Official Draft Public Notice Version December 14, 2016

The findings, determinations, and assertions contained in this document are not final and subject to change following the public comment period.

### FACT SHEET / STATEMENT OF BASIS JORDAN VALLEY WATER CONSERVANCY DISTRICT SOUTHWEST GROUNDWATER TREATMENT PLANT PERMIT MODIFICATION: CHRONIC WET TESTING **UPDES PERMIT NUMBER: UT0025836 MAJOR INDUSTRIAL**

## 1.0 FACILITY CONTACTS

Person Name: Richard Bay

Person Name: Shazelle Terry

Position:

General Manager

Position:

Manager, Treatment

Department

Person Name: Marie Owens

Position:

Manager, Water Quality Division

Facility Name:

Southwest Groundwater Treatment Plant

Address:

8215 South 1300 West West Jordan, Utah 84088

Telephone:

801-565-4300

#### 2.0 SUMMARY OF MODIFICATION

UPDES Permit No. UT0025836 issued to Jordan Valley Water Conservancy District (Jordan Valley Water) on April 1, 2014, required Jordan Valley to conduct chronic whole effluent toxicity (WET) testing at the end- of -pipe at Outfall 001 on a quarterly basis. The permit specified that quarterly monitoring alternate between Americamysis bahia (mysid shrimp) and Cyprinodon variegatus (sheepshead minnow).

As a result of completion of a Phase I Toxicity Identification Evaluation (TIE), this permit is being modified to require that only sheepshead minnow be used for Outfall 001 WET testing.

Further, to better align Jordan Valley Water's WET requirements to reflect newly adopted permitting guidance for Great Salt Lake and statewide dischargers, Acute biomonitoring requirements have been added to Outfall 001, with results of Chronic WET testing being used as an indicator only of toxicity.

Language has also been added to Section I.D.6 which provides an option for the Director to remove sediment sampling and analysis from the Delta Monitoring Plan, as well as language to clarify the minimum sample size to determine selenium concentrations of bird eggs.

### 3.0 JUSTIFICATION

# Chronic WET testing organism

During project construction and prior to discharging directly to Great Salt Lake, Jordan Valley Water conducted (7) chronic WET tests using RO plant effluent as a surrogate for end-of-pipe, Outfall 001, effluent. All 7 WET tests were conducted on both sheepshead minnow, and mysid shrimp. During this investigation, no chronic effects were observed for the sheepshead minnow but were observed during some of the mysid shrimp tests. Preliminary Toxicity Identification Tests were then conducted to identify the potential toxicants. In some cases, the toxic effects could not be repeated but the results suggested that copper and/or ions could be the cause of the observed effects. Results of the 7 WET tests are summarized in Table 1.

Copper was measured sporadically at concentrations potentially high enough to be a cause of the chronic effects. Jordan Valley Water submitted a study plan to the Division of Water Quality (DWQ) to identify and further characterize copper in the effluent. Elevated copper concentrations were not found in the water from the source wells prior to RO treatment or in the effluent prior to discharging to either Rio Tinto Kennecott's tailings pond or Great Salt Lake. The effluent pipe is nonmetallic and is not anticipated to be a source of copper. Further testing isolated the sampling port at the end of the pipe as the likely source of copper and showed that the previously elevated copper concentrations were a sampling artifact and not representative of the effluent. The report provided by Jordan Valley Water is provided as Attachment 1.

To confirm ion imbalance as the primary toxicant, Jordan Valley Water commissioned two mock effluent studies to further characterize the effects of the ion concentrations on mysid shrimp. These studies were conducted on effluent collected from outfall 001, and compared to a mock effluent which mimicked the ionic characteristics of the effluent, but did not contain any other potential toxicants.

In summary, the results of the chemical analysis for the Outfall 001 effluent and mock effluent indicated that the ionic composition of the two samples were very similar in both studies. Other potential toxicants (i.e., Copper) were absent from the mock effluent samples, and as expected, were present in the Outfall 001 samples. Even with the presence of other potential toxicants in the Outfall 001 samples, the 7-day IC25 (inhibitory concentration at 25% effluent) for biomass in the mock effluent was similar (almost identical) to the 7-day IC25 for the Outfall 001 effluent. The other WET endpoints (e.g. LC50, IC25) for the mock effluent were not different and were within the expected precision of the tests when compared to the results using effluent collected at Outfall 001 at 7, 48 and 96 days for survival. The conclusion is that an ion imbalance was the primary cause of the effects. Study results and further discussion are available as Attachment 2.

The results from these studies support the conclusions of the Phase I chronic TIEs conducted for Jordan Valley Water, which indicated that ion imbalance as the major toxicant contributing to unsatisfactory whole effluent toxicity performance when mysid shrimp is the subject organism.

Ion toxicity is an appropriate endpoint for measuring potential toxicity to Utah's fresh waters but Gilbert Bay is not fresh water. Gilbert Bay has much higher ion concentrations (currently >15% salinity) than the effluent (~3.0% salinity). The organisms that inhabit the transitional waters and Gilbert Bay are anticipated to be much more tolerant of ions than the USEPA standard WET test organism mysid shrimp. Mysid shrimp are intended to be representative of seawater which has a salinity of ~3.5%, much less than Gilbert Bay. The testing completed to support this modification demonstrates that this organism is not effective for evaluating WET for this effluent and receiving waters. Therefore, this permit is being modified to replace *Americamysis bahia* (mysid shrimp) with *Cyprinodon variegatus* (sheepshead minnow), for all quarterly chronic WET tests on effluent collected at Outfall 001.

## Outfall 001- New chronic and acute WET testing guidance

Since the issuance of this permit, the *Utah Division of Water Quality Interim Methods for Evaluating Use Support For Great Salt Lake, Utah Pollution Discharge Elimination System (UDPES) Permits, Review Draft Permitting Implementation Guidance for Great Salt Lake (January 4, 2016), has been adopted. This guidance recommends that the results of chronic WET testing on the GSL be used as an indicator of toxicity only. This change to Jordan Valley Water's WET requirements will reflects this, with the addition of adding Acute WET testing to reflect statewide WET guidance. With this change, Jordan Valley Water's permit requirements will better reflect both statewide and GSL WET guidance.* 

## Option of removing sediment sampling from annual Delta Monitoring Plan.

During the required annual tri-lateral agreement meeting in 2016, the results of the monitoring in the delta were reviewed and discussed. Sediments have not been demonstrated to be useful and a decision was made to potentially shift these resources to additional bird egg collection efforts. Jordan Valley Water has collected several years of baseline (prior to discharging) sediment data and if necessary, sediment can be sampled in the future to evaluate the potential impacts of the effluent. Sediments will continue to be investigated by the Utah Division of Emergency Response and Remediation as part of the historic tailing causeway investigation to the east of the discharge location. The permit is being modified to allow Jordan Valley Water to request removal of sediment sampling from the Delta Monitoring plan, which must be approved by the Director.

Drafted by

Nate Nichols- Discharge Chris Bittner- Great Salt Lake WET

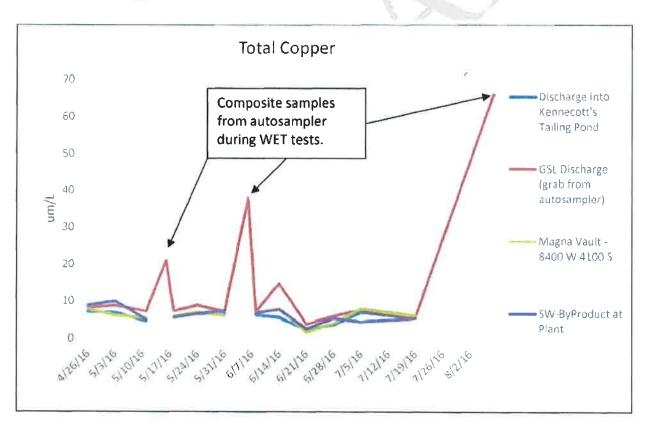
## 13.0 PUBLIC NOTICE

Began: XXXX Ended: XXXX

Public Noticed in the Salt Lake Tribune and Desert News.

Table 1.

| Testing Date                               | Mysid Shrimp                   | Sheepshead Minnow       |  |
|--------------------------------------------|--------------------------------|-------------------------|--|
| Chronic Endpoints                          | (Control / 100%)               | (Control / 100%)        |  |
| Dec. 8-13, 2013 (test was collected on the | ne entry point of the pipeline | instead of end-of-pipe) |  |
| 48 hr % Survival                           | 90 / 65                        | 90 / 100                |  |
| 96 hr % Survival                           | 90 / 43                        | not evaluated           |  |
| 7 day % Survival                           | 88 / 35                        | not evaluated           |  |
| Mean Biomass (mg/organism)                 | 0.276 / 0.097                  | not evaluated           |  |
| Mean Fecundity (%)                         | 76 / 53                        | not evaluated           |  |
| Apr. 15-21, 2014                           |                                |                         |  |
| 48 hr % Survival                           | 100 / 65                       | 100 / 100               |  |
| 96 hr % Survival                           | 100 / 40                       | 100 / 100               |  |
| 7 day % Survival                           | 98 / 10                        | 98 / 100                |  |
| Mean Biomass (mg/organism)                 | 0.271 / 0.012                  | 0.925 / 1.089           |  |
| Mean Fecundity (%)                         | 27 / 0                         | not evaluated           |  |
| Sep. 14-19, 2014                           |                                |                         |  |
| 48 hr % Survival                           | 100 / 100                      | 100 / 100               |  |
| 96 hr % Survival                           | 100 / 98                       | 100 / 100               |  |
| 7 day % Survival                           | 100 / 93                       | 100 / 100               |  |
| Mean Biomass (mg/organism)                 | 0.405 / 0.351                  | 0.843 / 0.928           |  |
| Mean Fecundity (%)                         | 97 / 55                        | not evaluated           |  |
| Dec. 02-08, 2014 *                         |                                |                         |  |
| 48 hr % Survival                           | 93 / 90                        | 100 / 100               |  |
| 96 hr % Survival                           | 90 / 70                        | 100 / 100               |  |
| 7 day % Survival                           | 80 / 35                        | 100 / 100               |  |
| Mean Biomass (mg/organism)                 | 0.285 / 0.111                  | 0.692 / 0.796           |  |
| Mean Fecundity (%)                         | 75 / 40                        | not evaluated           |  |
| Mar. 10-16, 2015 *                         |                                |                         |  |
| 48 hr % Survival                           | 100 / 83                       | 100 / 100               |  |
| 96 hr % Survival                           | 98 / 65                        | 100 / 100               |  |
| 7 day % Survival                           | 90 / 55                        | 100 / 100               |  |
| Mean Biomass (mg/organism)                 | 0.264 / 0.150                  | 0.587 / 0.659           |  |
| Mean Fecundity (%)                         | 17/0                           | not evaluated           |  |
| Jun. 23-29, 2015 *                         |                                |                         |  |
| 48 hr % Survival                           | 93 / 78                        | 100 / 100               |  |
| 96 hr % Survival                           | 88 / 63                        | 100 / 100               |  |
| 7 day % Survival                           | 80 / 60                        | 100 / 100               |  |
| Mean Biomass (mg/organism)                 | 0.272 / 0.164                  | 1,110 / 1,177           |  |
| Mean Fecundity (%)                         | 35 / 17                        | not evaluated           |  |
| Sep. 8-14, 2015 *                          |                                |                         |  |
| 48 hr % Survival                           | 98 / 20                        | 100 / 100               |  |
| 96 hr % Survival                           | 95 / 8                         | 100 / 100               |  |
| 7 day % Survival                           | 93 / 3                         | 100 / 100               |  |
| Mean Biomass (mg/organism)                 | 0.277 / 0.004                  | 0.829 / 0.866           |  |
| Mean Fecundity (%)                         | 60 / 0                         | not evaluated           |  |

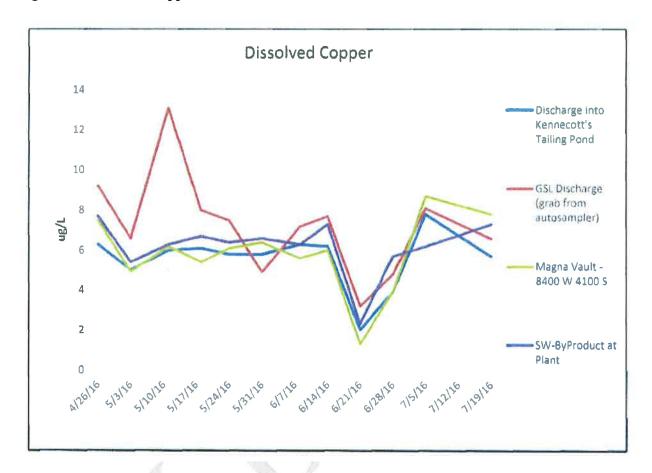

# Attachment 1

Results of JVWCD Copper source isolation study

# Characterization of intermittent high copper levels in composite effluent samples collected for investigative WET tests of JVWCD RO effluent

Four sample sites, within Jordan Valley's effluent system were sampled for copper beginning in April, 2016. A total of 15 sampling events occurred, including during collection of composite sampling conducted in May, June and July 2016. The data presented in Figure 1 demonstrates that the intermittent copper found during previous WET testing is not representative of the actual discharge water and suggests that copper is being released from the brass pressure reducer that is necessary to make the auto sampler work on a high pressure line.






# Attachment 2

Results of Mock effluent Studies of July and September 2016. Effluent samples from Jordan Valley Water Conservancy District.

|  | * |  |  |
|--|---|--|--|
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |

Figure 2- Dissolved Copper



|  |  | ¥ |   |  |
|--|--|---|---|--|
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   | 3 |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |
|  |  |   |   |  |



## RESULTS OF A MOCK EFFLUENT STUDY WITH Americamysis bahia ON AN AUGUST 2016 EFFLUENT SAMPLE FROM JORDAN VALLEY WATER CONSERVANCY DISTRICT

Prepared for:

Jordan Valley Water Conservancy District 15305 South 3200 West Herriman, Utah 84065

Prepared by:

EA Engineering, Science, and Technology, Inc., PBC
231 Schilling Circle
Hunt Valley, Maryland 21031
For questions, please contact Michael Chanov
ph: 410-584-7000

Results relate only to the items tested or to the samples as received by the laboratory.

This report shall not be reproduced, except in full, without written approval of EA Engineering, Science, and Technology, Inc., PBC

This report contains 15 pages plus 3 attachments.

Wayne L. McCalloch Laboratory Director Date

13 September 2016



#### 1. INTRODUCTION

At the request of the Jordan Valley Water Conservancy District, EA Engineering, Science, and Technology performed a mock effluent study to confirm the conclusions of previous toxicity identification evaluations (TIEs), which indicated an ion imbalance of dissolved ions as the major toxicants of concern contributing to unsatisfactory whole effluent toxicity test performance. This study was conducted on Outfall 001 effluent discharged from Jordan Valley Water Conservancy District's (JVWCD) Southwest Groundwater Treatment Plant (SWGWTP), using *Americamysis bahia* (opossum shrimp) as the test species. Copies of the chain of custody, raw data sheets and statistics are included in Attachment I, and the results of the chemistry analyses are presented in Attachment II. The Report Quality Assurance Record is included in Attachment III.

#### 2. MATERIALS AND METHODS

#### 2.1 EFFLUENT SAMPLE COLLECTION

Five gallons of Outfall 001 effluent were collected from the Jordan Valley Water Conservancy District's West Jordan Facility on 7-8 August 2016. The sample was shipped to EA's Ecotoxicology Laboratory in Hunt Valley, Maryland via overnight express carrier. Upon receipt at EA on 9 August 2016 the sample was visually inspected and assigned EA Ecotoxicology Laboratory accession number AT6-391. The sample was stored in the dark at 4°C when not being used for testing. Table 1 summarizes sample collection, receipt information and selected chemical analyses measured on the effluent as described in APHA (2012) and US EPA (2002).

#### 2.2 TEST ORGANISMS

Americamysis bahia (Opossum shrimp) were acquired from Aquatic BioSystems in Fort Collins, Colorado. Lot AB-896 (4 days old) was received at EA on 12 August 2016 and were held until 15 August 2016 for the mock effluent study. The organisms were 7 days old at test initiation.

#### 2.3 DILUTION WATER

The dilution water used in the acute toxicity tests was artificial seawater, prepared by mixing Crystal Sea synthetic sea salts with laboratory water to a final salinity of 30 ppt. The source of the laboratory water was the City of Baltimore municipal tap water that was passed through a high-capacity, activated carbon filtration system. This synthetic seawater formulation has proven acceptable for aquatic toxicological studies, and has been used successfully at EA for maintaining multigeneration cultures of test organisms, and for holding healthy populations of estuarine and marine species. Batches of artificial seawater were aerated and aged at least 24 hours prior to use in testing.

#### 2.4 MOCK EFFLUENT STUDY PROCEDURES

Upon receipt of the sample, the Outfall 001 effluent sample was salinity adjusted with US EPΛ GP2 formulation (US EPΛ 2002). Following salinity adjustment the sample was sent via overnight carrier to TestAmerica, Pittsburgh, Pennsylvania for chemical analyses, including a rapid turn-around time ion scan. It was determined that salinity adjustment prior to chemical analysis was required, due to Outfall 001 being deficient in sodium, relative to the concentrations of other ionic constituents.

The results of the chemical analyses performed on the salinity adjusted Outfall 001 sample and the prepared mock effluent sample for the mock effluent study can be found in Table 2. Using the results of the ion scan, formulations were developed for the mock effluent study using the Gas Research Institute (GRI) Salinity Toxicity Relationship (STR) Model (GRI 1999) (Table 3). A mock effluent was prepared by matching concentrations of seven major ions: calcium, sodium, potassium, magnesium, chloride, sulfate and bicarbonate. The mock effluent sample was prepared by adding reagent grade salts to deionized water. The salts utilized to prepare the mock effluent were NaCl (sodium chloride), Na<sub>2</sub>SO<sub>4</sub> (sodium sulfate), KCl (potassium chloride), NaBr (sodium bromide), Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub> · 10H<sub>2</sub>O (sodium borate), MgCl<sub>2</sub> · 6H<sub>2</sub>O (magnesium chloride), CaCl<sub>2</sub> · 2H<sub>2</sub>O (calcium chloride), SrCl<sub>2</sub> · 6H<sub>2</sub>O (strontium chloride) and NaHCO<sub>3</sub> (sodium bicarbonate). Following mock effluent sample preparation, the salinity adjusted Outfall 001 effluent and the mock effluent samples were tested concurrently.

# 2.5 TOXICITY TEST OPERATIONS AND PERFORMANCE

The chronic toxicity tests on the mock effluent and Outfall 001 samples were performed in accordance with US EPA (2002) and EA's protocols (EA 2013) for *A. bahia* (AB-CH-03). Test concentrations were prepared by measuring small volumes of sample in glass pipettes, adding to a graduated cylinder, and bringing to volume with dilution water. All tests were performed using the target temperature of 26±1°C and a 16-hour light/8-hour dark photoperiod. The chronic toxicity tests consisted of three exposure concentrations (100, 75, 50 percent effluent) and a

laboratory dilution water control of synthetic seawater.

The *A. bahia* chronic toxicity test was performed with eight replicates per test concentration, with five organisms per replicate. Test solutions were renewed daily by carefully siphoning the old solution from each chamber and replacing it with freshly prepared test solution. Water quality parameters (temperature, pH, dissolved oxygen, and salinity) were monitored daily before and after renewal for each test. If dissolved oxygen in any test chamber fell below 4 mg/L, then all test chambers were gently aerated, or other corrective action was implemented (e.g., reducing solution volume). The organisms were fed *Artemia* nauplii twice per day.

At test termination, each organism was viewed under a microscope to determine its sex and, in the case of females, the number of individuals with eggs in the oviducts or brood pouch. Growth of the surviving organisms is expressed as mean biomass. Surviving organisms from each replicate test chamber were rinsed with deionized water and placed in pre-tared weigh pans, one pan for each replicate. The pans were dried overnight at 100°C in a drying oven. The tared weight of the pan (pan only) was subtracted from the total weight (pan and dried opossum shrimp) to yield a net organism dry weight. Mean dry weights were calculated based on the number of surviving organisms (to evaluate the test acceptability criterion), and based on the original number of exposed organisms (biomass).

Survival, biomass, and fecundity were analyzed using appropriate statistical analyses according to EPA guidance (US EPA 2002) to determine if any test concentration was significantly (p=0.05) different from the control. The short-term chronic test endpoints are reported as the No Observed Effect Concentration (NOEC), the Lowest Observed Effect Concentration (LOEC), and the Chronic Value (ChV). The 25 percent inhibition concentration (IC25) was calculated, with Chronic Toxic Units (TUc) also calculated for each IC25 value. The term Chronic Toxic Unit is defined as: Chronic Toxic Unit (TUc) = 100/IC25. In addition, the 48 and 96-hour LC50 values were calculated for each chronic toxicity test.

The definitions of these endpoints follow US EPA (2002) and are as follows:

- The <u>NOEC</u> is the highest concentration of toxicant to which organisms are exposed in a full or partial life-cycle test, which causes no statistically significant adverse effect on the observed parameter (usually hatchability, survival, growth, and/or reproduction).
- The <u>LOEC</u> is the lowest concentration of toxicant to which organisms are exposed in a full or partial life-cycle test, which causes a statistically significant adverse effect on the observed parameters (usually hatchability, survival, growth, and/or reproduction).
- The <u>ChV</u> is a value lying between the NOEC and the LOEC, derived by calculating the geometric mean of the NOEC and LOEC. The term is sometimes used interchangeably with Maximum Acceptable Toxicant Concentration.
- The <u>IC</u> value is a point estimate of the toxicant concentration that causes a given percent reduction in a non-quantal biological measurement such as fecundity or growth.
- The <u>LC50</u> (Median Lethal Concentration) is an estimate of the effluent concentration which is lethal to 50 percent of the test organisms in the time period prescribed by the test.

#### 2.6 REFERENCE TOXICANT TEST

In conformance with EA's quality assurance/quality control program, monthly reference toxicant tests using potassium chloride (KCl) were performed on the test species. The reference toxicant test data for *A. bahia* was supplied by the organism vendor.

#### 2.7 ARCHIVES

Original data sheets, records, memoranda, notes, and computer printouts are archived at EA's Office in Hunt Valley, Maryland. These data will be retained for a period of 5 years unless Jordan Valley Water Conservancy District requests a longer period of time.

#### 3. RESULTS AND DISCUSSION

The results of the toxicity test conducted with the salinity adjusted Outfall 001 effluent sample are summarized in Table 4. At 48 hours, there was 3 and 30 percent survival in the 100 and 75 percent effluent concentrations, respectively, while the 50 percent effluent concentration had 90 percent survival. The dilution water control had 93 percent survival. The 48-hour LC50 was 69.2 percent effluent. At 96 hours, there was 0 and 23 percent survival in the 100 and 75 percent effluent concentrations, respectively, while the 50 percent effluent concentration had 90 percent survival. The dilution water control had 88 percent survival. The 96-hour LC50 was 66.9 percent effluent. At test termination on day 7, the 100 and 75 percent effluent concentrations had 0 and 15 percent survival, respectively, and were significantly less (p=0.05) than the control, which had 88 percent survival. There was 73 percent survival in the 50 percent effluent concentration, which was not statistically different from the control. Mean biomass in the 50 percent effluent concentration was 0.190 mg/organism, which was significantly different than the control mean biomass of 0.253 mg/organism. Fecundity could not be used as an endpoint due to less than 50 percent (27 percent females with eggs) of the control females producing eggs. The NOEC for the chronic toxicity test, based on biomass as the most sensitive chronic endpoint, was <50 percent effluent. The LOEC was 50 percent effluent and the ChV was <50 percent effluent. The IC25 (for biomass) was 49.7 percent effluent.

The results of the toxicity test conducted on the mock effluent, which was designed to mimic the salinity adjusted Outfall 001 effluent, were similar to the same as the Outfall 001 toxicity test, and are presented in Table 5. At 48 hours, there was 58 and 70 percent survival in the 100 and 75 percent effluent concentrations, respectively. The 50 percent effluent concentration had 95 percent survival, while the dilution water control had 98 percent survival. The 48-hour LC50 was >100 percent effluent. At 96 hours, there was 28 and 58 percent survival in the 100 and 75 percent effluent concentrations, respectively, while the 50 percent effluent concentrations had 90 percent survival. The dilution water control had 98 percent survival. The 96-hour LC50 was 81.6 percent effluent. At test termination on day 7, the 100 and 75 percent effluent concentrations had 28 and 58 percent survival, respectively, and were significantly less (p=0.05)

than the control, which had 98 percent survival. There was 90 percent survival in the 50 percent effluent concentration, which was not statistically different from the control. Mean biomass in the 50 percent effluent concentration was 0.271 mg/organism, which was significantly different than the control mean biomass of 0.323 mg/organism. Fecundity could not be used as an endpoint due to less than 50 percent (20 percent females with eggs) of the control females producing eggs. The NOEC for the chronic toxicity test, based on biomass as the most sensitive chronic endpoint, was <50 percent effluent. The LOEC was 50 percent effluent and the ChV was <50 percent effluent. The IC25 (for biomass) was 56.0 percent effluent.

In summary, the results of the chemical analyses for the salinity adjusted Outfall 001 and mock effluent (Table 2) indicated that the ionic composition of the two samples was very similar, with the exception of calcium which was lower in the mock effluent. It should be noted that the TSS measurements for the mock were substantially higher than the salinity adjusted Outfall 001 sample indicating the possible presence of undissolved salts (most likely calcium). The presence of other potential toxicants (i.e. metals) was absent from the mock effluent sample, and as expected, were present in the salinity adjusted Outfall 001 sample. Even with the presence of other potential toxicants in the salinity adjusted Outfall 001 sample and the differences in calcium, the 7-day IC25 for biomass (56.0 percent effluent) in the mock effluent prepared to mimic the salinity adjusted Outfall 001 ion scan was similar to the 7-day IC25 for the Outfall 001 effluent (49.7 percent effluent). The point estimates (e.g. LC50, IC25) for the mock effluent were more variable for the survival endpoint, compared to the ones generated for the salinity adjusted Outfall 001 at 48, 96 and 7 days, possibly due to the lower calcium measurement in the mock effluent. However, even though we see differences in the survival values, Jordan Valley would have been unable to have an acceptable test result based on the permit required IC25 of >100 percent effluent in both samples. In summary, the results from this study support the conclusions of the Phase I chronic TIEs conducted for Jordan Valley Water Conservancy District, which indicated that ion imbalance of dissolved ions was the major toxicants of concern contributing to unsatisfactory whole effluent toxicity test performance.

A monthly reference toxicant test was conducted on *A. bahia* by the organism supplier using potassium chloride (KCl) as the reference toxicant. The 7-day IC25 for the August 2016 *A. bahia* reference toxicant test was 599 mg/L KCl. The acceptable control chart limits for *A. bahia* were 388 – 734 mg/L KCl.

#### REFERENCES

- American Public Health Association, American Water Works Association, Water Environment Federation. 2012, Standard Methods for the Examination of Water and Wastewater. 22<sup>nd</sup> Edition. APHA, Washington, D.C.
- EA. 2013. EA Ecotoxicology Laboratory Quality Assurance and Standard Operating Procedures Manual. EA Manual ATS-102. Internal document prepared by EA's Ecotoxicology Laboratory, EA Engineering, Science, and Technology, Inc., Hunt Valley, Maryland.
- Gas Research Institute. 1999. Marine Salinity Toxicity Relationship Model. Chicago, Illinois.
- US EPA. 2002. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Marine and Estuarine Organisms. Third Edition. EPA-821-R-02-014. U.S. Environmental Protection Agency, Office of Water, Washington, D.C.

# TABLE 1 SUMMARY OF SAMPLE COLLECTION, RECEIPT DATA AND WATER QUALITY PARAMETERS MEASURED ON AN OUTFALL 001 EFFLUENT FROM JORDAN VALLEY WATER CONSERVANCY DISTRICT

Sample Description:

Outfall 001

EA Accession Number:

AT6-391

Sample Collection:

1400, 7 August 2016 to 0802, 8 August 2016

Sample Receipt:

1035, 9 August 2016

< 0.01

#### Chemical Analyses:

Total Residual Chlorine (TRC):

Temperature (°C): 0.7Alkalinity (mg/L as CaCO<sub>3</sub>): 786Hardness (mg/L as CaCO<sub>3</sub>): 2,336Conductivity ( $\mu$ S/cm): 5,573Salinity (ppt): 3.0pH: 8.0

CHEMICAL ANALYSES PERFORMED ON THE SALINITY ADJUSTED TABLE 2 OUTFALL 001 AND MOCK EFFLUENT STUDY SAMPLES

| ANALYTE                                    | UNITS     | OUTFALL 001<br>(AT6-391) | MOCK EFFLUENT<br>(AT6-407) |
|--------------------------------------------|-----------|--------------------------|----------------------------|
| Sodium                                     | mg/L      | 8,000                    | 8,400                      |
| Potassium                                  | mg/L      | 410                      | 480                        |
| Calcium                                    | mg/L      | 980                      | 720                        |
| Magnesium                                  | mg/L      | 1,500                    | 1,300                      |
| Strontium                                  | mg/L      | 10.0                     | 9.9                        |
| Barium                                     | mg/L      | $0.26^{(a)}$             | $0.079^{(a)}$              |
| Chloride                                   | mg/L      | 17,000                   | 16,000                     |
| Bicarbonate                                | mg/L      | 1,100                    | 800                        |
| Sulfate                                    | mg/L      | 3,200                    | 5,600                      |
| Bromide                                    | mg/L      | 85                       | 93                         |
| Boron                                      | mg/L      | 2.9                      | 1.2 <sup>(a)</sup>         |
| Alkalinity - Carbonate (CO <sub>3</sub> )  | mg/L      | <2.4                     | <4.0                       |
| Alkalinity - Hydroxide (OH)                | mg/L      | <1.4                     | <4.0                       |
| Alkalinity - Total (as CaCO <sub>3</sub> ) | mg/L      | 870                      | 660                        |
| Hardness - Total (as CaCO <sub>3</sub> )   | mg/L      | 8,700                    | 7,100                      |
| Fluoride                                   | mg/L      | $0.6^{(b)}$              | <1.2                       |
| Nitrate as N                               | mg/L      | 9.4 <sup>(b)</sup>       | <1.1                       |
| Nitrite as N                               | mg/L      | <0.1 <sup>(b)</sup>      | <1.2                       |
| Phosphate, ortho as P                      | mg/L      | $0.6^{(b)}$              | <7.7                       |
| Total Dissolved Solids (TDS)               | mg/L      | 36,000                   | 35,000                     |
| Total Suspended Solids (TSS)               | mg/L      | 2.2                      | 170                        |
| Antimony, Total                            | μg/L      | < 3.0                    | 3.3 <sup>(a)</sup>         |
| Arsenic, Total                             | μg/L      | 19                       | < 0.74                     |
| Beryllium, Total                           | μg/L      | < 0.64                   | < 0.64                     |
| Cadmium, Total                             | μg/L      | <1.6                     | <1.6                       |
| Chromium, Total                            | μg/L      | 24                       | 2.8                        |
| Copper, Total                              | μg/L      | 59                       | <4.0                       |
| Iron, Total                                | μg/L      | <94                      | <94                        |
| Lead, Total                                | μg/L      | 3.1                      | $3.5^{(a)}$                |
| Mercury, Total                             | μg/L      | 2.7                      | 4.8                        |
| Manganese, Total                           | μg/L      | 15 <sup>(a)</sup>        | 26 <sup>(a)</sup>          |
| Nickel, Total                              | μg/L      | 20                       | 4.4 <sup>(a)</sup>         |
| Selenium, Total                            | μg/L      | 31                       | <3.2                       |
| Silver, Total                              | μg/L      | < 0.88                   | < 0.88                     |
| Thallium, Total                            | μg/L      | < 0.24                   | < 0.24                     |
| I Halliulli, I Otal                        | PV 25, 22 | ·                        | 19 <sup>(a)</sup>          |

<sup>(</sup>a) Results less than reporting limit but greater than or equal to MDL.
(b) Analyte not measured by EA contracted analytical laboratory. Values reported were performed by alternate laboratory on unadjusted effluent.

TABLE 3 FORMULATIONS DEVELOPED FOR THE MOCK EFFLUENT STUDY USING THE GRI MARINE SALINITY TOXICITY RELATIONSHIP PROGRAM

| Salt                      | Mock Effluent(g/L) | Mock Effluent<br>(g/20L) |
|---------------------------|--------------------|--------------------------|
| NaCl                      | 16.554             | 331.07                   |
| $Na_2SO_4$                | 4.7330             | 94.659                   |
| KCl                       | 0.7817             | 15.634                   |
| NaBr                      | 0.1094             | 2.1889                   |
| $Na_2B_4O_7 \cdot 10H_2O$ | 0.0071             | 0.14249                  |
| $MgCl_2 \cdot 6H_2O$      | 12.543             | 250.86                   |
| $CaCl_2 \cdot 2H_2O$      | 3.5946             | 71.891                   |
| $SrCl_2 \cdot 6H_2O$      | 0.0304             | 0.6086                   |
| NaHCO <sub>3</sub>        | 1.4618             | 29.236                   |

TABLE 4 RESULTS OF Americamysis bahia TOXICITY TEST CONDUCTED ON A 7-8
AUGUST 2016 OUTFALL 001 EFFLUENT SAMPLE FROM JORDAN
VALLEY WATER CONSERVANCY DISTRICT

Test Species:

Americamysis bahia (opossum shrimp)

Client Name:

Jordan Valley Water Conservancy District

Sample Description:

Outfall 001

EA Accession Number:

AT6-391

Sample Dates:

7-8 August 2016

EA Test Number:

TN-16-247

| Test Concentration (% effluent) | 48-Hour<br>% Survival | 96-Hour<br>% Survival | 7-Day<br>% Survival | Mean Biomass as<br>mg/organism<br>(±S.D.) | Mean Fecundity as females with eggs (%) |
|---------------------------------|-----------------------|-----------------------|---------------------|-------------------------------------------|-----------------------------------------|
| Control                         | 93                    | 88                    | 88                  | 0.253 (±0.077)                            | 27                                      |
| 50                              | 90                    | 90                    | 73                  | $0.190 (\pm 0.048^{(a)})$                 | 6                                       |
| 75                              | 30 <sup>(a)</sup>     | 23 <sup>(a)</sup>     | 15 <sup>(a)</sup>   | $0.037 (\pm 0.041)^{(b)}$                 | 0                                       |
| 100                             | 3 <sup>(a)</sup>      | $0^{(a)}$             | $0^{(a)}$           | $0.000 (\pm 0.000)^{(b)}$                 | 0                                       |

Acute and Chronic Endpoints (expressed as percent effluent)

| 48-Hour LC50:          | 69.2 (60.5 – 74.6) <sup>(c)</sup> |
|------------------------|-----------------------------------|
| 96-Hour LC50:          | 66.9 (63.7 – 70.1)                |
| 7 Day MOEC (Survival): | 50                                |

| 7-Day NOEC (Survival): | 50                |
|------------------------|-------------------|
| 7-Day LOEC (Survival): | 75                |
| 7-Day ChV (Survival):  | 61.2              |
| 7-Day IC25 (Survival): | 53.0(36.5 - 57.8) |

| T.D. MODG (D')        | < 50                        |
|-----------------------|-----------------------------|
| 7-Day NOEC (Biomass): | <30                         |
| 7-Day LOEC (Biomass): | 50                          |
| 7-Day ChV (Biomass):  | < 50                        |
| 7-Day IC25 (Biomass): | 49.7 (NC) <sup>(d)(e)</sup> |

| Water Quality Parameters on Test Solutions | Range       |
|--------------------------------------------|-------------|
| Temperature (°C):                          | 25.0 - 25.9 |
| pH:                                        | 7.0 - 8.5   |
| Dissolved Oxygen (mg/L):                   | 4.0 - 7.1   |
| Salinity (ppt):                            | 28.8 - 31.2 |

(a) Significantly different (p=0.05) from the control.

(c) Values in parentheses represent the 95 percent confidence limits for the dataset.

(d) The 95 percent confidence limits are not calculable for the dataset.

(e) Calculated IC25 is below the lowest test concentration.

<sup>(</sup>b) Concentrations which have statistically significant mortality are omitted from hypotheses testing for biomass and fecundity, per US EPA guidance.

TABLE 5 RESULTS OF Americamysis bahia TOXICITY TEST CONDUCTED ON A MOCK EFFLUENT SAMPLE PREPARED TO MIMIC OUTFALL 001 EFFLUENT FROM JORDAN VALLEY WATER CONSERVANCY DISTRICT

Test Species:

Americamysis bahia (opossum shrimp)

Client Name:

Jordan Valley Water Conservancy District

Sample Description:

Mock Effluent

EA Accession Number:

AT6-407

Preparation Date:

15 August 2016

EA Test Number:

TN-16-248

| Test Concentration (% effluent) | 48-Hour<br>_% Survival | 96-Hour<br>_% Survival | 7-Day<br>% Survival | Mean Biomass as mg/organism (±S.D.) | Mean Fecundity<br>as females with<br>eggs (%) |
|---------------------------------|------------------------|------------------------|---------------------|-------------------------------------|-----------------------------------------------|
| Control                         | 98                     | 98                     | 98                  | $0.323 (\pm 0.031)$                 | 20                                            |
| 50                              | 95                     | 90                     | 90                  | $0.271 (\pm 0.051)^{(a)}$           | 10                                            |
| 75                              | 70 <sup>(a)</sup>      | 58 <sup>(a)</sup>      | 58 <sup>(a)</sup>   | $0.152 (\pm 0.083)^{(b)}$           | 7                                             |
| 100                             | 58 <sup>(a)</sup>      | 28 <sup>(a)</sup>      | 28 <sup>(a)</sup>   | $0.074 (\pm 0.107)^{(b)}$           | 11                                            |

Acute and Chronic Endpoints (expressed as percent effluent)

| and mine contente Enterpoints (expr | essed as percent criticity        |
|-------------------------------------|-----------------------------------|
| 48-Hour LC50:                       | >100 (NC) <sup>(c)</sup>          |
| 96-Hour LC50:                       | 81.6 (73.4 – 91.0) <sup>(d)</sup> |
| 7-Day NOEC (Survival):              | 50                                |
| 7-Day LOEC (Survival):              | 75                                |
| 7-Day ChV (Survival):               | 61.2                              |
| 7-Day IC25 (Survival):              | 63.0 (56.3 - 75.0)                |
| 7-Day NOEC (Biomass):               | <50                               |
| 7-Day LOEC (Biomass):               | 50                                |
| 7-Day ChV (Biomass):                | < 50                              |
| 7-Day IC25 (Biomass):               | 56.0 (46.4 – 64.1)                |
|                                     |                                   |

| Water Quality Parameters on Test Solutions | Range       |
|--------------------------------------------|-------------|
| Temperature (°C):                          | 25.0 - 25.9 |
| pH:                                        | 7.0 - 8.5   |
| Dissolved Oxygen (mg/L):                   | 4.0 - 7.1   |
| Salinity (ppt):                            | 28.3 - 30.9 |

<sup>(</sup>a) Significantly different (p=0.05) from the control.

<sup>(</sup>b) Concentrations which have statistically significant mortality are omitted from hypotheses testing for biomass and fecundity, per US EPA guidance.

<sup>(</sup>c) The 95 percent confidence limits are not calculable for the dataset.

<sup>(</sup>d) Values in parentheses represent the 95 percent confidence limits for the dataset.

# ATTACHMENT I

Chain of Custody, Data and Statistical Analyses (33 pages)



# ® EA Engineering, Science, and Technology

EA Ecotoxicology Laboratory 231 Schilling Circle Hunt Valley, Maryland 21031 Telephone: 410-584-7000 Fax: 410-584-1057



| Sample Shi | pped By: ( | circle) |  |
|------------|------------|---------|--|
|            |            |         |  |
| Fed Ex     | UPS        | Other:  |  |

Client: \_\_\_\_\_\_ Project No.:\_\_\_\_\_\_

NPDES Number: \_\_\_\_\_ Client Purchase Order Number: \_\_\_\_\_\_

Tracking #: 8095 1033 6849

City/State Collected: Salt Lake City, U

#### PLEASE READ SAMPLING INSTRUCTIONS ON BACK OF FORM

| Accession<br>Number<br>(office use only) | Grab       | Composite                 | Coll<br>Start<br>Date/Time | ection<br>End<br>Date/Time | Sample Description<br>(including Site, State)<br>Number, and Outfall Number, | tion      | Number/Volume of Container |
|------------------------------------------|------------|---------------------------|----------------------------|----------------------------|------------------------------------------------------------------------------|-----------|----------------------------|
| Atto-391                                 |            | _X                        |                            | 8/8/16<br>0802 AM          | Outfall ool                                                                  | e         | 2-2.5 gg/,                 |
|                                          | 17010-100- |                           |                            |                            |                                                                              |           |                            |
|                                          |            |                           |                            | *                          |                                                                              |           |                            |
|                                          |            |                           |                            |                            |                                                                              | -         |                            |
| Sampled By:                              | <u></u>    | 50 http://doi.org/10.100/ | /Time                      |                            | Received By:                                                                 | Date/Time |                            |

| Sampled By:             | Dațe/Time   | Received By:           | Date/Time                     |
|-------------------------|-------------|------------------------|-------------------------------|
| 24WBIF                  | 8/8/16 1151 |                        |                               |
| Sampler's Printed Name: | Title:      | Relinquished By:       | Date/Time                     |
| aven material           | WQ Tech     | W.                     |                               |
| Relinquished By:        | 818/16 [315 | Received By Laboratory | Date/Time<br>8   9    (6 1035 |
|                         |             |                        |                               |

Was Sample Chilled During Collection? (6) No

Comments:

Sample Collection Parameters

Visual Description:

Temperature (°C): Q 4

pH: **8,44**TRC (mg/L):

Other:



# SAMPLE CHECK-IN FOR TESTING

| Client: Joydan Valley        |  |
|------------------------------|--|
| EA Accession Number: ATU-39) |  |

| Parameter          | Acceptable<br>Range | Measurement* | Date   | Time | Initials |
|--------------------|---------------------|--------------|--------|------|----------|
| Temperature (°C)   | <u>≤</u> 4          | 0-7          | 819116 | 1040 | YB.      |
| Is ice present?    | _                   | yes          | 1      |      |          |
| рН                 | 6.0-9.0             | 8.0          |        |      |          |
| TRC (mg/L)         | <0.01               | TO:01        |        |      |          |
| Visual Description |                     | Clear        | 1      |      | 4        |

<sup>\*</sup>If outside acceptable range, contact project manager.

# OTHER PARAMETERS IF REQUIRED (SEE STUDY PLAN):

| Parameter                  | Acceptable<br>Range | (*)          | Date | Time | Initials |
|----------------------------|---------------------|--------------|------|------|----------|
| Ammonia (preserve aliquot) | -                   |              |      |      |          |
| Parameter                  | Acceptable<br>Range | Measurement* | Date | Time | Initials |
| Salinity (ppt)             | _                   |              |      |      |          |



# **TOXICITY TEST SET-UP BENCH SHEET**

| Client: Jordan Valley     | •:        |
|---------------------------|-----------|
| QC Test Number: TN-16-247 | •<br>•    |
| TEST ORGANISM IN          | FORMATION |

| TEST                        | ORGANISM INFORMATION                                |
|-----------------------------|-----------------------------------------------------|
| Common Name: Opossum shrimp | Adults Isolated (Time, Date):                       |
| Scientific Name: A. bahia   | Neonates Pulled & Fed (Time, Date):                 |
| Lot Number: <u>A6- 896</u>  | Acclimation: <24 hrs Age: 7 days                    |
| Source: EA                  | Culture Water (T/S): <u>25.9</u> °C <u>30.2</u> ppt |

| TEST INITIATION |              |          | CONC                  | NTRATION SERI                       | ES                                    |                                  |
|-----------------|--------------|----------|-----------------------|-------------------------------------|---------------------------------------|----------------------------------|
| Date<br>8/15/16 | Time         | Initials | Activity              | Test Concentration Mod Hard Control | Volume<br><u>Test Material</u><br>0ml | Final<br><u>Volume</u><br>1200ml |
| 1               | 1116 1040 2B |          | Dilutions Made        | 50%                                 | 600ml                                 |                                  |
| ł               |              |          |                       | 75%                                 | 900ml                                 |                                  |
| 1               | V            | 1        | Test Vessels Filled   | 100%                                | 1200ml                                |                                  |
|                 | 1315         | 1        | Organisms Transferred |                                     |                                       | $\downarrow$                     |
|                 | 1320         | MAL      | Head Counts           |                                     |                                       | 1                                |

|                      | A PROPERTY OF A PARTY | * INTE      | RMEDIATE        | DILUTION P          | REPAR      | RATION AND FE     | EDING           | to a the same      |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|---------------------|------------|-------------------|-----------------|--------------------|
| DILUTION PREPARATION |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                 |                     |            |                   | FEEDING         |                    |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                 |                     | Food:      | Artemia           |                 |                    |
| _                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                 | Sample /            |            | Time, Initials,   | Time, Initials, | Time, Initials,    |
| <u>Day</u>           | <u>Date</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>Time</u> | <u>Initials</u> | <u>Diluent</u>      | <u>Day</u> | <u>Amount</u>     | <u>Amount</u>   | <u>Amount</u>      |
| 0                    | 8151Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1090        | <b>1</b> 33     | 406-3691<br>606-369 | 0          |                   |                 | 163038<br>500Ps    |
| 1                    | 8116116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0944        | M               | AT6-391<br>LDG-369  | 1          | - Edrops          | +72             | 50005              |
| 2                    | 8/17/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1145        | MJ              | ATG-391<br>LDG-369  | 2          | 26300B<br>5210PS  |                 | 1625 arg<br>Sdrcps |
| 3                    | 8/18/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1455        | MT              | 10634               | 3          | 58150B            |                 | 1510 NoT           |
| 4                    | 8/19/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0919        | MJ              | EDG369              | 4          | 50mm              |                 | 1530MG<br>5 WUS    |
| 5                    | 8/20/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0922        | MJ              | 476-391<br>EDG-369  | 5          | 0815145<br>5draps |                 | 153340<br>3dings   |
| 6                    | Blalic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 09460       | 38              | ATG-391<br>LDG-369  | 6          | 0815513<br>52005  |                 | 1620 518           |

373



Accession Number: LD6 ~ 349

**TOXICITY TEST OBSERVATION DATA SHEET** Beginning Date: 8 15/10 Time: 135 Project Number: 70005.15 **TEST ORGANISM** Common Name: Opossum shrimp Ending Date: १८२०। Time: यूरी Client: Jordan Valley Scientific Name: A. bahia QC Test Number: TN-16-247 Test Material: Effluent

Photoperiod: 16 \( \ell \), 8 \( \delta \) Light Intensity: 50 - 100 fc Test Duration: 7 days

TEST TYPE: Static / Flowthrough Test Container: \_\_\_ 4" Bowl Accession Number: Atta - 39 1 Test Volume: 150 ml Renewal )/ Non-renewal Dilution Water: 30 ppt CS

Number of Surviving Organisms Day 4 Day 5 Day 6 Day 7 Day 2 Day 3 Day 0 Day 1 Concentration Rep 5 5 5 Control 5 5 5 5 5 5 5 5 4 5 5 5 50% Α 5 5 5 В 5 4 5 4 \$ 5 E 5 5 G 5 1510MS 1533MJ 1314 MJ 1014 MJ 1411 MJ 1320MM 1009 MJ 1040 SB Time / Initials

8/22

ATS-T10 12/02/08



Accession Number: Line -349

**TOXICITY TEST OBSERVATION DATA SHEET** Project Number: Beginning Date: 8/15/16 70005.15 **TEST ORGANISM** Time: 1315 Client: \_\_\_\_ Jordan Valley Common Name: Opossum shrimp **Ending Date:** Time: [4]] QC Test Number: TN-16-247 Scientific Name: \_\_\_\_A. bahla Test Material: Effluent Accession Number: ATC ~311 TEST TYPE: Static Flowthrough Test Container: 4" Bowl Dilution Water: 30 ppt CS Renewal Non-renewal Test Volume: 150 ml

Photoperiod: 16 & 8 d Light Intensity: 50 - 100 fc

|               |              |         |         |         | Number of Sun | viving Organisms | 3       |         |         | ٦        |
|---------------|--------------|---------|---------|---------|---------------|------------------|---------|---------|---------|----------|
| Concentration | Rep          | Day 0   | Day 1   | Day 2   | Day 3         | Day 4            | Day 5   | Day 6   | Day 7   | 1        |
| 75%           | Α            | 5       | 4       | 2       | 2             | 2                | 1       | 2,      | 2       | ┨        |
|               | В            | 5       | 4       | 2       | i             | l                | 1       | 1       | 1       | ┨        |
|               | С            | 5       | 4       | 3       | 3             | 3                | 2       | 2       | 2       | ┨        |
|               | D            | 5       | 2       | 0       |               | -                |         |         | -       | ┨        |
|               | E            | 5       | 5       | 2       |               |                  | 0       | _       |         | ┨        |
|               | F            | 5       | ц       | 1       |               | 1                | 1       | ØI      |         | 3/z      |
|               | G            | 5       | 4       | O       | -             |                  | -       | 21      |         | -        |
|               | Н            | 5       | 4       | 2       |               | 1                |         | 0       |         |          |
| 100%          | A            | 5       | 3       | 0       |               |                  |         |         |         | 1        |
|               | В            | 5       | 3       | 1       | 0             |                  |         |         |         | 4        |
|               | С            | 5       | 2       | 0       |               |                  |         |         |         | -        |
|               | D            | 5       | 2       | 0       |               |                  |         |         |         | 4        |
|               | E            | 5       | 3       | 0       |               |                  |         |         |         |          |
|               | F            | 5       | 7       | 0       |               | _                |         |         |         |          |
|               | G            | 5       | 7       | 0       |               |                  |         |         |         |          |
|               | Н            | 5       | 3       | 0       |               |                  |         |         | ~       | $\dashv$ |
| Tim           | e / Initials | 1220 wu | CM P001 | 1314 MJ | 1510 Mg       | 1014 MJ          | 1533 MJ | 1040 75 | 1411 MT | ┨        |

EPA TEST METHOD: (FW) EPA 821-R-02-013/(SW) EPA 821-R-02-012(CHECK ONE): Fathead: (1000.0)\_\_\_\_

Cyprinodon: (1004.0)

Menidia: (1006.0)

Americamysis:(1007.0) X

OTHER:

**Test Duration:** 

7 days

ATS-T10 12/02/08



# REPRODUCTION AND WEIGHT DATA (Test Species: A. bahia

|                                                                        |       |        |                           |                              |         |                                                  |                         |                         | 24                                       | <u>Date</u>                             | <u>Time</u>                                | <u>Initials</u>                                   |
|------------------------------------------------------------------------|-------|--------|---------------------------|------------------------------|---------|--------------------------------------------------|-------------------------|-------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------------------------|
| Project                                                                | Numbe | ər: 7  | 0005.15                   |                              |         |                                                  | Orga                    | nisms sexed:            |                                          | 8/22/10                                 | 0 1411                                     | MJ                                                |
| -                                                                      |       |        |                           |                              |         |                                                  | Load                    | ed tins place           | d in oven:                               |                                         |                                            | MJ                                                |
|                                                                        |       |        |                           | 0-247                        |         |                                                  | Load                    | ed tins remov           | ved from oven:                           | 8/25/18                                 | 6 1446                                     | m                                                 |
|                                                                        |       |        | 111                       |                              |         |                                                  |                         | weighed:                |                                          | 8/25/18                                 | 1506                                       | M                                                 |
| Oven T                                                                 | emp ( | °C): S | tart: 96                  | 98°                          | End:    | 94°                                              |                         | Number:                 |                                          | Balan                                   | ce Number: PC                              | 115825                                            |
| Test<br>Conc.                                                          | Rep   |        | # Females<br>with<br>Eggs | # Females<br>without<br>Eggs | # Males | # Immatures                                      | C<br># Orgs.<br>Welghed | A<br>Wt. of Tin<br>(mg) | B<br>Wt. of Tin &<br>Dried Orgs.<br>(mg) | B-A<br>Total Dry<br>Org. Weight<br>(mg) | (B-A)/C<br>Mean Dry<br>Org. Weight<br>(mg) | (If applicable)<br>Mean Biomass<br>(mg/exp. org.) |
| Control                                                                | Α.    | 47     | 114                       | ,                            | 11      |                                                  | 5                       | 31.09                   | 3262                                     | 1.53                                    | 0.306                                      | 0.306                                             |
|                                                                        | В     | 65     |                           | 11                           |         |                                                  | 2                       | 29.83                   | 30,39                                    | 0.56                                    | 0.280                                      | 0.112                                             |
|                                                                        | С     | 71     |                           | *                            | JH1     |                                                  | 5                       | 29.31                   | 31.18                                    | 1-87                                    | 0.374                                      | 0.374                                             |
|                                                                        | D.    | 63     |                           | 1                            | 111     |                                                  | 4                       | 28,19                   | 29.25                                    | 1.06                                    | 0.265                                      | 0.212                                             |
|                                                                        | E     | 54     |                           | 11                           | (1)     |                                                  | 4                       | 31.34                   | 32.61                                    | 1.27                                    | 0.316                                      | 0.254                                             |
|                                                                        | F     | 68     | 1 .                       |                              | 1111    |                                                  | 5                       | 28.59                   | 30.05                                    | 1.76                                    | 0.212                                      | 0-212                                             |
|                                                                        | G     | 119    |                           | и                            | 111     |                                                  | 5                       | 29.21                   | 30.40                                    | 1.19                                    | 0.236                                      | 0-238                                             |
| Conc. R. Control A B C C D D E F C C D D C C C C C C C C C C C C C C C | Н     | 89     | 1                         | 111                          | 1       |                                                  | 5                       | 29.44                   | 30.63                                    | 1.19                                    | 0.236                                      | 0.238                                             |
| *                                                                      |       | 0.1    |                           |                              | \       |                                                  |                         |                         |                                          |                                         |                                            |                                                   |
| 50%                                                                    | Α     | 124    |                           | 11                           | - 11    |                                                  | 4                       | 30.11                   | 31.25                                    | 1-14                                    | 0.285                                      | 0.228                                             |
|                                                                        | В     | 133    |                           | 11                           | 11      |                                                  | 4                       | 31.55                   | 32.65                                    | 1.10                                    | 0.275                                      | 0.220                                             |
|                                                                        | С     | 73     |                           | mi                           |         |                                                  | 4                       | 29.75                   | 31.05                                    |                                         | 0.275                                      | 0.260                                             |
|                                                                        | D     | 56     |                           | 11                           | 1       |                                                  | .3                      | 28.82                   | 29.81                                    |                                         | 0.330                                      | 0.198                                             |
|                                                                        | E     | 49     |                           | 111                          |         |                                                  | 2                       | 29.97                   | 30.62                                    |                                         | 0.325                                      | 0.130                                             |
|                                                                        | F     | 108    |                           | 111                          | 11      |                                                  | 5                       | 28.34                   | 29.35                                    |                                         | 0.202                                      | 0.202                                             |
|                                                                        | G     | CH     | 1                         |                              | 1       | <del>                                     </del> | 3                       | 33,61                   | 34,33                                    |                                         | 0.240                                      | 0.144                                             |

Dry wt. calculations checked (date, initials): 9/7//6 | Biomass calculations checked (date, initials): 9/7//6

111

118

Н

29.95

30.62

0.67

0.168

0.134



# REPRODUCTION AND WEIGHT DATA (Test Species: A. bahia

| Project       | t Numb | er:     | 70005.15                  |                                         |         |             |                         |                         | l:                                       |                                         |                                                    | MJ                                                |
|---------------|--------|---------|---------------------------|-----------------------------------------|---------|-------------|-------------------------|-------------------------|------------------------------------------|-----------------------------------------|----------------------------------------------------|---------------------------------------------------|
| Client:       | Joi    | dan Va  | alley                     | 111111111111111111111111111111111111111 |         |             | Load                    | ded tins place          | ed in oven:                              | 8/22                                    | 16 1432                                            | 3 MJ                                              |
| QC Te         | st Num | ber: _  | TN- 1                     | 6-247                                   |         |             |                         |                         | ved from oven:                           |                                         |                                                    | Mm                                                |
| Tin Lot       |        |         |                           |                                         |         |             | Loaded tins             | weighed:                |                                          | 8/25/1                                  | 6 1506                                             | MM                                                |
| Oven 1        | Temp ( | (°C): S | tart:q                    | <u>ς°</u>                               | _End:   | 940         |                         |                         |                                          |                                         | nce Number: P(                                     | 0115825                                           |
| Test<br>Conc. | Rep    | Tin #   | # Females<br>with<br>Eggs | # Fernales<br>without<br>Eggs           | # Males | # Immatures | C<br># Orgs.<br>Welghed | A<br>Wt. of Tin<br>(mg) | B<br>Wt. of Tin &<br>Dried Orgs.<br>(mg) | B-A<br>Total Dry<br>Org. Weight<br>(mg) | ( <b>B-A)/C</b><br>Mean Dry<br>Org. Welght<br>(mg) | (if applicable)<br>Mean Biomass<br>(mg/exp. org.) |
| 75%           | Α      | 111     |                           | IJ                                      |         |             | 2                       | 29.36 00                | 29.85 29.66                              | 0,34                                    | 0.170                                              | 0.068                                             |
|               | В      | 59      |                           |                                         |         |             | - { *                   | 30.17                   | 30,48                                    | 0.31                                    | 0-051 0.31                                         | 0.062                                             |
|               | С      | 17      |                           | 11                                      |         |             | 2                       | 28.04                   | 28.55                                    | 0.51                                    | 0.225                                              | 0.102                                             |
|               | D      | _       |                           |                                         |         |             |                         |                         |                                          |                                         |                                                    |                                                   |
| ·-·           | E      | _       |                           |                                         |         |             |                         |                         |                                          |                                         |                                                    |                                                   |
|               | G      | 123     |                           | l                                       |         |             |                         | 30.41                   | 30.72                                    | 0.31                                    | 0.3/0                                              | 0.062                                             |
|               | Н      | -       |                           |                                         |         | -           |                         |                         |                                          |                                         |                                                    |                                                   |
|               | ''     |         |                           |                                         |         |             |                         |                         |                                          |                                         |                                                    |                                                   |
| 100%          | A      | _       |                           |                                         |         |             |                         |                         |                                          |                                         | •                                                  |                                                   |
|               | В      | _       |                           |                                         |         |             |                         |                         |                                          |                                         | -                                                  |                                                   |
|               | С      | ~       |                           |                                         |         |             |                         |                         |                                          |                                         |                                                    |                                                   |
|               | D      | -       |                           |                                         |         |             |                         | 2                       |                                          |                                         |                                                    |                                                   |
|               | Е      | -       |                           |                                         |         |             |                         |                         |                                          |                                         |                                                    | -                                                 |
|               | F      | _       |                           |                                         |         |             |                         |                         |                                          |                                         |                                                    |                                                   |
|               | G      | _       | 3-311                     |                                         |         |             |                         |                         |                                          |                                         |                                                    |                                                   |
|               | Н      | -       |                           |                                         |         |             |                         |                         |                                          |                                         |                                                    |                                                   |

8/29Mg

Biomass calculations checked (date, initials): 971/6

<u>Date</u>

**Time** 

**Initials** 

ATS-T45



alsitinl

Meter Number

JYM emiT

|             |             |                |          |        |        | 34.5 |               |       |        |      |              |                  |       |             |              |     |             |                |                  |     |       |      |      |       |       |      |        |        |           |
|-------------|-------------|----------------|----------|--------|--------|------|---------------|-------|--------|------|--------------|------------------|-------|-------------|--------------|-----|-------------|----------------|------------------|-----|-------|------|------|-------|-------|------|--------|--------|-----------|
|             |             |                |          |        |        |      |               |       |        |      |              |                  |       |             |              |     |             |                |                  |     |       |      |      |       |       |      |        |        |           |
|             | _           |                | l'æ      | r,18   | 0.18   | Pae  | _             | 1     | -      | O,T  | ľŁ           | 1.0              | P.0   |             | <del>-</del> |     | 87          | Z.T            | P.T              | ar  | _     |      |      | 058   | દક્ય  | L'98 | h'50   |        | %(        |
| nŒ.         | БЫ <u>,</u> | 30.5           | 1.08     | કાદ    | P.08   | POE  | ફે.વો         | Q2    | L-D    | Q.r  | OL           | 1.1              | भुग   | 22          | 1.8          | g.L | ].8         | ごし             | 0.8              | ar  | 0/5%  | પુરા | OSS  | Oze   | Z:SZ  | 1.32 | 492    |        | 9/        |
| 708         | \$ W        | 500            | 1.0E     | O. 15  | \$.0€  | 7.05 | ያባ            | 69    | 80     | 6.0  | ۵,7          | 1.1              | P.4   | દા          | 1.8          | 1.5 | 2.8         | E.T            | 0.8              | 12  | 1198  | १९१  | 1:51 | 058   | 1.97  | 0.38 | H52    |        | 9         |
| 20E         | 4:12        | E 08           | 6.2      | €.0€   | F.06   | L.Œ  | <u></u> ይማ    | じつ    | 99     | じつ   | 20           | 0.r              | 01    | 2.7         | Z:8          | 12  | fi8         | €.1            | 5.3              | ۲۲  | H92   | 1.25 | 1.25 | QSZ   | yst   | 5 No | 2:52   |        | louir     |
| 9           | g           | 7              | ε        | 7      | L      | 0    | 9             | g     | 4      | ε    | 2            | ı                | 0     | 9           | ç            | Þ   | ε           | 2              | ŀ                | 0   | 9     | g    | Þ    | ε     | 2     | ı    | 0      | Кер    | onoO ja   |
|             | (u          | (jdd           | ivity (p | Sali   | 00     |      |               | (7/6  | iu) ue | Охуд | DevlossiQ Hq |                  |       |             |              |     |             |                | (O°) enulsneqmeT |     |       |      |      |       |       |      |        |        |           |
| oì <u>0</u> | 01 - (      | ιέλ: <u>δί</u> | snetr    | ար դվե | įΠ     | 787  | 91 :          | boíne | potop  | d 1  | dd _         | 0 <del>+</del> 5 | £ :V; | inils2      | 7/6          | w   | 0.4≤        |                | :DO              | 0'6 | - 0'9 | - :H | d O  | , ,   | ,∓9Z  | — :d | meT    | :S∃∩   | JAV T∃Ð   |
|             |             |                |          |        |        |      |               |       |        | ,    |              |                  |       | ejye        | ed .A        |     | <br>:eu     | nsV :          | oiifine          | ioS |       |      | 1    | h2- ( | - ارد | NI   |        | per:   | muN teeT  |
| 11h         | 1           | əmiT           | _        | 211    | 27 2   | ,    | <del></del> : | Date  | Bulpu  | 13   | -            | đ                | minda | s wns       | sodC         | )   | - :əu       | n <b>s</b> N r | owu              | Cor | _     |      |      |       |       | ΛE   | ilsV r | Jordar | դւ        |
| 998<br>918  | 1           | əmiT           |          |        | गुझ्ना |      | afe:          | d gni | innibe | ₽B   |              |                  |       |             |              |     | MSIN        | 1A9 <i>F</i>   | IO TS            | 31T |       |      |      |       |       | 31.0 | 0002   | :16    | ect Numbe |
|             |             |                |          | S      | NO     | ITU. | 709           | M     | NE     | - Т= | не           | S A              | TA    | <b>a</b> 7. | LITY         | /NE | <b>EK</b> ( | ΙΤΑ            | L W              | E2  | L     | LIOI | XO   | T     |       |      |        |        |           |



## **TOXICITY TEST WATER QUALITY DATA SHEET - OLD SOLUTIONS**

| Project Number:                                        | TEST ORGANISM                                            | Beginning Date:                                    |
|--------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|
| Client: Jordan Valley                                  | Common Name: Opossum shrimp                              | Ending Date: 8 22 16 Time: 411                     |
| QC Test Number: TN- No-247                             | Scientific Name: A. bahia                                |                                                    |
| TARGET VALUES: Temp: <u>26±1</u> °C pH: <u>6.0 - 9</u> | <u>.0</u> DO: <u>≥4.0</u> mg/L Salinity: <u>30±2</u> ppt | Photoperiod: 16 4 8 4 Light Intensity: 50 - 100 fc |

|           |                  |      |              | Temp | eratu | ire (°C | <b>&gt;</b> ) |      |      |      |      | рΗ   |      |     |             |      | Dis   | solvec | l Oxy  | gen (r | ng/L) |      |      | C      | ondu | tivity<br>inity ( | (#S/c<br>ppt) |           |      |
|-----------|------------------|------|--------------|------|-------|---------|---------------|------|------|------|------|------|------|-----|-------------|------|-------|--------|--------|--------|-------|------|------|--------|------|-------------------|---------------|-----------|------|
| Test Conc | Rep              | 1    | 2            | 3    | 4     | 5       | 6             | 7    | 1    | 2    | 3    | 4    | 5    | 6   | 7           | 1    | 2     | 3      | 4      | - 5    | 6     | 7    | 1    | 2      | 3    | 4                 | 5             | 6         | 7    |
| Control   |                  | 25.2 | 25.7         | 250  | 25.D  | 25,1    | 256           | 2560 | 8.1  | 1.5  | 8.3  | 7.4  | 8.1  | 7.0 | 8.1         | 5.3  | 60    | 6.1    | 0.ي    | 5.7    | 6.1   | 4.0  | 30.5 | 30.8   | 24.8 | 30.4              | 29.5          | 30.3      | 28.9 |
| 50%       |                  | 25.4 | <b>15</b> 15 | 154  | 25.4  | 25.7    | 26:1          | 257  | 83   | 1.5  | 83   | 7.3  | 32   | 7.0 | <b>%.</b> 5 | 4.2  | 5.3   | 5,0    | 58     | 5.6    | 5.2   | 4.1  | 20.5 | 31.0   | 299  | 30.7              | 30.           | 307       | 29.6 |
| 75%       |                  | 路想   | 25.5         | 267  | 255   | 259     | 25%           | 25.5 | 8,4  | 7.5  | 8.4  | 1.3  | 8.4  | 7.0 | <b>8</b> .5 | 48   | 5.1   | 8.)    | 5.3    | 5.8    | 53    | 5.3  | 30.6 | 310    | 29.9 | 20.G              | 30.0          | 30.7      | 29.0 |
| 100%      |                  | 25.4 |              |      |       | _       | _             | -    |      |      | 84   |      | _    | ~   |             |      |       | 5.2    |        | _      | -     | V    | 30.7 |        |      | -                 | _             |           | _    |
|           |                  |      |              |      |       |         |               |      |      |      |      |      |      |     |             |      |       |        |        |        |       |      |      |        |      |                   |               |           | n    |
|           |                  |      |              |      |       |         |               |      |      |      |      |      |      |     |             |      |       |        | United |        |       |      |      |        |      |                   |               |           |      |
|           |                  |      |              |      |       |         |               |      |      |      |      |      |      |     |             |      |       |        |        |        |       |      |      |        |      |                   |               |           |      |
| Meter N   | umber            | 678  | ษาๆ          | 618  | 619   | 678     | 679           | 6H   | 618  | 619  | 676  | 619  | 678  | 6g  | 678         | 618  | 679   | GY8    | 619    | 678    | 1079  | 678  | 618  | 619    | ins  | 619               | 678           | 64        | i/18 |
|           | Time<br>Initials | 1023 | 13/16        | 16W  | 1021  | 153     | 1000          | 1432 | 1023 | 1326 | 1516 | 1021 | 1535 | MA  | 1432        | 1023 | 15760 | 196    | 1021   | 1535   | 1102  | 1432 | 1/02 | 12/20/ | 100  | 11/21             | 1535          | 043<br>0B | 1432 |



### **RANDOMIZATION CHART**

| Project N | umber:70   | 0005.15   |  |
|-----------|------------|-----------|--|
| Client:   | Jordan V   | /alley    |  |
| OC Test I | Number: Ti | N-110-247 |  |

| 5 | 6 | 2 | 3 | 1 | 4 |
|---|---|---|---|---|---|
| 4 | 3 | 2 | 1 | 5 | 6 |
| 2 | 1 | 4 | 3 | 5 | 6 |
| 1 | 6 | 3 | 2 | 5 | 4 |

ATS-T48d 03/01/00



### **TOXICOLOGY LABORATORY BENCH SHEET**

| Project Number:    |           | N- N-             |  |
|--------------------|-----------|-------------------|--|
| Client:Jord        | an Valley |                   |  |
| QC Test Number:    | TN-16-247 |                   |  |
|                    |           |                   |  |
| Date/Time/Initials |           | Comments/Activity |  |
| 8/21/16 1040 OB    | * Organia | m misso           |  |



## TOXICOLOGY LABORATORY BENCH SHEET

| Project Number: _ | 70005.15   |  |
|-------------------|------------|--|
| Client:Jord       | an Valley  |  |
| QC Test Number:   | TN- 16-247 |  |

Aliquot of sample warmed to test temperature, then aerated if supersaturated:

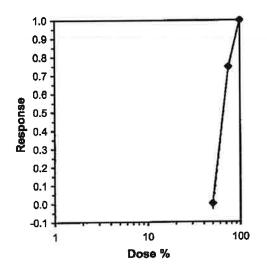
|            |            |                      | ON AIR |            |                    | OFF AIR |          |
|------------|------------|----------------------|--------|------------|--------------------|---------|----------|
| Date       | Sample#    | Initial DO<br>(mg/L) | Time   | Initials   | Final DO<br>(mg/L) | Time    | Initials |
| 8/16/14    | ATLE - 391 | 9.2                  | 1006   | చకి        | 6.8                | 1016    | JB       |
| क्षा ग्लाफ | Arc -391   | 9.3                  | 0906   | JB         | ٦, ١               | 0916    | ac       |
| 8/17/16    | AT6-391    | 0.9                  | 0932   | <b>3</b> 3 | 7.3                | 0942    | 513      |
| ક મકાદ     | A76-391    | વ.ધ                  | 1318   | MJ         | 6.9                | 1328    | M        |
| જાાવાહ     | ATG-391    | 9.3                  | 0746   | Mo         | 6.9                | 0756    | MT       |
| व्याक्ती   | 476-391    | 9.4                  | 0855   | MT         | 6-8                | 0905    | M        |
| 8/21/16    | ATG-391    | 8.3                  | 0929   | JB         | 7.0                | ૦૧૩૧    | JB       |
|            |            |                      |        |            |                    |         |          |
|            |            |                      |        |            |                    |         |          |

|              |           |        | Mysid     | Survival,       | Growth a | nd Fecu | ndity Test | -48 Hr St | ırvival             |
|--------------|-----------|--------|-----------|-----------------|----------|---------|------------|-----------|---------------------|
| Start Date:  | 8/15/2016 |        | Test ID:  | TN-16-24        | 7        |         | Sample ID  | );        | Jordan Valley       |
| End Date:    | 8/22/2016 |        | Lab ID:   | AT6-391         |          |         | Sample Ty  | /pe:      | Outfall 001         |
| Sample Date: |           |        | Protocol: | <b>EPAM 87-</b> | EPA Mari | ne      | Test Spec  | ies:      | MY-Mysidopsis bahia |
| Comments:    |           |        |           |                 |          |         |            |           |                     |
| Conc-%       | 1         | 2      | 3         | 4               | 5        | 6       | 7          | 8         | 2                   |
| Control      | 1.0000    | 0.4000 | 1.0000    | 1.0000          | 1.0000   | 1.0000  | 1.0000     | 1.0000    |                     |
| 50           | 1.0000    | 1.0000 | 0.8000    | 1.0000          | 0.6000   | 1.0000  | 0.8000     | 1.0000    |                     |
| 75           | 0.4000    | 0.4000 | 0.6000    | 0.0000          | 0.4000   | 0.2000  | 0.0000     | 0.4000    |                     |
| 100          | 0.0000    | 0.2000 | 0.0000    | 0.0000          | 0.0000   | 0.0000  | 0.0000     | 0.0000    |                     |

| -       |        |        | Tra    | ansform: | Arcsin So | uare Root | t) | Rank  | 1-Tailed | Number | Total  |
|---------|--------|--------|--------|----------|-----------|-----------|----|-------|----------|--------|--------|
| Сопс-%  | Mean   | N-Mean | Mean   | Min      | Max       | CV%       | N  | Sum   | Critical | Resp   | Number |
| Control | 0.9250 | 1.0000 | 1.2627 | 0.6847   | 1.3453    | 18.495    | 8  |       | 3,117    | 3      | 40     |
| 50      | 0.9000 | 0.9730 | 1.2283 | 0.8861   | 1.3453    | 14.264    | 8  | 61.50 | 48.00    | 4      | 40     |
| *75     | 0.3000 | 0.3243 | 0.5675 | 0.2255   | 0.8861    | 42.186    | 8  | 39.00 | 48.00    | 28     | 40     |
| *100    | 0.0250 | 0.0270 | 0.2553 | 0.2255   | 0.4636    | 32.981    | 8  | 36.00 | 48.00    | 39     | 40     |

| Auxiliary Tests                     |             |            |                |     | Statistic | Critical | Skew    | Kurt    |
|-------------------------------------|-------------|------------|----------------|-----|-----------|----------|---------|---------|
| Shapiro-Wilk's Test indicates nor   | -normal di  | stribution | $(p \le 0.01)$ | 15. | 0.84108   | 0.904    | -1.4306 | 2.42832 |
| Bartlett's Test indicates equal var | iances (p = | 0.07)      |                |     | 6.98707   | 11.3449  |         |         |
| Hypothesis Test (1-tail, 0.05)      | NOEC        | LOEC       | ChV            | TU  |           |          |         |         |
| Steel's Many-One Rank Test          | 50          | 75         | 61.2372        | 2   |           |          |         |         |

|           |         |         |          | Ma          | xlmum Likeliho | od-Probli            |          |         | 7        |         |     |
|-----------|---------|---------|----------|-------------|----------------|----------------------|----------|---------|----------|---------|-----|
| Parameter | Value   | SE      | 95% Fidu | cial Limits | Control        | Chi-Sq               | Critical | P-value | Mu       | Sigma   | Ite |
| Slope     | 12.4705 | 2.86587 | 6.85342  | 18.0876     | 0.075          | 0.06011              | 3.84146  | 0.81    | 1.84034  | 0.08019 | 4   |
| Intercept | -17.95  | 5.39369 | -28.522  | -7.3784     |                |                      |          |         |          |         |     |
| TSCR      | 0.07095 | 0.0375  | -0.0025  | 0.14444     |                | 1.0 -                |          |         |          |         |     |
| Point     | Probits | %       | 95% Fidu | cial Limits |                |                      |          |         | 17/      |         |     |
| EC01      | 2.674   | 45.0601 | 28.4361  | 53.9827     |                | 0.9                  |          |         | 1/       |         |     |
| EC05      | 3.355   | 51.1023 | 35.6509  | 59.0433     |                | 0.8                  |          |         | #        |         |     |
| EC10      | 3.718   | 54.6478 | 40.1878  | 61.9787     |                | 0.7                  |          |         | H        | 1       |     |
| EC15      | 3.964   | 57.178  | 43.5494  | 64.0725     |                | -4                   |          |         | #        | - 1     |     |
| EC20      | 4.158   | 59.2721 | 46.4017  | 65.8137     |                | <b>8</b> 0.6 -       |          |         | III      |         |     |
| EC25      | 4.326   | 61.1298 | 48.9781  | 67.3713     |                | 95 0.6<br>0.5<br>0.4 |          |         | 111      |         |     |
| EC40      | 4.747   | 66.0729 | 55.9814  | 71.6419     |                | 뮻                    |          |         | 11       |         |     |
| EC50      | 5.000   | 69.2372 | 60.4901  | 74.5588     |                | ₽ 0.4                |          |         | 11       | - 1     |     |
| EC60      | 5.253   | 72.5529 | 65.1047  | 77.9012     |                | 0.3                  |          |         | 11       |         |     |
| EC75      | 5.674   | 78.4198 | 72.4988  | 85.0274     |                | 0.2                  |          |         |          | - 1     |     |
| EC80      | 5.842   | 80.8776 | 75.1761  | 88.6006     |                | 0.2                  |          | - 1     | H        |         |     |
| EC85      | 6.036   | 83.8397 | 78.0842  | 93.3576     |                | 0.1                  |          | 1       | 11       |         |     |
| EC90      | 6.282   | 87.7214 | 81.4874  | 100.217     |                | 0.0 1                |          | / / /   | <i>V</i> |         |     |
| EC95      | 6.645   | 93.8077 | 86.2392  | 112.052     |                | 1                    |          | 10      | 100      | 1000    |     |
| EC99      | 7.326   | 106.387 | 94.9762  | 139.517     |                | •                    |          | Dose    |          | 1000    |     |




|                                          |                        |        | Mysid   | Survival,                        | Growth a | nd Fecu | ndity Test-                         | 96 Hr Su | ırvival                                             |
|------------------------------------------|------------------------|--------|---------|----------------------------------|----------|---------|-------------------------------------|----------|-----------------------------------------------------|
| Start Date:<br>End Date:<br>Sample Date: | 8/15/2016<br>8/22/2016 |        | Lab ID: | TN-16-247<br>AT6-391<br>EPAM 87- |          | ne      | Sample ID<br>Sample Ty<br>Test Spec | /pe:     | Jordan Valley<br>Outfall 001<br>MY-Mysidopsis bahia |
| Comments:                                | 1                      | 2      | 3       | 4                                | 5        | 6       | 7                                   | 8        |                                                     |
| Contro                                   | 1.0000                 | 0.4000 | 1.0000  | 0.8000                           | 0.8000   | 1.0000  | 1.0000                              | 1.0000   | *                                                   |
| 50                                       |                        | 1.0000 | 0.8000  | 1.0000                           | 0.6000   | 1.0000  | 0.8000                              | 1.0000   |                                                     |
| 75                                       |                        | 0.2000 | 0.6000  | 0.0000                           | 0.2000   | 0.2000  | 0.0000                              | 0.2000   |                                                     |
| 100                                      | 0.0000                 | 0.0000 | 0.0000  | 0.0000                           | 0.0000   | 0.0000  | 0.0000                              | 0.0000   |                                                     |

