117	114	70	57	22	7	16	31	32	71
:	rthorne Lin 28	21	17	19	20	19	24	29	23	17	χı	റം	οц	ი დ	9	13	18	12	16	11	15	19	17	4	4	; 1	/ /	<u>t</u> 5	20	8	30	29	31	17	36	31	6	4 0 7 1 7	20	129	100	56	58	53	95	59	95	130	402	472
PM10	Ogden - Hr N. Salt Lak Hawthorne Lindon - Hr N. Provo 37 40 28 23	30	20	34	21	15	12	53	16 20	22	01	ρç	<u>5</u> 5	15	14	14	16	16	29	30	10	17	17	œ ;	33	23	17	0	19 25	44	47	40	96	52	52	47	44 70	07	0, 88	238	229	127	128	140	151	147	183	322	821	644
	len - Hr N. 3 37	31	31	29	20	20	28	28	19 19	11	01	οc	n 6	<u>5</u> 6	22	17	1	10	25	44	31	28	19	15	13	4	14		0 4 G	00 2	30	17	20	26	46	16	<u>0</u>	0 ,	± 5	25	81	66	59	55	49	81	62	146	234	474
(0.00 D-00	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	00:11	12-00	14:00	15:00	16:00	17:00	18:00	19:00	20:00	21:00	22:00	23:00	0:00	1:00	2:00	3:00	4.00	0.00 9.00	2.00	8-00	00:6	10:00	11:00	12:00	13:00	14:00	10:01	17-00	18:00	19:00	20:00	21:00	22:00	23:00	0:00	1:00	2:00	3:00	4:00
	4/13/08 0-00	4/13/08 1:00	4/13/08 2:00	4/13/08 3:00	4/13/08 4:00	4/13/08 5:00	4/13/08 6:00	4/13/08 7:00	4/13/08 8:00	4/13/08 9:00	4/13/08 10:00	4/13/08 11:00	4/13/08 12.00	4/13/08 14:00	4/13/08 15:00	4/13/08 16:00			4/13/08 19:00	4/13/08 20:00	4/13/08 21:00	4/13/08 22:00	4/13/08 23:00	4/14/08 0:00	4/14/08 1:00	4/14/08 2:00	4/14/08 3:00	4/14/00 4.00	4/14/08 5:00	4/14/08 7-00	4/14/08 8-00	4/14/08 9:00	4/14/08 10:00		4/14/08 12:00	4/14/08 13:00		4/14/08 15:00			4/14/08 19:00	4/14/08 20:00	4/14/08 21:00	4/14/08 22:00	4/14/08 23:00	4/15/08 0:00	4/15/08 1:00	4/15/08 2:00	4/15/08 3:00	4/15/08 4:00

11.97 16.74	40.58 54.32	46.43	42.44	29.79 25	15.57	11.49	0.09 12.18	17.59	18.55	21.4 20.41	17.65	8.96	1.31 5.75	3.79	6.94	5.59 1 58	5.79	6.99 15 27	11.04	13.79	10.68	4.97	3.16	7.29	5.53	6.39	5.48 1 30	6.34 6.34	6.94	6.34 5 10	5.73	5.82	4.6	5.36	0.84 6.5	7.2	9.53 10 96	7.55	6.27
38.2 74.4	74 62.6	54.6	44. I 36.6	26.5 21 q	12.3	5.4	o 6	20.7	21.7	18.6 18.5	14.7	8.1 0	9.6 7.9	6.6	4.6	4.1	6.9	16.4 28.6	16.7	18.1	9.5	11	8.4	8.3 F	0.0 10.8	10.3	11.4 0	10.5	8.7	8.7 0.2	6.0 9.0	7.5	7.8	5.8	0.1 7 12	9.3	16.91	9.3	7.8
25.2 39	37.7 36.1	33.4 26.2	20.2 19	16.9 14 8	11.8	61	31.8	25.1	19.2	17.9 17.1	22.6	14.9	11.1 9,3	8.4	2	10 11 0	9.2	9.4 0	9.3	9.3	7.3	5.6	4.8	6.7	5.3	7	7.3 7	6.7	7.7	9.2	2.4	7	7.1	7.4	α.7 Ω	7.7	10.7	56.1	30.8
95 61.6	35.8 29	28.8	25.7	17.4 7.9	6.3	4.6 0.2	2.2 10.9	9.7	ŝ	10.7 9.4	4	3.2	5.6 8.6	6.6	6.1	2.5 9	5.9	5.8 0 8	6.5 6.5	2.5	2.8 + 0	3.6 3.6	3.9	7.4	0.0 7.5	9	5.3 7.8	0.5 6.5	9	، 5	t - <u>c</u>	4.3	4.4	90	0.0 07	8.1	× ×	9.2	13.5
51.4 20.5	21.3 20.4	19.4	10.7 12.5	12.3 12.1	10.7	7.4	C. 1 7. 7	6.6	8.9	8.7 8.9	8.3	7.8	8.1 8.1	80	8.8	9 10 1	10.1	12.7 9.6	7	6.8	7.3	t 0	9.7	6.7	6.3	5.8	6.3 7 7	2	9.9	12.4	10.7	10.2	9.8	7.9	9.1 1 8	15.7	12.4	14.8	17.6
22.2 17	17.1 13.8	15.4	10.5	8.2 9.5	1.1	4.8 2.0	9.0 114	12.3	13.4	7	4.6	4.7	0.0 0.8	8.3	7.8	10.1	10.7	10.9 10.9	9.9	8.4	6 c 9	3.2	3.8	10.2	0.0 8.5	9.3	9.5 a	9.8	11	8.8 7 0	6.7	6.6	80	8. 0 0.0	9.9 79.9	12.4	13.7	10.2	6.4
5:00 6:00	7:00 8:00	9:00	11:00	12:00 13:00	14:00	15:00	17:00	18:00	19:00	20:00 21:00	22:00	23:00	00:0 1:00	2:00	3:00	4:00 5:00	6:00	7:00 8:00	00:6	10:00	11:00	13:00	14:00	15:00 16:00	17:00	18:00	19:00 20:00	21:00	22:00	23:00	1:00	2:00	3:00	4:00	00.9	7:00	00.8	10:00	11:00
												_																											
												006																		006									
150 150	150 150	150	150	150 150	150	150	150	150	150	150 150			150	150	150	150	150	150 150	150	150	150	150	150	150	150	150	150 150	150			150	150	150	150	150	150	150	150	150
~ ~	291 150 280 150					~ `			~	-	150	150		- -	~					¢-			~	- ·		-			150	150			-		- •				-
~ ~	291 280	236	212	176	137 1	43	34	78	86	96 95	84 150	48 150	27	13	21	91 4	<u>~</u> ∞	9 9	23	21	27	41	27	27	18	9	0 1	20	19 150	15 150 16 150	5 6	13	10	0 0 1	ດດ	. – .	19		14 1
299 64 1 385 123 1	291 280	261 236 1	722 720 188 212 1	214 176 1 303 231 1	151 137 1	28 43	83 34 1	111 78 1	126 86	109 96 1 80 95 1	84 150	41 48 150	41 33 1 32 27 1	12 13	5 21	19 1	16	38 6 26 26	15 23 1	17 21 1	27	40 41 1	32 27	10 27 1 6 27	25 2/ 25 18 1	17 6 1	0 1	8 20 1	7 19 150	5 15 150 2 16 150	4 13	5 13	5 10 1	6 0 1	16 0 0 0	18 11	16 24 1	6 17 1	13 14 1
429 299 64 1 300 385 123 1	366 291 1 289 280 1	165 261 236 1	12/ 222 220 1 143 188 212 1	113 214 176 1 41 303 231 1	30 151 137 1	39 28 43 24 52	75 83 34 1	17 111 78 1	62 126 86	48 109 96 1 50 80 95 1	16 84 84 150	22 41 48 150	29 41 33 1 17 32 27 1	13 12 13 1	6 5 21		13 16 8 -	27 38 6 1 23 26 26	10 15 23 1	10 17 21 1	15 27 1	40 41 10 41 10 41 10 10 10 10 10 10 10 10 10 10 10 10 10	39 32 27	45 10 27 1	51 25 18 1	17 17 6 1	19 15 0 25 5 7 7	14 8 20 1	13 7 19 150	12 5 15 150 20 2 16 150	14 4 13 1	6 5 13	10 5 10 1	51 6 10	35 8 5 36 16 0	27 18 11	26 24 1 21 16 10	19 6 17	20 13 14 1
429 299 64 1 300 385 123 1	214 211 366 291 1 143 180 289 280 1	194 165 261 236 1	2/0 12/ 222 220 405 143 188 212 1	456 113 214 176 1 47 41 303 231 1	19 30 151 137 1	12 39 28 43 1 20 24 54 43	23 34 31 13 13 23 34 1	12 17 111 78 1	11 62 126 86 1	16 48 109 96 1 17 50 80 95 1	14 16 84 84 150	18 22 41 48 150	19 29 41 33 4 17 32 27 1	19 13 12 13 1	38 6 5 21 1	9 10 / 19 1 21 8 7 11	45 13 16 8 1	25 27 38 6 1 24 23 26 26 1	35 10 15 23 1	24 10 17 21 1	14 15 27 1 24 24 46 27	50 48 40 41 1	43 39 32 27	47 45 10 27 1	5 51 25 18 1	17 17 17 6 1	20 19 15 0 11 25 5 7 7	24 14 8 20 1	34 13 7 19 150	28 12 5 15 150 24 20 2 16 150	35 14 4 13 1	38 6 5 13 1	25 10 5 10 1	25 51 6 10 1	36 33 8 3 17 35 16 0	24 27 18 11	29 20 24 1 105 21 16 10 1	32 19 6 17 1	22 20 13 14 1
578 429 299 64 1 285 300 385 123 1	148 214 211 366 291 1 132 143 180 289 280 1	135 194 165 261 236 1 101 770 177 777 770 776 1	101 270 127 222 220 1 138 405 143 188 212 1	25 456 113 214 176 1 47 47 41 303 231 1	17 19 30 151 137 1	16 12 39 28 43 1 of 20 24 54 43	21 29 34 31 19 1 26 23 75 83 34 1	28 12 17 111 78 1	41 11 62 126 86 1	36 16 48 109 96 1 30 17 50 80 95 1	7 14 16 84 84 150	11 18 22 41 48 150	19 19 29 41 33 1 8 4 17 32 27 1	19 19 13 12 13 1	18 38 6 5 21 1 2 2 21 2	21 9 10 / 19 1 25 31 8 A 11 1	34 45 13 16 8 1	18 25 27 38 6 1 17 24 23 26 26 1	10 35 10 15 23 1	11 24 10 17 21 1	9 14 15 27 1	17 50 48 40 41 1	14 43 39 32 27	23 47 45 10 27 1 0 20 25 6 27 1	a 30 33 6 <i>21</i> 10 5 51 25 18 1	12 17 17 17 6 1	12 20 19 15 0 5 11 25 5 7	28 24 14 8 20 1	34 34 13 7 19 150	23 28 12 5 15 150 10 31 20 3 16 150	17 35 14 4 13 1	18 38 6 5 13 1	14 25 10 5 10 1	18 25 51 6 10 1 24 25 51 6 10 1	24 38 55 54 24 24 24 24 24 24 24 24 24 24 24 24 24	41 24 27 18 11	24 1/ 29 20 20 24 1/ 24	20 32 19 6 17 1	19 22 20 13 14 1

4/15/08 5:00 4/15/08 8:00 4/15/08 8:00 4/15/08 8:00 4/15/08 10:00 4/15/08 10:00 4/15/08 11:00 4/15/08 12:00 4/15/08 12:00 4/15/08 12:00 4/15/08 12:00 4/15/08 12:00 4/15/08 21:00 4/15/08 21:00 4/16/08 2:00 4/17/08 2:00 4/17/08

150

150

35	35	35	35	35	35	35	35	35	35	35	35	35
4.78	5.67	9.68	11.8	15.03	15.44	18.16	16.75	14.97	18.99	23.59	11.58	9.51
13.7	11.6	17.5	17	19.8	19.3	13.3	11.8	16.6	17.9	17.7	12.8	14.7
13.2	14.1	12.2	9.4	8.8	8.9	10.8	10.2	12.6	11.6	10.6	8.8	9.2
14.1	16.7	17.5	13.2	7.9	6.7	9.5	9.7	9.9	11.7	12.8	8.7	12.1
18.1	16.7	16	18.1	13.7	12.3	14.2	12.7	11.9	14	17.5	15.3	12.4
5.6	8.2	10.8	10.7	9.5	11.8	17.1	22.7	22.7	19.3	16	19.7	19.1
12:00	13:00	14:00	15:00	16:00	17:00	18:00	19:00	20:00	21:00	22:00	23:00	0:00

150

				006
150 150	150 150	150 150 150	150 150 150	150 150
12	19 16 24	27 32 28	25 34 42	26 20
16 13	17 24 18	13 14 26	30 20 17	22 21
15 16	01 0 / 6	10 10 18	18 51 34	36 49
19 26	15 15 31	9 8 9 9	64 79 13	19 30
16 11	4 6 1 6 1	8	14 26 28	44 54
12:00 13:00	14:00 15:00 16:00	17:00 18:00 19:00	20:00 21:00 22:00	23:00 0:00
4/17/08 12:00 4/17/08 13:00	4/17/08 14:00 4/17/08 15:00 4/17/08 16:00	4/17/08 17:00 4/17/08 18:00 4/17/08 19:00	4/17/08 20:00 4/17/08 21:00 4/17/08 22:00	4/17/08 23:00 4/18/08 0:00

Appendix B

PM2.5 Speciation filter data for Lindon on April 15, 2008.

STATE OF UTAH DEQ

CLIENT # U005 REPORT # 09-089

> SUBMITTED BY: *CHESTER LabNet* 12242 S.W. GARDEN PLACE TIGARD, OR 97223 (503)624-2183/FAX (503)624-2653 www.ChesterLab.Net

> > P - 72

CHESTER LabNet

12242 SW Garden Place ***** Tigard, OR 97223-8246 ***** USA Telephone 503-624-2183 ***** Fax 503-624-2653 ***** www.chesterlab.net

Case Narrative

Date: April 16, 2009

General Information

Client:	State of Utah DEQ
Client Number:	U005
Report Number:	09-089
Sample Description:	47mm Quartz and Teflon filters
Sample Numbers:	09-U253 – 09-U259, 09-X779 – 09-X787

Analysis

Analytes:	XRF Metals (Na - Pb), Cl, Br, NO ₃ , SO ₄ , Na, NH ₄ , K, Organic Carbon, Elemental Carbon
Analytical Protocols:	X-Ray Fluorescence protcol 6, Ion Chromatography, OC/EC by TOT
Analytical Notes:	No problems were encountered during the analyses. The method blanks and laboratory control samples were not from the same lot of filters as the samples since the filters did not originate from Chester LabNet. Results have not been blank corrected.
QA/QC Review:	All of the data have been reviewed by the analysts performing the analyses and the project manager. All of the quality control and sample-specific information in this package is complete and meets or exceeds the minimum requirements for acceptability.
Comments:	If you have any questions or concerns regarding this analysis, please feel free to contact the project manager.
Disclaimer:	This report shall not be reproduced, except in full, without the written approval of the laboratory. The results only represent that of the samples as received into the laboratory.

Project Manager Paul Duda

4/16/09 Date

Client: U005 - State of Utah DEQ Report Number: 09-089 _____ Lab ID: 09-U253 Client ID: 20080488 Site: Lindon (LN) Sample Date: 4/15/08 Mass: 3487. +- 40. µg Volume: 21.20 +- 2.120 m³ Deposit Area: 12.0 cm² Size Fraction: PM10 Suspended Particulates: 164.5 +- 16.56 µg/m³ µg/m³ ug/filter Analvte percent 91.39 \pm 6.8542.621 \pm 0.19894.311 \pm 0.53890.0000 \pm 3.1580.0000 \pm 0.09060.0000 \pm 0.149024.49 \pm 2.1880.7024 \pm 0.06331.155 \pm 0.154941.28 \pm 2.9891.184 \pm 0.08681.947 \pm 0.240489.58 \pm 5.5822.569 \pm 0.16284.225 \pm 0.4979326.0 \pm 19.569.350 \pm 0.571115.38 \pm 1.7939.868 \pm 0.61920.2830 \pm 0.01810.4655 \pm 0.00550.0000 \pm 0.11880.0000 \pm 0.00290.0885 \pm 0.00752.862 \pm 0.18480.0821 \pm 0.00540.1350 \pm 0.0161136.0 \pm 10.853.899 \pm 0.31446.413 \pm 0.82060.0000 \pm 0.07440.0009 \pm 0.00110.0163 \pm 0.00240.6900 \pm 0.11520.0188 \pm 0.00330.0325 \pm 0.00631.145 \pm 0.13800.0328 \pm 0.00400.0540 \pm 0.00850.2448 \pm 0.06160.0070 \pm 0.00230.0115 \pm 0.00400.3120 \pm 0.07080.0089 \pm 0.00200.0147 \pm 0.00360.1452 \pm 0.06240.0042 \pm 0.00170.0147 \pm 0.00330.6912 \pm 0.08040.0198 \pm 0.00230.0226 \pm 0.00502.746 \pm 0.16320.787 \pm 0.00480.1295 \pm 0.01510.256 \pm 0.09240.0065 \pm 0.00270.0166 \pm 0.00440.2256 \pm 0.09360.0077 \pm 0.00250.0126 \pm 0.00440.2256 \pm 0.09360.0077 \pm 0.00250.0126 \pm 0.00440.2772 \pm 0.8760.00170.0266 \pm 0.00430.484 \pm 0.15120.0547 \pm 0.00270.0168 \pm 0.00430.2676 \pm 0.08880.0077 \pm 0.00250.0126 \pm 0.0044</t XRF A 1 Ρ S Cl K Са Тi V Cr Mn Fe Со Ni Cu Zn Ga Ge As Se Br Rb Sr Y 7.r Мо Pd Ag Cd Tn Sn Sb Ba Ъa Hq Ph TC C1 Br NO3 SO4 Na NH4 K OC/EC

 278.4 ± 16.32
 7.984 ± 0.4769
 13.13 ± 1.522

 5.004 ± 2.652
 0.1435 ± 0.0761
 0.2360 ± 0.1273

 283.2 ± 17.76
 8.122 ± 0.5178
 13.36 ± 1.577

 OC. EC ТC

Client: U005 - State of Utah DEQ Report Number: 09-089 _____ Lab ID: 09-U254 Client ID: 20080492 Site: Lindon (LN) Sample Date: 4/19/08 Mass: 3717. +- 40. µg Volume: 20.50 +- 2.050 m³ Deposit Area: 12.0 cm² Size Fraction: PM10 Suspended Particulates: 181.3 +- 18.24 µg/m³ µg/m³ ug/filter Analvte percent 87.83 \pm 6.6022.363 \pm 0.17944.284 \pm 0.53600.000 \pm 3.0220.000 \pm 0.08130.000 \pm 0.147433.84 \pm 2.7820.9104 \pm 0.07551.651 \pm 0.213728.01 \pm 2.0630.7535 \pm 0.05611.366 \pm 0.169787.80 \pm 5.4242.362 \pm 0.14814.283 \pm 0.5034444.6 \pm 26.4611.96 \pm 0.723421.69 \pm 2.5249.743 \pm 0.60960.2621 \pm 0.01660.4753 \pm 0.00611.568 \pm 0.1760.0422 \pm 0.00320.0765 \pm 0.00962.923 \pm 0.18840.0786 \pm 0.00510.1426 \pm 0.0170107.5 \pm 5.9722.892 \pm 0.16375.244 \pm 0.59990.0000 \pm 0.07440.0000 \pm 0.00200.0000 \pm 0.00230.4704 \pm 0.09480.0177 \pm 0.00100.0140 \pm 0.00230.4704 \pm 0.09480.0127 \pm 0.00260.0229 \pm 0.00520.7344 \pm 0.06600.0011 \pm 0.00180.0019 \pm 0.00220.0048 \pm 0.0540.00140.0022 \pm 0.00330.0048 \pm 0.0540.00140.0022 \pm 0.00250.5676 \pm 0.06480.0051 \pm 0.00130.0022 \pm 0.00250.5676 \pm 0.06480.0153 \pm 0.00180.0277 \pm 0.00422.670 \pm 0.15480.0278 \pm 0.00220.0304 \pm 0.00320.1884 \pm 0.07480.0021 \pm 0.00210.0002 \pm 0.00250.5676 \pm 0.06480.0153 \pm 0.00120.0002 \pm 0.00250.5676 \pm 0.06480.0153 \pm 0.00220.0004 \pm 0.00730.9228 \pm 0.13200.0278 \pm 0.00220.0060 \pm 0.00710.133 \pm 0.10800.0278 \pm 0.00220.0060 \pm 0.0073<t XRF A 1 Ρ S Cl K Са Τi V Cr Mn Fe Со Ni Cu Zn Ga Ge As Se Br Rb Sr Y Zr Мо Pd Ag Cd Τn Sn Sb Ba La Hq Ph TC C1 Br NO3 SO4 Na NH4 K OC/EC

 319.2 ± 18.36
 8.588 ± 0.5025
 15.57 ± 1.796

 1.416 ± 2.472
 0.0381 ± 0.0665
 0.0691 ± 0.1208

 320.4 ± 19.68
 8.620 ± 0.5375
 15.63 ± 1.834

 OC. EC ТC

Client: U005 - State of Utah DEQ Report Number: 09-089 _____ Lab ID: 09-U255 Client ID: 20080609 Site: Hawthorn (HW) Sample Date: 4/19/08 Mass: 3960. +- 40. µg Volume: 20.70 +- 2.070 m³ Deposit Area: 12.0 cm² Size Fraction: PM10 Suspended Particulates: 191.3 +- 19.23 µg/m³ µg/m³ ug/filter Analvte percent 57.18 ± 4.878 1.444 ± 0.1240 2.762 ± 0.3631 0.000 ± 2.762 0.000 ± 0.0698 0.0000 ± 0.1334 127.3 ± 9.353 3.215 ± 0.2384 6.151 ± 0.7632 108.7 ± 7.381 2.745 ± 0.1884 5.252 ± 0.6348 68.60 ± 4.230 1.732 ± 0.1082 3.314 ± 0.3894 469.3 ± 27.79 11.85 ± 0.7120 22.67 ± 2.635 6.448 ± 0.4332 0.1628 ± 0.0111 0.3115 ± 0.0375 0.0000 ± 0.1236 0.0000 ± 0.0031 0.0000 ± 0.0060 1.499 ± 0.1164 0.0378 ± 0.0030 0.0724 ± 0.0092 1.870 ± 0.1332 0.0472 ± 0.0034 0.0903 ± 0.0111 80.652 ± 4.475 2.037 ± 0.0149 3.896 ± 0.4456 0.0000 ± 0.0660 0.0000 ± 0.0009 0.0152 ± 0.0024 0.3156 ± 0.0372 0.0080 ± 0.0009 0.0152 ± 0.0024 0.8004 ± 0.0528 0.2022 ± 0.0013 0.0387 ± 0.0086 0.2304 ± 0.0720 0.0058 ± 0.0018 0.0111 ± 0.0037 0.4032 ± 0.0672 0.0102 ± 0.0017 0.0195 ± 0.0028 0.2760 ± 0.0516 0.070 ± 0.0013 0.0133 ± 0.0028 0.5112 ± 0.0684 0.0129 ± 0.0017 0.0247 ± 0.0022 0.448 ± 0.1164 0.0239 ± 0.0020 0.0457 ± 0.0072 0.448 ± 0.1444 0.0239 ± 0.0020 0.0660 ± 0.0039 0.1248 ± 0.0864 0.0024 ± 0.0022 0.0457 ± 0.0072 0.5676 ± 0.0864 0.0024 ± 0.0022 0.0457 ± 0.0072 0.468 ± 0.1164 0.0239 ± 0.0022 0.0457 ± 0.0072 0.5760 ± 0.0804 0.0024 ± 0.0022 $0.0046 \pm$ XRF A 1 Ρ S Cl K Са Тi V Cr Mn Fe Со Ni Cu Zn Ga Ge As Se Br Rb Sr Y 7.r Мо Pd Ag Cd In Sn Sb Ba La Hq Ph TC C1 Br NO3 SO4 Na NH4 K OC/EC OC. EC ТC

Client: U005 - State of Utah DEQ Report Number: 09-089 _____ Lab ID: 09-U256 Client ID: 20080727 Site: Lindon (LN) Sample Date: 5/20/08 Mass: 3584. +- 40. µg Volume: 20.30 +- 2.030 m³ Deposit Area: 12.0 cm² Size Fraction: PM10 Suspended Particulates: 176.6 +- 17.76 µg/m³ µg/m³ ug/filter Analvte percent XRF A 1 Ρ S Cl K Са Тi V Cr Mn Fe Со Ni Cu Zn Ga Ge As Se Br Rb Sr Y Zr Мо Pd Ag Cd Τn Sn Sb Ba La Hq Ph TC C1 Br NO3 SO4 Na NH4 K OC/EC 0C EC ТC

Client: U005 - State of Utah DEQ Report Number: 09-089 _____ Lab ID: 09-U257 Client ID: 20081074 Ogden (02) Site: 7/ 4/08 Sample Date: Mass: 1656. +- 40. µg Volume: 20.30 +- 2.030 m³ Deposit Area: 12.0 cm² Size Fraction: PM10 Suspended Particulates: 81.58 +- 8.39 µg/m³ µg/m³ ug/filter percent Analvte 44.42 ± 4.576 2.683 ± 0.2838 2.188 ± 0.3142 0.000 ± 2.050 0.000 ± 0.1238 0.000 ± 0.1010 80.22 ± 6.407 4.844 ± 0.4042 3.952 ± 0.5057 64.46 ± 4.652 3.893 ± 0.2963 3.176 ± 0.3916 277.0 ± 17.34 16.72 ± 1.122 13.64 ± 1.610 124.6 ± 7.595 7.522 ± 0.4933 6.136 ± 0.7187 2.754 ± 0.2796 0.1663 ± 0.0174 0.1357 ± 0.0193 0.1380 ± 0.1296 0.0083 ± 0.0078 0.0068 ± 0.0064 0.5352 ± 0.0756 0.0323 ± 0.0046 0.2264 ± 0.2046 1.418 ± 0.1080 0.0857 ± 0.0068 0.0099 ± 0.0088 35.03 ± 2.812 2.115 ± 0.1773 1.726 ± 0.2213 0.0000 ± 0.0456 0.0020 ± 0.0028 0.0000 ± 0.0021 0.2784 ± 0.0324 0.0168 ± 0.0221 0.4231 ± 0.0474 2.456 ± 0.2160 0.1483 ± 0.0135 0.120 ± 0.0032 0.1908 ± 0.0960 0.0115 ± 0.0031 0.008 ± 0.0032 0.1908 ± 0.0960 0.0173 ± 0.0031 0.0136 ± 0.0029 0.1848 ± 0.0624 0.0112 ± 0.0038 0.0094 ± 0.0048 0.0240 ± 0.0792 0.0144 ± 0.0048 0.0012 ± 0.0032 5.948 ± 0.3132 0.3592 ± 0.0208 0.2395 ± 0.0047 1.105 ± 0.1874 0.0167 ± 0.0031 0.0136 ± 0.0029 0.1848 ± 0.0624 0.0112 ± 0.0038 0.0094 ± 0.0032 5.948 ± 0.3132 0.3592 ± 0.0208 0.2395 ± 0.0044 0.2760 ± 0.0876 0.0071 ± 0.0053 0.0035 ± 0.0044 0.2760 ± 0.0876 0.0071 ± 0.0053 0.0035 ± 0.00 XRF A 1 Ρ S Cl Κ Са Тi V Cr Mn Fe Со Ni Cu Zn Ga Ge As Se Br Rb Sr Y Zr Мо Pd Ag Cd Τn Sn Sb Ba La Hq Ph TC C1 Br NO3 SO4 Na NH4 K OC/EC

 247.2 ± 14.76
 14.93 ± 0.9615
 12.18 ± 1.418

 41.40 ± 4.476
 2.500 ± 0.2770
 2.039 ± 0.3003

 288.0 ± 18.00
 17.39 ± 1.165
 14.19 ± 1.673

 0C EC ТC

Client: U005 - State of Utah DEQ Report Number: 09-089 _____ Lab ID: 09-U258 Client ID: 20090387 Site: Lindon (LN) Sample Date: 3/ 4/09 Mass: 4258. +- 40. µg Volume: 21.00 +- 2.100 m³ Deposit Area: 12.0 cm² Size Fraction: PM10 Suspended Particulates: 202.8 +- 20.37 µg/m³ µg/m³ ug/filter Analvte percent XRF A 1 Ρ S Cl K Са Тi V Cr Mn Fe Со Ni Cu Zn Ga Ge As Se Br Rb Sr Y 7.r Мо Pd Ag Cd Τn Sn Sb Ba Ъa Hq Ph TC C1 Br NO3 SO4 Na NH4 К OC/EC

 345.6 ± 19.68
 8.116 ± 0.4684
 16.46 ± 1.894

 4.824 ± 2.640
 0.1133 ± 0.0620
 0.2297 ± 0.1278

 350.4 ± 21.12
 8.229 ± 0.5020
 16.69 ± 1.948

 OC. EC ТC

Deposit A	09-U259 D: 2009B001 Area: 12.0 cm ² ction: PM10 : Blank	
Analyte	µg/filter	
KRF		
Al	11.07 ± 3.764	
P	0.0000 ± 2.396	
S	1.050 ± 0.9636	
Cl	0.0000 ± 0.5616	
K	10.04 ± 1.055	
Ca	61.33 ± 3.772	
Ti	0.1776 ± 0.1524	
V	0.0000 ± 0.0708	
Cr	0.3660 ± 0.0480	
Mn	0.2340 ± 0.0480	
Fe	2.652 ± 0.1620	
Co	0.0000 ± 0.0264	
Ni	0.2604 ± 0.0288	
Cu	0.3492 ± 0.0312	
Zn	0.9468 ± 0.1212	
Ga	0.1728 ± 0.0720	
Ge	0.3072 ± 0.0648	
As	0.0684 ± 0.0540	
Se	0.0492 ± 0.0504	
Br	0.0420 ± 0.0468	
Rb	0.1908 ± 0.0624	
Sr	0.2868 ± 0.0720	
Y	0.0000 ± 0.0828	
Zr	0.9276 ± 0.1140	
Мо	1.286 ± 0.1536	
Pd	0.0264 ± 0.0852	
Ag	0.2292 ± 0.0816	
Cd	0.2856 ± 0.0816	
In	0.1320 ± 0.0828	
Sn	0.6132 ± 0.1008	
Sb	0.3324 ± 0.1236	
Ba	2.825 ± 0.5172	
La	1.295 ± 0.6156	
Hg	0.0000 ± 0.1416	
Pb	0.1092 ± 0.1392	
IC		
Cl	3.560 ± 0.1780	
Br	0.0000 ± 1.000	
NO3	4.940 ± 0.2470	
SO4	1.800 ± 0.0900	
Na	34.92 ± 1.746	
NH4	0.0000 ± 1.000	
K	0.0000 ± 1.000	
DC/EC		
OC	101.9 ± 7.500	
EC		
E C	0.0000 ± 2.400	

Client: U005 - State of Utah DEQ Report Number: 09-089

Client: U005 - State of Utah DEQ Report Number: 09-089 _____ Lab ID: 09-X779 8131301 Lindon (LN) 2: 4/15/08 Client ID: Site: Sample Date: Mass: 589. +- 10. µg Volume: 24.00 +- 2.400 m³ Deposit Area: 11.3 cm² Size Fraction: PM2.5 Suspended Particulates: 24.54 +- 2.49 µg/m³ µg/m³ ug/filter percent Analvte 3.923 ± 1.412 0.6661 ± 0.2401 0.1635 ± 0.0611 19.06 ± 1.504 3.237 ± 0.2612 0.7943 ± 0.1012 31.09 ± 1.984 5.278 ± 0.3486 1.295 ± 0.1537 87.33 ± 4.677 14.83 ± 0.8330 3.639 ± 0.4128 0.0068 ± 0.0463 0.0012 ± 0.0079 0.0003 ± 0.0019 5.571 ± 0.3153 0.9458 ± 0.0559 0.2321 ± 0.0267 4.736 ± 0.2622 0.8040 ± 0.0466 0.1973 ± 0.0226 11.64 ± 0.5989 1.976 ± 0.1071 0.4850 ± 0.0545 33.50 ± 1.698 5.688 ± 0.3041 1.396 ± 0.0545 33.50 ± 1.698 5.688 ± 0.0019 0.0013 ± 0.0004 0.0226 ± 0.0113 0.054 ± 0.0019 0.0013 ± 0.0004 0.3458 ± 0.0452 0.0587 ± 0.0077 0.0144 ± 0.0224 16.05 ± 0.8057 2.724 ± 0.1444 0.6664 ± 0.0748 0.000 ± 0.0271 0.00067 ± 0.0025 0.0012 ± 0.0001 0.0386 ± 0.0158 $0.0077 \pm 0.0016 \pm 0.0001$ 0.0224 ± 0.0147 0.0029 ± 0.0015 0.0071 ± 0.0004 0.0223 ± 0.0107 0.0004 ± 0.0015 0.0001 ± 0.0004 0.023 ± 0.0102 0.0002 ± 0.0015 0.0001 ± 0.0004 0.023 ± 0.0090 0.0024 ± 0.0015 0.0001 ± 0.0004 0.023 ± 0.0090 0.0024 ± 0.0015 0.0001 ± 0.0004 0.000 ± 0.0124 0.0002 ± 0.0012 0.0002 ± 0.0001 0.000 ± 0.0025 0.0001 ± 0.0002 $0.0002 \pm 0.0001 \pm 0.0002$ 0.000 ± 0.0124 0.0002 ± 0.0012 0.0004 ± 0.0005 0.000 ± 0.0124 0.0002 ± 0.0012 0.0004 ± 0.0025 < XRF Na Ma Al Si Ρ S C1 K Ca Тi V Cr Mn Fe Со Ni C11 Zn Ga Ge As Se Br Rb Sr Y Zr Мо Pd Aq Cd In Sn Sb Ba La Нα Pb ТC 0.2612 ± 0.0292 0.0000 ± 0.0208 0.4121 ± 0.0461 C1 6.270 ± 0.3135 1.065 ± 0.0204 $\begin{array}{r} 1.065 \pm 0.021 \\ 0.0000 \pm 0.0120 \\ 1.070 \pm 0.0309 \end{array}$ 0.0000 ± 0.5000 Br $\begin{array}{r} 1.679 \pm 0.0309 \\ 3.671 \pm 0.0648 \\ 1.409 \pm 0.0263 \end{array}$ NO3 9.890 ± 0.4945 0.9008 ± 0.1007 0.3458 ± 0.0387 SO4 21.62 ± 1.081 8.300 ± 0.4150 Na

 1.409 ± 0.0203

 0.7351 ± 0.0148

 0.3548 ± 0.0081

 NH4 4.330 ± 0.2165 2.090 ± 0.1045 K

Client: Report Numl	U005 - State o ber: 09-089	of Utah DEQ	
Lab ID: Client ID: Site: Sample Date Mass: Volume: Deposit Ard Size Fract: Suspended Particulate Comments:	754. +- 10. μ 24.00 +- 2.400 ea: 11.3 cm ² ion: PM2.5	5 m ³	
Analyte	µg/filter	percent	µg/m³
Mg Al Si P S Cl K Ca Ti V Cr Mn Fe Co Ni Ga Ge As Se Br Q Y Zr Mo Pd Ag Cd In Sb Ba La Hg	$\begin{array}{c} 0.5435 \pm 0.7017\\ 30.80 \pm 2.368\\ 40.19 \pm 2.598\\ 111.2 \pm 6.035\\ 0.0000 \pm 0.0565\\ 8.003 \pm 0.4441\\ 4.013 \pm 0.2305\\ 14.78 \pm 0.7605\\ 67.02 \pm 3.397\\ 1.850 \pm 0.0960\\ 0.0328 \pm 0.0124\\ 0.0350 \pm 0.0113\\ 0.4870 \pm 0.0712\\ 19.61 \pm 0.9831\\ 0.0000 \pm 0.0294\\ 0.0362 \pm 0.0181\\ 0.0667 \pm 0.0181\\ 0.0667 \pm 0.0181\\ 0.0667 \pm 0.0181\\ 0.0667 \pm 0.0181\\ 0.0000 \pm 0.0147\\ 0.0237 \pm 0.0113\\ 0.0000 \pm 0.0147\\ 0.0237 \pm 0.0113\\ 0.0000 \pm 0.0147\\ 0.0237 \pm 0.0113\\ 0.0000 \pm 0.0147\\ 0.0237 \pm 0.0138\\ 0.1209 \pm 0.0147\\ 0.0237 \pm 0.0138\\ 0.0124 \pm 0.0192\\ 0.0000 \pm 0.0079\\ 0.0836 \pm 0.0090\\ 0.4791 \pm 0.0271\\ 0.0124 \pm 0.0136\\ 0.0124 \pm 0.0136\\ 0.0124 \pm 0.0136\\ 0.0124 \pm 0.0192\\ 0.0000 \pm 0.0520\\ 0.0045 \pm 0.0542\\ 0.0655 \pm 0.0599\\ 0.1085 \pm 0.0678\\ 0.0520 \pm 0.0791\\ 0.2215 \pm 0.1582\\ 0.0881 \pm 0.0712\\ 0.0000 \pm 0.0203\\ 0.0102 \pm 0.0$	$\begin{array}{c} 0.0721 \pm 0.0931 \\ 4.085 \pm 0.3188 \\ 5.331 \pm 0.3517 \\ 14.75 \pm 0.8240 \\ 0.0000 \pm 0.0075 \\ 1.061 \pm 0.0606 \\ 0.5322 \pm 0.0314 \\ 1.960 \pm 0.1042 \\ 8.899 \pm 0.4657 \\ 0.2453 \pm 0.0131 \\ 0.0043 \pm 0.0016 \\ 0.0046 \pm 0.0095 \\ 2.600 \pm 0.1349 \\ 0.0004 \pm 0.0024 \\ 0.0088 \pm 0.0021 \\ 0.0160 \pm 0.0020 \\ 0.0031 \pm 0.0015 \\ 0.0646 \pm 0.0015 \\ 0.0048 \pm 0.0021 \\ 0.0160 \pm 0.0013 \\ 0.0012 \pm 0.0013 \\ 0.0000 \pm 0.0013 \\ 0.0012 \pm 0.0013 \\ 0.0000 \pm 0.0010 \\ 0.0111 \pm 0.0012 \\ 0.0111 \pm 0.0012 \\ 0.0635 \pm 0.0037 \\ 0.0016 \pm 0.0015 \\ 0.0048 \pm 0.0015 \\ 0.0048 \pm 0.0015 \\ 0.0048 \pm 0.0018 \\ 0.0016 \pm 0.0012 \\ 0.0016 \pm 0.0012 \\ 0.0016 \pm 0.0012 \\ 0.0016 \pm 0.0015 \\ 0.0048 \pm 0.0018 \\ 0.0016 \pm 0.0015 \\ 0.0048 \pm 0.0018 \\ 0.0016 \pm 0.0015 \\ 0.0069 \pm 0.0105 \\ 0.0294 \pm 0.0210 \\ 0.0070 \\ 0.0000 \pm 0.0027 \\ 0.0000 \pm 0.0027 \\ 0.0000 \pm 0.0027 \\ 0.0000 \pm 0.0027 \\ 0.0013 \pm 0.0027 \\ 0.0$	$\begin{array}{c} 0.0226 \pm 0.0293 \\ 1.283 \pm 0.1619 \\ 1.675 \pm 0.1994 \\ 4.635 \pm 0.5273 \\ 0.0000 \pm 0.0024 \\ 0.3334 \pm 0.0381 \\ 0.1672 \pm 0.0193 \\ 0.6158 \pm 0.0693 \\ 2.793 \pm 0.3131 \\ 0.0771 \pm 0.0087 \\ 0.0014 \pm 0.0005 \\ 0.0015 \pm 0.0005 \\ 0.0203 \pm 0.0036 \\ 0.8169 \pm 0.0914 \\ 0.0000 \pm 0.0012 \\ 0.0015 \pm 0.0008 \\ 0.0015 \pm 0.0008 \\ 0.0015 \pm 0.0008 \\ 0.0015 \pm 0.0008 \\ 0.0028 \pm 0.0007 \\ 0.0050 \pm 0.0008 \\ 0.0010 \pm 0.0003 \\ 0.0000 \pm 0.0003 \\ 0.0000 \pm 0.0005 \\ 0.0005 \pm 0.0008 \\ 0.0010 \pm 0.0005 \\ 0.0005 \pm 0.0008 \\ 0.0005 \pm 0.0005 \\ 0.0005 \pm 0.0005 \\ 0.0035 \pm 0.0005 \\ 0.0035 \pm 0.0005 \\ 0.0005 \pm 0.0005 \\ 0.0005 \pm 0.0005 \\ 0.0015 \pm 0.0005 \\ 0.0005 \pm 0.0005 \\ 0.0005 \pm 0.0005 \\ 0.0005 \pm 0.0005 \\ 0.0005 \pm 0.0002 \\ 0.0022 \pm 0.0023 \\ 0.0027 \pm 0.0023 \\ 0.0027 \pm 0.0025 \\ 0.0045 \pm 0.0029 \\ 0.0022 \pm 0.0033 \\ 0.0022 \pm 0.0033 \\ 0.0027 \pm 0.0033 \\ 0.0029 \pm 0.0067 \\ 0.0037 \pm 0.0030 \\ 0.0000 \pm 0.0022 \\ 0.0000 \pm 0.0022 \\ 0.0000 \pm 0.0022 \\ 0.0000 \pm 0.0033 \\ 0.0000 \pm 0.0033 \\ 0.0000 \pm 0.0033 \\ 0.0000 \pm 0.0033 \\ 0.0000 \pm 0.0022 \\ 0.0003 \\ 0.0000 \pm 0.0033 \\ 0.0000 \pm 0.0003 \\ $
IC Cl NO3 SO4 Na NH4 K	$\begin{array}{c} 5.080 \pm 0.2540 \\ 0.0000 \pm 0.5000 \\ 10.67 \pm 0.5335 \\ 29.00 \pm 1.450 \\ 7.250 \pm 0.3625 \\ 5.120 \pm 0.2560 \\ 2.150 \pm 0.1075 \end{array}$	$\begin{array}{c} 0.6737 \pm 0.0112 \\ 0.0000 \pm 0.0094 \\ 1.415 \pm 0.0211 \\ 3.846 \pm 0.0535 \\ 0.9615 \pm 0.0150 \\ 0.6790 \pm 0.0112 \\ 0.2851 \pm 0.0058 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Client: U005 - State of Utah DEQ Report Number: 09-089 _____ Lab ID: 09-X781 8131360 Client ID: Site: Hawthorn (HW) Sample Date: 4/19/08 Mass: 752. +- 10. µg Volume: 24.00 +- 2.400 m³ Deposit Area: 11.3 cm² Size Fraction: PM2.5 Suspended Particulates: 31.33 +- 3.16 µg/m³ µg/m³ ug/filter Analvte percent 15.91 \pm 2.3192.116 \pm 0.30960.6629 \pm 0.117240.30 \pm 3.037 5.358 ± 0.4102 1.679 ± 0.2103 25.02 \pm 1.638 3.327 ± 0.2223 1.042 ± 0.1246 76.98 \pm 4.173 10.24 ± 0.5714 3.207 ± 0.3648 0.0000 \pm 0.0554 0.0000 ± 0.0074 0.0000 ± 0.0023 16.40 \pm 0.8690 2.180 ± 0.1191 0.6832 ± 0.0773 10.22 ± 0.5413 1.359 ± 0.0742 0.4257 ± 0.0482 10.23 ± 0.5300 1.360 ± 0.0728 0.4262 ± 0.00480 64.66 \pm 3.275 8.598 ± 0.4502 2.694 ± 0.3020 1.248 ± 0.0667 0.1659 ± 0.0091 0.0520 ± 0.0059 0.0508 ± 0.0113 0.0068 ± 0.0015 0.0021 ± 0.0005 0.0192 ± 0.0102 0.026 ± 0.0014 0.0008 ± 0.0014 0.2090 ± 0.0158 0.0278 ± 0.0021 0.0007 ± 0.0011 13.01 ± 0.6531 1.730 ± 0.0035 0.0000 ± 0.0001 0.0277 ± 0.0158 0.0022 ± 0.0020 0.0021 ± 0.0006 0.0000 ± 0.0147 0.0000 ± 0.0014 0.0000 ± 0.0004 0.0000 ± 0.0120 0.0000 ± 0.0004 0.0004 ± 0.0004 0.0000 ± 0.0036 0.0000 ± 0.0004 0.0004 ± 0.0004 0.0000 ± 0.0016 0.0000 ± 0.0004 0.0004 ± 0.0004 0.0000 ± 0.0017 0.0000 ± 0.0004 0.0004 ± 0.0004 0.0000 ± 0.0020 0.0002 ± 0.0004 0.0004 ± 0.0004 0.0000 ± 0.0014 0.0000 ± 0.0004 0.0004 ± 0.0004 0.0000 ± 0.0015 $0.0000 \pm 0.0004 \pm 0.0004$ XRF Na Ma Al Si Ρ S C1 K Ca Тi V Cr Mn Fe Со Ni C11 Zn Ga Ge As Se Br Rb Sr Y Zr Мо Pd Aq Cd In Sn Sb 0.0520 ± 0.0576 Ba La 0.0000 ± 0.0508 0.0000 ± 0.0158 Нα 0.0576 ± 0.0192 Pb ТC $\begin{array}{c} 0.0000 \pm 0.0094 \\ 0.0000 \pm 0.0094 \\ 0.0000 \pm 0.0094 \\ 0.0000 \pm 0.0094 \end{array}$ 0.0000 ± 0.0208 0.0000 ± 0.0208 0.0000 ± 0.0208 C1 0.0000 ± 0.5000 0.0000 ± 0.5000 Br NO3 0.0000 ± 0.5000 SO4 0.0000 ± 0.5000 23.60 ± 1.180 Na NH4 4.460 ± 0.2230 2.480 ± 0.1240 K

