Great Salt Lake Water Quality Initiative

Developing a Selenium Standard for the Open Waters of the Great Salt Lake Utah Division of Water Quality Salt Lake City, Utah

Response to Selenium Concern

- In response to the selenium concern, DWQ recognized the need to develop numerical standards to protect the beneficial uses of the GSL.
- The proposing parties (mid-2004) recognized the need to involve interested parties to address the questions about selenium fate and transport.
- Establish the Great Salt Lake Water Quality Steering Committee to study the water quality of the Lake and make recommendations to the Division of Water Quality regarding a numeric water quality standard for Selenium for the open waters of the Lake.

Organizational Chart

		Water Quality Board		EPA	4	
		Division of WQ				
					- 21	
	S STA FRANCE	Director DWQ/	12.2.5	Martin Star	5. 24	en al de la Carlo
11 42 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 68 20 1	Steering Comm. Chair.	1 1 1 68 3	1.1.1.1.1.1.1.1	62 51	1 1 1 1 1 42 21
and the state of the state	Street and	1	4 . E	Concerts St		mounts of the
G	SL Selenium Study			Farmi	ington B	ay Study
and a start of the			1.4.1.42	and and a	64 gr	
Stakeholders	Science Panel	Project Manager		Stakeholders		Project Manager
			State.			
	Other Studies	Contractors		Science Panel		Contractors

Standard Setting Process

Develops process Create Steering Comm.

Steering Committee Purpose

Create a partnership among stakeholders # Conduct a transparent public process # Establish a Science Panel # Sponsor and guide scientific research # Help secure funding # Adhere to state & federal laws & regulations # Make recommendations to the Division of WQ

Steering Committee Make-up

1. Forestry & State Lands 2. Wildlife Resources 3. EPA Region VIII 4. US Fish & Wildlife 5. Brine Shrimp Industry 6. Mineral Extractors 7. US Geological Survey 8. Kennecott Utah Copper

9. Jordan Valley WCD 10. POTWs 11. GSL Alliance 12. GSL Alliance 13. Duck Clubs 14. Wasatch Front RC 15. DEQ 16. DWQ

Decision-making Process

- # A quorum is defined as 3/4 of the Steering Committee
- # Consensus (unanimity) is sought in all decisions
- For procedural actions a supermajority (3/4) is needed
- # If consensus cannot be reached on substantive matters, all positions will be forwarded

Miscellaneous

- The goal is to have the Steering Committee make a recommendation for a Selenium standard to DWQ by August 2007
- # Local, state and federal funds are pledged to this effort
- The Steering Committee may be maintained to develop other standards for the GSL

Science Panel

- William Adams, Ph.D., Rio Tinto
- # Anne Fairbrother, Ph.D., EPA
- Don Hayes, Ph.D., University of Utah
 Theron Miller, Ph.D., DWQ

William Moellmer, Ph.D. **Division of Water Quality** # Brad Marden, Utah Artemia Assoc # Terresa Presser, Ph.D. **US** Geological Survey # Joseph Skorupa, Ph.D. US Fish & Wildlife # William Wuerthele, EPA

Presentations from Steering Committee Members

- *Richard Bay, JVWCD
 - Duties and charges to Science Panel
 - Need to identify gaps and scope of work
 - Requested need to move forward quickly.
- # Mansuel Pearce
 - Need for good science in an efficient and planned way.

Presentations from Steering Committee Members (cont'd)

#Leland Myers

Need to include impairment of the beneficial uses as a part of the study.
 "Time doesn't drive science but science can drive time."

Laboratory "Round Robin"

*Reason for Round Robin

- Identify best analytical technique
 Resolve variability of data currently available.
- Determine ability of laboratories
- **#** Splitting Samples
 - Environmental Resource Associates, Arvada, Colorado

Pulling the Samples

Depth 1 meter 7 meters # GSL Sampling Protocol Needs to be compiled and re-written Lynn Hutchinsen, Kennecott Dave Naftz, USGS We will filter in the field Do not acidify in the field [ERM] 4 ml Ultra Pure Nitric Acid per Liter

