

ENERGY FUELS RESOURCES (USA) INC.

RESPONSES TO

REVIEW OF AUGUST 15, 2012 (AND MAY 31, 2012) ENERGY FUELS RESOURCES (USA) INC. RESPONSES TO ROUND 1 INTERROGATORIES ON REVISION 5 RECLAMATION PLAN REVIEW, WHITE MESA MILL SITE, BLANDING, UTAH, REPORT DATED SEPTEMBER 2011

AUGUST 31, 2015

TABLE OF CONTENTS

Division's Assessment of EFR Responses to Rd 1 Interrogatory White Mesa Rec Plan 5.0; R313-24-4; 10 CFR40.31(H); INT 01/1; Responses to Reclamation Plan Rev. 4.0 Interrogatories
Division's Assessment of EFR Responses to Rd 1 Interrogatory White Mesa RecPlan Rev 5.0 R313-24-4; 10CFR40 Appendix A, Criterion 4; INT 02/1; Engineering Drawings
Division's Assessment of EFR Responses to Rd 1 Interrogatory White Mesa Revised RecPlan 5.0; R313-24-4; 10CFR40 Appendix A, Criterion 4; INT 03/1; CQA/CQC Plan, Cover Constructability, and Filter and Rock Riprap Layer Criteria and Placement
Division's Assessment of EFR Responses to Rd 1 Interrogatory White Mesa RecPlan Rev 5.0 R313-24-4; 10CFR40, APPENDIX A, Criterion 4; INT 04/1; Void Space Criteria for Debris, Rubble Placement, and Soil/Backfill Requirements
Division's Assessment of EFR Responses to Rd 1 Interrogatory White Mesa RecPlan 5.0 R313-24-4; 10CFR40, Appendix A; INT 05/1; Seismic Hazard Evaluation11
Division's Assessment of EFR Responses to Rd 1 Interrogatory White Mesa RecPlan Rev 5.0 R313-24-4; 10CFR40, Appendix A, Criterion 1; INT 06/1; Slope Stability14
Division's Assessment of EFR Responses to Rd 1 Interrogatory White Mesa RecPlan Rev. 5.0; R313-24-4; 10CFR40, Appendix A, Criterion 4; INT 07/1; Technical Analysis - Settlement and Potential for Cover Slope Reversal and/or Cover Layer Cracking
Division's Assessment of EFR Responses to Rd 1 Interrogatory White Mesa RecPlan Rev. 5.0; R313-24-4; 10CFR40, Appendix A, Criterion 4; INT 08/1: Technical Analysis – Erosion Stability Analysis
Division's Assessment of EFR Responses to Rd 1 Interrogatory White Mesa RecPlan Rev. 5.0; R313-24-4; 10CFR40, Appendix A, Criterion 1; INT 09/1; Liquefaction
Division's Assessment of EFR Responses to Rd 1 Interrogatory White Mesa RecPlan Rev. 5.0; R313-24-4; 10CFR40, Appendix A, Criterion 6; INT 10/1; Technical Analyses – Frost Penetration Analysis
Division's Assessment of EFR Responses to Rd 1 Interrogatory White Mesa RecPlan Rev. 5.0; R313-24-4; 10CFR40, Appendix A; INT 11/1; Vegetation and Biointrusion Evaluation and Revegetation Plan
Division's Assessment of EFR Responses to Rd 1 Interrogatory White Mesa RecPlan Rev. 5.0; R313-24-4; 10CFR40, Appendix A, Criterion 6(4); INT 12/1; Report Radon Barrier Effectiveness
Division's Assessment of EFR Responses to Rd 1 Interrogatory White Mesa RecPlan Rev. 5.0; R313-24-4; 10CFR40, Appendix A, Criterion 6(6); INT 13/1; Concentrations of Radionuclides Other Than Radium
Division's Assessment of EFR Responses to Rd 1 Interrogatory White Mesa RecPlan Rev. 5.0; R313-24-4; 10CFR40, Appendix A; INT 14/1; Cover Test Section and Test Pad Monitoring Programs
Division's Assessment of EFR Responses to Rd 1 Interrogatory White Mesa RecPlan Rev. 5.0; R313-24-4; 10CFR40, Appendix A, Criterion 9; INT 15/1; Financial Surety Arrangements

Division's Assessment of EFR Responses to Rd 1 Interrogatory White Mesa RecPlan Rev. 5.0; R313-15-501; INT 16/1; Radiation Protection Manual	56
Division's Assessment of EFR Responses to Rd 1 Interrogatory White Mesa RecPlan Rev. 5.0 R313-15-1002; INT 17/1; Release Surveys	57
Division's Assessment of EFR Responses to Rd 1 Interrogatory White Mesa RecPlan Rev. 5.0 5.0 R313-12; INT 18/1; Inspection and Quality Assurance	58
Division's Assessment of EFR Responses to Rd 1 Interrogatory White Mesa RecPlan Rev. 5.0 R313-24; 10CFR 40.42(J); INT 19/1; Regulatory Guidance	59
Division's Assessment of EFR Responses to Rd 1 Interrogatory White Mesa RecPlan Rev. 5.0 R313-24; 10CFR40 Appendix A Criterion 6(6); INT 20/1; Scoping, Characterization, and Final Surveys	60

ATTACHMENTS

ATTACHMENT A	Supporting Documentation for Interrogatory 01/1: Mill Building, Boiler Plant, Scale House, and the Sample Plant Asbestos Inspection Report
ATTACHMENT B	Supporting Documentation for Interrogatory 02/1: Revised Reclamation Plan Drawings to Attachment A of Reclamation Plan, Revision 5.0
ATTACHMENT C	Supporting Documentation for Interrogatory 03/1, 04/1, and 13/1: Revised Technical Specifications and Construction Quality Assurance/ Quality Control Plan to Attachment A and B of Reclamation Plan, Revision 5.0
ATTACHMENT D	Supporting Documentation for Interrogatory 06/1: Revised Appendix E, Slope Stability Analysis, to the Updated Tailings Cover Design Report (Appendix D of the Reclamation Plan, Revision 5.0)
ATTACHMENT E	Supporting Documentation for Interrogatory 07/1 and 09/1: Revised Appendix F, Settlement and Liquefaction Analyses, to the Updated Tailings Cover Design Report (Appendix D of the Reclamation Plan, Revision 5.0)
ATTACHMENT F	Supporting Documentation for Interrogatory 08/1: Revised Appendix G, Erosional Stability Evaluation, to the Updated Tailings Cover Design Report (Appendix D of the Reclamation Plan, Revision 5.0)
ATTACHMENT G	Supporting Documentation for Interrogatory 11/1: Revised Appendix D, Vegetation and Biointrusion and Revised Appendix J, Revegetation Plan, to the Updated Tailings Cover Design Report (Appendix D of the Reclamation Plan, Revision 5.0)
ATTACHMENT H	Supporting Documentation for Interrogatory 12/1: Revised Appendix C, Radon Emanation Modeling, to the Updated Tailings Cover Design Report (Appendix D of the Reclamation Plan, Revision 5.0)
ATTACHMENT I	Supporting Documentation for Interrogatory 16/1: Revised Radiation Protection Plan

DIVISION'S ASSESSMENT OF EFR RESPONSES TO RD 1 INTERROGATORY WHITE MESA REC PLAN 5.0; R313-24-4; 10 CFR40.31(H); INT 01/1; RESPONSES TO RECLAMATION PLAN REV. 4.0 INTERROGATORIES

The Division requests that EFR include the additional costs for removing the identified ACM in the estimate of costs to decontaminate and decommission the mill. The Division will review the revised reclamation cost estimates, when available, to verify that these costs have been included in the reclamation cost estimates.

Response:

Energy Fuels Resources (USA) Inc. (EFRI) submitted asbestos inspection reports as Attachment A to EFRI (2012) for the following facilities:

- Administration Building
- Mill Building, Boiler Plant, Scale House, and the Sample Plant
- Maintenance-Warehouse Facility
- SX Building

The asbestos inspection report for the Mill Building, Boiler Plant, Scale House, and the Sample Plant erroneously included inspection information for the Maintenance-Warehouse Facility. The asbestos inspection report for the Mill Building, Boiler Plant, Scale House, and Sample Plant has been revised and the report is provided as Attachment A to this response document.

Costs for removing asbestos containing material (ACM) identified in the asbestos inspection reports are currently incorporated in the annual surety estimates. These costs will also be included in the reclamation cost estimate in the next version of the Reclamation Plan.

Reference for Response:

Energy Fuels Resources (USA) Inc. (EFRI), 2012. Responses to Interrogatories – Round 1 for Reclamation Plan, Revision 5.0, March 2012. August 15.

DIVISION'S ASSESSMENT OF EFR RESPONSES TO RD 1 INTERROGATORY WHITE MESA RECPLAN REV 5.0 R313-24-4; 10CFR40 APPENDIX A, CRITERION 4; INT 02/1; ENGINEERING DRAWINGS

Based on review of the above Response, the Division finds that although EFR provided narrative descriptions of the changes it intends to make to engineering drawings, revised drawings were not submitted with interrogatory responses. Rather, EFR committed to provide revised engineering drawings with the "next revision of the Reclamation Plan". The Division will review the revised engineering drawings, when available, to verify that these changes to the drawings have been made. Because EFR submitted neither revised engineering drawings nor the revised Reclamation Plan in its interrogatory response, this interrogatory will remain open.

Response:

Revised engineering design drawings are provided as Attachment B and incorporate (1) the applicable proposed changes listed in EFRI (2012) for this interrogatory, (2) the revised cover design based on technical analyses presented in EFRI (2012) and included as attachments to this response document, and (3) recent topography provided by EFRI.

Reference for Response:

Energy Fuels Resources (USA) Inc. (EFRI), 2012. Responses to Interrogatories – Round 1 for Reclamation Plan, Revision 5.0, March 2012. August 15.

DIVISION'S ASSESSMENT OF EFR RESPONSES TO RD 1 INTERROGATORY WHITE MESA REVISED RECPLAN 5.0; R313-24-4; 10CFR40 APPENDIX A, CRITERION 4; INT 03/1; CQA/CQC PLAN, COVER CONSTRUCTABILITY, AND FILTER AND ROCK RIPRAP LAYER CRITERIA AND PLACEMENT

The Division finds EFRs' Response to the first item of this interrogatory pertaining to materials to be placed into Cell 1 - i.e., EFR's commitment to revise all sections of the CQA/CQC Plan, Technical Specifications, and the text of the Reclamation Plan itself to preclude placement of tailings into the Cell 1 Disposal Area, and to identify the Cell 1 area as the "Cell 1 Disposal Area" in all documents – to be acceptable. These revised documents will need to be reviewed, when available, to verify that these changes have been made. Because these revised documents were not submitted in its interrogatory response, this interrogatory will remain open.

Based on its review of the section of EFR's response pertaining to the constructability of the currently proposed cover system having such extremely flat topslope inclinations, the Division is unable to concur with EFR's contention that such flat inclinations can be constructed uniformly and reliably over the entire required topslope area, as insufficient supporting information and justification have been submitted to satisfactorily support the contention. This issue needs to be addressed before appropriate conclusions can be reached.

In addition to the Division's uncertainties related to the constructability of the currently proposed cover, insufficient information has been provided in Attachment A (Technical Specifications, Section 8) and Attachment B (COA/COC Plan, Section 6) to the Rev 5.0 Reclamation Plan or in EFR's response regarding the means and procedures that would be implemented for controlling, verifying, and documenting layer thicknesses and final grades across the top portions of the cover. Examples of information missing that should be provided are discussions regarding the need for use of Global Positioning System (GPS) and computer terrain modeling technology and how these might be combined to provide for a Computer Aided Earthmoving System (CAES) for verification of soil compaction and thicknesses of layers as they are being installed and undergoing compacted during each pass of the compaction equipment over placed loose lifts (e.g., Caterpillar 2003). The advantage of this methodology is that it provides a continuous record in a continuous manner across the entire cover area footprint, rather than acquiring data at a series of isolated points. Discussions of soil density tests and independent land surveys for demonstrating the effectiveness of the CAES method, and procedures that may be used for visual monitoring of the CAES-verified compaction process and review of CAESgenerated computer records for each layer of soil placed by on-site QC personnel, should also be provided. A more detailed discussion should also be provided of companion sand cone tests and moisture tests to be performed along with nuclear tests until a sufficient number of have been performed to demonstrate a clear correlation between results obtained using these test methods. Similar procedures to those described here have been accepted and are in use at the Crescent Junction, Utah uranium tailings repository (e.g., see U.S. DOE-EM/GJ1547 [DOE 2012]).

The Division finds the filter layer gradation and permeability criteria and proposed construction quality assurance testing procedures and frequencies to be acceptable. The revised CQA/CQC Plan will need to be reviewed, when available, to verify that these changes have been made. Because the revised CQA/CQC document was not submitted in its interrogatory response, this interrogatory will remain open.

The Division also finds EFR's commitment to revise Section 5.7.1 of the CQA/CQC Plan and Section 8.2.4 of the Technical Specifications to include a required minimum thickness of the rock riprap layer equal to 1.5 times the D50 rock riprap diameter of 7.4 inches, or the D100 of the rock riprap materials, whichever is greater, to be acceptable. The revised CQA/CQC Plan and revised Technical Specifications

will need to be reviewed, when available, to verify that these commitments will be faithfully implemented. Because these revised documents were not submitted in its interrogatory response, this interrogatory will remain open.

Based on review of the information provided in the Response with respect to rock riprap placement and construction quality assurance testing, the Division notes that EFR did not address certain additional specific recommendations included in Appendix F (Rock Placement Procedures for Erosion Protection) of NUREG-1623 (NRC 2002) in their response to this interrogatory, but which should be addressed. Additional NUREG-1623 recommendations that should also be addressed/ implemented include the following:

- Initial testing should be conducted to determine the gradation and the rock weight/unit volume that will be achieved in future rock placement activities.
- No individual rock piece should exceed 90% of the riprap layer thickness
- Dumped riprap should be placed to its full course thickness in one operation and in such a manner as to avoid displacing any underlying bedding material
- It should be declared that rearranging of individual stones by mechanical equipment or by hand may be required to the extent necessary to obtain a well-keyed and reasonably well-graded distribution of stone sizes and that larger pieces of riprap may require individual placement by equipment.
- Any stones that are not firmly wedged should be adjusted and additional selected stones inserted or existing stones replaced, so as to achieve a solid interlock.

Based on its review of the section of EFR's response pertaining to settlement and of the referenced revised settlement analyses, the Division is unable to assess the correctness of EFR's conclusion regarding cover performance with respect to settlement due to errors, omissions, discrepancies, and insufficient information in the materials submitted. These issues need to be addressed before appropriate and reliable conclusions can be reached. These issues are more fully discussed in Sections 7.0 and 9.0 below relative to the response to Interrogatory 07/01, Technical Analysis - Settlement and Potential for Cover Slope Reversal and/or Cover Layer Cracking and 09/01, Technical Analysis - Liquefaction. Evidence should also be provided that the eight UMTRCA repository sites (which EFR claims have slopes similar to the 0.5 to 1% slopes proposed for the subject site) have performed adequately and that demonstrates that future differential settlement of those repositories during the 200- 1,000 –year performance period of those facilities will not occur to a degree that flattening/slope reversal of the topslope portions of those covers would result. Such information should include currently observed differential settlements and predictions of future settlements calibrated to the observed performance.

Response:

The Division states that they accept EFRI's commitment to revise all sections of the CQA/CQC Plan, Technical Specifications, and the text of the Reclamation Plan to denote the Cell 1 area as the "Cell 1 Disposal Area" and to note that this area will not include disposal of tailings. This information has been added to the revised Technical Specifications and CQA/CQC Plan provided as Attachments C.1 and C.2, respectively to this response document, for Division review. The designation of "Cell 1 Tailings Area" to "Cell 1 Disposal Area" will be revised in Section 3.2 of the main text in the next version of the Reclamation Plan.

The Division expressed concern regarding constructability of the proposed cover slopes ranging from 0.5 to 1 percent. Cover with similar slopes have been permitted and constructed for Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I and II sites including:

- Falls City Title I site in Texas (less than 1% cover slopes)
- Bluewater Title II site in New Mexico (0.5 4% cover slopes)
- Conquista Title II site in Texas (0.5 1% cover slopes)
- Highland Title II site in Wyoming (0.5 2% cover slopes)
- Panna Maria Title II site in Texas (0.5% cover slopes)
- Ray Point Title II site in Texas (0.5 1% cover slopes)
- Sherwood Title II site in Washington (0.25% cover slopes)
- L-Bar Title II site in New Mexico (0.1% cover slopes)

EFRI proposes to place the final cover in two phases for each cell. The first phase would consist of placement of the majority of the cover, without the erosion protection layer and possibly a portion of the water storage/frost protection/radon protection layer. For Cell 2, this first phase of cover placement would take place after approval of the Reclamation Plan and completion of the License renewal. The second phase of final cover placement would occur after sufficient settlement has occurred from dewatering of tailings and placement of the first phase of final cover. Between the first and second phase of cover placement, additional interim cover would be placed in any low areas to maintain positive drainage of the interim cover surface. Results of settlement analyses (see Attachment E) indicate that potential differential settlement after active maintenance will be sufficiently low that ponding and slope reversal is not expected to occur on a cover slope of 0.5 to 1.0 percent. Work completed on the final reclamation cover, as described above, will be credited against the annual reclamation cost update submitted to the State of Utah on March 4th of each year.

Settlement monuments, as well as water levels within the tailings, will be monitored on a regular basis. Settlement monuments are currently surveyed monthly with a quality control check done annually by a certified Surveyor. A detailed standard operating procedure (SOP) is used for the settlement monitoring. Results are reported to the Division annually in the Annual Technical Evaluation Report (ATER). Mini-piezometers will be installed across the each cell prior to the first phase of cover placement. This data will provide information on settlement and dewatering of the cells to confirm the final phase of cover can be placed and when active maintenance is no longer required.

Grading control for construction of the reclamation cover shall be achieved with Global Positioning System (GPS) guided equipment. This requirement has been added to the Technical Specifications as requested by the Division. The Computer Aided Earthmoving System (CAES) is a type of GPS-guided grading control method.

Text has been added to Sections 5.2, 5.3.6, 5.4.5, and 5.6.3 of the CQA/CQC Plan to note that a sufficient number of sand cone and moisture content tests will be performed to provide a correlation between the sand cone and nuclear density tests.

The Division states that they accept the filter layer gradation and proposed construction quality assurance testing procedures and frequencies. Sections 8.2.5 and 8.4.7 of the Technical Specifications (Attachment C.1) and Section 5.7.1.2 of the CQA/CQC Plan (Attachment C.2) have been revised to include the updated testing frequency and filter material gradation requirements.

The Division states that they accept the proposed revisions to Section 5.7.1 of the CQA/CQC Plan and Section 8.2.4 of the Technical Specifications to include a required minimum thickness of the rock riprap layer equal to 1.5 times the D_{50} rock riprap diameter, or the D_{100} of the rock riprap materials, whichever is greater. This information has been added to the Technical Specifications (Attachment C.1) and CQA/CQC Plan (Attachment C.2).

The Division requests additional information be added to the CQA/CQC Plan for riprap placement based on recommendations in NUREG-1623 (NRC, 2002). The following text has been added to Section 5.7.2 of the CQA/CQC Plan (Attachment C.2).

- Initial testing should be conducted to determine the gradation and the rock weight/unit volume that will be achieved in future rock placement activities.
- Individual stones shall not be greater than 90 percent of the riprap layer thickness.
- Dumped riprap shall be placed to its full course thickness in one operation and in such a manner as to avoid displacing bedding material.
- Hand placement or rearrangement of individual stones will be required only to the extent necessary to secure the results specified above. Larger stones may require individual placement by equipment.
- Any stones that are not firmly wedged shall be adjusted and additional selected stones inserted or existing stones replaced, so as to achieve a solid interlock.

The Division did not comment on EFRI's proposed revisions to Sections 5.7.1.1, 5.7.2 and 5.7.4 of the CQA/CQC Plan for riprap placement provided in EFRI's Response 5 to Interrogatory 03/1 (EFRI, 2012). It is assumed that the Division is in agreement with these proposed revisions and EFRI has included the revisions in the revised CQA/CQC Plan (Attachment C.2).

The settlement analysis and liquefaction analyses have been revised to incorporate the site-specific tailings data collected in October 2013 (MWH, 2015) and address the Division's comments provided in DRC (2013). The responses to the Divisions review comments on these analyses and a summary of the revised results are provided in the responses to Interrogatories 07/1 and 09/1.

References for Response:

- Energy Fuels Resources (USA) Inc. (EFRI), 2012. Responses to Interrogatories Round 1 for Reclamation Plan, Revision 5.0, March 2012. August 15.
- MWH Americas, Inc. (MWH), 2015. White Mesa Mill Tailings Data Analysis Report. Prepared for Energy Fuels Resources (USA) Inc. April.
- U.S. Nuclear Regulatory Commission (NRC), 2002. Design of Erosion Protection for Long-Term Stability, NUREG-1623, September.
- Utah Department of Environmental Quality, Division of Radiation Control (DRC), 2013. Review of August 15, 2012 (and May 31, 2012) Energy Fuels Resources (USA), Inc. Responses to Round 1 Interrogatories on Revision 5 Reclamation Plan Review, White Mesa Mill, Blanding, Utah, report dated September 2011. February 13.

DIVISION'S ASSESSMENT OF EFR RESPONSES TO RD 1 INTERROGATORY WHITE MESA RECPLAN REV 5.0 R313-24-4; 10CFR40, APPENDIX A, CRITERION 4; INT 04/1; VOID SPACE CRITERIA FOR DEBRIS, RUBBLE PLACEMENT, AND SOIL/BACKFILL REQUIREMENTS

The Division's assessments of these responses are summarized below.

a. Maximum Void Space Percentage: EFR does not state a maximum allowable void space due to the lack of practical means of quantifying residual void space following placement and backfilling. In lieu of stating a void space limit, EFR incorporates practices and requirements that were developed for the UMTRAP/UMTRCA and FUSRAP projects and that have been demonstrated effective in limiting settlement. EFR has developed and will implement method specifications that reflect best management practices, as documented in Attachment A "Plans and Technical Specifications for Reclamation of White Mesa Mill Facility; Blanding, Utah".

The practices call for compressible materials to be crushed or covered with soils (thus reducing residual void space), while voids in and around incompressible materials will be filled with soils or, if needed, grout.

The Division judges these specifications to be acceptable.

- b. Construction Practices: Processing, placement, backfilling, and compacting of debris and organic material are discussed in Sections 7.3 and 7.4 of Attachment A "Plans and Technical Specifications for Reclamation of White Mesa Mill Facility; Blanding, Utah". According to these specifications:
 - Some larger items and items with internal voids will be size reduced to expose voids so they can be filled.
 - Debris items will be placed to minimize nesting that could lead to residual voids after backfilling.
 - Compressible debris will be flattened or crushed.
 - Voids will be backfilled with soil, sand, or grout as judged appropriate by CQA Manager.

These specifications constitute current best management practices and we judge them to be acceptable given current state of knowledge.

c. Controlling Residual Voids: EFR's QA staff will observe construction practices to ensure that specifications for reducing void space within debris are met. The interrogatory response includes a statement that "The QA staff will make a recommendation to the Contractor for the implementation of a grouting program in instances when voids, either within a debris mass, or within a vessel, cannot be properly filled with soil using conventional equipment".

No reference to a "grouting program" exists in Attachment A "Plans and Technical Specifications for Reclamation of White Mesa Mill Facility; Blanding, Utah". Attachment A should be revised to formalize this commitment.

d. Effects of Void Space on Settlement Analyses: EFR's response is given in its response to INT 07/1. EFR's response notes that the cover system will not be constructed "... until settlement monitoring of the subsurface shows the anticipated settlement has taken place."

An additional criterion should be added requiring that observed settlement has stabilized according to some reasonable criterion.

- e. Percentage of Organic Materials: EFR's response makes several statements that, as far as we are able to determine, are not supported or documented:
- *"The percentage of organic materials to be disposed of is anticipated to be a small percentage of the total material being disposed."*
- "... the biodegradation of these materials is not anticipated to compromise the integrity of the cover system."

EFR should provide additional information to support these statements and provide confidence that the integrity of the cover system will not be compromised.

1. Segmenting and Placing Metallic Waste Materials: Section 7.3 of Attachment A "Plans and Technical Specifications for Reclamation of White Mesa Mill Facility; Blanding, Utah" requires that larger debris items be size reduced, that larger pieces are not stacked on top of each other, that large structural shape either be placed edge to edge or spaced far enough that voids can be filled and equipment can operate between them, that the maximum dimension be 20 feet, that the maximum volume of any piece of debris be 30 cubic feet, and that long structural members be placed horizontally, and that any piece not satisfying these requirements be reworked.

These provisions are considered acceptable.

1. Types of Materials and Placement Practices: Section 7.3 of Attachment A "Plans and Technical Specifications for Reclamation of White Mesa Mill Facility; Blanding, Utah" places limits of 20 feet in length and 30 cubic feet in volume.

Although the interrogatory response mentions a maximum pipe length of 10 feet, this limit is not stated in the Attachment A. EFR should revise Attachment A to state the maximum pipe length if it is less than 20 feet.

- f. Relative Quantities of Debris, Rubble, and Contaminated Soil: EFR should revise Attachment A to address the possibilities mentioned in the interrogatory response, should relative quantities of debris, rubble, and contaminated soil not allow Cell 1 to be closed as planned.
- g. Backfilling Voids Inside Debris Objects: EFR proposes to revise Attachment A to incorporate the statement "The voids on the inside of the item shall be filled with contaminated soil, clean fill soil, or grout (controlled low-strength material, flowable fill, etc...). Contaminated soil (Section 7.3.3) or clean fill will be placed outside of the items and compacted with standard compaction equipment (where possible) or hand-operated equipment to the compaction requirements in Specification Section 7.4." EFR also describes measures that could be taken to ensure that voids inside debris items are filled. These include:
 - Filling the voids with soil through an existing opening
 - Filling the voids with soil by cutting the item open
 - Crushing the item flat (so no voids remain within
 - Cutting pipes short, standing them on end, and filling them with soil
 - Pumping controlled low-strength material (CLSM or grout) into a region to form a monolithic grouted mass

These proposed revisions are acceptable and should be incorporated into Attachment A as proposed and other documents as appropriate.

h. CLSM Compressive Strength Requirements: EFR states that grout, if required, will be formulated to "mimic, as closely as possible, the strength and hydraulic properties of the contaminated soil that will also be used for filling voids within the debris."

EFR should state more specifically how these properties will be achieved and what formulation is likely to produce the desired outcome.

Response:

The following text has been added to Section 7.4.1 of the Technical Specifications (Attachment C.1) to reference recommendation of a grouting program, where needed. In addition, discussion of a grouting program has been added to Section 7.3.6.

"The CQA technicians will make a recommendation to the Contractor for the implementation of a grouting program in instances when voids, either within a debris mass, or within a vessel, cannot be properly filled with soil using conventional equipment."

Organic debris will be size-reduced by crushing, chipping or shredding prior to placement. As described in the Technical Specifications, organic material will only be placed in lifts less than 12 inches thick and mixed with the soil and other incompressible debris during placement to prevent pockets of organic material from being created. Organics mixed with soil for spreading will be limited to 30 percent by volume of the mixture. This limit has been added to the Technical Specifications (Attachment C.2).

Additional interim cover will be placed during active maintenance in any low areas on the cover to maintain positive drainage of the cover surface due settlement including due to debris void spaces and/or organics.

The Division requests that a maximum pipe length of 10 feet be added in the Technical Specifications. A limit of 10 feet or less is already listed for cut pipe pieces from demolition debris in Section 7.3.7 of the Technical Specifications, therefore this text addition is not required.

Section 3.3 of the Technical Specifications (Attachment C.2) has been revised to include the following text.

"If sufficient debris, rubble and contaminated soil are not available to fill Cell 1 as designed, the footprint of Cell 1 can be reduced in size so that the horizontal dimension extending out from Cell 2 is reduced and the lateral extent of the disposed materials is reduced to be closer to the base of the Cell 2 impoundment. If a design modification is required for Cell 1, it will be submitted to the Division for review and approval and these Technical Specifications will be revised accordingly."

Section 7.3.6 of the Technical Specifications (Attachment C.2) has been modified to as proposed in EFRI (2012) to provide revised and additional information on backfilling of

voids inside debris objects. Text has also been added to this section to provide additional discussion on grout strength requirements.

Reference for Response:

Energy Fuels Resources (USA) Inc. (EFRI), 2012. Responses to Interrogatories – Round 1 for Reclamation Plan, Revision 5.0, March 2012. August 15.

DIVISION'S ASSESSMENT OF EFR RESPONSES TO RD 1 INTERROGATORY WHITE MESA RECPLAN 5.0 R313-24-4; 10CFR40, APPENDIX A; INT 05/1; SEISMIC HAZARD EVALUATION

Results of the Division's review of EFR's Response to each individual interrogatory statement in this Round 1 interrogatory are summarized below.

As stated in the Basis for the Interrogatory and Round 1 Interrogatory statement #5, "The USGS National Hazard Maps should not be used for developing site-specific seismic design parameters (personal communication between Dr. Mark Petersen, Chief, National Seismic Hazard Mapping Project and Ivan Wong of URS Corporation, 2010) for critical and important facilities. For such types of facilities, a site-specific probabilistic seismic hazard analysis (PSHA) is recommended." However, contrary to this recommendation, Denison's consultant MWH in response used the USGS National Hazard Maps (specifically the interactive deaggregation tool) to recommend design ground motions for the facility. EFR did not perform a site-specific PSHA as requested. Use of the National Hazard Maps does not constitute a site-specific PSHA. The maps are four years old and are in the process of being updated. PSHA computer software such as EZFRISK[®] are readily available to perform a site-specific PSHA. Below are specific comments on EFR's responses to the interrogatory statements:

1. Please further clarify the rationale for selecting the annual probability of exceedance of hazard for the facility.

EFR has adequately responded to this statement.

2. Adjust the cited USGS National Hazard Map PGA value of 0.15 g for the site Vs30 as appropriate.

EFR states that the site-specific Vs30 (time-averaged shear-wave velocity in the top 30 m) as determined by Tetra Tech (2010) was 586 m/sec corresponding to a NEHRP site class E or soft soil. This is an erroneous statement. A Vs30 of 586 m/sec actually corresponds to a NEHRP site class C, very dense soil or soft rock. MWH also estimated the Vs30 for the site and concluded that the Vs30 ranged from 620 to 700 m/sec corresponding to a NEHRP site class D or stiff soil. This is also incorrect. This range in Vs30 also corresponds to a NEHRP site class C. Aside from these errors, the shear-wave velocity (Vs) estimate for the 10 m of soil appears reasonable although SPT does not measure Vs directly and so the uncertainties in the inferred Vs can be significant. However the technical basis for the Vs for the remaining 20 m of interbedded sandstone needs to be provided.

As stated above and in Statement 5, a request had been made not to use the National Hazard Maps but to perform a site-specific seismic hazard evaluation. The assumption that a site Vs30 of 760 m/sec is appropriate for the site allowing use of the maps is problematic.

More importantly, the characterization of the site as a thin soil site where there is 10 m of soil over firm (?) rock (Tetra Tech, 2010) indicates that a site response analysis is now required to address site effects on ground motions. The sharp Vs contrast between the lower velocity soil and the higher velocity rock will amplify short-period ground motions like PGA by as much as a factor of 2 for low rock ground motion inputs. The use of Vs30 in a site-specific hazard analysis will not capture these site amplification effects (Abrahamson, 2011). A site response analysis with a Vs profile into the rock should be performed. Using an equivalent-linear or fully non-linear computer code would be acceptable. It is recommended that direct measurements of Vs be made for input into the site response analysis.

3. Explain why the calculated hazard for the background earthquake PGA of 0.24 g was estimated but ignored in the recommendation provided in Appendix E.

EFR did not respond to this statement. However that question is now irrelevant because of the following actions. As recommended and agreed to by Denison in Response 3, a site-specific PSHA is the best approach for quantifying the hazard at the site particularly from background earthquakes. Denison states that was done as in discussed in Response 5 and as contained in Attachment A. A site-specific PSHA was in fact not performed but the National Hazard Maps were used as stated above and below.

4. Provide information to justify the use of 15 km distance for a background earthquake Mw 6.3 event.

EFR's response referred back to Response 3. EFR stated that the 15 km distance was selected because it would provide a conservative PGA at the site. This response fails to answer the question. A distance of 10 km would also provide a "conservative PGA at the site". However, this is now an irrelevant question because a deterministic seismic hazard analysis is to be replaced by a site-specific PSHA although such an analysis has yet to be performed.

5. Perform and report results of a site-specific PSHA in lieu of using the USGS National Hazard Maps for developing site-specific seismic design parameters.

As commented above, a site-specific PSHA was not done and the 2008 USGS National Hazard Maps were used. The USGS National Hazard Maps consider the Colorado Plateau in which the site is located as part of the central and eastern U.S. with respect to ground motion prediction models. Denison's Attachment 5 shows those ground motion models. Recent research by the USGS (McNamara et al. 2012) and studies for the proposed Blue Castle nuclear power plant site near Green River (Jennie Watson, personal communication, Dec 2012) indicate that is an erroneous assumption and that the use of western U.S. ground motion prediction models is more appropriate. Early site-specific PSHAs including an analysis for the NRC-regulated Atlas Moab tailings site (Wong et al. 1996) and the U.S. Bureau of Reclamation's Glen Canyon Dam (URS 1999) used western U.S. ground motion models. This is another reason why the National Hazard Maps should not be used for developing site-specific design parameters. It is strongly recommended that the Next Generation of Attenuation (NGA) ground motion prediction models be used in the site-specific PSHA for White Mesa. It is expected that the USGS will use the NGA models for the Colorado Plateau in the 2013 National Hazard Maps.

Response:

EFRI conducted a site-specific probabilistic seismic hazard analysis (PSHA) for the White Mesa Mill site to address the Division's comments for this interrogatory. Three versions of the report were submitted to the Division, with the final version submitted in April 2015 (MWH, 2015). The Division provided a final technical review of the report on May 28, 2015 (DRC, 2015) which stated the remaining review items were adequately addressed. The results from this report were used to update technical analyses for the Reclamation Plan. The updated analyses are discussed in other responses and will be included in the next version of the Reclamation Plan.

Reference for Response:

- MWH Americas, Inc. (MWH), 2015. White Mesa Mill Probabilistic Seismic Hazard Analysis Report. Prepared for Energy Fuels Resources (USA) Inc. April.
- Utah Department of Environmental Quality, Division of Radiation Control (DRC), 2015. Geotechnical Final Review of Energy Fuels Resources (USA) Inc., White Mesa Mill, Tailings Data Analysis Report dated April 2015, and Probabilistic Seismic

Hazard Analysis Report dated April 2015, RML#UT1900479, San Juan County, Utah. May 28.

DIVISION'S ASSESSMENT OF EFR RESPONSES TO RD 1 INTERROGATORY WHITE MESA RECPLAN REV 5.0 R313-24-4; 10CFR40, APPENDIX A, CRITERION 1; INT 06/1; SLOPE STABILITY

The Division finds that the revised slope stability analysis provided in the revised Attachment D to the EFR response did not adequately address several considerations and criteria that may be important to the analysis of the stability of the closed tailings embankment, including the following:

- No details were provided regarding shear strength data for the liner and LCRS components in Cells 4A and 4B
- No information was provided as how the bottom liner component(s) was (were) simulated in the global stability analysis completed for cross Section A through Cell 4B
- No details were provided regarding shear strength data for the liner and LCRS components in Cell 2
- No information was provided as how the bottom liner component(s) was (were) simulated in the global stability analysis completed for cross Section B through Cells 2 and 1
- Insufficient information was provided regarding:
 - *1) the estimated in-place dry density, in-place most density, and in-place saturated density (unit weight values) of the tailings;*
 - 2) rationale for selecting the tailings condition and tailings properties assumed in the analysis (e.g., drained vs. undrained conditions and for selection of in-place moist tailings density vs. in-place saturated tailings density for long-term static conditions or long-term seismic conditions); and
 - *3) the location of the assumed water table, e.g., if drained condition assumed;*
- The discussion and Table E.1 in Attachment D of table of the material properties used in the model did not distinguish between different material strength parameters assumed for long-term static conditions vs. long-term seismic conditions, e.g., no discussion of percentage reduction in strength properties for the seismic (pseudostatic) stability analysis was provided;
- No discussion of or rationale was provided for whether it may be appropriate and reasonably conservative to assume that the tailings dewatering system might be clogged, possibly leading to ineffective drainage at the base of the tailings cell in area including the lowest point in the tailings bottom surface and therefore possibly result in an undrained condition within the tailings. For such a case, undrained tailings strength relationships might suggest strength values for the tailings that may be different than those assumed by EFR; and
- No discussion or rationale was provided for whether it may be appropriate and reasonably conservative to assume that the strength parameters for the clay liner in the Cell 1 area might be estimated based on the PI that would lead to the weakest strength, or estimated using some other method that would generate the weakest estimated shear strength value for the clay liner.

The Division requests that EFR, in Attachment D, further define how the tailings total unit weight value stated in Table E.1 (90 pcf) and used in the revised slope stability analysis was derived (or how representative a value that value is of the tailings). For example, tailings sample results (see Appendix F, Settlement and Liquefaction Analyses of Updated Tailings Cover Design Report, Denison 2011) indicate that the tailings have an average specific gravity of 2.73; if a dry unit weight of 90 pcf were assumed (Section E.3 of Attachment D of this Response,) an average tailings void ratio of about 0.89 would result.

Based on this void ratio, the tailings bulk density would be approximately 119.4 pcf, compared to the total unit weight of the tailings listed in Table E.1 of Attachment D of this Response of 95 pcf. Alternatively, if an average tailings dry unit weight of 86.3 pcf were assumed (as was done in Appendix F, Settlement and Liquefaction Analyses of the Updated Tailings Cover Design Report, Denison 2011), then an average tailings void ratio of about 0.97 would result. Based on this void ratio, the tailings bulk density would be approximately 117.2 pcf. EFR should reevaluate and verify that their assumed tailings properties, calculation methodologies, and assumptions are representative, reasonably conservative, and bounding.

Response:

The slope stability analysis has been updated to incorporate the revised cover grading and additional site-specific tailings data collected in October 2013 (MWH, 2015). The revised analysis is provided in Attachment D as part of the revised Appendix E, Slope Stability Analysis, which will be included in the next version of the Updated Tailings Cover Design Report (Appendix D to the Reclamation Plan).

The liner and LCRS components of Cells 2, 4A and 4B were not included in the slope stability analysis because the strength parameters of these components do not affect the reclaimed stability analysis. Failure surfaces representing the lowest calculated factors of safety do not intersect the liner and LCRS components, even for conservatively low shear strength conditions within the cells.

Tailings density values used in the slope stability analysis have been updated to incorporate the results of tailings testing conducted in October 2013 (MWH, 2015). The rationale for selecting the tailings condition and properties are provided in Attachment D.

A liquefaction analysis was conducted for the tailings and is presented in Attachment G. The results indicate the tailings are not susceptible to earthquake-induced liquefaction for reclaimed conditions. For materials that do not liquefy or lose shear strength with seismic shaking, seismic slope stability is analyzed by a pseudo-static approach. The unsaturated parameters used for the pseudo-static slope stability analyses are conservative representations of constant volume shear strength, and no further reduction is warranted.

The tailings are planned to be dewatered prior to placement of the final portion of cover. The phreatic surface was estimated to be five feet above the liner system for the analyses. Sensitivity analyses indicated that increasing the phreatic surface does not impact the location of the critical failure surface for the slope stability analyses.

The shear strength parameters for the clay liner for Cell 1 were estimated using the average measured PI (60) for samples meeting the placement specifications for minimum PI and percent passing the No. 200 sieve, and the generalized relationship between PI and effective angle of internal friction presented in Holtz and Kovacs (1981). The relationship in Holtz and Kovacs (1981) was based on normally consolidated clays. The stability analyses did not include cohesion, and the clay liner material will be compacted. Therefore the shear strength parameters used in the stability analyses are conservative values.

References for Response

- Holtz, R.D. and W.D. Kovacs, 1981. An Introduction to Geotechnical Engineering. New York: Prentice-Hall.
- MWH Americas, Inc. (MWH), 2015. White Mesa Mill Tailings Data Analysis Report. Prepared for Energy Fuels Resources (USA) Inc. April.

DIVISION'S ASSESSMENT OF EFR RESPONSES TO RD 1 INTERROGATORY WHITE MESA RECPLAN REV. 5.0; R313-24-4; 10CFR40, APPENDIX A, CRITERION 4; INT 07/1; <u>TECHNICAL ANALYSIS - SETTLEMENT AND POTENTIAL FOR COVER SLOPE</u> <u>REVERSAL AND/OR COVER LAYER CRACKING</u>

As discussed in the Response to Interrogatory No. 3 in Section 3.0 above, EFR did not provide settlement performance data or settlement prediction analyses for any of the other facilities referenced by EFR as having been constructed with a similar range of topslope inclinations. Similarly, EFR did not provide any information demonstrating a correlation between observed settlement at these repositories and the future settlement predictions developed for those facilities that might allow the performance of these facilities to be evaluated with respect to their observed or predicted post-construction behavior.

The revised settlement analysis included one-dimensional analyses of both primary consolidation and estimates of settlement due to creep associated with secondary consolidation occurring during (i) interim soil cover placement/loading; (ii) tailings dewatering; and (iii) final cover loading. EFR also provided estimates of seismically-induced settlement due to earthquake loading.

In its settlement analyses, EFR relies of data from settlement monuments in Cell 2 to estimate settlement parameters (e.g., compression indices and coefficients of consolidation) for the tailings. Each monument or monitoring point is treated independently, and the range of data and corresponding analytical results are reported in terms of maximum, minimum and average values. Examination of the data indicates that the 5 westernmost monuments or monitoring locations (2W12W2, 2W3, 2W3-S, and 2W4) behave very differently than the others, with an average observed settlement of about 0.77 feet from July 1991 (on average) to the start of dewatering in 2009, whereas the other data set only averages about 0.1 feet during a period most typically from July 2005 to January 2009. Given the grossly different amounts of settlement between the two sets of settlement data (and the issue not simply being a matter of greater tailings thickness), the use of a simple average across the two sets of data seems inappropriate. More importantly, given the relatively short time of settlement observation for the eastern monuments and the flat shape of the settlement curves, it seems likely that significant settlement occurred prior to monitoring, thus making this approach to settlement estimation problematic as was discussed in the first Interrogatory. If significant portions of the settlement time histories were not captured in the eastern monitoring data, the use of "average" values derived from the data (as apparently is the case currently) will not represent the behavior a majority of tailings under newly added load. On the other hand, if the range of settlement data as measured is representative of true settlement behavior, then a significant range of possible behavior should be expected (reflective of directive in the first round of interrogatories to consider a range of tailings ranging from fine grained slimes to coarse sands and their spatial distribution within the impoundment cells).

EFR has attempted estimate both compression indices and coefficients of consolidation for the tailing by curve fitting settlement data from five of the monitoring points (those possessing enough curvature to which a curve can be fit) with theoretical settlement curves. From the plots provided in Attachment E, it appears that something is amiss in the curve-fitting analyses since primary and secondary consolidation appears to be happening at the same time, rather than secondary occurring after completion of primary. Such an error would make the "back-calculated" indices and coefficients incorrect. This issue should be examined further. Again, as stated in the first round of Interrogatories, this back-calculation or curve-fitting approach is problematic at since the start of the settlement time history prior to monitoring is missing and a third variable (the effective drainage length) is not precisely known. Because of this, variance from calculated values should be expected and must be considered when evaluating subsequent cover performance. To better address the shortcomings inherent in using this curve-fitting/back-calculation approach, it was stated in the previous Interrogatory to "use consolidation parameters

obtained from site-specific testing of the tailings materials, reflecting both spatial and temporal variations in the tailings."

The settlement analyses performed by EFR focused on evaluating settlement in the Cell 2 area only. No discussion or analyses were provided regarding any tailings management/disposal process-related differences such as different tailings placement methods/modes that may have occurred/might exist with regard to the various tailings disposal cells or of the effects that such differences might have on tailings consolidation and settlement behavior in each disposal cell area. Additionally, no discussion or analyses were provided for differences in dewatering system designs, differences in the expected dewatering efficiencies likely to occur between different cells (with resulting differences in statured tailings thicknesses at the different stages in time evaluated in the settlement analyses), or differences in thicknesses of tailings in the different cells (e.g., tailings thickness in Cell 4A varies from about 26 to 42 ft, with an average thickness of about 34 ft, vs. tailings thickness ranging from about 14.5 ft to 28.50 ft in Cell 2).

In the Response to Item 2. of this Rd 1 interrogatory, EFR indicated that a final water level in the tailings in Cell 2 at the end of dewatering was estimated based on dewatering analyses presented in the Revised ICTM Report. However, the Reclamation does not contain a schedule for, a detailed description of, measures that EFR will undertake to ensure that dewatering of Cells 2 and 3 will be completed within the 7-year time period specified in the latest Financial Surety submitted to the Division by EFR, or a shorter time period. This is important since recent data suggests that the current rate of dewatering in Cell 2 may be on the order of 1 inch per year. As part of the additional settlement analyses that are needed to further address differential settlement and evaluate impacts of differential settlement on cover slope integrity/slope reversal, EFR needs to address additional requirements related to dewatering analyses, measures, costs, and schedule for dewatering of Cells 2 and 3 as described in Section 15.3 below.

In calculating the settlement of the tailings in Cell 2, it appears that tailings above elevation 5604.95 (a datum which seems to correspond to the average 2009 first quarter water levels plus an assumed 3-foot perched zone thickness) have been omitted from consideration during future dewatering and placement of the final cover (from time t1 to t2, and from t2 to t3). Even above the water table, these materials will respond to the added stresses from cover construction and their contribution to total settlement should be included.

Neither the response nor Attachment E presents a rationale for selecting tailings properties (e.g., specific gravity of tailings of 2.75, moist unit weight of 100.29 pcf above the capillary fringe, long-term moisture content of 16.2%, void ratio of 0.99 assumed for the Phase 1 analysis) to be used in the revised settlement analyses. Further, while unit weights for the various components of the cover system have been provided, their thickness have not all be provided, thus preventing a check of the stresses resulting from cover placement. The thickness of each component of the cover system needs to be indicated in the calculation spreadsheet.

Without a narrative and sample calculations for all of the spreadsheet results presented in Attachment E, it is difficult to assess the adequacy of the analysis presented. For example, it is unclear how the bottom elevation of the "upper zone" was determined, and then how the thicknesses of the upper and lower zones correspond to the drainage path used to determine the time for 90% consolidation. Such clarification need to be provided in order to assess the adequacy of the settlement calculations. General references to calculation methodology such as "Terzaghi et al. 1996, pages 223-240" are too general to satisfy this need for additional information.

It is unclear what time for primary consolidation was used in calculating the secondary settlement, and the reviewer is otherwise unable to assess the results calculated by EFR. Again, a narrative and/or sample calculations (or at least illustrative equations and a description of how specific values were determined) should be provided for all spreadsheet calculations in order to assess their correctness. With respect to the calculated seismically induced settlement, there appears to be errors in the calculation process (for example, the vertical strain should be twice the resultant of the vertical strain for 15 cycles of shaking multiplied by the variable Cn [doubling is to account for the multi-directional application of strain as described in the referenced Stewart and Whang (2003) paper]). Also, the calculations incorrectly treat the tailings as a single layer subject to a constant amount of cyclic strain. The tailings should be discretized into smaller, discrete layers and the stress and strain calculations redone. Another apparent inaccuracy in EFR's calculation is an apparent capping of shear strain amplitude to 1.0%. In Stewart and Whang's cyclic strain charts (Fig 3 in their paper), cyclic shear strain values are shown up to 1%, which is a reasonable limit for compacted soils (noting that "compacted tailings in which cyclic strains could exceed 1%. Hence, extrapolation or another calculation methodology should be used to determine seismically induced settlement. Also, the Stewart and Whang procedure is not well established (vetted) within the geotechnical earthquake engineering community. Consequently, EFR should compare the results obtained using this procedure with those of a more-well established procedure such as Tokimatsu and Seed (1987) or Ishihara and Yoshimine (1992).

In reviewing Table 2 'Summary of Settlement Results', it is unclear how the values shown for "Total Settlement five years after placement of Final Cover due to Final Cover Placement, Creep, and a Seismic Event" in row 5 (minimum and maximum values of 0.52 to 0.83) were determined. While calculations supporting the preceding four rows of settlement results in the table are readily identified within the spreadsheet calculations presented in Attachment E, no explicit calculations justifying the fifth row of values are presented. Additional information is needed.

In its assessment of differential settlement and cover cracking analysis, ERF estimates that the "maximum potential differential settlement that could be expected between adjacent movement monitoring locations would be on the order of 0.3 feet." With typical spacings between monitoring locations of about 250 feet (scaled from the figure by the reviewer, and an explicit statement of such should be provided by EFR), this equates to an average deflection ratio (differential settlement) of about 0.12%, which is less than the proposed minimum cover slope of 0.5%, and hence on this basis, ponding is not expected. However, the value of 0.3 feet needs to be reassessed due to the issues just previously presented.

In assessing the potential cracking of the cover, EFR has relied upon the most critical combination of projected settlement of a monitoring point (0.9 ft at 2W4-S) and it associated distance away from the edge of the tailings cell (being for this monument 100 ft) to determine the greatest strain demand on the cover based on the approach of Lee and Shen (1969). This value is then compared to the cracking resistance based on an empirical relationship using soil index properties (Claire et al. of Morrison-Knudsen, 1993). While this approach is reasonable, the input for Lee and Shen's horizontal movement formula has been incorrectly selected. In the analysis, EFR has used the average slope of the settlement profile (0.9/100)rather than a local maximum which would include the effects of bending. This point is illustrated in the test data and illustrative example provided in Lee and Shen's paper: the vertical displacement between the two ends of their 93-inch long soil beam is 1 inch, yielding an average slope of about 1%; however, the maximum slope in their beam which includes bending is 2%, located near the middle of the beam. In Lee and Shen's paper, the maximum reported tensile horizontal strain is about 0.6%, derived from the 2% maximum (not 1% average overall) slope. To be consistent with Lee and Shen, EFR should use the expected peak slope between points, not the average between the two points. Assuming that the peak is twice the average as in Lee and Shen's test case (although ERF will need to provide a reasoned and defensible value specific to this project; representative published relationships depicting cover deformation shapes and tensile strain/distortion relationships include those included in Gourc et al. (2010) and Rajesh and Viswanadham (2010), the maximum horizontal strain appears to be twice that of the 0.028% previously reported, exceeding the reported maximum allowable strain of 0.05%, meaning that the layer is expected crack. The analysis must be redone to include the effects of localized bending as

was indicated in the first round of Interrogatories, and the performance of the cover reassessed accordingly.

Also relating to the cracking analysis, a thickness of 4.7 ft is used for the soil layer. However, the actual thickness of the sandy clayey silt soils in the tailings cover design, which collectively serve for radon attenuation is 8.8 ft per Figure 2-2 of the Revised ICTM Report (Denison Mines 2010). The analysis should either be revised to reflect this value or a justification provided for the value used.

As part of the previous Interrogatory, EFR was asked to "demonstrate that the results of settlement analyses are consistent with results of drainage/dewatering analyses, and ensure that drainage/dewatering analyses reflect the tailings and drainage conditions (including slime drain system) existing in each cell. In EFR's Response, the following statement is made:

"It should be noted the assumptions made in the one-dimensional consolidation analyses of Phase 2 (i.e. complete coverage of the tailings impoundment by an infinitely-permeable underdrain system, and instantaneous drawdown to final water level) do not exist within the impoundment, and will result in an underestimation of the time required to achieve 90% consolidation. The results of the tailings dewatering analysis, which includes the 3-dimensional aspects of flow toward the underdrain strips, and a finite underdrain permeability, are considered to provide a more reliable estimate of the duration Phase 2 consolidation."

Unfortunately, no further reference or discussion is presented regarding the dewatering analyses, and hence the question of time needed to reach 90% consolidation remains unresolved. Based on its consolidation settlement analysis, EFR reports that the time to reach 90 percent of primary consolidation due to dewatering of the tailings in Cell 2 ranges from 0.14 to 0.63 years. However, in the dewatering analysis (see Appendix J of Revised Infiltration and Contaminant Transport Modeling Report, White Mesa Mill Site, Blanding, Utah, by MWA 2010)), EFR reports that "the MODFLOW dewatering model predicts that the tailings would drain down nonlinearly through time reaching an average saturated thickness of 3.5 feet (1.07 m) after 10 years of dewatering." These two conclusions are not compatible. As part of this Response to Interrogatory, the results of the dewatering analyses need to be considered in conjunction with the settlement analyses and the subsequent assessment of cover settlement.

As stated previously, no explicit discussion or analyses were provided regarding any tailings management/disposal process-related differences such as different tailings placement methods/modes that may have occurred/might exist with regard to the various tailings disposal cells or of the effects that such differences might have on tailings consolidation and settlement behavior in each disposal cell area. Additionally, no discussion or analyses were provided for differences in dewatering system designs, differences in the expected dewatering efficiencies likely to occur between different cells (with resulting differences in statured tailings thicknesses at the different stages in time evaluated in the settlement analyses), or differences in thicknesses of tailings in the different cells.

In summary, based on review of all of the above, the Division concludes that the analyses provided by EFR are, in general, overly simplistic and do not adequately account for the full range of different conditions that may occur with the tailings management cells area. Extrapolating assumed tailings parameters and properties from published data on tailings at other facilities creates additional uncertainties in the consolidation, settlement, stability, and liquefaction analyses. Assumed data must be supplemented by site-specific data; alternatively, the most reasonably conservative values might be used if adequate assessment and justification is provided. Justifications for some parameter values are lacking in EFR's response. EFR should provide additional analyses that specifically address the different factors and conditions and their effects referenced in the preceding paragraphs. Also, there appears to be several errors, omissions, discrepancies, and insufficient information in the analyses conducted and provided by EFR which need to be to be addressed before appropriate and reliable conclusions can be reached.

Response:

EFRI conducted a tailings investigation of Cells 2 and 3 at the White Mesa Mill site in October 2013 to address the Division's comment for this interrogatory and Interrogatory 09/1 requesting collection of site-specific tailings data to supplement existing tailings data used settlement analyses. Results are presented in MWH (2015b). Settlement analyses have been updated to incorporate the additional site-specific tailings data, as well as the revised cover grading design, results of the recent site-specific probabilistic hazard analysis (presented in MWH, 2015a), and revised procedures for the seismic settlement analyses, and will be included in the next version of the Updated Tailing Cover Design Report (Appendix D to the Reclamation Plan).

These revisions address the Division's comments which include requests for (1) collection of site-specific tailings data to supplement exiting tailings data, (2) use of site-specific tailings data to evaluate settlement, (3) inclusion of all layers into the settlement analyses, (4) revisions to seismic settlement calculations, and (5) revisions to differential settlement calculations. To evaluate changes in settlement and water levels due to dewatering and placement of final cover prior to and after final cover placement, EFRI will conduct settlement monitoring and install mini-piezometers across the cells prior to the first phase of cover placement. This data will provide information on the rate and extent of dewatering of the cells and settlement to confirm when the final phase of cover can be placed and when active maintenance is no longer required.

Evaluation of total settlement due to final cover placement and dewatering indicates potential future settlement during active maintenance of approximately 0.9 to 1.6 feet for Cells 2 and 3. During this time, additional fill can be placed in any low areas in order to maintain positive drainage of the cover surface. The total estimated settlement that could occur (due to creep and seismic settlement) after the maintenance time period is estimated to range from 0.3 to 0.7 feet. This estimated differential settlement is sufficiently low that ponding or slope reversal is not expected to occur on a cover slope of 0.5 to 1.0 percent. The results of the settlement analyses also indicate that cover cracking of the highly compacted radon barrier is not expected.

Similar results are expected for Cells 4A and 4B. Although Cells 4A and 4B have higher tailings thicknesses, these cells have a more effective dewatering systems and a low water level requirement for dewatering. These cells also have a slightly steeper average cover slope (approximately 0.8 percent) than Cells 2 and 3.

References for Response

- MWH Americas, Inc. (MWH), 2015a. White Mesa Mill Probabilistic Seismic Hazard Analysis Report. Prepared for Energy Fuels Resources (USA) Inc. April.
- MWH Americas, Inc. (MWH), 2015b. White Mesa Mill Tailings Data Analysis Report. Prepared for Energy Fuels Resources (USA) Inc. April.

DIVISION'S ASSESSMENT OF EFR RESPONSES TO RD 1 INTERROGATORY WHITE MESA RECPLAN REV. 5.0; R313-24-4; 10CFR40, APPENDIX A, CRITERION 4; INT 08/1: <u>TECHNICAL ANALYSIS – EROSION STABILITY ANALYSIS</u>

The revised calculated 1-hr and 6-hr duration PMP values are equal to or smaller in magnitude than the respective PMP values previously determined (8.3 inches and 10.0 inches, respectively) using the method of Hansen et al. 1984. The existing design is, thus, oversized relative to precipitation projected to occur at the site. Therefore, the previous analyses are considered acceptable and bounding.

Review of the topslope erosional stability calculations indicates that these analyses are not complete and that the validity of certain assumptions used in these calculations has not been adequately demonstrated. Missing from these analyses, for example, are a sensitivity analysis case of bare soil conditions occurring on soil-only topslope surfaces (e.g., "uniform weathered earth" or bare soil condition) to simulate a lack of vegetation on these topslope areas, and a full analysis and justification for the estimated Manning's "n" values appropriate for the soil-only surfaces, and gravel/soil admixture surfaces. For example, the response did not distinguish between an appropriate "n" value for uniform weathered earth conditions and "n" values for vegetated conditions; e.g., $n = (n_R^2 + n_S^2 + n_{\Psi}^2 - [0.0156])^{1/2}$ (Temple et al. 1987, p. 5).

Additionally, in the erosion analyses, EFR assumed a default flow concentration factor of 3, in accordance with recommendations in NUREG-1623 (NRC 2002). However, this assumption is valid only if uniform grading will be done during construction and differential settlement has been shown to be insignificant. As discussed in Section 3.3 above regarding the Response to Rd 1 Interrogatory 03/1 and in Section 7.0 regarding the Response to Rd 1 Interrogatory 07/1, neither the ability to construct the proposed flat topslope areas to a uniform slope nor the potential for differential settlement to occur in the tailings management area embankment after closure have been adequately demonstrated.

The EFR response and calculations and methodologies relating to sizing of angular and rounded riprap on the different sideslopes of the tailings cells area are considered acceptable.

The EFR response, calculations, and methodologies relating to evaluation of the filter gradation criteria are considered acceptable.

EFR committed to, but did not provide revised Drawings, revised CQA/CQC Plan, and revised Technical Specifications showing the filter and rock riprap layers. These revised documents will need to be reviewed, when available, to verify that these changes have been made. Because these revised documents were not submitted in its interrogatory response, this interrogatory will remain open.

EFR committed to, but did not provide revised Drawings showing the changes indicated for the rock riprap layer minimum thickness and cross sections. The revised drawings will need to be reviewed, when available, to verify that these changes have been made. Because these revised documents were not submitted in its interrogatory response, this interrogatory will remain open.

Response:

The erosional stability analysis has been updated to incorporate the revised cover grading. The revised analysis is provided in Attachment F as part of the revised Appendix G, Erosional Stability Evaluation, which will be included in the next version of the Updated Tailings Cover Design Report (Appendix D to the Reclamation Plan).

Based on the results of the plant survey conducted by EFRI in 2012 and evaluation of the plant cover performance at the Monticello site (which has similar environmental conditions), a plant cover estimate of 30 percent was determined to be a reasonable value for reduced performance (drought) conditions, rather than bare soil conditions. See Attachment G for further discussion. This value was used for the erosional stability analyses to represent long-term, lower-bound vegetation conditions.

NRC (2002) states that a concentration factor is used in the erosional stability calculations to account for imperfections in the slope (NRC, 2002). As noted in NRC (2002), the addition of a concentration factor is based on studies performed by Abt and Johnson (1991) which recommend a factor of 2 to 3. NRC (2002) recommends a default value of 3 for the concentration factor. Review of the Abt and Johnson (1991) study and follow up discussion with Steve Abt (Abt, 2012) confirm that the concentration factor included in the erosional stability calculations in NRC (2002) is intended to account for imperfections in the slope, and concentration and channelization of flow on the surface. Steve Abt (2012) also confirmed the recommendation of a concentration factor of 2 to 3 for cover slopes on uranium disposal facilities based on the Abt and Johnson (1991) study. The concentration factor of 3 presented in NRC (2002) was used in the analyses, and is applicable to the planned sequence of tailings settlement, monitoring, and cover placement.

The revised Drawings, Technical Specifications, and CQA/CQC Plan incorporated the results of the revised erosional stability analysis and the documents are provided in Attachments B, C.1, and C.2, respectively, for Division review.

References for Response

- Abt, S. R. and T.L. Johnson, 1991. "Riprap Design for Overtopping Flow." J. of Hydr. Engr., ASCE,117(8), pp. 959-972, August.
- Abt, S., 2012. Personal communication from Steven Abt, Colorado State University, to Melanie Davis, MWH Americas, Inc. May 18.
- U.S. Nuclear Regulatory Commission (NRC), 2002. "Design of Erosion Protection for Long-Term Stability", NUREG-1623, September.

DIVISION'S ASSESSMENT OF EFR RESPONSES TO RD 1 INTERROGATORY WHITE MESA RECPLAN REV. 5.0; R313-24-4; 10CFR40, APPENDIX A, CRITERION 1; INT 09/1; <u>LIQUEFACTION</u>

In the Rd 1 interrogatory, EFR was requested to "provide revised liquefaction analyses that rely upon actual site-specific data for the tailings materials, rather than assumed parameters." EFR's response to this Interrogatory states that "a constant Standard Penetration Test (SPT) blow count (n-value) of 2 blows in 12 inches (uncorrected) is assumed for the tailings zones that will remain saturated under longterm steady state conditions." While this assumption of 2 blows in 12 inches (uncorrected) is a conservative reinterpretation of the previously assumed value of 4 blows in 12 inches, it is still only an assumption; it is not based on data. It is again requested that site-specific data for the materials be used in analyses, not assumed data. Alternatively, EFR should use, and provide adequate justification for demonstrating that the most reasonably conservative parameter values possible (are used) in all calculations.

The assumed SPT blowcounts are subsequently corrected using a fines content of 30, said to be based on an average of laboratory test values. Sands with this large of fines content are typically quite resistant to liquefaction (hence the much greater blow counts after the fines correction). Since the fines content value used to characterize the tailings is based on an average value (and given that the effect of fines content on liquefaction resistance is not linear), it is more appropriate to use a lower bound estimate of fines content rather than average value; otherwise, a false factor of safety may result for some of the coarser-grained materials. Again, as stated in the previous interrogatory, consideration should be given to the potential variation of properties of the tailings.

The liquefaction analyses presented in Attachment F use a peak ground acceleration of 0.15 g and a moment magnitude of 6.0. These values are consistent with those of revised probabilistic seismic hazard analyses. However, as part of the earlier deterministic analysis, Tetra Tech (2010) estimated a magnitude 6.3 for a random background event, said to be consistent with that used in previous seismic evaluations performed for sites in the Colorado plateau. Please clearly identify and justify the more appropriate value to use in the analyses, and revise analyses as needed.

The liquefaction analyses presented in Attachment F uses a dry unit weight of tailings of 90 pcf. Page C-4 of the REC plan (Denison Mines 2011) indicates that the dry unit weight of the tailings is 91.4 pcf, rather than 90 pcf. The dry unit weight of tailings used in the settlement analyses in Attachment E appears be 86.3 pcf. In the previous Interrogatory, it was stated that "consistent characterization of the tailings throughout the report seems to be needed." This issue remains unaddressed.

In the simplified liquefaction analysis procedure, the parameter K_{σ} which accounts for effects of confining stress is not used. At the base of the tailings, the currently computed effective vertical overburden stress is nearly two tons per square foot. At this value, Figure 14 of Youd et al. (2001) shows the value of K_{σ} for sands to be about 0.81, which would tend to reduce the as-calculated factor of safety. The factors of safety should be recalculated including the correction factor K_{σ} , or alternatively exclusion of this factor from analysis should be justified.

In the liquefaction analysis presented in the revised Attachment F, there appears to be multiple inconsistencies regarding the thicknesses of the various components of the cover system for each of the cells (and hence the stresses used in the analysis may be incorrect). Normal stresses calculated in the liquefaction analysis sheet are associated with assumed cover-system soil thicknesses, which appear in some instances to be too high, as well as with assumed relative compactions, some of which are too high. For example, the thickness of random fill material at 95% of Standard Proctor dry density in the cover is stated in the liquefaction analysis to be 4.7 feet for Cell 2. This appears to be too thick. Therefore, the

results of the liquefaction analysis itself, which depend on the "compacted cover" thickness, apparently are in error. The entire design cover system in the liquefaction analysis, from top to bottom, is claimed in the liquefaction sheet to be as follows:

Topsoil rock mulch: 0.5 feet thick.

Random fill at 85% of Standard Proctor dry density: 3.5 feet

Random fill at 95% of Standard Proctor dry density: 4.7 feet

Grading fill at 80% of Standard Proctor dry density: 2.5 feet

The assertion that the value of 4.7 feet appears to be too high for the random fill at 95% of Standard Proctor dry density can be demonstrated from a number of sources. Figure 2.2 in the Revised ICTM Report (Denison Mines 2010) provides a "generalized" cross-sectional view of the cover system for the site and gives the purported general cover design is as follows:

Topsoil rock mulch: 0.5 feet thick.

Random fill at 85% of Standard Proctor dry density: 3.5 feet

Random fill at 95% of Standard Proctor dry density: 2.8 feet

Grading fill at 80% of Standard Proctor dry density: 2.5 feet

The random fill at 95% of Standard Proctor dry density has a thickness listed above of only 2.8 feet, not 4.7 feet. The REC plan (Denison Mines 2011) offers similar information, but with the thickness of random fill at 95% of Standard Proctor dry density being said to be only 2.5 feet. However, this generalized cross-sectional view of the cover system also is considerably different compared to plans for actual constructed thicknesses in Cells 2 and 3. To obtain a more accurate value for planned thickness of random fill at 95% of Standard Proctor dry density, it is necessary to turn to the engineering drawings. A check can be made of the value used in the liquefaction analysis by comparing it against "compacted cover" values shown for Cell 2 in Sheet TRC-7 of the REC Plan, Revision 5.0 (Denison Mines 2011). Sheet TRC-7 is titled, "Cover over Cell 2 Cross Sections." These cross sections of the planned Cell 2 cover system show a maximum thickness for the "compacted cover", representing the random fill at 95% of Standard Proctor dry density of eet. However, that exists only in a few places. Cross Section A shows only about 40% of the cell along that cross-sectional line having any "compacted cover" whatsoever, with an average thickness of only about one foot where that "compacted cover" does exist. About 60% of the cell along Cross Section A has no cover of 95% of Standard Proctor dry density at all.

Cross Section B shows only about 25% of the cell along that cross-sectional line having any "compacted cover" of 95% of Standard Proctor dry density whatsoever, with an average thickness of about one foot where the compacted soil does exist. 75% of the cell along that cross section has no "compacted cover" of 95% of Standard Proctor dry density at all. Cross Section C shows only about 25% of the cell along that cross-sectional line having any "compacted cover" of 95% of Standard Proctor dry density at all. Cross Section C shows only about 25% of the cell along that cross-sectional line having any "compacted cover" of 95% of Standard Proctor dry density whatsoever, with an average thickness of one foot or less where the "compacted cover" exists. Sheet TRC-2 also confirms this, but in plan view. Cross Section C shows about 75% of the cell along that cross-sectional line with no cover having 95% of Standard Proctor dry density at all.

Assuming that the cross-sections provide a representative cross-sectional view of the cover system in Cell 2, it appears that, on average, to a rough approximation (assuming that each cross-section represents one-third of the cover), coverage of the cell by any 95%-of-Standard-Proctor "compacted cover" at all exists on only a little more than [(0.333)(0.40) + (0.333)(0.25) + (0.333)(0.25)] = 0.3, or three-tenths (3/10), of the cell. The average thickness of "compacted cover" at the cell, averaged over the cell's entire area, is thus only about (0.3)(1 ft) = 0.3 ft.

The liquefaction analysis sheet uses a value for the thickness of "compacted cover" having 95% of Standard Proctor dry density that happens to be $[(4.7 - 0.3)/0.3] \times 100\% = 1470\%$ in excess of the actual

value. In other words, the thickness of the random fill at 95% of Standard Proctor dry density assumed in liquefaction analysis is 15.7 times that value. Please address these inconsistencies in the liquefaction analysis spreadsheet calculations and provide correct values for the thickness of the random fill at 95% of Standard Proctor dry density.

Apart from issues associated with characterization of the cover system components, the liquefaction analysis spreadsheet calculations presented in Attachment F indicated a tailings surface elevation for Cell 2 of 5613.5 feet. 5613.5 feet is the approximate surface elevation for much of the tailings in Cell 2. However, tailings in the vicinity of Cross Section C in Cell 2 have much higher elevations in the northern half of the cell. There, the elevations reach to 5623 feet. Also, the liquefaction analysis spreadsheet calculation shows that the water surface elevation for Cell 2 is 5593.03 ft amsl. For of the second quarter of 2012, on May 29th, the reported depth to water in the tailings slimes in Cell 2 was measured as 21.10 ft (EFR 2012). The top of slimes drain pipe is at an elevation of 5618.73 ft amsl (personal communication with Russ Topham of the Division on October 5, 2012, who reported receiving it from Garrin Palmer of EFR on October 5, 2012). So, the calculated head of water in the tailings is estimated to be 5618.73 ft amsl minus 21.10 ft, or 5597.63 ft amsl. This is 4.6 feet higher than what is shown in the liquefaction analysis sheet. These values should be corrected.

As is the case for Cell 2, so it is for Cell 3 that actual planned thicknesses of various layers at different percentages of Standard Proctor dry densities, or at different compactions, greatly vary from what the liquefaction sheet shows. Sheet TRC-6 in the REC Plan (Denison Mines 2011) demonstrates this. Please fix the stated thickness values. Also, since the errors in thicknesses translate to errors in calculated normal stresses induced by cover systems in the various cells, and other calculations on the liquefaction analysis sheet, please be sure that these are fixed as well.

The liquefaction analysis spreadsheet calculations identify the tailings thickness for Cell 2 as 32.5 feet, that for Cell 3 as 38.5 feet, and that for Cells 4A/B as 40.5 feet. Table F.1 of Denison Mines 2011 is cited. Table F.1 and the Attachment F-2, Settlement Analysis spreadsheets in Denison Mines 2011 likewise provide figures of 32.5, 38.5 and 40.5 feet for the tailings thicknesses for Cells 2, 3, and 4A/B, respectively. These figures, however, appear to conflict with the tailings thickness for Cells 2 and 3 given on Page C-2 of the Response text of "approximately 30 feet" and "the tailings thickness for Cells 4A/B of approximately 42 feet" (Denison Mines, 2011). These inconsistencies should be fixed.

It can be seen, based on 1980 as-built drawing information from Energy Fuels Nuclear, Inc., as shown on Sheet TRC-7 of Denison Mines (2011) that, for most of the Cell 2, the elevation of the tailings surface is 5613 ft amsl. This knowledge, coupled with some additional information, can lead to a better understanding of maximum saturated thickness in the tailings of Cell 2. Assuming for the moment that the Denison Mines (2011) Table F.1 32.5 feet value is correct, this means that the nominal base of the tailings must be, on average, at about 5613 ft amsl minus 32.5 feet, or 5580.5 ft amsl. Since, as calculated above, the head of water in the tailings is 5597.63 ft amsl, it follows that the average saturated thickness of the tailings in Cell 2 is 5597.63 ft amsl minus 5580.5 ft amsl, or 17.1 feet. This compares with a value of 12.03 feet claimed for maximum saturated thickness in the liquefaction sheet. The latter number appears to be off by 5.07 feet, which would be a 30% error. This may substantively change a number of liquefaction calculations. Please correct the saturated thickness in the liquefaction sheet.

From the previous calculations for Cell 2, it is observed that the saturated thickness is about 30% greater than claimed in the liquefaction analysis. This has effects on calculations for effective overburden stress and other consequent calculations. These effects can be accounted for to some extent. The saturated zone starts about 4.5 feet higher than shown on the liquefaction analysis sheet, at approximately 5597.63 ft amsl, not at 5593.03 ft amsl. This means that 4.6 feet of tailings must be accounted for with a 120.3 pcf saturated specific weight compared to old approach of (if that 4.6 feet of tailings is assumed to have a moist specific weight of 95.40 pcf). Secondly, it changes the values of effective stress at each deeper depth analyzed, since it also shifts the elevation vs. water pressure curve

up. The Division request that EFR please make appropriate changes to the effective overburden stress calculations, or justify not doing so, not only for Cell 2, but for other cells, as needed.

In summary, based on a review of the information provided and in consideration of the issues previously discussed, the Division finds that several of the issues identified in the Interrogatory remain unaddressed, and consequently, the Division is unable to assess the correctness of EFR's conclusions regarding performance of the tailings impoundment cells relative to liquefaction. In particular, no explicit discussion relating the results of the tailings dewatering analysis to the water levels used in the liquefaction analyses was presented. Also, parameters regarding the tailings characterization continue to be assumed (although now some are more conservatively selected) rather than being based on site-specific data. If assumed data are used, it should reflect the most reasonably conservative values possible. While adverse performance seems unlikely based on the relatively high factors of safety with respect to liquefaction potential currently calculated, there are enough inconsistencies in the analyses that further evaluation is merited.

Response:

EFRI conducted a tailings investigation of Cells 2 and 3 in October 2013 at the White Mesa Mill site to address the Division's comment for this interrogatory and Interrogatory 07/1 requesting collection of site-specific tailings data to supplement existing tailings data used settlement analyses. The results are presented in MWH (2015b). Liquefaction analyses have been revised to incorporate the additional site-specific tailings data, as well as the revised cover grading design, results of the recent site-specific probabilistic hazard analysis (presented in MWH, 2015a), and revised procedures for the liquefaction analyses. The revised analyses are provided in Attachment E, Settlement and Liquefaction Analyses, and will be included in the next version of the Updated Tailing Cover Design Report (Appendix D to the Reclamation Plan).

These revisions address the Divisions comments which include requests for (1) collection of site-specific tailings data to supplement exiting tailings data, (2) use of site-specific tailings data to evaluate liquefaction, (3) include use of results for most recent PSHA completed for the site (MWH, 2015a), and (4) revisions to liquefaction calculations and assumptions.

The results of the liquefaction analyses indicate the tailings are not susceptible to earthquake-induced liquefaction for reclaimed conditions.

References for Response

- MWH Americas, Inc. (MWH), 2015a. White Mesa Mill Probabilistic Seismic Hazard Analysis Report. Prepared for Energy Fuels Resources (USA) Inc. April.
- MWH Americas, Inc. (MWH), 2015b. White Mesa Mill Tailings Data Analysis Report. Prepared for Energy Fuels Resources (USA) Inc. April.

DIVISION'S ASSESSMENT OF EFR RESPONSES TO RD 1 INTERROGATORY WHITE MESA RECPLAN REV. 5.0; R313-24-4; 10CFR40, APPENDIX A, CRITERION 6; INT 10/1; <u>TECHNICAL ANALYSES – FROST PENETRATION ANALYSIS</u>

The May 31, 2012 EFR response and calculations and methodologies used for completing the revised frost depth analysis are considered acceptable, with the one exception described in the following paragraph.

The Division notes that in the revised infiltration and revised radon emanation modeling most recently completed by EFR, use of NRC-recommended adjusted porosity and bulk density values was not considered. The Division requests that EFR conduct a revised radon emanation modeling sensitivity analysis (as well as conduct a revised infiltration sensitivity analysis) for the approved final cover for a scenario that incorporates adjusted bulk density and porosity values (or adjusted appropriate other soil parameters in the infiltration analysis) for soils in the upper zone of the cover system potentially impacted by the predicted maximum frost penetration. Adjusted soil property values used in the simulations should either consist of adjusted values derived in a manner consistent with NRC recommendations for adjusting such properties in frost-impacted soils for radon flux emanation calculations (NRC 2003a, Section 5.1.3), or adjusted values derived/assigned in manner consistent with recommendations provided in Benson et al. 2011, whichever is more conservative for the respective simulations. (See also discussion in Section 1.3 of the Technical Memorandum, White Mesa Mill Site – Revised ICTM Report Review addressing EFR's Response to Rd 1 Interrogatory 01/1 on the Revised Infiltration and Contaminant Transport Modeling Report).

The final revised Appendix B to Appendix D will need to be reviewed, when available, to verify that the revised frost depth information has been incorporated. The final revised frost depth analysis completed once the final cover design has been approved Drawings will need to be reviewed, when available, to verify that the revised frost depth calculation has addressed elements included in this request and has appropriately addressed any changes in the cover design, as applicable. Because these revised documents were not submitted with the response, this interrogatory will remain open.

Response:

A workshop on April 30, 2013 with representatives from the DRC, DRC's contractor (URS), EFRI, MWH, and Dr. Craig Benson facilitated discussion on DRC's February 2013 review comments on the Reclamation Plan, Revision 5.0 (DRC, 2013b) and the revised Infiltration and Contaminant Transport (ICTM) Report (DRC, 2013a). During this meeting, Dr. Benson presented material properties for the proposed cover materials for White Mesa and compared this data to the range of design recommendations provided in NUREG/CR-7028 (Benson et al., 2011) and the database of pedogenic-altered values at the Alternative Cover Assessment Program (ACAP) sites. Discussion from this meeting is provided in the August 2015 EFRI response document to DRC's 2013 review comments on the ICTM (see response to Interrogatory 01/1 - Inconsistencies Between Revised ICTM Report and Reclamation Plan Rev 5.0). The hydraulic test results for the soils stockpiled at White Mesa are within the range of parameter values anticipated to occur long-term as noted by Benson et al. (2011). Based on this comparison, adjusting soil characteristics due to frost penetration or other potential pedogenic processes are not warranted. The physical and hydraulic properties of the relatively permeable cover soils at the emplaced conditions are close to long-term properties from pedogenic processes, are such that post-construction changes should be minimal.

The frost penetration analysis will be updated after approval of the conceptual final cover design is obtained from the Division. The frost penetration analysis requires revision to incorporate additional data collected from a site investigation conducted on April 19, 2012 to further evaluate cover borrow materials. It is anticipated that the results of the updated analyses will be similar to the analyses presented in Denison (2012), with a frost penetration depth on the order of 81 cm (32 in).

Reference for Response:

- Benson, C.H. W.H. Albright, D.O. Fratta, J.M. Tinjum, E. Kucukkirca, S.H. Lee, J. Scalia, P.D. Schlicht, and X. Wang, 2011. Engineered Covers for Waste Containment: Changes in Engineering Properties and Implications for Long-Term Performance Assessment (in 4 volumes). NUREG/CR-7028, Prepared for the U.S. Nuclear Regulatory Commission, Washington, D.C., December.
- Denison Mines (USA) Corp. 2012. Responses to Interrogatories Round 1 for Reclamation Plan, Revision 5.0, March 12. May 31.
- Utah Department of Environmental Quality, Division of Radiation Control (DRC), 2013a. Radioactive Material License (RML) Number UT 1900479: Review of September 10, 2012 Energy Fuels Resources (USA), Inc. Responses to Round 1 Interrogatories on Revised Infiltration and Contaminant Transport Modeling (ICTM) Report, White Mesa Mill Site, Blanding, Utah, report dated March 2010. February 7.
- Utah Department of Environmental Quality, Division of Radiation Control (DRC), 2013b. Review of August 15, 2012 (and May 31, 2012) Energy Fuels Resources (USA), Inc. Responses to Round 1 Interrogatories on Revision 5 Reclamation Plan Review, White Mesa Mill, Blanding, Utah, report dated September 2011. February 13.

DIVISION'S ASSESSMENT OF EFR RESPONSES TO RD 1 INTERROGATORY WHITE MESA RECPLAN REV. 5.0; R313-24-4; 10CFR40, APPENDIX A; INT 11/1; <u>VEGETATION AND</u> <u>BIOINTRUSION EVALUATION AND REVEGETATION PLAN</u>

The Division finds that EFR has addressed, in part, the items included in the interrogatory and considerable useful new information has been provided. However, some additional information is still needed to complete the responses, as described in the following paragraphs.

EFR presented results of the vegetation survey in summary fashion and provided few details. Are there survey reports describing methods and results in greater detail? Is there data available for each transect location? Is there information on other plant species observed but that did not have cover recorded at the transect points? The vegetation survey results did not include an updated vegetation map or information on the current vegetation in the reclamation cells. The map in the September 2011 Reclamation Plan (Revision 5.0) is clearly inconsistent with the results of the vegetation sampling reported in the August 15, 2012 Responses to Interrogatories, in that 19.1% big sagebrush cover was found at sample sites that are located in areas shown in Figure 17-1 as reseeded grassland and controlled big sagebrush. Information should have been provided on the current vegetation of the reclamation cells. The information provided does not provide an adequate account of current vegetation or an explanation cells.

Attachment G provides an updated seed mix, which now includes galleta. The total seeding rate in Table D.1 needs to be corrected to be 22.5 lbs PLS/acre. A column of PLS/square foot should be added to this table (this information was previously provided for most species in the September 2011 Appendix J Reclamation Plan). This mix is now correctly characterized as containing both native and introduced species.

Information was provided on the ecological characteristics of each of the species in the seed mix. However, no information was provided regarding past success or failure with these species at the site during interim reclamation. Previous revegetation experience at the site and changes in composition and cover over time, if available, need to be presented in order to support the predicted cover percentages.

Table D.4. Please provide more explanation as to how the values in this table were derived.

Table D.9 provides levels of soil properties for stockpiled soils compared to sustainable levels reported in the literature. These "sustainable levels" may or may not be achievable or sustainable over a long term within the study area, depending on its environment. To help determine realistic long-term expectations, soil properties should also be measured at reference areas. To what extent will establishment of grassland vegetation contribute to developing soil properties supporting sustainable vegetation?

The description of organic matter and nutrient amendments lacks sufficient detail. Provide more information regarding quantities, potential sources, and suitability for sustained growth?

How will institutional control be used to exclude grazing by livestock for the performance period?

Weeds and weed management should be addressed. It is noted that a significant portion of the vegetation over in the sagebrush areas surrounding the White Mesa Mill Site comes from cheatgrass and Russian thistle, and that cheatgrass and jointed goat grass initially dominated revegetation areas at Monticello.. What other weeds occur in the area or may occur in the future? Use of a mix of hay and manure to provide soil organic matter could introduce weeds.

Section D.4.5. of Attachment G, Supporting Documentation for (Rd 1) Interrogatory 11/1 (Revised Appendix D to the Updated Tailings Cover Design Report), first sentence indicates that "monitoring of an alternative cover at the Monticello Mill Tailings Disposal Site showed that the plant cover performed well over a seven year period." The last phrase "plant cover performed well over a seven year period"

should be reworded because although cover goals for grasses were met later in the 7-year period, cover goals established for the Monticello cover for shrubs species were not achieved despite significant shrub planting efforts in in 2000 and in 2007 (e.g., see Sheader and Kastens [undated] circa 2007). Please provide a reference for the statement that eight species provided 70% of the plant cover at Monticello. The text in Revised Appendix D does not provide an indication of the percentage vegetative cover comprised by weedy species including weedy cheatgrass and Russian Thistle over that time period at Monticello and does not discuss how these species may affect cover revegetation goals (evapotranspiration capabilities) established for the Monticello or White Mesa cover systems.

Section D.7.2 addresses succession, including increase in sagebrush cover. The discussion should acknowledge the establishment of big sagebrush and other shrubs on former seeded grassland and controlled sagebrush areas north of the Mill Site in the 35 years since the original vegetation study, and discuss its relevance to the revegetation plan. The discussion indicates that warm season grasses are expected to increase over time. Is there an existing vegetation community in the region similar to that which is expected to develop? The discussion also mentions pulse-dominated precipitation – are there expected changes in seasonality of precipitation? An explanation should be provided as to why shrub species that occur just south of, and at lower elevations than the tailings management areas location, , such as four-wing saltbush, shadscale, blackbrush, and Mormon tea, would not increase under potentially warmer and dryer future climate conditions at the site.

The Reclamation Plan (or revised Infiltration and Contaminant Transport Report) needs to provide: (1) definition of clear, concise, and measurable revegetation acceptance goals/criteria for the vegetation establishment on the tailings cell cover system, (2) a description of how EFR will conduct periodic postclosure monitoring and reporting to the Division of the vegetation community health, viability, success, and sustainability, (3) a description of proposed action plans, schedules and deadlines for remedial actions if/when needed to effectuate plant community success, and (4) similar follow-up monitoring of the plant community/cover system to ensure successful performance before release of the facility's surety bond and/or transfer of title to DOE. EFR should describe specific, quantitative goals for shrub establishment (including rooting depths and minimum acceptable shrub cover percentages) that consider the need for deeper rooted plants to remove water that may accumulate lower in the cover profile in response to an exceptionally wet year or successive wet years, especially given the lack of a capillary break layer in the currently proposed cover design. In developing these descriptions, plans, and goals, EFR should consider and address lessons learned from the post-closure monitoring and maintenance activities and/or corrective revegetation measures required at the Monticello, Utah tailings repository and other similar facilities in this regard (e.g., Waugh 2008; Sheader and Kastens undated, circa 2007; U.S. DOE 2007; Sheader and Kastens [undated, circa 2007). EFR should assess the potential applicability and benefits of using vegetation health monitoring tools/metrics such as the Cover Vegetation Index recently implemented at the Monticello Repository (U.S. DOE 2009).

The Reclamation Plan should describe corrective measures that may be needed to address/correct issues related to: (1) establishment of undesirable species, e.g., colonization by certain undesired grass/weedy species that may have more limited water stress tolerance than initially seeded grass species and/or that may outcompete planted grass species unless controlled (e.g., Smesrud et al. 2012; Sheader and Kastens [undated, circa 2007]); (2) Seed predation following seeding/reseeding efforts; (3)Possible low success rates resulting from for shrub establishment efforts, etc.... Estimated costs for conducting these post-closure activities, corrective actions, and reporting, once approved by the Division, will need to be incorporated in the financial surety estimate.

The Revised Attachment G provided by EFR as part of its Response presents the results of a June 1012 burrowing animal survey (Section D.5.3). However, as described above, the results are presented in summary fashion and few of the necessary details are provided. Are there survey reports describing methods and results in greater detail? Is there data available for each transect location? Does badger

burrow density include feeding areas (dug-out prey burrows)? The reported burrow density for badger appears very low. Additional information about potential burrow densities should be provided based on a review of the literature. The analysis should consider both burrows dug by badgers for their own use and digging while hunting.

Little information is presented on burrow densities, other than Gunnison prairie dog. Results for Gunnison prairie dog are based on the June 2012 survey and do not consider literature values. Information on burrow densities for Gunnison prairie dog should be summarized by transect and the locations of prairie dog towns marked on a map. The results need to be put in context by reference to literature, for example Lupis et al. 2007, considering both regional densities, predicted range and habitat suitability. The statement in Attachment D that prairie dogs are unlikely to occur because they prefer low plant cover and short vegetation is not consistent with the description of habitats where they occur in southeastern Utah in Lupis et al. 2007. Most of the grass species included in the seed mix are reported to occur in grassland habitat occupied by this species in southeastern Utah. They also occupy desert shrub habitats.

Table D.8. Ranges of depths for burrowing mammals mostly not provided, just maximum depth, and based on a single citation per species. The "maximum" depth for Gunnison's prairie dog of 122 cm from Verdolin et al 2008 should be correctly characterized as an average depth reported from several studies. The actual maximum (mean plus 1 SD) reported by Verdolin et al. 2008 appears to be 1.85 m. All of the numbers in this table should be revisited to provide a range of maximum values reported in the literature and to determine whether the maximum has been accurately stated.

Table D.6 and discussion. There is literature indicating that big sagebrush can root to depths considerably below 180 cm. Please address and further explain this finding/statement. Rooting depths of other shrubs that may occur should also be considered.

Additional information needs to be presented to justify that the highly compacted zone will minimize biointrusion by plant roots. Consider moisture conditions, potential degradation when dry, behavior of roots related to soil moisture and gas exchange, and other factors. Cite previous studies or observations of root growth relative to compacted soils.

Response:

Vegetation on previously revegetated areas at the Mill site has not been evaluated. This information would have limited value in evaluating the proposed reclamation plan or in determining if future reclamation will produce a sustainable plant community on the tailings cells. The proposed reclamation plan is substantially different than previous reclamation efforts in terms of soil cover, soil amendments and species to be planted, such that any comparisons would not provide any predictive value. The only reclamation that has occurred at the Mill site was seeding of Cell 2 in 2011. Seeding only included crested wheatgrass (*Agropyron desertorum*) and no evaluations have been conducted since seeding occurred.

Further details of the 2012 vegetation survey are provided in a revision of Appendix D (Vegetation and Biointrusion Evaluation) to the Updated Tailings Cover Design Report (Appendix D of the Reclamation Plan, Revision 5.0). The revised Vegetation and Bionintrusion Evaluation appendix is provided as Attachment G.1 to this response document.

A map of current vegetation at the Mill site does not exist. The most recent mapping of vegetation at the Mill site was conducted by Dames and Moore in 1977 (Dames and

Moore, 1978) as part of the Environmental Report for the White Mesa Uranium Project. Further discussion of mapping units from 1977 and the 2012 survey is presented in Attachment G.1.

An updated seed mixture that includes number of seeds/square foot and the addition of shrub species is presented in Attachment C.1, Attachment G.1, and Attachment G.2. Attachment C.1 is revised Technical Specifications to the Reclamation Plan, Revision 5.0. Attachment G.1 is as described previously. Attachment G.2 is a revised Appendix J (Revegetation Plan) to the Updated Cover Design Report (Appendix D of the Reclamation Plan, Revision 5.0).

The species in the proposed seed mixture have not been used on site, so there is no information available regarding success or failure with these species at the site during interim reclamation efforts. However, there are decades of revegetation research using these species in semiarid regions of the western U.S. along with tens of thousands of acres that have been successfully reclaimed with these species. The plethora of information that exist on the use of these species for disturbed land reclamation provides ample evidence that these species are adapted to the environmental conditions of the Mill site and are highly likely to lead to successful reclamation. As stated above, the only reclamation that has occurred at the Mill site was seeding of Cell 2 in 2011 with crested wheatgrass, and no evaluations have been conducted since seeding occurred.

Further explanation of LAI values and how numbers were derived are presented in Attachment G.1.

No reference areas have been previously established to provide information on soil properties to document that sustainable levels are achievable. However, soil that will be used as cover material on the tailings cells has been evaluated, and was included in Attachment G of EFRI (2012) as Table D.9 (EFRI, 2012). An update of this table is included as Table D.38 in Attachment G.1 to this response document. This table includes physical and chemical properties of the soil and also levels reported in the literature that would be considered sustainable. Soil properties that appear deficient and would need improvement to achieve sustainability include: percent organic matter, total nitrogen, and extractable potassium. Amendments would be applied during reclamation to address these deficiencies and this application is discussed Attachment G.1. Over time, the soil-forming process of pedogenesis will continue as climate and on-site organisms (primarily plants and the soil microbial community) modify the soil over time. This process would include the addition of organic matter in the form of composted biosolids which will improve soil structure, water holding capacity, cation exchange capacity, buffering capacity, and overall soil fertility. All of the benefits will lead to a more productive soil and greater sustainability.

Further details on the use of an organic amendment including type, rates of application, source of material, and potential benefits are presented in Attachment G.1. Revised specifications for soil amendments are provided in Attachment C.1.

Existing restricted fencing of the site will be used as an institutional control to exclude grazing by livestock for the performance period.

A weed management plan is presented in Attachment C.1 and Attachment G.1.

Cover goals for shrub species have not been met at the Monticello Mill Tailings Disposal site because of establishment issues related to big sagebrush and seedling damage caused by montane voles (*Microtus montanus*) (DOE, 2007). Attachment G.1 reflects this finding.

The statement that eight of the seeded species at the Monticello Mill Tailings Disposal site provided 70 percent of the plant cover was based on a progress report from Stoller. This finding has been modified and discussed further in Attachment G.1 using results from the 2007 vegetation monitoring report (DOE, 2008).

In the 2007 revegetation monitoring report at Monticello (DOE, 2008) the following was reported:

"Seed germination requirements for sagebrush and rabbitbrush are potentially pertinent in determining why these species did not establish well on the repository cover. Although the seeds of many species (e.g., most grasses) persist for years in the soil, rabbitbrush and sagebrush seeds persist for only one season. In addition, sagebrush seed may require cold stratification to germinate. It is unlikely that the seed was stratified by the supplier prior to shipment, and seeding was done in April 2000, after natural stratification would have occurred."

In addition: "In 2000, the 3-month period immediately following seeding was exceptionally dry, and this may be the major cause of poor sagebrush and rabbitbrush seed germination. Grass and forb seeds, which persist longer in the soil, would have emerged later, when conditions were more favorable, and the presence of these seeded species indicates that this occurred."

Low precipitation during a critical time of the year following seeding, competition from more mature vegetation, and damage caused by vole herbivory have been presented as reasons for low shrub density at Monticello (DOE, 2008; DOE, 2007).

Changes in the relative cover of common weed species at the Monticello site are summarized from previous monitoring reports (DOE, 2003, DOE, 2004, DOE, 2005a, DOE, 2005b, , and DOE, 2008) and presented in Table 1. These results demonstrate that weed species at the site remain well controlled.

Species	2000	2001	2002	2003	2004	2005	2006	2007	2008	Trend
	2000	2001	2002	2003	2004	2005	2000	2007	2000	
Aegilops				0.8		1.9			0.1	Not abundant; not
cylindrical				0.0		1.0			0.1	increasing
Amoropthus	8.1	1.7	0.8				0.5			Nearly eliminated
Amaranthus										after two growing
bitoides										seasons
Bromus										Abundant weed
tectorum	1.9	18.3	4.5	18.2	35.6	56.3	15.5	21.0	12.8	peak in 2005
										Nearly eliminated
Chenopodium	4.6	2.9	4.2	2.4	0.2		0.5			after four growing
album	4.0	2.9	1	2.4	0.2		0.5			
										seasons
Convolvulus					0.2	0.2	0.5	0.5		Not abundant; not
arvensis					0.1	0.2	0.0	0.0		increasing
Lactuca			0.1	1.9	1.9	1.6	1.0		1.4	Not abundant; not
serriola			0.1	1.5	1.9	1.0	1.0		1.4	increasing
Ontrata										Once abundant;
Salsola	36.0	69.9	48.2	33.3	8.2	0.1	6.5			nearly eliminated
tragus			-		-	-				in 2007/2008
										Not abundant; not
Sisymbrium		3.8		1.7	3.1	2.8	6.5	0.5	0.2	increasing; peak
altissimum		5.0		1.7	5.1	2.0	0.5	0.5	0.2	in 2006
										111 2000

Table 1. Changes in Weedy Species Over Time (Relative Cover Percentages, Zones A1and B Combined from Monticello Disposal Cell Cover Revegetation (Taken from DOE2008)

The following is taken from DOE (2008): "In Utah, weed law has recently been revised to reflect categories of weeds targeted for control. The main management goal for Category C weeds is not to eradicate the weed but to prevent its spread. Small quantities of Convolvulus arvensis (field bindweed), a Category C noxious weed, have been observed on the site since 2002, but this species has not spread. One San Juan County listed noxious weed, Aegilops cylindrica (jointed goatgrass) has been observed on the site since 2003 in small quantities and also has not spread. Another Category C noxious weed species, Cirsium arvense (Canada thistle), was observed and treated in 2006, and it has subsequently not been observed. One Category A noxious species, Centaurea stoebe ssp. micranthos (spotted knapweed) was discovered near the site's entrance gate and treated in 2008. Populations of Acroptilon repens (Russian knapweed), a Category B species, were treated near the office building in 2008. Neither of these noxious species has spread into the revegetated areas, and they will continue to be monitored and treated for eradication from the site. DOE will continue to monitor and manage the entire site, including portions of the site where vegetative success criteria have been met, for all noxious weed species."

Based on the success achieved at Monticello in controlling weeds, it is unlikely that the presence of weeds at the Mill site will negatively affect revegetation goals, and the proposed weed management plan will help ensure revegetation success.

Attachment G.1 includes modifications to acknowledge the establishment of big sagebrush and other shrubs on previously seeded grassland and controlled sagebrush areas north of the Mill site over the last 35 or more years, and a discussion has been included as to the relevance of this shrub response to the revegetation plan.

There are grassland steppe communities south of Bluff, Utah which is directly south the Mill site (CARTOKO, 2010). These semiarid grasslands are dominated by a variety of grama grasses, galleta, three awn (*Aristida spp.*), ring muhly (*Muhlenbergia torreyi*), and pungent muhly (*Muhlenbergia pungens*) (Banner 1992); all warm-season species.

The discussion of a potential climate shift to a pulse-dominated hydrology has been deleted (see Attachment G.1). However, in response to the question if there are expected changes in seasonality of precipitation with a shift to a pulse-dominated hydrology, we believe there may be a decrease in winter precipitation. Additional discussion is provided in Attachment G.1.

Regionally common shrub species from areas that are characterized by lower elevation and having climatic conditions that are warmer and drier than the Mill site would include fourwing saltbush (*Atriplex canescens*), shadscale saltbush (*Atriplex confertifolia*), blackbrush (*Coleogyne ramosissima*), and Morman tea (*Ephedra viridis*).

Fourwing saltbush is one of the most widely distributed and important native shrubs on rangelands in the western United States including the Intermountain, Great Basin, and Great Plains regions (Welsh et al., 2003). Fourwing saltbush occurs most commonly in salt-desert scrub communities in the Great Basin, Mojave and Sonora Desert areas of western North America (Kearney et al., 1960; Welsh et al., 2003). In the Great Basin region it is often associated with black greasewood (*Sarcobatus vermiculatus*), black brush (*Coleogyne ramosissima*), big sagebrush (*Artemisia tridentata*), creosote bush (*Larrea tridentata*), rabbitbrush (*Chrysothamnus spp.*) and shadscale (*Atriplex confertifolia*) (Welsh et al., 2003).

Fourwing saltbush is adapted to most soils but is best suited to deep, well-drained; loamy to sandy to gravely soils. It is very tolerant of saline soil conditions and somewhat tolerant of sodic soil conditions (Ogle and St. John, 2008).

Shadscale saltbush occurs throughout western North America from California and Oregon east to North Dakota and south to Arizona and Texas. The greatest concentrations of shadscale saltbush are found in the Great Basin and Colorado Plateau (Simonin, 2001). Shadscale saltbush can be found in warm desert shrub-steppe environments. Populations occur in low valleys, foothills and mesas from 2,500 to 7,500 feet elevation (Simonin, 2001). It often grows in association with other halophytes including mat-atriplex, and greasewood, but can also be found in sagebrush and pinyon-juniper communities (McArthur and Monsen, 2004; Welsh et al., 2003). Shadscale saltbush is highly drought tolerant and is adapted to sites receiving 6 to 12 inches of annual precipitation. This species is tolerant of high saline conditions (pH 7.5-9.0) and is classified as a facultative halophyte (Branson et al., 1976). It prefers well-drained soils but may inhabit a wide range of soil textures from fine to gravelly.

Blackbrush occurs primarily in the transition zones in Great Basin deserts. It is found at elevations from 2,500 to 7,000 feet in areas where the annual temperature fluctuation can range from -11 degrees to 116 degrees Fahrenheit. It is drought-deciduous, meaning that it avoids water stress by becoming temporarily dormant and then shedding its older leaves as stress intensifies during the dry season. Spiny stems, coupled with chemical compounds in current year's growth, protect blackbrush from heavy browsing. It is adapted to dry and well-drained soils and is most abundant in sandy, gravelly, and rocky soils.

Green ephedra occurs on rocky or sandy slopes and plains in such plant communities as the juniper-pinyon woodland, the sagebrush desert, creosotebush deserts, and the desert grassland from 3,000 to 7,000 feet elevation (Benson and Darrow, 1981). Common associates include creosotebush (*Larrea tridentata*), shadscale saltbush, fourwing saltbush, big sagebrush, galleta, and sand dropseed (*Sporobolus cryptandrus*). Green ephedra is tolerant of calcareous, weakly saline, and slightly saline-alkaline (sodic) sites. It thrives in dry, well-drained sites and it is intolerant of wet sites and poor drainage. The plant is drought-resistant.

Based on this discussion of ecological characteristics of common shrub species from sites of lower elevation than the Mill site it is certainly possible that any one of these shrubs could occur at the Mill site if the future climate was warmer and drier than the present.

Attachment C.1 and Attachment G.1 include information on revegetation acceptance goals/criteria that include shrub establishment goals. Lessons learned from post-closure monitoring at Monticello have been incorporated (see Attachment G.1).

A post-closure monitoring plan has been added and is included in Attachments C.1 and G.1.

Quantitative goals for sustained shrub establishment are described in Attachment C.1 and Attachment G.1 and include the establishment of a minimum of 500 stems per acre. Two shrub species, fourwing saltbush and rubber rabbitbrush (*Ericameria nauseosa*), have been added to the proposed seed mixture. Both species have the potential for deep root penetration (e.g. six meters) when soil conditions allow (Kearney et al., 1960) but are not expected to root into the compacted radon attenuation layer because the targeted bulk density of the compacted zone of 1.8 g/cm² will inhibit root penetration (Mimore et al. 1969; Heilmen, 1981; and Zisa et al., 1980).

There is no further detail on the burrow animal survey that was conducted at the Mill Site in 2012. Estimates of burrow densities for both badgers and prairie dogs have been placed in context of literature values in Attachment G.1.

Burrowing depths have been revised and are presented in Attachment G.1.

Rooting depths have been revised and include shrub species and are presented in Attachment G.1.

Further discussion is presented in Attachment G.1 on soil compaction and root growth.

References for Response

Banner, R.E., 1992. Vegetation types of Utah. Rangelands 14:109-114.

Benson, L. D. and R. A. Darrow, 1981. Trees and shrubs of the southwestern deserts. The University of Arizona Press, Tucson, Arizona.

- Branson, F.A., R.F. Miller, and I.S. McQueen, 1976. Moisture relationships in twelve northern desert shrub communities near Grand Junction, Colorado. Ecology. 57(6): 1104-1124.
- CARTOKO, 2010. Vegetation Cover Types in Utah. www.cartoko.com/2010/07/stateof-utah-vegetation-cover-types/
- Dames and Moore, 1978. Environmental Report—White Mesa Uranium Project, San Juan County, Utah. Prepared for Energy Fuels Nuclear, Inc.
- U.S. Department of Energy (DOE), 2003. Long-Term Surveillance and Maintenance Program 2002. Revegetation Monitoring of the Monticello, Utah, Repository Cover, U.S. Department of Energy, Grand Junction Office, Grand Junction, Colorado, September.
- U.S. Department of Energy (DOE), 2004. Office of Legacy Management 2003 Revegetation Monitoring of the Monticello, Utah, Repository Cover, U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado, February.
- U.S. Department of Energy (DOE), 2005a. Office of Legacy Management 2004 Revegetation Monitoring of the Monticello, Utah, Repository Cover, U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado, January.
- U.S. Department of Energy (DOE), 2005b. Office of Legacy Management 2005 Revegetation Monitoring of the Monticello, Utah, Repository Cover, U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado, December.
- U.S. Department of Energy (DOE), 2007. Study of Factors Affecting Shrub Establishment on the Monticello, Utah, Disposal Cell Cover," DOE-LM/1387-2007, Office of Legacy Management, Grand Junction, Colorado.
- U.S. Department of Energy (DOE), 2008. 2007 Revegetation Monitoring of the Monticello, Utah, Repository Cover, U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado, March.
- Energy Fuels Resources (USA) Inc. (EFRI), 2012. Responses to Interrogatories Round 1 for Reclamation Plan, Revision 5.0, March 2012. August 15.
- Heilman, P., 1981. Root penetration of Douglas-fir seedlings into compacted soil. Forest Science 27:660-666.
- Kearney, T.H., R.H. Peebles, J.T. Howell, and E. McClintock, 1960. Arizona flora. 2nd ed. University of California Press. Berkeley, CA. 1085p.
- McArthur, E.D. and S.B. Monsen, 2004. Chenopod Shrubs. In: S.B. Monsen, R. Stevens, and N.L.

- Mimore, D., D. Smith, and F. Woollard, 1969. Effects of high soil density on seedling root growth of seven northwestern tree species. USDA Forest Service Research Note PNW-112. Pacific Northwest Forest and Range Experiment Station, Portland, OR.
- Paschke, M., K. Topper, R. Brobst, and E. Redente, 2005. Long-term effects of biosolids on revegetation of disturbed sagebrush steppe in northwestern Colorado. Restoration Ecology 13:545-551.
- Ogle, D. and L. St. John, 2008. Plants for saline to sodic soil conditions. Plant Materials Technical Note No. 9. USDA-NRCS. Boise, Idaho. 12p.
- Simonin, K.A., 2001. Atriplex confertifolia. In: Fire Effects Information System, [Online]. US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory.
- Welsh, S.L., N.D. Atwood, S. Goodrich, and L.C. Higgins, 2003. A Utah Flora. Brigham Young University. Provo, UT. 912p.
- Zisa, R., H. Halverson, and B. Stout, 1980. Establishment and early growth of conifers on compact soils in urban areas. USDA Forest Service Research Paper NE-451. Northeastern Forest Experiment Station, Broomall, PA.

DIVISION'S ASSESSMENT OF EFR RESPONSES TO RD 1 INTERROGATORY WHITE MESA RECPLAN REV. 5.0; R313-24-4; 10CFR40, APPENDIX A, CRITERION 6(4); INT 12/1; <u>REPORT RADON BARRIER EFFECTIVENESS</u>

The Division's assessment of the Response follows below:

As with a number other responses, EFR has deferred final resolution of issues to its submission of the next revision of the Reclamation Plan. The Division requests that EFR please submit the next revision of the Reclamation Plan that incorporates all changes proposed in the license amendment request.

EFR's responses leave unresolved the following issues regarding radon flux modeling:

- 1. The dependence of Radon emanation and diffusion coefficient on long-term moisture content (raised in Item d of INT 12/1) is not but should be addressed. Please address this dependence. [Note: The Division notes that the radon diffusion coefficient used in the revised radon emanation analysis for the tailings is higher (by about a factor of 3) than the diffusion coefficient value assumed in radon emanation analyses competed for a similar tailings disposal facility (Monticello Tailings Repository) in Utah (e.g., NRC 2008). The value used in the Monticello analysis was derived using a different procedure (Rogers and Nielson 1991) than was used by EFR. Using a higher radon diffusion coefficient in the radon emanation analysis represents a more conservative assumption.]
- 2. The summary of values used for long-term moisture content does not adequately explain the work presented in Attachment H, Attachment C.2. This lack of supporting interpretation basis leaves unresolved the conclusion that the values used in Radon modeling are conservative. Please complete the discussion of values of long-term moisture content used in Radon modeling.
- 3. Values summarized in Table C-4 for diffusion coefficients are inconsistent with those appearing in Attachment H, Attachment C.3. Please resolve this inconsistency
- 4. All calculated Radon fluxes from the surface of the cover system (Layer 5) exceed 20 pCi/cm²-s, albeit by very slight amounts. Please address the apparent failure of the proposed cover system design to satisfy the regulatory constraint for Radon flux.

Response:

The radon emanation modeling has been revised to incorporate updated radon diffusion coefficients and additional site-specific tailings data collected in October 2013 (MWH, 2015). The revised analysis is provided in Attachment H as part of the revised Appendix C, Radon Emanation Modeling, which will be included in the next version of the Updated Tailings Cover Design Report (Appendix D to the Reclamation Plan).

The radon emanation coefficients used in the radon emanation analysis were selected using procedures recommended in NUREG-1620 (NRC, 2003). The radon emanation coefficient was selected as 0.20 for the tailings based on recommendations in NUREG-1620 (NRC, 2003) that states a "value of 0.20 may be estimated for the tailings based on the literature, if supported by limited site-specific measurements." The radon emanation coefficient for the cover layers was selected as the conservative default value used in the RADON model of 0.35.

The diffusion coefficients for the tailings and cover layers for the radon emanation modeling results provided in EFRI (2012) were calculated based on the empirical relationship by Rogers and Nielson presented in NRC (1989). This relationship is dependent upon porosity and the degree of saturation and was based on approximately 100 radon diffusion coefficient measurements. The diffusion coefficients for the tailings and cover layers have been revised to be calculated using the empirical relationship presented in Rogers and Nielson (1991). This relationship is an update to the one presented in NRC (1989) and was developed from over 1,000 radon diffusion coefficient measurements. The porosity and degree of saturation were calculated based on the long-term densities and long-term moisture contents presented in Attachment D.

MWH collected representative samples from the on-site random fill and topsoil stockpiles for use in estimating the long-term moisture contents for the cover layers. The laboratory results for the 15 bar water contents for these samples were used to estimate long-term water contents for the random fill and erosion protection layers. NRC (2003) recommends use of 15 bar water contents to estimate long-term water contents for use in radon emanation modeling.

The long-term water content of the topsoil was estimated as 5.2 percent based on the measured 15 bar gravimetric water content for a topsoil sample (E1-A) which represents the average index properties for the topsoil stockpiles (UWM, 2012). The long-term water content of the rock mulch was estimated as 4 percent based on the addition of 25 percent gravel by weight to the topsoil.

Based on the cover material gradations, the cover soils were bracketed into three groups, finer grained soils, uniform graded soils, and broadly graded soils. A weighted average procedure that accounted for the relative volumes of each soil type (based on the stockpile volumes) was incorporated to determine the average long-term gravimetric water content for the random fill using the measured 15 bar water contents. Data used for estimation of the long-term water content value for the cover material is provided in Attachment D.

All calculated rates of radon emanation from the surface of the cover system are below the limit of 20 pCi/m2-sec.

Reference for Response:

- Energy Fuels Resources (USA) Inc. (EFRI), 2012. Responses to Interrogatories Round 1 for Reclamation Plan, Revision 5.0, March 2012. August 15.
- MWH Americas, Inc. (MWH), 2015. White Mesa Mill Tailings Data Analysis Report. Prepared for Energy Fuels Resources (USA) Inc. April.
- Rogers, V.C., and K.K. Nielson. 1991. Correlations for Predicting Air Permeabilities and Rn- 222 Diffusion Coefficients of Soils, Health Physics (61) 2
- U.S. Nuclear Regulatory Commission (NRC), 1989. Calculation of Radon Flux Attenuation by Earthen Uranium Mill Tailings Covers, Regulatory Guide 3.64. June.
- U.S. Nuclear Regulatory Commission (NRC), 2003. Standard Review Plan for the Review of a Reclamation Plan for Mill Tailings Sites under Title II of the Uranium Mill Tailings Radiation Control Act of 978. NUREG-1620, Revision 1, June.

University of Wisconsin-Madison (UWM), Wisconsin Geotechnics Laboratory, 2012. Compaction and Hydraulic Properties of Soils from Banding, Utah. Geotechnics Report NO. 12-41 by C.H. Benson and X. Wang. July 24.

DIVISION'S ASSESSMENT OF EFR RESPONSES TO RD 1 INTERROGATORY WHITE MESA RECPLAN REV. 5.0; R313-24-4; 10CFR40, APPENDIX A, CRITERION 6(6); INT 13/1; <u>CONCENTRATIONS OF RADIONUCLIDES OTHER THAN RADIUM</u>

To further resolve remaining issues pertaining to concentrations of radionuclides other than radium in soil, the Division requests that EFR please do the following:

- 1) Provide justification (either data or references to data) to support EFR's determination of U-nat and Th-230 background concentrations.
- 2) Incorporate a description of how EFR's site-specific sampling program will be used to determine background concentrations for radionuclides other than Ra-226 into EFR's documentation of how MARSSIM will be implemented and submit for the Division's review.
- 3) Incorporate a description of how EFR will use the "sum rules" for surface and subsurface soils into EFR's documentation of how MARSSIM will be implemented and submit for the Division's review.
- 4) Incorporate a description of EFR's plan for using radiation measurement instrumentation for soil background analyses, radium-gamma correlations, verification data, and sensitivity analyses into EFR's documentation of how MARSSIM will be implemented and submit for the Division's review.
- 5) As suggested in Item 4 of INT 13/1, please incorporate into documentation relating to how MARSSIM will be implemented, descriptions of the following:
- ✓ *Calibration procedures*
- ✓ Instrument testing
- ✓ Detection limits of sample analyses
- ✓ Extent of expected contamination
- ✓ *Limits of gamma survey*
- ✓ Verification of the soil-radium gamma correlation

Response:

1) The U-nat and Th-230 background concentrations submitted in earlier interrogatories (EFRI Round 1 response to 13.2) are solely interim background values, and will not be used to guide the remediation process.

The mean background data over 24 years of annual sampling from the mill background sampling station, BHV-3, is 0.78 pCi/g for U-238 and 0.93 pCi/g for Ra-226. These results are comparable to other background sampling locations off site. Ra-226 concentrations have been reported as 1.1 pCi/g near the airport entrance south of Blanding, and 0.83 pCi/g southeast of Crescent Junction (Myrick et al., 1981). U-238 values have been reported as 0.94 pCi/g near the airport entrance south of Blanding, and 0.78 pCi/g U-238 southeast of Crescent Junction (Myrick et al, 1981). These values are shown in Table 1 below. No comparable Th-230 background data has been found from the mill's data or from reference documents.

Location	Ra-226 (pCi/gram)	U-238 (pCi/gram)
BHV-3	0.93	0.78
Airport Entrance	1.1	0.94
SE Crescent Junction	0.83	0.78

Background values provided in the earlier interrogatories (1.9 pCi/g U-nat and 0.93 pCi/g Th-230 based on equilibrium with the Ra-226 value of 0.93 pCi/g) are interim values. No further investigation is necessary for remediation purposes until background reference areas are established during the remediation process. A systematic soil sampling program will be conducted in an area within 3 miles of the site, similar to the areas to be remediated, to determine the average background radionuclide concentrations to ultimately be used for the cleanup. Similarity or representativeness will be determined based on geology, geomorphology, soil type and soil chemistry. The background will be determined at the beginning of reclamation.

According to MARSSIM 4.5 (NRC, 2000), a site background reference area should have similar physical, chemical, geological, radiological, and biological characteristics as the survey unit being evaluated. Background reference areas are normally selected from non-impacted areas, but are not limited to natural areas undisturbed by human activities. In some situations, a reference area may be associated with the survey unit being evaluated, but cannot be potentially contaminated by site activities. For example, background measurements may be taken from core samples of a building or structure surface, pavement, or asphalt. The Division will be consulted during selection of proposed background sample locations.

2) A description of how EFRI's site-specific sampling program will determine background concentrations for radionuclides other than Ra-226 has been incorporated into revised sections of the Reclamation Plan which discuss the implementation of MARSSIM guidance. Please refer to Section 6.3, and Section 6.3.2 of the revised Technical Specifications (provided as Attachment C.1 to this document).

3) A description of how EFRI will use the "sum rules" for surface and subsurface soils has been incorporated into revised sections in the Reclamation Plan which discuss the implementation of MARSSIM guidance. Please refer to Section 6.6.3.3 of the revised Technical Specifications (provided as Attachment C.1 to this document).

4) A description of EFRI's plan for using radiation measurement instruments for soil background analyses, radium gamma correlations, verification data and sensitivity analyses has been incorporated into revised sections in the Reclamation Plan which discuss the implementation of MARSSIM guidance. Please refer to Section 6.3.2 of the revised Technical Specifications (provided as Attachment C.1 to this document).

5) The Technical Specifications in Attachment A of the Reclamation Plan have been revised to incorporate how MARSSIM guidance will be implemented during reclamation. The revised Technical Specifications are provided as Attachment C.1. Specific subsections of the Technical Specifications, Section 6 have been modified as follows:

- Calibration procedures
 - See Section 6.5.1 of the revised Technical Specifications.
- Instrument testing

- Instruments will be QC's using Exhibit A-1 incorporated into the revised Technical Specifications.
- Detection limits of sample analyses
 - See Section 6.7.1 of the revised Technical Specifications.
- Extent of expected contamination
 - See Section 6.6.3.1 of the revised Technical Specifications.
- Limits of gamma survey

The gamma radiation survey will be limited by the minimum detectable concentration (MDC) for the 2-inch x 2-inch sodium iodide (NaI) scintillometer, which is approximately 104 Bq/Kg (2.8 pCi/gram) for Ra-226, according to MARSSIM Table 6.7. This MDC depends on the background, which may raise or lower the MDC. Remediation will be primarily driven by Ra-226, which is the contaminant with the most restrictive cleanup standard as determined in the SENES Consultants, Inc. letter to EFRI dated August 15, 2012. This letter was provided as Attachment I to EFRI's Supporting Documentation for Response to Utah DRC Interrogatory 13/1 (SENES, 2012).

Nuclide	MDC (Bq/kg)	MDC (pCi/gram)
U-Nat	2960	80
Th-230	78,400	2100
Ra-226	104	2.8
(with decay products in equilibrium)		

 Table 2. Reported MDC's from MARSSIM Table 6.7

- Verification of the soil-radium gamma correlation
 - See Section 6.6.3.6 and Section 6.6.3.7 of the revised Technical Specifications.

References for Response

- Myrick, T.E., B.A. Berven and F.F. Haywood, 1981. State Background Levels: Results of Measurements Taken During 1975-1979, ORNL/TM-7343.
- SENES, 2012. Letter to J.A. Tischler, Energy Fuels Resources, Inc. Radium Benchmark Dose Approach. August 15, 2012, as provided in EFRI Responses to Utah DRC Interrogatories Round 1. August 2012.
- United States Nuclear Regulatory Commission (NRC), 2000. Multi-Agency Radiation Survey and Site Investigation Manual. NUREG-1575. August.

DIVISION'S ASSESSMENT OF EFR RESPONSES TO RD 1 INTERROGATORY WHITE MESA RECPLAN REV. 5.0; R313-24-4; 10CFR40, APPENDIX A; INT 14/1; <u>COVER TEST</u> <u>SECTION AND TEST PAD MONITORING PROGRAMS</u>

The Division has a concern that comparing the performance of the proposed ET cover at the White Mesa Mill Site to the performance of the Monticello tailings repository cover system is inappropriate, for several reasons. For example, the cover system at Monticello is a composite system (having several types of highly-specialized layers designed to accomplish various physical objectives). More specifically, the cover system at Monticello differs significantly in design and operation from the currently selected monolithic cover system proposed for White Mesa in that (1) the Monticello cover system includes an animal intrusion barrier (consisting of cobbles at about 1 m (~ 3 feet) of depth), and (2) a capillary barrier (at ~ 1.6 to 2 m, located below the animal intrusion barrier, below another layer of soil, and just above the radon barrier). Each of these cover system components provide important functions not accomplished in the currently-proposed monolithic soil ET cover design for White Mesa.

In addition to differences in design between the Monticello repository cover and the proposed ET cover for the White Mesa Site, there are fundamental differences in the properties of the soils used to construct the Monticello cover compared to the soils currently proposed for use in constructing the ET cover at White Mesa. For instance, soils proposed by EFR for use in constructing the ET cover are extremely low in natural organic matter (OM) content, e.g., compared to soils that were used for constructing the Monticello Tailings Repository cover system e.g., zero to about 0.4 % according to Table D-5 in Appendix D of the Revised ICTM Report, compared to a recommended minimum OM content of from approximately 1.5 to 3.0%). These factors indicate that, given the natural climate conditions at the site (which could include possible prolonged (e.g., decadal to multi-decadal) future drought periods likely to create conditions unfavorable for sustaining plant growth in the cover), and without substantial and extensive OM enhancements incorporated into the soils prior to cover construction and possible periodic active post-closure intervention/maintenance measures such as reseeding, possible irrigation of the cover, etc..., the on-site soils tested to date appear to be unfavorable for use in constructing the ET cover (see also discussion in Section 2.3.1 of the Technical Memorandum, White Mesa Mill Site – Revised ICTM Report Review addressing EFR's Response to Rd 1 Interrogatory 02/1 on the Revised Infiltration and Contaminant Transport Modeling Report).

The Division also notes the following statements made by EFR in in the Revised ICTM Report (Denison Mines 2010):

- On Page 4-2 in the Revised ICTM Report (Denison 2010), EFR states "Furthermore, results from nearby uranium mill tailings lysimeter at Monticello (Waugh et al., 2008) also agree with model predictions for the proposed cover system at White Mesa." The Revised ICTM Report proceeds to compare modeled infiltration rates at the proposed cover at White Mesa with measured infiltration rates associated with the Monticello cover.
- On Page 4-2 in the Revised ICTM Report (Denison 2010), EFR also states "The model-predicted infiltration rates for monolithic ET cover are consistent with data reported from lysimeter and infiltration modeling studies of other vegetated ET covers (e.g., Albright et al. 2004; Bolen et al. 2001; Fayer and Gee 2006; Gee et al., 1994; Scanlon et al. 2005).

After referring to studies by Bolen et al. (2001), Albright et al. (2004), and others mentioned, the Revised ICTM Report states, "In summary, a monolithic ET cover is the preferred design to minimize infiltration necessary to meet the Permit (Part I.D.8) and meet the radon attenuation standard." However, the cover systems described in several of these cited references contain different design components, such as a capillary break, that are not included in the currently proposed ET cover. For example, Bolen et al. 2001

review ET cover systems at 12 sites. Unlike the proposed White Mesa cover system, a number of the 12 cover systems reviewed by Bolen et al. (2001) are reported to contain either a sand layer or a gravel layer of appreciable thickness, which may act as a capillary barrier/capillary break. Albright et al. 2004, who discuss the same 12 sites, state that six of them have a capillary barrier/break layer. Also unlike the proposed cover system at White Mesa, however, nearly all (i.e., 10 of 12) of these sites have geosynthetic root barriers consisting of nonwoven geotextile containing lumps of slow-release trifluralin (herbicide-like plant root inhibitor) (see also Albright et al., 2004). Each barrier is installed between interim cover and the overlying final cover system. Trifluralin acts to prevent plant biointrusion into waste by interfering with root mitosis so that its use at a site can modify impacts of rooting, biointrusion and drainage through a cover system.

The other studies mentioned by EFR also refer to sites with cover systems having substantial differences from the proposed White Mesa site cover system. Fayer and Gee (2006), for example, describe performance of four types ET cover systems at the Hanford Lysimeter Test Facility at a semi-arid site in Hanford, Washington for periods of up to 17 years. Of interest here is that each type of cover system described incorporates a capillary barrier/break layer, as part of the "Hanford Barrier", in some form.

The cover design for the Crescent Junction, Utah tailings repository (relocation repository facility for the Moab tailings) also contains a combination "Infiltration and Biointrusion" Barrier" underlying the frost protection component of the cover and overlying the radon barrier layer in the cover (see, e.g., DOE 2012, Addendum E, p. 14).

Several published studies demonstrate that incorporating a capillary barrier (with an adjacent granular filter layer) can substantially reduce cover infiltration rates. For example, a comparison of two otherwise similar cover systems (one monolithic with a thick soil cover, and one non-monolithic, with a capillary barrier) in terms of their ability to restrict drainage shows that the cover system with a thick soil cover was outperformed by the cover system having a capillary barrier by up to a ten-to-one ratio or greater (Porro 2001). Similar results were obtained in forced irrigation testing of alternative cover systems by Martian et al. 2001. Infiltration reduction depends on cover-system materials and environmental conditions. Hydraulic performance is evaluated as the probability that ET from the water-storage soil layer overlying the capillary break layer is sufficient to prevent water accumulation in the soil sponge layer from exceeding its storage capacity in any given year. The potential benefits in cover system infiltration performance with a capillary barrier are well documented.

For reasons described above, the Division also finds that the technical adequacy of a monolithic ET cover at the White Mesa site is not adequately supported by the comparisons EFR provides to other cover systems as described in technical references cited by EFR.

With respect to a Test Pad/Test Section, the Division believes that there is value in, and a need for, constructing and monitoring a pilot test pad or pilot test section prior to full-scale cover construction, and in a location off of the tailings. Information and benefits that can be gained from such pilot testing include:

- *Helps establish/verify a performance standard for the cover;*
- Validates the cover design and construction;
- Could result in suggestions for improved design features and construction methods when implementing the full-scale cover construction; and
- Helps to identify and resolve problems that may be encountered during full-scale cover construction, e.g., allow engineers to evaluate, plan for, and/or mitigate factors such as vegetation establishment (in)effectiveness and address issues such as loss of one or more planted species following seeding/vegetation placement, desiccation cracking during or following cover layer placement and compaction; etc..., and

• Provides monitoring data (e.g., from field-scale pan lysimeters) to help evaluate the future infiltration performance of a full-scale cover constructed to a similar set of standards and using the same construction equipment and construction methods, as well as reduces risks associated with potential failure of, or disruption of in-situ cover conditions resulting from emplacement of, one or more monitoring devices installed within the full-scale cover system.

Advance construction and testing of such a Test Pad or Cover Test Section would allow engineers to obtain data on key characteristics of the constructed cover soils that are important for vegetation establishment such as soil nutrients, propagules, and microorganisms (e.g., mycorrhizae) needed to establish a sustainable plant community. Data collected on concentrations of soil macronutrients (e.g., nitrogen, phosphorus, and potassium) and micronutrients (e.g., sulfate, zinc, iron, manganese, copper, calcium, magnesium, sodium, and boron) in the constructed test cover could be used to assess whether they are similar to and within typical ranges for soils around the site which have been selected for use as a natural analog or analogs for predicting the final cover vegetation characteristics and performance.

The sustainability of the ET cover may rely, in part, on the establishment and resilience of a diverse plant community; however, the dynamics of such a plant community are complicated and effects are difficult to predict (e.g., Waugh et al. 2008). Link et al. 1994 indicate that, even in the absence of large-scale disturbances, seasonal and yearly variability in precipitation and temperature will cause changes in species abundance, diversity, biomass production, and soil water extraction rates on covers. Poor shrub establishment, for example, could result in poor water extraction, causing water accumulation in the lower portions of the cover profile during exceptionally wet precipitation periods (percolation exceeding the total storage capacity or drained upper limit of the soils). Data on soil structure development observed to occur over time within a constructed test cover profile following its construction could also be acquired and compared to that observed in natural soils at the selected analog site(s) to assess conditions that could be expected to develop in the future full-scale cover with respect to whether they may be suitable for promoting future development and sustainability of such shrubs, if desired based on the cover infiltration modeling results.

On the basis of the considerations discussed above, the Division requests the following:

- EFR will need to provide a detailed Technical Work Plan for Division review and approval, no later than 90 days after approval of the revised Infiltration and Contaminant Transport Modeling (ICTM) Report by the Division, for constructing, monitoring and testing a Cover Test Pad//Test Section representative of the intended full-scale cover system. The Work Plan shall: (1) provide a construction schedule; (2) provide details of the proposed Test Pad/Section's design and construction; (3) describe the proposed monitoring/testing program duration; (4) define parameters to be monitored/tested in the Test Pad/Test Section; (5) provide a schedule and details regarding reporting of monitoring, and testing results; (6) describe objectives of the Test Pad/Test Section construction, monitoring, and testing program; and (7) propose and justify criteria for demonstrating that those objectives have been achieved.
- The Test Pad/Test Section Work Plan will need to address acquisition of data for parameters (e.g., percolation data, weather data, fertilization and nutrient content data and other soil testing, botanical data,...) to validate assumptions and predictions made by EFR with regard to the projected site-specific and cover-specific performance of the full-scale cover, including future emergence rates and characteristics of vegetation on the cover.
- The Reclamation Plan should be revised to incorporate the information and requirements described herein with regard to this Test Pad/Test Section.

EFR's proposal to maintain a rough surface on all but the uppermost lift in the cover is acceptable and *EFR* should incorporate this commitment into Attachment A of the next revision of the Reclamation Plan.

Response:

The response to the suitability of the White Mesa cover soils relative to vegetative growth and sustainability is addressed in the response to Interrogatory 11/1.

EFRI has added the requirements to maintain a rough surface on all but the uppermost lift of the cover system in the Technical Specifications. The revised Technical Specifications are provided in Attachment C.1.

A workshop was conducted on April 30, 2013 with representatives from the Division, the Division's contractor (URS), EFRI, MWH, and Dr. Craig Benson to discuss Division's February 2013 review comments on the Reclamation Plan, Revision 5.0 (DRC, 2013b) and the revised ICTM Report (DRC, 2013a). During this workshop, Dr. Benson presented a comparison of the White Mesa cover design to the Monticello cover design, as well as information on construction of of cover test pads and test monitoring sections. Discussion from this workshop on these topics is summarized in the paragraphs below for this response and was prepared by Dr. Benson. Dr. Benson is the lead author for NUREG/CR-7028 (Benson et al., 2011) and was a lead inspector for the US EPA's Alternative Cover Assessment Program (ACAP), as described in Benson et al. (1999, 2001) and Malusis and Benson (2006). EFRI has engaged Dr. Benson in the cover design for the White Mesa tailings cells with regards to selection of and evaluation of laboratory testing of the cover materials, comparison of the EFRI cover design with the Monticello cover system, development of a plan for the cover test section, and with evaluation of the long-term properties for the cover soils.

EFRI acknowledges that soil layering in the cover profile at the Monticello Uranium Mill Tailings Disposal Facility differs from layering in the monolithic cover proposed for the White Mesa facility. The Monticello cover includes an animal intrusion layer as well as a sand layer at the base, the latter intended to create a capillary break (Figure 1). The cover at Monticello also includes a geomembrane overlying a clay radon barrier at the base. However, the hydrological monitoring conducted at Monticello pertains only to that portion of the cover above the geomembrane, i.e., that portion of the cover functioning as a water balance cover (aka an evapotranspirative cover).

Although the Monticello cover has different elements than the monolithic cover proposed for White Mesa, the cover at Monticello functions as a monolithic cover, as illustrated by the water content record shown in Figure 2.

In all but the wettest years, nearly all of the infiltrating water is managed in the upper 900-mm-thick storage layer, making the impact of the underlying layers unimportant. During those years the cover functions like at 1100-mm thick monolithic cover (surface layer + upper storage layer) (Figure 2). In very wet years, variations in water content occur more deeply, including in the intrusion layer, the underlying 300-mm-thick storage layer, and the sand layer at the base. The variations in water content follow the same pattern as water contents in the upper storage layer, exhibiting the continuity and smooth variation in water content with time and depth that occurs in a monolithic cover.

For example, water contents in each layer are shown in Figure 3 for winter 2004 - 2005, the wettest and snowiest on record. The water content in each layer varies steadily and continuously over months rather than exhibiting an abrupt and sudden change that

would occur if a capillary break existed at the intrusion layer or at the sand layer. In fact, the water content of the sand layer increases appreciably before the overlying lower storage layer approaches saturation, indicating that a capillary break effect is not occurring at the interface between the lower storage layer and the sand layer.

Another example is shown in Figure 4, which depicts the water content in each layer from mid-winter to late summer 2010, which included an exceptionally wet spring during which water penetrated the entire cover profile (Figure 2). The water content records in Figure 4 show a steady downward movement of the wetting front in the profile. There is no "hold up" of the wetting front at the intrusion layer or the sand layer. Moreover, water migrates into the animal intrusion layer and the sand layer without the overlying layers (upper storage layer and lower storage layer, respectively) approaching saturation, indicating that a capillary break was not forming at either interface.

There are reasons why the Monticello cover functions like a monolithic cover, even though the layering may suggest that different behavior should occur in response to contrasts in soil texture. First, the intrusion layer consists of cobble particles embedded in a fine-textured soil matrix. This matrix is comprised of the same fine-textured soil used for the upper and lower storage layers, and provides capillary connectivity between the upper and lower storage layers. Cobble in the intrusion layer does reduce the pore space available for soil water storage, but does not alter the hydrologic dynamics or inhibit the flow of water up or down in the profile. The reason for the absence of a capillary break at the interface between the lower storage layer and the sand is not clear, but the deep location of this interface is a likely cause. The interface may also have been invaded by fines from the overlying lower storage layer during construction, which would provide a capillary conduit between the lower storage layer and the sand layer. Regardless of the mechanism, however, the water content data do indicate that the interface between the lower storage layer and the sand layer. Regardless of the mechanism, however, the sand does not create a capillary break.

Thus, while the layering in the cover at Monticello may differ from that at White Mesa, both covers function as monolithic covers, and both are in similar climates (Monticello being slightly wetter and snowier than White Mesa) and are comprised of similar materials. For these reasons, Monticello is an appropriate analog for White Mesa, and probably is the most suitable analog available. Over the past 15 years (2000-2015), the annual percolation rate for Monticello has ranged from 0.0 to 3.8 mm/yr, and has averaged 0.5 mm/yr. During this period, annual precipitation has ranged from 232 to 535 mm and averaged 351 mm, including the wettest and snowiest winter on record (2004-2005). Given these similarities, the cover proposed for White Mesa should provide similar or better hydrologic isolation.

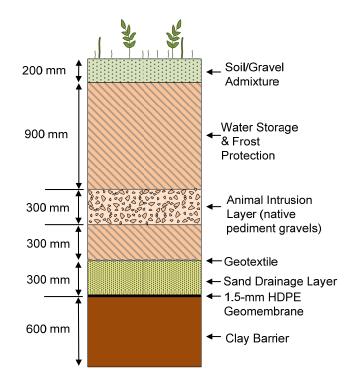


Figure 1. Profile of final cover used for the Monticello disposal facility. Only that portion of the cover above the geomembrane is instrumented for hydrological monitoring.

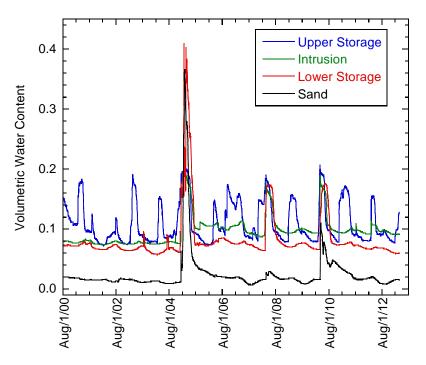


Figure 2. Water content record in Monticello cover in the upper storage layer, animal intrusion layer, lower storage layer, and underlying sand layer.

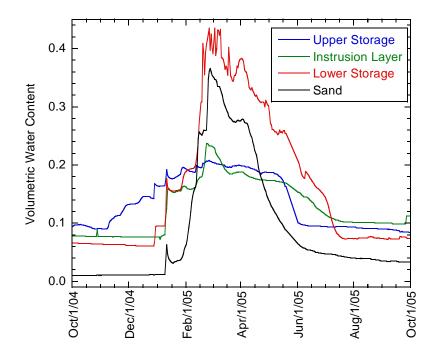


Figure 3. Water content record in Monticello cover in the upper storage layer, intrusion layer, lower storage layer, and underlying sand layer during Winter 04-05, the wettest and snowiest on record.

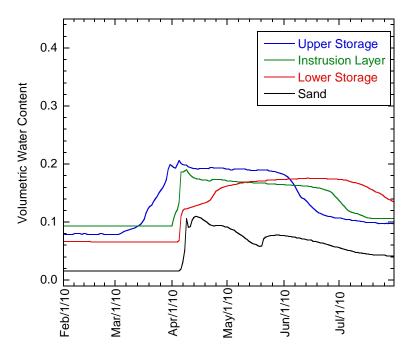


Figure 4. Water content record in Monticello cover in the upper storage layer, animal intrusion layer, lower storage layer, and underlying sand layer during 2010, a very wet spring with moisture penetrating the entire cover.

EFRI understands the Division's position regarding construction of a test section adjacent to the disposal facility that might lead to lessons learned that could be used to improve on, or optimize the cover design. EFRI will be placing the majority of the final cover on Cell 2 after approval of the Reclamation Plan and License Renewal, and will construct a test section within the actual cover (for the full cover profile). This test section, which will be constructed over actual tailings using the same full-scale methods employed for the actual cover, will provide a more realistic representation of cover performance than a test section adjacent to the facility. Moreover, because only a portion of the cover will have been constructed at this point, less learned from the test section can be applied to other areas of the facility as additional final cover is constructed.

EFRI is proposing that the test section be designed, constructed, and monitored using principles developed during US EPA's Alternative Cover Assessment Program (ACAP), as described in Benson et al. (1999, 2001) and Malusis and Benson (2006). The ACAP methodology has been employed to evaluate nearly 50 final cover designs, and has been adopted as the de facto standard for final cover monitoring in the US and abroad. The ACAP methodology is currently being used to monitor the final cover at DOE's Monticello Uranium Mill Tailings Disposal Facility and to evaluate the performance of the cover design employed at DOE's Grand Junction Disposal Facility near Cheney, Colorado. The US Nuclear Regulatory Commission also recommends the ACAP methodology for monitoring the performance of final covers in NUREG/CR-7028 (Benson et al. 2011).

EFRI will engage ACAP investigators (i.e. Dr. Craig Benson) when developing, constructing, and monitoring the test section, and defining the program details mentioned in the interrogatory. The monitoring system will include instruments to measure all components of the water balance, including percolation from the base of the cover, and on-site meteorological conditions. A complementary surveillance program will also be developed to monitor the vegetative community, edaphic properties of the cover soils, and pedogenic evolution of the cover profile, as suggested in NUREG/CR-7028. Comparisons will be made between the monitoring data and predictions and assumptions made when developing the proposed cover design.

References

- Benson, C., T. Abichou, W. Albright, C. Gee, and A. Roesler, 2001. Field Evaluation of Alternative Earthen Final Covers, International J. Phytoremediation, 3(1), 1-21.
- Benson, C., T. Abichou, X. Wang, G. Gee, and W. Albright, 1999. Test Section Installation Instructions – Alternative Cover Assessment Program, Environmental Geotechnics Report 99-3, Dept. of Civil & Environmental Engineering, University of Wisconsin-Madison.
- Benson, C., W. Albright, D. Fratta, J. Tinjum, E. Kucukkirca, S. Lee, J. Scalia, P. Schlicht, and X. Wang, 2011. Engineered Covers for Waste Containment: Changes in Engineering Properties & Implications for Long-Term Performance Assessment, NUREG/CR-7028, Office of Research, U.S. Nuclear Regulatory Commission, Washington.

- Malusis, M. and C. Benson, 2006. Lysimeters versus Water-Content Sensors for Performance Monitoring of Alternative Earthen Final Covers, Unsaturated Soils 2006, ASCE Geotechnical Special Publication No. 147, 1, 741-752.
- Utah Department of Environmental Quality, Division of Radiation Control (DRC), 2013a. Radioactive Material License (RML) Number UT 1900479: Review of September 10, 2012 Energy Fuels Resources (USA), Inc. Responses to Round 1 Interrogatories on Revised Infiltration and Contaminant Transport Modeling (ICTM) Report, White Mesa Mill Site, Blanding, Utah, report dated March 2010. February 7.
- Utah Department of Environmental Quality, Division of Radiation Control (DRC), 2013b. Review of August 15, 2012 (and May 31, 2012) Energy Fuels Resources (USA), Inc. Responses to Round 1 Interrogatories on Revision 5 Reclamation Plan Review, White Mesa Mill, Blanding, Utah, report dated September 2011. February 13.

DIVISION'S ASSESSMENT OF EFR RESPONSES TO RD 1 INTERROGATORY WHITE MESA RECPLAN REV. 5.0; R313-24-4; 10CFR40, APPENDIX A, CRITERION 9; INT 15/1; <u>FINANCIAL SURETY ARRANGEMENTS</u>

EFR must submit and receive approval of its revised cost estimates before the Division will approve *EFR*'s proposed and revised cover system design.

EFR has inadequately addressed the time required to dewater Cell 2 and Cell 3 prior to final cover construction, EFR should submit technically supported quantitative projections of the times required to achieve moisture contents for these cells upon which the final covers can be constructed with expectation that the dewatered tailings will not likely contribute to instabilities in the covers. These quantitative analyses should consider all mechanisms that affect water content of the tailings, including (but not limited to) precipitation, runoff, infiltration, lateral drainage, transpiration, evaporation, percolation, groundwater migration, and active removal. Quantitative analyses should also include uncertainty and sensitivity analyses to account for known and likely uncertainties in input parameter values and their effects on dewatering. The Reclamation Plan must include a detailed description of dewatering measures that EFR will use to accomplish dewatering of Cells 2 and 3 within the 7 year-time period specified in the latest Financial Surety submitted to the Division by EFR (See also Section 7.3 above). The current Surety submittal of March 14, 2012 (including the revised submittal dated September 14, 2012) does not list the time to dewater Cell 2. However, all other cells show a 62,400 hour dewatering time). Costs of the specific dewatering measures need to be included in the Financial Surety. Because this revised evaluation and the revised reclamation cost estimates described above were not submitted with EFR's response to the Rd 1 interrogatories, this issue will remain open.

Response:

EFRI conducted a tailings investigation of Cells 2 and 3 in October 2013 at the White Mesa Mill site to address the Division's comment for Interrogatories 07/1 and 09/1 requesting collection of site-specific tailings data to supplement existing tailings data used for settlement analyses. The results are presented in MWH (2015). Results of the investigation indicated migration of water towards the sump in Cell 2. This is expected since water has been pumped from the Cell 2 sump since 2008. Quantatative projections of time to achieve acceptable tailings moisture contents for cover placement cannot be made without additional information on the rate of drainage from the tailings due to Cell 2 dewatering. To further evaluate the change in water levels due to dewatering in Cell 2 prior to and after final cover placement, EFRI plans to install minipiezometers across the cells prior to the first phase of cover placement. This data will provide information on the rate and extent of dewatering of the cells to confirm when the final phase of cover can be placed and when active maintenance is no longer required.

Costs associated with dewatering were provided in the most recent surety submitted to the Division in 2014. These costs will also be included in the surety to be provided in the next version of the Reclamation Plan.

Reference for Response:

MWH Americas, Inc. (MWH), 2015. White Mesa Mill Tailings Data Analysis Report. Prepared for Energy Fuels Resources (USA) Inc. April.

DIVISION'S ASSESSMENT OF EFR RESPONSES TO RD 1 INTERROGATORY WHITE MESA RECPLAN REV. 5.0; R313-15-501; INT 16/1; <u>RADIATION PROTECTION MANUAL</u>

The Division requests that EFR revise the RPM to specify how the program will be modified to address the unique decommissioning requirements, or the process through which the manual and program will be revised in the future. EFR should also include procedures for gamma radiation surveys in the revised RPM that are discussed in the response document. Because this revised information was not submitted with the response, this interrogatory will remain open.

Response:

The Radiation Protection Manual (RPM) will be modified during the decommissioning process as needed. During the decommissioning process if it is determined that the current RPM does not take into account specific items, then the SERP process will be utilized to amend the RPM in order to address those situations. The SERP summary report will continue to be submitted to the State of Utah, Division of Waste Management and Radiation Control (DWMRC) on an annual basis and will be available upon request at the White Mesa Mill.

Section 2.7 of the RPM now states that the gamma survey for the decommissioning of the site will be conducted in accordance with the most current approved Reclamation Plan, Section 6 of the Technical Specifications. The updated RPM is provided as Attachment I.

DIVISION'S ASSESSMENT OF EFR RESPONSES TO RD 1 INTERROGATORY WHITE MESA RECPLAN REV. 5.0 R313-15-1002; INT 17/1; <u>RELEASE SURVEYS</u>

EFR should yet either (1) cite previously submitted documents where these topics were addressed or (2) develop and submit for the Division's review and approval the following:

- Decontamination procedures for buildings and equipment.
- Disposal of building components and equipment either on-site or off-site, depending on results of release surveys.

Response:

The Reclamation Plan states that buildings and equipment will be disposed of on-site. If it is determined that some materials are not contaminated and may be free released from the site, then the existing procedure and free release criteria will be used as stated in the RPM Section 2.6 and in accordance with the NRC guidance for "Decontamination of Facilities and Equipment Prior to Release for Unrestricted Use" (dated April 1993) Additional guidance documents referenced in the Technical Specifications, Section 6, will be used as appropriate and applicable to the items being released for unrestricted use.

Decontamination procedures for items to be released for unrestricted use will be developed during reclamation and will be based on the type of equipment and the construction of the equipment (i.e. what the item is constructed of such as metal, glass, plastic etc.). Current Mill procedures will be the basis for the decontamination procedures used at the time of reclamation. If decontamination to the unrestricted release criteria specified in the RPM Section 2.6 is not attainable, the item will be disposed of on site.

DIVISION'S ASSESSMENT OF EFR RESPONSES TO RD 1 INTERROGATORY WHITE MESA RECPLAN REV. 5.0 5.0 R313-12; INT 18/1; <u>INSPECTION AND QUALITY ASSURANCE</u>

EFR has inadequately defined the responsibilities and duties of the Radiation Safety Officer in its revision of the Radiation Protection Manual for Reclamation.

EFR has committed to, but must yet revise Section 1.8b of the Technical Specifications to indicate that the Division must review and approve all reclamation plan design modifications.

Response:

Section 1 of the RPM, which delineates the RSO responsibilities and duties, has been modified to include the following "The RSO will have the responsibility of overseeing all aspects of this procedure and all total releases of any materials from the facility." The updated RPM is provided as Attachment I.

Section 1.8b of the Technical Specifications has been revised to indicate that the Division must review and approve all design modifications to the Reclamation Plan. The revised Technical Specifications are provided in Attachment C.

DIVISION'S ASSESSMENT OF EFR RESPONSES TO RD 1 INTERROGATORY WHITE MESA RECPLAN REV. 5.0 R313-24; 10CFR 40.42(J); INT 19/1; <u>REGULATORY GUIDANCE</u>

Beyond EFR's commitment to revise the Reclamation Plan to reference and incorporate guidance, EFR must yet actually revise the document and submit it for the Division's review and approval.

Response:

The Technical Specifications in Attachment A of the Reclamation Plan have been revised to incorporate and reference NUREG-1575 (NRC, 2000), NUREG-1575 Supplement 1 (NRC, 2009) and NUREG-1757 (NRC, 2006) guidance. The revised Technical Specifications are provided as Attachment C.1.

Reference for Response

- United States Nuclear Regulatory Commission (NRC), 2000. Multi-Agency Radiation Survey and Site Investigation Manual. NUREG-1575. August.
- United States Nuclear Regulatory Commission (NRC), 2006 NUREG 1757 Volume 2, Consolidated Decommissioning Guidance, Characterization, Survey, and Determination of Radiological Criteria. Revision 1.
- United States Nuclear Regulatory Commission (NRC), 2009 NUREG 1575 Supplement 1, Multi-Agency Radiation Survey and Assessment of Materials and Equipment Manual.

DIVISION'S ASSESSMENT OF EFR RESPONSES TO RD 1 INTERROGATORY WHITE MESA RECPLAN REV. 5.0 R313-24; 10CFR40 APPENDIX A CRITERION 6(6); INT 20/1; <u>SCOPING, CHARACTERIZATION, AND FINAL SURVEYS</u>

EFR reasonably addresses the nine topics contained in Items 1 through 9 of the interrogatory. The response provides procedures for how gamma surveys may be conducted and indicate instruments that may be used. These procedures and instruments are not included in the RPM. Additionally, a discrepancy exists between the RPM and the response document regarding the frequency of instrument calibrations. Section 3.1.4.2 of the RPM state "All beta-gamma survey instruments are sent out annually for calibration" whereas the response states "As indicated in the Mill's Radiation Protection Reclamation Manual each existing instrument (Ludlum 19) used will be calibrated by an offsite –third party every 6 months.

The Division requests that EFR incorporate the substance of these responses into the further revised Technical Specifications or other documentation pertinent to the Reclamation Plan. EFR must also resolve the discrepancy stated above. Because this revised information was not submitted with the response, this interrogatory will remain open.

Response:

Section 2.7 of the RPM now states that the gamma survey for the decommissioning of the site will be conducted in accordance with the most current approved Reclamation Plan, Section 6 of the Technical Specifications.

The calibration frequency for beta-gamma survey instruments is every 6 months. The RPM has been corrected. The updated RPM is provided as Attachment I.

ATTACHMENT A

SUPPORTING DOCUMENTATION FOR INTERROGATORY 01/1: MILL BUILDING, BOILER PLANT, SCALE HOUSE, AND THE SAMPLE PLANT ASBESTOS INSPECTION REPORT

ASBESTOS INSPECTION REPORT

Mill-Boiler Plant-Scale House-Sample Plant White Mesa Mill-Denison Mines Corp 6425 S. Highway 191 Blanding, Utah 84511

August 1, 2012

Prepared for:

Ms. Jo Ann Tischler, Corporate Director of Compliance & Permitting Denison Mines 1050 17th Street, Suite 950 Denver, Colorado 80265

Prepared by:

Lono Folau

Asbestos Inspector #ASB-0537

Reviewed by:

Jon H. Self

Asbestos Program Manager

IHI Project 12U-A1081

640 EAST WILMINGTON AVE

SALT LAKE CITY UT 84106

TELEPHONE: 801-466-2223

FAX: 801-466-9616

E-MAIL: IHI@IHI-ENV.COM

SALT LAKE CITY

SAN FRANCISCO

PHOENIX

DENVER

SEATTLE

TABLE OF CONTENTS

Exec	CUTIVE	SUMMARYI
1.0	INTR	ODUCTION1
2.0	BUIL	DINGS DESCRIPTION1
3.0	INSP	ection Procedures2
4.0	3.1 3.2 3.3	Asbestos-Containing Material (ACM)
4.0	INSP	ECTION RESULTS4
	4.1	Asbestos-Containing Materials4
	4.2	Non-Asbestos-Containing Materials
	4.3	Bulk Sample Analytical Results
	4.4	Damage and Hazard Assessment
	4.5	Materials Requiring Special Considerations
	4.6	Assumed Asbestos-Containing Materials
	4.7 4.8	Inaccessible Areas
5.0	Resp	PONSE ACTIONS
	5.1 5.2	Applicable Rules and Regulations
6.0	Cost	T ESTIMATES7

APPENDICES

Appendix A: I	Data Tables
---------------	-------------

- Appendix B: Building Floor Plans
- Appendix C: Photographs
- Appendix D: Laboratory Results
- Appendix E: Asbestos Regulatory Factors
- Appendix F: Project Limitations

EXECUTIVE SUMMARY

On May 31, 2012, IHI Environmental conducted an asbestos inspection of the Mill Building, Boiler Plant, Scale House and the Sample Plant at the Denison Mines White Mesa Mill in Blanding, Utah. Ms. Jo Ann Tischler, Corporate Director of Compliance and Permitting, requested this inspection to identify asbestos-containing materials (ACM) that exist in the building.

• No asbestos-containing material was identified in these buildings.

The suspect asbestos materials identified in these buildings included wall systems on the second level of the Mill Building, floor tiles on the second floor of the Mill Building and the Scale House, and gasketing on the boiler in the Boiler Plant. No suspect asbestos material was identified in the Sample Plant.

The report that follows this Executive Summary should be read in its entirety because it includes important information, such as material descriptions and locations, regulatory requirements, and building-specific recommended response actions.

i

ASBESTOS INSPECTION

Mill-Boiler Plant-Scale House White Mesa Mill-Denison Mines Corp 6425 S. Highway 191 Blanding, Utah

1.0 INTRODUCTION

On May 30, 2012, IHI Environmental conducted an asbestos inspection of the Mill Building, Boiler Plant, Scale House and the Sample Plant of the White Mesa Mill in Blanding, Utah. Ms. Jo Ann Tischler, of Denison Mines, requested this inspection to identify asbestoscontaining materials (ACM) that exist in the facility.

2.0 **BUILDINGS DESCRIPTION**

•	Buildings Identification
	Buildings NameMill Building, Boiler Plant, Scale House, and Sample Plant
	Buildings Address6425 South Highway 191, Blanding, Utah 84511
•	Building Construction
	Buildings Construction Datecirca 1978
	RenovationsNot known
	Building TypePlant, offices, boiler
	Buildings Total Sq. Ft
	Structural SystemConcrete foundation with steel (Mill Building and Boiler Plant), wood (Scale House), and concrete with brick (Sample Plant)
	Exterior Wall ConstructionMetal (Mill Building and Boiler Plant), wood (Scale House), and brick (Sample Plant)
	Floor Deck ConstructionConcrete (Mill Building, Boiler and Sample Plants), wood (Scale House)
	Roof Deck ConstructionMetal (Mill Building, Boiler Plant, and Sample Plant), wood (Scale House)

Roof ConstructionMetal (all buildings)
• Floors
Floors Above Grade One (except Mill Building-offices on second level)
Floors Below Grade None
Interior Finishes
FloorsConcrete (Mill Building, Boiler and Sample Plant), vinyl floor tile (Scale House and Mill Building second level)
Walls Metal (Mill Building and Boiler Plant), brick (Sample Plant), wood (Scale House), and wall system (Mill Building second level)
Ceilings Metal (Mill Building and Boiler Plant), brick (Sample Plant), wood (Scale House), and wall system (Mill Building second level)
Attic None
Basement None
Building Mechanical
Heating Plant Not known
Cooling Plant Roof units

3.0 INSPECTION PROCEDURES

3.1 Asbestos-Containing Material (ACM)

IHI visually inspected all accessible areas of the building to identify suspect ACM. To assess the condition and determine friability of the suspect materials, IHI visually examined and touched all accessible surfaces, structures, and mechanical systems within the building.

Suspect ACM was identified and assessed by homogeneous areas. A homogeneous area is defined as a single material, uniform in texture and appearance, installed at one time, and unlikely to consist of more than one type, or formulation, of material. In cases where joint compound and/or tape has been applied to wallboard (gypsum board) and cannot be visually distinguished from the wallboard, it is considered an integral part of the wallboard and in effect becomes one material forming a wall or ceiling "system."

Each homogeneous area was given a unique material identification (ID) number. Each ID number begins with a letter: "S" for surfacing materials, "T" for thermal system insulation, or "M" for miscellaneous materials. This letter is followed by a three-digit number, assigned in consecutive order. This number is used to identify that specific homogeneous area throughout the inspection report.

3.2 Bulk Sampling

To determine the asbestos content of materials, IHI collected bulk samples from all accessible homogeneous areas of suspect ACM and submitted the samples to an accredited laboratory for analysis.

The number of samples collected from each homogeneous area generally followed the U. S. Environmental Protection Agency (EPA) Asbestos Hazard Emergency Response Act (AHERA) regulations (40 CFR §763.86). Friable surfacing materials were sampled using the random sampling scheme given in the EPA publication 560/5-85-030a, titled "Asbestos in Buildings: Simplified Sampling Scheme for Friable Surfacing Materials." Bulk sample IDs collected during the inspection were entered on chain-of-custody forms for submittal to the analytical laboratory.

3.3 Bulk Sample Analysis

Bulk samples were analyzed using polarized light microscopy (PLM) and visual estimation according to the EPA Interim Method for the Determination of Asbestos in Bulk Insulation Samples, EPA-600/M4-82-020. Samples were analyzed by Dixon Information Inc. in Salt Lake City, Utah. Dixon Information is accredited under the National Institute of Standards and Technology, National Voluntary Laboratory Accreditation Program (NIST-NVLAP) for bulk asbestos sample analysis, and is also accredited by the American Industrial Hygiene Association (AIHA).

EPA's National Emissions Standards for Hazardous Air Pollutants (NESHAP) and AHERA regulations define ACM as material containing greater than 1% asbestos by weight; materials containing 1% or less asbestos are not considered regulated ACM by the EPA. Further, the NESHAP regulations state that any sample found to contain less than 10% asbestos but greater than "none detected," by the visual estimation method used during PLM analysis,

must be assumed to contain greater than 1% asbestos unless confirmed by NESHAP point counting analysis.¹

Despite EPA (and Utah Division of Air Quality) rules exempting building materials containing 1% or less asbestos from stringent regulation, Occupational Safety and Health Administration (OSHA) regulations outline specific precautionary work practices when employees work with materials containing even trace amounts of asbestos.²

The laboratory reports can be found in Appendix D of this report.

4.0 INSPECTION RESULTS

4.1 Asbestos-Containing Materials

The Executive Summary and Table 1 in Appendix A list all homogeneous areas that contain asbestos. Each material is described by type of material, friability and visual appearance.

Friability is defined in accordance with EPA's NESHAP regulations.

- "Friable ACM" is any material containing more than 1% asbestos (as determined by PLM) that, when dry, may be crumbled, pulverized, or reduced to powder by hand pressure and also includes non-friable ACM that may become friable during building demolition.
- "Non-friable ACM" is any material containing more than 1% asbestos (as determined by PLM) that, when dry, cannot be crumbled, pulverized, or reduced to powder by hand pressure.
- "Category I non-friable ACM" are asbestos-containing resilient floor coverings (commonly known as vinyl asbestos tile (VAT)), asphalt roofing products, packings, and gaskets.
- "Category II non-friable ACM" encompasses all other non-friable ACM.

¹ NESHAP point counting includes examining materials under a polarizing microscope using an eyepiece reticule that superimposes a grid of points over the field of view. 400 points are examined.

² OSHA regulations pertaining to asbestos in buildings include 29 CFR 1926.1101 and 29 CFR 1910.1001. OSHA has also issued interpretive letters that provide clarification about how materials containing less than 1% asbestos should be handled. (see <u>www.osha.gov</u>)

• "Non-friable RACM" is used to denote thermal system insulation that is in good condition but would become friable during renovation or demolition and therefore is "regulated asbestos containing material" (RACM).

4.2 Non-Asbestos-Containing Materials

Homogeneous areas of suspect ACM are identified as non-ACM if material contains no detectable asbestos. Table 2, located in Appendix A of this report, lists all homogeneous areas that were found to be non-ACM.

4.3 Bulk Sample Analytical Results

Table 3, located in Appendix A of this report, lists all the bulk samples (chronologically by sample number) collected from homogeneous areas of suspect ACM, and the laboratory analytical results. Each sample was given a unique sample number. There may be more than one sample number for the same homogeneous area of suspect ACM indicating multiple samples were collected from that homogeneous material. The homogeneous areas of suspect ACM are identified on this table by their material identification numbers. The sample location listed on this table provides a brief, but specific, description of the location where the sample was collected. This is different from the homogeneous area location provided on Tables 1 and 2. Table 4 is the same as Table 3, except that the entries have been sorted by homogeneous area number.

4.4 Damage and Hazard Assessment

Each homogeneous area of ACM was assessed for existing damage, accessibility, and potential for future damage, this information is presented in Table 5, located in Appendix A of this report. This table also lists the substrate beneath each homogeneous area of ACM.

Damage and hazard assessment categories are included in the tables in Appendix A.

4.5 Materials Requiring Special Considerations

The inside of the metal boiler and metal boiler flue could not be accessed during the inspection.

4.6 Assumed Asbestos-Containing Materials

None

4.7 Inaccessible Areas

Suspect materials that were hidden or inaccessible may not have been characterized by this inspection. Therefore, any material not identified in this report as having been tested should be treated as suspect ACM until it has been sampled by a Utah-certified inspector and analyzed by an accredited laboratory applying EPA methods.

In addition, some building structures may have been constructed after the application of ACM, and therefore may have obscured these materials from visual examination during this inspection. Typical scenarios include thermal system insulation inside hardened mechanical chases, floor tile and mastic under walls, and sprayed-on texturing and fireproofing behind structural supports or architectural features.

4.8 Materials Assumed >1% Asbestos (no NESHAP point count)

None

5.0 **RESPONSE ACTIONS**

5.1 Applicable Rules and Regulations

In Utah, EPA asbestos regulations are administered by the Utah Division of Air Quality (DAQ).³ The Utah Occupational Safety and Health Administration (UOSH) has adopted the Federal OSHA regulations.⁴ In addition, the Salt Lake Valley Health Department (SLVHD) regulates demolition activities in Salt Lake County.⁵ The SLVHD regulations for predemolition building inspections require an asbestos inspection, but also require building owners to inspect the building for other hazardous materials such as universal wastes, hazardous and toxic wastes, and lead-based paint. Like asbestos, these wastes, if present, must be removed prior to building demolition.