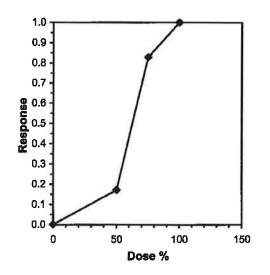
|         |        |        | Tr     | ansform: | Arcsin Sc | uare Root |   |        | 1-Tailed |        | Number | Total  |
|---------|--------|--------|--------|----------|-----------|-----------|---|--------|----------|--------|--------|--------|
| Conc-%  | Mean   | N-Mean | Mean   | Min      | Max       | CV%       | N | t-Stat | Critical | MSD    | Resp   | Number |
| Control | 0.8750 | 1.0000 | 1.2032 | 0.6847   | 1.3453    | 19.573    | 8 |        |          |        | 5      | 40     |
| 50      | 0.9000 |        | 1.2283 | 0.8861   | 1.3453    | 14.264    | 8 | -0.238 | 2.024    | 0.2142 | 4      | 40     |
| *75     | 0.2250 |        | 0.4846 | 0.2255   | 0.8861    | 45.298    | 8 | 6.792  | 2.024    | 0.2142 | 31     | 40     |
| 100     | 0.0000 | 0.0000 | 0.2255 | 0.2255   | 0.2255    | 0.000     | 8 |        |          |        | 40     | 40     |

| Auxiliary Tests                     |              |            |         |    | Statistic |         | Critical |         | Skew    | Kurt    |
|-------------------------------------|--------------|------------|---------|----|-----------|---------|----------|---------|---------|---------|
| Shapiro-Wilk's Test indicates nor   | mal distribu | ution (p > | 0.01)   |    | 0.92377   |         | 0.884    |         | -0.7143 | 0.82652 |
| Bartlett's Test indicates equal var | iances (p =  | = 0.74)    |         |    | 0.59509   |         | 9.21034  |         |         |         |
| Hypothesis Test (1-tail, 0.05)      | NOEC         | LOEC       | ChV     | TU | MSDu      | MSDp    | MSB      | MSE     | F-Prob  | df      |
| Dunnett's Test                      | 50           | 75         | 61.2372 | 2  | 0.17281   | 0.19845 | 1.42706  | 0.04478 | 4.3E-07 | 2, 21   |

|            |                |        |        | Trimmed Spearman-Karber |
|------------|----------------|--------|--------|-------------------------|
| Trim Level | EC50           | 95%    | CL     | :%                      |
| 0.0%       | 66.861         | 63.748 | 70.126 |                         |
| 5.0%       | 66.501         | 63.115 | 70.069 |                         |
| 10.0%      | 66.176         | 62.549 | 70.014 | 1.0 <sub>T</sub>        |
| 20.0%      | <b>65.69</b> 5 | 61.729 | 69.916 | e.o                     |
| Auto-0.0%  | 66.861         | 63.748 | 70.126 |                         |






| -014         | 200       |        | Mysid     | Survival,       | Growth a | nd Fecu | ndity Test- | 7 Day Su | ırvival             |
|--------------|-----------|--------|-----------|-----------------|----------|---------|-------------|----------|---------------------|
| Start Date:  | 8/15/2016 |        | Test ID:  | TN-16-247       | 7        |         | Sample ID   | :        | Jordan Valley       |
| End Date:    | 8/22/2016 |        | Lab ID:   | AT6-391         |          |         | Sample Ty   | /pe:     | Outfall 001         |
| Sample Date: |           |        | Protocol: | <b>EPAM 87-</b> | EPA Mari | ne      | Test Spec   | ies:     | MY-Mysidopsis bahia |
| Comments:    |           |        |           |                 |          |         |             |          |                     |
| Conc-%       | 1         | 2      | 3         | 4               | 5        | 6       | 7           | 8        |                     |
| Control      | 1.0000    | 0.4000 | 1.0000    | 0.8000          | 0.8000   | 1.0000  | 1.0000      | 1.0000   |                     |
| 50           | 0.8000    | 0.8000 | 0.8000    | 0.6000          | 0.4000   | 1.0000  | 0.6000      | 0.8000   |                     |
| 75           | 0.4000    | 0.2000 | 0.4000    | 0.0000          | 0.0000   | 0.2000  | 0.0000      | 0.0000   |                     |
| 100          | 0.0000    | 0.0000 | 0.0000    | 0.0000          | 0.0000   | 0.0000  | 0.0000      | 0.0000   |                     |

|                 |        |        | Tra    | ansform: | Arcsin So | uare Root | t |        | 1-Tailed |        | Isot   | onic   |
|-----------------|--------|--------|--------|----------|-----------|-----------|---|--------|----------|--------|--------|--------|
| Conc-%          | Mean   | N-Mean | Mean   | Min      | Max       | CV%       | N | t-Stat | Critical | MSD    | Mean   | N-Mean |
| Control         | 0.8750 | 1.0000 | 1.2032 | 0.6847   | 1.3453    | 19.573    | 8 |        |          |        | 0.8750 | 1.0000 |
| 50              | 0.7250 | 0.8286 | 1.0288 | 0.6847   | 1.3453    | 19.572    | 8 | 1.627  | 2.024    | 0.2169 | 0.7250 | 0.8286 |
| <del>*</del> 75 | 0.1500 | 0.1714 | 0.3998 | 0.2255   | 0.6847    | 51.081    | 8 | 7.499  | 2.024    | 0.2169 | 0.1500 | 0.1714 |
| 100             | 0.0000 | 0.0000 | 0.2255 | 0.2255   | 0.2255    | 0.000     | 8 |        |          |        | 0.0000 | 0.0000 |

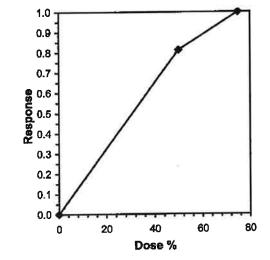
| Auxiliary Tests                     |              |            |         |    | Statistic |         | Critical |         | Skew    | Kurt    |
|-------------------------------------|--------------|------------|---------|----|-----------|---------|----------|---------|---------|---------|
| Shapiro-Wilk's Test indicates nor   | mal distribu | ution (p > | 0.01)   |    | 0.93096   |         | 0.884    |         | -0.6311 | 0.30558 |
| Bartlett's Test indicates equal var | riances (p = | = 0.90)    |         |    | 0.20322   |         | 9.21034  |         |         |         |
| Hypothesis Test (1-tail, 0.05)      | NOEC         | LOEC       | ChV     | TU | MSDu      | MSDp    | MSB      | MSE     | F-Prob  | df      |
| Dunnett's Test                      | 50           | 75         | 61.2372 | 2  | 0.17528   | 0.20128 | 1.42849  | 0.04591 | 5.3E-07 | 2, 21   |

| Point         %         SD         95% CL         Skew           IC05*         14.583         13.212         7.308         51.519         1.4571           IC10*         29.167         12.820         14.615         53.038         0.4241 | on (200 Resamples) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| IC10* 29.167 12.820 14.615 53.038 0.4241                                                                                                                                                                                                    |                    |
|                                                                                                                                                                                                                                             |                    |
| 10455 40550 40550 04550 04550                                                                                                                                                                                                               |                    |
| IC15* 43.750 10.650 21.923 54.557 -0.3374                                                                                                                                                                                                   | 1.0                |
| IC20 51.087 7.654 29.231 56.250 -1.0567                                                                                                                                                                                                     |                    |
| IC25 52.989 5.111 36.538 57.813 -1.6983                                                                                                                                                                                                     | 0.9                |
| IC40 58.696 2.528 53.144 63.336 -0.3295                                                                                                                                                                                                     | - 8.0              |
| IC50 62.500 2.252 57.885 66.680 -0.0392                                                                                                                                                                                                     | 0.7                |

<sup>\*</sup> indicates IC estimate less than the lowest concentration



|                                         |                        |        | Mvs                 | id Surviva                       | l, Growth | and Fe | cundity Te                          | st-Fecur   | dity                                                |
|-----------------------------------------|------------------------|--------|---------------------|----------------------------------|-----------|--------|-------------------------------------|------------|-----------------------------------------------------|
| Start Date:<br>End Date:<br>Sample Date | 8/15/2016<br>8/22/2016 |        | Test ID:<br>Lab ID: | TN-16-247<br>AT6-391<br>EPAM 87- |           |        | Sample ID<br>Sample Ty<br>Test Spec | ype:<br>): | Jordan Valley<br>Outfall 001<br>MY-Mysidopsis bahia |
| Conc-%                                  | 1                      | 2      | 3                   | 4                                | 5         | 6      | 7                                   | 8          |                                                     |
| Contro                                  | 0.6667                 | 0.0000 | 0.0000              | 0.0000                           | 1.0000    | 0.0000 | 0.2500                              |            | *                                                   |
| 50                                      |                        | 0.0000 | 0.0000              | 0.0000                           | 0.0000    | 0.0000 | 0.5000                              | 0.0000     |                                                     |
| 7!                                      | 0.0000                 | 0.0000 | 0.0000              |                                  |           |        |                                     |            |                                                     |


|         |        |        | Tr     | ansform: | Arcsin Sc | uare Roof |   | Rank  | 1-Talled | Isot   | onic   |
|---------|--------|--------|--------|----------|-----------|-----------|---|-------|----------|--------|--------|
| Conc-%  | Mean   | N-Mean | Mean   | Min      | Max       | CV%       | N | Sum   | Critical | Mean   | N-Mean |
| Control | 0.2738 | 1.0000 | 0.5905 | 0.3614   | 1.0472    | 49.278    | 7 | 72    |          | 0.2667 | 1.0000 |
| *50     | 0.0625 | 0.2283 | 0.3837 | 0.2527   | 0.7854    | 43.730    | 8 | 47.00 | 49.00    | 0.0500 | 0.1875 |
| 75      | 0.0000 | 0.0000 | 0.4154 | 0.3614   | 0.5236    | 22.546    | 3 |       |          | 0.0000 | 0.0000 |

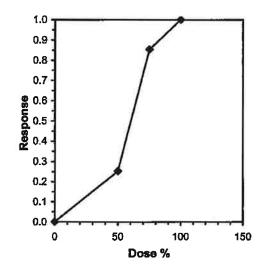
| Auxiliary Tests                                                   | Statistic | Critical | Skew    | Kurt    |
|-------------------------------------------------------------------|-----------|----------|---------|---------|
| Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01) | 0.79265   | 0.835    | 1.22564 | 0.38852 |
| F-Test indicates equal variances (p = 0.18)                       | 3.00868   | 9.15534  |         |         |
| Hypothesis Test (1-tail, 0.05)                                    |           |          |         |         |

Hypothesis Test (1-tail, 0.05)
Wilcoxon Two-Sample Test indicates significant differences

|       |        |    | Line        | ear Interpolation (200 Resamples) |
|-------|--------|----|-------------|-----------------------------------|
| Point | %      | SD | 95% CL(Exp) | Skew                              |
| IC05* | 3.077  |    |             |                                   |
| IC10* | 6.154  |    |             |                                   |
| IC15* | 9.231  |    |             | 1.0                               |
| 1C20* | 12.308 |    |             | 0.9 -                             |
| IC25* | 15.385 |    |             | 4                                 |
| IC40* | 24.615 |    |             | 0.8 ]                             |
| IC50* | 30,769 |    |             | 0.7 -                             |

\* Indicates IC estimate less than the lowest concentration




|              |           |        | My        | sid Surviv      | al, Growt | h and Fe | cundity Te | st-Biom | ass                 |  |
|--------------|-----------|--------|-----------|-----------------|-----------|----------|------------|---------|---------------------|--|
| Start Date:  | 8/15/2016 |        | Test ID:  | TN-16-247       | 7         |          | Sample ID  | );      | Jordan Valley       |  |
| End Date:    | 8/22/2016 |        | Lab ID:   | AT6-391         |           |          | Sample Ty  | /pe:    | Outfall 001         |  |
| Sample Date: |           |        | Protocol: | <b>EPAM 87-</b> | EPA Mari  | ne       | Test Spec  | ies:    | MY-Mysidopsis bahla |  |
| Comments:    |           |        |           |                 |           |          | •          |         | -                   |  |
| Conc-%       | 1         | 2      | 3         | 4               | 5         | 6        | 7          | 8       | S.D.                |  |
| Control      | 0.3060    | 0.1120 | 0.3740    | 0.2120          | 0.2540    | 0.2920   | 0.2380     | 0.2380  | 0.07652             |  |
| 50           | 0.2280    | 0.2200 | 0.2600    | 0.1980          | 0.1300    | 0.2020   | 0.1440     | 0.1340  | 0.04826             |  |
| 75           | 0.0680    | 0.0620 | 0.1020    | 0.0000          | 0.0000    | 0.0620   | 0.0000     | 0.0000  | 0.04125             |  |
| 100          | 0.0000    | 0.0000 | 0.0000    | 0.0000          | 0.0000    | 0.0000   | 0.0000     | 0.0000  | 0                   |  |

|         |        |        |        | Transfort | n: Untran | sformed |   |        | 1-Talled |        | Isot   | onic   |
|---------|--------|--------|--------|-----------|-----------|---------|---|--------|----------|--------|--------|--------|
| Conc-%  | Mean   | N-Mean | Mean   | Min       | Max       | CV%     | N | t-Stat | Critical | MSD    | Mean   | N-Mean |
| Control | 0.2533 | 1.0000 | 0.2533 | 0.1120    | 0.3740    | 30.214  | 8 |        |          |        | 0.2533 | 1.0000 |
| *50     | 0.1895 | 0.7483 | 0.1895 | 0.1300    | 0.2600    | 25.466  | 8 | 1.993  | 1.761    | 0.0563 | 0.1895 | 0.7483 |
| 75      | 0.0368 | 0.1451 | 0.0368 | 0.0000    | 0.1020    | 112.248 | 8 | 7.543  | 2.024    | 0.0581 | 0.0368 | 0.1451 |
| 100     | 0.0000 | 0.0000 | 0.0000 | 0.0000    | 0.0000    | 0.000   | 8 |        |          |        | 0.0000 | 0.0000 |

| Auxiliary Tests                                              | Statistic | 775     | Critical | -3-     | Skew    | Kurt    |
|--------------------------------------------------------------|-----------|---------|----------|---------|---------|---------|
| Shapiro-Wilk's Test indicates normal distribution (p > 0.01) | 0.97884   |         | 0.844    |         | -0.3123 | 0.92116 |
| F-Test indicates equal variances (p = 0.25)                  | 2.51402   |         | 8.88539  |         |         |         |
| Hypothesis Test (1-tail, 0.05)                               | MSDu      | MSDp    | MSB      | MSE     | F-Prob  | df      |
| Homoscedastic t Test indicates significant differences       | 0.05633   | 0.22244 | 0.01626  | 0.00409 | 0.0661  | 1, 14   |

|       |        |        |        | Linea  | ar Interpolatio | n (200 Resamples) |
|-------|--------|--------|--------|--------|-----------------|-------------------|
| Point | %      | SD     | 95%    | CL     | Skew            |                   |
| IC05* | 9.931  | 10.470 | 6.152  | 50.667 | 2.5267          | •                 |
| IC10* | 19.863 | 11.708 | 12.305 | 52.414 | 1.3310          |                   |
| IC15* | 29.794 | 11.579 | 18.457 | 54.154 | 0.5743          | 1.0               |
| IC20* | 39.725 | 10.252 | 24.610 | 55.611 | 0.0604          | 201               |
| IC25* | 49.657 | 8.126  | 30.762 | 57.069 | -0.3784         | 0.9               |
| IC40  | 56.146 | 3.479  | 49.220 | 62.346 | -0.2775         | 0.8 -             |
| IC50  | 60.291 | 2.877  | 55.009 | 65.851 | 0.1236          | 0.7               |

\* indicates IC estimate less than the lowest concentration





## **TOXICITY TEST SET-UP BENCH SHEET**

| Project Number:70005.15                  |                                       |
|------------------------------------------|---------------------------------------|
| Client:Jordan Valley                     | · · · · · · · · · · · · · · · · · · · |
| QC Test Number: TN-10-248                | <u> </u>                              |
| en e | ST ORGANISM INFORMATION               |
| Common Name: Opossum shrimp              | Adults Isolated (Time, Date):         |
| Scientific Name: A. bahla                | Neonates Pulled & Fed (Time, Date):   |
| Lot Number: AB-890                       | Acclimation: <24 hrs Age: 7204S       |
| Source: EA                               | Culture Water (T/S): 25.9 °C 30.7 ppt |

|                 | Т        | EST INITIAT | ION                   | CONCENTRATION SERIES                |                                       |                                  |  |  |  |
|-----------------|----------|-------------|-----------------------|-------------------------------------|---------------------------------------|----------------------------------|--|--|--|
| Date<br>8/15/16 | Time     | Initials    | Activity              | Test Concentration Mod Hard Control | Volume<br><u>Test Material</u><br>0ml | Final<br><u>Volume</u><br>1200ml |  |  |  |
| 8/1511 <b>6</b> | 1550<br> | SB<br>1     | Dilutions Made        | 50%<br>75%                          | 600ml<br>900ml                        |                                  |  |  |  |
|                 | 1        |             | Test Vessels Filled   | 100%                                | 1200ml                                |                                  |  |  |  |
|                 | 1625     | 1           | Organisms Transferred |                                     |                                       | <b>1</b>                         |  |  |  |
|                 | 1630     | MKE         | Head Counts           |                                     |                                       |                                  |  |  |  |

|            | <b>生性的现象数别</b> | SINTER      | RMEDIATE        | DILUTION              | REPAF      | ATION AND FE            | EDING           |                    |  |  |  |  |
|------------|----------------|-------------|-----------------|-----------------------|------------|-------------------------|-----------------|--------------------|--|--|--|--|
|            | DILUTION       | ON PREP     | ARATION         |                       | FEEDING    |                         |                 |                    |  |  |  |  |
|            |                |             |                 | Sample /              |            | Artemia Time, Initials, | Time, Initials, | Time, Initials,    |  |  |  |  |
| <u>Day</u> | <u>Date</u>    | <u>Time</u> | <u>Initials</u> | Diluent<br>AG-407     | <u>Day</u> | <u>Amount</u>           | Altiouni        | 1625 MKC           |  |  |  |  |
| 0          | 8/15/16        | 1550_       | JB_             | 206-369               | 0          | 0830 NAT                |                 | 501095             |  |  |  |  |
| 1          | 4/10/10        | 0942        | MJ              | 416-407<br>- LTXD-364 | 1          | Sdrops                  |                 | 500095<br>1625JB   |  |  |  |  |
| 2          | 8/17/16        | 1143        | TM              | 106-309<br>106-309    | 2          | 50005<br>50005          |                 | 5draps             |  |  |  |  |
| 3          | ક્રી છી છ      | 1454        | MO              | 476401<br>LD6369      | 3          | <u> २९४८२</u>           |                 | 5 dops             |  |  |  |  |
| 4          | કો!9 ો ઉઠ      |             | MJ              | 476-407<br>LD0-309    | - 4        | Fdraps                  |                 | 5 drugs            |  |  |  |  |
| 5          | વાંટલાંહ       |             |                 | 476-369<br>EDG-369    | 5          | OSIGNIT<br>Edvops       |                 | 1545MI<br>5drgs    |  |  |  |  |
| 6          | 8/21/16        | 0920        | 44              | ATTE-407              | 6          | 0815 OB<br>50000        |                 | 295762<br>1612 418 |  |  |  |  |



525 Time: 1625 Time: शान्त्राह 4" Bowl 7 days 150 ml Beginning Date: Test Container: Test Duration: Ending Date: \_ Test Volume: **TOXICITY TEST OBSERVATION DATA SHEET** Photoperiod: 16 4, 8 4 Light Intensity: 50 - 100 fc Common Name: Opossum shrimp Static / Flowthrough (Renewal )/ Non-renewal A. bahia Scientific Name: TEST ORGANISM TEST TYPE: Accession Number: 4No-369 Accession Number: And -407 TN-16-248 70005.15 30 ppt CS Jordan Valley Effluent QC Test Number: Project Number: Dilution Water: Test Material: Client:

|                               | Day 7         |         | 0 3 | ^ | V   | 2  | 1  | , V  | 7 4            | 7        |   | 1       | r V | V        | ) 4      | 7   | - &      | N 3      | -10 | ISSSMO          |        |
|-------------------------------|---------------|---------|-----|---|-----|----|----|------|----------------|----------|---|---------|-----|----------|----------|-----|----------|----------|-----|-----------------|--------|
|                               | Day 6         | L C     | ) ( | Ω | ĸ   | 15 | เก | LC)  | 7              | رک<br>ا  |   | ic      | T.  | ď        | 1        | ) = | ی ا      | )<br>3   | 40  | CAC OR          |        |
|                               | Day 5         | 5       | 1   | n | ρť  | 2  | V  | 2    | ) <del>-</del> | 7        | ) | ٥       | \v  | 2        | S        | 3   | \s\ \    | 3-       | 10  | 1845MT          |        |
| Number of Surviving Organisms | Day 4         | v       | , , | n | V)  | 80 | ν. | . V. | ) ਹ            | S        |   | V       | , V | \sqrt{0} | S        | 3   |          | 7        | £() | 103             |        |
| Number of Survi               | Day 3         | (,      | (,  |   | ک   | 5  | 4  | 5    | 7              | <b>~</b> |   | ٧٠<br>٢ |     | ~        | <b>٧</b> | 3   | <u>ر</u> | 6        | 3   | ~ (SS)          | 2/8/18 |
|                               | Day 2         | γr.     |     | n | v   | Ŋ  | N  | æ    | 4              | \$       |   | 75      | מע  | n        | શ        | r.  | พ        | 0        | 3   | BY MS           |        |
|                               | Day 1         | S       | 8   |   | ·S  | S  | ٧, | S)   | <b>4</b> 5)    | >        |   | *5      | V   | S        | S        | ₩.  | S        | <b>~</b> | £0  | SM LHDI         |        |
|                               | Day 0         | М       | ď   | 7 | ĸ   | S  | Ŋ  | ٧    | ഗ              | S        |   | ເດຍ     | 5   | 5        | 2        | 15  | \$       | រភ       | 2   | sless mill      |        |
|                               | Rep           | ¥       | В   | c | ) I | ۵  | Ш  | ш    | 9              | Ξ        |   | A       | В   | ၁        | D        | ш   | ı.       | <b>9</b> | ェ   | Time / Initials |        |
|                               | Concentration | Control |     |   |     |    |    |      |                |          |   | 20%     |     |          |          |     |          |          |     | Tim             |        |

Americamysis:(1007.0) X

OTHER:

ATS-T10 12/02/08



**TOXICITY TEST OBSERVATION DATA SHEET** Time: 1005 Beginning Date: Project Number: \_\_\_\_\_70005.15 **TEST ORGANISM** 8 22 16 Client: Jordan Valley Common Name: Opossum shrimp Ending Date: QC Test Number: TN-16-248 Scientific Name: A. bahia Test Material: Effluent TEST TYPE: Static Accession Number: ATIO - 407 Flowthrough Test Container: 4" Bowl 150 ml Non-renewal Test Volume: \_\_\_ Dilution Water: 30 ppt CS Renewal

Accession Number: 114-369 Photoperiod: 16 & 8 d Light Intensity: 50 - 100 fc Test Duration: 7 days

|                       |                |         |         |         | Number of Survi | ving Organisms |        |        |         |
|-----------------------|----------------|---------|---------|---------|-----------------|----------------|--------|--------|---------|
| Concentration         | Rep            | Day 0   | Day 1   | Day 2   | Day 3           | Day 4          | Day 5  | Day 6  | Day 7   |
| 75%                   | Α              | 5       | 5       | 2       | 7               | 2              | 2      | 2      | 2       |
|                       | В              | 5       | 5       | 2       | 2               | 2              | 2      | 2      | 2       |
|                       | С              | 5       | 5       | 4       | 3               | 3              | 3      | 3      | 3       |
|                       | D              | 5       | 5       | 4       | 4               | ઘ              | 4      | 4      | 4       |
|                       | E              | 5       | 5       | 4       | 4'              | Ч              | ¥      | Щ      | 4       |
|                       | F              | 5       | 5       | 5       | 4               | 4              | 4      | Ly     | 4       |
|                       | G              | 5       | 5       | 4       | 3               | 3              | 3      | 3      | 3       |
| - side - minics - are | Н              | 5       | 4       | 3       | \               | 1              |        | 1      |         |
| 100%                  | A              | 5       | 4       | 3       | 1               | 1              | 1      | 1      | (       |
|                       | В              | 5       | 5       | 4       | z               | 2              | 2      | 2      | 2       |
|                       | С              | 5       | 5       | 5       | 5               | 5              | 5      | 5      | 5       |
|                       | D              | 5       | 3       | 3       | 0               | _              | -      |        |         |
|                       | E              | 5       | 3       | 2       |                 | 0 L            |        |        | 1       |
|                       | F              | 5       | 4       | 2       | 1               |                | ì      | i      | Ĭ       |
|                       | G              | 5       | 2       | 2       |                 | (              |        | ı      | (       |
|                       | Н              | 5       | 2       | 2       | 0               |                |        | _      |         |
| T                     | ime / Initials | MOSONIC | 1047 MJ | 1337 MJ | 1553~           | 1030MJ         | 1545MJ | 85 OIG | 1525 MJ |

| EPA TEST METH    | <u> OD</u> : (FW) EPA 821-R-02-013/(SW) EP | PA 821-R-02-012(CHECK ONE) |
|------------------|--------------------------------------------|----------------------------|
| Fathead: (1000.0 | )) <u>Cyprinodon:</u> (1004.0)             | <u>Menidla</u> : (1006.0)  |



# REPRODUCTION AND WEIGHT DATA (Test Species: A. bahia

|                                      |                                | <u>Date</u> | <u>Time</u> | <u>Initials</u> |
|--------------------------------------|--------------------------------|-------------|-------------|-----------------|
| Project Number:70005.15              | Organisms sexed;               | 8/22/16     | 1525        | MJ              |
| Client:Jordan Valley                 | Loaded tins placed in oven:    | 8/22/14     | 1551        | M               |
| QC Test Number: TN-16-248            | Loaded tins removed from oven: | 8/25/16     | 1413        | NM              |
| Tin Lot: Blue 162                    | Loaded tins weighed:           | 8/25/10     | 1443        | NA              |
| Oven Temp (°C): Start: 100° End: 92° | Oven Number: BLM-01            | Balance Nu  |             | 15825           |

| Test<br>Conc. | Rep | Tin # | # Females<br>with<br>Eggs | # Females without | # Malaa | # 1         | C<br># Orgs. | A<br>Wt, of Tin | B<br>Wt. of Tin &<br>Dried Orgs. | B <b>-A</b><br>Total Dry<br>Org. Weight | (B-A)/C<br>Mean Dry<br>Org. Weight | (if applicable)<br>Mean Blomass |
|---------------|-----|-------|---------------------------|-------------------|---------|-------------|--------------|-----------------|----------------------------------|-----------------------------------------|------------------------------------|---------------------------------|
| Control       | A   | _     | Lggs                      | Eggs              | # Males | # Immatures | Weighed      | (mg)            | (mg)                             | (mg)                                    | (mg)                               | (mg/exp. org.)                  |
|               | В   | 53    |                           |                   | سللا    |             | 5            | 29.73           | 31.36                            | 1.63                                    | 0.326                              | 0.326                           |
|               |     | 23    |                           |                   | JHY .   |             |              | 30.03           | 31.57                            | 1.54                                    | 0.308                              | 0.308                           |
|               | С   | 169   |                           |                   | ali     |             | 5            | 30.44           | 32,18                            | 1,74                                    | 0.348                              | 0.348                           |
|               | D   | 83    |                           | yal               | 1       |             | 5            | 31.00           | 32.57                            | 1.57                                    | 0.314                              | 0.3/4                           |
|               | E   | 99    | 11                        |                   | ill     |             | 5            | 29.94           | 31.62                            | 1.68                                    | 0.336                              | 0.334                           |
|               | F   | 524   |                           | н                 | 111     |             | 6            | 30.10           | 32.51                            | 1.87                                    | 0.374                              | 0.374                           |
|               | G   | 48    |                           |                   | 1111    |             | 4            | 30.31           | 31.65                            | 1,34                                    | 0.335                              | 0.268                           |
|               | Н   | 95    |                           | JH.               | •       |             | 5            | 27.76           | 29.31                            | 1,55                                    | 0.310                              | 0.30                            |
| 50%           | Α   | 14    |                           | nt                | 11      |             | 5            | 36.34           | 01.64                            | 1.22                                    | o duti                             | A 2011                          |
|               | В   | 101   |                           | 1111              | 1       |             |              |                 | 31.%                             |                                         | 0.244                              | 0.244                           |
|               | C   | 77    | -                         |                   |         |             | 5            | 30.18           | 31,54                            | 1.36                                    | 0.272                              | 0.272                           |
|               | D   |       |                           | 1111              |         |             | 5            | 34.47           | 36.04                            | 1.57                                    | 0.314                              | 0.34                            |
|               |     | 135   |                           |                   | _///    |             | 5            | 31.96           | 33.66                            | 1.70                                    | 0.340                              | 0.240                           |
|               | E   | 103   |                           | 111               | 1       |             | થ            | 32.41           | 33.63                            | 1,22                                    | 0.305                              | 0.244                           |
|               | F   | 105   | ***                       | nti               | 1       |             | 3            | 30.53           | 32,15                            | 1.62                                    | 0.324                              | 0.329                           |
|               | G   | 100   |                           | 11                | Ŋ       |             | Ц            | 30.19           | 31.36                            | 1.17                                    | 0.793                              | 0.234                           |
|               | Н   | 117   | (                         | Ī                 | 1       |             | 3            | 29.20           | 30,17                            | 0.97                                    | 0.323                              | 0-194                           |

Biomass calculations checked (date, Initials): 9/7/14



## REPRODUCTION AND WEIGHT DATA (Test Species: A. bahia

|               |              |              |                           |                        |          |             |                         |                         |                                          | <u>Date</u>                             | <u>Time</u>                                | Initials Mo                                       |     |
|---------------|--------------|--------------|---------------------------|------------------------|----------|-------------|-------------------------|-------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------------------------|-----|
| Project       | Numbe        | er: <u>7</u> | 0005.15                   |                        |          |             | Orga                    | nisms sexed             | d:                                       | 6 22 1                                  | 1525                                       |                                                   |     |
| Client:       | Jor          | dan Va       | lley                      |                        |          |             |                         |                         | ed in oven:                              |                                         |                                            |                                                   |     |
| QC Tes        | st Numi      | ber: _       | TN- id                    | 0-248                  |          |             | Load                    | led tins remo           | ved from oven:                           | )                                       |                                            | M                                                 |     |
| Tin Lot       | : <u>B</u> \ | ve 162       |                           |                        |          |             | Loaded tins             | weighed:                |                                          | 8/25                                    | -/16 1943                                  | M                                                 |     |
| Oven T        | emp (        | °C): S       | tart: <u></u>             | )O°                    | End:9    | Z°          | Over                    | Number:                 | BLM-01                                   | Balan                                   | ce Number: P                               | 0115825                                           |     |
| Test<br>Conc. | Rep          |              | # Females<br>with<br>Eggs | # Females without Eggs | # Males  | # Immatures | C<br># Orgs.<br>Welghed | A<br>Wt. of Tin<br>(mg) | B<br>Wt. of Tin &<br>Dried Orgs.<br>(mg) | B-A<br>Total Dry<br>Org. Weight<br>(mg) | (B-A)/C<br>Mean Dry<br>Org. Weight<br>(mg) | (if applicable)<br>Mean Biomass<br>(mg/exp. org.) |     |
| 75%           | Α            | 98           |                           | 1                      | 1        |             | 2                       | 31.12                   | 31.59                                    | 0.47                                    | 0.235                                      | 0.084                                             |     |
|               | В            | 116          |                           | 11                     |          |             | 2                       | 34.00                   | 34.46                                    | 0.46                                    | 0.230                                      | 0.092                                             | ]   |
|               | С            | 66           |                           | 1                      | 11       |             | 3                       | 28.57                   | 29.53                                    | 0.96                                    | 0.320                                      | 0.192                                             |     |
|               | D            | 90           |                           | IN                     | - 1      |             | 4                       | 34.16                   | 35.44                                    | 1.28                                    | 0.320                                      | 0.25%                                             | ]   |
|               | E            | 110          |                           | 111                    | 1        |             | 4                       | 29,54                   | 30.1338.76                               | 0.59                                    | 0.148                                      | 0.118                                             | als |
|               | F            | 61           |                           | 111                    | 1        |             | पं                      | 28.45                   | 29.80                                    | 135 1.35                                | 0.330                                      | 0.270                                             | J ° |
|               | G            | 70           | l                         | 1                      | 1        |             | 3                       | 29.84                   | 30.62                                    | 0.78                                    | 0.260                                      | 0.156                                             |     |
|               | Н            | 117          |                           |                        |          |             | Ĭ                       | 30.64                   | 30.82                                    | 0'18,                                   | 0.180                                      | 0.036                                             | _   |
| 100%          | A            | 141          |                           |                        |          | -           |                         | 29.5%                   | 30.00                                    | 0.42                                    | 0.420                                      | 0.084                                             | 1   |
|               | В            | 130          |                           | H                      | <b>'</b> |             | 2                       | 29.63                   |                                          | 0,50                                    | 0.250                                      | 0.100                                             | 1   |
|               | С            | 129          |                           | 11                     | 11       |             | 5                       | 33.50                   | 35,11                                    | 1.61                                    | 0.322                                      | 0.322                                             | 1   |
|               | D            | -            |                           |                        |          |             |                         | _                       |                                          |                                         |                                            |                                                   | 1   |
|               | E            | 82           |                           | 1                      |          |             | 1                       | 31.11                   | 31.28                                    | פ.וס                                    | 0.170                                      | 0.034                                             | 1   |
|               | F            | 120          |                           |                        | 1        |             | ١,                      | 38.41                   |                                          | 0.22                                    | 0.220                                      | 0.044                                             |     |
|               | G            | 97           |                           |                        | 1        |             | ,                       | 29.84                   |                                          | 0.05                                    | 0.050                                      | 0.010                                             |     |
|               | Н            | -            |                           |                        |          |             | -                       |                         |                                          |                                         |                                            |                                                   |     |



## **TOXICITY TEST WATER QUALITY DATA SHEET - NEW SOLUTIONS**

| Project Number:              | TEST ORGANISM               | Beginning Date: 815/10 | Time: | 1625 |
|------------------------------|-----------------------------|------------------------|-------|------|
| Client:Jordan Valley         | Common Name: Opossum shrimp | Ending Date: 8 2216    | Time: | 1525 |
| QC Test Number:TN-ilo - 248' | Scientific Name: A. bahia   |                        |       |      |
|                              |                             |                        |       |      |

TARGET VALUES: Temp: <u>26±1</u> °C pH: <u>6.0 - 9.0</u> DO: <u>≥4.0</u> mg/L Salinity: <u>30±2</u> ppt Photoperiod: <u>16 ℓ, 8 ℓ</u> Light Intensity: <u>50 - 100</u> fc

|           |         |      |       | Гетр  | eratu | re (°C | ;)   |      |      |      |      | рН          |      |      |      |     | Dis  | solved | d Oxyg | jen (n      | ng/L) |       |        | Š     | ondu<br>Sa | ctivity | (μS/c     | m)    |      |
|-----------|---------|------|-------|-------|-------|--------|------|------|------|------|------|-------------|------|------|------|-----|------|--------|--------|-------------|-------|-------|--------|-------|------------|---------|-----------|-------|------|
| Test Conc | Rep     | 0    | 1     | 2     | 3     | 4      | 5    | 6    | 0    | 1    | 2    | 3           | 4    | 5    | 6    | 0   | 1    | 2      | 3      | 4           | 5     | 6     | 0      | 1     | 2          | 3       | 4         | 5     | 6    |
| Control   |         | 25,1 | 24.8  | 2140  | 25.1  | 250    | 25.0 | 25,3 | 61   | 8.1  | 1.3  | 8.3         | 1.0  | 7.9  | 7,2  | 69  | 6.9  | 7.0    | 69     | 68          | 7.1   | 60%   | 30.1   | 38.6  | 207        | 29 C    | no il     | 29 9  | 34.  |
|           |         |      | 25.1  | 253   |       |        |      |      | 34   |      |      |             |      |      |      |     |      |        |        | 1           |       |       |        | 00.00 | ω.,        | -       | 30.1      | 2")   | ببحق |
| 50%       |         | 25.0 | 25.1  | 25.1  | 250   | 250    | 25.1 | 253  | 618  | 8.0  | 7.3  | 81          | 20   | 7.9  | 7.3  | 6.8 | 7.0  | 7.0    | 70     | 0.8         | 7.1   | 6.8   | 20.2   | 20.2  | 20.5       | 29.5    | 500 0     | 29 %  | 200  |
|           |         |      |       |       |       |        |      |      | 8.1  |      |      |             |      | 72   |      |     |      |        |        |             |       |       | ,,,,,, | 50-   | 50.0       |         | 21.1      | 2 114 | ررس  |
| 75%       |         | 1510 | 25.2  | 25.\  | 250   | 250    | 252  | 25.3 | 618  | 7.9  | 7.3  | 80          | 10   | 7.8  | 13   | 7.0 | 7.0  | 1.0    | 7.0    | 6.8         | 10    | 6.8   | 20,0   | 30.0  | 26.2       | 292     | 29.1      | 29.3  | 30   |
|           |         |      | œ     |       |       |        |      |      | 8'0  |      |      |             |      |      |      |     |      |        |        |             |       | 1     |        | Cons  | 0-15       |         | 1.1       | 0.0   |      |
| 100%      |         | 15N  | 253   | 25.1  | 250   | 25.0   | 25:3 | 25,1 | WK   | 7.8  | 7.2  | 7.9         | 7.0  | 7.8  | 7.2  | 7.1 | 1.0  | 6.9    | 7.0    | 6.8         | 2.0   | 6.8   | 29.8   | 29.7  | 30.0       | 29.0    | 29.4      | 291   | 29.9 |
|           |         | *    |       |       |       |        |      |      | 7,8  |      |      |             |      |      |      |     |      |        |        |             |       |       |        |       |            |         |           |       |      |
|           | -       |      |       |       |       |        |      |      |      |      |      |             |      |      |      |     |      |        |        |             |       |       |        |       |            |         |           |       |      |
|           |         |      |       |       |       |        |      |      |      |      |      |             |      |      |      |     |      |        |        |             |       |       |        |       |            |         |           |       |      |
|           |         |      |       |       |       |        |      |      |      |      |      |             |      |      |      |     |      |        |        |             |       |       |        |       |            |         |           |       |      |
|           |         |      |       |       |       |        |      |      |      |      |      |             |      |      |      |     |      |        |        |             |       |       |        |       |            |         | auraic ar |       |      |
| Meter No  | ımber   | WA   | 678   | øη    | 616   | ଜ୍ୟ    | હાજ  | 629  | Prw  | 619  | 679  | <b>ଜୀ</b> 8 | 619  | 618  | 609  | 679 | ษาช  | 679    | ଧ୍ୟ    | <i>G</i> 19 | 678   | (હર્ધ | 679    | 616   | 679        | (B)E    | 619       | 675   | 6529 |
|           | ime     | INDO | (1999 | 111/8 | WA    | 0921   | 1926 | 0452 | 1600 | 0948 | 1148 | 145%        | 0921 | 0920 | OUSZ | RW) | 0948 | 1148   | 1458   | 1,590       | 0926  | 0152  | (CO4)  | MUR   | 1148       | 1455    | 0921      | na26  | 040  |
| 1         | nitials | 38   | MJ    | MS    | MS    | MS     | MZ   | 10   | ഷ    | M    | M    | ANS         | MT   | MS   | ATA. | 10  | MI   | M      | MZ     | MT          | MI    | /CB   | 100    | 44.0  | Aser       | WA      | M         | MY    | Sh   |



### **TOXICITY TEST WATER QUALITY DATA SHEET - OLD SOLUTIONS**

| Project Number: 70005.15     | <b>TEST ORGANISM</b> |                | Beginning Date: | 8/15/110 | Time: | 1625 |
|------------------------------|----------------------|----------------|-----------------|----------|-------|------|
| Client: <u>Jordan Valley</u> | Common Name:         | Opossum shrimp | Ending Date:    | 8/22/16  | Time: | 1525 |
| QC Test Number: TN-16-248    | Scientific Name:     | A. bahia       |                 |          |       |      |

TARGET VALUES: Temp: 26±1 °C pH: 6.0 - 9.0 DO: ≥4.0 mg/L Salinity: 30±2 ppt Photoperiod: 16 € 8 € Light Intensity: 50 - 100 fc

|           |        |            | 1            | emp  | eratur | e (°C       | )          |            |             |            |      | рН   |       |      |            |     | Diss        | olved | Oxyg | en (m      | g/L) |              |      | Co           |      | tivity (<br>nity (p | uS/cr         | n)           |            |
|-----------|--------|------------|--------------|------|--------|-------------|------------|------------|-------------|------------|------|------|-------|------|------------|-----|-------------|-------|------|------------|------|--------------|------|--------------|------|---------------------|---------------|--------------|------------|
| Test Conc | Rep    | 1          | 2            | 3    | 4      | 5           | 6          | 7          | 1           | 2          | 3    | 4    | 5     | 6    | 7          | 1   | 2           | 3     | 4    | 5          | 6    | 7            | 1    | 2            | 3    | 4                   | 5             | 6            | 7          |
| Control   |        | UA<br>25.1 | <b>1</b> 5.1 | 25.4 | 250    | 156         | 25,5       | 25.5       | 4.2         | 19         | 8.2  | 7.7  | 83    | 7.0  | 8,5        | 55  | 5.6         | 5.7   | 660  | 54         | 5,8  | 5,3          | 30:7 | 30.8         | 30.9 | <i>3</i> 0.5        | 29.1          | <b>3</b> 0.3 | 29.5       |
| 50%       |        | 26-1       | <b>25</b> 4  | 25.6 | 25:2   | <b>25</b> 3 | <b>758</b> | 25.50      | 8-1         | 1.9        | ¥.0  | 1.7  | 8.3   | 7.0  | 8.4        | 50  | 5.1         | 5.2   | 52   | 4.5        | 5.0  | 4.6          | 30.2 | <i>30</i> .5 | 30.4 | <b>30.</b> [        | 29.1          | 300          | 29.3       |
| 75%       |        | 157        | <b>1</b> 5/Q | 25.6 | e5.4   | 259         | 25.4       | 25.8       | <b>8</b> .1 | 7.9        | 8.0  | 76   | 8.1   | 7.1  | 8.2        | 45  | <b>4.</b> l | 5.2   | 4.[  | 4.1        | 5.5  | 4.1          | 299  | 30.2         | 30.1 | A8                  | <i>3</i> 3.60 | 29.8         | 29.Q       |
| 100%      |        | 25.U       | 25 TQ        | 25.6 | 25.4   | 259         | 25.%       | 25.CO      | 79          | 7.9        | 8.0  | 7.6  | 7.9   | 7.1  | 1.8        | 4.2 | 4.2         | 4.9   | 4.1  | 4.0        | 4.1  | <b>ા</b> . છ | 29.7 | 29.9         | 29.9 | 295                 | 28.3          | 29.6         | 289        |
|           |        |            |              |      |        |             | <u> </u>   |            |             |            |      |      |       |      |            |     |             |       |      |            |      |              |      |              |      |                     |               |              |            |
|           |        |            |              |      |        |             |            |            |             |            |      |      |       |      |            |     |             |       |      |            |      |              |      |              |      |                     |               |              |            |
| Meter     | Number | _          |              |      |        |             |            |            |             |            |      |      | -     |      | 1          |     |             |       |      | 1          |      |              |      |              |      | 1                   |               |              |            |
|           | Time   | _          | 2221         |      | NO     |             | 102°       | 1525<br>MJ | 1102        | 1351<br>MO | 1559 | 104C | 15. M | 1027 | 1525<br>MS | MJ  | 1351<br>MJ  | 1557  | MI   | 1553<br>MJ | 1023 | 152°         | 7    | 1351<br>Mb   |      | NET                 | K             | 1023<br>183  | 1525<br>MS |

4116



### **RANDOMIZATION CHART**

| Project Nu | ımber: | 70005.15   |  |
|------------|--------|------------|--|
| Client: _  | Jorda  | an Valley  |  |
| OC Test N  | lumber | TN-110-248 |  |

| 5 | 6 | 2   | 3 | 1 | 4 |
|---|---|-----|---|---|---|
| 4 | 3 | 2   | 1 | 5 | 6 |
| 2 | 1 | . 4 | 3 | 5 | 6 |
| 1 | 6 | 3   | 2 | 5 | 4 |



## TOXICOLOGY LABORATORY BENCH SHEET

| Project Number:70005.15      |                   |
|------------------------------|-------------------|
| Client: <u>Jordan Valley</u> |                   |
| QC Test Number: TN-110-248   |                   |
| Date/Time/Initials           | Comments/Activity |



### **TOXICOLOGY LABORATORY BENCH SHEET**

| Project N | Number: | 70005.15   |  |
|-----------|---------|------------|--|
| Client: _ | Jor     | dan Valley |  |
| QC Test   | Number: | TN-110-248 |  |

Aliquot of sample warmed to test temperature, then aerated if supersaturated:

| i a      | T********* | r          | ON AIR |               | T        | OFF AIR      |            |
|----------|------------|------------|--------|---------------|----------|--------------|------------|
|          |            | Initial DO | I      | · · · · · · · | Final DO | OI I AIIX    | 1          |
| Date     | Sample #   | (mg/L)     | Time   | Initials      | (mg/L)   | Time         | Initials   |
|          |            |            |        |               |          |              |            |
| adi. e.a | <b> </b>   | 7.9        | -Co(-  |               |          | -0/0         |            |
| 8116116  | ATU-407    |            | 0906   | <b>3</b> 8    | હે.જ     | 09160        | JB         |
| 811116   | ATG-407    | 8,4        | 0932   | <i>3</i> B    | 6.8      | 0942         | <b>333</b> |
| 8/18/16  | AT6-407    | 9.1        | 1318   | MT            | 6.9      | 1328         | TM         |
| 8/19/16  | ATG-407    | 9.5        | 0746   | UJ            |          |              | MJ         |
| 812016   | AT6-407    | 9.2        | 0853   | MT            | 7.1      | 0756<br>0905 | MU         |
| 8/21/16  | ATW - 407  | 8.4        | 0905   | 5B            |          | 0915         | JB         |
| Blow     |            |            | 8      |               | 6.60     | 0 1,5        |            |
|          |            |            |        |               |          |              |            |
|          |            |            |        |               |          |              | 1          |
|          |            |            |        |               |          |              |            |
|          |            |            |        |               |          |              |            |
|          |            |            |        |               |          |              |            |
|          |            |            |        |               |          |              |            |
|          |            |            |        |               |          |              |            |
|          | 5%         |            |        | *1            |          |              |            |
|          |            |            |        | 7             | **       |              |            |
|          |            |            |        |               |          |              |            |
| ¥        |            |            |        |               |          |              |            |
|          |            |            |        |               |          |              | *          |
|          |            |            |        |               |          |              |            |
|          |            |            |        |               |          |              |            |

|                                          |                        |        | Mysic    | Survival,                        | Growth a | nd Fecu | ndity Test-                         | 48 Hr St | urvival                                               |
|------------------------------------------|------------------------|--------|----------|----------------------------------|----------|---------|-------------------------------------|----------|-------------------------------------------------------|
| Start Date:<br>End Date:<br>Sample Date: | 8/15/2016<br>8/22/2016 |        |          | TN-16-248<br>AT6-407<br>EPAM 87- |          | ne      | Sample ID<br>Sample Ty<br>Test Spec | /be:     | Jordan Valley<br>Mock Effluent<br>MY-Mysidopsis bahia |
| Comments:                                | - 1                    | 2      | 3        | 4                                | 5        | 6       | 7                                   | 8        | - Alik                                                |
| Control                                  | 1.0000                 | 1.0000 | 1.0000   | 1.0000                           | 1.0000   | 1.0000  | 0.8000                              | 1.0000   |                                                       |
| 50                                       | 1.0000                 | 1.0000 | 51000000 | 1.0000                           | 1.0000   | 1.0000  | 1.0000                              | 0.6000   |                                                       |
| 75                                       | 0.4000                 | 0.4000 |          | 0.8000                           | 0.8000   | 1.0000  | 0.8000                              | 0.6000   |                                                       |
| 100                                      |                        | 0.8000 |          | 0.6000                           | 0.4000   | 0.4000  | 0.4000                              | 0.4000   |                                                       |

|         |        |        | Tra    | ansform: | Arcsin Sc | uare Root |   |        | 1-Tailed |        | Number | Total  |
|---------|--------|--------|--------|----------|-----------|-----------|---|--------|----------|--------|--------|--------|
| Conc-%  | Mean   | N-Mean | Mean   | Min      | Max       | CV%       | N | t-Stat | Critical | MSD    | Resp   | Number |
| Control | 0.9750 | 1.0000 | 1.3155 | 1,1071   | 1.3453    | 6.400     | 8 |        |          |        | 1      | 40     |
| 50      | 0.9500 | 0.9744 | 1.2879 | 0.8861   | 1.3453    | 12.606    | 8 | 0.288  | 2.156    | 0.2068 | 2      | 40     |
| *75     | 0.7000 | 0.7179 | 1.0037 | 0.6847   | 1.3453    | 23.117    | 8 | 3.250  | 2.156    | 0.2068 | 12     | 40     |
| *100    | 0.5750 | 0.5897 | 0.8704 | 0.6847   | 1.3453    | 28.140    | 8 | 4.639  | 2.156    | 0.2068 | 17     | 40     |

| Augillant Toota                                   |              |            |         |    | Statistic | (       | Critical |         | Skew    | Kurt    |
|---------------------------------------------------|--------------|------------|---------|----|-----------|---------|----------|---------|---------|---------|
| Auxiliary Tests Shapiro-Wilk's Test indicates nor | mal distribu | rtion (p > | 0.01)   |    | 0.90732   |         | 0.904    |         | 0.00049 | 0.99635 |
| Bartlett's Test indicates equal var               | iances (p =  | 0.06)      |         |    | 7.35726   |         | 11.3449  | ***     | F O b   | A.E     |
| Hypothesis Test (1-tail, 0.05)                    | NOEC         | LOEC       | ChV     | TU | MSDu      | MSDp    | MSB      | MSE     | F-Prob  | df      |
| Dunnett's Test                                    | 50           | 75         | 61.2372 | 2  | 0.135     | 0.14419 | 0.37927  | 0.03682 | 9.7E-05 | 3, 28   |

|           |         |         |          | Ma          | ximum Likeliho | od-Probit            |          |            |         |          |     |
|-----------|---------|---------|----------|-------------|----------------|----------------------|----------|------------|---------|----------|-----|
| Parameter | Value   | SE      | 95% Fidu | cial Limits | Control        | Chi-Sq               | Critical | P-value    |         | Sigma    | Ite |
| Slope     | 4.90768 | 1.48225 | 2.00247  | 7.81289     | 0.025          | 1.19216              | 3.84146  | 0.27       | 2.02728 | 0.20376  | 7   |
| Intercept | -4.9492 | 2.83861 | -10.513  | 0.61446     |                |                      |          |            |         |          |     |
| TSCR      | 0.02142 | 0.02267 |          | 0.06585     |                | 1.0 7                |          |            | 11 /    |          |     |
| Point     | Probits | %       | 95% Fidu | cial Limits |                | 0.9                  | (i)      | - 1        | / / .   |          |     |
| EC01      | 2.674   | 35.7482 | 10.0556  | 50.207      |                | -                    | 7.       | 1          | 1 /     |          |     |
| EC05      | 3.355   | 49.2172 | 21.7747  | 62.0548     |                | 0.8 -                |          | - 11       |         |          |     |
| EC10      | 3.718   | 58.3639 | 32.6488  | 69.9498     |                | 0.7 -                |          | - 11       |         | - 1      |     |
| EC15      | 3.964   | 65.4772 | 42.5933  | 76.4003     |                | <b>9</b> 0.6 -       |          | H          | 1       |          |     |
| EC20      | 4.158   | 71.744  | 52.1057  | 82.7507     |                | SE 0.0               |          | - 11       | /       |          |     |
| EC25      | 4.326   | 77.5963 | 61.0904  | 89.8543     |                | 980005<br>0.5<br>0.4 |          | 11/        | /       |          |     |
| EC40      | 4.747   | 94.5483 | 81.9188  | 123.124     |                | <b>8</b> 0.4         |          | ₩.         | ii<br>E |          |     |
| EC50      | 5.000   | 106.482 | 91.6514  | 158.684     |                |                      |          | ///        |         | 1        |     |
| EC60      | 5.253   | 119.922 | 100.612  | 208.432     |                | 0.3 -                |          | <b>/4/</b> |         |          |     |
| EC75      | 5.674   | 146.121 | 115.663  | 333.147     |                | 0.2 -                |          | /#         |         |          |     |
| EC80      | 5.842   | 158.04  | 121.943  | 402.28      |                | 8                    | 0        | /          |         |          |     |
| EC85      | 6.036   | 173.166 | 129.573  | 501.641     |                | 0.1                  | 1        | /1         |         |          |     |
| EC90      | 6.282   | 194.271 | 139.718  |             |                | 0.0 -                |          |            |         | ******** |     |
| EC95      | 6.645   | 230.375 |          |             |                |                      | 1 10     | 100        | 1000    | 10000    |     |
| EC99      | 7.326   | 317.175 | 191.512  | 2187.64     |                |                      |          | Dose       | %       |          |     |

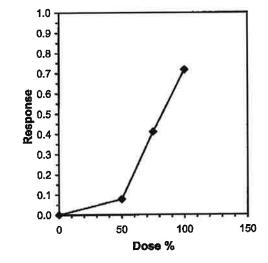
|              |           |        | Mysid     | Survival, | Growth a | ind Fecu | ndity Test | -96 Hr St | ırvival             |
|--------------|-----------|--------|-----------|-----------|----------|----------|------------|-----------|---------------------|
| Start Date:  | 8/15/2016 |        | Test ID:  | TN-16-248 | 3        |          | Sample ID  | ):        | Jordan Valley       |
| End Date:    | 8/22/2016 |        | Lab ID:   | AT6-407   |          |          | Sample Ty  | vpe:      | Mock Effluent       |
| Sample Date: |           |        | Protocol: | EPAM 87-  | EPA Mari | пе       | Test Spec  | ies:      | MY-Mysidopsis bahia |
| Comments:    |           |        |           |           |          |          |            |           |                     |
| Conc-%       | 1         | 2      | 3         | 4         | 5        | 6        | 7          | 8         |                     |
| Control      | 1.0000    | 1.0000 | 1.0000    | 1.0000    | 1.0000   | 1.0000   | 0.8000     | 1.0000    |                     |
| 50           | 1.0000    | 1.0000 | 1.0000    | 1.0000    | 0.8000   | 1.0000   | 0.8000     | 0.6000    |                     |
| 75           | 0.4000    | 0.4000 | 0.6000    | 0.8000    | 0.8000   | 0.8000   | 0.6000     | 0.2000    |                     |
| 100          | 0.2000    | 0.4000 | 1.0000    | 0.0000    | 0.2000   | 0.2000   | 0.2000     | 0.0000    |                     |

|         |        |                     | Tra    | ansform: | Arcsin So | quare Roof | t | Rank  | 1-Tailed | Number | Total  |
|---------|--------|---------------------|--------|----------|-----------|------------|---|-------|----------|--------|--------|
| Conc-%  | Mean   | N-Mean <sup>*</sup> | Mean   | Min      | Max       | CV%        | N | Sum   | Critical | Resp   | Number |
| Control | 0.9750 | 1.0000              | 1.3155 | 1.1071   | 1.3453    | 6.400      | 8 |       |          | 1      | 40     |
| 50      | 0.9000 | 0.9231              | 1.2283 | 0.8861   | 1.3453    | 14.264     | 8 | 59.50 | 48.00    | 4      | 40     |
| *75     | 0.5750 | 0.5897              | 0.8658 | 0.4636   | 1.1071    | 27.708     | 8 | 37.50 | 48.00    | 17     | 40     |
| *100    | 0.2750 | 0.2821              | 0.5420 | 0.2255   | 1.3453    | 65.813     | 8 | 40.50 | 48.00    | 29     | 40     |

| Auxiliary Tests                   |             |            |                |         | Statistic | Critical | Skew    | Kurt    |
|-----------------------------------|-------------|------------|----------------|---------|-----------|----------|---------|---------|
| Shapiro-Wilk's Test indicates nor | -normal dis | stribution | $(p \le 0.01)$ |         | 0.90037   | 0.904    | 1.15066 | 4.32238 |
| Bartlett's Test Indicates unequal | 0 = 7.90E   | -03)       |                | 11.8541 | 11.3449   |          |         |         |
| Hypothesis Test (1-tall, 0.05)    | NOEC        | LOEC       | ChV            | TU      |           | 74-      |         |         |
| Steel's Many-One Rank Test        | 50          | 75         | 61.2372        | 2       |           |          | 347     |         |

|                |             |          |            | Maxir       | num Likeliho | od-Probit           | 1        |         |            |         |     |
|----------------|-------------|----------|------------|-------------|--------------|---------------------|----------|---------|------------|---------|-----|
| Parameter      | Value       | SE       | 95% Fldu   | cial Limits | Control      | Chi-Sq              | Critical | P-value | Mu         | Sigma   | Ite |
| Slope          | 6.62465     | 1.35849  | 3.96201    | 9.2873      | 0.025        | 0.00942             | 3.84146  | 0.92    | 1.91148    | 0.15095 | 3   |
| Intercept      | -7.6629     | 2.57912  | -12.718    | -2.6078     |              |                     |          |         |            |         |     |
| TSCR           | 0.02467     | 0.0243   | -0.0229    | 0.07229     |              | 1.0                 |          |         |            |         |     |
| Point          | Probits     | %        | 95% Fidu   | cial Limits |              |                     |          | ,       | 1//        | 1       |     |
| EC01           | 2.674       | 36.3338  | 20.9395    | 46.3541     |              | 0.9                 |          |         | 11/        |         |     |
| EC05           | 3.355       | 46.0451  | 30.9341    | 55.2082     |              | 0.8 -               |          |         | 11/        |         |     |
| EC10           | 3.718       | 52.2426  | 38.0014    | 60.7374     |              | 0.7                 |          |         | 14/        |         |     |
| EC15           | 3.964       | 56.8886  | 43.5834    | 64.8924     |              | -                   |          |         | 11/        |         |     |
| EC20           | 4.158       | 60.8741  | 48.516     | 68.5136     |              | 98000<br>0.5<br>0.4 |          |         | 11/        |         |     |
| EC25           | 4.326       | 64.5151  | 53.0909    | 71.9152     |              | 5 0.5 d             |          |         | 111        |         |     |
| EC40           | 4.747       | 74.685   | 65.6825    | 82.4199     |              | <u>8</u>            |          |         | Ш          |         |     |
| EC50           | 5.000       | 81.5598  | 73.4061    | 90.9856     |              | <b>2</b> 0.4        |          |         | M          |         |     |
| EC60           | 5.253       | 89.0675  | 80.7378    | 102.059     |              | 0.3 -               |          |         | /#         |         |     |
| EC75           | 5.674       | 103.108  | 92.2001    | 126.718     |              | 0.2                 |          |         | / <b>!</b> |         |     |
| EC80           | 5.842       | 109.275  | 96.7087    | 138.766     |              | 0.2]                |          | 1       | #          |         |     |
| EC85           | 6.036       | 116.93   | 102.049    | 154.556     |              | 0.1                 |          | /.      | U          |         |     |
| EC90           | 6.282       | 127.329  | 108.982    | 177.338     |              | 0.0 1               |          | //      | /          |         |     |
| EC95           | 6.645       | 144.467  | 119.851    | 217.935     |              | 1                   |          | 10      | 100        | 1000    |     |
| EC99           | 7.326       | 183.08   | 142.697    | 322.063     |              | 5.5                 |          |         |            | 1000    |     |
| Significant he | terogeneity | detected | (p < 0.01) |             |              |                     |          | Dose    | %          |         |     |




|                                          |                        |        | Mysic                            | i Survival,                      | Growth a | nd Fecu | ndity Test-                         | 7 Day St |                                                       |
|------------------------------------------|------------------------|--------|----------------------------------|----------------------------------|----------|---------|-------------------------------------|----------|-------------------------------------------------------|
| Start Date:<br>End Date:<br>Sample Date: | 8/15/2016<br>8/22/2016 |        | Test ID:<br>Lab ID:<br>Protocol: | TN-16-248<br>AT6-407<br>EPAM 87- |          | ne      | Sample ID<br>Sample Ty<br>Test Spec | ype:     | Jordan Valley<br>Mock Effluent<br>MY-Mysidopsis bahia |
| Conc-%                                   | 1                      | 2      | 3                                | 4                                | 5        | 6       | 7                                   | 8        | tenco an an analysis                                  |
| Control                                  | 1.0000                 | 1.0000 | 1.0000                           | 1.0000                           | 1.0000   | 1.0000  | 0.8000                              | 1.0000   |                                                       |
| 50                                       |                        | 1.0000 | 1.0000                           | 1.0000                           | 0.8000   | 1.0000  | 0.8000                              | 0.6000   |                                                       |
| 75                                       |                        | 0.4000 | 0.6000                           | 0.8000                           | 0.8000   | 0.8000  | 0.6000                              | 0.2000   |                                                       |
| 100                                      |                        | 0.4000 | 1,0000                           | 0.0000                           | 0.2000   | 0.2000  | 0.2000                              | 0.0000   |                                                       |

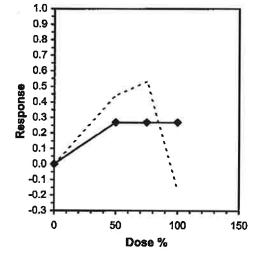
|         |        |        | Tr     | ansform: | Arcsin So | uare Roof | ŧ | Rank  | 1-Tailed | Isotonic |        |  |
|---------|--------|--------|--------|----------|-----------|-----------|---|-------|----------|----------|--------|--|
| Conc-%  | Mean   | N-Mean | Mean   | Min      | Max       | CV%       | N | Sum   | Critical | Mean     | N-Mean |  |
| Control | 0.9750 | 1,0000 | 1.3155 | 1.1071   | 1.3453    | 6.400     | 8 |       |          | 0.9750   | 1.0000 |  |
| 50      | 0.9000 | 0.9231 | 1.2283 | 0.8861   | 1.3453    | 14.264    | 8 | 59.50 | 48.00    | 0.9000   | 0.9231 |  |
| *75     | 0.5750 | 0.5897 | 0.8658 | 0.4636   | 1.1071    | 27.708    | 8 | 37.50 | 48.00    | 0.5750   | 0.5897 |  |
| *100    | 0.2750 | 0.2821 | 0.5420 | 0.2255   | 1.3453    | 65.813    | 8 | 40.50 | 48.00    | 0.2750   | 0.2821 |  |

| Auxiliary Tests                   |              |            |                |    | Statistic | Critical | Skew    | Kurt    |
|-----------------------------------|--------------|------------|----------------|----|-----------|----------|---------|---------|
| Shapiro-Wilk's Test indicates nor | n-normal dis | stribution | $(p \le 0.01)$ |    | 0.90037   | 0.904    | 1.15066 | 4.32238 |
| Bartlett's Test indicates unequal | variances (  | p = 7.90E  | -03)           |    | 11.8541   | 11.3449  |         |         |
| Hypothesis Test (1-tail, 0.05)    | NOEC         | LOEC       | ChV            | TU |           |          |         |         |
| Steel's Many-One Rank Test        | 50           | 75         | 61.2372        | 2  |           |          |         |         |

|       |        |        | Linear Interpolation (200 Res |        |         |     |  |  |  |  |
|-------|--------|--------|-------------------------------|--------|---------|-----|--|--|--|--|
| Point | %      | SD     | 95%                           | CL     | Skew    |     |  |  |  |  |
| IC05* | 32.500 | 14.143 | 14.277                        | 53.854 | 0.0623  |     |  |  |  |  |
| IC10  | 51.731 | 8.332  | 28.554                        | 57.778 | -1.3075 |     |  |  |  |  |
| IC15  | 55.481 | 4.934  | 42.830                        | 63.060 | -1.4940 | 1.0 |  |  |  |  |
| IC20  | 59.231 | 4.361  | 52.269                        | 68.781 | 0.0396  | 0.9 |  |  |  |  |
| IC25  | 62,981 | 4.560  | 56.250                        | 75.015 | 0.6321  | 4   |  |  |  |  |
| IC40  | 74.231 | 5.110  | 65.902                        | 84.329 | 0.1763  | 0.8 |  |  |  |  |
| IC50  | 82.292 |        |                               |        |         | 0.7 |  |  |  |  |

<sup>\*</sup> indicates IC estimate less than the lowest concentration




|                                                       |                        |        | Mys     | sid Surviva                      | al, Growth | and Fe | cundity Te                          | st-Fecur | idity                                                 |
|-------------------------------------------------------|------------------------|--------|---------|----------------------------------|------------|--------|-------------------------------------|----------|-------------------------------------------------------|
| Start Date:<br>End Date:<br>Sample Date:<br>Comments: | 8/15/2016<br>8/22/2016 |        | Lab ID: | TN-16-248<br>AT6-407<br>EPAM 87- |            | ne     | Sample II<br>Sample Ty<br>Test Spec | ype:     | Jordan Valley<br>Mock Effluent<br>MY-Mysidopsis bahia |
| Conc-%                                                | 1                      | 2      | 3       | 4                                | 5 =        | 6      | 7                                   | 8        | 1                                                     |
| Control                                               | 0.0000                 | 0.0000 | 1.0000  | 0.0000                           | 0.0000     |        |                                     |          |                                                       |
| 50                                                    | 0.0000                 | 0.0000 | 0.0000  | 0.3333                           | 0.0000     | 0.0000 | 0.0000                              | 0.5000   |                                                       |
| 75                                                    | 0.0000                 | 0.0000 | 0.0000  | 0.0000                           | 0.0000     | 0.0000 | 0.5000                              |          |                                                       |
| 100                                                   | 0.0000                 | 0.3333 | 0.0000  |                                  |            |        |                                     |          |                                                       |

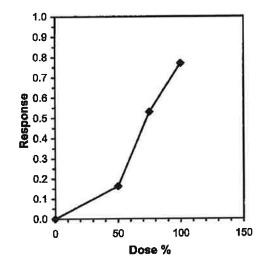
|         |        |        | Transform: Arcsin Square Root |        |        |        |   |        | 1-Talled |        |        | Isotonic |  |
|---------|--------|--------|-------------------------------|--------|--------|--------|---|--------|----------|--------|--------|----------|--|
| Conc-%  | Mean   | N-Mean | Mean                          | Min    | Max    | CV%    | N | t-Stat | Critical | MSD    | Mean   | N-Mean   |  |
| Control | 0.2000 | 1.0000 | 0.5145                        | 0.2255 | 1.2094 | 78.860 | 5 |        |          |        | 0.1429 | 1.0000   |  |
| 50      | 0.1042 | 0.5208 | 0.3882                        | 0.2527 | 0.7854 | 51.828 | 8 | 0.757  | 1.796    | 0.2996 | 0.1044 | 0.7311   |  |
| 75      | 0.0714 | 0.3571 | 0.4389                        | 0.2928 | 0.7854 | 42.052 | 7 |        |          |        | 0.1044 | 0.7311   |  |
| 100     | 0.1111 | 0.5556 | 0.5001                        | 0.3614 | 0.6155 | 25.726 | 3 |        |          |        | 0.1044 | 0.7311   |  |

| Auxiliary Tests                                              | Statistic |         | Critical |         | Skew    | Kurt    |
|--------------------------------------------------------------|-----------|---------|----------|---------|---------|---------|
| Shapiro-Wilk's Test indicates normal distribution (p > 0.01) | 0.81643   |         | 0.814    |         | 1.58992 | 2.20734 |
| F-Test indicates equal variances (p = 0.10)                  | 4.06602   |         | 10.0505  |         |         |         |
| Hypothesis Test (1-tail, 0.05)                               | MSDu      | MSDp    | MSB      | MSE     | F-Prob  | df      |
| Homoscedastic t Test indicates no significant differences    | 0.19669   | 0.81219 | 0.04906  | 0.08563 | 0.46501 | 1, 11   |

|       |        |    | Line                                    | Linear Interpolation (200 Resamples) |  |  |  |  |
|-------|--------|----|-----------------------------------------|--------------------------------------|--|--|--|--|
| Point | %      | SD | 95% CL(Exp)                             | Skew                                 |  |  |  |  |
| IC05* | 9.298  |    | *************************************** |                                      |  |  |  |  |
| IC10* | 18.595 |    |                                         |                                      |  |  |  |  |
| IC15* | 27.893 |    |                                         | 1.0                                  |  |  |  |  |
| IC20* | 37.190 |    |                                         | 0.9                                  |  |  |  |  |
| IC25* | 46.488 |    |                                         | 0.8                                  |  |  |  |  |
| IC40  | >100   |    |                                         | 4                                    |  |  |  |  |
| IC50  | >100   |    |                                         | 0.7 -                                |  |  |  |  |

<sup>\*</sup> indicates IC estimate less than the lowest concentration




|                           |                        |             | My     | sid Surviv                                                      | al, Growt | h and Fe | cundity Te                                  | st-Biom |                                                       |
|---------------------------|------------------------|-------------|--------|-----------------------------------------------------------------|-----------|----------|---------------------------------------------|---------|-------------------------------------------------------|
| End Date:<br>Sample Date: | 8/15/2016<br>8/22/2016 | 8/22/2016 L |        | Test ID: TN-16-248 Lab ID: AT6-407 Protocol: EPAM 87-EPA Marine |           | ne       | Sample ID:<br>Sample Type:<br>Test Species: |         | Jordan Valley<br>Mock Effluent<br>MY-Mysidopsis bahia |
| Conc-%                    | 1                      | 2           | 3      | 4                                                               | 5         | 6        | 7                                           | 8       | S.D.                                                  |
| Control                   | 0.3260                 | 0.3080      | 0.3480 | 0.3140                                                          | 0.3360    | 0.3740   | 0.2680                                      | 0.3100  | 0.03141                                               |
| 50                        |                        | 0.2720      |        | 1-015                                                           | 0.2440    | 0.3240   | 0.2340                                      | 0.1940  | 0.05096                                               |
| 75                        | •                      | 0.0920      |        |                                                                 | 0.1180    | 0.2700   | 0.1560                                      | 0.0360  | 0.08275                                               |
| 100                       |                        | 0.1000      |        |                                                                 | 0.0340    | 0.0440   | 0.0100                                      | 0.0000  | 0.10679                                               |

|         |        |        |        | Transform | n: Untran | sformed |   | =      | 1-Tailed |        | Isot   | onic   |
|---------|--------|--------|--------|-----------|-----------|---------|---|--------|----------|--------|--------|--------|
| Conc-%  | Mean   | N-Mean | Mean   | Min       | Max       | CV%     | N | t-Stat | Critical | MSD    | Mean   | N-Mean |
| Control | 0.3230 | 1.0000 | 0.3230 | 0.2680    | 0.3740    | 9.723   | 8 |        |          |        | 0.3230 | 1.0000 |
| *50     | 0.2708 | 0.8382 | 0.2708 | 0.1940    | 0.3400    | 18.820  | 8 | 2.469  | 1.761    | 0.0373 | 0.2708 | 0.8382 |
| 75      | 0.1518 | 0.4698 | 0.1518 | 0.0360    | 0.2700    | 54.530  | 8 | 4.636  | 2.156    | 0.0796 | 0.1518 | 0.4698 |
| 100     | 0.0743 | 0.2299 | 0.0743 | 0.0000    | 0.3220    | 143.824 | 8 | 6.734  | 2.156    | 0.0796 | 0.0743 | 0.2299 |

| Auxiliary Tests                                              | Statistic |        | Critical |         | Skew    | Kurt    |
|--------------------------------------------------------------|-----------|--------|----------|---------|---------|---------|
| Shapiro-Wilk's Test indicates normal distribution (p > 0.01) | 0.97757   |        | 0.844    |         | 0.002   | -0.5544 |
| F-Test indicates equal variances (p = 0.22)                  | 2.6326    |        | 8.88539  |         |         |         |
| Hypothesis Test (1-tail, 0.05)                               | MSDu      | MSDp   | MSB      | MSE     | F-Prob  | df      |
| Homoscedastic t Test indicates significant differences       | 0.03727   | 0.1154 | 0.01092  | 0.00179 | 0.02704 | 1, 14   |

|       |        |        | Linear Interpolation (200 Resamples) |        |                 |       |  |  |  |
|-------|--------|--------|--------------------------------------|--------|-----------------|-------|--|--|--|
| Point | %      | SD     | 95%                                  | CL     | Skew            |       |  |  |  |
| IC05* | 15.455 | 10.072 | 9.270                                | 50.520 | 1.8827          |       |  |  |  |
| IC10* | 30.909 | 11.273 | 18.540                               | 53.512 | 0.4826          |       |  |  |  |
| IC15* | 46.364 | 8.964  | 27.810                               | 55.924 | -0.4159         | 1.0   |  |  |  |
| IC20  | 52.595 | 6.023  | 37.080                               | 59.300 | -1.0648         | 0.9   |  |  |  |
| IC25  | 55.987 | 4.304  | 46.350                               | 64.131 | <i>-</i> 0.6819 | 0.8 ] |  |  |  |
| IC40  | 66.166 | 4.706  | 59.106                               | 77.552 | 0.8176          | 0.8 - |  |  |  |
| IC50  | 72.952 |        |                                      |        |                 | 0.7   |  |  |  |

<sup>\*</sup> indicates IC estimate less than the lowest concentration



## **ATTACHMENT II**

Chemical Analyses (61 pages)



















































































































Suite 400













For:









































8/15/2016 2:08:06 PM

Carrie Gamber, Senior Project Manager

(412)963-2428

**TestAmerica** 

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratories, Inc.

TestAmerica Job ID: 180-57381-1 Client Project/Site: Jordan Valley

Hunt Valley, Maryland 21031

TestAmerica Pittsburgh

Pittsburgh, PA 15238 Tel: (412)963-7058

225 Schilling Circle

301 Alpha Drive RIDC Park

**ANALYTICAL REPORT** 

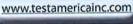
EA Engineering, Science, and Technology

carrie.gamber@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Expert


..... LINKS .....

**Review your project** results through

Total Access

**Have a Question?** 

Visit us at:



# **Table of Contents**

| Cover Page            | 1  |
|-----------------------|----|
| Table of Contents     |    |
| Case Narrative        |    |
|                       | 4  |
| Certification Summary | 5  |
| Sample Summary        |    |
| Method Summary        | 7  |
| Lab Chronicle         | 3  |
| Client Sample Results | 9  |
| <b>~ ~ ~ . ~ .</b>    | 10 |
|                       | 13 |
|                       | 14 |
|                       | 17 |

#### **Case Narrative**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

Job ID: 180-57381-1

Laboratory: TestAmerica Pittsburgh

Narrative

#### CASE NARRATIVE

Client: EA Engineering, Science, and Technology

**Project: Jordan Valley** 

Report Number: 180-57381-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

#### RECEIPT

The samples were received on 08/10/2016; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 5.6 C.

#### **METALS**

The following sample was diluted to bring the concentration of sodium to within the instrument's linear range: ATB-391 (SALINITY ADJUSTED OUTFALL 001) (180-57381-1). Elevated reporting limits (RLs) are provided.

Due to sample matrix effect on the internal standard (ISTD), a dilution was required for the following sample: ATB-391 (SALINITY ADJUSTED OUTFALL 001) (180-57381-1).

#### GENERAL CHEMISTRY

Samples ATB-391 (SALINITY ADJUSTED OUTFALL 001) (180-57381-1) required dilution prior to analysis for IC. The reporting limits have been adjusted accordingly.

Due to the matrix, the initial volumes used for the following samples deviated from the standard procedure for TDS: ATB-391 (SALINITY ADJUSTED OUTFALL 001) (180-57381-1), (180-57389-A-2) and (180-57389-A-2 DU). The reporting limits (RLs) have been adjusted proportionately.