Client: U005 - State of Utah DEQ Report Number: 09-089 _____ Lab ID: 09-X782 8131377 North Provo (NP) e: 4/19/08 Client ID: Site: Sample Date: Mass: 1199. +- 10. μg Volume: 24.00 +- 2.400 m³ Deposit Area: 11.3 cm² Size Fraction: PM2.5 Suspended Particulates: 49.96 +- 5.01 µg/m³ ug/filter percent µg/m³ Analvte XRF Na Ma Al Si Ρ S C1 K Ca Тi V Cr Mn Fe Со Ni C11 Zn Ga Ge As Se Br Rb Sr Y Zr Мо Pd Aq Cd In Sn Sb Ba La Ha Pb ТC C1 0.0000 ± 0.5000 Br NO3 SO4 Na NH4 K

Client: U005 - State of Utah DEQ Report Number: 09-089 _____ Lab ID: 09-X783 8131629 Client ID: Lindon (LN) 5/20/08 Site: Sample Date: Mass: 877. +- 10. µg Volume: 24.00 +- 2.400 m³ Deposit Area: 11.3 cm² Size Fraction: PM2.5 Suspended Particulates: 36.54 +- 3.68 µg/m³ µg/m³ ug/filter percent Analvte XRF Na Ma Al Si Ρ S Cl K Ca Тi V Cr Mn Fe Со Ni C11 Zn Ga Ge As Se Br Rb Sr Y Zr Мо Pd Aq Cd In Sn Sb Ba La Нα Pb ТC 0.2189 ± 0.0043 0.0000 ± 0.0081 1.139 ± 0.0153 0.0800 ± 0.0089 0.0000 ± 0.0208 0.4162 ± 0.0465 C1 1.920 ± 0.0960 0.0000 ± 0.5000 Br 1.139 ± 0.0153 1.912 ± 0.0242 NO3 9.990 ± 0.4995 0.6988 ± 0.0781 0.0862 ± 0.0096 SO4 16.77 ± 0.8385 $\begin{array}{c} 1.912 \pm 0.0012 \\ 0.2360 \pm 0.0045 \\ 0.4732 \pm 0.0075 \\ 0.2828 \pm 0.0051 \end{array} \qquad \begin{array}{c} 0.0862 \pm 0.0096 \\ 0.1729 \pm 0.0193 \\ 0.1033 \pm 0.0116 \end{array}$ 2.070 ± 0.1035 Na NH4 4.150 ± 0.2075 2.480 ± 0.1240 K

Client: U005 - State of Utah DEQ Report Number: 09-089 _____ Lab ID: 09-X784 8132053 Prigham Client ID: Brigham City (BR) 6/26/08 Site: Sample Date: Mass: 1026. +- 10. μg Volume: 24.00 +- 2.400 m³ Deposit Area: 11.3 cm² Size Fraction: PM2.5 Suspended Particulates: 42.75 +- 4.30 µg/m³ ug/filter percent µg/m³ Analvte 0.3865 \pm 0.53450.0377 \pm 0.05210.0161 \pm 0.02233.445 \pm 0.50620.3358 \pm 0.04940.1436 \pm 0.02558.667 \pm 0.60680.8447 \pm 0.05970.3611 \pm 0.044135.73 \pm 1.9473.483 \pm 0.19281.489 \pm 0.16950.0000 \pm 0.03840.0000 \pm 0.00370.0000 \pm 0.00167.094 \pm 0.38870.6914 \pm 0.03850.2956 \pm 0.03372.907 \pm 0.16950.2834 \pm 0.01670.1211 \pm 0.042918.51 \pm 0.94021.804 \pm 0.09330.7712 \pm 0.08650.8611 \pm 0.04750.0839 \pm 0.00470.0359 \pm 0.00410.0215 \pm 0.00900.0021 \pm 0.00090.0009 \pm 0.00040.090 \pm 0.00790.0099 \pm 0.00080.0004 \pm 0.001010.714 \pm 0.53501.044 \pm 0.05350.4464 \pm 0.05000.000 \pm 0.02370.0000 \pm 0.00070.02230.0000 \pm 0.00070.1322 \pm 0.01700.0129 \pm 0.00170.0055 \pm 0.00090.2656 \pm 0.01920.259 \pm 0.00190.0111 \pm 0.01440.0000 \pm 0.00990.0000 \pm 0.0000 \pm 0.00040.0000 \pm 0.00030.0000 \pm 0.01700.0129 \pm 0.00170.0055 \pm 0.00090.2656 \pm 0.01920.0259 \pm 0.00190.0111 \pm 0.01440.0000 \pm 0.00900.0000 \pm 0.00080.0000 \pm 0.00030.0000 \pm 0.00480.0000 \pm 0.00080.0000 \pm 0.00030.0000 \pm 0.0180.00070.0008 \pm 0.00130.0000 \pm 0.0180.00070.0008 \pm 0.00140.0000 \pm 0.0259 \pm 0.00170.0008 \pm 0.00250.0000 \pm 0.02680.00080.0001 \pm 0.0 $\begin{array}{c} 0.0377 \pm 0.0521 \\ 0.3358 \pm 0.0494 \\ 0.8447 \pm 0.0597 \\ 3.483 \pm 0.557 \end{array}$ XRF Na Ma Al Si Ρ S Cl K Ca Тi V Cr Mn Fe Со Ni C11 Zn Ga Ge As Se Br Rb Sr Y Zr Мо Pd Aq Cd In Sn Sb Ba La Нα Pb ТC C1 4.070 ± 0.2035 0.0000 ± 0.5000 Br NO3 7.400 ± 0.3700 SO4 23.13 ± 1.156 4.570 ± 0.2285 Na NH4 7.250 ± 0.3625 3.060 ± 0.1530 K

Report N	U005 - State umber: 09-089	of Utah DEQ	
Lab ID: Client I Site: Sample D Mass: Volume: Deposit Size Fra Suspende	09-X785 D: 8132188 Ogden (O2) ate: 7/ 4/08 1027. +- 10. 24.00 +- 2.40 Area: 11.3 cm ² ction: PM2.5 d ates: 42.79 +- 4.30	0 m³	
Analyte	µg/filter	percent	µg/m³
XRF Na Mg Al Si P S Cl K Ca Ti V Cr M F e O Ni U Zn G e S B R b Sr Y Zr M D d Q d I n S b a La Hg D Bi Bi Bi S Cl K Ca Ti V Cr M F S Cl K Ca Ti V Cr M F S Cl K Ca Ti V Cr M F S Cl K Ca Ti V Cr M F S Cl K Ca Ti V Cr M F S Cl K Ca Ti V Cr M F S Cl K Ca Ti V Cr M F S Cl K Ca Ti V Cr M F S Cl K Ca S Cl K Ca S Cl K Ca S Cl K Ca S Cl K Ca S Cl K Ca S Cl K Ca S Cl K Ca S Cl K Ca S Cl K Ca S Cl K Ca S Cl K Ca S Cl K Ca S Cl K Ca S Cl K Ca S Cl K Ca S Cl K Ca S Cl K Ca S Cl K Ca S Cl K S Cl K S Cl K S Cl K S Cl S S S S S Cl K S S C S S S S S S S S S S S S S S S S	$\begin{array}{c} 0.0000 \pm 0.9537\\ 33.06 \pm 2.641\\ 23.98 \pm 1.609\\ 32.34 \pm 1.803\\ 0.0000 \pm 0.0746\\ 63.52 \pm 3.300\\ 42.05 \pm 2.184\\ 199.1 \pm 10.16\\ 11.46 \pm 0.6012\\ 0.7266 \pm 0.5028\\ 0.0000 \pm 0.1785\\ 0.0475 \pm 0.0226\\ 0.4599 \pm 0.0282\\ 10.78 \pm 0.5424\\ 0.0271 \pm 0.0271\\ 0.0396 \pm 0.0181\\ 6.523 \pm 0.3322\\ 1.105 \pm 0.0949\\ 0.0226 \pm 0.0113\\ 0.0000 \pm 0.0102\\ 0.0497 \pm 0.0181\\ 0.0023 \pm 0.0012\\ 0.0497 \pm 0.0181\\ 0.0023 \pm 0.0102\\ 0.0531 \pm 0.0090\\ 3.894 \pm 0.1966\\ 0.0000 \pm 0.0102\\ 0.0497 \pm 0.0147\\ 0.0486 \pm 0.0181\\ 0.0000 \pm 0.0576\\ 0.1300 \pm 0.0610\\ 0.0881 \pm 0.0655\\ 0.0588 \pm 0.0723\\ 0.0000 \pm 0.0836\\ 1.420 \pm 0.1944\\ 11.15 \pm 0.6701\\ 0.3345 \pm 0.1966\\ 0.0000 \pm 0.0203\\ 0.3774 \pm 0.0316\\ 0.1932 \pm 0.0339\\ \end{array}$	$\begin{array}{c} 0.0000 \pm 0.0929\\ 3.219 \pm 0.2590\\ 2.335 \pm 0.1583\\ 3.149 \pm 0.1783\\ 0.0000 \pm 0.0073\\ 6.185 \pm 0.3269\\ 4.094 \pm 0.2164\\ 19.39 \pm 1.008\\ 1.116 \pm 0.0595\\ 0.0707 \pm 0.0490\\ 0.0000 \pm 0.0174\\ 0.0046 \pm 0.0022\\ 0.0448 \pm 0.0028\\ 1.050 \pm 0.0538\\ 0.0026 \pm 0.0026\\ 0.0039 \pm 0.0018\\ 0.6352 \pm 0.0029\\ 0.1076 \pm 0.0032\\ 0.0018\\ 0.6352 \pm 0.0011\\ 0.0000 \pm 0.0018\\ 0.6352 \pm 0.0018\\ 0.0022 \pm 0.0011\\ 0.0000 \pm 0.0018\\ 0.0022 \pm 0.0018\\ 0.0012 \pm 0.0018\\ 0.0022 \pm 0.0018\\ 0.0012 \pm 0.0018\\ 0.0002 \pm 0.0018\\ 0.0012 \pm 0.0018\\ 0.0012 \pm 0.0018\\ 0.0012 \pm 0.0018\\ 0.0012 \pm 0.0018\\ 0.0001 \pm 0.0016\\ 0.0052 \pm 0.0018\\ 0.0014\\ 0.0048 \pm 0.0014\\ 0.0047 \pm 0.0018\\ 0.0001 \pm 0.0056\\ 0.0127 \pm 0.0059\\ 0.0086 \pm 0.0064\\ 0.0057 \pm 0.0070\\ 0.0000 \pm 0.0056\\ 0.0127 \pm 0.0059\\ 0.086 \pm 0.0061\\ 0.0326 \pm 0.0191\\ 0.0020\\ 0.0367 \pm 0.0031\\ 0.0188 \pm 0.0033\\ \end{array}$	$\begin{array}{c} 0.0000 \pm 0.0397 \\ 1.378 \pm 0.1763 \\ 0.9991 \pm 0.1203 \\ 1.348 \pm 0.1543 \\ 0.0000 \pm 0.0031 \\ 2.647 \pm 0.2982 \\ 1.752 \pm 0.1974 \\ 8.296 \pm 0.9315 \\ 0.4774 \pm 0.0539 \\ 0.0303 \pm 0.0212 \\ 0.0000 \pm 0.0074 \\ 0.0020 \pm 0.0010 \\ 0.0192 \pm 0.0022 \\ 0.4493 \pm 0.0503 \\ 0.0011 \pm 0.0010 \\ 0.0192 \pm 0.0023 \\ 0.0011 \pm 0.0008 \\ 0.2718 \pm 0.0305 \\ 0.0460 \pm 0.0061 \\ 0.0009 \pm 0.0005 \\ 0.0000 \pm 0.0005 \\ 0.0001 \pm 0.0003 \\ 0.0011 \pm 0.0003 \\ 0.0011 \pm 0.0003 \\ 0.0011 \pm 0.0003 \\ 0.0001 \pm 0.0004 \\ 0.0021 \pm 0.0003 \\ 0.0001 \pm 0.0004 \\ 0.0021 \pm 0.0003 \\ 0.0001 \pm 0.0004 \\ 0.0021 \pm 0.0008 \\ 0.0001 \pm 0.0004 \\ 0.0021 \pm 0.0008 \\ 0.0001 \pm 0.0004 \\ 0.0021 \pm 0.0008 \\ 0.0000 \pm 0.0004 \\ 0.0022 \pm 0.0004 \\ 0.0021 \pm 0.0008 \\ 0.0000 \pm 0.0024 \\ 0.0024 \pm 0.0026 \\ 0.0037 \pm 0.0028 \\ 0.0024 \pm 0.0035 \\ 0.0592 \pm 0.0100 \\ 0.4644 \pm 0.0542 \\ 0.0139 \pm 0.0083 \\ 0.0000 \pm 0.0021 \\ 0.0008 \\ 0.0157 \pm 0.0021 \\ 0.0021 \\ 0.0081 \pm 0.0016 \\ \end{array}$
IC Cl NO3 SO4 Na NH4 K	$\begin{array}{r} 48.74 \pm 2.437 \\ 0.0000 \pm 0.5000 \\ 21.27 \pm 1.064 \\ 182.5 \pm 9.125 \\ 6.310 \pm 0.3155 \\ 3.090 \pm 0.1545 \\ 203.2 \pm 10.16 \end{array}$	$\begin{array}{r} 4.746 \pm 0.0486 \\ 0.0000 \pm 0.0069 \\ 2.071 \pm 0.0225 \\ 17.77 \pm 0.1755 \\ 0.6144 \pm 0.0081 \\ 0.3009 \pm 0.0048 \\ 19.79 \pm 0.1951 \end{array}$	$\begin{array}{r} 2.031 \pm 0.2271 \\ 0.0000 \pm 0.0208 \\ 0.8862 \pm 0.0991 \\ 7.604 \pm 0.8502 \\ 0.2629 \pm 0.0294 \\ 0.1288 \pm 0.0144 \\ 8.467 \pm 0.9466 \end{array}$

Client: U005 - State of Utah DEQ Report Number: 09-089 _____ 09-X786 Lab ID: 9516469 Lindon (LN) 3/ 4/09 Client ID: Site: Sample Date: Mass: 550. +- 10. µg Volume: 24.00 +- 2.400 m³ Deposit Area: 11.3 cm² Size Fraction: PM2.5 Suspended Particulates: 22.92 +- 2.33 µg/m³ µg/m³ ug/filter percent Analvte 10.75 \pm 1.7281.955 \pm 0.31610.4480 \pm 0.084827.65 \pm 2.0765.027 \pm 0.38831.152 \pm 0.144117.97 \pm 1.1673.267 \pm 0.22040.7486 \pm 0.089357.27 \pm 3.06610.41 \pm 0.58872.386 \pm 0.27070.0000 \pm 0.04410.0000 \pm 0.00800.0000 \pm 0.00189.698 \pm 0.52091.763 \pm 0.10000.4041 \pm 0.045910.20 \pm 0.53681.854 \pm 0.10320.4249 \pm 0.04807.738 \pm 0.40231.407 \pm 0.07750.3224 \pm 0.036352.24 \pm 2.6409.498 \pm 0.51012.177 \pm 0.24390.9436 \pm 0.05080.1716 \pm 0.00980.0006 \pm 0.00040.0136 \pm 0.00900.0025 \pm 0.00160.0006 \pm 0.00040.1808 \pm 0.01470.0329 \pm 0.00270.0165 \pm 0.00109.996 \pm 0.50281.817 \pm 0.09720.4165 \pm 0.04660.0260 \pm 0.01240.0016 \pm 0.00250.0044 \pm 0.00070.0588 \pm 0.01470.0205 \pm 0.00270.0021 \pm 0.00060.0090 \pm 0.01240.0016 \pm 0.00030.0004 \pm 0.00050.1130 \pm 0.01360.0205 \pm 0.00210.0004 \pm 0.00070.0688 \pm 0.00900.0122 \pm 0.00140.0000 \pm 0.00030.0004 \pm 0.00130.0000 \pm 0.00140.0000 \pm 0.00040.0014 \pm 0.00790.000120.0014 \pm 0.00040.0004 \pm 0.00130.0004 \pm 0.00120.0014 \pm 0.00040.0004 \pm 0.00130.0004 \pm 0.00120.0014 \pm 0.00040.0004 \pm 0.00560.00120.0014 \pm 0.00220.1130 \pm 0.01360.0135 \pm 0.00160.0004 \pm 0.0004< XRF Na Ma Al Si Ρ S C1 K Ca Тi V Cr Mn Fe Со Ni C11 Zn Ga Ge As Se Br Rb Sr Y Zr Мо Pd Aq Cd In Sn Sb Ba La Нα Pb 2.353 ± 0.0452 0.5392 ± 0.0603 ТC C1 12.94 ± 0.6470 $\begin{array}{r} 2.353 \pm 0.0452 \\ 0.0000 \pm 0.0129 \\ 1.080 \pm 0.0220 \end{array}$ 0.0000 ± 0.5000 Br 1.080 ± 0.0220 0.2475 ± 0.0277 NO3 5.940 ± 0.2970 6.498 ± 0.1206 3.316 ± 0.0627 SO4 35.74 ± 1.787 1.489 ± 0.1665 $\begin{array}{c} 1.489 \pm 0.1683 \\ 0.7600 \pm 0.0850 \\ 0.0971 \pm 0.0109 \end{array}$ 18.24 ± 0.9120 Na NH4 2.330 ± 0.1165 1.860 ± 0.0930 K

Client: Report N	U005 - State of Utah DEQ umber: 09-089
Lab ID: Client I Site: Sample D Deposit J Size Fra Comments	Lindon (LN) ate: 4/21/08 Area: 11.3 cm ² ction: PM2.5
Analyte	µg/filter
XRF Na Mg Al Si P S Cl K Ca Ti V Cr M Fe Co Ni Cu Zn Ge As Se Br R D Y Zr Mod Ag Cd In Sb Ba La BP Pb	$\begin{array}{l} 0.3480 \pm 0.2938 \\ 0.000 \pm 0.1232 \\ 0.0000 \pm 0.0531 \\ 0.0000 \pm 0.0215 \\ 0.0000 \pm 0.0339 \\ 0.0000 \pm 0.0192 \\ 0.0000 \pm 0.0192 \\ 0.0000 \pm 0.0079 \\ 0.0000 \pm 0.0079 \\ 0.0000 \pm 0.0079 \\ 0.0000 \pm 0.0128 \\ 0.0000 \pm 0.0158 \\ 0.0192 \pm 0.0203 \\ 0.0565 \pm 0.0158 \\ 0.0056 \pm 0.0136 \\ 0.0056 \pm 0.0136 \\ 0.0056 \pm 0.0136 \\ 0.0056 \pm 0.0113 \\ 0.0090 \pm 0.0102 \\ 0.0000 \pm 0.0103 \\ 0.0079 \pm 0.0068 \\ 0.0002 \pm 0.0113 \\ 0.0023 \pm 0.0170 \\ 0.0002 \pm 0.0113 \\ 0.0023 \pm 0.0170 \\ 0.0001 \pm 0.0475 \\ 0.0610 \pm 0.0497 \\ 0.0000 \pm 0.0531 \\ 0.0915 \pm 0.0610 \\ 0.1232 \pm 0.01424 \\ 0.0396 \pm 0.0271 \\ 0.203 \pm 0.0147 \\ 0.0000 \pm 0.0158 \\ 0.033 \pm 0.0181 \\ \end{array}$
IC Cl Br NO3 SO4 Na NH4 K	$\begin{array}{l} 0.0000 \pm 0.5000 \\ 0.0000 \pm 0.5000 \\ 0.5100 \pm 0.0255 \\ 0.0000 \pm 0.5000 \\ 0.0000 \pm 1.000 \\ 0.0000 \pm 0.5000 \\ 0.0000 \pm 0.5000 \\ 0.0000 \pm 0.5000 \end{array}$

Chester LabNet - Portland

XRF-772 XRF Analytical Quality Assurance Report

Client: Utah DEQ Report: 09-089 Analysis Period: April 2, 2009 Number of Samples: 7

1. Precision Data

Micromatter Multi-elemental Quality Control Standard: QS285

QC Standard Results

		Counts per Second				-
Analyte	n	Calib.	Meas.	S.D.	c.v.	%E
Ti(0)	1	287.42	288.90	na	na	0.52
Fe(1)	1	325.13	330.34	na	na	1.60
Se(2)	1	68.70	71.42	na	na	3.96
Pb(2)	1	83.76	87.62	na	na	4.61
Cd(3)	1	79.25	85.48	na	na	7.86

2. Accuracy Data

NIST Standard Reference Materials: SRM 1832, SRM 1833

Analyte/		Certified		Measured V	Value (µg/o	cm ²)	%
SRM	n	Value(µg/cm ²)	High	Low	Av	verage	Rec.
Al 1832	4	14.6 +/97	15.17	14.01	14.68	+/- 0.42	100.6
Si 1832	4	34.0 +/- 1.1	35.24	33.76	34.59	+/- 0.54	101.7
Si 1833	4	31.5 +/- 2.1	31.69	31.03	31.37	+/- 0.24	99.6
S 2708	4	2.46 +/25	2.35	2.21	2.28	+/- 0.06	92.7
K 1833	4	16.4 +/- 1.64	16.88	16.55	16.67	+/- 0.13	101.6
Ca 1832	4	1.32 +/- 0.17	1.32	1.27	1.30	+/- 0.02	98.2
Ti 1833	4	12.1 +/- 1.79	11.88	11.50	11.63	+/- 0.15	96.1
V 1832	4	4.70 +/49	4.97	4.77	4.85	+/- 0.08	103.2
Mn 1832	4	4.54 +/49	4.87	4.79	4.82	+/- 0.03	106.2
Fe 1833	4	13.6 +/45	13.29	13.00	13.14	+/- 0.10	96.6
Cu 1832	4	2.43 +/16	2.77	2.25	2.57	+/- 0.19	105.6
Zn 1833	4	3.88 +/30	4.10	3.93	4.01	+/- 0.07	103.4
Pb 1833	4	16.1 +/75	17.01	16.03	16.55	+/- 0.41	102.8

NIST: National Institute of Standards and Technology

- % Rec: Percent Recovery = (Experimental/Given) x 100
- n: Number of Observations
- S.D.: Standard Deviation
- c.v.: Coefficient of Variation = (S.D./Measured) x 100
- % E: Percent Error = [(Measured-Calibrated)/Calibrated] x 100

XRF-772 REPLICATE REPORT

3.71

Original ID: 09-U257 Replicate ID: RU257

Filter Lot:		
Deposit Mass:	309	μg
Deposit Area:	1.0	cm ²
Particle Size:	Т	

Element	Original ug/cm2	Replicate ug/cm2	Difference ug/cm2	RPD	
Al P	3.7024 +- 0.3813 0.0000 +- 0.1708	3.8940 +- 0.4332 0.0000 +- 0.2175	-0.1916 +- 0.5771 0.0000 +- 0.2765	+ -5.0 +- 15.2	
S	6.6853 +- 0.5339	6.8057 +- 0.5614	-0.1205 +- 0.7748	+ -1.8 +- 11.5	
C1	5.3724 +- 0.3877	5.2391 +- 0.3899	0.1333 +- 0.5499	+ 2.5 +- 10.4	
K	23.0788 +- 1.4446	23.0994 +- 1.4494	-0.0206 +- 2.0464	+ -0.1 +- 8.9	
Ca	10.3786 +- 0.6329	10.4685 + 0.6416	-0.0899 +- 0.9012	+ -0.9 +- 8.6	
Ti	0.2295 + 0.0233	0.2587 +- 0.0308	-0.0291 +- 0.0386	+ -11.9 +- 15.8	
V	0.0115 + 0.0108	0.0312 +- 0.0154	-0.0197 +- 0.0188		
Cr	0.0446 +- 0.0063	0.0495 + 0.0085	-0.0049 +- 0.0106	+ -10.4 +- 22.5	
Mn	0.1182 +- 0.0090	0.1290 +- 0.0113	-0.0108 +- 0.0144	+ -8.7 +- 11.7	
Fe	2.9190 +- 0.2343	2.9296 +- 0.2386	-0.0106 +- 0.3344	+ -0.4 +- 11.4	
Со	0.0000 +- 0.0038	0.0000 +- 0.0053	0.0000 +- 0.0065		
Ni	0.0232 + 0.0027	0.0296 +- 0.0038	-0.0064 +- 0.0047	0 -24.2 +- 17.7	
Cu	0.7157 +- 0.0363	0.7500 + 0.0568	-0.0343 +- 0.0674	+ -4.7 +- 9.2	
Zn	0.2047 +- 0.0180	0.2085 +- 0.0208	-0.0038 +- 0.0275	+ -1.8 +- 13.3	
Ga	0.0000 +- 0.0061	0.0000 +- 0.0090	0.0000 +- 0.0108		
Ge	0.0014 +- 0.0054	0.0042 +- 0.0075	-0.0028 +- 0.0092		
As	0.0159 + 0.0080	0.0286 +- 0.0071	-0.0126 +- 0.0107	. · · · · · · · · · · · · · · · · · · ·	
Se	0.0074 + 0.0043	0.0000 +- 0.0060	0.0074 +- 0.0073		
Br	0.0230 + 0.0043	0.0250 + 0.0060	-0.0020 +- 0.0074	+ -8.3 +- 30.9	
Rb	0.0154 + 0.0052	0.0303 +- 0.0075	-0.0149 +- 0.0092		
Sr	0.4957 +- 0.0261	0.5065 + 0.0278	-0.0108 +- 0.0381	+ -2.2 +- 7.6	
Y	0.0020 +- 0.0066	0.0220 +- 0.0096	-0.0200 +- 0.0117		
Zr	0.0669 +- 0.0092	0.0898 +- 0.0130	-0.0229 +- 0.0159	0 -29.3 +- 20.3	
Mo	0.0921 +- 0.0121	0.1028 + 0.0168	-0.0107 +- 0.0207	+ -11.0 +- 21.3	
Pd	0.0098 +- 0.0073	0.0227 +- 0.0103	-0.0129 +- 0.0126		
Ag	0.0228 +- 0.0070	0.0231 +- 0.0098	-0.0003 +- 0.0120	+ -1.5 +- 52.5	
Cđ	0.0259 +- 0.0069	0.0000 +- 0.0096	0.0259 +- 0.0118		
In	0.0251 + 0.0070	0.0000 + 0.0099	0.0251 + 0.0121		
Sn	0.0646 +- 0.0086	0.0513 +- 0.0118	0.0133 +- 0.0146	+ 23.0 +- 25.2	
Sb	0.1047 +- 0.0118	0.0797 + 0.0154	0.0250 + 0.0194	0 27.2 +- 21.0	
Ba	2.1959 +- 0.1187	2.0758 + 0.1216	0.1201 +- 0.1699	+ 5.6 +- 8.0	
La	0.1871 +- 0.0511	0.1693 +- 0.0716	0.0178 +- 0.0880	+ 10.0 +- 49.4	
Hg	0.0007 +- 0.0121	0.0020 +- 0.0170	-0.0013 +- 0.0209		
Pb	0.0488 +- 0.0123	0.0139 +- 0.0166	0.0350 +- 0.0206		

RPD: Relative Percent Difference (X1-X2)/[(X1+X2)/2]*100. RPD is calculated when original value is greater than three times its uncertainty.

Client Name: Project Number: U005 Analytical Technique: Ion Chromatography Sample Description: 47mm Quartz Report Number: 09-089

State of Utah DEQ

<u>Blank Data</u>

Analyte	Sample	Measured	MDL
	ID	Conc. mg/L	Conc. mg/L
Cl Cl Cl Cl Cl Br Br Br Br NO3 NO3 NO3 NO3 NO3 NO3 NO3 SO4 SO4 SO4 SO4 SO4 SO4 SO4 SO4 SO4 SO4	ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB ICB Prep_Blk Meth_Blk* CCB ICB ICB ICB ICB ICB ICB ICB	<pre>< MDL < MDL <</pre>	$\begin{array}{c} 0.050\\ 0.050\\ 1.00\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 1.00\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.100\\ 0.100\\ 0.100\\ 0.100\\ 0.100\\ 0.100\\ 0.100\\ 0.100\\ 0.050\\ 0.050\\ 1.00\\ 0.050$

*: Method Blank concentration in μ g/filter

<u>QA/QC Limits</u> Continuing Calibration: ± 10% Replicates: ± 20% RPD

Client Name: State of Utah DEQ Project Number: U005 Analytical Technique: Ion Chromatography Sample Description: 47mm Quartz Report Number: 09-089

Calibration QC

Analyte	Sample	Standard	Measured	Percent
	ID	Conc. mg/L	Conc. mg/L	Recovery
Cl Cl Cl Cl Cl Cl Cl Cl Cl Br Br Br Br Br Br Br Southe	ICV LO ICV MID CCV LO CCV MID CCV LO CCV MID ICV LO ICV MID CCV LO CCV MID CCV MID CCV LO CCV MID CCV MID	$\begin{array}{c} \text{CORC. } \text{ mg/L}\\ 1.00\\ 10.0\\ 10.0\\ 1.00\\ 10.0\\ 1.00\\ 10.0\\ 1.00\\ 10.0\\ 1.00\\ 10.0\\ 1.00\\ 10.0\\ 1.00\\ 10.0\\ 1.00\\ 10.0\\ 1.00\\ 10.0\\ 1.00\\ 10.0\\ 1.00\\ 10.0\\ 1.00\\ 10.0\\ 1.00\\ 10.0\\ 1.00\\ 10.0\\ 1.00\\ 10.0\\ 1.00\\ 10.0\\ 1.00\\ 10.0\\ 1.00\\ 10.0\\ 5.0$	$\begin{array}{c} 1.01\\ 9.79\\ 1.05\\ 9.85\\ 1.01\\ 9.80\\ 0.98\\ 9.29\\ 0.98\\ 9.29\\ 0.98\\ 9.29\\ 0.98\\ 9.29\\ 0.98\\ 9.29\\ 0.98\\ 9.29\\ 0.98\\ 9.29\\ 0.98\\ 9.29\\ 0.98\\ 9.29\\ 0.98\\ 9.29\\ 0.98\\ 9.29\\ 0.98\\ 9.29\\ 0.98\\ 9.29\\ 0.98\\ 9.29\\ 0.98\\ 9.29\\ 0.98\\ 9.29\\ 0.51\\ 5.10\\ 0.51\\ 5.16\\ 0.51\\ 5.16\\ 0.51\\ 5.16\\ 0.51\\ 5.16\\ 0.51\\ 5.16\\ 0.51\\ 5.16\\ 0.51\\ 5.16\\ 0.51\\ 5.12\\ 5.10\\ 5.10\\ 0.50\\ 4.98\\ 0.50\\ 4.98\\ 0.50\\ 4.92\\ 0.52\\ 5.15\\ 0.52\\ 5.14\\ 0.52\\ 5.10\\ 5.07\\ 5.08\\ \end{array}$	100.9 97.9 105.2 98.5 101.4 98.0 97.7 92.9 98.4 93.5 97.9 92.9 96.9 96.9 99.9 96.9 99.9 96.7 103.1 96.7 103.1 98.9 109.3 99.5 103.7 98.9 109.3 99.5 103.7 98.9 102.2 103.3 101.8 103.1 102.0 102.3 102.0 102.1 100.2 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99

<u>QA/QC Limits</u> Continuing Calibration: ± 10% Replicates: ± 20% RPD

Client Name: Project Number: U005 Analytical Technique: Ion Chromatography Sample Description: 47mm Quartz Report Number: 09-089

State of Utah DEQ

Replicate Data

Analyte	Sample ID	Sample Conc. mg/L	Replicate Conc. mg/L	RPD
Cl	09-U253	2.55	2.54	0.24
Br	09-U253	< 0.05	< 0.05	N/C #
NO3	09-U253	1.33	1.32	0.75
SO4	09-U253	4.54	4.52	0.42
Na	09-U255	16.6	16.7	0.60
NH4	09-U255	0.284	0.285	0.35
K	09-U255	0.547	0.546	0.18

RPD = {(sample-replicate)/[(sample+replicate)/2]}x100

N/C: RPD is not calculated when sample or replicate is below detection limit

#: per EPA CLP protocol, control limits do not apply if sample and/or

replicate concentration is less than 5x the detection limit

1 M M M M M M M M M M M M M M M M M M M	1				
Analyte	Sample ID	Sample Conc. mg/L	Spike Conc. mg/L	Spike Amount mg/L	Percent Recovery
Cl Cl Br NO3 NO3 SO4 SO4 Na NA NH4 NH4 K K	LCS 09-U254 LCS 09-U254 LCS 09-U254 LCS 09-U254 LCS 09-U256 LCS 09-U256 LCS 09-U256	< 0.05 2.11 < 0.05 < 0.05 < 0.05 1.44 0.083 6.34 1.96 2.42 < 0.05 0.249 < 0.05 0.426	$\begin{array}{c} 9.49\\ 11.3\\ 9.00\\ 9.06\\ 9.35\\ 11.2\\ 9.73\\ 16.3\\ 6.84\\ 7.43\\ 4.78\\ 5.16\\ 5.00\\ 5.79\end{array}$	$ \begin{array}{c} 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 5.00$	94.9 91.8 90.0 93.5 97.4 96.5 99.2 97.6 100. 95.6 98.1 100. 107.

Laboratory Control Sample/Matrix Post Spike Analysis

*: per EPA CLP protocol, control limits do not apply if spike concentration is less than 25% of the sample concentration

<u>QA/QC Limits</u> Continuing Calibration: <u>+</u> 10% Replicates: ± 20% RPD

QA/QC Report

Client Name: State of Utah DEQ Project Number: U005 Analytical Technique: OC/EC Sample Description: 47mm Quartz Report Number: 09-089

Calibration QC

Sucrose Standard

	Sucrose Std. Conc.	Measured Conc.	Percent
Sample ID	µg/cm ²	μg/cm ²	Recovery
Sucrose 10ul 4/8/09	28.06	28.4	101.2

OC/EC Split

	%OC	%OC	Percent
Sample ID	Given	Measured	Recovery
94-Q150 4/8/09	89.6	91	101.6

Blank Data

		Measured Conc.	MDL
Sample ID	Analyte	µg/cm²	µg/cm ²
4/8/09	OC	<mdl< td=""><td>0.2</td></mdl<>	0.2
	EC	<mdl< td=""><td>0.2</td></mdl<>	0.2

Duplicate Data

		Sample Conc.	Duplicate Conc.	
Sample ID	Analyte	µg/cm ²	µg/cm ²	RPD
09-U254	OC	26.6	26.13	1.8
	EC	0.12	0.13	8.0
	TC	26.72	26.26	1.7

 $RPD = [(sample - duplicate)/(sample + duplicate)/2] \times 100$

OC/EC Split: 80-120% Recovery

CHESTER LabNet

XRF-770

XRF Analytical Quality Assurance Report

Client: Utah DEQ Report: 09-089 Analysis Period: April 3, 2009 Number of Samples: 9

1. Precision Data

Micromatter Multi-elemental Quality Control Standard: QS285

QC Standard Results

		Count	s per Second			
Analyte	n	Calib.	Meas.	S.D.	c.v.	%E
Si(0)	1	1785.92	1844.00	na	na	3.25
Ti(1)	1	591.36	576.76	na	na	-2.47
Fe(1)	1	1321.41	1294.08	na	na	-2.07
Se(3)	1	343.74	321.69	na	na	-6.41
Pb(3)	1	394.75	368.40	na	na	-6.68
Cd(4)	1	277.97	272.66	na	na	-1.91

2. Accuracy Data

NIST Standard Reference Materials: SRM 1832, SRM 1833, SRM 2783

Analyte/		Certified		Measured V	Value (µg/	cm ²)	%
SRM	n	Value(µg/cm ²)	High	Low	A	verage	Rec.
Al 1832	4	14.6 +/97	15.60	14.50	15.11	+/- 0.42	103.5
Si 1832	4	34.0 +/- 1.1	35.08	34.09	34.73	+/- 0.41	102.1
Si 1833	4	31.5 +/- 2.1	31.71	30.52	31.03	+/- 0.51	98.5
S 2708	4	2.46 +/25	2.43	2.38	2.40	+/- 0.02	97.4
K 1833	4	16.4 +/- 1.64	17.54	16.89	17.27	+/- 0.24	105.3
Ca 2783	4	1.33 +/- 0.17	1.31	1.28	1.29	+/- 0.01	97.7
Ti 1833	4	12.1 +/- 1.79	11.87	11.39	11.62	+/- 0.22	96.0
V 1832	4	4.70 +/49	4.73	4.38	4.51	+/- 0.13	95.9
Mn 1832	4	4.54 +/49	4.53	4.36	4.45	+/- 0.07	98.0
Fe 1833	4	13.6 +/45	13.47	13.39	13.42	+/- 0.03	98.7
Cu 1832	4	2.43 +/16	2.63	2.47	2.55	+/- 0.08	104.8
Zn 1833	4	3.88 +/30	3.97	3.59	3.79	+/- 0.14	97.6
Pb 1833	4	16.1 +/75	15.99	15.53	15.71	+/- 0.18	97.6

NIST: National Institute of Standards and Technology

% Rec: Percent Recovery = (Experimental/Given) x 100

n: Number of Observations

S.D.: Standard Deviation

c.v.: Coefficient of Variation = $(S.D./Measured) \times 100$

% E: Percent Error = [(Measured-Calibrated)/Calibrated] x 100

XRF-770 REPLICATE REPORT

3.49

Original ID: 09-X782 Replicate ID: RX782

Filter Lot:

Deposit Mass:	1199	μg
Deposit Area:	11.3	cm^2
Particle Size:	F	

Element	Orig ug/c		Replicate ug/cm2	Difference ug/cm2	RPD
Na	0.0000 +	- 0.0782	0.0000 +- 0.0875	0.0000 +- 0.1174	
Mg	3.4575 +	- 0.2777	3.1481 +- 0.2592	0.3095 +- 0.3799	+ 9.4 +- 11.5
Al	5.7308 +	- 0.3827	5.4823 +- 0.3671	0.2484 +- 0.5304	+ 4.4 +- 9.5
Si	15.3227 +	- 0.8568	14.9105 +- 0.8334	0.4123 +- 1.1953	+ 2.7 +- 7.9
Р	0.0502 +	- 0.0067	0.0423 +- 0.0076	0.0079 +- 0.0102	+ 17.1 +- 22.0
S	0.7181 +	- 0.0407	0.7319 +- 0.0434	-0.0138 +- 0.0595	+ -1.9 +- 8.2
C1	0.2416 +	- 0.0153	0.2548 +- 0.0178	-0.0132 +- 0.0235	+ -5.3 +- 9.5
K	2.0760 +	- 0.1070	2.1142 +- 0.1095	-0.0382 +- 0.1531	+ -1.8 +- 7.3
Ca	9.0809 +	- 0.4625	9.2507 +- 0.4715	-0.1699 +- 0.6604	+ -1.9 +- 7.2
Ti	0.2700 +	- 0.0138	0.2745 +- 0.0144	-0.0045 +- 0.0199	+ -1.7 +- 7.3
V	0.0061 +	- 0.0014	0.0080 +- 0.0020	-0.0019 +- 0.0024	+ -27.1 +- 35.0
Cr	0.0057 +	- 0.0011	0.0073 +- 0.0016	-0.0016 +- 0.0019	+ -24.0 +- 29.6
Mn	0.0718 +	- 0.0064	0.0719 +- 0.0089	-0.0001 +- 0.0110	+ -0.2 +- 15.3
Fe	2.8946 +	- 0.1450	2.9315 +- 0.1470	-0.0369 +- 0.2065	+ -1.3 +- 7.1
Co	0.0050 +	- 0.0029	0.0000 +- 0.0041	0.0050 + 0.0051	
Ni	0.0062 +	- 0.0015	0.0039 +- 0.0021	0.0023 +- 0.0026	+ 46.2 +- 51.4
Cu	0.0094 +	- 0.0015	0.0091 +- 0.0020	0.0003 +- 0.0025	+ 3.0 +- 27.1
Zn	0.0192 +	- 0.0016	0.0194 +- 0.0020	-0.0003 +- 0.0026	+ -1.4 +- 13.3
Ga	0.0008 +	- 0.0009	0.0006 +- 0.0013	0.0002 +- 0.0016	
Ge	0.0000 +	- 0.0009	0.0000 +- 0.0011	0.0000 +- 0.0015	
As	0.0000 +	- 0.0012	0.0000 +- 0.0017	0.0000 +- 0.0020	
Se	0.0006 +	- 0.0006	0.0010 +- 0.0009	-0.0004 +- 0.0011	
Br	0.0082 +	- 0.0007	0.0080 +- 0.0009	0.0002 +- 0.0012	+ 2.4 +- 14.9
Rb	0.0110 +	- 0.0009	0.0124 +- 0.0012	-0.0014 +- 0.0015	+ -12.1 +- 12.7
Sr	0.0524 +	- 0.0028	0.0526 +- 0.0030	-0.0003 +- 0.0041	+ -0.5 +- 7.8
Y	0.0000 +	- 0.0009	0.0027 +- 0.0013	-0.0027 +- 0.0015	
Zr	0.0126 +		0.0179 +- 0.0018	-0.0053 +- 0.0023	35.0 +- 14.8
Mo	0.0029 +	- 0.0016	0.0000 +- 0.0021	0.0029 +- 0.0026	
Pd	0.0067 +		0.0001 +- 0.0067	0.0067 +- 0.0083	
Ag	0.0000 +		0.0038 +- 0.0070	-0.0038 +- 0.0086	
Cd	0.0117 +		0.0129 +- 0.0076	-0.0012 +- 0.0094	
In	0.0008 +		0.0203 +- 0.0085	-0.0196 +- 0.0104	
Sn	0.0113 +		0.0163 +- 0.0098	-0.0050 +- 0.0120	
Sb	0.0256 +		0.0318 +- 0.0199	-0.0062 +- 0.0244	
Ba	0.0211 +		0.0311 +- 0.0112	-0.0100 +- 0.0144	
La	0.0013 +		0.0000 +- 0.0092	0.0013 +- 0.0113	
Hg	0.0016 +		0.0003 +- 0.0021	0.0013 +- 0.0026	
Pb	0.0080 +	- 0.0018	0.0105 +- 0.0024	-0.0024 +- 0.0030	+ -26.2 +- 32.5

RPD: Relative Percent Difference (X1-X2)/[(X1+X2)/2]*100. RPD is calculated when original value is greater than three times its uncertainty.

