

Ref: 8TMS-L

MEMORANDUM

SUBJECT: Analytical Results--- HAB Emergency Bloom 2016 / 1609004

- FROM: Jeff McPherson, Biologist Mark Murphy, Organic Chemist William H. Batschelet, PhD, Laboratory Quality Assurance Officer
- THRU: Mark Burkhardt, PhD, Director Laboratory Services Program
- TO: Tina Laidlaw, 8MO Clean Water Act

Attached are the analytical results for HAB Emergency Bloom 2016 1609004. The table below shows the number of containers received, the work order number(s) assigned, and the date received:

	1609004	Total
31-Aug-2016	6	6

These samples were prepared, analyzed, and verified by the Region 8 Laboratory according to the requirements of the Laboratory Services Request (LSR) and procedures found in the laboratory Quality Assurance Manual (QSP-001) dated June 16, 2016.

Sample Receipt

All samples were received in acceptable condition except as noted in the Analyst Comments or Appendix A. The number of samples received and analyses are listed in Appendix B.

Sample Analysis

All sample results are reported on an as-received basis except as noted in the Analyst Comments. All samples were analyzed within holding times except as noted in Appendix A. All analyses met QC acceptance criteria except as noted in the Analyst Comments or Appendix A.

Field Measurements

All field measurements met QC acceptance criteria except as noted in the Analyst Comments or Appendix A.

QC Note

Routine sample quality control results such as blanks, matrix spikes, and laboratory duplicates, etc. are reported on the quality control pages of this report. Certain of the reported QC criteria may not be applicable or otherwise affect the data usability. Appendix C summarizes the guidelines used by the Region 8 Laboratory to qualify data. This is a general table and may or may not be applicable to this project.

Analyst Comments

Project: HAB Emergency Bloom 2016 LSR No: 1609004 Microcystins by LC/MS/MS

Station ID: 5	5930960	Date / Tim	e Sampled:	08/29/16 12:30	W	orkorder 16	09004	
Comment:	UT Lake	Matrix: Wa	ater	I	.ab Nu	mber: 16090	004-01	A
Method	Parameter	Results	Units	Qual- Report ifier Limit		ion or Analyzed	By	Batch
Reg. 8 Lab	Anatoxin-A	< 0.05	ug/L	0.05	1	09/02/2016	MAM	1600344
Reg. 8 Lab	Cylindrospermopsin	< 0.05	ug/L	0.05	1	09/02/2016	MAM	1600344
Reg. 8 Lab	Microcystin-LR	4.33	ug/L	0.05	1	09/02/2016	MAM	1600344
Reg. 8 Lab	Microcystin-RR	< 0.05	ug/L	0.05	1	09/02/2016	MAM	1600344
Reg. 8 Lab	Microcystin-YR	< 0.05	ug/L	0.05	1	09/02/2016	MAM	1600344

Station ID: 5	5931231	Date / Tim	e Sampled:	08/29/16	12:50	W	orkorder 16	09004			
Comment:	UT Lake	Matrix: Wa	ater		Ι	Lab Number: 1609004-02 A					
Method	Parameter	Results	Units		Report Limit		ion or Analyzed	By	Batch		
Reg. 8 Lab	Anatoxin-A	< 0.05	ug/L		0.05	1	09/02/2016	MAM	1600344		
Reg. 8 Lab	Cylindrospermopsin	< 0.05	ug/L		0.05	1	09/02/2016	MAM	1600344		
Reg. 8 Lab	Microcystin-LR	349	ug/L	J	0.50	1	09/02/2016	MAM	1600344		
Reg. 8 Lab	Microcystin-RR	1.22	ug/L		0.05	1	09/02/2016	MAM	1600344		
Reg. 8 Lab	Microcystin-YR	< 0.05	ug/L		0.05	1	09/02/2016	MAM	1600344		

Station ID: S	Scofield 01	Date / T	ime Sampled:	08/29/16 12:55	We	orkorder 16	09004	
Comment:	UT Lake	Matrix:	Water	I	.ab Nu	mber: 16090	004-03	A
Method	Parameter	Results	Units	Qual- Report ifier Limit		ion or Analyzed	By	Batch
Reg. 8 Lab	Anatoxin-A	< 0.05	ug/L	0.05	1	09/02/2016	MAM	1600344
Reg. 8 Lab	Cylindrospermopsin	< 0.05	ug/L	0.05	1	09/02/2016	MAM	1600344
Reg. 8 Lab	Microcystin-LR	6.99	ug/L	0.05	1	09/02/2016	MAM	1600344
Reg. 8 Lab	Microcystin-RR	< 0.05	ug/L	0.05	1	09/02/2016	MAM	1600344
Reg. 8 Lab	Microcystin-YR	< 0.05	ug/L	0.05	1	09/02/2016	MAM	1600344