3

TestAmerica Job ID: 180-57381-1

J

Ζ

1

8

i

Ŗ

ī

TestAmerica Pittsburgh 8/15/2016

### **Definitions/Glossary**

Client: EA Engineering, Science, and Technology

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Project/Site: Jordan Valley

TestAmerica Job ID: 180-57381-1

### Qualifiers

### Metals

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Relative Percent Difference, a measure of the relative difference between two points

### **Glossary**

RPD TEF

TEQ

| <u> </u>       |                                                                                                             |
|----------------|-------------------------------------------------------------------------------------------------------------|
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
| a              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| ONF            | Contains no Free Liquid                                                                                     |
| DER            | Duplicate error ratio (normalized absolute difference)                                                      |
| Oil Fac        | Dilution Factor                                                                                             |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision level concentration                                                                                |
| <b>IDA</b>     | Minimum detectable activity                                                                                 |
| DL             | Estimated Detection Limit                                                                                   |
| MDC            | Minimum detectable concentration                                                                            |
| /IDL           | Method Detection Limit                                                                                      |
| /IL            | Minimum Level (Dioxin)                                                                                      |
| IC             | Not Calculated                                                                                              |
| ID             | Not detected at the reporting limit (or MDL or EDL if shown)                                                |
| QL             | Practical Quantitation Limit                                                                                |
| C              | Quality Control                                                                                             |
| RER            | Relative error ratio                                                                                        |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |
|                |                                                                                                             |

## **Certification Summary**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-57381-1

### Laboratory: TestAmerica Pittsburgh

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

| Authority              | Program                     |                         | <b>EPA Region</b>       | Certification ID | Expiration Date |  |
|------------------------|-----------------------------|-------------------------|-------------------------|------------------|-----------------|--|
| Jtah                   | NELAP                       |                         | 8                       | PA001462015-4    | 05-31-17        |  |
| The following analytes | s are included in this repo | rt, but are not certifi | ed under this certifica | tion:            |                 |  |
| Analysis Method        | Prep Method                 | Matrix                  | Analyte                 | e                |                 |  |
| 200.7 Rev 4.4          | 200.7                       | Water                   | Bariun                  | 1                |                 |  |
| 200.7 Rev 4.4          | 200.7                       | Water                   | Boron                   |                  |                 |  |
| 200.7 Rev 4.4          | 200.7                       | Water                   | Calciu                  | m                |                 |  |
| 200.7 Rev 4.4          | 200.7                       | Water                   | Magne                   | esium            |                 |  |
| 200.7 Rev 4.4          | 200.7                       | Water                   | Potass                  | sium             |                 |  |
| 200.7 Rev 4.4          | 200.7                       | Water                   | Sodiur                  | n                |                 |  |
| 200.7 Rev 4.4          | 200.7                       | Water                   | Stronti                 | um               |                 |  |
| 300.0                  |                             | Water                   | Bromio                  | de               |                 |  |
| 300.0                  |                             | Water                   | Chloric                 | ie               |                 |  |
| 300.0                  |                             | Water                   | Sulfate                 | )                |                 |  |
| SM 2540C               |                             | Water                   | Total [                 | Dissolved Solids |                 |  |
| SM 2540D               |                             | Water                   | Total S                 | Suspended Solids |                 |  |

Laboratory: TestAmerica Irvine
All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

| Authority                | Program                     | EPA Region | Certification ID  | Expiration Date |
|--------------------------|-----------------------------|------------|-------------------|-----------------|
| Alaska                   | State Program               | 10         | CA01531           | 06-30-17        |
| Arizona                  | State Program               | 9          | AZ0671            | 10-13-16        |
| California               | LA Cty Sanitation Districts | 9          | 10256             | 01-31-17 *      |
| California               | State Program               | 9          | CA ELAP 2706      | 06-30-18        |
| Guam                     | State Program               | 9          | Cert. No. 12.002r | 01-23-17        |
| Hawaii                   | State Program               | 9          | N/A               | 01-29-17        |
| Kansas                   | NELAP Secondary AB          | 7          | E-10420           | 07-31-16 *      |
| Nevada                   | State Program               | 9          | CA015312016-2     | 07-31-17 *      |
| New Mexico               | State Program               | 6          | N/A               | 01-29-17        |
| Northern Mariana Islands | State Program               | 9          | MP0002            | 01-29-17        |
| Oregon                   | NELAP                       | 10         | 4028              | 01-29-17        |
| USDA                     | Federal                     |            | P330-09-00080     | 07-08-18        |
| Washington               | State Program               | 10         | C900              | 09-03-16        |

<sup>\*</sup> Certification renewal pending - certification considered valid.

## Sample Summary

Client: EA Engineering, Science, and Technology Project/Site: Jordan Valley

TestAmerica Job ID: 180-57381-1

| Lab Sample ID | Client Sample ID                        | Matrix | Collected Received            |
|---------------|-----------------------------------------|--------|-------------------------------|
| 180-57381-1   | ATB-391 (SALINITY ADJUSTED OUTFALL 001) | Water  | 08/09/16 13:47 08/10/16 09:00 |

### **Method Summary**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-57381-1

| Method        | Method Description            | Protocol | Laboratory |
|---------------|-------------------------------|----------|------------|
| 300.0         | Anions, Ion Chromatography    | MCAWW    | TAL PIT    |
| 200.7 Rev 4.4 | Metals (ICP)                  | EPA      | TAL PIT    |
| SM 2320B      | Alkalinity                    | SM       | TAL IRV    |
| SM 2540C      | Solids, Total Dissolved (TDS) | SM       | TAL PIT    |
| SM 2540D      | Solids, Total Suspended (TSS) | SM       | TAL PIT    |

#### **Protocol References:**

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SM = "Standard Methods For The Examination Of Water And Wastewater",

#### **Laboratory References:**

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022 TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-57381-1

Lab Sample ID: 180-57381-1

## Client Sample ID: ATB-391 (SALINITY ADJUSTED OUTFALL

001)

Date Collected: 08/09/16 13:47 Date Received: 08/10/16 09:00 Matrix: Water

| Prep Type         | Batch<br>Type          | Batch<br>Method             | Run | Dil<br>Factor | Initial<br>Amount | Final<br>Amount | Batch<br>Number | Prepared or Analyzed | Analyst | Lab     |
|-------------------|------------------------|-----------------------------|-----|---------------|-------------------|-----------------|-----------------|----------------------|---------|---------|
| Total/NA          | Analysis<br>Instrumen  | 300.0<br>t ID: CHICS2100B   |     | 50            |                   |                 | 184367          | 08/10/16 11:53       | MJH     | TAL PIT |
| Total/NA          | Analysis<br>Instrumen  | 300.0<br>t ID: CHICS2100B   |     | 500           |                   |                 | 184367          | 08/10/16 12:11       | MJH     | TAL PIT |
| Total Recoverable | Prep                   | 200.7                       |     |               | 50 mL             | 50 mL           | 184513          | 08/11/16 07:13       | ANA     | TAL PIT |
| Total Recoverable | Analysis<br>Instrumen  | 200.7 Rev 4.4<br>t ID: Q    |     | 5             |                   |                 | 184669          | 08/12/16 07:34       | RJR     | TAL PIT |
| Total Recoverable | Prep                   | 200.7                       |     |               | 50 mL             | 50 mL           | 184513          | 08/11/16 07:13       | ANA     | TAL PIT |
| Total Recoverable | Analysis<br>Instrumen  | 200.7 Rev 4.4<br>t ID: Q    |     | 50            |                   |                 | 184669          | 08/12/16 07:39       | RJR     | TAL PIT |
| Total/NA          | Analysis<br>Instrumen  | SM 2320B<br>t ID: MANTECH01 |     | 1             |                   |                 | 349122          | 08/14/16 09:32       | YZ      | TAL IRV |
| Total/NA          | Analysis<br>Instrument | SM 2540C<br>t ID: NOEQUIP   |     | 1             | 4 mL              | 100 mL          | 184485          | 08/10/16 15:29       | JWS     | TAL PIT |
| Total/NA          | Analysis<br>Instrument | SM 2540D<br>t ID: NOEQUIP   |     | 1             | 1000 mL           | 1000 mL         | 184494          | 08/10/16 17:31       | JWS     | TAL PIT |

#### Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022 TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

#### **Analyst References:**

Lab: TAL IRV

Batch Type: Analysis YZ = Yuriy Zakhrabov

Lab: TAL PIT

Batch Type: Prep

ANA = Alexis Anderson

Batch Type: Analysis

JWS = Jim Swanson

MJH = Matthew Hartman

RJR = Ron Rosenbaum

₹

### **Client Sample Results**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-57381-1

Lab Sample ID: 180-57381-1

Client Sample ID: ATB-391 (SALINITY ADJUSTED OUTFALL

ND

ND

ND

2.2

36000

1100

001)

Date Collected: 08/09/16 13:47 Date Received: 08/10/16 09:00

Hydroxide Alkalinity as CaCO3

Bicarbonate ion as HCO3

**Total Dissolved Solids** 

**Total Suspended Solids** 

Carbonate as CO3

Hydroxide as OH

Matrix: Water

08/14/16 09:32

08/14/16 09:32

08/14/16 09:32

08/14/16 09:32

08/10/16 15:29

08/10/16 17:31

1

1

1

1

1

1

| Method: 300.0 - Anions, Ion Ch<br>Analyte |             | Qualifier  | RL     | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|-------------------------------------------|-------------|------------|--------|-------|------|---|----------------|----------------|---------|
| Bromide                                   | 85          |            | 25     | 2.9   | mg/L |   |                | 08/10/16 11:53 | 50      |
| Chloride                                  | 17000       |            | 500    | 170   | mg/L |   |                | 08/10/16 12:11 | 500     |
| Sulfate                                   | 3200        |            | 50     | 17    | mg/L |   |                | 08/10/16 11:53 | 50      |
| Method: 200.7 Rev 4.4 - Metals            | (ICP) - Tot | al Recover | able   |       |      |   |                |                |         |
| Analyte                                   |             | Qualifier  | RL     | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Boron                                     | 2900        |            | 1000   | 22    | ug/L |   | 08/11/16 07:13 | 08/12/16 07:34 | 5       |
| Barium                                    | 260         | J          | 1000   | 4.5   | ug/L |   | 08/11/16 07:13 | 08/12/16 07:34 | 5       |
| Calcium                                   | 980000      |            | 25000  | 360   | ug/L |   | 08/11/16 07:13 | 08/12/16 07:34 | 5       |
| Potassium                                 | 410000      |            | 25000  | 4200  | ug/L |   | 08/11/16 07:13 | 08/12/16 07:34 | 5       |
| Magnesium                                 | 1500000     |            | 25000  | 200   | ug/L |   | 08/11/16 07:13 | 08/12/16 07:34 | 5       |
| Sodium                                    | 8000000     |            | 250000 | 11000 | ug/L |   | 08/11/16 07:13 | 08/12/16 07:39 | 50      |
| Strontium                                 | 10000       |            | 250    | 26    | ug/L |   | 08/11/16 07:13 | 08/12/16 07:34 | 5       |
| General Chemistry                         |             |            |        |       |      |   |                |                |         |
| Analyte                                   | Result      | Qualifier  | RL     | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Alkalinity as CaCO3                       | 870         |            | 4.0    | 4.0   | mg/L |   |                | 08/14/16 09:32 | 1       |
| Bicarbonate Alkalinity as CaCO3           | 870         |            | 4.0    | 4.0   | mg/L |   |                | 08/14/16 09:32 | 1       |
| Carbonate Alkalinity as CaCO3             | ND          |            | 4.0    | 4.0   | mg/L |   |                | 08/14/16 09:32 | 1       |
|                                           |             |            |        |       |      |   |                |                | 124     |

4.0

4.8

2.4

1.4

250

0.50

4.0 mg/L

4.8 mg/L

2.4 mg/L

1.4 mg/L

250 mg/L

0.50 mg/L

### Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 180-184367/6

**Matrix: Water** 

Analysis Batch: 184367

Client Sample ID: Method Blank

Prep Type: Total/NA

|          |    | MB     | MR        |      |       |      |   |          |                |         |
|----------|----|--------|-----------|------|-------|------|---|----------|----------------|---------|
| Analyte  |    | Result | Qualifier | RL   | MDL   | Unit | D | Prepared | Analyzed       | Dil Fac |
| Bromide  |    | ND     |           | 0.50 | 0.058 | mg/L |   |          | 08/10/16 07:33 | 1       |
| Chloride |    | ND     |           | 1.0  | 0.33  | mg/L |   |          | 08/10/16 07:33 | 1       |
| Sulfate  | 81 | ND     |           | 1.0  | 0.34  | mg/L |   |          | 08/10/16 07:33 | 1       |

Lab Sample ID: LCS 180-184367/5

**Matrix: Water** 

Analysis Batch: 184367

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

| •        | Spike | LCS    | LCS       |      |   |      | %Rec.    |   |
|----------|-------|--------|-----------|------|---|------|----------|---|
| Analyte  | Added | Result | Qualifier | Unit | D | %Rec | Limits   |   |
| Bromide  | 10.0  | 10.4   |           | mg/L |   | 104  | 90 - 110 | · |
| Chloride | 50.0  | 51.3   |           | mg/L |   | 103  | 90 - 110 |   |
| Sulfate  | 50.0  | 50.5   |           | mg/L |   | 101  | 90 - 110 |   |

### Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 180-184513/1-A

Matrix: Water

Analysis Batch: 184639

Client Sample ID: Method Blank **Prep Type: Total Recoverable** 

Prep Batch: 184513

| -         | MB     | MB        |      |      |      |   |                | Trop Datom     |         |
|-----------|--------|-----------|------|------|------|---|----------------|----------------|---------|
| Analyte   | Result | Qualifier | RL   | MDL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Boron     | ND     |           | 200  | 4.4  | ug/L |   | 08/11/16 07:13 | 08/11/16 13:26 | 1       |
| Barium    | ND     |           | 200  | 0.89 | ug/L |   | 08/11/16 07:13 | 08/11/16 13:26 | 1       |
| Calcium   | ND     |           | 5000 | 73   | ug/L |   | 08/11/16 07:13 | 08/11/16 13:26 | 1       |
| Potassium | ND     |           | 5000 | 840  | ug/L |   | 08/11/16 07:13 | 08/11/16 13:26 | 1       |
| Magnesium | ND     |           | 5000 | 41   | ug/L |   | 08/11/16 07:13 | 08/11/16 13:26 | 1       |
| Sodium    | ND     |           | 5000 | 230  | ug/L |   | 08/11/16 07:13 | 08/11/16 13:26 | 1       |
| Strontium | ND     |           | 50   | 5.3  | ug/L |   | 08/11/16 07:13 | 08/11/16 13:26 | 1       |

Lab Sample ID: LCS 180-184513/2-A

Matrix: Water

Analysis Batch: 184639

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable** 

Prep Batch: 184513

| Analyon   | , 54.011. 104000 | Spike | LCS    | LCS       |      |   |      | %Rec.    |
|-----------|------------------|-------|--------|-----------|------|---|------|----------|
| Analyte   |                  | Added | Result | Qualifier | Unit | D | %Rec | Limits   |
| Boron     |                  | 1000  | 1070   |           | ug/L |   | 107  | 85 - 115 |
| Barium    |                  | 2000  | 2000   |           | ug/L |   | 100  | 85 - 115 |
| Calcium   |                  | 50000 | 51200  |           | ug/L |   | 102  | 85 - 115 |
| Potassium |                  | 50000 | 52400  |           | ug/L |   | 105  | 85 - 115 |
| Magnesiur | n                | 50000 | 51500  |           | ug/L |   | 103  | 85 - 115 |
| Sodium    |                  | 50000 | 52800  |           | ug/L |   | 106  | 85 - 115 |
| Strontium |                  | 1000  | 1000   |           | ug/L |   | 100  | 85 - 115 |

TestAmerica Pittsburgh

Project/Site: Jordan Valley

TestAmerica Job ID: 180-57381-1

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 440-349122/4

**Matrix: Water** 

Analysis Batch: 349122

| Client | Sample | ID: | <b>Method</b> | <b>Blank</b> |
|--------|--------|-----|---------------|--------------|
|        |        |     | Гуре: То      |              |

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

| Analysis Buton: 040122          | MB MB      |           |     |      |   |          |                |         |
|---------------------------------|------------|-----------|-----|------|---|----------|----------------|---------|
| Analyte                         | Result Qua | lifier RL | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Alkalinity as CaCO3             | ND         | 4.0       | 4.0 | mg/L |   |          | 08/14/16 07:10 | 1       |
| Bicarbonate Alkalinity as CaCO3 | ND         | 4.0       | 4.0 | mg/L |   |          | 08/14/16 07:10 | 1       |
| Carbonate Alkalinity as CaCO3   | ND         | 4.0       | 4.0 | mg/L |   |          | 08/14/16 07:10 | 1       |
| Hydroxide Alkalinity as CaCO3   | ND         | 4.0       | 4.0 | mg/L |   |          | 08/14/16 07:10 | 1       |
| Bicarbonate ion as HCO3         | ND         | 4.8       | 4.8 | mg/L |   |          | 08/14/16 07:10 | 1       |
| Carbonate as CO3                | ND         | 2.4       | 2.4 | mg/L |   |          | 08/14/16 07:10 | 1       |
| Hydroxide as OH                 | ND         | 1.4       | 1.4 | mg/L |   |          | 08/14/16 07:10 | 1       |

Lab Sample ID: LCS 440-349122/2

**Matrix: Water** 

Analysis Batch: 349122

| ı |                     | Spike L   | US LUS        |      |   |      | WKec.    |  |
|---|---------------------|-----------|---------------|------|---|------|----------|--|
| ١ | Analyte             | Added Res | ult Qualifier | Unit | D | %Rec | Limits   |  |
|   | Alkalinity as CaCO3 | 63.4      | 4.5           | mg/L | _ | 102  | 80 - 120 |  |

Lab Sample ID: LCSD 440-349122/3

Matrix: Water

Analysis Batch: 349122

| Analysis Daton: 040122      | Spike      | LCSD           | LCSD      |              |          |                 | %Rec.    |                        | RPD         |
|-----------------------------|------------|----------------|-----------|--------------|----------|-----------------|----------|------------------------|-------------|
| Analyte Alkalinity as CaCO3 | Added 63.4 | Result<br>66.5 | Qualifier | Unit<br>mg/L | <u>D</u> | <b>%Rec</b> 105 | 80 - 120 | $\frac{\text{RPD}}{3}$ | Limit<br>20 |

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 180-184485/2

**Matrix: Water** 

Analysis Batch: 184485

|                        | MB     | MR        |    |     |      |   |          |                |         |
|------------------------|--------|-----------|----|-----|------|---|----------|----------------|---------|
| Analyte                | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Total Dissolved Solids | ND     |           | 10 | 10  | mg/L |   |          | 08/10/16 15:29 | 1       |

Lab Sample ID: LCS 180-184485/1

**Matrix: Water** 

| Analysis Batch: 164465         | Spike        | LCS           | LCS       |              |     |             | %Rec.    |  |
|--------------------------------|--------------|---------------|-----------|--------------|-----|-------------|----------|--|
| Analyte Total Dissolved Solids | Added<br>216 | Result<br>244 | Qualifier | Unit<br>mg/L | _ D | %Rec<br>113 | 80 - 120 |  |

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 180-184494/2

**Matrix: Water** 

Analysis Batch: 184494

| Analysis Batom 10 110 1 | МВ     | MB        |      |      |      |   |          |                |         |
|-------------------------|--------|-----------|------|------|------|---|----------|----------------|---------|
| Analyte                 | Result | Qualifier | RL   | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Total Suspended Solids  | ND     |           | 0.50 | 0.50 | mg/L |   |          | 08/10/16 17:31 | 1       |

TestAmerica Pittsburgh

# **QC Sample Results**

Spike

Added

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-57381-1

# Method: SM 2540D - Solids, Total Suspended (TSS) (Continued)

Lab Sample ID: LCS 180-184494/1

**Matrix: Water** 

Analysis Batch: 184494

Total Suspended Solids

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

%Rec.

Unit D %Rec Limits 78.0 82.0 mg/L 105 80 - 120

LCS LCS

Result Qualifier

# **QC Association Summary**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-57381-1

|   | m | 10 |
|---|---|----|
| п | М | IU |

| Analy  | /sis | Batch:  | 184367 |
|--------|------|---------|--------|
| ALIMI) | 7010 | Dutoii. | 10401  |

| Lab Sample ID    | Client Sample ID                        | Prep Type | Matrix | Method | Prep Batch |
|------------------|-----------------------------------------|-----------|--------|--------|------------|
| 180-57381-1      | ATB-391 (SALINITY ADJUSTED OUTFALL 001) | Total/NA  | Water  | 300.0  |            |
| 180-57381-1      | ATB-391 (SALINITY ADJUSTED OUTFALL 001) |           | Water  | 300.0  |            |
| MB 180-184367/6  | Method Blank                            | Total/NA  | Water  | 300.0  |            |
| LCS 180-184367/5 | Lab Control Sample                      | Total/NA  | Water  | 300.0  |            |

#### Metals

#### **Prep Batch: 184513**

| Lab Sample ID      | Client Sample ID                        | Prep Type         | Matrix | Method | Prep Batch |
|--------------------|-----------------------------------------|-------------------|--------|--------|------------|
| 180-57381-1        | ATB-391 (SALINITY ADJUSTED OUTFALL 001) | Total Recoverable | Water  | 200.7  |            |
| MB 180-184513/1-A  | Method Blank                            | Total Recoverable | Water  | 200.7  |            |
| LCS 180-184513/2-A | Lab Control Sample                      | Total Recoverable | Water  | 200.7  |            |

#### Analysis Batch: 184639

| Lab Sample ID      | Client Sample ID   | Prep Type         | Matrix | Method        | Prep Batch |
|--------------------|--------------------|-------------------|--------|---------------|------------|
| MB 180-184513/1-A  | Method Blank       | Total Recoverable | Water  | 200.7 Rev 4.4 | 184513     |
| LCS 180-184513/2-A | Lab Control Sample | Total Recoverable | Water  | 200.7 Rev 4.4 | 184513     |

#### Analysis Batch: 184669

| Ì | Lab Sample ID | Client Sample ID                        | Prep Type         | Matrix | Method        | Prep Batch |
|---|---------------|-----------------------------------------|-------------------|--------|---------------|------------|
|   | 180-57381-1   | ATB-391 (SALINITY ADJUSTED OUTFALL 001) | Total Recoverable | Water  | 200.7 Rev 4.4 | 184513     |
|   | 180-57381-1   | ATB-391 (SALINITY ADJUSTED OUTFALL 001) |                   |        | 200.7 Rev 4.4 | 184513     |

#### **General Chemistry**

#### Analysis Batch: 184485

| Lab Sample ID    | Client Sample ID                        | Ргер Туре | Matrix | Method   | Prep Batch |
|------------------|-----------------------------------------|-----------|--------|----------|------------|
| 180-57381-1      | ATB-391 (SALINITY ADJUSTED OUTFALL 001) | Total/NA  | Water  | SM 2540C |            |
| MB 180-184485/2  | Method Blank                            | Total/NA  | Water  | SM 2540C |            |
| LCS 180-184485/1 | Lab Control Sample                      | Total/NA  | Water  | SM 2540C |            |

#### Analysis Batch: 184494

| 1 | Lab Sample ID    | Client Sample ID                        | Prep Type | Matrix | Method   | Prep Batch |
|---|------------------|-----------------------------------------|-----------|--------|----------|------------|
| ı | 180-57381-1      | ATB-391 (SALINITY ADJUSTED OUTFALL 001) | Total/NA  | Water  | SM 2540D | -          |
|   | MB 180-184494/2  | Method Blank                            | Total/NA  | Water  | SM 2540D |            |
|   | LCS 180-184494/1 | Lab Control Sample                      | Total/NA  | Water  | SM 2540D |            |

#### Analysis Batch: 349122

| Lab Sample ID     | Client Sample ID                        | Prep Type | Matrix | Method   | Prep Batch |
|-------------------|-----------------------------------------|-----------|--------|----------|------------|
| 180-57381-1       | ATB-391 (SALINITY ADJUSTED OUTFALL 001) | Total/NA  | Water  | SM 2320B |            |
| MB 440-349122/4   | Method Blank                            | Total/NA  | Water  | SM 2320B |            |
| LCS 440-349122/2  | Lab Control Sample                      | Total/NA  | Water  | SM 2320B |            |
| LCSD 440-349122/3 | Lab Control Sample Dup                  | Total/NA  | Water  | SM 2320B |            |

TestAmerica Pittsburgh

#### TestAmerica Pittsburgh

301 Alpha Drive RIDC Park

Pittsburgh, PA 15238

Phone (412) 963-7058 Fax (412) 963-2468

# **Chain of Custody Record**



| Client left work in                                    | Sampler             |           |                         |                        | PM                | _                          | _      |               |                          |        |       | -        | Samer Tra         | acking h | 10(3)       | -       |                 | COC No           |              | _                      |           |       |
|--------------------------------------------------------|---------------------|-----------|-------------------------|------------------------|-------------------|----------------------------|--------|---------------|--------------------------|--------|-------|----------|-------------------|----------|-------------|---------|-----------------|------------------|--------------|------------------------|-----------|-------|
| Client Information                                     | Phone               |           |                         | Ga<br>6-M              |                   | Car                        | ne L   |               |                          |        |       |          |                   |          |             |         |                 | 180-3122         | 22-6905      | 5.1                    |           |       |
| Mike Chanov                                            |                     |           |                         |                        |                   | ambe                       | r@te   | estan         | nerica                   | inc co | om    |          |                   |          |             |         |                 | Page<br>Page 1 o | 11           |                        |           |       |
| Company EA Engineering, Science, and Technology        |                     |           |                         |                        | Γ                 |                            |        |               |                          | Ала    | ılysi | Requ     | Jested            |          |             | _       |                 | Job II           |              |                        |           |       |
| Address<br>225 Schilling Circle Suite 400              | Duc Date Requests   | ed:       |                         |                        | П                 |                            |        |               | T                        |        | T     | TI       |                   | П        |             |         | П               | Preservat        | ion Cod      | les:                   |           |       |
| Cty<br>Hunt Vailey                                     | TAT Requested (da   | ıys):     |                         |                        | 11                | å                          |        |               |                          |        |       |          |                   |          | 1           | 1       | F I             | A 1400           | 101 1110 111 | UMU                    |           |       |
| State Zip                                              | 1                   |           |                         |                        | П                 |                            |        | $\rightarrow$ |                          |        | 1     |          | i                 | 1111     | HIMIN       |         | MA              |                  | MM           | M                      |           |       |
| MD, 21031<br>I <sup>2</sup> hane                       | PO#                 |           |                         |                        | 41                | ā                          |        | 1/12          |                          | -      | 7     | 11       |                   | W        |             | M       |                 |                  |              | NN)                    |           |       |
| 410-329-5120(Tel)                                      | Purchase Order      | Requested | 1                       |                        | 9                 |                            |        |               |                          |        | 5     | 1 1      |                   |          |             |         |                 |                  | MA INT       | HIH!                   |           | drate |
| Email mchanov@eaest.com                                | WO #                |           |                         |                        | ò                 | 9                          |        | 140/11        |                          | 1      | 1/2   | 11       |                   | 18       | 0-5738      | 31 Ct   | nain c          | of Custod        | у            |                        |           | nane  |
| Project Name<br>Jordan Valley                          | Project #           |           |                         |                        | 3                 | P P                        | - 1    | 170           |                          | 1      | J     | 1 1      |                   | 2 19     | ř           | 1       | 151             | L-EDIA           |              | W - ph 4-<br>Z - other | 5         |       |
| Site                                                   | 18015970<br>550W#   |           |                         |                        | - 흷               | ٤                          | N      | 7             |                          | -      | 7     |          |                   |          |             |         | contain         | Other:           |              | 2 - 00161              | (Specify) |       |
|                                                        |                     |           |                         |                        | 8                 | <u></u>                    | 4      | (754-         |                          |        | 2     |          |                   | Ш        |             |         | 6               | escellar i       |              |                        |           |       |
|                                                        | -                   |           | Sample                  | Matrix<br>(www.r.      | Hered Sample (Yes | ertorm MSAMSID (Yes or No) | WETAL  |               | 5                        | 2      | 15    |          |                   | Ш        |             |         | Total Number    |                  |              |                        |           |       |
| _ pre-conduct analysis conduction of the con-          |                     | Sample    | Type<br>(C≃comp,        | S=sond,<br>O+masleval, | E E               | Ę                          | Y      | 10            | H                        | 1      | 7     | 1 1      |                   |          | - 1         |         | Ž q             |                  |              |                        |           |       |
| Sample Identification                                  | Sample Date         | Time      | G≈grab) e<br>Preservati | T-Thoug. A-Ar          | 岻                 |                            | 4      | _             | -                        | +      | 1     | $\vdash$ |                   | Н        |             | +       | Ē               | Sp               | ecial In     | struction              | s/Note    |       |
| AT6-391 (Salvarty Adjusted Outfallwal)                 | 1.1.1.              | $\frown$  | -                       |                        | n                 | 4                          |        | ×             |                          | -      | +     | +        | -                 |          | -           | +       | X               |                  |              |                        |           | _     |
| 110 311 ( Salidity Hamsted Unital/col)                 | 5/9/16              | 1377      | G-                      | W                      | Н                 | 4                          | 긔      | 4             | 1                        | < x    | 4     | ++       | _                 | Н        |             | +       | Н               |                  |              |                        |           |       |
|                                                        |                     |           |                         |                        | Н                 | 4                          | 4      | 4             | 4                        | _      | _     | $\vdash$ |                   | Ш        |             | $\perp$ | Ш               |                  |              |                        |           |       |
|                                                        |                     |           |                         |                        | Ш                 |                            |        |               |                          |        |       |          |                   |          |             |         |                 |                  |              |                        |           |       |
|                                                        |                     |           |                         |                        | Ш                 |                            |        |               |                          |        |       |          |                   |          |             |         |                 |                  |              |                        |           |       |
|                                                        |                     |           |                         |                        | 11                |                            |        |               |                          |        |       | T        |                   |          |             |         | П               |                  |              |                        |           |       |
|                                                        |                     |           |                         |                        | П                 |                            |        |               |                          |        |       |          |                   |          |             |         | П               |                  |              |                        |           |       |
|                                                        |                     |           |                         |                        | Ħ                 | $\neg$                     | 1      | $\neg$        | 1                        |        |       | T        | 1                 | Ħ        |             | +       | Ħ               |                  |              |                        |           |       |
|                                                        |                     |           |                         |                        | H                 | $\top$                     | +      | $\top$        | +                        | +      | +     | +        | 1                 | H        |             | +       | +               |                  |              |                        |           |       |
|                                                        |                     |           | -                       |                        | Н                 | +                          | +      | +             | +                        | +      | +     | +        | +-                | Н        | +           | +       | +               |                  |              |                        |           |       |
|                                                        |                     |           |                         |                        | H                 | +                          | +      | +             | +                        | +      | +     | +        | +-                | H        |             | -       | Н               |                  |              |                        |           |       |
|                                                        | -                   |           |                         |                        | Н                 | +                          | +      | +             | +                        | +      | +     | $\vdash$ |                   | Н        | -           | $\perp$ | $\sqcup$        |                  |              |                        |           |       |
| Possible Hazard Identification                         |                     |           |                         |                        | Ц                 |                            |        |               | 1                        | _      |       |          |                   |          |             |         |                 |                  |              |                        |           |       |
| Non-Hazard Flammable Skin Irritant Poison              | n B Conknow         | n Rai     | diological              |                        | - 1               | Sami                       | Die L  | Jispo         | o <b>sai (</b><br>To Cli | A fee  | may   | be ass   | essed<br>oosal By | if sam   | pies a      | re ret  | ainec<br>rchive | longer t         | han 1 i      |                        |           |       |
| Deliverable Requested: I, II, III, IV, Other (specify) |                     | 1.00      | aronogradi              |                        | 7                 | Spec                       |        |               |                          |        | Requi | ements   | 10501 0           | Lau      |             | A       | rcnive          | ror              |              | Months                 | -         | _     |
| Empty Kit Relinquished by TA                           |                     | Date      | _                       |                        | Tim               | ne                         | -/     | 4             | 1                        | 1      | ++    | +        | Meth              | od at S  | hipment     | 1/      |                 |                  | _            |                        | -         | -1    |
| Reinquished by                                         | Date/Time           | 1.43.4    | C                       | omcany                 | _                 |                            | ocev   | ed by         | 11                       | +      | Н     | 1        |                   |          | Date firm   | -       | 54/             | 10 1             | ID           | Campany                | 18        | 1     |
| Relinquished by C                                      | 8/1/16<br>Date Time | 1431      | - 10                    | ómpany                 |                   | - R                        | ecert  | ed hvi        | V                        | ئلها   | P4    |          |                   | _        | Date/Tani   | 110     | 1               | 0//              |              | 14                     | X.        |       |
|                                                        |                     |           |                         |                        |                   | _[`                        | cecil  |               | `                        |        |       |          |                   |          | Dater i eni | * [     |                 |                  |              | Company                |           | 1     |
| Reinquished by                                         | Date/Time           |           | C                       | ompany                 |                   | R                          | eceivi | ed by         |                          |        |       |          |                   |          | Date/Time   | 9       |                 |                  |              | Company                |           |       |
| Custody Seals Intact  \( \( \) Yes \( \) No            |                     |           | -                       |                        |                   | С                          | ooler  | Tempe         | erature                  | (5) °C | and O | ner Remi | gencs.            |          |             |         |                 |                  |              | -                      |           | _     |
| 3 160 3 190                                            |                     |           |                         |                        | _                 |                            | _      | _             | _                        |        |       |          |                   |          |             |         |                 |                  |              | :á                     |           |       |



https://www.campusship.ups.com/cship/create?ActionOriginPair=default

PrintWindowP...

8/9/2016

Page 1 of 1





Department Code: 2122
Project Phase AND Task: TOXLAB
CS 18 5 39 WNINV50 78 0A 07/2016









# Page 16 of 18

#### TestAmerica Pittsburgh

301 Alpha Drive RIDC Park Pittsburgh, PA 15238

**Chain of Custody Record** 





| Phone (412) 963-7058 Fax (412) 963-2468                | 10                                 |                  |                            | 1000                                          |                                                              |                                       |                    |                        |                  | _          |                              |                               |                       |                         |              |                                     |            |                                      |         |
|--------------------------------------------------------|------------------------------------|------------------|----------------------------|-----------------------------------------------|--------------------------------------------------------------|---------------------------------------|--------------------|------------------------|------------------|------------|------------------------------|-------------------------------|-----------------------|-------------------------|--------------|-------------------------------------|------------|--------------------------------------|---------|
| Client Information (Sub Contract Lab)                  | Sampler                            | Gamber, Carrie L |                            |                                               |                                                              |                                       |                    | ber, Carrie L          |                  |            |                              |                               |                       | COC No:<br>180-250923.1 |              |                                     |            |                                      |         |
| Client Contact:<br>Shipping/Receiving                  | Phone:                             |                  |                            |                                               |                                                              |                                       |                    |                        |                  |            |                              | Page:<br>Page 1 of 1          |                       |                         |              |                                     |            |                                      |         |
| Company:<br>TestAmerica Laboratories, Inc              |                                    |                  |                            |                                               |                                                              |                                       | Analysis Requested |                        |                  |            |                              |                               | Job #:<br>180-57381-1 |                         |              |                                     |            |                                      |         |
| Address:<br>17461 Derian Ave, Suite 100,               | Due Date Request<br>8/15/2016      | ed:              |                            |                                               |                                                              |                                       | Т                  |                        |                  |            |                              |                               |                       | П                       | Т            | Preserva                            | tion Co    |                                      |         |
| City.<br>Irvine                                        | TAT Requested (d                   | ays):            |                            |                                               |                                                              |                                       | 1                  |                        |                  |            |                              | 11                            | -                     |                         |              | A - HCL<br>B - NaOH<br>C - Zn Ac    |            | M - Hexan<br>N - None<br>O - AsNaO   | _       |
| State, Zip:<br>CA, 92614-5817                          | 1                                  |                  |                            |                                               |                                                              |                                       |                    |                        |                  |            |                              |                               |                       |                         |              | D - Nitric                          | Acid<br>O4 | P - Na2O4<br>Q - Na2SC               | S<br>03 |
| Phone:<br>949-261-1022(Tel) 949-260-3297(Fax)          | PO#:                               |                  |                            |                                               |                                                              |                                       |                    |                        |                  | 1          | 11                           |                               | 1                     |                         |              | F - MeOH<br>G - Amchi<br>H - Ascori | lor        | R - Na2S2<br>S - H2SQ4<br>T - TSP De |         |
| Email:                                                 | WO#,                               |                  |                            |                                               | 2                                                            |                                       |                    |                        |                  |            |                              | 1 1                           |                       |                         |              | I - Ice<br>J - DI Wat               | ter        | U - Aceton<br>V - MCAA               | e       |
| Project Name<br>Jordan Valley                          | Project #:<br>18015970             |                  |                            |                                               |                                                              | forms ile                             |                    |                        |                  |            |                              |                               |                       |                         | plan         | K - EDTA<br>L - EDA                 |            | W - ph 4-5<br>Z - other (s           |         |
| Srie:                                                  | SSOW#.                             |                  |                            |                                               | 1                                                            | Alkallolla                            |                    |                        |                  |            |                              |                               |                       | 1                       | 100          | Other:                              |            |                                      |         |
|                                                        |                                    | Sample           | Sample<br>Type<br>(C=comp, | Matrix<br>(Wowater,<br>Smooth,<br>Owwate/oil, | d Filtered                                                   | 2326B/ (MOD) AI                       |                    |                        |                  |            |                              |                               |                       |                         | Number       |                                     |            |                                      |         |
| Sample Identification - Client ID (Lab ID)             | Sample Date                        | Time             | G=grab)                    | BT-Tissue, A-A                                |                                                              | 3                                     | 4                  |                        | _                |            |                              | $\perp$                       | $\perp$               | $\perp$                 | Total        | Sp                                  | ecial In   | structions                           | a/Note: |
|                                                        |                                    | 13:47            | Preserva                   | tion Code:                                    | $\bowtie$                                                    | XI_                                   | 1                  | $\vdash$               | _                | _          | $\vdash$                     | 11                            | _                     | $\perp$                 | $\mathbb{P}$ |                                     | =          |                                      |         |
| ATB-391 (SALINITY ADJUSTED OUTFALL 001) (180-57381-1)  | 8/9/16                             | Eastern          |                            | Water                                         | #                                                            | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 4                  | Н                      | _                |            | Ш                            | $\sqcup$                      |                       | $\perp$                 | 1            |                                     |            |                                      |         |
|                                                        |                                    |                  |                            |                                               | 11                                                           | 1                                     | 4                  | Н                      | _                |            |                              | $\perp$                       | $\perp$               |                         | 4            | _                                   |            |                                      |         |
|                                                        |                                    |                  |                            |                                               | 4                                                            | 1                                     | $\perp$            | Ш                      |                  |            |                              | Ц                             |                       |                         |              |                                     |            |                                      |         |
|                                                        |                                    |                  |                            |                                               | #                                                            | 1                                     | 4                  | Н                      | 4                | 4          |                              | $\perp$                       | 4                     | $\perp$                 | 4            |                                     |            |                                      |         |
|                                                        |                                    |                  |                            |                                               | 1                                                            | 1                                     | $\perp$            | Ш                      | _                | 1          | _ _                          | $\perp$                       | $\perp$               | $\perp$                 | 4            |                                     |            |                                      |         |
|                                                        |                                    |                  |                            |                                               | Ш                                                            |                                       | $\perp$            | Ш                      |                  |            |                              |                               | 4                     | $\perp$                 | 4            |                                     |            |                                      |         |
|                                                        |                                    |                  |                            |                                               | Щ                                                            | $\perp$                               | $\perp$            | Ц                      | _                | $\perp$    |                              | $\perp$                       |                       |                         |              |                                     |            |                                      |         |
|                                                        |                                    |                  |                            |                                               | 11                                                           | _                                     | $\perp$            | Ш                      |                  | $\perp$    |                              | $\perp$                       |                       |                         | $\perp$      |                                     |            |                                      |         |
|                                                        |                                    |                  |                            |                                               | Щ                                                            | 1                                     | $\perp$            | Ц                      |                  | $\perp$    |                              | $\perp$                       | $\perp$               |                         | $\perp$      |                                     |            |                                      |         |
|                                                        |                                    |                  |                            |                                               | Щ                                                            |                                       | L                  | Ц                      |                  |            |                              | $\perp$                       |                       |                         |              |                                     |            |                                      |         |
|                                                        |                                    |                  |                            |                                               | Ш                                                            |                                       |                    |                        |                  |            |                              |                               |                       |                         |              |                                     |            |                                      |         |
| Possible Hazard Identification Unconfirmed             |                                    |                  |                            |                                               | S                                                            |                                       | le Dis<br>Retur    | <b>posal</b><br>n To C | ( A fee<br>lient | may [      | be asse<br>□ <sub>Disc</sub> | e <b>ssed i</b> t<br>nosal Ru | samp                  | oles are                | retain       | ed longer<br>hive For_              | than 1     | month)<br>Months                     |         |
| Deliverable Requested: I, II, III, IV, Other (specify) | Primary Delivera                   | ble Rank: 2      |                            |                                               |                                                              |                                       |                    |                        |                  |            | ments:                       |                               |                       |                         |              |                                     |            |                                      |         |
| Empty Kit Relinquished by:                             |                                    | Date:            |                            |                                               | Time                                                         | <b>9</b> :                            |                    |                        |                  | -          |                              | Metho                         | d of Shij             | oment F                 | 150          | 64                                  | 792        | 545                                  | 6073    |
| Reinquished by: Reinquished by: Reinquished by:        | Date/Time<br>8711161<br>Date/Time: | 4                |                            | Company                                       |                                                              |                                       | ceived i           |                        | he               | 2/4        | M                            | À                             | Da                    | te/Time:<br>te/Time.    | 12/          | 60                                  | 1-50       | Company                              | TAI     |
| Relinquished by:                                       | Date/Time:                         |                  |                            | Company                                       |                                                              | L                                     | ceived I           |                        |                  |            | -                            | Date/Time:                    |                       |                         |              |                                     |            | Company                              |         |
|                                                        |                                    |                  |                            |                                               |                                                              |                                       |                    |                        | Jampany          |            |                              |                               |                       |                         |              |                                     |            |                                      |         |
| Custody Seals Intact: Custody Seal No.: Δ Yes Δ No     |                                    |                  |                            |                                               | Cooler Temperature(s) *C and Other Remarks: (3) 3.7/2.5 IR-7 |                                       |                    |                        |                  | <u>-77</u> |                              |                               |                       |                         |              |                                     |            |                                      |         |



#### **Login Sample Receipt Checklist**

Client: EA Engineering, Science, and Technology

Job Number: 180-57381-1

Login Number: 57381

List Number: 1

Creator: Kovitch, Christina M

List Source: TestAmerica Pittsburgh

| Question                                                                                                   | Answer | Comment |
|------------------------------------------------------------------------------------------------------------|--------|---------|
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> | True   |         |
| The cooler's custody seal, if present, is intact.                                                          | True   |         |
| Sample custody seals, if present, are intact.                                                              | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.                             | True   |         |
| Samples were received on ice.                                                                              | True   |         |
| Cooler Temperature is acceptable.                                                                          | True   |         |
| Cooler Temperature is recorded.                                                                            | True   |         |
| COC is present.                                                                                            | True   |         |
| COC is filled out in ink and legible.                                                                      | True   |         |
| COC is filled out with all pertinent information.                                                          | True   |         |
| Is the Field Sampler's name present on COC?                                                                | True   |         |
| There are no discrepancies between the containers received and the COC.                                    | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)                              | True   |         |
| Sample containers have legible labels.                                                                     | True   |         |
| Containers are not broken or leaking.                                                                      | True   |         |
| Sample collection date/times are provided.                                                                 | True   |         |
| Appropriate sample containers are used.                                                                    | True   |         |
| Sample bottles are completely filled.                                                                      | True   |         |
| Sample Preservation Verified.                                                                              | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                           | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                            | True   |         |
| Multiphasic samples are not present.                                                                       | True   |         |
| Samples do not require splitting or compositing.                                                           | True   |         |
| Residual Chlorine Checked.                                                                                 | N/A    |         |

# **Login Sample Receipt Checklist**

Client: EA Engineering, Science, and Technology

Job Number: 180-57381-1

Login Number: 57381 List Number: 2 Creator: Ornelas, Olga

List Source: TestAmerica Irvine List Creation: 08/12/16 12:23 PM

| Question                                                                                                   | Answer | Comment                            |
|------------------------------------------------------------------------------------------------------------|--------|------------------------------------|
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> | True   |                                    |
| The cooler's custody seal, if present, is intact.                                                          | True   |                                    |
| Sample custody seals, if present, are intact.                                                              | True   |                                    |
| The cooler or samples do not appear to have been compromised or tampered with.                             | True   |                                    |
| Samples were received on ice.                                                                              | True   |                                    |
| Cooler Temperature is acceptable.                                                                          | True   |                                    |
| Cooler Temperature is recorded.                                                                            | True   |                                    |
| COC is present.                                                                                            | True   |                                    |
| COC is filled out in ink and legible.                                                                      | True   |                                    |
| COC is filled out with all pertinent information.                                                          | True   |                                    |
| Is the Field Sampler's name present on COC?                                                                | N/A    | Received project as a subcontract. |
| There are no discrepancies between the containers received and the COC.                                    | True   |                                    |
| Samples are received within Holding Time (excluding tests with immediate HTs)                              | True   |                                    |
| Sample containers have legible labels.                                                                     | True   |                                    |
| Containers are not broken or leaking.                                                                      | True   |                                    |
| Sample collection date/times are provided.                                                                 | True   |                                    |
| Appropriate sample containers are used.                                                                    | True   |                                    |
| Sample bottles are completely filled.                                                                      | True   |                                    |
| Sample Preservation Verified.                                                                              | N/A    |                                    |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                           | True   |                                    |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                            | True   |                                    |
| Multiphasic samples are not present.                                                                       | True   |                                    |
| Samples do not require splitting or compositing.                                                           | True   |                                    |
| Residual Chlorine Checked.                                                                                 | N/A    |                                    |

**TestAmerica** 

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratories, Inc.

TestAmerica Job ID: 180-58161-1 Client Project/Site: Jordan Valley

EA Engineering, Science, and Technology

TestAmerica Pittsburgh

Pittsburgh, PA 15238 Tel: (412)963-7058

225 Schilling Circle

Attn: Mike Chanov

(412)963-2428

Hunt Valley, Maryland 21031

Authorized for release by: 9/6/2016 8:57:19 AM

Drw G. Camber

Carrie Gamber, Senior Project Manager

This report has been electronically signed and authorized by the signatory. Electronic signature is

intended to be the legally binding equivalent of a traditionally handwritten signature. Results relate only to the items tested and the sample(s) as received by the laboratory.

carrie.gamber@testamericainc.com

Suite 400

301 Alpha Drive RIDC Park

**ANALYTICAL REPORT** 





































































.....LINKS .....

**Review your project** 

results through Total Access













# **Table of Contents**

| Cover Page            | 1  |
|-----------------------|----|
| Table of Contents     | 2  |
| Case Narrative        |    |
|                       | 4  |
| Certification Summary | 5  |
| Sample Summary        |    |
| Method Summary        |    |
| _ab Chronicle         |    |
|                       | 9  |
| QC Sample Results     | 10 |
|                       | 12 |
| Chain of Custody      | 13 |
| 3 1 0 1 1 1           | 15 |

#### **Case Narrative**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-58161-1

Job ID: 180-58161-1

Laboratory: TestAmerica Pittsburgh

**Narrative** 

#### **CASE NARRATIVE**

Client: EA Engineering, Science, and Technology

**Project: Jordan Valley** 

Report Number: 180-58161-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

The sample was received on 8/10/2016 11:00 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.6° C.

This sample is a re-log of sample 180-57381.

#### **METALS**

The following sample was diluted due to the nature of the sample matrix: AT6-391 (SALINTY ADJUSTED OUTFALL 001) (180-58161-1). Elevated reporting limits (RLs) are provided.

# **Definitions/Glossary**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-58161-1

#### Qualifiers

#### Metals

Qualifier Qualifier Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

#### Glossary

RPD TEF

TEQ

| Glossary       |                                                                                                             |
|----------------|-------------------------------------------------------------------------------------------------------------|
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
| ti             | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CNF            | Contains no Free Liquid                                                                                     |
| DER            | Duplicate error ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision level concentration                                                                                |
| MDA            | Minimum detectable activity                                                                                 |
| EDL            | Estimated Detection Limit                                                                                   |
| MDC            | Minimum detectable concentration                                                                            |
| MDL            | Method Detection Limit                                                                                      |
| ML             | Minimum Level (Dioxin)                                                                                      |
| NC             | Not Calculated                                                                                              |
| ND             | Not detected at the reporting limit (or MDL or EDL if shown)                                                |
| PQL            | Practical Quantitation Limit                                                                                |
| QC             | Quality Control                                                                                             |
| RER            | Relative error ratio                                                                                        |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |

# **Certification Summary**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-58161-1

Laboratory: TestAmerica Pittsburgh
Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

| uthority               | Program                     |                         | <b>EPA Region</b>       | Certification ID        | Expiration Date |
|------------------------|-----------------------------|-------------------------|-------------------------|-------------------------|-----------------|
| tah                    | NELAP                       |                         | 8                       | PA001462015-4           | 05-31-17        |
| The following analyte: | s are included in this repo | rt, but are not certifi | ed under this certifica | ation:                  |                 |
| Analysis Method        | Prep Method                 | Matrix                  | Analy                   | te                      |                 |
| 200.8                  | 200.8                       | Water                   | Antim                   | ony                     |                 |
| 200.8                  | 200.8                       | Water                   | Arsen                   | ic                      |                 |
| 200.8                  | 200.8                       | Water                   | Beryll                  | ium                     |                 |
| 200.8                  | 200.8                       | Water                   | Cadm                    | ium                     |                 |
| 200.8                  | 200.8                       | Water                   | Chron                   | nium                    |                 |
| 200.8                  | 200.8                       | Water                   | Сорре                   | ər                      |                 |
| 200.8                  | 200.8                       | Water                   | Hardr                   | ness as calcium carbona | te              |
| 200.8                  | 200.8                       | Water                   | Iron                    |                         |                 |
| 200.8                  | 200.8                       | Water                   | Lead                    |                         |                 |
| 200.8                  | 200.8                       | Water                   | Mang                    | anese                   |                 |
| 200.8                  | 200.8                       | Water                   | Nicke                   | l                       |                 |
| 200.8                  | 200.8                       | Water                   | Selen                   | ium                     |                 |
| 200.8                  | 200.8                       | Water                   | Water Silver            |                         |                 |
| 200.8                  | 200.8                       | Water                   | Thalli                  | um                      |                 |
| 200.8                  | 200.8                       | Water                   | Zinc                    |                         |                 |
| 245.1                  | 245.1                       | Water                   | Mercu                   | ury                     |                 |

# **Sample Summary**

Client: EA Engineering, Science, and Technology Project/Site: Jordan Valley

TestAmerica Job ID: 180-58161-1

| Lab Sample ID | Client Sample ID                       | Matrix | Collected Received            |
|---------------|----------------------------------------|--------|-------------------------------|
| 180-58161-1   | AT6-391 (SALINTY ADJUSTED OUTFALL 001) | Water  | 08/09/16 13:47 08/10/16 11:00 |

# **Method Summary**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-58161-1

| Method | Method Description | Protocol | Laboratory |
|--------|--------------------|----------|------------|
| 200.8  | Metals (ICP/MS)    | EPA      | TAL PIT    |
| 245.1  | Mercury (CVAA)     | EPA      | TAL PIT    |

#### Protocol References:

EPA = US Environmental Protection Agency

#### **Laboratory References:**

TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

#### **Lab Chronicle**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-58161-1

# Client Sample ID: AT6-391 (SALINTY ADJUSTED OUTFALL

001)

Date Collected: 08/09/16 13:47 Date Received: 08/10/16 11:00 Lab Sample ID: 180-58161-1

**Matrix: Water** 

|                   | Batch      | Batch   |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-------------------|------------|---------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type         | Туре       | Method  | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total Recoverable | Prep       | 200.8   |     |        | 50 mL   | 50 mL  | 186700 | 09/01/16 08:09 | ANA     | TAL PIT |
| Total Recoverable | Analysis   | 200.8   |     | 10     |         |        | 186819 | 09/01/16 21:28 | CNF     | TAL PIT |
|                   | Instrument | t ID: A |     |        |         |        |        |                |         |         |
| Total/NA          | Prep       | 245.1   |     |        | 50 mL   | 50 mL  | 186696 | 09/01/16 12:03 | EVR     | TAL PIT |
| Total/NA          | Analysis   | 245.1   |     | 1      |         |        | 186923 | 09/02/16 10:02 | EVR     | TAL PIT |
|                   | Instrument | ID: K   |     |        |         |        |        |                |         |         |

#### **Laboratory References:**

TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

#### **Analyst References:**

Lab: TAL PIT

Batch Type: Prep

ANA = Alexis Anderson

EVR = Emilie Reichenbach

Batch Type: Analysis

CNF = Caitlin Ferguson

EVR = Emilie Reichenbach

TestAmerica Pittsburgh

# **Client Sample Results**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-58161-1

# Client Sample ID: AT6-391 (SALINTY ADJUSTED OUTFALL

001)

Date Collected: 08/09/16 13:47

Date Received: 08/10/16 11:00

Lab Sample ID: 180-58161-1

Matrix: Water

| Method: 200.8 - Metals (ICP/MS)<br>Analyte | Result | Qualifier | RL    | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------------|--------|-----------|-------|-------|------|---|----------------|----------------|---------|
| Silver                                     | ND     |           | 10    | 0.88  | ug/L |   | 09/01/16 08:09 | 09/01/16 21:28 | 10      |
| Arsenic                                    | 19     |           | 10    | 0.74  | ug/L |   | 09/01/16 08:09 | 09/01/16 21:28 | 10      |
| Beryllium                                  | ND     |           | 10    | 0.64  | ug/L |   | 09/01/16 08:09 | 09/01/16 21:28 | 10      |
| Cadmium                                    | ND     |           | 10    | 1.6   | ug/L |   | 09/01/16 08:09 | 09/01/16 21:28 | 10      |
| Chromium                                   | 24     |           | 20    | 0.90  | ug/L |   | 09/01/16 08:09 | 09/01/16 21:28 | 10      |
| Copper                                     | 59     |           | 20    | 4.0   | ug/L |   | 09/01/16 08:09 | 09/01/16 21:28 | 10      |
| Iron                                       | ND     |           | 500   | 94    | ug/L |   | 09/01/16 08:09 | 09/01/16 21:28 | 10      |
| Manganese                                  | 15     | J         | 50    | 2.1   | ug/L |   | 09/01/16 08:09 | 09/01/16 21:28 | 10      |
| Nickel                                     | 20     |           | 10    | 2.4   | ug/L |   | 09/01/16 08:09 | 09/01/16 21:28 | 10      |
| Lead                                       | 3.1    | J         | 10    | 0.60  | ug/L |   | 09/01/16 08:09 | 09/01/16 21:28 | 10      |
| Antimony                                   | ND     |           | 20    | 3.0   | ug/L |   | 09/01/16 08:09 | 09/01/16 21:28 | 10      |
| Selenium                                   | 31     | J         | 50    | 3.2   | ug/L |   | 09/01/16 08:09 | 09/01/16 21:28 | 10      |
| Thallium                                   | ND     | _         | 10    | 0.24  | ug/L |   | 09/01/16 08:09 | 09/01/16 21:28 | 10      |
| Zinc                                       | 96     |           | 50    | 18    | ug/L |   | 09/01/16 08:09 | 09/01/16 21:28 | 10      |
| Hardness as calcium carbonate              | 8700   |           | 0.033 | 0.71  | mg/L |   | 09/01/16 08:09 | 09/01/16 21:28 | 10      |
| Method: 245.1 - Mercury (CVAA)             |        |           |       |       |      |   |                |                |         |
| Analyte                                    |        | Qualifier | RL    | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Mercury                                    | 2.7    |           | 0.20  | 0.039 | ug/L |   | 09/01/16 12:03 | 09/02/16 10:02 | 1       |

#### Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 180-186700/1-A

**Matrix: Water** 

Analysis Batch: 186819

Client Sample ID: Method Blank Prep Type: Total Recoverable

**Prep Batch: 186700** 

|                               | MB     | MB        |        |       |      |   |                |                |         |
|-------------------------------|--------|-----------|--------|-------|------|---|----------------|----------------|---------|
| Analyte                       | Result | Qualifier | RL     | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Silver                        | ND     |           | 1.0    | 0.088 | ug/L |   | 09/01/16 08:09 | 09/01/16 21:11 | 1       |
| Arsenic                       | ND     |           | 1.0    | 0.074 | ug/L |   | 09/01/16 08:09 | 09/01/16 21:11 | 1       |
| Beryllium                     | ND     |           | 1.0    | 0.064 | ug/L |   | 09/01/16 08:09 | 09/01/16 21:11 | 1       |
| Cadmium                       | ND     |           | 1.0    | 0.16  | ug/L |   | 09/01/16 08:09 | 09/01/16 21:11 | 1       |
| Chromium                      | ND     |           | 2.0    | 0.090 | ug/L |   | 09/01/16 08:09 | 09/01/16 21:11 | 1       |
| Соррег                        | ND     |           | 2.0    | 0.40  | ug/L |   | 09/01/16 08:09 | 09/01/16 21:11 | 1       |
| Iron                          | ND     |           | 50     | 9.4   | ug/L |   | 09/01/16 08:09 | 09/01/16 21:11 | 1       |
| Manganese                     | ND     |           | 5.0    | 0.21  | ug/L |   | 09/01/16 08:09 | 09/01/16 21:11 | 1       |
| Nickel                        | ND     |           | 1.0    | 0.24  | ug/L |   | 09/01/16 08:09 | 09/01/16 21:11 | 1       |
| Lead                          | ND     |           | 1.0    | 0.060 | ug/L |   | 09/01/16 08:09 | 09/01/16 21:11 | 1       |
| Antimony                      | ND     |           | 2.0    | 0.30  | ug/L |   | 09/01/16 08:09 | 09/01/16 21:11 | 1       |
| Selenium                      | ND     |           | 5.0    | 0.32  | ug/L |   | 09/01/16 08:09 | 09/01/16 21:11 | 1       |
| Thallium                      | ND     |           | 1.0    | 0.024 | ug/L |   | 09/01/16 08:09 | 09/01/16 21:11 | 1       |
| Zinc                          | ND     |           | 5.0    | 1.8   | ug/L |   | 09/01/16 08:09 | 09/01/16 21:11 | 1       |
| Hardness as calcium carbonate | ND     |           | 0.0033 | 0.071 | mg/L |   | 09/01/16 08:09 | 09/01/16 21:11 | 1       |

Lab Sample ID: LCS 180-186700/2-A

**Matrix: Water** 

Analysis Batch: 186819

**Client Sample ID: Lab Control Sample Prep Type: Total Recoverable** 

**Prep Batch: 186700** 

| Analysis batch. 100015 | Spike | LCS    | LCS       |      |   |      | %Rec.               |
|------------------------|-------|--------|-----------|------|---|------|---------------------|
| Analyte                | Added | Result | Qualifier | Unit | D | %Rec | Limits              |
| Silver                 | 50.0  | 54.1   |           | ug/L |   | 108  | 85 - 115            |
| Arsenic                | 40.0  | 42.4   |           | ug/L |   | 106  | 85 - 115            |
| Beryllium              | 50.0  | 51.0   |           | ug/L |   | 102  | 85 - 115            |
| Cadmium                | 50.0  | 53.9   |           | ug/L |   | 108  | 85 - 115            |
| Chromium               | 200   | 205    |           | ug/L |   | 103  | 85 - 115            |
| Copper                 | 250   | 251    |           | ug/L |   | 100  | 85 - 115            |
| Iron                   | 1000  | 1070   |           | ug/L |   | 107  | 85 <sub>-</sub> 115 |
| Manganese              | 500   | 507    |           | ug/L |   | 101  | 85 - 115            |
| Nickel                 | 500   | 494    |           | ug/L |   | 99   | 85 - 115            |
| Lead                   | 20.0  | 20.4   |           | ug/L |   | 102  | 85 - 115            |
| Antimony               | 500   | 514    |           | ug/L |   | 103  | 85 - 115            |
| Thallium               | 50.0  | 48.0   |           | ug/L |   | 96   | 85 - 115            |
| Zinc                   | 500   | 517    |           | ug/L |   | 103  | 85 <sub>-</sub> 115 |
|                        |       |        |           |      |   |      |                     |

Lab Sample ID: LCS 180-186700/2-A

**Matrix: Water** 

Analysis Batch: 186819

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable** 

**Prep Batch: 186700** 

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Selenium 10.0 8.76 ug/L 88 85 - 115

TestAmerica Pittsburgh

# **QC Sample Results**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

Analysis Batch: 186923

Mercury

TestAmerica Job ID: 180-58161-1

| Method: | 245.1 - | Mercury | (CVAA) |
|---------|---------|---------|--------|
| modioa. |         | moroury | (      |

Client Sample ID: Method Blank Lab Sample ID: MB 180-186696/1-A Prep Type: Total/NA **Matrix: Water** Prep Batch: 186696 Analysis Batch: 186923

мв мв

Dil Fac Analyzed MDL Unit Prepared Result Qualifier RL Analyte 09/01/16 07:32 09/02/16 09:39 0.20 0.039 ug/L ND Mercury

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 180-186696/2-A Prep Type: Total/NA **Matrix: Water Prep Batch: 186696** 

2.50

LCS LCS %Rec. **Spike** D %Rec Limits Added Result Qualifier Unit Analyte

2.50

ug/L 100 85 - 115

# **QC Association Summary**

Client: EA Engineering, Science, and Technology Project/Site: Jordan Valley

TestAmerica Job ID: 180-58161-1

#### Metals

| Prep | Batch: 1 | 86696 |
|------|----------|-------|
|------|----------|-------|

| Lab Sample ID      | Client Sample ID                       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|----------------------------------------|-----------|--------|--------|------------|
| 180-58161-1        | AT6-391 (SALINTY ADJUSTED OUTFALL 001) | Total/NA  | Water  | 245.1  |            |
| MB 180-186696/1-A  | Method Blank                           | Total/NA  | Water  | 245.1  |            |
| LCS 180-186696/2-A | Lab Control Sample                     | Total/NA  | Water  | 245.1  |            |

#### **Prep Batch: 186700**

| Lab Sample ID      | Client Sample ID                       | Prep Type         | Matrix | Method | Prep Batch |
|--------------------|----------------------------------------|-------------------|--------|--------|------------|
| 180-58161-1        | AT6-391 (SALINTY ADJUSTED OUTFALL 001) | Total Recoverable | Water  | 200.8  |            |
| MB 180-186700/1-A  | Method Blank                           | Total Recoverable | Water  | 200.8  |            |
| LCS 180-186700/2-A | Lab Control Sample                     | Total Recoverable | Water  | 200.8  |            |

#### Analysis Batch: 186819

| Lab Sample ID      | Client Sample ID                       | Prep Type         | Matrix | Method | Prep Batch |
|--------------------|----------------------------------------|-------------------|--------|--------|------------|
| 180-58161-1        | AT6-391 (SALINTY ADJUSTED OUTFALL 001) | Total Recoverable | Water  | 200.8  | 186700     |
| MB 180-186700/1-A  | Method Blank                           | Total Recoverable | Water  | 200.8  | 186700     |
| LCS 180-186700/2-A | Lab Control Sample                     | Total Recoverable | Water  | 200.8  | 186700     |
| LCS 180-186700/2-A | Lab Control Sample                     | Total Recoverable | Water  | 200.8  | 186700     |

#### Analysis Batch: 186923

| Lab Sample ID      | Client Sample ID                       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|----------------------------------------|-----------|--------|--------|------------|
| 180-58161-1        | AT6-391 (SALINTY ADJUSTED OUTFALL 001) | Total/NA  | Water  | 245.1  | 186696     |
| MB 180-186696/1-A  | Method Blank                           | Total/NA  | Water  | 245.1  | 186696     |
| LCS 180-186696/2-A | Lab Control Sample                     | Total/NA  | Water  | 245.1  | 186696     |

#### TestAmerica Pittsburgh

201 Alpha Drive RIDC Park Pittsburgh - PA 15238

# **Chain of Custody Record**

TestAmerica

| ione (412) 963-7058 Fax (412) 963-2468                          | Total Control         |           |                 | Lan Pr   |                    | _      | _          |        | _        |          | Carry 1  | racking f | 100       |          | God No        |             |                            |          |
|-----------------------------------------------------------------|-----------------------|-----------|-----------------|----------|--------------------|--------|------------|--------|----------|----------|----------|-----------|-----------|----------|---------------|-------------|----------------------------|----------|
| lient Information                                               | Sameler:              |           |                 |          | ber Ca             | rne L  |            |        |          |          |          |           | 100       |          | 180-31        | 222-6905    | :                          |          |
| en Corract                                                      | Ptone.                |           |                 | E-12.ac  | gamb               |        | netana     | arra a | e com    |          |          |           |           |          | Page 1        | H 1         |                            |          |
| ele Changy                                                      |                       |           |                 | Carrie   | gamo               | 416/1  | Paterne    |        |          | _        |          | _         | _         | _        | Jee #         | -           |                            |          |
| A Engineering, Science, and Technology                          |                       |           |                 |          |                    |        |            | A      | nalys    | is Req   | veste    | d         |           |          |               |             |                            |          |
| 190951                                                          | Dur Date Requested    | 1:        |                 |          |                    |        | 1          |        |          |          |          |           |           |          | Presen        | vation Code | 15                         |          |
| 25 Schilling Circle Suite 400                                   | TAT Requested (day    | rst       |                 |          |                    |        | - 1        |        | 1 4      |          |          |           | 1         | 1        |               | CARLET THE  | MAN                        |          |
| ion! Valley                                                     |                       |           |                 |          | P                  | 1      |            | 1      |          |          | ,        | 112215    | annan     | MIN MA   |               | WHILE WA    | WW                         |          |
| त्रत हैंद<br> D=21031                                           |                       |           |                 |          |                    |        | 3          |        |          |          |          | WW        |           |          | MAN           |             | MMM                        |          |
| tone                                                            | to:                   |           |                 |          | 41                 | Ш      | Time       |        | 5        |          | i        | \W        | MWWW      | WW       | MIN           |             | MIMI                       |          |
| 10-329-5120(Tel)                                                | Purchase Order        | Requested |                 |          | 9                  |        |            |        | 3        |          |          | 111       |           |          | HARRI BURN    | ybate       |                            | :99      |
| ns/l<br>chanov@eaesl.com                                        | (AC) #                |           |                 |          | 5 5                |        | 14011      |        | H        |          | 1        | 1.8       | 0-5816    | Cha      | n of Cu       |             |                            |          |
| nect hare                                                       | Project if            |           |                 |          | 2 8                |        | 1          |        | V        |          |          |           |           |          | - ED          |             | 7 other spe                | es, Fyll |
| ordan Valley                                                    | 18015970<br>SSCWII    |           |                 |          | 윒                  | S      |            |        | 3        |          |          | 1         | 1 1       | 1.1      | Other         |             |                            |          |
| Dr.                                                             | 2204                  |           |                 |          | Sample (Yes or No) | 3      | 1267       |        | 1        |          |          |           |           |          | 5             |             |                            |          |
|                                                                 |                       |           | Sample          | Matrix   | Field Filtered     | METAL  | C          | V      | 7        |          |          |           |           |          | Total Number  |             |                            |          |
|                                                                 |                       |           | 1 Southbig      |          |                    | 3      | 7          | 5 1    | 1        |          | 1 1      |           |           | 1.1      | 5             |             |                            |          |
|                                                                 |                       | Sample    |                 | S-stild. | 8                  | 1      |            |        | 1        |          |          |           |           |          | 3             |             | ryser from which the comme |          |
| Sample Identification                                           | Sample Date           | Time      | G=grab) er-     |          |                    | +      | $\vdash$   | +      | +        | -        | +        | _         |           | +        | <del>-</del>  | Special in  | structions/                | Note:    |
|                                                                 |                       | $\sim$    | 177             |          | m                  | +      | 1          |        |          | _        | 1        | +         | -         | 1        | $\overline{}$ |             |                            |          |
| ATE-371 (Salvarty Adjusted Out                                  | to//wi) 3/5/10        | 1347      | G               | W        | Н                  | 1      | 1          | XX     | X        |          | $\perp$  |           | -         | -        | _             |             |                            |          |
|                                                                 |                       |           |                 |          |                    |        |            |        |          |          |          |           |           |          |               |             |                            |          |
|                                                                 |                       |           |                 |          | П                  |        |            |        |          |          |          |           |           | TT       |               |             |                            |          |
|                                                                 |                       |           |                 | _        | ++-                | +      |            | 1      | +        | -        | +        | -         |           |          | _             |             |                            |          |
|                                                                 |                       |           | ++              |          | H                  | +-     | -          | -      | -        | -        | ++       | -         | $\vdash$  | +-+      | _             |             | _                          |          |
|                                                                 |                       |           |                 |          | Ш                  | _      |            | _      |          |          | <u> </u> | _         |           | $\sqcup$ |               |             |                            |          |
|                                                                 |                       |           |                 |          |                    |        |            |        |          |          |          |           |           |          |               |             |                            |          |
|                                                                 |                       |           |                 |          | 11                 | 1      |            |        | 7        |          | $\Box$   | 1         |           |          |               |             |                            |          |
|                                                                 |                       |           | +               |          | H                  | +-     | 1          | +      | +        | -        | ++       |           | +         | ++       |               |             |                            |          |
|                                                                 |                       |           | 1               |          | 11                 | +      | $\vdash$   | -      | -        | _        | +        | -         | -         | +        | _             |             |                            |          |
|                                                                 |                       |           |                 |          | Ш                  |        |            |        |          |          | 1        |           |           |          |               |             |                            |          |
|                                                                 |                       |           |                 |          | П                  |        |            |        |          |          |          |           |           |          |               |             |                            |          |
|                                                                 |                       |           | 1-1             |          | H                  | +      | $\Box$     |        | _        |          | +        | 1         |           | $\Box$   |               |             |                            |          |
|                                                                 |                       |           |                 |          | 4                  | x moli | Disn       | nsal ( | A fee s  | nav he a | 22022    | ad If sa  | moles a   | re reta  | ined long     | ger than 1  | month)                     |          |
| Possible Hazard Identification  Non-Hazard Figure Skin Irrilant | Poison B Unknow       | wn 🗔      | adiologica/     |          | ٦                  |        | Return     |        |          | IZ.      | Disposa  | Byla      | b         | - 1      | thive For     | ,           | Months                     |          |
| Delivorable Requested I II III IV Other (specify)               | гизина фиклоп         |           | and throughout) |          | S                  |        |            |        |          | quirepe  |          |           |           |          |               |             |                            |          |
|                                                                 |                       | Inma      |                 |          | Time               |        | 1          | -      | -        | ++       | -        | Vernos o  | Shower    | 11       | 4             |             |                            |          |
| Empty Kit Relinguished by TA                                    | ्रज्ञान विकास         | Date      |                 | mpany    | Liude              | Olev   | tra traves | 11     | +        | +1       | لمبي     |           | Day       | -        | 1110          | 1117        | Company                    | / A      |
| my fraginisman                                                  | 8/7/10                | 1431      |                 |          |                    |        | 1          | N      | 14       | 4        |          |           | 1         | IC       | 11C           | 110         | TH                         | IA       |
| Reinquisted by C                                                | Date Time             | , , ,     | 0               | ការាធិក  |                    | Dec    | mero o     | 7      | <u> </u> |          |          |           | Date Circ | e ]      | ,             | t           | Company                    | 110      |
| Falmquishers by                                                 | Date <sup>rt</sup> me |           |                 | meany    |                    | Ren    | mved b     | ,      | _        | _        |          | _         | Daniel    | -        | 1             |             | COTESTA                    | - 0      |
| is wordship and CA                                              | Frank. had.           |           |                 | ,        |                    |        |            |        |          |          |          |           |           |          |               |             |                            |          |
|                                                                 |                       |           |                 |          | _                  | _      |            | _      |          | _        | _        |           |           |          |               |             |                            |          |



https://www.campusship.ups.com/cship/create?ActionOriginPair=default

PrintWindowP...

8/9/2016





# **Login Sample Receipt Checklist**

Client: EA Engineering, Science, and Technology

Job Number: 180-58161-1

Login Number: 58161

List Number: 1 Creator: Neri, Tom List Source: TestAmerica Pittsburgh

| Question                                                                                                   | Answer | Comment |
|------------------------------------------------------------------------------------------------------------|--------|---------|
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> | True   |         |
| The cooler's custody seal, if present, is intact.                                                          | True   |         |
| Sample custody seals, if present, are intact.                                                              | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.                             | True   |         |
| Samples were received on ice.                                                                              | True   |         |
| Cooler Temperature is acceptable.                                                                          | True   |         |
| Cooler Temperature is recorded.                                                                            | True   |         |
| COC is present.                                                                                            | True   |         |
| COC is filled out in ink and legible.                                                                      | True   |         |
| COC is filled out with all pertinent information.                                                          | True   |         |
| Is the Field Sampler's name present on COC?                                                                | True   |         |
| There are no discrepancies between the containers received and the COC.                                    | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)                              | True   |         |
| Sample containers have legible labels.                                                                     | True   |         |
| Containers are not broken or leaking.                                                                      | True   |         |
| Sample collection date/times are provided.                                                                 | True   |         |
| Appropriate sample containers are used.                                                                    | True   |         |
| Sample bottles are completely filled.                                                                      | True   |         |
| Sample Preservation Verified.                                                                              | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                           | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                            | True   |         |
| Multiphasic samples are not present.                                                                       | True   |         |
| Samples do not require splitting or compositing.                                                           | True   |         |
| Residual Chlorine Checked.                                                                                 | N/A    |         |



8/30/2016

#### Work Order: 16

16H0441

Jordan Valley Water Conservancy District
Attn: Marie Owens
15305 South 3200 West
Herriman, UT 84065

Client Service Contact: 801.262.7299

The analyses presented on this report were performed in accordance with the National Environmental Laboratory Accreditation Program (NELAP) unless noted in the comments, flags or case narrative. If the report is to be used for regulatory compliance, it should be presented in its entirety, and not be altered.



