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DISCLAIMER 

This document provides guidance to EPA Regions concerning how the 
Agency intends to exercise its discretion in implementing one aspect of the 
CERCLA remedy selection process.  The guidance is designed to implement 
national policy on these issues. 

Some of the statutory provisions described in this document contain 
legally binding requirements.  However, this document does not substitute for 
those provisions or regulations, nor is it a regulation itself. Thus, it cannot 
impose legally-binding requirements on EPA, States, or the regulated 
community, and may not apply to a particular situation based upon the 
circumstances. Any decisions regarding a particular remedy selection decision 
will be made based on the statute and regulations, and EPA decision makers 
retain the discretion to adopt approaches on a case-by-case basis that differ 
from this guidance where appropriate. 

Interested parties are free to raise questions and objection about the 
substance of this guidance and the appropriateness of the application of this 
guidance to a particular situation, and the Agency welcomes public input on 
this document at any time. EPA may change this guidance in the future. 
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ABOUT THE REVISION


WHAT IT IS	 EPA’s Process for Conducting Probabilistic Risk Assessment is an update of 
the 1989 Risk Assessment Guidance for Superfund (RAGS). It is Volume III, 
an update to the existing two-volume set of RAGS.  Volume III: Part A 
provides policy and guidance on conducting probabilistic risk assessment for 
both human and ecological receptors. 

WHO IT’S FOR	 RAGS Volume III: Part A is written primarily for risk assessors.  Risk 
assessment reviewers, remedial project managers, and risk managers involved 
in Superfund site cleanup activities will also benefit from this addition to 
RAGS. 

WHAT’S NEW	 RAGS Volume III: Part A provides guidance on applying probabilistic 
analysis to both human health and ecological risk assessment.  New 
information and techniques are presented that reflect the views of EPA 
Superfund program.  A tiered approach is described for determining the 
extent and scope of the modeling effort that is consistent with the risk 
assessment objectives, the data available, and the information that may be 
used to support remedial action decisions at Superfund hazardous waste sites. 

RAGS Volume III: Part A contains the following information: 

•	 For the risk assessor— updated policies and guidance; discussion and 
examples of Monte Carlo modeling techniques for estimating 
exposure and risk. 

•	 For the risk manager and the remedial project manager—an 
introduction to PRA, a chapter on communicating methods and 
results of PRA with the public, and a chapter on the role of PRA in 
decision making. 
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PREFACE 

Risk Assessment Guidance for Superfund (RAGS) Volume III: Part A (hereafter referred to as 
RAGS Volume 3: Part A) provides technical guidance on the application of probabilistic risk assessment 
(PRA) methods to human health and ecological risk assessment in the U.S. Environmental Protection 
Agency (EPA) Superfund program. RAGS Volume 3: Part A supplements existing human health and 
ecological assessment guidance provided in the RAGS series. This guidance focuses on Monte Carlo 
analysis (MCA) as a method of quantifying variability and uncertainty in risk. Primarily geared toward 
the risk assessor, it is intended, both in content and format, to be most accessible to those readers who are 
familiar with risk assessment and basic statistical concepts. Chapters 1, 2, 6, and 7 are also directed 
towards risk managers. The term risk manager is used in this guidance to refer to individuals or entities 
that serve as the decision makers at hazardous waste sites. The term is used to emphasize the separation 
between risk assessment and risk management activities. Risk managers may include individual remedial 
project mangers (RPMs), site partnering teams, senior EPA managers (Section Chiefs, Branch Chiefs, or 
Division Directors), or other decision makers. 

An attempt has been made in this document to define all relevant technical terms using plain 
language and to illustrate concepts with examples. An exhibit at the beginning of each chapter provides 
definitions of terms used in that chapter. In addition, a comprehensive definition of terms is provided in 
Appendix E. Other useful information has been presented in exhibits placed throughout each chapter. 
Bullets are used throughout the text to emphasize important concepts and policy statements related to the 
use of PRA.  References are listed at the end of each chapter. 

RAGS Volume 3: Part A was developed by the Superfund Probabilistic Risk Assessment 
Workgroup and the Ecological Risk Assessment Forum (ERAF); both are intra-Agency workgroups that 
have focused on improving the Risk Assessment Guidance for Superfund and implementing Superfund 
Reform activities. The guidance has undergone extensive review by Superfund and other programs 
within the Agency. In February 2000, a draft of the guidance was announced in the Federal Register to 
provide an opportunity for public comment (U.S. EPA, 2000a). In August 2000, a notice of peer review 
was announced in the Federal Register (U.S. EPA, 2000b), and in November 2000, RAGS Volume 3: 
Part A received a formal peer review from panelists outside the Agency. 

The Agency may incorporate PRA under fund-lead and Potentially Responsible Party (PRP)-lead 
risk assessments. Implementation of successful PRAs requires careful planning. EPA strongly 
recommends that PRPs involve the Agency in all decisions regarding the planning, submittal, and 
technical details of any PRA.  Coordinating with EPA early in the process will help ensure that PRAs 
conform to the recommended guidelines as part of the Superfund risk assessment process for protecting 
human and ecological health. PRPs should submit workplans for Agency review before initiating any 
PRA. Similarly, when EPA chooses to use PRA for an EPA-lead risk assessment, a PRA workplan will 
assist in directing site investigation and risk assessment activities, whether conducted by EPA or an EPA 
contractor. A workplan specifies contractor activities in the risk assessment and provides risk assessors 
and risk managers with an opportunity to obtain internal feedback from knowledgeable EPA staff, prior 
to initiating work on the assessment. 

A tiered approach to PRA is advocated, which begins with a point estimate risk assessment. 
Important considerations include the time required to perform the PRA, the additional resources involved 
in developing the PRA, the quality and extent of data on exposure that will be used in the assessment, 
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and the value added by conducting the PRA. Project scoping is an essential component of all risk 
assessments and is especially important in PRA. 

Implementation of a PRA usually requires special computer software that may be commercially 
available or that may need to be custom-designed for a specific application. Although commercial 
software packages are noted in this guidance, any mention or use of a particular product in RAGS 
Volume 3: Part A does not constitute an endorsement of that product by the Agency. 

1.0 WHAT IS THE PURPOSE OF RAGS VOLUME 3 PART A? 

RAGS Volume 3: Part A addresses the technical and policy issues associated with the use of 
PRA in EPA Superfund program.  This guidance builds upon basic concepts of risk assessment outlined 
in RAGS Volume I (U.S. EPA, 1989a; 2001), recent guidance for ecological risk assessment (U.S. EPA, 
1992, 1994, 1997a, 1998a; 1999), and the Agency Probabilistic Analysis Policy document (U.S. EPA, 
1997b). RAGS Volume 3: Part A addresses the use of PRA for both human health and ecological risk 
assessments. RAGS Volume 3: Part A was developed to provide risk assessors and risk managers with 
basic guidelines for incorporating PRA into Superfund site-specific risk assessments. It is not intended 
to be a detailed technical reference on PRA methods, however, it does direct the reader to appropriate 
literature on important technical subjects. A primary purpose of RAGS Volume 3: Part A is to help 
prevent misuse and misinterpretation of PRA. 

2.0	 WHAT IS PROBABILISTIC RISK ASSESSMENT AND HOW IS IT USED IN RISK 
CHARACTERIZATION? 

PRA is a risk assessment that uses probability distributions to characterize variability or 
uncertainty in risk estimates. In a PRA, one or more variables in the risk equation is defined as a 
probability distribution rather than a single number. Similarly, the output of a PRA is a range or 
probability distribution of risks experienced by the receptors. The evaluation of variability and 
uncertainty is an important component of the risk characterization of all risk assessments. As stated in 
the 1995 Risk Characterization memorandum from Administrator Carol Browner (U.S. EPA, 1995), 

... we must fully, openly, and clearly characterize risks. In doing so, we will disclose the 
scientific analyses, uncertainties, assumptions, and science policies which underlie our 
decisions... There is value in sharing with others the complexities and challenges we face 
in making decisions in the face of uncertainty. 

In addition, the 1997 EPA Policy for Use of Probabilistic Analysis in Risk Assessment (U.S. 
EPA, 1997b) states: 

L It is the policy of the U.S. Environmental Protection Agency that such 
probabilistic analysis techniques as Monte Carlo analysis, given adequate 
supporting data and credible assumptions, can be viable statistical tools for 
analyzing variability and uncertainty in risk assessments. 

A more extensive general discussion of PRA can be found in Chapter 1 of the guidance. The use 
of PRA in Superfund remedial decision making is presented in Chapter 7 of the guidance. 
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3.0	 WHAT ARE THE ADVANTAGES AND DISADVANTAGES OF PRA FOR REMEDIAL 
DECISIONS?

 The primary advantage of PRA within the Superfund program is that it can provide a 
quantitative description of the degree of variability or uncertainty (or both) in risk estimates for both 
cancer and non-cancer health effects and ecological hazards. The quantitative analysis of uncertainty and 
variability can provide a more comprehensive characterization of risk than is possible in the point 
estimate approach. 

Another significant advantage of PRA is the additional information and potential flexibility it 
affords the risk manager. Superfund remedy decisions are often based on an evaluation of the risk to the 
individual at the reasonable maximum exposure (RME) level (U.S. EPA, 1990). The RME represents the 
highest exposure reasonably likely to occur (U.S. EPA, 1989a). When using PRA, the risk manager can 
select the RME from the high-end range of percentiles of risk, generally between the 90th and 
99.9th percentiles, referred to in this guidance as the RME range. 

However, PRA may not be appropriate for every site. Disadvantages of PRA are that it generally 
requires more time, resources, and expertise on the part of the assessor, reviewer, and risk manager than a 
point estimate approach. 

4.0	 HOW IS RAGS VOLUME 3, PART A ORGANIZED? 

Although the primary audience of this guidance is the risk assessor, Chapter 1 provides a basic 
overview of PRA for risk assessors and risk managers. The centerpiece of RAGS Volume 3: Part A is the 
tiered approach described in Chapter 2. The tiered approach is a framework that enables the risk 
manager to decide if and when to undertake a PRA and to determine the appropriate level of complexity 
for the PRA. Chapter 3 provides a description of using PRA for human health risk assessment. 
Chapter 4 discusses the issues of using PRA for ecological risk assessment. Chapter 5 presents a 
discussion of using PRA to determine preliminary remediation goals. Chapter 6 details issues associated 
with communicating risk estimates developed with PRA. Chapter 7 provides information for risk 
managers choosing to base remedial decisions on the results of a PRA. 

Eight appendices to this guidance expand on technical aspects of topics important to PRA, such 
as sensitivity analysis and selecting and fitting probability distributions. 

5.0	 WHAT ARE THE KEY GUIDING CONCEPTS IN RAGS VOLUME 3: PART A? 

(1) Use a tiered approach to incorporating PRA into site risk assessments. 

(2) Submit a workplan for Agency review prior to initiating work on a PRA. 

(3) Perform a point estimate assessment prior to considering a PRA. 

(4) While PRA can provide a useful tool to characterize and quantify variability and uncertainty 
in risk assessments, it is not appropriate for every site. 
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(5) PRA generally requires more time, resources, and expertise on the part of the assessor, 
reviewer, and risk manager than a point estimate risk assessment. 

(6) The decision to use PRA is site-specific and is based on the complexity of the problems at the 
site, the quality and extent of site-specific data, and the likely utility of the result. 

(7) If the additional information provided from a PRA is unlikely to affect the risk management 
decision, then it may not be prudent to proceed with a PRA. However, if there is a clear 
value added from performing a PRA, then the use of PRA as a risk assessment tool generally 
should be considered despite the additional resources that may be needed. 

(8) Communicating the results of a PRA will be more challenging than communicating the 
results of a point estimate risk assessment because PRA and its perspective will be new to 
most participants. 

(9) If the decision is made to conduct a PRA, it is important to include community in the 
planning process. Communication on PRA may involve: providing the community with a 
basic understanding of the principles of PRA, discussing the proposed workplan and inviting 
comments on the proposed approach, discussing site-specific data, and communicating the 
final results and how they impact decisions for the site. 
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CHAPTER 1 

OVERVIEW OF PROBABILISTIC APPROACH TO RISK ASSESSMENT 

1.0 INTRODUCTION 

This chapter is intended for risk managers and risk assessors as an overview of the probabilistic 
approach to risk assessment in the context of the Superfund program at the U.S. Environmental 
Protection Agency (EPA).  The goals of this chapter are to provide the reader with information about 
(1) the role of risk assessment in the Superfund program; (2) the basic concepts of probabilistic risk 
assessment (PRA); (3) important policies and guiding principles for PRA, as outlined throughout this 
guidance; and (4) the next steps that will be undertaken in the Superfund program to provide guidance on 
PRA. 

Section 1.1 (1.1.1–1.1.3) describes the role of risk assessment from three perspectives, including 
the role of risk assessment in areas external to EPA, Agency-wide, and within Superfund.  Section 1.1 
(1.1.4) also introduces PRA and identifies its place in the Superfund program.  Section 1.2 introduces the 
basic concepts of PRA, including the key terms of variability, uncertainty, Monte Carlo analysis (MCA), 
and reasonable maximum exposure (RME).  PRA concepts are presented using a comparison between 
PRA and the traditional point estimate approach.  Sections 1.2.4 and 1.3 summarize the advantages and 
disadvantages of PRA and point estimate risk assessment.  Section 1.4 provides a summary of policies 
and guiding principles for using PRA in the Superfund program.  EPA’s policies on conducting PRA are 
highlighted throughout the guidance using pointers and are linked to more detailed policy discussions in 
other chapters in the guidance.  Section 1.5 outlines the organization of this document and provides a 
brief summary of the content of each subsequent chapter and appendix.  Section 1.6 presents EPA’s next 
steps for PRA implementation in the Superfund program. 

Key terms used throughout this guidance include: Probabilistic Risk Assessment (PRA), Monte 
Carlo Analysis (MCA), Probability Density Function (PDF), Cumulative Distribution Function (CDF), 
Reasonable Maximum Exposure (RME), Sensitivity Analysis, Tiered Approach, Variability, Uncertainty, 
and Preliminary Remediation Goal (PRG).  Terms and their definitions are identified in an exhibit at the 
beginning of each chapter.  Terms and definitions relevant to Chapter 1 are presented in Exhibit 1-1.  In 
addition, a glossary of terms used throughout the guidance is given in Appendix E. 
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D C 1 

Confidence Interval Confidence intervals may 
th

counted with integers (e.g., one, two, three) and that has no upper limit. Examples include the number of tosses 

needed. 

th

risk). 

approaches. 

CTE Risk - The estimated risk corresponding to the central tendency exposure. 

occurrence for a random independent variable. Each value c
x c. 

Frequency Distribution or Histogram
It conveys the range of values and the count (or proportion of the sample) that 

was observed across that range. 

using these inputs to calculate a range of risk values. 

Parameter

[bounds]. 

XHIBIT 

EFINITIONS FOR HAPTER 

Central Tendency Exposure (CTE) - A risk descriptor representing the average or typical individual in a population, 
usually considered to be the mean or median of the distribution. 

 - A range of values that are likely to include a population parameter.  
describe a parameter of an input variable (e.g., mean ingestion rate) or output variable (e.g., 95  percentile risk). 
When used to characterize uncertainty in a risk estimate, it is assumed that methods used to quantify uncertainty 
in the model inputs are based on statistical principles such as sampling distributions or Bayesian approaches. 
For example, given a randomly sampled data set, a 95% confidence interval for the mean can be estimated by 
deriving a sampling distribution from a Student's t distribution. 

Confidence Limit - The upper or lower value of a confidence interval. 
Countably Infinite - Used to describe some discrete random variables, this term refers to a set of numbers that can be 

required for a coin to show a head—we can count each toss, but it is possible that at least one more toss is 
The number of dust particles in a volume of air is another example.  Countably finite implies there is 

an upper limit (e.g., days of work per year).  
Credible Interval - A range of values that represent plausible bounds on a population parameter.  Credible intervals 

may describe a parameter of an input variable (e.g., mean ingestion rate) or output variable (e.g., 95  percentile 
The term is introduced as an alternative to the term confidence interval when the methods used to 

quantify uncertainty are not based entirely on statistical principles such as sampling distributions or Bayesian 
For example, multiple estimates of an arithmetic mean may be available from different studies 

reported in the literature - using professional judgment, these estimates may support a decision to describe a 
range of possible values for the arithmetic mean. 

Cumulative Distribution Function (CDF) - Obtained by integrating the PDF, gives the cumulative probability of 
 of the function is the probability that a random 

observation  will be less than or equal to 
Expected Value of Information (EVOI) - The expected increase in the value (or decrease in the loss) associated with 

obtaining more information about quantities relevant to the decision process.  EVOI is a measure of the 
importance of uncertainty in risk and the potential for changing a risk management decision if uncertainty is 
reduced (see Appendix D). 

 - A graphic (plot) summarizing the frequency of the values observed or 
measured from a population.  

Monte Carlo Analysis (MCA) or Monte Carlo Simulation - A technique for characterizing the uncertainty and 
variability in risk estimates by repeatedly sampling the probability distributions of the risk equation inputs and 

Numeric Stability - Stochastic variability, or "wobble" associated with random sampling, calculated as the average 
percent change in the model output after rerunning Monte Carlo simulations with the same set of input 
assumptions.  Used as a metric for evaluating the adequacy of the number of iterations in a MCA. 

 - A value that characterizes the distribution of a random variable.  Parameters commonly characterize the 
location, scale, shape, or bounds of the distribution.  For example, a truncated normal probability distribution 
may be defined by four parameters: arithmetic mean [location], standard deviation [scale], and min and max 

It is important to distinguish between a variable (e.g., ingestion rate) and a parameter (e.g., arithmetic 
mean ingestion rate). 

Point Estimate - In statistical theory, a quantity calculated from values in a sample to estimate a fixed but unknown 
population parameter.  Point estimates typically represent a central tendency or upper bound estimate of 
variability. 
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D C 1— Continued 

bounding risk estimate depending on the choice of inputs. 

Also called a probability model. 

RME Risk

in the values of the model’s input(s). 
Common metrics 

of sensitivity include: 
< - A statistic r that measures the strength and direction of linear 

(r2) 

variable. 
< - Ratio of the change in model output per unit change in an input variable; 

elasticity. 
< 

r
r2 . 

Stochastic Dominance

Examples 

Variability
population. n

XHIBIT 

EFINITIONS FOR HAPTER 

Point Estimate Risk Assessment - A risk assessment in which a point estimate of risk is calculated from a set 
of point estimates for exposure and toxicity.  Such point estimates of risk can reflect the CTE, RME, or 

Probabilistic Risk Assessment (PRA) - A risk assessment that yields a probability distribution for risk, 
generally by assigning a probability distribution to represent variability or uncertainty in one or more 
inputs to the risk equation. 

Probability Density Function (PDF) - A function representing the probability distribution of a continuous 
random variable.  The density at a point refers to the probability that the variable will have a value in a 
narrow range about that point. 

Probability Distribution - A mathematical representation of the function that relates probabilities with 
specified intervals of values for a random variable.  

Probability Mass Function (PMF) - A function representing the probability distribution for a discrete random 
variable.  The mass at a point refers to the probability that the variable will have a value at that point. 

Random Variable - A variable that may assume any value from a set of values according to chance.  Discrete 
random variables can assume only a finite or countably infinite number of values (e.g., number of rainfall 
events per year).  A random value is continuous if its set of possible values is an entire interval of 
numbers (e.g., quantity of rain in a year). 

Reasonable Maximum Exposure (RME) - The highest exposure that is reasonably expected to occur at a site 
(U.S. EPA, 1989a).  The intent of the RME is to estimate a conservative exposure case (i.e., well above 
the average case) that is still within the range of possible exposures. 

Remedial Investigation/Feasibility Study (RI/FS) - Studies undertaken by EPA to delineate the nature and 
extent of contamination, to evaluate potential risk, and to develop alternatives for cleanup. 

 - The estimated risk corresponding to the reasonable maximum exposure. 
Sensitivity Analysis - Sensitivity generally refers to the variation in output of a model with respect to changes 

Sensitivity analysis can provide a quantitative ranking of the model 
inputs based on their relative contributions to model output variability and uncertainty.  

Pearson Correlation Coefficient
association between the values of two quantitative variables.  The square of the coefficient 
is the fraction of the variance of one variable that is explained by the variance of the second 

Sensitivity Ratio
also called 
Spearman Rank Order Correlation Coefficient - A “distribution free” or nonparametric statistic 
 that measures the strength and direction of association between the ranks of the values (not 

the values themselves) of two quantitative variables.  See Pearson (above) for 
 - Implies no intersection between two or more CDFs.  For example, if the CDF for A 

and B do not overlap and the CDF for A is greater than the CDF for B, then at every cumulative percentile, 
the value of A is greater than that of B.  Therefore, it can be stated that distribution A stochastically 
dominates distribution B.  It should be noted that even when the CDFs for A and B do not overlap, the 
PDFs for A and B can overlap. 

Uncertainty -Lack of knowledge about specific variables, parameters, models, or other factors.  
include limited data regarding the concentration of a contaminant in an environmental medium and lack of 
information on local fish consumption practices.  Uncertainty may be reduced through further study.  

 - True heterogeneity or diversity that characterizes an exposure variable or response in a 
Further study (e.g., increasing sample size, ) will not reduce variability, but it can provide 

greater confidence (e.g., lower uncertainty) in quantitative characterizations of variability). 
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1.1 THE ROLE OF RISK ASSESSMENT IN SUPERFUND 

The role of risk assessment in the Superfund program today is built upon a foundation of 
scientific and management principles, policies, and laws that have been established over the past two 
decades. Since the enactment of the Comprehensive Environmental Response, Compensation, and 
Liability Act (CERCLA) in 1980 the risk assessment policies and guidance documents have evolved to 
reflect advances in science and changes in federal regulations. 

1.1.1 RISK ASSESSMENT IN THE UNITED STATES 

Risk assessment has a long history beginning in 1940.  In 1983, the National Research Council 
published Risk Assessment in the Federal Government: Managing the Process (NRC, 1983) which 
outlines the four steps of risk assessment (hazard identification, dose-response, exposure assessment, and 
risk characterization) that are used today. 

The NRC addressed three main objectives in risk assessment: (1) assessment of the benefits of 
separating the analytical process of risk assessment from the regulatory process of risk management; 
(2) consideration of the feasibility of creating a single regulatory agency for the purpose of conducting all 
government risk assessments; and (3) consideration of the feasibility of creating uniform guidelines for 
risk assessment (NRC, 1983). 

The Committee concluded that regulatory agencies should maintain a conceptual distinction 
between risk assessment and risk management, and develop uniform inference guidelines in risk 
assessment for use by all federal regulatory agencies.  The Committee also recommended that Congress 
establish a Board on Risk Assessment Methods in order to ensure that risk assessment procedures be 
continuously reviewed and modified as the science advances.  The Committee rejected the proposal for a 
single federal risk assessment agency based on inadequate evidence to show that one administrative 
structure would be more advantageous (NRC, 1983). 

Since 1983, there have been ongoing advancements in the field of risk assessment.  These 
include: (1) a continued increasing role for risk assessment in the decision-making process of many 
regulatory agencies, as exemplified by several bills introduced by the 103rd and 104th Congresses in 
1994-1995; (2) an increased awareness of the need for uncertainty analysis and for quantifying and 
communicating uncertainties in risk estimates (Science and Judgement in Risk Assessment, NRC, 1994); 
(3) guidance about more inclusive approaches to risk assessment, as exemplified by environmental health 
legislation such as the Food Quality Protection Act (FQPA) of 1996 and the Presidential/Congressional 
Commission on Risk Assessment and Risk Management (1997); and (4) setting the stage for a more open 
decision-making process through stakeholder involvement in the risk management process, as outlined in 
Improving Risk Communication (NRC, 1989). 
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1.1.2 RISK ASSESSMENT AT EPA 

EPA has refined the risk paradigm through deliberations of the Risk Assessment Forum, Science 
Policy Council, and other Agency-wide bodies.  Such deliberations have led to consensus in guidance, 
policies, and memoranda that respond to the requirements set out by various environmental statutes. 
Individual offices have also developed regulations, guidance, and other supporting documents to aid in 
the implementation of particular environmental statutes. 

In 1986, EPA issued final guidelines relating to risk assessment for cancer, mutagenic effects, 
developmental effects, exposure assessment, and chemical mixtures.  Since 1986, EPA has updated or 
issued revised final guidelines for developmental toxicity, exposure assessment, reproductive toxicity, 
neurotoxicity, and ecological risk assessment; and is now revising carcinogen risk assessment guidelines. 
(See http://www.epa.gov/ncea/raf/rafguid.htm for details on guidelines.) 

Other notable documents that guide risk assessment at EPA include: 

• Framework for Ecological Risk Assessment (U.S. EPA, 1992b) 
• Guidelines for Ecological Risk Assessment (U.S. EPA, 1998) 
• Guidance for Risk Characterization (U.S. EPA, 1995a) 
• Policy for Risk Characterization (U.S. EPA, 1995c) 
• Policy on Evaluating Health Risks to Children (U.S. EPA, 1995d) 
• Policy for Use of Probabilistic Analysis in Risk Assessment (U.S. EPA, 1997g) 
• Use of Probabilistic Techniques (including Monte Carlo Analysis) in Risk Assessment 

(U.S. EPA, 1997g) 
• Guidance on Cumulative Risk Assessment. Part 1. Planning and Scoping 

(U.S. EPA, 1997e) 
• Risk Characterization Handbook (U.S. EPA, 2000) 

1.1.3 RISK ASSESSMENT IN SUPERFUND 

The activities and publications described above have provided a strong foundation for the 
development of risk assessment guidance on conducting human health—and ecological risk assessments 
in the Superfund program.  EPA uses risk assessment (NRC, 1983, 1994) to carry out CERCLA, as 
amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA).  Under 
CERCLA/SARA, EPA’s Superfund program is authorized to protect human health and the environment 
from current and potential threats posed by releases of hazardous substances, pollutants, or contaminants. 
The blueprint for the Superfund program is the National Oil and Hazardous Substances Pollution 
Contingency Plan (NCP) (U.S. EPA, 1990).  Among other things, the NCP calls for the identification and 
mitigation of environmental impacts at hazardous waste sites, and for the selection of remedial actions to 
protect human health and the environment.  An important part of the NCP is the implementation of a 
Remedial Investigation and Feasibility Study (RI/FS), which is designed to support risk management 
decisions within the Superfund program.  A risk assessment is an integral part of the RI/FS, and is 
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generally conducted at a site to determine the 
need for action and to ensure that a selected 
remedy will be protective.  The NCP also 
establishes some benchmarks for protectiveness 
and lays out nine criteria (some risk-based) 
against which each cleanup option should be 
evaluated (see Exhibit 1-2).  

Guidance for risk assessment in the 
Superfund program has been developed to 
facilitate consistent site-specific responses. 
Early major guidance documents developed by 
EPA included: Risk Assessment Guidance for 
Superfund (RAGS): Volume I.  Human Health 
Evaluation Manual (HHEM) (Part A, Baseline 
Risk Assessment) (U.S. EPA, 1989a) and Risk 
Assessment Guidance for Superfund. (RAGS): 
Volume II. Environmental Evaluation Manual 
(U.S. EPA, 1989b).  RAGS Volume I: Part A 
provides an approach for conducting 
site-specific baseline (i.e., without remediation 
or institutional controls) human health risk 
assessments. RAGS Volume II, aimed at site 

E 1-2 

NINE C E

CLEANUP A ) 

1. 

environment 

2. 

3. 

4. 

5. Short-term effectiveness 

6. 

7. Cost

8. 

9. 

XHIBIT 

RITERIA FOR VALUATION OF 

LTERNA TIVES (U.S. EPA, 1990

Thre sho ld Cr iteria 

Overall protection of human health and the 

Compliance with ARARs 

Ba lanc ing C riteria 

Long-term effectiveness and permanence 

Reduction in toxicity, mobility, or volume 

     through treatment 

Imp leme ntability 

 Mo difying  Criteria 

State acceptance 

Community acceptance 

managers, provides a framework for considering 
environmental effects at sites.  More recently, 
EPA developed guidance for conducting ecological risk assessments within the Superfund program.  This 
guidance, Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting 
Ecological Risk Assessments (U.S. EPA, 1997a), discusses scientific methods and stakeholder input. 

Over the years, the Superfund program has expanded RAGS to include the following documents 
relating to human health: 

•	 RAGS Volume I, Part B: Development of Risk-based Preliminary Remediation Goals (Risk 
Equations and Parameters) (U.S. EPA, 1991b) 

•	 RAGS Volume I, Part C: Risk Evaluation of Remedial Alternatives (U.S. EPA, 1991c) 
•	 RAGS Volume I, Part D: Standardized Planning, Reporting, and Review of Superfund Risk 

Assessments (U.S. EPA, 2001a) 
•	 RAGS Volume I, Part E: Supplemental Guidance for Dermal Risk Assessment (U.S. EPA, 

2001b) 

Additional ecological guidance documents include: 

•	 Role of the Ecological Risk Assessment in the Baseline Risk Assessment. OSWER Directive 
No. 9285.7-17 (U.S. EPA, 1994a) 

•	 Issuance of Final Guidance: Ecological Risk Assessment and Risk Management Principles 
for Superfund Sites. OSWER Directive 9285.7-28 P (U.S. EPA, 1999) 

•	 The Role of Screening-Level Risk Assessments and Refining Contaminants of Concern in 
Baseline Risk Assessments. 12th Intermittent Bulletin, ECO Update Series. (U.S. EPA, 2001d) 
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This document (RAGS Volume 3: Part A) provides guidance for probabilistic approaches for both 
human health and ecological risk assessment. 

The Superfund program has also issued supplementary documents, including: 

•	 Human Health Evaluation Manual, Supplemental Guidance: “Standard Default Exposure 
Factors” (U.S. EPA, 1991a) 

•	 Supplemental Guidance to RAGS: Calculating the Concentration Term (U.S. EPA, 1992d) 
•	 Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions 

(U.S. EPA, 1991d) 
• Use of IRIS (Integrated Risk Information System) Values in Superfund Risk Assessment 

(U.S. EPA, 1993) 
•	 Final Soil Screening Guidance, May 17, 1996.  Soil Screening User’s Guide (U.S. EPA, 

1996) 
•	 Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites 

(U.S. EPA, 2001c). 

EPA will continue to develop Superfund guidance and tools to improve the practice of risk 
assessment.  Superfund guidance documents are available from EPA’s Superfund publications web site 
(http://www.epa.gov/superfund/pubs.htm). 

The role of risk assessment in Superfund, described above, can be summarized by a number of 
principles that are followed and developed in RAGS Volume 3: Part A, including: 

•	 The Superfund risk assessment process should rely on early problem formulation, planning, 
and scoping for improved remedial investigations and feasibility studies, risk assessments, 
and risk management decisions. 

•	 The use of a tiered process in Superfund risk assessment and management is beneficial in 
that it promotes an efficient allocation of resources and improved decision-making. 

•	 Early and continuing involvement of stakeholders throughout the Superfund risk assessment 
process provides an opportunity to build stakeholder trust and meet stakeholder needs, which 
can result in improved risk assessments and faster, more-informed risk management 
decisions. 

1.1.4 PROBABILISTIC RISK ASSESSMENT AND ITS ROLE IN SUPERFUND 

RAGS Volume I (U.S. EPA, 1989a) and supporting guidance describe a point estimate approach 
to risk assessments in the Superfund program.  Point estimate risk assessments use single values (point 
estimates) to represent variables in a risk equation.  The output of the risk equation in a point estimate 
risk assessment is, therefore, a point estimate of risk, which can be a central tendency exposure (CTE) 
estimate of risk (e.g., the average expected risk) or reasonable maximum exposure (RME) estimate of 
risk (e.g., the risk expected if the RME was to occur), depending on the input values used in the risk 
equation. RAGS Volume 3: Part A describes a probabilistic approach to risk assessment.  Probabilistic 
risk assessment uses probability distributions for one or more variables in a risk equation in order to 
quantitatively characterize variability and/or uncertainty.  The output of a PRA is a probability 
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distribution of risks that reflects the combination of the input probability distributions.  If the input 
distributions represent variability, then the output risk distribution can provide information on variability 
in risk in the population of concern.  If the input distributions reflect uncertainty, then the output risk 
distribution can provide information about uncertainty in the risk estimate.  Information from a PRA can 
be used to make statements about the likelihood of exceeding a risk level of concern, given the estimated 
variability in elements of the risk equation.  Since the results of point estimate methods generally do not 
lend themselves to this level of risk characterization (e.g., quantitative uncertainty assessment), PRA can 
provide unique and important supplemental information that can be used in making Superfund risk 
management decisions at Superfund sites. 

Monte Carlo Analysis (MCA) is perhaps the most widely used probabilistic method in PRA. 
MCA is a specific probabilistic method that uses computer simulation to combine multiple probability 
distributions in a risk equation (see Section 1.2.2 for further discussion of Monte Carlo simulation). 
Monte Carlo methods have been in used in modeling since 1946 when Stanislaw Ulam used MCA to 
conduct uncertainty analysis at Los Alamos during the conceptual stage of the hydrogen bomb project. 
The history of the use of MCA (from the 1940s to the present) can be found in Rugen and Callahan, 
1996. 

The application of probabilistic analysis to human health and ecological risk assessment is a 
relatively recent development that was facilitated by development of statistical sampling techniques to 
obtain a probabilistic approximation to the solution of a mathematical equation and/or model, and 
increased speed and capacity of modern computers which can support the intensive computational 
requirements of MCA.  Desktop computers and commercial software are currently available which 
enable risk assessors to make, in minutes, PRA calculations that only a few years ago would have 
required days. 

The potential value of PRA to support risk-based decisions has become increasingly apparent 
over the last several years.  This has prompted the need for appropriate policy and guidance documents 
that define the role of PRA in the Superfund program and that promote and facilitate the highest quality 
and consistent application of PRA in the Program where appropriate.  EPA previously issued guidance 
that addresses the use of quantitative uncertainty analysis in risk assessment.  RAGS Volume I (U.S. EPA, 
1989a) and the Final Guidelines for Exposure Assessment Guidelines (U.S. EPA, 1992a) emphasize the 
importance of assessing variability and uncertainty in risk estimates conducted in the Superfund program. 
Guidance is also available for characterizing the 95% upper confidence limit (UCL) for the mean 
exposure concentration (U.S. EPA, 1992d, 1997f).  At the regional level, EPA Regions 3 and 8 issued 
guidance on the appropriate use of probabilistic methods in risk assessment (U.S. EPA, 1994b, 1995e). 
The importance of adequately characterizing variability and uncertainty is addressed in the 1995 
memorandum on Risk Characterization Policy and Guidance (U.S. EPA, 1995b).  In the spring of 1997, 
EPA released the memorandum, Use of Probabilistic Techniques (including Monte Carlo Analysis) in 
Risk Assessment (U.S. EPA, 1997g).  According to the Policy Statement of the memorandum, 
probabilistic analysis techniques, “given adequate supporting data and credible assumptions, can be 
viable statistical tools for analyzing variability and uncertainty in risk assessments.”  As such, a PRA, 
“will be evaluated and utilized in a manner that is consistent with other risk assessments submitted to the 
Agency.”  Along with this Policy Statement, the Agency released a set of guiding principles for use and 
review of probabilistic analyses (U.S. EPA, 1997g).  Hence, both RAGS and Agency-wide guidance 
emphasize the importance of review of the scientific and technical merit of a probabilistic analysis to 
determine whether or not the assessment is of sufficient quality to support a remedial decision. 
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Currently, EPA’s Office of Emergency and Remedial Response (OERR) is implementing PRA as 
part of its Superfund reform activities.  This guidance, RAGS Volume 3: Part A, provides risk assessors 
with comprehensive guidance on when and how it may be appropriate to conduct PRAs using Monte 
Carlo analysis within the Superfund program.  It describes basic concepts in PRA, an approach for 
conducting MCA, and EPA’s policy for implementing PRA in the Superfund program.  The Agency also 
intends to supplement this guidance with additional examples and case studies in PRA (see Section 1.6). 

1.2 BASIC CONCE PTS OF PROBABILISTIC RISK ASSESSMENT 

This section describes what a PRA is and compares and contrasts it to the more familiar point 
estimate methods for human health risk assessment (U.S. EPA, 1989a) and ecological risk assessment 
(U.S. EPA, 1997a).  A risk assessment performed using probabilistic methods is very similar in concept 
and approach to the point estimate method, with the main difference being the methods used to 
incorporate variability and uncertainty into the risk estimate.  A variety of modeling techniques can be 
used to characterize variability and uncertainty in risk.  This guidance focuses on MCA, perhaps the most 
common probabilistic method that risk assessors will encounter.  Basic concepts on how to use MCA to 
propagate variability and uncertainty in exposure through a risk model are presented.  Many of the 
concepts presented in this guidance are applicable to other probabilistic approaches to risk assessment. 

At some sites, probabilistic analysis can provide a more complete and transparent 
characterization of the risks and uncertainties in risk estimates than would otherwise be possible with a 
point estimate approach.  However, a PRA is not necessary or desirable for every site. The tiered 
approach presented in Chapter 2 highlights important scientific and management decisions for 
determining if PRA is appropriate at a specific site.  The decision to perform PRA is appropriate only 
after the risk assessor and the remedial project manager (RPM) at the site determine whether a PRA will 
enhance decision making at the site.  If a PRA is conducted, the assumptions and inputs to the 
probabilistic model should be sufficiently documented so that the results can be independently 
reproduced. 

An essential concept in PRA that will be important throughout this section and the rest of the 
guidance is the distinction between “variability” and “uncertainty”.  Variability refers to true 
heterogeneity or diversity.  For example, among a population that drinks water from the same source and 
with the same contaminant concentration, the risks from consuming the water may vary.  This may be 
due to differences in exposure (i.e., different people drinking different amounts of water, having different 
body weights, exposure frequencies, and exposure durations) as well as differences in response (e.g., 
genetic differences in resistance to a chemical dose).  Differences among individuals in a population are 
referred to as inter-individual variability, while differences for one individual over time are referred to as 
intra-individual variability. 

Uncertainty occurs because of a lack of knowledge.  For example, we can be very certain that 
different people drink different amounts of water, but we may be uncertain about how much variability 
there is in water intakes among the population.  Uncertainty can often be reduced by collecting more and 
better data, while variability is an inherent property of the population being evaluated.  Variability can be 
better characterized with more data, but it cannot be reduced or eliminated. 

Sometimes there can be confusion about whether data are representative of variability or 
uncertainty, especially when the distinction depends on how the problem is framed.  For example, one of 
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the exposure variables that may be considered in a risk assessment of workers exposed via inhalation to 
an indoor air contaminant is the fraction of time spent indoors on site.  Assume that time-activity 
information is available from surveys of a representative population of workers.  This data set may be 
used to define a probability distribution (e.g., empirical, normal) that characterizes inter-individual 
variability in exposure times among workers.  Sources of uncertainty would include the choice of the 
probability distribution used to characterize variability, as well as the parameter estimates that are based 
on a finite data set. Using the same data set, uncertainty in a parameter, such as the arithmetic mean 
exposure time, may also be defined by a probability distribution.  Efforts to clearly distinguish between 
variability and uncertainty are important for both risk assessment and risk communication.  Section 1.2.4 
and Chapter 3, Section 3.4 present an overview of the different sources of uncertainty.  Guidance on 
selecting and fitting probability distributions is given in Appendices B and C, and advanced methods for 
characterizing both variability and uncertainty are discussed in Appendix D. 

1.2.1 WHAT IS PRA? 

Probabilistic risk assessment is a general term for risk assessments that use probability models to 
represent the likelihood of different risk levels in a population (i.e., variability) or to characterize 
uncertainty in risk estimates. 

A risk assessment performed using probabilistic methods would rely on the same fundamental 
exposure and risk equations as do point estimate approaches.  U.S. EPA guidance, including RAGS 
Volume I: Part A (U.S. EPA, 1989a), the Standard Default Exposure Factors Guidance (U.S. EPA, 
1991a), Supplemental Guidance for Developing Soil Screening Levels (U.S. EPA, 2001c), and Ecological 
Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk 
Assessments (U.S. EPA, 1997a) present methods for estimating risk using standardized exposure and risk 
models.  Examples of typical exposure and risk equations that would be used in risk calculations, in this 
case, for a drinking water exposure scenario, are provided in Exhibit 1-3: 
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E 1-3 
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In the point estimate approach, a single numerical value (i.e., point estimate) is chosen for each 
variable shown in Exhibit 1-3.  For example, point estimates may include a drinking water ingestion rate 
of 2 L/day and a body weight of 70 kg for an adult.  Based on the choices that are made for each 
individual variable, a single estimate of risk is calculated.  In the probabilistic approach, inputs to the risk 
equation are described as random variables (i.e., variables that can assume different values for different 
receptors in the population) that can be defined mathematically by a probability distribution.  For 
continuous random variables, such as those in Figure 1-1 (body weight), the distribution may be 
described by a PDF, whereas for discrete random variables (e.g., number of fish meals per month), the 
distribution may be described by a probability mass function (PMF).  The key feature of PDFs and PMFs 
is that they describe the range of values that a variable may assume, and indicate the relative likelihood 
(i.e., probability) of each value occurring within that range for the exposed population.  For example, the 
distribution of tap water ingestion (mL/day) among the general U.S. population might be characterized 
by a lognormal distribution with a log-mean of 6.86 and a log-standard deviation of 0.575 (Table 3-11 of 
U.S. EPA 1997b).  One might use a PDF to show how approximately half the population drinks more 
than 1 L/day of tap water, but only 10% of the population drinks more than 2 L/day. After determining 
appropriate PDF types and parameter values for selected variables, the set of PDFs is combined with the 
toxicity value in the exposure and risk equations given in Exhibit 1-3 to estimate a distribution of risks. 
Guidance on selecting and fitting distributions for variables in risk equations is provided in Appendix B. 

In human health risk assessments, probability distributions for risk should reflect variability or 
uncertainty in exposure.  In ecological risk assessments, risk distributions may reflect variability or 
uncertainty in exposure and/or toxicity (see Sections 1.4 and 1.4.1, Item 3). 
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A continuous probability distribution can 
be displayed in a graph in the form of either a 
PDF or corresponding CDF; however, for clarity, 
it is recommended that both representations be 
presented in adjacent (rather than overlaid) plots. 
Figure 1-1 illustrates a PDF and CDF for a 
normal probability distribution for adult body 
weight.  Both displays represent the same 
distribution, but are useful for conveying 
different information.  Note that it is helpful to 
include a text box with summary statistics 
relevant to the distribution (e.g., mean, standard 
deviation). The types of information that PDFs 
and CDFs are most useful for displaying are 
presented in Exhibit 1-4.  
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Figure 1-1.  Example of a normal distribution that characterizes variability in adult body weight (males 

and females combined). Arithmetic mean=71.7 kg, standard deviation=15.9 kg (Finley and Paustenbach, 

1994).  Body weight may be considered a continuous random variable.  The left panel shows a 

bell-shaped curve and represents the P DF, while the right panel shows an S-shaped curve and  represents 

the CDF.  Both displays represent the same distribution (including summary statistics), but are useful for 

conveying different information. 
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The CDF for risk can be especially informative for illustrating the percentile corresponding to a 
particular risk level of concern (e.g., 95th percentile=1E-06).  A text box may also be included on the 
graph to highlight important summary statistics, such as the parameters of the input distribution, or 
selected percentiles of the output distribution for risk.  For example, a clear description of the parameters 
for the probability distribution should be given, as well as an indication of whether the distribution 
represents variability or uncertainty. 

1.2.2 WHAT IS A MONTE CARLO SIMULATION? 

Perhaps the most common numerical technique for PRA is Monte Carlo simulation.  Monte 
Carlo simulation has been widely used to explore problems in many disciplines of science as well as 
engineering, finance, and insurance (Rugen and Callahan, 1996).  The process for a Monte Carlo 
simulation is illustrated in Figure 1-2.  In its general form, the risk equation can be expressed as a 
function of multiple exposure variables (Vi) and a toxicity term: Risk=f(V1, V2, ...Vn) x Toxicity. 
Solutions for equations with PDFs are typically too complex for even an expert mathematician to 
calculate the risk distribution analytically.  However, numerical techniques applied with the aid of 
computers can provide very close approximations of the solution.  This is illustrated here for the 
simplified case in which the assessment variables are statistically independent, that is, the value of one 
variable has no relationship to the value of any other variable.  In this case, the computer selects a value 
for each variable (Vi) at random from a specified PDF and calculates the corresponding risk.  This 
process is repeated many times (e.g., 10,000), each time saving the set of input values and corresponding 
estimate of risk.  For example, the first risk estimate might represent a hypothetical individual who drinks 
2 L/day of water and weighs 65 kg, the second estimate might represent someone who drinks 1 L/day and 
weighs 72 kg, and so forth.  Each calculation is referred to as an iteration, and a set of iterations is called 
a simulation. 

L A convenient aid to understanding the Monte Carlo approach for 
quantifying variability is to visualize each iteration as representing a single 
individual and the collection of all iterations as representing a population. 

Each iteration of a Monte Carlo simulation should represent a plausible combination of input values (i.e., 
exposure and toxicity variables), which may require using bounded or truncated probability distributions 
(see Appendix B).  However, risk estimates are not intended to correspond to any one person.  The 
“individuals” represented by Monte Carlo iterations are virtual and the risk distributions derived from a 
PRA allow for inferences to be made about the likelihood or probability of risks occurring within a 
specified range for an exposed human or ecological population.  A simulation yields a set of risk 
estimates that can be summarized with selected statistics (e.g., arithmetic mean, percentiles) and 
displayed graphically using the PDF and CDF for the estimated risk distribution.  Often the input 
distributions are assumed to be independent, as shown in Figure 1-2.  More complex Monte Carlo 
simulations can be developed that quantify a dependence  between one or more input distributions by 
using conditional distributions or correlation coefficients (see Appendix B, Section B.5.5 for a discussion 
of correlated input distributions). 

Page 1-13 



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment 
Chapter 1 ~ December 31, 2001 

Figure 1-2.  Conceptual model of Monte Carlo analysis.  Random variables (V1, V2, ...Vn) refer to exposure 

variables (e.g., body weight, exposure frequency, ingestion rage) that are characterized by probability 

distributions.  A unique risk estimate is calculated for each set of random values.  Repeatedly sampling (Vi) 

results in a frequency distribution of risk, which can be described by a PDF.  In human health risk assessments, 

the toxicity term should be expressed as a point estimate.  In eco logical risk assessment (see Sections 1.4 

and 1.4.1) the toxicity term may be expressed as a point estimate or as a probability distribution. 
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The rapid evolution in computing power has greatly reduced concerns among regulators 
regarding the number iterations needed in MCA.  

L	 While this guidance does not prescribe specific criteria or set an arbitrary 
“minimum” number of iterations needed for PRA, a general rule of thumb is 
that a sufficient number of iterations should be run to obtain numerical 
stability in percentiles of the output (e.g., risk distribution) that are 
important for decision making.  

Numerical stability refers to the stochastic variability, or “wobble” associated with random sampling, and 
can be evaluated by running multiple simulations with the same set of input assumptions and calculating 
the average percent change in a specified percentile of the output (e.g., Maddalena et al., 2001).  For 
example, it may be determined that 5,000 iterations are sufficient to achieve numerical stability in the 
50th percentile, but insufficient for the 95th percentile risk estimate when a criteria of ± 1% is applied for 
multiple simulations.  As discussed in Section 1.4, one of the eight conditions specified by EPA for the 
acceptance of PRA is that the numerical stability of the output be presented and discussed, since it will 
vary depending on what percentile of the risk distribution is evaluated.  While some commercial software 
now have a feature to automatically stop simulations after a specified criterion for numerical stability is 
achieved (Burmaster and Udell, 1990), care should be taken to understand how this criterion is 
implemented across the entire range of the output distribution. 

1.2.3	 WHY IS VARIABILITY IMPORTANT IN RISK ASSESSMENT? HOW IS IT ADDRESSED BY THE 

POINT ESTIMATE AND PROBABILISTIC APPROACHES? 

As noted previously, variability refers to true heterogeneity or diversity that occurs within a 
population or sample.  Factors that lead to variability in exposure and risk include variability in 
contaminant concentrations in a medium (air, water, soil, etc.), differences in ingestion rates or exposure 
frequencies, or in the case of ecological assessments, inter- and intra-species variability in dose-response 
relationships. Risk Assessment Guidance for Superfund Volume I (Section 6.1.2 of U.S. EPA, 1989a) and 
the NCP Preamble (U.S. EPA, 1990) state that human health risk management decisions at Superfund 
sites will generally be based on an individual that has RME.  Likewise, RME estimates of risk are the 
most appropriate basis for decision making using an ecological risk assessment.  Use of the RME and 
CTE risk descriptors in ecological risk assessment are discussed in Chapter 4.  The intent of the RME is 
to estimate a conservative exposure case (i.e., well above the average case) that is still within the range of 
possible exposures based on both quantitative information and professional judgment (Sections 6.1.2 
and 6.4.1 of U.S. EPA, 1989a).  In addition, the Agency released guidance in 1992 (U.S. EPA, 1992c) 
recommending the inclusion of a “central tendency” exposure estimate to an individual, as well as a 
high-end exposure estimate, in the risk assessment.  Generally, the CTE is considered to be a measure of 
the mean or median exposure.  The difference between the CTE and the RME gives an initial impression 
of the degree of variability in exposure or risk between individuals in an exposed population. 

Depending on assessment needs at a site, a range of point estimates of risk can be developed to 
represent variability in exposures.  To support the evaluation of RME risk estimates using the point 
estimate approach described in Section 1.3, the Superfund program developed guidance with 
recommended default values for exposure variables as inputs to the risk equations (U.S. EPA, 1992a, 
1996, 1997a, 2001d).  These standardized values are a combination of average (e.g., body weight, skin 
surface area) and high-end exposure assumptions (e.g., drinking water intake, exposure duration). A 
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CTE risk estimate is based on central estimates (e.g., mean, 50th percentile) for each of the exposure 
variables. Available site-specific data on plausible mean and upper range values for exposure variables 
should be used to support CTE and RME risk estimates.  The point estimate approach to risk assessment 
does not determine where the CTE or RME risk estimates lie within the risk distribution.  For example, 
the RME risk estimated with the point estimate approach could be the 90th percentile, the 
99.9th percentile, or some other percentile of the risk distribution.  Without knowing what percentile is 
represented by the RME risk estimate, the risk manager might be unsure about the likelihood of the RME 
risk occurring or being exceeded in the receptor population and about what level of remedial action is 
justified or necessary to achieve the protective objectives of CERCLA. 

In a PRA, distributions used as inputs to the risk equations can characterize the inter-individual 
variability inherent in each of the exposure assumptions.  By characterizing variability with one or more 
input distributions, the output from the Monte Carlo simulation is a distribution of risks that could occur 
in that population (Figure 1-3).  The central tendency of the risk distribution (e.g., arithmetic mean, 
geometric mean, 50th percentile) may be characterized as the CTE risk estimate.  Similarly, the high-end 
of the risk distribution (e.g., 90th to 99.9th percentiles) is representative of exposures to the RME 
individual. In addition to providing a better understanding of where the CTE and RME risks occur in the 
distribution, a PRA can also provide an estimate of the probability of occurrence associated with a 
particular risk level of concern (e.g., cancer risk of 1E-05).  A PRA that quantifies variability can be used 
to address the question, “What is the likelihood (i.e., probability) that risks to an exposed individual will 
exceed 1E-05?”  Based on the best available information regarding exposure and toxicity, a risk assessor 
might conclude, “The estimated distribution for variability in risk across the target population indicates 
that 10% of the individuals exposed under these circumstances have a risk exceeding 1E-05.” This type 
of evaluation can be achieved using a technique known as one-dimensional Monte Carlo Analysis 
(1-D MCA).  Guidelines for interpreting the high-end of the risk distribution in terms of the RME risk 
estimate are discussed further in Section 1.4.1 and Chapter 7. 

Figure 1-3.  Example of a probability distribution for risk illustrating the 95th percentile and two 

different risk levels of concern (A and B).  Assuming the 95th percentile corresponds to the RME, 

the need for remedial action depends on how the RME risk compares with the risk level of 

concern.  For Case A (RME > level of concern), remedial action may be warranted.  For Case B 

(RM E < level o f conc ern), re med ial action may b e unne cessa ry. 
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The agreement (or lack of agreement) between the results of the point estimate calculations and 
the PRA calculations is expected to vary as a function of the form of the exposure or risk model and the 
attributes of the input variables.  In general, if the terms in the denominator of the exposure or risk 
equation have low variability and do not approach zero, then the CTE point estimate is likely to agree 
quite well with the arithmetic mean from the PRA simulation, and the RME point estimate is likely to 
correspond to the high-end of the risk distribution (see discussion of RME range in Section 1.2.5). 
However, if the exposure or risk model has terms in the denominator that are a significant source of 
variability, or if the terms approach zero, then the agreement between the point estimate values and the 
PRA values may be more substantial.  In addition, since the RME point estimate of risk reflects a 
combination of central tendency and high-end input values, it is difficult to anticipate what percentile of 
a distribution of variability it represents.  

L	 If results of PRA calculations differ substantially from point estimate 
calculations, a risk manager may benefit from understanding the reasons for 
the differences and the relative strengths of the different approaches.  

Since point estimate and PRA approaches may yield different estimates of CTE and RME risks, the two 
approaches also may support different risk management decisions.  This does not imply that either 
approach is invalid.  Likewise, a correspondence between the point estimate and PRA results does not 
imply a greater accuracy or certainty in the modeling assumptions and inputs.  Simply stated, PRA, based 
on the same risk equations and data as the point estimate approach, provides a different means of 
characterizing variability and uncertainty.  Potential sources of variability and uncertainty in risk 
estimates should be identified, discussed, and to the extent practicable, quantified.  Advantages and 
disadvantages of PRA and point estimate risk assessment are discussed in Section 1.2.4 and 1.3. 

1.2.4	 WHY IS UNCERTAINTY IMPORTANT IN RISK ASSESSMENT? HOW  IS UNCERTAINTY 

ADDRESSED BY THE POINT ESTIMATE AND PROBABILISTIC APPROACHES? 

Uncertainty derives from a lack of knowledge.  Various taxonomies of uncertainty relevant to 
risk assessment have been presented (Finkel, 1990; Morgan and Henrion, 1990; Cullen and Frey, 1999). 
U.S. EPA guidance, including the Final Guidelines Exposure Assessment Guidelines (U.S. EPA, 1992a), 
Exposure Factors Handbook (U.S. EPA, 1997b,c,d), and Guiding Principles for Monte Carlo Analysis 
(U.S. EPA, 1997g) describe a variety of different types of uncertainty in risk assessment as well as 
modeling strategies for quantifying uncertainties.  Potential sources of uncertainty in risk assessment can 
be divided into one of three broad categories: 

(1) 	Parameter uncertainty - uncertainty in an estimate of an input variable in a model.  In PRA, 
this may refer specifically to a statistical concept of uncertainty in estimates of population 
parameters (e.g., arithmetic mean, standard deviation) from random samples, due to the 
quality, quantity, and representativeness of available data as well as the statistical estimation 
method. 

(2) 	Model uncertainty - uncertainty about a model structure (e.g., exposure equation) or intended 
use, including the relevance of simplifying assumptions to the endpoint of the risk 
assessment, the choice of probability distribution to characterize variability, and 
interpolation or extrapolation beyond the scale used to calibrate a model from empirical data. 
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(3) 	Scenario uncertainty - uncertainty regarding missing or incomplete information to fully 
define exposure. This may include descriptive errors regarding the magnitude and extent of 
chemical exposure or toxicity, temporal and spatial aggregation errors, incomplete analysis 
(i.e., missing exposure pathways), and potential mis-specification of the exposed population 
or exposure unit. 

Sources of uncertainty described by these categories are important because they can influence 
risk management decisions in both point estimate and probabilistic risk assessment.  As additional 
sources of uncertainty are quantified and included in the risk assessment, uncertainty in risk estimates 
may appear to increase, suggesting there may be little confidence in a risk management decision.  This 
situation may appear to be counterintuitive for those managers who expect confidence to increase as 
uncertainty is quantified.  However, as discussed below and in Chapter 6 (see Section 6.4.2), uncovering 
and quantifying these sources of uncertainty may help to provide perspective, and make the decisions 
using the tiered process more transparent.  In PRA, there are a variety of methods that can be used to 
effectively quantify uncertainty as well as communicate confidence in risk estimates (see Chapter 3, 
Section 3.4; Chapter 6, Section 6.4, and Section 6.5). 

Parameter uncertainty may be the most readily recognized source of uncertainty that is quantified 
in site-specific risk assessments at hazardous waste sites.  Parameter uncertainty can occur in each step of 
the risk assessment process from data collection and evaluation, to the assessment of exposure and 
toxicity. Sources of parameter uncertainty may include systematic errors or bias in the data collection 
process, imprecision in the analytical measurements, inferences made from a limited database when that 
database may or may not be representative of the variable under study, and extrapolation or the use of 
surrogate measures to represent the parameter of interest. 

In the point estimate approach, parameter uncertainty is addressed in a qualitative manner for 
most variables. For example, the uncertainty section of a point estimate risk assessment document might 
note that a soil sampling plan yielded a small sample size that may not be representative of overall 
contaminant concentrations and, as a result, the risk estimate may over- or under-estimate actual risk. 
Uncertainty in the concentration term is addressed quantitatively to a limited extent in a point estimate 
approach by using the 95% UCL for the arithmetic mean concentration in both CTE and RME risk 
estimates; this accounts for uncertainty associated with environmental sampling and site characterization 
(U.S. EPA, 1992d, 1997f).  The 95% UCL is combined in the same risk calculation with various central 
tendency and high-end point estimates for other exposure factors. 

Some examples of the models that EPA uses in the risk assessment process are the equations 
used to calculate exposure and risk, the linearized multistage model used to estimate cancer 
dose-response relationships, and media-specific models to estimate contaminant concentrations. All 
models are simplified, idealized representations of complicated physical or biological processes. Models 
can be very useful from a regulatory standpoint, as it is generally not possible to adequately monitor long 
term exposure for populations at contaminated sites.  However, models that are too simplified may not 
adequately represent all aspects of the phenomena they were intended to approximate or may not capture 
important relationships among input variables.  Other sources of model uncertainty can occur when 
important variables are excluded, interactions between inputs are ignored, or surrogate variables that are 
different from the variable under study are used. 
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In most probabilistic assessments, the first step of analysis is usually an analysis of variability in 
exposure or risk.  However, PRA methods may also be used to characterize uncertainty around the best 
estimate of the exposure or risk distribution.  This is done using "2-dimensional" MCA (2-D MCA) (see 
Appendix D). One convention that has been used to distinguish between probability distribution 
functions for variability 
and uncertainty is to use 
subscripts “v” and “u” to 
indicate PDFs that 
characterize variability 
(PDFv) or uncertainty 
(PDFu).  Figure 1-4 
shows an example of the 
results of  this type of 2-D 
MCA. This analysis can 
provide a quantitative 
measure of the confidence 
in the fraction of the 
population with a risk 
exceeding a particular 
level; which is sometimes 
referred to as a vertical 
confidence interval 
(Figure 1-4).  For 
example, a conclusion Figure 1-4.  Illustration of “Vertical” and “Horizontal” Confidence Intervals (or 

based on this type of 
limits) on a risk estim ate.  T his type o f outpu t can b e pro duc ed fro m a 2 -D M CA in 

which pro bab ility distributio ns of un certain ty are intro duc ed into  the risk eq uation . 
output might be, “While 

See Chapter 3 and A ppendix D for further discussion of 2-D M CA in quantitative 
the best estimate for the uncertainty analysis.
variability distribution for 
risk across the target population indicates that 10% of the individuals exposed under these circumstances 
have a risk exceeding 1E-06, the uncertainty is such that we can only be reasonably certain (e.g., 
95% sure) that no more than 20% of the exposed population has a risk that exceeds 1E-06.” 
Additionally, the output from a 2-D MCA can provide a quantitative measure of the confidence in the 
risk estimate for a particular fraction of the population; which is sometimes referred to as a horizontal 
confidence interval. This type of output might support the following type of conclusion, “While the best 
estimate for the variability distribution for risk across the target population indicates that 10% of the 
individuals exposed under these circumstances have a risk exceeding 1E-06, the uncertainty is such that 
we can only be reasonably certain (e.g., 95% sure) that the risk for this group of individuals does not 
exceed 2E-06.”  The term “confidence interval” is used loosely in this context to convey information 
about uncertainty; however, it is not the same as a statistical confidence interval that one might obtain by 
estimating a population parameter from a sample.  The vertical and horizontal bars shown in Figure 1-4 
represent a range of possible estimates for the percentile given one or more sources of uncertainty that 
were included in the simulation.  If the target audience for this graphic has a greater understanding of 
statistics, it may be less confusing if alternative phrases are used to describe the results, such as “credible 
interval” or “probability band”. 

In general, one should avoid developing input distributions to a PRA model that yield a single 
risk distribution that intermingles, or represents both variability and uncertainty.  By separately 
characterizing variability and uncertainty, the output from a PRA will be easier to understand and 
communicate.  A number of tools can aid in evaluating the uncertainty in estimated distributions for 
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variability.  Both simple and very complex approaches have been applied to this problem.  Two basic 
methods for quantifying variability and parameter uncertainty simultaneously are described in 
Exhibit 1-5.  PRAs that use these approaches can provide quantitative estimates of uncertainty in 
percentiles of the risk distribution based on confidence intervals or credible intervals for one or more 
parameter estimates.  Techniques for characterizing both variability and uncertainty in PRA are discussed 
in more detail in Chapters 3, 4, 5, and 7, and Appendices A, C, and D. 

A common apprehension 
concerning the utility of PRA is that it may 
require more information and data than are 
available to generate credible PDFs.  Risk 
assessors may feel that they can’t specify a 
PDF because they don’t have enough 
information to choose a distribution type, 
estimate parameters, or evaluate the 
representativeness to the site population of 
concern. However, if sufficient 
information exists to support a meaningful 
point estimate evaluation (i.e., if some sort 
of central tendency and upper bound 
values are available for each input 
variable), then it is usually possible to 
perform a screening level, or preliminary 
1-D MCA that may provide additional 
useful information regarding variability. 
Likewise, an initial two-dimensional 
analysis may be performed that does not 
require collection of any new data, but 
simply characterizes uncertainty in the 
existing data.  The results of such a 2-D 
MCA can help to identify the main sources 
of uncertainty in the risk results, and can 
support decisions to collect more data 
and/or proceed with additional tiers of 
analysis in order to improve the 
assessment.  As with a preliminary 1-D 
MCA, the decision to conduct a more 
advanced probabilistic analysis does not 
always result in added data requirements. 

E 1-5 

Q V UNCERTAINTY 

1. Single source of uncertainty 

For example, 

A comparison of the 

2. 

XHIBIT 

UANTIFYING ARIABILITY AND 

Run multiple one-d imens ional M onte C arlo 

simulations (1-D MC A) in which each simulation 

uses a different point estimate for a parameter 

selected from an uncertainty distribution, combined 

with PDFv’s for one or more variables.

separate simulations can be run in which the mean of 

the exp osure conc entratio n varia bility distribu tion is 

represented by either the 95% lower or upper 

confidence limit on the mean.  

outp ut of these simulatio ns wo uld p rovid e a pa rtial 

characterization of the quantitative impact of 

uncertainty in the mean exposure concentration on 

the risk estimate (provided that certain conditions 

hold; i.e., risk increases with increasing exposure 

concentration) (see Chapter 3, Section 3.3.1). 

Multiple sources of uncertainty 

Run a single tw o-dim ensio nal M onte C arlo 

simulatio n (2-D M CA ), in which sepa rate p rob ability 

distributions are specified for variability and 

param eter uncertainty and va lues from these 

distributions are randomly selected and used in each 

iteration of the Monte Carlo simulation (see 

Ap pen dix D ). 

Use of probabilistic methods (e.g., MCA) to propagate variability and uncertainty through risk 
models offers five key advantages over point estimate approaches in addressing uncertainty in risk 
estimates: 

(1) Probabilistic methods may often provide a more complete and informative characterization 
of variability in exposure or risk than is usually achievable using point estimate techniques. 

(2) Probabilistic methods can provide a more quantitative expression of the confidence in risk 
estimates than the point estimate approach. 
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(3) Sensitivity analysis methods using PRA may help risk assessors to better identify influential 
exposure factors. 

(4) Probabilistic methods can account for dependencies between input variables (e.g., body 
weight and skin surface area). 

(5) Probabilistic methods provide quantitative estimates of the expected value of additional 
information that might be obtained from data collection efforts (Morgan and Henrion, 1990). 
The importance of quantifying uncertainty in an expected value of information (EVOI) 
framework is discussed in Appendix D. 

Since both point estimate and probabilistic approaches in risk assessment are applied to the same 
conceptual models (i.e., the same exposure and risk models), uncertainties in the conceptual model are 
generally addressed in the same manner.  If other models are available to explain or characterize a given 
phenomenon, the risk estimates associated with each of those conceptual models could be compared to 
determine the sensitivity of the risk to the uncertainty in the choice of a model (see Chapter 2 and 
Appendix A). For example, when deciding on a contaminant concentration term for tetrachloroethylene 
in groundwater for a residential exposure assessment 10 years in the future, it would be appropriate to 
compare and contrast several fate and transport models and their results before deciding on a 
concentration term. 

1.2.5	 REASONABLE MAXIMUM EXPOSURE AT THE HIGH-END 

Risk management decisions at Superfund sites should be based on an estimate of the risk to a 
reasonably maximum exposed receptor, considering both current and future land-use conditions.  The 
RME is defined as the highest exposure that is reasonably expected to occur at a site.  In general, risks 
corresponding to the 90th to 99.9th percentiles of the risk distribution estimated from a PRA are 
considered plausible high-end risks, and the RME risk should be selected within this range (see 
Section 1.2.4, Section 1.4.1, and Chapter 7 for further discussion).  In comparison with point estimate 
risk assessments, PRA can provide the entire range of estimated risks as well as the likelihood of values 
within the range (i.e., the frequency distribution) 

As noted in Chapter 7, estimates of risk become more uncertain at very high percentiles (e.g., the 
99.9th), so results of PRA calculations at these extreme values should be used with caution. Risk 
frequency distributions toward the 99.9th percentile may be numerically unstable due to the uncertainties 
embedded in the input exposure assumptions.  This guidance recommends that a risk manager select the 
RME in consultation with a risk assessor.  One item for discussion should be the numerical stability of 
the high-end RME risk value (i.e., a stable value on the frequency distribution within the high-end range 
that could be reproduced in successive Monte Carlo simulations.) 

1.3	 ADVANTAGES AND DISADVA NTAGES OF POINT ESTIMATE AND PROBABILISTIC 

APPROACHES 

As discussed in Chapter 2, a PRA should not be conducted until adequate point estimate 
calculations have been completed.  Once this has been done, the potential benefits of proceeding to a 
PRA evaluation should be based on an understanding of the potential advantages and limitations in each 
approach.  Potential advantages and disadvantages of point estimate calculations are summarized in 
Exhibit 1-6 and potential advantages and disadvantages of PRA are listed in Exhibit 1-7. 
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In general, compared to a point estimate risk assessment, a PRA based on the same state of 
knowledge may offer a more complete characterization of variability in risk, can provide a quantitative 
evaluation of uncertainty, and may provide a number of advantages in assessing if and how to proceed to 
higher levels of analysis.  However, there are also some real and perceived disadvantages regarding 
additional effort on the part of both the risk assessor and the risk manager, and the potential to cause 
confusion if the effort is not clearly presented.  

In general, the key question to consider in deciding whether a PRA should be performed is 
whether or not the PRA analysis is likely to provide information that will help in the risk management 
decision making.  For some sites, the additional information provided by a PRA will not affect the 
decision that would have been made with a point estimate approach alone, and a PRA will not be useful. 
However, when the decision whether or not to take action is not completely clear, PRA may be a 
valuable tool. The tiered process for PRA (Chapter 2) introduces the concept of scientific management 
decision points (SMDPs) to guide the complexity of analysis that may be needed for decision making. 
An SMDP marks a point in the process in which the potential that another analysis may influence the risk 
management decision is evaluated based on the problem formulation, the information available to define 
input variables, the results of previous analyses, and the feasibility of a subsequent analysis. 

L A point estimate approach is conducted for every risk assessment; a 
probabilistic analysis may not always be needed. 

E 1-6 

A D POINT ESTIMATE APPROACH 

Advantages 

• 

• 

• 

additional work. 

• 

• 

• 

Disadvantages 

• 

• 

lost. 

• 

• 

• 

XHIBIT 

DVANTAGES AND ISADVANTAGES OF 

Calculations are simple and do not require any advanced software. 

EP A ha s estab lished d efault inp uts and metho ds to h elp stan dard ize po int estima te 

calculations betwe en sites. 

Useful as a screening method—may allow risk management decisions with no 

Central tendency and RME estimates of risk provide a semi-quantitative measure of 

variab ility. 

Method is easily described and communicated. 

Requires less time to complete; not as resource intensive. 

Com putational simplifications may resu lt in deviations from target values. 

Results are often viewed as “the answer”; importance of  uncertainty is sometimes 

Information from sensitivity analysis is generally limited to dominant exposure 

pathways and chemicals of concern; may not highlight the key exposure variables and 

uncertain para meters. 

Does not provide a measure of the probability that risk exceeds a regulatory level of 

concern, or the level of confidence in a risk estimate. 

Provides fewer incentives for collecting better or more complete information. 
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E 1-7 

A D P RISK A

Advantages 

• 

• 

• 

• 

• 

information. 

• 

Disadvantages 

• ; 

• 

• 

• 

• 

• 

XHIBIT 

DVANTAGES AND ISADVANTAGES OF ROBABILISTIC SSESSMENT 

Can make more complete use of available data when defining inputs to the risk equation. 

Can provide a more comprehensive characterization of variability in risk estimates. 

Can provide a more comprehensive characterization of uncertainty in inputs, which may 

support statements regarding confidence in risk estimates.  Communication of uncertainty in the 

risk assessment can help to build trust among stakeholders. 

Sensitivity analysis can identify the exposure variables, probability models, and model 

parameters that influence the estimates of risk. 

Puts the risk assessment in a Value-of-Information framework (see Appendix D ).  Can identify 

data gaps for further evaluation/data collection and can use wider variety of site-specific 

Allows available site-specific information to inform the choice of high-end percentile from the 

risk distribution that corresponds with RME risk. 

Concepts and approaches may be unfamiliar there is often apprehension regarding added costs 

and potential for inadvertent error and/or intentional misrepresentation. 

Places more burden on risk assessors to ensure the PRA is done correctly and on managers to 

understand and make decisions within a range of alternatives. 

May require more time and resources to select and fit probability distributions, and may require 

greater effort to communicate methodology and results. 

May convey false sense of accuracy when data are sparse. 

Complexities of the PRA approaches may obscure important assumptions or errors in basic 

exposure or risk models. 

If communication of the more complex PRA is unsuccessful, then it may generate mistrust of 

the assessment and  risk management decisions. 
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1.4 CONDUCTING AN ACCEPTABLE PRA 

In 1997, EPA issued a memorandum which contained its policy statement on PRA (U.S. EPA, 
1997g). The 1997 EPA Policy Statement is as follows: 

It is the policy of the U.S. Environmental Protection Agency that such probabilistic analysis 
techniques as Monte Carlo analysis, given adequate supporting data and credible 
assumptions, can be viable statistical tools for analyzing variability and uncertainty in risk 
assessments.  As such, and provided that the conditions described below are met, risk 
assessments using Monte Carlo analysis or other probabilistic techniques will be evaluated 
and utilized in a manner that is consistent with other risk assessments submitted to the 
Agency for review or consideration.  It is not the intent of this policy to recommend that 
probabilistic analysis be conducted for all risk assessments supporting risk management 
decisions.  Such analysis should be a part of a tiered approach to risk assessment that 
progresses from simpler (e.g., deterministic) to more complex (e.g., probabilistic) analyses 
as the risk management situation requires.  Use of Monte Carlo or other such techniques in 
risk assessments shall not be cause, per se, for rejection of the risk assessment by the 
Agency.  For human health risk assessments, the application of Monte Carlo and other 
probabilistic techniques has been limited to exposure assessments in the majority of cases. 
The current policy, Conditions for Acceptance and associated guiding principles are not 
intended to apply to dose response evaluations for human health risk assessment until this 
application of probabilistic analysis has been studied further.  In the case of ecological risk 
assessment, however, this policy applies to all aspects including stressor and dose-response 
assessment. 

In support of this policy statement, EPA has outlined eight conditions for acceptance (in italics 
below), and good scientific practice of PRA.  A PRA that is submitted to the Agency for review and 
evaluation should generally comply with each condition in order to ensure that adequate supporting data 
and credible assumptions are used in the assessment.  These conditions are as follows: 

(1) The purpose and scope of the assessment should be clearly articulated in a "problem 
formulation" section that includes a full discussion of any highly exposed or highly 
susceptible subpopulations evaluated (e.g., children, the elderly).  The questions the 
assessment attempts to answer are to be discussed and the assessment endpoints are to be 
well defined. 

(2) The methods used for the analysis (including all models used, all data upon which the 
assessment is based, and all assumptions that have a significant impact upon the results) are 
to be documented and easily located in the report.  This documentation is to include a 
discussion of the degree to which the data used are representative of the population under 
study.  Also, this documentation is to include the names of the models and software used to 
generate the analysis. Sufficient information is to be provided to allow the results of the 
analysis to be independently reproduced. 

Possible sources of bias inherent in the input distributions should be discussed along with the 
expected impacts on the resulting risk estimates.  For example, if a site-specific study of fish 
consumption indicated consumption rates are five to ten times higher than other studies from similar 
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populations, this possible bias or inaccuracy should be discussed in the document.  Computer programs 
should generally be described in sufficient detail to allow the reviewer to understand all aspects of the 
analysis. Computer code/spreadsheets should provide adequate documentation and annotation. 

(3) The results of sensitivity analyses are to be presented and discussed in the report. 
Probabilistic techniques should be applied to the compounds, pathways, and factors of 
importance to the assessment, as determined by sensitivity analyses or other basic 
requirements of the assessment. 

Sensitivity analysis is a valuable tool in any tier of a PRA. 

(4) The presence or absence of moderate to strong correlations or dependencies between the 
input variables is to be discussed and accounted for in the analysis, along with the effects 
these have on the output distribution. 

(5) Information for each input and output distribution is to be provided in the report. 	This 
includes tabular and graphical representations of the distributions (e.g., probability density 
function and cumulative distribution function plots) that indicate the location of any point 
estimates of interest (e.g., mean, median, 95th percentile).  The selection of distributions is to 
be explained and justified.  For both the input and output distributions, variability and 
uncertainty are to be differentiated where possible. 

(6) The numerical stability of the central tendency and the higher end (i.e., tail) of the output 
distributions are to be presented and discussed. 

As discussed in Section 1.2.5, numerical stability refers to the observed numerical changes in 
parameters of the output distribution (e.g., median, 95th percentile) from a Monte Carlo simulation as the 
number of iterations increases.  Because most risk equations are linear and multiplicative, distributions of 
risk will generally be right-skewed, and approximate a lognormal distribution. Values in the tails of the 
distribution typically are less stable than the central tendency, and the rate of convergence for the tails 
will depend on the form of the risk model, the skewness of the probability distributions selected for input 
variables and the numerical methods used to simulate probability distributions.  Provided that appropriate 
numerical methods are employed, numerical stability is generally not a concern for most 1-D MCA 
models, which can be run with a sufficient number iterations in minutes with modern high speed 
computers; however, it can be an important consideration for more complex simulations, such as with 
2-D MCA models. 

(7) Calculations of exposures and risks using deterministic (e.g., point estimate) methods are to 
be reported if possible.  Providing these values will allow comparisons between the 
probabilistic analysis and past or screening level risk assessments.  Further, deterministic 
estimates may be used to answer scenario specific questions and to facilitate risk 
communication. When comparisons are made, it is important to explain the similarities and 
differences in the underlying data, assumptions, and models. 

If results of PRA calculations differ substantially from point estimate calculations, a risk 
manager may benefit from understanding the reasons for the differences and the relative strengths of the 
different approaches. Sometimes, a closer look at uncertainties in the underlying data, assumptions, and 

Page 1-25 



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment 
Chapter 1 ~ December 31, 2001 

models will lead a risk assessor to revisit parts of the assessment in order to provide a more consistent 
basis for comparison. 

(8) Since fixed exposure assumptions (e.g., exposure duration, body weight) are sometimes 
embedded in the toxicity metrics (e.g., Reference Doses, Reference Concentrations, Cancer 
risk factors), the exposure estimates from the probabilistic output distribution are to be 
aligned with the toxicity metric. 

1.4.1 KEY POLICIES FOR APPLYING PRA AT SUPERFUND SITES 

EPA’s recommended process for conducting an acceptable PRA generally follows the policy and 
guiding principles presented above.  In addition, this section highlights four key policies for conducting 
acceptable PRAs at hazardous waste sites. 

(1) Follow the Tiered Approach to PRA 

In accordance with the 1997 EPA Policy Statement (U.S. EPA, 1997g), this guidance 
recommends using a tiered approach when considering PRA to help with risk management decisions.  A 
tiered approach begins with a relatively simple analysis and progresses stepwise to more complex 
analyses. The level of complexity should match the site-specific risk assessment objectives and the risk 
management goals.  The tiered approach, with helpful suggestions on risk communication, is presented in 
Chapter 2. A brief introduction is given below.

 The premise for recommending a tiered approach is that there is a balance between the benefits 
of conducting a more complex analysis, and the cost in terms of additional time, resources, and 
challenges for risk communication.  PRA may require additional resources compared with the point 
estimate approach, and may not be used routinely for screening level assessment.  At more complex 
hazardous waste sites, PRA may not be warranted if the investment of time and resources is unlikely to 
provide information on variability and uncertainty in risk that will affect the risk management decision. 

This guidance recommends that a point estimate risk assessment be conducted in the first tier 
after completing the remedial investigation (RI) planning, site scoping, problem formulation, data 
collection, and the development of a site conceptual model.  In general, when site decision making would 
benefit from additional analysis beyond the point estimate risk assessment, and when the risk manager 
needs more information to complete the RI/FS process, the risk manager would proceed to higher tiers. 
Sensitivity analysis should be conducted in each tier to guide decisions regarding data collection and the 
complexity of the analysis needed to characterize variability and/or uncertainty in risk.  Sensitivity 
analysis can also play an important role in risk communication by supporting decisions to continue 
characterizing less influential variables with point estimates in higher tiers. 

(2) Select the RME Risk from the RME Risk Range (90th to 99.9th percentile) 

The RME is defined as the highest exposure that is reasonably expected to occur at a site. Final 
Guidelines for Exposure Assessment (EPA, 1992a) states that the “high-end” of exposure for a population 
occurs between the 90th and 99.9th percentiles, with the 99.9th percentile considered a bounding estimate. 
Using a point estimate approach, the calculation of the RME risk would be based on high-end input 
values in combination with average input values.  For example, for estimation of risks from the ingestion 
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of groundwater, default exposure is based on a high-end water intake rate (2 L/day), a high-end exposure 
frequency and duration (350 days/year for 30 years), and an average body weight (70 kg). 

With the probabilistic approach, the calculation of the RME risk would be based on a range of 
input values, or frequency distributions, including low, average, and high-end values for each of the input 
exposure factors. For example, for estimation of risks from ingestion of groundwater, exposure would be 
based on the combination of lognormal distributions for water intake rate, body weight, and exposure 
duration (each using a specified mean and standard deviation) and a triangular distribution for exposure 
frequency (using a specified minimum, most likely value, and maximum).  As a result, the RME risk 
would become a probability distribution ranging from low- to high-end values based on varying a 
combination of input values.  In PRA, a recommended starting point for risk management decisions 
regarding the RME is the 95th percentile of the risk distribution (see Chapter 7). 

(3) Use PRA for Dose-Response in Ecological Assessment, not in Human Health Assessment 

Approaches to characterizing variability and uncertainty in toxicological information should 
reflect both the latest developments in the science of hazard and dose-response evaluation and consistent 
application of EPA science policy.  This statement is consistent with the 1997 EPA Policy Statement 
presented in Section 1.4 above (U.S. EPA, 1997g).  Probabilistic approaches to ecological dose-response 
assessment may be explored, as discussed and demonstrated in Chapter 4.  This guidance does not 
develop or evaluate probabilistic approaches for dose-response in human health assessment and, further, 
discourages undertaking such activities on a site-by-site basis. Such activities require contaminant-
specific national consensus development and national policy development.  Parties wishing to undertake 
such activities should contact the OERR to explore ways in which they might contribute to a national 
process for the contaminant of interest to them. 

(4) Prepare a Workplan for EPA Review and Approval 

A workplan should be developed and submitted for review before commencement of a PRA. 
The workplan should document the combined decisions of the RPM and risk assessor involved in the risk 
assessment, and positions of the stakeholders.  The workplan should address conditions and policies 
presented in this section of RAGS Volume 3: Part A, the software to be used, the exposure routes and 
models, and the input probability distributions and their basis, including appropriate literature references. 
The workplan is discussed in more detail in Chapter 2. 

A checklist of some of the key considerations to assist in the review of a PRA is provided in 
Appendix F. 

1.5 ORGANIZATION OF THE GUIDANCE 

Subsequent chapters of RAGS Volume 3: Part A focus on the following topics: 

Chapter 2 - The Tiered Approach to PRA 

Chapter 2 includes information regarding organizational issues that may need to be considered by 
the RPM in developing a PRA.  Examples, include:  workplans, involvement of the Community 
Involvement Coordinator (CIC), additional meetings with communities, and review of PRA documents. 
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Chapter 2 also presents the tiered approach in full detail.  The approach begins with RI planning, 
scoping, problem formulation, and data collection.  Tier 1 entails a point estimate risk assessment and 
sensitivity analysis.  Tier 2 proceeds with additional data collection, a MCA to characterize variability 
and/or uncertainty, and a more in-depth sensitivity analysis.  More advanced techniques are used in 
Tier 3 to simultaneously characterize variability and uncertainty.  The endpoint of the tiered approach is 
to provide information that helps risk managers complete the RI/FS process.  

Chapter 3 - Probabilistic Human Health Risk Assessment 

Chapter 3 provides a discussion of how PRA approaches may be utilized in human health risk 
assessment.  Probabilistic approaches focus on the exposure assessment, and an example is included to 
illustrate the application of the tiered approach to a human health risk assessment. 

Chapter 4 - Probabilistic Ecological Risk Assessment 

Chapter 4 provides a discussion of how PRA approaches may be utilized in ecological risk 
assessment.  This includes a discussion of basic tactics, such as how to decide if, and when, a PRA is 
needed, along with technical discussions and examples of how to model variability and/or uncertainty in 
exposure, toxicity, and risk (characterized both as hazard quotients and responses) for different types of 
ecological receptors, both within and between species.  The chapter also provides a discussion of how the 
results of an ecological PRA can be used in risk management decision making, and provides guidelines 
for planning and performing an ecological PRA. 

Chapter 5 - PRA and Preliminary Remediation Goals (PRGs) 

This chapter provides a discussion about issues associated with deriving PRGs from both point 
estimate risk assessment and PRA.  Issues and limitations associated with back calculation are 
highlighted, along with an explanation and recommendation regarding the iterative forward calculations. 

Chapter 6 - Communicating Risks and Uncertainties in PRA 

Chapter 6 provides a basic overview of the current Superfund guidance on communicating with 
the public. With this as a basis, the chapter provides specific information regarding continuous 
involvement of stakeholders in the PRA process, various tools that may be useful in communicating the 
principles of PRA, organizational issues regarding planning of communication strategies, and examples 
of procedures that may be helpful at individual sites.  This chapter also provides references to various 
documents on current approaches for communicating risk to the public. 

Chapter 7 - Role of PRA in Decision Making 

This chapter provides guidance on how to interpret the results of a PRA to determine if an 
unacceptable risk is present, and criteria to consider when moving from a risk-based PRG to a remedial 
goal. 
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Appendix A - Sensitivity Analysis 

Important information from PRA includes the results of sensitivity analysis.  This appendix 
outlines the methodology and interpretation of statistical methods used to conduct sensitivity analysis 
with point estimate and probabilistic models. 

Appendix B - Selecting and Fitting Distributions 

One of the more challenging aspects of PRA is choosing appropriate probability distributions to 
represent variability and uncertainty in the input variables.  This appendix presents a process for 
selecting and fitting distributions to data, including hypothesizing families of distributions, parameter 
estimation techniques, and goodness-of-fit tests. 

Appendix C - Exposure Point Concentration (EPC) 

An important variable in most risk assessments is the concentration term.  This appendix presents 
the basic principles of the EPC, and different methods for quantifying both variability and parameter 
uncertainty in the EPC.  

Appendix D - Advanced PRA Models 

Sometimes a more complex modeling approach can be used to improve the representativeness of 
the probabilistic risk estimates.  These approaches are generally anticipated to be applied in Tier 3 of the 
tiered approach. Examples include the use of Microexposure Event modeling, geostatisics, and Bayesian 
Monte Carlo analysis. 

Appendix E - Definitions 

A list of definitions is provided at the beginning of each chapter.  This appendix provides a 
compilation of all definitions presented in the guidance. 

Appendix F - Generic Checklist 

After a PRA has been submitted to the Agency, an efficient process is needed to evaluate the 
accuracy and clarity of the results.  This appendix suggests a series of elements of the review process that 
can be adopted to structure the review of PRAs for both human health and ecological risk assessment. 

Appendix G - Frequently Asked Questions (FAQ) about PRA 

Risk assessors and risk managers who read RAGS Volume 3: Part A will find that probabilistic 
risk assessment covers a wide variety of topics ranging from statistical theory to practical applications and 
policy decisions. U.S. EPA OERR plans to maintain and periodically update a list of frequently asked 
questions and responses on an EPA Superfund web page at http://www.epa.gov/superfund/index.htm. 
This appendix provides a preliminary list of anticipated questions. 
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Appendix H - Index 

This index includes keywords and concepts used throughout this guidance document.  They are 
listed alphabetically with numbers indicating the appropriate chapter and page number(s) within each 
chapter.  Commas separate page numbers within a chapter or appendix, while semi-colons separate 
chapters and appendices.  For example: probability density function, 1-5, 6-8; 4-3, 10-12; C-1, 8-10.  This 
would indicate Chapter 1, page 5, and pages 6-8; Chapter 4, page 3, and pages 10-12; Appendix C, page 1 
and pages 8-10. 

1.6 NEXT STEPS FOR PRA IMPLEMENTATION 

This guidance has presented the current principles, including the tiered approach, and examples 
to aid in conducting acceptable PRAs at Superfund sites.  Policies and practices will change over time as 
scientific advances continue in the future.  The PRA Workgroup intends to keep current and provide new 
information on EPA Superfund web page at http://www.epa.gov/superfund/index.htm. EPA expects to 
make the following PRA support items available on-line in the near future: 

•	 RAGS Volume 3: Part B: A workbook that serves as a companion to RAGS Volume 3: 
Part A; it will include case studies and examples in PRA. 

•	 Guidance on Probability Distributions: Documents and/or spreadsheets to aid in selecting 
and fitting probability distributions for input variables. 

•	 Guidance on Data Representativeness: A ranking methodology to evaluate data 
representativeness for various exposure scenarios. 

•	 Hands-On Training: Basic MCA training materials, and limited computer hands-on training 
sessions available to Regional EPA and State staff. 

•	 Access to PRA Workgroup: A workgroup to provide support on PRA to EPA regional risk 
assessors. 

•	 FAQs: A list of Frequently Asked Questions (FAQs) about PRA and responses from the PRA 
Workgroup, maintained and periodically updated on-line. 
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CHAPTER 2 

WORKPLAN AND THE TIERED APPROACH 

2.0 INTRODUCTION 

While probabilistic risk assessment (PRA) can provide useful information for risk management, 
not all site decisions will benefit from probabilistic approaches.  Similarly, not all PRAs need involve 
complex models and quantitative uncertainty analysis methods; often, very useful information can be 
obtained by taking the point estimate approach one step further to explore variability in selected input 
variables. The level of effort and complexity of the risk assessment should match site-specific needs. 
The use of a tiered approach for moving from a point estimate risk assessment to PRAs of varying levels 
of complexity is recommended (Figure 2-1 and 2-2).  This chapter outlines the basic steps of a tiered 
approach for including PRA in a site risk assessment.  The major feature of the tiered approach is an 
iterative evaluation of the risk estimates developed at each tier to determine if they are sufficient for risk 
management decisions.  Built into the tiered approach are opportunities for communication with 
stakeholders with a view to saving time and costs, and facilitating a successful remedial process. 

2.1 WORKPLAN 

In practice, the potential value of PRA may be considered at various planning stages of a risk 
assessment. For some sites, PRA and point estimate risk assessment approaches may be discussed in the 
initial scoping of the risk assessment.  For other sites, PRA may become a viable option only after the 
point estimate risk assessment results are available.  Ideally, PRA should be considered as early as 
possible in the planning of risk assessment activities at a site so that sampling plans and data collection 
efforts may be appropriately directed.  Initial PRA discussions should be included as part of the risk 
assessment workplan.  If a PRA is being considered following completion of a point estimate risk 
assessment, the original workplan for the point estimate assessment should be expanded to include needs 
that are unique to PRA. 

The methods and procedures used to prepare a workplan to gather additional information for a 
baseline point estimate risk assessment are documented in RAGS Volume I: Part A (U.S. EPA, 1989). 
This chapter of RAGS Volume 3: Part A describes the procedures that would be used to prepare a 
workplan to gather additional information to conduct a PRA.  Separate workplans may be warranted for 
human health and ecological risk assessments. 

Like the quality assurance project plan (QAPP), the workplan for a PRA should document the 
combined decisions of the remedial project manager (RPM) and the risk assessor.  Meaningful 
involvement of stakeholders early in the decision-making process also will save time and effort. 
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counted with integers (e.g., one, two, three) and that has no upper limit. Examples include the number of tosses 

Countably finite implies there is an upper 

CTE Risk - The estimated risk corresponding to the central tendency exposure. 

using these inputs to calculate a range of risk values. 
Parameter

For example, a truncated normal probability distribution may 

estimates for exposure and toxicity. 
estimate depending on the choice of inputs. 

payment of Superfund cleanup costs. 
Preliminary Remediation Goal

equation 

quantity. 
density comes 

Also called a probability model. 