Station ID: S	Scofield at Frandsen	Date / T	Time Sampled:	08/29/16	5 13:10	W	orkorder 16	09004	
Comment:	UT Lake	Matrix:	Water		I	004-04	4 A		
Method	Parameter	Results	Units	Qual- ifier	Report Limit		on or Analyzed	By	Batch
Reg. 8 Lab	Anatoxin-A	< 0.05	ug/L		0.05	1	09/02/2016	MAM	1600344
Reg. 8 Lab	Cylindrospermopsin	< 0.05	ug/L		0.05	1	09/02/2016	MAM	1600344
Reg. 8 Lab	Microcystin-LR	1890	ug/L	J	0.50	1	09/02/2016	MAM	1600344
Reg. 8 Lab	Microcystin-RR	17.5	ug/L	J	0.50	1	09/02/2016	MAM	1600344
Reg. 8 Lab	Microcystin-YR	< 0.05	ug/L		0.05	1	09/02/2016	MAM	1600344

Project: HAB Emergency Bloom 2016 LSR No: 1609004 Microcystins by LC/MS/MS

Station ID: 5	5931234	Date / Time	e Sampled:	08/29/16	13:30	Workorder 1609004					
Comment:	UT Lake	Matrix: Wa	ter		Lab Number: 1609004-05 A						
Method	Parameter	Results	Units	Qual- ^F ifier	Report Limit	Diluti Fact	ion or Analyzed	By	Batch		
Reg. 8 Lab	Anatoxin-A	< 0.05	ug/L		0.05	1	09/02/2016	MAM	1600344		
Reg. 8 Lab	Cylindrospermopsin	< 0.05	ug/L		0.05	1	09/02/2016	MAM	1600344		
Reg. 8 Lab	Microcystin-LR	11.5	ug/L		0.50	1	09/02/2016	MAM	1600344		
Reg. 8 Lab	Microcystin-RR	0.13	ug/L	J	0.05	1	09/02/2016	MAM	1600344		
Reg. 8 Lab	Microcystin-YR	< 0.05	ug/L		0.05	1	09/02/2016	MAM	1600344		

Station ID: N	Madsen Bay Middle	Date / Tim	e Sampled:	08/29/16 14:2	5	Workor	der 16	09004			
Comment:	UT Lake	Matrix: Wa	ater		Lab Number: 1609004-06 A						
Method	Parameter	Results	Units	Qual- Rep ifier Lin		Dilution Factor An	alyzed	By	Batch		
Reg. 8 Lab	Anatoxin-A	< 0.05	ug/L	0.0)5	1 09/0	2/2016	MAM	1600344		
Reg. 8 Lab	Cylindrospermopsin	< 0.05	ug/L	0.0	5	1 09/0	2/2016	MAM	1600344		
Reg. 8 Lab	Microcystin-LR	43.3	ug/L	0.5	0	1 09/0	2/2016	MAM	1600344		
Reg. 8 Lab	Microcystin-RR	0.29	ug/L	J 0.0	5	1 09/0	2/2016	MAM	1600344		
Reg. 8 Lab	Microcystin-YR	< 0.05	ug/L	0.0	5	1 09/0	2/2016	MAM	1600344		