P - 97

Client Name: State of Utah DEQ Project Number: U005 Analytical Technique: Ion Chromatography Sample Description: 47mm Teflon Report Number: 09-089

<u>Blank Data</u>

Analyte	Sample	Measured	MDL
	ID	Conc. mg/L	Conc. mg/L
Cl Cl Cl Cl Cl Br Br Br Br NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3	ICB Prep_Blk Meth_Blk* CCB CCB ICB Prep_Blk Meth_Blk* CCB CCB ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB ICB Prep_Blk Meth_Blk* CCB ICB ICB ICB ICB ICB ICB ICB	< MDL < MDL 0.500 MDL MDL MDL MDL MDL MDL MDL MDL	$\begin{array}{c} 0.050\\ 0.$

*: Method Blank concentration in μ g/filter

<u>QA/QC Limits</u> Continuing Calibration: ± 10% Replicates: ± 20% RPD

Client Name: State of Utah DEQ Project Number: U005 Analytical Technique: Ion Chromatography Sample Description: 47mm Teflon Report Number: 09-089

Calibration QC

Analyte	Sample ID	Standard Conc. mg/L	Measured Conc. mg/L	Percent Recovery
Cl Cl Cl Cl Cl Br Br Br Br Br Br NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3	ICV LO ICV MID CCV LO CCV MID ICV LO ICV MID ICV LO ICV MID CCV LO CCV MID CCV LO CCV MID ICV LO ICV MID CCV LO CCV MID ICV MID ICV MID CCV LO CCV MID ICV MID CCV LO CCV MID ICV MID CCV MID CC	$\begin{array}{c} 1.00\\ 10.0\\ 10.0\\ 1.00\\ 1.00\\$	$\begin{array}{c} 1.05\\ 9.85\\ 1.01\\ 9.80\\ 1.01\\ 9.72\\ 0.98\\ 9.35\\ 0.98\\ 9.29\\ 0.97\\ 9.21\\ 1.00\\ 9.74\\ 0.99\\ 9.59\\ 1.04\\ 9.99\\ 9.59\\ 1.09\\ 9.59\\ 1.09\\ 9.59\\ 1.02\\ 9.87\\ 1.04\\ 9.89\\ 1.03\\ 9.81\\ 1.02\\ 9.87\\ 1.04\\ 9.89\\ 1.03\\ 9.81\\ 1.02\\ 9.87\\ 1.04\\ 9.89\\ 1.03\\ 9.81\\ 1.02\\ 9.87\\ 1.04\\ 9.50\\ 1.05\\ 5.16\\ 0.51\\ 5.12\\ 0.50\\ 5.06\\ 0.50\\ 4.92\\ 0.50\\ 4.92\\ 0.50\\ 4.92\\ 0.50\\ 5.05\\ 5.07\\ 5.08\\ \end{array}$	105.2 98.5 101.4 98.0 100.9 97.2 98.4 93.5 97.9 92.9 97.4 92.1 99.1 96.7 98.6 95.9 103.7 98.9 103.4 98.1 101.8 98.7 103.7 98.9 103.4 98.1 101.8 98.7 103.4 98.1 101.8 102.0 102.3 100.8 101.2 100.8 102.0 103.4 102.0 103.4 102.0 103.4 101.6 99.6 99.6 97.1 103.8 102.0 103.4 101.0 102.0 103.4 101.0 102.1 101.6

<u>QA/QC Limits</u> Continuing Calibration: ± 10% Replicates: ± 20% RPD

Client Name:State of Utah DEQProject Number:U005Analytical Technique:Ion ChromatographySample Description:47mm TeflonReport Number:09-089

Replicate Data

Analyte	Sample ID	Sample Conc. mg/L	Replicate Conc. mg/L	RPD
Cl	09-X779	0.627	0.623	0.64
Br	09-X779	< 0.05	< 0.05	N/C #
NO3	09-X779	0.989	0.991	0.20
SO4	09-X779	2.16	2.17	0.23
Na	09-X781	2.36	2.36	0.13
NH4	09-X781	0.446	0.446	0.00
K	09-X781	0.248	0.248	0.00 #

RPD = {(sample-replicate)/[(sample+replicate)/2]}x100

 $N/C\colon$ RPD is not calculated when sample or replicate is below detection limit #: per EPA CLP protocol, control limits do not apply if sample and/or

replicate concentration is less than 5x the detection limit

AnalyteSample IDSample Conc. mg/LSpike Conc. mg/LSpike Amount mg/LPercent RecoveryClLCS0.0509.3210.092.8Cl09-X7800.5089.9810.094.7BrLCS< 0.058.6410.086.4Br09-X780< 0.059.1510.091.5NO3LCS0.0709.0410.089.7NO309-X7801.0710.510.093.9SO4LCS< 0.059.2410.092.4SO409-X7802.9012.410.094.5NaLCS0.1104.835.0094.4Na09-X7820.6726.125.00109.NH4LCS< 0.054.675.0093.4NH409-X7820.5005.325.0096.3KLCS< 0.054.805.0096.0K09-X7820.2985.395.00102.					and the second	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Analyte					
	C1 Br Br NO3 NO3 SO4 SO4 Na NA NH4 NH4 K	09-X780 LCS 09-X780 LCS 09-X780 LCS 09-X780 LCS 09-X782 LCS 09-X782 LCS	0.508 < 0.05 < 0.05 0.070 1.07 < 0.05 2.90 0.110 0.672 < 0.05 0.500 < 0.05	9.98 8.64 9.15 9.04 10.5 9.24 12.4 4.83 6.12 4.67 5.32 4.80	$ \begin{array}{c} 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 5.00$	94.7 86.4 91.5 89.7 93.9 92.4 94.5 94.4 109. 93.4 96.3 96.0

Laboratory Control Sample/Matrix Post Spike Analysis

*: per EPA CLP protocol, control limits do not apply if spike concentration is less than 25% of the sample concentration

<u>QA/QC Limits</u> Continuing Calibration: ± 10% Replicates: ± 20% RPD

					 			· · · · · ·		_					page 1 of 2	
	-	Utah Division of Air Quality	AIVALYSIS REQUESTED BY Ision of Air Onality	BY:			TES	TESTING LABORATORY	ATORY					SHIPPING		
ວັ		Air Monitoring Center	enter			Company: CH	CHESTER LabNet	Vet					Compe	Company: FedEx		
∢		West Park	2861 West Parkway Blvd., West Valley City, Utah 84119	lley City, Utah 841		Address: 122	242 SW Gard	ten Place, Tic	12242 SW Garden Place, Tigard, OB 97223	23			king Num		3806 1788 2000	
	PIIONE: 001.8	801.070.6164				phone: 503	503.624.2183						Delivery Type:			
		Hale 801 5	387 0771 and holo	Sector Later		fax: 503	503.624.2653					<u> </u> 		he. Juai luc		
		Symons, 80	Ken Symons, 801.887.0773, ksymons@utah.gov	re utan.gov ns@utah.gov		contact:	ul Duda, pduc	Paul Duda, pduda@chesterlab.net	ab.net			1				
	Project Name			>				CI IESIEITAD.I	61			- -		÷		
Ľ	Contract 076206	<u> 06</u>														
	Number															
					Sampling											
#	Number I	ter ·					Volume	Mass Wt	Sampler	e	- -	Tvpe of	Type of Analysis Needed	Needed		
	20080488			Late	Type	(hr)	(m ³)	(mg)	Type	Size	Blank	XRF 1	IC OC/EC	EC	Lab Number	
				April. 15.2008	Ambient	24:00	21.2	3.487	Low Vol	PM10	0L	yes ye	yes yes	s	10-11 2C2	
1 0	2000000		Lindon (LN)	_	Ambient	23:59	20.5	3.717	Low Vol	PM10	2	yes ye	yes yes	6	5	•
2	2000000	QUARTZ	Hawthorn (HW)	April. 19.2008	Ambient	23:59	20.7	3.960	Low Vol	PM10	2	Ves	Ves		1000	
4	20080727	Quartz	Lindon (LN)	May.20.2008	Ambient	24:00	20.3	3.584	Low Vol	PM10	+	+	┿		04-n 255	
ى	20081074	Quartz	Ogden (O2)	July.4.2008	Ambient	23:59	20.3	1.656	Low Vol	PM10	4_	+-			09-4256	
ø	20090387	Quartz	Lindon (LN)	March.4.2009	Ambient	24:00	21.0	4.258	I ow Vol	DM10	_	+	_		07-4257	
2	8131301	Teflon	Lindon (LN)	April.15.2008	Ambient	23.50	0.40	0 100			+	yes	yes yes		09-4258	
∞	8131368	Teflon	Lindon (LN)	April. 19.2008	Ambient	23.50	0.42	0.308		PM2.5		yes ye	yes		09- X779	
6	8131360	Teflon	Hawthorn (HW)	Anril 19 2008	Ambiant	00.00	0.42	0.734		PM2.5	2	yes yes	SS		09- × 780	
2	8131377	Teflon	North Prove (ND)			24:00	24.0	0.752	Low Vol	PM2.5	02	yes yes	Sé		09-X781	
	8131629	Toflon			Ambient	24:00	24.0	1.199	Low Vol	PM2.5	or O	yes yes	S		79- 1787	
÷	81200E0				Ambient	23:59	24.0	0.877	Low Vol	PM2.5	6	yes yes	S		(10, 1-8?	
1 t	8130100 8130100		Brigham City (BR)	7	Ambient	24:00	24.0	1.026	Low Vol	PM2.5	2	yes yes	5		Cal X - 60	
2 7	0516460		Ugden (O2)	July.4.2008	Ambient	23:59	24.0	1.027	Low Vol	PM2.5	2	yes yes	v		10- N 187	
			rindon (LN)	March.4.2009	Ambient	24:00	24.0	0.550	Low Vol	PM2.5	- <u>2</u>	yes yes	0		21 × 100	
2	01313/U	l etion	Lindon (LN)	April.21.2008						PM2.5		+			<	
			Relinqu	Relinquished by:											787 X - ru	
D	Date:	April.	April.1.2009	Comments:								Comments	y. nts:			
				Price Quote Number: Bn903261	her Rnanszei			Date:	4/2/09	6					,	
101		10	10:50					Time:	04:6					•		
2	Name:	Andy	Andy Hale					Name:	6	-		1				
Signe	Signature:	K								Duda						
		HAN AN	22				S I	Signature:	R C	ł						
		,														

CHAIN-OF-CUSTODY FORM (March.2009)

																7	bai	page 2 of 2
Ц			ANALYSI	ANALYSIS REQUESTED BY	3Y:				TESI	TESTING LABORATORY	RATORY			Ш		IIHIIN	SHIPPING CARRIER	RIER
0	Company:		Utah Division of Air Q Air Monitoring Center	Quality er			Company:		STER Lab	let					Company: Tracking Number		FedEx 7974 6806 1788	788
Ĺ	Address:	2861 We	st Parkwa	2861 West Parkway Blvd., West Valley City, Utah 84119	ley City, Utah 8 ²	1119	Addr	ddress: 1224	2 SW Gard	en Place, Ti	gard, OR 972	223			Shipping		April.1.2009	8
	phone:	801.887.0760	.0760				Ъ	phone: 503.6	324.2183		503.624.2183				Delivery Type:	Type: Star	Standard Overnight	ernight
	fax:	fax: 801.972.6164	6164					fax: 503.6	503.624.2653									
	contact:		ile, 801.887 10ns, 801.6	Andy Hale, 801.887.0771, andyhale@utah.gov Ken Symons, 801.887.0773, ksymons@utah.gov	@utah.gov 1s@utah.gov		con	contact: Paul	Duda, pduc Ball, Iball@.	Paul Duda, pduda@chesterlab.net Lisa Ball. Iball@chesterlab.net	lab.net let							
	Project Name													1				
	Contract Number	076206																
						Sam	Sampling							a a				
		Filter						Length	Volume	Mass Wt	Sampler	oler		Type	of Analy	Type of Analysis Needed	1	
#	Number	ber	Type	Location	Date	Type	e	(hr)	(m³)	(mg)	Ĺ	Size	Blank	XRF	<u>ບ</u>	OC/EC		Lab Number
16	2009B001		Quartz							-		PM10	yes	yes	yes	yes	Ŭ	652n-60
17		<u></u>																
18																	<u> </u>	
19							-	,									 	
20								-					Ĺ					
51			-															
52						 											<u> </u>	
23					-											<u> </u>	 	
24																		
25		-																
26													¢			T		
27												 				<u> </u>		
28																		
29					. *	-						 		1				
30																	<u> </u>	
Ц				Relin	Relinquished by:									Received by:	ed by:			
┍┛	Date:		April.1.2009	.2009	Comments: Price Quote Number: B0903261	mber: B090	3261			Date:	4/2/09	09		ပိ	Comments:	-		
102	Time:		10:50	50					LJ	Time:	9:40							
	Name:		Andy Hale	Hale					<u></u>	Name:	Paul	Duda	da					
S	Signature:	Q	uly C	fu	,		,			Signature:	(f.	Du						
)	1	-]									

CHAIN-OF-CUSTODY FORM (March.2009)

.

RAW DATA

Available upon request

Notice

Public Comment (Preamble V.G.)

The DEQ established a 30-day comment period from June 1, 2010 through June 30, 2010. The announcement of the comment period was published eight times in the Salt Lake Tribune between May 17 and June 1, 2010. Below are comments that where received during the comment period and our response to them.

Response to Comments

Commenter 1

The commenter mistakenly believed that the mitigation portion of the report dealing with agricultural land preservation was supporting exceptional event waiver for livestock grazing. Since this is not the case, no response is necessary.

Commenter 2

This commenter offered complementary comments and suggestions. The responses to the suggestions follow:

Comment: "It would be helpful if a way could be found to bifurcate the PM10 & 2.5 SIP processes into the separate problems of wintertime inversions & high wind/fireworks/fire events. The solutions to the causes of these various exceedances are very different, and present difficulties in completing work on the wintertime cool pool events, when staff time is necessary to address other exceedances.

Such a bifurcation would require some creativity as the problems are linked by exceedances of the same NAAQS, while the cause & solutions of the problems are different.

Response: This comment is directed at SIP issues which are being addressed by DEQ in the SIP design process.

Comment: "Control Measures Demonstration Case Study - Kennecott Mine Tailing Impoundments This demonstration clearly shows that attention to disturbed areas results in a reduction of fugitive dust despite high wind events. Continued attention to methods of reducing & mitigating disturbance across the state would reduce the impact of high winds. "

Response: DEQ appreciates the comment and will continue to enforce the fugitive dust rules requiring the development and implementation of dust control plans that define control mitigation methods.

Comment: This section would be much improved with a discussion of Utah County's dust control program. It is the only county covered by this Exceptional Event demonstration that is not discussed in this section.

Response: DEQ handles fugitive dust issues in Utah County.

4770 S. 5600 W. P.O. POX 704005 WEST VALLEY CITY, UTAH 84170 FED.TAX 1.D.# 87-0217663

The Salt Lake Tribune

MEDIAJae

Morning News

CUSTOMER'S COPY

PROOF OF PUBLICATION

CUSTOMER NAME AND ADDRESS ACCOUNT NUMBER DATE 9001399880 6/2/2010 UT ST DEPT OF ENV QUALITY, **DIVISION OF AIR QUALITY** PO BOX 144820 SALT LAKE CITY UT 84114 ACCOUNT NAME UT ST DEPT OF ENV QUALITY. TELEPHONE ADORDER# / INVOICE NUMBER 100575972-05172010 8015364000 0000575972 Notice of Public Comment Period High Wind Exceptional Event - Event Date April 15, 2008 SCHEDULE Federal regulations, 40 Code of Federal Regulations (CFR) Part 50, allow states to exclude air quality data that exceed or violate a National Ambient Air Quality Standard (NAASS) if they can demonstrate that an "exceptional event" has caused the exceedance or violation. Exceptional events are unusual or naturally occurring events that can affect air quality but are not reasonably controllable or preventable using techniques implemented to attain and maintain the NAAQS. Start 05/17/2010 End 06/01/2010 CUST, REF. NO. Exceptional events may be caused by human activity that is unlikely to recur at a particular location, or may be due to a natural event. The Environmental Protection agency (EPA) defines a "natural event" as an event in which human activity plays little or no direct causal role to the event in question. For example, a natural event could include such things as high winds, wild fires, and seismic/volcanic activity. In addition, the EPA will allow states to exclude data from regulatory determinations on a case-by-case basis for monitoring stations that measure values that exceed or violate the NAAQS due to emissions from fireworks displays from cultural events. DAQPN-006-10 CAPTION Federal regulations (40 CFR Part 50.14 (c) (3)(i)) require that all relevant flagged data, the reasons for the data being flagged, and a demonstration that the flagged data are caused by exceptional events be made available by the State for 30 days of public review and comment. These comments will be considered in the final demonstration of the event that is submitted for EPA. The following monitored values have been attributed to a high wind ex-ceptional events: Notice of Public Comment Period High Wir SIZE April 15, 2008, North Salt Lake Monitoring Station, 188 µg/m³ PM10
 April 15, 2008, North Salt Lake Co-monitoring Station, 220 PM10
 April 15, 2008, Hawthorne Monitoring Station, 166 µg/m³ PM10
 April 15, 2008, Cottonwood Monitoring Station, 177 µg/m³ PM10
 April 15, 2008, Lindon Monitoring Station, 164 µg/m³ PM10 51 Lines 3.00 CQ The documentation to support removing these data from use in regulatory determiniations will be available beginning june 1, 2010 (for public review and comment) at the following w w w a ir q u ality u tah, g av (Public-Interst) Public-Comment rearring: Exceptional, Events Exceptional, Events thim or at the Multi Agency State Covern ment Office Building, 195 North 1950 Wett in Sati Loke City. In compliance with the Americ and services) should contact Brooke Baker, Office of Human Resources at (801) 536-441. TIMES R 8 AD CI (TDD 536-4414). MISC, CHARGES The comment period will close at 5:00 p.m. on June 30, 2010. Comments postmarked on o before that date will be accepted. Comments may be submitted by electronic mail to jkarmazyn@utah.gov or may be mailed to: M. Cheryl Heying, Director ATTN: High Wind Exceptional Events Utah Division of Air Quality PC Box 144820 Soit Lake City, UT 84114-3097 575972 TOTA 1 IPAYI 519.08 AFFIDAVIT OF PUBLICATION

AS NEWSPAPER AGENCY CORPORATION LEGAL BOOKER, I CERTIFY THAT THE ATTACHED ADVERTISEMENT OF <u>Notice of Public Comment Period</u> <u>High Win</u> FOR <u>UT ST DEPT OF ENV QUALITY</u>, WAS PUBLISHED BY THE NEWSPAPER AGENCY CORPORATION, AGENT FOR THE SALT LAKE TRIBUNE AND DESERET NEWS, DAILY NEWSPAPERS PRINTED IN THE ENGLISH LANGUAGE WITH GENERAL CIRCULATION IN UTAH, AND PUBLISHED IN SALT LAKE CITY, SALT LAKE COUNTY IN THE STATE OF UTAH. NOTICE IS ALSO POSTED ON UTAHLEGALS.COM ON THE SAME DAY AS THE FIRST NEWSPAPER PUBLICATION DATE AND REMAINS ON UTAHLEGALS.COM INDEFINATELY.

PUBLISHED ON	Start	05/17/2010	End 06/01/2010	A STREET	VIRGINIA CRAFT
SIGNATURE	the	ade I ab			Commission # 581469 My Commission Expires January 12, 2014
DATE	6/2/2010			Virmi	ua (nast
		THIS IS NOT A STATEMENT E PLEASE PAY FROM	BUT A "PROOF OF PUBL BILLING STATEMENT		
					H-2

Final

Utah Division of Air Quality PM10 Exceptional Wind Event

Cottonwood, Hawthorne, Lindon & North Salt Lake

Event Date – April 15, 2008

EPA Submission Date – July 12, 2010

Millard County, Utah Taken By Don Halterman June 2009

Table of Contents

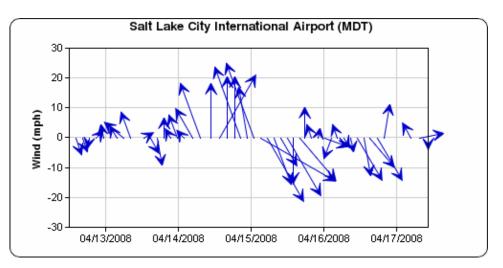
DEFINITION OF EVENT (40 CFR 50.1(J)) AND INTRODUCTION	1
Study Area Background	4
Soil Resources	
Climate	
AFFECT AIR QUALITY	
NOT REASONABLY CONTROLLABLE OR PREVENTABLE & NATURAL EVENT	
NORMAL HISTORICAL FLUCTUATION (40 CFR 50.14)	13
PM10	
Ranking	
Lindon - LN - 49-049-4001	
Cottonwood - CW - 49-035-0003	
Hawthorne - HW - 49-035-3006	
North Salt Lake - N2 - 49-035-0012	
Interquartile Range	
Lindon - LN - 49-049-4001	
Cottonwood - CW - 49-035-0003	
Hawthorne - HW - 49-035-3006	
North Salt Lake - N2 - 49-035-0012	
Lognormal Distribution	
Lindon - LN - 49-049-4001	
Cottonwood - CW - 49-035-0003 Hawthorne - HW - 49-035-3006	
North Salt Lake - N2 - 49-035-0012	
WIND SPEED	
Regional Airport Data	
Regional Alipoit Data	
Lindon - LN - 49-049-4001	
Cottonwood - CW - 49-035-0003	
Hawthorne - HW - 49-035-3006	
North Salt Lake - N2 - 49-035-0012	
CLEAR CAUSAL RELATIONSHIP (40 CFR 50.14)	30
TRAJECTORY AND IMPACTED AREA	30
Wind Storm Passed Over Wind Erosion Prone Soils in Utah	
SPECIATION	
Coarse Mass Composition	
Soil Aluminum-Silica Ratio	
NO EXCEEDANCE OR VIOLATION BUT FOR THE EVENT	
Wind Storm Event.	
Coarse Mass Analysis	
Statistical Analysis	
CLEAR CAUSAL RELATIONSHIP AND BUT FOR THE EVENT SUMMARY	
MITIGATION (40 CFR 51.930)	
Division of Air Quality State Implementation Plan	
UTAH AIR RULES, PERMITTING	
CONTROL MEASURES DEMONSTRATION CASE STUDY - KENNECOTT MINE TAILING IMPOUNDMENTS	
MOBILE SOURCES PARTICULATE REDUCTION	
Automotive Inspection Maintenance Program	
Utah Clean Diesel Program	
Clean Fuel Vehicle Tax Credit and Loan Program	48

Smoking Vehicles	. 49
Utah Clean City	. 49
Variable Message Signage	
DIVISION OF AIR QUALITY COMMUNITY OUTREACH	
Choose Clean Air	. 49
Dust Control Education	. 49
Clean Utah	
Small Business Environmental Assistance Program	. 50
Resource Development Coordinating Committee (RDCC)	. 52
DIVISION OF WATER QUALITY	. 52
UPDES Storm Water General Permit for Construction Activities	. 52
Nonpoint Source Pollution 319 Program	. 53
AGRICULTURE	. 53
REPRESENTATIVE COUNTY DUST CONTROL PROGRAMS	
Salt Lake County	. 55
Davis County	. 55
Weber County	. 56
Cache County	. 56
Utah Air Quality Public Notifications	. 56
News Release to Media	. 57
PUBLIC COMMENT (PREAMBLE V.G.)	. 58
RESPONSE TO COMMENTS	. 58
REFERENCES	. 60
	-

APPENDIX A HOURLY DATA FROM REAL TIME MONITORS DURING THE EVENT. APPENDIX B PM2.5 SPECIATION FILTER DATA FOR LINDON ON APRIL 15, 2008 APPENDIX C PROOF OF PUBLICATION

Definition of Event (40 CFR 50.1(j)) and Introduction

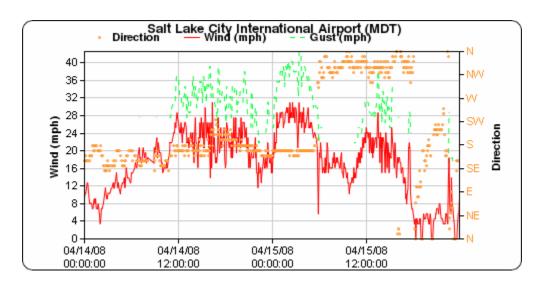
The Code of Federal Regulations (CFR) provides the definition and criteria for determining whether air quality data is impacted by an exceptional event. The 40 CFR 50.1 (j) definition states that "exceptional event means an event that affects air quality, is not reasonably controllable or preventable, is an event caused by human activity that is unlikely to recur at a particular location or a natural event, and is determined by the Administrator in accordance with 40 CFR 50.14 to be an exceptional event." The demonstration to justify data exclusion as outlined in 40 CFR 50.14(c)(3)(iv-v) specifies that evidence must be provided that:


- 1. The event meets the definition of an exceptional event;
- 2. The event is associated with a measured concentration in excess of normal historical fluctuations, including background;
- 3. There is a clear causal relationship between the measurements under consideration and the event that is claimed to have affected air quality in the area;
- 4. There would have been no exceedance or violation but for the event; and
- 5. The demonstration must include a public comment process and documentation of such to the Environmental Protection Agency (EPA).

This report documents that the event meets the above criteria and provides analyses to demonstrate that:

- The dust event was not reasonably controllable or preventable because a significant portion of the PM10 (approximately 80 -100 μg/m³) originated from desert playa, a non-anthropogenic source. Further, reasonable controls, based on EPA guidance, are in place for anthropogenic sources through regulatory structures and programs sponsored by state, federal and local agencies as described in the Mitigation Section;
- II. There is a clear-causal connection between the high wind event and the exceedances at the Wasatch Front monitoring stations;
- III. The measured PM10 concentrations and high winds were beyond normal historical levels; and
- IV. The exceedances would not have occurred "but for" the high winds.

On April 15, 2008, Utah experienced a natural high wind meteorological event associated with the passage of a storm pattern. Meteorological parameters for this storm event include:


a. Wind direction changed 90° (Source: MesoWest).

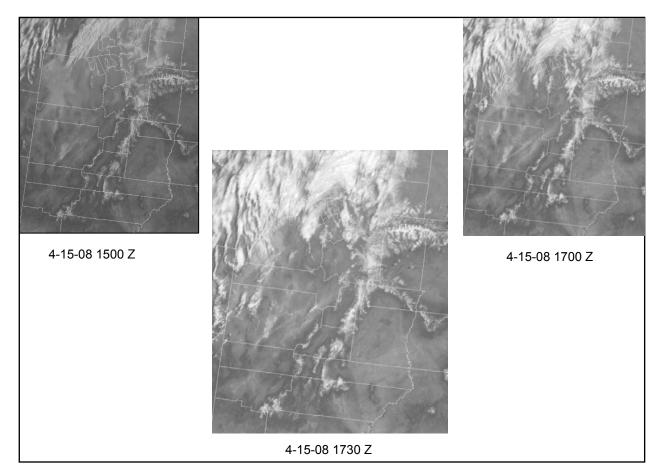
 Temperatures dropped 18°F within three hours, from 4 a.m. to 7 a.m. MDT on April 15, 2008. By 4 p.m. MDT, the temperature dropped to 37.4°F (Source: MesoWest, SLC airport).

04/15/08 04:00	66.2°F
04/15/08 06:00	59°F
04/15/08 07:00	48.2°F
04/15/08 16:00	37.4°F

c. Average maximum wind velocity measured at the SLC airport was 31 mph at 03:25 p.m. MDT, gusting to a maximum of 43 mph (Source: MesoWest).

This exceptional natural event entrained particulates into the air by high winds through a mechanism of surface erosion occurring in various locations up-wind and southwest of the Wasatch Front monitoring network.

The Salt Lake Tribune carried a full feature article on April 16, 2008 on the wind storm. The article included interviews with Division of Environmental Quality (DEQ), Utah State University, and Utah Farm Bureau personnel who were asked to explain the event. Possible contributing factors that were cited included drought conditions and the Milford Flats fire of 2007 that exposed 329,000 acres of soil subject to wind erosion, especially under gusting winds of 40-50 mph.


Dust storm blows through, temporarily muddles air By Judy Fahys The Salt Lake Tribune Article Last Updated: 04/16/2008 01:04:57 AM MDT

Wind pumped thick dust clouds into northern Utah early Tuesday ahead of a cold, rainy front that rolled in at midday. It was a sharp contrast to Monday's balmy, bluebird skies. Gusts swept in tiny dirt particles from the Sevier Dry Lake and the Sevier Desert on Tuesday morning, then began lifting dust from the salt flats west of the Great Salt Lake by afternoon, according to National Weather Service satellites.

The heavy plumes - along with high readings for PM 10 early Tuesday morning - prompted state air-quality officials to issue a health advisory for people in sensitive groups. The very old, the very young and people with heart and lung trouble needed to avoid exerting themselves in the dust, the advisory said. "This is a fairly typical dust storm that we have" in spring, said Bob Dalley, who oversees air monitoring for the state. Wind storms kick up the dust this way two or three times a year, he noted. But Bryce Bird, planning branch manager for the state Division of Air Quality, pointed out: "We're seeing some of the highest [PM 10] levels we've seen in a long time." Could last summer's wildfires and years of drought be partly to blame? It's too soon to tell for sure, said Bird. State air-quality experts will study the weather maps and wind patterns. They might need the data connecting Tuesday's storms to the northern Utah dust spikes to convince the U.S. Environmental Protection Agency that man-made pollution wasn't responsible for the high air-pollution readings. Alan Moller, a meteorologist with the Utah Climate Center at Utah State University, said the Milford Flats fire last summer and the drought "could be a factor." Hot temperatures over the weekend and on Monday might have left the top layers of soil vulnerable to widespread winds that gusted at around 50 mph in much of the state, he said. The winds came from the south, the direction of the fires, he added. "There's another clue the fires were contributing to the dust." It's a connection Randy Parker of the Utah Farm Bureau is also making. He was in Washington, D.C., with the Utah Partners for Conservation on Tuesday to make a pitch to Congress for mounting a war on cheatgrass, which is making Western landscapes susceptible to wildfire. He watched the dust blow into the Salt Lake Valley on Monday night during a son's soccer game. "You could probably assume that some of those areas - not just in last summer's fires in Milford Flats, but from the drought in the last decade - are part of it," he said of the dust. By Tuesday afternoon, snow was falling in valleys that had seen 70-degree temperatures the previous day, and air monitoring officials had called off the health alert in Utah, Salt Lake, Davis and Weber counties. The cold set in and promised to stick around through the night and into today, according to the weather service. Temperatures nearing freezing were expected overnight and daytime highs were expected to be in the mid-40s - about 10 degrees below normal - under partly cloudy skies. Snow showers were expected in the mountains. But things will warm up and the skies will clear beginning Thursday, the weather service said.

Mr. Randy Graham of the National Weather Service confirmed the source of the dust cited in the Tribune, "one plume was from the Sevier Lake bed and the other was from the Milford Flat burn scar. By mid-morning a plume is clearly visible all the way into Utah County, but the impact of the plume extended all the way in the Salt Lake Valley."

Satellite Images Provided by the National Weather Service Showing Dust Storm Sources

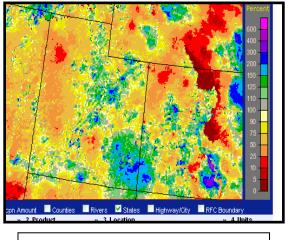
Study Area Background

Soil Resources

Soil resources within the study area have formed within one Major Land Resource Area (MLRA); MLRA 28A – The Great Salt Lake Area (USDA 2006).

MLRA 28A consists of the following soil orders: Aridisols, Entisols, and Mollisols. Aridisols are soils that develop in dry arid ecosystems. Entisols lack soil development and typically are shallow or sandy. Mollisols have a thick, dark, fertile surface layer (USDA 2006).

The Great Salt Lake Area is comprised of nearly level



basins between widely separated mountain ranges trending north to south. The basins are bordered by long, gently sloping alluvial fans. The mountains are uplifted fault blocks with steep side slopes, and are not well dissected because of low rainfall. A large salt desert playa is located south and west of Great Salt Lake (prone to erosion). Most of the valleys are closed basins containing sinks or playa lakes. The soils in this area generally are well drained or somewhat excessively drained, loamy or loamy skeletal (lacking soil horizons and rocky), and very deep. Soils in this area commonly contain high calcium carbonate contents. Alkalinity commonly increases with depth. Soils along alluvial fans, lake plains, and flats often have high concentrations of salts and sodium (USDA 2006).

Climate

The average annual precipitation is 5 to 12 inches in the valleys. Most of the rainfall occurs as high-intensity, convective thunderstorms during the growing season. The driest period is from midsummer to early autumn. Precipitation in winter typically occurs as snow (USDA 2006).

The Delta weather station is located near the Sevier Lake bed, a region that contributed dust to the storm (based on National Weather Service information, back trajectory and surface wind directions during a segment of the event). Precipitation at Delta for March and April of 2008 was: March 2008 0.51 in., 60% of normal; and April 2008 0.10 in., 12% of normal (NOAA). Similarly, below normal precipitation occurred in February and January as well (NOAA). This data corroborates the drought conditions cited by Mr. Moller in the Salt Lake City Tribune article (page 3). Dry conditions enhance wind erosion conditions.

Utah Precipitation from Norm – February 2008 NOAA Advanced Hydrologic Prediction Service

Affect Air Quality

The Wasatch Front experienced an overnight dust storm resulting in PM10 levels in excess of the 24-hour standard (affecting the 95th percentile (%ile) values at some locations) and elevated PM2.5 levels. PM10 exceedances were measured at the North Salt Lake, Hawthorne, Cottonwood, and Lindon air monitoring stations. Figure 1 shows the locations of these monitoring stations, as well as the entire Utah monitoring network.

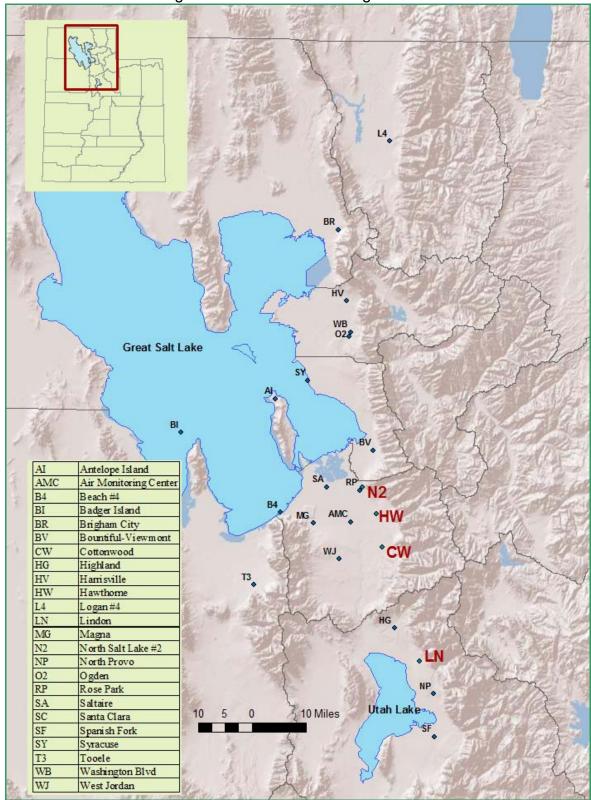


Figure 1 - Utah Air Monitoring Network

The National Ambient Air Quality Standards (NAAQS) exceedances for PM10 on April 15, 2008, are shown in Table 1 and Figure 2. Figure 2 also shows that the entire PM10 monitoring network measured greatly elevated values (including Logan, Ogden, Magna and North Provo).

Monitor	µg/m³	AQS Mon. #	Lat.	Long.
Lindon	164	49-049-4001	40.33952	-111.71344
Cottonwood	177	49-035-0003	40.64405	-111.84976
Hawthorne	166	49-035-3006	40.73436	-111.87201
North Salt Lake	188	49-035-0012	40.80536	-111.92101
North Salt Lake – Co Located	220	49-035-0012	40.80536	-111.92101

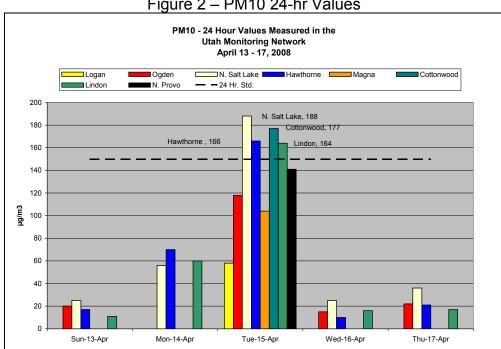
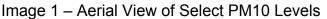
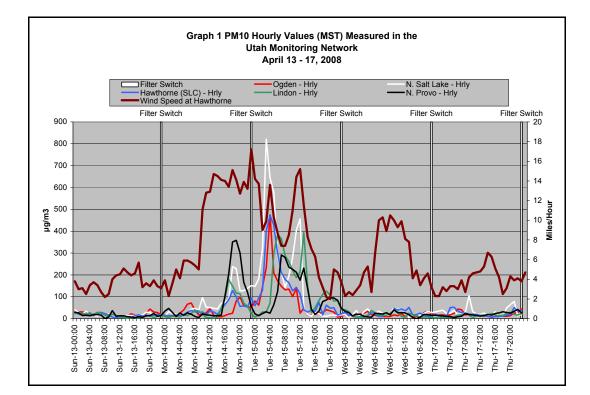
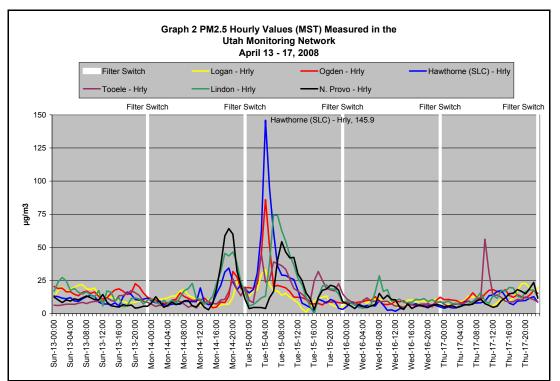



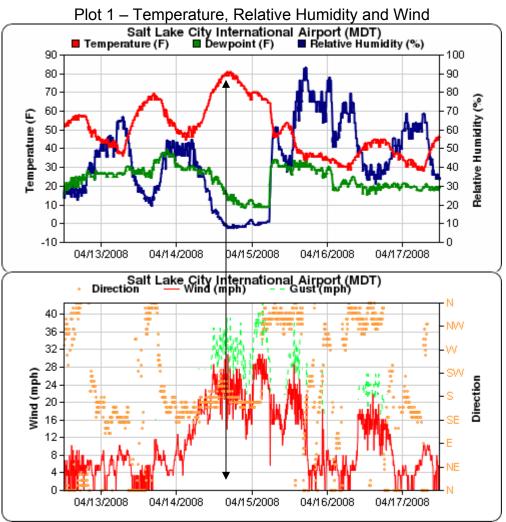
Figure 2 – PM10 24-hr Values


Image 1 presents an aerial view of monitoring sites in the valley, along with the PM10 24-hr concentrations. Higher PM10 levels were measured along the west side of the Wasatch Mountain range, than along the east side of the Oquirrh Mountains (Magna station location). When winds are from the south-southwest, there is a wind over flow component that occurs over the Oquirrh Mountains because they are only 3,000 ft. above the valley's base elevation. Winds on the eastern side of the valley tend to hug the Wasatch Front because these mountains are much higher at 5,000 ft above the valley's base elevation. These effects can cause higher PM10 levels on the eastern than western regions of the valley, which contributes to the lower PM10 at the Magna station.