EPA, 1989). 
that is still within the range of possible exposures. 

XHIBIT 

EFINITIONS FOR HAPTER 

Central Tendency Exposure (CTE) - A risk descriptor representing the average or typical individual in a population, 
usually considered to be the mean or median of the distribution. 

Countably Infinite - Used to describe some discrete random variables, this term refers to a set of numbers that can be 

required for a coin to show a head—we can count each toss, but it is possible that at least one more toss is needed. 
The number of dust particles in a volume of air is another example.  
limit (e.g., days of work per year).  

Monte Carlo Analysis (MCA) or Monte Carlo Simulation - A technique for characterizing the uncertainty and 
variability in risk estimates by repeatedly sampling the probability distributions of the risk equation inputs and 

 - A value that characterizes the distribution of a random variable.  Parameters commonly characterize the 
location, scale, shape, or bounds of the distribution.  
be defined by four parameters: arithmetic mean [location], standard deviation [scale], and min and max [bounds]. 
It is important to distinguish between a variable (e.g., ingestion rate) and a parameter (e.g., arithmetic mean 
ingestion rate). 

Point Estimate - In statistical theory, a quantity calculated from values in a sample to estimate a fixed but unknown 
population parameter.  Point estimates typically represent a central tendency or upper bound estimate of 
variability. 

Point Estimate Risk Assessment - A risk assessment in which a point estimate of risk is calculated from a set of point 
Such point estimates of risk can reflect the CTE, RME, or bounding risk 

Potentially Responsible Party (PRP) - PRPs are individuals, companies, or any other party that are potentially liable for 

 (PRG) - Initially developed chemical concentration for an environmental medium that is 
expected to be protective of human health and ecosystems.  PRGs may be developed based on applicable or 
relevant and appropriate requirements (ARARs), or exposure scenarios evaluated prior to or as a result of the 
baseline risk assessment. (U.S. EPA, 1991a, 1991b). 

Probabilistic Risk Assessment (PRA) - A risk assessment that yields a probability distribution for risk, generally by 
assigning a probability distribution to represent variability or uncertainty in one or more inputs to the risk 

Probability Density Function (PDF) - A graph that shows the probability of occurrence of an unknown or variable 
 A PDF is used to characterize a continuous random variable, X.  PDFs can be used to display the shape 

of the distribution for an input variable or output variable of a Monte Carlo simulation.  The term 
from the concept that a probability at a point, x, for a continuous distribution is equal to the area under the curve 
of the PDF associated with a narrow range of values around x. 

Probability Distribution - A mathematical representation of the function that relates probabilities with specified 
intervals of values for a random variable.  

Probability Mass Function (PMF) - A function representing the probability distribution for a discrete random variable. 
The mass at a point refers to the probability that the variable will have a value at that point. 

Random Variable - A variable that may assume any value from a set of values according to chance.  Discrete random 
variables can assume only a finite or countably infinite number of values (e.g., number of rainfall events per year). 
A random value is continuous if its set of possible values is an entire interval of numbers (e.g., quantity of rain in 
a year). 

Reasonable Maximum Exposure (RME) - The highest exposure that is reasonably expected to occur at a site (U.S. 
The intent of the RME is to estimate a conservative exposure case (i.e., well above the average case) 

Remedial Investigation/Feasibility Study (RI/FS) - Studies undertaken by EPA to delineate the nature and extent of 
contamination, to evaluate potential risk, and to develop alternatives for cleanup. 
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RME Risk

SMDPs provide a 

relative contributions to model output variability and uncertainty. 
< - A statistic r

(r2) is the fraction of the variance 

< elasticity. 
< - A “distribution free” or nonparametric statistic r that measures 

r2 . 
Examples include limited 

XHIBIT 

EFINITIONS FOR HAPTER —C ontinued 

 - The estimated risk corresponding to the reasonable maximum exposure. 
Scientific/Management Decision Point (SMDP) - A point during the tiered process in PRA when the risk assessor 

communicates results of the assessment to the risk manager.  At this point, the risk manager determines whether the 
information is sufficient to arrive at a decision or if additional data collection or analysis is needed.  
tool for transitioning to a subsequent tier or for exiting the tiered process. 

Sensitivity Analysis - Sensitivity generally refers to the variation in output of a model with respect to changes in the values 
of the model’s input(s).  Sensitivity analysis can provide a quantitative ranking of the model inputs based on their 

Common metrics of sensitivity include: 
Pearson Correlation Coefficient  that measures the strength and direction of linear association 
between the values of two quantitative variables.  The square of the coefficient 
of one variable that is explained by the variance of the second variable. 
Sensitivity Ratio - Ratio of the change in model output per unit change in an input variable; also called 
Spearman Rank Order Correlation Coefficient
the strength and direction of association between the ranks of the values (not the values themselves) of two 
quantitative variables.  See Pearson (above) for 

Uncertainty - Lack of knowledge about specific variables, parameters, models, or other factors.  
data regarding the concentration of a contaminant in an environmental medium and lack of information on local fish 
consumption practices.  Uncertainty may be reduced through further study.  

A PRA workplan should be developed early in the risk assessment planning process for the site, 
regardless of who will actually develop the PRA (e.g., Environmental Protection Agency (EPA), EPA 
contractor, or potentially responsible party (PRP)).  If a PRP performs the PRA, the workplan should be 
submitted to EPA for review and approval prior to commencing the PRA.  It should describe the intended 
PRA in sufficient detail so that EPA can determine if the work products will adequately address risk 
assessment and management needs (see Exhibit 2-2 for contents of a typical workplan).  It is important 
that the risk assessor and RPM discuss the scope of the probabilistic analysis and the potential impact it 
may have on the remedial investigation/feasibility study (RI/FS). 

L Given the time and effort that can be expected to be invested in conducting a 
PRA, it is important that a workplan undergo review and approval by EPA, 
prior to proceeding with the assessment. 

In general, regions should not accept probabilistic analysis when a workplan for the analysis has 
not been submitted to the Agency, and approved by the regional risk assessor and RPM.  

The tiered process for PRA, described in Section 2.3, is an iterative process.  As new information 
becomes available, it should be used to evaluate the need to move to a higher tier.  The decision to move 
an assessment to a higher tier of complexity should result in a revised workplan reflecting the greater 
complexity and demands of the higher tier.  The proposed probabilistic sensitivity analysis developed at 
the lower tier should be included in the revised workplan, along with a point estimate risk assessment 
based on any data collected as part of a lower tier.  The probabilistic methods used in a PRA can often be 
restricted to the chemicals and pathways of concern that contribute the greatest risk.  The less sensitive 
chemicals and exposure pathways should still remain in the PRA using point estimates, unless there is a 
compelling reason to exclude them from the assessment altogether.  As stated in Appendix A (Section 
A.1, Risk Communication), the decision to represent an input variable with a point estimate, rather than a 
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probability distribution, will generally be made on a 
case-by-case basis.  The decision will reflect an 
attempt to balance the benefits of simplifying the 
analysis (e.g., easier to communicate; focuses 
discussion on more critical areas) with the potential 
for arbitrarily reducing the variance in the output 
distribution (e.g., discounting variability in multiple 
variables with negligible contributions to risk may 
end up having a non-negligible effect on the RME 
percentile). 

Throughout the process of developing the 
PRA, EPA risk assessor and other contributors to the 
assessment should have a continuing dialogue to 
discuss the elements of the workplan and their 
potential impacts on the assessment.  This dialogue, 
along with interim deliverables, will help to ensure 
that the risk assessment report will meet the needs of 
the Agency and that any problems are identified and 
corrected early in the process. 

2.2	 SPECIAL ADMINISTRATIVE 

CONSIDERATIONS IN PRA

 Inclusion of a PRA in the RI/FS will 
generate certain administrative activities for the 
RPM. The scope of these activities will depend on 
whether the PRA is conducted by EPA and its 
contractors or by the PRP.  The following sections 
provide practical advice for the RPM who is 
considering applications of PRA at a site. 

E 2-2 

EXAMPLES OF IMPORTANT 

CONTENTS OF ORKPLAN 

1. 

endpoints and/or human risk 

2. 

assessment 

3. 

and proceeding to the subsequent tiers 

4. 

5. 

6. 

7. 

term 

8. 

analysis 

9. 

XHIBIT 

A PRA W 

Statement of the ecological assessment 

Summ ary of the point estimate risk 

Potential value added by conducting a PRA 

Discussion of adequacy of environmental 

sampling for PRA or moving to a 

successive tier (e.g., data qua lity issues) 

De scriptio n of the m ethod s and mod els to 

be used (e.g., model and parameter 

selection criteria) 

Propo sal for obtaining and basis for using 

exposure factor distributions or ecological 

toxicity distributions 

Methods for deriving the concentration 

Pro pos al for p rob abilistic se nsitivity 

Softw are (e .g., date a nd ve rsion o f prod uct, 

random numb er generator) 

10. Bibliography of relevant literature 

11. Propo sed schedule, discussion points, and 

expertise needed 

2.2.1	 SCO PING O F PRA 

The RPM will generally be involved in the discussions among EPA project team, as well as PRPs 
and other stakeholders, regarding the level of PRA that is appropriate for the site.  As outlined in the 
tiered approach (see Section 2.3), the scope and complexity of the PRA should satisfy the risk assessment 
and management decision making needs of the site. Team members should meet to discuss the scope of 
the PRA, the anticipated community outreach, and the required level of review.  These discussions can be 
useful for ascertaining the level of contractor involvement, specific requirements for deliverables from 
PRPs, and the anticipated number of responses to comments.  These meetings should include 
consideration of funding, resources, and availability of personnel to work on the PRA. 
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2.2.1.1 PRA SCO PE OF WORK FOR FUND-LEAD SITES 

A Statement of Work (SOW) should be developed before any work is started on a PRA, 
regardless of whether the PRA is to be submitted to the Agency or developed by the Agency.  The SOW 
should outline the general approach that EPA and its contractor will use in developing the PRA.  The 
SOW should include the general approaches for the following PRA items: selection of input probability 
distributions, documentation of methods and results, selection of computer programs, submission of 
computer codes and outputs, comparison of the results from the point estimate and probabilistic 
assessments, and the format for presenting the final PRA in the RI/FS document. The SOW should be 
sufficiently detailed to support a milestone schedule, which should be submitted as part of the SOW. 
Based on the complexity of the PRA, and consistent with the RAGS Volume I: Part D principles of 
involving the risk assessor early and often in the risk assessment process (U.S. EPA, 2001), it may be 
appropriate to obtain submission of interim deliverables to allow the risk assessor the opportunity to 
identify potential problems early in the process.  

Within the RI/FS workplan, additional resources may be required to hold additional meetings, to 
respond to comments specific to the PRA, and to develop handouts describing PRA in terms accessible to 
a wider audience than risk assessors.  Where appropriate, these additional resource requirements should 
be included in the SOW along with interim and final deliverable dates.  Chapter 6 provides guidance on 
communicating concepts and results of PRA to various audiences. 

2.2.1.2 PRP SCO PE OF WORK FOR PRP-LEAD SITES 

The SOW for PRP-lead sites should follow the same general outline as the SOW for fund-lead 
sites (Section 2.2.1.1).  Legal documents such as Unilateral Orders, Administrative Orders of Consent, 
and Consent Decrees should contain language requiring the PRP to submit a workplan before any work 
on the PRA is started.  It is also important that interim deliverables, including computer code or 
spreadsheet models, be submitted so that EPA can review and verify the results of the PRA.  A 
comparison of the results of the PRA and the point estimate assessment should be included in the final 
RI/FS. 

Depending on the complexity of the site and the anticipated PRA, the RPM may be involved in 
more extensive negotiations with the PRPs.  These negotiations may involve both EPA staff and 
contractor support. These activities may need to be included in the appropriate SOWs. 

If warranted by the complexity of the PRA, the RPM may consider the need to expand oversight 
contracts to include additional resources for the contractor to review and comment on the interim 
deliverables and finalize the PRA.  This may require a specialized level of expertise that will need to be 
discussed with the contractor.  Further, the contract section regarding community involvement may also 
need to be expanded to include additional resources for developing handouts describing PRA in terms 
accessible to a wider audience than risk assessors and for holding additional community meetings. 
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2.2.2 DEVEL OPM ENT O F PROBABILITY DISTRIBUTIONS 

A key component of any PRA is the selection of representative probability distributions.  The 
information available to support the characterization of variability or uncertainty with probability 
distributions may be an important factor in the decision to conduct a PRA.  In some cases, this may 
require resources to conduct exploratory data analysis or to collect site-specific information. As part of 
this process, a PRA using preliminary distributions based on the available information may be considered 
to identify the variables and exposure pathways that may have the strongest effect on the risk estimates. 
Appendix B (Section B.2.0) provides a more detailed description of preliminary distributions and their 
potential role in the tiered process.  All of these activities may require extensive discussions with the 
PRPs and the community.  In addition, for PRP-lead sites, they may require additional resources to 
critically review the proposed distributions.  The RPM should consider these potential activities in 
developing the SOW and legal documents to assure adequate resources are available to address them. 

2.2.3 EPA REVIEW  OF PRA DOCUMENTS 

The review of PRA documents may require more time than is usually allocated for point estimate 
risk assessments.  In part, the additional time is needed for reviewing and discussing input distributions, 
for developing and running computer simulations, and for discussing outcomes of the assessment with 
the PRP or EPA contractor.  The early involvement of an EPA risk assessor may reduce the time needed 
for review of the final risk assessment documents, although additional review time may still be required, 
depending on the complexity of the PRA conducted.  

In addition to EPA’s review, it may also be important to include external reviewers with 
specialized expertise in PRA to aid in the review.  This additional support may involve resources and 
time to review documents and verify simulation results, as well as additional contractual arrangements. 
As stated in Chapter 1, Section 1.4 (Conducting an Acceptable PRA), it is important that negotiations 
with the PRP address the assurance that adequate details will be included in the submission so that the 
methods can be evaluated, and the results independently reproduced. 

2.2.4 PEER-REVIEW 

Depending on the level of complexity of the PRA, and whether new science is being used, it may 
be necessary to conduct a peer review of the document.  The Agency’s guidance on peer review (U.S. 
EPA, 2000b) should be consulted for information regarding the criteria for determining whether or not a 
peer review is appropriate and, if it is, the process that should be followed. 

2.2.5 RESPONSE TO COMMENTS ON PRA 

The time and resources needed to respond to comments on a PRA may vary depending on the 
complexity of the PRA.  In developing the SOW, workplan, and schedule for the RI/FS, it is important 
that the RPM include adequate resources and time for the thorough evaluation of the PRA.  In developing 
the response to comments, it may be necessary to consider alternative PRAs submitted by reviewers.  The 
RPM should plan for sufficient time and resources needed for such activities. 
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2.2.6 ADMINISTRATIVE RECORD 

Criteria should be established for documentation to be included in the administrative record. 
Examples may include documentation regarding the basis for selection of input distributions, a 
description of the design of the PRA conducted, the computer codes used in simulations, how tiering 
decisions are made, and the results of the PRA.  The RPM should consider using technologies such as a 
CD-ROM to document the appropriate information for the record.  

2.2.7 COMMUNICATION WITH STAKEHOLDERS 

Chapter 6 provides details regarding the goal of early involvement of the public in the PRA 
process.  For example, Section 6.1 of Chapter 6 provides additional topics for consideration in 
development of community involvement plans (CIPs) where PRA is considered.  In general, early 
involvement of the community in the RI/FS process is important, but such involvement should meet the 
site-specific needs.  Important considerations include resources, funding, and the level of effort 
appropriate for the site. 

2.2.8 COMMUNICATION WITH EPA MANAGEMENT 

Communication with EPA managers regarding PRA is discussed in Chapter 6. The RPM may 
need to consider allocating additional resources for prebriefings of appropriate management levels, 
development of handouts, and follow-up to the management meetings.  Coordination with appropriate 
EPA staff and contractors may be necessary to assure the communication is effective. 

2.3 OVERVIEW OF THE TIERED APPROACH 

The tiered approach presented in this guidance is a process for a systematic, informed 
progression to increasingly more complex risk assessment methods including PRA.  A schematic 
presentation of the tiered approach is shown in Figure 2-1 and Figure 2-2.  Higher tiers reflect increasing 
complexity and, in many cases, will require more time and resources.  Higher tiers also reflect increasing 
characterization of variability and/or uncertainty in the risk estimate, which may be important for making 
risk management decisions.  Central to the concept of a systematic, informed progression is an iterative 
process of evaluation, deliberation, data collection, work planning, and communication (see Figure 2-2). 
All of these steps should focus on deciding (1) whether or not the risk assessment, in its current state, is 
sufficient to support risk management decisions (a clear path to exiting the tiered process is available at 
each tier); and (2) if the assessment is determined to be insufficient, whether or not progression to a 
higher tier of complexity (or refinement of the current tier) would provide a sufficient benefit to warrant 
the additional effort. 

The deliberation cycle provides an opportunity to evaluate the direction and goals of the 
assessment as new information becomes available.  It may include evaluations of both scientific and 
policy information.  The risk manager, in the decision-making process, is encouraged to seek input on a 
regular basis from EPA staff and other stakeholders.  Exhibit 2-3 lists some of the potential stakeholders 
that may contribute to the deliberation process. 
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Although PRA may involve technical dialogue between EPA and outside “experts”, input from 
members of the general public who may have an interest in the outcome of the remedial process should 
also be sought at appropriate stages of the process.  Frequent and productive communication between 
EPA and stakeholders throughout the risk assessment process is important for enhancing the success of a 
PRA. 

E 2-3 
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Figure 2-1. Schematic Diagram of Tiered Approach. 

1 Examples of advanced methods for quantifying temporal variability, spatial variability, and 
uncertainty (see Appendix D) 
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Fig ure 2-2 .  Schematic diagram of deliberation/decision cycle in the tiered process for PRA.  SMDP refers 

to a scientific/management decision point, which implies that the decision involves consideration of not 

only the risk assessment, but also Agency policy, stakeholder concerns, cost, schedule, feasibility and other 

factors. 
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2.3.1 GETTING STARTED 

All risk assessments should begin with problem formulation, scoping, preparation of a workplan 
(Section 2.1), and data collection.  Problem formulation generally is an iterative process where 
reevaluation may occur as new information and data become available.  The RPM should convene a 
scoping meeting prior to any risk assessment activities.  Depending on the site-specific factors, 
discussion of performing a PRA may be appropriate at this initial scoping meeting.  Alternatively, this 
discussion may be more productive at a later stage of the tiered process. 

The risk manager should initiate discussions with EPA staff and other stakeholders early in the 
process, well before planning a risk assessment.  Early communication with risk assessors or other EPA 
staff can help the risk manager evaluate the adequacy of the current information and plan additional 
data-gathering activities.  Early communication with communities and other stakeholders should 
establish trust and facilitate a successful remedial process (see Chapter 6 on risk communication). 

Generally, once the appropriate steps have been taken to adequately formulate and identify the 
problem and complete a workplan (Section 2.1), data collection efforts towards the point estimate risk 
assessment may begin.  The process for conducting a point estimate risk assessment (Tier 1) is 
documented elsewhere in various RAGS volumes and related Superfund risk assessment guidance 
documents (e.g., U.S. EPA, 1989, 2001). 

2.3.2 TIER 1 

Tier 1 consists of the well-established 
process for planning and conducting human 
health and ecological point estimate risk 
assessments. Typical elements of a Tier 1 risk 
assessment, as they relate to higher tiers, are 
presented in Exhibit 2-4.  A more detailed 
discussion of these elements can be found in 
Chapters 3 and 4 and Appendix A (Sensitivity 
Analysis). 

A more detailed schematic presentation 
of the tiered process, showing the various 
elements of the deliberation/decision cycle and 
their linkage to higher tiers is shown in 
Figure 2-2.  The two main factors to consider 
when determining whether the results of a risk 
assessment are sufficient for decision making 
are: (1) the results of a comparison of the risk 
estimate with the risk level of concern; and 
(2) the level of confidence in the risk estimate. 

E 2-4 
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Risk-Based Decision-Making Output

estimate of risk—Does the point estimate exceed 

the risk level of concern? 

In Tier 1, comparison of risk estimates 
with risk levels of concern is relatively straightforward, since the outcome of a point estimate risk 
assessment is a single estimate of risk that either will exceed or not exceed the risk level of concern. 
Evaluating confidence in the Tier 1 risk estimates is more difficult because quantitative measures of 
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uncertainty often are not easily obtained from a point estimate analysis.  Uncertainty arises from two 
main sources: (1) uncertainty in the inputs to the risk equations that stems from lack of knowledge (data 
gaps), and (2) uncertainty in the accuracy of the point estimate that stems from the mathematical 
simplifications that are inherent in point estimate computations. 

There are usually many sources of uncertainty in the values used to calculate risk.  One of the 
most familiar (but not always the most significant) is uncertainty in environmental concentration values 
of contaminants.  This source of uncertainty is usually accounted for by calculating a 95% upper 
confidence limit (95% UCL) for the mean concentration in the exposure equation (U.S. EPA, 1992b). 
Chapter 5, Appendix C, and Appendix D provide more complete discussions of policies and methods for 
quantifying uncertainty in the exposure point concentration.  Uncertainties in other variables in the risk 
equations (intake rates, exposure frequency and duration, toxicity factors, etc.) may also be significant, 
and are often addressed by choosing inputs that are more likely to yield an overestimate than an 
underestimate of risk.  These sources of uncertainty are usually addressed qualitatively, by providing a 
discussion of the likely direction and magnitude of the error that may be associated with the use of the 
specific inputs (U.S. EPA, 1989).  Stakeholders can provide useful information about uncertain variables 
and sources for site-specific data.  This is an important reason to ensure that stakeholders are given the 
opportunity to review the risk assessment and be involved in the process. 

Decision Alternatives 

The evaluation of the point estimate risk assessment will yield one of two outcomes: 
(1) sufficient for risk management decisions; or (2) insufficient for risk management decisions. If the 
risk manager views the results of the point estimate risk assessment as sufficient for risk management 
decision making, the risk manager can exit the tiered approach and complete the RI/FS process 
(Figure 2-2).  Depending on site-specific information, the results may support a decision for “no further 
action” or for a “remedial action.”  A “no further action” decision may result when the risk estimate is 
clearly below the level of concern (e.g., the National Oil and Hazardous Substances Pollution 
Contingency Plan (NCP) risk range of 1E-04 to 1E-06) and confidence in the risk estimate is high.  A 
decision for remedial action may result when a national standard (e.g., maximum contaminant levels 
(MCLs) applied to groundwater) may be exceeded, or when the risk is clearly above the level of concern 
(e.g., the NCP risk range of 1E-04 to 1E-06) and confidence in the risk estimate is high.  The decision for 
a specific remedial action involves consideration of the NCP’s nine criteria for remedial decisions (U.S. 
EPA, 1990) and other site-specific factors. 

An alternative conclusion would be that the results of the point estimate risk assessment are not 
sufficient for risk management decision making.  For example, results may not be sufficient when the risk 
estimate is within the NCP risk range of 1E-04 to 1E-06 and confidence in the risk estimate is low.  In 
this case, the risk manager should not exit the tiered approach.  Instead, appropriate steps should be taken 
to increase the confidence that a management decision is protective.  These steps may include discussing 
the point estimate sensitivity analysis, identifying data gaps, communicating with stakeholders (e.g., to 
obtain site-specific information), discussing the potential value of conducting a PRA (or a more advanced 
probabilistic analysis), work planning, and additional data collection (see Figure 2-2). 

A sensitivity analysis can be a valuable component of the evaluation of a risk assessment. 
Sensitivity analysis can identify important variables and pathways that may be targets for further analysis 
and data collection. The type of information provided by a sensitivity analysis will vary with each tier of 
a PRA.  Several methods are available at each tier, and the results of the analysis can vary greatly 
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depending on the methods used.  A comprehensive discussion of these methods is presented in 
Appendix A and briefly summarized here.  Sensitivity analysis in Tier 1 will usually involve relatively 
simple methods and will not involve Monte Carlo simulation.  A typical approach would be to calculate 
the relative contributions of individual exposure pathways to the point estimate of risk.  A more complex 
approach involves selecting values from a plausible range for a specific input variable to the exposure or 
risk equation and to use these values (i.e., low-end estimate and high-end estimate) to calculate 
corresponding point estimates of risk.  The sensitivity of the risk estimate to each variable is then 
evaluated by calculating a sensitivity ratio, which is simply the percentage change in the risk estimate 
divided by the percentage change in the input variable value (see Appendix A, Section A.2.1.3, 
Sensitivity Ratios).  

The sensitivity ratio (SR) approach is typically applied to one variable at a time because jointly 
varying point estimates for multiple variables can be cumbersome (see Chapter 3, Table 3-2 for an 
example of two jointly varied inputs).  Information provided by the SR approach is generally limited to 
bounding estimates of risk based on small deviations and/or plausible ranges of point estimates for 
inputs. Because the point estimate approach does not generate a distribution of risk, SRs cannot provide 
quantitative information about the relative contributions of input variables to the variance in risk or the 
uncertainty in selected percentile of the risk distribution.  This limitation of the SR approach may be 
particularly important if the ranking of input variables may change depending on the percentile range that 
is evaluated. For example, in a probabilistic analysis, the soil ingestion rate variable may contribute most 
to the variability in risk across the entire risk distribution, but the exposure duration may be the driver in 
the high-end (> 90th percentile) of the risk distribution, where the RME risk is defined.  In addition, for 
standard product-quotient risk equations, the SR approach also has difficulty distinguishing the relative 
importance of exposure variables in the risk equation.  Appendix A presents a hypothetical example to 
illustrate why this happens for the common risk equations.  An improvement over the SR approach, 
called Sensitivity Score, involves weighting each ratio by the variance or coefficient of variation of the 
input variable when this information is available.  In general, the most informative sensitivity analysis 
will involve Monte Carlo techniques (see Appendix A, Table A-1).  Potential strengths and weaknesses 
of sensitivity analysis methods may be an important factor in deciding whether or not to conduct a 
probabilistic analysis in Tier 2. 

Once data gaps have been identified, steps may be taken to gather additional data and revise the 
point estimates of risk based on these data.  As with any data collection effort, the data quality objectives 
(DQO) process should be followed to obtain samples appropriate for the risk assessment and sufficient to 
support the remedial decision (U.S. EPA, 1992a, 1993, 1994, 2000a). The deliberation and decision 
cycle (Figure 2-2) should then be reiterated to determine if the refined risk assessment is sufficient to 
support risk management decisions.  The collection of additional data may also provide a compelling 
reason to consider moving to Tier 2 and conducting a PRA.  If, during the PRA discussions, it is 
determined that information from a PRA may influence the risk management decisions, PRA may be 
warranted. This iterative process of collecting data, recalculating point estimates, and reconsidering the 
potential value of PRA may continue until sufficient data are available to support risk management 
decisions, or data collection efforts are not possible due to resource constraints.  For example, soil 
ingestion rate data may be limited to a few studies with small sample sizes, but a new soil ingestion study 
may be prohibitively expensive, time consuming, or difficult to conduct in a manner that will reduce the 
uncertainty in the risk estimate.  Uncertainty due to data quantity is not necessarily a reason to exit the 
tiered process at Tier 1. 
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In cases where there is uncertainty in selecting a probability distribution because of small sample 
sizes, it may be informative to develop a preliminary probability distribution such as a triangular or 
uniform (see Appendix B, Section B.2.0).  These preliminary distributions will contribute to the 
variability in the risk estimate, and can therefore be included in the probabilistic sensitivity analysis. 
Results of Monte Carlo simulations that include one or more preliminary distributions may lead to 
several alternative decisions.  If the sensitivity analysis suggests that the risk estimate is relatively 
insensitive to the variable described with the distribution, then the uncertainty associated with the choice 
of a distribution should not affect the risk management decision process using the tiered approach (e.g., 
choice of RME percentile, derivation of a PRG).  In other words, the choice would be to continue with 
the tiered process. If, however, the variables described by preliminary distribution are important sources 
of variability or uncertainty in the risk estimate, then this information should be presented in the 
scientific management decision point (see Figure 2-2).  The uncertainty may be sufficiently important in 
the risk management decision to warrant additional data collection efforts.  Conversely, it may be 
necessary to exit the tiered process if the uncertainty cannot be reduced.  Although the tiered process may 
be stopped at this point, it can still be informative to present the results from the PRA.  For example, 
information about uncertainty may affect the choice of the percentile used to characterize the RME risk. 
In addition, it may be appropriate to weight the results of the point estimate analysis more heavily in the 
risk management decision when uncertainty in the PRA is high.  Further guidance on appropriate choices 
for distributions based on the information available to characterize variability is given in Appendix B. 

PRA also may be warranted if it would be beneficial to know where on the risk distribution the 
point estimate lies.  An example of this would be a risk estimate that is within the NCP risk range of 
1E-04 to 1E-06.  The assessment may be sufficient to support risk management decisions if it could be 
shown that the point estimate of risk lies sufficiently high in the risk distribution.  For example, a “no 
further action” decision may be strengthened if the point estimate is at the 99th percentile of the risk 
distribution, if risks in lower percentiles of the RME risk range are below the NCP risk range, and if 
there is high confidence in the risk result.  This type of evaluation can be conducted using PRA 
techniques. 

Even if the RME point estimate of risk exceeds the risk level of concern, and PRA is not needed 
to confirm this result, information from a PRA can be helpful in determining a strategy for achieving a 
protective preliminary remediation goal (PRG).  A detailed discussion of the use of PRA in setting 
remediation action levels is given in Chapter 5.  The advantages and disadvantages of the point estimate 
approach and PRA are presented in Chapter 1 (Exhibits 1-5 and 1-6). 

2.3.3 TIER 2 

Tier 2 of the tiered approach to risk assessment will generally consist of a simple probabilistic 
approach such as one-dimensional Monte Carlo analysis (1-D MCA).  A 1-D MCA is a statistical 
technique that may combine point estimates and probability distributions to yield a probability 
distribution that characterizes variability or uncertainty in risks within a population (see Chapter 1). 
Guidance for selecting and fitting distributions is presented in Appendix B.  Typical elements of a Tier 2 
risk assessment, as they relate to higher and lower tiers are presented in Exhibit 2-5.  A more detailed 
discussion of these elements can be found in Chapters 3 and 4, and Appendix A (Sensitivity Analysis). 
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While most of the Tier 2 assessments 
are expected to use 1-D MCA to characterize 
variability in risk, sometimes a 1-D MCA of 
uncertainty may be of interest. For example, 
as suggested in Exhibit 2-5, a probability 
distribution for uncertainty in the arithmetic 
mean or median (i.e., 50th percentile) for 
selected input variables may be specified in a 
1-D MCA to yield a probability distribution 
for uncertainty for the central tendency risk 
estimate.  However, as most Tier 2 
assessments are expected to combine input 
distributions for variability, this guidance 
focuses on 1-D MCA for characterizing 
variability in the risk estimate. 

Decision Alternatives 

Generally, the three main questions to 
consider when determining whether the results 
of a 1-D MCA are sufficient for risk 
management decisions are: (1) What is the 
RME risk range and how does it compare to 
the level of concern?; (2) Where does the 
point estimate risk lie on the risk distribution?; 
and (3) What is the level of confidence in the 
risk estimate?  In Tier 2, similar to the point estimate approach, the level of confidence in a single 
1-D MCA risk distribution is generally addressed in a qualitative or semi-quantitative way.  As discussed 
in Chapter 1 (Section 1.2.4) and Chapter 3 (Section 3.4.1), one should avoid developing input 
distributions to a PRA model that yield a single risk distribution that intermingles, or represents both 
variability and uncertainty.  In Tier 2, the preferred approach for characterizing uncertainty in the risk 
estimate is to perform multiple 1-D MCA simulations (of variability), which uses a different point 
estimate for uncertainty for one or more parameters, combined with probability distributions for 
variability for one or more variables.  Chapter 3 (see Table 3-2 and Figures 3-3 and 3-4) presents an 
example of iterative 1-D MCA simulations using combinations of point estimates characterizing 
uncertainty for two variables.  More advanced PRA techniques such as two-dimensional Monte Carlo 
analysis (2-D MCA), in which distributions for variability and uncertainty are propagated separately 
through an exposure model, can be undertaken in Tier 3 (Appendix D). 

E 2-5 

TYPICAL ELEMENTS OF T ISK A

 - risk 

Also, risk 

XHIBIT 

IER 2 R SSESSMENT 

Analysis Tool - 1-D MCA 

Variability Modeling - full characterization of 

variability in risk using PDF s or PM Fs for input 

variables 

Uncertainty Modeling - semi-qu antitative e stimate 

of uncertainty using iterative 1-D M CA simulations 

of varia bility, or a sin gle 1-D M CA of unc ertainty in 

the CT E risk 

Sensitivity Analysis  - varying multiple variables 

with probability distributions gives a quantitative 

ranking (e.g., correlation coefficient) of the relative 

con tribution s of exp osure pathw ays and variab les to 

CT E or R M E risk 

Risk-Based Decision-Making Output

distribu tion for v ariab ility:  Does the risk level of 

concern fall within an  acceptable range on the risk 

distribution (i.e., RME range)?  

distribu tion for u ncerta inty: What is the 90% 

confidence interval for the CTE risk? 

In order to use a PRA to determine if risks are unacceptable and to develop preliminary 
remediation goals (PRGs) that are protective of the RME individual (see Chapter 5), a single point from 
the RME risk range should be selected (e.g., 95th percentile). In general, this can be accomplished by 
selecting an estimate within the RME risk range based on the level of confidence in the output of the 
1-D MCA.  Uncertainty in risk estimates may be quantified or reduced by considering site-specific 
factors, biological data, and toxicity data.  Stakeholders can provide useful information about uncertain 
variables and sources for site-specific data.  More detailed guidance for choosing a percentile value 
within the RME range is provided in Chapter 7. 
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The evaluation of the risk assessment in a 1-D MCA in Tier 2 will yield one of two outcomes: 
(1) sufficient for risk management decisions; or (2) insufficient for risk management decisions.  If 
determined to be sufficient, the risk manager can exit the tiered approach and complete the RI/FS 
process. The results of a 1-D MCA may support a decision for “no further action” or for a “remedial 
action.” A “no further action” decision may result when the RME risk range (or a specified point in the 
RME risk range) is clearly below the level of concern (e.g., Hazard Index=1) and confidence in the risk 
distribution is high.  A decision for remedial action may result when a national standard (e.g., MCLs 
applied to groundwater) may be exceeded, or when the RME risk range (or a specified point in the RME 
risk range) is clearly above the level of concern and confidence in the risk distribution is high.  The 
decision for a specific remedial action involves consideration of the NCP’s nine evaluation criteria for 
remedial decisions (U.S. EPA, 1990; see Chapter 1) and other site-specific factors. 

An alternative conclusion at the end of a Tier 2 analysis would be that the results of the 
1-D MCA are not sufficient for risk management decisions.  There are several factors that might support 
this conclusion:   

(1) The RME risk range is close to the NCP risk range and confidence in the risk distribution is 
low. In this case, the risk manager might decide to not exit the tiered approach, and instead 
continue taking appropriate steps to increase the confidence in the risk estimate. 

(2) Uncertainty is high and it is believed that more than one variable is a major contributor to the 
uncertainty in the risk estimate.  It can be difficult to explore uncertainty in more than one 
variable using 1-D MCA simulations of variability, even using iterative approaches discussed 
in Chapter 3 (Section 3.4.1). 

(3) Results of the point estimate risk assessment differ significantly from the results of the 
1-D MCA.  While the RME risk estimates are not expected to be identical, typically the 
RME point estimate will correspond with a percentile value within the RME range (i.e, 90th 

to 99.9th percentile) of the risk distribution.  If the RME point estimates fall outside this 
range, further steps may be warranted to evaluate the choices for input variables—both the 
RME point estimates, and the probability distributions and parameters (including truncation 
limits) for the 1-D MCA. 

The deliberation/decision cycle (Figure 2-2) between Tier 2 and Tier 3 is similar to the cycle 
between Tier 1 and 2 and includes discussing the Tier 2 probabilistic sensitivity analysis, identifying 
data gaps, communicating with stakeholders (e.g., to obtain site-specific information), discussing the 
potential value of further analysis with probabilistic methods, work planning, and additional data 
collection. As with the Tier 1 assessment, additional data collection should follow the DQO process 
(U.S. EPA, 1992a, 1993, 1994, 2000a) and point estimates of risk should be revisited with the new data. 
The deliberation/decision cycle is an iterative process in which the level and complexity of the analysis 
increases until the scope of the analysis satisfies decision-making needs.  This iterative process should 
continue until sufficient data are available to support risk management decisions. As in all tiers, 
stakeholder involvement should be encouraged.  Once a 1-D MCA for variability or uncertainty is 
completed and is available for review and interpretation, a stakeholder meeting should be convened. 
Interested stakeholders should be given the opportunity to review the 1-D MCA and provide comments. 
Communication issues specific to PRA are discussed in Chapter 6 (Risk Communication). 
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In addition to identifying data gaps, consideration for a refined 1-D MCA or more advanced PRA 
techniques may begin as a means of determining what benefits they may confer to the decision-making 
process. If, during further discussions of PRA, it is determined that information from a more advanced 
PRA may influence the risk management decision, the use of an advanced PRA may be warranted.  If 
additional data have been collected, the point estimate and 1-D MCA should be refined. Specifically, an 
advanced PRA may be warranted if it would be beneficial to characterize uncertainty in more than one 
variable at a time.  A 2-D MCA can simultaneously characterize variability and uncertainty in multiple 
variables and parameter estimates.  The decision to employ such advanced methods should be balanced 
with considerations of resource constraints and the feasibility of reducing uncertainty in a given variable. 
A detailed discussion of advanced PRA methods, including 2-D MCA, is provided in Appendix D. 

2.3.4 TIER 3 

Tier 3 of the tiered approach to risk assessment consists of advanced PRA methods, such as 
2-D MCA, Microexposure Event Analysis 
(MEE), geostatistical analysis of concentration 
data, and Bayesian statistics.  Typical elements 
of a Tier 3 risk assessment are presented in 
Exhibit 2-6.  A more detailed discussion of 
these elements is given in Appendix D.  As in 
other tiers, Tier 3 includes an iterative process 
of deliberation and decision making in which 
the level and complexity of the analysis 
increases until the scope of the analysis satisfies 
decision-making needs.  As in all tiers, 
stakeholder involvement is encouraged. 

Generally, the various elements of the 
deliberation/decision cycle for Tier 3 are the 
same as those for Tier 1 and 2 (Figure 2-2).  An 
advanced PRA would be conducted and made 
available for review to the risk manager and 
stakeholders. The risk manager must determine 
if the results of the advanced PRA are sufficient 
for risk management decision making.  Issues to 
consider when making this determination are 
similar to those identified for evaluating point 
estimate risk results and 1-D MCA results, and 
focus on evaluating the sources and magnitude 
of uncertainty in relation to the established risk 
level of concern.  If the results are sufficient for risk management decisions, the risk manager may exit 
the tiered approach and complete the RI/FS process.  If the results are not found to be sufficient for risk 
management decisions, data gaps should be identified and if additional data are collected, all stages of 
the risk assessment, including the advanced PRA, the 1-D MCA, and the point estimate risk assessment, 
should be refined.  Alternatively, additional advanced PRA methods may be explored.  Refer to 
Appendix D for a discussion of more advanced PRA techniques.  Overall, analysis should continue 
within Tier 3 until sufficiently informed risk management decisions can be made. 

E 2-6 

TYPICAL ELEMENTS OF T ISK A

 - risk 

limits—
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XHIBIT 

IER 3 R SSESSMENT 

Analysis Tool - 2-D MC A, ME E, geostatistics, and 

Bayesian statistics 

Variability Modeling - full characterization using 

PDFs or PM Fs for input variables 

Uncertainty Modeling - quantitative, segregating 

unce rtainty from variab ility, and asso ciated with 

multiple  variab les simulta neo usly 

Sensitivity Analysis  - varying parameters of 

probability distributions to identify and rank order 

para mete r unce rtainty with the same sensitivity 

analysis m ethod s used for T ier 2 (se e Ap pen dix A ). 

Also , explo re altern ative ch oices of pro bab ility 

distribu tions an d sou rces o f mod el unce rtainty. 

Risk-based Decision-M aking Criteria

distribution for variability with confidence 

Does the risk level of concern fall within an 

acceptable range on the risk distribution i.e., RME 

range), and with an acceptable level of 

uncertainty? 
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2.3.5 FLEXIBILITY IN DEFINING TIERS 

The assignment of specific analytical tools to Tiers 1, 2, and 3 (Figure 2-1 and Exhibits 2-4 
through 2-6) results in generalizations that may not be applicable to all site assessments.  Upon 
completion of the deliberation phase between Tier 1 and Tier 2, the conclusion may be that analytical 
tools in Tier 3 would be applicable and beneficial for addressing decision making issues. For example, 
geospatial modeling may be beneficial for improving estimates of uncertainty in the exposure point 
concentration or in designing field sampling plans to further reduce uncertainty.  An improved estimate 
of the 95% UCL from geospatial analysis (shown in Exhibit 2-6 as a Tier 3 analytical tool) would then be 
integrated into a Tier 2 assessment, or the complete distribution for uncertainty in the mean concentration 
could be incorporated into a 2-D MCA in Tier 3.  Flexibility in defining the level of complexity of the 
analysis used in a given tier is essential to accommodating the wide range of risk assessment issues likely 
to be encountered. An important benefit gained from use of the tiered approach is to ensure a 
deliberative process in the advancement of the assessment to higher levels of complexity.  It is far more 
important that a deliberative process take place and be documented, than it is to constrain a set of 
analytical tools to a specific tier. 
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CHAPTER 3 

USING PROBABILISTIC ANALYSIS IN HUMAN HEALTH ASSESSMENT 

3.0 INTRODUCTION 

This chapter outlines how probabilistic analysis may be applied to human health risk assessments 
in the Environmental Protection Agency’s (EPA) Superfund program.  The paradigm for human health 
risk assessment as described in EPA’s Risk Assessment Guidance for Superfund (U.S. EPA, 1989), 
includes data collection/evaluation in addition to exposure and toxicity assessment and risk 
characterization. Although the strategies and methods used in collecting and analyzing data can 
significantly impact the uncertainty in a risk estimate, they are issues relevant to risk assessment in 
general, and are addressed in other guidance documents, such as EPA’s Guidance for Data Useability in 
Risk Assessment (U.S. EPA, 1992b).  RAGS Volume 3: Part A focuses on a tiered approach for 
incorporating quantitative information on variability and uncertainty into risk management decisions. 

3.1 CHARACTERIZING VARIABILITY IN EXPOSURE VARIABLES 

Exhibit 3-1 gives the general equation 
used for calculating exposure, often expressed as 
an average daily intake.  In a point estimate 
approach, single values (typically a mixture of 
average and high-end values) are input into the 
equation.  In probabilistic risk assessment (PRA), 
the only difference is that a probability 
distribution, rather than single value, is specified 
for one or more variables.  A Monte Carlo 
simulation is executed by repeatedly selecting 
random values from each of these distributions 
and calculating the corresponding exposure and 
risk. For the majority of PRAs, it is expected that 
probability distributions will be used to 
characterize inter-individual variability, which 
refers to true heterogeneity or diversity in a 
population. Thus, variability in daily intake, for 
example, can be characterized by combining 
multiple sources of variability in exposure, such as ingestion rate, exposure frequency, exposure 
duration, and body weight.  Variability in chemical concentrations (Chapter 5 and Appendix C) and the 
toxicity term in ecological risk assessment (Chapter 4) may also be considered in risk calculations. 

E 3-1 

GENERAL E E

where, 

I = 

C = 

CR = 

EF = 

ED = 

BW = body weight 

AT = 

XHIBIT 

QUATION FOR XPOSURE

      Eq. 3 -1 

daily intake 

contaminant concentration 

contact rate (ingestion, inhalation, 

derm al con tact) 

exposure frequency 

exposure duration 

averaging time 
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D C 3 

95% UCL for mean n) was 

time. th percentile (see below), which is a 

th

95th  - The number in a distribution that is greater than 95% of the other values of the distribution, and less 

interpolated from among two values. 

Arithmetic Mean

It can be 

Credible Interval Credible intervals may 
th

CTE Risk - The estimated risk corresponding to the central tendency exposure. 

of occurrence for a random independent variable. Each value c
x c. 

Frequency Distribution/Histogram
from a population. 
across that range. 

High-end Risk
th percentile. 

Low-end Risk - A risk descriptor representing the low-end, or lower tail of the risk distribution, such as the 5th or 25th 

percentile. 

.Parameter
For example, a truncated normal probability distribution may 

that point. 

1989). 
still within the range of possible exposures. 
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XHIBIT 

EFINITIONS FOR HAPTER 

 - The one-sided 95% upper confidence limit for a population mean; if a sample of size (
repeatedly drawn from the population, the 95% UCL will equal or exceed the true population mean 95% of the 

It is a measure of uncertainty in the mean, not to be confused with the 95
measure of variability.  As sample size increases, the difference between the UCL for the mean and the true mean 
decreases, while the 95  percentile of the distribution remains relatively unchanged. 

 percentile
than 5% of the values.  When estimated from a sample, this quantity may be equal to an observed value, or 

 (AM) - A number equal to the average value of a population or sample.  Usually obtained by summing 
all the values in the sample and dividing by the number of values (i.e., sample size). 

Assessment Endpoint - The specific expression of the population or ecosystem that is to be protected.  
characterized both qualitatively and quantitatively in the risk assessment. 

Central Tendency Exposure (CTE) - A risk descriptor representing the average or typical individual in the population, 
usually considered to be the arithmetic mean or median of the risk distribution. 

 - A range of values that represent plausible bounds on a population parameter.  
describe a parameter of an input variable (e.g., mean ingestion rate) or output variable (e.g., 95  percentile risk). 
The term is introduced as an alternative to the term confidence interval when the methods used to quantify 
uncertainty are not based entirely on statistical principles such as sampling distributions or Bayesian approaches. 
For example, multiple estimates of an arithmetic mean may be available from different studies reported in the 
literature—using professional judgment, these estimates may support a decision to describe a range of possible 
values for the arithmetic mean. 

Cumulative Distribution Function (CDF) - Obtained by integrating the PDF or PMF, gives the cumulative probability 
 of the function is the probability that a random 

observation  will be less than or equal to 

Exposure Point Concentration (EPC) - The average chemical concentration to which receptors are exposed within an 
exposure unit.  Estimates of the EPC represent the concentration term used in exposure assessment. 

 - A graphic (plot) summarizing the frequency of the values observed or measured 
It conveys the range of values and the count (or proportion of the sample) that was observed 

 - A risk descriptor representing the high-end, or upper tail of the risk distribution, usually considered to 
be equal to or greater than the 90

 - A value that characterizes the distribution of a random variable.  Parameters commonly characterize the 
location, scale, shape, or bounds of the distribution.  
be defined by four parameters: arithmetic mean [location], standard deviation [scale], and min and max [bounds]. 
It is important to distinguish between a variable (e.g., ingestion rate) and a parameter (e.g., arithmetic mean 
ingestion rate). 

Probability Density Function (PDF) - A function representing the probability distribution of a continuous random 
variable.  The density at a point refers to the probability that the variable will have a value in a narrow range about 

Probability Mass Function (PMF) - A function representing the probability distribution for a discrete random variable. 
The mass at a point refers to the probability that the variable will have a value at that point. 

Reasonable Maximum Exposure (RME) - The highest exposure that is reasonably expected to occur at a site (U.S. EPA, 
The intent of the RME is to estimate a conservative exposure case (i.e., well above the average case) that is 
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E 3-2 

D C 3— Continued 

their relative contributions to model output variability and uncertainty. Common metrics of sensitivity include: 

< - A statistic r that measures the strength and direction of linear 
(r2) is the 

< - Ratio of the change in model output per unit change in an input variable; also called 
elasticity. 

< - A “distribution free” or nonparametric statistic r that 
measures the strength and direction of association between the ranks of the values (not the values 

r2 . 

concern”. 

XHIBIT 

EFINITIONS FOR HAPTER 

Sensitivity Analysis - Sensitivity generally refers to the variation in output of a model with respect to changes in the 
values of the model’s input(s).  Sensitivity analysis can provide a quantitative ranking of the model inputs based on 

Pearson Correlation Coefficient
association between the values of two quantitative variables.  The square of the coefficient 
fraction of the variance of one variable that is explained by the variance of the second variable. 

Sensitivity Ratio

Spearman Rank Order Correlation Coefficient

themselves) of two quantitative variables.  See Pearson (above) for 

Target Population - The set of all receptors that are potentially at risk.  Sometimes referred to as the “population of 
A sample population is selected for statistical sampling in order to make inferences regarding the target 

population (see Appendix B, Section B.3.1, Concepts of Populations and Sampling). 
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Figure 3-1 shows a hypothetical example of an input distribution for drinking water ingestion 
rate. Assume that survey data for drinking water ingestion rates were compiled in order to select and fit a 
probability distribution.  One of the first steps in exploring the data set may be to plot a frequency 
distribution. In the graph, the height of the bars (the y-axis) represents the relative frequency of ingestion 
rates in the population and the spread of the bars (the x-axis) is the varying amounts of water ingested 
(L/day). Since ingestion rate is a continuous random variable, the probability distribution can also be 
represented graphically with a probability density function (PDF).  Assume that the following parameters 
are estimated from the sample: arithmetic mean=1.36, standard deviation=0.36, geometric mean=1.31, 
and geometric standard deviation=1.30.  These parameter estimates may be used to define a variety of 
probability distributions, including a 2-parameter lognormal distribution.  The fit of the lognormal 
distribution can be evaluated by visual inspection using the PDF given by Figure 3-1, or by a lognormal 
probability plot (see Appendix B). 

The y-axis for a PDF is referred to as the probability density, where the density at a point on the 
x-axis represents the probability that a variable will have a value within a narrow range about the point. 
This type of graph shows, for example, that there is a greater area under the curve (greater probability 
density) in the 1-2 L/day range than 0-1 L/day or 2-3 L/day.  That is, most people reported consuming 
1-2 L/day of drinking water.  By selecting a lognormal distribution to characterize inter-individual 
variability, we can state more precisely that 1 L/day corresponds to the 15th percentile and 2 L/day 
corresponds to the 95th percentile, so approximately 80% (i.e., 0.95–0.15=0.80) of the population is likely 
to consume between 1 and 2 L/day of drinking water. 

Figure 3-1.  Example of a frequency distribution for adult drinking water ingestion rates, overlaid by 

a grap h of the p rob ability de nsity functio n (PD F) for a  logno rmal d istribution define d by the  samp le 

statistics.  The distribution represents inter-individual variability in water intakes and is characterized 

by two parameters.  Typically, the geometric mean (GM ) and geometric standard deviation (GSD), or 

the arithmetic mean (AM) and arithmetic standard deviation (SD) are presented to characterize a 

lognormal distribution. 
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3.1.1 DEVELOPING DISTRIBUTIONS FOR EXPOSURE VARIABLES 

When site-specific data or representative surrogate data are available, a probability distribution 
can be fit to that data to characterize variability.  Appendix B describes how to fit distributions to data, 
how to assess the quality of the fit and discusses topics such as the sensitivity of the tails of the 
distribution to various PDFs, and correlations among variables.  Many of the issues discussed below 
regarding the use of site-specific data or surrogate data are relevant to both point estimate risk assessment 
and PRA. 

For the majority of the exposure variables, such as exposure duration, water intake rates, and 
body weight, site-specific data will not be available.  The risk assessor will have to either select a 
distribution from existing sources, or develop a distribution from published data sets and data summaries. 
Examples of sources for these distributions and data sets are EPA’s Exposure Factors Handbook (U.S. 
EPA, 1997a,b,c), Oregon Department of Environmental Quality’s Guidance for Use of Probabilistic 
Analysis in Human Health Risk Assessment (Oregon DEQ, 1998), and the scientific literature.  An 
appropriate PDF should be determined in collaboration with the regional risk assessor.  The process by 
which PDFs are to be selected and evaluated should be described in the workplan.  EPA’s Superfund 
program is in the process of developing a ranking methodology to evaluate data representativeness 
relevant to various exposures scenarios. Following peer review and project completion, the results will 
be posted on EPA Superfund web page. 

L	 At this time, EPA does not recommend generic or default probability 
distributions for exposure variables. 

Regardless of whether a PDF is derived from site-specific measurements or obtained from the 
open literature, the risk assessor should carefully evaluate the applicability of the distribution to the 
target population at the site.  The distribution selected should be derived from the target population or 
from a surrogate population that is representative of the target population at the site.  For example, a 
distribution based on homegrown vegetable consumption in an urban population would not be 
representative for a farming population in the Midwest.  If such a distribution were to be used, (and no 
other data were available), the uncertainty and bias that this PDF would impart to the risk estimate should 
be communicated to the risk decision makers.

 For purposes of risk management decision making, the significance of not having site-specific 
data should be evaluated in the context of representativeness and sensitivity analysis.  If published data 
are representative of the potentially exposed population, then site-specific data may be unnecessary. For 
example, body weights of children and adults have been well studied from national surveys and can 
generally be considered reasonable surrogates for use in site risk assessments.  Furthermore, even if a 
variable is likely to vary among different exposed populations, it may not contribute greatly to the 
variance or uncertainty in risk estimates.  In this case, surrogate data may also be used with confidence in 
the risk estimate.  In addition, the PRA may be simplified by using point estimates instead of probability 
distributions for the “less sensitive” exposure variables.  In part, the decision to use a point estimate in 
lieu of a probability distribution must balance the benefit of simplifying the analysis and the 
communication process (see Chapter 6), against the reduction (however small) in the variance of the risk 
distribution.  The utility of sensitivity analysis in identifying the important factors in a risk estimate is 
discussed further below and in Appendix A. 
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It is also important to evaluate the sample design and sample size when deciding to apply a 
distribution to a specific site.  Depending on the situation, a very large data set derived from a national 
population may be more useful than a site-specific data set derived from a small, incomplete, or poorly 
designed study.  Appendix B provides additional discussion on how to evaluate the data and studies that 
form the basis for a distribution.  Often, the question arises regarding the appropriateness of combining 
data sets to derive a PDF.  Before combining data sets, a careful evaluation should be made of the 
representativeness of the study populations, and the similarity in study designs and quality.  In addition, 
statistical tests may be used to determine whether or not data sets are compatible with a common 
probability distribution (Hedges and Olkin, 1985; Stiteler et al., 1993).  In general, risk assessors should 
be reluctant to combine data sets for the purpose of developing a PDF that characterizes variability.  Due 
to the number of potential differences inherent in the study design, alternative data sets may provide a 
better measure of uncertainty in the probability distribution and parameter estimates, rather than a means 
of increasing the overall sample size for defining a single probability distribution.  For example, if 
multiple data sets are available, a more informative approach may be to incorporate each data set into the 
PRA in a separate analysis, as a form of sensitivity analysis on the choice of alternative data sets. 

Each probability distribution used in a Monte Carlo Analysis (MCA) should be presented with 
sufficient detail that the analysis can be reproduced (see Chapter 1, Section 1.4, Condition #2). This 
information may be presented in tabular and/or graphical summaries.  Important information for a 
summary table would include a description of the distribution type (e.g., lognormal, gamma, etc.), the 
parameters that define the distribution (e.g., mean and standard deviation, and possibly upper and lower 
truncation limits for a normal distribution), units, and appropriate references (see Table 3-6, for 
example). The table should also indicate whether the distribution describes variability or uncertainty. 
The report should discuss the representativeness of the data and why a particular data set was selected if 
alternatives were available.  Graphical summaries of the distributions may include both PDFs and 
cumulative distribution functions (CDFs), and should generally be used to document distributions that 
characterize site-specific data. 

3.1.2 CHARACTERIZING RISK USING PRA 

Quantitative risk characterization involves evaluating exposure (or intake) estimates against a 
benchmark of toxicity, such as a cancer slope factor or a noncancer hazard quotient.  The general 
equation used for quantifying cancer risk from ingestion of contaminated soil is shown in Exhibit 3-3, 
and the equation for noncarcinogenic hazard is shown in Exhibit 3-4.  A Hazard Index is equal to the sum 
of chemical-specific Hazard Quotients. 

At this time, this guidance does not propose probabilistic approaches for dose-response in human 
health assessment and, further, discourages undertaking such activities on a site-by-site basis. Such 
activities require contaminant-specific national consensus development and national policy development 
(see Chapter 1, Section 1.4.1).  Chapter 4 discusses methods for applying probabilistic approaches to 
ecological dose-response assessment.  

The probabilistic calculation of risk involves random sampling from each of the exposure 
variable distributions. The output of this process is a distribution of risk estimates.  When the calculation 
of risk (or any other model endpoint) is repeated many times using Monte Carlo techniques to sample the 
variables at random, the resulting distribution of risk estimates can be displayed in a similar fashion.  The 
type of summary graph used to convey the results of a MCA depends on the risk management needs.  For 
example, Chapter 1, Figure 1-3 shows how a PDF for risk might be used to compare the probabilistic 
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estimate of the RME risk (e.g., 95th percentile) with a risk level of concern.  This type of summary can 
also be used to effectively illustrate the relationship between the RME risk determined from point 
estimate and probabilistic approaches.   

E 3-3 

E CANCER RISK 

where, 

C = ED = 

IR = BW = body weight (kg) 

CF = conversion factor (1E-06 kg/mg) AT = 

EF = exposure frequency (days/year) CSF = -1 

E 3-4 

E NONCANCER HAZARD Q

= 

RfC = mg/m3) 

XHIBIT 

QUATION FOR 

Example for Soil Ingestion 

concentration in soil (mg/kg) exposure duration (yea rs) 

soil ingestion rate  (mg/d ay) 

averaging time (d ays) 

oral cance r slope facto r (mg/k g-day)

XHIBIT 

QUATION FOR UOTIENT 

where , 

RfD reference d ose, o ral or d erma lly adjusted (m g/kg-day) 

reference concentration, inhalation (

In addition, the CDF can be especially informative for illustrating the percentile corresponding to 
a particular risk level of concern (e.g., cancer risk of 1E-04 or Hazard Index of 1).  Figure 3-2 illustrates 
both the PDF and CDF for risk for a hypothetical scenario.  Factors to consider when applying the PDF 
or CDF are discussed in Chapter 1, Exhibit 1-3.  When in doubt about the appropriate type of summary to 
use, both the PDF and CDF should be provided for all risk distributions.  At a minimum, each summary 
output for risk should highlight the risk descriptors of concern (e.g., 50th, 90th, 95th, and 
99.9th percentiles). It can also be informative to include the results of the point estimate analysis—the 
risks corresponding to the central tendency exposure (CTE) and the reasonable maximum exposure 
(RME). 
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Figure 3-2.  Hypothetical PRA results showing a PDF (top panel) and CDF (bottom panel) for 

cancer risk with selected summary statistics.  The CDF rises to a maximum cumulative 

probability of 1.0.  The CDF clearly shows that the level of regulatory concern chosen for this 

example (1E-06) falls between the 90th and 95th percentiles of the risk distribution. 
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3.2 ROLE OF THE SENSITIVITY ANALY SIS 

Prior to conducting a PRA, it is worthwhile to review several points pertaining to the sensitivity 
analysis.  As shown in Chapter 2 (Figures 2-1 and 2-2), sensitivity analysis can play an important role in 
decision making at each tier of the tiered process.  Beginning with Tier 1, a point estimate for risk should 
be calculated prior to conducting a PRA.  Based on the results of the point estimate, the risk assessor and 
risk decision makers should determine whether a probabilistic analysis will offer additional benefit.  One 
factor in this decision may be the results of a sensitivity analysis.  A primary objective of the sensitivity 
analysis is to determine which variables and pathways most strongly influence the risk estimate.  At 
many Superfund sites, an estimate of cumulative risk considers contamination in multiple media, moving 
through multiple pathways and interacting with a number of receptors.  Depending on the complexity of 
the site, and the modeling approaches, a risk assessment may involve one exposure pathway and few 
variables, or multiple pathways with many variables (e.g., multimedia fate and transport models). 
However, resources and time are often limited.  The sensitivity analysis is invaluable in focusing these 
limited resources on the most influential variables and pathways.  

Several methods for conducting sensitivity analysis are described in Appendix A.  It is important 
to note that when a sensitivity analysis is performed and the major variables are identified, this does not 
mean that the less influential pathways and variables should be eliminated from the risk assessment.  It 
means that because they are not major contributors to the variability or uncertainty in risk, they can be 
described with point estimates without affecting the risk management decision.  If distributions are 
readily available for these less influential variables, one may use distributions.  The key goal is to provide 
a comprehensive risk characterization that is scientifically credible and sufficient for risk decision 
making.  The time and effort required to achieve various levels of complexity should be weighed against 
the value of the information provided to the risk managers.  

Additionally, if a variable is specified as influential in the sensitivity analysis, this does not 
automatically mean that a distribution has to be developed for this variable.  If the risk assessor feels that 
data are simply not sufficient from which to develop a distribution, then a plausible point estimate can be 
used. The risk assessor should be aware of a possible problem arising from using point estimates in the 
absence of data adequate to support a distribution.  If a variable has the potential to significantly impact 
the risk outcome, and a very high-end or low-end point estimate is used in the PRA, this has the potential 
to right-shift or left-shift the final distribution of risk.  Even though there might not be enough data to 
develop a distribution of variability for an influential variable, it would be prudent to communicate the 
importance of this data gap to the risk decision makers, and perhaps run multiple simulations with several 
plausible input distributions for that variable.  Communication of this uncertainty may persuade the risk 
decision makers to collect additional data to better define the variable. 
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3.3 EXPOSURE POINT CONCENTRATION TERM 

A brief discussion of the concentration term is provided below.  A more complete discussion of 
the concentration term in PRA is provided in Appendix C.  The reader is also referred to Chapter 5 on 
development of PRGs. 

The major source of uncertainty in Superfund risk assessments is often incomplete knowledge of 
the concentration of one or more chemicals in various exposure media.  In any risk assessment, the 
derivation of the concentration term will reflect assumptions about: (1) properties of the contaminant, 
(2) the spatial and temporal variability in contamination, (3) the behavior of the receptor, and (4) the time 
scale of the toxicity of the chemical(s).  

Contaminant concentrations contacted by a receptor are likely to vary depending on the spatial 
variability of contamination and the movements of the receptor.  Different individuals may be exposed to 
different concentrations based on inter-individual variability in activity patterns.  If information regarding 
activity patterns is unavailable, receptors are typically assumed to exhibit random movement such that 
there is an equal probability of contacting any area within the exposure unit (EU).  An EU is defined as 
the geographical area in which a receptor moves and contacts contaminated medium during the period of 
the exposure duration. In addition, in Superfund risk assessments, the toxicity criteria are often based on 
health effects associated with chronic exposure (e.g., lifetime risk of cancer following chronic daily 
intake over a period of 30 years).  Hence, the most appropriate expression for the concentration term, for 
the majority of risk assessments, is one that characterizes the long-term average exposure point 
concentration within the EU.  

L	 The most appropriate expression of the exposure point concentration term 
for chronic exposure will characterize the long-term average concentration 
experienced by a receptor within the exposure unit. 

In point estimate risk assessments, the exposure point concentration term is usually calculated as 
the 95% upper confidence limit (95% UCL) of the arithmetic mean because of the uncertainty associated 
with estimating the true (i.e., population) mean concentration at a site.  If the sampling density is sparse 
relative to the size of the EU, the uncertainty may be high due to the relatively small number of 
measurements available to estimate the mean concentration within the EU.  The decision to use the upper 
confidence limit to define the concentration term introduces a measure of protectiveness by reducing the 
chance of underestimating the mean.  Although there will be situations in which modeling variability in 
concentration will be the appropriate choice (e.g., non-random movement within an EU, acute exposure 
events, migration of groundwater contaminant plume, migration of fish, etc.), in most cases, 
characterization of the concentration term will focus on uncertainty.  Appendix C provides a more 
complete discussion on characterizing both variability and uncertainty in the concentration term. 
Table 3-1 summarizes a number of appropriate methods for characterizing uncertainty in the parameter of 
an exposure variable, such as the arithmetic mean of the concentration term. 
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3.4 CHARACTERIZING UNCERTAINTY IN EXPOSURE VARIABLES 

Uncertainty is described as a lack of knowledge about factors affecting exposure or risk.  To 
evaluate regulatory options, risk assessors are expected to translate the available evidence, however 
tentative, into a probability of occurrence of an adverse health effect.  Data from a sample or surrogate 
population are used to develop estimates of exposure and risk in a specific target population (see 
Section 3.1.4 and Appendix B, Section B.3.1).  This extrapolation requires assumptions and inferences 
that have inherent strengths and limitations, and may bias the outcome of the risk estimate.  For example, 
a common assumption in risk assessments for carcinogens is that a contaminant concentration within the 
boundaries of a hazardous waste site represents the concentration that a receptor is exposed to throughout 
the period of exposure, with the corresponding dose averaged over the course of a lifetime.  This 
assumption may be conservative (i.e., result in overestimation of exposure) if it is unlikely that receptors 
will be exposed at the hazardous waste site for the entire exposure duration.  It is incumbent on the risk 
assessor to clearly present the rationale for the assumptions used in a risk assessment, as well as their 
implications and limitations.    

U.S. EPA guidance, including the Exposure Assessment Guidelines (U.S. EPA, 1992a), Exposure 
Factors Handbook (U.S. EPA, 1997a,b,c), and Guiding Principles for Monte Carlo Analysis (U.S. EPA, 
1997d) have classified uncertainty in exposure assessment into three broad categories: 

(1) 	Parameter uncertainty - uncertainty in values used to estimate variables of a model; 
(2) 	Model uncertainty - uncertainty about a model structure (e.g., exposure equation) or intended 

use; and 
(3) 	Scenario uncertainty - uncertainty regarding missing or incomplete information to fully 

define exposure. 

Each source of uncertainty is described in detail below, along with strategies for addressing them in 
PRA. 

3.4.1 PARAMETER UNCERTAINTY 

Parameter uncertainty may be the most readily recognized source of uncertainty that is quantified 
in site-specific risk assessments at hazardous waste sites.  Parameter uncertainty can occur in each step of 
the risk assessment process from data collection and evaluation, to the assessment of exposure and 
toxicity. Sources of parameter uncertainty may include systematic errors or bias in the data collection 
process, imprecision in the analytical measurements, and extrapolation from surrogate measures to 
represent the parameter of interest.  For example, soil data collected only from the areas of highest 
contamination, rather than the entire area that a receptor is expected to come into contact, will result in a 
biased estimate of exposure.  

In general, parameter uncertainty can be quantified at any stage of the tiered process, including 
point estimate analysis (Tier 1), one-dimensional Monte Carlo analysis (1-D MCA) (Tier 2), and two-
dimensional Monte Carlo analysis (2-D MCA) (Tier 3).  In the point estimate approach, parameter 
uncertainty may be addressed in a qualitative manner for most variables.  For example, the uncertainty 
section of a point estimate risk assessment document might state that an absorption fraction of 100% was 
used to represent the amount of contaminant in soil absorbed from the gastrointestinal (GI) tract, and as a 
result, the risk estimate may overestimate actual risk.  In addition, a sensitivity analysis may be 
performed, wherein one input variable at a time is changed, while leaving the others constant, to examine 
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the effect on the outcome.  In the case of absorption from the GI tract, different plausible estimates of the 
high-end, or RME absorption fraction might be used as inputs to the risk equation.  The differences in the 
risk estimates would reflect uncertainty in the RME absorption fraction.  

Quantitative approaches for characterizing parameter uncertainty in exposure variables in a 
Monte Carlo simulation are summarized in Table 3-1.  If uncertainty in only a few parameter values is of 
interest, multiple 1-D MCA simulations can yield the same results as a 2-D MCA simulation, but without 
the time and effort of a 2-D MCA.  An example illustrating this concept is given in Table 3-2.  With 
multiple 1-D MCA simulations, variability is characterized in one or more variables using probability 
distributions for variability (PDFv’s), and uncertainty in a parameter is characterized with a series of 
different point estimates from a probability distribution for uncertainty (PDFu) (e.g., 95% lower 
confidence limit LCL [95% LCL], sample mean, and 95% UCL).  In a 2-D MCA simulation, variability 
is characterized in one or more variables using PDFv’s, and uncertainty in one or more parameters is 
characterized with PDFu’s.  With both approaches, the influence of the parameter uncertainty can be 
presented as a credible interval or confidence interval (CI) around the risk distribution, depending on 
how the PDFu’s are defined.  When only a few sources of parameter uncertainty are quantified, multiple 
1-D MCA simulations are preferred over a 2-D MCA because the approach is easier to use and 
communicate.  However, if the goal is to explore the effect that many sources of parameter uncertainty 
may have on the risk estimates simultaneously, a 2-D MCA is preferred.  Iterative 1-D MCA simulations 
with different combinations of confidence limits may be impractical. 

Table 3-1.  M ethod s for Charac terizing P aram eter U ncerta inty with M onte C arlo S imulatio ns. 

Approach Example of M odel Input M ethod Example of M odel Output 

Single Point 

Estimate

 • 95% UCL 1-D MCA PDFv1 for risk, calculated using the 95% 

UCL for one parameter. 

Multiple Point 

Estimates

 • 95% LCL

 • sample mean 

• 95% UCL 

1-D MCA Three PD Fv’s for risk, representing the 

90%  CI for each percentile of the risk 

distribution.2  The 90 % C I only ac counts 

for uncertainty in a single parameter (not 

multiple parameters). 

Par ame tric 

PDFu1 

PDF u for the mean based on the 

sampling distribution, derived from 

a Student’s t-distribution. 

2-D MCA One PDF v for risk with confidence 

intervals at each percentile of the risk 

distribu tion.  T he CI reflects uncerta inty in 

one or m ore parameters. 

No n-parame tric 

PDFu 

PDFu for the mean based on 

boo tstrap resamp ling methods. 

2-D MCA Same as parametric probability distribution 

for unc ertainty. 

1Probability distribution for uncertainty (PDFu) and probability distribution for variability (PDFv). 
2The 95% UCL for the concentration term represents a 1-sided confidence interval (CI), meaning there is a 95%  probability that 
the value is greater than or equal to the mean.  Similarly, the 95% LCL would represent the 1-sided CI in which there is a 95% 
probability that the value is less than or equal to the mean.  Both values are percentiles on the probability distribution for 
uncertainty (PDFu), also called the sampling distribution for the mean.  Together, the 95% LCL and 95% UCL are equal to the 
2-sided 90% confidence interval only for cases in which the PDFu is symmetric.  For example, the sampling distribution for the 
arithmetic mean of a sample from a normal distribution with an unknown variance is described with the symmetric Student’s 
t-distribution, whereas the PDFu for the mean of a lognormal distribution is asymmetric.  In order to compare the results of 
multiple 1-D MCA simulations and a 2-D MCA simulation, the same methodology should be employed to define the PDFu and 
the corresponding confidence limits.  

Page 3-12 



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment 
Chapter 3 ~ December 31, 2001 

It is generally incorrect to combine a PDFu for one parameter (e.g., mean of the concentration 
term) with one or more PDFv’s in other exposure factors when conducting a 1-D MCA for variability. 
However, distributions for uncertainty and variability may be appropriately combined in a 2-D MCA.  As 
discussed in Appendix D, with 2-D MCA, a clear distinction should be made between probability 
distributions that characterize variability (PDFv) and parameter uncertainty (PDFu).  A 2-D MCA 
propagates the uncertainty and variability distributions separately through an exposure model, thereby 
making it possible to evaluate the effect of each on the risk estimates. 

Example: Comparison of Multiple Point Estimates of Uncertainty in 1-D MCA, and Distributions of 
Uncertainty in 2-D MCA 

Table 3-2 illustrates an application of the approaches presented in Table 3-1 for quantifying 
variability and parameter uncertainty.  This is a hypothetical example, and no attempt was made to use 
standard default assumptions for exposure variables.  Two sources of variability are quantified: (1) inter-
individual variability in exposure frequency (EF), characterized by a triangular distribution, and (2) inter-
individual variability in exposure duration (ED), characterized by a truncated lognormal distribution.  In 
addition, two sources of uncertainty are presented: (1) a point estimate for soil and dust ingestion rate, 
intended to characterize the RME; and (2) an upper truncation limit of the lognormal distribution for ED, 
intended to represent a plausible upper bound for the exposed population.  Methods for quantifying these 
sources of uncertainty are discussed below.  Additional sources of uncertainty may also have been 
explored.  For example, the choice of a triangular distribution for a PDFv may be provocative for some 
risk assessors, since there are few cases in which empirical data suggest a random sample is from a 
triangular distribution.  Nevertheless, triangular distributions may be considered rough, or “preliminary” 
distributions (see Chapter 2 and Appendix B, Section B.2) for cases when the available information 
supports a plausible range and central tendency.  

The choice of distributions is a potential source of uncertainty that can be explored by rerunning 
simulations with each alternative, plausible choice, and examining the effect on the RME risk. 
Simulations with preliminary simulations may yield at least three different outcomes.  First, this type of 
sensitivity analysis can help guide efforts to improve characterizations of variability for selected 
variables that have the greatest affect on the risk estimates.  Second, results may provide justification to 
exit the tiered process without continuing with additional Monte Carlo simulations since further effort 
would be unlikely to change the risk management decision.  Finally, if the major sources of uncertainty 
can be clearly identified, a subset of the less sensitive variables may be defined by point estimates 
without significantly reducing the uncertainty in the risk estimates. 

Parameter uncertainty can be quantified for both point estimates and PDFv’s.  In this example, 
both types of inputs (i.e., point estimates and PDFv’s) are presented as sources of parameter uncertainty: 
the RME point estimate for soil and dust ingestion rate (IRsd), and the upper truncation limit on a PDFv 
for ED. For IRsd, assume that three different studies provide equally plausible values for the RME: 50, 
100, and 200 mg/day.  A uniform PDFu is specified to characterize this range of plausible values.  For 
ED, assume that the maximum value reported from a site-specific survey was 26 years, but surrogate data 
for other populations suggest the maximum may be as long as 40 years.  A uniform PDFu is specified to 
characterize this range of plausible values as well. 

In Cases 1-3, the impact of uncertainty in IRsd and ED was evaluated using a series 1-D MCA 
simulations. Inputs for uncertain parameters associated with IRsd and ED in Case 1, 2, and 3 represent 
the minimum, central tendency, and maximum values, respectively.  Each simulation yields a different 
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risk distribution based on different combinations of point estimates for parameters.  Although a PDFu 
was specified for IRsd, it would have been incorrect to combine the PDFu with the PDFv’s for EF and 
ED in a 1-D MCA because the result would have been a single distribution of risk that co-mingled 
uncertainty and variability. 

In Case 4, a single 2-D MCA simulation was run using the PDFu’s for uncertainty and the 
PDFv’s for variability.  By propagating variability and uncertainty separately, the 2-D MCA yields a 
series of distributions of risk, from which credible intervals can be calculated for each percentile of the 
CDF. 

Table 3-2.   Example of 1-D MCA and 2-D MCA. 

Va riab le 

Type of 

Input 

1-D MCA 2-D MCA 

Case 1 Case 2 Case 3 Case 4 

C (mg/kg) pt estimate 500 500 500 500 

IRsd 

(mg/d ay) 

pt estimate 50 100 200 see below 

PDF u for 

pt estimate 

uniform (50, 200)a 

CF (kg/mg) pt estimate 1E-06 1E-06 1E-06 1E-06 

EF 

(days/year) 

PDF v triangular 

min = 200 

mode = 250 

max = 350 

triangular 

min = 200 

mode = 250 

max = 350 

triangular 

min = 200 

mode = 250 

max = 350 

triangular 

min = 200 

mode = 250 

max = 350 

ED (years) PDFv T-lognormal 

mean = 9 

stdv  = 10 

max = 26 

T-lognormal 

mean = 9 

stdv  = 10 

max = 33 

T-lognormal 

mean = 9 

stdv  = 10 

max = 40 

T-lognormal 

mean = 9 

stdev = 10 

max = PDFu (see below) 

PDFu for 

parameter of 

PDFv 

max ~ uniform (26, 40)b 

BW  (kg) pt estimate 70 70 70 70 

AT (days) pt estimate 25550 25550 25550 25550 

CSF 

(mg/kg-day)-1 

pt estimate 1E-01 1E-01 1E-01 1E-01 

aUncertainty in the RME point estimate, defined by a uniform distribution with parameters (minimum, maximum). 
bUncertainty in the upper truncation limit of the lognormal distribution, defined by a PDFv with parameters (mean, standard 
deviation, maximum) and a PDFu for the maximum defined by a uniform distribution with parameters (minimum, 
maximum). 
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Monte Carlo Simulation Results 

Figures 3-3 and 3-4 illustrate CDFs for risk produced from Monte Carlo simulations using 
Crystal Ball® 2000.  The 1-D MCA simulations (Figure 3-3) were run with 10,000 iterations and Latin 
Hypercube sampling.  The 2-D MCA simulation (Figure 3-4) was run with 250 iterations of the outer 
loop (uncertainty) and 2,000 iterations of the inner loop (variability).  Details regarding 2-D MCA 
simulation are given in Appendix D. 

Figure 3-3 shows CDFs for risk based on three simulations of a 1-D MCA simulation.  Each 
simulation used a different combination of plausible estimates of the RME value for IRsd and the upper 
truncation limit for ED, as discussed above.  The results provide a bounding estimate on the risk 
distribution given these two sources of uncertainty.  The 95th percentile risk, highlighted as an example of 
the RME risk estimate, may range from approximately 7E-06 to 3.5E-05. 

5

Figure 3-4 shows a single CDF for risk, representing the central tendency risk distribution.  This 
CDF was derived by simulating uncertainty in the risk distribution using 2-D MCA.  For this example, 
the 2-D MCA yields 250 simulations of the risk distributions for variability, so that there are 
250 plausible estimates of each percentile of the risk distribution.  In practice, more than 250 simulations 
may be needed to adequately quantify uncertainty in the risk distribution.  Results of a 2-D MCA can be 
presented as probability distributions of uncertainty, or box-and-whisker plots of uncertainty at selected 
percentiles of the risk distributions.  Figure 3-4 shows the central tendency (50th percentile) estimate of 
uncertainty for the entire CDF of risk.  In addition, a box-and-whisker plot is shown at the 95th percentile 
of the CDF.  Selected statistics for the box-and-whisker plot are included in a text box on the graphic 
(i.e., minimum; 5th, 50th, and 95th percentiles, and maximum).  The 90% credible interval is given by the 

th and 95th percentiles. For this example, the 90% credible interval for the 95th percentile of the risk 
distribution is: [9.1E-06, 3.1E-05]. 

Figures 3-3 and 3-4 demonstrate that the two approaches (i.e., multiple 1-D MCA and 2-D MCA) 
can yield the same results.  However, when there are numerous sources of uncertainty, 2-D MCA offers 
at least two advantages over multiple 1-D MCA simulations: (1) 2-D MCA allows the multiple sources of 
uncertainty to be included simultaneously so the approach is more efficient than a series of 1-D MCA 
simulations; and (2) multiple 1-D MCA simulations yield multiple estimates of the RME risk, but it is not 
possible to characterize the uncertainty in the RME risk in quantitative terms; a 2-D MCA yields a PDFu 
for RME risk, which allows for statements regarding the level of certainty that the RME risk is above or 
below a risk level of concern. 

The 95th percentile is a focus of this example because it is a recommended starting point for 
determining the risk corresponding to the RME.  Chapter 7 provides guidance to the risk decision makers 
on choosing an appropriate percentile (on a distribution of variability) within the RME risk range (90th to 
99.9th percentiles). The chapter also includes a qualitative consideration of the uncertainty or confidence 
surrounding a risk estimate in the decision-making process. 
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Figure 3-3 

Figure 3-4 

Page 3-16 



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment 
Chapter 3 ~ December 31, 2001 

3.4.2 SCENARIO AND MODEL UNCERTAINTY 

All models are simplified representations of complex biological and physical processes.  As 
such, they, and the scenarios to which they are applied, may introduce a significant source of uncertainty 
into an exposure and risk estimate.  Models may exclude important variables or important pathways of 
exposure, ignore interactions between inputs, use surrogate variables that are different from the target 
variables, or they may be designed for specific scenarios and not others.  As a result, a model may not 
adequately represent all aspects of the phenomena it was intended to approximate or it may not be 
appropriate to predict outcomes for a different type of scenario.  For example, a model intended to 
estimate risk from continuous, steady state exposures to a contaminant may not be appropriate or 
applicable for estimating risk from acute or subchronic exposure events.  In any risk assessment, it is 
important to understand the original intent of a model, the assumptions being made in a model, what the 
parameters represent, and how they interact.  Based on this knowledge, one can begin to understand how 
representative and applicable (or inapplicable) a model may be to a given scenario.  If multiple models 
exist that can be applied to a given scenario, it may be useful to compare and contrast results in order to 
understand the potential implications of the differences.  The use of multiple models, or models with 
varying levels of sophistication, may provide valuable information on the uncertainty introduced into a 
risk estimate as the result of model or scenario uncertainty.  The collection of measured data as a reality 
check against a given parameter or the predicted model outcome (such as the collection of vegetable and 
fruit contaminant data to compare against modeled uptake into plants) is also useful in attempting to 
reduce or at least gain a better understanding of model and scenario uncertainty. 

3.5 EXAM PLE OF PRA FOR HUMAN HEALTH 

The following hypothetical example provides a conceptual walk-through of the tiered approach 
for PRA in Superfund risk assessment.  The example begins with a baseline human health point estimate 
risk assessment (Tier 1) and moves to Tier 2, in which multiple iterations of a 1-D MCA are run using 
default and site-specific assumptions for input distributions.  The general concepts associated with the 
tiered approach are discussed in Chapter 2, and a similar example for ecological risk assessment is given 
in Chapter 4.  The 1-D MCA results are based on simulations with Crystal Ball® 2000 using 
10,000 iterations and Latin Hypercube sampling.  These settings were sufficient to obtain stability (i.e., 
<1% difference) in the 95% percentile risk estimate.  The example is presented in Exhibit 3-5.  Tables 
and figures supporting the example are given immediately following the exhibit. 
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EXHIBIT 3-5 

USING THE TIERED PROCESS FOR PRA 

HYPOTHETICAL CASE STUDY FOR HUMAN HEALTH RISK ASSESSMENT 
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Fig ure 3-5 .  Site map for future wildlife refuge showing boundaries for the exposure 

unit and potential hotspot, as well as sampling locations (n=35).  Sample numbers 

correspond with concentration data given in Table 3-3. 

Table 3-3. Concentrations in Surface Soil (mg/kg). 

1The 95% UCL was estimated using the Land method (see Appendix C). 
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E 3-6 

RISK E

Risk = x 

Risk = x 

Risk = x 

Cs = Concentration of ChemX in soil (mg/kg) 

IRs = 

FI = 

CF = Conversion factor (1E-06 kg/mg) 

SA = 2/event) 

AF = 2) 

ABS = 

IRa = 3/hr) 

PEF = 3) 

ET = 

EF = Exposure frequency for receptor (days/year) 

ED = 

BW = 

AT = 

CSF = )-1 

XHIBIT 

QUATIONS 

Soil Ingestion 

Cs x CF x IRs x FI x EF X ED Oral CSF 

BW x AT 

Dermal Absorption 

Cs x CF x SA x AF x ABS x EF X ED Dermal-Adjusted CSF 

BW x AT 

Inhala tion of F ugitive D ust 

Cs x 1/PEF x IRa x ET x EF X ED Inhalation CSF 

BW x AT 

Tota l Risk = Sum of risks from each exposure pathway (soil + dermal + inhalation) 

Wh ere: 

Soil ingestion ra te for receptor (mg/day) 

Fraction ingested from contaminated source (unitless) 

Skin surface area available for exposure (cm

Soil to skin adherence factor for ChemX (mg/cm

Absorption factor for ChemX (unitless) 

Inhalation rate for receptor (m

Soil-to-air particulate emission factor (kg/m

Exposure time for receptor (hours/day) 

Exposure duration for receptor (years) 

Body weight of receptor (kg) 

Averaging time (years) 

Cancer slope factor (oral, dermal, inhalation) (mg/kg-day
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Table 3-4.  Exposure Parameters used in Point Estimate Analysis. 

Exposure 

Variable 

CTE 

Value 

R M E  

Value 

Units Reference 

IRs 50 100 mg/day CTE: U.S. EPA, 1997a, p. 4–25 

RME: U.S. EPA, 2001 

FI 0.5 1 unitless Site-specific 

CF 1E-06 1E-06 kg/mg Constant 

SA 3300 3300 cm2/event U.S. EPA, 2001, 50th percentile value for all adult 

workers—exposure to face, forearms, and hands 

AF 0.1 0.2 mg/cm2 CTE: U.S. EPA, 1998; Table 3.3, value for 

gardeners 

RME: U.S. EPA, 2001 

ABS 0.1 0.1 unitless U.S. EPA, 1998, default for semi-volatile organic 

compounds (SVOCs) 

IRa 1.3 3.3 
m3/hr 

U.S. EPA, 1997a, p. 5–24, outdoor worker hourly 

average: mean and  upper percentile 

PEF 1.36E+09 1.36E+09 kg/m3 U.S. EPA, 2001 

ET 8 8 hours/day Site-specific 

EF 200 225 days/year CTE: Site-specific assumption 

RME: U.S. EPA, 2001 

ED 5 25 years CTE: U.S. EP A, 1993, p . 6 

RME: U.S. EPA, 2001 

BW 70 70 kg U.S. EPA, 1993, p . 7 

AT 25550 25550 days constant 

CTE = central tendency exposure; RME = reasonable maximum exposure. 

Table 3-5.  Point Estimate Risks and Exposure Pathway Contributions. 

Risk Estimate 

by Exposure Pathway 
Inside Spill Area (n = 15) Outside Spill Area  (n = 20) 

CTE R M E  CTE R M E  

Soil Ingestion 6.5E-06 (43 %) 1.5E-04 (60 %) 1.7E-06 (43 %) 4.0E-05 (60 %) 

Dermal Absorption 8.6E-06 (57 %) 9.6E-05 (40 %) 2.3E-06 (57 %) 2.6E-05 (40 %) 

Inhalation 9.9E-10 (< 1 %) 1.4E-08 (< 1 %) 2.7E-10 (< 1 %) 3.8E-09 (< 1 %) 

Total Risk 1.5E-05 2.4E-04 4.1E-06 6.6E-05 

Example of % contribution:  % Soil for RME risk inside spill area = (Soil risk / Total risk) x 100% 

= (1.46E-04 / 2.42E-04) x 100% = 60% 
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Table 3-6.  Input D istributions for Exposure Variables used in 1-D MCA for Variability. 

Exposure 

Va riab le1 

Distribution 

Type 

Parameters2 Units Reference 

IR_soil Triangular 0, 50, 100 mg/day U.S. EPA, 1993, 2001 

SA_skin3 Lognormal 18150, 37.4 cm2 U.S. EPA, 1997a, Table 6-4 

(Total male/female body surface area) 

Absorption 

Fraction 

Uniform 0.1, 0 .2 mg/cm2 U.S. EPA, 2001; minimum truncation limit is 

professional judgment 

IR_air Lognormal 1.68, 0.72 m3/hour U.S. EPA, 1996, p.5–10 

EF Triangular 200, 225, 250 days U.S. EPA, 2001; truncation limits are 

professional judgment 

ED Lognormal4 11.7 , 7.0 years U.S. EPA, 1997b, Table 15-161 and U.S. EPA, 

2001 

(Mean value is based on average of total median 

tenure for professional specialty and farming, 

forestry, and fishing) 

Truncated 

Lognormal5 

14.0, 9.4, 

44.0 

years Site-specific survey data, used in refined 

1-D MCA 

BW Lognormal 71.75, 14 .2 kg U.S. EPA, 1997a, Tables 7-4 and 7-5; 

(Combined male/female body weight 

distributions) 

1All other exposure parameters are inputted as point estimates (see Table 3-4).

2Parameters for lognormal PDF are X ~ Lognormal (arithmetic mean, arithmetic standard deviation) unless otherwise stated.

Parameters for triangular PDF are X ~ Triangular (minimum, mode, maximum).  Parameters for uniform PDF are X ~ Uniform

(minimum, maximum).

3A point estimate of 0.189 was used to adjust the surface area skin (SA_skin) distribution, which is based on total body surface

area, to account for skin exposures limited to face, forearms, and hands (U.S. EPA, 1997a, Vol. I).

4Parameters for preliminary lognormal PDF for ED were converted from a geometric mean of 10 and a 95th percentile of 25.

5Parameters for site-specific lognormal PDF for ED are arithmetic mean, standard deviation, and upper truncation limit.


Table 3-7.  1-D M CA Risk Estimates using Preliminary Inputs. 

Cumulative 

Percentile 

Spill Area Risk 

50th 5.7E-05 

90th 1.3E-04 

95th 1.6E-04 

99th 2.4E-04 

99.9 th 3.9E-04 
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Figure 3-6.  Results of sensitivity analysis for preliminary 1-D MCA (Tier 2) 

showing the Spearman Rank correlations (see Appendix A and B) between input 

variables and risk estimates. 

Table 3-8.  Exposure Duration Survey Results. 

Survey Results (years) Summary Statistics 

24.9 20.3 17.2 n  20 

8.4 11.7 6.5 min 3.0 

3.0 4.7 16.5 max 44.2 

6.8 20.9 6.0 arithmetic mean 14.0 

18.5 10.6 18.8 standard dev 9.4 

9.1 12.7 11.7 median/GM 11.7 

7.2 44.2 GSD 1.8 

Table 3-9.  Refined Point Estimate and 1-D M CA Risk Estimates. 