Project: HAB Emergency Bloom 2016 LSR No: 1609004 Microcystins by ELISA

Station ID: 5	5930960	Date / Time	e Sampled:	08/29/16	5 12:30	Workorder 160	09004	
Comment:	UT Lake	Matrix: Wa	-			Lab Number: 1609(A
Method	Parameter	Results	Units	Qual- ifier	Report Limit	Dilution Factor Analyzed	By	Batch
Reg. 8 Lab	Total Microcystin	46.4	ug/L	J	1.50	10 09/01/2016	JWM	160034
Station ID: 5	5931231	Date / Time	-	08/29/16	5 12:50	Workorder 160	09004	
Comment:	UT Lake	Matrix: Wa	iter			Lab Number: 16090	004-02	А
Method	Parameter	Results	Units		Report Limit	Dilution Factor Analyzed	By	Batch
Reg. 8 Lab	Total Microcystin	>50	ug/L	J	1.50	10 09/01/2016	JWM	1600343
Station ID: S	Scofield 01	Date / Time	-	08/29/16	5 12:55	Workorder 160	09004	
Comment:	UT Lake	Matrix: Wa	iter			Lab Number: 16090	004-03	A
Method	Parameter	Results	Units		Report Limit	Dilution Factor Analyzed	By	Batch
Reg. 8 Lab	Total Microcystin	22.2	ug/L		1.50	10 09/01/2016	JWM	1600343
Station ID: S	Scofield at Frandsen	Date / Time	e Sampled:	08/29/16	5 13:10	Workorder 160	09004	
Comment:	UT Lake	Matrix: Wa	iter			Lab Number: 16090	004-04	A
Method	Parameter	Results	Units	Qual- ifier		Dilution Factor Analyzed	By	Batch
Reg. 8 Lab	Total Microcystin	>50	ug/L	J	1.50	10 09/01/2016	JWM	1600343
Station ID: 5	5931234	Date / Time	e Sampled:	08/29/16	5 13:30	Workorder 160	09004	
Comment:	UT Lake	Matrix: Wa	iter			Lab Number: 16090	004-05	A
Method	Parameter	Results	Units	Qual- ifier	Report Limit	Dilution Factor Analyzed	By	Batch
Reg. 8 Lab	Total Microcystin	>50	ug/L	J	1.50	10 09/01/2016	JWM	1600343
Station ID: N	Madsen Bay Middle	Date / Time	e Sampled:	08/29/16	5 14:25	Workorder 160	09004	
Comment:	UT Lake	Matrix: Wa	iter			Lab Number: 16090	004-06	А
Method	Parameter	Results	Units	Qual- ifier	Report Limit	Dilution Factor Analyzed	By	Batch
Reg. 8 Lab	Total Microcystin	>50	ug/L	J	1.50	10 09/01/2016	JWM	1600343

Note: "J" Qualifier indicates an estimation	ated value.
---	-------------

Microcystins by LC/MS/MS - Quality Control

Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Result	Linit	Onits	Lever	Kesuit	/0KLC	Linits	ΚΙD	Linit
So	ource: 160900	4-03	Prepared:	09/01/16	Analyzed	: 09/02/16		
1.16	0.05	ug/L	1.00	< 0.05	116	60-140		
0.74	0.05	"	1.00	< 0.05	74.1	60-140		
7.66	0.05	"	1.00	6.99	67.6	60-140		
0.84	0.05	"	1.00	0.05	79.0	60-140		
0.76	0.05	"	1.00	< 0.05	76.0	60-140		
So	ource: 160900	4-03RE1	Prepared:	09/01/16	Analyzed	: 09/02/16		
	0.50		10.0		115	60-140		
7.52	0.50	"	10.0	< 0.50	75.2	60-140		
14.1	0.50	"	10.0	7.46	66.2	60-140		
8.05	0.50	"	10.0	< 0.50	80.5	60-140		
7.55	0.50	"	10.0	< 0.50	75.5	60-140		
So	ource: 160900	4-03	Prepared:	09/01/16	Analyzed	: 09/02/16		
	0.05		1.00		107	60-140	8.65	30
	0.05	"	1.00		65.0	60-140	13.0	30
	0.05	"	1.00		52.2	60-140	2.03	30
	0.05	"	1.00		79.8	60-140	0.990	30
0.67	0.05	"	1.00	< 0.05	67.3	60-140	12.1	30
So	ource: 160900	4-03RE1	Prepared:	09/01/16	Analyzed	: 09/02/16		
			-			60-140	7.97	30
		"						30
								30
		"						30
								30
	1.16 0.74 7.66 0.84 0.76 11.5 7.52 14.1 8.05 7.55 So 1.07 0.65 7.51 0.85 0.67	1.16 0.05 0.74 0.05 7.66 0.05 0.84 0.05 0.76 0.05 0.76 0.05 Source: 160900. 11.5 0.50 7.52 0.50 14.1 0.50 8.05 0.50 7.55 0.50 7.55 0.50 1.07 0.05 0.65 0.05 7.51 0.05 0.85 0.05 0.67 0.05 0.85 0.05 0.67 0.05 0.67 0.50 8.75 0.50 15.7 0.50 8.61 0.50	0.74 0.05 " 7.66 0.05 " 0.84 0.05 " 0.76 0.05 " Source: 1609004-03RE1 11.5 0.50 ug/L 7.52 0.50 " 14.1 0.50 " 8.05 0.50 " 7.55 0.50 " Source: 1609004-03 1.07 0.05 ug/L 0.65 0.05 " 7.51 0.05 " 0.85 0.05 " 0.85 0.05 " 0.85 0.05 " 0.67 0.05 " 1.2.5 0.50 ug/L 8.75 0.50 " 15.7 0.50 " 8.61 0.50 "	1.16 0.05 ug/L 1.00 0.74 0.05 " 1.00 7.66 0.05 " 1.00 0.84 0.05 " 1.00 0.76 0.05 " 1.00 0.76 0.05 " 1.00 0.76 0.05 " 1.00 0.76 0.05 " 1.00 Source: 1609004-03RE1 Prepared: 11.5 0.50 ug/L 10.0 7.52 0.50 " 10.0 14.1 0.50 " 10.0 8.05 0.50 " 10.0 7.55 0.50 " 10.0 7.55 0.50 " 10.0 0.65 0.05 " 1.00 0.65 0.05 " 1.00 0.67 0.05 " 1.00 0.67 0.05 " 1.00 0.67 0.50 <td< td=""><td>1.16 0.05 ug/L 1.00 < 0.05</td> 0.74 0.05 " 1.00 < 0.05</td<>	1.16 0.05 ug/L 1.00 < 0.05			