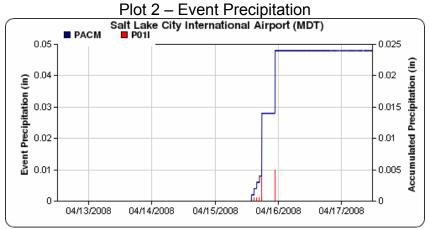
Graph 1 shows the hourly measurements for PM10, at available TEIOM monitors, and wind speed, measured at the Hawthorne station, beginning on Sunday 13, 2008, through Thursday 17, 2008. Graph 2 presents the measurements for PM2.5 for the same timeframe. It is evident from both graphs that particulate matter levels were stable from Sunday to Monday 16:00 MST, than were significantly elevated after 16:00 MST, peaking at around 20:00 MST on Monday. The wind speed shown in Graph 1 represents an excellent relationship between wind speed and PM10 levels. As the winds increased from 2-4 mph on Sunday and Monday to 15 mph and beyond, PM10 levels increased dramatically. High winds preceding and following the passage of a cold front caused the NAAQS exceedances.

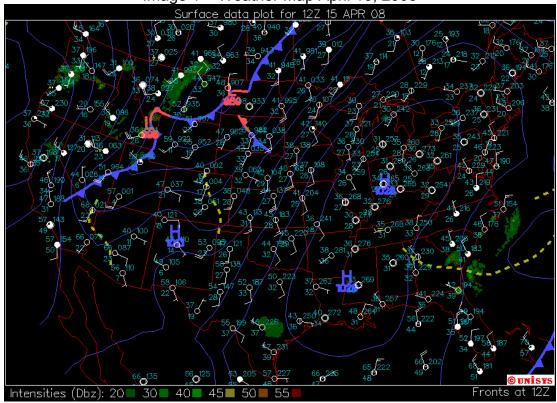
Precipitation from the cold front kept PM10 at normal levels despite increased winds on Wednesday.



Not Reasonably Controllable or Preventable & Natural Event

Rapidly developed cold fronts produce strong winds and dramatic temperature gradients over the Intermountain West (Shafer and Steenburgh 2008). As such, these storms are natural events. This seasonal spring occurrence creates the potential for wind eroded surface soils in the deserts of western Utah and eastern Nevada. Soil particles are susceptible to erosion when rapid heating releases it's adhesion to the strata and surface wind velocities are sufficient to suspend them into the air mass.


Plot 1 presents the 5-day temperature-relative humidity-dew point profile for the Salt Lake City airport for April 13-17, 2008. Plot 1 depicts the rapid temperature increase on the 14th with normal night time cooling. At the same time, the relative humidity and dew points plunged, indicating the passage of the dry line. This phenomenon is in fact the definition of a dry line, i.e., rising temperatures with sharp drop in dew point. Blowing dust and rising temperatures are characteristic effects during dry line fronts. As the cold front approached the Wasatch Front, the relative humidity dramatically increased.


Source: MesoWest

Aligning the 5-day temperature profile with the 5-day wind profile for the same period shows the increased wind associated with the dry line and subsequent cold front. The wind speed before the dry line passage on the 14^{th} was below 10 mph. During the dry line, the wind increased from about 11-30 mph on the 15^{th} (the day of the event), with winds gusting as high as 42 mph on the 15^{th} .

As the relative humidity increased on the 15th, the temperature rapidly decreased and it began to rain. By the afternoon of the 15th, the rain changed to snow (refer to Plot 2). The airborne particulate levels also quickly receded, as shown on graphs 1 and 2 around 08:00 (MDT) on the 15th.

The Unisys composite surface map (Image 1) for April 15, 2008, at 6 a.m., shows the cold front moving into the Salt Lake Valley. The winds at this point were out of the south at 20.7-25.3 mph. This natural event could not be reasonably controllable or preventable.

Image 2 – Salt Lake Valley on April 15

Image 2 of the Salt lake Valley was taken by the Meteorological Solutions Incorporated. This image was taken at 7 a.m. on April 15, 2008. The Hawthorne monitoring station is located within the view to the lower right of the image.

Image 3 – Salt Lake Valley on April 15 Mid-afternoon

By mid-afternoon, the temperature was near freezing, as the cold front captured the valley. The storm initially brought rain that quickly turned to snow (Image 3).

Normal Historical Fluctuation (40 CFR 50.14)

Utah experiences naturally occurring wind storms, predominantly in the spring. These storms are typically caused by the passage of a cold front resulting in high winds passing over desert playa soils that are entrained in the wind and transported into the Salt Lake City valley causing elevated particulate levels. These natural events are included in the Exceptional Event rule even though they are recurring because they generate **unpreventable** and **uncontrollable** high wind.

PM10

Normal historical fluctuation for PM10 was computed in a three-step process in order to assess whether an observed value is in excess.

First, all historical PM10 values from each monitoring station were aligned from least to greatest. The location of the effected value in relation to the rest of the historically values is expressed as a %ile.

Second, a box plot analysis was preformed on the historical data. The interquartile range (IQR) was calculated. This was then compared to the event value.

Third, a lognormal distribution analysis was preformed on the historical data. The geometric mean, geometric standard deviation, and the 1st, 2nd, and 3rd geomantic standard deviations above the geometric mean where calculated. These where then compared to the event value.

In addition, an analysis is included showing that winds speeds during this event are not the norm.

Ranking

Guidance found at 72 Federal Register 55 March 22, 2007, pages 13560-81, states that a lesser amount of documentation would likely be necessary for "extremely high" concentrations (e.g. > 95^{th} %ile) than for concentrations that were closer to "typical levels" (e.g. < 75^{th} %ile.).

Lindon - LN - 49-049-4001

The data ranking described above for the Lindon monitoring station data collected from 1993 through 2008 verifies that the PM10 concentration on April 15, 2008, is above the 99th%ile. Consequently, we can conclude that the event day concentration is outside the normal historical fluctuation.

Cottonwood - CW - 49-035-0003

The data ranking for the Cottonwood monitoring station data collected from 1993 through verifies that the PM10 concentration on April 15, 2008, is above the 99th%ile. Consequently, we can conclude that the event day concentration is outside the normal historical fluctuation.

Hawthorne - HW - 49-035-3006

The data ranking for the Hawthorne monitoring station data collected from 1997 through 2008 verifies that the PM10 concentration on April 15, 2008, is above the 95th%ile. Consequently, we can conclude that the event day concentration is outside the normal historical fluctuation.

North Salt Lake - N2 - 49-035-0012

The data ranking for the North Salt Lake monitoring station data collected from 1993 through 2008 verifies that the PM10 concentration on April 15, 2008, is above the 95th%ile. Consequently, we can conclude that the event day concentration is outside the normal historical fluctuation.

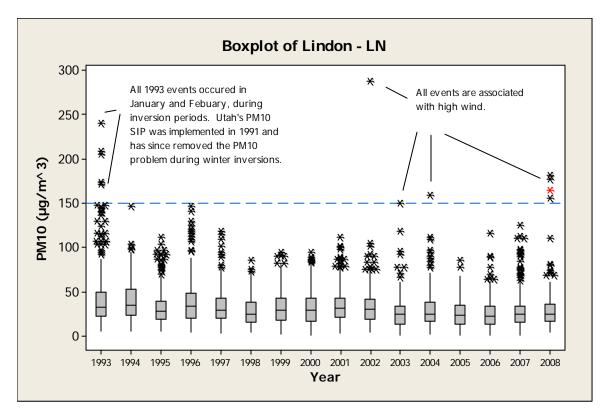
The co-located monitor at North Salt Lake was also elevated for PM10 on April 15, 2008. Monitoring at this station for PM10 began in January 2008; thus, insufficient data is presently available to conduct a detailed analysis but, of the 52 available data points, the measured value of 220 μ g/m³ is the highest value recorded for the monitor. Further more, it is the only exceedance recorded at the monitor.

Interquartile Range

The IQR is a measure of statistical dispersion, and is a "robust statistic." Robust statistics seek to provide methods that emulate classical methods, but which are not unduly affected by outliers or other small departures from model assumptions. The IQR was calculated on a quarterly basis and on a yearly basis.

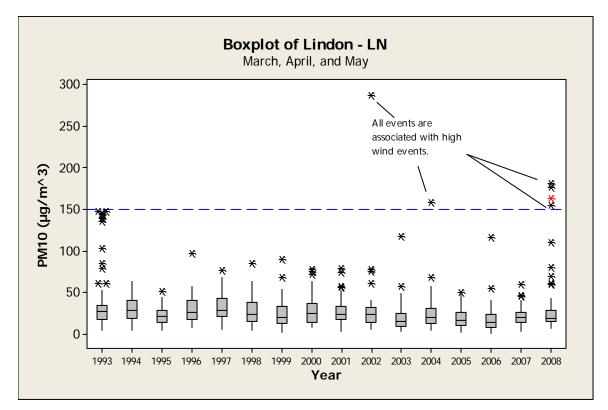
Lindon - LN - 49-049-4001

The following is the IQR for all Lindon data:


First Quartile (Q1): $17 \ \mu g/m^3$ Median (Q2): $27 \ \mu g/m^3$ Third Quartile (Q3): $40 \ \mu g/m^3$ IQR: $23 \ \mu g/m^3$

The IQR was calculated on a quarterly basis (shown in Table 2) along with the annual.

Quarter	Sample Size (N)	Q1	Q2	Q3	IQR
1	1366	15	27	49	34
2	1423	14	22	32	18
3	1357	25	33	43	18
4	1300	17	26	38	21
All	5446	17	27	40	23


Table – 2 Lindon	Interquartile	$(\mu g/m^3)$

The boxplot presents the historical PM10 values, by year; the event value is marked in red. The blue dashed line represents the current PM10 standard.

The boxplot whiskers extend to points (events) that are statistically considered to be outliers from the sample population, typically 1.5 times the IQR above the third quartile (Q3). All outliers that exceed the 24hr PM10 standard since 1994 are associated with high winds.

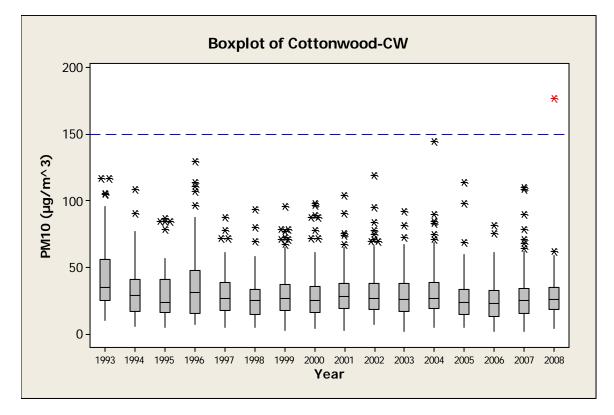
Because this event occurred during the second quarter, it maybe more valuable to only focus on other PM10 values during the same time of the year, March-May. The revised boxplot presents the historical PM10 values, by year, during the 2nd quarter (March-May) of each year. The event value is marked in red. The blue dashed line represents the current PM10 standard.

Again, all events that exceed the current PM10 standard are associated with high wind events.

Analysis of the boxplot graphs permit us to conclude that the event concentration is outside of normal historical variation.

Cottonwood - CW - 49-035-0003

The following is the IQR for all Cottonwood data:


Q1: 17 μg/m³ Q2: 26 μg/m³ Q3: 38 μg/m³ IQR: 21 μg/m³

The IQR was calculated on a quarterly basis (shown in Table 3) along with the annual.

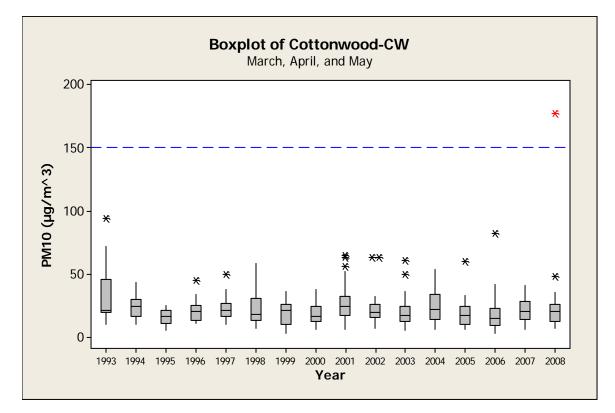

Quarter	Sample Size (N)	Q1	Q2	Q3	IQR	
1	564	16	28.5	48.75	32	
2	385	13	19	26	13	
3	382	25	32	40	15	
4	396	18	27	34	16	
All	1727	17	26	38	21	

Table 0 Oatterroused	الم الم بين بين م الم	(
Table – 3 Cottonwood	Interquartile	$(\mu g/m^2)$

The boxplot presents the historical PM10 values, by year; the event value is marked in red. The blue dashed line represents the current PM10 standard.

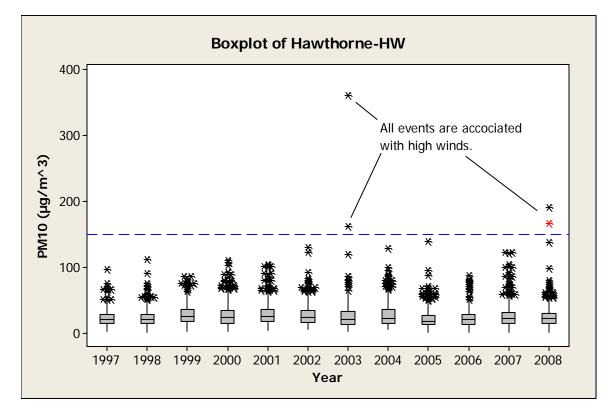
The only exceedance of the standard is the April 15, 2008, wind event. Because this event occurred during the second quarter, it maybe more valuable to only focus on other PM10 values during the same time of the year, March-May. The revised boxplot presents the historical PM10 values, by year, during the 2nd quarter (March-May) of each year. The event value is marked in red. The blue dashed line represents the current PM10 standard.

Again, the only event that exceeds the current PM10 standard is the April 15, 2008, event.

Analysis of the boxplot graphs permit us to conclude that the event concentration is outside of normal historical variation.

Hawthorne - HW - 49-035-3006

The following is the IQR for all Hawthorne data:


Q1: 16 μg/m³ Q2: 23 μg/m³ Q3: 32 μg/m³ IQR: 16 μg/m³

The IQR was calculated on a quarterly basis (shown in Table 4) along with the annual.

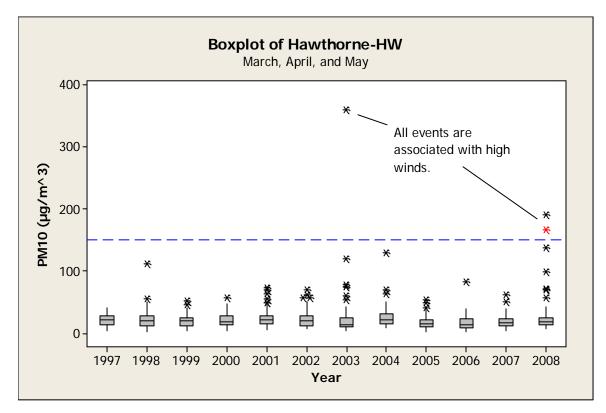

Quarter	Sample Size (N)	Q1	Q2	Q3	IQR
1	954	17	29	51	34
2	1034	12	18	26	14
3	1039	18	23	30	12
4	1012	16	24	32	16
All	4039	16	23	32	16

Table – 4 Hawthorne	Interguartile	(ua/m^3)
	IIILEI Yuai liie	$(\mu g/m)$

The boxplot presents the historical PM10 values, by year; the event value is marked in red. The blue dashed line represents the current PM10 standard.

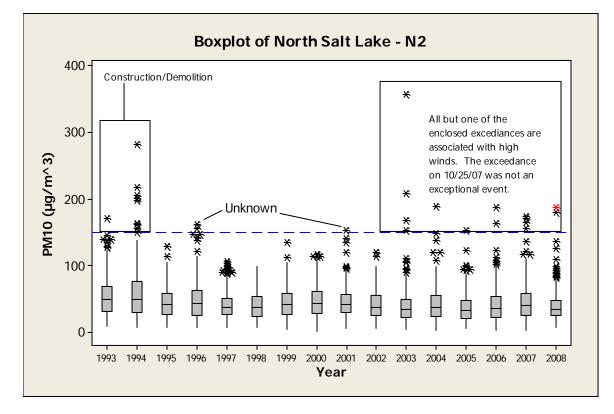
All outliers that exceed the 24hr PM10 standard are associated with high winds. Because this event occurred during the second quarter, it maybe more valuable to only focus on other PM10 values during the same time of the year, March-May. The revised boxplot presents the historical PM10 values, by year, during the 2nd quarter (March-May) of each year. The event value is marked in red. The blue dashed line represents the current PM10 standard.

Again, all events that exceed the current PM10 standard are associated with high wind events.

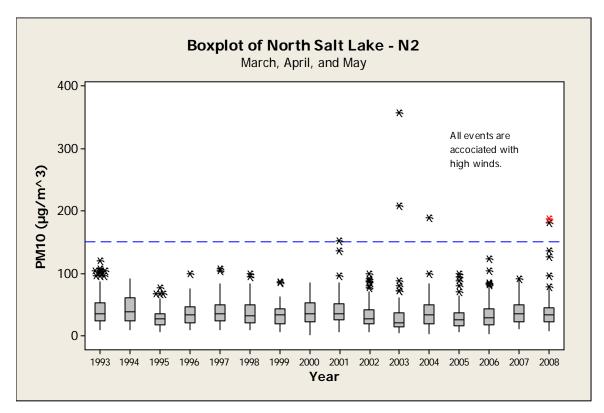
Analysis of the boxplot graphs permit us to conclude that the event concentration is outside of normal historical variation.

North Salt Lake - N2 - 49-035-0012

The following is the IQR for all North Salt Lake data:


Q1: 25 μg/m³ Q2: 40 μg/m³ Q3: 57 μg/m³ IQR: 32 μg/m³

The IQR was calculated on a quarterly basis (shown in Table 5) along with the annual.


Quarter	Sample Size (N)	Q1	Q2	Q3	IQR
1	1295	23	37	59	36
2	1408	20	32	47	27
3	1380	34	46	62	28
4	1349	26	42	62	36
All	5432	25	40	57	16

			, , 3.
Table – 5 No	orth Salt Lake	Interquartile	(ua/m ²)

The boxplot presents the historical PM10 values, by year; the event value is marked in red. The blue dashed line represents the current PM10 standard.

All but one exceedances of the 24hr PM10 standard since 2002 are associated with high winds. Because this event occurred during the second quarter, it maybe more valuable to only focus on other PM10 values during the same time of the year, March-May. The revised boxplot presents the historical PM10 values, by year, during the 2nd quarter (March-May) of each year. The event value is marked in red. The blue dashed line represents the current PM10 standard.

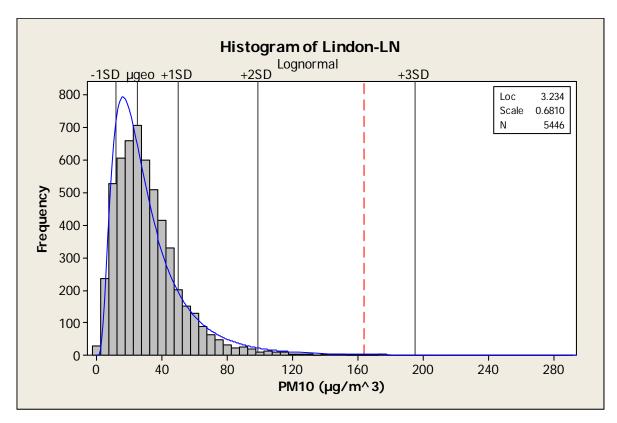
All exceedances of the current PM10 standard since 2002 are associated with High Wind events.

Analysis of the boxplot graphs permit us to conclude that the event concentration is outside of normal historical variation.

Lognormal Distribution

Lognormal distribution analysis was conducted to establish the normal historical fluctuations for the four subject stations (inclusive of exceptional event results). Lognormal distribution was selected because of its ability to accurately describe the distribution of measured concentrations of PM10. The geometric mean (µgeo) was calculated on a quarterly basis (shown in Table 6) and on an annual basis. The annual basis provides the greatest number of data points and is sufficiently similar to the spring quarterly value; thus, the annual geometric mean is used to reflect the normal historical values for the four stations.

Location	Quarter	N Quarterly	µgeo (µg/m³)	Annual μgeo (μg/m ³)
Lindon 01/01/1993 to 12/31/2008	1	1366	26.00	25.38
	2	1423	20.72	
	3	1357	31.72	
	4	1300	24.53	
Cottonwood	1	564	27.30	25.10
	2	385	18.62	
01/01/1993 to 12/31/2008	3	382	30.69	
	4	396	24.58	
Hawthorne 03/01/1997 to 12/31/2008	1	954	28.62	22.48
	2	1034	17.57	
	3	1039	22.87	
	4	1012	22.67	
North Salt Lake 01/01/1993 to 12/31/2008	1	1295	35.87	37.42
	2	1408	30.72	
	3	1380	45.24	
	4	1349	39.37	

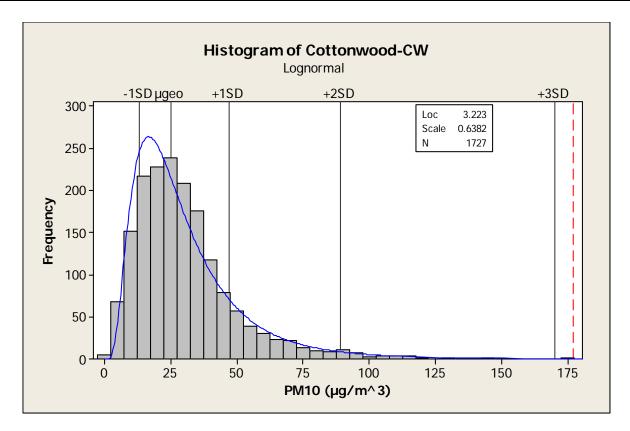

Table 6 –	Geometric M	lean of PM10

The annual values are far below the April 15^{th} event, which ranged from 164-220 μ g/m³.

Lindon - LN - 49-049-4001

The following are the calculations for the geometric mean, geometric standard deviation, and the upper boundary of the 1st, 2nd, and 3rd standard deviations from the geometric mean.

Geometric Mean (µgeo): Exp(Loc)=25.38 µg/m³ Geometric Standard Deviation (σgeo): Exp(Scale)= 1.9758 +1 Standard Deviation (+1SD): Exp(Loc +Scale)= µgeo* σgeo= 50.14 µg/m³ +2 Standard Deviation (+2SD): Exp(Loc +2*Scale)= µgeo* (σgeo)²= 99.08 µg/m³ +3 Standard Deviation (+3SD): Exp(Loc +3*Scale)= µgeo* (σgeo)³= 195.78 µg/m³ The histogram presents the historical values and the event value with a red dashed line. The blue line is a fitted line overlay of a lognormal distribution.


Noting that the normal historical values fall within the lognormal distribution, it is reasonable to utilize plus or minus 2SD above or below the geometric mean as the bounds of normal PM10 values. The event value **approaches 3SD.** The event value is clearly outside the normal historical fluctuation.

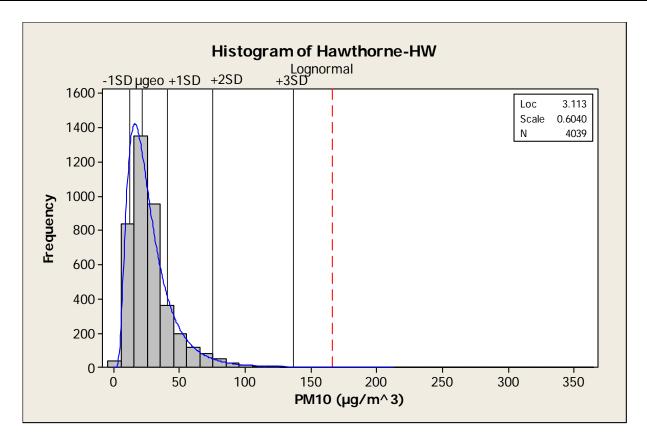
Cottonwood - CW - 49-035-0003

The following are the calculations for the geometric mean, geometric standard deviation, and the upper boundary of the 1st, 2nd, and 3rd standard deviations from the geometric mean.

The following are the statistical values: μ geo = 25.10 μ g/m³ σ geo = 1.893 +1SD = 47.52 μ g/m³ +2SD = 89.96 μ g/m³ +3SD = 170.30 μ g/m³

The histogram presents the historical values and the event value with a red dashed line. The blue line is a fitted line overlay of a lognormal distribution.

Because this station samples every 6-day's instead of daily, as in the case at Lindon, there is less than half the amount of data points at Cottonwood resulting in a larger data distribution.

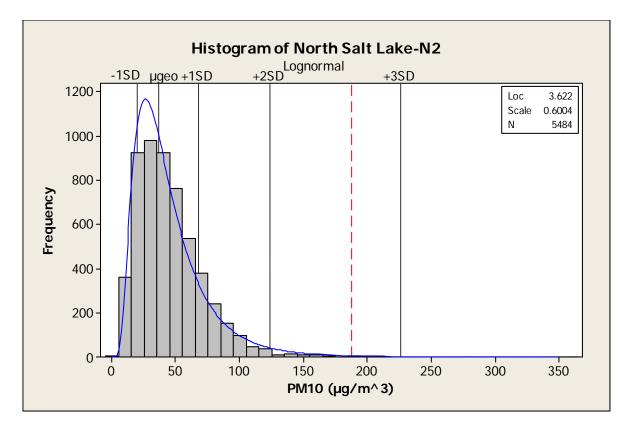

Noting that the normal historical values fall within the lognormal distribution, it is reasonable to utilize plus or minus 2SD above or below the geometric mean as the bounds of normal PM10 values. The event value **exceeds 3SD.** The event value is clearly outside the normal historical fluctuation.

Hawthorne - HW - 49-035-3006

The following are the calculations for the geometric mean, geometric standard deviation, and the upper boundary of the 1st, 2nd, and 3rd standard deviations from the geometric mean.

The following are the statistical values: $\mu geo = 22.48 \ \mu g/m^3$ $\sigma geo = 1.829$ $+1SD = 41.14 \ \mu g/m^3$ $+2SD = 75.26 \ \mu g/m^3$ $+3SD = 137.68 \ \mu g/m^3$

The histogram presents the historical values and the event value with a red dashed line. The blue line is a fitted line overlay of a lognormal distribution.


Noting that the normal historical values fall within the lognormal distribution, it is reasonable to utilize plus or minus 2SD above or below the geometric mean as the bounds of normal PM10 values. The event value **exceeds 3SD.** The event value is clearly outside the normal historical fluctuation.

North Salt Lake - N2 - 49-035-0012

The following are the calculations for the geometric mean, geometric standard deviation, and the upper boundary of the 1st, 2nd, and 3rd standard deviations from the geometric mean.

The following are the statistical values: $\mu geo = 37.42 \ \mu g/m^3$ $\sigma geo = 1.822$ $+1SD = 68.19 \ \mu g/m^3$ $+2SD = 124.33 \ \mu g/m^3$ $+3SD = 226.60 \ \mu g/m^3$

The histogram presents the historical values and the event value with a red dashed line. The blue line is a fitted line overlay of a lognormal distribution.

Noting that the normal historical values fall within the lognormal distribution, it is reasonable to utilize plus or minus 2SD above or below the geometric mean as the bounds of normal PM10 values. The event value **approaches 3SD**. The event value is clearly outside the normal historical fluctuation.

A co-located monitor also recorded an elevated level of PM10 at 220 μ g/m³, on April 15, 2008. Monitoring at this station for PM10 began in January 2008 thus, insufficient data is presently available to conduct a detailed analysis but, of the 52 available data points, the measured value of 220 μ g/m³ is the highest value recorded for the monitor. Further more, it is the only exceedance recorded at the monitor.

Wind Speed

The Exceptional Event Rule requires states to include "a historical typical wind speed levels for the season of the year that the event is claimed" (Federal Register Vol. 71, No. 55, Page 13566).

Regional Airport Data

Station	Jan	Feb	Mar	Apr	Мау	Jun	Annual	MesoWest Hourly Average on 4-15-0-8
Provo	4.9	6.0	7.2	7.9	7.4	7.3	6.3	17.5
Salt Lake City	6.9	7.6	8.9	9.8	9.2	9.6	8.6	16.5

Table 7 - Average Wind Speed in mph for 1996-2006

Data Source: Western Regional Climate Center

Weather measurements for April 15, 2008, at the Salt Lake City International Airport (KSLC) by the National Weather service as reported by MesoWest.

24 hr. maximum wind speed: 21 mph 24 hr. maximum wind gust: 32 mph

Ranking

A Ranked method was used to determine if the wind speed measured on April 15, 2008, was outside what is normally observed. All historical wind speeds from each monitoring station was aligned from least to greatest. The location of the effected value in relation to the rest of the historically values is expressed as a percentile (%ile). If we use the same format for wind as was used initially for PM10, it can be extrapolated that "extremely high" measurements are above the 95th%ile and that "typical levels" are closer to the 75th%ile.

Lindon - LN - 49-049-4001

The data ranking for the Lindon monitoring station for data collected since 1993 verifies that the daily maximum of the hourly wind speed measured on April 15, 2008, is above the 99th%ile. Consequently, we can conclude that the event day concentration is outside the normal historical fluctuation.

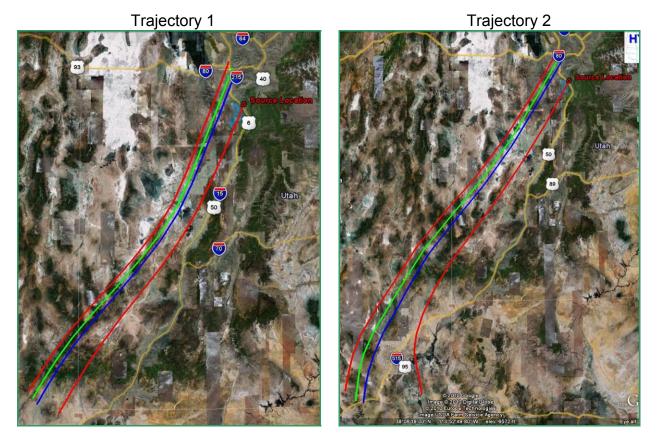
Cottonwood - CW - 49-035-0003

The data ranking for the Cottonwood monitoring station for data collected since 1993 verifies that the daily maximum of the hourly wind speed measured on April 15, 2008, is above the 97th%ile. Consequently, we can conclude that the event day concentration is outside the normal historical fluctuation.

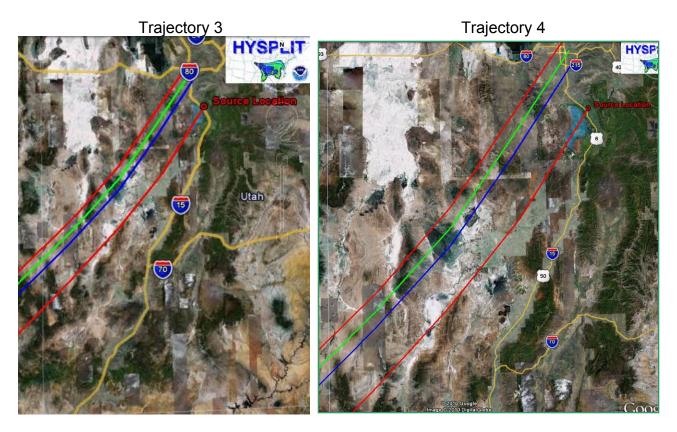
Hawthorne - HW - 49-035-3006

The data ranking for the Hawthorne monitoring station for data collected since 1997 verifies that the daily maximum of the hourly wind speed measured on April 15, 2008, is above the 96th%ile. Consequently, we can conclude that the event day concentration is outside the normal historical fluctuation.

North Salt Lake - N2 - 49-035-0012


The data ranking for the North Salt Lake monitoring station for data collected since 2005 verifies that the daily maximum of the hourly wind speed measured on April 15, 2008, is above the 97th%ile. Consequently, we can conclude that the event day concentration is outside the normal historical fluctuation.

Clear Causal Relationship (40 CFR 50.14)


Trajectory and Impacted Area

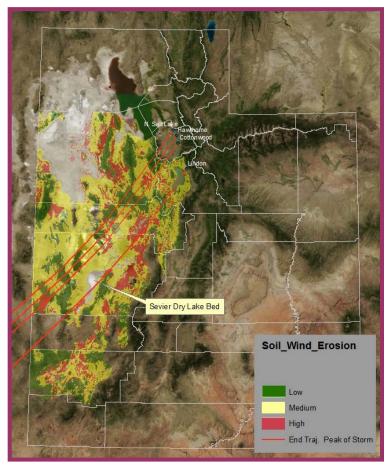
Backwards trajectory analysis using the NOAA HYSPLIT model was used to project the winds before, during and after the storm event. The four stations were modeled (EDAS meteorological data) at 1000 meters, 12 hour back trajectory (MDT) and plotted onto Google Earth satellite images for visual enhancement of the salt desert playa described in the Soil Resources section. A height of 1000 meters was selected to represent the steering height of the air mass over the complex terrain.

The first wind trajectory is for the day before the storm on April 14, 2008, showing the winds from the south, crossing the Nevada-Utah desert regions and following the I-15 and Wasatch Front mountain range.

The second trajectory is at the beginning of the storm on April 15, 2008 at midnight. Note the shift to the north-west across the Sevier Desert.

Trajectory 3 is at 4 a.m. MDT on April 15, 2008, at the height of the storm, corresponding with the maximum hourly values shown on Graphs 1 and 2. The winds continued their passage over desert playa. Trajectory 4 is a close-up of Trajectory 3 clearly showing the desert regions.

Trajectory 5


The final image is at 8 a.m. MDT on April 15, 2008, showing the wind shift as a result of the cold front with declining wind speed.

Wind Storm Passed Over Wind Erosion Prone Soils in Utah

The U. S. Department of Agriculture, Natural Resources Conservation Service (NRCS), developed a wind erosion GIS map of Major Land Resource Area 28A for the DEQ using

the Wind Erodibility Index that assigns an erosion rate to soil.

The NRCS categorized soil wind erosion into three categories; low, medium and high erodibility. The HYSPLIT wind trajectory for the height of the storm event (same as Trajectory 3 above) has been layered on to the wind erosion GIS map. All four station trajectories, at this point of the storm, passed over salt desert playa regions consistent with the news report by the Salt Lake Tribute ("Gusts swept in tiny dirt particles from the Sevier Dry Lake and the Sevier Desert on Tuesday morning....)"

Speciation

Coarse Mass Composition

Studies conducted in national parks on coarse mass (2.5-10 um) indicates the composition of course mass consists of crustal minerals, carbonaceous material and salts. Sampling sites were selected to be representative of the continental United States and were operated according to IMPROVE protocol analytical procedures. Crustal minerals (soil) were reported to be the single largest contributor, followed by organic mass, nitrates and sulfates.

Crustal Minerals	34-74%
Organic Mass	20-59%
Nitrates	10-12%
Sulfates	≈ 5%
(Malm, et al, 2007).	

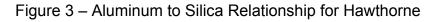
Speciation samples of PM2.5 are collected at the Hawthorne monitoring station every third day and one was collected on April 15, 2008. DEQ also included a special speciation

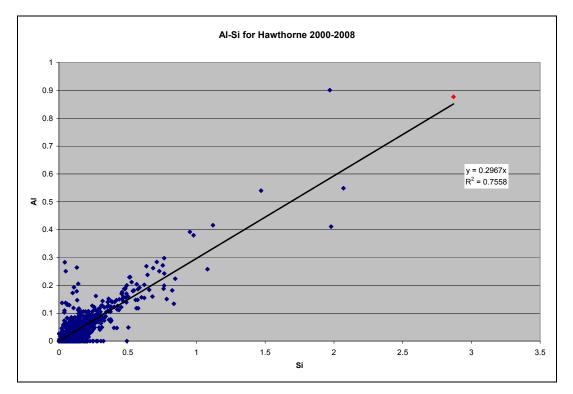
request for the Lindon PM2.5 sample because of the exceedance on that day. The analytes were tabulated according to the classifications above (Table 8).

Crustal minerals – soil minerals SiO2, Al2O3, CaO, Fe2O3, K2O, MgO, FeO, Na2O, TiO2, SO2, P2O5, and Ba were tabulated using their elemental components (Pettijohn 1975).

	Hawthorne %	Lindon %	Published Values				
Crustal Minerals	28	36*	34-74%				
Total Carbon	30^	No Analysis	20-59%				
Nitrate	2	2	10-12%				
Sulfate	4	4	≈ 5%				

Table 8 –	Coarse	Mass	Analysis	for	Event Day
	000150	111000	/ 11/2/010	101	LVCIIL DUy


*Potassium value not available. Percentage is slightly under stated. ^Carbon data flagged for flow restriction, value likely under stated.

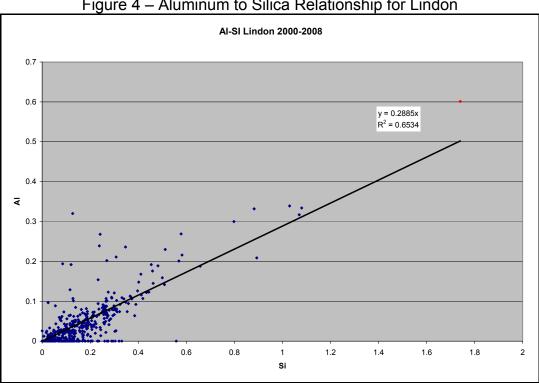

This analysis suggests that both dust samples collected during the exceptional event are consistent with coarse mass (soil).

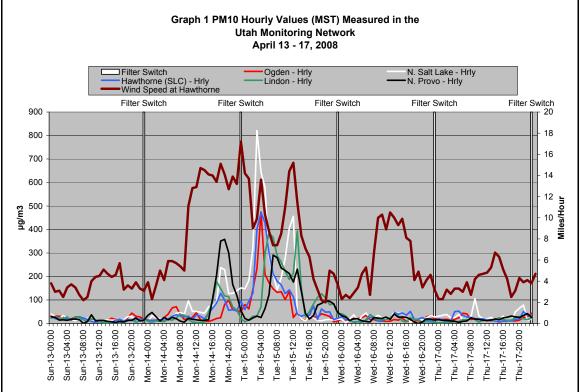
Heterotrophic bacteria decompose organic matter, releasing ammonia, which can subsequently be nitrified to nitrate by nitrifying bacteria. Nitrate is poorly adsorbed to soils and is readily leached. Since organic matter is limited in arid regions and because nitrate levels in soil is normally low, one would expect that arid dust associated with high wind events would be low in nitrate level. Consequently, it is reasonable to conclude that these low nitrate levels support the premise that the sources of the windborne dust are primarily non-anthropogenic.

Soil Aluminum-Silica Ratio

Aluminum is highly reactive and does not occur freely in nature. Instead, it is bound up as aluminum silicate in clay, minerals, and rocks. There is a strong observed relationship when aluminum is plotted against silica. An internal IMPROVE memo by Bob Eldred (June 20, 2003) described the relationship he observed when he plotted IMPROVE AI-Si data from December 1999 to November 2000. The plot was an excellent relationship with a slope of 0.46 with R²=0.96. When Eldred plotted earlier data, he observed a slope of 0.60. Eldred attributed this difference to migration of Sahara dust to the continental U.S, influencing the natural AI-Si ratio common to North America. When we plot the Hawthorne AI-Si data from 2000-2008 (Figure 3), we observe a slope of 0.3. The red data point represents the exceptional event of April 15, 2008.

Plotting the Lindon data (Figure 4), we observe a slope of 0.29, essentially identical to the Hawthorne plot.




Figure 4 – Aluminum to Silica Relationship for Lindon

Aluminum's relationship to silica may be helpful in determining if soils have been anthropogenically enriched. We can infer from Eldred's research that we should be able to detect anthropogenic enrichment of soils when the Al-Si ratio deviates upward significantly from 0.46. Our lower slope **may** suggest that anthropogenic dust sources are not major components.

No Exceedance or Violation But For the Event

Wind Storm Event

There were no unusual local anthropogenic emissions reported before, during, and after the event. Figure 5 is a plot of the wind speed measured at the Hawthorne monitoring station along with the PM10 hourly values for the northern monitoring stations starting on April 13 through April 17, 2008. We have plotted PM10 levels before and after the event to demonstrate that PM10 levels at all of these stations were substantially below the 24-hr standard of 150 ug/m³, even on Sunday the 13th, despite dry conditions and slight wind. The increased wind speed (and south-southeasterly direction), starting on April 14 at 1100, correspond accordingly with the PM10 peaks for all stations until April 16 at 2100. The cold front brought with it precipitation and wind but the wet conditions reduced wind blown dust on April 16 and 17. If not for the storm event and associated winds from the southsoutheast, crossing the salt desert playa regions, PM10 values in the network would not have been elevated and PM10 levels would not have exceeded the 24-hr standard at North Salt Lake, Hawthorne, Cottonwood and Lindon.

We substantiate the "but not for" wind storm position based on the demonstration made in the following Mitigation section, that the Utah Division of Air Quality, together with Utah counties and federal agencies, has established reasonably well-controlled dust programs, consistent with EPA guidance. Further, there were no smoke reports or other complaints at the time that would impact the network to this degree. Anthropogenic emissions remained constant before and after the event. Figure 5 shows that the PM10 levels averaged between 24-38 ug/m³ for April 13, 14, 16, and 17, in comparison to event levels of 164-220 ug/m³. This indicates that the significant increase was not due to anthropogenic emissions activity, but more related to high wind.