³ R307-801. Asbestos, Utah Division of Air Quality Rules, Implementation of Toxic Substances Control Act Title II, Asbestos Certification, Asbestos Training, notifications and Asbestos Work Practices for Renovations and Demolitions (See www.airquality.utah.gov).

 ⁴ Asbestos, Tremolite, Anthophyllite, and Actinolite Standards, Chapter D (Construction), Section 58; and Chapter Z (General Industry), Section 1001, Utah Occupational Safety and Health Rules and Regulations (Administered by Utah Occupational Safety and Health Division) (See <u>www.uosh.utah.gov</u>).
 ⁵ Salt Lake City – County Health Department, Health Regulation #1 Section 12 (See www.slvhealth.org).

Regulatory factors relevant to asbestos abatement decision-making are included in Appendix E.

5.2 Renovation and Demolition (EPA and OSHA)

A listing of ACM found during this inspection is presented in the Executive Summary at the front of this report, and in Appendix A, Table 1.

NESHAP regulations require the removal of friable ACM and non-friable ACM that could become friable during demolition or renovation activities. Therefore, we recommend that all of the ACM in this building be removed and properly disposed of by a licensed asbestos abatement contractor if total demolition of the facility is planned, or those materials that will be impacted by renovation plans be removed prior to the commencement of renovation work. Despite EPA (and Utah Division of Air Quality) rules exempting building materials containing 1% or less asbestos from stringent regulation, Occupational Safety and Health Administration (OSHA) regulations outline specific precautionary work practices when employees work with materials containing even trace amounts of asbestos.⁶ Strict compliance by building owners with the OSHA asbestos regulations may result in response actions not required by the EPA and Utah DAQ for certain unregulated materials.

6.0 COST ESTIMATES

Details of the estimated removal costs by homogeneous area can be found in Table 6, Appendix A, and in the Executive Summary table. These estimates are provided for budgeting and planning only, and do not have a level of accuracy sufficient to be used as a construction design cost estimate. The actual cost of asbestos removal is dependent on factors such as the size of the job, the required time frame for removal, the time of year the job is conducted, and economic factors. These estimates do not include replacement costs, or the cost for asbestos abatement design and management consulting services.

⁶ OSHA regulations pertaining to asbestos in buildings include 29 CFR 1926.1101 and 29 CFR 1910.1001. OSHA has also issued interpretive letters that provide clarification about how materials containing less than 1% asbestos should be handled. (see <u>www.osha.gov</u>)

Appendix A

Data Tables

Table 2

Homogeneous Areas That Do Not Contain Asbestos

Mill Building

White Mesa Mill-Denison Mines Corp

Homogeneous Area Number	Material Description/Location	Amount	
M001	Wall System	3,450 sq. ft.	
	White joint compound paper tape and white gypsum plaster		
	Throughout walls of Lab, Office, Lunch Room and Restrooms on Second Level		
M002	Floor Tile and Mastic on Cement	920 sq. ft.	
	12" x 12" Tan vinyl floor tile and black mastic		
	Throughout walls of Lab, Office, Lunch		
	Room and Restrooms on Second Level		

Table 3Bulk Sample Analytical Results by Sample NumberMill Building

Sample Number	Homogeneous Area Number	Material Sampled	Sample Location	Analytical Results
A1081M-1	M001	Wall System	NE. corner wall of Office, Second Level	ND
A1081M-2	M001	Wall System	Center of wall of Lunch Room, Second Level	ND
A1081M-3	M002	Floor Tile and Mastic on Cement	Lunch Room, Second level	ND: floor tile ND: black mastic
A1081M-4	M002	Floor Tile and Mastic on Cement	Office, Second Level	ND: floor tile ND: black mastic

White Mesa Mill-Denison Mines Corp

Note: ND =No Asbestos Detected, NA= Not Analyzed, TR = <1% Asbestos, PC = Point Count

Table 4Bulk Sample Analytical Results by Homogeneous Area NumberMill BuildingWhite Mesa Mill-Denison Mines Corp

Sample Number	Homogeneous Area Number	Material Sampled	Sample Location	Analytical Results
A1081M-1	M001	Wall System	NE. corner wall of Office, Second Level	ND
A1081M-2	M001	Wall System	Center of wall of Lunch Room, Second Level	ND
A1081M-3	M002	Floor Tile and Mastic on Cement	Lunch Room, Second level	ND: floor tile ND: black mastic
A1081M-4	M002	Floor Tile and Mastic on Cement	Office, Second Level	ND: floor tile ND: black mastic

Note: ND =No Asbestos Detected, NA= Not Analyzed, TR = <1% Asbestos, PC = Point Count

Asbestos Survey Report - Table 4

Table 2

Homogeneous Areas That Do Not Contain Asbestos

Boiler Room White Mesa Mill-Denison Mines Corp

Homogeneous Area Number	Material Description/Location	Amount	
M001	Gasket	1 unit	
	Light tan fiberglass gasket		
	Boiler Building		

Asbestos Survey Report - Table 2

Table 3Bulk Sample Analytical Results by Sample NumberBoiler Room

White Mesa Mill-Denison Mines Corp

Sample Number	Homogeneous Area Number	Material Sampled	Sample Location	Analytical Results
A1081B-1	M001	Gasket	Boiler Building	ND

Note: ND =No Asbestos Detected, NA= Not Analyzed, TR = <1% Asbestos, PC = Point Count

Table 4Bulk Sample Analytical Results by Homogeneous Area NumberBoiler Room

White Mesa Mill-Denison Mines Corp

Sample Number	Homogeneous Area Number	Material Sampled	Sample Location	Analytical Results
A1081B-1	M001	Gasket	Boiler Building	ND

Note: ND =No Asbestos Detected, NA= Not Analyzed, TR = <1% Asbestos, PC = Point Count

Table 2

Homogeneous Areas That Do Not Contain Asbestos

Scale House White Mesa Mill-Denison Mines Corp

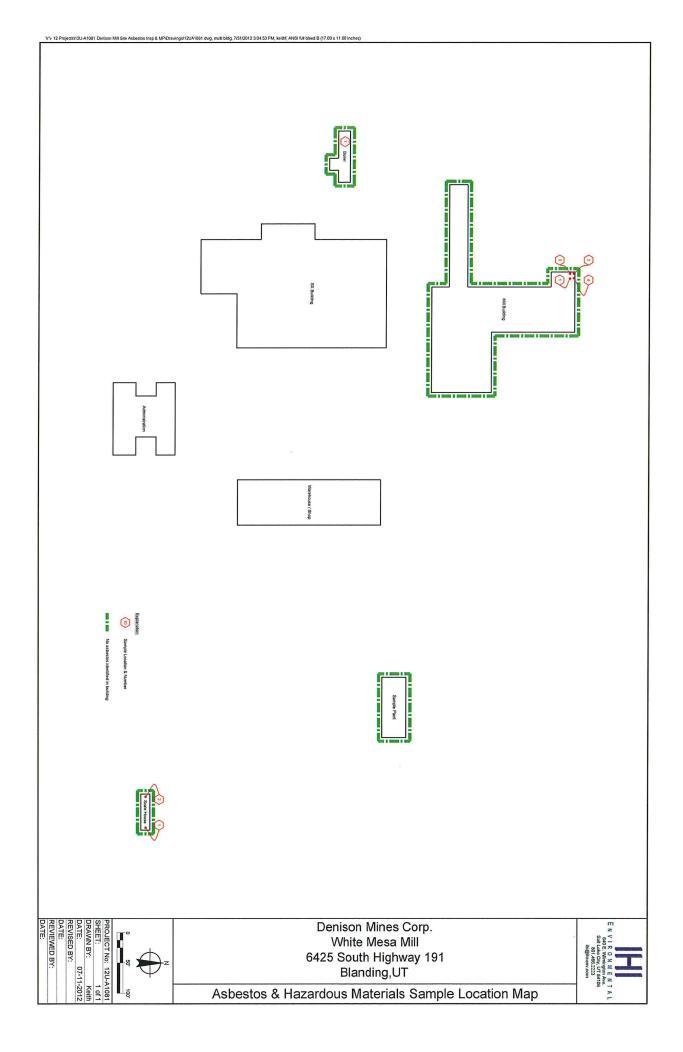
Homogeneous Area Number	Material Description/Location	Amount	
M001	Floor Tile and Mastic on Wood	390 sq. ft.	
	12" x 12" Gray vinyl floor tile and yellow adhesive		
	Scale House		
M002	Floor Tile and Mastic on Wood	10 sq. ft.	
	12" x 12" Tan vinyl floor tile and yellow adhesive (patches)		
	Scale House		

Table 3Bulk Sample Analytical Results by Sample NumberScale House

White Mesa Mill-Denison Mines Corp				
Sample Number	Homogeneous Area Number	Material Sampled	Sample Location	Analytical Results
A1081SH-01	M001	Floor Tile and Mastic on Wood	Scale House	ND
A1081SH-02	M002	Floor Tile and Mastic on Wood	Scale House	ND

Note: ND =No Asbestos Detected, NA= Not Analyzed, TR = <1% Asbestos, PC = Point Count

Table 4Bulk Sample Analytical Results by Homogeneous Area NumberScale House


White Mesa Mill-Denison Mines Corp

Sample Number	Homogeneous Area Number	Material Sampled	Sample Location	Analytical Results
A1081SH-01	M001	Floor Tile and Mastic on Wood	Scale House	ND
A1081SH-02	M002	Floor Tile and Mastic on Wood	Scale House	ND

Note: ND =No Asbestos Detected, NA= Not Analyzed, TR = <1% Asbestos, PC = Point Count

Appendix B

Building Floor Plans

Appendix C

Photographs

Photograph 1

The floor tile and adhesive on the second level of the Mill Building did not contain asbestos.

Photograph 2

The wall system on the second level of the Mill Building was reported as none detected for asbestos.

Photograph 3 The gasket on the boiler of the Boiler Plant did not contain asbestos.

Photograph 4 The metal boiler flue could not be accessed to inspect for suspect asbestos materials.

Photograph 5 The floor tiles in the Scale House were reported as none detected for asbestos.

Photograph 6 No suspect asbestos material was identified at the dump yard.

Appendix D

Laboratory Results

DIXON INFORMATION INC.

MICROSCOPY, ASBESTOS ANALYSIS & CONSULTING A.I.H.A. ACCREDITED LABORATORY # 101579 NVLAP LAB CODE 101012-0

June 13, 2012

Mr. Lono Folau IHI Environmental 640 East Wilmington Ave Salt Lake City, UT 84106

Ref: Batch # 104908, Lab # H19744 - H19750 Received June 6, 2012 Test report Page 1 of 3 Denison Mines-White Mesa Mill Mill Building\Boiler\Scale House 6425 S Highway 191, Blanding UT Proj# 12U-A1081 Sampled by Lono Folau

Dear Mr. Folau:

Samples H19744 through H19750 have been analyzed by visual estimation based on EPA-600/M4-82-020 December 1982 optical microscopy test method, with guidance from the EPA/600/R-93/116 July 1993 and OSHA ID 191 methods. Appendix "A" contains statements which an accredited laboratory must make to meet the requirements of accrediting agencies. It also contains additional information about the method of analysis. This analysis is accredited by NVLAP. Appendix "A" must be included as an essential part of this test report. The data for this report is accredited by NVLAP for laboratory number 101012-0. It does not contain data or calibrations for tests performed under the AIHA program under lab code 101579.

This report may be reproduced but all reproduction must be in full unless written approval is received from the laboratory for partial reproduction. The results of analysis are as follows:

Lab H19744, Field A1081M-1 Wall system

This sample contains white paint, white gypsum plaster with mica, brown and off-white plant fiber paper, and white gypsum plaster with 1% fiberglass. This sample is non-homogeneous. Asbestos is none detected.

The paint is 1% of the sample. The plaster with mica is 4% of the sample. The plant fiber paper is 5% of the sample. The white gypsum plaster is 90% of the sample.

 Batch # 104908 Lab # H19744 - H19750 Page 2 of 3

Lab H19745. Field A1081M-2 Wall system

This sample contains white paint, white gypsum plaster with mica, brown plant fiber paper, and white gypsum plaster with 1% fiberglass. This sample is non-homogeneous. Asbestos is none detected.

The paint is 1% of the sample. The plaster with mica is 1% of the sample. The plant fiber paper is 5% of the sample. The white gypsum plaster is 93% of the sample.

The analysis sensitivity is limited in the second material type due to the thin layer.

Lab H19746. Field A1081M-3 Floor tile and mastic

This sample contains three types of material: The first type is tan plastic and limestone; the second type is yellow resin mastic; the third type is black tar mastic with 1% organic fiber in debris. This sample is non-homogeneous. **Asbestos is none detected.**

The first type is 97% of the sample. The second type is 1% of the sample. The third type is 2% of the sample.

Lab H19747, Field A1081M-4 Floor tile and mastic

This sample contains two types of material: The first type is off-white plastic and limestone; the second type is black tar mastic with less than 1% organic fiber in debris. This sample is non-homogeneous. Asbestos is none detected.

The first type is 99% of the sample. The second type is 1% of the sample.

Lab H19748. Field A1081B-1 Boiler gasket

This is 95% fiberglass in brown binder. Asbestos is none detected.

Lab H19749. Field A1081SH-1 Floor tile and mastic

This sample contains two types of material: The first type is gray plastic and limestone; the second type is yellow resin mastic. This sample is non-homogeneous. **Asbestos is none detected.**

The first type is 99% of the sample. The second type is 1% of the sample.

Batch #104908 Lab #H19744-H19750 ⁻ Page 3 of 3

Lab H19750. Field A1081SH-2 Floor tile and mastic

This sample contains three types of material: The first type is tan binder; the second type is tan plastic and limestone; the third type is yellow resin mastic. This sample is non-homogeneous. **Asbestos is none detected.**

The first type is 1% of the sample. The second type is 98% of the sample. The third type is 1% of the sample.

In order to be sure reagents and tools used for analysis are not contaminated with asbestos, blanks are tested. Asbestos was none detected in the blanks tested with this bulk sample set.

Very truly yours,

Steve-H. Dixon, President

Analyst: Paul Crane

- Date Analyzed: June 13, 2012

Dixon Information Inc. 78 West 2400 South South Salt Lake, Utah 84115 Phone: 1-801-486-0800 Fax: 1-801-486-0849

BULK ANALYTICAL REQUEST FORM

Turnaround Time - Circle One

Batch Number 104908

Rush (24 hours \$25.00 per sample)

(5 Working days \$17.00 per sample)

Tion rubi (5 in origing aufs or rise per samp	
D. D	Denison Mines . White Mesa Mill
Name of location sample was taken at	Mill Building & Boiler & Scale Mouse
Street address sample was taken at 6425	Mill Building & Boiler & Scale House 5. Highway 191, Blanding, UT
Sampled by: Lono Folare.	<i>c c</i>
Report to be sent to: Lono Folan	Billing to be sent to:
Company: 1141 Environmental	Company: IHI Environmental
Address: 640 F. Wilmington Ave	Address:
City: 34C State: UT	City:State:
Zip Code: 84106	Zip Code:
Telephone #: <u>80/ - 466 - 2223</u>	Telephone #:
Fax #:	Fax #:
E-mail: Ifolaupihi-env. com	PO #: 12V-A/08/
L-man. <u>27020000000000000000000000000000000000</u>	Samples Collected
Field # Description of Samp	•
	pre Date Hille Lab#
AIDBIM	5/30/12 19744
- Wall system	
<u> </u>	19745
3 Floor tile and m	
<u>Ч</u> п и и	<u>" 5/30/12 19747</u>
A10818-	
1 Boiler gasket	5/30/12 19748
AIOBISH-	· · ·
1 Floor tile and ma	stic 5/30/12 19749
2 41 41 4	" <u>\$/30/12</u> 19750

Chain of Custody

Submission of asbestos samples for analysis and/or signing a chain of custody is the equivalent of submission of a purchase order and constitutes an agreement to pay for services provided at Dixon Information Incorporated standard schedule of fees for services.

Submitted by:
Received by Lab X was Burn
Received by Analyst:
Returned by Lab:

Date: 6/6/12	Time:
Date: 6-6-6	Time: 1320
Date: 6 /43/18	
Date:	Time:

Appendix "A"

"This report relates only to the items tested. This report must not be used to claim product endorsement by NVLAP or AIHA."

NVLAP and AIHA requires laboratories to state the condition of samples received for testing: These samples are in acceptable condition for analysis unless there is a statement in the report of analysis that a test item has some characteristics or condition that precludes analysis or requires a modification of standard analytical methodology. If a test item is not acceptable, the reasons for non-acceptability will be given under the laboratory number for that particular test item. The reported percentages of each material type are based on the sample received by the laboratory and may not be representative of the parent material. Orientation of top and bottom may not be specified due to uncertainty of orientation.

Methods of Analysis and Limit of Detection

In air count analysis, the results may be biased when interferences are noted.

The accuracy of asbestos analysis in bulk samples increases with increasing concentration of asbestos. Pigments, binders, small sample size, and multiple layers may affect the analysis sensitivity.

There are two methods for analysis of asbestos in a bulk test sample. Visual estimation is the most sensitive method. If an analyst makes a patient search, 0.1% or less asbestos can be detected in a bulk sample.

The second method of analysis is a statistical approach called point counting. EPA will not accept visual estimations if a laboratory detects a trace of asbestos in a sample i.e. anything less than 1% asbestos. Government agencies regulate asbestos containing materials (ACM) whenever the ACM is more than 1%. OSHA requirements apply on samples containing any amount of asbestos.

Due to the higher charge for a point count analysis, Dixon Information Inc. does not perform a point count unless authorized to do so by the client. If a sample is point counted, when possible, various chemical and/or physical means may be used to concentrate the asbestos in the sample. This is permitted by the EPA method and it increases the accuracy of the analysis. Appendix E

Regulatory Factors

.

Several factors determine how asbestos in a building must be treated if it has the potential of being disturbed during a renovation or demolition. These factors include the following:

Factor Definition of asbestos in a building material	EPA Regulations for Asbestos Removal Defines ACM as a material containing 1% or greater asbestos.	OSHA Regulations for Asbestos Removal Defines an ACM as one containing >1% asbestos.
Regulation of asbestos in building materials	Regulates only ACM. If the asbestos. Regulates only ACM. If the asbestos concentration in a material is shown to be "none detected" by initial analysis or 1% or less by point count analysis, EPA/DAQ does not regulate it.	Regulates not only ACM but all materials containing any amount of asbestos. Regulations are not as stringent for materials containing equal-to or less-than 1% asbestos but greater than a "none detected" concentration.
Determination of asbestos concentration in a gypsum board wall system	Allows compositing of all layers (joint compound, joint tape, and gypsum board) into one sample, which decreases the possibility that the sample will be evaluated as an ACM.	Requires that each layer of the wall system be analyzed and reported independently, which increases the possibility of a sample containing ACM or identifiable asbestos.
Defines regulated and non-regulated ACM	Yes – Regulated ACM include friable ACM and resilient flooring, asphalt roofing, gaskets and packing that have become friable and other ACM that have a high probability of becoming friable.	No – Requirements for asbestos work procedures and worker training are less stringent for resilient flooring, asphalt roofing materials, and materials containing greater than "none detected" but not greater than 1% asbestos.
Notification of asbestos abatement or building demolition required	Yes – Utah DAQ must be notified on the appropriate form 10 working-days prior to an asbestos abatement of regulated asbestos material greater than the NESHAP-established notifiable quantity with demolition, or demolition where abatement is not required.	No – Not required.
Provision for allowing ACM to remain in a building during a demolition.	Yes – Allows ACM resilient flooring, asphalt roofing, and certain other non- friable building materials in good condition to remain in a building during demolition as long as the demolition process will not render them friable.	No – If any asbestos is left in a building during a demolition, the demolition workers are expected to meet the same OSHA requirements that an abatement contractor would meet if an abatement contractor was conducting an abatement of those materials.

Appendix F

Project Limitations

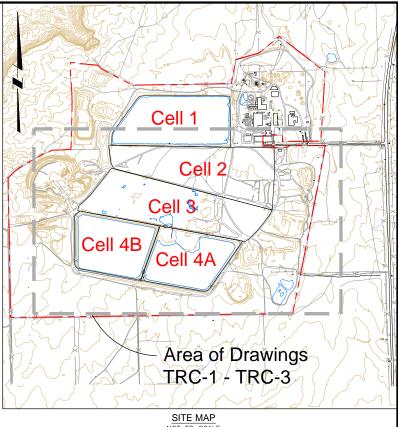
PROJECT LIMITATIONS

This Project was performed using, as a minimum, practices consistent with standards acceptable within the industry at this time, and a level of diligence typically exercised by EH&S consultants performing similar services.

The procedures used attempt to establish a balance between the competing goals of limiting investigative and reporting costs and time, and reducing the uncertainty about unknown conditions. Therefore, because the findings of this report were derived from the scope, costs, time and other limitations, the conclusions should not be construed as a guarantee that all universal, toxic and/or hazardous wastes have been identified and fully evaluated. Furthermore, IHI assumes no responsibility for omissions or errors resulting from inaccurate information, or data, provided by sources outside of IHI or from omissions or errors in public records.

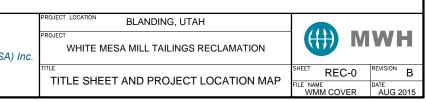
It is emphasized that the final decision on how much risk to accept always remains with the client since IHI is not in a position to fully understand all of the client's needs. Clients with a greater aversion to risk may want to take additional actions while others, with less aversion to risk, may want to take no further action.

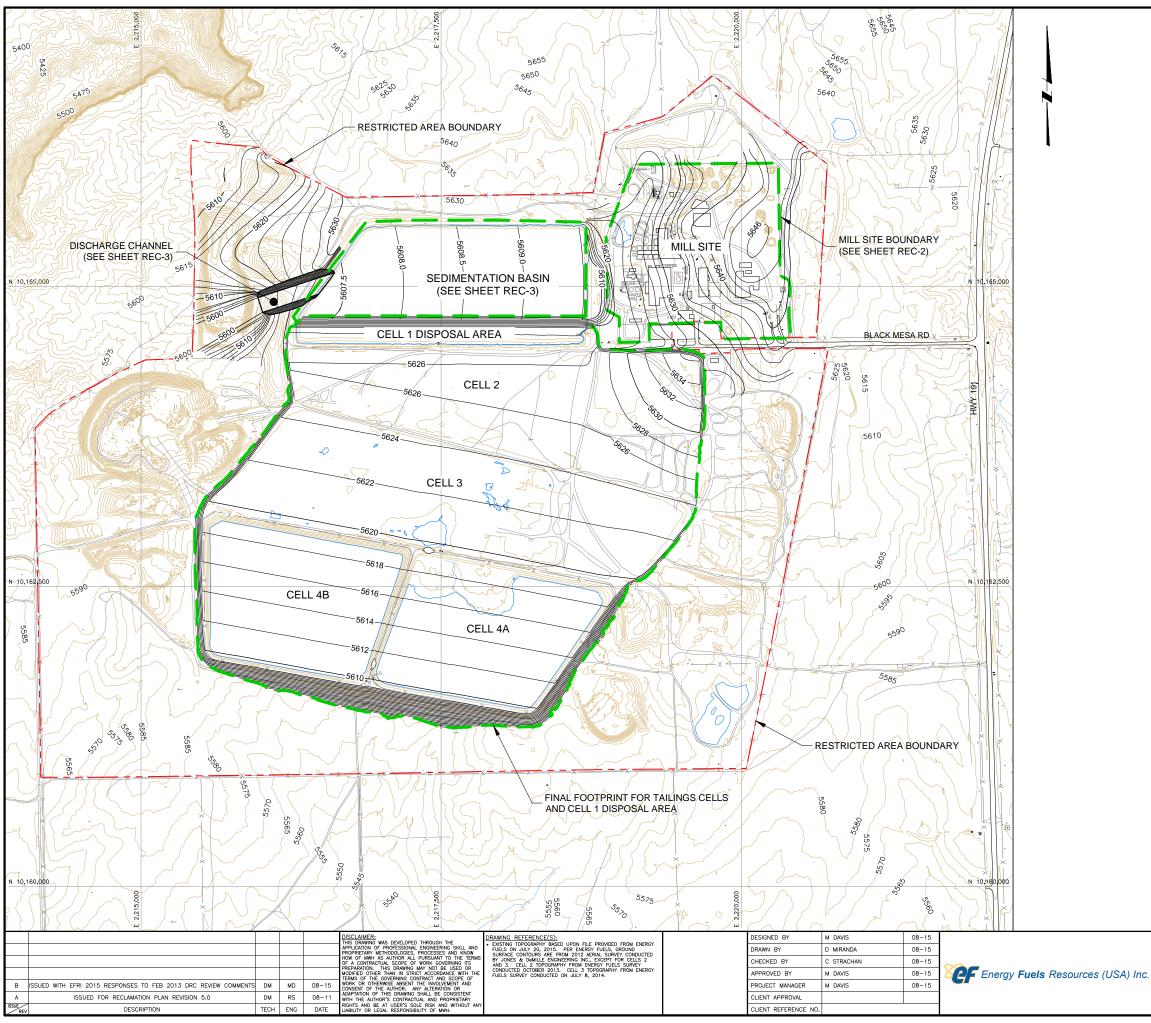
ATTACHMENT B

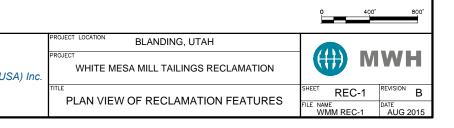

SUPPORTING DOCUMENTATION FOR INTERROGATORY 02/1:

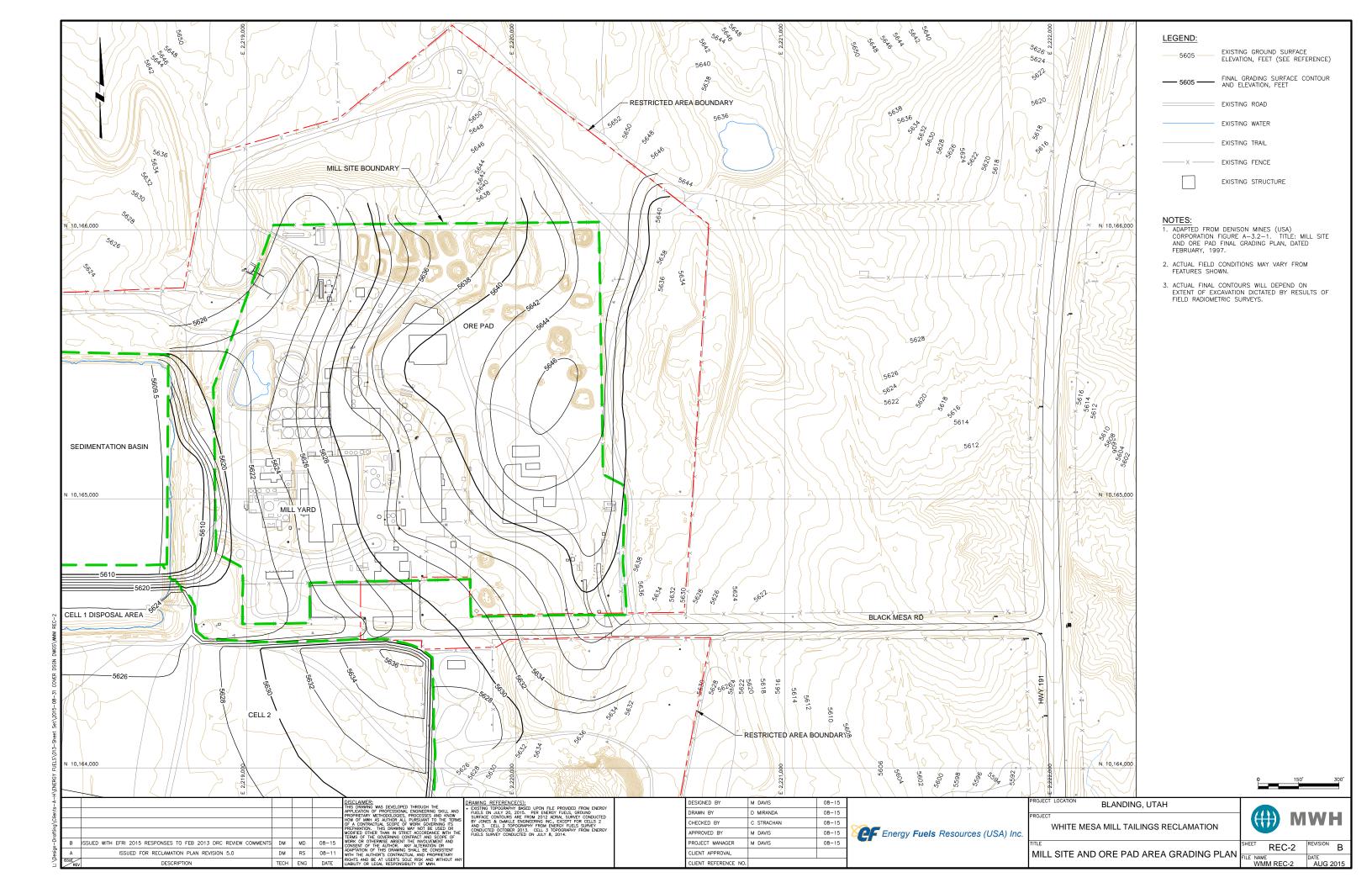
REVISED RECLAMATION PLAN DRAWINGS TO ATTACHMENT A OF RECLAMATION PLAN, REVISION 5.0

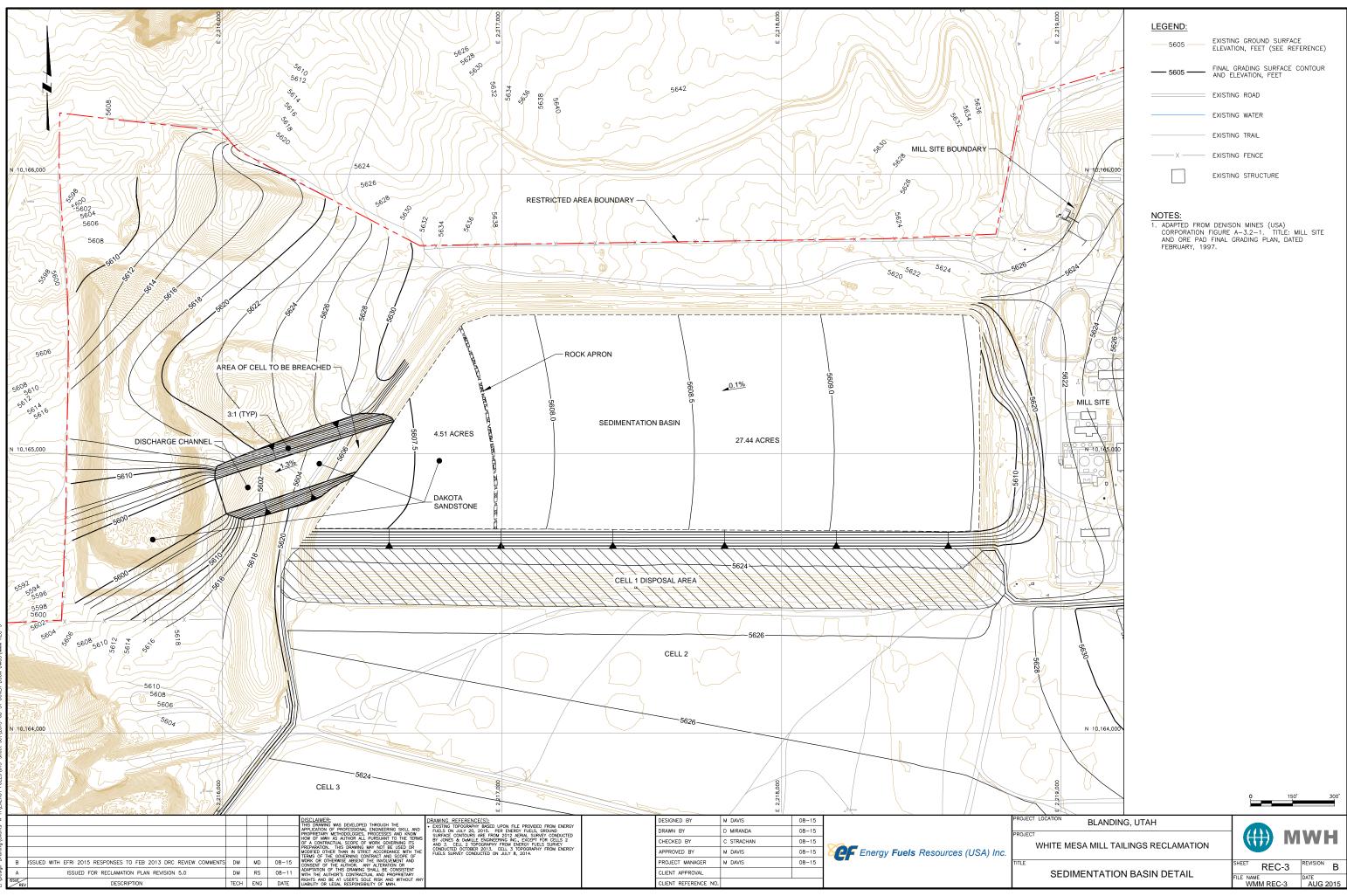
	En la contraction de la contra	Prohistor Cre Spring No 2		Server Carl Annual Carl Carl Carl Carl Carl Carl Carl Ca	
		INDEX OF DRAWINGS			
		SHEET	TITLE	REV	
		REC-0	TITLE SHEET AND PROJECT LOCATION MAP	В	
		REC-1	PLAN VIEW OF RECLAMATION FEATURES	В	
		REC-2	MILL SITE AND ORE PAD AREA GRADING PLAN	В	
		REC-3	SEDIMENTATION BASIN DETAIL	В	
		TRC-1	INTERIM FILL GRADING PLAN	В	_
		TRC-2	COMPACTED COVER GRADING PLAN	В	
		TRC-3	FINAL COVER SURFACE LAYOUT	В	
		TRC-4	RECLAMATION COVER EROSION PROTECTION	В	
		TRC-5	COVER OVER CELL 4A & 4B CROSS SECTIONS	В	
		TRC-6	COVER OVER CELL 3 CROSS SECTIONS	В	_
		TRC-7	COVER OVER CELL 2 CROSS SECTIONS	В	_
		TRC-8	COVER OVER CELL 2 CROSS SECTION	В	_
COVER		TRC-9	RECLAMATION COVER DETAILS (SHEET 1 OF 2)	В	_
s\ww		TRC-10	RECLAMATION COVER DETAILS (SHEET 2 OF 2)	В	
WHITE MESA MILL TAILINGS RE					CLAMATIO
15-08-31			prepared for		
\013-Sheet Set\2015-	ENERGY	FUE	ELS RESOURCE	S ((USA) INC.
SAN JUAN COUNTY, UTAH					
Б. —	B SSUED WITH EFRI 2015 RESPONSES TO FEB 2013 DRC REVIEW COMMENTS DM A ISSUED FOR RECLAMATION PLAN REVISION 5.0 DM RS DATE DATE DATE DATE DATE UDATE UDATE DATE UDATE UDATE DATE UDATE UDATE UDATE UDATE UDATE		DESIGNED BY M DAVIS 08-11 DRAWN BY D MIRANDA 08-12 CHECKED BY C STRACHAN 08-12 APPROVED BY C STRACHAN 08-12 PROJECT MANAGER M DAVIS 08-12 CLIENT APPROVAL CLIENT REFERENCE NO. 08-12		PRC PRC Energy Fuels Resources (USA) Inc.
			· · · · · · · · · · · · · · · ·	<u> </u>	

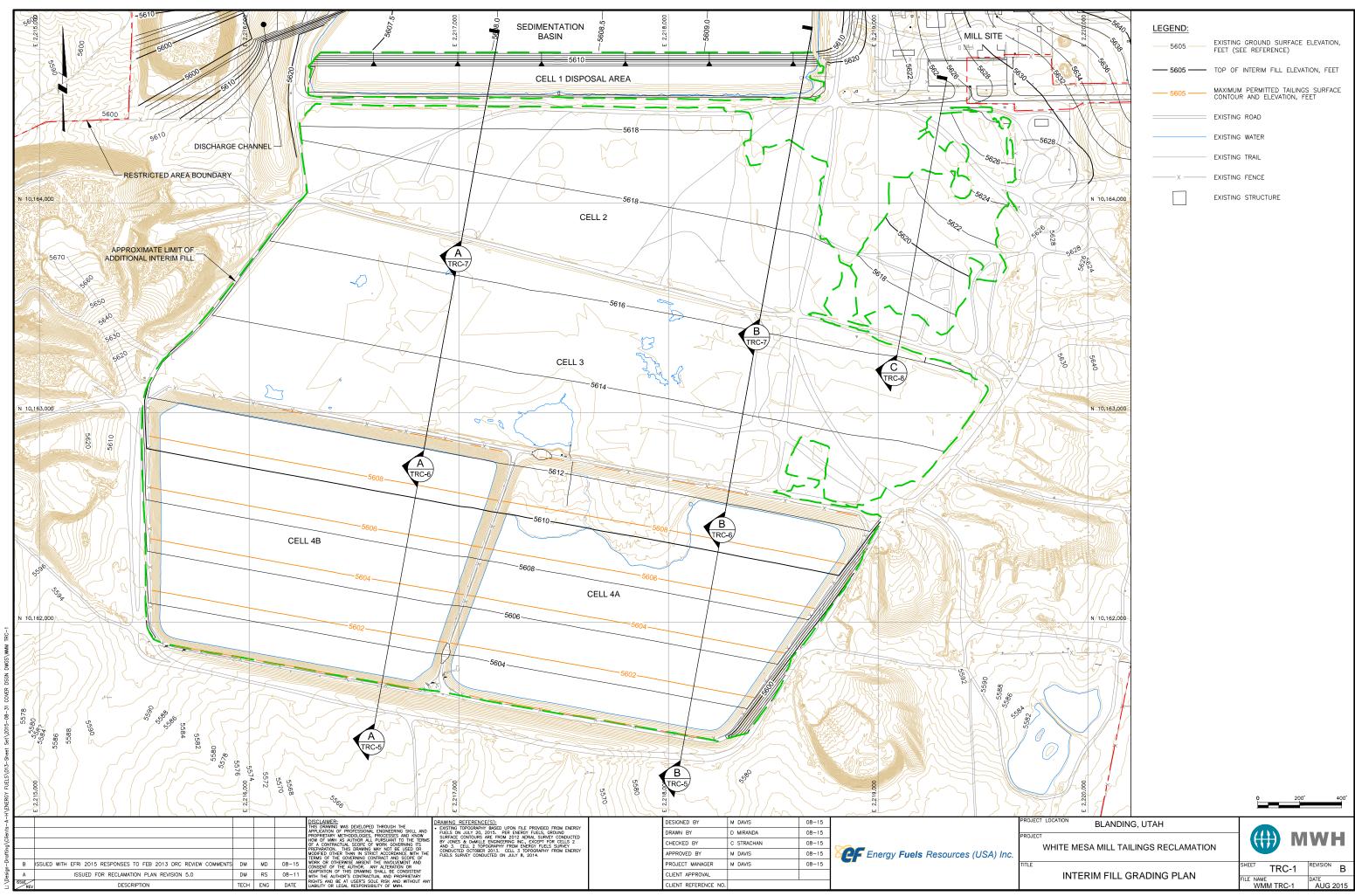

Dutch John

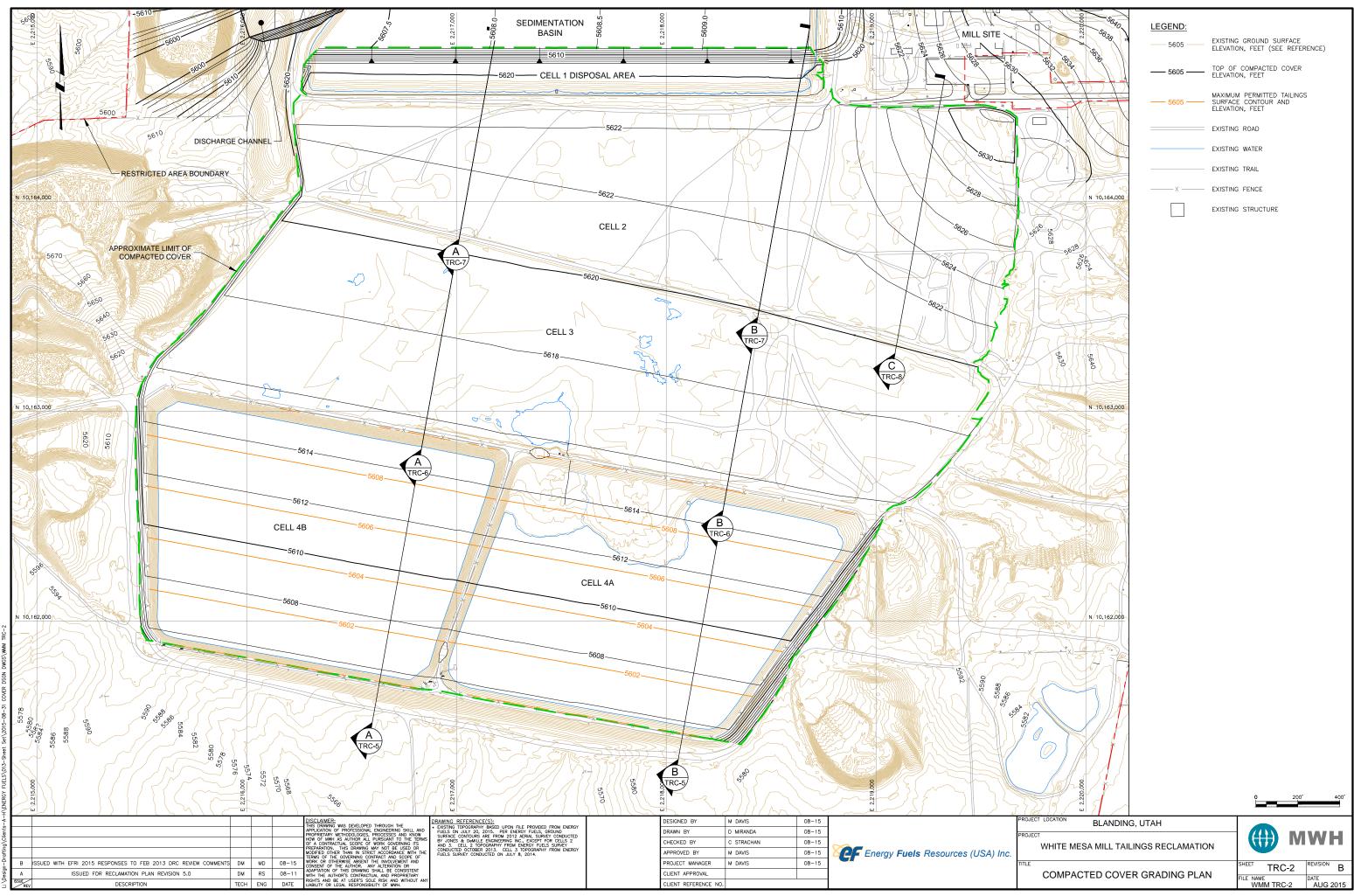

Kings Peak

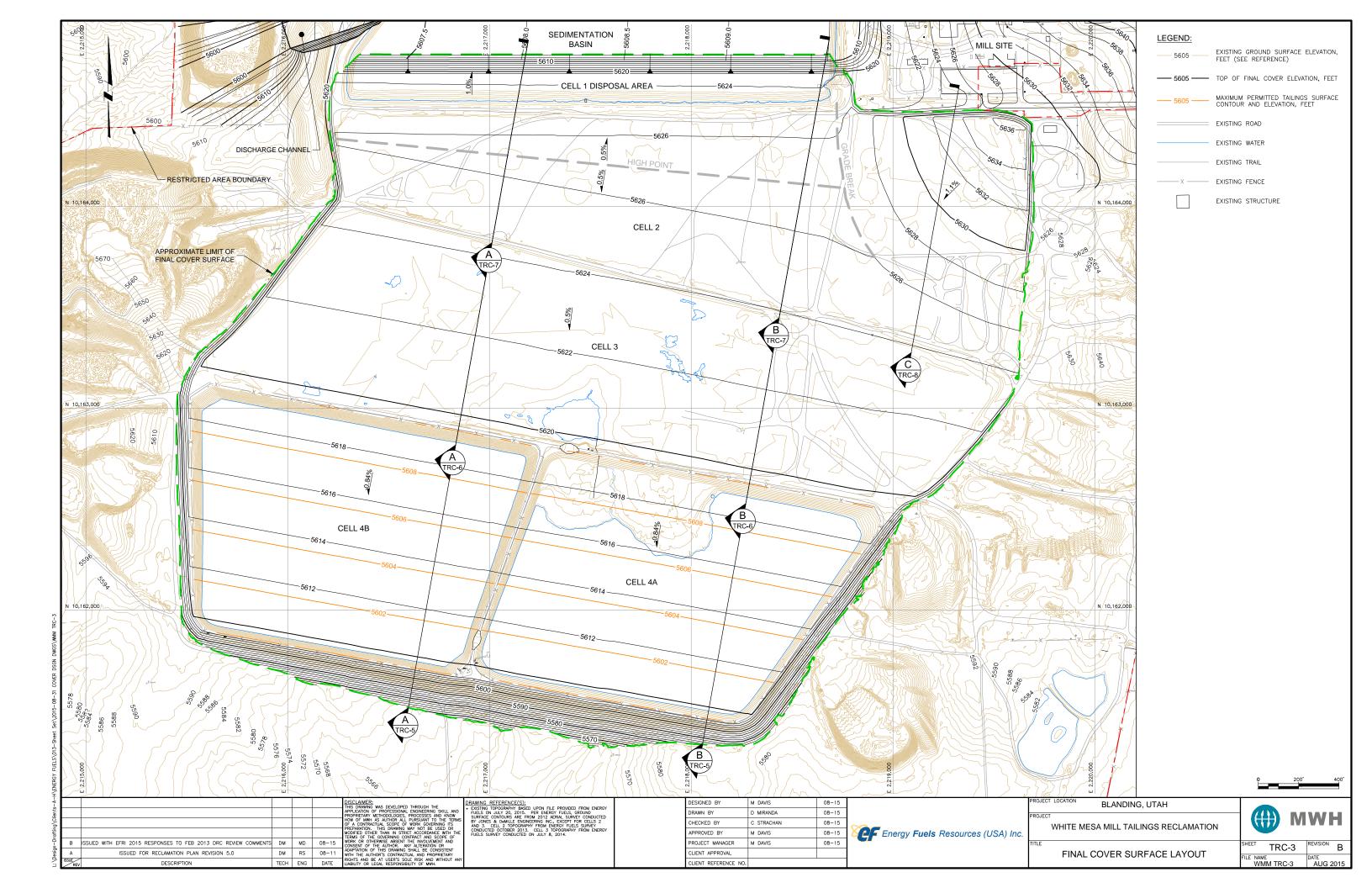

SITE MAP NOT TO SCALE

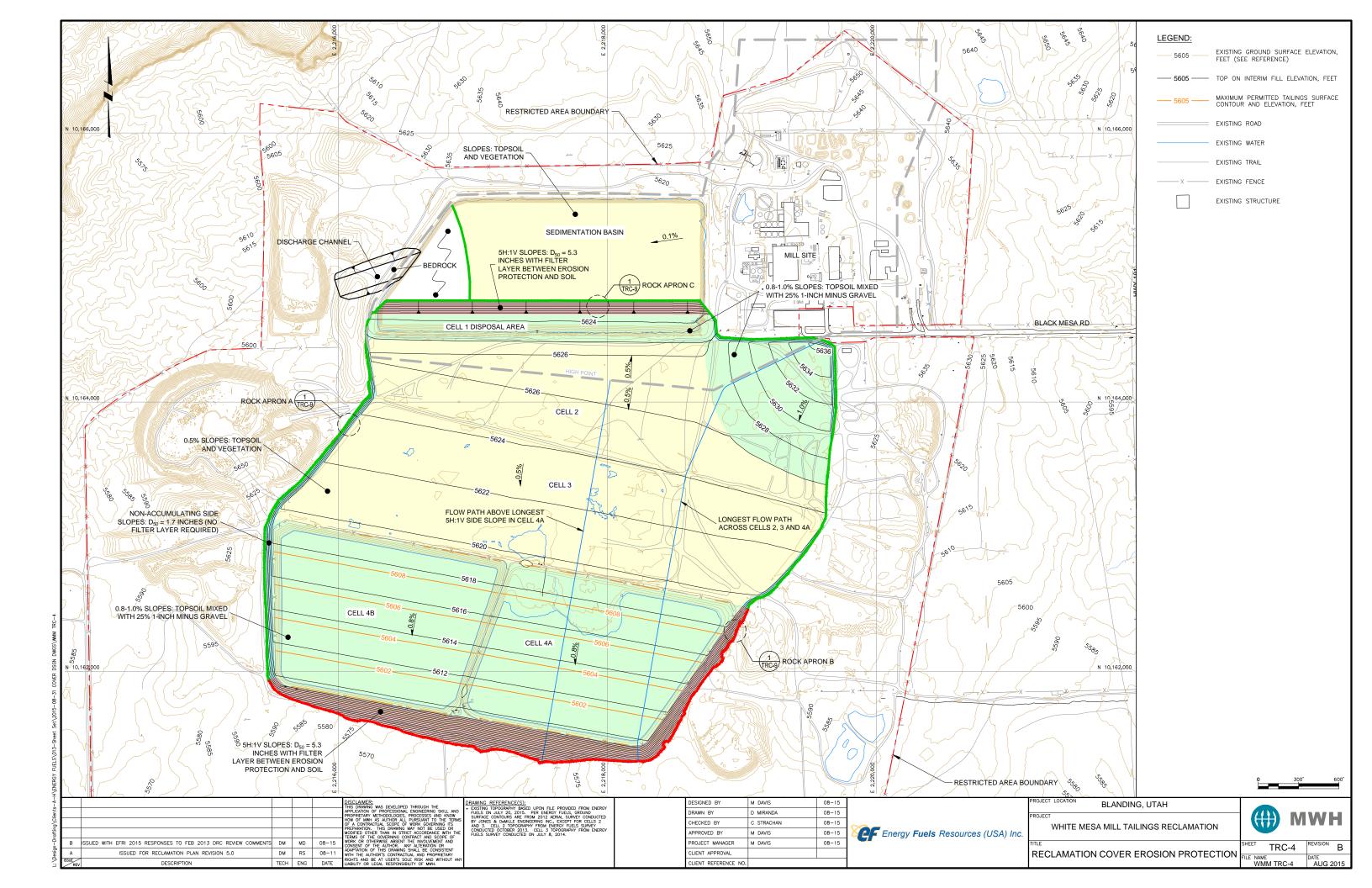

ΓΙΟΝ

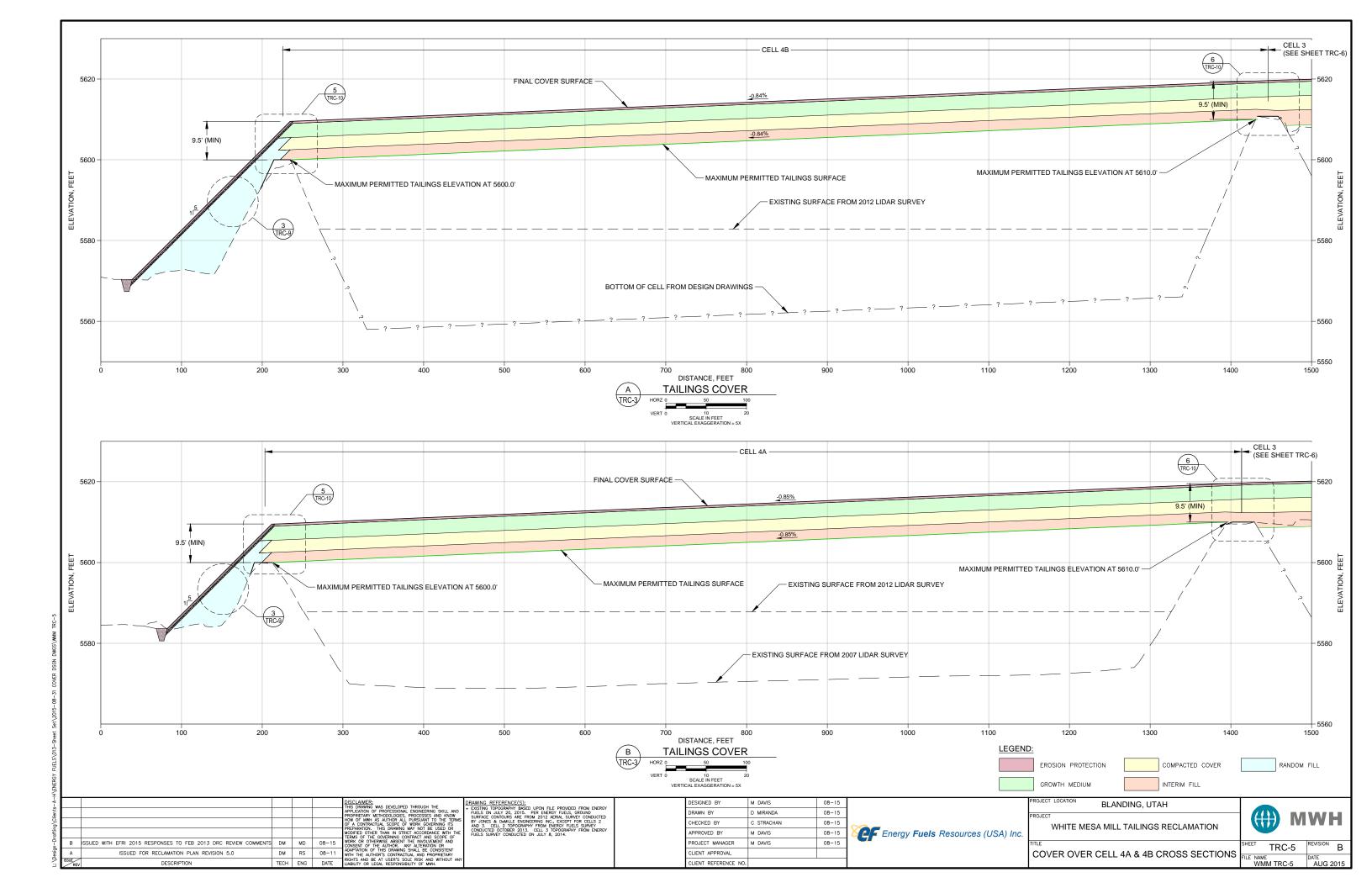


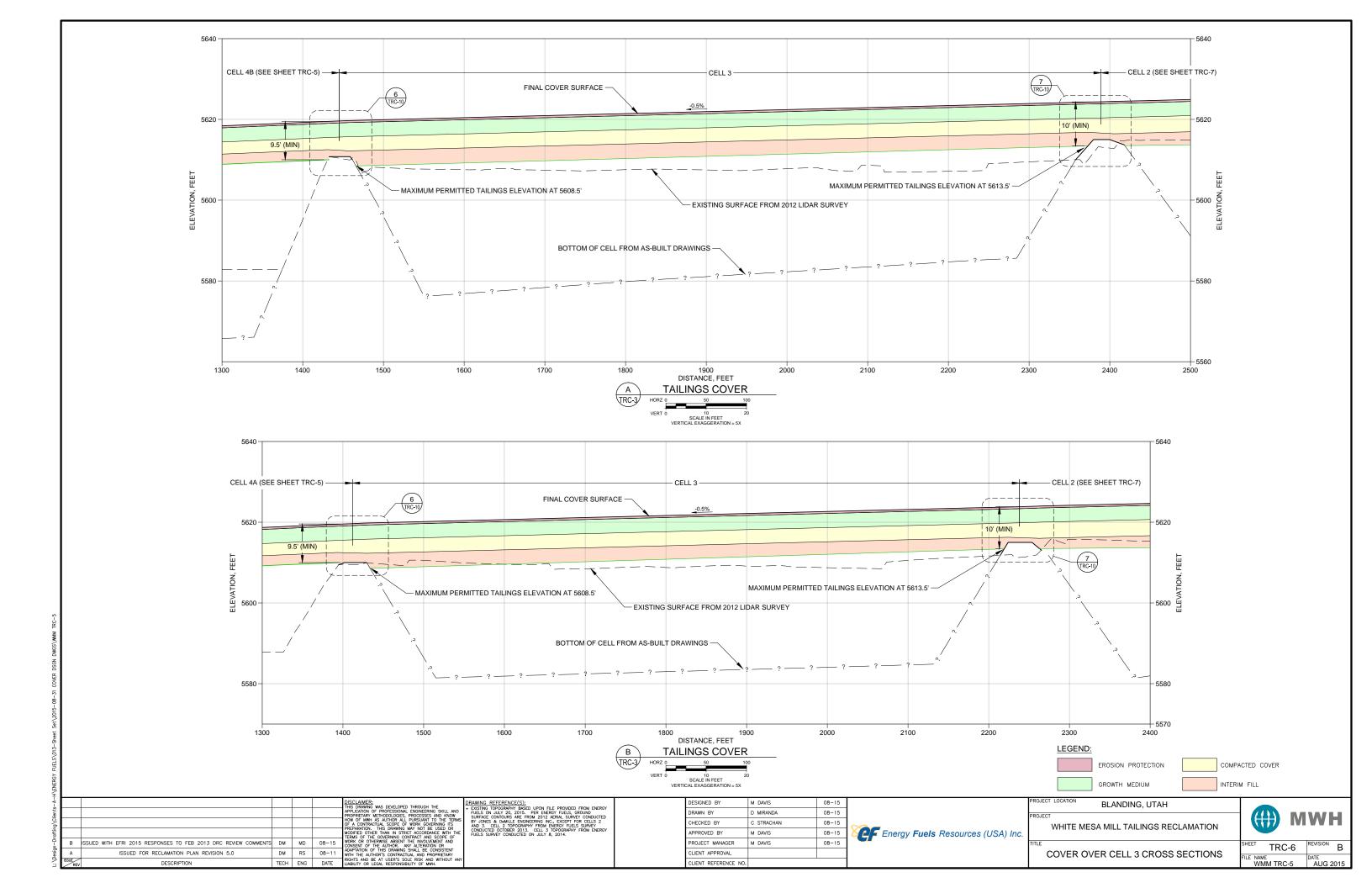


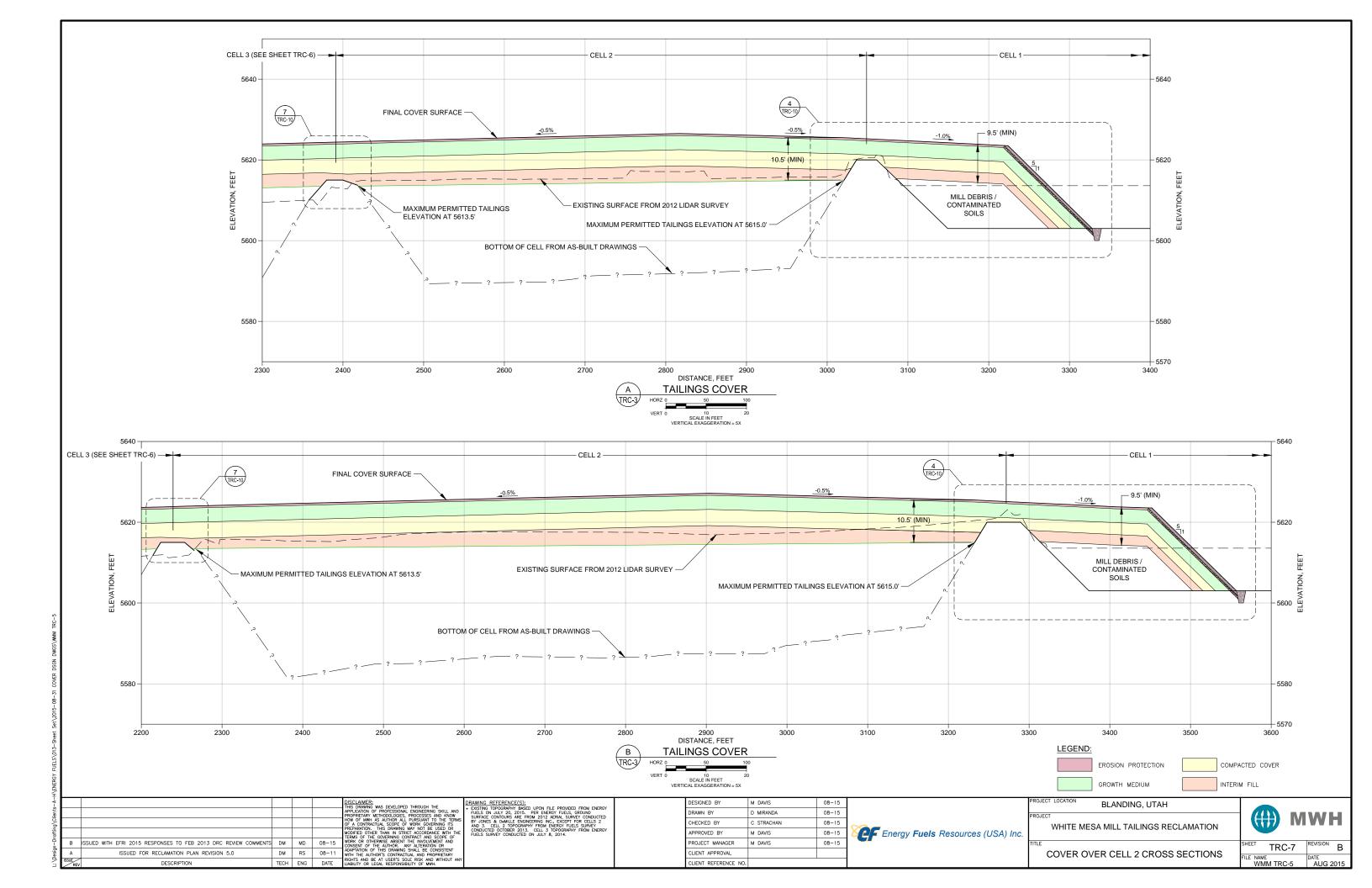

LEGEND:	
5605	EXISTING GROUND SURFACE ELEVATION, FEET (SEE REFERENCE)
5605	FINAL GRADING SURFACE CONTOUR AND ELEVATION, FEET
	EXISTING ROAD
	EXISTING WATER
	EXISTING TRAIL
X	EXISTING FENCE
	EXISTING STRUCTURE

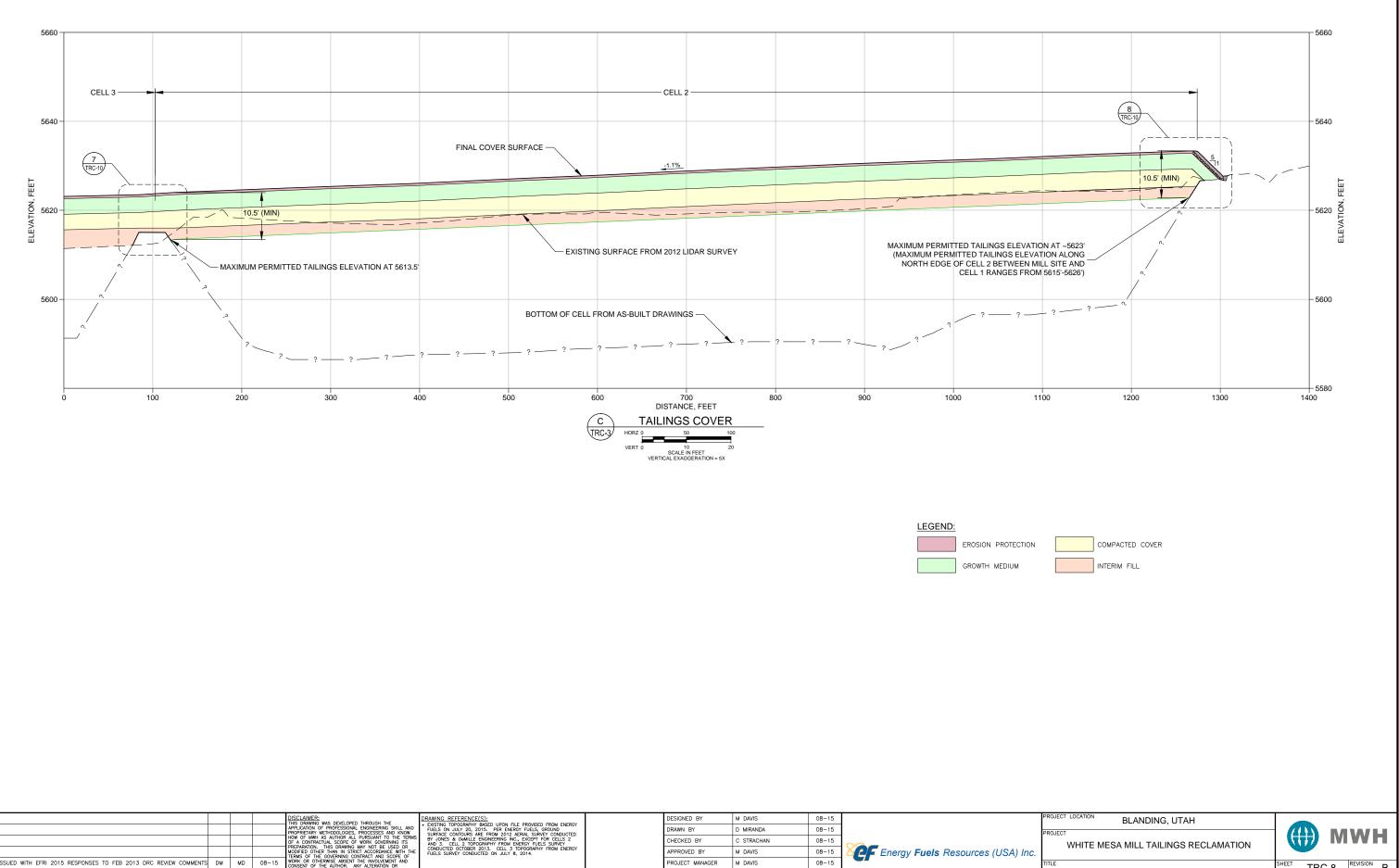




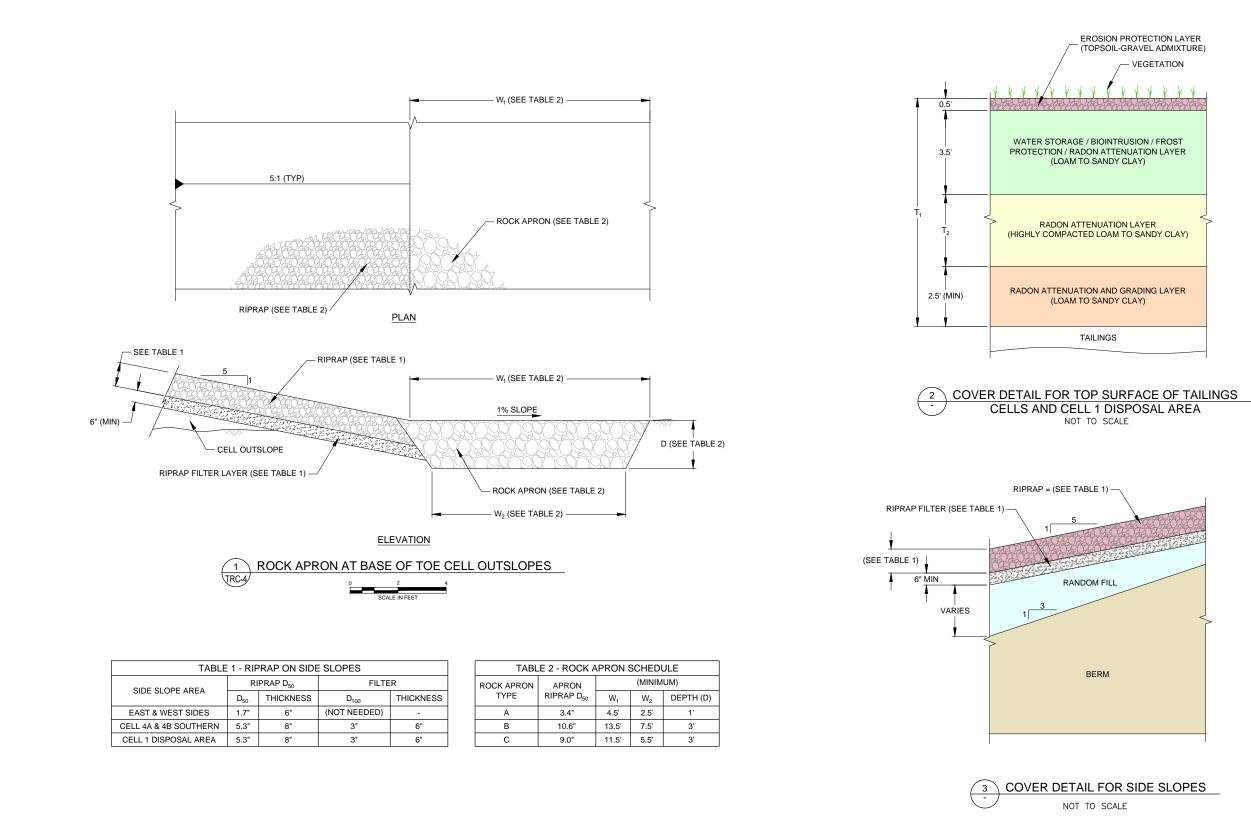








						DRAWING REFERENCE(S):	DESIGNED BY	M DAVIS	08-15	
					APPLICATION OF PROFESSIONAL ENGINEERING SKILL AND PROPRIETARY METHODOLOGIES, PROCESSES AND KNOW	 EXISTING TOPOGRAPHY BASED UPON FILE PROVIDED FROM ENERGY FUELS ON JULY 20, 2015. PER ENERGY FUELS, GROUND SURFACE CONTOURS ARE FROM 2012 AERIAL SURVEY CONDUCTED 	DRAWN BY	D MIRANDA	08-15	
					HOW OF MWH AS AUTHOR ALL PURSUANT TO THE TERMS OF A CONTRACTUAL SCOPE OF WORK GOVERNING ITS	BY JONES & DeMILLE ENGINEERING INC., EXCEPT FOR CELLS 2 AND 3. CELL 2 TOPOGRAPHY FROM ENERGY FUELS SURVEY	CHECKED BY	C STRACHAN	08-15	~_
					EPARATION. THIS DRAWING MAY NOT BE USED OR CONDUCTED OCTOBER 2013. CELL 3 TOPOGRAPHY FROM ENERGY SIDE OFFICE OFFICE OCTOBER 2013. CELL 3 TOPOGRAPHY FROM ENERGY FUELS SURVEY CONDUCTED ON JULY 8, 2014.	CONDUCTED OCTOBER 2013. CELL 3 TOPOGRAPHY FROM ENERGY FUELS SURVEY CONDUCTED ON JULY 8, 2014.	APPROVED BY	M DAVIS	08-15	Energy Fuels Resources (USA) In
В	ISSUED WITH EFRI 2015 RESPONSES TO FEB 2013 DRC REVIEW COMMENTS	DM	MD	00-13	WORK OR OTHERWISE ABSENT THE INVOLVEMENT AND CONSENT OF THE AUTHOR. ANY ALTERATION OR		PROJECT MANAGER	M DAVIS	08-15	
Α	ISSUED FOR RECLAMATION PLAN REVISION 5.0	DM	RS	08-11	ADAPTATION OF THIS DRAWING SHALL BE CONSISTENT WITH THE AUTHOR'S CONTRACTUAL AND PROPRIETARY		CLIENT APPROVAL			
ISSUE REV	DESCRIPTION	TECH	ENG	DATE	RIGHTS AND BE AT USER'S SOLE RISK AND WITHOUT ANY UABILITY OR LEGAL RESPONSIBILITY OF MWH.		CLIENT REFERENCE NO.			

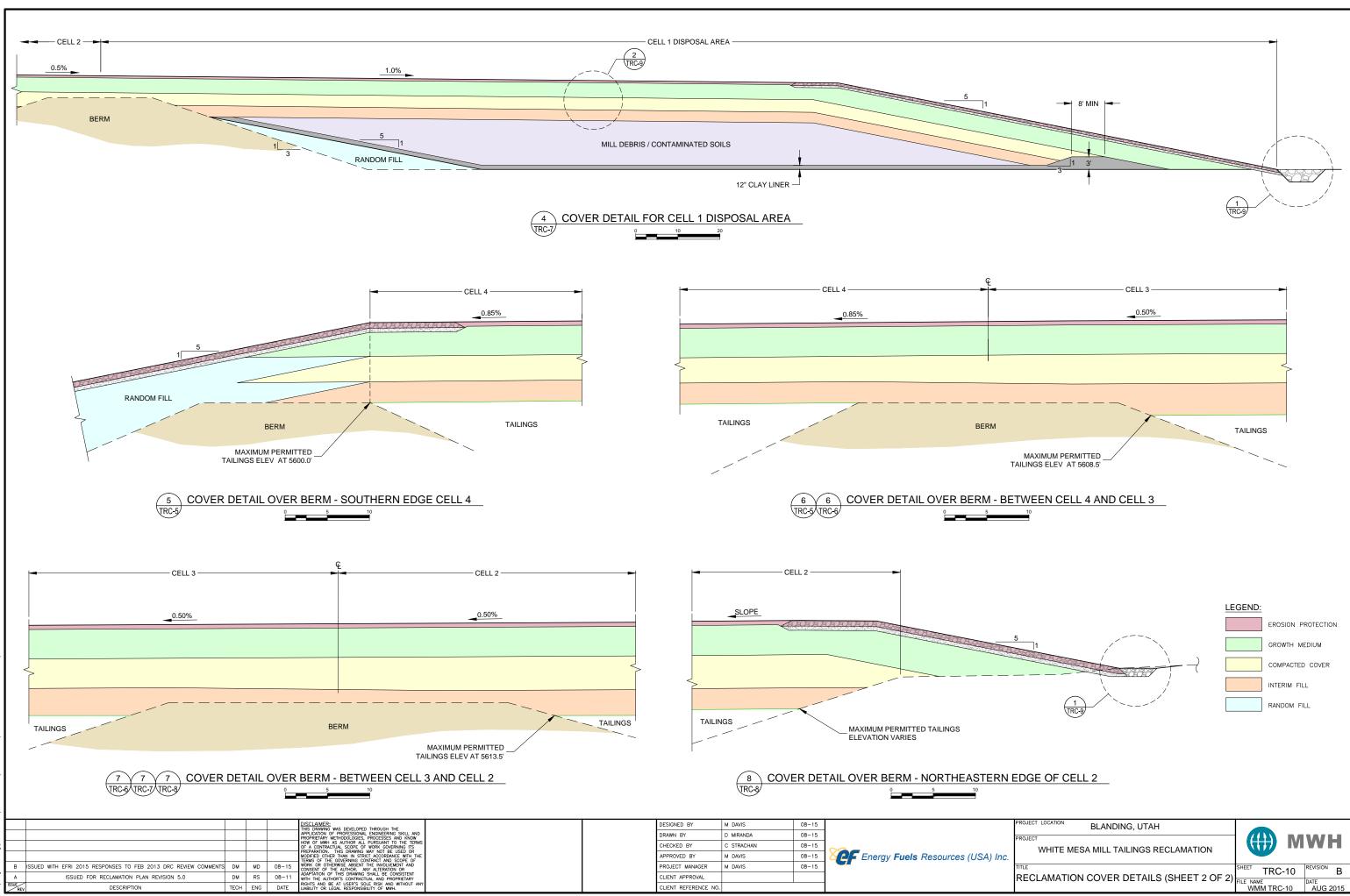

COVER OVER CELL 2 CROSS SECTION

FILE NAME WMM TRC-5

TRC-8

DATE AUG 2015

В


					DISCLAIMER: THIS DRAWING WAS DEVELOPED THROUGH THE	DESIGNED BY	BY	M DAVIS	08-15	
					APPLICATION OF PROFESSIONAL ENGINEERING SKILL AND PROPRIETARY METHODOLOGIES, PROCESSES AND KNOW	DRAWN BY		D MIRANDA	08-15	
					HOW OF MWH AS AUTHOR ALL PURSUANT TO THE TERMS OF A CONTRACTUAL SCOPE OF WORK GOVERNING ITS	CHECKED BY	Y	C STRACHAN	08-15	\sim -
					PREPARATION. THIS DRAWING MAY NOT BE USED OR MODIFIED OTHER THAN IN STRICT ACCORDANCE WITH THE TERMS OF THE GOVERNING CONTRACT AND SCOPE OF	APPROVED E	BY	M DAVIS	08-15	Energy Fuels Resources (USA)
В	ISSUED WITH EFRI 2015 RESPONSES TO FEB 2013 DRC REVIEW COMMENTS	DM	MD	06-15	WORK OR OTHERWISE ABSENT THE INVOLVEMENT AND CONSENT OF THE AUTHOR. ANY ALTERATION OR	PROJECT MA	ANAGER	M DAVIS	08-15	
Α	ISSUED FOR RECLAMATION PLAN REVISION 5.0	DM	RS	08-11	ADAPTATION OF THIS DRAWING SHALL BE CONSISTENT WITH THE AUTHOR'S CONTRACTUAL AND PROPRIETARY	CLIENT APPR	ROVAL			
ISSUE	DESCRIPTION	TECH	ENG	DATE	RIGHTS AND BE AT USER'S SOLE RISK AND WITHOUT ANY LIABILITY OR LEGAL RESPONSIBILITY OF MWH.	CLIENT REFE	ERENCE NO.			

COVER THICKNESS TABLE						
CELL	COVER (T ₁)	RADON ATTENUATION LAYER (T ₂)				
1	9.5'	3.0'				
2	10.5'	4.0'				
3	10.0'	3.5'				
4A & 4B	9.5'	3.0'				

LEGEND:

EROSION PROTECTION GROWTH MEDIUM COMPACTED COVER INTERIM FILL RANDOM FILL

/ -	/Н
White Mesa Mill Tailings Reclamation	/н
RECLAMATION COVER DETAILS (SHEET 1 OF 2)	ION B

gn-Drafting/Clients-A-H/ENERGY FUELS/013-Sheet Set/2015-08-31 COVER DSGN |

ATTACHMENT C

SUPPORTING DOCUMENTATION FOR INTERROGATORY 03/1, 04/1, AND 13/1:

REVISED TECHNICAL SPECIFICATIONS AND CONSTRUCTION QUALITY ASSURANCE/ QUALITY CONTROL PLAN TO ATTACHMENT A AND B OF RECLAMATION PLAN, REVISION 5.0

ATTACHMENT C.1

REVISED TECHNICAL SPECIFICATIONS AND CONSTRUCTION QUALITY ASSURANCE/ QUALITY CONTROL PLAN TO ATTACHMENT A OF RECLAMATION PLAN, REVISION 5.0

PLANS AND TECHNICAL SPECIFICATIONS FOR

RECLAMATION OF WHITE MESA MILL FACILITY

BLANDING, UTAH

TABLE OF CONTENTS

1.0	SPECIAL PROVISIONS	. 1
1.1	Scope of Document	. 1
1.2	Definitions and Roles	
1.3	Scope of Work	. 3
1.4	Applicable Regulations and Standards	
1.5	Permits	
1.6	Inspection and Quality Assurance	
1.7	Construction Documentation	
1.8	Design Modifications	
1.9	Environmental Requirements	
1.10	Water Management	
1.11	Historical and Archeological Considerations	
1.12	Health and Safety Requirements	
1.13	Personnel Monitoring	
1.14	Environmental Monitoring	. 9
2.0 \$	SITE CONDITIONS	10
2.1	Site Location	10
2.2	Climate and Geology	10
2.3	Past Operations	10
2.4	Facilities Demolition	11
2.5	Disposed Materials	
2.6	Construction Materials	
2.6		
2.6		
2.6	1	
2.6		
2.6	l	
2.6		
2.6		
2.7	Staging and Stockpile Areas	
2.8	Access and Security	
2.9	Utilities	
2.10	Sanitation Facilities	13
3.0	WORK AREA PREPARATION	14
3.1	General	14
3.2	Water Management	14
3.3	Cell Construction	14

3.5 Cle 3.5.1	l Borrow Areas earing and Stripping Clearing	15 15
3.5.2	Stripping	
4.0 CEL	L 1 DISPOSAL AREA BASE CONSTRUCTION	. 17
4.1 Ge	neral	17
4.2 Ma	terials Description	17
4.2.1	Subgrade Fill	
4.2.2	Clay Liner Material	17
	ork Description	
4.3.1	Foundation Preparation	
4.3.2	Disposal Cell Foundation Area	
4.3.3	Subgrade Fill Placement	
4.3.4	Clay Liner Material Placement	
	formance Standards and Testing	
4.4.1	Subgrade Testing	
4.4.2	Clay Liner Testing	
4.4.3	Grading Tolerances	21
5.0 DISC	CHARGE CHANNEL GRADING	22
5.1 Ge	neral	22
	ork Description	
5.2.1	Discharge Channel Excavation	
5.2.2	Grading Tolerances	
6.0 MIL	L DECOMMISSIONING	
	Il Buildings and Equipment	
	Il Site and Windblown Contamination	
	oping and Characterization Surveys	
6.3.1	Scoping and Characterization Survey for the Subsurface	
6.3.2 6.3.3	Gamma Radiation to Unity Rule Correlation	33
0.010		
6.3.4 6.4 Fin	Remediational Status Surveys	
6.4.1	Release Criterion	
6.4.1 6.4.2	Statistical Test	
	trument Quality Assurance/Quality Control (QA/QC)	
6.5.1	Calibration	
6.5.2	Source and Background Checks	
	ta Quality Objectives	
6.6.1	State the Problem	
6.6.2	Identify the Decisions	
6.6.3	Identify Inputs to the Decision	
		- /

6.6.4	Define the Study Boundaries	45
6.6.5	Develop the Decision Rules/Analytical Approach	
6.6.6	Define Acceptable Decision Errors	
6.6.7	Relative Shift and Number of Samples	
6.6.8	Optimize the Design	
	Sampling	
6.7.1	Laboratory Approval	
6.7.2	Data Validation	
6.8 Em	ployee Health and Safety	
-	rironment Monitoring	
	lity Assurance	
7.0 MAT	ERIAL DISPOSAL	53
7.1 Ger	eral	53
	erials Description	
7.2.1	Raffinate Crystals	
7.2.2	Synthetic Liner	
7.2.3	Contaminated Soils	
7.2.4	Mill Debris	
7.3 Wo	rk Description	54
7.3.1	Raffinate Crystals	
7.3.2	Synthetic Liner	
7.3.3	Contaminated Soils	54
7.3.4	Mill Debris	55
7.3.5	Material Sizing and Preparation	55
7.3.6	Incompressible Debris	
7.3.7	Compressible Debris	57
7.3.8	Organic Debris	57
7.3.9	Soils and Similar Materials	57
7.4 Perf	formance Standards and Testing	57
7.4.1	Material Compaction – Debris Lifts	
7.4.2	Material Compaction - Disposed Materials	58
7.4.3	Testing Frequency	59
7.4.4	Final Slope and Grades	
8.0 COV	ER CONSTRUCTION	60
8.1 Ger	ieral	60
8.2 Mat	erials Description	60
8.2.1	Cover Random Fill	60
8.2.2	Organic Matter Amendment	60
8.2.3	Rock Mulch	
8.2.4	Erosion Protection and Perimeter Apron Rock	61
8.2.5	Erosion Protection Filter	62
8.2.6	Topsoil	62

8.3	Wo	rk Description	62
8	.3.1	Monitoring Interim Cover Settlement	63
8	.3.2	Monitoring Final Cover Settlement	64
8	.3.3	Monitoring Settlement Points	64
8	.3.4	Platform Layer Fill	64
8	.3.5	Highly Compacted Layer	64
8	.3.6	Water Storage Layer Fill Placement	65
8	.3.7	Organic Matter Amendment	65
8	.3.8	Rock Mulch Placement	65
8	.3.9	Topsoil Placement	66
8	.3.10	Rock and Filter Material Placement	66
8.4	Per	formance Standard and Testing	67
8	.4.1	Platform Fill Testing	67
8	.4.2	Highly Compacted Layer Testing	67
8	.4.3	Water Storage Layer Fill Material Testing	68
8	.4.4	Topsoil Testing	69
8	.4.5	Rock Mulch Testing	70
8	.4.6	Erosion Protection and Perimeter Apron Rock Testing	71
8	.4.7	Erosion Protection Filter Testing	72
8	.4.8	Rock Durability Testing	72
8.5	Sur	face Slopes and Grades	72
8.6	Gra	ding Tolerances	73
9.0	REV	EGETATION	74
9.1	Gei	neral	74
9.2		terials Description	
	.2.1	Soil Amendments	
-	.2.2	Seed Mix	
	.2.3	Erosion Control Materials	
9.3		rk Description	
9.4		l Amendment Application	
9.5		owth Zone Preparation	
9.6		ed Application	
9.7		sion Control Material Application	
9.8		formance Standard and Testing	
	.8.1	Seeding Rates	
	.8.2	Erosion Control	
	.8.3	Weed Control	
	.8.4	Vegetation Establishment Performance	
10.0		ERENCES	

1.0 SPECIAL PROVISIONS

1.1 Scope of Document

The following technical specifications have been prepared for reclamation and decommissioning of the Energy Fuels Resources (USA) Inc. ("EFRI"), White Mesa Uranium Mill Facility ("Mill") in Blanding, Utah. These technical specifications have been prepared for review and approval by the Utah Department of Environment Quality ("DEQ"), Division of Waste Management and Radiation Control ("DWMRC") and are submitted as an attachment to the Reclamation Plan. The design drawings for reclamation are included in this attachment and are designated as the "Drawings". The Construction Quality Assurance/Quality Control Plan ("CQA/QC Plan") referenced in this document is provided as Attachment B to the Reclamation Plan.

These technical specifications have been written assuming (a) a contractor will conduct tailings impoundment reclamation under contract with EFRI and under EFRI's direction, and (b) the work quality will be checked with independent (third-party) construction quality assurance.

1.2 <u>Definitions and Roles</u>

Construction Quality Assurance (CQA) – A planned and systematic pattern of means and actions designed to assure adequate confidence that the materials or services meet contractual and regulatory requirements and will perform satisfactorily in service. CQA refers to means and actions employed by the involved parties to assure conformity of the project work with the CQA/QC Plan, the Drawings, and the Technical Specifications.

Construction Quality Control (CQC) – Actions which provide a means to measure and regulate the characteristics of an item or service in relation to contractual and regulatory requirements. CQC refers to those actions taken by the Contractor, technicians, or other involved parties to verify that the materials and the workmanship meet the requirements of the CQA/QC Plan, the Drawings, and the Technical Specifications.

Technical Specifications – The document that prescribes the requirements and standards for the specific elements of the reclamation. The Technical Specifications will be prepared in final form

prior to commencement of reclamation activities.

Drawings – The detailed project drawings to be used in conjunction with the Technical Specifications. The Drawings will be prepared in final form as construction drawings prior to reclamation.

Construction Project – The total authorized/approved reclamation project that requires several construction segments to complete.

Construction Segment – A portion of the total construction project involving a specific area or type of work. Several construction segments will likely take place simultaneously during reclamation.

Construction Task – A basic construction feature of a construction segment involving a specific construction activity.

ASTM Standards – The latest versions of the American Society for Testing and Materials specifications, procedures and methods.

For these Technical Specifications, EFRI is referred to as the **Owner**, with overall responsibility for closure, as well as site reclamation.

The on-site **Construction Manager** is responsible for the conduct, direction and supervision of all reclamation activities as detailed in the Drawings and Technical Specifications.

The **Design Engineer** is responsible for the design of the various elements of the reclamation project and for preparing the Drawings and Technical Specifications.

The **Contractor** is defined as the group (or groups) selected by EFRI and responsible for conducting the work tasks outlined in Section 1.3 under the direction of, and under contract with EFRI.

The **Surveyor** is a party, independent from the Owner or Contractor, who is responsible for surveying, documenting, and verifying the location of all significant components of the work.

The **CQA/QC Consultant** is a party, independent from the Owner or Contractor, who is responsible for observing, testing, and documenting the various activities comprising the Reclamation Project in accordance with the CQA/QC Plan, the Technical Specifications and the Drawings.

The **CQA Officer** will be responsible for overall implementation and management of the CQA/QC Plan for the reclamation project.

The **CQA Site Manager** will be appointed by the CQA Consultant to provide day-to-day, onsite oversight of the CQA/CQC activities. The CQA Manager could be an EFRI employee or a third-party consultant.

The CQA Consultant will utilize various **QC** Technicians to assist the on-site CQA Site Manager to perform specific tasks through the project to verify the adequacy of construction materials and procedures.

The **Document Control Officer** will be appointed by the Construction Manager to assist with managing the various documents that will be produced throughout the project.

The **CQA Laboratory** is a party, independent from the Owner and Contractor, responsible for conducting tests of soils and other project materials in accordance with ASTM and other applicable standards in either an on-site or off-site laboratory.

The **DWMRC Project Manager** will represent the DWMRC's interests in the reclamation project.

The CQA/QC Plan (Attachment B of the 2011 Reclamation Plan) contains more detailed descriptions of the project roles.

1.3 <u>Scope of Work</u>

The work outlined in these Technical Specifications consists of execution of the following tasks associated with reclamation of the disposal cells and associated site reclamation.

- a. Preparation of borrow areas for material excavation by removal of vegetation; and stripping, salvaging, and stockpiling of topsoil;
- b. Preparation of material staging and stockpile areas by removal of vegetation; stripping, salvaging, and stockpiling of topsoil; and providing for storm water diversion and internal water collection;
- c. Removal of raffinates and PVC liner materials from Cell 1 and placement within the last active tailings cell;
- d. Construction of a clay-lined disposal cell along the Cell 1 containment dike for disposal of mill demolition debris and contaminated soils;
- e. Construction of a sedimentation basin in the location of Cell 1;
- f. Excavation of process area structure foundations, paved areas, concrete pads and roadways, and placement of these materials in the disposal cell;
- g. Excavation of contaminated subsoils from the process area, and placement in the last active tailings cell or the Cell 1 Disposal Area.
- h. Construction of the cover system over the tailings cells, with placement of rock mulch and/or topsoil over the disposal cell cover surface.
- i. Regrading and placement of topsoil over excavated areas, stockpile and staging areas, and other disturbed areas of the site.
- j. Establishment of vegetation on the disposal cell surface and surrounding reclaimed areas on site.

Work not included in these Technical Specifications consists of salvage of facility equipment, demolition of facility structures, groundwater monitoring and remediation, and post-reclamation performance monitoring.

1.4 Applicable Regulations and Standards

The work shall conform to applicable Federal, State, and County environmental and safety regulations. The work shall conform to applicable conditions in the Owner's radioactive materials license. Geotechnical testing procedures shall conform to applicable ASTM standards, as documented in the most current edition of standards in force at the start of work. Personnel

safety procedures and monitoring shall be conducted in accordance with the Owner's Radiation Protection Manual for Reclamation and as directed by the Radiation Safety Officer (RSO).

1.5 <u>Permits</u>

The work will be conducted under the Owner's existing radioactive materials license and State of Utah Air Quality Approval Order (DAQE-AN0112050018-11, issue date March 3, 2011). The Contractor will be responsible for applying for, and obtaining (permit fees included), all other necessary permits required to complete the work outlined in these Technical Specifications.

1.6 Inspection and Quality Assurance

In general, the QA/QC Plan details the Owner's organizational structure and responsibilities, qualifications of personnel, operating procedures and instructions, record keeping and document control, and quality control in the sampling procedure and outside laboratory. The Plan will adopt the existing quality assurance/quality control procedures utilized in compliance with the existing license.

The RSO (and approved assistants as needed) will conduct on-site training, and full-time personnel monitoring, and inspection of construction activities while the site reclamation work is in progress. The RSO (and assistants) will be independent representatives of and appointed by the Owner. The responsibilities and duties of the RSO shall be as outlined in the Owner's Protection Manual for Reclamation.

The CQA Manager (and approved assistants as needed) will provide full-time, on-site inspection of all construction activities and quality assurance testing outlined in these Technical Specifications and the CQA/QC Plan while the construction work is in progress. The CQA Manager and assistants will be independent representatives of and appointed by the Owner. The inspection and CQA testing conducted by the CQA Manager shall be under the supervision of the Reclamation Project Manager. Inspection and CQA testing shall include the tasks described in the CQA/QC Plan and listed below.

- a. Observation of construction practices and procedures for conformance with the Technical Specifications.
- b. Testing material characteristics to ensure that earthen materials used in the construction conform to the requirements in the Technical Specifications.
- c. Documentation of construction activities, test locations, samples, and test results.
- d. Notification of results from quality assurance testing to the Owner and the Contractor.
- e. Documentation of field design modifications or approved construction work that deviates from the Technical Specifications.

The CQA Manager shall record the documentation outlined above on a daily basis. The Reclamation Project Manager shall approve deviations from the Technical Specifications (if necessary), with notification to the Owner and DWMRC or other appropriate Utah state regulatory agency personnel. Quality control procedures have been developed for reclamation and presented in Attachment B of this Reclamation Plan. Procedures will be used for testing, sampling, and inspection functions.

1.7 <u>Construction Documentation</u>

During construction, the CQA Manager will record documentation of construction inspection work on a daily basis. Documentation will include the following items.

- a. Work performed by the Contractor.
- b. CQA testing and surveying work conducted.
- c. Discussions with the Owner and the Contractor.
- d. Key decisions, important communications, or design modifications.
- e. General comments including: weather conditions, work area surface conditions, and visitors to the site.

All earthwork test results will be documented on a daily basis, with a copy of the results given to the CQA Manager by the end of the following working day after the testing.

The CQA Manager or his representative will take photographs of key construction activities and critical items for documentation.

A final construction completion report, documenting the as-built conditions of the tailings impoundment reclamation components will be submitted to DWMRC at the end of construction. This report will include the following items.

- a. All design modifications or changes to the Technical Specifications that were made during construction.
- b. An as-built layout of the facility prior to, and at the completion of reclamation construction.
- c. An as-built layout of other reclaimed areas of the site.
- d. Documentation of soil cleanup verification work (soil radiation survey and soil sampling and analyses) in areas of contaminated soil excavation.
- e. Documentation of the revegetation work (soil amendments, seed mix, and vegetation establishment).

1.8 <u>Design Modifications</u>

Design modifications (due to unanticipated site conditions or field improvements to the design) will be made following the protocol outlined below.

- a. Communication of modification with the Reclamation Project Manager.
- b. Submittal to, and review by, DWMRC for approval.
- c. Documentation of modification(s) in the construction completion report.

1.9 Environmental Requirements

The Contractor shall store materials, confine equipment, and maintain construction operations according to applicable laws, ordinances, or permits for the project site. Fuel, lubricating oils, and chemicals shall be stored and dispensed in such a manner as to prevent or contain spills and prevent said liquids from reaching local streams or groundwater. If quantities of fuel, lubricating oils or chemicals exceed the threshold quantities specified in Utah regulations, the Contractor

shall prepare and follow a Spill Prevention Control and Countermeasures Plan (SPCCP), as prescribed in applicable Utah regulations. The Owner shall approve said plan. Used lubricating oils shall be disposed of or recycled at an appropriate facility. Disposal of all waste associated with the project work will be the responsibility of the Contractor.

1.10 Water Management

The Contractor shall construct and maintain all temporary diversion and protective works required to divert storm water from around work areas. The Contractor shall furnish, install, maintain, and operate all equipment required to keep excavations and other work areas free from water in order to construct the facilities as specified.

Water required by the Contractor for dust suppression or soil-moisture conditioning shall be obtained from the Owner.

1.11 <u>Historical and Archeological Considerations</u>

The Contractor shall immediately notify the Owner if materials of potential historical or archeological significance are discovered or uncovered. The Owner may stop work in a specific area until the materials can be evaluated for historical, cultural, or archeological significance. All materials determined to be of significance shall be protected as determined by appropriate regulatory agencies, including removal or adjustment of work areas.

1.12 Health and Safety Requirements

Work outlined in these Technical Specifications shall be conducted under the Owner's Radiation Protection Manual for Reclamation, as directed by the RSO.

The Contractor shall suspend construction or demolition operations or implement necessary precautions whenever (in the opinion of the Reclamation Project Manager or RSO), unsatisfactory conditions exist due to rain, snow, wind, cold temperatures, excessive water, or unacceptable traction or bearing capacity conditions. The CQA Manager, Reclamation Project

Manager, and RSO each have the authority to stop Contractor work if unsafe conditions or deviations from Technical Specifications are observed.

1.13 Personnel Monitoring

Programs currently in place for monitoring of exposures to employees will remain in effect throughout the time period during which tailings cell reclamation, mill decommissioning and clean up of windblown contamination are conducted. These programs will include personnel monitoring and the ongoing bioassay program. Access control will be maintained at the Restricted Area boundary to ensure employees and equipment are released from the site in accordance with the current License conditions. In general, no changes to the existing programs are expected and reclamation activities are not expected to increase exposure potential beyond the current levels. The Owner will assign an employee to act as RSO responsible for assuring site workers comply with the Owner's Radiation Protection Manual for Reclamation and the requirements set forth in the Owner's radioactive materials license.

1.14 Environmental Monitoring

Existing environmental monitoring programs will continue during the time period in which reclamation and decommissioning is conducted. This includes monitoring of surface and groundwater, airborne particulates, radon, soils and vegetation, according to the existing License conditions. In general, no changes to the existing programs are expected and reclamation activities are not expected to increase exposure potential beyond the current levels.

2.0 SITE CONDITIONS

2.1 <u>Site Location</u>

The White Mesa mill site is located about 6 miles south of Blanding, Utah in San Juan County, along County Road 191.

2.2 Climate and Geology

The climate of southeastern Utah is classified as dry to arid continental. Although varying somewhat with elevation and terrain, the climate in the vicinity of the mill can be considered as semi-arid with normal annual precipitation of about 13.3 inches. The mean annual relative humidity is about 44 percent and is normally highest in January and lowest in July. The average annual Class A pan evaporation rate is 68 inches (National Oceanic and Atmospheric Administration and U.S. Department of Commerce, 1977), with the largest evaporation rate typically occurring in July. (Denison, 2009)

The mill is located within the Blanding Basin of the Colorado Plateau physiographic province. The average elevation of the site is approximately 5,600 ft (1,707 m) above mean sea level (amsl). Typical of large portions of the Colorado Plateau province, the rocks underlying the site are relatively undeformed. The site is underlain by unconsolidated alluvium and indurated sedimentary rocks consisting primarily of sandstone and shale. The alluvial materials consist mostly of aeolian silts and fine-grained aeolian sands with a thickness varying from a few feet to as much as 25 to 30 ft (7.6 to 9.1 m) across the site. The alluvium is underlain by the Dakota Sandstone and Burro Canyon Formation, which are sandstones having total thicknesses ranging from approximately 100 to 140 ft (31 to 43 m). (Denison, 2009)

2.3 Past Operations

The mill is a uranium/vanadium mill that was developed in the late 1970's by Energy Fuels Nuclear, Inc. ("EFN") as an outlet for the many small mines located in the Colorado Plateau and for the possibility of milling Arizona strip ores. Construction on the tailings area began on August 1, 1978. The mill was operated by EFN from the initial start-up date of May 6, 1980 until

the cessation of operations in 1983 and then intermittently under different ownership through present-day. Denison (then named International Uranium (USA) Corporation), and its affiliates, purchased the assets of EFN in May 1997. Energy Fuels Resources (USA), Inc. purchased the facility in 2012 and is the current owner.

2.4 <u>Facilities Demolition</u>

Demolition of equipment, structures, and associated facilities at the mill site will be conducted according to applicable conditions of the radioactive materials license, the demolition plan for the facility, and the Owner's Radiation Protection Manual for Reclamation. Facilities demolition is not included in this document.

2.5 Disposed Materials

Materials to be placed in the disposal and tailings cells consists of process waste materials, structural debris, underlying liner materials, and subsoils from planned site cleanup activities. Additional detail on each material type is outlined later in the Specification. The four major types of materials are outlined below:

- Raffinate Crystals located in Cell 1,
- Synthetic Liner PVC liner from Cell 1,
- Contaminated Soils soils located in and around the mill site with concentrations exceeding prescribed unity rule concentrations (see Section 6)
- Mill Debris all equipment and structures from the demolition of the mill

2.6 <u>Construction Materials</u>

Construction materials for the disposal cell liner, cover system, and for erosion protection of the cover and discharge channel will include soils and aggregates from on-site and off-site sources. These materials are outlined below.

2.6.1 Liner Materials

The disposal cell will be constructed, prior to the placement of contaminated soils and mill demolition debris, with a compacted clay liner consisting of fine-grained soils. The fine-grained soils will be obtained from suitable materials stockpiled on site during cell construction.

2.6.2 Random Fill

Random fill will be used within the disposal cell and tailings cells, placed on and around mill material and debris and placed for the components of the cover system. Fill materials will be obtained from soils stockpiled on site.

2.6.3 Topsoil

Topsoil for the surface of the disposal cell and surrounding areas to be revegetated will be obtained from on-site stockpile areas.

2.6.4 Rock Mulch

A mixture of gravel and topsoil will be used in select areas on the cover. The mixture will be 25 percent gravel (with a D_{100} less than 1-inch) by weight. The sources of rock are nearby commercial sources of alluvial gravel. Rock mulch shall meet the particle-size distribution requirements outlined in Section 8.

2.6.5 Erosion Protection and Perimeter Apron Material

A layer of rock will form the erosion protection zone on the side slopes and on the perimeter apron of the disposal cell as well as within the discharge channel. The sources of rock are nearby commercial sources of alluvial gravel and cobbles. Perimeter apron material shall meet the particle-size distribution and durability requirements outlined in Section 8, and shall meet requirements for rock durability outlined in NRC (1990) and Johnson (1999, 2002).

2.6.6 Filter Materials

Filter layer materials will be obtained from an off-site local commercial source or from select onsite borrow areas.

2.6.7 Granular Materials

Granular materials will be used for filter material and may also be used for subsurface fill for the cell base. These materials will be obtained from off-site commercial sources of alluvial sand and gravel.

2.7 Staging and Stockpile Areas

Areas on site identified as staging areas or stockpile locations shall be approved by the Owner. These areas will be constructed and used in a manner consistent with the Owner's plans for storm water management. The contractor shall maintain proper erosion control measures for stockpiles and may be required to cover piles in situations where precipitation is anticipated.

2.8 Access and Security

Access to the site will be controlled at gated entrances through the existing restricted area fencing. All gated entrances and security for EFRI property will be maintained by the Owner.

2.9 <u>Utilities</u>

Utilities on site will be maintained by the Owner outside of work areas (areas to be demolished or reclaimed). Utilities inside of work areas will be provided and maintained by the Contractor.

2.10 Sanitation Facilities

The Contractor, in accordance with the Owner's Radiation Protection Manual for Reclamation, will maintain sanitation facilities required during construction.

3.0 WORK AREA PREPARATION

3.1 <u>General</u>

This Section describes the preparation of site areas for reclamation. This work will be conducted according to applicable sections of the Owner's Radiation Protection Manual for Reclamation.

3.2 Water Management

Preparation for work in the site area will include water management tasks outlined below.

- a. Removal of raffinate crystals from Cell 1.
- b. Breaching of the Cell 1 dike for construction the cell as a sedimentation basin. Re-route runoff from the mill area and areas immediately north of the cell into the sedimentation basin for discharge onto the natural ground via the channel to be located at the southwest corner of the basin.
- c. Diversion of clean area storm water runoff from work areas (where facilities demolition and material excavation will take place) and from the disposal cell footprint area.
- d. Collection of storm water runoff from within the work areas and the disposal cell footprint for treatment and permitted discharge, or for disposed material compaction or dust control. The planned storage location for this affected storm water is the sedimentation pond.
- e. Isolation of water used for processing operations associated with reclamation from storm water runoff. Water from processing operations or other contaminated water will not be used for disposal cell construction.

3.3 <u>Cell Construction</u>

A clay lined disposal area will be constructed adjacent to and parallel with the existing Cell 1 dike for permanent disposal of contaminated material and debris from the mill site

decommissioning and the Cell 1 Disposal Area. The area will be lined with a 12-inch thick layer of compacted clay prior to placement of contaminated materials and installation of the final reclamation cap. If there is not sufficient debris, rubble and contaminated soil to fill Cell 1 as designed, the footprint of Cell 1 can be reduced to decrease the horizontal dimension extending out from Cell 2 and the lateral extent of the disposed materials, to be closer to the base of the Cell 2 dike. If a design modification is required for Cell 1, it will be submitted to DWMRC for review and approval and these Technical Specifications will be revised accordingly.

3.4 Soil Borrow Areas

Disposal cell fill and liner materials will be excavated from among the identified borrow areas on site. Cover and liner soil will be from suitable materials stockpiled on site during cell construction.

Specific soil borrow areas will be selected based on haul distance to the disposal cell, ease of excavation of cover material, geotechnical characteristics, uniformity of the borrow material, and acceptable radiological and geochemical characteristics.

Borrow area preparation will consist of setup for storm water management (Section 3.2) and clearing and stripping (Section 3.5).

3.5 <u>Clearing and Stripping</u>

For work areas that are vegetated, preparation work will include tasks outlined below.

3.5.1 Clearing

Clearing of vegetation and grubbing of roots will be in identified work areas. Clearing and grubbing shall not extend beyond 20 feet from the edge of the work area, unless as shown on the Drawings or as approved by the Reclamation Project Manager.

Vegetation from clearing and grubbing may be shredded or chipped to form mulch. Alternative methods of on-site or off-site disposal or burning of stripped vegetation shall be conducted only as approved by the Reclamation Project Manager.

Page A-16 Revision 5.0 Energy Fuels Resources (USA) Inc. White Mesa Mill Reclamation Plan

3.5.2 Stripping

Stripping of salvageable topsoil (if present) shall be done within the entire work area. Stripping of topsoil shall not extend beyond 10 feet from the edge of the work area, unless approved by the Reclamation Project Manager. The depth of stripping of reclamation soil shall be based on the presence of suitable topsoil and approved by the Reclamation Project Manager. Water shall be added to the area of excavation if the soils are dry and stripping work is generating dust.

Topsoil shall be stockpiled in approved stockpile areas. The final stockpile surface shall be graded and smoothed to minimize erosion and facilitate interim revegetation of the stockpile surfaces.

4.0 CELL 1 DISPOSAL AREA BASE CONSTRUCTION

4.1 General

This section outlines work associated with construction of the disposal cell base for receipt of materials (as described in Section 7.0) within Cell 1. The base of the disposal cell will be lined with a compacted clay liner. The cell base will be constructed as shown on the Drawings and outlined in these Technical Specifications.

4.2 Materials Description

4.2.1 Subgrade Fill

The disposal cell footprint is likely to have an irregular surface from areas that have been excavated. Low areas of the excavated surface should be filled to form a smooth, competent foundation for clay liner construction. Subgrade fill will be used in excavated areas of the disposal cell footprint to meet desired grades and elevations for the disposal cell foundation (shown on the Drawings).

Subgrade fill may consist of off-site granular materials, or soils and weathered sedimentary rock from approved on-site excavation areas. Subgrade fill shall be minus 6-inch size, and shall be free from roots, branches, rubbish, and process area debris.

4.2.2 Clay Liner Material

Clay liner material shall be minus 1-inch size, and shall be free from roots, branches, rubbish, and process area debris. Clay liner material shall have a minimum of 40 percent passing the No. 200 sieve and a minimum plasticity index (PI) of 15 percent. Suitable materials will classify as CL, CH, or SC materials under the Unified Soil Classification System.

4.3 <u>Work Description</u>

4.3.1 Foundation Preparation

The footprint of the disposal cell shall form a competent foundation for clay liner and cover construction. The surface of the disposal cell footprint shall be filled (where required) in low areas to form a smooth, competent foundation for clay liner and cover construction. Subgrade fill (Section 4.2.1) shall be placed in lifts and compacted in excavated areas of the disposal cell footprint to meet desired grades and elevations for the disposal cell foundation (shown on the Drawings). The final filled surface shall be compacted with approved construction equipment to provide a foundation surface with uniform density for clay liner placement.

4.3.2 Disposal Cell Foundation Area

The footprint of the disposal cell is established along the north side of the tailings dike along the south edge of Cell 1 (shown on the Drawings).

4.3.3 Subgrade Fill Placement

Subgrade fill (Section 4.2.1) shall be placed in lifts and compacted in excavated areas of the disposal cell footprint to meet desired grades and elevations for the disposal cell foundation. Subgrade fill may be (1) granular material from off-site commercial sources, or (2) soils and weathered sedimentary rock from approved on-site excavation areas.

4.3.4 Clay Liner Material Placement

Clay liner material (Section 4.2.2) shall be placed in lifts with a maximum compacted thickness of 6 inches to form a continuous layer with a total minimum compacted layer thickness of 12 inches. Clay liner material shall be placed over the prepared subgrade surface of the disposal cell (Section 4.3.1).

Compaction of the clay liner material shall be done with a sheepsfoot or tamping-foot roller of sufficient weight to achieve the required compaction specifications. Rubber-tired equipment shall not be used solely to compact the clay liner material.

If the moisture content of any layer of clay liner is outside of the allowable placement moisture content range specified, the material shall be moistened and/or reworked with a harrow, scarifier, or other suitable equipment to a sufficient depth to provide relatively uniform moisture content and a satisfactory bonding surface before the next layer of clay material is placed. If the compacted surface of any layer of clay liner material is too wet (due to precipitation) for proper compaction of the fill material to be placed thereon, it will be reworked with a harrow, scarifier or other suitable equipment to dry out the layer and reduce the moisture content to within the required limits. The layer would then be re-compacted.

The layers of the placed clay liner will be such that the liner will, as far as practicable, be free of lenses, pockets, streaks or layers of material differing substantially in texture, gradation or moisture content from the surrounding material. Oversized material will be controlled through selective excavation of stockpiled material, observation of placement by a qualified individual with authority to stop work and reject material being placed and by culling oversized material from the fill.

No clay liner material will be placed when either the materials, or the underlying material, is frozen or when ambient temperatures do not permit the placement or compaction of the materials to the specified density without developing frost lenses in the fill.

Any holes in the clay liner material resulting from testing should be repaired by hand by filling with clay fill, or by filling with bentonite powder which is hydrated to fully seal the hole.

4.4 Performance Standards and Testing

Test results indicating dry densities less than the specified values will be rejected. Such rejected material shall be reworked by the contractor as necessary and rerolled until a dry density equal to or greater than the specified percent of standard Proctor maximum density is attained. Material that is too dry or too wet to permit bonding of layers during compaction will be rejected and shall be reworked by the contractor until the moisture content is within the specified limits. Reworking may include removal, re-harrowing, reconditioning, rerolling, or combinations of these procedures.

4.4.1 Subgrade Testing

Where required, checking of compaction of compacted subgrade fill and the final subgrade surface shall consist of a minimum of one field density test per 1,000 cubic yards of material compacted. A minimum of two tests will be taken for each day that an applicable amount of fill is placed in excess of 150 cubic yards. A minimum of one test per lift and at least one test for every full shift of compaction operations will be taken.

Field density tests shall be compared with standard Proctor tests (ASTM D698 Method A or C). Where required, standard Proctor or Maximum Index Density tests shall be conducted at a frequency of at least one test per 5,000 cubic yards of material compacted, or when material characteristics show significant variation.

Field density testing may be conducted with the sand cone test (ASTM D1556) or a nuclear density gauge (ASTM D6938, or as modified by the QA Manager). Correlation of nuclear density gauge results shall be by comparison with results from sand cone test(s) and laboratory testing for water content(s) using the oven drying method (ASTM D2216) on similar material.

Subgrade fill will be placed in lifts not exceeding 8 inches in loose thickness. Each lift shall be compacted to a minimum of 90 percent of standard Proctor (ASTM D698) density and within three percent of the optimum moisture content for the material.

4.4.2 Clay Liner Testing

Material specifications for the clay liner material shall be confirmed by gradation testing conducted by approved personnel. Testing shall consist of No. 200 sieve wash and maximum particle size testing (ASTM D422), and Atterberg limits testing (ASTM D4318) on samples of clay liner materials, at a frequency of at least one test per 2,500 cubic yards of fill placed, or when material characteristics show a significant variation.

Checking of compaction of the clay liner material shall consist of a minimum of one field density test per 500 cubic yards of material compacted. A minimum of two tests will be taken for each

day that an applicable amount of fill is placed in excess of 150 cubic yards. A minimum of one test per lift and at least one test for every full shift of compaction operations will be taken.

Field density tests shall be compared with standard Proctor tests (ASTM D698 Method A or C) on the same material. Standard Proctor tests shall be conducted at a frequency of at least one test per 2,500 cubic yards of material compacted, or when material characteristics show significant variation.

Field density testing may be conducted with the sand cone test (ASTM D1556) or a nuclear density gauge (ASTM D6938, or as modified by the QA Manager). Correlation of nuclear density gauge results shall be by comparison with results from sand cone test(s) and laboratory testing for water content(s) using the oven drying method (ASTM D2216) on similar material.

Each lift of clay liner material shall be compacted to at least 95 percent of the maximum dry density for the material, as determined by the standard Proctor test (ASTM D698). During compaction, the material shall be within 2 percent above to 2 percent below optimum moisture content for the material, as determined by the standard Proctor test. If water addition is required to achieve this range of moisture contents, the added water shall be thoroughly mixed into the material prior to compaction.

4.4.3 Grading Tolerances

The completed grading for the clay liner shall be within 1.0 foot (horizontally) of the lines as designed, and within 0.1 foot (vertically) of the elevations as designed. The final surfaces shall be smoothed to avoid abrupt changes in surface grade or areas of runoff concentration. The layer thicknesses shall meet the required minimum thicknesses.

5.0 DISCHARGE CHANNEL GRADING

5.1 General

This section outlines specifications for the work associated with excavating the discharge channel into competent bedrock. Portions of the grading for the sedimentation basin may be in soil, while other areas may require rock excavation. In general, the rock is believed to be rippable, however the Contractor should account for the possibility that harder rock may be encountered in the excavation areas.

5.2 <u>Work Description</u>

5.2.1 Discharge Channel Excavation

The discharge channel shall be excavated to the slopes and grades shown on the Drawings. The channel width(s) shall be constructed to the dimensions shown on the Drawings. The side slopes of the channel shall be 3:1 (horizontal to vertical).

Discharge channel excavation will include breaching of the Cell 1 dike on the east side. Riprap will not be required to armor the discharge channel when the channel excavation is into competent sedimentary rock. The competency of the sedimentary rock must be verified in the field by the CQA Manager.

5.2.2 Grading Tolerances

Completed grading for the sedimentation basin, in soil, shall be within 1.0 foot (horizontally) of the lines as designed, and within 0.1 foot (vertically) of the elevations as designed. Final surfaces shall be smoothed to avoid abrupt changes in surface grade or areas of runoff concentration.

The completed grading for the discharge channel (and portions of the sedimentation basin) in rock shall be within 2.0 foot (horizontally) of the lines as designed, and within 0.5 foot (vertically) of the elevations as designed. The final rock surfaces will be rough and should not be filled to make grade. The bedrock channel should be constructed at or below the design grades in order to meet the intent of the design.

6.0 MILL DECOMMISSIONING

The following subsections describe decommissioning plans for the mill buildings and equipment, the mill site, and associated windblown contamination.

6.1 <u>Mill Buildings and Equipment</u>

The uranium and vanadium processing areas of the Mill, including all equipment, structures and support facilities, will be decommissioned by demolition and disposed of in tailings or buried on site as appropriate. All equipment, including tankage and piping, agitation equipment, process control instrumentation and switchgear, and contaminated structures will be cut up, removed and buried in tailings prior to final cover placement. Concrete structures and foundations will be broken up and removed. Concrete foundations may be left in place and covered with soil as appropriate.

Decommissioned areas will include, but not be limited to the following:

- Coarse ore bin and associated equipment, conveyors and structures
- Grind circuit including semi-autogeneous grind (SAG) mill, screens, pumps and cyclones
- Three pulp storage leach tanks to the east of the mill building, including all tankage, agitation equipment, pumps and piping
- Seven leach tanks inside the main mill building, including all agitation equipment, pumps and piping
- The counter-current decantation (CCD) circuit including all thickeners and equipment, pumps and piping
- Uranium precipitation circuit, including all thickeners, pumps and piping
- Two yellow cake dryers and all mechanical and electrical support equipment, including uranium packaging equipment

- Clarifiers to the west of the mill building including the preleach thickener (PLT)
- The boiler and all ancillary equipment and buildings
- The entire vanadium precipitation, drying and fusion circuit
- All external tankage not included in the previous list including reagent tanks for the storage of acid, ammonia, kerosene, water, dry chemicals, etc. and the vanadium oxidation circuit
- The uranium and vanadium solvent extraction (SX) circuit including all SX and reagent tankage, mixers and settlers, pumps and piping
- The SX building
- The mill building
- The alternate feed processing circuit
- The decontamination pads
- The office building
- The shop and warehouse building
- The sample plant building
- The reagent storage building

The sequence of demolition will proceed so as to allow the maximum use of support areas of the facility such as the office and shop areas. It is anticipated that all major structures and large equipment will be demolished using hydraulic shears. This equipment will expedite the process, provide proper sizing of the materials for transport and placement, and reduce exposure to radiation and other safety hazards during the demolition. Any uncontaminated or

decontaminated equipment to be considered for salvage and remediation equipment will be released in accordance with the terms of License Condition 9.10 and NUREG 1575 Supplement 1, Multi-Agency Radiation Survey and Assessment of Materials and Equipment Manual (MARSAME) (NRC, 2009) as appropriate and applicable. Contaminated soils from the mill area will be disposed of in the tailings cells in accordance with Section 7.0 of the Technical Specifications.

6.2 Mill Site and Windblown Contamination

Areas with contamination around the mill site are expected to be primarily surficial and include the ore storage area and surface contamination of some roads. All ore and alternate feed materials will have been previously removed from the ore stockpile area. All contaminated materials will be excavated and be disposed in one of the tailings cells in accordance with Section 7.0 of these Technical Specifications. The depth of excavation will vary depending on the extent of contamination and will be based on the criteria in Section 7.2.3 of these Technical Specifications. All other 11e.(2) byproduct materials will be disposed of in the tailings cells.

As discussed in Section 6.1, as well as above, EFRI proposes to reclaim the mill and surrounding land areas within the property boundary by excavating and placing wastes, demolition debris and contaminated soils into a fenced and controlled permanent tailings disposal area. The permanent tailings disposal area, the current restricted area, and the property boundary, are delineated in Figure REC-1. EFRI proposes to survey and release all areas within the property boundary, excluding the proposed tailings disposal area, for unrestricted use. Contaminants of concern are Ra-226, Th-230 and natural uranium (U-nat). The evaluation and remediation will be by Ra-226, which is the contaminant with the most restrictive cleanup standard based on the SENES Consultants, Inc. letter to EFRI dated August 15, 2012. This letter was provided as Attachment I to EFRI's Supporting Documentation for Response to Utah DWMRC Interrogatory 13/1 (SENES 2012). The relationship between Ra-226 and the remaining two contaminants will be developed as discussed in subsequent sections of this Specification. Verification of the remediation will be established through a Wilcoxon Rank Sum (WRS) test between the study areas and local background areas. The procedure for verification will follow guidance from NUREG 1575 Multi-

Agency Radiation Survey and Site Investigation Manual (MARSSIM) (NRC, 2000). The procedure will include:

- Scoping and characterization surveys: soil samples will be collected to develop a correlation between gamma radiation levels and the unity rule.
- Classification of land areas: to (MARSSIM) Class 1 through Class 3.
- Remediation of land areas driven by correlation-based prediction equation between gamma radiation and the unity rule for multiple radionuclides.
- Final Status Survey using the Wilcoxon Rank Sum (WRS) test with local background areas.

The procedure also follows the Data Quality Objective (DQO) process defined in the MARSSIM Guidance, as discussed in Section 6.6, below and NUREG-1757 Volume 2 Consolidated Decommissioning Guidance, Characterization, Survey, and Determination of Radiological Criteria (NRC, 2006).

6.3 <u>Scoping and Characterization Surveys</u>

Areas contaminated through process activities or windblown contamination from the tailings areas will be remediated to meet applicable cleanup criteria for Ra-226, Th-230, and U-nat. Contaminated areas will be remediated such that the residual radionuclides remaining on the site, which are distinguishable from background, will not result in a dose that is greater than that which would result from the Ra-226 soil standard, that is, 5 pCi/g above background for the surface 15 cm soil layer and 15 pCi/g for the subsurface 15 cm soil layer, respectively as discussed in Section 6.6.3.3 and hereafter referred to as "5/15".

An initial scoping survey for windblown contamination will be conducted based on analysis of pertinent past radiometric and land use information. Operational surveys of the areas surrounding the mill and tailings area have indicated potential windblown contamination only to the north and east of the ore storage area, and to the southwest of Cell 3. The initial scoping survey will be conducted using calibrated gamma radiation instruments on 15 meter (15 m) transects. Additional surveys will be conducted in a halo, or buffer zone, around the projected impact area.

The survey in the halo will be conducted using 25 m transects. Areas where no readings exceed 75 percent of the gamma radiation guideline value, as developed per Section 6.3.2, will be classified as unaffected, and will not require remediation. Areas where one or more readings exceed the gamma radiation guideline value will be further investigated to determine whether or not remediation is required.

Prior to initiating cleanup of windblown contamination, a statistically-based soil sampling program will be conducted in an area within or outside the property boundary that is similar to the areas to be remediated, to determine the average background Ra-226 concentration, or concentrations, to be ultimately used for the cleanup. Similarity, or representativeness, will be determined based on geology, soil type and soil chemistry.

Soil cleanup verification will be accomplished by use of calibrated gamma radiation instruments. Multiple instruments will be maintained and calibrated to ensure availability and consistency during remediation efforts (Section 6.3.4).

6.3.1 Scoping and Characterization Survey for the Subsurface

The subsurface will only be investigated in areas where the historical site assessment (HSA) demonstrates the possibility of contamination below the surface 15 cm. This does not include areas of windblown contamination, or the ore storage area (unless also affected by an event demonstrated by the HSA). The method for the subsurface investigation will include boreholes where soil sampling and downhole gamma radiation investigations may occur. This method will be developed based on the HSA.

6.3.2 Gamma Radiation to Unity Rule Correlation

EFRI plans to use radiation measurement instrumentation for soil background analyses, unity rule – gamma radiation correlations, verification data, and sensitivity analyses. Soil background analyses will be completed using MARSSIM methodology for background reference areas.

Soil samples taken during characterization for correlation will be analyzed by a certified laboratory to determine the on-site correlation between the gamma radiation readings and the concentration of Ra-226, Th-230 and U-nat, in the samples. Samples will be taken from:

- Areas known to be contaminated with only processed uranium materials (i.e. tailings sand and windblown contamination)
- Areas in which it is suspected that unprocessed uranium materials (i.e. ore pad and windblown areas downwind of the ore pad) are present

The actual number of samples used will depend on the correlation of the results between gamma radiation readings and the unity rule as discussed below. Windblown contamination to the northeast of the mill area is primarily associated with the unprocessed ore from the ore storage pad. The slightly larger windblown contamination area to the southwest of the mill area is primarily associated with the processed tailings. A minimum of 35 samples of windblown tailings (to the southwest), and 15 samples of windblown unprocessed ore materials (to the northeast) will be collected.

Sufficient samples will be taken to ensure that prediction equations can be developed to adequately calculate the linear regression lines and the corresponding upper and lower 95 percent confidence levels for each of the instruments. The upper one-sided 95 percent confidence limit will be used for the guideline value for correlation between gamma radiation readings and Ra-226 concentration. Because the unprocessed materials are expected to have proportionally higher values of uranium in relation to the Ra-226 and Th-230 content, the correlation to the gamma radiation readings are expected to be slightly different than readings from areas known to be contaminated with only processed materials. Areas expected to have contamination from both processed and unprocessed materials will be evaluated on the more conservative correlation, or will be excavated to the Ra-226 standard which should ensure that the uranium is removed.

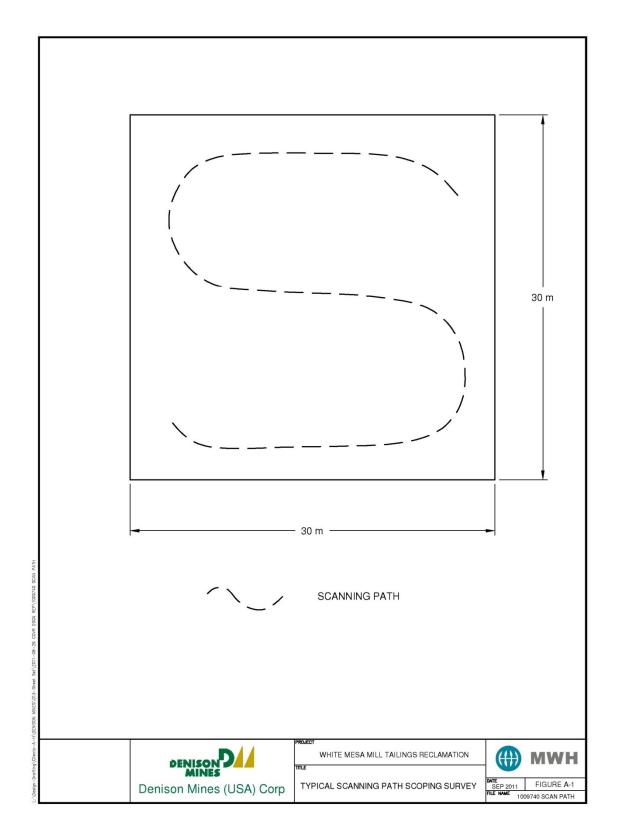
The samples will be judgmentally selected with Ra-226 concentration at three different intervals:

• Twenty-five percent of the guideline value (5 pCi/g above background)

- Approximately the guideline level (5 pCi/g)
- Approximately twice the guideline level for the area of interest

This selection will maximise the precision of the correlation relationship at 5.0 pCi/g above background. Background Ra-226 concentrations have been gathered over a 16-year period at sample station BHV-3 located upwind and 5 miles west of the mill. The Ra-226 background concentration from this sampling location is 0.93 pCi/g. This value and the concentrations of U-nat and Th-230 assumed in equilibrium with the Ra-226 will be used as an interim value for the background concentration used only in the initial planning for this project (e.g. use of historical knowledge for preliminary setting of verification sample sizes). Background locations for the verification test will have the three contaminants measured at multiple locations.

Because Ra-226 has short-lived radioactive decay products that are strong gamma radiation emitters (namely Pb-214 and Bi-214), gamma radiation surveys can be effective for characterizing soil Ra-226 distributions across large areas, including on relatively small spatial scales. The well-established, effective, and widely-used analytical approach for spatially comprehensive characterization of Ra-226 concentrations in surface soils involves spatially intensive gamma radiation surveys combined with the use of gamma radiation and soil Ra-226 concentration correlations.


If a gamma radiation and Ra-226 concentration correlation is statistically significant, Ra-226 concentrations in surface soils can be predicted with reasonable accuracy based on gamma radiation readings collected at a high density of measurements across large areas. The same is true for other radionuclides, though correlative relationships tend to be less statistically significant and estimation uncertainty can be higher. The advantage of gamma radiation surveys is that a much higher density of measurements of terrestrial sources of gamma radiation is possible and when combined with gamma radiation/soil radionuclide correlation analysis, the approach produces a more comprehensive spatial characterization for comparisons against baseline conditions and evaluation of potential radiological contamination.

Fifteen soil samples will be collected in the restricted area to establish a correlation between the soil sampling analysis and the gamma radiation count. Additional measurement locations will be added, if necessary, to reach suitable precision, as defined in Section 6.6.3.7. The method that will be used in an effort to develop statistically significant gamma radiation/soil radionuclide correlations is as follows:

- 1. At each correlation plot, a 100 m² (10 m x 10 m) plot for correlation measurements and soil sampling will be established with pin flags. A gamma radiation scan will be performed across each correlation plot (5 m transects at a detector height of 18 inches). The average gamma radiation reading (e.g. cpm) from scan data across each correlation plot will be calculated and recorded in the field logbook, or developed using data collected from the gamma radiation scan. See Figure A-1 for the scan path.
- 2. Within each 10 m x 10 m, correlation plot nine sub samples of surface soils, one in the center, and eight against the edges of the plot, will be collected across the plot (at a depth of 15 cm) and composited into a single sample to represent average soil radionuclide characteristics across the correlation plot. Composite surface soil samples from each correlation plot will be submitted to a qualified commercial laboratory for analysis of U-nat, Ra-226, Th-230, Th-232 (by Ra-228), and K-40. The correlation plot scanning and sampling design for each location is illustrated in Figure A-1.
- 3. The laboratory chain of custody/analysis request form to be submitted with composite correlation plot soil samples will specify the following requirements:
 - a. Thorough homogenization of each sample at the laboratory.
 - b. Ra-226 analysis by EPA Method 901.1, modified for soil samples, with sample counting to be performed at least 21 days after sealing in the counting tin to ensure full ingrowth of Rn-222 and its decay products. Analysis of K-40 will also be conducted with EPA method 901.1, as will analysis of Ra-228 (to determine Th-232 concentrations under the assumption of radiological equilibrium).

- c. U-nat analysis by EPA Method 200.8 (ICP-MS) or equivalent, preferably with soil matrix digestion using EPA Method 3052 (microwave assisted acid digestion). EPA Method 3050B or equivalent digestive methods may alternatively be used, however digestion will not be as complete.
- d. Th-230 analysis by EPA Method 200.8 (ICP-MS) or equivalent, preferably with soil matrix digestion using EPA Method 3052 (microwave assisted acid digestion). Ten percent of the correlation plot samples will also be analyzed for Th-230 by alpha spectroscopy.
- 4. Upon receiving soil analysis results from the laboratory, regression analysis will be performed to determine, based on paired data from all correlation plots, if significant statistical correlations exists between average gamma radiation readings and soil Ra-226, U-nat, Th-230, Th-232 by Ra-228 and K-40 concentrations.

Page A-32 Revision 5.0 Energy Fuels Resources (USA) Inc. White Mesa Mill Reclamation Plan

6.3.3 Area Classification

The characterization and scoping surveys will be used to classify areas as either non-impacted or impacted areas. The impacted areas will be further classified into Classes 1-3 (NUREG 1575). The classification of the areas will determine the rigor required to survey and release the areas.

- Class 1 areas are areas which have, or had prior to remediation, a potential for radioactive contamination based on mill operating history, or known contamination based on previous radiological surveys. Areas containing contamination in excess of the release criterion, specifically the Derived Concentration Guideline Level (DCGL) associated with the Wilcoxon Rank Sum Test (DCGLw), established by the radium benchmark dose (RBD) approach in Section 6.6.3.3 prior to remediation should be classified as Class 1 areas. The concentration terms "DCGLw", "release criterion", and "unity rule", have been used interchangeably throughout the remainder of this Specification. However, where a gamma radiation-based level is meant, the term "gamma guideline level" is used specifically.
- Class 2 areas are areas which have, or had prior to remediation, a potential for radioactive contamination or known radioactive contamination, but are not expected to exceed the DCGLw.
- Class 3 areas are any impacted areas not expected to contain any residual radioactivity, or are expected to contain levels of residual radioactivity at a small fraction of the DCGLw, based on mill operating history and previous radiological surveys

Survey Unit Classification		Statistical Test	Elevated Measurement Comparison	Sampling and/or Direct Measurements	Suggested Area (m ²)	Scanning
Impacted	Class	Yes	Yes	Systematic	2000	100%
	1					Coverage
	Class	Yes	Yes	Systematic	10,000	10-100%
	2					Systematic
	Class	Yes	Yes	Random	No limit	Judgmental
	3					-
Non-Impacted		No	No	No	None	None

 Table 6.1 - Final Status Survey Unit Classification for Land Areas

6.3.4 Remediation

Remediation will only occur in survey units that cannot pass the release criterion (DCGLw). Remediation will consist of excavation of soils and placement in the tailing cells, as stated in Section 7.2.3, below. Remedial action support surveys will be conducted to guide the remediation. Remedial action support surveys will be conducted in a manner similar to the Final Status Surveys (FSSs), described in Sections 6.4 and 6.6, to ensure that the remedial action achieves the DCGLw. Excavation will continue until the gamma radiation guideline value is achieved for surface soils

Upon completion of remediation, gamma radiation surveys will be conducted on the excavated area and areas surrounding the excavation.

6.4 Final Status Surveys

Areas of the site will be released through the final status survey (FSS) process (see Section 6.6). Survey units will be released through FSS reports provided to DWMRC for each survey unit. Survey units that require remediation will undergo the FSS process after remediation. Survey units must meet the release criterion set forth in this section. Each survey unit that meets the release criterion will be released, pending DWMRC approval.

6.4.1 Release Criterion

Release criteria have been established and are discussed in more detail in Section 6.6.

6.4.2 Statistical Test

The WRS test will be performed using the background reference data set and the systematic sample data set from the survey unit under investigation. The background reference data set will be added to the unity rule (1) prior to the statistical test being completed. The two data sets will be derived using the weighted sum for multiple radionuclides set forth in MARSSIM:

For surface soils:

$$\frac{A (pCi/g Ra226)}{5 (pCi/g)} + \frac{B (pCi/g Unat)}{545 (pCi/g)} + \frac{C (pCi/g Th230)}{46 (pCi/g)} + 1$$

For subsurface soils:

$$\frac{A (pCi/g \ Ra226)}{15 (pCi/g)} + \frac{B (pCi/g \ Unat)}{2908 (pCi/g)} + \frac{C (pCi/g \ Th230)}{142 (pCi/g)} + 1$$

For instance, if the background reference area surface soil data set showed that one sample contained 2.2 pCi/g Ra-226, 2.2 pCi/g U-nat, and 2.0 pCi/g Th-230, the sample would be represented in the WRS data set as the following:

$$\frac{2.2 (pCi/g Ra226)}{5 (pCi/g)} + \frac{2.2 (pCi/g Unat)}{545 (pCi/g)} + \frac{2.0 (pCi/g Th230)}{46 (pCi/g)} + 1 = 1.49$$

Thus, 1.49 (unitless) for this particular background sample would be used in the WRS comparison data set for the background reference area to be compared to the survey unit data. If this sample were from the survey unit, the value would be 0.49 (unitless).

The WRS test will be performed on the survey unit and background reference area using the method in MARSSIM. For Class 1 to Class 3 survey units, the null hypothesis is that the survey unit exceeds the release criterion. If the null hypothesis is rejected, the mean for the survey unit does not exceed the DCGL_w, and no area exceeds the DCGL Elevated Measurement Comparison (DCGL_{EMC}) then the survey unit is presumed to meet the release criterion and, pending DWMRC approval, released.

If an area in a survey unit exceeds the DCGL_w, the area of the contamination will be determined using a mixture of soil sampling and gamma radiation surveying.

A comparison will be made to the EMC will be made to determine if the area presents a dose equal to, or lower than, the DCGLw scenario. This determination will be completed through the derivation of area factors based on the size of hypothetical areas of contamination. The area factor for a contaminated area will be multiplied by the DCGLw to determine the allowable contaminant concentration for that size of area, which still meets the unity rule. Area factors will be determined prior to FSS's and will be approved by DWMRC.

Areas of elevated activity that do not meet the DCGL_{EMC} will be remediated.

6.5 Instrument Quality Assurance/Quality Control (QA/QC)

Field gamma radiation survey instrumentation will be sodium iodide (NaI) detectors. To the extent possible, the same instruments will be use throughout the characterization, remediation and final status survey. These instruments will be cross calibrated to allow other identical instruments or similar instruments to be used. Individuals will be appropriately trained to use the selected instrumentation and the instrumentation will be suitable for its intended use. Instrumentation shall be operated in accordance with written procedures and manufacturer's manuals which will provide guidance to field personnel on the proper use and limitations of the instruments.

6.5.1 Calibration

The manufacturer's current calibration/maintenance records will be kept on site for review and inspection for all instruments used during the survey. Past calibration records will be retained for inclusion in the FSS report.

The records will include, at a minimum, the following:

- Equipment identification (name, model, and serial number)
- Manufacturer
- Date of calibration

• Calibration due date

Instrumentation must be maintained and calibrated to manufacturer's specifications to ensure that required traceability, sensitivity, accuracy, and precision of the equipment/instruments are maintained. Instruments will be maintained and calibrated in accordance with American National Standards Institute N323A (ANSI, 1997).

6.5.2 Source and Background Checks

Prior to and after daily use, instruments will be QC-checked by comparing the instrument's response to a designated gamma radiation source and to ambient background. Prior to commencement of field operations, a site reference location will be selected for the performance of these checks. Acceptable ranges (count rate) for each instrument will be established by performing a series of counts. The acceptable range will be ± 2 sigma of the mean of the series of counts. QC source checks will consist of one-minute integrated counts with the designated source position in a reproducible geometry, performed at the designated location. Background checks will be performed in an identical fashion with the source removed. Results of the background and QC checks will be recorded in a field logbook.

Instrument response to the designated QC check source will be plotted on control charts or in tabular form (spreadsheets) and evaluated against the average source and background readings established at the start of the field activities. A performance criterion of +/-2 sigma of this average will be used as an investigation action level, and a repeat of the measurement will be performed. A performance criterion of +/-3 sigma of this average will be used as a failure level requiring corrective action. Results exceeding this criterion will be investigated and appropriate corrections to instrument readings will be made if the response is affected by factors beyond personnel control, such as large humidity or temperature changes. The instrument(s) in question will be removed from service while investigations and corrective actions are in progress.

Instrument response to ambient background will be used to establish a mean background response for each instrument, to monitor gross fluctuations in background activity (e.g., from changes in barometric pressure and other, non-contaminant related causes), and to evaluate

detector response. The background measurements are performed for the purpose of checking for detector contamination and electronic stability (especially cabling).

Instrument response to source checks are used to prove detector efficiency and electronics stability.

During QC checks, instruments shall be inspected for physical damage, current calibration and erroneous readings. The individual performing these tasks shall document the results in accordance with the instrument protocol within MARSSIM, as provided in Exhibit A-1. Instrumentation that does not meet the specified requirements of calibration, inspection, or response check will be removed from operation. If the instrument fails the QC response check, any data obtained to that point, but after the last successful QC check will be considered invalid due to potentially faulty instrumentation.

6.6 Data Quality Objectives

This plan was developed using guidance from MARSSIM was developed to ensure surveys are conducted with the proper rigor, quality assurance, and statistical analysis to make proper decisions. A key step in the MARSSIM process is the development of DQOs. DQOs ensure collection of data of the right type, quality, and quantity to support decisions, the decommissioning process, and the achievement of the desired end state. The DQOs are outlined below, and include systematic processes to:

- 1) State the problem
- 2) Identify the goal of the characterization
- 3) Identify inputs to the decision
- 4) Define the study boundaries
- 5) Develop the decision rules/analytical approach
- 6) Define acceptable decision errors

Page A-39 Revision 5.0 Energy Fuels Resources (USA) Inc. White Mesa Mill Reclamation Plan

7) Optimize the design

6.6.1 State the Problem

Ultimately, the mill will be decommissioned, the demolition and decommissioning waste disposed in the tailings cells, and the tailings system reclaimed as approved by Utah DWMRC. The reclamation objective is to release the mill's land areas other than the tailings area, for unrestricted use. Land areas may have radiological contamination from milling operations. The scanning procedure needs to identify and distinguish areas that can be released, from areas that must be remediated prior to being released. The data collected following excavation in remediation areas must also be suitable for use in the final status survey (FSS) to demonstrate that the clean-up criteria have been met.

6.6.2 Identify the Decisions

The decision process will be based on data from scoping and characterization surveys, gamma radiation correlation, remediation and final status surveys.

Survey and sampling data will be used to:

- 1) Assist in classification of survey units
- 2) Determine areas requiring remediation
- 3) Develop Final Status Surveys to verify that clean-up criterion has been met
- 6.6.3 Identify Inputs to the Decision

6.6.3.1 Characterization and Scoping

HSAs, scoping surveys, and characterization surveys will be used to determine the extent of the contamination as well as the presence of useable relationships/ratios between the radionuclides of background reference areas. The presence of useable relationships will be established in accordance with Section 4.5 of MARSSIM. Soil sampling will be conducted in the survey areas and samples will be analyzed for U-nat, Th-230 and Ra-226.

The background must be correctly characterized and a proper background reference area chosen to represent the background for the mill soils. This will ensure that the soil will be cleaned up to the appropriate level. Goals of the characterization include selecting an appropriate background reference area(s) and appropriate background(s), and correctly comparing selected background(s) with the survey units. Multiple backgrounds may be selected for different survey units depending on the characterization and scoping surveys in conjunction with the HSA.

From MARSSIM Section 4.5, a site background reference area should have similar physical, chemical, geological, radiological, and biological characteristics as the survey unit being evaluated. Background reference areas are normally selected from non-impacted areas, but are not limited to natural areas undisturbed by human activities. In some situations, a reference area may be associated with the survey unit being evaluated, but cannot be potentially contaminated by site activities. For example, background measurements may be taken from core samples of a building or structure surface, pavement, or asphalt. The selected reference areas will be reviewed with Utah DWMRC.

Systematic soil sampling will occur prior to the FSS, and samples will be analyzed for Ra-226, Th-230, and U-nat to determine background concentrations to be used for the cleanup. The soil sampling to determine the average background radionuclide concentrations to ultimately be used for the cleanup will be conducted prior to remediation. Background sampling will be conducted in a reference area within or outside of the property boundary that is similar to the area to be remediated.

Background reference areas will be chosen such that they are representative of the survey unit locations but are non-impacted from site operations. Representativeness shall be determined on the basis of geomorphology, geological, geochemical, and radiological, considerations.

6.6.3.2 Correlation

A correlation of the unity rule in the soil to the gamma radiation will be developed. This correlation will guide remediation and excavation. This correlation is explained in Section 6.3.2.

Remediation of the soil to meet the unity rule is described in Section 6.3.4. The final status survey reports will be the definitive source of information to describe the final impacts on the soil left by the mill. The reports will detail how the cleanup met the Site Cleanup Criteria and show that each survey unit meets the cleanup criteria. The FSS reports will verify that the remediation has achieved the cleanup criteria.

6.6.3.3 Site Cleanup Criteria

The DCGLs for Ra-226 are set at 5 pCi/g for the surface 15 cm soil layer and 15 pCi/g for the subsurface 15 cm soil layer, respectively (hereafter referred to as "5/15") (See Attachment I for further discussion).

The DCGLs for radionuclides other than Ra-226 are derived from doses calculated for Ra-226 at 5/15 using the same exposure scenarios as were used to estimate the dose from Ra-226 at 5/15. This is referred to as the radium benchmark dose (RBD).

Generally, elevation of U-nat and Th-230 concentrations relative to Ra-226 is unexpected since the contaminated materials will either be ore (which are at or near secular equilibrium) or tailings where U-nat is reduced relative to the other uranium decay series radionuclides of interest. Possible exceptions are:

- Areas with raffinate crystals which may have higher Th-230 concentrations compared to Ra-226 concentrations
- Areas of spilled yellowcake product near the mill where U-nat may be elevated relative to Ra-226

The RBD approach was applied as described in Attachment I Supporting Documentation for Interrogatory 13/1: The Radium Benchmark Dose Approach. The RESRAD (Version 6.5) code (Yu et al. 2001) was used to implement the RBD approach. As described in NUREG-1569 as Appendix E (NRC 2003, a Guidance document for NRC Commission Staff on the Radium Benchmark Dose Approach), NRC considers the RESRAD code as an acceptable code for application of the Ra-226 benchmark dose approach. In brief, radionuclides at their respective DCGLs result in the same benchmark dose as the Ra-226 DCGL.

The DCGLs for the radionuclides of interest for the surface and subsurface layers were calculated and are provided in Table 6.2. The scenario is for a rancher with the doses determined using the RESRAD Version 6.5 model. The default RESRAD dietary and inhalation data which apply for the adult are carefully selected from literature and are already considered to represent conservative parameter values. Details on the calculation of DCGL's are provided in Attachment I.

DCGL (pCi/gram) above background						
Radionuclide	Surface	Subsurface				
Ra-226	5	15				
U-nat	545	2908				
Th-230	46	142				

 Table 6.2 - DCGL above background

Since there is more than one radionuclide of concern, the criteria for unrestricted use is applied using the unity rule such that the RBD is never exceeded.

In the equations below, the numerator is determined by subtracting the local background from the sample analysis following remediation. It is possible that the background may vary between survey units due to variation in soil types.

The unity rules are:

For surface soil:

$$\frac{A\left(pCi/g\ Ra226\right)}{5\left(pCi/g\right)} + \frac{B\left(pCi/g\ Unat\right)}{545\left(pCi/g\right)} + \frac{C\left(pCi/g\ Th230\right)}{46\left(pCi/g\right)} \le 1$$

For subsurface soil:

$$\frac{A (pCi/g \ Ra226)}{15 (pCi/g)} + \frac{B (pCi/g \ Unat)}{2908 (pCi/g)} + \frac{C (pCi/g \ Th230)}{142 (pCi/g)} \le 1$$

MARSSIM requires that the median concentration in a survey unit be demonstrably lower than the DCGLw following remediation. This is accomplished with a WRS test between soil concentrations in the survey unit and appropriate background reference locations. For the WRS test, the actual concentrations are used for the survey unit rather than using the incremental concentrations, discussed previously in Section 6.4.2.

6.6.3.4 Gamma Radiation Surveys

Gamma radiation surveys will be conducted with a GPS-integrated system using 2-inch by 2inch sodium iodide (NaI) detectors or the equivalent. Statistical correlations will be developed between the radiological soil sample analysis and the gamma radiation count rate. See Section 6.4.2 for the method for development and use of the gamma radiation correlation.

With the GPS-integrated method, high density gamma radiation scanning surveys will be done using the Ludlum 44-10 detectors at a height of 18 inches above the ground. The surveyor speed will be approximately 0.5 m/s.

For Class 1 survey units, transects will be 5 m apart and gamma radiation scanning surveys will continue up to 20 m outside the excavation with averages calculated on each 10-m by 10-m block. Class 1 survey units will scanned at a density to ensure that 95 percent of the 10-m by 10-m blocks have at least 20 gamma radiation measurements for blocks in and adjacent to the excavation areas with measurements in at least three of the four quadrants of the 10-m by 10-m block

The remainder of the survey area outside the remediation area will be classified as Class 2 and will be surveyed at 10 m transects. The requirement for the remainder of the survey area, Class 2, will be that 95 percent of the blocks have at least 10 gamma radiation measurements.

The Class 3 area will include the buffer areas outside the area of contamination, and this area will be surveyed with planned transects of 50 m. Twenty percent or more of the 10 m by 10 m blocks will have at least 10 gamma radiation measurements.

The mean, median, and standard deviation of the 10-m by 10-m averages will be calculated by survey unit for data logged during the scanning surveys.

6.6.3.5 Gamma Radiation Guideline Level

The average gamma radiation count rate will be established over the 10-m by 10-m blocks. A correlation will be established between the gamma radiation level and the unity rule using colocated gamma radiation and soil concentration measurements. The gamma radiation guideline value will be the gamma radiation counts that equate to 0.8 (80 percent of unity rule) from the correlation equation. Locations where the gamma radiation guideline is exceeded will have additional gamma radiation surveys and potentially additional excavation before verification sampling.

6.6.3.6 Selection of Verification Samples

Following completion of excavation, if necessary, verification sampling will be carried out for each survey unit to allow a WRS test with background samples to confirm that the compliance criteria has been met. Ten sampling blocks will be determined from a random sampling approach for each survey unit. Following the final status gamma radiation survey, a minimum of 15 blocks in the survey unit will be measured to confirm the gamma radiation guideline level. For these 15 samples, the five 10- by 10-m blocks with the highest average gamma radiation will be sampled along with another 10 sample blocks randomly selected from the area.

The soil samples from the 10 randomly selected locations will be assessed to determine if the mean concentration in the survey unit is statistically below the unity rule with an alpha error of 0.05 using the MARSSIM WRS test.

The number of samples may be increased per Section 6.6.8.

6.6.3.7 Revision of Correlation

The verification sample measurements (soil analysis and mean gamma radiation counts) will be compared to the correlation to determine if the correlation is statistically valid. The correlation will be updated with the verification measurements if there is less than a 95 percent probability (p-value of 0.05) that the random verification data is less than DCGL_w. Verification measurements (soil sample and mean gamma radiation counts) will be taken with the same method as the correlation measurements.

6.6.3.7.1 Reporting

For each survey unit, the following will be reported:

- 1. Number of blocks remediated during remediation phase.
- 2. Number of blocks with subsequent remediation initiated by gamma radiation measurement.
- 3. Gamma radiation coverage compliance (i.e. percentage of blocks meeting number of measurement criteria).
- 4. Mean gamma radiation level averaged over the 10-meter by 10-meter blocks.
- 5. Mean and range of predicted unity rules based on gamma radiation survey.
- 6. Mean and range of measured unity rules based on verification sampling.

6.6.3.8 Field Data

The objectives of the survey and sampling activities are to identify the concentrations of residual radioactive material in the survey units so that the unity rule can be evaluated. This information will allow a determination of whether a survey unit is likely to be suitable for release. The average soil concentrations will be evaluated to verify that each radiological DCGLw is met.

6.6.4 Define the Study Boundaries

The soil in the restricted area will be surveyed for radiological contamination of U-nat, Th-230, and Ra-226. This does not include the tailings cells, and unrestricted areas. Survey units will be established in the unrestricted area if, during the survey of the restricted area, contamination is found at the boundary of the restricted area or if there is reason to believe contamination is present in the unrestricted area.

Page A-46 Revision 5.0 Energy Fuels Resources (USA) Inc. White Mesa Mill Reclamation Plan

6.6.5 Develop the Decision Rules/Analytical Approach

If soils exhibit widespread contamination above the DCGL_w, then removal of the soil will be necessary or the EMC process will need to be followed to ensure that areas of contamination will not exceed the DCGL_w following excavation.

6.6.6 Define Acceptable Decision Errors

6.6.6.1 Statistical Tests

The WRS test will be used to compare background reference areas to survey units in the MARSSIM framework for the FSS reporting. The WRS test is a nonparametric test used to test for a difference in values between two populations; that is, one data population is hypothesized to consist of higher average values than the other data population.

MARSSIM suggests using the WRS test in cases where the contaminant is present in background at a significant fraction of the DCGL_w. Since the DCGL is 5 pCi/g for Ra-226 and the background is in the order of 1 pCi/g or more for Ra-226, the WRS test is the preferred test.

The soil concentrations from the 10 randomly selected locations as defined in Section 6.6.3.6 will be assessed with the WRS test to determine if the median concentration in the survey unit is statistically below the unity rule with an alpha error of 0.05 using the MARSSIM WRS test.

6.6.6.2 Hypothesis

The decisions necessary to determine compliance with the soil cleanup criteria are based on precise statistical statements called hypotheses, which are tested using the data from the survey unit

<u>Null Hypotheses</u> - The situation that is presumed to exist is expressed as the null hypothesis (H₀), which states "*the median concentration in the survey unit exceeds the median concentration in the background reference area by more than the DCGL*."

<u>Alternative Hypotheses</u> - For a given H_0 , there is a specified alternative hypothesis (H_a), which is an expression of what is believed to be the situation if the null hypothesis is not true. The H_a

states "the median concentration in the survey unit does not exceed the median concentration in the background reference area by more than the DCGL."

These hypotheses were chosen for the following two reasons: (1) the burden of proof is placed on the H_A and, (2) the survey unit will not be released until proven to meet the cleanup criterion. In order to pass the WRS using the above H_0 , the median concentration of the systematic samples in the survey unit must be less than the DCGL_W above background.

6.6.6.3 Error Types

Decision errors help to determine the number of samples required. Generally, more samples are required to generate lower decision errors (i.e., the fewer samples, the larger the uncertainty).

The statistical acceptability decisions are designed to avoid two kinds of errors:

- Releasing a survey unit which requires additional remediation
- Remediating a survey unit which is already below the DCGLw

Two possible error types are associated with such decisions, Type I and Type II, which are described below.

Type I – which is also referred to as a false positive, occurs when H₀ is rejected when it is actually true. The probability of a Type I error is usually denoted by α . This error could result in higher potential doses to future site occupants than prescribed by the dose-based criterion. The maximum Type I error rate has been set at $\alpha = 0.05$ (there is less than 5 percent chance of error).

Type II - which is referred to as a false negative, occurs when H_0 is not rejected when it is actually false. The probability of a Type II error is usually denoted by β . Consequences of Type II errors include unnecessary remediation expense and project delays. The Type II error rate has been set at β =0.10 (there is less than 10 percent chance of error).

Statistical correlations will be developed between the unity rule and the gamma radiation measurements. The unity rule will be determined from measurement data for incremental concentrations at each sample location. The correlation between the unity rule and the gamma

radiation measurement at the sample location will produce a prediction equation. MARSSIM requires that the mean concentration in a survey unit be demonstrably lower than criteria following remediation but does not require all sampling units, in this case the 10-m by 10-m areas, to be lower than the criteria. The precision goal for the relationship will be that the mean prediction uncertainty for the survey unit will be \pm 0.2 when the predicted unity rule is equal to "1".

Protocols will be in place to ensure decision errors are kept to a minimum. For example, instrument quality assurance checks will be required and minimum detectable concentrations (MDCs) will be met.

The gamma radiation survey will be limited by the minimum detectable concentration (MDC) for the 2-inch x 2-inch sodium iodide (NaI) detector which is approximately 104 Bq/Kg (2.8 pCi/gram) for Ra-226, MARSSIM Table 6.7. This MDC is dependent on the background which may raise or lower the MDC (NRC, 2000).

Nuclide	MDC (Bq/kg)	MDC (pCi/gram)
U-Nat	2960	80
Th-230	78,400	2100
Ra-226	104	2.8
(with decay products in equilibrium)		

Table 6.3. Reported MDC's from MARSSIM Table 6.7

6.6.7 Relative Shift and Number of Samples

The target decision errors are 0.05 and 0.10 for α and β , respectively. The major contributor to the unity rule is Ra-226 since the criterion is much lower for Ra-226 compared to U-nat and Th-230. The lower bound of the gray region (LBGR) has been set to 0.8 as Ra-226 has a typically concentration that is only about 25 percent of the LBGR and the uncertainty will likely be of this order.

The preliminary estimate is that a relative shift of 2.0 based on the LBGR of 0.8 and an uncertainty of twice the background concentration. Using Table 5.3 of MARSSIM, the required number of samples is 8.

Should any area exceed the DCGL_{EMC} or large areas exceed the DCGL_w, remediation of the affected areas would be completed prior to resampling.

6.6.8 Optimize the Design

Initially, gamma radiation scans will be conducted in the restricted areas of the mill site. The data from these scans will be reviewed to determine the location of any hotspots. These hotspot locations will be sampled to determine the activity concentrations of U-nat, Th-230, and Ra-226. A prediction equation of the unity rule will provide the basis for scanning large areas effectively to direct focused remediation and to ensure that the cleanup criterion is met.

The statistical test (WRS test) could fail to show that the mean is below the criterion due to the initial number of verification samples, since there may be insufficient samples to achieve the desired decision error rates given the characteristics of the survey unit. In cases where data suggest that the concentration is below the criterion (e.g., the mean bases), additional samples would reduce the decision error and potentially allow the survey unit to pass. In this case, the mean and variability of the 10 randomly selected measurements will be used to determine MARSSIM's relative shift with the lower bound of the gray region equal to 0.8 of the unity rule. The α error will be set to 5 percent and the β error set to 10 percent to determine the required total number of samples. These samples would be collected and the WRS repeated on the larger data set.

6.7 Soil Sampling

6.7.1 Laboratory Approval

All samples will be analyzed for radionuclide concentration (pCi/g). All analyses will be performed by a Utah DWMRC-approved/certified laboratory and a DOE-certified, or National Environmental Laboratory Accreditation Program (NELAP)-certified laboratory. The laboratory

shall analyze method blanks, matrix spike samples, laboratory control samples and replicates. Typical required detection levels will be less than or equal to one tenth of the DCGL for each radionuclide.

6.7.2 Data Validation

Laboratory analytical results from the final status survey will be validated and will be reviewed by the data validator for the following:

- Data completeness/sample integrity
- Holding times
- Calibration
- Alpha spectroscopy tracer analysis
- Laboratory and field blanks
- Laboratory control samples
- Laboratory and field duplicates
- Alpha spectroscopy matrix spikes
- Quantitation and detection limits
- Alpha spectroscopy chemical separation specificity
- Gamma radiation spectroscopy target radionuclide list identification
- Secular equilibrium verification, and result verification

Review of these parameters serves to ensure the quality of the data with respect to:

- <u>Precision</u> which is a measure of the reproducibility of an analysis under a given set of conditions. Precision was evaluated through a review of field duplicate and laboratory duplicate samples.
- <u>Accuracy</u> which is a measure of the bias that exists in a measurement system. Accuracy was evaluated through a review of laboratory control samples, matrix spike samples, method blanks, and tracer recoveries.

- <u>Representativeness</u> which is a measure of the degree to which the sampling data accurately and precisely represent site conditions. Representativeness was evaluated through a review of raw data and through a comparison of whether the proposed scoping survey was implemented.
- <u>Comparability</u> which is a measure of the degree of confidence with which two data sets can be compared to each other. Comparability was evaluated through an assessment of whether appropriate and acceptable analytical methods were used.
- <u>Completeness</u> which is a measure of the amount of valid data obtained.

6.8 Employee Health and Safety

Programs currently in place for monitoring of exposures to employees will remain in effect throughout the time period during which tailings cell reclamation, mill decommissioning and clean up of windblown contamination are conducted. This will include personal monitoring and the ongoing bioassay program. Access control will be maintained at the Restricted Area boundary to ensure employees and equipment are released from the site in accordance with the current License conditions. In general, no changes to the existing programs are expected and reclamation activities are not expected to increase exposure potential beyond current levels.

6.9 Environment Monitoring

Existing environmental monitoring programs will continue during the time period in which reclamation and decommissioning is conducted. This includes monitoring of surface and groundwater, airborne particulates, radon, soils and vegetation according to the existing License conditions. In general, no changes to the existing programs are expected and reclamation activities are not expected to increase exposure potential beyond current levels.

6.10 Quality Assurance

In general, the QA/QC Plan details the Owner's organizational structure and responsibilities, personnel qualifications, operating procedures and instructions, record keeping and document control, sampling procedures and outside laboratory testing.

7.0 MATERIAL DISPOSAL

7.1 <u>General</u>

This section outlines work associated with placement of materials in the disposal cell and tailings cells.

7.2 <u>Materials Description</u>

The types of materials to be disposed of are outlined below.

7.2.1 Raffinate Crystals

After the residual liquid in Cell 1 has been evaporated, the Contractor will remove the raffinate crystals from Cell 1 and move them to the tailings disposal cells. The crystals are likely to have the consistency of a granular material and have larger crystal masses that require breaking down for loading and transport (using the loading equipment).

7.2.2 Synthetic Liner

The existing PVC liner shall be removed from Cell 1 and disposed of in the tailings disposal area.

7.2.3 Contaminated Soils

During remediation, soils located in and around the mill site exceeding the gamma radiation guideline value will be placed in the tailings disposal cells. Soils excavated from Cell 1 shall be placed in the tailings disposal cells.

7.2.4 Mill Debris

The mill debris will include all equipment, including tankage and piping, agitation equipment, process control instrumentation and switchgear, and contaminated structures; including concrete structures and foundations, will be placed in the disposal cell.

7.3 <u>Work Description</u>

Materials described will be spread over the working surface as much as possible to provide relatively uniform settlement and consolidation characteristics of the cleanup materials.