Approved By:

Dave Gayer, Laboratory Director



# **Certificate of Analysis**

Lab Sample No.: 16H0441-01

Name: Jordan Valley Water Conservancy District Sample Date: 8/8/2016 11:51 AM

Sample Site: GSL Discharge Receipt Date: 8/8/2016 12:51 PM

Comments: Sampler: Glen McIntyre

Sample Matrix: Water Project:

PO Number:

| Parameter                       | Sample<br>Result | Minimum<br>Reporting<br>Limit | Units    | Analytical Method | Preparation<br>Date/Time | Analysis<br>Date/Time | Flag |
|---------------------------------|------------------|-------------------------------|----------|-------------------|--------------------------|-----------------------|------|
| alculations                     |                  |                               |          |                   |                          |                       |      |
| Hardness, Total as CaCO3        | 2880             | 1.3                           | mg/L     | SM 2340B          | 08/13/2016 10:54         | 8/13/2016 14:30       |      |
| norganic                        |                  |                               |          |                   |                          |                       |      |
| Alkalinity - Bicarbonate (HCO3) | 1020             | 1.0                           | mg/L     | SM 2320 B         | 08/17/2016 09:30         | 8/17/2016 13:47       |      |
| Alkalinity - Carbonate (CO3)    | ND               | 1.0                           | mg/L     | SM 2320 B         | 08/17/2016 09:30         | 8/17/2016 13:47       |      |
| Alkalinity - CO2                | 741              | 1.0                           | mg/L     | SM 2320 B         | 08/17/2016 09:30         | 8/17/2016 13:47       |      |
| Alkalinity - Hydroxide (OH)     | ND               | 1.0                           | mg/L     | SM 2320 B         | 08/17/2016 09:30         | 8/17/2016 13:47       |      |
| Alkalinity - Total (as CaCO3)   | 834              | 1.0                           | mg/L     | SM 2320 B         | 08/17/2016 09:30         | 8/17/2016 13:47       |      |
| Chloride                        | 862              | 10                            | mg/L     | EPA 300.0         | 08/09/2016 13:55         | 8/9/2016 14:04        |      |
| Conductivity                    | 5640             | 1                             | umho/cm  | EPA 120 1         | 08/12/2016 10:10         | 8/12/2016 10:10       |      |
| Cyanide, Total                  | 0.002            | 0.002                         | mg/L     | SM 4500 CN-E      | 08/11/2016 09:50         | 8/11/2016 16:25       |      |
| Fluoride                        | 0.6              | 0,1                           | mg/L     | EPA 300.0         | 08/08/2016 23:32         | 8/9/2016 6:11         |      |
| Nitrate as N                    | 9.4              | 0.5                           | mg/L     | SM 4500 NO3- F    | 08/08/2016 15:52         | 8/8/2016 18:24        |      |
| Nitrite as N                    | ND               | 0.1                           | mg/L     | SM 4500 NO2-B     | 08/08/2016 16:44         | 8/8/2016 18:44        |      |
| pH                              | 7.9              | 0.1                           | pH Units | SM 4500 H-B       | 08/08/2016 13:00         | 8/8/2016 13:00        |      |
| Phosphate, ortho as P           | 0.06             | 0.01                          | mg/L     | SM 4500 P-E       | 08/09/2016 15:41         | 8/9/2016 15:41        |      |
| Sulfate                         | 1470             | 10                            | mg/L     | EPA 300.0         | 08/09/2016 11:28         | 8/9/2016 14:04        |      |
| Turbidity                       | 0.39             | 0.02                          | NTU      | EPA 180.1         | 08/08/2016 15:15         | 8/8/2016 15:15        |      |
|                                 |                  |                               |          |                   |                          |                       |      |
| Metals                          |                  |                               |          | EDA 200 9         | 08/09/2016 16:21         | 8/9/2016 23:10        |      |
| Antimony, Total                 | 0.0006           | 0.0005                        | mg/L     | EPA 200 8         |                          | 8/9/2016 23:10        |      |
| Arsenic, Total                  | 0.0213           | 0.0005                        | mg/L     | EPA 200.8         | 08/09/2016 16:21         |                       |      |
| Barium, Total                   | 0.272            | 0.005                         | mg/L     | EPA 200.7         | 08/13/2016 10:54         | 8/13/2016 14:30       |      |
| Beryllium, Total                | ND               | 0.001                         | mg/L     | EPA 200.7         | 08/13/2016 10:54         | 8/13/2016 14:30       |      |
| Calcium, Total                  | 707              | 0.2                           | mg/L     | EPA 200.7         | 08/13/2016 10:54         | 8/13/2016 14:30       |      |
| Cadmium, Total                  | 0,0002           | 0.0002                        | mg/L     | EPA 200.8         | 08/09/2016 16:21         | 8/9/2016 23:10        |      |
| Chromium, Total                 | 0.022            | 0.005                         | mg/L     | EPA 200.7         | 08/13/2016 10:54         | 8/13/2016 14:30       |      |
| Copper, Total                   | 0.066            | 0.005                         | mg/L     | EPA 200.7         | 08/13/2016 10:54         | 8/13/2016 14:30       |      |
| Iron, Total                     | ND               | 0.02                          | mg/L     | EPA 200.7         | 08/13/2016 10:54         | 8/13/2016 14:30       |      |
| Lead, Total                     | 0.0013           | 0.0005                        | mg/L     | EPA 200.8         | 08/09/2016 16:21         | 8/9/2016 23:10        |      |
| Mercury, Total                  | ND               | 0.0002                        | mg/L     | EPA 200.8         | 08/09/2016 16:21         | 8/9/2016 23:10        |      |
| Magnesium, Total                | 271              | 0.2                           | mg/L     | EPA 200.7         | 08/13/2016 10:54         | 8/13/2016 14:30       |      |
| Manganese, Total                | ND               | 0.005                         | mg/L     | EPA 200.7         | 08/13/2016 10:54         | 8/13/2016 14:30       |      |
| Nickel, Total                   | ND               | 0.005                         | mg/L     | EPA 200.7         | 08/13/2016 10:54         | 8/13/2016 14:30       |      |
| Potassium, Total                | 15.9             | 0.5                           | mg/L     | EPA 200.7         | 08/13/2016 10:54         | 8/13/2016 14:30       |      |
| Selenium, Total                 | 0.0382           | 0.0005                        | mg/L     | EPA 200.8         | 08/09/2016 16:21         | 8/9/2016 23:10        |      |
| Silver, Total                   | ND               | 0.0005                        | mg/L     | EPA 200.8         | 08/09/2016 16:21         | 8/9/2016 23:10        |      |
| Sodium, Total                   | 355              | 0.5                           | mg/L     | EPA 200.7         | 08/13/2016 10:54         | 8/13/2016 14:30       |      |



# **Certificate of Analysis**

Lab Sample No.: 16H0441-01

Name: Jordan Valley Water Conservancy District

**Sample Date:** 8/8/2016 11:51 AM

Sample Site: GSL Discharge

**Receipt Date:** 8/8/2016 12:51 PM

Comments:

Sampler: Glen McIntyre

Sample Matrix: Water

Project:

PO Number:

| Parameter       | Sample<br>Result | Minimum<br>Reporting<br>Limit | Units | Analytical Method | Preparation<br>Date/Time | Analysis<br>Date/Time | Flag |
|-----------------|------------------|-------------------------------|-------|-------------------|--------------------------|-----------------------|------|
| Metals          |                  |                               | 100   |                   |                          |                       |      |
| Thallium, Total | ND               | 0.0002                        | mg/L  | EPA 200.8         | 08/09/2016 16:21         | 8/9/2016 23:10        |      |
| Zinc, Total     | 0.11             | 0.01                          | mg/L  | EPA 200,7         | 08/13/2016 10:54         | 8/13/2016 14:30       |      |



# CHEMTECH - FORD ANALYTICAL LABORATORY

9632 South 500 West

#### **CHAIN OF CUSTODY**

| COMPANY:   | Jordan Valley WCD                                               |                 |                                    | BILLE                   | NG CONTACT:                                     | Jordan Valle | y WCD                                                    |                                                                            |                                                                               |            |
|------------|-----------------------------------------------------------------|-----------------|------------------------------------|-------------------------|-------------------------------------------------|--------------|----------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------|
| ADDRESS:   | 15305 S 3200 W                                                  |                 |                                    | BILLI                   | NG ADDRESS:                                     | 15305 S 320  | 00 W                                                     |                                                                            |                                                                               |            |
|            | P: Herriman, UT 84065                                           |                 |                                    | BILLII                  | NG CITY/STATE/ZIP:                              | Herriman, U  | T 84065                                                  |                                                                            |                                                                               |            |
| PHONE #:   |                                                                 |                 |                                    |                         |                                                 |              |                                                          |                                                                            |                                                                               |            |
| CONTACT:   |                                                                 |                 |                                    |                         | AROUND REQUIRED*:                               |              |                                                          |                                                                            |                                                                               |            |
| EMAIL      | 9. — — — — — — — — — — — — — — — — — — —                        |                 |                                    | * Expedi                | led turnaround subject to additi                | ional charge |                                                          |                                                                            |                                                                               |            |
| Mark "X" l | here if you want a copy sent toe DEQ Division of Drinking Water | ATOS :          | TSS                                | CANCE                   | Cons                                            |              | MATRIX                                                   | SAMP                                                                       | LE TYPE                                                                       | n          |
| Lab ID#    | PWSID #: 18027                                                  | DUE TO          | o lou                              | SAMPI<br>N & (          | EUGO<br>E VOLVME<br>3.08.16<br>Drinking Water O | so:          | - Drinking Water  Wastewater  Water  Soil  Solid  Shidge | R = Routine<br>C = Compliance<br>I = Investigative<br>SP = Special Project | TG = Trigger So CO = Confirmat OR = Original of UP = Upstream DN = Downstream | ,D Chlorir |
| Hoyul      | SAMPLE LOCATION                                                 | CUSTOMER<br>ID# | SAMPLE<br>DATE                     | SAMPLE<br>TIME          | SAMPLE SAM<br>SOURCE CODE POINT                 |              | ANALYTIC                                                 | AL TESTS REQU                                                              | DESTED                                                                        | idual      |
| 01         | 1 - GSL Discharge                                               | 16080808-01     | 8/8/2016                           | 1151                    | H5le                                            | W            | Complete Inorg                                           | ganies Source                                                              |                                                                               | SP         |
|            | Sampled by: [print] MCINTYRE, GLEN                              | Samp            | oled by: [signature                | 2 Le                    | BIT                                             |              | 0                                                        | NOT O                                                                      | ON ICE Tem                                                                    | p (C): 8.3 |
|            | Special Instructions                                            |                 |                                    |                         |                                                 |              |                                                          |                                                                            |                                                                               |            |
|            | Relinquished by Benature                                        | Date Tim        | 16 1251                            | eceived by: [signature] | f V                                             | robut        |                                                          | 16 1251                                                                    |                                                                               |            |
|            | Relinquished by [signature]                                     | Date/Tim        | Date/Time Received by: [signature] |                         |                                                 |              |                                                          | Date/T                                                                     | ime                                                                           |            |
|            | Relinquished by: [signature]                                    | Date/Tim        | Date/Time Received by: [signature] |                         |                                                 | Date/T       |                                                          |                                                                            |                                                                               |            |
| ļ          | CHEMTECH-FORD 9632 South 500 Wes                                | t Sandy, UT     | 84070                              | Phone: 801-262          | 2-7299 FAX: 86                                  | 6-792-0093   | www.ch                                                   | emtechford.com                                                             |                                                                               |            |

CHEMTECH-FORD Payment Terms are net 30 days OAC. 1.5% interest charge per month (18% per annum). Client agrees to pay collection costs and attorney's fees.

Sandy, UT 84070

#### **CHEMTECH FORD LABORATORIES**

# Work Order # # WY1

Sample Receipt

| CHEMTECH-FORD |
|---------------|

#### **Delivery Method:**

□ UPS

□ USPS

□ FedEx

☐ Chemtech Courier

walk-in

Sample #

□ Customer Courier

Container

Chemtech Lot#

Preservative

Receiving Temperature 😉 🌛 \*\*C

| Custody Seals           |    |
|-------------------------|----|
| Containers Intact       |    |
| COC/Labels Agree        |    |
| Preservation Confirmed  |    |
| Received on Ice         |    |
| Correct Containers(s)   |    |
| Sufficent Sample Volume | :  |
| Headspace Present (VOC  | :) |
| ☐ Temperature Blank     |    |

| <b>७</b> । | M    | 692 |          |           |        |          |  |
|------------|------|-----|----------|-----------|--------|----------|--|
|            | Ap   | 1   |          | $\neg$    |        |          |  |
|            | 11.5 | 21  | $\vdash$ | $\dashv$  |        |          |  |
|            |      | 715 | $\sqcup$ | $\Box$    |        |          |  |
|            |      |     |          |           |        |          |  |
|            |      |     |          |           |        |          |  |
|            |      |     | H        | $\exists$ | $\neg$ | <b>†</b> |  |
|            |      |     | $\vdash$ | $\dashv$  | +      | <b>-</b> |  |
|            |      |     |          |           |        |          |  |
|            |      |     |          |           |        |          |  |
|            |      |     |          |           |        |          |  |
|            |      |     | $\vdash$ | $\neg$    | _      |          |  |
|            |      |     | $\vdash$ | $\dashv$  | -      | -        |  |
|            |      |     | $\sqcup$ | _         |        |          |  |
|            |      |     | П        |           |        |          |  |
|            |      |     |          | П         |        |          |  |
|            |      |     | $\vdash$ | 7         | -      |          |  |
|            |      |     | $\vdash$ | $\dashv$  |        |          |  |
|            |      |     |          |           |        |          |  |
|            |      |     |          |           |        |          |  |
|            |      |     | $\Box$   | 寸         |        |          |  |
|            |      |     |          | $\dashv$  | -      | -        |  |
|            |      |     | $\vdash$ | 4         | _      |          |  |
|            |      |     |          |           |        |          |  |
|            |      |     |          |           |        |          |  |
|            |      |     | П        | $\neg$    |        |          |  |
|            |      |     | $\vdash$ | $\dashv$  | +      | ļ —      |  |
|            |      |     | $\vdash$ | -         | _      | ļ        |  |

Preserved in Receiving/Laborato Filtered in Freid by Client

Misc Volume

(oz/mL)

Comments

# **Plastic Containers**

A- Plastic Unpreserved

B- Miscellaneous Plastic

C- Cyanide Qt (NaOH)

E-Coliform/Ecoli/HPC

F- Sulfide Qt (Zn Acetate)

L- Mercury 1631

M- Metals Pint (HNO3)

N-Nutrient Pint (H2SO4)

R- Radiological (HNO3)

5- Sludge Cups/Tubs Q- Plastic Bag

#### Glass Containers

D-625 (Na252O3)

G-Glass Unpreserved

H- HAAs (NH4CI)

J- 508/515/525 (Na2SO3)

K- 515.3 Herbicides

O- Oil & Grease (HCI)

P- Phenois (H2SO4)

T- TOC/TOX (H3PO4)

U- 531 (MCAA, Na2S2O3) V- 524/THMs (Ascorbic Acid)

W- 8260 VOC (1:1 HCI)

X- Via! Unpreserved

Y- 624/504 (Na25203)

Z- Miscellaneous Glass



#### **Certificate of Analysis**

# **Report Footnotes**

#### **Abbreviations**

ND = Not detected at the corresponding Minimum Reporting Limit.

1 mg/L = one milligram per liter or 1 mg/Kg = one milligram per kilogram = 1 part per million.

1 mg/L = one microgram per liter or 1 mg/Kg = one microgram per kilogram = 1 part per billion.

1 mg/L = one nanogram per liter or 1 mg/Kg = one nanogram per kilogram = 1 part per billion.

#### Flag Descriptions





















































































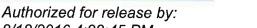























8/18/2016 4:22:45 PM Julie Unger, Project Management Assistant I

EA Engineering, Science, and Technology

**TestAmerica** 

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratories, Inc.

TestAmerica Job ID: 180-57624-1 Client Project/Site: Jordan Valley

TestAmerica Pittsburgh

Pittsburgh, PA 15238 Tel: (412)963-7058

225 Schilling Circle

Attn: Mike Chanov

Hunt Valley, Maryland 21031

301 Alpha Drive RIDC Park

For:

Suite 400

**ANALYTICAL REPORT** 

julie.unger@testamericainc.com

Designee for Carrie Gamber, Senior Project Manager (412)963-2428

carrie.gamber@testamericainc.com



**Review your project** results through



Visit us at:

www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Project/Site: Jordan Valley

# **Table of Contents**

| Cover Page             |    |
|------------------------|----|
| Table of Contents      | -  |
| Case Narrative         |    |
| Definitions/Glossary   |    |
| Certification Summary  | )  |
| Sample Summary         | ,  |
| Method Summary         | 3  |
| _ab Chronicle          |    |
| Client Sample Results  | 10 |
| QC Sample Results      | 12 |
| QC Association Summary | 16 |
| Dilain of Gustody      | 18 |
| Receipt Checklists     | 21 |















#### **Case Narrative**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

Job ID: 180-57624-1

Laboratory: TestAmerica Pittsburgh

Narrative

#### **CASE NARRATIVE**

Client: EA Engineering, Science, and Technology

**Project: Jordan Valley** 

Report Number: 180-57624-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

#### RECEIPT

The sample was received on 8/16/2016 10:15 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.3° C.

#### **METALS**

The following sample was diluted due to the nature of the sample matrix: MOCK (AT6-407) (180-57624-1). Elevated reporting limits (RLs) are provided.

The following samples were diluted due to the nature of the sample matrix: MOCK (AT6-407) (180-57624-1) and (180-57624-F-1-C SD ^). Elevated reporting limits (RLs) are provided. Sample was initially analyzed at a 10x dilution due to suspected matrix.

The following samples were diluted to bring the concentration of sodium within the linear range of the instrument: MOCK (AT6-407) (180-57624-1) and (180-57624-F-1-C SD ^). Elevated reporting limits (RLs) are provided.

Strontium was detected in method blank MB 180-185016/1-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged.

#### **GENERAL CHEMISTRY**

Sample MOCK (AT6-407) (1)[50X] required dilution prior to Method 300 analysis. The reporting limits have been adjusted accordingly.

Due to the matrix, the initial volumes used for the following samples deviated from the standard procedure for Method 2540C: MOCK (AT6-407) (180-57624-1), (180-57449-E-1) and (180-57449-A-1 DU). The reporting limits (RLs) have been adjusted proportionately.

3

TestAmerica Job ID: 180-57624-1

k

i

# Definitions/Glossary

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-57624-1

#### Qualifiers

| Metals |
|--------|
|--------|

| Qualitier | Qualifier Description                                                                                          |
|-----------|----------------------------------------------------------------------------------------------------------------|
| J         | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. |

B Compound was found in the blank and sample.

#### Glossary

| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
|----------------|-------------------------------------------------------------------------------------------------------------|
| 0              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CNF            | Contains no Free Liquid                                                                                     |
| DER            | Duplicate error ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision level concentration                                                                                |
| MDA            | Minimum detectable activity                                                                                 |
| EDL            | Estimated Detection Limit                                                                                   |
| MDC            | Minimum detectable concentration                                                                            |
| MDL            | Method Detection Limit                                                                                      |
| ML             | Minimum Level (Dioxin)                                                                                      |
| NC             | Not Calculated                                                                                              |
| ND             | Not detected at the reporting limit (or MDL or EDL if shown)                                                |
| PQL            | Practical Quantitation Limit                                                                                |
| QC             | Quality Control                                                                                             |
| RER            | Relative error ratio                                                                                        |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                         |
| TEQ            | Toxicity Equivalent Quotient (Dioxin)                                                                       |

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-57624-1

Laboratory: TestAmerica Pittsburgh
Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

| thority<br>ah          | Program<br>NELAP             |                         | EPA Region              | PA001462015-4            | Expiration Date<br>05-31-17 |
|------------------------|------------------------------|-------------------------|-------------------------|--------------------------|-----------------------------|
|                        |                              |                         |                         |                          | 05-31-17                    |
| The following analytes | s are included in this repor | t, but are not certifie | ed under this certifica | tion:                    |                             |
| Analysis Method        | Prep Method                  | Matrix                  | Analyte                 | е                        |                             |
| 200.7 Rev 4.4          | 200.7                        | Water                   | Barium                  | 1                        |                             |
| 200.7 Rev 4.4          | 200.7                        | Water                   | Boron                   |                          |                             |
| 200.7 Rev 4.4          | 200.7                        | Water                   | Calciur                 | m                        |                             |
| 200.7 Rev 4.4          | 200.7                        | Water                   | Magne                   | sium                     |                             |
| 200.7 Rev 4.4          | 200.7                        | Water                   | Potass                  | sium                     |                             |
| 200.7 Rev 4.4          | 200.7                        | Water                   | Sodiun                  | n                        |                             |
| 200.7 Rev 4.4          | 200.7                        | Water                   | Stronti                 | um                       |                             |
| 200.8                  | 200.8                        | Water                   | Antimo                  | ony                      |                             |
| 200.8                  | 200.8                        | Water                   | Arsenio                 | С                        |                             |
| 200.8                  | 200.8                        | Water                   | Berylliu                | ım                       |                             |
| 200.8                  | 200.8                        | Water                   | Cadmir                  | um                       |                             |
| 200.8                  | 200.8                        | Water                   | Chrom                   | ium                      |                             |
| 200.8                  | 200.8                        | Water                   | Coppe                   | r                        |                             |
| 200.8                  | 200.8                        | Water                   | Hardne                  | ess as calcium carbonate | e                           |
| 200.8                  | 200.8                        | Water                   | Iron                    |                          |                             |
| 200.8                  | 200.8                        | Water                   | Lead                    |                          |                             |
| 200.8                  | 200.8                        | Water                   | Manga                   | nese                     |                             |
| 200.8                  | 200.8                        | Water                   | Nickel                  |                          |                             |
| 200.8                  | 200.8                        | Water                   | Seleniu                 | ım                       |                             |
| 200.8                  | 200.8                        | Water                   | Silver                  |                          |                             |
| 200.8                  | 200.8                        | Water                   | Thalliu                 | m                        |                             |
| 200.8                  | 200.8                        | Water                   | Zinc                    |                          |                             |
| 245.1                  | 245.1                        | Water                   | Mercur                  | у                        |                             |
| 300.0                  |                              | Water                   | Bromid                  | e                        |                             |
| 300.0                  |                              | Water                   | Chlorid                 | e                        |                             |
| 300.0                  |                              | Water                   | Fluoride                | е                        |                             |
| 300.0                  |                              | Water                   | Nitrate                 | as N                     |                             |
| 300.0                  |                              | Water                   | Nitrite a               | as N                     |                             |
| 300.0                  |                              | Water                   | Orthop                  | hosphate as P            |                             |
| 300.0                  |                              | Water                   | Sulfate                 |                          |                             |
| SM 2540C               |                              | Water                   | Total D                 | issolved Solids          |                             |
| SM 2540D               |                              | Water                   | Total S                 | uspended Solids          |                             |

#### Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

| Authority                | Program                     | <b>EPA Region</b> | Certification ID  | Expiration Date |
|--------------------------|-----------------------------|-------------------|-------------------|-----------------|
| Alaska                   | State Program               | 10                | CA01531           | 06-30-17        |
| Arizona                  | State Program               | 9                 | AZ0671            | 10-13-16        |
| California               | LA Cty Sanitation Districts | 9                 | 10256             | 01-31-17 *      |
| California               | State Program               | 9                 | CA ELAP 2706      | 06-30-18        |
| Guam                     | State Program               | 9                 | Cert. No. 12.002r | 01-23-17        |
| Hawaii                   | State Program               | 9                 | N/A               | 01-29-17        |
| Kansas                   | NELAP Secondary AB          | 7                 | E-10420           | 07-31-16 *      |
| Nevada                   | State Program               | 9                 | CA015312016-2     | 07-31-17 *      |
| New Mexico               | State Program               | 6                 | N/A               | 01-29-17        |
| Northern Mariana Islands | State Program               | 9                 | MP0002            | 01-29-17        |

<sup>\*</sup> Certification renewal pending - certification considered valid.

TestAmerica Pittsburgh

# **Certification Summary**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-57624-1

# Laboratory: TestAmerica Irvine (Continued)

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

| Authority  | Program       | EPA Region | Certification ID | <b>Expiration Date</b> |
|------------|---------------|------------|------------------|------------------------|
| Oregon     | NELAP         | 10         | 4028             | 01-29-17               |
| USDA       | Federal       |            | P330-09-00080    | 07 <b>-</b> 08-18      |
| Washington | State Program | 10         | C900             | 09-03-16               |

# **Sample Summary**

Client: EA Engineering, Science, and Technology Project/Site: Jordan Valley

TestAmerica Job ID: 180-57624-1

| Lab Sample ID | Client Sample ID | Matrix | Collected Received            |
|---------------|------------------|--------|-------------------------------|
| 180-57624-1   | MOCK (AT6-407)   | Water  | 08/15/16 16:00 08/16/16 10:15 |

#### **Method Summary**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-57624-1

| Method        | Method Description            | Protocol | Laboratory |
|---------------|-------------------------------|----------|------------|
| 300.0         | Anions, Ion Chromatography    | MCAWW    | TAL PIT    |
| 200.7 Rev 4.4 | Metals (ICP)                  | EPA      | TAL PIT    |
| 200.8         | Metals (ICP/MS)               | EPA      | TAL PIT    |
| 245.1         | Mercury (CVAA)                | EPA      | TAL PIT    |
| SM 2320B      | Alkalinity                    | SM       | TAL IRV    |
| SM 2540C      | Solids, Total Dissolved (TDS) | SM       | TAL PIT    |
| SM 2540D      | Solids, Total Suspended (TSS) | SM       | TAL PIT    |

#### **Protocol References:**

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SM = "Standard Methods For The Examination Of Water And Wastewater",

#### Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022 TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

## **Lab Chronicle**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

Lab Sample ID: 180-57624-1

TestAmerica Job ID: 180-57624-1

**Matrix: Water** 

## Client Sample ID: MOCK (AT6-407)

Date Collected: 08/15/16 16:00 Date Received: 08/16/16 10:15

| Prep Type         | Batch<br>Type          | Batch<br>Method           | Run | Dil<br>Factor | Initial<br>Amount | Final<br>Amount | Batch<br>Number | Prepared or Analyzed | Analyst | Lab     |
|-------------------|------------------------|---------------------------|-----|---------------|-------------------|-----------------|-----------------|----------------------|---------|---------|
| Total/NA          | Analysis<br>Instrument | 300.0<br>ID: CHIC2100A    |     | 50            |                   |                 | 184925          | 08/16/16 12:18       | MJH     | TAL PIT |
| Total/NA          | Analysis<br>Instrument | 300.0<br>ID: CHIC2100A    |     | 500           |                   |                 | 184925          | 08/16/16 12:33       | MJH     | TAL PIT |
| Total Recoverable | Prep                   | 200.7                     |     |               | 50 mL             | 50 mL           | 185016          | 08/16/16 13:21       | ANA     | TAL PIT |
| Total Recoverable | Analysis<br>Instrument | 200.7 Rev 4.4<br>ID: C    |     | 10            |                   |                 | 185127          | 08/17/16 08:04       | RJG     | TAL PIT |
| Total Recoverable | Prep                   | 200.7                     |     |               | 50 mL             | 50 mL           | 185016          | 08/16/16 13:21       | ANA     | TAL PIT |
| Total Recoverable | Analysis<br>Instrument | 200.7 Rev 4.4<br>ID: C    |     | 25            |                   |                 | 185127          | 08/17/16 08:15       | RJG     | TAL PIT |
| Total Recoverable | Prep                   | 200.8                     |     |               | 50 mL             | 50 mL           | 185009          | 08/16/16 12:26       | ANA     | TAL PIT |
| Total Recoverable | Analysis<br>Instrument | 200.8<br>ID: A            |     | 10            |                   |                 | 185074          | 08/16/16 19:06       | CNF     | TAL PIT |
| Total/NA          | Prep                   | 245.1                     |     |               | 50 mL             | 50 mL           | 184723          | 08/16/16 12:21       | EVR     | TAL PIT |
| Total/NA          | Analysis<br>Instrument | 245.1<br>ID: K            |     | 1             |                   |                 | 185073          | 08/16/16 14:48       | EVR     | TAL PIT |
| Total/NA          | Analysis<br>Instrument | SM 2320B<br>ID: MANTECH01 |     | 1             |                   |                 | 349918          | 08/17/16 13:28       | YZ      | TAL IRV |
| Total/NA          | Analysis<br>Instrument | SM 2540C<br>ID: NOEQUIP   |     | 1             | 2 mL              | 100 mL          | 185039          | 08/16/16 15:21       | JWS     | TAL PIT |
| Total/NA          | Analysis<br>Instrument | SM 2540D<br>ID: NOEQUIP   |     | 1             | 1000 mL           | 1000 mL         | 185048          | 08/16/16 17:15       | JWS     | TAL PIT |

#### **Laboratory References:**

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022 TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

#### **Analyst References:**

Lab: TAL IRV

Batch Type: Analysis YZ = Yuriy Zakhrabov

Lab: TAL PIT

Batch Type: Prep

ANA = Alexis Anderson

EVR = Emilie Reichenbach

Batch Type: Analysis

CNF = Caitlin Ferguson

EVR = Emilie Reichenbach

JWS = Jim Swanson

MJH = Matthew Hartman

RJG = Rob Good

## **Client Sample Results**

Client: EA Engineering, Science, and Technology

Client Sample ID: MOCK (AT6-407)

Project/Site: Jordan Valley

Lab Sample ID: 180-57624-1

Matrix: Water

TestAmerica Job ID: 180-57624-1

Date Collected: 08/15/16 16:00 Date Received: 08/16/16 10:15

| Analyte             | Result Qualifier | RL  | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------|------------------|-----|-----|------|---|----------|----------------|---------|
| Bromide             | 93               | 25  | 2.9 | mg/L |   |          | 08/16/16 12:18 | 50      |
| Nitrate as N        | ND               | 5.0 | 1.1 | mg/L |   |          | 08/16/16 12:18 | 50      |
| Chloride            | 16000            | 500 | 170 | mg/L |   |          | 08/16/16 12:33 | 500     |
| Nitrite as N        | ND               | 2.5 | 1.4 | mg/L |   |          | 08/16/16 12:18 | 50      |
| Fluoride            | ND               | 5.0 | 1.2 | mg/L |   |          | 08/16/16 12:18 | 50      |
| Sulfate             | 5600             | 50  | 17  | mg/L |   |          | 08/16/16 12:18 | 50      |
| Orthophosphate as P | ND               | 25  | 7.7 | mg/L |   |          | 08/16/16 12:18 | 50      |

| Analyte   | Result  | Qualifier | RL     | MDL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
|-----------|---------|-----------|--------|------|------|---|----------------|----------------|---------|
| Boron     | 1200    | J         | 2000   | 44   | ug/L |   | 08/16/16 13:21 | 08/17/16 08:04 | 10      |
| Barium    | 79      | J         | 2000   | 8.9  | ug/L |   | 08/16/16 13:21 | 08/17/16 08:04 | 10      |
| Calcium   | 720000  |           | 50000  | 730  | ug/L |   | 08/16/16 13:21 | 08/17/16 08:04 | 10      |
| Potassium | 480000  |           | 50000  | 8400 | ug/L |   | 08/16/16 13:21 | 08/17/16 08:04 | 10      |
| Magnesium | 1300000 |           | 50000  | 410  | ug/L |   | 08/16/16 13:21 | 08/17/16 08:04 | 10      |
| Sodium    | 8400000 |           | 130000 | 5700 | ug/L |   | 08/16/16 13:21 | 08/17/16 08:15 | 25      |
| Strontium | 9900    | В         | 500    | 53   | ug/L |   | 08/16/16 13:21 | 08/17/16 08:04 | 10      |

| Method: 200.8 - Metals (ICP/MS | ) - Total Re | ecoverable |       |      |               |   |                |                |         |
|--------------------------------|--------------|------------|-------|------|---------------|---|----------------|----------------|---------|
| Analyte                        |              | Qualifier  | RL    | MDL  | Unit          | D | Prepared       | Analyzed       | Dil Fac |
| Silver                         | ND           |            | 10    | 0.88 | ug/L          |   | 08/16/16 12:26 | 08/16/16 19:06 | 10      |
| Arsenic                        | ND           |            | 10    | 0.74 | ug/L          |   | 08/16/16 12:26 | 08/16/16 19:06 | 10      |
| Beryllium                      | ND           |            | 10    | 0.64 | ug/L          |   | 08/16/16 12:26 | 08/16/16 19:06 | 10      |
| Cadmium                        | ND           |            | 10    | 1.6  | ug/L          |   | 08/16/16 12:26 | 08/16/16 19:06 | 10      |
| Chromium                       | 2.8          | J          | 20    | 0.90 | u <b>g</b> /L |   | 08/16/16 12:26 | 08/16/16 19:06 | 10      |
| Copper                         | ND           |            | 20    | 4.0  | ug/L          |   | 08/16/16 12:26 | 08/16/16 19:06 | 10      |
| Iron                           | ND           |            | 500   | 94   | ug/L          |   | 08/16/16 12:26 | 08/16/16 19:06 | 10      |
| Manganese                      | 26           | J          | 50    | 2.1  | ug/L          |   | 08/16/16 12:26 | 08/16/16 19:06 | 10      |
| Nickel                         | 4.4          | J          | 10    | 2.4  | ug/L          |   | 08/16/16 12:26 | 08/16/16 19:06 | 10      |
| Lead                           | 3.5          | J          | 10    | 0.60 | ug/L          |   | 08/16/16 12:26 | 08/16/16 19:06 | 10      |
| Antimony                       | 3.3          |            | 20    | 3.0  | ug/L          |   | 08/16/16 12:26 | 08/16/16 19:06 | 10      |
| Selenium                       | ND           |            | 50    | 3.2  | ug/L          |   | 08/16/16 12:26 | 08/16/16 19:06 | 10      |
| Thallium                       | ND           |            | 10    | 0.24 | ug/L          |   | 08/16/16 12:26 | 08/16/16 19:06 | 10      |
| Zinc                           | 19           | J          | 50    | 18   | ug/L          |   | 08/16/16 12:26 | 08/16/16 19:06 | 10      |
| Hardness as calcium carbonate  | 7100         | -          | 0.033 | 0.71 | mg/L          |   | 08/16/16 12:26 | 08/16/16 19:06 | 10      |

|                                | r RL | MDL Unit   | D Prepared     | Analyzed<br>08/16/16 14:48 | Dil Fac |
|--------------------------------|------|------------|----------------|----------------------------|---------|
| Mercury 4.8  General Chemistry | 0.20 | 0.039 ug/L | 06/10/10 12.21 | 06/10/10 14.40             | ,       |

| General Chemistry  Analyte      | Result Qu | ıalifier | RL  | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------------|-----------|----------|-----|-----|------|---|----------|----------------|---------|
| Alkalinity as CaCO3             | 660       |          | 4.0 | 4.0 | mg/L |   | -        | 08/17/16 13:28 | 1       |
| Bicarbonate Alkalinity as CaCO3 | 660       |          | 4.0 | 4.0 | mg/L |   |          | 08/17/16 13:28 | 1       |
| Carbonate Alkalinity as CaCO3   | ND        |          | 4.0 | 4.0 | mg/L |   |          | 08/17/16 13:28 | 1       |
| Hydroxide Alkalinity as CaCO3   | ND        |          | 4.0 | 4.0 | mg/L |   |          | 08/17/16 13:28 | 1       |
| Bicarbonate ion as HCO3         | 800       |          | 4.8 | 4.8 | mg/L |   |          | 08/17/16 13:28 | 1       |
| Carbonate as CO3                | ND        |          | 2.4 | 2.4 | mg/L |   |          | 08/17/16 13:28 | 1       |
| Hydroxide as OH                 | ND        |          | 1.4 | 1.4 | mg/L |   |          | 08/17/16 13:28 | 1       |
| Total Dissolved Solids          | 35000     |          | 500 | 500 | mg/L |   |          | 08/16/16 15:21 | 1       |

TestAmerica Pittsburgh

8/18/2016

## **Client Sample Results**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-57624-1

Client Sample ID: MOCK (AT6-407)

Date Collected: 08/15/16 16:00 Date Received: 08/16/16 10:15 Lab Sample ID: 180-57624-1

**Matrix: Water** 

**General Chemistry (Continued)** 

 Analyte
 Result
 Qualifier
 RL
 MDL unit
 D
 Prepared
 Analyzed
 Dil Fac

 Total Suspended Solids
 170
 0.50
 0.50
 0.50
 mg/L
 08/16/16 17:15
 1

a

Project/Site: Jordan Valley

TestAmerica Job ID: 180-57624-1

## Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 180-184925/17

**Matrix: Water** 

Analysis Batch: 184925

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Dil Fac **MDL** Unit Prepared Analyzed Result Qualifier RL Analyte 08/16/16 08:22 0.10 0.022 mg/L ND Nitrate as N 0.028 mg/L 08/16/16 08:22 0.050 ND Nitrite as N 08/16/16 08:22 ND 0.10 0.024 mg/L Fluoride 08/16/16 08:22 ND 0.50 0.15 mg/L Orthophosphate as P

Lab Sample ID: LCS 180-184925/16

**Matrix: Water** 

Analysis Batch: 184925

Client Sample ID: Lab Control Sample Prep Type: Total/NA

| Analysis Batch. 104323 | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|------------------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte                | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Nitrate as N           | 2.50  | 2.45   |           | mg/L |   | 98   | 90 - 110 |  |
| Nitrite as N           | 2.50  | 2.57   |           | mg/L |   | 103  | 90 - 110 |  |
| Fluoride               | 2.50  | 2.46   |           | mg/L |   | 98   | 90 - 110 |  |
| Orthophosphate as P    | 2.50  | 2.60   |           | mg/L |   | 104  | 90 - 110 |  |

## Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 180-185016/1-A

**Matrix: Water** 

Analysis Batch: 185127

Client Sample ID: Method Blank Prep Type: Total Recoverable **Prep Batch: 185016** 

| yzed Dil Fac |
|--------------|
|              |
| 6 07:50 1    |
| 6 07:50 1    |
| 6 07:50      |
| 6 07:50 1    |
| 6 07:50 1    |
| 6 07:50 1    |
| 6 07:50 1    |
| 10           |

Lab Sample ID: LCS 180-185016/2-A

Matrix: Water

Analysis Batch: 185127

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable** 

Client Sample ID: Lab Control Sample Dup

**Prep Batch: 185016** 

| ı |           | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|---|-----------|-------|--------|-----------|------|---|------|----------|--|
| l | Analyte   | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
|   | Boron     | 1000  | 1060   |           | ug/L |   | 106  | 85 - 115 |  |
|   | Barium    | 2000  | 1980   |           | ug/L |   | 99   | 85 - 115 |  |
|   | Calcium   | 50000 | 49200  |           | ug/L |   | 98   | 85 - 115 |  |
|   | Potassium | 50000 | 49100  |           | ug/L |   | 98   | 85 - 115 |  |
| ı | Magnesium | 50000 | 49300  |           | ug/L |   | 99   | 85 - 115 |  |
|   | Sodium    | 50000 | 50500  |           | ug/L |   | 101  | 85 - 115 |  |
|   | Strontium | 1000  | 1010   |           | ug/L |   | 101  | 85 - 115 |  |
| 1 | Ottonium  |       |        |           | •    |   |      |          |  |

Lab Sample ID: LCSD 180-185016/3-A

**Matrix: Water** 

Analyte

Boron

Analysis Batch: 185127

**Prep Batch: 185016** LCSD LCSD %Rec. Spike Result Qualifier Unit D %Rec Limits **RPD** Limit Added 1070 ug/L 107 85 - 115 1000

TestAmerica Pittsburgh

**Prep Type: Total Recoverable** 

8/18/2016

**RPD** 

## Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: LCSD 180-185016/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 185127 **Prep Batch: 185016** LCSD LCSD Spike %Rec. **RPD** Analyte Added Result Qualifier Unit RPD Limit D %Rec Limits Barium 2000 2000 ug/L 100 85 - 115 20 Calcium 50000 49600 ug/L 99 85 - 115 1 20 Potassium 50000 49800 ug/L 100 85 - 115 1 20 Magnesium 50000 49900 ug/L 100 85 - 115 1 20 Sodium 50000 51200 ug/L 102 85 - 115 20 1 Strontium 1000 1020 ug/L 102 85 - 115 20

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 180-185009/1-A

**Matrix: Water** 

Analysis Batch: 185074

Client Sample ID: Method Blank
Prep Type: Total Recoverable

Prep Batch: 185009

| -                             | МВ     | MB        |        |       |      |   |                |                |         |
|-------------------------------|--------|-----------|--------|-------|------|---|----------------|----------------|---------|
| Analyte                       | Result | Qualifier | RL     | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Silver                        | ND     |           | 1.0    | 0.088 | ug/L |   | 08/16/16 12:26 | 08/16/16 19:00 | 1       |
| Arsenic                       | ND     |           | 1.0    | 0.074 | ug/L |   | 08/16/16 12:26 | 08/16/16 19:00 | 1       |
| Beryllium                     | ND     |           | 1.0    | 0.064 | ug/L |   | 08/16/16 12:26 | 08/16/16 19:00 | 1       |
| Cadmium                       | ND     |           | 1.0    | 0.16  | ug/L |   | 08/16/16 12:26 | 08/16/16 19:00 | 1       |
| Chromium                      | ND     |           | 2.0    | 0.090 | ug/L |   | 08/16/16 12:26 | 08/16/16 19:00 | 1       |
| Copper                        | ND     |           | 2.0    | 0.40  | ug/L |   | 08/16/16 12:26 | 08/16/16 19:00 | 1       |
| Iron                          | ND     |           | 50     | 9.4   | ug/L |   | 08/16/16 12:26 | 08/16/16 19:00 | 1       |
| Manganese                     | ND     |           | 5.0    | 0.21  | ug/L |   | 08/16/16 12:26 | 08/16/16 19:00 | 1       |
| Nickel                        | ND     |           | 1.0    | 0.24  | ug/L |   | 08/16/16 12:26 | 08/16/16 19:00 | 1       |
| Lead                          | ND     |           | 1.0    | 0.060 | ug/L |   | 08/16/16 12:26 | 08/16/16 19:00 | 1       |
| Antimony                      | ND     |           | 2.0    | 0.30  | ug/L |   | 08/16/16 12:26 | 08/16/16 19:00 | 1       |
| Selenium                      | ND     |           | 5.0    | 0.32  | ug/L |   | 08/16/16 12:26 | 08/16/16 19:00 | 1       |
| Thallium                      | ND     |           | 1.0    | 0.024 | ug/L |   | 08/16/16 12:26 | 08/16/16 19:00 | 1       |
| Zinc                          | ND     |           | 5.0    | 1.8   | ug/L |   | 08/16/16 12:26 | 08/16/16 19:00 | 1       |
| Hardness as calcium carbonate | ND     |           | 0.0033 | 0.071 | mg/L |   | 08/16/16 12:26 | 08/16/16 19:00 | 1       |

Lab Sample ID: LCS 180-185009/2-A

**Matrix: Water** 

Analysis Batch: 185074

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 185009

| Analysis Baton. 100074 | Spike | LCS    | LCS       |      |   |      | %Rec.               |
|------------------------|-------|--------|-----------|------|---|------|---------------------|
| Analyte                | Added | Result | Qualifier | Unit | D | %Rec | Limits              |
| Silver                 | 50.0  | 48.0   |           | ug/L |   | 96   | 85 - 115            |
| Arsenic                | 40.0  | 41.9   |           | ug/L |   | 105  | 85 <sub>-</sub> 115 |
| Beryllium              | 50.0  | 52.1   |           | ug/L |   | 104  | 85 <sub>-</sub> 115 |
| Cadmium                | 50.0  | 53.7   |           | ug/L |   | 107  | 85 - 115            |
| Chromium               | 200   | 203    |           | ug/L |   | 101  | 85 - 115            |
| Copper                 | 250   | 259    |           | ug/L |   | 104  | 85 - 115            |
| Iron                   | 1000  | 1040   |           | ug/L |   | 104  | 85 - 115            |
| Manganese              | 500   | 496    |           | ug/L |   | 99   | 85 - 115            |
| Nickel                 | 500   | 514    |           | ug/L |   | 103  | 85 - 115            |
| Lead                   | 20.0  | 20.6   |           | ug/L |   | 103  | 85 <sub>-</sub> 115 |
| Antimony               | 500   | 528    |           | ug/L |   | 106  | 85 - 115            |
| Selenium               | 10.0  | 11.0   |           | ug/L |   | 110  | 85 - 115            |
| Thallium               | 50.0  | 49.1   |           | ug/L |   | 98   | 85 - 115            |

TestAmerica Pittsburgh

Page 13 of 22

8/18/2016

10

%Rec. Limits

Prep Batch: 185009

Project/Site: Jordan Valley

## Method: 200.8 - Metals (ICP/MS) (Continued)

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 180-185009/2-A Prep Type: Total Recoverable

**Matrix: Water** 

Analysis Batch: 185074

Spike LCS LCS Added Result Qualifier Unit Analyte 500 527 Zinc

ug/L 105 85 - 115 Client Sample ID: Lab Control Sample Dup

%Rec

Lab Sample ID: LCSD 180-185009/3-A

Matrix: Water

**Prep Type: Total Recoverable** Prep Batch: 185009

Analysis Batch: 185074 LCSD LCSD %Rec. **Spike** RPD Limit Result Qualifier Limits D %Rec Added Unit Analyte 3 20 85 - 115 50.0 46.5 ug/L 93 Silver 102 85 - 115 3 20 40.0 40.9 ug/L Arsenic 85 - 115 20 100 50.0 50.0 ug/L Beryllium 85\_115 20 3 50.0 52.0 ug/L 104 Cadmium 20 200 198 ug/L 99 85 - 115 2 Chromium 85 - 115 100 3 20 250 251 ug/L Copper 102 85 - 115 2 20 1000 1020 ug/L Iron 3 20 96 85 - 115 500 481 ug/L Manganese 85 - 115 3 100 500 501 ug/L Nickel 100 85 - 115 3 20 20.0 19.9 ug/L Lead 2 20 85 - 115 516 ug/L 103 500 Antimony 107 85 - 115 3 20 10.7 ug/L 10.0 Selenium 20 95 85 - 115 3 50.0 47.5 ug/L Thallium 20 85 - 115 102 500 508 ug/L Zinc

## Method: 245.1 - Mercury (CVAA)

Lab Sample ID: MB 180-184723/1-A

**Matrix: Water** 

Analysis Batch: 185073

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 184723

мв мв Dil Fac RL **MDL** Unit Prepared Analyzed Result Qualifier Analyte 08/12/16 13:55 08/16/16 14:38 0.20 0.039 ug/L ND Mercury

Lab Sample ID: LCS 180-184723/2-A

**Matrix: Water** 

Analysis Batch: 185073

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 184723

%Rec. LCS LCS Spike %Rec Limits Result Qualifier Added Unit **Analyte** 85 - 115 102 2.50 2.56 ug/L Mercury

#### Method: SM 2320B - Alkalinity

Lab Sample ID: MB 440-349918/4

**Matrix: Water** 

Analysis Batch: 349918

Client Sample ID: Method Blank Prep Type: Total/NA

| randiye.e Datem e ree re        | MB MB            |     |     |      |   |          |                |         |
|---------------------------------|------------------|-----|-----|------|---|----------|----------------|---------|
| Analyte                         | Result Qualifier | RL  | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Alkalinity as CaCO3             | ND               | 4.0 | 4.0 | mg/L | ) |          | 08/17/16 12:50 | 1       |
| Bicarbonate Alkalinity as CaCO3 | ND               | 4.0 | 4.0 | mg/L |   |          | 08/17/16 12:50 | 1       |
| Carbonate Alkalinity as CaCO3   | ND               | 4.0 | 4.0 | mg/L |   |          | 08/17/16 12:50 | 1       |
| Hydroxide Alkalinity as CaCO3   | ND               | 4.0 | 4.0 | mg/L |   |          | 08/17/16 12:50 | 1       |

TestAmerica Pittsburgh

8/18/2016

Project/Site: Jordan Valley

TestAmerica Job ID: 180-57624-1

Lab Sample ID: MB 440-349918/4

Matrix: Water

Analyte

Analysis Batch: 349918

Bicarbonate ion as HCO3

Client Sample ID: Method Blank Prep Type: Total/NA

MR MR Result Qualifier RL **MDL** Unit Prepared **Analyzed** Dil Fac ND 4.8 4.8 mg/L 08/17/16 12:50 ND 24 2.4 mg/L 08/17/16 12:50 1 ND 1.4 1.4 mg/L 08/17/16 12:50

Lab Sample ID: LCS 440-349918/2

**Matrix: Water** 

Carbonate as CO3

Hydroxide as OH

Analysis Batch: 349918

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Alkalinity as CaCO3 162 158 80 - 120 mg/L

158

Spike

Added

162

Lab Sample ID: LCSD 440-349918/3

**Matrix: Water** 

Alkalinity as CaCO3

**Analyte** 

Analysis Batch: 349918

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

LCSD LCSD %Rec. **RPD** Result Qualifier Unit D %Rec Limits RPD Limit mg/L 80 - 120 20

## Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 180-185039/2

**Matrix: Water** 

Analysis Batch: 185039

Client Sample ID: Method Blank Prep Type: Total/NA

MR MR Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Total Dissolved Solids ND 10 10 mg/L 08/16/16 15:21

Lab Sample ID: LCS 180-185039/1

**Matrix: Water** 

Total Dissolved Solids

Analyte

Analysis Batch: 185039

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits 216 224 104 mg/L 80 - 120

## Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 180-185048/2

Matrix: Water

Analysis Batch: 185048

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac **Total Suspended Solids** ND 0.50 0.50 mg/L 08/16/16 17:15

Lab Sample ID: LCS 180-185048/1

Matrix: Water

Analysis Batch: 185048

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Total Suspended Solids 78.0 80.0 103 mg/L 80 - 120

## **QC Association Summary**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-57624-1

## HPLC/IC

| <b>Analysi</b> | s Bat | ch: 1 | 84925 |
|----------------|-------|-------|-------|
|----------------|-------|-------|-------|

| Lab Sample ID     | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|-------------------|--------------------|-----------|--------|--------|------------|
| 180-57624-1       | MOCK (AT6-407)     | Total/NA  | Water  | 300.0  |            |
| 180-57624-1       | MOCK (AT6-407)     | Total/NA  | Water  | 300.0  |            |
| MB 180-184925/17  | Method Blank       | Total/NA  | Water  | 300.0  |            |
| LCS 180-184925/16 | Lab Control Sample | Total/NA  | Water  | 300.0  |            |

## **Metals**

## **Prep Batch: 184723**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 180-57624-1        | MOCK (AT6-407)     | Total/NA  | Water  | 245.1  |            |
| MB 180-184723/1-A  | Method Blank       | Total/NA  | Water  | 245.1  |            |
| LCS 180-184723/2-A | Lab Control Sample | Total/NA  | Water  | 245.1  |            |

## Prep Batch: 185009

| Lab Sample ID       | Client Sample ID       | Prep Type         | Matrix | Method | Prep Batch |
|---------------------|------------------------|-------------------|--------|--------|------------|
| 180-57624-1         | MOCK (AT6-407)         | Total Recoverable | Water  | 200.8  |            |
| MB 180-185009/1-A   | Method Blank           | Total Recoverable | Water  | 200.8  |            |
| LCS 180-185009/2-A  | Lab Control Sample     | Total Recoverable | Water  | 200.8  |            |
| LCSD 180-185009/3-A | Lab Control Sample Dup | Total Recoverable | Water  | 200.8  |            |

## **Prep Batch: 185016**

| Lab Sample ID      | Client Sample ID   | Prep Type         | Matrix | Method | Prep Batch |
|--------------------|--------------------|-------------------|--------|--------|------------|
| 180-57624-1        | MOCK (AT6-407)     | Total Recoverable | Water  | 200.7  |            |
| MB 180-185016/1-A  | Method Blank       | Total Recoverable | Water  | 200.7  |            |
| LCS 180-185016/2-A | Lab Control Sample | Total Recoverable | Water  | 200.7  |            |
| LCSD 180-185016/3- |                    | Total Recoverable | Water  | 200.7  |            |

## Analysis Batch: 185073

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 180-57624-1        | MOCK (AT6-407)     | Total/NA  | Water  | 245.1  | 184723     |
| MB 180-184723/1-A  | Method Blank       | Total/NA  | Water  | 245.1  | 184723     |
| LCS 180-184723/2-A | Lab Control Sample | Total/NA  | Water  | 245.1  | 184723     |

## Analysis Batch: 185074

| Lab Sample ID       | Client Sample ID       | Prep Type         | Matrix | Method | Prep Batch |
|---------------------|------------------------|-------------------|--------|--------|------------|
| 180-57624-1         | MOCK (AT6-407)         | Total Recoverable | Water  | 200.8  | 185009     |
| MB 180-185009/1-A   | Method Blank           | Total Recoverable | Water  | 200.8  | 185009     |
| LCS 180-185009/2-A  | Lab Control Sample     | Total Recoverable | Water  | 200.8  | 185009     |
| LCSD 180-185009/3-A | Lab Control Sample Dup | Total Recoverable | Water  | 200.8  | 185009     |

## Analysis Batch: 185127

| Lab Sample ID       | Client Sample ID       | Prep Type         | Matrix | Method        | Prep Batch |
|---------------------|------------------------|-------------------|--------|---------------|------------|
| 180-57624-1         | MOCK (AT6-407)         | Total Recoverable | Water  | 200.7 Rev 4.4 | 185016     |
| 180-57624-1         | MOCK (AT6-407)         | Total Recoverable | Water  | 200.7 Rev 4.4 | 185016     |
| MB 180-185016/1-A   | Method Blank           | Total Recoverable | Water  | 200.7 Rev 4.4 | 185016     |
| LCS 180-185016/2-A  | Lab Control Sample     | Total Recoverable | Water  | 200.7 Rev 4.4 | 185016     |
| LCSD 180-185016/3-A | Lab Control Sample Dup | Total Recoverable | Water  | 200.7 Rev 4.4 | 185016     |

## **QC Association Summary**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-57624-1

## **General Chemistry**

## Analysis Batch: 185039

| Lab Sample ID    | Client Sample ID   | Prep Type | Matrix | Method   | Prep Batch |
|------------------|--------------------|-----------|--------|----------|------------|
| 180-57624-1      | MOCK (AT6-407)     | Total/NA  | Water  | SM 2540C |            |
| MB 180-185039/2  | Method Blank       | Total/NA  | Water  | SM 2540C |            |
| LCS 180-185039/1 | Lab Control Sample | Total/NA  | Water  | SM 2540C |            |

## Analysis Batch: 185048

| Lab Sample ID    | Client Sample ID   | Prep Type | Matrix | Method   | Prep Batch |
|------------------|--------------------|-----------|--------|----------|------------|
| 180-57624-1      | MOCK (AT6-407)     | Total/NA  | Water  | SM 2540D |            |
| MB 180-185048/2  | Method Blank       | Total/NA  | Water  | SM 2540D |            |
| LCS 180-185048/1 | Lab Control Sample | Total/NA  | Water  | SM 2540D |            |

## Analysis Batch: 349918

| Lab Sample ID     | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|-------------------|------------------------|-----------|--------|----------|------------|
| 180-57624-1       | MOCK (AT6-407)         | Total/NA  | Water  | SM 2320B |            |
| MB 440-349918/4   | Method Blank           | Total/NA  | Water  | SM 2320B |            |
| LCS 440-349918/2  | Lab Control Sample     | Total/NA  | Water  | SM 2320B |            |
| LCSD 440-349918/3 | Lab Control Sample Dup | Total/NA  | Water  | SM 2320B |            |

#### restAmerica Pittsburgh

301 Alpha Drive RIDC Park Pittsburgh, PA 15238 **Chain of Custody Record** 

**TestAmeric** 

Pnone (412) 963-7058 Fax (412) 963-2468 Camer Tracking Noisi M- CHANON Gamber: Carrie L. 180-32438-6905 1 Client Information E-Mail Client Contact 710-327-5120 carrie gamber@testamericainc.com Mike Chanov Page 1 of 1 JUD # Company **Analysis Requested** EA Engineering, Science, and Technology Due Date Requested Preservation Codes: 225 Schilling Circle Suite 400 TAT Requested (days) E NaCH N - None C - Zn Acetate Hunt Valley Q ASNaOR D - Nitric Acid P - Na2045 State Zip E - NaHSO4 Q = Na25Q3 MD, 21031 F - MeOH R - Na2\$203 PO# Phone G Amentor S H2SQ4 15358 410-329-5120(Tel) H - Ascorbic Acid T - TSP Dodecahydrale U - Acetone L. Ice # CW V - MCAA J - DI Water mchanov@eaest.com Total Numbar of containers R EDTA W - ph 4-5 Project Name MS/MSD (Yes or roject # L-EDA Z - other (specify) 18015970 Jordan Valley SSOW Meta Matrix Sample 4 (W-Walle! Type 3-seed Sample (C=Comp. Gawastelos Special Instructions/Note: Sample Identification Sample Date Time G=grab) BT-Tissue, A-Page Preservation Code XXX MOCK (ATG 407) 8/15/16 1600 28 으 22 Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month) Possible Hazard Identification Unknown Radiological Disposal By Lab Non-Hazard Flammable Skin irritant Poison B Archive For Return To Client Months Deliverable Requested | II, III, IV, Other (specify) Special Instructions/QC Requirements Empty Kit Relinquished by stille Relinquished by Company 6/10//L 8/18/2016 Company Rehnquished by elequished by Date/T-me Company Received by Custody Seals Intact Custody Seal No Cooler Temperature(s): "C and Other Remarks 1 Yes 1 No







MICHAEL CHANOV 4105847000 5120 EA ENG SCIENCE TECH 225 SCHILLING CIRCLE HUNT VALLEY MD 21031 **20 LBS** 

1 OF 1

SHIP TO:

SAMPLE CUSTODY **TESTAMERICA** RIDC PARK 301 ALPHA DRIVE

**PITTSBURGH PA 15238-2907** 



PA 152 9-22



UPS NEXT DAY AIR

TRACKING #: 1Z 28º 49? 01 9557 9716



BILLING: P/P UPS CARBON NEUTRAL SHIPMENT

Department Code: 2122 Project Phase AND Task: TOXLAB

WNTNVS0 78 0A 07/2016



Uncorrected temp Thermometer ID

CF\_QU\_ Initials PT-WI-SR-001 effective 7/26/13



UPS CampusShip: Shipment Label

## TestAmerica Pittsburgh

301 Alpha Drive RIDC Park
Pittsburgh, PA 15238

## **Chain of Custody Record**



<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

| Phone (412) 963-7058 Fax (412) 963-2468                            | Sampler.                 |            |                      | Lab                                             |                        | _                                           |                   |              |          |        | Carrie                      | r Trackin | g No(s)                                 |        | $\neg$              | COC No:                |                                                   |
|--------------------------------------------------------------------|--------------------------|------------|----------------------|-------------------------------------------------|------------------------|---------------------------------------------|-------------------|--------------|----------|--------|-----------------------------|-----------|-----------------------------------------|--------|---------------------|------------------------|---------------------------------------------------|
| Client Information (Sub Contract Lab)                              |                          |            |                      |                                                 | nber, C                | агтіе                                       | L                 |              |          |        | 1                           |           |                                         |        |                     | 180-251430.1           |                                                   |
| Client Contact<br>Shipping/Receiving                               | Phone. E-Mail:<br>carrie |            |                      | ui:<br>rie.gamb                                 | ber@testamericainc.com |                                             |                   |              |          |        |                             |           | Page.<br>Page 1 of 1                    |        |                     |                        |                                                   |
| Сотралу                                                            |                          |            |                      |                                                 | T                      |                                             |                   |              |          | sis Re | aues                        | ted       |                                         |        |                     | Job #:<br>180-57624-1  |                                                   |
| TestAmerica Laboratories, Inc Address.                             | Due Date Requests        | d:         |                      |                                                 |                        |                                             | П                 | T            | T        |        |                             | Ť         | TT                                      |        | П                   | Preservation Code      | 18:                                               |
| 17461 Derian Ave, Suite 100,                                       | 8/17/2016                |            |                      |                                                 | -                      |                                             | 1                 | -            | 1        |        | 1                           |           | 1                                       |        | 1                   |                        | M - Hexane<br>N - None                            |
| City<br>Irvine                                                     | TAT Requested (da        | ys):       |                      |                                                 |                        |                                             |                   |              |          |        |                             |           | 11                                      |        | П                   | C - Zn Acetate         | O - AsNaO2<br>P - Na2O4S                          |
| State, Zip:<br>CA, 92614-5817                                      |                          |            |                      |                                                 |                        |                                             |                   |              |          |        |                             |           | 11                                      |        | П                   | E - NaHSO4<br>F - MeOH | Q - Na2SO3<br>R - Na2S2O3                         |
| Phone:<br>949-261-1022(Tel) 949-260-3297(Fax)                      | PO#.                     |            |                      |                                                 | 9                      | 1                                           | 1                 |              |          |        |                             |           | 1 1                                     | 1      |                     | H - Ascarbic Acid      | S - H2SO4<br>T - TSP Dodecahydrate<br>U - Acetone |
| Email                                                              | wo#                      |            |                      |                                                 | e or                   | Ě                                           |                   |              |          |        |                             |           |                                         |        | 2                   | J - DI Water           | V - MCAA<br>W - pH 4-5                            |
| Project Name<br>Jordan Valley                                      | Project #:<br>18015970   |            |                      |                                                 | y all forms            |                                             |                   |              |          |        | L - EDA Z - other (specify) |           |                                         |        |                     |                        |                                                   |
| Site.                                                              | SSOW#                    |            |                      |                                                 | T W                    | Kallrıft                                    |                   | 1            |          | 1      |                             |           |                                         |        | ofco                | Other:                 |                                                   |
|                                                                    | Slo Dete                 | Sample     | Sample Type (C=comp, | Matrix<br>(Wesself,<br>6-solid,<br>O-wastefoli, | Feld Filtered          | 2320B/ (MOD) Alkalinity                     |                   |              |          |        |                             |           |                                         |        | <b>Total Number</b> | Special Ins            | structions/Note:                                  |
| Sample Identification - Client ID (Lab ID)                         | Sample Date              | Time       | G=grab)              | tion Code:                                      | XX                     | 1                                           | +                 |              |          |        | 1                           |           | +                                       | $\top$ | Ż                   | Option in              |                                                   |
| MOCK (AT6-407) (180-57624-1)                                       | 8/15/16                  | 16:00      |                      | Water                                           | H                      | ×                                           |                   | _            | 17       |        | 1                           |           |                                         |        | Ī                   |                        |                                                   |
| MOOR (ATO-OF) (100-07-02-17)                                       |                          | Eastern    |                      |                                                 | +                      | $\dagger$                                   | $\dagger$         | -            |          |        | +                           |           | +                                       | _      | T                   |                        |                                                   |
|                                                                    |                          |            |                      |                                                 | +                      | t                                           |                   |              | 1        |        | 1                           | H         | 11                                      |        | T                   |                        |                                                   |
|                                                                    |                          |            |                      |                                                 | Ħ                      | 1                                           |                   |              |          |        |                             |           |                                         |        |                     |                        |                                                   |
|                                                                    | · -                      |            |                      |                                                 | 11                     |                                             |                   |              |          |        |                             |           |                                         |        |                     |                        |                                                   |
|                                                                    |                          |            |                      |                                                 | $\Pi$                  |                                             |                   |              |          |        |                             |           |                                         |        |                     |                        |                                                   |
|                                                                    |                          |            |                      |                                                 | П                      |                                             |                   |              |          |        |                             |           |                                         |        |                     |                        |                                                   |
|                                                                    |                          |            |                      |                                                 | $\Pi$                  |                                             |                   |              |          |        |                             |           |                                         |        | L                   |                        |                                                   |
|                                                                    |                          |            |                      |                                                 |                        |                                             |                   |              |          |        |                             |           |                                         |        | L                   |                        |                                                   |
|                                                                    |                          |            |                      |                                                 | Ш                      |                                             |                   |              |          |        |                             |           |                                         | _      | 1                   |                        |                                                   |
|                                                                    |                          |            |                      |                                                 | Ц                      |                                             |                   |              |          |        | L                           | Щ         | ليـــــــــــــــــــــــــــــــــــــ |        | Ļ                   | l                      |                                                   |
| Possible Hazard Identification                                     |                          |            |                      |                                                 | S                      |                                             | ie Disp<br>Return |              |          | may be | T                           | ssed if a |                                         | are re | Arch                | ed longer than 1 i     | Months                                            |
| Unconfirmed Deliverable Requested: I, II, III, IV, Other (specify) | Primary Deliver          | able Rank: | 2                    | _                                               | St                     |                                             | al Instru         |              |          | quiren |                             | isai by i | _au                                     |        | AlGI                | ive i oi               | INORIUS                                           |
| Empty Kit Relinguished by:                                         |                          | Date:      |                      |                                                 | Time                   | :                                           | -                 | _            |          |        | _                           | Method    | of Shipme                               | ent    | -                   |                        |                                                   |
| Rejudinged by                                                      | Die luc                  | -          |                      | Company                                         |                        | Re                                          | cerved b          | ¥.0          | n        | 0      |                             | -         | Date/T                                  | ime:   | /,, .               | 9:25                   | Company<br>7A                                     |
| Principles by:                                                     | Date/Time                | ,,,,       |                      | Company                                         |                        | Re                                          | ceived b          | y:           | YU       |        | _                           |           | Date/                                   | me. /  | / 4                 |                        | Company                                           |
| Relinquished by:                                                   | Date/Time:               |            |                      | Company                                         | -                      | Re                                          | ceived b          | y:           |          |        |                             |           | Date/T                                  | ime:   | -                   |                        | Company                                           |
|                                                                    |                          |            |                      |                                                 |                        | Cooler Temperature(s) °C and Other Remarks: |                   |              |          |        |                             |           |                                         |        |                     |                        |                                                   |
| Custody Seals Intact: Custody Seal No.:                            |                          |            |                      |                                                 |                        | ľ                                           |                   | -provident C | -(0) - 0 | - June |                             |           | 2                                       | -69    | 12                  | .0 ]                   | R-74                                              |

8/18/2016

Page 20 of 22

## **Login Sample Receipt Checklist**

Client: EA Engineering, Science, and Technology

Job Number: 180-57624-1

Login Number: 57624

List Number: 1

Creator: Watson, Debbie

List Source: TestAmerica Pittsburgh

| Question                                                                                                   | Answer | Comment |
|------------------------------------------------------------------------------------------------------------|--------|---------|
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> | True   |         |
| The cooler's custody seal, if present, is intact.                                                          | True   |         |
| Sample custody seals, if present, are intact.                                                              | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.                             | True   |         |
| Samples were received on ice.                                                                              | True   |         |
| Cooler Temperature is acceptable.                                                                          | True   |         |
| Cooler Temperature is recorded.                                                                            | True   |         |
| COC is present.                                                                                            | True   |         |
| COC is filled out in ink and legible.                                                                      | True   |         |
| COC is filled out with all pertinent information.                                                          | True   |         |
| Is the Field Sampler's name present on COC?                                                                | True   |         |
| There are no discrepancies between the containers received and the COC.                                    | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)                              | True   | w       |
| Sample containers have legible labels.                                                                     | True   | **      |
| Containers are not broken or leaking.                                                                      | True   |         |
| Sample collection date/times are provided.                                                                 | True   |         |
| Appropriate sample containers are used.                                                                    | True   |         |
| Sample bottles are completely filled.                                                                      | True   |         |
| Sample Preservation Verified.                                                                              | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                           | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                            | True   |         |
| Multiphasic samples are not present.                                                                       | True   |         |
| Samples do not require splitting or compositing.                                                           | True   |         |
| Residual Chlorine Checked.                                                                                 | N/A    |         |
|                                                                                                            |        |         |

#### 13

## **Login Sample Receipt Checklist**

Client: EA Engineering, Science, and Technology

Job Number: 180-57624-1

Login Number: 57624

List Number: 2

Creator: Salas, Margarita

List Source: TestAmerica Irvine List Creation: 08/17/16 11:35 AM

| Question                                                                                                   | Answer | Comment                            |
|------------------------------------------------------------------------------------------------------------|--------|------------------------------------|
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> | True   |                                    |
| The cooler's custody seal, if present, is intact.                                                          | True   |                                    |
| Sample custody seals, if present, are intact.                                                              | True   |                                    |
| The cooler or samples do not appear to have been compromised or tampered with.                             | True   |                                    |
| Samples were received on ice.                                                                              | True   |                                    |
| Cooler Temperature is acceptable.                                                                          | True   |                                    |
| Cooler Temperature is recorded.                                                                            | True   |                                    |
| COC is present.                                                                                            | True   |                                    |
| COC is filled out in ink and legible.                                                                      | True   |                                    |
| COC is filled out with all pertinent information.                                                          | True   |                                    |
| Is the Field Sampler's name present on COC?                                                                | N/A    | Received project as a subcontract. |
| There are no discrepancies between the containers received and the COC.                                    | True   |                                    |
| Samples are received within Holding Time (excluding tests with immediate HTs)                              | True   |                                    |
| Sample containers have legible labels.                                                                     | True   |                                    |
| Containers are not broken or leaking.                                                                      | True   |                                    |
| Sample collection date/times are provided.                                                                 | True   |                                    |
| Appropriate sample containers are used.                                                                    | True   |                                    |
| Sample bottles are completely filled.                                                                      | True   |                                    |
| Sample Preservation Verified.                                                                              | N/A    |                                    |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                           | True   |                                    |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                            | True   |                                    |
| Multiphasic samples are not present.                                                                       | True   |                                    |
| Samples do not require splitting or compositing.                                                           | True   |                                    |
| Residual Chlorine Checked.                                                                                 | N/A    |                                    |

# ATTACHMENT III

Report Quality Assurance Record (2 pages)



## REPORT QUALITY ASSURANCE RECORD

| PATE PORT CHECKLIST  QA/QC ITEM  1. Samples collected, transported, and received according to study plan requirements.  2. Samples prepared and processed according to study plan requirements.  3. Data collected using calibrated instruments and equipment. |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| <ol> <li>Samples collected, transported, and received according to study plan requirements.</li> <li>Samples prepared and processed according to study plan requirements.</li> <li>Data collected using calibrated instruments and</li> </ol>                  |             |
| according to study plan requirements.  2. Samples prepared and processed according to study plan requirements.  3. Data collected using calibrated instruments and                                                                                             | Ē           |
| study plan requirements.  3. Data collected using calibrated instruments and                                                                                                                                                                                   | 116         |
|                                                                                                                                                                                                                                                                | 116         |
|                                                                                                                                                                                                                                                                | 1/6         |
| 4. Calculations checked:  - Hand calculations checked  6/34                                                                                                                                                                                                    | 1/6         |
| - Documented and verified statistical procedure used.  - Documented and verified statistical                                                                                                                                                                   | 116         |
| 5. Data input/statistical analyses complete and correct.                                                                                                                                                                                                       | 6           |
| Reported results and facts checked against original sources.                                                                                                                                                                                                   | 116         |
| 7. Data presented in figures and tables correct and in agreement with text.                                                                                                                                                                                    | 1/6         |
| 8. Results reviewed for compliance with study plan requirements.  6/30/                                                                                                                                                                                        | 14          |
| <u>AUTHOR</u> <u>DATI</u>                                                                                                                                                                                                                                      | <del></del> |
| 9. Commentary reviewed and resolved.                                                                                                                                                                                                                           |             |
| 10. All study plan and quality assurance/control requirements have been met and the report is                                                                                                                                                                  |             |
| approved: 4/13/                                                                                                                                                                                                                                                | 1/2         |
| PROJECT MANAGER DATE                                                                                                                                                                                                                                           | 10          |
| MMM/Nell 9/7/                                                                                                                                                                                                                                                  | 16          |
| QUALITY CONTROL OFFICER DATE                                                                                                                                                                                                                                   | Ξ           |
| SENIOR TECHNICAL REVIEWER DATE                                                                                                                                                                                                                                 | <u></u>     |



## RESULTS OF A MOCK EFFLUENT STUDY WITH Americamysis bahia ON A JUNE 2016 EFFLUENT SAMPLE FROM JORDAN VALLEY WATER CONSERVANCY DISTRICT

Prepared for:

Jordan Valley Water Conservancy District 15305 South 3200 West Herriman, Utah 84065

Prepared by:

EA Engineering, Science, and Technology, Inc., PBC 231 Schilling Circle
Hunt Valley, Maryland 21031
For questions, please contact Michael Chanov ph: 410-584-7000

Results relate only to the items tested or to the samples as received by the laboratory.

This report shall not be reproduced, except in full, without written approval of EA Engineering, Science, and Technology, Inc., PBC

This report contains 14 pages plus 3 attachments.

Wayne L. McCalloch Laboratory Director

15 July 2016

Date



#### 1. INTRODUCTION

At the request of the Jordan Valley Water Conservancy District, EA Engineering, Science, and Technology performed a mock effluent study to confirm the conclusions of previous toxicity identification evaluations (TIEs), which indicated an ion imbalance of dissolved ions as the major toxicants of concern contributing to unsatisfactory whole effluent toxicity performance. This study was conducted on Outfall 001 effluent discharged from Jordan Valley Water Conservancy District's (JVWCD) Southwest Groundwater Treatment Plant (SWGWTP), using *Americamysis bahia* (opossum shrimp) as the test species. Copies of the chain of custody, raw data sheets and statistics are included in Attachment I, and the results of the chemistry analyses are presented in Attachment II. The Report Quality Assurance Record is included in Attachment III.

#### 2. MATERIALS AND METHODS

## 2.1 EFFLUENT SAMPLE COLLECTION

Five gallons of effluent were collected from the Jordan Valley Water Conservancy District's West Jordan Facility on 5-6 June 2016. The sample was shipped to EA's Ecotoxicology Laboratory in Hunt Valley, Maryland via overnight express carrier. Upon receipt at EA on 7 June 2016 the sample was visually inspected and assigned EA Ecotoxicology Laboratory accession number AT6-271. The sample was stored in the dark at 4°C when not being used for testing. Table 1 summarizes sample collection, receipt information and selected chemical analyses measured on the effluent as described in APHA (2012) and US EPA (2002).

## 2.2 TEST ORGANISMS

Americamysis bahia (Opossum shrimp) were acquired from Aquatic BioSystems in Fort Collins, Colorado. Lot AB-893 (7 days old) was received at EA on 10 June 2016 and used the same day for the mock effluent study.

#### 2.3 DILUTION WATER

The dilution water used in the acute toxicity tests was artificial seawater, prepared by mixing Crystal Sea synthetic sea salts with laboratory water to a final salinity of 30 ppt. The source of the laboratory water was the City of Baltimore municipal tap water that was passed through a high-capacity, activated carbon filtration system. This synthetic seawater formulation has proven acceptable for aquatic toxicological studies, and has been used successfully at EA for maintaining multigeneration cultures of test organisms, and for holding healthy populations of estuarine and marine species. Batches of artificial seawater were aerated and aged at least 24 hours prior to use in testing.

## 2.4 MOCK EFFLUENT STUDY PROCEDURES

Upon receipt of the sample, the effluent sample was salinity adjusted with US EPA GP2 formulation (US EPA 2002). Following salinity adjustment the sample was sent via overnight carrier to TestAmerica, Pittsburgh, Pennsylvania for chemical analyses, including a rapid turnaround time ion scan. It was determined that salinity adjustment prior to chemical analysis was required, due to Outfall 001 being deficient in sodium, relative to the other concentrations of ionic constituents.

The results of the chemical analyses performed on the Outfall 001 sample and mock effluent sample for the mock effluent study can be found in Table 2. Using the results of the ion scan, formulations were developed for the mock effluent study using the Gas Research Institute (GRI) Salinity Toxicity Relationship (STR) Model (GRI 1999) (Table 3). A mock effluent was prepared by matching concentrations of seven major ions: calcium, sodium, potassium, magnesium, chloride, sulfate and bicarbonate. The mock effluent sample was prepared by adding reagent grade salts to deionized water. The salts utilized to prepare the mock effluent were NaCl (sodium chloride), Na<sub>2</sub>SO<sub>4</sub> (sodium sulfate), KCl (potassium chloride), NaBr (sodium bromide), Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub> · 10H<sub>2</sub>O (sodium borate), MgCl<sub>2</sub> · 6H<sub>2</sub>O (magnesium chloride), CaCl<sub>2</sub> · 2H<sub>2</sub>O (calcium chloride), SrCl<sub>2</sub> · 6H<sub>2</sub>O (strontium chloride) and NaHCO<sub>3</sub> (sodium bicarbonate). Following mock effluent sample preparation, the salinity adjusted Outfall 001 effluent and the mock effluent samples were tested concurrently.

## 2.5 TOXICITY TEST OPERATIONS AND PERFORMANCE

The chronic toxicity tests on the mock effluent and Outfall 001 samples were performed in accordance with US EPA (2002) and EA's protocols (EA 2013) for *A. bahia* (AB-CH-03). Test concentrations were prepared by measuring small volumes of sample in glass pipettes, adding to a graduated cylinder, and bringing to volume with dilution water. All tests were performed using the target temperature of  $26\pm1^{\circ}$ C and a 16-hour light/8-hour dark photoperiod. The chronic toxicity tests consisted of three exposure concentrations (100, 75, 50 percent effluent) and a

laboratory dilution water control of synthetic seawater.

The *A. bahia* chronic toxicity test was performed with eight replicates per test concentration, with five organisms per replicate. Test solutions were renewed daily by carefully siphoning the old solution from each chamber and replacing it with freshly prepared test solution. Water quality parameters (temperature, pH, dissolved oxygen, and salinity) were monitored daily before and after renewal for each test. If dissolved oxygen in any test chamber fell below 4 mg/L, then all test chambers were gently aerated, or other corrective action was implemented (e.g., reducing solution volume). The organisms were fed *Artemia* nauplii twice per day.

At test termination, each organism was viewed under a microscope to determine its sex and, in the case of females, the number of individuals with eggs in the oviducts or brood pouch. Growth of the surviving organisms is expressed as mean biomass. Surviving organisms from each replicate test chamber are rinsed with deionized water and placed in pre-tared weigh pans, one pan for each replicate. The pans were dried overnight at 100°C in a drying oven. The tared weight of the pan (pan only) is subtracted from the total weight (pan and dried opossum shrimp) to yield a net organism dry weight. Mean dry weights were calculated based on the number of surviving organisms (to evaluate the test acceptability criterion), and based on the original number of exposed organisms (biomass).

Survival, biomass, and fecundity were analyzed using appropriate statistical analyses according to EPA guidance (US EPA 2002) to determine if any test concentration was significantly (p=0.05) different from the control. The short-term chronic test endpoints are reported as the No Observed Effect Concentration (NOEC), the Lowest Observed Effect Concentration (LOEC), and the Chronic Value (ChV). The 25 percent inhibition concentration (IC25) was calculated, with Chronic Toxic Units (TUc) also calculated for each IC25 value. The term Chronic Toxic Unit is defined as: Chronic Toxic Unit (TUc) = 100/IC25. In addition, the 48 and 96-hour LC50 values were calculated for each chronic toxicity test.

The definitions of these endpoints follow US EPA (2002) and are as follows:

- The <u>NOEC</u> is the highest concentration of toxicant to which organisms are exposed in a full or partial life-cycle test, which causes no statistically significant adverse effect on the observed parameter (usually hatchability, survival, growth, and/or reproduction).
- The <u>LOEC</u> is the lowest concentration of toxicant to which organisms are exposed in a full or partial life-cycle test, which causes a statistically significant adverse effect on the observed parameters (usually hatchability, survival, growth, and/or reproduction).
- The <u>ChV</u> is a value lying between the NOEC and the LOEC, derived by calculating the geometric mean of the NOEC and LOEC. The term is sometimes used interchangeably with Maximum Acceptable Toxicant Concentration.
- The <u>IC</u> value is a point estimate of the toxicant concentration that causes a given percent reduction in a non-quantal biological measurement such as fecundity or growth.
- The <u>LC50</u> (Median Lethal Concentration) is an estimate of the effluent concentration which is lethal to 50 percent of the test organisms in the time period prescribed by the test.