Coarse Mass Analysis

The same coarse mass analysis was conducted for the Hawthorne and Lindon stations for PM2.5, before and after the wind storm event.

	Hawthorne 3-days Before EE	Lindon 3-days Before EE	Published Values Malm et al 2007	Hawthorne EE Day	Lindon EE Day
Crustal Minerals	9%	9%	34-74%	28%	36 [*] %
Total Carbon	73%	100 [#] %	20-59%	30%	No Analysis
Nitrate	25%	37%	10-12%	2%	2%
Sulfate	12%	11%	≈ 5%	4%	4%

Table 9 - Coarse Mass Analysis, Pre and During Event

Notes: # error in TC analysis. *Potassium value not available, % slightly under stated.

The crustal mineral contents 3-days before the event were only 9%, than escalated to 28-36% the day of the event, clearly proving that the entrained dust was carried along from the salt desert playa regions as projected by the HYSPLIT model.

Kim (et al 2007) concluded that nitrate in PM2.5 is highly correlated with anthropogenic species such as ammonium [ammonium nitrate is the stable form]. Nitrate is often a major component of fine particles, especially in more polluted urban areas (Finlayson-Pitts and Pitts, 2000). The California Regional PM10 and PM2.5 Air Quality Study (CRPAQS), Factors Limiting the Formation of Secondary Nitrate and Sulfate, December 10, 2002, is a study of PM during winter pollution episodes. The report concluded that, "analysis of the chemical composition of PM during winter pollution episodes indicates high levels of nitrate, modest levels of sulfate, and levels of ammonium sulficient for these two anions to exist primarily as ammonium nitrate and ammonium sulfate in atmospheric aerosols. The nitrate and sulfate found in PM are believed to be secondary because there are no known primary emission sources with significant emission rates of these compounds and because there are known chemical reactions that lead to their formation in the atmosphere. "As a group, the secondary inorganic species (nitrate, sulfate, and ammonium) can account for up to

70% of PM2.5 mass and up to 50% of PM10 mass in extreme wintertime pollution events in California's San Joaquin Valley (SJV). These species represent such a large portion of the PM that it is essential to characterize the factors influencing and, especially, limiting their formation."

These studies support that PM nitrate and sulfate are primarily associated with anthropogenic emissions. The vast change in nitrate and sulfate levels in our data indicates anthropogenic sources before the event (nitrate 25-37%, sulfate 11-12%). While the total carbon data was not always reliable, it too provides a general indication supporting anthropogenic dominance before the storm, 73% at Hawthorn, than less so the day of the storm, 30%, which is in line with Malm's et al findings of soils in the rural U.S.

Statistical Analysis

A statistical analysis approach was taken to estimate the amount of PM10 contributed by the wind storm. The analysis calculated the difference between PM10 and PM2.5 measured at Hawthorne (HW), Cottonwood (CW), and Lindon (LN). A PM2.5 monitor is not located at N2; however, it can be assumed that the results would be similar. All coinciding data available for PM10 and PM2.5 at each monitoring location was used. This analysis is severely limited since it does not take into account the effect of the dust on PM2.5. The resultants over estimate the expected amount of PM10 had the event not occurred.

Location	Loc	Scale	Ν	µgeo	σgeo	+1SD	+2SD
LN	2.639	0.9243	3290	14.00	2.5201	35.28	88.91
CW	2.610	0.7808	1112	13.60	2.1832	29.69	64.82
HW	2.573	0.7299	3224	13.11	2.0749	27.19	56.42

Table 10 – Lognormal Descriptive Statistics of the Difference between PM10 and PM2.5

When the differences calculated in Table 10 are applied to the measured concentration of PM2.5 on April 15, 2008, several estimates for the expected PM10 value can be made.

Toble 11 Measure	ad and Evnaatad DM1	10 Values for April 15, 2008
Table II – Measure	eo ano expecieo Pivi	

	Meas	sured	Expected				
Location	PM10	PM2.5	PM2.5 + μgeo	PM2.5 + 1SD	PM2.5 + 2SD		
LN	164	24.5	38.50	41.02	76.30		
CW	177	26	39.60	41.78	71.47		
HW	166	26.8	39.91	41.98	69.17		
N2	141						

Using the calculated expected PM10, PM2.5+2SD, we can attribute approximately **80-100** μ g/m³ of PM10 to the wind event. If it had not been for the wind event, PM10 would not have exceeded the standard.

Clear Causal Relationship and But For the Event Summary

A "clear and casual relationship" and "but for the event" demonstration has been made based on:

- The cold front produced storms with high winds and dust clouds that is a natural event;
- PM10 and PM2.5 concentration patterns correspond directly to the storm event, inclined due to high winds, than declined due to cold front precipitation, showing direct relationship;
- Backwards trajectory modeling is consistent with the National Weather Service report and images that dust sources included the Sevier Lake bed and Milford Flat burn scar. It also correlates with hourly PM increases;
- Speciation analysis for crustal matter (increase in crustal mass with reduction in nitrate and sulfate mass) and AI-Si ratio suggests that the source(s) of the PM samples are primarily non-anthropogenic;
- Wind speed and PM10 concentrations correlate well; and
- ✤ Statistical analysis attribute about 80-100 µg/m³ of PM10 to the wind event.

Mitigation (40 CFR 51.930)

The Exceptional Events Rule requires states to "take appropriate and reasonable actions to protect public health from exceedances or violations of the national ambient air quality standards." The intent of this section is to describe the State of Utah's dust control and public health protection programs.

Division of Air Quality State Implementation Plan

The Exceptional Events Rule Preamble states that, "where high wind events results in exceedances or violations of the particulate matter standards, EPA proposed that they be treated as natural events if..., and if anthropogenic activities which contribute to particulate matter emissions in conjunction with the high wind event are **reasonably well-controlled**."

The State of Utah has developed a comprehensive program of controls for airborne fugitive dust implemented through existing Utah Air Quality Rules, stationary source permitting, and State Implementation Plans (approved by EPA). This system of control techniques for fugitive dust has been in place since 1992 when the current Utah PM10 SIP was developed. The SIP requires control measures for both specific and general PM10 fugitive dust sources along the Wasatch Front. The SIP process introduced Reasonably Available Control Technology (RACT) and Best Available Control Measures (RACM) for sources that existed prior to the SIP process and required Best Available Control Technology (BACT) for new sources and modifications of existing sources. BACT requirements are enforced through Utah administrative rule R307-401. Since 1992, the state has implemented and continually updated two administrative rules that control fugitive dust throughout the state. R307-205 and R307-309 which, taken together, apply to all significant fugitive dust sources in the state. These rules require each significant fugitive dust source to develop and implement a site-specific fugitive dust control plan. In effect, an approved dust plan defines Best Available Control Measures (BACM) for a source, and provides a flexible mechanism

for controlling airborne dust. Under the Utah SIP requirements and the Air Quality Rules, all eligible sources in Utah are subject to emission controls defined by RACT, BACT or BACM.

Utah Air Rules, Permitting

R307-205: Fugitive Emissions and Fugitive Dust

This rule applies statewide to all sources of fugitive emissions and fugitive dust, except for agricultural or horticultural activities. Fugitive emissions may not exceed 20% opacity. The rule applies to construction activities that disturb an area greater than 1/4 acre in size. The rule also applies to roadway emission controls, mining activities and tailings piles and ponds. While a permit, known as an Approval Order, is not required from the Executive Secretary of the Air Quality Board, steps need to be taken to minimize fugitive dust. Control measures may include; watering, chemical stabilization, synthetic cover, vegetative cover, windbreaks, minimizing the area of disturbed tailings, restricting the speed of vehicles in and around operations and other techniques approvable by the executive secretary. These control measures are in keeping with the USEPA document titled Fugitive Dust Background Document and Technical information Document for Best Available Control Measures.

Treatment effectiveness is based on EPA's AP-42 Factors:

Section 11.19.1.2 states:

"Wet suppression techniques include application of water, chemicals and/or foam, usually at crusher or conveyor feed and/or discharge points. Such spray systems at transfer points and on material handling operations have been estimated to reduce emissions 70 to 95 percent. Spray systems can also reduce loading and wind erosion emissions from storage piles of various materials 80 to 90 percent. Control efficiencies depend upon local climatic conditions, source properties and duration of control effectiveness. Wet suppression has a carryover effect downstream of the point of application of water or other wetting agents, as long as the surface moisture content is high enough to cause the fines to adhere to the larger rock particles."

Section 13.2.4.4 "Controls", states:

"Watering and the use of chemical wetting agents are the principal means for control of aggregate storage pile emissions. Enclosure or covering of inactive piles to reduce wind erosion can also reduce emissions. Watering is useful mainly to reduce emissions from vehicle traffic in the storage pile area. Watering of the storage piles themselves typically has only a very temporary slight effect on total emissions. A much more effective technique is to apply chemical agents (such as surfactants) that permit more extensive wetting. Continuous chemical treating of material loaded onto piles, coupled with watering or treatment of roadways, can reduce total particulate emissions from aggregate storage operations by up to 90 percent."

Table B.2-3 Particle Size: 0 - 2.5 6 - 10 2.5 - 6 Efficiency: Dust suppression by water sprays 40% 65% 90% Efficiency: Dust suppression by chemical stabilizer or wetting agents 40% 90%

65%

R307-309: Nonattainment and Maintenance Areas for PM10: Fugitive Emissions and Fugitive Dust.

This rule establishes minimum work practices and emission standards for sources of fugitive emissions and fugitive dust for sources listed in the State SIP or located in a PM10 nonattainment and maintenance areas to meet the reasonably available control measures for PM10. A fugitive dust control plan must be submitted to the Executive Secretary at the Utah Division of Air Quality for review and approval prior to commencement of a project.

For temporary aggregate processing projects, portable permits are issued for the specific equipment. A permit application, known as a Notice of Intent must be submitted to the Executive Secretary at the Utah Division of Air Quality before project initiation and must include a dust control plan.

Fugitive emissions from stationary sources may not exceed 15%. Opacity caused by fugitive dust must not exceed 10% at a property boundary and 20% on site, with the exclusion when wind speed exceeds 25 mph and the owner/operator is taking appropriate actions to control fugitive dust. Appropriate measures include an approved dust control plan.

Any person owning or operating a new or existing source of fugitive dust, including storage, hauling or handling operations, or engaging in clearing or leveling of land one-quarter acre or greater in size, earthmoving, excavation, or movement of trucks or construction equipment over cleared land one-quarter acre or greater in size or access haul roads, or engaging in demolition activities including razing homes, buildings or other structures shall submit a plan to control fugitive dust to the executive secretary no later than 30 days after the source becomes subject to R307-309. The plan shall address fugitive dust control strategies for the following operations as applicable:

- Material Storage;
- Material handling and transfer;
- Material processing;
- Road ways and yard areas;
- Material loading and dumping;
- Hauling of materials;
- Drilling, blasting and pushing operations;
- Clearing and leveling;
- Earth moving and excavation;
- Exposed surfaces;
- Any other source of fugitive dust;
- Strategies to control fugitive dust may include;
- Wetting or watering;
- Chemical stabilization;
- Enclosing or covering operations;
- Planting vegetative cover;
- Providing synthetic cover;
- Wind breaks;
- Reducing vehicular traffic;

- Reducing vehicular speed;
- Cleaning haul trucks before leaving loading area;
- Limiting pushing operations to wet seasons;
- Paving or cleaning road ways;
- Covering loads;
- Conveyor systems;
- Boots on drop points;
- Reducing the height of drop areas;
- Using dust collectors;
- Reducing production;
- Mulching;
- Limiting the number and power of blasts;
- Limiting blasts to non-windy days and wet seasons;
- Hydro drilling;
- Wetting materials before processing;
- Using a cattle guard before entering a paved road;
- Washing haul trucks before leaving the loading site;
- Terracing; or
- Cleaning the materials that may create fugitive dust on a public or private paved road promptly; or Preventing, to the maximum extent possible, material from being deposited onto any paved road other than a designated deposit site.

Each source must comply with all provisions of the fugitive dust control plan as approved by the executive secretary.

Any person owning, operating or maintaining a new or existing material storage, handling or hauling operation must prevent, to the maximum extent possible, material from being deposited onto any paved road other than a designated deposit site. Any such person who deposits materials that may create fugitive dust on a public or private paved road must clean the road promptly.

Any person engaging in clearing or leveling of land with an area of one-quarter acre or more, earthmoving, excavating, construction, demolition, or moving trucks or construction equipment over cleared land or access haul roads must prevent, to the maximum extent possible, material from being deposited onto any paved road other than a designated deposit site. Any such person who deposits materials that may create fugitive dust on a public or private paved road shall clean the road promptly.

Any person responsible for construction or maintenance of any existing road or having right-of-way easement or possessing the right to use the same whose activities result in fugitive dust from the road must minimize fugitive dust to the maximum extent possible. Any such person who deposits materials that may create fugitive dust on a public or private paved road must clean the road promptly.

Unpaved Roads - any person responsible for construction or maintenance of any new or existing unpaved road must prevent, to the maximum extent possible, the deposit of material from the unpaved road onto any intersecting paved road during construction or

maintenance. Any person who deposits materials that may create fugitive dust on a public or private paved road must clean the road promptly.

Any person who owns or operates a mining operation shall minimize fugitive dust as an integral part of site preparation, mining activities, and reclamation operations. The fugitive dust control measures to be used may include:

- Periodic watering of unpaved roads;
- Chemical stabilization of unpaved roads;
- Paving of roads;
- Prompt removal of coal, rock minerals, soil, and other dust-forming debris from roads and frequent scraping and compaction of unpaved roads to stabilize the road surface;
- Restricting the speed of vehicles in and around the mining operation;
- Revegetating, mulching, or otherwise stabilizing the surface of all areas adjoining roads that are a source of fugitive dust;
- Restricting the travel of vehicles on other than established roads;
- Enclosing, covering, watering, or otherwise treating loaded haul trucks and railroad cars, to minimize loss of material to wind and spillage;
- Substitution of conveyor systems for haul trucks and covering of conveyor systems when conveyed loads are subject to wind erosion;
- Minimizing the area of disturbed land;
- Prompt revegetation of regraded lands;
- Planting of special windbreak vegetation at critical points in the permit area;
- Control of dust from drilling, using water sprays, hoods, dust collectors or other controls approved by the executive secretary;
- Restricting the areas to be blasted at any one time;
- Reducing the period of time between initially disturbing the soil and revegetating or other surface stabilization;
- Restricting fugitive dust at spoil and coal transfer and loading points; or
- Control of dust from storage piles through use of enclosures, covers, or stabilization and other equivalent methods or techniques as approved by the executive secretary, or Other techniques as determined necessary by the executive secretary.

Any person owning or operating an existing tailings operation where fugitive dust results from grading, excavating, depositing, or natural erosion or other causes in association with such operation must take steps to minimize fugitive dust from such activities. Such controls may include:

- Watering,
- Chemical stabilization,
- Synthetic covers,
- Vegetative covers,
- Wind breaks,
- Minimizing the area of disturbed tailings,
- Restricting the speed of vehicles in and around the tailings operation, or other equivalent methods or techniques which may be approvable by the executive secretary.

Utah R307-202-3

Prohibits burning of trash and other waste and salvage operations by open burning. Persons/agencies wishing to open burn tree cuttings, slash in forest areas etc., must seek a permit from DEQ that include control measures.

Compliance

The seven DEQ inspectors conduct daily surveillance inspections and have been advised to include in their routes dust prone areas and areas with particularly dust prone industries, such as aggregate industries (quarries, concrete manufacturing, etc.) during the dust season. Construction sites are also subject to inspection and verification.

A Compliance Advisory Notice is delivered to sources that appear to be out of compliance and provides an opportunity for DEQ and the regulated source to discuss the findings of the inspection. If a source is issued a Compliance Advisory Notice and responds by promptly returning to compliance, a reduced penalty may be offered for their expedient cooperation (fines are \$2,000-7,000 for dust violations). Dust control violations are typically quickly resolved upon receipt of a Compliance Advisory Notice. However, the DEQ is able to proceed with Notices of Violation and Orders to Comply, if necessary.

TASK	2009
Annual Inspections Completed (19 inspectors)	978
Temporary Relocations Accepted	103
Fugitive Dust Control Plans Accepted, Mostly Construction	57
Complaints Received	149
VOC Inspections	73
Warning Letters	16
Notices of Violations	3
Compliance Advisories, 7 Directly Related to Dust	65
Settlements	43
Penalties Assessed	\$569,543
85% Compliance measured via inspection stack testing	ns, reports and


2009 DEQ Compliance Summary

Control Measures Demonstration Case Study - Kennecott Mine Tailing Impoundments

Successful implementation of Utah's PM10 SIP is perhaps best demonstrated by the lack of dust generated at the Kennecott Copper Mine tailing impoundments during a dust storm event that occurred on March 25, 2010.

A natural spring dust storm was generated on March 25 by an approaching cold front that arrived into Utah the next day, akin to this report event date of April 15, 2008.

High western winds traversed the Western Desert and Great Salt Lake, entraining dust that traveled across the lake and into the Salt Lake valley. Figure 6 shows the hourly PM10 values across the valley before, during and after the dust storm. The highest PM10 values were in the northern

portions of the valley consistent with the dust storm location and general directional movement.

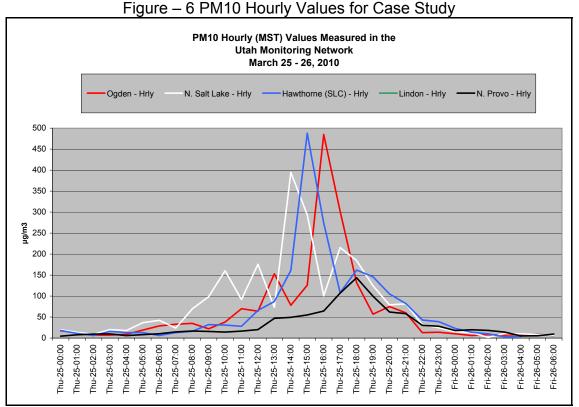


Image 4 shows the locations of the Western Desert, Kennecott tailings impoundments and the Saltaire concert venue that is located on the shore of the Great Salt Lake (lake visible in black/blue and white shore areas).

Image 4 – locations of Western Desert and Kennecott Impoundments

Image 5 provides an aerial view of the Kennecott impoundments which are hundreds of thousands of acres in size and the Great Salt Lake shoreline.

Image 5 – Aerial View of Kennecott Tailing Impoundments-Great Salt Lake Shoreline and Wind Vector at 2100Z March 25, 2010

The impoundments were a major source of particulate matter in the Salt Lake valley until Kennecott implemented a fugitive dust abatement program that was first implemented in

1997 and revised July 2002, as mandated by DEQ through permitting and compliance. The program effectiveness can be seen through a series of photographs that were taken of the March 25, 2010 dust storm as it came across the Great Salt Lake and traversed across the Kennecott property on its way to the Salt Lake valley.

March 25, 2010 Dust Storm Photo Documentation

The first photograph is of the dust storm crossing the southeast shore of the Great Salt Lake heading towards Kennecott in the afternoon around 3 p.m. MDT. The Saltaire concert venue located on the lake shore is visible in the background. The second photograph is of a truck traveling on Interstate 80 along the lake and across from the impoundments. Notice the Lake is not visible behind the truck. The last photograph in this series shows how the dust storm moved onto land shrouding the Kennecott smelter. Wind speed ranged from 20-25 mph with visibility limited to half mile at times (per Kennecott, measurements are required in their dust suppression plan).

March 25, 2010 Dust Storm Photo Documentation

The top photographs are of the impoundments, showing the dust storm but no contribution from the impoundments. The bottom photograph is of the Salt Lake valley shrouded by the dust storm.

This case study demonstrates:

- Natural storm events in Utah generate high winds that traverse desert playa regions entraining arid surface soils creating dust storms. In this case, high winds were caused by an advancing cold front. The winds generated the dust storm as they traveled from the west to southeast across the Western Desert and the Great Salt Lake.
- 2. Photo documentation was made that the dust storm was in full force before landing on the lake southeast shore before reaching Kennecott.
- 3. Monitoring data confirms very high PM10 levels associated with the storm event starting around 1-2 p.m. MDT, consistent with dust storm observations made at Kennecott.
- 4. Photo documentation was made that the massive impoundments did not contribute to the dust storm; thus verifying that DEQ enforcement control measures are reasonably effective and consistent with the intent of the Exceptional Events Rule Preamble on this matter.

Mobile Sources Particulate Reduction

Automotive Inspection Maintenance Program

Utah is required by Section 182 of the Clean Air Act to implement an inspection maintenance program in Salt Lake County that is at least as effective as the EPA's Basic Performance Standard. Salt Lake County began its program in 1984. The program exceeds the Basic inspection maintenance performance standard for all pollutants and in doing so, mitigates PM.

Utah Clean Diesel Program

Agriculture: Diesel engines are a major source of pollution, emitting particulates, amongst other pollutants. DAQ applied for and received \$750,000 from the American Recovery and Reinvestment Act to replace 11 agricultural vehicles and equipment, repower 21 engines in agricultural vehicles and equipment, and install 30 Auxiliary Power Units on agricultural vehicles. DAQ collaborated with the Utah Department of Agriculture and Food and Utah State University to identify agricultural operators whose operations are negatively impacting non-attainment areas in the state. The project's scope of replacing, repowering, and installing more fuel efficient technology on agricultural vehicles and equipment will ensure that stricter emissions standards requirements are met and yield more diesel fuel conservation.

School Bus Project: In 2007, DAQ started the Utah Clean School Bus Project in conjunction with Utah Office of Education, local school districts, county and municipal governments, as well as community and non-profit organizations. This coalition is working together to secure funding sources for school districts to purchase emission reducing technologies for buses statewide. The application of these technologies is expected to reduce particulate matter by 30%. As of 2009, a total of 247 buses have been retrofitted. By the fall of 2010, 454 buses will be retrofitted.

Clean Diesel Trucking Initiative: DAQ initiated the Clean Diesel Grant Program to install APUs (Auxiliary Power Units) on 48 long-haul tractors that will reduce diesel emissions and fuel usage from diesel-powered, long-haul trucks that travel and idle within the non-attainment areas of the Wasatch Front. The funding was provided by a State allocation of \$352,941 through EPA's National Clean Diesel Campaign and a State match of \$235,294, for a total of \$588,235. EPA awarded DAQ a grant in 2010 to continue installation of APUs.

Clean Fuel Vehicle Tax Credit and Loan Program

The Utah Clean Fuels and Vehicle Technology Grant and Loan Program, funded through the Clean Fuels and Vehicle Technology Fund, provides grants to assist businesses and government entities in covering:

- 1) The cost of converting a vehicle to operate on clean fuels.
- 2) The incremental cost of purchasing an Original Equipment Manufacturer (OEM) clean fuel vehicle.
- 3) The cost of retrofitting diesel vehicles with EPA verified closed crankcase filtration devices, diesel oxidation catalysts, and/or diesel particulate filters.

The Clean-Fuels Grant and Loan Program also provides loans for the cost of converting a vehicle to operate on a clean fuel, for the purchase of OEM clean fuel vehicle, and for the purchase of fueling equipment for public/private sector business and government vehicles. Finally, the program can provide grants and loans to serve as matching funds for federal and non-federal grants for the purpose of converting vehicles to operate on a clean fuel, purchasing OEM clean fuel vehicles, or retrofitting diesel vehicles.

Smoking Vehicles

Vehicles emitting excessive smoke contribute to airborne particles. Five local health departments (Cache, Davis, Salt Lake, Utah and Weber Counties) operate smoking vehicle education and notification programs. People who spot a vehicle producing excessive smoke can report it through their respective county health department.

In 2009, 724 vehicles were reported to Salt Lake County Health Department alone. The County issued 490 notices.

Utah Clean City

Utah's Clean Cities Coalition is one of 85 coalitions around the country that's part of the U.S. Department of Energy's strategy to reduce America's dependence on imported foreign oil. The Utah coalition sponsored Idle Free Awareness Week which included educating school bus drivers on the air quality value of limiting idling.

Variable Message Signage

The Utah Department of Transportation (UDOT), in conjunction with the DEQ air quality forecasting program, issues air quality warnings on electronic message boards placed along Utah's highways. The signage asks drivers to limit their driving on high alert days. An informal study conducted this winter by UDOT during 6-days with and without air quality alerts indicates that there was a 3-5% auto traffic reduction (per Glen Blackwelder, UDOT Traffic Operations Engineer).

Division of Air Quality Community Outreach

Choose Clean Air

An interactive source of information about ways individuals can help improve air quality by making smart choices in their personal lives can be found on the DEQ website. The site includes 50 suggestions for daily life.

The UDEQ also offers an electronic mail server (Listserv). Subscribers are automatically notified by e-mail when unhealthy air pollution levels are forecast for the Wasatch Front.

Dust Control Education

The DEQ website includes a page on dust control and the aggregate industry. The page is intended to educate the public about dust, control methods and community aggregate locations near them by providing links to aggregate firms Approval Orders containing fugitive dust control conditions.

Clean Utah

DEQ is committed to working with businesses to ensure the ongoing protection of public health and the environment. Clean Utah is a program that encourages and rewards business and other permit holders for going beyond compliance to preserve and protect Utah's environment.

Small Business Environmental Assistance Program

The Small Business Environmental Assistance Program helps small businesses with permitting assistance, emission calculations, technical issues, regulatory interpretation, and pollution prevention techniques. For example, this program provides businesses with tools to understand and meet Utah's environmental requirements. For example, see the best management practices pamphlet below.

Resource Development Coordinating Committee (RDCC)

The RDCC is a clearinghouse for information and coordination of state response on activities affecting state and public lands (including federal lands) throughout Utah. The RDCC includes representatives from the state agencies that are involved or impacted by public lands management. The RDCC coordinates the review of technical and policy actions that may affect the physical resources of the state and facilitates the exchange of information on those actions among federal, state, and local government agencies. The types of projects that are submitted for RDCC approval include oil and gas drilling and exploration, stream alteration, natural gas pipelines, transportation and construction projects of all sorts, forest fuel management, potable water management projects and recreational project development. The DEQ is a permanent agency member of the RDCC and as such, RDCC project approvals must include DEQ concurrence. Since the vast majority of the projects submitted for RDCC approval are of substantial size and scope, most projects include soil disturbance with the potential to generate fugitive dust. The DEQ assures that all projects receiving RDCC approval with the potential to generate fugitive dust include conditions that the projects will meet Utah air quality regulations and include fugitive dust management plans.

Year	Projects Reviewed
2004	533
2005	1236
2006	1245
2007	1256
2008	1251
2009	810
Total	6331+

DEQ RDCC Project Reviews

Division of Water Quality

The Utah Division of Water Quality is responsible for a variety of programs that monitor, assess, and protect the surface and ground waters of the state. These programs overlap with the DEQ, to some degree, in regard to soil and sediment nonpoint sources pollution prevention.

UPDES Storm Water General Permit for Construction Activities

Utah R317-8-3.9(6)(d)(l0) and R317-8-3.9(6)(e)(l), require a UPDES storm water permit when construction activities disturb one or more acres of land. Permit requirements include the development and approval of a pollution prevention plan (PPP) to control and mitigate erosion and sediment migration. The PPP must include slope and wind erosion controls for material piles at construction sites.

Nonpoint Source Pollution 319 Program

Section 319 of the Clean Water Act deals with nonpoint sources (NPS) of pollution. Land use activities such as agricultural production, road and building construction, mining, and forestry operations can all potentially be NPS polluters. The 1987 reauthorization of the Clean Water Act authorized the U.S. Environmental Protection Agency to fund individual state programs designed to control and eliminate NPS problems. Utah's Nonpoint Source Task Force has spent the past decade or more setting up local areas of the state to take on demonstration projects in specific watershed areas. Some of the largest watershed efforts have taken place in the Little Bear River in Cache County, Chalk Creek in Summit County, and Otter Creek in Piute and Sevier counties.

Agriculture

Recognizing the problems associated with soil erosion on agricultural cropland, rangeland and other environmentally sensitive cropland areas, the U.S. Department of Agriculture (USDA) included conservation provisions in the Farm Security and Rural Investment Act of 2002 (Farm Bill). The conservation provisions of the legislation are designed to assist farmers and ranchers with a number of voluntary programs including cost-share, land rental, incentive payments, and technical assistance. The conservation programs of the Farm Bill are administered by the NRCS.

The Farm Bill legislation created and reauthorized three programs that are designed to reduce erodible land:

- Conservation Reserve Program (CRP)
- Conservation Survey Program (CSP)
- Environmental Quality Incentives Program (EQIP)

The Conservation Reserve Program (CRP) encourages farmers to enter into contracts with USDA to place erodible cropland and other environmentally sensitive land into long-term conservation reserve. The reserves are generally 10 to 15 years in duration and the reserve is established by the implementation of environmental practices to reduce soil erosion.

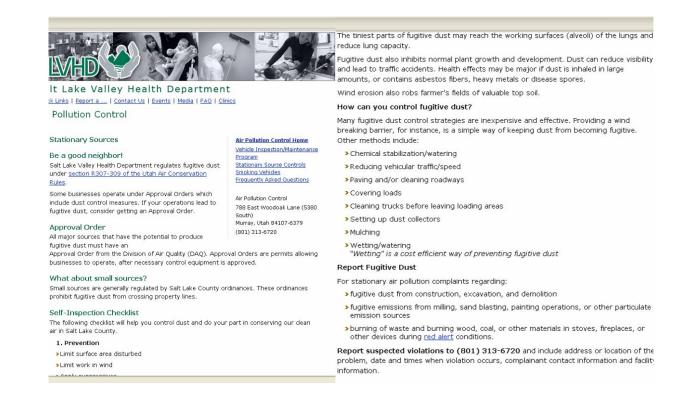
The CRP systematically reduces soil erosion by planting vegetative cover on highly erodible lands (HEL). In Utah, HEL soils are normally on steeper valley side slopes subject to erosion from washing or open areas vulnerable to high wind events. In exchange, landowners receive annual rental payments for the land and cost-sharing assistance for the established practices. In the early years of the program, the emphasis was on HEL soils. Since 1996, there is an additional authorization to address wild life habitat and air quality. The more recent authorization includes additional conservation practices including windbreaks, riparian buffers and wetland mitigation which are instrumental in reducing soil erosion. Furthermore, the USDA and DEQ conducted an analysis of eligible parcels for the 2010 awards to preferentially select parcels that are in or adjacent to nonattainment areas in order to maximize program benefits. **There are 127,262 acres in this program in Utah**.

The Conservation Security Program (CSP) is a newer approach to agricultural land protection authorized under the 2002 Farm Bill that rewards agricultural producers who have already undertaken conservation practices and commit to additional efforts. The CSP program, unlike other conservation programs, is available on pastureland, rangelands and all types of cropland including orchards, vegetable, and dry agriculture prevalent in Utah. The program has designated three watershed areas as eligible to participate in the program including two, Lower Bear-Malad (Cache County) and San Pitch Watershed (Sanpete County) that are within the north and south high-wind corridors identified by DAQ' source attribution model. There are 232,847 acres in the CSP program in Utah.

The Environmental Quality Incentives Program (EQIP) is a voluntary program that assists farmers and ranchers, who face existing soil and water resource degradation. The EQIP promotes agricultural production in a manner that allows producers to meet federal, state and local environmental requirements. Some of the stated aims of the program are as follows:

- Reduction of non-point source pollution, such as nutrients, pesticides;
- Reduction of emissions including particulate matter, nitrogen oxides, ozone precursors, and volatile organic compounds that can contribute to degradation air quality standards; and
- Reduction in soil erosion and sedimentation on agricultural lands.

In general, NRCS programs encourage agricultural practices that improve topsoil and prevent wind blown dust during high-wind events. Notable examples of techniques and practices advocated include:


- Planting of cover crops and perennials to protect agricultural soils with emphasis on HEL soils;
- NRCS encourages the use of perennial crops and existing weeds on corners and non-utilized areas of agricultural land to resist soil erosion;
- NRCS "costs shares" on conservation practices with local farmers to prevent soil erosion; and
- NRCS works with Utah State University to identify agricultural techniques and practices to minimize soil erosion.

A primary aim of this process is to reduce soil erosion on agricultural land, which in turn reduces wind blown dust during high-wind events. This program is open to attainment and nonattainment areas in Utah. **There are 1,133,687 acres in this program in Utah**.

Representative County Dust Control Programs

Salt Lake County

Salt Lake Valley Health Department regulates fugitive dust under section R307-309 of the Utah Air Conservation Rules. The County enforces fugitive dust from construction, aggregate industries, sand blasting, painting and burning. The web site includes information on reporting violations. County inspectors actively inspect dust prone activities.

Davis County

Davis, like Salt Lake County, enforces fugitive dust through Utah R307-309 and also maintains a fugitive dust web page and violation reporting. Inspectors have been known to park themselves all day long on Beck Street to enforce compliance. Beck Street contains refineries and very large aggregate industries that are a source of fugitive dust.

The following is taken from the Davis County 2009 Annual Report:

"The Staff of the Air Quality Bureau is composed of both Environmental Health Scientists and employees of the Inspection/Maintenance program. Some of the activities in this bureau are to investigate any air related discharge from fuel and other volatile organic compounds (VOC) such as spills and fuel transfer operations. To investigate smoke of any kind, including open burning, point or stack emissions and mobile source violations."

Air Quality	2009	2008	2007
Environmental Investigations in Air Quality	70	441	64
Open Burning Activities	28	18	21
Air Quality Complaints	31	10	70
Air Quality Consultations with the Public	297	156	422

Selected Statistics Taken From Annual Report

Weber County

Weber County has its own Excavation Ordinance for construction that includes dust control. Application must be made and approved before construction. An application fee includes the cost for reviewing engineering plans and site inspection.

Cache County

Cache County maintains zoning ordnances that include dust controls.

Utah Air Quality Public Notifications

In order to improve the presentation of air quality information to the public, DAQ has improved our air quality forecasting webpage. The web page now shows the air quality forecast for today and the next two days. The Air Monitoring Center (AMC) provides air pollution information based on daily air quality status. The AMC data is used to determine the relationship of existing pollutant concentrations to the National Ambient Air Quality Standards. There is a three tiered air quality alert system: Green, Yellow (alert days), and Red (actions days) that is used to implement winter and summer controls on the use of wood and coal burning stoves, fire places, and motor vehicles. There are five health advisory categories: good, moderate, unhealthy advisories A and B, and very unhealthy. The AMC advisory is calculated for five major pollutants including ground-level ozone, particulate pollution (particulate matter), carbon monoxide, sulfur dioxide, and nitrogen dioxide. The new index now also incorporates recommendations for actions to take on days when concentrations are in the red zone, to mitigate the effects of pollution for affected groups and recommendations for industry and citizens that help reduce pollution levels. The outreach program information consolidated in the three day forecast includes the Summer and Winter Control Programs and Choose Clean Air information.

The web site includes additional information on wind blown dust.

News Release to Media

In additional to web site alerts, DEQ also notifies the media in order to maximize public distribution.

Air Monitoring Manager, Robert Dalley, notified DEQ staff via e-mail of RED alert day.

From:Robert DalleyTo:EQ ALL DEPTDate:4/15/2008 8:11 AMSubject:Air Quality RED Alert blowing dust

The Utah Department of Environmental Quality has issued a RED air quality ALERT today April 15, 2008 because of blowing dust in Davis, Salt Lake, Utah and Weber Counties. A Health Advisory is issued for sensitive people, those with respiratory disease or heart disease, the elderly and children should avoid prolonged or heavy exertion outdoors and avoid dusty situations. Conditions will improve late tonight and tomorrow.

A similar notice was sent to the media by Mr. Dalley as indicated below from the Salt Lake Tribune.

Utah posts rare spring air alert because of blowing dust The Salt Lake Tribune Article Last Updated: 04/15/2008 09:38:47 AM MDT

Updated: 9:37 AM- Blowing dust this morning has prompted the Utah Department of Environmental Quality to issue a red air quality alert in Davis, Salt Lake, Weber and Utah counties. A Health Advisory is issued for sensitive people, those with respiratory disease or heart disease, the elderly and children should avoid prolonged or heavy exertion outdoors and avoid dusty situations. DEQ officials say conditions will improve late tonight and tomorrow.

Public Comment (Preamble V.G.)

The DEQ established a 30-day comment period from June 1, 2010 through June 30, 2010. The announcement of the comment period was published eight times in the Salt Lake Tribune between May 17 and June 1, 2010. The proof of publication can be found in Appendix C.

Response to Comments

Commenter 1

The commenter mistakenly believed that the mitigation portion of the report dealing with agricultural land preservation was supporting exceptional event waiver for livestock grazing. Since this is not the case, no response is necessary.

Commenter 2

This commenter offered complementary comments and suggestions. The responses to the suggestions follow:

Comment: "It would be helpful if a way could be found to bifurcate the PM10 & 2.5 SIP processes into the separate problems of wintertime inversions & high wind/fireworks/fire events. The solutions to the causes of these various exceedances are very different, and present difficulties in completing work on the wintertime cool pool events, when staff time is necessary to address other exceedances.

Such a bifurcation would require some creativity as the problems are linked by exceedances of the same NAAQS, while the cause & solutions of the problems are different.

Response: This comment is directed at SIP issues which are being addressed by DEQ in the SIP design process.

Comment: "Control Measures Demonstration Case Study - Kennecott Mine Tailing Impoundments This demonstration clearly shows that attention to disturbed areas results in a reduction of fugitive dust despite high wind events. Continued attention to methods of reducing & mitigating disturbance across the state would reduce the impact of high winds. "

Response: DEQ appreciates the comment and will continue to enforce the fugitive dust rules requiring the development and implementation of dust control plans that define control mitigation methods.

Comment: This section would be much improved with a discussion of Utah County's dust control program. It is the only county covered by this Exceptional Event demonstration that is not discussed in this section.

Response: DEQ handles fugitive dust issues in Utah County.

References

Bob Eldred, Internal IMPROVE, June 20, 2003, Evaluation of the Equation for Soil Composite,

http://vista.cira.colostate.edu/improve/Publications/GrayLit/023_SoilEquation/Soil_Eq_Eval uation.pdf

Barbara J. Finlayson-Pitts and James N. Pitts, Jr., *Chemistry of the Upper and Lower Atmosphere*, (Academic press, 2000)

N.K. Kim, Y.P. Kim, C.H. Kang and K.C. Moon, October, 2007, Major factors affecting the ambient particulate nitrate level at Gosan, Korea, Atmospheric Research, Volume 90, Issues 2-4, Pages 104-114.

Land Resource Regions and Major Land Resource Area of the United States, the Caribbean, and the Pacific Basin. *United States Department of Agriculture Handbook 296*, 2006.

Malm, W.C., M.L. Pitchford, C. McDade, and L.L. Ashbaugh. 2007. Coarse particle speciation at selected locations in the rural continental United States. *Atmospheric Environment*, 41 (10): 2225-2239.

NOAA,

Http://water.weather.gov/index.php?layer[]=0&layer[]=1&layer[]=4&timetype=YM&loctype= STATE&units=engl&timeframe=current&timeYYYY=2008&timeMM=3&product=per_normal &loc=conus

Pettijohn, F.J., Sedimentary Rocks, (NY, Harper & Row, 1949, 1957, and 1975).

Shafer, J.C., and W.J. Steenburgh, 2008: Climatology of Strong Intermountain Cold Fronts. *Monthly Weather Review*, 136, 784-807.