7.3.1 Raffinate Crystals

Raffinate crystals will be removed from Cell 1 and transported to the tailings cells. Placement of the crystals will be performed as a granular fill, with care being taken to avoid nesting of large sized material. Voids around large material will be filled with finer material or the crystal mass will be broken down by the equipment. Actual placement procedures will be evaluated by the QC officer during construction as crystal materials are placed in the cells and modified with the agreement of the DWMRC.

7.3.2 Synthetic Liner

The PVC liner will be cut, folded (when necessary), removed from Cell 1, and transported to the tailings cells. The liner material will be spread as flat as practical over the designated area. After placement, the liner will be covered as soon as possible with at least one foot of soil, crystals or other materials for protection against wind uplift, as approved by the CQA Manager.

7.3.3 Contaminated Soils

The extent of contamination of the mill site will be determined by gamma radiation survey as described in Section 6. A correlation between gamma survey readings and the unity rule concentrations will be developed. Gamma survey readings can then be used to define cleanup areas and to monitor the cleanup. Soil sampling will be conducted to confirm that the cleanup results in levels that meet criteria described in 7.2.3.

Where surveys indicate the above criteria have not been achieved, the soil will be removed to meet the criteria. Soil removed from Cell 1 will be excavated and transported to the tailings cells.

Page A-55 Revision 5.0 Energy Fuels Resources (USA) Inc. White Mesa Mill Reclamation Plan

7.3.4 Mill Debris

Placed debris will be spread across the bottom of the disposal cell to avoid nesting and to reduce the volume of voids present in the disposed mass. Stockpiled soils and/or other approved materials will be placed over and into the scrap in sufficient amount to fill the voids between the large pieces and the volume within the hollow pieces to form a coherent mass. It is recognized that some voids will remain because of the scrap volume reduction specified, and because of practical limitations of these procedures. Reasonable effort will be made to fill the voids. The approval of the CQA Manager or a designated representative will be required for the use of materials other than stockpiled soils for the purpose of filling voids.

7.3.5 Material Sizing and Preparation

Demolition debris to be placed in the disposal cell will consist of equipment and structural material from facilities demolition. Demolition procedures are outlined in the Preliminary Mill Decommissioning Plan. Because of the wide variety in shape and size of demolition debris, material of odd shapes will be cut or dismantled, to the extent practical, prior to disposal, to facilitate handling and placement and minimize void spaces in the disposal cell. The maximum size of dismantled or cut materials shall not exceed 20 feet in the longest dimension and a maximum volume of 30 cubic feet for placement in the cells. Smaller dimensions may be necessary for loading, handling, hauling, and placement of material in the disposal cell.

The debris, after having been reduced in dimension and volume if required, will be placed in the tailings cells as directed by the CQA Manager.

7.3.6 Incompressible Debris

Material that is not compressible (steel columns and beams, concrete, and other solid material) shall be reduced in size for loading, hauling, and placement in the disposal cell. Incompressible debris shall be placed, oriented, or spread in a manner that minimizes void spaces below, between, and above these materials. Incompressible debris shall be placed on and covered with soils or similar materials (Specification Section 7.3.3). Incompressible debris such as steel members shall be placed in the disposal cell with the longest dimension oriented horizontally.

Thick-walled pipe, conduit, tanks, vats, pressure vessels, and other hollow materials that cannot be crushed or dismantled shall be transported to the planned location within the disposal cell and oriented for filling and burial. The voids on the inside of the item shall be filled with contaminated soil, clean fill soil, or grout (controlled low-strength material, flowable fill, etc.). Contaminated soil (Section 7.3.3) or clean fill will be placed outside of the items and compacted with standard compaction equipment (where possible) or hand-operated equipment to the compaction requirements in Specification Section 7.4. Several lifts of compacted contaminated soil or clean fill may be necessary to fill around and cover these items.

For debris where internal voids cannot practically be filled with soil, a grouting program would be initiated to pump controlled low strength material (CLSM, flowable fill) into the voids. Debris would be grouped together and characterized as materials that would require grouting, so that a significant volume of debris can be grouted in a single action, rather than grouting individual lengths of pipe. Pipe sections could be stacked horizontally, or cut short enough to stand vertically in a safe manner. Grout would then likely be batched offsite and delivered to the site and a pump truck would likely be required to place the material within the debris, within the cell. A soil berm would be used to contain the grout laterally around the perimeter of the selected debris. The debris voids would be grouted, and grout would also be placed around the debris to develop a monolithic grouted mass.

If CLSM is required for the grouting of voids that cannot be filled mechanically with soil, the mix design for the grout should mimic, as closely as possible, the strength and hydraulic properties of the contaminated soil that will also be used for filling voids within the debris. This will minimize any effects of differential settlement that would result from the grout having a higher strength and being less compressible than the surrounding soil.

The unconfined compressive strength of the CLSM should be between 30 psi (minimum) and 150 psi (maximum), and unit weights should be approximately 100 to 120 pcf.

7.3.7 Compressible Debris

Materials that are compressible (such as thin-walled piping and thin-walled tanks) shall be flattened or crushed in the disposal cell, prior to final placement. Flattening or crushing shall be done with hydraulic excavator attachments, or with a dozer or other steel-tracked equipment.

These materials shall be placed in the disposal cell and spread to form a lift with a maximum thickness of two feet. Spreading shall be done in a manner resulting in materials lying flat and minimizing void spaces. All pipe that shall be cut into lengths of approximately 10 feet or less for disposal. Pipe larger than 12 inches in diameter shall be longitudinally split or cut.

7.3.8 Organic Debris

The volume of organic materials (such as wood and paper) that may be prone to long-term biodegradation within the cell is anticipated to be a small percentage of the material being disposed. However, to limit the potential for settlement due to consolidation of organics, the contractor shall not dispose of organic materials in any lift thicker than 12 inches. The material shall be spread with a dozer in lifts, or thoroughly mixed with soil that will be placed around incompressible debris, and compacted. Organics mixed with soil for spreading shall be limited to 30 percent by volume of the mixture.

7.3.9 Soils and Similar Materials

Soils and soil-like materials to be placed in the disposal cell will be from on-site areas identified by EFRI for excavation. Soil or soil-like material shall be placed and compacted over each lift of debris (Section 7.2.4) or other materials in lifts not to exceed two feet in loose thickness and compacted prior to placement of additional lifts. Soils will also be used for interim soil cover to minimize exposure of demolition materials and other materials to air and meteoric water.

7.4 Performance Standards and Testing

7.4.1 Material Compaction – Debris Lifts

During construction, the compaction requirements for the crystals will be evaluated based on field conditions and material quantities. The compaction requirements will be determined by the

CQA Manager and the Reclamation Project Manager or a designated representative, with the agreement of the Owner.

The debris, contaminated soils and other materials for the first lift will be placed to a depth of up to four feet thick, in a bridging lift, to allow access for placing and compacting equipment. The first lift will be compacted by the tracking of heavy equipment, such as a Caterpillar D6 Dozer (or equivalent), using at least four passes, prior to the placement of the next lift. Subsequent lifts will not exceed 12 inches and will be compacted using a minimum of four passes with the tracked equipment.

Soil or similar material shall be compacted with a minimum of 6 passes with self-propelled, towed, or hand-held vibratory compaction equipment. The number of passes shall be confirmed with actual compaction equipment on site with a field test section of soil to establish a correlation between the field compaction method and 80 percent of maximum dry density for the soil, as determined by the standard Proctor test (ASTM D698). During compaction, the material shall be within 1 percent above to 4 percent below optimum moisture content for the material, as determined by the standard Proctor test. If water addition is required to achieve this range of moisture contents, the added water shall be thoroughly mixed into the material prior to compaction.

The CQA technicians will monitor and approve of the final debris placement. In areas where voids are observed during placement, the contractor shall re-excavate the area, fill any voids encountered with soil and recompact the materials, or grout the voids. The CQA technicians will make a recommendation to the Contractor for the implementation of a grouting program where voids, either within a debris mass, or within a vessel, cannot be properly filled with soil using conventional equipment.

7.4.2 Material Compaction - Disposed Materials

The upper 12 inches of the final disposed material surface shall be compacted to 90 percent of the maximum dry density for the material, as determined by the Standard Proctor test. During compaction, the material shall be within 1 percent above to 4 percent below optimum moisture

content for the material, as determined by the standard Proctor test. If water addition is required to achieve this range of moisture contents, the added water shall be thoroughly mixed into the material prior to compaction.

7.4.3 Testing Frequency

Field density tests shall be compared with standard Proctor tests (ASTM D698 Method A or C) on the same material. Standard Proctor tests shall be conducted at a frequency of at least one test per 5,000 cubic yards of material compacted, or when material characteristics show significant variation.

Field density testing may be conducted with the sand cone test (ASTM D1556) or a nuclear density gauge (ASTM D6938, or as modified by the QA Manager). Correlation of nuclear density gauge results shall be by comparison with results from sand cone test(s) and laboratory testing for water content(s) using the oven drying method (ASTM D2216) on similar material.

The frequency of the field density and moisture tests will be not less than one test per 1,000 cubic yards of compacted fill. A minimum of two tests will be taken for each day that an applicable amount of fill is placed in excess of 150 cubic yards. A minimum of one test per lift and at least one test for every full shift of compaction operations will be taken.

7.4.4 Final Slope and Grades

The final disposed material surface shall have maximum side slopes of 5:1 and a top surface sloping in the directions and grades shown on the Drawings. The side slopes and top surface shall be free from abrupt changes in grade or areas of runoff concentration. The final disposed material surface shall be compacted with approved construction equipment to form a smooth surface with uniform density for subsequent cover placement.

8.0 COVER CONSTRUCTION

8.1 <u>General</u>

This section outlines work associated with construction of the earthen cell cover. A multilayered earthen cover will be placed over tailings Cells 2, 3 and 4A and a portion of Cell 1 used for disposal of contaminated materials (the Cell 1 Disposal Area).

8.2 Materials Description

8.2.1 Cover Random Fill

The random fill for the radon attenuation layers, and the water storage/frost protection layer will consist of a mixture of sands and silts with varying amounts of clay.

In the initial bridging (platform) lift of the tailings, rock sizes of up to 2/3 of the thickness of the lift will be allowed. On all other fill lifts, rock sizes will be limited to 2/3 of the lift thickness, with at least 30 percent of the material finer than the No. 40 sieve. The portion passing the No. 40 sieve, will classify as CL, SC, ML or SM materials under the Unified Soil Classification System. Oversized material will be controlled through selective excavation at the stockpiles and through the utilization of a grader, bulldozer or backhoe to cull oversize materials from the fill.

The source of these materials will be on-site stockpiles from previous cell construction activities.

8.2.2 Organic Matter Amendment

Composted biosolids will be used to amend the physical and chemical properties of the water storage/frost barrier material for plant growth (Section 8.3.7). Composted biosolids will be added to the upper six inches of the water storage fill material at a rate of 10 tons/acre.

8.2.3 Rock Mulch

Gravel will be mixed with topsoil and placed on portions of the cover on Cells 2, 3, 4A, and 4B top surfaces (as shown on the Drawings) for erosion protection. Rock mulch material shall be shall be free from roots, branches, rubbish, and debris.

The rock portion of the rock mulch will consist of granular materials from approved off-site areas. The mixture shall be 25 percent gravel by weight. The rock (gravel) portion of the rock mulch shall be a screened product and have a D_{100} particle size of less than 1-inch (100 percent passing the 1-inch sieve).

The soil portion of the rock mulch will consist of select material from the on-site topsoil borrow area (Section 3.5).

8.2.4 Erosion Protection and Perimeter Apron Rock

Material for the perimeter apron erosion protection will consist of granular materials from approved off-site sources. The perimeter apron rock will be placed along the toe of the disposal cell and the tailings cells in the erosion protection areas (as shown on the Drawings). Perimeter apron rock shall meet NRC long-term durability requirements (a rock quality designation of 65 or more).

Perimeter apron rock shall be shall be a screened product, free from roots, branches, rubbish, and debris. The specifications as given below are for rock quality designations of 70 or higher. If actual rock quality designation is between 65 and 69, oversizing will be required. Rock quality designations below 65 will not be acceptable.

Designated gradations for the apron rock will be as specified on the Drawings. Apron rock will be imported from off-site.

- Side Slope riprap shall have a minimum D₅₀ as listed below and a minimum layer thickness of 1.5 times the D₅₀ or the D₁₀₀ of the riprap, whichever is greater:
 - o 1.7 in. for non-accumulating flow side slopes
 - 5.3 in. for Cell 4A and Cell 4B southern side slopes
 - 4.5 in. for Cell 1 Disposal Area side slope

- Rock aprons shall have a minimum D₅₀ as listed below and a minimum layer thickness of 1.5 times the D₅₀ or the D₁₀₀ of the riprap, whichever is greater
 - o 3.4 in. for Rock Apron A
 - o 10.5 in. for Rock Apron B
 - o 9.0 in. for Rock Apron C

8.2.5 Erosion Protection Filter

Erosion protection filter material shall be shall be free from roots, branches, rubbish, and debris. The filter material will generally classify as sand containing gravel and fines and shall meet the following gradation specifications.

Sieve Size	Percent Passing, By Weight
3-inch	100
No. 4	70-100
No. 20	40-60
No. 200	0-5

Table 8.1 – Filter Material Gradation

8.2.6 Topsoil

Topsoil will consist of select material from the designated, on-site topsoil borrow area (Section 3.5). The topsoil shall have a plasticity index (PI) less than 10 (%), as determined by Atterberg limits testing.

8.3 <u>Work Description</u>

The contractor will place cover materials based on a schedule determined by the Owner and the Owner's analysis of settlement data, piezometer data and equipment mobility considerations. The DWMRC must approve fill grades and elevations prior to placement of final cover materials. Settlement monitoring points (both temporary and permanent) will be established and

monitored in accordance with Sections 8.3.1 to 8.3.3 of the Technical Specifications and the Settlement Monitoring Plan approved by DWMRC for the site.

In each layer of the cover, the distribution and gradation of the materials throughout each fill layer will be such that the fill will, as far as practicable, be free of lenses, pockets, or layers of material differing substantially in texture, gradation or moisture content from the surrounding material. Nesting of oversized material will be controlled through selective excavation of stockpiled material, observation of placement by a qualified individual with authority to stop work and reject material being placed and by culling oversized material from the fill utilizing a grader. Successive loads of material will be placed on the fill so as to produce the best practical distribution of material.

If the compacted surface of any layer of fill is too dry or smooth to bond properly with the layer of material to be placed thereon, it will be moistened and/or reworked with a harrow, scarifier, or other suitable equipment to a sufficient depth to provide relatively uniform moisture content and a satisfactory bonding surface before the next succeeding layer of fill is placed. If the compacted surface of any layer of fill in-place is too wet, due to precipitation, for proper compaction of the fill material to be placed thereon, the contractor will rework the material with a harrow, scarifier or other suitable equipment to reduce the moisture content to the specified range. The contractor will then recompact the fill.

No material will be placed when either the material being compacted, or the underlying material, is frozen or when ambient temperatures do not permit the placement or compaction of the materials to the specified density, without developing frost lenses in the fill.

8.3.1 Monitoring Interim Cover Settlement

The contractor will maintain the existing settlement monitoring points located within tailings disposal cells by extending them through additional fill placement. For areas without settlement monitoring points, the contractor will install temporary settlement points to monitor settlements of the interim cover surface. The temporary settlement points will consist of wooden stakes, rebar, or an approved equivalent; set a minimum of 12 inches into the interim cover surface.

Settlement data will be collected and analyzed; and the reclamation techniques and schedule will be adjusted accordingly.

8.3.2 Monitoring Final Cover Settlement

After placement of final cover material, the contractor will install permanent settlement plates to monitor settlement of the final cover surface. The settlement plates will consist of a corrosion resistant steel plate (1/4-inch thick; two-foot square to which a one-inch diameter corrosion resistant monitor pipe has been welded. The one-inch diameter monitor pipe will be surrounded by a three-inch diameter guard pipe which will not be attached to the base plate.

The installation will consist of leveling an area on the surface and placing the base plate directly on the cover soil. A minimum of two feet of initial soil will be placed on the base plate for a minimum radial distance of five feet from the center pipe.

8.3.3 Monitoring Settlement Points

Settlement monument placement and data collection will be made in accordance with the DWMRC approved Settlement Monitoring Plan.

8.3.4 Platform Layer Fill

A layer of 2.5 feet of platform fill will be placed over the tailings surface to form a stable working platform for subsequent controlled fill placement. This platform fill will be placed by pushing random fill material across the tailings in increments such that the underlying tailings are displaced as little as possible. The fill soils shall be placed in lifts of 12-inch maximum loose thickness to form a uniform subsoil layer for the cover system. A rough surface will be maintained on the surface of each lift.

8.3.5 Highly Compacted Layer

The highly compacted layer shall be placed in lifts with maximum compacted thickness of 6 inches to form a continuous layer with a total minimum compacted layer thickness of 30 inches. A rough surface will be maintained on the surface of each lift. If water addition is required to

achieve the required range of moisture contents, the added water shall be thoroughly mixed into the material prior to compaction.

8.3.6 Water Storage Layer Fill Placement

Random fill will be placed to a minimum of 42 inches thick, above the highly compacted layer in 18-inch lifts. If oversized material is observed during the excavation of fill material, it will be removed, as far as practicable, before it is placed in the fill. A rough surface will be maintained on the surface of all but the uppermost lift. If water addition is required to achieve the required range of moisture contents, the added water shall be thoroughly mixed into the material prior to placement.

8.3.7 Organic Matter Amendment

Composted biosolids will be applied prior to the placement of topsoil or the topsoil-gravel mixture. Composted biosolids will be uniformly spread over the surface of the water storage layer (frost barrier) and mixed to a depth of 6 in. (15 cm). The soil amendment will be applied prior to placement of the topsoil and topsoil-rock mixture.

8.3.8 Rock Mulch Placement

The contractor shall provide a method of thoroughly mixing the topsoil and the gravel mixture to provide the 25 percent gravel- 75 percent topsoil mixture (by weight). The mixture shall be prepared prior to transport to the placement areas. Gradation samples will be collected at the point of placement (on the topdeck) to verify the mixture's content. The CQA manager will approve the contractor's proposed method of mixing based on the gradation results during initial placement.

The mixture shall be placed in one loose lift to form a uniform layer with a final thickness of 6 inches on the slope surfaces of the disposal cell (shown on the Drawings). The gravel-topsoil mixture shall be spread with tracked equipment and compacted using two passes with rubber-tracked equipment. Low-ground pressure equipment may be necessary to prevent over-compaction of the mixture. Field density tests will be conducted to monitor and prevent overcompaction of the material.

The topsoil-gravel erosion control layer will not be amended for organic matter or nutrients to avoid the stimulation of undesirable weedy species.

Following placement of the topsoil-gravel erosion protection layer, the area shall be harrowed to reduce any compaction that may have occurred during placement of the cover and to create an uneven surface for optimum seedbed conditions.

8.3.9 Topsoil Placement

Topsoil (Section 8.2.7) shall be placed in one loose lift to form a uniform layer with a final thickness of 6 inches on the top and side slope surfaces of the disposal cell (shown on the Drawings). The topsoil shall be spread with tracked equipment and compacted using two passes with rubber-tracked equipment. Low-ground pressure equipment may be necessary to prevent over-compaction of the topsoil.

The topsoil layer will not be amended for organic matter or nutrients to avoid the stimulation of undesirable weedy species.

Following placement of the topsoil layer, the area will be harrowed to reduce any compaction that may have occurred during placement of the cover and to create an uneven surface for optimum seedbed conditions.

8.3.10 Rock and Filter Material Placement

The side slopes of the reclaimed cover will be protected by rock surfacing. Riprap, perimeter apron rock (Section 8.2.5), and erosion protection filter material (Section 8.2.6) shall be placed in one or more lifts to the depths outlined in the Drawings and using the methods outlined below.

The Drawings show the location of rock protection with the size and thickness requirements for the various side slopes and aprons.

Filter material and rock shall be handled, loaded, transported, stockpiled, and placed in a manner that minimizes segregation. Rock and filter material shall be placed in or near its final location by dumping, then spreading with a small dozer, the bucket of a trackhoe, or other suitable equipment. Rock and filter material shall be placed and spread in a manner that minimizes

displacement of underlying cover soils, natural soils, or filter material. Each layer of rock and filter material shall be track-walked with a small dozer, tamped with the bucket of a trackhoe, or densified by other approved methods.

Placement of the riprap will avoid accumulation of riprap sizes less than the minimum D_{50} size and nesting of the larger sized rock. The riprap layer will be compacted by at least two passes by a D7 Dozer, tamping with the bucket of a trackhoe, or equivalent methods in order to key in the rock particles for stability. The completed layer of rock mulch and filter material shall be wellgraded in particle-size distribution and free from pockets of smaller material and free from large voids or loose areas.

8.4 Performance Standard and Testing

8.4.1 Platform Fill Testing

Compaction of the platform fill will be dictated by the methods used by EFRI in platform fill placement.

Prior to placement of the highly compacted layer material, the top surface platform fill will be compacted to at least 95 percent of the maximum dry density for the material as determined by the standard Proctor test. The upper 6 inches of the platform fill shall be tested for compaction according to Section 8.4.2. Placement of platform fill will be monitored by a qualified individual with the authority to stop work and reject material being placed.

8.4.2 Highly Compacted Layer Testing

Each lift of the highly compacted layer shall be compacted to at least 95 percent of the maximum dry density for the material, as determined by the standard Proctor test (ASTM D698). Water contents should be adjusted, as needed, to meet the density requirements.

Material specifications for the random fill material shall be confirmed by gradation testing conducted by approved personnel. Testing shall consist of No. 200 sieve wash and particle-size distribution testing (ASTM D422) and Atterberg limits (ASTM D4318) at a frequency of at least

one test per 2,000 cubic yards of fill placed, or when material characteristics show a significant variation.

Checking of compaction shall consist of a minimum of one field density test per 500 cubic yards of material compacted. A minimum of two tests shall be taken for each day that an applicable amount of fill is placed in excess of 150 cubic yards. A minimum of one test per lift and at least one test for every full shift of compaction operations will be taken.

Field density tests shall be compared with Standard Proctor tests (ASTM D698 Method A or C) on the same material. Standard Proctor tests shall be conducted at a frequency of at least one test per 2,500 cubic yards of material compacted, or when material characteristics show significant variation.

Field density testing may be conducted with the sand cone test (ASTM D1556) or a nuclear density gauge (ASTM D6938, or as modified by the QA Manager). Correlation of nuclear density gauge results shall be by comparison with results from sand cone test(s) and laboratory testing for water content(s) using the oven drying method (ASTM D2216) on similar material.

8.4.3 Water Storage Layer Fill Material Testing

Material specifications for the random fill for water storage layer shall be confirmed by gradation testing conducted by approved personnel. Testing shall consist of No. 200 sieve wash and particle-size distribution testing (ASTM D422) and Atterberg limits (ASTM D4318) at a frequency of at least one test per 2,000 cubic yards of fill placed, or when material characteristics show a significant variation. Cover material compaction will be verified by the maximum lift thickness outlined in Section 8.3.6.

Each lift of this upper fill material layer shall be compacted to at least 85 percent of the maximum dry density for the material, as determined by the standard Proctor test (ASTM D698). Water contents should be adjusted, as needed, to meet the density requirements.

The frequency of the field density and moisture tests will be not less than one test per 1,000 cubic yards of compacted fill. A minimum of two tests will be taken for each day that an

applicable amount of fill is placed in excess of 150 cubic yards. A minimum of one test per lift and at least one test for every full shift of compaction operations will be taken.

Field density tests shall be compared with Standard Proctor tests (ASTM D698 Method A or C) on the same material. Standard Proctor tests shall be conducted at a frequency of at least one test per 5,000 cubic yards of material compacted, or when material characteristics show significant variation.

Field density testing may be conducted with the sand cone test (ASTM D1556) or a nuclear density gauge (ASTM D6938, or as modified by the QA Manager). Correlation of nuclear density gauge results shall be by comparison with results from sand cone test(s) and laboratory testing for water content(s) using the oven drying method (ASTM D2216) on similar material.

8.4.4 Topsoil Testing

Material specifications for the topsoil material shall be confirmed by Atterberg limits testing (ASTM D4318) on samples of the topsoil, once for each 1,000 cubic yards of total topsoil material placed (including the quantity of topsoil added to the rock mulch mixture).

The topsoil shall be compacted to between 80 and 85 percent of the maximum dry density for the material, as determined by the standard Proctor test. During placement, the material shall be within the optimum moisture content and 3 percent below the optimum moisture content for the material, as determined by the standard Proctor test.

Checking of compaction of the topsoil shall consist of a minimum of one field density test per 500 cubic yards of material placed. A minimum of two tests shall be taken for each day that an applicable amount of fill is placed in excess of 150 cubic yards. A minimum of one test per lift and at least one test for every full shift of placement operations will be taken.

Field density tests shall be compared with Standard Proctor tests (ASTM D698 Method A or C) on the same material. Standard Proctor tests shall be conducted at a frequency of at least one test per 2,500 cubic yards of material placed, or when material characteristics show significant variation.

Field density testing may be conducted with the sand cone test (ASTM D1556) or a nuclear density gauge (ASTM D6938, or as modified by the QA Manager). Correlation of nuclear density gauge results shall be by comparison with results from sand cone test(s) and laboratory testing for water content(s) using the oven drying method (ASTM D2216) on similar material.

8.4.5 Rock Mulch Testing

The maximum particle size for the rock used for rock mulch material shall be confirmed by gradation testing prior to mixing with the topsoil, to determine the maximum particle size. Testing shall consist of particle-size distribution testing (ASTM D422) at a frequency of at least one test per 2,000 cubic yards of rock delivered to the site, or when rock characteristics show a significant variation.

The gradation specifications for the rock mulch material (topsoil-gravel mixture) (Specification Section 8.2.4) shall be confirmed by gradation testing, on samples collected from the point of placement (on the topdeck). Testing shall consist of particle-size distribution testing (ASTM D422) at a frequency of at least one test per 2,000 cubic yards of mixture placed, or when the characteristics of the mixture show a significant variation. The QA Manager may choose to conduct to increase the frequency of testing at the beginning of placement to evaluate the mixing method proposed by the contractor.

Rock mulch thickness will be controlled through the establishment of grade stakes placed on a 200 x 200 foot grid on the top of the cells and by a 100 x 100 foot grid on the cell slopes. Physical checks of rock mulch depth will be accomplished through the use of hand dug test pits at the center of each grid in addition to monitoring the depth indicated on the grade stakes.

The rock mulch mixture shall be compacted to between 80 and 85 percent of the maximum dry density for the material, as determined by the standard Proctor test. During placement, the material shall be within the optimum moisture content and 3 percent below the optimum moisture content for the material, as determined by the standard Proctor test.

Checking of compaction of the rock mulch mixture shall consist of a minimum of one field density test per 500 cubic yards of material placed. A minimum of two tests shall be taken for each day that an applicable amount of fill is placed in excess of 150 cubic yards. A minimum of one test per lift and at least one test for every full shift of placement operations will be taken.

Field density tests shall be compared with Standard Proctor tests (ASTM D698 Method A or C) on the same material. Rock corrections (ASTM D4718) for oversize particles may be required for the mixture depending on the gradation of the gravel material selected. Standard Proctor tests shall be conducted at a frequency of at least one test per 2,500 cubic yards of material placed, or when material characteristics show significant variation.

Field density testing may be conducted with the sand cone test (ASTM D1556) or a nuclear density gauge (ASTM D6938, or as modified by the QA Manager). Correlation of nuclear density gauge results shall be by comparison with results from sand cone test(s) and laboratory testing for water content(s) using the oven drying method (ASTM D2216) on similar material.

The durability of the rock shall be verified by durability tests outlined in Specification Section 8.4.8.

8.4.6 Erosion Protection and Perimeter Apron Rock Testing

Material specifications for the perimeter apron rock shall be confirmed by gradation testing conducted by approved personnel. Testing shall consist of particle-size distribution testing (ASTM D422) at a frequency of at least one test per 2,000 cubic yards of rock delivered to the site, or when rock characteristics show a significant variation.

Rock layer thickness will be controlled through the establishment of grade stakes placed on a 200×200 foot grid on the top of the cells and by a 100×100 foot grid on the cell slopes. Physical checks of riprap depth will be accomplished through the use of hand dug test pits at the center of each grid in addition to monitoring the depth indicated on the grade stakes.

The durability of the rock shall be verified by durability tests outlined in Specification Section 8.4.8.

8.4.7 Erosion Protection Filter Testing

Material specifications for erosion protection filter material (Section 8.2.6) shall be confirmed by gradation testing conducted by approved personnel. Testing shall consist of No. 200 sieve wash and maximum particle size testing (ASTM D422) at a frequency of at least one test per 10,000 cubic yards of fill placed, or when material characteristics show a significant variation.

Filter layer thickness will be established during construction with grade stakes placed on a grid or centerline and offset pattern and layer thickness marks on each grade stake. The minimum thickness of the layer will be verified by spot checking of layer thickness by hand excavation in selected locations.

8.4.8 Rock Durability Testing

For riprap materials, each load of material will be visually checked against standard piles for gradation prior to transport to the tailings piles. Prior to delivery of any riprap materials to the site, rock durability tests will be performed for each gradation to be used. Test series for riprap durability will include specific gravity, absorption, sodium soundness and LA abrasion. During construction, additional test series and gradations will be performed for each type of riprap when approximately one-third (1/3) and two-thirds (2/3) of the total volume of each type have been produced or delivered. For any type of riprap where the volume is greater than 30,000 cubic yards, a test series and gradations will be performed for each additional 10,000 cubic yards of riprap produced or delivered.

8.5 Surface Slopes and Grades

The final cover surface shall have maximum side slopes of 5:1 and a top surface sloping in the direction and grade shown on the Drawings. The side slopes and top surface shall be free from abrupt changes in grade or areas of runoff concentration. The perimeter apron at the toe of the side slopes shall have a minimum width of 20 feet from the toe of the side slopes and slope away from the toe of the side slopes (as shown on the Drawings).

8.6 <u>Grading Tolerances</u>

The completed cover surface shall be constructed to within 1.0 foot (horizontally) of the lines as designed, and within 0.1 foot (vertically) of the elevations as designed. The final surface of the subsoil zone shall be smoothed to avoid abrupt changes in surface grade. The layer thicknesses shall meet the required minimum thicknesses.

The completed riprap shall be placed to within 5.0 foot (horizontally) of the layout as designed, and within 0.5 foot (vertically) of the elevations as designed. The rock layer thicknesses shall meet the minimum requirements.

Page A-74 Revision 5.0 Energy Fuels Resources (USA) Inc. White Mesa Mill Reclamation Plan

9.0 REVEGETATION

9.1 General

Following topsoil placement, the cover surface and other areas disturbed during reclamation work will be revegetated. This section outlines the requirements for vegetation establishment where required. This section may be revised as necessary based on field requirements and soil nutrient analyses at the time of revegetation.

9.2 Materials Description

The soil amendments, seed mixture, and erosion control materials for revegetation are outlined below. Submittals for each of the following products shall be provided to the Owner for approval prior to use of such products.

9.2.1 Soil Amendments

The proposed application rate may be adjusted up or down based on soil chemical analysis that is conducted prior to placement of the water storage layer.

Composted biosolids shall be added at a rate of 10 tons/acre and uniformly spread over the surface of the water storage layer and mixed to a depth of 15 cm. This treatment will be applied after the water storage layer is in-place and before placement of the topsoil-gravel erosion protection layer.

9.2.2 Seed Mix

Species selection for the seed mixture was based on native vegetation found in the area as well as soil and climatic conditions of the mill site. Changes to the seed mixture will be as approved by EFRI. The following seed mixture shall be used on all seeded areas.

Scientific Name	Common Name Varieta Name		Native/ Introduced	Seeding Rate (lbs PLS/acre) [†]	Seeding Rate (# seeds/ft ²)
Grasses					
Pascopyrum smithii	Western wheatgrass	Arriba	Native	3.0	7.9
Pseudoroegneria	Bluebunch wheatgrass	Goldar	Native	3.0	9.6
spicata Elymus trachycaulus	Slender wheatgrass	San Luis	Native	2.0	6.2
<i>Elymus lanceolatus</i>	Streambank wheatgrass	Sodar	Native	2.0	7.3
Elymus elymoides	Squirreltail bottlebrush	Toe Jam	Native	2.0	8.8
Thinopyrum intermedium	Pubescent wheatgrass	Luna	Introduced [‡]	1.0	1.8
Achnatherum hymenoides	Indian ricegrass	Paloma	Native	4.0	14.7
Poa secunda	Sandberg bluegrass	Canbar	Native	0.5	11.4
Festuca ovina	Sheep fescue	Covar	Introduced [‡]	1.0	11.5
Bouteloua gracilis	Blue grama	Hachita	Native	1.0	16.5
Hilaria jamesii	Galleta	Viva	Native	2.0	7.3
Forbs					
Achillea millefolium, variety occidentalis	Common yarrow	VNS*	Native	0.5	32
Artemisia ludoviciana	White sage	VNS	Native	0.5	45
Shrubs					
Atriplex canescens	Fourwing saltbush	Wytana	Native	3.0	3.4
Ericameria nauseosa	Rubber rabbitbrush	VNS	Native	0.5	4.6
Total				26.5	188

Table 9.1. Species and seeding rates proposed for Mill site.

[†]Seeding rate is for broadcast seed and presented as pounds of pure live seed per acre (lbs PLS/acre).

[‡]Introduced refers to species that have been 'introduced' from another geographic region, typically outside of North America. Also referred to as 'exotic' species. *VNS=Variety Not Specified and seed source will be from sites that are climatically similar to White Mesa.

Seed shall be purchased as pounds of pure live seed and will be certified by the Utah State Department of Agriculture and Food. Certification will verify that the seed is correctly identified and genetically pure. Once the seed is obtained, seed labels will be checked to determine the percent PLS and the date that the seed was tested for percent purity and percent germination. If the test date is greater than 6 months old, the seed will be tested again before being accepted.

9.2.3 Erosion Control Materials

Wood fiber mulch will consist of specially prepared wood fibers and will not be produced from recycled material such as sawdust, paper, cardboard, or residue from pulp and paper plants. The fibers will be dyed an appropriate color, with non-toxic, water-soluble dye to facilitate visual metering during application. Wood-fiber mulch will be supplied in packages and each package will be marked by the manufacturer to show the air-dry weight.

A tackifier will be used with the wood-fiber mulch to improve adhesion. The tackifier will be a biodegradable organic formulation processed specifically for the adhesive binding of mulch. In addition, the tackifier will uniformly disperse when mixed with water and will not be detrimental to the homogeneous properties of the mulch slurry.

9.3 <u>Work Description</u>

Revegetation efforts shall be directed at all reclaimed and disturbed areas. The goal of the revegetation plan is to ensure that a self-sustaining vegetative community is established.

9.4 Soil Amendment Application

Following final placement and grading of the frost barrier layer, amendments will be applied as discussed in Section 9.2.1. Inorganic sources of nitrogen, phosphorus, and potassium will not be applied to the soil because composted biosolids will provide all the macronutrients required for long-term sustainability.

9.5 Growth Zone Preparation

A favorable seedbed shall be prepared on the topsoil layer or topsoil-rock mixture, prior to seeding operations. The soil should be loose and friable so as to maximize contact with the seed. The soil will be tilled, following site contours with a disc or harrow (or similar approved equipment) to a maximum depth of 6 inches. The depth of valleys and the height of ridges caused by the final tillage operations are not to exceed 3 inches.

9.6 <u>Seed Application</u>

Seeding will follow the application of soil amendments and seedbed preparation, by broadcast spreading method. This procedure will use a centrifugal type broadcaster (or similar implement), also called an end gate seeder. The broadcasters will have a minimum effective spreading width of 20 feet. Seed will be applied in two separate passes. One-half of the seed will be spread in one direction and the other half of seed will be spread in a perpendicular direction. This will ensure that seed distribution across the site is highly uniform and also provide the opportunity to adjust the seeding rate if the specified rate is not being achieved. Seeding will not occur if wind speeds exceed 10 mph.

Immediately following seeding, the area will be lightly harrowed to provide seed coverage and to maximize seed-soil contact. Broadcast seed shall be harrowed into the soil to a depth of 0.25 to 0.75 inches.

Seeding will take place as soon as practical after the cover system is in place. Successful seeding in southeastern Utah can occur either in late fall (e.g. October) as a dormant seeding, with germination and establishment occurring the following spring or can be conducted in June, prior to the summer monsoon season. Timing for seeding will depend upon the construction schedule for the cover system.

9.7 Erosion Control Material Application

Mulch will be applied immediately following seeding. A weed-free, wood-fiber mulch shall be applied to the seeded area at a minimum rate of 1.5 tons/acre. The wood-fiber mulch will be applied by means of hydraulic equipment that utilizes water as the carrying agent. A continuous agitator action, that keeps the mulching material and approved additives in uniform suspension, will be maintained throughout the distribution cycle.

The pump pressure will be capable of maintaining a continuous non-fluctuating stream of slurry. The slurry distribution lines will be large enough to prevent stoppage and the discharge line will be equipped with a set of hydraulic spray nozzles that will provide even distribution of the mulch slurry to the seedbed. Mulching will not be done in the presence of free surface water resulting from rains, melting snow, or other causes. Tackifier may be added either during the manufacturing of the mulch or incorporated during mulch application.

9.8 Performance Standard and Testing

The following section describes performance-based criteria for successful revegetation.

9.8.1 Seeding Rates

Prior to seeding, a known area will be covered with a tarp and seed will be distributed using the broadcaster and simulating conditions that would exist under actual seeding conditions. Seed will then be collected and weighed to determine actual seeding rate in terms of pounds per acre. This process will be repeated until the specified seeding rate is obtained.

During the seeding process, the seeding rate will be verified at least once by comparing pounds of seed applied to the size of the area seeded.

9.8.2 Erosion Control

The cover shall be inspected two times per year for eroded areas. Any area that has experienced erosion shall be backfilled and reseeded. Erosion control materials shall also be reapplied over reseeded areas.

9.8.3 Weed Control

Weed management would be conducted on the Mill site by identifying the presence of any noxious weeds during annual vegetation surveys and developing a weed control plan that is specific to the species that are present (Table 9.2). Noxious weed control is species-dependent and both method and timing will vary from species to species.

Scientific Name Common Name						
Utah State—Listed Noxious Weeds						
Acroptilon repens	Russian knapweed					
Cardaria spp.	Whitetop (all species)					
Carduus nutans	Musk thistle					
Centaurea diffusa	Diffuse knapweed					
Centaurea solstitialis	Yellow star thistle					
Centaurea stoebe ssp. micranthos	Spotted knapweed					
Centaurea virgate ssp. Squarrosa	Squarrose knapweed					
Cirsium arvense	Canada thistle					
Convolvulus spp.	Bindweed (all species)					
Cynodon dactylon	Bermuda grass					
Elymus repens	Quackgrass					
Euphorbia esula	Leafy spurge					
Isatis tinctoria	Dyer's woad					
Lepidium latifolium	Broadleaf pepperweed					
Lythrum salicaria	Purple loosestrife					
Onopordum acanthium	Scotch thistle					
Sorghum almum	Perennial sorghum (all species)					
Taeniatherum caput-medusae	Medusahead					
San Juan County—L	San Juan County—Listed Noxious Weeds					
Aegilops cylindrical	Jointed goatgrass					
Alhagi maurorum	Camelthorn					
Asclepias subverticillata	Western whorled milkweed					
Solanum elaeegnifolium	Silverleaf nightshade					
Solanum rostratum	Buffalobur					

Table 9.2. Noxious weed species.

Each survey will identify noxious weed populations and locate these populations on a map using a set of symbols to identify species, size of the infestation, and density of the population. The effectiveness of control methods will be documented in each annual survey. In addition, immediately adjacent off-site properties will be visually surveyed to a distance of 100 feet. Inspections will be conducted by personnel familiar with the identification of noxious weeds in the area and based on Utah's Noxious Weed List.

Page A-80 Revision 5.0 Energy Fuels Resources (USA) Inc. White Mesa Mill Reclamation Plan

The selected control methods will be based on the type, size, and location of the mapped noxious weeds. The treated area(s) will be monitored and re-inspected annually for new weed introductions and to evaluate the success of the control methods. Prevention is the highest priority weed management practice on non-infested lands; therefore protecting weed-free plant communities is the most economical and efficient land management practice. Prevention is best accomplished by ensuring that new weed species seed or vegetative reproductive plant parts of weeds are not introduced into new areas, and by early detection of any new weed species before they begin to spread.

Control methods may include chemical or mechanical approaches. The optimum method or methods for weed management vary depending on a number of site-specific variables such as associated vegetation, weed type, stage of growth, and severity of the weed infestation.

Chemical Control

Chemical control consists mostly of selective and non-selective herbicides. Considerations for chemical controls include: herbicide selection, timing of application, target weed, desirable plant species being grown or that will be planted, number of applications per year and number of years a particular species will need to be treated for desired control. Also important are the health and safety factors involved, and the need to consider undesirable impacts. The use of herbicides will be in compliance with all Federal and State laws on proper use, storage, and disposal. The chemical application will be done by a licensed contractor in accordance with all applicable laws and regulations and all label instructions will be strictly followed. Applications of herbicides would not be permitted when the instructions on the herbicide label indicate conditions that are not optimal.

Page A-81 Revision 5.0 Energy Fuels Resources (USA) Inc. White Mesa Mill Reclamation Plan

Mechanical Control

Mechanical control is the physical removal of weeds from the soil and includes tilling, mowing, and pulling undesirable plant species. Tillage is most effective prior to seeding and establishment of desirable vegetation. The tillage method of weed control can be effective in eliminating noxious perennial weeds when repeated at short intervals (every 1-2 weeks) throughout the growing season. Tillage has the drawback of indiscriminately impacting all vegetation interspersed with weeds in established areas and can eliminate competitive, desirable vegetation leaving behind a prime seedbed for weeds to reinvade. Mowing can be an effective method for controlling the spread of an infestation and preventing the formation and dispersal of seeds. Mowing is most effective on weeds which spread solely or primarily by seed. In order to achieve this, it must be repeated at least twice during the growing season prior to, or shortly after bloom. Also, even the most intense mowing treatment will not kill hardy perennial weeds. Additional considerations will be made when selecting control treatments when specific situations arise regarding type, size, and location of weed infestations. Examples of this are perennial versus biennial, broadleaf versus grasses, noxious weeds interspersed with desirable vegetation, large monoculture patches, or small patches requiring spot treatment.

Treatment windows schedules, based on the control methods chosen and the noxious weeds present, will be established for each treatment area. The best time to treat perennial noxious weeds is in the spring or fall during their active growth phase. Different species will have different optimum treatment times even with the same type of control. Perennial weeds usually grow vegetatively in the spring, flower and seed in late spring and early summer, enter dormancy during the summer and actively grow again in the fall. The treatment windows selected will depend on the species present and control methods selected.

The final preparatory step is to determine the priority for areas to be treated. Prioritization ensures that the most important areas are dealt with at the most effective times. Important areas of concern include areas that may transport weed seeds. These areas include ditches, roadsides,

and land equipment storage sites. Large monoculture patches are of concern wherever they occur and would always be high priority. Also, small patches of weeds would be treated to prevent expansion of weed populations.

Once the treatment plan is implemented, detailed records will be kept, and success or failure of treatment will be recorded so as to eliminate unsuccessful treatments.

9.8.4 Vegetation Establishment Performance

The following Revegetation Acceptance Goals/Criteria have been adapted from the Monticello Site and would be used at the Mill Site to determine reclamation success.

Revegetation Acceptance Goal/Criteria:

Criterion 1 Species Composition

 a. The vegetative cover (the percentage of ground surface covered by live plants) shall be composed of a minimum of five perennial grass species (at least four listed as native), and one perennial forb species, and two shrub species listed in Table 9.1

Criterion 2 Vegetative Cover

- a. Attain a minimum vegetative cover percentage of 40 percent.
- b. Individual grass and forb species listed in Table 9.1 that are used to achieve the cover criteria shall have a minimum <u>relative</u> cover (the cover of a plant species expressed as a percentage of total vegetative cover) of 4 percent and a maximum relative cover of 40 percent.
- c. Individual species not listed in Table 9.1 may be accepted as part of the cover criteria if it is demonstrated that the species is native or adapted to the area and is a desirable component of the reclaimed project site.
- d. Species not listed in Table 9.1, including annual weeds or other undesirable species such as those listed in Table 9.2, shall not count toward the minimum vegetative cover requirement. Every attempt should be made to minimize establishment of all non-noxious weeds.

- e. Reclaimed areas shall be free of state- and county-listed noxious weeds (Table 9.2).
- f. The vegetative cover shall be self-regenerating and permanent. Self-regeneration shall be demonstrated by evidence of reproduction, such as tillers and seed production.

Criterion 3 Shrub Density

- a. A minimum shrub density of 500 stems per acre.
- b. Shrubs shall be healthy and have survived at least two complete growing seasons before being evaluated against success criteria

Plant cover would be measured annually on the tailing cells for a minimum of ten years or until the revegetation goals stated above are achieved. Cover would be measured by the point method, using a vegetation sighting scope mounted on an adjustable tripod with a level. Cover would be measured for each species encountered, as well as litter, rock, and bareground. Cover measurements would be made along a minimum of ten randomly placed transects on each tailing cell that are 100 feet long. A total of 100 points would be sited at one-foot intervals along each transect to collect cover data in the categories of live vegetation, litter, rock, and bareground. Sample adequacy would be determined for each tailing cell using the following formula that identifies the minimum number of samples that are necessary to estimate the population mean at a 90 percent level of confidence. Total live vegetation cover would be used to calculate sample adequacy.

$$n = \underline{t^2 s^2} (.10x)^2$$

Where: n = minimum number of samples required to meet sample adequacy requirements

Page A-84 Revision 5.0 Energy Fuels Resources (USA) Inc. White Mesa Mill Reclamation Plan

 s^2 = variance t^2 = 1.64 for 90% confidence x = sample mean

Shrub density would be measured in belt transects placed on either side of the cover transects. All shrubs would be counted within a three-foot wide strip or belt transect along each side of the transect used for point cover measurements, resulting in a belt transect that is six-feet wide and 100 feet long.

In addition to the above cover sampling, annual observations would be made of overall plant community health and sustainability. Overall health would be based on plant vigor, presence of annual weeds, and signs of plant deficiencies or toxicities. Plant community sustainability would be based on observations of reproduction, including both vegetative reproduction, such as tillering, and seed production.

If revegetated areas are not making satisfactory progress in meeting revegetation goals outlined above, then remedial actions will be implemented as needed. These actions may include fertilization/soil amendments, reseeding, weed control, and/or erosion control depending upon the cause of the problem that may exist and the best remediation approach to ensure plant community success.

10.0REFERENCES

- American National Standards Institute (ANSI) 1997. ANSI N323A American National Standard Calibration Standard Radiation Protection Instrumentation Test and Calibration, Portable Survey Instruments.
- Denison Mines (USA) Corp. 2009. Reclamation Plan White Mesa mill, Blanding Utah, Rev. 4. November.
- Johnson, T.L., 1999. "Design of Protective Covers." U.S. Nuclear Regulatory Commission (NRC), NUREG 2615 Draft for Comment. February.
- Johnson, T.L., 2002. "Design of Erosion Protection for Long-Term Stabilization." U.S. Nuclear Regulatory Commission (NRC), NUREG 1623, Final Report. September.
- National Oceanic and Atmospheric Administration (NOAA), 1977. Probable Maximum Precipitation Estimates, Colorado River and Great Basin Drainages. Hydrometerological Report (HMR) No. 49.
- SENES 2012. Letter to J.A. Tischler, Energy Fuels Resources, Inc. Radium Benchmark Dose Approach. August 15, 2012, as provided in EFRI Responses to Utah DRC Interrogatories Round 1. August 2012.
- United States Nuclear Regulatory Commission (NRC), 1990. "Final Staff Technical Position, Design of Erosion Protective Covers for Stabilization of Uranium mill Tailings Sites." January.
- United States Nuclear Regulatory Commission (NRC) 2000. Multi-Agency Radiation Survey and Site Investigation Manual. NUREG-1575. August.
- United States Nuclear Regulatory Commission (NRC). 2003. NUREG 1569, Appendix E, Guidance to the U.S. Nuclear Regulatory Commission Staff on the Radium Benchmark Dose Approach.

- United States Nuclear Regulatory Commission (NRC). 2006 NUREG 1757 Volume 2, Consolidated Decommissioning Guidance, Characterization, Survey, and Determination of Radiological Criteria. Revision 1.
- United States Nuclear Regulatory Commission (NRC). 2009 NUREG 1575 Supplement 1, Multi-Agency Radiation Survey and Assessment of Materials and Equipment Manual.
- Yu, C., Zielen, A.J., Cheng, J-J, Le Poire, D.J., Gnanapragasam, E., Kamboj, S., Arnish, J.,Wallo III, A., Williams, W.A., and Peterson, H., 2001. User's Manual for RESRADVersion 6. ANL/EAD-4. July.

Exhibit A-1: Daily QA/QC Checks

1.0 INTRODUCTION

A background count rate and reliability check using a check source shall be performed daily, prior to use, when the detector/scaler is used for counting. Background count rates and source checks shall be input on a control chart after developing of the mean and standard deviation (sigma) as discussed below.

2.0 QC CONTROL CHARTING

Select a background location such as an office or other location where background gamma radiation gamma values are not expected to vary. Take ten 30-second count readings and record them on Form 1. Using the ten readings, calculate the mean, sigma, and 2 sigma). These results should also be recorded on Form 1.

Daily, prior to use, and at the end of surveys, perform a 30-second background and source count at the same location and in the same configuration as the acceptable ranges were developed. If the background or source check result exceeds a difference of two standard deviations, (2s or 2 sigma) from the mean, as shown on Figure 2, the Instrument Control Chart, re-count the background or source, log the results, and enter the new data on the Instrument Control Chart. Two successive background or source check counts outside the 2s Instrument Control Chart range indicates possible problems with the detector/electronics.

Values between $\pm 2s$ of the mean net counts generally indicate normal operation of the instrument. Values outside the mean $\pm 2s$ will occur with a frequency of less than 5 percent. Values greater than 3s from the mean will occur with a frequency of less than one percent and should be investigated. Two consecutive measurements outside 3s indicate problems with equipment and require adjustments and/or repairs as necessary. The scaler shall be removed from service and immediate notification shall be made to the RSO or designee prior to counting any samples.

Calibrations shall be checked whenever a significant change or repair is made to the measurement system, or when changes are detected as a result of check source measurements.

Control charts shall be maintained to indicate instrument operability and/or malfunction problems on a daily basis when instruments are in use. Use the attached control chart. Control charts should be kept for both background counts and counts with a check source, such as a 5 μ Ci Cs-137 source.

FORM 1: CALCULATION OF INSTRUMENT STANDARD DEVIATION								
Date of 1st Instrument Use	Count 1	Count 2	Count 3	Count 4	Count 5	Count 6	Count 7	
	Count 8	Count 9	Count 10	Sample Mean (λ)	Sample Standard Deviation (σ)	Lower Control Limit (λ-2s)	Upper Control Limit (λ+2s)	
$\lambda = \frac{1}{10} \sum_{i=1}^{10} n_i \qquad \begin{array}{c} \text{Where } \lambda \text{ is the mean of the} \\ \text{counts, and n is the 30} \\ \text{second count rate} \end{array} \qquad s = \sqrt{\frac{\sum_{i=1}^m (n_i - \lambda)}{9}} \qquad \begin{array}{c} \text{Where } \sigma \text{ is the standard deviation,} \\ \lambda \text{ is the mean of the counts, and n} \\ \text{is the 30 second count rate} \end{array}$								

FORM 2: INSTRUMENT CONTROL CHART							
Initials	Date	Count	Sample Mean (λ)	Sample Standard Deviation (s)	Lower Control Limit (λ- 2s)	Upper Control Limit (λ+2s)	Pass?
							Y or N
							Y or N
							Y or N
							Y or N
							Y or N
							Y or N
							Y or N
							Y or N
							Y or N
							Y or N
							Y or N
							Y or N
							Y or N
							Y or N
							Y or N
							Y or N
							Y or N
							Y or N
							Y or N
							Y or N
							Y or N
							Y or N
							Y or N
							Y or N
							Y or N
							Y or N
							Y or N
							Y or N

ATTACHMENT C.2

REVISED CONSTRUCTION QUALITY ASSURANCE/ QUALITY CONTROL PLAN TO ATTACHMENT B OF RECLAMATION PLAN, REVISION 5.0

CONSTRUCTION QUALITY ASSURANCE/QUALITY CONTROL PLAN FOR RECLAMATION OF WHITE MESA MILL FACILITY

BLANDING, UTAH

TABLE OF CONTENTS

1]	INTRODUCTION	1
	1.1	Purpose and Scope	1
	1.2	Definition of Terms	2
2]	INVOLVED PARTIES AND PERSONNEL	4
	2.1	Owner	4
	2.2	Construction Manager	4
	2.3	Design Engineer	4
	2.4	Contractor	5
	2.5	Surveyor	5
	2.6	CQA/QC Consultant	6
	2.7	CQA Officer	6
	2.8	CQA Site Manager	7
	2.9	QC Technicians	8
	2.10	Document Control Officer	8
	2.11	CQA Laboratory	9
	2.12	DWMRC Project Manager	9
3]	PROJECT COMMUNICATION	10
	3.1	Flow of Information	10
	3.2	Project Kickoff Meeting	11
	3.3	Pre-Construction Meetings	11
	3.4	Progress Meetings	12
	3.5	Problem or Work Deficiency Meetings	
4]	DOCUMENTATION	14
	4.1	Overview	
	4.2	Daily Field Reports	14
	4.3	Weekly Summary Reports	15
	4.4	Field Change Reports	15
	4.5	Construction Problems and Resolution Data Sheets	
	4.6	Design or Specification Changes	15
	4.7	CQA Compliance Reports	15
	4.8	Final Construction Report	
5		CQA/CQC PROCEDURES	
	5.1	Contractor Evaluation	
	5.2	Testing Methods	17
	5.3	Cell 1 Reclamation	
	5.3	.1 Removal of Contaminated Materials	19
	5.3		
	5.3		
	5.3	Clay Fill Conformance Monitoring and Testing	19
	5.3	Clay Liner and Subgrade Material Placement	20
	5.3		
	5.3	.7 Sedimentation Basin and Discharge Channel	22

	5.3.8	Riprap Conformance Monitoring and Testing	22
	5.3.9	Material Placement	
	5.3.10	Tolerances	23
	5.3.11	Nonconformance, Corrective Action and Stop Work	23
	5.3.12	Documentation	24
5.4	4 Mi	ll Decommissioning	24
	5.4.1	Characterization Surveys	25
	5.4.2	Contaminated Material Disposal	25
	5.4.3	Material Conformance Monitoring	26
	5.4.4	Material Placement	26
	5.4.5	Material Compaction	27
	5.4.6	Final Slope and Grades	29
	5.4.7	Tolerances	29
	5.4.8	Nonconformance, Corrective Action and Stop Work	29
	5.4.9	Documentation	30
5.:	5 Set	ttlement Plates	30
5.0	6 Co	ver System	
	5.6.1	Material Conformance Monitoring and Testing	
	5.6.2	Material Placement	
	5.6.3	Moisture and Density Control	34
	5.6.4	Surface Slopes and Grades	
	5.6.5	Tolerances	
	5.6.6	Nonconformance, Corrective Action and Stop Work	35
	5.6.7	Documentation	
5.′	7 Ro	ck Protection and Erosion Control	
	5.7.1	Material Conformance Monitoring and Testing	
	5.7.2	Material Placement	
	5.7.3	Compaction	
	5.7.4	Tolerances	
	5.7.5	Nonconformance, Corrective Action and Stop Work	
	5.7.6	Documentation	
		otection of Soil Stockpiles	
6	FIEI	LD REPORT FORMS	42

1 INTRODUCTION

This Construction Quality Assurance/Quality Control Plan (CQA/QC Plan) has been prepared for construction activities related to the reclamation of the Energy Fuels Resources (USA) Inc. ("EFRI") White Mesa Mill Facility located in Blanding, Utah and is submitted as an attachment to the Reclamation Plan.

1.1 Purpose and Scope

The purpose of this CQA/QC Plan is to address the Construction Quality Assurance (CQA) and Construction Quality Control (CQC) procedures and requirements to be used during reclamation activities at the site to assure that the project is constructed in conformance with the Technical Specifications, Drawings, and applicable regulatory requirements and permit conditions. The CQA/QC Plan is intended to: 1) define individuals and organizations who will be involved in reclamation activities and their respective responsibilities and qualifications; 2) establish guidelines for the flow of information and project communication; 3) establish protocols for project documentation; and 4) establish specific CQA/CQC procedures for the major components of the project.

This CQA/QC Plan addresses reclamation of the following facilities:

- Cell 1 (evaporation)
- Cells 2, 3, 4A and 4B (tailings)
- Mill buildings and equipment
- On-site contaminated areas
- Off-site contaminated areas (i.e., potential areas affected by windblown tailings)

Reclamation of the above facilities will include the following:

- Placement of contaminated soils, crystals, and synthetic liner material and any contaminated underlying soils from Cell 1 into the last active tailings cell
- Placement of a compacted clay liner on a portion of the Cell 1 impoundment areas to be used for disposal of contaminated materials and debris from the Mill site

- Decommissioning the Cell 1 (evaporation) area
- Reclamation of the Mill and ancillary areas
- Placement of materials and debris from Mill decommissioning into the Cell 1 Disposal Area or the last active tailings cell
- Placement of an Evapotranspiration (ET) cover over the entire area of Cells 2, 3, 4A, 4B and the Cell 1 Disposal Area
- Construction of runoff control and diversion channels as necessary
- Reclamation of borrow sources
- 1.2 Definition of Terms

In the context of this CQA/QC Plan, the following definitions apply:

Construction Quality Assurance (CQA) – A planned and systematic pattern of means and actions designed to assure adequate confidence that the materials or services meet contractual and regulatory requirements and will perform satisfactorily in service. CQA refers to means and actions employed by the involved parties to assure conformity of the project work with this CQA/QC Plan, the Drawings, and the Technical Specifications.

Construction Quality Control (CQC) – Actions that provide a means to measure and regulate the characteristics of an item or service in relation to contractual and regulatory requirements. CQC refers to those actions taken by the Contractor, technicians, or other involved parties to verify that the materials and the workmanship meet the requirements of this CQA/QC Plan, the Drawings, and the Technical Specifications.

Technical Specifications – The document that prescribes requirements and standards for specific elements of the reclamation. This document is included as Attachment A to the 2011 Reclamation Plan. Technical Specifications will be prepared in final form prior to commencement of reclamation activities.

Drawings – Detailed project drawings to be used in conjunction with the Technical Specifications. These drawings will be prepared in final form as construction drawings prior to reclamation.

Construction Project – The total authorized/approved reclamation project that requires several construction segments to complete.

Construction Segment – A portion of the total construction project involving a specific area or type of work. Several construction segments will likely take place simultaneously during reclamation.

Construction Task – A basic construction feature of a construction segment involving a specific construction activity.

ASTM Standards – The latest versions of the American Society for Testing and Materials specifications, procedures and methods.

2 INVOLVED PARTIES AND PERSONNEL

Each construction task within each segment of the overall project will consist of both a QC and QA component. Compliance reporting will be completed for each segment. Upon completion of all project segments, a final construction report will be prepared for the project. Following is a listing of the parties (organizations and individuals) that will be involved in the implementation of the CQA/QC Plan during the reclamation at the site, including a discussion of each party's responsibility, authority and qualifications.

2.1 <u>Owner</u>

The Owner of this project is EFRI.

2.2 Construction Manager

Responsibility & Authority: The on-site Construction Manager is responsible for the conduct, direction and supervision of all reclamation activities as detailed in the Drawings and Technical Specifications. The Construction Manager will be selected/appointed by the Owner. The Construction Manager is responsible for maintaining a detailed schedule for the various Construction Segments so that each is performed according to the schedule for the overall Reclamation Project. The Construction Manager will interact as required with all other parties involved in implementing the reclamation including the Contractor, the CQA/QC personnel, and the DWMRC Project Manager. In the temporary absence of the Construction Manager, a designated representative will assume the duties of the Construction Segments within the overall Reclamation Project. The Construction Managers to oversee the various Construction Segments within the overall Reclamation Project. The Construction Managers (s) will report directly to the Owner.

Qualifications: The Construction Manager(s) shall have the mine reclamation and construction experience necessary to manage a large-scale reclamation project.

2.3 Design Engineer

Responsibility & Authority: The Design Engineer is responsible for the design of the various elements of the reclamation project and for preparing the Drawings and Technical Specifications. Throughout the project, the Design Engineer will interact as necessary with the Owner,

Construction Manager, CQA/QC staff, and the DWMRC Project Manager. The Design Engineer will approve all design changes that arise during the course of the Reclamation Project.

Qualifications: The Design Engineer shall be a qualified Professional Engineer registered in the State of Utah. The Design Engineer shall have expertise which demonstrates significant familiarity with the design and construction of the various elements of mine and mill site reclamation including earthwork, cover design, mill demolition and disposal.

2.4 Contractor

Responsibility & Authority: The Contractor refers to an independent party or parties, contracted by the Owner, performing the work in accordance with this CQA/QC Plan, the Drawings, and the Technical Specifications. It is anticipated that various Contractors will be employed to perform the various Construction Segments within the overall Reclamation Project. The Contractor will work under the direction of and report directly to the Construction Manager.

Qualifications: Qualifications of the Contractor are specific to the construction contract and the specific Construction Segment. The Contractor shall have a demonstrated history of successful construction experience as appropriate for the Construction Segment. The Contractor shall maintain current state and federal licenses as appropriate.

2.5 <u>Surveyor</u>

Responsibility & Authority: The Surveyor is a party, independent from the Owner or Contractor, who is responsible for surveying, documenting, and verifying the location of all significant components of the work. The Surveyor is responsible for issuing Record Drawings of the completed elements of the Construction Project. The Surveyor's work is coordinated with the Contractor and CQA Consultant. The Surveyor will report directly to the Construction Manager.

Qualifications: The Surveyor will be a well-established surveying company with at least 3 years of surveying experience in the State of Utah. All survey activities shall be performed under the direction of a Professional Land Surveyor, licensed as required by State of Utah regulations. The Surveyor shall be fully equipped and experienced in the use of total stations and the most recent version of AutoCAD.

2.6 <u>CQA/QC Consultant</u>

Responsibility & Authority: The CQA/QC Consultant is a party, independent from the Owner or Contractor, who is responsible for observing, testing, and documenting the various activities comprising the Reclamation Project in accordance with this CQA/QC Plan, the Technical Specifications and the Drawings. The CQA/QC Consultant will be responsible for issuing a CQA report at the completion of the Reclamation Project which will document construction and associated CQA/QC activities. The CQA/QC Consultant will work in coordination with the Contractor, Surveyor and other parties and will report directly to the Construction Manager.

Qualifications: The CQA Consultant shall be a well-established firm specializing in geotechnical and reclamation engineering that possesses the equipment, personnel, and licenses necessary to conduct the observation and testing required. The CQA/QC Consultant will be experienced with earthwork, mill decommissioning, and other reclamation activities. The CQA/QC Consultant will be experienced in preparation of CQA documentation including field documentation, field testing procedures, laboratory testing procedures, and CQA reports.

The CQA Consultant will provide qualified staff for the project which will include the following individuals.

- 1) CQA Officer
- 2) CQA Site Manager
- 3) QC Technicians
- 2.7 CQA Officer

Responsibility & Authority: The CQA Officer will be responsible for overall implementation and management of the CQA/QC Plan for the reclamation project. The CQA Officer works from the office of the CQA Consultant and conducts periodic visits to the site as required. The CQA Officer will supervise the CQA Site Manager and all QC Technicians and will coordinate with the Surveyor, the Contractor and other staff. The CQA Officer will report directly to the Construction Manager.

The CQA Officer will be expected to maintain a thorough understanding of the existing White Mesa facilities and the reclamation project design documents including the Drawings, Technical Specifications, and this CQA/QC Plan. He/she will have the authority to reject work or material, to require removal or placement, to specify and require appropriate corrective actions if it is determined that the Quality Control/Quality Assurance, personnel, instructions, controls, tests, records are not conforming to the CQA/QC Plan, the Construction Plans, or the Technical Specifications. The approval of the CQA Officer is required on all Compliance Reports required in this CQA/QC Plan. Specific responsibilities of the CQA Officer will include the following:

- 1. Administer the CQA program (i.e., provide supervision of and manage all CQA personnel and activities)
- 2. Provide and document all necessary training and certifications for CQA personnel
- 3. Review and approve the Contractor's QC Plan(s), if applicable
- 4. Attend Project Kickoff and Pre-Construction Meetings, and make site visits as needed
- 5. Perform ongoing, timely review of all CQA documentation and provide signature on all CQA documentation

Qualifications: The CQA Officer will be a Professional Engineer registered in the State of Utah and will be experienced in providing CQA oversight for large construction projects.

2.8 CQA Site Manager

Responsibility & Authority: The CQA Site Manager will be appointed by the CQA Consultant to provide day-to-day, on-site oversight of the CQA/CQC activities. The CQA Site Manager will report directly to the CQA Officer and will interact with the Construction Manager, Contractor and others on a daily basis, as project activities take place. The CQA Site Manager will maintain a thorough understanding of the Drawings, Technical Specifications, and this CQA/QC Plan. Specific responsibilities of the CQA Site Manager will include the following:

- Attend all CQA-related meetings including Project Kickoff and Pre-Construction Meetings
- 2. Provide direct oversight of QC Technicians
- 3. Assign locations for testing and sampling
- 4. Oversee the collection and shipping of laboratory test samples

- 5. Review results of field and laboratory testing and any test results provided by the Contractor and make appropriate recommendations
- 6. Review the calibration and condition of onsite testing equipment, and maintain necessary equipment documentation
- Report any deviations from the CQA/QC Plan, Drawings, or Technical Specifications to the Construction Manager and CQA Officer and arrange consultation with other parties as necessary to find solutions to unsolved problems
- Prepare a daily field report for submittal to the CQA Officer and Construction Manager

Qualifications: The CQA Site Manager will be an engineer experienced in providing field CQA/CQC oversight for construction projects.

2.9 QC Technicians

Responsibility & Authority: The CQA Consultant will utilize various QC Technicians to assist the on-site CQA Site Manager to perform specific tasks through the project to verify the adequacy of construction materials and procedures. The QC Technicians will work under the direct supervision of the CQA Site Manger and will work in close coordination with the Contractor. The number of technicians will depend on the project needs as the work progresses.

Qualifications: The CQA Consultant will identify areas of competency and select technicians as necessary. The QC Technicians will receive on-the-job training or off-site training as required under the direction of the CQA Consultant. The CQA Officer will determine the areas of expertise of the respective technician and maintain a file on each technician's training and certifications.

2.10 Document Control Officer

Responsibility & Authority: The Document Control Officer will be appointed by the Construction Manager to assist with managing the various documents that will be produced throughout the project. The Document Control Officer will maintain permanent files for the Construction Project. All tests, surveys, monitoring and report originals will be maintained in the project files. The Document Control Officer will oversee document reproduction and

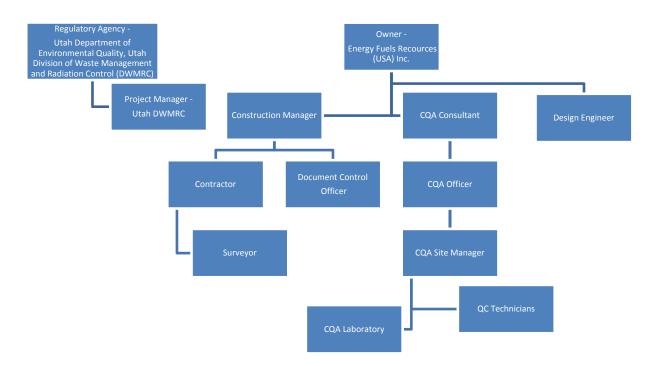
distribution. A distribution list will be prepared in coordination with the Owner, Construction Manager, and CQA Officer.

Qualifications: The Document Control Officer will have the organizational and computer skills necessary to manage and distribute the various project documents.

2.11 CQA Laboratory

Responsibility & Authority: The CQA Laboratory is a party, independent from the Owner and Contractor, responsible for conducting tests of soils and other project materials in accordance with ASTM and other applicable standards in either an on-site or off-site laboratory. It is likely that more than one CQA Laboratory will be used to perform testing during reclamation activities, depending upon the material being tested. The CQA Laboratory will work in coordination with other personnel and will report directly to the CQA Consultant.

Qualifications: The CQA Laboratory will be an AASHTO AMRL accredited laboratory in testing soils using the ASTM standards outlined in the Technical Specifications. The CQA Laboratory will be capable of providing test results within a maximum of seven days of receipt of samples and will maintain that capability throughout the duration of the project.


2.12 DWMRC Project Manager

The DWMRC Project Manager will represent the DWMRC's interests in the Reclamation Project. The DWMRC Project Manager may choose to review selected procedures, personnel qualifications, equipment, calculations, and documentation. DWMRC personnel will be granted full access to the project files upon request.

3 PROJECT COMMUNICATION

3.1 Flow of Information

Effective communication is necessary to ensure a high degree of quality during the Reclamation Project. Specific meetings of key project personnel will take place including a Project Kickoff Meeting, Pre-Construction Meetings, weekly Progress Meetings, and Problem or Work Deficiency Meetings. In addition, informal communication and cooperation will take place between the various parties listed in Section 2 above. The organizational chart showing the proposed lines of communication between the various parties is shown in Figure 1. The planned project meetings are described in the following sections.

Figure 1 – Project Organization

3.2 Project Kickoff Meeting

At the beginning of major reclamation activities, a Project Kickoff Meeting will take place at the site. At a minimum, this meeting will be attended by the Owner, the Construction Manager, the Contractors, the CQA Consultant, the Engineer, and the DWMRC Project Manager. The Construction Manager will conduct a site tour to observe the current site conditions and to identify various areas of the site including equipment storage areas, soil stockpiling areas, and staging areas. The Construction Manager will appoint an individual to record the discussions and decisions of the meeting and distribute meeting minutes to all attendees. Specific items for discussion will include:

- 1. The Drawings, Technical Specifications, and CQA/QC Plan and any modifications or clarifications to these documents
- 2. Lines of communication and authority
- 3. The responsibilities of each party
- 4. The overall schedule for the Reclamation Project and the anticipated sequencing and schedule of the various Construction Segments
- 5. Documentation requirements
- 3.3 <u>Pre-Construction Meetings</u>

The overall Reclamation Project will be comprised of several individual Construction Segments. At the beginning of each Construction Segment, a Pre-Construction meeting will take place at the site and will be attended by the Construction Manager, the Contractor, the CQA Consultant, and the DWMRC Project Manager. The Construction Manager will conduct a tour of the work area to observe the current site conditions and to identify various areas of the site including equipment storage areas, soil stockpiling areas, staging areas, and other details related to the Construction Segment. The Construction Manager will appoint an individual to record the discussions and decisions of the meeting and distribute meeting minutes to all attendees. Specific items for discussion at the Pre-Construction Meetings include the following:

1. The Drawings, Technical Specifications, and CQA/QC Plan and any modifications or clarifications to these documents

- 2. Safety procedures
- 3. Lines of communication and authority
- 4. The responsibilities of each party
- 5. The overall schedule for the Construction Segment
- 6. Acceptance and rejection criteria
- 7. Protocols for handling deficiencies, repairs, and re-testing
- 8. Documentation requirements

3.4 Progress Meetings

Progress meetings will be held weekly between the CQA Site Manager, the Contractor, the Construction Manager, and other concerned parties participating in the construction of the project. This meeting will include discussions of the progress of the project, planned activities for the next week, and revisions to the work plan or schedule. The Construction Manager will appoint an individual to document the meeting and send meeting minutes to all attendees for review and comment.

3.5 Problem or Work Deficiency Meetings

It is anticipated that most work deficiencies will be minor and can be resolved in the field by the QC Technicians, the CQA Site Manager, and the Contractor. The deficiency and resolution will be recorded in daily field reports and weekly summary reports prepared by the CQA Site Manager.

A special meeting will be held when a problem or deficiency is present, or likely to occur, that cannot be easily resolved in the field. The meeting will be attended by the Contractor, the Construction Manager, the CQA Site Manager, and other parties as appropriate. If the problem requires a design modification, the Engineer should either be present at, consulted prior to, or notified immediately upon conclusion of this meeting. The Construction Manager will appoint an individual to record the meeting and send meeting minutes to all attendees for review and approval. The purpose of the work deficiency meeting is to define and resolve the problem or work deficiency as follows:

Page B-13 Revision 5.0 Energy Fuels Resources (USA) Inc. White Mesa Mill Reclamation Plan

- 1. Define and discuss the problem or deficiency
- 2. Review alternative solutions
- 3. Select a suitable solution agreeable to all parties
- 4. Implement an action plan to resolve the problem or deficiency

4 DOCUMENTATION

4.1 <u>Overview</u>

The CQA Consultant will be responsible to prepare documentation that demonstrates that CQA/CQC requirements have been addressed and satisfied. Documentation will include monitoring logs, testing data sheets, photo logs, equipment calibration forms, daily field reports, weekly summary reports, reports of design or specification changes, and a final CQA Report. Documentation will be maintained in the White Mesa Project files and will be available to the Owner, Engineer, CQA Officer, and the DWMRC Project Manager at all times.

The CQA Officer and Site Manager will be responsible for preparing forms required throughout the Reclamation Project. These forms will be used by QC Technicians and other parties to document QC activities.

4.2 Daily Field Reports

The CQA Site Manager will prepare daily field reports that will document each day's activities. These daily reports will include the following, as applicable:

- 1. Basic information including date, project name, weather conditions, and the applicable Construction Segment
- 2. A summary of construction locations, activities, and observations an QC activities performed
- 3. Equipment and personnel on the project and a summary of meetings and attendees
- 4. Monitoring logs, testing data sheets, photo logs, and equipment calibration forms
- 5. A description of materials used and result of testing and documentation
- 6. Laboratory test reports
- 7. Reports of construction problems and resolution data sheets
- 8. Identification of deficient work or materials, and results of re-testing of deficient work
- 9. The signature of the CQA Site Manager

4.3 Weekly Summary Reports

At the end of each work week, a weekly summary report will be prepared and submitted to the Construction Manager and the CQA Officer. Weekly summary reports will include a brief description of the week's activities and all of the week's daily field reports. The CQA Officer will be responsible to review and sign each weekly summary report.

4.4 Field Change Reports

Changes that do not alter the intent of the Construction Plans or Technical Specifications may be made during construction to fit field conditions. Field changes require the approval of the Construction Manager and the CQA Site Manager. Field changes are to be reported on Form No. F-25 (Included in Section 6.0).

4.5 Construction Problems and Resolution Data Sheets

If significant recurring nonconformance occurs, or if special construction situations arise, the Construction Manager and CQA Officer will be made aware of the situation. The cause of the nonconformance will be determined and appropriate changes in procedures or specifications may be recommended. A Construction Problems and Resolution Data Sheet will be prepared to describe the situation and the resolution. Supporting documentation, such as photos or testing data sheets, will be attached to the data sheet. Data sheets will be included in the daily field reports and weekly summary reports.

4.6 Design or Specification Changes

During construction, design or specification changes may be required. Design changes will require the written approval of the Engineer and will take the form of technical memorandum and/or an addendum to the Drawings or Technical Specifications. Design changes are to be reported on Form No. F-26 (Included in Section 6.0).

4.7 CQA Compliance Reports

At the completion of each Construction Segment, the CQA Consultant will prepare a CQA Compliance Report signed and sealed by a Professional Engineer licensed in the State of Utah. The CQA Report will acknowledge that the work has been performed in conformance with the Drawings and Technical Specifications. The CQA Report will incorporate supporting documentation including:

- 1. All daily field reports and weekly summary reports
- 2. Laboratory test reports
- 3. Field change reports
- 4. Construction problems and resolution data sheets
- 5. Documentation of design or specification changes

Any subsequent Construction Segment that is dependent upon successful completion of a specific Construction Segment cannot be initiated until a Compliance Report is prepared and approved for the previous dependent Construction Segment. Compliance Reports are to be completed on Form No. F-23 (Included in Section 6.0).

4.8 Final Construction Report

At the conclusion of the Reclamation Project, the Construction Manager or a designated representative will prepare a Final Construction Report. This report will be submitted to the DWMRC for review and approval within 180 calendar days after completion of construction. This report will be prepared under the direct supervision of and stamped by a Professional Engineer registered in the state of Utah. This report will include, at a minimum:

- All of the individual CQA Compliance Reports which will summarize all CQA/CQC operations, construction equipment and processes, results, and observations of conformance/verification testing
- 2. A summary of any actions taken to resolve construction problems encountered
- 3. Field notes and photographs
- 4. As-built drawings and details

5 CQA/CQC PROCEDURES

This section describes the CQA/CQC monitoring and testing procedures to be used during the Reclamation Project to ensure that construction takes place in accordance with the Drawings and Technical Specifications. Specific requirements for construction procedures and materials are presented in the Drawings and Technical Specifications, along with criteria for site cleanup activities.

5.1 <u>Contractor Evaluation</u>

Prior to construction, each Contractor will submit a summary of proposed construction methods, equipment and testing protocols. The Construction Manager, CQA Officer, and Engineer will review the submittal and provide approval, in writing, of the Contractor's plans. The Contractor may be required to modify proposed methods, equipment, or testing protocols prior to approval.

5.2 <u>Testing Methods</u>

Throughout the Reclamation Project, various field and laboratory testing will be conducted to ensure that materials meet the Technical Specifications. Where applicable, testing will be conducted in accordance with the current versions of the corresponding ASTM test procedures. Any revisions to the testing methods will be reviewed and approved by the Engineer and the CQA Officer prior to usage. Testing methods to be used are summarized in Table 1. The required frequency of testing is described in the applicable Sections that follow.

Table 1 - Summary of Testing Methods			
TEST METHOD	TEST STANDARD		
Particle Size Analysis (Gradation)	ASTM D422		
Atterberg Limits	ASTM D4318		
Standard Proctor	ASTM D698		
Rock Correction of Unit Weight & Water Content	ASTM D4718		
Nuclear Moisture/Density Gauge	ASTM D6938		
Sand-Cone Test	ASTM D1556		
LA Abrasion – Coarse	ASTM C535		

TEST METHOD	TEST STANDARD
LA Abrasion – Fine	ASTM C131
Specific Gravity – Aggregate	ASTM C127
Absorption – Aggregate	ASTM C127
Sodium Soundness – Aggregate	ASTM C88

During earthwork operations and fill placement, testing will be conducted to verify that the materials meet the gradation and classification specifications. Testing will include gradation testing (ASTM D422) and Atterberg Limit testing (ASTM D4318).

Moisture-density curves will be developed using the standard Proctor test (ASTM D698). Rock corrections (ASTM D4718) for the Proctor tests may be required depending on the material being tested. Field density testing may be conducted with the sand cone test (ASTM D1556) or a nuclear density gauge (ASTM D6938, or as modified by the QA Manager). Correlation of nuclear density gauge results shall be by comparison with results from sand cone test(s) and laboratory testing for water content(s) using the oven drying method (ASTM D2216) on similar material. A sufficient number of sand cone tests and moisture content tests will be performed to provide a correlation between the sand cone and nuclear density tests.

Rock protection aggregate will be tested using the LA Abrasion test for coarse or fine material (ASTM C535 or C131), the sodium soundness test (ASTM C88), and the specific gravity and absorption test (ASTM C127).

Other field or laboratory testing may be required throughout the Reclamation Project. Any testing shall be performed in accordance with the applicable ASTM or other industry standard.

5.3 <u>Cell 1 Reclamation</u>

Reclamation of Cell 1 will include the removal of contaminated materials including raffinate crystals, PVC liner, and contaminated site soils and the construction of a clay-lined area for permanent disposal of contaminated site materials. This disposal area (the Cell 1 Disposal Area)

will be constructed adjacent to and parallel with the existing Cell 1 dike. A sedimentation basin will then be constructed and a drainage channel provided.

5.3.1 Removal of Contaminated Materials

QC staff will monitor of the removal of raffinate crystals, liner, and contaminated soils from Cell 1 and placement in the designated area. QC procedures for the placement of these materials are described in Section 5.4.

5.3.2 Subgrade Preparation

Subgrade for the clay liner may be leveled and filled as needed to provide a stable base for the placement of the clay liner. The QC staff will monitor placement and compaction of any subgrade fill.

5.3.3 Clay-Lined Cell 1 Disposal Area

A clay lined area will be constructed adjacent to and parallel with the existing Cell 1 dike for permanent disposal of contaminated material and debris. Tailings will not be placed in the Cell 1 Disposal Area. The area will be lined with a 12-inch thick clay layer prior to placement of contaminated materials and installation of the final reclamation cap. Placement of clay liner materials will be based on a schedule determined by the availability of contaminated materials removed from the Mill decommissioning area in order to maintain optimum moisture content of the clay liner prior to placing of contaminated materials.

5.3.4 Clay Fill Conformance Monitoring and Testing

The CQA Contractor will perform monitoring and frequent verification testing to verify that the clay fill meets the gradation and classification specifications. The CQA Contractor will monitor earthmoving operations to ensure that fill material is taken from the proper borrow sources.

Clay liner material shall be minus 1-inch size, and shall be free from roots, branches, rubbish, and process area debris. Liner material shall have a minimum of 40 percent passing the No. 200 sieve and a minimum plasticity index (PI) of 15. Suitable soils will classify as CL, CH, or SC materials under the Unified Soil Classification System.

Gradation and classification testing will be performed at a minimum of one test per 1,000 cubic yards of clay liner material or when the material shows significant variation. Samples should be randomly selected for testing.

Laboratory test results for the clay liner shall be verified for compliance and approved by the CQA site manager prior to placement of disposed materials in the cell.

5.3.5 Clay Liner and Subgrade Material Placement

QC Technicians will observe the surface condition prior to fill placement. If the compacted surface of any layer of fill is too dry or smooth to bond properly with the layer of material to be placed thereon, it will be moistened and/or reworked with a harrow, scarifier, or other suitable equipment to a sufficient depth to provide relatively uniform moisture content and a satisfactory bonding surface before the next succeeding layer of earthfill is placed. If the compacted surface of any layer of earthfill in-place is too wet (due to precipitation) for proper compaction, it will be reworked with harrow, scarifier or other suitable equipment to dry out the layer and reduce the moisture content to within the required limits. It will then be recompacted to the earthfill requirements.

QC Technicians will monitor the weather and temperature conditions. No material will be placed when fill material or the underlying material is frozen or when ambient temperatures do not permit the placement or compaction of the materials to the specified density without developing frost lenses in the fill.

The QC Technicians will monitor lift thicknesses frequently to verify the specifications are being met. The required layer and lift thicknesses for the clay liner and subgrade fill are listed in Table 2.

Liner Component	Material Type (USCS)	Layer Thickness	Lift Thickness
Subgrade Fill	CL, ML, SC, SP, or SM	Variable	8 in. loose (max.)
Clay Liner	CL, SC, or CH	12 in. (min.)	6 in. compacted (max.)

Table 2 - Summary of Liner Component Layers and Lift Thicknesses

5.3.6 Moisture and Density Control

The QC Technicians will monitor placement, moisture conditioning, and compaction of the fill as it is placed. Prior to the start of field compaction operations, appropriate laboratory compaction curves will be obtained for the range of materials to be placed. Laboratory compaction curves based on complete Proctor tests will be obtained at the frequencies outlined in Table 3, depending on the variability of materials being placed.

Each layer of the fill will be conditioned so that the moisture content is uniform throughout the layer prior to and during compaction. As far as practicable, materials will be brought to the proper moisture content before placement. If necessary, water will be added after lift placement to the material by sprinkling on the layer. Each lift will be compacted by a sufficient number of roller passes or other compaction equipment to achieve the required dry density. Material that is too dry or too wet or does not meet the required dry density will be rejected and reworked until the moisture content and dry density are within the specified limits. Reworking may include removal, re-harrowing, reconditioning, rerolling, or combinations of these procedures.

The required density testing frequencies are included in Table 3. For all materials, a minimum of two tests will be taken for each day that an applicable amount of fill is placed in excess of 150 cubic yards. A minimum of one test per lift and at least one test for every full shift of compaction operations will be taken.

Field density testing may be conducted with the sand cone test (ASTM D1556) or a nuclear density gauge (ASTM D6938, or as modified by the QA Manager). Correlation of nuclear density gauge results shall be by comparison with results from sand cone test(s) and laboratory testing for water content(s) using the oven drying method (ASTM D2216) on similar material. A sufficient number of sand cone tests and moisture content tests will be performed to provide a correlation between the sand cone and nuclear density tests. Field density tests shall be compared with standard Proctor tests (ASTM D698 Method A or C) on the same material.

Testing frequency may be increased by the CQA Site Manager if variability of materials is noted at the site, during adverse conditions, or to isolate failing areas of the construction.

Field density testing should not jeopardize the integrity of the clay liner. Holes in the clay material resulting from testing should be repaired by hand by filling with clay fill, or by filling with bentonite powder which is hydrated to fully seal the hole.

requencies and Requirements				
		Density	Moisture	Proctor
Liner Component	Test Frequency	Requirement*	Requirement*	Frequency
Subgrade Fill	1/1,000 cubic yards placed	90% (min.)	+/- 3%	1/5,000 cubic yards placed
Clay Liner	1/500 cubic yards placed	95% (min.)	+/- 2%	1/2,500 cubic yards placed

 Table 3 - Summary of Liner Component Moisture-Density Testing

 Frequencies and Requirements

* Based on maximum dry density and optimum water contents as determined by standard Proctor tests (ASTM D698 Method A or C) on the same material.

5.3.7 Sedimentation Basin and Discharge Channel

After contaminated material is removed from Cell 1 and the Cell 1 Disposal Area clay liner has been constructed, Cell 1 will be breached and constructed as a sedimentation basin. A discharge channel out of the sedimentation basin will be constructed. Details of these features are provided in the Drawings and Technical Specifications. The QC staff will monitor the excavation and construction of these features to ensure conformance with the Technical Specifications.

The channel excavation will be located within competent bedrock. The CQA team must document and verify the competency of the sedimentary bedrock along the channel for the Engineer and the Owner's approval.

5.3.8 Riprap Conformance Monitoring and Testing

A rock apron will be constructed at the transition from soil to bedrock within the sedimentation basin. Rock apron riprap material of the specified size shall have a minimum rock quality designation or durability score of 70 or higher. If actual rock quality designation is between 65 and 69, oversizing will be required. Rock quality designations below 65 will not be acceptable.

The rock size specifications for the riprap shall be confirmed by particle-size distribution testing prior to placement, using ASTM D422, ASTM D5519, or an approved equivalent method for

large-sized material. Testing shall be at a frequency of at least one test per 10,000 cubic yards of riprap placed, per select size, or when riprap characteristics show significant variation.

Test series for rock durability will include specific gravity, absorption, sodium soundness and LA abrasion. During construction additional test series and gradations will be performed for each type of riprap when approximately one-third (1/3) and two-thirds (2/3) of the total volume of each type have been produced or delivered. For any type of rock where the volume is greater than 30,000 cubic yards, a test series and gradations will be performed for each additional 10,000 cubic yards of rock produced or delivered.

5.3.9 Material Placement

In subgrade areas requiring fill placement to achieve final grades, after liner removal, the upper 12 inches should be scarified, moisture conditioned and compacted prior to fill placement.

Riprap shall be placed in one or more lifts to form a continuous, uniform layer on top for the filter material layers with a minimum thickness of 12 inches (2 times the specified D_{50}). The top surface of the riprap shall be track-rolled or tamped with the bucket of a track-hoe to provide a uniform riprap surface and minimize void spaces within the riprap.

5.3.10 Tolerances

Completed grading for the sedimentation basin, in soil, shall be within 1.0 foot (horizontally) of the lines as designed, and within 0.1 foot (vertically) of the elevations as designed. Final surfaces shall be smoothed to avoid abrupt changes in surface grade or areas of runoff concentration.

The completed grading for the discharge channel (and portions of the sedimentation basin) in rock shall be within 2.0 foot (horizontally) of the lines as designed, and within 0.5 foot (vertically) of the elevations as designed. The final rock surfaces will be rough and should not be filled to make grade. The bedrock channel should be constructed at or below the design grades in order to meet the intent of the design.

5.3.11 Nonconformance, Corrective Action and Stop Work

The CQA staff, including the CQA Site Manager and QC Technicians, will have the authority to reject material brought to the site or material that has been placed. For a failed field

moisture/density test, the QC Technician will determine the extent and depth of the affected area and require the Contractor to re-work the material as described above. If persistent failed tests occur (indicating inadequate compaction methods), the CQA Site Manager will have the authority to stop the work until the underlying cause is determined and the Contractor can demonstrate that moisture/density specifications can be met.

Laboratory test results for the clay liner shall be verified for compliance and approved by the CQA site manager prior to placement of disposed materials in the cell.

5.3.12 Documentation

Field and laboratory test results, observations of fill placement, and field compaction test results will be recorded using the appropriate field forms and reports, as described in Section 4. Table 4 includes a summary of the required materials testing and frequencies.

Dasin Kiprap					
Component	Test	ASTM Standard	Frequency	Criteria	
Clay Liner	Gradation (200 Wash)	D422	1/2,500 cubic yards	40% min. passing the 200 sieve	
	Atterberg Limits	D4318	1/2,500 cubic yards	Min. PI = 15	
Riprap*	Gradation with 200 Wash	D422	1/10,000 cubic yards	D ₅₀ , Durability	

 Table 4 - Summary of Testing Frequency and Criteria for Clay Liner and Sedimentation

 Basin Riprap

*Rock durability testing per section 5.3.8

5.4 Mill Decommissioning

Decommissioning of the Mill will include:

- Disposal of the Mill processing equipment and structures and contaminated soils in the Mill area
- Cleanup of contaminated areas of the Mill Site including ore storage area and roadways
- Cleanup of windblown contamination

These areas are shown on the Drawings. The Technical Specifications describe methods and cleanup criteria, including radiological equipment that will be used and the development of cleanup criteria. Contaminated materials will be disposed of in the designated areas of the tailings impoundment.

The CQA Contractor will provide specialized QC Technicians qualified to monitor the dismantling of the Mill equipment and structures and the cleanup of contaminated soils. These Technicians will be trained in the proper use and calibration of radiological monitoring equipment and will monitor the work to ensure the cleanup criteria are met.

5.4.1 Characterization Surveys

Following scanning, classification and cleanup (as required), the areas will be scanned again to verify compliance with activity criteria. QC Technicians will use calibrated beta/gamma instruments capable of detecting activity levels of less than or equal to 25 percent of the guideline values.

After removal of contamination, the technicians will make final surveys over the remediated areas. The QC Technicians will document within the specific ten meter by ten meter grids, the sample point locations, as detailed in the Specifications. Soil samples from 10 percent of the surveyed grids will be chemically analyzed to confirm the initial correlation factors utilized and confirm the success of cleanup effort for radium, thorium and uranium. Ten percent of the samples chemically analyzed will be split and duplicates will be sent to an off-site laboratory. Spikes and blanks, equal to 10 percent of the samples that are chemically analyzed, will be processed with the samples.

5.4.2 Contaminated Material Disposal

Contaminated materials including mill debris, site soils, liner material, and raffinate crystals will be disposed of in the designated portion of the Cell 1 Disposal Area. Material specifications and placement methods are described in the Construction Plans and Technical Specifications. The CQA Contractor will provide full-time monitoring and testing during material placement.

5.4.3 Material Conformance Monitoring

For scrap and debris, the QC Technicians will monitor the volume and size of the material to ensure compliance with the maximum dimensions provided in the Technical Specifications (a maximum dimension of 20 feet and a maximum volume of 30 cubic ft) and to ensure that containers are properly pierced. If the size limits are exceeded, the QC staff will require the Contractor cut the material down to size.

5.4.4 Material Placement

QC Technicians will monitor material placement to verify the debris is spread out and placed according to the specifications and that voids are filled with stockpiled soils, contaminated soils, tailings and/or other approved materials. The approval of the Construction Manager and CQA Officer will be required for the use of other materials to fill voids.

A minimum of one foot of compacted soil will be required above the clay liner prior to placing any scrap or debris.

When liner or other lightweight material is placed, the QC staff will ensure that at least one foot of soil, crystals or other materials is placed above for protection against wind.

To the extent practicable, the various materials will not be concentrated in thick deposits on top of the tailings, but will be spread over the working surface as much as possible to provide relatively uniform settlement and consolidation characteristics of the cleanup materials.

It is anticipated that raffinate crystals will have a consistency similar to a granular material when brought to the cells, with large crystal masses being broken down for transport. Placement of the crystals will be performed as a granular fill, with care being taken to avoid nesting of large sized material. Actual placement procedures will be evaluated by the QC staff during construction as crystal materials are brought and placed in the cells.

Soil or soil-like material shall be placed and compacted over each lift of debris or other materials in lifts not to exceed two feet in loose thickness and compacted prior to placement of additional lifts.

5.4.5 Material Compaction

CQA staff will monitor material compaction to verify compliance with the specifications. The first lift (bridging lift) will be compacted by the tracking of heavy equipment, such as a Caterpillar D6 Dozer (or equivalent), using at least 4 passes, prior to the placement of a subsequent lift. Contaminated soils and other cleanup materials after the bridging lift will be compacted to the density requirement provided in the Technical Specifications. During construction, compaction requirements for the raffinate crystals will be re-evaluated based on field conditions and modified by the Construction Manager and CQA Officer, with the agreement of the DWMRC personnel.

Soil or similar material shall be compacted with a minimum of six passes with self-propelled, towed, or hand-held vibratory compaction equipment. The number of passes shall be confirmed with actual compaction equipment on site with a field test section of soil to establish a correlation between the field compaction method and 80 percent of maximum dry density for the soil, as determined by the standard Proctor test (ASTM D698). During compaction, the material shall be within 1 percent above to 4 percent below optimum moisture content for the material, as determined by the standard Proctor test.

The upper 12 inches of the final disposed material surface shall be compacted to 90 percent of the maximum dry density for the material, as determined by the standard Proctor test. During compaction, the material shall be within 1 percent above to 4 percent below optimum moisture content for the material, as determined by the standard Proctor test. If water addition is required to achieve this range of moisture contents, the added water shall be thoroughly mixed into the material prior to compaction.

Field density tests shall be compared with standard Proctor tests (ASTM D698 Method A or C) on the same material. Standard Proctor tests shall be conducted at a frequency of at least one test per 5,000 cubic yards of material compacted, or when material characteristics show significant variation.

Field density testing may be conducted with the sand cone test (ASTM D1556) or a nuclear density gauge (ASTM D6938, or as modified by the QA Manager). Correlation of nuclear density gauge results shall be by comparison with results from sand cone test(s) and laboratory testing for water content(s) using the oven drying method (ASTM D2216) on similar material. A sufficient number of sand cone tests and moisture content tests will be performed to provide a correlation between the sand cone and nuclear density tests.

The frequency of the field density and moisture tests will be not less than one test per 1,000 cubic yards of compacted fill. A minimum of two tests will be taken for each day that an applicable amount of fill is placed in excess of 150 cubic yards. A minimum of one test per lift and at least one test for every full shift of compaction operations will be taken. Tables 5 and 6 summarize the placement and testing criteria for the disposed materials.

Disposed Materials	Material Type (USCS)	Layer Thickness	Lift Thickness
Debris Lift	Variable	48 in. (max.)	As needed to fill voids
Fill Above Debris Lift	Variable	36 in. (min.)	12 in. compacted (max.)

Table 5 - Summary of Disposed Materials and Lift Thicknesses

Table 6 - Summary of Disposed Materials Moisture-Density TestingFrequencies and Requirements

		Density	Moisture	Proctor
Disposed Materials	Test Frequency	Requirement *	Requirement *	Frequency
Fill around debris	1/1,000 cubic yards placed	80% (min.)	- 4% to +1	1/5,000 cubic yards placed
Upper Debris Fill	1/1,000 cubic yards placed	90% (min.)	- 4% to +1	1/5,000 cubic yards placed

* Based on maximum dry density and optimum water contents as determined by standard Proctor tests (ASTM D698 Method A or C) on the same material.

5.4.6 Final Slope and Grades

The final disposed material surface shall have maximum side slopes of 5:1 and a top surface sloping in the directions and grades shown on the Drawings. The side slopes and top surface shall be free from abrupt changes in grade or areas of runoff concentration. The final disposed material surface shall be compacted with approved construction equipment to form a smooth surface with uniform density for subsequent cover placement.

5.4.7 Tolerances

The final surface of the disposed material shall be smoothed to avoid abrupt changes in surface grade. The layer thicknesses shall meet the required minimum thicknesses.

5.4.8 Nonconformance, Corrective Action and Stop Work

The CQA Site Manager and QC Technicians will have the authority to reject scrap and debris that is not properly prepared for placement. The Contractor may be required to reduce the size of large pieces of material or pierce drums or other containers. CQ staff may also require site soils to be re-worked if a failed test indicates the compaction requirements were not met. If persistent inadequacies occur during the placement of contaminated materials, the CQA Site Manager will

have the authority to stop the work until the underlying cause is determined and the Contractor can demonstrate that the specifications can be met.

5.4.9 Documentation

All observations and monitoring of contaminated material placement and all field compaction test results will be recorded using the appropriate field forms and reports, as described in Section 4.

5.5 <u>Settlement Plates</u>

The CQA team will need to verify proper construction and placement of the settlement points. The Surveyor will conduct the settlement plate measurements based on the DWMRC approved monitoring plan.

5.6 Cover System

A multi-layered earthen cover will be placed over tailings Cells 2, 3, 4A, and 4B and the portion of Cell 1 used for disposal of contaminated materials (the Cell 1 Disposal Area). The cover layers, from bottom to top, will include: 1) platform fill, 2) high compacted layer 3) water storage layer, and 4) erosion protection layer. Layers 1 through 3 will consist of the same material type and are all identified as "random fill". The material specifications, layer configurations, layer thicknesses, borrow sources, placement methods, and compaction requirements are described in the Technical Specifications. The CQA Contractor will provide full-time monitoring and testing during material placement.

5.6.1 Material Conformance Monitoring and Testing

The CQA Contractor will perform monitoring and frequent verification testing to ensure that the fill materials meet the gradation and classifications specifications. The CQA Consultant will monitor earthmoving operations to ensure that the fill material is taken from the proper borrow sources.

Prior to the placement of the next layer of the cover, the CQA Site Manager or the QC Technicians under the supervision of the CQA Site Manager shall inspect the completed layer and document any of the following:

- Erosion of the layer surface
- Cracking or desiccation of the surface
- Fill areas that may contain excessive organics or other debris
- Depressions, or settlement of the layer
- Irregularities in the layer surface (e.g. grading errors)

Any documented items that constitute non-conformance with the Drawings and Technical Specifications should be corrected prior to placement of the subsequent layer of the cover.

5.6.1.1 Random Fill

Random fill will be used for each of the lower three layers of the cover system. The fill will consist of mixtures of sands and silts with varying amounts of clay and random amounts of gravel and rock-size material. In the initial bridging lift of the platform fill, rock sizes of up to 2/3 of the thickness of the lift will be allowed. On all other random fill lifts, rock sizes will be limited to 2/3 of the lift thickness, with at least 30 percent of the material finer than the No. 40 sieve. The portion passing the No. 40 sieve, will classify as CL, SC, ML or SM materials under the Unified Soil Classification System. Oversized material will be controlled through selective excavation at the stockpiles and through the utilization of a grader, bulldozer or backhoe to cull oversize materials from the fill. The source of these materials will be site stockpiles from previous cell construction activities.

Testing for all layers except the lower layer of platform fill shall consist of No. 200 sieve wash and particle-size distribution testing (ASTM D422), and Atterberg limits (ASTM D4318) at a frequency of at least one test per 2,000 cubic yards of fill placed, or when material characteristics show a significant variation.

5.6.1.2 Rock Mulch

Rock mulch material shall be free from roots, branches, rubbish, and debris. The rock portion of the rock mulch will consist of granular materials from approved off-site sources.

The mixture will be 25 percent gravel (with a D_{100} less than 1-inch) by weight. Rock will be purchased from nearby commercial sources of alluvial gravel and cobbles. The rock portion of

the rock mulch shall be a screened product and have a maximum particle size of less than 1-inch. The soil portion of the rock mulch will consist of select material from the on-site topsoil borrow area.

Gradation specifications for the rock used for rock mulch material shall be confirmed by gradation testing prior to mixing with the topsoil, to determine the maximum particle size. Testing shall consist of particle-size distribution testing (ASTM D422) at a frequency of at least one test per 2,000 cubic yards of rock delivered to the site, or when rock characteristics show a significant variation.

Gradation specifications for rock mulch material (topsoil-gravel mixture) shall be confirmed by gradation testing, on samples collected from the point of placement (on the topdeck). Testing shall consist of particle-size distribution testing (ASTM D422) at a frequency of at least one test per 2,000 cubic yards of mixture placed, or when the characteristics of the mixture show a significant variation.

Rock mulch thickness will be controlled through establishment of grade stakes placed on a 200 x 200 foot grid on the top of the cells and by a 100 x 100 foot grid on the cell slopes. Physical checks of rock mulch depth will be accomplished through the use of hand dug test pits at the center of each grid in addition to monitoring the depth indicated on the grade stakes.

5.6.1.3 Topsoil

Topsoil will consist of select material from the on-site topsoil borrow area. The topsoil shall have a plasticity index (PI) less than 10 (%), as determined by Atterberg limits testing.

Material specifications for the topsoil material shall be confirmed by Atterberg limits testing (ASTM D4318) on samples of the topsoil, once for each 1,000 cubic yards of total topsoil material placed (including the quantity of topsoil added to the rock mulch mixture).

5.6.2 Material Placement

QC Technicians will observe the surface condition prior to fill placement. If the compacted surface of any layer of fill is too dry or smooth to bond properly with the layer of material to be

placed thereon, it will be moistened and/or reworked with a harrow, scarifier, or other suitable equipment to a sufficient depth to provide relatively uniform moisture content and a satisfactory bonding surface before the next succeeding layer of earthfill is placed. If the compacted surface of any layer of earthfill in-place is too wet (due to precipitation) for proper compaction of the earthfill material to be placed thereon, it will be reworked with harrow, scarifier or other suitable equipment to reduce the moisture content to the required level. It will then be recompacted to the earthfill requirements.

Nesting of oversized material will be controlled through selective excavation of stockpiled material, observation of placement by QC Technicians with authority to stop work and reject material being placed and by culling oversized material from the fill utilizing a grader. Successive loads of material will be placed on the fill so as to produce the best practical distribution of material.

QC Technicians will monitor the weather and temperature conditions. No material will be placed when the fill material or the underlying material is frozen or when ambient temperatures do not permit the placement or compaction of the materials to the specified density without developing frost lenses in the fill.

QC Technicians will monitor and document lift thicknesses frequently to ensure the specifications are being met. The required layer and lift thicknesses are listed in Table 7.

Table 7 - Summary of Cover Component Layer and Lift Theknesses					
Cover Component	Material Type (USCS)	Layer Thickness	Lift Thickness		
Platform Fill	CL, SC, ML or SM	30 in. (min.)	12 in. loose (max.)		
Highly Compacted Layer	CL, SC, ML or SM	30 in. (min.)	6 in. compacted (max.)		
Water Storage/Frost Barrier/Root zone	CL, SC, ML or SM	42 in. (min.)	18 in. loose (max.)		
Topsoil or Rock Mulch	CL, ML, SC, SP, or SM	6 in. (min.)	6 in. (max.)		

 Table 7 - Summary of Cover Component Layer and Lift Thicknesses

5.6.3 Moisture and Density Control

The QC Technicians will monitor placement, moisture conditioning, and compaction of the fill as it is placed. Prior to the start of field compaction operations, appropriate laboratory compaction curves will be obtained for the range of materials to be placed. Laboratory compaction curves based on complete Proctor tests will be conducted at the frequencies outlined in Table 8, depending on the variability of materials being placed.

Each layer of the fill will be conditioned so that the moisture content is uniform throughout the layer prior to and during compaction. As far as practicable, materials will be brought to the proper moisture content before placement. If necessary, water will be added after lift placement to the material by sprinkling on the layer. Each lift will be compacted by a sufficient number of roller passes or other compaction equipment to achieve the required dry density. Material that is too dry or too wet or does not meet the required dry density will be rejected and will be reworked until the moisture content and dry density are within the specified limits. Reworking may include removal, re-harrowing, reconditioning, re-rolling, or combinations of these procedures.

The required testing frequencies are included in Table 8. For all materials (except lower layer of platform fill at 80 percent compaction), a minimum of two tests will be taken for each day that an applicable amount of fill is placed in excess of 150 cubic yards. A minimum of one test per lift and at least one test for every full shift of compaction operations will be taken.

Requirements				
		Density	Moisture	Proctor
Cover Component	Test Frequency	Requirement*	Requirement*	Frequency
Upper Layer of Placed	1/1,000 cubic	**	n 0	1/5,000 cubic
Platform Fill	yards placed	95% (min.)***	n.a.	yards placed
Highly Compacted	1/500 cubic yards	95% (min.)		1/2,500 cubic
Layer	placed	93% (IIIII.)	n.a.	yards placed
Water Storage/Frost	1/1,000 cubic	85% (min.)	n 0	1/5,000 cubic
Barrier/Root zone)	yards placed	83% (IIIII.)	n.a.	yards placed
Topsoil or Rock Mulch	1/500 cubic yards	<u> 20 250/</u>	20% to Optimum	1/2,500 cubic
Topson of Rock Mulch	placed	80-85%	-3% to Optimum	yards placed

 Table 8 - Summary of Cover Component Moisture-Density Testing Frequencies and Requirements

* Based on maximum dry density and optimum water contents as determined by standard Proctor tests (ASTM D698 Method A or C) on the same material.

**Lower layer of platform fill will be placed at 80 percent compaction and does not require compaction testing.

***Upper 6 inches of the platform fill only.

Field density testing may be conducted with the sand cone test (ASTM D1556) or a nuclear density gauge (ASTM D6938, or as modified by the QA Manager). Correlation of nuclear density gauge results shall be by comparison with results from sand cone test(s) and laboratory testing for water content(s) using the oven drying method (ASTM D2216) on similar material. A sufficient number of sand cone tests and moisture content tests will be performed to provide a correlation between the sand cone and nuclear density tests. Field density tests shall be compared with standard Proctor tests (ASTM D698 Method A or C) on the same material. Rock corrections (ASTM D4718) for oversize particles may be required for the rock mulch mixture (or other materials) depending on the gradation of the gravel material selected.

The actual frequency of testing may be increased by the CQA Site Manager if variability of materials is noted at the site, during adverse conditions, or to isolate failing areas of the construction.

5.6.4 Surface Slopes and Grades

The final cover surface shall have maximum side slopes of 5:1 and a top surface sloping in the direction and grade shown on the Drawings. The side slopes and top surface shall be free from abrupt changes in grade or areas of runoff concentration. The perimeter apron at the toe of the side slopes shall have a minimum width of 20 feet from the toe of the side slopes and slope away from the toe of the side slopes (as shown on the Drawings).

5.6.5 Tolerances

The completed cover surface shall be constructed to within 1.0 foot (horizontally) of the lines as designed, and within 0.1 foot (vertically) of the elevations as designed. The final surface of the subsoil zone shall be smoothed to avoid abrupt changes in surface grade. The layer thicknesses shall meet the required minimum thicknesses.

5.6.6 Nonconformance, Corrective Action and Stop Work

The CQA Site Manager and QC Technicians will have the authority to reject material that is brought to the site or material that has been placed. For a failed field moisture/density test, the

QC Technician will determine the extent and depth of the affected area and require the Contractor to re-work the material as described above. If persistent failed tests occur (indicating inadequate compaction methods), the CQA Site Manager will have the authority to stop the work until the underlying cause is determined and the Contractor can demonstrate that the moisture/density specifications can be met.

5.6.7 Documentation

All field and laboratory test results, observations of fill placement, and field compaction test results will be recorded using the appropriate field forms and reports, as described in Section 4. Table 9 includes a summary of the required materials testing and frequencies for the cover components.

Component	Test	ASTM Standard	Frequency	Criteria
Random Fill (highly compacted & water storage layers)	Gradation with 200 Wash	D422	1/2,000 cubic yards	Max. Particle = 2/3 of lift thickness, Min. 30% passing the No. 40 sieve*
storage layers)	Atterberg Limits	D4318	1/2,000 cubic yards	CL, SC, ML or SM
Rock Mulch	Gradation	D422	1/2,000 cubic yards	D ₁₀₀ < 1 inch
Topsoil	Atterberg Limits	D4318	1/1,000 cubic yards	Max PI < 10

 Table 9 - Summary of Testing Frequency and Criteria for Cover Components

*Each lift after the initial tailings bridging lift.

5.7 Rock Protection and Erosion Control

The top and side slopes of the reclaimed cover will be protected by rock surfacing. The size, thickness and gradation requirements for the rock protection are provided in the Drawings and Technical Specifications.

5.7.1 Material Conformance Monitoring and Testing

Riprap will be a screened product transported from gravel sources north of the project site. The CQA Contractor will perform monitoring and frequent verification testing to confirm that the riprap meets the gradation and durability specifications.

During active riprap placement, each load of material will be visually checked against standard piles for gradation prior to transport to the tailings cells.

5.7.1.1 Erosion Protection and Apron Rock

Material for the perimeter aprons and slope erosion protection will consist of granular materials from approved off-site areas. Perimeter apron rock shall meet NRC long-term durability requirements (rock quality designation of 65 or more).

Perimeter apron rock shall be a screened product, free from roots, branches, rubbish, and debris. The specifications as given below are for rock quality designations of 70 or higher. If actual rock quality designation is between 65 and 69, additional oversizing will be required. Rock quality designations below 65 will not be acceptable.

Designated gradations for the apron rock will be specified on the final drawings for construction. Apron rock will be imported from off-site.

- Side slope riprap shall have a minimum D₅₀ as listed below and a minimum layer thickness of 1.5 times the D₅₀ or the D₁₀₀ of the riprap, whichever is greater:
 - 1.7 in. for non-accumulating flow side slopes
 - 5.3 in. for Cell 4A and Cell 4B southern side slopes
 - 4.5 in. for Cell 1 Disposal Area side slope
- Rock aprons shall have a minimum D₅₀ as listed below and a minimum layer thickness of 1.5 times the D₅₀ or the D₁₀₀ of the riprap, whichever is greater:
 - 3.4 in. for Rock Apron A
 - 10.5 in. for Rock Apron B
 - 9.0 in. for Rock Apron C

Rock Apron C shall have a minimum D_{50} of 9.0. Material specifications for the perimeter apron rock shall be confirmed by gradation testing conducted by the CQA Laboratory. Testing shall consist of particle-size distribution testing (ASTM D422) at a frequency of at least one test per 10,000 cubic yards of rock delivered to the site, or when rock characteristics show a significant variation.

Rock layer thickness will be controlled through establishment of grade stakes placed on a 200 x 200 foot grid on the top of the cells and by a 100 x 100 foot grid on the cell slopes. Physical checks of riprap depth will be accomplished through the use of hand dug test pits at the center of each grid in addition to monitoring the depth indicated on the grade stakes.

Test series for rock durability will include specific gravity, absorption, sodium soundness and LA abrasion. During construction additional test series and gradations will be performed for each type of riprap when approximately one-third (1/3) and two-thirds (2/3) of the total volume of each type have been produced or delivered. For any type of rock where the volume is greater than 30,000 cubic yards, a test series and gradations will be performed for each additional 10,000 cubic yards of rock produced or delivered. Gradations will also be performed at the direction of the QC Technician for any locations considered inadequate based on visual inspection by the QC Technician, or if difficulties are experienced by the Contractor during rock placement.

5.7.1.2 Erosion Protection Filter

Erosion protection filter material shall be free from roots, branches, rubbish, and debris. Filter material will generally be classified as sand containing gravel and fines and shall meet the following gradation specifications.

Table 10 – Filter Material Oradation			
Sieve Size	Percent Passing, by Weight		
3-inch	100		
No. 4	70-100		
No. 20	40-60		
No. 200	0-5		

Table 10 –	Filter	Material	Gradation
I able IV	I IIIII	material	oradation

Material specifications for the perimeter apron rock shall be confirmed by gradation testing conducted by the CQA Laboratory. Testing shall consist of particle-size distribution testing (ASTM D422) at a frequency of at least one test per 10,000 cubic yards of rock delivered to the site, or when rock characteristics show a significant variation.

Filter layer thickness will be established during construction with grade stakes placed on a grid or centerline and offset pattern and layer thickness marks on each grade stake. The minimum thickness of the layer will be verified by spot checking of layer thickness by hand excavation in selected locations.

5.7.2 Material Placement

QC Technicians will monitor riprap placement. An initial section of each type of riprap constructed shall be visually examined and used to evaluate future placement. The initial section will be constructed with material meeting gradation and riprap thickness requirements. Initial testing should be conducted to determine the gradation and the rock weight/unit volume that will be achieved in future rock placement activities. Riprap material will be hauled to the reclaimed surfaces and placed on the surfaces using belly dump highway trucks and road graders. Riprap will be dumped in windrows and the grader will spread the riprap in a manner to minimize segregation of the material. Depth of placement will be controlled through the establishment of grade stakes. Minimum required thicknesses for riprap layers are provided in Section 5.7.1. Physical checks of riprap depth will be accomplished through the use of hand dug test pits at the center of each grid in addition to monitoring the depth indicated on the grade stakes. The Contractor will excavate the test pits, and QC Technicians will observe and document the excavation. Placement of riprap will avoid accumulation of riprap sizes less than the minimum D_{50} size and nesting of the larger sized rock. Additional riprap placement requirements include:

- Individual stones shall not be greater than 90 percent of the riprap layer thickness.
- Dumped riprap shall be placed to its full course thickness in one operation and in such a manner as to avoid displacing bedding material.

- Hand placement or rearrangement of individual stones will be required only to the extent necessary to secure the results specified above. Larger stones may require individual placement by equipment.
- Any stones that are not firmly wedged shall be adjusted and additional selected stones inserted or existing stones replaced, so as to achieve a solid interlock.

5.7.3 Compaction

QC staff will monitor riprap placement. The riprap layer will be compacted by at least two passes by a D7 Dozer, tamping with the bucket of a trackhoe, or equivalent methods in order to key the rock for stability.

5.7.4 Tolerances

The completed riprap shall be placed to within 5.0 foot (horizontally) of the layout as designed, and within 0.5 foot (vertically) of the elevations as designed. The rock layer thicknesses shall meet the minimum requirements. Minimum required thicknesses for riprap layers are provided in Section 5.7.1. Riprap layer thickness will be directly measured as outlined in Section 5.7.2. A measurement device (i.e. tape measure) may be used to determine the distance from the top of the bedding or filter layer to the top of the riprap layer.

5.7.5 Nonconformance, Corrective Action and Stop Work

The CQA Site Manager and QC Technicians will have the authority to reject riprap that is brought to the site or riprap that has been placed. For rejected riprap, QC Technicians will identify the extent of inadequate riprap and will require the Contractor to excavate the material and place additional riprap. If persistent failed tests occur (indicating inadequate placement methods), the CQA Site Manager will have the authority to stop the work until the underlying cause is determined and the Contractor can demonstrate that the riprap can be placed according to the specifications.

5.7.6 Documentation

All field and laboratory test results, observations of riprap placement, and field compaction test results will be recorded using the appropriate field forms and reports, as described in Section 4.

Table 11 includes a summary of the required materials testing and frequencies for the erosion protection materials.

Table 11 - Summary of Testing Frequency and Criteria for Erosion Protection				
Component	Test	ASTM Standard	Frequency	Criteria
Riprap*	Gradation with 200 Wash	D422	1/10,000 cubic yards	D ₅₀ and Durability*
Riprap Filter	Gradation with 200 Wash	D422	1/10,000 cubic yards	See Table 10

Table 11 - Summary of Testing Frequency and Criteria for Erosion Protection

*Rock durability testing per section 5.7.1.1

5.8 <u>Protection of Soil Stockpiles</u>

The Contractor shall maintain proper erosion control measures for stockpiles and may be required to cover piles in situations where precipitation is anticipated. The CQA Site Manager should document improper stockpile management in situations where the integrity of the material is affected. The Construction Manager and/or the CQA Officer should determine corrective measures.

Page B-42 Revision 5.0 Energy Fuels Resources (USA) Inc. White Mesa Mill Reclamation Plan

6 FIELD REPORT FORMS

CQA/QC PLAN NO. QP-GEN-1-WM

Form No. F-23

COMPLIANCE REPORT

Project No	Date:
Construction Segment:	
Drawing No.:	
Specification No.:	
Description of Completed Construction Segment:	
By: CQA Officer	
Approvals:	
CQA Site Manager	
DWMRC Project Manager	

CQA/QC PLAN NO. QP-GEN-1-WM

Form No. F-25			
	FIELD CHANGE O	ORDER	
Project No		Date:	
Drawing No.:			
Specification No.:			
Design Feature:			
Modifications:			
Reason:			
Tu Maria di Isan			
Initiated by:			
Approved by:			
	CQA Site Manager	r	

CQA/QC PLAN NO. QP-GEN-1-WM

Form No. F-26	
DESIGN CH.	ANGE ORDER
Project No	Date:
Drawing No.:	
Specification No.:	
Design Feature:	
Change in Design:	
Reason:	
Initiated hu	
Initiated by:	
Approvals:	
CQA Site Manager:	
DWMRC Project Manager:	
2 ·····2. · · · · · · · · · · · · · · ·	
Design Engineer:	

ATTACHMENT D

SUPPORTING DOCUMENTATION FOR INTERROGATORY 06/1:

REVISED APPENDIX E, SLOPE STABILITY ANALYSIS, TO THE UPDATED TAILINGS COVER DESIGN REPORT (APPENDIX D OF RECLAMATION PLAN, REVISION 5.0)

APPENDIX E

SLOPE STABILITY ANALYSIS

E.1 INTRODUCTION

This appendix presents the methods, input and results of slope stability analyses of the tailings cells at the Energy Fuels Resources (USA) Inc. (EFRI) White Mesa Uranium Mill (Mill). The Mill is located approximately 6.0 miles south of Blanding, Utah. These analyses were conducted according to applicable stability criteria under static and seismic conditions, including geotechnical stability criteria in NRC (2003). These analyses are an update to the slope stability analyses presented in MWH (2011) to incorporate revisions to the analyses to address State of Utah, Division of Waste Management and Radiation Control (DWMRC) (formerly Utah Division of Radiation Control, DRC) interrogatories (DRC, 2012) and review comments on EFRI responses to 2012 interrogatories (DRC, 2013). These analyses also incorporate the revised cover grading design, results of cover material testing conducted in 2010 and 2012 (summarized in Attachment B of EFRI, 2012), and the results of tailings testing conducted in 2013 (presented in MWH, 2015b).

Slope stability analyses were performed using limit equilibrium methods with the aid of the computer program SLOPE/W (GEO-SLOPE, 2007). The SLOPE/W program calculates factors of safety by any of the following methods: (1) Ordinary Fellenius, (2) Bishop's Simplified, (3) Janbu's Simplified, (4) Spencer, (5) Morgenstern-Price, (6) U.S. Army Corps of Engineers, (7) Lowe-Karafiath, and (8) Generalized Limit Equilibrium. The Morgenstern-Price method (Morgenstern and Price, 1965) with a half-sine function for inter-slice forces was selected for performing the computations in SLOPE/W. The method uses both circular and non-circular shear surfaces and satisfies both moment and force equilibrium.

E.2 CRITICAL CONDITIONS AND GEOMETRY

Slope stability analyses are typically conducted for scenarios that represent the critical conditions for post-reclamation. For the White Mesa Mill tailings cells, critical conditions for post-reclamation were evaluated and included: (1) reclaimed outside surfaces of the embankment with a 5H:1V slope, (2) existing inside surfaces of the embankments with a 2H:1V slope, and (3) conservative shear strength parameters based on previous reports.

A critical cross section, cross section A, was selected through the southern dike of Cell 4A near the southeast corner of the impoundment. The cross section location was selected based on overall impoundment height as well as base topography and is similar to the location used for the slope stability analyses presented in Titan (1996). The location of cross section A is shown in Figure E.1. The tailings are planned to be dewatered prior to placement of the final portion of cover. The phreatic surface was estimated to be five feet above the liner system for the analyses.

A second cross section, cross section B, was selected through the northern embankment of the Cell 1 Disposal Area. This location was chosen to address DRC interrogatories (DRC, 2012). The location of cross section B is shown in Figure E.2. The material placed in the Cell 1 Disposal Area will include mill debris and contaminated soils. The embankment cross section was assumed to be fully drained and therefore a phreatic surface was not included in the analyses.

Slope stability analyses were performed by calculating factors of safety along circular and noncircular failure surfaces for both static and pseudo-static conditions. Circular failure surface analyses were conducted by targeting both shallow and deep failure surfaces. Block failure

surfaces through the clay liner system were evaluated for cross section B. A number of failure surfaces were analyzed in order to calculate the factor of safety for the critical failure.

E.3 MATERIAL PROPERTIES

Material strength parameters used for the slope stability analysis are based on parameters presented in Denison (2009) for the Cell 4B slope stability analyses conducted by Geosyntec, historical laboratory testing on tailings and clay materials (Advanced Terra Testing, 1996; Chen and Associates, 1987; D'Appolonia, 1982; and Western Colorado Testing, 1999), laboratory testing conducted in 2010 and 2012 on potential cover borrow materials (see Attachment B of EFRI, 2012), laboratory testing conducted in 2013 on tailings (MWH, 2015b) and typical published values. The parameters for each material are discussed below and summarized in Table E.1.

Erosion Protection: The erosion protection materials include riprap and filter material on the embankment slopes, and rock mulch on the top surface of the cover system. Typical density values for sand and gravel were used for the riprap and filter materials. The riprap and filter material strength parameters were estimated based on the lower bound typical values from Lambe (1969) for loose to medium dense sand and gravel. The rock mulch consists of topsoil material mixed with 25 percent gravel by weight. The density of the rock mulch was based on the 2012 laboratory testing results for topsoil (see Attachment B of EFRI, 2012) and applying a rock correction based on 25 percent gravel by weight. The total unit weight of the rock mulch was calculated using the estimated dry density and the long-term water content presented in the radon analyses. Effective strength parameters of the rock mulch were estimated as an angle of internal friction of 33 degrees and no cohesion, based on a maximum plasticity index (PI) of the topsoil of 10 percent (listed in the specifications), and using the generalized relationship between PI and effective angle of internal friction presented in Holtz and Kovacs (1981).

Cover System: The cover system material properties were estimated based on the updated geotechnical site investigation in April 2012. The total unit weight values used in the model for the random fill layers were estimated using 2010 and 2012 laboratory tests conducted on potential cover borrow materials (see Appendix A.2) and based on the compaction effort for each layer. The total unit weights for the cover layers were calculated using the long-term water contents for the cover layers used in the radon analyses. Effective strength parameters for the cover materials were estimated based on the maximum measured PI (30) from the 2010 and 2012 laboratory test results and using the generalized relationship between PI and effective angle of internal friction presented in Holtz and Kovacs (1981), resulting in an angle of internal friction of 29 degrees and no cohesion.

Tailings Material: The dry density of the tailings was estimated as 96 pcf, based on laboratory tests (Chen and Associates, 1987 and Western Colorado Testing, 1999) and assuming the upper bound long-term density of the tailings should be no greater than 90 percent of the average laboratory measured maximum dry density for tailings. This is the same density used for the radon analyses. The total unit weight of the tailings was calculated using the long-term water content assumed for the tailings in the radon analyses. Based on existing operations at the site, the tailings deposits are primarily fine sands with silt and some clay. The strength parameters of the tailings were conservatively estimated using the Naval Design Manual for Soil Mechanics DM7-01 (NAVFAC, 1986) as zero percent relative density silty sand. The strength parameters used for the tailings (no cohesion and an effective angle internal friction of 25 degrees) are consistent with the values presented in Denison (2009) for the Cell 4B design stability analyses.

Contaminated Soils/Mill Debris: The materials to be placed in the Cell 1 Disposal Area include contaminated soils and mill debris. The contaminated soils will be from on-site and have similar properties as the cover soils. The material properties for the contaminated soils and mill debris were conservatively assumed to be the same as the cover soils (compacted to 85 percent standard Proctor compaction).

Clay Liner: Cell 1 will be lined with a clay liner. The dry density of the clay was estimated based on laboratory tests performed on Section 16 clay (D'Appolonia, 1982; Advanced Terra Testing, 1996) and assuming the clay will be compacted to 95 percent of standard Proctor compaction. The total unit weight for the clay was calculated using the estimated dry density and a long-term water content of 14 percent. The long-term water content was estimated based on 15 bar water contents measured for Section 16 clay samples by Chen and Associates (1987) presented in Titan (1996). The strength parameters for the clay were estimated using the average measured PI (60) of samples meeting the placement specifications for minimum PI and percent passing the No. 200 sieve, and the generalized relationship between PI and effective angle of internal friction presented in Holtz and Kovacs (1981), resulting in an angle of internal friction of 24 degrees and no cohesion.

Dike and Foundation: Density and strength parameters for the existing foundation and dike material were estimated as the values presented in stability analyses performed for the design of Cell 4B by Geosyntec (Denison, 2009). The strength parameters used in the model were based on laboratory testing results from samples obtained from the existing berm between Cell 4A and 4B (Denison, 2009).

Bedrock: Failures are not anticipated to occur within the bedrock underlying the embankment, due to the relatively high strength of the underlying sedimentary rock. Therefore, the material properties for the bedrock were modelled as those consistent with sedimentary rock.

Material	Total Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (deg.)
Riprap	125	0	36
Riprap Filter	125	0	30
Rock mulch	110	0	33
Cover Upper Layer (85% SP compaction)	107	0	29
Cover Middle Layer (95% SP compaction)	120	0	29
Cover Lower Layer (80% SP compaction)	100	0	29
Random Fill	100	0	29
Tailings	95	0	25
Contaminated Soils/Mill Debris	107	0	29
Clay Liner	110	0	24
Dike	137	900	26
Foundation	137	900	26
Bedrock	130	10000	45

Table E.1.	Material	Parameters	Used in Model
------------	----------	------------	---------------

E.4 SEISMIC ANALYSIS AND SEISMICITY

Stability analyses under seismic conditions were conducted as pseudo-static analyses, where a horizontal acceleration or seismic coefficient is applied to both cross-sections. This seismic coefficient represents the horizontal accelerations applied on the structure by an earthquake. A coefficient of 0.1 g was used for the analyses based on the site-specific probabilistic seismic hazard analysis (MWH, 2015a). This seismic coefficient represents the seismic loading for the Maximum Credible Earthquake (MCE) calculated to occur during the long-term life of the embankment. A summary of the site seismicity is provided in the MWH (2015a).

A liquefaction analysis was conducted for the tailings and is presented in Appendix F (revised version provided as Attachment G to this submittal). The results indicate the tailings are not susceptible to earthquake-induced liquefaction. For materials that do not liquefy or lose shear strength with seismic shaking, seismic slope stability is analyzed by a pseudo-static approach. This consists of application of an equivalent horizontal acceleration or seismic coefficient to the structure being analyzed. The seismic coefficient represents an inertial force due to strong ground motions during the design earthquake, and is represented as a fraction of the peak ground acceleration (PGA) at the site (typically at the base of the structure). The strategy of representing the seismic coefficient as a fraction of the PGA has been adopted in review of uranium tailings facility design and documented in DOE (1989). A seismic coefficient of 2/3 of the PGA typically represents the post-reclamation conditions. MWH (2015a) estimated the mean PGA for reclaimed conditions to be 0.15g. The seismic coefficient used for the pseudo-static stability analysis is 0.10g (equal to 2/3 of the PGA).

E.5 DISCUSSION OF STABILITY ANALYSIS RESULTS

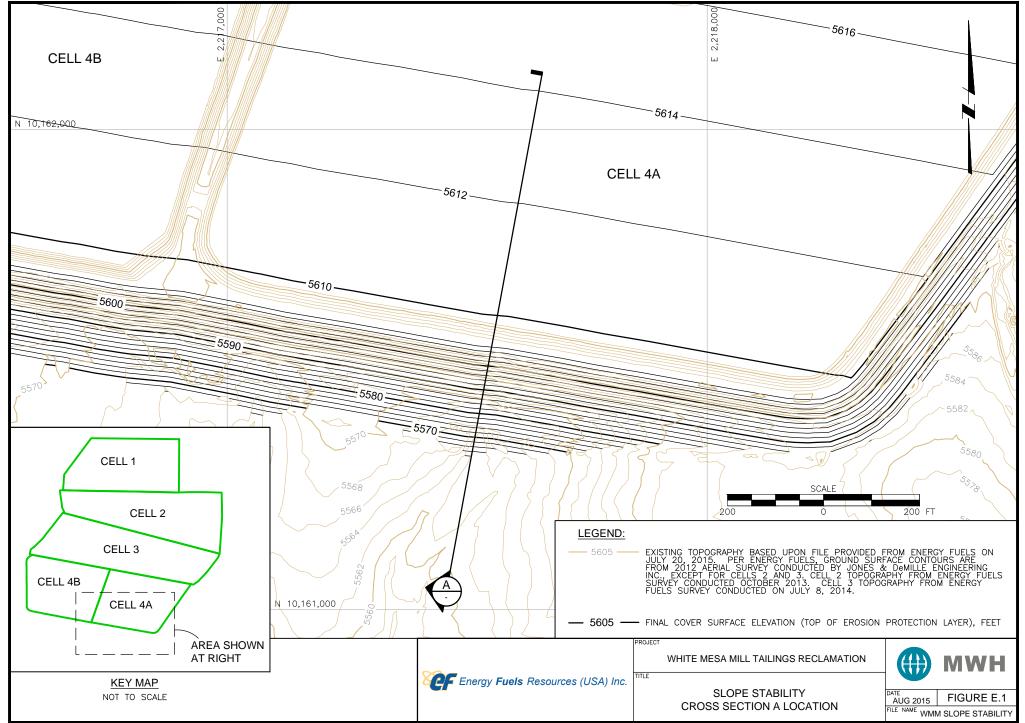
The results of stability analyses for Cross-section A and B are presented in Table E.2. These values represent the lowest calculated factor of safety from a number of individual failure surfaces for a Morgenstern-Price Analysis.

Cross-Section	Failure Type	Loading Condition	Required Factors of Safety	Calculated Factors of Safety
	Shallow	Static	1.5	3.05
Cross Section A -	Circular	Pseudo-Static	1.1	1.99
Cell 4A Embankment	Deep Circular	Static	1.5	3.86
		Pseudo-Static	1.1	2.53
	Shallow Circular	Static	1.5	2.64
		Pseudo-Static	1.1	1.71
Cell 1 Embankment C	Deep Circular	Static	1.5	2.71
		Pseudo-Static	1.1	1.76
	Diask	Static	1.5	2.76
	Block	Pseudo-Static	1.1	1.80

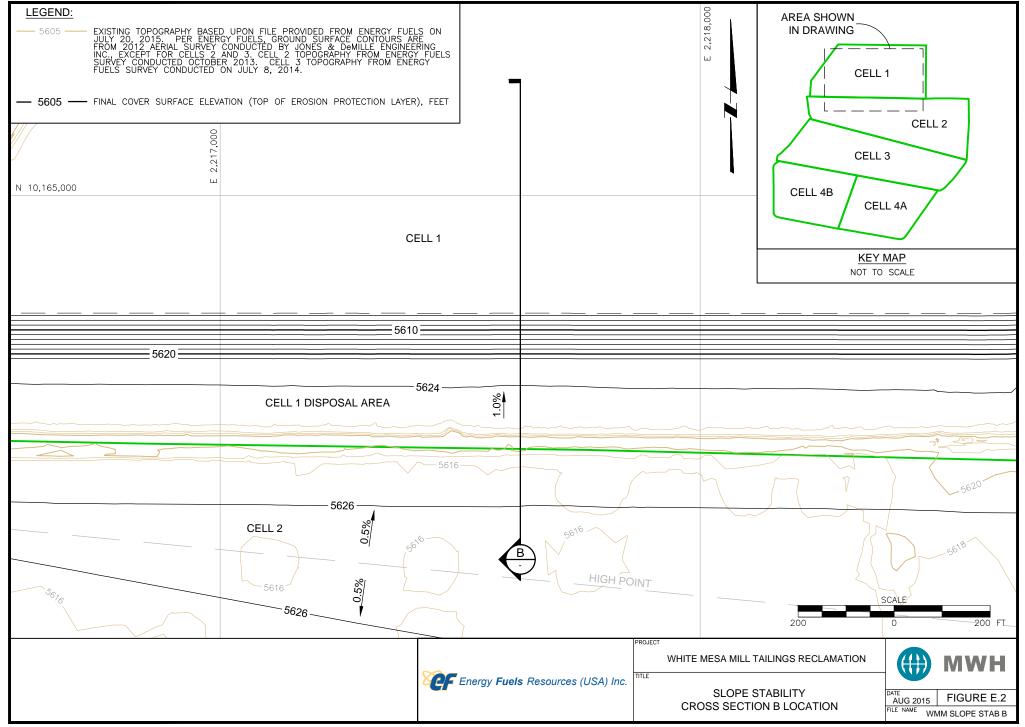
Table E.2. Slope Stability Analysis Results

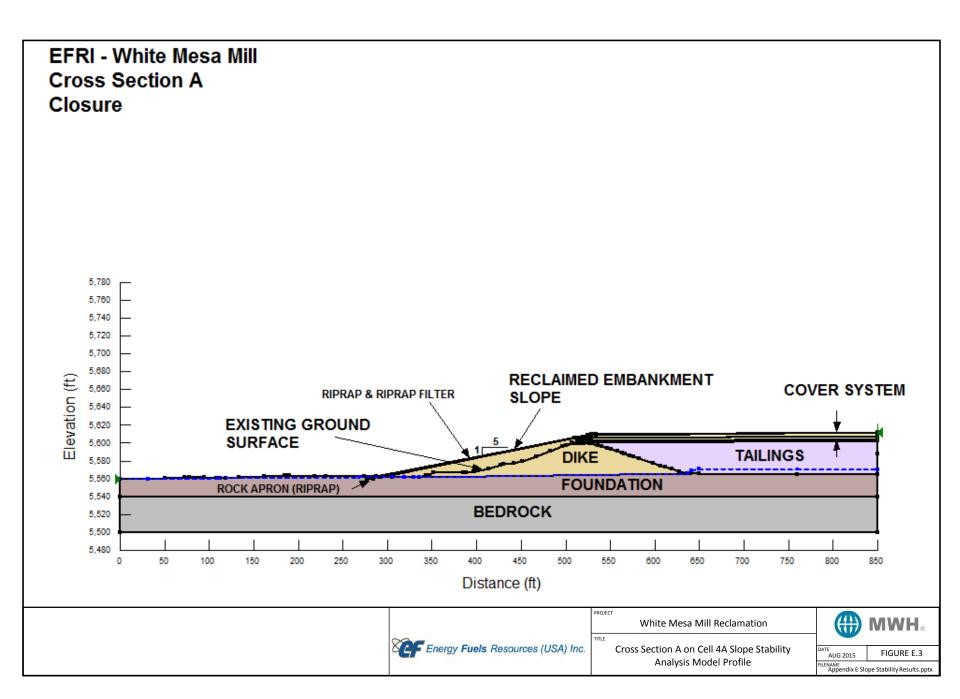
As shown in Table E.2, all calculated factors of safety were significantly above the NRC recommended values of 1.5 for static conditions and 1.1 for pseudo-static conditions. The model profile figures and SLOPE/W output figures for static and pseudo-static loading conditions are shown in Figures E.3 through E.14.

E.6 REFERENCES

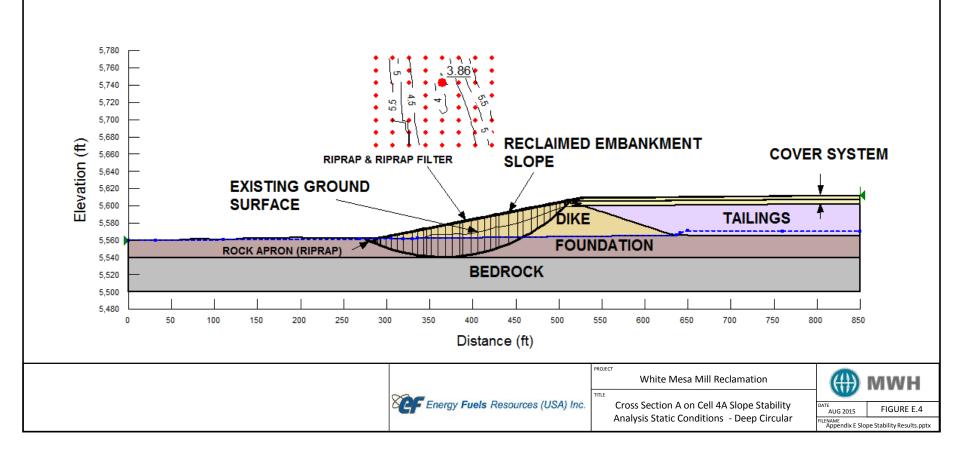

Advanced Terra Testing (1996). Physical soil data, White Mesa Project, Blanding Utah, July 25.

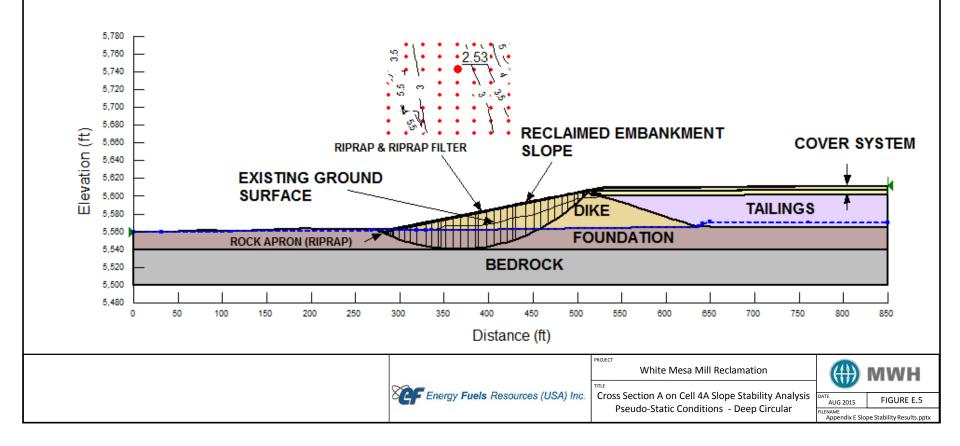
- Chen and Associates, Inc., 1987. Physical Soil Data, White Mesa Project, Blanding Utah, Report prepared for Energy Fuels Nuclear, Inc.
- D'Appolonia Consulting Engineers, Inc. (1982), Letter Report, Section 16 Clay Material Test Data, White Mesa Uranium Project, Blanding, Utah, Report prepared for Energy Fuels Nuclear, Inc. on 8 March 1982.
- Denison Mines (USA) Corporation (Denison), 2009. Cell 4B Lining System Design Report, Response to Division of Radiation Control ("DRC") Request of Additional Information – Round 1 interrogatory, Cell 4B Design, Exhibit A, Geosyntec Slope Stability Analysis Calculation Package. January 9.
- Energy Fuels Resources (USA), Inc. (EFRI), 2012. Responses to Interrogatories Round 1 for Reclamation Plan, Revision 5.0, March 2012. August 15.
- GEO-SLOPE International Ltd, 2007. Slope/W, Version 7.17, Calgary, Alberta.
- Holtz, R.D. and Kovacs, W.D., 1981. An Introduction to Geotechnical Engineering. New York: Prentice-Hall, 1981.
- Lambe, T.W. and Whitman, R.V., 1969. Soil Mechanics. New York: John Wiley & Sons, 1969.
- Morgenstern, N.R., and V.E. Price, 1965. The Analysis of the Stability of General Slip Surfaces. Geotechnique, Vol. 15, pp. 79-93.
- MWH Americas, Inc. (MWH), 2011. Updated Tailings Cover Design. Prepared for Denison Mines (USA) Corp. September.
- MWH Americas, Inc. (MWH), 2015a. White Mesa Mill Probabilistic Seismic Hazard Analysis Report. Prepared for Energy Fuels Resources (USA) Inc. April.
- MWH Americas, Inc. (MWH), 2015b. White Mesa Mill Tailings Data Analysis Report. Prepared for Energy Fuels Resources (USA) Inc. April.
- Naval Facilities Engineering Command (NAVFAC), 1986. Soil Mechanics Design Manual 7.01.
- Nuclear Regulatory Commission (NRC), 2003. "Standard Review Plan for the Review of a Reclamation Plan for the Mill Tailings Sites Under Title II of the Uranium Mill Tailings Radiation Control Act." NUREG-1620. Division of Waste Management, June.
- Titan Environmental Corporation (Titan), 1996. Tailings Cover Design, White Mesa Mill, October 1996.



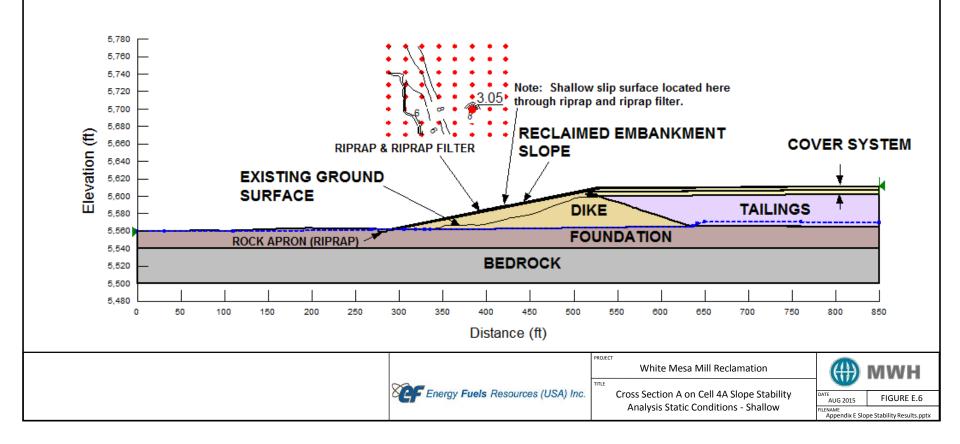

- U.S. Department of Energy (DOE), 1989. Technical Approach Document, Revision II, UMTRA-DOE/AL 050425.0002, Uranium Mill Tailings Remedial Action Project, Albuquerque, New Mexico.
- Utah Department of Environmental Quality, Utah Division of Radiation Control (DRC). 2012. Denison Mines (USA) Corp's White Mesa Reclamation Plan, Rev. 5.0, Interrogatories -Round 1. March.
- Utah Department of Environmental Quality, Division of Radiation Control (DRC), 2013. Review of August 15, 2012 (and May 31, 2012) Energy Fuels Resources (USA), Inc. Responses to Round 1 Interrogatories on Revision 5 Reclamation Plan Review, White Mesa Mill, Blanding, Utah, report dated September 2011. February 13.
- Western Colorado Testing, Inc., 1999. Report of Soil Sample Testing of Tailings Collected from Cell 2 and Cell 3, Prepared for International Uranium (USA) Corporation. May 4.

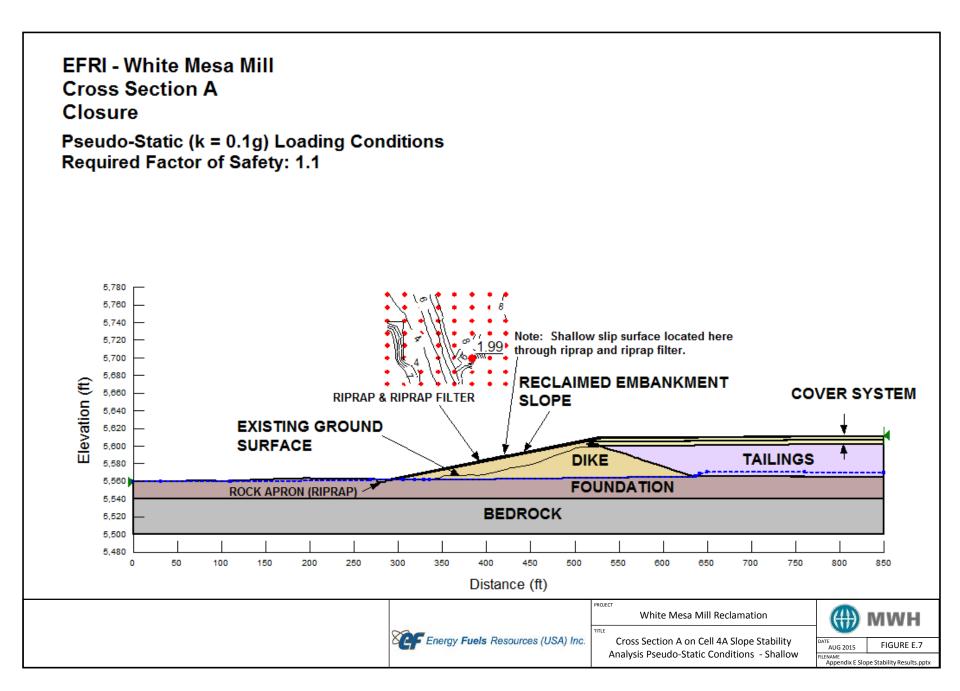
L:\Design-Drafting\Clients-A-H\ENERGY FUELS\013-Sheet Set\2015-08-31 COVER DSGN FIGS\WMM SLOPE STABILITY

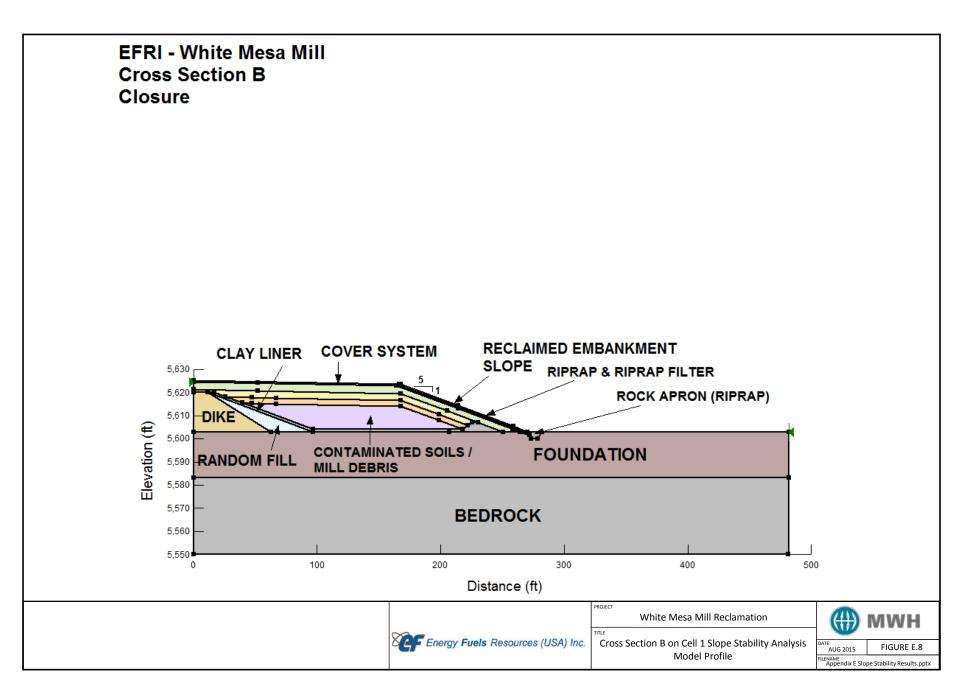

L:\Design-Drafting\Clients-A-H\ENERGY FUELS\013-Sheet Set\2015-08-31 COVER DSGN FIGS\WMM SLOPE STAB B


EFRI - White Mesa Mill Cross Section A Closure

Static Loading Conditions Required Factor of Safety: 1.5

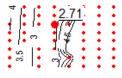

EFRI - White Mesa Mill Cross Section A Closure

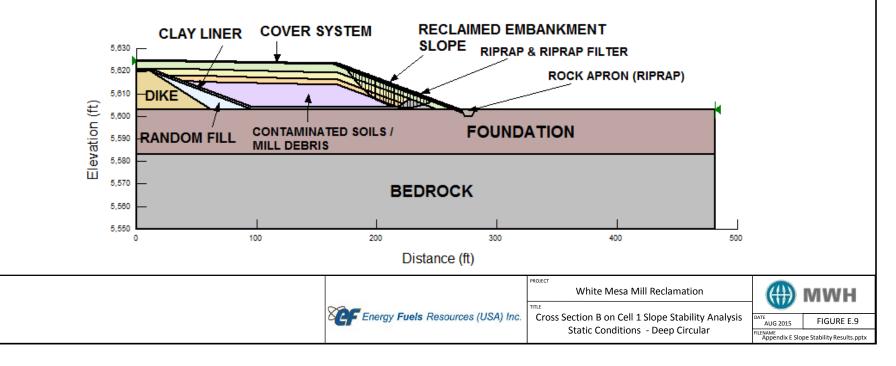

Pseudo-Static (k = 0.1g) Loading Conditions Required Factor of Safety: 1.1



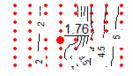
EFRI - White Mesa Mill Cross Section A Closure

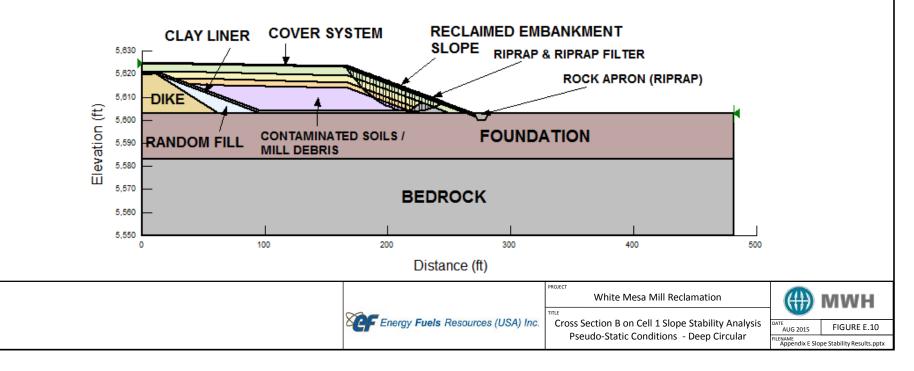
Static Loading Conditions Required Factor of Safety: 1.5

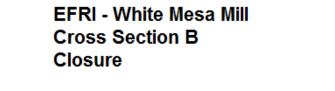




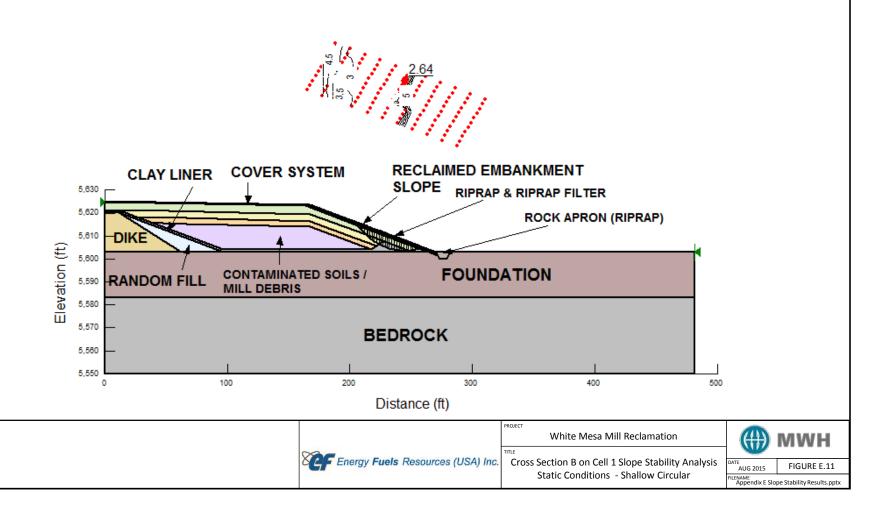
EFRI - White Mesa Mill Cross Section B Closure

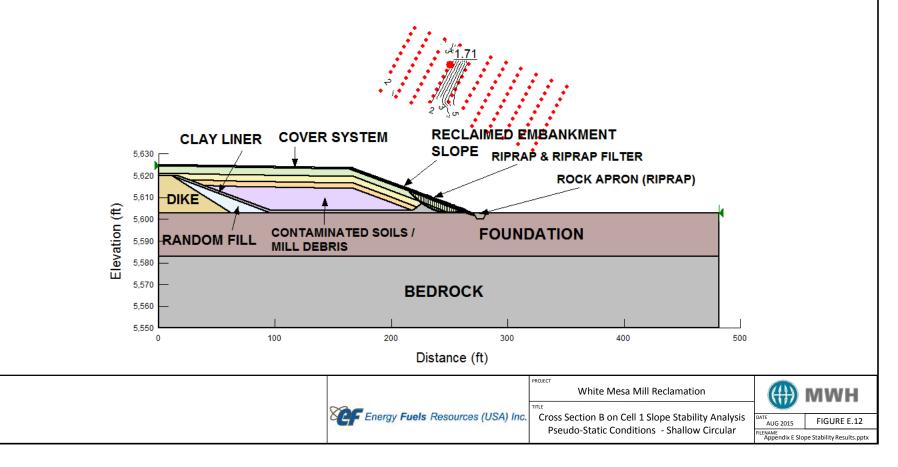

Static Loading Conditions Required Factor of Safety: 1.5

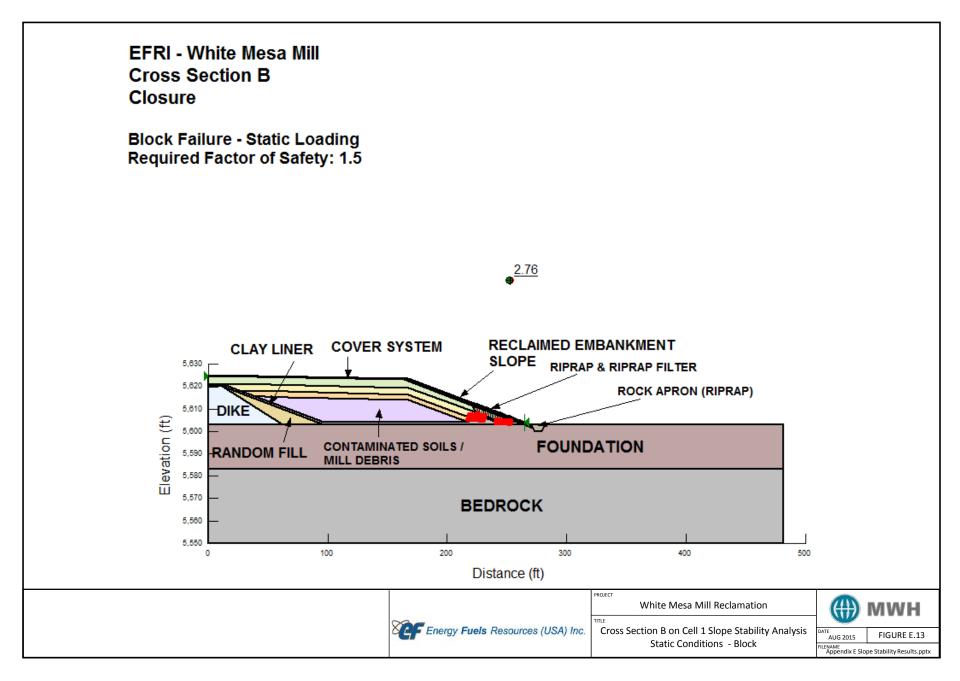


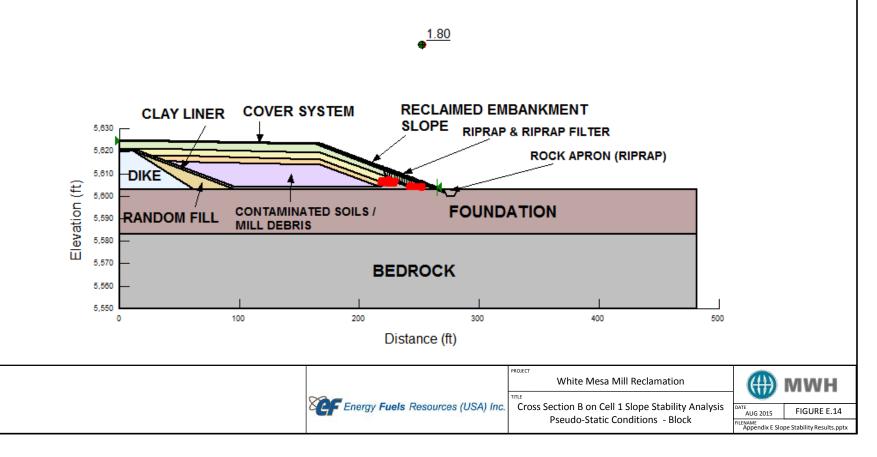


EFRI - White Mesa Mill Cross Section B Closure


Pseudo-Static Loading Conditions Required Factor of Safety: 1.1




Static Loading Conditions Required Factor of Safety: 1.5


Pseudo-Static (k = 0.1g) Loading Conditions Required Factor of Safety: 1.1

Block Failure - Pseudo-Static (k = 0.1g) Loading Conditions Required Factor of Safety: 1.1

ATTACHMENT E

SUPPORTING DOCUMENTATION FOR INTERROGATORY 07/1 and 09/1:

REVISED APPENDIX F, SETTLEMENT AND LIQUEFACTION ANALYSES, TO THE UPDATED TAILINGS COVER DESIGN REPORT (APPENDIX D OF THE RECLAMATION PLAN, REVISION 5.0)

APPENDIX F

SETTLEMENT AND LIQUEFACTION ANALYSES

F.1 BACKGROUND

This appendix presents results of settlement analyses and evaluation of liquefaction potential of tailings for the Energy Fuels Resources (USA) Inc. (EFRI) White Mesa Uranium Mill tailings disposal cells. These analyses are an update to the settlement and liquefaction analyses presented in MWH (2011) to address State of Utah, Division of Waste Management and Radiation Control (DWMRC) (formerly Utah Division of Radiation Control, DRC) interrogatories (DRC, 2012) and review comments on EFRI responses to 2012 interrogatories (DRC, 2013). These analyses also incorporate (1) the revised cover grading design, (2) results of cover material testing conducted in 2010 and 2012 (summarized in Attachment B of EFRI, 2012), (3) results of the recent site-specific probabilistic hazard analysis (presented in MWH, 2015a), (4) results of tailings testing conducted in 2013 (presented in MWH, 2015b), and (5) updated calculation methods for the seismic settlement and liquefaction potential.

Settlement analyses were conducted to evaluate settlement due to placement of final cover, dewatering of the tailings cells, long-term static (creep) settlement, and seismically induced (seismic) settlement. The results of these analyses were used to evaluate differential settlement and the potential for cover cracking. The settlement analyses are discussed in Section F.2. The tailings cells were also evaluated for liquefaction potential and discussion is provided in Section F.3.

The monolithic ET cover system evaluated in this appendix consists of the following layers from top to bottom:

- 0.5 ft (15 cm) Erosion Protection Layer (gravel-admixture)
- 3.5 ft (107 cm) Water Storage/Biointrusion/Frost Protection/Radon Attenuation Layer (loam to sandy clay)
- 3.0 to 4.0 ft (91 to 122 cm) Radon Attenuation Layer (highly compacted loam to sandy clay)
- 2.5 ft (75 cm) Radon Attenuation and Grading Layer (loam to sandy clay)

F.2 SETTLEMENT ANALYSES

F.2.1 Method of Analyses

General. One-dimensional (1-D) settlement analyses were conducted for the tailings in Cells 2 and 3 to estimate total potential future settlement of the tailings after placement of the final cover. The cone penetration testing (CPT) locations from the October 2013 tailings investigation (MWH, 2015b) were selected as the locations for the settlement analyses. The CPT locations are shown on Figure F.1, along with the settlement monument locations. All CPT locations were adjacent to settlement monuments.