Cumulative Percentile Spill Area  Risk 

Refined RME 
3.1E-04 

Point Estimate 

50th 6.7E-05 

90th 1.6E-04 

95th 2.1E-04 

99th 3.2E-04 

99.9th 5.3E-04 
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Figure 4-1 .  Ecological Risk Assessment Framework (U.S. EPA, 1992a)

CHAPTER 4

PROBABILISTIC ANALYSIS IN ECOLOGICAL RISK ASSESSMENT

4.1 INTRODUCTION

4.1.1 BASIC APPROACH FOR PERFORMING ECOLOGICAL RISK ASSESSMENTS

Ecological risk assessment (ERA) is defined by the 1997 Environmental Protection Agency’s
(EPA) Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting
Ecological Risk Assessments (ERAGS) (U.S. EPA, 1997a) as an evaluation of the “likelihood that adverse
ecological effects are occurring or may occur as a result of exposure to one or more stressors”.  The
ERAGS document is generally similar to, and consistent with the earlier framework guidance and
approach (U.S. EPA, 1992a) which was expanded upon and superceded by the Guidelines for Ecological
Risk Assessment (U.S. EPA, 1998).  The EPA has developed extensive technical and policy guidance on
how ERAs should be planned and performed (see Exhibit 4-2).  In general, this process has three main
elements, as shown in Figure 4-1:
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Problem Formulation provides a foundation for the entire risk assessment.  This element
includes the specification of risk management goals and assessment endpoints, the development
of a site conceptual model with exposure pathways and receptors, and the development of a
sampling and analysis plan to collect data on exposures and measures of effects that are needed
to support the ERA.  In general, problem formulation serves as the foundation of an ERA and
often is an iterative process, whereby substantial re-evaluation may occur as new information and
data are collected during the site investigations.  Collection of data in subsequent iterations is
often triggered by identification of major data gaps and uncertainties in the risk characterization
that prevent confident decision making by risk managers.  

Analysis includes two principal measurement steps that are based upon the problem formulation: 
Assessment of exposures and assessment of ecological effects.  Assessment of exposures
includes the identification of stressors at the site that may affect ecological receptors, a
characterization of the spatial and/or temporal pattern of the stressors in the environment at the
site, and an analysis of the level of contact or co-occurrence between the stressors and the
ecological receptors.  Assessment of ecological effects includes identification of the types of
effects which different stressors may have on ecological receptors, along with a characterization
of the relationship between the level of exposure to the stressor and the expected biological or
ecological response.  This is referred to as the stressor-response relationship.

Risk Characterization combines the exposure characterization and the effects characterization
in order to provide a quantitative likelihood or qualitative description of the nature, frequency,
and severity of ecological risks attributable to exposure to stressors at a site, as well as an
evaluation of the ecological relevance of the effects.  Good risk characterizations express results
clearly, articulate major assumptions and uncertainties, identify reasonable alternative
interpretations, and separate scientific conclusions from policy judgments (U.S. EPA, 1995,
1998).
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EXHIBIT 4-1   

DEFINITIONS FOR CHAPTER 4

Assessment Endpoint - An explicit expression of an environmental value (ecological resource) that is to be
protected, operationally defined by risk managers and risk assessors as valuable attributes of an ecological
entity.

Benchmark Dose (BMD) - The dose which causes a specified level of response.  The lower confidence limit on
the BMD is usually referred to as the BMDL.

Community - An assemblage of populations of different species specified by locales in space and time.
Conceptual Model - A site conceptual model (SCM) in the problem formulation for an ecological risk

assessment is a written description and visual representation of predicted relationships between ecological
entities and the stressors to which they may be exposed, including sources and pathways of stressors.

Ecological Risk Assessment (ERA) - The process that evaluates the likelihood that adverse ecological effects
may occur or are occurring as a result of exposure to one or more stressors.

Lines of Evidence - Information derived from different sources or techniques that can be used to characterize
the level of risk posed to exposed receptors; weight-of-evidence generally refers to the quantity of science,
while strength of evidence generally refers to the quality of science.

Lowest-Observed-Adverse-Effect Level (LOAEL) - The lowest level of a stressor evaluated in a test that
caused a statistically significant effect on one or more measurement endpoints linked to undesirable
(adverse) biological changes.

Measurement Endpoint (Measure of Effect) - A measurable ecological property that is related to the valued
characteristic chosen as the assessment endpoint.  Measurement endpoints (also called measures of effect)
often are expressed as the statistical or numeric summaries of the observations that make up the
measurement.

No-Observed-Adverse-Effect Level (NOAEL) - The highest level of a stressor administered in a test that did
not cause a statistically significant effect in any measurement endpoint linked to an undesirable (adverse)
biological change.

Population - An aggregate of individuals of a species within a specified location in space and time.
Receptor - The ecological entity (with various levels of organization) exposed to the stressor.
Risk Characterization (ecological) - The third and last phase of ERA that integrates the analyses of exposure to

stressors with associated ecological effects to evaluate likelihoods of adverse ecological effects.  The
ecological relevance of the adverse effects is discussed, including consideration of the types, severity, and
magnitudes of the effects, their spatial and temporal patterns, and the likelihood of recovery.

Scientific/Management Decision Point (SMDP) - A time during the ERA when a risk assessor communicates
results or plans of the assessment at that stage to a risk manager.  The risk manager decides if information
is sufficient to proceed with risk management strategies or whether more information is needed to
characterize risk.

Species - A group of organisms that actually or potentially interbreed and are reproductively isolated from
similar groups; also, a taxonomic grouping of morphologically similar individuals.

Stressor - Any chemical, physical or biological entity that can induce an adverse response in an ecological
receptor; Superfund considers all stressors, but focuses on chemical (toxicant) stressors.

Toxicity Reference Value (TRV) - A dose or concentration used to approximate the exposure threshold for a
specified effect in a specified receptor.  A TRV is often based on a NOAEL or LOAEL from a laboratory-
based test in a relevant receptor species.
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EXHIBIT 4-2

ECOLOGICAL RISK ASSESSMENT GUIDANCE AND POLICY DIRECTIVES

EPA has developed  extensive guidance and policies on methods and approaches for performing ERAs,

including the following:

(1) Ecological Risk Assessment Guidance for Superfund: Process for Designing and

Conducting Ecological Risk Assessments (“ERAGS”), Interim Final (U.S. EPA, 1997a). 

This document includes processes and steps specifically selected for use in ERAs at

Superfund sites.  This document supersedes the 1989 EPA RAGS, Volume II, Environmental

Evaluation Manual, Interim Final (U.S. EPA, 1989).  Supplements to ERAGS include the

EcoUpdates (U.S. EPA, 1991-present, Intermittent Bulletin Series, 1991 to present), which

provide brief recommendations on common issues for Superfund ERAs.

(2) Guidelines for Ecological Risk Assessment ("G uidelines") (U.S. EPA, 1998).  This document

updates general (nonprogram specific) guidance that expands upon and replaces the earlier

Framework for Ecological Risk Assessment (U.S. EPA, 1992a).  The approaches and

methods outlined in the Guidelines and in ERAGS are generally consistent with each other.

(3) Risk Assessment Guidance for Superfund (RAGS): Volume 1–Human Health Evaluation

Manual (Part D, Standardized Planning, Reporting, and Review of Superfund Risk

Assessments), (U.S. EPA, 2001).  This guidance specifies formats that are required to

present data and results in baseline risk assessments (both human and ecological) at

Superfund  sites.

(4) Policy Memorandum: Guidance on Risk Characterization for R isk Managers and Risk

Assessors , F. Henry Habicht, Deputy Administrator, Feb. 26, 1992  (U.S. EPA, 1992b).  This

policy requires baseline risk assessments to present ranges of risks based on “central

tendency” and “reasonable maximum” (RM E) or “high-end” exposures with corresponding

risk estimates.

(5) Policy Memorandum: Role of the Ecological Risk Assessment in the Baseline Risk

Assessment, Elliott Laws, Assistant Administrator, August 12, 1994  (U.S. EPA, 1994).  This

policy requires the same high level of effort and quality for ERAs as commonly performed

for human health risk assessments at Superfund sites.

(6) Policy Memorandum: EPA Risk Characterization Program , Carol Browner, Administrator,

March 21, 1995 (U.S. EPA, 1995).  This policy clarifies the presentation of hazards and

uncertainty in human and ERAs, calling for clarity, transparency, reasonableness, and

consistency.

(7) Issuance of Final Guidance: Ecological Risk Assessment and Risk Management Principles

for Superfund Sites.  Stephen D. Luftig for Larry D. Reed, October 7, 1999 (U.S. EPA,

1999).  This document presents six key principles in ecological risk management and

decision making at Superfund sites.
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SMDP= Scientific/Management Decision Point

Figure 4-2.  Eight-step Ecological Risk Assessment Process for Superfund (U.S. EPA, 1997a).

ERA is a key component of the remedial investigation process that EPA uses at Superfund sites. 
ERAGS is a program-specific guidance for Superfund that focuses on chemical stressors released into the
environment from hazardous waste sites.  This guidance refers to ERA as a “qualitative and/or
quantitative appraisal of the actual or potential impacts of contaminants from a hazardous waste site on
plants and animals other than humans and domesticated species.  An excess risk does not exist unless:
(1) the stressor has the ability to cause one or more adverse effects, and (2) the stressor co-occurs with or
contacts an ecological component long enough and at a sufficient intensity to elicit the identified adverse
effect.”  The ERAGS document provides guidance on using an eight-step process for completing an ERA
for the Superfund Program, as shown in Figure 4-2.
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4.1.2 PREDICTIVE VS OBSERVATIONAL APPROACHES

In general, conclusions about ecological hazards from environmental contamination may be
based on information derived from two different techniques:  the predictive approach (a comparison of
calculated exposures with a set of toxicity reference values), and the observational approach (direct
evaluation of the range of potential exposures, coupled with site-specific toxicity testing and population
demographic estimates).

Predictive Approach: The core of all Superfund ERAs is the predictive approach, including
exposure assessment, toxicity assessment, and risk characterization.  The predictive approach is
based on a comparison of calculated estimates of chemical exposure of a receptor to one or more
Toxicity Reference Values (TRVs) appropriate for that chemical and that receptor.  The ratio of
exposure at the site to the TRV is referred to as the Hazard Quotient (HQ).  The predictive
approach has always been used at Superfund sites because it is relatively easy to implement, and
because it can be used to evaluate not only current risks, but also risks that might exist in the
future if any important changes were to occur in the level of contamination (e.g., due to on-going
fate and transport processes), or to changes in land use (a change in land use might alter a
number of habitat factors that influence the number and identify of ecological receptors).  The
predictive approach, however, has the inherent uncertainties of the assumptions in the exposure
and toxicity models which are seldom site-specific and thus can lead to either over-protective or
under-protective estimates of risk. 

Direct Observation: If there is a need to reduce uncertainties in the predictive approach, direct
observations of exposure and effects can be collected at Superfund hazardous waste sites.  The
predictive approach used in ERA does not negate the use of descriptive toxicological approaches
or the use of site-specific exposure data, such as toxicity testing or bioaccumulation
measurements.  Site-specific observations, such as toxicity testing of invertebrates over a
gradient of site contaminant exposure levels, may be used to develop site-specific and chemical-
specific toxicological relationships.  Site-specific measures of exposure or ecosystem
characteristics can be used to reduce uncertainty in the exposure assessment and aid in the
development of cleanup goals in the Baseline ERA.  The direct observation of the exposure and
effects on ecological receptors does not however constitute a complete risk assessment.  If field
or laboratory studies are NOT designed appropriately to elicit stressor-response relationships,
direct impacts should not be used as the sole measure of risk because of the difficulty in
interpreting and using these results to develop cleanup goals in the ERA.  Furthermore, poorly
designed toxicological evaluations of environmental media from the site may not allow a
definitive identification of the cause of adverse response.  For example, receptor abundance and
diversity as demographic data reflect many factors (habitat suitability, availability of food,
predator-prey relationships among others).  If these factors are not properly controlled in the
experimental design of the study collecting the observational data, conclusions regarding
chemical stressors can be confounded.  In addition, direct observation provides information about
current risks only and not potential risks should land use or exposure change in the future. 
Hence, direct observations may be used as a line of evidence in an ERA, but should not be the
sole evidence used to characterize the presence or absence of the risks of an adverse effect in the
future.
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4.1.3 POTENTIAL ADVANTAGES AND LIMITATION S OF PROBABILISTIC METHODS IN ERA

Probabilistic risk assessment (PRA) is a computational tool that may help increase the strength of
the predictive evaluation of ecological risks, as well as sometimes helping to better evaluate distributions
of observational data for an ERA.  The potential advantages of PRA compared to, or possible benefits in
augmentation of, the conventional point estimate approach for characterizing variability in exposure or
risk are discussed in Chapter 1 and Exhibits 1-6 and 1-7.  In brief, point estimate calculations utilize
simplifications and assumptions in order to deal with the complex mathematics of combining inputs that
are inherently variable.  Probabilistic models, in contrast, are designed to combine sets of information on
inputs that are expressed as probability distributions.  Therefore, PRA generally can yield risk estimates
that allow for a more complete characterization of variability and uncertainty, and a potentially more
useful sensitivity analysis as compared to estimating sensitivities of inputs from point estimates (see
Appendix A).  For example, sensitivity analysis can help determine major contributors to exposure
factors and sources of uncertainty that could help to design better sampling and analysis plans in later
iterations to help fill data gaps and reduce uncertainties for risk characterization. 
  

Because of the inherent differences in the computational approach, as in the case with any
additional risk assessment information, PRA may sometimes lead to a different risk assessment outcome
and risk management decision than would be derived from the use of point estimate calculations alone.  
The differences in the decisions stemming from the two approaches will vary from case to case,
depending mainly on the form of the exposure or risk model, the attributes of the distributions of the
input values, and the quality, quantity, and representativeness of the data on which the input distributions
are derived.  Sometimes the differences between the two approaches will be quite large, and the
information gained from a PRA can play an important role as weight-of-evidence in communicating risks
to stakeholders and risk managers.

Even though PRA may have some advantages, it also has limitations and potential for misuse.
PRA can not fill basic data gaps and can not eliminate all of the potential concerns associated with those
data gaps.  That is, if one or more of the input distributions are not well characterized and the
distribution(s) must be estimated or assumed, then the results of the PRA approach will share the same
uncertainty as the point estimate values.  However, given equal states of knowledge, the PRA approach
may yield a more complete characterization of the exposure or risk distribution than the point estimate
approach.

Of course, any prediction of exposure or risk is based on the use of mathematical models to
represent very complex environmental, biological, and ecological systems.  No matter how sophisticated
the computations, questions will always exist as to whether the calculated values are a good
approximation of the truth.  Therefore, even when PRA is used as a supplemental tool to point
estimations (deterministic) of risks in the ERA process, a weight-of-evidence approach that combines the
predictive approach with direct observations will still provide the most appropriate basis for decision
making.

A second application of PRA in ERA, besides the characterization and incorporation of
distributions of data for ERA, is the characterization of uncertainty in calculated estimates of exposure or
risk.  In this application, whatever uncertainty may exist in one or more of the input distributions is
characterized, and quantitative estimates of the confidence limits around the mean, upper bound, or any
other percentile of the output distribution are calculated.  This use of PRA is often especially important
in risk management decision making, since the range of uncertainty around central tendency exposure
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(CTE) and reasonable maximum exposure (RME) or other upper bound estimates of exposure or risk can
sometimes be quite large.  As stated before, the point estimate approach can also provide estimates of
uncertainty, but the PRA approach often provides a more complete characterization of the uncertainty.

4.1.4 FOCUS OF THIS CHAPTER

This chapter focuses on the application of PRA as a tool for predicting ecological risks at
Superfund sites.  Some of the methods and approaches described in this chapter are similar to those that

have been developed by U.S. EPA's Office of Pesticide Programs Committee on Federal Insecticide,
Fungicide and Rodenticide Act (FIFRA) Risk Assessment Methods (ECOFRAM, 1999a, 1999b) for
use in assessing environmental hazards of pesticide products.  However, the methods described in this
chapter are specifically designed to be applicable at Superfund sites and to be consistent with other
Superfund guidance.

This chapter does not seek to provide guidance on the many basic issues that must be faced in
planning and performing any ERA.  Prior to considering the use of PRA in an ERA, fundamental
concepts will already have been developed, such as a problem formulation with a conceptual site model,
selection of representative receptors, definition of exposed populations, definition of risk management
objectives and goals, selection of assessment endpoints, calculation of TRVs and development of site
sampling plans, etc.  Likewise, this chapter does not repeat the presentation of basic statistical and
mathematical methods used in PRA, since these are described in other chapters and appendices of this
document.  In summary:

L This chapter focuses on application of PRA techniques to ERA at Superfund
sites.

L The reader is assumed to be familiar with the basic methods used in ERA at
Superfund sites, and this chapter does not address basic tactical and
technical issues in ERA.

L The reader is assumed to be familiar with the basic mathematical principles and
techniques of PRA as described in other chapters and appendices of this document.

4.2 DECIDING IF AND WHEN TO USE PRA IN ECOLOGICAL RISK ASSESSMENT

As shown in Figure 4-2, the ERA process for Superfund includes a number of scientific/
management decision points (SMDPs) (U.S. EPA, 1997a).  The SMDP is a point of consultation between
the risk manager, EPA Regional Biological Technical Assistance Group (BTAG) coordinator, EPA
regional ecotoxicologist, and other stakeholders, and is intended to provide an opportunity for re-
evaluation of direction and goals of the assessment at critical points in the process.  It is during the
SMDP discussions that it is important to decide whether or not a PRA is likely to be useful in decision
making.  If so, the pursuit of distributed data is justified.  Within the 8-step process of developing the
ERA, PRA could provide insight at several steps.  A decision to move forward with distributional
analyses should be considered within the BTAG context during the documentation of the outcome of the
SMDPs after Step 3 within the process.  As a reminder, PRA is NOT intended to be a replacement for
point estimate analyses; rather PRA supplements the required presentation of point estimates of risk.  It is
also emphasized that the use of PRA should never be viewed as or used in an attempt to simply generate
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an alternative risk estimate or PRG, compared to that which was derived by a point estimate ERA;
instead, PRA should be used to provide insightful information on distributions of various factors
(exposure, toxicity, and hazards) which can provide weight-of-evidence evaluations of potential risks in
conjunction with a point estimate ERA.   There are a number of factors to consider in making these
decisions, as discussed below.

4.2.1 TECHNICAL CONSIDERATIONS

The fundamental reason for performing any predictive risk assessment (point estimate or
probabilistic) is to provide information to risk managers in order to help support the risk management
decision-making process.  As noted above, a properly performed PRA may help to yield more description
of variability in exposure and risk than can be achieved using the point estimate approach.  Therefore, if
any of a site’s data may be better described and evaluated by distributions, then a PRA can be applied to
any part of an ERA or even to the entire ERA for expressing risk characterization in probabilistic terms;
again, always in conjunction with the required point estimate ERA.  However, when risk estimates
derived from the point estimate approach are either far below or far above a level of risk management
concern, any such potential improvements in risk characterization are not likely to influence risk
management decision making.  In these cases, PRA is not likely to be as useful in decision making.  Even
so, PRA may help in these situations by providing information that may be useful in better deciding
where the gradient of excess risks are reduced to acceptable levels.  Rather, it is more common for a PRA
to be useful when point estimates of risks are close to the decision threshold (such that PRA-based
refinements in the risk estimates might be important in making risk management decisions).  It is for this
reason that PRA may be useful to apply either during the development of the ERA after the screen
(Steps 3 to 6, U.S. EPA, 1997a), or after point estimate results from the baseline ERA have been
completed (Steps 1 to 7, U.S. EPA, 1997a).

The results of a point estimate risk assessment will normally present the range of risks based on
central tendency exposure and reasonable maximum exposure input assumptions and on the no-observed-
adverse-effect-level (NOAEL)- and lowest-observed-adverse-effect-level (LOAEL)-based TRVs (U.S.
EPA, 1992b, 1997b).  The bounds for the highest HQ are derived from the ratio of the RME compared to
the NOAEL-based TRV, and the bounds for the lowest HQ are based on the ratio of the CTE compared
to the LOAEL-based TRV.  These two bounded extreme estimates of risk can be used to screen out cases
where PRA is not likely to be as useful.  That is, if the risk to the RME receptor is clearly below a level
of concern using the NOAEL-based TRV, then risks to the exposed population are likely to be low and
PRA analysis is likely not needed.  Likewise, if risks to the CTE receptor are clearly above a level of
concern using the LOAEL-based TRV, then risks to the exposed population are likely to be of definite
concern, and a PRA may not provide as much additional useful information to the risk manager, except in
the case where uncertainties remain high and the derivation of an appropriate and realistic clean-up goal
may be difficult.  If the risks are intermediate between these two bounds (e.g., risks to the CTE receptor
are below a level of concern based on the LOAEL-based TRV but are above a level of concern based on
the NOAEL-based TRV), then PRA might be helpful in further characterizing the site risks in balance
with the point estimates of risks and in supporting decision making or in deciding if additional iterations
of analyses would be needed.  This concept is illustrated graphically in Figure 4-3.
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Figure 4-3 .  Example of cases where use of PRA may be helpful.  In cases A and E, the range of risks (CTE to

RM E) estimated  by the point estimate method are either well below (Case A) or well above (Case E) the likely

level of concern based on the NOAEL-LOAEL range, and PRA is not likely to alter risk management decisions

regarding the  potential need for remediation.  In cases B , C, and  D, the point estimates of risk overlap  or fall within

the range of po tential concern, suggesting that PRA-based risk estimates might be helpful in supporting risk

management decisions.

The second main technical reason to consider conducting PRA is that the PRA methodology can
help characterize and quantify the degree of variability and uncertainty around any particular estimate of
exposure or risk (e.g., the CTE or RME).  The purpose of the analysis would be to estimate the
uncertainty around an exposure or toxicity or risk estimate, generally with little or no additional data
acquisition.  The only additional information needed to perform the analysis is an estimate of the
uncertainty in the true parameter values of the key variables in the variability model.  In some cases,
these estimates of uncertainty around parameter values may be developed from statistical analysis of the
available data.  Alternatively, professional judgment may be used to establish credible bounds on the
parameters, especially when relevant data are sparse.

L Even in the presence of data gaps, uncertainty analysis using PRA can provide
useful information.  Indeed, it is when data are limiting or absent that a quantitative
probabilistic analysis of uncertainty may be most helpful.
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4.2.2 COST AND SCHEDULE CONSIDERATIONS

Performing a PRA can sometimes add time and cost to an ERA.  As discussed in Chapter 2,
in part, the decision to progress from a point estimate assessment to a PRA reflects a belief that the
potential value of the PRA for risk management decision making outweighs the additional time and costs. 
The tiered process encourages a systematic approach for both the point estimate and probabilistic
assessments, whereby the least complex methods are applied first.  For example, the initial Tier 2
assessment may be conducted with a set of preliminary probability distributions for variability (PDFv),
developed with much the same information and assumptions that were applied to develop point estimates
in Tier 1.  Parameter values can be estimated by setting the arithmetic mean equal to the CTE point
estimate, and the 95th percentile equal to the RME point estimate. The choice of distributions may differ
depending on the state of knowledge for a particular variable (see Appendix B).  For example,
unbounded variables might be characterized with lognormal distributions while bounded distributions are
characterized by beta or Johnson Sb distributions.  Certain variables may continue to be characterized by
point estimates, especially if the sensitivity analysis suggests that the chemical, pathway, and/or exposure
variables are relatively minor contributors to total exposure and risk.  The decision to collect additional
data or explore alternative methods for developing probability distributions can be reexamined in an
iterative fashion by evaluating the expected benefits of the added information to the risk management
decision-making process.  These concepts are presented in greater detail in Chapter 2 (see Figures 2-1
and 2-2).

4.3 PROBLEM FORMULATION

Once a decision has been made to include PRA in an ERA, the first step should be to re-visit the
problem formulation step and carefully determine the scope and objectives of the PRA.  Typically, a
considerable amount of knowledge will have been gained during the screening level and baseline point
estimate evaluations, and this knowledge should be used to help focus and narrow the scope of the PRA. 
That is, the PRA will generally utilize the same basic exposure and risk models used in the point estimate
approach, but the PRA will typically evaluate only a sub-set of the scenarios considered.  For example,
chemicals, pathways, and/or receptors that are found to contribute a negligible level of exposure or risk
may usually be omitted from the PRA, while those factors that contribute significantly to an excess level
of risk concern in the point estimate approach should generally be retained.  As noted previously, when a
chemical or pathway is omitted from a PRA analysis, this does not mean that it is eliminated from the
overall risk assessment; rather, it may be kept in the assessment as a point estimate.  

The next step in problem formulation for a PRA should be to define whether the goal of the
analysis is to characterize variability alone, or to characterize both variability and uncertainty.  In either
case, sensitivity analysis (as summarized in the preceding paragraph, or for more details see Appendix A)
should be used to help identify which of the input variables contribute the most to the variability in the
outputs (exposure, toxic effects, or risk), and the initial PRA should focus on defining the probability
density functions (PDFs) for those input variables.  An analysis of uncertainty, if thought to provide
additional useful information, may also be included at the initial level, or may be delayed until the initial
analysis of variability is completed.

As always, problem formulation should be viewed as an iterative process, and it is reasonable
and appropriate that decisions regarding the scope and direction of the PRA should be reassessed (at
SMDPs) as information becomes available from the initial evaluations.  As stressed above, the
fundamental criterion which should be used is whether or not further PRA evaluations are likely to
provide additional information to a point estimate ERA that will help strengthen and support the risk
management decision-making process.
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4.4 MODELING VARIABILITY IN EXPOSURE

There are two main types of descriptors of exposure that may be used in ERA: dose and
concentration.  For terrestrial receptors such as mammals or birds, exposure is most often described in
terms of ingested dose (mg/kg-day).  In most cases, this will be based on chemical ingested from drinking
water and/or the diet, including incidental soil ingestion, but could also include amounts of chemical
taken up across the skin or through inhalation as additional routes of exposure.  The exposure levels are
most often expressed as doses, since that term tends to normalize the confounding factors of variable
daily intake rates and body weights that occur if/when one only evaluates concentrations.  For aquatic
receptors, the main route of exposure is usually by direct contact and less often by ingestion, so exposure
is usually characterized in terms of concentration of contaminants in surface water, pore water and/or
sediment.  Likewise, exposure of terrestrial plants and terrestrial invertebrates, such as earthworms, is
usually described in terms of concentration of contaminants in soil.  In some cases, exposure of terrestrial
receptors is characterized in terms of specific tissue or whole-body concentrations of contaminants. 
Examples of calculating and presenting dose-based and concentration-based distributions of exposure are
presented below.

4.4.1 CHARACTERIZING VARIABILITY IN DOSE

The general equation used for calculating the dose of a contaminant of concern in a specified
environmental medium (e.g., water, soil, air, diet, etc.) by a particular member of a population of exposed
receptors is:

DIi,j = Ci x IRi,j / BWj

where:
DIi,j = Average daily intake of chemical due to ingestion of medium "I" by a population

member "j" of the exposed population (mg/kg-day)
Ci = Concentration of chemical in environmental medium "I" (mg/unit medium)
IRi,j = Intake rate of medium "I" at the site by population member "j" (units of medium

per day)
BWj = Body weight of population member "j" (kg)

Total exposure of a population member "j" is then the sum of the exposures across the different media:

DItotal,j = 3 DIi,j

In this basic equation, IRi,j and BWj are random variables (i.e., they have different measurable values for
different members of the exposed population) that are often correlated.  For example, a receptor with a
relatively low intake rate can also be expected to have a low body weight.  Some studies utilize paired
measurements of IR and BW by individual, and present a distribution of the ratio (IRi,j /BWj), referred to
as a body weight-normalized intake rate (mg/kg-day).  This expression provides an alternative to using a
correlation coefficient to relate two input variables (see Appendix B), and can be entered into the dose
equation as follows:
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where the ratio is characterized by a single probability distribution.  Because the variability in this ratio is
likely to be different than the variability in the ratio of the IR and BW variables treated independently,
accounting for the correlation can affect the distribution of dose and risk.  If empirical data for
quantifying the ratio are limited but a relationship is expected, plausible ranges of correlations may be
explored as a source of uncertainty in the risk estimates.

The concentration term (Ci) may be characterized by a point estimate or a probability
distribution, depending on the relationship between the geographic scales of the measurement data and
receptor home range (see Appendix C, Section C.3.1).  If the home range of the receptor is small
compared to the spatial distribution of sampling locations, Ci may be characterized by the probability
distribution for variability in measured concentrations.  Alternatively, if the home range is large
compared with the exposure area evaluated, then a point estimate (e.g., mean or uncertainty in the mean)
may be more appropriate. 
 

In the PRA approach, PDFs should be defined for as many of the input variables as reasonable,
especially for those variables that are judged (via sensitivity analysis) to contribute the most to the
variability in total exposure.  The basic principles for selecting the key variables to model as PDFs are
presented in Appendix A, and the basic methods used for selecting and fitting distributions are described
in detail in Appendix B. 

Figure 4-4 shows several examples of graphical formats which may be used to present the
estimated distribution of ingested doses in an exposed population.  If a single distribution is plotted (top
panel), the PDF format is usually the most familiar and useful for risk assessors and managers, but the
cumulative distribution function (CDF) format tends to be less cluttered when multiple distributions are
shown (e.g., compare the middle graph to the bottom graph).  In addition, percentiles can be read directly
from a CDF format, but not from a PDF format graph.  In all cases, it is very useful to superimpose the
CTE and RME point estimate ranges of exposure directly on the same graph as is used to show the
distribution of exposures estimated by PRA.  This provides a convenient way to compare the results of
the two alternative computational methods, and interpret additional information that the PRA can add to
the point estimate ERA.  

L A conventional point estimate, range of exposure (CTE to RME) or toxicity
(NOAEL to LOAEL) and corresponding risk ranges should  be calculated
and presented for comparison with the PRA results.
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Figure 4-4.  Example Graphical Presentations of Dose Distributions.
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4.4.2 CHARACTERIZING VARIABILITY IN EXPOSURE CONCENTRATION

As noted above, in some cases the most appropriate descriptor of exposure is concentration
(either in an abiotic medium such as water, soil, or sediment, or in the tissues of the receptor), rather than
ingested dose.  Assuming that the concentration values in the medium of concern are measured rather
than modeled, PRA is not required to generate the distribution of concentrations.  Rather, the available
data may be used to define an appropriate theoretical or empirical distribution function (EDF), as
described in Appendix B.  If concentrations in the medium are modeled (calculated by PRA) rather than
measured, then the exposure distribution may be estimated by using distribution functions (PDFs or
CDFs, rather than using point estimates as inputs to the fate and transport model(s) and/or uptake models
that predict the concentration levels in the medium of concern.  The resulting distribution(s) of
concentration may be displayed graphically using the same formats as illustrated in Figure 4-4, except
that the x-axis has units of concentration rather than dose.  As above, the point estimate ranges of
concentration used in the CTE and RME calculations should be plotted on the same graphs to provide a
convenient basis for comparing the results of the two approaches and to help interpret the additional
information that the PRA can add to the point estimate outputs.

4.5 MODELING VARIABILITY IN TOXICITY

4.5.1 VARIABILITY IN RESPONSE AMONG MEMBERS OF A POPULATION

Data on the toxicity of a chemical usually comes from laboratory studies whereby groups of
organisms (laboratory mammals, fish, benthic organisms, plants, earthworms, etc.) are exposed to
differing levels of chemical, and one or more responses (endpoints) are measured (survival, growth,
reproduction, etc.).  These toxicological observations define the exposure-based stressor-response curve
that is characteristic for that specific receptor, chemical, and response.

In the point estimate approach, information from the dose/stressor-response curve is generally
converted to one or more TRVs, each representing a specific point on the dose-based or concentration-
based stressor-response curve.  For example, the highest dose or concentration that did not cause a
statistically significant change in a toxicologically significant endpoint is defined as either the NOAEL
dose or the no-observed-effect concentration (NOEC), while the lowest dose or concentration that did
cause a statistically significant effect on a relevant endpoint is the LOAEL dose or the lowest-observed-
effect concentration (LOEC).  Generally, exposures below NOAEL- or NOEC-based TRVs are
interpreted to pose acceptable risk, while exposures above LOAEL- or LOEC-based exposures are
judged to pose potentially unacceptable risk.  It is essential to note the need for high quality toxicity data
to derive reliable and confident TRVs.  Strong sampling and study designs, that generate data for site
exposure factors and toxicological stressor-response relationships, are of critical importance for
producing high quality ERAs by either point estimate or PRA approaches.  Shortcomings in either area
could be major data gaps or uncertainties that detract from the confidence in the risk characterization of
the ERA, and may be a basis for pursuing additional iterations of sampling or studies that are more
strongly designed to fill those critical data gaps and reduce uncertainty.

Use of the TRV approach, however, does have some potential limitations.  Most important is that
the ability of a study to detect an adverse effect depends on both the range of doses tested and the
statistical power of the study (i.e., the ability to detect an effect if it occurs).  Thus, studies with low
power (e.g., those with only a few test animals per dose group) tend to yield NOAEL or NOEC values
that are higher than studies with good power (those with many animals per dose group).  In addition, the
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choice of the TRV is restricted to doses or concentrations that were tested, which may or may not be
close to the true threshold for adverse effects, and this uncertainty increases as the interval between doses
increases.  Finally, it is not always easy to interpret the significance of an exposure that exceeds some
particular TRV, since the severity and incidence of response depends on the shape and slope of the
exposure response curve (information that is not captured in a point estimate TRV).

 One way to resolve some of these stressor-response limitations is to apply uncertainty factors to
the NOAEL or NOEC and LOAEL or LOEC, which calculates an adjusted TRV that reduces the study’s
exposure level of concern to account for those uncertainties, so that there is a lesser chance of overlooking
possible adverse exposures (i.e., avoiding a false negative conclusion).  Another way to resolve some of
the stressor-response limitations is to fit a mathematical equation to the available exposure-response data
and describe the entire exposure-response curve.  This may be done using any convenient data fitting
software, but EPA has developed a software package specifically designed for this type of effort.  This
software is referred to as the Benchmark Dose Software (BMDS), and is available along with detailed
documentation and explanation of the methodology at www.epa.gov/ncea/bmds.htm.

The most appropriate mathematical form of the exposure-response model depends on whether the
endpoint measured is discrete and dichotomous (e.g., survival) or continuous (e.g., growth rate).  For a
dichotomous endpoint, the result of the fitting exercise is a mathematical exposure-response model P that
yields the probability of a response in an individual exposed at any specified level of exposure (expressed
either as dose or concentration).  Exhibit 4-3 shows an example of this process using hypothetical data. 
Thus, for an individual with an exposure level of "x", the probability of a response in that individual is
simply P(x).  In a population of individuals with exposures x1, x2, x3, ...xi, the expected number of
responses (e.g., deaths) in the exposed population is the sum of the probabilities across all individuals in
the population.  Stated another way, the average fraction of the population that will experience the
response is given by the expected value of P (i.e., the average value of P(x)).
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EXHIBIT 4-3

M ODELING VARIABILITY IN RESPONSE FOR A DICHOTOM OUS ENDPOINT
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For a continuous endpoint, the BMDS software yields equations that give the expected mean
response m(x) at a specified exposure level, along with the standard deviation s(x) that characterizes how
variable the response is among different individuals exposed at that same exposure level.  The standard
deviation may be modeled either as a constant (homogeneous variance) or a function of the exposure
level (heterogeneous variance), with the choice depending on which approach yields the best agreement
with the observed variances.  In most cases there will not be sufficient data to allow a meaningful
analysis of the true shape of the underlying distribution of responses at a given exposure, so the choice of
the distributional form of the variability in response will require an assumption.  In the absence of any
clear evidence to the contrary, it is considered likely that the distribution of responses will not be
strongly skewed, and that the distribution may be reasonably well modeled using a normal PDF
(truncated as necessary to prohibit selection of biologically impossible or implausible values).  Thus,
variability in response at dose "x" may generally be modeled as:

Response(x) ~ NORMAL[m(x), s(x), min, max]

However, if available data suggest some other distributional form is more appropriate, that form should
be used and justified.

Exhibit 4-4 shows an example of this process using hypothetical data.  In this case, the mean
response was found to be well modeled by the Hill equation, and the standard deviation was found to be
best characterized as a constant (rho=0).  Thus, given an exposure level "x", the mean response m(x) may
be calculated from the model, and this value along with the standard deviation may then be used as
parameters for an appropriate type of PDF (e.g., normal) to describe the expected distribution of
responses in a population of different individuals exposed at level "x".  Section 4.7.2 describes methods
that may be used to characterize and quantify the uncertainty associated with this approach.
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EXHIBIT 4-4

M ODELING VARIABILITY IN RESPONSE FOR A CONTINUOU S ENDPOINT
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4.5.2 VARIABILITY IN RESPONSE AMONG SPECIES

In some cases, risk management decisions may also consider community-level effects as well as
population-level or sub-populations effects.  That is, a stressor might be considered to be below a level of
concern for the sustainability of a community if only a small fraction of the total number of exposed
species are affected.  In this case, toxicological responses may be best characterized by the distribution of
toxicity values across species.  This is referred to as a Species Sensitivity Distribution (SSD).  This type
of approach is generally used for communities of aquatic receptors, since all of the different species that
make up the community (e.g., all fish, benthic invertebrates, aquatic plants, and amphibians that reside in
a stream) will be exposed to approximately the same concentration of contaminant in the water.  The
process for generating an SSD consists of the following steps:

(1) Select an appropriate type of endpoint (lethality, growth, reproduction, etc.), and select an
appropriate type of point estimate from the exposure-response curve for each species.  For
example, the TRV might be the LC50 for lethality or the EC20 for growth.  The key
requirement is that the SSD be composed of TRV endpoints that are all of the same type, not
a mixture.

(2) Collect all reliable values for that type of TRV from the literature for as many relevant
species as possible.  When more than one value is available for a particular species, either
select the value that is judged to be of highest quality and/or highest relevance, or combine
the values across studies to derive a single composite TRV for each species.  It is important
to have only one value per species to maintain equal weighting across species.

(3) Characterize the distribution of TRVs across species with an appropriate CDF.  Note that
there is no a priori reason to expect that an SSD will be well characterized by a parametric
distribution, so both parametric and empirical distributions should be considered.

Once an SSD has been developed, the fraction of species in the exposed community that may be
affected at some specified concentration may be determined either from the empirical distribution or
from the fitted distribution.  Exhibit 4-5 shows examples of this approach.  In this hypothetical case, the
TRV selected for use was the LClow (in this case, the LClow is defined as all LC values <=LC10).  A total
of 13 such values were located.  The first graphical presentation is the empirical distribution function,
where the Rank Order Statistic (ROS) of each value is plotted as a function of the log of the
corresponding value.  This may be used directly to estimate the fraction of the species in a community
that will be affected by any particular environmental concentration.  For example, in this case, it may be
seen that a concentration of 10 ug/L would be expected to exceed the LClow for about 33% of the aquatic
species for which toxicity data are available.  The second graph shows how the data may be characterized
by fitting to a continuous distribution.  In this case, a lognormal distribution was selected as a matter of
convenience, but other distributions may also yield acceptable fits.  Based on the best fit lognormal
distribution for the SSD data, it is calculated that a concentration of 10 ug/L would be expected to impact
about 31% of the exposed species.  However, as noted above, there is no special reason to expect that an
SSD will be well characterized by a continuous parametric distribution, so some caution should be used
in the use of a continuous distribution to fit an SSD, especially when the SSD is based on a limited
number of species and when the purpose of the SSD is to estimate percentiles and exposures outside the
observed range.  The risk assessor should always present an evaluation of the robustness of an SSD to aid
in the decision process.
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EXHIBIT 4-5

HYPOTHETICAL SPECIES SENSITIVITY DISTRIBUTION



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment
Chapter 4 ~ December 31, 2001

Page 4-22

Figure 4-5.  Example Comparison of Exposure Distribution to TRV.

4.6 MODELING VARIABILITY IN RISK

4.6.1 VARIABILITY IN HAZARD QUOTIENT

As noted above, the most common descriptor of risk used in predictive risk assessments is the
Hazard Quotient (HQ).  The HQ is the ratio of the exposure for some generalized or typical hypothetical
member of the receptor population at a site, compared to an appropriate TRV value that equates to an
acceptable level of risk for that receptor and chemical.  Usually the HQ approach is not based on a single
value, but on a range of values in which different levels of exposure (CTE and RME) are compared to
both the NOAEL to LOAEL benchmarks.  In general, HQ values below 1 are interpreted as indicating
acceptable risk, while HQ values above 1 are interpreted as indicating the potential for adverse effects.  

Because exposure varies among different members of an exposed population of receptors, HQ
values also vary among members of the exposed population.  Several alternative approaches for
characterizing this variability by PRA methods are presented below. 

Variability Within a Population

Figure 4-5 illustrates
the simplest approach for
summarizing variability in HQ
values among the members of 
an exposed population.  In this
format, the TRV values
appropriate for a particular
exposure are simply
superimposed on the graph
illustrating the distribution of
exposures.  This may be done
either for a dose-based (as
shown in the figure) or for a
concentration-based exposure
parameter.  This format allows
an easy evaluation of the
fraction of the population above
(HQ > 1) and below (HQ < 1)
each TRV, especially when
presented in CDF format. 
However, this format does not
allow for a quantitative estimate
of the fraction of the population
with HQ values above any
value other than 1, although a
similar calculation and
presentation could be made for
any multiple of the TRVs,
which would directly equate to
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Figure 4-6.  Example Distribution of HQ Values.

that multiple of the HQ (e.g., depicting the results for a value equal to 10-times the TRV would show the
fraction of the population with an HQ greater than 10).

More directly, the distribution of HQ values may be calculated by dividing each exposure value
by one or all of the TRVs based on the NOAEL, LOAEL, BMDL, etc., as shown in Figure 4-6.  Note that
dividing a distribution by a constant does not change the shape of the distribution (only its scale), so the
shape of the HQ distribution will appear identical to that of the exposure distribution.  Figure 4-6
illustrates two HQ distributions; one calculated using the NOAEL-based TRV, the other using the
LOAEL-based TRV.  In a case such as this where there are two or more HQ distributions, a CDF format
is generally easier to evaluate than a PDF format, since overlap between the curves is minimized.  The
CDF format allows an easy quantitative evaluation of the fraction of the population above and below any
particular HQ level.  For example, in the case shown in Figure 4-6, it may be seen that 83% of the
population is expected to have HQ values below 1 based on the NOAEL-based TRV, while 4% are
expected to have HQ values above 1 based on the LOAEL-based TRV.  This type of description
(percentage of the population with HQ values within a specified range) is very helpful in predicting
proportions of a population exposed to specified doses of concern.
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Variability Between Species

A similar approach may be used for characterizing the variability in risks among different species
in a community.  Figure 4-7 is an example that compares the distribution of concentration values in a
water body (the variability might represent either time or space) to an appropriate SSD of TRVs for
different species of aquatic receptors that might reside in that water body.  Three different graphical
formats are illustrated.  In the upper panel, the PDF of concentration is compared to the CDF of the SSD. 
This format is easy to understand and may be interpreted visually, but is difficult to interpret
quantitatively.  The middle panel shows that same information, but with both distributions presented in
CDF format.  This allows for a quantitative evaluation of the fraction of the species that will be above
their respective TRVs at any specified part of the exposure distribution.  For example, using a simple
graphical interpolation process (shown by the dashed lines), it may be seen that the 90th percentile of
concentration (21 ug/L) will impact approximately 24% of the exposed species.  The bottom panel shows
the results when this same process is repeated (mathematically) for each of the concentration percentiles. 
As seen, hazards to the community of receptor species is quite low until concentration values reach the
80th to 85th percentile, but then rise rapidly.  For example, a concentration value equal to the
95th percentile (about 28 ug/L, which will occur approximately 5% of the time) is expected to impact
approximately 68% of the exposed species, and the 99th percentile (which will occur about 1% of the
time) is expected to impact nearly all of the exposed species. 
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Figure 4-7 .  Example Presentation of Species Sensitivity Distribution.
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4.6.2 VARIABILITY IN RESPONSE

As noted above, HQ and Hazard Index (HI) (where appropriate) values are a convenient way to
characterize risk to ecological receptors, but interpreting the biological significance of the ranges of HQ
values greater than 1 is not always easy.  One of the main advantages to the PRA approach is that
distributions of exposure may be combined with exposure-response distributions in order to generate
distributions that characterize the frequency and magnitude (severity) of responses in an exposed
population.  Two examples of this approach are presented below.

Example 1:  Dichotomous Response

In this hypothetical example, a toxic chemical is being transported by surface water run-off from
a Superfund site into a nearby stream.  Because of short-term and seasonal variability in rainfall levels
(which influences both run-off rate and stream flow), the concentration of the chemical in the stream has
been observed to vary as a function of time.  The risk manager at the site wants to know two things:
(1) How often will the concentration enter a range that can cause acute lethality in fish?; and (2) When
that happens, what percent of the fish population is likely to die?  Exhibit 4-6 summarizes the
hypothetical concentration data and illustrates the basic approach.  In this case, the concentration data are
most conveniently modeled as an empirical PDF.  Next, assume that the acute concentration-lethality
curve is available for the chemical of interest in a relevant indicator species of fish.  For convenience,
assume the response function is the same as that shown in Exhibit 4-3.  Then, the PDF for acute mortality
may be generated by repeated sampling from the concentration distribution and calculating the
probability of response (acute mortality) for each concentration value selected.  Because this is a case
where the entire population of fish at the exposure location may be assumed to be exposed to the same
concentration in water, the probability of mortality in a single fish is equivalent to the average fraction of
the population that is expected to die as a result of the exposure.  The resulting PDF is shown in the
graph in Exhibit 4-6.  As seen, lethality is expected to be low or absent about 95% of the time, but about
5% of the time the concentration may enter a range where acute lethality may occur.  The extent of
mortality within the exposed population is expected to range from about 20% at the 97th percentile of
exposure (i.e., this is expected to occur about 3% of the time), up to about 70% at the 99th percentile of
exposure (i.e., this is expected to occur about 1% of the time).
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EXHIBIT 4-6

M ODELING VARIABILITY IN A DICHOTOM OUS RESPONSE
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Example 2:  Continuous Response

Exhibit 4-7 provides a hypothetical example of modeling variability in response for a continuous
endpoint.  In this example, assume that a toxic chemical has been released by a Superfund site and has
been transported in low levels by air to a nearby meadow.  Among the receptors of potential concern in
the meadow are a number of different types of small mammal, and the field mouse has been selected to
serve as an indicator species for this group.  The goal of the PRA is to characterize the effects of the
chemical on the growth of field mice in the meadow.  Exposure occurs mainly by ingestion of seeds that
have been contaminated by uptake of the chemical from soil, and it has been determined that the
variability in average daily intake (DI) of chemical from the diet can be modeled as a lognormal
distribution with mean of 104 mg/kg-day, and a standard deviation of 127 mg/kg-day.  Assume for
convenience that the exposure-response curve for growth inhibition in mice by the chemical is the same
as that presented previously in Exhibit 4-4.  Given these inputs, the expected distribution of responses is
derived as follows:

Step 1: Draw a random value for the DI of a random member of the population
Step 2: Calculate the mean response m(d) and the standard deviation of the response s(d) for a

group of individuals exposed at that dose (d)
Step 3: Define the distribution of responses at that dose as NORMAL[m(d), s(d)]
Step 4: Draw a response from that distribution, and track this as the output variable

An example of the output for this example is shown in the two graphs at the bottom of
Exhibit 4-7.  As seen, mice that are not exposed to the chemical display a range of growth rates ranging
from about +10% to +40%.  Many of the mice (about 90%) residing in the contaminated field are
experiencing a range of growth rates that are only slightly decreased from rates expected for unexposed
animals.  However, about 10% of the animals have weight gains that are markedly less than for
unexposed animals, ranging from about +5% to -30% (i.e., a net weight loss of 30% compared to the
starting weight).

It should be noted that the response distribution calculated in this way is what would be expected
for a large population of exposed receptors.  If the actual exposed population is small, then the actual
response distribution may vary somewhat compared to the typical response shown in Exhibit 4-7.  In
cases where it is important to evaluate this variability about the expected average pattern of response, this
may be done by running repeated Monte Carlo simulations using a number of trials (iterations) within
each simulation that is equal to the expected size of the exposed population.  Each simulation will thus
represent a possible response distribution in the exposed population, and the range of responses across
different populations may be evaluated by comparing the multiple simulations.  As noted above, the
magnitude of the variability between populations is expected to be small if the population size (number
of trials) is large, although this depends on the characteristics of the exposure and response functions.
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EXHIBIT 4-7

  M ODELING VARIABILITY IN A CONTINUOU S RESPONSE
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Figure 4-8 .  Example Joint Probability Curve.

4.6.3 JOINT PROBABILITY CURVES

In this approach, if data are available to characterize the probability of a particular exposure
occurring, and an exposure-response curve is available, these may be combined to yield a curve (referred
to as a Joint Probability Curve) that shows the probability that a response greater than some specified
magnitude will occur.  An example is shown in Figure 4-8.  The upper panel shows a hypothetical
cumulative exposure probability distribution (plotted on the primary y-axis) along with the
exposure-response curve (plotted on the secondary y-axis).  The steps needed to generate the Joint
Probability Curve are as follows:

Step 1:  Select an exposure level "x" and record the probability (Px) of exceeding that exposure. 
For example, in Figure 4-8, at an exposure of 12 units, the cumulative probability of exposure is
84%.  Thus, the probability of exceeding that exposure is 16%. 

Step 2:  Find the expected response at that same exposure (Rx).  In this case, the response at an
exposure of 12 is 2.2.

Step 3:  Plot a data point at Rx on the
x-axis and Px on the y-axis.

Step 4:  Repeat this process for many
different exposure levels, being sure
to draw samples that adequately cover
all parts of the probability scale.

The lower panel of Figure 4-8 shows the
results obtained using the hypothetical data in
the upper panel.  The advantage of this format
is that it gives a clear visual display of both
the probability and magnitude (severity,
extent) of response.  Further, the area to the
left of the curve is a relative index of the
population-level or community-level risk, and
comparison of this area across different
scenarios is helpful in comparing different
risk scenarios (both in risk characterization
and risk management).  However, this
approach is based on the mean response at a
dose, and does not account for variability in
response between multiple individuals all
exposed at that dose.  Employing a
two-dimensional Monte Carlo analysis
(2-D MCA) procedure could help to display
this variability in response between the
individuals at a given dose.
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Figure 4-9.  Example Presentation of Uncertainty in Exposure.

Note that unless 2-D MCA is used, this approach does not require Monte Carlo modeling. 
Rather, the calculations can usually be performed in a spreadsheet format using built-in spreadsheet
functions.

4.7 MODELING UNCERTAINTY IN ECOLOGICAL RISK ASSESSMENTS

As emphasized above, one of the greatest potential benefits of the PRA approach is the ability to
combine estimates of uncertainty associated with different components of the exposure and risk models
in order to describe the overall uncertainty in final exposure or risk estimates.  Some basic options for
characterizing and presenting uncertainty in exposure, toxicity, HQ, and response are presented below.

4.7.1 UNCERTAINTY IN EXPOSURE

Most estimates of dose-based exposure for terrestrial receptors (birds, mammals) are based on
calculated estimates of chemical intake using simple or complex food web models, sometimes coupled
with environmental fate and transport models that can link risk to a receptor with a source of
contamination.  In cases where
receptors are exposed mainly by
direct contact rather than
ingestion (e.g., fish, soil
invertebrates, etc.), concentration-
based (as opposed to dose-based)
descriptors of exposures may be
derived using mathematical fate
and transport models.  The basic
principles for modeling
uncertainty in ecological exposure
models (either dose-based or
concentration-based) are the same
as discussed in Appendix D.  In
brief, probability distribution
functions of uncertainty (PDFu's)
are used to characterize the
uncertainty in the parameters of
the probability distribution
functions of variability (PDFv's)
for some or all variables in the
exposure model.  Then, a
2-D MCA  is used to derive
quantitative estimates of the
uncertainty around each
percentile of the variability
distribution of exposure. 
Figure 4-9 illustrates the type of
tabular and graphic outputs that
this approach generates.

If exposure is based on measured rather than calculated values by PRA (e.g., measured
concentrations in an abiotic medium, measured concentrations in receptor tissues), uncertainty in the
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empirical or best-fit continuous distribution through the data can be quantified using the statistical
methods detailed in Appendix B.

As discussed in Chapter 1, it is important to understand that there are many sources of
uncertainty and that this approach to uncertainty analysis focuses mainly on parameter uncertainty and
uncertainty in the true shape of input variable distributions.  It does not capture other sources of
uncertainty relating to the fundamental adequacy of the exposure and risk models used to describe the
behavior of complex biological systems or of sampling and analytical errors and uncertainties, so the
uncertainty estimates should always be interpreted in this light as being somewhat incomplete.

4.7.2 UNCERTAINTY IN TOXICITY

Toxicity information used for ERAs is often a source of uncertainty in the risk assessment
process.  This uncertainty may arise from multiple areas and may include both quantitative uncertainty in
the dose-response data (involving toxicokinetics and study designs) and qualitative uncertainty in the
relevance of the data (involving toxicodynamics).  Methods for characterizing the quantitative
uncertainty in both point estimates of toxicity (TRVs) and in full exposure-response curves are outlined
below.

Uncertainty in TRVs

TRVs for a chemical are point estimates of exposure levels that do not cause an unacceptable
effect in an exposed receptor population.  Ideally, all TRVs would be based on NOAEL and LOAEL
values derived from studies in which the receptor, endpoint, exposure route and duration were all
matched to the assessment endpoints defined for the site.  However, such exact matches are seldom
available.  Therefore, it is often necessary to extrapolate available toxicity data across route, duration,
endpoint and/or species, leading to uncertainty in the most appropriate value to use as the NOAEL or
LOAEL.  There are no default methods for developing TRVs on a site.  However, some options include
the use of allometric dose scaling models, physiologically-based biokinetic models, benchmark dose
estimates or other approaches based mainly on policy and/or professional judgment.  Guidelines for
dealing with the uncertainty in components of the TRV derivation by uses of PRA are provided below.

Uncertainty in NOAELs and LOAELs

Uncertainty in the NOAEL or LOAEL for a chemical has two components: (1) uncertainty within
a study; and (2) uncertainty between studies, under exact specified conditions of exposure.

Assuming that a single study has been selected to provide the NOAEL and/or LOAEL values to
be used in deriving a TRV for a chemical, it is customary to define the NOAEL as the highest exposure
that did not cause a statistically significant effect, and the LOAEL is the lowest exposure that did cause a
statistically significant effect.  As noted earlier (see Section 4.5.1), this approach has a number of
limitations, and there may be substantial uncertainty as to whether the observed NOAEL and LOAEL
values actually bracket the true threshold effect level.  One way to quantify uncertainty in the exposure
levels that cause some specified level of adverse effect is through the use of exposure-response curve-
fitting software such as EPA's BMDS package.  In this approach, the risk assessor selects some level of
effect that is judged to be below a level of concern, and another level of effect that would be of concern. 
The choice of these response levels is a matter of judgment, and depends on the nature and severity of the
endpoint being evaluated.  A specified level of effect is referred to as a Benchmark Response (BMR),
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and the exposure that causes that response is referred to as the Benchmark Dose (BMD).  Given
information on the number of test organisms in each test group and on the variability of the response in
those organisms, the BMD software uses maximum likelihood methods to derive the 5% lower
confidence bound on the exposure that causes the BMR.  This is referred to as the BMDL.  This
uncertainty bound may be used to quantify the uncertainty in the BMD, and hence to characterize this
source of uncertainty in the TRV.  The simplest method for approximating the uncertainty distribution
around the BMD is to assume the distribution is approximately normal, with mean equal to the BMD and
standard deviation (standard error) given by:

Stdev=(BMD - BMDL) / 1.645 

For advanced analyses, a more accurate characterization of the uncertainty distribution around the BMD
may be derived by Monte Carlo simulation.  In this approach, each model parameter is assumed to be
normally distributed, with mean and standard error values provided by the BMDS output.  Monte Carlo
simulation is then used to select alternative model parameter sets, being sure to account for the
covariance between parameters (the covariance matrix is also provided by the BMDS output).  For each
parameter data set, the BMD is calculated, and the distribution of BMD values across many iterations is a
better approximation of the uncertainty in the BMD.

Uncertainty in the effect level (NOAEL or LOAEL) for a chemical may also arise because there
is more than one study available for the chemical, and the studies do not yield equal estimates of the
effect level.  It is important to note that the process of reviewing available toxicity studies, choosing the
most relevant endpoint for use in deriving a TRV, and identifying the most relevant study is a process
requiring basic toxicological expertise (not probability or statistics), and this process must be completed
both for point estimate and probabilistic risk assessments.  In general, studies based on different
receptors, endpoints, exposure routes and/or durations are not equally relevant for evaluating a particular
assessment endpoint in a particular indicator species.  However, in some cases, multiple studies of the
same endpoint in the same species will be available.  In such a case, assuming that all the studies are
judged to be equally reliable, the best estimate of the LC50 may be derived by calculating the geometric
mean of the available alternative values (after adjustment to constant hardness).  Uncertainty around the
best estimate may then be based on the observed inter-study variability, using the basic principles for
choosing PDFu's as described in Appendix B.

Uncertainty in Extrapolation of TRVs

In general, extrapolation of TRVs across species or endpoints is not desirable, since the
magnitude and direction of any potential error is generally not known.  Sometimes, extrapolations
between species are attempted based on allometric scaling models that seek to adjust toxicity values
accounting for differences in body weight.  Alternatively, physiologically-based pharmacokinetic
(PBPK) models that seek to account for differences in a number of other physiological variables
(metabolism rate, organ size, blood flow, etc.) can be used.  However, the validity of these models is
often not well established.  In those cases where these models are used, and where the uncertainty in the
model is judged to warrant quantitative evaluation, the primary source of the model should be consulted
in order to derive an estimate of the uncertainty in the quality of the extrapolation and in the parameters
of the model.  As noted earlier, PRA may capture uncertainty associated with model input parameters,
but does not usually capture all sources of uncertainty in the model.  In particular, most models of this
sort are designed to extrapolate only the average response as a function of dose, and are not intended to
extrapolate variability between individuals at a specified dose.  When no mathematical model is available
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to support quantitative extrapolation across species, exposure duration or endpoint, professional
judgment and/or policy may be used to select extrapolation factors to account for the uncertainty. 

The risk assessor should ensure that the risk manager understands the uncertainty associated with
any model selected and applied, and that the results of the calculations (point estimate or PRA) are
conditional upon the model selected.

Uncertainty in Parameters of the Dose-Response Models

When toxicological exposure-response data are fit to mathematical equations, the fitting software
will usually provide quantitative information on the uncertainty in the best estimates for each of the
model parameters.  For example, in the dichotomous model illustrated in Exhibit 4-3, the output from the
BMDS software included the following information on the uncertainty in the parameters of the best-fit
logistic equation:

Parameter Best Est Std Error (SE)

a -4.80 0.83

b 0.101 0.019

Because the uncertainty in the best estimate of each model parameter is asymptotically normally,
uncertainty in the parameters may be modeled as:

PDFu (parameter i)=NORMAL(best estimate of parameter i, SE of parameter i) 

Note that the parameters of the model are generally not independent, and generally should not be treated
as such.  Thus, when modeling the uncertainty in the parameters of the best-fit exposure-response model,
the PDFv's for the parameters should be correlated according to the correlation matrix or the variance-
covariance matrix, as provided by the modeling software.

4.7.4 UNCERTAINTY IN RESPONSE

If the risk characterization phase of the risk assessment focuses on an estimation of the
distribution of responses rather than the distribution of HQ values, the uncertainty in the distribution of
responses can be evaluated using two-dimensional Monte Carlo techniques using PDFu's for the
parameters of the exposure and exposure-response models derived as described above.  The same
graphical output may be used for this presentation as was illustrated in Figure 4-9, except that the x-axis
is response rather than HQ.  This format is illustrated in Figure 4-10 for a dichotomous endpoint (e.g.,
acute lethality).  In this example, the average probability of response among the members of the exposed
population (shown in the graph by the black diamond symbols) is 8.2%, with a confidence bound around
the mean of 4.9 to 12.8%.  This is equivalent to concluding that about 8.2% of the population is expected
to suffer acute lethality, but the true fraction dying could range from 4.9 to 12.8%.
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Figure 4-10.  Example Presentation of Uncertainty in Response.

4.7.3 UNCERTAINTY IN HAZARD QUOTIENT

Once the uncertainty in exposure and/or toxicity distributions has been characterized as
described above, there are a number of options for presenting the resultant uncertainty in the HQ (or HI,
if appropriate and applicable for summing HQs) distributions.  Figure 4-11 shows one simple graphical
format, where the point estimate of the TRV is superimposed on the uncertainty bounds of the exposure
distribution (upper panel), or the uncertainty bounds of the TRV are superimposed on the best estimate of
exposure (lower panel).  One could also superimpose the range of TRVs over the range of exposures, to
capture most of the uncertainty in the HQ.  Furthermore, such distributional outputs should always show
the point estimate ranges of CTE and RME exposures in respect to the ranges of TRVs, for use in
weight-of-evidence to help interpret the PRA and point estimate results.  The advantage of this format is
that no additional Monte Carlo modeling is needed to derive initial descriptors of uncertainty in risk.  For
example, in the upper panel it may be seen that the best estimate of the fraction of the population exposed
at a level below the TRV is about 83%, but that this is uncertain due to uncertainty in the exposure
estimates, and the true percent below the TRV might range from 74 to 90%.  Similarly, in the bottom
panel, the best estimate of the fraction of the population below the TRV is also about 83%, but due to
uncertainty in the TRV the actual value could range from 64 to 91%.  Uncertainty could also be
presented by showing a combined graph with both ranges of exposure and TRVs, such as described
below.
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Figure 4-11.  Example Presentation of Uncertainty in Exposure and TRV.
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Figure 4-12.  Example Presentation of Uncertainty in HQ Estimates.

A more complete characterization of uncertainty in HQ may be achieved by using PRA to
combine the uncertainty in both the exposure and the TRV terms, resulting in the uncertainty bounds on
the HQ distribution itself (see Figure 4-12).  In this example, it may be seen that 63% of the exposed
population is estimated to have an HQ below 1.0, but that this is uncertain due to uncertainty in both the
exposure distribution and the TRV, and that the true fraction of the population below a level of concern
(HQ < 1) could range from 45 to 81%.    

4.8 INTERPRETING RESULTS OF AN ECOLOGICAL PRA

In some cases, the information contributed by a PRA may provide a more complete
characterization of risks to a population of receptors than can be obtained by using point estimate
methods.  However, whether by PRA or by point estimate or a combination, the results of the risk
assessment must be interpreted to reach a risk management decision. 

In contrast to the case for human health risk assessments (where default risk-based decision rules
are well established), there are no established default decision rules for identifying when risks to
ecological receptors are and are not of concern.  In the point estimate approach, EPA guidance (U.S. EPA
1992b, 1995) recommends consideration of both the RME and CTE exposure/dose estimates along with
TRVs based on both LOAELs and NOAELs (U.S. EPA 1997a) to reach a risk management decision. 
The same principle applies to probabilistic ERAs. 

In some cases, interpretation of an ecological PRA is relatively simple.  For example, if the
distribution of HQ values calculated using an appropriate NOAEL-based TRV are less than 1.0 for nearly
all members of the population, then it is likely that risks are within an acceptable range for the
population.  Conversely, if the distribution of HQ values calculated using a LOAEL-based TRV are
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significantly greater than 1.0 for most members of an exposed population, then it is likely that risks are
not acceptable for the population.  However, for cases which fall between these bounding conditions (and
for cases where one needs to clearly define the boundaries of potential excess risks for a gradient of
contamination and exposures), the level of risk or response that is considered acceptable must be defined
by the risk assessor and the risk manager on a site-specific and receptor-specific basis.  This evaluation
should take the following factors into account:

(1) The Risk Management Goal

The risk management objective for most Superfund ERAs is defined as population sustainability
(U.S. EPA, 1999).  In this case, harm to some members of the exposed population may be acceptable, if
that harm does not lead to an overall reduction in population viability.  This situation (protection of a
population rather than protection of individuals) is sometimes equated with use of the CTE (average)
receptor as the basis for risk management decision making.  That is, if the HQ for the CTE receptor is
below a level of concern, it is sometimes assumed that population risks are acceptable.

However, the choice of the CTE receptor as the basis for risk management decision making may
not be sufficiently protective in all cases.  For the vast majority of wild populations, the proportion of the
population that must be protected to ensure population stability will be unknown.  At a small number of
sites, a population biologist may be able to provide some information.  Moreover, the percentile of the
CTE receptor in the exposure or risk distribution may vary depending on the shape of the distribution. 
The proportion of the population experiencing exposure greater than that of the CTE receptor could
range from less than 10% up to 50% or even higher.  Also, the ecological significance of an adverse
effect on some members of a population depends on the nature of the stressors and on the life history and
population biology of the receptor species.  Because of these complexities, use of the CTE as a decision
threshold for nonthreatened or endangered species may be appropriate in a small number of cases, but
risk assessors and risk managers should realize that the choice of the CTE receptor requires a species-
and endpoint-specific justification and the CTE should not be used as the default basis for a risk
management decision.  Rather, for the majority of ERAs, the risk management decision should be based
on the RME receptor or an upper percentile of the distribution of variability in risk/exposure.

(2) The Toxicological Basis of the TRV

The biological significance of a distribution of variability in HQ cannot be interpreted without a
proper understanding of the nature of the TRV being used to evaluate the distribution.  This includes the
nature of the toxicological endpoint underlying the TRV, its relevance to the assessment endpoint, and
the shape (steepness) of the dose-response curve.  For example, an HQ of 2 based on an EC20 for
reduction in reproductive success would likely be interpreted as more significant toxicologically than an
HQ of 2 based on the EC20 for an increase in liver weight.  Likewise, an HQ of 2 based on an LClow for
acute lethality would be more significant if the dose-response curve for lethality were steep than if it
were shallow, since it would be easier to cause greater response with smaller increases in exposure to
contaminants.
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(3) The Characteristics of the Receptor

Ultimately, the question which must be assessed is whether an effect of degree "x" occurring in
"y" percent of the population is biologically and ecologically significant.  This, in turn depends on the
attributes of the receptor being evaluated.  For example, a reduction of 10% in the reproductive success
of a fecund and common species (e.g., the field mouse) might not lead to a significant reduction in
population number, while the same effect could be of concern in a species with lower fecundity and/or
lower population density (e.g., the moose).  Thus, the interpretation of an analysis of variability in
exposure and/or effect often requires the input of a trained population biologist with expertise in the
receptor of concern.

Because of these issues, there is no default rule for what level of effect is and is not acceptable
for an exposed ecological population; except for the case of no potential excess risks where the RME
exposures do not exceed the TRV based on a NOAEL, assuming there is reasonable confidence in those
exposure and toxicity values.  In some cases, mathematical models may be available for predicting the
population-level consequences of a given pattern of effects (e.g., see ECOFRAM 1999a for some aquatic
population models), but in general the extrapolation from a distribution of individual responses to an
estimation of population-level effects is difficult.  For this reason, close consultation between the risk
manager and the ecological risk assessor is necessary for translating results of an ERA into an
appropriate and successful risk management decision.

4.9 GUIDELINES FOR PLANNING AND PERFORMING A PROBABILISTIC ERA

4.9.1 PLANNING AN ECOLOGICAL PRA

Chapter 2 provides a general discussion of the key steps that should be followed when planning a
PRA.  These guidelines are equally applicable to ecological PRA as to human health PRA.  Of the key
steps in the process, most important are the following:

Dialogue Among Stakeholders

As discussed in Section 4.2, the decision if and when to perform an ecological PRA is an SMDP
shared by risk assessors, risk managers, and stakeholders, including members of the public,
representatives from state or county environmental agencies, tribal government representatives, natural
resource trustees, private contractors, and potentially responsible parties (PRPs) and their representatives. 
A scoping meeting should be held after the completion of the baseline risk assessment in order to discuss
the potential purpose and objectives of a PRA, and to identify the potential value of the analysis to the
risk management process.  If it is decided to perform at least an initial PRA evaluation, subsequent
meetings of a similar type should occur iteratively in order to assess whether any further effort is
warranted.

Preparation of a Workplan

Any PRA beyond the simplest screening level evaluation should always be accompanied by a
workplan.  The purpose of the workplan is to ensure that all parties agree on the purpose and scope of the
effort, and on the specific methods, data, and procedures that will be used in the PRA.  Workplans should
be developed according to available guidance for workplans for nonprobabilistic ERA (U.S. EPA, 1992b,
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EXHIBIT 4-8  

  EXAMPLE ELEMENTS OF A WORKPLAN FOR ECOLOGICAL PRA

1.  Introduction/Overview

Conceptual site model

Assessment endpoints

Indicator species

Measures of exposure and effect

2.  Description of Exposure and Risk Models

Basic exposure models (fate and transport, uptake, food web, intake, etc .)

Basic risk models (HQ, dichotomous response, continuous response)

3.  Results from a Point Estimate Assessment

CTE and RME risk estimates from baseline evaluation

4.  Rationale why a PRA will be helpful

Goals of the assessment (variability, uncertainty, both)

Expected benefit to risk manager

5.  Description of the Proposed PRA

Exposure scenarios to be evaluated

Output variables to be modeled in variability and/or uncertainty space

6.  Proposed PDFs, and their basis

Method for performing sensitivity analysis and for selecting key variables

Data source for characterizing key variables

Approach for selecting and parameterizing key variables

Proposed list of PDFs for exposure variables (optional but desirable)

Method for dealing with the concentration term

Method for dealing with correlations

7.  Proposed Software and Simulation Approach

Commercial or custom

Monte Carlo or Latin Hypercube

Number of Iterations

Method(s) for sensitivity analysis

8.  Preliminary Results (optional, but helpful)

Results of a screening level evaluation

Identification of variables where more effort is needed to improve the

  distribution function

1997a) and should consider three elements: (1) the 16 guiding principles of MCA (U.S. EPA, 1997b);
(2) the eight guidelines for PRA report submission (U.S. EPA, 1997b); and (3) the tiered approach to
ERA (U.S. EPA, 1997a).  Development of a workplan for PRA is discussed in greater detail in Chapter 2,
and Exhibit 4-8 summarizes the key elements of a proper workplan.  The workplan must be submitted to
the BTAG coordinator and/or regional ecotoxicologist for review and for approval by the risk manager. 
The EPA strongly recommends that PRPs who wish to perform PRAs of ecological risk involve the
Agency in the development of a workplan in order to minimize chances of significant disagreement, as is
required by EPA policy.
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4.9.2 EVALUATING AN ECOLOGICAL PRA

When an ecological PRA is submitted to EPA for consideration, it will be reviewed in order to
determine if it has been performed in accord with sound principles of ERA (U.S. EPA, 1997a, 1998), and
with sound principles of PRA (U.S. EPA, 1997b).  A general checklist that may be helpful to reviewers is
provided in Appendix F, and key features of this checklist are summarized in Exhibit 4-9.  Eight specific
conditions for acceptance of a PRA submitted to EPA are provided in U.S. EPA (1997b).

At the discretion of EPA risk assessor or risk manager, the PRA report may be submitted for
additional EPA internal review and/or an external review process in accord with Agency guidelines for
conducting peer reviews (U.S. EPA, 2001).  The external peer review may be used in cases where the
issues are complex or contentious and the opinions of outside expert peer reviewers can improve the
PRA.

4.10 EXAMPLE OF THE TIERED PROCESS IN ERA

As discussed in detail in Chapter 2, one of the key elements in the risk assessment process is
deciding if and when further analysis is warranted.  This includes decisions regarding whether to employ
PRA calculations to supplement point estimate calculation, and if so, what level of effort to invest in
those PRA calculations.  The following section presents a relatively simple hypothetical example
illustrating how the tiered approach might operate at a site where ecological risk is an important concern.

EXHIBIT 4-9

CHECKLIST FOR INCLUDING A PRA  AS PART OF THE ERA  (SEE APPENDIX F)

• All risk assessments should include point estimates prepared according to current Superfund national and

regional guidance.

• A workplan must be submitted for review and approval by the appropriate EPA regional project manager

(RPM) and/or BTAG coordinator prior to submission of the PRA.

• A tiered approach should be used to determine the level of complexity appropriate for the ERA.  The

decision to ascend to a higher level of complexity should be made with the risk manager, regional risk

assessor and other stakeholders.

• The eight conditions for acceptance presented in the EPA policy on PRA (U.S. EPA, 1997b) should be

clearly addressed by each PRA submitted to the Agency.

• Information in the PRA should possess sufficient detail that a reviewer can recreate both the input

distributions and all facets of the analysis.  This includes copies of published papers, electronic versions

of necessary data and other materials deemed appropriate by EPA.
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Problem Formulation

PestCorp is a former chemical manufacturing facility that produced mainly chlorinated pesticides
10 to 20 years ago.  Data collected on the PestCorp property indicate that a number of spills or releases
of chlorinated pesticides took place when the facility was in operation, and that site soils are broadly
contaminated, especially with pesticide X.  This contaminated soil has lead to impacts on a nearby lake
of about 300 acres that receives surface water runoff from the PestCorp site.  Samples from the lake
reveal low but detectable levels of pesticide X in water, with relatively high values in sediment and in the
tissues of a variety of aquatic organisms (crayfish, snails, benthic macroinvertebrates and fish).  The
concentration values in all media (water, sediment, aquatic organisms) tend to be highest in the part of
the lake receiving runoff from the PestCorp property, with a gradient of diminishing values at locations
further away from the area where runoff enters the lake.

A BTAG committee formed by EPA to identify potential ecological concerns at the site
recognized that many different species could be exposed to the contaminants in the lake, including
aquatic receptors residing in the lake (fish, invertebrates, aquatic plants), as well as mammals and birds
that frequent the lake for food or water.  Because pesticide X is lipophilic and tends to biomagnify in the
food web, the BTAG decided that the highest risks would likely occur in higher-level predators such as
mammalian omnivores, and selected the racoon as a good indicator species to represent this trophic
group.  Pathways of exposure that were identified as warranting quantitative evaluation included
(a) ingestion of water, (b) ingestion of aquatic food items, and (c) incidental ingestion of sediment while
feeding or drinking at the lake.  The BTAG determined that the assessment endpoint was protection of
mammalian omnivore populations.

Point Estimate Risk Evaluation

A series of iterative screening-level point estimate calculations (Steps 1 to 2 of the 8-step
ERAGS process) were performed to investigate whether or not there was a basis for concern at the site. 
Initial calculations using simplified and conservative inputs (i.e., exposure based on the maximum
measured concentration in each medium, an area use factor of 1, and the most conservative available
TRVs) indicated that the HQ value for pesticide X could be quite large.  Therefore, a refined screening
level evaluation was performed in which point estimates of CTE and RME risk were derived using the
best information currently available.  Key elements of the approach are summarized below:

• The CTE receptor was assumed to be exposed at a location where concentration values were the
average for the whole lake, and the RME receptor was assumed to be exposed at a location where
concentrations were equal to the 95th percentile of values from the lake.

• Because only limited data were available for measured concentrations of pesticide X in aquatic
prey items, the concentration values in aquatic prey were estimated using a linear
bioaccumulation model: C(prey)=C(sed) x BAF.  The BAF was estimated from the existing data
by finding the best fit correlation between the concentration values in sediment and crayfish at
7 locations in the lake:  C(crayfish)=5.04 x C(sed) (R2=0.792).

• The TRV values were based on a study in mink in which the toxicity endpoint was the percent
inhibition of reproductive success.
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EXHIBIT 4-10

REFINED SCREENING POINT ESTIMATE INPUTS AND RESULTS

These inputs and the resulting HQ values are shown in Exhibit 4-10.  As seen, estimated risks to the CTE
receptor approach or slightly exceed a level of concern (HQ=4.7E-01 to 1.4E+00), and risks to an RME
receptor are well above a level of concern (9.1E+00 to 2.7E+01).  The chief pathway contributing to the
dose and risk is ingestion of contaminant in aquatic food web items (crayfish, fish, amphibians, etc.).



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment
Chapter 4 ~ December 31, 2001

Page 4-44

SMDP 1 at Step 2 of ERAGS

The BTAG considered these results to indicate that inhibition of reproduction was possible in at
least some members of the exposed population, but that the fraction of the population that was affected
and the degree of impact on the population was difficult to judge from the point estimate calculations. 
Based on this, a decision was made to conduct a screening level PRA in order to provide some additional
information on the magnitude and probability of risk.  

Workplan 1

The contractor performing the risk assessment developed a brief workplan that proposed an
approach for a screening level PRA.  The plan called for a Monte Carlo-based evaluation of variability in
exposure and risk among different members of the exposed mammalian omnivore (racoon) population. 
In brief, all exposure inputs that were treated as constants in the point estimate approach (i.e., were the
same for CTE and RME exposure) were also treated as constants in the PRA evaluation.  Because water
contributed so little to dose or HQ, this pathway was not evaluated in the PRA, but was accounted for by
adding in the point estimate values to the PRA results.  All variables that are fractions (i.e, may only
assume values between zero and one) were modeled as beta distributions, and all other variables were
modeled as lognormal.  For screening purposes, the parameters for all distributions were selected so that
the mean and 95th percentile values of the PDF's matched the corresponding CTE and RME point
estimates.  The BTAG reviewed this proposed approach and authorized PRA work to begin. 

Screening Level PRA Results

The screening level PRA inputs and the resulting estimates of the variability in HQ are shown in
Exhibit 4-11.  The CTE and RME point estimates are also shown for comparison.  As seen, the PRA
distribution of HQ values indicates that about 68% of the individuals in the population are likely to have
HQ values below 1E+00, while 32% have HQ values above 1E+00.

Comparison of the CTE point estimates of HQ to the mean HQ values derived by PRA reveals
the values are very close.  This is expected because both depend on the mean values of the input
variables, and the same mean values were used in both sets of calculations.  With regard to upper-bound
estimates, the RME point estimate values are at the 98th percentile of the PRA HQ distribution, within the
target range (90th to 99th) usually considered appropriate.  Note, however, that the 98th percentile is about
5-fold higher than the 95th percentile, emphasizing the high sensitivity of the RME HQ values to the
precise percentile of the RME.



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment
Chapter 4 ~ December 31, 2001

Page 4-45

EXHIBIT 4-11

SCREENING LEVEL PRA  CALCULATIONS OF HQ  DISTRIBUTION
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SMDP 2

The BTAG considered these results, and decided that it was very probable that pesticide X was
causing an effect in some members of the exposed population, but decided that a final risk management
decision would be facilitated by characterizing the distribution of responses (rather than the distribution
of HQ values).  The BTAG asked the contractor performing the work to develop a proposed approach for
characterizing the distribution of responses.

Workplan 2

The contractor obtained a copy of the toxicity report upon which the TRVs were based, and
determined that the study did include sufficient dose-response data to support reliable dose-response
modeling.  The contractor recommended that this be done using EPA's BMDS.  The BTAG approved this
proposed approach and authorized work to proceed.

PRA Refinement 1

The contractor fit the raw dose-response data (inhibition of reproduction in mink) to a number of
alternative models available in BMDS, and found that the dose-response curve could be well
characterized by the Hill Equation with nonconstant variance, as follows:

Mean Response at dose d (% decrease in reproduction)=(100 x d2.5)/(0.92.5 + d2.5)
Std. Dev. in Response at dose d (%)=SQRT[1.6@(mean response at dose d)1.3]

Based on this model, the point estimate LOAEL value (0.6 mg/kg-day) corresponds to an effect level of
about 27%, and the NOAEL of 0.2 mg/kg-day corresponds to an effect level of about 2%.

Using this exposure-response model in place of the point-estimate TRV values, the refined PRA
predicted a distribution of responses in the exposed population as shown in Exhibit 4-12.  As seen,
approximately 81% of the population was predicted to experience an effect on reproduction smaller than
10%, while 9% were expected to have a reduction of 10 to 30%, 4% a reduction of 30 to 50%, and 6% a
reduction of more than 50%.  On average across all members of the exposed population, the predicted
reduction in reproductive success was about 9%.
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EXHIBIT 4-12

SIMULATED DISTRIBUTION OF RESPONSES
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SMDP3

The BTAG debated the likely population-level consequences of this predicted distribution of
responses in members of the exposed population.  After consulting with a field biologist with experience
in the population dynamics of mammals such as racoons, the BTAG decided that the distribution of
responses in the exposed population would cause a continued stress on the mammalian omnivore
community and that reductions in population number were likely over time.  Based on this, the risk
manager and the BTAG agreed that remedial action was desirable and that a range of alternative clean-up
strategies should be investigated.  This was performed using the methods described in Chapter 5 (see 
Exhibit 5-5).
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CHAPTER 5

PROBABILISTIC RISK ASSESSMENT AND

PRELIMINARY REMEDIATION GOALS

5.0 INTRODUCTION

According to the National Contingency Plan
(NCP) (U.S. EPA, 1990a, 40CFR §300.430(d)(4)), risk
assessment and risk management decision making go
hand-in-hand: data from the remedial investigation are
used to characterize risk, and results of the baseline risk
assessment help to establish acceptable exposure levels
for use in developing remedial alternatives.  In practice,
risk managers may identify two major objectives of risk
assessment: (1) to determine if remediation is necessary
(i.e., Is there unacceptable risk at the site?); and (2) if
remediation is necessary, to determine a preliminary
remediation goal (PRG) (i.e., What chemical
concentrations would result in a risk estimate that will
be adequately protective of human health and the
environment?).  The answer to the first question (is there
unacceptable risk?) depends upon a number of factors,
including the measured or estimated concentration levels
of contaminants in site media, and takes uncertainty in
the measurements into account.  In contrast, the answer
to the second question (what is the PRG needed to
achieve a specified level of protection?) does not
necessarily depend on any knowledge of the actual level
or pattern of site-specific concentration data, and does
not necessarily depend on the uncertainty in site
concentration data.  Thus, while exposure point
concentrations (EPCs) and PRGs are closely related to
each other, they have important differences (see
Section 5.1 for further elaboration on EPCs and PRGs).

Once a risk manager has selected a PRG at a
site, determining whether a particular area meets or will
meet the PRG requires careful comparison of site data
with the PRG, including a consideration of the
uncertainty in the site data.  For a further discussion on
variability and uncertainty in the concentration term,
readers are urged to consult Appendix C in this
guidance. 

EXHIBIT 5-1   

SUMM ARIES OF SOME KEY TE RM S

Preliminary Remediation Goal (PRG) - initially
developed chemical concentration for an
environmental medium that is expected to be
protective of human health and ecosystems.  PRGs
may be developed based on applicable or relevant
and appropriate requirements, or exposure scenarios
evaluated prior to or as a result of the baseline risk
assessment. (U.S. EPA, 1991a).

Generic PRG - a chemical concentration protective
of human health developed prior to the baseline risk
assessment that uses default exposure assumptions
representing common exposure scenarios, e.g.,
Region 3 risk-based concentrations (RBCs) or
Region 9 PRGs.

Site-specific PRG - site-specific chemical
concentration, protective of human health and
ecosystems, based on exposure scenarios in the
baseline risk assessment.  Generally calculated for
the various exposure scenarios considered in the
baseline risk assessment.

Remediation Goals (RG) - site-specific chemical
concentration, protective of human health and
ecosystems, chosen by the risk manager as
appropriate for a likely land use scenario.

Remediation Action Level (RAL) - the
“not-to-exceed” level; a concentration such that
remediation of all concentrations above this level in
an exposure unit lowers the EPC sufficiently to
achieve a target risk level.  The RAL will depend on
the mean, variance, and sample size of the
concentrations within an exposure unit as well as
considerations of short-term effects of the chemicals
of concern. 

Cleanup Level (Final Remediation Level) -
chemical concentration chosen by the risk manager
after considering both RGs and the nine remedy
selection criteria of the NCP (U.S. EPA, 1990a). 
Also referred to as Final Remediation Levels (U.S.
EPA, 1991a), chemical-specific cleanup levels are
documented in the Record of Decision (ROD).  A
cleanup level may differ from a PRG because risk
managers may consider details of the site-specific
exposure, various uncertainties in the risk estimate,
and implementation issues (e.g., the technical
feasibility of achieving the PRG).
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EXHIBIT 5-2

DEFINITIONS FOR CHAPTER 5

95% UCL for mean - The one-sided 95% upper confidence limit for a population mean; if a sample of size (n) was repeatedly
drawn from the population, the 95% UCL will equal or exceed the true population mean 95% of the time.  It is a measure
of uncertainty in the mean, not to be confused with the 95th percentile (see below), which is a measure of variability.  As
sample size increases, the difference between the UCL for the mean and the true mean decreases, while the 95th percentile
of the distribution remains relatively unchanged. 

95th Percentile -The number in a distribution that is greater than 95% of the other values of the distribution, and less than
5%of the values.  When estimated from a sample, this quantity may be equal to an observed value, or interpolated from
among two values.

Applicable or Relevant and Appropriate Requirements (ARARs) - Federal or state environmental standards; the NCP states
that ARARs should be considered in determining remediation goals.  ARARs may be selected as site-specific cleanup
levels.

Backcalculation - A method of calculating a PRG that involves algebraic rearrangement of the risk equation to solve for
concentration as a function of risk, exposure, and toxicity.

Bootstrap Methods - Parametric and non-parametric methods for estimating confidence intervals for a statistic by resampling
directly from the data set with replacement.

Coverage - Confidence intervals are expected to enclose a true but unknown parameter according to a specified probability,
such as 90% or 95%.  This is the expected coverage of the confidence interval, given a specified significance level (alpha). 
The difference between the expected coverage and the actual coverage is one metric for evaluating statistical methods that
yield different confidence intervals.

Exposure Point Concentration (EPC) - The average chemical concentration to which receptors are exposed within an exposure
unit.  Estimates of the EPC represent the concentration term used in exposure assessment.

Exposure Unit (EU) - For Superfund risk assessment, the geographical area about which a receptor moves and contacts a
contaminated medium during the period of the exposure duration.

Forward Calculation - A method of calculating a risk estimate that involves the standard arrangement of the risk equation to
solve for risk as a function of concentration, exposure, and toxicity.

Iterative Reduction (IR) - A method of calculating a PRG that involves successively lowering the concentration term until the
calculated risk is acceptable. This method can be applied to any medium.

Iterative Truncation (IT) - A method of calculating a PRG that involves developing an expression for the concentration term
in which higher values of concentration are removed or “truncated” to reduce the maximum concentration, and
re-calculating risks associated with the reduced concentration.  The method may be repeated with consecutively lower
truncation limits until risk is acceptable. 

Land Method - The conventional method for calculating uncertainty in the mean concentration (e.g., 95% UCL) when the
sample data are obtained from a lognormal distribution (U.S. EPA, 1992).

Maximum Detected Concentration (MDC) - The maximum concentration detected in a sample.
True Mean Concentration - The actual average concentration in an exposure unit.  Even with extensive sampling, the true

mean cannot be known.  Only an estimate of the true mean is possible.  A greater number of representative samples
increases confidence that the estimate of the mean more closely represents the true mean.
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Two Office of Solid Waste and Emergency Response (OSWER) guidance documents in preparation:
(1) Draft Guidance on Calculation of Upper Confidence Limits for Exposure Point Concentrations at Superfund
Sites (U.S. EPA, 2001a), and (2) Draft Guidance on Surface Soil Cleanup at Superfund Sites: Applying Cleanup
Levels (U.S. EPA, 2001b), also address topics related to the calculation of EPCs and comparison of those EPCs
to a PRG.  

In practice, calculations of risks, given concentration data, are commonly referred to as “forward
calculations”, while calculations of PRGs, based on chosen target risk levels, are referred to as “back-
calculations”.  This terminology reflects the algebraic rearrangement of the standard risk equation needed to
solve for the concentration term when point estimates are used to characterize exposure and toxicity input
variables.  For probabilistic risk assessment (PRA), the process for developing a PRG can be more complex. 
This chapter presents methods and recommendations for developing site-specific PRGs within the framework of
PRA.

Are there different types of PRGs?

Generic PRGs have been developed for some chemicals and exposure media using point estimates based
on standard default exposure assumptions (e.g., U.S. EPA, 1991b) and toxicity criteria available in the Integrated
Risk Information System (IRIS) or Health Effects Assessment Summary Table(s) (HEAST) or from
Environmental Protection Agency’s (EPA’s) National Center for Environmental Assessment.  Soil Screening
Guidance levels, Region 9's PRG table and Region 3's Risk Based Concentrations (RBCs) table are examples of
generic point estimate PRGs.  Generic PRGs are often used for screening chemicals of potential concern in Data
Evaluation and Hazard Identification steps of the risk assessment process.

L There is a clear distinction between generic PRGs, site-specific PRGs,
remediation goals (RGs), and cleanup levels.  The focus of this chapter is on
site-specific PRGs.

At this time, EPA does not recommend the use of PRA to develop generic PRGs.  Until the science and
policy decisions associated with the use of default assumptions in PRA have evolved, generic PRGs should only
be developed from point estimate methods, as was done in the examples listed above. 

As indicated in Exhibit 5-1, site-specific PRGs generally are developed after the baseline risk assessment. 
However, during the feasibility study or even later in the Superfund process, the methods described in this
chapter may be used to modify cleanup levels at the discretion of the risk manager.  However, it is generally not
appropriate to use PRA for modifying cleanup levels during the feasibility study if PRA was not used in the
baseline risk assessment.

L Risk-based PRGs are initial guidelines and do not represent final cleanup levels. 

Only after appropriate analysis in the remedial investigation/feasibility study (RI/FS), consideration of
public comments, and issuance of the record of decision (ROD) does a RG become a final cleanup level.  A
cleanup level may differ from a RG because risk managers may consider various uncertainties in the risk
estimate.  While the two main criteria for determining a cleanup level are: (1) protection of human health and the
environment, and (2) compliance with applicable or relevant and appropriate requirements (ARARs), a cleanup
level may differ from the RG because of modifying criteria, such as feasibility, permanence, state and community
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acceptance, and cost effectiveness.  These and other factors are reflected in the nine evaluation criteria outlined
in the NCP (U.S. EPA, 1990a; 40CFR §300.430(e)(9)(iii)) (see Chapter 1, Exhibit 1-2). 