Appendix A

Hourly data from real time monitors during the event

			PM1	-									PM2.5				
	0			wthorne Line				er Switch							. Provo - 24		er Switc
4/13/08 0:00	0:00	37	40	28	23	29	150		0:00	12.3	20.5	13.3	6.4	16.9	12.54	35	
4/13/08 1:00	1:00	31	30	21	28	26	150		1:00	17.6	18.9	12.8	6.1	23.9	10.36	35	
4/13/08 2:00	2:00	31	20	17	24	14	150		2:00	20	19.3	11.7	6.5	27.3	8.35	35	
4/13/08 3:00	3:00	29	34	19	21	16	150		3:00	16.2	16.4	11.2	7.1	24.6	10.39	35	
4/13/08 4:00	4:00	20	21	20	28	13	150		4:00	18.3	16.6	12.1	7.1	17.5	9.48	35	
4/13/08 5:00	5:00	20	15	19	13	18	150		5:00	19.9	14.6	9.6	7	19	11.19	35	
4/13/08 6:00	6:00	28	12	24	29	19	150		6:00	21.5	13.5	9.2	7.8	16.1	10.34	35	
4/13/08 7:00	7:00	28	23	29	24	16	150		7:00	21.8	16	11.2	8.5	14.8	11.95	35	
4/13/08 8:00	8:00	19	16	23	16	0	150		8:00	18.7	17	12.8	7.6	16.4	13.32	35	
4/13/08 9:00	9:00	17	22	17	8	8 37	150		9:00	18.3	15.2	13.9	8.7	14	12.01	35	
4/13/08 10:00	10:00	10	10	8 5	21		150		10:00	19.3	16.4	12.9	9.2	12.5	10.53	35	
4/13/08 11:00	11:00	8 9	8 13	э 8	15	11 13	150		11:00	13.6	12.9	8.6	9.2	17.4	10.35	35 35	
4/13/08 12:00	12:00		13	° 5	8 4		150		12:00	10.2	11	7.3	9.5	5.8	14.47	35	
4/13/08 13:00 4/13/08 14:00	13:00 14:00	13 13	12	5 6	4	13 9	150 150		13:00 14:00	12.7 12.4	11.8 15.4	7.3 6.6	12.1 10	17.1 16.2	8.68 5.96	35 35	
4/13/08 15:00	14.00	22	15	6	4	9 7	150		14.00	12.4	17.9	8.1	9.3	9.7	5.96	35	
4/13/08 16:00	16:00	17	14	13	4	4	150		16:00	10.1	17.9	5.8	9.3 13.5	9.7 11.9	4.89	35	
4/13/08 17:00	17:00	11	14	18	4	9	150		17:00	9.2	16.9	12.7	13.5	5.2	6.73	35	
4/13/08 18:00	18:00	10	16	12	4 5	6	150		18:00	9.2 8.2	14.4	12.7	15.3	5.2	5.93	35	
4/13/08 19:00	19:00	25	29	12	12	13	150		19:00	8.3	14.4	14.3	17.4	11.3	5.93 6.47	35	
4/13/08 20:00	20:00	44	30	11	15	14	150		20:00	8.7	22.6	14.5	15.7	11.9	4.07	35	
4/13/08 21:00	20:00	31	10	15	5	24	150		20:00	9.4	20.1	10.0	13.6	10.9	4.67	35	
4/13/08 22:00	22:00	28	10	19	12	11	150		22:00	9.5	15.5	10.1	9.2	7.3	5.61	35	
4/13/08 23:00	23:00	19	17	17	18	14	150	900	23:00	9.7	12.4	11.7	8.4	10.3	5.54	35	150
4/14/08 0:00	0:00	15	8	14	8	35	150	500	0:00	10.1	10.9	9.4	7	10.8	8.28	35	100
4/14/08 1:00	1:00	13	33	14	5	47	150		1:00	10	10.3	8.2	5.4	8.4	12.73	35	
4/14/08 2:00	2:00	14	23	11	11	28	150		2:00	10.9	8.6	9.5	6.3	7	8.84	35	
4/14/08 3:00	3:00	14	21	17	10	10	150		3:00	11.1	7.8	6.7	5.9	10	4.77	35	
4/14/08 4:00	4:00	25	15	14	8	26	150		4:00	11.9	7.7	6.1	5.4	7.8	6.29	35	
4/14/08 5:00	5:00	40	19	19	18	16	150		5:00	13.3	10.2	7.1	9.3	10.1	8.65	35	
4/14/08 6:00	6:00	66	25	30	14	26	150		6:00	13.3	10.8	7.3	9.5	7.6	6.77	35	
4/14/08 7:00	7:00	72	44	38	24	20	150		7:00	17	15.6	7.1	9.1	12.2	7.76	35	
4/14/08 8:00	8:00	39	47	32	38	10	150		8:00	18.1	12.9	9.2	7.1	17.3	9.55	35	
4/14/08 9:00	9:00	17	40	29	35	5	150		9:00	13.9	11.6	9.2	4.8	18.9	10.04	35	
4/14/08 10:00	10:00	20	96	31	17	22	150		10:00	12.5	9.9	9.1	6	22.8	5.88	35	
4/14/08 11:00	11:00	26	52	17	6	17	150		11:00	10.4	10.1	9	4.3	11.5	5.08	35	
4/14/08 12:00	12:00	46	52	36	4	16	150		12:00	6.2	10.3	19.4	8	10.8	8.66	35	
4/14/08 13:00	13:00	16	47	31	3	13	150		13:00	9.4	11.7	8.4	8.5	7.2	4.7	35	
4/14/08 14:00	14:00	10	44	19	5	13	150		14:00	10.6	8.8	6.7	9.2	9.3	2.91	35	
4/14/08 15:00	15:00	8	70	43	47	16	150		15:00	5.6	4.4	8	7.7	12.9	7.64	35	
4/14/08 16:00	16:00	14	76	65	93	105	150		16:00	4.8	5	15.4	7.3	23.2	19.22	35	
4/14/08 17:00	17:00	21	88	87	179	206	150		17:00	6.5	8.8	21.3	10.3	31.5	36.33	35	
4/14/08 18:00	18:00	25	238	129	149	351	150		18:00	7.2	8.3	31.4	10.8	45.5	58.7	35	
4/14/08 19:00	19:00	81	229	100	117	358	150		19:00	7.1	13.3	34.4	16.6	43.5	64.17	35	
4/14/08 20:00	20:00	99	127	56	114	300	150		20:00	12.2	31.8	24.1	26.2	46.6	59.89	35	
4/14/08 21:00	21:00	59	128	58	70	165	150		21:00	24.4	27.6	18	18	37.9	32.13	35	
4/14/08 22:00	22:00	55	140	53	57	120	150		22:00	20.8	18.8	21.8	13.4	23.5	21.09	35	
4/14/08 23:00	23:00	49	151	95	22	55	150	900	23:00	14.3	19.6	18.5	20.1	16.6	10.92	35	150
4/15/08 0:00	0:00	81	147	59	7	22	150		0:00	13.3	19.6	15.7	9.9	5.7	3.74	35	
4/15/08 1:00	1:00	62	183	95	16	13	150		1:00	16.8	19	18	8.3	6.8	4.67	35	
4/15/08 2:00	2:00	146	322	130	31	24	150		2:00	17.9	22.6	30.7	25.8	9.2	4.62	35	
4/15/08 3:00	3:00	234	821	402	32	31	150		3:00	29.7	46.1	62.5	44.8	11.9	4.53	35	
4/15/08 4:00	4:00	474	644	472	71	25	150		4:00	33.2	86	145.9	23.8	13.2	3.82	35	

4/15/08 5:00	5:00	209	578	429	299	64	150		5:0	0 22.2	51.4	95	25.2	38.2	11.97	35	
4/15/08 6:00	6:00	173	285	300	385	123	150		6:0	0 17	20.5	61.6	39	74.4	16.74	35	
4/15/08 7:00	7:00	148	214	211	366	291	150		7:0	0 17.1	21.3	35.8	37.7	74	40.58	35	
4/15/08 8:00	8:00	132	143	180	289	280	150		8:0	0 13.8	20.4	29	36.1	62.6	54.32	35	
4/15/08 9:00	9:00	135	194	165	261	236	150		9:0	0 15.4	19.4	28.8	33.4	54.6	46.43	35	
4/15/08 10:00	10:00	101	278	127	222	226	150		10:0	0 12.4	16.7	27	26.2	44.1	42.06	35	
4/15/08 11:00	11:00	138	405	143	188	212	150		11:0	0 10.5	12.5	25.7	19	36.6	42.44	35	
4/15/08 12:00	12:00	25	456	113	214	176	150		12:0	0 8.2	12.3	17.4	16.9	26.5	29.79	35	
4/15/08 13:00	13:00	47	47	41	393	231	150		13:0	0 3.6	12.1	7.9	14.8	21.9	25	35	
4/15/08 14:00	14:00	17	19	30	151	137	150		14:0	0 1.1	10.7	6.3	11.8	12.3	15.57	35	
4/15/08 15:00	15:00	16	12	39	28	43	150		15:0	0 4.8	7.4	4.6	9	5.4	11.49	35	
4/15/08 16:00	16:00	21	29	34	51	19	150		16:0	9.6	7.3	2.2	24.7	0	3.09	35	
4/15/08 17:00	17:00	26	23	75	83	34	150		17:0	0 11.4	7.7	10.9	31.8	12	12.18	35	
4/15/08 18:00	18:00	28	12	17	111	78	150		18:0		6.6	9.7	25.1	20.7	17.59	35	
4/15/08 19:00	19:00	41	11	62	126	86	150		19:0		8.9	8	19.2	21.7	18.55	35	
4/15/08 20:00	20:00	36	16	48	109	96	150		20:0		8.7	10.7	17.9	18.6	21.4	35	
4/15/08 21:00	21:00	30	17	50	80	95	150		21:0		8.9	9.4	17.1	18.5	20.41	35	
4/15/08 22:00	22:00	7	14	16	84	84	150		22:0		8.3	4	22.6	14.7	17.65	35	
4/15/08 23:00	23:00	11	18	22	41	48	150	900	23:0		7.8	3.2	14.9	8.1	8.96	35	
4/16/08 0:00	0:00	19	19	29	41	33	150		0:0		8.4	5.4	11.1	9.6	7.37	35	
4/16/08 1:00	1:00	8	4	17	32	27	150		1:0		8.1	8.6	9.3	7.9	5.75	35	
4/16/08 2:00	2:00	19	19	13	12	13	150		2:0		8	6.6	8.4	6.6	3.79	35	
4/16/08 3:00	3:00	18	38	6	5	21	150		3:0		8.8	6.1	7	4.6	6.94	35	
4/16/08 4:00	4:00	21	9	10	7	19	150		4:0		9	5.2	10	4.1	5.59	35	
4/16/08 5:00	5:00	25	31	8	4	11	150		5:0		10.1	6.2	11.9	4.7	4.58	35	
4/16/08 6:00	6:00	34	45	13	16	8	150		6:0		10.1	5.9	9.2	6.9	5.79	35	
4/16/08 7:00	7:00	18	25	27	38	6	150		7:0		12.7	5.8	9.4	16.4	6.99	35	
4/16/08 8:00	8:00	17	24	23	26	26	150		8:0		9.6	9.8	9	28.6	15.27	35	
4/16/08 9:00	9:00	10	35	10	15	23	150		9:0		5.0	6.5	9.3	16.7	11.04	35	
4/16/08 10:00	10:00	11	24	10	17	23	150		10:0		6.8	2.5	9.3	18.1	13.79	35	
4/16/08 11:00	11:00	9	14	10	15	27	150		11:0		7.3	2.3	7.3	9.5	10.68	35	
4/16/08 12:00	12:00	10	21		24	18	150		12:0		9.4	1.8	5.7	9.9	10.00	35	
4/16/08 13:00	13:00	17	50	48	40	41	150		12:0		9.4	3.6	5.6	9.9 11	4.97	35	
4/16/08 14:00	14:00	14	43	39	32	27	150		13.0		9.7	3.9	4.8	8.4	3.16	35	
4/16/08 15:00	14:00	23	43	45	10	27	150		14.0		9.7 6.7	3.9 7.4	4.8 6.7	8.3	7.29	35	
4/16/08 16:00	16:00	23	30	35	6	27	150		16:0		0.7	6.6	0.7	8.5	3.87	35	
4/16/08 17:00	17:00	9 10	5	55 51	25	18	150		17:0		6.3	7.5	5.3	0.5 10.8	5.53	35	
4/16/08 17:00	17:00	10	э 17	17	25 17	6	150		18:0		6.3 5.8	7.5 6	5.3 7	10.8	5.53 6.39	35 35	
			20														
4/16/08 19:00	19:00	12		19	15	0	150		19:0		6.3	5.3	7.3 7	11.4 9	5.48	35	
4/16/08 20:00	20:00	5	14	25	5	7	150		20:0		7.7	5.8			4.39	35	
4/16/08 21:00	21:00	28	24 34	14 13	8 7	20	150 150		21:0		5 9.9	6.5 6	6.7 7.7	10.5	6.34 6.94	35	
4/16/08 22:00	22:00	34			-	19		000	22:0			-		8.7		35	
4/16/08 23:00	23:00	23	28	12	5	15	150	900	23:0		12.4	5	9.2	8.7	6.34	35	
4/17/08 0:00	0:00	18	31	20	3	16	150		0:0		10.5	4	7.2	8.3	5.18	35	
4/17/08 1:00	1:00	17	35	14	4	13	150		1:0		10.7	5.1	5.4	9.6	5.73	35	
4/17/08 2:00	2:00	18	38	6	5	13	150		2:0		10.2	4.3	7	7.5	5.82	35	
4/17/08 3:00	3:00	14	25	10	5	10	150		3:0		9.8	4.4	7.1	7.8	4.6	35	
4/17/08 4:00	4:00	18	25	51	6	10	150		4:0		7.9	6	7.4	5.8	5.36	35	
4/17/08 5:00	5:00	24	38	53	8	5	150		5:0		9.1	8.9	8.2	6.1	6.84	35	
4/17/08 6:00	6:00	44	17	35	16	9	150		6:0		11.8	9.4	9.5	7.5	6.5	35	
4/17/08 7:00	7:00	41	24	27	18	11	150		7:0		15.7	8.1	7.7	9.3	7.2	35	
4/17/08 8:00	8:00	17	29	26		24	150		8:0		12.4	8	10.7	12	9.53	35	
4/17/08 9:00	9:00	20	105	21	16	19	150		9:0		10.3	8.2	12.4	16.2	10.96	35	
4/17/08 10:00	10:00	20	32	19	6	17	150		10:0		14.8	9.2	56.1	9.3	7.55	35	
4/17/08 11:00	11:00	19	22	20	13	14	150		11:0	6.4	17.6	13.5	30.8	7.8	6.27	35	

150

4/17/08 12:00	12:00	16	19	15	16	12	150		12:00	5.6	18.1	14.1	13.2	13.7	4.78	35	
4/17/08 13:00	13:00	11	26	16	13	14	150		13:00	8.2	16.7	16.7	14.1	11.6	5.67	35	
4/17/08 14:00	14:00	14	14	10	17	19	150		14:00	10.8	16	17.5	12.2	17.5	9.68	35	
4/17/08 15:00	15:00	6	15	7	24	16	150		15:00	10.7	18.1	13.2	9.4	17	11.8	35	
4/17/08 16:00	16:00	11	31	9	18	24	150		16:00	9.5	13.7	7.9	8.8	19.8	15.03	35	
4/17/08 17:00	17:00	8	9	10	13	27	150		17:00	11.8	12.3	6.7	8.9	19.3	15.44	35	
4/17/08 18:00	18:00	11	8	10	14	32	150		18:00	17.1	14.2	9.5	10.8	13.3	18.16	35	
4/17/08 19:00	19:00	11	49	18	26	28	150		19:00	22.7	12.7	9.7	10.2	11.8	16.75	35	
4/17/08 20:00	20:00	14	64	18	30	25	150		20:00	22.7	11.9	9.9	12.6	16.6	14.97	35	
4/17/08 21:00	21:00	26	79	51	20	34	150		21:00	19.3	14	11.7	11.6	17.9	18.99	35	
4/17/08 22:00	22:00	28	13	34	17	42	150		22:00	16	17.5	12.8	10.6	17.7	23.59	35	
4/17/08 23:00	23:00	44	19	36	22	26	150	900	23:00	19.7	15.3	8.7	8.8	12.8	11.58	35	1
4/18/08 0:00	0:00	54	30	49	21	20	150		0:00	19.1	12.4	12.1	9.2	14.7	9.51	35	

h

F - 71

F - 72

Appendix B

PM2.5 Speciation filter data for Lindon on April 15, 2008

STATE OF UTAH DEQ

CLIENT # U005 REPORT # 09-089

> SUBMITTED BY: *CHESTER LabNet* 12242 S.W. GARDEN PLACE TIGARD, OR 97223 (503)624-2183/FAX (503)624-2653 www.ChesterLab.Net

CHESTER LabNet

12242 SW Garden Place * Tigard, OR 97223-8246 * USA Telephone 503-624-2183 * Fax 503-624-2653 * www.chesterlab.net

Case Narrative

Date: April 16, 2009

General Information

Client:	State of Utah DEQ
Client Number:	U005
Report Number:	09-089
Sample Description:	47mm Quartz and Teflon filters
Sample Numbers:	09-U253 – 09-U259, 09-X779 – 09-X787

Analysis

Analytes:	XRF Metals (Na - Pb), Cl, Br, NO ₃ , SO ₄ , Na, NH ₄ , K, Organic Carbon, Elemental Carbon
Analytical Protocols:	X-Ray Fluorescence protcol 6, Ion Chromatography, OC/EC by TOT
Analytical Notes:	No problems were encountered during the analyses. The method blanks and laboratory control samples were not from the same lot of filters as the samples since the filters did not originate from Chester LabNet. Results have not been blank corrected.
QA/QC Review:	All of the data have been reviewed by the analysts performing the analyses and the project manager. All of the quality control and sample-specific information in this package is complete and meets or exceeds the minimum requirements for acceptability.
Comments:	If you have any questions or concerns regarding this analysis, please feel free to contact the project manager.
Disclaimer:	This report shall not be reproduced, except in full, without the written approval of the laboratory. The results only represent that of the samples as received into the laboratory.

4/16/09

Project Manager Paul Duda

Date

Client: U005 - State of Utah DEQ Report Number: 09-089 _____ 09-U253 Lab ID: 20080488 Client ID: Site: Lindon (LN) Sample Date: 4/15/08 Deposit Area: 12.0 cm² Size Fraction: PM10 Suspended Particulates: 164.5 +- 16.56 µg/m³ µg/m³ Analyte uq/filter percent 4.311 ± 0.5389 0.0000 ± 0.1490 1.155 + 0 XRF A1 91.39 ± 6.854 2.621 ± 0.1989 0.0000 ± 3.158 Р 1.155 ± 0.1549 S 24.49 ± 2.188 1.184 ± 0.0868 41.28 ± 2.989 1.947 ± 0.2404 Cl 2.569 ± 0.1628 4.225 ± 0.4979 89.58 ± 5.582 Κ 326.0 ± 19.56 Ca 9.350 ± 0.5711 15.38 ± 1.793 0.4655 ± 0.0550 0.0000 ± 0.0056 0.2830 ± 0.0181 Τi 9.868 ± 0.6192 0.0000 ± 0.0034 0.0356 ± 0.0029 V 0.0000 ± 0.1188 0.0356 ± 0.0029 0.0821 ± 0.0054 1.241 ± 0.0996 Cr 0.0585 ± 0.0075 0.1350 ± 0.0161 2.862 ± 0.1848 Mn 136.0 ± 10.85 3.899 ± 0.3144 6.413 ± 0.8206 Fe 0.0000 ± 0.0744 0.0000 ± 0.0021 0.0000 ± 0.0035 Co $\begin{array}{c} 0.0000 \pm 0.0011 \\ 0.0099 \pm 0.0011 \\ 0.0198 \pm 0.0033 \\ 0.0220 \pm 0.0040 \end{array}$ 0.3456 ± 0.0384 0.0163 ± 0.0024 Ni 0.0325 ± 0.0063 0.6900 ± 0.1152 Cu Zn 1.145 ± 0.1380 0.0328 ± 0.0040 0.0540 ± 0.0085 0.2448 ± 0.0816 0.0070 ± 0.0023 0.0115 ± 0.0040 Ga 0.3120 ± 0.0708 0.0147 ± 0.0036 0.0089 ± 0.0020 Ge 0.0068 ± 0.0030 As 0.1452 ± 0.0624 Se 0.0984 ± 0.0576 0.0046 ± 0.0028 0.3684 ± 0.0588 0.0174 ± 0.0033 Br 0.0198 ± 0.0023 0.6912 ± 0.0804 0.0326 ± 0.0050 Rb 0.0787 ± 0.0048 Sr 2.746 ± 0.1632 0.1295 ± 0.0151 0.2256 ± 0.0924 0.0065 ± 0.0027 0.0106 ± 0.0045 Υ 0.0085 ± 0.0027 0.0547 ± 0.0044 1.908 ± 0.1512 0.0900 ± 0.0115 Zr 0.0343 ± 0.0047 0.0564 ± 0.0096 1.196 ± 0.1644 Mo Pd 0.1656 ± 0.0936 0.0047 ± 0.0027 0.0078 ± 0.0045 0.2676 ± 0.0888 0.0077 ± 0.0025 0.0126 ± 0.0044 Ag Cd 0.2772 ± 0.0876 0.0079 ± 0.0025 0.0131 ± 0.0043 0.0114 ± 0.0026 0.3984 ± 0.0912 0.0188 ± 0.0047 Ιn Sn 0.6480 ± 0.1080 0.0186 ± 0.0031 0.0306 ± 0.0059 Sb 0.1080 ± 0.1296 0.0031 ± 0.0037 0.0051 ± 0.0061 5.394 ± 0.5952 0.1547 ± 0.0172 0.2544 ± 0.0379 Ва Lа 3.188 ± 0.6648 0.0914 ± 0.0191 0.1504 ± 0.0348 0.1476 ± 0.1572 Ηq 0.0042 ± 0.0045 0.0070 ± 0.0074 0.4392 ± 0.1584 0.0126 ± 0.0045 0.0207 ± 0.0078 Pb IC 1.461 ± 0.0174 0.0000 ± 0.0029 C150.96 ± 2.548 2.404 ± 0.2688 0.0000 ± 1.000 0.0000 ± 0.0472 Br 1.255 ± 0.1403 NO3 26.60 ± 1.330 2.601 ± 0.0305 3.272 ± 0.0381 4.278 ± 0.4783 S04 90.70 ± 4.535 Na 114.1 ± 5.704 5.381 ± 0.6016 NH4 3.600 ± 0.1800 0.1032 ± 0.0017 0.1698 ± 0.0190 7.440 ± 0.3720 0.2134 ± 0.0030 0.3509 ± 0.0392 К OC/EC OC 278.4 ± 16.32 7.984 ± 0.4769 13.13 ± 1.522 0.1435 ± 0.0761 5.004 ± 2.652 0.2360 ± 0.1273 EC ТC 283.2 ± 17.76 8.122 ± 0.5178 13.36 ± 1.577

Client: U005 - State of Utah DEQ Report Number: 09-089 _____ 09-U254 Lab ID: 20080492 Client ID: Site: Lindon (LN) Sample Date: 4/19/08 Mass: 3717. +- 40. μg Volume: 20.50 +- 2.050 m³ Deposit Area: 12.0 cm² Size Fraction: PM10 Suspended Particulates: 181.3 +- 18.24 µg/m³ µg/m³ Analyte uq/filter percent XRF 4.284 ± 0.5360 0.0000 ± 0.1474 2.363 ± 0.1794 A1 87.83 ± 6.602 $\begin{array}{r} 2.363 \pm 0.1794 \\ 0.0000 \pm 0.0813 \\ 0.9104 \pm 0.0755 \\ 0.7535 \pm 0.0561 \end{array}$ 0.0000 ± 3.022 Р 1.651 ± 0.2137 S 33.84 ± 2.782 28.01 ± 2.063 1.366 ± 0.1697 Cl 2.362 ± 0.1481 87.80 ± 5.424 4.283 ± 0.5034 Κ 444.6 ± 26.46 Ca 11.96 ± 0.7234 21.69 ± 2.524 $\begin{array}{c} 21.05 \pm 2.524 \\ 0.4753 \pm 0.0561 \\ 0.0076 \pm 0.0061 \end{array}$ Τi 9.743 ± 0.6096 0.2621 ± 0.0166 0.0042 ± 0.0033 0.0422 ± 0.0033 V 0.1548 ± 0.1236 Cr 1.568 ± 0.1176 0.0422 ± 0.0032 0.0786 ± 0.0051 0.0422 ± 0.0032 0.0765 ± 0.0096 2.923 ± 0.1884 0.1426 ± 0.0170 Mn 107.5 ± 5.972 2.892 ± 0.1637 5.244 ± 0.5999 Fe 0.0000 ± 0.0744 0.0000 ± 0.0020 0.0000 ± 0.0036 Co $\begin{array}{c} 0.0077 \pm 0.0010 \\ 0.0127 \pm 0.0026 \\ \end{array}$ 0.2868 ± 0.0384 0.0140 ± 0.0023 Ni 0.4704 ± 0.0948 0.0229 ± 0.0052 Cu Zn 0.7344 ± 0.1044 0.0198 ± 0.0028 0.0358 ± 0.0062 0.0396 ± 0.0660 0.0011 ± 0.0018 0.0019 ± 0.0032 Ga 0.1992 ± 0.0588 0.0054 ± 0.0016 0.0097 ± 0.0030 Ge 0.0001 ± 0.0014 0.0048 ± 0.0504 0.0002 ± 0.0025 As 0.0001 ± 0.0014 0.0006 ± 0.0013 0.0051 ± 0.0013 Se 0.0240 ± 0.0468 0.0012 ± 0.0023 0.1884 ± 0.0468 0.0051 ± 0.0013 0.0092 ± 0.0025 Br 0.0153 ± 0.0018 0.0277 ± 0.0042 0.5676 ± 0.0648 Rb 0.0718 ± 0.0042 0.1302 ± 0.0151 Sr 2.670 ± 0.1548 0.0036 ± 0.0744 0.0001 ± 0.0020 0.0002 ± 0.0036 Y $\begin{array}{r} 0.0001 \pm 0.0020 \\ 0.0278 \pm 0.0029 \\ 0.0248 \pm 0.0036 \\ 0.0033 \pm 0.0022 \end{array}$ 1.033 ± 0.1080 0.0504 ± 0.0073 Zr 0.0450 ± 0.0079 0.9228 ± 0.1320 Mo Pd 0.1236 ± 0.0828 0.0033 ± 0.0022 0.0060 ± 0.0041 0.1536 ± 0.0792 0.0041 ± 0.0021 0.0075 ± 0.0039 Ag Cd 0.1872 ± 0.0780 0.0050 ± 0.0021 0.0091 ± 0.0039 0.0050 ± 0.0021 0.0009 ± 0.0021 0.0336 ± 0.0792 0.0016 ± 0.0039 Ιn Sn 0.4656 ± 0.0948 0.0125 ± 0.0026 0.0227 ± 0.0052 Sb 0.0072 ± 0.1164 0.0002 ± 0.0031 0.0004 ± 0.0057 2.825 ± 0.4920 0.0760 ± 0.0133 0.1378 ± 0.0277 Ва Lа 1.766 ± 0.5832 0.0475 ± 0.0157 0.0862 ± 0.0297 0.0000 ± 0.1296 Ηq 0.0000 ± 0.0035 0.0000 ± 0.0063 0.3228 ± 0.1272 0.0087 ± 0.0034 0.0157 ± 0.0064 Pb IC 1.136 ± 0.0120 0.0000 ± 0.0027 0.7737 ± 0.0089 1.136 ± 0.0128 0.0000 ± 0.0027 C142.24 ± 2.112 2.060 ± 0.2304 0.0000 ± 1.000 0.0000 ± 0.0488 Br $\begin{array}{c} 1.403 \pm 0.1569 \\ 6.189 \pm 0.6920 \end{array}$ NO3 28.76 ± 1.438 3.414 ± 0.0374 3.662 ± 0.0400 S04 126.9 ± 6.344 Na 136.1 ± 6.806 6.640 ± 0.7424 NH4 7.280 ± 0.3640 0.1959 ± 0.0027 0.3551 ± 0.0397 8.400 ± 0.4200 0.2260 ± 0.0030 0.4098 ± 0.0458 К OC/EC OC 319.2 ± 18.36 8.588 ± 0.5025 15.57 ± 1.796 1.416 ± 2.472 0.0381 ± 0.0665 0.0691 ± 0.1208 EC TC 320.4 ± 19.68 8.620 ± 0.5375 15.63 ± 1.834

Client: U005 - State of Utah DEQ Report Number: 09-089 _____ 09-U255 Lab ID: 20080609 Client ID: Site: Hawthorn (HW) Sample Date: 4/19/08 Mass: 3960. +- 40. μg 20.70 +- 2.070 m³ Volume: Deposit Area: 12.0 cm² Size Fraction: PM10 Suspended Particulates: 191.3 +- 19.23 µg/m³ µg/m³ Analyte uq/filter percent XRF 57.18 ± 4.878 A1 1.444 ± 0.1240 2.762 ± 0.3631 $\begin{array}{c} 1.444 \pm 0.1216\\ 0.0000 \pm 0.0698\\ 3.215 \pm 0.2384\\ 2.745 \pm 0.1884\\ -222 \pm 0.1082\end{array}$ $2.762 \pm 0.363 \pm 0.0000 \pm 0.1334$ 0.0000 ± 2.762 Р 6.151 ± 0.7632 S 127.3 ± 9.353 108.7 ± 7.381 5.252 ± 0.6348 Cl 1.732 ± 0.1082 68.60 ± 4.230 3.314 ± 0.3894 Κ 469.3 ± 27.79 11.85 ± 0.7120 Ca 22.67 ± 2.635 $\begin{array}{r} 22.07 \pm 2.033 \\ 0.3115 \pm 0.0375 \\ 0.0000 \pm 0.0060 \end{array}$ 0.1628 ± 0.0111 6.448 ± 0.4332 Τi 0.1828 ± 0.0111 0.0000 ± 0.0031 0.0378 ± 0.0030 V 0.0000 ± 0.1236 U.U378 ± 0.0030 0.0472 ± 0.0034 2 037 Cr 1.499 ± 0.1164 0.0724 ± 0.0092 1.870 ± 0.1332 0.0903 ± 0.0111 Mn 80.65 ± 4.475 2.037 ± 0.1149 3.896 ± 0.4456 Fe 0.0000 ± 0.0660 0.0000 ± 0.0017 0.0000 ± 0.0032 Co $\begin{array}{c} 0.0000 \pm 0.0017 \\ 0.0080 \pm 0.0009 \\ 0.0202 \pm 0.0013 \\ 0.0312 \pm 0.0034 \end{array}$ 0.3156 ± 0.0372 0.0152 ± 0.0024 Ni 0.0387 ± 0.0046 0.8004 ± 0.0528 Cu Zn 1.234 ± 0.1344 0.0312 ± 0.0034 0.0596 ± 0.0088 0.2304 ± 0.0720 $\begin{array}{c} 0.0036 \pm 0.0018 \\ 0.0102 \pm 0.0017 \\ 0.0048 \pm 0.0014 \\ 0.0000 \pm 0.0013 \\ 0.0070 \pm 0.0013 \end{array}$ 0.0058 ± 0.0018 0.0111 ± 0.0037 Ga 0.0195 ± 0.0038 0.4032 ± 0.0672 Ge 0.0093 ± 0.0029 As 0.1920 ± 0.0564 Se 0.0000 ± 0.0504 0.0000 ± 0.0024 0.2760 ± 0.0516 0.0070 ± 0.0013 0.0133 ± 0.0028 Br 0.0129 ± 0.0017 0.5112 ± 0.0684 0.0247 ± 0.0041 Rb 0.2807 ± 0.0146 0.5369 ± 0.0603 11.11 ± 0.5676 Sr 0.1248 ± 0.0792 0.0032 ± 0.0020 0.0060 ± 0.0039 Y $\begin{array}{r} 0.0032 \pm 0.0020 \\ 0.0239 \pm 0.0029 \\ 0.0214 \pm 0.0036 \\ 0.0024 \pm 0.0022 \end{array}$ 0.0457 ± 0.0072 0.9468 ± 0.1164 Zr 0.0409 ± 0.0079 0.8460 ± 0.1404 Мо Pd 0.0948 ± 0.0864 0.0024 ± 0.0022 0.0046 ± 0.0042 0.1200 ± 0.0816 0.0030 ± 0.0021 0.0058 ± 0.0040 Ag 0.0780 ± 0.0804 0.0038 ± 0.0039 Cd 0.0020 ± 0.0020 0.0039 ± 0.0021 0.1536 ± 0.0828 0.0074 ± 0.0041 Ιn 0.0145 ± 0.0025 0.0278 ± 0.0056 Sn 0.5760 ± 0.1008 Sb 0.0936 ± 0.1224 0.0024 ± 0.0031 0.0045 ± 0.0059 5.735 ± 0.5700 0.1448 ± 0.0145 0.2770 ± 0.0391 Ва Lа 2.160 ± 0.6084 0.0000 ± 0.0050 0.0043 ± 0.0035 0.0545 ± 0.0154 0.1043 ± 0.0312 0.0000 ± 0.1416 Ηq 0.0000 ± 0.0068 0.1704 ± 0.1392 0.0082 ± 0.0068 Pb IC 130.6 ± 6.531 3.298 ± 0.0339 0.0000 ± 0.0025 0.9045 ± 0.0097 C13.298 ± 0.0339 6.310 ± 0.7055 0.0000 ± 1.000 0.0000 ± 0.0483 Br 1.730 ± 0.1935 NO3 35.82 ± 1.791 12.06 ± 0.1224 23.06 ± 2.578 S04 477.4 ± 23.87 Na 331.8 ± 16.59 8.379 ± 0.0853 16.03 ± 1.792 NH4 5.680 ± 0.2840 0.1434 ± 0.0020 0.2744 ± 0.0307 10.94 ± 0.5470 0.2763 ± 0.0034 0.5285 ± 0.0591 К OC/EC OC 337.2 ± 19.32 8.515 ± 0.4954 16.29 ± 1.877 0.1109 ± 0.0661 4.392 ± 2.616 0.2122 ± 0.1281 EC TC 342.0 ± 20.64 8.636 ± 0.5285 16.52 ± 1.930

Client: U005 - State of Utah DEQ Report Number: 09-089 _____ 09-U256 Lab ID: 20080727 Client ID: Site: Lindon (LN) Sample Date: 5/20/08 Mass: 3584. +- ±0. mJ Volume: 20.30 +- 2.030 m³ Deposit Area: 12.0 cm² Size Fraction: PM10 Suspended Particulates: 176.6 +- 17.76 µg/m³ µg/m³ Analyte uq/filter percent XRF 95.57 ± 7.046 $\begin{array}{c} 2.667 \pm 0.1500 \\ 0.0000 \pm 0.0907 \\ 0.2879 \pm 0.0342 \\ 0.2338 \pm 0.0237 \\ 2.504 \pm 0.1574 \end{array}$ 4.708 ± 0.5849 A1 2.667 ± 0.1988 4.708 ± 0.5849 0.0000 ± 0.1602 0.5083 ± 0.0787 0.0000 ± 3.252 Р S 10.32 ± 1.220 8.380 ± 0.8448 0.4128 ± 0.0586 Cl 2.504 ± 0.1574 4.422 ± 0.5199 89.76 ± 5.552 Κ 463.1 ± 27.60 12.92 ± 0.7835 Ca 22.81 ± 2.656 0.4822 ± 0.0569 0.0075 ± 0.0061 Τi 9.788 ± 0.6144 0.2731 ± 0.0174 0.0043 ± 0.0034 0.0472 ± 0.0035 V 0.1524 ± 0.1236 Cr 1.691 ± 0.1236 0.0472 ± 0.0035 0.0833 ± 0.0103 0.0826 ± 0.0054 3.260 ± 0.2608 2.959 ± 0.1908 0.1458 ± 0.0173 Mn 116.9 ± 9.254 3.260 ± 0.2608 5.756 ± 0.7343 Fe 0.0000 ± 0.0744 0.0000 ± 0.0021 0.0000 ± 0.0037 Co $\begin{array}{c} 0.0083 \pm 0.0011 \\ 0.0188 \pm 0.0030 \\ 0.0516 \pm 0.0030 \end{array}$ 0.2976 ± 0.0384 0.0147 ± 0.0024 Ni 0.6720 ± 0.1056 0.0331 ± 0.0062 Cu Zn 1.848 ± 0.1704 0.0516 ± 0.0048 0.0910 ± 0.0124 0.1800 ± 0.0720 0.0050 ± 0.0020 0.0089 ± 0.0037 Ga 0.0066 ± 0.0020 0.0116 ± 0.0034 0.2364 ± 0.0648 Ge 0.0110 ± 0.0030 As 0.2232 ± 0.0564 0.0062 ± 0.0016 Se 0.0924 ± 0.0516 0.0046 ± 0.0026 0.2556 ± 0.0516 0.0071 ± 0.0014 0.0126 ± 0.0028 Br 0.0155 ± 0.0020 0.5556 ± 0.0708 0.0274 ± 0.0044 Rb 0.1122 ± 0.0131 0.0635 ± 0.0039 Sr 2.278 ± 0.1392 0.2664 ± 0.0828 0.0074 ± 0.0023 0.0131 ± 0.0043 Υ $\begin{array}{r} 0.0074 \pm 0.0023 \\ 0.0381 \pm 0.0035 \\ 0.0313 \pm 0.0041 \\ 0.0010 \pm 0.0024 \end{array}$ 0.0672 ± 0.0091 1.364 ± 0.1248 Zr 0.0552 ± 0.0091 1.121 ± 0.1464 Mo Pd 0.0372 ± 0.0864 0.0010 ± 0.0024 0.0018 ± 0.0043 0.0252 ± 0.0816 0.0007 ± 0.0023 0.0012 ± 0.0040 Ag Cd 0.1668 ± 0.0816 0.0047 ± 0.0023 0.0082 ± 0.0041 0.0056 ± 0.0023 0.2004 ± 0.0840 0.0099 ± 0.0043 In Sn 0.7776 ± 0.1032 0.0217 ± 0.0029 0.0383 ± 0.0064 Sb 0.1608 ± 0.1212 0.0045 ± 0.0034 0.0079 ± 0.0060 3.445 ± 0.5232 0.0961 ± 0.0146 0.1697 ± 0.0309 Ва Lа 0.7068 ± 0.6024 0.0197 ± 0.0168 0.0348 ± 0.0299 0.0031 ± 0.001 0.0015 ± 0.0039 Ηq 0.1116 ± 0.1440 0.0055 ± 0.0071 0.0528 ± 0.1404 0.0026 ± 0.0069 Pb IC 0.3929 ± 0.0050 0.0000 ± 0.0028 0.8761 ± 0.0104 0.6936 ± 0.0775 C1 14.08 ± 0.7040 0.0000 ± 1.000 0.0000 ± 0.0493 Br 1.547 ± 0.1729 NO3 31.40 ± 1.570 1.987 ± 0.2222 S04 40.34 ± 2.017 1.126 ± 0.0132 Na 48.36 ± 2.418 1.349 ± 0.0157 2.382 ± 0.2663 NH4 4.980 ± 0.2490 0.1390 ± 0.0021 0.2453 ± 0.0274 8.520 ± 0.4260 0.2377 ± 0.0032 0.4197 ± 0.0469 К OC/EC OC 324.0 ± 18.60 9.040 ± 0.5287 15.96 ± 1.840 0.5592 ± 0.0953 0.9872 ± 0.1948 20.04 ± 3.408 EC 16.97 ± 1.981 ТC 344.4 ± 20.76 9.609 ± 0.5891

Client: U005 - State of Utah DEQ Report Number: 09-089 _____ 09-U257 Lab ID: 20081074 Client ID: Ogden (02) Site: Sample Date: 7/ 4/08 1656. +- 40. µg Mass: Volume: 20.30 +- 2.030 m³ Deposit Area: 12.0 cm² Size Fraction: PM10 Suspended Particulates: 81.58 +- 8.39 µg/m³ µg/m³ Analyte ug/filter percent XRF 44.42 ± 4.576 2.188 ± 0.3142 A1 2.683 ± 0.2838 $\begin{array}{r} 2.003 \pm 0.2030 \\ 0.0000 \pm 0.1238 \\ 4.844 \pm 0.4042 \\ 2.892 \pm 0.2962 \end{array}$ 0.0000 ± 2.050 Р 3.952 ± 0.5057 S 80.22 ± 6.407 64.46 ± 4.652 3.893 ± 0.2963 3.176 ± 0.3916 Cl 277.0 ± 17.34 16.72 ± 1.122 13.64 ± 1.610 Κ 6.136 ± 0.7187 Ca 124.6 ± 7.595 7.522 ± 0.4933 $\begin{array}{r} 0.136 \pm 0.7187 \\ 0.1357 \pm 0.0193 \\ 0.0068 \pm 0.0064 \end{array}$ 0.1663 ± 0.0174 Τi 2.754 ± 0.2796 0.0083 ± 0.0078 0.0323 ± 0.0046 V 0.1380 ± 0.1296 0.0323 ± 0.0046 0.0857 ± 0.0068 Cr 0.5352 ± 0.0756 0.0264 ± 0.0046 0.0699 ± 0.0088 1.418 ± 0.1080 Mn 35.03 ± 2.812 2.115 ± 0.1773 1.726 ± 0.2213 Fe 0.0000 ± 0.0456 0.0000 ± 0.0028 0.0000 ± 0.0022 Co 0.0168 ± 0.0020 0.5186 ± 0.0291 0.2784 ± 0.0324 0.0137 ± 0.0021 Ni 8.588 ± 0.4356 0.4231 ± 0.0474 Cu Zn 2.456 ± 0.2160 0.1483 ± 0.0135 0.1210 ± 0.0161 0.0000 ± 0.0732 0.0000 ± 0.0044 0.0000 ± 0.0036 Ga 0.0010 ± 0.0039 0.0168 ± 0.0648 0.0008 ± 0.0032 Ge As 0.1908 ± 0.0960 0.0115 ± 0.0058 0.0094 ± 0.0048 0.0115 ± 0.0058 0.0054 ± 0.0031 0.0167 ± 0.0031 Se 0.0888 ± 0.0516 0.0044 ± 0.0026 0.2760 ± 0.0516 0.0167 ± 0.0031 0.0136 ± 0.0029 Br 0.0112 ± 0.0038 0.0091 ± 0.0032 0.1848 ± 0.0624 Rb 0.3592 ± 0.0208 Sr 5.948 ± 0.3132 0.2930 ± 0.0331 0.0240 ± 0.0792 0.0014 ± 0.0048 0.0012 ± 0.0039 Υ 0.0485 ± 0.0068 0.8028 ± 0.1104 0.0395 ± 0.0067 Zr 0.0667 ± 0.0089 0.0544 ± 0.0090 1.105 ± 0.1452 Mo Pd 0.1176 ± 0.0876 0.0071 ± 0.0053 0.0058 ± 0.0044 0.2736 ± 0.0840 0.0165 ± 0.0051 0.0135 ± 0.0044 Ag Cd 0.3108 ± 0.0828 0.0188 ± 0.0050 0.0153 ± 0.0044 0.0182 ± 0.0051 0.0148 ± 0.0044 Ιn 0.3012 ± 0.0840 Sn 0.7752 ± 0.1032 0.0468 ± 0.0063 0.0382 ± 0.0064 0.0759 ± 0.0087 0.0619 ± 0.0093 Sb 1.256 ± 0.1416 26.35 ± 1.424 1.591 ± 0.0942 1.298 ± 0.1476 Ва 2.245 ± 0.6132 0.1356 ± 0.0372 Lа 0.1106 ± 0.0322 0.0005 ± 0.0000 0.0354 ± 0.0090 Ηq 0.0084 ± 0.1452 0.0004 ± 0.0072 0.5856 ± 0.1476 0.0288 ± 0.0078 Pb IC 3.883 ± 0.051 0.0000 ± 0.0060 3.167 ± 0.3541 0.0000 ± 0.0493 C164.30 ± 3.215 3.883 ± 0.0944 3.167 ± 0.3541 0.0000 ± 1.000 Br 2.070 ± 0.0506 11.60 ± 0.2809 1.689 ± 0.1888 9.464 ± 1.058 NO3 34.28 ± 1.714 S04 192.1 ± 9.606 Na 93.08 ± 4.654 5.621 ± 0.1364 4.585 ± 0.5126 NH4 4.300 ± 0.2150 0.2597 ± 0.0069 0.2118 ± 0.0237 208.0 ± 10.40 12.56 ± 0.3040 10.25 ± 1.146 К OC/EC OC 247.2 ± 14.76 14.93 ± 0.9615 12.18 ± 1.418 2.500 ± 0.2770 17.39 ± 1.165 41.40 ± 4.476 2.039 ± 0.3003 EC TC 288.0 ± 18.00 14.19 ± 1.673