Round Robin Statistical Design

Two Sample Locations 1 Meter and 7 meters **#** Triplicate Samples from each location **#** Four Spike levels for each location ■ 0.1 – 1.0; 1.0 – 5.0; 10-50; 50-100 ug/l Se **#** Triplicates for each spike level **#** Spiking Levels Created by Random Generator

jie <u>E</u> dit ⊻iew Insert F	ormat <u>T</u> ools <u>D</u> ata <u>W</u> indo	w <u>H</u> elp					
🛎 🖬 🍯 🖪 🖤	よ 🖻 🛍 🍼 い・0	\simeq + $\left \begin{array}{c} & \\ & \\ & \\ \end{array} \right \Sigma f_{*} \left \begin{array}{c} & \\ & \\ & \\ \end{array} \right \left \begin{array}{c} & \\ & \\ & \\ \end{array} \right $	↓ 🛍 🚜 100% 🔹 (2) - 14 - B <u>U</u>	≣≣≣\$, ‰	8 🔅 🖽 • 🕭 • 🛕 •	-
H13 <u>-</u> :	= 250		_	-			_
B Location #1 =	Cilbort Roy - 1	U motor donth	E	F	G	H	-
Location #1 =	Gibert Bay - 1	meter deptri					
Laboratory:	boratory: Laboratory Name			Method:	Describe		
Sample ID	Spike Level	Spike Value ug/L	Sample Number	Reported Value, ug/L	Cost	Sample Size, ml	
Sample #1	GSL	0.00	6		\$ -	250	
Sample #2	GSL	0.00	54		\$-	250	
Sample #3	GSL	0.00	12		\$-	250	
Spike #1a	0.1-1.0	0.64	64		\$-	250	
Spike #1b	1-5	4.00	21		\$-	250	
Spike #1c	10-20	11.00	25		\$-	250	
Spike #1d	50-100	62.00	47		\$-	250	
Spike #2a	0.1-1.0	0.64	18		\$-	250	
Spike #2b	1-5	4.00	19		\$ -	250	
Spike #2c	10-20	11.00	12		\$-	250	
Spike #2d	50-100	62.00	99		\$-	250	
Spike #3a	0.1-1	0.64	64		\$-	250	
Spike #3b	1-5	4.00	31		\$-	250	
Spike #3c	10-20	11.00	10		\$-	250	
Spike #3d	50-100	62.00	38		\$-	250	
				Total		3.75	lite
▶ ▶ Sheet1 / Sheet	et2 / Sheet3 /			1			
w 🕶 🔓 🍪 🛛 AutoShape	s• 🔪 🔪 🗆 O 🔮	4 😰 🧆 - 🚣 - 🛆	. = = 🗄 🖬 🍘	•			
dy					ſ	NUM	

NUM

Paper Presentation: William Adams, Ph.D.

* "Derivation of a Chronic Site-specific Water Quality Standard for Selenium in the Great Salt Lake, Utah"

- Conc. of Selenium in Kennecott outfall and Brine Shrimp decreases as a function of distance from the Kennecott outfall.
- Evaluate the concentration of selenium in the brine shrimp (food source) where impairment to bird embryo begins.
- Where does the concentration of the outfall equal that value and set that value as the chronic standard.

Presentation by EPA William Wuerthele

Specific criteria will be derived by adjusting national criteria by including a data set on indigenous species (Brine shrimp and brine flies) #Key issue: Tissue value will need to be translated to a water column value. # Discussion: Whole body or reproductive organs.

Assignments to Science Panel Members

- Skorupa: Data on brine fly and brine shrimp in California evaporation ponds.
- # Adams: Data on some of the species collected in the Great Salt Lake
- * Marden: Put together a "workshop" of experts to discuss on the life cycle and biology of the target species of Artemia and Ephydra.
 - Avian diet, behavior seasonal occurrences.

Assignments, cont'd

- # Moellmer: Finalize participating labs and ERA for commitment to participate and costs.
 - Letters & Contract
- # USGS and Kennecott are putting together the protocol for sampling waters from the Great Salt Lake.
- # Fairbrother: Will further discussion of toxic reference values.
- Skorupa: Will discuss uncertainty in various approaches to toxic reference values.

For the Next Meeting

- # Two day meeting: March 16-17, 2005 [Meeting will probably be changed to March 15-16, 2005)
- # Presentations by panel members
 - Fairbrother, Skorupa, & Adams
- # GSL Biology 101
 - Don Paul
 - Gary Belovsky (Notre Dame)
 - Wayne Wurtsbaugh, et.al.

For the Next Meeting, cont'd

- # Approve sampling protocols
- # Approve initiation of round robin
- # Discussions:
 - What are we trying to protect
 - Do we now understand the dynamics of the biology and chemistry of the lake.
 - Define the boundaries of the lake.
 - High Water Line
 - Wetted Perimeter

Project Expenditures

EPA \$15,000 Grant
Laptop Computer: \$1650
Carboys Sampling Flasks: \$350
Science Panel \$25,000
Travel: \$492.94
Sundries: \$17.48