## 2.6 REFERENCE TOXICANT TEST

In conformance with EA's quality assurance/quality control program, monthly reference toxicant tests using potassium chloride (KCl) were performed on the test species. The reference toxicant test data for *A. bahia* was supplied by the organism vendor.

#### 2.7 ARCHIVES

Original data sheets, records, memoranda, notes, and computer printouts are archived at EA's Office in Hunt Valley, Maryland. These data will be retained for a period of 5 years unless Jordan Valley Water Conservancy District requests a longer period of time.

#### 3. RESULTS AND DISCUSSION

The results of the toxicity test conducted with the salinity adjusted Outfall 001 effluent sample are summarized in Table 4. At 48 hours, there was 38 percent survival in the 100 percent effluent concentration, while the remaining percent effluent concentrations had a minimum of 88 percent survival. The dilution water control had 95 percent survival. The 48-hour LC50 was 95.1 percent effluent. At 96 hours, there was 5 percent survival in the 100 percent effluent concentration, while the remaining percent effluent concentrations had a minimum of 78 percent survival. The dilution water control had 88 percent survival. The 96-hour LC50 was 84.0 percent effluent. At test termination on day 7, the 100 and 75 percent effluent concentrations had 0 and 55 percent survival, respectively, and were significantly less (p=0.05) than the control, which had 88 percent survival. There was 95 percent survival in the 50 percent effluent concentration, which was not statistically different from the control. Mean biomass in the 50 percent effluent concentration was 0.321 mg/organism, which was not significantly different than the control mean biomass of 0.283 mg/organism. Fecundity could not be used as an endpoint due to less than 50 percent (28 percent females with eggs) of the control females producing eggs. The NOEC for the chronic toxicity test, based on survial as the most sensitive chronic endpoint, was 50 percent effluent. The LOEC was 75 percent effluent and the ChV was 61.2 percent effluent. The IC25 (for biomass) was 61.8 percent effluent.

The results of the toxicity test conducted on the mock effluent, which was designed to mimic the salinity adjusted Outfall 001 effluent, were almost the same as the Outfall 001 toxicity test, and are presented in Table 5. At 48 hours, there was 53 percent survival in the 100 percent effluent concentration, while the remaining percent effluent concentrations had a minimum of 85 percent survival. The dilution water control had 100 percent survival. The 48-hour LC50 was >100 percent effluent. At 96 hours, there was 20 percent survival in the 100 percent effluent concentration, while the remaining percent effluent concentrations had a minimum of 75 percent survival. The dilution water control had 98 percent survival. The 96-hour LC50 was 87.3 percent effluent. At test termination on day 7, the 100 and 75 percent effluent concentrations had 12 and 65 percent survival, respectively, and were significantly less (p=0.05) than the

control, which had 98 percent survival. There was 88 percent survival in the 50 percent effluent concentration, which was not statistically different from the control. Mean biomass in the 50 percent effluent concentration was 0.265 mg/organism, which was significantly different than the control mean biomass of 0.330 mg/organism. Fecundity could not be used as an endpoint due to less than 50 percent (38 percent females with eggs) of the control females producing eggs. The NOEC for the chronic toxicity test, based on biomass as the most sensitive chronic endpoint, was <50 percent effluent. The LOEC was 50 percent effluent and the ChV was <50 percent effluent. The IC25 (for biomass) was 61.3 percent effluent.

In summary, the results of the chemical analyses for the salinity adjusted Outfall 001 and mock effluent (Table 2) indicated that the ionic composition of the two samples was very similar. The presence of other potential toxicants (i.e. metals) was absent from the mock effluent sample, and as expected, were present in the salinity adjusted Outfall 001 sample. Even with the presence of other potential toxicants in the salinity adjusted Outfall 001 sample, the 7-day IC25 for biomass (61.3 percent effluent) in the mock effluent prepared to mimic the salinity adjusted Outfall 001 ion scan was almost identical to the 7-day IC25 for the Outfall 001 effluent (61.8 percent effluent). The point estimates (e.g. LC50, IC25) for the mock effluent were very comparable to the ones generated for the salinity adjusted Outfall 001 at 48, 96 and 7 days for survival. Therefore, the results from this study support the conclusions of the Phase I chronic TIEs conducted for Jordan Valley Water Conservancy District, which indicated that ion imbalance of dissolved ions was the major toxicants of concern contributing to unsatisfactory whole effluent toxicity performance.

A monthly reference toxicant test was conducted on *A. bahia* by the organism supplier using potassium chloride (KCl) as the reference toxicant. The 7-day IC25 for the June 2016 *A. bahia* reference toxicant test was 625 mg/L KCl. The acceptable control chart limits for *A. bahia* were 381-731 mg/L KCl.

#### REFERENCES

- American Public Health Association, American Water Works Association, Water Environment Federation. 2012, Standard Methods for the Examination of Water and Wastewater. 22<sup>nd</sup> Edition. APHA, Washington, D.C.
- EA. 2013. EA Ecotoxicology Laboratory Quality Assurance and Standard Operating Procedures Manual. EA Manual ATS-102. Internal document prepared by EA's Ecotoxicology Laboratory, EA Engineering, Science, and Technology, Inc., Hunt Valley, Maryland.
- Gas Research Institute. 1999. Marine Salinity Toxicity Relationship Model. Chicago, Illinois.
- US EPA. 2002. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Marine and Estuarine Organisms. Third Edition. EPA-821-R-02-014. U.S. Environmental Protection Agency, Office of Water, Washington, D.C.

#### SUMMARY OF SAMPLE COLLECTION, RECEIPT DATA AND WATER TABLE 1 QUALITY PARAMETERS MEASURED ON AN OUTFALL 001 EFFLUENT FROM JORDAN VALLEY WATER CONSERVANCY DISTRICT

| Sample Description:  | Outfall 001 |
|----------------------|-------------|
| EA Accession Numbers | AT6-271     |

1400, 5 June 2016 to 0800, 6 June 2016 Sample Collection:

Sample Receipt: 1112, 7 June 2016

**Chemical Analyses:** 

Total Residual Chlorine (TRC):

EA Accession Number:

2.3 Temperature (°C): 782 Alkalinity (mg/L as CaCO<sub>3</sub>): 2,644 Hardness (mg/L as CaCO<sub>3</sub>): 5,636 Conductivity (µS/cm): 3.0 Salinity (ppt): 7.6 pH:

< 0.01

TABLE 2 CHEMICAL ANALYSES PERFORMED ON THE SALINITY ADJUSTED OUTFALL 001 AND MOCK EFFLUENT STUDY SAMPLES

| ANALYTE                                    | UNITS | OUTFALL 001<br>(AT6-271) | MOCK EFFLUENT<br>(AT6-277) |
|--------------------------------------------|-------|--------------------------|----------------------------|
| Sodium                                     | mg/L  | 7,500                    | 8,500                      |
| Potassium                                  | mg/L  | 290                      | 350                        |
| Calcium                                    | mg/L  | 870                      | 860                        |
| Magnesium                                  | mg/L  | 1,100                    | 1,100                      |
| Strontium                                  | mg/L  | 9.4                      | 10                         |
| Barium                                     | mg/L  | $0.25^{(a)}$             | $0.11^{(a)}$               |
| Chloride                                   | mg/L  | 15,000                   | 15,000                     |
| Bicarbonate                                | mg/L  | 1,100                    | 970                        |
| Sulfate                                    | mg/L  | 3,500                    | 3,600                      |
| Bromide                                    | mg/L  | 90                       | 97                         |
| Boron                                      | mg/L  | 3.7                      | 1.3                        |
| Alkalinity - Carbonate (CO <sub>3</sub> )  | mg/L  | <4.0                     | <4.0                       |
| Alkalinity - Hydroxide (OH)                | mg/L  | <4.0                     | <4.0                       |
| Alkalinity - Total (as CaCO <sub>3</sub> ) | mg/L  | 920                      | 800                        |
| Hardness - Total (as CaCO <sub>3</sub> )   | mg/L  | 7,400                    | 7,300                      |
| Cyanide, Total                             | mg/L  | < 0.0038                 | < 0.0038                   |
| Fluoride                                   | mg/L  | <1.2                     | 0.88                       |
| Nitrate as N                               | mg/L  | 8.0                      | < 0.54                     |
| Nitrite as N                               | mg/L  | <1.4                     | < 0.70                     |
| Phosphate, ortho as P                      | mg/L  | <7.7                     | <3.9                       |
| Total Dissolved Solids (TDS)               | mg/L  | 32,000                   | 31,000                     |
| Total Suspended Solids (TSS)               | mg/L  | 2.0                      | 1.3                        |
| Antimony, Total                            | μg/L  | 1.1 <sup>(a)</sup>       | < 0.40                     |
| Arsenic, Total                             | μg/L  | 28                       | 7.4 <sup>(a)</sup>         |
| Beryllium, Total                           | μg/L  | < 0.18                   | < 0.36                     |
| Cadmium, Total                             | μg/L  | < 0.37                   | < 0.74                     |
| Chromium, Total                            | μg/L  | 29                       | <2.3                       |
| Copper, Total                              | μg/L  | 58                       | $3.2^{(a)}$                |
| Iron, Total                                | μg/L  | <29                      | <57                        |
| Lead, Total                                | μg/L  | $3.2^{(a)}$              | < 0.57                     |
| Mercury, Total                             | μg/L  | < 0.039                  | < 0.039                    |
| Manganese, Total                           | μg/L  | $1.7^{(a)}$              | $16^{(a)}$                 |
| Nickel, Total                              | μg/L  | 47                       | 2.2 <sup>(a)</sup>         |
| Selenium, Total                            | μg/L  | . 25                     | <2.0                       |
| Silver, Total                              | μg/L  | < 0.23                   | < 0.47                     |
| Thallium, Total                            | μg/L  | < 0.066                  | <4.0                       |
| Zinc, Total                                | μg/L  | 98                       | <4.0                       |

<sup>(</sup>a) Results less than reporting limit but greater than or equal to MDL.

TABLE 3 FORMULATIONS DEVELOPED FOR THE MOCK EFFLUENT STUDY USING THE GRI MARINE SALINITY TOXICITY RELATIONSHIP PROGRAM

| Salt                                 | Mock Effluent (g/L) | Mock Effluent (g/20L) |
|--------------------------------------|---------------------|-----------------------|
| NaCl                                 | 15.3635             | 307.27                |
| Na <sub>2</sub> SO <sub>4</sub>      | 5.1765              | 103.53                |
| KCl                                  | 0.5529              | 11.058                |
| NaBr                                 | 0.1159              | 2.3177                |
| $Na_{2}B_{4}O_{7}\cdot 10H_{2}O$     | 0.0091              | 0.18179               |
| MgCl <sub>2</sub> ·6H <sub>2</sub> O | 9.1985              | 183.97                |
| CaCl <sub>2</sub> ·2H <sub>2</sub> O | 3.1911              | 63.822                |
| SrCl <sub>2</sub> ·6H <sub>2</sub> O | 0.0286              | 0.57205               |
| NaHCO <sub>3</sub>                   | 1.5156              | 30.312                |

TABLE 4 RESULTS OF Americamysis bahia TOXICITY TEST CONDUCTED ON A 5-6
JUNE 2016 OUTFALL 001 EFFLUENT SAMPLE FROM JORDAN VALLEY
WATER CONSERVANCY DISTRICT

Test Species:

Americamysis bahia (opossum shrimp)

Client Name:

Jordan Valley Water Conservancy District

Sample Description:

Outfall 001

EA Accession Number:

AT6-271

Sample Dates:

5-6 June 2016

EA Test Number:

TN-16-205

| Test          |                   |                  |                   | Mean Biomass as           | Mean Fecundity    |
|---------------|-------------------|------------------|-------------------|---------------------------|-------------------|
| Concentration | 48-Hour           | 96-Hour          | 7-Day             | mg/organism               | as females with   |
| (% effluent)  | % Survival        | % Survival       | % Survival        | (±S.D.)                   | eggs (%)          |
| Control       | 95                | 88               | 88                | 0.283 (±0.044)            | 28                |
| 50            | 98                | 95               | 95                | $0.321 (\pm 0.052)$       | 42                |
| 75            | 88                | 78               | 55 <sup>(a)</sup> | $0.143 (\pm 0.066)^{(b)}$ | 20 <sup>(b)</sup> |
| 100           | 38 <sup>(a)</sup> | 5 <sup>(a)</sup> | $0^{(a)}$         | $0.000(\pm 0.000)^{(b)}$  | $0^{(b)}$         |

Acute and Chronic Endpoints (expressed as percent effluent)

| 48-Hour LC50:                           | 95.1 (88.9 –>100) <sup>(c)</sup> |
|-----------------------------------------|----------------------------------|
| 96-Hour LC50:                           | 84.0 (79.1 – 88.5)               |
| A.D. MOEG (A                            |                                  |
| 7-Day NOEC (Survival):                  | 50                               |
| 7-Day LOEC (Survival):                  | 75                               |
| 7-Day ChV (Survival):                   | 61.2                             |
| 7-Day IC25 (Survival):                  | 65.7 (60.7 – 77.2)               |
| 7-Day NOEC (Biomass):                   | 50                               |
| 7-Day LOEC (Biomass):                   | 75                               |
| • • • • • • • • • • • • • • • • • • • • | , •                              |
| 7-Day ChV (Biomass):                    | 61.2                             |
| 7-Day IC25 (Biomass):                   | 61.8 (59.0 – 65.7)               |
|                                         |                                  |

| Water Quality Parameters on Test Solutions | Range       |
|--------------------------------------------|-------------|
| Temperature (°C):                          | 25.0 - 27.0 |
| pH:                                        | 6.8 - 8.2   |
| Dissolved Oxygen (mg/L):                   | 4.8 - 7.4   |
| Salinity (ppt):                            | 27.3 - 29.0 |

<sup>(</sup>a) Significantly different (p=0.05) from the control.

<sup>(</sup>b) Concentrations which have statistically significant mortality are omitted from hypotheses testing for biomass and fecundity, per US EPA guidance.

<sup>(</sup>c) Values in parentheses represent the 95 percent confidence limits for the dataset.

TABLE 5 RESULTS OF Americamysis bahia TOXICITY TEST CONDUCTED ON A MOCK EFFLUENT SAMPLE PREPARED TO MIMIC OUTFALL 001 EFFLUENT FROM JORDAN VALLEY WATER CONSERVANCY DISTRICT

Test Species:

Americamysis bahia (opossum shrimp)

Client Name:

Jordan Valley Water Conservancy District

Sample Description:

Mock Effluent

EA Accession Number:

AT6-277

Preparation Date:

10 June 2016

EA Test Number:

TN-16-206

| Test          |                   |                   |                   | Mean Biomass as             | Mean Fecundity    |
|---------------|-------------------|-------------------|-------------------|-----------------------------|-------------------|
| Concentration | 48-Hour           | 96-Hour           | 7-Day             | mg/organism                 | as females with   |
| (% effluent)  | % Survival        | % Survival        | % Survival        | (±S.D.)                     | eggs (%)          |
| Control       | 100               | 98                | 98                | 0.330 (±0.058)              | 38                |
| 50            | 90                | 88                | 88                | $0.265 \ (\pm 0.054)^{(a)}$ | 60                |
| 75            | 85                | 75 <sup>(a)</sup> | 65 <sup>(a)</sup> | $0.227 (\pm 0.115)^{(b)}$   | 14 <sup>(b)</sup> |
| 100           | 53 <sup>(a)</sup> | $20^{(a)}$        | 12 <sup>(a)</sup> | $0.080 \ (\pm 0.173)^{(b)}$ | $0_{(p)}$         |

Acute and Chronic Endpoints (expressed as percent effluent)

| 48-Hour LC50:          | >100 (NC) <sup>(c)</sup>   |
|------------------------|----------------------------|
| 96-Hour LC50:          | $87.3 (80.8 - 93.1)^{(d)}$ |
|                        |                            |
| 7-Day NOEC (Survival): | 50                         |
| 7-Day LOEC (Survival): | 75                         |
| 7-Day ChV (Survival):  | 61.2                       |
| 7-Day IC25 (Survival): | 66.0 (56.2 - 77.6)         |
| •                      |                            |
| 7-Day NOEC (Biomass):  | <50                        |
| 7-Day LOEC (Biomass):  | 50                         |
| 7-Day ChV (Biomass):   | <50                        |
| 7-Day IC25 (Biomass):  | 61.3 (NC)                  |
|                        |                            |

| Water Quality Parameters on Test Solutions | Range       |
|--------------------------------------------|-------------|
| Temperature (°C):                          | 25.0 - 26.7 |
| pH:                                        | 7.1 - 8.5   |
| Dissolved Oxygen (mg/L):                   | 4.6 - 7.2   |
| Salinity (ppt):                            | 27.0 - 28.6 |

(a) Significantly different (p=0.05) from the control.

(c) The 95 percent confidence limits are not calculable for the dataset.

<sup>(</sup>b) Concentrations which have statistically significant mortality are omitted from hypotheses testing for biomass and fecundity, per US EPA guidance.

<sup>(</sup>d) Values in parentheses represent the 95 percent confidence limits for the dataset.

# ATTACHMENT I

Chain of Custody, Data and Statistical Analyses (31 pages)



## ® EA Engineering, Science, and Technology

EA Ecotoxicology Laboratory 231 Schilling Circle Hunt Valley, Maryland 21031



Sample Shipped By: (circle)

Fed. Ex.

Other:

| Tolephone: 410-584-7000<br>Fax: 410-584-1057 |                               | Tracking #: 8095 1033 69'11 | <u>.</u> |
|----------------------------------------------|-------------------------------|-----------------------------|----------|
| Client: JVWLD                                | Project No.:                  | _                           | 10       |
| NPDES Number:                                | Client Purchase Order Number: | _                           | 1        |
| City/State Collected: Salt                   | Lake (114, U)                 |                             | -        |

PLEASE BEAD SAMPLING INSTRUCTIONS ON BACK OF FORM

|                                          |      | PLEASE    | HEAD SAMI                   | LING INS I NOC | TIONS ON BACK OF FURM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |
|------------------------------------------|------|-----------|-----------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Accession<br>Number<br>(office use only) | Grab | Composite | Colle<br>Start<br>Date/Time | End Date/Time  | Sample Description<br>(including Site, Station<br>Number, and Outfall Number)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Number/Volume<br>of Container |
| A16-271                                  |      | X         | B/st/110                    | (0/6/Vb)       | GSL DISCHARAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2/25 ans                      |
| no ch                                    |      | $\sim$    | D200 PM                     | OGOO AM        | GSL Discharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7, 7,                         |
|                                          |      | ļ         |                             |                | the state of the s |                               |
|                                          |      |           |                             |                | 94004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b></b>                       |
|                                          |      |           |                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                          |      |           |                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                             |
|                                          |      |           |                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                          |      |           |                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                          |      |           | Calif.                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| Ŷ                                        |      |           |                             |                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                             |
|                                          |      |           |                             | •              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |

| Sampled By:             | Date/Time         | Received By:              | Date/Time               |    |
|-------------------------|-------------------|---------------------------|-------------------------|----|
| Man Mun                 | 2 6/6/16 1200     |                           |                         |    |
| Sampler's Printed Name: | Title:            | Relinquished By:          | Date/Time               | 19 |
| Marie E. Owen           | WO Maar           | Mant Min                  | (16116 1da)             |    |
| Relinquished By:        | Date/Time         | Received By<br>Laboratory | Date/Time<br>Grille UIZ |    |
| Dillion Division Co.    | Wastiang Van / No | Comments:                 | 9.00                    |    |

Was Sample Chilled During Collection? Yes / No

Sample Collection Parameters

Visual Description:

Temperature (°C): 96

pH:

TRC (mg/L):

Other:



# SAMPLE CHECK-IN FOR TESTING

EA Accession Number: MG-271

|                    | 7                   |              |          |      |          |
|--------------------|---------------------|--------------|----------|------|----------|
| Parameter          | Acceptable<br>Range | Measurement* | Date     | Time | Initials |
| Temperature (°C)   | ≤4                  | 2,3          | 6/7/16   | 1112 | 33       |
| Is ice present?    |                     | yes          |          |      |          |
| рН                 | 6.0-9.0             | 7.6          |          |      |          |
| TRC (mg/L)         | <0.01               | 40.01        |          |      |          |
| Visual Description | _                   | Clear        | <b>J</b> |      |          |

<sup>\*</sup>If outside acceptable range, contact project manager.

## OTHER PARAMETERS IF REQUIRED (SEE STUDY PLAN):

| Parameter                     | Acceptable<br>Range | <b>(</b> ✓)  | Date   | Time | Initials |
|-------------------------------|---------------------|--------------|--------|------|----------|
| Ammonia<br>(preserve aliquot) |                     |              |        |      |          |
| Parameter                     | Acceptable<br>Range | Measurement* | Date   | Time | Initials |
| Salinity (ppt)                |                     | 3.0          | 6/7)16 | 1112 | 513      |



Source: ABS

# TOXICITY TEST SET-UP BENCH SHEET

| Project Number:             |                                                       |
|-----------------------------|-------------------------------------------------------|
| Client:Jordan Valley        |                                                       |
| QC Test Number: TN-16-205   |                                                       |
| TEST (                      | DRGANISM INFORMATION                                  |
| Common Name: Opossum shrimp | Adults Isolated (Time, Date):                         |
| Scientific Name: A.bahia    | Neonates Pulled & Fed (Time, Date):                   |
| Lot Number: AB- 993         | Acclimation: <24 hrs Age: 7dcy5                       |
| Source: ABS                 | Culture Water (T/S): <b>2</b> 5.0 °C <b>3</b> 0.0 ppt |

|        | Т        | EST INITIA | TION                  | CONCE                                      | ENTRATION SERII                       | ES                               |
|--------|----------|------------|-----------------------|--------------------------------------------|---------------------------------------|----------------------------------|
| late   | Time     | Initials   | Activity              | Test <u>Concentration</u> Mod Hard Control | Volume<br><u>Test Material</u><br>0ml | Final<br><u>Volume</u><br>1200ml |
| 110116 | 1300     | MJ         | Dilutions Made        | 50%                                        | 600ml                                 |                                  |
| 1      | 1        | 1          |                       | 75%                                        | 900m!                                 | *                                |
|        | <b>₩</b> | 1          | Test Vessels Filled   | 100%                                       | 1200 ml                               |                                  |
|        | 1316     | M          | Organisms Transferred |                                            |                                       | ļ                                |
|        | 1500     | ju-        | Head Counts           |                                            |                                       |                                  |

| - 200      | DILUT   | ION PRE     | PARATION        | l i                 |            |                    | EDING<br>FEEDING |                     |
|------------|---------|-------------|-----------------|---------------------|------------|--------------------|------------------|---------------------|
|            |         |             | 3000            |                     | Food:      | Artemia            |                  |                     |
|            |         |             |                 | Sample /            |            | Time, Initials,    | Time, Initials,  | Time, Initials,     |
| <u>Day</u> | Date    | <u>Time</u> | <u>Initials</u> | Diluent<br>#16-211  | <u>Day</u> | <u>Amount</u>      | Amount           | Amount<br>1625MJ    |
| 0          | 6/10/16 | 1300        | MS              | LD6-281             | 0          |                    |                  | 5 drops             |
| 1          | eluju   | 0948        | 30              | AT6-271             | 1          | 5 drops            |                  | 5 drops             |
| 2          | 6112116 | 0943        | MT              | A16-271             | 2          | 5 drops            |                  | 5 drops             |
| 3          | 6/3/16  | બરા         | JB              | At6-271             | 3          | 5 drops            |                  | 5 drops             |
| 4          | 6/14/16 | 0858        | MO              | ATG-271<br>LDG-18   | 4          | 0817 Mm            |                  | 5 drops             |
| 5          | 6115116 | 0923        | 313             | M6-221              | 5          | ORIS カル            |                  | i GDONIA<br>5 drops |
| 6          | Glielle | 0909        | MJ              | 116-271<br>itlo-281 | 6          | 0 ₹205B<br>5 drops |                  | 165503<br>5 drops   |



**TOXICITY TEST OBSERVATION DATA SHEET** 

| Project Number:             | TEST ORGANISM                                     | Beginning Date: 6/10/10 Time: 13/10 |
|-----------------------------|---------------------------------------------------|-------------------------------------|
| Client:Jordan Valley        | Common Name: Opossum shrimp                       | Ending Date: 617/16 Time: 144/      |
| QC Test Number:TN- 10-20-5  | Scientific Name: A. bahla                         |                                     |
| Test Material:Effluent      |                                                   |                                     |
| Accession Number: ATG-271   | TEST TYPE: Static / Flowthrough                   | Test Container: 4" bowl             |
| Dilution Water:30 ppt CS    | Renewal / Non-renewal                             | Test Volume: 150 ml                 |
| Accession Number: 156 - 281 | Photoperiod: 16 (8 d Light Intensity: 50 - 100 fc | Test Duration:7 days                |

|               |              | Number of Surviving Organisms |         |         |          |         |         |          |         |
|---------------|--------------|-------------------------------|---------|---------|----------|---------|---------|----------|---------|
| Concentration | Rep          | Day 0                         | Day 1   | Day 2   | Day 3    | Day 4   | Day 5   | Day 6    | Day 7   |
| Control       | Α            | 5                             | 4 *     | 4       | 4        | 4       | 4       | 4        | u       |
|               | В            | 5                             | 5       | 5       | 4        | 3       | 3       | 3        | 3       |
|               | С            | 5                             | 2134    | 4       | 4        | 4       | 4       | 4        | 4       |
|               | D            | 5                             | 5       | 5       | 5        | 5       | 5       | 5        | 5       |
|               | E            | 5                             | 5       | 5       | 5        | 4       | 4       | 4        | u u     |
|               | F            | 5                             | 5       | 5       | 5        | 5       | 5       | 5        | 5       |
|               | G            | 5                             | 5       | 5       | 5        | 5       | 5       | 5        | 5       |
|               | Н            | 5                             | 5       | 5       | 5        | 5       | 5       | 5        | 5       |
| 50%           | A            | 5                             | 5       | 4       | 4        | ц       | 4       | ų        | 6       |
|               | В            | 5                             | 5       | 5       | 5        | 5       | 5       |          | 4       |
|               | С            | 5                             | 5       | 5       | 5        | 5       | 5       | 5        | 5       |
|               | D            | 5                             | 5       | 5       | 5        | 5       | 5       | 5        | 5       |
|               | E            | 5                             | 5       | 5       | 5        | 5       | 5       |          |         |
|               | F            | 5                             | 5       | 5       | 47       | 4       | 4       | <u>5</u> | 5       |
|               | G            | 5                             | 5       | 5       | 5        | 5       | 5       | 5        | 5       |
|               | Н            | 5                             | 5       | 5       | 5        | 3       | 5       | 5        | 3       |
| Tim           | e / Initials | 1500 MVC                      | 1300 JB | DA BEDI | 1000 378 | oale mo | 0455 OB | GAZB MS  | 1441 MJ |

| EPA TEST METHOD: (FW | /) EPA 821-R-02-013/(SW) E | PA 821-R-02-012(CHECK ONE) |
|----------------------|----------------------------|----------------------------|
| athead: (1000.0)     | Cyprinodon: (1004.0)       | Menidia: (1006.0)          |



**TOXICITY TEST OBSERVATION DATA SHEET** 

| Project Number:            | TEST ORGANISM                                      | Beginning Date: _ | 6/10/16 | Time: <u>1316</u> |
|----------------------------|----------------------------------------------------|-------------------|---------|-------------------|
| Client: Jordan Valley      | Common Name: Opossum shrimp                        | Ending Date:      | 0117116 | Time: 1441        |
| QC Test Number: TN- 16-205 | Scientific Name:                                   |                   |         |                   |
| Test Material: Effluent    |                                                    |                   |         |                   |
| Accession Number: A16-271  | TEST TYPE: Static / Flowthrough                    | Test Container: _ | 4" bowl |                   |
| Dilution Water: 30 ppt CS  | Renewal / Non-renewal                              | Test Volume:      | 150 ml  |                   |
| Accession Number: LD6-281  | Photoperlod: 16 4 8 d Light Intensity: 50 - 100 fc | Test Duration:    | 7 days  |                   |

|                   |               | Number of Surviving Organisms |          |         |        |         |         |         |          |
|-------------------|---------------|-------------------------------|----------|---------|--------|---------|---------|---------|----------|
| Concentration Rep | Rep           | Day 0                         | Day 1    | Day 2   | Day 3  | Day 4   | Day 5   | Day 6   | Day 7    |
| 75%               | Α             | 5                             | 5        | 4       | 4      | ы       | ц       | 4       | 4        |
|                   | В             | 5                             | 5        | 5       | 5      | 5       | 5       | 5       | 5        |
| ,                 | С             | 5                             | 5        | 5       | 5      | 5       | 3       | 2       | 2        |
| 7.11.2            | D             | 5                             | 4        | 4       | 4      | 4       | 4       | - 2     | 2        |
|                   | E             | 5                             | 5        | 5       | 5      | 4       | - ц     | 4       | 3        |
|                   | F             | 5                             | 5        | 4       | 14     | 3       | 2       | 2       | ł        |
|                   | G             | 5                             | 5        | 4       | Ц      | 3       | 3       | .3      | 3        |
|                   | Н             | 6                             | 5        | 4       | 3      | 3       | 2       | 2       | 2        |
| 100%              | A             | 6                             | 5        | 1       | 0      | _       |         |         | _        |
| 397               | В             | 5                             | 3        | 0       | _      | _       | _       | _       |          |
|                   | С             | 5                             | 3        | 2       | 1      | 1       | 0       | _       | _        |
| 31                | D             | 5                             | 4        | 1       | 0      |         |         |         |          |
|                   | E             | 5                             | 4        | ì       | 0      | -       | -       |         |          |
|                   | F             | 5                             | 5        | 3       | 0      | _       | _       |         |          |
|                   | G             | 5                             | 3        | 3       | 2      | f       | I       | 0       | -        |
|                   | Н             | 5                             | 4        | 4       | 2      | 0       | -       |         | -        |
| Tir               | ne / Initials | 1507h                         | 1300 085 | 1038 MJ | 80 COV | 0916 MJ | ouss ob | 0928 MJ | 144 1 MJ |

| EPA TEST METHOD: ( | (FW) EPA 821-R-02 | 2-013/(SW) EPA | 821-R-02-012(C | HECK ONE) |
|--------------------|-------------------|----------------|----------------|-----------|
| Fathead: (4000 0)  | Guzzinodon        |                |                | (1008.0)  |



REPRODUCTION AND WEIGHT DATA (Test Species: \_\_\_\_\_\_ A. bahia

| Project Number:70005.15                 |                                 | <u>Date</u> | Time      | Initials |
|-----------------------------------------|---------------------------------|-------------|-----------|----------|
| Client:Jordan Valley                    | Organisms sexed:                | 6/17/16     | 1441      | MJ       |
|                                         | Loaded tins placed in oven:     | 617116      | 1453      | M        |
|                                         | Loaded tins removed from oven:  | 6/18/16     | 1551      | Ne       |
| Tin Lot:                                | Loaded tins weighed: լլեն ինչ և | 605 M       | Λ         |          |
| Oven Temp (°C): Start: 99.5° End: 99.0° | Oven Number: BLM-01             | Ralance     | Number DO | 45005    |

|               |     |      |                           |                              |         |             |                         |            | DEWITO                                   | Daiai                                   | ice Mumber. F                              | <u>0115825</u>                |
|---------------|-----|------|---------------------------|------------------------------|---------|-------------|-------------------------|------------|------------------------------------------|-----------------------------------------|--------------------------------------------|-------------------------------|
| Test<br>Conc. | Rep | Tin# | # Females<br>with<br>Eggs | # Females<br>without<br>Eggs | # Males | # Immatures | C<br># Orgs.<br>Weighed | Wt. of Tin | B<br>Wt. of Tin &<br>Dried Orgs,<br>(mg) | B-A<br>Total Dry<br>Org. Weight<br>(mg) | (B-A)/C<br>Mean Dry<br>Org. Weight<br>(mg) | (If applicable<br>Mean Biomas |
| Control       | Α   | 95   |                           | į t                          | HU      |             | 4                       | 26.99      | 28,15                                    | 1.16                                    |                                            | (mg/exp. org.                 |
|               | В   | 210  | ì                         |                              | 1       |             | 3                       | 30.15      | 31,41                                    | 1.26                                    | 0.290                                      | 0.232                         |
|               | С   | 3    |                           | 1                            | m       |             | 4                       | 29.45      | 30.80                                    |                                         | 0.420                                      | 0.252                         |
|               | D   | 197  | U                         | ii                           | i       | -           | 5                       |            |                                          | 1.35                                    | 0.338                                      | 0.270                         |
|               | E   | 149  |                           | 11                           | 1(      |             |                         | 28.77      | 30.39                                    | 1.62                                    | 0.324                                      | 0.324                         |
|               | F   | 223  |                           |                              |         |             | 4                       | 27.13      | 28.88                                    | 1.15                                    | 0.788                                      | 0.230                         |
|               | G   |      |                           |                              | 1111    |             | 5                       | 27.14      | 28.8                                     | 1.75                                    | 0,380                                      | 0.350                         |
|               | Н   | 143  | 1[                        |                              | lu f    | č .         | _ 5                     | 28.53      | 29.97                                    | 1.44                                    | 0.288                                      | 0.288                         |
| -             | ļ   | 143  |                           | 111                          |         |             | 5                       | 25.69      | 27.26                                    | 1.57                                    | 0.314                                      | 0.314                         |
| 50%           | A   | 208  |                           | h                            | 11      |             | de                      | 00 56      | 3.                                       |                                         |                                            |                               |
|               | В   | 199  |                           | 1                            | 1[      |             | 4                       | 29.56      | 30.71                                    | 1,13                                    | 0.283                                      | 0.226                         |
|               | С   |      |                           |                              | itt     |             | 5                       | 76.88      | 28.57                                    | 1.69                                    | 0.338                                      | 0.338                         |
|               | D   | 237  | n                         |                              | 111     |             | 5                       | 77.85      | 29.53                                    | 1.68                                    | 0.336                                      | 0.336                         |
|               | E   | 129  |                           | n                            | 111     |             | <u> </u>                | 27.64      | 29.32                                    | 1.68                                    | O.336                                      | 0.336                         |
|               |     | 212  | 1                         |                              | m       |             | 5                       | 28.56      | 30.51                                    | 1.95                                    | 0.390                                      | 0.390                         |
|               | F   | 175  |                           | 1                            | tu      |             | 4                       | 25.29      | 29.60                                    | 1.31                                    |                                            |                               |
|               | G   | 173  |                           |                              | htt     |             | 5                       | 26.84      | 28.49                                    |                                         | 0.328                                      | 0.262                         |
|               | Н   | 213  | 1                         | 11                           | II.     |             | 5                       |            |                                          | 1.65                                    | 0.330                                      | 0.330                         |
|               |     |      |                           | <u> </u>                     | - 11    |             |                         | 28.00      | 29.75                                    | 1.75                                    | 0.350                                      | 0.350                         |

Dry wt. calculations checked (date, initials): 6/20/14 MBiomass calculations checked (



# REPRODUCTION AND WEIGHT DATA (Test Species: \_\_\_\_\_\_A. bahia\_\_\_\_)

|                                         |                                | <u>Date</u> | <u>Time</u> | <u>Initials</u> |
|-----------------------------------------|--------------------------------|-------------|-------------|-----------------|
| Project Number: 70005.15                | Organisms sexed:               | 6/17/16     | 1441        | MJ              |
| Client:                                 | Loaded tins placed in oven:    | 6117/16     | 1453        | MJ              |
| QC Test Number: TN- 16-205              | Loaded tins removed from oven: | 6/18/16     | 1551        | pm              |
| Tin Lot: Biack 160                      | Loaded tins weighed:Cell 8/16  | 1605        |             | pm              |
| Oven Temp (°C): Start: 99.5° End: 99.0° | Oven Number: BLM-01            | Balance N   | Number: P0  | 115825          |

| Test<br>Conc. | Rep | Tin # | # Females<br>with<br>Eggs | # Females<br>without<br>Eggs | # Males | # Immatures | C<br># Orgs.<br>Weighed | A<br>Wt. of Tin<br>(mg) | B<br>Wt. of Tin &<br>Dried Orgs.<br>(mg) | B-A<br>Total Dry<br>Org. Weight<br>(mg) | (B-A)/C<br>Mean Dry<br>Org. Weight<br>(mg) | (if applicable)<br>Mean Blomass<br>(mg/exp. org.) |
|---------------|-----|-------|---------------------------|------------------------------|---------|-------------|-------------------------|-------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------------------------|
| 75%           | Α   | 209   |                           | 1                            | 111     |             | 4                       | 29.12                   | 30.18                                    | 1.06                                    | 0.265                                      | 0.212                                             |
|               | В   | 239   |                           | 1                            | III     |             | 5                       | 25.44                   | 21.23                                    | 1.29                                    | 0.258                                      | 0.258                                             |
|               | С   | 127   |                           |                              | - 11    |             | 2                       | 26.82                   | 27.40                                    | 0.5%                                    | 0.290                                      | 0.116                                             |
|               | D   | 108   |                           |                              | 11      |             | 2                       | 29.22                   | 79.92                                    | 0.70                                    | 0.350                                      | 0.170                                             |
|               | E   | 93    |                           | R                            | 1       |             | 3                       | 25.46                   | 26.13                                    | 0.67                                    | 0.723                                      | 0.134                                             |
|               | F   | 125   |                           |                              | 1       |             | 1                       | 25.79                   | 25.98                                    | e.19                                    | 0.190                                      | 0.038                                             |
|               | G   | 112   |                           | 11                           | [       |             | 3                       | 30.16                   | 30.17                                    | 0.61                                    | 0.203                                      | 0.122                                             |
|               | H   | 249   |                           |                              | 1       |             | 2                       | 29.19                   | 29.79                                    | 0.60                                    | 0.300                                      | 0.120                                             |
| 100%          | A   | _     |                           |                              |         |             | _                       |                         |                                          |                                         |                                            | _                                                 |
|               | В   | _     |                           |                              | _       |             | _                       |                         |                                          |                                         |                                            | _                                                 |
| ,,            | С   | -     |                           | -                            | _       |             | _                       |                         | _                                        |                                         |                                            | _                                                 |
|               | D   |       |                           | _                            |         | -           |                         | _                       | _                                        |                                         |                                            |                                                   |
|               | E   | -     |                           | _                            | ~       | -           | _                       | _                       |                                          | _                                       |                                            |                                                   |
|               | F   | -     | _                         | _                            | _       |             | _                       | _                       | _                                        | _                                       |                                            |                                                   |
|               | G   | -     |                           | -                            |         |             |                         | _                       | _                                        | _                                       | _                                          | _                                                 |
|               | Н   | -     | _                         | -                            | _       |             | _                       | _                       | -                                        | _                                       | _                                          |                                                   |

| Dry wt. calculations checked (date, initials):                     | 6/20/16m | Biomass calculations checked (date, initials):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6/20/ | 1. mm |
|--------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| i ki fili i mimerki i mirki i i i titi i ti i ti ti ti ti ti ti ti |          | A STATE OF THE STA | 1 1   |       |



# **TOXICITY TEST WATER QUALITY DATA SHEET - NEW SOLUTIONS**

| Project Number:           | TEST ORGANISM    |                | Beginning Date: | 6/10/16 | Time: | 1316 |
|---------------------------|------------------|----------------|-----------------|---------|-------|------|
| Client: Jordan Valley     | Common Name:     | Opossum shrimp | Ending Date:    | 6/17/16 | Time: | 1441 |
| QC Test Number: TN-16-205 | Scientific Name: | A. bahia       |                 |         |       |      |

TARGET VALUES: Temp: <u>26±1</u> °C pH: <u>6.0 - 9.0</u> DO: <u>≥4.0</u> mg/L Salinity: <u>30±2</u> ppt Photoperiod: <u>16 & 8 &</u> Light Intensity: <u>50 - 100</u> fc

|           |                 |      |      | Temp | oeratı | ne (°C | <b>;</b> )   |      |      |      |      | рН   |       |            |      |      | Dis | solved | l Охуд | gen (n | ng/L) |      |      | С   | onduc | ctivity<br>linity ( | (μS/c | m)<br>>    |       |
|-----------|-----------------|------|------|------|--------|--------|--------------|------|------|------|------|------|-------|------------|------|------|-----|--------|--------|--------|-------|------|------|-----|-------|---------------------|-------|------------|-------|
| Test Conc | Rep             | 0    | 1    | 2    | 3      | 4      | 5            | 6    | 0    | 1    | 2    | 3    | 4     | 5          | 6    | 0    | 1   | 2      | 3      | 4      | 5     | 6    | 0    | 1   | 2     | 3                   | 4     | 5          | 6     |
| Control   |                 | 25.2 | 26.C | 27.5 | 210.5  | 266    | 17.0         | 268  | 7.2  | 20   | 7.4  | 7.1  | 68    | <b>7.5</b> | 7.4  | 6.9  | 65  | 6.4    | G.9    | 69     | 10,7  | 6.7  | 27.8 | 275 | 27.3  | 28,1                | 281   | 27.1       | 28.0  |
| 50%       |                 |      | _    |      |        |        |              |      |      | 80   | 1    |      |       |            |      |      |     |        |        |        |       | 1    | ı    |     |       |                     |       | 27.8       |       |
| 75%       |                 |      |      |      |        | 1      |              |      |      | 1    | 1    |      |       |            |      |      | 1   |        | l .    |        |       | ı    |      |     |       |                     |       | 27.9       |       |
| 100%      |                 |      |      | 25.1 |        | 250    |              |      |      |      |      | 2,5  |       |            |      |      | 6.9 |        |        |        |       |      |      |     |       |                     |       | 27.8       |       |
|           |                 |      |      |      |        |        |              |      |      |      |      |      |       |            |      |      |     |        |        |        |       |      |      |     |       |                     |       |            |       |
|           |                 |      |      |      |        |        |              |      |      |      |      |      |       |            |      |      |     |        |        |        | 2     |      |      |     |       |                     |       |            |       |
| Meter Nu  | mber            | .00  | 1.76 | 1700 |        | 200.00 |              |      |      |      |      |      |       |            | 1    |      |     |        |        |        |       |      |      |     |       |                     |       |            |       |
| Meter Nu  | Time            | 619  | 6 P4 | (17  | 678    | 618    | 1018<br>1018 | ሬግኝ  | 678  | ७७७१ | 619  | 618  | ଟେନ୍ତ | 618        | 678  | 678  | 679 | 64     | 678    | 618    | 678   | 678  | 618  | 679 | 619   | 678                 | 678   | 678        | 678   |
|           | Time<br>nitials | 1304 | ION  | UB.  | וטוט   | MUS    | 02           | 7114 | 1304 | 8    | 0951 | 0921 | 0903  | 1450       | 6914 | 1304 | COO | 0951   | 042    | 0903   | OSP   | 1914 | 1334 | COM | (95)  | SA27                | 11903 | 0936<br>IB | AGILL |

5



### **TOXICITY TEST WATER QUALITY DATA SHEET - OLD SOLUTIONS**

| Project Number:           | TEST ORGANISM               | Beginning Date: _ | 6/10/16 | Time: | 1316 |
|---------------------------|-----------------------------|-------------------|---------|-------|------|
| Client: Jordan Valley     | Common Name: Opossum shrimp | Ending Date:      | anllo   | Time: | 1441 |
| QC Test Number:TN- 16-205 | Scientific Name: A. bahla   |                   |         |       |      |
|                           |                             |                   |         |       |      |

TARGET VALUES: Temp: 26±1 °C pH: 6.0 - 9.0 DO: ≥4.0 mg/L Salinity: 30±2 ppt Photoperiod: 16 4 8 4 Light Intensity: 50 - 100 fc Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (mg/L) pН Salinity (ppt) **Test Conc** 2 2 7 Rep Control 25.225 × 250 250 150 150 151 150 18.2 18.2 18.0 7.4 179 78 75 6.0 6.3 6.7 6.2 63 60 61 278 27.9 28.5 28.5 283 281 50% 25.2 75.7 75.0 25.0 75.0 75.0 8.0 8.0 8.0 7.9 7.4 7.8 7.7 7.5 60 5.7 6.6 61 6.3 50 6.1 28.0 27.9 28.8 28.6 26.4 28.4 28.3 75% 254 257 350 250 250 26 26 29 29 79 7.3 7.877 7.6 5.5 5.6 6.5 5.9 62 49 6.0 275 279 28.6 28 6 28 328 284 100% 18.0 80 7.9 74 7.8 7.7 - 5.7 5.3 6.5 5.7 5.0 48 25.4 25.7 25.0 25.0 25.0 25.1 28.2 21.9 29.0 28.5 28.2 28.3 Time 3K 1112 1015 1975 1000 0994 1505 1315 1112 1005 1975 1000 1994 1505 1315 1112 1005 1975 1000 19754 1505 1315 1112 1005 1975 1000 19754 1505 1315 1112 1005 1975 1000 19754 1505

> ATS-T14 06/21/06



## **TOXICOLOGY LABORATORY BENCH SHEET**

| Project Number:                        | 70005.15           |                   |                        |
|----------------------------------------|--------------------|-------------------|------------------------|
| Client:Jor                             | dan Valley         |                   |                        |
| QC Test Number:                        | TN- 16-205         |                   |                        |
|                                        |                    |                   | $\tilde{\mathfrak{D}}$ |
| Date/Time/Initials                     |                    | Comments/Activity |                        |
| * 6/11/10 1300 JB<br>* 6/13/16 1000 JB | Organisms missing: |                   |                        |



## TOXICOLOGY LABORATORY BENCH SHEET

| Project Number: _ | 70005.15  |  |
|-------------------|-----------|--|
| Client: Jord      | an Valley |  |
| QC Test Number:   | TN-16-205 |  |

Aliquot of sample warmed to test temperature, then aerated if supersaturated:

|         | 1        |            | ON AIR        |             |          | OFF AIR |          |
|---------|----------|------------|---------------|-------------|----------|---------|----------|
|         |          | Initial DO |               |             | Final DO |         |          |
| Date    | Sample # | (mg/L)     | Time          | Initials    | (mg/L)   | Time    | Initials |
| 6110116 | AT6-271  | 6.8        | _             | MJ          | _        | _       |          |
| Glulib  | AT6-271  | 7.6        | 5090          | <b>%</b>    | 7.0      | 0912    | 25       |
| 6112/16 | ATG-271  | 8.4        | 0921          | MJ          | 6.7      | ०१३।    | TM       |
| 6/13/16 | AT6-271  | 9.2        | 0402          | 58          | 7.2      | 2912    | 5B       |
| હાવાહ   | ATG- 271 | 9.2        | 0840          | MJ          | 7.0      | 0850    | MT       |
| 6/15/16 | AT6-271  | 9.7        | 08 <i>5</i> C | <b>ර</b> පි | 7.4      | \$70°   | JB       |
| હોાહોાહ | ATG-271  | ୫.ግ        | 0855          | MJ          | ٦.١      | 0905    | MJ       |
|         |          |            |               |             |          |         | Ì        |
|         |          |            |               |             |          |         |          |
|         |          |            |               |             |          |         |          |
|         |          |            |               | )           |          |         |          |
|         |          |            |               |             |          |         |          |
|         |          | ĺ          |               |             |          |         |          |
|         |          |            |               |             |          |         |          |
|         |          |            |               |             |          |         |          |
|         |          |            |               |             |          |         |          |
|         |          |            |               |             |          |         |          |

| Start Date:<br>End Date: | 6/10/2016<br>6/17/2016 |        |           | TN-16-205 |          |        | ndity Test<br>Sample ID<br>Sample Ty | );<br>/pe: | Jordan Valley       |  |
|--------------------------|------------------------|--------|-----------|-----------|----------|--------|--------------------------------------|------------|---------------------|--|
| Sample Date:             |                        |        | Protocol: | EPAM 87-  | EPA Mari | ne     | Test Spec                            | ies:       | MY-Mysidopsis bahia |  |
| Conc-%                   | 1                      | 2      | 3         | 4         | 5        | 6      | 7                                    | 8          |                     |  |
| Control                  | 0.8000                 | 1.0000 | 0.8000    | 1.0000    | 1.0000   | 1.0000 | 1.0000                               | 1.0000     |                     |  |
| 50                       | 0.8000                 | 1.0000 | 1.0000    | 1.0000    | 1.0000   | 1.0000 | 1.0000                               | 1.0000     |                     |  |
| 75                       |                        | 1.0000 | 1.0000    | 0.8000    | 1.0000   | 0.8000 | 0.8000                               | 0.8000     |                     |  |
| 100                      | 0.2000                 | 0.0000 | 0.4000    | 0.2000    | 0.2000   | 0.6000 | 0.6000                               | 0.8000     |                     |  |

|         |        |        | Tr     | ansform: | Arcsin Sc | uare Roof |   | Rank  | 1-Tailed | Number | Total  |
|---------|--------|--------|--------|----------|-----------|-----------|---|-------|----------|--------|--------|
| Conc-%  | Mean   | N-Mean | Mean   | Min      | Max       | CV%       | N | Sum   | Critical | Resp   | Number |
| Control | 0.9500 | 1,0000 | 1.2857 | 1.1071   | 1.3453    | 8.574     | 8 |       |          | 2      | 40     |
| 50      | 0.9750 | 1.0263 | 1.3155 | 1.1071   | 1.3453    | 6.400     | 8 | 72.00 | 48.00    | 1      | 40     |
| 75      | 0.8750 | 0.9211 | 1.1964 | 1.1071   | 1.3453    | 10.301    | 8 | 56.00 | 48.00    | 5      | 40     |
| *100    | 0.3750 | 0.3947 | 0.6476 | 0.2255   | 1.1071    | 45.436    | 8 | 37.00 | 48.00    | 25     | 40     |

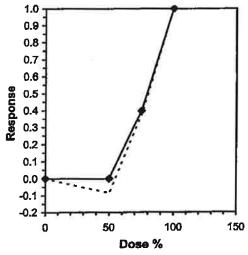
| Auxiliary Tests                                                        |      |      |         |         | Statistic          | Critical         | Skew    | Kurt    |
|------------------------------------------------------------------------|------|------|---------|---------|--------------------|------------------|---------|---------|
| Shapiro-Wilk's Test indicates non<br>Bartlett's Test indicates unequal |      |      |         |         | 0.94631<br>13.2164 | 0.904<br>11.3449 | 0.13537 | 1.51382 |
| Hypothesis Test (1-tail, 0.05)                                         | NOEC | LOEC | ChV     | TU      | 13.2104            | 11.0449          |         |         |
| Steel's Many-One Rank Test                                             | 75   | 100  | 86.6025 | 1.33333 |                    |                  |         |         |

|           |         |         |          | Maxii       | mum Likeliho | od-Probit                  | ł .           |             |         |         |      |
|-----------|---------|---------|----------|-------------|--------------|----------------------------|---------------|-------------|---------|---------|------|
| Parameter | Value   | SE      | 95% Fidu | cial Limits | Control      | Chl-Sq                     | Critical      | P-value     | Mu      | Sigma   | Iter |
| Slope     | 12.9504 | 3.24813 | 6.5841   | 19.3168     | 0.05         | 0.17634                    | 3.84146       | 0.67        | 1.97832 | 0.07722 | 3    |
| Intercept | -20.62  | 6.38532 | -33.135  | -8.1048     |              |                            |               |             |         |         |      |
| TSCR      | 0.0375  | 0.02134 | -0.0043  | 0.07931     |              | 1.0 7                      |               |             | 11.7    |         |      |
| Point     | Probits | %       | 95% Fldu | cial Limits |              | 0.9                        |               |             | III     |         |      |
| EC01      | 2.674   | 62.9045 | 42.5992  | 72.3321     |              | 0.0                        |               |             | 11/     |         |      |
| EC05      | 3.355   | 71.0077 | 53.832   | 78.7912     |              | 0.8                        |               |             | #/      | l le    |      |
| EC10      | 3.718   | 75.7458 | 60.8774  | 82.6131     |              | 0.7                        |               |             | 111     | ľ       |      |
| EC15      | 3.964   | 79.12   | 66.0503  | 85.4178     |              | 4                          |               |             | U       |         |      |
| EC20      | 4.158   | 81.9085 | 70.3737  | 87.8388     |              | g 0.6 -                    |               |             | I       |         |      |
| EC25      | 4.326   | 84.379  | 74.1911  | 90.1117     |              | 98 0.6 -<br>0.5 -<br>0.4 - |               |             | W       |         |      |
| EC40      | 4.747   | 90.9398 | 83.7491  | 97.2564     |              | 8,1                        |               |             | , 11    |         |      |
| EC50      | 5.000   | 95.1299 | 88.9051  | 103.173     |              | ₽ 0.4                      |               | 9           | ·       |         |      |
| EC60      | 5.253   | 99.513  | 93,3711  | 110.63      |              | 0.3 -                      |               |             | 11      | f       |      |
| EC75      | 5.674   | 107.25  | 99.785   | 126.121     |              | 0.2                        |               |             | //      | 1       |      |
| EC80      | 5.842   | 110.485 | 102.167  | 133.222     |              | -4                         |               |             | //      | 1       |      |
| EC85      | 6.036   | 114.379 | 104.904  | 142.157     |              | 0.1                        |               |             | /#      | 1       |      |
| EC90      | 6.282   | 119.474 | 108.335  | 154.422     |              | 0.0 1                      |               | <del></del> | //      | ******  |      |
| EC95      | 6.645   | 127.447 | 113.475  | 174.811     |              | 1                          | 950 6 6 7 6 7 | 10          | 100     | 1000    |      |
| EC99      | 7.326   | 143.864 | 123.499  | 221.1       |              |                            |               | Dose '      |         |         |      |

|                           |                                          |         | Mysic  | Survival. | Growth a | and Fecu | ndity Test | 96 Hr Su | ırvival             |     |
|---------------------------|------------------------------------------|---------|--------|-----------|----------|----------|------------|----------|---------------------|-----|
| Start Date:               | 6/10/2016                                |         |        | TN-16-20  |          |          | Sample ID  | ):       | Jordan Valley       |     |
| End Date:<br>Sample Date: | 6/17/2016                                |         |        | EPAM 87-  | EPA Mari | ne       | Test Spec  | ies:     | MY-Mysidopsis bahia | 1   |
| Comments:                 |                                          | 2       | - 3    | 4         | 5        | 6        | 7          | 8        |                     |     |
| Conc-%                    | 0.0000                                   | 0.6000  | 0.8000 | 1.0000    | 0.8000   | 1.0000   | 1.0000     | 1.0000   |                     |     |
| Control                   | 2000 00 00 00 00 00 00 00 00 00 00 00 00 |         |        |           | 1.0000   | 0.8000   | 1,0000     | 1.0000   |                     |     |
| 50                        | 0.8000                                   | 1.0000  | 1.0000 | 1,0000    |          |          |            | 0.6000   |                     | 0.0 |
| 75                        | 0.8000                                   | 1.0000  | 1.0000 | 0.8000    | 0.8000   | 0.6000   |            |          |                     | - 3 |
| 100                       |                                          | 0.0000  | 0.2000 | 0.0000    | 0.0000   | 0.0000   | 0.2000     | 0.0000   |                     | - 4 |
| 100                       | 0.000                                    | <b></b> | -      |           |          |          |            |          |                     |     |

|         | 191    |        | Tra    | ansform: | Arcsin So | uare Roo | ŧ |        | 1-Tailed | (Section 1977) | Number | Total  |
|---------|--------|--------|--------|----------|-----------|----------|---|--------|----------|----------------|--------|--------|
| Conc-%  | Mean   | N-Mean | Mean   | Min      | Max       | CV%      | N | t-Stat | Critical | MSD            | Resp   | Number |
| Control | 0.8750 | 1.0000 | 1.1986 | 0.8861   | 1.3453    | 14.410   | 8 |        |          | 0.4000         | 5      | 40     |
| 50      | 0.9500 | 1.0857 | 1,2857 | 1.1071   | 1.3453    | 8.574    | 8 | -1.158 | 2.156    | 0.1623         | 4      |        |
| 75      | 0.7750 | 0.8857 | 1.0838 | 0.8861   | 1.3453    | 17.634   | 8 | 1.525  | 2.156    | 0.1623         | 9      | 40     |
| *100    | 0.0500 | 0.0571 | 0.2850 | 0.2255   | 0.4636    | 38.672   | 8 | 12.136 | 2.156    | 0.1623         | 38     | 40     |

|                                                   |              |            |         |    | Statistic       |      | Critical         |         | Skew    | Kurt    |
|---------------------------------------------------|--------------|------------|---------|----|-----------------|------|------------------|---------|---------|---------|
| Auxiliary Tests Shapiro-Wilk's Test indicates nor | mal distribu | ution (p > | 0.01)   |    | 0.96366         |      | 0.904<br>11.3449 | -       | -0.0888 | -0.5336 |
| Bartlett's Test indicates equal var               | iances (p =  | : 0.35)    | ChV     | TÜ | 3.20079<br>MSDu | MSDp | MSB              | MSE     | F-Prob  | df      |
| Hypothesis Test (1-tall, 0.05)                    | NOEC<br>75   | 100        |         |    |                 |      |                  | 0.02266 | 1.8E-13 | 3, 28   |
| Dunnett's Test                                    | 15           | 100        | 00.0020 |    |                 |      |                  |         |         |         |

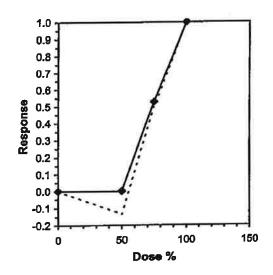

|           |         |         |          | Maxir       | num Likeliho |                |             |             |                      |         | 10        |
|-----------|---------|---------|----------|-------------|--------------|----------------|-------------|-------------|----------------------|---------|-----------|
| Parameter | Value   | SE      | 95% Fldu | clai Limits | Control      |                | Critical    | P-value     | Mu                   | Sigma   | iter<br>3 |
| Slope     | 21.079  | 3.7833  | 13.6637  | 28.4942     | 0.125        | 0.70454        | 3.84146     | 0.4         | 1.92409              | 0.04744 | 3         |
| Intercept | -35.558 | 7.31165 |          | -21.227     |              |                |             |             |                      |         |           |
| TSCR      | 0.0875  | 0.03159 |          |             |              | 1.0 ]          |             |             |                      |         |           |
| Point     | Probits | %       | 95% Fidu | cial Limits |              | 0.9            |             |             | I                    |         |           |
| EC01      | 2.674   | 65.1222 | 55.176   | 70.976      |              |                |             |             | II.                  | - 1     |           |
| EC05      | 3.355   | 70.1551 | 61.6517  | 75.2851     |              | 0.8            |             |             |                      |         |           |
| EC10      | 3.718   | 72.9953 | 65.3423  | 77.7677     |              | 0.7            |             |             | ı                    | - 1     |           |
| EC15      | 3.964   | 74.9762 | 67.913   | 79.5394     |              | w n s 1        |             |             | ı                    | 1       |           |
| EC20      | 4.158   | 76.5888 |          | 81.0167     |              | ğ v.           |             |             | 1                    | - 1     |           |
| EC25      | 4.326   | 77.9999 | 71.7962  |             |              | Response - 9.0 |             |             | 1                    |         |           |
| EC40      | 4.747   | 81.672  | 76.3586  | 85.9946     |              | <b>8</b> 0.4   |             |             | i i                  |         |           |
| EC50      | 5.000   | 83.9638 |          | 88.4686     |              | 17             |             |             | 1                    | 1       |           |
| EC60      | 5.253   | 86.32   | 81.6918  | 91.2044     |              | 0.3            |             |             | 1                    |         |           |
| EC75      | 5.674   | 90.3838 | 85.8387  | 96.4081     |              | 0.2 -          |             |             | H                    |         |           |
| EC80      | 5.842   | 92.049  | 87.4079  | 98.7059     |              | 0.4            |             |             | ₩.                   |         |           |
| EC85      | 6.036   | 94.0289 | 89.1923  | 101.546     |              | 0.1            |             |             | //                   |         |           |
| EC90      | 6.282   | 96.5806 | 91.3855  | 105.354     |              | 0.0            | <del></del> | <del></del> | <del>••••••</del> •• |         |           |
| EC95      | 6.645   | 100.491 | 94.5723  | 111.456     |              | 1              |             | 10          | 100                  | 1000    |           |
| EC99      | 7.326   | 108.257 | 100.508  | 124.297     |              |                |             | Dose        | %                    |         |           |

| Start Date:               | 6/10/2016 |        | Test ID:             | TN-16-20 |          | iid i oou | ndity Test<br>Sample II | ):     | Jordan Valley       |  |
|---------------------------|-----------|--------|----------------------|----------|----------|-----------|-------------------------|--------|---------------------|--|
| End Date:<br>Sample Date: | 6/17/2016 |        | Lab ID:<br>Protocol: | EPAM 87- | EPA Mari | ne        | Sample Ty<br>Test Spec  | •      | MY-Mysidopsis bahia |  |
| Comments:<br>Conc-%       | 1         | 2      | 3                    | 4        | 5        | 6         | 7                       | 8      |                     |  |
| Control                   | 0.8000    | 0.6000 | 0.8000               | 1.0000   | 0.8000   | 1.0000    | 1.0000                  | 1.0000 |                     |  |
| 50                        |           | 1.0000 | 1.0000               | 1.0000   | 1.0000   | 0.8000    | 1.0000                  | 1.0000 |                     |  |
| 75                        |           | 1.0000 | 0.4000               | 0.4000   | 0.6000   | 0.2000    | 0.6000                  | 0.4000 |                     |  |
| 100                       |           | 0.0000 | 0.0000               | 0.0000   | 0.0000   | 0.0000    | 0.0000                  | 0.0000 |                     |  |

|         |        |        | Tr     | ansform: | Arcsin Sc | uare Root | t T |        | 1-Talled |        | Isot   | onic : |
|---------|--------|--------|--------|----------|-----------|-----------|-----|--------|----------|--------|--------|--------|
| Conc-%  | Mean   | N-Mean | Mean   | Min      | Max       | CV%       | N   | t-Stat | Critical | MSD    | Mean   | N-Mean |
| Control | 0.8750 | 1,0000 | 1.1986 | 0.8861   | 1.3453    | 14,410    | 8   |        |          |        | 0.9125 | 1.0000 |
| 50      | 0.9500 | 1.0857 | 1.2857 | 1.1071   | 1.3453    | 8.574     | 8   | -0.872 | 2.024    | 0.2023 | 0.9125 | 1.0000 |
| *75     | 0.5500 | 0.6286 | 0.8428 | 0.4636   | 1.3453    | 33.103    | 8   | 3.561  | 2.024    | 0.2023 | 0.5500 | 0.6027 |
| 100     | 0.0000 | 0.0000 | 0.2255 | 0.2255   | 0.2255    | 0.000     | 8   |        |          |        | 0.0000 | 0.0000 |

| Auxiliary Tests                                                          |      |      |         |    | Statistic         |         | Critical         |         | Skew    | Kurt    |
|--------------------------------------------------------------------------|------|------|---------|----|-------------------|---------|------------------|---------|---------|---------|
| Shapiro-Wilk's Test indicates nor<br>Bartlett's Test indicates equal var |      |      | 0.01)   |    | 0.94729<br>5.3608 |         | 0.884<br>9.21034 | 0       | 0.33266 | 1.01877 |
| Hypothesis Test (1-tail, 0.05)                                           | NOEC | LOEC | ChV     | TU | MSDu              | MSDp    | MSB              | MSE     | F-Prob  | df      |
| Dunnett's Test                                                           | 50   | 75   | 61.2372 | 2  | 0.16303           | 0.18788 | 0.44051          | 0.03994 | 5.3E-04 | 2, 21   |

|       |     |        |       |        | Linea  | ar Interpolat | ion (200 Resamples) |
|-------|-----|--------|-------|--------|--------|---------------|---------------------|
| Point |     | %      | SD    | 95%    | CL     | Skew          |                     |
| IC05  |     | 53.147 | 3.083 | 51.295 | 57.094 | -4.4034       |                     |
| IC10  |     | 56.293 | 2.907 | 54.130 | 64,188 | 3.2388        |                     |
| IC15  |     | 59.440 | 3.596 | 56,362 | 71.281 | 2.1019        | 1.0                 |
| IC20  |     | 62.586 | 4.084 | 58.483 | 75.721 | 1.3862        | 0.9                 |
| IC25  |     | 65.733 | 4.428 | 60.692 | 77.239 | 0.8620        | 0.8                 |
| IC40  | (*) | 75.114 | 3.923 | 67.111 | 81.791 | -0.1550       | 4                   |
| IC50  |     | 79.261 | 3.369 | 71.389 | 84.826 | -0.4432       | 0.7                 |

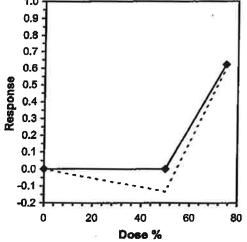



| Start Date:               | 6/10/2016 |        |                  | TN-16-20 |          |        | Sample ID<br>Sample Ty | ):      | Jordan Valley       |  |
|---------------------------|-----------|--------|------------------|----------|----------|--------|------------------------|---------|---------------------|--|
| End Date:<br>Sample Date: | 6/17/2016 |        |                  | EPAM 87- | EPA Mari | ne     | Test Spec              |         | MY-Mysidopsis bahia |  |
| Comments:                 | - 1       | 2      | 3                | 4        | 5        | 6      | 7                      | 8       | S.D.                |  |
| Conc-%                    | 0.2220    | 0.2520 | 0.2700           | 0.3240   | 0.2300   | 0.3500 | 0.2880                 | 0.3140  | 0.04423             |  |
| Contro                    |           |        | 0.2760           | 0.3360   | 0.3900   | 0.2820 |                        | 0.3500  | 0.052               |  |
| 50                        | 0.2260    | 0.3380 |                  | • - •    | 0.1340   | 0.0380 |                        | 0.1200  | 0.06633             |  |
| -                         |           |        |                  |          |          |        |                        | V. 1200 |                     |  |
| 75                        | 0.2120    | 0.2580 | 0,1160<br>0.0000 | 0.1400   | 0.0000   | 0.0000 |                        | 0.0000  | n                   |  |

|        |                                              |                                                 | Transform                                                                                                                                                                     | n: Untran                                                                                                                                                                                                                              | sformed                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                  | 1-Tailed                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | onic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------|----------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mean   | N-Mean                                       | Mean                                            | Min                                                                                                                                                                           | Max                                                                                                                                                                                                                                    | CV%                                                                                                                                                                                                                                                                                             | N                                                                                                                                                                                                                                                                         | t-Stat                                                                                                                                                                                                                                                                                                                                                                                           | Critical                                                                                                                                                                                                                                                                                                                                                                                                                       | MSD                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N-Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                              | 0.2825                                          | 0.2300                                                                                                                                                                        | 0.3500                                                                                                                                                                                                                                 | 15.657                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . Same and a fine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | 1,1363                                       | 0.3210                                          | 0.2260                                                                                                                                                                        | 0.3900                                                                                                                                                                                                                                 | 16.199                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                         | -1.595                                                                                                                                                                                                                                                                                                                                                                                           | 1.761                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0425                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| •      | 0.5044                                       | 0.1425                                          | 0.0380                                                                                                                                                                        | 0.2580                                                                                                                                                                                                                                 | 46.548                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.0000 | 0.0000                                       | 0.0000                                          | 0.0000                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                           | 8                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | Mean<br>0.2825<br>0.3210<br>0.1425<br>0.0000 | 0.2825 1.0000<br>0.3210 1.1363<br>0.1425 0.5044 | Mean         N-Mean         Mean           0.2825         1.0000         0.2825           0.3210         1.1363         0.3210           0.1425         0.5044         0.1425 | Mean         N-Mean         Mean         Min           0.2825         1.0000         0.2825         0.2300           0.3210         1.1363         0.3210         0.2260           0.1425         0.5044         0.1425         0.0380 | Mean         N-Mean         Mean         Min         Max           0.2825         1.0000         0.2825         0.2300         0.3500           0.3210         1.1363         0.3210         0.2260         0.3900           0.1425         0.5044         0.1425         0.0380         0.2580 | 0.2825         1.0000         0.2825         0.2300         0.3500         15.657           0.3210         1.1363         0.3210         0.2260         0.3900         16.199           0.1425         0.5044         0.1425         0.0380         0.2580         46.548 | Mean         N-Mean         Mean         Min         Max         CV%         N           0.2825         1.0000         0.2825         0.2300         0.3500         15.657         8           0.3210         1.1363         0.3210         0.2260         0.3900         16.199         8           0.1425         0.5044         0.1425         0.0380         0.2580         46.548         8 | Mean         N-Mean         Mean         Min         Max         CV%         N         t-Stat           0.2825         1.0000         0.2825         0.2300         0.3500         15.657         8           0.3210         1.1363         0.3210         0.2260         0.3900         16.199         8         -1.595           0.1425         0.5044         0.1425         0.0380         0.2580         46.548         8 | Mean         N-Mean         Mean         Min         Max         CV%         N         t-Stat         Critical           0.2825         1.0000         0.2825         0.2300         0.3500         15.657         8           0.3210         1.1363         0.3210         0.2260         0.3900         16.199         8         -1.595         1.761           0.1425         0.5044         0.1425         0.0380         0.2580         46.548         8 | Mean         N-Mean         Mean         Min         Max         CV%         N         t-Stat         Critical         MSD           0.2825         1.0000         0.2825         0.2300         0.3500         15.657         8           0.3210         1.1363         0.3210         0.2260         0.3900         16.199         8         -1.595         1.761         0.0425           0.1425         0.5044         0.1425         0.0380         0.2580         46.548         8 | Mean         N-Mean         Mean         Min         Max         CV%         N         t-Stat         Critical         MSD         Mean           0.2825         1.0000         0.2825         0.2300         0.3500         15.657         8         0.3210         0.3210         0.2260         0.3900         16.199         8         -1.595         1.761         0.0425         0.3018           0.1425         0.5044         0.1425         0.0380         0.2580         46.548         8         -1.595         1.761         0.0425         0.0000           0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000 |

| T. 111 T. 1-1-1                                                               | Statistic          |         | Critical         |         | Skew    | Kurt   |
|-------------------------------------------------------------------------------|--------------------|---------|------------------|---------|---------|--------|
| Auxiliary Tests  Shapiro-Wilk's Test indicates normal distribution (p > 0.01) | 0.95375<br>1.38221 |         | 0.844<br>8.88539 |         | -0.4439 | -0.405 |
| F-Test indicates equal variances (p = 0.68)  Hypothesis Test (1-tail, 0.05)   | MSDu               | MSDp    | MSB              | MSE     | F-Prob  | df     |
| Homoscedastic t Test Indicates no significant differences                     | 0.04251            | 0.15048 | 0.00593          | 0.00233 | 0.133   | 1, 14  |

|       |        |       | 75-15-11-11 | Line   | ar Interpolat | ion (200 Resamples) |
|-------|--------|-------|-------------|--------|---------------|---------------------|
| Point | %      | SD    | 95%         |        | Skew          |                     |
| IC05  | 52.369 | 1.904 | 51.209      | 53.049 | -10.1373      |                     |
| IC10  | 54.737 | 0.807 | 53.490      | 56.098 | -0.4388       |                     |
| IC15  | 57.106 | 1.111 | 55.380      | 59.147 | 0.2631        | 1.0                 |
| IC20  | 59,474 | 1.444 | 57.173      | 62.203 | 0.5008        | 0.9 -               |
| IC25  | 61.843 | 1.791 | 59.043      | 65.677 | 0.6142        | 0.8                 |
| IC40  | 68.948 | 2.749 | 64.821      | 75.054 | 0.4788        | 4                   |
| IC50  | 73.685 | 3.019 | 68.527      | 79.211 | 0.1006        | 0.7                 |




| -                         |                        |        | Mvs       | ld Surviv | al. Growti | and Fe | cundity Te              | st-Fecur | dity                | - 1 |
|---------------------------|------------------------|--------|-----------|-----------|------------|--------|-------------------------|----------|---------------------|-----|
| Start Date:<br>End Date:  | 6/10/2016<br>6/17/2016 | -1)):  |           | TN-16-20  |            |        | Sample III<br>Sample Ty | ):       | Jordan Valley       | (H  |
| Sample Date:<br>Comments: |                        |        | Protocol: | EPAM 87-  | EPA Mari   | ne     | Test Spec               | ies:     | MY-Mysidopsis pahia |     |
| Conc-%                    | 1                      | 2      | 3         | 4         | 5          | 6      | 7                       | 8        |                     |     |
| Control                   | 0.0000                 | 0.5000 | 0.0000    | 0.5000    | 0.0000     | 0.0000 | 1.0000                  | 0.2500   |                     | 9   |
| 50                        | 0.0000                 | 0.5000 | 1.0000    | 0.0000    | 0.5000     | 0.0000 | 1.0000                  | 0.3333   |                     |     |
| 75                        | 0.0000                 | 0.0000 | 0.0000    | 0.0000    | 1.0000     |        |                         |          |                     |     |

|         |        |        | Tr     | ansform: | Arcsin Sc | uare Roo |   |        | 1-Tailed |        | Isot   | onic : |
|---------|--------|--------|--------|----------|-----------|----------|---|--------|----------|--------|--------|--------|
| Conc-%  | Mean   | N-Mean | Mean   | Min      | Max       | CV%      | N | t-Stat | Critical | MSD    | Mean   | N-Mean |
| Control | 0.2813 | 1.0000 | 0.6545 | 0.3614   | 1.2094    | 40.699   | 8 |        |          |        | 0.3765 | 1.0000 |
| 50      | 0.4167 | 1.4815 | 0.7112 | 0.3614   | 1.2094    | 43.219   | 8 | -0.396 | 2.101    | 0.3009 | 0.3765 | 1.0000 |
| 75      | 0.2000 | 0.7111 | 0.5634 | 0.3614   | 1.0472    | 50.111   | 5 | 0.558  | 2.101    | 0.3431 | 0.1429 | 0.3795 |

| Auxiliary Tests                     |              |              | ==:   |         | Statistic |         | Critical |         | Skew    | Kurt    |
|-------------------------------------|--------------|--------------|-------|---------|-----------|---------|----------|---------|---------|---------|
| Shapiro-Wilk's Test indicates nor   | mal distribu | ıtion (p > 0 | ).01) |         | 0.90011   |         | 0.873    |         | 0.84615 | -0.1912 |
| Bartlett's Test indicates equal var | iances (p =  | · 0.94)      |       |         | 0.13421   |         | 9.21034  |         |         | 0<br>(* |
| Hypothesis Test (1-tall, 0.05)      | NOEC         | LOEC         | ChV   | TU      | MSDu      | MSDp    | MSB      | MSE     | F-Prob  | df      |
| Bonferroni t Test                   | 75           | >75          |       | 1.33333 | 0.2767    | 0.74663 | 0.03358  | 0.08204 | 0.67019 | 2, 18   |

|       |        |    | Line        | ar interpolation | (200 Resamples) |
|-------|--------|----|-------------|------------------|-----------------|
| Point | %      | SD | 95% CL(Exp) | Skew             |                 |
| IC05  | 52.014 |    |             |                  |                 |
| IC10  | 54.029 |    |             |                  |                 |
| IC15  | 56.043 |    |             |                  | 1.0             |
| IC20  | 58.058 |    |             |                  | 0.9             |
| IC25  | 60.072 |    |             |                  |                 |
| IC40  | 66.115 |    |             |                  | 0.8 -           |
| IC50  | 70.144 |    |             |                  | 0.7 -           |
|       |        |    |             |                  | 0.6             |