The settlement analyses were conducted for two time periods as described below.

1. Settlement during active maintenance. This settlement was calculated as the settlement due to placement of the final cover and dewatering. Water levels during

active maintenance were assumed to be drawn down from water level elevations presented in MWH (2015b) for the October 2013 tailings elevation to five feet above the liner. EFRI proposes to dewater the tailings during active maintenance and draw down the water levels with in Cells 2 and 3 such that there are not issues with cover stability. This water level has been assumed as 5 feet for these analyses. Once dewatering to this water level has been completed, remaining primary consolidation due to placement of the cover will be very small.

2. Settlement after active maintenance. This settlement was calculated as the sum of settlement due to creep and seismic settlement. The water level within the tailings was assumed to be located five feet above the liner after active maintenance based EFRI's plan for dewatering during active maintenance for Cells 2 and 3.

1-D Column Geometry. Vertical soil profiles presented in MWH (2015b) for each CPT location were used in the 1-D consolidation analyses, with the water levels presented in that report being used for initial pore pressure conditions. This assumption is considered conservative since water levels will continue to decrease due to dewatering prior to final cover placement. Cover thicknesses are based on the cover design as listed above, with total cover thicknesses of 10.5 and 10 feet for Cells 2 and 3, respectively. The stress state for the layers within each column is calculated at the midpoint of each tailings layer. Additional vertical column geometry details are provided in Attachment F.1.

Total Settlement During Active Maintenance. Settlement during active maintenance is assumed to be due to primary consolidation caused by cover loading and dewatering (i.e. creep and initial compression are neglected). Settlement is calculated using the following equation:

$$S = \frac{C_{C}H}{1+e_0} \log \frac{\sigma'_{f}}{\sigma'_{i}}$$

Where:

S = settlement $C_c = compression index$ H = thickness of tailings layer (ft) $e_i = initial void ratio of tailings$ $\sigma'_i = initial average effective overburden pressure (psf)$ $\sigma'_f = final effective vertical pressure (psf)$

<u>Total Settlement After Active Maintenance.</u> Settlement after active maintenance is completed is assumed to be due to creep and seismic settlement.

Creep Settlement. Creep settlement was calculated using the method presented in Holtz and Kovacs (1981) and assuming a typical value for the ratio of the secondary compression index to the compression index (C_{α}/C_c) of 0.02 based on the upper bound average C_{α} estimated from laboratory testing on sand-slime and slime tailings (MWH, 2015b). The secondary settlements are based on a time period of 1,000 years.

Seismic Settlement. Seismic settlement was estimated using methods presented in Stewart et al. (2004), and seismic parameters presented in the site-specific probabilistic seismic hazard analysis for the site (MWH, 2015a). The mean peak ground acceleration (PGA) for reclaimed

(long-term) conditions is 0.15 g for an average return period of 10,000 years. The mean seismic source is from a magnitude 5.5 event occurring 20 km from the site. The equations used from Stewart et al. (2004) are provided below.

Shear strain and related equations:

$$\gamma = \frac{1 + g_1 \cdot e^{s_2 \cdot P}}{1 + g_1} P \cdot 100 \text{ (units of \%)}$$
PI ≈ 0 : $g_1 = 0.199 \cdot (\sigma'/p_a)^{0.231}$ $g_2 = 10850 \cdot (\sigma'/p_a)^{-0.410}$
PI ≈ 15 : $g_1 = 0.194 \cdot (\sigma'/p_a)^{0.265}$ $g_2 = 7490 \cdot (\sigma'/p_a)^{-0.418}$
PI ≈ 30 : $g_1 = 4.0$ $g_2 = 1400$
 $\gamma_{eff} \frac{G_{eff}}{G_{max}} = \frac{0.65 \cdot PHA \cdot \sigma_0 \cdot r_d}{g \cdot G_{max}} \equiv P$

Where:

 γ : shear strain *PI*: plasticity index σ ': effective stress p_a : atmospheric pressure (calculated for an average elevation of 5,600 feet for the site) G_{eff} : effective shear modulus G_{max} : small strain shear modulus *PHA*: peak horizontal acceleration σ_o : total overburden pressure r_d : reduction factor, ratio of actual shear stress at depth vs. theoretical "rigid body" shear stress g: acceleration due to gravity

Volumetric strain at 15 cycles equation:

$$\varepsilon_{v,N=15} = a(\gamma_c - \gamma_{tv})^b$$

Where:

 $\varepsilon_{v, N=15}$: volumetric strain at 15 cycles

a, b, and γ_{tv} : material-specific constants (estimated based on relative compaction, soil type, fines content, and plasticity using Figures 6.5 – 6.7 in Stewart et. al, 2004) γ_c : shear strain (same as shear strain, γ , listed above)

Volumetric strain for design event:

$$\mathcal{E}_{v} = \mathcal{E}_{v, N=15} * \mathbf{C}_{n} * 2$$

$$C_{N} = R \ln(N) + c$$

$$c = 1 - \ln(15) \times R$$

$$N = \frac{\left(\frac{\exp(b_{1} + b_{2}(m - m^{*}))}{10^{1.5m + 16.05}}\right)^{\frac{1}{3}}}{4.9 \cdot 10^{6} \beta} + Sc_{1} + rc_{2}$$

Where:

 ε_{v} : volumetric strain for design event *C_N: normalized vertical strain* R: slope parameter (estimated as 0.36, 0.32, and 0.34 for soils with non-plastic fines, soils with low-plasticity fines, and soils with medium plasticity fines, respectively, as presented in Stewart et al., 2004 pages 86 through 89) N: equivalent number of uniform strain cycles c: slope parameter estimated from equation listed above *b*₁: 1.53 (Stewart et al., 2004) b₂: 1.51 (Stewart et al., 2004) c1: 0.75 (Stewart et al., 2004) *c*₂: 0.095 (Stewart et al., 2004) β: 3.2 (Stewart et al., 2004) *m**: 5.8 (Stewart et al., 2004) *m:* design earthquake magnitude r: site-source distance (km) S: equal to 0 if rock or shallow soil (<20m) underlies the fill and 1 if >20m underlies the fill

F.2.2. Material Properties

EFRI conducted a tailings investigation of Cells 2 and 3 in October 2013 at the White Mesa Mill site to collect site-specific tailings data to supplement existing tailings data used for the settlement analyses. The results are presented in MWH (2015b). The tailings profiles and properties used for the settlement analyses are based on the results presented in MWH (2015b). Parameters used for the cover materials are based on cover material testing conducted in 2010 and 2012 (summarized in Attachment B of EFRI, 2012). Parameters used for the settlement analyses are summarized in Table F.1 and discussed in the following paragraph. Additional detail on soil properties and consolidation parameters used in the analyses are provided in Attachments F.1 through F.3.

Material Type	Initial Dry Density (pcf)	Specific Gravity	Initial void Ratio, e	Average Percent Passing No. 200 Sieve (%)	Com- pression Index, Cc	Secondary Com- pression Index, C _α
Erosion Protection Layer (topsoil)	100 ¹	2.61 ¹	0.61 ²	51 ¹	0.14 ³	NA
Erosion Protection Layer (rock mulch)	106 ¹	2.62 ¹	0.54 ²	45 ¹	0.14 ³	NA
Evapotransporation Cover Layer	100 ¹	2.63 ¹	0.64 ²	51 ¹	0.14 ³	NA
High-Compaction Cover Layer	112 ¹	2.63 ¹	0.46 ²	51 ¹	0.14 ³	NA
Platform Fill/Interim Cover	94 ¹	2.63 ¹	0.74 ²	51 ¹	0.14 ³	NA
Sand Tailings	97 ⁵	2.70 ⁵	0.74 ²	18 ⁵	0.12 ⁶	0.002 ⁴
Sand-Slime Tailings	88 ⁵	2.80 ⁵	0.99 ²	47 ⁵	0.245	0.005 ⁴
Slime Tailings	78 ⁵	2.865	1.29 ²	71 ⁵	0.285	0.0064

¹From laboratory values presented in EFRI (2012)

²Calculated value

³ Calculated from empirical equation for soil types similar to cover material (as presented in Holtz and Kovacs, 1981).

⁴ Estimated from laboratory results presented in MWH (2015b), upper bound average $C\alpha$ for sand-slime and slime tailings of 0.02

⁵From laboratory results presented in MWH (2015b)

⁶Based on lab testing performed on uranium tailings sands and presented in Keshian and Rager (1988)

Additional assumptions for soil parameters used in the analyses are provided below.

- For the consolidation, dewatering, and creep settlement analyses, the moist unit weight for all tailings layers (saturated and unsaturated) was estimated as the saturated unit weight which results in a conservative estimate of loading.
- For the consolidation, dewatering, and creep settlement analyses, properties of the layers of tailings between the liner and the bottom of the CPT depth were estimated as sand-slime tailings. The sand-slime tailings comprise approximately 65 percent of the total tailings in Cells 2 and 3.
- For calculating loading conditions for seismic settlement and evaluation of liquefaction, the moist unit weight for unsaturated tailings layers were estimated based on the long-term moisture content of the tailings as presented in the radon emanation modeling.
- Initial stress conditions for liquefaction analyses were estimated using CPT data from MWH (2015b) assuming the initial conditions in the future will be the same as in October 2013. This is conservative as it does not account for the effects of consolidation and aging that will occur in the tailings during the active maintenance period. For the seismic settlement analyses of Cell 3, the average shear wave velocities with depth measured for Cell 2 tailings were used in the analyses to partially account for consolidation and aging that will occur during this period. These values range from 460 to 600 feet per second. Tailings in Cell 2 were placed earlier than Cell 3 and have been actively dewatered since 2009. This use of the shear wave velocities measured in October 2013 is conservative for these analyses for both tailings cells since further densification of the tailings will occur during the active maintenance period.

F.2.3 Results

As discussed previously, settlement analyses were conducted for two time periods to estimate future settlement (1) settlement during active maintenance due to final cover placement and dewatering, and (2) settlement after active maintenance due to creep and seismic settlement. The results are summarized in Tables F.2 and F.3 and Figures F.2 and F.3. The spreadsheet calculations of are provided in Attachments F.1 (settlement due to dewatering of tailings and placement of final cover), F.2 (creep settlement), and F.3 (seismic settlement). Total settlement during active maintenance is conservatively estimated to range from 0.9 to 1.6 feet. Total remaining settlement due to dewatering from 5 feet above the liner to the liner is approximately 0.01 feet. Total potential future settlement due to creep is estimated to range from 0.05 to 0.09 feet, and due to seismic settlement is estimated to range from 0.23 to 0.62 feet. The total potential future long-term settlement due to creep and seismic settlement of the tailings is estimated to range from 0.29 to 0.71 feet. The estimates of total long term settlement were calculated by summing the static creep settlement estimate and the seismic settlement estimates. As such, these estimates are considered to be somewhat conservative as they are not independent (i.e. as long-term static creep progresses, void ratio reduction will occur and the potential for seismic settlement will reduce over time as a result).

Location	Settlement due to Consolidation and Dewatering Prior to t ₁ (ft)					
2W2	1.09					
2W3	1.15					
2W4-C	1.29					
2W5-C	1.26					
2W6-S	1.29					
2W7-C	1.17					
2E1	1.30					
3-1S	0.88					
3-2C	1.19					
3-3S	1.47					
3-4N	1.56					
3-6N	1.34					
3-8N	1.03					
3-8S	1.06					

Table F.2 Future Settlement During Active Maintenance

Notes:

t₁ corresponds to dewatering of the tailings to a level 5 feet above the liner

Table F.3 Future Settlement After Active Maintenance											
Location	Settlement due to 1000 years of Creep (ft)	Seismic Settlement (ft)	Total Potential Future Settlement after Active Maintenance (ft)								
2W2	0.06	0.35	0.41								
2W3	0.05	0.36	0.42								
2W4-C	0.05	0.43	0.48								
2W5-C	0.07	0.49	0.56								
2W6-S	0.06	0.48	0.54								
2W7-C	0.06	0.35	0.40								
2E1	0.07	0.47	0.54								
3-1S	0.05	0.23	0.29								
3-2C	0.05	0.40	0.45								
3-3S	0.09	0.41	0.50								
3-4N	0.09	0.62	0.71								
3-6N	0.06	0.54	0.60								
3-8N	0.05	0.34	0.39								
3-8S	0.08	0.35	0.43								

 Table F.3 Future Settlement After Active Maintenance

F.2.4 Differential Settlement and Cover Cracking Potential

Differential Settlement. After placement of the final cover and during active maintenance, additional fill may be placed in any low areas to maintain positive drainage of the cover surface. Therefore, the critical time period where differential settlement is a concern for the cover grading (i.e. potential for slope reversal) is after active maintenance is complete. Potential maximum future settlement after active maintenance is estimated as 0.29 to 0.71 feet. Based on the settlement analyses results as shown on Figure F.2, the critical location for the ratio of maximum differential settlement over distance is estimated to occur between the CPT location 3-3S and the dike between Cells 3 and 4A (conservatively assuming no settlement of the dike fill). Although the differential settlement is higher between CPT location 3-4N and 3-6N and the dike between Cells 2 and 3, differential settlement at these location would result in an increase in cover slope, therefore the former location is more critical for slope reversal. Locations on Cell 2 with higher settlement (2W4-C, 2W5-C, 2W6-S) than the 3-3S location are located within the center of Cell 2, however the highest differential settlement associated with these points is lower than the selected critical case.

The total potential differential settlement between 3-3S and the dike between Cells 3 and 4A is 0.50 feet over a distance of approximately 175 feet. The estimated differential settlement is sufficiently low such that ponding and slope reversal is not expected to occur. These calculations are based on conservative assumptions for seismic settlement with little to no credit taken for densification of tailings prior to placement of final cover and during active maintenance of the tailings cells. In addition, as mentioned above, creep and seismic settlement are not independent, however they have been treated as such in the calculations. Actual differential settlement for long-term (after active maintenance) conditions is expected to be lower.

Cover Cracking. Cover cracking analyses were performed for the highly-compacted radon barrier. The critical location for the cover cracking analyses for maximum differential settlement due to final cover placement, dewatering of tailings, creep, and a seismic event is 2.27 feet between the settlement monument 3-4N and dike between Cells 2 and 3 as shown on Figure F.3. This location has the maximum differential settlement over the shortest horizontal distance. The maximum differential settlement, assuming there is no settlement of the dike, is 2.27 feet. The horizontal distance between the two locations is approximately 150 feet.

Morrison-Knudsen Environmental Corporation (1993) presents a method for determining the tensile strain required to cause cracking of the radon barrier as a function of the plasticity index (PI) of the soil. The tensile strain at cracking is calculated by the equation below:

$$\varepsilon_{\rm f}(\%) = 0.05 + 0.003 \, {\rm x} \, ({\rm PI})$$

where: $\varepsilon_{f}(\%)$ = tensile strain to cause cracking of the radon barrier PI = plasticity index of radon barrier

The PI value for the highly compacted radon attenuation layer was estimated as the weighted average (based on soil volumes) of the measured PIs (11) for composite samples collected during the 2010 and 2012 borrow investigations (see Attachment B of EFRI, 2012). Using this value for PI, the minimum tensile strain that will induce cracking is 0.08 percent. The maximum settlement-induced horizontal tensile strain on the radon attenuation layer must be less than 0.08 percent so that cover cracking will not occur.

The horizontal movement at the top of the radon barrier can be calculated based on the following equation (Lee and Shen, 1969), which is referenced in NUREG 1620 (NRC, 2003) for cover cracking analysis:

$$m = \frac{2}{3}H\alpha$$

where: m = horizontal movement in feet H = thickness of relatively incompressible material (in this analysis H is the thickness of the highly compacted radon barrier) $\alpha = local$ slope of the settlement profile (expressed as decimal fraction)

Horizontal movement at the maximum tailing thickness is calculated to be 0.035 feet using a maximum thickness of relatively incompressible material of 3.5 feet, and a total differential settlement of 2.27 feet over 150 feet. The thickness of relatively incompressible material was estimated assuming a maximum 3.5-ft highly compacted radon barrier for Cell 3. The peak horizontal movement is assumed to be twice the average horizontal movement based on relationships presented in Gourc et al. (2010) and Rajesh and Viswanadham (2010). The peak horizontal movement is then calculated as 0.07.

The horizontal strain between any two settlement monitoring locations is the maximum horizontal movement divided by the horizontal distance (0.07 ft/150 ft). Using these values, the maximum horizontal strain is calculated as 0.05 percent. This value is lower than the maximum allowable strain of 0.08 percent and indicates that cracking of the radon attenuation layer due to settlement is not expected.

F.3 LIQUEFACTION ANALYSIS

F.3.1 Method of Analysis

Two procedures were used to evaluate the potential for liquefaction of the tailings based on the results of the CPT soundings. These methods (Idriss and Boulanger, 2008; Youd et al., 2001) are described below. The average factor of safety calculated from the two methods was used as the factor of safety for evaluating the liquefaction potential of the tailings.

Idriss and Boulanger (2008). The Idriss and Boulanger (2008) liquefaction triggering method estimates the cyclic stress ratio (CSR) based on the seismic design criteria and estimates the cyclic resistance ratio (CRR) based on the CPT readings and site conditions. CSR is calculated using a simplified procedure to estimate earthquake induced stresses, calculated using the following relationship:

$$CSR_{M=7.5,\sigma'vc=1} = 0.65 \frac{a_{max}}{g} \frac{\sigma_{vc}}{\sigma'_{vc}} \frac{1}{MSF} \frac{1}{K_{\sigma}} \frac{1}{K_{\alpha}}$$

Where:

 a_{max} : maximum horizontal ground surface acceleration σ_{vc} ': effective vertical confining stress σ_{vc} : total vertical confining stress MSF: earthquake magnitude scaling factor K_{σ} : overburden correction factor K_{a} : static shear stress correction factor g: acceleration due to gravity

The equations for the correction factors applied to the CSR for this evaluation are the following:

$$r_{d} = \exp(\alpha(z) + \beta(z)M)$$

$$\alpha(z) = -1.012 - 1.126 \sin\left(\frac{z}{11.73} + 5.133\right)$$

$$\beta(z) = 0.106 + 0.118 \sin\left(\frac{z}{11.28} + 5.142\right)$$

$$MSF = 6.9 \exp\left(\frac{-M}{4}\right) - 0.058 \le 1.8$$

$$K_{\sigma} = 1 - C_{\sigma} \ln\left(\frac{\sigma'_{vc}}{P_{a}}\right) \le 1.1$$

$$C_{\sigma} = \frac{1}{37.3 - 8.27(q_{c1N})^{0.264}} \le 0.3$$

Where:

*r*_d: shear stress reduction coefficient

 q_{c1N} : tip resistance normalized to atmospheric pressure and overburden pressure *z*: depth below ground surface

 P_a : atmospheric pressure (calculated for an average elevation of 5,600 feet for the site) *M*: design earthquake magnitude

The tailings pile was evaluated assuming essentially flat ground, and ignored the effects of the slope at the edge of the tailings pile. Thus, a static shear stress correction factor of K_{α} =1 was used for all calculations.

The relationship for CRR is based on liquefaction case histories and is expressed as:

$$CRR_{M=7.5,\sigma'_{vc}=1} = \exp\left(\frac{q_{c1Ncs}}{540} + \left(\frac{q_{c1Ncs}}{67}\right)^2 - \left(\frac{q_{c1Ncs}}{80}\right)^3 + \left(\frac{q_{c1Ncs}}{114}\right)^4 - 3\right)$$

Where:

*q*_{c1Ncs}: equivalent clean-sand corrected normalized tip resistance

$$q_{c1Ncs} = q_{c1N} + \Delta q_{c1N}$$

$$\Delta q_{c1N} = \left(5.4 + \frac{q_{c1N}}{16}\right)$$
$$\cdot \exp\left(1.63 + \frac{9.7}{FC + 0.01} - \left(\frac{15.7}{FC + 0.01}\right)^2\right)$$

FC = Fines Content in %

The factor of safety against liquefaction was computed as:

$$FS_{liq} = \frac{\text{CRR}_{M=7.5,\sigma'_{vc}=1}}{\text{CSR}_{M=7.5,\sigma'_{vc}=1}}$$

The correlation between CSR, CRR, and q_{c1N} is shown in Figure 67 of Idriss and Boulanger (2008).

Youd et al. (2001). The Youd et al. (2001) liquefaction triggering method estimates the CSR based on the seismic design criteria and estimates the CRR based on the CPT readings and site conditions. CSR is calculated using a simplified procedure to estimate earthquake induced stresses, calculated using the following relationship:

$$CSR_{M=7.5,\sigma'vc} = 1 = 0.65 \frac{a_{max}}{g} \frac{\sigma_{vc}}{\sigma'_{vc}} \frac{1}{MSF} \frac{1}{K_{\sigma}} \frac{1}{K_{\alpha}}$$

Where:

 a_{max} : maximum horizontal ground surface acceleration σ_{vc} ': effective vertical confining stress σ_{vc} : total vertical confining stress r_d : shear stress reduction coefficient

MSF: earthquake magnitude scaling factor K_{σ} : overburden correction factor K_{α} : static shear stress correction factor g: acceleration due to gravity

The equations for the correction factors applied to the CSR for this evaluation are the following:

 $r_d = 1.0 - 0.00765z$ for $z \le 9.15$ m $r_d = 1.174 - 0.0267z$ for 9.15 m $< z \le 23$ m

Revised Idriss Scaling Factor: $MSF = 10^{224} / M_{\pi}^{236}$

$$K_{\sigma} = (\sigma_{vo}'/P_{a})^{(f-1)}$$

Where:

z: Depth below ground surface M_w : Design earthquake magnitude P_a : Atmospheric Pressure σ_{vc} ': effective vertical overburden pressure f=0.7 to 0.8 for 40% ≤ relative density, $D_r \le 60\%$ 0.6 to 0.7 for 60% < relative density, $D_r \le 80\%$

$$D_r = \sqrt{\frac{q_{c1n}}{300}}$$

The tailings pile was evaluated assuming flat ground conditions. Thus, a static shear stress correction factor of K_{α} =1 was used for all calculations.

The relationship for CRR is based on liquefaction case histories and is expressed as:

If
$$(q_{c1N})_{cs} < 50$$
 CRR_{7.5} = 0.833[$(q_{c1N})_{cs}/1,000$] + 0.05
If $50 \le (q_{c1N})_{cs} < 160$ CRR_{7.5} = 93[$(q_{c1N})_{cs}/1,000$]³ + 0.08

Where:

$$q_{c1Ncs} = K_c^* q_{c1N}$$

for $I_c \le 1.64$ $K_c = 1.0$
for $I_c > 1.64$ $K_c = -0.403I_c^4 + 5.581I_c^3 - 21.63I_c^2$
 $+ 33.75I_c - 17.88$

The factor of safety against liquefaction was computed as:

Energy Fuels Resources (USA) Inc.

$$FS_{liq} = \frac{\text{CRR}_{M=7.5,\sigma'_{vc}=1}}{\text{CSR}_{M=7.5,\sigma'_{vc}=1}}$$

The correlation between CSR, CRR, and q_{c1N} is shown in Figure 4 of Youd et al. (2001).

F.3.2. Material Properties

Liquefaction evaluation was performed for all CPT locations from the October 2013 tailings investigation (MWH, 2015b). The liquefaction evaluation used the same assumptions for soil profile, water table elevation, and density of the tailings material as described above for the long-term settlement analyses. Other parameters used for the evaluation were based on CPT data as presented in Attachment F.4 and as outlined in Idriss and Boulanger (2008) and Youd et al. (2001). It is assumed that the compacted cover materials are not susceptible to liquefaction and therefore were not included in the analyses.

F.3.3. Site Seismicity

Results of the site-specific probabilistic seismic hazard analysis presented in MWH (2015a) were used in the analysis of liquefaction potential. The mean peak ground acceleration for reclaimed (long-term) conditions is 0.15 g for an average return period of 10,000 years. The mean seismic source is from a magnitude 5.5 event occurring 20 km from the site.

F.3.4 Results

Table F.4 presents a summary of the results of the liquefaction analysis. Further details of the calculation can be found in Attachment F.4.

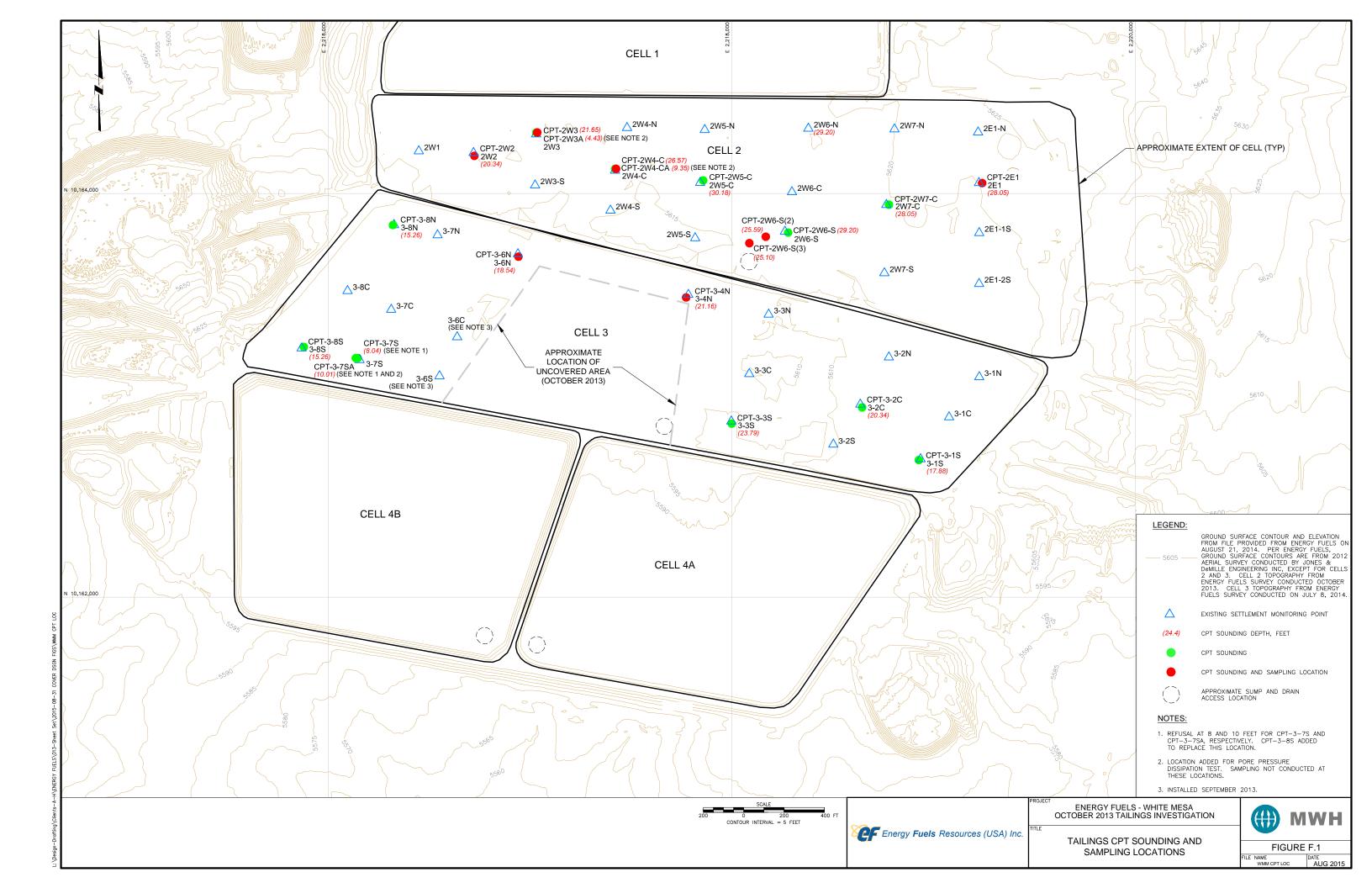
Location	Minimum Factor of Safety
2W2	2.58
2W3	2.37
2W4-C	2.11
2W5-C	2.08
2W6-S	2.24
2W7-C	2.10
2E1	1.96
3-1S	2.41
3-2C	2.59
3-3S	2.36
3-4N	2.46
3-6N	2.30
3-8N	2.84
3-8S	2.38

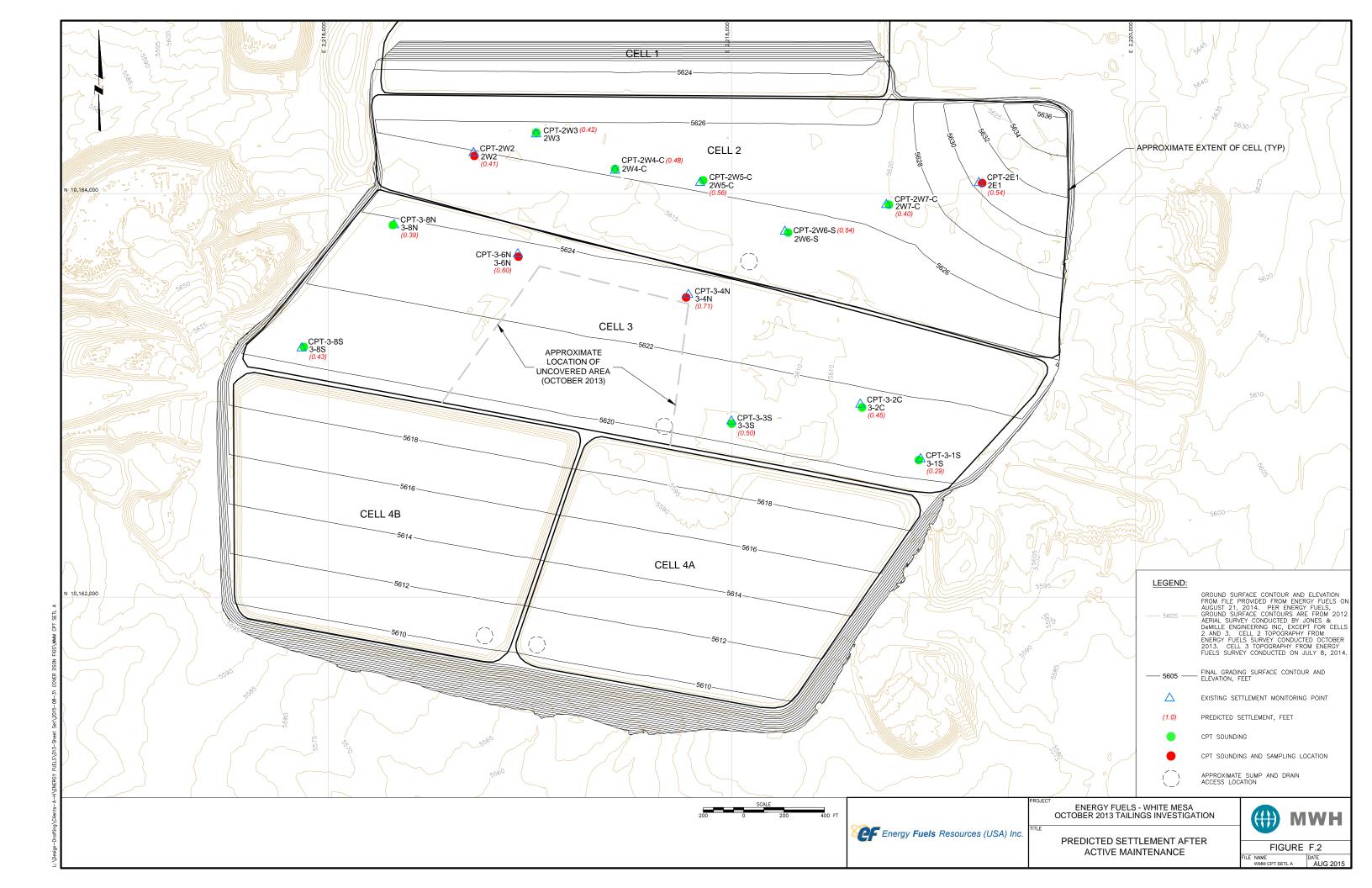
Table F.4 Summary of Liquefaction Results

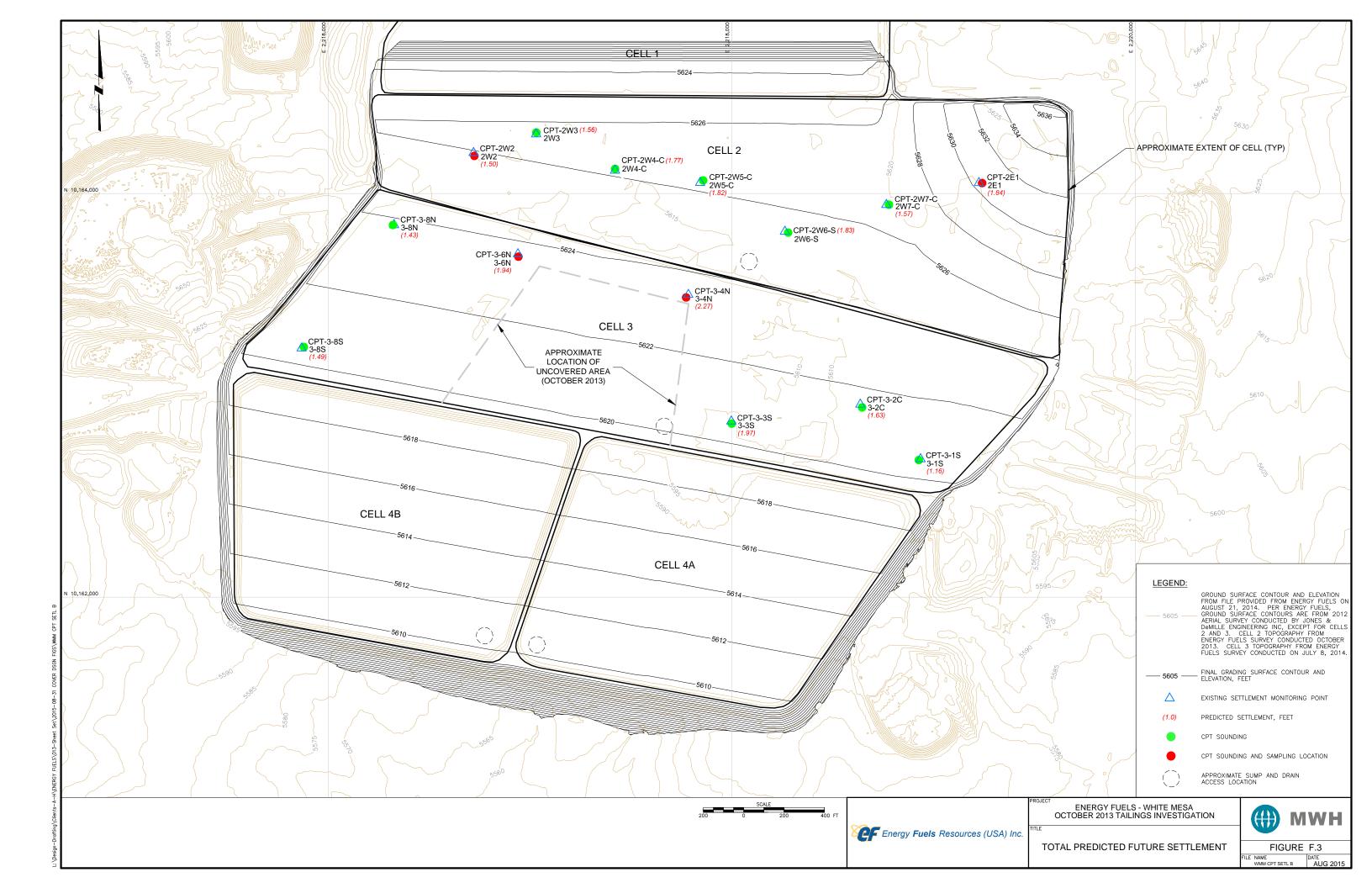
Based on the factors of safety presented in Table F.4, the tailings are judged not to be susceptible to earthquake-induced liquefaction. The computed factors of safety against liquefaction range from 2.0 to 2.6.

F.4 CONCLUSIONS

Evaluation total settlement due to final cover placement and dewatering indicates potential future settlement during the active maintenance to range from approximately 0.9 to 1.6 feet. During this time, additional fill can be placed in any low areas in order to maintain positive drainage of the cover surface. The total predicted future long-term settlement that could occur (due to creep and seismic settlement) after the maintenance time period is complete is estimated to range from approximately 0.3 to 0.7 feet. The estimates of total long-term settlement were calculated by summing the static creep settlement estimate and the seismic settlement estimates. As such, these estimates are considered to be somewhat conservative as they are not independent (i.e. as long-term static creep progresses, void ratio reduction will occur and the potential for seismic settlement will reduce over time as a result). The estimated differential settlement after completion of active maintenance is sufficiently low that slope reversal and ponding is not expected to occur on a cover slope of 0.5 to 1.0 percent. In addition, the results indicate that cracking of the highly-compacted radon barrier due to settlement-induced strains is not expected. The results of the liquefaction analyses indicate the tailings are not susceptible to earthquake-induced liquefaction.


Similar results are expected for Cells 4A and 4B. Although Cells 4A and 4B have higher tailings thicknesses, these cells have a more effective dewatering systems and a low water level requirement for dewatering. These cells also have a slightly steeper average cover slope (approximately 0.8 percent) than Cells 2 and 3.


F.5 REFERENCES


- Energy Fuels Resources (USA) Inc. (EFRI), 2012. Responses to Interrogatories Round 1 for Reclamation Plan, Revision 5.0, March 2012. August 15.
- Gourc, J.P., S. Camp, B.V.S. Viswanadham, and S. Rajesh, 2010. "Deformation behavior of clay cap barriers of hazardous waste containment systems: Full-scale and centrifuge tests," Geotextiles and Geomembranes. Elsevier. Vol. 28: 281-291.
- Holtz, R.D., W.D. Kovacs, 1981. An Introduction to Geotechnical Engineering.
- Idriss, I., and R. Boulanger, 2008. Soil Liquefaction During Earthquakes. EERI monograph MNO-12.
- Keshian, B., and R. Rager, 1988. Geotechnical Properties of Hydraulically Placed Uranium Mill Tailings, in Hydraulically Fill Structures, Geotechnical Special Publication No. 21, Eds. Van Zyl, D., and Vick, S., ASCE, August.
- Lee, K.L., and C.K. Shen, 1969. "Horizontal Movements Related to Subsidence." Journal of Soil Mechanics and Foundation Division, ASCE Volume 95. January.

- Morrison-Knudsen Environmental Corporation (Morrison-Knudsen), 1993. UMTRA-Naturita, Embankment Design, Settlement Analysis and Cracking Potential Evaluation. Calc. No. 17-740-02-01. May.
- MWH Americas, Inc. (MWH), 2011. Updated Tailings Cover Design. Prepared for Denison Mines (USA) Corp. September.
- MWH Americas, Inc. (MWH), 2015a. White Mesa Mill Probabilistic Seismic Hazard Analysis Report. Prepared for Energy Fuels Resources (USA) Inc. April.
- MWH Americas, Inc. (MWH), 2015b. White Mesa Mill Tailings Data Analysis Report. Prepared for Energy Fuels Resources (USA) Inc. April.
- Rajesh, S. and B.V.S. Viswanadham, 2010. "Performance Assessment of Deformation Behavior of Landfill Barriers at the Onset of Differential Settlement," International Journal of Environmental Engineering, Vol. 2.1, pp. 269-289.
- Stewart, J.P., D. Whang, M. Moyneur, and P. Duku, 2004. Seismic Compression of As-Compacted Fill Soils With Variable Levels of Fines Content and Fines Plasticity. CUREE Publication No.EDA-05. July.
- U.S. Nuclear Regulatory Commission (NRC), 2003. "Standard Review Plan for the Review of a Reclamation Plan for Mill Tailings Sites Under Title II of Uranium Mill Tailings Radiation Control Act of 1978, Final Report." NUREG-1620. June.
- Utah Department of Environmental Quality, Utah Division of Radiation Control (DRC). 2012. Denison Mines (USA) Corp's White Mesa Reclamation Plan, Rev. 5.0, Interrogatories -Round 1. March.
- Utah Department of Environmental Quality, Division of Radiation Control (DRC), 2013. Review of August 15, 2012 (and May 31, 2012) Energy Fuels Resources (USA), Inc. Responses to Round 1 Interrogatories on Revision 5 Reclamation Plan Review, White Mesa Mill, Blanding, Utah, report dated September 2011. February 13.
- Youd, T., I. Idriss, R. Andrus, I. Arango, G. Castro, J. Christian, R. Dobry, W. Liam Finn, L. Harder, M. Hynes, K. Ishihara, J. Koester, S. Liao, W. Marcuson, G. Martin, J. Mitchell, Y. Moriwaki, M. Power, P. Robertson, R. Seed, and K. Stokoe, 2001. Liquefaction Resistance of Soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF Workshops of Evaluation of Liquefaction Resistance of Soils, Journal of Geotechnical and Geoenvironmental Engineering, October.

ATTACHMENT F.1

SETTLEMENT CALCULATIONS FOR SETTLEMENT DUE TO DEWATERING THE TAILINGS AND PLACMENT OF THE FINAL COVER

Assumes 99% of consolidation due to existing stress conditions has taken place

Notes

to corresponds to beginning of final cover placement

- t1 corresponds to dewatering of the tailings to a level 5 feet above the liner
- t₂ corresponds to completion of dewatering

SOIL PROPERTIES

TAILINGS

Specific Gravity, Gs

- 2.70 Specific gravity of tailing sands, G_{s-TSand}
- 2.80 Specific gravity of tailing sand-slimes, G_{s-TS-S}
- 2.86 Specific gravity of tailing slimes, G_{s-TSlime}

Fines Content

18% Fines content of tailings sands (%)

- 47% Fines content of tailings sand-slimes (%)
- 71% Fines content of tailings slimes (%)

Dry Unit Weight, γ_d

- 97 In-situ dry unit weight of tailings sands at ξ, γ_{d0-Tsand} (pcf)
- 88 In-situ dry unit weight of tailings sand-slimes at b, $\gamma_{d0-TS-S}$ (pcf)
- 78 In-situ dry unit weight of tailings slimes at t_h , $\gamma_{d0-Tslime}$ (pcf)

Saturated Unit Weight, ysat

- 123 In-situ saturated unit weight of tailings sands at t_b, γ_{sat0-Tsand} (pcf)
- 119 In-situ saturated unit weight of tailings sand-slimes at $b, \gamma_{sat0-TS-S}$ (pcf)
- 113 In-situ saturated unit weight of tailings slimes at t_b, γ_{sat0-Tslime} (pcf)

Moist Unit Weight, γ_m

- 123 Moist unit weight of tailings sands, γ_{m-Tsand} (pcf)
- 119 Moist unit weight of tailings sand-slimes, γ_{m-TS-S} (pcf)
- 113 Moist unit weight of tailings slimes, γ_{m-Tslime} (pcf)

Void Ratio, e

- 0.74 Void ratio of tailing sands at t₀, e_{0-TSand}
- 0.99 Void ratio of tailing sand-slimes at t₀, e_{0-TS-S}
- 1.29 Void ratio of tailing slimes at t₀, e_{0-TSlime}

Saturated Water Content, wsat

- 27% Saturated water content of tailings sands at t₀, w_{sat0-TSand} (%)
- 35% Saturated water content of tailings sand-slimes at to, w_{sat0-TS-S} (%)
- 45% Saturated water content of tailings slimes at t₀, w_{sat0-TSlime} (%)

Water Content of Moist Tailings, w_{m-T}

- 27% Water content of moist tailings sands, w_{m-TSand} (%)
- 35% Water content of moist tailings sand-slimes, w_{m-TS-S} (%)
- 45% Water content of moist tailings slimes, w_{m-TSlime} (%)

Compression Index, C_c

- 0.12 Compression index of tailings sands, C_{c-TSand}
- 0.24 Compression index of tailings sand-slimes, C_{c-TS-S}
- 0.28 Compression index of tailings slimes, C_{CTSlime}

Other

- 62.4 Unit Weight of Water, γ_w
- 5.0 Height of water table above liner at t₁, H_{sat-1} (ft)
- 0.0 Height of water table above liner at t_2 , H_{sat-2} (ft)

Based on lab testing performed on uranium tailings sands and presented in Keshian and Rager (1988) Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015) Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015)

Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015) Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015) Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015)

Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015) Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015) Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015)

Calculated Calculated Calculated

Calculated, assuming 100% degree of saturation (conservative estimate of loading from these layers) Calculated, assuming 100% degree of saturation (conservative estimate of loading from these layers) Calculated, assuming 100% degree of saturation (conservative estimate of loading from these layers)

Calculated Calculated Calculated

Calculated Calculated Calculated

Calculated, assuming 100% saturation (conservative value used to estimate loading from these layers, actual long-term water content will be lower) Calculated, assuming 100% saturation (conservative value used to estimate loading from these layers, actual long-term water content will be lower) Calculated, assuming 100% saturation (conservative value used to estimate loading from these layers, actual long-term water content will be lower)

Based on lab testing performed on uranium tailings sands and presented in Keshian and Rager (1988) Median value from lab testing of tailings sand-slimes samples obtained on-site (Tailings Data Analysis Report. MWH, 2015) Median value from lab testing of tailings slimes samples obtained on-site (Tailings Data Analysis Report. MWH, 2015)

Assumed for end of active maintenance

82.4 Atmospheric Pressure, P _a (kPa	1)
--	----

1722.0 Atmospheric Pressure, P_a (psf)

5.2% Long-term moisture content of tailings, w_{tailings} (%)

0.020 Ratio of Secondary Compression Index to Primary Compression Index, Ct/Cc

Calculated assuming elev=5600' amsl. http://www.engineeringtoolbox.com/air-altitude-pressure-d_462.html Unit conversion calculation

From Attachment H - Radon Emanation Modeling including with this submittal

Estimated from laboratory results presented in MWH (2015b), upper bound average Ω_{χ} for sand-slime and slime tailings of 0.02

COVER SOIL

Spe	cific Gravity, G _s	
2.61	Specific gravity of topsoil, G _{s-Topsoil}	From Attachment H - Radon Emanation Modeling including with this submittal
2.62	Specific gravity of rock mulch, G _{s-mulch}	From Attachment H - Radon Emanation Modeling including with this submittal
2.63	Specific gravity of cover soil, G _{s-cover}	From Attachment H - Radon Emanation Modeling including with this submittal
Unit	t Weight, γ	
118.0	Maximum dry unit weight of cover soil $\gamma_{cover-max}$ (pcf)	Average calculated from laboratory testing results (UWM, 2012)
100.7	Moist unit weight of cover soil at 80% relative compaction, γ_{cover80} (pcf)	Calculated
107.0	Moist unit weight of cover soil at 85% relative compaction, $\gamma_{cover85}$ (pcf)	Calculated
119.6	Moist unit weight of cover soil at 95% relative compaction, $\gamma_{cover95}$ (pcf)	Calculated
127.5	Saturated unit weight of cover soil at 80% relative compaction, $\gamma_{cover80-sat}$ (pcf)	Calculated
100	Dry unit weight of topsoil layer at 85% relative compaction, γ_{topsoil5} (pcf)	From Attachment H - Radon Emanation Modeling including with this submittal
105	Moist unit weight of topsoil layer at 85% relative compaction, $\gamma_{topsoil5}$ (pcf)	Calculated
106	Dry unit weight of rock mulch layer at 85% relative compaction, $\gamma_{\text{mulch}85}$ (pcf)	From Attachment H - Radon Emanation Modeling including with this submittal
110	Moist unit weight of rock mulch layer at 85% relative compaction, $\gamma_{mulch85}(pcf)$	From Attachment H - Radon Emanation Modeling including with this submittal
Voie	d Ratio, e	
0.74	Void Ratio of cover soil at 80% relative compaction, e _{cover80}	Calculated
0.64	Void Ratio of cover soil at 85% relative compaction, e _{cover85}	Calculated
0.46	Void Ratio of cover soil at 95% relative compaction, $e_{\rm cover95}$	Calculated
0.61	Void Ratio of topsoil at 85% relative compaction, e _{topsoil85}	Calculated from porosity presented in Attachment H - Radon Emanation Modeling including with this submittal
0.54	Void Ratio of rock mulch at 85% relative compaction, emulches	Calculated from porosity presented in Attachment H - Radon Emanation Modeling including with this submittal
Oth	er	
6.7%	Long-term moisture content of cover soil, w_{cover} (%)	Estimated based on measured 15bar water content. (UWM, 2012)
5.2%	Long-term moisture content of topsoil, w _{topsoil} (%)	From Attachment H - Radon Emanation Modeling including with this submittal
4.0%	Long-term moisture content of rock mulch, w _{rockmulch} (%)	From Attachment H - Radon Emanation Modeling including with this submittal
0.14	Compression index of cover soil, $C_{c-cover}$	Calculated from empirical equation for soil types similar to cover material (as presented in Holtz and Kovacs, 1981. Page 341). $Q = 0.30^{*}(e_0-0.27)$

REFERENCES

Energy Fuels Resources (USA) Inc. (EFRI), 2012. Responses to Interrogatories – Round 1 for Reclamation Plan, Revision 5.0, March 2012. August 15.

Holtz, R.D. and Kovacs, W.D., 1981. An Introduction to Geotechnical Engineering. Prentice Hall, Inc. New Jersey

Keshian, B., and Rager, R. 1988. Geotechnical Properties of Hydraulically Placed Uranium Mill Tailings, in Hydraulically Fill Structures, Geotechnical Special Publication No. 21, Eds. Van Zyl, D., and Vick, S., ASCE, August.

MWH Americas, Inc. (MWH), 2015. White Mesa Mill Tailings Data Analysis Report. Prepared for Energy Fuels Resources (USA) Inc. April.

University of Wisconsin-Madison (UWM), Wisconsin Geotechnics Laboratory, 2012. Compaction and Hydraulic Properties of Soils from Banding, Utah. Geotechnics Report NO. 12-41 by C.H. Benson and X. Wang. July 24.

<u>2W2</u>

FINAL COVER

 5625.87
 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl)
 From cover deisgn grac

 0.50
 Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after placement (ft)
 From Appendix C - Rad

 3.50
 Thickness of Water Storage/Rooting Zone (ft)
 From Appendix C - Rad

 4.00
 Thickness of High Compaction Layer (ft)
 From Appendix C - Rad

 2.02
 Thickness of Fandom/Platform Fill on on top of existing interim cover (ft)
 Calculated

 1111.60
 Additional Stress due to Final Cover Placement, Δα_{Fic} (psf)
 Calculated

From cover deisgn grading plan AutoCAD file From Appendix C - Radon Emanation Modeling (MWH, 2015)

From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) Calculated

PROFILE INFORMATION

- 5613.10 Water surface elevation during CPT investigation (ft amsl)
- 5607.7 Water surface elevation at t₀ (ft amsl)
- 5598.51 Water surface elevation at t1 (ft amsl)
- 5593.51 Water surface elevation at t₂ (ft amsl)

CONSOLIDATION SETTLEMENT

<u>2W2</u>

Soil Layer	Elevation at Top of Layer at t_0 , z_i .	Elevation at Midpoint of Layer at t ₀ , z _{i-mid0} (ft amsl)	Elevation at Bottom of Layer at t ₀ , z _{i-bott0} (ft amsl) ¹	Thickness of Layer at t ₀ , H (ft)	Material Type ¹	Effective Stress at Midpoint of Layer at t ₀ , σ' _{i-mid0} (psf)	Effective Stress at Bottom of Layer at t ₀ , σ' _{i-bott0} (psf)	Effective Stress at Midpoint of Layer at t ₁ , σ' _{i-mid1} (psf)	Effective Stress at Bottom of Layer at t ₁ , σ' _{i-bott1} (psf)	Effective Stress at Midpoint of Layer at t ₂ , σ' _{i-mid2} (psf)	Effective Stress at Bottom of Layer at t_2 , $\sigma'_{i-bott2}$ (psf)	$\begin{array}{c} \mbox{Consolidition of Layer from } t_0 \\ \mbox{to } t_1 \mbox{ due to Final Cover} \\ \mbox{Placement and Dewatering, } \delta_{\rm cl.} \\ t_t \mbox{ (ft)} \end{array}$	$\begin{array}{l} \mbox{Consolidtion of Layer} \\ \mbox{from } t_1 \mbox{ to } t_2 \mbox{ due to} \\ \mbox{Dewatering, } \delta_{c_{i+2}} \mbox{ (ft)} \end{array}$
Layer 1	5615.85	5614.30	5612.74	3.11	Int. Cover	156.63	313.25	1268.22	1424.85	1268.22	1424.85	0.23	0.00
Layer 2	5612.74	5612.25	5611.76	0.98	Sand-Slime	371.55	429.85	1483.15	1541.44	1483.15	1541.44	0.07	0.00
Layer 3	5611.76	5611.68	5611.59	0.17	Slime	439.46	449.08	1551.06	1560.68	1551.06	1560.68	0.01	0.00
Layer 4	5611.59	5611.43	5611.27	0.32	Sand	468.83	488.59	1580.43	1600.19	1580.43	1600.19	0.01	0.00
Layer 5	5611.27	5611.19	5611.10	0.17	Sand-Slime	498.70	508.81	1610.30	1620.41	1610.30	1620.41	0.01	0.00
Layer 6	5611.10	5610.69	5610.28	0.82	Slime	555.20	601.58	1666.79	1713.18	1666.79	1713.18	0.05	0.00
Layer 7	5610.28	5610.20	5610.12	0.16	Sand-Slime	611.10	620.61	1722.69	1732.21	1722.69	1732.21	0.01	0.00
Layer 8	5610.12	5609.88	5609.63	0.49	Slime	648.33	676.05	1759.93	1787.64	1759.93	1787.64	0.03	0.00
Layer 9	5609.63	5609.38	5609.13	0.50	Sand-Slime	705.79	735.53	1817.39	1847.13	1817.39	1847.13	0.02	0.00
Layer 10	5609.13	5608.56	5607.99	1.14	Slime	800.02	864.50	1911.61	1976.09	1911.61	1976.09	0.05	0.00
Layer 11	5607.99	5607.83	5607.66	0.33	Sand-Slime	884.13	898.77	1995.73	2015.36	1995.73	2015.36	0.01	0.00
Layer 12	5607.66	5607.25	5606.84	0.82	Slime	919.56	940.36	2061.74	2108.12	2061.74	2108.12	0.04	0.00
Layer 13	5606.84	5606.51	5606.18	0.66	Sand-Slime	959.03	977.70	2147.38	2186.64	2147.38	2186.64	0.03	0.00
Layer 14	5606.18	5605.94	5605.69	0.49	Slime	990.13	1002.56	2214.36	2242.07	2214.36	2242.07	0.02	0.00
Layer 15	5605.69	5605.53	5605.36	0.33	Sand-Slime	1011.89	1021.22	2261.70	2281.33	2261.70	2281.33	0.01	0.00
Layer 16	5605.36	5605.20	5605.03	0.33	Slime	1029.59	1037.96	2300.00	2318.67	2300.00	2318.67	0.01	0.00
Layer 17	5605.03	5604.87	5604.70	0.33	Sand-Slime	1047.30	1056.63	2338.30	2357.93	2338.30	2357.93	0.01	0.00
Layer 18	5604.70	5604.46	5604.21	0.49	Slime	1069.06	1081.49	2385.64	2413.36	2385.64	2413.36	0.02	0.00
Layer 19	5604.21	5604.05	5603.88	0.33	Sand-Slime	1090.82	1100.16	2432.99	2452.62	2432.99	2452.62	0.01	0.00
Layer 20	5603.88	5603.39	5602.90	0.98	Slime	1125.01	1149.87	2508.05	2563.48	2508.05	2563.48	0.04	0.00
Layer 21	5602.90	5602.82	5602.74	0.16	Sand-Slime	1154.40	1158.92	2573.00	2582.52	2573.00	2582.52	0.01	0.00
Layer 22	5602.74	5602.33	5601.92	0.82	Slime	1179.72	1200.52	2628.90	2675.28	2628.90	2675.28	0.03	0.00
Layer 23	5601.92	5601.67	5601.42	0.50	Sand-Slime	1214.66	1228.80	2705.03	2734.77	2705.03	2734.77	0.02	0.00
Layer 24	5601.42	5601.34	5601.26	0.16	Slime	1232.86	1236.92	2743.82	2752.87	2743.82	2752.87	0.01	0.00
Layer 25	5601.26	5601.18	5601.10	0.16	Sand-Slime	1241.45	1245.97	2762.39	2771.91	2762.39	2771.91	0.01	0.00
Layer 26	5601.10	5600.69	5600.28	0.82	Slime	1266.77	1287.57	2818.29	2864.67	2818.29	2864.67	0.03	0.00
Layer 27	5600.28	5599.87	5599.46	0.82	Sand-Slime	1310.76	1333.96	2913.45	2962.23	2913.45	2962.23	0.03	0.00
Layer 28	5599.46	5598.72	5597.98	1.48	Slime	1371.50	1409.03	3045.94	3096.58	3045.94	3129.65	0.06	0.00
Layer 29	5597.98	5597.90	5597.82	0.16	Sand-Slime	1413.56	1418.08	3101.11	3105.63	3139.17	3148.69	0.01	0.00
Layer 30	5597.82	5597.49	5597.16	0.66	Slime	1434.82	1451.56	3122.37	3139.11	3186.02	3223.35	0.03	0.00
Layer 31	5597.16	5596.83	5596.50	0.66	Sand-Slime	1470.23	1488.90	3157.78	3176.45	3262.61	3301.88	0.03	0.00
Layer 32	5596.50	5596.34	5596.18	0.32	Slime	1497.02	1505.13	3184.57	3192.68	3319.98	3338.08	0.01	0.00
Layer 33	5596.18	5595.85	5595.52	0.66	Sand-Slime	1523.80	1542.47	3211.35	3230.02	3377.34	3416.60	0.03	0.00
Layer 34	5595.52	5594.52	5593.51	2.01	Sand-Slime	1599.33	1656.18	3286.88	3343.73	3536.16	3530.31	0.08	0.01

Total Consolidtion of Profile at t_1 , δ_{ct1} (ft): 1.09
Total Consolidtion of Profile at t_2 , δ_{c+2} (ft): 0.01

Notes:

<u>2W3</u>

FINAL COVER

 5626.27
 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl)
 From cover deising g

 0.50
 Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after
 From Appendix C - I

 3.50
 Thickness of Water Storage/Rooting Zone (ft)
 From Appendix C - I

 4.00
 Thickness of High Compaction Layer (ft)
 From Appendix C - I

 2.55
 Thickness of Random/Platform Fill on on top of existing interim cover (ft)
 Calculated

 1164.98
 Additional Stress due to Final Cover Placement, Δα_{Fic} (psf)
 Calculated

From cover deisgn grading plan AutoCAD file

From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) Calculated Calculated

PROFILE INFORMATION

- 5613.80 Water surface elevation during CPT investigation (ft amsl)
- 5607.6 Water surface elevation at t₀ (ft amsl)
- 5597.75 Water surface elevation at t1 (ft amsl)
- 5592.75 Water surface elevation at t₂ (ft amsl)

CONSOLIDATION SETTLEMENT

<u>2W3</u>

	Elevation at Top of Layer at t ₀ , z _i .	Elevation at Midpoint of Layer	Elevation at Bottom of Layer at	Thickness of			Effective Stress at Bottom of Layer at	Effective Stress at Midpoint of Layer at	Effective Stress at Bottom of Layer at		Effective Stress at Bottom of Layer at	to t ₁ due to Final Cover Placement and Dewatering, δ _{cl} .	Consolidtion of Layer from t ₁ to t ₂ due to
Soil Layer	_{top0} (ft amsl) ¹	at t ₀ , z _{i-mid0} (ft amsl)		Layer at t ₀ , H (ft)	Material Type ¹	t ₀ , σ' _{i-mid0} (psf)	$t_0, \sigma'_{i-bott0}$ (psf)	t ₁ , σ' _{i-mid1} (psf)	t ₁ , σ' _{i-bott1} (psf)	t ₂ , σ' _{i-mid2} (psf)	t ₂ , σ' _{i-bott2} (psf)	ti (ft)	Dewatering, δ_{ci-t2} (ft)
Layer 1	5615.72	5614.17	5612.61	3.11	Int. Cover	156.63	313.25	1321.61	1478.24	1321.61	1478.24	0.23	0.00
Layer 2	5612.61	5612.37	5612.12	0.49	Sand-Slime	342.40	371.55	1507.38	1536.53	1507.38	1536.53	0.04	0.00
Layer 3	5612.12	5612.04	5611.95	0.17	Slime	381.17	390.78	1546.15	1555.76	1546.15	1555.76	0.01	0.00
Layer 4	5611.95	5611.46	5610.97	0.98	Sand-Slime	449.08	507.37	1614.06	1672.36	1614.06	1672.36	0.07	0.00
Layer 5	5610.97	5610.81	5610.64	0.33	Slime	526.04	544.71	1691.02	1709.69	1691.02	1709.69	0.02	0.00
Layer 6	5610.64	5609.82	5609.00	1.64	Sand-Slime	642.26	739.82	1807.24	1904.80	1807.24	1904.80	0.09	0.00
Layer 7	5609.00	5608.92	5608.83	0.17	Slime	749.43	759.05	1914.42	1924.03	1914.42	1924.03	0.01	0.00
Layer 8	5608.83	5608.59	5608.34	0.49	Sand-Slime	788.20	817.35	1953.18	1982.33	1953.18	1982.33	0.02	0.00
Layer 9	5608.34	5608.26	5608.18	0.16	Slime	826.40	835.45	1991.38	2000.43	1991.38	2000.43	0.01	0.00
Layer 10	5608.18	5608.10	5608.01	0.17	Sand-Slime	845.56	855.67	2010.54	2020.65	2010.54	2020.65	0.01	0.00
Layer 11	5608.01	5607.84	5607.67	0.34	Slime	874.90	894.14	2039.89	2059.12	2039.89	2059.12	0.02	0.00
Layer 12	5607.67	5607.02	5606.37	1.30	Sand-Slime	934.65	971.42	2136.45	2213.78	2136.45	2213.78	0.06	0.00
Layer 13	5606.37	5606.21	5606.05	0.32	Slime	979.54	987.65	2231.88	2249.98	2231.88	2249.98	0.01	0.00
Layer 14	5606.05	5604.98	5603.91	2.14	Sand-Slime	1048.19	1108.72	2377.28	2504.58	2377.28	2504.58	0.09	0.00
Layer 15	5603.91	5603.26	5602.60	1.31	Slime	1141.94	1175.17	2578.68	2652.78	2578.68	2652.78	0.06	0.00
Layer 16	5602.60	5601.62	5600.63	1.97	Sand-Slime	1230.89	1286.62	2769.96	2887.15	2769.96	2887.15	0.08	0.00
Layer 17	5600.63	5600.47	5600.30	0.33	Slime	1294.99	1303.36	2905.82	2924.48	2905.82	2924.48	0.01	0.00
Layer 18	5600.30	5600.14	5599.98	0.32	Sand-Slime	1312.41	1321.46	2943.52	2962.55	2943.52	2962.55	0.01	0.00
Layer 19	5599.98	5599.08	5598.17	1.81	Slime	1367.37	1413.28	3064.93	3167.31	3064.93	3167.31	0.08	0.00
Layer 20	5598.17	5597.85	5597.52	0.65	Sand-Slime	1431.66	1450.05	3205.98	3230.29	3205.98	3244.64	0.03	0.00
Layer 21	5597.52	5597.36	5597.19	0.33	Slime	1458.42	1466.79	3238.66	3247.03	3263.31	3281.98	0.01	0.00
Layer 22	5597.19	5596.54	5595.88	1.31	Sand-Slime	1503.84	1540.90	3284.09	3321.14	3359.90	3437.83	0.05	0.00
Layer 23	5595.88	5595.55	5595.22	0.66	Slime	1557.64	1574.38	3337.88	3354.62	3475.16	3512.49	0.03	0.00
Layer 24	5595.22	5595.06	5594.89	0.33	Sand-Slime	1583.71	1593.04	3363.96	3373.29	3532.12	3551.75	0.01	0.00
Layer 25	5594.89	5594.65	5594.40	0.49	Slime	1605.47	1617.90	3385.72	3398.15	3579.47	3607.19	0.02	0.00
Layer 26	5594.40	5594.24	5594.07	0.33	Sand-Slime	1627.23	1636.57	3407.48	3416.81	3626.82	3646.45	0.01	0.00
Layer 27	5594.07	5593.41	5592.75	1.32	Sand-Slime	1673.91	1711.24	3454.15	3491.49	3724.97	3721.12	0.05	0.00

Total Consolidtion of Profile at t ₁ , δ_{c+1} (ft): 1.15
Total Consolidtion of Profile at t_{2} , δ_{c+2} (ft): 0.01

Notes:

<u>2W4-C</u>

FINAL COVER

 5626.19
 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl)
 From cover of the cover of the

From cover deisgn grading plan AutoCAD file

From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) Calculated Calculated

PROFILE INFORMATION

- 5611.20 Water surface elevation during CPT investigation (ft amsl)
- 5608.1 Water surface elevation at t₀ (ft amsl)
- 5593.51 Water surface elevation at t₁ (ft amsl)
- 5588.51 Water surface elevation at t₂ (ft amsl)

CONSOLIDATION SETTLEMENT

<u>2W4-C</u>

	Elevation at Top	Elevation at	Elevation at			Effective Stress at	Effective Stress at	Effective Stress at	Effective Stress at	Effective Stress at	Effective Stress at	to t ₁ due to Final Cover	Consolidtion of Laver
	of Layer at t ₀ , z _i .		Bottom of Layer at	Thickness of								Placement and Dewatering, $\delta_{cl_{1}}$	from t ₁ to t ₂ due to
Soil Layer	top0 (ft amsl) 1	at t ₀ , z _{i-mid0} (ft amsl)	t ₀ , z _{i-bott0} (ft amsl) ¹	Layer at t ₀ , H (ft)	Material Type ¹	t ₀ , σ' _{i-mid0} (psf)	t ₀ , σ' _{i-bott0} (psf)	t ₁ , σ' _{i-mid1} (psf)	t ₁ , σ' _{i-bott1} (psf)	t ₂ , σ' _{i-mid2} (psf)	t ₂ , σ' _{i-bott2} (psf)	ti (ft)	Dewatering, δ_{ci-t2} (ft)
Layer 1	5616.24	5614.68	5613.12	3.12	Int. Cover	157.13	314.26	1261.68	1418.81	1261.68	1418.81	0.23	0.00
Layer 2	5613.12	5613.04	5612.96	0.16	Sand	324.14	334.02	1428.69	1438.56	1428.69	1438.56	0.01	0.00
Layer 3	5612.96	5611.32	5609.68	3.28	Sand-Slime	529.13	724.24	1633.68	1828.79	1633.68	1828.79	0.19	0.00
Layer 4	5609.68	5609.60	5609.51	0.17	Slime	733.86	743.48	1838.41	1848.02	1838.41	1848.02	0.01	0.00
Layer 5	5609.51	5608.28	5607.05	2.46	Sand-Slime	889.81	969.38	1994.36	2140.69	1994.36	2140.69	0.10	0.00
Layer 6	5607.05	5606.89	5606.73	0.32	Slime	977.49	985.61	2158.79	2176.89	2158.79	2176.89	0.01	0.00
Layer 7	5606.73	5606.57	5606.40	0.33	Sand-Slime	994.94	1004.28	2196.52	2216.15	2196.52	2216.15	0.01	0.00
Layer 8	5606.40	5606.32	5606.23	0.17	Slime	1008.59	1012.90	2225.77	2235.38	2225.77	2235.38	0.01	0.00
Layer 9	5606.23	5605.41	5604.59	1.64	Sand-Slime	1059.29	1105.68	2332.94	2430.50	2332.94	2430.50	0.07	0.00
Layer 10	5604.59	5604.51	5604.43	0.16	Slime	1109.74	1113.80	2439.55	2448.60	2439.55	2448.60	0.01	0.00
Layer 11	5604.43	5604.27	5604.10	0.33	Sand-Slime	1123.13	1132.46	2468.23	2487.86	2468.23	2487.86	0.01	0.00
Layer 12	5604.10	5603.94	5603.77	0.33	Slime	1140.83	1149.20	2506.52	2525.19	2506.52	2525.19	0.01	0.00
Layer 13	5603.77	5601.89	5600.00	3.77	Sand-Slime	1255.84	1362.48	2749.45	2973.71	2749.45	2973.71	0.16	0.00
Layer 14	5600.00	5599.43	5598.85	1.15	Slime	1391.65	1420.81	3038.76	3103.81	3038.76	3103.81	0.05	0.00
Layer 15	5598.85	5598.44	5598.03	0.82	Sand-Slime	1444.01	1467.20	3152.59	3201.37	3152.59	3201.37	0.03	0.00
Layer 16	5598.03	5597.95	5597.87	0.16	Slime	1471.26	1475.32	3210.42	3219.47	3210.42	3219.47	0.01	0.00
Layer 17	5597.87	5597.63	5597.38	0.49	Sand-Slime	1489.18	1503.04	3248.61	3277.76	3248.61	3277.76	0.02	0.00
Layer 18	5597.38	5597.22	5597.05	0.33	Slime	1511.41	1519.78	3296.43	3315.09	3296.43	3315.09	0.01	0.00
Layer 19	5597.05	5596.64	5596.23	0.82	Sand-Slime	1542.97	1566.17	3363.87	3412.65	3363.87	3412.65	0.03	0.00
Layer 20	5596.23	5595.82	5595.41	0.82	Slime	1586.97	1607.76	3459.03	3505.41	3459.03	3505.41	0.03	0.00
Layer 21	5595.41	5595.08	5594.75	0.66	Sand-Slime	1626.43	1645.10	3544.68	3583.94	3544.68	3583.94	0.03	0.00
Layer 22	5594.75	5594.67	5594.59	0.16	Slime	1649.16	1653.22	3592.99	3602.04	3592.99	3602.04	0.01	0.00
Layer 23	5594.59	5594.43	5594.26	0.33	Sand-Slime	1662.55	1671.89	3621.67	3641.30	3621.67	3641.30	0.01	0.00
Layer 24	5594.26	5594.10	5593.93	0.33	Slime	1680.26	1688.63	3659.96	3678.63	3659.96	3678.63	0.01	0.00
Layer 25	5593.93	5591.80	5589.67	4.26	Sand-Slime	1809.12	1929.62	3825.33	3945.83	3932.04	4185.45	0.17	0.00
Layer 26	5589.67	5589.09	5588.51	1.16	Sand-Slime	1962.43	1995.24	3978.64	4011.45	4254.45	4251.07	0.04	0.00

Total Consolidtion of Profile at t_1 , $\delta_{c,t1}$ (ft): 1.29
Total Consolidtion of Profile at t_2 , δ_{c42} (ft): 0.01

Notes:

<u>2W5-C</u>

FINAL CO	<u>IVER</u>	
5626.29	Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl)	From cover deisgn grading plan AutoCAD file
0.50	Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after placement (ft)	From Appendix C - Radon Emanation Modeling (MWH, 2015)
3.50	Thickness of Water Storage/Rooting Zone (ft)	From Appendix C - Radon Emanation Modeling (MWH, 2015)
4.00	Thickness of High Compaction Layer (ft)	From Appendix C - Radon Emanation Modeling (MWH, 2015)
2.43	Thickness of Random/Platform Fill on on top of existing interim cover (ft)	Calculated
1152.89	Additional Stress due to Final Cover Placement, Δσ _{FC} (psf)	Calculated

PROFILE INFORMATION

5604.20	Water surface elevation during CPT investigation (ft amsl)
5604.2	Water surface elevation at t ₀ (ft amsl)
5589.01	Water surface elevation at t ₁ (ft amsl)
5584.01	Water surface elevation at t ₂ (ft amsl)

CONSOLIDATION SETTLEMENT

|--|

		Elevation at Midpoint of Layer at t ₀ , z _{i.mid0} (ft amsl)	Elevation at Bottom of Layer at t ₀ , z _{i-bott0} (ft amsl) ¹	Thickness of Layer at t₀, H (ft)	Motorial Turna ¹		Effective Stress at Bottom of Layer at t ₀ , σ' _{i-bott0} (psf)		Effective Stress at Bottom of Layer at t ₁ , σ' _{i-bott1} (psf)			Consolidtion of Layer from t ₀ to t ₁ due to Final Cover Placement and Dewatering, δ _{ci} .
Layer 1	5615.86	5614.31	5612.75	3.11	Int. Cover	156.63	313.25	1309.52	1466.15	1309.52	1466.15	0.23
Layer 1	5612.75	5612.59	5612.42	0.33	Sand-Slime	332.88	352.51	1485.78	1505.41	1485.78	1505.41	0.03
Layer 2	5612.42	5612.09	5611.76	0.66	Sand	393.26	434.01	1465.76	1586.90	1546.16	1586.90	0.03
Layer 3	5612.42	5611.60	5611.44	0.88	Sand-Slime	453.04	472.08	1605.94	1624.97	1605.94	1624.97	0.03
	5611.44	5611.11	5610.78	0.32	Sand-Silline	512.82	553.57	1665.72	1706.47	1665.72	1706.47	0.02
Layer 5 Layer 6	5610.78	5609.96	5609.14	1.64	Sand-Slime	651.13	748.68	1804.02	1901.58	1804.02	1901.58	0.02
	5609.14	5608.90	5608.65	0.49	Sand-Silline	778.94	809.19	1931.83	1962.08	1931.83	1962.08	0.09
Layer 7 Layer 8	5608.65	5604.88	5601.10	7.55	Sand-Slime	1258.30	1513.98	2411.20	2860.32	2411.20	2860.32	0.26
	5601.10	5601.02	5600.94	0.16	Sand	1518.87	1523.75	2870.19	2880.07	2870.19	2880.07	0.00
Layer 9			5599.30	1.64	Sand-Slime	1518.87	1523.75			2977.63		0.00
Layer 10	5600.94	5600.12						2977.63	3075.18		3075.18	
Layer 11	5599.30	5599.14	5598.97	0.33	Slime	1624.90	1633.27	3093.85	3112.52	3093.85	3112.52	0.01
Layer 12	5598.97	5596.92	5594.87	4.10	Sand-Slime	1749.24	1865.21	3356.41	3600.30	3356.41	3600.30	0.14
Layer 13	5594.87	5594.46	5594.05	0.82	Slime	1886.01	1906.81	3646.68	3693.06	3646.68	3693.06	0.03
Layer 14	5594.05	5593.81	5593.56	0.49	Sand-Slime	1920.67	1934.53	3722.21	3751.36	3722.21	3751.36	0.02
Layer 15	5593.56	5593.48	5593.39	0.17	Slime	1938.84	1943.15	3760.98	3770.59	3760.98	3770.59	0.01
Layer 16	5593.39	5592.57	5591.75	1.64	Sand-Slime	1989.54	2035.93	3868.15	3965.70	3868.15	3965.70	0.06
Layer 17	5591.75	5591.59	5591.42	0.33	Slime	2044.30	2052.67	3984.37	4003.04	3984.37	4003.04	0.01
Layer 18	5591.42	5589.46	5587.49	3.93	Sand-Slime	2163.83	2275.00	4236.82	4375.75	4236.82	4470.59	0.14
Layer 19	5587.49	5587.33	5587.16	0.33	Slime	2283.37	2291.74	4384.12	4392.49	4489.26	4507.93	0.01
Layer 20	5587.16	5586.75	5586.34	0.82	Sand	2316.78	2341.82	4417.53	4442.57	4558.55	4609.17	0.02
Layer 21	5586.34	5586.18	5586.01	0.33	Sand-Slime	2351.15	2360.49	4451.90	4461.24	4628.81	4648.44	0.01
Layer 22	5586.01	5585.85	5585.68	0.33	Sand	2370.56	2380.64	4471.31	4481.39	4668.81	4689.18	0.01
Layer 23	5585.68	5584.85	5584.01	1.67	Sand-Slime	2427.88	2475.11	4528.63	4575.86	4788.52	4783.66	0.05

Total Consolidtion of Profile at t_1 , δ_{cat} (ft): 1.26
Total Consolidtion of Profile at t_2 , δ_{c+2} (ft): 0.01

Notes:

<u>2W6-S</u>

FINAL COVER

 5625.41
 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl)
 From cover deisg

 0.50
 Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after placement (ft)
 From Appendix C

 3.50
 Thickness of Water Storage/Rooting Zone (ft)
 From Appendix C

 4.00
 Thickness of High Compaction Layer (ft)
 From Appendix C

 1.56
 Thickness of Random/Platform Fill on on top of existing interim cover (ft)
 Calculated

 1065.26
 Additional Stress due to Final Cover Placement, Δor_c (pst)
 Calculated

From cover deisgn grading plan AutoCAD file

From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) Calculated Calculated

PROFILE INFORMATION

- 5604.40 Water surface elevation during CPT investigation (ft amsl)
- 5604.4 Water surface elevation at t₀ (ft amsl)
- 5588.59 Water surface elevation at t1 (ft amsl)
- 5583.59 Water surface elevation at t₂ (ft amsl)

CONSOLIDATION SETTLEMENT

<u>2W6-S</u>

	Elevation at Top	Elevation at	Elevation at			Effective Stress at	Effective Stress at		Effective Stress at		Effective Stress at	to t ₁ due to Final Cover	Consolidtion of Layer
Soil Laver	of Layer at t ₀ , z _i . top0 (ft amsl) ¹	Midpoint of Layer at t ₀ , z _{i-mid0} (ft amsl)	Bottom of Layer at		Motorial Tuno ¹	Midpoint of Layer at t ₀ , σ' _{i-mid0} (psf)	Bottom of Layer at t ₀ , σ' _{i-bott0} (psf)	Midpoint of Layer at t ₁ , σ' _{i-mid1} (psf)	Bottom of Layer at t ₁ , σ' _{i-bott1} (psf)	Midpoint of Layer at t ₂ , σ' _{i-mid2} (psf)	t Bottom of Layer at t ₂ , σ' _{i-bott2} (psf)	Placement and Dewatering, δ _{cl-}	from t_1 to t_2 due to Dewatering, δ_{cl+t2} (ft)
Layer 1	5615.85	5614.29	5612.73	3.12	Int. Cover	157.13	314.26	1222.39	1379.53	1222.39	1379.53	0.22	0.00
Layer 2	5612.73	5612.49	5612.24	0.49	Sand-Slime	343.41	372.56	1408.67	1437.82	1408.67	1437.82	0.04	0.00
Layer 3	5612.24	5612.16	5612.07	0.17	Sand	383.05	393.55	1448.32	1458.81	1448.32	1458.81	0.01	0.00
Layer 4	5612.07	5611.66	5611.25	0.82	Sand-Slime	442.33	491.10	1507.59	1556.37	1507.59	1556.37	0.05	0.00
Layer 5	5611.25	5611.01	5610.76	0.49	Sand	521.36	551.61	1586.62	1616.87	1586.62	1616.87	0.02	0.00
Layer 6	5610.76	5609.78	5608.79	1.97	Sand-Slime	668.79	785.98	1734.06	1851.24	1734.06	1851.24	0.10	0.00
Layer 7	5608.79	5608.63	5608.46	0.33	Slime	804.65	823.31	1869.91	1888.58	1869.91	1888.58	0.01	0.00
Layer 8	5608.46	5608.30	5608.14	0.32	Sand	843.07	862.82	1908.33	1928.09	1908.33	1928.09	0.01	0.00
Laver 9	5608.14	5607.40	5606.66	1.48	Sand-Slime	950.86	1038.90	2016.13	2104.17	2016.13	2104.17	0.06	0.00
Layer 10	5606.66	5606.50	5606.33	0.33	Slime	1057.57	1076.23	2122.83	2141.50	2122.83	2141.50	0.00	0.00
Layer 11	5606.33	5606.09	5605.84	0.49	Sand-Slime	1105.38	1134.53	2170.65	2199.79	2170.65	2199.79	0.02	0.00
Layer 12	5605.84	5605.51	5605.18	0.66	Slime	1171.86	1209.19	2237.13	2274.46	2237.13	2274.46	0.02	0.00
Layer 13	5605.18	5604.86	5604.53	0.65	Sand-Slime	1247.86	1286.53	2313.12	2351.79	2313.12	2351.79	0.02	0.00
Layer 14	5604.53	5604.28	5604.03	0.50	Slime	1307.32	1320.00	2380.07	2408.35	2380.07	2408.35	0.02	0.00
Laver 15	5604.03	5603.95	5603.87	0.16	Sand-Slime	1324.53	1329.05	2417.87	2427.39	2417.87	2427.39	0.01	0.00
Layer 16	5603.87	5602.64	5601.41	2.46	Slime	1391.45	1453.84	2566.53	2705.68	2566.53	2705.68	0.08	0.00
Layer 17	5601.41	5601.17	5600.92	0.49	Sand-Slime	1467.70	1481.56	2734.83	2763.98	2734.83	2763.98	0.02	0.00
Layer 18	5600.92	5600.84	5600.75	0.17	Slime	1485.87	1490.19	2773.59	2783.21	2773.59	2783.21	0.01	0.00
Layer 19	5600.75	5600.67	5600.59	0.16	Sand-Slime	1494.71	1499.24	2792.73	2802.24	2792.73	2802.24	0.01	0.00
Layer 20	5600.59	5600.18	5599.77	0.82	Slime	1520.03	1540.83	2848.63	2895.01	2848.63	2895.01	0.03	0.00
Layer 21	5599.77	5599.20	5598.62	1.15	Sand-Slime	1573.36	1605.89	2963.42	3031.83	2963.42	3031.83	0.04	0.00
Layer 22	5598.62	5598.21	5597.80	0.82	Slime	1626.69	1647.49	3078.21	3124.59	3078.21	3124.59	0.03	0.00
Layer 23	5597.80	5596.98	5596.16	1.64	Sand-Slime	1693.88	1740.26	3222.15	3319.70	3222.15	3319.70	0.06	0.00
Layer 24	5596.16	5595.92	5595.67	0.49	Slime	1752.69	1765.12	3347.42	3375.14	3347.42	3375.14	0.02	0.00
Laver 25	5595.67	5595.51	5595.34	0.33	Sand-Slime	1774.45	1783.79	3394.77	3414.40	3394.77	3414.40	0.01	0.00
Laver 26	5595.34	5595.26	5595.18	0.16	Slime	1787.85	1791.90	3423.45	3432.50	3423.45	3432.50	0.01	0.00
Layer 27	5595.18	5592.72	5590.26	4.92	Sand-Slime	1931.07	2070.24	3725.17	4017.84	3725.17	4017.84	0.17	0.00
Laver 28	5590.26	5590.18	5590.09	0.17	Slime	2074.55	2078.86	4027.45	4037.07	4027.45	4037.07	0.01	0.00
Layer 29	5590.09	5588.62	5587.14	2.95	Sand-Slime	2162.30	2245.75	4212.55	4297.55	4212.55	4388.03	0.10	0.00
Layer 30	5587.14	5586.90	5586.65	0.49	Sand	2260.71	2275.67	4312.52	4327.48	4418.28	4448.54	0.01	0.00
Layer 31	5586.65	5585.12	5583.59	3.06	Sand-Slime	2362.23	2448.78	4414.03	4500.59	4630.56	4621.64	0.10	0.01
												•	

Total Consolidtion of Profile at t_1 , δ_{c-t1} (ft): 1.29
Total Consolidtion of Profile at t_2 , δ_{c42} (ft): 0.01

Notes:

<u>2W7-C</u>

FINAL COVER

- 5626.65
 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl)
 From cover deis

 0.50
 Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after placement (ft)
 From Appendix

 3.50
 Thickness of Water Storage/Rooting Zone (ft)
 From Appendix

 4.00
 Thickness of High Compaction Layer (ft)
 From Appendix

 -0.95
 Thickness of Random/Platform Fill on on top of existing interim cover (ft)
 Calculated

 812.44
 Additional Stress due to Final Cover Placement, Δ_{rc} (psf)
 Calculated
 - From cover deisgn grading plan AutoCAD file

From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) Calculated Calculated

PROFILE INFORMATION

- 5613.10 Water surface elevation during CPT investigation (ft amsl)
- 5611.5 Water surface elevation at t₀ (ft amsl)
- 5595.40 Water surface elevation at t1 (ft amsl)
- 5590.40 Water surface elevation at t₂ (ft amsl)

CONSOLIDATION SETTLEMENT

<u>2W7-C</u>

												Consolication of Layer from to	
	Elevation at Top	Elevation at	Elevation at			Effective Stress at	Effective Stress at		Effective Stress at		Effective Stress at	to t ₁ due to Final Cover	Consolidtion of Layer
	of Layer at t ₀ , z _i .		Bottom of Layer at	Thickness of				Midpoint of Layer at				Placement and Dewatering, $\delta_{\mbox{\tiny cl.}}$	from t ₁ to t ₂ due to
Soil Layer			t ₀ , z _{i-bott0} (ft amsl) ¹			t ₀ , σ' _{i-mid0} (psf)	t ₀ , σ' _{i-bott0} (psf)	t ₁ , σ' _{i-mid1} (psf)	t ₁ , σ' _{i-bott1} (psf)	t ₂ , σ' _{i-mid2} (psf)	t ₂ , σ' _{i-bott2} (psf)	_{t1} (ft)	Dewatering, δ_{cl-t2} (ft)
Layer 1	5619.60	5618.04	5616.48	3.12	Int. Cover	157.13	314.26	969.58	1126.71	969.58	1126.71	0.20	0.00
Layer 2	5616.48	5615.17	5613.86	2.62	Sand-Slime	470.11	625.97	1282.56	1438.41	1282.56	1438.41	0.14	0.00
Layer 3	5613.86	5613.78	5613.69	0.17	Slime	635.58	645.20	1448.03	1457.64	1448.03	1457.64	0.01	0.00
Layer 4	5613.69	5612.79	5611.89	1.80	Sand-Slime	752.27	859.35	1564.72	1671.79	1564.72	1671.79	0.07	0.00
Layer 5	5611.89	5611.81	5611.72	0.17	Slime	868.96	878.58	1681.41	1691.02	1681.41	1691.02	0.01	0.00
Layer 6	5611.72	5610.99	5610.25	1.47	Sand-Slime	935.13	976.71	1778.47	1865.91	1778.47	1865.91	0.05	0.00
Layer 7	5610.25	5610.17	5610.08	0.17	Slime	981.03	985.34	1875.53	1885.14	1875.53	1885.14	0.01	0.00
Layer 8	5610.08	5610.00	5609.92	0.16	Sand-Slime	989.86	994.39	1894.66	1904.18	1894.66	1904.18	0.01	0.00
Layer 9	5609.92	5609.84	5609.75	0.17	Slime	998.70	1003.01	1913.79	1923.41	1913.79	1923.41	0.01	0.00
Layer 10	5609.75	5606.15	5602.54	7.21	Sand-Slime	1206.95	1410.89	2352.30	2781.19	2352.30	2781.19	0.25	0.00
Layer 11	5602.54	5602.21	5601.88	0.66	Slime	1427.63	1444.37	2818.53	2855.86	2818.53	2855.86	0.02	0.00
Layer 12	5601.88	5601.80	5601.72	0.16	Sand-Slime	1448.90	1453.42	2865.38	2874.89	2865.38	2874.89	0.01	0.00
Layer 13	5601.72	5601.56	5601.39	0.33	Slime	1461.79	1470.16	2893.56	2912.23	2893.56	2912.23	0.01	0.00
Layer 14	5601.39	5600.74	5600.08	1.31	Sand-Slime	1507.22	1544.27	2990.15	3068.08	2990.15	3068.08	0.05	0.00
Layer 15	5600.08	5600.00	5599.91	0.17	Slime	1548.58	1552.90	3077.69	3087.31	3077.69	3087.31	0.01	0.00
Layer 16	5599.91	5599.83	5599.75	0.16	Sand	1557.78	1562.67	3097.19	3107.07	3097.19	3107.07	0.00	0.00
Layer 17	5599.75	5599.67	5599.58	0.17	Sand-Slime	1567.48	1572.29	3117.18	3127.29	3117.18	3127.29	0.01	0.00
Layer 18	5599.58	5599.26	5598.93	0.65	Slime	1588.77	1605.26	3164.06	3200.82	3164.06	3200.82	0.02	0.00
Layer 19	5598.93	5598.52	5598.11	0.82	Sand-Slime	1628.45	1651.65	3249.60	3298.38	3249.60	3298.38	0.03	0.00
Layer 20	5598.11	5597.62	5597.12	0.99	Slime	1676.76	1701.87	3354.38	3410.38	3354.38	3410.38	0.04	0.00
Layer 21	5597.12	5596.96	5596.80	0.32	Sand-Slime	1710.92	1719.97	3429.41	3448.45	3429.41	3448.45	0.01	0.00
Layer 22	5596.80	5596.72	5596.63	0.17	Slime	1724.28	1728.59	3458.06	3467.68	3458.06	3467.68	0.01	0.00
Layer 23	5596.63	5596.39	5596.14	0.49	Sand-Slime	1742.45	1756.31	3496.83	3525.97	3496.83	3525.97	0.02	0.00
Layer 24	5596.14	5596.06	5595.98	0.16	Slime	1760.37	1764.43	3535.02	3544.07	3535.02	3544.07	0.01	0.00
Layer 25	5595.98	5595.57	5595.16	0.82	Sand-Slime	1787.62	1810.82	3592.85	3626.66	3592.85	3641.63	0.03	0.00
Layer 26	5595.16	5594.83	5594.50	0.66	Slime	1827.56	1844.30	3643.40	3660.14	3678.96	3716.30	0.02	0.00
Layer 20 Layer 27	5594.50	5594.42	5594.34	0.16	Sand-Slime	1848.82	1853.35	3664.66	3669.19	3725.81	3735.33	0.02	0.00
Layer 28	5594.34	5594.09	5593.84	0.50	Slime	1866.03	1853.55	3681.87	3694.55	3763.61	3791.89	0.02	0.00
Layer 29	5593.84	5593.60	5593.35	0.49	Sand-Slime	1892.57	1906.43	3708.41	3722.27	3821.04	3850.19	0.02	0.00
Layer 30	5593.35	5593.27	5593.19	0.49	Slime	1910.49	1900.45	3726.33	3730.39	3859.24	3868.29	0.02	0.00
	5593.35	5593.27	5593.19	1.15	Sand-Slime	1910.49	1914.55		3730.39	3936.70		0.04	0.00
Layer 31								3762.92			4005.11		
Layer 32	5592.04	5591.80 5590.98	5591.55	0.49	Slime Sond Slime	1992.04	2004.46	3807.87	3820.30	4032.82	4060.54	0.02	0.00
Layer 33	5591.55	5590.98	5590.40	1.15	Sand-Slime	2036.99	2069.52	3852.83	3885.36	4128.95	4125.60	0.04	0.00
										Total Consolidtion	of Profile at t ₁ , δ _{c.t1} (ft):	1 17	
										iotal consonution ((II):	1.17	

Notes:

¹ From on-site investigation (Tailings Data Analysis Report. MWH, 2015)

Total Consolidtion of Profile at t_2 , δ_{c+2} (ft): 0.01

<u>2E1</u>

FINAL COVER

 5630.46
 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl)
 From cover deisgn

 0.50
 Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after placement (ft)
 From Appendix C

 3.50
 Thickness of Water Storage/Rooting Zone (ft)
 From Appendix C

 4.00
 Thickness of High Compaction Layer (ft)
 From Appendix C

 2.51
 Thickness of Random/Platform Fill on on top of existing interim cover (ft)
 Calculated

 1160.95
 Additional Stress due to Final Cover Placement, Δσ_{FC} (psf)
 Calculated

From cover deisgn grading plan AutoCAD file

From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) Calculated Calculated

PROFILE INFORMATION

- 5610.80 Water surface elevation during CPT investigation (ft amsl)
- 5610.8 Water surface elevation at t₀ (ft amsl)
- 5595.46 Water surface elevation at t1 (ft amsl)
- 5590.46 Water surface elevation at t₂ (ft amsl)

CONSOLIDATION SETTLEMENT

<u>2E1</u>

of Layer 4: bool Layer indepict of Layer 4: bool Layer 4: bool dayer indepict of Layer 4: bool dayer 4: bool daye													Consolication of Layer from to	
Soli Layer total (tams) ¹ at to 2, and (tams) ¹ by 2, and (tams) ¹ 1 1			Lievation at											Consolidtion of Layer
Layer 1 5618.95 5618.39 5618.83 3.12 Int. Cover 157.13 314.26 1318.08 1475.21 1318.08 1475.21 0.23 Layer 2 5618.67 5615.00 5616.17 0.66 Sand 385.01 385.75 1515.66 1565.67 1555.65 1565.00 0.03 Layer 3 5615.52 5615.53 0.33 Sime 424.20 441.38 1633.67 1563.65 1651.00 0.03 Layer 5 5615.19 5615.02 0.33 Sime 472.72 441.38 1633.67 1623.33 1623.33 1623.33 0.02 162.33 0.02 162.33 1623.35 0.03 162.33 1023.67 162.33 1023.67 102.33														from t ₁ to t ₂ due to
Layer 2 5616.83 5616.50 5616.17 0.66 Sand 395.75 1515.96 1556.71 1515.96 1556.71 0.03 I Layer 3 5616.87 5615.68 0.49 Sand-Sime 424.90 464.05 1585.85 1615.00 1565.83 1615.00 0.03 0.02 1 Layer 4 5615.85 5615.25 0.33 Sime 472.72 491.38 1633.67 1652.33 1033.07 1652.33 0.02 1 Layer 5 5615.02 5615.02 0.33 Sand-Sime 561.77 651.80 1671.96 1691.60 1671.96 1691.60 0.02 1 Layer 6 5613.26 5613.20 0.633 Sand-Sime 561.77 728.45 1891.60 1671.96 1691.60 1671.96 1691.60 0.04 0.04 Layer 10 5613.20 5617.64 5613.20 0.32 Sand 749.20 768.96 1910.16 192.91 1910.16 192.91 0.01 124.91 </th <th></th> <th></th> <th></th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Dewatering, δ_{ci-t2} (ft)</th>				1										Dewatering, δ _{ci-t2} (ft)
Layer 3 5616.17 5615.93 5615.68 0.49 Sand-Sime 424.90 454.05 1585.85 1615.00 1585.85 1615.00 0.03 Layer 4 5615.88 5615.52 5615.35 0.33 Sime 477.72 491.38 1633.67 1652.33 1653.70 1562.33 0.02 1 Layer 5 5615.10 5615.41 5614.02 0.33 Sand-Sime 5611.01 530.84 1671.96 1691.60 1671.962 1691.80 0.02 1 Layer 6 5615.02 5614.61 5614.40 0.82 Sand-Sime 661.27 631.80 1742.22 1792.84 1742.22 1792.84 0.03 1 Layer 7 5614.20 6613.06 0.32 Sand-Sime 1068.48 1200.98 242.21 2554.51 222.21 2554.51 222.21 2564.51 227.37.4 0.01 1 121.99 10.16 1329.91 0.01 1 121.91 1224.86 2580.26 2592.78 2580.26														0.00
Layer 4 5615.68 5615.62 5615.35 0.33 Sime 472.72 491.38 1633.67 1652.33 1633.67 1652.33 0.02 I Layer 5 5615.05 5615.02 0.33 Sand-Sime 511.01 530.64 1671.96 1691.60 1671.96 1691.60 0.02 I Layer 6 5614.20 0.82 Sand 581.27 631.89 174.22 1792.84 1742.22 1792.84 0.03 0.04 I	Layer 2	5616.83	5616.50	5616.17		Sand	355.01	395.75	1515.96	1556.71	1515.96	1556.71		0.00
Layer 5 5615.35 5615.19 5615.02 0.33 Sand-Slime 511.01 530.64 1671.96 1691.60 1671.96 1691.60 0.02 Layer 6 5615.02 5614.61 5614.20 0.82 Sand 5812.7 631.89 1742.22 1792.84 1742.22 1792.84 0.03 0.04 Layer 7 5614.20 5613.38 0.82 Sand-Slime 680.67 729.45 1841.62 1890.40 1841.62 1890.40 0.04 0.04 Layer 8 5613.22 6613.06 0.32 Sand-Slime 1058.48 1206.98 2242.21 2254.51 2242.21 2554.51 0.21 124.97 15607.84 5607.74 0.01 122.91 10.16 1329.91 0.01 124.97 15607.84 5607.74 0.16 Sand-Slime 122.013 1224.66 2569.78 2583.26 2592.78 0.01 124.97 1233.28 2602.40 2612.01 2612.01 0.01 124.97 1239.77 1232.67 2685.13	Layer 3	5616.17	5615.93	5615.68	0.49	Sand-Slime	424.90	454.05	1585.85	1615.00	1585.85	1615.00	0.03	0.00
Layer 65615.025614.615614.200.82Sand5812.7631.891742.221792.841742.221792.840.031Layer 75614.205613.795613.380.82Sand-Sime680.67729.451841.621890.401841.621890.400.040.04Layer 85613.385613.225613.060.32Sand749.20768.961910.161929.911910.161929.910.010.1Layer 95613.065610.445607.815.25Sand-Sime1058.481206.98224.212554.152242.212554.510.210.11Layer 105607.815607.735607.840.17Sime1220.131226.612563.262592.782583.262592.780.010.11Layer 115607.845605.845605.840.17Sime1228.971233.282602.402612.01260.402612.010.010.06Layer 145605.845605.765605.670.17Sime1320.751325.072796.512806.132796.512806.130.010.06Layer 155605.675605.515605.350.32Sand-Sime1334.121343.172825.172844.202825.172844.200.010.01Layer 165605.555605.565605.740.17Sime1347.481351.792806.132796.512806.130.011Layer 165605.675605.56560	Layer 4	5615.68	5615.52	5615.35	0.33	Slime	472.72	491.38	1633.67	1652.33	1633.67	1652.33	0.02	0.00
Layer 7 5614.20 5613.79 5613.38 0.82 Sand-Slime 680.67 729.45 1841.62 1890.40 1841.62 1890.40 0.04 0.04 Layer 8 5613.38 5613.22 5613.06 0.32 Sand 749.20 768.96 1910.16 1929.91 1910.16 1929.91 1910.16 1929.91 0.01 0.04 0.04 Layer 9 5603.06 5607.44 5607.81 5.25 Sand-Slime 1058.48 1206.98 2242.21 2554.51 2257.37 0.01 0.04 0.04 0.01 0.04 0.01	Layer 5	5615.35	5615.19	5615.02	0.33	Sand-Slime	511.01	530.64	1671.96	1691.60	1671.96	1691.60	0.02	0.00
Layer 85613.225613.060.32Sand749.20768.961910.161929.911910.161929.910.01Layer 95613.065610.445607.815.25Sand-Sime1058.481206.982242.212554.512242.212554.510.21Layer 105607.815607.736607.640.17Sime1211.301215.612564.132573.742564.132573.740.01Layer 115607.645607.685607.480.16Sand-Sime1220.131224.662583.262592.782582.262592.780.01Layer 125607.485607.405607.310.17Sime1228.971233.282602.402612.01260.402612.010.01Layer 135606.585605.670.17Sime1320.751325.072796.512806.132786.900.061249.12Layer 145605.675605.510.32Sand-Sime1320.751325.072796.512806.132786.512806.130.011249.10Layer 155605.675605.510.32Sand-Sime1334.12134.172825.17284.202663.430.011249.11Layer 175605.185607.445597.807.38Sand-Sime1560.541769.293302.443741.443302.443741.440.29Layer 195597.805597.645597.470.33Sime177.661786.033760.113778.773760.113778.77 </td <td>Layer 6</td> <td>5615.02</td> <td>5614.61</td> <td>5614.20</td> <td>0.82</td> <td>Sand</td> <td>581.27</td> <td>631.89</td> <td>1742.22</td> <td>1792.84</td> <td>1742.22</td> <td>1792.84</td> <td>0.03</td> <td>0.00</td>	Layer 6	5615.02	5614.61	5614.20	0.82	Sand	581.27	631.89	1742.22	1792.84	1742.22	1792.84	0.03	0.00
Layer 95613.065610.445607.815.25Sand-Slime1058.481206.982242.212554.512242.212554.510.210.11Layer 105607.735607.640.17Slime1211.301216.612564.132573.742664.132573.740.010.01Layer 115607.645607.565607.480.16Sand-Slime1220.131224.662583.262592.782583.262592.780.010.01Layer 125607.485607.405607.310.17Slime1224.971233.282602.402612.012602.402612.010.010.01Layer 135605.685605.670.17Slime1274.861316.442699.452786.902696.132786.900.060.06Layer 145605.665605.670.17Slime1320.751325.072796.512806.132786.900.060.01Layer 155605.675605.515605.550.32Sand-Slime1334.121343.172825.172844.202863.430.010.01Layer 165605.5675605.575605.180.17Slime1347.481351.792853.822863.432863.822863.430.010.01Layer 175605.185605.185697.470.33Slime177.661786.03376.113778.77376.113778.770.011Layer 195597.475595.835593.545593.540.33	Layer 7	5614.20	5613.79	5613.38	0.82	Sand-Slime	680.67	729.45	1841.62	1890.40	1841.62	1890.40	0.04	0.00
Layer 105607.815607.735607.640.17Sime1211.301215.612564.132573.742564.132573.740.01Layer 115607.645607.565607.480.16Sand-Sime1220.131224.662583.262592.782583.262592.780.010.01Layer 125607.485607.405607.310.17Sime1220.971233.282602.402612.012602.402612.010.010.01Layer 135605.675605.675605.670.17Sime1274.861316.442699.452786.90269.452786.900.060.06Layer 145605.675605.670.17Sime1320.751325.072796.512806.132796.512806.130.010.01Layer 155605.675605.515605.550.32Sand-Sime1334.121343.172825.172804.202825.172806.130.010.01Layer 165605.515605.550.32Sand-Sime1334.121343.172825.172804.202863.430.010.01Layer 175605.185605.75605.180.17Sime1347.481351.792853.822863.432853.822863.430.010.01Layer 185597.805597.845597.805597.845597.470.33Sime177.661786.03376.113778.77376.113778.770.011Layer 195597.475595.835593.	Layer 8	5613.38	5613.22	5613.06	0.32	Sand	749.20	768.96	1910.16	1929.91	1910.16	1929.91	0.01	0.00
Layer 115607.665607.480.16Sand-Slime1220.131224.662583.262592.782583.262592.780.01Layer 125607.485607.405607.310.17Slime1228.971233.282602.402612.012602.402612.010.010.01Layer 135607.315605.585605.841.47Sand-Slime1274.861316.442699.452786.902694.512806.130.010.01Layer 145605.675605.515605.570.17Slime1320.751325.072796.512806.132796.512806.130.010.01Layer 155605.675605.515605.350.32Sand-Slime1334.121343.172825.172844.202843.430.010.01Layer 165605.355605.275605.180.17Slime1347.481351.792853.822863.432863.430.010.01Layer 175605.185607.445597.807.38Sand-Slime1560.541769.293302.443741.443302.443741.440.291.249.14Layer 185597.805597.645597.470.33Slime1777.661786.033760.113778.773760.113778.770.011.249.19Layer 195597.475595.835593.860.33Slime1979.951988.324089.753978.94169.000.131.249.141.249.101.249.141.249.101.249.131.244.40 </td <td>Layer 9</td> <td>5613.06</td> <td>5610.44</td> <td>5607.81</td> <td>5.25</td> <td>Sand-Slime</td> <td>1058.48</td> <td>1206.98</td> <td>2242.21</td> <td>2554.51</td> <td>2242.21</td> <td>2554.51</td> <td>0.21</td> <td>0.00</td>	Layer 9	5613.06	5610.44	5607.81	5.25	Sand-Slime	1058.48	1206.98	2242.21	2554.51	2242.21	2554.51	0.21	0.00
Layer 125607.485607.405607.310.17Sime1228.971233.282602.402612.012602.402612.010.010.01Layer 135605.585605.585605.641.47Sand-Slime1274.861316.442699.452786.902699.452786.900.060.06Layer 145605.645605.765605.670.17Sime1327.051325.072796.512806.132796.512806.130.010.01Layer 155605.675605.515605.350.32Sand-Slime1334.121343.172285.172844.202842.430.010.01Layer 165605.355605.275605.180.17Slime1347.481351.792853.822863.432853.822863.430.010.01Layer 175605.185601.495597.807.36Sand-Slime1560.541769.293302.443741.443302.443741.440.290.01Layer 185597.845597.470.33Slime1777.661786.033760.113778.773760.113778.770.010.13Layer 195597.475595.835593.460.33Slime1979.951988.324098.124106.494187.674206.330.010.13Layer 205594.195593.540.32Sand-Slime1979.951988.324098.124106.494187.674206.330.010.13Layer 215593.865593.705593	Layer 10	5607.81	5607.73	5607.64	0.17	Slime	1211.30	1215.61	2564.13	2573.74	2564.13	2573.74	0.01	0.00
Layer 135607.315606.585605.841.47Sand-Slime1274.861316.442699.452786.902699.452786.900.06Layer 145605.675605.670.17Slime1320.751325.072796.512806.132796.512806.130.010Layer 155605.675605.515605.550.32Sand-Slime1334.121343.172825.172844.202825.172844.200.010Layer 165605.355605.275605.180.17Slime1347.481351.792853.822863.432853.822863.430.010Layer 175605.185601.495597.807.38Sand-Slime1560.541769.293302.443741.443302.443741.440.290Layer 185597.645597.470.33Slime1777.661786.033760.113778.773760.113778.770.010Layer 195597.475593.365594.193.28Sand-Slime1878.811971.583973.894089.753973.894169.000.131Layer 205593.405593.540.32Sand-Slime1979.351988.324098.124106.494187.674206.330.011Layer 215593.865593.705593.540.32Sand-Slime1997.382006.434115.544124.604225.374244.400.011Layer 225593.545593.385593.210.33	Layer 11	5607.64	5607.56	5607.48	0.16	Sand-Slime	1220.13	1224.66	2583.26	2592.78	2583.26	2592.78	0.01	0.00
Layer 145605.845605.765605.670.17Sime1320.751325.072796.512806.132796.512806.130.011Layer 155605.675605.515605.350.32Sand-Slime1334.121343.172825.172844.202825.172844.200.010Layer 165605.355605.275605.180.17Slime1347.481351.792853.822863.432853.822863.430.010Layer 175605.185601.495597.807.38Sand-Slime1560.541769.293302.443741.443302.443741.440.29Layer 185597.805597.470.33Slime177.661786.033760.113778.773701.113778.770.01Layer 195597.475596.335594.193.28Sand-Slime1878.811971.583973.894409.753973.894169.000.13Layer 205594.195593.560.32Sand-Slime1979.951988.324098.124106.494187.674206.330.011Layer 215593.865593.705593.540.32Sand-Slime197.382006.434115.544124.604225.374244.400.01Layer 225593.545593.385593.210.33Slime2014.802023.174132.974141.344263.074281.740.01	Layer 12	5607.48	5607.40	5607.31	0.17	Slime	1228.97	1233.28	2602.40	2612.01	2602.40	2612.01	0.01	0.00
Layer 15 5605.67 5605.51 5605.53 0.32 Sand-Slime 1334.12 1343.17 2825.17 2844.20 2825.17 2844.20 0.01 0 Layer 16 5605.35 5605.27 5605.18 0.17 Slime 1347.48 1351.79 2853.82 2863.43 2853.82 2863.43 0.01 0 Layer 17 5605.18 5601.49 5597.80 7.38 Sand-Slime 1560.54 1769.29 3302.44 3741.44 3302.44 3741.44 0.29 0.01 0 Layer 18 5597.80 5597.84 5597.47 0.33 Slime 177.66 1786.03 376.11 3778.77 376.11 3778.77 0.01 0 1 1ayer 19 5597.47 5595.83 5593.46 5593.46 0.33 Slime 1971.58 3778.97 306.11 3778.77 376.11 3778.77 0.01 1 1ayer 20 5594.19 5594.03 5593.86 0.33 Slime 1979.55 1988.32 4098.12	Layer 13	5607.31	5606.58	5605.84	1.47	Sand-Slime	1274.86	1316.44	2699.45	2786.90	2699.45	2786.90	0.06	0.00
Layer 16 5605.27 5605.18 0.017 Slime 1347.48 1351.79 2853.82 2863.43 2853.82 2863.43 0.01 1 Layer 17 5605.18 5601.49 5597.80 7.38 Sand-Slime 1560.54 1769.29 3302.44 3741.44 3302.44 3741.44 0.29 1 Layer 18 5597.80 5597.64 5597.47 0.33 Slime 1777.66 1786.03 3760.11 3778.77 3760.11 3778.77 0.01 1 Layer 19 5597.47 5595.83 Sand-Slime 1878.81 1971.58 3978.97 4069.75 3979.89 4169.00 0.13 1 Layer 20 5594.19 5593.86 0.33 Slime 1979.95 1988.32 4098.12 4106.49 4187.67 4206.33 0.01 1 Layer 21 5593.86 5593.74 0.32 Sand-Slime 1997.95 1988.32 4098.12 4106.49 4187.67 4206.33 0.01 1 1	Layer 14	5605.84	5605.76	5605.67	0.17	Slime	1320.75	1325.07	2796.51	2806.13	2796.51	2806.13	0.01	0.00
Layer 17 5605.18 5601.49 5597.80 7.38 Sand-Slime 1560.54 1769.29 3302.44 3741.44 3302.44 3741.44 0.29 1 Layer 18 5597.80 5597.64 5597.47 0.33 Slime 1777.66 1786.03 3760.11 3778.77 3760.11 3778.77 0.01 1 Layer 19 5597.47 5595.83 5594.19 3.28 Sand-Slime 1878.81 1971.58 3973.89 4089.75 3973.89 4169.00 0.13 1 Layer 20 5594.19 5593.86 5593.86 0.33 Slime 1979.95 1988.32 4098.12 4106.49 4126.30 4206.33 0.01 1 Layer 21 5593.86 5593.70 5593.54 0.32 Sand-Slime 1997.93 2006.43 4115.54 4124.60 4225.37 4244.40 0.01 1 Layer 22 5593.54 5593.21 0.33 Slime 2014.80 2023.17 4132.97 4141.34 4263.07	Layer 15	5605.67	5605.51	5605.35	0.32	Sand-Slime	1334.12	1343.17	2825.17	2844.20	2825.17	2844.20	0.01	0.00
Layer 18 5597.60 5597.64 5597.77 0.33 Slime 1777.66 1786.03 3760.11 3778.77 3760.11 3778.77 0.01 1 Layer 19 5597.47 5595.83 5594.19 3.28 Sand-Slime 1878.81 1971.58 3973.89 4089.75 3973.89 4169.00 0.13 0.13 1 Layer 20 5594.19 5593.86 0.33 Slime 1979.95 1988.32 4098.12 4106.49 4187.67 4206.33 0.01 0	Layer 16	5605.35	5605.27	5605.18	0.17	Slime	1347.48	1351.79	2853.82	2863.43	2853.82	2863.43	0.01	0.00
Layer 19 5597.47 5595.83 5594.19 3.28 Sand-Slime 1878.81 1971.58 3973.89 4089.75 3973.89 4169.00 0.13 Layer 20 5594.19 5594.03 5593.86 0.33 Slime 1979.95 1988.32 4098.12 4106.49 4187.67 4206.33 0.01 0.13 Layer 21 5593.86 5593.70 5593.54 0.32 Sand-Slime 1997.38 2006.43 4115.54 4124.60 4225.37 4244.40 0.01	Layer 17	5605.18	5601.49	5597.80	7.38	Sand-Slime	1560.54	1769.29	3302.44	3741.44	3302.44	3741.44	0.29	0.00
Layer 20 5594.19 5594.03 5593.86 0.33 Slime 1979.95 1988.32 4098.12 4106.49 4187.67 4206.33 0.01 0 Layer 21 5593.86 5593.70 5593.54 0.32 Sand-Slime 1997.38 2006.43 4115.54 4124.60 4225.37 4244.40 0.01 0 Layer 22 5593.54 5593.21 0.33 Slime 2014.80 2023.17 4132.97 4141.34 4263.07 4281.74 0.01 0	Layer 18	5597.80	5597.64	5597.47	0.33	Slime	1777.66	1786.03	3760.11	3778.77	3760.11	3778.77	0.01	0.00
Layer 21 5593.86 5593.70 5593.54 0.32 Sand-Slime 1997.38 2006.43 4115.54 4124.60 4225.37 4244.40 0.01 Layer 22 5593.54 5593.38 5593.21 0.33 Slime 2014.80 2023.17 4132.97 4141.34 4263.07 4281.74 0.01 0.01	Layer 19	5597.47	5595.83	5594.19	3.28	Sand-Slime	1878.81	1971.58	3973.89	4089.75	3973.89	4169.00	0.13	0.00
Layer 22 5593.54 5593.38 5593.21 0.33 Slime 2014.80 2023.17 4132.97 4141.34 4263.07 4281.74 0.01	Layer 20	5594.19	5594.03	5593.86	0.33	Slime	1979.95	1988.32	4098.12	4106.49	4187.67	4206.33	0.01	0.00
	Layer 21	5593.86	5593.70	5593.54	0.32	Sand-Slime	1997.38	2006.43	4115.54	4124.60	4225.37	4244.40	0.01	0.00
	Layer 22	5593.54	5593.38	5593.21	0.33	Slime	2014.80	2023.17	4132.97	4141.34	4263.07	4281.74	0.01	0.00
Layer 23 0393.21 0392.00 0391.09 1.32 Sand-Simile 2000.00 2097.84 4178.67 4216.01 4360.26 4438.78 0.05	Layer 23	5593.21	5592.55	5591.89	1.32	Sand-Slime	2060.50	2097.84	4178.67	4216.01	4360.26	4438.78	0.05	0.00
Layer 24 5591.89 5591.18 5590.46 1.43 Sand-Slime 2138.29 2178.74 4256.46 4296.91 4523.84 4519.67 0.05	Layer 24	5591.89	5591.18	5590.46	1.43	Sand-Slime	2138.29	2178.74	4256.46	4296.91	4523.84	4519.67	0.05	0.00

Total Consolidition of Profile at t,	5 _{c-t1} (ft): 1.30
Total Consolidtion of Profile at t ₂ ,	0.01 0.01

Notes:

<u>3-1S</u>

FINAL COVER

 5620.47
 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl)
 From cover deisgn

 0.50
 Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after placement (ft)
 From Appendix C

 3.50
 Thickness of Water Storage/Rooting Zone (ft)
 From Appendix C

 3.50
 Thickness of High Compaction Layer (ft)
 From Appendix C

 0.41
 Thickness of Random/Platform Fill on on top of existing interim cover (ft)
 Calculated

 87.10
 Additional Stress due to Final Cover Placement, Δα_{FC} (psf)
 Calculated

From cover deisgn grading plan AutoCAD file

From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) Calculated Calculated

PROFILE INFORMATION

- 5608.00 Water surface elevation during CPT investigation (ft amsl)
- 5604.4 Water surface elevation at t₀ (ft amsl)
- 5595.59 Water surface elevation at t1 (ft amsl)
- 5590.59 Water surface elevation at t₂ (ft amsl)

From on-site investigation (Tailings Data Analysis Report. MWH, 2015) Minimum of 5' below top of tailings or water surface elevation at time of CPT testing (2013)

Page 18 of 31

CONSOLIDATION SETTLEMENT

<u>3-1S</u>

Soil Layer	Elevation at Top of Layer at t ₀ , z _i . top0 (ft amsl) ¹	Lievation at	Elevation at Bottom of Layer at t ₀ , z _{i-bott0} (ft amsl) ¹		Material Type ¹	Effective Stress at Midpoint of Layer at t ₀ , σ' _{i-mid0} (psf)	Effective Stress at Bottom of Layer at t ₀ , σ' _{i-bott0} (psf)			Effective Stress at Midpoint of Layer at t ₂ , σ' _{i-mid2} (psf)	Effective Stress at Bottom of Layer at t ₂ , σ' _{i-bott2} (psf)	to t_1 due to Final Cover Placement and Dewatering, δ_{cl} .	Consolidtion of Layer from t ₁ to t ₂ due to Dewatering, δ _{ci-t2} (ft)
Layer 1	5612.56	5611.00	5609.44	3.12	Int. Cover	157.13	314.26	1044.24	1201.37	1044.24	1201.37	0.21	0.00
Layer 2	5609.44	5608.71	5607.97	1.47	Slime	397.41	480.56	1284.51	1367.66	1284.51	1367.66	0.09	0.00
Layer 3	5607.97	5607.89	5607.80	0.17	Sand-Slime	490.67	500.78	1377.78	1387.89	1377.78	1387.89	0.01	0.00
Layer 4	5607.80	5606.49	5605.18	2.62	Sand	662.53	824.29	1549.64	1711.39	1549.64	1711.39	0.07	0.00
Layer 5	5605.18	5604.93	5604.68	0.50	Sand-Slime	854.03	883.77	1741.13	1770.88	1741.13	1770.88	0.02	0.00
Layer 6	5604.68	5604.44	5604.19	0.49	Sand	913.71	928.67	1801.13	1831.38	1801.13	1831.38	0.01	0.00
Layer 7	5604.19	5603.78	5603.37	0.82	Sand-Slime	951.87	975.06	1880.16	1928.94	1880.16	1928.94	0.03	0.00
Layer 8	5603.37	5603.13	5602.88	0.49	Sand	990.03	1004.99	1959.19	1989.44	1959.19	1989.44	0.01	0.00
Layer 9	5602.88	5602.72	5602.55	0.33	Sand-Slime	1014.32	1023.66	2009.07	2028.70	2009.07	2028.70	0.01	0.00
Layer 10	5602.55	5602.47	5602.39	0.16	Slime	1027.72	1031.77	2037.75	2046.80	2037.75	2046.80	0.01	0.00
Layer 11	5602.39	5601.24	5600.09	2.30	Sand-Slime	1096.83	1161.89	2183.62	2320.43	2183.62	2320.43	0.08	0.00
Layer 12	5600.09	5600.01	5599.93	0.16	Sand	1166.77	1171.66	2330.31	2340.19	2330.31	2340.19	0.00	0.00
Layer 13	5599.93	5597.96	5595.99	3.94	Sand-Slime	1283.11	1394.55	2574.56	2808.94	2574.56	2808.94	0.14	0.00
Layer 14	5595.99	5595.91	5595.83	0.16	Slime	1398.61	1402.67	2817.99	2827.04	2817.99	2827.04	0.01	0.00
Layer 15	5595.83	5595.26	5594.68	1.15	Sand-Slime	1435.20	1467.72	2874.54	2907.07	2895.44	2963.85	0.04	0.00
Layer 16	5594.68	5592.64	5590.59	4.09	Sand-Slime	1583.41	1699.10	3022.76	3138.45	3207.15	3195.23	0.14	0.01

Total Consolidtion of Profile at t_1 , δ_{c+1} (ft): 0.88
Total Consolidtion of Profile at t_2 , δ_{c-2} (ft): 0.01

Notes:

<u>3-2C</u>

FINAL COVER

 5621.51
 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl)
 From cover deisgr

 0.50
 Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after placement (ft)
 From Appendix C

 3.50
 Thickness of Water Storage/Rooting Zone (ft)
 From Appendix C

 3.50
 Thickness of High Compaction Layer (ft)
 From Appendix C

 3.19
 Thickness of Random/Platform Fill on on top of existing interim cover (ft)
 Calculated

 1167.12
 Additional Stress due to Final Cover Placement, Δσ_{Fc} (psf)
 Calculated

From cover deisgn grading plan AutoCAD file

From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) Calculated Calculated

PROFILE INFORMATION

- 5605.30 Water surface elevation during CPT investigation (ft amsl)
- 5602.7 Water surface elevation at t₀ (ft amsl)
- 5591.64 Water surface elevation at t1 (ft amsl)
- 5586.64 Water surface elevation at t₂ (ft amsl)

CONSOLIDATION SETTLEMENT

<u>3-2C</u>

Layer 1 5610.82 Layer 2 5607.54 Layer 3 5607.54 Layer 4 5606.39 Layer 5 5606.39 Layer 6 5605.57 Layer 8 5604.92 Layer 9 5604.26 Layer 10 5597.37 Layer 11 5597.21	5609.27 5607.63 5607.46 5606.89	5607.71 5607.54 5607.38	3.11 0.17	Int. Cover			t ₁ , σ' _{i-mid1} (psf)	t ₁ , σ' _{i-bott1} (psf)	t ₂ , σ' _{i-mid2} (psf)	t ₂ , σ' _{i-bott2} (psf)	Placement and Dewatering, $\delta_{cl.}_{t1}$ (ft)	from t_1 to t_2 due to Dewatering, δ_{cl-t2} (ft)
Layer 3 5607.54 Layer 4 5607.38 Layer 5 5606.39 Layer 6 5605.57 Layer 7 5605.24 Layer 8 5604.92 Layer 9 5604.26 Layer 10 5597.37	5607.46 5606.89		0.17		156.63	313.25	1323.75	1480.37	1323.75	1480.37	0.23	0.00
Layer 4 5607.38 Layer 5 5606.39 Layer 6 5605.57 Layer 7 5605.24 Layer 8 5604.92 Layer 9 5604.26 Layer 10 5597.37	5606.89	5607.38	S. (1	Sand	323.75	334.24	1490.87	1501.36	1490.87	1501.36	0.01	0.00
Layer 5 5606.39 Layer 6 5605.57 Layer 7 5605.24 Layer 8 5604.92 Layer 9 5604.26 Layer 10 5597.37			0.16	Sand-Slime	343.76	353.28	1510.88	1520.40	1510.88	1520.40	0.01	0.00
Layer 6 5605.57 Layer 7 5605.24 Layer 8 5604.92 Layer 9 5604.26 Layer 10 5597.37		5606.39	0.99	Slime	409.28	465.28	1576.40	1632.40	1576.40	1632.40	0.07	0.00
Layer 7 5605.24 Layer 8 5604.92 Layer 9 5604.26 Layer 10 5597.37	5605.98	5605.57	0.82	Sand-Slime	514.05	562.83	1681.17	1729.95	1681.17	1729.95	0.05	0.00
Layer 8 5604.92 Layer 9 5604.26 Layer 10 5597.37	5605.41	5605.24	0.33	Slime	581.50	600.16	1748.62	1767.28	1748.62	1767.28	0.02	0.00
Layer 9 5604.26 Layer 10 5597.37	5605.08	5604.92	0.32	Sand-Slime	619.20	638.24	1786.32	1805.36	1786.32	1805.36	0.02	0.00
Layer 10 5597.37	5604.59	5604.26	0.66	Slime	675.57	712.90	1842.69	1880.02	1842.69	1880.02	0.04	0.00
	5600.82	5597.37	6.89	Sand-Slime	1004.51	1199.40	2289.88	2699.73	2289.88	2699.73	0.30	0.00
Layer 11 5597.21	5597.29	5597.21	0.16	Slime	1203.45	1207.51	2708.78	2717.83	2708.78	2717.83	0.01	0.00
	5596.96	5596.71	0.50	Sand-Slime	1221.66	1235.80	2747.58	2777.32	2747.58	2777.32	0.02	0.00
Layer 12 5596.71	5596.22	5595.73	0.98	Slime	1260.66	1285.51	2832.75	2888.18	2832.75	2888.18	0.04	0.00
Layer 13 5595.73	5594.99	5594.25	1.48	Sand-Slime	1327.37	1369.24	2976.22	3064.26	2976.22	3064.26	0.06	0.00
Layer 14 5594.25	5594.17	5594.09	0.16	Slime	1373.30	1377.35	3073.31	3082.36	3073.31	3082.36	0.01	0.00
Layer 15 5594.09	5593.52	5592.94	1.15	Sand-Slime	1409.88	1442.41	3150.77	3219.18	3150.77	3219.18	0.05	0.00
Layer 16 5592.94	5592.78	5592.61	0.33	Slime	1450.78	1459.15	3237.84	3256.51	3237.84	3256.51	0.01	0.00
Layer 17 5592.61	5592.20	5591.79	0.82	Sand-Slime	1482.35	1505.54	3305.29	3354.07	3305.29	3354.07	0.03	0.00
Layer 18 5591.79	5591.63	5591.46	0.33	Slime	1513.91	1522.28	3371.80	3380.17	3372.73	3391.40	0.01	0.00
Layer 19 5591.46	5591.22	5590.97	0.49	Sand-Slime	1536.14	1550.00	3394.03	3407.89	3420.55	3449.70	0.02	0.00
Layer 20 5590.97	5590.89	5590.81	0.16	Slime	1554.06	1558.12	3411.95	3416.00	3458.75	3467.80	0.01	0.00
Layer 21 5590.81	5590.65	5590.48	0.33	Sand-Slime	1567.45	1576.78	3425.34	3434.67	3487.43	3507.06	0.01	0.00
Layer 22 5590.48	5588.56	5586.64	3.84	Sand-Slime	1685.40	1794.02	3543.29	3651.91	3735.48	3724.29	0.15	0.01

Total Consolidtion of Profile at t_1 , δ_{c-t1} (ft): 1.19
Total Consolidtion of Profile at t_2 , δ_{c,t_2} (ft): 0.01

Notes:

<u>3-3S</u>

FINAL COVER

 5620.49
 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl)
 From cover deise

 0.50
 Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after placement (ft)
 From Appendix C

 3.50
 Thickness of Water Storage/Rooting Zone (ft)
 From Appendix C

 3.50
 Thickness of High Compaction Layer (ft)
 From Appendix C

 3.36
 Thickness of Random/Platform Fill on on top of existing interim cover (ft)
 Calculated

 1184.24
 Additional Stress due to Final Cover Placement, 4or_{ic} (pst)
 Calculated

From cover deisgn grading plan AutoCAD file

From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) Calculated Calculated

PROFILE INFORMATION

- 5605.60 Water surface elevation during CPT investigation (ft amsl)
- 5601.5 Water surface elevation at t₀ (ft amsl)
- 5582.14 Water surface elevation at t1 (ft amsl)
- 5577.14 Water surface elevation at t₂ (ft amsl)

CONSOLIDATION SETTLEMENT

<u>3-3S</u>

0.111	Elevation at Top of Layer at t ₀ , z _i .		Elevation at Bottom of Layer at	Thickness of Layer at t₀, H (ft)			Bottom of Layer at	Effective Stress at Midpoint of Layer at t ₁ , σ' _{kmkft} (psf)	Bottom of Layer at			Consolidition of Layer from t_0 to t_1 due to Final Cover Placement and Dewatering, δ_{cl} .	Consolidtion of Layer from t_1 to t_2 due to
		at t ₀ , z _{i-mid0} (ft amsl)					t ₀ , σ' _{i-bott0} (psf)	1	t ₁ , σ' _{i-bott1} (psf)		t ₂ , σ' _{i-bott2} (psf)	ti (ft)	Dewatering, δ_{ci-t2} (ft)
Layer 1	5609.63	5608.08	5606.52	3.11	Int. Cover	156.63	313.25	1340.87	1497.50	1340.87	1497.50	0.23	0.00
Layer 2	5606.52	5606.11	5605.70	0.82	Sand	363.88	414.50	1548.12	1598.75	1548.12	1598.75	0.04	0.00
Layer 3	5605.70	5605.45	5605.20	0.50	Sand-Slime	444.25	473.99	1628.49	1658.23	1628.49	1658.23	0.03	0.00
Layer 4	5605.20	5604.47	5603.73	1.47	Sand	564.74	655.50	1748.99	1839.74	1748.99	1839.74	0.05	0.00
Layer 5	5603.73	5602.50	5601.27	2.46	Sand-Slime	801.83	932.57	1986.07	2132.41	1986.07	2132.41	0.12	0.00
Layer 6	5601.27	5601.11	5600.94	0.33	Slime	940.94	949.31	2151.07	2169.74	2151.07	2169.74	0.01	0.00
Layer 7	5600.94	5600.86	5600.78	0.16	Sand-Slime	953.83	958.36	2179.26	2188.78	2179.26	2188.78	0.01	0.00
Layer 8	5600.78	5600.62	5600.45	0.33	Slime	966.73	975.10	2207.44	2226.11	2207.44	2226.11	0.01	0.00
Layer 9	5600.45	5599.55	5598.64	1.81	Sand-Slime	1026.29	1077.49	2333.78	2441.45	2333.78	2441.45	0.08	0.00
Layer 10	5598.64	5598.23	5597.82	0.82	Slime	1098.29	1119.09	2487.83	2534.21	2487.83	2534.21	0.04	0.00
Layer 11	5597.82	5597.58	5597.33	0.49	Sand-Slime	1132.95	1146.81	2563.36	2592.51	2563.36	2592.51	0.02	0.00
Layer 12	5597.33	5597.25	5597.17	0.16	Slime	1150.87	1154.92	2601.56	2610.61	2601.56	2610.61	0.01	0.00
Layer 13	5597.17	5596.35	5595.53	1.64	Sand-Slime	1201.31	1247.70	2708.16	2805.72	2708.16	2805.72	0.07	0.00
Layer 14	5595.53	5595.45	5595.36	0.17	Slime	1252.01	1256.32	2815.34	2824.95	2815.34	2824.95	0.01	0.00
Layer 15	5595.36	5595.20	5595.03	0.33	Sand-Slime	1265.66	1274.99	2844.58	2864.21	2844.58	2864.21	0.01	0.00
Layer 16	5595.03	5594.71	5594.38	0.65	Slime	1291.48	1307.97	2900.98	2937.74	2900.98	2937.74	0.03	0.00
Layer 17	5594.38	5593.89	5593.39	0.99	Sand-Slime	1335.97	1363.97	2996.64	3055.53	2996.64	3055.53	0.04	0.00
Layer 18	5593.39	5593.07	5592.74	0.65	Slime	1380.46	1396.94	3092.29	3129.06	3092.29	3129.06	0.03	0.00
Layer 19	5592.74	5592.17	5591.59	1.15	Sand-Slime	1429.47	1462.00	3197.47	3265.88	3197.47	3265.88	0.05	0.00
Layer 20	5591.59	5591.51	5591.43	0.16	Slime	1466.06	1470.12	3274.93	3283.98	3274.93	3283.98	0.01	0.00
Layer 21	5591.43	5590.94	5590.44	0.99	Sand-Slime	1498.12	1526.12	3342.87	3401.76	3342.87	3401.76	0.04	0.00
Layer 22	5590.44	5590.36	5590.28	0.16	Slime	1530.18	1534.24	3410.81	3419.86	3410.81	3419.86	0.01	0.00
Layer 23	5590.28	5589.71	5589.13	1.15	Sand-Slime	1566.77	1599.30	3488.27	3556.68	3488.27	3556.68	0.05	0.00
Layer 24	5589.13	5588.97	5588.80	0.33	Sand	1609.37	1619.45	3577.05	3597.42	3577.05	3597.42	0.01	0.00
Layer 25	5588.80	5587.57	5586.34	2.46	Sand-Slime	1689.03	1758.62	3743.76	3890.09	3743.76	3890.09	0.10	0.00
Layer 26	5586.34	5586.10	5585.85	0.49	Sand	1773.58	1788.54	3920.34	3950.59	3920.34	3950.59	0.01	0.00
Layer 27	5585.85	5581.50	5577.14	8.71	Sand-Slime	2034.91	2281.28	4428.47	4674.84	4468.72	4443.33	0.36	0.00

Total Consolidtion of Profile at t ₁ , δ_{c-t1} (ft): 1.47
Total Consolidtion of Profile at t_2 , δ_{c+2} (ft): 0.00

Notes:

3-4N

FINAL COVER

 5623.36
 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl)
 From cover deisgn

 0.50
 Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after placement (ft)
 From Appendix C

 3.50
 Thickness of Water Storage/Rooting Zone (ft)
 From Appendix C

 3.50
 Thickness of High Compaction Layer (ft)
 From Appendix C

 7.16
 Thickness of Random/Platform Fill on on top of existing interim cover (ft)
 Calculated

 1567.00
 Additional Stress due to Final Cover Placement, Δα_{Fic} (psf)
 Calculated

From cover deisgn grading plan AutoCAD file

From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) Calculated Calculated

PROFILE INFORMATION

- 5606.00 Water surface elevation during CPT investigation (ft amsl)
- 5600.6 Water surface elevation at t₀ (ft amsl)
- 5583.71 Water surface elevation at t1 (ft amsl)
- 5578.71 Water surface elevation at t₂ (ft amsl)

CONSOLIDATION SETTLEMENT

3-	4	Ν

Soil Layer	Elevation at Top of Layer at t_0 , z_i . t_{top0} (ft amsl) ¹				Material Type ¹	Effective Stress at Midpoint of Layer at t ₀ , σ' _{i-mid0} (psf)			Effective Stress at Bottom of Layer at t_1 , $\sigma'_{i-bott1}$ (psf)			to t_1 due to Final Cover Placement and Dewatering, δ_{cl} .	$\begin{array}{l} \mbox{Consolidtion of Layer} \\ \mbox{from } t_1 \mbox{ to } t_2 \mbox{ due to} \\ \mbox{Dewatering, } \delta_{ci-t2} \mbox{ (ft)} \end{array}$
Layer 1	5608.70	5607.14	5605.58	3.12	Int. Cover	157.13	314.26	1724.13	1881.26	1724.13	1881.26	0.26	0.00
Layer 2	5605.58	5604.60	5603.61	1.97	Sand	435.88	557.51	2002.88	2124.50	2002.88	2124.50	0.09	0.00
Layer 3	5603.61	5601.32	5599.02	4.59	Sand-Slime	830.54	1006.24	2397.54	2670.58	2397.54	2670.58	0.26	0.00
Layer 4	5599.02	5598.20	5597.38	1.64	Slime	1047.84	1089.43	2763.35	2856.11	2763.35	2856.11	0.08	0.00
Layer 5	5597.38	5597.22	5597.05	0.33	Sand-Slime	1098.77	1108.10	2875.74	2895.37	2875.74	2895.37	0.02	0.00
Layer 6	5597.05	5596.72	5596.39	0.66	Sand	1128.26	1148.41	2936.12	2976.86	2936.12	2976.86	0.02	0.00
Layer 7	5596.39	5596.31	5596.23	0.16	Slime	1152.47	1156.53	2985.91	2994.96	2985.91	2994.96	0.01	0.00
Layer 8	5596.23	5596.07	5595.90	0.33	Sand-Slime	1165.86	1175.20	3014.59	3034.22	3014.59	3034.22	0.02	0.00
Layer 9	5595.90	5595.82	5595.74	0.16	Sand	1180.08	1184.97	3044.10	3053.98	3044.10	3053.98	0.00	0.00
Layer 10	5595.74	5595.66	5595.57	0.17	Slime	1189.28	1193.59	3063.60	3073.21	3063.60	3073.21	0.01	0.00
Layer 11	5595.57	5595.49	5595.41	0.16	Sand-Slime	1198.12	1202.64	3082.73	3092.25	3082.73	3092.25	0.01	0.00
Layer 12	5595.41	5595.00	5594.59	0.82	Slime	1223.44	1244.24	3138.63	3185.01	3138.63	3185.01	0.04	0.00
Layer 13	5594.59	5594.43	5594.26	0.33	Sand-Slime	1253.57	1262.91	3204.64	3224.27	3204.64	3224.27	0.02	0.00
Layer 14	5594.26	5594.10	5593.93	0.33	Slime	1271.28	1279.65	3242.94	3261.60	3242.94	3261.60	0.02	0.00
Layer 15	5593.93	5590.74	5587.54	6.39	Sand-Slime	1460.39	1641.14	3641.72	4021.83	3641.72	4021.83	0.31	0.00
Layer 16	5587.54	5583.13	5578.71	8.83	Sand-Slime	1890.90	2140.66	4510.59	4760.35	4547.09	4521.36	0.40	0.00

Total Consolidition of Profile at t_n, δ_{cat} (ft): 1.56	
Total Consolidition of Profile at t_2 , $\delta_{c,z}$ (th: 0.00	

Notes:

3-6N

FINAL COVER

 5623.62
 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsi)
 From cover deisgn

 0.50
 Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after
 From Appendix C

 3.50
 Thickness of Water Storage/Rooting Zone (ft)
 From Appendix C

 3.60
 Thickness of High Compaction Layer (ft)
 From Appendix C

 8.68
 Thickness of Random/Platform Fill on on top of existing interim cover (ft)
 Calculated

 1720.10
 Additional Stress due to Final Cover Placement, Δα_{FC} (psf)
 Calculated

From cover deisgn grading plan AutoCAD file

From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) Calculated Calculated

PROFILE INFORMATION

- 5604.20 Water surface elevation during CPT investigation (ft amsl)
- 5599.3 Water surface elevation at t₀ (ft amsl)
- 5590.44 Water surface elevation at t₁ (ft amsl)
- 5585.44 Water surface elevation at t₂ (ft amsl)

CONSOLIDATION SETTLEMENT

2	c	R
J	υ	

Soil Laver	Elevation at Top of Layer at t_0 , z_i . t_{000} (ft amsl) ¹	Lievation at	Elevation at Bottom of Layer at to, Zibotto (ft amsl) ¹		Material Type ¹	Effective Stress at Midpoint of Layer at t ₀ , σ' _{i-mid0} (psf)		Effective Stress at Midpoint of Layer at t ₁ , σ' _{i-mid1} (psf)				Consoliction of Layer from t_0 to t_1 due to Final Cover Placement and Dewatering, $\delta_{cl.}$, (ft)	Consolidtion of Layer from t ₁ to t ₂ due to Dewatering, δ_{cl+t2} (ft)
Layer 1	5607.44	5605.88	5604.32	3.12	Int. Cover	157.13	314.26	1877.23	2034.36	1877.23	2034.36	0.27	0.00
Layer 2	5604.32	5604.24	5604.16	0.16	Sand-Slime	323.78	333.30	2043.88	2053.40	2043.88	2053.40	0.02	0.00
Layer 3	5604.16	5604.00	5603.83	0.33	Sand	353.67	374.04	2073.77	2094.14	2073.77	2094.14	0.02	0.00
Layer 4	5603.83	5603.67	5603.50	0.33	Sand-Slime	393.67	413.30	2113.77	2133.40	2113.77	2133.40	0.03	0.00
Layer 5	5603.50	5603.18	5602.85	0.65	Slime	450.07	486.84	2170.17	2206.94	2170.17	2206.94	0.05	0.00
Layer 6	5602.85	5602.44	5602.03	0.82	Sand-Slime	535.61	584.39	2255.71	2304.49	2255.71	2304.49	0.06	0.00
Layer 7	5602.03	5601.78	5601.53	0.50	Slime	612.67	640.96	2332.77	2361.06	2332.77	2361.06	0.04	0.00
Layer 8	5601.53	5601.29	5601.04	0.49	Sand-Slime	670.10	699.25	2390.20	2419.35	2390.20	2419.35	0.03	0.00
Layer 9	5601.04	5600.96	5600.88	0.16	Sand	709.13	719.01	2429.23	2439.11	2429.23	2439.11	0.01	0.00
Layer 10	5600.88	5600.72	5600.55	0.33	Sand-Slime	738.64	758.27	2458.74	2478.37	2458.74	2478.37	0.02	0.00
Layer 11	5600.55	5600.39	5600.22	0.33	Slime	776.94	795.60	2497.03	2515.70	2497.03	2515.70	0.02	0.00
Layer 12	5600.22	5600.06	5599.89	0.33	Sand-Slime	815.23	834.86	2535.33	2554.96	2535.33	2554.96	0.02	0.00
Layer 13	5599.89	5599.48	5599.07	0.82	Slime	881.24	912.03	2601.34	2647.73	2601.34	2647.73	0.05	0.00
Layer 14	5599.07	5598.91	5598.74	0.33	Sand-Slime	921.36	930.69	2667.36	2686.99	2667.36	2686.99	0.02	0.00
Layer 15	5598.74	5598.09	5597.43	1.31	Slime	963.92	997.15	2761.08	2835.18	2761.08	2835.18	0.07	0.00
Layer 16	5597.43	5597.27	5597.10	0.33	Sand-Slime	1006.48	1015.82	2854.81	2874.44	2854.81	2874.44	0.02	0.00
Layer 17	5597.10	5594.48	5591.86	5.24	Slime	1148.72	1281.63	3170.84	3467.23	3170.84	3467.23	0.28	0.00
Layer 18	5591.86	5590.88	5589.89	1.97	Sand-Slime	1337.35	1393.07	3584.42	3667.28	3584.42	3701.60	0.10	0.00
Layer 19	5589.89	5589.40	5588.90	0.99	Slime	1418.18	1443.29	3692.39	3717.50	3757.60	3813.60	0.05	0.00
Layer 20	5588.90	5587.17	5585.44	3.46	Sand-Slime	1541.16	1639.03	3815.37	3913.24	4019.42	4009.34	0.16	0.01
Total Consolidtion of Profile at t ₁ , δ _{ext} (ft): 1.34													

Total Consolidtion of Profile at $t_2,\,\delta_{c\,\text{\tiny s2}}$ (ft): 0.01

Notes:

3-8N

FINAL COVER

 5623.82
 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl)
 From cover deisgn gra

 0.50
 Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after placement (ft)
 From Appendix C - Ra

 3.50
 Thickness of Water Storage/Rooting Zone (ft)
 From Appendix C - Ra

 3.50
 Thickness of High Compaction Layer (ft)
 From Appendix C - Ra

 7.95
 Thickness of Random/Platform Fill on on top of existing interim cover (ft)
 Calculated

 1646.57
 Additional Stress due to Final Cover Placement, Δor_{Fc} (pst)
 Calculated

From cover deisgn grading plan AutoCAD file

From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) Calculated Calculated

PROFILE INFORMATION

- 5604.90 Water surface elevation during CPT investigation (ft amsl)
- 5600.3 Water surface elevation at t₀ (ft amsl)
- 5595.24 Water surface elevation at t1 (ft amsl)
- 5590.24 Water surface elevation at t₂ (ft amsl)

CONSOLIDATION SETTLEMENT

<u>3-8N</u>

	Elevation at Top of Layer at t_0 , z_i . top0 (ft amsl) ¹	Midpoint of Layer	Elevation at Bottom of Layer at t ₀ , z _{i-bott0} (ft amsl) ¹			Effective Stress at Midpoint of Layer at t ₀ , σ' _{i-mid0} (psf)						Consolidation of Layer from t ₀ to t ₁ due to Final Cover Placement and Dewatering, $\delta_{cl.}$ tt (ft)	Consolidtion of Layer
Layer 1	5608.37	5606.81	5605.25	3.12	Int. Cover	157.13	314.26	1803.70	1960.83	1803.70	1960.83	0.27	0.00
Layer 2	5605.25	5605.17	5605.09	0.16	Slime	323.31	332.36	1969.88	1978.93	1969.88	1978.93	0.02	0.00
Layer 3	5605.09	5605.01	5604.92	0.17	Sand	342.86	353.35	1989.43	1999.92	1989.43	1999.92	0.01	0.00
Layer 4	5604.92	5604.60	5604.27	0.65	Sand-Slime	392.02	430.68	2038.59	2077.25	2038.59	2077.25	0.06	0.00
Layer 5	5604.27	5604.11	5603.94	0.33	Sand	451.06	471.43	2097.63	2118.00	2097.63	2118.00	0.02	0.00
Layer 6	5603.94	5603.78	5603.61	0.33	Sand-Slime	491.06	510.69	2137.63	2157.26	2137.63	2157.26	0.03	0.00
Layer 7	5603.61	5602.55	5601.48	2.13	Sand	642.19	773.69	2288.76	2420.26	2288.76	2420.26	0.08	0.00
Layer 8	5601.48	5598.45	5595.41	6.07	Sand-Slime	1022.14	1193.83	2781.34	3142.42	2781.34	3142.42	0.32	0.00
Layer 9	5595.41	5595.33	5595.24	0.17	Slime	1198.14	1202.45	3152.03	3151.04	3152.03	3161.65	0.01	0.00
Layer 10	5595.24	5594.18	5593.11	2.13	Sand-Slime	1262.70	1322.95	3211.29	3271.54	3288.35	3415.06	0.10	0.00
Layer 11	5593.11	5591.68	5590.24	2.87	Sand-Slime	1404.13	1485.31	3352.72	3433.90	3585.78	3577.42	0.13	0.01

Total Consolidition of Profile at t ₁ , 5 _{c-t1} (fi): 1.0	03
Total Consolidition of Profile at $t_{2x} \delta_{x-x}$ (it): [0.0	01

3-8S

FINAL COVER

5620.45 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl) From cover deisgn grading plan AutoCAD file Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after 0.50 placement (ft) 3.50 Thickness of Water Storage/Rooting Zone (ft) 3.50 Thickness of High Compaction Layer (ft) 4.25 Thickness of Random/Platform Fill on on top of existing interim cover (ft) Calculated 1273.89 Additional Stress due to Final Cover Placement, $\Delta \sigma_{FC}$ (psf) Calculated

From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015)

PROFILE INFORMATION

- 5603.50 Water surface elevation during CPT investigation (ft amsl)
- 5600.6 Water surface elevation at t₀ (ft amsl)
- 5590.63 Water surface elevation at t1 (ft amsl)
- 5585.63 Water surface elevation at t₂ (ft amsl)

CONSOLIDATION SETTLEMENT

<u>3-8S</u>

	Elevation at Top of Layer at t ₀ , z _i . top0 (ft amsl) ¹	Lievation at	Elevation at Bottom of Layer at t ₀ , z _{i-bott0} (ft amsl) ¹			Effective Stress at Midpoint of Layer at t ₀ , σ' _{i-mid0} (psf)				Effective Stress at Midpoint of Layer at t ₂ , σ' _{ι-mid2} (psf)		Consolidition of Layer from t_0 to t_1 due to Final Cover Placement and Dewatering, $\delta_{cl.}$ t (ft)	$\begin{array}{l} \mbox{Consolidtion of Layer} \\ \mbox{from } t_1 \mbox{ to } t_2 \mbox{ due to} \\ \mbox{Dewatering, } \delta_{ci+t2} \mbox{ (ft)} \end{array}$
Layer 1	5608.70	5607.15	5605.59	3.11	Int. Cover	156.63	313.25	1430.52	1587.14	1430.52	1587.14	0.24	0.00
Layer 2	5605.59	5605.02	5604.44	1.15	Sand	384.25	455.25	1658.14	1729.14	1658.14	1729.14	0.05	0.00
Layer 3	5604.44	5604.28	5604.11	0.33	Sand-Slime	474.88	494.51	1748.77	1768.40	1748.77	1768.40	0.02	0.00
Layer 4	5604.11	5604.03	5603.95	0.16	Sand	504.39	514.27	1778.28	1788.15	1778.28	1788.15	0.01	0.00
Layer 5	5603.95	5603.54	5603.13	0.82	Sand-Slime	563.04	611.82	1836.93	1885.71	1836.93	1885.71	0.05	0.00
Layer 6	5603.13	5601.33	5599.52	3.61	Sand	834.69	990.80	2108.58	2331.45	2108.58	2331.45	0.10	0.00
Layer 7	5599.52	5599.36	5599.19	0.33	Sand-Slime	1000.13	1009.46	2351.08	2370.71	2351.08	2370.71	0.01	0.00
Layer 8	5599.19	5599.03	5598.86	0.33	Sand	1019.54	1029.62	2391.09	2411.46	2391.09	2411.46	0.01	0.00
Layer 9	5598.86	5596.89	5594.92	3.94	Sand-Slime	1141.06	1252.51	2645.83	2880.21	2645.83	2880.21	0.17	0.00
Layer 10	5594.92	5594.84	5594.76	0.16	Slime	1256.57	1260.63	2889.26	2898.31	2889.26	2898.31	0.01	0.00
Layer 11	5594.76	5594.60	5594.43	0.33	Sand-Slime	1269.96	1279.30	2917.94	2937.57	2917.94	2937.57	0.01	0.00
Layer 12	5594.43	5594.11	5593.78	0.65	Slime	1295.78	1312.27	2974.33	3011.10	2974.33	3011.10	0.03	0.00
Layer 13	5593.78	5593.62	5593.45	0.33	Sand-Slime	1321.60	1330.94	3030.73	3050.36	3030.73	3050.36	0.01	0.00
Layer 14	5593.45	5589.54	5585.63	7.82	Sand-Slime	1552.13	1773.32	3447.52	3668.72	3515.54	3492.75	0.33	0.01

Total Consolidtion of Profile at t ₁ , δ _{c-1} (ft): 1.06
Total Consolidtion of Profile at t_2 , δ_{c-z} (ft): 0.01

Notes:

ATTACHMENT F.2

CREEP SETTLEMENT CALCULATIONS

Notes

t₀ corresponds to beginning of final cover placement

Assumes 99% of consolidation due to existing stress conditions has taken place

 t_1 corresponds to dewatering of the tailings to a level 5 feet above the liner

t2 corresponds to completion of dewatering

SOIL PROPERTIES

TAILINGS

- Specific Gravity, G_s
- 2.70 Specific gravity of tailing sands, $G_{s-TSand}$
- 2.80 Specific gravity of tailing sand-slimes, G_{s-TS-S}
- 2.86 Specific gravity of tailing slimes, G_{s-TSlime}

Fines Content

- 18% Fines content of tailings sands (%)
- 47% Fines content of tailings sand-slimes (%)
- 71% Fines content of tailings slimes (%)

Dry Unit Weight, γ_d

- 97 In-situ dry unit weight of tailings sands at b, $\gamma_{d0-Tsand}$ (pcf)
- 88 In-situ dry unit weight of tailings sand-slimes at $b, \gamma_{d0-TS-S}$ (pcf)
- 78 In-situ dry unit weight of tailings slimes at \mathfrak{h} , $\gamma_{d0-Tslime}$ (pcf)

Saturated Unit Weight, ysat

- 123 In-situ saturated unit weight of tailings sands at b, $\gamma_{sat0-Tsand}$ (pcf)
- 119 In-situ saturated unit weight of tailings sand-slimes at ξ, γ_{sat0-TS-S} (pcf)
- 113 In-situ saturated unit weight of tailings slimes at t_b, γ_{sat0-Tslime} (pcf)

Moist Unit Weight, γ_m

- 123 Moist unit weight of tailings sands, $\gamma_{m-Tsand}$ (pcf)
- 119 Moist unit weight of tailings sand-slimes, γ_{m-TS-S} (pcf)
- 113 Moist unit weight of tailings slimes, γ_{m-Tslime} (pcf)

Void Ratio, e

- 0.74 Void ratio of tailing sands at t₀, e_{0-TSand}
- 0.99 Void ratio of tailing sand-slimes at t₀, e_{0-TS-S}
- 1.29 Void ratio of tailing slimes at t₀, e_{0-TSlime}

Saturated Water Content, Wsat

- 27% Saturated water content of tailings sands at t_b, w_{sat0-TSand} (%)
- 35% Saturated water content of tailings sand-slimes at to, wsato-TS-S (%)
- 45% Saturated water content of tailings slimes at b, w_{sat0-TSlime} (%)

Water Content of Moist Tailings, wm-T

- 27% Water content of moist tailings sands, $w_{m-TSand}$ (%)
- 35% Water content of moist tailings sand-slimes, w_{m-TS-S} (%)
- 45% Water content of moist tailings slimes, w_{m-TSlime} (%)

Compression Index, C_c

- 0.12 Compression index of tailings sands, C_{c-TSand}
- 0.24 Compression index of tailings sand-slimes, C_{c-TS-S}
- 0.28 Compression index of tailings slimes, C_{c-TSlime}

Normalized Blow Count, N₆₀

- 17 Normalized Blow Count for saturated tailings sands, N_{60-TSand}
- 7 Normalized Blow Count for saturated tailings sand-slimes, N_{60-TS-S}
- 4 Normalized Blow Count for saturated tailings slimes, N_{60-Tslime}

Based on lab testing performed on uranium tailings sands and presented in Keshian and Rager (1988) Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015) Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015)

Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015) Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015) Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015)

Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015) Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015) Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015)

Calculated Calculated Calculated

Calculated, assuming 100% degree of saturation (conservative estimate of loading from these layers) Calculated, assuming 100% degree of saturation (conservative estimate of loading from these layers) Calculated, assuming 100% degree of saturation (conservative estimate of loading from these layers)

Calculated Calculated Calculated

Calculated Calculated Calculated

Calculated, assuming 100% saturation (conservative value used to estimate loading from these layers, actual long-term water content will be lower) Calculated, assuming 100% saturation (conservative value used to estimate loading from these layers, actual long-term water content will be lower) Calculated, assuming 100% saturation (conservative value used to estimate loading from these layers, actual long-term water content will be lower)

Based on lab testing performed on uranium tailings sands and presented in Keshian and Rager (1988) Median value from lab testing of tailings sand-slimes samples obtained on-site (Tailings Data Analysis Report. MWH, 2015) Median value from lab testing of tailings slimes samples obtained on-site (Tailings Data Analysis Report. MWH, 2015)

23 Normalized Blow Count for unsaturated tailings sands, N_{60-TSand}

14	Normalized Blow Count for unsaturated tailings sand-slimes, N _{60-TS-S}
----	--

Normalized Blow Count for unsaturated tailings slimes, N_{60-Tslime} 10

Other

- Unit Weight of Water, γ_w 62.4
- Height of water table above liner at t₁, H_{sat-1} (ft) 5.0
- Height of water table above liner at t2, Hsat-2 (ft) 0.0
- Atmospheric Pressure, P_a (kPa) 82.4
- Atmospheric Pressure, P_a (psf) 1722.0
- Long-term moisture content of tailings, w_{tailings} (%) 5.2%
- 0.020 Ratio of Secondary Compression Index to Primary Compression Index, C_c/C_c

Blow counts for material types calculated using method presented in Guide to Cone Penetration Testing for

- Geotechnical Engineering, 5th Ed. (Robertson and Cabal, 2012).
- Assumed for end of active maintenance
- Calculated assuming elev=5600' amsl. http://www.engineeringtoolbox.com/air-altitude-pressure-d_462.html Unit conversion calculation From Attachment H - Radon Emanation Modeling including with this submittal

Estimated from laboratory results presented in MWH (2015b), upper bound average Ca for sand-slime and slime tailings of 0.02

COVER SOIL

Spec	ific Gravity, G _s	
2.61	Specific gravity of topsoil, G _{s-Topsoil}	From Attachment H - Radon Emanation Modeling including with this submittal
2.62	Specific gravity of rock mulch, G _{s-mulch}	From Attachment H - Radon Emanation Modeling including with this submittal
2.63	Specific gravity of cover soil, G _{s-cover}	From Attachment H - Radon Emanation Modeling including with this submittal
Unit	Weight, γ	
118.0	Maximum dry unit weight of cover soil $\gamma_{cover-max}$ (pcf)	Average calculated from laboratory testing results (UWM, 2012)
100.7	Moist unit weight of cover soil at 80% relative compaction, $\gamma_{cover80}\left(pcf\right)$	Calculated
107.0	Moist unit weight of cover soil at 85% relative compaction, $\gamma_{cover85}(pcf)$	Calculated
119.6	Moist unit weight of cover soil at 95% relative compaction, $\gamma_{cover95}(pcf)$	Calculated
127.5	Saturated unit weight of cover soil at 80% relative compaction, $\gamma_{cover80-sat}$ (pcf)	Calculated
100	Dry unit weight of topsoil layer at 85% relative compaction, $\gamma_{topsoil5}(\text{pcf})$	From Attachment H - Radon Emanation Modeling including with this submittal
105	Moist unit weight of topsoil layer at 85% relative compaction, $\gamma_{topsoil5}\left(\text{pcf}\right)$	Calculated
106	Dry unit weight of rock mulch layer at 85% relative compaction, $\gamma_{mulch85}$ (pcf)	From Attachment H - Radon Emanation Modeling including with this submittal
110	Moist unit weight of rock mulch layer at 85% relative compaction, $\gamma_{mulch85}$ (pcf)	From Attachment H - Radon Emanation Modeling including with this submittal
Void	Ratio, e	
0.74	Void Ratio of cover soil at 80% relative compaction, ecover80	Calculated
0.64	Void Ratio of cover soil at 85% relative compaction, ecover85	Calculated
0.46	Void Ratio of cover soil at 95% relative compaction, ecover95	Calculated
0.61	Void Ratio of topsoil at 85% relative compaction, e _{opsoil85}	Calculated from porosity presented in Attachment H - Radon Emanation Modeling including with this submittal
0.54	Void Ratio of rock mulch at 85% relative compaction, emulch85	Calculated from porosity presented in Attachment H - Radon Emanation Modeling including with this submittal
Othe	r	
6.7%	Long-term moisture content of cover soil, w _{cover} (%)	Estimated based on measured 15bar water content. (UWM, 2012)
5.2%	Long-term moisture content of topsoil, w _{topsoil} (%)	From Attachment H - Radon Emanation Modeling including with this submittal
4.0%	Long-term moisture content of rock mulch, w _{rockmulch} (%)	From Attachment H - Radon Emanation Modeling including with this submittal

Compression index of cover soil, C_{c-cover} 0.14

Calculated from empirical equation for soil types similar to cover material (as presented in Holtz and Kovacs, 1981. Page 341). C = 0.30*(e₀-0.27)

REFERENCES

Energy Fuels Resources (USA) Inc. (EFRI), 2012. Responses to Interrogatories – Round 1 for Reclamation Plan, Revision 5.0, March 2012. August 15.

Holtz, R.D. and Kovacs, W.D., 1981. An Introduction to Geotechnical Engineering. Prentice Hall, Inc. New Jersey

Keshian, B., and Rager, R. 1988. Geotechnical Properties of Hydraulically Placed Uranium Mill Tailings, in Hydraulically Fill Structures, Geotechnical Special Publication No. 21, Eds. Van Zyl, D., and Vick, S., ASCE, August.

MWH Americas, Inc. (MWH), 2015. White Mesa Mill Tailings Data Analysis Report. Prepared for Energy Fuels Resources (USA) Inc. April.

University of Wisconsin-Madison (UWM), Wisconsin Geotechnics Laboratory, 2012. Compaction and Hydraulic Properties of Soils from Banding, Utah. Geotechnics Report NO. 12-41 by C.H. Benson and X. Wang. July 24.

<u>2W2</u>

FINAL COVER

5625.87	Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl)	From cover deisgn grading plan AutoCAD file
0.50	Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after placement (ft)	From Appendix C - Radon Emanation Modeling (MWH, 2015)
3.50	Thickness of Water Storage/Rooting Zone (ft)	From Appendix C - Radon Emanation Modeling (MWH, 2015)
4.00	Thickness of High Compaction Layer (ft)	From Appendix C - Radon Emanation Modeling (MWH, 2015)
2.02	Thickness of Random/Platform Fill on on top of existing interim cover (ft)	Calculated
1111.60	Additional Stress due to Final Cover Placement $\Delta \sigma_{FC}$ (psf)	Calculated

PROFILE INFORMATION

5613.10	Water surface elevation during CPT investigation(ft amsl)
5607.7	Water surface elevation at t ₀ (ft amsl)
5598.51	Water surface elevation at t _i (ft amsl)
5593.51	Water surface elevation at b (ft amsl)

From on-site investigation (Tailings Data Analysis Report. MWH, 2015) Minimum of 5' below top of tailings or water surface elevation at time of CPT testing (2013).