Project: HAB Emergency Bloom 2016 LSR No: 1609004 Microcystins by ELISA - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1600343 - General Prep									
Method Blank (1600343-BLK1)				Prepared	& Analyze	ed: 09/01/	16		
Total Microcystin	< 0.15	0.15	ug/L						
Duplicate (1600343-DUP1)	So	urce: 160900	4-06	Prepared	& Analyze	ed: 09/01/	16		
Total Microcystin	>50	1.50	ug/L		>50			0.00	40
Reference (1600343-SRM1)				Prepared	& Analyze	ed: 09/01/	16		
Total Microcystin	0.59	0.15	ug/L	0.750		78.9	70-130		

NOTE: %REC is percent recovery, Result (less sample contribution) divided by the Spike Level RPD is the Relative Percent Difference (difference between the Result and the Source Result) divided by their average

	gene	у БЮ	om 2010	5 LSR No: 1609004	-	2 9	à	-03	င်	0	Cert	ificate	UI A	.110
Received By:	Relinqui	Received By:	Relinquished By							1	Sample Number	Please Se	Project:	Agency:
d By:	Relinquíshed By:	By:	shed By:				11	11	(1	8/29/16	Date Collected	and Results	Project: Utah Lake HAB	Agency: UTAH DIVISION OF WATER WORLD
].			14 45	0(3)0	1310	12 55	25 21	12 30	Time Collected	Please Send Results to: Bfy Hucore	B	ION OF WAT
					Z¥	2931227	NA.	N.A.	543 1231	543 64 60	STORET (if applicable)	רנייש		
Date:	Date:	Date: 8/31/16	Date: 8/30/14		MAC RUM	JUSTICE R	Scofilero	Scotiero	Scotiens ner	PRICE R. 8	Sit	D. ENGLISH R. GIRO Preservation: Refrigeration	Sample Collector(s):	OTHICI CALL
Time:	Time:	Time: 0945	Time: /3:15		Lakan Cur	recent of car	Scotifico AT FRANKEN Scoti CAMP	10		Selan Scofiaco	Site Name/Description	Refrigeration	tor(s):	
	bottles. MT 8/31	1 ce mar	Special Instructions: All Saunples		¢.	C II INN I	SCONT CAMP		@ STARG PIC MTN. VIEW	. Ero RES	lion			
	MT 8/31	not in	loles ~5	samples	Microcystins by ELISA)	t		Requested Test		Ship to:	
		le was not in contact with all	Special Instructions: All Samples ~5°C except 5930960.		0					* temp 8.50 arready	-	16194 West 45 th Dr Golden, CO 80403	EPA Region 8 Laboratory	