# TOXICITY TEST SET-UP BENCH SHEET

| Project Number: 70005.15    |                                                 |
|-----------------------------|-------------------------------------------------|
| Client:Jordan Valley        |                                                 |
| QC Test Number: TN-16-20    |                                                 |
| TEST                        | ORGANISM INFORMATION                            |
| Common Name: Opossum shrimp | Adults Isolated (Time, Date):                   |
| Scientific Name: A.bahia    | Neonates Pulled & Fed (Time, Date):             |
| Lot Number: AB-993          | Acclimation: <u>\$24 hrs</u> Age: <u>7 dayS</u> |
| Source: ABS                 | Culture Water (T/S): °C ppt                     |

|              | TI          | EST INITIA      | TION                  | CONCE                               | ENTRATION SERI                        | ES                               |
|--------------|-------------|-----------------|-----------------------|-------------------------------------|---------------------------------------|----------------------------------|
| Date         | <u>Time</u> | <u>Initials</u> | Activity              | Test Concentration Mod Hard Control | Volume<br><u>Test Material</u><br>0ml | Final<br><u>Volume</u><br>1200ml |
| oliol 16     | 1358        | MJ              | Dilutions Made        | 50%                                 | 600ml                                 |                                  |
| 1            |             | .1              |                       | 75%                                 | 900ml                                 |                                  |
| 1            | 4           | <b>¥</b>        | Test Vessels Filled   | 100%                                | 1200 ml                               |                                  |
|              | 1411        | MJ              | Organisms Transferred |                                     |                                       | 1                                |
| $\downarrow$ | 1450        | Me              | Head Counts           |                                     |                                       |                                  |

|                 | DILUT                 | ION PREF            | PARATION       |                            | PREPARATION AND FEEDING FEEDING |                                  |                                  |                                       |  |  |  |  |
|-----------------|-----------------------|---------------------|----------------|----------------------------|---------------------------------|----------------------------------|----------------------------------|---------------------------------------|--|--|--|--|
|                 |                       |                     |                |                            | Food:                           | Artemia                          |                                  |                                       |  |  |  |  |
| <u>Day</u><br>0 | <u>Date</u><br>611016 | <u>Time</u><br>1358 | Initials<br>MJ | Sample / Diluent PTG - 217 | <u>Day</u><br>0                 | Time, Initials,<br><u>Amount</u> | Time, Initials,<br><u>Amount</u> | Time, Initials, Amount 1625MT 5 drops |  |  |  |  |
| 1               | 6/11/16               | 0945                | JB             | AT6-277<br>LDG-261         | 1                               | 5 drops                          |                                  | 1600 NM<br>5 drops                    |  |  |  |  |
| 2               | 6112/16               | 0947                | TM             | ATG-271                    | 2                               | 5 drops                          |                                  | 1615M<br>5 drops                      |  |  |  |  |
| 3               | Glisha                | 0920                | 38             | QTG-277                    | 3                               | 5 drops                          |                                  | 5 drops                               |  |  |  |  |
| 4               | 6/14/16               | 0901                | MJ             | ATG-211<br>COG-281         | 4                               | 5 drops                          |                                  | 5 drops                               |  |  |  |  |
| 5               | 6/15/16               | 0920                | 313            | AF6-27                     |                                 | 5 drops                          |                                  | 5 drops                               |  |  |  |  |
| 6               | 6116116               | 0912                | MJ             | ATG-271<br>LTX0-281        | 6                               | 0820JB<br>5 drops                |                                  | 16250P<br>5 drops                     |  |  |  |  |



**TOXICITY TEST OBSERVATION DATA SHEET** 

| Project Number:70005.15   | TEST ORGANISM                                      | Beginning Date: _ | 6110116 | Time: 1411 |
|---------------------------|----------------------------------------------------|-------------------|---------|------------|
| Client:Jordan Valley      | Common Name: Opossum shrimp                        | Ending Date:      | 6/17/16 | Time: 33   |
| QC Test Number:TN- 16-200 | Scientific Name: A. bahia                          |                   |         |            |
| Test Material: Effluent   |                                                    |                   |         |            |
| Accession Number: ATG-277 | TEST TYPE: Static / Flowthrough                    | Test Container:   | 4" bowl |            |
| Dilution Water: 30 ppt CS | Renewal / Non-renewal                              | Test Volume:      | 150 ml  |            |
| Accession Number: LDG-261 | Photoperiod: 16 & 8 d Light Intensity: 50 - 100 fc | Test Duration:    | 7 days  |            |

| · 6:                                    |               |        |          |         | Number of Su | rviving Organisms | 3        |         | #N-65-  |
|-----------------------------------------|---------------|--------|----------|---------|--------------|-------------------|----------|---------|---------|
| Concentration                           | Rep           | Day 0  | Day 1    | Day 2   | Day 3        | Day 4             | Day 5    | Day 6   | Day 7   |
| Control                                 | Α             | 5      | 5        | 5       | 5            | 5                 | 5        | 5       | 5       |
|                                         | В             | 6      | 5        | 5       | 5            | 5                 | 5        | 5       | 5       |
|                                         | С             | 5      | 5        | 5       | 4            | 4                 | 4        | 4       | 4       |
|                                         | D             | 5      | 5        | 5       | 5            | 5                 | 5        | 5       | 5       |
|                                         | E             | 5      | 5        | 5       | 5            | 5                 | 5        | 5       | 5       |
|                                         | F             | 5      | 5        | 5       | 5            | 5                 | 5        | 5       | 5       |
|                                         | G             | 5      | 5        | 5       | 5            | 5                 | 5        | 5       | 5       |
|                                         | H             | 5      | 5        | 5       | 5            | 5                 | 6        | 5       | 5       |
| 50%                                     | A             | 5      | 5        | ų       | 4            | 4                 | Ч        | ц       | 4       |
|                                         | В             | 5      | 5        | 5       | 5            | 5                 | 5        | 5       | 5       |
|                                         | С             | 5      | 5        | 4       | 4            | 4                 | 4        | 4       | 4       |
|                                         | D             | 5      | 5        | 5       | 5            | 5                 | 5        | 5       | 5       |
|                                         | E             | 5      | 5        | 5       | 5            | 6                 | 5        | 5       | 5       |
| 7,57,3                                  | F             | 5      | 5        | Ч       | 4            | 4                 | 4        | 4       | 4       |
| - A - A - A - A - A - A - A - A - A - A | G             | 5      | ч        | ц       | 3            | 3                 | 3        | 3       | 3       |
|                                         | Н             | 5      | 5        | 5       | 5            | 5                 | 5        | 3       | 7       |
| Tlm                                     | ne / Initials | 1450/- | 1250 213 | 1101 MJ | 1035 76      | 1632MT            | 1004 273 | 0944 MJ | 1331 MJ |

| EPA TEST METHOD: (I | FW) EPA 821-R-0 | 2-013/(SW) EPA | 821-R- | 02-012(CH | ECK ONE   |
|---------------------|-----------------|----------------|--------|-----------|-----------|
| Fathead (1000 A)    |                 | n :            |        |           | /40BG-03- |



**TOXICITY TEST OBSERVATION DATA SHEET** 

| Project Number:             | TEST ORGANISM                                      | Beginning Date:   | 6110116 | Time: _1411 |
|-----------------------------|----------------------------------------------------|-------------------|---------|-------------|
| Client:Jordan Valley        | Common Name: Opossum shrimp                        | Ending Date:      | 6/17/16 | Time: 1331  |
| QC Test Number: TN- 16-206  | Scientific Name: A. bahia                          |                   |         |             |
| Test Material: Effluent     |                                                    |                   |         |             |
| Accession Number: ATG- 271  | TEST TYPE: Static / Flowthrough                    | Test Container: _ | 4" bowl |             |
| Dilution Water: 30 ppt CS   | Renewal / Non-renewal                              | Test Volume:      | 150 ml  |             |
| Accession Number: LDG - 281 | Photoperiod: 16 & 8 d Light Intensity: 50 - 100 fc | Test Duration:    | 7 days  |             |

|               |               |       |        |         | Number of Sur | viving Organism: | 3       |         |         |
|---------------|---------------|-------|--------|---------|---------------|------------------|---------|---------|---------|
| Concentration | Rep           | Day 0 | Day 1  | Day 2   | Day 3         | Day 4            | Day 5   | Day 6   | Day 7   |
| 75%           | Α             | 5     | 6      | 5       | 5             | 5                | 5       | 5       | 5       |
|               | В             | 6     | 5      | 3       | 3             | 3                | 8       | 3       | 3       |
|               | С             | 5     | 5      | 4       | 4             | ц                | 4       | ц       | 4       |
|               | D             | 5     | 5      | 5       | ц             | 4                | 4       | 4       | 4       |
|               | E             | 5     | 4      | d       | 3             | 3                | 3       | 3       | 3       |
|               | F             | 5     | 5      | 3       | 3             | 3                | Z       | 2       | 2       |
|               | G             | 5     | 3      | 5       | 3             | 3                | 3       | i       | 1       |
|               | Н             | \$    | 5      | 5       | 5             | 5                | 5       | 5       | Ц       |
| 100%          | A             | 5     | 4      | 4       | 3             | 7                | 2       | 7       | 2       |
|               | В             | 5     | 5      | 3       | 2             | 2                | 343     | 1       | 1       |
|               | С             | 5     | 4      | 3       | 2             | 0                | _       | _       |         |
|               | D             | 5     | 3      | 1       | 0             | -                |         |         |         |
| A - 44        | E             | 5     | 3      | 3       | 2             | 0                |         |         |         |
|               | F             | 5     | 5      | 3       | 3             | 3                | 3       | 2       | 2       |
|               | G             | 5     | 5      | 3       | 2             | 0                |         |         |         |
| y - námás v.  | H             | 5     | 2      | ì       |               |                  | ð       |         |         |
| Tir           | ne / Initials | 1450/ | 135038 | 1101 MJ | 1035 50       | 1632NJ           | 1024 08 | 0944 MT | 1331 MA |

| <b>EPA TEST METHOD: (F</b> | W) EPA 821-R-02-013/(SW) EPA 82 | 1-R-02-012(CHECK ONE |
|----------------------------|---------------------------------|----------------------|
|                            | Cumdondon: (1004.0)             | Manidia: /1006 0)    |



REPRODUCTION AND WEIGHT DATA (Test Species: \_\_\_\_\_\_A. bahia\_\_\_)

|                                          |                                | <u>Date</u> | <u>Time</u> | <u>Initials</u> |
|------------------------------------------|--------------------------------|-------------|-------------|-----------------|
| Project Number:70005.15                  | Organisms sexed:               | 6/17/16     | 1331        | MT              |
| Client:                                  | Loaded tins placed in oven:    | 6117/14     | 1357        | MJ              |
| QC Test Number:TN-16-200                 | Loaded tins removed from oven: | 6/18/16     | 1515        | NM              |
| Tin Lot: Black 160, Blue 159 (B)         | Loaded tins weighed:(  K  )    | 1831 MY     | 1           |                 |
| Oven Temp (°C): Start: 99.5° End: 101.0° | Ouen Number Distant            |             |             |                 |

BLM-01 Balance Number: P0115825

|               |     |        |                           |                              |            |            |                         |                         | DENIOT                                   |                                         | ice Number. Pt                             | 1110020                                          |
|---------------|-----|--------|---------------------------|------------------------------|------------|------------|-------------------------|-------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------|--------------------------------------------------|
| Test<br>Conc. | Rep | Tîn #  | # Females<br>with<br>Eggs | # Females<br>without<br>Eggs | # Males    | #Immatures | C<br># Orgs.<br>Weighed | A<br>Wt. of Tin<br>(mg) | B<br>Wt. of Tin &<br>Dried Orgs.<br>(mg) | B-A<br>Total Dry<br>Org. Weight<br>(mg) | (B-A)/C<br>Mean Dry<br>Org. Weight<br>(mg) | (if applicable<br>Mean Biomass<br>(mg/exp. org.) |
| Control       | A   | 157    |                           | ١                            |            | ٠          | 5                       | 26.47                   | 21.80                                    | 1.33                                    | 0.266                                      | 0.266                                            |
|               | В   | 174(8) | ı                         | l                            | a)         |            | 5                       | 27.85                   | 29.38                                    | 1,53                                    | 0.306                                      | 0.306                                            |
|               | С   | 152    | 1                         | - 11                         | ì          |            | 4                       | 26.92                   | 30.572854                                | 1.62                                    | 0.405                                      | 0.324                                            |
|               | D   | 61(8)  | i                         | н                            | (l         |            | 6                       | 25.56                   | 27.86                                    | 2.00                                    | 0,400                                      | 0.400                                            |
|               | Ε   | n2(B)  | 11                        | 10                           | ne         |            | 5                       | 25.24                   | 21.00                                    | 1.82                                    | 0.364                                      | 0.364                                            |
|               | F   | 236    | 11                        | 1)                           | H          |            | 5                       | 26.84                   | 28.49                                    | 1.65                                    | 0.330                                      | 0.330                                            |
|               | G   | 6      | )                         | J                            | #(         |            | 5                       | 30_95                   | 32.97                                    | 2.02                                    | 0.404                                      | 0.704                                            |
|               | Н   | 241    |                           |                              | nn         |            | 5                       | 28.43                   | 29.66                                    | 1.23                                    | 0.246                                      | 0.746                                            |
| 50%           | Α   | 136    |                           |                              |            |            |                         | a( )))                  | 22                                       |                                         |                                            |                                                  |
|               | В   | 166    |                           |                              | f          |            | 4                       | 26.41                   | 27.53                                    | 1.12                                    | 0.280                                      | 0.224                                            |
|               | С   | 171    |                           |                              |            |            | <u> </u>                | 29.02                   | 30.57                                    | 1.55                                    | 0.310                                      | 0.310                                            |
|               | D   |        |                           |                              |            |            | 4 5                     |                         | 28.10 A.6                                |                                         | <del>-0.160</del> 0.255                    |                                                  |
|               | E   | _131   |                           |                              | 1111       |            |                         | 26.64                   | 25.49                                    | 1,85                                    | 0.370                                      | 0.370                                            |
|               | F   | 109    |                           |                              | <b>JHY</b> |            | 5                       | 25.78                   | 26.96                                    | 1.18                                    | 0.736                                      | 0.136                                            |
| _             | G   | 104    |                           |                              | 11         |            | 4                       | 28.13                   | 29.39                                    | 1.26                                    | 0.315                                      | 0.252                                            |
|               |     | 112    | 1                         |                              | _11        |            | 3                       | 28.15                   | 29.36                                    | 1.21                                    |                                            | 0.242                                            |
|               | Н   | 176    | i),                       |                              | H          |            | 5                       | 29.87                   | 31.26                                    | 1.39                                    | 0.278                                      | 0.178                                            |

Dry wt. calculations checked (date, initials): 6/20/16 Am

Biomass calculations checked (date, initials): 6/20/16 Am



# REPRODUCTION AND WEIGHT DATA (Test Species: A. bahia

|                                  |                                  | <u>Date</u> | <u>Time</u> | <u>Initials</u> |
|----------------------------------|----------------------------------|-------------|-------------|-----------------|
| Project Number: 70005.15         | Organisms sexed:                 | 6/17/16     | 1331        | MJ              |
| Client: Jordan Valley            | Loaded tins placed in oven:      | 6/17/16     | 1357        | ms              |
| QC Test Number: TN- jtg- 206     | Loaded tins removed from oven: _ | 6/18/16     | 1515        | NΜ              |
| Tin Lot: 1860                    | Loaded tins weighed:             | 6/18/16     | 1531        | NM              |
| 2 Town (20): Start 20 6 End: [6] | Oven Number: RI M.01             | Balanca M   | lumber P01  | 15825           |

| Test<br>Conc. | Rep | Tin# | # Females<br>with<br>Eggs | # Females<br>without<br>Eggs | # Males | # Immatures | C<br># Orgs.<br>Weighed | A<br>Wt. of Tin<br>(mg) | B<br>Wt. of Tin &<br>Dried Orgs.<br>(mg) | <b>B-A</b><br>Total Dry<br>Org. Weight<br>(mg) | (B-A)/C<br>Mean Dry<br>Org. Weight<br>(mg) | (if applicable)<br>Mean Biomass<br>(mg/exp. org.) |
|---------------|-----|------|---------------------------|------------------------------|---------|-------------|-------------------------|-------------------------|------------------------------------------|------------------------------------------------|--------------------------------------------|---------------------------------------------------|
| 75%           | A   | 135  |                           | К                            | iil     |             | 5                       | 25.73                   | 27.10                                    | 1,37                                           | 0-274                                      | 8.274                                             |
|               | В   | 182  |                           | ıl                           | 1       |             | 3                       | 28.61                   | 36.14                                    | 1,53                                           | 0.510                                      | 0.306                                             |
|               | С   | 56   | ı                         |                              | 1 !{    |             | 4                       | 27.11                   | 29.29                                    | 2,18                                           | 0.545                                      | 0.436                                             |
| 0             | D   | 183  |                           | III                          |         |             | 4                       | 27.23                   | 28.21                                    | 0.98                                           | 0.245                                      | 0.196                                             |
|               | E   | 243  |                           | lı.                          |         |             | 3                       | 29.27                   | 36.07                                    | 0.80                                           | 0.267                                      | 0.160                                             |
|               | F   | 148  |                           | 1(                           |         |             | Z                       | 25.70                   | 26.45                                    | 0.75                                           | 0.375                                      | 0.150                                             |
|               | G   | 189  |                           |                              | 1       |             | l                       | 26.66                   | 26,94                                    | 0.28                                           | 0.280                                      | 0,056                                             |
|               | H   | 245  |                           |                              | lų      |             | 4                       | 30.22                   | 31.41                                    | 149                                            | 0.298                                      | 0.238                                             |
| 100%          | A   | إزوا |                           |                              | 11      |             | 2                       | 27.46                   | 29.96                                    | 2.56                                           | 1.25                                       | 6.500                                             |
|               | В   | 205  |                           |                              | ł       |             | 1                       | 31.53                   | -                                        | 0.20                                           | 6.200                                      | 0.040                                             |
|               | С   | -    |                           | ,                            | _       | _           | _                       | ,                       |                                          |                                                |                                            |                                                   |
|               | D   | _    |                           | -                            |         | _           | _                       |                         |                                          |                                                |                                            |                                                   |
|               | E   |      |                           | _                            | _       | _           |                         |                         |                                          |                                                |                                            |                                                   |
|               | F   | 201  |                           |                              | я       |             | 2                       | 29.07                   | 29.55                                    | 0.48                                           | - 0. ZW                                    | 0.096                                             |
|               | G   | -    | _                         | _                            | _       | _           | _                       |                         |                                          |                                                |                                            |                                                   |
|               | Н   | -    | _                         |                              | -       | _           | _                       |                         |                                          |                                                |                                            |                                                   |

Dry wt. calculations checked (date, initials): 6/20/16 M Biomass calculations checked (date, initials): 6/20/16 M



# **TOXICITY TEST WATER QUALITY DATA SHEET - NEW SOLUTIONS**

| Project Number:            | TEST ORGANISM    |                | Beginning Date: | 6110/16 | Time: 1411  |
|----------------------------|------------------|----------------|-----------------|---------|-------------|
| Client:Jordan Valley       | Common Name:     | Opossum shrimp | Ending Date:    | 6117/16 | Time: 13.3/ |
| QC Test Number: TN- i6-206 | Scientific Name: | A. bahia       |                 |         |             |

TARGET VALUES: Temp: 26±1 °C pH: 6.0 - 9.0 DO: ≥4.0 mg/L Salinity: 30±2 ppt Photoperiod: 16 ℓ, 8 ℓ Light Intensity: 50 - 100 fc

|           |          |              |      | Temp  | eratu | re (°C | ;)    |       |     |            |      | pН   |      |      |      |     | Diss | solved     | Охуд   | gen (m | ng/L) |             |      | C            | Sal         | tivity<br>inity ( | (US/Cr        | n)   |        |
|-----------|----------|--------------|------|-------|-------|--------|-------|-------|-----|------------|------|------|------|------|------|-----|------|------------|--------|--------|-------|-------------|------|--------------|-------------|-------------------|---------------|------|--------|
| Test Conc | Rep      | 0            | 1    | 2     | 3     | 4      | 5     | 6     | 0   | 1          | 2    | 3    | 4    | 5    | 6    | 0   | 1    | 2          | 3      | 4      | 5     | 6           | 0    | 1            | 2           | 3                 | 4             | 5    | 6      |
| Control   |          | 25.0         | Use  | 76.6  | 710.1 | 26-2   | 26.7  | 263   | 7.2 | <b>B</b> A | 8.0  | 8.0  | 1.1  | 7.3  | 7.60 | 7.0 | 6.0  | 64         | 69     | 6.7    | 6.7   | <b>6</b> -5 | 27.1 | 275          | 27.5        | 28.2              | 28.2          | zve  | 280    |
| 50%       |          | 25.0         | 25.0 | Ziale | 25.7  | 26.1   | 210.1 | 26.3  | 7.2 | \$D        | 7.8  | 7,9  | 7.2  | 7.2. | 7.6  | 6.9 | 6.7  | ω <u>5</u> | 6.9    | 68     | 6.8   | 6.7         | 27.4 | 27.2         | 27.3        | 27.9              | 27.7          | 27.6 | no     |
| 75%       |          |              |      |       |       |        |       | 25.7  |     |            |      |      |      |      |      |     |      |            |        |        |       |             |      |              |             |                   |               |      |        |
| 100%      |          |              |      |       |       |        |       | 25.6  |     |            |      |      |      |      |      |     |      |            |        |        |       |             |      |              |             |                   |               |      | - Ant- |
|           |          |              | 250  |       |       |        |       |       |     |            |      |      |      |      |      |     |      |            |        |        |       |             |      |              |             | 611               | L 1(-)        |      | 2130   |
|           |          |              |      |       |       |        |       |       |     |            |      |      |      |      |      |     |      |            |        |        |       |             |      |              |             |                   |               |      |        |
|           |          |              |      |       |       |        |       |       |     |            |      |      |      |      |      |     |      |            |        |        |       |             |      |              |             |                   |               |      |        |
| Meter N   | umber    | <i>;</i> .10 | i_1a | 6:10  | 614   | ina.   | ድግሄ   | C.TER | 178 | 436        | (20) | A74  | £=10 | 1-4  | 1170 | /70 |      |            | 5 = 6/ | 1-10   |       |             | 1-76 | 66           |             |                   | 1.00          |      |        |
| Meter N   | Time     | 1401         | 205  | MOK!  | CWG   | YHUS   | on    | CALL) | 140 | 200        | 0952 | 1000 | CACK | 018  | 0917 | LUM | 105  | 6952       | 10 18  | W.O    | 618   | 618         | ELAS | 1074<br>1075 | 679<br>0000 | 678<br>cens       | 10 10<br>1005 | 678  | 618    |
|           | Initials | M            | 58   | M     | 36    | MS     | B     | MJ    | MJ  | 33         | MT   | JB.  | M    | 32   | MT   | MIT | 38   | MI         | 7A     | MAS    | 1/2   | AAT         | MIT  | -9/3         | AFT         | 74                | V1(2)         | 42   | MJ     |

113 313

> ATS-114 06/21/06



## **TOXICITY TEST WATER QUALITY DATA SHEET - OLD SOLUTIONS**

| Project Number:70005.15    | TEST ORGANISM                    | Beginning Date:     | Time: 1411 |
|----------------------------|----------------------------------|---------------------|------------|
| Client: Jordan Valley      | Common Name: Opossum shrimp      | Ending Date: 617/16 | Time: 1331 |
| QC Test Number: TN- 16-206 | Scientific Name: <u>A. bahia</u> |                     |            |

TARGET VALUES: Temp: 26±1 °C pH: 6.0 - 9.0 DO: ≥4.0 mg/L Salinity: 30±2 ppt Photoperiod: 16 € 8 € Light Intensity: 50 - 100 fc

|           |       |                   |      | Гетр            | eratui     | Э°) в | )    |           |     |     |     | рН  |             |     |     |     | Dis         | solved | Охуд        | en (m | ıg/L) |     |      | C            |      | tivity |            | n)   |      |
|-----------|-------|-------------------|------|-----------------|------------|-------|------|-----------|-----|-----|-----|-----|-------------|-----|-----|-----|-------------|--------|-------------|-------|-------|-----|------|--------------|------|--------|------------|------|------|
| Test Conc | Rep   | 1                 | 2    | 3               | 4          | 5     | 6    | 7         | 1   | 2   | 3   | 4   | 5           | 6   | 7   | 1   | 2           | 3      | 4           | 5     | 6     | 7   | 1    | 2            | 3    | 4      | 5          | 6    | 7    |
| Control   |       | 26D               | 258  | 25 <sup>1</sup> | 251        | 15.N  | 25D  | 250       | 8.5 | 85  | 8.2 | 7.8 | <b>f</b> .3 | 3.O | 74  | 65  | 5.45<br>6.4 | 2.0    | <b>6</b> -5 | 5.g   | 60    | 65  | 27.7 | <u>የ</u> ገ.ግ | 28.5 | 286    | 28.3       | 28.2 | 219  |
| 50%       |       | 730 D             | 259  | 251             | <b>157</b> | Bis   | 25-3 | <i>50</i> | 8.1 | ୫-3 | 8.1 | 18  | 8.2         | 80  | 7.1 |     | 5.7<br>6.2  |        | GD          | 5,4   | 5.i   | 62  | 275  | ก.5          | 28.2 | 28.2   | 27.8       | 21.9 | 27.8 |
| 75%       |       | 20 <sup>C</sup> C | 25.7 | 25,0            | 251        | £3.3  | 253  | 25.)      | 8.0 | 8-1 | 8.1 | 7.8 | 8,1         | 8.0 | 7.2 |     | -           | _      | 53          | 5.0   | 43    | 5,7 | 27.2 | 27.2         | 279  | 28.0   | 215        | 27:7 | 27.6 |
| 100%      |       | 210.0             | 25.8 | 15°C            | 25.0       | 25.\  | 253  | 25.1      | 6.8 | 8.1 | 8.1 | 1.8 | જ.1         | 80  | 7.3 | 4.8 | 50          | 65     | 5.2         | 5,4   | 4.6   | ร.ว | 27.1 | 27.1         | 28.0 | 21.9   | 213        | 270  | T1-3 |
|           |       |                   |      |                 |            |       |      |           |     |     |     |     |             |     |     |     |             |        |             |       |       |     |      |              |      |        |            |      |      |
|           |       |                   |      |                 |            |       |      |           |     |     |     |     |             |     |     |     |             |        |             |       |       |     |      |              |      |        |            |      |      |
| Meter     | Numbe |                   |      |                 |            |       |      |           |     |     |     |     |             |     |     |     |             |        |             |       |       |     |      |              |      |        |            |      |      |
|           | Time  | _                 |      | $\overline{}$   |            |       |      |           | 35  |     |     |     |             |     |     |     |             |        |             |       |       |     |      |              |      |        | 1025<br>OB |      | ,    |

A 12.

ATS-T14 06/21/06



# **TOXICOLOGY LABORATORY BENCH SHEET**

| Project Number:    | 70005.15   |                                       |
|--------------------|------------|---------------------------------------|
| Client: Jorda      | n Valley   |                                       |
| QC Test Number:    | TN- 16-206 |                                       |
| Date/Time/Initials |            | Comments/Activity                     |
| 6/14/10 0842 MJ    |            | 1007. samples produced a salt-deposit |

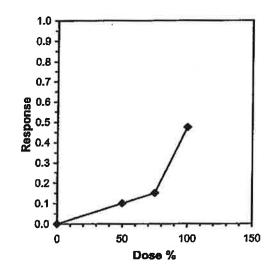


## **TOXICOLOGY LABORATORY BENCH SHEET**

| Project Number: _   | 70005.15  |  |
|---------------------|-----------|--|
| Client: <u>Jord</u> | an Valley |  |
| QC Test Number:     | TN-16-206 |  |

Aliquot of sample warmed to test temperature, then aerated if supersaturated:

|          |                                                     | ON AIR                                                                                                   |                                                                                                                               |                       | OFF AIR     |            |
|----------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|------------|
| Sample # | Initial DO<br>(mg/L)                                | Time                                                                                                     | Initials                                                                                                                      | Final DO<br>(mg/L)    | Time        | Initials   |
| ATG-277  | 6.7                                                 |                                                                                                          | MJ                                                                                                                            |                       | <del></del> | _          |
| AT6-277  | 7.60                                                | 0902                                                                                                     | JB                                                                                                                            | 6.7                   | 0912        | SB         |
| ATG-277  | 8.3                                                 | 0921                                                                                                     | MJ                                                                                                                            | 6.7                   | 0931        | MS         |
| AT6-277  | 9.1                                                 | 0902                                                                                                     | JB                                                                                                                            | 7.1                   | 0912        | JB         |
| ATG- 277 | 9.0                                                 | 0840                                                                                                     | MOT                                                                                                                           | 6.9                   | 0850        | MJ         |
| A16-277  | 9.7                                                 | 0850                                                                                                     | IB                                                                                                                            | 7.2                   | 0900        | IB         |
| A16-277  | 9.3                                                 | 0855                                                                                                     | MO                                                                                                                            | 7.0                   | 0905        | MT         |
| İ        |                                                     |                                                                                                          |                                                                                                                               |                       |             |            |
|          | A 1                                                 |                                                                                                          |                                                                                                                               |                       |             |            |
|          |                                                     |                                                                                                          |                                                                                                                               |                       |             |            |
|          |                                                     | **                                                                                                       |                                                                                                                               |                       |             |            |
|          |                                                     |                                                                                                          |                                                                                                                               |                       |             |            |
|          |                                                     |                                                                                                          |                                                                                                                               |                       | i           |            |
|          |                                                     |                                                                                                          |                                                                                                                               |                       |             |            |
|          |                                                     |                                                                                                          |                                                                                                                               |                       |             | 20         |
|          |                                                     |                                                                                                          |                                                                                                                               |                       |             | :          |
|          |                                                     |                                                                                                          |                                                                                                                               |                       |             |            |
|          | ATG-277<br>ATG-277<br>ATG-277<br>ATG-277<br>ATG-277 | Sample # Initial DO (mg/L)  AT6-277 6.7  AT6-277 7.6  AT6-277 8.3  AT6-277 9.1  AT6-277 9.0  AT6-277 9.7 | Sample # (mg/L) Time  AT6-277 6.7 —  AT6-277 7.6 0902  AT6-277 8.3 0921  AT6-277 9.1 0902  AT6-277 9.0 0840  AT6-277 9.7 0850 | Sample #   Initial DO | Initial DO  | Initial DO |


|              |           |        | Mysld     | Survival,       | Growth a | ind Fecu | ndity Test | 48 Hr St | ırvival             |  |
|--------------|-----------|--------|-----------|-----------------|----------|----------|------------|----------|---------------------|--|
| Start Date:  | 6/10/2016 |        | Test ID:  | TN-16-206       | 3        | WH       | Sample ID  | ):       | Jordan Valley       |  |
| End Date:    | 6/17/2016 |        | Lab ID:   | ,               |          |          | Sample Ty  | /pe:     | 3                   |  |
| Sample Date: |           |        | Protocol: | <b>EPAM 87-</b> | EPA Mari | ne       | Test Spec  | les:     | MY-Mysidopsis bahia |  |
| Comments:    |           |        |           |                 |          |          |            |          |                     |  |
| Conc-%       | 1         | 2      | 3         | 4               | 5        | 6        | 7          | 8        |                     |  |
| Control      | 1.0000    | 1.0000 | 1.0000    | 1.0000          | 1.0000   | 1.0000   | 1.0000     | 1.0000   |                     |  |
| 50           | 0.8000    | 1.0000 | 0.8000    | 1.0000          | 1.0000   | 0.8000   | 0.8000     | 1.0000   |                     |  |
| 75           | 1.0000    | 0.6000 | 0.8000    | 1.0000          | 0.8000   | 0.6000   | 1.0000     | 1.0000   | *                   |  |
| 100          | 0.8000    | 0.6000 | 0.6000    | 0.2000          | 0.6000   | 0.6000   | 0.6000     | 0.2000   |                     |  |

|         |        |        | ansform: | Arcsin Sc | uare Roo |        | Rank | 1-Tailed | Isot     | onic · |        |
|---------|--------|--------|----------|-----------|----------|--------|------|----------|----------|--------|--------|
| Conc-%  | Mean   | N-Mean | Mean     | - Min     | Max      | CV%    | N    | Sum      | Critical | Mean   | N-Mean |
| Control | 1.0000 | 1.0000 | 1.3453   | 1.3453    | 1.3453   | 0.000  | 8    |          |          | 1.0000 | 1.0000 |
| 50      | 0.9000 | 0.9000 | 1.2262   | 1.1071    | 1.3453   | 10.381 | 8    | 52.00    | 48.00    | 0.9000 | 0.9000 |
| 75      | 0.8500 | 0.8500 | 1,1709   | 0.8861    | 1.3453   | 17.443 | 8    | 52.00    | 48.00    | 0.8500 | 0.8500 |
| *100    | 0.5250 | 0.5250 | 0.8081   | 0.4636    | 1.1071   | 27.951 | 8    | 36.00    | 48.00    | 0.5250 | 0.5250 |

| Auxiliary Tests                                                        |      |            |         |         | Statistic | Critical | Skew    | Kurt    |
|------------------------------------------------------------------------|------|------------|---------|---------|-----------|----------|---------|---------|
| Shapiro-Wilk's Test indicates nor<br>Equality of variance cannot be co |      | ution (p > | 0.01)   |         | 0.92724   | 0.904    | -0.6973 | 0.23513 |
| Hypothesis Test (1-tail, 0.05)                                         | NOEC | LOEC       | ChV     | TU      |           |          |         |         |
| Steel's Many-One Rank Test                                             | 75   | 100        | 86.6025 | 1.33333 |           |          |         |         |

|       |        |        |        | Linea  | ar Interpolation | (200 Resamples) |
|-------|--------|--------|--------|--------|------------------|-----------------|
| Point | %      | SD     | 95%    | CL     | Skew             |                 |
| IC05* | 25.000 | 11.429 | 16.667 | 53.586 | 1.1194           |                 |
| IC10  | 50.000 | 13.076 | 33.333 | 77.150 | 0.4123           |                 |
| IC15  | 75.000 | 8.943  | 50.000 | 80.769 | -0.8034          | 1.0             |
| IC20  | 78.846 | 5.006  | 66.625 | 84.783 | -0.9554          | 1               |
| IC25  | 82.692 | 4.012  | 75.000 | 89.286 | -0.1258          | 0.9             |
| C40   | 94,231 |        |        |        |                  | 0.8             |
| C50   | >100   |        |        |        |                  | 0.7             |

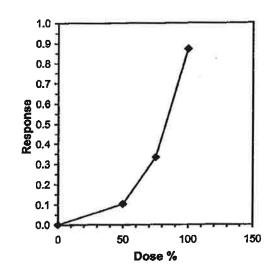
\* indicates IC estimate less than the lowest concentration



|              |           |        | Mysic     | Survival,       | Growth a | nd Fecu | ndity Test- | 96 Hr St | ırvivai             |
|--------------|-----------|--------|-----------|-----------------|----------|---------|-------------|----------|---------------------|
| Start Date:  | 6/10/2016 |        |           | TN-16-206       |          |         | Sample ID   |          | Jordan Valley       |
| End Date:    | 6/17/2016 |        | Lab ID:   |                 |          |         | Sample Ty   | /pe:     |                     |
| Sample Date: |           |        | Protocol: | <b>EPAM 87-</b> | EPA Mari | ne      | Test Spec   | les:     | MY-Mysidopsis bahla |
| Comments:    |           |        |           |                 |          |         |             |          |                     |
| Conc-%       | 1         | 2      | 3         | 4               | 5        | 6       | 7           | 8        |                     |
| Control      | 1,0000    | 1.0000 | 0.8000    | 1.0000          | 1.0000   | 1.0000  | 1.0000      | 1.0000   |                     |
| 50           |           | 1.0000 | 0.8000    | 1.0000          | 1.0000   | 0.8000  | 0.6000      | 1.0000   |                     |
| 75           |           | 0.6000 | 0.8000    | 0.8000          | 0.6000   | 0.6000  | 0.6000      | 1.0000   |                     |
| 100          | 117.7.7.7 | 0.4000 |           | 0.0000          | 0.0000   | 0.6000  | 0.0000      | 0.2000   |                     |

|         |        |        | Transform: Arcsin Square Root |        |        |        |   |        | 1-Tailed |        | Number | Total  |
|---------|--------|--------|-------------------------------|--------|--------|--------|---|--------|----------|--------|--------|--------|
| Conc-%  | Mean   | N-Mean | Mean                          | Min    | Max    | CV%    | N | t-Stat | Critical | MSD    | Resp   | Number |
| Control | 0.9750 | 1.0000 | 1.3155                        | 1,1071 | 1.3453 | 6.400  | 8 |        |          |        | 1      | 40     |
| 50      | 0.8750 | 0.8974 | 1.1986                        | 0.8861 | 1,3453 | 14.410 | 8 | 1.209  | 2.156    | 0.2086 | 5      | 40     |
| *75     | 0.7500 | 0.7692 | 1.0561                        | 0.8861 | 1.3453 | 19.209 | 8 | 2.681  | 2.156    | 0.2086 | 10     | 40     |
| *100    | 0.2000 | 0.2051 | 0.4527                        | 0.2255 | 0.8861 | 59.165 | 8 | 8.918  | 2.156    | 0.2086 | 32     | 40     |

| Auxiliary Tests                     |              |            |         |    | Statistic |        | Critical |         | Skew    | Kurt    |
|-------------------------------------|--------------|------------|---------|----|-----------|--------|----------|---------|---------|---------|
| Shapiro-Wilk's Test indicates non   | mai distribu | rtion (p > | 0.01)   |    | 0.95115   |        | 0.904    |         | 0.32872 | -0.4883 |
| Bartlett's Test indicates equal var | iances (p =  | 0.06)      | · ·     |    | 7.58303   |        | 11.3449  |         |         | -       |
| Hypothesis Test (1-tail, 0.05)      | NOEC         | LOEC       | ChV     | TU | MSDu      | MSDp   | MSB      | MSE     | F-Prob  | df      |
| Dunnett's Test                      | 50           | 75         | 61.2372 | 2  | 0.13641   | 0.1457 | 1.17759  | 0.03745 | 4.2E-09 | 3, 28   |

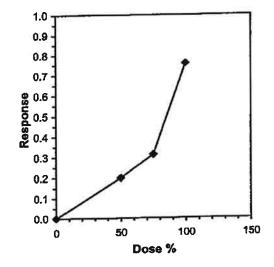

|           |         |         |          | Ma          | xlmum Likeliho | od-Probit         |          |                    |         |         |      |
|-----------|---------|---------|----------|-------------|----------------|-------------------|----------|--------------------|---------|---------|------|
| Parameter | Value   | SE      | 95% Fldu | cial Limits | Control        | Chl-Sq            | Critical | P-value            | Mu      | Sigma   | lter |
| Slope     | 13,1795 | 2,92689 | 7.44281  | 18.9162     | 0.025          | 1.4643            | 3.84146  | 0.23               | 1.94077 | 0.07588 | 10   |
| Intercept | -20.578 | 5.70125 | -31.753  | -9.4039     |                |                   |          |                    |         |         |      |
| TSCR      | 0.07407 | 0.02958 | 0.01609  | 0.13205     |                | 1.0               |          |                    | 117     |         |      |
| Point     | Probits | %       | 95% Fidu | cial Limits |                | 0.9               |          |                    | 11/     |         |      |
| EC01      | 2.674   | 58.1106 | 41.2877  | 66.8966     |                |                   |          |                    | #/      |         |      |
| EC05      | 3.355   | 65.4582 | 50.7891  | 72.9534     |                | 0.8               |          |                    | *       | - 1     |      |
| EÇ10      | 3.718   | 69.7477 | 56.6467  | 76.4997     |                | 0.7               |          |                    | 11      |         |      |
| EC15      | 3.964   | 72.7995 | 60.92    | 79.0616     |                |                   |          |                    | #/      |         |      |
| EC20      | 4,158   | 75.3199 | 64.4918  | 81.2259     |                | <b>9</b> 0.6      |          |                    | N .     |         |      |
| EC25      | 4.326   | 77.5516 | 67.665   | 83.2004     |                | 0.6<br>0.5<br>0.4 | 1        |                    | 4       |         |      |
| EC40      | 4.747   | 83.4728 | 75.9194  | 88.9169     |                | 9 A               | l        |                    | III     | 1       |      |
| EC50      | 5.000   | 87.2505 | 80.8041  | 93.1828     |                | <b>2</b> 0.4      | 1        |                    | 1       | 1       |      |
| EC60      | 5.253   | 91.1991 | 85.36    | 98.3891     |                | 0.3 -             | i        |                    | 11      | 1       |      |
| EC75      | 5.674   | 98.1624 | 92.033   | 109.422     |                | 0.2               | i        |                    | M       | 1       |      |
| EC80      | 5.842   | 101.071 | 94.4574  | 114.579     |                | -                 | ł        |                    | -/1     | - 1     |      |
| EC85      | 6.036   | 104.57  |          | 121.1       |                | 0.1 -             |          | ()                 | 71      |         |      |
| EC90      | 6.282   | 109.146 | 100.591  | 130.061     |                | 0.0 -             |          | <del>m + + +</del> |         |         |      |
| EC95      | 6.645   | 116.298 | 105.606  | 144.889     |                | 9                 | 1        | 10                 | 100     | 1000    |      |
| EC99      | 7.326   | 131.003 | 115.289  | 178.043     |                |                   |          | Dose               | %       |         |      |

|              |           |        |                      | Survival, |          |        | Sample ID | )-     | Jordan Valley            |  |
|--------------|-----------|--------|----------------------|-----------|----------|--------|-----------|--------|--------------------------|--|
| Start Date:  | 6/10/2016 |        |                      | TN-16-206 | 2        |        | Sample Ty |        | y Children               |  |
| End Date:    | 6/17/2016 |        | Lab ID:<br>Protocol: | EDAM 07   | EDA Mari | ne:    | Test Spec | •      | MY-Mysidopsis bahia      |  |
| Sample Date: |           |        | Protocoi:            | EPAM 0/-  | EFA Man  | IIG.   | rear opeo | 100.   | in injuracy and a series |  |
| Comments:    |           |        |                      |           |          |        |           |        |                          |  |
| Conc-%       | 1         | 2      | 3                    | 4         | 5        | 6      |           | _ 8    |                          |  |
| Control      | 1.0000    | 1.0000 | 0.8000               | 1.0000    | 1.0000   | 1.0000 | 1.0000    | 1.0000 |                          |  |
| 50           | 0.8000    | 1.0000 | 0.8000               | 1.0000    | 1.0000   | 0.8000 | 0.6000    | 1.0000 |                          |  |
| 75           |           | 0.6000 | 0.8000               | 0.8000    | 0.6000   | 0.4000 | 0.2000    | 0.8000 |                          |  |
| 100          | ****      | 0.2000 |                      | 0.0000    | 0.0000   | 0.4000 | 0.0000    | 0.0000 |                          |  |
| 100          | 0,.000    |        |                      |           |          |        |           |        |                          |  |

|         |        |        | Tra    | ansform: | Arcsin Sc | uare Roo | t _ | 1-Tailed Isotonic |          |        |        |        |
|---------|--------|--------|--------|----------|-----------|----------|-----|-------------------|----------|--------|--------|--------|
| Conc-%  | Mean   | N-Mean | Mean   | Min      | Max       | CV%      | N   | t-Stat            | Critical | MSD    | Mean   | N-Mean |
| Control | 0.9750 | 1.0000 | 1.3155 | 1,1071   | 1,3453    | 6.400    | 8   |                   |          |        | 0.9750 | 1.0000 |
| 50      | 0.8750 | 0.8974 | 1.1986 | 0.8861   | 1.3453    | 14.410   | 8   | 1.172             | 2.156    | 0.2151 | 0.8750 | 0.8974 |
| *75     | 0.6500 | 0.6667 | 0.9484 | 0.4636   | 1.3453    | 29.432   | 8   | 3.679             | 2.156    | 0.2151 | 0.6500 | 0.6667 |
| *100    | 0.1250 | 0.1282 | 0.3701 | 0.2255   | 0.6847    | 56.978   | 8   | 9.475             | 2.156    | 0.2151 | 0.1250 | 0.1282 |

| Auxiliary Tests                                      | ======================================= |      | Statistic |       | Critical |         | Skew    | Kurt    |         |       |
|------------------------------------------------------|-----------------------------------------|------|-----------|-------|----------|---------|---------|---------|---------|-------|
| Shapiro-Wilk's Test indicates nor                    | 0.97311                                 |      |           | 0.904 |          | -0.198  | 0.38266 |         |         |       |
| Bartlett's Test indicates equal variances (p = 0.04) |                                         |      |           |       | 8.15012  |         | 11.3449 |         |         |       |
| Hypothesis Test (1-tail, 0.05)                       | NOEC                                    | LOEC | ChV       | TU    | MSDu     | MSDp    | MSB     | MSE     | F-Prob  | df    |
| Dunnett's Test                                       | 50                                      | 75   | 61.2372   | 2     | 0.14165  | 0.15129 | 1.41717 | 0.03982 | 1.1E-09 | 3, 28 |

|       |        |        |        | Lines  | r Interpolation | (200 Resamples) |
|-------|--------|--------|--------|--------|-----------------|-----------------|
| Point | %      | SD     | 95%    | CL_    | Skew            |                 |
| IC05* | 24.375 | 13.798 | 12.500 | 54.205 | 0.5982          |                 |
| IC10* | 48,750 | 10.352 | 25.000 | 58.418 | -0.6508         |                 |
| IC15  | 55.139 | 7.395  | 37.500 | 69.263 | -0.8053         | 1.0             |
| IC20  | 60.556 | 6.535  | 50.000 | 75.772 | -0.0133         | 0.9             |
| IC25  | 65.972 | 6.093  | 56.233 | 77.648 | -0.0668         | 0.9 ]           |
| IC40  | 78.095 | 3.628  | 69.679 | 82.971 | -0.6188         | 0.8             |
| IC50  | 82.738 | 2.879  | 76.238 | 87.031 | -0.4792         | 0.7             |

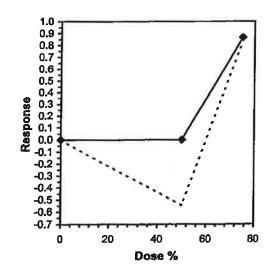



| Start Date:               | 6/10/2016 |        |           | TN-16-206 |           |        | Sample ID<br>Sample Ty | ):<br>/De: | Jordan Valley       |  |
|---------------------------|-----------|--------|-----------|-----------|-----------|--------|------------------------|------------|---------------------|--|
| End Date:<br>Sample Date: | 6/17/2016 |        | Protocol: | EPAM 87-  | EPA Marii |        | Test Spec              |            | MY-Mysidopsis bahia |  |
| Comments:                 |           |        |           |           | 5         | 6      | 7 ·                    | 8          | S.D.                |  |
| Conc-%                    | 1         |        | 3         | 0.4000    | 0.0040    | 0.3300 | 0.4040                 | 0.2460     | 0.05769             |  |
| Control                   | 0.2660    | 0.3060 | 0.3240    | 0.4000    | 0.3640    |        |                        | 0.2780     |                     |  |
| 50                        |           | 0.3100 | 0.2040    | 0.3700    | 0.2360    | 0.2520 |                        |            | - 44546             |  |
| _                         |           | 0.3060 |           | 0.1960    | 0.1600    | 0.1500 | 0.0560                 | 0.2380     |                     |  |
| 75                        |           |        | • • • • • |           | 0.0000    | 0.0960 | 0.0000                 | 0.0000     | 0.17331             |  |
| 100                       | 0.5000    | 0.0400 | 0.0000    | 0.0000    | 0.0000    | 0.0800 | 0.0000                 | 0.0        |                     |  |
|                           |           |        |           |           |           |        |                        |            |                     |  |

|                                       |                                      |                                      |                                      | Transform                            | n: Untran                            | sformed                               |             |                           | 1-Tailed                  |        |                                      | onic   |
|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|-------------|---------------------------|---------------------------|--------|--------------------------------------|--------|
| C 0/                                  | Mean                                 | N-Mean                               | Mean                                 | Min                                  | Max                                  | CV%                                   | N           | t-Stat                    | Critical                  | MSD    | Mean                                 | N-Mean |
| Conc-%<br>Control<br>*50<br>75<br>100 | 0.3300<br>0.2645<br>0.2270<br>0.0795 | 1.0000<br>0.8015<br>0.6879<br>0.2409 | 0.3300<br>0.2645<br>0.2270<br>0.0795 | 0.2460<br>0.2040<br>0.0560<br>0.0000 | 0.4040<br>0.3700<br>0.4360<br>0.5000 | 17.481<br>20.288<br>50.742<br>218.000 | 8<br>8<br>8 | 2.351<br>49.000<br>44.000 | 1.761<br>48.000<br>48.000 | 0.0491 | 0.3300<br>0.2645<br>0.2270<br>0.0795 | 0.6879 |

|                                                                                       | Statistic                |       | Critical           |  | Skew    | Kurt    |
|---------------------------------------------------------------------------------------|--------------------------|-------|--------------------|--|---------|---------|
| Auxiliary Tests Shapiro-Wilk's Test Indicates normal distribution (p > 0.01)          | 0.9677                   |       | 0.844              |  | 0.42276 | -0.5335 |
| F-Test indicates equal variances (p = 0.85)                                           | 1.15567                  | MSDp  | 8.88539<br>MSB MSE |  | F-Prob  | df      |
| Hypothesis Test (1-tail, 0.05) Homoscedastic t Test indicates significant differences | MSDu<br>ferences 0.04906 |       | 0.01716            |  |         | 1, 14   |
| Linear Interpola                                                                      | tion (200 Resam          | ples) |                    |  |         |         |

|             |                 |             |          | Linea      | ır interpol |
|-------------|-----------------|-------------|----------|------------|-------------|
| Point       | %               | SD          | 95%      | CL         | Skew        |
| IC05*       | 12.595          | 9.600       | 8.294    | 49.676     | 2.2649      |
| IC10*       | 25.191          |             |          |            |             |
| IC15*       | 37.786          |             |          |            |             |
| IC20        | 50.333          |             |          |            |             |
| IC25        | 61.333          |             |          |            |             |
| IC40        | 79.915          |             |          |            |             |
| IC50        | 85.508          | 3           |          |            | 1200        |
| * indicates | IC estimate les | ss than the | lowest c | oncentrati | ion         |




| Start Date:<br>End Date:<br>Sample Date:<br>Comments: | 6/10/2016<br>6/17/2016 |        | Lab ID: | TN-16-206<br>EPAM 87- |        | ne     | Sample ID<br>Sample Ty<br>Test Spec | /pe:   | Jordan Valley  MY-Mysidopsis bahia |  |
|-------------------------------------------------------|------------------------|--------|---------|-----------------------|--------|--------|-------------------------------------|--------|------------------------------------|--|
| Conc-%                                                | 1                      | 2      | 3       | 4                     | 5      | 6      | 7                                   | 8      |                                    |  |
| Control                                               | 0.0000                 | 0.5000 | 0.3333  | 0.3333                | 1.0000 | 0.3333 | 0.5000                              | 0.0000 |                                    |  |
| 50                                                    | 0.6667                 | 0.0000 | 0.0000  | 1.0000                | 0.5000 | 1.0000 | 1.0000                              |        |                                    |  |
| 75                                                    | 0.0000                 | 0.0000 | 1.0000  | 0.0000                | 0.0000 | 0.0000 | 0.0000                              |        |                                    |  |

|         |        |        | Tra    | ansform: | Arcsin Sc | uare Roof | t | 1-Tailed |          |        | Isotonic |        |
|---------|--------|--------|--------|----------|-----------|-----------|---|----------|----------|--------|----------|--------|
| Conc-%  | Mean   | N-Mean | Mean   | Min      | Max       | CV%       | N | t-Stat   | Critical | MSD    | Mean     | N-Mean |
| Control | 0.3750 | 1.0000 | 0.7092 | 0.5236   | 1.2094    | 31.846    | 8 |          |          |        | 0.5241   | 1.0000 |
| 50      | 0.5952 |        | 0.8702 | 0.5236   | 1.2094    | 30.849    | 7 | -1.228   | 2.093    | 0.2745 | 0.5241   | 1.0000 |
| 75      | 0.1429 | 0.3810 | 0.4670 | 0.2527   | 1.0472    | 57.352    | 7 | 1.847    | 2.093    | 0.2745 | 0.0714   | 0.1363 |

| Auxiliary Tests                     |        | Statistic |        | Critical |         | Skew    | Kurt    |         |         |       |
|-------------------------------------|--------|-----------|--------|----------|---------|---------|---------|---------|---------|-------|
| Shaplro-Wilk's Test indicates nor   | 0.9054 |           |        | 0.878    |         | 0.9671  | 0.75356 |         |         |       |
| Bartlett's Test indicates equal var |        | 0.2351    | 0.2351 |          | 9.21034 |         |         |         |         |       |
| Hypothesis Test (1-tail, 0.05)      | NOEC   | LOEC      | ChV    | TU       | MSDu    | MSDp    | MSB     | MSE     | F-Prob  | df ·  |
| Bonferroni t Test                   | 75     | >75       |        | 1.33333  | 0.24673 | 0.58174 | 0.28878 | 0.06421 | 0.02517 | 2, 19 |

|       |        |      | Line        | ear Interpolation (200 Resamples) |
|-------|--------|------|-------------|-----------------------------------|
| Point | %      | SD   | 95% CL(Exp) | Skew                              |
| IC05  | 51.447 | -184 |             |                                   |
| IC10  | 52.895 |      |             |                                   |
| IC15  | 54.342 |      |             | 1.0 -                             |
| IC20  | 55.789 |      |             | 0.9 ]                             |
| IC25  | 57.236 |      |             | 0.8 🕇                             |
| IC40  | 61,578 |      |             | 0.7 -<br>0.6 -                    |
| IC50  | 64.473 |      |             |                                   |



# ATTACHMENT II

Chemical Analyses (72 pages)

**TestAmerica** 

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratories, Inc.

TestAmerica Job ID: 180-55503-2 Client Project/Site: Jordan Valley

EA Engineering, Science, and Technology

TestAmerica Pittsburgh

Pittsburgh, PA 15238 Tel: (412)963-7058

225 Schilling Circle

Attn: Mike Chanov

(412)963-2428

·····LINKS ········

**Review your project** results through

Total Access

Have a Question?

www.testamericainc.com

Visit us at:

Hunt Valley, Maryland 21031

Authorized for release by: 6/10/2016 10:24:15 AM

Derw G. Samlur

Carrie Gamber, Senior Project Manager

This report has been electronically signed and authorized by the signatory. Electronic signature is

intended to be the legally binding equivalent of a traditionally handwritten signature. Results relate only to the items tested and the sample(s) as received by the laboratory.

carrie.gamber@testamericainc.com

301 Alpha Drive RIDC Park

For:

Suite 400

**ANALYTICAL REPORT** 































































































2

# **Table of Contents**

| Cover Page             | i  |
|------------------------|----|
| Table of Contents      | 2  |
| Case Narrative         | 3  |
| Definitions/Glossary   | 1  |
| Certification Summary  | 5  |
| Sample Summary         | 3  |
| Method Summary         | 7  |
| Lab Chronicle          | 3  |
| Client Sample Results  | 9  |
|                        | 10 |
| QC Association Summary | 12 |
| Chain of Custody       | 13 |
| Receipt Checklists     | 16 |

#### **Case Narrative**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

Job ID: 180-55503-2

Laboratory: TestAmerica Pittsburgh

**Narrative** 

#### **CASE NARRATIVE**

Client: EA Engineering, Science, and Technology

**Project: Jordan Valley** 

Report Number: 180-55503-2

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

#### RECEIPT

The samples were received on 06/08/2016; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 3.2 C.

#### **METALS**

Due to sample matrix effect on the internal standard (ISTD); both indium & yttrium were suppressed; a dilution was required for the following samples: AT6-271 (SALINITY ADJUSTED) (180-55503-1) and (180-55503-E-1-A SD ^).

The following samples were diluted to bring the concentration of sodium to within the instrument's linear range: AT6-271 (SALINITY ADJUSTED) (180-55503-1) and (180-55503-E-1-A SD ^). Elevated reporting limits (RLs) are provided.

#### **GENERAL CHEMISTRY**

Samples AT6-271 (SALINITY ADJUSTED) (180-55503-1) required dilution prior to IC analysis. The reporting limits have been adjusted accordingly.

3

TestAmerica Job ID: 180-55503-2

-

5

Ī

TestAmerica Pittsburgh 6/10/2016

## **Definitions/Glossary**

Client: EA Engineering, Science, and Technology

Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55503-2

#### Qualiflers

| M | eta | ls |
|---|-----|----|
|---|-----|----|

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

### Glossary

TEF

TEQ

| Glossary       |                                                                                                             |
|----------------|-------------------------------------------------------------------------------------------------------------|
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
| a              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CNF            | Contains no Free Liquid                                                                                     |
| DER            | Duplicate error ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision level concentration                                                                                |
| MDA            | Minimum detectable activity                                                                                 |
| EDL            | Estimated Detection Limit                                                                                   |
| MDC            | Minimum detectable concentration                                                                            |
| MDL            | Method Detection Limit                                                                                      |
| ML             | Minimum Level (Dioxin)                                                                                      |
| NC             | Not Calculated                                                                                              |
| ND             | Not detected at the reporting limit (or MDL or EDL if shown)                                                |
| PQL            | Practical Quantitation Limit                                                                                |
| QC             | Quality Control                                                                                             |
| RER            | Relative error ratio                                                                                        |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |
|                |                                                                                                             |

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55503-2

### Laboratory: TestAmerica Pittsburgh

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

| Authority              | Program                     |                          | EPA Region              | Certification ID | Expiration Date |
|------------------------|-----------------------------|--------------------------|-------------------------|------------------|-----------------|
| Jtah                   | NELAP                       |                          | 8                       | PA001462015-4    | 05-31-17        |
| The following analytes | s are included in this repo | rt, but are not certific | ed under this certifica | tion:            |                 |
| Analysis Method        | Prep Method                 | Matrix                   | Analyt                  |                  |                 |
| 200.7 Rev 4.4          | 200.7                       | Water                    | Barium                  |                  |                 |
| 200.7 Rev 4.4          | 200.7                       | Water                    | Boron                   |                  | 10.             |
| 200.7 Rev 4.4          | 200.7                       | Water                    | Calciu                  | m                |                 |
| 200.7 Rev 4.4          | 200.7                       | Water                    | Magne                   | sium             |                 |
| 200.7 Rev 4.4          | 200.7                       | Water                    | Potass                  | ium              |                 |
| 200.7 Rev 4.4          | 200.7                       | Water                    | Sodium                  | n                |                 |
| 200.7 Rev 4.4          | 200.7                       | Water                    | Stronti                 | um               |                 |
| 300.0                  |                             | Water                    | Bromio                  | le               |                 |
| 300.0                  |                             | Water                    | Chloric                 | le               |                 |
| 300.0                  |                             | Water                    | Sulfate                 |                  |                 |

#### Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

| Authority                | Program                     | EPA Region | Certification ID  | Expiration Date |
|--------------------------|-----------------------------|------------|-------------------|-----------------|
| Alaska                   | State Program               | 10         | CA01531           | 06-30-16        |
| Arizona                  | State Program               | 9          | AZ0671            | 10-13-16        |
| California               | LA Cty Sanitation Districts | 9          | 10256             | 01-31-17 *      |
| California               | State Program               | 9          | CA ELAP 2706      | 06-30-16        |
| Guam                     | State Program               | 9          | Cert. No. 12.002r | 01-23-17        |
| Hawaii                   | State Program               | 9          | N/A               | 01-29-17        |
| Kansas                   | NELAP Secondary AB          | 7          | E-10420           | 07-31-16        |
| Nevada                   | State Program               | 9          | CA015312016-2     | 07-31-16        |
| New Mexico               | State Program               | 6          | N/A               | 01-29-17        |
| Northern Mariana Islands | State Program               | 9          | MP0002            | 01-29-17        |
| Oregon                   | NELAP                       | 10         | 4028              | 01-29-17        |
| USDA                     | Federal                     |            | P330-09-00080     | 07-08-18        |
| Washington               | State Program               | 10         | C900              | 09-03-16        |

5

<sup>\*</sup> Certification renewal pending - certification considered valid.

## **Sample Summary**

Client: EA Engineering, Science, and Technology Project/Site: Jordan Valley

TestAmerica Job ID: 180-55503-2

| Lab Sample ID | Client Sample ID            | Matrix | Collected Received            |
|---------------|-----------------------------|--------|-------------------------------|
| 180-55503-1   | AT6-271 (SALINITY ADJUSTED) | Water  | 06/07/16 13:00 06/08/16 11:30 |

### **Method Summary**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55503-2

| Method        | Method Description         | Protocol | Laboratory |
|---------------|----------------------------|----------|------------|
| 300.0         | Anions, Ion Chromatography | MCAWW    | TAL PIT    |
| 200.7 Rev 4.4 | Metals (ICP)               | EPA      | TAL PIT    |
| SM 2320B      | Alkalinity                 | SM       | TAL IRV    |

#### **Protocol References:**

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater",

#### Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

TestAmerica Pittsburgh

### **Lab Chronicle**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55503-2

Client Sample ID: AT6-271 (SALINITY ADJUSTED)

Date Collected: 06/07/16 13:00 Date Received: 06/08/16 11:30

Lab Sample ID: 180-55503-1 Matrix: Water

| Prep Type         | Batch<br>Type        | Batch<br>Method              | Run | Dil<br>Factor | Initial<br>Amount | Final<br>Amount | Batch<br>Number | Prepared or Analyzed | Anaiyst | Lab     |
|-------------------|----------------------|------------------------------|-----|---------------|-------------------|-----------------|-----------------|----------------------|---------|---------|
| Total/NA          | Analysis<br>Instrume | 300.0<br>nt ID: CHICS2100B   |     | 50            | 1 mL              |                 | 178539          | 06/08/16 18:19       | MJH     | TAL PIT |
| Total/NA          | Analysis<br>Instrume | 300.0<br>nt ID: CHICS2100B   |     | 500           | 1 mL              |                 | 178539          | 06/08/16 18:37       | MJH     | TAL PIT |
| Total Recoverable | Prep                 | 200.7                        |     |               | 50 mL             | 50 mL           | 178640          | 06/08/16 12:35       | ANA     | TAL PIT |
| Total Recoverable | Analysis<br>Instrume | 200.7 Rev 4.4                |     | 5             | 50 mL             | 50 mL           | 178721          | 06/09/16 08:03       | RJR     | TAL PIT |
| Total Recoverable | Prep                 | 200.7                        |     |               | 50 mL             | 50 mL           | 178640          | 06/08/16 12:35       | ANA     | TAL PIT |
| Total Recoverable | Analysis<br>Instrume | 200.7 Rev 4.4                |     | 25            | 50 mL             | 50 mL           | 178721          | 06/09/16 08:14       | RJR     | TAL PIT |
| Total/NA          | Analysis<br>Instrume | SM 2320B<br>nt ID: MANTECH01 |     | 1             |                   |                 | 335663          | 06/09/16 12:16       | YZ      | TAL IRV |

#### Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022 TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

#### **Analyst References:**

Lab: TAL IRV

Batch Type: Analysis YZ = Yuriy Zakhrabov

Lab: TAL PIT

Batch Type: Prep

ANA = Alexis Anderson

Batch Type: Analysis

MJH = Matthew Hartman

RJR = Ron Rosenbaum

TestAmerica Pittsburgh

6/10/2016

Client Sample ID: AT6-271 (SALINITY ADJUSTED)

Date Collected: 06/07/16 13:00 Date Received: 06/08/16 11:30 Lab Sample ID: 180-55503-1

Matrix: Water

| Method: 300.0 - Anions, Ion Ch<br>Analyte | _           | Qualifier  | RL     | MDL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
|-------------------------------------------|-------------|------------|--------|------|------|---|----------------|----------------|---------|
| Bromide                                   | 90          |            | 25     | 2.9  | mg/L |   |                | 06/08/16 18:19 | 50      |
| Chloride                                  | 15000       |            | 500    | 170  | mg/L |   |                | 06/08/16 18:37 | 500     |
| Sulfate                                   | 3500        |            | 50     | 17   | mg/L |   |                | 06/08/16 18:19 | 50      |
| Method: 200.7 Rev 4.4 - Metals            | (ICP) - Tot | al Recover | able   |      |      |   |                | ×              |         |
| Analyte                                   |             | Qualifier  | RL     | MDL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Boron                                     | 3700        |            | 1000   | 22   | ug/L | - | 06/08/16 12:35 | 06/09/16 08:03 | - 5     |
| Barium                                    | 250         | J          | 1000   | 4.5  | ug/L |   | 06/08/16 12:35 | 06/09/16 08:03 | 5       |
| Calcium                                   | 870000      |            | 25000  | 360  | ug/L |   | 06/08/16 12:35 | 06/09/16 08:03 | 5       |
| Potassium                                 | 290000      |            | 25000  | 4200 | ug/L |   | 06/08/16 12:35 | 06/09/16 08:03 | 5       |
| Magnesium                                 | 1100000     |            | 25000  | 200  | ug/L |   | 06/08/16 12:35 | 06/09/16 08:03 | 5       |
| Sodium                                    | 7500000     |            | 130000 | 5700 | ug/L |   |                |                | 25      |
| Strontium                                 | 9400        |            | 250    | 26   | ug/L |   | 06/08/16 12:35 | 06/09/16 08:03 | 5       |
| General Chemistry                         |             |            |        |      |      |   |                |                |         |
| Analyte                                   | Result      | Qualifier  | RL     | MDL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Alkalinity as CaCO3                       | 920         |            | 4.0    | 4.0  | mg/L |   |                | 06/09/16 12:16 | 1       |
| Bicarbonate Alkalinity as CaCO3           | 920         |            | 4.0    | 4.0  | mg/L |   |                | 06/09/16 12:16 | 1       |
| Carbonate Alkalinity as CaCO3             | ND          |            | 4.0    | 4.0  | mg/L |   |                | 06/09/16 12:16 | 1       |
| Hydroxide Alkalinity as CaCO3             | ND          |            | 4.0    |      | mg/L |   |                | 06/09/16 12:16 | 1       |
| Bicarbonate ion as HCO3                   | 1100        |            | 4.8    |      | mg/L |   |                | 06/09/16 12:16 | 1       |
| Carbonate as CO3                          | ND          |            | 2.4    |      | mg/L |   |                | 06/09/16 12:16 | 1       |
| Hydroxide as OH                           | ND          |            | 1.4    |      | mg/L |   |                | 06/09/16 12:16 | 1       |

TestAmerica Pittsburgh

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

### Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 180-178539/44

**Matrix: Water** 

Analysis Batch: 178539

Client Sample ID: Method Blank

Prep Type: Total/NA

|   | , thaily old Batom 11 occ | MB I   | МВ        |      |       |      |   |          |                |         |
|---|---------------------------|--------|-----------|------|-------|------|---|----------|----------------|---------|
| I | Analyte                   | Result | Qualifier | RL   | MDL   | Unit | D | Prepared | Analyzed       | Dil Fac |
| ١ | Bromide                   | ND ND  |           | 0.50 | 0.058 | mg/L |   |          | 06/08/16 18:02 | 1       |
| H | Chloride                  | ND     |           | 1.0  | 0.33  | mg/L |   |          | 06/08/16 18:02 | 1       |
|   | Sulfate                   | ND     |           | 1.0  | 0.34  | mg/L |   |          | 06/08/16 18:02 | 1       |

Lab Sample ID: LCS 180-178539/43

Matrix: Water

Analysis Batch: 178539

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec.

|   | Analyte  |       | Added | Result | Qualifier | Unit | D | %Rec | Limits   | <br> |
|---|----------|-------|-------|--------|-----------|------|---|------|----------|------|
|   | Bromide  | _==== | 10.0  | 10.3   |           | mg/L |   | 103  | 90 - 110 |      |
|   | Chloride |       | 50.0  | 51.4   |           | mg/L |   | 103  | 90 - 110 |      |
|   | Sulfate  |       | 50.0  | 50,9   |           | mg/L |   | 102  | 90 - 110 |      |
| 1 |          |       |       |        |           |      |   |      |          |      |

Spike

LCS LCS

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 180-178640/1-A

Matrix: Water

Analysis Batch: 178721

Client Sample ID: Method Blank **Prep Type: Total Recoverable** 

Prep Batch: 178640

| ı |           | MB     | MB        |      |      |      |   |                |                |         |
|---|-----------|--------|-----------|------|------|------|---|----------------|----------------|---------|
| l | Analyte   | Result | Qualifier | RL   | MDL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
| l | Boron     | ND     |           | 200  | 4.4  | ug/L |   | 06/08/16 12:35 | 06/09/16 07:35 | 1       |
| ١ | Barium    | ND     |           | 200  | 0.89 | ug/L |   | 06/08/16 12:35 | 06/09/16 07:35 | 1       |
|   | Calcium   | ND     |           | 5000 | 73   | ug/L |   | 06/08/16 12:35 | 06/09/16 07:35 | 1       |
|   | Potassium | ND     |           | 5000 | 840  | ug/L |   | 06/08/16 12:35 | 06/09/16 07:35 | 1       |
|   |           | ND     |           | 5000 |      | ug/L |   | 06/08/16 12:35 | 06/09/16 07:35 | 1       |
|   | Magnesium | ND.    |           | 5000 |      | ug/L |   | 06/08/16 12:35 | 06/09/16 07:35 | 1       |
|   | Sodium    |        |           | 50   | 5.3  |      |   |                | 06/09/16 07:35 | 1       |
|   | Strontium | ND     |           | 50   | 5.5  | ug/L |   | 30,00,10 12.00 | 55.55 5 67.65  | 00.1    |

Lab Sample ID: LCS 180-178640/2-A

**Matrix: Water** 

Analysis Batch: 178721

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable** 

Prep Batch: 178640

| -         | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte   | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Boron     | 1000  | 1080   |           | ug/L |   | 108  | 85 - 115 |  |
| Barium    | 2000  | 2000   |           | ug/L |   | 100  | 85 - 115 |  |
| Calcium   | 50000 | 47900  |           | ug/L |   | 96   | 85 - 115 |  |
| Potassium | 50000 | 47400  |           | ug/L |   | 95   | 85 - 115 |  |
| Magnesium | 50000 | 50500  |           | ug/L |   | 101  | 85 - 115 |  |
| Sodium    | 50000 | 48300  |           | ug/L |   | 97   | 85 - 115 |  |
|           | 1000  | 993    |           | ug/L |   | 99   | 85 - 115 |  |
| Strontium | 1000  | 000    |           | -0-  |   |      |          |  |

Spike

Added

1000

2000

50000

Lab Sample ID: LCSD 180-178640/3-A

**Matrix: Water** 

Analyte

Boron

Barium

Calclum

Analysis Batch: 178721

Client Sample ID: Lab Control Sample Dup **Prep Type: Total Recoverable** 

> **Prep Batch: 178640 RPD** %Rec. Limit D %Rec Limits 85 - 115 2 20 106 20 0 100 85 - 115 85-115 20

> > TestAmerica Pittsburgh

6/10/2016

Page 10 of 17

LCSD LCSD

1060

2000

49600

Result Qualifier

Unit

ug/L

ug/L

rig/l

ND

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55503-2

# Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: LCSD 180-178640/3-A

**Matrix: Water** 

Client Sample ID: Lab Control Sample Dup **Prep Type: Total Recoverable** 

| Analysis Batch: 178721 |       |        |           |      |   |      | Prep Ba  | itch: 17 | 78640 |
|------------------------|-------|--------|-----------|------|---|------|----------|----------|-------|
|                        | Spike | LCSD   | LCSD      |      |   |      | %Rec.    |          | RPD   |
| Analyte                | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD      | Limit |
| Potassium              | 50000 | 48400  |           | ug/L |   | 97   | 85 - 115 | 2        | 20    |
| Magnesium              | 50000 | 51000  |           | ug/L |   | 102  | 85 - 115 | 1        | 20    |
| Sodium                 | 50000 | 49900  |           | ug/L |   | 100  | 85 - 115 | 3        | 20    |
| Strontium              | 1000  | 1010   |           | ug/L |   | 101  | 85 - 115 | 2        | 20    |

# Method: SM 2320B - Alkalinity

Lab Sample ID: MB 440-335663/4

**Matrix: Water** 

Analysis Batch: 335663

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

NC

20

|                                 | MB     | MB        |     |     |      |   |          |                |         |
|---------------------------------|--------|-----------|-----|-----|------|---|----------|----------------|---------|
| Analyte                         | Result | Qualifier | RL  | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Alkalinity as CaCO3             | ND     |           | 4.0 | 4.0 | mg/L |   | <u>_</u> | 06/09/16 12:01 | 1       |
| Bicarbonate Alkalinity as CaCO3 | ND     |           | 4.0 | 4.0 | mg/L |   |          | 06/09/16 12:01 | 1       |
| Carbonate Alkalinity as CaCO3   | ND     |           | 4.0 | 4.0 | mg/L |   |          | 06/09/16 12:01 | 1       |
| Hydroxide Alkalinity as CaCO3   | ND     |           | 4.0 | 4.0 | mg/L |   |          | 06/09/16 12:01 | 1       |
| Bicarbonate ion as HCO3         | ND     |           | 4.8 | 4.8 | mg/L |   |          | 06/09/16 12:01 | - 1     |
| Carbonate as CO3                | ND     |           | 2.4 | 2.4 | mg/L |   |          | 06/09/16 12:01 | 1       |
| Hydroxide as OH                 | ND     |           | 1.4 | 1.4 | mg/L |   |          | 06/09/16 12:01 | 1       |

LCS LCS

Spike

Lab Sample ID: LCS 440-335663/3

**Matrix: Water** 

Analyte

Analysis Batch: 335663

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec. Added Result Qualifier Unit %Rec Limits 63.4 64.2 mg/L 101 80 - 120

Client Sample ID: AT6-271 (SALINITY ADJUSTED)

Lab Sample ID: 180-55503-1 DU

**Matrix: Water** 

Alkalinity as CaCO3

Analysis Batch: 335663

Sample Sample DU DU **RPD** Analyte **Result Qualifier** Result Qualifier Unit **RPD** Limit Alkalinity as CaCO3 920 933 mg/L 20 Bicarbonate Alkalinity as CaCO3 920 933 mg/L 1 20 Carbonate Alkalinity as CaCO3 ND ND mg/L NC 20 Hydroxide Alkalinity as CaCO3 ND ND mg/L NC 20 Bicarbonate ion as HCO3 1100 1140 mg/L 1 20 Carbonate as CO3 ND ND mg/L NC 20 Hydroxide as OH

ND

mg/L

# **QC Association Summary**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55503-2

# HPLC/IC

# Analysis Batch: 178539

| Lab Sample ID     | Client Sample ID            | Prep Type | Matrix | Method | Prep Batch |
|-------------------|-----------------------------|-----------|--------|--------|------------|
| 180-55503-1       | AT6-271 (SALINITY ADJUSTED) | Total/NA  | Water  | 300.0  |            |
| 180-55503-1       | AT6-271 (SALINITY ADJUSTED) | Total/NA  | Water  | 300.0  |            |
| LCS 180-178539/43 | Lab Control Sample          | Total/NA  | Water  | 300.0  |            |
| MB 180-178539/44  | Method Blank                | Total/NA  | Water  | 300.0  |            |

#### **Metals**

# Prep Batch: 178640

| Lab Sample ID       | Client Sample ID            | Prep Type         | Matrix | Method | Prep Batch |
|---------------------|-----------------------------|-------------------|--------|--------|------------|
| 180-55503-1         | AT6-271 (SALINITY ADJUSTED) | Total Recoverable | Water  | 200.7  |            |
| LCS 180-178640/2-A  | Lab Control Sample          | Total Recoverable | Water  | 200.7  |            |
| LCSD 180-178640/3-A | Lab Control Sample Dup      | Total Recoverable | Water  | 200.7  |            |
| MB 180-178640/1-A   | Method Blank                | Total Recoverable | Water  | 200.7  |            |

# Analysis Batch: 178721

| Lab Sample ID<br>180-55503-1<br>180-55503-1<br>LCS 180-178640/2-A<br>LCSD 180-178640/3-A | Client Sample ID AT6-271 (SALINITY ADJUSTED) AT6-271 (SALINITY ADJUSTED) Lab Control Sample Lab Control Sample Dup | Prep Type Total Recoverable Total Recoverable Total Recoverable Total Recoverable | Water Water Water Water Water | Method<br>200.7 Rev 4.4<br>200.7 Rev 4.4<br>200.7 Rev 4.4<br>200.7 Rev 4.4 | 178640<br>178640<br>178640<br>178640<br>178640 |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------|------------------------------------------------|
| MB 180-178640/1-A                                                                        | Method Blank                                                                                                       | Total Recoverable                                                                 | Water                         | 200.7 Rev 4.4                                                              | 178640                                         |

# **General Chemistry**

# Analysis Batch: 335663

| Lab Sample ID    | Client Sample ID            | Prep Type | Matrix | Method   | Prep Batch |
|------------------|-----------------------------|-----------|--------|----------|------------|
| 180-55503-1      | AT6-271 (SALINITY ADJUSTED) | Total/NA  | Water  | SM 2320B |            |
| 180-55503-1 DU   | AT6-271 (SALINITY ADJUSTED) | Total/NA  | Water  | SM 2320B |            |
| LCS 440-335663/3 | Lab Control Sample          | Total/NA  | Water  | SM 2320B |            |
| MB 440-335663/4  | Method Blank                | Total/NA  | Water  | SM 2320B |            |

301 Alpha Drive RIDC Park Pittsburgh, PA 15238

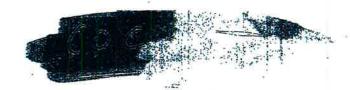
# **Chain of Custody Record**

180325

TestAmerica

| Prione (412) 963-7058 Fax (412) 963-2468                               |                        |                |                                       |                                                 |                      |          |                  |              |        |             |        |           |         |        |          |              |                      |                   |                       |                          | ., . , |          |
|------------------------------------------------------------------------|------------------------|----------------|---------------------------------------|-------------------------------------------------|----------------------|----------|------------------|--------------|--------|-------------|--------|-----------|---------|--------|----------|--------------|----------------------|-------------------|-----------------------|--------------------------|--------|----------|
| Client Information                                                     | Sampler:               |                |                                       | Ga                                              | PM:<br>amber,        | Carrie   | e L              | . 9          | 8      | E           | 3A     | CTT       | MC      | R      | 3        |              | 180-3                | No:<br>31129-6    | 905.1                 |                          |        |          |
| Client Contact:<br>Mike Chanov                                         | Phone:                 |                |                                       | 1000                                            | Mail:<br>rrie.gar    | mber(    | @testa           | meric        | ainc.c | om          |        |           |         |        |          |              | Page:<br>Page        | 1 of 1            |                       |                          |        |          |
| Company:<br>EA Engineering, Science, and Technology                    |                        |                |                                       |                                                 | T                    |          |                  |              | Ana    | alysis      | Rec    | quest     | ed      |        |          |              | Job #:               |                   |                       |                          |        |          |
| Address:<br>225 Schilling Circle Suite 400                             | Due Date Request       | ed:            |                                       |                                                 | 5.0                  | 12       |                  | П            |        | Ť           | Т      | П         | T       | Ţ.     |          | 343          |                      | ervation          | Codes:                |                          |        |          |
| City:<br>Hunt Valley                                                   | TAT Requested (d       | ays):          |                                       |                                                 |                      | 100 C    |                  |              |        |             |        |           |         |        |          | -1           | A-HO<br>B-No<br>C-Zr |                   | N - N                 | lexane<br>lone<br>IsNaO2 |        |          |
| State, Zip:<br>MD, 21031                                               |                        |                |                                       |                                                 |                      |          | 2                | 1            |        | 1           |        |           |         |        |          | 1            | D-Ni                 | tric Acid<br>HSO4 | P-N                   | a204S<br>b25∩3           |        |          |
| Phone:<br>410-329-5120(Tel)                                            | PO#.<br>Purchase Order | r Requested    |                                       |                                                 |                      |          | Tim              |              |        | $\neg$      | 1      |           | 111     |        |          |              | -<br>Libbi           | u im HA           | MM                    |                          |        |          |
| Email:<br>mchanov@eaest.com                                            | WO#:                   |                |                                       |                                                 | disample (Yes of No) |          | Hold             |              |        | 2           |        |           |         |        |          |              |                      |                   |                       |                          | Tyd    | irate    |
| Project Name:<br>Jordan Valley                                         | Project #:<br>18015970 |                |                                       |                                                 |                      | 67       | 1                |              | F      | £           |        |           | 111     |        |          |              |                      |                   | 1111111               |                          | )      |          |
| Site:                                                                  | SSOW#:                 |                |                                       |                                                 | 10                   |          | 18 hr            |              | L,     | 2           |        |           | 18      | 30-55  | 503 C    | hain of      | Cust                 | ody               |                       |                          |        |          |
| Sample Identification                                                  | Sample Date            | Sample<br>Time | Sample<br>Type<br>(C=comp,<br>G=grab) | Matrik<br>(W-water,<br>S-solid,<br>O-matstebil, | old Piltorg          |          | (7)              | € ¢          | _ <    | Alfallaling |        |           |         |        |          | Total Number |                      | Specia            | Instruct              | tions/N                  | Note:  |          |
| Professional Company Company Company Company Company                   | TO WAR STORY           | $>\!\!<$       | Preserva                              | ion Code.                                       |                      | <b>a</b> | , No             | 1            | V"     | wn          | 367    | - 16 推    | 4       | BETT!  |          | X            | 4.                   | 1200              | · , tales page , bery | -                        |        | 100%     |
| 4T6-271 (Salinity Adjusted)                                            | 6/7/16                 | 1300           | (5                                    | W                                               | П                    | X        | X                | X            | XX     | <b>X</b>    |        |           |         |        |          | 瀬            |                      |                   | OR. F.                |                          |        |          |
|                                                                        | '                      |                |                                       |                                                 | T                    | T        |                  |              |        | T           |        |           |         | П      |          | 潇            |                      |                   | 1740                  |                          |        |          |
|                                                                        |                        |                |                                       |                                                 | 11                   | $\top$   | П                |              |        |             | П      |           |         | П      |          |              |                      |                   |                       |                          |        |          |
| *                                                                      |                        |                |                                       |                                                 | 11                   | $\top$   | П                | $\neg$       | 1      | T           | 8      |           | +-      |        |          | ile.         |                      |                   |                       |                          |        |          |
|                                                                        |                        |                |                                       |                                                 | $\dagger \dagger$    | $\top$   | П                | $\neg$       | 1      | +           | П      |           | +       | $\Box$ | $\dashv$ | -36          |                      |                   |                       |                          |        |          |
|                                                                        |                        |                |                                       |                                                 | 11                   | $\top$   | П                |              | 1      | +           | П      | $\forall$ |         | H      | $\dashv$ |              | _                    |                   |                       |                          |        |          |
|                                                                        |                        |                |                                       |                                                 | T                    | $\top$   | П                |              | 7      | $\top$      |        |           | +       | П      |          | )/:]<br>     | $\vdash$             |                   |                       |                          |        |          |
|                                                                        |                        |                |                                       |                                                 | T                    | $\top$   |                  |              | 1      | 1           |        |           | 1       | П      | $\dashv$ | 10.          |                      |                   |                       |                          |        |          |
|                                                                        |                        |                |                                       |                                                 | Ħ                    |          |                  |              | 1      |             |        |           | 1       | Н      |          | 13           |                      |                   |                       |                          |        |          |
|                                                                        |                        |                | 3                                     |                                                 | TT                   | T        | Ħ                |              |        |             |        |           | 1       |        | -        |              |                      |                   |                       |                          |        |          |
|                                                                        |                        |                |                                       |                                                 | Ħ                    |          | $\Box$           |              |        | T           |        |           | T       | П      | 1        |              |                      |                   |                       |                          |        | $\neg$   |
| Possible Hazard Identification Non-Hazard Flammable Skin Imitant Poiso | n B Unkno              | " ¬            | adiological                           |                                                 | S                    |          | e Disp<br>Return |              |        | nay [       |        | sesse     |         |        | are r    | etaine       | d long               | er than           | 1 month               |                          |        |          |
| Deliverable Requested: I, II, III, IV, Other (specify)                 |                        | 1.00           | Mologica                              |                                                 | Sį                   |          |                  |              |        | Require     |        |           | ву ца   | 0      |          | Archiv       | re Hor               |                   | Mor                   | oths                     |        | $\dashv$ |
| Empty Kit Relinquished by: 1A                                          |                        | Date: 6/       | 116                                   |                                                 | Time                 |          | 1200             | 2            |        | _           |        | Me        | thod of | Shipme | nt       | Carri        |                      |                   |                       |                          | _      | -        |
| telinquished by:   WE                                                  | C/7/16                 | 160            | ٥٠٥                                   | company<br>EA                                   |                      | Rec      | elver ly         | Ille         | ue     | 1/1         | la     | tr        | m       | Date/T | ime:     | 8-           | 7/                   | 5                 | 19 mps                | AF                       | )      | $\dashv$ |
| emoquished by:                                                         | Date/Time:             |                |                                       | Company                                         |                      | Reg      | aved by          | 11 0<br>2007 |        | - 0         |        |           | 7       | Date 4 | ine:     |              | 9                    | 30                | Compa                 | iny                      |        |          |
| etinquished by:                                                        | Date/Time:             |                | C                                     | company                                         |                      | Rece     | eived by         |              | Si .   |             | 9      |           |         | Date/T | lme:     |              | 10                   | 211               | Compa                 | any                      | _      | $\neg$   |
| Custody Seals Intact: Custody Seal No.:                                |                        |                |                                       |                                                 |                      | Cool     | ler Temp         | erature      | (s) °C | and Oth     | er Rem | narks:    | 8       |        |          |              |                      |                   |                       | -                        |        | $\dashv$ |

Page 13 of 17


6/10/2016

PrintWindowP...

https://www.campusship.ups.com/cship/create49ccttesoffiginPair=default

Uncorrected temp Thermometer ID Initials PT-WI-SR-001 effective 7/26/13

MICHAEL CHANOV 4105847000 5120 EA ENG SCIENCE TECH 225 SCHILLING CIRCLE HUNT VALLEY MD 21031 33 LBS SHIP TO: SAMPLE CUSTODY TESTAMERICA RIDC PARK 301 ALPHA DRIVE 907كتار PITTSBURGH P. PA 152 9-22 TRACKING #: 1Z 288 682 01 9863 2367 BILLING: P/P UPS CARBON NEUTRAL SHIPMENT Department Code: 2122 Project Phase AND Task: TOXLAB GS 18.1.17.