Settlement_30Aug2015.xls

2	V	V	2

Soil Layer	Material Type ¹	Thickness of Layer at t _o , H (ft)	Elevation at Top of Layer at t ₁ , z _{i-top1} (ft amsl)	Elevation at Midpoint of Layer at t ₁ , z _{i-mid1} (ft amsl)	Elevation at Bottom of Layer at t ₁ , z _{i-bott1} (ft amsl)	Thickness of Layer at t ₁ , H (ft)	Height above liner (ft)	Effective Stress at Midpoint of Layer at t ₁ , σ' _{i-mid1} (psf)		Void Ratio at t ₀ , e ₀	Void Ratio at t ₁ , e ₁	Secondary Compression Index, C _a	Change in Void Ratio due to 1000 years of Creep, ∆e	Final Void Ratio After 1,000 years, e _{final}	Settlement due to 1000 years of Creep, δ _{creep} (ft)
Erosion Protection Layer	Erosion Protection Layer	r	5624.78	5624.53	5624.28	0.50	31.27	NA	NA	NA	NA	NA	NA	NA	NA
Rooting Zone	Rooting Zone		5624.28	5622.53	5620.78	3.50	30.77	NA	NA	NA	NA	NA	NA	NA	NA
High-Compaction Layer	High-Compaction Layer		5620.78	5618.78	5616.78	4.00	27.27	NA	NA	NA	NA	NA	NA	NA	NA
Platform Fill	Platform Fill		5616.78	5615.77	5614.76	2.02	23.27	NA	NA	NA	NA	NA	NA	NA	NA
Layer 1	Int. Cover		5614.76	5613.32	5611.88	2.88	21.25	NA	NA	NA	NA	NA	NA	NA	NA
Layer 2	Sand-Slime		5611.88	5611.42	5610.97	0.91	18.37	NA	NA	NA	NA	NA	NA	NA	NA
Layer 3	Slime		5610.97	5610.89	5610.81	0.16	17.46	NA	NA	NA	NA	NA	NA	NA	NA
Layer 4	Sand		5610.81	5610.65	5610.50	0.31	17.30	NA	NA	NA	NA	NA	NA	NA	NA
Layer 5	Sand-Slime		5610.50	5610.42	5610.34	0.16	16.99	NA	NA	NA	NA	NA	NA	NA	NA
Layer 6	Slime		5610.34	5609.95	5609.57	0.77	16.83	NA	NA	NA	NA	NA	NA	NA	NA
Layer 7	Sand-Slime		5609.57	5609.49	5609.42	0.15	16.06	NA	NA	NA	NA	NA	NA	NA	NA
Layer 8	Slime		5609.42	5609.18	5608.95	0.46	15.91	NA	NA	NA	NA	NA	NA	NA	NA
Layer 9	Sand-Slime		5608.95	5608.71	5608.48	0.48	15.44	NA	NA	NA	NA	NA	NA	NA	NA
Layer 10	Slime		5608.48	5607.93	5607.39	1.09	14.97	NA	NA	NA	NA	NA	NA	NA	NA
Layer 11	Sand-Slime		5607.39	5607.23	5607.07	0.32	13.88	NA	NA	NA	NA	NA	NA	NA	NA
Layer 12	Slime		5607.07	5606.68	5606.29	0.78	13.56	NA	NA	NA	NA	NA	NA	NA	NA
Layer 13	Sand-Slime		5606.29	5605.97	5605.66	0.63	12.78	NA	NA	NA	NA	NA	NA	NA	NA
Layer 14	Slime		5605.66	5605.42	5605.19	0.47	12.15	NA	NA	NA	NA	NA	NA	NA	NA
Layer 15	Sand-Slime		5605.19	5605.03	5604.87	0.32	11.68	NA	NA	NA	NA	NA	NA	NA	NA
Layer 16	Slime		5604.87	5604.71	5604.56	0.32	11.36	NA	NA	NA	NA	NA	NA	NA	NA
Layer 17	Sand-Slime		5604.56	5604.40	5604.24	0.32	11.05	NA	NA	NA	NA	NA	NA	NA	NA
Layer 18	Slime		5604.24	5604.01	5603.77	0.47	10.73	NA	NA	NA	NA	NA	NA	NA	NA
Layer 19	Sand-Slime		5603.77	5603.61	5603.46	0.32	10.26	NA	NA	NA	NA	NA	NA	NA	NA
Layer 20	Slime		5603.46	5602.99	5602.52	0.94	9.95	NA	NA	NA	NA	NA	NA	NA	NA
Layer 21	Sand-Slime		5602.52	5602.44	5602.36	0.15	9.01	NA	NA	NA	NA	NA	NA	NA	NA
Layer 22	Slime		5602.36	5601.97	5601.58	0.79	8.85	NA	NA	NA	NA	NA	NA	NA	NA
Layer 23	Sand-Slime		5601.58	5601.34	5601.10	0.48	8.07	NA	NA	NA	NA	NA	NA	NA	NA
Layer 24	Slime		5601.10	5601.02	5600.95	0.15	7.59	NA	NA	NA	NA	NA	NA	NA	NA
Layer 25	Sand-Slime		5600.95	5600.87	5600.79	0.15	7.44	NA	NA	NA	NA	NA	NA	NA	NA
Layer 26	Slime		5600.79	5600.40	5600.01	0.79	7.28	NA	NA	NA	NA	NA	NA	NA	NA
Layer 27	Sand-Slime		5600.01	5599.62	5599.22	0.79	6.50	NA	NA	NA	NA	NA	NA	NA	NA
Layer 28	Slime		5599.22	5598.51	5597.80	1.42	5.71	1548.29	3096.58	1.29	1.19	0.006	0.023	1.17	0.01
Layer 29	Sand-Slime		5597.80	5597.73	5597.65	0.15	4.29	1552.82	3105.63	0.99	0.90	0.005	0.020	0.88	0.00
Layer 30	Slime		5597.65	5597.34	5597.02	0.63	4.14	1569.56	3139.11	1.29	1.19	0.006	0.023	1.17	0.00
Layer 31	Sand-Slime		5597.02	5596.70	5596.39	0.63	3.51	1588.23	3176.45	0.99	0.91	0.005	0.020	0.89	0.00
Layer 32	Slime		5596.39	5596.23	5596.08	0.31	2.88	1596.34	3192.68	1.29	1.20	0.006	0.023	1.17	0.00
Layer 33	Sand-Slime		5596.08	5595.76	5595.44	0.63	2.57	1615.01	3230.02	0.99	0.91	0.005	0.020	0.89	0.00
Layer 34	Sand-Slime		5595.44	5594.48	5593.51	1.93	1.93	1671.86	3343.73	0.99	0.91	0.005	0.020	0.89	0.02
														TOTAL:	0.0

<u>2W3</u>

FINAL COVER

From cover deisgn grading plan AutoCAD file

5626.27 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl) Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after

- 0.50 placement (ft) 3.50
- Thickness of Water Storage/Rooting Zone (ft) 4.00
- Thickness of High Compaction Layer (ft) 2.55
- Thickness of Random/Platform Fill on on top of existing interim cover (ft) Additional Stress due to Final Cover Placement, $\Delta\sigma_{FC}$ (psf) 1164.98

PROFILE INFORMATION

5613.80	Water surface elevation during CPT investigation (ft amsl)	
5607.6	Water surface elevation at t ₀ (ft amsl)	

5597.75 Water surface elevation at t₁ (ft amsl)

5592.75 Water surface elevation at t₂ (ft amsl)

From Appendix C - Radon Emanation Modeling (MWH, 2015) Calculated Calculated

From Appendix C - Radon Emanation Modeling (MWH, 2015)

From Appendix C - Radon Emanation Modeling (MWH, 2015)

<u>2W3</u>

CREEP SETTLEMENT	<u>.</u>													
Soil Layer	Material Type ¹	Elevation at Top of Layer at t ₁ , z _{i-top1} (ft amsl)	Elevation at Midpoint of Layer at t ₁ , z _{i-mid1} (ft amsl)	Elevation at Bottom of Layer at t ₁ , z _{i-bott1} (ft amsl)	Thickness of Layer at t₁, H (ft)	Height above liner (ft)	Effective Stress at Midpoint of Layer at t ₁ , σ' _{i-mid1} (psf)	Effective Stress at Bottom of Layer at t ₁ , σ' _{i-bott1} (psf)	Void Ratio at t ₀ , e ₀	Void Ratio at t ₁ , e ₁	Secondary Compression Index, C _α	Change in Void Ratio due to 1000 years of Creep, Δe	Final Void Ratio After 1,000 years, e _{final}	Settlement due to 100 years of Creep, δ _{cree} (ft)
Frosion Protection Layer	Erosion Protection Layer	5625.12	5624.87	5624.62	0.50	32.37	NA	NA	NA	NA	NA	NA	NA	NA
Rooting Zone	Rooting Zone	5624.62	5622.87	5621.12	3.50	31.87	NA	NA	NA	NA	NA	NA	NA	NA
ligh-Compaction Layer	High-Compaction Layer	5621.12	5619.12	5617.12	4.00	28.37	NA	NA	NA	NA	NA	NA	NA	NA
Platform Fill	Platform Fill	5617.12	5615.85	5614.57	2.55	24.37	NA	NA	NA	NA	NA	NA	NA	NA
Layer 1	Int. Cover	5614.57	5613.13	5611.70	2.88	21.82	NA	NA	NA	NA	NA	NA	NA	NA
Layer 2	Sand-Slime	5611.70	5611.47	5611.24	0.45	18.95	NA	NA	NA	NA	NA	NA	NA	NA
Layer 3	Slime	5611.24	5611.17	5611.09	0.16	18.49	NA	NA	NA	NA	NA	NA	NA	NA
Layer 4	Sand-Slime	5611.09	5610.63	5610.17	0.91	18.34	NA	NA	NA	NA	NA	NA	NA	NA
Layer 5	Slime	5610.17	5610.02	5609.86	0.31	17.42	NA	NA	NA	NA	NA	NA	NA	NA
Layer 6	Sand-Slime	5609.86	5609.09	5608.31	1.55	17.11	NA	NA	NA	NA	NA	NA	NA	NA
Layer 7	Slime	5608.31	5608.23	5608.15	0.16	15.56	NA	NA	NA	NA	NA	NA	NA	NA
Layer 8	Sand-Slime	5608.15	5607.92	5607.68	0.47	15.40	NA	NA	NA	NA	NA	NA	NA	NA
Layer 9	Slime	5607.68	5607.61	5607.53	0.15	14.93	NA	NA	NA	NA	NA	NA	NA	NA
Layer 10	Sand-Slime	5607.53	5607.45	5607.37	0.16	14.78	NA	NA	NA	NA	NA	NA	NA	NA
Layer 11	Slime	5607.37	5607.21	5607.04	0.32	14.62	NA	NA	NA	NA		NA	NA	NA
Layer 12	Sand-Slime	5607.04	5606.42	5605.80	1.24	14.29	NA	NA	NA	NA	NA	NA	NA	NA
Layer 13	Slime	5605.80	5605.65	5605.49	0.31	13.05	NA	NA	NA	NA	NA	NA	NA	NA
Layer 14	Sand-Slime	5605.49	5604.47	5603.45	2.05	12.74	NA	NA	NA	NA	NA	NA	NA	NA
Layer 15	Slime	5603.45	5602.82	5602.19	1.25	10.70	NA	NA	NA	NA	NA	NA	NA	NA
Layer 16	Sand-Slime	5602.19	5601.25	5600.31	1.89	9.44	NA	NA	NA	NA	NA	NA	NA	NA
Layer 17	Slime	5600.31	5600.15	5599.99	0.32	7.56	NA	NA	NA	NA	NA	NA	NA	NA
Layer 18	Sand-Slime	5599.99	5599.84	5599.68	0.31	7.24	NA	NA	NA	NA	NA	NA	NA	NA
Layer 19	Slime	5599.68	5598.82	5597.95	1.73	6.93	NA	NA	NA	NA	NA	NA	NA	NA
Layer 20	Sand-Slime	5597.95	5597.64	5597.33	0.62	5.20	3205.98	3230.29	0.99	0.90	0.005	0.020	0.88	0.0
Layer 21	Slime	5597.33	5597.17	5597.01	0.32	4.58	3238.66	3247.03	1.29	1.19	0.006	0.023	1.17	0.0
Layer 22	Sand-Slime	5597.01	5596.39	5595.76	1.26	4.26	3284.09	3321.14	0.99	0.90	0.005	0.020	0.88	0.0
Layer 23	Slime	5595.76	5595.44	5595.12	0.63	3.01	3337.88	3354.62	1.29	1.20	0.006	0.023	1.17	0.0
Layer 24	Sand-Slime	5595.12	5594.97	5594.81	0.32	2.37	3363.96	3373.29	0.99	0.91	0.005	0.020	0.89	0.0
Layer 25	Slime	5594.81	5594.57	5594.34	0.47	2.06	3385.72	3398.15	1.29	1.20	0.006	0.023	1.17	0.0
Layer 26	Sand-Slime	5594.34	5594.18	5594.02	0.32	1.59	3407.48	3416.81	0.99	0.91	0.005	0.020	0.89	0.0
Layer 27	Sand-Slime	5594.02	5593.38	5592.75	1.27	1.27	3454.15	3491.49	0.99	0.91	0.005	0.020	0.89	0.0
													TOTAL:	0.

Notes:

2W4-C

FINAL COVER

From cover deisgn grading plan AutoCAD file

Calculated

Calculated

From Appendix C - Radon Emanation Modeling (MWH, 2015)

From Appendix C - Radon Emanation Modeling (MWH, 2015)

From Appendix C - Radon Emanation Modeling (MWH, 2015)

5626.19 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl) Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after

- 0.50 placement (ft)
- 3.50 Thickness of Water Storage/Rooting Zone (ft)
- 4.00 Thickness of High Compaction Layer (ft)
- 1.95 Thickness of Random/Platform Fill on on top of existing interim cover (ft)
- 1104.55 Additional Stress due to Final Cover Placement, $\Delta\sigma_{FC}$ (psf)

PROFILE INFORMATION

5611.20	Water	surface	elev	ation	durir	Ig CPT	investigation	(ft amsl)

5608.1 Water surface elevation at t_0 (ft amsl) 5593.51 Water surface elevation at t_1 (ft amsl)

5588.51 Water surface elevation at t₂ (ft amsl)

From on-site investigation (Tailings Data Analysis Report. MWH, 2015)

Minimum of 5' below top of tailings or water surface elevation at time of CPT testing (2013).

<u>2W4-C</u>

						<u> </u>	<u> </u>							
CREEP SETTLEMENT														
Soil Layer	Material Type ¹	Elevation at Top of Layer at t ₁ , z _{i-top1} (ft amsl)	Elevation at Midpoint of Layer at t ₁ , z _{i-mid1} (ft amsl)	Elevation at Bottom of Layer at t ₁ , z _{i-bott1} (ft amsl)	Thickness of Layer at t ₁ , H (ft)	Height above liner (ft)	Effective Stress at Midpoint of Layer at t ₁ , σ' _{i-mid1} (psf)	Effective Stress at Bottom of Layer at t ₁ , σ' _{i-bott1} (psf)	Void Ratio at t ₀ , e ₀	Void Ratio at t ₁ , e ₁	Secondary Compression Index, C _α	Change in Void Ratio due to 1000 years of Creep, Δe	Final Void Ratio After 1,000 years, e _{final}	Settlemer due to 100 years of Creep, δ _{cree} (ft)
rosion Protection Layer	Erosion Protection Layer	5624.90	5624.65	5624.40	0.50	36.39	NA	NA	NA	NA	NA	NA	NA	NA
Rooting Zone	Rooting Zone	5624.40	5622.65	5620.90	3.50	35.89	NA	NA	NA	NA	NA	NA	NA	NA
ligh-Compaction Layer	High-Compaction Layer	5620.90	5618.90	5616.90	4.00	32.39	NA	NA	NA	NA	NA	NA	NA	NA
Platform Fill	Platform Fill	5616.90	5615.92	5614.95	1.95	28.39	NA	NA	NA	NA	NA	NA	NA	NA
Layer 1	Int. Cover	5614.95	5613.50	5612.05	2.89	26.44	NA	NA	NA	NA	NA	NA	NA	NA
Layer 2	Sand	5612.05	5611.98	5611.90	0.15	23.54	NA	NA	NA	NA	NA	NA	NA	NA
Layer 3	Sand-Slime	5611.90	5610.36	5608.82	3.09	23.39	NA	NA	NA	NA	NA	NA	NA	NA
Layer 4	Slime	5608.82	5608.73	5608.65	0.16	20.31	NA	NA	NA	NA	NA	NA	NA	NA
Layer 5	Sand-Slime	5608.65	5607.48	5606.30	2.36	20.14	NA	NA	NA	NA	NA	NA	NA	NA
Layer 6	Slime	5606.30	5606.14	5605.99	0.31	17.79	NA	NA	NA	NA	NA	NA	NA	NA
Layer 7	Sand-Slime	5605.99	5605.83	5605.68	0.32	17.48	NA	NA	NA	NA	NA	NA	NA	NA
Layer 8	Slime	5605.68	5605.59	5605.51	0.16	17.17	NA	NA	NA	NA	NA	NA	NA	NA
Layer 9	Sand-Slime	5605.51	5604.73	5603.94	1.57	17.00	NA	NA	NA	NA	NA	NA	NA	NA
Layer 10	Slime	5603.94	5603.86	5603.79	0.15	15.43	NA	NA	NA	NA	NA	NA	NA	NA
Layer 11	Sand-Slime	5603.79	5603.63	5603.47	0.32	15.28	NA	NA	NA	NA	NA	NA	NA	NA
Layer 12	Slime	5603.47	5603.31	5603.15	0.32	14.96	NA	NA	NA	NA	NA	NA	NA	NA
Layer 13	Sand-Slime	5603.15	5601.35	5599.54	3.61	14.64	NA	NA	NA	NA	NA	NA	NA	NA
Layer 14	Slime	5599.54	5598.99	5598.44	1.10	11.03	NA	NA	NA	NA	NA	NA	NA	NA
Layer 15	Sand-Slime	5598.44	5598.04	5597.65	0.79	9.93	NA	NA	NA	NA	NA	NA	NA	NA
Layer 16	Slime	5597.65	5597.57	5597.50	0.15	9.14	NA	NA	NA	NA	NA	NA	NA	NA
Layer 17	Sand-Slime	5597.50	5597.26	5597.03	0.47	8.99	NA	NA	NA	NA	NA	NA	NA	NA
Layer 18	Slime	5597.03	5596.87	5596.71	0.32	8.52	NA	NA	NA	NA	NA	NA	NA	NA
Layer 19	Sand-Slime	5596.71	5596.32	5595.92	0.79	8.20	NA	NA	NA	NA	NA	NA	NA	NA
Layer 20	Slime	5595.92	5595.53	5595.14	0.79	7.41	NA	NA	NA	NA	NA	NA	NA	NA
Layer 21	Sand-Slime	5595.14	5594.82	5594.51	0.63	6.63	NA	NA	NA	NA	NA	NA	NA	NA
Layer 22	Slime	5594.51	5594.43	5594.35	0.15	6.00	NA	NA	NA	NA	NA	NA	NA	NA
Layer 23	Sand-Slime	5594.35	5594.19	5594.04	0.32	5.84	NA	NA	NA	NA	NA	NA	NA	NA
Layer 24	Slime	5594.04	5593.88	5593.72	0.32	5.53	NA	NA	NA	NA	NA	NA	NA	NA
Layer 25	Sand-Slime	5593.72	5591.67	5589.63	4.09	5.21	3825.33	3945.83	0.99	0.91	0.005	0.020	0.89	0.0
Layer 26	Sand-Slime	5589.63	5589.07	5588.51	1.12	1.12	3978.64	4011.45	0.99	0.91	0.005	0.020	0.89	0.0
													TOTAL:	0.

2W5-C

FINAL COVER

5626.29 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl) From cover deisgn grading plan AutoCAD file

- Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after
- 0.50 placement (ft)
- 3.50 Thickness of Water Storage/Rooting Zone (ft)
- 4.00 Thickness of High Compaction Layer (ft)
- 2.43 Thickness of Random/Platform Fill on on top of existing interim cover (ft)
- 1152.89 Additional Stress due to Final Cover Placement, $\Delta\sigma_{FC}$ (psf)

PROFILE INFORMATION

- 5604.20 Water surface elevation during CPT investigation (ft amsl)
- 5604.2 Water surface elevation at t₀ (ft amsl)
- 5589.01 Water surface elevation at t₁ (ft amsl)
- 5584.01 Water surface elevation at t₂ (ft amsl)

From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) Calculated

Calculated

2W5-C

							<u>u-u</u>							
CREEP SETTLEMENT		Elevation at Top of Layer at t ₁ , z _{i-top1} (ft	Elevation at Midpoint of Layer at t ₁ , z _{i-mid1}	Elevation at Bottom of Layer at t ₁ , z _{i-bott1} (ft	Thickness of	Height above	Midpoint of Layer	Effective Stress at Bottom of Layer at		Void Ratio		years of	Final Void Ratio After 1,000	Settlement due to 1000 years of Creep, δ _{creep}
Soil Layer	Material Type ¹	amsl)	(ft amsl)	amsl)	Layer at t ₁ , H (ft)	liner (ft)	at t ₁ , σ' _{i-mid1} (psf)	t ₁ , σ' _{i-bott1} (psf)	at t ₀ , e ₀	at t ₁ , e ₁	Index, C_{α}	Creep, ∆e	years, e _{final}	(ft)
Frosion Protection Layer	Erosion Protection Layer	5625.03	5624.78	5624.53	0.50	41.02	NA	NA	NA	NA	NA	NA	NA	NA
Rooting Zone	Rooting Zone	5624.53	5622.78	5621.03	3.50	40.52	NA	NA	NA	NA	NA	NA	NA	NA
High-Compaction Layer	High-Compaction Layer	5621.03	5619.03	5617.03	4.00	37.02	NA	NA	NA	NA	NA	NA	NA	NA
Platform Fill	Platform Fill	5617.03	5615.82	5614.60	2.43	33.02	NA	NA	NA	NA	NA	NA	NA	NA
Layer 1	Int. Cover	5614.60	5613.16	5611.73	2.88	30.59	NA	NA	NA	NA	NA	NA	NA	NA
Layer 2	Sand-Slime	5611.73	5611.57	5611.42	0.30	27.72	NA	NA	NA	NA	NA	NA	NA	NA
Layer 3	Sand	5611.42	5611.10	5610.79	0.63	27.41	NA	NA	NA	NA	NA	NA	NA	NA
Layer 4	Sand-Slime	5610.79	5610.64	5610.49	0.30	26.78	NA	NA	NA	NA	NA	NA	NA	NA
Layer 5	Sand	5610.49	5610.17	5609.85	0.64	26.48	NA	NA	NA	NA	NA	NA	NA	NA
Layer 6	Sand-Slime	5609.85	5609.08	5608.30	1.55	25.84	NA	NA	NA	NA	NA	NA	NA	NA
Layer 7	Sand	5608.30	5608.06	5607.82	0.48	24.29	NA	NA	NA	NA	NA	NA	NA	NA
Layer 8	Sand-Slime	5607.82	5604.18	5600.53	7.29	23.81	NA	NA	NA	NA	NA	NA	NA	NA
Layer 9	Sand	5600.53	5600.45	5600.37	0.16	16.52	NA	NA	NA	NA	NA	NA	NA	NA
Layer 10	Sand-Slime	5600.37	5599.58	5598.79	1.58	16.36	NA	NA	NA	NA	NA	NA	NA	NA
Layer 11	Slime	5598.79	5598.63	5598.47	0.32	14.78	NA	NA	NA	NA	NA	NA	NA	NA
Layer 12	Sand-Slime	5598.47	5596.49	5594.51	3.96	14.46	NA	NA	NA	NA	NA	NA	NA	NA
Layer 13	Slime	5594.51	5594.12	5593.72	0.79	10.50	NA	NA	NA	NA	NA	NA	NA	NA
Layer 14	Sand-Slime	5593.72	5593.48	5593.25	0.47	9.71	NA	NA	NA	NA	NA	NA	NA	NA
Layer 15	Slime	5593.25	5593.17	5593.08	0.16	9.24	NA	NA	NA	NA	NA	NA	NA	NA
Layer 16	Sand-Slime	5593.08	5592.29	5591.50	1.58	9.07	NA	NA	NA	NA	NA	NA	NA	NA
Layer 17	Slime	5591.50	5591.34	5591.18	0.32	7.49	NA	NA	NA	NA	NA	NA	NA	NA
Layer 18	Sand-Slime	5591.18	5589.29	5587.39	3.79	7.17	4236.82	4375.75	0.99	0.92	0.005	0.020	0.90	0.03
Layer 19	Slime	5587.39	5587.23	5587.07	0.32	3.38	4384.12	4392.49	1.29	1.21	0.006	0.023	1.19	0.00
Layer 20	Sand	5587.07	5586.67	5586.27	0.80	3.06	4417.53	4442.57	0.74	0.70	0.002	0.010	0.69	0.00
Layer 21	Sand-Slime	5586.27	5586.11	5585.95	0.32	2.26	4451.90	4461.24	0.99	0.92	0.005	0.020	0.90	0.00
Layer 22	Sand	5585.95	5585.79	5585.63	0.32	1.94	4471.31	4481.39	0.74	0.70	0.002	0.010	0.69	0.00
Layer 23	Sand-Slime	5585.63	5584.82	5584.01	1.62	1.62	4528.63	4575.86	0.99	0.92	0.005	0.020	0.90	0.01
•			•										TOTAL:	0.0

<u>2W6-S</u>

FINAL COVER

From cover deisgn grading plan AutoCAD file

5625.41 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl) Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after

- 0.50 placement (ft)
- 3.50 Thickness of Water Storage/Rooting Zone (ft)
- 4.00 Thickness of High Compaction Layer (ft)
- 1.56 Thickness of Random/Platform Fill on on top of existing interim cover (ft)
- 1065.26 Additional Stress due to Final Cover Placement, $\Delta\sigma_{FC}$ (psf)

PROFILE INFORMATION

5604.40	Water surface elevation during CPT investigation (ft amsl)
5604.4	Water surface elevation at t ₀ (ft amsl)

5588.59 Water surface elevation at t₁ (ft amsl)

5583.59 Water surface elevation at t₂ (ft amsl)

From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) Calculated

Calculated

<u>2W6-S</u>

CREEP SETTLEMENT	<u>.</u>													
Soil Layer	Material Type ¹	Elevation at Top of Layer at t ₁ , z _{i-top1} (ft amsl)	Elevation at Midpoint of Layer at t ₁ , z _{i-mid1} (ft amsl)	Elevation at Bottom of Layer at t ₁ , z _{i-bott1} (ft amsl)	Thickness of Layer at t₁, H (ft)	Height above liner (ft)	Effective Stress at Midpoint of Layer at t ₁ , σ' _{i-mid1} (psf)	Effective Stress at Bottom of Layer at t ₁ , σ' _{i-bott1} (psf)	Void Ratio at t ₀ , e ₀	Void Ratio at t ₁ , e ₁	Secondary Compression Index, C _α	Change in Void Ratio due to 1000 years of Creep, Δe	Final Void Ratio After 1,000 years, e _{final}	Settlemen due to 100 years of Creep, δ _{cree} (ft)
Erosion Protection Layer	Erosion Protection Layer	5624.12	5623.87	5623.62	0.50	40.53	NA	NA	NA	NA	NA	NA	NA	NA
Rooting Zone	Rooting Zone	5623.62	5621.87	5620.12	3.50	40.03	NA	NA	NA	NA	NA	NA	NA	NA
High-Compaction Layer	High-Compaction Layer	5620.12	5618.12	5616.12	4.00	36.53	NA	NA	NA	NA	NA	NA	NA	NA
Platform Fill	Platform Fill	5616.12	5615.34	5614.56	1.56	32.53	NA	NA	NA	NA	NA	NA	NA	NA
Layer 1	Int. Cover	5614.56	5613.11	5611.67	2.90	30.97	NA	NA	NA	NA	NA	NA	NA	NA
Layer 2	Sand-Slime	5611.67	5611.44	5611.21	0.45	28.08	NA	NA	NA	NA	NA	NA	NA	NA
Layer 3	Sand	5611.21	5611.13	5611.05	0.16	27.62	NA	NA	NA	NA	NA	NA	NA	NA
Layer 4	Sand-Slime	5611.05	5610.67	5610.28	0.77	27.46	NA	NA	NA	NA	NA	NA	NA	NA
Layer 5	Sand	5610.28	5610.04	5609.81	0.47	26.69	NA	NA	NA	NA	NA	NA	NA	NA
Layer 6	Sand-Slime	5609.81	5608.87	5607.94	1.87	26.22	NA	NA	NA	NA	NA	NA	NA	NA
Layer 7	Slime	5607.94	5607.78	5607.62	0.32	24.35	NA	NA	NA	NA	NA	NA	NA	NA
Layer 8	Sand	5607.62	5607.47	5607.31	0.31	24.03	NA	NA	NA	NA	NA	NA	NA	NA
Layer 9	Sand-Slime	5607.31	5606.60	5605.89	1.42	23.72	NA	NA	NA	NA	NA	NA	NA	NA
Layer 10	Slime	5605.89	5605.73	5605.57	0.32	22.30	NA	NA	NA	NA	NA	NA	NA	NA
Layer 11	Sand-Slime	5605.57	5605.33	5605.10	0.47	21.98	NA	NA	NA	NA	NA	NA	NA	NA
Layer 12	Slime	5605.10	5604.78	5604.46	0.64	21.51	NA	NA	NA	NA	NA	NA	NA	NA
Layer 13	Sand-Slime	5604.46	5604.15	5603.83	0.63	20.87	NA	NA	NA	NA	NA	NA	NA	NA
Layer 14	Slime	5603.83	5603.59	5603.35	0.48	20.24	NA	NA	NA	NA	NA	NA	NA	NA
Layer 15	Sand-Slime	5603.35	5603.27	5603.19	0.15	19.76	NA	NA	NA	NA	NA	NA	NA	NA
Layer 16	Slime	5603.19	5602.00	5600.81	2.38	19.60	NA	NA	NA	NA	NA	NA	NA	NA
Layer 17	Sand-Slime	5600.81	5600.57	5600.34	0.47	17.22	NA	NA	NA	NA	NA	NA	NA	NA
Layer 18	Slime	5600.34	5600.26	5600.17	0.16	16.75	NA	NA	NA	NA	NA	NA	NA	NA
Layer 19	Sand-Slime	5600.17	5600.10	5600.02	0.15	16.58	NA	NA	NA	NA	NA	NA	NA	NA
Layer 20	Slime	5600.02	5599.62	5599.23	0.79	16.43	NA	NA	NA	NA	NA	NA	NA	NA
Layer 21	Sand-Slime	5599.23	5598.67	5598.11	1.11	15.64	NA	NA	NA	NA	NA	NA	NA	NA
Layer 22	Slime	5598.11	5597.72	5597.32	0.79	14.52	NA	NA	NA	NA	NA	NA	NA	NA
Layer 23	Sand-Slime	5597.32	5596.53	5595.74	1.58	13.73	NA	NA	NA	NA	NA	NA	NA	NA
Layer 24	Slime	5595.74	5595.50	5595.26	0.47	12.15	NA	NA	NA	NA	NA	NA	NA	NA
Layer 25	Sand-Slime	5595.26	5595.10	5594.95	0.32	11.67	NA	NA	NA	NA	NA	NA	NA	NA
Layer 26	Slime	5594.95	5594.87	5594.79	0.15	11.36	NA	NA	NA	NA	NA	NA	NA	NA
Layer 27	Sand-Slime	5594.79	5592.42	5590.04	4.75	11.20	NA	NA	NA	NA	NA	NA	NA	NA
Layer 28	Slime	5590.04	5589.96	5589.88	0.16	6.45	NA	NA	NA	NA	NA	NA	NA	NA
Layer 29	Sand-Slime	5589.88	5588.45	5587.03	2.85	6.29	4212.55	4297.55	0.99	0.92	0.005	0.020	0.90	0.0
Layer 30	Sand	5587.03	5586.79	5586.55	0.48	3.44	4312.52	4327.48	0.74	0.70	0.002	0.010	0.69	0.0
Layer 31	Sand-Slime	5586.55	5585.07	5583.59	2.96	2.96	4414.03	4500.59	0.99	0.92	0.005	0.020	0.90	0.0
							1	U					TOTAL:	0.0

Notes:

2W7-C

FINAL COVER

5626.65 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl) From cover deisgn grading plan AutoCAD file

- Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after
- 0.50 placement (ft)
- 3.50 Thickness of Water Storage/Rooting Zone (ft)
- 4.00 Thickness of High Compaction Layer (ft)
- -0.95 Thickness of Random/Platform Fill on on top of existing interim cover (ft)
- 812.44 Additional Stress due to Final Cover Placement, $\Delta \sigma_{FC}$ (psf)

PROFILE INFORMATION

- 5595.40 Water surface elevation at t₁ (ft amsl)
- 5590.40 Water surface elevation at t₂ (ft amsl)

From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) Calculated Calculated

<u>2W7-C</u>

CREEP SETTLEMENT						<u>211</u>								
Soil Layer	Material Type ¹	Elevation at Top of Layer at t ₁ , z _{i-top1} (ft amsl)	Elevation at Midpoint of Layer at t ₁ , z _{i-mid1} (ft amsl)	Elevation at Bottom of Layer at t ₁ , z _{i-bott1} (ft amsl)	Thickness of Layer at t₁, H (ft)	Height above liner (ft)	Effective Stress at Midpoint of Layer at t ₁ , σ' _{i-mid1} (psf)	Effective Stress at Bottom of Layer at t ₁ , σ' _{i-bott1} (psf)	Void Ratio at t ₀ , e ₀	Void Ratio at t ₁ , e ₁	Secondary Compression Index, C_{α}	Change in Void Ratio due to 1000 years of Creep, Δe	Final Void Ratio After 1,000 years, e _{final}	Settlement due to 1000 years of Creep, δ _{creep} (ft)
Erosion Protection Layer	Erosion Protection Layer	5625.48	5625.23	5624.98	0.50	35.08	NA	NA	NA	NA	NA	NA	NA	NA
Rooting Zone	Rooting Zone	5624.98	5623.23	5621.48	3.50	34.58	NA	NA	NA	NA	NA	NA	NA	NA
High-Compaction Layer	High-Compaction Layer	5621.48	5619.48	5617.48	4.00	31.08	NA	NA	NA	NA	NA	NA	NA	NA
Platform Fill	Platform Fill	5617.48	5617.95	5618.43	-0.95	27.08	NA	NA	NA	NA	NA	NA	NA	NA
Layer 1	Int. Cover	5618.43	5616.97	5615.51	2.92	28.03	NA	NA	NA	NA	NA	NA	NA	NA
Layer 2	Sand-Slime	5615.51	5614.27	5613.03	2.48	25.11	NA	NA	NA	NA	NA	NA	NA	NA
Layer 3	Slime	5613.03	5612.94	5612.86	0.16	22.63	NA	NA	NA	NA	NA	NA	NA	NA
Layer 4	Sand-Slime	5612.86	5612.00	5611.13	1.73	22.46	NA	NA	NA	NA	NA	NA	NA	NA
Layer 5	Slime	5611.13	5611.05	5610.97	0.16	20.73	NA	NA	NA	NA	NA	NA	NA	NA
Layer 6	Sand-Slime	5610.97	5610.26	5609.55	1.42	20.57	NA	NA	NA	NA	NA	NA	NA	NA
Layer 7	Slime	5609.55	5609.47	5609.38	0.16	19.15	NA	NA	NA	NA	NA	NA	NA	NA
Layer 8	Sand-Slime	5609.38	5609.31	5609.23	0.15	18.98	NA	NA	NA	NA	NA	NA	NA	NA
Layer 9	Slime	5609.23	5609.15	5609.07	0.16	18.83	NA	NA	NA	NA	NA	NA	NA	NA
Layer 10	Sand-Slime	5609.07	5605.59	5602.11	6.96	18.67	NA	NA	NA	NA	NA	NA	NA	NA
Layer 11	Slime	5602.11	5601.79	5601.47	0.64	11.71	NA	NA	NA	NA	NA	NA	NA	NA
Layer 12	Sand-Slime	5601.47	5601.39	5601.32	0.15	11.07	NA	NA	NA	NA	NA	NA	NA	NA
Layer 13	Slime	5601.32	5601.16	5601.00	0.32	10.92	NA	NA	NA	NA	NA	NA	NA	NA
Layer 14	Sand-Slime	5601.00	5600.37	5599.74	1.26	10.60	NA	NA	NA	NA	NA	NA	NA	NA
Layer 15	Slime	5599.74	5599.65	5599.57	0.16	9.34	NA	NA	NA	NA	NA	NA	NA	NA
Layer 16	Sand	5599.57	5599.49	5599.42	0.16	9.17	NA	NA	NA	NA	NA	NA	NA	NA
Layer 17	Sand-Slime	5599.42	5599.33	5599.25	0.16	9.02	NA	NA	NA	NA	NA	NA	NA	NA
Layer 18	Slime	5599.25	5598.94	5598.63	0.63	8.85	NA	NA	NA	NA	NA	NA	NA	NA
Layer 19	Sand-Slime	5598.63	5598.23	5597.84	0.79	8.23	NA	NA	NA	NA	NA	NA	NA	NA
Layer 20	Slime	5597.84	5597.36	5596.88	0.95	7.44	NA	NA	NA	NA	NA	NA	NA	NA
Layer 21	Sand-Slime	5596.88	5596.73	5596.57	0.31	6.48	NA	NA	NA	NA	NA	NA	NA	NA
Layer 22	Slime	5596.57	5596.49	5596.41	0.16	6.17	NA	NA	NA	NA	NA	NA	NA	NA
Layer 23	Sand-Slime	5596.41	5596.17	5595.94	0.47	6.01	NA	NA	NA	NA	NA	NA	NA	NA
Layer 24	Slime	5595.94	5595.86	5595.78	0.15	5.54	NA	NA	NA	NA	NA	NA	NA	NA
Layer 25	Sand-Slime	5595.78	5595.39	5594.99	0.79	5.38	3592.85	3626.66	0.99	0.91	0.005	0.020	0.89	0.00
Layer 26	Slime	5594.99	5594.68	5594.36	0.64	4.59	3643.40	3660.14	1.29	1.20	0.006	0.023	1.18	0.00
Layer 27	Sand-Slime	5594.36	5594.28	5594.20	0.15	3.96	3664.66	3669.19	0.99	0.91	0.005	0.020	0.89	0.00
Layer 28	Slime	5594.20	5593.96	5593.72	0.48	3.80	3681.87	3694.55	1.29	1.21	0.006	0.023	1.18	0.00
Layer 29	Sand-Slime	5593.72	5593.49	5593.25	0.47	3.32	3708.41	3722.27	0.99	0.92	0.005	0.020	0.90	0.00
Layer 30	Slime	5593.25	5593.17	5593.09	0.15	2.85	3726.33	3730.39	1.29	1.21	0.006	0.023	1.18	0.00
Layer 31	Sand-Slime	5593.09	5592.54	5591.98	1.11	2.69	3762.92	3795.44	0.99	0.92	0.005	0.020	0.90	0.0
Layer 32	Slime	5591.98	5591.75	5591.51	0.47	1.58	3807.87	3820.30	1.29	1.21	0.006	0.023	1.19	0.00
Layer 33	Sand-Slime	5591.51	5590.96	5590.40	1.11	1.11	3852.83	3885.36	0.99	0.92	0.005	0.020	0.90	0.0
24,0,00	ound onno	5001.01	0000.00	0000.10			0002.00	0000.00	0.00	0.02	0.000	0.020	TOTAL:	: 0.0

<u>2E1</u>

FINAL COVER

5630.46 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl) From cover deisgn grading plan AutoCAD file

- Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after
- 0.50 placement (ft)
- 3.50 Thickness of Water Storage/Rooting Zone (ft)
- 4.00 Thickness of High Compaction Layer (ft)
- 2.51 Thickness of Random/Platform Fill on on top of existing interim cover (ft)
- 1160.95 Additional Stress due to Final Cover Placement, $\Delta\sigma_{FC}$ (psf)

PROFILE INFORMATION

5610.80	Water surface elevation during CPT investigation	(ft amsl)	

5610.8 Water surface elevation at t₀ (ft amsl)

- 5595.46 Water surface elevation at t₁ (ft amsl)
- 5590.46 Water surface elevation at t₂ (ft amsl)

···· •• •• •• ••••3.. 3. ••• • 5 P. ••• • •• •• •

From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) Calculated Calculated

<u>2E1</u>

Soil Layer osion Protection Layer Erc Rooting Zone Igh-Compaction Layer Iigh-Compaction Layer Hil Platform Fill Igh-Compaction Layer Layer 1 Igh-Compaction Layer Layer 2 Igh-Compaction Layer Layer 3 Igh-Compaction Layer Layer 4 Igh-Compaction Layer 5 Layer 6 Igh-Compaction Layer	Rooting Zone High-Compaction Layer Platform Fill Int. Cover Sand Sand-Slime Slime	amsl) 5629.16 5628.66 5625.16 5621.16 5618.65 5615.76 5615.13	(ft amsl) 5628.91 5626.91 5623.16 5619.91 5617.21	amsl) 5628.66 5625.16 5621.16 5618.65	Layer at t ₁ , H (ft) 0.50 3.50 4.00	liner (ft) 38.70 38.20	at t ₁ , σ' _{i-mid1} (psf) NA	t ₁ , σ' _{i-bott1} (psf) NA	at t ₀ , e ₀ NA	at t ₁ , e ₁ NA	Index, C_{α}	Creep, ∆e	years, e _{final}	(ft)
Rooting Zone igh-Compaction Layer Hi Platform Fill Layer 1 Layer 2 Layer 3 Layer 4 Layer 5	Rooting Zone High-Compaction Layer Platform Fill Int. Cover Sand Sand-Slime Slime	5628.66 5625.16 5621.16 5618.65 5615.76	5626.91 5623.16 5619.91 5617.21	5625.16 5621.16	3.50		1473				NA	NA	NA	NA
igh-Compaction Layer Hi Platform Fill Layer 1 Layer 2 Layer 3 Layer 4 Layer 5	High-Compaction Layer Platform Fill Int. Cover Sand Sand-Slime Slime	5625.16 5621.16 5618.65 5615.76	5623.16 5619.91 5617.21	5621.16			NA					NA		NA
Platform Fill Layer 1 Layer 2 Layer 3 Layer 4 Layer 5	Platform Fill Int. Cover Sand Sand-Slime Slime	5621.16 5618.65 5615.76	5619.91 5617.21			34.70	NA					NA		NA
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5	Int. Cover Sand Sand-Slime Slime	5618.65 5615.76	5617.21		2.51	30.70	NA					NA		NA
Layer 2 Layer 3 Layer 4 Layer 5	Sand-Slime Slime	5615.76		5615.76	2.89	28.19	NA					NA		NA
Layer 3 Layer 4 Layer 5	Slime		5615.45	5615.13	0.63	25.30	NA	NA	NA	NA	NA	NA	NA	NA
Layer 5			5614.91	5614.68	0.46	24.67	NA		NA	NA	NA	NA	NA	NA
Layer 5	0	5614.68	5614.52	5614.37	0.31	24.22	NA	NA	NA	NA	NA	NA	NA	NA
Laver 6	Sand-Slime	5614.37	5614.21	5614.06	0.31	23.91	NA	NA	NA	NA	NA	NA	NA	NA
	Sand	5614.06	5613.66	5613.27	0.79	23.60	NA	NA	NA	NA	NA	NA	NA	NA
Layer 7	Sand-Slime	5613.27	5612.88	5612.49	0.78	22.81	NA	NA	NA	NA	NA	NA	NA	NA
Layer 8	Sand	5612.49	5612.33	5612.18	0.31	22.03	NA	NA	NA	NA	NA	NA	NA	NA
Layer 9	Sand-Slime	5612.18	5609.66	5607.14	5.04	21.72	NA	NA	NA	NA	NA	NA	NA	NA
Layer 10	Slime	5607.14	5607.05	5606.97	0.16	16.68	NA	NA	NA	NA	NA	NA	NA	NA
Layer 11	Sand-Slime	5606.97	5606.90	5606.82	0.15	16.51	NA			NA		NA	NA	NA
Layer 12	Slime	5606.82	5606.74	5606.66	0.16	16.36	NA	NA	NA	NA			NA	NA
Layer 13	Sand-Slime	5606.66	5605.95	5605.24	1.41	16.20	NA	NA	NA	NA	NA	NA	NA	NA
Layer 14	Slime	5605.24	5605.16	5605.08	0.16	14.78	NA	NA	NA	NA	NA	NA	NA	NA
Layer 15	Sand-Slime	5605.08	5604.93	5604.77	0.31	14.62	NA	NA	NA	NA	NA	NA	NA	NA
Layer 16	Slime	5604.77	5604.69	5604.61	0.16	14.31	NA	NA	NA	NA	NA	NA	NA	NA
Layer 17	Sand-Slime	5604.61	5601.06	5597.52	7.09	14.15	NA	NA	NA	NA	NA	NA	NA	NA
Layer 18	Slime	5597.52	5597.36	5597.20	0.32	7.06	NA	NA	NA	NA	NA	NA	NA	NA
Layer 19	Sand-Slime	5597.20	5595.63	5594.05	3.15	6.74	3973.89	4089.75	0.99	0.91	0.005	0.020	0.89	0.032
Layer 20	Slime	5594.05	5593.89	5593.73	0.32	3.59	4098.12	4106.49	1.29	1.20	0.006	0.023	1.18	0.003
Layer 21	Sand-Slime	5593.73	5593.58	5593.43	0.31	3.27	4115.54	4124.60	0.99	0.91	0.005	0.020	0.89	0.003
Layer 22	Slime	5593.43	5593.27	5593.11	0.32	2.97	4132.97	4141.34	1.29	1.20	0.006	0.023	1.18	0.003
Layer 23	Sand-Slime	5593.11	5592.47	5591.84	1.27	2.65	4178.67	4216.01	0.99	0.91	0.005	0.020	0.89	0.01
Layer 24	Sand-Slime	5591.84	5591.15	5590.46	1.38	1.38	4256.46	4296.91	0.99	0.91	0.005	0.020	0.89	0.014

<u>3-1S</u>

FINAL COVER

From cover deisgn grading plan AutoCAD file

5620.47 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl) Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after

- 0.50 placement (ft)
- 3.50 Thickness of Water Storage/Rooting Zone (ft)
- 3.50 Thickness of High Compaction Layer (ft)
- 0.41 Thickness of Random/Platform Fill on on top of existing interim cover (ft)
- $887.10 \qquad \text{Additional Stress due to Final Cover Placement, } \Delta\sigma_{FC} \, (\text{psf})$

PROFILE INFORMATION

5608.00	Water surface elevation during CPT investigation (ft amsl)
5604.4	Water surface elevation at t ₀ (ft amsl)

5595.59 Water surface elevation at t_0 (it ams)

5590.59 Water surface elevation at t₂ (ft amsl)

From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) Calculated

Calculated

<u>3-1S</u>

							<u> </u>							
CREEP SETTLEMENT									1					
Soil Layer	Material Type ¹	Elevation at Top of Layer at t ₁ , z _{i-top1} (ft amsl)	Elevation at Midpoint of Layer at t ₁ , z _{i-mid1} (ft amsl)	Elevation at Bottom of Layer at t ₁ , z _{i-bott1} (ft amsl)	Thickness of Layer at t ₁ , H (ft)	Height above liner (ft)	Effective Stress at Midpoint of Layer at t ₁ , σ' _{i-mid1} (psf)	Effective Stress at Bottom of Layer at t ₁ , σ' _{i-bott1} (psf)	Void Ratio at t ₀ , e ₀	Void Ratio at t ₁ , e ₁	Secondary Compression Index, C _α	Change in Void Ratio due to 1000 years of Creep, Δe	Final Void Ratio After 1,000 years, e _{final}	Settlemen due to 100 years of Creep, δ _{cre} (ft)
rosion Protection Layer	Erosion Protection Layer	5619.59	5619.34	5619.09	0.50	29.00	NA	NA	NA	NA	NA	NA	NA	NA
Rooting Zone	Rooting Zone	5619.09	5617.34	5615.59	3.50	28.50	NA	NA	NA	NA	NA	NA	NA	NA
High-Compaction Layer	High-Compaction Layer	5615.59	5613.84	5612.09	3.50	25.00	NA	NA	NA	NA	NA	NA	NA	NA
Platform Fill	Platform Fill	5612.09	5611.89	5611.68	0.41	21.50	NA	NA	NA	NA	NA	NA	NA	NA
Layer 1	Int. Cover	5611.68	5610.23	5608.77	2.91	21.09	NA	NA	NA	NA	NA	NA	NA	NA
Layer 2	Slime	5608.77	5608.08	5607.39	1.38	18.18	NA	NA	NA	NA	NA	NA	NA	NA
Layer 3	Sand-Slime	5607.39	5607.31	5607.23	0.16	16.80	NA	NA	NA	NA	NA	NA	NA	NA
Layer 4	Sand	5607.23	5605.95	5604.68	2.55	16.64	NA	NA	NA	NA	NA	NA	NA	NA
Layer 5	Sand-Slime	5604.68	5604.44	5604.20	0.48	14.09	NA	NA	NA	NA	NA	NA	NA	NA
Layer 6	Sand	5604.20	5603.96	5603.72	0.48	13.61	NA	NA	NA	NA	NA	NA	NA	NA
Layer 7	Sand-Slime	5603.72	5603.32	5602.93	0.79	13.13	NA	NA	NA	NA	NA	NA	NA	NA
Layer 8	Sand	5602.93	5602.69	5602.45	0.48	12.34	NA	NA	NA	NA	NA	NA	NA	NA
Layer 9	Sand-Slime	5602.45	5602.29	5602.13	0.32	11.86	NA	NA	NA	NA	NA	NA	NA	NA
Layer 10	Slime	5602.13	5602.05	5601.97	0.15	11.54	NA	NA	NA	NA	NA	NA	NA	NA
Layer 11	Sand-Slime	5601.97	5600.86	5599.76	2.22	11.38	NA	NA	NA	NA	NA	NA	NA	NA
Layer 12	Sand	5599.76	5599.68	5599.60	0.16	9.17	NA	NA	NA	NA	NA	NA	NA	NA
Layer 13	Sand-Slime	5599.60	5597.70	5595.80	3.80	9.01	NA	NA	NA	NA	NA	NA	NA	NA
Layer 14	Slime	5595.80	5595.73	5595.65	0.15	5.21	NA	NA	NA	NA	NA	NA	NA	NA
Layer 15	Sand-Slime	5595.65	5595.10	5594.54	1.11	5.06	2874.54	2907.07	0.99	0.91	0.005	0.020	0.89	0.0
Layer 16	Sand-Slime	5594.54	5592.57	5590.59	3.95	3.95	3022.76	3138.45	0.99	0.92	0.005	0.020	0.90	0.0
													TOTAL:	0.0

<u>3-2C</u>

FINAL COVER

From cover deisgn grading plan AutoCAD file

Calculated

Calculated

From Appendix C - Radon Emanation Modeling (MWH, 2015)

From Appendix C - Radon Emanation Modeling (MWH, 2015)

From Appendix C - Radon Emanation Modeling (MWH, 2015)

5621.51 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl) Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after

- 0.50 placement (ft) 3.50
- Thickness of Water Storage/Rooting Zone (ft)
- 3.50 Thickness of High Compaction Layer (ft)
- 3.19 Thickness of Random/Platform Fill on on top of existing interim cover (ft)
- 1167.12 Additional Stress due to Final Cover Placement, $\Delta\sigma_{FC}$ (psf)

PROFILE INFORMATION

5605.30	Water surface elevation during CPT investigation (ft amsl)
5602.7	Water surface elevation at t ₀ (ft amsl)

- 5591.64 Water surface elevation at t₁ (ft amsl)
- 5586.64 Water surface elevation at t₂ (ft amsl)

<u>3-2C</u>

Soil Layer	Material Type ¹	Elevation at Top of Layer at t ₁ , z _{i-top1} (ft amsl)	Elevation at Midpoint of Layer at t ₁ , z _{i-mid1} (ft amsl)	Elevation at Bottom of Layer at t ₁ , z _{i-bott1} (ft amsl)	Thickness of Layer at t₁, H (ft)	Height above liner (ft)	Effective Stress at Midpoint of Layer at t ₁ , σ' _{i-mid1} (psf)		Void Ratio	Void Ratio at t ₁ , e ₁	Secondary Compression Index, C _α	Change in Void Ratio due to 1000 years of Creep, Δe	Final Void Ratio After 1,000 years, e _{final}	Settlement due to 1000 years of Creep, δ _{creep} (ft)
rosion Protection Layer	Erosion Protection Layer	5620.32	5620.07	5619.82	0.50	33.68	NA	NA	NA	NA	NA	NA	NA	NA
Rooting Zone	Rooting Zone	5619.82	5618.07	5616.32	3.50	33.18	NA	NA	NA	NA	NA	NA	NA	NA
High-Compaction Layer	High-Compaction Layer	5616.32	5614.57	5612.82	3.50	29.68	NA	NA	NA	NA	NA	NA	NA	NA
Platform Fill	Platform Fill	5612.82	5611.23	5609.63	3.19	26.18	NA	NA	NA	NA	NA	NA	NA	NA
Layer 1	Int. Cover	5609.63	5608.19	5606.76	2.88	22.99	NA	NA	NA	NA	NA	NA	NA	NA
Layer 2	Sand	5606.76	5606.67	5606.59	0.16	20.12	NA	NA	NA	NA	NA	NA	NA	NA
Layer 3	Sand-Slime	5606.59	5606.52	5606.45	0.15	19.95	NA	NA	NA	NA	NA	NA	NA	NA
Layer 4	Slime	5606.45	5605.99	5605.53	0.92	19.81	NA	NA	NA	NA	NA	NA	NA	NA
Layer 5	Sand-Slime	5605.53	5605.14	5604.76	0.77	18.89	NA	NA	NA	NA	NA	NA	NA	NA
Layer 6	Slime	5604.76	5604.60	5604.45	0.31	18.12	NA	NA	NA	NA	NA	NA	NA	NA
Layer 7	Sand-Slime	5604.45	5604.30	5604.15	0.30	17.81	NA	NA	NA	NA	NA	NA	NA	NA
Layer 8	Slime	5604.15	5603.83	5603.52	0.62	17.51	NA	NA	NA	NA	NA	NA	NA	NA
Layer 9	Sand-Slime	5603.52	5600.22	5596.93	6.59	16.88	NA	NA	NA	NA	NA	NA	NA	NA
Layer 10	Slime	5596.93	5596.85	5596.78	0.15	10.29	NA	NA	NA	NA	NA	NA	NA	NA
Layer 11	Sand-Slime	5596.78	5596.54	5596.30	0.48	10.14	NA	NA	NA	NA		NA	NA	NA
Layer 12	Slime	5596.30	5595.83	5595.36	0.94	9.66	NA	NA	NA	NA	NA	NA	NA	NA
Layer 13	Sand-Slime	5595.36	5594.65	5593.94	1.42	8.72	NA	NA	NA	NA	NA	NA	NA	NA
Layer 14	Slime	5593.94	5593.86	5593.79	0.15	7.30	NA	NA	NA	NA	NA	NA	NA	NA
Layer 15	Sand-Slime	5593.79	5593.24	5592.69	1.10	7.15	NA	NA	NA	NA	NA	NA	NA	NA
Layer 16	Slime	5592.69	5592.53	5592.37	0.32	6.05	NA	NA	NA	NA	NA	NA	NA	NA
Layer 17	Sand-Slime	5592.37	5591.98	5591.59	0.79	5.73	NA	NA	NA	NA	NA	NA	NA	NA
Layer 18	Slime	5591.59	5591.43	5591.27	0.32	4.95	3371.80	3380.17	1.29	1.19	0.006	0.023	1.17	0.00
Layer 19	Sand-Slime	5591.27	5591.03	5590.80	0.47	4.63	3394.03	3407.89	0.99	0.90	0.005	0.020	0.88	0.005
Layer 20	Slime	5590.80	5590.72	5590.65	0.15	4.16	3411.95	3416.00	1.29	1.19	0.006	0.023	1.17	0.00
Layer 21	Sand-Slime	5590.65	5590.49	5590.33	0.32	4.01	3425.34	3434.67	0.99	0.90	0.005	0.020	0.88	0.00
Layer 22	Sand-Slime	5590.33	5588.49	5586.64	3.69	3.69	3543.29	3651.91	0.99	0.91	0.005	0.020	0.89	0.038
													TOTAL:	0.0

<u>3-3S</u>

FINAL COVER

5620.49 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl) From cover de

- Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after
- 0.50 placement (ft)
- 3.50 Thickness of Water Storage/Rooting Zone (ft)
- 3.50 Thickness of High Compaction Layer (ft)
- 3.36 Thickness of Random/Platform Fill on on top of existing interim cover (ft)
- 1184.24 Additional Stress due to Final Cover Placement, $\Delta\sigma_{FC}$ (psf)

PROFILE INFORMATION

5605.60	Water surface elevation during CPT investigation (ft amsl)
5601.5	Water surface elevation at t ₀ (ft amsl)

- 5582.14 Water surface elevation at t₁ (ft amsl)
- 5577.14 Water surface elevation at t₂ (ft amsl)

From cover deisgn grading plan AutoCAD file

From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) Calculated Calculated

<u>3-3S</u>

Soil Layer Elevation at many many Elevation at Lis Agent Market Same And							<u> </u>	<u> </u>							
Shalpen Subset	CREEP SETTLEMENT	-													
coine Production Layer9519.02 <t< th=""><th>Soil Layer</th><th>Material Type ¹</th><th>Top of Layer at t₁, z_{i-top1} (ft</th><th>Midpoint of Layer at t₁, z_{i-mid1}</th><th>Bottom of Layer at t₁, z_{i-bott1} (ft</th><th></th><th></th><th>Midpoint of Layer</th><th>Bottom of Layer at</th><th></th><th></th><th>Compression</th><th>Void Ratio due to 1000 years of</th><th>After 1,000</th><th>Settleme due to 10 years o Creep, δ_{ci} (ft)</th></t<>	Soil Layer	Material Type ¹	Top of Layer at t ₁ , z _{i-top1} (ft	Midpoint of Layer at t ₁ , z _{i-mid1}	Bottom of Layer at t ₁ , z _{i-bott1} (ft			Midpoint of Layer	Bottom of Layer at			Compression	Void Ratio due to 1000 years of	After 1,000	Settleme due to 10 years o Creep, δ_{ci} (ft)
gh-Compaction Layer figh-Compaction Layer <	rosion Protection Layer	Erosion Protection Layer	5619.02	5618.77	5618.52	0.50	41.88			NA	NA	NA	NA	NA	NA
Pattorn Fil Pattorn Fil Status Status NA <	Rooting Zone	Rooting Zone	5618.52	5616.77	5615.02	3.50	41.38	NA	NA	NA	NA	NA	NA	NA	NA
Layer 1 Int. Covert 5606.72 5605.29 2.88 31.02 NA	ligh-Compaction Layer	High-Compaction Layer	5615.02	5613.27	5611.52	3.50	37.88	NA	NA	NA	NA	NA	NA	NA	NA
Layer 2 Sand 5604.89 6604.50 0.78 28.15 NA N	Platform Fill	Platform Fill	5611.52	5609.84	5608.16	3.36	34.38	NA	NA	NA	NA	NA	NA	NA	NA
Layer 3 Sand-Slime 5604.02 5604.04 0.47 27.36 NA	Layer 1	Int. Cover	5608.16	5606.72	5605.29	2.88	31.02	NA	NA	NA	NA	NA	NA	NA	NA
Layer 4 Sand S604.04 S603.33 S602.62 1.42 2.890 NA	Layer 2	Sand	5605.29	5604.89	5604.50	0.78	28.15	NA	NA	NA	NA	NA	NA	NA	NA
Layer 5 Sand-Slime 5602.62 5601.44 6600.27 2.34 2.548 NA	Layer 3	Sand-Slime	5604.50	5604.27	5604.04	0.47	27.36	NA	NA	NA	NA	NA	NA	NA	NA
Layer 6 Sime 5600.12 5599.96 0.32 23.13 NA N	Layer 4	Sand	5604.04	5603.33	5602.62	1.42	26.90	NA	NA	NA	NA	NA	NA	NA	NA
Layer 7 Sand-Slime 5599.80 5599.80 0.15 22.82 NA	Layer 5	Sand-Slime	5602.62	5601.44	5600.27	2.34	25.48	NA	NA	NA	NA	NA	NA	NA	NA
Layer 8 Slime 5599.80 5599.85 5599.49 0.32 22.66 NA	Layer 6	Slime	5600.27	5600.12	5599.96	0.32	23.13	NA	NA	NA	NA	NA	NA	NA	NA
Layer 9 Sand-Slime 5599.49 5598.62 5597.76 1.73 22.35 NA	Layer 7	Sand-Slime	5599.96	5599.88	5599.80	0.15	22.82	NA	NA	NA	NA	NA	NA	NA	NA
Layer 10 Silme 5597.76 5597.36 5596.97 0.78 20.62 NA	Layer 8	Slime	5599.80	5599.65	5599.49	0.32	22.66	NA	NA	NA	NA	NA	NA	NA	NA
Layer 11 Sand-Slime 5596.97 5596.50 0.47 19.83 NA	Layer 9	Sand-Slime	5599.49	5598.62	5597.76	1.73	22.35	NA	NA	NA	NA	NA	NA	NA	NA
Layer 12 Slime 5596.50 5596.33 5596.35 0.15 19.36 NA	Layer 10	Slime	5597.76	5597.36	5596.97	0.78	20.62	NA	NA	NA	NA	NA	NA	NA	NA
Layer 13 Sand-Slime 5596.35 5595.77 5594.78 1.57 19.21 NA	Layer 11	Sand-Slime	5596.97	5596.74	5596.50	0.47	19.83	NA	NA	NA	NA	NA	NA	NA	NA
Layer 14 Slime 5594.78 5594.70 5594.62 0.16 17.64 NA	Layer 12	Slime	5596.50	5596.43	5596.35	0.15	19.36	NA	NA	NA	NA	NA	NA	NA	NA
Layer 15 Sand-Slime 5594.62 5594.46 5594.30 0.32 17.48 NA	Layer 13	Sand-Slime	5596.35	5595.57	5594.78	1.57	19.21	NA	NA	NA	NA	NA	NA	NA	NA
Layer 16 Slime 5594.30 5593.99 5593.88 0.62 17.16 NA	Layer 14	Slime	5594.78	5594.70	5594.62	0.16	17.64	NA	NA	NA	NA	NA	NA	NA	NA
Layer 17 Sand-Slime 5593.68 5593.21 5592.73 0.95 16.54 NA	Layer 15	Sand-Slime	5594.62	5594.46	5594.30	0.32	17.48	NA	NA	NA	NA	NA	NA	NA	NA
Layer 18 Slime 5592.42 5592.42 5592.11 0.62 15.59 NA	Layer 16	Slime	5594.30	5593.99	5593.68	0.62	17.16	NA	NA	NA	NA	NA	NA	NA	NA
Layer 19 Sand-Slime 5592.11 5591.56 5591.01 1.10 14.97 NA	Layer 17	Sand-Slime	5593.68	5593.21	5592.73	0.95	16.54	NA	NA	NA	NA	NA	NA	NA	NA
Layer 20 Slime 5591.01 5590.93 5590.86 0.15 13.87 NA	Layer 18	Slime	5592.73	5592.42	5592.11	0.62	15.59	NA	NA	NA	NA	NA	NA	NA	NA
Layer 21 Sand-Slime 5590.86 5590.38 5589.91 0.95 13.72 NA	Layer 19	Sand-Slime	5592.11	5591.56	5591.01	1.10	14.97	NA	NA	NA	NA	NA	NA	NA	NA
Layer 22 Slime 5589.91 5589.83 5589.75 0.15 12.77 NA	Layer 20	Slime	5591.01	5590.93	5590.86	0.15	13.87	NA	NA	NA	NA	NA	NA	NA	NA
Layer 23 Sand-Slime 5589.75 5589.20 5588.65 1.10 12.61 NA	Layer 21	Sand-Slime	5590.86	5590.38	5589.91	0.95	13.72	NA	NA	NA	NA	NA	NA	NA	NA
Layer 24 Sand 5588.65 5588.49 5588.33 0.32 11.51 NA	Layer 22	Slime	5589.91	5589.83	5589.75	0.15	12.77	NA	NA	NA	NA	NA	NA	NA	NA
Layer 25 Sand-Slime 558.33 5587.15 558.97 2.36 11.19 NA	Layer 23	Sand-Slime	5589.75	5589.20	5588.65	1.10	12.61	NA	NA	NA	NA	NA	NA	NA	NA
Layer 26 Sand 5585.97 5585.73 5585.49 0.48 8.83 NA NA NA NA NA NA NA NA NA	Layer 24	Sand	5588.65	5588.49	5588.33	0.32	11.51	NA	NA	NA	NA	NA	NA	NA	NA
	Layer 25	Sand-Slime	5588.33	5587.15	5585.97	2.36	11.19	NA	NA	NA	NA	NA	NA	NA	NA
Layer 27 Sand-Slime 5585.49 5581.32 5577.14 8.35 8.35 4428.47 4674.84 0.99 0.90 0.005 0.020 0.88 0	Layer 26	Sand	5585.97	5585.73	5585.49	0.48	8.83	NA	NA	NA	NA	NA	NA	NA	NA
	Layer 27	Sand-Slime	5585.49	5581.32	5577.14	8.35	8.35	4428.47	4674.84	0.99	0.90	0.005	0.020	0.88	0.

Notes:

<u>3-4N</u>

FINAL COVER

5623.36 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl)

- Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after
- 0.50 placement (ft)
- 3.50 Thickness of Water Storage/Rooting Zone (ft)
- 3.50 Thickness of High Compaction Layer (ft)
- 7.16 Thickness of Random/Platform Fill on on top of existing interim cover (ft)
- 1567.00 Additional Stress due to Final Cover Placement, $\Delta\sigma_{FC}$ (psf)

PROFILE INFORMATION

$\label{eq:constraint} 5600.6 \qquad \mbox{Water surface elevation at t_0 (ft amsl)}$

- 5583.71 Water surface elevation at t₁ (ft amsl)
- 5578.71 Water surface elevation at t₂ (ft amsl)

From cover deisgn grading plan AutoCAD file

From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) Calculated Calculated

<u>3-4N</u>

Soil Layer	Material Type ¹	Elevation at Top of Layer at t ₁ , z _{i-top1} (ft amsl)	Elevation at Midpoint of Layer at t ₁ , z _{i-mid1} (ft amsl)	Elevation at Bottom of Layer at t ₁ , z _{i-bott1} (ft amsl)	Thickness of Layer at t ₁ , H (ft)	Height above liner (ft)	Effective Stress at Midpoint of Layer at t ₁ , σ' _{i-mid1} (psf)	Effective Stress at Bottom of Layer at t ₁ , σ' _{i-bott1} (psf)	Void Ratio at t ₀ , e ₀	Void Ratio at t ₁ , e ₁	Secondary Compression Index, C _α	Change in Void Ratio due to 1000 years of Creep, ∆e	Final Void Ratio After 1,000 years, e _{final}	Settlement due to 1000 years of Creep, δ _{creep} (ft)
rosion Protection Layer	Erosion Protection Layer	5621.80	5621.55	5621.30	0.50	43.09	NA	NA	NA	NA	NA	NA	NA	NA
Rooting Zone	Rooting Zone	5621.30	5619.55	5617.80	3.50	42.59	NA	NA	NA	NA	NA	NA	NA	NA
ligh-Compaction Layer	High-Compaction Layer	5617.80	5616.05	5614.30	3.50	39.09	NA	NA	NA	NA	NA	NA	NA	NA
Platform Fill	Platform Fill	5614.30	5610.72	5607.14	7.16	35.59	NA	NA	NA	NA	NA	NA	NA	NA
Layer 1	Int. Cover	5607.14	5605.71	5604.29	2.86	28.43	NA	NA	NA	NA	NA	NA	NA	NA
Layer 2	Sand	5604.29	5603.35	5602.41	1.88	25.58	NA	NA	NA	NA	NA	NA	NA	NA
Layer 3	Sand-Slime	5602.41	5600.24	5598.07	4.33	23.70	NA	NA	NA	NA	NA	NA	NA	NA
Layer 4	Slime	5598.07	5597.29	5596.52	1.56	19.36	NA	NA	NA	NA	NA	NA	NA	NA
Layer 5	Sand-Slime	5596.52	5596.36	5596.20	0.31	17.81	NA	NA	NA	NA	NA	NA	NA	NA
Layer 6	Sand	5596.20	5595.88	5595.56	0.64	17.49	NA	NA	NA	NA	NA	NA	NA	NA
Layer 7	Slime	5595.56	5595.49	5595.41	0.15	16.85	NA	NA	NA	NA	NA	NA	NA	NA
Layer 8	Sand-Slime	5595.41	5595.25	5595.10	0.31	16.70	NA	NA	NA	NA	NA	NA	NA	NA
Layer 9	Sand	5595.10	5595.02	5594.94	0.16	16.39	NA	NA	NA	NA	NA	NA	NA	NA
Layer 10	Slime	5594.94	5594.86	5594.78	0.16	16.23	NA	NA	NA	NA	NA	NA	NA	NA
Layer 11	Sand-Slime	5594.78	5594.70	5594.63	0.15	16.07	NA	NA	NA	NA	NA	NA	NA	NA
Layer 12	Slime	5594.63	5594.24	5593.85	0.78	15.92	NA	NA	NA	NA	NA	NA	NA	NA
Layer 13	Sand-Slime	5593.85	5593.69	5593.53	0.31	15.14	NA	NA	NA	NA	NA	NA	NA	NA
Layer 14	Slime	5593.53	5593.38	5593.22	0.31	14.82	NA	NA	NA	NA	NA	NA	NA	NA
Layer 15	Sand-Slime	5593.22	5590.18	5587.14	6.08	14.51	NA	NA	NA	NA	NA	NA	NA	NA
Layer 16	Sand-Slime	5587.14	5582.92	5578.71	8.43	8.43	4510.59	4760.35	0.99	0.89	0.005	0.020	0.88	0.08

<u>3-6N</u>

FINAL COVER

5623.62 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl) From cover deisgn grading plan AutoCAD file

Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after

- 0.50 placement (ft)
- 3.50 Thickness of Water Storage/Rooting Zone (ft)
- 3.50 Thickness of High Compaction Layer (ft)
- 8.68 Thickness of Random/Platform Fill on on top of existing interim cover (ft)
- 1720.10 Additional Stress due to Final Cover Placement, $\Delta\sigma_{FC}$ (psf)

PROFILE INFORMATION

5599.3 Water surface elevation at t_0 (ft amsl)

- 5590.44 Water surface elevation at t₁ (ft amsl)
- 5585.44 Water surface elevation at t₂ (ft amsl)

From Appendix C - Radon Emanation Modeling (MWH, 2015) Calculated Calculated

From Appendix C - Radon Emanation Modeling (MWH, 2015)

From Appendix C - Radon Emanation Modeling (MWH, 2015)

<u>3-6N</u>

Cell Lever	Material Type ¹		Elevation at Midpoint of Layer at t ₁ , z _{i-mid1} (ft amsl)	Elevation at Bottom of Layer at t ₁ , z _{i-bott1} (ft	Thickness of Layer at t ₁ , H (ft)	Height above liner (ft)	Effective Stress at Midpoint of Layer	Bottom of Layer at			Secondary Compression Index. C.	Change in Void Ratio due to 1000 years of Creep, Δe	After 1,000	Creep, δ _{creep}
Soil Layer	Erosion Protection Layer	amsl) 5622.28	5622.03	amsl) 5621.78	0.50	36.84	at t ₁ , σ' _{i-mid1} (psf) NA	t ₁ , σ' _{i-bott1} (psf) NA	at t ₀ , e ₀ NA	at t ₁ , e ₁	NA	NA	years, e _{final} NA	(ft) NA
Rooting Zone	Rooting Zone	5621.78	5620.03	5618.28	3.50	36.34	NA	NA	NA	NA	NA	NA	NA	NA
ě.	High-Compaction Layer	5618.28	5616.53	5614.78	3.50	30.34	NA	NA	NA	NA	NA	NA	NA	NA
Platform Fill	Platform Fill	5614.78	5610.44	5606.10	8.68	29.34	NA	NA	NA	NA	NA	NA	NA	NA
Layer 1	Int. Cover	5606.10	5604.67	5603.25	2.85	29.66	NA	NA	NA	NA	NA	NA	NA	NA
Layer 1	Sand-Slime	5603.25	5603.18	5603.11	0.14	17.81	NA	NA	NA	NA	NA	NA	NA	NA
Layer 2 Layer 3	Sand	5603.11	5602.95	5602.79	0.14	17.67	NA	NA	NA	NA	NA	NA	NA	NA
Layer 3	Sand-Slime	5602.79	5602.64	5602.79	0.30	17.87	NA	NA	NA	NA	NA	NA	NA	NA
Layer 5	Slime	5602.79	5602.19	5601.90	0.60	17.05	NA	NA	NA	NA	NA	NA	NA	NA
Layer 6	Sand-Slime	5601.90	5601.52	5601.14	0.76	16.46	NA	NA	NA	NA	NA	NA	NA	NA
Layer 7	Slime	5601.90	5600.91	5600.67	0.46	15.70	NA	NA	NA	NA	NA	NA	NA	NA
Layer 8	Sand-Slime	5600.67	5600.45	5600.22	0.46	15.23	NA	NA	NA	NA	NA	NA	NA	NA
Layer 9	Sand	5600.22	5600.14	5600.06	0.40	14.78	NA	NA	NA	NA	NA	NA	NA	NA
Layer 10	Sand-Slime	5600.22	5599.91	5599.75	0.31	14.62	NA	NA	NA	NA	NA	NA	NA	NA
Layer 11	Slime	5599.75	5599.60	5599.44	0.31	14.31	NA	NA	NA	NA	NA	NA	NA	NA
Layer 12	Sand-Slime	5599.44	5599.29	5599.13	0.31	14.00	NA	NA	NA	NA	NA	NA	NA	NA
Layer 13	Slime	5599.13	5598.75	5598.36	0.77	13.69	NA	NA	NA	NA	NA	NA	NA	NA
Layer 14	Sand-Slime	5598.36	5598.20	5598.05	0.31	12.92	NA	NA	NA	NA	NA	NA	NA	NA
Laver 15	Slime	5598.05	5597.43	5596.81	1.24	12.61	NA	NA	NA	NA	NA	NA	NA	NA
Layer 16	Sand-Slime	5596.81	5596.66	5596.50	0.31	11.37	NA	NA	NA	NA	NA	NA	NA	NA
Layer 17	Slime	5596.50	5594.02	5591.54	4.96	11.06	NA	NA	NA	NA	NA	NA	NA	NA
Laver 18	Sand-Slime	5591.54	5590.61	5589.67	1.87	6.10	3584.42	3667.28	0.99	0.88	0.005	0.020	0.86	0.019
Layer 19	Slime	5589.67	5589.21	5588.74	0.94	4.23	3692.39	3717.50	1.29	1.17	0.006	0.023	1.15	
Layer 20	Sand-Slime	5588.74	5587.09	5585.44	3.30	3.30	3815.37	3913.24	0.99	0.89	0.005	0.020	0.87	0.034
													TOTAL:	

Notes: ¹ From on-site investigation (Tailings Data Analysis Report. MWH, 2015)

<u>3-8N</u>

FINAL COVER

5623.82 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl) From cover deisgn grading plan AutoCAD file

Calculated

Calculated

Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after

- 0.50 placement (ft)
- 3.50 Thickness of Water Storage/Rooting Zone (ft)
- 3.50 Thickness of High Compaction Layer (ft)
- 7.95 Thickness of Random/Platform Fill on on top of existing interim cover (ft)
- 1646.57 Additional Stress due to Final Cover Placement, $\Delta\sigma_{FC}$ (psf)

PROFILE INFORMATION

- 5604.90 Water surface elevation during CPT investigation (ft amsl)
- 5600.3 Water surface elevation at t₀ (ft amsl)
- 5595.24 Water surface elevation at t1 (ft amsl)
- 5590.24 Water surface elevation at t₂ (ft amsl)

Minimum of 5' below top of tailings or water surface elevation at time of CPT testing (2013).

From Appendix C - Radon Emanation Modeling (MWH, 2015)

From Appendix C - Radon Emanation Modeling (MWH, 2015)

From Appendix C - Radon Emanation Modeling (MWH, 2015)

From on-site investigation (Tailings Data Analysis Report. MWH, 2015)

<u>3-8N</u>

CREEP SETTLEMENT								1						
Soil Layer	Material Type ¹	Elevation at Top of Layer at t ₁ , z _{i-top1} (ft amsl)	Elevation at Midpoint of Layer at t ₁ , z _{i-mid1} (ft amsl)	Elevation at Bottom of Layer at t ₁ , z _{i-bott1} (ft amsl)	Thickness of Layer at t ₁ , H (ft)	Height above liner (ft)	Effective Stress at Midpoint of Layer at t ₁ , σ' _{i-mid1} (psf)	Effective Stress at Bottom of Layer at t ₁ , σ' _{i-bott1} (psf)	Void Ratio at t ₀ , e ₀	Void Ratio at t ₁ , e ₁	Secondary Compression Index, C _a	Change in Void Ratio due to 1000 years of Creep, Δe	Final Void Ratio After 1,000 years, e _{final}	Settlemen due to 100 years of Creep, δ _{cree} (ft)
rosion Protection Layer	Erosion Protection Layer	5622.79	5622.54	5622.29	0.50	32.55	NA	NA	NA	NA	NA	NA	NA	NA
Rooting Zone	Rooting Zone	5622.29	5620.54	5618.79	3.50	32.05	NA	NA	NA	NA	NA	NA	NA	NA
ligh-Compaction Layer	High-Compaction Layer	5618.79	5617.04	5615.29	3.50	28.55	NA	NA	NA	NA	NA	NA	NA	NA
Platform Fill	Platform Fill	5615.29	5611.31	5607.34	7.95	25.05	NA	NA	NA	NA	NA	NA	NA	NA
Layer 1	Int. Cover	5607.34	5605.91	5604.48	2.85	17.10	NA	NA	NA	NA	NA	NA	NA	NA
Layer 2	Slime	5604.48	5604.41	5604.34	0.14	14.24	NA	NA	NA	NA	NA	NA	NA	NA
Layer 3	Sand	5604.34	5604.26	5604.18	0.16	14.10	NA	NA	NA	NA	NA	NA	NA	NA
Layer 4	Sand-Slime	5604.18	5603.88	5603.58	0.59	13.94	NA	NA	NA	NA	NA	NA	NA	NA
Layer 5	Sand	5603.58	5603.43	5603.27	0.31	13.34	NA	NA	NA	NA	NA	NA	NA	NA
Layer 6	Sand-Slime	5603.27	5603.12	5602.97	0.30	13.03	NA	NA	NA	NA	NA	NA	NA	NA
Layer 7	Sand	5602.97	5601.94	5600.92	2.05	12.73	NA	NA	NA	NA	NA	NA	NA	NA
Layer 8	Sand-Slime	5600.92	5598.04	5595.17	5.75	10.68	NA	NA	NA	NA	NA	NA	NA	NA
Layer 9	Slime	5595.17	5595.09	5595.00	0.16	4.93	3152.03	3151.04	1.29	1.17	0.006	0.023	1.15	0.00
Layer 10	Sand-Slime	5595.00	5593.99	5592.98	2.03	4.76	3211.29	3271.54	0.99	0.89	0.005	0.020	0.87	0.02
Layer 11	Sand-Slime	5592.98	5591.61	5590.24	2.74	2.74	3352.72	3433.90	0.99	0.89	0.005	0.020	0.88	0.02
													TOTAL:	0.0

Notes: ¹ From on-site investigation (Tailings Data Analysis Report. MWH, 2015)

<u>3-8S</u>

FINAL COVER

5620.45 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl)

- Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after
- 0.50 placement (ft)
- 3.50 Thickness of Water Storage/Rooting Zone (ft)
- 3.50 Thickness of High Compaction Layer (ft)
- 4.25 Thickness of Random/Platform Fill on on top of existing interim cover (ft)
- 1273.89 Additional Stress due to Final Cover Placement, $\Delta\sigma_{FC}$ (psf)

PROFILE INFORMATION

5603.50	Water surface elevation during CPT investigation (ft amsl)
5600.6	Water surface elevation at t ₀ (ft amsl)
5590.63	Water surface elevation at t ₁ (ft amsl)

5585.63 Water surface elevation at t₂ (ft amsl)

From cover deisgn grading plan AutoCAD file

From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) From Appendix C - Radon Emanation Modeling (MWH, 2015) Calculated Calculated

From on-site investigation (Tailings Data Analysis Report. MWH, 2015) Minimum of 5' below top of tailings or water surface elevation at time of CPT testing (2013).

<u>3-8S</u>

CREEP SETTLEMENT	Material Type ¹	Elevation at Top of Layer at t ₁ , z _{i-top1} (ft amsl)	Elevation at Midpoint of Layer at t ₁ , z _{i-mid1} (ft amsl)	Elevation at Bottom of Layer at t ₁ , z _{i-bott1} (ft amsl)	Thickness of Layer at t ₁ , H (ft)	Height above liner (ft)	Effective Stress at Midpoint of Layer at t ₁ , σ' _{i-mid1} (psf)	Effective Stress at Bottom of Layer at t ₁ , o' _{i-bott1} (psf)	Void Ratio at t₀, e₀	Void Ratio at t ₁ , e ₁	Secondary Compression Index, C _a	Change in Void Ratio due to 1000 years of Creep, Δe	Final Void Ratio After 1,000 years, e _{final}	Settleme due to 10 years o Creep, δ _{ci}
Erosion Protection Layer		5619.39	5619.14	5618.89	0.50	33.76	NA	NA		NA	NA	NA	-	NA
Rooting Zone	Rooting Zone	5618.89	5617.14	5615.39	3.50	33.26	NA	NA		NA	NA	NA		NA
J. J	High-Compaction Layer	5615.39	5613.64	5611.89	3.50	29.76	NA			NA	NA	NA		NA
Platform Fill	Platform Fill	5611.89	5609.76	5607.64	4.25	26.26	NA	NA		NA	NA	NA		NA
Layer 1	Int. Cover	5607.64	5606.20	5604.77	2.87	22.01	NA	NA		NA	NA	NA	NA	NA
Layer 1	Sand	5604.77	5604.22	5603.67	1.10	19.14	NA	NA		NA	NA	NA		NA
Layer 3	Sand-Slime	5603.67	5603.52	5603.36	0.31	18.04	NA			NA	NA	NA	NA	NA
Layer 4	Sand	5603.36	5603.29	5603.21	0.15	17.73	NA	NA		NA	NA	NA		NA
Layer 5	Sand-Slime	5603.21	5602.82	5602.44	0.77	17.58	NA	NA		NA	NA	NA		NA
Layer 6	Sand	5602.44	5600.69	5598.93	3.51	16.81	NA	NA		NA	NA	NA		NA
Layer 7	Sand-Slime	5598.93	5598.77	5598.62	0.32	13.30	NA	NA	NA	NA	NA	NA	NA	NA
Layer 8	Sand	5598.62	5598.45	5598.29	0.32	12.99	NA	NA	NA	NA	NA	NA	NA	NA
Layer 9	Sand-Slime	5598.29	5596.41	5594.53	3.77	12.66	NA	NA	NA	NA	NA	NA	NA	NA
Layer 10	Slime	5594.53	5594.45	5594.37	0.15	8.90	NA	NA	NA	NA	NA	NA	NA	NA
Layer 11	Sand-Slime	5594.37	5594.22	5594.06	0.32	8.74	NA	NA	NA	NA	NA	NA	NA	NA
Layer 12	Slime	5594.06	5593.75	5593.44	0.62	8.43	NA	NA	NA	NA	NA	NA	NA	NA
Layer 13	Sand-Slime	5593.44	5593.28	5593.12	0.32	7.81	NA	NA	NA	NA	NA	NA	NA	NA
Layer 14	Sand-Slime	5593.12	5589.38	5585.63	7.49	7.49	3447.52	3668.72	0.99	0.90	0.005	0.020	0.88	0.0
													TOTAL:	0.

Notes: ¹ From on-site investigation (Tailings Data Analysis Report. MWH, 2015)

ATTACHMENT F.3

SEISMIC SETTLEMENT CALCULATIONS

Notes

 t_0 corresponds to beginning of final cover placement t_1 corresponds to dewatering of the tailings to a level 5 feet above the liner t_2 corresponds to completion of dewatering

Assumes 99% of consolidation due to existing stress conditions has taken place

	SOIL PROPERTIES	
TAILINGS		
Specific Gr		
2.70	Specific gravity of tailing sands, G s-TSand	Based on testing performed on other uranium tailings and presented in Keshian and Rager (1988)
2.80	Specific gravity of tailing sand-slimes, G s-TS-S	Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015b)
2.86	Specific gravity of tailing slimes, G s-TSlime	Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015b)
Fines Cont	ent	
18%	Fines content of tailings sands (%)	Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015b)
47%	Fines content of tailings sand-slimes (%)	Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015b)
71%	Fines content of tailings slimes (%)	Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015b)
Dry Unit W		
97	In-situ dry unit weight of tailings sands at t ₀ , yd0-Tsand (pcf)	Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015b)
88	In-situ dry unit weight of tailings sand-slimes at t _0, $\gamma_{d0-TS-S}$ (pcf)	Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015b)
78	In-situ dry unit weight of tailings slimes at t ₀ , yd0-Tslime (pcf)	Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015b)
	Unit Weight, γ_{sat}	
123	In-situ saturated unit weight of tailings sands at $t_{0}, \gamma_{\text{sat0-Tsand}}$ (pcf)	Calculated
119	In-situ saturated unit weight of tailings sand-slimes at t 0, y _{sat0-TS-S} (pcf)	Calculated
113	In-situ saturated unit weight of tailings slimes at t 0, ysat0-Tslime (pcf)	Calculated
Moist Unit		
103	Moist unit weight of tailings sands, ym-Tsand (pcf)	Calculated, assuming long-term water content from laboratory testing (Tailings Data Analysis Report. MWH, 2015t
93	Moist unit weight of tailings sand-slimes, ym-TS-S (pcf)	Calculated, assuming long-term water content from laboratory testing (Tailings Data Analysis Report. MWH, 2015t
83	Moist unit weight of tailings slimes, ym-Tsime (pcf)	Calculated, assuming long-term water content from laboratory testing (Tailings Data Analysis Report. MWH, 2015t
Void Ratio,		
).74	Void ratio of tailing sands at t ₀ , e _{0-TSand}	Calculated
0.99	Void ratio of tailing sand-slimes at t ₀ , e _{0-TS-S}	Calculated
1.29	Void ratio of tailing slimes at t 0, e0-TSlime	Calculated
	Water Content, w _{Sat}	
27%	Saturated water content of tailings sands at t ₀ , w _{sat0-TSand} (%)	Calculated
35%	Saturated water content of tailings sand-slimes at t ₀ , w _{sat0-TS-S} (%)	Calculated
45%	Saturated water content of tailings slimes at t ₀ , w _{sat0-TSlime} (%)	Calculated
	tent of Moist Tailings, w _{m-T}	From Attachment II. Dedae From the Madeline including with this submitted
6%	Water content of moist tailings sands, w m-TSand (%)	From Attachment H - Radon Emanation Modeling including with this submittal
6%	Water content of moist tailings sand-slimes, w m-TS-S (%)	From Attachment H - Radon Emanation Modeling including with this submittal
6%	Water content of moist tailings slimes, w m-TSlime (%)	From Attachment H - Radon Emanation Modeling including with this submittal
Plasticity I		Automatic free lab to the other of complete abbeing data with (Tallians Data Acaberic Depart ANAU 20045b)
-	Plasticity index of tailings sands, Pl TSand	Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015b)
10	Plasticity index of tailings sand-slimes, Pl _{TS-S}	Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015b)
16	Plasticity index of tailings slimes, PI _{TSlime}	Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015b)
	ttlement Coefficients	
2.2	Coefficient "a" of Unsaturated Sand Tailings	From Stewart, et al (2004), page 86, Figure 6.5
5.0	Coefficient "a" of Saturated Sand Tailings	From Stewart, et al (2004), page 86, Figure 6.5
2.0	Coefficient "a" of Sand-Slime Tailings	From Stewart, et al (2004), page 89, Figure 6.7
2.0	Coefficient "a" of Slime Tailings	From Stewart, et al (2004), page 89, Figure 6.7
1.00	Coefficient "b" of Sand Tailings	From Stewart, et al (2004), page 86, Figure 6.5
0.65	Coefficient "b" of Sand-Slime Tailings	From Stewart, et al (2004), page 89, Figure 6.7
0.65	Coefficient "b" of Slime Tailings	From Stewart, et al (2004), page 89, Figure 6.7
0.01%	Strain threshold value of Sand Tailings, ytv	From Stewart, et al (2004), page 86, Figure 6.5
0.03%	Strain threshold value of Sand-Slime Tailings, ytv	From Stewart, et al (2004), page 89, Figure 6.7
0.03%	Strain threshold value of Slime Tailings, ytv	From Stewart, et al (2004), page 89, Figure 6.7
0.36	Coefficient "R" of Sand Tailings	From Stewart, et al (2004), page 86, for soils with non-plastic fines
0.34	Coefficient "R" of Sand-Slime Tailings	From Stewart, et al (2004), page 89, for soils with medium plasticity fines
0.34	Coefficient "R" of Slime Tailings	From Stewart, et al (2004), page 89, for soils with medium plasticity fines

Other	
5.0	Height of water table above liner at t ₁ , H _{sat-1} (ft)
0.0	Height of water table above liner at t2, Hsat-2 (ft)
6.0%	Long-term moisture content of tailings, w tailings (%)
508	Shear Wave Velocity of Tailings, Vs (ft/sec)

Assumed for end of active maintenance

From Attachment H - Radon Emanation Modeling including with this submittal Conservatively assumed to be the average of the shear wave velocities measured in Cell 2 tailings

COVER SOIL		
Specific Gra	avity. G.	
2.61	Specific gravity of topsoil, G s-Topsoil	From Attachment H - Radon Emanation Modeling including with this submittal
2.62	Specific gravity of rock mulch, G s-mulch	From Attachment H - Radon Emanation Modeling including with this submittal
2.63	Specific gravity of cover soil, G scover	From Attachment H - Radon Emanation Modeling including with this submittal
Unit Weight	.γ	
118.0	Maximum dry unit weight of cover soil y _{cover-max} (pcf)	Average calculated from laboratory testing results (UWM, 2012)
100.7	Moist unit weight of cover soil at 80% relative compaction, ycover80 (pcf)	Calculated
107.0	Moist unit weight of cover soil at 85% relative compaction, ycover85 (pcf)	Calculated
119.6	Moist unit weight of cover soil at 95% relative compaction, ycover95 (pcf)	Calculated
100	Dry unit weight of topsoil layer at 85% relative compaction, Ytopsoil5 (pcf)	From Attachment H - Radon Emanation Modeling including with this submittal
105	Moist unit weight of topsoil layer at 85% relative compaction, ytopsoil5 (pcf)	Calculated
106	Dry unit weight of rock mulch layer at 85% relative compaction, ymulch85 (pcf)	Calculated
110	Moist unit weight of rock mulch layer at 85% relative compaction, ymulch85 (pcf)	From Attachment H - Radon Emanation Modeling including with this submittal
Void Ratio,	e	
0.74	Void Ratio of cover soil at 80% relative compaction, e cover80	Calculated
0.64	Void Ratio of cover soil at 85% relative compaction, e cover85	Calculated
0.46	Void Ratio of cover soil at 95% relative compaction, e cover95	Calculated
0.61	Void Ratio of topsoil at 85% relative compaction, e topsoil85	Calculated from porosity presented in Attachment H - Radon Emanation Modeling including with this submittal
0.54	Void Ratio of rock mulch at 85% relative compaction, e mulch85	Calculated from porosity presented in Attachment H - Radon Emanation Modeling including with this submittal
Seismic Set	tlement Coefficients	
1.2	Coefficient "a" of Erosion Protection/Topsoil Cover	From Stewart, et al (2004), page 88, Figure 6.6
2.0	Coefficient "a" of General Cover Soil	From Stewart, et al (2004), page 89, Figure 6.7
0.65	Coefficient "a" of High-Compaction Layer	From Stewart, et al (2004), page 89, Figure 6.7
0.80	Coefficient "b" of Erosion Protection/Topsoil Cover	From Stewart, et al (2004), page 88, Figure 6.6
0.65	Coefficient "b" of General Cover Soil	From Stewart, et al (2004), page 89, Figure 6.7
0.75	Coefficient "b" of High-Compaction Layer	From Stewart, et al (2004), page 89, Figure 6.7
0.04%	Strain threshold value of Erosion Protection/Topsoil Cover, ytv	From Stewart, et al (2004), page 88, Figure 6.6
0.03%	Strain threshold value of General Cover Soil, ytv	From Stewart, et al (2004), page 89, Figure 6.7
0.02%	Strain threshold value of High-Compaction Layer, ytv	From Stewart, et al (2004), page 89, Figure 6.7
0.32	Coefficient "R" of Erosion Protection/Topsoil Cover	From Stewart, et al (2004), page 88, for soils with low plasticity fines
0.34	Coefficient "R" of General Cover Soil	From Stewart, et al (2004), page 89, for soils with medium plasticity fines
0.34	Coefficient "R" of High-Compaction Layer	From Stewart, et al (2004), page 89, for soils with medium plasticity fines
Other		
6.7%	Long-term moisture content of cover soil, w _{cover} (%)	Estimated based on measured 15bar water content. (UWM, 2012)
5.2%	Long-term moisture content of topsoil, w topsoil (%)	From Attachment H - Radon Emanation Modeling including with this submittal
4.0%	Long-term moisture content of rock mulch, w rockmulch (%)	From Attachment H - Radon Emanation Modeling including with this submittal
0.14	Compression index of cover soil, C _{c-cover}	Calculated from empirical equation presented in Holtz and Kovacs, 1981. Page 341. $C_c = 0.30^*(e_0-0.27)$
51%	Fines content of cover soil (%)	Mean value from laboratory analyses presented in previous response to interrogatories (EFRI, 2012)
11	Plasticity Index of cover soil, Pl	Weighted Average from 2010 and 2012 laboratory testing (laboratory results presented in EFRI, 2012)
508	Shear Wave Velocity of Cover Soil, Vs (ft/sec)	Conservatively assumed to be the average of the shear wave velocities measured in Cell 2 tailings

SEISMIC PARAMETERS

0.15	Maximum horizontal acceleration at the ground surface, amax/g	From Probabilistic Seismic Hazard Analysis (MWH, 2015a)
5.5	Magnitude of Design Event, M	From Probabilistic Seismic Hazard Analysis (MWH, 2015a)
20 1.00	Site-Source Distance, r (km) Stress reduction factor, r _d	From Probabilistic Seismic Hazard Analysis (MWH, 2015a) Conservatively assumed.
7.51	Equiv. Number of Uniform Strain Cycles, N	Calculated from Stewart, et al (2004), Equation 6.11, page 79, S parameter =0 since shallow soil and rock underlie the tailings (<20m) below tailings
594	Average shear wave velocity for cover, Vs (ft/s)	Conservatively estimated as upper bound average Vs for tailings in Cell 2 in October 2013 (Tailings Data Analysis Report. MWH, 2015b)
495	Average shear wave velocity for tailings (3' - 9.4'), Vs (ft/s)	Conservatively estimated as average Vs over depth range for tailings in Cell 2 in October 2013 (Tailings Data Analysis Report. MWH, 2015b)
460	Average shear wave velocity for tailings (9.4' - 14.4'), Vs (ft/s)	Conservatively estimated as average Vs over depth range for tailings in Cell 2 in October 2013 (Tailings Data Analysis Report. MWH, 2015b)
500	Average shear wave velocity for tailings (14.4' - 19.6'), Vs (ft/s)	Conservatively estimated as average Vs over depth range for tailings in Cell 2 in October 2013 (Tailings Data Analysis Report. MWH, 2015b)
538	Average shear wave velocity for tailings (19.6' - 24.7'), Vs (ft/s)	Conservatively estimated as average Vs over depth range for tailings in Cell 2 in October 2013 (Tailings Data Analysis Report. MWH, 2015b)
594	Average shear wave velocity for tailings (24.7' - liner), Vs (ft/s)	Conservatively estimated as average Vs over depth range for tailings in Cell 2 in October 2013 (Tailings Data Analysis Report. MWH, 2015b)

MISCELLANEOUS PARAMETERS

62.4	Unit Weight of Water, γ_w
82.4	Atmospheric Pressure, Pa (kPa)
1722.0	Atmospheric Pressure, P _a (psf)

Calculated assuming elev=5600' amsl. http://www.engineeringtoolbox.com/air-altitude-pressure-d_462.html Unit conversion calculation

REFERENCES

Energy Fuels Resources (USA) Inc. (EFRI), 2012. Responses to Interrogatories – Round 1 for Reclamation Plan, Revision 5.0, March 2012. August 15.

Holtz, R.D. and Kovacs, W.D., 1981. An Introduction to Geotechnical Engineering. Prentice Hall, Inc. New Jersey

Keshian, B., and Rager, R. 1988. Geotechnical Properties of Hydraulically Placed Uranium Mill Tailings, in Hydraulically Fill Structures, Geotechnical Special Publication No. 21, Eds. Van Zyl, D., and Vick, S., ASCE, August

MWH Americas, Inc. (MWH), 2015a. White Mesa Mill Probabilistic Seismic Hazard Analysis Report. Prepared for Energy Fuels Resources (USA) Inc. April.

MWH Americas, Inc. (MWH), 2015b. White Mesa Mill Tailings Data Analysis Report. Prepared for Energy Fuels Resources (USA) Inc. April.

Stewart, J.P., D. Whang, M.Moyneur, and P.Duku, 2004. Seismic Compression of As-Compacted Fill Soils With Variable Levels of Fines Content and Fines Plasticity. CUREE Publication No.EDA-05. July.

Terzaghi, K., R. Peck, and G. Mesri, 1996. Soil Mechanics in Engineering Practice, Third Edition. John Wiley and Sons, Inc. New York

University of Wisconsin-Madison (UWM), Wisconsin Geotechnics Laboratory, 2012. Compaction and Hydraulic Properties of Soils from Banding, Utah. Geotechnics Report NO. 12-41 by C.H. Benson and X. Wang. July 24.

WHITE MESA TAILINGS REPOSITORY LIQUEFACTION Data File: 13.52106_SP2W2-BSC-CPT Location: White Mesa 2013 CPT investigation Max. Hoiz: Acceleration, Amaxig: Location: White Mesa 2013 CPT investigation Allings Sands Max. Hoiz: Acceleration, Amaxig: Tailings Sands Max. Hoiz: Acceleration, Amaxig: Tailings Simes Max. Hoiz: Acceleration, Amaxig: Tailings Simes Max. Hoiz: Acceleration, Amaxig: Interim Cover Earthquark Moment Magnitude, M: Cells Requiring User Input/Manipulation Max. Hoiz: Acceleration, Amaxig: Max. Hoiz: Acceleration, Amaxig: 0.15	5613.10 Water surface elevation during CPT investigation (ft 3615.85 Ground Surface 5607.57 Water surface elevation at t, (ft amsi) 5625.87 Ground Surface 5598.51 Water surface elevation at t, (ft amsi) 0.50 Thickness of TW 5593.51 Water surface elevation at t, (ft amsi) 3.50 Thickness of TW 4.00 Thickness of Fig 2.02 Thickness of Fig	levation at time of CPT (ft ansi)) levation immediately after Placement of Final Cover (ft amsi) on Protection Layer (rock mulch/topsoils) immediately after pr v Storage/Rocting Zone (ft) Compaction Layer (ft) ban/Platform Fill on on top of existing interim cover (ft) leve to Final Cover Placement, dorc (ps)) FINAL COVER (ft) (ft) Layer Layer (ft) t (to	gh Weight (pct) Bottom of Layer Midpoint of Layer at Bottom of Layer Midpoint of Layer at Bottom of Layer Midpoint of Layer At Bottom of Layer 55 110 0.028 0.014 0.00 0.00 0.02 56 107 0.215 0.121 0.00 0.00 0.21 57 107 0.455 0.334 0.00 0.00 0.24	Midpoint Depth Vetocity, Density Modulus, Model Model Model Model	153 12419 0.01% 0.65 0	180 0.04% 0.000 0.32 0.133 0.776 0.00% 0.50 0.03% 0.000 0.34 0.079 0.765 0.00% 0.75 0.02% 0.000 0.34 0.079 0.765 0.00% 0.75 0.02% 0.000 0.34 0.079 0.765 0.00% 0.65 0.03% 0.000 0.34 0.079 0.765 0.00%	ncrementa I consolidati on (ft) 0.0000 0.0000 0.0000 0.0000
2013 CPT Data from ConeTec Total Equil Encourse Depth Turns for Stress Pore Stress at	CPT Data Interpretations Conditions at t	e Idriss & Boulanger (2008)	stance Ratio Cyclic Stress Ratio (CRR) r _d D _r f K _a CSR	(CRR) Avg Liquefiable? C Q⊄ _{in-a Ma7.5} , FoS 1=¥es	$\begin{array}{ c c c c c c }\hline \hline Wave & Soll & Shear & P= & Vy\\ Depth & Velocity, Density & Strain & Yur^{ri}(G_{arr}) & Index, \\ at_{1}, z_{1}, & V_{s} & & G_{max}, \\ m & & & G_{max}, \\ \hline \end{array}$	Shear Strain,	TOTAL SEISMIC SETTLEMENT (FT): d Shear c Strain at Strain, y _w 15 Cycles, Design Com	0.347 I Consolidati on (ft)
0.46 Sec. 1.00 <th< td=""><td>1 1.70 14.886 202.75 17.31 23 0.93% 2.4 47% 1.18 0.00 1.17 1 1.70 11206 23.25 20.66 26 114% 2.4 47% 1.18 0.00 1.17 1 1.70 13.940 193.77 16.44 2.1 2.03% 2.5 71% 1.19 0.00 1.12 1 1.70 13.311 185.02 15.88 20 1.70 2.8 47% 1.23 0.00 1.22 1 1.70 15.045 20.13 17.62 1.52 1.22% 2.6 47% 1.23 0.00 1.22 1 1.70 1.268 15.23 18 1.51% 2.6 71% 1.26 0.00 1.22 1 1.70 1.169 165.25 13.43 15 1.72% 2.7 71% 1.25 0.00 1.22 1 1.70 1.243 1.513</td><td>100 010 015 100 0065 76.00 0 000 015 103 100 0056 72.56 102.2 0 090 011 102 100 0056 72.56 102.2 0 090 011 102 100 0056 62.37 163.2 0 090 011 102 100 0058 62.31 114.4 0 090 007 101 100 0058 62.31 114.4 0 090 007 101 100 0058 61.23 114.4 0 090 007 101 100 0056 10.23 114.4 0 098 005 100 100 0057 42.4 14.6 0 098 005 100 100 0057 43.87 84.4 0 088 005 100 100 0057 33.57 44.5</td><td></td><td>99 4.328 0.086 5.27 3.38 2 00 45.26 0.086 5.20 3.38 2 00 45.66 0.086 5.20 3.38 2 00 45.66 0.086 5.20 3.38 2 01 45.66 0.084 5.52 3.47 2 01 62.67 0.094 5.52 3.36 2 11 41.86 0.085 4.88 3.19 2 14 45.25 0.090 5.10 3.34 2 17 67.50 0.091 4.90 3.19 2 12 49.38 0.091 4.90 3.19 2 12 49.38 0.091 4.90 3.11 2 12 49.38 0.101 4.93 3.17 2 14 61.50 0.003 4.96 3.20 2 14 61.50 0.103 4.77 3.31</td><td>3.16 694 16E-03 5.5E-02 10E-04 11 0. 3.26 694 16E-03 5.5E-02 11E-04 111 0. 3.30 694 16E-03 5.5E-02 11E-04 111 0. 3.40 694 16E-03 5.5E-02 11E-04 111 0. 3.60 5.64 16E-03 5.5E-02 11E-04 111 0. 3.60 5.64 16E-03 5.5E-02 12E-04 111 0. 3.60 5.64 15E-04 111 0. 0. 0. 4.61 5.64 3.5E-02 12E-04 111 0. 0. 3.65 5.64 15E-03 5.64 16E-</td><td>176 9936 0.01% 2.00 0.0 177 99762 0.01% 2.00 0.0 178 97762 0.01% 2.00 0.0 179 97770 0.01% 2.00 0.0 179 97707 0.01% 2.00 0.0 180 9652 0.01% 2.00 0.0 181 9463 0.01% 2.00 0.0 182 9936 0.02% 2.00 0.0 183 9280 0.02% 2.00 0.0 184 9251 0.02% 2.00 0.0 184 9250 0.02% 2.00 0.0 186 9160 0.02% 2.00 0.0 187 9280 0.02% 2.00 0.0 188 9160 0.02% 2.00 0.0 189 0.06 0.03% 2.00 0.0 190 0.02% 0.03% 2.00 0.0</td><td>165 0.03% 0.000 0.34 0.079 0.765 0.00% 165 0.03% 0.000 0.34 0.079 0.765 0.00% 165 0.03% 0.000 0.34 0.079 0.765 0.00% 165 0.03% 0.000 0.34 0.079 0.765 0.00% 165 0.03% 0.000 0.34 0.079 0.765 0.00% 165 0.03% 0.000 0.34 0.079 0.765 0.00% 165 0.03% 0.000 0.34 0.079 0.765 0.00% 165 0.03% 0.000 0.34 0.079 0.765 0.00% 165 0.03% 0.000 0.34 0.079 0.765 0.00% 165 0.03% 0.000 0.34 0.079 0.765 0.00% 165 0.03% 0.000 0.34 0.079 0.765 0.00% 165 0.03% 0.000 0.34</td><td>0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000</td></th<>	1 1.70 14.886 202.75 17.31 23 0.93% 2.4 47% 1.18 0.00 1.17 1 1.70 11206 23.25 20.66 26 114% 2.4 47% 1.18 0.00 1.17 1 1.70 13.940 193.77 16.44 2.1 2.03% 2.5 71% 1.19 0.00 1.12 1 1.70 13.311 185.02 15.88 20 1.70 2.8 47% 1.23 0.00 1.22 1 1.70 15.045 20.13 17.62 1.52 1.22% 2.6 47% 1.23 0.00 1.22 1 1.70 1.268 15.23 18 1.51% 2.6 71% 1.26 0.00 1.22 1 1.70 1.169 165.25 13.43 15 1.72% 2.7 71% 1.25 0.00 1.22 1 1.70 1.243 1.513	100 010 015 100 0065 76.00 0 000 015 103 100 0056 72.56 102.2 0 090 011 102 100 0056 72.56 102.2 0 090 011 102 100 0056 62.37 163.2 0 090 011 102 100 0058 62.31 114.4 0 090 007 101 100 0058 62.31 114.4 0 090 007 101 100 0058 61.23 114.4 0 090 007 101 100 0056 10.23 114.4 0 098 005 100 100 0057 42.4 14.6 0 098 005 100 100 0057 43.87 84.4 0 088 005 100 100 0057 33.57 44.5		99 4.328 0.086 5.27 3.38 2 00 45.26 0.086 5.20 3.38 2 00 45.66 0.086 5.20 3.38 2 00 45.66 0.086 5.20 3.38 2 01 45.66 0.084 5.52 3.47 2 01 62.67 0.094 5.52 3.36 2 11 41.86 0.085 4.88 3.19 2 14 45.25 0.090 5.10 3.34 2 17 67.50 0.091 4.90 3.19 2 12 49.38 0.091 4.90 3.19 2 12 49.38 0.091 4.90 3.11 2 12 49.38 0.101 4.93 3.17 2 14 61.50 0.003 4.96 3.20 2 14 61.50 0.103 4.77 3.31	3.16 694 16E-03 5.5E-02 10E-04 11 0. 3.26 694 16E-03 5.5E-02 11E-04 111 0. 3.30 694 16E-03 5.5E-02 11E-04 111 0. 3.40 694 16E-03 5.5E-02 11E-04 111 0. 3.60 5.64 16E-03 5.5E-02 11E-04 111 0. 3.60 5.64 16E-03 5.5E-02 12E-04 111 0. 3.60 5.64 15E-04 111 0. 0. 0. 4.61 5.64 3.5E-02 12E-04 111 0. 0. 3.65 5.64 15E-03 5.64 16E-	176 9936 0.01% 2.00 0.0 177 99762 0.01% 2.00 0.0 178 97762 0.01% 2.00 0.0 179 97770 0.01% 2.00 0.0 179 97707 0.01% 2.00 0.0 180 9652 0.01% 2.00 0.0 181 9463 0.01% 2.00 0.0 182 9936 0.02% 2.00 0.0 183 9280 0.02% 2.00 0.0 184 9251 0.02% 2.00 0.0 184 9250 0.02% 2.00 0.0 186 9160 0.02% 2.00 0.0 187 9280 0.02% 2.00 0.0 188 9160 0.02% 2.00 0.0 189 0.06 0.03% 2.00 0.0 190 0.02% 0.03% 2.00 0.0	165 0.03% 0.000 0.34 0.079 0.765 0.00% 165 0.03% 0.000 0.34 0.079 0.765 0.00% 165 0.03% 0.000 0.34 0.079 0.765 0.00% 165 0.03% 0.000 0.34 0.079 0.765 0.00% 165 0.03% 0.000 0.34 0.079 0.765 0.00% 165 0.03% 0.000 0.34 0.079 0.765 0.00% 165 0.03% 0.000 0.34 0.079 0.765 0.00% 165 0.03% 0.000 0.34 0.079 0.765 0.00% 165 0.03% 0.000 0.34 0.079 0.765 0.00% 165 0.03% 0.000 0.34 0.079 0.765 0.00% 165 0.03% 0.000 0.34 0.079 0.765 0.00% 165 0.03% 0.000 0.34	0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

WHITE MESA TAILINGS REPOSITORY LIQUEFACT	AND SEISMIC SETTLEMENT ANALYSES - 2W2	
Data File: 13-52106_SP2W2-BSC-CPT Idriss and Boulancer (2008) Location: White Mesa 2013 CPT Investigation Max. Horiz. Acceleration, Amax/g: 0.15	5613.10 Water surface elevation during CPT investigation (ft 561.8.5 Ground Surface Elevation at time of CPT (ft amsi) Layer of Layer	
Tailings Sands Magnitude Scaling Factor, MSF: 1.69	5598.51 Water surface elevation at t, (ft amst) 0.50 Thickness of Erosion Protection Layer (rock mulch/lopsoils) Immediately after plat Erosion Protection Layer ###### 5625.62 5625.37 0.50 0.056 110 0.028 0.014 0.00 0.028 0.00 5593.51 Water surface elevation at t, (ft amst) 3.50 Thickness of Korage/Rooting Zone (ft) Vater Storage/Rooting Zone (th) Vater Storage/Rooting Zone (th) 0.054 107 0.215 0.121 0.00 0.021 0.11 0.00 0.021 0.11 0.00 0.021 0.01 0.01 0.021 0.01 0.021 0.01 0.01 0.021 0.01 0.01 0.021 0.01 0.021 0.01 0.021 0.01 0.021 0.01 0.021 0.01 0.021 0.01 0.021 0.01 0.021 0.01 0.021 0.01 0.01 0.021 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	014 0.08 508 1.7E-03 4.4E+02 3.0E-06 11 0.068 46696 0.00% 1.20 0.80 0.04% 0.000 0.32 0.133 0.778 0.00% 0.0000 121 0.69 508 1.7E-03 4.3E+02 2.8E-05 11 0.118 18930 0.00% 2.00 0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.0000
Tailings Sand-Slimes Tailings Slimes Max. Horiz. Acceleration, Amaxig: 0.15 Interim Cover Earthquake Moment Magnitude, M: 5.5	1.44 Scaling Factor for stress ration, r _m 2.02 Thickness of High Compaction Layer (ft) High Compaction Layer (####### 5618.87 5617.87 4.00 0.060 1.20 0.454 0.334 0.00 0.454 0.33 0.47 Volumetric Strain Ratio for Site-Specific Design Earth Thickness of Random/Platform Fill on on top of existing interim cover (ft) Platform/Random Fill Layer (###### 5618.85 2.02 0.050 1.01 0.556 0.00 0.00 0.456 0.55	334 1.83 508 1.9E-03 4.9E+02 6.8E-05 11 0.153 12419 0.01% 0.655 0.02% 0.000 0.34 0.079 0.765 0.00% 0.0000 505 2.75 508 1.6E-03 4.0E+02 12E-04 11 0.170 10466 0.02% 2.00 0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.0000
Cells Requiring User Input/Manipulation Magnitude Scaling Factor, MSF: 2.21 2.21	Zissi Equiv. Number of Uniform Strain Cycles, N 5593.51 Elevation of bottom of tailings (line) (lit ans)	Seismic Settlement Analysis - Stewart et al (2004)
2013 CPT Data from ConeTec	CPT Data Interpretations Conditions at t, Liquefaction Triggering Analyses	TOTAL SEISMIC SETTLEMENT (FT): 0.347
Depth Depth Type (as of CPT Elevation qt fs qc (u2) (u2) fsiqt (tt ams) TSF TSF TSF (tt) PSI (%) U11 Unit at time Pressue time of (tt) (tt ams) TSF TSF TSF (tt) PSI (%) U11 Unit unit at time Pressue time of (tc) (pcf) (tsf) (tsf) (tsf)		Wave Solit Shear Y Shear Y Shear Y Shear Y Strain (n) Y Strain (n) Strain (n) <t< td=""></t<>
17.386 5569.46 9.6 0.196 9.2 5.7 25.02 2.05% Sime Taingy 0.057 113.1 0.98 0.46 0.53 17.552 5569.30 9.8 0.008 8.7 4.2 2.24 2.35% Sime Taingy 0.057 113.1 0.99 0.46 0.53 17.626 5569.30 9.1 0.190 8.7 6.75 2.225 2.19% Sime Taingy 0.057 113.1 1.00 0.47 0.53 17.880 5597.97 9.1 0.170 8.7 6.75 2.422 1.25% Sime Taingy 0.057 113.1 1.00 0.47 0.45 18.026 5597.49 1.0 0.260 9.5 1.20 1.20 1.05 1.05 1.05 1.04 0.99 0.55 18.375 5597.45 1.0 0.200 9.5 1.60 2.45% Sime Taingy 0.057 113.1 1.04 0.99 5.5 18.07 5597.59<	1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0	8.35 5001 1.8E-03 4.4E+02 3.4E-04 16 0.478 5582 0.10% 2.00 0.65 0.03% 0.017 0.34 0.079 0.765 2.69% 0.0044 8.40 5001 1.8E-03 4.4E+02 3.5E-04 16 0.478 5565 0.10% 2.00 0.655 0.03% 0.011 0.34 0.079 0.765 2.29% 0.0044 8.45 5001 1.8E-03 4.4E+02 3.5E-04 16 0.478 5563 0.10% 2.00 0.655 0.03% 0.0118 0.34 0.079 0.765 2.75% 0.0045 8.55 500 1.8E-03 4.4E+02 3.5E-04 16 0.479 5550 0.1% 2.00 0.65 0.03% 0.0118 0.34 0.079 0.765 2.85% 0.0047 8.65 500 1.8E-03 4.4E+02 3.6E-04 16 0.479 5538 0.11% 2.00 0.65 0.03% 0.019 3

Data File: 13.52106 SP2W3-BSC-CPT	WHITE MESA TAILINGS REPOSITORY LIQUEFACTION AND SEIS	SMIC SETTLEMENT ANALYSES - 2W3 5813.80 Water surface elevation during CPT investigation (ft	ete 70 Cround Surface Elevation of time of CD	T (fl.amal)	Elev. at Elev. At E Top of Midpoint		Total Equil Pore Equil I Stress at Pressure Pressu	re at Stress at Stress at	lidpoi Shear nt Wave Soil	Max Shear P = Pla: Strain Yerr*(Gerr 1 Modulus, /Gmax) Inc	y Shea	r d Shea	hol Volumetri ar c Strain at	Volumetric Incremen Strain for I Design Consolid	
Location: White Mesa 2013 CPT Investigation 	on Max. Horiz. Acceleration, Amax/g: 0.15		50 50 50 50 50 Thickness of Water Storage/Rooting Zon	after Placement of Final Cover (ft amsl) (rock mulch/topsoils) Immediately after plac		Layer Layer (ft) t (tcf) (pcf) Layer 625.77 0.50 0.055 110 0.028	of Layer of Layer Layer 0.014 0.00 0.0	(tsf) of Layer of Layer at 0 0.028 0.014		Gmax (tsf) (tsf) I 4.4E+02 3.0E-06	N g1 g2 γ (%) 11 0.068 46696 0.00 11 0.118 18930 0.00	a b (%) % 1.20 0.80 0.0	γ _{tv} 15 Cycles, ε _{c-15} (%) R c 4% 0.000 0.32 0. 0.3% 0.	c C _N Event, ε _v (%) on (ft) 1.133 0.778 0.00% 0.00 0.79 0.765 0.00% 0.00	it)
Tailings Sand-Slimes Tailings Slimes	Youd, et al (2001) Max. Horiz. Acceleration, Amax/g: 0.15	1.44 Scaling Factor for stress ration, r _m	.00 Thickness of High Compaction Layer (ft) .55 Thickness of Random/Platform Fill on or	t) on top of existing interim cover (ft)	High Compaction Layer ###### 5620.21 Platform/Random Fill Layer ###### 5617 5	618.27 4.00 0.060 120 0.454	0.334 0.00 0.0	0 0.454 0.334	1.83 508 1.9E-03 2.83 508 1.6E-03	4.8E+02 6.8E-05	11 0.153 12419 0.01 11 0.172 10354 0.02	% 0.65 0.75 0.0	2% 0.000 0.34 0.	0.79 0.765 0.00% 0.00 0.79 0.765 0.00% 0.00 0.79 0.765 0.00% 0.00	0000
Cells Requiring User Input/Manipulation 2013 CPT Data from ConeTec	Earthquake Moment Magnitude, M: 5.5 Magnitude Scaling Factor, MSF: 2.21	0.47 Volumetric Strain Ratio for Site-Specific Design Ear 7.51 Equiv. Number of Uniform Strain Cycles, N	164.98 Additional Stress due to Final Cover Plan 592.74 Elevation of bottom of tailings (liner) (ft a Conditions at t.		Liquefaction Triagering A	nalvses					Seismic Settleme	nt Analysis - Stewart et al (2		EISMIC SETTLEMENT (FT): 0.3	363
Depth at time Pw F		Normalized Normalize Type Cone d Friction Index, Penetration Ratio, F, I,	Pore Effective otal Stress Pressure Stress at SaturatedC	Idriss & Boulanger (2008) Cyclic Stress Ratio Cyclic Resistance	e Ratio Cyclic Stress Ratio				Wave Soil Depth Velocity, Density		ex, Strai	n, Strain,	ar c Strain at γ⊷ 15 Cycles,	Strain for I Design Consolid	idati
of CPT Elevation qt fs qc (u2) (u (ft) (ft amsl) TSF TSF TSF (ft) P		CN qc1 qc1 qc1N Resistance, (%) ¹ ^c FC TSF MPa ^Q _c %	at t ₁ at t ₁ t ₁ at t ₁ r _d C (tsf) (tsf) (tsf) 1=Yes 0=No		(CRR) r _d D _r f K _a	Ka CSR (CRR) M=7.5, Kc qC1n-cs M=7.5, sourtism	Avg Liquefia FoS 1=Y FoS 2=N	es	t t ₁ , z ₁ V _s , ρ m (ft/sec) (tcf)	Modulus, /G _{max}) I G _{max} tsf tsf	η 91 92 γ	a b (%)	ε _{c-15} (%) R c	c C_N Event, ε_v (%) on (ft))
0.328 5615.39 34.3 0.207 34.2 7.6 3.	.82 1.62% Itterim Cover 0.050 100.7 0.01 0.00 0.01 0 .28 0.60% Interim Cover 0.050 100.7 0.02 0.00 0.02 0	1.70 13.124 182.42 15.27 935 1.62% 1.5 51% 1.70 58.208 809.09 67.70 2074 0.60% 1.0 51%	0.60 0.00 0.60 0 1.00 0.	.08 1.03 1.0 0.060 54.08 121.78		1.0 0.017 1.00 15.27 0.063 1.0 0.017 1.00 67.70 0.109	152.05 76.69 2 132.00 67.54 2		3.27 594 1.6E-03 3.32 594 1.6E-03	5.5E+02 1.0E-04 5.5E+02 1.1E-04	11 0.177 9806 0.01 11 0.178 9750 0.01	% 2.00 0.65 0.0	3% 0.000 0.34 0.	0.079 0.765 0.00% 0.00 0.079 0.765 0.00% 0.00	0000
0.656 5615.06 93.8 1.118 93.8 6.5 2.	.48 0.91% Interim Cover 0.050 100.7 0.02 0.00 0.02 0 .81 1.19% Interim Cover 0.050 100.7 0.03 0.00 0.03 0 .13 1.12% Interim Cover 0.050 100.7 0.04 0.00 0.04 0	1.70 102.306 ###### 118.89 2429 0.91% 1.2 51% 1.70 159.409 ###### 185.22 2838 1.19% 1.3 51% 1.70 268.634 ###### 312.09 3826 1.12% 1.3 51%	0.62 0.00 0.62 0 1.00 0.	1.12 1.04 1.0 0.060 72.04 190.94 1.22 1.07 1.0 0.062 95.32 280.55 1.30 1.10 0.063 139.84 451.93		1.0 0.014 1.00 118.89 0.236 1.0 0.012 1.00 185.22 1.000 1.0 0.013 1.00 312.09 1.000	191.11 102.00 2 606.81 311.45 2 485.64 250.71 2		3.37 594 1.6E-03 3.42 594 1.6E-03 3.47 594 1.6E-03	5.5E+02 1.1E-04	11 0.179 9694 0.01 11 0.179 9640 0.01 11 0.180 9587 0.01	% 2.00 0.65 0.0	3% 0.000 0.34 0.	0.779 0.765 0.00% 0.00 0.779 0.765 0.00% 0.00 0.779 0.765 0.00% 0.00	0000
0.984 5614.74 233.5 2.580 233.4 9.6 4. 1.148 5614.57 321.1 3.237 321.1 4.7 2	.17 1.11% Interim Cover 0.050 100.7 0.05 0.00 0.05 0 .05 1.01% Interim Cover 0.050 100.7 0.06 0.00 0.06 0	1.70 396.814 ###### 460.99 4709 1.11% 1.3 51% 1.70 545.819 ###### 633.99 5551 1.01% 1.3 51%	0.63 0.00 0.63 0 1.00 0. 0.64 0.00 0.64 0 1.00 0.	.30 1.09 1.0 0.063 192.10 653.09 .30 1.09 1.0 0.063 252.81 886.80	1.000 15.83 0.97 1.24 0.60 3.13 1.000 15.89 0.97 1.45 0.60 2.95	1.0 0.014 1.00 460.99 1.000 1.0 0.015 1.00 633.99 1.000	404.86 210.34 2 347.16 181.52 2		3.52 594 1.6E-03 3.57 594 1.6E-03	5.5E+02 1.1E-04 5.5E+02 1.1E-04	11 0.180 9535 0.01 11 0.181 9483 0.01	% 2.00 0.65 0.0 % 2.00 0.65 0.0	3% 0.000 0.34 0. 3% 0.000 0.34 0.	.079 0.765 0.00% 0.00 .079 0.765 0.00% 0.00	0000
1.476 5614.24 325.9 3.960 325.9 6.7 2.	.25 1.10% Interim Cover 0.050 100.7 0.07 0.00 0.07 0 .88 1.22% Interim Cover 0.050 100.7 0.07 0.00 0.07 0 10 1.42% Interim Cover 0.050 100.7 0.08 0.00 0.07 0	1.70 591.651 ###### 687.26 5266 1.10% 1.3 51% 1.70 553.945 ###### 643.46 4382 1.22% 1.3 51% 1.70 477.020 ###### 554.12 3396 1.43% 1.4 51%	0.66 0.00 0.66 0 1.00 0.		1.000 16.00 0.97 1.46 0.60 2.66		303.88 159.91 2 270.22 143.11 2 243.30 129.68 2		3.62 594 1.6E-03 3.67 594 1.6E-03 3.72 594 1.6E-03	5.5E+02 1.2E-04	11 0.182 9433 0.01 11 0.182 9383 0.02 11 0.183 9335 0.02	% 2.00 0.65 0.0	3% 0.000 0.34 0.	0.779 0.765 0.00% 0.00 0.779 0.765 0.00% 0.00 0.779 0.765 0.00% 0.00	0000
1.804 5613.92 244.2 3.918 244.1 3.6 1. 1.968 5613.75 208.3 4.496 208.3 3.0 1.	.54 1.60% Interim Cover 0.050 100.7 0.09 0.09 0 .30 2.16% Interim Cover 0.050 100.7 0.10 0.00 0.10 1	1.70 415.038 ###### 482.09 2686 1.61% 1.4 51% 1.70 354.025 ###### 411.22 2132 2.16% 1.6 51%	0.67 0.00 0.67 0 1.00 0. 0.68 0.00 0.68 0 1.00 0.	.30 1.07 1.0 0.062 199.50 681.58 .30 1.07 1.0 0.062 174.63 585.84	1.000 16.11 0.97 1.27 0.60 2.46 1.000 16.18 0.97 1.17 0.60 2.39	1.0 0.017 1.00 482.09 1.000 1.0 0.018 1.00 411.22 1.000	221.27 118.69 2 206.05 111.11 2		3.77 594 1.6E-03 3.82 594 1.6E-03	5.5E+02 1.2E-04 5.5E+02 1.2E-04	11 0.183 9287 0.02 11 0.184 9240 0.02	% 2.00 0.65 0.0 % 2.00 0.65 0.0	3% 0.000 0.34 0. 3% 0.000 0.34 0.	0.079 0.765 0.00% 0.00 0.079 0.765 0.00% 0.00	0000
2.297 5613.42 146.4 3.625 146.4 0.5 0.	.62 2.51% Interim Cover 0.050 100.7 0.11 0.01 0.10 1 .21 2.48% Interim Cover 0.050 100.7 0.12 0.01 0.10 1 .01 1.55% Interim Cover 0.050 100.7 0.12 0.01 0.10 1	1.70 291.278 ###### 338.32 1699 2.51% 1.6 51% 1.70 248.795 ###### 288.97 1407 2.48% 1.6 51% 1.70 221.918 ###### 257.74 1218 1.55% 1.5 51%	0.70 0.00 0.70 0 1.00 0.	.30 1.06 1.0 0.061 131.73 420.69	1.000 16.25 0.97 1.06 0.60 2.36 1.000 16.32 0.97 0.98 0.60 2.33 1.000 16.38 0.97 0.93 0.60 2.33	1.0 0.018 1.00 338.32 1.000 1.0 0.018 1.00 289.10 1.000 1.0 0.019 1.00 257.74 1.000	199.70 107.97 2 193.74 105.03 2 188.12 102.25 2		3.87 594 1.6E-03 3.92 594 1.6E-03 3.97 594 1.6E-03	5.5E+02 1.2E-04	11 0.185 9194 0.02 11 0.185 9149 0.02 11 0.186 9104 0.02	% 2.00 0.65 0.0	3% 0.000 0.34 0.	0.779 0.765 0.00% 0.00 0.779 0.765 0.00% 0.00 0.779 0.765 0.00% 0.00	0000
2.625 5613.10 117.5 1.895 117.5 0.5 0. 2.789 5612.93 87.2 1.616 87.2 -0.2 -0	.22 1.61% Interim Cover 0.050 100.7 0.13 0.02 0.11 1 0.08 1.85% Interim Cover 0.050 100.7 0.14 0.03 0.11 1	1.70 199.801 ###### 232.06 1065 1.61% 1.5 51% 1.70 148.240 ###### 172.17 768 1.86% 1.6 51%	0.71 0.00 0.71 0 1.00 0. 0.72 0.00 0.72 0 0.99 0.	.30 1.06 1.0 0.061 111.76 343.82 .20 1.03 1.0 0.059 90.74 262.91	1.000 16.45 0.97 0.88 0.60 2.28 1.000 16.81 0.97 0.76 0.62 2.16	1.0 0.019 1.00 232.06 1.000 1.0 0.020 1.00 172.17 1.000	182.83 99.64 2 177.83 97.32 2		4.02 594 1.6E-03 4.07 594 1.6E-03	5.5E+02 1.3E-04 5.5E+02 1.3E-04	11 0.186 9060 0.02 11 0.187 9017 0.02	% 2.00 0.65 0.0 % 2.00 0.65 0.0	3% 0.000 0.34 0. 3% 0.000 0.34 0.	0.079 0.765 0.00% 0.00 0.079 0.765 0.00% 0.00	0000
3.117 5612.60 41.8 0.990 41.8 -0.7 -0	N.11 2.14% Interim Cover 0.050 100.7 0.15 0.03 0.12 1 0.32 2.37% Interim Cover 0.050 100.7 0.16 0.04 0.12 1 5.9 2.66% SandStime Tatin 0.059 119.0 0.17 0.04 0.12 1	1.70 96.186 ###### 111.71 484 2.15% 1.7 51% 1.70 71.043 987.50 82.50 348 2.38% 1.8 51% 1.70 49.980 694.72 58.03 235 2.67% 2.0 47%	0.74 0.00 0.74 0 0.99 0.	1.12 1.02 1.0 0.059 69.52 181.23 0.09 1.01 1.0 0.058 59.27 141.78 0.08 1.01 1.0 0.058 50.65 108.69	0.238 4.10 0.97 0.52 0.74 1.68	1.0 0.023 1.06 118.91 0.236 1.0 0.025 1.14 94.25 0.158 1.0 0.028 1.27 73.95 0.118	40.91 25.21 2 26.62 15.36 2 19.10 10.91 2		4.12 594 1.6E-03 4.17 495 1.6E-03 4.22 495 1.8E-03	3.8E+02 1.9E-04	11 0.187 8975 0.02 11 0.188 8933 0.03 10 0.189 9121 0.02	% 2.00 0.65 0.0	3% 0.002 0.34 0.	0.779 0.765 0.00% 0.00 0.779 0.765 0.25% 0.00 0.779 0.765 0.00% 0.00	0004
3.609 5612.11 21.4 0.387 21.4 -1.7 -0	1.53 2.10% Sand-Silme Tailin 0.059 119.0 0.18 0.05 0.13 1 1.72 1.81% Sand-Silme Tailin 0.059 119.0 0.19 0.05 0.13 1	1.70 42.364 588.86 49.19 192 2.12% 1.9 47% 1.70 36.363 505.45 42.21 159 1.83% 2.0 47%	0.76 0.00 0.76 0 0.99 0. 0.77 0.00 0.77 0 0.99 0.	0.07 1.01 1.0 0.058 47.55 96.74 0.07 1.01 1.0 0.058 45.11 87.32	0.137 2.37 0.97 0.40 0.80 1.47 0.123 2.13 0.97 0.38 0.80 1.45	1.0 0.029 1.24 60.94 0.101 1.0 0.029 1.24 52.38 0.093	15.82 9.10 2 14.12 8.13 2		4.27 495 1.8E-03 4.32 495 1.8E-03	4.5E+02 1.7E-04	10 0.190 9072 0.03 10 0.190 9024 0.03 16 0.443 7387 0.03	% 2.00 0.65 0.0 % 2.00 0.65 0.0	3% 0.000 0.34 0. 3% 0.000 0.34 0.	.079 0.765 0.00% 0.00 .079 0.765 0.00% 0.00	0000
3.937 5611.78 9.9 0.171 10.0 -1.5 -0	9.91 2.49% Stime Failings 0.057 113.1 0.20 0.06 0.14 1 0.64 1.72% Sand-Stime Tailin 0.059 119.0 0.21 0.06 0.14 1 7.4 1.07% Sand-Stime Tailin 0.059 119.0 0.22 0.07 0.15 1	1.70 22.355 310.73 25.94 94 2.53% 2.2 71% 1.70 16.915 235.12 19.63 68 1.76% 2.2 47% 1.70 16.881 234.65 19.63 66 1.09% 2.1 47%	0.79 0.00 0.79 0 0.99 0.	1.06 1.01 1.0 0.058 39.12 65.06 1.05 1.00 1.0 0.057 37.19 56.81 1.05 1.00 1.0 0.057 37.19 56.81		1.0 0.030 1.69 43.72 0.086 1.0 0.030 1.65 32.48 0.077 1.0 0.030 1.41 27.67 0.073	12.68 7.15 2 10.94 6.21 2 10.05 5.76 2		4.37 495 1.8E-03 4.42 495 1.8E-03 4.47 495 1.8E-03		16 0.443 7387 0.03 10 0.191 8933 0.03 10 0.192 8888 0.03	% 2.00 0.65 0.0	3% 0.000 0.34 0.	0.779 0.765 0.28% 0.00 0.779 0.765 0.00% 0.00 0.779 0.765 0.00% 0.00	0000
	.60 0.23% Sand-Stime Tailin 0.059 119.0 0.22 0.07 0.15 1 .90 0.39% Sand-Stime Tailin 0.059 119.0 0.23 0.08 0.16 1 .62 0.57% Sand-Stime Tailin 0.059 119.0 0.24 0.07 0.15 1	1.70 22.593 314.04 26.29 86 0.24% 1.6 47% 1.70 18.241 253.55 21.21 67 0.40% 1.8 47% 1.70 14.314 198.96 16.70 51 0.58% 2.0 47%	0.82 0.00 0.82 0 0.99 0.	1.00 1.00 0.057 39.52 65.81 1.05 1.00 1.0 0.057 37.74 58.95 1.05 1.00 1.0 0.057 36.16 52.86		1.0 0.030 1.00 26.28 0.072 1.0 0.030 1.13 24.06 0.070 10 0.030 1.33 22.15 0.068	9.59 5.62 2 9.07 5.29 2 8.61 5.01 2		4.52 495 1.8E-03 4.57 495 1.8E-03 4.62 495 1.8E-03		10 0.192 8843 0.03 10 0.193 8799 0.03 10 0.194 8756 0.03	% 2.00 0.65 0.0	3% 0.000 0.34 0.	0.779 0.765 0.00% 0.00 0.779 0.765 0.00% 0.00 0.779 0.765 0.00% 0.00	0000
4.757 5610.96 7.9 0.031 7.8 13.0 5. 4.921 5610.80 7.2 0.093 7.1 20.3 8.	.65 0.39% Sand-Slime Tailing 0.059 119.0 0.25 0.09 0.17 1 .78 1.30% Slime Tailings 0.057 113.1 0.26 0.09 0.17 1	1.70 13.311 185.02 15.62 46 0.40% 2.0 47% 1.70 11.985 166.59 14.17 41 1.35% 2.3 71%	0.84 0.00 0.84 0 0.98 0. 0.85 0.00 0.85 0 0.98 0.	0.05 1.00 1.0 0.057 35.78 51.40 0.05 1.00 1.0 0.057 35.02 49.19	0.079 1.38 0.96 0.23 0.80 1.39 0.077 1.35 0.96 0.22 0.80 1.38	1.0 0.031 1.28 20.02 0.067 1.0 0.031 1.94 27.50 0.073	8.16 4.77 2 8.70 5.03 2		4.67 495 1.8E-03 4.72 495 1.8E-03	4.5E+02 1.8E-04 4.3E+02 1.9E-04	10 0.194 8713 0.03 16 0.447 7136 0.04	% 2.00 0.65 0.0 % 2.00 0.65 0.0	3% 0.000 0.34 0. 3% 0.004 0.34 0.	0.079 0.765 0.00% 0.00 0.079 0.765 0.58% 0.00	0000 0009
5.249 5610.47 8.4 0.108 8.2 23.7 10	L21 L82% Stime Tailings 0.057 113.1 0.27 0.10 0.17 1 0.28 L.29% Sand-Stime Tailin 0.059 119.0 0.28 0.10 0.18 1 7.6 0.69% Sand-Stime Tailin 0.059 119.0 0.29 0.11 0.18 1	1.70 11.866 164.94 14.10 40 1.89% 2.4 71% 1.70 14.008 194.71 16.56 45 1.33% 2.3 47% 1.70 30.804 428.18 35.97 98 0.70% 1.8 47%	0.86 0.00 0.86 0 0.98 0.	1.05 1.00 1.0 0.057 35.00 49.10 1.05 1.00 1.0 0.057 36.11 52.67 1.06 1.00 1.0 0.057 42.92 78.89	0.080 1.41 0.96 0.23 0.80 1.37	1.0 0.031 2.30 32.49 0.077 1.0 0.031 1.82 30.12 0.075 1.0 0.031 1.12 40.39 0.084	8.98 5.17 2 8.53 4.97 2 9.26 5.61 2		4.77 495 1.8E-03 4.82 495 1.8E-03 4.87 495 1.8E-03	4.5E+02 1.9E-04	16 0.447 7104 0.04 10 0.196 8594 0.03 10 0.196 8554 0.03	% 2.00 0.65 0.0	3% 0.001 0.34 0.	0.079 0.765 0.61% 0.00 0.079 0.765 0.14% 0.00 0.079 0.765 0.20% 0.00	0002
5.577 5610.14 20.7 0.144 20.7 2.2 0. 5.741 5609.98 20.9 0.185 20.9 1.2 0.	.94 0.69% Sand-Slime Tailin 0.059 119.0 0.30 0.11 0.19 1 .52 0.89% Sand-Slime Tailin 0.059 119.0 0.31 0.12 0.19 1	1.70 35.241 489.85 40.96 109 0.70% 1.8 47% 1.70 35.462 492.92 41.20 107 0.90% 1.9 47%	0.88 0.00 0.88 0 0.98 0. 0.89 0.00 0.89 0 0.98 0.	0.07 1.00 1.0 0.057 44.67 85.62 0.07 1.00 1.0 0.056 44.75 85.95	0.121 2.13 0.96 0.37 0.80 1.36 0.121 2.14 0.96 0.37 0.80 1.35	1.0 0.031 1.10 44.95 0.087 1.0 0.031 1.15 47.49 0.090	9.45 5.79 2 9.45 5.80 2		4.92 495 1.8E-03 4.97 495 1.8E-03	4.5E+02 1.9E-04 4.5E+02 1.9E-04	10 0.197 8515 0.03 10 0.198 8476 0.03	% 2.00 0.65 0.0 % 2.00 0.65 0.0	3% 0.002 0.34 0. 3% 0.002 0.34 0.	.079 0.765 0.25% 0.00 .079 0.765 0.30% 0.00	0004 0005
	10.7 1.27% Sand-Silime Tailin 0.059 119.0 0.32 0.12 0.20 1 0.1 1.35% Sand-Silime Tailin 0.059 119.0 0.33 0.13 0.20 1 2.3 1.33% Sand-Silime Tailin 0.059 119.0 0.34 0.13 0.20 1	1.70 28.849 401.00 33.50 84 1.30% 2.0 47% 1.70 27.880 387.53 32.38 80 1.38% 2.1 47% 1.70 21.267 295.61 24.71 59 1.37% 2.2 47%	0.91 0.00 0.91 0 0.98 0.	1.06 1.00 1.0 0.056 42.05 75.56 1.06 1.00 1.0 0.056 41.66 74.04 1.06 1.00 1.0 0.056 38.97 63.67	0.105 1.86 0.96 0.33 0.80 1.34	1.0 0.032 1.35 45.39 0.088 1.0 0.032 1.41 45.77 0.088 1.0 0.032 1.61 39.71 0.083	9.05 5.47 2 8.88 5.37 2 8.18 4.91 2		5.02 495 1.8E-03 5.07 495 1.8E-03 5.12 495 1.8E-03	4.5E+02 2.0E-04	10 0.198 8438 0.03 10 0.199 8401 0.03 10 0.199 8364 0.03	% 2.00 0.65 0.0	3% 0.003 0.34 0.	0.779 0.765 0.34% 0.00 0.779 0.765 0.39% 0.00 0.779 0.765 0.43% 0.00	0006
6.398 5609.32 11.4 0.156 11.4 5.1 2. 6.562 5609.16 8.9 0.092 8.8 14.8 6.	.22 1.37% Sand-Slime Tailin 0.059 119.0 0.35 0.14 0.21 1 .41 1.03% Sand-Slime Tailin 0.059 119.0 0.36 0.14 0.22 1	1.70 19.312 268.44 22.49 52 1.41% 2.2 47% 1.70 14.977 208.18 17.58 40 1.08% 2.3 47%	0.93 0.00 0.93 0 0.97 0. 0.94 0.00 0.94 0 0.97 0.	.05 1.00 1.0 0.056 38.19 60.68 .05 1.00 1.0 0.056 36.47 54.04	0.089 1.58 0.96 0.27 0.80 1.32 0.082 1.46 0.96 0.24 0.80 1.32	1.0 0.032 1.73 38.83 0.082 1.0 0.032 1.80 31.72 0.076	7.94 4.76 2 7.21 4.33 2		5.17 495 1.8E-03 5.22 495 1.8E-03	4.5E+02 2.0E-04 4.5E+02 2.0E-04	10 0.200 8327 0.03 10 0.200 8292 0.04	% 2.00 0.65 0.0 % 2.00 0.65 0.0	3% 0.003 0.34 0. 3% 0.003 0.34 0.	.079 0.765 0.46% 0.00 .079 0.765 0.50% 0.00	0008 0008
6.890 5608.83 6.9 0.094 6.8 23.9 10	.31 0.76% Sand-Siime Taiin 0.059 119.0 0.37 0.15 0.22 1 0.34 1.36% Stime Taiings 0.057 113.1 0.38 0.16 0.22 1 56 0.32% Sand-Siime Taiin 0.059 119.0 0.39 0.16 0.22 1	1.70 11.832 164.46 13.95 30 0.81% 2.3 47% 1.70 11.509 159.98 13.66 29 1.44% 2.4 71% 1.70 10.880 151.23 13.05 27 0.34% 2.2 47%	0.96 0.00 0.96 0 0.97 0.	1.05 1.00 1.0 0.056 35.19 49.14 1.05 0.99 1.0 0.056 34.84 48.51 1.05 0.99 1.0 0.056 34.88 47.93	0.076 1.36 0.96 0.21 0.80 1.31	1.0 0.032 1.90 26.50 0.072 1.0 0.032 2.45 33.50 0.078 1.0 0.032 1.59 20.81 0.067	6.66 4.01 2 7.07 4.21 2 5.99 3.67 2		5.27 495 1.8E-03 5.32 495 1.8E-03 5.37 495 1.8E-03	4.3E+02 2.2E-04	10 0.201 8256 0.04 16 0.453 6767 0.04 10 0.202 8189 0.04	% 2.00 0.65 0.0	3% 0.006 0.34 0.	0.779 0.765 0.54% 0.00 0.779 0.765 0.99% 0.00 0.779 0.765 0.60% 0.00	0016
7.218 5608.50 8.6 0.044 8.4 29.9 12 7.382 5608.34 6.9 0.052 6.7 30.0 13 7.546 5608.17 6.5 0.057 6.3 35.9 15	3.02 0.75% Sand-Slime Tailin 0.059 119.0 0.41 0.17 0.24 1	1.70 14.246 198.02 16.91 35 0.54% 2.1 47% 1.70 11.424 158.79 13.64 27 0.80% 2.3 47% 1.70 11.659 148.16 12.82 25 0.94% 2.4 71%	0.99 0.00 0.99 0 0.97 0.	.05 0.99 1.0 0.056 36.23 53.15 .05 0.99 1.0 0.056 35.08 48.72 .05 0.99 1.0 0.056 34.55 47.37	0.076 1.37 0.96 0.21 0.80 1.29	1.0 0.033 1.55 26.22 0.072 1.0 0.033 2.03 27.65 0.073 1.0 0.033 2.27 29.12 0.074	6.26 3.86 2 6.25 3.81 2 6.24 3.80 2		5.42 495 1.8E-03 5.47 495 1.8E-03 5.52 495 1.8E-03	4.5E+02 2.1E-04	10 0.202 8155 0.04 10 0.203 8121 0.04 16 0.455 6659 0.05	% 2.00 0.65 0.0 % 2.00 0.65 0.0	3% 0.004 0.34 0. 3% 0.004 0.34 0.	0.079 0.765 0.64% 0.00 0.079 0.765 0.67% 0.00 0.079 0.765 1.11% 0.00	0011
7.710 5608.01 7.0 0.066 6.9 29.2 12		1.70 10.059 140.10 12.02 2.5 0.94% 2.4 71% 1.70 11.645 161.87 13.88 27 1.00% 2.4 47% 1.70 10.982 152.65 13.20 25 1.09% 2.4 71%	1.01 0.00 1.01 0 0.97 0.1 1.02 0.00 1.02 0 0.96 0.1	.05 0.99 1.0 0.055 35.17 49.06 .05 0.99 1.0 0.055 34.69 47.89	0.077 1.38 0.96 0.22 0.80 1.28 0.075 1.36 0.96 0.21 0.80 1.28	1.0 0.033 2.23 30.97 0.076 1.0 0.033 2.42 31.93 0.077	6.26 3.82 2 6.22 3.79 2		5.57 495 1.8E-03 5.62 495 1.8E-03	4.5E+02 2.2E-04	10 0.204 8058 0.04 16 0.456 6607 0.05	% 2.00 0.65 0.0	3% 0.005 0.34 0.	0.079 0.765 0.74% 0.00 0.079 0.765 0.74% 0.00 0.079 0.765 1.17% 0.00	0012
8.038 5607.68 7.0 0.101 6.8 40.5 17 8.202 5607.52 7.2 0.053 7.0 32.9 14 8.366 5607.35 8.3 0.060 8.1 33.6 14		1.70 11.526 160.21 13.89 26 1.53% 2.5 71% 1.70 11.866 164.94 14.19 26 0.79% 2.3 47% 1.70 13.719 190.69 16.35 30 0.77% 2.3 47%	1.04 0.00 1.04 0 0.96 0.	.05 0.99 1.0 0.055 34.92 48.81 .05 0.99 1.0 0.055 35.28 49.47 .05 0.99 1.0 0.055 36.04 52.38	0.077 1.40 0.96 0.22 0.80 1.27	1.0 0.033 2.73 37.94 0.082 1.0 0.033 2.09 29.59 0.075 1.0 0.033 1.90 31.09 0.076	6.52 3.95 2 5.86 3.63 2 5.86 3.65 2		5.67 495 1.8E-03 5.72 495 1.8E-03 5.77 495 1.8E-03	4.5E+02 2.2E-04	16 0.456 6582 0.05 10 0.205 7966 0.04 10 0.206 7935 0.04	% 2.00 0.65 0.0	3% 0.005 0.34 0.	0.079 0.765 1.20% 0.00 0.079 0.765 0.83% 0.00 0.079 0.765 0.86% 0.00	0014
8.530 5607.19 8.4 0.039 8.2 29.3 12 8.694 5607.03 9.0 0.046 8.9 16.0 6.	2.71 0.47% Sand-Slime Tailin 0.059 119.0 0.48 0.21 0.27 1 .93 0.51% Sand-Slime Tailin 0.059 119.0 0.49 0.21 0.27 1	1.70 13.923 193.53 16.53 29 0.49% 2.2 47% 1.70 15.130 210.31 17.77 31 0.54% 2.2 47%	1.06 0.00 1.06 0 0.96 0. 1.07 0.00 1.07 0 0.96 0.	0.05 0.99 1.0 0.055 36.10 52.63 0.05 0.99 1.0 0.055 36.53 54.30	0.080 1.46 0.96 0.23 0.80 1.26 0.082 1.49 0.96 0.24 0.80 1.26	1.0 0.033 1.67 27.61 0.073 1.0 0.033 1.65 29.41 0.074	5.54 3.50 2 5.56 3.52 2		5.82 495 1.8E-03 5.87 495 1.8E-03	4.5E+02 2.3E-04 4.5E+02 2.3E-04	10 0.206 7905 0.04 10 0.207 7875 0.04	% 2.00 0.65 0.0 % 2.00 0.65 0.0	3% 0.006 0.34 0. 3% 0.006 0.34 0.	.079 0.765 0.89% 0.00 .079 0.765 0.92% 0.00	0015 0015
	37 0.48% Sand-Silime Tailin 0.059 119.0 0.50 0.22 0.28 1 9.1 0.90% Sand-Silime Tailin 0.059 119.0 0.50 0.22 0.28 1 5.0 0.70% Sand-Silime Tailin 0.059 119.0 0.51 0.22 0.28 1	1.70 14.909 207.24 17.55 30 0.51% 2.2 47% 1.70 15.130 210.31 17.71 30 0.96% 2.3 47% 1.70 17.782 247.17 20.81 35 0.74% 2.2 47%	1.09 0.00 1.09 0 0.96 0.	.05 0.99 1.0 0.055 36.46 54.01 .05 0.99 1.0 0.055 36.51 54.23 .05 0.99 1.0 0.055 37.60 58.41	0.082 1.49 0.95 0.24 0.80 1.25	1.0 0.034 1.66 29.14 0.074 1.0 0.034 2.04 36.18 0.080 1.0 0.034 1.70 35.42 0.080	5.45 3.47 2 5.79 3.64 2 5.65 3.61 2		5.92 495 1.8E-03 5.97 495 1.8E-03 6.02 495 1.8E-03		10 0.207 7845 0.04 10 0.208 7816 0.04 10 0.208 7787 0.05	% 2.00 0.65 0.0	3% 0.006 0.34 0.	0.779 0.765 0.95% 0.00 0.779 0.765 0.98% 0.00 0.779 0.765 1.01% 0.00	0016
9.350 5606.37 8.8 0.087 8.8 6.6 2. 9.514 5606.21 6.8 0.122 6.7 23.8 10	.84 0.98% Sand-Slime Tailing 0.059 119.0 0.52 0.23 0.29 1 0.30 1.78% Slime Tailings 0.057 113.1 0.53 0.24 0.30 1	1.70 14.960 207.94 17.46 28 1.05% 2.4 47% 1.70 11.390 158.32 13.52 21 1.93% 2.6 71%	1.11 0.00 1.11 0 0.96 0. 1.12 0.00 1.12 0 0.95 0.	0.05 0.99 1.0 0.055 36.42 53.88 0.05 0.99 1.0 0.054 34.80 48.32	0.081 1.49 0.95 0.24 0.80 1.24 0.076 1.39 0.95 0.21 0.80 1.24	1.0 0.034 2.18 38.09 0.082 1.0 0.034 3.44 46.54 0.089	5.72 3.61 2 6.13 3.76 2		6.07 460 1.8E-03 6.12 460 1.8E-03	3.9E+02 2.8E-04 3.7E+02 2.9E-04	10 0.209 7758 0.06 16 0.461 6365 0.08	% 2.00 0.65 0.0 % 2.00 0.65 0.0	3% 0.011 0.34 0. 3% 0.014 0.34 0.	0.079 0.765 1.68% 0.00 0.079 0.765 2.17% 0.00	0028 0036
	24 0.25% Sand-Slime Tailin 0.059 119.0 0.55 0.25 0.31 1	1.70 13.668 189.99 16.37 26 1.60% 2.5 71% 1.70 21.794 302.94 25.72 41 0.26% 2.0 47% 1.70 23.647 328.69 27.55 43 1.05% 2.2 47%	1.14 0.00 1.14 0 0.95 0.	1.05 0.99 1.0 0.054 35.79 52.16 1.06 0.98 1.0 0.054 39.32 65.04 1.06 0.98 1.0 0.054 39.96 67.52			5.16 3.44 2		6.17 460 1.8E-03 6.22 460 1.8E-03 6.27 460 1.8E-03	3.9E+02 2.8E-04	16 0.461 6344 0.08 10 0.210 7677 0.07 10 0.210 7650 0.07		3% 0.012 0.34 0.	0.079 0.765 2.21% 0.00 0.079 0.765 1.79% 0.00 0.079 0.765 1.82% 0.00	0029
10.170 5605.55 8.3 0.114 8.2 6.4 2. 10.335 5605.39 8.7 0.102 8.7 10.1 4.	.78 1.38% Sand-Slime Tailin 0.059 119.0 0.57 0.26 0.31 1 .39 1.17% Sand-Slime Tailin 0.059 119.0 0.58 0.26 0.32 1	1.70 13.957 194.00 16.29 24 1.48% 2.5 47% 1.70 14.722 204.64 17.22 25 1.25% 2.4 47%	1.15 0.00 1.15 0 0.95 0. 1.16 0.00 1.16 0 0.95 0.	.05 0.99 1.0 0.054 36.01 52.30 .05 0.98 1.0 0.054 36.34 53.57	0.080 1.47 0.95 0.23 0.80 1.22 0.081 1.50 0.95 0.24 0.80 1.22	1.0 0.034 2.79 45.51 0.088 1.0 0.034 2.52 43.44 0.086	5.73 3.60 2 5.54 3.52 2		6.32 460 1.8E-03 6.37 460 1.8E-03	3.9E+02 2.9E-04	10 0.211 7623 0.07 10 0.211 7597 0.07	% 2.00 0.65 0.0 % 2.00 0.65 0.0	3% 0.012 0.34 0. 3% 0.012 0.34 0.	.079 0.765 1.86% 0.00 .079 0.765 1.89% 0.00	0030 0031
10.499 5605.22 23.1 0.120 23.1 9.6 4. 10.663 5605.06 24.0 0.124 23.9 8.7 3. 10.827 5604.89 25.3 0.175 25.3 8.6 3.		1.70 39.219 545.14 45.67 70 0.53% 1.9 47% 1.70 40.647 564.99 47.32 71 0.53% 1.9 47% 1.70 42.925 596.66 49.96 74 0.71% 1.9 47%	1.18 0.00 1.18 0 0.95 0. 1.19 0.00 1.19 0 0.95 0.	1.07 0.98 1.0 0.054 46.32 91.99 1.07 0.98 1.0 0.054 46.90 94.21 1.07 0.98 1.0 0.053 47.82 97.78	0.133 2.49 0.95 0.40 0.80 1.21 0.139 2.60 0.95 0.41 0.80 1.21	1.0 0.034 1.17 53.57 0.094 1.0 0.035 1.17 55.14 0.096 1.0 0.035 1.21 60.64 0.101	5.98 4.20 2 5.97 4.23 2 6.21 4.41 2		6.42 460 1.8E-03 6.47 460 1.8E-03 6.52 460 1.8E-03		10 0.212 7571 0.07 10 0.212 7545 0.07 10 0.213 7519 0.07	% 2.00 0.65 0.0		0.079 0.765 1.93% 0.00 0.079 0.765 1.96% 0.00 0.079 0.765 2.00% 0.00	0032
10.991 5604.73 28.0 0.202 28.0 8.4 3. 11.155 5604.57 24.5 0.216 24.4 7.8 3.	.62 0.72% Sand-Slime Tailin 0.059 119.0 0.62 0.28 0.34 1 .38 0.88% Sand-Slime Tailin 0.059 119.0 0.63 0.29 0.34 1	1.70 47.583 661.40 55.37 81 0.74% 1.9 47% 1.70 41.514 577.04 48.31 70 0.91% 2.0 47%	1.20 0.00 1.20 0 0.94 0. 1.21 0.00 1.21 0 0.94 0.	.07 0.98 1.0 0.053 49.72 105.09 .07 0.98 1.0 0.053 47.25 95.56	0.151 2.84 0.95 0.43 0.79 1.22 0.135 2.54 0.95 0.40 0.80 1.20	1.0 0.034 1.19 65.94 0.107 1.0 0.035 1.31 63.36 0.104	6.49 4.66 2 6.22 4.38 2		6.57 460 1.8E-03 6.62 460 1.8E-03	3.9E+02 3.0E-04 3.9E+02 3.0E-04	10 0.213 7494 0.07 10 0.213 7469 0.08	% 2.00 0.65 0.0 % 2.00 0.65 0.0	3% 0.013 0.34 0. 3% 0.014 0.34 0.	.079 0.765 2.03% 0.00 .079 0.765 2.07% 0.00	0034
11.483 5604.24 17.7 0.281 17.6 7.2 3.	.11 1.59% Sand-Slime Tailin 0.059 119.0 0.65 0.30 0.35 1	1.70 34.272 476.38 39.89 56 1.16% 2.1 47% 1.70 29.937 416.12 34.86 48 1.65% 2.3 47% 1.70 30.039 417.54 34.99 48 1.91% 2.3 47%	1.23 0.00 1.23 0 0.94 0. 1.24 0.00 1.24 0 0.94 0.	.06 0.98 1.0 0.053 42.57 77.57	0.109 2.05 0.95 0.34 0.80 1.20 0.109 2.06 0.95 0.34 0.80 1.19	1.0 0.035 1.54 61.62 0.102 1.0 0.035 1.93 67.15 0.108 1.0 0.035 2.07 72.45 0.115	6.33 4.19 2		6.72 460 1.8E-03	3.9E+02 3.1E-04 3.9E+02 3.1E-04 3.9E+02 3.1E-04	10 0.214 7444 0.08 10 0.214 7419 0.08 10 0.215 7395 0.08	% 2.00 0.65 0.0	3% 0.014 0.34 0. 3% 0.014 0.34 0.	0.079 0.765 2.11% 0.00 0.079 0.765 2.14% 0.00 0.079 0.765 2.18% 0.00	0035
11.975 5603.75 17.7 0.579 17.6 13.2 5.		1.70 34.493 479.45 40.22 55 2.74% 2.4 47% 1.70 29.937 416.12 34.93 47 3.40% 2.5 71% 1.70 19.448 270.33 22.78 29 4.60% 2.7 71%	1.26 0.00 1.26 0 0.94 0.	1.07 0.98 1.0 0.053 44.41 84.63 1.06 0.98 1.0 0.053 42.25 77.18 1.05 0.98 1.0 0.053 38.02 60.80	0.109 2.06 0.95 0.34 0.80 1.19	1.0 0.035 2.30 92.67 0.154 1.0 0.035 2.84 99.07 0.170 1.0 0.035 4.36 99.37 0.171	8.78 5.52 2 9.61 5.84 2 9.56 5.62 2		6.87 460 1.8E-03		10 0.215 7371 0.08 16 0.467 6052 0.10	% 2.00 0.65 0.0	3% 0.018 0.34 0.	0.079 0.765 2.22% 0.00 0.079 0.765 2.74% 0.00 0.079 0.765 2.77% 0.00	0045
12.303 5603.42 10.9 0.321 10.7 30.3 13	3.15 2.94% Stime Tailings 0.057 113.1 0.70 0.32 0.37 1 4.35 3.28% Stime Tailings 0.057 113.1 0.71 0.33 0.38 1	1.70 18.258 253.79 21.58 27 3.14% 2.7 71% 1.70 16.949 235.59 20.38 25 3.53% 2.7 71%	1.28 0.00 1.28 0 0.94 0. 1.29 0.00 1.29 0 0.93 0.	.05 0.98 1.0 0.053 37.60 59.18 .05 0.98 1.0 0.053 37.18 57.56	0.087 1.64 0.95 0.27 0.80 1.18 0.085 1.61 0.95 0.26 0.80 1.18	1.0 0.035 4.36 99.37 0.171 1.0 0.035 3.72 80.22 0.128 1.0 0.035 4.13 84.08 0.135	7.07 4.35 2		6.97 460 1.8E-03 7.02 460 1.8E-03	3.7E+02 3.3E-04 3.7E+02 3.4E-04 3.7E+02 3.4E-04	16 0.467 6034 0.10 16 0.468 6016 0.10 16 0.468 5998 0.11	% 2.00 0.65 0.0 % 2.00 0.65 0.0	3% 0.018 0.34 0.	0.079 0.765 2.77% 0.00 0.079 0.765 2.81% 0.00 0.079 0.765 2.85% 0.00 0.079 0.765 2.85% 0.00 0.079 0.765 2.88% 0.00	0046
12.795 5602.92 9.5 0.203 9.3 29.1 12	2.59 2.13% Slime Tailings 0.057 113.1 0.73 0.34 0.39 1	1.70 14.586 202.75 17.14 21 2.45% 2.7 71% 1.70 15.878 220.70 18.80 23 2.31% 2.6 71% 1.70 13.498 187.62 16.09 19 2.78% 2.8 71%	1.31 0.00 1.31 0 0.93 0.	0.05 0.98 1.0 0.053 36.06 53.20 0.05 0.98 1.0 0.053 36.63 55.43 0.05 0.98 1.0 0.053 35.69 51.78	0.083 1.57 0.95 0.25 0.80 1.17	1.0 0.035 3.89 66.77 0.108 1.0 0.036 3.58 67.31 0.108 1.0 0.036 4.39 70.58 0.113			7.12 460 1.8E-03	3.7E+02 3.4E-04 3.7E+02 3.4E-04 3.7E+02 3.5E-04	16 0.469 5963 0.11		3% 0.019 0.34 0.	0.079 0.765 2.88% 0.00 0.079 0.765 2.92% 0.00 0.079 0.765 2.96% 0.00	0048
13.123 5602.60 7.2 0.183 6.9 46.1 19 13.287 5602.43 10.7 0.106 10.4 37.6 16	3.99 2.54% Stime Tailings 0.057 113.1 0.74 0.35 0.39 1 3.29 0.99% Sand-Stime Tailin 0.059 119.0 0.75 0.35 0.40 1	1.70 11.764 163.52 14.23 16 2.83% 2.8 71% 1.70 17.731 246.46 21.06 25 1.07% 2.4 47%	1.33 0.00 1.33 0 0.93 0. 1.34 0.00 1.34 0 0.93 0.	0.05 0.98 1.0 0.053 35.04 49.28 0.05 0.98 1.0 0.052 37.69 58.74	0.077 1.46 0.94 0.22 0.80 1.17 0.086 1.65 0.94 0.26 0.80 1.17	1.0 0.036 4.85 69.02 0.111 1.0 0.036 2.40 50.63 0.092	5.79 3.63 2 4.77 3.21 2		7.22 460 1.8E-03 7.27 460 1.8E-03	3.7E+02 3.5E-04 3.9E+02 3.3E-04	16 0.470 5928 0.11 10 0.219 7175 0.09	% 2.00 0.65 0.0 % 2.00 0.65 0.0	3% 0.020 0.34 0. 3% 0.017 0.34 0.	.079 0.765 3.00% 0.00 .079 0.765 2.53% 0.00	0049 0042
13.451 5602.27 16.7 0.102 16.7 10.8 4. 13.615 5602.10 17.2 0.121 17.1 10.8 4. 13.779 5601.94 17.2 0.165 17.1 13.8 5.	.69 0.70% Sand-Slime Tailin 0.059 119.0 0.77 0.36 0.41 1	1.70 28.339 393.91 33.05 40 0.64% 2.1 47% 1.69 29.024 403.44 33.84 40 0.74% 2.2 47% 1.68 28.815 400.53 33.64 40 1.00% 2.2 47%	1.36 0.00 1.36 0 0.93 0.	1.06 0.97 1.0 0.052 41.89 74.94 1.06 0.97 1.0 0.052 42.17 76.01 1.06 0.97 1.0 0.052 42.10 75.73	0.107 2.06 0.94 0.34 0.80 1.16	1.0 0.036 1.52 50.29 0.092 1.0 0.036 1.57 53.23 0.094 1.0 0.036 1.75 59.00 0.099	4.76 3.41 2		7.37 460 1.8E-03	3.9E+02 3.4E-04 3.9E+02 3.4E-04 3.9E+02 3.4E-04	10 0.219 7154 0.09 10 0.220 7132 0.10 10 0.220 7111 0.10	% 2.00 0.65 0.0	3% 0.017 0.34 0.	.079 0.765 2.57% 0.00 .079 0.765 2.61% 0.00 .079 0.765 2.65% 0.00	0043
13.943 5601.78 17.7 0.203 17.6 15.3 6. 14.107 5601.61 19.0 0.286 18.9 16.8 7.	.65 1.15% Sand-Slime Tailin 0.059 119.0 0.79 0.38 0.42 1 .30 1.50% Sand-Slime Tailin 0.059 119.0 0.80 0.38 0.42 1	1.67 29.281 407.00 34.19 40 1.20% 2.3 47% 1.64 31.034 431.37 36.24 43 1.57% 2.3 47%	1.38 0.00 1.38 0 0.92 0. 1.39 0.00 1.39 0 0.92 0.	.06 0.97 1.0 0.052 42.29 76.49 .06 0.97 1.0 0.052 43.01 79.26	0.108 2.08 0.94 0.34 0.80 1.16 0.112 2.16 0.94 0.35 0.80 1.15	1.0 0.036 1.86 63.68 0.104 1.0 0.036 2.01 72.78 0.116	5.16 3.62 2 5.68 3.92 2		7.47 460 1.8E-03 7.52 460 1.8E-03	3.9E+02 3.4E-04 3.9E+02 3.5E-04	10 0.220 7090 0.10 10 0.221 7070 0.10	% 2.00 0.65 0.0 % 2.00 0.65 0.0	3% 0.018 0.34 0. 3% 0.018 0.34 0.	.079 0.765 2.69% 0.00 .079 0.765 2.73% 0.00	0044 0045
	.88 1.51% sand-Slime Tailin 0.059 119.0 0.82 0.39 0.43 1	1.63 30.546 424.59 35.69 42 1.67% 2.3 47% 1.60 33.469 465.22 39.08 47 1.58% 2.3 47% 1.61 29.799 414.21 34.72 41 0.92% 2.2 47%	1.40 0.00 1.40 0 0.92 0.	1.06 0.97 1.0 0.052 42.82 78.50 1.06 0.97 1.0 0.051 44.01 83.09 1.06 0.97 1.0 0.051 42.48 77.19	0.117 2.27 0.94 0.36 0.80 1.15	1.0 0.036 2.09 74.50 0.118 1.0 0.036 1.92 75.08 0.119 1.0 0.036 1.68 58.41 0.099	5.73 4.00 2		7.62 460 1.8E-03	3.9E+02 3.5E-04 3.9E+02 3.5E-04 4.6E+02 3.0E-04	10 0.222 7029 0.10	% 2.00 0.65 0.0 % 2.00 0.65 0.0 % 2.00 0.65 0.0	3% 0.018 0.34 0.	0.079 0.765 2.76% 0.00 0.079 0.765 2.80% 0.00 0.079 0.765 1.84% 0.00	0046
14.764 5600.96 15.4 0.117 15.4 3.3 1. 14.928 5600.79 12.2 0.162 12.2 9.3 4.	.43 0.76% Sand-Slime Tailin 0.059 119.0 0.84 0.40 0.44 1 .03 1.32% Sand-Slime Tailin 0.059 119.0 0.85 0.41 0.45 1	1.63 25.149 349.57 29.25 33 0.80% 2.3 47% 1.66 20.144 280.00 23.51 26 1.42% 2.5 47%	1.42 0.00 1.42 0 0.92 0. 1.43 0.00 1.43 0 0.92 0.	0.06 0.97 1.0 0.051 40.56 69.81 0.05 0.97 1.0 0.051 38.55 62.05	0.099 1.93 0.94 0.31 0.80 1.14 0.090 1.75 0.94 0.28 0.80 1.14	1.0 0.036 1.80 52.65 0.094 1.0 0.036 2.66 62.56 0.103	4.40 3.17 2 4.79 3.27 2		7.72 500 1.8E-03 7.77 500 1.8E-03	4.6E+02 3.0E-04 4.6E+02 3.0E-04	10 0.222 6989 0.07 10 0.223 6969 0.07	% 2.00 0.65 0.0 % 2.00 0.65 0.0	3% 0.012 0.34 0. 3% 0.012 0.34 0.	0.079 0.765 1.87% 0.00 0.079 0.765 1.90% 0.00	0031 0031
15.256 5600.46 10.0 0.206 9.9 14.5 6.	.29 2.06% Slime Tailings 0.057 113.1 0.87 0.42 0.45 1	1.65 18.644 259.15 21.98 24 1.83% 2.6 47% 1.65 16.317 226.81 19.13 20 2.26% 2.7 71% 1.64 13.698 190.40 16.29 17 1.78% 2.7 71%	1.45 0.00 1.45 0 0.91 0.	.05 0.97 1.0 0.051 38.01 60.00 .05 0.97 1.0 0.051 36.75 55.87 .05 0.97 1.0 0.051 35.76 52.05	0.083 1.62 0.94 0.25 0.80 1.14		5.11 3.41 2 5.35 3.49 2 4.69 3.12 2		7.87 500 1.8E-03	4.6E+02 3.0E-04 4.4E+02 3.2E-04 4.4E+02 3.2E-04	10 0.223 6949 0.07 16 0.475 5711 0.09 16 0.475 5696 0.09	% 2.00 0.65 0.0	3% 0.016 0.34 0.	0.079 0.765 1.93% 0.00 0.079 0.765 2.39% 0.00 0.079 0.765 2.42% 0.00	0039
15.584 5600.14 9.3 0.108 9.1 29.9 12 15.748 5599.97 8.4 0.114 8.2 29.4 12	2.95 1.16% Sand-Sime Tailin 0.059 119.0 0.89 0.43 0.46 1 2.75 1.36% Sand-Sime Tailin 0.059 119.0 0.90 0.43 0.47 1	1.62 14.841 206.28 17.59 18 1.28% 2.6 47% 1.61 13.195 183.41 15.67 16 1.53% 2.7 47%	1.47 0.00 1.47 0 0.91 0. 1.48 0.00 1.48 0 0.91 0.	0.05 0.97 1.0 0.051 36.47 54.06 0.05 0.97 1.0 0.051 35.80 51.47	0.082 1.59 0.94 0.24 0.80 1.13 0.079 1.54 0.94 0.23 0.80 1.13	1.0 0.037 3.19 56.14 0.096 1.0 0.037 3.75 58.82 0.099	4.33 2.96 2 4.40 2.97 2		7.97 500 1.8E-03 8.02 500 1.8E-03	4.6E+02 3.1E-04 4.6E+02 3.1E-04	10 0.224 6893 0.07 10 0.225 6875 0.07	% 2.00 0.65 0.0 % 2.00 0.65 0.0	3% 0.013 0.34 0. 3% 0.013 0.34 0.	.079 0.765 2.01% 0.00 .079 0.765 2.04% 0.00	0033 0033
15.912 5599.81 7.3 0.150 7.0 43.6 18 16.076 5599.64 6.8 0.155 6.5 59.5 25 16.240 5599.48 6.4 0.150 6.0 55.9 24	5.76 2.27% Slime Tailings 0.057 113.1 0.92 0.44 0.48 1	1.60 11.168 155.23 13.48 13 2.36% 2.8 71% 1.59 10.281 142.91 12.63 12 2.62% 2.9 71% 1.58 9.501 132.07 11.67 11 2.76% 2.9 71%	1.50 0.00 1.50 0 0.91 0.	1.05 0.97 1.0 0.051 34.78 48.26 1.05 0.97 1.0 0.051 34.48 47.11 1.05 0.97 1.0 0.051 34.15 45.83	0.075 1.46 0.94 0.21 0.80 1.13	1.0 0.037 5.07 68.29 0.110 1.0 0.037 5.55 70.12 0.112 1.0 0.037 6.01 70.18 0.112	4.90 3.18 2		8.12 500 1.8E-03	4.4E+02 3.3E-04 4.4E+02 3.3E-04 4.4E+02 3.4E-04	16 0.476 5650 0.05 16 0.476 5636 0.05 16 0.477 5622 0.05	% 2.00 0.65 0.0	3% 0.017 0.34 0.	.079 0.765 2.51% 0.00 .079 0.765 2.54% 0.00 .079 0.765 2.56% 0.00	0042
16.404 5599.32 6.2 0.155 5.8 62.4 27 16.568 5599.15 6.4 0.156 6.0 61.6 26	7.06 2.49% Stime Tailings 0.057 113.1 0.94 0.45 0.48 1 3.67 2.43% Stime Tailings 0.057 113.1 0.95 0.46 0.49 1	1.57 9.139 127.04 11.32 11 2.93% 3.0 71% 1.56 9.390 130.52 11.60 11 2.85% 2.9 71%	1.52 0.00 1.52 0 0.90 0.1 1.53 0.00 1.53 0 0.90 0.1	0.05 0.97 1.0 0.051 34.03 45.36 0.05 0.97 1.0 0.051 34.13 45.73	0.073 1.44 0.94 0.19 0.80 1.12 0.074 1.45 0.94 0.20 0.80 1.12	1.0 0.037 6.31 71.49 0.114 1.0 0.037 6.14 71.27 0.114	4.90 3.17 2 4.85 3.15 2		8.22 500 1.8E-03 8.27 500 1.8E-03	4.4E+02 3.4E-04 4.4E+02 3.4E-04	16 0.477 5607 0.09 16 0.477 5593 0.10	% 2.00 0.65 0.0 % 2.00 0.65 0.0	3% 0.017 0.34 0. 3% 0.017 0.34 0.	.079 0.765 2.59% 0.00 .079 0.765 2.62% 0.00	0043 0043
16.896 5598.82 6.4 0.116 6.1 51.0 22 17.060 5598.66 5.5 0.121 5.1 60.9 26	Step Earlings 0.057 113.1 0.96 0.47 0.50 1 8.40 2.22% Sime Tailings 0.057 113.1 0.97 0.47 0.50 1	1.55 9.436 131.16 11.62 11 2.30% 2.9 71% 1.54 9.374 130.30 11.46 11 2.13% 2.9 71% 1.53 7.756 107.81 9.68 9 2.70% 3.0 71%	1.55 0.00 1.55 0 0.90 0. 1.56 0.00 1.56 0 0.90 0.	.04 0.97 1.0 0.051 33.46 43.14	0.073 1.45 0.94 0.20 0.80 1.12 0.071 1.41 0.94 0.18 0.80 1.11	1.0 0.037 6.87 66.48 0.107	4.34 2.89 2 4.47 2.94 2		8.37 500 1.8E-03 8.42 500 1.8E-03	4.4E+02 3.4E-04 4.4E+02 3.4E-04 4.4E+02 3.5E-04	16 0.478 5580 0.10 16 0.478 5566 0.10 16 0.478 5552 0.10	% 2.00 0.65 0.0 % 2.00 0.65 0.0	3% 0.018 0.34 0.	0.079 0.765 2.65% 0.00 0.079 0.765 2.68% 0.00 0.079 0.765 2.71% 0.00	0044 0044
17.224 5598.50 5.3 0.143 4.9 60.8 26		1.52 7.433 103.32 9.30 9 3.33% 3.1 71%		.04 0.97 1.0 0.051 33.33 42.63	0.071 1.40 0.94 0.18 0.80 1.11	1.0 0.037 7.68 71.47 0.114				4.4E+02 3.5E-04	16 0.479 5539 0.10	% 2.00 0.65 0.0		0.079 0.765 2.74% 0.00	