This chapter and Appendix C provide a comprehensive description of the issues associated with
developing site-specific PRGs with both point estimate and probabilistic approaches, including the use of
geostatistics.  Because methods for calculating a 95% upper confidence limit for the mean (95% UCL) are
discussed fully in the Draft Guidance on Calculation of Upper Confidence Limits for Exposure Point
Concentrations at Superfund Sites (U.S. EPA, 2001a) and Draft Guidance on Surface Soil Cleanup at Superfund
Sites: Applying Cleanup Levels (U.S. EPA, 2001b), they are covered only briefly in this guidance.  In general,
this chapter, Appendix C, and the Superfund guidance under development should be consulted by risk assessors
when developing site-specific PRGs.

5.1 GENERAL CONCEPTS REGARDING EPCS AND PRGS 

PRGs developed from point estimate risk assessments and PRAs will be discussed in this section to
compare and contrast the two approaches.  The PRG is a special case of the concentration term (or EPC) in the
risk equation.  The intent of the EPC is to represent the average chemical concentration in an environmental
medium in an exposure unit (EU) (i.e., the area throughout which a receptor moves for the duration of exposure). 
The EPC should be determined for individual EUs within a site.  Because an EPC is calculated from a sample,
there is uncertainty that the sample mean equals the true mean concentration within the EU; therefore, to account
for associated uncertainty, the 95% upper confidence limit for the mean (95% UCL) is generally used for
Superfund risk assessments (U.S. EPA, 1992).  For both point estimate and probabilistic approaches, the PRG is
an assumed value of the EPC that yields a risk estimate that is at or below an acceptable risk level.

L The EPC usually represents the average concentration within the EU estimated
from a sample; the PRG usually represents the average concentration within the
EU that corresponds to an acceptable level of risk.

The PRG may be thought of as a goal for the post-remediation EPC (see Section 5.1.2).  Specifically,
after remediation is completed, the average concentration (or the 95% UCL used as a measure of uncertainty in
the average) for the EU should be sufficiently low to be protective of human health and the ecosystem.  While the
methods used to calculate the pre- and post-remediation EPC may differ, the interpretation of the EPC remains
constant.  For example, if the 95% UCL is used to represent the EPC before remediation, then the EPC following
remediation (e.g., the PRG) should also represent a 95% UCL (Bowers et al., 1996). 

Risk assessors may consider both variability and uncertainty in the development of an EPC.  The
calculation of a 95% UCL generally requires knowledge of not only chemical concentration measurements within
the EU but also the receptor’s behavior.  Relevant information may include the variability in concentrations in the
given sample, the sampling locations, and variability in the movement and activity patterns of receptors within
the EU.  A discussion of spatial and temporal variability associated with characterizing contamination in different
exposure media is presented in Appendix C, and important sources of uncertainty in the EPC are discussed in
Section 5.1.1. 

For all risk assessments, chemical concentration measurements should be collected in a manner that is
consistent with an understanding of both the source of contamination and the definition of the exposure unit.  An
investment of time and resources should be made in planning, scoping, and problem formulation.  Part of this
investment is to follow the Data Quality Objectives (DQO) process to obtain samples appropriate for the risk
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assessment and sufficient to support the remedial decision (U.S. EPA, 1993, 1994, 2000).  Using new methods of
sample collection and analysis such as dynamic workplans and real-time analysis may enable risk managers to get
the most “bang for the buck” from the resources available for site characterization.  Information about these
methods and the DQO process is available from EPA's Office of Emergency and Remedial Response (U.S. EPA,
2001c) and Technology Innovation Office (U.S. EPA, 2001d, 2001e).  The world wide web address is
http://clu-in.org/char1_edu.cfm#syst_plan.

5.1.1 SOURCES OF UNCERTAINTY IN THE EPC

The 95% UCL is generally used as the EPC to represent uncertainty in the mean concentration in both
the central tendency exposure (CTE) and reasonable maximum exposure (RME) risk estimates for Superfund
(U.S. EPA, 1992).  Similarly, in PRA, a probability distribution for uncertainty may be used in a two-dimensional
Monte Carlo analysis (2-D MCA) simulation (see Appendix D) to represent a source of uncertainty in the EPC. 
There are numerous potential sources of uncertainty in the estimate of the true mean concentration within the EU. 
The sources of uncertainty when the EPC is expressed as either a single number or a distribution are the same and
can be grouped into the following four broad categories:

(1) Uncertainty in the sample data.  A limited number of measurements in the sample are used to make
inferences about the EPC and the spatial distribution of concentrations at a site.  Uncertainties may
arise from many factors, including both sampling variability and measurement error.  As the number
of samples increases, the uncertainty generally decreases (e.g., more information will be available to
characterize the spatial distribution and variation in concentration).  In point estimate risk
assessments, the 95% UCL is generally used as the EPC to account for the uncertainty in estimating
the average concentration within an EU.  

(2) Uncertainty about the location of the EU.  When the size of a receptor’s EU is less than the size of
the site, the placement of the EU may be a source of uncertainty, especially when the contamination
is distributed unevenly across the site and the PRA includes exposure scenarios for future land uses.

(3) Uncertainty in the behavior of the receptor.  Even in the case of extremely well characterized sites,
it remains uncertain whether the receptor will contact the environmental medium in a temporal
and/or spatial distribution that can be adequately represented by the environmental samples collected.

(4) Uncertainty in chemical concentrations over time.  The concentration in a given medium may
undergo temporal changes, which may introduce uncertainty in estimates of a long-term average. 
Examples include the movement or attenuation of a solvent plume in groundwater; aerobic or
anaerobic degradation; the change in the average concentration in a fish population due to changes in
population dynamics; and the mixing of surface and subsurface soil over time.

A lack of knowledge in all four categories may be considered when selecting approaches to quantify
uncertainty in the concentration term.  One of the first steps in quantifying uncertainty is to define the EU, or the
geographical area in which individual receptors are randomly exposed for a relevant exposure duration. 
Depending on the receptor’s movement and activities, an EU may be as small as a child’s play area (e.g.,
sandbox) or as large as the foraging area of an upper trophic level animal predator (e.g., an entire military base). 
The relationship between the size of the EU, the movements of the target receptor, and health endpoint of
concern (i.e., acute or chronic) may dictate the appropriate use of sample data in developing an EPC.  One of the
assumptions generally made for the concentration term in Superfund risk assessment is that receptors contact all
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parts of an EU at random, and that measurements are obtained from a simple (or stratified) random sample.  If an
individual is randomly exposed within the same EU over a long period of time, the most appropriate metric for
the EPC would be the true (but unknown) population mean of the concentrations within the EU (e.g., 95% UCL). 

Often, the scale of the EU will be different (smaller or larger) than the scale of the sample data.  For
example, an ecological receptor population may have a small home range relative to the size of the entire site, or
the endpoint of concern may be acute toxicity, requiring an evaluation of a short-term exposure scenario.  If the
receptors are not expected to contact all parts of the site with equal probability, then the EU may be redefined so
that only a subset of the data collected for site characterization are used to estimate the EPC.  In addition, the
location of the EU may be unspecified within the site because there may be multiple areas that provide suitable
habitat for the receptor population.  Departing from the assumption of random exposure within one unique
geographic area presents an additional challenge to estimating an EPC.  In some cases, it may be informative to
develop multiple estimates of the EPC in a PRA.  By treating the EPC as a random variable, risk assessors can
explore the effect of uncertainty in the location of the EU.  A variety of modeling approaches are available to
calculate an EPC (e.g., arithmetic mean, or 95% UCL) based on the spatial variability in chemical concentrations
measured over an area larger than the EU.  Methods such as geostatistics (see Section 5.5.2 and Appendix D),
Microexposure Event Modeling (MEE) (see Appendix D), and random walk scenarios (Hope, 2000, 2001) may
be used to quantify both the spatial and temporal variability in exposure to varying concentrations.  Using these
methods, risk assessors may redefine the EU to be more representative of the random movement of the receptor
during the period of exposure.  Because these modeling approaches may be considered more advanced methods
for quantifying the EPC, they are generally considered in Tier 3 of the PRA process (see Chapter 2).

5.1.2 PRE- AND POST-REMEDIATION EXPOSURE POINT CONCENTRATIONS

The differences between pre- and post-remediation EPCs are discussed below.  In general, both estimates
of the EPC are based on the same concepts regarding the exposed population and the definition of the EU. 
However, the post-remediation EPC will tend to yield lower estimates of (post-remediation) risk and can require
more advanced methods for calculating uncertainty (e.g., 95% UCL).

The pre-remediation EPC is determined based on existing site sampling at the time of the remedial
investigation, prior to remediation.  By contrast, the post-remediation EPC generally is determined based on a
prediction of site conditions after remediation.  For example, in surface soil, the post-remediation EPC can be
determined by substituting the nondetect level (generally, half the laboratory reporting limit) for some of the high
concentrations in the sample and recalculating the EPC.  The underlying assumption in calculating a post-
remediation EPC is that remediation will have sufficiently reduced the chemical concentrations at the site, and
the risk existing after remediation is complete will be equal to or less than the target risk level of concern. 

The preceding discussion is most applicable to surface soil PRGs.  In general, compared with other
exposure media (e.g., groundwater, air), surface soil is stationary with relatively constant chemical concentrations
within an EU.  For other environmental media, more complex approaches may be needed to estimate the
post-remediation EPC.  Modeling of the remediation process may introduce additional uncertainty not
encountered in risk estimates based on the pre-remediation EPC.  
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5.1.3 REMEDIATION ACTION LEVELS (RALS) AND 95% UCL CALCULATION METHODS

The EPC should incorporate knowledge about the spatial distribution of contamination, the behavior of
the receptor, the location of the EU, land use, and other factors.  These factors affect both the numerical value of
an EPC and uncertainty associated with this estimate.  In many cases, it is presumed factors associated with land
use will not change after remediation.

The remediation action level (RAL) is the maximum concentration that may be left in place at any
location within an EU such that the average concentration (or 95% UCL as a measure of the average) will not
present a risk above levels of concern.  This RAL may be considered a “not-to-exceed” threshold or action level
for the purposes of site remediation.  Using surface soil as an example, areas within the EU that have
concentrations greater than the RAL may be excavated and replaced with clean fill (e.g., nondetect surrogate
values).  To obtain a post-remediation EPC, the 95% UCL is calculated after substituting the surrogate nondetect
value for all measurements located within the EU that are greater than the RAL.
 

When appropriate, the same statistical method of uncertainty should be used to estimate UCLs for both
the pre- and post-remediation EPCs.  However, in some instances, the method used for calculating the
pre-remediation EPC will be inappropriate for calculating the post-remediation EPC, because the distribution of
contaminant concentration will have changed.  For example, pre-remediation site sampling may suggest that
variability in concentrations can be reasonably characterized by a lognormal distribution, which would support
the use of the Land method for estimating the 95% UCL.  The post-remediation site conditions, however, may
reflect a mixture of clean fill and contamination, resulting in a poor fit to a lognormal distribution (see
Figure 5-3, Section 5.5.3).  In this case, the Land method would not be appropriate.  Because of the difference in
the statistical distribution of concentration measurements used to estimate the pre-remediation EPC and post-
remediation EPC, a non-parametric (i.e., distribution free) method should be considered for calculating
uncertainty in the average concentrations in both pre- and post-remediation scenarios.  In general, when the
method used to calculate the 95% UCL for a post-remediation scenario is different than that of the pre-
remediation scenario, the 95% UCL for the pre-remediation scenario should be recalculated with the post-
remediation method.  Results of this change in methodology can be presented as part of a quantitative uncertainty
analysis.  Specifically, this recalculation will allow for an evaluation of the effect that a RAL has on the
confidence interval for the mean.  The discordance between pre- and post-remediation distributions can be
expected to increase as the degree of remediation needed to achieve a target risk level of concern increases.

In general, risk assessors should be aware of the practical and statistical issues associated with the
various methods of calculating the 95% UCL, and the application of these methods to both the pre- and post-
remediation concentration distribution.  Different methods can yield very different confidence intervals, some of
which are expected to yield more accurate coverage (i.e., likelihood that the confidence interval includes the
parameter) depending on characteristics of the underlying distribution of concentrations, such as distribution
shape, sample size, and variance (Gilbert, 1987; Hall, 1988).  Information about a variety of parametric and non-
parametric methods, such as bootstrap resampling, can be found in The Lognormal Distribution in Environmental
Applications (U.S. EPA, 1997), Estimating EPCs When the Distribution is Neither Normal nor Lognormal
(Schulz and Griffin, 1999) and a Superfund guidance document currently under development, Draft Guidance on
Calculation of Upper Confidence Limits for Exposure Point Concentrations at Superfund Sites (U.S. EPA,
2001a).
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5.1.4 CONSIDERATIO N OF RISK FROM ACUTE TOXICITY

Sometimes a risk assessment will need to address more than one health endpoint of concern (e.g., cancer
and noncancer).  The RAL should be sufficiently low so that it is simultaneously protective of each endpoint of
concern.  Generally, when acute toxicity is a concern, the long-term average concentration across the entire EU
may not be the appropriate metric for assessing risks.  For example, a single episode of a child ingesting a
handful of soil containing malathion may result in an acute toxic effect to that child.  Therefore, the RAL must
not only be low enough to reduce the post-remediation EPC to acceptable long-term average levels, but also low
enough that acute toxicity will not be an issue.  This consideration applies to both point estimate and probabilistic
estimates of PRGs. 

L For consideration of acute toxicity, the risk assessor should consult, as
appropriate, with a toxicologist in the development of RALs.

For a small number of chemicals, toxicity values have been determined based on acute effects (e.g., nitrate in
drinking water).  However, at present, EPA does not have acute toxicity criteria or guidance on acute toxicity
applied to the RAL.  Hence, consultation with a toxicologist is vital.

5.1.5 CHARACTERIZATION OF UNCERTAINTY IN THE EPC: POINT ESTIMATES AND DISTRIBUTIONS 

In point estimate risk assessments, the 95% UCL is typically used to characterize uncertainty in the EPC
(U.S. EPA, 1992).  In PRA, either a point estimate (e.g., 95% UCL) or a probability distribution may be used to
characterize uncertainty in the concentration term.  The probability distribution may characterize either
variability or uncertainty.  The terms probability distribution for variability (PDFv) and probability distribution
for uncertainty (PDFu) can be used to distinguish between probability distributions for variability and
uncertainty, respectively.  

The decision to use a point estimate, PDFv, or PDFu, as the input for the concentration term in a Monte
Carlo model will depend on the goals of the Monte Carlo simulation, as determined by the tiered process (see
Chapter 2).  If the goal is to characterize variability in risk, in general, a one-dimensional Monte Carlo analysis
(1-D MCA) will be used and the appropriate input for the concentration term will be a point estimate that
characterizes uncertainty in the mean concentration within the EU.  As explained in Section 5.1.1, risk assessors
will need to consider the relationship between the size of the EU, the movements of the target receptor, and
health endpoint of concern (i.e., acute or chronic) to determine how to use the available sample data to define the
EPC.  A PDFu is typically not an appropriate choice for the concentration term in a 1-D MCA when the goal is to
characterize variability in risk.  Mixing of a PDFu for the concentration term with PDFv’s for other exposure
variables in 1-D MCA would yield a single risk distribution from which the relative contributions of variability
and uncertainty could not be evaluated.  Use of a PDFu for the concentration term may be considered in
2-D MCA simulations (see Appendix D), where the goal may be to characterize both variability and uncertainty
in risk.

When the sample size is small and the variance is large, the 95% UCL may exceed the maximum
detected concentration (MDC).  In such a case, the MDC is generally used to estimate the EPC, although the true
mean may still be higher than this maximum value (U.S. EPA, 1992).  For poorly characterized sites, there may
be considerable uncertainty that site remediation will be sufficient to reduce the 95% UCL to a health-protective
level.  Poor site characterization may provide an impetus for the risk manager to opt for a more health-protective
remedial alternative or to collect additional data.
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To ensure that actual cleanup based on a RAL is protective generally requires post-remediation
confirmation sampling.  This step in the risk management process is emphasized further in Section 5.8 on
measurement of attainment.

5.1.6 MULTIPLE CHEMICALS

Developing PRGs for multiple chemicals in one or more environmental media is particularly challenging. 
When multiple chemicals are present, the total risk level should be considered for regulatory purposes with each
chemical contributing a portion of the total risk.  This issue is quite complex and usually will affect both the
calculation of the risk and development of site-specific PRGs.  Chemicals may exhibit different spatial and
temporal variability within the EU.  Fate and transport characteristics may vary between chemicals as well as
between different areas of the site.  Co-located sampling, or geostatistical techniques (e.g., co-kriging) may
provide insights regarding relationships in spatial patterns for different chemicals (see Appendices C and D) and
the corresponding exposures for receptors.

5.2 WHEN TO USE PRA FOR DEVELOPING PRGS

Because point estimate risk assessments and PRA employ different approaches to characterize variability
and uncertainty, the resulting RME risk estimates and calculations of PRGs are often different.  The magnitude of
the difference can depend on many factors, including the number of input variables described with probability
distributions in the PRA, the choice of distributions used to characterize variability or uncertainty (especially for
those variables that are highly ranked in a sensitivity analysis), the percentile of the probability distribution that
corresponds with RME point estimate for each input variable, and the choice of percentile from the PRA used to
represent the RME risk (e.g., 95th percentile).  Since the results of a point estimate approach and PRA can be
expected to differ, but the magnitude of the difference is not known a priori, this can present a challenge in
deciding whether or not to conduct a PRA to develop a PRG.  The potential advantages and disadvantages of both
the point estimate approach and the PRA can be factored into the decision (see Chapter 1, Exhibits 1-6 and 1-7).

In general, PRA may be appropriate for developing site-specific PRGs in cases where PRA has also been
used to estimate site-specific risks.  As indicated by the tiered approach (see Chapter 2), if the risk manager
determines that quantifying variability and uncertainty may enhance risk management decision making, PRA may
be warranted.  If a PRA is feasible, the risk manager should proceed to Tier 2 and employ PRA to complete the
RI/FS process.  Usually, embedded in a site-specific PRG are all of the exposure assumptions and toxicity
metrics used in the risk assessment.  Hence, introducing the use of PRA for PRGs in the feasibility study (or any
time after the remedial investigation and baseline risk assessment are complete) would, in effect, undermine the
tiered approach.

L If only point estimates were used in the risk assessment, probabilistic methods
should not be used for PRG development. 

If additional data have been collected to conduct PRA, the point estimate risk assessment should be
revisited with the new data as well.  As discussed in Chapter 2, a point estimate risk assessment (Tier 1) should
always accompany a PRA.  PRA is intended to enhance risk management decision making, and should not be
viewed as a substitute for point estimate approaches.  Using the tiered approach, a risk assessor can determine the
appropriate level of complexity that is supported by the available information to conduct the risk assessment and
to calculate a PRG.  
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Equation 5-1

Equation 5-2

5.3 METHODS FOR DEVELOPING PRGS

Risk assessors may use PRA to quantify sources of uncertainty and variability in the calculation of PRGs
as well as risks.  Two of the common methods for calculating PRGs in PRA include: (1) backcalculation (see
Section 5.4), which is equivalent in concept to the point estimate calculation of a PRG; and (2) iterative forward
calculation methods, including iterative reduction and iterative truncation (see Section 5.5).  Backcalculation can
be used in PRA when the target risk and concentration terms are expressed as point estimates.  Iterative methods
can be more involved, but unlike backcalculation, there are no constraints on their application to PRA.  The two
approaches yield the same result when the same assumptions are used in the risk assessment.

5.4 BACKCALCULATION

Traditionally, risk is calculated as a function of multiple exposure variables, including the concentration
term, and toxicity value (Equation 5-1).  If one or more of the exposure variables is described by a PDF, a Monte
Carlo simulation will yield a distribution for risk (see Chapter 1).  

Backcalculation methods can be envisioned as setting a target risk level (e.g., RME risk equal to 10-6 or
Hazard Index equal to 1) and then algebraically reversing the risk equation to solve for the concentration term
(Equation 5-2).  A Monte Carlo simulation using Equation 5-2 will yield a distribution of concentrations that
reflects the combination of distributions from all other exposure variables. 

where,

Toxicity = toxicity term representing either the cancer slope factor (CSF) or reference dose
(1/RfD) for the chemical in the exposure medium

C = concentration term
V = algebraic combination of the toxicity term with all exposure variables except C
IR = ingestion or inhalation rate
AT = averaging time
BW = body weight
ED = exposure duration
EF = exposure frequency

This calculation produces a distribution of PRGs that represents the same sources of variability as a
forward calculation of risk.  Each percentile of the PRG distribution (i.e., the " percentile) corresponds to the
1-" percentile from the distribution of risk estimates.  For example, if the 95th percentile of the distribution of risk
estimates was chosen to represent the RME individual, the 5th percentile (1-0.95=0.05) would be the
corresponding concentration value from the distribution of PRGs (Bowers, 1999). The correspondence between
the risk distribution and the PRG distribution is intuitive—just as selecting a higher percentile on the risk
distribution is more protective, a lower percentile on the PRG distribution is more protective.  The RME range
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for the risk distribution 90th to 99.9th percentile is analogous to an RME range for the PRG distribution of
0.1st to 10th percentile.

Backcalculation has been a familiar method of developing PRGs and may be appropriate in some
situations for the sake of clarity and transparency due to the general understanding of this method among risk
assessment practitioners.  Once a backcalculation has been performed to determine a PRG, the PRG should be
used as the concentration term in a forward calculation to ensure that the risk at the PRG is acceptable.

5.4.1 DIFFICULTIES WITH BACKCALCULATION

There are limitations in the use of backcalculation in PRA (Ferson, 1996).  Simple rearrangement of
Equation 5-1 does not suffice when the variable (i.e., the concentration or risk term) that is backcalculated is
represented by a probability distribution (Burmaster et al., 1995; Ferson, 1996).  The difficulty for PRA arises
because each risk estimate from an MCA that uses the familiar “forward-facing” risk equation represents a
combination of random values selected from the input distributions.  Therefore, the output can be considered
conditional on all of the inputs.  Rearranging the risk equation does not maintain the same conditional
probabilities; therefore, the distribution for risk estimated as a function of the distribution for concentration in
Equation 5-1 does not return the same distribution for concentration when applied in Equation 5-2.  While there
are techniques that can maintain the dependencies and correlations between exposure factors when the risk
equation is rearranged (e.g., deconvolution), they are complex and beyond the scope of this guidance.

Backcalculation methods may also be difficult to implement in situations in which complex
fate-and-transport considerations are present.  Leaching of soil contamination to groundwater, bioconcentration
of chemicals at higher trophic levels, and other multimedia processes that result in exposure via several
environmental media are situations in which backcalculation may not be useful.  Note that these difficulties are
not unique to backcalculation.  Uncertainty in fate-and-transport considerations makes any type of PRG
determination challenging.

Further, the backcalculation approach only provides information on the EPC that corresponds to a risk
level of concern; it does not specify an RAL that would achieve this EPC.  For example, when a risk equation is
algebraically solved for concentration (see Equation 5-2), a PRG is developed without a corresponding RAL. 
Thus, there is no information associated with the PRG value to indicate the highest concentration in the EU that
must be removed so that the average concentration (or 95% UCL) within the EU is at or below the PRG.  Hence,
additional efforts are needed.  In addition, post-remediation concentrations may need to satisfy more than one
regulatory constraint.  For example, the average (or 95% UCL) concentration within an EU may need to be less
than a concentration associated with chronic toxicity or cancer and simultaneously, the RAL concentration may
need to be less than a concentration that might cause acute toxicity.  

In spite of these caveats, backcalculation methods may be appropriate for some sites.  For example, when
the target risk is specified by a single numerical value and the risk manager has chosen a percentile of variability
to represent the RME individual, then a backcalculated PRG can be derived from a PRA.

 Although backcalculation methods may be appropriate for some sites, risk assessors should be familiar
with their limitations.  Because of these limitations, this guidance recommends iterative forward calculations as
the primary method for calculating PRGs when performing a PRA.  Iterative methods avoid difficulties
associated with applying MCA to a backcalculation, and can provide more information for the risk manager.
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Figure 5-1.  A hypothetical example of the use of iterative methods to

determine the EPC that corresponds with a target RME Hazard Index (HI)

of 1.0.  Assume that the EPC is represented by the 95% UCL and the

RME H I is the 95 th percentile of the output distribution.  In this case, four

separate Monte Carlo simulations were run with iteratively decreasing

values for the EPC.  The least-squares, best-fit line to these  four data

points suggest that a reasonable PRG would  be approximately 660 ppm. 

5.5 ITERATIVE METHODS

Iterative methods simply involve
calculating risk with the “forward-facing”
equation (see Equation 5-1) a number of
times (iteratively) using progressively lower
values for the concentration term until the
risk is sufficiently protective.  This iterative
method has also been called the “repeated
runs” method.  Note that iterative methods
for calculating a PRG are not uniquely
applicable to PRA.  Iterative methods also
may be used to develop PRGs in point
estimate risk assessments.

L EPA recommends
iterative simulations as a general approach
for calculating PRGs from probabilistic risk
assessments.

Most often, iterative forward
calculations are performed using a
systematic trial-and-error method until the
percentile of variability in risk chosen to
represent the RME individual is at or below
acceptable risk levels.  Sometimes, a short
cut can be used to reduce the number of simulations needed with the trial-and-error method.  If successive
“guesses” of the EPC are plotted with the corresponding risk estimate, the exact solution can be determined from
the best-fit line, thereby significantly reducing the effort required to implement this method.  An example is given
in Figure 5-1.  For many risk equations, the relationship between the EPC and the RME risk will be
approximately linear. Nevertheless, the final estimate of the EPC should be checked by running another
simulation for risk with this estimate.

 A possible and significant advantage of iterative forward calculations over back-calculations is that the
method is intuitive and yields a distribution of risks rather than a distribution of PRGs (as with a back-calculation
method).  The distribution of risks will be more familiar to the public and other stakeholders, and thus, both the
method and the resulting output may be easier to communicate to senior level managers and stakeholders (see
Chapter 6).

Two general types of iterative methods are described in more detail in Sections 5.5.1 and 5.5.2.  The
main difference between the methods is in the interpretation of the concentration term that is being reduced. 
With iterative reduction, the concentration is assumed to be the post-remediation EPC, whereas with iterative
truncation, it represents the RAL needed to achieve a post-remediation EPC.
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5.5.1 ITERATIVE REDUCTION

Iterative reduction can be applied to any medium.  Generally, a point estimate representing the EPC (e.g.,
95% UCL) is successively lowered, each time repeating the Monte Carlo simulation of variability in risk.  When
the EPC is reduced until the endpoint of concern (e.g., RME risk corresponding to the 95th percentile) is at or
below an acceptable level of risk, the PRG is set at the corresponding EPC.  The goal is to identify the point
estimate that corresponds to a target risk level.  Note that the PRG is not the same as the RAL.  The RAL is the
maximum concentration that may be left in place within an EU to achieve the PRG.

The concentration at which the risk is acceptable defines the PRG.  Therefore, the PRG bears the same
uncertainties as the EPC.  For example, assume that a risk assessor examined the carcinogenic effects from
chronic consumption of a chemical in groundwater, then the exposure unit may be determined by the long-term
average concentration at any well that potentially draws drinking water from the contaminated groundwater. 
Uncertainty in the long-term average concentration can reflect a number of factors that contribute to spatial and
temporal variability, including the direction of groundwater flow, natural attenuation, and other fate and transport
variables.  Remediation by a pump-and-treat system for a prolonged period of time may be used to lower the
concentrations at the wells.  Even though the remediation strategy may be complicated by spatial and temporal
variability, iterative reduction can be used to establish a PRG.  A remediation strategy may be considered a
potential candidate if it can achieve the PRG by reducing the average concentration at each of the well locations. 
The concept of “hot-spot” removal, or truncation of the highest concentrations first, would not be an option under
this scenario (see Section 5.5.2).

5.5.2 ITERATIVE TRUNCATION

Iterative truncation is a method of calculating a PRG that involves developing an expression for the
concentration term in which higher values of concentration are removed or “truncated” to reduce the maximum
concentration.  These higher values are replaced by the surrogate nondetect value.  The risk is recalculated for
each successive reduction in the highest value.  The method is repeated with consecutively lower truncation
limits until risk is acceptable. 

Iterative truncation is most applicable to surface soil cleanup as the spatial variability over time is
minimal compared to other media (e.g., surface water).  With each iteration of the risk equation (e.g.,
Equation 5-1), the highest concentration value is truncated corresponding to a different RAL.  In this way
a“not-to-exceed” level is specified and the PRG is recalculated the same way in each iteration.  The process
continues until the risk distribution yields risk estimates at or below the level of concern. 

Iterative truncation can be applied to either the empirical distribution function (EDF) for the
concentration term, or a fitted distribution for variability in concentrations within the EU.  Applied to the EDF,
the maximum detected concentration within the EU is replaced with a surrogate value for a nondetect (e.g., half
the reporting limit or the background value for some chemicals), and the EPC (e.g., 95% UCL) is recalculated for
this altered data set.  If this new EPC yields unacceptable risk, then the two highest detected concentrations are
replaced by the nondetect value and the EPC is recalculated.  In the third iteration, the three highest detections
are replaced, and so on, until the target risk level is achieved.  Alternatively, the sample data may be fit to a
probability distribution for variability, and the process would be repeated with decreasing values in the high-end
tail of the continuous distribution.
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When the concentration term is a distribution representing uncertainty in the mean concentration, then,
similar to the recalculation of the point estimate 95% UCL described above, this distribution of uncertainty in the
mean concentration should be determined anew each time a datum is replaced with the nondetect value.

When a distribution of variability in concentration is used for the EPC, for example, in an ecological risk
assessment where sampling may be sparse relative to the foraging area of a small home range receptor (see
Appendix C), then the distribution developed in an identical way with the high values replaced by the surrogate
nondetect value should be used in the iterative determination of a PRG.

The decision to apply iterative truncation should be made after considering a variety of characteristics of
the sample data and post-remediation scenario (see Exhibit 5-3).  For example, small sample size may result in
high uncertainty in the 95% UCL, thereby limiting the
use of iterative truncation.  Quantitative criteria regarding
these factors are not provided in this guidance given that
the level of certainty required for decision making will
vary on a case-by-case basis.  Use of geostatistical
methods (Appendices C and D) may aid in interpreting
site data or improving sampling design.  Geostatistics is
capable of describing the spatial distribution of a
contaminant in a quantitative fashion.  These methods
establish a correspondence between the actual sampling
locations and the locations a receptor would be expected
to frequent.  Additionally, it enables the estimation of
concentrations in unsampled locations.  Hence, for
determination of concentrations at specific locations at a
site or within EUs of various sizes and shapes,
geostatistics may provide an invaluable tool. 
Geostatistics has applications both to developing the EPC
and PRG and has been recommended and used at some
sites for characterization of soil and groundwater
contamination (U.S. EPA, 1990b, 1991c).  

Although the consideration and use of
geostatistics is encouraged, a full consideration of
geostatistics is beyond the scope of this guidance.  Those
interested in greater detail than provided in Appendices C
and D are urged to consult the Superfund guidance
document currently under development, Draft Guidance
on Surface Soil Cleanup at Superfund Sites: Applying
Cleanup Levels (U.S. EPA, 2001b), for additional
discussion of how geostatistics can be used to quantify
the concentration term or the PRG.

Generally, iterative truncation methods fail to
produce adequate cleanup strategies when site

EXHIBIT 5-3

CRITERIA FOR ITERATIVE TRUNCATION

1. Sample size (n) is sufficient.  Small

sample sizes lead to large estimates of

uncertainty in the concentration term. 

Small sample size may cause the risk

assessor to overlook some sources of

uncertainty. 

2. Concentration distribution is not highly

skewed.  A highly skewed distribution

may yield unreliable estimates of

uncertainty, especially for small sample

sizes.

3. Sampling design yields a representative

distribution of measurements within the

exposure unit.  Simple random sampling

may fail to represent a patchy spatial

distribution of contaminants.  Similarly,

hotspot (e.g., cluster) sampling may fail to

represent random movement of receptors. 

To evaluate potential biases in sampling,

analyses with both standard statistical

methods and geostatistical methods may be

required.

4. Assumptions about the post-remedial

distribution of concentration are

reasonable.  If these assumptions are

shown to be incorrect by subsequent

sampling events, the process for

developing a PRG may need to be repeated

and additional remedial activities may be

required.
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characterization is incomplete.  This problem, however, is not specific to PRA.  Both point estimate and
probabilistic methods are sensitive to poor site characterization.

Risk assessors should realize that application of iterative truncation may result in areas on-site that have
concentrations higher than the PRG.  This is because the PRG will reflect an average concentration (or
95% UCL) from a distribution of concentrations in which the maximum is truncated at the RAL.  For example,
Figure 5-3 (see Section 5.5.3) shows how the concentration distribution can be truncated at an RAL, while still
leaving behind concentrations greater than the PRG.

5.5.3 EXAMPLE OF ITERATIVE METHODS

The iterative truncation method is easiest to think about with regard to soil cleanup when contaminated
soil is removed and replaced with clean fill soil.  This replacement would reduce both the mean and 95% UCL. 
In most cases, risk assessors may assume that the concentrations of chemicals in clean fill soil can be represented
by the surrogate nondetect value (e.g., half the detection limit).  Alternatively, the fill may be sampled so that the
measured concentrations in the fill dirt may be used to calculate the post-remediation concentration term. 
Generally, metals and other inorganic chemicals will be present in clean fill, albeit at lower concentrations than
on site.

A simple example using the 95% UCL as a point estimate for the EPC is given in Exhibit 5-4.  In this
example, background concentrations of chemical X were very low and hence, the fill was assumed to have a
concentration of half the detection limit.  The risk management objective is to identify a PRG in which the 95th

percentile risk estimate is below 1E-04 and to determine the RAL necessary to achieve this PRG.  This example
illustrates how iterative truncation is applied to the empirical distribution function, rather than fitting the
concentrations to a parametric distribution. 

Assume that iterative reduction of the 95% UCL demonstrated that a post-remediation EPC of no greater
than 33 mg/kg is needed to achieve a RME risk of 1E-04.  What is the RAL that yields this EPC?  The risk
assessor recognizes that the post-remediation concentration distribution is very often a mixed distribution,
consisting of a group of nondetect values and a truncated parametric distribution.  Because of the complex nature
of mixed distributions (Roeder, 1994), non-parametric methods for calculating the 95% UCL of the arithmetic
mean (e.g., bootstrap resampling) were determined to be appropriate (U.S. EPA, 1997; Section 5.1.3). 
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Figure 5-2.  Lognormal probability plot of soil

concentrations, including 4 nondetects.

Table 5-1.  Soil sample (n=70) (mg/kg).

EXHIBIT 5-4

EXAMPLE OF ITERATIVE M ETHODS

Scoping and Problem Formulation  

Chromium contamination was present at a 12-acre industrial facility.  In scoping and problem

formulation, all stakeholders agreed that the facility would maintain itself and the current land use

would continue into the foreseeable future.  Most of the facility area was maintained as green space

and as a buffer with the surrounding community.  Surrounding the facility to the fence line were lawns

and ornamental shrubs tended by landscape workers.  These landscape workers were considered to be

the high risk group as they would move freely and randomly over the entire area of the facility outside

the buildings.  Hence, the landscape workers would be exposed to an average concentration over the

entire area of the facility outside the buildings.  The management of the facility was very cooperative

and concerned about their workers.  Nonetheless, the facility management did not wish to bear more

cost than necessary.

Site Characterization - Soil Sample (n=70)

Seventy surface soil samples were obtained using a sampling grid placed over all 12 acres.  Five

or six sampling locations were placed in each acre.  None of the samples was composited. The

grid-based sampling permits a rough estimation of the percentage of the site that would need active

remediation.  The detection limit for the chromium was 1 mg/kg.  Four of the samples were

nondetects.  Sampling results are shown in Table 5-1.  Although the samples from the site appeared to

occur in a lognormal distribution (Figure 5-2), the presumed post-remediation distribution would be a

mixed distribution, consisting of a truncated lognormal distribution and a group of data at the

surrogate nondetect value.
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In this example, a series of iterative truncations showed that removal of all sample results greater than
100 mg/kg (n=11) and replacement of these with the nondetect surrogate of 0.5 mg/kg yielded a 95% UCL of
33 mg/kg and RME risk below 1E-04.  Table 5-2 summarizes the results of the calculations for the three
conditions: (1) pre-remediation concentrations; (2) post-remediation concentrations using iterative truncation to
achieve an RAL of 100 mg/kg; and (3) post-remediation concentrations assuming the 95% UCL calculated is
used as the RAL.  Note that if the PRG of 33 mg/kg was applied as a “not-to-exceed” level (i.e., RAL), the
resulting remediation effort would increase from 15 to 40% of the site, yielding a 95% UCL of 14 mg/kg.  While
this would be a protective decision, other information was used to support the selection of the second scenario
instead.  A toxicologist was consulted, who indicated that acute exposure to the workers at levels of 100 mg/kg
would not present a health risk.  To build additional protectiveness into the remedy, the management also
indicated scheduling for the landscape workers would be performed so the areas tended would be rotated among
all the workers. 

Table 5-2.  Pre- and Post-Remediation EPCs (95% UCLs) for Chemical X in Surface Soil Samples.

Remediation Scenario RAL (mg/kg) EPC (mg/kg)

95% UCL

Percent of Site to be

Remediated

1.  Pre-remediation NA 93 NA

2.  Post-remediation using the PRG as

the 95% UCL 

100 33 15%

3.  Post-remediation using the PRG as

the RAL (i.e., “not-to-exceed”)

33 14 40%

NA=not applicable for a pre-remediation scenario.

Figure 5-3 shows a conceptual framework for considering the post-remediation distribution as a mixture
between a group of nondetects and a distribution of contamination truncated at the RAL.  Prior to remediation,
the EPC exceeds a level that would be protective of human health and ecosystems.  If the high-end soil
concentrations are removed and the soil is replaced with clean fill, the resulting distribution will be bimodal, with
one peak occurring at the nondetect concentration, and the second occurring near the mean of the post-
remediation distribution.

5.5.4 MULTIPLE EXPOSURE UNITS AND ITERATIVE METHODS

When multiple EUs are present at the site, there may be a small number of samples within a given EU
and the uncertainty in the concentration term generally will be large.  It may be possible to use knowledge of the
mechanism of how the contamination occurred along with spatial patterns in the sampling results in other nearby
EUs to quantify uncertainty.  Geostatistical techniques for estimating the mean concentration may provide useful
insights into the importance of accounting for spatial relationships among the sample data.  Appendix C also
provides a discussion of the situation of multiple EUs within a larger site.
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Figure 5-3.  Hypothetical example of a mixed, bimodal distribution that represents a combination of the pre-

remediation distribution truncated at the remediation action level (RAL) and a uniform distribution representing

clean fill at the surrogate nondetect concentration.  Shaded portions represent equal areas.  In this example, the

PRG is defined by the post-remediation EPC (95%  UCL).

5.6 PRGS FOR GROUNDWATER

For some chemicals encountered at hazardous waste sites, chemical-specific ARARs may exist, and may
be considered as PRGs.  ARARs may be selected as site-specific cleanup levels.  The maximum contaminant
levels of the Safe Drinking Water Act are examples of ARARs.  

L For groundwater contamination, ARARs should be applied as RALs if they are
protective.

 
Of course, for cases in which an ARAR is less protective than a remediation goal determined from a risk

assessment, then a risk-based PRG may be developed in accordance with the NCP (U.S. EPA, 1990a).  

As an exposure medium, groundwater is the opposite of soil in that groundwater is not static, and
receptors are usually exposed at one location (i.e., the well head).  Often, a single well can be considered the EU
when assessing risks associated with either the residential or industrial/occupational scenarios.  The EPC may
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still reflect the concept of averaging over a long time period (e.g., years) due to potential changes in
concentrations in well water over time.  For example, chemical fate and transport modeling may suggest that
concentrations are decreasing over time.  Similarly, there may be temporal and spatial variability depending on
the seasonal fluctuations of the water table.  Ideally, the risk assessment would focus on individuals who may be
exposed at locations nearest to the center of the contaminant plume, where concentrations are likely to be highest
(Freeze and Cherry, 1979; Sposito, et al., 1986).  

Because of the uncertainty in the movement of groundwater and the necessity of sampling the medium at
fixed locations, identifying a meaningful RAL needed to achieve a given PRG is difficult.  In most cases, ARARs
will be applicable as RALs or “not-to-exceed” levels.

5.7 PRGS FOR OTHER CONTAMINATED MEDIA

Iterative truncation techniques are generally applied to a static medium, such as soil, rather than dynamic
or fluid media such as water and air.  This is simply because it is difficult to design a method that will selectively
remove high concentrations from a fluid medium.  Iterative reduction may be more relevant than iterative
truncation when an RAL cannot be developed.  These issues are discussed below with respect to sediment,
surface water, and fish.

Sediment

Sediment may be transported over time more readily than soils.  If it can be assumed that the sediment
remains in place, then iterative truncation techniques may be applied.  However, at some sites, sediment may be
considered a fluid medium.  For example, sediment may be resuspended by the movement of water craft, waves,
changing tides, or erosion.  Similarly, the depth of the contaminated sediment may change over time as new
layers of sediment are deposited above more contaminated sediment.   

Exhibit 5-5 gives an example of the use of iterative truncation to evaluate alternative RALs for sediment
of a lake contaminated by pesticide runoff.  In this example, the RAL is related to both the ecological endpoint of
concern (i.e., reduction in reproductive success of mammalian omnivores at the lake) and the fraction of areal
extent of the lake that would require remediation at that RAL.  
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EXHIBIT 5-5

EVALUATION OF ALTERNATIVE RALS USING ITERATIVE TRUNCATION
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Biota (Fish, Aquatic Invertebrates, Plants) 

Biota, such as fish, aquatic invertebrates, and plants can serve as bioindicators or indirect estimators of
contamination in other exposure media that would be targets for remediation.  The concentration of chemicals
fish may reflect a combination of exposures via sediment, the water column, and food source (e.g., prey). 
Therefore, the use of bioindicators to develop PRGs in other media introduces a sources of uncertainty.  If there
is a high correlation between concentrations in fish and sediment, then sediment concentrations may be
considered when developing PRGs to protect the receptor population.  The EU, in this case, is the area where the
angler population, or ecological predator population, harvests fish.  However, in risk assessments that include a
fish ingestion exposure pathway, there may be high uncertainty about the true concentration term. 
Concentrations may be affected by many factors, including changes in the fish population and changes in fish
preferences, which may be difficult to address in risk assessments.  The choice of fish species consumed by a
given individual may also affect the concentration term.

Fish population studies and fate and transport considerations of the contaminants may indicate if and
when a fish population will reach a calculated cleanup level.  For many sites, it may be difficult to obtain this
level of site-specific data due to resource and time constraints.  

Although remediation may not immediately reduce contaminant concentrations in biota, the
determination of a cleanup level can serve as a target for any future decline in concentrations.  In general,
iterative reduction methods are applicable for developing PRGs to protect aquatic ecosystems; however, under
some conditions iterative truncation may also be used.  For example, if contamination is correlated to relatively
static sediment, and the home-range of the fish is relatively small (e.g., nonmigratory) then iterative truncation
may be applicable.

Surface Water

The development of PRGs for surface water is also difficult with iterative truncation.  For fluid media
(e.g., groundwater or surface water), iterative reduction can be performed using a range of EPCs to determine a
PRG with acceptable risk at the target RME percentile.

5.8 MEASUREMENT OF ATTAINMENT

The NCP (U.S. EPA, 1990a) provides for continued monitoring for groundwater cleanups to ensure
attainment of the remedial action objectives.  In addition, it is common practice among remedial project managers
to conduct confirmation sampling after completing a remedy for soil contamination.  However, completion of the
remedial action according to this strategy does not necessarily mean that risks within EUs at the site have been
reduced to levels specified in the ROD.  The degree of uncertainty about whether the remedial action at the site
has achieved the cleanup level should determine whether confirmation sampling is warranted.  In general,
confirmation sampling following cleanup activities is recommended.  Sampling after the remedial investigation is
complete may show additional areas needing remediation (i.e., where additional contamination exists).  

If additional sampling is conducted after the remedial investigation, the concentration term and
corresponding estimates of risk should be recalculated.  The PRG developed in the remedial investigation may
not be health-protective in light of the additional contamination.  The same concepts that relate the concentration
term to the PRG should be applied in this situation.  
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Confirmation sampling activities are included in remedial design/remedial action plans to ensure the
remedy is successful.  In addition, the five-year review presents a second opportunity to ensure that any
contamination left on site does not pose an unacceptable risk. 

L If confirmation sampling indicates an insufficient reduction in risk, a more
extensive remediation effort may be needed.  Possible reasons for not achieving
remedial action objectives can include inadequate site characterization or the
discovery of unknown contamination.

For post-remediation sampling, the DQO process should generally be followed.  If the post-remediation
risk associated with the confirmation sample indicates risk exceeds a level of concern, then additional
remediation may be warranted.
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5.9 SUMMARY OF RECOMMENDED METHODS

Table 5-3 summarizes the possible methods for developing PRGs for various environmental media.  It
should be noted that iterative reduction (IR) can be used in all cases, whereas iterative truncation (IT) is limited
to situations where the highest concentrations can be identified and removed.  Backcalculation may be applicable
in all cases, but because of caveats noted in Section 5.4.1, iterative approaches are generally recommended in this
document.

Table 5-3.  Summary of Potential Methods for PRG Development by Environmental Medium.

Potential Exposure 

Medium

Back-

calculation 

Iterative

Reduction

(IR)

Iterative

Truncation 

(IT)

Explanations for IT

Soil X X X Applicable if soil is relatively fixed.

Sediment X X X Applicable if sediment is relatively fixed.

In some situations, sediment transport may

be a better assumption due to current

velocity, tides, resuspension, etc.

Biota (Fish, Aquatic

Invertebrates, Plants) -

bioindicators of

contamination in

sediment

X X SA Depends on home-range of fish relative to 

the scale of the sampling design.  If

contamination is correlated  to relatively

static sediment, and the home-range of the

fish is relatively small (e.g., non-migratory)

then IT may be applicable.

Surface Water X X NA Not applicable as surface water is a fluid

medium.

Groundwater (GW) X X NA Not applicable as GW is a fluid medium.

Generally, ARARs must also be satisfied.

Home-grown produce,

milk, livestock, other

food items

X X SA Depends on relative contributions of soil

uptake (applicable) vs. foliar deposition (not

applicable).

X=applicable
NA=not applicable
SA=sometimes applicable
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CHAPTER 6

COMMUNICATING RISKS AND UNCERTAINTIES IN 

PROBABILISTIC RISK ASSESSMENTS

6.0 INTRODUCTION

The Environmental Protection Agency (EPA) has developed a guidance document, Risk
Assessment Guidance for Superfund: Volume I–Human Health Evaluation Manual, Supplement to Part
A: Community Involvement in Superfund Risk Assessments (U.S. EPA, 1999a) and two videotapes,
“Superfund Risk Assessment and How You Can Help, An Overview” (10 minutes) (U.S. EPA, 1999b) and
“Superfund Risk Assessment and How You Can Help” (40 minutes) (U.S. EPA, 2000b), to improve
community involvement in the Superfund risk assessment process.  The videotapes (available in both
English and Spanish) show examples of how regions have involved communities in the risk assessment
process at several Superfund sites.  The guidance document and videotapes, along with the Superfund
Community Involvement Handbook and Toolkit (U.S. EPA, 1998), should serve as a primary community
involvement resource for risk assessors and remedial project managers (RPMs).  The Handbook and
Toolkit offers the following specific guidance:

• Provides suggestions for how Superfund staff and community members can work together
during the early stages of Superfund remedial investigation and feasibility study (RI/FS) and
later cleanup

• Identifies where, within the framework of the human health risk assessment methodology,
community input can augment and improve EPA’s estimates of exposure and risk.

• Recommends questions the site team (risk assessor, RPM, and community involvement
coordinator [CIC]) should ask the community.

• Illustrates why community involvement is valuable during the human health risk assessment
at Superfund sites.

This chapter provides guidance and suggestions on how to deal with risk communication issues
that arise during a probabilistic risk assessment (PRA).  Specifically, the concepts of uncertainty and
variability may present additional communication challenges for PRA.  For example, whereas
discussions of uncertainty for point estimate risk assessments are often qualitative in nature, PRA opens
the floor for discussion and presentation of quantitative uncertainty analysis.  Concepts associated with
quantitative characterizations of uncertainty may be more difficult to communicate and may not be well
received due to stakeholder desires for certainty (Slovic et al., 1979).  As such, this chapter highlights
appropriate stakeholder involvement and principal risk communication skills that are effective for
communicating PRA concepts and risk information.  Key factors for successful communication of PRA
include early and continuous involvement of stakeholders, a well-developed communication plan, good
graphics, a working knowledge of the factors that may influence perceptions of risk and uncertainty, and
a foundation of trust and credibility. 
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EXHIBIT 6-1

DEFINITIONS FOR CHAPTER 6

Central Tendency Exposure (CTE) - A risk descriptor representing the average or typical individual in a population,
usually considered to be the mean or median of the distribution.

Community Advisory Group (CAG) - A group formed to provide a public forum for community members to present and
discuss their needs and concerns related to the Superfund decision-making process.  A CAG serves as the focal
point for the exchange of information among the local community, EPA, State regulatory agency, and other
pertinent Federal agencies involved in the cleanup of a Superfund site.

Community Involvement Coordinator (CIC) - As a member of the CAG and site team, the CIC coordinates
communication plans (i.e., the CIP) and addresses site-specific CAG organizational issues.

Community Involvement Plan (CIP) - A plan that identifies community concerns and the preferences of the community
for the communication of site-related issues.

Confidence Interval - A range of values that are likely to include a population parameter.  Confidence intervals may
describe a parameter of an input variable (e.g., mean ingestion rate) or output variable (e.g., 95th percentile risk). 
When used to characterize uncertainty in a risk estimate, it is assumed that methods used to quantify uncertainty in
the model inputs are based on statistical principles such as sampling distributions or Bayesian approaches.  For
example, given a randomly sampled data set, a 95% confidence interval for the mean can be estimated by deriving
a sampling distribution from a Student's t distribution.  

Credible Interval - A range of values that represent plausible bounds on a population parameter.  Credible intervals may
describe a parameter of an input variable (e.g., mean ingestion rate) or output variable (e.g., 95th percentile risk). 
The term is introduced as an alternative to the term confidence interval when the methods used to quantify
uncertainty are not based entirely on statistical principles such as sampling distributions or Bayesian approaches. 
For example, multiple estimates of an arithmetic mean may be available from different studies reported in the
literature—using professional judgment, these estimates may support a decision to describe a range of possible
values for the arithmetic mean.

Cumulative Distribution Function (CDF) - Obtained by integrating the PDF, gives the cumulative probability of
occurrence for a random independent variable.  Each value c of the function is the probability that a random
observation x will be less than or equal to c.

Hazard Quotient (HQ) - The ratio of estimated site-specific exposure to a single chemical from a site over a specified
period to the estimated daily exposure level, at which no adverse health effects are likely to occur.

Hazardous Substance Research Centers (HSRC) - Research centers providing free technical assistance to communities
with environmental contamination programs through two distinct outreach programs: Technical Outreach Services
for Communities (TOSC) and Technical Assistance to Brownfields Community (TAB).

Histogram  - A graphing technique which groups the data into intervals and displays the count of the observations
within each interval.  It conveys the range of values and the relative frequency (or proportion of the sample) that
was observed across that range.

Monte Carlo Analysis (MCA) or Monte Carlo Simulation - A technique for characterizing the uncertainty and
variability in risk estimates by repeatedly sampling the probability distributions of the risk equation inputs and
using these inputs to calculate a distribution of risk values.  A set of iterations or calculations from Monte Carlo
sampling is a simulation.  For example, a single iteration for risk from ingestion of water may represent a
hypothetical individual who drinks 2 L/day and weighs 65 kg; another iteration may represent a hypothetical
individual who drinks 1 L/day and weighs 72 kg.

Parameter - A value that characterizes the distribution of a random variable.  Parameters commonly characterize the
location, scale, shape, or bounds of the distribution.  For example, a truncated normal probability distribution may
be defined by four parameters: arithmetic mean [location], standard deviation [scale], and min and max [bounds]. 
It is important to distinguish between a variable (e.g., ingestion rate) and a parameter (e.g., arithmetic mean
ingestion rate). 

Percentile - A number in a distribution such that X % of the values are less than the number and 1-X % are greater.  For
example, the 95th percentile is a number in a distribution such that 95% of the values are less than the number and
5% are greater.
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EXHIBIT 6-1

DEFINITIONS FOR CHAPTER 6—Continued

Point Estimate Risk Assessment - A risk assessment in which a point estimate of risk is calculated from a set of point
estimates for exposure and toxicity.  Such point estimates of risk can reflect the CTE or RME, depending on the
choice of inputs. 

Potentially Responsible Party (PRP) - Individuals, companies, or any other party that is potentially liable for
Superfund cleanup costs.

Preliminary Remediation Goal (PRG) - Initially developed chemical concentration for an environmental medium that
is expected to be protective of human health and ecosystems.  PRGs may be developed based on applicable or
relevant and appropriate requirements (ARARs), or exposure scenarios evaluated prior to or as a result of the
baseline risk assessment. (U.S. EPA, 1991a, 1991b).

Probabilistic Risk Assessment (PRA) - A risk assessment that yields a probability distribution for risk, generally by
assigning a probability distribution to represent variability or uncertainty in one or more inputs to the risk
equation.

Probability Density Function (PDF) - A function or graph representing the probability distribution of a continuous
random variable.  The density at a point refers to the probability that the variable will have a value in a narrow
range about that point. 

Rank Correlation (Spearman Rank Order Correlation Coefficient) - A “distribution free” or nonparametric statistic r
that measures the strength and direction of association between the ranks of the values (not the values
themselves) of two quantitative variables.

Reasonable Maximum Exposure (RME) - The highest exposure that is reasonably expected to occur at a site (U.S.
EPA, 1989).  The intent of the RME is to estimate a conservative exposure case (i.e., well above the average
case) that is still within the range of possible exposures.

Remedial Investigation/Feasibility Study (RI/FS) - Studies undertaken by EPA to delineate the nature and extent of
contamination, to evaluate potential risk, and to develop alternatives for cleanup. 

Sensitivity Analysis - Sensitivity generally refers to the variation in output of a model with respect to changes in the
values of the model’s input(s).  Sensitivity analysis can provide a quantitative ranking of the model inputs based
on their relative contributions to model output variability and uncertainty.  Common metrics of sensitivity
include:
< Pearson Correlation Coefficient - A statistic r that measures the strength and direction of linear association

between the values of two quantitative variables.  The square of the coefficient (r2) is the fraction of the
variance of one variable that is explained by the variance of the second variable.

< Sensitivity Ratio - Ratio of the change in model output per unit change in an input variable; also called
elasticity.

< Spearman Rank Order Correlation Coefficient - A “distribution free” or nonparametric statistic r that
measures the strength and direction of association between the ranks of the values (not the values
themselves) of two quantitative variables.  See Pearson (above) for r2.

Stakeholder - Any individual or group who has an interest in or may be affected by EPA’s site decision-making
process.

Technical Assistance Grant (TAG) A federal grant that is intended to provide a community with the opportunity to
hire independent experts to help evaluate and explain the results of a risk assessment.

Technical Outreach Services for Communities (TOSC) - A service of the HSRC with the aim to provide independent
technical information and assistance to help communities with hazardous substance pollution problems.

Uncertainty - Lack of knowledge about specific variables, parameters, models, or other factors.  Examples include
limited data regarding the concentration of a contaminant in an environmental medium and lack of information
on local fish consumption practices.  Uncertainty may be reduced through further study.

Variable - A quantity that can assume many values.
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EXHIBIT 6-2

STAKEHO LDERS POTENTIALLY INVOLVED IN THE

DECISION-M AKING PROCESS FOR PRA

C EPA risk assessors and  managers 

C Members of the public 

C Representatives from state or county

environmental or health agencies 

C Other federal agencies (e.g., health agencies,

Natural Resources Damage Assessment

(NRDA), trustees, etc.)

C Tribal government representatives

C Potentially responsible parties (PRPs) and their

representatives

C Representatives from federal facilities (e.g.,

Department of Defense, Department of Energy,

etc.)

Section 6.1 discusses the need for early and continuing stakeholder involvement.  Section 6.2
recommends a seven-step process for communicating PRA results to stakeholders, and Sections 6.3
and 6.4 provide guidance on specific techniques for communicating information.  The success of risk
communication efforts will depend on the extent to which the communication strategy addresses the
needs of a diverse audience, with different perceptions of risk and uncertainty (Section 6.5), and the
degree of trust and credibility that is established from the outset of the process (Section 6.6). 
Section 6.7 provides a discussion of risk communication issues that are uniquely relevant to RPMs.

 6.1 STAKEHOLDER INVOLVEMENT 

Many stakeholders may be interested in a
risk assessment (see Exhibit 6-2).  It is generally
important to involve and engage interested
stakeholders early and continuously throughout
the decision-making process (U.S. EPA, 2001). 

Public involvement activities should be
tailored to the needs of the community and
described in the site communications strategy. 
The CIC should coordinate these first steps
through the development of a Community
Involvement Plan (CIP).  Coordination between
the RPM, risk assessor, and CIC is needed to
determine the appropriate points in the RI/FS
process to communicate with the community, and
plan for the appropriate level of communication. 
The CIP should identify community concerns and
the preferences of the community for the
communication of site-related issues.  The CIP
may be updated during the RI/FS as needed.  

Examples of outreach activities include
giving oral presentations and poster sessions at public meetings, coordinating group meetings or focused
workshops, conducting interviews with community members on specific issues, and distributing fact
sheets.

Ideally, the public and other interested stakeholders would be involved early in the site-specific
decision-making process.  If the community has not been previously involved, efforts should be made, in
coordination with the CIC, to identify and communicate with the appropriate individuals in the
community prior to the Agency’s receipt of the PRA workplan.  The public and other stakeholders should
be given the opportunity to provide input to the workplan for a PRA (see Chapter  2, Section 2.1).  

The initial community meeting can serve to establish a rapport between EPA and the community
and facilitate the exchange of information needed to support a PRA.  This information may include
policy decisions associated with both point estimate and probabilistic approaches, as well as technical
details regarding the conceptual exposure model and the selection of distributions.  A discussion of these
topics may increase certainty about the assumptions made in the risk assessment.  For example, the
community may be able to offer insights regarding site-specific activities and sources of exposure data
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not readily available to the risk assessor.  This type of discussion should allow for the free exchange of
information with the public and sets the stage for future discussions.  It is important that an appropriate
level of detail be presented at the first meeting.  Instead of overloading the audience with information, it
is generally better to coordinate several meetings so that complex policy and technical concepts can be
broken down into smaller discussion topics.

Following the approval of the PRA workplan, the public and other interested stakeholders should
be involved in various stages of the PRA development, including providing and/or reviewing data,
reviewing the selected distributions (e.g., selected creel survey) and commenting on PRA documents as
appropriate during public comment periods.  On-going community involvement may require
consideration of EPA’s resources including the availability of personnel and contractor support.  Other
considerations include EPA’s compliance with provision in the National Contingency Plan (NCP) for
involving the community.  The appropriate level of community involvement in the PRA should be based
on a number of factors including the nature and extent of contamination at the site, the expressed
interests of the community members, the complexity of the PRA, and the role of PRA in site-specific
remediation or cleanup decisions.

6.2 COMMUNICATION AND PRESENTATION

Communication is a two-way process that should involve the transfer of information between the
Agency and the stakeholders, as well as active listening by the Agency to the stakeholder’s ideas and
concerns.  The goals of risk communication are to present risk information in an understandable manner
through an open, honest, frank, and transparent presentation and discussion of risks, including
uncertainties.  In meeting these goals, it is important that the RPMs and risk assessors be sincere and
direct in their presentation of the results of the PRA, accept the public and other interested stakeholders
as valuable contributors to the process, and listen to the concerns and ideas that are raised.  

One goal of communication should be to respect the stakeholder’s concerns.  The public and
other interested stakeholders should have the opportunity to understand the PRA and its effects on the
decision-making process.  Technical Assistance Grants (TAGs) may be one way to advance this goal by
providing the community the opportunity to hire independent experts to help evaluate and explain the
results of the PRA.  Alternatively, the RPM and risk assessor may use the tools outlined in Sections 6.3
to 6.6 to present PRA concepts and the results of the PRA to the community in a manner that is easily
understood.  This may require significant up-front planning, testing, and post-evaluation to identify the
appropriate messages to communicate and to determine how well this information was communicated. 

The site-specific PRA communication plan should be consistent with the NCP’s provisions on
community involvement.  It is important to recognize that community involvement is part of a regulatory
process and that EPA generally will consider all timely public input, but may not implement all of it. 
Ultimately, EPA must meet the legal requirements of the Superfund law in making decisions regarding
remedial actions.

A vast body of literature exists regarding risk communication.  Since the early 1980's, a number
of researchers have developed models for communicating risk to the public.  These models are available
in the scientific literature, and a list of supplemental references is provided at the end of this chapter.
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6.2.1 COM MUNICAT ION O F PRA WITH CONCERNED CITIZENS, OTHER STAKEHOLDERS, AND

MANAGERS: AN OVERVIEW

Before the decision to conduct a PRA is made, a CIP should be in place.  Generally, when a
decision is made to conduct a PRA, an important step should be to work with citizens to develop a
communication strategy for PRA and its application within the Superfund process (see Chapter 1).  The
initial introduction of the community to the RI/FS process should include a discussion of the principles of
risk assessment.  This discussion may be best presented in an informal setting such as a public
availability session.  Because of the potentially complex nature of PRA and quantitative uncertainty
analysis, a small group meeting may be an appropriate forum in which to discuss issues and facilitate an
exchange of ideas.  If there is interest among a large group of stakeholders, multiple small group sessions
may be scheduled.  Such meetings may provide the foundation for building trust and credibility (see
Section 6.6).

In general, it is important to identify whether a Community Advisory Group (CAG) should be
formed.  The purpose of a CAG is to provide a public forum for community members to present and
discuss their needs and concerns related to the Superfund decision-making process.  The CIC is an
important member of the team and may coordinate communication plans, hand-out materials, and address
site-specific organizational issues.

A number of resources may be available to the community to aid in understanding technical
material in a PRA.  In addition to the TAG program, which provides funds for qualified citizens’ groups
affected by a Superfund site to hire independent technical advisors, another program is the Technical
Outreach Services for Communities (TOSC), which uses university educational and technical resources
to help communities understand the technical issues involved in hazardous waste sites in their
communities.  This is a no-cost, non-advocate, technical assistance program supported by the Hazardous
Substance Research Centers.

The tiered approach for PRA presented in Chapter 2 (Figures 2-1 and 2-2) encourages risk
assessors and RPMs to participate in discussions with stakeholders early in the process of developing
point estimate and probabilistic approaches.  If a decision is made to perform a PRA, a continuing
dialogue should be useful to evaluate interim results of the PRA and determine if additional activities are
warranted (e.g., data collection, further modeling).  These on-going discussions should help assure that
RPMs are aware of the details of the PRA analysis and are comfortable with the material that will be
shared with the community, other interested stakeholders, and senior managers.
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6.2.2 STEPS FOR COMMUNICATION OF THE RESULTS OF THE PRA

The complexity of a PRA will vary depending on the site-specific nature of the assessment
performed.  For example, PRAs may include an analysis of variability, uncertainty, or both.  Some
analyses may involve simulations to evaluate temporal variability (e.g., Microexposure Event analysis)
and spatial variability (e.g., geostatistics).  The challenge for presenters is to identify the critical
information and level of detail to be presented to various audiences that may be involved in the
Superfund decision-making process (e.g., senior risk managers, concerned citizens, congressional staff,
and PRPs).

The 7-step process, described below (and summarized in Exhibit 6-3), may be repeated many
times during the performance of a PRA.  For communication purposes, a PRA normally will involve
more interaction with stakeholders than a
point estimate risk assessment because PRA
concepts and results are often more difficult
to communicate. 

(1) Identify the Audience

The first step should be to identify
the audience of potentially interested
stakeholders.  Strategies for presenting PRA
information normally will be tailored to the
audience.  Participants in the audience may
change during the tiered process depending
on the complexity of the PRA (see Chapter 2)
and the specific site-management decisions
being made.  

(2) Identify the Needs of the Audience

The second step should be to identify the needs of the audience.  The relevant information and
the appropriate level of detail will vary depending on the audience.  For example, some participants may
be well informed about PRA concepts and will not need much introductory PRA information.  For other
audiences, PRA concepts may be new, so it may be beneficial to hold an informal meeting to discuss the
general objectives and methods used to conduct a PRA.  Once introductory PRA concepts have been
discussed and are understood by the audience, more advanced discussions may be warranted on topics
such as the sources of data used in the PRA, the most critical variables in the PRA (identified during the
sensitivity analysis), the selection of distributions, and the level of characterization of uncertainty (see
also Section 6.5).  The risk assessor should select the key information for each topic and discuss the
significance of this information based on the intended audience.

EXHIBIT 6-3

IMPORTA NT STEPS FOR 

COMM UNICATING PRA  RESULTS

(1) Identify the audience

(2) Identify the needs of the audience

(3) Develop a communication plan

(4) Practice to assure clarity of presentation

(5) Present information

(6) Post-meeting review of presentation and

community feedback

(7) Update information as needed for future

assessments and presentations
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(3) Develop a Communication Plan

The third step should be to develop a plan
to communicate significant information to the
public in an easily understandable format
(Exhibit 6-4).  Adequate planning in the
presentation of PRA information is essential.  A
thorough understanding of the design and results
of the PRA will help to place the information in
proper context and understandable format (U.S.
EPA, 1994).  Even more importantly, the risk
assessors and RPMs should clearly identify the
main messages to be presented.

Section 6.4 provides examples of graphics that may be useful in presentations of PRA. 
Handouts, glossaries, and other materials may complement a presentation and provide information for
discussion following the meetings.  In addition, examples designed to help demonstrate concepts unique
to PRA (e.g., using one probability distribution to describe variability and a second distribution to
describe parameter uncertainty) may help facilitate the flow of communication and increase the level of
understanding.  One useful technique in public meetings is to involve members of the audience to
illustrate a concept.  For example, the topic of discussion may be the method used to select and fit a
probability distribution used to characterize variability in a PRA.  To demonstrate this concept, a risk
assessor can draw a bell-shaped curve on a flip chart and label the x-axis, “number of liters of water
consumed per day”, and the y-axis, “number of people who consume a specific amount of water in a
day”.  Next, each meeting participant can be asked to identify their own consumption pattern, perhaps by
holding up a 0.5 liter bottle and asking how many such bottles are consumed on an average day.  This
community-specific information can then be plotted on a new graph in the form of a histogram and the
bars can be connected to form a curve or distribution similar to the one first drawn.  The resulting
distribution (for an example, see Figure 6-1) can then be used to discuss the following PRA concepts in
more detail: 

• Variability (between individuals)
• Shape of the distribution and plausible range of values 
• Central tendency exposure (CTE) and reasonable maximum exposure (RME) estimation 
• Uncertainty in the distribution (sample size, potential response bias, differences in activity

patterns)
• Uncertainty in a parameter estimate (difference between the 95% upper confidence limit

(UCL) for a mean and the 95th percentile)

Using this information as a basis, the risk assessor can compare the results from the community
analysis with data from various geographic areas in the U.S. where water consumption patterns may
differ.  The risk assessor can then lead a discussion with the community regarding the various sources of
uncertainty in selecting and fitting exposure distributions, including:

(a) Extent of Representation - Are the available data representative of the target population?
For example, would the data on water consumption collected during the meeting be
representative for various population groups?

EXHIBIT 6-4

KEY CONSIDERATIONS IN DEVELOPING 

UNDERSTANDABLE M ATERIAL

• Identify main messages

• Place information in appropriate context

• Use clear formats

• Use examples and graphs

• Provide handouts and glossaries

• Present information with minimum jargon
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(b) Data Quantity - What sample size is needed to develop a distribution?  This discussion will
introduce the concept that uncertainty in both point estimates and probability distributions
may be reduced by increasing the sample size

(c) Data Quality - Are the data collected using acceptable study protocols? Is the information
available from the peer-reviewed literature?  An example can be made of the data collected
during the meeting to highlight issues associated with survey design, and methods for
controlling for potential bias or error.  For example, if the survey data were to be used in a
risk assessment for a drinking water scenario, the data quality may be improved by repeat
sampling over time

Other exposure variables that can be used in this distribution example include: fish consumption
rates, chemical concentrations in soil, and fraction of time spent indoors.  In general, examples should
focus on variables that may be of interest, are easily illustrated, and are unlikely to make participants
uncomfortable divulging personal information such as age.

(4) Practice to Assure Clarity of Presentation

The fourth step should be to practice the presentation to assure that the information is presented
clearly to the intended audience.  Staff from communication groups or public information offices within
EPA regional offices may help to determine whether or not the presentation addresses the needs of
various audiences.  Also, practicing the presentation with co-workers who are unfamiliar with the site can
help assure that the appropriate messages are being conveyed, and will help the team prepare for
potential questions that will arise during the meeting.

(5) Present Information

A number of factors should be considered when developing a plan to present the PRA in a
meeting.  Although the size of the public meeting can sometimes be unpredictable, typically individuals
will feel more comfortable asking questions and expressing opinions in small, informal settings.  For any
audience, it is usually helpful to have general fact sheets on PRA available for distribution.  The fact
sheets may contain information that describes the PRA process, how information from the PRA will be
used at the site, and how the community may comment on the PRA report.  The meeting team should
usually include the CIC, RPM, Risk Assessor, and additional support as necessary.  

Audio-visual materials and equipment should be checked prior to the start of the meeting.  For
example, overheads should be viewed from the audience seating to assure that information is accessible
and readable.  Presentations using portable computers can be effective for showing how the results of the
PRA may differ with changes in modeling assumptions.

(6) Post-meeting Review of Presentation and Community Feedback

At the end of a meeting, it can be helpful to encourage participants to provide feedback regarding
effective and ineffective communication techniques.  Not only can this information be used to improve
presentations offered to similar audiences in the future, it also provides a sense for how well the main
messages and specific technical issues were communicated.
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(7) Update Information as Needed for Future Assessments and Presentations

Shortly after the meeting or briefing, modifications should be made to the materials for future
presentations where appropriate.  In addition, if information is obtained that is relevant to the risk
assessment, this information may be included in a subsequent analysis, and the process would be
repeated.

6.3 COMMUNICATING DIFFERENCES BETWEEN POINT ESTIMATE AND PRA

One method for effectively explaining the PRA approach to quantifying variability and
uncertainty is to employ comparisons to the more easily understood point estimate methodology.  These
comparisons can focus on either the inputs or the outputs associated with the two approaches.  The
communicator may focus on a specific input variable, such as drinking water intake, and explain that
with the point estimate methodology, a single average or high-end value (e.g., 2 liters per day for adults)
normally is used to quantify exposure, whereas with PRA, a probability distribution (e.g., lognormal) is
used to characterize variability in exposure among a population.  In addition, the outcomes (e.g., cancer
risk estimates) can be compared by showing where the point estimate(s) of risk fall within the
distribution of risks generated with PRA.

When communicating results from point estimate and PRA models, an important concept to keep
in mind is that both methods yield risk estimates with varying degrees of uncertainty.  Continuing with
the above example, concepts associated with uncertainty (e.g., representativeness, data quantity, and data
quality) can be introduced by asking the audience if their estimate of water consumption on a specific
day would be equal to their average daily consumption rate over a 1-year period.  This example
highlights a common source of uncertainty in exposure data (i.e., using short-term survey data to estimate
long-term behavior).  Section 6.5 discusses different perceptions of uncertainty.  

It is common to accept output from quantitative models without fully understanding or
appreciating the corresponding uncertainties and underlying assumptions.  One challenge in presenting
PRA results is to determine the most effective way to communicate sources of uncertainty without
undermining the credibility of the assessment (see Section 6.6).  For example, it may be counterintuitive
that the more sources of uncertainty that are accounted for in a PRA, the wider the confidence intervals
tend to be in the risk estimates (see Section 6.4.2).  The audience may question the utility of a method
that appears to introduce more complexity in a risk management decision.  It may be useful to point out
that many sources of uncertainty are present, and methods available to acknowledge and quantify them
may differ in point estimate and probabilistic risk assessments. 

The basic concepts of PRAs described in Chapter 1 may be used in developing presentations. 
Exhibits 1-5 and 1-6 in Chapter 1 summarize some of the advantages and disadvantages of point
estimates and probabilistic approaches that should be considered when evaluating differences in the risk
estimates of the two approaches.  For example, point estimates of risk do not specify the proportion of
the population that may experience unacceptable risks.  In contrast, PRA methods allow statements to be
made regarding both the probability of exceeding a target risk, and the level of confidence in the risk
estimate. 

When summarizing results of PRA, graphs and tables generally should include the results of the
point estimates of risk (e.g., CTE and RME).  It may be informative to note where on the risk distribution
each of the point estimates lies.  By understanding the assumptions regarding the inputs and modeling
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approaches used to derive point estimates and probabilistic estimates of risk, a communicator will be
better prepared to explain the significant differences in risk estimates that may occur.  Special emphasis
should be given to the model and parameter assumptions that have the most influence on the risk
estimates, as determined from the sensitivity analysis (see Appendix A). 

6.4 GRAPHICAL PRESENTATION OF PRA RESULTS TO VARIOUS AUDIENCES

Graphics can be an effective tool for communicating concepts in PRA.  As the old adage goes,
“A picture is worth a thousand words.” A graphic usually can be most easily understood by a diverse
audience when it conveys a single message.  It is generally a good idea to keep the graphics simple so
that the message is clear.  In general, each graphic should be developed and modified depending on the
type of presentation and the intended audience. 

L The key to presenting graphics in PRA effectively is to select a relatively small
number of appropriate messages, and to find a balance between meaningful
information and overwhelming detail. 

Points to consider when developing graphics for public meetings, senior staff, and the press are
presented below.  Certainly, recommendations for presenting clear and informative graphics are
applicable to all three forums.  Practical recommendations for graphical analysis techniques and tips for
successful visual displays of quantitative information are given by Tufte (1983) and Helsel and Hirsch
(1993).

6.4.1 PUBLIC MEETING

For a public availability session (or meeting), care should be taken to assure that the graphics are
of appropriate size and the lettering is easy to read.  For example, a graphic on an 8 ½ x 11 inch sheet of
paper, or a font size smaller than 18 pt in a computer presentation, may not be easily seen from the back
of a large auditorium.  It may be appropriate to present information using large posters, spaced so that the
audience may move among them and discuss the posted results with the risk assessor or RPM.  Handouts
and a glossary of terms may also be used.  Using slides with too much text should be avoided, since the
information may be difficult to read and understand.  Pre-planning and pilot testing the graphics before
the presentation may be helpful in assuring that the message is accurately portrayed to the community.

Consistent with EPA’s guidance on risk characterization, the CTE and RME cancer risks and
noncancer hazards, and EPA’s decision point should be highlighted on graphics.  The discussions
accompanying the graph should emphasize that these values represent risks to the average and high-end
individuals, respectively, and serve as a point of reference to EPA’s decision point.  The distribution of
risks should be characterized as representing variability among the population based on differences in
exposure.  Similarly, graphics that show uncertainty in risk can be described using terms such as
“confidence interval”, “credible interval”, or plausible range.  The graphics need not highlight all
percentiles.  Instead, selected percentiles that may inform risk management decisions (such as the 5th,50th,
90th, 95th, and 99th percentiles) should be the focus.  Figure 6-1 shows an example of a PDF for variability
in risk with an associated text box for identifying key risk percentiles.  
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Figure 6-1 .  Hypothetical PRA results showing a probability density function (PDF) (top

panel) for cancer risk with selected summary statistics for central tendency and high-end

percentiles.  This view of a distribution is useful for illustrating the shape of the distribution

(e.g., slightly right-skewed) and explaining the concept of probability as the area under a curve

(e.g., most of the area is below 1E-06, but there is a small chance of 2E-06).  Although

percentiles can also be overlayed on this graphic, a cumulative distribution function (CDF)

(bottom panel) may be preferable for explaining the concept of a percentile.
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Figure 6-2 gives two examples of graphics that can be used to display results of a sensitivity analysis
from a Monte Carlo Analysis (MCA).  While both graphics are likely to be understood by non-technical
audiences, the pie chart may be more familiar.  The pie chart (Figure 6-2A) suggests that the results
should sum to 1.0, which may not be true if there are correlations among one or more variables, or if only
a subset of the variables are displayed (e.g., those that contribute at least 1%).  The available data can be
normalized so that the squared correlation coefficients do sum to 100%, and this approach has been
adopted by some commercial software available to run Monte Carlo simulations (e.g., Crystal Ball® by
Decisioneering, www.decisioneering.com).   The benefit of showing the squared correlation coefficient
(r2 or r-square, also called the coefficient of determination), rather than the correlation coefficient (r) is
that r-square is proportional to the total variation in risk associated with specified input variable. 
Therefore, one can use the r-square to describe, in quantitative terms, the contribution of the input
variable to the total variance in the risk distribution.  In this example, exposure duration (ED) contributes
approximately two-thirds (64%) to the total variance in risk.

A more technical graphic is the tornado plot (Figure 6-2B).  In addition to showing the relative
magnitude of the correlations (r-square), it illustrates the direction of influence a specific variable has on
the final risk estimate.  Bars that extend to the right indicate a positive correlation (e.g., high risk
estimates correspond with high values for the variable), whereas bars that extend to the left indicate a
negative correlation (e.g., high risk estimates correspond with low values for the variable.)  In this
example, the exposure duration (ED) has the largest positive correlation with risk, while body weight
(BW) has the largest negative correlation with risk. 

The graphics shown in this chapter are a small fraction of the graphics that might be used to
communicate concepts related to PRA.  Numerous additional examples are given throughout this
guidance document.  Table 6-1 provides a summary of cross references to other figures that were
developed for this guidance document to convey specific concepts regarding variability and uncertainty.
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Table 6-1.  Examples of Graphics for Communicating PRA Concepts in this G uidance Document.

General PRA Topic Area Location Variability Uncertainty

Conceptual Diagrams for Fundamental Concepts

Monte Carlo Analysis Figure  1-2 X

Tiered process for PRA Figure  2-1, 2-2 X X

PDFs and CDFs

Input variable(s) Figure 1-1, 4-4, 4-5,

4-6 

X

Risk distribution with selected percentiles

highlighted

Figure  6-1 X

Comparing RME risk (e.g., 95 th percentile) with

risk level of concern

Figure 1-3, 4-3, 7-2, X

Selecting and Fitting Probability Distributions

Fitting distributions - frequency distribution

overlaid by a PDF

Figure  3-1 X

Lognormal probability plot Figure  5-2 X

Sensitivity Analysis

Sensitivity analysis - tornado plot of Spearman

rank correlations

Figure 3-6, 6-2b X

Sensitivity analysis - pie chart Figure 6-2a X

Joint probability curve Figure  4-8 X

Variability in toxicity

Species sensitivity distribution Figure  4-7 X

Iterative Simulations

CDFs from multiple 1-D MCA simulations to

convey uncertainty in the risk distribution

Figure  3-3 X

PRG Selection

Estimation from best-fit line for RME risk and

EPC

Figure  5-1 X

RME risk ranges corresponding to alternative

choices of PRG 

Figure  7-4 X

90% credible interval for RME risk (95 th

percentile) corresponding to alternative choices of

PRG

Figure  7-5 X
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Bi-model distribution for concentration showing

pre-remediation EPC, post-remediation EPC,

remediation action level, and uniform distribution

for clean fill

Figure  5-3 X X

2-D M CA Results

Illustration of tabular and graphic outputs of a 2-D

MCA

Figure  4-9 X

Confidence intervals (or credible intervals) on a

risk distribution

Figure 1-4, 4-10,

4-11, 4-12

X

Box-and-whisker plot for results of 2-D MCA Figure  3-4, 7-3 X

Horizontal box-and-whisker plots with multiple
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A.  Pie Chart

B.  Tornado Plot              

Figure 6-2.  Results of a sensitivity analysis shown as a pie chart (A) and tornado plot (B).  Both graphics illustrate

the concept of the relative contribution to variance for exposure variables that contribute at least 1% to the variance

in risk.  The pie chart suggests that the sum of the squared rank correlations equals 1.0, which is true only if the

results are normalized to 100%.  The tornado plot gives both the magnitude and direction (positive or negative) of

the correlation.  ED=exposure duration, IR_soil=soil ingestion rate, AF=absorption fraction, EF=exposure

frequency, SA_skin=surface are of skin, and BW =body weight.
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Figure 6-3.  The results of a 2-D MCA.  The graphic shows a method of presenting variability as a cumulative

distribution function and uncertainty as box plots at the 25 th, 50th, and 95 th percentiles of variability.  The CDF of

the 50 th percentile is represented by the solid line and the CDFs given by the dotted lines represent the 5th and

95 th percentiles of uncertainty for each percentile o f variability. 

6.4.2 EPA SENIOR STAFF

For communicating PRA with EPA’s senior risk managers (e.g., EPA Section Chiefs, EPA
Branch Chiefs, or EPA Division Directors), an executive summary or executive briefing package may be
appropriate.  This presentation should highlight major findings, compare point estimate and probabilistic
results, provide sensitivity analysis results, and state uncertainties addressed in the PRA.  

EPA senior level risk managers would generally be most interested in the risk estimates at the
50th, 90th, 95th, and 99.9th percentiles (i.e., a CTE risk estimate and the RME risk range).  EPA senior
managers may also wish to know the uncertainty surrounding each of the percentiles of risk.  This
uncertainty can be described in a table (e.g., confidence intervals around the 95th percentile risk) or a
graphic (e.g., box-and-whisker plots).  It is advisable for the risk assessor to have this information on
hand during the briefing to respond to questions.  Presenting distributions of uncertainty along with
distributions of variability can create a very busy figure or table—it is best to keep things simple.  
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Figure 6-3 shows cumulative distribution functions (CDFs) for the Hazard Quotient (HQ) for a
single chemical, representing variability in HQ.  One method of displaying uncertainty is to use
box-and-whisker plots.  In this example, the horizontal box and whiskers represent uncertainty around
selected percentile estimates of variability.  Specifically, the three box-and-whisker plots correspond to
the 25th, 50th, and 95th percentiles of the distribution for variability in HQ.  The box shows the 25th and
75th percentiles (i.e., interquartile range) of uncertainty, whereas the whiskers show the 5th and
95th percentiles of uncertainty.  In this example, uncertainty in the 95th percentile HQ is quantified by the
box-and-whiskers plot in which the 5th percentile of uncertainty is 1.1, the 50th percentile is 1.3, and the
95th percentile is 1.4.  This suggests that despite the uncertainty in the estimate of the 95th percentile of
variability, an HQ of 1.0 is likely to be exceeded.  Sometimes such results are said to describe the
90% confidence interval in the 95th percentile HQ.  The term “confidence interval” is used loosely in this
context to convey information about uncertainty; however, it is not the same as a statistical confidence
limit that one might obtain by estimating a population parameter from a sample.  An alternative term that
may be more appropriate in this case is “credible interval”.

The three curves represent similar information on uncertainty across the complete range of
percentiles for variability.  The solid line shows the CDF for all of the 50th percentiles of uncertainty,
whereas the dotted lines show the 5th and 95th percentiles of uncertainty. 

The box-and-whisker plot is simple to produce, conveys information about the symmetry and
width of the confidence interval, and is easy to interpret (Tufte, 1983).  In general, box-and-whisker plots
are useful for summarizing results from two-dimensional Monte Carlo (2-D MCA) simulations.  The
methods and inferences associated with 2-D MCAs are discussed further in Appendix D.  The results of a
2-D Monte Carlo simulation represent a range of possible estimates for the percentile given one or more
sources of uncertainty that were included in the simulation.  If the target audience for this graphic has a
greater understanding of statistics, it may be less confusing if alternative phrases are used to describe the
results, such as “credible interval” or “probability band”.

Graphics that show probability density functions for uncertainty (PDFu’s) are generally more
meaningful to a technical audience of risk assessors and uncertainty analysts.  Alternative graphics may
be needed to communicate other sources of uncertainty in risk estimates (e.g., use of alternative
probability models for exposure variables, effect of changes in the model time step, application of spatial
weighting to concentration data, etc.).  Additional information on communicating risks to senior EPA
managers is given by Bloom et al. (1993).  

The results from the sensitivity analysis may be useful to the senior managers in deciding
whether additional sampling is necessary.  One issue that may be important to address with risk managers
and senior staff is that the width of the credible interval (e.g., 5th to 95th percentiles of uncertainty) will be
determined in part by the number of sources of uncertainty that are quantified.  As additional sources of
uncertainty are quantified and included in the model, the interval around the risk distribution will tend to
widen.  This situation may appear to be counterintuitive for those managers who expect confidence to
increase as uncertainty is quantified.  However, by uncovering and quantifying the sources of
uncertainty, the benefits in the risk communication and decision-making process should become clear. 
The results of the sensitivity analysis should help to focus discussions, data collection efforts, and
analyses on the more significant sources of uncertainty.  In addition, by developing estimates of credible
intervals of uncertainty in risk estimates, the decision-making process using the tiered approach may
become more transparent.
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6.4.3 PRESS RELEASES

For a press briefing presentation, care should be given to identify messages and develop
publication quality graphics with clear descriptions that can be provided in press packages.  It is usually a
good idea to provide the graphics in both color and black and white so that the press can choose the most
appropriate presentation style for the story.  The RPMs generally should work with the CIC, the press
staff in the Communication Division, and senior managers to develop press materials.  Adequate time
should be left for the preparation of materials and internal Agency review and approval before
information is released.

6.5 PERCEPTION OF RISK AND UNCERTAINTY

The purpose of this section is to present current thinking about how people view risk and
uncertainty.  This section should provide useful information for planning risk communication and
addresses the first step in the seven step process (Section 6.2.2), “Identify the Audience.”

There are many individual differences in the way people regard the risks and hazards that are
present in modern life.  These differences have their roots in the differences in perception of risk and
uncertainty of the individual human mind (Slovic, 1986).  The risk assessor and/or risk communicator
should keep in mind the general perceptions about risk held by different groups.  Communications should
be tailored to the specific audience.  This section summarizes some of the criteria used to judge risks in
the absence of scientific data and the direction of the potential bias that may be expected by applying
these criteria.  Additional publications on this issue are identified in the reference section at the end of
this chapter.

 In the absence of scientific data, the general public evaluates risks using inferences of judgment
as described below (Slovic et al., 1979):

• Availability: People tend to judge risks as more likely if they are easy to recall.

• Overconfidence: People tend to be overconfident about the judgments they make based on
the use of heuristics.

• Desire for Certainty: People tend to misgauge risk/benefit conflicts in favor of the benefits
as a result of a desire for certainty and anxiety about uncertainty.
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Slovic et al. (1979) identified nine characteristics of risk that may influence perceptions.  These
nine dimensions may provide a perspective on whether a health risk is perceived as “more risky” or “less
risky”, as described in the table below.

Dimension of Risk More Risky Less Risky

Voluntariness Involuntary Voluntary

Immediacy of the effect Delayed Immediate

Exposed persons’ knowledge about

risk

Low High

Sciences’ knowledge about risk Low High

Control over risk Low High

Newness Unfamiliar or New Familiar

Chronic/Catastrophic Catastrophic Chronic

Common/Dread Dreaded Common

Severity of the consequences High Low

The presentation of uncertainty in a risk estimate can be interpreted with vastly different
conclusions depending on the audience and their perceptions.  For example, a thorough scientific account
of multiple sources of uncertainty presented to a group of interested risk assessors and environmental
scientists may be clearly understood.  Such a group will likely conclude that the assumptions made in the
risk assessment were appropriate and that the results can be used with confidence as a decision support
tool.  In contrast, a similar scientific presentation given to the community may be misunderstood, and the
perceived risk may be greater.  Citizens are often more concerned about the potential impact to their
personal situation, than to the uncertainty in the risk estimate.  Consequently, the community may react
negatively to a long, highly scientific presentation on uncertainty.  A good rule of thumb is to limit the
presentation to no more than 15 minutes.  

Focusing heavily on uncertainty may cause citizens to conclude that the risk must be high.  They
may also conclude that the presenter is incompetent because he or she is not sure of anything, or that the
presenter is trying to hide something by cloaking the information in technical jargon, or even that the
presenter is intentionally avoiding the public’s issues of concern.  To the extent possible, technical jargon
during the presentation should be avoided or explained.

A helpful presentation generally should incorporate the following steps: (1) present information
about the conclusions that can be drawn from the risk assessment; it is extremely frustrating for
decision-makers to receive detailed information on uncertainty without conclusions (Chun, 1996);
(2) describe the certainty of the information that supports these conclusions; (3) address the uncertainty
and its implications for the conclusions; and (4) present the information without jargon and in a frank and
open manner.  Section 6.4 provides examples of graphics that may be useful in presentations of PRA.
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6.6 TRUST AND CREDIBILITY

The single most important quality a presenter may need to possess in order to communicate to
others is a sense of trust and credibility.  Trust and credibility are based on working with the community
and providing thoughtful, accurate responses to questions and concerns raised by the community. 
Building trust and credibility is important, whether communicating to a high-level technical audience, a
RPM/decision-maker who wishes to have the "big picture," or the public.

Credibility can best be established through a long history of frank and open discussions with the
community.  In addition, a presenter can gain credibility if he or she has the ability to restate the available
information so that it addresses the concerns and interests of an audience.  The ability to garner trust and
credibility comes from knowing the audience, respecting their opinion, and communicating at an
appropriate level (U.S. EPA, 1994).

6.7 COMMUNICATION ISSUES FOR RPMS

Following the RPM’s decision to conduct a site-specific PRA, the level of stakeholder
involvement in the development and review of the PRA should be evaluated.  Establishing the
appropriate level of stakeholder involvement may include input from the CIC, risk assessor and
appropriate senior managers (e.g., Section Chief, Branch Chief, etc.).  The level of stakeholder
involvement may vary depending on the site complexity and the interest of the community.  As an initial
step, it may be appropriate to conduct an exploratory session where letters are sent to various
stakeholders (e.g., environmental groups, CAG, etc.) inviting their participation in a general meeting on
the topic of PRA.  If there is a strong interest among the stakeholders, then a more involved
communication plan may be appropriate including, but not limited to the following steps:

• Providing stakeholders with an introduction to the principles of PRA in an informal session
(e.g., public availability session).