WNIINV50 75.0A 04/2016

UPS CampusShip: Shipment Label

# TestAmerica Pittsburgh

301 Alpha Drive RIDC Park

Pittsburgh, PA 15238

Phone (412) 963-7058 Fax (412) 963-2468

# **Chain of Custody Record**



<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

| Client Information (Sub Contract Lab)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sampler:          |             |                  |                          | PM:     | <u>.</u>                          |          |          |          |        | 1          | Carrier T | acking   | No(s):   |          | $\neg$ | COC No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|------------------|--------------------------|---------|-----------------------------------|----------|----------|----------|--------|------------|-----------|----------|----------|----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|
| Client Contact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phone:            |             |                  | E-A                      | amber,  | Came                              | L        | _        |          |        | _          |           |          |          |          |        | 180-244283.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                   |
| Shipping/Receiving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300000            |             |                  |                          | rrie.ga | mber@                             | gtesta   | merica   | inc.co   | m      |            |           |          |          |          |        | Page:<br>Page 1 of 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                   |
| Company:<br>TestAmerica Laboratories, Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.                |             |                  |                          | T       |                                   |          |          |          |        | -          |           |          |          |          |        | Job#;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                   |
| Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Due Date Request  | ed:         |                  |                          | 126     |                                   |          | _        | Anar     | ysis   | Requ       | ueste     | 1        |          | _        | _      | 180-55503-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                   |
| 17461 Derian Ave, Suite 100,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6/9/2016          |             |                  |                          |         |                                   | 1 1      |          | 1        | 1      | ш          |           |          |          |          |        | Preservation Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                   |
| City:<br>Irvine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TAT Requested (d  | ays):       |                  |                          |         |                                   | 1 1      |          |          | 1      |            |           | 1        |          |          |        | A - HCL<br>B - NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M - Hexan              | 9                 |
| State, Zip:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                 |             |                  |                          |         |                                   | 1 1      |          |          | 1      | П          |           | 1        | 1        |          |        | C - Zn Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | O - AsNa0              |                   |
| CA, 92614-5817                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |             |                  |                          | 疆       |                                   | 11       |          |          | 1      | ш          |           | 1        |          |          |        | D - Nitric Acid<br>E - NaHSO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P - Na2O4<br>Q - Na2S0 |                   |
| Phone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PO#               |             |                  |                          | - 18    |                                   | 11       |          |          | 1      | 1 1        |           | 1        |          |          | 20     | F - MeOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R - Na2S2              | 203               |
| 949-261-1022(Tel) 949-260-3297(Fax)<br>Emait                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |             |                  |                          | 0       |                                   | 1 1      |          |          | 1      | П          |           | 1        |          |          |        | G - Amchlor<br>H - Ascorbic Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S - H2SO4<br>T - TSP D | 4<br>odecahydrate |
| emalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WO#.              |             |                  |                          | 桶       |                                   | 11       |          |          | 1      |            | 4         | 1        |          |          |        | I - ice<br>J - Di Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U - Acetor<br>V - MCAA | ne .              |
| Project Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Project#:         |             |                  |                          | -8      | Î Î                               | 1 1      |          |          | 1      |            |           |          |          |          | FILE.  | K - EDTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | W-ph 4-5               | 5                 |
| Jordan Valley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18015970          |             |                  |                          |         | - A                               | 1 1      |          |          | 1      |            |           | 1        |          |          | 毒      | L-EDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Z - other (:           | specify)          |
| Site:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SSOW#:            | •           |                  |                          | 眉       | 2320B/ (MOD) Alkalinity all forms | 11       |          |          | 1      |            |           |          |          | 3        | 6      | Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |                  |                          | - 18    | ¥                                 | П        |          |          |        |            |           |          |          |          | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             | Sample           | Matrix<br>(w-webs,       | THE     | Ş                                 | 1 1      |          |          |        |            |           |          |          |          | 4      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Sample      | Type<br>(C≃comp, | S=salid,<br>O=anste/all, |         | E E                               | 1 1      |          |          |        | 1 1        |           |          |          |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                   |
| Sample Identification - Client ID (Lab ID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample Date       | Time        |                  | BT=Tissue, A=A           |         | 2320                              | $\perp$  |          | 1 8      |        |            |           |          |          |          | 5      | Special In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | struction              | s/Note:           |
| NEW COLUMN TO THE RESIDENCE OF THE PERSON OF |                   |             |                  | tion Code.               | EXTS    | X                                 |          | 92       | 16 (6)   |        | BES        |           | IGE.     | 100      | es Park  |        | Vaccination of the last of the | Sudedon                | SHOCE.            |
| AT6-271 (SALINITY ADJUSTED) (180-55503-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6/7/16            | 13:00       |                  | Water                    | T       | х                                 |          |          |          |        | SOLUMNIC N |           |          |          |          |        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STEP STATE             |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Eastern     |                  |                          | ++      | +^                                |          | -        | -        | +      | $\vdash$   | _         | -        | $\vdash$ | _        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |                  |                          |         |                                   | 1.0      |          |          |        |            |           | 1        |          |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                   |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |             |                  |                          | TT      |                                   |          |          |          |        |            |           |          |          |          | 35     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |                  |                          | H       | +                                 | $\vdash$ | -        | +        | ┢      |            | _         | $\vdash$ |          | +-       | 250    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |                  |                          | $\perp$ |                                   |          |          |          |        |            |           |          |          |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |                  |                          | П       |                                   |          |          |          |        |            |           |          |          |          | 2      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |                  |                          | ++      | +                                 |          | +        | +        | +      | $\vdash$   | -         | 1        |          | +        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |                  |                          | ++      |                                   |          | _        |          | _      |            |           | 2_,      |          |          |        | DI Des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                      |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |                  |                          | 11      |                                   |          |          |          | T Y    |            |           |          |          |          | 34     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |                  |                          | $\top$  |                                   |          |          | 1        | 1      |            | _         |          |          |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             | - 76             |                          | ++      | _                                 |          | -        | -        |        |            | _         |          |          | _        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |                  |                          |         |                                   | 15       |          |          |        |            |           |          |          |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |                  |                          |         |                                   |          |          |          |        |            | $\neg$    |          |          |          | 16     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |                  |                          | ++      | +                                 |          | _        | -        |        | -          | _         | $\vdash$ |          | -        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                   |
| Describing House and Inter-Allies Alexander                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |             |                  |                          | щ       |                                   |          |          |          |        |            |           | 13       |          |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                   |
| Possible Hazard Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |             |                  |                          | s       | ample                             | Disp     | osal (   | A fee    | may i  |            |           |          |          | are reta | ainec  | d longer than 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | month)                 | .5                |
| Unconfirmed Deliverable Requested: I, II, III, IV, Other (specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |             |                  |                          | _       |                                   |          | To Clie  |          |        |            | posal E   | y Lat    | <u> </u> | $\Box_A$ | rchiv  | e For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Months                 | 3                 |
| Deliverable Requested: I, II, III, IV, Other (specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |             |                  |                          | 8       | pecial                            | instru   | ctions/  | QC R     | equire | ements     | S:        |          |          |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                   |
| Empty Kit Relinquished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | Date:       |                  |                          | Time    | ):                                |          |          |          |        |            | Meti      | od of S  | Shipmeni |          | _      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                   |
| Respectished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date/Time         | · 1-        | 2                | Compa                    | ")      | Rece                              | eived by |          |          |        |            |           |          | Date/Tin | ne:      | _      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Company                |                   |
| Rellinguished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1018110           | - 1         | /Ce              | 110                      | _       | _                                 |          |          |          |        |            |           |          |          |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W 088                  |                   |
| OTT. 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Licenson I III)6; |             | ľ                | Company                  |         | Rece                              | eived by | ī.       |          |        | 1          |           |          | Date/Tin | ne:      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Company                |                   |
| Relinquished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date/Time:        |             |                  | Company                  |         | freq                              | ive in   | 014      | 1        | 4      | 1          | 1.1       | _        | Date/Tim | 00: ^    | 1      | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Comparty               | TVT               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |                  |                          |         | V                                 | 110      | 137      |          |        | 1/         | Me        | 1        | 16       | 00       | 116    | 433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | 147               |
| Custody Seals Intact: Custody Seal No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19-250            | 14-         | 755              | 50                       | Sally.  | door                              | er Temp  | erglulre | (s) °C a | nd Oth | er Rem     | arks:     | 3.2      | 1/2      | 0        | 10     | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | re-mili                | Sport, "villan    |
| Δ Yes Δ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 0               | ASSESS FORE | 700              |                          | E PATA  | 8 130                             | 270      | 100      | 18225    |        | 43.3       | 33053     | 110      | 110      | · U      | JX     | - THE THE P. P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OF PERSON              | COST FILE         |

# Login Sample Receipt Checklist

Client: EA Engineering, Science, and Technology

Job Number: 180-55503-2

List Source: TestAmerica Pittsburgh

LogIn Number: 55503

List Number: 1

Creator: Watson, Debbie

| Question                                                                                                                   | Answer | Comment | 71 |  |
|----------------------------------------------------------------------------------------------------------------------------|--------|---------|----|--|
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td></td> <td></td> <td></td> <td></td> |        |         |    |  |
| The cooler's custody seal, if present, is intact.                                                                          | True   |         |    |  |
| Sample custody seals, if present, are intact.                                                                              | True   |         |    |  |
| The cooler or samples do not appear to have been compromised or tampered with.                                             | True   |         |    |  |
| Samples were received on ice.                                                                                              | True   |         |    |  |
| Cooler Temperature is acceptable.                                                                                          | True   |         |    |  |
| Cooler Temperature is recorded.                                                                                            | True   |         |    |  |
| COC is present.                                                                                                            | True   |         |    |  |
| COC is filled out in ink and legible.                                                                                      | True   |         |    |  |
| COC is filled out with all pertinent information.                                                                          | True   |         |    |  |
| Is the Field Sampler's name present on COC?                                                                                | True   |         |    |  |
| There are no discrepancies between the containers received and the COC.                                                    | True   |         |    |  |
| Samples are received within Holding Time (excluding tests with immediate HTs)                                              | True   |         |    |  |
| Sample containers have legible labels.                                                                                     | True   |         |    |  |
| Containers are not broken or leaking.                                                                                      | True   |         |    |  |
| Sample collection date/times are provided.                                                                                 | True   |         |    |  |
| Appropriate sample containers are used.                                                                                    | True   |         |    |  |
| Sample bottles are completely filled.                                                                                      | True   |         |    |  |
| Sample Preservation Verified.                                                                                              | True   |         |    |  |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                                           | True   |         |    |  |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                                            | True   |         |    |  |
| Multiphasic samples are not present.                                                                                       | True   |         |    |  |
| Samples do not require splitting or compositing.                                                                           | True   |         |    |  |
| Residual Chlorine Checked.                                                                                                 | N/A    |         |    |  |

# **Login Sample Receipt Checklist**

Client: EA Engineering, Science, and Technology

Job Number: 180-55503-2

Login Number: 55503

List Number: 2

Creator: Salas, Margarita

List Source: TestAmerica Irvine List Creation: 06/09/16 11:27 AM

| Question                                                                                                   | Answer | Comment                            |
|------------------------------------------------------------------------------------------------------------|--------|------------------------------------|
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> | True   |                                    |
| The cooler's custody seal, if present, is intact.                                                          | True   |                                    |
| Sample custody seals, if present, are intact.                                                              | True   |                                    |
| The cooler or samples do not appear to have been compromised or tampered with.                             | True   |                                    |
| Samples were received on ice.                                                                              | True   |                                    |
| Cooler Temperature is acceptable.                                                                          | True   |                                    |
| Cooler Temperature is recorded.                                                                            | True   |                                    |
| COC is present.                                                                                            | True   |                                    |
| COC is filled out in ink and legible.                                                                      | True   |                                    |
| COC is filled out with all pertinent information.                                                          | True   |                                    |
| Is the Field Sampler's name present on COC?                                                                | N/A    | Received project as a subcontract. |
| There are no discrepancies between the containers received and the COC.                                    | True   | , ,,                               |
| Samples are received within Holding Time (excluding tests with immediate HTs)                              | True   |                                    |
| Sample containers have legible labels.                                                                     | True   |                                    |
| Containers are not broken or leaking.                                                                      | True   |                                    |
| Sample collection date/times are provided.                                                                 | True   |                                    |
| Appropriate sample containers are used.                                                                    | True   |                                    |
| Sample bottles are completely filled.                                                                      | True   |                                    |
| Sample Preservation Verified.                                                                              | N/A    |                                    |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                           | True   |                                    |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                            | True   |                                    |
| Multiphasic samples are not present.                                                                       | True   |                                    |
| Samples do not require splitting or compositing.                                                           | True   |                                    |
| Residual Chlorine Checked.                                                                                 | N/A    |                                    |
|                                                                                                            |        |                                    |



Visit us at:

www.testamericainc.com

# <u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

# **ANALYTICAL REPORT**

TestAmerica Laboratories, Inc.

TestAmerica Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238

Tel: (412)963-7058

TestAmerica Job ID: 180-55503-1 Client Project/Site: Jordan Valley

For:

EA Engineering, Science, and Technology 225 Schilling Circle Suite 400 Hunt Valley, Maryland 21031

Attn: Mike Chanov

Carwa Samler

Authorized for release by: 6/22/2016 9:12:32 AM

Carrie Gamber, Senior Project Manager (412)963-2428

carrie.gamber@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

# **Table of Contents**

| Cover Page                       | 1  |
|----------------------------------|----|
| Table of Contents                | 2  |
| Case Narrative                   |    |
| Definitions/Glossary             |    |
| Certification Summary            | 5  |
| Sample Summary                   |    |
| Method Summary                   | 7  |
|                                  | 8  |
| Client Sample Results            | 9  |
|                                  | 10 |
|                                  | 15 |
|                                  | 17 |
| <b>- 1 ( <del>-</del> 1 11 )</b> | 10 |

#### **Case Narrative**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

Job ID: 180-55503-1

Laboratory: TestAmerica Pittsburgh

Narrative

#### **CASE NARRATIVE**

Client: EA Engineering, Science, and Technology

**Project: Jordan Valley** 

Report Number: 180-55503-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

#### **RECEIPT**

The samples were received on 06/08/2016; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 3.2 C.

#### **METALS**

Sample AT6-271 (SALINITY ADJUSTED) (180-55503-1) required dilution prior to metals analysis. The reporting limits have been adjusted accordingly.

Hardness as calcium carbonate, Lead, Manganese, Antimony and Thallium were detected in method blank MB 180-178688/1-A at levels that were above the method detection limit but below the reporting limit. The values should be considered estimates, and have been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged.

Copper failed the recovery criteria high for the MS of sample AT6-271 (SALINITY ADJUSTED) (180-55503-1) in batch 180-179553. Copper exceeded the RPD

Mercury was detected in method blank MB 180-178784/1-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged.

# GENERAL CHEMISTRY

Sample AT6-271 (SALINITY ADJUSTED) (180-55503-1) required dilution prior to IC analysis. The reporting limits have been adjusted accordingly.

The following sample was received with insufficient preservation at a pH of 7.80: AT6-271 (SALINITY ADJUSTED) (180-55503-1). The sample was preserved to the appropriate pH in the laboratory.

Due to the sample matrix, the initial volumes used for the following samples deviated from the standard procedure for TDS: AT6-271 (SALINITY ADJUSTED) (180-55503-1). The reporting limits (RLs) have been adjusted proportionately.

3

TestAmerica Job ID: 180-55503-1

# **Definitions/Glossary**

Client: EA Engineering, Science, and Technology Project/Site: Jordan Valley

TestAmerica Job ID: 180-55503-1

# Qualifiers

| Qualifier | Qualifier Description                                                                                          |  |
|-----------|----------------------------------------------------------------------------------------------------------------|--|
| В         | Compound was found in the blank and sample,                                                                    |  |
| J         | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. |  |
| -1        | MS and/or MSD Recovery is outside acceptance limits.                                                           |  |
| -2        | MS/MSD RPD exceeds control limits                                                                              |  |

| Glossary       |                                                                                                             |
|----------------|-------------------------------------------------------------------------------------------------------------|
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
| n              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CNF            | Contains no Free Liquid                                                                                     |
| DER            | Duplicate error ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision level concentration                                                                                |
| MDA            | Minimum detectable activity                                                                                 |
| EDL            | Estimated Detection Limit                                                                                   |
| MDC            | Minimum detectable concentration                                                                            |
| MDL            | Method Detection Limit                                                                                      |
| ML             | Minimum Level (Dioxin)                                                                                      |
| NC             | Not Calculated                                                                                              |
| ND             | Not detected at the reporting limit (or MDL or EDL if shown)                                                |
| PQL            | Practical Quantitation Limit                                                                                |
| QC             | Quality Control                                                                                             |
| RER            | Relative error ratio                                                                                        |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                         |
| TEQ            | Toxicity Equivalent Quotient (Dioxin)                                                                       |

# **Certification Summary**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55503-1

# Laboratory: TestAmerica Pittsburgh

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

| uthority               | Program                       |                       | EPA Region              | Certification ID       | Expiration Date |
|------------------------|-------------------------------|-----------------------|-------------------------|------------------------|-----------------|
| tah                    | NELAP                         |                       | 8                       | PA001462015-4          | 05-31-17        |
| The following analytes | s are included in this report | , but are not certifi | ed under this certifica | tion:                  |                 |
| Analysis Method        | Prep Method                   | Matrix                | Analyt                  | e                      |                 |
| 200.8                  | 200.8                         | Water                 | Antim                   | ony                    |                 |
| 200.8                  | 200.8                         | Water                 | Arsen                   | ic                     |                 |
| 200.8                  | 200.8                         | Water                 | Berylli                 | um                     |                 |
| 200.8                  | 200.8                         | Water                 | Cadm                    | ium                    |                 |
| 200.8                  | 200.8                         | Water                 | Chron                   | nium                   |                 |
| 200.8                  | 200.8                         | Water                 | Coppe                   | er                     |                 |
| 200.8                  | 200.8                         | Water                 | Hardn                   | ess as calcium carbona | te              |
| 200.8                  | 200.8                         | Water                 | Iron                    |                        |                 |
| 200.8                  | 200.8                         | Water                 | Lead                    |                        |                 |
| 200.8                  | 200.8                         | Water                 | Mang                    | anese                  |                 |
| 200.8                  | 200.8                         | Water                 | Nicke                   | ,                      |                 |
| 200.8                  | 200.8                         | Water                 | Selen                   | ium                    |                 |
| 200.8                  | 200.8                         | Water                 | Silver                  |                        |                 |
| 200.8                  | 200.8                         | Water                 | Thallin                 | um                     |                 |
| 200.8                  | 200.8                         | Water                 | Zinc                    |                        |                 |
| 245.1                  | 245.1                         | Water                 | Mercu                   | ігу                    |                 |
| 300.0                  |                               | Water                 | Fluori                  | de                     |                 |
| 300.0                  |                               | Water                 | Nitrat                  | e as N                 |                 |
| 300.0                  |                               | Water                 | Nitrite                 | as N                   |                 |
| 300.0                  |                               | Water                 | Ortho                   | phosphate as P         |                 |
| SM 2540C               |                               | Water                 | Total                   | Dissolved Solids       |                 |
| SM 2540D               |                               | Water                 | Total                   | Suspended Solids       |                 |
| SM 4500 CN E           | SM 4500 CN C                  | Water                 | Cyani                   | de, Total              |                 |

TestAmerica Pittsburgh

# **Sample Summary**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55503-1

| Lab Sample ID | Client Sample ID            | Matrix | Collected Received            |
|---------------|-----------------------------|--------|-------------------------------|
| 180-55503-1   | AT6-271 (SALINITY ADJUSTED) | Water  | 06/07/16 13:00 06/08/16 11:30 |

6

# **Method Summary**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55503-1

| Method       | Method Description            | Protocol | Laboratory |
|--------------|-------------------------------|----------|------------|
| 300.0        | Anions, Ion Chromatography    | MCAWW    | TAL PIT    |
| 200.0        | Metals (ICP/MS)               | EPA      | TAL PIT    |
| 245.1        | Mercury (CVAA)                | EPA      | TAL PIT    |
| SM 2540C     | Solids, Total Dissolved (TDS) | SM       | TAL PIT    |
| SM 2540D     | Solids, Total Suspended (TSS) | SM       | TAL PIT    |
| SM 4500 CN E | Cyanide, Total                | SM       | TAL PIT    |

#### **Protocol References:**

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater",

# Laboratory References:

TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

TestAmerica Pittsburgh

# Lab Chronicle

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55503-1

Client Sample ID: AT6-271 (SALINITY ADJUSTED)

Date Collected: 06/07/16 13:00 Date Received: 06/08/16 11:30 Lab Sample ID: 180-55503-1

Matrix: Water

| Prep Type<br>Total/NA                  | Type Analysis                 | Batch Method 300.0 nt ID: CHICS2000          | Run | Factor 50 | Initial Amount 1 mL | Final<br>Amount | Batch<br>Number<br>178678 | Prepared<br>or Analyzed<br>06/09/16 09:06 | Analyst<br>CMR | Lab<br>TAL PIT     |
|----------------------------------------|-------------------------------|----------------------------------------------|-----|-----------|---------------------|-----------------|---------------------------|-------------------------------------------|----------------|--------------------|
| Total/NA                               | Analysis                      | 300.0<br>nt ID: CHICS2100B                   |     | 50        | 1 mL                |                 | 178539                    | 06/08/16 18:19                            | МЈН            | TAL PIT            |
| Total Recoverable<br>Total Recoverable | Prep<br>Analysis<br>Instrumer | 200.8<br>200.8<br>nt ID: X                   |     | 5         | 50 mL<br>50 mL      | 50 mL<br>50 mL  | 178688<br>179457          | 06/09/16 07:09<br>06/15/16 22:58          |                | TAL PIT<br>TAL PIT |
| Total Recoverable<br>Total Recoverable | Prep<br>Analysis<br>Instrumei | 200.8<br>200.8<br>nt ID: X                   |     | 5         | 50 mL<br>50 mL      | 50 mL<br>50 mL  | 178688<br>179553          | 06/09/16 07:09<br>06/16/16 22:34          |                | TAL PIT<br>TAL PIT |
| Total/NA<br>Total/NA                   | Prep<br>Analysis<br>Instrumer | 245.1<br>245.1<br>nt ID: K                   |     | 1         | 50 mL<br>50 mL      | 50 mL<br>50 mL  | 178784<br>178913          | 06/09/16 13:46<br>06/10/16 10:05          |                | TAL PIT<br>TAL PIT |
| Total/NA                               | Analysis<br>Instrumer         | SM 2540C<br>nt ID: NOEQUIP                   |     | 1         | 2 mL                | 100 mL          | 178788                    | 06/09/16 14:07                            | JWS            | TAL PIT            |
| Total/NA                               | Analysis<br>Instrumer         | SM 2540D<br>nt ID: NOEQUIP                   |     | 1         | 1000 mL             | 1000 mL         | 178797                    | 06/09/16 15:45                            | JWS            | TAL PIT            |
| Total/NA<br>Total/NA                   | Prep<br>Analysis<br>Instrumer | SM 4500 CN C<br>SM 4500 CN E<br>at ID: SEAL2 |     | 1         | 50 mL<br>50 mL      | 50 mL<br>50 mL  | 179152<br>179193          | 06/14/16 11:45<br>06/14/16 15:00          | JAS<br>JAS     | TAL PIT<br>TAL PIT |

#### Laboratory References:

TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

#### **Analyst References:**

Lab: TAL PIT

Batch Type: Prep

ANA = Alexis Anderson

EVR = Emilie Reichenbach

JAS = Joshua Schmidt

Batch Type: Analysis

CMR = Carl Reagle

EVR = Emilie Reichenbach

JAS = Joshua Schmidt

JWS = Jim Swanson

MJH = Matthew Hartman

WTR = Bill Reinheimer

TestAmerica Pittsburgh

Page 8 of 19

6/22/2016

# **Client Sample Results**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55503-1

Client Sample ID: AT6-271 (SALINITY ADJUSTED)

Date Collected: 06/07/16 13:00
Date Received: 06/08/16 11:30

Lab Sample ID: 180-55503-1

**Matrix: Water** 

| Method: 300.0 - Anions, Ion Chr<br>Analyte | omatogra<br>Result | phy<br>Qualifier | RL    | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------------|--------------------|------------------|-------|--------|------|---|----------------|----------------|---------|
| Nitrate as N                               | 8.0                |                  | 5.0   | 1.1    | mg/L |   |                | 06/08/16 18:19 | 50      |
| Nitrite as N                               | ND                 |                  | 2.5   | 1.4    | mg/L |   |                | 06/08/16 18:19 | 50      |
| Fluoride                                   | ND                 |                  | 5.0   | 1.2    | mg/L |   |                | 06/08/16 18:19 | 50      |
| Orthophosphate as P                        | ND                 |                  | 25    | 7.7    | mg/L |   |                | 06/09/16 09:06 | 50      |
| Method: 200.8 - Metals (ICP/MS)            | ) - Total Re       | coverable        |       |        |      | _ |                | A -1 1         | DUE     |
| Analyte                                    | Result             | Qualifier        | RL    | MDL    |      | D | Prepared       | Analyzed       | Dil Fac |
| Silver                                     | ND                 |                  | 5.0   | 0.23   | •    |   | 06/09/16 07:09 | 06/16/16 22:34 | 5       |
| Arsenic                                    | 28                 |                  | 5.0   | 0.59   | _    |   | 06/09/16 07:09 | 06/15/16 22:58 | 5       |
| Beryllium                                  | ND                 |                  | 5.0   | 0.18   | -    |   | 06/09/16 07:09 | 06/16/16 22:34 | 5       |
| Cadmium                                    | ND                 |                  | 5.0   | 0.37   | ug/L |   | 06/09/16 07:09 |                | 5       |
| Chromium                                   | 29                 |                  | 10    |        | ug/L |   | 06/09/16 07:09 |                | 5       |
| Copper                                     | 58                 | F2 F1            | 10    | 1.3    | ug/L |   | 06/09/16 07:09 | 06/16/16 22:34 |         |
| Iron                                       | ND                 |                  | 250   | 29     | ug/L |   | 06/09/16 07:09 |                |         |
| Manganese                                  | 1.7                | JB               | 25    | 0.23   | ug/L |   | 06/09/16 07:09 |                | 5       |
| Nickel                                     | 47                 |                  | 5.0   | 0.47   | ug/L |   | 06/09/16 07:09 |                | 5       |
| Lead                                       | 3.2                | JB               | 5.0   | 0.28   | ug/L |   |                | 06/15/16 22:58 |         |
| Antimony                                   | 1.1                | JB               | 10    | 0.20   | ug/L |   |                | 06/16/16 22:34 |         |
| Selenium                                   | 25                 |                  | 25    | 0.98   | ug/L |   |                | 06/16/16 22:34 |         |
| Thallium                                   | ND                 |                  | 5.0   | 0.066  | ug/L |   |                | 06/16/16 22:34 |         |
| Zinc                                       | 98                 |                  | 25    | 2.0    | ug/L |   | 06/09/16 07:09 | 06/16/16 22:34 |         |
| Hardness as calcium carbonate              | 7400               | В                | 17    | 0.13   | mg/L |   | 06/09/16 07:09 | 06/15/16 22:58 | ;       |
| Method: 245.1 - Mercury (CVAA<br>Analyte   | Result             | Qualifier        | RL    | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fa  |
| Mercury                                    | ND                 |                  | 0.20  | 0.039  | ug/L |   | 06/09/16 13:46 | 06/10/16 10:05 |         |
| General Chemistry Analyte                  | Result             | Qualifier        | RL    | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fa  |
| Total Dissolved Solids                     | 32000              |                  | 500   | 500    | mg/L |   |                | 06/09/16 14:07 |         |
| Total Suspended Solids                     | 2.0                |                  | 0.50  | 0.50   | mg/L |   |                | 06/09/16 15:45 | i       |
| i otai gusperiueu gorius                   | ND                 |                  | 0.010 | 0.0038 | ma/l |   | 06/14/16 11:45 | 06/14/16 15:00 | 3       |

TestAmerica Job ID: 180-55503-1

# Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 180-178539/44

**Matrix: Water** 

Analysis Batch: 178539

Client Sample ID: Method Blank

Prep Type: Total/NA

|              | MB     | MB        |       |       |      |   |          |                |         |
|--------------|--------|-----------|-------|-------|------|---|----------|----------------|---------|
| Analyte      | Result | Qualifier | RL    | MDL   | Unit | D | Prepared | Analyzed       | Dil Fac |
| Nitrate as N | ND     |           | 0.10  | 0.022 | mg/L |   |          | 06/08/16 18:02 | 1       |
| Nitrite as N | ND     |           | 0.050 | 0.028 | mg/L |   |          | 06/08/16 18:02 | 1       |
| Fluoride     | ND     |           | 0.10  | 0.024 | mg/L |   |          | 06/08/16 18:02 | 1       |
|              |        |           |       |       |      |   |          |                |         |

Lab Sample ID: LCS 180-178539/43

**Matrix: Water** 

Analysis Batch: 178539

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

| ĺ |              | Spike | LCS    | LCS       |      |   |      | %Rec.    |               |
|---|--------------|-------|--------|-----------|------|---|------|----------|---------------|
|   | Analyte      | Added | Result | Qualifier | Unit | D | %Rec | Limits   |               |
| ı | Nitrate as N | 2.50  | 2.56   |           | mg/L |   | 102  | 90 - 110 | · <del></del> |
|   | Nitrite as N | 2.50  | 2.52   |           | mg/L |   | 101  | 90 - 110 |               |
|   | Fluoride     | 2.50  | 2.32   |           | mg/L |   | 93   | 90 - 110 |               |

RL

0.50

Spike

Added

2.50

MDL Unit

0.15 mg/L

Unit

mg/L

LCS LCS

2.39

MB MB

Result Qualifier

Lab Sample ID: MB 180-178678/6

**Matrix: Water** 

Analyte

Analysis Batch: 178678

Client Sample ID: Method Blank Prep Type: Total/NA

**Analyzed** 

06/09/16 08:17

Dil Fac

Lab Sample ID: LCS 180-178678/5

Matrix: Water

Orthophosphate as P

Orthophosphate as P

Analysis Batch: 178678

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Limits

90 - 110

%Rec. Result Qualifier D %Rec

Prepared

# Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 180-178688/1-A

Matrix: Water

Analysis Batch: 179457

Client Sample ID: Method Blank Prep Type: Total Recoverable

**Prep Batch: 178688** 

|   |                               | MB     | MB        |     |       |      |   |                |                |         |
|---|-------------------------------|--------|-----------|-----|-------|------|---|----------------|----------------|---------|
|   | Analyte                       | Result | Qualifier | RL  | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|   | Arsenic                       | ND     |           | 1.0 | 0.12  | ug/L |   | 06/09/16 07:09 | 06/15/16 22:12 | 1       |
|   | Cadmium                       | ND     |           | 1.0 | 0.074 | ug/L |   | 06/09/16 07:09 | 06/15/16 22:12 | 1       |
|   | Manganese                     | 0.136  | J         | 5.0 | 0.046 | ug/L |   | 06/09/16 07:09 | 06/15/16 22:12 | 1       |
|   | Lead                          | 0.0940 | J         | 1.0 | 0.057 | ug/L |   | 06/09/16 07:09 | 06/15/16 22:12 | 1       |
|   | Antimony                      | ND     |           | 2.0 | 0.040 | ug/L |   | 06/09/16 07:09 | 06/15/16 22:12 | 1       |
| ı | Selenium                      | ND     |           | 5.0 | 0.20  | ug/L |   | 06/09/16 07:09 | 06/15/16 22:12 | 1       |
| ı | Hardness as calcium carbonate | 0.0264 | J         | 3.3 | 0.026 | mg/L |   | 06/09/16 07:09 | 06/15/16 22:12 | 1       |

Lab Sample ID: MB 180-178688/1-A

Matrix: Water

Analysis Batch: 179553

Client Sample ID: Method Blank Prep Type: Total Recoverable

**Prep Batch: 178688** 

| ı |           | MB     | MR        |     |       |      |   |                |                |          |
|---|-----------|--------|-----------|-----|-------|------|---|----------------|----------------|----------|
|   | Analyte   | Result | Qualifier | RL  | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac  |
| ١ | Silver    | ND     |           | 1.0 | 0.047 | ug/L |   | 06/09/16 07:09 | 06/16/16 22:08 | <u> </u> |
|   | Beryllium | ND     |           | 1.0 | 0.036 | ug/L |   | 06/09/16 07:09 | 06/16/16 22:08 | 1        |

TestAmerica Pittsburgh

Page 10 of 19

6/22/2016

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55503-1

# Method: 200.8 - Metals (ICP/MS) (Continued)

MED MAD

Lab Sample ID: MB 180-178688/1-A

**Matrix: Water** 

Analysis Batch: 179553

Client Sample ID: Method Blank **Prep Type: Total Recoverable** 

**Prep Batch: 178688** 

|          | MB     | MID       |     |       |      |   |                |                |         |
|----------|--------|-----------|-----|-------|------|---|----------------|----------------|---------|
| Analyte  | Result | Qualifier | RL  | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Chromium | ND     |           | 2.0 | 0.23  | ug/L |   | 06/09/16 07:09 | 06/16/16 22:08 | 1       |
| Copper   | ND     |           | 2.0 | 0.27  | ug/L |   | 06/09/16 07:09 | 06/16/16 22:08 | 1       |
| Iron     | ND     |           | 50  | 5.7   | ug/L |   | 06/09/16 07:09 | 06/16/16 22:08 | 1       |
| Nickel   | ND     |           | 1.0 | 0.093 | ug/L |   | 06/09/16 07:09 | 06/16/16 22:08 | 1       |
| Antimony | 0.417  | J         | 2.0 | 0.040 | ug/L |   | 06/09/16 07:09 | 06/16/16 22:08 | 1       |
| Selenium | ND     |           | 5.0 | 0.20  | ug/L |   | 06/09/16 07:09 | 06/16/16 22:08 | 1       |
| Thallium | 0.0260 | J         | 1.0 | 0.013 | ug/L |   | 06/09/16 07:09 | 06/16/16 22:08 | 1       |
| Zinc     | ND     |           | 5.0 | 0.40  | ug/L |   | 06/09/16 07:09 | 06/16/16 22:08 | 1       |
|          |        |           |     |       |      |   |                |                |         |

Lab Sample ID: LCS 180-178688/2-A

**Matrix: Water** 

Analysis Batch: 179457

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable** 

**Prep Batch: 178688** 

|           | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte   | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Arsenic   | 40.0  | 42.3   |           | ug/L |   | 106  | 85 - 115 |  |
| Cadmium   | 50.0  | 56.4   |           | ug/L |   | 113  | 85 - 115 |  |
| Manganese | 500   | 520    |           | ug/L |   | 104  | 85 - 115 |  |
| Lead      | 20.0  | 19.7   |           | ug/L |   | 99   | 85 - 115 |  |

Lab Sample ID: LCS 180-178688/2-A

**Matrix: Water** 

Analysis Batch: 179553

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable** 

**Prep Batch: 178688** 

| 1 |           | Spike | LCS    | LUS       |      |   |      | 70 Kec.             |  |
|---|-----------|-------|--------|-----------|------|---|------|---------------------|--|
| ı | Analyte   | Added | Result | Qualifier | Unit | D | %Rec | Limits              |  |
|   | Silver    | 50.0  | 43.3   |           | ug/L |   | 87   | 85 - 115            |  |
| ı | Beryllium | 50.0  | 56.2   |           | ug/L |   | 112  | 85 - 115            |  |
|   | Chromium  | 200   | 200    |           | ug/L |   | 100  | 85 - 115            |  |
|   | Copper    | 250   | 254    |           | ug/L |   | 102  | 85 - 115            |  |
|   | Iron      | 1000  | 1050   |           | ug/L |   | 105  | 85 - 115            |  |
|   | Nickel    | 500   | 504    |           | ug/L |   | 101  | 85 - 115            |  |
|   | Antimony  | 500   | 550    |           | ug/L |   | 110  | 85 - 115            |  |
|   | Selenium  | 10.0  | 11.2   |           | ug/L |   | 112  | 85 - 115            |  |
|   |           | 50.0  | 48.8   |           | ug/L |   | 98   | 85 - 115            |  |
|   | Thallium  | 500   | 514    |           | ug/L |   | 103  | 85 <sub>-</sub> 115 |  |
|   | Zinc      | 500   | 017    |           | 9    |   |      |                     |  |

Lab Sample ID: 180-55503-1 MS

Matrix: Water

Analysis Batch: 179457

Client Sample ID: AT6-271 (SALINITY ADJUSTED)

**Prep Type: Total Recoverable** 

**Prep Batch: 178688** 

| 7 many one Datom strate | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.    |  |
|-------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte                 | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Arsenic                 | 28     |           | 40.0  | 63.1   |           | ug/L |   | 88   | 70 - 130 |  |
| Cadmium                 | ND     |           | 50.0  | 51.1   |           | ug/L |   | 102  | 70 - 130 |  |
| Manganese               | 1.7    | JB        | 500   | 408    |           | ug/L |   | 81   | 70 - 130 |  |
| Lead                    | 3.2    | JB        | 20.0  | 19.0   |           | ug/L |   | 79   | 70 - 130 |  |
| Antimony                | 0.99   | J*        | 500   | 532    |           | ug/L |   | 106  | 70 - 130 |  |
| Selenium                | -      | J*        | 10.0  | 32.7   |           | ug/L |   | 83   | 70 - 130 |  |
| Geleriidiii             |        | -         |       |        |           | -    |   |      |          |  |

TestAmerica Pittsburgh

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55503-1

# Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: 180-55503-1 MS

**Matrix: Water** 

Analysis Batch

Client Sample ID: AT6-271 (SALINITY ADJUSTED) **Prep Type: Total Recoverable** 

| Analysis Batch: 1/9553 | Sample | Sample    | Spike | MS     | MS        |      |   |      | Prep Batch: 178688 %Rec. |
|------------------------|--------|-----------|-------|--------|-----------|------|---|------|--------------------------|
| Analyte                | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits                   |
| Silver                 | ND     |           | 50.0  | 40.4   |           | ug/L |   | 81   | 70 - 130                 |
| Beryllium              | ND     |           | 50.0  | 57.4   |           | ug/L |   | 115  | 70 - 130                 |
| Chromium               | 29     |           | 200   | 264    |           | ug/L |   | 117  | 70 - 130                 |
| Copper                 | 58     | F2 F1     | 250   | 647    | F1        | ug/L |   | 235  | 70 - 130                 |
| Iron                   | ND     |           | 1000  | 1210   |           | ug/L |   | 121  | 70 - 130                 |
| Nickel                 | 47     |           | 500   | 577    |           | ug/L |   | 106  | 70 - 130                 |
| Antimony               | 1.1    | JB        | 500   | 536    |           | ug/L |   | 107  | 70 - 130                 |
| Selenium               | 25     |           | 10.0  | 35.4   |           | ug/L |   | 107  | 70 - 130                 |
| Thallium               | ND     |           | 50.0  | 49.8   |           | ug/L |   | 100  | 70 - 130                 |
| Zinc                   | 98     |           | 500   | 587    |           | ug/L |   | 98   | 70 - 130                 |

Lab Sample ID: 180-55503-1 MSD

Matrix: Water

Analysis Batch: 179457

Client Sample ID: AT6-271 (SALINITY ADJUSTED)

**Prep Type: Total Recoverable** 

Prep Batch: 178688

|           |  |        |           |       |        |           |      |   |      | 1 10p Da | LOII. II | / 0000 |
|-----------|--|--------|-----------|-------|--------|-----------|------|---|------|----------|----------|--------|
|           |  | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |          | RPD    |
| Analyte   |  | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD      | Limit  |
| Arsenic   |  | 28     |           | 40.0  | 63.1   |           | ug/L |   | 88   | 70 - 130 |          | 20     |
| Cadmium   |  | ND     |           | 50.0  | 50.4   |           | ug/L |   | 101  | 70 - 130 | 1        | 20     |
| Manganese |  | 1.7    | JB        | 500   | 423    |           | ug/L |   | 84   | 70 - 130 | 4        | 20     |
| Lead      |  | 3.2    | JB        | 20.0  | 20.6   |           | ug/L |   | 87   | 70 - 130 | 8        | 20     |
| Antimony  |  | 0.99   | J *       | 500   | 534    |           | ug/L |   | 107  | 70 - 130 | 0        | 20     |
| Selenium  |  | 24     | J *       | 10.0  | 32.0   |           | ug/L |   | 76   | 70 - 130 | 2        | 20     |

Lab Sample ID: 180-55503-1 MSD

**Matrix: Water** 

Analysis Ratch, 170552

Client Sample ID: AT6-271 (SALINITY ADJUSTED)

**Prep Type: Total Recoverable** 

| Analysis Batch: 1/9553 |        | _         |       |        |           |      |   |      | Prep Ba             | itch: 17 | 78688 |
|------------------------|--------|-----------|-------|--------|-----------|------|---|------|---------------------|----------|-------|
|                        | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.               |          | RPD   |
| Analyte                | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits              | RPD      | Limit |
| Silver                 | ND     |           | 50.0  | 40.0   |           | ug/L |   | 80   | 70 - 130            |          | 20    |
| Beryllium              | ND     |           | 50.0  | 61.5   |           | ug/L |   | 123  | 70 - 130            | 7        | 20    |
| Chromium               | 29     |           | 200   | 243    |           | ug/L |   | 107  | 70 <sub>-</sub> 130 | 8        | 20    |
| Copper                 | 58     | F2 F1     | 250   | 309    | F2        | ug/L |   | 100  | 70 - 130            | 71       | 20    |
| Iron                   | ND     |           | 1000  | 1130   |           | ug/L |   | 113  | 70 - 130            | 7        | 20    |
| Manganese              | 2.0    | J         | 500   | 470    |           | ug/L |   | 94   | 70 - 130            | 11       | 20    |
| Nickel                 | 47     |           | 500   | 548    |           | ug/L |   | 100  | 70 - 130            | 5        | 20    |
| Antimony               | 1.1    | JB        | 500   | 540    |           | ug/L |   | 108  | 70 - 130            | 1        | 20    |
| Selenium               | 25     |           | 10.0  | 34.7   |           | ug/L |   | 100  | 70 - 130            | 2        | 20    |
| Thallium               | ND     |           | 50.0  | 49.1   |           | ug/L |   | 98   | 70 - 130            | 1        | 20    |
| Zinc                   | 98     |           | 500   | 559    |           | -    |   |      |                     | '        |       |
|                        | 00     |           | 300   | 559    |           | ug/L |   | 92   | 70 - 130            | 5        | 20    |

Method: 245.1 - Mercury (CVAA)

Lab Sample ID: MB 180-178784/1-A

**Matrix: Water** 

Analysis Batch: 178913

Client Sample ID: Method Blank Prep Type: Total/NA

**Prep Batch: 178784** 

MB MB Analyte Result Qualifier MDL Unit Prepared Analyzed Mercury 0.0457 J 0.20 0.039 ug/L 06/09/16 13:46 06/10/16 09:59

TestAmerica Pittsburgh

Page 12 of 19

Client Sample ID: Lab Control Sample

%Rec.

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Project/Site: Jordan Valley

| Method: 245.1 | - | Mercury | (CVAA) | ( | Continued) |
|---------------|---|---------|--------|---|------------|
|---------------|---|---------|--------|---|------------|

Lab Sample ID: LCS 180-178784/2-A

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch: 178913

Spike LCS LCS

Rec.

 Analyte
 Added Mercury
 Result 2.50
 Qualifier 2.53
 Unit ug/L
 D %Rec value
 Limits 2.51

Lab Sample ID: LCSD 180-178784/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Water
Analysis Batch: 178913

Prep Type: Total/NA
Prep Batch: 178784

%Rec. **RPD** LCSD LCSD Spike Limit RPD Added Result Qualifier Unit %Rec Limits Analyte 2.49 100 85 - 115 2 20 ug/L 2.50 Mercury

# Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 180-178788/2 Client Sample ID: Method Blank
Prep Type: Total/NA

Matrix: Water

Analysis Batch: 178788

 Analyte
 Result Total Dissolved Solids
 ND
 4
 MDL Unit Total Dissolved Solids
 D Prepared Total Dissolved Solids
 Analyzed Total Dissolved Solids
 D Total Dissolved Solids
 ND
 10
 10
 mg/L
 D Prepared Total Dissolved Solids
 Analyzed Total Dissolved Solids
 D Total Dissolved Solids
 ND
 10
 10
 mg/L
 06/09/16 14:07
 1

Lab Sample ID: LCS 180-178788/1

Matrix: Water

Analysis Batch: 178788 Spike LCS LCS

 Analyte
 Added
 Result Qualifier
 Unit mg/L
 D %Rec Limits

 Total Dissolved Solids
 596
 600
 mg/L
 101
 80 - 120

# Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 180-178797/2 Client Sample ID: Method Blank
Prep Type: Total/NA

Matrix: Water

Analysis Batch: 178797

MBAnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacTotal Suspended SolidsND0.500.50mg/L06/09/16 15:451

Lab Sample ID: LCS 180-178797/1

Matrix: Water

Analysis Batch: 178797

Spike LCS LCS 

\*Rec. | Property Constitute | Property | Propert

 Analyte
 Added
 Result Qualifier
 Unit
 D
 %Rec Limits

 Total Suspended Solids
 49.0
 48.0
 mg/L
 98
 80 - 120

Prep Type: Total/NA

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55503-1

Lab Sample ID: MB 180-179152/4-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA Analysis Batch: 179193 **Prep Batch: 179152** 

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Cyanide, Total ND 0.010 06/14/16 11:45 06/14/16 14:23 0.0038 mg/L

Lab Sample ID: HLCS 180-179152/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA Analysis Batch: 179193 **Prep Batch: 179152** 

Spike HLCS HLCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Cyanide, Total 0.250 0.239 mg/L 96 90 - 110

Lab Sample ID: LCS 180-179152/3-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 179193 **Prep Batch: 179152** Spike LCS LCS %Rec. **Analyte** Added Result Qualifier Unit %Rec Limits Cyanide, Total 0.200

0.196

mg/L

98

90 - 110

Lab Sample ID: LLCS 180-179152/1-A Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Analysis Batch: 179193 **Prep Batch: 179152** Spike LLCS LLCS %Rec.

Analyte Added Result Qualifier Unit %Rec Limits Cyanide, Total 0.0500 0.0495 mg/L 99 90 - 110

# **QC Association Summary**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55503-1

# HPLC/IC

| <b>Analysis Batc</b> | n: 17853 | y |
|----------------------|----------|---|
|----------------------|----------|---|

| Lab Sample ID     | Client Sample ID            | Prep Type | Matrix | Method | Prep Batch |
|-------------------|-----------------------------|-----------|--------|--------|------------|
| 180-55503-1       | AT6-271 (SALINITY ADJUSTED) | Total/NA  | Water  | 300.0  |            |
| LCS 180-178539/43 | Lab Control Sample          | Total/NA  | Water  | 300.0  |            |
| MB 180-178539/44  | Method Blank                | I otal/NA | Water  | 300.0  |            |

# Analysis Batch: 178678

| Lab Sample ID<br>180-55503-1<br>LCS 180-178678/5 | Client Sample ID AT6-271 (SALINITY ADJUSTED) Lab Control Sample | Prep Type Total/NA Total/NA | Water<br>Water | Method<br>300.0<br>300.0 | Prep Batch |
|--------------------------------------------------|-----------------------------------------------------------------|-----------------------------|----------------|--------------------------|------------|
| MB 180-178678/6                                  | Method Blank                                                    | Total/NA                    | Water          | 300.0                    |            |

# Metals

# Prep Batch: 178688

| p = access         |                             |                   |        |        |            |
|--------------------|-----------------------------|-------------------|--------|--------|------------|
| Lab Sample ID      | Client Sample ID            | Prep Type         | Matrix | Method | Prep Batch |
| 180-55503-1        | AT6-271 (SALINITY ADJUSTED) | Total Recoverable | Water  | 200.8  |            |
| 180-55503-1 MS     | AT6-271 (SALINITY ADJUSTED) | Total Recoverable | Water  | 200.8  |            |
| 180-55503-1 MSD    | AT6-271 (SALINITY ADJUSTED) | Total Recoverable | Water  | 200.8  |            |
| LCS 180-178688/2-A | Lab Control Sample          | Total Recoverable | Water  | 200.8  |            |
|                    |                             |                   | Water  | 200.8  |            |
| MB 180-178688/1-A  | Method Blank                | Total Recoverable | vvalei | 200.0  |            |

# Prep Batch: 178784

| Lab Sample ID       | Client Sample ID            | Prep Type | Matrix | Method | Prep Batch |
|---------------------|-----------------------------|-----------|--------|--------|------------|
| 180-55503-1         | AT6-271 (SALINITY ADJUSTED) | Total/NA  | Water  | 245.1  |            |
| LCS 180-178784/2-A  | Lab Control Sample          | Total/NA  | Water  | 245.1  |            |
| LCSD 180-178784/3-A | Lab Control Sample Dup      | Total/NA  | Water  | 245.1  |            |
| MB 180-178784/1-A   | Method Blank                | Total/NA  | Water  | 245.1  |            |

# Analysis Batch: 178913

| Lab Sample ID       | Client Sample ID            | Prep Type | Matrix | Method | Prep Batch |
|---------------------|-----------------------------|-----------|--------|--------|------------|
| 180-55503-1         | AT6-271 (SALINITY ADJUSTED) | Total/NA  | Water  | 245.1  | 178784     |
| LCS 180-178784/2-A  | Lab Control Sample          | Total/NA  | Water  | 245.1  | 178784     |
| LCSD 180-178784/3-A | Lab Control Sample Dup      | Total/NA  | Water  | 245.1  | 178784     |
| MB 180-178784/1-A   | Method Blank                | Total/NA  | Water  | 245.1  | 178784     |

# Analysis Batch: 179457

| Lab Sample ID      | Client Sample ID            | Prep Type         | Matrix | Method | Prep Batch |
|--------------------|-----------------------------|-------------------|--------|--------|------------|
| 180-55503-1        | AT6-271 (SALINITY ADJUSTED) | Total Recoverable | Water  | 200.8  | 178688     |
| 180-55503-1 MS     | AT6-271 (SALINITY ADJUSTED) | Total Recoverable | Water  | 200.8  | 178688     |
| 180-55503-1 MSD    | AT6-271 (SALINITY ADJUSTED) | Total Recoverable | Water  | 200.8  | 178688     |
| LCS 180-178688/2-A | Lab Control Sample          | Total Recoverable | Water  | 200.8  | 178688     |
|                    | •                           | Total Recoverable | Water  | 200.8  | 178688     |
| MB 180-178688/1-A  | Method Blank                | TOTAL RECOVERABLE | vvalci | 200.0  |            |

# Analysis Batch: 179553

| Lab Sample ID      | Client Sample ID            | Prep Type         | Matrix | Method | Prep Batch |
|--------------------|-----------------------------|-------------------|--------|--------|------------|
| 180-55503-1        | AT6-271 (SALINITY ADJUSTED) | Total Recoverable | Water  | 200.8  | 178688     |
| 180-55503-1 MS     | AT6-271 (SALINITY ADJUSTED) | Total Recoverable | Water  | 200.8  | 178688     |
| 180-55503-1 MSD    | AT6-271 (SALINITY ADJUSTED) | Total Recoverable | Water  | 200.8  | 178688     |
| LCS 180-178688/2-A | Lab Control Sample          | Total Recoverable | Water  | 200.8  | 178688     |
| MB 180-178688/1-A  | Method Blank                | Total Recoverable | Water  | 200.8  | 178688     |

TestAmerica Pittsburgh

# **QC Association Summary**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55503-1

# **General Chemistry**

# Analysis Batch: 178788

| Lab Sample ID    | Client Sample ID            | Prep Type | Matrix | Method   | Prep Batch    |
|------------------|-----------------------------|-----------|--------|----------|---------------|
| 180-55503-1      | AT6-271 (SALINITY ADJUSTED) | Total/NA  | Water  | SM 2540C | - I TOP DUTON |
| LCS 180-178788/1 | Lab Control Sample          | Total/NA  | Water  | SM 2540C |               |
| MB 180-178788/2  | Method Blank                | Total/NA  | Water  | SM 2540C |               |

# Analysis Batch: 178797

| Lab Sample ID    | Client Sample ID            | Prep Type | Matrix | Method   | Prep Batch |
|------------------|-----------------------------|-----------|--------|----------|------------|
| 180-55503-1      | AT6-271 (SALINITY ADJUSTED) | Total/NA  | Water  | SM 2540D |            |
| LCS 180-178797/1 | Lab Control Sample          | Total/NA  | Water  | SM 2540D |            |
| MB 180-178797/2  | Method Blank                | Total/NA  | Water  | SM 2540D |            |

# **Prep Batch: 179152**

| Lab Sample ID       | Client Sample ID            | Prep Type | Matrix | Method       | Prep Batch  |
|---------------------|-----------------------------|-----------|--------|--------------|-------------|
| 180-55503-1         | AT6-271 (SALINITY ADJUSTED) | Total/NA  | Water  | SM 4500 CN C | - Top Buton |
| HLCS 180-179152/2-A | Lab Control Sample          | Total/NA  | Water  | SM 4500 CN C |             |
| LCS 180-179152/3-A  | Lab Control Sample          | Total/NA  | Water  | SM 4500 CN C |             |
| LLCS 180-179152/1-A | Lab Control Sample          | Total/NA  | Water  | SM 4500 CN C |             |
| MB 180-179152/4-A   | Method Blank                | Total/NA  | Water  | SM 4500 CN C |             |

# Analysis Batch: 179193

| Lab Sample ID       | Client Sample ID            | Prep Type | Matrix | Method       | Prep Batch |
|---------------------|-----------------------------|-----------|--------|--------------|------------|
| 180-55503-1         | AT6-271 (SALINITY ADJUSTED) | Total/NA  | Water  | SM 4500 CN E | 179152     |
| HLCS 180-179152/2-A | Lab Control Sample          | Total/NA  | Water  | SM 4500 CN E | 179152     |
| LCS 180-179152/3-A  | Lab Control Sample          | Total/NA  | Water  | SM 4500 CN E | 179152     |
| LLCS 180-179152/1-A | Lab Control Sample          | Total/NA  | Water  | SM 4500 CN E | 179152     |
| MB 180-179152/4-A   | Method Blank                | Total/NA  | Water  | SM 4500 CN E | 179152     |

11 1

**Chain of Custody Record** 

| Pittsburgh, PA 15238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nam c     | or Cust                    | ouy n                                        | CCC            | JIU        |              |        |                |          |         |       |          |        |                 |          |                 | 1        | t .840f                       | 7 14 24     | s ediring a                        | TRV 771 | gr or  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------|----------------------------------------------|----------------|------------|--------------|--------|----------------|----------|---------|-------|----------|--------|-----------------|----------|-----------------|----------|-------------------------------|-------------|------------------------------------|---------|--------|
| Phone (412) 963-7058 Fax (412) 963-2468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                            |                                              |                |            |              |        |                |          |         |       |          | Idea N | (m/m)n          |          |                 |          | No:                           |             |                                    |         | _      |
| Client Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sampler.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                            | Part 100                                     | nber, C        | amie       | L.           |        | •              |          | BA      | L'I   | IM       | O      | RE              |          | 6               | 180      | -31129                        | £905.       | 1                                  |         |        |
| Client Cortact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                            | E-Ma                                         | iit:<br>ie.gam | horifi     | tectar       | nenic  | ainc           | com      |         |       |          |        |                 |          |                 | Page     | ge 1 of                       | 1           |                                    |         |        |
| Mike Chanov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                            | Carr                                         | le.gan         | iber e     | gic size     | HOLLO  |                | -        |         | _     | 7 10 190 |        |                 |          | _               | Job :    |                               |             |                                    |         |        |
| Company:<br>EA Engineering, Science, and Technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                            |                                              |                |            |              |        | An             | alysi    | s Re    | que   | sted     |        |                 |          | -               | _        |                               |             |                                    |         |        |
| Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Due Date Requests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d:        |                            |                                              | 779            | 2          |              |        |                |          |         |       |          |        | . 1             |          | 200             |          | servatio                      | on Code     |                                    |         |        |
| 225 Schilling Circle Suite 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Section Control of the Control of th |           |                            |                                              |                | F .        | 1            |        | 1              |          |         |       |          | 1      |                 |          |                 |          | HCL                           |             | M - Hexan                          | e       |        |
| City:<br>Hunt Valley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TAT Requested (da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ys):      |                            |                                              | 0 44.00 B      | S.         |              |        |                |          |         | Ì     |          |        |                 |          | 10              | C-:      | NaOH<br>Zn Aceta<br>Nitric Ac |             | N - None<br>O - AsNaC<br>P - Na2O4 |         |        |
| State, Zipc<br>MD, 21031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                            |                                              |                | 2          | Time         |        |                |          | 1       |       |          |        | l               | 1        | Ŀ               |          | NaHSO4                        |             | O. Marse                           | 12      |        |
| Phone:<br>410-329-5120(Tel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PO#:<br>Purchase Order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Requested |                            |                                              | (a)            | 5          | 100          |        | ł              | 7        | 1       |       |          | IIII   |                 | H        |                 |          |                               | Ш           |                                    | T       | ydrate |
| Email:<br>mchanov@eaest.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | wo≠.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                            |                                              | 0 0            | 4          | Hold         |        |                | Tru      |         | 1     |          |        |                 |          |                 |          |                               |             |                                    |         |        |
| Project Name:<br>Jordan Valley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Project #:<br>18015970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                            |                                              | Implotyecorn   | 67         | 'n           |        | 1              | 0        |         |       |          | 180    | -555            | 03 CI    | nain (          | of Cu    | stody                         | I CERT IIII | 1881                               | - 1     |        |
| Site:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SSOW#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                            |                                              |                |            | 76           |        | ļ              | 2        | 1       |       | 9        |        |                 | 1        | **              |          |                               |             |                                    |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample    | Sample<br>Type<br>(C=comp, | Matric<br>(Wwate,<br>S-solle,<br>O-wastelfi, | eld fillered   | Motol      | 17)          | TSS    | 105            | 412mlnt  |         |       |          |        |                 |          | Total Municipal | The same | Sne                           | scial In    | struction                          | e/Note  | p.     |
| Sample Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Time      | G=grab)                    |                                              | <b>**</b>      |            | No           |        | 135            |          | 150     | N . 1 |          | 1000   | <b>35-15</b> -7 | -        | - 12            |          | - Linkson                     |             | and account                        |         | 303344 |
| The state of the s | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | 100.000000                 | on Code                                      | Y              |            |              |        |                |          | 2002/10 | Di I  | C CATAL  | 7-1    | 7,4             | al min i | 15              | 34       | 200                           | 4.0         | · Marinos                          | 17.0    |        |
| 4T6-271 (Salmity Adjusted)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6/7/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1300      | (5                         | W                                            |                | X          | X            | X      | X              | X        |         |       |          |        |                 |          | 16              |          |                               |             |                                    |         |        |
| 7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                            |                                              | 11             |            |              |        |                |          |         |       |          |        |                 |          | 1               | -        |                               |             |                                    |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                            |                                              | ++             | +          | 1            |        |                | +        | -       | -     |          | 1      |                 | $\dashv$ | F-1             |          |                               |             | _                                  |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 1                          |                                              |                |            |              |        |                |          |         |       |          |        |                 |          | -               | à-       |                               |             |                                    |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                            |                                              | П              |            |              |        |                |          |         |       |          |        |                 |          | 20              |          |                               |             |                                    |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         |                            |                                              | ++             | -          |              |        |                | $\vdash$ | -       | _     | +        |        |                 | $\neg$   |                 | 7        |                               |             |                                    |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                            |                                              |                |            |              |        |                |          |         |       | _        |        |                 |          |                 |          |                               |             |                                    | _       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                            |                                              |                |            |              |        |                |          | -       |       |          |        |                 |          | 100             | 麒        |                               |             |                                    |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                            |                                              | +              | _          | -            |        |                |          |         | -     | +        |        |                 |          | *               |          |                               |             |                                    |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                            |                                              |                |            |              |        |                |          | _       | _     | -        | -      |                 | _        | 2               |          |                               |             |                                    |         | -      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                            |                                              | 11             | 1          |              |        |                |          |         |       | 1        |        | - 8             |          |                 |          |                               |             |                                    |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 1                          |                                              | ++             | _          | _            | 1      |                |          |         |       |          |        |                 |          | 1               | 4        |                               |             |                                    |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                            |                                              | 11             |            | -            | 1_     |                |          | -       | -     | -        | -      | _               | -        | -               | 43       | _                             |             |                                    | -       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | 1 1                        |                                              |                |            |              | 1      |                |          |         |       |          |        |                 |          |                 |          |                               |             |                                    |         |        |
| enter the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | -                          |                                              | 11             |            |              | 1      | ı              |          |         |       |          |        |                 |          | 3               | -        |                               |             |                                    |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                            |                                              | Ц,             |            | /- Die       |        | 1/4            | -        | ove be  | 1200  | -        | IF co  | mole            | C 250    |                 |          | onger                         | than 1      | month)                             | _       |        |
| Possible Hazard Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | H 2000 2 0                 |                                              | ľ              | Samp       | Retun        | prosit | Olive<br>F I M | .ec //   | Ž       | 3     | 2001     |        |                 |          |                 | hive f   | English t                     | e code      | <b>month)</b><br>Month:            | _       |        |
| Non-Hazard Flammable Skin Irritant Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ison B Unkn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | own F     | Radiological               |                                              |                |            | Retun        |        |                |          |         |       |          | y La   | -               |          | Arc             | INVE !   | UI                            | _           | WOITE                              | •       |        |
| Deliverable Requested: I, II, III, IV, Other (specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 27                         |                                              | · ·            | - Justinia | III 150      | 0000   |                | J . 101  | ,       | 163.  |          |        |                 |          |                 |          |                               |             |                                    |         |        |
| Empty Kit Relinquished by: 7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 7/16                       |                                              | Tim            |            | 120          | 0      |                |          | (1.1    |       | Meti     | nod of | Shipm           | ent      | Car             | rje.     | -                             |             | 161-A                              | -       | $\sum$ |
| Relinquished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6/7/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16        | OO                         | Company<br>E                                 | 4              |            | Ceive        | LA     | lu             | ره       |         | 21    | 10       | n      | Uste            |          | 8               |          | 16                            | _           | TX                                 | T       |        |
| Rettinguished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                            | Company                                      |                | Re         | ceived       | tty:   | 4              | 070      | į.      |       |          | ,      | Date            | Hame:    |                 | _        | 1.1                           | 30          | Company                            | 158     |        |
| Relinquished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                            | Company                                      |                | Re         | eceived<br>/ | by:    | A              |          |         | •     | =        |        | Date            | Time:    |                 | 3        | 140                           |             | Company                            | V)      |        |
| Custody Seals Intact: Custody Seal No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 4                          |                                              |                | Co         | oler Te      | mpera  | ejerie         | °C and   | Other   | Rema  | ies:     | 35     |                 |          |                 |          |                               |             |                                    |         |        |
| A Yes A No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                            |                                              |                | _ 1        |              | _      |                |          |         |       |          | -      | _               |          |                 |          |                               |             |                                    |         |        |

Uncorrected temp Thermometer ID Initials

PT-WI-SR-001 effective 7/26/13

MICHAEL CHANOV 4105847000 5120 EA ENG SCIENCE TECH 225 SCHILLING CIRCLE HUNT VALLEY MD 21031

#### SHIP TO:

SAMPLE CUSTODY TESTAMERICA RIDC PARK 301 ALPHA DRIVE

PITTSBURGH P.





PA 152 9-22



UPS NEXT DAY AIR


TRACKING #: 1Z 288 682 01 9863 2367



BILLING: P/P UPS CARBON NEUTRAL SHIPMENT

Department Code: 2122
Project Phase AND Task: TOXLAB
CS 18.1.17. WNINVSO 75.04 04/2016











UPS CampusShip: Shipment Label

# **Login Sample Receipt Checklist**

Client: EA Engineering, Science, and Technology

Job Number: 180-55503-1

List Source: TestAmerica Pittsburgh

Login Number: 55503

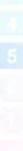
List Number: 1

Creator: Watson, Debbie

| Question                                                                                                   | Answer | Comment |
|------------------------------------------------------------------------------------------------------------|--------|---------|
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> | True   |         |
| The cooler's custody seal, if present, is intact.                                                          | True   |         |
| Sample custody seals, if present, are intact.                                                              | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.                             | True   |         |
| Samples were received on ice.                                                                              | True   |         |
| Cooler Temperature is acceptable.                                                                          | True   |         |
| Cooler Temperature is recorded.                                                                            | True   |         |
| COC is present.                                                                                            | True   |         |
| COC is filled out in ink and legible.                                                                      | True   |         |
| COC is filled out with all pertinent information.                                                          | True   |         |
| Is the Field Sampler's name present on COC?                                                                | True   |         |
| There are no discrepancies between the containers received and the COC.                                    | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)                              | True   |         |
| Sample containers have legible labels.                                                                     | True   |         |
| Containers are not broken or leaking.                                                                      | True   |         |
| Sample collection date/times are provided.                                                                 | True   |         |
| Appropriate sample containers are used.                                                                    | True   |         |
| Sample bottles are completely filled.                                                                      | True   |         |
| Sample Preservation Verified.                                                                              | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                           | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                            | True   |         |
| Multiphasic samples are not present.                                                                       | True   |         |
| Samples do not require splitting or compositing.                                                           | True   |         |
| Residual Chlorine Checked.                                                                                 | N/A    |         |





























































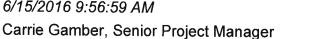























(412)963-2428

**TestAmerica** 

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratories, Inc.

TestAmerica Job ID: 180-55632-1 Client Project/Site: Jordan Valley

EA Engineering, Science, and Technology

TestAmerica Pittsburgh

Pittsburgh, PA 15238 Tel: (412)963-7058

225 Schilling Circle

Attn: Mike Chanov

Hunt Valley, Maryland 21031

Authorized for release by: 6/15/2016 9:56:59 AM

Erw J. Samlu

This report has been electronically signed and authorized by the signatory. Electronic signature is

intended to be the legally binding equivalent of a traditionally handwritten signature. Results relate only to the items tested and the sample(s) as received by the laboratory.

301 Alpha Drive RIDC Park

For:

Suite 400

**ANALYTICAL REPORT** 

Have a Question?





....LINKS .....

**Review your project** results through

Total Access















# **Table of Contents**

| Cover Page             |    |
|------------------------|----|
| Table of Contents      | -  |
| Case Narrative         | }  |
| Definitions/Glossary   |    |
| Certification Summary  |    |
| Sample Summary         | ;  |
| Method Summary         | 7  |
| _ab Chronicle          |    |
| Client Sample Results  |    |
| QC Sample Results      | 10 |
| QC Association Summary |    |
| Chain of Custody       | 13 |
| Receipt Checklists     | 16 |

#### **Case Narrative**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55632-1

Job ID: 180-55632-1

Laboratory: TestAmerica Pittsburgh

Narrative

#### **CASE NARRATIVE**

Client: EA Engineering, Science, and Technology

Project: Jordan Valley

Report Number: 180-55632-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

#### RECEIPT

The samples were received on 06/11/2016; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 2.1 C.

#### **METALS**

The following sample was diluted, based on historical results of similar samples from this client, to bring the concentration of sodium and calcium to within the instrument's linear range as well as for the suppression of the internal standard: AT6-277 (MOCK) (180-55632-1). This sample was further diluted for the sodium concentration. Elevated reporting limits (RLs) are provided.

#### **GENERAL CHEMISTRY**

Samples AT6-277 (MOCK) (180-55632-1) required dilution prior to IC analysis. The reporting limits have been adjusted accordingly.