WHITE MESA TAILINGS REPOSITORY LIQUEFACTION AND SEISMIC	IC SETTLEMENT ANALYSES - 2W3		il Pore Equil Pore Effective Effective Midpoi Shear Max Shear P = Plastici ssure Pressure at Stress at Stress at nt Wave Soil Strain Yenr (Gen tv Shear	Threshhol Volumetri Volumetric Incrementa d Shear c Strain at Strain for I
Data File: 13-52106_SP2W3-BSC-CPT Idriss and Boulanger (2008)	5613.80 Water surface elevation during CPT investigation (ft 5615.72 Ground Surface Elevation at t	me of CPT (ft amsl) Layer of Layer of s of Weight Bottom of Midpoint at		Strain, γ _{tr} 15 Cycles, Design Consolidati
Location: White Mesa 2013 CPT Investigation Max. Horiz. Acceleration, Amax/g: 0.15		nediately after Placement of Final Cover (ft amsl) FINAL COVER (ft) (ft) Layer Layer (ft) t (tcf) (pcf) Layer of Layer of	Layer Layer (tsf) of Layer of Layer at t ₁ , z ₁ V _s , ρ (tcf) G _{max} (tsf) (tsf) Pl g ₁ g ₂ γ (%) a b	(%) ε _{c-15} (%) R c C _N Event, ε _v (%) on (ft)
\.\6.2.3 Field Data\2013 Field Investigation\Conetec Dat Earthquake Moment Magnitude, M: 5.5	5597.74 Water surface elevation at t ₁ (ft amsl) 0.50 Thickness of Erosion Protection	Dan Layer (rock mulch/topsoils) Immediately after place Erosion Protection Layer ###### 5626.02 5625.77 0.50 0.055 110 0.028 0.014	0.00 0.028 0.014 0.08 508 1.7E-03 4.4E+02 3.0E-06 11 0.068 46696 0.00% 1.20 0.6	30 0.04% 0.000 0.32 0.133 0.778 0.00% 0.0000
Tailings Sands Magnitude Scaling Factor, MSF: 1.69	5592.74 Water surface elevation at t ₂ (ft amsl) 3.50 Thickness of Water Storage/F	vooting Zone (ft) /ater Storage/Rooting Zone Layer ###### 5624.02 5622.27 3.50 0.054 107 0.215 0.121	0.00 0.215 0.121 0.69 508 1.7E-03 4.3E+02 2.8E-05 11 0.118 18930 0.00% 2.00 0.6	35 0.03% 0.000 0.34 0.079 0.765 0.00% 0.0000
Tailings Sand-Slimes Youd, et al (2001)	4.00 Thickness of High Compactio	h Layer (ft) High Compaction Layer ###### 5620.27 5618.27 4.00 0.060 120 0.454 0.334	0.00 0.00 0.454 0.334 1.83 508 1.9E-03 4.8E+02 6.8E-05 11 0.153 12419 0.01% 0.65 0.7	
Tailings Slimes Max. Horiz. Acceleration, Amax/g: 0.15	1.44 Scaling Factor for stress ration, r _m 2.55 Thickness of Random/Platform	Fill on on top of existing interim cover (ft) Platform/Random Fill Layer ###### 5617 5615.72 2.55 0.050 101 0.582 0.518	00 0.00 0.582 0.518 2.83 508 1.6E-03 4.0E+02 1.3E-04 11 0.172 10354 0.02% 2.00 0.6	35 0.03% 0.000 0.34 0.079 0.765 0.00% 0.0000
Interim Cover Earthquake Moment Magnitude, M: 5.5	0.47 Volumetric Strain Ratio for Site-Specific Design Ear 1164.98 Additional Stress due to Final	Cover Placement, $\Delta\sigma_{FC}$ (psf)		
Cells Requiring User Input/Manipulation Magnitude Scaling Factor, MSF: 2.21	7.51 Equiv. Number of Uniform Strain Cycles, N 5592.74 Elevation of bottom of tailings	(liner) (ft amsl)	Seismic Settlement Analysis - Stew	
	Interpretations Conditions at t ₁	Liquefaction Triggering Analyses		TOTAL SEISMIC SETTLEMENT (FT): 0.363
Depth Material Stress Pore Stress at Saturated	Normalized Normalize Type Pore Effective	Idriss & Boulanger (2008) Youd et al. (2001)	Wave Soil Shear P = ty Shear	d Shear c Strain at Strain for I
at time Pw Pw Type (as Unit Unit at time Pressure time of at time of	Penetration Ratio, F, Total Stress Pressure Stress at Saturated	Cyclic Stress Ratio Cyclic Resistance Ratio Cyclic Stress Ratio	Depth Velocity, Density Strain Yerr*(Gerr Index, Strain,	Strain, y _{tr} 15 Cycles, Design Consolidati
of CPT Elevation qt fs qc (u2) (u2) fs/qt determined Weight Weight of CPT at time of CPT CPT CPT		r _d C _o K _o K _a CSR (CRR) r _d D _r f K _o K _a CSR (CRR)	Avg Liquefiable? at t ₁ , z ₁ V _s , ρ Modulus, /G _{max}) Pl g ₁ g ₂ γ a b	(%) ε _{c-15} (%) R c C _N Event, ε _v (%) on (ft)
(ft) (ft amsl) TSF TSF TSF (ft) PSI (%) (tcf) (pcf) (tsf) (tsf) (tsf) 1=Yes	TSF MPa Q, % (tsf) (tsf) 1=Yes		Taryes m G _{max}	
0=No	0=No	sv=tatm sv=tatm FOS sv=tatm sv=tatm FOS	2=No (ft/sec) (tcf) tsf tsf (%)	
17.388 5598.33 5.4 0.167 5.0 60.4 26.17 3.09% Slime Tailings 0.057 113.1 0.99 0.48 0.51 1 1.5	.51 7.567 105.17 9.45 9 3.79% 3.1 71% 1.57 0.00 1.57 0	0.90 0.04 0.97 1.0 0.050 33.38 42.83 0.071 1.41 0.93 0.18 0.80 1.11 1.0 0.037 8.01 75.70 0.120 4.93	2 8.52 500 1.8E-03 4.4E+02 3.5E-04 16 0.479 5525 0.10% 2.00 0.6	35 0.03% 0.018 0.34 0.079 0.765 2.77% 0.0045
17.552 5598.17 8.1 0.153 7.8 49.8 21.59 1.90% Slime Tailings 0.057 113.1 1.00 0.49 0.51 1 1.5	.50 11.622 161.55 14.04 14 2.16% 2.8 71% 1.58 0.00 1.58 0	0.90 0.05 0.97 1.0 0.050 34.98 49.02 0.077 1.52 0.93 0.22 0.80 1.11 1.0 0.037 4.80 67.46 0.109 4.42	2.97 2 8.57 500 1.8E-03 4.4E+02 3.5E-04 16 0.479 5512 0.10% 2.00 0.6	35 0.03% 0.018 0.34 0.079 0.765 2.79% 0.0046
17.716 5598.00 12.1 0.146 11.9 23.4 10.13 1.21% Sand-Slime Tailin 0.059 119.0 1.01 0.49 0.52 1 1.4	49 17.713 246.21 20.82 21 1.32% 2.5 47% 1.59 0.00 1.59 0	0.89 0.05 0.97 1.0 0.050 37.61 58.43 0.086 1.72 0.93 0.26 0.80 1.11 1.0 0.037 2.91 60.54 0.101 4.06	2.89 2 8.62 500 1.8E-03 4.6E+02 3.4E-04 10 0.229 6670 0.09% 2.00 0.6	35 0.03% 0.015 0.34 0.079 0.765 2.37% 0.0039
17.880 5597.84 14.1 0.132 14.0 21.9 9.47 0.94% Sand-Slime Tailin 0.059 119.0 1.02 0.50 0.52 1 1.4	46 20.417 283.79 23.94 25 1.01% 2.4 47% 1.60 0.00 1.60 0	0.89 0.06 0.97 1.0 0.050 38.70 62.64 0.091 1.82 0.93 0.28 0.80 1.10 1.0 0.037 2.34 56.01 0.096 3.85	2.84 2 8.67 500 1.8E-03 4.6E+02 3.4E-04 10 0.229 6653 0.09% 2.00 0.6	35 0.03% 0.016 0.34 0.079 0.765 2.40% 0.0039
18.044 5597.68 14.0 0.074 13.9 17.3 7.51 0.53% Sand-Slime Tailin 0.059 119.0 1.03 0.50 0.53 1 1.4	.45 20.197 280.74 23.64 25 0.57% 2.3 47% 1.61 0.00 1.61 1	0.89 0.05 0.97 1.0 0.050 38.59 62.23 0.090 1.81 0.93 0.28 0.80 1.10 1.0 0.037 1.94 45.86 0.088 3.49	2.65 2 8.72 500 1.8E-03 4.6E+02 3.4E-04 10 0.229 6640 0.09% 2.00 0.6	35 0.03% 0.016 0.34 0.079 0.765 2.43% 0.0040
	.46 16.985 236.10 19.91 20 0.65% 2.4 47% 1.62 0.01 1.62 1	0.89 0.05 0.97 1.0 0.050 37.28 57.19 0.085 1.70 0.93 0.26 0.80 1.10 1.0 0.038 2.31 46.04 0.088 3.46	2.58 2 8.77 500 1.8E-03 4.6E+02 3.4E-04 10 0.230 6632 0.09% 2.00 0.6	
	.45 12.930 179.72 15.26 15 2.22% 2.8 71% 1.63 0.01 1.62 1	0.89 0.05 0.97 1.0 0.050 35.40 50.66 0.078 1.56 0.93 0.23 0.80 1.10 1.0 0.038 4.60 70.24 0.112 4.35	2.95 2 8.82 500 1.8E-03 4.4E+02 3.6E-04 16 0.481 5461 0.11% 2.00 0.6	
	.44 9.455 131.43 11.45 11 3.70% 3.0 71% 1.64 0.02 1.62 1	0.89 0.05 0.97 1.0 0.050 34.07 45.52 0.073 1.46 0.93 0.20 0.80 1.10 1.0 0.038 7.03 80.43 0.128 4.92	1.19 2 8.87 500 1.8E-03 4.4E+02 3.6E-04 16 0.481 5455 0.11% 2.00 0.6	
	.43 17.226 239.45 20.19 20 1.87% 2.6 47% 1.65 0.02 1.63 1	0.89 0.05 0.97 1.0 0.050 37.38 57.57 0.085 1.70 0.93 0.26 0.80 1.10 1.0 0.038 3.49 70.44 0.113 4.27	2.98 2 8.92 500 1.8E-03 4.6E+02 3.5E-04 10 0.230 6610 0.09% 2.00 0.6	
	.42 17.382 241.62 20.41 21 1.52% 2.6 47% 1.66 0.03 1.63 1	0.89 0.05 0.97 1.0 0.050 37.46 57.87 0.086 1.70 0.93 0.26 0.80 1.09 1.0 0.038 3.17 64.62 0.105 3.94	2.82 2 8.97 500 1.8E-03 4.6E+02 3.5E-04 10 0.230 6603 0.09% 2.00 0.6	
	.40 20.001 278.01 23.46 24 1.04% 2.4 47% 1.67 0.03 1.64 1	0.88 0.05 0.96 1.0 0.050 38.53 61.98 0.090 1.79 0.93 0.28 0.80 1.09 1.0 0.038 2.42 56.88 0.097 3.60	2.70 2 9.02 500 1.8E-03 4.6E+02 3.5E-04 10 0.230 6595 0.10% 2.00 0.6	
	.39 21.538 299.38 25.22 26 0.89% 2.4 47% 1.68 0.04 1.64 1	0.88 0.06 0.96 1.0 0.050 39.15 64.37 0.093 1.84 0.93 0.29 0.80 1.09 1.0 0.039 2.17 54.73 0.095 3.49	2.67 2 9.07 500 1.8E-03 4.6E+02 3.5E-04 10 0.230 6587 0.10% 2.00 0.6	
	.37 22.650 314.83 26.54 28 0.79% 2.3 47% 1.69 0.04 1.65 1	0.88 0.06 0.96 1.0 0.050 39.61 66.14 0.095 1.88 0.93 0.30 0.80 1.09 1.0 0.039 2.00 53.20 0.094 3.41	2.65 2 9.12 500 1.8E-03 4.6E+02 3.6E-04 10 0.231 6579 0.10% 2.00 0.6	35 0.03% 0.018 0.34 0.079 0.765 2.69% 0.0044
	.36 22.519 313.02 26.39 27 0.72% 2.3 47% 1.70 0.05 1.65 1	0.88 0.06 0.96 1.0 0.050 39.56 65.95 0.095 1.88 0.93 0.30 0.80 1.09 1.0 0.039 1.95 51.52 0.093 3.33	2.60 2 9.17 500 1.8E-03 4.6E+02 3.6E-04 10 0.231 6572 0.10% 2.00 0.6	
	.36 21.815 303.23 25.59 26 0.94% 2.4 47% 1.71 0.05 1.66 1	0.88 0.06 0.96 1.0 0.051 39.28 64.87 0.093 1.85 0.93 0.29 0.80 1.08 1.0 0.039 2.20 56.30 0.097 3.44	2.64 2 9.22 538 1.8E-03 5.3E+02 3.1E-04 10 0.231 6564 0.07% 2.00 0.6	
	.36 18.424 256.09 21.70 22 1.62% 2.6 47% 1.72 0.06 1.66 1	0.88 0.05 0.96 1.0 0.051 37.91 59.61 0.087 1.73 0.93 0.27 0.80 1.08 1.0 0.039 3.13 67.89 0.109 3.85	2.79 2 9.27 538 1.8E-03 5.3E+02 3.1E-04 10 0.231 6556 0.07% 2.00 0.6	
	.36 13.071 181.68 15.59 15 2.18% 2.8 71% 1.73 0.06 1.67 1	0.88 0.05 0.97 1.0 0.051 35.52 51.11 0.079 1.54 0.93 0.23 0.80 1.08 1.0 0.039 4.55 71.01 0.113 3.96	2.75 2 9.32 538 1.8E-03 5.1E+02 3.3E-04 16 0.482 5399 0.09% 2.00 0.6	
20.177 5595.54 8.7 0.172 8.3 65.6 28.43 1.98% Slime Tailings 0.057 113.1 1.16 0.57 0.59 1 1.3	.35 11.187 155.51 13.64 13 2.28% 2.8 71% 1.74 0.07 1.67 1	0.87 0.05 0.97 1.0 0.051 34.84 48.47 0.076 1.49 0.92 0.21 0.80 1.08 1.0 0.039 5.13 70.00 0.112 3.88	2.68 2 9.37 538 1.8E-03 5.1E+02 3.3E-04 16 0.482 5394 0.09% 2.00 0.6	
20.341 5595.38 8.9 0.207 8.5 67.9 29.41 2.32% Slime Tailings 0.057 113.1 1.16 0.57 0.59 1 1.3	.34 11.394 158.38 13.90 13 2.67% 2.9 71% 1.75 0.07 1.67 1	0.87 0.05 0.97 1.0 0.051 34.93 48.82 0.076 1.50 0.92 0.22 0.80 1.08 1.0 0.039 5.43 75.40 0.120 4.12	2.81 2 9.42 538 1.8E-03 5.1E+02 3.4E-04 16 0.483 5388 0.09% 2.00 0.6	
	.34 11.840 164.57 14.39 14 2.08% 2.8 71% 1.76 0.08 1.68 1	0.87 0.05 0.97 1.0 0.051 35.10 49.49 0.077 1.51 0.92 0.22 0.80 1.08 1.0 0.039 4.75 68.35 0.110 3.74	.62 2 9.47 538 1.8E-03 5.1E+02 3.4E-04 16 0.483 5383 0.09% 2.00 0.6	
	.33 16.762 232.99 19.88 20 0.77% 2.4 47% 1.77 0.08 1.68 1	0.87 0.05 0.96 1.0 0.051 37.27 57.16 0.085 1.66 0.92 0.26 0.80 1.08 1.0 0.040 2.50 49.68 0.091 3.09	2 9.52 538 1.8E-03 5.3E+02 3.2E-04 10 0.232 6522 0.08% 2.00 0.6	
	.32 17.242 239.67 20.29 20 1.30% 2.5 47% 1.78 0.09 1.69 1		1.53 2 9.57 538 1.8E-03 5.3E+02 3.2E-04 10 0.232 6514 0.08% 2.00 0.6	
	.31 12.134 168.66 14.75 14 2.13% 2.8 71% 1.79 0.09 1.69 1	0.87 0.05 0.97 1.0 0.051 35.22 49.97 0.077 1.51 0.92 0.22 0.80 1.07 1.0 0.040 4.73 69.77 0.112 3.70	2.61 2 9.62 538 1.8E-03 5.1E+02 3.4E-04 16 0.483 5365 0.09% 2.00 0.6	
21.161 5594.56 9.1 0.158 8.5 91.2 39.53 1.73% Stime Tailings 0.057 113.1 1.21 0.60 0.61 1 1.3	.31 11.155 155.05 13.82 13 2.00% 2.8 71% 1.79 0.10 1.70 1	0.87 0.05 0.97 1.0 0.051 34.90 48.72 0.076 1.49 0.92 0.21 0.80 1.07 1.0 0.040 4.84 66.95 0.108 3.55	.52 2 9.67 538 1.8E-03 5.1E+02 3.4E-04 16 0.483 5360 0.09% 2.00 0.6	
21.325 5594.39 9.1 0.173 8.5 87.2 37.78 1.90% Stime Tailings 0.057 113.1 1.22 0.61 0.62 1 1.3	.30 11.096 154.23 13.71 13 2.20% 2.8 71% 1.80 0.10 1.70 1	0.87 0.05 0.97 1.0 0.051 34.86 48.57 0.076 1.48 0.91 0.21 0.80 1.07 1.0 0.040 5.08 69.61 0.111 3.64	2.56 2 9.72 538 1.8E-03 5.1E+02 3.5E-04 16 0.483 5354 0.10% 2.00 0.6	
	29 12.116 168.41 15.04 14 1.97% 2.8 47% 1.81 0.11 1.70 1	0.88 0.05 0.97 1.0 0.051 35.58 50.61 0.078 1.52 0.91 0.22 0.80 1.07 1.0 0.040 4.53 68.09 0.109 3.54	2 9.77 538 1.8E-03 5.3E+02 3.3E-04 10 0.233 6487 0.08% 2.00 0.6	
		0.86 0.05 0.97 1.0 0.051 36.10 52.64 0.080 1.56 0.91 0.23 0.80 1.07 1.0 0.040 4.02 66.55 0.107 3.45	2 9.82 538 1.8E-03 5.3E+02 3.3E-04 10 0.233 6480 0.08% 2.00 0.6	
22.980 5592.74 Sand-Stime Tailin 0.059 119.0	1.90 0.14 1.77 1		10.22 538 1.8E-03 5.3E+02 3.5E-04 10 0.235 6391 0.09% 2.00 0.6	0.03% 0.016 0.34 0.079 0.765 2.43% 0.0322

Data File: 13-52106_SP2W4-C-BSC-CPT Location: White Mesa 2013 CPT Investigatio 	Idriss and Boulancer (2008) on Max. Horiz. Acceleration, Amarig: 0.15 c Dat Earthquake Moment Magnitude, M. 5.5 Magnitude Scaing Factor, MSF: 1.69 Youd, et al (2001) Max. Horiz. Acceleration, Amarig: 0.15 Earthquake Moment Magnitude, M. 5.5 1.69	ION AND SEISMIC SETTLEMENT ANALYSES - 2W4-C S611.20 Water surface elevation during CPT investigation (fr 5507.50 Water surface elevation at t, (ft ams)) 5588.50 Water surface elevation at t, (ft ams)) 5588.50 Water surface elevation at t, (ft ams)) 1.44 Scaling Factor for stress ration, r, 0.47 Volumetric Strain Ratio for Sile-Specific Design Ear 7.47 Volumetric Strain Ratio for Sile-Specific Design Ear	5626.19 Ground Surface Elevation I 0.50 Thickness of Erosion Prote 3.50 Thickness of Water Storage 4.00 Thickness of High Compact 1.95 Thickness of Random/Path 1104.55 Additional Stress due to Fin	Immediately after Placement of Final Cover (ft ams) ziton Layer (rock mulch/topsoils) Immediately after plac Wooling Zone (ft) ion Layer (ft) orm Fill on on top of existing interim cover (ft) al Cover Placement, $\Delta \sigma_c$ (psf)	FINAL COVER Erosion Protection Lay fater Storage/Rooting Zone Lay High Compaction Lay Platform/Random Fill Lay		n Thicknes Unit Unit Unit St Layer (ft) t (tcf) (pcf) Bd Bd	ress at Stress at Pressu	Image Layer (tsf) of Layer of Layer 0 0.00 0.028 0.00 0 0.000 0.215 0.00 0 0.000 0.454 0.00	at nt int Depth int Depth at t1, z1 0.08 121 0.69 334 1.83	Shear Wave Soil Soil St St Velocity, Vs Density ρ(tcf) Gma 508 1.7E-03 4. 508 1.7E-03 4. 508 1.6E-03 4.
of CPT Elevation qt fs qc (u2) (u	Magnitude Scaling Factor, MSF: 2.21 Material Type (as Unit unit a time Pressure time Use (%) Constraint Constraint Type (as Unit unit a time Pressure time Weight of CPT at time of CPT (tcf) (pcf) (tsf) (tsf)	of at time of Penetration Ratio, F, I _e T CPT CN qc1 qc1 qc1N Resistance, (%) FC	5588.50 Elevation of bottom of tailing Conditions at t ₁	ed Cyclic Stress Ratio Cyclic Resistanc r _d C _a K _a K _a CSR s Mar5.5 Δqct _{in} qct _{in-cs}	(CRR) r _d D _r	efaction Triggering Analyses Youd Cyclic Stress Ratio f K _e K _a		CRR) Avg M#7.5. FoS		Depth at t ₁ , z ₁ m	Wave Soil Sh Velocity, Density Vs (filsec) (tcf)
10.228651576.630.1006.430.200.1006.731.880.000.8456615.586.800.8097.880.371.315.615.876.800.8097.880.371.311.3126614.030.250.2530.2810.2810.2810.2810.2810.2811.8406614.030.250.2530.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.2810.281<	11 1.22* Specifier Tain 0.05 110.0 0.62 0.20 0.42 1.50 1.25* Samitarian 0.055 110.0 0.64 0.21 0.43 1.52 1.25* Samitarian 0.055 110.0 0.64 0.21 0.44 1.52 1.25* Samitarian 0.059 119.0 0.66 0.22 0.44 1.64 SamSime Taing 0.057 11.31 0.66 0.22 0.44 2.0 3.95% SamSime Taing 0.057 11.31 0.66 0.22 0.44 2.23 1.64% SamE Taing 0.057 11.31 0.66 0.23 0.44 3.42 1.64% SamE Taing 0.057 11.90 0.71 0.24 0.44 3.42 1.64% SamE Tain 0.059 119.0 0.71 0.24 0.44 3.43 1.64% SamE Tain 0.059 119.0 0.74 0.26 0.44 3.	2 0 1.0 7.2.2. 10.4 0.7.3 30.7.3 31.9.9 2.2.7.3 0.7.5 51.11.9.9 2.2.7.0 0.2.8.4 0.0.7.5 51.7.5 5 0 17.0 10.9.6.7.3 13.9.5 11.9.7 12.8.5 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7 13.8.7	% 0.58 0.00 0.58 0.00 % 0.59 0.00 0.59 0.00 % 0.59 0.00 0.59 0.00 % 0.63 0.00 0.63 0.00 % 0.63 0.00 0.63 0.00 % 0.64 0.00 0.64 0.00 % 0.64 0.00 0.64 0.00 % 0.64 0.00 0.66 0.00 % 0.66 0.00 0.66 0.00 % 0.67 0.00 0.67 0.00 % 0.70 0.00 0.71 0.00 0.72 % 0.73 0.00 0.73 0.00 73 % 0.76 0.00 0.76 0.00 % 0.77 0.00 0.77 0.00 % 0.77 0.00 0.76 0.00 % 0.82 <th0.00< th=""> 0.84 0.00<td>0.55 0.05 0.99 1.0 0.054 37.39 57.59 0.55 0.05 0.99 1.0 0.054 38.05 60.15 0.55 0.05 0.99 1.0 0.054 38.05 60.15 0.55 0.05 0.99 1.0 0.054 38.24 60.89 0.55 0.05 0.99 1.0 0.054 38.24 60.89 0.55 0.05 0.99 1.0 0.054 38.13 60.46 0.44 0.05 0.88 1.0 0.054 31.13 64.16 0.44 0.05 0.88 1.0 0.053 35.63 55.85 0.44 0.05 0.88 1.0 0.053 36.05 52.85 51.18 0.44 0.05 0.88 1.0 0.053 36.15 52.84 0.33 0.06 0.88 1.0 0.053 36.15 52.84 0.33 0.06 0.88 1.0</td><td>12.44 4.40 0.88 0.55 0.563 9.30 0.88 0.80 0.80 0.671 11.86 0.97 0.81 0.671 11.85 0.97 0.7 1000 16.23 0.97 0.7 1000 16.35 0.97 0.7 1000 16.30 0.97 0.7 1000 16.30 0.97 0.7 1000 16.30 0.97 0.91 1000 16.32 0.97 0.91 1000 16.32 0.97 0.91 1000 16.32 0.97 0.91 1000 16.32 0.97 0.91 1000 16.32 0.97 0.50 0.441 0.41 0.97 0.50 0.441 0.41 0.97 0.41 0.421 0.41 0.97 0.41 0.431 0.55 0.97 0.41 0.441 0.41 0.97 <</td><td>4 0.73 2.91 10 0 0.69 2.69 10 0 0.69 2.55 10 1 0.64 2.77 10 0 0.61 2.61 10 0 0.64 2.77 10 0 0.64 2.61 10 0 0.64 2.61 10 0 0.60 2.33 10 0 0.60 2.32 10 0 0.60 2.02 10 0 0.60 2.02 10 0 0.60 2.02 10 0 0.60 2.02 10 0 0.60 2.02 10 0 0.70 1.61 10 0 0.70 1.61 10 0 0.70 1.30 10 0 0.77 1.34 10 0 0.77 1.34 10</td><td>0.016 1.0.0 #7.43 0.016 1.0.0 111.99 0.016 1.0.0 115.99 0.016 1.0.0 151.62 0.016 1.0.0 155.22 0.016 1.0.0 158.22 0.020 1.0.0 178.32 0.020 1.0.0 78.32 0.020 1.0.0 278.69 0.019 1.0.0 278.69 0.021 1.0.0 278.69 0.021 1.0.0 278.69 0.021 1.0.0 278.69 0.021 1.0.0 278.69 0.021 1.0.0 278.69 0.021 1.0.0 278.69 0.021 1.0.0 288.10 0.022 1.2.0 86.61 0.023 1.3.8 67.39 0.031 1.3.2 67.61 0.033 1.3.2 67.62 0.033 1.3.2 67.61 0.033 1.3.2 67.71 <</td><td>0.083 201.04 101.5 0.142 172.16 88.2 0.211 170.09 85.7 0.222 138.7 75.11 0.218 105.56 57.88 0.214 172.16 85.27 0.218 105.56 57.88 0.218 105.56 57.88 0.218 105.56 57.88 0.120 303.45 158.4 1.000 303.45 158.3 0.120 30.71 173.81 94.94 1.000 173.81 94.92 1000 128.32 1.000 128.32 71.44 40.0 128.32 1000 128.42 25.31 1.000 128.32 71.59 62.23 10.32 65.31 65.31 0.100 128.33 38.80 77.99 62.82 67.03 67.03 0.112 9.75 62.27 72.98 6.00 67.63 4.22 0.122 0.124 7.55</td><td></td><td>3.08 3.18 3.28 3.33 3.48 3.33 3.48 3.58 3.63 3.63 3.63 3.63 3.63 3.63 3.63 3.63 3.63 3.63 3.64 4.13 4.23 4.28 4.33 4.48 4.23 4.53 4.68 4.63 4.63 4.63 4.63 4.63 4.63 4.63 4.63 4.63 4.63 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.73 5.78 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5</td><td>106-03 5. 594 1.66-03 5. 594 1.66-03 5. 594 1.66-03 5. 594 1.66-03 5. 594 1.66-03 5. 594 1.66-03 5. 594 1.66-03 5. 594 1.66-03 5. 594 1.66-03 5. 594 1.66-03 5. 594 1.66-03 5. 594 1.66-03 5. 594 1.66-03 3. 495 1.46-03 3. 495 1.46-03 3. 495 1.46-03 3. 495 1.46-03 3. 495 1.46-03 3. 495 1.46-03 3. 495 1.46-03 3. 495 1.46-03 3. 495 1.46-03 3. 495 1.46-03 3. 495<!--</td--></td></th0.00<>	0.55 0.05 0.99 1.0 0.054 37.39 57.59 0.55 0.05 0.99 1.0 0.054 38.05 60.15 0.55 0.05 0.99 1.0 0.054 38.05 60.15 0.55 0.05 0.99 1.0 0.054 38.24 60.89 0.55 0.05 0.99 1.0 0.054 38.24 60.89 0.55 0.05 0.99 1.0 0.054 38.13 60.46 0.44 0.05 0.88 1.0 0.054 31.13 64.16 0.44 0.05 0.88 1.0 0.053 35.63 55.85 0.44 0.05 0.88 1.0 0.053 36.05 52.85 51.18 0.44 0.05 0.88 1.0 0.053 36.15 52.84 0.33 0.06 0.88 1.0 0.053 36.15 52.84 0.33 0.06 0.88 1.0	12.44 4.40 0.88 0.55 0.563 9.30 0.88 0.80 0.80 0.671 11.86 0.97 0.81 0.671 11.85 0.97 0.7 1000 16.23 0.97 0.7 1000 16.35 0.97 0.7 1000 16.30 0.97 0.7 1000 16.30 0.97 0.7 1000 16.30 0.97 0.91 1000 16.32 0.97 0.91 1000 16.32 0.97 0.91 1000 16.32 0.97 0.91 1000 16.32 0.97 0.91 1000 16.32 0.97 0.50 0.441 0.41 0.97 0.50 0.441 0.41 0.97 0.41 0.421 0.41 0.97 0.41 0.431 0.55 0.97 0.41 0.441 0.41 0.97 <	4 0.73 2.91 10 0 0.69 2.69 10 0 0.69 2.55 10 1 0.64 2.77 10 0 0.61 2.61 10 0 0.64 2.77 10 0 0.64 2.61 10 0 0.64 2.61 10 0 0.60 2.33 10 0 0.60 2.32 10 0 0.60 2.02 10 0 0.60 2.02 10 0 0.60 2.02 10 0 0.60 2.02 10 0 0.60 2.02 10 0 0.70 1.61 10 0 0.70 1.61 10 0 0.70 1.30 10 0 0.77 1.34 10 0 0.77 1.34 10	0.016 1.0.0 #7.43 0.016 1.0.0 111.99 0.016 1.0.0 115.99 0.016 1.0.0 151.62 0.016 1.0.0 155.22 0.016 1.0.0 158.22 0.020 1.0.0 178.32 0.020 1.0.0 78.32 0.020 1.0.0 278.69 0.019 1.0.0 278.69 0.021 1.0.0 278.69 0.021 1.0.0 278.69 0.021 1.0.0 278.69 0.021 1.0.0 278.69 0.021 1.0.0 278.69 0.021 1.0.0 278.69 0.021 1.0.0 288.10 0.022 1.2.0 86.61 0.023 1.3.8 67.39 0.031 1.3.2 67.61 0.033 1.3.2 67.62 0.033 1.3.2 67.61 0.033 1.3.2 67.71 <	0.083 201.04 101.5 0.142 172.16 88.2 0.211 170.09 85.7 0.222 138.7 75.11 0.218 105.56 57.88 0.214 172.16 85.27 0.218 105.56 57.88 0.218 105.56 57.88 0.218 105.56 57.88 0.120 303.45 158.4 1.000 303.45 158.3 0.120 30.71 173.81 94.94 1.000 173.81 94.92 1000 128.32 1.000 128.32 71.44 40.0 128.32 1000 128.42 25.31 1.000 128.32 71.59 62.23 10.32 65.31 65.31 0.100 128.33 38.80 77.99 62.82 67.03 67.03 0.112 9.75 62.27 72.98 6.00 67.63 4.22 0.122 0.124 7.55		3.08 3.18 3.28 3.33 3.48 3.33 3.48 3.58 3.63 3.63 3.63 3.63 3.63 3.63 3.63 3.63 3.63 3.63 3.64 4.13 4.23 4.28 4.33 4.48 4.23 4.53 4.68 4.63 4.63 4.63 4.63 4.63 4.63 4.63 4.63 4.63 4.63 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.73 5.78 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88 5	106-03 5. 594 1.66-03 5. 594 1.66-03 5. 594 1.66-03 5. 594 1.66-03 5. 594 1.66-03 5. 594 1.66-03 5. 594 1.66-03 5. 594 1.66-03 5. 594 1.66-03 5. 594 1.66-03 5. 594 1.66-03 5. 594 1.66-03 5. 594 1.66-03 3. 495 1.46-03 3. 495 1.46-03 3. 495 1.46-03 3. 495 1.46-03 3. 495 1.46-03 3. 495 1.46-03 3. 495 1.46-03 3. 495 1.46-03 3. 495 1.46-03 3. 495 1.46-03 3. 495 </td

	ty f)	Max Shear Strain Modulus, G _{max} (tsf)	γ _{eff} *(G _{eff} /G _{max}) (tsf)	Plastici ty Index, Pl	g 1	g ₂	Shear Strain, Υ (%)	a	b		c Strain at 15 Cycles, ε _{c-15} (%)	R	c	C _N	Volumetric Strain for Design Event, ε _ν (%)	Incrementa I Consolidati on (ft)
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>)3	4.8E+02	6.8E-05	11	0.153	12419	0.01%	0.65	0.75	0.03%	0.000	0.34	0.079	0.765	0.00%	0.0000
Internet)3	4.0E+02	1.2E-04	11								0.34	0.079	0.765	0.00%	0.0000
p p	1		P	1 1001101						rmeannor		TOTAL	. SEISMI	C SETTL		morementa
	ty	Strain Modulus, G _{max}	γ _{eff} *(G _{eff} /G _{max})	Index,	g1	g ₂	Strain, γ	а	b	Strain, Ytv	15 Cycles,	R	c	C _N	Design	Consolidati
)3	5.5E+02	1.0E-04	11	0.176	9961	0.01% 0.01%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.0000
b b c b c b c)3	5.5E+02	1.0E-04	11	0.177	9844	0.01%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.0000
1 1																
)3						0.01%	2.00		0.03%						
)3	5.5E+02	1.1E-04	11	0.181	9466	0.01%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.0000
)3	5.5E+02	1.2E-04	11	0.182	9367	0.02%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.0000
10 5 10 0.18 0.79 0.28 0.29<																
3) 3) 3) 4 2 1 1000 0.000 <t< td=""><td>)3</td><td>5.5E+02</td><td>1.2E-04</td><td>11</td><td>0.185</td><td>9133</td><td>0.02%</td><td>2.00</td><td>0.65</td><td>0.03%</td><td>0.000</td><td>0.34</td><td>0.079</td><td>0.765</td><td>0.00%</td><td>0.0000</td></t<>)3	5.5E+02	1.2E-04	11	0.185	9133	0.02%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.0000
1 3 3 1 1 0)3	3.9E+02	1.8E-04	0	0.191	11691	0.04%	2.20	1.00	0.03%	0.000	0.34	0.079	0.765	0.03%	0.0000
)3	3.5E+02	2.0E-04	10	0.188	9204	0.04%	2.00	0.65	0.03%	0.004	0.34	0.079	0.765	0.62%	0.0010
b) b) c) c) <thc)< th=""> c) c) c)<</thc)<>																
b) b) b) c) c) <thc)< th=""> c) c) c)<</thc)<>																
b) b)<																
a) b) b)< b)< b)< b		3.5E+02	2.2E-04													
3 4 5 7 0)3	4.5E+02	1.7E-04	10		8858		2.00	0.65	0.03%	0.000	0.34		0.765		
3 4 5 2 6 0)3	4.5E+02	1.8E-04	10	0.193	8771	0.03%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.0000
a b b b b c)3	4.5E+02	1.8E-04	10	0.195	8686	0.03%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.0000
b) b)<																
30 3 4.5																
30 4 5 2 0)3			10	0.197		0.03%	2.00			0.002	0.34	0.079	0.765	0.29%	
30 3 4.5. 2.0.2 0.5. 0.0.3% 0.0.3% 0.0.3% 0.0.77 0.7.85 0.4.4.9% 0.0000 31 4.5. 2.0.2 0.6.5 0.0.3% 0.0.3% 0.0.3% 0.0.77 0.7.85 0.4.9% 0.0000 31 4.5. 2.2.1 0.4.4% 2.00 0.5.5 0.0.3% 0.0.47 0.7.75 0.5.9% 0.0.000 31 4.5. 2.1.4.4 10 0.2.0 8130 0.4.4% 2.00 0.5.5 0.0.3% 0.0.47 0.7.75 0.6.7% 0.0.001 31 4.5. 2.2.4 10 0.2.0 0.0.55 0.0.3% 0.0.57 0.0.775 0.775 0.0.075 31 4.5. 2.2.4.4 10 0.2.0 0.0.51 0.0.3% 0.0.55 0.0.775 0.775 0.0.755 0.0.755 0.0.755 0.0.755 0.0.775 0.775 0.0.021 31 4.5. 0.0.4.4 2.00 0.0.55 0.0.35 0.0.75<)3	4.5E+02	2.0E-04	10	0.198	8412	0.03%	2.00	0.65	0.03%	0.002	0.34	0.079	0.765	0.37%	0.0006
b) 5 0.001 0.201 0.208 0.004 2.00 0.005 0.203 0.000 0.34 0.079 0.766 0.55% 0.0000 0 4.56*02 2.16-04 10 0.202 8183 0.44% 2.00 0.66 0.03% 0.004 0.34 0.079 0.766 0.66% 0.001 0 4.56*02 2.16-04 10 0.233 8130 0.04% 2.00 0.66 0.03% 0.000 0.34 0.079 0.766 0.66% 0.001 3 4.56*02 2.26-04 10 0.234 6002 0.03% 0.000 0.34 0.079 0.765 0.75% 0.0012 3 4.56*02 2.26-04 10 0.256 7980 0.44% 2.00 0.65 0.33% 0.005 0.34 0.079 0.765 0.75% 0.0012 3 3.76*02 2.86-46 10 0.266 787 0.005 0.33% 0.010 0.34)3	4.5E+02	2.0E-04	10	0.200	8338	0.03%	2.00	0.65	0.03%	0.003	0.34	0.079	0.765	0.45%	0.0007
3) 4.56-02 21:E-04 10 0.202 815 0.214 2.00 0.66 0.035 0.004 0.34 0.079 0.766 0.665% 0.0011 3 4.56-02 21:E-04 10 0.235 813 0.04% 2.00 0.66 0.035% 0.004 0.34 0.079 0.766 0.665% 0.0011 3 4.56-02 2.2E-04 10 0.204 0.004 0.205 0.005 0.035% 0.006 0.34 0.079 0.766 0.75% 0.001 3 4.56-02 2.2E-04 10 0.265 7969 0.04% 2.00 0.65% 0.03% 0.006 0.34 0.079 0.765 0.08% 0.001 3 3.76-02 2.8E-04 10 0.256 7898 0.04% 2.00 0.65% 0.03% 0.011 0.34 0.079 0.766 0.03% 0.011 0.34 0.079 0.76% 0.005 0.33% 0.011 0.34)3	4.5E+02	2.0E-04	10	0.201	8266	0.04%	2.00	0.65	0.03%	0.003	0.34	0.079	0.765	0.53%	0.0009
3) 4.5.42 2.1.E.ok 10 0.203 8097 0.208 0.004 2.00 0.65 0.3.5% 0.0076 0.765 0.775% 0.0076 0.075 0.765 0.775% 0.0071 31 4.55.402 2.2E-04 10 0.204 8032 0.04% 2.00 0.65 0.33% 0.005 0.34 0.079 0.765 0.776% 0.0013 31 4.55.4.02 2.2E-04 10 0.205 7660 0.03% 0.005 0.34 0.079 0.765 0.78% 0.0013 31 3.75.4.02 2.8E-04 16 0.456 6101 0.037% 0.005 0.34 0.070 0.765 0.45% 0.0033 31 3.75.4.02 2.8E-04 16 0.456 0.037% 0.011 0.34 0.070 0.765 0.45% 0.0026 0.33% 0.011 0.34 0.070 0.775 0.0776 0.0776 0.0776 0.0776 0.0776 0.0776 0.0776 </td <td>)3</td> <td>4.5E+02</td> <td>2.1E-04</td> <td>10</td> <td>0.202</td> <td>8197</td> <td>0.04%</td> <td>2.00</td> <td>0.65</td> <td>0.03%</td> <td>0.004</td> <td>0.34</td> <td>0.079</td> <td>0.765</td> <td>0.60%</td> <td>0.0010</td>)3	4.5E+02	2.1E-04	10	0.202	8197	0.04%	2.00	0.65	0.03%	0.004	0.34	0.079	0.765	0.60%	0.0010
3) 4.5E+cq2 2.2E-64 10 0.204 8064 0.04% 2.00 0.65 0.03% 0.005 0.34 0.079 0.786 0.7786 0.0796 0.0796 0.0796 0.0796 0.0796 0.0796 0.0796 0.0796 0.0796 0.0796 0.0796 0.0786 0.)3	4.5E+02	2.1E-04	10	0.203	8130	0.04%	2.00	0.65	0.03%	0.004	0.34	0.079	0.765	0.66%	0.0011
3) 4.5E-q2 2.2E-64 10 0.205 7660 0.4% 2.00 0.65 0.03% 0.005 0.34 0.079 0.785 0.79% 0.0013 31 3.5E-q2 2.2E-64 10 0.205 7660 0.03% 0.005 0.34 0.079 0.785 0.98% 0.0014 33 3.5E-q2 2.2E-64 10 0.205 7765 0.66% 0.03% 0.011 0.34 0.079 0.785 1.98% 0.0033 3 3.6E-q2 2.2E-64 10 0.207 7851 0.66% 2.00 0.65 0.03% 0.011 0.34 0.079 0.785 1.16% 0.0028 33 3.6E-q2 2.8E-64 10 0.208 776 0.766 0.776)3	4.5E+02	2.2E-04													
3) 4 5 4 5 0 0.065 0.03% 0.005 0.34 0.076 0.765 0.85% 0.0013 3) 3 7E+02 2 6.66 0.03% 0.013 0.34 0.079 0.765 1.85% 0.0032 3) 3 6±02 2 64 10 0.206 785 0.008 2.00 0.65 0.03% 0.011 0.34 0.079 0.765 1.15% 0.0028 3) 3 5±02 2±04 10 0.208 776 0.08% 2.00 0.65 0.03% 0.011 0.34 0.079 0.765 1.17% 0.0027 3) 3 5±02 2±04 10 0.209 7770 0.07% 2.00 0.65 0.03% 0.011 0.34 0.079 0.765 1.45% 0.0023 3) 3 5±02 2±04 10 0.211 7601 0.7% 2.00 0.65 0.03% <td></td>																
3) 3 7.FFC-Q 2.8E-04 16 0.488 6470 0.07% 2.00 0.65 0.03% 0.013 0.34 0.076 1.95% 0.0033 3 3.9E+02 2.7E-04 10 0.207 7.65 1.95% 0.0033 3 3.7E+02 2.9E-04 10 0.208 7721 0.06% 2.00 0.65 0.03% 0.011 0.34 0.079 0.765 1.95% 0.0034 3 3.9E+02 2.9E-04 10 0.208 7776 0.06% 2.00 0.65 0.03% 0.011 0.34 0.079 0.765 1.17% 0.0028 3 3.9E+02 2.8E-04 10 0.210 7661 0.77% 2.00 0.65 0.03% 0.012 0.34 0.079 1.76% 1.78% 0.0023 3 3.9E+02 2.9E-04 10 0.211 7670 0.77% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765																
3) 3) 5 3 5 0)3	3.7E+02	2.8E-04	16	0.458	6510	0.07%	2.00	0.65	0.03%	0.013	0.34	0.079	0.765	1.95%	
3) 3 3 7.7ec/2 2.9E-04 10 0.06% 2.00 0.65 0.03% 0.014 0.34 0.076 2.098 0.002 3) 3.9E+02 2.8E-04 10 0.208 7765 0.0075 0.775 1.77% 0.0027 3) 3.9E+02 2.8E-04 10 0.200 7761 0.776 0.776 0.775 1.77% 0.0022 3) 3.9E+02 2.8E-04 10 0.210 768 0.77% 2.00 0.55 0.03% 0.012 0.34 0.079 0.765 1.12% 0.0002 3) 3.9E+02 2.9E-04 10 0.211 7671 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 1.765 1.85% 0.0033 3) 3.9E+02 2.9E-04 10 0.212 774 0.076 0.03% 0.013 0.34 0.079 0.765 1.86% 0.003 3) 3.9E+02 3.9E+02 <td>)3</td> <td>3.9E+02</td> <td>2.7E-04</td> <td>10</td> <td>0.207</td> <td>7851</td> <td>0.06%</td> <td>2.00</td> <td>0.65</td> <td>0.03%</td> <td>0.010</td> <td>0.34</td> <td>0.079</td> <td>0.765</td> <td>1.57%</td> <td>0.0026</td>)3	3.9E+02	2.7E-04	10	0.207	7851	0.06%	2.00	0.65	0.03%	0.010	0.34	0.079	0.765	1.57%	0.0026
3) 3) 5 3) 5 3) 5 1 1 0 2 0 <td>)3</td> <td>3.7E+02</td> <td>2.9E-04</td> <td>16</td> <td>0.460</td> <td>6416</td> <td>0.08%</td> <td>2.00</td> <td>0.65</td> <td>0.03%</td> <td>0.014</td> <td>0.34</td> <td>0.079</td> <td>0.765</td> <td>2.09%</td> <td>0.0034</td>)3	3.7E+02	2.9E-04	16	0.460	6416	0.08%	2.00	0.65	0.03%	0.014	0.34	0.079	0.765	2.09%	0.0034
3) 3) 50 5) 5) 50 5) 50 5) 50 50 5) 50 50 50 50<)3	3.9E+02	2.8E-04	10	0.209	7737	0.06%	2.00	0.65	0.03%	0.011	0.34	0.079	0.765	1.71%	0.0028
3) 3) 5 3 5 2 6 0 0.765 1.85% 0.0033 3) 3 5 0.765 1.85% 0.0031 3) 3 5 0.765 1.85% 0.0031 3) 3 0.762 1.85% 0.03% 0.013 0.34 0.079 0.765 1.85% 0.0031 3) 3 2 0.761 1.25% 0.073 0.056 0.03% 0.013 0.34 0.079 0.765 1.99% 0.0033 3) 3 1.2604 10 0.213 773 0.09% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 1.99% 0.0033 3) 3 0.662 0.03% 0.014 0.34 0.079 0.765 2.16% 0.0034 3) 3 3 0.621 7374 0.89% 2.00 0.65 0.03% 0.017 0.34 0.079 0.765)3	3.9E+02	2.8E-04	10	0.210	7681	0.07%	2.00	0.65	0.03%	0.012	0.34	0.079	0.765	1.78%	0.0029
3) 3) 8 5 5 5 5 5 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 1 1 0)3	3.9E+02	2.9E-04	10	0.211	7627	0.07%	2.00	0.65	0.03%	0.012	0.34	0.079	0.765	1.85%	0.0030
30 3 3 3 5 3 5 3 5 3 5 3 5 3 6 0)3	3.9E+02	2.9E-04		0.212		0.07%						0.079		1.92%	
3) 3.75+02 3.25+04 16 0.464 0.08% 2.00 0.65 0.03% 0.016 0.34 0.076 2.00% 0.004 3) 3.56+02 3.05+04 10 0.214 743 0.08% 2.00 0.65 0.03% 0.013 0.075 2.06% 0.0034 3) 3.75+02 3.52+04 16 0.466 115 0.055 0.03% 0.017 0.34 0.079 0.765 2.61% 0.0034 3) 3.52+04 16 0.466 0.15% 2.00 0.65 0.03% 0.017 0.34 0.079 0.765 2.24% 0.0033 3) 3.52+02 3.15-04 10 0.216 7331 0.08% 2.00 0.65 0.03% 0.015 0.34 0.079 0.765 2.24% 0.0037 3) 3.65+02 3.25+04 10 0.217 7226 0.09% 2.00 0.65 0.03% 0.016 0.34 0.079 0.76																
3) 3 3.7E-02 3.2E-04 16 0.466 6015 0.10% 2.00 0.65 0.03% 0.017 0.34 0.076 2.45% 0.0043 3 3.7E-02 3.E-04 10 0.215 7378 0.08% 2.00 0.65 0.03% 0.011 0.34 0.079 0.765 2.25% 0.0038 3 3.9E+02 3.1E-04 10 0.215 736 0.08% 2.00 0.65 0.03% 0.015 0.34 0.079 0.765 2.24% 0.0037 3 3.9E+02 3.2E-04 10 0.216 7330 0.08% 2.00 0.65 0.03% 0.015 0.34 0.079 0.765 2.35% 0.0033 3 3.9E+02 3.2E-04 10 0.217 7252 0.09% 2.00 0.65 0.03% 0.016 0.34 0.079 0.765 2.43% 0.0040 0.03 0.076 2.45% 0.0041 0.38 0.076 2.44%		3.9E+02	3.0E-04													
3) 3 3 5 3 5 7 6 4 6 6 6 0																
3) 3) 5) 5) 5) 6) 7) 7) 6) 7) 6) 7) 7) 7) 7) 7) 7) 7) 7) 7) 7) 7) 7) 7) 7,75 2,245 0007 3) 3) 5) 2) 2) 100 2,216 100 0,217 7250 0,095 0,035 0,035 0,034 0,079 0,765 2,235 0,0033 3) 3) 3) 3 2) 100 2,117 7250 0,095 0,005 0,035 0,016 0,34 0,079 0,765 2,345 0,0003 3 5 0,354 0,079 0,765 2,445 0,0004 0,035 0,035 0,016 0,34 0,079 0,765 2,445 0,0004 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000)3															
30 3 3 3 9 4 3 4 0 2 10 0 2 10 0)3	3.9E+02	3.1E-04	10	0.215	7354	0.08%	2.00	0.65	0.03%	0.015	0.34	0.079	0.765	2.24%	0.0037
30 30 50 50 50 60 50 60 50 50 60 50<)3	3.9E+02	3.2E-04	10	0.216	7308	0.08%	2.00	0.65	0.03%	0.015	0.34	0.079	0.765	2.31%	0.0038
30 30 50 50 50 60<)3	3.9E+02	3.2E-04	10	0.217	7262	0.09%	2.00	0.65	0.03%	0.016	0.34	0.079	0.765	2.39%	0.0039
30 30 50 50 25 775 2.448 0.0024 31 356+02 34E-04 10 0.219 7173 0.09% 2.00 0.65 0.03% 0.017 0.34 0.079 0.765 2.45% 0.0042 31 356+02 34E-04 10 0.219 7150 0.09% 2.00 0.65 0.03% 0.017 0.34 0.079 0.765 2.65% 0.0042 31 4.66+02 2.92-04 10 0.220 7130 0.06% 2.00 0.65 0.03% 0.011 0.34 0.079 0.765 2.61% 0.0028 31 4.66+02 2.92-04 10 0.221 7070 0.7% 2.00 0.65 0.03% 0.011 0.34 0.079 0.765 1.73% 0.0028 31 4.66+02 3.0E-04 10 0.221 7070 0.7% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 <t< td=""><td>)3</td><td>3.9E+02</td><td>3.3E-04</td><td>10</td><td>0.218</td><td>7217</td><td>0.09%</td><td>2.00</td><td>0.65</td><td>0.03%</td><td>0.016</td><td>0.34</td><td>0.079</td><td>0.765</td><td>2.46%</td><td>0.0040</td></t<>)3	3.9E+02	3.3E-04	10	0.218	7217	0.09%	2.00	0.65	0.03%	0.016	0.34	0.079	0.765	2.46%	0.0040
30 34 35 36 35 36 35 36 35 36 35 36 35 36<)3	3.9E+02	3.3E-04	10	0.219	7173	0.09%	2.00	0.65	0.03%	0.017	0.34	0.079	0.765	2.54%	0.0042
30 4.6E+02 2.9E+04 10 0.220 7088 0.09% 2.00 0.65 0.03% 0.011 0.34 0.776 1.73% 0.0022 31 4.6E+02 2.9E+04 10 0.221 7087 0.07% 2.00 0.65 0.03% 0.011 0.34 0.079 0.765 1.78% 0.0022 31 4.6E+02 2.9E+04 10 0.221 7047 0.77% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.78% 0.0029 31 4.6E+02 3.0E-04 10 0.221 7007 0.77% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.48% 0.0033 31 4.6E+02 3.0E-04 10 0.223 6967 0.7% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.48% 0.0033 34 4.6E+02 3.0E-04 10 0.223 6967 0.																
30 4.6E+02 2.9E+04 10 0.221 7070 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.76% 0.0029 31 4.6E+02 3.0E+04 10 0.221 7047 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.78% 0.0029 33 4.6E+02 3.0E-04 10 0.222 7006 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.82% 0.0030 34 4.6E+02 3.0E-04 10 0.222 6987 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.84% 0.0030 34 6.6E+02 3.0E-04 10 0.223 6947 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 1.33% 0.0032 34 6.6E+02 3.0E-04 10 0.23 6		4.6E+02 4.6E+02	2.9E-04 2.9E-04			7109					0.011	0.34				
30 4.6E+02 3.0E-04 10 0.222 7027 0.07% 2.00 0.65 0.03% 0.012 0.34 0.076 1.28% 0.0030 31 4.6E+02 3.0E-04 10 0.222 7026 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.28% 0.0030 33 4.6E+02 3.0E-04 10 0.222 6967 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.28% 0.0031 34 4.6E+02 3.0E-04 10 0.223 6647 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.39% 0.0032 34 6.6E+02 3.1E-04 10 2.24 6007 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 1.39% 0.0033 34 4.6E+02 3.1E-04 10 0.224 6007 0.)3	4.6E+02	2.9E-04	10	0.221	7067	0.07%	2.00	0.65	0.03%	0.012	0.34	0.079	0.765	1.76%	0.0029
30 4.6E+02 3.0E-04 10 0.222 6987 0.07% 2.00 0.65 0.03% 0.012 0.34 0.076 1.87% 0.0031 31 4.6E+02 3.0E-04 10 0.223 6987 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.89% 0.0031 33 4.6E+02 3.0E-04 10 0.223 6987 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 1.99% 0.0032 34 4.6E+02 3.1E-04 10 0.223 6987 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 1.99% 0.0033 34 4.6E+02 3.8E-04 16 0.476 5687 0.09% 2.00 0.65 0.03% 0.016 0.34 0.079 0.765 2.48% 0.0041 34 4.4E+02 3.8E-04 16 0.476 5683 0)3	4.6E+02	3.0E-04	10	0.222	7027	0.07%	2.00	0.65	0.03%	0.012	0.34	0.079	0.765	1.82%	0.0030
31 4.6E+02 3.0E-04 10 0.223 6947 0.07% 2.00 0.65 0.03% 0.013 0.34 0.076 1.39% 0.0023 31 4.6E+02 3.1E-04 10 0.224 6920 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 1.39% 0.0023 32 4.6E+02 3.1E-04 10 0.224 6909 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 1.99% 0.0033 33 4.4E+02 3.8E-04 16 0.476 5637 0.09% 2.00 0.65 0.03% 0.016 0.34 0.079 0.765 2.48% 0.0041 33 4.4E+02 3.8E-04 16 0.476 5630 0.09% 2.00 0.65 0.03% 0.016 0.34 0.079 0.765 2.48% 0.0041 34 4.4E+02 3.8E-04 16 0.476 5634 0)3	4.6E+02	3.0E-04	10	0.222	6987	0.07%	2.00	0.65	0.03%	0.012	0.34	0.079	0.765	1.87%	0.0031
31 4.6E+02 3.1E-04 10 0.224 6090 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 1.99% 0.0033 31 4.4E+02 3.3E-04 16 0.475 5678 0.09% 2.00 0.65 0.03% 0.016 0.34 0.079 0.765 2.45% 0.0040 31 4.4E+02 3.3E-04 16 0.476 5630 0.09% 2.00 0.65 0.03% 0.016 0.34 0.079 0.765 2.45% 0.0041 31 4.4E+02 3.3E-04 16 0.476 5634 0.09% 2.00 0.65 0.03% 0.016 0.34 0.079 0.765 2.45% 0.0041 31 4.4E+02 3.8E-04 16 0.476 5649 0.09% 2.00 0.65 0.03% 0.017 0.34 0.079 0.765 2.54% 0.0042 32 4.4E+02 3.8E-04 16 0.477)3	4.6E+02	3.0E-04	10	0.223	6947	0.07%	2.00	0.65	0.03%	0.013	0.34	0.079	0.765	1.93%	0.0032
33 4.4E+02 3.3E-04 16 0.476 5663 0.09% 2.00 0.65 0.03% 0.016 0.34 0.079 0.765 2.48% 0.0041 3 4.4E+02 3.3E-04 16 0.476 5649 0.09% 2.00 0.65 0.03% 0.016 0.34 0.079 0.765 2.48% 0.0041 13 4.4E+02 3.3E-04 16 0.476 5649 0.09% 2.00 0.65 0.03% 0.016 0.34 0.079 0.765 2.54% 0.0041 13 4.4E+02 3.4E+02 3.4E+04 16 0.476 5634 0.09% 2.00 0.65 0.03% 0.017 0.34 0.079 0.765 2.54% 0.0042 13 4.4E+02 3.4E+04 16 0.477 5620 0.09% 2.00 0.65 0.03% 0.017 0.34 0.079 0.765 2.54% 0.0042 14<4E+02)3	4.6E+02	3.1E-04	10	0.224	6909	0.07%	2.00	0.65	0.03%	0.013	0.34	0.079	0.765	1.99%	0.0033
33 4.4E+02 3.3E-04 16 0.476 5634 0.09% 2.00 0.65 0.03% 0.017 0.34 0.079 0.765 2.54% 0.0042 33 4.4E+02 3.4E-04 16 0.477 5620 0.09% 2.00 0.65 0.03% 0.017 0.34 0.079 0.765 2.57% 0.0042)3	4.4E+02	3.3E-04	16	0.476	5663	0.09%	2.00	0.65	0.03%	0.016	0.34	0.079	0.765	2.48%	0.0041
)3	4.4E+02	3.3E-04	16	0.476	5634	0.09%	2.00	0.65	0.03%	0.017	0.34	0.079	0.765	2.54%	0.0042
		4.4E+02 4.4E+02	3.4E-04 3.4E-04													

	WHITE MESA TAILINGS REPOSITORY LIQUEFACTION AND SE	EISMIC SETTLEMENT ANALYSES - 2W4-C					
				Top of of Layer of s of Weigh Weight Bottom of Midpoint at Bottom	Midpoint of Bottom Midpoint Dept		dex, Strain, Strain, y, 15 Cycles, Design Consolidati
			/Rooting Zone (ft) /ater Storage/Rooting Zone La	yer 5625.69 5623.94 5622.19 3.50 0.054 107 0.215 0.121 0.00			
			ion Layer (ft) High Compaction La	yer 5622.19 5620.19 5618.19 4.00 0.060 120 0.454 0.334 0.00			
Contraction Contraction<				ver 5618.19 5617.22 5616.24 1.95 0.050 101 0.552 0.503 0.00	0.00 0.552 0.503 2.	2.74 508 1.6E-03 4.0E+02 1.2E-04	11 0.170 10482 0.02% 2.00 0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.0000
							Seismic Settlement Analysis - Stewart et al (2004)
	2013 CPT Data from ConeTec CPT	Data Interpretations Conditions at t ₁	Lie	quefaction Triggering Analyses			
		Cone d Friction Index. Pore Effective	Idriss & Boulanger (2008)	Youd et al. (2001)			ty Shear d Shear c Strain at Strain for I
	at time PW PW Onit Onit at time Pressure time or at time of	Penetration Ratio, F, L. Total Stress Pressure Stress at Satural		oyuu ou da haab			dex, Strain, Strain, Ytv 15 Cycles, Design Consolidati
					Liquenable?		
	0=No	0=Nc	s'v=1atm s'v=1atm FOS	siv=tatm siv=tatm FoS	2 110		(19)
N N N N N N N N N N N N N N N N							
	17.880 5598.36 13.3 0.080 13.2 10.8 4.68 0.60% sand-Slime Tailin 0.059 119.0 1.01 0.40 0.61 1	1.32 17.409 241.99 20.32 20 0.65% 2.4 47% 1.56 0.00 1.56 0	0.89 0.05 0.97 1.0 0.050 37.43 57.75 0.085 1.71 0.94 0.1	26 0.80 1.07 1.0 0.038 2.30 46.76 0.089 3.07 2.39	2 8.	3.48 500 1.8E-03 4.6E+02 3.3E-04	10 0.227 6732 0.08% 2.00 0.65 0.03% 0.015 0.34 0.079 0.765 2.26% 0.0037
N N N N N N N N N N N N N N N N							
	18.701 5597.54 16.6 0.192 16.5 16.7 7.23 1.15% Sand-Slime Tailin 0.059 119.0 1.05 0.43 0.63 1	1.27 21.007 292.00 24.55 25 1.23% 2.5 47% 1.61 0.00 1.61 0	0.89 0.06 0.97 1.0 0.049 38.91 63.46 0.092 1.85 0.93 0.1	29 0.80 1.07 1.0 0.039 2.55 62.56 0.103 3.42 2.64	2 8.	8.73 500 1.8E-03 4.6E+02 3.4E-04	10 0.229 6648 0.09% 2.00 0.65 0.03% 0.016 0.34 0.079 0.765 2.41% 0.0039
N N N N N N N N N N N N N N N N N N N N N N N <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N = 0 N =							
N D D D D D D D D D D D D D D D D D D D D D D D D D D D <td>19.521 5596.72 13.9 0.205 13.8 21.2 9.20 1.47% sand-Slime Tailin 0.059 119.0 1.10 0.45 0.65 1</td> <td>1.25 17.183 238.84 20.15 20 1.60% 2.6 47% 1.65 0.00 1.65 0</td> <td></td> <td>26 0.80 1.06 1.0 0.039 3.32 66.95 0.108 3.48 2.61</td> <td>2 8.</td> <td>8.98 500 1.8E-03 4.6E+02 3.5E-04</td> <td>10 0.231 6567 0.09% 2.00 0.65 0.03% 0.017 0.34 0.079 0.765 2.55% 0.0042</td>	19.521 5596.72 13.9 0.205 13.8 21.2 9.20 1.47% sand-Slime Tailin 0.059 119.0 1.10 0.45 0.65 1	1.25 17.183 238.84 20.15 20 1.60% 2.6 47% 1.65 0.00 1.65 0		26 0.80 1.06 1.0 0.039 3.32 66.95 0.108 3.48 2.61	2 8.	8.98 500 1.8E-03 4.6E+02 3.5E-04	10 0.231 6567 0.09% 2.00 0.65 0.03% 0.017 0.34 0.079 0.765 2.55% 0.0042
						000 1.02 00 0.02 0.02 0.02	
		1.20 10.200 220.20 10.24 10 1.02% 2.0 41% 1.07 0.00 1.07					
N N N N N N N N N N N N N N N N N N N N N N N N N N N <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
	20.341 5595.90 8.2 0.252 7.9 49.1 21.27 3.08% Slime Tailings 0.057 113.1 1.15 0.48 0.67 1		0.87 0.05 0.97 1.0 0.049 34.10 45.64 0.073 1.50 0.93 0.1	20 0.80 1.05 1.0 0.039 7.03 81.06 0.130 4.05 2.78	2 9.	0.23 538 1.8E-03 5.1E+02 3.3E-04	16 0.484 5351 0.08% 2.00 0.65 0.03% 0.015 0.34 0.079 0.765 2.27% 0.0037
N N N N N N N N N N N N N N N N N N N N N N N N							
N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10 0.234 6417 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 1.98% 0.0032</td>							10 0.234 6417 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 1.98% 0.0032
		1.11 10.021 210.00 20.42 20 2.02% 2.1 4170 1.11 0.00 1.11				000 1.02 00 0.02 02 0.22 04	
111							
28811							
N D D D D D D D D D D D D D D D D D D D D D D<			0.85 0.05 0.96 1.0 0.048 35.08 48.70 0.076 1.60 0.91 0.3	21 0.80 1.03 1.0 0.039 3.88 52.88 0.094 2.74 2.17			10 0.237 6290 0.08% 2.00 0.65 0.03% 0.014 0.34 0.079 0.765 2.18% 0.0036
b b b b b b b b b b b b b b b b b b b< b<							
b b b b b b b b b b b b< <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
</td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
b b b b b< b b< b<							
2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
114 552 12 12.8 12.8 12.8 12.8 12.8<							
2442 591 P 30 97 10. 92. 60.7 10. 92. 60.7 10.							
b c 0 0 0 0 0 <							
2 4 70 5 501 7 1 20 5 501 5 501 1 50 5 501 1 50 5 501 5 501 5 501 5 501 5 501							
b b< b< b< b< b< b< b<<	24.000 5591.65 14.2 0.192 13.3 152.9 60.26 1.35% Sand-Sime Tailin 0.059 119.0 1.40 0.61 0.79 1 24.770 5591.47 13.7 0.186 12.8 151.0 65.42 1.36% Sand-Sime Tailin 0.059 119.0 1.41 0.62 0.80 1						
2 22 2 5 500 0 1 12 0 150 0 150 1 0 0 140 0 15 1 10 0 140 0 15 0 140 0 15 0 140 0 15 0 140 0 15 0 140 0 15 0 140 0 15 0 140 0 15 0 140 0 15 0 140 0 15 0 140 0 15 0 140 0 15 0 140 0 15 0 140 0 15 0 140 0 15 0 140 0 15 0 140 0 15 0 15 0 15 <th< td=""><td>24.934 5591.31 12.8 0.197 12.0 120.3 52.12 1.54% Sand-Slime Tailin 0.059 119.0 1.42 0.62 0.80 1</td><td>1.06 12.734 177.01 15.71 14 1.74% 2.7 47% 1.97 0.07 1.90 1</td><td>0.84 0.05 0.96 1.0 0.048 35.81 51.53 0.079 1.64 0.89 0.3</td><td>23 0.80 1.01 1.0 0.040 4.29 67.41 0.108 2.87 2.26</td><td>-</td><td></td><td>10 0.239 6195 0.06% 2.00 0.65 0.03% 0.010 0.34 0.079 0.765 1.54% 0.0025</td></th<>	24.934 5591.31 12.8 0.197 12.0 120.3 52.12 1.54% Sand-Slime Tailin 0.059 119.0 1.42 0.62 0.80 1	1.06 12.734 177.01 15.71 14 1.74% 2.7 47% 1.97 0.07 1.90 1	0.84 0.05 0.96 1.0 0.048 35.81 51.53 0.079 1.64 0.89 0.3	23 0.80 1.01 1.0 0.040 4.29 67.41 0.108 2.87 2.26	-		10 0.239 6195 0.06% 2.00 0.65 0.03% 0.010 0.34 0.079 0.765 1.54% 0.0025
2 5 26 5 5 50 0.5 1 1.4 0 100 1 1.4 0 100 1 1.4 0 100 1 1.4 0 100 1 1.4 0 100 1 1.5 1 1.0 0 100 1 1.0 0 100 1 1.0 0 100 1 1.0 0 100 1 1.0 0 100 0 1.0 0 1.0 0 1.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
2 5 50 5 50 a 1 1 0 10 1 05 1 45 1 45 1 45 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
2 574 5 590.0 1 1.0 0 5.0 0 5.0 0.000 0 5.0 0							
26.082 559.0 1.1 0.24 1.1 0.24 1.4 0.24 1.4 0.24 1.4 0.24 1.4 0.24 1.4 0.24 1.4 0.24 1.4 0.24 1.4 0.24 1.4 0.24 <td>25.754 5590.49 11.6 0.159 11.1 86.4 37.44 1.37% Sand-Slime Tailin 0.059 119.0 1.47 0.65 0.82 1</td> <td>1.04 11.458 159.27 13.96 12 1.57% 2.8 47% 2.02 0.09 1.93 1</td> <td>0.83 0.05 0.96 1.0 0.048 35.20 49.15 0.077 1.59 0.88 0.1</td> <td>22 0.80 1.01 1.0 0.040 4.53 63.18 0.103 2.65 2.12</td> <td>2 10.</td> <td>0.88 594 1.8E-03 6.5E+02 3.0E-04</td> <td>10 0.240 6164 0.06% 2.00 0.65 0.03% 0.011 0.34 0.079 0.765 1.64% 0.0027</td>	25.754 5590.49 11.6 0.159 11.1 86.4 37.44 1.37% Sand-Slime Tailin 0.059 119.0 1.47 0.65 0.82 1	1.04 11.458 159.27 13.96 12 1.57% 2.8 47% 2.02 0.09 1.93 1	0.83 0.05 0.96 1.0 0.048 35.20 49.15 0.077 1.59 0.88 0.1	22 0.80 1.01 1.0 0.040 4.53 63.18 0.103 2.65 2.12	2 10.	0.88 594 1.8E-03 6.5E+02 3.0E-04	10 0.240 6164 0.06% 2.00 0.65 0.03% 0.011 0.34 0.079 0.765 1.64% 0.0027
262.64 558.99 1.1 0.07 1.1 0.04 4.55 1.6 0.89 1.8 0.19 1.1 0.04 4.55 0.10 0.11 0.11 0.11 0.04 4.55 0.10 0.11 0.11 0.17 0.18 0.88 0.27 0.18 0.87 0.11 0.44 0.11							
26410 5589.83 114 0.197 10.8 88.6 38.40 1.73% SundSimeTain 0.059 119.0 1.51 0.67 0.84 1 1.02 11.016 153.12 13.45 12 2.00% 2.8 47% 2.06 0.11 1.95 1 0.82 0.5 0.96 1.0 0.44 35.02 48.47 0.076 1.57 0.80 0.10 1.0 0.41 5.15 69.27 0.11 2.77 2.17 2.17 2.17 2.17 2.17 2.17 2							
26574 5589.67 10.5 0.197 10.0 88.3 38.26 1.87% samessime tank 0.059 119.0 1.52 0.67 0.85 1 1.01 10.127 140.77 12.41 11 2.18% 2.9 47% 2.07 0.12 1.95 1 0.82 0.5 0.96 1.0 0.041 5.67 70.40 0.112 2.79 2.16 2	26.410 5589.83 11.4 0.197 10.8 88.6 38.40 1.73% Sand-Slime Tailin 0.059 119.0 1.51 0.67 0.84 1						10 0.241 6140 0.06% 2.00 0.65 0.03% 0.011 0.34 0.079 0.765 1.72% 0.0028
27.740 5588.50 Sandstime Table 0.059 119.0 2.14 0.14 2.00 1	26.574 5589.67 10.5 0.197 10.0 88.3 38.26 1.87% sand-slime Tailin 0.059 119.0 1.52 0.67 0.85 1	1.01 10.127 140.77 12.41 11 2.18% 2.9 47% 2.07 0.12 1.95 1			2 11.	.13 594 1.8E-03 6.5E+02 3.1E-04	10 0.241 6134 0.07% 2.00 0.65 0.03% 0.011 0.34 0.079 0.765 1.74% 0.0029
	27.740 5588.50 Sand-Slime Tailin 0.059 119.0	2.14 0.14 2.00 1			11.	.49 594 1.8E-03 6.5E+02 3.2E-04	10 0.242 6068 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.87% 0.0218

Data File: 13-52106_SP2W5-C-BSC-CPT Location: White Mesa 2013 CPT Investigation	WHITE MESA TAILINGS REPOSITORY LIQUEFACTION Idriss and Boulanger (2008) Max. Horiz. Acceleration, Amaxig: 0.15	5604.20 Water surface elevation during CPT investigation (ft 5615.86 5604.20 Water surface elevation at t ₀ (ft amsi)	Top of Midpoint Bottom Thicknes Unit Unit Stress at Stress at Pressure Pressure at Stress at Str	idpoi Shear Max Sh nt Wave Soil Strai epth Velocity, Density Modul t ₁ , z ₁ V _s , ρ (tcf) G _{max} (t
Tailings Slimes	Earthquake Moment Magnitude, M: 5.5 Magnitude Scaling Factor, MSF: 1.69 Youd, et al (2001) Max, Horiz, Acceleration, Amavig: 0.15	5589.01 Water surface elevation at t, (ft amst) 0.50 5584.01 Water surface elevation at t, (ft amst) 3.60 1.44 Scaling Factor for stress ration, r _m 2.42	Increases of Erosion Protection Layer (first mulch/topsoils) Immediately after plat Erosion Protection Layer ###### 5623.03 5622.578 0.50 0.055 110 0.028 0.014 0.00 0.002 0.028 0.014 Thickness of Water StorageRooting Zone (th) Thickness of Water StorageRooting Zone Layer ###### 6624.03 5622.28 3.50 0.054 107 0.215 0.121 0.00 0.00 0.215 0.121 Thickness of Water StorageRooting Zone (th) High Compaction Layer ###### 6624.03 5622.28 3.50 0.054 107 0.215 0.121 0.00 0.00 0.021 0.121 Thickness of Mandom Fall Compaction Layer ###### 5617.07 5615.58 2.42 0.050 101 0.576 0.515 0.00 0.00 0.054 0.515 Thickness of Random/Platform Fill on on top of existing interim cover (th) High Compaction Layer ###### 5617.07 5615.58 2.42 0.050 101 0.576 0.515 0.00 0.00 0.057 0.515	0.08 508 1.7E-03 4.4E 0.69 508 1.7E-03 4.3E 1.83 508 1.9E-03 4.8E 2.81 508 1.6E-03 4.0E
Interim Cover Cells Requiring User Input/Manipulation 2013 CPT Data from ConeTec	Earthquake Moment Magnitude, M: 5.5 Magnitude Scaling Factor, MSF: 2.21	0.47 Volumetric Strain Ratio for Site-Specific Design Earl 1151.89 7.51 Equiv. Number of Uniform Strain Cycles, N 5584.01	Additional Stress due to Final Cover Placement, Δσ _{FC} (ps) Elevation of bottom of tailings (inter) (ft amsi) Linusfaction Tribesting Analyses	
Depth at time Pw Pw	Material Stress Pore Stress a Type (as Unit Unit at time Pressure time of determined Walth Mitcheld (OPT	at time of Penetration Ratio, F, L Total St		Wave Soil Sheat epth Velocity, Density Strai
of CPT Elevation qt fs qc (u2) (u2) (ft) (ft amsl) TSF TSF TSF (ft) PSI	fs/qt determined Weight Weight of CPT at time of CPT (%) (tcf) (pcf) (tsf) (tsf)	CPT CN qc1 qc1 NResistance, (%) * FC alt, 1=Yes TSF MPa O ₄ % (ts1) 0=No	att, t, att, r _d C _n K _s CSR (CRR) r _d D ₁ K _s CSR (CRR) Avg Liquefiable? att (tst) (tst) 1=Yes Mar_5 Liquefiable? Interview Mar_5 Fos 1=Yes Fos 1=Yes Verter Fos 1=Yes 1=Yes Interview Fos 1=Yes Interview	t ₁ , z ₁ V _s , ρ Modul m (ft/sec) (tcf) tsf
000		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(tyse) (tyse) (tr) ist 323 504 1.6E-03 5.6E 334 504 1.6E-03 5.6E 345 504 1.6E-03 5.6E 346 504 1.6E-03 5.6E 345 504 1.6E-03 5.6E 346 504 1.6E-03 5.6E 345 504 1.6E-03 5.6E 373 504 1.6E-03 5.6E 373 504 1.6E-03 5.6E 380 504 1.6E-03 5.6E 393 504 1.6E-03 5.6E 394 504 1.6E-03 5.6E 393 504 1.6E-03 3.6E 4.18 405 1.6E-03 3.6E 4.18 405 1.6E-03 3.6E 4.33 405 1.6E-03 3.6E 4.34 405 1.6E-03 3.6E 4.35 1.6E-03 3.6E 3.6E

Max Shear Strain Modulus, G _{max} (tsf)	P = γ _{eff} *(G _{eff} /G _{max}) (tsf)	Plastici ty Index, Pl	9 1	g 2	Shear Strain, γ (%)	а	Ь	d Shear	Volumetri c Strain at 15 Cycles, ε _{c-15} (%)	R	c	C _N	Volumetric Strain for Design Event, ε _ν (%)	Incrementa I Consolidati on (ft)
4.4E+02 4.3E+02	3.0E-06 2.8E-05 6.8E-05	11 11 11	0.068 0.118 0.153	46696 18930 12419	0.00%	1.20 2.00 0.65	0.80 0.65 0.75	0.04% 0.03% 0.02%	0.000 0.000 0.000	0.32 0.34 0.34	0.133 0.079 0.079	0.778	0.00% 0.00% 0.00%	0.0000 0.0000
4.0E+02	1.2E-04	11	0.171 Soir	10381	0.02%	2.00	0.65	0.03% t et al (2004	0.000	0.34	0.079	0.765	0.00%	0.0000
waximum		- 100000	001	Shine Get		Anarysis	- otewar	Threathor		TOTA	SEISMI	C SETTL	EMENT (FT):	0.494
Shear Strain Modulus, G _{max} tsf	P = γ _{eff} *(G _{eff} /G _{max}) tsf	ty Index, Pl	9 1	9 2	Shear Strain, ? (%)	а	b	d Shear Strain, γ _{tv} (%)	c Strain at 15 Cycles, ε _{c-15} (%)	R	c	C _N	Strain for Design Event, ε _v (%)	l Consolidati on (ft)
5.5E+02 5.5E+02	1.0E-04	11 11	0.177	9851 9794	0.01% 0.01%	2.00	0.65	0.03%	0.000	0.34 0.34	0.079	0.765	0.00%	0.0000
5.5E+02 5.5E+02	1.1E-04	11 11	0.178 0.179	9738 9683	0.01% 0.01%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.000 0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00% 0.00%	0.0000
5.5E+02 5.5E+02	1.1E-04 1.1E-04	11 11	0.179 0.180	9629 9576	0.01% 0.01%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.000 0.000	0.34 0.34	0.079	0.765 0.765	0.00%	0.0000
5.5E+02 5.5E+02		11 11	0.181 0.181	9524 9473	0.01% 0.01%	2.00 2.00	0.65 0.65	0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00%	0.0000
5.5E+02 5.5E+02		11 11	0.182	9423 9373	0.01%	2.00 2.00	0.65 0.65	0.03%	0.000	0.34 0.34	0.079	0.765	0.00%	0.0000
5.5E+02		11 11	0.183	9325 9277	0.02%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.0000
5.5E+02	1.2E-04	11	0.184	9231	0.02%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.0000
5.5E+02 5.5E+02	1.2E-04 1.2E-04	11 11	0.185 0.185	9185 9139	0.02% 0.02%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.000 0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00% 0.00%	0.0000
5.5E+02	1.3E-04	11 11	0.186 0.186	9095 9051	0.02%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.000 0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00%	0.0000
5.5E+02 3.8E+02		11 11	0.187 0.187	9008 8966	0.02%	2.00 2.00	0.65 0.65	0.03%	0.000	0.34 0.34	0.079	0.765	0.00%	0.0000 0.0003
3.5E+02 3.5E+02		10 10	0.188	9165 9126	0.04%	2.00	0.65	0.03%	0.004	0.34	0.079	0.765	0.66%	0.0011
		0	0.193	11440	0.04%	2.20	1.00	0.03%	0.000	0.34	0.079	0.765	0.04%	0.0001
3.9E+02	1.9E-04	0 0	0.194	11388 11337	0.04%	2.20 2.20	1.00	0.03%	0.000 0.000	0.34 0.34	0.079	0.765	0.05%	0.0001
3.9E+02 3.5E+02		0 10	0.195 0.191	11287 8925	0.04% 0.04%	2.20 2.00	1.00 0.65	0.03% 0.03%	0.000 0.006	0.34 0.34	0.079 0.079	0.765 0.765	0.05%	0.0001 0.0014
3.5E+02 3.9E+02		10 0	0.192 0.196	8889 11149	0.04% 0.05%	2.00 2.20	0.65 1.00	0.03% 0.03%	0.006	0.34 0.34	0.079 0.079	0.765 0.765	0.91%	0.0015
3.9E+02 3.9E+02	2.0E-04	0	0.196 0.197	11102 11055	0.05%	2.20 2.20	1.00 1.00	0.03% 0.03%	0.000	0.34 0.34	0.079	0.765 0.765	0.06%	0.0001
3.9E+02	2.1E-04	0	0.197	11009	0.05%	2.20	1.00	0.03%	0.000	0.34	0.079	0.765	0.07%	0.0001
3.5E+02 3.5E+02	2.3E-04	10 10	0.194 0.195	8704 8672	0.05% 0.05%	2.00	0.65 0.65	0.03% 0.03%	0.007 0.007	0.34 0.34	0.079 0.079	0.765 0.765	1.09% 1.12%	0.0018 0.0018
3.5E+02 3.5E+02		10 10	0.195 0.196	8639 8608	0.05% 0.05%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.008 0.008	0.34 0.34	0.079 0.079	0.765 0.765	1.15% 1.19%	0.0019 0.0019
3.5E+02 3.5E+02		10 10	0.196 0.197	8576 8545	0.05% 0.05%	2.00 2.00	0.65 0.65	0.03%	0.008	0.34 0.34	0.079 0.079	0.765 0.765	1.22% 1.25%	0.0020
3.5E+02 3.5E+02		10 10	0.197 0.197	8514 8484	0.05%	2.00 2.00	0.65	0.03%	0.008	0.34 0.34	0.079	0.765	1.28% 1.31%	0.0021
3.5E+02	2.5E-04	10	0.198	8454	0.05%	2.00	0.65	0.03%	0.009	0.34	0.079	0.765	1.34%	0.0022
3.5E+02 3.9E+02	2.3E-04	10 0	0.198 0.202	8424 10578	0.05% 0.06%	2.00 2.20	0.65 1.00	0.03% 0.03%	0.009 0.001	0.34 0.34	0.079 0.079	0.765 0.765	1.38% 0.11%	0.0023
3.9E+02 3.9E+02		0	0.202	10539 10500	0.06%	2.20 2.20	1.00 1.00	0.03%	0.001 0.001	0.34 0.34	0.079 0.079	0.765 0.765	0.11%	0.0002
3.5E+02 3.5E+02		10 10	0.200	8301 8273	0.06%	2.00	0.65 0.65	0.03%	0.010	0.34 0.34	0.079	0.765	1.51% 1.54%	0.0025
3.5E+02		10 10	0.201	8245 8218	0.06%	2.00	0.65	0.03%	0.010	0.34	0.079	0.765	1.57% 1.61%	0.0026
3.5E+02	2.7E-04	10	0.202	8191	0.06%	2.00	0.65	0.03%	0.011	0.34	0.079	0.765	1.64%	0.0027
3.5E+02 3.5E+02	2.7E-04	10 10	0.202 0.203	8165 8138	0.06% 0.06%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.011 0.011	0.34 0.34	0.079 0.079	0.765 0.765	1.67% 1.70%	0.0027
3.5E+02 3.5E+02		10 10	0.203 0.203	8112 8086	0.06% 0.07%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.011 0.012	0.34 0.34	0.079 0.079	0.765 0.765	1.73% 1.76%	0.0028
3.5E+02 3.5E+02		10 10	0.204	8061 8036	0.07% 0.07%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.012 0.012	0.34 0.34	0.079	0.765 0.765	1.80% 1.83%	0.0029
3.5E+02 3.1E+02	2.8E-04	10 10	0.204 0.205	8011 7986	0.07% 0.10%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.012 0.018	0.34 0.34	0.079 0.079	0.765 0.765	1.86% 2.83%	0.0030 0.0046
3.1E+02 3.1E+02	3.3E-04	10 10	0.205	7962 7938	0.11%	2.00	0.65	0.03%	0.019	0.34	0.079	0.765	2.87%	0.0047
3.1E+02	3.4E-04	10	0.206	7914	0.11%	2.00	0.65	0.03%	0.019	0.34	0.079	0.765	2.96%	0.0049
3.1E+02 3.1E+02		10 10	0.206 0.207	7890 7867	0.11% 0.11%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.020	0.34 0.34	0.079 0.079	0.765 0.765	3.00% 3.05%	0.0049
3.1E+02 3.1E+02		10 10	0.207	7843 7820	0.12% 0.12%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.020	0.34 0.34	0.079	0.765	3.09% 3.14%	0.0051
3.1E+02 3.1E+02	3.5E-04	10 10	0.208 0.208	7798 7775	0.12% 0.12%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.021 0.021	0.34 0.34	0.079 0.079	0.765 0.765	3.18% 3.23%	0.0052
3.1E+02 3.1E+02	3.5E-04	10 10	0.209	7753 7731	0.12%	2.00	0.65	0.03%	0.021	0.34	0.079	0.765	3.27%	0.0054
3.1E+02	3.6E-04	10	0.209	7709	0.13%	2.00	0.65	0.03%	0.022	0.34	0.079	0.765	3.37%	0.0055
3.1E+02 3.1E+02	3.6E-04	10 10	0.210 0.210	7687 7666	0.13% 0.13%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.023	0.34 0.34	0.079 0.079	0.765 0.765	3.41% 3.46%	0.0056 0.0057
3.9E+02 3.9E+02	2.9E-04 2.9E-04	10 10	0.211 0.211	7639 7612	0.07% 0.07%	2.00 2.00	0.65 0.65	0.03% 0.03%		0.34 0.34	0.079 0.079	0.765 0.765	1.84% 1.87%	0.0030
3.9E+02 3.9E+02	2.9E-04	10 10	0.211 0.212	7586 7560	0.07% 0.07%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.012	0.34 0.34	0.079 0.079	0.765 0.765	1.91% 1.94%	0.0031
3.9E+02 3.9E+02	3.0E-04	10 10	0.212	7534 7508	0.07%	2.00	0.65	0.03%	0.013	0.34	0.079	0.765	1.98%	0.0032
3.9E+02	3.0E-04	10	0.213	7483	0.08%	2.00	0.65	0.03%	0.013	0.34	0.079	0.765	2.05%	0.0034
3.9E+02 3.9E+02	3.1E-04	10 10	0.214 0.214	7458 7433	0.08% 0.08%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.014	0.34 0.34	0.079 0.079	0.765 0.765	2.09% 2.12%	0.0034 0.0035
3.9E+02 3.9E+02	3.1E-04	10 10	0.214 0.215	7409 7385	0.08% 0.08%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.014 0.014	0.34 0.34	0.079 0.079	0.765 0.765	2.16% 2.19%	0.0035
3.9E+02 3.9E+02		10 10	0.215 0.216	7361 7338	0.08%	2.00 2.00	0.65 0.65	0.03%	0.015	0.34 0.34	0.079	0.765	2.23% 2.27%	0.0037
3.9E+02 3.9E+02	3.2E-04	10 10	0.216 0.217	7314 7291	0.08% 0.09%	2.00 2.00	0.65	0.03%	0.015	0.34 0.34	0.079 0.079	0.765 0.765	2.30% 2.34%	0.0038
3.9E+02	3.2E-04	10	0.217	7268	0.09%	2.00	0.65	0.03%	0.016	0.34	0.079	0.765	2.38%	0.0039
3.9E+02 4.6E+02	2.8E-04	10 10	0.217 0.218	7246 7223	0.09% 0.06%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.010	0.34 0.34	0.079 0.079	0.765 0.765	2.42% 1.56%	0.0040 0.0026
4.6E+02 4.8E+02	2.8E-04 2.7E-04	10 0	0.218 0.220	7201 9065	0.06% 0.08%	2.00 2.20	0.65 1.00	0.03% 0.03%	0.010 0.001	0.34 0.34	0.079 0.079	0.765 0.765	1.59% 0.17%	0.0026
4.6E+02 4.6E+02	2.8E-04	10 10	0.219	7157 7136	0.06%	2.00	0.65	0.03%	0.011	0.34	0.079	0.765	1.64% 1.67%	0.0027
4.6E+02	2.9E-04	10	0.220	7114	0.06%	2.00	0.65	0.03%	0.011	0.34	0.079	0.765	1.70%	0.0028
4.6E+02 4.6E+02	2.9E-04	10 10	0.220 0.221	7093 7073	0.06% 0.07%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.011	0.34 0.34	0.079 0.079	0.765 0.765	1.73% 1.75%	0.0028
4.6E+02 4.6E+02	3.0E-04	10 10	0.221 0.221	7052 7032	0.07% 0.07%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.012	0.34 0.34	0.079 0.079	0.765 0.765	1.78% 1.81%	0.0029
4.6E+02 4.6E+02	3.0E-04	10 10	0.222	7011 6991	0.07% 0.07%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.012	0.34 0.34	0.079 0.079	0.765 0.765	1.84% 1.87%	0.0030
4.6E+02 4.4E+02	3.0E-04	10 10	0.223	6972 5729	0.07%	2.00	0.65	0.03%	0.012	0.34	0.079	0.765	1.89%	0.0031
4.4E+02	3.2E-04	16	0.475	5714	0.09%	2.00	0.65	0.03%	0.016	0.34	0.079	0.765	2.39%	0.0039
4.6E+02 4.6E+02		10 10	0.224 0.224	6915 6896	0.07% 0.07%	2.00 2.00	0.65 0.65	0.03% 0.03%		0.34 0.34	0.079 0.079	0.765 0.765	1.98% 2.00%	0.0032 0.0033

WHTE MESA TAILINGS REPOSITIV Data File: 13-52105_SP2WS-C-BSC-CPT Idriss and Boulancer (2008) Location: White Mesa 2013 CPT Investigation Mas. Horiz. Acceleration, Amarg: \.\.\.9.2.3_Enid DataR0013 Field Investigation/Conetec. Data Estimulate Monent Magnitude, M: Tailings Sand-Silmes Mas. Horiz. Acceleration, Amarg: Tailings Silmes Mas. Horiz. Acceleration, Amarg: Interim Cover Mas. Horiz. Acceleration, Amarg: Estimulate Mas. Horiz. Acceleration, Amarg: Interim Cover Mas. Horiz. Acceleration, Magnitude, Magnitude Scaling Factor, MSF: Calles Requiring User Input/Manipulation Magnitude Scaling Factor, MSF:		6526.28 Ground Surface Elevation Immediately after Placement of Final Cover (ft ams) 0.50 Thickness of Erosion Protection Layer (rock mulchhopsoils) Immediately after 3.60 Thickness of Water Storage/Rooting Zone (ft) 4.00 Thickness of High Compaction Layer (ft) 2.42 Thickness of andom/Platform Fill on on top of existing interim cover (ft) sign Earl [151.89 Additional Stress due to Final Cover Placement, Δσ _{FC} (psf)	FINAL COVER (ft) Layer Layer olad Erosion Protection Layer ###### 5626.03 5625.78 0.5 /ater Storage/Rooting Zone Layer ###### 5624.03 5622.28 3.5		Image: Second	ty Index, PI 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9
2013 CPT Data from ConeTec Material Output	CPT Data Interpretations Pore Stress at Saturated Pressure time of at time of Line Of PC PT CN qc1 qc1 qc1Nesitance, P	Conditions at t ₁	(CRR) r _d D _r f K _o K _a CSR	2001)	sp by by tr, z ₁ v ₄	TOTAL SEISMIC SETTLEMENT (FT): 0.454 ty Shear d Shear c Strain at Strain for i Index, Strain, Strain, V, 16 Cycles, Design Consolidati
1388 5968.47 19.1 0.394 19.0 18.5 0.2 20.0% and-dime ther 0.059 11.0 0.05 17.76 5907.86 18.8 0.13 2.0 50.0 <td>118 0.73 11 114 7.68 24.64 20.73 20 21.09 2 0.19 0.74 11 115 15.566 21.67 18.3 18 20.09 2 0.20 0.75 11 11.11 12.030 28.76 24.0 24.22% 2 0.21 0.76 11 11.11 14.06 19.200 27.0 22 15.2% 2 0.22 0.77 11 10.00 12.82 27.0 22 27.3% 2 22.05% 2 22.3% 2 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 1.1% 1.06 2.252 4.37 3.33 3.33 0.9% 2.2 0.26 0.80 11 1.06 2.206 2.3% 2.23% 2.23% 2.23% 2.23% 2.23% 2.23% 2.23% 2.23% 2.23% 2.</td> <td>7 7 1.4.9 0.0.0 1.9.0 0.9.0 0.9.0 1.9.0 0.9.0 3.7.5 5.5 4 1.5.1 0.00 1.5.1 0.0 0.8.0 0.0.0 0.9.0 1.0 0.050 3.8.7.1 5.5 4 1.5.2 0.00 1.5.5 0.0 0.8.0 0.0.0 1.0 0.0.00 3.7.3 5.7 4 7.47 1.5.5 0.00 1.5.0 0.0 0.8.0 0.0.0 1.0 0.0.00 3.7.3 5.7 4 7.47 1.5.5 0.00 1.5.0 0.0 0.8.0 0.0.0 1.0 0.0.0.0 3.7.3 5.7 4 7.47 1.5.5 0.00 1.5.0 0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0<</td> <td>30 0.06 7.7 9.30 0.26 0.80 1.03 1.0 0.044 45 0.092 1.63 0.33 0.29 0.80 1.03 1.0 0.044 55 0.092 1.63 0.33 0.23 0.24 0.80 1.03 1.0 0.044 56 0.092 1.83 0.33 0.23 0.80 1.03 1.0 0.044 58 0.080 1.03 0.23 0.80 0.80 1.03 1.0 0.044 10 0.85 1.7 0.33 0.80 0.80 1.02 1.0 0.044 10 0.85 1.73 0.33 0.80 0.80 1.02 1.0 0.044 10 0.85 0.81 0.82 0.80 0.80 1.02 1.0 0.044 10 0.115 2.32 0.23 0.80 0.80 1.01 1.0 0.044 10 0.112 2.33 <!--</td--><td>0 3.70 76.88 0.122 3.48 2.600 2.61 0 3.84 72.90 0.151 3.27 2.46 2 0 3.58 80.91 0.160 3.27 2.31 2 0 3.58 80.91 0.40 3.00 2.86 2 0 3.58 80.91 0.30 2.41 2 0 3.70 7.57 0.120 3.20 2.51 2 0 1.86 0.400 0.30 2.41 2 2 0 1.86 0.400 0.00 2.71 2.56 2 0 1.86 0.75 0.101 2.74 2.42 2 0 1.87 0.440 0.105 2.71 2.52 2 2 0 1.86 0.161 2.47 2.42 2 2 0 1.87 0.151 3.48 2.01 2.01 2.01 2.01 2.</td><td>(10000) (100000) (1000000000000000000000000000000000000</td><td>110 0.228 6840 0.085 0.035 0.014 0.34 0.779 0.785 2.12% 0.0035 10 0.228 6844 0.885 2.00 0.65 0.035 0.014 0.34 0.779 0.785 2.12% 0.0035 10 0.227 6786 0.885 2.00 0.65 0.035 0.014 0.34 0.770 0.785 2.28% 0.0037 10 0.227 6772 0.685 0.033 0.015 0.34 0.770 0.785 2.28% 0.0038 11 0.228 6686 0.686 0.035 0.015 0.34 0.776 0.765 1.76% 0.0039 11 0.228 6641 0.696 0.035 0.011 0.34 0.076 0.765 1.77% 0.0021 10 0.228 6641 0.696 0.035 0.011 0.34 0.776 1.76% 1.76% 0.0021 10 0.228 6641</td></td>	118 0.73 11 114 7.68 24.64 20.73 20 21.09 2 0.19 0.74 11 115 15.566 21.67 18.3 18 20.09 2 0.20 0.75 11 11.11 12.030 28.76 24.0 24.22% 2 0.21 0.76 11 11.11 14.06 19.200 27.0 22 15.2% 2 0.22 0.77 11 10.00 12.82 27.0 22 27.3% 2 22.05% 2 22.3% 2 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 1.1% 1.06 2.252 4.37 3.33 3.33 0.9% 2.2 0.26 0.80 11 1.06 2.206 2.3% 2.23% 2.23% 2.23% 2.23% 2.23% 2.23% 2.23% 2.23% 2.23% 2.	7 7 1.4.9 0.0.0 1.9.0 0.9.0 0.9.0 1.9.0 0.9.0 3.7.5 5.5 4 1.5.1 0.00 1.5.1 0.0 0.8.0 0.0.0 0.9.0 1.0 0.050 3.8.7.1 5.5 4 1.5.2 0.00 1.5.5 0.0 0.8.0 0.0.0 1.0 0.0.00 3.7.3 5.7 4 7.47 1.5.5 0.00 1.5.0 0.0 0.8.0 0.0.0 1.0 0.0.00 3.7.3 5.7 4 7.47 1.5.5 0.00 1.5.0 0.0 0.8.0 0.0.0 1.0 0.0.0.0 3.7.3 5.7 4 7.47 1.5.5 0.00 1.5.0 0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0<	30 0.06 7.7 9.30 0.26 0.80 1.03 1.0 0.044 45 0.092 1.63 0.33 0.29 0.80 1.03 1.0 0.044 55 0.092 1.63 0.33 0.23 0.24 0.80 1.03 1.0 0.044 56 0.092 1.83 0.33 0.23 0.80 1.03 1.0 0.044 58 0.080 1.03 0.23 0.80 0.80 1.03 1.0 0.044 10 0.85 1.7 0.33 0.80 0.80 1.02 1.0 0.044 10 0.85 1.73 0.33 0.80 0.80 1.02 1.0 0.044 10 0.85 0.81 0.82 0.80 0.80 1.02 1.0 0.044 10 0.115 2.32 0.23 0.80 0.80 1.01 1.0 0.044 10 0.112 2.33 </td <td>0 3.70 76.88 0.122 3.48 2.600 2.61 0 3.84 72.90 0.151 3.27 2.46 2 0 3.58 80.91 0.160 3.27 2.31 2 0 3.58 80.91 0.40 3.00 2.86 2 0 3.58 80.91 0.30 2.41 2 0 3.70 7.57 0.120 3.20 2.51 2 0 1.86 0.400 0.30 2.41 2 2 0 1.86 0.400 0.00 2.71 2.56 2 0 1.86 0.75 0.101 2.74 2.42 2 0 1.87 0.440 0.105 2.71 2.52 2 2 0 1.86 0.161 2.47 2.42 2 2 0 1.87 0.151 3.48 2.01 2.01 2.01 2.01 2.</td> <td>(10000) (100000) (1000000000000000000000000000000000000</td> <td>110 0.228 6840 0.085 0.035 0.014 0.34 0.779 0.785 2.12% 0.0035 10 0.228 6844 0.885 2.00 0.65 0.035 0.014 0.34 0.779 0.785 2.12% 0.0035 10 0.227 6786 0.885 2.00 0.65 0.035 0.014 0.34 0.770 0.785 2.28% 0.0037 10 0.227 6772 0.685 0.033 0.015 0.34 0.770 0.785 2.28% 0.0038 11 0.228 6686 0.686 0.035 0.015 0.34 0.776 0.765 1.76% 0.0039 11 0.228 6641 0.696 0.035 0.011 0.34 0.076 0.765 1.77% 0.0021 10 0.228 6641 0.696 0.035 0.011 0.34 0.776 1.76% 1.76% 0.0021 10 0.228 6641</td>	0 3.70 76.88 0.122 3.48 2.600 2.61 0 3.84 72.90 0.151 3.27 2.46 2 0 3.58 80.91 0.160 3.27 2.31 2 0 3.58 80.91 0.40 3.00 2.86 2 0 3.58 80.91 0.30 2.41 2 0 3.70 7.57 0.120 3.20 2.51 2 0 1.86 0.400 0.30 2.41 2 2 0 1.86 0.400 0.00 2.71 2.56 2 0 1.86 0.75 0.101 2.74 2.42 2 0 1.87 0.440 0.105 2.71 2.52 2 2 0 1.86 0.161 2.47 2.42 2 2 0 1.87 0.151 3.48 2.01 2.01 2.01 2.01 2.	(10000) (100000) (1000000000000000000000000000000000000	110 0.228 6840 0.085 0.035 0.014 0.34 0.779 0.785 2.12% 0.0035 10 0.228 6844 0.885 2.00 0.65 0.035 0.014 0.34 0.779 0.785 2.12% 0.0035 10 0.227 6786 0.885 2.00 0.65 0.035 0.014 0.34 0.770 0.785 2.28% 0.0037 10 0.227 6772 0.685 0.033 0.015 0.34 0.770 0.785 2.28% 0.0038 11 0.228 6686 0.686 0.035 0.015 0.34 0.776 0.765 1.76% 0.0039 11 0.228 6641 0.696 0.035 0.011 0.34 0.076 0.765 1.77% 0.0021 10 0.228 6641 0.696 0.035 0.011 0.34 0.776 1.76% 1.76% 0.0021 10 0.228 6641

				F	w	HITE MES	TAILING	S REPOSI	TORY LIQ	UEFACTI	ON AND S			NT ANALYS																	Elev. At E Midpoint E		cknes U	Init Unit	Total Stress at	Total Stress at			Effective E t Stress at S	Effective Mic		ear ave Soil	Max She Strain
Data File: Location:	Whit	2106_SP2W6- e Mesa 2013 013 Field Inve	CPT Inves	tigation		ulanger (2 Ioriz. Acce Jake Mome	eration, Arr		0.15	5		[5604.40	Water surfa Water surfa Water surfa	ace elevati	on at t _o (ft a	nsl)		625.41	Ground S	urface El	levation Im	mediatel	CPT (ft amsl) ely after Placeme er (rock mulch/to				VAL COV		(ft)		Layer Lay	of We ver(ft)t 0.50 0	(tcf) (pcf)	Layer	of Layer	at Bottom of Layer	Layer (tsf		of Layer at t	pth Velo	Density Vs , ρ (tcf) 508 1.7E-03	G _{max} (t
T.	ailings Sands ailings Sand-S	limes				itude Scalii 001)	g Factor, N	ISF:	1.69				5583.59	Water surfa	ace elevati	on at t ₂ (ft a	nsl)	3.		Thicknes: Thicknes:	s of Wate s of High	er Storage/F Compactio	Rooting n Layer	Zone (ft) r (ft)		, .	ater Storage Hig	e/Rooting gh Comp	g Zone Laye paction Laye	er ####### er #######	5623.16 5 5619.41 5	621.41 617.41	3.50 0 4.00 0	.054 107 .060 120	0.215	5 0.121 4 0.334	1 0.00 4 0.00	0.00	0.215	0.121	0.69 1.83	508 1.7E-03 508 1.9E-03	3 4.3E 3 4.8E
In	ailings Slimes terim Cover	User Input/Ma	aninulation	_	E	Max. Horiz arthquake Magnitud	Noment Ma	gnitude, N	1:	0.15 5.5			1.44 0.47 7.51	Scaling Fac Volumetric	Strain Rat	io for Site-S	becific De	sign Earl 10			I Stress d	lue to Final	Cover F	n on top of existi Placement, Δσ _{FC} (ft amel)		over (ft)	Platfor	rm/Rand	om Fill Laye	r ######	5616.63 5	615.85	1.56 0	.050 101	0.533	8 0.493	3 0.00	0.00	0.533	0.493	2.68	508 1.6E-03	3 4.0E
Depth	2013 2013	CPT Data from	n ConeTec	c	Ma	iterial	r Scalling F	100	a	e Stress	CP1	Data Inte	rpretatio	ns	Nor	malized Norm	alize Tvo	ie i	003.09	Conditio	ns at t ₁	n or callings	(liner) (driss & Bou	langer (2008)			Liqu	efaction T	riggering A	nalyses Youd et al	l. (2001)					1			w	ave Soil	Shea
at time of CPT E	levation qt 't amsl) TS	fs F TSF	Pw qc (u2 TSF (ft	2) (u2)		rmined	Unit L Veight W (tcf) (t	Init attin eight of C	me Pressu PT at time	of CPT	f at time CPT 1=Ye	of CN	qc1 TSF	qc1 o MPa	Pen IC1N Resi	Cone d Frietration Rati Istance, (% Q	,Ε, L		otal Stres at t ₁ (tsf)	s Pressure at t ₁ (tsf)	Stress a t ₁ (tsf)	t Saturated at t ₁ 1=Yes	r _d	Cyclic Stress F C _o K _o K	CSR	Cyclic Resistan	(CRR)	-	r _d D _r	Cyclic f	Stress Ratio K.	K _a C	SR	Kc qc _{10-cs}	(CRR)	-	Avg FoS	Liquefiable	?		۱, Z ₁ ۱	ocity, Density V _s , ρ	
0.164 5				2 0.51		Cover	, .	0.7 0.0	,	()	0=Ne	,		153.83 1	2.87	788 0.3	1% 0.9	» 9 51%	0.54	0.00	0.54	0=No	1.00	0.05 1.02 1.	M=7.5, s'v=1atm 0.059		M=7.5, s/v=1atm F 0.075 1	FoS	0.98 0.21	0.80	2.53	sV	=1atm	.00 12.87	M=7.5, s'v=1atm 0.061	FoS 3.63	2.45	1=Yes 2=No 2				sec) (tcf) 594 1.6E-03	tsf
0.656 5 0.820 5 0.984 5 1.148 5 1.312 5 1.476 5 1.640 5 1.804 5	615.03 83. 614.87 94. 614.70 94. 614.54 92. 614.37 90. 614.21 85.	1 0.349 8 0 0.544 9 8 0.470 9 2 0.392 9 8 0.315 9 8 0.359 8	33.1 2.0 94.0 2.0 94.8 2.0 92.2 1.8 90.8 0.7 35.8 4.3	0 0.85 0 0.85 0 0.87 8 0.77 7 0.29 3 1.87	0.58% Interim 0.50% Interim 0.43% Interim 0.35% Interim	Cover Cover Cover Cover Cover Cover	0.050 10 0.050 10 0.050 10 0.050 10 0.050 10 0.050 10 0.050 10	00.7 0.0 00.7 0.0 00.7 0.0 00.7 0.0 00.7 0.0 00.7 0.0 00.7 0.0 00.7 0.0 00.7 0.0 00.7 0.0 00.7 0.0 00.7 0.0 00.7 0.0 00.7 0.0	4 0.00 5 0.00 6 0.00 7 0.00 7 0.00 8 0.00	0 0.04 0 0.05 0 0.06 0 0.07 0 0.07	0 0 0	1.70 1.70 1.70 1.70 1.70 1.70	141.202 159.715 161.126 156.689 154.309 145.843	1291.14 10 1962.71 10 2220.04 10 2239.65 10 2177.98 10 2144.90 10 2027.22 10 1979.01 10	54.02 2 35.52 1 37.16 1 32.01 1 79.23 1 59.44 1	653 0.4 010 0.4 895 0.5 638 0.5 394 0.4 220 0.3 038 0.4 021 0.4	2% 0.9 3% 1.0 3% 1.0 3% 0.9 5% 0.9 2% 1.0	 51% 	0.57 0.57 0.58 0.59 0.60 0.61 0.62 0.62	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.57 0.58 0.59 0.60 0.61 0.62 0.62		1.00 1.00 1.00 1.00 1.00 1.00	0.11 1.05 1.1 0.18 1.07 1.1 0.22 1.09 1.1 0.23 1.09 1.1 0.22 1.08 1.1 0.23 1.09 1.1 0.22 1.08 1.1 0.21 1.07 1.1 0.21 1.07 1.1 0.19 1.06 1.1 0.18 1.06 1.1	0 0.062 0 0.063 0 0.063 0 0.062 0 0.062 0 0.062	93.22 272.45 89.78 259.22	1.000 16 1.000 15 1.000 15 1.000 16 1.000 16 1.000 16	6.11 5.90 5.93 6.04 6.12 6.26	0.98 0.60 0.98 0.74 0.98 0.79 0.98 0.79 0.97 0.78 0.97 0.77 0.97 0.75 0.97 0.74	0.63 0.61 0.61 0.61 0.61 0.61 0.61 0.62	2.66 3.07 3.07 2.91 2.72 2.58 2.41 2.30	1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1	014 1 014 1 015 1 016 1 017 1 018 1	.00 107.91 .00 164.02 .00 185.52 .00 187.16 .00 182.01 .00 179.23 .00 169.44 .00 165.38	1.000 1.000	119.17 484.49 403.90 346.34 303.16 269.58 242.72 220.74	250.30 209.90 181.13 159.60 142.85 129.49	2 2 2 2 2 2 2 2 2			3.11 3.16 3.21 3.26 3.31 3.36 3.41 3.46	594 1.6E-03 594 1.6E-03 594 1.6E-03 594 1.6E-03 594 1.6E-03 594 1.6E-03 594 1.6E-03 594 1.6E-03 594 1.6E-03	3 5.5E 3 5.5E 3 5.5E 3 5.5E 3 5.5E 3 5.5E 3 5.5E
1.968 5 2.133 5 2.297 5 2.461 5 2.625 5 2.789 5 2.953 5	613.88 76. 613.72 61. 613.55 64. 613.39 68. 613.23 191 613.06 241	6 0.445 7 3 0.546 6 2 0.470 6 7 0.730 6 .6 1.300 1 .3 3.362 2	76.6 1.8 51.3 1.1 54.2 1.8 58.7 2.8 91.6 4.3 41.3 3.2	8 0.79	0.58% Interim 0.89% Interim 0.73% Interim 1.06% Interim 0.68% Interim 1.39% Interim	Cover Cover Cover Cover Cover	0.050 10 0.050 10 0.050 10 0.050 10 0.050 10 0.050 10 0.050 10	00.7 0.1 00.7 0.1 00.7 0.1 00.7 0.1	0 0.00 1 0.00 2 0.00 2 0.00 3 0.00 4 0.00	0 0.10 0 0.11 0 0.12 0 0.12 0 0.13 0 0.14		1.70 1.70 1.70 1.70 1.64 1.61	130.135 104.159 109.123 116.807 314.125 389.250	1808.88 11 1447.81 11 1516.81 11 1623.62 11 4366.34 30 5410.57 41 5861.12 41	51.17 20.99 26.76 35.70 54.89 1 52.13 1	771 0.5 570 0.8 554 0.7 554 1.0 449 0.6 717 1.3 783 2.1	3% 1.1 3% 1.4 3% 1.3 3% 1.4 3% 1.4	1 51% 4 51% 3 51% 4 51% 1 51% 4 51%	0.62 0.63 0.64 0.65 0.66 0.66 0.66 0.67	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.62 0.63 0.64 0.65 0.66 0.66 0.67 0.68		1.00 1.00 1.00 1.00 1.00 0.99	0.18 1.06 1.1 0.16 1.05 1.1 0.13 1.04 1.1 0.13 1.04 1.1 0.13 1.04 1.1 0.13 1.04 1.1 0.13 1.04 1.1 0.30 1.08 1.1 0.30 1.07 1.1 0.30 1.07 1.1	0 0.061 0 0.060 0 0.060 0 0.060 0 0.062 0 0.062	83.37 234.54 72.78 193.77 74.81 201.57 77.94 213.64 ##### 523.26	1.000 16 0.869 14 1.000 16 1.000 16 1.000 16 1.000 16	6.49 4.52 6.72 6.72 6.12 6.19	0.97 0.74 0.97 0.64 0.97 0.65 0.97 0.65 0.97 0.67 0.97 1.10 0.97 1.23 0.97 1.28	0.65 0.68 0.67 0.66 0.60 0.60	2.30 2.15 1.94 1.92 1.92 2.12 2.07 2.02	1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1	020 1 022 1 022 1 022 1 022 1 020 1 020 1	.00 163.36 .00 151.17 .00 120.99 .00 126.76 .00 135.70 .00 364.89 .00 452.13 .00 489.79	0.401 0.245 0.269 0.312 1.000	81.22 45.74 46.79 50.65 152.06 143.17 135.27	48.86 30.13 31.75 33.68 84.09 79.68 75.77	2 2 2 2 2 2 2 2 2 2			3.50 3.51 3.56 3.61 3.66 3.71 3.76 3.81	594 1.6E-03 594 1.6E-03 594 1.6E-03 594 1.6E-03 594 1.6E-03 594 1.6E-03 594 1.6E-03 594 1.6E-03 594 1.6E-03	3 5.5E+ 3 5.5E+ 3 5.5E+ 3 5.5E+ 3 5.5E+ 3 5.5E+ 3 5.5E+
3.117 5 3.281 5 3.445 5 3.609 5 3.773 5 3.937 5 4.101 5 4.265 5	612.57 217 612.41 217 612.24 256 612.08 314 611.91 227 611.75 218	.3 7.057 2 .9 6.621 2 .0 7.793 2 .1 8.489 3 .8 8.106 2 .4 6.483 2	17.3 1.3 17.9 0.9 56.0 1.4 14.1 6.9 27.7 12. 18.4 6.5	9 0.38 4 0.59 9 2.98 .0 5.18 5 2.83	3.25% Sand 3.04% Sand 3.05% Sand	Slime Tailin Slime Tailin Slime Tailin <mark>Sailings</mark> Slime Tailin Slime Tailin	0.047 9 0.047 9 0.047 9 0.051 10 0.051 10 0.047 9 0.047 9	00.7 0.1 3.3 0.1 3.3 0.1 3.3 0.1 3.3 0.1 02.8 0.1 3.3 0.2 3.3 0.2 3.3 0.2 3.3 0.2	6 0.00 7 0.00 8 0.00 9 0.00 9 0.00	0 0.16 0 0.17 0 0.18 0 0.19 0 0.20 0 0.20		1.55 1.53 1.51 1.49 1.48 1.46	336.251 333.101 386.904 469.029 336.474 319.444	5193.78 43 4673.89 33 4630.11 33 5377.97 44 6519.50 5 4676.99 33 4440.28 3 4326.41 30	90.55 1 36.89 1 49.38 1 44.82 1 90.92 1 71.08 1	518 3.1 319 3.2 264 3.0 422 3.0 667 2.7 161 3.5 072 2.9	5% 1.8 1% 1.7 5% 1.7 0% 1.7 3% 1.8 7% 1.7	7 51% 3 47% 7 47% 7 47% 7 18% 3 47% 7 47% 7 47%	0.69 0.70 0.70 0.71 0.72 0.73 0.74 0.74	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.69 0.70 0.70 0.71 0.72 0.73 0.74 0.74	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.99 0.99 0.99 0.99 0.99 0.99	0.30 1.07 1. 0.30 1.06 1. 0.30 1.06 1. 0.30 1.06 1. 0.30 1.06 1. 0.30 1.05 1. 0.30 1.05 1. 0.30 1.05 1.	0 0.061 0 0.061 0 0.061 0 0.060 0 0.060 0 0.060		1.000 10 1.000 10 1.000 10 1.000 10 1.000 10 1.000 10	6.40 6.46 6.53 6.60 6.66 6.73	0.97 1.14 0.97 1.14 0.97 1.22 0.97 1.35	0.60 0.60 0.60	1.98 1.94 1.90 1.87 1.84 1.81 1.78 1.75	1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1	022 1 022 1 023 1 023 1 023 1 024 1 024 1	.06 461.98 .08 423.01 .07 412.59 .06 476.39 .02 554.48 .12 437.65 .07 397.43 .05 378.28	1.000 1.000	128.20 122.29 116.91 111.98 107.01 102.87 99.05 95.50	72.27 69.34 66.68 64.25 61.80 59.77 57.89 56.15	2 2 2 2 2 2 2 2 2			3.86 3.91 3.96 4.01 4.06 4.11 4.16	495 1.6E-03 495 1.4E-03 495 1.4E-03 495 1.4E-03 495 1.6E-03 495 1.4E-03 495 1.4E-03 495 1.4E-03 495 1.4E-03	3 3.5E+ 3 3.5E+ 3 3.5E+ 3 3.9E+ 3 3.5E+ 3 3.5E+ 3 3.5E+
4.205 5 4.429 5 4.593 5 4.757 5 4.921 5 5.085 5 5.249 5 5.413 5	611.42 175 611.26 150 611.09 121 610.93 111 610.76 105 610.60 102	.0 4.480 1 .8 3.824 1 .0 2.453 1 .4 1.755 1 .9 2.102 1 .9 2.378 1	75.0 2.3 50.8 1.6 21.0 1.6 11.4 0.9 05.9 0.1 02.9 -1.0	3 0.98 6 0.68 6 0.71	2.56% Sand-3 2.54% Sand-3 2.03% Sand 1 1.57% Sand 1 2.31% Sand 1 2.31% Sand 3	Slime Tailin Slime Tailin Tailings Tailings Tailings Slime Tailin	0.047 9 0.047 9 0.051 10 0.051 10 0.051 10 0.051 10 0.051 9	3.3 0.2 3.3 0.2 3.3 0.2 02.8 0.2 02.8 0.2 02.8 0.2 03.3 0.2 03.3 0.2 03.3 0.2 03.3 0.2 03.3 0.2	2 0.00 3 0.00 4 0.00 4 0.00 5 0.00	0 0.22 0 0.23 0 0.24 0 0.24 0 0.25 0 0.26	0 0 0	1.44 1.43 1.50 1.52 1.53 1.53	251.142 215.630 181.995 169.758 161.916 157.250	3490.88 2 2997.26 2 2529.74 2 2359.64 1 2250.64 1 2185.78 1 2160.05 1	91.71 50.46 11.39 97.17 38.06 32.63	010 2.0 798 2.5 565 2.5 514 2.0 457 1.5 419 1.9 396 2.3 382 2.3	5% 1.7 1% 1.7 3% 1.7 3% 1.6 9% 1.7 2% 1.8	7 47% 7 47% 7 18% 6 18%	0.74 0.75 0.76 0.77 0.78 0.78 0.79 0.80	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.74 0.75 0.76 0.77 0.78 0.78 0.78 0.79 0.80	0 0 0 0 0	0.99 0.98 0.98 0.98 0.98 0.98	0.30 1.04 1.1 0.30 1.04 1.1 0.30 1.04 1.1 0.30 1.04 1.1 0.30 1.04 1.1 0.30 1.03 1.1 0.25 1.03 1.1 0.23 1.02 1.1 0.22 1.02 1.1 0.22 1.02 1.1	0.059 0.059 0.059 0.058 0.058 0.058 0.058	##### 424.32 ##### 368.60 76.13 287.53 72.50 269.67 70.17 258.22 94.35 276.98	1.000 16 1.000 16 1.000 17 1.000 17 1.000 17 1.000 17	6.86 6.93 7.00 7.14 7.25 7.32	0.97 0.99 0.97 0.91 0.97 0.84 0.97 0.84 0.97 0.81 0.97 0.79 0.97 0.78 0.97 0.78	0.60 0.60 0.60 0.60 0.60 0.60 0.60	1.73 1.71 1.68 1.66 1.63 1.60 1.57	1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1	025 1 025 1 025 1 026 1 026 1 026 1 027 1	.05 378.26 .05 307.64 .07 268.21 .04 220.27 .00 197.17 .06 200.17 .11 203.34 .12 202.03	1.000 1.000	92.20 89.12 85.96 83.01 80.26 77.93 75.73	54.53 53.02 51.48 50.08 48.75 47.62 46.55	2 2 2 2 2 2 2 2 2 2			4.21 4.26 4.31 4.36 4.41 4.46 4.51 4.56	495 1.4E-03 495 1.4E-03 495 1.4E-03 495 1.6E-03 495 1.6E-03 495 1.6E-03 495 1.4E-03 495 1.4E-03	3 3.5E 3 3.5E 3 3.9E 3 3.9E 3 3.9E 3 3.9E 3 3.5E
5.577 5 5.741 5 5.905 5 6.069 5 6.234 5 6.398 5 6.562 5	610.11 96. 609.94 86. 609.78 80. 609.62 79. 609.45 76. 609.29 57.	2 2.597 9 9 2.414 8 9 2.523 8 6 2.316 7 6 2.134 7 1 1.783 8	96.2 -1.1 36.9 -0.1 30.9 -1.1 79.6 -1.1 76.6 -0.1 57.1 -0.1	0 -0.43 1 -0.49 2 -0.10 0 -0.01	2.70% Sand-3 2.78% Sand-3 3.12% Sand-3 2.91% Sand-3 2.79% Sand-3 3.12% Sand-3	Slime Tailin Slime Tailin Slime Tailin Slime Tailin Slime Tailin Slime Tailin	0.047 9 0.047 9 0.047 9 0.047 9 0.047 9 0.047 9 0.047 9	3.3 0.2 3.3 0.2 3.3 0.2 3.3 0.3 3.3 0.3 3.3 0.3 3.3 0.3 3.3 0.3 3.3 0.3 3.3 0.3 3.3 0.3 3.3 0.3	8 0.00 9 0.00 10 0.00 11 0.00 11 0.00 12 0.00	0 0.28 0 0.29 0 0.30 0 0.31 0 0.31 0 0.32	0	1.52 1.54 1.55 1.54 1.54 1.54	145.768 133.514 125.130 122.573 117.783 91.966	2125.53 1 2026.18 10 1855.84 1 1739.31 1 1703.76 1 1637.19 1 1278.33 10	39.29 55.06 45.32 42.35 36.80 26.81	368 2.3 339 2.7 298 2.7 271 3.1 260 2.9 244 2.8 177 3.1	1% 1.9 9% 1.9 8% 2.0 2% 2.0 9% 2.0	9 47% 9 47% 9 47% 9 47% 9 47% 1 47%	0.81 0.82 0.83 0.84 0.85 0.85	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.81 0.82 0.83 0.84 0.85 0.85		0.98 0.98 0.98 0.98 0.97 0.97	0.11 1.00 1.	0 0.057 0 0.057 0 0.057 0 0.057 0 0.056 0 0.056	92.59 270.19 89.67 258.96 84.68 239.74 81.27 226.59 80.23 222.57 78.28 215.07 67.76 174.57	1.000 17 1.000 17 1.000 17 1.000 17 1.000 17 0.459 8	7.50 7.57 7.62 7.67 7.71 3.14	0.96 0.77 0.96 0.72 0.96 0.72 0.96 0.72 0.96 0.69 0.96 0.69 0.96 0.69	0.62 0.64 0.65 0.66 0.66 0.66 0.70	1.55 1.52 1.48 1.45 1.43 1.41 1.41	1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1	028 1 029 1 029 1 030 1 030 1 030 1 032 1	.13 200.40 .19 201.39 .23 190.57 .31 189.90 .29 182.97 .28 175.75 .47 156.93	1.000 1.000 1.000 1.000 0.439	73.65 71.68 69.82 68.05 66.38 64.78 27.80	45.54 44.59 43.69 42.84 42.02 41.25 17.97	2 2 2 2 2 2 2 2 2			4.61 4.66 4.71 4.76 4.81 4.86 4.91	495 1.4E-03 495 1.4E-03 495 1.4E-03 495 1.4E-03 495 1.4E-03 495 1.4E-03 495 1.4E-03 495 1.4E-03	3 3.5E 3 3.5E 3 3.5E 3 3.5E 3 3.5E 3 3.5E 3 3.5E
6.726 5 6.890 5 7.054 5 7.218 5 7.382 5 7.546 5 7.710 5 7.874 5	608.96 49. 608.80 56. 608.63 68. 608.47 66. 608.30 143 608.14 161	7 1.224 4 3 1.510 8 1 2.477 0 2 2.994 0 .2 1.935 1 .7 1.640 1	49.7 -0.3 56.4 -0.3 58.1 7.0 56.2 1.5	.3 -0.13 0 3.01 5 0.65 8 1.21	2.46% Sand-3 2.68% Sand-3 3.64% Slime 1.35% Sand 7 1.01% Sand 7	Slime Tailin Slime Tailin Tailings Tailings 'ailings 'ailings	0.047 9 0.047 9 0.041 8 0.041 8 0.041 8 0.051 10	3.3 0.3 3.3 0.3 3.3 0.3 2.7 0.3 2.7 0.3 02.8 0.3 02.8 0.3 02.8 0.3 0.3 0.3	4 0.00 4 0.00 5 0.00 6 0.00 7 0.00	0 0.34 0 0.34 0 0.35 0 0.36 0 0.37 0 0.37	0 0 0 0 0 0	1.62 1.57 1.51 1.51 1.30 1.27	80.549 88.530 102.716 99.683 186.431 204.599	1168.93 9 1119.63 9 1230.57 10 1427.76 1 1385.59 1 2591.40 2 2843.92 2 1693.79 1	3.54 02.82 19.37 15.79 16.56 37.63	157 3.0 147 2.4 163 2.7 193 3.6 184 4.5 391 1.3 431 1.0 226 2.0	3% 2.1 0% 2.1 3% 2.1 5% 2.2 5% 2.2 5% 1.6 2% 1.5	1 71% 2 71% 3 18% 5 18%	0.86 0.87 0.88 0.88 0.89 0.90 0.90 0.91	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.86 0.87 0.88 0.88 0.89 0.90 0.91 0.91		0.97 0.97 0.97 0.97 0.97 0.97	0.10 1.00 1.1 0.10 1.00 1.1 0.11 1.00 1.1 0.12 1.00 1.1 0.12 1.00 1.1 0.12 1.00 1.1 0.12 1.00 1.1 0.12 0.00 1.1 0.30 0.99 1.1 0.30 0.98 1.1 0.30 0.98 1.1 0.15 0.99 1.1	0.056 0.056 0.056 0.056 0.055 0.055 0.055	66.36 169.18 71.66 191.03 70.41 186.20 77.45 294.01 82.84 320.47	0.305 5 0.399 7 0.781 13 0.655 11 1.000 18 1.000 18	5.45 7.14 3.98 1.75 8.12 8.19	0.96 0.57 0.96 0.56 0.96 0.59 0.96 0.63 0.96 0.62 0.96 0.85 0.96 0.85 0.96 0.89	0.72 0.71 0.68 0.69 0.60 0.60	1.32 1.30 1.31 1.33 1.31 1.41 1.40 1.32	1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1	033 1 032 1 032 1 032 1 032 1 030 1 030 1	.52 148.18 .41 131.92 .41 145.18 .53 182.92 .75 202.06 .00 216.56 .00 237.63 .18 167.67	0.294 0.365 1.000 1.000 1.000 1.000	23.65 17.74 21.55 57.98 56.91 55.62 54.38 53.32	14.86 11.59 14.34 35.98 34.33 36.87 36.29 35.70	2 2 2 2 2 2 2 2 2 2			4.96 5.01 5.06 5.11 5.16 5.21 5.26 5.31	495 1.4E-03 495 1.6E-03 495 1.6E-03 495 1.4E-03	3 3.5E 3 3.5E 3 3.1E 3 3.1E 3 3.9E 3 3.9E
8.038 5 8.202 5 8.366 5 8.530 5 8.694 5 8.858 5 9.022 5	607.81 50. 607.65 34. 607.48 25. 607.32 31. 607.16 34. 606.99 33.	5 1.194 5 7 0.878 3 8 0.664 2 8 0.573 3 8 0.413 3 7 0.343 3	50.5 1.7 34.7 0.9	7 0.75 9 0.37 5 0.20 8 1.21 3 1.01	2.36% Sand-3 2.53% Sand-3 2.58% Sand-3 1.80% Sand-3 1.19% Sand-3 1.02% Sand-3	Slime Tailin Slime Tailin Slime Tailin Slime Tailin Slime Tailin Slime Tailin	0.047 9 0.047 9 0.047 9 0.047 9 0.047 9 0.047 9 0.047 9	3.3 0.3 3.3 0.4 3.3 0.4 3.3 0.4 3.3 0.4 3.3 0.4 3.3 0.4 3.3 0.4 3.3 0.4 3.3 0.4 3.3 0.4 3.3 0.4 3.3 0.4 3.3 0.4	9 0.00 0 0.00 1 0.00 2 0.00 3 0.00	0 0.39 0 0.40 0 0.41 0 0.42 0 0.43	0 0 0 0	1.52 1.58 1.63 1.57 1.54	76.535 54.878 41.903 49.800 53.460 51.481	1063.84 8 762.80 6 582.45 4 692.22 5 743.09 6 715.59 5 624.99 5	8.91 3.75 8.67 7.87 2.12 9.80	129 2.3 86 2.5 63 2.6	3% 2.1 3% 2.2 2% 2.3 3% 2.2 3% 2.2 3% 2.2 3% 2.2 3% 2.2 3% 2.2 3% 2.2 3% 2.2 3% 2.0	1 47% 2 47% 3 47% 2 47% 0 47% 0 47%	0.92 0.93 0.94 0.95 0.95 0.95 0.96 0.97	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.92 0.93 0.94 0.95 0.95 0.96 0.97		0.96 0.96 0.96 0.96 0.96 0.96	0.10 0.99 1. 0.08 0.99 1. 0.07 0.99 1. 0.08 0.99 1. 0.08 0.99 1. 0.08 0.99 1. 0.08 0.99 1. 0.08 0.99 1.	0 0.055 0 0.055 0 0.055 0 0.055 0 0.055 0 0.055	61.48 150.39 52.66 116.41 47.37 96.05 50.60 108.47	0.273 4 0.172 3 0.136 2 0.157 2 0.168 3 0.162 2	4.93 3.11 2.46 2.85 3.05 2.95	0.96 0.54 0.96 0.46 0.96 0.46 0.96 0.44 0.96 0.44 0.96 0.44 0.96 0.45 0.96 0.45	0.73 0.77 0.80 0.78 0.78 0.77 5 0.78	1.24 1.20 1.16 1.18 1.18 1.17 1.15	1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1	034 1 035 1 036 2 036 1 036 1 036 1	.45 128.98 .76 112.27 .09 101.59 .60 92.72 .34 83.09 .30 77.98 .47 76.82	0.280	14.62 10.86 8.94 7.62 6.48 5.92 5.73	9.78 6.98 5.70 5.23 4.76 4.43 4.18	2 2 2 2 2 2 2 2 2 2 2			5.36 5.41 5.46 5.51 5.56 5.61 5.66	495 1.4E-03 495 1.4E-03 495 1.4E-03 495 1.4E-03 495 1.4E-03 495 1.4E-03 495 1.4E-03 495 1.4E-03	3 3.5E 3 3.5E 3 3.5E 3 3.5E 3 3.5E 3 3.5E 3 3.5E
9.186 5 9.350 5 9.514 5 9.678 5 9.842 5 10.006 5 10.170 5	606.50 12. 606.34 12. 606.17 14. 606.01 23. 605.84 22.	9 0.342 2 6 0.327 9 0 0.251 9 1 0.216 9 2 0.158 2 6 0.274 2	20.9 -0.1 12.6 -0.1 12.0 -0.1 12.0 -0.1 12.1 -0.1 12.2 -0.1 23.2 -0.1 22.6 -0.1	.3 -0.12 .3 -0.12	2.59% Slime	Tailings Tailings Slime Tailin Slime Tailin Slime Tailin	0.041 8 0.041 8 0.047 9 0.047 9 0.047 9		5 0.00 6 0.00 6 0.00 7 0.00 8 0.00	0.45 0.46 0.46 0.46 0.47 0.48		1.64 1.63 1.59 1.50 1.49	20.679 19.500 22.445 34.822 33.696	458.14 3 287.43 2 271.05 2 311.98 2 484.03 4 468.37 3 241.15 2	4.01 2.64 6.06 0.44 9.13	48 0.7	9% 2.6 3% 2.6 3% 2.5 0% 2.1	3 47% 5 71% 5 71% 5 47% 1 47% 2 47% 3 71%	0.98 0.99 1.00 1.00 1.01 1.02	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.98 0.99 1.00 1.00 1.01 1.02	0 0 0 0 0 0	0.96 0.95 0.95 0.95 0.95	0.06 0.99 1. 0.06 0.99 1. 0.05 0.99 1. 0.06 0.99 1. 0.06 0.99 1. 0.06 0.99 1. 0.07 0.99 1. 0.06 0.99 1. 0.07 0.99 1. 0.06 0.99 1. 0.05 0.99 1.	0 0.055 0 0.055 0 0.055 0 0.054 0 0.054	44.48 84.93 44.03 83.16	0.091 1 0.089 1 0.094 1 0.120 2 0.117 2	1.65 1.62 1.72 2.19 2.15	0.96 0.36 0.96 0.27 0.96 0.29 0.96 0.29 0.95 0.37 0.95 0.36 0.95 0.26	0.80 0.80 0.80 0.80 0.80 0.80 0.80		1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1	037 3 037 3 037 2 037 1 037 1	.99 76.07 .47 83.20 .27 74.01 .54 66.27 .42 57.38 .75 68.53 .49 90.38	0.121 0.134 0.118 0.107 0.098 0.110 0.149	5.57 6.07 5.27 4.72 4.23 4.69 6.26	3.84 3.86 3.44 3.22 3.21 3.42 3.91	2 2 2 2 2 2 2 2 2			5.71 5.76 5.81 5.86 5.91 5.96 5.01	495 1.4E-03 460 1.3E-03 460 1.3E-03 460 1.4E-03 460 1.4E-03 460 1.4E-03 460 1.4E-03 460 1.3E-03	3 2.7E 3 2.7E 3 3.1E 3 3.1E 3 3.1E
10.991 5 11.155 5	605.35 8.6 605.19 11. 605.02 22. 604.86 26. 604.70 24.	0.299 2 0.222 3 0.182 2 0.185	8.6 1.8 11.2 2.1 22.3 1.3 26.2 0.6 24.7 0.3	8 0.79 1 0.91 3 0.55 6 0.25 3 0.14	3.73% Slime 3.46% Slime 1.98% Slime 0.82% Sand-3 0.71% Sand-3 1.10% Sand-3 1.99% Sand-3	Tailings Tailings Slime Tailin Slime Tailin Slime Tailin	0.041 8 0.041 8 0.047 9 0.047 9 0.047 9	3.3 0.5 3.3 0.5 3.3 0.5	0 0.00 1 0.00 1 0.00 2 0.00 3 0.00	0 0.50 0 0.51 0 0.51 0 0.52 0 0.53	0 0 0	1.53 1.51 1.43 1.40 1.39	13.186 16.923 31.828 36.562 34.382	220.93 1 183.29 1 235.23 1 442.41 3 508.21 4 477.91 3 344.20 2	5.34 9.68 6.98 2.47 9.94	42 0.8 49 0.7 46 1.1		9 71% 5 71% 2 47% 1 47% 2 47%	1.03 1.03 1.04 1.05 1.05 1.06 1.07	0.00 0.00 0.00 0.00 0.00 0.00 0.00	1.03 1.03 1.04 1.05 1.05 1.06 1.07		0.95 0.95 0.95 0.94 0.94	0.05 0.99 1. 0.05 0.99 1. 0.05 0.99 1. 0.06 0.99 1. 0.06 0.99 1. 0.07 0.99 1. 0.06 0.99 1. 0.06 0.99 1. 0.06 0.99 1.	0 0.054 0 0.054 0 0.054 0 0.054 0 0.054	35.43 50.76 36.94 56.62 43.27 80.25 45.20 87.67 44.31 84.24	0.078 1 0.084 1 0.113 2 0.123 2 0.119 2	1.44 1.55 2.09 2.29 2.20	0.95 0.25 0.95 0.23 0.95 0.26 0.95 0.35 0.95 0.36 0.95 0.36 0.95 0.36	0.80 0.80 0.80 0.80 0.80 0.80 0.80	1.11 1.10		038 5 038 3 038 1 038 1 038 1	.04 92.99 .50 84.30 .58 70.44 .59 58.90 .42 60.27 .70 67.83 .75 79.07	0.099 0.100 0.109	6.43 5.56 4.55 3.95 3.94 4.22 4.81	3.97 3.50 3.05 3.02 3.12 3.21 3.32	2 2 2 2 2 2 2 2 2			5.06 5.11 5.16 5.21 5.26 5.31 5.36	460 1.3E-03 460 1.3E-03 460 1.3E-03 460 1.4E-03 460 1.4E-03 460 1.4E-03 460 1.4E-03	3 2.7E 3 2.7E 3 3.1E 3 3.1E 3 3.1E
12.303 5	604.20 12. 604.04 10. 603.88 17. 603.71 12. 603.55 8.8	7 0.328	12.1 2.0 10.7 10. 16.9 18. 12.1 8.3 8.8 6.5	0 0.88 .4 4.49 .5 8.03 3 3.58 5 2.80	3.12% Slime 2.79% Slime 3.06% Slime 2.08% Sand-3 2.77% Slime 3.02% Slime 2.86% Slime	Tailings Tailings Slime Tailin Tailings Tailings	0.057 1 [°] 0.057 1 [°] 0.059 1 [°] 0.057 1 [°] 0.057 1 [°]	3.1 0.5 3.1 0.5 9.0 0.5 3.1 0.5 3.1 0.5 3.1 0.5 3.1 0.5	i6 0.01 i7 0.01 i7 0.02 i8 0.02 i9 0.03	0.55 0.55 0.56 0.56 0.56 0.57	1 1 1 1 1 1	1.42 1.41 1.38 1.39 1.39	17.214 15.051 23.239 16.931 12.161	248.04 2 239.27 2 209.21 1 323.02 2 235.34 1 169.03 1 108.28	0.01 7.59 7.18 9.75 4.19	21 2.9 18 3.2 29 2.1 21 2.9	8% 2.7 8% 2.8 5% 2.5 1% 2.7 1% 2.9	7 71% 9 71%	1.08 1.09 1.10 1.11 1.12 1.13 1.14	0.00 0.00 0.00 0.00 0.00 0.00 0.00	1.08 1.09 1.10 1.11 1.12 1.13 1.14	0 0 0 0 0	0.94 0.94 0.94 0.94 0.94 0.94 0.93	0.05 0.99 1.4 0.05 0.99 1.4 0.05 0.99 1.4 0.05 0.99 1.4 0.05 0.99 1.4 0.05 0.99 1.4 0.05 0.99 1.4 0.05 0.99 1.4 0.05 0.99 1.4 0.05 0.99 1.4 0.05 0.99 1.4	0 0.054 0 0.054 0 0.053 0 0.053 0 0.053 0 0.053	37.06 57.07 36.21 53.80 39.83 67.01 36.96 56.71 35.03 49.22 33.27 42.41	0.085 1 0.081 1 0.096 1 0.084 1 0.077 1 0.071 1	1.58 1.52 1.80 1.58 1.44 1.32	0.95 0.26 0.95 0.26 0.95 0.24 0.95 0.30 0.95 0.26 0.95 0.22 0.95 0.17	0.80 0.80 0.80 0.80 0.80 0.80	1.10 1.09 1.09 1.09 1.09 1.09 1.09	1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1	038 4 038 4 038 2 038 2 038 4 038 5	.35 90.07 .22 84.43 .81 84.62 .95 80.09 .26 84.15 .55 78.80 .34 67.12	0.136 0.128 0.135 0.126	5.57 5.08 5.06 4.70 4.95 4.56 3.90	3.58 3.33 3.29 3.25 3.26 3.00 2.61	2 2 2 2 2 2 2 2 2			6.41 6.46 6.51 6.56 6.61 6.66 6.71	460 1.8E-03 460 1.8E-03 460 1.8E-03 460 1.8E-03 460 1.8E-03 460 1.8E-03 460 1.8E-03 460 1.8E-03	3 3.7E 3 3.7E 3 3.9E 3 3.7E 3 3.7E
12.795 5 12.959 5 13.123 5 13.287 5 13.451 5 13.615 5	603.05 9.3 602.89 8.3 602.73 6.3 602.56 5.3 602.40 5.0 602.23 4.3	0 0.142	9.2 25. 8.2 18. 6.2 22. 5.6 56. 4.6 62. 4.3 65.	.8 11.18 .0 7.82 .2 9.60 .5 24.47 .6 27.11 .6 28.41	1.94% Slime 2.18% Slime 2.85% Slime 2.70% Slime 2.87% Slime 3.34% Slime	Tailings Tailings Tailings Tailings Tailings Tailings	0.057 1 0.057 1 0.057 1 0.057 1 0.057 1 0.057 1 0.057 1	3.1 0.6 3.1 0.6 3.1 0.6 3.1 0.6 3.1 0.6 3.1 0.6 3.1 0.6 3.1 0.6 3.1 0.6	2 0.04 3 0.05 4 0.05 5 0.06 6 0.06 7 0.07	0.58 0.58 0.59 0.59 0.60 0.60	1 1 1 1 1	1.36 1.35 1.34 1.33 1.33	12.514 11.157 8.372 7.468 6.080 5.649	103.80 84.51 78.52	4.79 3.13 9.94 9.22 7.67 7.19	15 2.0 13 2.3 10 3.1 9 3.0 7 3.3 7 3.9	8% 2.8 5% 2.8 7% 3.0 8% 3.0 1% 3.1 0% 3.2	3 71% 0 71% 0 71% 1 71% 2 71%	1.14 1.15 1.16 1.17 1.18 1.19 1.20	0.00 0.00 0.00 0.00 0.00 0.00 0.00	1.14 1.15 1.16 1.17 1.18 1.19 1.20	0 0 0 0 0 0	0.93 0.93 0.93 0.93 0.93 0.93	0.05 0.99 1.1 0.05 0.99 1.1 0.05 0.99 1.1 0.05 0.99 1.1 0.05 0.99 1.1 0.05 0.99 1.1 0.05 0.99 1.1 0.04 0.99 1.1 0.04 0.99 1.1 0.04 0.99 1.1	0.053 0.053 0.053 0.053 0.053 0.053 0.053	35.24 50.03 34.66 47.80 33.55 43.49 33.30 42.52 32.76 40.42 32.59 39.78	0.078 1 0.075 1 0.072 1 0.071 1 0.069 1 0.068 1	1.46 1.42 1.35 1.34 1.31 1.30	0.95 0.19 0.95 0.22 0.95 0.21 0.95 0.18 0.95 0.18 0.95 0.16 0.95 0.15	0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80	1.08 1.08 1.08 1.08 1.08	1.0 0.1 1.0 0.1 1.0 0.1	039 4 039 5 039 6 039 7 039 8 039 9	.42 58.12 .45 65.88 .12 67.20 .98 69.37 .21 66.51 .42 64.56 .34 67.15	0.107 0.108 0.111 0.107 0.105 0.108	3.52 3.79 3.82 3.90 3.74 3.64 3.72	2.44 2.63 2.62 2.62 2.54 2.47 2.51	2 2 2 2 2 2 2 2 2			5.76 5.81 5.86 5.91 5.96 7.01 7.06	460 1.8E-03 460 1.8E-03 460 1.8E-03 460 1.8E-03 460 1.8E-03 460 1.8E-03 460 1.8E-03 460 1.8E-03	3 3.7E 3 3.7E 3 3.7E 3 3.7E 3 3.7E 3 3.7E 3 3.7E
13.943 5 14.107 5 14.271 5 14.436 5 14.600 5 14.764 5	601.74 5.1 601.58 6.1 601.41 6.1 601.25 12. 601.09 17.	3 0.171 7 0.161 2 0.224 3 0.221 2 0.194 1 0.255	4.9 65. 5.3 66. 5.8 64. 6.7 27. 12.0 33. 17.0 12.	.5 28.40 .6 28.87 .0 27.75 .2 11.78 .9 14.70 .7 5.52	2.81% Slime 3.64% Slime 3.24% Slime 1.58% Sand-3 1.49% Sand-3	Tailings Tailings Tailings Tailings Slime Tailin Slime Tailin	0.057 11 0.057 11 0.057 11 0.057 11 0.057 11 0.057 11 0.057 11 0.057 11 0.057 11 0.057 11 0.057 11 0.057 11 0.059 11 0.059 11	3.1 0.6 3.1 0.7 3.1 0.7 3.1 0.7 9.0 0.7 9.0 0.7 9.0 0.7	9 0.08 0 0.08 0 0.09 1 0.09 2 0.10 3 0.10	8 0.61 8 0.61 9 0.62 9 0.62 9 0.63 9 0.63	1 1 1 1 1	1.31 1.30 1.30 1.29 1.28 1.27	6.441 6.929 7.477 8.600 15.444 21.529	82.87 89.54 96.32 103.93 119.54 214.67 299.25 2	8.10 8.68 9.29 0.24 8.25 5.12	8 3.2 9 4.1 10 3.6 18 1.6 26 1.5	9% 3.1 1% 3.1 1% 3.1 1% 3.0 3% 2.6	1 71% 1 71% 1 71% 0 71% 6 47% 5 47%	1.21 1.22 1.23 1.24 1.25 1.26 1.27	0.00 0.00 0.00 0.00 0.00 0.00 0.00	1.21 1.22 1.23 1.24 1.25 1.26 1.27	0 0 0 0 0 0	0.92 0.92 0.92 0.92 0.92 0.92	0.04 0.99 1.1 0.04 0.98 1.1 0.04 0.98 1.1 0.04 0.98 1.1 0.05 0.98 1.1 0.05 0.98 1.1 0.05 0.98 1.1 0.05 0.98 1.1 0.05 0.98 1.1	0.053 0.052 0.052 0.052 0.052 0.052 0.052	32.91 41.01 33.11 41.79 33.32 42.61 33.65 43.90 36.70 54.96 39.11 64.23	0.069 1 0.070 1 0.071 1 0.072 1 0.082 1 0.093 1	1.32 1.34 1.35 1.38 1.58 1.79	0.95 0.16 0.95 0.16 0.94 0.17 0.94 0.18 0.94 0.18 0.94 0.25 0.94 0.25	0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80	1.07 1.07 1.07 1.07 1.07 1.07	1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1	039 8 039 7 039 8 039 7 039 3 039 3 039 2	.78 66.76 .51 68.96 .72 67.00 .17 75.85 .30 74.79 .56 64.99 .74 68.85	0.111 0.108 0.121 0.119 0.106 0.110	3.68 3.75 3.64 4.04 3.96 3.49 3.63	2.49 2.54 2.49 2.70 2.67 2.54 2.71	2 2 2 2 2 2 2 2 2			7.11 7.16 7.21 7.26 7.31 7.36 7.41	460 1.8E-03 460 1.8E-03 460 1.8E-03 460 1.8E-03 460 1.8E-03 500 1.8E-03 500 1.8E-03	3 3.7E 3 3.7E 3 3.7E 3 3.7E 3 3.7E 3 4.6E 3 4.6E
15.092 5 15.256 5 15.420 5 15.584 5 15.748 5 15.912 5	600.59 23. 600.43 16. 600.27 12. 600.10 10. 599.94 9.3	7 0.220 8 0.225 2 0.308 2 0.412 6 0.274 3 0.241 8 0.182	15.7 4.6 10.8 8.1 23.2 2.0 16.2 0.7 12.6 2.6 10.2 8.8 8.8 77.	6 1.99 1 3.49 0 0.87 7 0.28 6 1.12 8 3.82 .2 33.43	1.40% Sand-3 2.08% Slime 1.33% Sand-3 2.55% Slime 2.17% Slime 2.34% Slime 1.96% Slime	Slime Tailin Tailings Slime Tailin Tailings Tailings Tailings Tailings	0.057 1 0.059 1 0.057 1 0.057 1 0.057 1 0.057 1 0.057 1	3.1 0.7 9.0 0.7 3.1 0.7 3.1 0.7 3.1 0.7 3.1 0.7 3.1 0.7 3.1 0.7 3.1 0.7 3.1 0.7	5 0.11 6 0.12 7 0.12 8 0.13 9 0.13	0.63 0.64 0.64 0.65 0.65 0.65 0.66	1 1 1 1 1 1	1.26 1.23 1.24 1.24 1.24 1.24 1.24	19.827 13.623 28.564 20.096 15.661 12.652 10.854	275.59 2 189.36 1 397.04 3 279.34 2 217.69 1 175.86 1 150.88 1	3.07 5.90 3.19 3.35 8.21 4.77 3.30	24 1.4 16 2.2 35 1.3 24 2.6 18 2.3 14 2.5 13 2.1	8% 2.7 2% 2.7 1% 2.8 1% 2.8	3 71% 4 47% 7 71% 7 71% 3 71% 3 71%	1.28 1.29 1.29 1.30 1.31 1.32 1.33	0.00 0.00 0.00 0.00 0.00 0.00 0.00	1.28 1.29 1.29 1.30 1.31 1.32 1.33	0 0 0	0.91 0.91 0.91 0.91 0.91 0.91	0.05 0.98 1. 0.05 0.98 1. 0.06 0.98 1. 0.05 0.98 1. 0.05 0.98 1. 0.05 0.98 1. 0.05 0.98 1. 0.05 0.98 1. 0.05 0.98 1. 0.05 0.98 1.	0 0.052 0 0.051 0 0.052 0 0.052 0 0.051 0 0.051	35.62 51.52 41.94 75.14 38.22 61.56 36.43 54.64 35.23 50.01 34.72 48.01	0.079 1 0.106 2 0.090 1 0.082 1 0.077 1 0.076 1	1.73 1.52 2.06 1.74 1.59 1.51 1.47	0.94 0.28 0.94 0.23 0.94 0.33 0.94 0.28 0.94 0.28 0.94 0.25 0.94 0.22 0.94 0.21	8 0.80 8 0.80 8 0.80 8 0.80 8 0.80 9 0.80 9 0.80 0.80 0.80	1.06 1.06 1.05		039 4 039 2 039 3 039 4 039 4 039 4	.84 65.58 .46 70.87 .14 71.16 .75 87.44 .15 75.50 .99 73.70 .99 66.36	0.113 0.114 0.142 0.120 0.117 0.107	3.47 3.67 3.66 4.55 3.82 3.71 3.37	2.60 2.60 2.86 3.15 2.71 2.61 2.42	2 2 2 2 2 2 2 2 2			7.46 7.51 7.56 7.61 7.66 7.71 7.76	500 1.8E-03	3 4.6E 3 4.4E 3 4.6E 3 4.4E 3 4.4E 3 4.4E 3 4.4E 3 4.4E
16.404 5 16.568 5	599.61 10. 599.45 10. 599.28 9. 599.12 11. 598.95 11. 598.79 12.	7 0.148 2 0.142 8 0.171 0 0.161	9.8 84. 10.3 64. 9.1 90. 10.7 72. 11.3 78. 11.4 83.	.2 36.48 .6 28.00 .7 39.29 .9 31.59 .1 33.86 .5 36.17	1.33% Sand- 1.52% Sand-	Slime Tailin Slime Tailin Slime Tailin Slime Tailin Slime Tailin Slime Tailin	0.059 1 [°] 0.059 1 [°] 0.059 1 [°] 0.059 1 [°] 0.059 1 [°]	8.0 0.8 8.0 0.8 9.0 0.8 8.0 0.8 8.0 0.8 8.0 0.8	2 0.15 3 0.15 4 0.16 5 0.16 6 0.17 7 0.18	0.67 0.67 0.68 0.68 0.68 0.69 0.69	1 1 1 1	1.22 1.21 1.20 1.20 1.19 1.19	11.912 12.466 11.013 12.872 13.484 13.567	146.90 1 165.58 1 173.27 1 153.08 1 178.92 1 187.43 1 188.59 1 202.20 1	4.58 5.05 3.58 5.58 6.34 6.48	14 1.2 15 1.4 13 1.6 15 1.3 16 1.5 16 1.4	1% 2.7 7% 2.8 7% 2.7	7 47% 7 47% 3 47% 7 47% 7 47% 7 47%	1.34 1.35 1.36 1.37 1.38 1.39 1.40 1.41	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1.34 1.35 1.36 1.37 1.38 1.39 1.40 1.41	0	0.91 0.90 0.90 0.90 0.90 0.90	0.05 0.98 1. 0.05 0.98 1. 0.05 0.98 1. 0.05 0.98 1. 0.05 0.98 1. 0.05 0.98 1. 0.05 0.98 1. 0.05 0.98 1. 0.05 0.98 1. 0.05 0.98 1. 0.05 0.98 1. 0.05 0.98 1. 0.05 0.98 1.	0 0.051 0 0.051 0 0.051 0 0.051 0 0.051 0 0.051	35.41 49.99 35.58 50.62 35.07 48.65 35.77 51.35 36.03 52.37 36.08 52.56	0.077 1 0.078 1 0.076 1 0.079 1 0.080 1 0.080 1	1.51 1.53 1.49 1.55 1.57 1.58		0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80	1.05 1.05 1.05 1.05 1.05 1.05 1.04	1.0 0. 1.0 0. 1.0 0. 1.0 0.	039 3 039 3 039 4 040 3 040 3 040 3	.99 64.85 .76 54.85 .89 58.50 .46 60.55 .73 58.07 .80 62.13 .67 60.46 .44 60.21	0.095 0.099 0.101 0.098 0.102	3.29 2.96 3.04 3.09 2.99 3.10 3.02 3.00	2.38 2.24 2.29 2.29 2.27 2.33 2.30 2.30	2 2 2 2 2 2 2 2 2 2 2			7.81 7.86 7.91 7.96 3.01 3.06 3.11 3.16	500 1.8E-03 500 1.8E-03	3 4.6E+ 3 4.6E+ 3 4.6E+ 3 4.6E+ 3 4.6E+ 3 4.6E+ 3 4.6E+