Client: U005 - State of Utah DEQ Report Number: 09-089 _____ Lab ID: 09-U258 Client ID: 20090387 Site: Lindon (LN) Sample Date: 3/ 4/09 Mass: 4258. +- 40. μg Volume: 21.00 +- 2.100 m³ Deposit Area: 12.0 cm² Size Fraction: PM10 Suspended Particulates: 202.8 +- 20.37 µg/m³ ug/filter µg/m³ Analyte percent XRF A1 60.94 ± 5.242 1.431 ± 0.1238 2.902 ± 0.3828 2.902 ± 0.0021 0.0000 ± 0.1415 0.0000 ± 2.972 Р 3.907 ± 0.4925 S 82.06 ± 6.294 43.22 ± 3.094 1.015 ± 0.0733 2.058 ± 0.2531 Cl 1.641 ± 0.1034 69.89 ± 4.354 3.328 ± 0.3921 Κ 551.6 ± 32.96 12.96 ± 0.7837 Ca 26.27 ± 3.060 $\begin{array}{r} 0.3281 \pm 0.0396 \\ 0.0000 \pm 0.0062 \end{array}$ 0.1618 ± 0.0110 6.890 ± 0.4656 Τi $\begin{array}{r} 0.1818 \pm 0.0110 \\ 0.0000 \pm 0.0030 \\ 0.0402 \pm 0.0030 \end{array}$ V 0.0000 ± 0.1296 U.U402 ± 0.0030 0.0521 ± 0.0036 1.710 ± 0.1284 Cr 0.0814 ± 0.0102 0.1056 ± 0.0128 2.218 ± 0.1524 Mn Fe 99.43 ± 7.936 2.335 ± 0.1877 4.735 ± 0.6058 0.0000 ± 0.0684 0.0000 ± 0.0016 0.0000 ± 0.0033 Co $\begin{array}{r} 0.0000 \pm 0.0010 \\ 0.0075 \pm 0.0009 \\ 0.0163 \pm 0.0011 \\ 0.0513 \pm 0.0047 \end{array}$ 0.3180 ± 0.0384 0.0151 ± 0.0024 Ni 0.6960 ± 0.0480 0.0331 ± 0.0040 Cu Zn 2.184 ± 0.1980 0.0513 ± 0.0047 0.1040 ± 0.0140 0.1080 ± 0.0756 0.0025 ± 0.0018 0.0034 ± 0.0016 0.0028 ± 0.0014 0.0031 ± 0.0013 0.0041 + 0.0013 0.0025 ± 0.0018 0.0051 ± 0.0036 Ga 0.0068 ± 0.0032 0.1428 ± 0.0660 Ge 0.0057 ± 0.0029 As 0.1188 ± 0.0588 Se 0.1332 ± 0.0540 0.0063 ± 0.0026 0.1752 ± 0.0528 0.0083 ± 0.0026 Br 0.0151 ± 0.0018 0.0307 ± 0.0047 0.6444 ± 0.0756 Rb $\begin{array}{c} 0.1727 \pm 0.0091 \\ 0.0017 \pm 0.0020 \\ 0.0279 \pm 0.0030 \\ 0.0255 \pm 0.0036 \\ 0.0000 \pm 0.0021 \end{array}$ 0.3501 ± 0.0395 Sr 7.352 ± 0.3828 0.0732 ± 0.0864 0.0035 ± 0.0041 Υ 0.0566 ± 0.0083 1.189 ± 0.1260 Zr 0.0518 ± 0.0090 1.087 ± 0.1536 Mo Рđ 0.0000 ± 0.0888 0.0000 ± 0.0021 0.0000 ± 0.0042 0.2856 ± 0.0876 0.0067 ± 0.0021 0.0136 ± 0.0044 Aq $\begin{array}{c} 0.0037 \pm 0.0021 \\ 0.0034 \pm 0.0020 \\ 0.0014 \pm 0.0020 \\ 0.0190 \pm 0.0025 \\ 0.0027 \pm 0.0025 \end{array}$ 0.1440 ± 0.0852 Cd 0.0069 ± 0.0041 0.0027 ± 0.0041 0.0576 ± 0.0864 Ιn Sn 0.8076 ± 0.1080 0.0385 ± 0.0064 Sb 0.1152 ± 0.1272 0.0027 ± 0.0030 0.0055 ± 0.0061 5.932 ± 0.5976 0.1393 ± 0.0141 0.2825 ± 0.0401 Ва $\begin{array}{r} 0.0500 \pm 0.0111 \\ 0.0500 \pm 0.0149 \\ 0.0016 \pm 0.0035 \\ 0.0093 \pm 0.0034 \end{array}$ Lа 2.130 ± 0.6360 0.1014 ± 0.0319 0.0672 ± 0.1488 Ηq 0.0032 ± 0.0071 0.3972 ± 0.1464 0.0189 ± 0.0072 Pb IC C1165.1 ± 8.254 0.0000 ± 1.000 Br 1.002 ± 0.1120 16.12 ± 1.803 NO3 21.04 ± 1.052 7.952 ± 0.0753 7.285 ± 0.0691 S04 338.6 ± 16.93 Na 310.2 ± 15.51 14.77 ± 1.652 0.0000 ± 0.0023 0.0000 ± 0.0476 NH4 0.0000 ± 1.000 9.400 ± 0.4700 0.2208 ± 0.0026 0.4476 ± 0.0500 К OC/EC OC 345.6 ± 19.68 8.116 ± 0.4684 16.46 ± 1.894 4.824 ± 2.640 0.1133 ± 0.0620 0.2297 ± 0.1278 EC TC 350.4 ± 21.12 8.229 ± 0.5020 16.69 ± 1.948

-	U005 - State of Utah DEQ umber: 09-089 ====================================
Lab ID:	09-U259
Client I	
Deposit I	Area: 12.0 cm ² ction: PM10
Comments	
Commences	· DIAIK
Analyte	µg/filter
XRF	
Al	11.07 ± 3.764
P	0.0000 ± 2.396
S	1.050 ± 0.9636
Cl	0.0000 ± 0.5616
K	10.04 ± 1.055
Ca	61.33 ± 3.772
Ti	0.1776 ± 0.1524
V	0.0000 ± 0.0708
Cr	0.3660 ± 0.0480
Mn	0.2340 ± 0.0480
Fe Co	2.652 ± 0.1620 0.0000 ± 0.0264
Ni	0.2604 ± 0.0284
Cu	0.3492 ± 0.0312
Zn	0.9468 ± 0.1212
Ga	0.1728 ± 0.0720
Ge	0.3072 ± 0.0648
As	0.0684 ± 0.0540
Se	0.0492 ± 0.0504
Br	0.0420 ± 0.0468
Rb	0.1908 ± 0.0624
Sr Y	0.2868 ± 0.0720 0.0000 ± 0.0828
Zr	0.9276 ± 0.1140
Mo	1.286 ± 0.1536
Pd	0.0264 ± 0.0852
Ag	0.2292 ± 0.0816
Cd	0.2856 ± 0.0816
In	0.1320 ± 0.0828
Sn	0.6132 ± 0.1008
Sb	0.3324 ± 0.1236 2.825 ± 0.5172
Ba La	2.825 ± 0.5172 1.295 ± 0.6156
Hg	0.0000 ± 0.1416
Pb	0.1092 ± 0.1392
IC	
Cl	3.560 ± 0.1780
Br	0.0000 ± 1.000
NO3	4.940 ± 0.2470
SO4	1.800 ± 0.0900
Na	34.92 ± 1.746
NH4 K	0.0000 ± 1.000 0.0000 ± 1.000
OC/EC	
OC	101.9 ± 7.500
EC	0.0000 ± 2.400
TC	101.9 ± 8.700

Client: U005 - State of Utah DEQ Report Number: 09-089 _____ 09-X779 Lab ID: Client ID: 8131301 Site: Lindon (LN) Sample Date: 4/15/08 589. +- 10. μg 24.00 +- 2.400 m³ Mass: Volume: Deposit Area: 11.3 cm² Size Fraction: PM2.5 Suspended Particulates: 24.54 +- 2.49 µg/m³ ug/filter µg/m³ Analyte percent XRF 3.923 ± 1.412 Na 0.6661 ± 0.2401 0.1635 ± 0.0611 19.06 ± 1.504 3.237 ± 0.2612 0.7943 ± 0.1012 Mg 1.295 ± 0.1537 31.09 ± 1.984 5.278 ± 0.3486 Al 87.33 ± 4.677 14.83 ± 0.8330 3.639 ± 0.4128 Si 0.0068 ± 0.0463 0.0012 ± 0.0079 0.0003 ± 0.0019 Ρ 5.571 ± 0.3153 0.2321 ± 0.0267 S 0.9458 ± 0.0559 Cl 4.736 ± 0.2622 0.8040 ± 0.0466 0.1973 ± 0.0226 1.976 ± 0.1071 K 11.64 ± 0.5989 0.4850 ± 0.0545 Ca 33.50 ± 1.698 5.688 ± 0.3041 1.396 ± 0.1565 1.449 ± 0.0757 0.0604 ± 0.0068 0.2460 ± 0.0135 Тi V 0.0316 ± 0.0113 0.0054 ± 0.0019 0.0013 ± 0.0005 0.0226 ± 0.0090 0.0038 ± 0.0015 0.0009 ± 0.0004 Cr 0.3458 ± 0.0452 0.0587 ± 0.0077 0.0144 ± 0.0024 Mn 16.05 ± 0.8057 2.724 ± 0.1444 0.6686 ± 0.0748 Fe Co 0.0000 ± 0.0271 0.0000 ± 0.0046 0.0000 ± 0.0011 Ni 0.0396 ± 0.0158 0.0067 ± 0.0027 0.0016 ± 0.0007 0.0048 ± 0.0025 0.0282 ± 0.0147 0.0012 ± 0.0006 Cu 0.0307 ± 0.0029 0.0075 ± 0.0010 Zn 0.1808 ± 0.0170 Ga 0.0170 ± 0.0102 0.0029 ± 0.0017 0.0007 ± 0.0004 0.0023 ± 0.0090 0.0004 ± 0.0015 0.0001 ± 0.0004 Ge 0.0000 ± 0.0021 0.0000 ± 0.0124 0.0000 ± 0.0005 As 0.0002 ± 0.0012 0.0000 ± 0.0003 Se 0.0011 ± 0.0068 0.0599 ± 0.0068 0.0102 ± 0.0012 0.0025 ± 0.0004 Br 0.0655 ± 0.0079 0.0111 ± 0.0014 0.0027 ± 0.0004 Rb 0.2396 ± 0.0158 0.0407 ± 0.0028 0.0100 ± 0.0012 Sr Y 0.0147 ± 0.0090 0.0025 ± 0.0015 0.0006 ± 0.0004 0.0396 ± 0.0124 0.0067 ± 0.0021 0.0016 ± 0.0005 Zr 0.0000 ± 0.0170 0.0000 ± 0.0029 0.0000 ± 0.0007 Мо 0.0006 ± 0.0084 0.0034 ± 0.0497 0.0001 ± 0.0021 Pd 0.0441 ± 0.0520 0.0075 ± 0.0088 0.0018 ± 0.0022 Ag Cd 0.0294 ± 0.0565 0.0050 ± 0.0096 0.0012 ± 0.0024 0.0011 ± 0.0622 0.0002 ± 0.0106 0.0000 ± 0.0026 In Sn 0.0000 ± 0.0723 0.0000 ± 0.0123 0.0000 ± 0.0030 0.2260 ± 0.1480 0.0094 ± 0.0062 Sb 0.0384 ± 0.0251 0.1322 ± 0.0588 0.0224 ± 0.0100 0.0055 ± 0.0025 Ba La 0.0282 ± 0.0441 0.0048 ± 0.0075 0.0012 ± 0.0018 0.0000 ± 0.0181 0.0000 ± 0.0031 0.0000 ± 0.0008 Hq 0.0007 ± 0.0008 Pb 0.0158 ± 0.0181 0.0027 ± 0.0031 IC 1.065 ± 0.0204 6.270 ± 0.3135 0.2612 ± 0.0292 Cl 0.0000 ± 0.5000 0.0000 ± 0.0120 0.0000 ± 0.0208 Br NO3 9.890 ± 0.4945 1.679 ± 0.0309 0.4121 ± 0.0461 3.671 ± 0.0648 S04 21.62 ± 1.081 0.9008 ± 0.1007 1.409 ± 0.0263 0.3458 ± 0.0387 8.300 ± 0.4150 Na NH4 4.330 ± 0.2165 0.7351 ± 0.0148 0.1804 ± 0.0202 2.090 ± 0.1045 0.3548 ± 0.0081 0.0871 ± 0.0097 K

Client: U005 - State Report Number: 09-089	-	
Lab ID: 09-X780 Client ID: 8131368 Site: Lindon (LN) Sample Date: 4/19/08 Mass: 754. +- 10. µ Volume: 24.00 +- 2.40 Deposit Area: 11.3 cm ² Size Fraction: PM2.5 Suspended Particulates: 31.42 +- 3.17 Comments: NUD-Mn	0 m³	
Analyte µg/filter	percent	µg/m³
XRF Na 0.5435 ± 0.7017 Mg 30.80 ± 2.368 Al 40.19 ± 2.598 Si 111.2 ± 6.035 P 0.0000 ± 0.0565 S 8.003 ± 0.4441 Cl 4.013 ± 0.2305 K 14.78 ± 0.7605 Ca 67.02 ± 3.397 Ti 1.850 ± 0.0960 V 0.0328 ± 0.0124 Cr 0.0350 ± 0.0113 Mn 0.4870 ± 0.0712 Fe 19.61 ± 0.9831 Co 0.0000 ± 0.0294 Ni 0.0362 ± 0.0181 Cu 0.0667 ± 0.0181 Cu 0.0667 ± 0.0181 Cu 0.0667 ± 0.0181 Cu 0.0667 ± 0.0113 Ge 0.0000 ± 0.0147 Ga 0.0237 ± 0.0113 Ge 0.0000 ± 0.0147 Se 0.0000 ± 0.0147 Se 0.0000 ± 0.0147 Se 0.0000 ± 0.0147 Se 0.0000 ± 0.0124 As 0.0000 ± 0.0127 As 0.0000 ± 0.0127 As 0.0000 ± 0.0079 Br 0.0836 ± 0.0090 Rb 0.0836 ± 0.0090 Sr 0.4791 ± 0.0271 Y 0.0124 ± 0.0136 Mo 0.0215 ± 0.0542 Cd 0.0655 ± 0.0599 In 0.1085 ± 0.0678 Sn 0.0520 ± 0.0791 Sb 0.2215 ± 0.1582 Ba 0.0881 ± 0.0712 La 0.0000 ± 0.0203 Pb 0.0102 ± 0.0203	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
IC Cl 5.080 ± 0.2540 Br 0.0000 ± 0.5000 NO3 10.67 ± 0.5335 SO4 29.00 ± 1.450 Na 7.250 ± 0.3625 NH4 5.120 ± 0.2560 K 2.150 ± 0.1075	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

U005 - State of Utah DEQ Client: Report Number: 09-089 _____ 09-X781 Lab ID: Client ID: 8131360 Site: Hawthorn (HW) Sample Date: 4/19/08 752. +- 10. μg 24.00 +- 2.400 m³ Mass: Volume: Deposit Area: 11.3 cm² Size Fraction: PM2.5 Suspended Particulates: 31.33 +- 3.16 µg/m³ µg/m³ Analyte ug/filter percent XRF 15.91 ± 2.319 2.116 ± 0.3096 Na 0.6629 ± 0.1172 40.30 ± 3.037 5.358 ± 0.4102 1.679 ± 0.2103 Mg 3.327 ± 0.2223 25.02 ± 1.638 1.042 ± 0.1246 Al 3.207 ± 0.3648 Si 76.98 ± 4.173 10.24 ± 0.5714 0.0000 ± 0.0554 0.0000 ± 0.0074 0.0000 ± 0.0023 Ρ 2.180 ± 0.1191 1.359 ± 0.0742 0.6832 ± 0.0773 S 16.40 ± 0.8690 0.4257 ± 0.0482 Cl 10.22 ± 0.5413 К 10.23 ± 0.5300 1.360 ± 0.0728 0.4262 ± 0.0480 Ca 64.66 ± 3.275 8.598 ± 0.4502 2.694 ± 0.3020 1.248 ± 0.0667 0.1659 ± 0.0091 0.0520 ± 0.0059 Тi V 0.0508 ± 0.0113 0.0068 ± 0.0015 0.0021 ± 0.0005 0.0192 ± 0.0102 0.0026 ± 0.0014 0.0008 ± 0.0004 Cr 0.2090 ± 0.0158 0.0278 ± 0.0021 0.0087 ± 0.0011 Mn 13.01 ± 0.6531 1.730 ± 0.0898 0.5419 ± 0.0606 Fe Co 0.0000 ± 0.0260 0.0000 ± 0.0035 0.0000 ± 0.0011 Ni 0.0237 ± 0.0158 0.0032 ± 0.0021 0.0010 ± 0.0007 0.0497 ± 0.0147 0.0066 ± 0.0020 0.0021 ± 0.0006 Cu Zn 0.0994 ± 0.0136 0.0132 ± 0.0018 0.0041 ± 0.0007 Ga 0.0000 ± 0.0102 0.0000 ± 0.0014 0.0000 ± 0.0004 0.0000 ± 0.0090 0.0000 ± 0.0012 0.0000 ± 0.0004 Ge 0.0000 ± 0.0018 0.0000 ± 0.0136 0.0000 ± 0.0006 As 0.0045 ± 0.0068 0.0006 ± 0.0009 0.0002 ± 0.0003 Se 0.0870 ± 0.0079 0.0116 ± 0.0011 0.0036 ± 0.0005 Br 0.0441 ± 0.0079 0.0059 ± 0.0011 Rb 0.0018 ± 0.0004 0.4099 ± 0.0214 3.083 ± 0.1559 0.1284 ± 0.0144 Sr Y 0.0102 ± 0.0102 0.0014 ± 0.0014 0.0004 ± 0.0004 0.0441 ± 0.0136 0.0059 ± 0.0018 0.0018 ± 0.0006 Zr 0.0000 ± 0.0170 0.0000 ± 0.0023 0.0000 ± 0.0007 Мо 0.0005 ± 0.0066 0.0034 ± 0.0497 0.0001 ± 0.0021 Pd 0.1209 ± 0.0542 0.0161 ± 0.0072 0.0050 ± 0.0023 Ag Cd 0.1774 ± 0.0588 0.0236 ± 0.0078 0.0074 ± 0.0026 0.0102 ± 0.0633 0.0014 ± 0.0084 0.0004 ± 0.0026 In Sn 0.0226 ± 0.0746 0.0030 ± 0.0099 0.0009 ± 0.0031 0.1831 ± 0.1514 0.0076 ± 0.0064 Sb 0.0243 ± 0.0201 0.0520 ± 0.0576 0.0069 ± 0.0077 0.0022 ± 0.0024 Ba La 0.0000 ± 0.0508 0.0000 ± 0.0068 0.0000 ± 0.0021 0.0000 ± 0.0158 0.0000 ± 0.0021 0.0000 ± 0.0007 Hg Pb 0.0576 ± 0.0192 0.0077 ± 0.0026 0.0024 ± 0.0008 IC 0.0000 ± 0.0094 0.0000 ± 0.0208 0.0000 ± 0.5000 C1 0.0000 ± 0.5000 0.0000 ± 0.0094 0.0000 ± 0.0208 Br NO3 0.0000 ± 0.5000 0.0000 ± 0.0094 0.0000 ± 0.0208 S04 0.0000 ± 0.5000 0.0000 ± 0.0094 0.0000 ± 0.0208 23.60 ± 1.180 0.9833 ± 0.1099 Na 3.138 ± 0.0442 NH4 4.460 ± 0.2230 0.5931 ± 0.0101 0.1858 ± 0.0208 2.480 ± 0.1240 0.3298 ± 0.0064 0.1033 ± 0.0116 K

Client: U005 - State of Utah DEQ Report Number: 09-089 _____ 09-X782 Lab ID: Client ID: 8131377 North Provo (NP) Site: Sample Date: 4/19/08 1199. +- 10. μg 24.00 +- 2.400 m³ Mass: Volume: Deposit Area: 11.3 cm² Size Fraction: PM2.5 Suspended Particulates: 49.96 +- 5.01 µg/m³ µg/m³ Analyte ug/filter percent XRF 0.0000 ± 0.0737 0.0000 ± 0.8837 0.0000 ± 0.0368 Na 1.628 ± 0.2088 3.259 ± 0.2631 5.401 ± 0.3635 39.08 ± 3.138 Mg 64.76 ± 4.325 2.698 ± 0.3245 Al 7.213 ± 0.8265 Si 173.1 ± 9.682 14.44 ± 0.8164 0.0473 ± 0.0063 0.5673 ± 0.0757 0.0236 ± 0.0039 Ρ 8.115 ± 0.4599 0.3381 ± 0.0389 S 0.6768 ± 0.0388 2.730 ± 0.1729 Cl 0.2277 ± 0.0145 0.1138 ± 0.0135 1.957 ± 0.1022 K 23.46 ± 1.209 0.9774 ± 0.1100 102.6 ± 5.226 Ca 8.558 ± 0.4417 4.276 ± 0.4798 3.051 ± 0.1559 0.2545 ± 0.0132 0.1271 ± 0.0143 Тi V 0.0689 ± 0.0158 0.0057 ± 0.0013 0.0029 ± 0.0007 0.0644 ± 0.0124 0.0054 ± 0.0010 0.0027 ± 0.0006 Cr 0.0677 ± 0.0061 0.8113 ± 0.0723 0.0338 ± 0.0045 Mn 2.728 ± 0.1385 Fe 32.71 ± 1.638 1.363 ± 0.1524 Co 0.0565 ± 0.0328 0.0047 ± 0.0027 0.0024 ± 0.0014 Ni 0.0701 ± 0.0170 0.0058 ± 0.0014 0.0029 ± 0.0008 0.1062 ± 0.0170 0.0089 ± 0.0014 0.0044 ± 0.0008 Cu 0.0181 ± 0.0015 0.2170 ± 0.0181 0.0090 ± 0.0012 Zn Ga 0.0090 ± 0.0102 0.0008 ± 0.0008 0.0004 ± 0.0004 0.0000 ± 0.0102 0.0000 ± 0.0008 0.0000 ± 0.0004 Ge 0.0000 ± 0.0011 0.0000 ± 0.0136 0.0000 ± 0.0006 As 0.0006 ± 0.0006 0.0003 ± 0.0003 Se 0.0068 ± 0.0068 0.0927 ± 0.0079 0.0077 ± 0.0007 0.0039 ± 0.0005 Br 0.1243 ± 0.0102 0.0104 ± 0.0009 0.0052 ± 0.0007 Rb 0.0494 ± 0.0027 0.5921 ± 0.0316 0.0247 ± 0.0028 Sr Y 0.0000 ± 0.0102 0.0000 ± 0.0008 0.0000 ± 0.0004 0.1424 ± 0.0147 0.0119 ± 0.0012 0.0059 ± 0.0009 Zr 0.0328 ± 0.0181 0.0027 ± 0.0015 0.0014 ± 0.0008 Мо 0.0063 ± 0.0045 0.0757 ± 0.0542 0.0032 ± 0.0023 Pd 0.0000 ± 0.0565 0.0000 ± 0.0047 0.0000 ± 0.0024 Ag Cd 0.1322 ± 0.0622 0.0110 ± 0.0052 0.0055 ± 0.0026 0.0090 ± 0.0678 0.0008 ± 0.0057 0.0004 ± 0.0028 In Sn 0.1277 ± 0.0791 0.0106 ± 0.0066 0.0053 ± 0.0033 Sb 0.2893 ± 0.1593 0.0241 ± 0.0133 0.0121 ± 0.0067 0.2384 ± 0.1028 0.0199 ± 0.0086 0.0099 ± 0.0044 Ba La 0.0147 ± 0.0734 0.0012 ± 0.0061 0.0006 ± 0.0031 0.0181 ± 0.0170 0.0015 ± 0.0014 0.0008 ± 0.0007 Hg Pb 0.0904 ± 0.0203 0.0075 ± 0.0017 0.0038 ± 0.0009 IC 0.5667 ± 0.0634 13.60 ± 0.6800 Cl 1.134 ± 0.0117 0.0000 ± 0.5000 0.0000 ± 0.0059 0.0000 ± 0.0208 Br NO3 12.46 ± 0.6230 1.039 ± 0.0109 0.5192 ± 0.0580 S04 4.900 ± 0.0433 2.448 ± 0.2737 58.75 ± 2.938 0.5605 ± 0.0067 6.720 ± 0.3360 0.2800 ± 0.0313 Na NH4 5.000 ± 0.2500 0.4170 ± 0.0054 0.2083 ± 0.0233 2.980 ± 0.1490 0.2485 ± 0.0038 0.1242 ± 0.0139 K

U005 - State of Utah DEQ Client: Report Number: 09-089 _____ 09-X783 Lab ID: Client ID: 8131629 Site: Lindon (LN) Sample Date: 5/20/08 Mass: 877. +- 10. μg 24.00 +- 2.400 m³ Volume: Deposit Area: 11.3 cm² Size Fraction: PM2.5 Suspended Particulates: 36.54 +- 3.68 µg/m³ Analyte ug/filter µg/m³ percent XRF 0.0000 ± 0.0796 Na 0.0000 ± 0.6983 0.0000 ± 0.0291 24.25 ± 1.936 2.765 ± 0.2230 1.010 ± 0.1293 Mg 1.732 ± 0.2066 41.57 ± 2.704 4.740 ± 0.3130 Al 4.741 ± 0.5400 Si 113.8 ± 6.203 12.98 ± 0.7226 0.6147 ± 0.0644 0.0701 ± 0.0074 0.0256 ± 0.0037 Ρ 0.5196 ± 0.0315 0.1899 ± 0.0221 S 4.557 ± 0.2712 0.7661 ± 0.0836 Cl 0.0874 ± 0.0096 0.0319 ± 0.0047 1.850 ± 0.0974 K 16.23 ± 0.8339 0.6761 ± 0.0760 Ca 79.30 ± 4.021 9.043 ± 0.4699 3.304 ± 0.3705 1.991 ± 0.1040 0.2270 ± 0.0121 0.0830 ± 0.0094 Тi V 0.0429 ± 0.0124 0.0049 ± 0.0014 0.0018 ± 0.0005 0.0181 ± 0.0113 0.0021 ± 0.0013 0.0008 ± 0.0005 Cr 0.5311 ± 0.0554 0.0606 ± 0.0064 0.0221 ± 0.0032 Mn 2.404 ± 0.1237 0.8786 ± 0.0983 Fe 21.09 ± 1.058 Co 0.0000 ± 0.0294 0.0000 ± 0.0034 0.0000 ± 0.0012 Ni 0.0418 ± 0.0170 0.0048 ± 0.0019 0.0017 ± 0.0007 0.0475 ± 0.0147 0.0054 ± 0.0017 0.0020 ± 0.0006 Cu 0.2565 ± 0.0192 0.0107 ± 0.0013 Zn 0.0292 ± 0.0022 Ga 0.0079 ± 0.0102 0.0009 ± 0.0012 0.0003 ± 0.0004 0.0124 ± 0.0090 0.0014 ± 0.0010 0.0005 ± 0.0004 Ge 0.0000 ± 0.0014 0.0000 ± 0.0124 0.0000 ± 0.0005 As 0.0004 ± 0.0003 Se 0.0102 ± 0.0068 0.0012 ± 0.0008 0.1186 ± 0.0090 0.0135 ± 0.0010 0.0049 ± 0.0006 Br 0.0791 ± 0.0090 0.0090 ± 0.0010 0.0033 ± 0.0005 Rb 0.0405 ± 0.0024 0.3548 ± 0.0203 0.0148 ± 0.0017 Sr Y 0.0090 ± 0.0102 0.0010 ± 0.0012 0.0004 ± 0.0004 0.0633 ± 0.0124 0.0072 ± 0.0014 0.0026 ± 0.0006 Zr 0.0090 ± 0.0181 0.0010 ± 0.0021 0.0004 ± 0.0008 Мо 0.0000 ± 0.0058 0.0000 ± 0.0508 0.0000 ± 0.0021 Pd 0.1345 ± 0.0542 0.0153 ± 0.0062 0.0056 ± 0.0023 Ag Cd 0.0407 ± 0.0588 0.0046 ± 0.0067 0.0017 ± 0.0025 0.0027 ± 0.0028 0.0655 ± 0.0667 0.0075 ± 0.0076 In Sn 0.0554 ± 0.0757 0.0063 ± 0.0086 0.0023 ± 0.0032 0.0000 ± 0.0063 Sb 0.0000 ± 0.1503 0.0000 ± 0.0171 0.1695 ± 0.0746 0.0193 ± 0.0085 0.0071 ± 0.0032 Ba La 0.0000 ± 0.0542 0.0000 ± 0.0062 0.0000 ± 0.0023 0.0000 ± 0.0192 0.0000 ± 0.0022 0.0000 ± 0.0008 Hg Pb 0.0701 ± 0.0192 0.0080 ± 0.0022 0.0029 ± 0.0009 IC 1.920 ± 0.0960 0.2189 ± 0.0043 0.0800 ± 0.0089 C1 0.0000 ± 0.5000 0.0000 ± 0.0081 0.0000 ± 0.0208 Br NO3 9.990 ± 0.4995 1.139 ± 0.0153 0.4162 ± 0.0465 S04 16.77 ± 0.8385 1.912 ± 0.0242 0.6988 ± 0.0781 2.070 ± 0.1035 0.0862 ± 0.0096 0.2360 ± 0.0045 Na NH4 4.150 ± 0.2075 0.4732 ± 0.0075 0.1729 ± 0.0193 2.480 ± 0.1240 0.2828 ± 0.0051 0.1033 ± 0.0116 K

U005 - State of Utah DEQ Client: Report Number: 09-089 _____ 09-X784 Lab ID: Client ID: 8132053 Site: Brigham City (BR) Sample Date: 6/26/08 1026. +- 10. μg 24.00 +- 2.400 m³ Mass: Volume: Deposit Area: 11.3 cm² Size Fraction: PM2.5 Suspended Particulates: 42.75 +- 4.30 µg/m³ µg/m³ Analyte ug/filter percent XRF Na 0.3865 ± 0.5345 0.0377 ± 0.0521 0.0161 ± 0.0223 $\begin{array}{r} 0.0377 \\ 0.3358 \\ \pm \\ 0.0494 \\ 0.8447 \\ \pm \\ 0.0597 \\ \end{array}$ 3.445 ± 0.5062 0.1436 ± 0.0255 Mg 8.667 ± 0.6068 0.3611 ± 0.0441 Al 35.73 ± 1.947 1.489 ± 0.1695 Si 3.483 ± 0.1928 0.0000 ± 0.0384 0.0000 ± 0.0037 0.0000 ± 0.0016 Ρ 0.2956 ± 0.0337 S 7.094 ± 0.3887 0.6914 ± 0.0385 Cl 2.907 ± 0.1695 0.2834 ± 0.0167 0.1211 ± 0.0140 К 7.734 ± 0.6803 0.7538 ± 0.0667 0.3222 ± 0.0429 Ca 18.51 ± 0.9402 1.804 ± 0.0933 0.7712 ± 0.0865 0.8611 ± 0.0475 0.0839 ± 0.0047 0.0359 ± 0.0041 Тi V 0.0215 ± 0.0090 0.0021 ± 0.0009 0.0009 ± 0.0004 0.0090 ± 0.0079 0.0009 ± 0.0008 0.0004 ± 0.0003 Cr 0.2011 ± 0.0147 0.0196 ± 0.0014 0.0084 ± 0.0010 Mn 1.044 ± 0.0535 0.4464 ± 0.0500 Fe 10.71 ± 0.5390 Co 0.0000 ± 0.0237 0.0000 ± 0.0023 0.0000 ± 0.0010 Ni 0.0475 ± 0.0158 0.0046 ± 0.0015 0.0020 ± 0.0007 0.1322 ± 0.0170 0.0129 ± 0.0017 0.0055 ± 0.0009 Cu 0.0259 ± 0.0019 0.0111 ± 0.0014 Zn 0.2656 ± 0.0192 Ga 0.0000 ± 0.0090 0.0000 ± 0.0009 0.0000 ± 0.0004 0.0000 ± 0.0079 0.0000 ± 0.0008 0.0000 ± 0.0003 Ge 0.0000 ± 0.0012 0.0000 ± 0.0124 0.0000 ± 0.0005 As 0.0000 ± 0.0007 0.0000 ± 0.0003 Se 0.0000 ± 0.0068 0.2712 ± 0.0158 0.0264 ± 0.0016 0.0113 ± 0.0013 Br 0.0181 ± 0.0068 0.0018 ± 0.0007 0.0008 ± 0.0003 Rb 0.0096 ± 0.0009 0.0041 ± 0.0006 0.0983 ± 0.0090 Sr Y 0.0124 ± 0.0090 0.0012 ± 0.0009 0.0005 ± 0.0004 0.0667 ± 0.0124 0.0065 ± 0.0012 0.0028 ± 0.0006 Zr 0.0079 ± 0.0158 0.0008 ± 0.0015 0.0003 ± 0.0007 Мо 0.1130 ± 0.0475 0.0110 ± 0.0046 0.0047 ± 0.0020 Pd 0.0588 ± 0.0497 0.0057 ± 0.0048 0.0024 ± 0.0021 Ag Cd 0.0678 ± 0.0531 0.0066 ± 0.0052 0.0028 ± 0.0022 0.0429 ± 0.0588 0.0042 ± 0.0057 0.0018 ± 0.0025 In Sn 0.0678 ± 0.0701 0.0066 ± 0.0068 0.0028 ± 0.0029 0.0271 ± 0.1379 Sb 0.0026 ± 0.0134 0.0011 ± 0.0057 0.1446 ± 0.0475 0.0141 ± 0.0046 0.0060 ± 0.0021 Ba La 0.0000 ± 0.0373 0.0000 ± 0.0036 0.0000 ± 0.0016 0.0000 ± 0.0170 0.0000 ± 0.0017 0.0000 ± 0.0007 Hg Pb 0.0599 ± 0.0181 0.0058 ± 0.0018 0.0025 ± 0.0008 IC 0.1696 ± 0.0190 4.070 ± 0.2035 0.3967 ± 0.0059 Cl 0.0000 ± 0.5000 0.0000 ± 0.0069 0.0000 ± 0.0208 Br NO3 7.400 ± 0.3700 0.7212 ± 0.0092 0.3083 ± 0.0345 S04 2.254 ± 0.0243 0.9638 ± 0.1078 23.13 ± 1.156 0.1904 ± 0.0213 0.4454 ± 0.0064 Na 4.570 ± 0.2285 NH4 7.250 ± 0.3625 0.7066 ± 0.0090 0.3021 ± 0.0338 3.060 ± 0.1530 0.2982 ± 0.0048 0.1275 ± 0.0143 K

Client: U005 Report Number: 09-0		-	
Sample Date:7/Mass:1027Volume:24.0	2188 20 (02) 4/08 4/08 - +- 10. μg 10 +- 2.400 m ³ 5 cm ² 5 		
Analyte µg/fi	lter pe	ercent	µg/m³
XRF Na $0.0000 \pm$ Mg $33.06 \pm$ Al $23.98 \pm$ Si $32.34 \pm$ P $0.0000 \pm$ S $63.52 \pm$ Cl $42.05 \pm$ K $199.1 \pm$ Ca $11.46 \pm$ Ti $0.7266 \pm$ V $0.0000 \pm$ Cr $0.0475 \pm$ Mn $0.4599 \pm$ Fe $10.78 \pm$ Co $0.0271 \pm$ Ni $0.0396 \pm$ Cu $6.523 \pm$ Zn $1.105 \pm$ Ga $0.0226 \pm$ Ge $0.0000 \pm$ As $0.0497 \pm$ Se $0.0023 \pm$ Br $0.1345 \pm$ Rb $0.0531 \pm$ Sr $3.894 \pm$ Y $0.0000 \pm$ Zr $0.0486 \pm$ Pd $0.0000 \pm$ Ag $0.1300 \pm$ Cd $0.0881 \pm$ In $0.0588 \pm$ Sn $0.0000 \pm$ Ag $0.1300 \pm$ Cd $0.3345 \pm$ Hg $0.0000 \pm$ Pb $0.3774 \pm$ Bi $0.1932 \pm$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \pm 0.2590 \\ 5 \pm 0.1583 \\ 9 \pm 0.1783 \\ 9 \pm 0.0073 \\ 5 \pm 0.3269 \\ 4 \pm 0.2164 \\ 9 \pm 1.008 \\ 5 \pm 0.0595 \\ 7 \pm 0.0490 \\ 9 \pm 1.0022 \\ 3 \pm 0.0028 \\ 9 \pm 0.0028 \\ 9 \pm 0.0026 \\ 9 \pm 0.0026 \\ 9 \pm 0.0018 \\ 2 \pm 0.0026 \\ 9 \pm 0.0018 \\ 2 \pm 0.0010 \\ 8 \pm 0.0010 \\ 2 \pm 0.0010 \\ 8 \pm 0.0010 \\ 2 \pm 0.0010 \\ 8 \pm 0.0010 \\ 2 \pm 0.0010 \\ 3 \pm 0.0010 \\ 5 \pm 0.0059 \\ 5 \pm 0.0064 \\ 7 \pm 0.0059 \\ 5 \pm 0.0064 \\ 7 \pm 0.0059 \\ 5 \pm 0.0061 \\ 5 \pm 0.0191 \\ 0 \pm 0.0020 \\ 7 \pm 0.0020 \\ 7 \pm 0.0031 \end{array}$	$\begin{array}{c} 0.0000 \pm 0.0397 \\ 1.378 \pm 0.1763 \\ 0.9991 \pm 0.1203 \\ 1.348 \pm 0.1543 \\ 0.0000 \pm 0.0031 \\ 2.647 \pm 0.2982 \\ 1.752 \pm 0.1974 \\ 8.296 \pm 0.9315 \\ 0.4774 \pm 0.0539 \\ 0.0303 \pm 0.0212 \\ 0.0000 \pm 0.0074 \\ 0.0020 \pm 0.0010 \\ 0.0192 \pm 0.0022 \\ 0.4493 \pm 0.0503 \\ 0.0011 \pm 0.0010 \\ 0.0192 \pm 0.0022 \\ 0.4493 \pm 0.0503 \\ 0.0011 \pm 0.0008 \\ 0.2718 \pm 0.0305 \\ 0.0000 \pm 0.0005 \\ 0.0000 \pm 0.0003 \\ 0.0056 \pm 0.0007 \\ 0.0021 \pm 0.0008 \\ 0.0001 \pm 0.0008 \\ 0.0000 \pm 0.0004 \\ 0.0021 \pm 0.0008 \\ 0.0001 \pm 0.0008 \\ 0.0002 \pm 0.0004 \\ 0.0021 \pm 0.0008 \\ 0.0002 \pm 0.0004 \\ 0.0024 \pm 0.0026 \\ 0.0024 \pm 0.0026 \\ 0.0024 \pm 0.0026 \\ 0.0024 \pm 0.0026 \\ 0.0024 \pm 0.0035 \\ 0.0024 \pm 0.0035 \\ 0.0024 \pm 0.0035 \\ 0.0024 \pm 0.0035 \\ 0.0024 \pm 0.0038 \\ 0.0000 \pm 0.0038 \\ 0.0000 \pm 0.0083 \\ 0.0000 \pm 0.0028 \\ 0.0008 \\ 0.0157 \pm 0.0021 \\ 0.0016 \\ 0.0021 \\ 0.0081 \pm 0.0016 \\ \end{array}$
	2 427 4 - 4		2 021 . 0 0051
Cl $48.74 \pm$ Br $0.0000 \pm$ NO3 $21.27 \pm$ SO4 $182.5 \pm$ Na $6.310 \pm$ NH4 $3.090 \pm$ K $203.2 \pm$	0.5000 0.0000 1.064 2.073 9.125 17.77 0.3155 0.614 0.1545 0.3009	L ± 0.0225 7 ± 0.1755 4 ± 0.0081	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

U005 - State of Utah DEQ Client: Report Number: 09-089 _____ 09-X786 Lab ID: Client ID: 9516469 Lindon (LN) Site: Sample Date: 3/ 4/09 Mass: 550. +- 10. μg 24.00 +- 2.400 m³ Volume: Deposit Area: 11.3 cm² Size Fraction: PM2.5 Suspended Particulates: 22.92 +- 2.33 µg/m³ µg/m³ Analyte uq/filter percent XRF 1.955 ± 0.3161 5.027 ± 0.3883 10.75 ± 1.728 0.4480 ± 0.0848 Na 27.65 ± 2.076 1.152 ± 0.1441 Mg 17.97 ± 1.167 3.267 ± 0.2204 0.7486 ± 0.0893 Al 57.27 ± 3.066 2.386 ± 0.2707 Si 10.41 ± 0.5887 0.0000 ± 0.0441 0.0000 ± 0.0080 0.0000 ± 0.0018 Ρ 1.763 ± 0.1000 1.854 ± 0.1032 0.4041 ± 0.0459 S 9.698 ± 0.5209 Cl 10.20 ± 0.5368 0.4249 ± 0.0480 K 7.738 ± 0.4023 1.407 ± 0.0775 0.3224 ± 0.0363 Ca 52.24 ± 2.640 9.498 ± 0.5101 2.177 ± 0.2439 0.9436 ± 0.0508 0.1716 ± 0.0098 0.0393 ± 0.0045 Тi V 0.0373 ± 0.0102 0.0068 ± 0.0019 0.0016 ± 0.0005 0.0136 ± 0.0090 0.0025 ± 0.0016 0.0006 ± 0.0004 Cr 0.1808 ± 0.0147 0.0329 ± 0.0027 0.0075 ± 0.0010 Mn 9.996 ± 0.5028 1.817 ± 0.0972 0.4165 ± 0.0466 Fe Co 0.0260 ± 0.0226 0.0047 ± 0.0041 0.0011 ± 0.0009 Ni 0.0508 ± 0.0147 0.0092 ± 0.0027 0.0021 ± 0.0006 0.0090 ± 0.0124 0.0016 ± 0.0023 0.0004 ± 0.0005 Cu 0.0047 ± 0.0007 Zn 0.1130 ± 0.0136 0.0205 ± 0.0025 Ga 0.0068 ± 0.0090 0.0012 ± 0.0016 0.0003 ± 0.0004 0.0000 ± 0.0079 0.0000 ± 0.0014 0.0000 ± 0.0003 Ge 0.0000 ± 0.0021 0.0000 ± 0.0113 0.0000 ± 0.0005 As 0.0045 ± 0.0056 0.0008 ± 0.0010 0.0002 ± 0.0002 Se 0.0576 ± 0.0068 0.0105 ± 0.0012 0.0024 ± 0.0004 Br 0.0271 ± 0.0068 0.0049 ± 0.0012 0.0011 ± 0.0003 Rb 0.1385 ± 0.0076 0.0317 ± 0.0036 0.7616 ± 0.0396 Sr Y 0.0000 ± 0.0090 0.0000 ± 0.0016 0.0000 ± 0.0004 0.0090 ± 0.0113 0.0016 ± 0.0021 0.0004 ± 0.0005 Zr 0.0215 ± 0.0147 0.0039 ± 0.0027 0.0009 ± 0.0006 Мо 0.0039 ± 0.0086 0.0215 ± 0.0475 0.0009 ± 0.0020 Pd 0.1119 ± 0.0508 0.0203 ± 0.0093 0.0047 ± 0.0022 Ag Cd 0.0848 ± 0.0542 0.0154 ± 0.0099 0.0035 ± 0.0023 0.1062 ± 0.0599 0.0193 ± 0.0109 0.0044 ± 0.0025 In 0.0859 ± 0.0701 0.1797 ± 0.1390 Sn 0.0156 ± 0.0127 0.0036 ± 0.0029 0.0327 ± 0.0253 Sb 0.0075 ± 0.0058 0.0508 ± 0.0486 0.0092 ± 0.0088 0.0021 ± 0.0020 Ba La 0.0000 ± 0.0429 0.0000 ± 0.0078 0.0000 ± 0.0018 0.0000 ± 0.0158 0.0000 ± 0.0029 0.0000 ± 0.0007 Hg Pb 0.0463 ± 0.0170 0.0084 ± 0.0031 0.0019 ± 0.0007 IC 12.94 ± 0.6470 2.353 ± 0.0452 0.5392 ± 0.0603 Cl 0.0000 ± 0.5000 0.0000 ± 0.0129 0.0000 ± 0.0208 Br NO3 5.940 ± 0.2970 1.080 ± 0.0220 0.2475 ± 0.0277 S04 35.74 ± 1.787 6.498 ± 0.1206 1.489 ± 0.1665 0.7600 ± 0.0850 Na 18.24 ± 0.9120 3.316 ± 0.0627 NH4 2.330 ± 0.1165 0.4236 ± 0.0099 0.0971 ± 0.0109 1.860 ± 0.0930 0.3382 ± 0.0083 0.0775 ± 0.0087 K