• Providing a draft Scope of Work (SOW) to interested stakeholders followed shortly
thereafter by an availability session to discuss comments on the document.

 
• Providing a period of time for the stakeholders to review and comment on the selected

distributions, including an availability session for discussions with EPA staff where the
community may help to identify key site-specific information such as exposure factors and
receptor behavior.

• Providing the opportunity for EPA risk assessor to meet with the TAG grantee (if
appropriate) and stakeholders to ask questions regarding the SOW.

• Providing a revised SOW including a response to stakeholder comments.
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• Providing an overview of the final PRA at a public meeting and providing appropriate
supporting PRA documents in the repositories for stakeholder review and comment.  This
session may be part of the general session regarding the remedial investigation when the risk
assessment is discussed.  Based on the complexity of the PRA, it may be appropriate to hold
a public availability session where the stakeholders (including the TAG grantee), if
appropriate, are able to meet with EPA staff to ask questions and offer suggestions regarding
the document.

• Providing a response to comments from stakeholders regarding the PRA.

If the level of interest is low, then a less extensive CIP may be appropriate.  In this case, fact
sheets (in plain language) describing the general principles of PRA to the stakeholders and the key
findings of the PRA may be provided (U.S. EPA, 2000a).  At public meetings where the risk assessment
is discussed, a short discussion of the PRA findings and their significance may be appropriate.  The PRA
document should be made available in the repositories for review and comment by the stakeholders.

For sites with medium interest, a combination of the activities identified above may be
appropriate.  For example, it may be appropriate to have a public availability session on the principles of
PRA and then make the documents available for review and comment.  

The RPM should consider a number of administrative issues in developing the plan for involving
the stakeholders in the PRA.  Issues to consider include: staff resources, funds for obtaining meeting
space, availability of contractor support, significance of PRA in decision making, and the length of time
required to complete the RI/FS.  To aid in reducing costs, it may be appropriate to combine meetings
regarding PRA and point estimate risk assessment based on the close links between the documents.
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CHAPTER 7

ROLE OF THE PRA IN DECISION MAKING

7.0 INTRODUCTION

When deciding whether or not to remediate a hazardous waste site, the risk manager needs to
know if an unacceptable risk is present, and if so, what cleanup level to apply to the contaminated media. 
For this information, the risk manager should turn to the risk assessor for help in interpreting the results
of the risk assessment.  This chapter provides guidance on how to interpret the results of a probabilistic
risk assessment (PRA) to help determine if an unacceptable risk is present, and the criteria to consider
when deriving a risk-based preliminary remediation goal (PRG) and a final remedial goal.

7.1 GENERAL PRINCIPLES OF RISK-BASED DECISION MAKING IN SUPERFUND

Under Agency policy, an individual with reasonable maximum exposure (RME) will generally be
the principal basis for evaluating potential human health risks at Superfund sites (see Risk Assessment
Guidance for Superfund (Section 6.1.2 of U.S. EPA, 1989) and the National Contingency Plan’s (NCP)
Preamble (U.S. EPA, 1990)).  The RME is defined as the highest exposure that is reasonably expected to
occur at a site, and is intended to estimate a conservative exposure case (i.e., well above the average
case) that is still within the range of possible exposures.  In general, where cumulative carcinogenic risk
to the RME individual is less than 1E-04, and the non-carcinogenic Hazard Index (HI) is less than or
equal to 1, remedial action is not warranted under Superfund unless there are adverse environmental
impacts, or the applicable or relevant and appropriate requirements (ARARs) are not met.  As discussed
in Section 7.2.4, the RME receptor is often (although not always) an appropriate basis for evaluation of
risks to ecological receptors, as well.

Once a determination of unacceptable risk to humans and/or ecological receptors has been made,
the risk managers will typically ask the risk assessor to develop site-specific PRGs.  PRGs are generally
defined as health-based chemical concentrations in an environmental media for which the risks (cancer or
noncancer) to the RME receptor would not exceed some specified target level.  For systemic or
noncarcinogenic toxicants, the target risk level is generally a HI of unity (1).  This is considered to be a
threshold concentration to which the human population (including sensitive subgroups) and ecological
receptors may be exposed without adverse effect during less-than-lifetime (i.e., chronic, subchronic, or
short-term) exposures.  For carcinogens, the target risk level used to derive the PRG typically represents
a cumulative lifetime cancer risk to an individual of between 1E-06 and 1E-04 (equivalently expressed as
10-6 and 10-4).  For carcinogenic risks, less-than-lifetime exposures are converted to equivalent lifetime
values (U.S. EPA, 1989).  The 1E-06 risk level is specified in the NCP as a point of departure for
determining remediation goals when ARARs are not available or not sufficiently protective.  It is
important to remember that risk-based PRGs are initial guidelines and do not represent final cleanup or
remediation levels.  Remediation levels are finalized after appropriate analysis in the remedial
investigation/feasibility study (RI/FS) and record of decision (ROD).  A final cleanup level may differ
from a PRG based on the risk manager’s consideration of various uncertainties in the risk estimate, the
technical feasibility of achieving the PRG, and the nine criteria outlined in the NCP (see Chapter 1,
Exhibit 1-2).
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EXHIBIT 7-1

DEFINITIONS FOR CHAPTER 7

Applicable or Relevant and Appropriate Requirements (ARARs) - Federal or state environmental standards; the NCP
states that ARARs should be considered in determining remediation goals.  ARARs may be selected as
site-specific cleanup levels.

Central Tendency Exposure (CTE) - A risk descriptor representing the average or typical individual in a population,
usually considered to be the mean or median of the distribution.

Confidence Interval - A range of values that are likely to include a population parameter.  Confidence intervals may
describe a parameter of an input variable (e.g., mean ingestion rate) or output variable (e.g., 95th percentile risk). 
When used to characterize uncertainty in a risk estimate, it is assumed that methods used to quantify uncertainty
in the model inputs are based on statistical principles such as sampling distributions or Bayesian approaches. 
For example, given a randomly sampled data set, a 95% confidence interval for the  mean can be estimated by
deriving a sampling distribution from a Student's t distribution.  

Credible Interval - A range of values that represent plausible bounds on a population parameter.  Credible intervals
may describe a parameter of an input variable (e.g., mean ingestion rate) or output variable (e.g., 95th percentile
risk).  The term is introduced as an alternative to the term confidence interval when the methods used to
quantify uncertainty are not based entirely on statistical principles such as sampling distributions or Bayesian
approaches.  For example, multiple estimates of an arithmetic mean may be available from different studies
reported in the literature—using professional judgment, these estimates may support a decision to describe a
range of possible values for the arithmetic mean.

Hazard Index (HI) - The sum of more than one Hazard Quotient for multiple substances and/or multiple exposure
pathways.  The HI is calculated separately for chronic, subchronic, and shorter-duration exposures.

Hazard Quotient (HQ) - The ratio of a single substance exposure level over a specified time period (e.g., subchronic)
to a reference dose (or concentration) for that substance derived from a similar exposure period. 

Preliminary Remediation Goal (PRG) - Initially developed chemical concentration for an environmental medium that
is expected to be protective of human health and ecosystems.  PRGs may be developed based on applicable or
relevant and appropriate requirements, or exposure scenarios evaluated prior to or as a result of the baseline risk
assessment. (U.S. EPA, 1991a, 1991b).

Reasonable Maximum Exposure (RME) - The highest exposure that is reasonably expected to occur at a site (U.S.
EPA, 1989).  The intent of the RME is to estimate a conservative exposure case (i.e., well above the average
case) that is still within the range of possible exposures.

Remedial Investigation/Feasibility Study (RI/FS) - Studies undertaken by EPA to delineate the nature and extent of
contamination, to evaluate potential risk, and to develop alternatives for cleanup. 

RME Range - The 90th to 99.9th percentiles of the risk distribution generated from a PRA, within which an RME risk
value may be identified.  The 95th percentile is generally recommended as the starting point for specifying the
RME risk in a Superfund PRA.

RME Risk - The estimated risk corresponding to the reasonable maximum exposure.
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Figure 7-1.  Hypothetical PRA results showing a cumulative distribution function (CDF) for lifetime excess

cancer risk.

7.2 INTERPRETING A RISK DISTRIBUTION

  
7.2.1 WHAT IS A DISTRIBUTION OF RISK AND WHAT DOES IT LOOK LIKE?

In the traditional point estimate risk assessment approach, risks to the RME individual are
characterized as single point values (e.g., HI=2, or cancer risk=1E-05).  In the PRA approach, the output
of the risk assessment is an estimate of the distribution of risks across all members of the population.  An
example is shown in Figure 7-1.

In this example, the x-axis of Figure 7-1 represents the excess lifetime cancer risk level and the y-axis
represents the cumulative probability of the cancer risk level within the hypothetical population.  The
graph also shows various landmarks along the distribution curve such as the 50th percentile, the 90th, 95th,
etc.  In this illustration, the 95th percentile corresponds to a cancer risk of 1.2E-06.  
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7.2.2 WHAT IS THE RME RANGE?

Given a risk distribution such as shown in Figure 7-1, what part of the risk distribution should a
risk manager be concerned about?  As explained above, the risk to the RME receptor is a key factor in
making decisions regarding the need for action at a Superfund site.  EPA’s Guidelines for Exposure
Assessment (U.S. EPA, 1992) states that the “high-end” (or RME) of exposure for a population occurs
between the 90th and 99.9th percentiles, with the 99.9th percentile considered a bounding estimate. 
Similarly, PRAs developed to support RME risk estimates for Superfund should reflect this approach.

L In this guidance, the 90th to 99.9th percentiles of the risk distribution are
collectively referred to as the recommended RME range.

In utilizing PRA results to determine if an unacceptable risk is present and to develop a PRG
which is sufficiently protective, risk managers should address two questions:

(1) What percentile of the risk distribution will be selected to represent the RME receptor?
(2) How will information on uncertainty in the high-end risk estimates be used in this process? 

The risk manager may consider a number of factors in choosing a specific percentile to represent
the RME individual.  This may include both quantitative information and professional judgment.  In
particular, risk managers may need to understand what sources of variability and uncertainty are already
explicitly accounted for by the modeling approach and inputs (i.e., point estimates and/or probability
distributions) used to estimate the risk distribution, and what sources may be present but are not
quantified.  Approaches for selecting an appropriate percentile in human health and ecological risk
assessments are described below.

7.2.3. RELATING THE RISK DISTRIBUTION TO THE RISK MANAGEMENT GOAL FOR HUMAN HEALTH

In most cases, a recommended starting point for risk management decisions regarding the RME
is the 95th percentile of the risk distribution.  The 95th percentile for the risk distribution is an appropriate
description of high-end exposure as identified by the Presidential/Congressional Commission on Risk
Assessment and Risk Management (1997). 

L In human health PRA, a recommended starting point for risk management
decisions regarding the RME is the 95th percentile of the risk distribution.

Figure 7-2 illustrates this approach for a site where cancer risks are the risk driver.  Assume the
risk manager has selected an excess cancer risk of 1E-05 as the risk management goal, and the
95th percentile as the definition of the RME.  If line B on the graph represents a 1E-05 probability of
cancer, a no-action decision may be warranted because the 95th percentile of the risk distribution is below
the cancer risk level of concern.  Conversely, if we were to assume that the 95th percentile is above the
risk level of concern (i.e., line A on the graph represents 1E-05), remedial action may be warranted.
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Figure 7-2.  Example of a probability distribution for risk illustrating the 95 th percentile and

two different risk levels of concern (A and B).  Assuming the 95 th percentile corresponds to

the RME, the need for remedial action depends on how the RME risk compares with the risk

level of concern.  For Case A (RM E > level of concern), remedial action may be warranted.

For Case B (RME < level of concern), remedial action may be unnecessary.

 

Although the 95th percentile is recommended as a starting point for defining the RME in the
majority of human health risk assessments conducted within the Superfund program, the risk manager
may use discretion in selecting a different percentile within the RME range (90th to 99.9th percentiles).  In
situations where the risk manager believes that a sufficient amount of site-specific information has been
collected to indicate that the risk estimates are much more likely to be high (e.g., overestimated due to
multiple health protective inputs), the risk manager may choose a lower percentile within the
recommended RME risk range (e.g., the 90th) as the most representative of the RME estimate at the site. 
Conversely, when the risk manager believes that the risk estimates may tend to underestimate true risks,
or if there is substantial uncertainty in the accuracy of the risk estimates, the risk manager may choose a
percentile higher than the 95th in the recommended RME risk range (e.g., the 98th or the 99th).  There are a
variety of factors that can be considered when making this decision, such as the qualitative and
quantitative uncertainty in the exposure assessment calculations, the uncertainty in the toxicity values,
and the presence of biological or measured data (in contrast to modeled data).  These factors are
discussed below in Section 7.3.  It is highly recommended that the risk manager consult with the site risk
assessor when applying these factors to determine an appropriate percentile in the RME risk range.
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7.2.4 RELATING THE RISK DISTRIBUTION TO THE RISK MANAGEMENT GOAL FOR ECOLOGICAL

RISK ASSESSMENT

For ecological risk assessments, the choice of the percentile of the variability distribution for
exposure or risk that will be protective depends on the receptor that is being considered as well as the
nature of the endpoint used to establish the level of concern.  For most species, the risk management
objective will generally be to ensure population sustainability, even if some individual members of the
population (those at the upper end of the exposure or risk distribution) may experience a higher risk of
adverse effects.  The risk management goal of population stability does not necessarily correspond to
protection of the central tendency receptor at or below the regulatory level of concern.  

As indicated in Chapter 4, without knowledge of the proportion of the local population that must
survive and reproduce for the population to be stable, the choice of the central tendency exposure (CTE)
receptor as the basis of the risk management goal may not be protective.  Sustainability of a local
population often depends upon the amount of “reserves” within that subpopulation to fill in ecological
niches left voided by toxicologically impaired individuals.  At a very small number of sites, a population
biologist may be able to provide information about the level of effect associated with a decrease in
population sustainability.  At the majority of sites, the use of the CTE receptor by risk management as the
basis for adequate protection of local populations of ecological receptors cannot be supported. 
Therefore, in the absence of such species-specific (trophic level) information, it is prudent and
appropriate to base PRGs and cleanup levels on the upper end of the distribution of variability in the
Hazard Quotient (HQ) to provide greater confidence that the receptor population of concern will be
protected. 

For threatened or endangered species, it will normally be appropriate to provide protection to as
high a percentile of the distribution (i.e., the RME receptor) as is practicable (e.g., high-end of the RME
range of 90th to 99.9th percentiles), since injury to even a single individual is undesirable.

7.3 FACTORS TO CONSIDER IN CHOOSING THE PERCENTILE FOR THE RME

Risk assessments (both point estimate and PRA) should be based on the best quality data
available.  A key component of the risk management process is a careful review and evaluation of the
potential limitations in the quality and relevance of the data that are used in the risk assessment (i.e.,
qualitative and quantitative uncertainties) in order to evaluate the strengths and weaknesses of the
assessment (U.S. EPA, 1993).  Communication between risk managers, risk assessors, and other
technical team members is vital at this stage.  The main question to be answered is, “How well do the
inputs to the risk assessment represent exposure pathways and behaviors at a given site?”  The answer to
this question can be expressed qualitatively (e.g., high, medium, or low) or quantitatively (e.g.,
confidence intervals or credible intervals).  Some examples of these types of evaluation are illustrated
below.

Use of Default Exposure Distributions

When site-specific data are not available, the best available information on some exposure
parameters most likely will be from studies at other sites (e.g., in other parts of the country).  In both
point estimate risk assessment and PRA, the use of surrogate data to support input parameters raises
questions about representativeness for both current and future land use scenarios.  A specific example of
potentially poor representativeness would be the use of national data for estimating the exposure
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EXHIBIT 7-2

EXAMPLES OF  DEM OG RA PH IC , CULTURAL, AND BEHAVIORAL FACTORS THAT CAN AFFECT EXPOSURE

C Subsistence fishing, hunting, or ingestion of home-grown produce

C Exposures to cultural foods or medicines that contain contaminants

C Preparation of foods in containers that contain contaminants that may leach out into food or beverage

C Hobbies and other personal practices resulting in exposure to contaminants

C Age of the population (e.g., children may have greater exposure and susceptibility than adults (U.S.

EPA, 1995b, 1996)

EXHIBIT 7-3

EXAMPLES OF PHYSICAL OR GEOGRAPHICAL FACTORS THAT CAN AFFECT EXPOSURE

C Geographical features that limit or enhance accessability (e.g., slopes, valleys, mountains)

C Land use, including where exposure occurs within the exposure unit, and the current or future manner in

which the receptor contacts the contaminated media

C Availability of contaminated medium for exposure (e.g., grass vs. bare soil)

C Depth of contamination (e.g., surface soil is of greatest concern for direct contact)

C Bioavailability of contaminant from media or water (e.g., physiochemical factors that enhance or reduce

absorption)

C Water quality and distribution systems, including water hardness and use of lead-soldered pipes

C Temporary barriers (e.g., fences, ground cover, and concrete) that affect current (but not necessarily

future) exposures

frequency of adult workers when the receptor of concern is a railroad worker.  Railroad workers may
typically be on the site for only 100 days/year.  If the risk assessment were based on the national default
assumption of 250 days/year, this choice would give a high bias to the risk estimate. 

Another example of a site-specific exposure factor that may vary considerably among different
locations is fish ingestion rates.  At sites where ingestion of fish contaminated with metals poses a
concern, tissue concentrations from fish fillets collected on site are often used to determine the
concentration term.  However, a cultural practice of people harvesting fish on site may include
consuming some of the internal organs of the fish in addition to the fillets.  If the metal contaminants
selectively accumulate in the internal organs instead of the fillet tissues, use of data only on fillets
contaminants would give a low bias to the risk estimate.

Other Factors that Influence Site-Specific Exposures

Exhibits 7-2 and 7-3 list other types of factors that may be important to consider when evaluating
the representativeness of an exposure or risk model.  Given the source of the available data, the risk
assessor should identify potential uncertainties and discuss the likelihood that the values used may under-
or overestimate actual site-specific exposures.  The risk manager should consider this information in
decision making throughout the tiered process for PRA (see Chapter 2).
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For example, the features of a potentially exposed population and the physical and geographical
factors at a site can increase or decrease exposure to contaminated media.  These factors should be
considered in defining exposure pathways and characterizing exposure variables in the risk assessment. 
Such site-specific information may support a decision to evaluate the entire RME range (90th to
99.9th percentile) before selecting the percentile that represents RME risk.  A departure from the
95th percentile would depend on whether or not qualitative or quantitative factors suggest an increased or
decreased exposure, and hence, risk.  In practice, multiple and sometimes competing factors may need to
be balanced in order to determine an appropriate percentile for the RME risk (see hypothetical example
in Section 7.5). 

Subpopulations may be at increased risk from chemical exposures due to increased sensitivity,
behavior patterns that result in high exposures, and/or current or past exposures from other sources. 
Environmental health threats to children are a particular concern (U.S. EPA, 1995b, 1996).  Once
identified, a subgroup can be treated as a population in itself, and characterized in the same way as the
larger population using similar descriptors for population and individual risk (U.S. EPA, 1995a).  This
principle applies to both point estimate risk assessments and PRA. 

Use of Biological Data

Biological monitoring data and/or other biomarker data can be useful sources of information for
evaluating uncertainty in an exposure or risk assessment.  These data can provide an indication of the
magnitude of current or past exposures and the degree to which the exposures are correlated with
contaminated site media.  Examples of biological data that are useful in human health assessments
include lead in blood, trichloroethylene and its metabolites in blood or urine, arsenic or methyl parathion
metabolites in urine, and polychlorinated biphenyls (PCBs) or dioxins in blood or fat tissue.  Tissue
burdens of contaminants are also widely useful as biomarkers of exposure in ecological risk assessments. 
Just as air or groundwater monitoring data can provide increased (or decreased) confidence in the results
of predictive air or groundwater models, biomarkers can be used in a similar manner to evaluate how
much confidence should be placed in predictive exposure assessment models.  Biological data can be
subject to the same shortcomings as other exposure data in terms of data quality and representativeness. 
The design and performance of the biological data collection effort generally should be carefully
evaluated for these factors (e.g., low, medium, and high quality or confidence; low or high bias, etc.)
before using the results in the risk decision.  Currently, collection of biological monitoring data is limited
at Superfund sites and requires coordination with appropriate agencies outside of EPA.

Issues Related to Toxicity Factors

A variety of factors may affect the magnitude of adverse responses expected to occur in similarly
exposed individuals such as age, physiological status, nutritional status, and genotype.  In general, these
sources of inter-individual variability, and related uncertainties, are taken into account in the derivation
of toxicity values (e.g., reference concentration (RfC), reference dose (RfD), and carcinogenic slope
factor (CSF)) used in human health risk assessments.  Thus, human health toxicity values usually are
derived to be health-protective for the most sensitive populations.

L Sources of variability or uncertainty are often accounted for in the
derivation of toxicity values.  The level of protectiveness afforded by the
toxicity value may be an important factor in deciding on the appropriate
RME risk percentile to use.
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EXHIBIT 7-4

EXAMPLES OF TOXICITY CONSIDERATIONS

C How severe is the effect?

C Is the effect reversible?

C How steep is the slope of the dose-response

curve at low dose?

C Is the contaminant persistent in the

environment or in receptors?

C Does the contaminant bioconcentrate as it

moves through the food chain?

C How bioavailab le is the contaminant?

Risk managers, in collaboration with risk assessors, should carefully consider whether the
toxicity value is representative of the population of concern.  For example, the toxicity value may be
based on oral exposures to drinking water, whereas exposure to a site population being evaluated may be
via soil ingestion.  Similarly, the toxicity value could be based on effects in a healthy worker population,
whereas the site population encompasses all ages and a range of individual health conditions. 
Uncertainty in toxicity values may reflect insufficient data to evaluate developmental toxicity concerns or
to account for in utero exposures.  Also, it may be unclear whether the population of concern has similar
characteristics to the sensitive population accounted for in the derivation of the toxicity value.  This
determination may require coordination with a toxicologist to review the basis for the derivation of the
toxicity values in question.  Even then, in most cases, the determination will be very difficult, because
our understanding of human variability in toxicologic responses is very limited for many chemicals. 
When data are insufficient to support a more quantitative representation of these sources of
inter-individual variability an uncertainty factor may be used in the derivation of non-cancer human
health toxicity values (RfD, RfC). 

Some of the same factors that should be considered when employing toxicity values to estimate
risk are also relevant to the use of toxicokinetic and toxicodynamic modeling in risk assessment.  For
example, a toxicity assessment for methylmercury used a technique called benchmark dose modeling
(BMD) to relate the levels in maternal blood to adverse developmental effects, based on data from a 
large epidemiology study of Faroes Islanders (Grandjean et al., 1997; Budtz-Jørgensen et al., 2000).  The
RfD determined is well-supported by the other large human studies from the Seychelles (Davidson et al.,
1995, 1998) and New Zealand (Kjellstrom et al., 1986, 1989) as well as a physiologically-based
pharmacokinetic (PBPK) model based on the Seychelles data (Clewell et al., 1999).  The RfD obtained
with benchmark dose modeling (BMD) was 1E-04 mg/kg-day.  The PBPK model incorporated variability
in toxicokinetics to obtain a range of acceptable intakes of methylmercury between 1E-04 and 3E-04
mg/kg-day.  Although the PBPK model was not used in the derivation of the benchmark dose value, it
was used to support the choice of uncertainty factors in the derivation of the RfD. 

At the time this guidance was
finalized, the understanding of this type of
toxicity information (i.e., human variability)
was not well developed.  Although such
information was not used to characterize
variability in human health risks, the
estimates of variability from the PBPK
model did provide additional information on
uncertainty.  For decision makers, the
toxicity data and the choice of the endpoint
(e.g, neurodevelopmental effects in the case
of methylmercury) can guide qualitative risk
management choices regarding the
percentile representing the RME (within the
90th to 99.9th percentile range) and/or the
appropriate level of confidence in the RME
estimate.  Exhibit 7-4 lists some of the
issues to consider when evaluating the
uncertainty in a toxicity value.
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Figure 7-3.  Box and whisker plots characterizing uncertainty in the RME risk estimates (95 th percentile of the

Hazard Index) at four locations.  The box represents the inter-quartile range (25th to 75th percentiles) while the

whiskers represent the 90% credible interval (5th to 95th percentiles). 

Use of Quantitative Uncertainty Estimates

PRA methods such as a two-dimensional Monte Carlo analysis (2-D MCA) may be used to
quantify the uncertainty or confidence surrounding risk estimates, and this information may be helpful in
selecting the RME risk percentile.  Figure 7-3 provides hypothetical results of a 2-D MCA where a
credible interval has been quantified for a 95th percentile of variability in noncancer HI.  In exposure
units (EU) 1 and 3, the credible intervals for the 95th percentile are fairly narrow, which suggests a high
degree of confidence that the risks in EU1 are negligible and that the risks in EU3 are unacceptable. 
Conversely, the relatively wide credible intervals in EU2 and EU4 give less confidence in the results, but
suggest that the 95th percentiles likely exceed a target HI of 1 in both cases.  Further efforts to reduce or
characterize uncertainties may affect the risk management decision in these two areas.
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Summary:  Multiple Criteria Form the Basis of the Remedial Decision

Final risk management decisions should be based on a weighted consideration of all of the
relevant factors that influence confidence in the risk distribution.  For example, a risk manager may be
presented with a risk assessment for a heavy metal in residential soil in which the distribution of cancer
risk estimates in the RME range (i.e., 90th to 99.9th percentiles) overlaps the risk range of concern
(1E-06 to 1E-04).  The risk manager then should proceed with the site technical team to evaluate the data
available to define inputs for the risk assessment, as well as the site-specific factors, and the available
biological monitoring data.  Assume that several factors that are likely to increase the confidence in the
risk estimates were noted: (1) the soil collection and analysis effort was well-designed; (2) the
predominant chemical and physical forms of the metal in the soil are characterized by relatively low
bioavailability; (3) all of the yards in the residential neighborhood are covered with grass lawns, a feature
generally expected to reduce direct exposure to soil; and (4) biomonitoring data from the site are all
within normal physiological ranges, suggesting little, if any, excess contaminant exposure occurred at the
site.  In addition, generic national data were used in the absence of site-specific information on two input
variables that ranked highest in the sensitivity analysis, thereby reducing confidence in the risk estimates. 
In this example, the consideration of these factors collectively suggests that the results of the risk
assessment are likely biased towards an overestimate of risk, and this information may be used in a risk
management selection of a percentile of the risk distribution to represent the RME receptor (e.g., less
than or equal to the 95th percentile).

7.4 UNCERTAINTY ASSOCIATED WITH THE USE OF THE 99.9TH PERCENTILE

As previously stated, this guidance adopts the 90th to 99.9th percentiles of the risk distribution as
the recommended RME risk range for decision-making purposes, consistent with EPA’s Guidelines for
Exposure Assessment (U.S. EPA, 1992).  A cautionary note should be added about the selection of the
higher percentiles within that range, especially the 99.9th percentile.  The extreme percentiles (“tails”) of
an input distribution are understandably the most uncertain part of a PDF, since the number of data
values in these ranges are less abundant than in the center of the range.  This uncertainty in the tails of
the input distributions leads in turn to greater uncertainty in the tails of the calculated exposure or risk
distribution, and the magnitude of this uncertainty increases rapidly at the very high percentiles.  In many
cases, estimates at the extreme tails, such as the 99.9th percentile, may be neither accurate nor plausible. 
For that reason, great care should be taken when evaluating an RME risk in the upper percentiles of the
risk range.

 7.5 MOVING FROM A PRG TO A REMEDIAL GOAL

As discussed above, where an unacceptable risk is identified, the risk assessor is typically asked
to develop site-specific PRGs (see Chapter 5 for discussion on derivation of PRGs).  PRGs may be
developed using a probabilistic approach much in the same manner as they are developed using a point
estimate approach.  The target risk level should be set for a specified percentile (corresponding to the
RME receptor), and the concentration in contaminated media which corresponds with that target risk
level should be calculated.  It is important to understand that the PRG is an early step, not the last step, in
the selection of a final cleanup level.  During the RI/FS, the risk manager should evaluate the remedial
alternatives using the nine criteria described in the NCP (U.S. EPA, 1990) (Chapter 1, Exhibit 1-2). 
Achieving a target level of protection for human and/or ecological receptors is one of the primary factors,
but this objective should be balanced by criteria such as feasibility, permanence, state and community
acceptance, and cost.  Indeed, there may be times when a purely risk-based PRG may be impracticable as
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a final cleanup goal.  In cases such as this, it is important to remember that the RME is not a single, fixed
percentile on the risk distribution, but instead represents the portion of the risk distribution curve
between the 90th and 99.9th percentiles.  Depending on the specific exposure and toxicity information
available at a site, a PRG developed using the 90th percentile of risk may be sufficient to protect the
reasonably maximum exposed individual.  Alternatively, at some sites, the risk manager may feel that a
PRG developed using even the 95th percentile of risk is not sufficiently protective of the RME individual
and thus may choose to develop a PRG using a higher percentile.

L Selection of final remediation or cleanup levels during the RI/FS and ROD
may be an iterative process, and may consider a range of factors in addition
to the initial PRG estimate.

For example, at a former nuclear energy site, a PRG of 200 picocuries/gram (pCi/g) was
developed for plutonium in soil based on a one-dimensional Monte Carlo analysis (1-D MCA) and the
recommended starting point of the 95th percentile for the RME individual.  At this particular site, the
surrounding communities were strongly opposed to this PRG as a cleanup level.  They felt it was not
adequately protective, and as a result, limited progress occurred in remediating the site over the years. 
The communities pointed out to the risk manager that many of the exposure assumptions used in the PRA
were not site-specific, and some members of the community felt that exposures occurred more often (i.e,
with higher frequency) and for a longer period of time (i.e., for a greater duration) than were assumed. 
Based on the exposure parameters recommended by the community, the PRG would have been 75 pCi/g. 
At this point, the risk manager could have chosen to either go back and collect sufficient site-specific
demographic and exposure data to refine the risk calculations and the PRG derivation, or evaluate the
feasibility of a PRG associated with higher percentiles on the risk distribution curve (e.g.,
99th percentile).  In this particular example, the risk manager compared the costs associated with the
cleanup that would be required to satisfy the community concerns with the costs associated with
collection of additional data and recalculation of the risk and PRG.  The risk manager decided that the
additional cost of cleanup was manageable and expected that the PRG based on the 99th percentile would
be accepted by the community.  In addition, remedial activity could begin quickly without more
investigation.  When the risk manager presented these findings to the community, the citizens quickly
agreed with this approach and remediation activities moved forward.  

How does Variability and Uncertainty in Risk Relate to the Choice of a PRG? 

An effective approach for communicating the results of a probabilistic analysis to risk managers
is to develop graphics that relate variability and uncertainty in risk to the choice of a PRG.  Two graphics
are illustrated in Figures 7-4 and 7-5, based on the concept of iterative simulations presented in Chapter 5
(Section 5.5).  Continuing the PRG example discussed above, assume that multiple 1-D MCA
simulations are run with PRGs for plutonium ranging from 25 pCi/g to 250 pCi/g in increments of
25 pCi/g.  As the concentration term is changed to correspond with a PRG, each Monte Carlo simulation
yields a different distribution of risk.  Figure 7-4 focuses on the RME range of percentiles from the risk
distribution (i.e., 90th - 99.9th percentiles).  A risk manager might use this graphic to evaluate how the
PRG could change based on the choice of the percentile used to represent the RME.  A hypothetical risk
level of concern of 1E-05 corresponds with the 90th percentile at a PRG of approximately 125 pCi/g,
whereas 1E-05 intersects the 95th percentile line at a PRG of approximately 75 pCi/g.  Therefore, when
variability in risk is the focus of the decision, the difference between an RME set at the 95th percentile
instead of the 90th percentile is 50 pCi/g.
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Figure 7-5 presents information on uncertainty, rather than variability.  This graphic could be
used to summarize results of a 2-D MCA (see Appendix D), or a series of 1-D MCA simulations (see
Chapter 3, Section 3.4) applied to the same range of PRGs evaluated in Figure 7-4.  In this case, the
results yield a 90% credible interval (CI) for the risk distribution.  Figure 7-5 highlights the 90% CI for
the 95th percentile, assuming that a risk manager selects the 95th percentile to represent the RME risk, and
she is interested in the uncertainty in the risk estimates.  Using the same hypothetical risk level of
concern (1E-05), the 90% upper CI for the 95th percentile corresponds with 1E-05 at a PRG of
approximately 25 pCi/g.  The risk manager may need to consider the cost and feasibility of achieving a
PRG as low as 25 pCi/g.  In addition, the 90% lower CI corresponds to a PRG of 250 pCi/g.  The risk
manager may determine that this range of uncertainty (i.e., an order of magnitude) is too wide to set a
PRG, and that further steps are needed to reduce identify the major sources (i.e., sensitivity analysis).

Variations on Figures 7-4 and 7-5 can be developed to focus on different percentiles of the risk
range.  This information, together with the results of the sensitivity analysis which highlights the major
sources of variability and uncertainty, should help to guide the selection of final remediation or cleanup
levels, or continued data collection and analysis following the tiered process for PRA.
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Figure 7-4.  Example of graphic showing variability in risk (i.e., RME range, or 90 th to

99.9 th percentiles) associated with different choices of PRG for plutonium in soil (pCi/g). 

The hypothetical risk level of concern (1E-05) corresponds to a 90th percentile risk at a a

PRG of ~ 100 pCi/g, and a 95th percentile at a PRG of ~ 75 pCi/g.  In this example, all of

the 99 .9 th percentiles exceed 1E-05, leaving no choices for PRG  at the high end of the

RME range.

Figure 7-5.  Example of graphic showing uncertainty in 95th percentile risk associated with

the same choices of PRGs given in Figure 7-4.  Uncertainty is given by the 90% upper and

lower credible interval (CI).  The hypothetical risk level of concern (1E-05) corresponds with

the 90% upper CI at a PRG of ~ 25 pCi/g, and the 90% lower CI at a PRG of ~ 250 pCi/g.
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APPENDIX A

SENSITIVITY ANALYSIS: HOW DO WE KNOW WHAT’S IMPORTANT?

A.0 INTRODUCTION

Sensitivity analysis, as it is applied to risk assessment, is any systematic, common sense
technique used to understand how risk estimates and, in particular, risk-based decisions, are dependent on
variability and uncertainty in the factors contributing to risk.  In short, sensitivity analysis identifies what
is “driving” the risk estimates.  It is used in both point estimate and probabilistic approaches to identify
and rank important sources of variability as well as important sources of uncertainty.  The quantitative
information provided by sensitivity analysis is important for guiding the complexity of the analysis and
communicating important results (see Chapter 6).  As such, sensitivity analysis plays a central role in the
tiered process for PRA (see Chapter 2).  This Appendix focuses on a set of graphical and statistical
techniques that can be used to determine which variables in the risk model contribute most to the
variation in estimates of risk.  This variation in risk could represent variability, uncertainty, or both,
depending on the type of risk model and characterization of input variables. 

There is a wide array of analytical methods that may be referred to as sensitivity analysis, some
of which are very simple and intuitive.  For example, a risk assessor may have two comparable studies
from which to estimate a reasonable maximum exposure (RME) for childhood soil ingestion.  One
approach to evaluating this uncertainty would be to calculate the corresponding RME risk twice, each
time using a different plausible point estimate for soil ingestion rate.  Similarly, in a probabilistic model,
there may be uncertainty regarding the choice of a probability distribution.  For example, lognormal and
gamma distributions may be equally plausible for characterizing variability in an input variable.  A
simple exploratory approach would be to run separate Monte Carlo simulations with each distribution in
order to determine the effect that this particular source of uncertainty may have on risk estimates within
the RME range (90th to 99.9th percentile, see Chapter 1). 

 Sensitivity analysis can also involve more complex mathematical and statistical techniques such
as correlation and regression analysis to determine which factors in a risk model contribute most to the
variance in the risk estimate.  The complexity generally stems from the fact that multiple sources of
variability and uncertainty are influencing a risk estimate at the same time, and sources may not act
independently.  An input variable contributes significantly to the output risk distribution if it is both
highly variable and the variability propagates through the algebraic risk equation to the model output
(i.e., risk).  Changes to the distribution of a variable with a high sensitivity could have a profound impact
on the risk estimate, whereas even large changes to the distribution of a low sensitivity variable may have
a minimal impact on the final result.  Information from sensitivity analysis can be important when trying
to determine where to focus additional resources.  The choice of technique(s) should be determined by
the information needs for risk management decision making.

This appendix presents guidance on both practical decision making and theoretical concepts
associated with the sensitivity analysis that are commonly applied in risk assessment.  An overview of the
type of information provided by sensitivity analysis is presented first, followed by guidance on how to
decide what method to use in each of the tiers.  A straightforward example of applications of Tier 1 and
Tier 2 sensitivity analysis methods is shown, followed by a more detailed discussion of the theory and
equations associated with the different methods.
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EXHIBIT A-1

DEFINITIONS FOR APPENDIX A

Continuous Variables - A random variable that can assume any value within an interval of real numbers (e.g., body
weight).

Correlation - A quantitative expression of the statistical association between two variables; usually represented by the
Pearson correlation coefficient for linear models, and the Spearman rank correlation coefficient (see below) for
nonlinear models.

Discrete Variables - A random variable that can assume any value within a finite set of values (e.g., number of visits to a
site in one year) or at most a countably infinite set of values, meaning that you can count observations, but there is no
defined upper limit.  An example of countably infinite would be the number of dust particles in a volume of air (a
Poisson distribution), whereas uncountably infinite would be the number of points in a line segment.

Local Sensitivity Analysis - Evaluation of the model sensitivity at some nominal points within the range of values of input
variable(s).

Monte Carlo Analysis (MCA) or Monte Carlo Simulation - The process of repeatedly sampling from probability
distributions to derive a distribution of outcomes.  MCA is one of several techniques that may be used in PRA.

Multiple Regression Analysis - A statistical method that describes the extent, direction, and strength of the relationship
between several (usually continuous) independent variables (e.g., exposure duration, ingestion rate) and a single
continuous dependent variable (e.g., risk).

Nonparametric Tests - Statistical tests that do not require assumptions about the form of the population probability
distribution.

Range Sensitivity Analysis - Evaluation of the model sensitivity across the entire range of values of the input variable(s).
Rank - If a set of values is sorted in ascending order (smallest to largest), the rank corresponds to the relative position of a

number in the sequence.  For example, the set {7, 5, 9, 12} when sorted gives the following sequence {5, 7, 9, 12}
with ranks ranging from 1 to 4 (i.e., rank of 5 is 1, rank of 7 is 2, rank of 9 is 3, and rank of 12 is 4). 

Sensitivity Analysis - Sensitivity generally refers to the variation in output of a model with respect to changes in the values
of the model’s input(s).  Sensitivity analysis attempts to provide a ranking of the model inputs based on their relative
contributions to model output variability and uncertainty.  Common metrics of sensitivity include:
< Pearson Correlation Coefficient - A statistic r that measures the strength and direction of linear association

between the values of two quantitative variables.  The square of the coefficient (r2) is the fraction of the variance
of one variable that is explained by least-squares regression on the other variable, also called the coefficient of
determination..

< Sensitivity Ratio - Ratio of the change in model output per unit change in an input variable; also called elasticity.
< Sensitivity Score - A sensitivity ratio that is weighted by some characteristic of the input variable (e.g., variance,

coefficient of variation, range).
< Spearman Rank Order Correlation Coefficient - A “distribution free” or nonparametric statistic r that measures

the strength and direction of association between the ranks of the values (not the values themselves) of two
quantitative variables.  See Pearson (above) for r2.
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EXHIBIT A-2

UTILITY OF SENSITIVITY ANA LYS IS

C Decision making with the tiered approach-

e.g., After quantifying parameter uncertainty,

we are 95 percent confident that the RME risk

is below the risk level of concern— no further

analysis is needed.  Also—selection of a  beta

distribution over a lognormal distribution for

ingestion rate changes the 95th percentile of

the risk distribution by a factor of 10—further

evaluation may be needed.

C Resource allocation - e.g., Two of the 10

exposure variables contribute 90 percent of

the variability in the risk estimate.

C Risk communication - e.g., For input

variable X, if we were to use a distribution

based on site-specific data instead of a

national survey, we would expect a minimal

change in the RME risk estimate.

A.1.0 UTILITY OF SENSITIVITY ANALYSIS

As highlighted in Exhibit A-2, sensitivity
analysis can provide valuable information for both
risk assessors and risk management decision makers
throughout the tiered process for PRA.  By
highlighting important sources of variability and
uncertainty in the risk assessment, sensitivity analysis
is generally an important component of the overall
uncertainty analysis.  For example, methods that
quantify parameter uncertainty and model uncertainty
may yield different estimates of the RME risk.  This
information can be used to guide the tiered process by
supporting decisions to conduct additional analyses or
prioritize resource allocations for additional data
collection efforts.  Results of sensitivity analysis can
also facilitate the risk communication process by
focusing discussions on the important features of the
risk assessment (e.g., constraints of available data,
state of knowledge, significant scientific issues, and
significant policy choices that were made when
alternative interpretations of data existed). 

Decision Making with the Tiered Approach

In general, the type of information provided by a sensitivity analysis will vary with each tier of a
PRA.  Table A-1 provides an overview of the methods that may be applied in each tier based on the type
of information needed.  In Tier 1, sensitivity analysis typically involves changing one or more input
variables or assumptions and evaluating the corresponding changes in the risk estimates.  Ideally, the
results for Tier 1 would be useful in deciding which exposure pathways, variables, and assumptions are
carried forward for further consideration in subsequent tiers of analysis.  By identifying the variables that
are most important in determining risk, one can also decide whether point estimates, rather than
probability distribution functions (PDFs), can be used with little consequence to the model output.  This
information is important not only for designing 1-D MCA models of variability, but also for designing
more complex analyses of uncertainty discussed in Appendix D (e.g., 2-D MCA models, geostatistical
analysis, Bayesian analysis).  Section A.2.2 provides an overview of the Tier 1 methods and some
insights regarding their limitations.  Methods associated with Monte Carlo simulations used in Tiers 2
and 3 can take advantage of the ability to vary multiple inputs simultaneously and account for
correlations.  Sections A.2.3 and A.3 provide an overview of the sensitivity analysis methods that can be
applied in a probabilistic analysis.
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Table A-1.  Overview of Sensitivity Analysis Methods Applicable in Tiers 1, 2, and 3 of a PRA.

Tier Goal SA Method(s) What to Look For Rationale

1 Quantify contributions of

each exposure pathway

to risk, identify major

and minor pathways

Calculate % of total risk

from each exposure

pathway

Exposure pathways that

contribute a very small

percentage (e.g., < 5%) to

total risk

Good preliminary step in Tier 1 for reducing the number of

exposure variables to focus on in subsequent tiers. 

Exposure variables that

appear in multiple

exposure pathways

Risk estimates are likely to be more sensitive to variables that

appear in multiple exposure pathways.

1 Identify the form of the

dose equation for key

pathways 

Inspection Equation is multiplicative

or additive

SR values can be determined with minimal effort (see

Table A-3).  For multiplicative equations, SR=1.0 for all

variables in the numerator, and SR is a function of the percent

change for a ll variables in the denominator. 

Equation contains

variables with exponents

(e.g., powers, square

roots)

Output is likely to be more sensitive to variables with

exponents greater than 1.0.

1 Quantify contributions of

each exposure variable to

total risk, identify major

and minor variables

Sensitivity Ratio (SR),

unweighted

SR = 1.0, or SR is the

same for multiple

variables

It’s likely that this is a multiplicative equation (see above), and

the SR approach will not be effective at discriminating among

relative contributions.  Explore sensitivity further with other

methods.

SR � 1.0 SR may vary as a function of the % change in the input

variable.  In this situation, it can be informative to explore

small deviations (± 5%) and large deviations (min, max) in the

input variables.  

SR < 1.0 Implies an inverse relationship between the input and output

variables (e.g., inputs in the denominator of a risk equation).
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SR=0 Variable probably appears in both the numerator and

denominator and, therefore, cancels out of the  risk equation. 

Examples include exposure duration (ED) in noncancer risk

equations, and body weight (BW) if ingestion rate is expressed

as a function of body weight. 

1 (cont’d) Quantify

contributions of each

exposure variable to total

risk

Sensitivity Ratio (SR),

weighted—also called

Sensitivity Score

Differences in SR based

on the weighting factor

A more informative approach than unweighted SR value for

those variables that have sufficient information to define a

weighting factor (e.g., coefficient of variation or range).

2 Quantify relative

contributions of exposure

pathways to risk

1-D MCA for variability

or uncertainty, with

outputs specifying %

contribution of exposure

pathways

Compare mean with

high- and low-end

percentiles of %

contribution to risk

The % contribution of each exposure  pathway will vary as a

function of the variability (or uncertainty) in the inputs;

exposure pathways that appear to be relatively minor

contributors on average, or from Tier 1 assessment, may in fact

be a major contributor to risk under certain exposure scenarios. 

The likelihood that a pathway is nonnegligible (e.g., > 5%) can

be useful information for risk managers.

2 Quantify relative

contributions of exposure

variables to risk

1-D MCA for variability

or uncertainty,

Graphical analysis—

scatterp lots of inputs

and output

Nonlinear relationship Easy and intuitive approach that may identify relationships that

other methods could miss.  May suggest transformations of

input or output variables (e.g., logarithms, power

transformations) that would improve correlation and regression

analyses.

1-D MCA, Correlation

Analysis using Pearson

and /or Spearman Rank 

Very high or low

correlation coefficients

Differences between

relative rankings based

on Pearson and Spearman

Easy to implement with commercial software; rank orders the

variables based on the average contribution to variance. 

Differences in magnitude of coefficients are expected between

Pearson and Spearman rank approaches, but relative order of

importance is likely to be the same.
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1-D MCA, Multiple

Linear Regression

Analysis (e.g., stepwise)

Very high or low

regression coefficients

R2 and adjusted R2 for

total model

Easy to implement with commercial software; gives

contribution to reduction in residual sum of squares (RSS)

For risk equations with large sets of input variab les, a small

subset of inputs may be able to explain the majority of the

variance.

2 Quantify relative

contributions of exposure

variables to RME risk

range

1-D MCA; same as

previous step, but for

subset of risk

distribution (e.g., > 90 th

percentile)

Difference in relative

contributions for entire

risk distribution and the

RME range of the risk

distribution

Variables may contribute d ifferently to the high-end of the risk

distribution, especially if the input variab les are highly skewed. 

This situation would warrant a closer look at the assumptions

regarding the estimate of the variance, differences in the upper

tail (high-end percentiles) for alternative choices of probability

distributions, and assumptions associated with truncation

limits.

1-D M CA, Goodness-

of-fit, K-S or Chi-

square; Sort output as

above; perform GoF on

input distribution only,

comparing subset of

input values

corresponding with

high-end risk to subset

corresponding with

remainder of risk

distribution 

GoF result—rejection of

null (distributions are the

same) suggests the

variable may be an

important contributing

factor to the RM E risk

estimate

A second method for identifying variables that contribute

differently at the high-end of the risk distribution.  GoF test

results should be interpreted with caution because a Monte

Carlo simulation will generally yield large sample sizes (e .g.,

n=5,000 iterations), which is more likely to result in a positive

GoF test (i.e., rejection of the null).

3 Quantify relative

contributions of exposure

pathways and variables

to variability and

uncertainty in risk

2-D MCA, same

sensitivity analysis

methods as Tier 2

For variability, evaluate

inner loop values; for

parameter uncertainty,

evaluate outer loop

values

The results of a sensitivity analysis depend on the question that

is being asked about the risk estimate— are we interested  in

variability or uncertainty?  T he major sources of variability in

risk may point to a different set of input variables than the

major sources of uncertainty in risk.



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment
 Appendix A ~ December  31, 2001

Page A-7 

Resource Allocation

Decisions regarding allocation of future resources and data collection efforts to reduce lack of
knowledge generally should take into consideration the most influential input factors in the model, and
the cost of gaining new information about the factors.  Sensitivity analysis is a key feature of determining
the expected value of information (EVOI) (see Appendix D).  Once a sensitivity analysis is used to
identify an input variable as being important, the source of its variability generally should be determined. 
If an input factor has a significant uncertainty component, further research and/or data collection can be
conducted to reduce this uncertainty.  Reducing major sources of uncertainty, such as the most relevant
probability model for variability or the parameter estimates for the model, will generally improve
confidence in the model output, such as the estimated 95th percentile of the risk distribution.  An input
factor may contribute little to the variability in risk, but greatly to the uncertainty in risk (e.g., the
concentration term).  Likewise, a variable may contribute greatly to the variability in risk, but, because
the data are from a well characterized population, the uncertainty is relatively low (e.g., adult tap water
ingestion rate).

An example of the output from a 2-D MCA of uncertainty and variability (see Appendix D) is
shown in Figure A-1.  Assume for this example that the decision makers choose the 95th percentile risk as
the RME risk, and that a sensitivity analysis is run to identify and quantitatively rank the important
source(s) of parameter uncertainty.  The bar chart (top panel) in Figure A-1 indicates that the mean soil
concentration contributes most to the uncertainty in the 95th percentile risk estimate.  In addition, the
mean exposure frequency is a greater source of uncertainty than the standard deviation exposure
frequency.  Since both the sample size and variance impact the magnitude of the confidence limits for an
arithmetic mean soil concentration, one way to reduce the confidence limits (i.e., the uncertainty) would
be to collect additional soil samples.  As shown by the box-and-whisker plots (bottom panel) in
Figure A-1, increasing the sample size (from n=25 to n=50) reduced the 90% confidence limits for the
95th percentile risk to below 1E-05, assuming the additional observations support the same estimate of the
mean and standard deviation as the original sample.

Although the uncertainty in a risk estimate can be reduced by further data collection if the
sensitive input distribution represents uncertainty, this is not necessarily true for input distributions that
represent variability.  For example, variability in the distribution of body weights can be better
characterized with additional data, but the coefficient of variation (i.e., standard deviation divided by the
mean) will not in general be reduced.

Risk Communication

Even if additional data are not collected to reduce uncertainty, identifying the exposure factors
that contribute most to risk or hazard may be useful for risk communication.  For example, assume that
the input for exposure frequency has the strongest effect on the risk estimate for a future recreational
open space.  Further examination of this exposure variable reveals that the wide spread (i.e., variance) of
the PDF is a result of multiple users (e.g., mountain bikers, hikers, individuals who bring picnics, etc.) of
the open space who may spend very different amounts of time recreating.  As a result of this analysis, the
decision makers and community may decide to focus remediation efforts on protecting the high-risk
subpopulation that is expected to spend the most time in the open space.

After determining which contaminants, media, and exposure pathways to carry into a PRA,
numerical experiments generally should be performed to determine the sensitivity of the output to various
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distributions and parameter estimates that may be supported by the available information.  Variables that
do not strongly affect the risk estimates may be characterized with point estimates without significantly
altering the risk estimates.  This guidance document does not recommend a quantitative metric or rule of
thumb for determining when a variable strongly affects the output; this would generally be determined on
a case-by-case basis.  A qualitative or quantitative analysis may be used depending on the complexity of
the risk assessment at this point.  For example, incidental ingestion of soil by children is often an
influential factor in determining risk from soil, a factor recognized by risk assessors.  This recognition is
a de facto informal sensitivity analysis.  An array of quantitative techniques is also available, ranging
from something as simple as comparing the range of possible values (i.e., maximum-minimum) for each
variable, to more complex statistical methods such as multiple regression analysis.  Several of these
methods are discussed in more detail in this appendix.

Often, sufficient information is available to characterize a PDF for a minor variable without
significant effort.  This situation raises a question of whether the variable should be characterized with a
point estimate or a PDF.  The results of sensitivity analysis should be viewed as supplemental
information, rather than an absolute rule for determining when to use a PDF.  There are at least two
issues to consider related to risk communication.  First, the risk communication process may be
facilitated by narrowing the focus of the evaluation to the key factors.  More attention can be given to the
discussion of key variables quantified by PDFs by describing the minor variables with point estimates. 
However, the decision to use a point estimate should be balanced by considering a second issue regarding
perception and trust.  There may be a concern that by reducing sources of variability to point estimates,
there would be a reduction (however small) in the variability in risk, especially if multiple small sources
of variability add up to a nonnegligible contribution.  To address these concerns, it may be prudent to
leave the PDFs in the calculations despite the results of a sensitivity analysis.
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Figure A-1.  Results of 2-D MCA in which parameters of input distributions describing variability are assumed

to be random values.  Results of a sensitivity analysis (top graph) suggest that more than 50%  of the uncertainty

in the 95th percentile of the  risk distribution is due to uncertainty in the arithmetic mean concentration in so il. 

The bottom graph gives box-and-whisker plots for the 95 th percentile of the  risk distribution associated with

Monte Carlo simulations using different sample sizes (n=25 and n=50).  For this example, the whiskers represent

the 5th and 95th percentiles of the distribution for uncertainty, otherwise described as the 90% confidence interval

(CI).  For n=25, the 90% CI is [1.0E-06, 2.2E-05]; for n=50, the 90% CI is reduced to [1.2E-06, 9.5E-06]. 

While increasing n did not change the 50th percentile of the uncertainty distribution, it did provide greater

confidence that the 95th percentile risk is below 1x10-5.
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EXHIBIT A-3

SOME KEY INDICES OF SENSITIVITY ANALYSIS 

C Relative contribution of exposure pathways

C Inspection of risk equation

C Sensitivity ratios (i.e., elasticity)

C Sensitivity scores (i.e., weighted sensitivity

ratios)

C Graphical techniques with results of M onte

Carlo simulations (e.g., scatter plots)

C Correlation coefficient (or coefficient of

determination, r2) (e.g., Pearson product

moment, Spearman rank)

C Normalized multiple regression coefficient

C Goodness-of-fit test for subsets of the risk

distribution

A.2.0 COMMON METHODS OF SENSITIVITY ANALYSIS

Of the numerous approaches to sensitivity
analysis that are available (see Exhibit A-3), no single
approach will serve as the best analysis for all
modeling efforts.  Often, it will make sense to apply
multiple approaches.  The best choice(s) for a
particular situation will depend on a number of
factors, including the nature and complexity of the
model and the resources available.  A brief
description of the more common approaches is
provided in this appendix.  Sensitivity analysis need
not be limited to the methods discussed in this
guidance, which focuses on the more common
approaches.  A large body of scientific literature on
various other methods is available (e.g., Iman et al.,
1988, 1991; Morgan and Henrion, 1990; Saltelli and
Marivort, 1990; Rose et al., 1991; Merz, Small, and
Fischbeck, 1992; Shevenell and Hoffman 1993;
Hamby, 1994; U.S. EPA, 1997).  Any method used,
however, generally should be documented clearly and
concisely.  This includes providing all information
needed by a third party to repeat the procedure and
corroborate the results.  Relevant information might include the following: exposure pathways and
equations; a table with the input variables with point estimates, probability distributions and parameters;
and tables or graphs giving the results of the sensitivity analysis and description of the method used.  A
hypothetical example is presented in this appendix to illustrate how to apply and present the results of
selected approaches to sensitivity analysis.

Hypothetical Example of a Noncancer Risk Equation

To illustrate the application of sensitivity analysis concepts to Tier 1 and Tier 2, a hypothetical
risk assessment is presented based on the general equation for Hazard Index (HI) given by Equation A-1. 
Note that HI is equal to the sum of the chemical-specific Hazard Quotient (HQ) values, so technically,
this example reflects exposures from a single chemical.

Equation A-1

The terms in Equation A-1 can be defined as follows: concentration in the ith exposure medium (Ci),
ingestion or inhalation rate of the ith exposure medium (Ii), absorption fraction of chemical in the ith

exposure medium (AFi ), exposure duration (ED), exposure frequency (EF), body weight (BW),
averaging time (AT=ED x 365 days/year), and reference dose (RfD).  
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For this example, HI is calculated as the sum of the exposures to adults from two exposure
pathways: tap water ingestion and soil ingestion.  Equation A-2 gives the equation for HI while
Table A-2 gives the inputs for a point estimate assessment and a probabilistic assessment of variability.  

Equation A-2

Table A-2.  Point estimates and probability distributions for input variables used in the hypothetical example of HI

associated with occupational exposure via water and soil ingestion. 

Input Variable

in Equation A-2

Point Estimate Probability Distribution
Units

CTE R M E Type Parameters

Concentration in Water (C_w) 40 40 point estimate 40 mg/L

Tap W ater Ingestion Rate (I_w) 1.3 2.0 lognormal1 [1.3, 0.75] L/day

Absorption Fraction Water (AF_w) 0.30 0.50 beta2 [2.0, 3.0] unitless

Concentration in Soil (C_s) 90 90 point estimate 90 mg/kg

Soil Ingestion Rate (I_s) 0.05 0.10 uniform [0, 0.13] kg/day

Absorption Fraction Soil (AF_s) 0.10 0.30 beta2 [1.22 , 4.89] unitless

Exposure Frequency (EF) 250 350 triangular [180, 250, 350] days/yr

Exposure Duration (ED) 1 7 empirical3 see below years

Body Weight (BW) 75 75 lognormal1 [74.6, 12.2] kg

Averaging Time (AT) 365 2555 empirical4 ED x 365 days

RfD oral
5 0.5 0.5 point estimate 0.5 mg/kg-day

1Parameters of lognormal distribution are [arithmetic mean, standard deviation].
2Parameters of beta distribution are [alpha, beta], with range defined by min=0 and max=1.0.  Parameter conversions for
arithmetic mean and standard deviation are given in Table A-7.
3Parameters of empirical cumulative distribution function (ECDF) for ED ~ [min, max, {x}, {p}] = [0, 30, {0.08, 0.18, 0.30,
0.44, 0.61, 0.84, 1.17, 1.72, 3.1, 6.77, 14.15, 23.94}, {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.975, 0.99}], where x is the
array of values and p is the array of corresponding cumulative probabilities.
4AT=ED x 365 for noncarcinogenic risks (Hazard Index).
5For simplicity, RfDoral is assumed to be applicable to the ingestion of the chemical in both water and soil.

A.2.1 TIER 1 APPROACHES

Approaches for sensitivity analysis in Tier 1 of a PRA are limited to calculations that are based
on changing point estimates.  They are generally easy to perform and to communicate.  As given by
Table A-1, goals for the sensitivity analysis in Tier 1 include quantifying the relative contributions of the
exposure pathways, identifying potential nonlinear relationships that may exist between input variables
and the risk estimate, and rank ordering the relative contribution of exposure variables to variability or
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uncertainty in the risk estimate.  This last goal may be the most difficult to achieve due to the limitations
associated with the point estimate methodology.  Methods are applied to the hypothetical example
presented above (Section A.2.0) in order to demonstrate the inherent limitations of the Tier 1 approaches
in some situations.

A.2.1.1 PERCENTAGE CONTRIBU TION  OF EXPOSURE PATHWAYS TO TOTAL RISK

For cancer and noncancer risk assessments central tendency exposure (CTE) and RME risk is
typically calculated as the sum of risks from multiple exposure pathways.  Risks may be dominated by
one or two exposure pathways, which can be determined through a simple calculation as shown below. 
The relative contributions of exposure pathways are likely to differ between the CTE risk and RME risk.

The point estimates in Table A-2 were applied to Equation A-2 to obtain CTE and RME point
estimates of HI.  Table A-3 gives the percent contributions of soil ingestion and tap water ingestion using
Equations A-3 and A-4.  Tap water ingestion contributes at least 90% to HI, and the total HI is greater
than 1.0 for both CTE and RME point estimates.  If 1.0 is the level of concern for HI, and a decision was
made to explore variability and uncertainty in a probabilistic analysis, this result might support
prioritizing the evaluation of data and assumptions associated with the tap water ingestion pathway. 

Table A-3.  Percent contribution of exposure pathways to HI for the example in Section A.2.

Exposure 

Pathway

CTE Point Estimate RM E Point Estimate

HI  % of total2 HI % of total

Soil Ingestion 0.02 6 % 0.15 13 %

Tap Water Ingestion 0.28 94 % 1.02 87 %

 Total 0.30 100 % 1.17 100 %

1Equation A-3:  HItotal = HIsoil + HIwater
2Example using Equation A-4: % of total RME HI for soil ingestion = (0.15 / 1.17) x 100% = 13%.

Equation A-3

Equation A-4

In this example, the choice of CTE and RME point estimates reflects an effort to explore
variability in HI, rather than uncertainty.  Even if the concentration terms represent the upper confidence
limit on the mean (e.g., 95% UCL), the point estimates chosen to represent the CTE and RME for other
exposure variables reflect assumptions about the variability in exposures.  There is uncertainty that the
choices actually represent the central tendency and reasonable maximum exposures.  To explore this
uncertainty, alternative choices for CTE and RME may have been selected.  This type of exploration of
uncertainty in Tier 1 may also be viewed as a form of sensitivity analysis.  The percent contribution of
exposure pathways could be recalculated, and the sensitivity ratio approaches discussed below may also
be applied.
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A.2.1.2 INSPECTION  OF RISK EQUATION

For many Superfund risk assessments, risk equations can be characterized as relatively simple
algebraic expressions involving addition, multiplication, and division of input variables.  The term
“product-quotient” model is often applied to describe equations such as Equation A-1.  For these risk
equations, the input variables that are likely to contribute most to the variability or uncertainty in risk can
be identified by inspection.  In addition, inspection of the risk equation can help to identify which
sensitivity analysis methods are unlikely to reveal the relative importance of the input variables.  This
concept is illustrated by comparing the results of the sensitivity ratio approach (Section A.2.1.3) with the
Tier 2 approaches (Section A.2.2) applied to the hypothetical example in Section A.2.0.

Some risk equations can be more complex, involving conditional probabilities, or expressions
with exponents (e.g., y=x2, or y=exp(1- x)).  In these cases, the Tier 1 sensitivity analysis methods may
be effective and highlighting the variables that contribute most to the risk estimates. 

A.2.1.3 SENSITIVITY RATIO (SR)

A method of sensitivity analysis applied in many different models in science, engineering, and
economics is the Sensitivity Ratio (SR), otherwise know as the elasticity equation.  The approach is easy
to understand and apply.  The ratio is equal to the percentage change in output (e.g., risk) divided by the
percentage change in input for a specific input variable, as shown in Equation A-5. 

Equation A-5

where, Y1 = the baseline value of the output variable using baseline values of input variables
Y2 = the value of the output variable after changing the value of one input variable
X1 = the baseline point estimate for an input variable
X2 = the value of the input variable after changing X1

Risk estimates are considered most sensitive to input variables that yield the highest absolute value for
SR.  The basis for this equation can be understood by examining the fundamental concepts associated
with partial derivatives (see Section A.3.2).  In fact, SR is equivalent to the normalized partial derivative
(see Equation A-12).  

Sensitivity ratios can generally be grouped into two categories—local SR and range SR.  For the
local SR method, an input variable is varied by a small amount, usually ±5% of the nominal (default)
point estimate, and the corresponding change in the model output is observed.  For the range sensitivity
ratio method, an input variable is varied across the entire range (plausible minimum and maximum
values).  Usually, the results of local and range SR calculations are the same.  When the results differ, the
risk assessor can conclude that different exposure variables are driving risk near the high-end (i.e.,
extreme tails of the risk distribution) than at the central tendency region. 
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Demonstration of the Limitations of SR Approach

Although SR is a relatively simple and intuitive approach, it does not provide useful information
under certain conditions for the more common risk equations.  To demonstrate the limitations, first
Equation A-5 is applied to the hypothetical example given in Section A.2.0.  The results are then
extended to a more general case of any of the more common risk models that involve the products of
terms (i.e., multiplicative model) or the sum of terms (i.e., additive model).

Table A-4 presents an example of the local SR and range SR approach applied to the set of RME
inputs given in Table A-2.  For the local SR, each input was increased by 5% (i.e., )=+5%), while for the
range SR, each input was increased by 50%.  Inputs for exposure frequency were truncated at the
maximum value of 365 days/year, which represents a 4.29% increase over the nominal RME value of
350 days/year.  

Table A-4.  Results of the Sensitivity Ratio  (SR) approach applied to the hypothetical example of RME HI given in

Section A.2.0.  Includes both  soil ingestion and tap water ingestion pathways.

Input Variable , X

in Equation A-21

Nominal 

R M E

value (X1)

Local SR 

() =  +  5.0%)

Range SR 

() = + 50%  or max)

X2

) in HI

(%)
SR X2

) in HI

(%)
SR

Tap Water Ingestion Rate, I_w

(L/day)

2.0 2.1 4.35 0.87 3.0 43.5 0.87

Absorption Fraction Water,

AF_w (unitless)

0.50 0.525 4.35 0.87 0.75 43.5 0.87

Soil Ingestion Rate, I_s (kg/day) 0.100 0.105 0.65 0.13 0.150 6.5 0.13

Absorption Fraction Soil, AF_s

(unitless)

0.30 0.315 0.65 0.13 0.45 6.5 0.13

Exposure Frequency, EF 

(days/yr)

350 3652 4.29 1.00 3652 4.29 1.00

Exposure Duration, ED (years) 7 7.35 0.00 0.00 10.5 0.00 0.00

Body Weight, BW  (kg) 75 78.75 - 4.46 - 0.89 112 .5 - 33.33 - 0.67

1Only input variables that represent variability are included.  Concentrations are point estimates of uncertainty.  Averaging time is
a function of exposure duration.  RfD is a fixed point estimate.
2Maximum EF of 365 days/yr represents a 4.29% change in the nominal RME value of 350 days/yr.

The following observations can be made from these results:
< In decreasing order of sensitivity:

Local SR () = 5%) rankings: EF > BW > I_w = AF_w > I_s = AF_s > ED 

Range SR () = 50%) rankings: EF > I_w = AF_w > BW > I_s = AF_s > ED

< EF is the most sensitive variable with an SR value of 1.0.  Since EF is a variable in the numerator
for both exposure pathways, this result is to be expected, as will be explained below.
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< ED yields an SR=0, suggesting it does not contribute to the HI estimate.  Upon closer inspection
of the risk equation, it is apparent that ED occurs in the numerator of Equation A-2, as well as in
the denominator (AT=ED x 365).  Thus, ED effectively cancels out of the product quotient
model and does not effect the estimate of HI.

< BW, the only variable in the denominator of the risk equation, is also the only variable to yield a
different SR value when comparing the local and range SR approaches.  Thus, BW is the only
variable for which SR depends on the percent change in the input ()).

< BW is the only negative SR value, indicating that HI and BW are inversely related.  This is true
in general for any variable in the denominator of a product quotient model.

< For variables unique to the water ingestion pathway (I_w, AF_w), SR=0.87.  Similarly, for
variables unique to the soil ingestion pathway (I_s, AF_s), SR=0.13  These SR values are exactly
the same as the percent contributions of the tap water ingestion pathway and soil ingestion
pathway to HI (see Table A-3).

Since tap water ingestion is the dominant pathway (i.e., 87% of RME HI), a reasonable strategy
for the Tier 1 sensitivity ratio approach might be to limit the subsequent probabilistic analysis in Tier 2 to
the tap water ingestion pathway; so that input variables unique to the soil ingestion pathway would be
characterized by point estimates.  For this relatively simple example, this would mean that soil ingestion
rate (I_s) and absorption fraction from soil (AF_s) would be described by point estimates instead of
PDFs.  The question to address would then become—Of the exposure variables in the tap water ingestion
pathway, which ones contribute most to HI?  A sensitivity ratio approach was applied to the tap water
ingestion pathway to address this question.  The results are presented in Table A-5.

Table A-5.  Results of the Sensitivity Ratio  (SR) approach applied to the hypothetical example of RME HI given in

Section A.2.0.  Includes only  tap water ingestion pathway.

Input Variable , X

in Equation A-21

Nominal 

R M E

value (X1)

Local SR 

() =  +  5.0%)

Range SR 

() = + 50%  or max)

X2

) in HI

(%)
SR X2

) in HI

(%)
SR

Tap Water Ingestion Rate, I_w

(L/day)

2.0 2.1 5.0 1.00 3.0 50 1.00

Absorption Fraction Water,

AF_w (unitless)

0.50 0.525 5.0 1.00 0.75 50 1.00

Exposure Frequency, EF 

(days/yr)

350 3652 4.29 1.00 3652 4.29 1.00

Exposure Duration, ED (years) 7 7.35 0.00 0.00 10.5 0.00 0.00

Body Weight, BW  (kg) 75 78.75 - 4.46 - 0.89 112 .5 - 33.33 - 0.67

1Only input variables that represent variability are included.  Concentrations are point estimates of uncertainty.  Averaging time is
a function of exposure duration.  RfD is a fixed point estimate.
2Maximum EF of 365 days/yr represents a 4.29% change in the nominal RME value of 350 days/yr.
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The following observations can be made from these results:

< In decreasing order of sensitivity:

Local SR () = 5%) rankings: I_w = AF_w = EF > BW > ED

Range SR () = 50%) rankings: I_w = AF_w = EF > BW > ED

< SR values for variables in the numerator (I_w, AF_w, and EF) are all equal to 1.0, so the SR
approach suggests that they contribute equally to the HI estimate.

< BW values are the same as in Table A-4.  They are negative, and the values change as a function
of the percent change in the nominal RME value ()).

Tables A-4 and A-5 suggest that the SR approach provides essentially the same information
about sensitivity as other Tier 1 methods.  Specifically, inspection of the risk equation reveals that ED
does not contribute to HI.  In addition, for pathway-specific variables in the numerator, like ingestion
rates and absorption fractions, SR values are equal to the percent contributions of the exposure pathways. 
This actually reflects the fact that each factor in the numerator of a multiplicative equation has an SR of
1.0.

The results of the SR approach applied to the example above can be generalized to all
multiplicative and additive risk equations, as discussed below.

Generalizing the Limitations of the SR Approach

In many cases, the general equation for SR (Equation A-5) will give values that can be
determined a priori, without doing many calculations.  To understand why this is true, it is useful to
simplify the algebraic expression given by Equation A-5.  Let ) equal the percentage change in the input
variable, X1.  For SR calculations, ) may be either positive or negative (e.g., ±5% for local SR; ±100%
for range SR), and the new value for the input variable (i.e., X2) is given by Equation A-6.

Equation A-6

Therefore, the denominator in Equation A-5 reduces to ):

and Equation A-5 reduces to Equation A-7: 

Equation A-7
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EXHIBIT A-4

CATEGORIES OF SOLUTIONS FOR SENSITIVITY RATIOS OF 

M ULTIPICATIVE OR ADDITIVE EQUATIONS 

Case 1 SR is a constant (e.g., 1.0).  SR is independent of the choice of nominal (default) values
for input variables and the choice of ).

Case 2 SR is a constant determined only by the nominal values for the input variables.  SR is
independent of the choice of ).

Case 3 SR is constant determined only by the choice of ).  SR is independent of the nominal
values for the input variables.

Case 4 SR is a function of both the nominal values for the input variables and the choice of ).

Case 5 SR is 0.  The variable does not contribute to the risk estimate.

Equation A-7 can be used to evaluate SR for different types of exposure models in which the
intake equation is generally expressed as a simple algebraic combination of input variables.  Solutions to
SR calculations for input variables in both multiplicative and additive equations are given in Table A-6. 
For any such risk equation, the solution will fall into one of the five categories given by Exhibit A-4.

Table A-6.  Examples of algebraic solutions to Sensitivity Ratio calculations for additive and multiplicative forms of

risk equations.1, 2  

Equation Type

(Output = Y, Inputs = A, B, C, D)
SRA = SRB = SRC = SRD =

1) Additive in 

     Numerator
NA3

2) Additive in 

    Denominator
1.0 NA

3) Multiplicative 

    in Numerator
1.0 1.0 NA

4) Multiplicative 

   in Denominator
1.0 NA

1Sensitivity Ratio for input variable A for an equation that is additive in the numerator: SRA=A / (A + B).
2)=% change in input variable.  For example, ) for C=[(C2 - C1)/C1] x 100%, where C1=the original point estimate and C2=the
modified point estimate.  Similarly, C2=C1 (1 + )).
3NA=not applicable because the variable is not in the equation.
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The following observations can be made for the four forms of the risk equation, based on one of the five
cases described in Exhibit A-4:

(1) Additive in Numerator

< Case 2: SR values for variables in the numerator depend exclusively on the nominal point
estimates for all variables in the numerator.  The values are independent of the choice of percent
change in the inputs ()). 

< Case 3: SR values for variables in the denominator depend exclusively on ), and are negative
(i.e., inversely related to the output).  Also, the lower the choice for ), the higher the resulting
SR values.  Therefore, SR is somewhat arbitrary, especially for the range SR approach since
input variables may have different plausible minimum and maximum values.

(2) Additive in Denominator

< Case 1: SR values for variables in the numerator are always equal to 1.0.  Since they are
independent of the nominal values and ), there is no way to distinguish the relative contributions
to the output.

< Case 4: SR values for variables in the denominator are a function of both the nominal values of
variables in the denominator and ).

(3) Multiplicative in Numerator and (4) Multiplicative in Denominator

< Case 1: SR values for variables in the numerator are always equal to 1.0.  Since they are
independent of the nominal values and ), there is no way to distinguish the relative contributions
to the output.

< Case 3: SR values for variables in the denominator depend exclusively on the ), and are negative
(i.e., inversely related to the output).  Also, the lower the choice for ), the higher the resulting
SR values.  Therefore, SR is somewhat arbitrary, especially for range SR since input variables
may have different plausible minimum and maximum values.

These generalized results highlight a major limitation in the use of the SR approach for obtaining
information from sensitivity analysis.  For simple exposure models in which the relationship between
exposure and risk is linear (e.g., multiplicative), the ratio offers little information regarding the relative
contributions of each input variable to the risk estimate.  In many cases, all of the input variables will
have the same constant, either equal to 1.0 (in the case of a single exposure pathway) or equal to the
relative contributions of the exposure pathways.  For more complex models that combine additive,
multiplicative, and nonlinear relationships between inputs and outputs (e.g., environmental fate and
transport models, pharmacokinetic models), the ratio is likely to be an effective screening tool for
identifying potentially influential input variables and assumptions.

Another difficulty with the SR approach is that it generally requires an assumption that the input
variables are independent.  Two variables may actually be positively correlated (e.g., high values of X1

correspond with high values of X2) or negatively correlated (e.g., high values of X1 correspond with low
values of X2).  If input variables are correlated, holding the value for one variable fixed while allowing
the other to vary may produce misleading results, especially with the range sensitivity ratio approach. 
For example, it may not be realistic to hold body weight fixed at a central tendency while allowing skin
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surface area to vary from the minimum to maximum values.  An improvement over the sensitivity ratio
approach would be to allow correlated input variables to vary simultaneously.

A.2.1.4 SENSITIVITY SCORE

A variation on the sensitivity ratio approach may provide more information from a Tier 1
sensitivity analysis, but it requires that additional information be available for the input variables.  The
sensitivity score is the SR weighted by a normalized measure of the variability in an input variable (U.S.
EPA, 1999).  Examples of normalized measures of variability include the coefficient of variation (i.e.,
standard deviation divided by the mean) and the normalized range (i.e., range divided by the mean), as
given by Equation A-8.

Equation A-8

By normalizing the measure of variability (i.e., dividing by the mean), this method effectively weights the
ratios in a manner that is independent of the units of the input variable, and provides a more robust
method of ranking contributions to the risk estimates than the SR alone.  This approach does require that
the coefficient of variation or range can be calculated for each variable.  Tables A-7 and A-8 present the
results of the sensitivity scores based on the CV applied to the hypothetical example from Section A.2.0.

Table A-7.  Calculation of coefficient of variation (CV = SD / Mean) for the hypothetical example of RME HI given

in Section A.2.0. 

Input Variable , X

in Equation A-21 Probability Distribution2 Mean3 SD3 CV =

SD/Mean

Tap W ater Ingestion Rate, I_w (L/day) lognormal (1.3, 0.75) 1.3 0.75 0.58

Absorption Fraction, Water, AF_w

(unitless)

beta (2.0, 3.0) 0.4 0.2 0.50

Soil Ingestion Rate, I_s (kg/day) uniform (0, 0.13) 0.065 0.038 0.582

Absorption Fraction, Soil, AF_s (unitless) beta (1.22, 4.89) 0.20 0.15 0.75

Exposure Frequency, EF (days/yr) triangular (180, 250, 350) 260 35 0.133

Exposure Duration, ED (years) empirical CD F (see Table

A-2 for parameters)

1.75 3.86 2.21

Body Weight, BW  (kg) lognormal (74.6, 12.2) 74.6 12.2 0.16

1Only input variables that represent variability are included.  Concentrations are point estimates of uncertainty.  Averaging
time is a function of exposure duration.  RfD is a fixed point estimate.
2Beta (a, b): mean=a / (a+b) and SD = ((a x b) / [(a + b)^2 x (a+b+1)])^0.5)
Uniform (min, max): mean = (min + max)/2 and SD = ((1/12)^0.5) x (max - min) = 0.289 x (max - min)
Triangular (min, mode, max): mean = (min + mode + max)/3 and SD = (1/18) x (min^2 + mode^2 + max^2 - min x max - min
x mode - mode x max)
Empirical CDF ({x}, {p}): mean and SD were estimated by Monte Carlo simulation.
3Mean=arithmetic mean; SD=arithmetic standard deviation
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Table A-8.  Results of the Sensitivity Score (Score) approach applied to the hypothetical example of RME HI given

in Section A.2.0.  Calculations for Sensitivity Ratio (SR) and Coefficient of Variation (CV) are given in Table A-4

and Table A-7, respectively. 

Input Variable , X

in Equation A-21

Nominal 

R M E

value (X1)

CV

(Table A-7)

Local SR 

() =  +  5%)

Range SR 

() =  +  50%)

SR

(Table A-4 )
Score2 SR

(Table A-4 )
Score2

Tap Water Ingestion

Rate, I_w (L/day)

2.0 0.58 0.87 0.50 0.87 0.50

Absorption Fraction,

Water, AF_w

(unitless)

0.50 0.50 0.87 0.44 0.87 0.44

Soil Ingestion Rate,

I_s (kg/day)

0.100 0.58 0.13 0.06 0.13 0.06

Absorption Fraction,

Soil, AF_s (unitless)

0.30 0.75 0.13 0.10 0.13 0.10

Exposure Frequency,

EF (days/yr)

350 0.13 1.00 0.13 1.00 0.13

Exposure Duration,

ED (years)

7 2.21 0.00 0 0.00 0

Body Weight, BW

(kg)

75 0.16 - 0.89 - 0.14 - 0.67 - 0.11

1Only input variables that represent variability are included.  Concentrations are point estimates of uncertainty.  Averaging time is
a function of exposure duration.  RfD is a fixed point estimate.
2Score=SR x CV (see Equation A-8)

The following observations can be made from these results:
< In decreasing order of sensitivity:

- Score based on local SR () = 5%): I_w > AF_w > BW > EF > AF_s > IR_s > ED

- Score based on range SR () = 50%): I_w > AF_w > EF > BW > AF_s > IR_s > ED

< Compared with the SR approach alone in which sensitivity can only be expressed for exposure
pathways, the sensitivity score approach provides a measure of sensitivity for exposure variables
within each exposure pathway.

< Although ED has the highest CV, it continues to have no contribution to the HI.

< If Tier 1 sensitivity analysis is based on the sensitivity score, the highest ranked
variables are generally those with the highest CV in the exposure pathway that
contributes the most to the total risk (HI).  For this hypothetical example, I_w and
AF_w are the two highest ranked variables.
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A.2.2 TIER 2 APPROACHES

Approaches for sensitivity analysis in Tier 2 of a PRA utilize the results of Monte Carlo
simulations, which allows multiple input variables to vary simultaneously.  The methods are relatively
simple to perform with spreadsheets or commercial statistical software.  The results are generally easy to
communicate, although the details of the methodology are more complex than Tier 1 approaches.  As
given by Table A-1, goals for the sensitivity analysis in Tier 2 are the same as Tier 1:quantifying the
relative contributions of the exposure pathways, identifying potential nonlinear relationships that may
exist between input variables and the risk estimate, and rank ordering the relative contribution of
exposure variables to variability or uncertainty in the risk estimate.  In addition, since the output is a
distribution, Tier 2 sensitivity analysis methods can also utilize graphical techniques to observe nonlinear
relationships, as well as evaluate potential changes in relative importance of variables and assumptions
for risks in the RME risk range.  Methods are applied to the hypothetical example presented in
Section A.2.0 in order to demonstrate the advantages over the Tier 1 methods.

A.2.2.1 GRAPHICAL TECHNIQUES

Simple scatter plots of the simulated input and output (e.g., risk vs. exposure frequency, or risk
vs. arithmetic mean soil concentration) can be used to qualitatively and quantitatively evaluate influential
variables.  A “tight” best-fit line through the scatter plot, as indicated by the magnitude of the r2, suggests
that a variable may significantly influence the variance in risk.  Hypothetical scatter plots used to identify
sensitive and insensitive variables are shown in Figure A-2.  Another method for visualizing the
relationship between all of the inputs and outputs is to generate a scatterplot matrix (Helsel and Hirsch,
1992).  This graphic shows both histograms and scatter plots for all variables on the same page.

Figure A-3 illustrates scatter plots for the 1-D MCA simulations associated with the example
from Section A.2.0.  Based on the r2 values (i.e., coefficient of determination for simple linear regression
analysis), the relationship between HI and I_w is very strong (r2 = 0.47) while the relationship between
HI and I_s is very weak (r2 < 0.01), suggesting that HI is more sensitive to variability in I_w than I_s.  

 A.2.2.2  CORRELATION COEFFICIENTS

The variance in a risk estimate from a Monte Carlo simulation is due to the variance in the
probability distributions used in the risk equation.  It is commonly said that a Monte Carlo model
propagates sources of variability simultaneously in a risk equation.  Numerous statistical techniques,
known collectively as correlation analysis and regression analysis, can be applied to a linear equation to
estimate the relative change in the output of a Monte Carlo simulation based on changes in the input
variables.  Examples of metrics of sensitivity include the simple correlation coefficient, the rank
correlation coefficient, and a variety of coefficients from multiple regression techniques.  The underlying
assumptions associated with these approaches are discussed in greater detail in Section A.3.  As
explained in Section A.3.3.1, correlation coefficients and regression coefficients are based on different
interpretations of the input variables, but they can be calculated with similar equations.

When the output distribution is compared with the distribution for one input variable at a time,
two of the more common approaches are to calculate the Pearson product moment correlation and the
Spearman rank correlation.  Correlation analysis with one input variable will generally yield reasonable
results when the input variables are sampled independently in a Monte Carlo simulation.  Some statistical
packages offer the correlation coefficient as an index of sensitivity, so it is important to identify which
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coefficient is being calculated.  Crystal Ball® and @Risk can be used to calculate the Spearman rank
correlation, which tends to be more robust when the relationships between inputs and outputs are
nonlinear.  If the relationships are linear, such as with the product quotient models presented in this
appendix, the two metrics of correlation will yield similar rankings of input variables.  Rank correlation
coefficients shown in Crystal Ball® and @Risk are calculated by the standard method provided in most
statistics texts.  Crystal Ball® also indicates that sensitivity can be determined as contribution to variance. 
This is not the relative partial sum of squares techniques discussed in Section A.3.3.2 (Equation A-19). 
Instead, Crystal Ball® calculates the contribution to the variance by squaring the rank correlation
coefficients and normalizing them to 100%.  Many other commonly used commercial software packages
will perform Spearman rank correlation.  Pearson product moment correlations (r) can be calculated in
Microsoft Excel using the trendline feature in a scatter plot chart, or by using the function Correl(X
array, Y array), where X array corresponds with the Monte Carlo simulation of an input variable, and Y
array corresponds with the output of the simulation.

Figure A-4 illustrates results of the correlation analysis for the 1-D MCA simulations associated
with the example from Section A.2.0.  The graphics were generated using Crystal Ball® 2000.  The
results are summarized in Table A-9.  If the model output variable (e.g., HI) and input variable are highly
correlated, it means that the output is sensitive to that input variable.  By squaring the coefficient, the
results can be expressed in terms of the percentage contribution to variance in the output (Figure A-4, top
panel).  To determine if the correlation is positive or negative, the correlation coefficient should not be
squared (Figure A-4, bottom panel).  For risk equations, in general, variables in the numerator of the
equation (ingestion rate, absorption fraction, exposure frequency, etc.) will tend to be positively
correlated with risk, while variables in the denominator (body weight) will tend to be negatively
correlated with risk.  The greater the absolute value of the correlation coefficient, the stronger the
relationship. 

Table A-9.  Results of Tier 2 sensitivity analyses applied to hypothetical example in Section A.2.0: Pearson product

moment correlations and  Spearman rank correlations.1

Exposure Variable

Product Moment

Correlation

Spearman Rank 

Correlation2

r r2 x 100% r r2 x 100%
normalized 

r2 x 100%

Tap W ater Ingestion Rate, I_w (L/day) 0.644 41.4 0.603 36.3 39.5

Absorption Fraction Water, AF_w (unitless) 0.583 34.0 0.666 44.4 48.3

Body Weight, BW  (kg) - 0.216 4.7 - 0.229 5.2 5.7

Exposure Frequency, EF (days/yr) 0.174 3.0 0.167 2.8 3.0

Absorption Fraction Soil, AF_s (unitless) 0.109 1.2 0.149 2.2 2.4

Soil Ingestion Rate, I_s (g/day) 0.061 0.4 0.099 1.0 1.1

Exposure Duration, ED (years) 0.010 0.0 0.010 0.0 0.0

1Monte Carlo simulation using Crystal Ball® 2000, Latin Hypercube sampling, and 5000 iterations.
2Crystal Ball® 2000 output includes Spearman rank correlations, r, and normalized r2 values, calculated by dividing each r2 value
 by the sum of all the r2 values (i.e., 0.920 in this example).  Figure A-4 illustrates the r and normalized r2 values for the
Spearman rank correlation analysis.
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Figure A-2.  Scatterplots of simulated random values from a 1-D MCA of variability.  The output from the

model is a contaminant concentration in soil (C) that corresponds with a prescribed (fixed) level of risk for a

hypothetical population (based on Stern, 1994).  For each iteration of a 1-D MCA simulation, random values

were simultaneously selected  for all model variables and  the corresponding concentration (C) was calculated . 

Inputs were simulated as independent random variables.  Scatterplots of 500 consecutive random values and

estimates of C are shown for two input variables: relative absorption fraction, RAF (top graph); and mass fraction

of dust as soil, F (bottom graph).  There is a moderate, indirect relationship between C and RAF (r2=0.34),

compared with the weak relationship between C and F (r2=0.02), suggesting that the model output (C) is more

sensitive to variability in RAF than F.
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Figure A-3.  Scatterplots of simulated random values from a 1-D MCA of variability for example in Section

A.2.0.  The output from the model is HI.  For each iteration of a 1-D MCA simulation, random values were

simultaneously selected for all model variables and  the corresponding HI was calculated.  Inputs were simulated

as independent random variables.  Scatterplots of 250 consecutive random values and estimates of HI are shown

for two input variables: soil ingestion rate, I_s (top graph); and tap water ingestion ra te, I_w (bottom graph). 

There is a negligible relationship between HI and I_s (r2 < 0.01), compared with the strong relationship between

HI and I_w (r2=0.47), suggesting that the model output (HI) is more  sensitive to  variability in I_w than I_s.  Best-

fit lines were generated with the Simple Linear Regression in Microsoft Excel’s trendline option for scatterplots;

r2 values represent the coefficient of determination (see Section A.3).
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Figure A-4.  Top panel - bar graph showing the r2 values (square of Spearman rank correlation coefficient), a

metric for the dependence of HI on exposure factors based on 1-D M CA for variability.  Bottom panel - bar graph,

sometimes referred to as “tornado plot”, showing rank correlation coefficient.  This graph is effective for showing

both the relative magnitude and direction of influence (positive or negative) for each variable.  Abbreviations for

input variables are given in Table A-4.  In this example, the variable with the greatest effect on HI is the absorption

fraction in water (AF_w), followed by the water ingestion rate (I_w).  Concentration does not influence variability

because, in this example, long-term average concentration is characterized by a point estimate (i.e., 95% UCL),

rather than a probability distribution.  Exposure duration does not influence variability because variability in ED is

expressed  in both the numerator (ED) and denominator (AT=ED x 365 for noncarcinogenic effects), and cancels

out.  Output was generated with Crystal Ball®, which calculates the contribution to variance by squaring the rank

correlation coefficient and normalizing to 100%.
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In this example, seven exposure variables are used to characterize variability in HI.  The
remaining variables in the risk equation (i.e., concentration terms, and RfD) are characterized by point
estimates.  Because point estimates do not vary in a Monte Carlo simulation, they do not contribute to the
variance in the output.  This result does not mean that concentration is an unimportant variable in the risk
assessment.  Concentration may still contribute greatly to the uncertainty in the risk estimate.  A
sensitivity analysis of parameter uncertainty in a risk equation can be explored using iterative
simulations, such as with 2-D MCA.

Results of the Pearson correlation and Spearman rank correlation give similar rankings of the
input variables, with absorption fraction of water (AF_w) and tap water ingestion rate (I_w) being the
two dominant exposure variables.  Pearson correlations suggest that I_w is the most sensitive variable
(r =0.644), whereas the highest Spearman rank correlation is for AF_w (r = 0.603).  This may reflect the
fact that I_w is characterized by an untruncated lognormal distribution, whereas AF_w is bounded
between 0 and 1.0.  The effect on the correlations of the occasional high-end value for I_w generated
from random sampling of the lognormal distribution will tend to be expressed by Pearson correlations,
but muted by the Spearman rank correlations.