TestAmerica Pittsburgh 6/15/2016

# **Definitions/Glossary**

Client: EA Engineering, Science, and Technology

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55632-1

# Qualifiers

| R.A | 260 | 10 |
|-----|-----|----|
| W   | eta | 13 |

Qualifier Qualifier Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

# Glossary

TEF

TEQ

| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
|----------------|-------------------------------------------------------------------------------------------------------------|
| <del>n</del>   | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CNF            | Contains no Free Liquid                                                                                     |
| DER            | Duplicate error ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision level concentration                                                                                |
| MDA            | Minimum detectable activity                                                                                 |
| EDL            | Estimated Detection Limit                                                                                   |
| MDC            | Minimum detectable concentration                                                                            |
| MDL            | Method Detection Limit                                                                                      |
| ML             | Minimum Level (Dioxin)                                                                                      |
| NC             | Not Calculated                                                                                              |
| ND             | Not detected at the reporting limit (or MDL or EDL if shown)                                                |
| PQL            | Practical Quantitation Limit                                                                                |
| QC             | Quality Control                                                                                             |
| RER            | Relative error ratio                                                                                        |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55632-1

# Laboratory: TestAmerica Pittsburgh

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

| uthority               | Program                     |                         | EPA Region              | Certification ID | Expiration Date |
|------------------------|-----------------------------|-------------------------|-------------------------|------------------|-----------------|
| tah                    | NELAP                       |                         | 8                       | PA001462015-4    | 05-31-17        |
| The following analytes | s are included in this repo | rt, but are not certifi | ed under this certifica | tion:            |                 |
| Analysis Method        | Prep Method                 | Matrix                  | Analyt                  |                  |                 |
| 200.7 Rev 4.4          | 200.7                       | Water                   | Bariun                  | 1                | <del></del>     |
| 200.7 Rev 4.4          | 200.7                       | Water                   | Boron                   |                  |                 |
| 200.7 Rev 4.4          | 200.7                       | Water                   | Calciu                  | m                |                 |
| 200.7 Rev 4.4          | 200.7                       | Water                   | Magne                   | sium             |                 |
| 200.7 Rev 4.4          | 200.7                       | Water                   | Potass                  | sium             |                 |
| 200.7 Rev 4.4          | 200.7                       | Water                   | Sodiur                  | n                |                 |
| 200.7 Rev 4.4          | 200.7                       | Water                   | Stronti                 | um               |                 |
| 300.0                  |                             | Water                   | Bromio                  | le               |                 |
| 300.0                  |                             | Water                   | Chloric                 | le               |                 |
| 300.0                  |                             | Water                   | Sulfate                 | <b>)</b>         |                 |

# Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

| Authority                | Program                     | <b>EPA Region</b> | Certification ID  | Expiration Date |
|--------------------------|-----------------------------|-------------------|-------------------|-----------------|
| Alaska                   | State Program               | 10                | CA01531           | 06-30-16        |
| Arizona                  | State Program               | 9                 | AZ0671            | 10-13-16        |
| California               | LA Cty Sanitation Districts | 9                 | 10256             | 01-31-17 *      |
| California               | State Program               | 9                 | CA ELAP 2706      | 06-30-16        |
| Guam                     | State Program               | 9                 | Cert. No. 12.002r | 01-23-17        |
| Hawaii                   | State Program               | 9                 | N/A               | 01-29-17        |
| Kansas                   | NELAP Secondary AB          | 7                 | E-10420           | 07-31-16        |
| Nevada                   | State Program               | 9                 | CA015312016-2     | 07-31-16        |
| New Mexico               | State Program               | 6                 | N/A               | 01-29-17        |
| Northern Mariana Islands | State Program               | 9                 | MP0002            | 01-29-17        |
| Oregon                   | NELAP                       | 10                | 4028              | 01-29-17        |
| USDA                     | Federal                     |                   | P330-09-00080     | 07-08-18        |
| Washington               | State Program               | 10                | C900              | 09-03-16        |

TestAmerica Pittsburgh

<sup>\*</sup> Certification renewal pending - certification considered valid.

# Sample Summary

Client: EA Engineering, Science, and Technology Project/Site: Jordan Valley

TestAmerica Job ID: 180-55632-1

| Lab Sample ID | Client Sample ID | Matrix | Collected Received            |
|---------------|------------------|--------|-------------------------------|
| 180-55632-1   | AT6-277 (MOCK)   | Water  | 06/10/16 13:45 06/11/16 09:00 |

# **Method Summary**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55632-1

| Method        | Method Description         | Protocol | Laboratory |
|---------------|----------------------------|----------|------------|
| 300.0         | Anions, Ion Chromatography | MCAWW    | TAL PIT    |
| 200.7 Rev 4.4 | Metals (ICP)               | EPA      | TAL PIT    |
| SM 2320B      | Alkalinity                 | SM =     | TAL IRV    |

#### **Protocol References:**

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater",

#### **Laboratory References:**

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022 TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

# **Lab Chronicle**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55632-1

Client Sample ID: AT6-277 (MOCK)

Date Collected: 06/10/16 13:45 Date Received: 06/11/16 09:00 Lab Sample ID: 180-55632-1

**Matrix: Water** 

| Prep Type         | Batch<br>Type        | Batch<br>Method              | Run | Dil<br>Factor | Initial<br>Amount | Final<br>Amount | Batch<br>Number | Prepared or Analyzed | Analyst | Lab     |
|-------------------|----------------------|------------------------------|-----|---------------|-------------------|-----------------|-----------------|----------------------|---------|---------|
| Total/NA          | Analysis             | 300.0<br>nt ID: CHICS2100B   |     | 25            | 1 mL              |                 | 178924          | 06/11/16 17:46       | MJH     | TAL PIT |
| Total/NA          | Analysis<br>Instrume | 300.0<br>nt ID: CHICS2100B   |     | 250           | 1 mL              |                 | 178924          | 06/11/16 18:03       | MJH     | TAL PIT |
| Total Recoverable | Prep                 | 200.7                        |     |               | 50 mL             | 50 mL           | 178988          | 06/13/16 07:55       | ANA     | TAL PIT |
| Total Recoverable | Analysis<br>Instrume | 200.7 Rev 4.4                |     | 5             | 50 mL             | 50 mL           | 179123          | 06/14/16 08:57       | RJR     | TAL PIT |
| Total Recoverable | Prep                 | 200.7                        |     |               | 50 mL             | 50 mL           | 178988          | 06/13/16 07:55       | ANA     | TAL PIT |
| Total Recoverable | Analysis<br>Instrume | 200.7 Rev 4.4                |     | 25            | 50 mL             | 50 mL           | 179123          | 06/14/16 09:03       | RJR     | TAL PIT |
| Total/NA          | Analysis<br>Instrume | SM 2320B<br>nt ID: MANTECH01 |     | 1             |                   |                 | 336412          | 06/14/16 12:12       | YZ      | TAL IRV |

#### Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022 TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

# **Analyst References:**

Lab: TAL IRV

Batch Type: Analysis YZ = Yuriy Zakhrabov

Lab: TAL PIT

Batch Type: Prep

ANA = Alexis Anderson

Batch Type: Analysis

MJH = Matthew Hartman

RJR = Ron Rosenbaum

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55632-1

Client Sample ID: AT6-277 (MOCK)

Date Collected: 06/10/16 13:45
Date Received: 06/11/16 09:00

Lab Sample ID: 180-55632-1

Matrix: Water

| Method: 300.0 - Anions, Ion C<br>Analyte |               | Qualifier  | RL     | MDL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------------------------|---------------|------------|--------|------|------|---|----------------|----------------|---------|
| Bromide                                  | 97            |            | 13     | 1.5  | mg/L | _ |                | 06/11/16 17:46 | 25      |
| Chloride                                 | 15000         |            | 250    | 83   | mg/L |   |                | 06/11/16 18:03 | 250     |
| Sulfate                                  | 3600          |            | 25     | 8.6  | mg/L |   |                | 06/11/16 17:46 | 25      |
| Method: 200.7 Rev 4.4 - Metal            | s (ICP) - Tot | al Recover | able   |      |      |   |                |                |         |
| Analyte                                  |               | Qualifier  | RL     | MDL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Boron                                    | 1300          |            | 1000   | 22   | ug/L |   | 06/13/16 07:55 | 06/14/16 08:57 | 5       |
| Barium                                   | 110           | J          | 1000   | 4.5  | ug/L |   | 06/13/16 07:55 | 06/14/16 08:57 | 5       |
| Calcium                                  | 860000        |            | 25000  | 360  | ug/L |   | 06/13/16 07:55 | 06/14/16 08:57 | 5       |
| Potassium                                | 350000        |            | 25000  | 4200 | ug/L |   | 06/13/16 07:55 | 06/14/16 08:57 | 5       |
| Magnesium                                | 1100000       |            | 25000  | 200  | ug/L |   | 06/13/16 07:55 | 06/14/16 08:57 | 5       |
| Sodium                                   | 8500000       |            | 130000 | 5700 |      |   | 06/13/16 07:55 | 06/14/16 09:03 | 25      |
| Strontium                                | 10000         |            | 250    | 26   | ug/L |   | 06/13/16 07:55 | 06/14/16 08:57 | 5       |
|                                          |               |            |        |      |      |   |                |                |         |
| General Chemistry                        |               |            |        |      |      |   |                |                |         |
| Analyte                                  |               | Qualifier  | RL     | MDL  |      | D | Prepared       | Analyzed       | Dil Fac |
| Alkalinity as CaCO3                      | 800           |            | 4.0    | 4.0  | mg/L |   |                | 06/14/16 12:12 | 1       |
| Bicarbonate Alkalinity as CaCO3          | 800           |            | 4.0    | 4.0  | mg/L |   |                | 06/14/16 12:12 | 1       |
| Carbonate Alkalinity as CaCO3            | ND            |            | 4.0    | 4.0  | mg/L |   |                | 06/14/16 12:12 | 1       |
| Hydroxide Alkalinity as CaCO3            | ND            |            | 4.0    | 4.0  | mg/L |   |                | 06/14/16 12:12 | 1       |
| Bicarbonate ion as HCO3                  | 970           |            | 4.8    | 4.8  | mg/L |   |                | 06/14/16 12:12 | 1       |
| Carbonate as CO3                         | ND            |            | 2.4    | 2.4  | mg/L |   |                | 06/14/16 12:12 | 1       |
| Hydroxide as OH                          | ND            |            | 1.4    | 1.4  | mg/L |   |                | 06/14/16 12:12 | 1       |

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

# Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 180-178924/6

**Matrix: Water** 

Analysis Batch: 178924

Client Sample ID: Method Blank

Prep Type: Total/NA

| ı |          | MR     | MB        |      |       |      |   |          |                |         |
|---|----------|--------|-----------|------|-------|------|---|----------|----------------|---------|
|   | Analyte  | Result | Qualifier | RL   | MDL   | Unit | D | Prepared | Analyzed       | Dil Fac |
|   | Bromide  | ND     |           | 0.50 | 0.058 | mg/L |   |          | 06/11/16 11:22 | 1       |
|   | Chloride | ND     |           | 1.0  | 0.33  | mg/L |   |          | 06/11/16 11:22 | 1       |
|   | Sulfate  | ND     |           | 1.0  | 0.34  | mg/L |   |          | 06/11/16 11:22 | 1       |
|   | Guilate  |        |           |      |       | _    |   |          |                |         |

**Spike** 

Added

10.0

50.0

50.0

Lab Sample ID: LCS 180-178924/5

Matrix: Water

Analyte

**Bromide** 

Chloride

Sulfate

Analysis Batch: 178924

Client Sample ID: Lab Control Sample Prep Type: Total/NA

| LCS<br>Result | LCS<br>Qualifier | Unit | D | %Rec | %Rec.<br>Limits |  |
|---------------|------------------|------|---|------|-----------------|--|
| 10.3          |                  | mg/L |   | 103  | 90 - 110        |  |
| 50.8          |                  | mg/L |   | 102  | 90 - 110        |  |
| 51.2          |                  | mg/L |   | 102  | 90 - 110        |  |

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 180-178988/1-A

Matrix: Water

Analysis Batch: 179123

Client Sample ID: Method Blank Prep Type: Total Recoverable

**Prep Batch: 178988** 

|           | MB     | MB        |      |      |      |   |                |                |         |
|-----------|--------|-----------|------|------|------|---|----------------|----------------|---------|
| Analyte   | Result | Qualifier | RL   | MDL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Boron     | ND     |           | 200  | 4.4  | ug/L |   | 06/13/16 07:55 | 06/14/16 08:42 | 1       |
| Barium    | ND     |           | 200  | 0.89 | ug/L |   | 06/13/16 07:55 | 06/14/16 08:42 | 1       |
| Calcium   | ND.    |           | 5000 | 73   | ug/L |   | 06/13/16 07:55 | 06/14/16 08:42 | 1       |
|           | ND     |           | 5000 |      | ug/L |   | 06/13/16 07:55 | 06/14/16 08:42 | 1       |
| Potassium | ND.    |           | 5000 |      | ug/L |   | 06/13/16 07:55 | 06/14/16 08:42 | 1       |
| Magnesium |        |           | 5000 |      | ug/L |   |                | 06/14/16 08:42 | 1       |
| Sodium    | ND     |           |      |      | •    |   |                | 06/14/16 08:42 | 1       |
| Strontium | ND     |           | 50   | 5.3  | ug/L |   | 00/13/10 07.33 | 00/14/10 00.42 |         |

Lab Sample ID: LCS 180-178988/2-A

**Matrix: Water** 

Analysis Batch: 179123

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

**Prep Batch: 178988** 

|           | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte   | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Boron     | 1000  | 1110   |           | ug/L |   | 111  | 85 - 115 |  |
| Barium    | 2000  | 2080   |           | ug/L |   | 104  | 85 - 115 |  |
| Calcium   | 50000 | 51200  |           | ug/L |   | 102  | 85 - 115 |  |
| Potassium | 50000 | 50500  |           | ug/L |   | 101  | 85 - 115 |  |
|           | 50000 | 51000  |           | ug/L |   | 102  | 85 - 115 |  |
| Magnesium | 50000 | 53200  |           | ug/L |   | 106  | 85 - 115 |  |
| Sodium    | 1000  | 1040   |           | ug/L |   | 104  | 85 - 115 |  |
| Strontium | 1000  | 1040   |           | -5   |   |      |          |  |

Lab Sample ID: LCSD 180-178988/3-A

**Matrix: Water** 

Analysis Batch: 179123

|   | Client Sample ID: Lab | Control  | Sample   | Dup   |
|---|-----------------------|----------|----------|-------|
|   | Prep Typ              | e: Total | Recove   | rable |
|   |                       | Prep B   | atch: 17 | 78988 |
| ) |                       | %Rec.    |          | RPD   |
|   |                       |          |          | 1.1   |

| Allalysis Datoli: 170120 | Spike | LCSD LCSD        |      |        | %Rec.    |     | RPD   |
|--------------------------|-------|------------------|------|--------|----------|-----|-------|
| Analyte                  | Added | Result Qualifier | Unit | D %Rec | Limits   | RPD | Limit |
| Boron                    | 1000  | 1100             | ug/L | 110    | 85 - 115 | 1   | 20    |
| Barium                   | 2000  | 2110             | ug/L | 105    | 85 - 115 | 1   | 20    |
| Calcium                  | 50000 | 52600            | ug/L | 105    | 85 - 115 | 3   | 20    |
| Calcium                  | ***** |                  | -    |        |          |     |       |

TestAmerica Pittsburgh

6/15/2016

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: AT6-277 (MOCK)

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Project/Site: Jordan Valley

### Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

| Lab Sample ID: LCSD 180-178988/3-A<br>Matrix: Water<br>Analysis Batch: 179123 |       |        | C         | Client Sa | _ |      | o Control<br>pe: Total I<br>Prep Ba | Recove | rable |
|-------------------------------------------------------------------------------|-------|--------|-----------|-----------|---|------|-------------------------------------|--------|-------|
|                                                                               | Spike | LCSD   | LCSD      |           |   |      | %Rec.                               |        | RPD   |
| Analyte                                                                       | Added | Result | Qualifier | Unit      | D | %Rec | Limits                              | RPD    | Limit |
| Potassium                                                                     | 50000 | 51700  |           | ug/L      |   | 103  | 85 - 115                            | 2      | 20    |
| Magnesium                                                                     | 50000 | 52100  |           | ug/L      |   | 104  | 85 <sub>-</sub> 115                 | 2      | 20    |
| Sodium                                                                        | 50000 | 54100  |           | ug/L      |   | 108  | 85 <sub>-</sub> 115                 | 2      | 20    |
| Strontium                                                                     | 1000  | 1060   |           | ug/L      |   | 106  | 85 - 115                            | 2      | 20    |

#### Method: SM 2320B - Alkalinity

Lab Sample ID: MB 440-336412/4

**Matrix: Water** 

Analysis Batch: 336412

|                                 | MB N     | MB        |     |     |      |   |          |                |         |
|---------------------------------|----------|-----------|-----|-----|------|---|----------|----------------|---------|
| Analyte                         | Result C | Qualifier | RL  | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Alkalinity as CaCO3             | ND       |           | 4.0 | 4.0 | mg/L |   |          | 06/14/16 11:59 | 1       |
| Bicarbonate Alkalinity as CaCO3 | ND       |           | 4.0 | 4.0 | mg/L |   |          | 06/14/16 11:59 | 1       |
| Carbonate Alkalinity as CaCO3   | ND       |           | 4.0 | 4.0 | mg/L |   |          | 06/14/16 11:59 | 1       |
| Hydroxide Alkalinity as CaCO3   | ND       |           | 4.0 | 4.0 | mg/L |   |          | 06/14/16 11:59 | 1       |
| Bicarbonate ion as HCO3         | ND       |           | 4.8 | 4.8 | mg/L |   |          | 06/14/16 11:59 | 1       |
| Carbonate as CO3                | ND       |           | 2.4 | 2.4 | mg/L |   |          | 06/14/16 11:59 | 1       |
| Hydroxide as OH                 | ND       |           | 1.4 | 1.4 | mg/L |   |          | 06/14/16 11:59 | 1       |

Lab Sample ID: LCS 440-336412/3

**Matrix: Water** 

Analysis Batch: 336412

 Spike
 LCS
 LCS
 %Rec.

 Analyte
 Added
 Result
 Qualifier
 Unit
 D
 %Rec
 Limits

 Alkalinity as CaCO3
 63.4
 63.7
 mg/L
 100
 80 - 120

Lab Sample ID: 180-55632-1 DU

**Matrix: Water** 

Analysis Batch: 336412

|                                 | Sample | Sample    | DU     | DU        |      |   |     | RPD     |  |
|---------------------------------|--------|-----------|--------|-----------|------|---|-----|---------|--|
| Analyte                         | Result | Qualifier | Result | Qualifier | Unit | D | RPI | D Limit |  |
| Alkalinity as CaCO3             | 800    |           | 798    |           | mg/L |   |     | 0 20    |  |
| Bicarbonate Alkalinity as CaCO3 | 800    |           | 798    |           | mg/L |   |     | 0 20    |  |
| Carbonate Alkalinity as CaCO3   | ND     |           | ND     |           | mg/L |   | N   |         |  |
| Hydroxide Alkalinity as CaCO3   | ND     |           | ND     |           | mg/L |   | N   | -       |  |
| Bicarbonate ion as HCO3         | 970    |           | 973    |           | mg/L |   |     | 0 20    |  |
| Carbonate as CO3                | ND     |           | ND     |           | mg/L |   | N   |         |  |
| Hydroxide as OH                 | ND     |           | ND     |           | mg/L |   | NO  |         |  |

10

### **QC Association Summary**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55632-1

#### HPLC/IC

#### Analysis Batch: 178924

| Lab Sample ID    | Client Sample ID   | Ртер Туре | Matrix | Method | Prep Batch |
|------------------|--------------------|-----------|--------|--------|------------|
| 180-55632-1      | AT6-277 (MOCK)     | Total/NA  | Water  | 300.0  |            |
| 180-55632-1      | AT6-277 (MOCK)     | Total/NA  | Water  | 300.0  |            |
| LCS 180-178924/5 | Lab Control Sample | Total/NA  | Water  | 300.0  |            |
| MB 180-178924/6  | Method Blank       | Total/NA  | Water  | 300.0  |            |

#### Metals

#### **Prep Batch: 178988**

| Lab Sample ID       | Client Sample ID       | Prep Type         | Matrix | Method | Prep Batch |
|---------------------|------------------------|-------------------|--------|--------|------------|
| 180-55632-1         | AT6-277 (MOCK)         | Total Recoverable | Water  | 200.7  |            |
| LCS 180-178988/2-A  | Lab Control Sample     | Total Recoverable | Water  | 200.7  |            |
| LCSD 180-178988/3-A | Lab Control Sample Dup | Total Recoverable | Water  | 200.7  |            |
| MB 180-178988/1-A   | Method Blank           | Total Recoverable | Water  | 200.7  |            |

### Analysis Batch: 179123

| Lab Sample ID                            | Client Sample ID                       | Prep Type Total Recoverable         | Matrix<br>Water | Method<br>200.7 Rev 4.4        | Prep Batch<br>178988 |
|------------------------------------------|----------------------------------------|-------------------------------------|-----------------|--------------------------------|----------------------|
| 180-55632-1<br>180-55632-1               | AT6-277 (MOCK)<br>AT6-277 (MOCK)       | Total Recoverable                   | Water           | 200.7 Rev 4.4                  | 178988               |
| LCS 180-178988/2-A                       | Lab Control Sample                     | Total Recoverable Total Recoverable | Water<br>Water  | 200.7 Rev 4.4<br>200.7 Rev 4.4 | 178988<br>178988     |
| LCSD 180-178988/3-A<br>MB 180-178988/1-A | Lab Control Sample Dup<br>Method Blank | Total Recoverable                   | Water           | 200.7 Rev 4.4                  | 178988               |

### **General Chemistry**

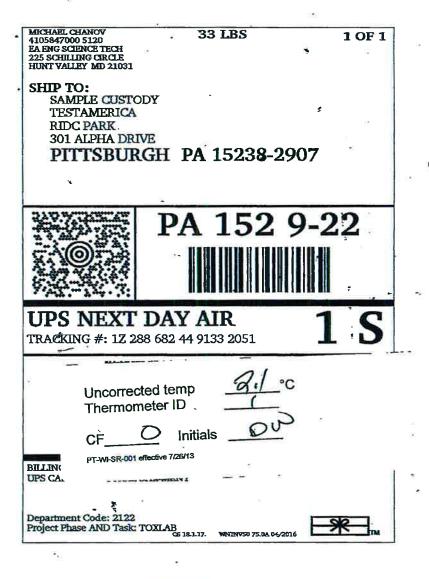
### Analysis Batch: 336412

| Lab Sample ID    | Client Sample ID   | Prep Type | Matrix | Method   | Prep Batch |
|------------------|--------------------|-----------|--------|----------|------------|
| 180-55632-1      | AT6-277 (MOCK)     | Total/NA  | Water  | SM 2320B |            |
| 180-55632-1 DU   | AT6-277 (MOCK)     | Total/NA  | Water  | SM 2320B |            |
| LCS 440-336412/3 | Lab Control Sample | Total/NA  | Water  | SM 2320B |            |
| MB 440-336412/4  | Method Blank       | Total/NA  | Water  | SM 2320B |            |

#### TestAmerica Pittsburgh

301 Alpha Drive RIDC Park

Pittsburgh, 'PA 15238


**Chain of Custody Record** 

| Test/                                | A | hei | ic | C |
|--------------------------------------|---|-----|----|---|
| THE PARTY OF THE PARTY OF THE PARTY. |   |     |    |   |

THE SEADER IN STATISTICS WENT AS TENDERS

| Phone (412) 963-7058 Fax (412) 963-2468                                                   |                               |              |                     |                                             |            |          |          |           |             |                | R.\$0                | THE 154005 A.                             | ilyironnental te                       | 37.75 |
|-------------------------------------------------------------------------------------------|-------------------------------|--------------|---------------------|---------------------------------------------|------------|----------|----------|-----------|-------------|----------------|----------------------|-------------------------------------------|----------------------------------------|-------|
| Client Information                                                                        | Sampler:                      |              | Lab PM:<br>Gambe    | er, Carrie                                  | e L        |          |          | t: 1      | Carrier T   | racking No(    | 5):                  | COC No:<br>180-30634-690                  | 5.1                                    | -     |
| Client Contact:<br>Mike Chanov                                                            | Phone:                        |              | E-Mail:<br>carrie.g | E-Mail:<br>carrie.gamber@testamericainc.com |            |          |          |           |             |                | Page:<br>Page 1 of 1 |                                           |                                        |       |
| Company:<br>EA Engineering, Science, and Technology                                       |                               |              |                     |                                             |            |          | Analys   | is Req    | ueste       | d              |                      | Job#:                                     |                                        |       |
| Address:<br>225 Schilling Circle                                                          | Due Date Requested:           |              |                     |                                             | TT         |          | ΤŤ       | T         | T           | TT             | III                  | Preservation Co                           | des:                                   | _     |
| City:<br>Hunt Valley                                                                      | TAT Requested (days):         |              |                     |                                             |            |          |          |           |             |                |                      | A - HCL<br>B - NaOH                       | M - Hexane<br>N - None                 |       |
| State, Zip:<br>MD, 21031                                                                  |                               | +            |                     |                                             | 1          |          |          |           |             | 1 1            |                      | C - Zn Acetate D - Nitric Acid E - NaHSO4 | O - AsNaO2<br>P - Na2O4S<br>Q - Na2SO3 |       |
| Phone:<br>410-329-5120(Tel)                                                               | PO#:<br>Purchase Order Reques | sted         |                     |                                             | 11         |          | 3        |           |             |                |                      | F - MeOH<br>G - Amchlor                   | R - Na2S2O3<br>S - H2SO4               |       |
| Email:<br>mchanov@eaest.com                                                               | WO#:                          |              | F SKIND             |                                             | 7          |          | tru      | -         |             |                |                      | H - Ascorbic Acid                         | T - TSP Dodecatry U - Acatone V - MCAA | drate |
| Project Name:<br>Jordan Valley                                                            | Project#:<br>18015970         |              | 9,0                 |                                             | th         |          | 17       | 1 1       |             |                |                      |                                           | ii cify)                               |       |
| Site:                                                                                     | SSOW#:                        | *            |                     |                                             | 200        |          | 3        |           |             |                |                      |                                           |                                        |       |
|                                                                                           |                               | Sample M     | latrix              | MAN MAN                                     | 4.1        | 4        | 7 3      | 11        |             | 180-556        | 2 Chain of           |                                           | . =                                    | _     |
|                                                                                           | Samp                          | Type (v      | Property, III.      | N. N.                                       | 1          | 77       | 12       |           | 1           |                | Z Criani O           | Custody                                   |                                        |       |
| Sample Identification                                                                     | Sample Date Time              | A            | ssue, APAIr) D.     | 103                                         |            | *A.359   | A        | . Salve   | Market Sec. | C) on the same |                      | Special I                                 | structions/Note                        | ii.   |
| AT6-277 (Mack)                                                                            | 6/16/16 1,375                 | 4            | V                   |                                             | X          |          |          | H 2 13    |             | - A See        |                      |                                           | AUNCHUNI. II                           |       |
|                                                                                           |                               |              |                     | <del>    ^</del>                            | F          | 1        |          |           |             | ++             |                      |                                           | 1                                      | _     |
| 1:                                                                                        |                               |              |                     |                                             | $\sqcap$   |          | 11       |           |             | TT             | 1 1                  |                                           |                                        | _     |
|                                                                                           |                               |              |                     |                                             |            |          |          |           |             |                |                      |                                           | <del>*</del>                           |       |
|                                                                                           |                               |              |                     |                                             |            |          |          |           |             |                | 1 13                 |                                           |                                        |       |
| 250                                                                                       |                               |              | _                   |                                             |            |          |          |           |             |                | 1                    | die<br>tre                                |                                        |       |
|                                                                                           |                               |              |                     |                                             |            |          |          | $\perp$   |             |                |                      |                                           |                                        |       |
|                                                                                           |                               |              |                     |                                             |            | _        | $\sqcup$ | +         |             |                | 1                    |                                           |                                        |       |
|                                                                                           |                               | + +          |                     | <b>H</b> -                                  |            | - ₹      | $\vdash$ | ++        |             |                |                      | 3                                         |                                        |       |
|                                                                                           |                               |              |                     | -                                           |            | 1        | $\vdash$ | ++        | -           |                | 200                  |                                           | <del></del>                            |       |
| Possible Hazard Identification                                                            |                               |              |                     | Sample                                      | Dispo      | sal (A   | fee ma   | y be as:  | sessed      | if sample      | s are retail         | ned longer than 1                         | month)                                 | _     |
| Non-Hazard Flammable Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) | Poison B Unknown              | Radiological |                     |                                             | etum T     | o Clien  | nt       | Dis       | posal E     | By Lab         | Arc                  | hive For                                  | Months                                 |       |
| mpty Kit Relinquished by:                                                                 | Date:                         |              |                     | me:                                         | ii isu uci | UOTISTC  | Requ     | ııı ement |             | and of String  | nent Ca              |                                           |                                        |       |
| elinquished by W.Z.                                                                       | Date/Tirop:                   | 1600 Comp.   | any                 |                                             | eived by   | 111      | 100      | A         | Jan 1       |                | Time (               | LAPO                                      | Company                                | 1     |
| elinquished by                                                                            | Date/Time:                    | Compa        | EA<br>any           | Reg                                         |            | M        | W        | M         | NO.         | Date           | Time:                | 70                                        | Company                                |       |
| elinquished byd                                                                           | Date/Time:                    | Сотърс       | any                 | Rece                                        | ived by:   |          |          |           |             | Date           | Time:                | 0:20                                      | Company                                |       |
| Custody Seals Intact: Custody Seal No.:                                                   |                               |              |                     | Cool                                        | erTempe    | rature(s |          | Other Rem | arks:       |                |                      | 7.00                                      | L                                      |       |
| Δ Yes · Δ No                                                                              |                               |              |                     |                                             |            |          |          |           |             |                |                      |                                           |                                        |       |











UPS CampusShip: Shipment Label

### **TestAmerica Pittsburgh**

301 Alpha Drive RIDC Park Pittsburgh, PA 15238

### **Chain of Custody Record**



**TestAmerica** 

| Phone (412) 963-7058 Fax (412) 963-2468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                               |              |                |                                   |            |            |                 |                |                                            |                      |          |           | THE LEADER IN CI                              | PEROPHERIAL TESTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------|--------------|----------------|-----------------------------------|------------|------------|-----------------|----------------|--------------------------------------------|----------------------|----------|-----------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client Information (Sub Contract Lab)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sampler:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                               |              | PM:<br>mber, C | Carrie I                          |            |            |                 | C              | Carrier Tracking No(s): COC No: 180-24480: |                      |          |           | COC No:<br>180-244802.1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Client Contact:<br>Shipping/Receiving<br>Company:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Phone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                               | E-M<br>car   |                | ber@t                             | estame     | ricainc.c  | com             |                |                                            |                      |          |           | Page:<br>Page 1 of 1                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TestAmerica Laboratories, Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                               | ÷            |                | Analysis Requested                |            |            |                 |                |                                            | Job#:<br>180-55632-1 |          |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Address:<br>17461 Derian Ave, Suite 100,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Due Date Requeste<br>6/14/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                               |              |                |                                   |            | П          |                 | П              |                                            |                      |          |           | Preservation Cod                              | es:<br>M - Hexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| City:<br> rvine<br>State, Zip:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TAT Requested (da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ys):             |                               |              |                | Н                                 |            |            |                 |                |                                            |                      |          |           | B - NaOH<br>C - Zn Acetate<br>D - Nitric Acid | N - None<br>O - AsNaO2<br>P - Na2O4S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CA, 92614-5817<br>Phone:<br>949-261-1022(Tel) 949-260-3297(Fax)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PO#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                               |              |                |                                   |            |            |                 |                |                                            |                      |          |           | E - NaHSO4<br>F - MeOH<br>G - Amchlor         | Q - Na2SO3<br>R - Na2S2O3<br>S - H2SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Email:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WO#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                               |              | 01/10          | Ē                                 |            |            |                 |                |                                            |                      |          |           | H - Ascorbic Acid<br>I - Ice<br>J - DI Water  | T - TSP Dodecahydrate<br>U - Acetone<br>V - MCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Project Name:<br>Jordan Valley<br>Site:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Project #:<br>18015970<br>SSOW#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                               |              | Delta (New     | Inity all for                     | ł          |            |                 |                |                                            |                      |          | omerinan  | K - EDTA<br>L - EDA<br>Other:                 | W - ph 4-5<br>Z - other (specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                | Sample                        | Matrix       | nod Sur        | D) Alkal                          | -          |            |                 |                |                                            |                      |          | DBrof     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sample Identification - Client ID (Lab ID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample<br>Time   | Type<br>(C=comp,<br>G=grab) в |              | (1550) Sales   | 2320B/ (MOD) Alkalinity all forms |            |            | mb 21 2 2 2 2 2 | , or soon last |                                            |                      |          | Total Num | Special In                                    | structions/Note:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AT6-277 (MOCK) (180-55632-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6/10/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13:45<br>Eastern | Preservati                    | Water        |                | X                                 | e da       |            |                 |                |                                            |                      |          |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lastem           |                               |              | Ħ              |                                   | T          | T          | +               |                | $\top$                                     |                      | 11       |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | _ ^                           |              | П              |                                   |            |            |                 |                |                                            |                      |          |           | 19                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 4                             |              | Ш              |                                   |            |            |                 | Ш              |                                            | $\perp$              |          |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                               |              | H              | $\vdash$                          | -          |            | +               | H              |                                            | _                    | $\vdash$ |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                               |              | ₩              | $\vdash$                          | +          |            |                 |                | -                                          | -                    | ++       |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                               |              | H              | H                                 | +          |            | +               | H              |                                            | +                    | H        | <b>E</b>  |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                               |              | H              | $\vdash$                          | +          |            |                 | $\vdash$       | 11                                         | +                    | H        |           | 11                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                               |              | T              |                                   |            |            | $\top$          |                |                                            |                      | Ħ        |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                               |              |                |                                   |            |            |                 |                |                                            |                      |          | N.        |                                               | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Possible Hazard Identification Unconfirmed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                               |              | Sa             | mple L                            | Disposa    | Client     | e may           | be ass         | essed it                                   | sampi                | es are   | retaine   | ed longer than 1 i                            | month)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Deliverable Requested: I, II, IfI, IV, Other (specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                               |              | Spe            | ecial Ir                          | structio   | ns/QC      | Requin          | ements         | JOSai By                                   | Lao                  |          | Archi     | ive i-or                                      | Months                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Empty Kit Relinquished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date:            |                               |              | Time:          |                                   |            |            |                 |                | Method                                     | of Ship              | nent F   | 1         | 6479 25                                       | 14 8248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Relinquished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date/Time:<br>0/13/16<br>Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (7               | 00                            | TAP<br>mpany |                | Receiv                            |            | Ju         | Be              | me             | 4                                          | 7-0.07               | Time:    | 14/       | 6 9:30                                        | Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Relinquished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date/Time;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | Co                            | mpany        | - 4            | Receiv                            | ed by:     |            |                 |                |                                            | Date                 | /Time:   |           |                                               | Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Custody Seals Intact Custody Seal No.: Δ Yes - Δ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                               | 710 July 1   | 16.Y.5         | Cooler                            | Tempera    | ture(s) °C | and Ott         | wr Rema        | rks ( e                                    | 5)                   | 3.8      | 130       | TX-74                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| the state of the s | A STATE OF THE PARTY OF THE PAR | CONTRACTOR OF    | contention activities         | 19 9230      | G TMHOUN       | VS05.39                           | e in which | C SHAMON P | 1000            | Man Venezia    | 1 m                                        | Car State            | - 17     | 120       | 1 17                                          | CHARLES AND STATE OF THE STATE |

Page 15 of 17

### **Login Sample Receipt Checklist**

Client: EA Engineering, Science, and Technology

Job Number: 180-55632-1

List Source: TestAmerica Pittsburgh

Login Number: 55632

List Number: 1

Creator: Watson, Debbie

| Question                                                                                                   | Answer | Comment |
|------------------------------------------------------------------------------------------------------------|--------|---------|
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> | True   |         |
| The cooler's custody seal, if present, is intact.                                                          | True   |         |
| Sample custody seals, if present, are intact.                                                              | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.                             | True   |         |
| Samples were received on ice.                                                                              | True   |         |
| Cooler Temperature is acceptable.                                                                          | True   |         |
| Cooler Temperature is recorded.                                                                            | True   |         |
| COC is present.                                                                                            | True   |         |
| COC is filled out in ink and legible.                                                                      | True   |         |
| COC is filled out with all pertinent information.                                                          | True   |         |
| Is the Field Sampler's name present on COC?                                                                | True   |         |
| There are no discrepancies between the containers received and the COC.                                    | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)                              | True   |         |
| Sample containers have legible labels.                                                                     | True   |         |
| Containers are not broken or leaking.                                                                      | True   |         |
| Sample collection date/times are provided.                                                                 | True   |         |
| Appropriate sample containers are used.                                                                    | True   |         |
| Sample bottles are completely filled.                                                                      | True   |         |
| Sample Preservation Verified.                                                                              | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                           | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                            | True   |         |
| Multiphasic samples are not present.                                                                       | True   |         |
| Samples do not require splitting or compositing.                                                           | True   |         |
| Residual Chlorine Checked.                                                                                 | N/A    |         |

### **Login Sample Receipt Checklist**

Client: EA Engineering, Science, and Technology

Job Number: 180-55632-1

Login Number: 55632 List Number: 2 Creator: Ornelas, Olga

List Source: TestAmerica Irvine List Creation: 06/14/16 10:54 AM

| Question                                                                                                   | Answer | Comment                            |
|------------------------------------------------------------------------------------------------------------|--------|------------------------------------|
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> | True   |                                    |
| The cooler's custody seal, if present, is intact.                                                          | True   |                                    |
| Sample custody seals, if present, are intact.                                                              | True   |                                    |
| The cooler or samples do not appear to have been compromised or tampered with.                             | True   |                                    |
| Samples were received on ice.                                                                              | True   |                                    |
| Cooler Temperature is acceptable.                                                                          | True   |                                    |
| Cooler Temperature is recorded.                                                                            | True   |                                    |
| COC is present.                                                                                            | True   |                                    |
| COC is filled out in ink and legible.                                                                      | True   |                                    |
| COC is filled out with all pertinent information.                                                          | True   |                                    |
| Is the Field Sampler's name present on COC?                                                                | N/A    | Received project as a subcontract. |
| There are no discrepancies between the containers received and the COC.                                    | True   |                                    |
| Samples are received within Holding Time (excluding tests with immediate HTs)                              | True   |                                    |
| Sample containers have legible labels.                                                                     | True   |                                    |
| Containers are not broken or leaking.                                                                      | True   |                                    |
| Sample collection date/times are provided.                                                                 | True   |                                    |
| Appropriate sample containers are used.                                                                    | True   |                                    |
| Sample bottles are completely filled.                                                                      | True   |                                    |
| Sample Preservation Verified.                                                                              | N/A    |                                    |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                           | True   |                                    |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                            | True   |                                    |
| Multiphasic samples are not present.                                                                       | True   |                                    |
| Samples do not require splitting or compositing.                                                           | True   |                                    |
| Residual Chlorine Checked.                                                                                 | N/A    |                                    |































































Drw G. Camber

Hunt Valley, Maryland 21031

Authorized for release by: 7/14/2016 3:35:23 PM

carrie.gamber@testamericainc.com

Carrie Gamber, Senior Project Manager

This report has been electronically signed and authorized by the signatory. Electronic signature is

intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

**TestAmerica** 

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratories, Inc.

TestAmerica Job ID: 180-55633-1 Client Project/Site: Jordan Valley

TestAmerica Pittsburgh

Pittsburgh, PA 15238 Tel: (412)963-7058

225 Schilling Circle

Attn: Mike Chanov

(412)963-2428

301 Alpha Drive RIDC Park

Revision: 1

Suite 400

For:


ANALYTICAL REPORT

EA Engineering, Science, and Technology

LINKS ..... **Review your project** 

Total Access

results through



Ask-Expert



# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 2  |
|                        | 3  |
|                        | 4  |
| Certification Summary  | 5  |
|                        | 6  |
|                        | 7  |
|                        | 8  |
|                        | 9  |
| QC Sample Results      | 10 |
| QC Association Summary | 14 |
|                        | 16 |
| Receipt Checklists     | 18 |

#### **Case Narrative**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

Job ID: 180-55633-1

Laboratory: TestAmerica Pittsburgh

**Narrative** 

#### **CASE NARRATIVE**

Client: EA Engineering, Science, and Technology

**Project: Jordan Valley** 

Report Number: 180-55633-1 REVISED

NOTE: This report has been revised to include the rerun of the sample for Copper.

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

#### RECEIPT

The samples were received on 06/11/2016; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 2.1 C.

#### **METALS**

The following sample was diluted due to the nature of the sample matrix: AT6-277 (MOCK) (180-55633-1). Elevated reporting limits (RLs) are provided.

Hardness as calcium carbonate was detected in method blank MB 180-179366/1-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged.

#### GENERAL CHEMISTRY

The sample was initially analyzed with bracketed failing CCV's. The sample was reanalyzed outside of holding time for ortho-phosphate. Both results are reported. AT6-277 (MOCK) (180-55633-1), (CCV 180-178994/15) and (CCV 180-178994/27)

The reference method requires samples to be preserved to a pH of >12. The following sample was received with insufficient preservation at a pH of 7.55: AT6-277 (MOCK) (180-55633-1). The sample was preserved to the appropriate pH in the laboratory.

Due to the matrix, the initial volumes used for the following samples deviated from the standard procedure for TDS: AT6-277 (MOCK) (180-55633-1). The reporting limits (RLs) have been adjusted proportionately.

3

TestAmerica Job ID: 180-55633-1

### **Definitions/Glossary**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55633-1

#### Qualifiers

| н | PI | C | /IC |
|---|----|---|-----|
| п |    |   |     |

Qualifier **Qualifier Description** 

Ħ Sample was prepped or analyzed beyond the specified holding time

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. J

Metals

Qualifier **Qualifier Description** 

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

В Compound was found in the blank and sample.

#### Glossary

| Abbreviation | These commonly | used abbreviations may or may not be present in this report. |
|--------------|----------------|--------------------------------------------------------------|
|--------------|----------------|--------------------------------------------------------------|

D Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac **Dilution Factor** 

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration MDA Minimum detectable activity **EDL Estimated Detection Limit** MDC

Minimum detectable concentration

MDL Method Detection Limit ML Minimum Level (Dioxin) NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

**PQL Practical Quantitation Limit** 

QC Quality Control RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

**RPD** Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

### **Certification Summary**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55633-1

### Laboratory: TestAmerica Pittsburgh

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

| uthority               | Program                       |                       | EPA Region              | Certification ID         | Expiration Date |
|------------------------|-------------------------------|-----------------------|-------------------------|--------------------------|-----------------|
| ah                     | NELAP                         |                       | 8                       | PA001462015-4            | 05-31-17        |
| The following analytes | s are included in this report | , but are not certifi | ed under this certifica | tion:                    |                 |
| Analysis Method        | Prep Method                   | Matrix                | Analyt                  |                          |                 |
| 200.8                  | 200.8                         | Water                 | Antimo                  | ony                      |                 |
| 200.8                  | 200.8                         | Water                 | Arseni                  |                          |                 |
| 200.8                  | 200.8                         | Water                 | Berylli                 | um                       |                 |
| 200.8                  | 200.8                         | Water                 | Cadmi                   | ium                      |                 |
| 200.8                  | 200.8                         | Water                 | Chrom                   | nium                     |                 |
| 200.8                  | 200.8                         | Water                 | Coppe                   | er                       |                 |
| 200.8                  | 200.8                         | Water                 | Hardn                   | ess as calcium carbonate | )               |
| 200.8                  | 200.8                         | Water                 | Iron                    |                          |                 |
| 200.8                  | 200.8                         | Water                 | Lead                    |                          |                 |
| 200.8                  | 200.8                         | Water                 | Manga                   | anese                    |                 |
| 200.8                  | 200.8                         | Water                 | Nickel                  |                          |                 |
| 200.8                  | 200.8                         | Water                 | Seleni                  | ium                      |                 |
| 200.8                  | 200.8                         | Water                 | Silver                  |                          |                 |
| 200.8                  | 200.8                         | Water                 | Thalliu                 | mı                       |                 |
| 200.8                  | 200.8                         | Water                 | Zinc                    |                          |                 |
| 245.1                  | 245.1                         | Water                 | Mercu                   | ıry                      |                 |
| 300.0                  |                               | Water                 | Fluorio                 | de                       |                 |
| 300.0                  |                               | Water                 | Nitrate                 | e as N                   |                 |
| 300.0                  |                               | Water                 | Nitrite                 | as N                     |                 |
| 300.0                  |                               | Water                 | Ortho                   | phosphate as P           |                 |
| SM 2540C               |                               | Water                 | Total                   | Dissolved Solids         |                 |
| SM 2540D               |                               | Water                 | Total                   | Suspended Solids         |                 |
| SM 4500 CN E           | SM 4500 CN C                  | Water                 | Cyani                   | de, Total                |                 |

## **Sample Summary**

Client: EA Engineering, Science, and Technology Project/Site: Jordan Valley

TestAmerica Job ID: 180-55633-1

| Lab Sample ID | Client Sample ID | Matrix | Collected | Received       |
|---------------|------------------|--------|-----------|----------------|
| 180-55633-1   | AT6-277 (MOCK)   | Water  |           | 06/11/16 09:00 |

### **Method Summary**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55633-1

| Method       | Method Description            | Protocol | Laboratory |
|--------------|-------------------------------|----------|------------|
| 300.0        | Anions, Ion Chromatography    | MCAWW    | TAL PIT    |
| 200.8        | Metals (ICP/MS)               | EPA      | TAL PIT    |
| 245.1        | Mercury (CVAA)                | EPA      | TAL PIT    |
| SM 2540C     | Solids. Total Dissolved (TDS) | SM       | TAL PIT    |
| SM 2540D     | Solids, Total Suspended (TSS) | SM       | TAL PIT    |
| SM 4500 CN E | Cvanide. Total                | SM       | TAL PIT    |

#### **Protocol References:**

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SM = "Standard Methods For The Examination Of Water And Wastewater",

#### Laboratory References:

TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

1

#### **Lab Chronicle**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55633-1

Client Sample ID: AT6-277 (MOCK)

Date Collected: 06/10/16 13:45 Date Received: 06/11/16 09:00 Lab Sample ID: 180-55633-1

Matrix: Water

| Prep Type         | Batch<br>Type         | Batch<br>Method              | Run | Dil<br>Factor | Initial<br>Amount | Final<br>Amount | Batch<br>Number | Prepared or Analyzed | Analyst | Lab     |
|-------------------|-----------------------|------------------------------|-----|---------------|-------------------|-----------------|-----------------|----------------------|---------|---------|
| Total/NA          | Analysis<br>Instrume  | 300.0<br>nt ID: CHICS2000    |     | 25            | 1 mL              |                 | 178969          | 06/13/16 08:19       | MJH     | TAL PIT |
| Total/NA          | Analysis<br>Instrumer | 300.0<br>nt ID: CHICS2100B   |     | 25            | 1 mL              |                 | 178994          | 06/11/16 17:46       | MJH     | TAL PIT |
| Total Recoverable | Prep                  | 200.8                        |     |               | 50 mL             | 50 mL           | 179366          | 06/16/16 07:21       | ANA     | TAL PIT |
| Total Recoverable | Analysis<br>Instrumei | 200.8<br>nt ID: A            |     | 10            | 50 mL             | 50 mL           | 181861          | 07/13/16 20:40       | CNF     | TAL PIT |
| Total Recoverable | Prep                  | 200.8                        |     |               | 50 mL             | 50 mL           | 179366          | 06/16/16 07:21       | ANA     | TAL PIT |
| Total Recoverable | Analysis<br>Instrumer | 200.8<br>nt ID: X            |     | 10            | 50 mL             | 50 mL           | 179847          | 06/21/16 18:31       | CNF     | TAL PIT |
| Total Recoverable | Prep                  | 200.8                        |     |               | 50 mL             | 50 mL           | 179366          | 06/16/16 07:21       | ANA     | TAL PIT |
| Total Recoverable | Analysis<br>Instrumer | 200.8<br>nt ID: X            |     | 10            | 50 mL             | 50 mL           | 179986          | 06/22/16 14:52       | CNF     | TAL PIT |
| Total/NA          | Prep                  | 245.1                        |     |               | 50 mL             | 50 mL           | 179534          | 06/17/16 12:53       | RJR     | TAL PIT |
| Total/NA          | Analysis<br>Instrumer | 245.1<br>nt ID: K            |     | 1             | 50 mL             | 50 mL           | 179692          | 06/20/16 16:10       | RJR     | TAL PIT |
| Total/NA          | Analysis<br>Instrumer | SM 2540C<br>nt ID: NOEQUIP   |     | 1             | 2 mL              | 100 mL          | 179168          | 06/14/16 13:11       | JWS     | TAL PIT |
| Total/NA          | Analysis<br>Instrumer | SM 2540D<br>nt ID: NOEQUIP   |     | 1             | 1000 mL           | 1000 mL         | 179061          | 06/13/16 16:16       | JWS     | TAL PIT |
| Γotal/NA          | Prep                  | SM 4500 CN C                 |     |               | 50 mL             | 50 mL           | 179152          | 06/14/16 11:45       | JAS     | TAL PIT |
| Total/NA          | Analysis<br>Instrumer | SM 4500 CN E<br>nt ID: SEAL2 |     | 1             | 50 mL             | 50 mL           | 179193          | 06/14/16 15:04       |         | TAL PIT |

#### **Laboratory References:**

TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

#### **Analyst References:**

Lab: TAL PIT

Batch Type: Prep

ANA = Alexis Anderson

JAS = Joshua Schmidt

RJR = Ron Rosenbaum

Batch Type: Analysis

CNF = Caitlin Ferguson

JAS = Joshua Schmidt

JWS = Jim Swanson

MJH = Matthew Hartman

RJR = Ron Rosenbaum

TestAmerica Pittsburgh

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55633-1

Client Sample ID: AT6-277 (MOCK)

Date Collected: 06/10/16 13:45

Lab Sample ID: 180-55633-1

Matrix: Water

| ne di la con di la con di la Colo         |                     | m last           |       |        |      |   |                |                |        |
|-------------------------------------------|---------------------|------------------|-------|--------|------|---|----------------|----------------|--------|
| Method: 300.0 - Anions, Ion Ch<br>Analyte | romatogra<br>Result | pny<br>Qualifier | RL    | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fa |
| Nitrate as N                              | ND                  |                  | 2.5   | 0.54   | mg/L |   |                | 06/11/16 17:46 | 2      |
| Nitrite as N                              | ND                  |                  | 1.3   | 0.70   | mg/L |   |                | 06/11/16 17:46 | 2      |
| Fluoride                                  | 0.88                | J                | 2.5   | 0.60   | mg/L |   |                | 06/11/16 17:46 | 2      |
| Orthophosphate as P                       | ND                  |                  | 13    | 3.9    | mg/L |   |                | 06/11/16 17:46 | 2      |
| Orthophosphate as P                       | ND                  | Н                | 13    | 3.9    | mg/L |   |                | 06/13/16 08:19 | 2      |
| Method: 200.8 - Metals (ICP/MS            | ) - Total R         | ecoverable       |       |        |      |   |                |                |        |
| Analyte                                   | Result              | Qualifier        | RL    | MDL    |      | D | Prepared       | Analyzed       | Dil Fa |
| Silver                                    | ND                  |                  | 10    |        | ug/L |   | 06/16/16 07:21 | 06/22/16 14:52 | 10     |
| Arsenic                                   | 7.4                 | J                | 10    |        | ug/L |   | 06/16/16 07:21 | 06/21/16 18:31 | 10     |
| Beryllium                                 | ND                  |                  | 10    | 0.36   | -    |   | 06/16/16 07:21 | 06/21/16 18:31 | 10     |
| Cadmium                                   | ND                  |                  | 10    | 0.74   | -    |   | 06/16/16 07:21 | 06/21/16 18:31 | 10     |
| Chromium                                  | ND                  |                  | 20    |        | ug/L |   | 06/16/16 07:21 | 06/21/16 18:31 | 10     |
| Copper                                    | 3.2                 | J                | 20    |        | ug/L |   | 06/16/16 07:21 | 07/13/16 20:40 | 10     |
| Iron                                      | ND                  |                  | 500   |        | ug/L |   | 06/16/16 07:21 | 06/21/16 18:31 | 10     |
| Manganese                                 | 16                  | J                | 50    | 0.46   | •    |   |                | 06/21/16 18:31 | 10     |
| Nickel                                    | 2.2                 | J                | 10    |        | ug/L |   | 06/16/16 07:21 |                | 10     |
| Lead                                      | ND                  |                  | 10    | 0.57   | ug/L |   | 06/16/16 07:21 |                | 11     |
| Antimony                                  | ND                  |                  | 20    |        | ug/L |   | 06/16/16 07:21 |                | 1      |
| Selenium                                  | ND                  |                  | 50    |        | ug/L |   | 06/16/16 07:21 |                | 1      |
| Thallium                                  | ND                  |                  | 10    | 0.13   | ug/L |   | 06/16/16 07:21 |                | 1      |
| Zinc                                      | ND                  |                  | 50    |        | ug/L |   |                | 06/21/16 18:31 | 1      |
| Hardness as calcium carbonate             | 7300                | В                | 33    | 0.26   | mg/L |   | 06/16/16 07:21 | 06/21/16 18:31 | 1      |
| Method: 245.1 - Mercury (CVA)             | A)                  | 0 -115           | ъ.    | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fa |
| Analyte                                   |                     | Qualifier        | RL _  |        |      |   | 06/17/16 12:53 |                | Dilita |
| Mercury                                   | ND                  |                  | 0.20  | 0.039  | ug/L |   | 00/1//10 12:00 | 00/20/10 10:10 |        |
| General Chemistry                         | Posult              | Qualifier        | RL    | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fa |
| Analyte                                   | 31000               |                  | 500   | 500    | mg/L |   |                | 06/14/16 13:11 | -      |
| Total Dissolved Solids                    |                     |                  | 0.50  | 0.50   |      |   |                | 06/13/16 16:16 |        |
| Total Suspended Solids                    | <b>1.3</b><br>ND    |                  | 0.010 | 0.0038 |      |   | 06/14/16 11:45 |                |        |
| Cyanide, Total                            | ND                  |                  | 0.010 | 0.0000 | g/L  |   |                |                |        |

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55633-1

#### Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 180-178969/6

Matrix: Water

Analysis Batch: 178969

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB

Result Qualifier RL **MDL** Unit Prepared **Analyzed** Dil Fac Orthophosphate as P ND 0.50 0.15 mg/L 06/13/16 07:50

Lab Sample ID: LCS 180-178969/5

Matrix: Water

Orthophosphate as P

Analysis Batch: 178969

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Added Result Qualifier Unit D %Rec Limits 2.50 2.64 mg/L 105 90 - 110

Lab Sample ID: LCSD 180-178969/8

**Matrix: Water** 

Analyte

Analysis Batch: 178969

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Unit %Rec Limits **RPD** Limit Orthophosphate as P 2.50 2.66 mg/L 106 90 - 110

Lab Sample ID: MB 180-178994/6

**Matrix: Water** 

Analysis Batch: 178994

Client Sample ID: Method Blank

Prep Type: Total/NA

|                     | MB MB         |         |       |      |   |          |                |         |
|---------------------|---------------|---------|-------|------|---|----------|----------------|---------|
| Analyte             | Result Qualit | fier RL | MDL   | Unit | D | Prepared | Analyzed       | Dil Fac |
| Nitrate as N        | ND            | 0.10    | 0.022 | mg/L |   |          | 06/11/16 11:22 |         |
| Nitrite as N        | ND            | 0.050   | 0.028 | mg/L |   |          | 06/11/16 11:22 | 1       |
| Fluoride            | ND            | 0.10    | 0.024 | mg/L |   |          | 06/11/16 11:22 | 1       |
| Orthophosphate as P | ND            | 0.50    | 0.15  | mg/L |   |          | 06/11/16 11:22 | 1       |

Lab Sample ID: LCS 180-178994/5

**Matrix: Water** 

Analysis Batch: 178994

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Nitrate as N 2.50 2.58 mg/L 103 90 - 110 Nitrite as N 2.50 2.54 mg/L 102 90 - 110 Fluoride 2.50 2.38 mg/L 95 90 - 110 Orthophosphate as P 2.50 2.30 mg/L 90 - 110

#### Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 180-179366/1-A

**Matrix: Water** 

Analysis Batch: 179847

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 179366

|           | MB MB            |     |       |      |   |                |                |         |
|-----------|------------------|-----|-------|------|---|----------------|----------------|---------|
| Analyte   | Result Qualifier | RL  | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Silver    | ND               | 1.0 | 0.047 | ug/L |   | 06/16/16 07:21 | 06/21/16 12:38 | 1       |
| Arsenic   | ND               | 1.0 | 0.12  | ug/L |   | 06/16/16 07:21 | 06/21/16 12:38 | 1       |
| Beryllium | ND               | 1.0 | 0.036 | ug/L |   | 06/16/16 07:21 | 06/21/16 12:38 | 1       |
| Cadmium   | ND               | 1.0 | 0.074 | ug/L |   | 06/16/16 07:21 | 06/21/16 12:38 | 1       |
| Chromium  | ND               | 2.0 | 0.23  | ug/L |   | 06/16/16 07:21 | 06/21/16 12:38 | 1       |
| Copper    | ND               | 2.0 | 0.27  | ug/L |   | 06/16/16 07:21 | 06/21/16 12:38 | 1       |

TestAmerica Pittsburgh

Page 10 of 18

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: MB 180-179366/1-A

**Matrix: Water** 

Analysis Batch: 179847

Client Sample ID: Method Blank **Prep Type: Total Recoverable Prep Batch: 179366** 

|                               | MB     | MB        |     |       |      |   |                |                |         |
|-------------------------------|--------|-----------|-----|-------|------|---|----------------|----------------|---------|
| Analyte                       | Result | Qualifier | RL  | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
| iron                          | ND     |           | 50  | 5.7   | ug/L |   | 06/16/16 07:21 | 06/21/16 12:38 | 1       |
| Manganese                     | ND     |           | 5.0 | 0.046 | ug/L |   | 06/16/16 07:21 | 06/21/16 12:38 | 1       |
| Nickel                        | ND     |           | 1.0 | 0.093 | ug/L |   | 06/16/16 07:21 | 06/21/16 12:38 | 1       |
| Lead                          | ND     |           | 1.0 | 0.057 | ug/L |   | 06/16/16 07:21 | 06/21/16 12:38 | 1       |
| Antimony                      | ND     |           | 2.0 | 0.040 | ug/L |   | 06/16/16 07:21 | 06/21/16 12:38 | 1       |
| Selenium                      | ND     |           | 5.0 | 0.20  | ug/L |   | 06/16/16 07:21 | 06/21/16 12:38 | 1       |
| Thallium                      | ND     |           | 1.0 | 0.013 | ug/L |   | 06/16/16 07:21 | 06/21/16 12:38 | 1       |
| Zinc                          | ND     |           | 5.0 | 0.40  | ug/L |   | 06/16/16 07:21 | 06/21/16 12:38 | 1       |
| Hardness as calcium carbonate | 0.0966 | J         | 3.3 | 0.026 | •    |   | 06/16/16 07:21 | 06/21/16 12:38 | 1       |

Lab Sample ID: LCS 180-179366/2-A

Matrix: Water

Analysis Batch: 179847

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 179366

| Analysis Batsin 1755 | Spike | LCS    | LCS       |      |   |      | %Rec.               |  |
|----------------------|-------|--------|-----------|------|---|------|---------------------|--|
| Analyte              | Added | Result | Qualifier | Unit | D | %Rec | Limits              |  |
| Silver               | 50.0  | 50.4   |           | ug/L |   | 101  | 85 - 115            |  |
| Arsenic              | 40.0  | 41.3   |           | ug/L |   | 103  | 85 <sub>-</sub> 115 |  |
| Beryllium            | 50.0  | 51.5   |           | ug/L |   | 103  | 85 - 115            |  |
| Cadmium              | 50.0  | 54.6   |           | ug/L |   | 109  | 85 - 115            |  |
| Chromium             | 200   | 192    |           | ug/L |   | 96   | 85 - 115            |  |
| Copper               | 250   | 247    |           | ug/L |   | 99   | 85 - 115            |  |
| Iron                 | 1000  | 964    |           | ug/L |   | 96   | 85 - 115            |  |
| Manganese            | 500   | 509    |           | ug/L |   | 102  | 85 - 115            |  |
| Nickel               | 500   | 497    |           | ug/L |   | 99   | 85 - 115            |  |
| Lead                 | 20.0  | 20.4   |           | ug/L |   | 102  | 85 - 115            |  |
| Antimony             | 500   | 559    |           | ug/L |   | 112  | 85 - 115            |  |
| Selenium             | 10.0  | 11.2   |           | ug/L |   | 112  | 85 - 115            |  |
| Thallium             | 50.0  | 49.9   |           | ug/L |   | 100  | 85 - 115            |  |
| Zinc                 | 500   | 516    |           | ug/L |   | 103  | 85 - 115            |  |
| -                    |       |        |           |      |   |      |                     |  |

Method: 245.1 - Mercury (CVAA)

Lab Sample ID: MB 180-179534/1-A

**Matrix: Water** 

Analyte

Mercury

Analyte

Mercury

Analysis Batch: 179692

MB MB Result Qualifier

ND

RL

MDL Unit 0.039 ug/L

Analyzed Prepared

Client Sample ID: Method Blank

Prep Batch: 179534 Dil Fac

Prep Type: Total/NA

06/17/16 12:53 06/20/16 16:05 0.20 Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 180-179534/2-A

**Matrix: Water** 

Analysis Batch: 179692

Spike Added 2.50

LCS LCS Result Qualifier Unit 2.34

D %Rec 93 ug/L

Prep Batch: 179534 %Rec.

Prep Type: Total/NA

Limits 85 - 115

TestAmerica Pittsburgh

7/14/2016

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55633-1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Method: 245.1 - Mercury (CVAA) (Continued)

Lab Sample ID: LCSD 180-179534/3-A **Matrix: Water** 

Analysis Batch: 179692

Analyte Mercury

**Spike** Added

2.50

LCSD LCSD

Result Qualifier 2.15

Unit ua/L

D %Rec 86

%Rec. RPD Limits **RPD** Limit 85 - 115 9

Prep Type: Total/NA

Prep Batch: 179534

20

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 180-179168/2

**Matrix: Water** 

**Analysis Batch: 179168** 

MB MB

Analyte Result Qualifier Total Dissolved Solids ND

RL MDL Unit 10 10 mg/L Prepared

Analyzed 06/14/16 13:11

**Prep Type: Total/NA** 

Dil Fac

Lab Sample ID: LCS 180-179168/1

**Matrix: Water** 

Analysis Batch: 179168

Analyte Total Dissolved Solids

Spike Added

596

LCS LCS Result Qualifier 628

Unit mg/L D %Rec Limits 105 80 - 120

Prep Type: Total/NA %Rec.

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 180-179061/2

**Matrix: Water** 

Analysis Batch: 179061

**Total Suspended Solids** 

ND

MB MB

Result Qualifier

RL 0.50 MDL Unit 0.50 mg/L Prepared

Analyzed

Prep Type: Total/NA

Dil Fac

Lab Sample ID: LCS 180-179061/1

**Matrix: Water** 

Analysis Batch: 179061

Analyte Total Suspended Solids

Spike

Added

49.0

LCS LCS

44.0

Result Qualifier

mg/L

06/13/16 16:16

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Method Blank

%Rec. Unit D

%Rec Limits 90 80 - 120

Method: SM 4500 CN E - Cyanide, Total

Lab Sample ID: MB 180-179152/4-A

**Matrix: Water** 

Analyte

Cyanide, Total

Analysis Batch: 179193

MB MB

Result Qualifier ND

RL 0.010

MDL Unit 0.0038 mg/L Prepared

Analyzed 06/14/16 11:45 06/14/16 14:23

Prep Type: Total/NA

Client Sample ID: Method Blank

**Prep Batch: 179152** Dil Fac

TestAmerica Pittsburgh

### **QC Sample Results**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

Cyanide, Total

TestAmerica Job ID: 180-55633-1

99

90 - 110

| Method: SM 4500 | CNE-C | yanide, Total | (Continued) |
|-----------------|-------|---------------|-------------|
|-----------------|-------|---------------|-------------|

| Lab Sample ID: HLCS 180-179152/2-A<br>Matrix: Water<br>Analysis Batch: 179193 | Spike | HLCS   | HLCS      | Clie | nt Sar | nple ID | : Lab Control Sample<br>Prep Type: Total/NA<br>Prep Batch: 179152<br>%Rec. |
|-------------------------------------------------------------------------------|-------|--------|-----------|------|--------|---------|----------------------------------------------------------------------------|
| Analyte                                                                       | Added | Result | Qualifier | Unit | D      | %Rec    | Limits                                                                     |
| Cyanide, Total                                                                | 0.250 | 0.239  |           | mg/L |        | 96      | 90 - 110                                                                   |
| Lab Sample ID: LCS 180-179152/3-A<br>Matrix: Water<br>Analysis Batch: 179193  | Spike | LCS    | LCS       | Clie | nt Saı | nple ID | : Lab Control Sample<br>Prep Type: Total/NA<br>Prep Batch: 179152<br>%Rec. |
| Analyte                                                                       | Added | Result | Qualifier | Unit | D      | %Rec    | Limits                                                                     |
| Cyanide, Total                                                                | 0.200 | 0.196  |           | mg/L |        | 98      | 90 - 110                                                                   |
| Lab Sample ID: LLCS 180-179152/1-A<br>Matrix: Water<br>Analysis Batch: 179193 |       |        |           | Clie | nt Sai | mple ID | : Lab Control Sample<br>Prep Type: Total/NA<br>Prep Batch: 179152          |
| •                                                                             | Spike |        | LLCS      |      | _      |         | %Rec.                                                                      |
| Analyte                                                                       | Added | Result | Qualifier | Unit | D      | %Rec    | Limits                                                                     |

0.0500

0.0495

mg/L

## **QC Association Summary**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55633-1

| Ana | lysis | Batch: | 178969 |
|-----|-------|--------|--------|
|-----|-------|--------|--------|

| Lab Sample ID     | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|-------------------|------------------------|-----------|--------|--------|------------|
| 180-55633-1       | AT6-277 (MOCK)         | Total/NA  | Water  | 300.0  |            |
| LCS 180-178969/5  | Lab Control Sample     | Total/NA  | Water  | 300.0  |            |
| LCSD 180-178969/8 | Lab Control Sample Dup | Total/NA  | Water  | 300.0  |            |
| MB 180-178969/6   | Method Blank           | Total/NA  | Water  | 300.0  |            |

#### Analysis Batch: 178994

| Lab Sample ID    | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|------------------|--------------------|-----------|--------|--------|------------|
| 180-55633-1      | AT6-277 (MOCK)     | Total/NA  | Water  | 300.0  |            |
| LCS 180-178994/5 | Lab Control Sample | Total/NA  | Water  | 300.0  |            |
| MB 180-178994/6  | Method Blank       | Total/NA  | Water  | 300.0  |            |

#### Metals

### **Prep Batch: 179366**

| L | _ab Sample ID      | Client Sample ID   | Prep Type         | Matrix | Method | Prep Batch |
|---|--------------------|--------------------|-------------------|--------|--------|------------|
| 1 | 180-55633-1        | AT6-277 (MOCK)     | Total Recoverable | Water  | 200.8  |            |
| L | _CS 180-179366/2-A | Lab Control Sample | Total Recoverable | Water  | 200.8  |            |
|   | MB 180-179366/1-A  | Method Blank       | Total Recoverable | Water  | 200.8  |            |

#### Prep Batch: 179534

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch    |
|---------------------|------------------------|-----------|--------|--------|---------------|
| 180-55633-1         | AT6-277 (MOCK)         | Total/NA  | Water  | 245.1  | - 1106 201011 |
| LCS 180-179534/2-A  | Lab Control Sample     | Total/NA  | Water  | 245.1  |               |
| LCSD 180-179534/3-A | Lab Control Sample Dup | Total/NA  | Water  | 245.1  |               |
| MB 180-179534/1-A   | Method Blank           | Total/NA  | Water  | 245.1  |               |

#### Analysis Batch: 179692

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 180-55633-1         | AT6-277 (MOCK)         | Total/NA  | Water  | 245.1  | 179534     |
| LCS 180-179534/2-A  | Lab Control Sample     | Total/NA  | Water  | 245.1  | 179534     |
| LCSD 180-179534/3-A | Lab Control Sample Dup | Total/NA  | Water  | 245.1  | 179534     |
| MB 180-179534/1-A   | Method Blank           | Total/NA  | Water  | 245.1  | 179534     |

### Analysis Batch: 179847

| Lab Sample ID      | Client Sample ID   | Prep Type         | Matrix | Method | Prep Batch |
|--------------------|--------------------|-------------------|--------|--------|------------|
| 180-55633-1        | AT6-277 (MOCK)     | Total Recoverable | Water  | 200.8  | 179366     |
| LCS 180-179366/2-A | Lab Control Sample | Total Recoverable | Water  | 200.8  | 179366     |
| MB 180-179366/1-A  | Method Blank       | Total Recoverable | Water  | 200.8  | 179366     |

#### Analysis Batch: 179986

|   | Lab Sample ID | Client Sample ID | Prep Type         | Matrix | Method | Prep Batch |
|---|---------------|------------------|-------------------|--------|--------|------------|
| d | 180-55633-1   | AT6-277 (MOCK)   | Total Recoverable | Water  | 200.8  | 179366     |

#### Analysis Batch: 181861

| Lab Sample ID | Client Sample ID | Prep Type         | Matrix | Method | Prep Batch |
|---------------|------------------|-------------------|--------|--------|------------|
| 180-55633-1   | AT6-277 (MOCK)   | Total Recoverable | Water  | 200.8  | 179366     |

TestAmerica Pittsburgh

### **QC Association Summary**

Client: EA Engineering, Science, and Technology

Project/Site: Jordan Valley

TestAmerica Job ID: 180-55633-1

| Genera | Chemi | stry |
|--------|-------|------|
|--------|-------|------|

| Ana | lysis | Batch: | 179061 |
|-----|-------|--------|--------|
|-----|-------|--------|--------|

| Lab Sample ID    | Client Sample ID   | Prep Type | Matrix | Method   | Prep Batch |
|------------------|--------------------|-----------|--------|----------|------------|
| 180-55633-1      | AT6-277 (MOCK)     | Total/NA  | Water  | SM 2540D |            |
| LCS 180-179061/1 | Lab Control Sample | Total/NA  | Water  | SM 2540D |            |
| MB 180-179061/2  | Method Blank       | I otal/NA | Water  | SM 2540D |            |

#### **Prep Batch: 179152**

| Lab Sample ID       | Client Sample ID   | Prep Type | Matrix | Method       | Prep Batch |
|---------------------|--------------------|-----------|--------|--------------|------------|
| 180-55633-1         | AT6-277 (MOCK)     | Total/NA  | Water  | SM 4500 CN C |            |
| HLCS 180-179152/2-A | Lab Control Sample | Total/NA  | Water  | SM 4500 CN C |            |
| LCS 180-179152/3-A  | Lab Control Sample | Total/NA  | Water  | SM 4500 CN C |            |
| LLCS 180-179152/1-A | Lab Control Sample | Total/NA  | Water  | SM 4500 CN C |            |
| MB 180-179152/4-A   | Method Blank       | Total/NA  | Water  | SM 4500 CN C |            |

#### Analysis Batch: 179168

| Lab Sample ID    | Client Sample ID   | Prep Type | Matrix | Method   | Prep Batch |
|------------------|--------------------|-----------|--------|----------|------------|
| 180-55633-1      | AT6-277 (MOCK)     | Total/NA  | Water  | SM 2540C |            |
| LCS 180-179168/1 | Lab Control Sample | Total/NA  | Water  | SM 2540C |            |
| MB 180-179168/2  | Method Blank       | Total/NA  | Water  | SM 2540C |            |

#### Analysis Batch: 179193

| Lab Sample ID       | Client Sample ID   | Prep Type | Matrix | Method       | Prep Batch |
|---------------------|--------------------|-----------|--------|--------------|------------|
| 180-55633-1         | AT6-277 (MOCK)     | Total/NA  | Water  | SM 4500 CN E | 179152     |
| HLCS 180-179152/2-A | Lab Control Sample | Total/NA  | Water  | SM 4500 CN E | 179152     |
| LCS 180-179152/3-A  | Lab Control Sample | Total/NA  | Water  | SM 4500 CN E | 179152     |
| LLCS 180-179152/1-A | Lab Control Sample | Total/NA  | Water  | SM 4500 CN E | 179152     |
| MB 180-179152/4-A   | Method Blank       | Total/NA  | Water  | SM 4500 CN E | 179152     |

#### TestAmerica Pittsburgh

301 Alpha Drive RIDC Park

Pittsburgh, PA 15238 Phone (412) 963-7058 Fax (412) 963-2468

### **Chain of Custody Record**



Carrier Tracking No(s): Client Information Gamber, Carrie L 180-30634-6905.1 Client Contact: Phone: Page: Mike Chanov carrie.gamber@testamericainc.com Page 1 of 1 Job #. EA Engineering, Science, and Technology **Analysis Requested** Address: Due Date Requested: Preservation Codes: 225 Schilling Circle A-HCL TAT Requested (days): B - NaOH N - None Hunt Valley C - Zn Acetate O - AsNaO2 State, Zip: D - Nitric Acid P - Na2O4S MD, 21031 E - NaHSO4 Q - Na2SO3 R - Na2S2O3 F - MeOH Phone: G - Amchior S-H2SO4 410-329-5120(Tel) Purchase Order Requested T - TSP Dodecahydrate H - Ascorbic Acid U - Acetone mchanov@eaest.com Project Name: Project #. Jordan Valley cify) 18015970 SSOW#: Matrix Sample Type (C=comp, Sample Sample Identification Sample Date Time G=grab) Special Instructions/Note: Preservation Code 6/16/16 4T6-277 Possible Hazard Identification Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month)

Return To Client

Disposal By Lab

Archive For \_\_\_\_\_\_\_Month Non-Hazard Flammable Skin Irritant Poison B Unknown Radiological Archive For Deliverable Requested: I, II, III, IV, Other (specify) Special Instructions/QC Requirements: Empty Kit Relinquished by: Time: Company EA 1100 Company Custody Seals Intact: Custody Seal No.: Cooler Temperature(s) \*C and Other Remarks: A Yes A No



MICHAEL CHANOV 4105847000 5120 EA ENG SCIENCE TECH

225 SCHILLING CIRCLE HUNT VALLEY MD 21031

SHIP TO:

SAMPLE CUSTODY **TESTAMERICA** RIDC PARK 301 ALPHA DRIVE

**PITTSBURGH PA 15238-2907** 

33 LBS



PA 152 9-22



**UPS NEXT DAY AIR** 

TRACKING #: 1Z 288 682 44 9133 2051

1 OF 1

Uncorrected temp Thermometer ID

PT-WI-SR-001 effective 7/26/13

BILLING UPS CA.

Department Code: 2122
Project Phase AND Task: TOXLAB
CS 18.1.17. WNINVSO 75.04 04/2016





**UPS CampusShip: Shipment Label** 

### **Login Sample Receipt Checklist**

Client: EA Engineering, Science, and Technology

Job Number: 180-55633-1

Login Number: 55633

List Number: 1

Creator: Watson, Debbie

List Source: TestAmerica Pittsburgh

| Question                                                                                                   | Answer | Comment |
|------------------------------------------------------------------------------------------------------------|--------|---------|
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> | True   |         |
| The cooler's custody seal, if present, is intact.                                                          | True   |         |
| Sample custody seals, if present, are intact.                                                              | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.                             | True   |         |
| Samples were received on ice.                                                                              | True   |         |
| Cooler Temperature is acceptable.                                                                          | True   |         |
| Cooler Temperature is recorded.                                                                            | True   |         |
| COC is present.                                                                                            | True   |         |
| COC is filled out in ink and legible.                                                                      | True   |         |
| COC is filled out with all pertinent information.                                                          | True   |         |
| Is the Field Sampler's name present on COC?                                                                | True   |         |
| There are no discrepancies between the containers received and the COC.                                    | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)                              | True   |         |
| Sample containers have legible labels.                                                                     | True   |         |
| Containers are not broken or leaking.                                                                      | True   |         |
| Sample collection date/times are provided.                                                                 | True   |         |
| Appropriate sample containers are used.                                                                    | True   |         |
| Sample bottles are completely filled.                                                                      | True   |         |
| Sample Preservation Verified.                                                                              | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                           | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                            | True   |         |
| Multiphasic samples are not present.                                                                       | True   |         |
| Samples do not require splitting or compositing.                                                           | True   |         |
| Residual Chlorine Checked.                                                                                 | N/A    |         |

# ATTACHMENT III

Report Quality Assurance Record (2 pages)



# REPORT QUALITY ASSURANCE RECORD

| Clie | ent:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Project Number:             | 70005:15     |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------|
| Aut  | hor. Michael Chana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EA Report Number            | 7347         |
| -    | REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHECKLIST                   |              |
|      | QA/QC ITEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | REVIEWER                    | DATE         |
| 1.   | Samples collected, transported, and received according to study plan requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MICE                        | 6/22/14      |
| 2.   | Samples prepared and processed according to study plan requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MKCE                        | 6/22/11      |
| 3.   | Data collected using calibrated instruments and equipment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MKOZ                        | 6/22/14      |
| 4.   | Calculations checked: - Hand calculations checked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MKC                         | 6/22/11      |
|      | <ul> <li>Documented and verified statistical<br/>procedure used.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m/K C                       | 6/22/14      |
| 5.   | Data input/statistical analyses complete and correct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             | 7/7/16       |
| 6.   | Reported results and facts checked against original sources.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Milling                     | 7/16         |
| 7.   | Data presented in figures and tables correct and in agreement with text.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MAM SA                      | 7/7/16       |
| 8.   | Results reviewed for compliance with study plan requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MKCZ                        | 6/22/16      |
|      | Alexander and the second secon | AUTHOR                      | DATE         |
| 9.   | Commentary reviewed and resolved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mes                         | 7/12/14      |
| 10.  | All study plan and quality assurance/control require approved:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ements have been met and th | ne report is |
|      | approvoe.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MULL                        | 7/12/16      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROJECT MANAGER             | DATE         |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [[]][[]][][]                | 7/1/16       |
|      | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QUALITY CONTROL OFFICER     | DATE         |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SENIOR TECHNICAL REVIEW     | ZER DATE     |