-	U005 - State of Utah DEQ umber: 09-089
Lab ID: Client I Site: Sample D Deposit	09-X787 D: 8131370 Lindon (LN) ate: 4/21/08 Area: 11.3 cm ² ction: PM2.5
Analyte	µg/filter
XRF Na Mg Si P S Cl K Ca Ti V Cr	$\begin{array}{l} 0.3480 \pm 0.2938 \\ 0.0000 \pm 0.1232 \\ 0.0000 \pm 0.0531 \\ 0.0000 \pm 0.0441 \\ 0.0000 \pm 0.0215 \\ 0.0000 \pm 0.0192 \\ 0.0000 \pm 0.0339 \\ 0.0000 \pm 0.0192 \\ 0.0531 \pm 0.0147 \\ 0.0000 \pm 0.0079 \\ 0.0000 \pm 0.0068 \\ 0.0000 \pm 0.0079 \end{array}$
Mn Fe Co Ni Cu Zn Ga Ge As Se	$\begin{array}{l} 0.0000 \pm 0.0102 \\ 0.0000 \pm 0.0158 \\ 0.0192 \pm 0.0203 \\ 0.0565 \pm 0.0158 \\ 0.0056 \pm 0.0136 \\ 0.0056 \pm 0.0113 \\ 0.0090 \pm 0.0102 \\ 0.0000 \pm 0.0090 \\ 0.0000 \pm 0.0124 \\ 0.0045 \pm 0.0068 \end{array}$
Br Rb Sr Zr Mo Pd Ag Cd	$\begin{array}{l} 0.0034 \pm 0.0056 \\ 0.0079 \pm 0.0068 \\ 0.0000 \pm 0.0079 \\ 0.0079 \pm 0.0090 \\ 0.0000 \pm 0.0113 \\ 0.0023 \pm 0.0170 \\ 0.0780 \pm 0.0475 \\ 0.0610 \pm 0.0497 \\ 0.0000 \pm 0.0531 \end{array}$
In Sb Ba La Hg Pb	$\begin{array}{l} 0.0915 \pm 0.0610 \\ 0.1232 \pm 0.0723 \\ 0.1220 \pm 0.1424 \\ 0.0396 \pm 0.0271 \\ 0.0203 \pm 0.0147 \\ 0.0000 \pm 0.0158 \\ 0.0339 \pm 0.0181 \end{array}$
IC Cl Br NO3 SO4 NA NH4 K	$\begin{array}{l} 0.0000 \ \pm \ 0.5000 \\ 0.0000 \ \pm \ 0.5000 \\ 0.5100 \ \pm \ 0.0255 \\ 0.0000 \ \pm \ 0.5000 \\ 0.0000 \ \pm \ 1.000 \\ 0.0000 \ \pm \ 0.5000 \\ 0.0000 \ \pm \ 0.5000 \end{array}$

Chester LabNet - Portland

XRF-772 XRF Analytical Quality Assurance Report

Client: Utah DEQ Report: 09-089 Analysis Period: April 2, 2009 Number of Samples: 7

1. Precision Data

Micromatter Multi-elemental Quality Control Standard: QS285

QC Standard Results

		Coun	ts per Second			
Analyte	n	Calib.	Meas.	S.D.	c.v.	%E
Ti(0)	1	287.42	288.90	na	na	0.52
Fe(1)	1	325.13	330.34	na	na	1.60
Se(2)	1	68.70	71.42	na	na	3.96
Pb(2)	1	83.76	87.62	na	na	4.61
Cd(3)	1	79.25	85.48	na	na	7.86

2. Accuracy Data

NIST Standard Reference Materials: SRM 1832, SRM 1833

Analyte/		Certified		Measured V	Value (µg/o	cm ²)	%
SRM	n	Value(µg/cm ²)	High	Low	Av	verage	Rec.
Al 1832	4	14.6 +/97	15.17	14.01	14.68	+/- 0.42	100.6
Si 1832	4	34.0 +/- 1.1	35.24	33.76	34.59	+/- 0.54	101.7
Si 1833	4	31.5 +/- 2.1	31.69	31.03	31.37	+/- 0.24	99.6
S 2708	4	2.46 +/25	2.35	2.21	2.28	+/- 0.06	92.7
K 1833	4	16.4 +/- 1.64	16.88	16.55	16.67	+/- 0.13	101.6
Ca 1832	4	1.32 +/- 0.17	1.32	1.27	1.30	+/- 0.02	98.2
Ti 1833	4	12.1 +/- 1.79	11.88	11.50	11.63	+/- 0.15	96.1
V 1832	4	4.70 +/49	4.97	4.77	4.85	+/- 0.08	103.2
Mn 1832	4	4.54 +/49	4.87	4.79	4.82	+/- 0.03	106.2
Fe 1833	4	13.6 +/45	13.29	13.00	13.14	+/- 0.10	96.6
Cu 1832	4	2.43 +/16	2.77	2.25	2.57	+/- 0.19	105.6
Zn 1833	4	3.88 +/30	4.10	3.93	4.01	+/- 0.07	103.4
Pb 1833	4	16.1 +/75	17.01	16.03	16.55	+/- 0.41	102.8

NIST: National Institute of Standards and Technology

- % Rec: Percent Recovery = (Experimental/Given) x 100
- n: Number of Observations
- S.D.: Standard Deviation

c.v.: Coefficient of Variation = (S.D./Measured) x 100

% E: Percent Error = [(Measured-Calibrated)/Calibrated] x 100

XRF-772 REPLICATE REPORT

3.71

Original ID: 09-U257 Replicate ID: RU257

Filter Lot:		
Deposit Mass:	309	μg
Deposit Area:	1.0	cm^2
Particle Size:	Т	

Element	Origin ug/cm			eplicate g/cm2	Difference ug/cm2	•	F	RPD
Al P	3.7024 +- 0.0000 +-	0.3813 0.1708	3.8940 0.0000	+- 0.4332 +- 0.2175		5771 + 2765	-5.0	+- 15.2
S	6.6853 +-	0.5339	6.8057	+- 0.5614	-0.1205 +- 0.1	7748 +	-1.8	+- 11.5
C1	5.3724 +-	0.3877	5.2391	+- 0.3899	0.1333 +- 0.	5499 +	2.5	+- 10.4
K	23.0788 +-	1.4446	23.0994	+- 1.4494	-0.0206 +- 2.	0464 +	-0.1	+- 8.9
Ca	10.3786 +-	0.6329	10.4685	+- 0.6416	-0.0899 +- 0.	9012 +	-0.9	+- 8.6
Ti	0.2295 +-	0.0233	0.2587	+- 0.0308	-0.0291 +- 0.	0386 +	-11.9	+- 15.8
V	0.0115 +-	0.0108	0.0312	+- 0.0154	-0.0197 +- 0.	0188		
Cr	0.0446 +-	0.0063	0.0495	+- 0.0085	-0.0049 +- 0.	0106 +	-10.4	+- 22.5
Mn	0.1182 +-	0.0090	0.1290	+- 0.0113	-0.0108 +- 0.	0144 +	-8.7	+- 11.7
Fe	2.9190 +-	0.2343	2.9296	+- 0.2386	-0.0106 +- 0.	3344 +	-0.4	+- 11.4
Co	0.0000 +-	0.0038	0.0000	+- 0.0053	0.0000 +- 0.	0065		
Ni	0.0232 +-	0.0027	0.0296	+- 0.0038		.0047 0	-24.2	+- 17.7
Cu	0.7157 +-	0.0363	0.7500	+- 0.0568		.0674 +	-4.7	+- 9.2
Zn	0.2047 +-	0.0180	0.2085	+- 0.0208		.0275 +	-1.8	+- 13.3
Ga	0.0000 +-	0.0061	0.0000	+- 0.0090		0108		
Ge	0.0014 +-	0.0054	0.0042	+- 0.0075		.0092		
As	0.0159 +-	0.0080	0.0286	+- 0.0071		.0107	·	
Se	0.0074 +-	0.0043	0.0000	+- 0.0060		.0073		
Br	0.0230 +-	0.0043	0.0250	+- 0.0060		.0074 +	-8.3	+- 30.9
Rb	0.0154 +-	0.0052	0.0303	+- 0.0075		.0092		
Sr	0.4957 +-	0.0261	0.5065	+- 0.0278		.0381 +	-2.2	+- 7.6
Y	0.0020 +-	0.0066	0.0220	+- 0.0096		.0117		
Zr	0.0669 +-	0.0092	0.0898	+- 0.0130		.0159 0	-29.3	+- 20.3
Mo	0.0921 +-	0.0121	0.1028	+- 0.0168		.0207 +	-11.0	+- 21.3
Pd	0.0098 +-	0.0073	0.0227	+- 0.0103		.0126		
Ag	0.0228 +-	0.0070	0.0231	+- 0.0098		.0120 +	-1.5	+- 52.5
Cđ	0.0259 +-	0.0069	0.0000	+- 0.0096		.0118		
In	0.0251 +-	0.0070	0.0000	+- 0.0099		.0121		
Sn	0.0646 +-	0.0086	0.0513	+- 0.0118		.0146 +	23.0	+- 25.2
Sb	0.1047 +-	0.0118	0.0797	+- 0.0154		.0194 0	27.2	+- 21.0
Ba	2.1959 +-	0.1187	2.0758	+- 0.1216		.1699 +	5.6	+- 8.0
La	0.1871 +-	0.0511	0.1693	+- 0.0716		.0880 +	10.0	+- 49.4
Hg	0.0007 +-	0.0121	0.0020	+- 0.0170		.0209		
Pb	0.0488 +-	0.0123	0.0139	+- 0.0166	0.0350 +- 0.	.0206		

RPD: Relative Percent Difference (X1-X2)/[(X1+X2)/2]*100. RPD is calculated when original value is greater than three times its uncertainty.

Client Name: State of Utah DEQ Project Number: U005 Analytical Technique: Ion Chromatography Sample Description: 47mm Quartz Report Number: 09-089 _____

_____ ========

Blank Data

Analyte	Sample	Measured	MDL
	ID	Conc. mg/L	Conc. mg/L
Cl Cl Cl Cl Cl Br Br Br Br NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 SO4 SO4 SO4 SO4 SO4 SO4 SO4 SO4 SO4 SO4	ICB Prep Blk Meth_Blk* CCB CCB ICB Prep_Blk Meth_Blk* CCB CCB ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB ICB Prep_Blk Meth_Blk* CCB ICB ICB Prep_Blk Meth_Blk* CCB ICB ICB Prep_Blk Meth_Blk* CCB ICB ICB ICB ICB ICB ICB ICB	<pre>< MDL < MDL <</pre>	$\begin{array}{c} 0.050\\ 0.050\\ 1.00\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 1.00\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.100\\ 0.100\\ 0.100\\ 0.100\\ 0.100\\ 0.100\\ 0.100\\ 0.050\\ 0.050\\ 1.00\\ 0.050$

*: Method Blank concentration in μ g/filter

<u>QA/QC Limits</u> Continuing Calibration: ± 10% Replicates: ± 20% RPD

LCS: ± 20% Spikes: ± 25%

Client Name: State of Utah DEQ Project Number: U005 Analytical Technique: Ion Chromatography Sample Description: 47mm Quartz Report Number: 09-089 ______

Calibration QC

Γ		Sample	Standard	Measured	Percent
	Analyte	ID	Conc. mg/L	Conc. mg/L	Recovery
	Cl Cl Cl Cl Cl Br Br Br Br Br Br Br	ICV_LO ICV_MID CCV_LO CCV_LO CCV_LO CCV_MID ICV_LO ICV_MID CCV_LO CCV_MID CCV_LO	1.00 10.0 1.00 10.0 1.00 10.0 1.00 10.0 1.00 10.0	1.01 9.79 1.05 9.85 1.01 9.80 0.98 9.29 0.98 9.35 0.98	100.9 97.9 105.2 98.5 101.4 98.0 97.7 92.9 98.4 93.5 97.9
	Br Br NO3 NO3 NO3 NO3 NO3 SO4 SO4 SO4 SO4 SO4 SO4 SO4 SO4 SO4 SO4	CCV_LO CCV_MID ICV_LO ICV_LO CCV_LO CCV_LO CCV_MID ICV_LO ICV_MID CCV_LO CCV_MID CCV_LO CCV_MID ICV_LO ICV_MID CCV_LO CCV_MID CCV_LO CCV_MID ICV_LO CCV_MID ICV_MID ICV_MID ICV_MID ICV_MID	$\begin{array}{c} 1.00\\ 10.0\\ 10.0\\ 10.0\\ 1.00\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 5.00\\$	0.98 9.29 0.99 9.69 1.00 9.74 0.99 9.67 1.03 9.89 1.09 9.95 1.04 9.89 0.51 5.16 0.51 5.16 0.51 5.16 0.51 5.12 5.10	97.9 92.9 98.9 96.9 99.9 97.4 99.1 96.7 103.1 98.9 109.3 99.5 103.7 98.9 102.2 103.3 101.8 103.1 102.0 102.3 102.0 102.3 102.0 102.1 100.2 99.2
	NH4 NH4 NH4 NH4 K K K K K K K K K K K	CCV_LO CCV_MID CCV_LO CCV_MID ICV_LO ICV_MID CCV_LO CCV_MID CCV_LO CCV_MID ICV_MID ICV_MID CCV_MID	0.500 5.00 0.500 5.00 0.500 5.00 0.500 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	0.50 4.98 0.50 4.92 0.52 5.15 0.52 5.14 0.52 5.10 5.07 5.08	100.4 99.6 99.6 98.5 103.8 103.0 103.8 102.9 104.0 102.0 101.4 101.6

<u>QA/QC Limits</u> Continuing Calibration: ± 10% Replicates: ± 20% RPD

LCS: ± 20% Spikes: ± 25%

Client Name: Project Number: U005 Analytical Technique: Ion Chromatography Sample Description: Report Number: ______

State of Utah DEO 47mm Quartz 09-089 _______

Replicate Data

Analyte	Sample ID	Sample Conc. mg/L	Replicate Conc. mg/L	RPD
Cl	09-U253	2.55	2.54	0.24
Br	09-U253	< 0.05	< 0.05	N/C #
NO3	09-U253	1.33	1.32	0.75
SO4	09-U253	4.54	4.52	0.42
Na	09-U255	16.6	16.7	0.60
NH4	09-U255	0.284	0.285	0.35
K	09-U255	0.547	0.546	0.18

RPD = {(sample-replicate)/[(sample+replicate)/2]}x100

N/C: RPD is not calculated when sample or replicate is below detection limit

#: per EPA CLP protocol, control limits do not apply if sample and/or replicate concentration is less than 5x the detection limit

Sample Sample Spike Spike Percent Analyte ID Conc. mg/L Conc. mg/L Amount mg/L Recovery Cl LCS < 0.05 9.49 10.0 94.9 10.0 Cl 09-U254 91.8 2.11 11.3 Br LCS < 0.05 9.00 10.0 90.0 09-U254 9.06 90.6 Br < 0.05 10.0 LCS 9.35 93.5 NO3 < 0.05 10.0 NO3 09-U254 1.44 11.2 10.0 97.4 SO4 LCS 0.083 9.73 10.0 96.5 99.2 SO4 09-U254 6.34 16.3 10.0 LCS 97.6 Na 1.96 6.84 5.00 09-U256 100. 2.42 7.43 5,00 Na NH4 LCS < 0.05 4.78 5.00 95.6 98.1 NH4 09-U256 0.249 5.00 5.16 LCS ĸ < 0.05 5.00 5.00 100. K 09-U256 0.426 5.79 5.00 107.

Laboratory Control Sample/Matrix Post Spike Analysis

*: per EPA CLP protocol, control limits do not apply if spike concentration is less than 25% of the sample concentration

<u>QA/QC Limits</u> Continuing Calibration: ± 10% Replicates: ± 20% RPD

LCS: ± 20% Spikes: ± 25%

QA/QC Report

Client Name: State of Utah DEQ Project Number: U005 Analytical Technique: OC/EC Sample Description: 47mm Quartz Report Number: 09-089

Calibration QC

Sucrose Standard

	Sucrose Std. Conc.	Measured Conc.	Percent
Sample ID	µg/cm ²	µg/cm ²	Recovery
Sucrose 10ul 4/8/09	28.06	28.4	101.2

OC/EC Split

· · · · · · · · · · · · · · · · · · ·	%OC	%OC	Percent
Sample ID	Given	Measured	Recovery
94-Q150 4/8/09	89.6	91	101.6

Blank Data

		Measured Conc.	MDL
Sample ID	Analyte	µg/cm ²	µg/cm ²
4/8/09	OC	<mdl< td=""><td>0.2</td></mdl<>	0.2
	EC	<mdl< td=""><td>0.2</td></mdl<>	0.2

Duplicate Data

		Sample Conc.	Duplicate Conc.	
Sample ID	Analyte	µg/cm²	µg/cm ²	RPD
09-U254	OC	26.6	26.13	1.8
	EC	0.12	0.13	8.0
	TC	26.72	26.26	1.7

 $RPD = [(sample - duplicate)/(sample + duplicate)/2] \times 100$

OC/EC Split: 80-120% Recovery

CHESTER LabNet

XRF-770

XRF Analytical Quality Assurance Report

Client: Utah DEQ Report: 09-089 Analysis Period: April 3, 2009 Number of Samples: 9

1. Precision Data

Micromatter Multi-elemental Quality Control Standard: QS285

QC Standard Results

		Count	s per Second			
Analyte	n	Calib.	Meas.	S.D.	c.v.	%E
Si(0)	1	1785.92	1844.00	na	na	3.25
Ti(1)	1	591.36	576.76	na	na	-2.47
Fe(1)	1	1321.41	1294.08	na	na	-2.07
Se(3)	1	343.74	321.69	na	na	-6.41
Pb(3)	1	394.75	368.40	na	na	-6.68
Cd(4)	1	277.97	272.66	na	na	-1.91

2. Accuracy Data

NIST Standard Reference Materials: SRM 1832, SRM 1833, SRM 2783

Analyte/		Certified	Measured Value (µg/cm ²)				%
SRM	n	Value(µg/cm ²)	High	Low	A	verage	Rec.
Al 1832	4	14.6 +/97	15.60	14.50	15.11	+/- 0.42	103.5
Si 1832	4	34.0 +/- 1.1	35.08	34.09	34.73	+/- 0.41	102.1
Si 1833	4	31.5 +/- 2.1	31.71	30.52	31.03	+/- 0.51	98.5
S 2708	4	2.46 +/25	2.43	2.38	2.40	+/- 0.02	97.4
K 1833	4	16.4 +/- 1.64	17.54	16.89	17.27	+/- 0.24	105.3
Ca 2783	4	1.33 +/- 0.17	1.31	1.28	1.29	+/- 0.01	97.7
Ti 1833	4	12.1 +/- 1.79	11.87	11.39	11.62	+/- 0.22	96.0
V 1832	4	4.70 +/49	4.73	4.38	4.51	+/- 0.13	95.9
Mn 1832	4	4.54 +/49	4.53	4.36	4.45	+/- 0.07	98.0
Fe 1833	4	13.6 +/45	13.47	13.39	13.42	+/- 0.03	98.7
Cu 1832	4	2.43 +/16	2.63	2.47	2.55	+/- 0.08	104.8
Zn 1833	4	3.88 +/30	3.97	3.59	3.79	+/- 0.14	97.6
Pb 1833	4 .	16.1 +/75	15.99	15.53	15.71	+/- 0.18	97.6

NIST: National Institute of Standards and Technology

- % Rec: Percent Recovery = (Experimental/Given) x 100
- n: Number of Observations
- S.D.: Standard Deviation
- c.v.: Coefficient of Variation = $(S.D./Measured) \times 100$
- % E: Percent Error = [(Measured-Calibrated)/Calibrated] x 100

XRF-770 REPLICATE REPORT

3.49

Original ID: 09-X782 Replicate ID: RX782

Filter Lot:

Deposit Mass:	1199	μg
Deposit Area:	11.3	cm^2
Particle Size:	F	

Element	Origin ug/cm			licate cm2		erence cm2]	RPD
Na	0.0000 +-	0.0782	0.0000 -	+- 0.0875	0.0000	+- 0.1174			
Mg	3.4575 +-	0.2777	3.1481 -	+- 0.2592	0.3095	+- 0.3799	+	9.4	+- 11.5
Al	5.7308 +-	0.3827	5.4823 -	+- 0.3671	0.2484	+- 0.5304	+	4.4	+- 9.5
Si	15.3227 +-	0.8568	14.9105 -	+- 0.8334	0.4123	+- 1.1953	+	2.7	+- 7.9
Р	0.0502 +-	0.0067	0.0423 -	+- 0.0076	0.0079	+- 0.0102	+	17.1	+- 22.0
S	0.7181 +-	0.0407	0.7319 -	+- 0.0434	-0.0138	+- 0.0595	+	-1.9	+- 8.2
C1	0.2416 +-	0.0153	0.2548	+- 0.0178	-0.0132	+- 0.0235	+	-5.3	+- 9.5
K	2.0760 +-	0.1070	2.1142 -	+- 0.1095	-0.0382	+- 0.1531	+	-1.8	+- 7.3
Ca	9.0809 +-	0.4625	9.2507 -	+- 0.4715		+- 0.6604	+	-1.9	+- 7.2
Ti	0.2700 +-	0.0138	•.=	+- 0.0144		+- 0.0199	+	-1.7	+- 7.3
V	0.0061 +-	0.0014		+- 0.0020		+- 0.0024	+	-27:1	+- 35.0
Cr	0.0057 +-	0.0011		+- 0.0016		+- 0.0019	+	-24.0	+- 29.6
Mn	0.0718 +-	0.0064		+- 0.0089		+- 0.0110	+	-0.2	+- 15.3
Fe	2.8946 +-	0.1450	2.9315 -	+- 0.1470		+- 0.2065	+	-1.3	+- 7.1
Co	0.0050 +-	0.0029		+- 0.0041		+- 0.0051			
Ni	0.0062 +-	0.0015		+- 0.0021		+- 0.0026	+	46.2	+- 51.4
Cu	0.0094 +-	0.0015		+- 0.0020		+- 0.0025	+	3.0	+- 27.1
Zn	0.0192 +-	0.0016		+- 0.0020		+- 0.0026	+	-1.4	+- 13.3
Ga	0.0008 +-	0.0009		+- 0.0013		+- 0.0016			
Ge	0.0000 +-	0.0009		+- 0.0011		+- 0.0015			
As	0.0000 +-	0.0012		+- 0.0017		+- 0.0020			
Se	0.0006 +-	0.0006		+- 0:0009		+- 0.0011			
Br	0.0082 +-	0.0007		+- 0.0009		+- 0.0012	+	2.4	+- 14.9
Rb	0.0110 +-	0.0009		+- 0.0012		+- 0.0015	+	-12.1	+- 12.7
Sr	0.0524 +-	0.0028		+- 0.0030		+- 0.0041	+	-0.5	+- 7.8
Y	0.0000 +-	0.0009		+- 0.0013		+- 0.0015			
Zr	0.0126 +-	0.0013		+- 0.0018		+- 0.0023	-	-35.0	+- 14.8
Mo	0.0029 +-	0.0016		+- 0.0021		+- 0.0026			
Pđ	0.0067 +-	0.0048		+- 0.0067		+- 0.0083			
Ag	0.0000 +-	0.0050		+- 0.0070		+- 0.0086			
Cd	0.0117 +-	0.0055		+- 0.0076		+- 0.0094			
In	0.0008 +-	0.0060	0.0200	+- 0.0085		+- 0.0104			
Sn	0.0113 +-	0.0070	0.0100	+- 0.0098		+- 0.0120			
Sb	0.0256 +-	0.0141		+- 0.0199		+- 0.0244			
Ba	0.0211 +-	0.0091		+- 0.0112		+- 0.0144			
La	0.0013 +-	0.0065		+- 0.0092		+- 0.0113			
Hg	0.0016 +-	0.0015		+- 0.0021		+- 0.0026		06.0	
Pb	0.0080 +-	0.0018	0.0105 -	+- 0.0024	-0.0024	+- 0.0030	+	-26.2	+- 32.5

RPD: Relative Percent Difference (X1-X2)/[(X1+X2)/2]*100. RPD is calculated when original value is greater than three times its uncertainty.

F - 100

Client Name: State of Utah DEQ Project Number: U005 Analytical Technique: Ion Chromatography Sample Description: 47mm Teflon Report Number: 09-089

State of Utah DEQ

Blank Data

Analyte	Sample	Measured	MDL
	ID	Conc. mg/L	Conc. mg/L
Cl Cl Cl Cl Cl Sr Br Br Br NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3	ICB Prep_Blk Meth_Blk* CCB CCB ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB Prep_Blk Meth_Blk* CCB ICB ICB Prep_Blk Meth_Blk* CCB ICB ICB ICB ICB ICB ICB ICB	< MDL < MDL 0.500 MDL MDL MDL MDL MDL MDL MDL MDL	$\begin{array}{c} 0.050\\ 0.$

*: Method Blank concentration in μ g/filter

<u>QA/QC Limits</u> Continuing Calibration: <u>+</u> 10% Replicates: <u>+</u> 20% RPD

LCS: ± 20% Spikes: ± 25%

 $I_{\gamma \sim c}$

Client Name: State of Utah DEQ Project Number: U005 Analytical Technique: Ion Chromatography Sample Description: 47mm Teflon Report Number: 09-089

______ _____

Calibration QC

Analyte	Sample	Standard	Measured	Percent
	ID	Conc. mg/L	Conc. mg/L	Recovery
C1 C1 C1 C1 C1 C1 C1 Br Br Br Br Br Br NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3	ICV LO ICV MID CCV LO CCV MID ICV LO ICV MID CCV LO CCV MID ICV MID CCV LO CCV MID CCV MID CCV MID CCV LO CCV MID CCV MID	$\begin{array}{c} 1.00\\ 10.0\\ 1.00\\$	$\begin{array}{c} 1.05\\ 9.85\\ 1.01\\ 9.80\\ 1.01\\ 9.72\\ 0.98\\ 9.35\\ 0.98\\ 9.29\\ 0.97\\ 9.21\\ 1.00\\ 9.74\\ 0.99\\ 9.59\\ 1.04\\ 9.99\\ 9.59\\ 1.09\\ 9.59\\ 1.09\\ 9.59\\ 1.02\\ 9.87\\ 1.02\\ 9.87\\ 1.02\\ 9.87\\ 1.02\\ 9.87\\ 1.02\\ 9.87\\ 1.02\\ 9.87\\ 1.02\\ 9.87\\ 1.02\\ 9.87\\ 1.02\\ 9.87\\ 1.02\\ 9.85\\ 1.02\\ 9.85\\ 1.02\\ 9.85\\ 1.02\\ 9.87\\ 1.04\\ 9.89\\ 1.03\\ 9.81\\ 1.02\\ 9.85\\ 1.02\\ 9.87\\ 1.04\\ 9.89\\ 1.03\\ 9.85\\ 1.02\\ 9.87\\ 1.02\\$	105.2 98.5 101.4 98.0 100.9 97.2 98.4 93.5 97.9 92.9 97.4 92.1 99.9 97.4 99.1 96.7 98.6 95.9 103.7 98.9 103.4 98.1 101.8 98.7 103.7 99.6 103.4 98.1 101.8 98.7 103.7 99.6 101.8 102.0 102.3 100.4 99.6 99.6 97.1 103.4 99.6 90.6

<u>QA/QC Limits</u> Continuing Calibration: ± 10% Replicates: ± 20% RPD

LCS: ± 20% Spikes: ± 25%

Client Name: State of Utah DEQ Project Number: U005 Analytical Technique: Ion Chromatography Sample Description: 47mm Teflon Report Number: 09-089

Replicate Data

Analyte	Sample ID	Sample Conc. mg/L	Replicate Conc. mg/L	RPD
Cl	09-X779	0.627	0.623	0.64
Br	09-X779	< 0.05	< 0.05	N/C #
NO3	09-X779	0.989	0.991	0.20
SO4	09-X779	2.16	2.17	0.23
Na	09-X781	2.36	2.36	0.13
NH4	09-X781	0.446	0.446	0.00
K	09-X781	0.248	0.248	0.00 #

RPD = {(sample-replicate)/[(sample+replicate)/2]}x100

 $\ensuremath{\,\mathrm{N/C}}\xspace$ not calculated when sample or replicate is below detection limit

#: per EPA CLP protocol, control limits do not apply if sample and/or replicate concentration is less than 5x the detection limit

Analyte Sample ID Sample Conc. mg/L Spike Conc. mg/L Spike Amount mg/L Cl LCS 0.050 9.32 10.0 Cl 09-X780 0.508 9.98 10.0 Br LCS < 0.055 8.64 10.0 Br 09-X780 < 0.055 9.15 10.0	
C109-X7800.5089.9810.0BrLCS< 0.058.6410.0	Percent Recovery
NO3 LCS 0.070 9.04 10.0 NO3 09-X780 1.07 10.5 10.0 SO4 LCS < 0.05	92.8 94.7 86.4 91.5 89.7 93.9 92.4 94.5 94.4 109. 93.4 96.3 96.0 102.

Laboratory Control Sample/Matrix Post Spike Analysis

*: per EPA CLP protocol, control limits do not apply if spike concentration is less than 25% of the sample concentration

<u>QA/QC Limits</u> Continuing Calibration: ± 10% Replicates: ± 20% RPD

LCS: ± 20% Spikes: ± 25%

	page 1 of 2			Delivery Trans. Stored 2.	Delivery Type: Standard Overnight					Type of Analysis Needed		- Service Serv	λ _{co} 09- α	N-60 00-00	1 m 04.4 52	_	yes yes 09-4.258	yes 09- X779	yes 09- x 7 80	yes 09 - X 781	yes 09 - X782	yes 06 - x 783	yes 09 - x 784	yes 06- x 785		yes 05-×787	Received by:	mments:				
										Blank	2	2	2	2	2	2 2	2	2	2	2		2	no yes	2		yes yes	Receive	<u>3</u>			4	
			223							oler Size	PM10	PM10	PM10	PM10	PM10	DM10		C.ZIMT	PM2.5	PM2.5	PM2.5	PM2.5	PM2.5	PM2.5	PM2.5	C.2INI 7		39			Jun C	Ł
AIN-OF-CUSTODY FORM (March.2009)	RATORV		12242 SW Garden Place. Tigard. OB 97233			lab.net	ei			Type 5	Low Vol	Low Vol	Low Vol	Low Vol	Low Vol	low Vol			LOW VOI	LOW VOI	Low Vol	Low Vol	Low Vol	Low Vol				4/2/09	07.0		Yaul	N7
Y FORM	TESTING LABORATORY	Net	den Place. T			ida@chester	CHESTERIAD		1 N 110	(mg)	3.487	3.717	3.960	3.584	1.656	4.258	0 580	0.000	0.750	70.72	1.199	1.877	920.1	1.027	Dec.D			Date:	Time:		Name:	Signature:
CUSTOD	TEG	CHESTER LabNet	242 SW Gar	503.624.2183	503.624.2653	Paul Duda, pduda@chesterlab.net			Volume		21.2	20.5	20.7	20.3	20.3	21.0	24.0	O VC	0.42	0.42	24.0	040	24.0	24.0	0.43		╞		L		I	
AIN-OF-		Company:	Address: 12	phone: 50		contact: Pa) I anoth	(hr)	24:00	23:59	23:59	24:00	23:59	24:00	23:59	23.50	24.00	00.40	24.00	60.02	23.60	50.02	0011							
CH/		I]	19						Sampling	Type	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient	Amhient	Ambient	Ambient	Ambiant	Ambient					ber: B090326			
	iY:		ey City, Utah 841		dot	ø utan.gov is @ utah.gov				Date	April.15.2008	April.19.2008	April. 19.2008	May.20.2008	July.4.2008	March.4.2009	April.15.2008	April. 19.2008	April.19.2008	April. 19.2008	May.20.2008	June.26.2008	Julv.4.2008	March.4.2009	April.21.2008	ished bv:	Comments:		Innice Quote Number, B0903261			
	ANALYSIS REQUESTED BY	ir Quality	2861 West Parkway Blvd., West Valley City, Utah 84119		27 0771 and whole	Ken Symons, 801.887.0773, ksymons@utah.gov				Location	Lindon (LN)	Lindon (LN)	Hawthorn (HW)	Lindon (LN)	Ogden (O2)	Lindon (LN)	Lindon (LN)	Lindon (LN)	Hawthorn (HW)	North Provo (NP)	Lindon (LN)	Brigham City (BR)	Ogden (O2)	Lindon (LN)	Lindon (LN)	Relingu		RNUZ	0	lale		r
	ANALYS	Utah Division of Air Quality Air Monitoring Center	West Parkw	801.887.0760 801.070.0101	Andv Hale 801 88	Symons, 801.		06	er .	Type	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Teflon	Teflon	Teflon	Teflon	Teflon	Teflon	Teflon	Teflon	Teflon		Anril 1 2000		10:50	Andy Hale	K	the second
					_	contact: Ken S	Project Name	Contract 076206 Number	Filter	Number	20080488	20080492	20080609	20080727	20081074	20090387	8131301	8131368	8131360	8131377	8131629	8132053	8132188	9516469	8131370		Date:		Time:	Name:	e l	The first
• . •		Con	Å			ŏ		ŏź		#	- [~	e	4	പ	9	2	80	6	10	 	12	13	14	15				10	ž 1		oigilature.

page 2 of 2								Type of Analysis Needed	VOLCO Ves															sived by: Comments:					
V (March.2009)				terlab.net b.net		•		Sampler Tvne Size Rlank YE	PM10 yes										\$					Hece	4/2/09	e: 9:40	Paul Duda	He R	
CHAIN-OF-CUSTODY FORM (March.2009)	TESTING LABORATORY Company: CHESTER LabNet	Address: 12242 SW Garden Place, Tigard, OR 97223 phone: 503.624.2183	fax: 503.624.2653	Contact: Paul Duda, pduda@chesterlab.net contact: Lisa Ball, Iball@chesterlab.net		-		Length Volume Mass Wt Tyne (hr) (m³) (mơ)																	0302č61	Time:	Name:	Signature:	
•	ANALYSIS REQUESTED BY: Utah Division of Air Quality Air Monitoring Center	Address: 2861 West Parkway Blvd., West Valley City, Utah 84119 phone: 801.887.0760	4	Andy Hale, 801.887.0771, andyhale@utah.gov Ken Symons, 801.887.0773, ksymons@utah.gov		•	S	l ocation Date															Dalisautished but	Comments:	April 1.2009 Price Quote Number: B0903261	10:50	Andy Hale	4 Au	A.
·	ANALYSIS I Utah Division of Air C Company: Annutoring Center	Address: 2861 West P. phone: 801.887.0760	fax: 801.972.6164	contact: Ken Symons,	Project Name	Contract 076206 Number		# Number I Type	2009B001	17	18	19	20	21	22	23	24	25	26	27	28	29			Date:	цше: Тше: 1-0-5	Name:	Signature:	

RAW DATA

Available upon request

Appendix C

Proof of Publication

F - 108

4770 S. 5600 W. P.O. POX 704005 WEST VALLEY CITY, UTAH 84170 FED.TAX 1.D.# 87-0217663

The Salt Lake Tribune

MEDIAJae

Morning News

CUSTOMER'S COPY

PROOF OF PUBLICATION

CUSTOMER NAME AND ADDRESS ACCOUNT NUMBER DATE 9001399880 6/2/2010 UT ST DEPT OF ENV QUALITY, **DIVISION OF AIR QUALITY** PO BOX 144820 SALT LAKE CITY UT 84114 ACCOUNT NAME UT ST DEPT OF ENV QUALITY. TELEPHONE ADORDER# / INVOICE NUMBER 8015364000 100575972-05172010 0000575972 Notice of Public Comment Period High Wind Exceptional Event - Event Date April 15, 2008 SCHEDULE Federal regulations, 40 Code of Federal Regulations (CFR) Part 50, allow states to exclude air quality data that exceed or violate a National Ambient Air Quality Standard (NAASS) if they can demonstrate that an "exceptional event" has caused the exceedance or violation. Exceptional events are unusual or naturally occurring events that can affect air quality but are not reasonably controllable or preventable using techniques implemented to attain and maintain the NAAQS. Start 05/17/2010 End 06/01/2010 CUST, REF. NO. Exceptional events may be caused by human activity that is unlikely to recur at a particular location, or may be due to a natural event. The Environmental Protection agency (EPA) defines a "natural event" as an event in which human activity plays little or no direct causal role to the event in question. For example, a natural event could include such things as high winds, wild fires, and seismic/volcanic activity. In addition, the EPA will allow states to exclude data from regulatory determinations on a case-by-case basis for monitoring stations that measure values that exceed or violate the NAAQS due to emissions from fireworks displays from cultural events. DAQPN-006-10 CAPTION Federal regulations (40 CFR Part 50.14 (c) (3)(i)) require that all relevant flagged data, the reasons for the data being flagged, and a demonstration that the flagged data are caused by exceptional events be made available by the State for 30 days of public review and comment. These comments will be considered in the final demonstration of the event that is submitted for EPA. The following monitored values have been attributed to a high wind ex-ceptional events: Notice of Public Comment Period High Wir SIZE April 15, 2008, North Salt Lake Monitoring Station, 188 µg/m³ PM10
 April 15, 2008, North Salt Lake Co-monitoring Station, 220 PM10
 April 15, 2008, Hawthorne Monitoring Station, 166 µg/m³ PM10
 April 15, 2008, Cottonwood Monitoring Station, 177 µg/m³ PM10
 April 15, 2008, Lindon Monitoring Station, 164 µg/m³ PM10 51 Lines 3.00 CQ The documentation to support removing these data from use in regulatory determiniations will be available beginning june 1, 2010 (for public review and comment) at the following w w w a ir q u ality u tah, g av (Public-Interst) Public-Comment rearring: Exceptional, Events Exceptional, Events thim or at the Multi Agency State Covern ment Office Building, 195 North 1950 Wett in Sati Loke City. In compliance with the Americ and services) should contact Brooke Baker, Office of Human Resources at (801) 536-441. TIMES R 8 AD CI (TDD 536-4414). MISC, CHARGES The comment period will close at 5:00 p.m. on June 30, 2010. Comments postmarked on o before that date will be accepted. Comments may be submitted by electronic mail to jkarmazyn@utah.gov or may be mailed to: M. Cheryl Heying, Director ATTN: High Wind Exceptional Events Utah Division of Air Quality PC Box 144820 Soit Lake City, UT 84114-3097 575972 TOTA 1 IPAYI 519.08

AFFIDAVIT OF PUBLICATION

AS NEWSPAPER AGENCY CORPORATION LEGAL BOOKER, I CERTIFY THAT THE ATTACHED ADVERTISEMENT OF <u>Notice of Public Comment Period</u> <u>High Win</u> FOR <u>UT ST DEPT OF ENV QUALITY</u>, WAS PUBLISHED BY THE NEWSPAPER AGENCY CORPORATION, AGENT FOR THE SALT LAKE TRIBUNE AND DESERET NEWS, DAILY NEWSPAPERS PRINTED IN THE ENGLISH LANGUAGE WITH GENERAL CIRCULATION IN UTAH, AND PUBLISHED IN SALT LAKE CITY, SALT LAKE COUNTY IN THE STATE OF UTAH. NOTICE IS ALSO POSTED ON UTAHLEGALS.COM ON THE SAME DAY AS THE FIRST NEWSPAPER PUBLICATION DATE AND REMAINS ON UTAHLEGALS.COM INDEFINATELY.

PUBLISHED ON	Start 0	5/17/2010	End 06/01/2010	A DE TRUE	VIRGINIA CRAFT
SIGNATURE	the	radde Fall			Commission # 581469 My Commission Expires January 12, 2014
DATE	6/2/2010			Virmi	na (raft
		THIS IS NOT A STATEMENT B PLEASE PAY FROM	UT A "PROOF OF PUBLI BILLING STATEMENT	CATION"	
					F - 109

F - 110

Certification

I, Joel Karmazyn, Environmental Scientist III for the Utah Division of Air Quality, do hereby certify that the public comment period held to receive comments regarding PM10 Exceptional Wind Event - April 15, 2008, was held in accordance with the information provided in each published public notice and as defined in Utah Code 19-2-109.

Signed this <u>o</u> <u>b</u> day of July 2010.