A comparison of the Tier 1 and Tier 2 results is given below:

< Tier 1, Sensitivity Ratios:

- Local SR () = 5%) rankings: EF > BW > I_w = AF_w >  I_s = AF_s > ED 

- Range SR () = 50%) rankings: EF > I_w = AF_w > BW > I_s = AF_s > ED

< Tier 1, Sensitivity Scores:

- Score based on local SR () = 5%): I_w > AF_w > BW > EF > AF_s > IR_s > ED

- Score based on range SR () = 50%): I_w > AF_w > EF > BW > AF_s > IR_s > ED

< Tier 2, Correlation Coefficients:

- Pearson: I_w > AF_w > BW > EF > AF_s > IR_s > ED

- Spearman Rank: AF_w > I_w > EF > BW > AF_s > IR_s > ED

The Tier 1 sensitivity scores and Tier 2 correlation coefficients yield similar results, suggesting
that, if sufficient information is available to estimate the coefficient of variation in the input variables, a
Tier 1 analysis can help to focus efforts on the variables that contribute most to the variance in risk.  By
contrast, the Tier 1 sensitivity ratio approach suggested that EF was the most influential variable, when in
fact it contributes less than 5% to the variance in the HI.  These results suggest that Tier 1 sensitivity
ratios are best applied to identify dominant exposure pathways, rather than dominant exposure variables
in the risk equation.
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Equation A-9

Equation A-10

A.2.2.3 FOCUSING ON THE RME RANGE OF THE RISK DISTRIBUTION

Monte Carlo methods can also be used to determine the sensitivity over a subset of the output
distribution, such as the RME range (i.e., 90th to 99.9th percentiles).  For some exposure models, the
relative contribution of exposure variables may be different for the high-end exposed individuals than for
the entire range of exposures.  The general strategy for exploring sensitivity over subsets of risk estimates
is to first sort the distribution of simulated output values in ascending (or descending) order, and then
apply a sensitivity analysis to the subset of interest (e.g., > 90th percentile).  For the hypothetical example
presented in this appendix, there was no difference in the relative rankings of inputs in the RME range.

A.2.2.4 INSPECTION

With Monte Carlo analysis, the probability distributions assumed for the various input variables
are used to generate a sample of a large number of points.  Statistical methods are applied to this sample
to evaluate the influence of the inputs on the model output.  A number of different “indices” of
sensitivity can be derived from the simulated sample to quantify the influence of the inputs and identify
the key contributors.  Most of these are based on an assumption that the model output Y varies in a
monotonic, linear fashion with respect to various input variables (X1, X2, etc.).  For example, an estimate
of average daily intake (mg/kg-day) from multiple exposure pathways is linear with respect to the intake
from each pathway.  Since most risk models are linear with respect to the input variables, the output
distribution (particularly its upper percentiles) tends to be dictated by the input variables with the largest
coefficient of variation (CV), or the ratio of the standard deviation to the mean.  For example, Equation
A-9 represents a simple expression for intake rate as a function of random variables X1 and X2 :  

where X1 and X2 may represent dietary intake associated with prey species 1 and 2, respectively.  If the
same probability distribution was used to characterize X1 and X2, such as a lognormal distribution with
an arithmetic mean of 100 and standard deviation of 50 (i.e., CV=50/100=0.5), each variable would
contribute equally to variance in Y.  If, however, X2 was characterized by a lognormal distribution with
an arithmetic mean of 100 and standard deviation of 200 (i.e., CV=200/100=2.0), we would expect Y to
be more sensitive to X2.  That is, X2 would be a greater contributor to variance in Y.  

While the coefficient of variation may be a useful screening tool to develop a sense of the
relative contributions of the different input variables, a common exception is the case when X1 and X2

have different scales.  For example, Equation A-10 is an extension of Equation A-9:

where a1 and a2 are constants that may represent the algebraic combination of point estimates for other
exposure variables.  If the means of X1 and X2 are equal, but a1 >> a2, then X1 would tend to be the
dominant contributor to variance, regardless of the CV for X2.  This concept was demonstrated by the
sensitivity score calculations given in Table A-8.  Water ingestion rate (I_w) and soil ingestion rate (I_s)
had the same CV (0.58), but I_w was the dominant variable because tap water ingestion contributed
approximately 90% to the HI.
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Equation A-11

The most influential random variables generally have the highest degrees of skewness or are
related to the output according to a power function (Cullen and Frey, 1999).  For example, Equation A-11
presents an extension of Equation A-10 in which there is a power relationship between X2 and Y.  In this
example, assume Y represents the total dietary intake rate of cadmium for muskrats, X1 and X2 represent
the dietary intake rate associated with prey species 1 and 2, respectively, a1 and a2 represent additional
point estimates in the equation, and 2 is the power exponent.  In general, for 2 > 1, the total dietary
intake rate (Y) will be more sensitive to the intake rate associated with species 2 (X2) than species 1. 
Assume (hypothetically) that the power relationship stems from the fact that there is a direct relationship
between availability of prey species X2 and chemical body burdens of prey species X2 because
individuals that are more accessible to the muskrat also happen to frequent areas of the site with higher
concentrations.

 A.3.0 ADVANCED CONCEPTS IN SENSITIVITY ANALYSIS

This section provides additional information on the underlying principles of sensitivity analysis,
although it is not a comprehensive summary and is not intended to substitute for the numerous statistical
texts and journal articles on sensitivity analysis.  Section A.3.1 begins with a general framework for
relating model output to model input.  Section A.3.2 explains the sensitivity ratio approach and highlights
some of its limitations.  Section A.3.3 reviews some of the metrics reported by the commercial software
that report results of sensitivity analysis following Monte Carlo simulations (e.g., Crystal Ball®, @Risk). 
While statistical software for MCA provides convenient metrics for quantifying and ranking these
sources, it is strongly recommended that risk assessors and risk managers develop an understanding of
the underlying principles associated with these metrics.  

A.3.1 RELATING THE CHANGE IN RISK TO THE CHANGE IN INPUT VARIABLE X

For purposes of discussion, let Y denote a model output (e.g., risk) and suppose that it depends on
the input variable X.  In general, a risk assessment model may use any number of inputs; however, for
purposes of illustrating concepts, it is convenient to restrict this discussion to one variable.  The model
relates the output Y to values of X (i.e., x0, x1, sss, xn) based on the function expressed as Y=F(x).  The
sensitivity of Y to X can be interpreted as the slope of the tangent to the response surface F(X) at any
point xi.  This two-dimensional surface can be a simple straight line, or it may be very complex with
changing slopes as shown in Figure A-5a.  The sensitivity, therefore, may depend on both the value of X
and the amount of the change )x about that point.  This concept can be extended to two input variables,
X1 and X2, where the response is characterized by a three-dimensional surface.  The shape may be a
simple plane (Figure A-5c) or it may be very complex with many “hills” and “valleys” depending on the
defining function F(X1, X2).  In a typical risk assessment with ten or more variables, the surface can be
very complex, but the shape is likely to be dominated by a small subset of the input variables.

A sensitivity analysis based on a relatively small deviation about the point may be referred to as a
local sensitivity analysis, while a large deviation may be referred to as range sensitivity analysis.  In
either case, the objective is to evaluate the sensitivity at some nominal point (X1*, X2*) such as the point
defined by the mean or median of X1 and X2.  At any point, the sensitivity of the model output, Y* =
F(X1*, X2*), to one of the inputs (X1 or X2), is represented by the rate of change in Y per unit change in X. 
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Figure A-5a.  Hypothetical 2-D response surface for Y given one input

variable: Y=F(X).  The sensitivity of Y with respect to X  is calculated as the

slope at a specific point on the surface (x0, x1), or the partial derivative,

MY/MX i.

This is the slope of the surface at that nominal point in the direction of X and is expressed as MY/MXi, the
partial derivative of Y with respect to X.

If the function F(X1, X2) is known explicitly, it may be possible to determine the partial
derivatives analytically.  This is not a requirement, however, because an estimate can be obtained by
incrementing Xi by a small amount, )Xi, while keeping the other inputs fixed and reevaluating the model
output Y.  The resulting change in Y divided by )Xi will approximate MY/MXi at the nominal point.  In
practice, analytical solutions can be approximated using Monte Carlo techniques.  This information is
presented to highlight the fundamental concepts of sensitivity analysis.  The partial derivative, per se,
would typically not be one of the methods of sensitivity analysis used in a PRA.  However, all of the
approaches that are presented in this appendix are variations on this concept.

One drawback to using the partial derivative to quantify the influence of Xi is that the partial
derivative is influenced by the units of measurement of Xi.  For example, if the measurement scale for Xi

is changed from grams to milligrams, the partial derivative MY/MXi will change by a factor of 1,000. 
Therefore, it is necessary to normalize the partial derivative to remove the effects of units (see
Section A.3.2).

If the relationship between Y and all of the inputs is linear, then the response surface is a flat
plane and each of the partial derivatives at each point, (Xi, Y), will remain constant regardless of where
the point is in the surface (Figure A-5b).  In this case, it is a simple matter to determine the relative
influence that the various inputs have on the model output.  When the relationship is nonlinear, however,
the situation is more complex
because the influence of a
particular input may vary
depending on the value of that
input.



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment
 Appendix A ~ December  31, 2001

Page A-30 

Figure A-5b.  Hypothetical 3-D response surface for Y given two input variables: Y = f(X1, X2).  The sensitivity

of Y with respect to X i is calculated as the slope at a specific point on the surface, or the partial derivative,

MY/MX i.

Figure A-5c.  Hypothetical 3-D response surface when Y is a linear function of two input variables: Y=f(X1,

X2).  The slope (i.e., the partial derivative, MY/MX i) is constant for any point (X i, Y) on the surface in the direction

of X i.  In this case, MY/MX1=5 while MY/MX2=2.
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A.3.2 NORMALIZED PARTIAL DERIVATIVE

Classical sensitivity analysis methods use estimates of the partial derivatives of the model output
with respect to each variable.  For the purpose of evaluating the relative influence of the various input
variables on the model output at a single point, the normalized partial derivative provides a useful
index.

If the input variables are all discrete and take on a small number of values, then it is possible to
evaluate the influence of the various input variables at each of the points defined by considering all
possible combinations of the inputs.  Then the influence can be evaluated for each input by computing
normalized partial derivatives at each point.  This approach is limited to situations where the number of
inputs as well as the number of possible values for each input is relatively small; otherwise, the number
of combinations to be evaluated will be unmanageable.  Furthermore, when evaluating the influence at
different points on the input-output surface simultaneously, it is important to take into account the
probability associated with each of those points.  For example, the fact that a particular input has a large
influence on the model output at a particular point would be discounted if the probability associated with
that particular point is very low. 

A similar approach may be used to analyze inputs that are continuous variables if a few points
representing the range of values are selected.  For example, low, medium (or nominal), and high values
may be selected for each of the continuous input variables and then the relative influence of each of the
input variables can be computed as in the case of discrete inputs.  One limitation of this approach,
however, is that the continuous nature of the inputs makes it impossible to calculate an exact probability
for each of the points.  Generally, in a PRA, many if not all of the inputs will be random variables
described by probability distributions and it will be necessary to quantify the influence of each input, Xi,
over the entire range of Xi. 
 

An estimate of the partial derivative can be obtained by incrementing Xi by a small amount, say
)Xi while keeping the other inputs fixed and reevaluating the model output Y.  The resulting change in Y
divided by )Xi will approximate MY/MXi at the nominal point. 

As previously noted, one complication to using the partial derivative to quantify the influence of
Xi is that the partial derivative is influenced by the units of measurement of Xi.  One way this is
accomplished is to divide the partial derivative by the ratio of the nominal point estimates, Y* / Xi* (or
equivalently multiply by Xi* / Y*).  An approximation of the normalized partial derivative is given by
Equation A-12.
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EXHIBIT A-5

SIMPLIFYING ASSUMPTIONS IN 

REGRESSION ANA LYS IS

C Y is a linear function of the unknown

coefficients ($i)

C Successive values of Y are uncorrelated 

C Variance of Y is constant for all values of

inputs (X i)

Equation A-12

This is the same as the equation for calculating sensitivity ratios (Section A.2.1.3), or elasticity
(see Equation A-5).  As with the SR approach, the normalized partial derived can be weighted by
characteristics of the input variable (Section A.2.1.4).  One approach is to divide by the ratio of standard
deviations (FY/ FX), where FY is the standard deviation of Y and FX is the standard deviation of X.  This
method requires that the standard deviations be known, or that a suitable estimate can be obtained.

As previously noted, if the relationship between Y and all of the inputs is nonlinear, the influence
of a particular input may vary depending on the value of that input.  One approach to this problem is to
consider a range of values for the input and to examine the influence over that range.  If the input is
considered to be a random variable following some specified probability distribution, then it may be
desirable to look at the influence that the random input has on the model output across the distribution of
input values.  This can be accomplished with a Monte Carlo approach.  Another technique that addresses
nonlinearities is to calculate contributions to variance using input variables that are transformed (e.g.,
lognormal or power transformation).

A.3.3 REGRESSION ANALYSIS: R2, PEARSON R, AND PARTIAL CORRELATION COEFFICIENTS 

In order to understand R2, it is necessary to first understand simple and multiple linear regression. 
In regression analysis, we are interested in obtaining an equation that relates a dependent variable (Y) to
one or more independent variables (X):

Equation A-13

where $0 and $1 are regression coefficients, and g is called a random error.  Equation A-13 is the general
equation for a simple linear regression, because there is only one Y and one X variable, and their

relationship can be described by a line with intercept $0 and slope $1.  

Note that linear regression refers to the linear relationship between parameters ($0, $1), not X and

Y.  Thus, the equation   is

considered linear.  Multiple linear regression
involves more than one X related to one Y

, while multivariate

regression involves more than one Y to more than
one X.

The random error, g, represents the
difference between an observed Y value (calculated
from the observed input variables), and a Y value
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predicted by the regression line (í).  It is also called the residual (i.e., g=y–í).  The random error takes
into account all unpredictable and unknown factors that are not included in the model.  Exhibit A-5 gives
some of the simplifying assumptions that apply to regression analysis.  Assumptions about g are that the
random error has mean = 0 and constant variance, and is uncorrelated among observations.  One method
of finding the best regression line is to minimize the residual sum of squares (i.e., least-squares method),
also called the sum of squares due to error (SSE).

In terms of sensitivity analysis, we are interested in how much of the variation in Y can be
explained by the variation in X, and how much is unexplained (due to random error).  If a scatter plot of
paired observations (x, y) shows that our regression line intersects all of the observations exactly, then all
of the variation in Y is explained by X.  Another way of stating this is that the difference between the

mean output ( ) and an observed y (yi), or (yi - ), is equal to the difference between the mean output

and a predicted y or ( ). 

In general, the total deviation of yi from  is equal to the sum of the deviation due to the

regression line plus the deviation due to random error:

Equation A-14

Thus, the total sum of squares (SST) equals the sum of squares due to error (SSE) plus the sum
of squares due to regression (SSR). 

A.3.3.1 CALCU LATIO NS OF R2 AND ADJUSTED R2

The R2 term is a measure of how well the regression line explains the variation in Y, or:

Equation A-15

where R2 is called the coefficient of multiple determination and R is called the multiple correlation
coefficient.  If R2=0.90 for a certain linear model, we could conclude that the input variables (X1,
X2,...Xk) explain 90% of the variation in the output variable (Y).  R2 reduces to the coefficient of
determination r2 for simple linear regression when one independent variable (X) is in the regression
model.  The sample correlation coefficient, r, is a measure of the association between X and Y, and
calculated by Equation A-16.  It is also referred to as the Pearson product moment correlation coefficient.
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Equation A-16

In addition, r is an estimate of the unknown population parameter, D, defined by Equation A-17:

Equation A-17

where FX and FY denote the population standard deviations of the random variables X and Y, and where
FXY is called the covariance between X and Y.  The covariance FXY is a population parameter describing
the average amount that two variables “covary”.  Thus, another way of thinking about a correlation
coefficient (R) is that it reflects the ratio of the covariance between two variables divided by the product
of their respective standard deviations; and the value always lies between -1 and +1.  @Risk and Crystal
Ball® provide both the R2 for the entire model, as well as the correlation coefficients for each input
variable (or regressor).  The higher the value of Ri for Xi, the more sensitive the output variable is to that
input variable. 

Although the calculations are the same, there is a subtle conceptual difference between the
coefficient of determination (r2) from regression, and the square of the correlation coefficient.  When
evaluating two variables (X, Y), the key is whether X is interpreted as a “fixed” quantity (i.e., an
explanatory variable), or a random variable just like Y.  In regression analysis, r2 measures how well the
regression line explains the variation in Y given a particular value for X (Equation A-15).  Correlation
requires that X be considered a random variable, typically having a bivariate normal distribution with Y
(see Appendix B). 

One artifact of regression analysis is that R2 increases as you add more and more input variables
to your model; however, the increased fit of the model due to one or more of the input variables may be
insignificant.  Sometimes an adjusted R2 is calculated to take into account the number of input variables
(called regressors) in the model (k) as well as the number of observations in the data set (n):

Equation A-18

While R2 gives the proportion of the total variation of Y that is explained,  (Equation A-18) takes

into account the degrees of freedom (df), and gives the proportion of the total variance of Y that is
explained (variance = variation /df); or stated simply,  is the R2 corrected for df, where df is

described by [1 - k/(n-1)].

C If the relationship between an input variable and an output variable is strong, but nonlinear, the R2

statistic will be misleadingly low.
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C If the means of the sampling data are used rather than the individual observations for each variable,
R2 will be misleadingly high.  This is because taking the mean of a sample reduces the fraction of
the total variation due to random variation (see discussion of random error above).  This is an
important consideration when trying to interpret the results of regression analyses that incorporate
data averaged over different spatial scales (e.g., regression of PbB on soil lead concentrations taken
at the city block level may give an inflated R2 value if the sampling data are averaged over a larger
spatial scale, such as the census tract level).

A multiple regression analysis can also be performed to estimate the regression coefficients (see
Appendix A.3.3).  Each coefficient essentially represents an “average” value of the partial derivative
across the entire distribution of the input.  The regression coefficient, like the partial derivative, depends
on the units of measurement so, as in the case of the partial derivative, it must be normalized.  This can
be accomplished by multiplying the regression coefficient by the ratio of estimated standard deviations
sy/sx.

A convenient way to carry out a sensitivity analysis is to perform a stepwise regression analysis. 
Some statistical software packages (e.g., SAS, SPSS) offer a variety of different approaches for this;
however, in general, they can be classified into two general categories: forward selection and backward
elimination.  In the forward selection, the inputs are added to the model one by one in the order of their
contribution.  In the backward elimination, all of the inputs are used in the model initially and then they
are dropped one by one, eliminating the least important input at each step.  A true stepwise procedure is a
variation on the forward selection approach where an input can drop out again once it has been selected
into the model if at some point other inputs enter the model that account for the same information.

A.3.3.2 RELATIVE PARTIAL SUM OF SQUARES (RPSS)

The relative partial sum of squares (RPSS) measures the sensitivity of the model output to
each of the input variables by partitioning the variance in the output attributable to each variable using
multiple regression techniques (Rose et al., 1991).  The RPSS is presented as a percentage reflecting the
proportion of influence a given variable has on risk.  The results of RPSS are intuitive and generally easy
to understand.

Briefly, the RPSS represents the percentage of the total sum of squares attributable to each of the
variables.  To calculate RPSS for variable Vi, the difference between the regression sum of squares (RSS)
for the full model and the regression sum of squares for the model with Vi missing (RSS-i) is divided by
the total sum of squares (TSS) and expressed as a percentage:

Equation A-19

This procedure can be thought of as analogous to least squares linear regression, but performed
in the n-dimensional parameter space of the risk equation.  Since this approach depends on the adequacy
of the linear regression model between the output variable (e.g., risk) and all the variables, an additional
diagnostic is to check how close R2 is to 1.0.  For equations with more than three parameters (such as
those used in Superfund risk assessments), the computational overhead of this process is large and
requires specific computer programs.  The software program Crystal Ball® does not perform this
calculation, but it can be determined with most standard statistical software packages that perform
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multiple regression. @Risk performs a calculation similar to this called multivariate stepwise regression
that yields correlation coefficients in lieu of percent contributions to output variance.

A.3.3.3 SPEARMAN’S RANK CORRELATION COEFFICIENT (RHO)

The validity of using indices such as regression coefficients, correlation coefficients, and partial
correlation coefficients depends on the assumptions of the underlying linear model being met.  If there is
any doubt that a data set satisfies the model assumptions, a nonparametric measure of correlation based
on the rank orders of the inputs and associated outputs can be used.  The Spearman Rank correlation
coefficient is a nonparametric statistic; it measures an association between variables that are either count
data or data measured on an ordinal scale, as opposed to data measured on an interval or ratio scale.  An
example of an ordinal scale would be the ranking of sites based on their relative mean soil
concentrations.  For example, if there are four categories of soil contaminant concentrations, sites with
the highest concentrations may receive a rank of 1 while sites with lowest concentrations may receive a
rank of 4.  Ordinal scales indicate relative positions in an ordered series, not “how much” of a difference
exists between successive positions on a scale. 

To calculate the Spearman rank correlation coefficient, assign a rank to each of the input
variables (Xj) and output variables (Yk).  For each ranked pair (Xj, Yk), calculate the difference, d, between
the ranks.  For example, if the first observation for variable X has a ranking of 5 (relative to all of the
observations of X), and the corresponding value of Y has a ranking of 3 (relative to all of the observations
of Y), the difference (d) is equal to 5–3=2.  Spearman rho (rs) is calculated as:

Equation A-20

Hence (-1 # rs # 1.0), and rs=-1 describes a perfect indirect or negative relationship between
ranks in the sense that if an X element increases, the corresponding Y element decreases.  Similarly, rs=0
suggests that there is no relationship between X and Y.

The Pearson product moment correlation coefficient is equal to the Spearman rank correlation
coefficient when interval/ratio values of the measured observations (X, Y) are replaced with their
respective ranks.
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APPENDIX B

SELECTION AND FITTING OF DISTRIBUTIONS

B.0 INTRODUCTION

An important step in Monte Carlo analysis (MCA) is to select the most appropriate distributions
to represent the factors that have a strong influence on the risk estimates.  This step in the development of
a Monte Carlo model can be very challenging and resource intensive. 

L Specifying probability distributions for all of the input variables and
parameters in a probabilistic risk assessment (PRA) will generally not
be necessary.

If the sensitivity analysis indicates that a particular input variable does not contribute
significantly to the overall variability and uncertainty, then this variable may be represented as a point
estimate.  As discussed in Appendix A, however, different approaches to sensitivity analysis may be
applied throughout the tiered approach (e.g., sensitivity ratios, correlation analysis), and the ability to
reliably identify variables as being minor or major can vary.  Sometimes it can be helpful to develop
probability distributions based on preliminary information that is available from Tier 1 in order to
explore alternative options for characterizing variability and uncertainty.  Likewise, sometimes the
important “risk drivers” are apparent, and resources can be allocated to fully characterize the variability
and uncertainty in those input variables.  Therefore, the process of selecting and fitting distributions may
also be viewed as a tiered approach.  This appendix reviews the methods available to select and fit
distributions and provides guidance on the process for determining appropriate choices depending on the
information needed from the assessment and the information available to define the input variables.

In PRA, there are some important distinctions in the terminology used to describe probability
distributions.  A probability density function (PDF), sometimes referred to as a probability model,
characterizes the probability of each value occurring from a range of possible values.  Probability
distributions may be used to characterize variability (PDFv) or uncertainty (PDFu).  One advantage of
using a PDFv and PDFu is that distributions represent a large set of data values in a compact way (Law
and Kelton, 1991).  For example, a lognormal distribution provides a good fit to a large data set of tap
water ingestion rates (n=5,600) among children ages 1 to 11 years (Roseberry and Burmaster, 1992). 
Therefore, the distribution type (lognormal) and associated parameters (mean and standard deviation)
fully describes the PDFv for intake rates, from which other statistics of interest can be calculated (e.g.,
median, and 95th percentile).  Reducing a complex exposure model to a series of representative and well-
fitting distributions can facilitate both the quantitative analysis and the communication of the modeling
methodology.  Alternatively, a PDFu may be specified to characterize parameter uncertainty.  For
example, the sample mean ( ) is generally an uncertain estimate of the population mean (:) due tox
measurement error, small sample sizes, and other issues regarding representativeness (see Section B.3.1). 
A PDFu can be used to represent the distribution of possible values for the true, but unknown parameter. 
Understanding whether uncertainty or variability is being represented by a PDF is critical to determining
how the distribution and parameters should be specified and used in a PRA. 
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EXHIBIT B-1

DEFINITIONS FOR APPENDIX B

Bayesian Analysis - Statistical analysis that describes the probability of an event as the degree of belief or confidence
that a person has, given some state of knowledge, that the event will occur.  Bayesian Monte Carlo combines a
prior probability distribution and a likelihood function to yield a posterior distribution (see Appendix D for
examples).  Also called subjective view of probability, in contrast to the frequentist view of probability.

Bin - Regarding a histogram or frequency distribution, an interval within the range of a random variable for which a
count (or percentage) of the observations is made.  The number of bins for a histogram is determined on a case-
by-case basis.  In general, equal interval widths are used for each bin; however, in some cases (e.g., Chi-square
test), individual bin widths are calculated so as to divide the distribution into intervals of equal probability.

Countably Infinite - Used to describe some discrete random variables, this term refers to a set of numbers that can be
counted with integers (e.g., one, two, three) and that has no upper limit.  Examples include the number of tosses
required for a coin to show a head—we can count each toss, but it is possible that at least one more toss is
needed.  The number of dust particles in a volume of air is another example.  Countably finite implies there is an
upper limit (e.g., days of work per year).

Cumulative Distribution Function (CDF) - Obtained by integrating the PDF, gives the cumulative probability of
occurrence for a random independent variable.  Each value c of the function is the probability that a random
observation x will be less than or equal to c.

Empirical Distribution Function (EDF) -The EDF, also called the empirical CDF (ECDF), is based on the frequency
distribution of observed values for a random variable.  It is a stepwise distribution function calculated directly
from the sample, in which each data point is assigned an equal probability.

Frequency Distribution or Histogram - A graphic (plot) summarizing the frequency of the values observed or measured
from a population.  It conveys the range of values and the count (or proportion of the sample) that was observed
across that range.

Goodness-of-Fit (GoF) Test - A method for examining how well (or poorly) a sample of data can be described by a
hypothesized probability distribution for the population.  Generally involves an hypothesis test in which the null
hypothesis H0 is that a random variable X follows a specific probability distribution F0.  That is, H0: F=F0 and
Ha: F … F0.

Independence - Two events A and B are independent if whether or not A occurs does not change the probability that B
occurs.  Likewise, knowing the value of B does not affect the value of A.  Input variables, X and Y, are
independent if the probability of any paired values (X, Y) is equal to the probability of X multiplied by the
probability of Y.  In mathematical terms, X and Y are independent if f(X, Y)=f(X) x f(Y).  Independence is not
synonymous with correlation.  If X and Y are independent, then their correlation is zero, Cor(X, Y)= 0.  But, the
converse is not always true.  There may be a nonlinear relationship between X and Y that yields Cor(X, Y)=0, but
the variables are highly dependent. 

Nonparametric Method - Also called a distribution-free method, a procedure for making statistical inferences without
assuming that the population distribution fits a theoretical distribution such as normal or lognormal.  Common
examples are the Spearman rank correlation, (see Appendix A) and the bootstrap-t approach..

Parameter - In PRA, a parameter is a quantity that characterizes the probability distribution of a random variable.  For
example, a normal probability distribution may be defined by two parameters (e.g., arithmetic mean and standard
deviation). 

Parametric Distribution - A theoretical distribution specified by a distribution type and one or more parameters. 
Examples include the normal, Poisson, and beta distributions.
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EXHIBIT B-1 —Continued
DEFINITIONS FOR APPENDIX B

Probability Density Function (PDF) -  A function representing the probability distribution of a continuous random
variable.  The density at a point refers to the probability that the variable will have a value in a narrow range
about that point. 

Probability Distribution - The mathematical description of a function that associates probabilities with specified
intervals or values for a random variable.  A probability distribution can be displayed in a graph (e.g., PDF
or CDF), summarized in a table that gives the distribution name and parameters, or expressed as a
mathematical equation.  In PRA, the process of selecting or fitting a distribution that characterizes variability
or uncertainty can also be referred to as applying a probability model to characterize variability or
uncertainty.  In this guidance, the probability model is considered to be one source of model uncertainty.

Step Function - A mathematical function that remains constant within an interval, but may  change in value from one
interval to the next.  Cumulative distribution functions for discrete random variables are step functions. 

Z-score - The value of a normally distributed random variable that has been standardized to have a mean of zero and a
SD of one by the transformation Z=(X–:)/F.  Statistical tables typically give the area to the left of the
z-score value.  For example, the area to the left of z=1.645 is 0.95.  Z-scores indicate the direction (+/-) and
number of standard deviations away from the mean that a particular datum lies assuming X is normally
distributed.  Microsoft Excel’s NORMSDIST(z) function gives the probability p such that p=Pr(Z # z), while
the NORMSINV(p) function gives the z-score zp associated with probability p such that  p=Pr(Z # zp).

B.1.0 CONCEPTUAL APPROACH FOR INCORPORATING A PROBABILITY DISTRIBUTION IN A PRA

Often, more than one probability
distribution may appear to be suitable for
characterizing a random variable.  A step-wise,
tiered approach is recommended for
incorporating probability distributions in a
PRA.  This appendix provides guidance on
selecting and fitting distributions for
variability and parameter uncertainty based on
the overall strategy given in Exhibit B-2. 
Many of the same principles of selecting and
fitting distributions are also given in EPA's
Report of the Workshop on Selecting Input
Distributions for Probabilistic Assessments (U.S. EPA, 1999a).

Probability distributions may be developed to characterize variability or uncertainty.  Example
flow charts for specifying a PDFv and PDFu are given in Figures B-1 and B-2, respectively.  Both
approaches outline an iterative process that involves three general activities:  (1) identify potentially
important sources of variability or uncertainty to determine if a PDF may be needed; (2) apply the
general strategy given in Exhibit B-1 and evaluate plausible alternatives for distributions and parameter
estimates; and (3) document the decision process.  The flowcharts provide a general outline of the
process and contain terms which are explained in subsequent sections.  Just as with the point estimate
approach, different sites may require different probability distributions for input variables, depending on
the unique risk management issues and sources of uncertainty.

EXHIBIT B-2

GENERAL STRATEGY FOR SELECTING
 AND FITTING DISTRIBUTIONS

(1) Hypothesize a family of distributions
(2) Assess quality of fit of distribution
(3) Estimate distribution parameters
(4) Assess quality of fit of parameters
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B.2.0 PRELIMINARY SENSITIVITY ANALYSIS

Selecting and fitting probability distributions for all of the input variables can be resource
intensive and is generally unnecessary.  Ideally, a subset of variables could be identified that contribute
to most of the variability and uncertainty in a risk estimate.  Sensitivity analysis can play an important
role in helping to identify and quantitatively rank the major exposure pathways and variables.  Since the
information obtained from a sensitivity analysis may vary, depending on the approach(es) used and the
information available to characterize the input variables, risk assessors should understand inherent
limitations of each approach.  A variety of approaches that are common for Tier 1 and 2 analyses are
described and applied to a hypothetical example in Appendix A.  

In a Tier 1 assessment, sensitivity analysis is typically limited to exploring the effect of
alternative point estimates on the risk estimate.  These methods can be helpful if additional information
regarding the variability in the input variables is incorporated into the analysis (i.e., sensitivity scores). 
Alternatively, a reasonable approach is to specify preliminary probability distributions for one or more
inputs in order to maximize the advantages of probabilistic methods.  The difference between a
preliminary distribution and a subsequent distribution reflects the level of effort invested in
characterizing variability and uncertainty.  If a robust data set is available in Tier 1 to define point
estimates, then a preliminary distribution may, in fact, fully characterize variability with very high
confidence.  For other variables, summary statistics, rather than sample data, may be available, allowing
for estimates of central tendency or plausible ranges.  The use of preliminary distributions reflects an
effort to employ more robust sensitivity analysis techniques without expending the effort and resources
that might otherwise be applied to a PRA in Tier 2.  The goal of the preliminary analysis would not be
necessarily to evaluate risks and/or develop a PRG; rather, the focus would be on identifying input
variables that may be important to explore more fully.  Preliminary sensitivity analysis can provide
insight into the importance of selecting among alternative probability distributions and exposure
scenarios. 

One-dimensional Monte Carlo simulations with preliminary (or screening-level) distributions can
be run prior to engaging in a more involved process of selecting and fitting distributions.  The
distributions can be selected based on knowledge regarding the mechanisms that result in variability, and
information already available for determining point estimates (e.g., summary statistics, U.S. EPA
guidance, etc.).  Table B-1 provides examples of preliminary distributions that might be selected based
on the type of information available, sometimes referred to as the state of knowledge.  In many cases, the
distribution is intended to estimate the plausible bounds of a variable, while requiring no additional data
collection effort.  For example, given estimates of a lower bound [min], upper bound [max], and the
assumption that each value is equally likely, a uniform distribution would be used to represent variability
(or parameter uncertainty).  If no mechanistic basis for selecting a distribution exists, then the
preliminary distribution would be chosen based on the available information.  For example, given the
estimates of the arithmetic mean [:] and a percentile value [a] for a random variable, an exponential
distribution might be recommended with 8=1/:.

Guidance on matching the choice of the distribution to the state of knowledge is extended to a
more diverse array of scenarios later in this appendix (see Table B-4).
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1The preliminary distributions are based in part on maximum entropy concepts.  Maximum entropy is a technique for
determining the distribution that represents the maximum uncertainty allowed by the available information and data (Vose,
1996).  Although the approach can be used to quickly define distributions that maximize uncertainty, the credibility of the
distribution depends on the use of accurate, unbiased information.

2See Table B-2 for more detailed descriptions of selected distributions.
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Table B-1.  Examples of Preliminary Distributions Based on Information Available1, 2

Information / Constraints Distribution Shape

[a, b] uniform

[a, m, b] triangular

[ a, b, αααα1,,,,    αααα2,,,,    ββββ] beta

[::::, FFFF] normal

γγγγ exponential

[a, b, µ,µ,µ,µ, 
  

 σσσσ] Johnson Sb,
Lognormal

[α,α,α,α, 
  

 ββββ] gamma

 a=minimum,  b=maximum, m=mode, α=shape parameter, :=mean,
 F=standard deviation, γ=average rate of occurrence of events, β=scale,

It may be informative to explore alternative choices for distributions applied to the same
variable.  For example, a simple yet informative approach is to run two 1-D MCA simulations for
variability with an input variable characterized first by a Johnson Sb (i.e., a four-parameter lognormal
distribution; Hahn and Shapiro, 1967) and then by a normal distribution.  The difference in the risk
distribution, especially at the percentile that is relevant to the risk management decision (e.g.,
95th percentile), may offer insights regarding the importance of the shape of the PDFv.

B.3.0 WHAT DOES THE DISTRIBUTION REPRESENT?

Distributions may be specified to characterize variability or uncertainty.  Often, a Monte Carlo
simulation of variability will focus on describing differences between individuals in a population (i.e.,
inter-individual variability).  In this case, the goal is to select a distribution that is representative of the
target population—the set of all receptors that are potentially at risk.  There may be uncertainty that the
choice of PDFv reflects variability in the target population.  In general, risk assessors should fully
disclose uncertainties in the PDFv, especially because the use of a distribution instead of a point estimate
may inappropriately suggest that there is a greater state of knowledge.  Following the tiered process (see
Chapter 2, Figure 2-1), there are multiple opportunities to consider consequences of alternative modeling
approaches early in the process of developing a probabilistic model.  The importance of relating the
distribution to the target population, clearly distinguishing between variability and uncertainty, and
evaluating data representativeness is emphasized in Sections B.3.1, B.3.2 and B.4.
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B.3.1 CONCEPTS OF POPULATION AND SAMPLING

The distinction between a target population, a sampled population, and a statistical population
should be considered carefully when evaluating information for use in both Tier 1 and Tier 2 of a PRA. 
The target population is often considered to be the “population of concern”.  A risk assessor is often
interested in quantifying specific attributes of the population (e.g., exposure duration, exposure
frequency, etc.).  A sampled population is the set of receptors available for selection and measurement. 
For purposes of this appendix/guidance, the sampled population may be the target population or it may
be a different population that is thought to be representative of the target population.  For purposes of
this guidance, a statistical population is an approximation of the target population based on information
obtained from the sampled population.

Distributions are generated from representative sample populations to make inferences about the
target population.  Ideally, a sampled population should be a subset of a target population and should be
selected for measurement to provide accurate and representative information about the exposure factor
being studied.  However, defining representative samples is a matter of interpretation.
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Sensitivity Analysis
(i.e., Tier 1 and Tier 2)

Is the factor 
influential?

Use a health protective 
point estimate

Present in workplan
and report

Is the factor     
amenable to expert 

judgment?

Conduct expert 
elicitation for PDFAre the data 

representative of 
of the target 
population?

No

Yes

Yes

Yes

No

No

No

Continued on next 
page

NoDo sufficient data 
exist or can they be 
collected to run a 

refined 1-D MCA?

Yes

Yes

Present PDF/EDF in 
workplan and report

Can the data be 
adjusted to better 
represent the target 
population (e.g., 
weighting factors)

Consider the mechanistic 
characteristics of the data 
(e.g., continuous or discrete 
variable)

Figure B-1 (page 1 of 2). Conceptual approach for incorporating probability distributions
for variability in PRA.
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Present PDF/EDF in 
work plan and report

(Continued from previous page)

Summary statistics and graphical data 
exploration (e.g., histograms)

Use an EDF?

Choose a type of PDF
(Normal, Weibull, etc.)

Estimate percentile 
values of EDF

No Yes

Appropriate 
Goodness-of-Fit?

Estimate 
parameters

Apply truncation limits 
as appropriate

Specify a mixture of 
distributions

Would a 
mixture of 

distributions 
better represent 

the data?

Estimate tails and 
truncation limits

No

Yes

No

Yes

Present PDF/EDF in 
work plan and report

(Continued from previous page)

Summary statistics and graphical data 
exploration (e.g., histograms)

Use an EDF?

Choose a type of PDF
(Normal, Weibull, etc.)

Estimate percentile 
values of EDF

No Yes

Appropriate 
Goodness-of-Fit?

Estimate 
parameters

Apply truncation limits 
as appropriate

Specify a mixture of 
distributions

Would a 
mixture of 

distributions 
better represent 

the data?

Would a 
mixture of 

distributions 
better represent 

the data?

Estimate tails and 
truncation limits

No

Yes

No

Yes

Figure B-1 (page 2 of 2).  Conceptual approach for incorporating probability distributions
for variability in PRA.
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Identify dominant 
exposure pathway(s) from

sensitivity analysis
(Appendix A, Section B.2.0)

Identify factor(s)that may
contribute to uncertainty in 

the risk distribution
(Appendix A, Section B.2.0)

Select a plausible risk 
exposure model for the 

exposure pathway
(Fig. B-2b)

Select probability
distribution(s) for variability

in exposure factor(s) (Fig. B-1) 

Quantify parameter 
uncertainty with point 

estimates or distribution(s)
(Fig. B-2c)  

Run simulation to 
propagate variability and 
uncertainty (e.g., multiple 

1-D MCAs; 2-D MCA;  
MEE, etc.) 

Continue
quantifying
uncertainty?

Present
results in graphical
and tabular format

YesNo

Figure B-2a  (page 1 of 3).  Conceptual approach for quantifying model and parameter 
uncertainty in PRA.
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Run simulation 
with candidate 
exposure model

Identify dominant
exposure pathway(s) 

from
Sensitivity Analysis

(Appendix A and Section 
B.2.0)

Is more than 
one model

plausible for an 
exposure pathway? 

Identify and evaluate the exposure 
factor(s) quantified by a 

candidate exposure model

Purpose and Objectives
• regulatory context
• scientific questions addressed
• application niche (physical, 

chemical, biological system)
• status of agency and/or peer review

Defining and Limiting Components 
• process(es) characterized 

(e.g., transport, diffusion,
volatilization, bioavailability, etc.)

• temporal and spatial scales 
• level of aggregation/simplification 

Theoretical Basis
• mechanistic basis for algorithms

• numerical or analytic solution

Select alternative
exposure model

No Yes

No

Yes

Is the 
exposure model 

appropriate?

Run simulation 
with candidate 
exposure model

Identify dominant
exposure pathway(s) 

from
Sensitivity Analysis

(Appendix A and Section 
B.2.0)

Is more than 
one model

plausible for an 
exposure pathway? 

Identify and evaluate the exposure 
factor(s) quantified by a 

candidate exposure model

Purpose and Objectives
• regulatory context
• scientific questions addressed
• application niche (physical, 

chemical, biological system)
• status of agency and/or peer review

Defining and Limiting Components 
• process(es) characterized 

(e.g., transport, diffusion,
volatilization, bioavailability, etc.)

• temporal and spatial scales 
• level of aggregation/simplification 

Theoretical Basis
• mechanistic basis for algorithms

• numerical or analytic solution

Select alternative
exposure model

No Yes

No

Yes

Is the 
exposure model 

appropriate?

Is the 
exposure model 

appropriate?

Figure B-2b (page 2 of 3).  Detailed conceptual approach for incorporating model uncertainty in PRA.
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Present results in 
graphical and 
tabular format

Estimate parameters 
(e.g., MLE, method of 

moments, etc.)

Is information 
available to quantify 

parameter 
uncertainty? 

Is the parameter 
amenable to expert 

elicitation?

Conduct expert 
elicitation

Select distribution 
(or point estimate) for 

uncertainty

Run simulation to 
propagate variability 

and uncertainty

Should an alternative 
probability model 

(i.e., PDFv or PDFu) 
be explored?

Continue with 
process 

acknowledging 
limits of data

No

Yes Yes

Yes No

No

Run sensitivity 
analysis to identify 

important sources of 
uncertainty

Identify candidate probability 
distribution(s) for variability (Fig. B-1):

• mechanistic basis for variability 
• exploratory data analysis
• expert judgment

Present results in 
graphical and 
tabular format

Estimate parameters 
(e.g., MLE, method of 

moments, etc.)

Is information 
available to quantify 

parameter 
uncertainty? 

Is information 
available to quantify 

parameter 
uncertainty? 

Is the parameter 
amenable to expert 

elicitation?

Is the parameter 
amenable to expert 

elicitation?

Conduct expert 
elicitation

Select distribution 
(or point estimate) for 

uncertainty

Run simulation to 
propagate variability 

and uncertainty

Should an alternative 
probability model 

(i.e., PDFv or PDFu) 
be explored?

Should an alternative 
probability model 

(i.e., PDFv or PDFu) 
be explored?

Continue with 
process 

acknowledging 
limits of data

No

Yes Yes

Yes No

No

Run sensitivity 
analysis to identify 

important sources of 
uncertainty

Identify candidate probability 
distribution(s) for variability (Fig. B-1):

• mechanistic basis for variability 
• exploratory data analysis
• expert judgment

Figure B-2c (page 3 of 3).  Detailed conceptual approach for incorporating parameter
uncertainty in PRA.
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B.3.2 CONSIDERING VARIABILITY AND UNCERTAINTY IN SELECTING AND FITTING DISTRIBUTIONS

Multiple probability distributions may be used to describe variability and uncertainty in an input
variable.  For example, a normal probability distribution may be selected to characterize variability in
body weight, whereas a uniform distribution may selected to characterize uncertainty in the estimate of
the arithmetic mean of the normal distribution.  The appropriate interpretation and analysis of data for an
exposure variable will depend on whether one is specifying a PDFv or PDFu.  Figure B-1 outlines one
useful process for selecting distributions for variability, whereas Figure B-2 (three pages) outlines a
useful process for quantifying both model and parameter uncertainty.

Variability generally refers to observed differences attributable to true heterogeneity or diversity
in a population (U.S. EPA, 1997b).  Variability results from natural random processes.  Inter-individual
variability may stem from environmental, lifestyle, and genetic differences.  Examples include human
physiological variation (e.g., natural variation in body weight, height, breathing rates, drinking water
intake rates), changes in weather, variation in soil types, and differences in contaminant concentrations in
the environment.  Intra-individual variability may reflect age-specific changes (e.g., body weight and
height).  Variability is not reducible by further measurement or study.  A PDF for variability can usually
be obtained by fitting a distribution to the sample measurements. 

Sources of Uncertainty

Uncertainty generally refers to the lack of knowledge about specific factors, parameters, or
models (U.S. EPA, 1997b).  Although uncertainty in exposure and risk assessment may be unavoidable
due to the necessary simplification of real-world processes, it generally can be reduced by further
measurement and study.  Parameter uncertainty may stem in part from measurement errors, sampling
errors, or other systematic errors in the collection and aggregation of data.  Model uncertainty may reflect
the simplification of a complex process, a mis-specification of the exposure model structure, a misuse or
misapplication of an exposure model, use of the wrong distributional model, and the use of surrogate data
or variables.  Scenario uncertainty may reflect uncertainty in an exposure model, such as the relevance of
specific exposure pathways to the target population.  A conceptual exposure model can be used to
provide direction in specifying a probability distribution for uncertainty.  For example, the concentration
term in a Superfund risk assessment typically represents the long-term average concentration to which a
receptor is exposed (see Chapter 5).  An uncertainty distribution for the concentration term could be
developed in part from ideas about the statistical uncertainty of estimating the long-term average from a
small sample, and the assumption of random movement of the receptors within a defined exposure unit.

Probability Distributions and Model Uncertainty

This appendix primarily focuses on methods for quantifying uncertainty associated with both the
selection of a variability distribution, and estimating parameters of a distribution.  A probability
distribution can be referred to as a type of model in the sense that it is an approximation, and often a
simplified representation of variability or uncertainty that combines both data and judgment.  A broader
use of the term model refers to a representation of a chemical, physical, or biological process.  In risk
assessment, many different models have been developed, with varying objectives, major defining and
limiting components, and theoretical basis.  Figure B-2b provides a general process for exploring model
uncertainty of this type.  This figure reflects the concepts and spirit of the Agency Guidance for
Conducting External Peer Review of Environmental Regulatory Modeling (U.S. EPA, 1994).  In general,
EPA regional risk assessors should be consulted in order to determine the types of exposure and risk
models that may be plausible for quantifying exposure at a particular site.
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Parameter Uncertainty

Quantifying parameter uncertainty in a probabilistic model typically requires judgment (see
Appendix C).  When data are uncertain due to, for example, small sample sizes or questionable
representativeness (Section B.3.1), Monte Carlo simulation can be a useful tool for demonstrating the
effect of the uncertainty on the risk estimates.  It is most important to model uncertainty when the
sensitive input variables are uncertain.  Uncertainty can be quantified in both the point estimate approach
(e.g., a range of possible central tendency exposure values) or a probabilistic approach (e.g., a range of
possible values for the arithmetic mean of a distribution).  While a quantitative uncertainty analysis may
complicate a risk management decision by suggesting that risk estimates are highly uncertain, this
information can be helpful by focusing additional efforts towards collecting data and reducing
uncertainty in the most sensitive input variables.  Likewise, if an estimated risk is below a regulatory
level of concern, even after quantifying highly uncertain inputs to the exposure model, the risk manager
may be more confident in a decision.  As emphasized in Figures B-2a, B-2b, and B-2c, risk assessors
should generally refrain from setting ad hoc probabilities to different candidate distributions in a single
Monte Carlo simulation.  Instead, this guidance strongly recommends exploring model or parameter
uncertainty by running a separate simulation with each candidate model.  For example, rather than
randomly assigning a beta distribution or a lognormal distribution to an exposure variable for each
iteration of a simulation, separate simulations should be run with the candidate probability distributions. 
Similarly, if a range of temporal or spatial scales is plausible for quantifying exposure, multiple
simulations should be designed to demonstrate the importance of these assumptions on the risk estimates.

Uncertainty in parameter estimates may be characterized using a variety of methods.  Similar to a
PDF for variability, a PDF for parameter uncertainty may be represented by a probability distribution
with a unique set of parameters.  Sometimes the distribution for uncertainty can be specified by knowing
(or assuming) a distribution for variability.  For example, if X is a normally distributed random variable,
the Student’s t distribution and the Chi-square (P2) distribution can be used to develop PDFu’s for
random measurement error uncertainty in the sample mean and variance, respectively.  The PDFu for
both the Student’s t and Chi-square distributions is determined by the sample size (n).  If a PDFu cannot
be determined from the PDF for variability, or assumptions regarding the underlying distribution for
variability are not supportable, nonparametric or “distribution free” techniques may be used (e.g.,
bootstrapping).  Both parametric and nonparametric techniques may yield confidence intervals for
estimates of population parameters.  

B.4.0 DO DATA EXIST TO SELECT DISTRIBUTIONS?

Developing site-specific PDFs for every exposure assumption (or toxicity value, in the case of
ecological risk) can be time and resource intensive, and in many cases, may not add value to the risk
management decision.  For those exposure variables that do exert a significant influence on risk, a PDF
may be developed from site-specific data, data sets available in the open literature (e.g., EPA’s Exposure
Factors Handbook, U.S. EPA 1997a), or from existing PDFs in the literature (e.g., Oregon DEQ, 1998).

At Superfund sites, perhaps the most common exposure variable that will be described by site-
specific data will be the media concentration term.  The sample (i.e., collection of empirical
measurements) will most often be used to estimate either a point estimate of uncertainty (e.g., an upper
confidence limit for the arithmetic mean concentration—the 95% UCL), or a distribution that
characterizes the full distribution of uncertainty in the mean.  Exposure variables such as ingestion rates,
exposure duration, and exposure frequency will most likely be derived from existing PDFs or data sets in
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the open literature.  The Agency supports the development PDFs that may be generally applicable to
different sites (e.g., body weight, water intake, and exposure duration) (U.S. EPA, 1999b, 2001).  Until
final recommendations of PDFs are available for the more generic exposure variables, PDFs for exposure
variables that lack adequate site-specific data will typically be selected from: (1) existing PDFs; (2) data
on the entire U.S. population; or (3) data on subsets of the U.S. population that most closely represent the
target population at a site.  If risks to a sensitive subpopulation, such as young children, elderly adults,
ethnic groups, or subsistence fishermen, are a concern at a site, then existing PDFs or data sets that best
characterize these subpopulations would be preferable to national distributions based on the entire U.S.
population.  If adequate site-specific data are available to characterize any of the exposure variables,
distributions can be fit to those data. 

Uncertainty Associated with Sample Size

An appropriate question to consider when evaluating data sets for use in exposure and risk
assessment is, “What sample size is sufficient?”  Generally, the larger the sample size (n), the greater
one’s confidence in the choice of a probability distribution and the corresponding parameter estimates. 
Conversely, for small n, Goodness-of-fit (GoF) tests (see Section B.6.2) will often fail to reject many of
the hypothesized PDFs.  In general, there is no rule of thumb for the minimum sample size needed to
specify a distribution for variability or uncertainty.  Increasing a sample size may be an appropriate
option to consider when evaluating risk management strategies to reduce uncertainty. 

Statistical sampling, in general, is important to consider when estimating parameters of a
probability distribution.  One rule of thumb is that the parameters that reflect the central tendency of a
distribution (e.g., arithmetic mean, median, mode) can be estimated with greater confidence than
parameters that reflect the extremes of the distribution (e.g., 95th percentile).  When deciding on
appropriate truncation limits (minimum and maximum values), it is unlikely that the statistical sample
actually includes the plausible bounds.  See Section B.5.7 for more detailed guidance on specifying
truncation limits for probability distributions.

B.4.1 WHAT ARE REPRESENTATIVE DATA?

The question, “What is a representative sample?”, is important to address when selecting and
fitting distributions to data.  Many of the factors that may determine representativeness (e.g., sample size
and the method of selecting the target, and sample population (Section B.3.1)) are relevant to both point
estimate and PRA.  EPA’s Guidance for Data Usability in Risk Assessment, Part A (U.S. EPA, 1992)
describes representativeness for risk assessment as the extent to which data define the true risk to human
health and the environment.

The goal of representativeness is easy to understand.  However, evaluating data to determine if
they are representative is more difficult, especially if the problem and decision objectives have not been
clearly defined.

The importance of representativeness also varies with the level of complexity of the assessment. 
If a screening level assessment is desired, for example, to determine if concentrations exceed a health
protective exposure level, then representativeness may not be as important as health protectiveness.
However, if a complete baseline risk assessment is planned, the risk assessor should generally consider
the value added by more complex analyses (e.g., site-specific data collection, sensitivity analysis, and
exposure modeling).  A tiered approach for making these decisions for a PRA is presented in Chapter 2,
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and examples of more complex analyses are presented in Appendix D.  In addition, the Agency (U.S.
EPA, 1999a) summarizes the advantages and weaknesses of proposed checklists for risk assessors to
evaluate representativeness of exposure factors data.

For purposes of this guidance, a surrogate study is one conducted on a sampled population that is
similar to, but not a subset of, the target population.  When using surrogate data, the risk assessor should
generally exercise judgment about the representativeness of the data to the target population.  For
example, the distribution of body weights of deer mice from two independent samples from similar
ecosystems may differ depending on the age structure, proportion of males and females, and the time of
year that the samples were obtained.  When in doubt about which study results to use in defining a
probability distribution, one option is to develop a distribution and calculate risks with each sample
independently, and compare the results.  This approach can be a simple, but effective type of uncertainty
analysis.  At a minimum, uncertainties associated with the use of surrogate studies should be discussed in
the assessment.

In many cases, the surrogate population shares common attributes with the target population, but
is not truly representative.  The risk assessor should then determine the importance of the discrepancies
and whether adjustments can be made to reduce those differences.  There are a wide variety of methods
that can be used to account for such discrepancies, depending on the available information.  Summary
statistics (e.g., as presented by the Exposure Factors Handbook, U.S. EPA, 1997a) can be used to
estimate linear characteristics of the target population from the sample population.  For example, if the
mean, standard deviation, and various percentiles of the sample population are known, then the mean or
proportion exceeding a fixed threshold can be calculated using a simple weighted average.  Adjustment
options are more numerous if the risk assessor has access to the raw data.  Adjustments for raw data
include: weighted averages, weighted proportions, transformations, and grouping of the data based on the
available information (e.g., empirical data, and professional judgment).

In most cases, the evaluation of data representativeness will necessarily involve judgment.  The
workplan should generally include a description of the data, the basis for the selection of each
distribution, and the method used to estimate parameters (see Chapter 2).  Empirical data (i.e.,
observations) are typically used to select distributions and derive parameter estimates.  However, it may
be necessary to use expert judgment or elicitation in cases where the quality or quantity of available data
are found to be inadequate.

B.4.2 THE ROLE OF EXPERT JUDGMENT

Expert judgment refers to inferential opinion of a specialist or group of specialists within an area
of their expertise.  When there is uncertainty associated with an input variable, such as a data gap, expert
judgment may be appropriate for obtaining distributions.  Note that distributions elicited from experts
reflect individual or group inferences, rather than empirical evidence.  Distributions based on expert
judgment can serve as Bayesian priors in a decision-analytic framework.  The distributions and Bayesian
priors can be modified as new empirical data become available.  There is a rich literature base regarding
the protocol for conducting expert elicitations and using the results to support decisions (Morgan and
Henrion, 1990).  Elicitation of expert judgment has been used to obtain distributions for risk assessments
(Morgan and Henrion, 1990; Hora, 1992; U.S. EPA, 1997b) and for developing air quality standards
(U.S. EPA, 1982).
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EXHIBIT B-3
FACTORS TO CONSIDER IN SELECTING A

PROBABILITY DISTRIBUTION*
C Is there a mechanistic basis for choosing a

distributional family?  
C Is the shape of the distribution likely to be

dictated by physical or biological properties or
other mechanisms?

C Is the variable discrete or continuous? 
C What are the bounds of the variable? 
C Is the distribution skewed or symmetric?  
C If the distribution is thought to be skewed, in

which direction?  
C What other aspects of the shape of the

distribution are known?
C How well do the tails of the distribution

represent the observations?

*Source: U.S. EPA, 1997b

Bayesian analysis is a statistical approach that allows the current state of knowledge, expressed
as a probability distribution, to be formally
combined with new data to reach an updated
information state.  In PRA, Bayesian Monte
Carlo analysis (Bayesian MCA) can be used to
determine the reduction in uncertainty arising
from new information.  When combined with
techniques from decision analysis, Bayesian
MCA can help to determine the type and quantity
of data that generally should be collected to
reduce uncertainty.  The benefits and limitations
of expert elicitation, Bayesian statistics, Bayesian
MCA, and decision analysis (i.e., value of
information [VOI]), as applied to PRA, are
discussed in greater detail in Appendix D.

B.5.0 FITTING DISTRIBUTIONS TO DATA

Sometimes more than one probability
distribution may adequately characterize
variability or uncertainty.  The choice of a
distribution should be based on the available data
and on knowledge of the mechanisms or
processes that result in variability.  In general, the
preferred choice is the simplest probability model
that adequately characterizes variability or uncertainty and is consistent with the mechanism underlying
the data.  For example, a log-logistic distribution would not necessarily be selected over a 2-parameter
lognormal distribution simply because it was ranked higher in a GoF test by a statistical software
package.  Some distributions (e.g., normal, lognormal) are well known among risk assessors.  The
statistical properties for these distributions are well understood and the formal descriptions can often be
brief.  

Important factors to consider in selecting a PDF are described in Exhibit B-3.  An initial step in
selecting a distribution should be to determine if the random variable is discrete or continuous. 
Continuous variables take any value over one or more intervals and generally represent measurements
(e.g., height, weight, concentration).  For a continuous variable, a mathematical function generally
describes the probability for each value across an interval.  Discrete variables take either a finite or
countably infinite number of values.  Unique probabilities are assigned to each value of a discrete
variable.  The number of rainfall events in a month is an example of a discrete random variable, whereas
the amount of rainfall is a continuous variable.  Similarly, the number of fish meals per month is a
discrete variable, whereas the average size (mass) of a fish meal is continuous.  

Another important consideration is whether there are plausible bounds or limits for a variable. 
For example, it is highly unlikely that an American adult will weigh less than 30 kg or more than 180 kg. 
Most exposure variables may assume any nonnegative value within a plausible range.  Therefore,
distributions will generally be truncated at a minimum of zero (or higher), or a probability distribution
that is theoretically bounded at a nonzero value may be specified (see Table B-3).  A more detailed
discussion of factors to consider in selecting a PDF and specifying parameter values is provided below.
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B.5.1 CONSIDERING THE UNDERLYING MECHANISM

There may be mechanistic reasons depending on known physical or biological processes that
dictate the shape of the distribution.  For example, normal distributions result from processes that sum
random variables whereas lognormal distributions result from multiplication of random variables.  A
Poisson distribution is used to characterize the number of independent and randomly distributed events in
a unit of time or space.  An exponential distribution would describe the inter-arrival times of independent
and randomly distributed events occurring at a constant rate.  If, instead, the elapsed time until arrival of
the kth event is of interest, then the appropriate probability distribution would be the gamma distribution
(Morgan and Henrion, 1990).

L In all cases, it is incumbent on the risk assessor to explain clearly and fully the
reasoning underlying the choice of a distribution for a given exposure
variable—primarily from a mechanistic standpoint if possible.

Table B-2 lists some of the probability distributions that may commonly be used in PRA.  This is
not an exhaustive list, and the scientific literature contains numerous examples with alternative
distributions.  Where practicable, a mechanistic basis is presented for the choice of the distribution.  For
some distributions, such as beta, triangular, and uniform, a mechanistic basis is not offered because it is
unlikely that a chemical or biological process will yield a random variable with that particular shape. 
Nevertheless, such distributions may be appropriate for use in PRA because they reflect the extent of
information that is available to characterize a specific random variable.  Preliminary distributions are
discussed in Section B.2.0 and Table B-4.  Because many of the distributions given in Table B-2 can
assume flexible shapes, they offer practical choices for characterizing variability.

Table B-2 also illustrates probability distributions (both PDFs and CDFs) commonly used in
PRA.  While intuitively appealing, identifying a mechanistic basis for a distribution can be difficult for
many exposure variables; however, it may be relatively apparent that the variable is bounded by a
minimum (e.g., ingestion rate $ 0 mg/day) and a maximum (e.g., absorption fraction # 100%), or that the
relevant chance mechanism results in a discrete distribution rather than a continuous distribution, as
described above.

For each distribution, one or more examples with different parameter estimates are given to
demonstrate the flexibility in the shape of the PDF.  In addition to the descriptions of the distributions in
Tables B-2, Table B-3 provides a summary of the parameters and theoretical bounds that define the
PDFs.  For a further discussion of characteristics of PDFs see Thompson, 1999.  Figures (a-h)
immediately following Table B-2 present examples of PDFs and the corresponding CDFs for
distributions commonly used in PRA.
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Table B-2.  Examples of Selected Probability Distributions for PRA.

Distribution Mechanistic Basis Example(s)

Beta
Figure (e)

Describes a continuous random variable with
finite upper and lower bounds.  This
distribution can take on very flexible shapes,
but generally does not have a mechanistic
basis.

Absorption fraction bounded by 0 and 100%;
fraction of time an individual spends indoors.

Binomial Describes a discrete random variable produced
by processes that: (1) occur in a fixed number
n of repeated independent “trials”; (2) yield
only one of two possible outcomes (e.g.,
“success” or “failure”) at each trial; and
(3) have constant probability p of “success”.  A
binomial distribution is characterized by
parameters n, p, and x, representing the number
of trials, the probability of success of each
trial, and the number of successes,
respectively.

The number of animals with tumors (or some
other quantitative outcome) in a chronic animal
bioassay.

Exponential
Figure (h)

If instead of counting the number of events in
the Poisson process (below), one measures the
time (or distance) between any two successive,
random, independent events. 

The length of time between two radiation
counts; length of time between major storm
events; distance between impact points of two
artillery shells.

Gamma
Figure (g)

Similar to exponential except that time until
occurrence of the kth event in the Poisson
process is measured (rather than time between
successive events).  Reduces to exponential
when k=1.

Time until kth radiation count; elapsed time until
kth major storm event. 

Lognormal
Figure (b)

Multiplication of a large number of random
variables, or equivalently adding the
logarithms of those numbers, will tend to yield
a distribution with a lognormal shape.

Chemical concentrations in environmental
media; media contact rates; rates and flows in
both fate and transport models.  Because the
basic risk equation is multiplicative,
distributions of risk are generally lognormal.  In
practice, lognormal distributions often provide
good fits to data on chemical concentrations in
a variety of media (Gilbert, 1987; Ott, 1990).

Normal
Figure (a)

Addition of independent random variables,
with no one variable contributing substantially
to the total variation of the sum, will tend to
yield a distribution with a normal shape.  This
result is established by the central limit
theorem.

The “Gaussian Plume Model” for the dispersion
of air pollutants is based on the idea that, at a
micro level, individual parcels of air, or
molecules of pollutants, are subject to many
random collisions from other molecules that act
together as if a large number of random
numbers were being added/subtracted from an
initial 3-dimensional description of a position.
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Poisson Observed when counting the frequency of
discrete events, where the events are
independent of one another, and randomly
distributed in space or time.  Approximates the
binomial distribution when sample size, n, is
large and probability, p, is small.

The number of counts of radiation that occur in
a particular time interval; the release of synaptic
transmitter from nerve cells; the number of
artillery shells falling within a fixed radius; the
occurrence of major storm events in a month;
number of leaks in average length of pipe.

Triangular
Figure ©)

The PDF is shaped like a triangle, with
parameters representing plausible bounds and a
most likely value (i.e., mode).  This is a
“rough” probability model that generally
describes a random variable based on limited
information rather than mechanistic basis.

Variability in shower droplet diameter. 
Uncertainty in the mean air exchange rate in a
shower.

Uniform
Figure (d)

The PDF is shaped like a rectangle, with
parameters representing plausible bounds. 
This is a “rough” probability model that
generally describes a random variable based on
limited information rather than a mechanistic
basis. 

Variability in the air ventilation rate in a house.

Weibull
Figure (f)

Originated in reliability and (product) life
testing as a model for time to failure or life
length of a component when the failure rate
changes with time.  A very flexible model
taking a wide range of shapes.  If the failure
rate is constant with time, the Weibull reduces
to the exponential distribution.

Examples for exponential and gamma would
also be appropriate for Weibull.
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B. 5.2 EMPIRICAL DISTRIBUTION FUNCTIONS (EDFS)

In some cases, an empirical distribution function (EDF) may be preferred over fitting the data set
to a hypothesized distribution.  EDFs, also called empirical cumulative distribution functions (ECDF),
provide a way to use the data itself to define the distribution of the relevant variable.  Briefly, an EDF for
a random variable is described by a step function based on the frequency distribution of observed values. 
An EDF for a continuous random variable may be linearized by interpolating between levels of the
various bins in a frequency distribution.  The CDF for a linearized EDF appears as a line, rather than
steps.  Example B-3 at the end of this Appendix illustrates an EDF, linearized EDF, and beta distribution
("1=0.63, "2=2.85, rescaled to min=0, max=364) fit to percentile data for soil ingestion rates in children
(Stanek and Calabrese, 1995).  A plausible range (i.e., minimum and maximum values) was imposed on
the data set for this example. 

EDFs provide a complete representation
of the data with no loss of information.  They
do not depend on the assumptions associated
with estimating parameters for theoretical
probability models.  EDFs are designed to
provide direct information about the shape of
the distribution, which reveals skewness,
multimodality, and other features of the data
set.  However, EDFs may not adequately
represent the tails of a distribution due to
limitations in data acquisition.  In the simplest
case, an EDF is constrained to the extremes of
the data set.  This may be an unreasonable
restriction if limiting the EDF to the smallest
and largest sample values is likely to greatly
underestimate the distributional tails.  If this is an important source of uncertainty, the risk assessor may
choose to extend the tails of the distribution to plausible bounds or to describe the tails with another
distribution (see Exhibit B-4).  For example, an exponential distribution may be used to extend the tails
based on the last 5% of the data.  This method is based on extreme value theory, and the observation that
extreme values for many continuous, unbounded distributions follow an exponential distribution (Bratley
et al., 1987).  As with other probability models, uncertainty in the plausible bounds of an EDF may be
reduced by obtaining additional information.

Advantages and disadvantages of using EDFs in PRA are discussed in detail in the Report of the
Workshop on Selecting Input Distributions for Probabilistic Assessments (U.S. EPA, 1999a).

B.5.3 GRAPHICAL METHODS FOR SELECTING PROBABILITY DISTRIBUTIONS

Graphical methods can provide valuable insights and generally should be used in conjunction
with exploratory data analysis.  Examples of graphical methods are frequency distributions (i.e.,
histograms), stem-and-leaf plots, dot plots, line plots for discrete distributions, box-and-whisker plots,
and scatter plots (Tukey, 1977; Conover, 1980; Morgan and Henrion, 1990).

L Graphical methods are invaluable for exploring a data set to understand the
characteristics of the underlying population.

EXHIBIT B-4

VARIATIONS OF THE EDF

Linearized - Linearly interpolates between two
observations, yielding a linearized cumulative
distribution pattern.

Extended - In addition to linearizing (see above),
adds lower and upper bounds based on expert
judgment.

Mixed Exponential - Adds an exponential upper
and/or lower tail to the EDF.
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Together with statistical summaries, graphical data summaries can reveal important characteristics of a
data set, including skewness (asymmetry), number of peaks (multi-modality), behavior in the tails, and
data outliers.

Frequency Distribution or Histogram

The frequency distribution, or histogram, is a graphical approximation of the empirical PDF. 
Frequency distributions can be plotted on both linear and log scales.  The general strategy for selecting
the number of bins to partition the data is to avoid too much smoothing and too much jaggedness. 
Equation B-1 (U.S. EPA, 1999a) provides a starting point for estimating the number of bins based on the
sample size (n).

Probability Plotting

Another method that may be used to visualize distributions and estimate parameters is probability
plotting, also referred to as linear least squares regression or regression on ordered statistics.  This
technique involves finding a probability and data scale that plots the CDF of a hypothesized distribution
as a straight line.  The corresponding linearity of the CDF for the sample data provides a measure of the
GoF of the hypothesized distribution.  The general approach involves sorting the sample data in
ascending order and converting the ranks to percentiles.  The percentile value for the ith rank is calculated
according to Gilbert (1987) as:

An alternative formula is provided by Ott (1995):

Plotting positions given by Equations B-2 and B-3 are special cases of the more general formula given by
Equation B-4 (Helsel and Hirsch, 1992):

where a is a constant that varies from 0 (Equation B-3) to 0.5 (Equation B-2).

The percentiles are used to calculate the z-scores, which represent the number of standard
deviations away from the mean that a particular datum lies assuming the data are normally distributed. 
For normal distributions, the data are plotted against the z-scores; for lognormal distributions, the data
are log-transformed and plotted against the z-scores.  In both cases, parameters of the distribution can be
estimated from the least-squares regression line.  When the hypothesized distribution is a poor fit to the
data, p-plots can yield misleadingly low estimates of the standard deviation (Cullen and Frey, 1999). 
Both Gilbert (1987) and Ott (1995) provide excellent descriptions of the use of probability plotting to
derive parameter estimates for a given distribution.  Probability plotting techniques with best-fit lines
have been used to estimate parameters for a wide variety of distributions, including beta, Weibull, and
gamma.
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Cullen and Frey (1999) point out that probability plotting may not be a primary choice for
selecting a fitting distributions because the method violates an important assumption of least squares
regression—independence of the observations (see Appendix A, Exhibit A-5).  This is because the rank-
ordered data are no longer independent.  Nevertheless, this approach may yield good results when the fit
is good and the choice of distributions is somewhat subjective.

B.5.4 PARAMETER ESTIMATION METHODS

As a rule, there are often a number of different methods available for estimating a given
parameter.  The most appropriate method to apply may require judgment, depending on the relative
difficulty in applying a method for a particular parameter, as well as the desired statistical properties of
the method.  The following simple example provides a useful analogy.  Suppose that the parameter of
interest, A, is the total area of an approximately square exposure unit.  If the exposure unit is a perfect
square, and the length of one side (L1) is known, the area would be equal to L1

2 (i.e., for a square, A=Li
2). 

Suppose L is unknown, but two independent measurements, X1 and X2, are available to estimate the
length (see Exhibit B-5).  If it is assumed that the random variable, L, has a probability distribution with
mean :, then the area of the square piece of property is A=:2.  What is a reasonable estimate of the area

(i.e., ) based on X1 and X2?  Three plausible methods for calculating are given below.> >A = µ 2
>µ 2

Because these three estimators will, as a rule, give different answers, it may be useful to set criteria for
selecting which one gives the “best” answer.  Some of the statistical criteria that are used for this purpose
are consistency, efficiency, robustness, sufficiency, and unbiasedness (see Exhibit B-6).  It turns out, each
method is relatively easy to implement, but the third method is preferred because it is a more efficient
estimator.

In many cases, particularly if a model is complex, potential estimators of the unknown
parameters are not readily apparent.  To assist in developing estimators, several general methods have
been developed.  Exhibit B-7 lists some of the more common parameter estimation methods. 

Perhaps the simplest method is the method of matching moments (MoMM), also called the
method of moments.  MoMM is appropriately named, as it involves expressing the unknown parameters
in terms of population moments and then “matching”, or equating the sample moments to the population

EXHIBIT B-5

ESTIMATING THE AREA OF A
HYPOTHETICAL EXPOSURE UNIT

Exposure
Unit

x1

x2
Exposure

Unit

x1

x2
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n

moments.  For example, the sample mean ( )x
and standard deviation (s) are estimators for the
corresponding population parameters (: and F). 

Maximum Likelihood Estimation (MLE)
is a commonly applied method, that is often
thought of as a parameter estimate for which the
observed data are most “likely”.  The likelihood
function is defined for independent continuous
random variables as follows:

L(θ1, θ2,...θk) = ΠΠΠΠ f(x1|θ1, θ2, ..., θk) 
     I=1

The likelihood function is evaluated based on the
product of the PDF for each value of x.  The
parameters of the probability model, (θk), are
chosen to maximize the likelihood function value
and thereby are most likely to produce the
sample data set (Cullen and Frey, 1999).

It has also been demonstrated that MLE
yields estimators that generally have good
properties when evaluated by the criteria listed
above.  In some cases (e.g., for smaller sample
sizes), these estimators are not unbiased;
however, this can often be accounted for by “adjusting” the estimator.  A familiar example of this
adjustment is in estimation of the variance of a
normal distribution.  The MLE for the variance is
biased by a factor of ((n-1)/n), but this is easily
corrected by multiplying the MLE by (n/(–1)). 
For some distributions, calculations of the MLE
are straightforward.  For example, MLE for
parameters of a normal distribution are given by
the mean and standard deviation of the sample
data, the same as MoMM.  MLE for parameters of
a lognormal distribution are given by the mean
and standard deviation of the log-transformed
data, which is different from MoMM.  In general,
MLE calculations are complex, and commercial
software such as @Risk and Crystal Ball® may be
used.  A more detailed discussion of the derivation
and properties of MoMM and MLE can be found in the statistics literature (e.g., Chapter 5 of Mood and
Graybill, 1963; Chapter 9 of Mendenhall and Scheaffer, 1973; Section 6.5 of Law and Kelton, 1991;
Section 5.6 of Cullen and Frey, 1999).  

EXHIBIT B-7

PARAMETER ESTIMATION METHODS

• Method of Matching Moments

• Maximum Likelihood

• Minimum Chi-Square

• Weighted Least-Squares

EXHIBIT B-6

CRITERIA FOR EVALUATING PARAMETER
ESTIMATION METHODS*

Consistency A consistent estimator converges to
the “true” value of the parameter as
the number of samples increases.

Efficiency An efficient estimator has minimal
variance in the sampling distribution
of the estimate.

Robustness A robust estimator is one that works
well even if there are departures from
the assumed underlying distribution.

Sufficiency A sufficient estimator is one that
makes maximum use of information
contained in a data set.

Unbiasedness An unbiased estimator yields an
average value of the parameter
estimate that is equal to that of the
population value.

*Source: Cullen and Frey, 1999
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B.5.5 DEALING WITH CORRELATIONS AMONG VARIABLES OR PARAMETERS

Correlations between exposure variables or between parameters of the probability distribution
may be important components of a probabilistic model.  Correlation is a measure of association between
two quantitative random variables.  Two random variables may either be positively or negatively
correlated.  A positive correlation exists between two variables if the value of X1 increases as the value
of X2 increases.  For example, higher hand dust lead levels have been associated with higher pediatric
blood lead levels (Charney et al., 1980).  A negative correlation exists between two variables if the value
of X1 increases as the value of X2 decreases.  For example, studies suggest the ingestion of soil and dust
particles increases as particle size decreases (Calabrese et al., 1996).

A first step in identifying correlations is to assess the possible physical and statistical
relationships that exist between variables.  In an ecological risk assessment (ERA), for example, the
largest surf scoter (diving duck) does not consume the least amount of food, nor does the smallest surf
scoter consume the greatest amount of food.  Random sampling of body weight and ingestion rate as
separate parameters, however, allows for these two possibilities.  Neglecting a correlation between two
variables may restrict (underestimate) the tails of the ecological Hazard Quotient (HQ) for each chemical
of concern (COC), which are frequently the areas of the distribution of most interest. 

The degree to which correlations affect the output of a risk model depends on: (1) the strength of
correlations between the two variables, and (2) the contribution of the correlated variables to overall
variance in the output (Cullen and Frey, 1999).  Therefore, it is useful to conduct a preliminary
sensitivity analysis to assess the impact of alternative correlation assumptions on the model output.  If the
impact is significant, correlations should be identified and accounted for in the PRA.

There are several approaches to account for dependencies in MCA including: (1) modifying the
model to include the correlation; and (2) simulating dependence between variables for sample generation
(Cullen and Frey, 1999).  Modifying the model is preferred as simulation techniques cannot capture the
full complexity between model inputs.  However, when this is not possible, dependencies between
variables can be simulated and approximated by correlation coefficients and bivariate normal
distributions.

Correlation coefficients are a numerical measure of the strength and direction of the relationship
between two variables.  Sample correlation coefficients measure the linear relationship between
variables.  However, if two variables are from different probability distributions, it is unlikely that they
are linearly related.  Consequently, simulation software programs such as Crystal Ball® and @Risk can
be used to calculate and employ the nonparametric statistic, Spearman’s Rank Correlation Coefficients
(Rho) in simulating correlation between inputs.  Rank Correlation Coefficients measure the linear
dependence not of the data values themselves, but of the rank value of the data.  The ranks indicate
relative positions in an ordered series, not the quantitative differences between the positions.  The
disadvantage of losing information by using the rank values (rather than the actual values) is offset by the
ability to correlate random variables from different distribution types (See Appendix A).

Exhibit B-8 gives an example of a straightforward approach to specifying a rank correlation
between two input variables in a one-dimensional Monte Carlo analysis (1-D MCA) for variability.  A
range of correlations is explored as a form of uncertainty analysis on the distribution of intakes given a
fish advisory of 7.0 :g/day for a chemical.
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EXHIBIT B-8

CORRELATION OF INPUT VARIABLES FOR 1-D MCA OF VARIABILITY

Intake Equation Intake = (CF x IR x FI x EF x ED)/(BW x AT)

Variables Description and Units Units Point Estimate or PDFv

CF concentration in fish ug/kg 25

IR fish ingestion rate kg/meal lognormal (0.16, 0.07)1

FI fraction ingestion from source unitless 1.0

EF exposure frequency meals/yr lognormal (35.5, 25.0)1

ED exposure duration years 30

BW body weight kg 70

AT averaging time days 10950

     1Lognormal PDF parameters: arithmetic mean, standard deviation

< Correlation between IR and EF is suggested by Burger et al. (1999) study of 250 anglers on the Savannah
River, South Carolina.  Moderate correlation (Kendall’s tau=0.17, p=0.04)

< Uncertainty Analysis: 1-D MCA simulations of variability correlating IR and EF using Crystal Ball® 2000
(5,000 iterations, Latin Hypercube sampling).  Spearman rank correlations: 0.10, 0.50, 0.90

Statistics of PDFv for Intake (ug/day) compared to Fish Advisory of 7.0 ug/day

Rank Correlation (r) 0.10 0.50 0.90

Intake Statistics (ug/day)

mean 1.6 1.8 2.0

50th percentile 1.1 1.1 1.1

95th percentile 4.4 5.4 6.5

97.5th percentile 5.7 7.0 9.0

< For this example, only IR and EF are characterized by PDFs.  They contribute approximately equally to the
distribution of intakes.  Positive rank correlations have little effect on the median (50th percentile) of the
output distribution, but tend to widen the tails of the distribution.  Increasing the correlation from 0.10 to
0.90 increases the 90th percentile from 4.4 to 6.5 ug/day, and the 97.5th percentile from 5.7 to 9.0 ug/day.  

< If the fish advisory is 7.0 ug/day, uncertainty in the correlation coefficient may have important
consequences for the risk management decision.
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Correlations may also be specified for parameters of a probability distribution.  This is an
important concept when designing a two-dimensional Monte Carlo analysis (2-D MCA) in which
parameters of the same PDFv might be otherwise be described by independent PDFu’s.  A common
approach for correlating two parameters is to specify a bivariate normal distribution (Nelsen, 1986, 1987;
Brainard and Burmaster, 1992).  A bivariate normal distribution allows for the distribution of one
variable to be sampled conditional on the other.  This is a special case of a joint distribution in which
both x and y are random variables and normally distributed (as the conditional distribution of x or of y is
always normal) (Wonnacott and Wonnacott, 1981).  Example B-4 further explains bivariate normal
distributions and demonstrates this approach applied to coefficients of a simple linear regression model
that relates contaminant concentrations in soil and dust.

The results of correlation analysis should be interpreted with caution.  Two variables may be
associated due to: (1) a dependency between the two variables; (2) chance (two independent variables
appear dependent due to chance in the sampling procedure); and (3) variables not included in the analysis
(lurking variables) are affecting the two variables being analyzed.  Likewise, a low correlation measure
does not necessarily mean the two variables are independent.  As a lurking variable may cause the
appearance of an association between the two independent variables, it may also mask the association
between two dependent variables.

 L Correlation describes a degree of mathematical association, not a causal
relationship between the two variables.  

Efforts to extrapolate or predict correlations outside the range of observed values should also be
done with caution.  For example, there may be a strong linear relationship between age and height in
children; however, it would be inappropriate to apply this correlation to adults.  Additional caution is
needed when correlating more than two factors at a time.  In general, because of the complexity of
specifying a valid covariance matrix when correlating more than two factors at a time, risk assessors may
need to consult a statistician to avoid generating misleading risk estimates.

B.5.6 CENSORED DATA

In order to define the exposure point concentration, estimates of summary statistics
representative of the entire distribution of data are needed (Helsel and Hirsch, 1992).  Censored data
complicate the process of selecting and fitting PDFs and estimating parameter estimates.  A censored
data set is a data set for which measurements above or below a certain threshold are not available.  Left
censored data occurs frequently at Superfund sites, where samples for a number of chemicals are often
below the reporting limit.  A censored datum (often denoted by ND) commonly represents a value of half
of the laboratory reporting limit. 

Three general methods for estimating summary statistics for left censored data sets include:
(1) simple substitution; (2) distributional methods; and (3) robust methods (Helsel and Hirsch, 1992). 
These methods may be evaluated based on the root mean squared error (RMSE) estimate, a measure of 
the difference between the sample statistic (e.g., the sample mean, ) and the true population parameterx
(e.g., population mean, µ).  



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment 
Appendix B  ~ December 31, 2001

Page B-29

N

x

RMSE

N

i µ
µ 2)(

1
−

∑

= =

Methods which yield estimates closer to the true parameter value have lower bias, higher precision, and
lower RMSEs. 

Simple Substitution Methods

Simple substitution methods entail substituting values equal to or lower than the reporting limit
in the data set.  These surrogate values are then included in the calculation of the summary statistics and
in determining the distributional shape of the data set.  Although this method is frequently used, it is
important to understand its limitations; depending on the surrogate value used (e.g., half the reporting
limit) the simple substitution method may yield biased parameter estimates (e.g., low estimates of the
mean) and may yield misleading distributional shapes.  Studies such as those reported by Gilliom and
Helsel (1986) have determined, in terms of the RMSE, that simple substitution methods perform more
poorly than the distributional and robust methods described below. 

Distributional Methods

With distributional methods, the entire data set is assumed to follow a theoretical distribution
(e.g., normal distribution).  Assuming a theoretical distribution, MLE and probability plotting (p-plot)
methods provide summary statistics that best match the reported values of the data and the percentage of
samples below the threshold value.  If the data fit the theoretical distribution exactly, or if the sample size
is large, both MLE and p-plots are unbiased methods.  Often, however, the sample size is small and the
distribution deviates from a theoretical distribution.  In this case, the MLE and p-plot methods may yield
biased and imprecise methods (Hesel and Hirsch, 1992). 

Robust Methods

With robust methods, a theoretical distribution is needed.  A theoretical distribution is fit to the
data above the detection limit by MLE or p-plot methods.  Based on this assumed PDF, the value of the
data points below the detection limit are extrapolated and used in the summary statistics calculation.
Unlike the simple substitution method, these extrapolated values are not estimates for the data points;
rather, they are only used jointly to calculate summary statistics (Hesel and Hirsch, 1992).  The method is
considered robust as it uses the actual values of the sample data, rather than the distribution above the
detection limit. 
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B.5.7 TRUNCATION

Truncation refers to imposing a minimum and/or maximum value on a probability distribution. 
The main purpose of truncation is to constrain the sample space to a set of “plausible values”.  For
example, a probability distribution for adult body weight might be truncated at a minimum value of 30 kg
and a maximum value of 180 kg in order to avoid the occasional selection of an unlikely value (e.g., 5 or
500 kg).  Given the subjectiveness involved in selecting truncation limits, such choices should clearly be
made with caution, and involvement of stakeholders who may be aware of site-specific circumstances. 
For example, there may well be individuals who weigh more than 180 kg and less than 30 kg.  The
purpose for truncating the tails of a distribution is to confine each risk estimate of a Monte Carlo
simulation to a combination of plausible input values.  The advantage of truncating unbounded
probability distributions in PRA is that central tendency and high-end risk estimates will not be biased by
unrealistic values.  The disadvantage is that the original parameter estimates of the nontruncated
distribution are altered by constraining the sample space.  The bias in the parameter estimates increases
as the interval between the minimum and maximum truncation limit is reduced.  For example, a normal
distribution with an arithmetic mean of 100 may be fit to a data set; imposing a truncation limit of
300 may result in a truncated normal distribution with an arithmetic mean of 85.  The relationship
between the truncated and nontruncated parameter estimates can be determined analytically (Johnson et
al., 1995) or approximated using Monte Carlo simulations under both truncated and nontruncated
scenarios.

Table B-3.  Theoretical bounds and parameter values for selected distributions.

Probability Distribution Parameters1 Theoretical Bounds

Normal (:, F) (-4, + 4)

Lognormal (:, F) [0, + 4)

Weibull (", $) [0, + 4)

Exponential ($) [0, + 4)

Gamma (", $) [0, + 4)

Beta ("1, "2, a, b) [a, b]

Uniform (a, b) [a, b]

Triangular (a, m, b) [a, b]

Empirical ( bounded EDF) (a, b, {x}, {p}) [a, b]

1a=minimum, b=maximum, :=mean, F=standard deviation, m=mode, 
"=shape parameter, $=scale parameter, x=value, p=probability

Truncation is typically considered when using unbounded probability distributions (e.g., normal,
lognormal, gamma, Weibull) to characterize variability.  Table B-3 gives the theoretical bounds for
selected probability distributions that may be more commonly used in PRA.  Truncating the minimum
value may also be appropriate for distributions whose minimum is defined as zero (e.g., lognormal,
gamma, Weibull).  Truncation is generally less important when a PDF is used to characterize uncertainty
in a parameter estimate (e.g., arithmetic mean), since distributions for uncertainty are often bounded by
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definition (e.g., triangular, uniform).  Bounded continuous distributions, such as the beta distribution or
empirical distribution (see Section B.5.2) are not subject to the parameter bias of truncation, although
plausible minimum and maximum values must still be identified. 

Identifying appropriate truncation limits that reflect “plausible bounds” for an exposure variable
will often require judgment.  Given that most data sets represent statistical samples of the target
population, it is unlikely that the minimum and maximum observed values represent the true minimum
and maximum values for the population.  However, there may be physiological or physical factors that
can aid in setting plausible truncation limits.  For example, the maximum bioavailability of chemicals in
the gastrointestinal (GI) tract is 100%.  Similarly, the solubility of chemicals in aquatic environments
(accounting for effects of temperature) will generally be less than the chemical solubility in water free of
particulates.

In general, sensitivity analysis can be used to determine if truncation limits are an important
source of parameter uncertainty in risk estimates.  For exposure variables in the numerator of the risk
equation, the maximum truncation limit is of greatest concern.  For exposure variables in the
denominator of the risk equation, the minimum truncation limit is of greatest concern.  Details regarding
the fit of the tails of the probability distribution and the effect of truncation on the parameter estimates
should generally be included in the workplan.

B.6.0 ASSESSING QUALITY OF THE FIT

The quality of the fit of a distribution may be evaluated in several ways.  Standard statistical
approaches are available to test the fit of a theoretical distribution to a data set (i.e., GoF tests).  In
addition, alternative choices for distribution shapes and plausible bounds might be explored as a form of
sensitivity analysis.  Together with graphical exploration (Section B.5.3), this information may be useful
when deciding whether or not to incorporate a specific type of distribution for an exposure variable into a
PRA.  

L GoF tests are one tool among several to assess the quality of a distribution.

Although GoF testing is a necessary part of distribution fitting, and tests are readily available with
commercial software, it is less important than mechanistic considerations or graphical data exploration
for choosing a candidate distribution.  Examples of GoF tests are discussed below, and cautions
regarding GoF are outlined in Section B.6.3.

B.6.1 WHAT IS A GOODNESS-OF-FIT TEST?

Goodness-of-fit (GoF) tests are formal statistical tests of the hypothesis that the data represent an
independent sample from an assumed distribution.  These tests involve a comparison between the actual
data and the theoretical distribution under consideration. 

In statistical hypothesis testing the null hypothesis (H0) is assumed to be true unless it can be
proven otherwise.  The “evidence” upon which we base a decision to reject or not to reject H0 is a
random sample.  Typically, we seek to reject H0 in favor of Ha.  For example, with the two sample t-test,
the null hypothesis is that the means of two populations are equal (not different) and the alternative is
that they are different.  This is expressed as:  
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Most often, the hypothesis test is used to show that the means are not equal (i.e., reject H0 in
favor of Ha) in order to state that there is a significant difference between the two populations at a
specified significance level (e.g., "=0.05).  Thus, the hypothesis test is often referred to as a significance
test.

The p-value in a statistical test is calculated from a sample and represents the probability of
obtaining a value of the test statistic as extreme or more extreme as the one observed if H0 is in fact true. 
When the p-value is small it means either the null hypothesis is not true, or that we have witnessed an
unusual or rare event (by chance we drew an unusual sample that resulted in the extreme value of the test
statistic).  Often a value of 0.05 or 0.01 is designated as a cutoff, or significance level ".  If the p-value is
(e.g., p < 0.05), the null hypothesis is rejected in favor of the alternative, and we state that the test result
is statistically significant at level ".  This does not mean that we have proven Ha is true.  Rather, we are
saying that based on our sample results, it is unlikely that H0 is true.  

In a GoF test, the hypothesis test is set up the same way as a “traditional” hypothesis test, but the
outcome is viewed a little differently.  In GoF tests, we generally seek to fail to reject H0 because the null
hypothesis states that the data were obtained from a population described by the specified distribution
(F0).  The alternative hypothesis is that the data were obtained from a population described by a different
distribution.  In most applications of GoF techniques, the alternative hypothesis is composite—it gives
little or no information on the distribution of the data, and simply states that H0 is false (d’Agostino and
Stephens, 1986).  This can be expressed as:

where F0 is a specific continuous distribution function, such as the CDF for a normal distribution.

L GoF tests do not prove that the population is described by the specified
distribution, but rather that this assumption could not be rejected.  

In general, p-values provide one metric of evaluating the fit of the distribution.  For example, a p-value of
0.06 indicates that the null hypothesis (i.e., the assumption of a specified distribution) cannot be rejected
at "=0.05.  Larger p-values indicate a better fit and stronger evidence that the distribution specified by
the null hypothesis may be appropriate.  This guidance does not recommend an arbitrary cutoff for the
p-value.  A risk assessor performing a GoF test generally should report the p-value and whether the fit is
considered “good” or “poor”.  
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B.6.2 WHAT ARE SOME COMMON GOODNESS-OF-FIT TECHNIQUES?