	Yeff*(Geff	Plastici ty			Shear			Threshhol d Shear	c Strain at				Volumetric Strain for	1
Aodulus, S _{max} (tsf)	/G _{max}) (tsf)	Index, Pl	g 1	g ₂	Strain, γ (%)	а	b	(%)	15 Cycles, ε _{c-15} (%)	R	с	CN	Design Event, ε _v (%)	Consolidati on (ft)
4.4E+02 4.3E+02		11 11	0.068 0.118	46696 18930	0.00% 0.00%	1.20 2.00	0.80 0.65	0.04%	0.000	0.32 0.34	0.133 0.079	0.778 0.765	0.00%	0.0000
4.8E+02 4.0E+02		11 11	0.153 0.169	12419 10568	0.01% 0.02%	0.65 2.00	0.75 0.65	0.02% 0.03%	0.000 0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00% 0.00%	0.0000 0.0000
			Seis	smic Set	tlement	Analysis	- Stewar	t et al (2004	4)	TOTA	SEISMI	C SETTI	EMENT (FT):	0.481
Shear	P =	ty			Shear			d Shear	c Strain at	<u>101A</u>			Strain for	I
Strain Aodulus,	γ _{eff} *(G _{eff} /G _{max})	Index, Pl	g 1	g ₂	Strain, γ	а	b	Strain, γ _™ (%)	15 Cycles, ε _{c-15} (%)	R	c	C _N	Design Event, ε _v (%)	Consolidati on (ft)
G _{max} tsf	tsf				(%)									
5.5E+02 5.5E+02		11 11	0.173 0.174	10172 10108	0.01%	2.00 2.00	0.65 0.65	0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00%	0.0000
5.5E+02 5.5E+02		11 11	0.175 0.175	10045 9984	0.01%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00%	0.0000
5.5E+02 5.5E+02	1.0E-04	11 11	0.176	9924 9865	0.01%	2.00	0.65 0.65	0.03%	0.000	0.34	0.079	0.765 0.765	0.00%	0.0000
5.5E+02	1.0E-04	11	0.177	9808	0.01%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.0000
5.5E+02 5.5E+02	1.1E-04	11 11	0.178 0.179	9751 9696	0.01% 0.01%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00% 0.00%	0.0000
5.5E+02 5.5E+02		11 11	0.179 0.180	9642 9589	0.01% 0.01%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00% 0.00%	0.0000
5.5E+02 5.5E+02		11 11	0.180 0.181	9536 9485	0.01%	2.00 2.00	0.65 0.65	0.03%	0.000	0.34 0.34	0.079	0.765 0.765	0.00%	0.0000
5.5E+02		11 11	0.182	9435 9385	0.01%	2.00 2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.0000
5.5E+02	1.2E-04	11	0.183	9337	0.02%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.0000
5.5E+02 5.5E+02	1.2E-04	11 11	0.183 0.184	9289 9242	0.02% 0.02%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.000 0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00% 0.00%	0.0000
3.8E+02 3.5E+02	1.9E-04	11 10	0.185 0.185	9196 9397	0.03%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00% 0.44%	0.0000
3.5E+02 3.5E+02		10 10	0.186 0.187	9355 9313	0.03%	2.00 2.00	0.65 0.65	0.03%	0.003	0.34 0.34	0.079	0.765 0.765	0.48%	0.0008
3.9E+02 3.5E+02	1.8E-04	0 10	0.191 0.188	11669 9227	0.04%	2.20 2.00	1.00 0.65	0.03%	0.000 0.004	0.34 0.34	0.079 0.079	0.765 0.765	0.03%	0.0000 0.0010
3.5E+02 3.5E+02	2.0E-04	10 10	0.188	9187 9148	0.04%	2.00	0.65	0.03%	0.004	0.34	0.079	0.765	0.64%	0.0011
3.5E+02	2.1E-04	10	0.189	9109	0.04%	2.00	0.65	0.03%	0.005	0.34	0.079	0.765	0.71%	0.0012
3.5E+02 3.9E+02	1.9E-04	10 0	0.190 0.194	9071 11373	0.04% 0.04%	2.00 2.20	0.65 1.00	0.03% 0.03%	0.005	0.34 0.34	0.079 0.079	0.765 0.765	0.75% 0.05%	0.0012
3.9E+02 3.9E+02	2.0E-04	0	0.194 0.195	11322 11272	0.04%	2.20 2.20	1.00 1.00	0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.05%	0.0001
3.5E+02 3.5E+02	2.2E-04 2.2E-04	10 10	0.192 0.192	8913 8877	0.04%	2.00 2.00	0.65 0.65	0.03%	0.006	0.34 0.34	0.079 0.079	0.765 0.765	0.89%	0.0015
3.5E+02 3.5E+02	2.2E-04	10 10	0.193 0.193	8842 8808	0.04%	2.00 2.00	0.65 0.65	0.03%	0.006	0.34 0.34	0.079 0.079	0.765 0.765	0.96% 0.99%	0.0016
3.5E+02 3.5E+02	2.3E-04	10 10	0.193 0.194	8774 8740	0.05%	2.00	0.65	0.03%	0.007	0.34	0.079	0.765	1.02% 1.06%	0.0017
3.5E+02	2.3E-04	10	0.194	8707	0.05%	2.00	0.65	0.03%	0.007	0.34	0.079	0.765	1.09%	0.0018
3.5E+02 3.5E+02	2.3E-04	10 10	0.195 0.195	8674 8642	0.05% 0.05%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.007 0.008	0.34 0.34	0.079 0.079	0.765 0.765	1.12% 1.15%	0.0018 0.0019
3.5E+02 3.5E+02		10 10	0.196 0.196	8610 8578	0.05%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.008	0.34 0.34	0.079 0.079	0.765 0.765	1.18% 1.22%	0.0019
3.5E+02 3.1E+02		10 16	0.197 0.449	8547 7010	0.05%	2.00 2.00	0.65 0.65	0.03%	0.008	0.34 0.34	0.079 0.079	0.765 0.765	1.25% 2.09%	0.0020
3.1E+02 3.9E+02		16 0	0.449 0.201	6988 10663	0.08%	2.00 2.20	0.65 1.00	0.03% 0.03%	0.014 0.001	0.34 0.34	0.079 0.079	0.765 0.765	2.12% 0.10%	0.0035
3.9E+02 3.5E+02	2.3E-04	0 10	0.201	10622 8398	0.06%	2.20	1.00	0.03%	0.001	0.34	0.079	0.765	0.10%	0.0002
3.5E+02	2.5E-04	10	0.199	8369	0.06%	2.00	0.65	0.03%	0.009	0.34	0.079	0.765	1.44%	0.0024
3.5E+02 3.5E+02	2.6E-04	10 10	0.200 0.200	8340 8312	0.06% 0.06%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.010 0.010	0.34 0.34	0.079 0.079	0.765 0.765	1.47% 1.50%	0.0024
3.5E+02 3.5E+02	2.6E-04	10 10	0.200 0.201	8284 8256	0.06% 0.06%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.010 0.010	0.34 0.34	0.079 0.079	0.765 0.765	1.53% 1.56%	0.0025
3.5E+02 3.5E+02		10 10	0.201 0.202	8229 8202	0.06%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.010 0.011	0.34 0.34	0.079 0.079	0.765 0.765	1.59% 1.62%	0.0026
3.5E+02 2.7E+02	2.7E-04 3.5E-04	10 16	0.202 0.454	8175 6709	0.06%	2.00 2.00	0.65 0.65	0.03%	0.011 0.024	0.34 0.34	0.079 0.079	0.765 0.765	1.66% 3.68%	0.0027
2.7E+02 3.1E+02		16 10	0.455	6690 8103	0.14%	2.00 2.00	0.65 0.65	0.03%	0.024	0.34	0.079	0.765	3.73% 2.63%	0.0061
3.1E+02 3.1E+02	3.2E-04	10 10	0.203	8077 8052	0.10%	2.00	0.65	0.03%	0.017	0.34	0.079	0.765	2.67% 2.71%	0.0044
2.7E+02	3.7E-04	16	0.456	6609	0.15%	2.00	0.65	0.03%	0.026	0.34	0.079	0.765	3.94%	0.0065
2.7E+02 2.7E+02	3.7E-04	16 16	0.456 0.457	6591 6573	0.16% 0.16%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.026	0.34 0.34	0.079 0.079	0.765 0.765	3.98% 4.03%	0.0065
2.7E+02 3.1E+02		16 10	0.457 0.206	6555 7940	0.16%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.027 0.019	0.34 0.34	0.079 0.079	0.765 0.765	4.08% 2.91%	0.0067
3.1E+02 3.1E+02	3.4E-04 3.4E-04	10 10	0.206 0.206	7916 7892	0.11%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.019	0.34 0.34	0.079 0.079	0.765 0.765	2.95% 3.00%	0.0048
3.1E+02 3.7E+02	3.4E-04	10 16	0.207 0.459	7868 6454	0.11% 0.07%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.020	0.34 0.34	0.079 0.079	0.765 0.765	3.04% 2.03%	0.0050
3.7E+02 3.7E+02 3.7E+02	2.9E-04	16 16	0.459	6432 6409	0.08%	2.00	0.65	0.03%	0.013	0.34	0.079	0.765	2.07%	0.0034
3.9E+02	2.8E-04	10	0.209	7757	0.06%	2.00	0.65	0.03%	0.011	0.34	0.079	0.765	1.69%	0.0028
3.7E+02 3.7E+02	3.0E-04	16 16	0.461 0.461	6364 6342	0.08% 0.08%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.014 0.014	0.34 0.34	0.079 0.079	0.765 0.765	2.18% 2.21%	0.0036
3.7E+02 3.7E+02		16 16	0.462 0.462	6321 6300	0.08%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.015 0.015	0.34 0.34	0.079 0.079	0.765 0.765	2.25% 2.28%	0.0037
3.7E+02 3.7E+02		16 16	0.462 0.463	6279 6258	0.08%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.015 0.015	0.34 0.34	0.079 0.079	0.765 0.765	2.32% 2.35%	0.0038
3.7E+02 3.7E+02		16 16	0.463 0.464	6238 6217	0.09%	2.00 2.00	0.65 0.65	0.03%	0.016	0.34 0.34	0.079 0.079	0.765 0.765	2.39% 2.43%	0.0039
3.7E+02 3.7E+02	3.1E-04	16 16	0.464	6197 6178	0.09%	2.00	0.65	0.03%	0.016	0.34	0.079	0.765	2.46%	0.0040
3.7E+02	3.2E-04	16	0.465	6158	0.09%	2.00	0.65	0.03%	0.017	0.34	0.079	0.765	2.53%	0.0042
3.7E+02 3.7E+02	3.2E-04	16 16	0.465 0.466	6139 6120	0.09% 0.10%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.017 0.017	0.34 0.34	0.079 0.079	0.765 0.765	2.57% 2.61%	0.0042 0.0043
3.7E+02 3.7E+02	3.3E-04	16 16	0.466 0.466	6101 6082	0.10%	2.00 2.00	0.65 0.65	0.03%	0.017 0.018	0.34 0.34	0.079 0.079	0.765 0.765	2.64% 2.68%	0.0043
4.6E+02 4.6E+02	2.7E-04	10 10	0.215 0.216	7361 7338	0.05% 0.06%	2.00 2.00	0.65 0.65	0.03%	0.009	0.34	0.079	0.765 0.765	1.39% 1.42%	0.0023
4.6E+02 4.4E+02	2.7E-04	10 16	0.216	7314 6006	0.06%	2.00	0.65	0.03%	0.009	0.34	0.079	0.765	1.45%	0.0024
4.6E+02 4.4E+02	2.7E-04	10 10	0.468	7270 5970	0.06%	2.00	0.65	0.03%	0.012	0.34	0.079	0.765	1.50%	0.0025
4.4E+02	2.9E-04	16	0.469	5953	0.07%	2.00	0.65	0.03%	0.013	0.34	0.079	0.765	1.97%	0.0032
4.4E+02 4.4E+02	3.0E-04	16 16	0.470 0.470	5935 5918	0.07% 0.07%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.013 0.013	0.34 0.34	0.079 0.079	0.765 0.765	2.00% 2.03%	0.0033
4.4E+02 4.6E+02		16 10	0.470 0.219	5901 7143	0.08%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.013 0.011	0.34 0.34	0.079 0.079	0.765 0.765	2.06% 1.66%	0.0034 0.0027
4.6E+02 4.6E+02	2.9E-04	10 10	0.220	7121 7100	0.06%	2.00 2.00	0.65 0.65	0.03%	0.011	0.34	0.079	0.765 0.765	1.69% 1.72%	0.0028
4.6E+02 4.6E+02	2.9E-04	10 10	0.221	7080 7059	0.07%	2.00	0.65	0.03%	0.011	0.34	0.079	0.765	1.74%	0.0029
4.6E+02	3.0E-04	10	0.221	7038	0.07%	2.00	0.65	0.03%	0.012	0.34	0.079	0.765	1.80%	0.0030
4.6E+02	ა.∪⊑-04	10	0.222	7018	0.07%	2.00	0.65	0.03%	0.012	0.34	0.079	0.765	1.83%	0.0030

Data File: 13-52106_SP2W6-S-BSC-CPT Location: White Mesa 2013 CPT Investigation	WHITE MESA TAILINGS REPOSITORY LIQUEFACTION AND Idriss and Boulancer (2008)	5604.40 Water surface elevation during CPT investigation (ft 56	Ground Surface Elevation at tim	ne of CPT (ft amsi) ediately after Placement of Final Cover (ft amsi)	Elev. at Elev. At Top of Midpoint Layer of Layer (h) (ft)		Stress at Pressure Midpoint at Bottom	n Midpoint of Bo	ess at Stress at nt ttom Midpoint Depth	Shear Wave Soil Velocity, Density	Max Shear P = Plas Strain Yeff*(Geff t Modulus, /Gmax) Ind Gmax (tsf) (tsf) F	stici y Shear lex, Strain,		train, γ _{tv} (%) Volumetri c Strain at 15 Cycles, ε _{cut} s(%)	R c G	Volumetric Incrementa Strain for I Design Consolidati Event, ε_r (%) on (ft)
		5588.59 Water surface elevation at t, (It amst) 0.5 5583.50 Water surface elevation at t, (It amst) 3.5 1.44 Scaling Factor for stress ration, r, n 1.5 0.47 Volumetric Strain Ratio for Sites-Specific Design Early 1.6	50 Thickness of Erosion Protection 50 Thickness of Water Storage/Ro 00 Thickness of High Compaction 56 Thickness of Random/Platform	n Layer (rock mulch/topsoils) Immediately after pla toting Zone (ft) Layer (ft) Fill on on top of existing interim cover (ft) Platfr	sion Protection Layer ###### 5625.16 e/Rooting Zone Layer ###### 5623.16	5624.91 0.50 0.055 110 0.028 5621.41 3.50 0.054 107 0.215	0.014 0.00 0.121 0.00	0.00	0.028 0.014 0.08 0.215 0.121 0.69	508 1.7E-03 508 1.7E-03	4.4E+02 3.0E-06 4.3E+02 2.8E-05 4.8E+02 6.8E-05	91 92 V (%) 11 0.068 46696 0.00% 11 0.118 18330 0.00% 11 0.153 12419 0.01% 11 0.169 10568 0.02%	2.00 0.65 0.65 0.75	(a)	0.32 0.133 0.77 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76	8 0.00% 0.0000 5 0.00% 0.0000 5 0.00% 0.0000
Cells Requiring User Input/Manipulation 2013 CPT Data from ConeTec	Magnitude Scaling Factor, MSF: 2.21 2.21	7.51 Equiv. Number of Uniform Strain Cycles, N 558	583.59 Elevation of bottom of tailings (I Conditions at t	iner) (ft amsl)	Liquefaction Triggering	Analyses						Seismic Settlement	Analysis - Stewart e	t al (2004)	TOTAL SEISMIC SET	LEMENT (FT): 0.481
Depth	Material Stress Pore Stress at Sate w Unit Unit at time Pressure time of at ti	Variated Normalized Normalize Type Cone of Friction Index, Penetration Ratio, F, L To	Pore Effective	Idriss & Boulanger (2008) Cyclic Stress Ratio Cyclic Resistance Ratio	Cyclic Stress Rati	Youd et al. (2001)			Death	Wave Soil Velocity, Density	Shear P = t Strain Yeff*(Geff Ind	y Shear		Shear c Strain at		Strain for I Design Consolidati
at time Pw Pr of CPT Elevation qt fs qc (u2) (u2 (ft) (ft amsl) TSF TSF TSF (ft) PS	2) fs/qt determined Weight Weight of CPT at time of CPT C	Infe of Penetration Ratio, F, I _c 10 PT CN qc1 qc1 qc1N Resistance, (%) FC =Yes TSF MPa Q, % =No	otal Stress Pressure Stress at at t1 Saturated at t1 (tsf) (tsf) (tsf) 1=Yes 0=No 0=No 0 0	r _d C _α K _α K _a CSR (CRR) Mar.5, Curtain Control	$r_d = D_r + K_a$	K _a CSR (CRR) M#7.5, Kc qC _{10-cs} M=7.5,	Avg FoS	Liquefiable? 1=Yes 2=No	at t ₁ , z ₁ m		Strain Modulus, G _{max} tsf tsf	eex, Strain, Strain, 91 g ₁ g ₂ γ	a b	train, γ _{tv} 15 Cycles, (%) ε _{c-15} (%)	R c C _N	Design Consolidati Event, ε _v (%) on (ft)
17.562 5089.13 12.6 0.308 15.5 10.0 47. 17.06 5597.9 15.0 0.338 15.5 61.9 26. 17.06 5597.9 15.0 0.338 15.5 61.9 26. 18.04 5597.4 15.0 0.378 11.0 0.378 11.0 0.378 11.0 0.378 11.0 0.378 11.0 0.378 11.0 0.378 11.0 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	98 1388 2005 1190 0.94 0.22 0.73 0 1.90% 2005 1190 0.955 1190 0.955 0.22 0.73 81 1.05% SandSime Tain 0.059 1190 0.96 0.23 0.74 81 1.05% SandSime Tain 0.059 1190 0.99 0.24 0.75 31 1.25% SandSime Tain 0.059 1190 0.99 0.24 0.75 32 1.25% SandSime Tain 0.059 1190 1.00 0.25 0.76 32 1.25% SandSime Tain 0.059 1190 1.00 0.28 0.77 32 2.25% SandSime Tain 0.059 1190 1.06 0.29 0.79 32 2.25% SandSime Tain 0.059 1190 1.10 0.30 0.30 32 2.25% SandSime Tain 0.059 1190 1.10 0.30 0.30 32<		1.47 0.00 1.47 0 1.48 0.00 1.48 0 1.49 0.00 1.50 0 1.50 0.00 1.50 0 1.51 0.00 1.50 0 1.52 0.00 1.53 0 1.54 0.00 1.54 0 1.54 0.00 1.55 0 1.55 0.00 1.55 0 1.56 0.00 1.56 0 1.56 0.00 1.57 0 1.56 0.00 1.58 0 1.56 0.00 1.58 0 1.59 0.00 1.58 0 1.60 0.00 1.60 0 1.61 0.00 1.64 0 1.62 0.00 1.68 0 1.64 0.00 1.64 0 1.65 0.00 1.70 0 1.70 0.00 1.7	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <th< td=""><td>165 0.90 0.37 0.80 0.99 30 0.90 0.35 0.80 0.99 330 0.80 0.34 0.80 0.99 330 0.80 0.34 0.80 0.99 341 0.80 0.34 0.80 0.99 341 0.80 0.39 0.80 0.99 341 0.80 0.37 0.80 0.99 341 0.80 0.37 0.80 0.99 345 0.80 0.37 0.80 0.99 345 0.88 0.31 0.80 0.98 346 0.88 0.36 0.80 0.89 346 0.88 0.36 0.80 0.89 347 0.88 0.37 0.80 0.89 348 0.37 0.80 0.89 0.89 349 0.84 0.38 0.80 0.89 349 0.80 0.87 0.39 0.80</td><td>10 0.040 4.88 70.37 0.112 10 0.040 6.35 6.25 0.132 10 0.040 6.35 6.25 0.132 10 0.040 6.35 6.25 0.132 10 0.040 4.01 856 0.133 10 0.040 2.03 86.35 0.141 10 0.040 2.05 66.50 0.108 10 0.040 2.05 66.57 0.139 10 0.040 2.12 71.66 0.114 10 0.040 3.85 55.76 0.139 10 0.040 3.87 85.3 0.144 10 0.040 4.03 97.81 0.167 10 0.040 4.03 97.81 0.167 10 0.040 4.03 3.77 86.90 0.111 10 0.040 4.03 3.77 86.90 0.117 10 0.040</td><td>3.34 2.43 3.391 2.70 4.20 2.89 4.11 2.86 3.76 2.73 3.00 2.55 3.00 2.61 3.10 2.62 3.20 2.56 3.00 2.61 3.10 2.62 3.20 2.56 3.21 2.60 3.44 2.69 3.65 2.82 3.00 2.82 3.01 2.82 3.02 2.86 3.67 2.83 3.60 2.69 3.60 2.69 3.60 2.68 3.73 2.83 3.73 2.83 3.74 3.09 3.75 2.84 3.76 3.14 3.96 3.44 3.96 3.61 3.44 3.19 3.47 3.18 3.77 3.26 3.96<!--</td--><td>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td>8.21 8.22 8.23 8.44 8.46 8.46 8.46 8.47 8.46 8.47 8.46 8.47 8.46 8.47 8.46 9.41 9.46 9.41 9.46 9.41 9.46 9.41 9.46 9.41 9.46 9.41 9.46 9.41 9.46 9.44 9.46 9.47 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.46 9.46 9.46 9.46 9.46 9.46</td><td>500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 501 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503</td><td>$\begin{array}{c} 4.8\pm02 \\ 4.8\pm02 \\ 3.2E-04 \\ 4.4\pm02 \\ 3.2E-04 \\ 4.6\pm02 \\ 3.1E-04 \\ 4.6\pm02 \\ 3.1E-04 \\ 4.6\pm02 \\ 3.1E-04 \\ 4.6\pm02 \\ 3.1E-04 \\ 4.6\pm02 \\ 3.2E-04 \\ 3.2E+02 \\ 3.2E-04 \\ 5.2E+02 \\ 3.0E-04 \\ 5.2E+02 \\ 3.2E-04 \\ 6.5E+02 \\ 3.2E-04 \\ 6.5E+02 \\ 3.0E-04 \\ 6.5E+02 \\ 3.0E-0$</td><td>16 0.473 5767 0.08% 16 0.474 5751 0.08% 16 0.474 5751 0.08% 16 0.474 5751 0.08% 16 0.474 5751 0.08% 10 0.224 6886 0.07% 10 0.225 6849 0.08% 10 0.225 6849 0.08% 10 0.226 6849 0.08% 10 0.227 6788 0.08% 10 0.227 6788 0.08% 10 0.227 6788 0.07% 16 0.479 5542 0.07% 10 0.229 6774 0.08% 10 0.230 6608 0.07% 10 0.230 6608 0.07% 10 0.231 6574 0.08% 10 0.233 6660 0.07% 10 0.233 6660 0.07%</td><td>2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00<td>0.03% 0.015 0.03% 0.015 0.03% 0.016 0.03% 0.016 0.03% 0.016 0.03% 0.013 0.03% 0.013 0.03% 0.013 0.03% 0.013 0.03% 0.014 0.03% 0.014 0.03% 0.014 0.03% 0.014 0.03% 0.014 0.03% 0.014 0.03% 0.016 0.03% 0.013 0.03% 0.013 0.03% 0.013 0.03% 0.013 0.03% 0.011 0.03% 0.012 0.03% 0.012 0.03% 0.012 0.03% 0.012 0.03% 0.012 0.03% 0.012 0.03% 0.012 0.03% 0.012 0.03% 0.013 0.03% 0.013 0.03%<td>0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079</td><td>5 2.23% 0.0039 5 2.35% 0.0039 5 2.35% 0.0039 5 2.37% 0.0039 5 2.37% 0.0039 5 2.05% 0.0033 5 2.05% 0.0034 5 2.05% 0.0035 5 2.05% 0.0035 5 2.19% 0.0035 5 2.19% 0.0035 5 2.19% 0.0035 5 2.19% 0.0035 5 2.19% 0.0032 5 1.95% 0.0032 5 1.95% 0.0032 5 1.95% 0.0027 5 1.60% 0.0029 5 1.77% 0.0029 5 1.77% 0.0029 5 1.81% 0.0031 5 1.96% 0.0032 5 1.97% 0.0032 5 1.97% 0.0032</td></td></td></td></th<>	165 0.90 0.37 0.80 0.99 30 0.90 0.35 0.80 0.99 330 0.80 0.34 0.80 0.99 330 0.80 0.34 0.80 0.99 341 0.80 0.34 0.80 0.99 341 0.80 0.39 0.80 0.99 341 0.80 0.37 0.80 0.99 341 0.80 0.37 0.80 0.99 345 0.80 0.37 0.80 0.99 345 0.88 0.31 0.80 0.98 346 0.88 0.36 0.80 0.89 346 0.88 0.36 0.80 0.89 347 0.88 0.37 0.80 0.89 348 0.37 0.80 0.89 0.89 349 0.84 0.38 0.80 0.89 349 0.80 0.87 0.39 0.80	10 0.040 4.88 70.37 0.112 10 0.040 6.35 6.25 0.132 10 0.040 6.35 6.25 0.132 10 0.040 6.35 6.25 0.132 10 0.040 4.01 856 0.133 10 0.040 2.03 86.35 0.141 10 0.040 2.05 66.50 0.108 10 0.040 2.05 66.57 0.139 10 0.040 2.12 71.66 0.114 10 0.040 3.85 55.76 0.139 10 0.040 3.87 85.3 0.144 10 0.040 4.03 97.81 0.167 10 0.040 4.03 97.81 0.167 10 0.040 4.03 3.77 86.90 0.111 10 0.040 4.03 3.77 86.90 0.117 10 0.040	3.34 2.43 3.391 2.70 4.20 2.89 4.11 2.86 3.76 2.73 3.00 2.55 3.00 2.61 3.10 2.62 3.20 2.56 3.00 2.61 3.10 2.62 3.20 2.56 3.21 2.60 3.44 2.69 3.65 2.82 3.00 2.82 3.01 2.82 3.02 2.86 3.67 2.83 3.60 2.69 3.60 2.69 3.60 2.68 3.73 2.83 3.73 2.83 3.74 3.09 3.75 2.84 3.76 3.14 3.96 3.44 3.96 3.61 3.44 3.19 3.47 3.18 3.77 3.26 3.96 </td <td>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td> <td>8.21 8.22 8.23 8.44 8.46 8.46 8.46 8.47 8.46 8.47 8.46 8.47 8.46 8.47 8.46 9.41 9.46 9.41 9.46 9.41 9.46 9.41 9.46 9.41 9.46 9.41 9.46 9.41 9.46 9.44 9.46 9.47 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.46 9.46 9.46 9.46 9.46 9.46</td> <td>500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 501 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503</td> <td>$\begin{array}{c} 4.8\pm02 \\ 4.8\pm02 \\ 3.2E-04 \\ 4.4\pm02 \\ 3.2E-04 \\ 4.6\pm02 \\ 3.1E-04 \\ 4.6\pm02 \\ 3.1E-04 \\ 4.6\pm02 \\ 3.1E-04 \\ 4.6\pm02 \\ 3.1E-04 \\ 4.6\pm02 \\ 3.2E-04 \\ 3.2E+02 \\ 3.2E-04 \\ 5.2E+02 \\ 3.0E-04 \\ 5.2E+02 \\ 3.2E-04 \\ 6.5E+02 \\ 3.2E-04 \\ 6.5E+02 \\ 3.0E-04 \\ 6.5E+02 \\ 3.0E-0$</td> <td>16 0.473 5767 0.08% 16 0.474 5751 0.08% 16 0.474 5751 0.08% 16 0.474 5751 0.08% 16 0.474 5751 0.08% 10 0.224 6886 0.07% 10 0.225 6849 0.08% 10 0.225 6849 0.08% 10 0.226 6849 0.08% 10 0.227 6788 0.08% 10 0.227 6788 0.08% 10 0.227 6788 0.07% 16 0.479 5542 0.07% 10 0.229 6774 0.08% 10 0.230 6608 0.07% 10 0.230 6608 0.07% 10 0.231 6574 0.08% 10 0.233 6660 0.07% 10 0.233 6660 0.07%</td> <td>2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00<td>0.03% 0.015 0.03% 0.015 0.03% 0.016 0.03% 0.016 0.03% 0.016 0.03% 0.013 0.03% 0.013 0.03% 0.013 0.03% 0.013 0.03% 0.014 0.03% 0.014 0.03% 0.014 0.03% 0.014 0.03% 0.014 0.03% 0.014 0.03% 0.016 0.03% 0.013 0.03% 0.013 0.03% 0.013 0.03% 0.013 0.03% 0.011 0.03% 0.012 0.03% 0.012 0.03% 0.012 0.03% 0.012 0.03% 0.012 0.03% 0.012 0.03% 0.012 0.03% 0.012 0.03% 0.013 0.03% 0.013 0.03%<td>0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079</td><td>5 2.23% 0.0039 5 2.35% 0.0039 5 2.35% 0.0039 5 2.37% 0.0039 5 2.37% 0.0039 5 2.05% 0.0033 5 2.05% 0.0034 5 2.05% 0.0035 5 2.05% 0.0035 5 2.19% 0.0035 5 2.19% 0.0035 5 2.19% 0.0035 5 2.19% 0.0035 5 2.19% 0.0032 5 1.95% 0.0032 5 1.95% 0.0032 5 1.95% 0.0027 5 1.60% 0.0029 5 1.77% 0.0029 5 1.77% 0.0029 5 1.81% 0.0031 5 1.96% 0.0032 5 1.97% 0.0032 5 1.97% 0.0032</td></td></td>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8.21 8.22 8.23 8.44 8.46 8.46 8.46 8.47 8.46 8.47 8.46 8.47 8.46 8.47 8.46 9.41 9.46 9.41 9.46 9.41 9.46 9.41 9.46 9.41 9.46 9.41 9.46 9.41 9.46 9.44 9.46 9.47 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.47 9.46 9.46 9.46 9.46 9.46 9.46 9.46 9.46	500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 500 1.88-03 501 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503 1.88-03 503	$\begin{array}{c} 4.8\pm02 \\ 4.8\pm02 \\ 3.2E-04 \\ 4.4\pm02 \\ 3.2E-04 \\ 4.6\pm02 \\ 3.1E-04 \\ 4.6\pm02 \\ 3.1E-04 \\ 4.6\pm02 \\ 3.1E-04 \\ 4.6\pm02 \\ 3.1E-04 \\ 4.6\pm02 \\ 3.2E-04 \\ 3.2E+02 \\ 3.2E-04 \\ 5.2E+02 \\ 3.0E-04 \\ 5.2E+02 \\ 3.2E-04 \\ 6.5E+02 \\ 3.2E-04 \\ 6.5E+02 \\ 3.0E-04 \\ 6.5E+02 \\ 3.0E-0$	16 0.473 5767 0.08% 16 0.474 5751 0.08% 16 0.474 5751 0.08% 16 0.474 5751 0.08% 16 0.474 5751 0.08% 10 0.224 6886 0.07% 10 0.225 6849 0.08% 10 0.225 6849 0.08% 10 0.226 6849 0.08% 10 0.227 6788 0.08% 10 0.227 6788 0.08% 10 0.227 6788 0.07% 16 0.479 5542 0.07% 10 0.229 6774 0.08% 10 0.230 6608 0.07% 10 0.230 6608 0.07% 10 0.231 6574 0.08% 10 0.233 6660 0.07% 10 0.233 6660 0.07%	2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 0.65 2.00 <td>0.03% 0.015 0.03% 0.015 0.03% 0.016 0.03% 0.016 0.03% 0.016 0.03% 0.013 0.03% 0.013 0.03% 0.013 0.03% 0.013 0.03% 0.014 0.03% 0.014 0.03% 0.014 0.03% 0.014 0.03% 0.014 0.03% 0.014 0.03% 0.016 0.03% 0.013 0.03% 0.013 0.03% 0.013 0.03% 0.013 0.03% 0.011 0.03% 0.012 0.03% 0.012 0.03% 0.012 0.03% 0.012 0.03% 0.012 0.03% 0.012 0.03% 0.012 0.03% 0.012 0.03% 0.013 0.03% 0.013 0.03%<td>0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079</td><td>5 2.23% 0.0039 5 2.35% 0.0039 5 2.35% 0.0039 5 2.37% 0.0039 5 2.37% 0.0039 5 2.05% 0.0033 5 2.05% 0.0034 5 2.05% 0.0035 5 2.05% 0.0035 5 2.19% 0.0035 5 2.19% 0.0035 5 2.19% 0.0035 5 2.19% 0.0035 5 2.19% 0.0032 5 1.95% 0.0032 5 1.95% 0.0032 5 1.95% 0.0027 5 1.60% 0.0029 5 1.77% 0.0029 5 1.77% 0.0029 5 1.81% 0.0031 5 1.96% 0.0032 5 1.97% 0.0032 5 1.97% 0.0032</td></td>	0.03% 0.015 0.03% 0.015 0.03% 0.016 0.03% 0.016 0.03% 0.016 0.03% 0.013 0.03% 0.013 0.03% 0.013 0.03% 0.013 0.03% 0.014 0.03% 0.014 0.03% 0.014 0.03% 0.014 0.03% 0.014 0.03% 0.014 0.03% 0.016 0.03% 0.013 0.03% 0.013 0.03% 0.013 0.03% 0.013 0.03% 0.011 0.03% 0.012 0.03% 0.012 0.03% 0.012 0.03% 0.012 0.03% 0.012 0.03% 0.012 0.03% 0.012 0.03% 0.012 0.03% 0.013 0.03% 0.013 0.03% <td>0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079</td> <td>5 2.23% 0.0039 5 2.35% 0.0039 5 2.35% 0.0039 5 2.37% 0.0039 5 2.37% 0.0039 5 2.05% 0.0033 5 2.05% 0.0034 5 2.05% 0.0035 5 2.05% 0.0035 5 2.19% 0.0035 5 2.19% 0.0035 5 2.19% 0.0035 5 2.19% 0.0035 5 2.19% 0.0032 5 1.95% 0.0032 5 1.95% 0.0032 5 1.95% 0.0027 5 1.60% 0.0029 5 1.77% 0.0029 5 1.77% 0.0029 5 1.81% 0.0031 5 1.96% 0.0032 5 1.97% 0.0032 5 1.97% 0.0032</td>	0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079 0.76 0.34 0.079	5 2.23% 0.0039 5 2.35% 0.0039 5 2.35% 0.0039 5 2.37% 0.0039 5 2.37% 0.0039 5 2.05% 0.0033 5 2.05% 0.0034 5 2.05% 0.0035 5 2.05% 0.0035 5 2.19% 0.0035 5 2.19% 0.0035 5 2.19% 0.0035 5 2.19% 0.0035 5 2.19% 0.0032 5 1.95% 0.0032 5 1.95% 0.0032 5 1.95% 0.0027 5 1.60% 0.0029 5 1.77% 0.0029 5 1.77% 0.0029 5 1.81% 0.0031 5 1.96% 0.0032 5 1.97% 0.0032 5 1.97% 0.0032

Elev. At [Elev. At [Elev. At] Total Equil Pore Effective Effective Effective Effective At [Stress at] Stress at	Threshhol Volumetri Incremer d Shear ic Strain at Strain for I
Data File: 13-52106_gsP2W7-C-BSC-CPT Iddipoint of File	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Tailings Sand-Simes Youd, et al (2001) Youd,	0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.00
Tailings Slimes Max. Horiz. Acceleration, Amarge: 0.15 1.44 Scaling Factor for stress ration, r _m 0.95 Thickness of Random/Platform Fill on on top of existing interim cover (ft) Platform/Random Fill Layer ###### 56 19.13 56 19.60 -0.95 0.050 101 0.406 0.430 0.00 0.406 0.430 0.00 0.406 0.430 0.00 0.406 0.430 0.00 0.406 0.430 0.00 0.406 0.430 0.00 0.406 0.430 0.00 0.406 0.430 0.00 0.406 0.430 0.00 0.406 0.430 0.00 0.406 0.430 0.00 0.406 0.430 0.00 0.406 0.430 0.00 0.406 0.430 0.00 0.406 0.40	
Cells Requiring User Input/Manipulation Magnitude Scaling Factor, MSF 2.21 Image: Type Type Type Type Type Type Type Type	TOTAL SEISMIC SETTLEMENT (FT): 0.3
Depth Type (a) Stress P or Stress all Statutad Stress P or Stress all Statutad Come of Precise Out Stress P or Stress all Statutad Come of Precise Stress P or Stress all Stress P or Stress all Statutad P = Made Stress P or Stress all Stress P	d Shear c Strain at Strain for I Strain, γ _w 15 Cycles, Design Consolid b (%) ε _{c-15} (%) R c C _N Event, ε _u (%) on (ft)
(ft) (ft) (pcf) (lsf) (
0.164 56194 373 0 106 373 30 113 128 with memocore 0.50 1007 0.0 0.0 0.0 107 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	
0.656 5618.94 63.9 0.37 63.8 2.3 0.960 0.050 100 0.13 0.96 0.68 2.8 1.0 0.15 1.00 1.06 1.00 0.13 1.09 0.13 0.10 1.00 1.00 <	0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.00 0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.00
0.984 5618.62 740 6.0 740 6.1 2.68 0.8% metrim Cover 0.00 1.07 1.576 ####################################	0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.00
147 50142 10.0 50 000 000 100 000 000 000 000 000 000	0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.00
1.80 5617.80 67.9 1.5 0.63 0.93 httm:// rescore 0.050 100 1.5 0.63 0.93 httm:// rescore 0.93 httm:// rescore 0.93 httm:// rescore 0.93 0.7 0.10 0.11 0.10 0.11 0.062 7.3 211.3 1.00 0.61 1.0 0.62 7.3 211.3 1.00 0.61 1.0 0.062 7.3 211.3 1.00 0.61 1.0 0.02 7.3 211.3 1.00 0.62 7.3 211.3 1.00 0.62 7.3 211.3 1.00 0.62 7.3 211.3 1.00 0.62 7.3 211.3 1.00 0.62 7.3 211.3 1.00 0.62 7.3 211.3 1.00 0.66 41.36 2 2 2 0.66 41.36 2 2 2 0.66 41.36 2 2 1.00 0.31 0.31 2 0.06 2 3.5 0.06 0.07 </td <td>0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.00</td>	0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.00
2133 58/17/4 58/0 0.50 58/0 10.0 10.1 10.0 0.11 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.11 0.01 0.00 0.12 0.01 0.00 0.12 0.01 0.00 1.0 0.02 1.00 1.4 0.20 0.00 2.63 2.00 2.63	0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.00
2625 5616.98 67.5 1.5 0.63 0.839 Interfine Cover 0.050 10.07 0.13 0.0 0.14 0.83 1.4 1.0 0.061 1.0 1.0 1.0 0.14 1.0 1.0 1.0 1.33 0.01 45.43 30.67 2 2.95 594 1.6.03 5.5E+02 9.5E+02	0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.00 0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.00
2 6 5 6 6 72.4 0.9 7 7.4 0.1 0.4 1.26 with minima constraints and the start and the st	0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.00
3.445 561.61 8.00 1.72 79.9 8.4 3.65 2.17% Sandsime Tail 0.47 93.3 0.17 0.00 0.17 10.9 0.01 1.71 10.9 0.02 1.71 10.9 0.64 1.72 1.00 1.62 6.62 2 1.62 6.627 2 3.009 561.9 6.59 1.77 6.58 2.17% Sandsime Tail 0.47 9.3 0.17 0.01 1.62 6.627 2 3.009 561.99 6.59 1.776 6.58 2.17% 5.86 2.17% 1.8 4.7% 0.59 0.00 5.8 0.09 1.60 0.64 1.79 1.0 0.64 1.79 1.0 0.64 1.0 0.64 1.0 1.62 6.27 2 4.55 1.61 0.61 1.00 0.64 1.07 1.00 0.64 1.07 1.00 0.61 1.00 0.64 1.00 1.00 1.00 0.01 0.01	0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.00 0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.00
3.773 5615.85 50.8 1506 50.8 1506 50.8 150 50.8 150 50.8 150 50.8 150 50.8 150 50.8 150<	0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.00
4.10 901530 92.9 106 102.9 106 102.9 106 102.9 106 102.9 107 102.0 10 107 93.3 021 0.00 0.21 0 107 109.0 107 93.3 021 0.00 0.21 0 1.70 109.0 17 93.9 10.0 10.0 17 93.9 10.0 10.0 17 93.9 10.0 10.0 17 93.9 10.0 10.0 17 93.0 10.0 17 109.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.00
4 583 5616 1 520 1 63 52 1 50 1 64 3.0% SandSime Take 0.47 9.3 0.2 0.0 0.2 0 1.7 88.488 ###### 10.2 2 1.4 3.0 0.6 0.4 0.0 0.6 0.0 0.8 0.0 0.0	0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.00
4 921 5614.6 567 168 567 1 0 0.4 2.5% 567 1 0 0.4 2.5% 567 1 0 0.4 2.9% 50.0 0.2 4 0 1.7 95.39 ###### 113.6 24 2.9% 0.6 0 0.9 9.12 10.5 9.5 1.5 0.60 0.5 1.6 0.0 0.9 1.2 147.5 0.30 316 2.0 0 2 1.2 147.5 0.30 316 2.0 0 2 1.2 147.5 0.30 316 2.0 0 2 1.2 147.5 0.30 316 2.0 0 2.5 1.2 147.5 0.30 316 2.0 0 2 1.2 147.5 0.30 316 2.0 0 2.5 1.2 147.5 0.30 316 2.0 0 2.5 1.5 0.5 0.5 1.5 0.5 0.5 1.5 0.5 0.5 1.5 0.5 0.5 1.5 0.5 0.5 1.5 0.5 0.5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	0.65 0.03% 0.001 0.34 0.079 0.765 0.17% 0.00
5413 5614 19 21.3 0.56 21.3 1.4 0.60 2.64% same staine Table 0.47 93.3 0.26 0.0 0.62 0.47 0.50 1.4 0.65 1.6 0.73 0.80 1.27 1.0 0.98 0.71 0.10 0.71 0.80 1.27 1.0 0.034 1.87 7.8.6 0.125 9.54 5.84 2 5.777 5614.02 22.2 0.54 2.2 0.6 0.28 2.4% 5.84 2.4% 0.97 0.3 0.12 0.10 0.14 9.52 0.33 2.00 0.28 1.4% 0.3 1.24 0.68 0.126 1.9 0.37 0.80 1.27 1.0 0.34 1.87 7.8.6 0.125 9.54 5.84 2 2.00 0.28 0.01 <td>0.65 0.03% 0.002 0.34 0.079 0.765 0.33% 0.00</td>	0.65 0.03% 0.002 0.34 0.079 0.765 0.33% 0.00
5741 56136 180 0.33 180 0.3 0.33 2.73 8ard(s) series (s) 0.47 9.3 0.28 0.0 0.28 0.0 0.28 0.0 0.28 0.0 1.70 3.068 40.29 36.6 4 2.10% 2.3 4% 0.69 0.0 0.69 0.0 0.98 0.0 1.0 10 0.67 42.0 78.2 0.10 130 0.77 1.4 8.2 2 505 56136 7.7 0.33 7.7 3.8 104 4.34 series (s) 0.47 9.3 0.28 0.0 0.29 0.0 0.29 0.0 0.29 0.0 0.29 0.0 0.29 0.0 0.29 0.0 0.29 0.0 0.29 0.0 0.29 0.0 0.29 0.0 0.29 0.0 0.29 0.0 0.29 0.0 0.09 0.00 0.09 0.0 0.0 0.0 0.0 0.0	0.65 0.03% 0.002 0.34 0.079 0.765 0.38% 0.00 0.65 0.03% 0.008 0.34 0.079 0.765 1.18% 0.00 0.65 0.03% 0.003 0.34 0.079 0.765 1.18% 0.00 0.65 0.03% 0.003 0.34 0.079 0.765 0.46% 0.00
6.234 561.37 11.4 0.206 11.4 8.9 3.7 1.60 sandssime Tain 0.47 93.3 0.00 0.00 0.01 0.05 1.6 0.07 0.23 0.80 0.10 0.05 1.6 0.99 0.61 1.0 0.98 0.63 0.80 1.20 1.21 0.00 1.23 0.00 0.11 0.00 0.11 0.007 0.80 1.23 0.00 1.23 0.00 0.91 0.01<	0.65 0.03% 0.003 0.34 0.079 0.765 0.50% 0.00 0.65 0.03% 0.004 0.34 0.079 0.765 0.54% 0.00
6562 5612.6 12.1 0.71 12.0 6.7 2.91 1.4% SandSime Take 0.65 11.0 0.42 1 17.0 24.4 78.0 0.73 0.0 73.0 10.0 0.72 6.852 5612.6 12.1 0.74 12.0 0.97 0.61 10.0 0.97 0.61 10.0 0.97 0.85 2.4 0.97 0.86 0.24 0.97 0.86 0.97 0.86 0.97 0.86 0.97 0.86 0.97 0.86 0.97 0.86 0.97 0.86 0.97 0.86 0.97 0.86 0.97 0.86 0.87 0.78 0.86 0.97 0.86 0.97 0.86 0.97 0.86 0.97 0.86 0.97 0.86 0.97 0.86 0.97 0.86 0.97 0.86 0.97 0.86 0.97 0.86 0.97 0.86 0.97 0.86 0.97 0.86 0.97 0.86 0.97 0.86 0.97	0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.00
7.054 5612.55 17.0 0.14 16.9 6.6 2.86 0.86m/s isine Tain 0.059 19.0 0.35 0.28.747 39.95.8 3.3.4 0 0.87 0.0 0.7 0.10 1.0 0.57 0.0 0.7 0 0.97 0.61 1.0 0.057 1.49 0.80 1.21 1.0 0.35 1.43 0.45 1.62 3.64 0.97 0.3 0.80 1.21 1.0 0.35 1.43 0.90 5.58 3.74 2 7.218 5012.38 0.22 0.15 0.23 0.24 7.51 0.10 1.0 0.55 3.87 2 4.35 4.56+02 0.80 0.21 4.79 0.75 0.00 0.76 0.0 0.76 0.07 0.68 1.21 0.05 1.49 9.80 0.31 1.33 5.08 2.0 4.35 4.56+02 8.6+02 8.6+02 8.6+02 8.6+02 8.6+02 8.6+02 8.6+02	0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.00 0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.00
7.382 56122 19.8 0.23 19.8 22 0.77 1.10 3.413 1.22 4.04 4.95 4.95 3.455 2.2 4.77 0.00 7.7 0.0 0.77 0.0 <t< td=""><td>0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.00</td></t<>	0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.00
7.874 561.73 9.6 0.18 9.6 6.8 2.93 1.96 Sime Tailings 0.057 11.3 0.04 0.04 0.15 1.01 1.01 1.01 1.01 0.059 1.02 2.04 2.6 7.17 0.60 0.06 0.16 0.16 0.06 0.16 0.06 0.16 0.06 0.09<	0.65 0.03% 0.003 0.34 0.079 0.765 0.40% 0.00 0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.00
8202 5611.0 150 01.6 150 9.8 4.25 0.3% SandSimeTain 0.59 1150 0.42 0.05 0.36 1 1.70 25.4 37.4 2.48 4.0 1.0% 2.2 47% 0.82 0.00 8.2 0 0.96 0.61 1.0 0.96 0.61 1.0 0.96 0.61 1.0 0.96 0.61 1.0 0.96 0.61 1.0 0.96 0.61 1.0 0.96 0.61 0.10 0.96 0.61 0.10 0.96 0.61 0.0 0.96 0.96 0.01 0.0 0.96 0.96 0.96 0.01 0.0 0.96 0.96 0.96 0.96 0.96 0.96 0.96	0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.00
8.694 5610.91 18.6 0.18 18.5 5.3 2.8 1.00 Sandslime Tain 0.059 11.0 0.45 0.7 0.38 1 1.70 3.151 4.38.10 3.66.7 48 1.03 2.2 4.70 0.056 0.09 0.05 11.0 0.35 0.010 0.05 1.8.0 0.08 1.8 1.0 0.036 1.86 0.099 5.31 3.67 2 8.689 501.07 0.22 0.179 2.02 0.96 0.80 1.18 1.0 0.036 1.48 5.08 0.099 5.31 3.67 2 4.80 4.85 0.80 1.80 0.80 1.80 0.80 1.80 0.80 1.80 0.80 1.80 0.80 1.80 0.80 1.80 0.80 1.80 0.80 1.80 0.80 1.80 0.80 1.80 0.80 1.80 0.80 1.80 0.80 1.80 0.80 0.80 1.80 0.80 1.80 0.80 1.80 0.80 1.80 1.80 1.80 1.80 1.80 1.	0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.00 0.65 0.03% 0.001 0.34 0.079 0.765 0.11% 0.00
9 022 5610.5 17.5 0.48 17.5 1.3 0.56 1.4% Saddsmember like 0.56 14.2% 54.4% Saddsmember like 0.56 14.0 0.46 0.48 0.49 14.04% 2.0 47% 0.88 0.00 4.1 1.70 14.78 14.14% 2.3 47% 0.87 0.00 4.7 0.8 0.9 0.67 0.0 0.87 0.0 0.96 0.14 0.96 0.54 0.10 1.0 0.55 14.2% 34.7 4.1 14.6% 2.3 47% 0.87 0.00 4.7 0.8 0.9 0.96 0.10 1.0 0.55 14.2% 54.3 7.9 0.10 1.0 0.55 14.2% 54.4 7.8 0.8 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.96 0.10 1.0 0.55 14.2% 54.4 7.8 0.8 0.0 0.8 0.0 0.8 0.1 1.0 0.55 14.2% 54.4 7.8 0.8 0.0 0.8 0.0 0.8 0.1 1.0 0.55 14.2% 54.4 7.8 0.8 0.0 0.8 0.1 1.0 0.55 14.2% 54.4 7.8 0.8 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.98 0.1 1.0 0.55 14.0 0.55 14.0 0.5 14.0 0.55 14.0 0.5 14.0 0.55 14.0 0.5 14.0 0.55 14.0 0.5 14.0 0.55 14.0 0.5 14.0 0.55 14.0 0.5 14.0 0.55 14.0 0.5 14.0 0.55 14.0 0.5 14.0 0.55 14.	
9.300 90102 0.4 0.12 0.5 0.1 2.00 0.00 0.10 0.00 0.10 0.00 0.00	0.65 0.03% 0.009 0.34 0.079 0.765 1.36% 0.00
9.842 5609.76 7.7 0.18 7.4 48.9 21.9 1.54 8 imme Tailings 0.057 11.3 0.10 0.41 1 1.70 12.529 17.4 15.5 18 1.65% 2.6 7.1% 0.92 0.0 0.92 0.95 0.515 4.60 1.8E-03 3.7E+02 2.4E-04 16 0.45 6.697 0.006 2.00 1.6 1.0 0.036 3.64 5.22 0.096 4.76 3.09 2 10.006 5609.59 9.2 0.064 1.8 0.65 1.8 0.0 0.95 0.51 0.10 0.057 1.11 0.11	0.65 0.03% 0.007 0.34 0.079 0.765 1.04% 0.00
10170 560843 126 0.054 125 120 5.22 5.5% 5and/sime Table 0.59 110 0.53 0.15 0.42 11 170 21.31 293.22 47% 0.94 0.0 94 0.0 94 0.0 94 0.0 94 0.0 95 0.02 1.0 0.5 3.0.4 6.35 0.02 1.0 0.5 3.0.4 6.35 0.02 1.0 0.5 3.0.4 6.35 0.02 1.0 0.5 3.0.4 6.35 0.02 1.0 0.5 3.0.4 0.5 3.	0.65 0.03% 0.007 0.34 0.079 0.765 1.11% 0.00
10.663 5608.94 10.0 0.942 9.7 47.3 0.99 11.0 0.55 12.0 0.97 10.0 0.95 1.0 0.05 11.0 0.55 10.0 0.97 10.0 1.0 1.55 0.0 0.97 0.0 1.5 0.0 0.95 1.55 0.05 1.9 0.50 1.55 0.05 1.55 0.05 1.55 0.061 1.55 0.062 0.80 1.55 1.0 0.037 1.94 3.85 0.082 3.87 2.72 2 10.827 5008 77 11.7 0.072 11.4 46.6 0.16 0.16 0.95 0.16 0.95 0.16 0.95 0.059 1.0 0.037 1.94 3.85 0.082 3.87 2.72 2 5.40 460 1.8E-03 3.8F+02 2.4E-04 10 0.202 2.616 0.55 2.00 0.55 2.00 0.55 2.00 0.55 2.00 0.55 2.00 0.55	0.65 0.03% 0.008 0.34 0.079 0.765 1.18% 0.00 0.65 0.03% 0.008 0.34 0.079 0.765 1.22% 0.00
1099 5606.4 109 0.05 104 7.5 1 32.4 0.8% 5ard/s 5ar	0.65 0.03% 0.008 0.34 0.079 0.765 1.29% 0.00
1.483 5608 12 21.9 0.12 21.8 24.8 10.5 0.55 450 1.5 33.650 67.74 39.36 47 0.58 2.0 1.0 0.05 1.0 0.059 1.483 0.061 1.1 1.5 33.650 67.74 39.36 47 0.58 2.0 47.8 0.10 0.05 1.3 0.00 1.41 0.039 1.41 0.30 1.31 0.030 1.47 0.03 4.24 3.21 2 1.847 5007.95 18.8 0.16 0.59 19.0 0.65 4.01 0.59 19.0 0.65 4.01 0.59 10.0 0.05 1.0 0.05	0.65 0.03% 0.009 0.34 0.079 0.765 1.36% 0.00 0.65 0.03% 0.009 0.34 0.079 0.765 1.39% 0.00
1811 5607.70 17.1 0.08 17.0 0.01 17.0 0.03 17.0 0.03 17.0 0.04% SamoSime Tails 0.56 15.0 0.4% SamoSime Tails 0.56 15.0 0.64 15.0 0.64 15.0 0.64 15.0 0.64 15.0 0.67 15.0 0.68 3.92 2.82 2	0.65 0.03% 0.010 0.34 0.079 0.765 1.46% 0.00
12.003 5607.00 13.0 0.14 12.6 69.8 0.059 19.0 0.66 0.18 0.48 1 1.57 19.678 27.352 23.65 24 7.400 1.07 0.074 1.2 1.0 0.37 2.41 5.69 0.097 4.16 2.93 2 12.467 5607.13 17.3 0.074 17.2 11.4 4.30 0.439 5.60 0.424 0.99 1.69 0.95 0.80 1.12 1.0 0.037 2.415 5.98 0.097 4.16 2.93 2 5.90 460 1.8E-03 3.9E+02 2.7E-04 10 0.027 7883 0.098 2.00 1.49 0.55 0.80 1.12 1.0 0.37 2.41 5.90 4.60 1.8E-03 3.9E+02 2.7E-04 10 0.207 7883 0.098 2.00 1.49 5.52 0.80 1.49 5.52 0.80 3.73 2.82 2 5.95 460 1.8E-03 3.9E+02 2.7E-04 10 0.207 7853 0.069 2.00 1.49	0.65 0.03% 0.010 0.34 0.079 0.765 1.53% 0.00 0.65 0.03% 0.010 0.34 0.079 0.765 1.57% 0.00
12.631 5606.07 14.6 12.4 5.3 0.59 19.0 0.68 19.0 0.49 1 1.5 22.33 39.87 26.03 29 0.80 1.0 0.05 1.0 0.059 19.0 0.69 19.0 0.68 19.0 0.48 0.19 1.47 0.83 0.69 1.17 0.93 0.69 1.12 1.0 0.038 1.12 1.0 0.038 2.00 5.19 0.93 3.92 2.84 2 12.795 5606.80 14.9 1.47 9.3 2.07 0.73 5606.00 1.0 0.05 1.0 0.05 1.0 0.03 0.60 9.10 0.53 3.94 5.67 0.99 1.12 1.0 0.03 3.92 2.84 2 6.00 460 1.8E-03 3.9E+02 2.7E-04 10 0.208 7.795 0.98 1.12 1.0 0.38 2.81 2.00 3.82 2.84 2 2.00 2.00 2	0.65 0.03% 0.011 0.34 0.079 0.765 1.64% 0.00
12 56 5666 6 17.4 0.13 17.4 6.0 2.59 12.3% Saddsime Take 0.55 11.0 0.70 0.20 0.50 1 1 1.9 25.78 35.71 0.12 3.4 1.28% 2.4 7% 1.10 0.00 1.0 0 93 0.65 9 1.0 0.71 0.2 0.51 1.1 0.0 0.5 1.2 0.0 0.51 1.2 0.0 0.51 0.05 1.2 0.0 0.51 1.2 0.0 0.51 0.05 1.2 0.0 0.51 1.2 0.0 0.51 0.05 1.2 0.0 0.51 0.05 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	0.65 0.03% 0.011 0.34 0.079 0.765 1.71% 0.00
13.451 506.15 8.1 0.05 7.9 29.0 12.57 1.058 11.0 0.78 0.93 0.59 1.1 0.053 1.11 1.0 0.038 3.59 5.0.7 0.092 3.71 2.58 2 13.615 5065.58 8.1 0.071 7.9 3.7 1.53 0.059 1.11 0.003 3.59 50.87 0.092 3.71 2.58 2 13.615 5065.58 8.1 0.071 7.9 3.79 16.43 0.895 0.27 1.46 0.93 0.59 1.10 0.038 3.59 50.87 0.092 3.71 2.58 2 13.615 5065.58 8.1 0.071 7.4 0.93 0.59 1.0 0.13 0.0 1.13 0.0 1.48 0.93 0.22 0.80 1.11 1.0 0.38 3.59 50.87 0.093 3.57 2.14 0.003 3.59 0.87 1.40 0.83 3.56	0.65 0.03% 0.012 0.34 0.079 0.765 1.81% 0.00
1379 5605.82 84 0.071 8.2 32.9 14.4 0.8% same sime Tails 0.65 18.0 0.75 0.23 0.52 1 14.8 12.139 16.87 14.8 12.139 16.87 14.8 12.139 16.87 14.8 12.139 16.87 14.8 12.139 16.87 14.8 12.139 16.87 14.8 15.9 0.93% 2.6 47% 1.15 0.00 1.16 0.053 3.57 48.2 0.071 1.47 0.808 3.57 48.0 1.17 0.00 1.16 0.053 3.57 49.2 0.57 1.17 0.01 1.47 0.080 3.57 49.2 0.57 1.17 0.01 1.17 0.038 3.57 49.8 0.57 1.58 0.05 3.57 49.8 0.57 4.56 0.57 4.56 0.57 4.56 0.57 4.56 0.57 4.56 0.57 4.56 0.57 4.56 0.57 4.56 0.57 4.56 0.57 4.56 0.57 4.56 0.57 4.56 0.57 4.5	0.65 0.03% 0.012 0.34 0.079 0.765 1.89% 0.00
14 217 5605 33 94 0.12 9.3 28.4 12.32 1.32.9 Samdssime Tail 0.059 19.0 0.78 0.24 0.53 1.45 13.475 16.73 15.95 1.44 2.64 1.78 0.070 1.00 0.18 0.052 1.0 0.052 1.0 0.052 1.0 0.05 1.0 0.08 3.77 2.64 2 14.436 5605.16 8.8 0.126 8.5 0.55 1.0 0.052 1.56 0.071 1.18 0.00 1.18 0.00 1.18 0.00 1.18 0.00 1.18 0.00 1.18 0.00 1.18 0.00 1.18 0.00 1.18 0.00 1.18 0.00 1.18 0.00 1.18 0.00 1.18 0.00 1.18 0.002 0.56 0.16 0.008 3.77 2.64 2 2 4.01 8.88 0.098 3.77 2.64 2 2 0.01 0.022 0.078 1.48 0.95 0.27 0.078 1.49 0.052 0.078 1.48 <t< td=""><td>0.65 0.03% 0.013 0.34 0.079 0.765 1.96% 0.00</td></t<>	0.65 0.03% 0.013 0.34 0.079 0.765 1.96% 0.00
14 600 560 0 111 28.5 1.3.6 5.6 1.3.7 5.6 5.7 1.4 1.4.3 1.5.8 2.4.7 1.0 0.92 0.8.7 5.5.9 0.8.8 1.0 0.8.7 5.5.9 0.8.7 5.5.9 0.8.8 1.0 0.8.7 5.5.9 0.8.7 1.0 0.9.7 0.5.7 1.0 0.9.7 0.5.7 0.9.7 0.5.7 0.7 0.9.7 0.7 </td <td>0.65 0.03% 0.008 0.34 0.079 0.765 1.26% 0.00</td>	0.65 0.03% 0.008 0.34 0.079 0.765 1.26% 0.00
14 928 5604.67 156 0.127 15.8 0.87 0.87 0.87 0.81 0.800 0.82 0.84 0.83 0.81 0.85 0.84 0.85 0.84 0.85 0.81 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85	0.65 0.03% 0.009 0.34 0.079 0.765 1.32% 0.00
15.420 5604.18 13.1 0.107 15.1 3.5 18.2% head/sime Table 0.59 1150 0.84 0.28 0.57 1 1.3 135 18.2% bead/sime Table 0.59 1150 0.84 0.28 0.57 1 1.3 18 13.129 12.5 15.34 1.2 0.87 1.25 0.07 1.25 0.0 1.25 0.0 1.25 0.0 1.25 0.0 1.25 0.27 0.80 1.09 1.0 0.038 2.44 57.4 57.8 0.05 13.2 0.27 0.80 1.09 1.0 0.038 2.44 57.4 57.8 0.05 13.0 1.25 0.27 0.80 1.09 1.0 0.05 13.7 15.2 13.2 0.27 0.80 1.09 1.0 0.05 13.7 15.2 13.2 0.25 15.34 1.2 0.2 0.25 15.34 1.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0	0.65 0.03% 0.009 0.34 0.079 0.765 1.37% 0.00 0.65 0.03% 0.009 0.34 0.079 0.765 1.40% 0.00
15.748 56.08 9.8 1.7 7.3 1.4% 7.8 7.6 7.8 7.8 7.8	0.65 0.03% 0.010 0.34 0.079 0.765 1.46% 0.00
16240 5603.36 8.7 0.081 8.3 59.6 25.8 0.939 Sandslime Tain 0.059 119.0 0.89 0.05 11.07 15.37 13.56 13. 1.04% 2.7 47% 1.30 0.01 1.0 0.091 0.059 1.0 0.059 1.0 0.051 1.0 0.059 1.0 0.059 3.21 2.35 2 16.404 5003.20 8.6 0.104 8.2 71.5 3.01 1.21% Sandslime Tain 0.059 1.0 0.059 1.0 0.059 3.21 2.35 2 7.10 500 1.8E-03 4.6E+02 2.Fe-04 10 0.217 7259 0.06% 2.00 16.404 5003.20 8.6 0.104 8.2 71.5 3.01 1.04 0.95 1.0 0.051 1.0 0.051 1.08 1.08 0.09 3.88 49.89 0.092 3.21 2.35 2 7.10 500 1.8E-03 4.6E+02 2.E=04 10 0.217 7259 0.06% 2.00 1.08 1.08	0.65 0.03% 0.010 0.34 0.079 0.765 1.51% 0.00 0.65 0.03% 0.010 0.34 0.079 0.765 1.54% 0.00
16.568 56.00 9.3 0.13 8.8 8.8 8.4	0.65 0.03% 0.010 0.34 0.079 0.765 1.60% 0.00
17.000 5602.54 17.7 0.38 17.6 18.1 6.97 2.09 SamdSimeTails 0.059 119.0 0.94 0.33 0.61 12 2.22.63 31.461 2.444 27 2.32% 2.6 47% 1.35 0.00 1.93 0.94 0.30 0.80 1.07 1.0 0.39 3.20 8.466 0.136 4.61 3.24 2 17.224 5602.38 12.0 0.476 18 2.84 1.03 2.97 1.36 0.00 1.36 0 0.001 0.051 3.57 6.01 0.09 3.20 8.46 0.136 4.61 3.24 2 17.224 5602 1.20 0.476 18 2.84 0.001 1.36 0 0.001 0.051 3.57 6.01 0.095 1.87 0.94 0.20 1.00 1.0 0.39 3.20 8.46 0.136 4.41 2.02 1.00 0.051 3.57 6.01 0.095 3.61 1.01 1.01 0.177 5.94 3.76 2 7.46 <td< td=""><td>0.65 0.03% 0.011 0.34 0.079 0.765 1.65% 0.00</td></td<>	0.65 0.03% 0.011 0.34 0.079 0.765 1.65% 0.00

WHITE MESA TAILINGS REPOSITORY LIQUEFACTION AND SEISMIC	SETTLEMENT ANALYSES - 2W7-C		Elev. at Elev. At Top of Midpoint		Pore Equil Pore Effective Effective ure Pressure at Stress at Stress at	Midpoi Shear Max Shear P = PI nt Wave Soil Strain Yerf*(Gerr	stici tv Shear	Threshhol Volumetri d Shear c Strain at	Volumetric Incrementa Strain for
Data File: 13-52106_SP2W7-C-BSC-CPT Idriss and Boulanger (2008) Location: White Mesa 2013 CPT Investigation Max. Horiz. Acceleration, Amax/g: 0.15	5613.10 Water surface elevation during CPT investigation (ft 5619.60 5611.32 Water surface elevation at t ₀ (ft amsl) 5626.65	Ground Surface Elevation at time of CPT (ft amsl) Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl)	FINAL COVER (ft) (ft)	of s of Weigh Weight Bottom of Midpoint at Bot Layer Layer (ft) t (tcf) (pcf) Layer of Layer of La		Depth Velocity, Density Modulus, /G _{max}) In	dex, Strain, Pl g, g, y (%) a	Strain, γ _{tv} 15 Cycles,	Design Consolidati C _N Event, ε _v (%) on (ft)
Kole 2.3 Field Data/2013 Field Investigation/Conetec Dal Earthquake Moment Magnitude, M: 5.5	5595.40 Water surface elevation at t ₁ (ft amsl) 0.50	Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after pla	Erosion Protection Layer ###### 5626.4	5626.15 0.50 0.055 110 0.028 0.014 0.0	0 0.00 0.028 0.014 0 0.00 0.215 0.121	4 0.08 508 1.7E-03 4.4E+02 3.0E-06	11 0.068 46696 0.00% 1.20 11 0.118 18930 0.00% 2.00	0.80 0.04% 0.000 0.32 0.133 0.65 0.03% 0.000 0.34 0.079	0.778 0.00% 0.0000 0.765 0.00% 0.0000
Tailings Sands Magnitude Scaling Factor, MSF: 1.69 Tailings Sand-Slimes Youd, et al (2001)	5590.40 Water surface elevation at t ₂ (ft amsl) 3.50	Thickness of Water Storage/Rooting Zone (ft) Thickness of High Compaction Layer (ft)	ter Storage/Rooting Zone Layer ###### 5624.4 High Compaction Layer ###### 5620.65				11 0.118 18930 0.00% 2.00 11 0.153 12419 0.01% 0.65		0.700 0.0070 0.0000
Tailings Slimes Max. Horiz. Acceleration, Amax/g: 0.15	1.44 Scaling Factor for stress ration, r _m -0.95	Thickness of Random/Platform Fill on on top of existing interim cover (ft)	High Compaction Layer ###### 5620.65 Platform/Random Fill Layer ###### 5619.13	5618.65 4.00 0.060 120 0.454 0.334 0.0 5619.60 -0.95 0.050 101 0.406 0.430 0.0	0 0.00 0.454 0.334 0 0.00 0.406 0.430	0 2.29 508 1.6E-03 4.0E+02 1.0E-04	11 0.164 11187 0.01% 2.00	0.65 0.03% 0.000 0.34 0.079	0.765 0.00% 0.0000
Interim Cover Earthquake Moment Magnitude, M: 5.5 Cells Requiring User Input/Manipulation Magnitude Scaling Factor, MSF: 2.21	0.47 Volumetric Strain Ratio for Site-Specific Design Ear 812.44 7.51 Equiv. Number of Uniform Strain Cycles, N 5590.40	Additional Stress due to Final Cover Placement, Δσ _{FC} (psf) Elevation of bottom of tailings (liner) (ft amsl)					Seismic Settlement Analysis -	Stewart et al (2004)	
2013 CPT Data from ConeTec CPT Data In Operating ConeTec CPT Data	Interpretations Normalized Normalize Type	Conditions at t ₁	Liquefaction Triggering	Analyses			0001	TOTAL SEISMIC	SETTLEMENT (FT): 0.347
at time Pw Pw Type (as Unit Unit at time Pressure time of at time of	Cone d Friction Index, Total Stre	Pore Effective ess Pressure Stress at Saturated Cyclic Stress Ratio Cyclic Resistan	e Ratio Cyclic Stress Rat	Youd et al. (2001)		Wave Soil Shear P = Depth Velocity, Density Strain Yeff*(Geff)	ty Shear dex. Strain.	d Shear c Strain at Strain, γ _w 15 Cycles,	Strain for I Design Consolidati
of CPT Elevation qt fs qc (u2) (u2) fs/qt determined Weight Weight of CPT at time of CPT CPT CN	CN qc1 qc1 qc1N Resistance, (%) ¹ c FC at t ₁	att ₁ t ₁ att ₁ r _d C _o K _o K _a CSR	CRR) r _d D _r f K _o	K _s CSR (CRR) Av		at t ₁ , z ₁ V _s , p Modulus, /G _{max})	PI g ₁ g ₂ γ a	b (%) ε _{c-15} (%) R c	C_N Event, ϵ_v (%) on (ft)
(ft) (ft amsi) TSF TSF TSF (ft) PSI (%) (tcf) (pcf) (tsf) (tsf) (tsf) 1=Yes 0=No	TSF MPa Q, % (tsf)	(tsf) (tsf) 1=Yes M=7.5, 0=No s/=1atm Δqc _{1n} qc _{1n-cs}	M=7.5, av=tatm FoS	M=7.5, KC QC1n <s fo<br="" m="7.5,">sv=tatm FoS</s>	5 1=Yes 2=No	m G _{max} (ft/sec) (tcf) tsf tsf	(%)		
	29 18.673 259.56 21.92 22 2.88% 2.7 71% 1.37			1.0 0.039 4.07 89.16 0.146 4.87 3.3	-	7.45 500 1.8E-03 4.4E+02 3.0E-04	16 0.471 5856 0.08% 2.00	0.65 0.03% 0.014 0.34 0.079	0.765 2.13% 0.0035
	28 13.540 188.21 15.88 15 3.53% 2.9 71% 1.38 28 13.790 191.68 16.61 16 2.82% 2.8 71% 1.39			1.0 0.039 5.55 88.16 0.144 4.76 3.1 1.0 0.039 4.87 80.89 0.129 4.26 2.9		7.50 500 1.8E-03 4.4E+02 3.1E-04 7.55 500 1.8E-03 4.4E+02 3.1E-04	16 0.472 5840 0.08% 2.00 16 0.472 5824 0.08% 2.00		0.765 2.16% 0.0035 0.765 2.19% 0.0036
	27 16.138 224.31 19.05 19 1.76% 2.6 47% 1.40 26 12.920 179.59 15.39 15 2.44% 2.8 71% 1.40			1.0 0.039 3.58 68.22 0.110 3.58 2.6 1.0 0.039 4.82 74.13 0.118 3.83 2.6		7.60 500 1.8E-03 4.6E+02 2.9E-04 7.65 500 1.8E-03 4.4E+02 3.1E-04	10 0.221 7049 0.07% 2.00		0.765 1.79% 0.0029
	26 12.920 179.59 15.39 15 2.44% 2.8 71% 1.40 26 10.855 150.88 13.25 13 2.28% 2.8 71% 1.41			1.0 0.039 4.82 74.13 0.118 3.83 2.6 1.0 0.039 5.21 69.03 0.111 3.57 2.5		7.65 500 1.8E-03 4.4E+02 3.1E-04 7.70 500 1.8E-03 4.4E+02 3.1E-04	16 0.473 5791 0.08% 2.00 16 0.473 5775 0.08% 2.00		0.765 2.25% 0.0037 0.765 2.27% 0.0037
	25 12.220 169.85 14.82 14 1.28% 2.7 47% 1.42 24 12.152 168.91 14.85 14 1.72% 2.7 47% 1.43			1.0 0.039 3.79 56.22 0.097 3.10 2.3 1.0 0.039 4.27 63.40 0.104 3.31 2.4		7.75 500 1.8E-03 4.6E+02 3.0E-04 7.80 500 1.8E-03 4.6E+02 3.0E-04	10 0.222 6990 0.07% 2.00 10 0.223 6970 0.07% 2.00		0.765 1.87% 0.0031 0.765 1.90% 0.0031
18.701 5600.90 12.1 0.167 11.4 113.1 49.03 1.38% Sand-Slime Tailin 0.059 119.0 1.04 0.38 0.66 1 1.2	24 12.152 168.91 14.85 14 1.72% 2.7 47% 1.43 24 14.138 196.51 17.43 17 1.50% 2.6 47% 1.44	0.00 1.44 0 0.89 0.05 0.97 1.0 0.050 36.42 53.85	0.081 1.63 0.94 0.24 0.80 1.06	1.0 0.039 3.59 62.60 0.103 3.26 2.4		7.80 500 1.8E-03 4.6E+02 3.0E-04 7.85 500 1.8E-03 4.6E+02 3.0E-04	10 0.223 6970 0.07% 2.00	0.65 0.03% 0.013 0.34 0.079	
	23 16.569 230.31 19.94 20 1.29% 2.6 47% 1.45 22 16.479 229.06 19.81 19 1.72% 2.6 47% 1.46			1.0 0.039 3.05 60.77 0.101 3.17 2.4 1.0 0.039 3.48 68.88 0.110 3.45 2.5		7.90 500 1.8E-03 4.6E+02 3.1E-04 7.95 500 1.8E-03 4.6E+02 3.1E-04	10 0.223 6931 0.07% 2.00 10 0.224 6912 0.07% 2.00		0.765 1.95% 0.0032 0.765 1.98% 0.0032
19.193 5600.41 14.2 0.182 13.9 41.6 18.02 1.28% Sand-Stime Tailin 0.059 119.0 1.07 0.40 0.67 1 1.2	22 16.937 235.42 20.04 20 1.39% 2.6 47% 1.47	0.00 1.47 0 0.88 0.05 0.97 1.0 0.050 37.33 57.37	0.085 1.71 0.94 0.26 0.80 1.05	1.0 0.039 3.14 62.99 0.103 3.21 2.4		8.00 500 1.8E-03 4.6E+02 3.1E-04 8.01 500 1.8E-03 4.6E+02 3.1E-04	10 0.224 6893 0.07% 2.00	0.65 0.03% 0.013 0.34 0.079	0.765 2.01% 0.0033
	21 14.220 197.65 17.16 16 1.33% 2.6 47% 1.48 20 11 845 164 64 14 69 14 1.20% 2.7 47% 1.49			1.0 0.039 3.47 59.53 0.100 3.07 2.3 1.0 0.039 3.75 55.14 0.096 2.93 2.2		8.05 500 1.8E-03 4.6E+02 3.1E-04 8.10 500 1.8E-03 4.6E+02 3.1E-04	10 0.225 6874 0.07% 2.00 10 0.225 6856 0.08% 2.00	0.65 0.03% 0.013 0.34 0.079 0.65 0.03% 0.014 0.34 0.079	
19.685 5599.92 10.6 0.200 9.8 131.7 57.08 1.89% Slime Tailings 0.057 113.1 1.09 0.41 0.68 1 1.2	20 11.716 162.86 14.75 14 2.10% 2.8 71% 1.50	0.00 1.50 0 0.88 0.05 0.97 1.0 0.049 35.22 49.98	0.077 1.57 0.94 0.22 0.80 1.05	1.0 0.039 4.71 69.55 0.111 3.39 2.4	8 2	8.15 538 1.8E-03 5.1E+02 2.9E-04	16 0.476 5635 0.07% 2.00	0.65 0.03% 0.012 0.34 0.079	0.765 1.78% 0.0029
	15 40.813 567.29 48.71 51 0.85% 2.1 18% 1.51 15 37.997 528.16 44.26 46 1.43% 2.3 47% 1.52		0.117 2.40 0.94 0.40 0.80 1.05 0.127 2.61 0.94 0.38 0.80 1.04	1.0 0.040 1.46 71.18 0.114 3.44 2.9 1.0 0.040 1.86 82.24 0.132 3.96 3.2		8.20 538 1.9E-03 5.5E+02 2.7E-04 8.25 538 1.8E-03 5.3E+02 2.8E-04	0 0.227 8615 0.07% 2.20 10 0.226 6801 0.06% 2.00	1.00 0.03% 0.001 0.34 0.079 0.65 0.03% 0.009 0.34 0.079	
20.177 5599.42 18.7 0.520 18.6 13.8 5.96 2.78% Slime Tailings 0.057 113.1 1.12 0.43 0.70 1 1.1	17 21.803 303.07 25.44 25 2.96% 2.7 71% 1.53	0.00 1.53 0 0.87 0.06 0.97 1.0 0.049 38.95 64.39	0.093 1.90 0.94 0.29 0.80 1.04	1.0 0.040 3.80 96.63 0.164 4.90 3.4	0 2	8.30 538 1.8E-03 5.1E+02 2.9E-04	16 0.478 5590 0.07% 2.00	0.65 0.03% 0.012 0.34 0.079	0.765 1.85% 0.0030
	17 15.789 219.47 18.68 18 3.69% 2.8 71% 1.54 17 12.959 180.13 15.58 15 3.61% 2.9 71% 1.55		0.083 1.69 0.94 0.25 0.80 1.04 0.079 1.60 0.94 0.23 0.80 1.04	1.0 0.040 5.20 97.17 0.165 4.92 3.3 1.0 0.040 5.80 90.30 0.148 4.39 3.0		8.35 538 1.8E-03 5.1E+02 3.0E-04 8.40 538 1.8E-03 5.1E+02 3.0E-04	16 0.478 5577 0.07% 2.00 16 0.478 5563 0.07% 2.00		
20.669 5598.93 12.4 0.338 11.7 107.6 46.62 2.73% Sime Tailings 0.057 113.1 1.15 0.44 0.71 1 1.1	16 13.644 189.65 16.75 16 3.00% 2.8 71% 1.56	0.00 1.56 0 0.87 0.05 0.97 1.0 0.049 35.92 52.68	0.080 1.64 0.94 0.24 0.80 1.04	1.0 0.040 5.09 85.21 0.138 4.05 2.8	4 2	8.45 538 1.8E-03 5.1E+02 3.0E-04	16 0.479 5549 0.07% 2.00	0.65 0.03% 0.013 0.34 0.079	0.765 1.92% 0.0032
	16 14.894 207.02 17.87 17 2.01% 2.7 47% 1.57 15 17 248 239 75 20.41 20 1.67% 2.6 47% 1.58			1.0 0.040 4.06 72.57 0.116 3.38 2.5 1.0 0.040 3.40 69.41 0.111 3.23 2.4		8.50 538 1.8E-03 5.3E+02 2.9E-04 8.55 538 1.8E-03 5.3E+02 2.9E-04	10 0.228 6716 0.06% 2.00 10 0.228 6698 0.06% 2.00	0.65 0.03% 0.010 0.34 0.079 0.65 0.03% 0.010 0.34 0.079	
21.161 5598.44 18.4 0.276 18.0 52.8 22.87 1.50% Sand-Slime Tailin 0.059 119.0 1.18 0.46 0.72 1 1.1	14 20.588 286.17 24.35 24 1.61% 2.5 47% 1.59	0.00 1.59 0 0.87 0.06 0.97 1.0 0.048 38.84 63.19	0.091 1.89 0.93 0.28 0.80 1.04	1.0 0.040 2.94 71.66 0.114 3.30 2.5	9 2	8.60 538 1.8E-03 5.3E+02 2.9E-04	10 0.228 6681 0.06% 2.00	0.65 0.03% 0.010 0.34 0.079	0.765 1.60% 0.0026
	14 20.141 279.96 23.57 23 1.39% 2.5 47% 1.60 13 13.736 190.93 16.21 15 1.54% 2.7 47% 1.61			1.0 0.040 2.83 66.67 0.108 3.09 2.4 1.0 0.040 3.91 63.32 0.104 2.96 2.3		8.65 538 1.8E-03 5.3E+02 2.9E-04 8.70 538 1.8E-03 5.3E+02 2.9E-04	10 0.229 6664 0.06% 2.00 10 0.229 6648 0.06% 2.00	0.65 0.03% 0.011 0.34 0.079 0.65 0.03% 0.011 0.34 0.079	
21.653 5597.95 9.4 0.173 9.0 70.1 30.36 1.84% Stime Tailings 0.057 113.1 1.21 0.47 0.74 1 1.1	13 10.141 140.96 12.35 11 2.11% 2.9 71% 1.62 12 10.748 149.40 13.38 12 3.41% 3.0 71% 1.63	0.00 1.62 0 0.86 0.05 0.97 1.0 0.048 34.39 46.74	0.074 1.54 0.93 0.20 0.80 1.03	1.0 0.040 5.44 67.21 0.108 3.07 2.3	1 2	8.75 538 1.8E-03 5.1E+02 3.1E-04	16 0.481 5466 0.08% 2.00	0.65 0.03% 0.013 0.34 0.079	0.765 2.06% 0.0034
	12 10.748 149.40 13.38 12 3.41% 3.0 71% 1.63 12 17.829 247.82 21.16 20 3.28% 2.8 71% 1.63		0.076 1.57 0.93 0.21 0.80 1.03 0.086 1.80 0.93 0.27 0.80 1.03	1.0 0.040 6.30 84.34 0.136 3.84 2.7 1.0 0.040 4.58 96.83 0.164 4.62 3.2		8.80 538 1.8E-03 5.1E+02 3.1E-04 8.85 538 1.8E-03 5.1E+02 3.1E-04	16 0.481 5454 0.08% 2.00 16 0.481 5441 0.08% 2.00	0.65 0.03% 0.014 0.34 0.079 0.65 0.03% 0.014 0.34 0.079	
	11 16.127 224.17 19.04 18 4.31% 2.9 71% 1.64 11 17.189 238.93 20.31 19 3.67% 2.8 71% 1.65			1.0 0.040 5.59 106.43 0.192 5.37 3.5 1.0 0.040 4.97 100.99 0.176 4.89 3.3		8.90 538 1.8E-03 5.1E+02 3.2E-04 8.95 538 1.8E-03 5.1E+02 3.2E-04	16 0.482 5428 0.08% 2.00 16 0.482 5416 0.08% 2.00	0.65 0.03% 0.014 0.34 0.079 0.65 0.03% 0.014 0.34 0.079	
22.473 5597.13 14.0 0.457 13.9 15.6 6.74 3.26% Slime Tailings 0.057 113.1 1.26 0.50 0.76 1 1.1	10 15.381 213.79 17.99 17 3.58% 2.9 71% 1.66	0.00 1.66 0 0.86 0.05 0.97 1.0 0.048 36.35 54.34	0.082 1.71 0.93 0.24 0.80 1.03	1.0 0.040 5.32 95.70 0.162 4.47 3.0	9 2	9.00 538 1.8E-03 5.1E+02 3.2E-04	16 0.482 5403 0.08% 2.00	0.65 0.03% 0.014 0.34 0.079	0.765 2.17% 0.0036
	09 24.213 336.55 28.30 28 2.17% 2.6 47% 1.67 09 19.057 264.90 22.31 21 2.35% 2.7 47% 1.68		0.098 2.06 0.93 0.31 0.80 1.02 0.088 1.86 0.93 0.27 0.80 1.02	1.0 0.040 3.07 87.01 0.141 3.89 2.9 1.0 0.040 3.78 84.25 0.136 3.71 2.7		9.05 538 1.8E-03 5.3E+02 3.0E-04 9.10 538 1.8E-03 5.3E+02 3.1E-04	10 0.232 6538 0.07% 2.00 10 0.232 6523 0.07% 2.00		
22.966 5596.63 11.2 0.327 10.7 70.0 30.33 2.93% Stime Tailings 0.057 113.1 1.28 0.51 0.77 1 1.0	09 11.705 162.70 14.15 13 3.31% 2.9 71% 1.69	0.00 1.69 0 0.85 0.05 0.97 1.0 0.048 35.01 49.16	0.077 1.61 0.93 0.22 0.80 1.02	1.0 0.040 6.03 85.32 0.138 3.75 2.6	8 2	9.15 538 1.8E-03 5.1E+02 3.2E-04	16 0.483 5365 0.08% 2.00	0.65 0.03% 0.015 0.34 0.079	0.765 2.25% 0.0037
	08 12.269 170.54 14.96 14 2.23% 2.8 47% 1.70 08 13.874 192.85 16.93 16 1.75% 2.7 47% 1.71			1.0 0.040 4.90 73.26 0.117 3.16 2.4 1.0 0.040 4.04 68.45 0.110 2.96 2.3		9.20 538 1.8E-03 5.3E+02 3.1E-04 9.25 538 1.8E-03 5.3E+02 3.1E-04	10 0.233 6492 0.07% 2.00 10 0.233 6477 0.07% 2.00		
23.458 5596.14 12.3 0.222 11.8 82.8 35.86 1.80% Sand-Slime Tailin 0.059 119.0 1.31 0.53 0.79 1 1.0	07 12.714 176.73 15.41 14 2.01% 2.8 47% 1.72	0.00 1.72 0 0.85 0.05 0.97 1.0 0.047 35.71 51.12	0.079 1.66 0.93 0.23 0.80 1.02	1.0 0.040 4.60 70.84 0.113 3.04 2.3		9.30 538 1.8E-03 5.3E+02 3.1E-04	10 0.233 6462 0.07% 2.00	0.65 0.03% 0.012 0.34 0.079	0.765 1.91% 0.0031
	07 10.821 150.41 13.29 12 2.50% 2.9 71% 1.73 07 17.630 245.06 21.26 20 1.98% 2.6 47% 1.74		0.076 1.60 0.92 0.21 0.80 1.02 0.087 1.84 0.92 0.27 0.80 1.02	1.0 0.040 5.61 74.52 0.118 3.17 2.3 1.0 0.040 3.63 77.06 0.123 3.27 2.5		9.35 538 1.8E-03 5.1E+02 3.3E-04 9.40 538 1.8E-03 5.3E+02 3.2E-04	16 0.485 5316 0.09% 2.00 10 0.234 6432 0.07% 2.00	0.65 0.03% 0.015 0.34 0.079 0.65 0.03% 0.013 0.34 0.079	
23.950 5595.65 18.0 0.305 17.9 11.3 4.88 1.70% Sand-Slime Tailin 0.059 119.0 1.34 0.54 0.80 1 1.0	06 18.952 263.44 22.10 21 1.84% 2.6 47% 1.75	0.00 1.75 0 0.84 0.05 0.96 1.0 0.047 38.05 60.15	0.088 1.88 0.92 0.27 0.80 1.02	1.0 0.040 3.41 75.45 0.120 3.18 2.5	3 2	9.45 538 1.8E-03 5.3E+02 3.2E-04	10 0.234 6417 0.07% 2.00	0.65 0.03% 0.013 0.34 0.079	0.765 1.97% 0.0032
	06 14.105 196.06 16.69 15 2.35% 2.8 47% 1.76 05 19.383 269.43 23.24 22 2.01% 2.6 47% 1.77			1.0 0.040 4.66 77.81 0.124 3.27 2.4 1.0 0.040 3.44 79.99 0.128 3.35 2.6		9.50 538 1.8E-03 5.3E+02 3.2E-04 9.55 538 1.8E-03 5.3E+02 3.2E-04	10 0.235 6403 0.07% 2.00 10 0.235 6392 0.07% 2.00		
24.442 5595.16 19.8 0.406 19.6 24.9 10.80 2.05% Sand-Silme Tailin 0.059 119.0 1.37 0.56 0.81 1 1.0	05 20.495 284.88 23.99 23 2.21% 2.6 47% 1.78 04 18.050 250.89 21.06 20 2.85% 2.7 71% 1.79	0.01 1.77 1 0.84 0.06 0.96 1.0 0.047 38.72 62.71	0.091 1.94 0.92 0.28 0.80 1.01	1.0 0.040 3.52 84.43 0.136 3.55 2.7	4 2	9.60 538 1.8E-03 5.3E+02 3.2E-04 9.65 538 1.8E-03 5.1E+02 3.4E-04	10 0.235 6385 0.08% 2.00	0.65 0.03% 0.013 0.34 0.079	0.765 2.05% 0.0034
	04 18.050 250.89 21.06 20 2.85% 2.7 71% 1.79 04 12.353 171.70 14.51 13 2.96% 2.9 71% 1.80		0.077 1.64 0.92 0.22 0.80 1.01	1.0 0.040 4.35 91.61 0.151 3.92 2.8 1.0 0.040 5.71 82.84 0.133 3.42 2.5		9.65 538 1.8E-03 5.1E+02 3.4E-04 9.70 594 1.8E-03 6.2E+02 2.8E-04	16 0.486 5260 0.09% 2.00 16 0.486 5254 0.06% 2.00	0.65 0.03% 0.016 0.34 0.079 0.65 0.03% 0.010 0.34 0.079	
	03 10.195 141.71 12.21 11 2.84% 3.0 71% 1.81 03 9.897 137.57 12.09 10 2.81% 3.0 71% 1.82			1.0 0.040 6.33 77.25 0.123 3.14 2.3 1.0 0.041 6.34 76.70 0.122 3.10 2.3		9.75 594 1.8E-03 6.2E+02 2.8E-04 9.80 594 1.8E-03 6.2E+02 2.9E-04	16 0.486 5249 0.06% 2.00 16 0.486 5244 0.06% 2.00	0.65 0.03% 0.010 0.34 0.079 0.65 0.03% 0.010 0.34 0.079	0.765 1.58% 0.0026
25.262 5594.34 14.2 0.261 14.1 10.4 4.50 1.84% Sand-Slime Tailin 0.059 119.0 1.42 0.59 0.83 1 1.0	03 14.489 201.40 16.91 15 2.04% 2.7 47% 1.83	0.03 1.79 1 0.83 0.05 0.96 1.0 0.047 36.23 53.14	0.081 1.71 0.91 0.24 0.80 1.01	1.0 0.041 4.37 73.93 0.118 2.97 2.3	4 2	9.85 594 1.8E-03 6.5E+02 2.7E-04	10 0.236 6353 0.05% 2.00	0.65 0.03% 0.008 0.34 0.079	0.765 1.27% 0.0021
	02 14.116 196.21 16.78 15 3.26% 2.9 71% 1.83 02 15.231 211.72 17.84 16 2.72% 2.8 71% 1.84			1.0 0.041 5.42 91.00 0.150 3.76 2.7 1.0 0.041 4.79 85.43 0.138 3.44 2.5		9.90 594 1.8E-03 6.2E+02 2.9E-04 9.95 594 1.8E-03 6.2E+02 2.9E-04	16 0.487 5234 0.06% 2.00 16 0.487 5229 0.06% 2.00	0.65 0.03% 0.011 0.34 0.079 0.65 0.03% 0.011 0.34 0.079	
25.754 5593.85 12.5 0.387 12.0 70.3 30.45 3.10% Slime Tailings 0.057 113.1 1.45 0.60 0.85 1 1.0	01 12.203 169.62 14.69 13 3.51% 2.9 71% 1.85	0.05 1.80 1 0.83 0.05 0.96 1.0 0.047 35.20 49.89	0.077 1.63 0.91 0.22 0.80 1.00	1.0 0.041 6.13 90.06 0.148 3.67 2.6	5 2	10.00 594 1.8E-03 6.2E+02 2.9E-04	16 0.487 5224 0.06% 2.00	0.65 0.03% 0.011 0.34 0.079	0.765 1.68% 0.0028
	01 15.169 210.85 18.00 16 1.61% 2.7 47% 1.86 00 20.609 286.46 24.05 22 1.18% 2.5 47% 1.87			1.0 0.041 3.79 68.14 0.109 2.69 2.2 1.0 0.041 2.68 64.55 0.105 2.57 2.2		10.05 594 1.8E-03 6.5E+02 2.8E-04 10.10 594 1.8E-03 6.5E+02 2.8E-04	10 0.236 6328 0.05% 2.00 10 0.236 6321 0.05% 2.00	0.65 0.03% 0.009 0.34 0.079 0.65 0.03% 0.009 0.34 0.079	
26.246 5593.35 17.9 0.228 17.7 30.6 13.24 1.27% Sand-Slime Tailin 0.059 119.0 1.48 0.62 0.86 1 1.0	00 17.733 246.48 20.82 19 1.39% 2.6 47% 1.88	0.06 1.82 1 0.82 0.05 0.96 1.0 0.047 37.60 58.42	0.086 1.82 0.90 0.26 0.80 1.00	1.0 0.041 3.20 66.52 0.107 2.61 2.2	1 2	10.15 594 1.8E-03 6.5E+02 2.8E-04	10 0.237 6315 0.05% 2.00	0.65 0.03% 0.009 0.34 0.079	0.765 1.38% 0.0023
	00 13.030 181.12 15.44 14 2.56% 2.8 71% 1.89 99 11.774 163.66 14.22 12 1.88% 2.8 47% 1.90		0.078 1.65 0.90 0.23 0.80 1.00 0.077 1.62 0.90 0.22 0.80 1.00	1.0 0.041 5.18 79.94 0.128 3.08 2.3 1.0 0.041 4.83 68.70 0.110 2.64 2.1		10.20 594 1.8E-03 6.2E+02 3.0E-04 10.25 594 1.8E-03 6.5E+02 2.8E-04	16 0.488 5203 0.07% 2.00 10 0.237 6302 0.06% 2.00	0.65 0.03% 0.012 0.34 0.079 0.65 0.03% 0.009 0.34 0.079	
26.739 5592.86 21.0 0.154 20.8 25.1 10.86 0.73% Sand-Slime Tailin 0.059 119.0 1.51 0.63 0.87 1 0.9	99 20.610 286.48 24.12 22 0.79% 2.4 47% 1.91 99 21.287 295.89 24.84 23 0.78% 2.4 47% 1.92	0.08 1.83 1 0.82 0.06 0.96 1.0 0.047 38.76 62.88	0.091 1.92 0.90 0.28 0.80 1.00	1.0 0.041 2.30 55.56 0.096 2.29 2.1	0 2	10.30 594 1.8E-03 6.5E+02 2.9E-04	10 0.237 6295 0.06% 2.00	0.65 0.03% 0.009 0.34 0.079	0.765 1.44% 0.0024
27.067 5592.53 21.5 0.222 21.4 21.0 9.11 1.03% Sand-Slime Tailin 0.059 119.0 1.52 0.64 0.88 1 0.9	98 20.946 291.15 24.48 23 1.11% 2.5 47% 1.93	0.09 1.84 1 0.82 0.06 0.96 1.0 0.047 38.89 63.36		1.0 0.042 2.60 63.68 0.104 2.45 2.1	9 2	10.35 594 1.8E-03 6.5E+02 2.9E-04 10.40 594 1.8E-03 6.5E+02 2.9E-04	10 0.237 6289 0.06% 2.00 10 0.237 6282 0.06% 2.00	0.65 0.03% 0.010 0.34 0.079	0.765 1.48% 0.0024
27.231 5592.37 20.3 0.256 20.2 23.1 10.02 1.26% Sand-Slime Tailin 0.059 119.0 1.53 0.65 0.89 1 0.9	98 19.734 274.30 23.08 21 1.36% 2.5 47% 1.94 97 25.657 356.63 29.97 28 1.63% 2.5 47% 1.95	0.09 1.85 1 0.82 0.05 0.96 1.0 0.048 38.40 61.48	0.090 1.88 0.90 0.28 0.80 0.99	1.0 0.042 2.95 68.20 0.110 2.56 2.2	2 2	10.45 594 1.8E-03 6.5E+02 2.9E-04 10.50 594 1.8E-03 6.5E+02 2.9E-04	10 0.237 6276 0.06% 2.00	0.65 0.03% 0.010 0.34 0.079	0.765 1.50% 0.0025
	97 18.972 263.71 22.21 20 2.84% 2.7 47% 1.96	0.10 1.85 1 0.82 0.06 0.96 1.0 0.047 40.81 70.78 0.10 1.86 1 0.81 0.05 0.96 1.0 0.048 38.09 60.30	0.101 2.12 0.89 0.32 0.80 0.99 0.088 1.85 0.89 0.27 0.80 0.99	1.0 0.042 2.66 79.84 0.127 2.96 2.5 1.0 0.042 4.26 94.50 0.158 3.66 2.7		10.50 594 1.8E-03 6.5E+02 2.9E-04 10.55 594 1.8E-03 6.5E+02 2.9E-04	10 0.238 6269 0.06% 2.00 10 0.238 6263 0.06% 2.00		
	97 14.708 204.44 17.26 15 3.51% 2.9 71% 1.97		0.081 1.69 0.89 0.24 0.80 0.99	1.0 0.042 5.57 96.13 0.163 3.73 2.7		10.60 594 1.8E-03 6.2E+02 3.1E-04	16 0.489 5160 0.07% 2.00	0.65 0.03% 0.013 0.34 0.079	
28.051 5591.55 11.8 0.486 11.3 75.6 32.75 4.13% Slime Tailings 0.057 113.1 1.58 0.67 0.91 1 0.9	96 12.270 170.56 14.57 13 4.24% 3.0 71% 1.98 96 10.818 150.37 13.09 11 4.77% 3.1 71% 1.99	0.12 1.87 1 0.81 0.05 0.96 1.0 0.048 34.65 47.74		1.0 0.042 6.77 98.65 0.169 3.87 2.7 1.0 0.042 7.64 100.00 0.173 3.93 2.7		10.65 594 1.8E-03 6.2E+02 3.1E-04 10.70 594 1.8E-03 6.2E+02 3.1E-04	16 0.489 5156 0.07% 2.00 16 0.489 5151 0.07% 2.00	0.65 0.03% 0.013 0.34 0.079	0.765 1.97% 0.0032
29.200 5590.40 Slime Tailings 0.057 113.1	2.05	0.14 1.91 1				11.05 594 1.8E-03 6.2E+02 3.2E-04	16 0.490 5098 0.08% 2.00	0.65 0.03% 0.014 0.34 0.079	0.765 2.10% 0.0241

WHITE MESA TAILINGS REPOSITORY LIQUEFACT Data File: 13-52106_SP2E1-BSC-CPT Idriss and Boulancer (2003) Location: White Mesa 2013 CPT Investigation Max. Horiz. Acceleration, Amaxig: 0.15 L.V.0.2.3. Field Acad2013 Field Investigation:Contete Data Tailings Sands Earthquake Moment Magnitude, Mic. 5.5 5 Tailings Sands Youd, et al (2001) Tailings Simes Max. Horiz. Acceleration, Amaxig: 0.15 Interim Cover Earthquake Moment Magnitude, Mic. 5.5 5 5	5613.00 Water surface elevation during CPT investigation (ft a 5619.99 5611.67 Water surface elevation at t ₀ (ft ams)) 5630.44 5595.46 Water surface elevation at t ₀ (ft ams)) 5.50 5590.46 Water surface elevation at t ₀ (ft ams)) 3.50 5590.46 Water surface elevation at t ₀ (ft ams)) 3.50 5590.46 Water surface elevation at t ₀ (ft ams)) 3.50 5590.46 Water surface elevation at t ₀ (ft ams)) 3.50 5590.47 Water surface elevation at t ₀ (ft ams)) 3.50 5690.46 Water surface elevation at t ₀ (ft ams) 3.50 5690.47 Volumetric Strain Rato for Site-Specific Design Earth 1160.97 2.51 0.47 Volumetric Strain Rato for Site-Specific Design Earth 1160.97 2.51	66 Ground Surface Elevation Immediately after Placement of Final Cover (ft ams)) Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after plan Thickness of Water StorageRooting Zone (ft) Thickness of High Compaction Layer (ft) Thickness of High Compaction Layer (ft) Thickness of High Compaction Layer (ft) Thickness of Jack Compaction Layer (ft) Thickness of Layer Compaction Layer (ft)	Top of Midpoint Bottom Thicknes Unit Units Stress at Stress at	thear Max Soil Strat locity, Density Modu Strat 508 1.7E-03 4.4 508 1.7E-03 4.3 508 1.6E-03 4.0
	Bit 30 bit 100 bit 100	6 Carund Surface Elevation Immediately after Placmetto Layer (ct) Thackness of Vater Storage/Rooting Zorer (t) Thackness of Vater Storage/Rooting Zorer (t) Thackness of Vater Storage/Rooting Zorer (t) Thackness of Vater Storage/Rooting Zorer (t) Thackness of Vater Storage/Rooting Zorer (t) Condition Storage/Rooting Zorer (t) Thackness of Randum/Rooting Zorer (t) Thackness of Randum/Rooting Zorer (t) Condition Storage/Rooting Zorer (t) Thackness of Randum/Rooting Zorer (t) Thackness of Randum/Rooting Zorer (t) Thackness of Randum/Rooting Zorer (t) Condition Storage/Rooting Zorer (t) Thackness of Randum/Rooting Zorer (t) Thacknes of Randum/Rooting Zorer (t) </th <th></th> <th>Yeve Soli STA Yeve Policol Veroitol Aut Soli 1.57-03 A.4 Soli 1.56-03 A.5 Soli 1.56-03 A.5 Veroitoli Demsity Soli Soli Soli 1.56-03 A.5 Soli 1.56-03 A.5</th>		Yeve Soli STA Yeve Policol Veroitol Aut Soli 1.57-03 A.4 Soli 1.56-03 A.5 Soli 1.56-03 A.5 Veroitoli Demsity Soli Soli Soli 1.56-03 A.5 Soli 1.56-03 A.5
12.959 606.699 16.0 0.166 15.9 19.0 8.23 1.04% stand.Sime Taim 0.059 119.0 0.70 0.19 0.51 13.226 5006.83 14.4 0.162 14.3 15.8 6.85 1.3% stand.Sime Taim 0.059 119.0 0.70 0.29 0.52 13.226 5006.65 17.3 0.194 17.2 19.5 8.43 1.12% stand.Sime Taim 0.059 119.0 0.71 0.20 0.52 13.451 5006.50 19.4 0.73 18.3 3.49 0.89% stand.Sime Taim 0.059 119.0 0.72 0.20 0.52 13.451 5006.50 19.4 0.73 18.3 3.49 0.89% stand.Sime Taim 0.059 119.0 0.74 0.21 0.52 13.797 505.03 16.0 0.14 15.9 7.6 0.29% stand.Sime Taim 0.059 119.0 0.75 0.22 0.53 13.797		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.2 0.89 1.83 0.95 0.30 0.89 0.396 0.291 22 0.99 0.396 2.91 22 0.91 7.15 0.85 0.092 1.89 0.94 0.39 0.291 2.91 22 7.15 0.85 0.092 1.89 0.94 0.31 0.80 1.11 10 0.038 2.16 0.09 3.98 2.94 2.2 7.25 0.85 0.94 0.33 0.80 1.10 10 0.038 2.12 61.88 0.02 4.05 2.94 2.2 7.25 0.85 0.60 1.40 0.10 1.00 0.38 2.85 2.065 3.88 2.94 2.24 2.4 0.80 1.40 0.10 0.038 2.85 2.065 3.89 2.87 2.94 2.24 2.87 2.44 2.44 2.44 2.44 2.44 2.44 2.44 2.44 2.44 2.45 2.44 2.45	460 1.8E-03 3.9

Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	y 3 3 3	Modulus, G _{max} (tsf) 4.4E+02	γ _{eff} *(G _{eff} /G _{max}) (tsf) 3.0E-06 2.8E-05 6.8E-05	Plastici ty Index, Pl 11 11 11 11	g 1 0.068 0.118 0.153 0.171	g ₂ 46696 18930 12419 10362	Shear Strain, γ (%) 0.00% 0.00% 0.01% 0.02%	a 1.20 2.00 0.65 2.00	b 0.80 0.65 0.75 0.65	Threshhol d Shear Strain, γ _{tr} (%) 0.04% 0.03% 0.02% 0.03%	c Strain at 15 Cycles, ε _{c-15} (%) 0.000 0.000 0.000 0.000	R 0.32 0.34 0.34 0.34	c 0.133 0.079 0.079 0.079	C _N 0.778 0.765 0.765 0.765	Volumetric Strain for Design Event, ε _ν (%) 0.00% 0.00% 0.00%	Incrementa I Consolidati on (ft) 0.0000 0.0000 0.0000 0.0000
Image Part Part Part Part					Seis	smic Set	tlement /	Analysis	- Stewar	t et al (2004	•)	TOTAL	. SEISMI	C SETTL	EMENT (FT):	0.468
b b c	у	Shear Strain Modulus, G _{max}	γ _{eff} *(G _{eff} /G _{max})	Index,	g1	g 2	Strain, γ	а	b	Strain, ytr	15 Cycles,	R	c	C _N	Design	Consolidati
b b		5.5E+02 5.5E+02	1.0E-04 1.1E-04	11	0.178	9763	0.01% 0.01%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.0000
b b		5.5E+02	1.1E-04	11	0.179	9653	0.01%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.0000
b c	3	5.5E+02	1.1E-04	11	0.180	9547	0.01%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.0000
b 5.8-4 7.2-4 1.2-5 0.20 <t< td=""><td>÷.</td><td>5.5E+02</td><td>1.1E-04</td><td></td><td></td><td></td><td>0.01%</td><td>2.00</td><td></td><td></td><td></td><td>0.34</td><td>0.079</td><td></td><td>0.00%</td><td></td></t<>	÷.	5.5E+02	1.1E-04				0.01%	2.00				0.34	0.079		0.00%	
b 5.5.6.7 7.2.6. 110 10.8 20.00 20.00 0.000 0.	- 1															
9 5.5	÷.			11	0.183			2.00			0.000	0.34	0.079	0.765		
9 5.88. 1.28. 11 0.08 0.09 0.79 0.78 0.095 0.005 0.5.49 1.38. 11 0.19 0.005 <td>3</td> <td>5.5E+02</td> <td>1.2E-04</td> <td>11</td> <td>0.184</td> <td>9205</td> <td>0.02%</td> <td>2.00</td> <td>0.65</td> <td>0.03%</td> <td>0.000</td> <td>0.34</td> <td>0.079</td> <td>0.765</td> <td>0.00%</td> <td>0.0000</td>	3	5.5E+02	1.2E-04	11	0.184	9205	0.02%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.0000
5 5																
3 3	÷.															
3 3 3 3 3 3 3 3 3 3 3 3 5 3 5 3 5 3 5 3 5 3 5 3 5																
3 3 3 3 3 3 3 3 3 3 3 3 5	3	3.9E+02	1.9E-04	0	0.193	11508	0.04%	2.20	1.00	0.03%	0.000	0.34	0.079	0.765	0.04%	0.0001
3 3 3 3 1	3	3.9E+02	1.9E-04	0	0.194	11403	0.04%	2.20	1.00	0.03%	0.000	0.34	0.079	0.765	0.04%	0.0001
3 3.5 2.5 1 0.442 2.7 0.084 2.00 0.65 0.33 0.079 0.785 0.3070 0.785 0.1705 0.0025 3.5 0.2 2.55-04 10 0.014 0.014 0.004 0.007 0.785 0.1705 0.0025 3.5 0.2 0.014 0.014 0.014 0.014 0.004 0.004 0.007 0.785 0.0076 0.016 0.0175 0.0076 3.5 0.2 0.014 0.019 0.019 0.0075 0.0076 0.076 0.765 0.0075 0.0076 3.5 0.2 0.019 0.055 2.01 0.033 0.001 0.034 0.079 0.765 0.085 0.0075 0.025 0.0075 0.765 0.026 0.027 0.026 0.027 0.765 0.026 0.033 0.000 0.34 0.070 0.765 0.026 0.027 0.765 0.026 0.027 0.765 0.026 0.027		3.5E+02	2.1E-04													
3) 3) 3) 1 0.25 0.275 1.775 0.072 0.775 1.775 0.002 3) 3.25 2 1.65 0.179 0.755 1.775 0.022 3) 3.25 2 1.65 0.179 0.755 0.978 0.076 0.755 0.978 0.076 0.755 0.978 0.076 0.755 0.978 0.076 0.755 0.078 0.076 0.755 0.078 0.076 0.755 0.078 0.076 0.755 0.078 0.076 0.075	- I															
3) 3.5.2.2 2.2.6.4 10 0.198 8.007 0.795 0.999 0.007 0.785 0.999 0.007 0.785 0.999 0.007 0.785 0.079 0.785 0.079 0.785 0.079 0.785 0.079 0.785 0.079 0.785 0.079 0.785 0.079 0.785 0.079 0.785 0.079 0.785 0.079 0.785 0.079 0.785 0.079 0.785 0.079 0.785 0.079 0.785 0.079 0.785 0.079 0.785 0.079 0.785 1.295 0.0021 0.023 0.079 0.785 1.295 0.0022 0.35 0.031 0.000 0.031 0.000 0.079 0.785 1.295 0.0022 0.021 <td< td=""><td>÷.</td><td>3.1E+02</td><td>2.5E-04</td><td></td><td></td><td></td><td></td><td>2.00</td><td></td><td></td><td></td><td></td><td>0.079</td><td></td><td></td><td>0.0028</td></td<>	÷.	3.1E+02	2.5E-04					2.00					0.079			0.0028
3 3 3 4 2 1 0 0.03% 0.000 0.04 0.07%	3	3.5E+02	2.2E-04	10	0.193	8807	0.04%	2.00	0.65	0.03%	0.006	0.34	0.079	0.765	0.99%	0.0016
3) 3) 3) 3) 0 <td>3</td> <td>3.9E+02</td> <td>2.1E-04</td> <td>0</td> <td>0.197</td> <td>11007</td> <td>0.05%</td> <td>2.20</td> <td>1.00</td> <td>0.03%</td> <td>0.000</td> <td>0.34</td> <td>0.079</td> <td>0.765</td> <td>0.07%</td> <td>0.0001</td>	3	3.9E+02	2.1E-04	0	0.197	11007	0.05%	2.20	1.00	0.03%	0.000	0.34	0.079	0.765	0.07%	0.0001
3 3 3 5 3 5 3 5	÷.														0.08%	0.0001
3 3																
3 3 3 5 2 6 0	3	3.5E+02	2.4E-04	10	0.196	8561	0.05%	2.00	0.65	0.03%	0.008	0.34	0.079	0.765	1.23%	0.0020
3 3 3 3 0	3	3.5E+02	2.4E-04	10	0.197	8500	0.05%	2.00	0.65	0.03%	0.008	0.34	0.079	0.765	1.30%	0.0021
1 4 5 6 0 0.028 0.038 0.007 0.768 0.478 0.079 0.768 0.078 0.007 0.078 0.078 0.007 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078																
a 4 5 Correl 10 0.200 8.207 0.45 0.203 0.031 0.479 0.765 0.578 0.000 a 4.55-02 Core4 10 0.207 8.277 0.445 2.00 0.65 0.035 0.031 0.476 0.776 0.578 0.000 a 4.55-02 CI-64 10 0.202 8122 0.444 2.00 0.65 0.035 0.034 0.476 0.776 0.6484 0.000 a 4.55-02 CI-64 10 0.202 8126 0.444 2.00 0.65 0.035 0.056 0.379 0.076 0.776 0.0776	÷.															
a b b c																
1 4 5 6 0	3	4.5E+02	2.0E-04	10	0.201	8261	0.04%	2.00	0.65	0.03%	0.003	0.34	0.079	0.765	0.53%	0.0009
a 4.56-02 2.56-4 10 0.233 6022 0.65 0.03% 0.006 0.34 0.079 0.765 0.73% 0.0012 a 4.56-02 2.26-4 10 0.234 0.025 0.03% 0.005 0.34 0.079 0.765 0.73% 0.0012 a 4.56-02 2.26-4 10 0.255 796 0.44% 2.00 0.65 0.03% 0.006 0.34 0.079 0.765 0.85% 0.004 3 4.56-02 2.56-4 10 0.267 793 0.6% 2.00 0.635 0.035 0.016 0.34 0.079 0.765 0.85% 0.002 3 3.86-02 2.7E-04 10 0.267 7731 0.6% 2.00 0.65 0.03% 0.011 0.34 0.079 0.755 1.55% 0.0022 3 3.86-02 2.7E-44 10 0.207 773 0.6% 2.00 0.03% 0.011 0.34	3	4.5E+02	2.1E-04	10	0.202	8192	0.04%	2.00	0.65	0.03%	0.004	0.34	0.079	0.765	0.60%	0.0010
a 4.55-02 2.25-04 10 0.204 8050 0.45% 2.00 0.65 0.03% 0.005 0.34 0.779 0.785 0.077% 0.0013 3 4.55-02 2.25-04 10 0.005 786 0.03% 0.005 0.34 0.079 0.785 0.83% 0.0014 3 4.55-02 2.35-04 10 0.007 786 0.83% 0.0014 3 5.5-02 2.75-04 10 0.207 7744 0.85% 2.001 0.65 0.03% 0.011 0.34 0.079 0.785 1.64% 0.0025 3 3.65-02 2.7E-04 10 0.209 7787 0.06% 2.00 0.65 0.03% 0.011 0.34 0.079 0.785 1.64% 0.0022 3.45-02 2.8E-04 10 0.209 7797 0.06% 2.00 0.65 0.03% 0.011 0.34 0.079 0.785 1.64% 0.0022 3.54+02 <td< td=""><td>÷.</td><td>4.5E+02</td><td>2.1E-04</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	÷.	4.5E+02	2.1E-04													
a) 4.55-02 2.25-04 10 0.206 766 0.03% 0.005 0.34 0.079 0.765 0.08% 0.0013 3 4.55-02 2.35-04 10 0.206 766 0.03% 0.005 0.34 0.079 0.765 0.86% 0.0015 3 3.55-02 2.75-04 10 0.207 7783 0.06% 2.00 0.65 0.03% 0.010 0.34 0.079 0.765 1.54% 0.0026 3 3.62-02 2.75-04 10 0.207 7781 0.06% 2.00 0.65 0.03% 0.011 0.34 0.079 0.765 1.16% 0.0028 3 3.62-02 2.76-04 10 0.200 7775 0.07% 2.00 0.65 0.03% 0.011 0.34 0.079 0.765 1.12% 0.028 3 3.62-02 2.66-04 10 0.210 764 0.23% 0.021 0.34 0.079 0.765 1.12% </td <td>- 1</td> <td></td>	- 1															
3 4.55-02 2.25-04 10 0.206 764 0.075 0.765 0.035% 0.0014 3 4.55-02 2.35-04 10 0.206 763 0.04% 2.00 0.65 0.035% 0.006 0.34 0.075 0.765 0.895% 0.0015 3 3.85-02 2.75-04 10 0.207 7727 0.06% 2.00 0.65 0.035% 0.010 0.34 0.075 0.755 1.65% 0.0027 3 3.85-02 2.75-04 10 0.207 775 0.06% 2.00 0.65 0.035% 0.011 0.34 0.079 0.755 1.65% 0.0027 3 3.86-02 2.86-04 10 0.020 777 0.06% 2.00 0.65 0.035% 0.011 0.34 0.079 0.765 1.16% 0.0023 3 3.86+02 2.86-04 10 0.207 776 0.05% 0.035% 0.011 0.34 0.079 0.7		4.5E+02	2.2E-04				0.04%	2.00		0.03%	0.005			0.765		0.0013
3 4.5E-v2 2.8E-v4 10 0.206 7933 0.04% 2.00 0.55 0.03% 0.001 0.34 0.079 0.765 0.88% 0.0015 3 3.9E+v2 2.7E-04 10 0.207 784 0.06% 2.00 0.55 0.03% 0.010 0.34 0.079 0.765 1.58% 0.0028 3 3.9E+v2 2.7E-04 10 0.209 7777 0.66% 2.00 0.65 0.03% 0.011 0.34 0.079 0.765 1.18% 0.0028 3 3.9E+v2 2.8E-04 10 0.209 7777 0.66% 2.00 0.55 0.03% 0.011 0.34 0.079 0.765 1.78% 0.0028 3 3.9E+v2 2.8E-04 10 0.210 7670 0.07% 2.00 0.55 0.03% 0.012 0.34 0.079 0.765 1.38% 0.0031 3 3.9E+v2 3.8E+v2 3.8E+v2 3.8E+v2	3	4.5E+02	2.2E-04	10	0.205	7964	0.04%	2.00	0.65	0.03%	0.005	0.34	0.079	0.765	0.83%	0.0014
3 9.9.4.92 2.7E-04 10 0.207 7844 0.06% 2.00 0.65 0.03% 0.011 0.34 0.079 0.765 1.85% 0.0022 3 3.9E+02 2.7E-04 10 0.208 7785 0.06% 2.00 0.55 0.03% 0.011 0.34 0.079 0.765 1.85% 0.0022 3 3.9E+02 2.8E-04 10 0.209 7751 0.06% 2.00 0.65 0.03% 0.011 0.34 0.079 0.765 1.72% 0.0023 3 3.9E+02 2.8E-04 10 0.210 7673 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.83% 0.0033 3 3.9E+02 2.8E-04 10 0.211 7593 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 1.93% 0.0033 3.94 0.079 0.765 1.93% 0.0033 3.94 <td< td=""><td>3</td><td>4.5E+02</td><td>2.3E-04</td><td>10</td><td>0.206</td><td>7903</td><td>0.04%</td><td>2.00</td><td>0.65</td><td>0.03%</td><td>0.006</td><td>0.34</td><td>0.079</td><td>0.765</td><td>0.89%</td><td>0.0015</td></td<>	3	4.5E+02	2.3E-04	10	0.206	7903	0.04%	2.00	0.65	0.03%	0.006	0.34	0.079	0.765	0.89%	0.0015
3 9.8-92 2.7E-64 10 0.208 7785 0.06% 2.00 0.55 0.03% 0.011 0.34 0.079 0.765 1.85% 0.0022 3 3.9E+02 2.8E-04 10 0.209 777 1.07% 2.00 0.65 0.03% 0.011 0.34 0.079 0.765 1.72% 0.0028 3 3.9E+02 2.8E-04 10 0.200 7770 0.07% 2.00 0.65 0.03% 0.011 0.34 0.079 0.765 1.79% 0.0028 3 3.9E+02 2.8E-04 10 0.211 7673 0.07% 2.00 0.65 0.03% 0.012 0.34 0.076 1.89% 0.003 3 3.9E+02 3.0E-04 10 0.212 7571 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 1.39% 0.003 3.9E+02 3.0E+04 10 0.214 7440 0.07% 2.00 0.65	÷.	3.9E+02	2.7E-04					2.00								
3 9.9.4.92 2.8E-04 10 0.209 7757 0.06% 2.00 0.55 0.03% 0.011 0.34 0.079 0.765 1.12% 0.0022 3 3.9E-02 2.8E-04 10 0.209 773 0.07% 2.00 0.65 0.03% 0.011 0.34 0.079 0.765 1.78% 0.0022 3 3.9E+02 2.8E-04 10 0.210 766 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.18% 0.0031 3 3.9E+02 2.8E-04 10 0.211 7567 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 1.86% 0.0031 3 3.9E+02 3.0E-04 10 0.217 7567 0.07% 2.00 0.65 0.03% 0.013 0.44 0.079 0.765 2.04% 0.003 3 3.9E+02 3.0E-04 10 0.214 7440 0.07% <td>- 1</td> <td></td>	- 1															
3 9.8-02 2.8E-04 10 0.209 7701 0.07% 2.00 0.65 0.03% 0.011 0.34 0.079 0.765 1.79% 0.002 3 3.8E+02 2.8E-04 10 0.210 763 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.88% 0.0031 3 3.8E+02 2.8E-04 10 0.211 7680 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.88% 0.0031 3 3.8E+02 2.8E-04 10 0.217 7567 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 2.04% 0.0032 3 3.8E+02 3.8E+02<																
3 9.8-02 2.8E-04 10 0.210 7646 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.38% 0.0031 3 3.8E-02 2.8E-04 10 0.211 7580 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.38% 0.0031 3 3.8E+02	3	3.9E+02	2.8E-04	10	0.209	7701	0.07%	2.00	0.65	0.03%	0.011	0.34	0.079	0.765	1.76%	0.0029
3 9.8-02 2.8E-04 10 0.211 7933 0.07% 2.00 0.85 0.03% 0.012 0.24 0.765 1.09% 0.0033 3 3.9E-02 3.0E-04 10 0.212 7571 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 1.37% 0.0032 3 3.9E+02 3.0E-04 10 0.213 7461 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 2.04% 0.0033 3 3.9E+02 3.0E-04 10 0.214 7440 0.08% 2.00 0.65 0.03% 0.014 0.34 0.079 7.65 2.11% 0.0033 3 3.9E+02 3.1E-04 10 0.214 7440 0.08% 2.00 0.65 0.03% 0.017 0.34 0.079 7.65 2.47% 0.0044 3 3.7E+02 3.2E+04 10 0.217 7270 0.09%	3	3.9E+02	2.9E-04	10	0.210	7646	0.07%	2.00	0.65	0.03%	0.012	0.34	0.079	0.765	1.83%	0.0030
3 3 9 0	÷.	3.9E+02	2.9E-04		0.211		0.07%	2.00			0.012				1.90%	0.0031
3 9.9.4.2 3.0E-04 10 0.213 7545 0.07% 2.00 0.65 0.03% 0.013 0.34 0.0765 2.00% 0.0033 3 3.9E-02 3.0E-04 10 0.214 7446 0.08% 2.00 0.65 0.03% 0.014 0.34 0.079 0.765 2.08% 0.0033 3 3.9E+02 3.1E-04 10 0.214 7446 0.08% 2.00 0.65 0.03% 0.014 0.34 0.079 0.765 2.15% 0.0035 3 3.FE-02 3.1E-04 10 0.216 7480 0.08% 2.00 0.65 0.03% 0.014 0.34 0.079 0.765 2.215% 0.0038 3 3.9E+02 3.8E+04 10 0.216 7330 0.08% 2.00 0.65 0.03% 0.015 0.34% 0.079 0.765 2.38% 0.0038 3 3.9E+02 3.8E+02 3.8E+02 3.8E+02 3.8E+02																
3) 3) 4 0 0.214 7446 0.08% 0.00 0.03% 0.014 0.34 0.765 2.08% 0.0035 3) 9:6-02 31:E-04 10 0.214 7440 0.08% 2.00 0.65 0.03% 0.014 0.34 0.079 0.765 2.11% 0.0035 3) 7:E-02 31:E-04 10 0.214 7440 0.085 0.03% 0.014 0.34 0.079 0.765 2.15% 0.0048 3) 7:E-02 31:E-04 10 0.216 7330 0.08% 2.00 0.65 0.03% 0.016 0.34 0.079 0.765 2.24% 0.0038 3) 3:E+02 3:E-04 10 0.216 7730 0.09% 2.00 0.65 0.03% 0.016 0.34 0.079 0.765 2.49% 0.0039 3) 3:E+02 3:E-04 10 0.217 727 0.09% 2.00 0.65 0.03% <	3	3.9E+02	3.0E-04	10	0.213	7515	0.07%	2.00	0.65	0.03%	0.013	0.34	0.079	0.765		0.0033
3 9.9.4.2 3.1E-04 10 0.214 7416 0.08% 0.03% 0.014 0.44 0.765 2.15% 0.0035 3 3.7E-02 3.8E-04 16 0.466 0.086 0.03% 0.017 0.34 0.079 0.765 2.25% 0.0044 3 3.7E-02 3.8E-04 16 0.477 0.565 0.03% 0.016 0.34 0.079 0.765 2.24% 0.0048 3 3.9E+02 3.2E-04 10 0.216 7320 0.09% 2.00 0.65 0.03% 0.016 0.34 0.079 0.765 2.24% 0.0038 3 3.9E+02 3.2E-04 10 0.217 727 0.09% 2.00 0.65 0.03% 0.016 0.34 0.079 0.765 2.44% 0.004 0.03 3.9E+02 3.8E-04 10 0.218 7220 0.09% 2.00 0.65 0.03% 0.016 0.34 0.079 0.765 2.44% <	3	3.9E+02	3.0E-04	10	0.214	7465	0.08%	2.00	0.65	0.03%	0.014	0.34	0.079	0.765	2.08%	0.0034
3 9.9 9.9 2.9 0.05 0.03% 0.01% 2.0.0 0.65 0.03% 0.01% 0.0.0 0.055 0.03% 0.01% 0.0.0 0.055 0.03% 0.01% 0.0.0 0.055 0.03% 0.015 0.34 0.079 0.765 2.24% 0.0048 3 3.96+02 3.25-04 10 0.216 7233 0.09% 2.00 0.65 0.03% 0.015 0.34 0.079 0.765 2.23% 0.0038 3 3.96+02 3.25-04 10 0.217 727 0.09% 2.00 0.65 0.03% 0.016 0.34 0.079 0.765 2.44% 0.004 3 3.96+02 3.85-04 10 0.218 7210 0.09% 2.00 0.65 0.03% 0.016 0.34 0.079 0.765 2.44% 0.004 3 3.96+02 3.85-04 10 0.219 7146 0.09% 2.00 0.65 0.03% 0.017 <td>3</td> <td>3.9E+02</td> <td>3.1E-04</td> <td>10</td> <td>0.214</td> <td>7416</td> <td>0.08%</td> <td>2.00</td> <td>0.65</td> <td>0.03%</td> <td>0.014</td> <td>0.34</td> <td>0.079</td> <td>0.765</td> <td>2.15%</td> <td>0.0035</td>	3	3.9E+02	3.1E-04	10	0.214	7416	0.08%	2.00	0.65	0.03%	0.014	0.34	0.079	0.765	2.15%	0.0035
3 9.8-02 3.2E-04 10 0.216 7323 0.08% 2.00 0.65 0.03% 0.015 0.34 0.079 7.765 2.23% 0.0038 3 3.9E+02 3.2E-04 10 0.217 7277 0.09% 2.00 0.65 0.03% 0.015 0.34 0.079 0.765 2.38% 0.0038 3 3.9E+02 3.2E-04 10 0.217 7277 0.09% 2.00 0.65 0.03% 0.016 0.34 0.079 0.765 2.48% 0.0048 3 3.9E+02 3.8E-04 10 0.218 7220 0.09% 2.00 0.65 0.03% 0.016 0.34 0.079 0.765 2.44% 0.0041 3.9E+02 3.8E-04 10 0.219 7166 0.09% 2.00 0.65 0.03% 0.017 0.34 0.079 0.765 2.55% 0.0042 3.9E+02 3.8E-04 16 0.471 5869 1.22%	3	3.9E+02	3.1E-04	10	0.215	7369	0.08%	2.00	0.65	0.03%	0.015	0.34	0.079	0.765	2.22%	0.0036
3 9:9:4-Q2 3:2E-04 10 0:217 7277 0.09% 2.00 0.65 0.03% 0.015 0.34 0.079 0.765 2.36% 0.0033 3 3:9E-02 3:E-04 10 0.218 7222 0.09% 2.00 0.65 0.03% 0.016 0.34 0.079 0.765 2.46% 0.0034 3 3:E-02 3:E-04 10 0.218 7220 0.09% 2.00 0.65 0.03% 0.016 0.34 0.079 0.765 2.44% 0.0044 3:BE+02 3:E-04 10 0.219 7146 0.09% 2.00 0.65 0.03% 0.016 0.34 0.079 0.765 2.54% 0.0044 3:B=02 3:E-04 10 0.219 7146 0.09% 2.00 0.65 0.03% 0.017 0.34 0.079 0.765 2.55% 0.0042 3:B=02 3:E-464 10 0.220 7030 0.076 2.00 0.																
3) 3) 3) 4) 4) 4) 4) 4) 6) 7,765 2,44% 0,004 3) 3) 4) 6,776 2,44% 0,004 2,00 0,855 0,03% 0,016 0,34 0,079 0,765 2,44% 0,004 3) 39:642 33:644 10 0,218 7210 0,09% 2,00 0,65 0,03% 0,016 0,34 0,079 0,765 2,44% 0,004 3) 39:642 33:64 10 0,219 718 0,09% 2,00 0,55 0,03% 0,017 0,34 0,079 0,765 2,55% 0,0042 3) 3:642 3:64-04 10 0,219 7144 0,09% 2,00 0,65 0,03% 0,017 0,34 0,079 0,765 2,55% 0,0042 3) 3:76:42 3:64-04 10 0,220 7078 0,005 0,3% 0,017 0,34 0,079 0,765																
3 3 3 3 3 3 3 3 3 4 0 0.218 7210 0.09% 2.00 0.65 0.03% 0.016 0.34 0.076 2.48% 0.0041 3 3 6 0.23 0.021 7180 0.09% 2.00 0.65 0.03% 0.016 0.34 0.079 0.765 2.55% 0.0041 3 3 6 4 0 0.219 7144 0.09% 2.00 0.65 0.03% 0.017 0.34 0.079 0.765 2.55% 0.0042 3 3 76+02 3.66-04 10 0.220 7010 0.07% 2.00 0.65 0.03% 0.017 0.34 0.079 7.765 2.69% 0.004 4 46=642 3.16-64 10 0.220 7072 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 7.765 2.18% 0.0029 0.46 0.023 </td <td>3</td> <td>3.9E+02</td> <td>3.2E-04</td> <td>10</td> <td>0.217</td> <td>7254</td> <td>0.09%</td> <td>2.00</td> <td>0.65</td> <td>0.03%</td> <td>0.016</td> <td>0.34</td> <td></td> <td>0.765</td> <td>2.40%</td> <td>0.0039</td>	3	3.9E+02	3.2E-04	10	0.217	7254	0.09%	2.00	0.65	0.03%	0.016	0.34		0.765	2.40%	0.0039
3 3 9 0 7 0 2 6 0 0 0 0 0 7 5 2 5 0	3	3.9E+02	3.3E-04	10	0.218	7210	0.09%	2.00	0.65	0.03%	0.016	0.34	0.079	0.765	2.48%	0.0041
3) 3:7:4-Q2 3:6:-Q4 16 0.471 5869 0.12% 2.00 0.65 0.03% 0.02% 0.47 0.765 3.13% 0.0051 3) 3:6:-Q2 3:6:-Q4 10 0.220 7103 0.01% 2.00 0.655 0.03% 0.011 0.34 0.079 0.765 3.13% 0.0041 3 4:6E+Q2 3:E-04 10 0.220 7032 0.07% 2.00 0.65 0.03% 0.014 0.34 0.079 0.765 2.20% 0.0028 4 4:E+Q2 3:E-04 10 0.221 7022 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.28% 0.0029 4 6:E+Q2 3:E-04 10 0.222 7022 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 7.65 1.88% 0.0031 4:6E+Q2 3:E-04 10 0.221 7022 0.07% 2.00 </td <td>3</td> <td>3.9E+02</td> <td>3.3E-04</td> <td>10</td> <td>0.219</td> <td>7166</td> <td>0.09%</td> <td>2.00</td> <td>0.65</td> <td>0.03%</td> <td>0.017</td> <td>0.34</td> <td>0.079</td> <td>0.765</td> <td>2.55%</td> <td>0.0042</td>	3	3.9E+02	3.3E-04	10	0.219	7166	0.09%	2.00	0.65	0.03%	0.017	0.34	0.079	0.765	2.55%	0.0042
3 9:8-02 3:4:0:4 10 0.220 7033 0.0% 2.00 0.65 0.03% 0.071 0.34 0.076 2.66% 0.004 4 4:6:02 2:6:0-4 10 0.220 7032 0.07% 2.00 0.65 0.03% 0.011 0.34 0.079 0.765 2.66% 0.003 4 4:6:02 3:6:04 10 0.221 7042 0.07% 2.00 0.65 0.03% 0.014 0.34 0.079 0.765 1.26% 0.0038 4:6:6:02 3:6:04 10 0.221 7022 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.82% 0.0031 4:6:023 3:6:04 10 0.222 6922 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.85% 0.0031 4:6:023 3:6:04 10 0.223 6942 0.07% 2.00 0.65 0.03%<																
3 4.4E+02 3.1E-04 16 0.472 6818 0.08% 0.015 0.03% 0.014 0.34 0.079 0.765 2.20% 0.0032 3 4.6E+02 3.0E-04 10 0.221 7024 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.80% 0.0032 4.6E+02 3.0E-04 10 0.222 7022 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.82% 0.0033 4.6E+02 3.0E-04 10 0.222 F092 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.88% 0.0031 4.6E+02 3.0E-04 10 0.223 6982 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 1.88% 0.0032 4.6E+02 3.1E-04 10 0.224 6923 0.07% 2.00 0.65 0.03%		3.9E+02	3.4E-04		0.220	7103	0.10%		0.65						2.66%	0.0044
3 4.6E+02 3.0E-04 10 0.222 7022 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.82% 0.0030 3 4.6E+02 3.0E-04 10 0.222 7020 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.85% 0.0030 4.6E+02 3.0E-04 10 0.222 6962 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.85% 0.0031 3 4.6E+02 3.0E-04 10 0.222 6962 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.18% 0.0032 3 4.6E+02 3.1E-04 10 0.224 6902 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 1.96% 0.0032 3 4.6E+02 3.1E-04 10 0.224 6904 0.0	3	4.4E+02	3.1E-04	16	0.472	5818	0.08%	2.00	0.65	0.03%	0.014	0.34	0.079	0.765	2.20%	0.0036
3 4.6E+02 3.0E-04 10 0.222 6982 0.07% 2.00 0.65 0.03% 0.012 0.34 0.076 1.88% 0.0011 3 4.6E+02 3.0E-04 10 0.223 6982 0.07% 2.00 0.65 0.03% 0.012 0.34 0.079 0.765 1.84% 0.0031 3 4.6E+02 3.1E-04 10 0.223 6982 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 1.49% 0.0032 3 4.6E+02 3.1E-04 10 0.224 6980 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 1.99% 0.0033 3 4.6E+02 3.1E-04 10 0.224 6980 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 1.99% 0.0033 4.6E+02 3.1E-04 10 0.224 6860 0.07% 2.0	3	4.6E+02	3.0E-04	10	0.222	7022	0.07%	2.00	0.65	0.03%	0.012	0.34	0.079	0.765	1.82%	0.0030
3 4.65+02 3.1E-04 10 0.223 6943 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 7.65 1.44% 0.0022 4.65+02 3.1E-04 10 0.224 6930 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 1.49% 0.0032 3 4.6E+02 3.1E-04 10 0.224 6930 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 1.99% 0.0033 4 64:02 3.1E-04 10 0.224 6980 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 2.02% 0.0033 4.6E+02 3.1E-04 10 0.225 6960 0.06% 2.00 0.65 0.03% 0.014 0.34 0.079 0.765 2.05% 0.0034 4.6E+02 3.2E-04 10 0.225 6829 0.08% 2.00 <td< td=""><td>3</td><td>4.6E+02</td><td>3.0E-04</td><td>10</td><td>0.222</td><td>6982</td><td>0.07%</td><td>2.00</td><td>0.65</td><td>0.03%</td><td>0.012</td><td>0.34</td><td>0.079</td><td>0.765</td><td>1.88%</td><td>0.0031</td></td<>	3	4.6E+02	3.0E-04	10	0.222	6982	0.07%	2.00	0.65	0.03%	0.012	0.34	0.079	0.765	1.88%	0.0031
3 4.6E+02 3.1E-04 10 0.224 6923 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 1.99% 0.0032 3 4.6E+02 3.1E-04 10 0.224 6960 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 1.99% 0.0033 4.6E+02 3.1E-04 10 0.224 6960 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 2.02% 0.0033 3 4.6E+02 3.1E-04 10 0.226 6866 0.08% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 2.05% 0.0034 4.6E+02 3.1E-04 10 0.225 6866 0.08% 2.00 0.65 0.03% 0.014 0.34 0.079 0.765 2.08% 0.004 4.6E+02 3.2E-04 10 0.226 6829 0.08% 2.00 <	3	4.6E+02	3.1E-04		0.223	6943	0.07%	2.00	0.65	0.03%	0.013	0.34	0.079	0.765	1.94%	0.0032
3 4.6E+02 3.1E-04 10 0.224 6885 0.07% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 2.02% 0.0033 3 4.6E+02 3.1E-04 10 0.225 6866 0.08% 2.00 0.65 0.03% 0.013 0.34 0.079 0.765 2.05% 0.0033 4.6E+02 3.2E-04 10 0.225 6848 0.06% 2.00 0.65 0.03% 0.014 0.34 0.079 0.765 2.08% 0.003 4.6E+02 3.2E-04 10 0.226 6889 0.08% 2.00 0.65 0.03% 0.014 0.34 0.079 0.765 2.13% 0.0035 3 4.6E+02 3.2E-04 10 0.226 6811 0.08% 2.00 0.65 0.03% 0.014 0.34 0.079 0.765 2.13% 0.0035 4.6E+02 3.2E-04 10 0.226 6781 0.08% 2.00 <		4.6E+02	3.1E-04													
3 4.6E+02 3.2E-04 10 0.225 6848 0.08% 2.00 0.85 0.03% 0.014 0.34 0.079 0.765 2.08% 0.0034 3 4.6E+02 3.2E-04 10 0.225 6829 0.08% 2.00 0.65 0.03% 0.014 0.34 0.079 0.765 2.13% 0.0038 3 4.6E+02 3.2E-04 10 0.226 6811 0.08% 2.00 0.65 0.03% 0.014 0.34 0.079 0.765 2.13% 0.0038 4.6E+02 3.2E+04 10 0.226 6811 0.08% 2.00 0.65 0.03% 0.014 0.34 0.079 0.765 2.13% 0.0035 4.6E+02 3.2E+04 10 0.226 6781 0.08% 2.00 0.65 0.03% 0.014 0.34 0.079 0.765 2.13% 0.0035 4.6E+02 3.2E+04 10 0.226 6783 0.08% 2.00	3	4.6E+02	3.1E-04	10	0.224	6885	0.07%	2.00	0.65	0.03%	0.013	0.34	0.079	0.765	2.02%	0.0033
3 4.6E+02 3.2E-04 10 0.226 6811 0.08% 2.00 0.65 0.03% 0.014 0.34 0.079 0.765 2.13% 0.0035 3 4.6E+02 3.2E-04 10 0.226 6793 0.08% 2.00 0.65 0.03% 0.014 0.34 0.079 0.765 2.16% 0.0035	3	4.6E+02	3.2E-04	10	0.225	6848	0.08%	2.00	0.65	0.03%	0.014	0.34	0.079	0.765	2.08%	0.0034
	3	4.6E+02	3.2E-04	10	0.226	6811	0.08%	2.00	0.65	0.03%	0.014	0.34	0.079	0.765	2.13%	0.0035