Certificate of Analysis

4001001

Project: HAB Emergency Bloom 2016 LSR No: 1609004 Appendix A - Exceptions Report

Certificate of Analysis

11				
Lab Number	Sample Name	Analysis	Analyte Name	<u>Explanation</u>
1609004-01	5930960	Microcystin by ELISA - Total	*ALL*	Temperature outside of criteria.
1609004-02	5931231	Microcystin by ELISA - Total	Total Microcystin	Outside quantitation range.
1609004-02RE1	5931231	Microcystins by LC/MS/MS_2016	Microcystin-LR	Outside quantitation range.
1609004-04	Scofield at Frandsen	Microcystin by ELISA - Total	Total Microcystin	Outside quantitation range.
1609004-04RE1	Scofield at Frandsen	Microcystins by LC/MS/MS_2016	Microcystin-LR	Outside quantitation range.
1609004-04RE1	Scofield at Frandsen	Microcystins by LC/MS/MS_2016	Microcystin-RR	Continuing calibration criteria not met - high
1609004-05	5931234	Microcystin by ELISA - Total	Total Microcystin	Outside quantitation range.
1609004-05	5931234	Microcystins by LC/MS/MS_2016	Microcystin-RR	Continuing calibration criteria not met - high
1609004-06	Madsen Bay Middle	Microcystin by ELISA - Total	Total Microcystin	Outside quantitation range.
1609004-06	Madsen Bay Middle	Microcystins by LC/MS/MS_2016	Microcystin-RR	Continuing calibration criteria not met - high

Certificate of Analysis

Appendix B - Samples and Analysis

Work Order #	<u># Samples</u>	<u>Analysis</u>	Method Name	Lab SOP
1609004	6	Microcystin by ELISA - Total	Reg. 8 Lab	BIOLM-004v10_Microc ystin_Abraxis
1609004	6	Microcystins by LC/MS/MS_2016	Reg. 8 Lab	Draft SOP

QC Check (Symbol)	Flagging Criteria
Initial Calibration (ICAL)	All failing analytes for all samples are qualified as estimated.
Initial Calibration	High failure: All detections for failing analytes for all samples are qualified as estimated.
Verification (ICV) or	Low failure: All failing analytes for all samples are qualified as estimated.
Standard Reference	
Material (SRM)	
Continuing Calibration	High failure: All detections for failing analytes for all associated samples are qualified as
Verification (CCV)	estimated. Low failure: All failing analytes for all associated samples are qualified as
Continuine Collibustion	estimated.
Continuing Calibration Blank (CCB)	All detections for failing analytes for all associated samples where the concentration in the blank is greater than 1/10 the amount measured in the sample OR the blank contamination
Бланк (ССБ)	otherwise affects the sample results are qualified as estimated.
Blanks (BLK) Preparation	All detections for failing analytes for all samples where the concentration in the blank is
Blank, Method, Trip,	greater than 1/10 the amount measured in the sample OR the blank contamination otherwise
Storage, etc.	affects the sample results are qualified as estimated.
Lab Control Sample	High failure: All detections for failing analytes for all associated samples are qualified as
(LCS) or Standard	estimated. Low failure: All failing analytes for all associated samples are qualified as
Reference Material (SRM)	estimated.
or Blank Spike (BS)	
Matrix Spike (MS)	High failure: All detections for failing analytes in the parent sample are qualified as
	estimated. Low failure: All failing analytes in the parent sample are qualified as estimated.
	No qualification if the native concentration is greater than or equal to 4x the spike
	concentration.
Matrix Spike Duplicate	%R Failure: Same as matrix spike. RPD Failure: All failing analytes in the parent sample are
(MSD)	qualified as estimated.
Duplicate Sample (DUP)	All failing analytes in the parent sample are qualified as estimated. No qualification if the native concentration is less than the RL.
Serial Dilution (SD)	All failing analytes in the parent sample are qualified as estimated. No qualification if native
Serial Dilution (SD)	concentration is less than or equal to 50x the RL.
Detection Limit Standard	High failure: All detections for failing analytes less than or equal to 5x the concentration in
(CRA) or (CRL)	the CRL for all associated samples are qualified as estimated. Low failure: All failing
	analytes less than or equal to 5x the RL for all associated samples are qualified as estimated.
Internal Standard (IS)	All analytes associated with the failing IS are qualified as estimated.
Surrogate Spike (SURR)	High failure: All detections for all analytes associated with the failing surrogate are qualified
	as estimated. Low failure: All analytes associated with the failing surrogate are qualified as
	estimated. If obvious chromatographic interference with the surrogate is present,
	qualification may not be necessary and will be based on the professional judgment of the
	analyst.

Appendix C - Data Assessment Guidelines

Note: The J Qualifier is used to indicate an estimated value.