The following GoF tests can also be found in most general statistical and spreadsheet software. 
Both Crystal Ball® and @Risk software present the results of chi-square, K-S, and Anderson-Darling
tests in their fitting routines. 

Shapiro-Wilk Test

The most widely used GoF test in risk assessment is the Shapiro-Wilk test for normality (Gilbert,
1987).  This simple hypothesis test can determine whether or not a small data set (n # 50) is normally
distributed.  The test can also be run on log-transformed data to assess whether the data are lognormally
distributed.  D'Agostino's test may be used for samples sizes larger than those accommodated by the
Shapiro-Wilk test (i.e., n > 50) (d’Agostino and Stephens, 1986).  In addition, Royston (1982) developed
an extension of the Shapiro-Wilk test for n as large as 2000 (Gilbert, 1987).  

Probability Plot Correlation Coefficient Test

The correlation coefficient r (or the coefficient of determination, r2) between the data and the
z-scores of a normal probability plot (Filliben, 1975; Helsel and Hirsch, 1992) is similar to the W statistic
of the Shapiro-Wilk test.  A detailed comparison of the Shapiro-Wilk test and the product correlation
coefficient test is given by Filliben (1975) and d’Agostino and Stephens (1986).  Helsel and Hirsch
(1992) summarize critical r* values derived by Looney and Gulledge (1985) for the probability plot
correlation coefficient test.

Chi-Square Test

The chi-square test is a general test that may be used to test any distribution (continuous or
discrete), and for data that are ordinal (e.g., categories such as high/medium/low).  Chi-square is a
measure of the normalized difference between the square of the observed and expected frequencies.  For
example, by constructing a frequency distribution of the data with k adjacent bins, j=1...k, the number of
data points in the jth bin can be compared with the expected number of data points according to the
hypothesized distribution.  Note that in the case of continuous, unbounded distributions (e.g., normal),
the first and last intervals may include [- 4, a1] or [ak, + 4] (Law and Kelton, 1991).  The chi-square test
is very sensitive to the chosen number and interval width of bins—different conclusions can be reached
depending on how the intervals are specified.  Strategies for selecting bins (e.g., setting interval widths
such that there are no fewer than 5 data points expected per bin) are given in the statistical literature
(d’Agostino and Stephens, 1986; Law and Kelton, 1991).  The test statistic is compared with a value of
the chi-square distribution with (k - r - 1) degrees of freedom, where k is the number of sample values
and r is the number of parameters of the hypothesized distribution.  As described in Section B.6.1, in
general, higher p-values suggest better fits.

Kolmogorov-Smirnov (K-S) Test

The K-S test is a nonparametric test that compares the maximum absolute difference between the
step-wise empirical CDF and the theoretical CDF.  Because the maximum discrepancy is compared with
the test statistic, K-S is sometimes referred to as a supremum test (Cullen and Frey, 1999).  In general,
lower values of the test statistic indicate a closer fit.  The K-S test is most sensitive around the median of
a distribution, and, hence, it is of little use for regulatory purposes when the tails of distributions are most
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generally of concern (U. S. EPA, 1999a).  Although it does not require grouping data into bins like the
chi-square test, critical values for the K-S test depend on whether or not the parameters of the
hypothesized distribution are estimated from the data set (Gilbert, 1987; Law and Kelton, 1991).  The
Lilliefors test was developed to surmount this problem when the hypothesized distribution is normal or
lognormal (Gilbert, 1987).

Anderson Darling Test

The Anderson-Darling test assesses GoF in the tails (rather than the mid-ranges) of a PDF using
a weighted average of the squared differences between the observed cumulative densities.  The
Anderson-Darling test is sometimes referred to as the quadratic test (Cullen and Frey, 1999).  The test
statistic should be modified based on sample size prior to comparison with the critical value.  Like the
K-S test, in general, lower values of the test statistic indicate a closer fit (i.e., if the adjusted test statistic
is greater than the modified critical value for a specified ", the hypothesized distribution is rejected). 
The Anderson-Darling test may be particularly useful because it places more emphasis on fitting the tails
of the distribution.

B.6.3 CAUTIONS REGARDING GOODNESS-OF-FIT TESTS

There are many statistical software programs that will run GoF tests against a long list of
candidate distributions.  It is tempting to use the computer to make the choice of distribution based on a
test statistic.  However, GoF tests have low statistical power and often provide acceptable fits to multiple
distributions.  Thus, GoF tests are better used for rejecting poorly fitting distributions than for ranking
good fits.  In addition, for many distributions, GoF statistics lack critical values when the parameters are
unknown (i.e., estimated from the data).  In practice, this limitation is often discounted and the critical
values are interpreted as a semi-quantitative measure of the fit.  It is most appropriate to form an idea of
the candidate distributions based on some well reasoned assumptions about the nature of the process that
led to the distribution, and then to apply a GoF test to ascertain the fit (U.S. EPA, 1999a).  Whenever
possible, mechanistic and process (i.e., phenomenologic) considerations should inform the risk assessor's
choice of a particular distribution rather than the results of a comparison of GoF tests (Ott, 1995).  In
addition, the value of graphical evaluations of the fit cannot be overstated.

B.6.4 ACCURACY OF THE TAILS OF THE DISTRIBUTION

The tails of a distribution (e.g., < 5th and > 95th percentiles) for an input variable are often of
greatest interest when characterizing variability in risk.  Distributions fit to data may not characterize the
tails of the distribution in a way that represents the target population.  In general, the importance of
uncertainty in the fit of the tails of particular distributions should be determined on a site-specific basis. 
For exposure variables in the numerator of the risk equation, the upper tail is of greatest concern.  For
exposure variables in the denominator of the risk equation, the lower tail is of greatest concern.  

The tails of the input PDFs generally have a significant influence on the tails of the risk
distribution, especially for those variables that are ranked highest in a sensitivity analysis.  Different
distributions may share the same mean and variance, but assume very different shapes.  Experiments with
Monte Carlo simulations have demonstrated that the shape of the input PDFs may have a minimal effect
on the risk estimates in the tails of the probability distribution when the mean and variance of the input
PDFs are held constant (Hoffman and Hammonds, 1992; Finley and Paustenbach, 1994).  Nevertheless, it
is generally a good practice in PRA to demonstrate that alternative choices of PDFs do not have a
significant effect on percentiles in the RME risk range.
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A common question when developing and evaluating Monte Carlo models is, “How many
iterations is enough?”.  Since Monte Carlo sampling is approximately random, no two simulations will
yield the same results (unless the same starting point, or seed, of the random number generator is used). 
A rule of thumb is that the stability of the output distribution improves with increasing numbers of
iterations, although there will always remain some stochastic variability.  The stability is generally better
at the central tendency region of the output distribution than at the tails; therefore, more iterations may be
needed when the risk management decision is associated with the higher percentiles
(e.g., > 95th percentile).  Risk assessors are encouraged to run multiple simulations (with the same inputs)
using different numbers of iterations in order to evaluate the stability of the risk estimate of concern.  The
results of such an exercise should generally be reported to the Agency when submitting a PRA for
review.  Note that while the speed of modern computers has essentially eliminated the issue for
1-D MCA (e.g., 10,000 iterations of most 1-D MCA models can be run in less than 1 minute), it may still
be an important issue for more complex modeling approaches such as Microexposure Event analysis
(MEE) and 2-D MCA (see Appendix D).

B.7.0 SELECTING PROBABILITY DISTRIBUTIONS BASED ON STATE OF KNOWLEDGE

Table B-4 summarizes preliminary strategies for proceeding with a PRA based on the amount of
available information.  Recommended starting points for each of the three steps in the general process are
provided.  This table provides guidance on candidate distributions that are consistent with the available
information, however, it is not intended to discourage the use or exploration of alternative choices.

L Table B-4 provides recommended preliminary strategies, not steadfast rules. 
As an analyst works through the PRA, alternative distributions, estimation
methods, consideration of mechanism, and GoF tests may better guide the
selection process.  

Case 1 represents the best scenario, in which the analyst has access to the raw data and a
sufficiently large sample size (or > 6 percentiles).  In this case, the analyst has a variety of choices for
distribution fitting and estimating parameters.  However, frequently raw data are inaccessible to the
analyst.  Cases 2 and 3 have limited information available (i.e., mean and upper percentile) and,
therefore,  have a narrower set of starting points.  Case 4 is the most extreme scenario of data availability
requiring expert judgment on selecting and fitting distributions.
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Table B-4.  Strategies for conducting PRA based on available information.  Preferred methods in Case 1 (most
information) are identified by an asterisk (*).

Evaluation Step Case 1 Case 2 Case 3 Case 4

                                  Decreasing Information

Data
Availability

raw data of sufficiently
large sample size
                 or
six or more percentiles

three to five statistics two statistics one statistic

Selection of
Distribution Type

Nonnegative Continuous
any in this category

Bounded
beta, Johnson’s SB

Nonnegative Continuous
lognormal, gamma, Weibull

Bounded
beta, Johnson’s SB

case-by-case
basis using
expert judgment

Selection of
Parameter
Estimation /
Fitting Method

maximum likelihood*
regression methods
matching moments

minimize average
absolute percent error
(MAAPE) for 
available statistics

exact agreement
between 2-parameter
PDF and available
statistics

Assessment of 
Quality of Fit

Graphical Assessment
   P-log Q plot*, P-Q plot*

residual % error plot*
P-P plot, Q-Q plot 

GoF Tests
Anderson-Darling*
K-S
Chi-square

Graphical Assessment
P-log Q plot, P-Q plot

GoF Test
Chi-square,

   Estimate p-value for      
   MAAPE using 
   parametric bootstrap (if 
   sample size is known)

Graphical Assessment
judgment based on
comparative analysis of
PDFs and CDFs

Estimation of
Parameter
Uncertainty

Large Sample
asymptotic normality 

   assumption
Medium Sample

nonparametric bootstrap 
Small Sample

parametric bootstrap

Parametric bootstrap
generate random samples using the fitted distribution
(if sample size is known)
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EXAMPLES OF FITTING DISTRIBUTIONS USING 
GRAPHICAL METHODS, GOODNESS-OF-FIT, AND PARAMETER ESTIMATION

Example B-1.  Empirical Distribution Function (EDF) for Soil Ingestion Rates

This hypothetical example illustrates how graphical methods can be used to select probability
distributions for variability based on percentile data reported in the literature.  Table B-5 gives the
summary statistics that are reported by Stanek and Calabrese (1995) for average daily soil ingestion rates
among young children.  Three options are explored for selecting a distribution: (1) empirical distribution
function (EDF) represented by a step function; (2) linearized and extended EDF; and (3) continuous
parametric distributions (beta and lognormal).

In order to specify an EDF, a plausible range (minimum and maximum) must be inferred using
judgment.  Exposure factors such as ingestion rate are nonnegative variables (i.e., minimum $0); given
the relatively low value for the 25th percentile (10 mg/day), it is assumed that 0 mg/day is a reasonable
minimum value for this example.  If children with pica for soil are excluded from the population of
concern, the maximum value may be inferred from the relatively shallow slope at the high-end of the
distribution.  That is, the 90th percentile is reported as 186 mg/day while the 99th percentile is 225 mg/day,
an increase of only 39 mg/day; it is assumed that 300 mg/day is a plausible maximum value for this
example.  Commercial software such as Crystal Ball® and @Risk can be used to input EDFs.  Figure B-3
illustrates the basic step-wise EDF represented by the reported percentile values, as well as the
“linearized, extended EDF” (i.e., linear interpolation between reported values and extended lower and
upper tails).  

An alternative to relying on a linear interpolation between the percentile values is to fit a
continuous probability distribution to the reported percentiles.  Since the original data are unavailable,
standard GoF tests for the EDF, such as K-S and Anderson-Darling (d’Agostino and Stephens, 1986),
cannot be applied.  Note that computer software (e.g., Crystal Ball®, @Risk) will provide test statistics
and corresponding p-values, however, these results will (inappropriately) reflect the number of percentile
values reported rather than the sample size of the original data.  Nevertheless, graphical methods may be
employed to assess the adequacy of the fit of various PDFs.  In this example, a beta distribution and
lognormal distribution were fit to the EDF using Crystal Ball®.  Figure B-4 illustrates the selected
statistics for both distributions.  

The beta distribution appears to more closely match the reported percentile values, especially at
the upper tail of the distribution.  The lognormal distribution has an unbounded maximum that, for this
example, results in an extreme overestimate of the 95th and 99th percentiles.  The beta distribution, by
definition, is bounded at 0 and 1, and rescaled in this example to a maximum of 364 mg/day.  This
analysis would support the use of a beta distribution in a Monte Carlo simulation.
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Figure B-3.  Comparison of step-wise EDF and linearized EDF for ingestion rate.  The upper and lower tails of both
distributions are extended to a plausible range of [0, 300] mg/day.

Table B-5.  Selected statistics for reported and fitted distributions for ingestion rate (mg/day).
Summary
Statistic

Reported
Values

Linearized,
Extended EDF

Beta
Distribution1

Lognormal
Distribution2

minimum -- 0 0 0
25th percentile 10 10 13 11
50th percentile 45 45 44 31
75th percentile 88 88 100 86
90th percentile 186 186 165 216
95th percentile 208 208 205 375
99th percentile 225 225 322 3346

maximum -- 300 364 + 4

1Parameters of best-fit beta distribution: "1=0.63, "2=2.85, min=0, max=364.
2Parameters of best-fit lognormal distribution: :=97.6, F=291.8.
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Figure B-4.  Graphical assessment of beta and lognormal distributions fit to the cumulative
distribution reported in the literature (circles).  The beta distribution provides a closer fit to the
percentile values in this example.

.
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Example B-2.  Variability in Lead Concentrations in Quail Breast Tissue

This hypothetical example demonstrates how the combination of graphical methods, GoF tests,
and parameter estimation techniques provides strong evidence for selecting and fitting a lognormal
distribution.  Assume lead concentration in quail is an important variable for a food web model.  Site-
specific data (n=62) are used to estimate inter-individual variability in concentration (Table B-6).  The
histograms in Figure B-5 show lead concentrations in quail breast tissue collected near a settling pond at
a plating works.  Equation B-1 indicated that 7 bins is an appropriate starting point.  The result (top left
panel, Figure B-5) suggests that approximately 80% of the values are < 200 ppm and that the probability
distribution for variability may be described by a nonnegative, right-skewed distribution (e.g.,
exponential, Weibull, lognormal, etc.).  However, additional bins are needed to better understand the
low-end of the distribution.  After increasing the number of bins from 7 to 16 (top right panel,
Figure B-5), graphical evaluation continues to suggest that the distribution is unimodal right skewed. 
The bottom panel of Figure B-5 illustrates that increasing the number of bins would not provide better
resolution of the low-end of the distribution.  For these data, 16 bins appear to provide a reasonable
balance between too much smoothing and too much jaggedness.

Probability plots can be used to visually inspect the GoF of a specified distribution to the data,
and, because the hypothesized distribution yields a straight line, the plots are particularly useful for
evaluating deviations at the tails.  In addition, parameter estimates can be obtained from the regression
lines fit to the data, as discussed below.  For this example, two lognormal probability plots are explored
to evaluate how well the data can be described by a lognormal distribution (Figure B-6).  The top panel
gives the z-score on the abscissa (the “x” axis) and ln[concentration] on the ordinate (the “y” axis), while
the bottom panel gives ln[concentration] on the abscissa and z-score on the ordinate.  Plotting positions
for both methods were calculated using Equation B-2.  Equally plausible parameter estimates can be
obtained from regression lines using either plotting method; however, the approach shown in the top
panel may be easier to implement and interpret.

Despite the relatively large sample size of n=62, GoF tests generally fail to reject lognormality
(i.e., normality of the log-transformed data) in this example.  For the probability plot correlation
coefficient test (Filliben, 1975; Looney and Gulledge, 1985), if r < r* (the value for r at a specified "),
normality is rejected.  For this example, r is 0.988, and r* is between 0.988 and 0.989 for n=62 and
"=0.25; therefore, the p-value for the concentrations is approximately 0.25 and one fails to reject
lognormality at " # 0.25.  D’Agostino’s test yields essentially the same conclusion, with a calculated
Y value of -1.9166.  For this data set, with n=62 and "=0.10, one rejects normality if Y < -2.17 or
Y > 0.997 (see Table 9.7 in d’Agostino and Stephens, 1986); therefore, since Y is within this interval, one
fails to reject the normal distribution.  However, for "=0.20, the rejection criteria is [Y < -1.64 or
Y > 0.812], Y falls outside the low-end of the interval, resulting in a rejection of the normal distribution. 
For this data set, the p-value associated with d’Agostino’s test is slightly less than 0.20 and one fails to
reject normality at  " < 0.20.



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment 
Appendix B  ~ December 31, 2001

Page B-41

0

2

4

6

8

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

Lead in Muscle (ppm)

0.00

0.03

0.06

0.10

0.13

Fr
eq

ue
nc

y

Pr
ob

ab
ili

ty

0

10

20

30

40

50

60

0
20

0
40

0
60

0
80

0
10

00
>12

00

Lead in M uscle (ppm)

0.00

0.16

0.32

0.48

0.65

0.81

0.97

Fr
eq

ue
nc

y

Pr
ob

ab
ili

ty

7 Bins

0

10

20

30

40

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

>1
60

0

Lead in M uscle (ppm)

0.00

0.16

0.32

0.48

0.65

Fr
eq

ue
nc

y

Pr
ob

ab
ili

ty

16 Bins

Table B-6.  Sample values of lead concentration (ppm) in quail breast muscle (n=62).
0.45 15.8 36.6 57 91 173 265

2.1 16 40 59.6 94.2 175.6 322
5.4 16.7 40.1 61.4 99 176 490
7.8 21 42.8 62 107 177 663.4
7.8 23 44 64 109 205 703
8.8 24 46 64 111 239 1231

11.8 24.8 47 84.6 149 241 1609
12 29.2 49 86.6 149 245 1634
15 35.5 53 86.8 154 264

Figure B-5.  Histograms of lead concentrations in quail breast muscle (n=62).  The top left panel shows the result
with seven bins; the top right panel shows the result with sixteen bins; the bottom panel uses bin widths of 10 ppm
to highlight the lower tail (< 250 ppm) of the distribution.
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Different methods for obtaining the parameter estimates for the lognormal distribution can be
explored in this example.  For the lognormal distribution, MLE and MoMM simply require calculating
the mean and standard deviation of the log-transformed sample data.  For the lognormal probability plot
method, the parameters can be obtained directly from the least squares regression line expressed as
follows:

such that exponentiating the intercept will give the geometric mean (GM) and exponentiating the slope
will give the geometric standard deviation (GSD) (see Footnote 3 of Table B-7).  Both the MLE and
MoMM estimates will generally match the arithmetic mean of the log-transformed data (i.e., intercept)
determined from lognormal probability plots; however, estimates of the standard deviation (i.e., slope)
will vary (Cullen and Frey, 1999).  In general, the probability plot method yields estimates of the
standard deviation that are less than or equal to that of MoMM and MLE, and the results yield closer
estimates as the correlation coefficient of the probability plot increases (Cullen and Frey, 1999). 
Table B-7 summarizes the parameter estimates using MLE, MoMM, and the two lognormal probability
plotting techniques described above.  The corresponding parameter estimates for the untransformed data
are also presented.  

In this example, the strong linearity of the probability plots (r2=0.98) shown in Figure B-6 is an
indication that a lognormal distribution is a reasonable model for describing variability in concentrations. 
The tails of the distributions fit the data fairly well, although the bottom panel suggests that the
lognormal distribution slightly overestimates the lower tail.  Furthermore, the parameter estimates of the
lognormal distribution using probability plotting closely match the estimates using MLE and MoMM.

Table B-7.  Parameter estimates for lognormal distribution of lead concentrations (ppm).

Parameter Estimation
Method

Log-transformed
Data

Untransformed
Data3

Arithmetic
mean [ ]�µ

Arithmetic
stdev [ ]<σ

Arithmetic
mean [ ]�µ

Arithmetic
stdev [ ]<σ

Maximum Likelihood
Estimate (MLE) 4.175 1.522 207 626

Method of Matching
Moments (MoMM) 4.175 1.522 207 626

Log Probability Plot1 4.175 1.507 203 597
Log Probability Plot2 4.175 1.543 214 670

1Least squares regression line for Figure B-6, top panel.
2Least squares regression line for Figure B-6, bottom panel.
3For a lognormal distribution, the following equations can be used to convert parameters of the normal distribution of
log-transformed data to corresponding parameters of the lognormal distribution of untransformed data.  Assume :* and
F* are the arithmetic mean and standard deviation, respectively, for the normal distribution of log-transformed data.
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Figure B-6.  Lognormal probability plots of lead in quail breast tissue.  Top panel gives z on the abscissa and
ln[concentration] on the ordinate.  Bottom panel gives concentration (log scale) on the abscissa and z on the
ordinate.  Equally plausible parameter estimates can be obtained from regression lines using either plotting
method.  Bottom panel requires an additional step to express the equation that yields parameter estimates
[ln(x)=(slope) z + (y-intercept)], where the slope estimates the standard deviation of ln(x) and the y-intercept
(at z=0) estimates the arithmetic mean of ln(x). 
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Example B-3.  Variability in Meal Sizes Among Consuming Anglers

A creel survey of anglers consuming contaminated fish was performed to estimate variability in
fish meal sizes.  The anglers were asked how many people would eat their fish.  The lengths of the fish
were measured and a regression equation was used to calculate the corresponding weights.  The portion
of the fish mass that is consumed was assumed to be 40% (e.g., fillets).  Results given in Table B-8 are
expressed in units of grams of fish per meal.

The appearance of the histograms (Figure B-7)
suggests that the sample (n=52) may have been selected from
a single distribution.

A normal probability plot of the meal sizes
(Figure B-8) shows a departure from linearity.  Specifically,
there appears to be a “kink” in the probability plot at about
400 g/meal, suggesting that the sample may have been
obtained from two unique distributions.  Both the Filliben 
test and Shapiro-Wilk test indicated a significant departure
from normality at "=0.01.  Parameters may be read directly
from the equations of the regression lines on the right hand
panel of the graph.  MoMM and MLE gave similar estimates.

Figure B-7.  Histograms of meal size (n=52) among consuming anglers.  Left panel uses 7 bins, while the right
panel uses 14 bins.

Table B-8.  Meal size (g/meal) (n=52).
65 182 310 405
74 208 314 415
74 221 318 416
77 226 318 477
90 241 327 531

110 248 332 572
111 253 336 608
133 260 337 745
143 261 350 831
150 281 351 907
163 303 360 1053
163 305 365 1189
174 305 390 1208
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Example B-4.  Bivariate Normal Distributions

This example introduces the bivariate
normal distribution to illustrate two concepts: (1) use
of information on correlations in a Monte Carlo
simulation; and (2) specifying distributions for
uncertainty in parameter estimates.  A brief
explanation of the bivariate distribution is presented
followed by an example comparing assumptions of
no correlation and perfect correlation.  A less
complex example of a method for addressing
correlations in PRA is given in Exhibit B-8.

Properties of a Bivariate Normal Distribution

One approach that can be used to correlate
two random variables is to specify a bivariate normal distribution, which allows for the distribution of
one variable to be sampled conditional on the other.  A bivariate normal distribution is a special case of a
joint distribution in which both x and y are random independent normally distributed variables.  A
bivariate normal distribution can be specified for all correlation coefficients including ρ=0, ρ=1, and
ρ=−1.  The bivariate distribution has a three dimensional shape and for ρ=0, from a bird’s-eye view, is
perfectly circular.  As correlation increases (i.e. moves towards -1 or 1) this circle narrows and flattens to
an elliptical shape, and finally for perfect correlation →=1 and ρ=-1) becomes a straight regression line
with a r2=1.  In three dimensional space the probability of obtaining measurement pairs (x, y) in the
region is equal to the volume under the surface in that region.  To completely specify the bivariate
normal, estimates of the arithmetic mean and variance of the two parameters, as well as the correlation
coefficient (:X and :Y, variances F2

X and F2
Y , and correlation coefficient D) are needed.

Figure B-8.  Probability plot of meal size data from consuming anglers.  The left panel shows the combined
data, with a departure from linearity at ~ 400 g/meal.  The right panel shows the data split between high
consumers (top line) and low consumers (bottom line); note that separate lognormal probability plots were
reconstructed for both subsets of the data.  The point at which to “split” the distribution in the left panel is
somewhat subjective.  The break would be more obvious if the two distributions did not overlap.

THIS EXAMPLE PRESENTS...

• Description of the assumptions associated
with the bivariate normal distribution

• Guidance on simulating the bivariate normal
distribution for two random variables

• Application of bivariate normal to a simple
linear regression equation relating
contaminant concentrations in soil and dust
(see Figure B-9).  Results are compared to
the assumption of no correlation and perfect
correlation
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X ZX X= + ×µ σ 1 Equation B-8

Y ZY Y= + ×µ σ 2 Equation B-9

In a bivariate normal distribution, values of y corresponding to each value of x follow a normal
distribution (Snedecor and Cochran, 1989).  Analogously, the values of x corresponding to each value of
y follow a normal distribution.  Furthermore, if two random variables, X and Y, jointly follow a bivariate
normal distribution, the marginal distribution of X is normal with mean :X and variance F2

X, and the
marginal distribution of Y is normal with mean :Y and variance F2

Y.

Conditional Distributions

Assume we are interested in the conditional distribution of X given a certain value for Y.  For
example, if X and Y are positively correlated, we would expect that relatively high values of X tend to
correspond with relatively high values of Y.  The conditional distribution of X given that Y=y, where y
represents a specific value for the random variable Y, is a normal distribution with:

Likewise, the conditional distribution of Y given that X=x, is also normal with:

These general equations can be used to generate a correlated pair (X, Y), as described below. 

*Note that the mean of the conditional distribution of X is a function of the given value of Y but the
variance depends only on the degree of correlation.  

General Approach for Correlating X and Y

To generate a correlated pair (X, Y), first generate X using a random value Z1 from the standard
normal distribution:

Next, express Y as a function of the conditional mean and variance of Y given X and a second standard
normal variate Z2:
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and generate a correlated Y by plugging Equation B-7 into Equation B-9.  Using algebra, the combined
equations yield the following simplified expression for generating Y:

The important component of this equation is that two
random variates are needed (Z1 and Z2).

An alternative, but less general approach
would be to obtain Y by first generating a normal
variate X (Equation B-8) and then plugging that
value into the regression equation of Y on X to obtain
the associated value of Y.  While this method
maintains a correlation between X and Y, it will
underestimate parameter uncertainty.  The results are
equal only for the special case of perfect correlation
(D=1.0) between X and Y.  Therefore, the more
general bivariate normal distribution approach (given
by Equations B-8 to B-10) is recommended for
correctly correlating X and Y because it provides a
more robust estimate of parameter uncertainty.

Application of Bivariate Normal Distribution to
Correlate Concentrations of Zinc in Soil and Dust

Assume random sampling of soil and dust zinc concentrations occurs in a residential area. 
Composite samples of soil and dust are collected from 21 locations such that samples are paired (i.e.,
each soil sample is co-located with a dust sample) (Table B-9).  First the relationship between the zinc
concentration in soil and dust is evaluated using simple least-squares regression.  Next, the bivariate
normal distribution for the slope ($1) and intercept ($0) is determined, yielding an arithmetic mean and
standard deviation for each parameter (:b0, F2

b0, :b1, and F2
b1), and correlation coefficient D between $1

and $0.  In this context, the bivariate normal distribution may be considered a distribution for uncertainty
in the parameter estimates.

Three simulation methods are employed to demonstrate the effect of assuming a bivariate normal
distribution for parameters vs. perfect correlation, or independent parameters.  Specifically:

(1) The slope and intercept of the regression line are described by a specific form of the bivariate
normal distribution (i.e., follow Steps 1, 2 in Exhibit B-9, and use Equation B-10 instead of
Step 4).

(2) The slope and intercept of the regression line are described by a general form of the bivariate
normal distribution (i.e., follow Steps 1 to 4 in Exhibit B-9).

(3) The slope and intercept of the regression line are described by independent normal distributions
(i.e., follow Steps 1–4 in Exhibit B-9, but omit the correlation coefficient D in Steps 2 and 4).

EXHIBIT B-9

STEPS FOR SIMULATING UNCERTAINTY IN
LINEAR REGRESSION EQUATION USING A
BIVARIATE NORMAL DISTRIBUTION TO

CORRELATE PARAMETERS (#0, #1)

(1) Select Z1 from a standard normal distribution
Z~ N(0, 1)

(2) Calculate $0 using Equation B-8, where X=$0,
:x=:b0, and F2

x=F2
b0

(3) Select Z2 from a standard normal distribution
Z~ N(0, 1)

(4) Calculate $1 using Equation B-10, where
Y=$1, :y=:b1, F2

y=F2
b1, D=correlation between

$0 and $1
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For each approach, Monte Carlo simulations with I=5,000 iterations were run to determine the
set of parameter values ($0, $1) for a simple linear regression equation.  Typically, the uncertainty in the
parameter estimates is not accounted for when simple linear regression equations are used to relate to
exposure variables in a model.  Such an approach may fail to account for important sources of parameter
uncertainty.  Figure B-10 (middle panel) illustrates the preferred approach for characterizing parameter
uncertainty based on the bivariate normal distribution. (Note that the correlation coefficient relating the
intercepts and slopes generated from the simulation is consistent with the correlation coefficient that
describes the bivariate normal distribution; this is a good check that the simulation was set up correctly
and run for a sufficient number of iterations). These results are contrasted with results using a form of the
bivariate normal (Equation B-10) that underestimates uncertainty (top panel) unless parameters are
perfectly correlated.  In addition, the simplistic approach of sampling from independent normal
distributions (bottom panel), yields a “shot gun” scatter plot.  Sampling from independent normal
distributions results in unlikely extreme combinations of the slope and intercept more often than the
correct bivariate normal approach; propagating this bias through a risk model may severely bias estimates
of uncertainty in risk. 

Bivariate Normal
Distribution for

Parameters of the
Regression Equation 

B0 mean 173.9

variance 4162.2

B1 mean 0.193

variance 0.0063

s2 27857.4

Cov (B0, B1) -4.2428

r -0.8254
Figure B-9.  Simple linear regression of zinc concentrations in soil
and dust.

Table B-9.  Zinc concentrations in paired (i.e., co-located) soil and dust samples
(ppm) for n=21 locations.
Sample Soil (Xi) Dust (Yi) Sample Soil (Xi) Dust (Yi)

1 120 216 12 560 200
2 190 149 13 560 256
3 270 83 14 720 496
4 285 508 15 800 239
5 310 215 16 880 203
6 340 219 17 910 757
7 350 203 18 1035 676
8 380 101 19 1445 426
9 440 178 20 1600 522

10 480 232 21 1800 276
11 560 199
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Figure B-10.  Results of Monte Carlo simulation
(n=5000 iterations) to estimate the slope and intercept of a
regression equation.  Top panel reflects the bivariate normal
distribution for the special case that fails to capture the
parameter uncertainty; middle panel reflects the preferred
bivariate normal distribution with D=-0.825 based on
empirical paired data; bottom panel reflects sampling from
independent normal distributions.



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment 
Appendix B  ~ December 31, 2001

Page B-50

REFERENCES FOR APPENDIX B

Brainard, J. and D.E. Burmaster. 1992. Bivariate Distributions for Height and Weight of Men and
Women in the United States. Risk Anal 12(2):267–275.  

Brately, P., B.L. Fox, and L.E. Schrage. 1987. A Guide to Simulation. Springer-Verlag, NY.

Burger, J., W. L. Stephens, Jr., C. S. Boring, M. Kuklinski, J.W. Gibbons, and M. Gochfeld. 1999. 
Factors in Exposure Assessment: Ethnic and Socioeconomic Differences in Fishing and
Consumption of Fish Caught along the Savannah River. Risk Anal. 19(3):427–438.

Calabrese, E.J., Stanek, E.J., and Barnes R. 1996. Methodology to Estimate the Amount and Particle Size
of Soil Ingested by Children: Implications for Exposure Assessment at Waste Sites. Regul.
Toxicol. Pharmacol. 24:264–268.

Charney, E., J. Sayre, and M. Coulter.  1980. Increased Lead Absorption in Inner City Children: Where
Does the Lead Come From? Pediatrics 65:226–231.

Conover, W.J. 1980. Practical Nonparametric Statistics. John Wiley & Sons, NY.

Cullen, A.C. and H.C. Frey. 1999. Probabilistic Techniques in Exposure Assessment. A Handbook for
Dealing with Variability and Uncertainty in Models and Inputs. Plenum Press.

d’Agostino, R.B. and M.A. Stephens. 1986. Goodness-of-fit techniques. Marcel Dekker, Inc, NY.

Filliben, J.J. 1975. The Probability Plot Correlation Coefficient Test for Normality. Technometrics 
17(1):111–117.

Finley, B.L. and D.J. Paustenbach. 1994. The Benefits of Probabilistic Exposure Assessment: Three Case
Studies Involving Contaminated Air, Water and Soil. Risk Anal 14(1):53–73.

Gilbert, R.O.  1987.  Statistical Methods for Environmental Pollution Monitoring. Van Hostrand
Reinhold, NY.

Gilliom, R.J. D.R. Helsel. 1986. Estimation of Distributional Parameters for Censored Trace Level Water
Quality Data, 1. Estimation Techniques. Water Resources Research. 22:135–146..

Hahn, G.J. and S.S. Shapiro.  1967.  Statistical Models in Engineering. John Wiley & Sons,  NY.

Helsel, D.R. and R.M. Hirsch.  1992.  Statistical Methods in Water Resources. Elsevier. Amsterdam.

Hoffman, F.O. and J.S. Hammonds. 1992. An Introductory Guide to Uncertainty Analysis in
Environmental and Health Risk Assessment. ES/ER/TM–35. Martin Marietta.

Hora, S.C. 1992. Acquisition of Expert Judgment: Examples From Risk Assessment. J. Energy Eng.
118(2):136–148.

Johnson, N.L., S. Kotz, and N. Balakrishnan. 1995. Continuous Univariate Distributions. Volume 2,
Second Ed. John Wiley & Sons, NY.

Law, A.M. and W.D. Kelton. 1991. Simulation Modeling and Analysis. McGraw-Hill, NY.



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment 
Appendix B  ~ December 31, 2001

Page B-51

Looney, S.W. and T.R. Gulledge. 1985. Use of the Correlation Coefficient with Normal Probability
Plots. American Statist. 39:297–303.

Mendenhall, W. and R.L. Scheaffer. 1973. Mathematical Statistics with Applications. Duxbury Press.

Mood, A.M. and F.A. Graybill. 1963. Introduction to the Theory of Statistics. Second Edition. McGraw-
Hill, Inc.

Morgan, G.M. and M. Henrion. 1990. Uncertainty: A Guide to Dealing with Uncertainty in Quantitative
Risk and Policy Analysis. Cambridge University Press, NY.

Nelsen, R.B. 1986. Properties of a One-Parameter Family of Bivariate Distributions with Specified
Marginals. Comm. Stat. (Theory and Methods) 15:3277–3285.

Nelsen, R.B. 1987. Discrete Bivariate Distributions with Given Marginals and Correlation. Comm. Stat.
(Simulation and Computation) B16:199–208.

Oregon DEQ. 1998. Guidance for the Use of Probabilistic Analysis in Human Health Exposure
Assessments. Waste Management and Cleanup Division. Interim Final. November. 

Ott, W.R. 1990. A Physical Explanation of the Lognormality of Pollutant Concentrations. J. Air Waste
Manage Assoc. 40(10):1378–1383.

Ott, W.R. 1995. Environmental Statistics and Data Analysis. CRC Press, Boca Raton.

Palisade Corporation. 1994. Risk Analysis and Simulation Add-In for Microsoft Excel or Lotus 1-2-3. 
Windows Version Release 3.0 User’s Guide, Palisade Corporation, Newfield, NY.

Roseberry, A.M. and D.E. Burmaster. 1992. Lognormal Distributions for Water Intake by Children and
Adults. Risk Anal. 12(1):99–104.

Royston, J.P. 1982. An Extension of Shapiro and Wilk’s W test for Normality to Large Samples. Appl.
Stat. 31:115–124.

Snedecor, G.W. and W.G. Cochran. 1989. Statistical Methods. Eighth Edition. Iowa State University
Press, Iowa.

Stanek, E.J. and Calabrese, E.J. 1995. Daily Estimates of Soil Ingestion in Children. Environ. Health
Perspect. 103:176–285.

Thompson, K. 1999. Developing Univariate Distributions from Data for Risk Analysis. Hum. Eco. Risk
Assess. 5(4):755–783.

Tukey, J.W. 1977. Exploratory Data Analysis. Addison-Wesley, Boston.

U.S. EPA. 1982. Air Quality Criteria for Particulate Matter and Sulfur Oxides. ECAO, ORD. EPA
600/8–82-029.

U.S. EPA. 1992. Guidance for Data Useability in Risk Assessment, Part A. Office of Emergency and
Remedial Response, Washington, DC. OSWER Directive No. 9285.7-09A.



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment 
Appendix B  ~ December 31, 2001

Page B-52

U.S. EPA. 1994. Guidance for Conducting External Peer Review of Environmental Regulatory Models. 
Office of the Administrator, Washington, DC. EPA/100/B-94-001. July.

U.S. EPA. 1997a. Exposure Factors Handbook. Office of Research and Development, Washington, DC. 
EPA/600/P-95/002Fa, Fb, and Fc.

U.S. EPA. 1997b. Use of Probabilistic Techniques (Including Monte Carlo Analysis) in Risk Assessment,
Memorandum from Deputy Administrator Hansen and Guiding Principles for Monte Carlo
Analysis. EPA/630/R-97-001.

U.S. EPA. 1999a. Report of the Workshop on Selecting Input Distributions for Probabilistic Assessments. 
Risk Assessment Forum.  EPA/630/R-98/004. January.

U.S. EPA. 1999b. Options for Development of Parametric Probability Distributions for Exposure
Factors. Office of Research and Development. Research Triangle Institute Final Report. April 6.

U.S. EPA. 2001. Development and Evaluation of Probability Density Functions for a Set of Human
Exposure Factors. Office of Emergency and Remedial Response. University of California Draft
Report.  May.

Vose, D.  1996.  Quantitative Risk Analysis: A Guide to Monte Carlo Modeling. John Wiley & Sons, 
NY.

Wonnacott and Wonnacott. 1981. Regression: A Second Course in Statistics. John Wiley & Sons, NY.



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment
Appendix C  ~ December 31, 2001

Page C-1

APPENDIX C

CHARACTERIZING VARIABILITY AND UNCERTAINTY

IN THE CONCENTRATION TERM

C.0 THE CONCENTRATION TERM AND THE EXPOSURE UNIT

Incomplete knowledge of the concentration of one or more chemicals in various exposure media
is often the major source of uncertainty in Superfund risk assessments.  In any risk assessment, the
derivation of the concentration term will reflect assumptions about: (1) properties of the contaminant,
(2) the spatial and temporal variability in contamination, (3) the behavior of the receptor, and (4) the time
scale of the toxicity of the chemical(s).  This appendix expands upon concepts introduced in Chapter 5. 
This appendix does not provide detailed equations for performing calculations, but instead refers the
reader to other Environmental Protection Agency (EPA) guidance documents in which both the
recommended approaches and calculations are provided.

The concentration term is linked to the concept of an exposure unit (EU).  For Superfund risk
assessments, an EU is the geographical area in which a receptor is randomly exposed to a contaminated
medium for a relevant exposure duration.  Environmental sampling provides information about the
contamination within and around an EU.  Multiple EUs may be defined at a site based on the choice of a
receptor, the exposure medium, and the nature of contact with the medium.  For example, residential
exposures to children may involve exposures via soil and dust ingestion both at the primary residence and
recreational areas at a day care facility.  Site-specific information regarding the activities of receptors
should guide assumptions about the receptor’s contact with exposure media.

L Defining the EU is critical to the success of the remedial strategy, as it
affects the calculation of the concentration to which receptors are
exposed.

C.1.0 VARIABILITY IN PRA

In general, variability and uncertainty should be kept separate to the extent possible in any
probabilistic risk assessment (PRA).  For example, assume a one-dimensional Monte Carlo Analysis
(1-D MCA) was developed to characterize variability in risk, but it combined a distribution for
uncertainty in mean concentration with distributions for variability in exposure variables.  The result
would yield a single distribution for risk, however, each risk estimate would reflect both uncertainty and
variability and distinguishing between the two would not be possible.  Therefore, EPA’s Guiding
Principles for Monte Carlo analysis recommends against mixing distributions of variability and
uncertainty in a 1-D MCA (U.S. EPA, 1997b) to avoid such ambiguities.

A fundamental concept in Monte Carlo analysis is that there is variability in exposure between
receptors (inter-individual variability) as well as day-to-day variability for each individual (intra-
individual variability).  In most Tier 2 analyses (see Chapter 2), the goal of a 1-D MCA is to characterize
inter-individual variability in exposure and risk.  Typically, probability distributions for exposure
represent variability (PDFv’s) between individuals in the average value over the entire exposure duration. 
In this case, the exposure point concentration (EPC) should represent the average exposure concentration
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over the entire exposure duration.  Because an EPC is calculated from a sample, there is uncertainty that
the sample mean equals the true mean concentration within the EU; therefore, to account for associated
uncertainty, the 95% upper confidence limit for the mean (95% UCL) is generally used for Superfund
risk assessments (U.S. EPA, 1992).

In a 1-D MCA, a point estimate for the EPC is combined with PDFv’s for other variables to yield
a probability distribution for risk.  An alternative approach is to simulate long-term average exposures as
a series of consecutive short-term exposure events.  This approach is referred to as MicroExposure Event
(MEE) Monte Carlo modeling, and is discussed in detail in Appendix D.  In MEE modeling, the goal is
to develop PDFv’s for exposure variables that capture the event-to-event variability in exposures at the
individual level.  The concept of an averaging time still applies, but generally to a shorter time frame. 
For example, seasonal variability in exposure frequency might be expected among outdoor occupational
workers so that different PDFv’s are representative of inter-individual for each season.  In this case, the
EPC continues to represent an average concentration within the EU, but it would be linked to season-
specific activity patterns.  It may be important to develop two different weighted averages to reflect
season-specific activity patterns and locations that are more frequently contacted in the summer
compared with the winter, for example.  As the time frame for the exposure scenario is shortened from
the entire exposure duration, to a season, to a day, to an individual event, the concentration term should
be reevaluated to assess the relevance of the assumption that concentrations contacted by the receptor are
represented by the mean of the measured sample.  

The following discussion introduces concepts of temporal and spatial variability as they apply to
the estimate of the EPC for different exposure media and exposure scenarios.  While the general rule of
thumb applies to all Monte Carlo models—use a measure of the average concentration within the EU
over the time frame of exposure—it is important to apply the site sampling data in a way that is
consistent with the exposure scenario.

C.1.1 TEMPORAL VARIABILITY

Temporal variability in chemical concentrations may be an important consideration when
developing a preliminary remediation goal (PRG) for any exposure medium (refer to Chapter 5 for a
comprehensive discussion of using PRA to evaluate PRGs).  For example, wind erosion may change
chemical concentrations in surface soil over time; leaching may change concentrations in both subsurface
soil and groundwater; and bioaccumulation may result in increasing concentrations in predatory fish with
time.  If possible, such factors should be considered early in the risk assessment process and included in
the conceptual site model.

Development of the EPC normally will depend on the averaging time relevant to the exposure
scenario and health endpoint of concern.  In the shorter term, it may be unlikely that receptors are
exposed throughout the entire EU due to temporal (and spatial) variability in the contaminant and inter-
individual variability in activity patterns.  Therefore, inter-individual variability in the EPC might be
expected, and a distribution of EPCs may be developed to represent differences in exposure among the
population.  Variability in short-term exposure may be an important factor for assessing variability in
acute toxicity.  However, over time, short-term variability in the EPC will tend to smooth out and
approach a long-term average concentration.  A single estimate of the long-term average EPC may be
reasonable to use in assessing risks to the receptor population.  This is true regardless of the underlying
distribution of the environmental sampling data (e.g., lognormal, normal, beta, etc.).  
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While most chemicals regulated by the Superfund program are based on concerns for chronic
toxicity (e.g., lifetime cancer risk from exposure to a carcinogen for ten or more years), for some
chemicals, toxic effects occur with shorter exposure durations (e.g., nitrate in drinking water and
methemoglobinemia in infants).  Differences between acute and chronic health endpoints are important
to consider for ecological receptors such as transient migratory species.  Superfund guidance
distinguishes between acute and chronic exposure to provide risk assessors the option of evaluating risk
under different time frames.  The EPC should be estimated within an EU during a period of time that has
toxicological relevance for the exposed population.

L The time scale of the concentration term should match the time scale of
the toxicity criterion and exposure duration.  

C.1.2 SPATIAL VARIABILITY 

Spatial variability in chemical concentrations is also an important property to consider when
developing a PRG.  Spatial variability arises from many factors, including the mechanism of
contamination, physical and chemical dilution and transformation processes, and physical characteristics
of the site (Cullen and Frey, 1999).  Similarly, receptors may exhibit spatial variability in their contact
with an exposure medium.  In general, receptors are assumed to have equal access to all areas within an
EU so that the concept of a long-term average concentration is applicable.

Often, the EPC is estimated without regard to the spatial patterns in contamination.  The
sampling design yields a measure of the variability in concentrations that is assumed to be representative
of the receptor’s contact with the exposure medium.  However, even when the sampling design is
representative (e.g., both are simple random samples within the EU), the concentrations may exhibit clear
spatial patterns that could be used to reduce uncertainty in the EPC.  Geostatistics (see Section C.5.2 and
Appendix D) offers a wide range of techniques for incorporating spatial information into estimates of the
EPC.  These techniques are particularly useful when there is uncertainty in the representativeness of site
sampling, due to a difference in scale between site sampling and the size of the EU, or the use of targeted
sampling designs that oversample areas within an EU believed to contain the highest levels of
contamination.

In point estimate risk assessments (Tier 1 of the PRA), the EPC is most often characterized by a
point estimate of the mean concentration, typically given by the 95% UCL for the mean to account for
uncertainty in the site characterization (U.S. EPA, 1992).  Variability in concentrations is an important
consideration for determining appropriate statistical methods used to estimate the 95% UCL.  In addition,
for some Monte Carlo models, a PDFv may be developed to determine the EPC for the exposure model. 
A PDFv for the EPC may be warranted in short-term exposure scenarios, particularly when the sampling
density is relatively sparse in relation to the size of the EU (i.e., poor site characterization).  For example,
a risk assessment may include a future use residential scenario (e.g., currently the site is undeveloped) in
which the EPC that is relevant to a potentially exposed population of children is the average
concentration within a 0.5 acre lot.  If the soil sampling yields 100 measurements, but a small subset of
the samples (e.g., less than three) are available for any 0.5 acre area, the most appropriate measure of the
average concentration for a hypothetical residence may be the maximum detected concentration or a
single value from the PDFv in concentration among hypothetical receptors.  In general, for any of the
EU’s that define a randomly located residence, the poor site characterization would be a source of
uncertainty in both a point estimate and probabilistic risk assessment. 
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At the vast majority of sites, concentration data is the easiest data to obtain of all the exposure
variables.  In cases of poor site characterization, risk managers may opt to perform a point estimate risk
assessment only using the maximum detected concentration and highly protective exposure assumptions. 
In the scenario described above for 0.5 acre residential lots, it is possible that a residence would be
located in an area in which the average concentration is represented by the maximum detected
concentration in the sample.  Should the risk manager opt for a Tier 1 point estimate risk assessment, the
use of the maximum detected concentration of a chemical on the site should ensure the performance of a
health-protective risk assessment within a smaller EU.  

Consideration of variability is also warranted in short-term scenarios for ecological risk
assessment (ERA) when the EU is much smaller than the site (see Section C.3.1.1).  For example, the
home range of the receptor populations may be relatively small in comparison to the spatial distribution
of sampling locations (e.g., benthic invertebrates living in the sediment at the bottom of a river or soil
invertebrates in a terrestrial habitat).  In these cases, the receptor would be exposed to an area smaller
than the sampling grid or measure of areal sampling density.  A value from the PDFv that characterizes
variability in the concentrations across a relatively large spatial scale may be used to define the EPC for a
receptor population at a smaller scale.  Again, risk assessors should take care in designing a 1-D Monte
Carlo model when using a PDFv for the concentration term.  It is unadvisable to mix a PDFv for the
concentration term with PDFv’s for other exposure scenarios when estimating risks within one EU.  Use
of the PDFv in this manner would incorrectly suggest that the mean concentration varied for each
individual within the same EU according to the variability in concentration measured across a much
larger area.  A preferred approach is to use a PDFv to obtain a point estimate that represents the EPC, and
then combine this point estimate with PDFv’s for other variables in the Monte Carlo simulation to
estimate risks in the small EU.  If there are many EU’s at a site, or if the boundaries of EUs are
undefined, more advanced modeling approaches can be developed to efficiently run multiple scenarios. 
Methods for characterizing exposure point concentrations for ecological receptors are further discussed
in Sections C.2 and C.3. 

C.1.3 EXAMPLE OF TEMPORAL AND SPATIAL VARIABILITY

Exposure scenarios often require consideration of both temporal and spatial variability.  The
MEE might be used to assess temporal variability by simulating long-term intake as the sum of individual
exposure events.  The time step for MEE is an important consideration and will depend on the rate of
change of the most rapidly changing exposure variable.  In addition, there should be a correspondence
between the time periods over which data were obtained and the time step used in the MEE model.  For
example, when a MEE is used for the risk assessment, the concentration term selected at each time period
should match the “average” concentration within the EU appropriate for that particular time period. 
Assume that the receptor is a residential child, and the time period is a single day, and the child may
contact only 1,000 square feet within the 0.5 acre (20,000 square feet) residential EU.  The specific
1,000 square foot area may change with each day as the child chooses different areas in the yard to
frequent.  Hence, the variability in the sample may be a more appropriate measure of the concentration
contacted by residential child receptor on a day-to-day basis than the long-term average within the
0.5 acre EU.  Over the long-term, this receptor will be exposed to the entire EU and hence the average
contaminant concentration within the 0.5 acre EU.  Note that the day-to-day variability in concentration
undergoes the familiar phenomenon of “regression to the mean” when considered over the long-term.
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C.1.4  SPATIAL AND TEMPORAL VARIABILITY FOR DIFFERENT EXPOSURE MEDIA

C.1.4.1 VARIAB ILITY O F CONCENTRATIONS IN SOIL

Surface soil is subject to erosion by wind and surface water runoff.  Over time, concentrations in
surface soil may change, but generally at a slow rate relative to other media.  The spatial variability of
chemical contamination is most often due to the mechanism by which the contamination occurred.  For
example, particulate stack emissions will tend to fall in an even pattern downwind of the stack whereas
over-application of pesticides and chemical spills can result in a patchy pattern of contamination.

Subsurface soil is not subject to wind erosion, so concentrations change mostly due to
degradation processes or leaching of the contaminant to groundwater.  At most Superfund sites,
concentrations of chemicals in subsurface soil will remain relatively constant.

C.1.4.2 VARIAB ILITY O F CONCENTRATIONS IN GROUNDWATER

Exposure to groundwater contamination mostly occurs at a fixed point in space (e.g., the
wellhead).  Groundwater is subject to a variety of influences that can alter chemical concentrations
within this medium such as aerobic and anaerobic biodegredation, volatization, and absorption.  Due to
these influences, monitored natural attenuation is an appropriate remedy under certain site conditions.  If
a risk assessor wishes to use a measure of the long-term average of a concentration in groundwater, a
hydrogeologist should be consulted.

C.1.4.3 VARIAB ILITY O F CONCENTRATIONS IN SURFACE WATER

Concentrations in surface water can be very dynamic.  Streams are constantly flowing and the 
effects of mixing, dilution and evaporation can change the chemical concentrations in surface water over
relative short time periods.  Any sampling of surface water is truly a “snapshot” in time.  The sampling
methods used to characterize spatial and temporal variability of concentrations in surface water will have
a direct effect on the uncertainty in estimates of the average concentration over both short and long time
frames.

C.1.4.4 VARIAB ILITY O F CONCENTRATIONS IN SEDIMENT 

In some situations, sediment may be considered a relatively stable medium, similar to soil. 
Alternatively, sediment may be physically moved by currents, tides, the movement of ships and other
events.  Trend analysis may be used to establish the long-term average sediment transport at a site.  This
information could provide the basis for choosing a representative “average” concentration in the
sediment available to ecological receptors (Piest and Miller, 1975; Van Sickel and Beschta, 1983;
Walling, 1983; Meade et al., 1990).

C.1.4.5 VARIAB ILITY O F CONCENTRATIONS IN FISH

Concentrations in fish may vary due to a change in the availability of food and environmental
conditions.  Factors that may be used to model population dynamics may include intensity of angler
harvest, death/attrition of the population, and the introduction of a predator species or a more adaptive
species.  In risk assessments that include a fish ingestion exposure pathway, the activities of the angler
may be a more important factor in determining the EPC than the changes in concentrations in fish over
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time.  For example, an avid recreational angler may harvest fish from different locations within a lake
and consume fish of different sizes and species.  In this way, with the consumption of contaminated fish,
both the contaminated medium and the exposure point change throughout the exposure duration. 

Unless, samples of fish are collected over time, knowledge of these factors will generally be
unknown.  Concentrations of bioaccumulative chemicals in territorial fish (e.g., largemouth bass)
obtained in different locations will generally reflect the concentrations in the sediment in the individual’s
home territory.  Concentrations of bioaccumulative chemicals in migratory fish will be more difficult to
predict as the fish will contact areas with varying sediment and surface water concentrations.

C.1.4.6 EXAMPLES O F TEMPORAL AND SPATIAL VARIABILITY IN THE CONCENTRATION TERM FOR

SELECTED EXPOSURE MEDIA

Whatever medium is considered in the development of EPCs, the risk assessor should be aware
that the EPC embodies aspects of both the spatial distribution of contamination, the movement of the
receptor, and possibly the contaminated medium within the EU.  Table C-1 presents examples of sources
of temporal and spatial variability in the concentration term based on both the contamination in selected
exposure media and the receptor.

Table C-1.  Examples of temporal and spatial variability in selected media for the concentration term in common

exposure scenarios.

Factor Soil Groundwater Fish

Temporal
Variability

Contaminant • none, if contaminant source is
inactive

• seasonal fluctuation in
groundwater table

• seasonal changes in species
availability

• aerial deposition from
ongoing source emissions
affected by wind patterns

• migration of contaminant
plume

• bioconcentration

• degradation over time • natural attenuation • long-term changes in population
dynamics

• volatilization • fish tissue concentrations linked
to temporal variability in water
and sediment concentrations

• migration to groundwater • physical and chemical processes

• radioactive growth and decay

Receptor • changes in activity patterns
and behaviors over time (e.g.,
with age)

• none, fixed location at
specific wellhead

• dietary preferences for fish
species

• changes in well location
over time

• cooking practices

Spatial
Variability

Contaminant • heterogeneity in
concentrations over a small
area and with depth, including
presence of hotspots

• migration of contaminant
plume, based on
hydrogeology and source
emissions (e.g., bulk flow
or continuous source)

• migration of fish

• heterogeneity in soil
properties that influence
bioavailability

• changes in fish population
structure

Receptor • daily activity patterns involve
contact with different areas of
the EU

• none, fixed location at
specific wellhead

• change in recreational habits,
and areas fished

• changes in well location
over time
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Figure C-1.  Spatial and temporal variability in contaminant concentrations in groundwater.

C.2.0 NONRANDOM EXPOSURES

As discussed in Section C.1.2, in the long-term it is generally assumed receptors exhibit random
movement, such that there is an equal probability of contacting any area within the entire EU.  Therefore,
the long-term exposure concentration will most likely be the arithmetic mean of the concentration within
the EU.  However, in many situations, the assumption of random exposures in space may clearly be an
oversimplification.  People’s behavior and preferences will cause them to access specific areas within an
EU with greater frequency than others.  The same is true in terms of ecological receptors with specific
habitat preferences.

For example, groundwater concentrations may show a large variation when sampled from wells
in different locations (Figure C-1).  Typically, residential receptors do not sample randomly from
different wells, but draw chronically from individual wells.  In such a case, the EU is a single wellhead. 
Fluctuations in the groundwater plume will depend on the hydrogeology of the site as well as the
seasonal fluctuations in the water table.  In this hypothetical example, concentrations are declining over
time at distances nearest to the source, and concentrations are increasing as the plume moves farther from
the source. 

Incomplete information regarding the behavior patterns of people and environmental systems can
be a large source of uncertainty in a risk assessment.  Because of this, methods are being developed to
model spatial relationships (between the contaminant and receptor) and nonrandom exposures.  Recently,
a quantitative technique to model nonrandom exposure has been proposed for ERA (Hope, 2000, 2001). 
Briefly, this technique divides the EU into smaller subunits and uses information about the attractiveness
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of each subunit to assign a probability of the receptor occupying a given subunit for a period of time. 
Receptor movements are modeled stochastically and a time-weighted average of all the subunits provides
a measure of the EPC.  In some ecological risk assessments, telemetry data can be used to better
characterize the areas of contamination that overlap with habitats of selected species.  Hoff (1998)
demonstrates an approach for American badgers (Taxidea taxus) in which telemetry data and
geostatistical modeling provide an improved relationship between contaminant concentrations, tissue
residues, and effects.

C.3.0 SOURCES OF UNCERTAINTY IN THE CONCENTRATION TERM

There are numerous potential sources of uncertainty in the estimate of the true mean
concentration within an EU.  As discussed in Chapter 5 (Section 5.1.1), sources of uncertainty can be
grouped into four broad categories: sample data, location of the EU, behavior of the receptor, and from
miscellaneous sources (e.g., physical and chemical processes).  Development of an uncertainty
distribution for the average concentration requires knowledge of the variability in chemical
concentrations within the EU (unless distribution-free approaches are used), the toxicity of the chemicals,
and the receptor’s behavior.  These distributions should be developed by risk assessors with the concept
of the EU in mind.  Differences in scale (e.g., small home range of an ecological receptor population
relative to the site sampling design) can be a major source of uncertainty in ecological risk assessments. 
Methods for addressing such uncertainties in the concentration term are presented below.  By
incorporating these methods into the quantitative uncertainty analysis, risk managers may more
effectively evaluate the importance of data-gaps and design subsequent rounds of site sampling to reduce
the uncertainty in the EPC. 

C.3.1 QUANTIFICATION OF UNCERTAINTY BASED ON THE SIZE OF THE EXPOSURE UNIT

Site characterization sometimes occurs before an EU has been defined.  Therefore, an EU may be
smaller than an entire site, equal to the site itself, or larger than the site.  These three conditions lead to
different conclusions and methods about the determination of the EPC.  The most complex situation is
when the EU is smaller than the site and the site can contain multiple EUs.  For future scenarios in which
the land use differs from the current land use, the difficulty in predicting the exact size and location of
EUs necessitates accounting for the uncertainty in the EU.

Composite sampling is often used to maximize site information.  However, it is important to note
that the use of composite sampling influences the concentration term.  If composite sampling is used
exclusively at a site, the actual maximum concentration present or the best estimate of this maximum
concentration will not be available.  Depending on the time scale of the toxic effect or whether acute
toxicity should be considered, this lack of knowledge of the maximum concentration present may be a
large data gap.  Risk assessors are urged to consider composite sampling and its ramifications for the
concentration term.

C.3.1.1 WHEN THE EXPOSURE UNIT IS SMALLER THAN THE SITE

The size of the EU will be different depending on the length of exposure.  A receptor can access
a greater area if given more time.  In almost all cases, the size of the EU for short-term exposure will be
smaller than the EU for long-term exposure.  Therefore, in addition to the uncertainty associated with
sampling and analysis (which can be quantified with existing methods for calculating confidence
intervals), there is uncertainty about the location of the EU within the site.
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If contamination is evenly spread across the site, the location of the EU may not have any bearing
on the EPC.  In such a case, uncertainty may depend on the sample size or density of measurements
within the EU relative to the entire site.  In point estimate risk assessments, the concentrations of
chemicals at the sampling location that poses the greatest risk may be considered as estimates of the EPC
for this small EU.  Using this “riskiest” sampling location as an estimate of the mean within an EU of
unknown location accounts for both the uncertainty associated with limited sampling within a single EU
and the uncertainty of the location within the site of the EU.

To express the uncertainty in location of the EU as a distribution, methods have been developed
to place an EU of a given size randomly about a site (Burmaster and Thompson, 1997).  A concentration
term is developed for each of a large number of randomly located EUs.  The distribution of these
concentration terms will express the uncertainty in the location of the EU.

Risk assessors are cautioned to consider whether the statistical method used to estimate the EPC
in an EU accounts for all sources of uncertainty in the concentration term.  If only a few samples are used
to characterize the average concentration within an EU, then the uncertainty in the EPC is large and
should be presented in the risk characterization.  These conditions may warrant additional sampling or
the use of analytical methods that account for spatial variability within the entire site.

At some sites, geostatistical methods, pattern recognition, and geographical information systems
(GIS) methods may provide additional insight and will aid in the development of the concentration term
(see Section C.5.2).  Although Table 3-1 shows several statistical methods for estimating both point
estimates and distributions that encode uncertainty in the concentration term, a risk assessor’s
understanding of these uncertainties should be conceptual as opposed to purely statistical.

C.3.1.2 WHEN THE EXPOSURE UNIT IS THE SAME SIZE AS THE SITE

In this case, the entire environmental data set within the site boundaries can be used for the
determination of the concentration term.  Assuming the EU occupies the entire site, then the source of
uncertainty associated with knowing the average concentration within the EU is the sampling and
analytical uncertainty.  

C.3.1.3 WHEN THE EXPOSURE UNIT IS LARGER THAN THE SITE

In this case, the EU extends beyond the site boundaries.  Therefore, the entire environmental data
set within the site boundaries can be used for determination of the concentration term.  However, an
additional term in the exposure assessment may be needed to account for the fraction of the exposures
that are expected to occur off site.  Essentially, the contribution of the chemical concentrations measured
on and off site are weighted by the fraction ingested or contacted in each area.  Similarly, the term “area
use factor” is used in ecological risk assessments to refer to the percentage of time or area an animal
inhabits a contaminated area.  An exposure scenario in which the EU is defined by the multiple locations
that may be visited would be a common extension of this concept.  One reasonable assumption regarding
off site exposures is that the concentrations would be equal to the “background” concentrations.  If this
assumption is made, a site risk assessor should be consulted to determine appropriate methods for
incorporating background concentrations into the risk assessment.  Alternatively, additional sampling at
off site locations would be needed to estimate the concentrations.  



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment
Appendix C  ~ December 31, 2001

Page C-10

C.4.0 SUMMARY OF RECOMMENDATIONS FOR THE CONCENTRATION TERM

Table C-2 presents general guidelines for establishing a concentration term in various media
based on exposure time and the size of the EU.  These general guidelines along with site-specific
exposure conditions are the driving factors in risk assessment decision making for establishing the
concentration term.

Table C-2.  Summary of factors that may be considered in developing an EPC. 

Medium

Exposure

Time Random

Non-

Random

Size of EU relative to

the site/sampling

density

Recommendation 

(Human Health and Ecological)

Soil Short-term X small HH - consider variability in concentration

relative to  the time scale of toxicity.

ECO - time weighted average of smaller

subunits.

Soil Long-term X variable HH, ECO - consider uncertainty in the average

concentration within an EU.

Fish Short-term X variable HH, ECO - consider variab ility in sample

concentrations relative to the exposure time.

Fish Long-term X variable HH - consider uncertainty in the average

concentration in consumed portion of fish.

ECO - consider uncertainty in average

concentration of whole fish. 

Ground-

water

Short-term X small - single well head HH - consider either the highest detected

concentration or uncertainty around the

concentration at the center of the plume as a

measure of a single well and relate to the time

scale of the toxic effect.

ECO - not applicable

Ground-

water

Long-term X small - single well head HH - consider variability among the higher

concentration samples as a protective EPC. 

Alternatively, hydrogeologic modeling may be

used to obtain a long-term average concentration

in the most contaminated area.

ECO - not applicable

C.5.0  METHODS FOR ESTIMATING UNCERTAINTY IN THE MEAN CONCENTRATION

Confidence intervals (CIs) and UCLs are computed to characterize uncertainty in a parameter
estimate.  CIs can be computed for any parameter.  The general method for estimating confidence
intervals is presented in equation C-1. 

CI = parameter estimate ± (critical value) x SE Equation C-1

The parameter estimate is the estimated value for the unknown population parameter.  The
critical value is the number, z, with probability, p, lying to its right (for an upper critical value) or left
(for a lower critical value).  For a standard normal distribution (i.e., arithmetic mean=0, standard
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deviation=1), critical values are referred to as the z-score or z-statistic.  These values are commonly
given in statistics texts, and may also be calculated using the Microsoft Excel function Normsinv(p),
where p corresponds to the probability lying to the right of the value.  Distributions that characterize
parameter uncertainty are sometimes referred to as sampling distributions.  The standard error (SE) is the
standard deviation of the sampling distribution for the parameter estimate.  The confidence interval
conveys two concepts: (1) an upper and lower confidence limit (for a 2-sided CI), and (2) a confidence
level (1–"), which gives the probability that the method yields an interval that encloses the parameter
(Moore and McCabe, 1993).  Methods for estimating SE vary for specific parameters.  For example, the
SE of a mean concentration may be calculated based on the sample variance and the sample size (due to
Central Limit Theorem).  Methods for calculating the SE for other parameters, such as the 95th percentile,
are more complex, and may be estimated from a series of nested bootstrap simulations (Efron and
Tibshirani, 1993; U.S. EPA, 2001a).  

When comparing alternative approaches for quantifying parameter uncertainty, criteria that are
important to consider include the variance of the original data set, and the bias and coverage of the CIs
generated by each method.  In statistics, a method is unbiased if the mean of the sampling distribution is
equal to the true value of the parameter.  Similarly, a method has accurate coverage if the probability p
that a CI does not cover the true parameter is equal to the probability level used to construct the CI.  For
risk assessment, the most desirable method is one that deals well with high variance, yields CIs that are
sufficiently wide (i.e., the CI does not underestimate the probability of enclosing the population
parameter), and, more specifically, yields upper confidence limits that are not biased low.  The choice of
the most appropriate method will depend on the characteristics of the data set and a balance between two
objectives: (1) the desire to be health protective and, therefore, have a low probability of underestimating
the mean, and (2) a desire to be accurate, in the sense of choosing a method whose expected coverage
equals the true coverage.  As a general principle for quantitative uncertainty analysis, if alternative
methods yield very different answers, it is helpful to explore the reasons for the differences.  The
objective is to explain why the estimates of the 95% UCL differ, and to determine if the differences are
sufficiently great that they could alter the risk management decision or PRG.  This information should be
presented as part of the risk communication process associated with the scientific management decision
points of the tiered process for PRA (see Chapter 2). 

As discussed in Chapter 5, in Superfund risk assessment, the EPC is usually calculated as the
95% UCL for the mean to account for the uncertainty in estimating the average concentration within an
EU.  The 95% UCL is defined as a value that, when repeatedly calculated for randomly drawn subsets of
size (n), equals or exceeds the true population mean 95% of the time.  In other words, it is calculated and
applied as a 1-sided confidence limit.  The 95% UCL is one percentile on the probability distribution that
characterizes uncertainty in the mean (i.e., the PDFu for the mean).  It is equal to the 95th percentile of the
sampling distribution for the mean.  EPA’s guidance on calculating the concentration term describes the
rationale and methodology for selecting the 95% UCL as the point estimate for the concentration term
(U.S. EPA, 1992). 

Common methodologies for characterizing the 95% UCL for the arithmetic mean concentration
include the following: (1) application of Equation C-1 using Student’s t-statistic (for normal
distributions), (2) Land method using H-statistic (for lognormal distributions) (Land 1971, 1975), and
(3) bootstrap and Jacknife resampling techniques (Efron and Tibshirani, 1993).  Details on these methods
and on choosing an appropriate method are provided in the ORD/OSWER guidance bulletin, Lognormal
Distribution in Environmental Applications (U.S. EPA, 1997a), and the more recent OSWER guidance
bulletin, Guidance on Calculation of UCLs at Superfund Sites (U.S. EPA, 2001a).  An overview of
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methods that may be used when data are not normal or lognormal is also provided by Schulz and Griffin
(1999).  It is the responsibility of the regional risk assessor to ensure that an appropriate method for
calculating a UCL or for developing an uncertainty distribution is chosen.  Chapter 3 (Table 3-1)
provides an overview of approaches for characterizing uncertainty in the concentration term in both
1-D MCA and 2-D MCA.

C.5.1 QUANTIFYING UNCERTAINTY WITHOUT INFORMATION ABOUT LOCATIONS OF

SAMPLES AND RECEPTORS 

Knowledge of both the sampling locations and the receptor’s activity patterns with the EU can be
used to derive a more representative estimate of the 95% UCL.  If a risk assessor has access to an
environmental data set without information about the sample locations, the risk assessor is forced to
assume that the sample consists of a number of independent observations.  The validity of this
assumption depends on the unknown spatial variability of contamination at the site.  The size and
location of an EU, as well as the choice of a statistical method for estimating the distribution of
uncertainty around the mean concentration will require often implicit (and possibly incorrect)
assumptions about the spatial distribution of contamination.  Similarly, if information regarding receptor
activity patterns is unavailable, one must assume that any area within the EU is equally representative of
potential exposures.  The risk assessor is urged to explore the effects of these various assumptions and to
make choices that are protective of human health and the environment.

C.5.2 QUANTIFYING UNCERTAINTY WITH INFORMATION ABOUT LOCATIONS OF SAMPLES

AND RECEPTORS 

In classical statistics, observations are assumed to be independent.  This assumption is often
invalid at contaminated sites where the method by which a chemical is released into the environment
(e.g., deposition from airborne emissions; migration of contaminant plume from a point source) results in
positive spatial autocorrelation.  In other words, observations located next to each other tend to contain
similar levels of contamination (i.e., redundant information) (Griffith and Layne, 1999).  For example,
the higher the spatial autocorrelation, the less incremental information is provided by adding
observations in close proximity to existing observations.  This decrease in the information content of a
site sample is exacerbated by the tendency to choose sampling locations in the most contaminated areas
rather than distributed at regular spatial intervals or specified using random sampling methodology.

At many hazardous waste sites, environmental sampling plans are designed with remedial actions
rather than risk assessment in mind.  Therefore, the risk assessor must establish a correspondence
between the actual sampling locations and the locations a receptor would be expected to frequent. 
Geostatistics may provide information to establish this correspondence. 

Geostatistics is a branch of spatial statistics that can be used to model spatial variability and
parameter uncertainty.  Geostatistics offers two fundamental contributions to risk assessment: (1) a group
of methods to describe the spatial distribution of a contaminant in a quantitative fashion, and (2) the
ability to maximize the information available in the data set (Deutsch and Journel, 1988; Isaacs and
Srivastava, 1989). 

Geostatistics is capable of using the information revealed by a correlation analysis of the data to
estimate concentrations at unsampled locations.  For example, geostatistics is able to use the spatial
information contained in the data to model uncertainty in contaminant concentrations for areas where
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data are sparse, a situation commonly encountered in site assessment work.  Using geostatistics,
information from samples collected from outside an EU can be used to model the uncertainty in the mean
concentration within an EU.  Approaches that do not consider the geospatial information present in the
data are limited to the subset of samples within an EU.  However, this ability to model uncertainty in
areas where data are sparse is also limited, and a well characterized site is still the best path to
understanding the risk at that site.

Geostatistical methods may be used to calculate a distribution of uncertainty in the mean of the
concentration term for use in PRAs.  In the past, geostatistics has not been widely applied to risk
assessment, even though uncertainty in the exposure concentration is often a major source of uncertainty
in risk estimates.  Most risk assessors quantify uncertainty in the long-term average concentration
without explicitly considering the spatial information present in data obtained from environmental
sampling or knowledge of the receptor’s movement and activities within the EU.  When spatial
information does not exist, the inherent assumption is that environmental sampling yields a data set that
is representative of the spatial variability in concentrations encountered by a receptor.  This assumption
represents one source of uncertainty in the EPC.  In addition, data collected outside an EU are often
ignored in the analysis, even though they can provide a more comprehensive view of patterns of
contamination across the site, including the EU of interest.  Ignoring site-wide information may result in
less informed estimates of risk and, therefore, less effective remedial designs (i.e., too little or too much
remediation).  In the past five years, with rapidly expanding software and hardware capabilities, some
examples of the application of geostatistics can be found in exposure assessment and remedial design
(e.g., Gomez-Hernandez, 1996; Goovaerts, 1996, 1997; Kriakidis, 1996; Ginevan and Splitstone, 1997;
McKenna, 1997, 1998) as well as site assessment guidance (e.g., U.S. EPA, 2000). 

A limit to applying geostatistics at hazardous waste sites is that the method is resource intensive
and requires personnel experienced with the software and techniques.  Risk assessors and risk managers
should ensure that contractors and other personnel have the necessary capabilities before applying
geostatistical methods to risk assessment or site cleanup.  Geostatistics is a powerful tool, but it cannot
incorporate quantitative knowledge regarding all sources of uncertainty.  The risk assessor is cautioned to
consider all possible sources of uncertainty as described in Chapter 5.  As indicated previously, a full
discussion of geostatistics is beyond the scope of this guidance, and interested readers are urged to
consult the OSWER guidance document, Guidance on Strategy for Surface Soil Cleanup at Superfund
Sites (U.S. EPA, 2001b).

EPA has produced several software packages used for geostatistical estimation.  Among these are
GEO-EAS and GEO-PACK.  Expertise in geostatistics can be obtained from ORD/Las Vegas.
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APPENDIX D

ADVANCED MODELING APPROACHES FOR 
CHARACTERIZING VARIABILITY AND UNCERTAINTY

D.0 INTRODUCTION

This appendix briefly describes the following advanced modeling approaches that can be used in
probabilistic risk assessment (PRA) to characterize variability and uncertainty: two-dimensional MCA
(2-D MCA), microexposure event analysis (MEE), geospatial statistics, and Bayesian analysis.  Except
for 2-D MCA, these approaches can also be applied to point estimate risk assessment.  The application of
many of these approaches will require access to expertise in specialized areas of statistics and, in some
cases, specialized or even custom-designed computer software.  The intent here is to introduce some of
the basic concepts and terminology, as well as to provide references where the reader can find more
exhaustive coverage of these topics. 

D.1.0 EXPRESSING VARIABILITY AND UNCERTAINTY SIMULTANEOUSLY

A Monte Carlo analysis that characterizes either uncertainty or variability in each input variable
(see Chapter 1) can be described as a one-dimensional Monte Carlo analysis (1-D MCA).  A 2-D MCA is
a term used to describe a model that simulates both uncertainty and variability in one or more input
variables.  All probability distributions that are used to describe variability in a PRA model have a certain
degree of associated uncertainty.  For example, suppose variability in soil concentration (ppm) is
estimated using a normal probability density function (PDF) defined by a mean (µsoil=5) and standard
deviation (σsoil=1), and subjectively truncated (min, max) at (0, 50).  Uncertainty in the parameter
estimates can be represented in a PRA model by assuming both parameters are also random variables. 
To illustrate this concept, assume normal PDFs for uncertainty can be specified for both parameters. 
Uncertainty in the mean is described by the normal PDF with parameters (µmean=5, σmean=0.5); similarly,
uncertainty in the standard deviation is described by the normal PDF with parameters (µSD =1, σSD =0.5). 
Model variables are represented in this manner when there is a compelling reason to believe that a unique
probability distribution does not adequately describe one’s knowledge of each variable in the model.  A
variable described in this way is called a second order random variable.  Figure D-1 (Panel A) shows a
collection of n=20 cumulative probability distributions (CDFs), each curve representing a unique set of
(mean, SD) parameter estimates for the normal PDF for variability.  Panel B shows the 90% confidence
interval1 based on 2,500 simulated CDFs.  The 95% lower and upper bounds correspond to the
distribution of 5th percentiles and 95th percentiles, respectively (i.e., CDF for 2,500 5th percentiles and
CDF for 2,500 95th percentiles).  The 90% credible interval (CI) for the 50th percentile is (3.4, 6.7).
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Figure D-1.  Panel A shows a family of 20 CDFs for a hypothetical random variable, Y (e.g., concentration in
units of ppm), characterized by a normal PDF where both the mean and SD are also random variables
representing uncertainty in the parameter estimates: Mean~ Normal(5, 0.5), SD~ Normal(1, 0.5).  Each CDF
represents a single simulation of n=2500 iterations using a unique set of parameters.  For example, CDF1

represents N~(4.0, 1.3) while CDF2 represents N~(5.4, 0.3).  Panel B shows the “90% credible interval” for the
CDF based on 2,500 simulations, each simulation using n = 2500 iterations (i.e., a 2-D MCA with 2,500 outer
loop iterations and 2,500 inner loop iterations).  Lower, median, and upper bounds represent the simulated 5th,
50th, and 95th percentiles, respectively.  The 90% confidence interval for the estimate of the 50th percentile is:
{3.4, 6.7}.
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EXHIBIT D-1

DEFINITIONS FOR APPENDIX D

Bayesian Statistics - A specialized branch of statistics that views the probability of an event occurring as the degree of belief
or confidence in that occurrence.

Geospatial Statistics - A specialized branch of statistics that explicitly takes into account the georeferenced context of data and
the information (i.e., attributes) it contains.

Frequentist - A term referring to classical statistics in which the probability of an event occurring is defined as the frequency
of occurrence measured in an observed series of repeated trials.

Image Analysis - A technique in geostatistics used to restore a degraded image or interpret images that have been contaminated
by noise or possibly some nonlinear transformation.

Kriging - A geostatistical method of spatial statistics for predicting values at unobserved locations.
Likelihood Function - A Bayesian term referring to a probability distribution expressing the probability of observing a piece

of new information given that a particular prior belief is true.
Location Tag - The spatial coordinates of a sampling location (e.g., longitude, latitude).
Microexposure Event Analysis (MEE) - An approach to modeling exposure in which long-term exposure of an individual is

simulated as the sum of separate short-term exposure events.
Point Pattern Analysis - A technique in geostatistics of restricting the analysis to location information, ignoring attribute

information, addresses two location problems: (1) describing points according to spacing, and (2) describing points
according to density.

Posterior Distribution - A Bayesian term referring to a probability distribution that has been updated with new information.
Prior Distribution - A Bayesian term referring to the hypothesized, expected, or calculated probability distribution for an event

prior to the collection of new information.
Spatial Autocorrelation - The tendency of data from locations that are relatively close together to be geographically correlated.
Thiessen (Voronoi) Polygon Analysis - A method of spatial statistics in which an area is subdivided into subregions, or

polygons, in order to predict values at unobserved locations. 
Time Step - A modeling term used to describe the time interval within which variable values do not change.
Two-Dimensional Monte Carlo analysis (2-D MCA) - Separate representation of variability and uncertainty in an MCA, usually

accomplished using nested computation loops.

In the example shown in Figure D-1, the mean and standard deviation for soil concentration were allowed
to vary independently.  Thus, a distribution could be defined by a combination of a low mean and a high
standard deviation, high mean and low standard deviation, or any other combination in between.  The
assumption of independence of variable parameters may not be valid in all cases.  It may be unreasonable
to assume that a high mean soil concentration would occur with a low standard deviation.  An alternative
assumption would be that the standard deviation of the mean is a constant proportion of the mean (i.e., a
constant coefficient of variation).  Correlations between parameters should be considered in the design of
the PRA.  One approach that is especially useful for characterizing relationships between the slope and
intercept of a simple linear regression is to specify the bivariate normal distribution for the parameter
estimates. 

D.2.0 TWO-DIMENSIONAL MONTE CARLO ANALYSIS (2-D MCA)

Two-dimensional MCA is an approach for computing risk (or hazard) when combining
distributions that represent variability and uncertainty.  In 2-D MCA, distributions representing
variability and uncertainty are sampled using nested computational loops (Figure D-2).  The inner loop
simulates variability by repeatedly sampling values for each variable from their defined probability
distributions.  With each circuit of the outer loop, new parameter values for each variable are selected,
and the inner loop sampling is repeated.  The result is a collection of inner loop simulations, one for each
parameter value selected.  If the inner loop samples 5,000 times, and the outer loop samples 1,000 times, 
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Figure D-2.  Diagram showing of a 2-D Monte Carlo model in which the variability and
uncertainty dimensions are computed in nested loops.  In this example, values for
exposure variables in the inner loop represent monthly averages.

then each variable is sampled 5,000,000 times and 1,000 simulated probability distributions of risk are
generated from the PRA model.  These probability distributions can be analyzed to estimate the
distributions for specific risk estimates.  For example, confidence limits on the estimate of specific risk
percentiles can be simulated using 2-D MCA (Figure D-3).
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Figure D-3.  Output from a 2-D MCA showing the estimated mean Hazard Quotient (HQ) and the
90% confidence interval for the arithmetic mean (AM) and selected percentiles of the HQ distribution.  The 95th

%ile HQ would be the reasonable maximum exposure (RME) risk estimate.  The simulation suggests that there is
a 95% probability that the RME HQ (95th percentile) is below 16.
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DOSE !
C x IR x EF x ED

BW x AT Equation D-1

DOSE !
1

AT !
ED

j!1

1
BWj

!
Eventsj

i!1
Cij ! IRij    Equation D-2

Standard Time-Averaging

Microexposure Event Modeling

C = Concentration; I = exposure event; j = year of life
IR = Intake Rate
EF = Exposure Frequency
ED = Exposure Duration
BW = Body Weight
AT = Averaging Time

D.3.0 MICROEXPOSURE EVENT ANALYSIS

The standard dose equation
generally used in Superfund site risk
assessments represents exposures
averaged over a specified time period
that is relevant to the health endpoint of
concern (Equation D-1).  If the risk
assessment is directed at assessing life-
time risk to humans, the averaging time
used in Equation D-1 would generally be
70 years (i.e., estimated average human
lifetime), and the calculated chemical
intake would generally represent the life-
time average daily dose (LADD).  Where
information is available to characterize
variability on a smaller time scale than
life-time, an alternative expression of
dose that accommodates such variability
may be desirable. 

Concentrations in various
environmental media can be expected to
vary over time.  For example, wind
erosion may change chemical
concentrations in surface soil.  Leaching may change concentrations in both subsurface soil and
groundwater.  The change in the concentration term is most readily apparent when considering anglers
harvesting fish.  If an angler consumes a large amount of fish from a single location (e.g., a specific lake,
pond, or river), then the average chemical concentration in the fish consumed by that angler can be
expected to be similar to the average of the chemical concentration of fish in the population.  However, if
an angler consumes fish only occasionally, or harvests fish from different locations, there will be
considerably more uncertainty in the concentration term.  In addition, a harvesting angler may consume
varying amounts of fish over the period of the exposure duration due to changing tastes, changes in the
fish population size or other factors.

Daily activity patterns, food intake, soil ingestion and other behavioral factors are measured in a
time period of less than a year.  The extrapolation of these short term results to the chronic exposure
situation is a source of uncertainty.  Exposure events are real but unknowable, whereas data regarding the
nature and magnitude of these events is known but its application to a real world situation is uncertain. 
Microexposure event analysis (MEE) attempts to explicitly quantify this uncertainty.  Figure D-5
presents the general approach for MEE analysis. (Price et al., 1996, 2000).  MEE modeling provides an
alternative to the standard time-averaging approach represented by Equation D-1.  In the MEE approach,
long term intake is viewed as the sum of individual exposure events (Equation D-2).  Implementing the
MEE approach in a PRA requires dividing the exposure duration into short epochs, or time steps, within
which the values assigned to exposure variables remain constant, but are allowed to vary from one time
step to the next.  In a PRA model, exposure variables are adjusted at each time step by selecting values
from the probability distributions representing each variable (Figure D-4).  Discussion of the
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Figure D-4.  Time Step for MEE.

implementation of MEE analysis in risk assessment and its merits and limits can be found in Wallace et
al. (1994), Price et al. (1996), Slob (1996), and Buck et al. (1997).

In MEE modeling, the
time step becomes an important
variable, with associated
uncertainty.  The time step should
be selected based on information
available to describe how
exposures change over time.  For
example, a model of a moving
plume of solvents in groundwater
might suggest that chemical
concentrations in a given location
are dropping by between 16 and 
25% quarterly.  Several rounds of
sampling may support this
prediction.  This rapid decline in
concentrations suggests that an
appropriate time step might be
one quarter (i.e., three months).

On the other hand, where
risk is being assessed for metals,
dioxin, or PAHs in soil, the concentrations might be expected to change much more slowly, if at all, and
the basis of the time step might be the increase in age and corresponding changes in behavior of the
receptor.  The time step may be global; that is, one time step may apply to all variables in the model.  In
this case, the same number of random values would be selected for each exposure variable in a Monte
Carlo simulation.  A more complex model may use different time steps for different variables, requiring
some probability distributions to be sampled more often than others.  The selection of a value for a time
step implies that the value represents the average value for that variable during the time step.
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Figure D-5.  Flowchart showing general approach for Microexposure Event (MEE) analysis.
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Figure D-6.  Hypothetical example showing the effect of model time step on the probability
distribution for soil and dust ingestion rate in children over a 1-year period.  Number of
samples (n) needed to simulate exposures:  Annual (1), Quarterly (4), Monthly (12).

Two important issues related to time step should be considered in implementing the MEE
approach in PRA models.  The first is the relationship between the length of the time step and the number
of times random values are generated from a defined probability distribution.  As the time step decreases,
more time steps are needed to simulate exposures over a specified duration.  For example, given a time
step of one year and an exposure duration of 30 years, each random variable will be sampled 30 times
(once per year); for a time step of one month and an exposure duration of 30 years, each random variable
would be sampled 360 times (i.e., 12 months/year x 30 years).  The Central Limit Theorem indicates that
as n increases, the distribution of sample means is approximately normal, and the standard deviation of
the sample distribution is inversely proportional to the square root of n.  Thus a highly skewed input
distribution (e.g., lognormal) may tend to become less skewed with increasing n (Figure D-6).  A biased
estimate of the RME risk in a PRA model may result if an inappropriately small or large time step is used
in the model.  This emphasizes the importance of having an empirical basis for selecting the time step
and of exploring the time step as a variable in a sensitivity analysis of the model.

The second issue related to the time step concerns temporal correlations.  Is it reasonable to
assume that random values selected for consecutive time steps are completely independent?  For
example, consider body weight.  The body weights of an individual measured at different times would be
expected to show positive temporal autocorrelation; that is, body weight is likely to be similar (but not
constant) from one time step to the next.  For example, if an individual weighs 60 kg during one month, it
is unlikely that they will weigh 80 kg the next month.  If this scenario is accepted, then body weight
should not be allowed to vary independently from one monthly time step to the next in the model.  At
shorter time steps, temporal correlation becomes more likely as a result of temporal autocorrelation.  For
example, one can expect a higher correlation between body weights on an individual measured on two
successive days (one-day time step) than between weights measured at the midpoint of two successive
years.  Approaches to simulating temporal correlations in probabilistic models might include fixing an
individual within a percentile range of a distribution (e.g., randomly assigned quartile) or using randomly
assigned fluctuations (e.g., BWt = BWt-1 ± x).
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EXHIBIT D-2

POSITIVE SPATIAL AUTOCORRELATION

• Locations with a high value of Y tend to be
surrounded by nearby high values of Y.

• Locations with a medium value of Y tend to be
surrounded by nearby medium values of Y.

• Locations with a low value of Y tend to be
surrounded by nearby low values of Y.

EXHIBIT D-3

EXAMPLES OF RISK ASSESSMENT ISSUES 
LINKED TO GEOSPATIAL STATISTICS

• Sampling tends to disproportionately represent
“hot spots” (i.e., a relatively large portion of a
data set with a small sample size (n) tends to be
concentrated at “hot spots”).

• The upper confidence limit (UCL) for the
arithmetic mean exposure concentration (e.g.,
chemical concentrations in soil) depends on the
sample size.

• Additional sampling may be needed, especially
to better define the spatial patterns or the extent
of contamination.

• There is uncertainty about locations not sampled
at a site, as well as uncertainty regarding the
representativeness of neighboring samples in
nearby EUs. 

D.4.0 GEOSPATIAL STATISTICS

Spatial statistics is a specialized branch
of statistics, falling under the heading of
multivariate statistics, that explicitly takes into
account the georeferenced or locational tagged
context of data.  Generally, environmental
samples collected at Superfund sites have this
geolocational information  By acknowledging
the geography of site chemicals, information
about the spatial distribution of contamination
can be incorporated into an exposure assessment. 
In addition, knowledge about a receptors home
range or patterns of movement may also be
incorporated into the definition of the exposure unit (see Appendix C, Section C.2.0).  Explicitly
accounting for spatial relationships may lead to a more accurate estimate of the confidence limits for the
arithmetic mean concentration.  Geospatial statistics quantifies the spatial autocorrelation (Exhibit D-2)
of sample measurements and allows for the exploration of the spatial distribution of exposure and risk
using techniques of map generalization.  By recording locational tags for each sample, information about
spatial patterns within an exposure unit (EU) can be exploited to estimate both pre- and post-remediation
exposure and risk.  

In the past five years, with rapidly expanding software and hardware capabilities, some examples
of the application of geostatistics can be found in exposure assessment and remedial design (e.g.,
Gomez-Hernandez, 1996; Goovaerts, 1996, 1997; Kriakidis, 1996; Ginevan and Splitstone, 1997;
McKenna, 1998; Hope, 2000; 2001) as well as
site assessment guidance (e.g., U.S. EPA, 2000).

Several important risk assessment issues
are closely linked to geospatial statistics, as
described in Exhibit D-3.  Geospatial statistics
comprises:

• spatial autoregression
• geostatistics
• point pattern analysis
• image analysis

The first three of these subjects can
contribute to spatial statistical support of site risk
assessments.  The key concept linking all three is
spatial autocorrelation, which refers to
covariation among samples for a single chemical,
or the tendency of data from locations that are
relatively close together to be geographically
correlated.  By analogy, classical statistics treats
soil samples as though they are balls, each having
a battery of attributes, that can be placed into an
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urn for statistical analysis; geospatial statistics treats soil samples as though they are clusters of grapes,
with the branchy stems representing locational tags.  Concentrations located on the same “branch” will
be more strongly correlated than concentrations on different branches.

