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96 SOLUBILITY AND ACTIVITY COEFFICIENT IN WATER

TABLE 5.7 Salting Constants for Benzene and Naphthalene at 25°C for Some Important Salts

Mole fraction Salting Constant

of total salt

in seawater” K?* (benzene)® K® (naphthalene)
Salt X (Lemol™1) (L'mol™})
NaCl 0.799 0.19 0.22
MgCl, 0.104 0.30
Na,SO, 0.055 0.55 0.70
CaCl, 0.020 0.32
KCl 0.018 0.17 0.19
NaHCO, 0.005 0.32
KBr 0.12 0.13
CsBr 0.01

2Gordon and Thorne (1967a, b).
bMcDevit and Long (1952).

a salt mixture as, for example, NaCl does in seawater, it is often sufficient to use the
salting constant for that salt as a surrogate for the whole mixture. For example, the
error introduced when using K, instead of K3, for predicting the effect of salinity
on solubility and activity coefficients of organic compounds in seawater is only about
10% (sec examples given Table 5.6).

Based on our simple picture of the dissolution process, the introduction of a polar
substituent into a molecule should decrease the salting-out effect. This is because the
introduction of a polar group generally decreases the hydrophobic surface area, and
favorable interactions of the polar group with the ions present in the water are possible.
The very few data available on salting effects on polar organic compounds are
consistent with this picture. Table 5.6 shows that the measured K* values for phenol,
p-aminotoluene, and p-nitrotoluene are generally somewhat lower than the values
determined for benzene and toluene. In summary, we have seen that the most impor-
tant dissolved inorganic salts present in natural waters generally decrease the aqueous
solubility (or increase the activity coefficient) of neutral . organic compounds. At
moderate salt concentrations (e.g., in seawater), the effect of salinity on aqueous solu-
bility is usually less than a factor of 2.

Dissolved Organic Solutes and Solvents

Another aspect of solution composition which can affect the solubility (or aqueous
activity coefficient) of organic chemicals involves the inclusion of other organic
molecules in the water. As depicted in Figure 5.8, such codissolved organic molecules
may influence the aqueous cavity surrounding a solute of interest to us, and in so
doing, change the energetic costs of forming such a cavity. Three general cases appear
to describe the various observations reported. (1)*When the other organic molecules
are present in relatively large abundances (more than 10% by volume where there is
insufficient water to hydrate most of them), these act as solvent molecules themselves
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Figure 5.8 lllustrations of how other dissolved organic substances (e) affect the water
molecules surrounding an organic compound of interest ([7).

and partially surround the solute of interest approximately in proportion to their
volume fraction in the solution (Yalkowsky et al.,, 1976). (2) When the other organic

compounds are present in somewhat less abundance, these molecules themselves have ...
‘water-lined cavities surrounding them; and if these hydration shells are somewhat -

shared by the organic compounds, the overall « dissolution cost of the chemical we're
considering will be decreased (Banerjee and Yalkowsky, 1988). This situation may
be best referred to as an influence of cosolutes. This may be the most appropriate
picture of the influence of n-octanol in water at saturation (~4.5x 1073 M or 7 x 107#
volume fraction), causing a little more hexachlorobenzene (2x) and DDT (3x) to
dissolve (Chiou et al., 1982, 1983) (3) Finally, if the organic chemicals are present at
low enough levels (less than 1072 volume’ fractlon) that there is a low probability of
even theirhydration shells overlapping, we can expect no effect on the aqueous act1v1ty
coefficients or (liquid) solubilities, This is the image we should have for organic com-
pounds that we call “slightly soluble in water” insofar as the molecules of the same
kind are too rare to influence one another (Tucker and Christian, 1979; Munz and
Roberts, 1986). Similarly, slightly soluble hydrocarbons present in a solution do
not appear to enhance the dissolution of other hydrocarbons (e.g., Leinonen and
Mackay, 1973).
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For the purposes of predicting organic chemical fates in the environment, we are
primarily interested in cases where cosolvents are present in relatively large proportions
(more than 10% by volume). These are the situations where marked changes in
nonpolar chemical activity coefficients occur. To estimate the degree of such effects,
we can utilize the conceptualization of Yalkowsky et al. (1976). These workers reasoned
that the excess free energy of solution of a compound in a water—organic cosolvent
mixture should be a linear combination of the compound’s excess free energies of
solution in each solvent alone:

AG?E = (1 - fc) AGEW + (fc) AG:C (5'24)

smix

where

£, is the volume fraction of the solution consisting of the cosolvent
AGt,, is the excess free energy of solution in pure water
AGt_ is the excess free energy of solution in the cosolvent

It is as if part of the organic solute of interest is dissolved in water, while the remainder
is dissolved in the organic cosolvent. Recalling that AG¢ = 4+ RTlny, we can also
write

In =1 — f)lny, +(f)lny™ : (5-25)
or Y .
In X2 = (1 — folnxit 4+ ([ Inxg (5-26)

Yalkowsky and colleagues (1976, and references therein) have reasoned that micro-
scopic-scale situations like that pictured in Fig. 5.8a can be thought of much like a
macroscopic-scale counterpart of two liquids contacting one another and exhibiting
an interfacial surface tension (e.g., Fowkes, 1964). In this case the solute (shown as an
octanol molecule in a blowup of Fig. 5.8a) may be seen ds having both hydrophobic
surface area (HSA) and polar surface area (PSA). Each of those microscopic surface
area types experiences a different interaction energy when jiixtaposed to a polar liquid
like water or a relatively nonpolar one like acetone or isopropanol. Thus, Yalkowsky
et al. (1976) write for AGE: :

AGE,, = (0,,) (HSA)(N) + (0,,,,) (PSA)(N) (5-27)
where '

Oy 18 the interfacial energy (e.g., J'om™?) where the hydrophobic solute contacts
water,

HSA is the solute’s hydrophobic surface area (cm?/molecule),
0y 18 the interfacial energy (e.g., J:cm %) where the polar solute contacts water,
PSA is the solute’s polar surface area (cm?/molecule),

N is Avogadro’s number (6.02 X 10%® molecules/mol), used to put everything on a
per mole basis.