How is Geostatistics Different from Classical Statistics?

In general, geostatistics provides information beyond that provided by classical statistical
techniques for at least two reasons.  First, in classical statistics, observations are assumed to be
independent.  This assumption is often invalid at contaminated sites where the method by which a
chemical is released into the environment (e.g., deposition form airborne emissions; migration of
contaminant plume from a point source) often results in positive spatial autocorrelation (see
Section D.4.1).  In other words, observations located next to each other tend to contain similar levels of
contamination (i.e., redundant information).  For example, the higher the spatial autocorrelation, the less
incremental information is provided by adding observations in close proximity to existing observations. 
This issue is compounded when the sample locations have been preferentially determined (e.g., “hot
spot” sampling) rather than distributed at regular intervals or specified using random sampling
methodology.

 Second, geostatistics is able to use the geospatial information contained in the data to model
uncertainty in contaminant concentrations for areas where data are scarce, a situation commonly
encountered in site assessment work.  Using geostatistics, information from samples collected from
outside an EU can be used to model the uncertainty in the mean concentration within an EU.  Approaches
that do not consider the geospatial information present in the data are limited to the subset of samples
within an EU. 

D.4.1 CORRELATION AND SPATIAL AUTOCORRELATION

Several simple bivariate statistical approaches may be used to introduce the concept of spatial
autocorrelation.  Consider two variables, X and Y.  For positive correlation there is a tendency for high
values of X to be paired with the high values of Y, medium values of X to be with the medium values of
Y, and low values of X with the low values of Y.  The tendency is in the opposite direction for negative
correlation; high values of X tend to be paired with low values of Y, and so on.  Spatial autocorrelation,
which virtually always is positive, directly parallels these definitions, but is written in terms of a single
variable as shown in Exhibit D-2.

Just as the bivariate relationship between two variables, X and Y, can be portrayed by a scatter
plot (Y versus X), the spatial autocorrelation relationship can be portrayed for a single variable, Y, (e.g.,
Y versus Y).  A good example is the Moran scatterplot, which plots the sum or average of nearby values
of Y versus Y.  This plot is most effective when Y has been converted to z-scores.  As shown in
Figure D-7 and Section D.4.2, scatter plots can be used to illustrate some important issues related to
sample size.  
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Figure D-7.  Effect of an outlier on measured correlation:  r=0.956
with outlier (n=100), whereas r=0.086 excluding outlier (n=99
clustered points).

If no soil samples were collected at a site (n=0), there is no information about the chemical
concentrations in soil, and any guess may be considered an estimate.  However, if the chemical
concentration of a single sample (n=1) is measured, some information is obtained that partly restricts this
estimate.  As each additional independent sample is taken, more information is obtained, and the
restriction on the estimate becomes more binding.  If the same location is selected repeatedly for
sampling, then the repeated measures, which may vary through time, will tend to be highly positively
correlated; part of the information obtained from each sample is the same, and should not be counted
more than once in estimating the site-wide soil concentration.  Similarly, if immediately adjacent
locations are sampled, the measures will often tend to be highly positively correlated (spatial
autocorrelation).  Once the first sample is taken, each additional sample provides only a fractional
increment of new information about the site in its entirety.  

D.4.2 EFFECTIVE SAMPLE SIZE (N*) AND DEGREES OF FREEDOM

Repeated measures can result in data clustering, which can be illustrated in a scatter diagram. 
Because two points determine a straight line, if (n–1) points cluster together on a scatter diagram while a
single additional point occurs far away from this cluster (i.e., an outlier), then the resulting bivariate
correlation will be very high (see Figure D-7).  This situation alludes to the notion of effective sample
size (n*): the n* is no longer equal to the number of observations (n), but rather is dramatically reduced
by the presence of inter-observational correlation.  For the example shown in Figure D-7, n* is slightly
greater than 2 rather than 100 (i.e., n).
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EXHIBIT D-4

EFFECT OF SPATIAL AUTOCORRELATION
(r) ON EFFECTIVE SAMPLE SIZE (n*)

r n*

0.000 625

0.050 514

0.539   64

0.957     3

1.000     1

Spatial autocorrelation plays an analogous role in
georeferenced data.  If a sampling network is arranged as
a 25-by-25 square grid (one sample point per grid cell),
and superimposed over a large site so that a very large
distance separates nearby sample locations, then
essentially zero spatial autocorrelation should be present
in the geographic distribution of the concentrations of
any given chemical.  Concentrations will appear to be
haphazard across the site, rendering the effective sample
size as n*=625.  If the distance between nearby locations
on the sampling mesh is decreased so that the spatial
correlation is only r=0.050, then the effective sample size
decreases to n*=514.  The effect of reducing the inter-
sample distance on spatial autocorrelation and n* for a
25-by-25 grid is shown in Exhibit D-4.  If r increases to
1, then n* reduces to 1.  Therefore, obtaining a measure
of latent spatial autocorrelation is essential to estimating
n*; this in turn is critical to determining confidence limits
for estimates of mean concentrations, which are sensitive to sample size.  The UCL for the mean will be
biased only when very high levels of spatial autocorrelation are present; this is because the Student-t
statistic used to estimate the UCL (assuming a normal distribution) changes very little as the degrees of
freedom (related to sample size) increases above 10; part of the difference between n and n* is offset by
an inflation of the variance.

The concept of effective degrees of freedom is important in exposure assessment because high
positive spatial autocorrelation can bias the estimate of the UCL concentration if geospatial statistics are
not considered.  This should be of particular concern when specific locations at a site are intensively
sampled (e.g., suspected “hot spots”), and other locations are relatively undersampled.  Accordingly, the
design of the sampling network itself can be evaluated from the perspective of geospatial statistics in
order to ascertain the quality of sample information.  The ideal sampling network should provide
geographic representativeness, should be roughly uniformly distributed over a site, and is best
implemented as a stratified random sampling design; that is, the site is partitioned into geographic
stratum (e.g., EUs), and then a random sampling of points is selected within each strata.  In practice,
sample designs may need to focus on objectives that are in conflict with the above ideals.  For example,
intense sampling of suspected “hotspots” may be necessary at some sites, at the expense of a more
representative spatial coverage of the site.  In such cases, several statistical techniques are available for
assessing the statistical benefit (in terms of reducing uncertainty) of additional sampling at undersampled
locations.  

D.4.3 ASSESSMENT OF ADDITIONAL SITE SAMPLING

Thiessen Polygons.  In addition to calculating nearest neighbor statistics, the adequacy of a
sampling network can be assessed by Voronoi (i.e., Thiessen polygon) surface partitioning, a popular
approach used in mapping intra-site geographic distributions.  This procedure divides a site into a
mutually exclusive set of polygons, each polygon containing a single measured concentration.  Each
polygon has the unique property that any location within the polygon is closer to the polygon’s sample
location than to any other sample point (Clifford et al., 1995).  The concentration measured at the sample
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point in the polygon is assigned to the entire area of the polygon.  The intensity of sample points on a
surface can be measured by Equation D-3 mean inverse polygon areas:

where SI is a measure of the sampling intensity, Ai is the area of the ith polygon, and m is the number of
interior polygons (those not along the edge of the site); m < n.  The variance of the sampling intensity
can be expressed by Equation D-4:

If the sampling network is uniform (i.e., polygon areas are equal), the variance will be essentially zero. 
The variance will increase as the network deviates from uniform.  This measure can be used to assess
whether or not additional samples will improve the spatial coverage.  

! Sampling locations that would yield a dramatic reduction in the variance
should be given priority for future sampling efforts.

Thiessen polygons can be used to develop area-weighted estimates of the arithmetic mean
concentration (Csoil,w) according to the following general equation:

where Ci is the concentration in the ith polygon, Ai is the area of the ith polygon in the EU, and AT is the
total area of the EU.  The weight for each measurement is essentially the ratio of the area of each polygon
to the total area of the site.  Clifford et al. (1995) applied this approach to an ecological risk assessment
of the burrowing owl with the following simplifying assumptions: habitat range is circular, size of EU is
constant (75 ha) although location may vary, and organisms spend equal time in all portions of their
habitat.  Given these assumptions, a nonparametric bootstrap method can be used to determine the
approximate 95% UCL for the mean concentration (see Appendix C).  Using Monte Carlo analysis, Csoil,w
can be estimated for different locations of the EU according to Equation D-5, and confidence limits can
be generated from the multiple bootstrap estimates.  Burmaster and Thompson (1997) demonstrate a
similar approach in which the EU (with constant area but random rectangular dimensions) is overlayed
on the Theissen polygon surface and 95% UCL for the mean is calculated from the bootstrap sample.

Linear Regression.  Another diagnostic is found in the linear regression literature.  The
locational tag coordinates (e.g., longitude, latitude) can be converted to z-scores (say zu and zv) for the
following calculation:  
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where Y is a measure of the sampling network, ruv is the correlation between the coordinate axes, and n is
the number of samples.  Any sampling location (zu, zv) in which Y > 9/n may be considered too isolated
in the sampling network.  Additional sampling locations would be positioned closer to it to improve the
overall coverage of the sampling network.

D.4.4 MAP GENERALIZATION

Another important application of geospatial statistics to risk assessment is that of map
generalization, which draws on the subjects of geostatistics and spatial autoregression.  Techniques
developed for both topics exploit spatial autocorrelation in order to produce a map.  

Kriging and Semivariograms.  Geostatistics may employ kriging, which yields statistical
guesses at values of a chemical at unsampled locations based on information obtained from sampled
locations.  Kriging assumes that the underlying geographic distribution is continuous, evaluates spatial
autocorrelation in terms of distance separating sample points, and employs a scatter diagram similar to
the Moran scatter plot to portray this relationship (i.e., the semivariogram plot: half the squared
difference between measured concentrations for two sampled locations versus distance separating these
two locations).  The best-fit line to this scatter of points is described by one of about a dozen equations
(semivariogram models).

Many different kriging approaches can be applied to quantify the spatial relationships among
geographic attributes within an exposure unit.  For example, site-specific chemical concentrations may be
correlated with geologic information, such as glacial deposits, soil characteristics of core samples, and
attributes that represent favorable habitats for ecological receptors.  This information can be used to
expand the available data and improve estimates of chemical concentrations at unsampled locations by
employing a technique called co-kriging.

Thiessen Polygons and Spatial Autoregression.  Spatial autoregression assumes a discretized
surface, uses the Thiessen polygon surface partitioning to construct a Moran scatter plot, and can be used
to estimate values at selected points with a regression-type equation.  Theoretically, the exponential
semivariogram model relates to the conditional autoregressive model, and the Bessel function
semivariogram model relates to the simultaneous autoregressive model; in practice, though, the spherical
semivariogram model often provides the best description of a semivariogram plot.  Regardless of which
approach is taken to map generalization, one relevant contribution of these two subjects is the following
observation:

! Including positive spatial autocorrelation results in more accurate
variance estimates; this in turn yields more accurate estimates of the
95% UCL for the mean concentration.



RAGS Volume 3 Part A ~ Process For Conducting Probabilistic Risk Assessment
Appendix D ~ December 31, 2001

Page D-16 

D.4.5 IMPLEMENTATION ISSUES RELATED TO GEOREFERENCED DATA

Estimation of parameters, for either geostatistical or spatial autoregressive models, cannot be
achieved with ordinary least squares (OLS) techniques; nonlinear least squares must be used.  While
OLS provides unbiased regression coefficients, these estimates are not necessarily sufficient (i.e., they do
not summarize all of the information in a sample pertaining to the population), efficient (i.e., the standard
errors often are incorrect), and consistent (i.e., the asymptotic sampling distribution concentration will
not be at the parameter value).  In other words, OLS essentially uses the wrong degrees of freedom in its
calculations, as described in Section D.4.2.  Two additional complications of georeferenced data that do
not appear in other types of data are (1) spatial autocorrelation might be directional (i.e., directional
dependency); and (2) variance might be nonconstant over space as well as over the magnitude of the
dependent variable, Y (e.g., chemical concentration).  Several statistical approaches, which are beyond
the scope of this guidance, are available for analyzing these potential sources of bias in the exposure
concentration estimates (Isaaks and Srivastava, 1989; Cressie, 1991; Griffith, 1993; Ginevan and
Splitstone, 1997). 

D.5.0 EXPERT JUDGMENT AND BAYESIAN ANALYSIS

Up to this point in RAGS Volume 3: Part A, risk has been characterized as having a population
probability distribution with parameters (e.g., mean, standard deviation) that can, theoretically, be
estimated from observation.  In theory, risk estimates could be derived by repeatedly measuring risk in
subsets of the population of interest (e.g., repeated measurements of site-related cancer risk).  The
unstated expectation, or goal, is that the PRA model will accurately simulate this real risk distribution. 
This approach derives from a classical view of probability.  The classical or frequentist view defines the
probability of an event as the frequency with which it occurs in a long sequence of similar trials.  From
the frequentist perspective, the probability of having a flipped coin land heads-up is given by the
frequency distribution of heads-up results derived from repeated similar trials of coin flips.  For real-
world decisions such as those informed by Superfund risk assessments, there is uncertainty that the
sample data are representative of the population (see Chapter 1, Section 1.2.4). 

Bayesian View of Probability.  A Bayesian perspective on probability allows distributions to be
constructed based on the judgment of an expert in the field.  The subjectivist or Bayesian view is that the
probability of an event occurring is the degree of belief a person has in the occurrence.  Probabilities can
be assessed by experts using scientific knowledge, judgment, data, past experience, and intuition. 
Different people may assign different probabilities to an event, and a single individual may assign
different probabilities to the same event when considered at different times.  The consequence is that
probabilities become conditional and the conditions must be explicitly stated (Howson and Urbach, 1989;
Morgan and Henrion, 1990; Ott, 1995; Sivia, 1996).  These conditional probabilities can, of course, be
updated with new information.  

Using the coin flip analogy above, a Bayesian perspective might be that, based on experience
with coins, assuming that most coins are fair, and that a fair coin would be expected to land heads-up half
the time, the expected probability of the tossed coin landing heads-up is 0.5.  If the outcome of repeated
trials was different from the expected, the Bayesian approach would be to update the probability based
on the new data.  In the coin flip example, both the Bayesian and frequentist approaches will arrive at the
same conclusions, because the outcome is amenable to rigorous experimentation.  Where the two
approaches can be expected to differ is in the assignment of probabilities to events that cannot be
rigorously measured; for example, the probability of a site-related cancer risk, or the probability of a
child ingesting a specific amount of soil. 
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EXHIBIT D-5

COMPONENTS OF BAYES THEOREM IN PRA

• Input probability distributions for exposure (or toxicity)
based on available data or expert judgment

• Prior probability distribution for risk based on input
probability distributions (output from PRA)

• New data
• Likelihood function, expressing the probability of

observing the new data conditional on prior risk
estimates

• Posterior (updated) probability distribution for risk

The subjective judgment of experts is, therefore, an important tool in the Bayesian approach to
risk assessment.  For example, the input distributions for a PRA may be based upon the judgment of one
or more experts who rely upon estimates from the literature, data from experimental studies, and any
other information they consider relevant.  Even when formal elicitations of expert opinion are not done,
the final selection of the form and parameters of the input distributions usually involves some subjective
judgment by the analyst.  One of the challenges of incorporating judgments from experts or lay people is
that there can be overconfidence bias (i.e., people tend to underestimate their uncertainty).  There is a
rich literature about the protocol for conducting expert elicitations and using the results to support
decisions (Lichtenstein and Fischoff, 1977; Morgan and Henrion, 1990; Shlyakhter and Kammen, 1992). 
Elicitation of expert judgment has been used to obtain distributions for use in risk assessments (Morgan
and Henrion, 1990; Hora, 1992; U.S. EPA, 1997;) and in developing air quality standards (U.S. EPA,
1982).  

In addition to providing input
distributions for PRAs, Bayesian analysis
allows the current state of knowledge,
expressed as a probability distribution, to
be formally combined with new data to
reach an updated information state.  The
distribution expressing the current
knowledge is the prior distribution and
may be the output of a PRA (Figure D-8). 
An appropriate likelihood function for the
data must also be formulated.  The
likelihood function is based upon an
understanding of the data gathering process
and is used to determine the probability of
observing a new set of data given that a
particular risk estimate is true.

Once the prior distribution is determined, the new data values are collected, and the likelihood
function is assumed, Bayes theorem (Exhibit D-5) provides a systematic procedure for updating the
probabilistic assessment of risk.  The updated information state is called the posterior distribution and
reflects the reduction in uncertainty arising from the new information.  
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Bayes Theorem $: P(Ri /D) !
P(D/Ri) P(Ri)

!
N

j!1
P(D/Rj) P(Rj)

Equation D-7

D = new data
Ri = ith risk prediction associated with new data
Rj = jth risk estimate simulated from PRA model 
N = number of risk estimates from the PRA model

Figure D-8.  Conceptual model of Bayesian Monte Carlo analysis.  A PRA simulation yields a prior distribution of risk
based on probability distributions for input variables.  Given new data for an input variable, and a likelihood function
for risk, Bayes Theorem (Eq. D-7) can be used to generate a posterior distribution of risk.  The expression P(D/R) refers
to a conditional probability, “the probability of D, given R”.  Conditional probabilities can be thought of as relative
frequencies, where R is the information given, and D is the event being computed when a particular value of R occurs.
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For example, suppose a model is available to relate soil tetrachlorodibenzodioxin (TCDD)
concentrations at a site with serum concentrations of TCDD.  A probability distribution of soil
concentrations is created based upon expert judgment and a limited amount of site specific data.  Using
the model, the soil concentrations can be associated with a distribution of serum TCDD concentrations
(P®), the prior distribution).  New site-specific data (D) are subsequently collected on serum TCDD
concentrations in order to reduce uncertainty in the risk estimate.  Assume that it is known that serum
TCDD concentrations generally follow a lognormal distribution and that the best estimate of the
parameters of this distribution come from the prior distribution on serum TCDD.  This creates the
likelihood function (P(D|R)).  Using Bayes Theorem, the new data are used to form a revised distribution
of serum TCDD.  This is the posterior distribution (P(R|D)). 

Bayesian Monte Carlo analysis.  In the past, the use of Bayesian analysis was limited by the
degree of mathematical complexity involved.  Using Monte Carlo analysis to carry out the PRA, rather
than mathematical equations to describe the distributions, allows the calculations to be done much more
easily.  This variation on traditional Bayesian methods is called Bayesian Monte Carlo analysis
(Patwardan and Small, 1992; Dakins et al., 1996).  In the TCDD example discussed above and illustrated
in Figure D-7, the required calculations are carried out for each of the N iterations of the Monte Carlo
analysis (I and j go from 1 to N).

Bayesian Monte Carlo analysis is appropriate in several situations.  If a model has been created
and a distribution developed using PRA, new information may be incorporated without the need to repeat
the entire analysis.  This information could be on one of the uncertain parameters of the model or on the
model output variable.  Similarly, a generalized risk model with generic parameter distributions may be
used for a Superfund risk assessment with the model predictions fine-tuned using data from a particular
site of interest.  Finally, after a distribution is developed, the amount of uncertainty that exists may be too
large for the risk manager to make a decision.  In this case, the risk manager might seek out new
information that would refine the analysis and decrease the uncertainty. 

Bayesian Monte Carlo analysis can also be combined with techniques from decision analysis to
help determine the type and quantity of data that should be collected to reduce uncertainty.  Decision
analysis is a technique used to help organize and structure the decision maker’s thought process and
identify a best strategy for action.  To determine the appropriate action, one defines the range of possible
decisions, evaluates the expected value of the utility or loss function associated with each decision, and
selects the decision that maximizes the expected utility or minimizes the expected loss.  

! Decision analysis provides a quantitative approach for evaluating the
benefits of including an expanded assessment of uncertainty and the
subsequent benefits of reducing this uncertainty.  

Value of Information.  Value of information (VOI) analysis involves estimating the value that
new information can have to a risk manager before that information is actually obtained (Clemen, 1996).
It’s a measure of the importance of uncertainty in terms of the expected improvement in a risk
management decision that might come from better information.  Examples of VOI quantities are the
expected value of including uncertainty (EVIU), the expected value of sample information (EVSI), the
expected value of perfect information (EVPI).  Calculation of these quantities can be done using
mathematical methods, numerical integration (Finkel and Evans, 1987), or Monte Carlo techniques
(Dakins, 1999)
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Value of information calculations require the specification of either a utility or a loss function.  A
loss function states the losses associated with making different types of decision errors including both
direct monetary costs and losses associated with other consequences.  Loss functions take various forms
depending on the risk management situation (Morgan and Henrion, 1990). 

Expected Value of Including Uncertainty.  The expected value of including uncertainty, EVIU,
is a measure of the value of carrying out a PRA.  It’s the difference between the expected loss of a
decision based on a point estimate risk assessment and the expected loss of the decision that considers
uncertainty (Figure D-9).  If uncertainty in a risk assessment has been estimated using Monte Carlo
techniques and a loss function has been specified, the EVIU can be easily calculated.  First, the
management decision from the point estimate assessment is determined.  The loss from making this
decision is calculated for each iteration of the Monte Carlo, each time assuming that the risk estimate
from that iteration is true.  The expected loss is the average of these individual losses.  The expected loss
for the PRA is determined by calculating the expected loss for a full range of management decisions and
selecting the decision with the lowest expected loss.  The EVIU is calculated by subtracting the loss
associated with the PRA from that associated with the point estimate risk assessment.  

Expected Value of Sample Information.  The expected value of sample information is the
difference between the expected loss of the decision based on the PRA and the expected loss of the
decision from an improved information state.  As such, the EVSI is a measure of the value that may result
from the collection and use of new information (Figure D-9).  Calculation of the EVSI involves a
technique called preposterior analysis and is somewhat more complicated.

This type of analysis is termed “preposterior” because it involves the possible posterior
distributions resulting from potential samples that have not yet been taken.  For each replication from the
Monte Carlo simulation, the predicted value from the model is used to randomly generate a set of K data
points.  Each set of data points is then used to calculate the posterior probabilities for the N Monte Carlo
simulated values.  These posterior probabilities are then used to obtain the optimal answer to the
management question at this new level of uncertainty by selecting the decision that minimizes the
expected loss over all possible management decisions.

This procedure is repeated for each of the N replications of the Monte Carlo analysis resulting in
N posterior distributions, N management decisions, and N associated expected losses.  Because each of
these outcomes is equally weighted, the expected loss associated with the state of uncertainty expected to
exist after the data collection program is carried out is simply the average of the N expected losses.  The
EVSI is the difference between the expected loss based on the results of the PRA and the expected loss
from the updated information state. 

Expected Value of Perfect Information.  The EVPI is the difference between the expected loss
of the decision based on the results of the PRA and the expected loss of the optimal management
decision if all uncertainty were eliminated.  In actual application, no research plan or data collection
program can completely eliminate uncertainty, only reduce it.  The EVPI is an upper bound for the
expected value of efforts to reduce uncertainty and so provides the ultimate bound on what should be
spent on research and data collection efforts. 
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Nominal Decision
Ignoring Uncertainty

Decision Under 
Uncertainty

Decision with Additional
 Imperfect Information

Decision with 
Perfect Information

EVIU

EVSI

EVPI

Expected Loss EVIU = Expected Value of Including Uncertainty
EVSI = Expected Value of Sample Information
EVPI = Expected Value of Perfect Information

Figure D-9.  Expected Loss associated with various types of information incorporated into a generic uncertainty
analysis.  The x-axis reflects different categories of value of information (VOI) quantities.  The y-axis reflects the
increasing Expected Loss with increasing uncertainty.

When a PRA has been carried out using Monte Carlo techniques, the expected loss associated with
perfect information is calculated by determining the expected loss for each iteration of the Monte Carlo,
assuming that the correct management decision, if that iteration were true, is made.  As always, the
expected loss is the average of these losses, and the EVPI is calculated by subtraction.

Uses of Value of Information in Risk Assessment.  VOI analysis has many benefits for risk
managers.  First, VOI analysis makes the losses associated with decision errors explicit, balances
competing probabilities and costs, and helps identify the decision alternative that minimizes the expected
loss.  VOI analysis can help a decision maker overcome a fear of uncertainty by developing a method to
handle it.  If the losses associated with making a poor decision are unclear, small uncertainties can take
on major importance.  Conversely, if the losses associated with different risk management decisions are
similar, little additional effort need be expended to continue to consider the alternatives. 
 

In addition, VOI analysis helps prioritize spending on research.  It provides insights into how
resources could be spent to achieve the most cost-effective reduction in uncertainty by identifying which
sources of uncertainty should be reduced, what type of data should be obtained, and how much data is
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needed.  Finally, VOI analysis may help decision makers explain the rationale for their decisions to the
public and help the public understand the multiple objectives considered in managing risks.

Expected Loss is usually greatest when uncertainty in risk estimates is ignored.  For example, by
quantifying uncertainty in risk (e.g., 2-D MCA, Bayesian Monte Carlo analysis) a risk manager may
determine that the cleanup level associated with the 90th percentile of the risk distribution (rather than the
95th percentile) is adequately protective.  Quantifying uncertainty may also result in lower expected loss
when more soil remediation is required due to the losses associated with possible under-remediation, e.g.,
cost of additional sampling or lost revenue due to failure to meet land use requirements.  The expected
loss may be further reduced by collecting additional soil samples, which would presumably reduce
uncertainty in estimates of mean exposure point concentrations.  The expected loss may be minimized by
obtaining "perfect" information (i.e., no uncertainty); however, as shown in Figure D-9, EVPI spans a
wide range of expected loss because the value associated with reducing uncertainty may be tempered by
costs associated with additional sampling and analysis.  In practice, risk assessors consider this issue
when deciding to obtain additional samples for site characterization.

The decision to obtain additional information in order to reduce uncertainty should be made on a
site-specific basis, taking into account the potential impact that reducing uncertainty may have on the
overall remedial decision.  Important questions to consider include: (1) Are the risk estimates sufficiently
sensitive to an exposure variable that collecting further data will reduce uncertainty? and (2) Are the
confidence limits on the 95th percentile risk estimate sufficiently wide that reducing uncertainty may alter
the cleanup goal?  An example of decision framework applicable to PRA is presented in Figure D-10. 
The framework has three tiers.  Tier 1 includes the point estimate approach and an assessment of the
need for PRA.  In Tier 2, the EVIU is calculated and, if warranted, a PRA is conducted.  In Tier 3, the
value of additional information is assessed and Bayes Theorem would be used to incorporate the new
information and update probability distributions.

Limitations of These Techniques.  Figure D-10 illustrates situations where Bayesian analysis and
value of information quantities may not be helpful.  For example, if point estimate risk assessment is
selected as the appropriate method, these techniques do not apply.  In addition, as site-specific data
become available that are increasingly comprehensive and representative of the population of interest,
Bayesian Monte Carlo analysis and the Monte Carlo analysis using the classical (frequentist) methods
will approach the same result.  This is because the site-specific data are incorporated into both
approaches.  To be representative and comprehensive, the data set must be sufficiently large, randomly
selected, and represent the full range of variability that exists in the population (e.g., temporal, spatial,
inter-individual).  However, data sets are rarely perfect, often too small, suffer from relatively high
sampling and/or measurement errors, or don’t represent the entire population variability over time, space,
age, gender, or other important variables.  If the data cannot be assumed to describe the population
distribution sufficiently well, then PRA will help to more fully develop the entire range of the population
distribution and the Bayesian Monte Carlo analysis will act to refine the model estimates.
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Figure D-10.  Conceptual model for evaluating the expected value of including uncertainty in a Bayesian
Monte Carlo analysis.
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In order to carry out VOI calculations, a loss function must be assumed.  Definition of the loss
function may be complex due to multiple decision goals and/or multiple decision makers and may be
difficult to capture in an equation.  Finally, for Bayesian analysis and the calculation of the EVSI to be
helpful, one or more sources of new data must exist.  In addition, some information must be available
about these data since a likelihood function describing its probability distribution must be assumed.  
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APPENDIX E
 

DEFINITIONS OF TERMS RELEVANT TO PRA 

AND REFERENCES FOR FURTHER READING

E.0 DEFINITIONS OF TERMS

Definitions for the specialized terms pertaining to probabilistic analysis are presented in this
appendix.  Some of the same terms are also defined at the beginning of each chapter, sometimes with
additional examples that are relevant to concepts presented in the chapter.  The definitions in this guidance
are intended to be consistent with definitions used in the National Contingency Plan (NCP) and other
Environmental Protection Agency (EPA) guidance, including the definitions of variability, uncertainty, and
Monte Carlo simulation found in EPA’s Guiding Principles for Monte Carlo Analysis (U.S. EPA, 1997a).
Note that if a definition uses a term that is defined elsewhere in the appendix, it is highlighted in bold text.

Definitions of Terms Used in PRA

50th percentile The number in a distribution such that half the values in the distribution are greater

than the number and half the values are less.  The 50th percentile is equivalent to the

median.

95th percentile The number in a distribution such that 95%  of the values in the distribution are less

than or equal to the number and 5% of the values are greater than the number.

95% Upper Confidence

Limit for a Mean

The 95  percent upper confidence limit  (95% UCL) for a mean is defined as a value

that, when repeatedly calculated for randomly drawn subsets of size n, equals or

exceeds the true population mean 95%  of the time.  The 95% UCL provides a

measure of uncertainty in the mean; it is not a measure of variability and should

not be confused with a 95th percentile.  As sample size increases, the difference

between the UCL for the mean and the true mean decreases, while the 95th

percentile of the distribution remains relatively unchanged, at the upper end of the

distribution.  EPA’s Superfund program has traditionally used the 1-sided 95% UCL

for the mean as the concentration term in point estimates of reasonable maximum

exposure (RM E) for human health risk assessment (U.S. EPA, 1992, 1997b).

Applicable or Relevant

and Appropriate

Requirements (ARARs)

Federal or state environmental standards; the NCP states that ARARs should be

considered in determining remediation goals .  ARARs may be selected as

site-specific cleanup levels .

Arithmetic

Mean (AM ) 

A number equal to the average value of a population or sample.  Usually obtained by

summing all the values in the sample and dividing by the number of values (i.e .,

sample size).
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Assessment Endpoint A term usually associated with ecological risk assessment; an explicit expression of

an environmental value (ecological resource) that is to be  protected, operationally

defined by risk managers and risk assessors as valuable attributes of an ecological

entity.   Examples include 1) sustained aquatic community structure, including

species composition and  relative abundance and trophic structure; 2) reductions in

populations of fish-eating birds; and 3) reductions in survival, reproduction or

species diversity of indigenous benthic communities (U.S. EPA, 1997c, 1999a).

Backcalculation A method of calculating a preliminary remediation goal (PRG) that involves

algebraic rearrangement of the risk equation to solve for concentration as a function

of risk, exposure, and toxicity.

Background Exposure Exposures that are not related to the site.  For example, exposure to chemicals at a

different time or from locations other than the exposure unit (EU) of concern. 

Background sources may be either naturally occurring or anthropogenic (man-made).

Bayesian Analysis Statistical analysis that describes the probability of an event as the degree of belief or

confidence that a person has, given some state of knowledge, that the event will

occur.  Bayesian Monte Carlo  combines a prior probability distribution and a

likelihood function to yield a posterior distribution (see Appendix D  for examples). 

Also called subjective view of probability, in contrast to the frequentist view of

probability.

Bootstrap

Methods

A method  of sampling actual data at random, with replacement, to derive an estimate

of a population parameter such as the arithmetic mean or the standard error of the

mean.  The sample size of each bootstrap sample is equal to the sample size of the

original data set.  Both parametric and nonparametric bootstrap methods have been

developed.

Boxplot Graphical representation showing the center and spread of a distribution, sometimes

with a display of outliers (e.g., Figure 7-3).  This guidance uses boxplots to represent

the following percentiles: 5th, 25th, 50th, 75th, and 95 th. 

Cancer Slope Factor

(CSF)

A plausible upper-bound estimate of the probability of a response per unit dose of a

chemical over a lifetime.  The CSF is used to estimate an upper-bound probability of

an individual developing cancer as a result of a lifetime of exposure to a particular

level of a potential carcinogen. 

Central Limit Theorem If random samples of size n are repeatedly drawn from a population of any

distribution, the distribution of sample means converges to the normal distribution. 

The approximation improves as n increases.

Central Tendency

Exposure (CTE)

A risk descriptor representing the average or typical individual in the population,

usually considered to be the arithmetic  mean or median of the risk distribution.

CTE Risk The estimated risk corresponding to the central tendency exposure.
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Cleanup Level A chemical concentration chosen by the risk manager after considering both RGs

and the nine selection-of-remedy criteria of the NCP (U.S. EPA, 1990; 40CFR

300.430(e)(9)(iii)).  Also referred to as Final Remediation Levels (U.S. EPA, 1991),

chemical-specific cleanup levels are  documented in the Record  of Decision (ROD). 

A cleanup level may differ from a PRG for several reasons, including various

uncertainties in the risk estimate, the technical feasibility of achieving the PRG, and

application of the nine criteria outlined in the NCP.

Coefficient of Variation Ratio of the standard deviation (SD) to the arithmetic mean (AM ) (CV=SD /AM). 

Dimensionless measure of the spread of a distribution, therefore, useful for

comparing probability density functions (PDFs) for different random variables.

Community Advisory

Group (CAG)

A group formed to provide a public forum for community members to present and

discuss their needs and concerns related  to the Superfund decision-making process. 

A CAG serves as the focal point for the exchange of information among the local

community, EPA, State regulatory agency, and other pertinent Federal agencies

involved in the cleanup of a Superfund site.

Community

Involvement

Coordinator (CIC)

As a member of the CAG and site team, the CIC coordinates communication plans

(i.e., the Communicty Involvement Plan (CIP) and addresses site-specific CAG

organizational issues.

Community

Involvement

Plan (CIP)

A plan that identifies community concerns and the preferences of the community for

the communication of site-related issues.

Concentration Term The concentration variable  used in exposure assessment.  Concentration terms are

expressed  in units applicable to the media of concern (e.g., mg/L for water, :g/m3 for

air; mg/kg for soil and dust.

Confidence Interval A range of values that are likely to include a population parameter.  Confidence

intervals may describe a parameter of an input variable  (e.g., mean ingestion rate)

or output variable  (e.g., 95th percentile  risk).  When used to characterize

uncertainty in a risk estimate, it is assumed that methods used to quantify

uncertainty  in the model inputs are based on statistical principles such as sampling

distributions or Bayesian approaches.  For example, given a randomly sampled data

set, a 95% confidence interval for the mean can be estimated by deriving a sampling

distribution from a Student's t distribution.  

Confidence Limit The upper or lower value of a confidence interval.

Continuous V ariable A random variable  that can assume any value within an interval of real numbers

(e.g., concentration).

Countably Infinite Used to describe some discrete random variables, this term refers to a set of

numbers that can be counted with integers (e.g., one, two, three) and that has no

upper limit.  Examples include the number of tosses required for a coin to show a

head—we can count each toss, but it is possible that at least one more toss is needed. 

The number of dust particles in a volume of air is another example.  Countably finite

implies there is an upper limit (e.g., days of work per year).  
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Correlation A quantitative re lationship between two or more input variables of a model (e.g.,

body weight, inhalation rate, skin surface area).  In analyses involving time-

dependent variables, a change in one variable is accompanied by a change in

another time-dependent, correlated variable .  Ignoring correlations in probabilistic

risk assessment (PRA) may lead to unrealistic combinations of values in a risk

calculation.  Correlations can also be defined as relationships between inputs and

outputs.

Coverage Confidence intervals are expected to enclose a true but unknown parameter

according to a specified probability, such as 90% or 95%.  This is the expected

coverage of the confidence interval, given a specified significance level (alpha). 

The difference between the expected coverage and the actual coverage is one metric

for evaluating statistical methods that yield different confidence intervals.

Credible Interval A range of values that represent plausible bounds on a population parameter. 

Credible intervals may describe a parameter of an input variable (e.g., mean

ingestion rate) or output variable (e.g., 95th percentile  risk).  The term is introduced

as an alternative to the term confidence interval when the methods used to quantify

uncertainty are not based entirely on statistical principles such as sampling

distributions or Bayesian approaches.   For example, multiple estimates of an

arithmetic mean may be available from different studies reported in the

literature—using professional judgment, these estimates may support a decision to

describe a range of possible values for the arithmetic mean.

Cumulative Distribution

Function (CDF)

A graph that shows the cumulative probability of occurrence for a random

independent variable  (e.g., Fig. 6-1).  The cumulative probability is typically given

as the y-axis, ranging from 0 to 1.0.  Each value c of the function is the probability

that a random observation x will be less than or equal to c.  Mathematically, the

function that defines the CDF is obtained from the PDF by integration (in the case of

a continuous random variable) or by summation (for discrete random variables). 

Discrete V ariable A random variable  that can assume any value within a  finite set of values (e.g.,

number of rainfall events in one month) or at most a countably infinite set of values.

Empirical Distribution A distribution obtained from actual data and possibly smoothed with interpolation

techniques.  Data are not fit to a particular parametric distribution (e.g., normal,

lognormal), but are described by the percentile values.

Expected Value of

Information (EVO I)

The expected increase in the value (or decrease in the loss) associated with obtaining

more information about quantities relevant to the decision process.  EVOI is a

measure of the importance of uncertainty in risk and the potential for changing a

risk management decision if uncertainty is reduced (see Appendix D).

Expert Judgment An inferential opinion of a specialist or group of specialists within an area of their

expertise.  Expert judgment (alternatively referred to as professional judgment) may

be based on an assessment of data, assumptions, criteria, models, and parameters in

response to questions posed in the  relevant area of expertise (see Appendix D).  
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Exposure Assessment The qualitative or quantitative estimate (or measurement) of the magnitude,

frequency, duration, and route of exposure.  A process that integrates information on

chemical fate and transport, environmental measurements, human behavior, and

human physiology to estimate the average doses of chemicals received by individual

receptors.  For simplicity in this guidance, exposure encompasses concepts of

absorbed dose (i.e., uptake and bioavailability).

Exposure Point

Concentration (EPC)

The contaminant concentration within an exposure unit  to which receptors are

exposed.  Estimates of the EPC represent the concentration term used in exposure

assessment.

Exposure Unit (EU) A geographic area where exposures occur to the receptor of concern during the time

of interest.  Receptors may be human or ecological (e.g., plants, birds, fish,

mammals).  For purposes of PRA, probability distributions for exposure and

toxicity variables apply equally to all members of a population at a given exposure

unit.  Ecological exposure units often consider habitat and seasonality factors that

enhance exposure in a spatial area usually related to home ranges.

Forward Calculations A method of calculating a risk estimate that involves the standard arrangement of the

risk equation to solve  for risk as a function of concentration, exposure, and toxicity.

Frequency Distribution A graph or plot that shows the number of observations that occur within a given

interval; usually presented as a histogram showing the relative probabilities for each

value.  It conveys the range of values and the count (or proportion of the sample) that

was observed across that range.

Frequentist A term referring to classical statistics in which the probability of an event occurring

is defined as the frequency of occurrence measured in an observed series of repeated

trials.

Geometric Mean (GM) The n th root of the product of n observations.  For lognormal distributions, the GM is

equal to the median and is less than the arithmetic mean.  For normal distributions,

all three measures of central tendency (G M, AM , median) are equal.

Geostatistics Branch of statistics that focuses on data that have a spatial or geographic

components.  In risk assessment, geostatistics is a general term for a variety of

techniques that are typically applied to chemical concentrations in soil or

groundwater in which the sampling locations are considered in quantifying the

exposure point concentration.

Goodness-of-Fit (GoF)

Test

A method  for examining how well (or poorly) a sample of data can be described by a

hypothesized probability distribution for the population.  Generally involves an

hypothesis test in which the null hypothesis H0 is that a random variable  X follows

a specific probability distribution F0.  That is, H0: F = F0 and Ha: F � F0.

Hazard

Index (H I)

The sum of more than one hazard quotient for multiple substances and/or multiple

exposure pathways.  The HI is calculated separately for chronic, subchronic, and

shorter-duration exposures.
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Hazard

Quotient (HQ)

The ratio of estimated site-specific exposure to a single chemical from a site over a

specified period to the estimated  daily exposure level, at which no adverse health

effects are likely to occur.

Hazardous Substance

Research Centers

(HSRC)

Research centers providing free technical assistance to communities with

environmental contamination programs through two distinct outreach programs:

Technical Outreach Services for Communities (TOSC) and Technical Assistance

to Brownfields Community (TAB).

High-end Risk A risk descriptor representing the high-end, or upper tail of the risk distribution,

usually considered to be equal to or greater than the 90th percentile.

Histogram A graphing technique which groups the data into intervals and displays the count of

the observations within each interval.  It conveys the range of values and the relative

frequency (or proportion of the sample) that was observed across that range.

Hypothesis Testing Statistical test of an assumption about a characteristic of a population.  The goal of

the statistical inference is to decide which of two complementary hypotheses is likely

to be true.  

Image Analysis A technique in geostatistics used to restore a degraded image or interpret images

that have been contaminated by noise or possibly some nonlinear transformation.

Independence Two events A and B are independent if knowing whether or  not A occurs does not

change the probability that B occurs.  Two random variables X and Y are

independent if the joint probability distribution of X and Y can be expressed as the

product of the individual marginal probability distributions.  That is, f(X, Y) = 

f(X) A f(Y).  Independence of X and Y is not synonymous with zero correlation (i.e.,

Cor(X, Y) = 0).  If X and Y are independent, then Cor(X, Y) = 0; however, the

converse is not necessarily true because X and Y may be related in a nonlinear

fashion but still maintain zero correlation (Law and Kelton, 1991).

Independent and

Identically Distributed

(IID)

Random variables that are independent and have the same probability distribution

of occurrence.

Individual-Level Effect An assessment endpoint that focuses on protecting a hypothetical or real individual

in a population.  Individual-based models may account for unique exposure and

toxicological response to chemicals among individual receptors.

Iterative

Reduction (IR) 

A method of calculating a PRG that involves successively lowering the

concentration term until the calculated risk is acceptable. This method can be

applied to any medium.

Iterative Truncation A method of calculating a PRG that involves developing an expression for the

concentration term in which high-end values are “truncated” to reduce the

maximum concentration, and calculating risks associated with the reduced

concentration.  The method may be repeated with consecutively lower truncation

limits until risk is acceptable.  Iterative truncation methods avoid difficulties

associated with applying Monte Carlo analysis to a backcalculation.
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Kriging A statistical interpolation method that selects the best linear unbiased estimate of the

parameter in question.  Often used as a geostatistical method of spatial statistics for

predicting values at unobserved locations based on data from the surrounding area. 

Information on fate and transport of chemicals within the area lacking data can be

incorporated into kriged estimates.

Kurtosis The measure of peakedness of a distribution.  A uniform distribution has a lower

kurtosis than a peaked distribution such as the  normal and lognormal distribution. 

Kurtosis is referred to as the 4th central moment of a distribution.

Land Method The conventional method for calculating uncertainty  in the mean concentration

(e.g., 95% UCL) when the sample data are obtained from a lognormal distribution

(U.S. EPA, 1992).

Latin Hypercube

Sampling (LHS)

A variant of the Monte Carlo sampling method that ensures selection of equal

numbers of values from all segments of the distribution.  LHS divides the

distribution into regions of equal sampling coverage.  Hence, the values obtained

will be forced to cover the entire distribution.  It is more efficient than simple

random sampling, i.e., it requires fewer iterations to generate the distribution

sufficiently.

Likelihood Function A term from Bayesian statistics referring to a probability distribution that

expresses the probability of observing new information given that a particular belief

is true.

Local Sensitivity

Analysis

Evaluation of the model sensitivity at some nominal points within the range of values

of input variable(s).

Location Tag The spatial coordinates of a sampling location (e.g., longitude, latitude).

Low -end Risk A risk descriptor representing the low-end, or lower tail of the risk distribution,

such as the 5th or 25th percentile.

Maximum Detected

Concentration (MDC)

The maximum concentration detected in a sample.

Mean Arithmetic mean or average; the sum of all observations divided by the number of

observations.  Referred to as the first central moment of a distribution.

Microexposure Event

(M EE) Analysis

A method of assessing risk based on an aggregate sum of a receptor's contact with a

contaminated medium.  MEE analysis simulates lifetime exposure as the sum of

many short-term, or “micro” exposures (see Appendix D).  MEE approaches can be

used to explore uncertainty  associated with the model time step in PRA (e.g., use

of a single value to represent a long-term average phenomenon, seasonal patterns in

exposure, or intra-ind ividual variability).

Mode The most probable value of a random variable ; a value with the largest probability

or highest probability density (or mass for discrete random variable).  The second

parameter of a triangular distribution. 
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Moments of a

Distribution

Similar to a parameter; constant that represents a mathematical description of a

random variable .  Central moments are defined with respect to the mean.  Mean,

variance, skewness, and kurtosis are the first, second, third, and fourth central

moments of a probability distribution.

Monte Carlo Analysis

(MCA) or Simulation

A technique for characterizing the uncertainty and variability in risk estimates by

repeatedly sampling the probability distributions of the risk equation inputs and

using these inputs to calculate a distribution of risk values.  A set of iterations or

calculations from Monte Carlo sampling is a simulation.  For example, a single

iteration for risk from ingestion of water may represent a hypothetical individual who

drinks 2 L/day and weighs 65 kg; another iteration may represent a hypothetical

individual who drinks 1 L/day and weighs 72 kg.

Monte Carlo Sampling A method of simple random sampling used to obtain a distribution of values which

may serve as an input to a PRA.  The probability of obtaining any given sample is

similar to the probability of a sample occurring within the distribution.  Hence, for a

given sample size, simple random sampling tends to produce values clustered around

the mean of the distribution.

Multiple Regression

Analysis

A statistical method that describes the extent, direction, and strength of the

relationship between several (usually continuous) independent variables (e.g.,

exposure duration, ingestion rate) and a single continuous dependent variable  (e.g.,

risk).

Nonparametric Method A procedure for making statistical inferences without assuming that the population

distribution has any specific form such as normal or lognormal.  Sometimes referred

to as distribution-free methods.  Common examples are the sign test, Spearman

rank correlation, and the bootstrap-t approach.

Numerical Stability The property of a probabilistic simulation such that the a parameter value of the

output distribution (e .g., percentile, mean, variance, etc.) remains sufficiently

constant for a  specified number of Monte Carlo  iterations.  Numerical stability is a

measure of the precision of the output from a simulation; the tails of the distribution

are typically less stable than the center.  Sufficient precision is determined by

professional judgment.  

One-dimensional Monte

Carlo Analysis (1-D

MCA)

A method of simulating a distribution for an endpoint of concern as a function of

probability distributions that characterize variability or uncertainty .  In this

guidance, distributions used to characterize variability may be abbreviated PDFv,

whereas distributions used to characterize uncertainty may be abbreviated PDFu.  It

is good practice not to combine PDFs for variability and uncertainty in 1-D MCA.
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Parameter A value that characterizes the probability distribution of a random variable .  For

example, a normal probability distribution may be defined by two parameters (e.g.,

AM  and SD).  It is important to distinguish between this definition, and a second

popular use of the term parameter when referring to an input variable in a

mathematical equation or model.  For this guidance, the term variable will be used to

describe inputs to a model.  For example, if body weight is a variable in the exposure

assessment that we define with a probability distribution (e .g., normal) we would

state that the variable is body weight and the parameters are the arithmetic mean and

standard deviation values that characterize the normal distribution

Parametric Distribution A theoretical distribution defined by one or more parameters.   Examples are the

normal distribution, the lognormal distribution, the triangular distribution, and the

beta distribution.

Percentile The p th percentile  of the distribution is the value such that p percent of the

observations fall at or below it.  Also called quantiles or fractiles; percentiles are

expressed as a percent, ranging from 0 to 100, whereas quantiles or fractiles range

from 0 to 1.

Point Estimate A quantity calculated from values in a sample to represent an unknown population

parameter.  Point estimates typically represent central tendency or upper bound

estimate of variability.

Point Estimate Risk

Assessment

The familiar risk assessment methodology in which a single estimate of risk is

calculated from a set of point estimates.  The results provide point estimates of risk

for the CTE  and RM E exposed individuals.  Variability and uncertainty are

discussed in a qualitative manner.

Point Pattern Analysis A technique in geostatistics of restricting the analysis to location information,

ignoring attribute information, addresses two location problems: (1) describing

points according to spacing, and (2) describing points accord ing to density.

Population-Level Effect An ecological term for an assessment endpoint that focuses on protecting a group of

individuals within a specified exposure unit  and time that have similar exposures

and toxicological responses to chemicals.

Posterior Distribution A term from Bayesian statistics referring to a probability distribution that has been

updated with new information.

Potentia lly Responsible

Party (PRP)

Individuals, companies, or any other party that is potentially liable for Superfund

cleanup costs.

Power The probability that a test procedure detects a false null hypothesis; Power equals

(1-$), where $ is the probability of a Type II error (i.e., accepting H0 when Ha is

true).   Power curves are a function of a fixed significance level ("), sample size, and

variability (SD).
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Preliminary

Remediation Goal

(PRG)

A chemical concentration in an environmental medium associated with a particular

exposure scenario that is expected to be protective of human health and ecosystems. 

PRGs may be developed based on (ARARs), or exposure scenarios evaluated prior

to a risk assessment (e.g., generic PRG) or as a result of the baseline risk

assessment (site-specific PRG).  Exhibit 5-1 provides further detail on generic and

site-specific PRGs.

Prior Distribution A Bayesian term referring to the hypothesized, expected, or calculated probability

distribution for an event prior to the collection of new information.

Probabilistic Risk

Assessment (PRA)

A risk assessment that uses probabilistic methods to derive a distribution of risk or

hazard based on multiple sets of values sampled for random variables.

Probability Density

Function (PDF)

A graph that shows the probability of occurrence of an unknown or variable

quantity.  A PDF is used to characterize a continuous random variable; the integral

of all possible values is equal to 1.0 (i.e., the area under the curve).  In PRA, PDFs

can be used to display the shape of the distribution for an input variable (e.g., normal

distribution for ingestion rate) as well as the output from a Monte Carlo simulation

(e.g., risk distribution). 

Probability Distribution A function that associates probabilities with the values taken by a random variable . 

A probability distribution can be d isplayed  in a graph (e.g., PDF or CDF),

summarized in a table that gives the distribution name and parameters, or expressed

as a mathematical equation.  In PRA, the process of selecting or fitting a distribution

that characterizes variability or uncertainty  can also be referred to as applying a

probability model to characterize variability or uncertainty .  In this guidance, the

probability model is considered to be one source of model uncertainty.

Probability M ass

Function (PMF)

A histogram that shows the probability of occurrence of an unknown or variable

quantity.  A PMF is used to characterize a discrete random variable; similar to the

PDF, the sum of all possible values of a PMF is equal to 1.0.  The mass at a point

refers to the probability that the variable will have a value at that point.

Random Variable A variable  that may assume any value from a set of values accord ing to chance. 

Discrete random variables can assume only a finite or countably infinite number of

values (e.g., number of rainfall events per year).  A random value is continuous if its

set of possible values is an entire interval of numbers (e.g., quantity of rain in a year)

variable that may assume any of a set of values.  The likelihood of each value is

described by a probability distribution.

Range Sensitivity

Analysis

Evaluation of the model sensitivity across the entire range of values of the input

variable(s).

Rank If a set of values is sorted in ascending order (smallest to largest), the rank

corresponds to the relative position of a number in the sequence.  For example, the

set {7, 5, 9, 12} when sorted gives the following sequence {5, 7, 9, 12} with ranks

ranging from 1 to 4 (i.e., rank of 5 is 1, rank of 7 is 2, rank of 9 is 3, and rank of 12

is 4). 
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Rank Correlation

(Spearman Rank Order

Correlation Coefficient) 

A “distribution free” or nonparametric statistic r that measures the strength and

direction of association between the ranks of the values (not the values themselves)

of two quantitative variables.

Remedial

Investigation/Feasibility

Study (RI/FS)

Studies undertaken by EPA to delineate the  nature and extent of contamination, to

evaluate potential risk, and to develop alternatives for cleanup. 

Reasonable Maximum

Exposure (RM E)

The highest exposure that is reasonably expected to occur at a site (U.S. EPA, 1989,

1990).  The intent of the RME is to estimate a  conservative exposure case (i.e ., well

above the average case) that is still within the range of possible exposures.

RM E Risk The estimated risk corresponding to the reasonable maximum exposure.

Reference Dose (RfD) An estimate of an exposure level for the human population, including sensitive

subpopulations, that is likely to be without an appreciable risk of deleterious effects

during a lifetime.  Chronic RfDs are specifically developed to be protective for a

long-term exposure to a chemical (e.g., >7 years) and account for uncertainty

spanning perhaps an order of magnitude or greater.

Remediation Action

Level (RAL)

Generally, a concentration such that remediation of all concentrations above this

level in an exposure unit  will result in the 95% UCL being reduced to a level that

does not pose an unacceptable risk to an ind ividual experiencing random exposures. 

The RAL will depend on the mean, variance, and sample size of the concentrations

within an exposure unit as well as considerations of acute toxicity of the chemicals

of concern. 

Remediation Goal Generally, a health-based chemical concentration in an environmental medium

chosen by the risk manager as appropriate for a likely land use scenario.

Risk Assessment The use of available information to make inferences about the health effects

associated with exposure of individuals or populations to hazardous materials or

situations.  Components of risk assessment include: hazard identification, dose-

response assessment, exposure assessment, and risk characterization (NRC,

1983).

Risk Characterization A component of risk assessment that describes the nature and magnitude of risk,

including uncertainty .  In assessments of Superfund sites, it includes the summary

and interpretation of information gathered from previous steps in the site risk

assessment (e.g., data evaluation, exposure assessment, toxicity assessment),

including the results of a probabilistic analysis.

Risk Descriptor A statistic (e.g., arithmetic mean, 95th percentile) that describes the risk to the

assessment endpoint.

Risk Management The process by which regulatory decisions are made using all available risk

assessment information (including, but not limited to, the results of the PRA).  The

NCP provides nine criteria for remedial decisions (e.g., protection of human health,

compliance with ARARs, etc.).  Risk managers may include the Remedial Project

Manager (RPM), section and branch chiefs, etc.
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RM E Range The 90th to 99.9 th percentiles of the risk distribution generated from a PRA, within

which an R M E risk value may be identified.  The 95th percentile is generally

recommended as the starting point for specifying the RM E risk in a Superfund PRA.

Scientific/Management

Decision Point (SMDP)

A point during the risk assessment process when the risk assessor communicates

results of the assessment at that stage to the risk manager.  At this point, the risk

manager determines whether the information is sufficient to arrive at a decision

regarding risk management strategies and/or if additional information is needed to

characterize risk.

Sensitivity Analysis Process for identifying the important sources of variability and uncertainty in a

model’s output.  Different techniques can be used in each of the 3 tiers of the tiered

process for PRA (see Chapter 2).  In Tier 1, sensitivity ratios are used to quantify the

effects of changes in one or more model inputs on the model output.  In Tiers 2 and

3, correlation analysis can be used to rank inputs based on their relative contribution

to variance in risk.  Local sensitivity refers to nominal changes in inputs within a

plausible range, whereas range sensitivity refers to changes in inputs across the

minimum and maximum values of the plausible range.  Further explanations of the

different methods for sensitivity analysis are given in Appendix A.

Sensitivity Ratio Ratio of the change in model output per unit change in an input variable ; also called

elasticity .

Skewness The measure of asymmetry of a distribution.  Coefficients of skewness are zero for

symmetric distributions (e .g., normal), positive for right-skewed distributions (e .g.,

lognormal), and negative for left-skewed distributions (e.g., specific forms of beta) .

Referred to as the third central moment of a distribution.

Spatial Autocorrelation The tendency of data from locations that are relatively close together to be

geographically correlated.

Stakeholder Any individual or group who has an interest in or may be affected by EPA’s site

decision-making process.

Stability Stochastic variability, or “wobble” associated with random sampling, calculated as

the average percent change in the model output after rerunning Monte Carlo

simulations with the same set of input assumptions.  Used as a metric for evaluating

the adequacy of the number of iterations in a MCA .

Standard Deviation,

Arithmetic and

Geometric

Standard deviation (or arithmetic standard deviation, SD) is a common measure of

the spread of a distribution.  Calculated as the square root of the variance.  The

geometric standard deviation (GSD) is the anti-log of the standard deviation of the

logarithms of each value.  The GSD is a unitless quantity that gives a measure of the

ratio of the variance to the mean, similar in concept to the coefficient of variation.

Step Function A mathematical function that remains constant within each of a series of adjacent

intervals but changes in value from one interval to the next.  Cumulative

distribution functions for discrete random variables are step  functions. 
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Stochastic Dominance Implies no intersection between the CDFs; distribution A stochastically dominates

distribution B if, for every percentile of the CDF, A > B.  This characteristic may

not be apparent from the PDFs of the distributions, which may overlap.

Stochastic Process A process involving random variables, and characterized by variability in space or

time.

Target Population The set of all receptors that are potentially at risk.  Sometimes referred to as the

“population of concern”.  A sample population is selected for statistical sampling in

order to make inferences regarding the target population (see Appendix B,

Section B.3.1, Concepts of Populations and Sampling).

Technical Assistance

Grant (TAG)

A federal grant that is intended to provide a community with the opportunity to hire

independent experts to help evaluate and explain the results of a risk assessment

Technical Outreach

Services for

Communities (TOSC)

A service of the HSRC with the aim to provide independent technical information

and assistance to help communities with hazardous substance pollution problems.

Thiessen (Voronoi)

Polygon Analysis

A method of spatial statistics in which an area is subdivided into subregions, or

polygons, in order to predict values at unobserved  locations. 

Time Step A variable in all exposure models that refers to the unit of time for which a random

value is considered representative of intra-individual variability  (e.g., average daily

ingestion rates for an individual from one year to the next).  A time step may be

equal to an entire exposure duration (e.g., 30 years), or a fraction of the exposure

duration during which changes in input variables may be expected (e.g., one year) . 

Time steps need not be identical for all exposure variables, and should address the

most rapidly changing variable  in the risk equation. Time step can be an important

consideration for MEE analysis.

Toxicity Reference

Value (TRV)

A numerical expression of a chemical’s dose-response relationship that is used in

ecological risk assessment.

True Mean

Concentration

The actual average concentration in an exposure unit .  Even with extensive

sampling, the true mean cannot be known.  Only an estimate of the true mean is

possible.  A greater number of representative samples increases confidence that the

estimate of the mean more closely represents the true mean.

Truncation The process of setting lower and upper limits on the range of a distribution, in order

to avoid unrealistic values for exposure variables (e.g., > 100%  bioavailability). 

Most often used for continuous, unbounded probability distributions (e.g., normal). 
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Two-dimensional M onte

Carlo Analysis (2-D

MCA)

An advanced modeling technique that uses two stages of random sampling, also

called nested loops, to distinguish between variability and uncertainty in exposure

and toxicity variables.  The first stage, often called the inner loop, involves a

complete  1-D MCA  simulation of variability in risk.  In the second stage, often

called the outer loop, parameters of the probability distributions are redefined to

reflect uncertainty .  These loops are repeated many times resulting in multiple risk

distributions, from which confidence intervals are calculated to represent

uncertainty in the population distribution of risk. 

Type I Errors False positive; the error made when the null hypothesis is rejected in favor of the

alternative, when in fact the null hypothesis is true.  

Type II Errors False negative; the error made when the null hypothesis is accepted when in fact the

alternative hypothesis is true.  

Uncertainty Lack of knowledge about specific variables, parameters, models, or other factors. 

Examples include limited data regarding the concentration of a contaminant in an

environmental medium and lack of information on local fish consumption practices. 

Uncertainty may be reduced through further study.  

Variability True heterogeneity or diversity in characteristics among members of a population

(i.e., inter-individual variability) or for one individual over time (intra-individual

variability).  For example, body weights of a study population at one point in time

will exhibit variability, and body weight will change as an individual ages.  Further

study (e.g., increasing sample size, n) will not reduce variability, but it can provide

greater confidence in quantitative characterizations of variability. 

Variable A quantity that can assume many values.

Variance Measure of the spread of a distribution, equal to the square of the standard

deviation (SD).  Calculated as the average of the squares of the deviations of the

observations from their mean.  Variance is referred to as the second central moment

of a distribution.

Z-score The value of a normally distributed random variable  that has been standardized to

have a mean of zero and a SD of one by the transformation Z=(X–:)/F.  Statistical

tables typically give the area  to the left of the z-score value.  For example, the area to

the left of z =1.645 is 0.95.  Z-scores indicate the direction (+/-) and number of

standard deviations away from the mean that a particular datum lies assuming X is

normally distributed.  Microsoft Excel’s NORMSDIST(z) function gives the

probability p such that p=Pr(Z # z), while the NORMSINV(p) function gives the

z-score zp associated with probability p such that  p=Pr(Z # zp).

E.1.0 ADDITIONAL INFORMATION

Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis (Morgan
and Henrion, 1990) and Probabilistic Techniques in Exposure Assessment (Cullen and Frey, 1999) provide
excellent philosophical and practical treatises on probabilistic risk assessment.  These works are highly
recommended to risk assessors who wish to know more about probabilistic risk assessment.  The Summary
Report for the Workshop on Monte Carlo Analysis (U.S. EPA, 1996) and the Summary Report for the
Workshop on Selecting Input Distributions for Probabilistic Assessments (U.S. EPA, 1999b) are other
sources of information to learn more about PRA.  Other additional references for reading are listed in this
Appendix.  
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EXHIBIT F-1

EXAMPLES OF ELEMENTS 
OF THE WORKPLAN FOR PRA

1. Statement of the ecological assessment
endpoints and/or human risk

2. Summary of the point estimate risk assessment

3. Potential value added for risk management by
conducting a PRA and proceeding to the
subsequent tiers (quantify variability,
uncertainty, or both)

4. Discussion of adequacy of environmental
sampling for PRA (e.g., data quality issues)

5. Description of the methods and models to be
used (e.g., model and parameter selection
criteria)

6. Proposal and basis for probability distributions
and point estimates

7. Methods for deriving the concentration term

8. Proposal for probabilistic sensitivity analysis

9. Method for dealing with correlations

10. Bibliography of relevant literature

11. Software (i.e., date and version of product,
random number generator)

12. Simulation approach (e.g., iterations, Monte
Carlo or Latin Hypercube sampling, time step)

APPENDIX F

WORKPLAN AND CHECKLIST FOR PRA

F.0 INTRODUCTION

This appendix provides guidance on
developing a workplan prior to the initiation of a
probabilistic risk assessment (PRA), and using a
checklist when reviewing a PRA.  Like the
quality assurance project plan (QAPP), the
workplan for PRA generally should document the
combined decisions or positions of the remedial
project manager (RPM), risk assessor, and
stakeholders involved in the risk assessment. 
Often there are many stakeholders in a risk
assessment, and it is important to involve and
engage all stakeholders early in the decision-
making process.  These are important steps that
should save time and effort.  

F.1.0 WORKPLAN

In general, PRAs may be developed by
Environmental Protection Agency (EPA), EPA
contractors, or a potentially responsible party
(PRP) with appropriate EPA oversight.  In each
case, it is important to develop a workplan early
in the risk assessment process.  PRAs to be
submitted by a contractor or PRP should
generally be submitted for EPA review before
commencing the analysis.  The workplan should
describe the software to be used, the exposure
routes and models, and input probability
distributions and their basis (e.g., relevance to the
site-specific contamination and pathways),
including appropriate literature references. 
Examples of the elements of a workplan are
given in Exhibit F-1, as well as Exhibit 4-8 in
Chapter 4 (Example Elements of a Workplan for
Ecological PRA).  It is important that the risk assessor and risk manager discuss the scope of the
probabilistic analysis and the potential impact on the Remedial Investigation/Feasibility Study (RI/FS).   

! Given the time and effort that can be expected to be invested in conducting a
PRA, it is important that a workplan undergo review and approval by EPA,
prior to proceeding with the assessment.  
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EXHIBIT F-2

KEY FOCAL POINTS FOR PRA REVIEW

1. Clarity of and conformation to objectives.

2. Scientific basis and documentation of input
distributions and assumptions.

3. Model structure and computational mechanics. 

4. Results, including, limitations, reasonableness, 
and clarity of documentation.

The EPA generally will not accept probabilistic analysis where a workplan for the analysis has
not been initially submitted to the Agency and approved by the Regional risk assessor and RPM. 
Exceptions to this process may be considered on a case-by-case basis. 

Conducting a PRA is an iterative process.  In general, as new information becomes available, it
should be used to evaluate the need to move to a higher tier.  The decision to move an assessment to a
higher tier of complexity should result in a revised workplan and consultation with the Agency.  The
previous PRA, and its sensitivity analysis, should be included in the revised workplan, along with a point
estimate risk assessment based on any data collected as part of a lower tier.  The assessment will often be
restricted to the chemicals and pathways of concern that contribute the greatest risk.

Throughout the process of developing the PRA, the EPA risk assessor and the personnel involved
in developing the assessment should have a continuing dialogue to discuss the many Agency decisions
and their potential impact on the assessment.  This dialogue, along with interim deliverables, will help to
ensure that the risk assessment report will meet the needs of the Agency and that any problems are
identified and corrected early in the process.

F.2.0 FOCAL POINTS FOR PRA REVIEW

In reviewing a PRA, it is recommended
that a systematic approach be adopted to ensure
that all key technical elements of the PRA are
evaluated and potential weaknesses are identified. 
A review check list can facilitate this process and
promote consistency in the reviews of PRAs. 
Such a list can be developed from EPA’s guiding
principles (U.S. EPA, 1997) and other reviews on
the subject of PRA quality review (e.g., Burmaster
and Anderson, 1994).

In general, the review of a PRA can be
organized into four focal points listed in
Exhibit F-2.  PRAs can vary in complexity, from
relatively simple to very complicated; thus, the
review strategy may need to be customized for
specific sites. 

F.3.0 CHECKLIST FOR REVIEWERS

The exposure pathways and chemicals considered in a PRA should be clearly stated and related
to the assessment endpoint.  Often, the simplest way of doing this is to use the site conceptual model.

Table F-1 provides a list of major points that may be used to evaluate the quality of a
probabilistic assessment.  This is not an exhaustive list.  The ultimate judgment of the acceptability of a
PRA is the responsibility of the regional EPA personnel.

The issues that a reviewer should focus on may be different for each assessment.  The workplan
and the assessment should address each of the items on the checklist, but the workplan may include
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additional items.  The reviewer is responsible for ensuring that the workplan and the assessment are
complete and of sufficient quality to help support a risk management decision under the National
Contingency Plan (NCP).

The report should include a discussion of the results of assessment and how they relate to the
point estimate of risk and hazard.  A clear and concise description of what the results mean is an
important part of each report. 

F.4.0 INTERNAL AND EXTERNAL REVIEW

There are two levels of review that may be appropriate for a PRA.  If an EPA reviewer feels the
need for help with a review, other EPA personnel may be contacted formally or informally to provide
additional review capabilities.  The EPA personnel should also review the draft workplan for PRA to
evaluate the appropriateness and consistency with Agency guidance.  If EPA personnel are contacted
early in the risk assessment process, the review can occur in a more productive and timely manner.

When the issues at a particular site are complex or contentious, EPA reviewers may also wish to
obtain the services of outside experts for peer review (U.S. EPA, 2000).  According to EPA’s Peer-
Review Policy Statement dated June 7, 1994 (U.S. EPA, 1994), “Major scientifically and technically
based work products related to Agency decisions normally should be peer-reviewed.”  External peer
review should be considered when allocating resources for a PRA.  The EPA reviewers generally should
select external peer reviewers who possess no bias or agenda regarding the process or methods of PRA. 
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Table F-1.  Example of a Generic Checklist for Reviewers [2 pages]

Focal Point """" Evaluation Criterion
Objectives and Purpose
Assessment
Endpoints

"""" Are the human health and/or ecological assessment endpoints clearly stated and
consistent with the workplan?

Benefits """" Are the rationales for, and benefits of, performing the PRA clearly stated and
consistent with the workplan?

Site Conceptual
Model

"""" Is there a description or graphic representation of the receptors and pathways
considered in the assessment?  Has the PRA addressed each of the pathways for
completeness (e.g., sources, release mechanisms, transport media, route of entry,
receptor)?

Separation of
Variability and
Uncertainty

"""" What is the modeling strategy for separating variability and uncertainty in the
PRA?  Is this strategy consistent with the assessment endpoints?

Model Structure and Computational Mechanics
Flow Chart """" Is a diagram of the computational sequence provided so that the pathways of inputs

and outputs and data capture can be understood and easily communicated? 
1-D MCA / 
2-D MCA

"""" Is a 1-D MCA or 2-D MCA being implemented in the PRA?  What is represented
by either or both dimensions?

Algorithms """" Are all algorithms used in the model documented in adequate detail to recreate the
analysis? 

Integration """" Are the algorithms used in numerical integration identified and documented?
Dimensional
Analysis

"""" Has a unit analysis been conducted to ensure that all equations balance
dimensionally?

Random Number
Generation

"""" What random number generator is used in model computations? Is it robust
enough?  What reseeding approach is used to minimize repeated sequences? 

Input Distributions and Assumptions
Variability and
Uncertainty

"""" Is there a clear distinction and segregation of distributions intended to represent
variability from distributions intended to represent uncertainty?

Data sources """" Are the data or analysis sources used in developing or selecting the input
distributions documented and appropriate for the site? 

Distribution
Forms

"""" Are the analyses used in selecting the form of the distribution adequately
documented (i.e., understandable and repeatable by a third party?)

Distribution
Parameters

"""" Are the analyses used to estimate the distribution parameters adequately
documented?

Distribution Tails """" Do the estimation methods precisely depict the tails of the input distributions; how
was this evaluated?  Is there sufficient information to depict tails for empirical
distributions?  Are these estimated as exponential tails with bounding values?

Truncations """" Are any input distributions truncated?  Do these truncations make sense?  Should
truncations be applied to any of the distributions?

Concentration
Term

"""" Is the derivation of a point estimate or distribution for the concentration term
adequately documented?  Is sufficient information provided to enable the reviewer
to recreate the concentration term?

Variable
Correlations

"""" Have variable independence and correlations been addressed? Has the methodology
for representing variable correlations in the model been documented and is it
reasonable in terms of the variables, the site, and the statistical approach?
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Time Step """" Has the basis for the time step used in the model been documented?  Is a single
time step used, or do variables have different time steps? Are the time steps
conceptually reasonable for the variables; for the site?  Has the time step been
evaluated in the sensitivity analysis?

Sensitivity
Analysis

"""" Has a sensitivity analysis been conducted? Are the methods used in the analysis
statistically valid? What did the analysis reveal about uncertainties in the
assessment and the relative contributions of input variables to uncertainty?

Results of Modeling
Completeness """" Are all the exposure routes identified in the site conceptual model and workplan

addressed in the model results? Has the PRA fulfilled the objectives and satisfied
the purpose stated in the workplan?

Point Estimate
Calculation

"""" Has a point estimate calculation, using mean or median values of the input
distributions, been performed?  How do these results compare with the central
tendencies calculated with the probabilistic model? How do the reasonable
maximum exposure (RME) estimates compare?  Have the similarities or differences
between risk estimates from the point estimate and probabilistic approaches been
adequately addressed?

Stability of Output
Tails

"""" Has the stability of the high-end tail of the risk distribution been adequately
evaluated?  How stable are the estimated tails (in quantitative terms?)  Is this level
of stability adequate to support the risk management decisions that the model is
intended to support?

Significant Figures """" Is the number of significant figures used in the output reasonable and consistent
with model uncertainty?

Limitations """" Are the strengths and weaknesses of the PRA methodology and limitations of the
results for decision making clearly presented?

Clarity """" Are the results and conclusions clearly presented and consistent with model output
(e.g., central tendency exposure (CTE) and RME identified in the Executive
Summary along with discussion of uncertainty)?

Graphics """" Are there graphics included that show both the risk distribution and PRA results
(e.g., CTE and RME risk)?
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APPENDIX G

FREQUENTLY ASKED QUESTIONS FOR PRA

INTRODUCTION

This section presents a few questions and answers relating to probabilistic risk assessment
(PRA).  The purpose of the frequently asked questions (FAQs) is to facilitate the understanding of PRA
using a comparison with the traditional point estimate approach to risk assessment. 

The FAQs presented here provide an overview of PRA with pointers to more detailed, and often
more technical, discussions in other parts of the guidance.

(1) What is a risk assessment?

Risk assessment is a tool for organizing available information to make inferences about the
potential human health or ecological effects associated with exposure to hazardous materials.  The
National Contingency Plan (NCP) addresses the use of a baseline risk assessment at Superfund sites to
determine whether risks to human health and the environment are unacceptable.  The NCP implements
the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980.  

Risk assessments traditionally provide single point descriptors of risk (e.g., a central tendency
exposure (CTE) risk descriptor or a reasonable maximum exposure (RME) risk descriptor).  As such,
these types of risk assessments have been referred to as point estimate risk assessments.  

In 1983, the National Research Council (NRC) described the following four steps for conducting
human health risk assessments:

• Hazard identification: the determination of whether a particular chemical is or is not
causally linked to a particular health effect.

• Dose-response assessment: the determination of the relation between the magnitude of
exposure and the probability of occurrence of the health effects in question.

• Exposure assessment: the determination of the extent of human exposure before or after
application of regulatory controls.

• Risk characterization: a description of the nature and often the magnitude of human risk,
including attendant uncertainty (NRC, 1983).

Readers are referred to risk assessment guidance documents such as Risk Assessment Guidance
for Superfund (RAGS): Volume I.  Human Health Evaluation Manual (HHEM) (Part A, Baseline Risk
Assessment)(U.S. EPA, 1989a), Risk Assessment Guidance for Superfund: Volume II.  Environmental
Evaluation Manual (U.S. EPA, 1989b), and Ecological Risk Assessment Guidance for Superfund:
Process for Designing and Conducting Ecological Risk Assessments (U.S. EPA, 1997a) for more
information about point estimate risk assessment methods and policies.
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(2) What is a probabilistic risk assessment (PRA)?

Superfund risk assessments have traditionally provided single point estimates of risk.  More
recently, PRAs have been developed.  A PRA is a risk assessment that provides a probability distribution,
rather than a point estimate, of risk.  A probability distribution conveys both a range of values and a
likelihood of occurrence of each value.  This may allow a risk assessor to make statements about the
likelihood that risks will exceed a level of concern.  The probability distribution for risk often represents
variability in risk estimates for a potentially exposed population.  This variability may be due to
variability in exposure and/or toxicity.  PRA may also be used to quantify uncertainty in risk estimates. 
This can be useful because it allows a risk assessor to make statements about the level of confidence in
the likelihood that risks will exceed a level of concern.

Probabilistic methods often use computer simulations to combine multiple probabilistic
distributions in a risk equation.  Monte Carlo analysis (MCA) is perhaps the most widely used
probabilistic method in PRA (see Question #7).
 
(3) How does PRA compare with the point estimate approach?

A single point estimate of risk does not explicitly characterize associated variability or
uncertainty.  However, multiple point estimates of risk (e.g., CTE or RME) can begin to characterize
variability in risk as they use different points on each input distribution for exposure).  A PRA can
characterize variability in risk by using the full distribution of variability in exposure parameters in the
risk equations.  Advanced PRA techniques can also quantitatively characterize uncertainty.  In
appropriate circumstances, results of a PRA can lead to more informed risk management decisions.

A PRA can be more resource intensive than a point estimate risk assessment.  Some PRAs can
require greater effort than point estimate approaches to define model inputs (i.e., select and fit probability
distributions), as well as additional steps in the planning, review, and communication of the risk
assessment assumptions and results (see Chapter 6 and Appendix F).  A PRA does not necessarily require
more data than a point estimate approach, although it does provide a framework for incorporating more
of the available information into the risk assessment.  When information on important exposure variables
is lacking, results from a point estimate approach and a probabilistic approach will be equally uncertain.

If a decision is made to conduct a PRA, this does not replace a point estimate risk assessment. 
Results of point estimate approaches should still be presented along with results of probabilistic
approaches in Tier 2 or Tier 3.

(4) Why should I consider using PRA?

PRA can have several advantages over the traditional point estimate approach to risk assessment. 
PRA can often provide a more complete characterization of risk; a quantitative description of the
uncertainties in the risk estimates; more informative sensitivity analysis; the ability to make probabilistic
statements about risk; the ability to know where specific risk levels are on the potential distribution of
risk; an increased understanding of risks; and opportunities for improved communication and risk
management decision making.
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(5) When should I consider using PRA?

A PRA may be considered as early as the planning stages of a point estimate risk assessment or
as late as after the completion of a point estimate risk assessment.  Ideally, PRA should be considered as
early as possible in the planning of risk assessment activities at a site so that sampling plans and data
collection efforts may be appropriately directed.  A PRA may be used when the risk management
decision is not apparent and when the results of a PRA may inform the risk management decision.  Often
a risk management decision is not apparent when the site-specific risk estimate is close to the regulatory
level of concern.  The NCP discusses a generally acceptable range for cumulative excess cancer risk of
1E-06 to 1E-04 for protecting human health (U.S. EPA, 1990).  Noncancer risks to human health and
ecological health are generally characterized by a ratio of exposure to toxicity, called a Hazard Quotient
(HQ) or Hazard Index (HI) for multiple contaminants.  The point of departure for evaluating noncancer
risks may vary from site to site, but a HQ of 1 may be a good starting point for risk management
decisions.  

PRA may also be considered when the results of the point estimate risk assessment suggest that
risks are clearly above a risk level of concern, and a preliminary remediation goal (PRG) is needed. 
Because PRA and point estimate risk assessments use different techniques for quantifying variability and
uncertainty, they may support different PRGs.  If the results are dramatically different, further steps may
be warranted to reevaluate the choices for input variables - both the point estimates, and the probability
distributions and parameters (including truncation limits) for the 1-D MCA.

PRA will not be needed in many cases.  Point risk estimates often produce results which are
sufficient for making remedial decisions (e.g., sites are usually either heavily contaminated or only
marginally contaminated).  A tiered approach to risk assessment has been developed by Environmental
Protection Agency (EPA) and is recommended for use in deciding when to move from point estimate risk
assessments to PRAs of varying complexities.  A workplan should be developed and submitted for
review before beginning a PRA at any stage in the tiered process.  As a general rule, if the potential value
added by a PRA outweighs the additional resource required to conduct it, PRA may be warranted (see
Chapter 2).

(6) How is the risk distribution from PRA used for decision making?

The EPA’s RAGS Volume I (U.S. EPA, 1989a) and the NCP Preamble (U.S. EPA, 1990) state
that the RME will generally be the principal basis for evaluating potential human health risks at
Superfund sites.  Ecological assessments also often consider an RME endpoint.  The point estimate
Superfund risk assessments use a combination of average and high-end input values to arrive at the RME. 
In PRA, risks are described by a probability distribution instead of a point estimate.  To use a risk
distribution for decision making, one needs to identify a percentile value that corresponds to the RME. 
EPA’s Guidelines for Exposure Assessment (U.S. EPA, 1992a) states that, “the high-end risk means risks
above the 90th percentile of the population distribution”, and “the high-end estimator should not exceed
the 99.9th percentile” due to uncertainty in specifying the upper tail of the input distributions in a Monte
Carlo analysis.  Similarly, the 90th to 99.9th percentiles of the risk distribution are recommended in this
guidance as the RME range for decision making in PRA.  Selection of a single point within the RME
range generally requires consideration of the level of uncertainty in the risk distribution.  The EPA
recommends that the 95th percentile of the risk distribution be used as a starting point for risk
management decisions in the absence of site-specific information.
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(7) What is Monte Carlo Analysis (MCA)?

MCA is a numerical technique for PRA.  MCA was developed in the 1940's during the
beginnings of the nuclear power industry.  MCA combines statistical analysis with modern computational
techniques to calculate risk estimates, by randomly choosing different sets of input values each time. 
Each calculation is an iteration and a set of iterations is called a simulation.  The output of a simulation
used for risk assessment is a continuous probability distribution, which can be displayed in a graph in the
form of either a probability density function (PDF) or corresponding cumulative distribution function
(CDF).  Both displays represent the same distribution, but are useful for conveying different information. 
For example, the PDF for risk is a good way for displaying relative probability using an area under the
bell-shaped curve.  The CDF for risk is generally S-shaped and can be especially informative for
illustrating the percentile corresponding to a particular risk level of concern (e.g., 95th percentile=1E-06). 
Other uses of PDFs and CDFs are presented in Chapter 1, Exhibit 1-3.  In 1997, EPA published a policy
accepting the use of MCA to perform human health and ecological risk assessments (U.S. EPA, 1997a). 
This guidance focuses on MCA as a method of quantifying variability and uncertainty.

(8) What is the policy on using PRA to characterize variability or uncertainty in toxicity or dose
response?

In human health risk assessments, probability distributions for risk should reflect variability or
uncertainty in exposure.  In ecological risk assessments, risk distributions may reflect variability or
uncertainty in exposure and/or toxicity (see Chapter 1, Sections 1.4 and 1.4.1, Item 3).

Approaches to characterizing variability and uncertainty in toxicological information should
reflect both the latest developments in the science of hazard and dose-response evaluation and consistent
application of EPA science policy.  This statement is consistent with the 1997 EPA Policy Statement
presented in Section 1.4 above (U.S. EPA, 1997g).  Probabilistic approaches to ecological dose-response
assessment may be explored, as discussed and demonstrated in Chapter 4.  This guidance does not
develop or evaluate probabilistic approaches for dose-response in human health assessment and, further,
discourages undertaking such activities on a site-by-site basis.  Such activities require contaminant-
specific national consensus development and national policy development.  Parties wishing to undertake
such activities should contact the OERR to explore ways in which they might contribute to a national
process for the contaminant of interest to them.

(9) What is the policy on using PRA at EPA and in Superfund?

In the spring of 1997, EPA released the memorandum, Use of Probabilistic Techniques
(including Monte Carlo Analysis) in Risk Assessment (U.S. EPA, 1997b).  The policy states that
probabilistic analysis techniques, “given adequate supporting data and credible assumptions, can be 
viable statistical tools for analyzing variability and uncertainty in risk assessments.”  As such, a PRA,
“will be evaluated and utilized in a manner that is consistent with other risk assessments submitted to the
Agency.”  Together with this Policy Statement, the Agency released a set of guiding principles for use
and review of probabilistic analyses.  Hence, both RAGS and Agency-wide guidance emphasize the
importance of review of the scientific and technical merit of a probabilistic analysis to determine whether
or not the assessment is of sufficient quality to support a remedial decision.  This guidance, RAGS
Volume 3: Part A, provides risk assessors with comprehensive guidance on when and how to conduct
PRAs using MCA within the Superfund program (see Preface and Chapter 1). 
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(10) What are the challenges of using PRA?

Although PRA may have several advantages over the traditional point estimate approach to risk
assessment, the use of PRA tends to be more resource intensive and may introduce some additional
challenges to risk communication efforts.  Risk communication helps build trust with the stakeholders
and disseminate the risk information.  In general, EPA staff and stakeholders are accustomed to a point
estimate of risk and are unfamiliar with PRA and the quantitative estimates of uncertainty that PRA can
support.  Although, quantitative risk estimates may be more informative, they also may be more difficult
to communicate and may not be well received due to stakeholder desires for certainty (Slovic, et al.
1979).  Early and frequent communication with stakeholders is key in implementing PRA successfully. 
Often PRA requires additional data collection efforts as well as more time and resources to select and fit
probability distributions.
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APPENDIX H

INDEX 

Applicable or Relevant  and Appropriate

 Requirements (ARAR), 5-3, 18, 19; 7-1

backcalculation, 5-3, 10-11

Bayesian analysis, D-16, 17-18

Benchmark Dose Software (BMDS), 4-16, 17-19, 32-35

biomarker, 7-9

bivariate normal distribution, B-45, 46-49

bootstrap resampling, 3-12; 5-7, 15; C-11

CDF (see cumulative distribution function)

censored data, B-27

central limit theorem, C-11

central tendency exposure (CTE), 1-15, 16-17

checklist, 1-29; 4-41; F-1, 4

cleanup goal, level, 5-1, 3, 18-21; 7-13

confidence interval, 1-19; 3-12; 5-7; 6-16; C-11

continuous response, 4-28, 29

correlation,

and bivariate normal, B-46, 47-50

comparison with regression analysis, A-21, 34 

partial, A-33

Pearson, A-2, 26, 33

r-square, 4-12; 6-13; A-33, 34

simple, A-2, 26

Spearman rank, 3-26; A-26, 36; B-26

credible interval, 1-19; 3-12, 16; 6-16, 17

CDF (see cumulative distribution function)

CTE (see central tendency exposure)

cumulative distribution function (CDF)

compared with PDF, 1-12; 3-6, 7-8; 4-14; 7-3

deterministic risk assessment (see point estimate risk

assessment)

dichotomous response, 4-26, 27

distribution (see probability distribution)

empirical distribution function (EDF), 4-15; 5-13; B-8,

22, 37-38

Expected Value of Information (EVOI), 1-21; D-19,

20-24

expert judgment, 6-5; D-16, 17-19

exposure point concentration (EPC), 3-10; 5-4, 6, 12

exposure unit, 1-18; 3-10; 5-4, 5-20; C-1, 2-13

forward calculation, 5-3

geostatistics, 5-14; C-12, 13; D-10, 11-16

goodness-of-fit (GoF) test, 1-29; B-31, 32-35

Anderson Darling (AD), B-34

Chi-Square, A-6; B-33

Kolmogorov-Smirnov (KS), B-33, 34

probability plot (see probability plot)

Shapiro-Wilk, B-33

iterative,

reduction, 5-12, 13, 19-21

truncation (see truncation)

joint probability curve, 4-30

kriging, 5-9; D-15

Land Method, 5-7; C-12

Latin Hypercube Sampling, 3-15, 17

lognormal distribution, 1-11, 25; 3-4, 12-14; 5-7, 15;

C-11

maximum entropy, B-5

maximum likelihood estimation (MLE), B-25

measurement of attainment, 5-21

method of matching moments, B-24, 25

Microexposure Event Analysis (M EE), C-2; D-6, 7-9



RAGS Volume 3 Part A ~Process For Conducting Probabilistic Risk Assessment
 Appendix H ~ December 31, 2001

Page H-2

Monte Carlo,

analysis, 1-D M CA, 1-14; D-1; G-4

analysis, 2-D M CA, 1-19; D-1, 2-5

simulation, 1-13

NCP, nine criteria, 1-6; 2-12, 16; 5-1, 4; 7-1, 12

normalized partial derivative, A-13, 32

parameter estimation criteria, B-24, 25

partial derivative, A-13, 29-32, 36

PDF (see probability density function)

point estimate risk assessment,

compared with PRA, 1-11, 17, 20-23; 4-7, 8-11;

G-2, 4, 5

preliminary remediation goal (PRG), all of Chapter 5;

7-11, 12-14

probability density function (PDF),

compared with CDF, 1-12; 3-6, 7-8; 4-14; 7-5

concept of probability density, 3-4

PDFu, 1-19; 3-12, 13-15; 4-31, 33-34; 5-8; 6-16

PDFv, 1-12, 1-19, 20; 3-4, 12-14; 4-31; 5-8; 

C-1, 2-4

probability distribution,

continuous, 4-16

discrete, 4-16

preliminary or screening level, 2-6; 4-44; B-1, 4-5 

selection of, 3-5; B-34, 35

for dose response or toxicity, 1-27; 3-6; 4-15,

16-39; 7-8, 9; G-4

probability mass function (PMF), 1-11

probability plot, 5-16; B-23, 24, 33-34, 40-46 

problem formulation, 1-7, 22, 24, 28; 4-2, 11, 42;

5-4, 15

quantitative uncertainty analysis, C-11

random variable, 1-11 , 14; 4-12; 5-6

rank correlation coefficient, 3-26; 6-14

reasonable maximum exposure (RME), 1-15, 16-17

RME range, 1-21, 26-27; 7-4, 11-13

regression analysis, A-1, 32-36

multiple, A-2, 6, 8, 36

stepwise, A-36

remediation

action level, 5-1, 7-8, 17

goal, 1-6, 28; 2-14, 15; 5-1; 7-1; C-2

representativeness, 1-17; 3-5, 6; 4-7; 6-10; 7-6, 7-8, C-3

risk 

characterization, 1-5, 8; 3-1, 6, 9; 4-2; 6-10; 7-6,

7-8; C-3

CTE and management of ecological risk, 4-38

communication, 1-4, 10, 25-26; 2-16; all of

Chapter 6; C-11

RME (see reasonable maximum exposure)

sample size, 1-18; 3-6; 5-8, 14; 6-9; C-9, 11; D-12, 13

Scientific/Management Decision Plan (SMDP), 1-9;

4-5, 8, 44, 46, 48

sensitivity analysis, all of Appendix A

role in the tiered approach, 3-9, 21; A-3

simple correlation coefficient, A-21

spatial autocorrelation, C-12

species sensitivity distribution (SSD), 4-20, 21, 24-25

stability, 3-17; 4-38; 7-6, F-5

numerical, 1-15, 25; 3-17

stakeholders, 

types of, 2-7, 8; 6-4, 5

role in tiered process, 1-4, 7; 2-16; 3-17, 18-26;

4-39; 5-12; 6-1, 4, 7, 19

Thiessen polygons, D-13, 14-15

tiered approach, 1-9, 26-28; 2-9, 10-18; 4-40, 41; 3-17;

5-9, 10; 6-6

time step , C-4; F-5

toxicity reference value (TRV), 4-6; 4-9; 4-15, 16,

20-24, 32-35, 38

truncation, 

probability distributions, 3-6, 13-15, 25; B-30,

31-32

iterative method  for PRGs, 5-12 13-21; F-4
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uncertainty,

model, 1-17 , 18; 3-11, 17; 4-6

parameter, 1-17, 18; 3-11, 12-16

scenario, 1-18; 3-11, 17 

upper confidence limit (UCL), 5-4, 5; C-11

value of information (VOI) (see EV OI)

variability,

and concentration term, all of Appendix C

inter-individual, 3-1; C-1

intra-individual, C-1, 2

spatial, C-3, 4-7

temporal, C-2, 3-7

workplan, 1-27; 2-1, 4; 4-39, 40, 44, 46; all of

Appendix F

z-score, C-10, 11
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