	WHITE MESA TAILINGS REPOSITORY LIQUEFACTIO	DN AND SEISMIC SETTLEMENT ANALYSES - 2E1		Elev. at Elev. At Elev	v. At Total Total	Equil Pore Equil Pore Effecti		Max Shear P = Plastici	Thresh	hol Volumetri	Volumetric Incrementa
Data File: 13-52106_SP2E1-BSC-CPT	Idriss and Boulanger (2008)	5613.10 Water surface elevation during CPT investigation (It a 5619.95 Ground Surface Elevation at time	of CPT (ft amsl)	Top of Midpoint Bot Layer of Layer of		Pressure Pressure at Stress at Bottom Midpoint of Bottom		Strain Yeff*(Geff ty Modulus, /Gmax) Index,	Shear d Shea Strain, Strain,	ar c Strain at y _v 15 Cycles,	Strain for I Design Consolidati
Location: White Mesa 2013 CPT Investigation		5611.67 Water surface elevation at t ₀ (ft amsl) 5630.46 Ground Surface Elevation Immed	liately after Placement of Final Cover (ft amsl)	FINAL COVER (ft) La	ayer Layer (ft) t (tcf) (pcf) Layer of Layer	of Layer Layer (tsf) of Lay	er of Layer at $t_1, z_1 = V_s$, ρ (tcf)	G _{max} (tsf) (tsf) PI g ₁ g ₂	γ(%) a b (%)	ε _{c-15} (%) R c C _N	Event, z _v (%) on (ft)
	Dal Earthquake Moment Magnitude, M: 5.5 Magnitude Scaling Eactor MSE: 1.69	5595.46 Water surface elevation at t ₁ (ft amsl) 0.50 Thickness of Erosion Protection L 5590.46 Water surface elevation at t ₂ (ft amsl) 3.50 Thickness of Water Storage/Root	ayer (rock mulch/topsoils) Immediately after place	Erosion Protection Layer ###### 5630.21 562 r Storage/Rooting Zone Layer ###### 5628 21 562		0.00 0.00 0.0 0.00 0.2		4.4E+02 3.0E-06 11 0.068 469 4.3E+02 2.8E-05 11 0.118 189	96 0.00% 1.20 0.80 0.0 30 0.00% 2.00 0.65 0.0		0.00% 0.0000
Tailings Sand-Slimes	Youd, et al (2001)	4.00 Thickness of High Compaction La		High Compaction Laver ####### 5624 46 562	22 46 4 00 0 060 120 0 454 0 334	0.00 0.00 0.4	54 0.334 1.83 508 1.9E-03	4.8E+02 6.8E-05 11 0.153 124	19 0.01% 0.65 0.75 0.0	2% 0.000 0.34 0.079 0.765	0.00% 0.0000
Tailings Slimes	Max. Horiz. Acceleration, Amax/g: 0.15		ill on on top of existing interim cover (ft)	Platform/Random Fill Layer ###### 5621.21 561	9.95 2.51 0.050 101 0.580 0.517	0.00 0.00 0.5	80 0.517 2.82 508 1.6E-03	4.0E+02 1.2E-04 11 0.171 103	62 0.02% 2.00 0.65 0.0	3% 0.000 0.34 0.079 0.765	0.00% 0.0000
Interim Cover Cells Requiring User Input/Manipulation	Earthquake Moment Magnitude, M: 5.5 Magnitude Scaling Factor, MSF: 2.21	O.47 Volumetric Strain Ratio for Site-Specific Design Earth 1160.95 Additional Stress due to Final Cov 7.51 Equiv. Number of Uniform Strain Cycles, N 5590.46 Elevation of bottom of tailings (lim						Ortamia			
2013 CPT Data from ConeTec	Magnitude Scaling Factor, MSF: 2.21 2.21	CPT Data Interpretations Conditions at t ₁	er) (rt amsi)	Liquefaction Triggering Analy	yses			Seismic	Settlement Analysis - Stewart et al (2	TOTAL SEISMIC SETTL	EMENT (FT): 0.468
Depth	Material Stress Pore Stress at	Saturated Cone d Friction Index, Pore Effective	Idriss & Boulanger (2008)		Youd et al. (2001)		Wave Soil	Shear P = ty	Shear d Shea	ar c Strain at	Strain for I
at time Pw Pv of CPT Elevation qt fs qc (u2) (u2	y 2) fs/qt Type (as determined Weight Weight of CPT at time of CPT	at time of Penetration Ratio, F, Ic Total Stress Pressure Stress at Saturated CPT CN qc1 qc1 Resistance, (%) FC at t ₁ at t ₁ t ₁ at t ₁	Cyclic Stress Ratio Cyclic Resistance R r _d C _o K _o K _a CSR (C		Ka CSB (CBB)	Avr.	Depth Velocity, Density at t ₁ , z ₁ V _s , ρ	Strain Yerr*(Gerr Index, Modulus, /G _{max}) PI g ₁ g ₂	Strain, Strain, γ a b (%)	γ _{tr} 15 Cycles, ε _{c-15} (%) R c C _N	Design Consolidati Event, ε _v (%) on (ft)
(ft) (ft amsl) TSF TSF TSF (ft) PS	SI (%) (tcf) (pcf) (tsf) (tsf)	1=Yes TSF MPa Q_i % (tsf) (tsf) (tsf) 1=Yes	rd C _e N _e N _a CSR (C _{M=7.5} Δqc _{1n} qc _{1ncs} M	RR) 1d Dr 1 No 1	Ka CSR (CRR) M=7.5. Kc qC _{1n-cs} M=7.5.	Avg Liquefiable? FoS 1=Yes	m	G _{max}	7 a D (//)	C_15 (70) R C 0N	
		0=No 0=No		=1atm FoS	sv=tatm SV=tatm FOS	2=No	(ft/sec) (tcf)	tsf tsf	(%)		1 1
	17 1.81% Sand-Slime Tailin 0.059 119.0 0.96 0.33 0.64 42 1.18% Sand-Slime Tailin 0.059 119.0 0.97 0.33 0.64		.90 0.05 0.97 1.0 0.050 36.75 55.13 0. .90 0.05 0.97 1.0 0.050 35.47 50.21 0.		I.0 0.039 3.85 70.78 0.113 3.71 I.0 0.039 3.82 56.34 0.097 3.16	2.68 2 2.35 2	8.50 500 1.8E-03 8.55 500 1.8E-03		57 0.08% 2.00 0.65 0.0 40 0.08% 2.00 0.65 0.0	3% 0.015 0.34 0.079 0.765 3% 0.015 0.34 0.079 0.765	
	.02 1.21% Sand-Slime Tailin 0.059 119.0 0.97 0.33 0.04		.89 0.05 0.97 1.0 0.050 35.47 50.21 0.		1.0 0.039 3.62 57.91 0.097 3.18	2.35 2	8.60 500 1.8E-03				
	.08 0.98% Sand-Slime Tailin 0.059 119.0 0.99 0.34 0.65		.89 0.05 0.97 1.0 0.050 35.70 51.08 0.		1.0 0.039 3.44 52.94 0.094 3.02	2.29 2	8.65 500 1.8E-03		05 0.08% 2.00 0.65 0.0		2.31% 0.0038
	.85 1.38% Sand-Slime Tailin 0.059 119.0 1.00 0.35 0.65 59 1.59% Sand-Slime Tailin 0.059 119.0 1.01 0.35 0.66		.89 0.05 0.97 1.0 0.050 38.16 60.57 0. .89 0.05 0.97 1.0 0.050 36.04 52.41 0.		1.0 0.039 2.95 66.15 0.107 3.42 1.0 0.039 4.00 65.53 0.106 3.37	2.60 2 2.49 2	8.70 500 1.8E-03 8.75 500 1.8E-03				
	51 1.50% Sand-Slime Tailin 0.059 119.0 1.01 0.35 0.66		.89 0.05 0.97 1.0 0.050 35.06 48.62 0.		1.0 0.039 4.53 61.47 0.102 3.21	2.37 2	8.80 500 1.8E-03	4.6E+02 3.4E-04 10 0.229 66	54 0.09% 2.00 0.65 0.0	3% 0.016 0.34 0.079 0.765	
	43 0.86% Sand-Slime Tailin 0.059 119.0 1.03 0.36 0.67		.89 0.05 0.97 1.0 0.050 38.34 61.28 0.		1.0 0.039 2.40 55.11 0.096 3.00	2.40 2	8.85 500 1.8E-03		37 0.09% 2.00 0.65 0.0		
	97 0.99% Sand-Slime Tailin 0.059 119.0 1.04 0.37 0.67 62 0.96% Sand-Slime Tailin 0.059 119.0 1.05 0.37 0.68		.89 0.06 0.96 1.0 0.049 39.08 64.10 0. .89 0.05 0.97 1.0 0.049 37.62 58.49 0.		I.0 0.039 2.38 59.44 0.100 3.10 I.0 0.039 2.70 56.46 0.097 3.00	2.49 2 2.37 2	8.90 500 1.8E-03 8.95 500 1.8E-03		20 0.09% 2.00 0.65 0.0 04 0.09% 2.00 0.65 0.0		
	82 1.04% Sand-Slime Tailin 0.059 119.0 1.06 0.38 0.68		.88 0.06 0.96 1.0 0.049 39.16 64.43 0	093 1.89 0.93 0.29 0.80 1.05 1	1.0 0.039 2.41 60.84 0.101 3.11	2.50 2	8.95 500 1.8E-03 9.00 500 1.8E-03	4.6E+02 3.5E-04 10 0.230 65	88 0.09% 2.00 0.65 0.0	3% 0.016 0.34 0.079 0.765	
19.193 5600.76 15.7 0.226 15.6 17.1 7.4	41 1.44% Sand-Slime Tailin 0.059 119.0 1.07 0.39 0.69		.88 0.05 0.97 1.0 0.049 37.94 59.70 0.	088 1.78 0.93 0.27 0.80 1.05 1	1.0 0.039 3.11 67.59 0.109 3.32	2.55 2	9.05 500 1.8E-03		72 0.09% 2.00 0.65 0.0		
	.48 1.79% Sand-Slime Tailin 0.059 119.0 1.08 0.39 0.69 .89 1.47% Sand-Slime Tailin 0.059 119.0 1.09 0.40 0.70		.88 0.05 0.97 1.0 0.049 36.28 53.34 0. .88 0.05 0.96 1.0 0.049 37.61 58.46 0.		1.0 0.039 4.12 70.25 0.112 3.41 1.0 0.039 3.25 67.72 0.109 3.29	2.52 2	9.10 500 1.8E-03 9.15 500 1.8E-03		56 0.09% 2.00 0.65 0.0 40 0.10% 2.00 0.65 0.0		
19.685 5600.27 12.3 0.248 12.1 35.7 15.	47 2.01% Sand-Slime Tailin 0.059 119.0 1.10 0.40 0.70	1 1.18 14.233 197.84 16.84 16 2.21% 2.8 47% 1.68 0.00 1.68 0 0.	.88 0.05 0.97 1.0 0.049 36.21 53.04 0	080 1.64 0.93 0.24 0.80 1.04 1	I.0 0.039 4.39 73.96 0.118 3.53	2.59 2	9.20 538 1.8E-03	5.3E+02 3.1E-04 10 0.232 65	24 0.07% 2.00 0.65 0.0	3% 0.012 0.34 0.079 0.765	1.81% 0.0030
	11 0.08% Sand-Slime Tailin 0.059 119.0 1.11 0.41 0.70		.88 0.05 0.97 1.0 0.049 36.17 52.91 0.		1.0 0.039 1.87 31.30 0.076 2.27	1.96 2	9.25 538 1.8E-03			3% 0.012 0.34 0.079 0.765	
	.89 0.63% Sand-Slime Tailin 0.059 119.0 1.12 0.41 0.71 72 1.37% Sand-Slime Tailin 0.059 119.0 1.13 0.42 0.71		.88 0.05 0.96 1.0 0.049 38.21 60.75 0. .87 0.05 0.97 1.0 0.049 35.50 50.32 0.		I.0 0.039 2.20 49.63 0.091 2.72 I.0 0.039 4.13 61.27 0.101 3.00	2.27 2 2.30 2	9.30 538 1.8E-03 9.35 538 1.8E-03		93 0.07% 2.00 0.65 0.0 77 0.07% 2.00 0.65 0.0		
20.341 5599.61 16.5 0.104 16.4 12.3 5.3	34 0.63% Sand-Slime Tailin 0.059 119.0 1.14 0.42 0.72	1 1.15 18.850 262.02 22.00 21 0.68% 2.4 47% 1.72 0.00 1.72 0 0.	.87 0.05 0.96 1.0 0.049 38.02 60.01 0	088 1.81 0.92 0.27 0.80 1.04 1	I.0 0.039 2.25 49.58 0.091 2.69	2.25 2	9.40 538 1.8E-03	5.3E+02 3.1E-04 10 0.233 64	62 0.07% 2.00 0.65 0.0	3% 0.012 0.34 0.079 0.765	1.91% 0.0031
	29 0.93% Sand-Slime Tailin 0.059 119.0 1.15 0.43 0.72		.87 0.06 0.96 1.0 0.048 42.39 76.86 0.		1.0 0.039 1.88 64.63 0.105 3.08	2.66 2	9.45 538 1.8E-03		47 0.07% 2.00 0.65 0.0		
	89 1.77% Sand-Slime Tailin 0.059 119.0 1.16 0.43 0.73 52 2.29% Sand-Slime Tailin 0.059 119.0 1.17 0.44 0.73		.87 0.05 0.96 1.0 0.048 38.65 62.46 0. .87 0.05 0.96 1.0 0.048 37.62 58.48 0.		I.0 0.039 3.22 76.70 0.122 3.55 I.0 0.039 4.01 83.73 0.135 3.90	2.71 2 2.84 2	9.50 538 1.8E-03 9.55 538 1.8E-03				
20.997 5598.95 13.5 0.268 13.3 25.6 11.	.09 1.99% Sand-Slime Tailin 0.059 119.0 1.18 0.44 0.74	1 1.13 15.024 208.84 17.66 17 2.18% 2.7 47% 1.76 0.00 1.76 0 0.	.87 0.05 0.96 1.0 0.048 36.50 54.15 0	082 1.69 0.92 0.24 0.80 1.03 1	1.0 0.039 4.26 75.26 0.120 3.45	2.57 2	9.60 538 1.8E-03	5.3E+02 3.2E-04 10 0.235 64	02 0.07% 2.00 0.65 0.0	3% 0.013 0.34 0.079 0.765	2.00% 0.0033
	34 1.83% Sand-Slime Tailin 0.059 119.0 1.19 0.45 0.74		.87 0.05 0.96 1.0 0.048 36.49 54.12 0.		I.O 0.039 4.11 72.54 0.115 3.32	2.50 2	9.65 538 1.8E-03		88 0.07% 2.00 0.65 0.0		
	27 1.20% Sand-Slime Tailin 0.059 119.0 1.20 0.45 0.75 .05 0.79% Sand-Slime Tailin 0.059 119.0 1.21 0.46 0.75		.87 0.05 0.96 1.0 0.048 36.77 55.23 0. .86 0.06 0.96 1.0 0.048 39.97 67.53 0.		1.0 0.039 3.32 61.36 0.101 2.90 1.0 0.039 2.07 57.16 0.097 2.77	2.31 2 2.39 2	9.70 538 1.8E-03 9.75 538 1.8E-03		73 0.08% 2.00 0.65 0.0 59 0.08% 2.00 0.65 0.0		
21.653 5598.30 19.5 0.201 19.4 19.6 8.4	49 1.03% Sand-Slime Tailin 0.059 119.0 1.22 0.46 0.76	1 1.10 21.372 297.07 24.98 24 1.10% 2.4 47% 1.80 0.00 1.80 0 0.	.86 0.06 0.96 1.0 0.048 39.06 64.04 0	092 1.93 0.91 0.29 0.80 1.03 1	1.0 0.039 2.48 61.83 0.102 2.89	2.41 2	9.80 538 1.8E-03	5.3E+02 3.3E-04 10 0.236 63	44 0.08% 2.00 0.65 0.0	3% 0.014 0.34 0.079 0.765	2.09% 0.0034
	45 1.29% Sand-Slime Tailin 0.059 119.0 1.23 0.47 0.76		.86 0.05 0.96 1.0 0.048 37.13 56.61 0. 86 0.05 0.96 1.0 0.048 36.31 53.44 0.		l.0 0.039 3.29 64.11 0.105 2.95	2.35 2	9.85 538 1.8E-03		30 0.08% 2.00 0.65 0.0		
	79 1.40% Sand-Slime Tailin 0.059 119.0 1.24 0.47 0.77 .05 1.37% Sand-Slime Tailin 0.059 119.0 1.25 0.48 0.77		.86 0.05 0.96 1.0 0.048 36.31 53.44 0. .86 0.05 0.96 1.0 0.048 35.70 51.08 0.		I.0 0.039 3.77 64.60 0.105 2.95 I.0 0.039 4.08 62.70 0.103 2.87	2.32 2 2.26 2	9.90 538 1.8E-03 9.95 538 1.8E-03		16 0.08% 2.00 0.65 0.0 02 0.08% 2.00 0.65 0.0		
22.309 5597.64 9.5 0.208 9.3 33.0 14.	.31 2.19% Slime Tailings 0.057 113.1 1.26 0.48 0.77	1 1.09 10.097 140.34 11.99 11 2.52% 2.9 71% 1.84 0.00 1.84 0 0.	.86 0.05 0.96 1.0 0.048 34.26 46.25 0	074 1.55 0.91 0.20 0.80 1.02 1	I.O 0.039 6.02 72.19 0.115 3.20	2.37 2	10.00 538 1.8E-03	5.1E+02 3.5E-04 16 0.488 5	86 0.10% 2.00 0.65 0.0	3% 0.017 0.34 0.079 0.765	2.61% 0.0043
	93 2.09% Slime Tailings 0.057 113.1 1.27 0.49 0.78 90 1.37% Sand-Slime Tailin 0.059 119.0 1.28 0.49 0.78		.86 0.05 0.96 1.0 0.048 34.56 47.41 0. .85 0.05 0.96 1.0 0.048 35.67 50.97 0.		I.0 0.039 5.61 72.09 0.115 3.18 I.0 0.039 4.11 62.96 0.103 2.85	2.38 2	10.05 538 1.8E-03 10.10 538 1.8E-03		76 0.10% 2.00 0.65 0.0		
	.90 1.37% Sand-Slime Tailin 0.059 119.0 1.28 0.49 0.78 .28 0.79% Sand-Slime Tailin 0.059 119.0 1.29 0.50 0.79		.85 0.05 0.96 1.0 0.048 35.67 50.97 0. .85 0.05 0.96 1.0 0.047 37.16 56.72 0.		1.0 0.039 4.11 62.96 0.103 2.85 1.0 0.039 2.72 53.26 0.094 2.58	2.25 2 2.18 2	10.10 538 1.8E-03 10.15 538 1.8E-03		62 0.08% 2.00 0.65 0.0 48 0.08% 2.00 0.65 0.0		
22.966 5596.98 18.3 0.115 18.2 21.4 9.2	29 0.63% Sand-Slime Tailin 0.059 119.0 1.29 0.50 0.79	1 1.07 19.355 269.03 22.65 21 0.68% 2.4 47% 1.88 0.00 1.88 0 0.	.85 0.05 0.96 1.0 0.047 38.24 60.89 0	089 1.88 0.90 0.27 0.80 1.02 1	1.0 0.039 2.24 50.80 0.092 2.52	2.20 2	10.20 538 1.8E-03	5.3E+02 3.4E-04 10 0.238 62	35 0.08% 2.00 0.65 0.0	3% 0.015 0.34 0.079 0.765	2.27% 0.0037
	Sand-Slime Tailin 0.059 119.0 1.30 0.51 0.80 .10 0.70% Sand-Slime Tailin 0.059 119.0 1.31 0.51 0.80		.85 0.05 0.96 1.0 0.047 37.91 59.61 0. .85 0.05 0.96 1.0 0.047 37.49 58.00 0.		I.0 0.039 2.40 52.09 0.093 2.54 I.0 0.039 2.52 51.71 0.093 2.52	2.20 2 2.17 2	10.25 538 1.8E-03 10.30 538 1.8E-03		21 0.08% 2.00 0.65 0.0 08 0.08% 2.00 0.65 0.0		
	10 0.60% Sand-Slime Tailin 0.059 119.0 1.31 0.51 0.80		.85 0.05 0.96 1.0 0.047 37.49 58.00 0. .85 0.05 0.96 1.0 0.047 38.28 61.03 0.		1.0 0.039 2.52 51.71 0.095 2.52 1.0 0.039 2.21 50.28 0.092 2.48	2.17 2	10.30 538 1.8E-03		95 0.09% 2.00 0.65 0.0		
23.622 5596.33 24.6 0.061 24.5 18.8 8.1	15 0.25% Sand-Slime Tailin 0.059 119.0 1.33 0.52 0.81		.85 0.06 0.95 1.0 0.047 40.76 70.59 0.		I.0 0.039 1.48 44.02 0.087 2.33	2.24 2	10.40 538 1.8E-03			3% 0.015 0.34 0.079 0.765	
	89 0.37% Sand-Slime Tailin 0.059 119.0 1.34 0.53 0.82 22 0.89% Sand-Slime Tailin 0.059 119.0 1.35 0.53 0.82		.85 0.06 0.95 1.0 0.046 42.06 75.60 0. .84 0.06 0.95 1.0 0.047 40.20 68.43 0.		I.0 0.039 1.49 50.05 0.092 2.45 I.0 0.039 2.17 61.33 0.101 2.70	2.38 2 2.40 2	10.45 538 1.8E-03 10.50 538 1.8E-03		69 0.09% 2.00 0.65 0.0 56 0.09% 2.00 0.65 0.0		
	22 0.89% Sand-Sime Tailin 0.059 119.0 1.35 0.53 0.82 03 1.60% Sand-Slime Tailin 0.059 119.0 1.36 0.54 0.82		.84 0.05 0.95 1.0 0.047 40.20 68.43 0. .84 0.05 0.96 1.0 0.047 37.93 59.68 0.		1.0 0.039 2.17 81.33 0.101 2.70 1.0 0.039 3.37 73.35 0.117 3.10	2.49 2	10.50 538 1.8E-03				
	80 1.31% Sand-Slime Tailin 0.059 119.0 1.37 0.54 0.83	1 1.03 18.616 258.76 21.74 20 1.42% 2.6 47% 1.95 0.00 1.95 0 0.	.84 0.05 0.96 1.0 0.046 37.93 59.66 0.		1.0 0.039 3.10 67.33 0.108 2.87	2.37 2	10.60 538 1.8E-03		30 0.09% 2.00 0.65 0.0	3% 0.016 0.34 0.079 0.765	
	27 0.80% Sand-Slime Tailin 0.059 119.0 1.38 0.55 0.83 60 1.00% Sand-Slime Tailin 0.059 119.0 1.39 0.55 0.84		.84 0.06 0.95 1.0 0.046 40.49 69.54 0. .84 0.07 0.95 1.0 0.046 44.55 85.19 0.		I.0 0.039 2.05 59.56 0.100 2.62 I.0 0.039 1.79 72.69 0.116 3.03	2.38 2 2.82 2	10.65 538 1.8E-03 10.70 538 1.8E-03			3% 0.016 0.34 0.079 0.765 3% 0.016 0.34 0.079 0.765	
24.770 5595.18 20.5 0.393 20.4 14.3 6.1	19 1.91% Sand-Slime Tailin 0.059 119.0 1.40 0.56 0.84	1 1.02 20.768 288.68 24.23 23 2.05% 2.6 47% 1.98 0.01 1.97 1 0.	.84 0.06 0.95 1.0 0.046 38.80 63.02 0	091 1.97 0.89 0.28 0.80 1.00 1	I.O 0.039 3.40 82.30 0.132 3.43	2.70 2	10.75 594 1.8E-03	6.5E+02 3.0E-04 10 0.241 6	04 0.06% 2.00 0.65 0.0	3% 0.010 0.34 0.079 0.765	1.54% 0.0025
	19 1.89% Sand-Slime Tailin 0.059 119.0 1.41 0.56 0.85		.84 0.05 0.96 1.0 0.047 37.17 56.75 0.		1.0 0.039 3.96 77.45 0.123 3.18	2.50 2	10.80 594 1.8E-03	6.5E+02 3.0E-04 10 0.242 60	98 0.06% 2.00 0.65 0.0	3% 0.010 0.34 0.079 0.765	
	40 1.83% Sand-Slime Tailin 0.059 119.0 1.42 0.57 0.85 .07 0.89% Sand-Slime Tailin 0.059 119.0 1.43 0.57 0.86		.83 0.05 0.96 1.0 0.047 36.28 53.31 0. .83 0.06 0.95 1.0 0.046 40.09 68.01 0.		I.0 0.039 4.34 73.97 0.118 3.02 I.0 0.039 2.21 61.74 0.102 2.60	2.38 2 2.35 2	10.85 594 1.8E-03 10.90 594 1.8E-03		92 0.06% 2.00 0.65 0.0 86 0.06% 2.00 0.65 0.0		
25.426 5594.52 24.6 0.322 24.5 24.1 10.	42 1.31% Sand-Slime Tailin 0.059 119.0 1.44 0.58 0.86	1 1.00 24.455 339.93 28.58 27 1.39% 2.5 47% 2.02 0.03 1.99 1 0.	.83 0.06 0.95 1.0 0.046 40.32 68.90 0	098 2.12 0.88 0.31 0.80 1.00 1	I.0 0.039 2.54 72.71 0.116 2.93	2.52 2	10.95 594 1.8E-03	6.5E+02 3.0E-04 10 0.242 60	80 0.06% 2.00 0.65 0.0	3% 0.011 0.34 0.079 0.765	1.62% 0.0027
	.07 2.01% Sand-Slime Tailin 0.059 119.0 1.45 0.58 0.87 .00 2.33% Sand-Slime Tailin 0.059 119.0 1.46 0.59 0.87		.83 0.05 0.95 1.0 0.047 37.96 59.79 0. .83 0.05 0.96 1.0 0.047 37.40 57.65 0.		I.0 0.040 3.77 82.36 0.132 3.32 I.0 0.040 4.27 86.54 0.140 3.51	2.60 2 2.67 2	11.00 594 1.8E-03 11.05 594 1.8E-03		74 0.06% 2.00 0.65 0.0 68 0.06% 2.00 0.65 0.0	3% 0.011 0.34 0.079 0.765	
	.00 2.33% Sand-Slime Tailing 0.059 119.0 1.46 0.59 0.87 .55 2.56% Slime Tailings 0.057 113.1 1.47 0.59 0.88		.83 0.05 0.96 1.0 0.047 37.40 57.65 0. .83 0.05 0.96 1.0 0.047 36.13 53.49 0.		1.0 0.040 4.27 86.54 0.140 3.51 1.0 0.040 5.00 86.83 0.141 3.50	2.67 2 2 2	11.05 594 1.8E-03 11.10 594 1.8E-03				
	40 2.65% Slime Tailings 0.057 113.1 1.48 0.60 0.88	1 0.98 12.217 169.82 14.56 13 3.00% 2.9 71% 2.06 0.05 2.01 1 0.	.83 0.05 0.96 1.0 0.047 35.16 49.72 0	077 1.65 0.88 0.22 0.80 1.00 1	I.0 0.040 5.79 84.24 0.136 3.35	2.50 2	11.15 594 1.8E-03	6.2E+02 3.2E-04 16 0.493 4	98 0.08% 2.00 0.65 0.0	3% 0.014 0.34 0.079 0.765	2.06% 0.0034
	.24 1.70% Sand-Slime Tailin 0.059 119.0 1.49 0.61 0.88 .23 2.10% Sand-Slime Tailin 0.059 119.0 1.50 0.61 0.89		.82 0.05 0.96 1.0 0.047 37.25 57.06 0. .82 0.05 0.96 1.0 0.047 36.58 54.47 0.		I.0 0.040 3.77 74.76 0.119 2.92 I.0 0.040 4.48 80.16 0.128 3.13	2.37 2 2.44 2	11.20 594 1.8E-03 11.25 594 1.8E-03		52 0.06% 2.00 0.65 0.0 46 0.06% 2.00 0.65 0.0	3% 0.011 0.34 0.079 0.765 3% 0.011 0.34 0.079 0.765	
	23 2.10% Sand-Slime Tailing 0.059 119.0 1.50 0.61 0.89 40 2.55% Slime Tailings 0.057 113.1 1.51 0.62 0.89		.82 0.05 0.96 1.0 0.047 36.58 54.47 0. .82 0.05 0.96 1.0 0.047 36.31 54.18 0.		I.0 0.040 4.48 80.16 0.128 3.13 I.0 0.040 4.91 87.67 0.143 3.47	2.44 2 2.60 2	11.25 594 1.8E-03 11.30 594 1.8E-03				
	.89 2.56% Slime Tailings 0.057 113.1 1.52 0.62 0.90	1 0.97 15.487 215.27 18.26 16 2.83% 2.8 71% 2.10 0.07 2.03 1 0.	.82 0.05 0.96 1.0 0.047 36.45 54.71 0.	082 1.75 0.87 0.25 0.80 0.99 1	I.O 0.040 4.84 88.43 0.144 3.49	2.62 2	11.35 594 1.8E-03	6.2E+02 3.3E-04 16 0.494 49	80 0.08% 2.00 0.65 0.0	3% 0.014 0.34 0.079 0.765	2.15% 0.0035
	.69 1.78% Sand-Slime Tailin 0.059 119.0 1.53 0.63 0.90 .43 1.87% Sand-Slime Tailin 0.059 119.0 1.54 0.63 0.91		.82 0.05 0.95 1.0 0.047 38.08 60.28 0. .82 0.06 0.95 1.0 0.047 40.40 69.20 0.		I.0 0.040 3.55 78.85 0.126 3.02 I.0 0.040 3.01 86.67 0.141 3.36	2.45 2 2.73 2	11.40 594 1.8E-03 11.45 594 1.8E-03		30 0.07% 2.00 0.65 0.0 25 0.07% 2.00 0.65 0.0	3% 0.012 0.34 0.079 0.765 3% 0.012 0.34 0.079 0.765	
	.43 1.87% Sand-Slime Tailin 0.059 119.0 1.54 0.63 0.91 .45 1.93% Sand-Slime Tailin 0.059 119.0 1.55 0.64 0.91		.82 0.06 0.95 1.0 0.047 40.40 69.20 0. .82 0.06 0.95 1.0 0.047 39.51 65.78 0.		1.0 0.040 3.01 86.67 0.141 3.36 1.0 0.040 3.27 85.87 0.139 3.30	2.73 2 2.66 2	11.45 594 1.8E-03 11.50 594 1.8E-03		25 0.07% 2.00 0.65 0.0 19 0.07% 2.00 0.65 0.0		
27.395 5592.56 22.8 0.504 22.4 57.1 24.	73 2.21% Sand-Slime Tailin 0.059 119.0 1.56 0.64 0.92	1 0.95 21.416 297.69 25.27 23 2.37% 2.6 47% 2.14 0.09 2.05 1 0.	.82 0.06 0.95 1.0 0.047 39.16 64.43 0	093 1.98 0.87 0.29 0.80 0.99 1	I.0 0.040 3.59 90.66 0.149 3.52	2.75 2	11.55 594 1.8E-03	6.5E+02 3.2E-04 10 0.244 60	13 0.07% 2.00 0.65 0.0	3% 0.012 0.34 0.079 0.765	1.85% 0.0030
	80 2.13% Sand-Slime Tailin 0.059 119.0 1.57 0.65 0.92 .36 1.66% sand-Slime Tailin 0.059 119.0 1.58 0.65 0.92		.81 0.05 0.95 1.0 0.047 37.20 56.86 0. .81 0.06 0.95 1.0 0.047 39.29 64.91 0.		I.0 0.040 4.23 83.15 0.133 3.13 I.0 0.040 3.11 79.73 0.127 2.97	2.46 2 2.48 2	11.60 594 1.8E-03 11.65 594 1.8E-03		08 0.07% 2.00 0.65 0.0 02 0.07% 2.00 0.65 0.0		
27.887 5592.06 19.0 0.387 18.8 36.8 15.	.95 2.03% Sand-Slime Tailin 0.059 119.0 1.59 0.66 0.93	1 0.94 17.700 246.03 20.81 19 2.22% 2.7 47% 2.17 0.11 2.06 1 0.	.81 0.05 0.95 1.0 0.047 37.60 58.41 0	086 1.83 0.86 0.26 0.80 0.98 1	1.0 0.041 3.98 82.85 0.133 3.08	2.48 2 2.46 2	11.70 594 1.8E-03	6.5E+02 3.2E-04 10 0.244 59	96 0.07% 2.00 0.65 0.0	3% 0.012 0.34 0.079 0.765 3% 0.012 0.34 0.079 0.765	
28.051 5591.90 23.9 0.387 23.5 75.0 32.	50 1.62% Sand-Slime Tailin 0.059 119.0 1.60 0.66 0.93	1 0.94 22.063 306.68 26.14 24 1.73% 2.6 47% 2.18 0.11 2.06 1 0.	.81 0.06 0.95 1.0 0.047 39.47 65.61 0.	094 2.01 0.86 0.30 0.80 0.98 1	I.0 0.041 3.04 79.33 0.126 2.92	2.46 2	11.75 594 1.8E-03	6.5E+02 3.3E-04 10 0.244 55	91 0.07% 2.00 0.65 0.0	3% 0.013 0.34 0.079 0.765	
29.490 5590.46	Sand-Slime Tailin 0.059 119.0	2.26 0.13 2.13 1					12.19 594 1.8E-03	6.5E+02 3.4E-04 10 0.246 59	16 0.08% 2.00 0.65 0.0	3% 0.014 0.34 0.079 0.765	2.09% 0.0301

WHITE MESA TAILINGS REPOSITORY LIQUEFACTIO	N AND SEISMIC SETTLEMENT ANALYSES - 3-15 6608.00 Water surface elevation during CPT investigation (ft 6612.56 Ground Surface Elevation		tottom Thicknes Unit Unit Stress at Stress at Pressure Pressure at Stress at	Stress at nt Wave Soil Strain Yeff*(Geff	lastici Threshhol Volumetri Volumetri Incrementa ty Shear di Shear I c Strain at Strain for I ndex. Strain, Strain, Vi Skreis. Desion Consolidati
Data Frite. Disaction of coloration/ records Location White Mess 2015 CPT Investigation .\.\.\.6.2.3. Field Data/2013 Field Investigation/Contete Data Earthquake Moment Magnitude, M: 5.5. Tailings Sand-Simes Youd, et al (2001) 1.69	5604.28 Water surface elevation at t ₀ (ft amsl) 5620.47 Ground Surface Elevation	Immediately after Placement of Final Cover (ft ams) FINAL COVER (m) (m) (m) (m) Lection Layer (ft) FINAL COVER (m) Lection Layer (ft) FINAL Cover (ft) <td>616.47 3.50 0.054 107 0.215 0.121 0.00 0.00 0.215</td> <td>of Layer at t, z1 Vs , ρ(tcf) G_{max} (tsf) (tsf) 0.014 0.08 508 1.7E-03 4.4E+02 3.0E-06 0.121 0.69 508 1.7E-03 4.3E+02 2.8E-05</td> <td>Index, PI Strain, gt Strain, Qt Strain, a Strain, (%) Strain, strain, (%) Strain, strain, strain, (%) Consolidation (%) Design (%) Design (%) Consolidation (%) 11 0.068 46696 0.00% 1.20 0.80 0.04% 0.000 0.32 0.133 0.776 0.00% 0.000 11 0.118 18930 0.00% 2.00 0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.0000 11 0.125 12677 0.1% 0.65 0.02% 0.000 0.34 0.079 0.765 0.00% 0.0000</td>	616.47 3.50 0.054 107 0.215 0.121 0.00 0.00 0.215	of Layer at t, z1 Vs , ρ(tcf) G _{max} (tsf) (tsf) 0.014 0.08 508 1.7E-03 4.4E+02 3.0E-06 0.121 0.69 508 1.7E-03 4.3E+02 2.8E-05	Index, PI Strain, gt Strain, Qt Strain, a Strain, (%) Strain, strain, (%) Strain, strain, strain, (%) Consolidation (%) Design (%) Design (%) Consolidation (%) 11 0.068 46696 0.00% 1.20 0.80 0.04% 0.000 0.32 0.133 0.776 0.00% 0.000 11 0.118 18930 0.00% 2.00 0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.0000 11 0.125 12677 0.1% 0.65 0.02% 0.000 0.34 0.079 0.765 0.00% 0.0000
Tailings Salines Toda, et al. (2007). Tailings Salines Max. Horiz. Acceleration, Amax/g: 0.15 Interim Cover Earthquake Moment Magnitude, M: 5.5 Cells Requiring User Input/Manipulation Magnitude Scaling Factor, MSF: 2.21	1.44 Scaling Factor for stress ration, rm 0.41 Thickness of Random/Platt	tform Fill on on top of existing interim cover (ft) Platform/Random Fill Layer ###### 5612.77 56 inal Cover Placement, Δσ _{FC} (psf)			11 0.152 12457 0.01% 0.00 0.75 0.02% 0.000 0.34 0.079 0.765 0.00% 0.0000 11 0.164 1.140 0.01% 2.00 0.65 0.03% 0.0000 0.34 0.079 0.765 0.00% 0.0000 Seismic Settlement Analysis - Stewart et al (2004)
2013 CPT Data from ConeTec Material Stress Pore Stress Depth Material Stress Pore Stres	CPT Data Interpretations Conditions at t Saturated Cone of Friction Index Pore Effective	Liquefaction Triggering An	Youd et al. (2001)	Wave Soil Shear P = Depth Velocity, Density Strain Ver*(Gerr In	
of CPT Elevation ot fs qc (u2) (sq) determined Weight Weight of CPT at time of CPT (ft) (ft amsi) TSF TSF TSF (ft) (ft) <td< td=""><td>CPT CN qc1 qc1N Resistance, rsp *c FC att, a</td><td>Construction Construction Construction</td><td>Ks CSR (CRR) Avg Liquefiable? Mr7.5, svirtam Kc qCtrics Mir7.5, svirtam FOS 1=Yes</td><td>m (ft/sec) (tcf) tsf tsf</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></td<>	CPT CN qc1 qc1N Resistance, rsp *c FC att, a	Construction	Ks CSR (CRR) Avg Liquefiable? Mr7.5, svirtam Kc qCtrics Mir7.5, svirtam FOS 1=Yes	m (ft/sec) (tcf) tsf tsf	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
0 0	OND U <thu< th=""> U U U</thu<>	No. Unit Unit <th< td=""><td>readreskreskreskreskreskresk100.0071.442.840.0020.3110.2032.14100.0211.740.0540.2560.2560.140.20100.0241.041.0450.0562.65.11.1622.21100.0251.001.140.0562.65.11.1622.21100.0251.001.1520.0562.65.11.1622.21100.0211.001.75.20.0262.65.31.1622.21100.0211.001.75.41.0002.16.277.75.32.21100.0211.001.75.41.0002.16.277.75.32.21100.0211.711.2222.324.7002.212.21100.0201.481.751.330.5002.212.21100.0211.481.511.771.330.502.21100.0222.559.720.1681.731.789.622.21100.0222.559.720.1681.739.712.21100.0211.910.1011.711.739.711.392.21100.0210.101.711.309.722.252.232.21100.0210.101.711.709.751.332.21100.0210.0211.71<t< td=""><td>m (f)sec) b b b 2.64 654 1.65-03 5.65-02 8.16-03 2.65 654 1.65-03 5.65-02 8.16-03 2.66 554 1.65-03 5.65-02 8.16-03 2.76 554 1.65-03 5.65-02 9.26-05 2.86 554 1.65-03 5.65-02 9.26-05 2.86 554 1.65-03 5.65-02 9.82-05 3.01 564 1.65-03 5.65-02 9.82-05 3.16 564 1.65-03 5.65-02 9.82-05 3.11 564 1.65-03 5.65-02 9.82-05 3.11 564 1.65-03 5.65-02 1.92-04 3.16 554 1.82-03 3.16-02 1.82-04 3.16 554 1.82-03 3.16-02 1.82-04 3.16 1.85-03 3.16-02 1.82-04 3.16 1.82 1.82-03 3.16-02 1.82-04 3.16<</td><td>No. No. No.</td></t<></td></th<>	readreskreskreskreskreskresk100.0071.442.840.0020.3110.2032.14100.0211.740.0540.2560.2560.140.20100.0241.041.0450.0562.65.11.1622.21100.0251.001.140.0562.65.11.1622.21100.0251.001.1520.0562.65.11.1622.21100.0211.001.75.20.0262.65.31.1622.21100.0211.001.75.41.0002.16.277.75.32.21100.0211.001.75.41.0002.16.277.75.32.21100.0211.711.2222.324.7002.212.21100.0201.481.751.330.5002.212.21100.0211.481.511.771.330.502.21100.0222.559.720.1681.731.789.622.21100.0222.559.720.1681.739.712.21100.0211.910.1011.711.739.711.392.21100.0210.101.711.309.722.252.232.21100.0210.101.711.709.751.332.21100.0210.0211.71 <t< td=""><td>m (f)sec) b b b 2.64 654 1.65-03 5.65-02 8.16-03 2.65 654 1.65-03 5.65-02 8.16-03 2.66 554 1.65-03 5.65-02 8.16-03 2.76 554 1.65-03 5.65-02 9.26-05 2.86 554 1.65-03 5.65-02 9.26-05 2.86 554 1.65-03 5.65-02 9.82-05 3.01 564 1.65-03 5.65-02 9.82-05 3.16 564 1.65-03 5.65-02 9.82-05 3.11 564 1.65-03 5.65-02 9.82-05 3.11 564 1.65-03 5.65-02 1.92-04 3.16 554 1.82-03 3.16-02 1.82-04 3.16 554 1.82-03 3.16-02 1.82-04 3.16 1.85-03 3.16-02 1.82-04 3.16 1.82 1.82-03 3.16-02 1.82-04 3.16<</td><td>No. No. No.</td></t<>	m (f)sec) b b b 2.64 654 1.65-03 5.65-02 8.16-03 2.65 654 1.65-03 5.65-02 8.16-03 2.66 554 1.65-03 5.65-02 8.16-03 2.76 554 1.65-03 5.65-02 9.26-05 2.86 554 1.65-03 5.65-02 9.26-05 2.86 554 1.65-03 5.65-02 9.82-05 3.01 564 1.65-03 5.65-02 9.82-05 3.16 564 1.65-03 5.65-02 9.82-05 3.11 564 1.65-03 5.65-02 9.82-05 3.11 564 1.65-03 5.65-02 1.92-04 3.16 554 1.82-03 3.16-02 1.82-04 3.16 554 1.82-03 3.16-02 1.82-04 3.16 1.85-03 3.16-02 1.82-04 3.16 1.82 1.82-03 3.16-02 1.82-04 3.16<	No. No.

WHITE MESA TAILINGS REPOSITORY LIQUEFACTION AND SEISM	C SETTLEMENT ANALYSES - 3-1S		at Elev. At Elev. At Equil Pore Ed f Midpoint Bottom Thicknes Unit Unit Stress at Stress at Pressure Pr	quil Pore Effective Effective Midpoi Shear I ressure at Stress at Stress at nt Wave Soil		Threshhol Volumetri Volumetric Incremen d Shear c Strain at Strain for I
Data File: 13-52106_SP3-1S-BSC-CPT Idriss and Boulanger (2008)			r of Layer of s of Weigh Weight Bottom of Midpoint at Bottom Mi			Strain, y _w 15 Cycles, Design Consolida
Location: White Mesa 2013 CPT Investigation Max. Horiz. Acceleration, Amax/g: 0.15	5604.28 Water surface elevation at t ₀ (ft amsl) 5620.47 Ground Surface	ace Elevation Immediately after Placement of Final Cover (ft amsl) FINAL COVER (ft)	(ft) Layer Layer (ft) t (tcf) (pcf) Layer of Layer of Layer La	ayer (tsf) of Layer of Layer at t ₁ , z ₁ V _s , ρ (tcf)	G _{max} (tsf) (tsf) PI g ₁ g ₂ γ (%) a b	(%) ε _{c-15} (%) R c C _N Event, ε _v (%) on (ft)
	5595.59 Water surface elevation at t ₁ (ft amsl) 0.50 Thickness of Ere	Erosion Protection Layer (rock mulch/topsoils) Immediately after pla Erosion Protection Layer #####	# 5620.22 5619.97 0.50 0.055 110 0.028 0.014 0.00	0.00 0.028 0.014 0.08 508 1.7E-03	4.4E+02 3.0E-06 11 0.068 46696 0.00% 1.20 0.80	0.04% 0.000 0.32 0.133 0.778 0.00% 0.00
Tailings Sands Magnitude Scaling Factor, MSF: 1.69	5590.59 Water surface elevation at t ₂ (ft amsl) 3.50 Thickness of Wa	Water Storage/Rooting Zone (ft) /ater Storage/Rooting Zone Layer #####	# 5618.22 5616.47 3.50 0.054 107 0.215 0.121 0.00	0.00 0.215 0.121 0.69 508 1.7E-03	4.3E+02 2.8E-05 11 0.118 18930 0.00% 2.00 0.65	0.03% 0.000 0.34 0.079 0.765 0.00% 0.00
Tailings Sand-Slimes Youd, et al (2001)	3.50 Thickness of Hig	High Compaction Layer (ft) High Compaction Layer #####				0.02% 0.000 0.34 0.079 0.765 0.00% 0.00
Tailings Slimes Max. Horiz. Acceleration, Amax/g: 0.15	1.44 Scaling Factor for stress ration, r _m 0.41 Thickness of Ra	Random/Platform Fill on on top of existing interim cover (ft) Platform/Random Fill Layer #####	# 5612.77 5612.56 0.41 0.050 101 0.445 0.434 0.00	0.00 0.445 0.434 2.35 508 1.6E-03	4.0E+02 1.0E-04 11 0.164 11140 0.01% 2.00 0.65	0.03% 0.000 0.34 0.079 0.765 0.00% 0.00
Interim Cover Earthquake Moment Magnitude, M: 5.5	0.47 Volumetric Strain Ratio for Site-Specific Design Eart 887.10 Additional Stress	ress due to Final Cover Placement, Δσ _{FC} (psf)				
Cells Requiring User Input/Manipulation Magnitude Scaling Factor, MSF: 2.21	7.51 Equiv. Number of Uniform Strain Cycles, N 5590.59 Elevation of bott	bottom of tailings (liner) (ft amsl)			Seismic Settlement Analysis - Stewart	
2013 CPT Data from ConeTec CPT Data	nterpretations Conditions at t	at t ₁ Liquefaction	n Triggering Analyses			TOTAL SEISMIC SETTLEMENT (FT): 0.2
Depth Material Stress Pore Stress at Saturated	Normalized Normalize Type	footbus	Manual at al. (0004)			
	Pore Effect	fective Iditiss & Boulariger (2008)	Youd et al. (2001)	Wave Soil	Shear P = ty Shear	d Shear c Strain at Strain for I
at time Pw Pw Type (as Unit Unit at time Pressure time of at time of	Cone d Friction Index, Penetration Ratio, F, Total Stress Pressure Stress	lective	lic Stress Ratio	Depth Velocity, Density		d Shear c Strain at Strain for I Strain, Ytv 15 Cycles, Design Consolida
at time Pw Pw Pw of CPT Elevation qt fs qc (u2) (u2) fs(qt Weight Weight of CPT at time of CPT		lective	lic Stress Ratio	Depth Velocity, Density		
at time Pw Pw Type (as Unit Unit at time Pressure time of at time of effort CPT Elevation at fe on (12) (12) fe/of determined	Penetration Ratio, F, L. Total Stress Pressure Stress	ress at Saturated Cyclic Stress Ratio Cyclic Resistance Ratio Cyc	Kr, Ka, CSR (CRR) Avg Lic	Depth Velocity, Density	Strain Verf*(Gerr Index, Strain, Strain,	Strain, Ytv 15 Cycles, Design Consolida
at time Pw Pw Pw of CPT Elevation qt fs qc (u2) (u2) fs(qt Weight Weight of CPT at time of CPT	Penetration Ratio, F, Ic Total Stress Pressure Stress N qc1 qc1 Qc1N Resistance, (%) FC at t ₁ at t ₁ t ₁	Cyclic Stress Ratio Cyclic Resistance Ratio Cyclic Resistance Ratio Cyclic Resistance Ratio t1 at t1 r_d C_n K_n K_S (CRR) r_d D_r f	Kr, Ka, CSR (CRR) Avg Lic	$\begin{array}{c c} & \text{Depth} & \text{Velocity}, \\ \text{quefiable?} & \text{at } t_1, z_1 & V_s & , \rho \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Strain, Ytv 15 Cycles, Design Consolida
at time Personal Pers	Penetration Ratio, F, Ic Total Stress Pressure Stress N qc1 qc1 Qc1N Resistance, (%) FC at t ₁ at t ₁ t ₁	Income Cyclic Stress Ratio Cyclic Resistance Ratio	Lic Stress Ratio K. K. CSR (CRR) Avg Mr75, KC QC ₁₀₋₀₅ HoS evitam FoS	Depth Velocity, Density quefiable? at t ₁ , z ₁ V _s , ρ 1=Yes m	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Strain, Ytv 15 Cycles, Design Consolida
at time Persure time of at time of cPT Elevation qt fs qc (u2) fs/qt determined (determined (th) (ft ams)) TSF TSF TSF (ft) PSI (%) (tcl) (pcf) (tsf) (tsf) (tsf) (tsf) (= 100000000000000000000000000000000000	Powersation modex, modex Total Stress Pressure Stress V qc1 qc1 Resistance, Qc r/y k FC at t, at t, (tsf) at t, tsf) tsf)	Uncurve Cyclic Stress Ratio Cyclic Resistance Ratio Cyclic Stress Ratio Stress Ratio Cyclic Stress Ratio<	III: Stress Ratio Avg Avg Ka K K CSR Kc QCIRR) Mof A Mof A Vortamin Vortamin Vortamin FoS FoS 1.08 1.00 0.039 1.49 59.88 0.100 3.49 2.92	Depth at t ₁ , z ₁ Velocity, Vs. Density Density γ 1=Yes 2=No m (f/sec) (tcf) 2 7.71 500 1.8E-03	Strain (Mari Carl) Index, Mari Carl Strain, Mari Carl	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
at time Figure 3 PW	Penetration Ratio, modex, Total Sitess Pressure Sites; TSF MPa QC1 QC1 Resistance, V, V, L FC Att, att, att, t, t, </td <td>Inclume Cyclic Stress Ratio Cyclic Resistance Ratio Cyclic Resistance Ratio Cyclic Stress Ratio Cyclic Resistance Ratio Cyclic Stress Ratio Cyclic Resistance Ratio Cyclic Stress Ratio Cyclic Stress Ratio Cyclic Stress Ratio Cyclic Resistance Ratio Cyclic Stress Rat</td> <td>lic Stress Ratio Kc QCRR) Avg Lk K_ K_S CSR Kc QCinca Mo7.5. FoS 1.08 1.0 0.039 1.49 59.88 0.100 3.49 2.92 1.08 1.0 0.039 1.31 47.86 0.099 3.10 2.65 1.08 1.0 0.039 1.24 42.55 0.089 3.02 2.55</td> <td>Depth Velocity, at t, z, 2=No Depth Velocity, at t, z, 2=No Velocity, v, p Density p, p 1=Yes m (r/sec) (cf) 2=No 7.71 500 1.8E-03 2 7.76 500 1.8E-03</td> <td>Strain, Modulus, 8, 65-w2 Var⁴(Car) Index, PI 9 Strain, 9 Strain, 9 a b Statistics 1sf 1sf (%) 4 6 0.07% 2.00 0.65 4 6 0.07% 2.00 0.65 4.65+w2 0.65 4.65+w2 0.7% 2.00 0.65 4.65+w2 0.7% 2.00 0.65</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	Inclume Cyclic Stress Ratio Cyclic Resistance Ratio Cyclic Resistance Ratio Cyclic Stress Ratio Cyclic Resistance Ratio Cyclic Stress Ratio Cyclic Resistance Ratio Cyclic Stress Ratio Cyclic Stress Ratio Cyclic Stress Ratio Cyclic Resistance Ratio Cyclic Stress Rat	lic Stress Ratio Kc QCRR) Avg Lk K_ K_S CSR Kc QCinca Mo7.5. FoS 1.08 1.0 0.039 1.49 59.88 0.100 3.49 2.92 1.08 1.0 0.039 1.31 47.86 0.099 3.10 2.65 1.08 1.0 0.039 1.24 42.55 0.089 3.02 2.55	Depth Velocity, at t, z, 2=No Depth Velocity, at t, z, 2=No Velocity, v, p Density p, p 1=Yes m (r/sec) (cf) 2=No 7.71 500 1.8E-03 2 7.76 500 1.8E-03	Strain, Modulus, 8, 65-w2 Var ⁴ (Car) Index, PI 9 Strain, 9 Strain, 9 a b Statistics 1sf 1sf (%) 4 6 0.07% 2.00 0.65 4 6 0.07% 2.00 0.65 4.65+w2 0.65 4.65+w2 0.7% 2.00 0.65 4.65+w2 0.7% 2.00 0.65	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
at time Figure (a) Unit Unit unit time CPT	Penetration Ratio, r Total Stress Pressure Stress Total Stress Pressure Stress Total Stress Pressure Stress TSF MPa Q FC alt1, alt1, t, t, (tsf) (tsf) 9 34.509 479.67 40.27 44 0.70% 2.1 47% 1.44 0.01 1.4; 9 3.333 435.53 36.47 39 0.31% 2.0 47% 1.44 0.02 1.44	Lectore treation Cyclic Stress Ratio Cyclic Resistance Ratio Cyclic Resistance Ratio Cyclic Stress Ratio<	lic Stress Ratio Kc QCRR) Avg Lk K_ K_S CSR Kc QCinca Mo7.5. FoS 1.08 1.0 0.039 1.49 59.88 0.100 3.49 2.92 1.08 1.0 0.039 1.31 47.86 0.099 3.10 2.65 1.08 1.0 0.039 1.24 42.55 0.089 3.02 2.55	Depth Velocity, at ι, z, 2>No Density (Vsec) Density (Figure (Vsec) Density (Figure (Vsec) 2 7.71 500 1.8E-03 2 7.76 500 1.8E-03 2 7.76 500 1.8E-03 2 7.76 500 1.8E-03	Strain, Veri ⁴ Carl Index, Modulus, Veri ⁴ Carl Index, Veri ⁴ P Strain, Strain, Veri ⁴ Carl Index, Veri ⁴ P Strain, Veri ⁴ Carl Index, Veri ⁴ P Strain, Veri ⁴ Carl Index, Veri ⁴ P Strain, Veri ⁴ P <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Data File: 13-52106_SP3-2C-BSC-CPT Location: White Mesa 2013 CPT Investigation 2 Field DateStand Steld ArvestigationContect C Tailings Sands	WHITE MESA TAILINGS REPOSITORY LIQUEFACTION AND Idriss and Boulanger (2008) 0.15 Max. Horiz, Acceleration, Amax/g: 0.15 B. Earthquark Moment Magnitude, M. 5.5 Magnitude Scaling Factor, MSF: 1.69	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	610.82 Ground Surface Elevation at time of CPT (It amsl) 621.51 Ground Surface Elevation Immediately after Placement of Fin 50 Thickness of Urater Storage/Rooting Zone (th) 50 Thickness of Hind Compaction Lawre (th)	Immediately after plac Erosion Protection Layer ##### 5621.26 56 ater Storage/Rooting Zone Layer ##### 5619.26 56	of prince Unit Weigh Weight (th) Botton (th) Midpoint (th) Pressure (th) Press	of β of Layer (tst) Oppth (tst) Velocity, Vs, β Density ρ Modulus, β ρ(fG)max (tst) PI PI g PI 0.028 0.014 0.044 0.69 508 1.7E-03 4.4E-02 2.8E-05 1.1 0.1	Shear g: Threshhol Strain, g: Volumetri d Shear b Volumetri c Strain at b Volumetri Strain for Cycles z, b Volumetri c Strain for Cycles z, b Volumetri c C, c Cu b Incrementa Strain for Light Cycles z, b No 88 46696 0.00% 1.20 0.04% 0.000 0.32 0.133 0.778 0.00% 0.000 18 1830 0.00% 0.004% 0.000 0.44 0.079 0.765 0.00% 0.0000 12 1267 0.01% 0.0000 0.44 0.079 0.765 0.00% 0.0000 12 1267 0.01% 0.0000 0.34 0.079 0.765 0.00% 0.0000
Tailings Sand-Slimes Tailings Slimes Interim Cover	Youd, et al (2001) Max. Horiz. Acceleration, Amax/g: 0.15 Earthquake Moment Magnitude, M: 5.5		19 Thickness of Random/Platform Fill on on top of existing interin 167.12 Additional Stress due to Final Cover Placement, $\Delta\sigma_{FC}$ (psf)				70 10470 0.02% 2.00 0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.0000
Cells Requiring User Input/Manipulation 2013 CPT Data from ConeTec Depth	Magnitude Scaling Factor, MSF: 2.2.1 CF Material Stress Pore Stress at Satura	7.51 Equiv. Number of Uniform Strain Cycles, N 55 T Data Interpretations Normalized Normalize Type ted	S86.64 Elevation of bottom of tailings (liner) (ft amsl) Conditions at t Pore Effective Idriss & E	Liquefaction Triggering Analyse Boulanger (2008) Yo	as ud et al. (2001)	Wave Soil Shear P = ty	TOTAL SEISMIC SETTLEMENT (FT): 0.397 Shear d Shear Strain at Strain for I
at time Pw Pw of CPT Elevation qt fs qc (u2) (u2) (ft) (ft amsl) TSF TSF (ft) PSI) fs/qt determined Weight Weight of attime of CPT CP I (%) (tcf) (pcf) (tsf) (tsf) (tsf) 1=Y 0=N	T CN qc1 qc1 qc1N n (%) FC es TSF MPa Resistance %	Otal Stress Pressure Stress at Saturate Cyclic Stress Ratio at t, at t, t, at t, t, (tsf) ts(sf) r_d C_s K_s CSF (tsf) (tsf) 0=No sv=tai sv=tai	atm sv=tatm FoS	Ka CSR (CRR) Avg Liquefiable* M-7.5, syntam KC qC _{16ca} M-7.5, pyrtam FoS 1=Yes	5? Depth Velocity, Density Strain V _{eff} (G _{ef} Index, at t ₁ , z ₁ V _s , ρ Modulus, f(G _{ead}) PI g ₁ m (fisec) (tcf) tsf tsf	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
0.4620.4630.4640.4650.350.4640.460.260601017.40.26160171.425.62.40.260600.8486.70.26166.71.425.62.41.142500.8411230.7611.4235.62.41.460500.181.420.7841.4235.71.41.460500.611.420.7841.4235.71.42.135500.601.301.4751.311.471.42.461500.851.440.7811.421.42.461500.851.140.7611.200.852.767500.571.160.765.01.42.461500.851.100.765.01.120.753.475507.751.510.602.11.200.853.475507.751.510.602.11.200.843.465507.751.510.601.201.210.444.105506.751.300.611.201.210.214.450506.751.300.611.201.210.215.741506.607.70.807.71.100.445.745506.711.300.741.700.221.225.745506.711.300.741.700.221.225.745506.721.300.741.700.225.74	0 0.55% Name Case 0.55% 0.55% 0.05 0.07 0.02 0.05 0 0.55% Name Case 0.05 10.07 0.03 0.00 0.05 0 0.55% Name Case 0.056 10.07 0.05 0.00 0.05 0 0.55% Name Case 0.056 10.07 0.00 0.00 0.00 0 0.55% Name Case 0.056 10.07 0.00 0.01 0.00 0 0.55% Name Case 0.056 10.07 0.01 0.01 0.01 0 0.55% Name Case 0.056 10.07 0.11 0.00 0.12 0.01 1 1.55% Name Case 0.056 10.07 0.11 0.01 0.01 0.01 1 1.55% Name Case 0.057 0.15 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0	1.701.67.7023.2219.4.810.06.8%1.1###1.70241.903360.222.0121.200.54.4%1.0###1.70242.862337.67.228.1312.200.65.4%1.1###1.7022.33.33167.4528.36.214280.27.0%1.1###1.7022.33.33167.4528.36.214280.28.4%1.1###1.7022.34.163066.422.028.4412.80.86.7%1.1###1.7022.34.17248.5523.06.7%20.41.0%1.2###1.701.77.7323.24.04194.907661.15.5%1.8###1.700.71.74114.31112.330.21.33.91.8###1.700.71.74114.31112.330.21.33.91.8###1.700.71.4114.3330.6030.32.1###1.700.71.4157.212.833.14.371.8###1.700.73.134.3411.330.841.2###1.700.73.135.6020.77.21.14###1.703.55.655.602.77.21.14###1.703.65.655.602.77.21.44###1.703.23.74.56.63.77.21.44###1.703.23.71.55.63.631.75.61.4###1.70 <t< td=""><td>0.61 0.00 0.64 0.00 <th< td=""><td>61 7.3 21.2 1.000 6.6.7 0.7</td><td>10 0.038 1.27 52.24 0.098 4.86 3.22 2 10 0.036 1.31 58.18 0.098 4.80 3.63 2 10 0.036 1.31 58.18 0.098 4.85 3.61 2 10 0.036 1.30 65.33 0.107 5.14 3.66 2 10 0.036 1.70 65.33 0.107 5.14 3.63 2 10 0.036 1.49 56.33 0.059 4.52 3.86 2 10 0.037 1.34 56.78 0.056 4.37 3.24 2 10 0.037 1.35 54.20 0.056 4.37 3.24 2 10 0.037 1.55 54.00 0.056 4.17 3.14 2 10 0.037 1.45 59.30 0.057 4.33 3.24 2 10 0.037 1.45 56.40 0.17</td><td>3.44 9.54 16200 5.55-02 116.0 11 0.11 3.36 9.54 16200 5.55-02 116.0 11 0.11 3.36 9.54 16200 5.55-02 116.0 11 0.11 3.36 9.54 16200 5.55-02 126.0 11 0.11 3.36 9.54 16203 5.55-02 126.0 11 0.11 3.36 9.54 16203 5.55-02 126.0 11 0.11 3.36 9.54 16203 5.55-02 126.0 11 0.11 3.46 9.66 16203 5.55-02 126.0 11 0.11 4.41 9.66 16203 5.55-02 116.0</td><td>Part Part Control Cont</td></th<></td></t<>	0.61 0.00 0.64 0.00 <th< td=""><td>61 7.3 21.2 1.000 6.6.7 0.7</td><td>10 0.038 1.27 52.24 0.098 4.86 3.22 2 10 0.036 1.31 58.18 0.098 4.80 3.63 2 10 0.036 1.31 58.18 0.098 4.85 3.61 2 10 0.036 1.30 65.33 0.107 5.14 3.66 2 10 0.036 1.70 65.33 0.107 5.14 3.63 2 10 0.036 1.49 56.33 0.059 4.52 3.86 2 10 0.037 1.34 56.78 0.056 4.37 3.24 2 10 0.037 1.35 54.20 0.056 4.37 3.24 2 10 0.037 1.55 54.00 0.056 4.17 3.14 2 10 0.037 1.45 59.30 0.057 4.33 3.24 2 10 0.037 1.45 56.40 0.17</td><td>3.44 9.54 16200 5.55-02 116.0 11 0.11 3.36 9.54 16200 5.55-02 116.0 11 0.11 3.36 9.54 16200 5.55-02 116.0 11 0.11 3.36 9.54 16200 5.55-02 126.0 11 0.11 3.36 9.54 16203 5.55-02 126.0 11 0.11 3.36 9.54 16203 5.55-02 126.0 11 0.11 3.36 9.54 16203 5.55-02 126.0 11 0.11 3.46 9.66 16203 5.55-02 126.0 11 0.11 4.41 9.66 16203 5.55-02 116.0</td><td>Part Part Control Cont</td></th<>	61 7.3 21.2 1.000 6.6.7 0.7	10 0.038 1.27 52.24 0.098 4.86 3.22 2 10 0.036 1.31 58.18 0.098 4.80 3.63 2 10 0.036 1.31 58.18 0.098 4.85 3.61 2 10 0.036 1.30 65.33 0.107 5.14 3.66 2 10 0.036 1.70 65.33 0.107 5.14 3.63 2 10 0.036 1.49 56.33 0.059 4.52 3.86 2 10 0.037 1.34 56.78 0.056 4.37 3.24 2 10 0.037 1.35 54.20 0.056 4.37 3.24 2 10 0.037 1.55 54.00 0.056 4.17 3.14 2 10 0.037 1.45 59.30 0.057 4.33 3.24 2 10 0.037 1.45 56.40 0.17	3.44 9.54 16200 5.55-02 116.0 11 0.11 3.36 9.54 16200 5.55-02 116.0 11 0.11 3.36 9.54 16200 5.55-02 116.0 11 0.11 3.36 9.54 16200 5.55-02 126.0 11 0.11 3.36 9.54 16203 5.55-02 126.0 11 0.11 3.36 9.54 16203 5.55-02 126.0 11 0.11 3.36 9.54 16203 5.55-02 126.0 11 0.11 3.46 9.66 16203 5.55-02 126.0 11 0.11 4.41 9.66 16203 5.55-02 116.0	Part Part Control Cont

	WHITE MESA TAILINGS REPOSIT	ORY LIQUEFACTION AND SEISM	MIC SETTLEMENT ANALYSES - 3-2C					Elev. at Elev. At Top of Midpoint		Stress at Str Init Bottom Mic		il Pore Stress at Stress a sure at Bottom Midpoint	Midpoi Shear nt Wave	Max Shear Soil Strain Ye		Shear		Threshhol Volume		Volume Strain	
Data File: 13-52106 SP3-2C-BSC-CPT	Idriss and Boulanger (2008)		5605.30 Water surface elevation during CPT investigation	00 (8 5610 92	Ground Surface Elevat	on at time of CPT (ft amsl)					Laver at Bottom Mid				Gef ty	Snear		d Shear c Strain	at		
Location: White Mesa 2013 CPT Investigation	Max. Horiz. Acceleration, Amax/g:	0.15	5602.54 Water surface elevation during CFT investigation	5621.51		on Immediately after Placement of Final Cover (ft amsl)	FINAL COVER	Layer of Layer	ayer ss of Weigh W		(tsf) of Laver Lav		Depth Velocity, D	ensity Modulus, 40	max) Index,	Strain,		(%) Cvcles.		C _u Event. a	
		0.15	5591.64 Water surface elevation at t _i (it amsl)			rotection Laver (rock mulch/topsoils) Immediately after pla	Erosion Protection La	(11)	(it) Layer (it) t (ici)	pci) (tsi) (al u ₁ , z ₁ v _s ,	p (tcl) G _{max} (tsl) (usi) Pi g ₁	9 ₂ γ (%)	a D		±c. R U	CN Event, s	E _v (%) OII (IL)
	Earthquake Moment Magnitude, M:	5.5		0.50 3.50						110 0.028		0.00 0.028 0.01	0.08 508 1	7E-03 4.4E+02 3.0		8 46696 0.00%	1.20 0.8	0.04% 0.0	JU 0.32 0.133	0.778 0	J.00% 0.0000
Tailings Sands	Magnitude Scaling Factor, MSF:	1.69	5586.64 Water surface elevation at t ₂ (ft amsl)	3.50	Thickness of Water Sto	rage/Rooting Zone (ft)	ater Storage/Rooting Zone La			107 0.215	0.121 0.00	0.00 0.215 0.12	0.69 508 1	7E-03 4.3E+02 2.8	E-05 11 0.1	B 18930 0.00%	2.00 0.6	0.03% 0.0	J0 0.34 0.079	0.765 0	0.00% 0.0000
Tailings Sand-Slimes	Youd, et al (2001)			3.50	Thickness of High Corr		High Compaction La		14.01 3.50 0.060	120 0.424	0.320 0.00	0.00 0.424 0.32	1.75 508 1	9E-03 4.8E+02 6.5		2 12657 0.01%	0.65 0.7	0.02% 0.0	JO 0.34 0.079	0.765 0	0.00% 0.0000
Tailings Slimes	Max. Horiz. Acceleration, Amax/g:	0.15	1.44 Scaling Factor for stress ration, r _m	3.19		Platform Fill on on top of existing interim cover (ft)	Platform/Random Fill La	ayer ###### 5612.42	10.82 3.19 0.050	101 0.585	0.504 0.00	0.00 0.585 0.50	2.77 508 1	6E-03 4.0E+02 1.2	E-04 11 0.17	0 10470 0.02%	2.00 0.6	0.03% 0.0	000 0.34 0.079	0.765 0	0.00% 0.0000
Interim Cover	Earthquake Moment Magnitude, M:	5.5	0.47 Volumetric Strain Ratio for Site-Specific Design	Eart 1167.12	Additional Stress due to	Final Cover Placement, Δσ _{FC} (psf)														1	
Cells Requiring User Input/Manipulation	Magnitude Scaling Factor, MSF:	2.21 2.21	7.51 Equiv. Number of Uniform Strain Cycles. N	5586.64	Elevation of bottom of t	ailings (liner) (ft amsl)										eismic Settlement	Analysis - Stewa	rt et al (2004)			
2013 CPT Data from ConeTec		CPT Data I	Interpretations		Conditions at t ₁			Liquefaction Triggering Analy	S										TOTAL SEISM	IC SETTLEMENT	<u>f (FT):</u> 0.397
Depth	Material Stress	Pore Stress at Saturated	Normalized Normalize Type		Pore Effective	Idriss & Boulanger (2008)		Y	ud et al. (2001)				Wave	Soil Shear	P= tv	Shear		d Shear c Strain	at	Strain	in for I
at time Pw Pw		Pressure time of at time of	Cone d Friction Index, Penetratio Ratio F.	Total Stress	Pressure Stress at Sa	turated Cyclic Stress Ratio Cyclic Resista	nce Ratio	Cyclic Stress Ratio					Depth Velocity, D		(Ger Index.	Strain		Strain v. 15	-	Desig	
of CPT Elevation qt fs qc (u2) (u2)		at time of CPT CPT Cf		FC at t ₁		att ₁ r _d C, K, K _{a CSR}	(CRR) r _d	D, f f K,	K, CSR	(CRR)	Avg Linu	efiable?	at t ₁ , z ₁ V ₂		G _{max}) PI g ₁	92 Y	a b	(%) Cycles,	ε _c R c	C _N Event, a	
(ft) (ft amsl) TSF TSF TSF (ft) PSI		(tsf) (tsf) 1=Yes	TSE MPa Resistance	% (tsf)	(tsf) (tsf) 1	=Yes Δqc _{1n} qc _{1nc}			Kc q	C _{1n-cs M=7.5}		=Yes	m	Gmm					-	1	
(.) () (.) (.)	(, (,	0=No	· · · ·			I=No sive fatm	outom FoS		m=r.s,			= 168 !=No	(ft/sec)	(tcf) tsf	tsf	(%)					
18.372 5592.45 20.9 0.383 20.4 78.0 33.8	1.83% Sand-Slime Tailin 0.059 119.0 1.02	0.40 0.62 1 1.2	.27 25.871 359.60 30.76 32 1.92% 2.5	### 1.61	0.00 1.61	0 0.89 0.06 0.96 1.0 0.050 41.09 71.85	0.102 2.06 0.93 0	32 0.80 0.80 1.07	1.0 0.039 2.64 8	1.26 0.130 4	4.38 3.22	2	8.86 500 1	8E-03 4 6E+02 3 4	E-04 10 0.22	6649 0.09%	200 0.6	0.03% 0.0	0.16 0.34 0.079	0.765 2	2 40% 0 0039
	1.63% Sand-Slime Tailin 0.059 119.0 1.03		.27 22.684 315.30 26.72 27 1.73% 2.5	### 1.62	0.00 1.62	0 0.89 0.06 0.96 1.0 0.049 39.67 66.40	0.095 1.92 0.93 0	30 0.80 0.80 1.07			3.95 2.94	2	8.91 500 1	8E-03 4.6E+02 3.4			200 0.6	0.03% 0.0	0.0000000000000000000000000000000000000	0.765 2	2.43% 0.0040
18.701 5592.12 21.8 0.387 21.4 62.7 27.1			.25 26.759 371.95 31.65 33 1.87% 2.5	### 1.63	0.00 1.63	0 0.89 0.06 0.96 1.0 0.049 41.40 73.05		32 0.80 0.80 1.06	10 0.039 2.56 8		4 30 3 20	2	8.96 500 1	8E-03 4 6E+02 3 4			2.00 0.6	0.02% 0.0	16 0.34 0.076	0.765	2.46% 0.0040
18.865 5591.96 18.8 0.412 18.5 46.5 20.1			25 23.212 322.65 27.38 28 2.32% 2.6	#### 1.03	0.00 1.65	0 0.89 0.06 0.96 1.0 0.049 39.90 67.29		.32 0.00 0.00 1.00		6.26 0.140 4	4.50 5.20	2	9.01 500 1	8E-03 4 6E+02 3.4			2.00 0.0	0.03% 0.0	0.34 0.079	0.705 2	2.49% 0.0041
				### 1.64				.30 0.80 0.80 1.06			4.61 3.28	2					2.00 0.6	0.03% 0.0		0.765 2	
19.029 5591.79 18.5 0.428 18.4 22.2 9.62			.25 22.958 319.11 26.86 27 2.45% 2.6	### 1.65	0.00 1.65	0 0.88 0.06 0.96 1.0 0.049 39.72 66.59		.30 0.80 0.80 1.06		8.21 0.144 4	4.72 3.33	2	9.06 500 1	8E-03 4.6E+02 3.5			2.00 0.6	0.03% 0.0	016 0.34 0.079	0.765 2	2.52% 0.0041
19.193 5591.63 13.1 0.382 12.9 32.2 13.9			.25 16.221 225.48 19.13 19 3.17% 2.8	### 1.65	0.00 1.65	1 0.88 0.05 0.97 1.0 0.049 36.75 55.88		.25 0.80 0.80 1.06	1.0 0.000 4.71 0	0.11 0.148 4	4.82 3.26	2	9.11 500 1	8E-03 4.4E+02 3.1	'E-04 16 0.48		2.00 0.6	0.03% 0.0	20 0.34 0.079	0.765 3	3.02% 0.0050
19.357 5591.46 11.8 0.318 11.1 110.7 47.9	2.70% Slime Tailings 0.057 113.1 1.08		.25 13.843 192.42 17.08 17 2.97% 2.8	### 1.66	0.01 1.66	1 0.88 0.05 0.97 1.0 0.049 36.04 53.12		.24 0.80 0.80 1.06			4.38 3.01	2	9.16 500 1	8E-03 4.4E+02 3.1			2.00 0.6	0.03% 0.0	020 0.34 0.079	0.765 3	3.05% 0.0050
19.521 5591.30 14.0 0.235 13.6 73.8 31.9	1.67% Sand-Slime Tailin 0.059 119.0 1.09	0.44 0.65 1 1.2	.24 16.857 234.31 20.24 20 1.81% 2.6	### 1.67	0.01 1.66	1 0.88 0.05 0.97 1.0 0.049 37.40 57.64	0.085 1.73 0.93 0	.26 0.80 0.80 1.06	1.0 0.039 3.50 7	0.92 0.113 3	3.62 2.67	2	9.21 500 1	8E-03 4.6E+02 3.5	iE-04 10 0.23	1 6554 0.10%	2.00 0.6	0.03% 0.0	017 0.34 0.079	0.765 2	2.62% 0.0043
19.685 5591.14 14.0 0.240 13.3 116.1 50.2	1.72% Sand-Slime Tailin 0.059 119.0 1.10	0.44 0.66 1 1.2	.23 16.369 227.53 20.05 20 1.86% 2.6	### 1.68	0.02 1.67	1 0.88 0.05 0.97 1.0 0.050 37.33 57.38	0.085 1.72 0.93 0	.26 0.80 0.80 1.06	1.0 0.039 3.57 7	1.65 0.114 3	3.62 2.67	2	9.26 538 1	8E-03 5.3E+02 3.1	E-04 10 0.23	1 6546 0.07%	2.00 0.6	0.03% 0.0	012 0.34 0.079	0.765 1	1.83% 0.0030
19.849 5590.97 13.0 0.220 12.4 100.8 43.6	1.69% Sand-Slime Tailin 0.059 119.0 1.11	0.45 0.66 1 1.2	.23 15.187 211.09 18.54 18 1.85% 2.7	### 1.69	0.02 1.67	1 0.88 0.05 0.97 1.0 0.050 36.80 55.34	0.083 1.67 0.93 0	.25 0.80 0.80 1.05	1.0 0.039 3.77 6	9.95 0.112 3	3.52 2.59	2	9.31 538 1	8E-03 5.3E+02 3.1	E-04 10 0.23	2 6539 0.07%	2.00 0.6	0.03% 0.0	0.34 0.079	0.765 1	1.85% 0.0030
20.013 5590.81 12.6 0.337 11.7 147.5 63.9	2.68% Slime Tatings 0.057 113.1 1.12	0.45 0.67 1 1.2	.22 14.257 198.18 17.87 17 2.94% 2.8	### 1.70	0.03 1.68	1 0.88 0.05 0.97 1.0 0.050 36.31 54.17	0.082 1.64 0.92 0	.24 0.80 0.80 1.05	1.0 0.039 4.79 8	5.49 0.138 4	4.31 2.98	2	9.36 538 1	8E-03 5.1E+02 3.3	E-04 16 0.48	3 5385 0.08%	2.00 0.6	0.03% 0.0	15 0.34 0.079	0.765 2	2.29% 0.0038
20.177 5590.64 16.5 0.337 15.6 147.0 63.7	2.05% Sand-Slime Tailin 0.059 119.0 1.13	0.46 0.67 1 1.2	.21 18.838 261.85 23.17 23 2.20% 2.6	### 1.71	0.03 1.68	1 0.87 0.05 0.96 1.0 0.050 38.43 61.60	0.090 1.81 0.92 0	.28 0.80 0.80 1.05	1.0 0.039 3.49 8	0.79 0.129 4	4.00 2.90	2	9.41 538 1	8E-03 5.3E+02 3.1	E-04 10 0.23	2 6524 0.07%	2.00 0.6	0.03% 0.0	0.34 0.079	0.765	1.90% 0.0031
			20 23.344 324.48 27.93 28 1.78% 2.5	### 1.72	0.04 1.69		0.097 1.96 0.92 0			7.23 0.123 3	3 77 2 87	2	9.46 538 1	8E-03 5.3E+02.3.1				0.03% 0.0	13 0.34 0.078	0.765	1.93% 0.0032
20.341 5590.48 20.1 0.337 19.5 94.3 40.83 24.180 5586.64	Sand Sime Telle 0.050 110.0			1.95	0.10 1.85	1	0.02 0				2.07		10.63 538 1	95 02 5 25+02 2 6	E 04 10 0.2	6265 0.00%	2.00 0.6	0.02% 0.0	16 0.24 0.076	0.765	2.52% 0.0066
24.100 0000.04	0.038 118.0			1.85	0.10 1.00								10.00 000 1	0.00 0.00 0.00 0.00	10 0.2	0.0876	2.00 0.0	0.0070 0.0	0.078	0.100 2	0.0300

Data File: 13-52106_SP3-3S-BSC-CPT Location: White Mess 2015 CPT Investigation L\.\.62.3 Field Data/2015 Field Investigation	WHITE MESA TAILINGS REPOSITORY LIQUEFACTN Idriss and Boulanger (2008) Max Horiz Acceleration, Amaxig: 0.15 Earthquak Moment Magnitude, M: 5.5		on (ft 5609.63 5620.49 Ground Surface Elevation at time of CPT (ft amsi) 5620.49 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsi) 0.50 Thickness of Errosion Protection Layer (rock mulci/ht/opsoils) Immediately after pla Errosion Protection	Elev. at Elev. At Elev. At Elev. At Total Total Total Equil Pore Equil Pore Effective Effective Midpoil Shear Max Shea Layer Ot Layer of s of Weigh Weight Bottom of Midpoint of Bottom Bottom Midpoint of Bottom Midpoint of Bottom Midpoint of Bottom Bottom Bot
Tailings Sands Tailings Sand-Slimes Tailings Slimes	Magnitude Scaling Factor, MSF: 1.69 Youd, et al (2001) Max Horiz, Acceleration, Amax/q; 0.15	5577.14 Water surface elevation at t ₂ (ft ams)	3.50 Thickness of Water Storage/Rooting Zone (ft) //ater Storage/Rooting Zone 3.50 Thickness of High Compaction Layer (ft) High Compaction	a Layer ###### 5618.24 5616.49 3.50 0.054 107 0.215 0.121 0.00 0.00 0.215 0.121 0.69 568 1.7E-03 4.3E+0 Layer ###### 5614.74 5612.99 3.50 0.060 120 0.424 0.320 0.00 0.00 0.244 0.320 1.75 568 1.9E-03 4.8E+0 Layer ###### 5613.15 5609.35 3.36 0.050 101 0.539 0.559 0.00 0.00 0.030 0.533 0.559 2.80 569 1.8E-03 4.8E+0
Interim Cover Cells Requiring User Input/Manipulation 2013 CPT Data from ConeTec	Earthquake Moment Magnitude, M: 5.5 Magnitude Scaling Factor, MSF: 2.21	0.47 Volumetric Strain Ratio for Site-Specific Design Ea	Ear(1184.24 Additional Stress due to Final Cover Placement, Δσ _{rc} (psf) 5777.14 Elevation of tailings (liner) (ft ansi) Conditions at t	Ligusfaction Triggering Analyses
Depth at time of CPT Elevation pt Pw Pw Pw of CPT Elevation ot fs qc (22) (u2) (u2) (u2) (u1) (t1) (t1) (t1) (t1) (t2) (u2) (u2)	2) fs/qt determined Weight Weight of CPT at time of CP	tod attime of Ponetian Index, T CPT CN qc1 qc1 qc1N Resistance, rN E FC 0) 1 =Yes TSF MPa Q, %	Total Pore Effective Idriss & Boularger (2008) FC FC 1, still, t, at1, r, Cyclic Stress Ratio Cyclic Stress Ratio FC % (tsf) (tsf) t=Ys at1, t, still, t, still, t, still, t, still, t, still, t, still, t=Ys at1, t, t=Ys still, still, t=Ys still, t, t=Ys still, t, t=Ys still, t, t, t t=Ys still, t, t, <td< th=""><th>Wave et al. (2001) International Sciences <t< th=""></t<></th></td<>	Wave et al. (2001) International Sciences International Sciences <t< th=""></t<>
0.000 6000.8 7.3. 0.207 7.3. 3.9 1.6 0.020 6000.8 1.4. 0.207 1.4.2 3.0.1 1.3.1 1.1.31 6000.8.2 7.3.0 0.231 7.2.9 1.3.1 1.4.00 6007.9 5.2.0 0.235 5.2.0 1.6.0 1.8.00 6007.60 5.7.1 0.205 5.7.1 1.6.0 1.8.00 6007.7.3 6.8.0 0.500 1.5.0 1.6.0 2.2.97 6006.8.0 1.0.0 1.0.2 7.2.0 1.0.1 2.2.97 6006.8.0 1.0.2 0.0.0 1.2.5 6.0 2.2.7 3.017 5005.50 6.5.3 0.0.0 1.2.5 6.0 3.0.0 0.0.0	60.1530.15010.270.200.000.0000.33%verin Coer0.56010.070.560.000.0100.22%verin Coer0.56010.070.560.000.0100.22%verin Coer0.56010.070.070.000.0000.43%verin Coer0.56010.070.080.000.0000.43%verin Coer0.56010.070.180.000.1100.22%verin Coer0.55010.070.120.000.1111.64%verin Coer0.55010.070.130.000.1100.75%verin Coer0.55010.070.140.000.1100.75%verin Coer0.55010.070.150.000.1100.75%verin Coer0.5510.070.160.000.1100.75%verin Coer0.5510.070.160.000.1100.75%verin Coer0.5510.070.160.000.1100.75%verin Coer0.5510.070.160.000.1100.75%verin Coer0.5510.070.160.000.1100.75%verin Coer0.5510.070.160.000.1111.64%verin Coer0.5510.070.160.000.1110.75%verin Co	12 0 1.70 95.61 133.06 15.62 23.62 0.13% 0.48 6.5 5.5 14 0 1.70 124.44 122.55 14.41 21.70 0.35% 0.85 15 15 0 1.70 123.358 123.55 14.405 103 0.23% 0.8 151 16 0 1.70 123.958 123.57 14.405 105.80 0.27% 0.8 1.1 51 17 0 0 1.70 123.958 123.51 12.75 12.75 13.5 13.5 13.5 13.5 18 0 1.70 10.407 136.45 11.5 15.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 14.5 13.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5		03 03 04 <

c Shear strain dulus, _{ax} (tsf)	γ _{eff} *(G _{eff} /G _{max}) (tsf)	Plastici ty Index, Pl	g 1	9 2	Shear Strain, γ (%)	a	ь	(%)	c Strain at 15 Cycles, ε _{c-15} (%)	R	c	C _N	Volumetric Strain for Design Event, ε _ν (%)	l Consolidati on (ft)
1.4E+02 1.3E+02 1.8E+02	3.0E-06 2.8E-05 6.5E-05	11 11 11	0.068 0.118 0.152	46696 18930 12657	0.00% 0.00% 0.01%	1.20 2.00 0.65	0.80 0.65 0.75	0.04% 0.03% 0.02%	0.000 0.000 0.000	0.32 0.34 0.34	0.133 0.079 0.079	0.778 0.765 0.765	0.00% 0.00% 0.00%	0.0000 0.0000 0.0000
1.0E+02	1.2E-04	11	0.171 Seis	10433	0.02%	2.00	0.65	0.03% t et al (2004	0.000	0.34	0.079	0.765	0.00%	0.0000
ximum	P =	1 1001101			- 1			meannor		TOTA	SEISMI	C SETTL	EMENT (FT):	0.414
ihear train dulus, G _{max}	γ _{eff} *(G _{eff} /G _{max})	ty Index, Pl	g 1	9 2	Shear Strain, 7	a	b	d Shear Strain, γ _{tv} (%)	c Strain at 15 Cycles, ε _{c-15} (%)	R	c	C _N	Strain for Design Event, ε _ν (%)	I Consolidati on (ft)
tsf 5.5E+02 5.5E+02	tsf 1.1E-04 1.1E-04	11 11	0.178 0.179	9740 9685	(%) 0.01% 0.01%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00%	0.0000
	1.1E-04 1.1E-04	11 11	0.179 0.180	9631 9578	0.01%	2.00 2.00	0.65	0.03%	0.000	0.34 0.34	0.079 0.079	0.765	0.00%	0.0000
5.5E+02	1.1E-04	11	0.181 0.181	9526 9475	0.01%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.0000
5.5E+02	1.1E-04	11	0.182	9425	0.01%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.0000
5.5E+02 5.5E+02	1.2E-04 1.2E-04	11 11	0.182 0.183	9375 9327	0.02% 0.02%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00% 0.00%	0.0000 0.0000
	1.2E-04 1.2E-04	11 11	0.184 0.184	9279 9233	0.02%	2.00 2.00	0.65 0.65	0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00%	0.0000
	1.2E-04 1.2E-04	11 11	0.185 0.185	9187 9141	0.02%	2.00 2.00	0.65	0.03%	0.000	0.34 0.34	0.079	0.765	0.00%	0.0000
5.5E+02 5.5E+02	1.3E-04 1.3E-04	11	0.186	9097 9053	0.02%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.0000
5.5E+02	1.3E-04	11	0.187	9010	0.02%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.0000
5.5E+02 5.5E+02	1.3E-04 1.3E-04	11 11	0.187 0.188	8968 8926	0.02% 0.02%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.000 0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00% 0.00%	0.0000
	1.9E-04 1.9E-04	11 0	0.189 0.193	8885 11435	0.03% 0.04%	2.00 2.20	0.65	0.03%	0.002	0.34 0.34	0.079 0.079	0.765 0.765	0.31%	0.0005
	1.9E-04 1.9E-04	0	0.194 0.194	11383 11332	0.04% 0.04%	2.20 2.20	1.00 1.00	0.03% 0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.04% 0.05%	0.0001
	2.0E-04 2.0E-04	0	0.195	11282	0.05%	2.20	1.00	0.03%	0.000	0.34	0.079	0.765	0.05%	0.0001
1.5E+02	1.7E-04 1.7E-04	10	0.192	8872	0.03%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.0000
	1.8E-04	10 10	0.193	8827 8784	0.03%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.0000
1.7E+02	1.7E-04 1.7E-04	0	0.197 0.198	11011 10956	0.03% 0.03%	2.20 2.20	1.00 1.00	0.03% 0.03%	0.000 0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.01% 0.01%	0.0000
1.7E+02 1.7E+02	1.8E-04 1.8E-04	0	0.198 0.199	10903 10850	0.03% 0.04%	2.20 2.20	1.00 1.00	0.03% 0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.02%	0.0000
1.7E+02 1.7E+02	1.8E-04 1.8E-04	0	0.200	10798 10747	0.04% 0.04%	2.20 2.20	1.00 1.00	0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.02%	0.0000
1.7E+02	1.9E-04 1.9E-04	0	0.201	10697 10647	0.04% 0.04%	2.20 2.20	1.00	0.03%	0.000	0.34 0.34	0.079	0.765 0.765	0.03%	0.0000
1.7E+02	1.9E-04 2.0E-04	0	0.202	10599 8371	0.04%	2.20	1.00	0.03%	0.000	0.34	0.079	0.765	0.03%	0.0001
1.5E+02	2.0E-04	10	0.200	8335	0.03%	2.00	0.65	0.03%	0.003	0.34	0.079	0.765	0.46%	0.0007
1.5E+02	2.0E-04 2.0E-04	10 10	0.200 0.201	8299 8263	0.04% 0.04%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.003 0.003	0.34 0.34	0.079 0.079	0.765 0.765	0.49% 0.53%	0.0008
1.5E+02	2.1E-04 2.1E-04	10 10	0.201 0.202	8228 8194	0.04% 0.04%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.004 0.004	0.34 0.34	0.079 0.079	0.765 0.765	0.57% 0.60%	0.0009
1.5E+02 1.5E+02	2.1E-04 2.1E-04	10 10	0.202 0.203	8160 8127	0.04% 0.04%	2.00 2.00	0.65 0.65	0.03%	0.004 0.004	0.34 0.34	0.079 0.079	0.765 0.765	0.63% 0.67%	0.0010 0.0011
4.5E+02 4.5E+02	2.2E-04 2.2E-04	10 10	0.203	8094 8061	0.04% 0.04%	2.00 2.00	0.65 0.65	0.03%	0.005	0.34 0.34	0.079 0.079	0.765 0.765	0.70% 0.73%	0.0011 0.0012
	2.2E-04 2.2E-04	10 10	0.204	8029 7997	0.04%	2.00 2.00	0.65 0.65	0.03%	0.005	0.34 0.34	0.079 0.079	0.765 0.765	0.76%	0.0013
	2.2E-04 2.3E-04	10 10	0.205	7966 7935	0.04%	2.00	0.65	0.03%	0.005	0.34	0.079	0.765	0.83%	0.0014
1.5E+02	2.3E-04 2.4E-04	10 16	0.206	7905 6484	0.04%	2.00	0.65	0.03%	0.006	0.34	0.079	0.765	0.89%	0.0015
1.3E+02	2.4E-04	16	0.459	6461	0.05%	2.00	0.65	0.03%	0.009	0.34	0.079	0.765	1.35%	0.0022
1.3E+02	2.3E-04 2.5E-04	10 16	0.208 0.460	7819 6414	0.04% 0.06%	2.00 2.00	0.65 0.65	0.03%	0.006 0.009	0.34 0.34	0.079 0.079	0.765 0.765	0.98% 1.41%	0.0023
3.9E+02	2.5E-04 2.8E-04	16 10	0.460 0.209	6392 7736	0.06% 0.06%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.009 0.011	0.34 0.34	0.079 0.079	0.765 0.765	1.44% 1.71%	0.0024 0.0028
	2.8E-04 2.8E-04	10 10	0.209 0.210	7708 7680	0.07% 0.07%	2.00 2.00	0.65 0.65	0.03%	0.011 0.012	0.34 0.34	0.079 0.079	0.765 0.765	1.75% 1.78%	0.0029
	2.9E-04 2.9E-04	10 10	0.210 0.211	7653 7626	0.07% 0.07%	2.00 2.00	0.65 0.65	0.03%	0.012 0.012	0.34 0.34	0.079	0.765 0.765	1.82% 1.85%	0.0030
	2.9E-04 2.9E-04	10 10	0.211	7600 7573	0.07% 0.07%	2.00 2.00	0.65	0.03% 0.03%	0.012	0.34 0.34	0.079	0.765 0.765	1.89% 1.92%	0.0031
3.9E+02	3.0E-04 3.0E-04	10 10	0.212	7547 7522	0.07% 0.07%	2.00 2.00	0.65	0.03%	0.013 0.013	0.34 0.34	0.079 0.079	0.765	1.96% 1.99%	0.0032
3.9E+02	3.0E-04 3.0E-04	10 10	0.213	7496	0.07%	2.00	0.65	0.03%	0.013	0.34	0.079	0.765	2.03%	0.0033
3.7E+02	3.2E-04	16	0.465	6133	0.09%	2.00	0.65	0.03%	0.017	0.34	0.079	0.765	2.58%	0.0042
3.7E+02	3.2E-04 3.3E-04	16 16	0.466	6114 6095	0.10%	2.00	0.65	0.03%	0.017	0.34	0.079	0.765	2.62% 2.65%	0.0043
3.7E+02	3.3E-04 3.3E-04	16 16	0.467 0.467	6077 6058	0.10% 0.10%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.018 0.018	0.34 0.34	0.079 0.079	0.765 0.765	2.69% 2.73%	0.0044 0.0045
3.9E+02	3.2E-04 3.2E-04	10 10	0.216 0.216	7332 7309	0.08% 0.08%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.015 0.015	0.34 0.34	0.079 0.079	0.765 0.765	2.28% 2.31%	0.0037 0.0038
3.7E+02	3.2E-04 3.4E-04	10 16	0.217 0.469	7286 5983	0.09% 0.11%	2.00 2.00	0.65 0.65	0.03%	0.015 0.019	0.34 0.34	0.079 0.079	0.765 0.765	2.35% 2.88%	0.0039 0.0047
	3.3E-04 3.3E-04	10 10	0.218 0.218	7242 7219	0.09%	2.00 2.00	0.65 0.65	0.03%	0.016 0.016	0.34 0.34	0.079 0.079	0.765 0.765	2.42% 2.46%	0.0040
	3.3E-04 3.3E-04	10 10	0.218 0.219	7197 7176	0.09% 0.09%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.016 0.017	0.34 0.34	0.079 0.079	0.765 0.765	2.50% 2.53%	0.0041 0.0042
3.9E+02	3.4E-04 3.4E-04	10	0.219	7154	0.09%	2.00	0.65	0.03%	0.017	0.34	0.079	0.765	2.57%	0.0042
3.9E+02	3.4E-04	10	0.220	7111	0.10%	2.00	0.65	0.03%	0.017	0.34	0.079	0.765	2.65%	0.0043
3.9E+02	3.4E-04 3.5E-04	10 10	0.220	7090	0.10%	2.00	0.65	0.03%	0.018	0.34	0.079	0.765	2.69%	0.0045
3.7E+02	3.5E-04 3.7E-04	10 16	0.221 0.473	7049 5792	0.10% 0.12%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.018 0.022	0.34 0.34	0.079 0.079	0.765 0.765	2.76% 3.31%	0.0045 0.0054
4.6E+02	3.5E-04 3.0E-04	10 10	0.222 0.222	7010 6990	0.10% 0.07%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.019 0.012	0.34 0.34	0.079 0.079	0.765 0.765	2.84% 1.87%	0.0047 0.0031
1.4E+02	3.2E-04 3.2E-04	16 16	0.474 0.474	5743 5728	0.09% 0.09%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.015 0.015	0.34 0.34	0.079 0.079	0.765 0.765	2.33% 2.36%	0.0038
1.4E+02	3.2E-04 3.2E-04	16 16	0.475 0.475	5713 5698	0.09% 0.09%	2.00 2.00	0.65 0.65	0.03%	0.016	0.34 0.34	0.079 0.079	0.765 0.765	2.39% 2.42%	0.0039
4.6E+02	3.1E-04 3.1E-04	10	0.224	6896 6878	0.07%	2.00	0.65	0.03%	0.013	0.34	0.079	0.765	2.00%	0.0033
1.6E+02	3.1E-04	10	0.225	6859	0.08%	2.00	0.65	0.03%	0.013	0.34	0.079	0.765	2.06%	0.0034
1.6E+02	3.2E-04 3.2E-04	10 10	0.225	6840 6822	0.08%	2.00	0.65	0.03%	0.014	0.34	0.079	0.765	2.09%	0.0034
1.4E+02	3.2E-04 3.4E-04	10 16	0.226 0.477	6804 5593	0.08% 0.10%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.014 0.017	0.34 0.34	0.079 0.079	0.765 0.765	2.15% 2.62%	0.0035 0.0043
1.4E+02	3.4E-04 3.4E-04	16 16	0.478 0.478	5579 5565	0.10% 0.10%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.017 0.018	0.34 0.34	0.079 0.079	0.765 0.765	2.65% 2.68%	0.0044 0.0044
	3.5E-04 3.3E-04	16 10	0.478 0.228	5552 6719	0.10% 0.08%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.018 0.015	0.34 0.34	0.079 0.079	0.765 0.765	2.71% 2.28%	0.0044 0.0037
	3.3E-04				0.08%	2.00			0.015		0.079			

WHITE MESA TAILINGS REPOSITORY LIQUEFACTION AND S	EISMIC SETTLEMENT ANALYSES - 3-3S		Elev. at Elev. At Elev. At Top of Midpoint Bottom Thicknes Unit Un	Total Total Equil Pore Equ nit Stress at Stress at Pressure Pres			Shear	Threshhol Volumetri d Shear c Strain at	Volume Strain	etric Incrementa
Data File: 13-52106_SP3-3S-BSC-CPT Idriss and Boulanger (2008)	5605.60 Water surface elevation during CPT investigation (ft 5609.63 Ground Surface Elevation a		Layer of Layer of s of Weigh Weigh				Strain,	Strain, y _w 15 Cycles,	Desig	
Location: White Mesa 2013 CPT Investigation Max. Horiz. Acceleration, Amax/g: 0.15			IAL COVER (ft) (ft) Layer Layer (ft) t (tcf) (pc	cf) Layer of Layer of Layer Lay	er (tsf) of Layer of Layer at t ₁ , z	1 Vs , ρ (tcf) G _{max} (tsf) (tsf) PI	g ₁ g ₂ γ (%) a	b (%) ε _{c-15} (%) R	c C _N Event, ε	ε _v (%) on (ft)
					0.00 0.028 0.014 0.01		0.068 46696 0.00% 1.20	0.80 0.04% 0.000 0.32		0.00% 0.0000
Tailings Sands Magnitude Scaling Factor, MSF: 1.69	5577.14 Water surface elevation at t ₂ (ft amsl) 3.50 Thickness of Water Storage				0.00 0.215 0.121 0.6		0.118 18930 0.00% 2.00	0.00 0.0070 0.000 0.04		0.00% 0.0000
Tailings Sand-Slimes Youd, et al (2001)	3.50 Thickness of High Compact				0.00 0.424 0.320 1.7	5 508 1.9E-03 4.8E+02 6.5E-05 1 0 508 1.6E-03 4.0E+02 1.2E-04 1	0.152 12657 0.01% 0.65			0.00% 0.0000
Tailings Slimes Max. Horiz. Acceleration, Amaxig: 0.15 Interim Cover Earthquake Moment Magnitude. M: 5.5			m/Random Fill Layer ###### 5611.31 5609.63 3.36 0.050	101 0.593 0.509 0.00 0	0.00 0.593 0.509 2.8	0 508 1.6E-03 4.0E+02 1.2E-04 1	0.171 10433 0.02% 2.00	0.65 0.03% 0.000 0.34	0.079 0.765 0.	0.0000
Interim Cover Earthquake Moment Magnitude, M: 5.5 Cells Requiring User Input/Manipulation Magnitude Scaling Factor, MSF: 2.21	0.47 Volumetric Strain Ratio for Site-Specific Design Earl 1184.24 Additional Stress due to Fin 7.51 Equiv. Number of Uniform Strain Cycles. N 5577.14 Elevation of bottom of tailing						Seismic Settlement Analysis - S			
	T Data Interpretations Conditions at t.	s (iner) (it amsi)	Liquefaction Triggering Analyses				Seismic Settlement Analysis - S		EISMIC SETTLEMENT ((FT): 0.414
Motorial Total Lifetive	Normalized Normalize Type	Idriss & Boulanger (2008)	Youd et al. (2001)			Wave Soil Shear P = ty	Otra	Threathor	Strain	morementa
at time Pev Pev Type (as Unit at time Pressure time of at time		ed Cyclic Stress Ratio Cyclic Resistance Ratio	Cyclic Stress Ratio		Depth	Wave Soil Shear P = ty Velocity, Density Strain Yerr*(Gerr Index	Shear Strain.	d Shear c Strain at Strain, γ _{tv} 15 Cycles,	Desig	
of CPT Elevation qt fs qc (u2) (u2) fs/qt determined Weight Weight of CPT at time of CPT CP			r _d D _r f K _a K _a CSR	(CRR) Avg Lique	efiable? at t ₁ , z.		g ₁ g ₂ γ a	b (%) ε _{c-15} (%) R	c C _N Event, ε,	
(ft) (ft amsi) TSF TSF TSF (ft) PSI (%) (tcf) (pcf) (tsf) (tsf) (tsf) 1=Y	es TSF MPa ^Q t % (tsf) (tsf) 1=Yes		M=7.5, Kc qc _{1r}		=Yes m	G _{max}				
1=0	0=N0	s'v=tatm s'v=tatm F	FoS sivetatm	sv=tatm FoS 2	=No	(ft/sec) (tcf) tsf tsf	(%)			
17.388 5592.24 12.6 0.071 12.4 21.2 9.17 0.57% Sand-Slime Tailin 0.059 119.0 0.99 0.42 0.58 1	1.37 16.989 236.15 19.94 20 0.61% 2.4 47% 1.59 0.00 1.59 0	0.90 0.05 0.97 1.0 0.050 37.30 57.24 0.085 1	.69 0.93 0.26 0.80 1.08 1.0 0.038 2.28 45.3		2 8.6		0.228 6684 0.09% 2.00			2.34% 0.0038
17.552 5592.08 13.7 0.092 13.6 19.3 8.35 0.67% Sand-Slime Tailin 0.059 119.0 1.00 0.42 0.58 1	1.36 18.404 255.82 21.57 22 0.73% 2.4 47% 1.60 0.00 1.60 0	0.90 0.05 0.97 1.0 0.050 37.86 59.43 0.087 1	.74 0.93 0.27 0.80 1.08 1.0 0.038 2.27 48.9		2 8.6		0.229 6667 0.09% 2.00			2.37% 0.0039
17.716 5591.91 13.7 0.124 13.6 19.8 8.56 0.91% Sand-Slime Tailin 0.059 119.0 1.01 0.43 0.59 1	1.35 18.297 254.32 21.44 22 0.98% 2.5 47% 1.61 0.00 1.61 0	0.89 0.05 0.97 1.0 0.050 37.82 59.27 0.087 1	.74 0.93 0.27 0.80 1.08 1.0 0.038 2.55 54.6		2 8.7	1 000 1.02 00 4.02 0.42 04	0 0.229 6650 0.09% 2.00			2.40% 0.0039
17.880 5591.75 11.4 0.157 11.3 19.8 8.58 1.38% Sand Slime Tailin 0.059 119.0 1.02 0.43 0.59 1 18.044 5591.59 10.6 0.162 10.5 21.3 9.25 1.52% Sand Slime Tailin 0.059 119.0 1.03 0.44 0.60 1	1.34 15.145 210.51 17.78 18 1.51% 2.6 47% 1.61 0.00 1.61 0 1.33 14.025 194.94 16.50 16 1.69% 2.7 47% 1.62 0.00 1.62 0	0.89 0.05 0.97 1.0 0.050 36.54 54.32 0.082 1	.64 0.93 0.24 0.80 1.08 1.0 0.038 3.51 62.3 .60 0.93 0.23 0.80 1.08 1.0 0.038 3.89 64.3		2 8.7		0.229 6634 0.09% 2.00			2.43% 0.0040
18.044 5591.59 10.6 0.162 10.5 21.3 9.25 1.52% Sand Slime Tailin 0.059 119.0 1.03 0.44 0.60 1 18.044 5591.42 9.0 0.183 8.9 21.8 9.45 2.03% Sime Tailing 0.057 113.1 1.04 0.44 0.60 1	1.33 14.025 194.94 16.50 16 1.69% 2.7 47% 1.62 0.00 1.62 0 1.33 11.759 163.45 13.87 13 2.30% 2.8 71% 1.63 0.00 1.63 0		.60 0.93 0.23 0.80 1.08 1.0 0.038 3.89 64: .53 0.93 0.21 0.80 1.08 1.0 0.038 5.05 70.0		2 8.8		0.230 6617 0.09% 2.00		0.010 0.100 2.	2.46% 0.0040
18.372 5591.26 8.4 0.100 8.2 27.4 11.89 1.19% Sand Stime Tailing 0.059 119.0 1.05 0.45 0.60 1	1.32 10.844 150.73 12.86 12 1.36% 2.7 47% 1.64 0.00 1.64 0	0.89 0.05 0.97 1.0 0.050 34.92 48.78 0.076 1	.51 0.93 0.21 0.80 1.07 1.0 0.038 4.32 55.3		2 8.9		0.231 6585 0.09% 2.00			2.52% 0.0048
18.537 5591.09 13.5 0.095 13.4 21.3 9.22 0.70% Sand Sime Tailin 0.059 119.0 1.06 0.45 0.61 1	1.31 17.559 244.07 20.60 20 0.76% 2.4 47% 1.65 0.00 1.65 0		73 0.93 0.26 0.80 1.07 1.0 0.038 2.41 49.0		2 8.9		0.231 6569 0.09% 2.00			2.55% 0.0042
18.701 5590.93 10.1 0.120 10.0 17.8 7.69 1.19% Sand-Slime Tailin 0.059 119.0 1.07 0.46 0.61 1	1.30 12.971 180.29 15.23 15 1.33% 2.7 47% 1.66 0.00 1.66 0	0.89 0.05 0.97 1.0 0.050 35.64 50.88 0.078 1	.58 0.93 0.23 0.80 1.07 1.0 0.038 3.77 57.4		2 9.0		0.231 6553 0.09% 2.00	0.65 0.03% 0.017 0.34	0.079 0.765 2.	2.58% 0.0042
18.865 5590.77 9.9 0.116 9.8 18.7 8.10 1.17% Sand-Silme Tailin 0.059 119.0 1.08 0.46 0.62 1	1.30 12.648 175.81 14.87 14 1.32% 2.7 47% 1.67 0.00 1.67 0	0.89 0.05 0.97 1.0 0.050 35.52 50.38 0.078 1	.57 0.93 0.22 0.80 1.07 1.0 0.038 3.83 56.9	90 0.097 3.30 2.44	2 9.0	6 500 1.8E-03 4.6E+02 3.5E-04 1	0.232 6537 0.10% 2.00	0.65 0.03% 0.017 0.34	0.079 0.765 2.	2.61% 0.0043
19.029 5590.60 14.0 0.163 13.9 13.3 5.75 1.17% sand-slime Tailin 0.059 119.0 1.09 0.47 0.62 1	1.29 17.870 248.39 20.88 21 1.27% 2.5 47% 1.68 0.00 1.68 0		.75 0.93 0.26 0.80 1.07 1.0 0.038 2.92 60.9	91 0.101 3.41 2.58	2 9.1	1 000 1.02 00 4.02 0.02 04	0.232 6521 0.10% 2.00	0.65 0.03% 0.017 0.34	0.079 0.765 2.	2.64% 0.0043
19.193 5590.44 13.6 0.284 13.5 11.7 5.08 2.09% Sand-Slime Tailin 0.059 119.0 1.10 0.47 0.63 1	1.28 17.279 240.18 20.18 20 2.28% 2.7 47% 1.69 0.00 1.69 0	0.88 0.05 0.96 1.0 0.049 37.38 57.56 0.085 1	.73 0.93 0.26 0.80 1.07 1.0 0.038 3.88 78.3		2 9.10		0.232 6506 0.10% 2.00	0.65 0.03% 0.017 0.34		2.67% 0.0044
19.357 5590.27 10.2 0.200 10.1 14.7 6.36 1.96% Sime Tailings 0.057 113.1 1.11 0.48 0.63 1	1.27 12.883 179.08 15.10 14 2.20% 2.8 71% 1.70 0.00 1.70 0	0.88 0.05 0.97 1.0 0.049 35.35 50.44 0.078 1	.58 0.93 0.22 0.80 1.06 1.0 0.038 4.70 70.9		2 9.2		0.484 5351 0.12% 2.00	0.65 0.03% 0.021 0.34	0.070 0.700 0.	8.17% 0.0052
19.521 5590.11 17.8 0.357 17.7 18.6 8.07 2.00% Sand Slime Tailin 0.059 119.0 1.12 0.48 0.64 1	1.25 22.210 308.72 25.96 26 2.14% 2.6 47% 1.71 0.00 1.71 0	0.88 0.06 0.96 1.0 0.049 39.41 65.37 0.094 1	.92 0.93 0.29 0.80 1.06 1.0 0.038 3.15 81.8		2 9.2		0 0.233 6476 0.10% 2.00			2.73% 0.0045
19.685 5589.95 22.3 0.302 22.2 25.3 10.96 1.35% Sand Slime Tailin 0.059 119.0 1.13 0.49 0.64 1 19.849 5589.76 22.1 0.259 21.8 57.2 24.79 1.17% Sand Slime Tailin 0.059 119.0 1.14 0.49 0.65 1	1.24 27.383 380.62 32.03 33 1.43% 2.4 47% 1.72 0.00 1.72 0 123 26 790 372 39 31 63 33 123% 2.4 47% 1.73 0.00 1.73 0	0.88 0.06 0.96 1.0 0.049 41.53 73.56 0.104 2 0.88 0.06 0.96 1.0 0.049 41.39 73.02 0.103 2	2.14 0.93 0.33 0.80 1.06 1.0 0.038 2.26 72.3 2.13 0.92 0.32 0.80 1.06 1.0 0.038 2.14 67.3		2 9.3		0.233 6460 0.07% 2.00			0.0031
19.849 5589.78 22.1 0.259 21.8 57.2 24.79 1.17% Sand Slime Tailin 0.059 119.0 1.14 0.49 0.65 1 20.013 5589.62 20.9 0.204 20.3 100.3 43.47 0.98% Sand Slime Tailin 0.059 119.0 1.15 0.50 0.65 1	1.23 26.790 372.39 31.63 33 1.23% 2.4 47% 1.73 0.00 1.73 0 1.23 24.850 345.41 29.75 30 1.03% 2.3 47% 1.74 0.00 1.74 0	0.88 0.06 0.96 1.0 0.049 41.39 73.02 0.103 2 0.88 0.06 0.96 1.0 0.049 40.74 70.49 0.100 2	2.13 0.92 0.32 0.80 1.06 1.0 0.038 2.14 67.1 2.06 0.92 0.31 0.80 1.06 1.0 0.038 2.08 62.0		2 9.3 2 9.4		0 0.234 6445 0.07% 2.00 0.234 6430 0.07% 2.00	0.65 0.03% 0.013 0.34 0.65 0.03% 0.013 0.34		1.93% 0.0032 1.95% 0.0032
20.177 5589.45 18.6 0.237 17.7 151.5 65.65 1.27% Sand Sime Tailin 0.059 119.0 1.16 0.50 0.65 1	1.23 21.715 301.84 26.57 27 1.36% 2.5 47% 1.74 0.00 1.74 0 1.23 21.715 301.84 26.57 27 1.36% 2.5 47% 1.75 0.00 1.75 0		.96 0.92 0.30 0.80 1.06 1.0 0.038 2.08 62.0		2 9.4		0.234 6430 0.07% 2.00			.98% 0.0032
20.341 5589.29 19.8 0.274 18.9 136.1 58.99 1.39% Sand Sime Tailin 0.059 119.0 1.17 0.51 0.66 1	1.22 23.028 320.09 27.95 28 1.47% 2.5 47% 1.76 0.00 1.76 0	0.87 0.06 0.96 1.0 0.048 40.10 68.05 0.097 2	01 0.92 0.31 0.80 1.05 1.0 0.038 2.53 70.3		2 9.5		0.235 6401 0.07% 2.00	0.65 0.03% 0.013 0.34		2.00% 0.0033
20.505 5589.13 25.1 0.237 24.5 96.6 41.86 0.95% Sand-Slime Tailin 0.059 119.0 1.18 0.51 0.66 1	1.20 29.354 408.02 34.93 36 0.99% 2.3 47% 1.77 0.00 1.77 0	0.87 0.06 0.96 1.0 0.048 42.55 77.49 0.109 2	.27 0.92 0.34 0.80 1.05 1.0 0.038 1.85 64.6	63 0.105 3.36 2.82	2 9.5	6 538 1.8E-03 5.3E+02 3.2E-04 1	0.235 6386 0.07% 2.00	0.65 0.03% 0.013 0.34	0.079 0.765 2.	2.02% 0.0033
20.669 5588.96 31.4 0.092 31.0 58.2 25.23 0.29% sand Tailings 0.062 123.5 1.19 0.52 0.67 1	1.18 36.693 510.03 43.12 45 0.30% 1.9 18% 1.78 0.00 1.78 0	0.87 0.07 0.95 1.0 0.048 33.11 76.23 0.108 2	25 0.92 0.38 0.80 1.05 1.0 0.038 1.24 53.3	32 0.094 2.99 2.62	2 9.6	1 538 1.9E-03 5.5E+02 3.1E-04	0.235 8055 0.10% 2.20	1.00 0.03% 0.002 0.34	0.079 0.765 0.	0.23% 0.0004
20.833 5588.80 32.9 0.194 32.7 35.6 15.43 0.59% Sand Tailings 0.062 123.5 1.20 0.52 0.67 1	1.17 38.397 533.72 44.90 47 0.61% 2.1 18% 1.79 0.00 1.79 0	0.87 0.07 0.95 1.0 0.048 33.57 78.47 0.111 2	2.31 0.92 0.39 0.80 1.05 1.0 0.038 1.39 62.3		2 9.6		0.236 8037 0.10% 2.20			0.24% 0.0004
20.997 5588.63 22.6 0.202 22.3 42.9 18.60 0.90% Sand-Slime Tailin 0.059 119.0 1.21 0.53 0.68 1	1.19 26.475 368.01 31.12 31 0.95% 2.3 47% 1.80 0.00 1.80 0	0.01 0.00 0.00 1.0 0.010 41.22 12.00 0.100 2	.14 0.91 0.32 0.80 1.05 1.0 0.038 1.97 61.3		2 9.7		0.236 6342 0.08% 2.00	0.00 0.0070 0.014 0.04		2.09% 0.0034
21.161 5588.47 21.0 0.114 20.8 20.1 8.70 0.54% Sand Slime Tailin 0.059 119.0 1.22 0.53 0.68 1	1.18 24.679 343.04 28.84 29 0.58% 2.2 47% 1.81 0.00 1.81 0		.06 0.91 0.31 0.80 1.05 1.0 0.038 1.76 50.1		2 9.7		0 0.236 6327 0.08% 2.00			2.12% 0.0035
21.325 5588.30 21.1 0.201 20.9 37.0 16.04 0.95% Sand-stime Tailin 0.059 119.0 1.23 0.54 0.69 1 21.489 5588.14 22.3 0.267 21.9 66.8 28.93 1.20% Sand-stime Tailin 0.059 119.0 1.24 0.54 0.69 1	1.18 24.625 342.29 28.92 29 1.01% 2.4 47% 1.82 0.00 1.82 0 1.17 25.657 356.63 30.37 30 1.27% 2.4 47% 1.83 0.00 1.83 0		2.06 0.91 0.31 0.80 1.05 1.0 0.038 2.13 61.4 1.12 0.91 0.32 0.80 1.04 1.0 0.038 2.26 68.3		2 9.8 [°] 2 9.8 [°]		0.237 6313 0.08% 2.00 0.237 6299 0.08% 2.00			2.14% 0.0035 2.16% 0.0036
21.469 5588.14 22.3 0.267 21.9 60.8 26.93 1.20% Sand-Sime Tailin 0.059 119.0 1.24 0.54 0.69 1 21.653 5587.98 18.5 0.419 18.0 91.4 39.59 2.26% Sand-Sime Tailin 0.059 119.0 1.25 0.55 0.70 1	1.17 25.657 356.63 30.37 30 1.27% 2.4 47% 1.83 0.00 1.83 0 1.17 21.059 292.72 25.24 25 2.42% 2.6 47% 1.84 0.00 1.84 0		.94 0.91 0.29 0.80 1.04 1.0 0.038 2.26 68.3		2 9.8		0.237 6299 0.08% 2.00			2.16% 0.0036
21.003 500.30 10.3 0.70 10.0 0.74 10.0 0.74 10.0 0.70 11.0 0.00 11.0 0.55 0.70 1	1.16 25.478 354.15 30.85 31 1.15% 2.4 47% 1.85 0.00 1.85 0	0.86 0.06 0.95 1.0 0.048 41.12 71.97 0.102 2	15 0.91 0.32 0.80 1.04 1.0 0.038 2.15 66.		2 9.9		0.238 6272 0.08% 2.00			2.21% 0.0036
21,981 5587.65 28.4 0.235 27.8 83.5 36.19 0.83% Sand Sime Tailin 0.059 119.0 1.27 0.56 0.71 1	1.15 31.904 443.46 37.75 38 0.87% 2.2 47% 1.86 0.00 1.86 0		42 0.91 0.35 0.80 1.04 1.0 0.038 1.70 64.		2 10.0		0.238 6258 0.08% 2.00			2.23% 0.0037
22.145 5587.48 22.2 0.322 21.0 195.5 84.71 1.45% Sand-Slime Tailin 0.059 119.0 1.28 0.57 0.71 1	1.15 24.097 334.94 29.62 29 1.54% 2.4 47% 1.87 0.00 1.87 0	0.86 0.06 0.95 1.0 0.047 40.69 70.30 0.100 2	.11 0.91 0.31 0.80 1.04 1.0 0.038 2.51 74.4	48 0.118 3.59 2.85	2 10.0	6 538 1.8E-03 5.3E+02 3.4E-04 1	0.238 6244 0.08% 2.00	0.65 0.03% 0.015 0.34	0.079 0.765 2.	2.26% 0.0037
22.309 5587.32 25.0 0.216 23.6 231.9 100.47 0.86% sand-Sime Tailin 0.059 119.0 1.29 0.57 0.72 1	1.14 26.878 373.60 33.13 33 0.91% 2.3 47% 1.88 0.00 1.88 0	0.86 0.06 0.95 1.0 0.047 41.92 75.06 0.106 2		32 0.103 3.09 2.67	2 10.1	1 538 1.8E-03 5.3E+02 3.4E-04 1	0.238 6231 0.08% 2.00	0.65 0.03% 0.015 0.34	0.079 0.765 2.	2.28% 0.0037
22.473 5587.16 25.7 0.237 24.6 172.5 74.75 0.92% Sand-Slime Tailin 0.059 119.0 1.30 0.58 0.72 1	1.13 27.896 387.75 33.82 34 0.97% 2.3 47% 1.89 0.00 1.89 0		2.28 0.90 0.34 0.80 1.04 1.0 0.038 1.90 64.4		2 10.10		0.239 6218 0.08% 2.00			2.30% 0.0038
22.638 5586.99 25.4 0.261 24.2 200.2 86.77 1.03% Sand-Slime Tailin 0.059 119.0 1.31 0.58 0.72 1	1.13 27.284 379.24 33.33 33 1.08% 2.3 47% 1.90 0.00 1.90 0		26 0.90 0.33 0.80 1.03 1.0 0.038 2.01 66.4	0.100 0.114	2 10.2		0.239 6204 0.09% 2.00	0.00 0.0070 0.010 0.01		2.33% 0.0038
22.802 5586.83 25.6 0.229 24.5 184.7 80.05 0.89% Sand Slime Tailin 0.059 119.0 1.32 0.59 0.73 1	1.12 27.506 382.34 33.45 33 0.94% 2.3 47% 1.91 0.00 1.91 0	0.85 0.06 0.95 1.0 0.047 42.03 75.49 0.107 2	.27 0.90 0.33 0.80 1.03 1.0 0.038 1.90 63.9		2 10.20		0.239 6191 0.09% 2.00	0.65 0.03% 0.015 0.34		2.35% 0.0039
22.966 5586.66 28.5 0.145 27.4 181.5 78.63 0.51% Sand-Sime Tailin 0.059 119.0 1.33 0.59 0.73 1 23.130 5586.50 30.4 0.223 29.5 150.3 65.13 0.73% Sand-Sime Tailin 0.059 119.0 1.33 0.60 0.74 1	1.12 30.592 425.22 37.00 37 0.53% 2.1 47% 1.92 0.00 1.92 0 1.11 32.742 455.12 39.24 39 0.77% 2.2 47% 1.93 0.00 1.93 0	0.85 0.06 0.95 1.0 0.047 43.28 80.28 0.113 2 0.85 0.06 0.95 1.0 0.047 44.06 83.30 0.117 2	2.42 0.90 0.35 0.80 1.03 1.0 0.038 1.50 55.4 2.51 0.90 0.36 0.80 1.03 1.0 0.038 1.61 63.3		2 10.3		0.240 6178 0.09% 2.00			2.38% 0.0039
23.130 5586.50 30.4 0.223 29.5 150.3 65.13 0.73% Sand-Slime Tailin 0.059 119.0 1.33 0.60 0.74 1 23.294 5586.34 35.2 0.314 34.0 190.1 82.37 0.89% Sand-Slime Tailin 0.059 119.0 1.34 0.60 0.74 1	1.11 32.742 455.12 39.24 39 0.77% 2.2 47% 1.93 0.00 1.93 0 1.10 37.465 520.76 45.03 46 0.93% 2.2 47% 1.94 0.00 1.94 0	0.85 0.06 0.95 1.0 0.047 44.06 83.30 0.117 2 0.85 0.07 0.94 1.0 0.046 46.09 91.13 0.129 2	2.51 0.90 0.36 0.80 1.03 1.0 0.038 1.61 63. 2.77 0.90 0.39 0.80 1.03 1.0 0.038 1.59 71.4		2 10.3 2 10.4		0 0.240 6165 0.09% 2.00 0.240 6152 0.09% 2.00	0.65 0.03% 0.016 0.34 0.65 0.03% 0.016 0.34		2.40% 0.0039 2.42% 0.0040
23.294 5586.34 35.2 0.314 34.0 190.1 82.37 0.89% Sand Sime failing 0.059 119.0 1.34 0.60 0.74 1 23.458 5586.17 38.3 0.271 37.3 170.9 74.04 0.71% Sand Tailings 0.062 123.5 1.35 0.61 0.75 1	1.10 37.465 520.76 45.03 46 0.93% 2.2 47% 1.94 0.00 1.94 0				2 10.4		0.240 6152 0.09% 2.00			0.0040
23.438 5586.17 36.3 0.271 37.3 170.9 74.04 0.71% sand failings 0.062 123.5 1.35 0.61 0.75 1 23.622 5586.01 38.4 0.271 37.3 171.7 74.40 0.71% sand failings 0.062 123.5 1.36 0.61 0.75 1	1.09 40.621 564.64 48.54 49 0.73% 2.1 18% 1.96 0.00 1.96 0		2.53 0.89 0.40 0.80 1.03 1.0 0.038 1.42 09.3		2 10.5		0.240 7765 0.12% 2.20	1.00 0.03% 0.002 0.34		0.31% 0.0005
23.786 5585.84 41.4 0.271 40.3 174.7 75.68 0.66% Sand Tailings 0.062 123.5 1.37 0.62 0.76 1	1.08 43.621 606.34 52.04 53 0.68% 2.0 18% 1.97 0.00 1.97 0	0.85 0.07 0.94 1.0 0.046 35.39 87.43 0.123 2			2 10.5		0.241 7732 0.12% 2.20			0.32% 0.0005
32.490 5577.14 Sand Tailings 0.062 123.5	2.50 0.02 2.48 1				13.2	1 594 1.9E-03 6.8E+02 3.6E-04	0 0.254 7027 0.12% 5.00	1.00 0.03% 0.005 0.34	0.079 0.765 0.	0.70% 0.0607
					-					-

	Data File: 13-52106_SP3-4N-BSC-CPT tdriss and Boulancer (2008) Location: White Mesa 2013 CPT Investigation Max. Horiz. Acceleration, Amaxig: 0.15 1.\.\.0.2.3.Field Data/2013 Field Investigation Max. Horiz. Acceleration, Amaxig: 0.15 Tailings Sand-Simes Magnitude Scaling Factor, MSF: 1.69 Tailings Sand-Simes Youd, et al (2001) 1.69 Tailings Simes Max. Horiz. Acceleration, Amaxig: 0.15 Interim Cover Earthquake Moment Magnitude, M: 5.5	5533.71 Water surface elevation at 1, (ft ams)) 0.50 Thickness of Erosion Protect 5578.71 Water surface elevation at 1 ₂ (ft ams)) 3.50 Thickness of High Compact 1.44 Scaling Factor for stress ration, r _m 7.15 Thickness of Random/Platfor 0.47 Volumetric Strain ratio for StressPecific Design Eart (fibes 94 Additional Stress due 16 Fiber) 3.40	Inmediately after Placement of Final Cover (ft amst) FINA tion Layer (rock mulch/topsoils) Immediately after placement Frosi Rooting Zone (ft) fater Storage's on Layer (ft) High mr Fill on on top of existing interim cover (ft) Platform I Cover Placement, Δ_{FC} (ps) Platform	Elev. At Top of Midpoint Elev. At Bottom Thicknes Unit Total Total Equipore Layer of Layer of sof Weight Bottom Midpoint Bottom Weight Stress at Weight Stress at Weight Stress at Bottom Pressure I LOVER (ft) (ft) Layer Layer Logo Layer Of Layer	Midpoint of Layer (tsf) Bottom Midpoint of Layer Depsile (tst, zt, dt, zt,	site Modulus, Modulus, Sector Gaussian (Sector Model (Sector Strain, Sector Strain, Sector Strain, Sector Strain, Sector Strain, Sector Sector Sector Design Consolidati Consolidati -03 4.8E+02 2.8E+05 11 0.058 46666 0.00% 1.20 0.80 0.04% 0.000 0.32 0.137 0.00% 0.000 -03 4.8E+02 2.8E+05 11 0.118 18830 0.00% 2.00 0.85 0.03% 0.000 0.32 0.137 0.00% 0.000 -03 4.8E+02 2.8E+05 11 0.152 1267 0.01% 0.85 0.03% 0.000 0.34 0.079 0.765 0.00% 0.0000 -03 4.6E+02 1.5E-04 11 0.178 9715 0.02% 2.00 0.85 0.03% 0.000 0.34 0.079 0.765 0.00% 0.0000 -03 4.6E+02 1.5E-04 11 0.178 9715 0.
	2013 CPT Data from ConeTec Total Loon End	CPT Data Interpretations Conditions at t1 Conditions at t			Wave Soil	TOTAL SEISMIC SETTLEMENT (FT): 0.623
	of CPT Elevation qt fs qc (u2) (u2) fs/qt determined Weight Weight Of CPT at time of C	PT CPT CN qc1 qc1 qc1 Resistance, (%) FC t ₁ at t ₁ t ₁ at t ₁	r _d C _o K _o K _a CSR (CRR)	r _d D _r f K _n K _a CSR (CRR) Avg	Liquefiable? at t ₁ , z ₁ V _s , p	sity Strain, Ven*(Gen Index, Strain, γw 15 Cycles, Design Consolidati
1 5002 5593.4 1 2.0 1 10 1 1.1 1 10 10 1 10 <th< td=""><td>Carbon Unit Unit Unit Unit <th< td=""><td>Image Image <th< td=""><td>a bit bit</td><td>Non-First None of a constraint of a co</td><td>openopenopenopenopenopen2II<!--</td--><td></td></td></th<></td></th<></td></th<>	Carbon Unit Unit Unit Unit <th< td=""><td>Image Image <th< td=""><td>a bit bit</td><td>Non-First None of a constraint of a co</td><td>openopenopenopenopenopen2II<!--</td--><td></td></td></th<></td></th<>	Image Image <th< td=""><td>a bit bit</td><td>Non-First None of a constraint of a co</td><td>openopenopenopenopenopen2II<!--</td--><td></td></td></th<>	a bit bit	Non-First None of a constraint of a co	openopenopenopenopenopen2II </td <td></td>	
16.896 5591.80 135 0.050 135 14.1 6.13 0.374 5andsime Tain 0.059 119.0 0.97 0.44 0.53 1 1.45 19.512 271.22 22.81 24 0.40% 2.3 47% 1.76 0.00 1.76 0 0.90 0.05 0.96 1.0 0.059 1.0 0.07 0.765 2.87% 0.0047	17.060 5591.64 14.2 0.052 14.1 14.4 6.25 0.37% Sand-Slime Tailin 0.059 119.0 0.98 0.45 0	.54 1 1.44 20.251 281.48 23.67 25 0.39% 2.2 47% 1.77 0.00 1.77 0	0.90 0.05 0.96 1.0 0.050 38.60 62.27 0.090 1.8	1 0.92 0.28 0.80 1.10 10 0.037 1.75 41.43 0.085 3.36 2.59 8 0.91 0.29 0.80 1.10 10 0.037 1.64 42.49 0.085 3.38 2.63	2 9.66 500 1.8E- 2 9.71 500 1.8E-	-03 4.6E+02 3.7E-04 10 0.235 6391 0.11% 2.00 0.65 0.03% 0.019 0.34 0.079 0.765 2.90% 0.0048

WHITE MESA TAILINGS REPOSITORY LIQUEFACTION AND SEISMIC	SETTLEMENT ANALYSES - 3-4N	Elev. at Elev. At Elev. At Top of Midpoint Bottom Thickn	Total Total Equil Pore Equil Pore Effective Effective Mi	lidpoi Shear Max Shear P = Plastici nt Wave Soil Strain Y _{eff} *(G _{enf} ty Shear	Threshhol Volumetri Volumetric Incrementa d Shear c Strain at Strain for I
Data File: 13-52106 SP3-4N-BSC-CPT Idriss and Boulanger (2008)	5606.00 Water surface elevation during CPT investigation (ft 5608.70 Ground Surface Elevation at ti			Pepth Velocity, Density Modulus, /Gmay) Index. Strain.	Strain, γ _{iv} 15 Cycles, Design Consolidati
Location: White Mesa 2013 CPT Investigation Max. Horiz. Acceleration, Amax/g: 0.15	5600.42 Water surface elevation at t ₀ (ft amsl) 5623.35 Ground Surface Elevation Imn	ediately after Placement of Final Cover (ft amsl) FINAL COVER (ft) (ft) Layer Layer		t ₁ , z ₁ V _s , ρ(tcf) G _{max} (tsf) (tsf) PI g ₁ g ₂ V (%) a	b (%) $\varepsilon_{c,15}$ (%) R c C _N Event, ε_v (%) on (ft)
		n Layer (rock mulch/topsoils) Immediately after pla Erosion Protection Layer ###### 5623.1 5622.85 0.1	0 0.055 110 0.028 0.014 0.00 0.00 0.028 0.014	0.08 508 1.7E-03 4.4E+02 3.0E-06 11 0.068 46696 0.00% 1.	20 0.80 0.04% 0.000 0.32 0.133 0.778 0.00% 0.0000
Tailings Sands Magnitude Scaling Factor, MSF: 1.69	5578.71 Water surface elevation at t ₂ (ft amsl) 3.50 Thickness of Water Storage/R	Dooting Zone (ft) /ater Storage/Rooting Zone Layer ###### 5621.1 5619.35 3.4	0 0.054 107 0.215 0.121 0.00 0.00 0.215 0.121	0.69 508 1.7E-03 4.3E+02 2.8E-05 11 0.118 18930 0.00% 2.	00 0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.0000
Tailings Sand-Slimes Youd, et al (2001)	3.50 Thickness of High Compaction		0 0.060 120 0.424 0.320 0.00 0.00 0.424 0.320 5 0.050 101 0.784 0.604 0.00 0.00 0.784 0.604	1.75 508 1.9E-03 4.8E+02 6.5E-05 11 0.152 12657 0.01% 0.	65 0.75 0.02% 0.000 0.34 0.079 0.765 0.00% 0.0000
Tailings Slimes Max. Horiz. Acceleration, Amax/g: 0.15		Fill on on top of existing interim cover (ft) Platform/Random Fill Layer ###### 5612.28 5608.70 7.1	5 0.050 101 0.784 0.604 0.00 0.00 0.784 0.604	3.38 508 1.6E-03 4.0E+02 1.5E-04 11 0.178 9715 0.02% 2.	00 0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.0000
Interim Cover Earthquake Moment Magnitude, M: 5.5	0.47 Volumetric Strain Ratio for Site-Specific Design Earl 1565.99 Additional Stress due to Final				
Cells Requiring User Input/Manipulation Magnitude Scaling Factor, MSF: 2.21	7.51 Equiv. Number of Uniform Strain Cycles, N 5578.71 Elevation of bottom of tailings			Seismic Settlement Analys	
	Interpretations Conditions at t ₁	Liquefaction Triggering Analyses			TOTAL SEISMIC SETTLEMENT (FT): 0.623
Depth Material Stress Pore Stress al Saturated	Normalized Normalize Type Total Pore Effective	Idriss & Boulanger (2008) Youd et al. (2	001)	Wave Soil Shear P = ty Shear	d Shear c Strain at Strain for I
at time Pw Pw Type (as Unit Unit at time Pressure time of at time of determined Wulder W	Penetration Ratio, F, Stress at Pressure Stress at Saturated	Cyclic Stress Ratio Cyclic Resistance Ratio Cyclic Stress Ratio		Pepth Velocity, Density Strain Verf (Gerr Index, Strain,	Strain, Yrv 15 Cycles, Design Consolidati
or CP1 Elevation qt is qc (u2) (u2) is/qt weight weight or CP1 at time or CP1 CP1 CP1 CP1	N qc1 qc1 qc1N Resistance, (%) FC t ₁ at t ₁ t ₁ at t ₁	r _d C _o K _o K _a CSR (CRR) r _d D _r f K _o K _a CSR	(Critic) 5 Elquenable?	tt ₁ , z ₁ V _s , ρ Modulus, /G _{max}) PI g ₁ g ₂ γ a	b (%) ε _{c-15} (%) R c C _N Event, ε _v (%) on (ft)
(ft) (ft amsi) TSF TSF TSF (ft) PSI (%) (tcf) (pcf) (tsf) (tsf) (tsf) 1=Yes	TSF MPa Qt % (tsf) (tsf) 1=Yes	M=7.5, Δqc _{1n} qc _{1n-cs} M=7.5, M=7.5	100 4-11-cs MP7.5, 100 1-165	m G _{max}	
0-140	010	sivetatim sivetatim FOS sivetati	sivetatm FoS 2=No	(ft/sec) (tcf) tsf tsf (%)	
	40 23.276 323.53 27.18 29 0.43% 2.2 47% 1.79 0.00 1.79 0 39 24.051 334.31 28.09 30 0.48% 2.2 47% 1.80 0.00 1.80 0	0.90 0.06 0.96 1.0 0.050 39.84 67.02 0.096 1.93 0.91 0.30 0.80 1.10 1.0 0.03			00 0.65 0.03% 0.019 0.34 0.079 0.765 2.96% 0.0049 00 0.65 0.03% 0.020 0.34 0.079 0.765 2.99% 0.0049
	39 24.051 334.31 28.09 30 0.48% 2.2 47% 1.80 0.00 1.80 0 38 24.003 333.64 28.03 30 0.52% 2.2 47% 1.81 0.00 1.81 0	0.90 0.06 0.96 1.0 0.050 40.15 68.24 0.097 1.96 0.91 0.31 0.80 1.09 1.0 0.03 0.89 0.06 0.96 1.0 0.050 40.13 68.16 0.097 1.97 0.91 0.31 0.80 1.09 1.0 0.03		9.81 500 1.8E-03 4.6E+02 3.8E-04 10 0.236 6348 0.11% 2. 9.86 500 1.8E-03 4.6E+02 3.8E-04 10 0.236 6334 0.11% 2.	00 0.65 0.03% 0.020 0.34 0.079 0.765 2.99% 0.0049 00 0.65 0.03% 0.020 0.34 0.079 0.765 3.02% 0.0050
17.716 5590.98 17.4 0.085 17.3 15.1 6.52 0.49% Sand-Silme Tailin 0.059 119.0 1.02 0.47 0.55 1 1.3 17.880 5590.82 16.7 0.082 16.7 15.2 6.57 0.49% Sand-Silme Tailin 0.059 119.0 1.03 0.47 0.56 1 1.3	38 22.974 319.34 26.83 28 0.52% 2.2 47% 1.81 0.00 1.81 0 38 22.974 319.34 26.83 28 0.52% 2.2 47% 1.82 0.00 1.82 0				00 0.65 0.03% 0.020 0.34 0.079 0.765 3.02% 0.0050
17.860 3590.82 10.7 0.062 10.7 15.2 0.57 0.49% Sandstime tain 0.059 119.0 1.03 0.47 0.50 1 1.3 18.044 5590.66 15.6 0.083 15.5 15.5 670 0.5% Sandstime tain 0.059 119.0 1.04 0.48 0.56 1 1.3	38 22.974 319.34 20.83 28 0.52% 2.2 47% 1.82 0.00 1.82 0 38 21.358 296.87 24.96 26 0.57% 2.3 47% 1.83 0.00 1.83 0				00 0.65 0.03% 0.020 0.34 0.079 0.765 3.05% 0.0050
18.208 559.049 155 0.082 154 158 6.83 0.55% Sandsiline Tatin 0.059 119.0 1.04 0.48 0.57 1 1.3	37 21.066 292.82 24.62 25 0.57% 2.3 47% 1.63 0.00 1.63 0	0.89 0.06 0.96 1.0 0.049 38.94 63.56 0.092 1.86 0.91 0.29 0.80 1.09 1.0 0.03		10.01 500 1.8E-03 4.6E+02 3.9E-04 10 0.237 6303 0.11% 2.	00 0.65 0.03% 0.020 0.34 0.079 0.785 3.09% 0.0051
18.372 5590.33 15.5 0.076 15.4 15.9 6.89 0.49% Sand Sime Tain 0.059 118.0 1.06 0.49 0.57 1 1.3	36 21.021 292.19 24.57 25 0.53% 2.3 47% 1.83 0.00 1.84 0				00 0.65 0.03% 0.021 0.34 0.079 0.765 3.15% 0.0052
	36 20.261 281.63 23.69 24 0.54% 2.3 47% 1.85 0.00 1.85 0	0.89 0.05 0.96 1.0 0.049 38.61 62.30 0.090 1.84 0.90 0.28 0.80 1.08 1.0 0.03			00 0.65 0.03% 0.021 0.34 0.079 0.765 3.18% 0.0052
18.701 5590.00 14.3 0.060 14.2 15.9 6.90 0.42% Sand-Slime Tailin 0.059 119.0 1.08 0.50 0.58 1 1.3	35 19.251 267.59 22.51 23 0.45% 2.3 47% 1.86 0.00 1.86 0	0.89 0.05 0.96 1.0 0.049 38.20 60.71 0.089 1.80 0.90 0.27 0.80 1.08 1.0 0.03	1.91 42.96 0.086 3.19 2.50 2		00 0.65 0.03% 0.021 0.34 0.079 0.765 3.21% 0.0053
18.865 5589.84 14.4 0.060 14.3 15.9 6.90 0.42% Sand-Slime Tailin 0.059 119.0 1.09 0.50 0.59 1 1.3	34 19.229 267.28 22.49 23 0.45% 2.3 47% 1.87 0.00 1.87 0	0.89 0.05 0.96 1.0 0.049 38.19 60.68 0.089 1.81 0.90 0.27 0.80 1.08 1.0 0.03	1.91 42.95 0.086 3.17 2.49 2	10.21 500 1.8E-03 4.6E+02 4.0E-04 10 0.238 6237 0.12% 2.	00 0.65 0.03% 0.021 0.34 0.079 0.765 3.24% 0.0053
19.029 5589.67 13.4 0.061 13.3 15.9 6.87 0.46% Sand-Slime Tailin 0.059 119.0 1.10 0.51 0.59 1 1.3	34 17.843 248.02 20.88 21 0.50% 2.3 47% 1.88 0.00 1.88 0	0.88 0.05 0.96 1.0 0.049 37.62 58.50 0.086 1.76 0.90 0.26 0.80 1.08 1.0 0.03	2.08 43.40 0.086 3.16 2.46 2	10.26 500 1.8E-03 4.6E+02 4.0E-04 10 0.239 6223 0.12% 2.	00 0.65 0.03% 0.021 0.34 0.079 0.765 3.28% 0.0054
19.193 5589.51 13.3 0.066 13.2 16.5 7.15 0.50% sand-Sime Tailin 0.059 119.0 1.11 0.51 0.60 1 1.3	33 17.561 244.10 20.56 20 0.54% 2.4 47% 1.89 0.00 1.89 0	0.88 0.05 0.96 1.0 0.049 37.51 58.07 0.086 1.75 0.90 0.26 0.80 1.08 1.0 0.03	2.16 44.45 0.087 3.17 2.46 2	10.31 500 1.8E-03 4.6E+02 4.0E-04 10 0.239 6210 0.12% 2.	00 0.65 0.03% 0.022 0.34 0.079 0.765 3.31% 0.0054
19.357 5589.34 13.3 0.073 13.2 16.6 7.18 0.55% sand-Stime Tailin 0.059 119.0 1.12 0.52 0.60 1 1.3	33 17.469 242.81 20.45 20 0.60% 2.4 47% 1.90 0.00 1.90 0	0.88 0.05 0.96 1.0 0.049 37.47 57.92 0.086 1.75 0.90 0.26 0.80 1.07 1.0 0.03	2.24 45.86 0.088 3.20 2.47 2	10.36 500 1.8E-03 4.6E+02 4.0E-04 10 0.239 6197 0.13% 2.	00 0.65 0.03% 0.022 0.34 0.079 0.765 3.34% 0.0055
19.521 5589.18 13.2 0.076 13.1 16.9 7.33 0.58% sand-Stime Tailin 0.059 119.0 1.13 0.52 0.61 1 1.3	32 17.192 238.98 20.13 20 0.63% 2.4 47% 1.91 0.00 1.91 0	0.88 0.05 0.96 1.0 0.049 37.36 57.49 0.085 1.75 0.90 0.26 0.80 1.07 1.0 0.03	2.31 46.52 0.089 3.20 2.47 2	10.41 500 1.8E-03 4.6E+02 4.0E-04 10 0.240 6184 0.13% 2.	00 0.65 0.03% 0.022 0.34 0.079 0.765 3.37% 0.0055
19.685 5589.02 13.3 0.078 13.2 17.3 7.51 0.59% Sand-Slime Tailin 0.059 119.0 1.14 0.53 0.61 1 1.3	31 17.260 239.92 20.21 20 0.64% 2.4 47% 1.92 0.00 1.92 0	0.88 0.05 0.96 1.0 0.049 37.39 57.60 0.085 1.75 0.89 0.26 0.80 1.07 1.0 0.03	2.32 46.87 0.089 3.19 2.47 2	10.46 538 1.8E-03 5.3E+02 3.5E-04 10 0.240 6171 0.09% 2.	00 0.65 0.03% 0.016 0.34 0.079 0.765 2.39% 0.0039
19.849 5588.85 14.4 0.075 14.3 17.5 7.57 0.52% Sand-Slime Tailin 0.059 119.0 1.15 0.54 0.61 1 1.3	30 18.534 257.63 21.69 22 0.57% 2.3 47% 1.93 0.00 1.93 0	0.88 0.05 0.96 1.0 0.049 37.91 59.60 0.087 1.80 0.89 0.27 0.80 1.07 1.0 0.03			00 0.65 0.03% 0.016 0.34 0.079 0.765 2.41% 0.0040
	28 21.877 304.09 25.58 26 0.50% 2.3 47% 1.94 0.00 1.94 0	0.88 0.06 0.95 1.0 0.048 39.27 64.85 0.093 1.93 0.89 0.29 0.80 1.07 1.0 0.033			00 0.65 0.03% 0.016 0.34 0.079 0.765 2.44% 0.0040
20.177 5588.52 20.3 0.100 20.2 18.0 7.79 0.49% Sand-Slime Tailin 0.059 119.0 1.17 0.55 0.62 1 1.2	26 25.566 355.37 29.86 31 0.52% 2.2 47% 1.95 0.00 1.95 0	0.87 0.06 0.95 1.0 0.048 40.77 70.63 0.100 2.09 0.89 0.32 0.80 1.07 1.0 0.03			00 0.65 0.03% 0.016 0.34 0.079 0.765 2.46% 0.0040
20.341 5588.36 21.7 0.131 21.6 18.0 7.79 0.60% Sand-Slime Tailin 0.059 119.0 1.18 0.55 0.63 1 1.2	25 27.037 375.81 31.57 33 0.64% 2.2 47% 1.96 0.00 1.96 0	0.87 0.06 0.95 1.0 0.048 41.37 72.94 0.103 2.15 0.89 0.32 0.80 1.07 1.0 0.03		10.66 538 1.8E-03 5.3E+02 3.6E-04 10 0.241 6119 0.09% 2.	00 0.65 0.03% 0.016 0.34 0.079 0.765 2.48% 0.0041
	24 28.112 390.75 32.82 34 0.71% 2.2 47% 1.97 0.00 1.97 0	0.87 0.06 0.95 1.0 0.048 41.81 74.63 0.105 2.20 0.89 0.33 0.80 1.06 1.0 0.03		10.71 538 1.8E-03 5.3E+02 3.6E-04 10 0.241 6107 0.09% 2.	00 0.65 0.03% 0.016 0.34 0.079 0.765 2.51% 0.0041
	24 28.492 396.03 33.26 34 0.78% 2.2 47% 1.98 0.00 1.98 0	0.87 0.06 0.95 1.0 0.048 41.97 75.22 0.106 2.22 0.89 0.33 0.80 1.06 1.0 0.03	1.10 00.12 0.000 0.00 2.01 2	10.76 538 1.8E-03 5.3E+02 3.6E-04 10 0.242 6094 0.09% 2.	00 0.65 0.03% 0.017 0.34 0.079 0.765 2.53% 0.0042
20.833 5587.87 23.6 0.180 23.5 18.7 8.09 0.76% Sand-Slime Tailin 0.059 119.0 1.21 0.57 0.64 1 1.2 20.997 5587.70 23.1 0.180 23.0 18.8 8.16 0.78% Sand-Slime Tailin 0.059 119.0 1.22 0.57 0.65 1 1.2	23 28.892 401.60 33.72 35 0.80% 2.2 47% 1.99 0.00 1.99 0	0.87 0.06 0.95 1.0 0.048 42.13 75.85 0.107 2.24 0.89 0.34 0.80 1.06 1.0 0.03 0.87 0.06 0.95 1.0 0.048 41.83 74.70 0.106 2.22 0.88 0.33 0.80 1.06 1.0 0.03			00 0.65 0.03% 0.017 0.34 0.079 0.765 2.56% 0.0042 00 0.65 0.03% 0.017 0.34 0.079 0.765 2.58% 0.0042
		0.87 0.06 0.95 1.0 0.048 41.83 74.70 0.106 2.22 0.88 0.33 0.80 1.06 1.0 0.03 0.87 0.06 0.95 1.0 0.048 42.05 75.55 0.107 2.24 0.88 0.33 0.80 1.06 1.0 0.03			00 0.65 0.03% 0.017 0.34 0.079 0.765 2.58% 0.0042 00 0.65 0.03% 0.017 0.34 0.079 0.765 2.61% 0.0043
21.101 5567.54 23.7 0.100 23.0 19.2 8.33 0.70% Sand-Sime Taim 0.059 119.0 1.23 0.58 0.55 1 1.2 29.990 5578.71 Sand-Sime Taim 0.059 119.0	22 28.895 398.86 33.50 34 0.80% 2.2 47% 2.01 0.00 2.01 0 2.54 0.02 2.52 1	0.07 0.00 0.30 1.0 0.040 42.00 73.30 0.107 2.24 0.88 0.33 0.80 1.06 1.0 0.03	1.70 30.94 0.099 3.30 2.80 2		00 0.65 0.03% 0.017 0.34 0.079 0.765 2.51% 0.0043
23.300 370.11 Sand-Sime Talin 0.039 119.0	2.34 0.02 2.32	1		13.01 334 1.02-03 0.32-02 3.02-04 10 0.237 3318 0.09% 2.	0.03 0.03/8 0.017 0.04 0.079 0.705 2.54% 0.2245

WHITE MESA TAILINGS REPOSITORY LIQUEFACTION AND SET Data File: 13-52106_SP3-SN-BSC-CPT Liriss and Boulancer (2008) Max Location: White Mesa 2013 CPT Investigation Max. Horiz. Acceleration, Amaxig: 0.15	5604.20 Water surface elevation during CPT investigation (ft at 5607.44 5599.16 Water surface elevation at t ₀ (ft amsi) 5623.62 5590.44 Water surface elevation at t ₁ (ft amsi) 0.50	Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl) Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after placement	Top of Layer Midpoint Bottom FliNAL COVER Unit (ft) Unit Layer Unit of Layer Unit Layer Unit Layer <thunit Layer <thunit Layer <t< th=""><th>Equil Pore Equil Pore Effective Effective ressure Pressure at Stress at at at Bottom Midpoint of Bottom Midpoint Midpoint Midpoint of Layer (Layer (Lsf) O Layer of Layer 0.028 0.012</th><th>at nt Wave Soil Strain Y_m**(G_m) ty Shear d Sh nt Depth Velocity, Density Modulus, // G_{max}) Index, Strain, St</th><th>Shhol Volumetri Incrementa tear CStrain at Ny 16 Cycles, Strain for Design Incrementa type Exp(%) R C Event, tx, (%) N(t) 0.04% 0.000 0.32 0.778 0.00% 0.0000</th></t<></thunit </thunit 	Equil Pore Equil Pore Effective Effective ressure Pressure at Stress at at at Bottom Midpoint of Bottom Midpoint Midpoint Midpoint of Layer (Layer (Lsf) O Layer of Layer 0.028 0.012	at nt Wave Soil Strain Y _m **(G _m) ty Shear d Sh nt Depth Velocity, Density Modulus, // G _{max}) Index, Strain, St	Shhol Volumetri Incrementa tear CStrain at Ny 16 Cycles, Strain for Design Incrementa type Exp(%) R C Event, tx, (%) N(t) 0.04% 0.000 0.32 0.778 0.00% 0.0000
Tailings Sands Magnitude Scaling Factor, MSF: 1.69 Tailings Sand-Slimes Youd, et al (2001) Youd, et al (2001) Tailings Slimes Max: Horiz, Acceleration, Amavig: 0.15 Interim Cover Earthquake Moment Magnitude, M: 5.5	5585.44 Water surface elevation at t ₂ (ft amst) 3.50 1.44 Scaling Factor for stress ration, r _m 8.68 0.47 Volumetric Strain Ratio for Site-Specific Design Earthq1720.10	Thickness of High Compaction Layer (ft) Thickness of Random/Platform Fill on on top of existing interim cover (ft)	Storage/Rooting Zone Layer ###### 5621.37 5619.62 3.50 0.054 107 0.215 0.12 High Compaction Layer ###### 5617.87 5616.12 3.50 0.060 120 0.424 0.32	21 0.00 0.00 0.215 0.12 20 0.00 0.00 0.424 0.32 43 0.00 0.00 0.861 0.64	121 0.69 568 1.7E-03 4.3E+02 2.8E-05 11 0.118 18930 0.00% 2.00 0.65 0 202 1.75 508 1.8E-03 4.8E+02 5.8E-05 11 0.152 2.6875 0.01% 0.65 0.65 0 333 3.61 508 1.8E-03 4.0E+02 1.8E-04 11 0.181 9468 0.02% 2.00 0.85 0	0.03% 0.000 0.34 0.079 0.765 0.00% 0.0000 0.02% 0.000 0.34 0.079 0.765 0.00% 0.0000 0.03% 0.000 0.34 0.079 0.765 0.00% 0.0000 0.03% 0.000 0.34 0.079 0.765 0.00% 0.0000
Cells Requiring User Input/Manipulation Magnitude Scaling Factor, MSF: 2.21 2013 CPT Data from ConeTec CPT I	7.51 Equiv. Number of Uniform Strain Cycles, N 5585.44 Data Interpretations Normalized Normalize Type	244 Elevation of bottom of tailings (liner) (ft amst) Conditions at t ₁ Conditions at t	Liquefaction Triggering Analyses Youd et al. (2001)		Seismic Settlement Analysis - Stewart et al	TOTAL SEISMIC SETTLEMENT (FT): 0.539
Depth Participation Processes Participation Stress Processes Staturated at time Pw Pw Pw Pw Unit Unit	Cone d Friction Index I Otal	Construction Construction Construction Cyclic Stress Ratio Cyclic Resistance R t1 at t1 rd Cq Kq Ka CSR (CF	Cyclic Stress Ratio RR) r _a D _r f K _a CSR (CRR)	Avg Liquefiable? FoS 1=Yes	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
10.170 5597-17 22.4 0.100 24.4 7.4 3.19 0.44% Seedemine 10 0.55 0.22 0.35 1 10.365 55967 0.16 0.46 7.2 0.17 Seedemine 10 0.55 0.22 0.35 1 10.469 5596.97 0.47 0.57 7.6 9.0 3.86 2.0% Since Tainge 0.057 11.31 0.50 0.23 0.36 1 10.867 5596.61 4.4 0.81 1.45 2.25 0.24 Since Tainge 0.057 11.31 0.60 0.24 0.37 1 11.186 5596.9 3.7 0.010 3.2 56.5 2.87 0.97 ISIN 0.60 0.24 0.38 1 11.487 5595.69 3.0 0.010 2.6 6.25 2.710 0.334 Since Tainge 0.057 11.31 0.66 0.27 0.40 1 11.487 5595.4 3.0 0.010<	170 18.326 254.73 21.39 1310 0.27% 0.7 51% 0.88 170 06.339 1339.11 1133 174 02.48 0.6 51% 0.88 170 06.339 1339.11 1133 174 02.44 0.6 51% 0.99 170 150.000 2007.44 175.36 1791 0.46% 0.9 51% 0.91 170 120.4450 284.182 144.84 1577 0.944.12 51% 0.93 170 120.323.394 380.18 175.8 120.35 133 1.54% 1.4 51% 0.93 170 23.3697 232.83 171.8 163.8 1.54% 1.6 51% 0.63 170 23.3697 233.84 22.53 113 154% 0.33 12.54% 10.3 170 13.4480 199.423 313 12.54% 10.3 12.54% 10.3 170 12.448.3	88 800 0.08 0.0 0.00 0.00 0.000 <td></td> <td>48.91 2 48.91 2 90.80 2 113.58 2 113.58 2 114.74 2 113.21 2 113.21 2 113.21 2 113.21 2 113.21 2 121.06 2 131.21 2 121.34 2 131.21 2 131.21 2 141.79 2 151.71 2 22.52 2 23.33 2 14.77.2 2 23.53 2 15.27 2 15.33 2 15.44 2 14.45 2 5.504 2 15.504 2 15.513 2 15.513 2 15.54 2 15.504 2 14.45 2</td> <td>50594166-05.54-0215.64110.1972200.0500.0551694166-035.54-0216.64110.1972200.0512000.0522000.0555.18694166-035.54-0216.64110.1082200.0212000.0550.0555.23594166-035.54-02116-04110.1081100.2022000.0550.0555.23594166-035.54-0217-64110.2011000.2012000.0550.0550.0555.24594166-035.54-0217-64110.20117000.0332.000.0560.0555.25594166-035.54-0217-64110.20117000.0332.000.0560.0565.25594166-035.54-0217-64110.20117000.0332.000.0560.0565.265.27-02126-041100.20117000.0332.000.0560.0565.265.27-02126-041100.20117000.0332.000.0560.0565.275.26126-041100.20117000.0332.000.0560.0565.28944166-033.27-022.66-01100.20117000.0332.000.0565.28944166-033.27-022.66-0</td> <td>0.000.300.770.7760.00%0.00000.340.770.7760.00%0.00000.340.770.7760.00%0.00000.340.770.7760.00%0.00000.340.770.7760.00%0.00000.350.7760.7760.00%0.00000.360.0770.7760.00%0.00000.360.0770.7760.00%0.00000.360.0770.7760.00%0.00000.360.0770.7760.00%0.00000.360.0770.7760.00%0.00000.360.0770.7760.00%0.00000.360.0770.7760.00%0.00000.360.0770.7760.00%0.00000.360.0770.7760.00%0.00000.360.0770.7760.00%0.00000.360.0770.7760.00%0.00000.360.0770.7760.00%0.00000.360.0770.7760.00%0.0000.360.0770.7760.00%0.0000.360.0770.7760.00%0.0000.360.0770.7860.04%0.00200.360.0770.7860.04%0.00210.360.0770.7860.04%0.00210.360.0770.7860.04%0.00210.360.0770.7860.4%</td>		48.91 2 48.91 2 90.80 2 113.58 2 113.58 2 114.74 2 113.21 2 113.21 2 113.21 2 113.21 2 113.21 2 121.06 2 131.21 2 121.34 2 131.21 2 131.21 2 141.79 2 151.71 2 22.52 2 23.33 2 14.77.2 2 23.53 2 15.27 2 15.33 2 15.44 2 14.45 2 5.504 2 15.504 2 15.513 2 15.513 2 15.54 2 15.504 2 14.45 2	50594166-05.54-0215.64110.1972200.0500.0551694166-035.54-0216.64110.1972200.0512000.0522000.0555.18694166-035.54-0216.64110.1082200.0212000.0550.0555.23594166-035.54-02116-04110.1081100.2022000.0550.0555.23594166-035.54-0217-64110.2011000.2012000.0550.0550.0555.24594166-035.54-0217-64110.20117000.0332.000.0560.0555.25594166-035.54-0217-64110.20117000.0332.000.0560.0565.25594166-035.54-0217-64110.20117000.0332.000.0560.0565.265.27-02126-041100.20117000.0332.000.0560.0565.265.27-02126-041100.20117000.0332.000.0560.0565.275.26126-041100.20117000.0332.000.0560.0565.28944166-033.27-022.66-01100.20117000.0332.000.0565.28944166-033.27-022.66-0	0.000.300.770.7760.00%0.00000.340.770.7760.00%0.00000.340.770.7760.00%0.00000.340.770.7760.00%0.00000.340.770.7760.00%0.00000.350.7760.7760.00%0.00000.360.0770.7760.00%0.00000.360.0770.7760.00%0.00000.360.0770.7760.00%0.00000.360.0770.7760.00%0.00000.360.0770.7760.00%0.00000.360.0770.7760.00%0.00000.360.0770.7760.00%0.00000.360.0770.7760.00%0.00000.360.0770.7760.00%0.00000.360.0770.7760.00%0.00000.360.0770.7760.00%0.00000.360.0770.7760.00%0.00000.360.0770.7760.00%0.0000.360.0770.7760.00%0.0000.360.0770.7760.00%0.0000.360.0770.7860.04%0.00200.360.0770.7860.04%0.00210.360.0770.7860.04%0.00210.360.0770.7860.04%0.00210.360.0770.7860.4%

WHITE MESA TAILINGS REPOSITORY LIQUEFACTION AND SEISM	MIC SETTLEMENT ANALYSES - 3-6N	Elev. at Elev. At Elev. At Elev. At Total Equil Pore Effective Effective Effective Effective Stress at Str	Midpoi Shear Max Shear P = Plastici Threshhol Volumetri Volumetri Incrementa nt Wave Soil Strain Ywi"(Gwi ty Shear d Shear Strain at Strain for I
Data File: 13-52106_SP3-6N-BSC-CPT Idriss and Boulanger (2008)	5604.20 Water surface elevation during CPT investigation (ft ar 5607.44 Ground Surface Elevation at time of CPT (ft ams)	Layer of Layer of s of Weight Weight Bottom of Midpoint at Bottom Midpoint of Bottom Midpoint	Depth Velocity, Density Modulus, / G _{max} , Index, Strain, Strain, Strain, V., 15 Cycles, Design Consolidati
Location: White Mesa 2013 CPT Investigation Max. Horiz. Acceleration, Amax/g: 0.15	5599.16 Water surface elevation at t ₀ (ft amsl) 5623.62 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl)	INAL COVER (ft) (ft) Layer Layer (ft) t (tcf) (pcf) Layer of Layer of Layer Layer (tsf) of Layer of Layer	at t ₁ , z ₁ V _s , p (tcf) G _{max} (tsf) PI g ₁ g ₂ Y (%) a b (%) E _{c-15} (%) R c C _N Event, E _v (%) on (ft)
A. V6.2.3 Field Data/2013 Field Investigation/Conetec Dat Earthquake Moment Magnitude, M: 5.5		rosion Protection Layer ##### 5623.37 5623.12 0.50 0.055 110 0.028 0.014 0.00 0.00 0.028 0.014	0.08 508 1.7E-03 4.4E+02 3.0E-06 11 0.068 46696 0.00% 1.20 0.80 0.04% 0.000 0.32 0.133 0.778 0.00% 0.0000
Tailings Sands Magnitude Scaling Factor, MSF: 1.69	5585.44 Water surface elevation at t ₂ (ft amsl) 3.50 Thickness of Water Storage/Rooting Zone (ft) /ater Storage/Rooting Zone (ft)	ge/Rooting Zone Layer ###### 5621.37 5619.62 3.50 0.054 107 0.215 0.121 0.00 0.00 0.215 0.121	0.69 508 1.7E-03 4.3E+02 2.8E-05 11 0.118 18930 0.00% 2.00 0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.0000
Tailings Sand-Silmes Youd, et al (2001)	3.50 Thickness of High Compaction Layer (ft)	High Compaction Layer ###### 5617.87 5616.12 3.50 0.060 120 0.424 0.320 0.00 0.00 0.424 0.320	1.75 508 1.9E-03 4.8E+02 6.5E-05 11 0.152 12657 0.01% 0.65 0.75 0.02% 0.000 0.34 0.079 0.765 0.00% 0.0000
Tailings Slimes Max. Horiz. Acceleration, Amax/g: 0.15	1.44 Scaling Factor for stress ration, r _m 8.68 Thickness of Random/Platform Fill on on top of existing interim cover (ft) Plat	orm/Random Fill Layer ###### 5611.78 5607.44 8.68 0.050 101 0.861 0.643 0.00 0.00 0.861 0.643	3.61 508 1.6E-03 4.0E+02 1.6E-04 11 0.181 9468 0.02% 2.00 0.65 0.03% 0.000 0.34 0.079 0.765 0.00% 0.0000
Interim Cover Earthquake Moment Magnitude, M: 5.5	0.47 Volumetric Strain Ratio for Site-Specific Design Earthq 1720.10 Additional Stress due to Final Cover Placement, Δσ _{FC} (psf)		
Cells Requiring User Input/Manipulation Magnitude Scaling Factor, MSF: 2.21	7.51 Equiv. Number of Uniform Strain Cycles, N 5585.44 Elevation of bottom of tailings (liner) (ft amsl)		Seismic Settlement Analysis - Stewart et al (2004)
	ata Interpretations Conditions at t ₁	Liquefaction Triggering Analyses	TOTAL SEISMIC SETTLEMENT (FT): 0.539
Depth Material Stress Pore Stress at Saturated	Normalized Normalized Type Total Pore Effective Idriss & Boulanger (2008)	Youd et al. (2001)	Wave Soil Shear P = ty Shear d Shear Strain at Strain for I
at time Pw Pw Type (as Unit Unit at time Pressure time of at time of	Penetration Ratio, F, Stress at Pressure Stress at Saturated Cyclic Stress Ratio Cyclic Resistance Ratio	Cyclic Stress Ratio	Depth Velocity, Density Strain Verr (Gerr Index, Strain, Strain, Yer 15 Cycles, Design Consolidati
of CPT Elevation qt fs qc (u2) (u2) fs/qt determined Weight Weight of CPT at time of CPT CPT CPT	CN qc1 qc1 qc1N Resistance, (%) ^{te} FC t ₁ at t ₁ t ₁ at t ₁ t ₁ at t ₁ r _d C _o K _o K _a CSR (CRR)	r _d D _r f K _a K _a CSR (CRR) Avg Liquefiable?	$ at t_1, z_1 V_s , \rho Modulus, G_{max}) PI g_1 g_2 \gamma a b (\%) \epsilon_{c-15}(\%) R c C_N Event, \epsilon_v(\%) on (ft) ($
(ft) (ft amsl) TSF TSF TSF (ft) PSI (%) (tcf) (pcf) (tsf) (tsf) (tsf) 1=Yes	TSF MPa Qt (tsf) (tsf) 1=Yes Aqc _{1n} qc _{1ncs} Mar,5,	M=7.5, Kc qc _{1n-cs} M=7.5, FoS 1=Yes	m G _{max}
0=No	0=No s∨=tabm	FoS sv=tatm FoS 2=No	(ft/sec) (tcf) tsf tsf (%)
17.388 5590.05 6.7 0.047 6.0 104.9 45.45 0.70% Sand-Slime Tailin 0.059 119.0 0.98 0.44 0.54 1 1.	1.44 8.687 120.75 11.19 11 0.82% 2.7 47% 1.84 0.01 1.83 1 0.90 0.05 0.97 1.0 0.050 34.22 45.41 0.073	1.45 0.90 0.19 0.80 1.10 1.0 0.036 3.97 44.45 0.087 3.47 2.46 2	10.23 500 1.8E-03 4.6E+02 3.9E-04 10 0.237 6300 0.12% 2.00 0.65 0.03% 0.021 0.34 0.079 0.765 3.15% 0.0052
17.552 5589.89 6.6 0.046 6.0 96.3 41.71 0.70% Sand-Slime Tailin 0.059 119.0 0.99 0.45 0.54 1 1.	1.43 8.544 118.76 10.92 10 0.82% 2.7 47% 1.85 0.02 1.83 1 0.90 0.05 0.97 1.0 0.050 34.13 45.05 0.073	1.45 0.90 0.19 0.80 1.10 1.0 0.037 4.06 44.36 0.087 3.44 2.44 2	10.28 500 1.8E-03 4.6E+02 3.9E-04 10 0.237 6293 0.12% 2.00 0.65 0.03% 0.021 0.34 0.079 0.765 3.18% 0.0052
17.716 5589.72 6.0 0.052 5.5 92.4 40.06 0.86% Slime Tailings 0.057 113.1 1.00 0.45 0.55 1 1.	1.42 7.782 108.16 9.99 9 1.03% 2.8 71% 1.86 0.02 1.84 1 0.89 0.05 0.97 1.0 0.051 33.57 43.56 0.072	1.42 0.90 0.18 0.80 1.09 1.0 0.037 4.73 47.21 0.089 3.50 2.46 2	10.33 500 1.8E-03 4.4E+02 4.1E-04 16 0.488 5185 0.14% 2.00 0.65 0.03% 0.024 0.34 0.079 0.765 3.72% 0.0061
17.880 5589.56 5.7 0.042 5.2 93.9 40.69 0.73% Slime Tailings 0.057 113.1 1.01 0.46 0.55 1 1.	1.41 7.283 101.24 9.42 9 0.89% 2.8 71% 1.87 0.03 1.84 1 0.89 0.04 0.97 1.0 0.051 33.37 42.79 0.071	1.40 0.90 0.18 0.80 1.09 1.0 0.037 4.73 44.60 0.087 3.38 2.39 2	10.38 500 1.8E-03 4.4E+02 4.2E-04 16 0.488 5180 0.14% 2.00 0.65 0.03% 0.025 0.34 0.079 0.765 3.75% 0.0062
18.044 5589.40 6.1 0.034 5.6 77.5 33.57 0.56% Slime Tailings 0.057 113.1 1.02 0.46 0.56 1 1.	1.41 7.873 109.44 9.93 9 0.67% 2.7 71% 1.88 0.03 1.85 1 0.89 0.05 0.97 1.0 0.051 33.55 43.48 0.072	1.41 0.90 0.18 0.80 1.09 1.0 0.037 4.15 41.21 0.084 3.25 2.33 2	10.43 500 1.8E-03 4.4E+02 4.2E-04 16 0.488 5175 0.15% 2.00 0.65 0.03% 0.025 0.34 0.079 0.765 3.79% 0.0062
18.208 5589.23 5.2 0.036 4.7 84.2 36.50 0.69% Slime Tailings 0.057 113.1 1.03 0.47 0.56 1 1.	1.40 6.570 91.32 8.48 7 0.86% 2.8 71% 1.89 0.04 1.85 1 0.89 0.04 0.97 1.0 0.051 33.04 41.53 0.070	1.38 0.89 0.17 0.80 1.09 1.0 0.037 5.14 43.60 0.086 3.29 2.33 2	10.48 500 1.8E-03 4.4E+02 4.2E-04 16 0.488 5171 0.15% 2.00 0.65 0.03% 0.025 0.34 0.079 0.765 3.83% 0.0063
18.372 5589.07 5.4 0.036 4.9 84.8 36.76 0.66% Slime Tailings 0.057 113.1 1.04 0.47 0.57 1 1.	1.39 6.824 94.85 8.78 8 0.82% 2.8 71% 1.90 0.04 1.85 1 0.89 0.04 0.97 1.0 0.051 33.15 41.93 0.070	1.38 0.89 0.17 0.80 1.09 1.0 0.037 4.92 43.24 0.086 3.25 2.32 2	10.53 500 1.8E-03 4.4E+02 4.2E-04 16 0.489 5166 0.15% 2.00 0.65 0.03% 0.025 0.34 0.079 0.765 3.87% 0.0063
	1.38 7.489 104.10 9.57 9 0.73% 2.8 71% 1.91 0.05 1.86 1 0.89 0.04 0.97 1.0 0.051 33.42 42.99 0.071	1.40 0.89 0.18 0.80 1.09 1.0 0.037 4.42 42.33 0.085 3.20 2.30 2	10.58 500 1.8E-03 4.4E+02 4.2E-04 16 0.489 5161 0.15% 2.00 0.65 0.03% 0.026 0.34 0.079 0.765 3.90% 0.0064
22.000 5585.44 Slime Tailings 0.057 113.1	2.10 0.10 2.00 1		11.64 538 1.8E-03 5.1E+02 4.0E-04 16 0.493 5008 0.13% 2.00 0.65 0.03% 0.022 0.34 0.079 0.765 3.37% 0.1167

Data File:	13-52106_SP3-8N-	BSC-CPT	Idris	WHITE MI		NGS REPOSI	TORY LIQUE	ACTION A	ND SEISM		Water surface		ring CPT inv	estigation (ft	5608.37	Ground Surfa	ace Elevati	on at time of CPT	(ft amsl)					E		v. At Elev. a point Botto aver of	m Thickne	s Unit U Weigh We		at Stress at	Pressure	Pressure at	Effective Effective Effective Stress at Stress at Stress Midg	ssat nt	Shear Wave Soi /elocity, Densi	
Location: \.\.\6.2.3 Field D	White Mesa 2013 ata\2013 Field Inve	CPT Investi	gation	Max. Horiz. A Earthquake M	cceleration	nitude, M:	0.15 5.5			5600.09 5595.24	Water surface Water surface	elevation at elevation at	t ₀ (ft amsl) t ₁ (ft amsl)		5623.82 0.50	Ground Surfa Thickness of	ace Elevati Erosion P	on Immediately aff otection Layer (ro	er Placemer ck mulch/top			Eros		ection Layer	(ft) (###### 56	ft) Laye	r Layer (f 32 0.50	t) t (tcf) (p 0.055	cf) Layer 110 0.0	r of Layer	of Layer 4 0.00	Layer (tsf) 0.00	of Layer of L 0.028	ayer at t ₁ , z ₁	Vs , ρ (to 508 1.7E-	cf) G _{max} (tsf) 03 4.4E+0
Tailings S Tailings S	and-Slimes		You	Magnitude S I, et al (2001)			1.69				Water surface				3.50	Thickness of	High Com	rage/Rooting Zone paction Layer (ft)				Hig	gh Compa	Zone Layer	##### 56	18.07 5616.3	32 3.50	0.060	107 0.2 120 0.4	24 0.32	0.00		0.424	0.121 0.69 0.320 1.75	508 1.7E- 508 1.9E-	03 4.8E+0
Tailings S Interim Co	ver			Earthqua	ake Momen	eration, Amax	M: 5.	15 .5		0.47		ain Ratio for	Site-Specific	Design Ear	1646.57	Additional Str	ress due to	Final Cover Place	ement, $\Delta \sigma_{FC}$		over (ft)	Platfon	rm/Randor	m Fill Layer	##### 56	12.35 5608.3	37 7.95	5 0.050	101 0.8	25 0.62	4 0.00	0.00	0.825	3.50	508 1.6E-	03 4.0E+0
2	uiring User Input/Ma 013 CPT Data from			Magn	itude scalir	ng Factor, MS	a Equi	Ellective	CPT Dat	7.51 a Interpretation	Equiv. Numbe	Normalized	Normalize	Type		Conditions	s at t ₁	ailings (liner) (ft an		driss & Boul	anger (2008)			Liquefa	ction Trigg	ering Analys	es ud et al. (20	01)			1	r	Ŧ			maximum
Depth at time of CPT Elevation	qt fs	Pw qc (u2)		Type (as		Unit at t	ess Pore ime Pressure CPT at time of	time of	at time of CPT	CN qc1	qc1 qc1	Cone Penetration	d Friction Ratio, F,	Index, I _c FC	Total Stress at t ₁	Pore Eff Pressure Str at t ₁	ress at Sa	dididu	clic Stress R K, Ka		Cyclic Resistan	ce Ratio (CRR)		r _d D _r	Cyclic Stre	ss Ratio	CSR		(CRR		Avg	Liquefiable?		Depth at t ₁ , z ₁	Wave Soil /elocity, Densi V ₅ , p	ity Strain
(ft) (ft amsl)		rsf (ft)			(tcf)	(pcf) (t		(tsf)	1=Yes 0=No	TSF	MPa	Q,		%	(tsf)	(tsf)		=Yes I=No		M=7.5, s'v=1atm	$\Delta q c_{1n} q c_{1n\text{-}cs}$	M=7.5,	FoS				M=7.5, s'v=1atm	Kc qc		n FoS	FoS	1=Yes 2=No		m	(ft/sec) (tcf)	G _{max}
0.164 5608.21 0.328 5608.04		4.6 1.7 22.0 2.8	0.73 0.8		0.050			0.01 0.02	0	1.70 7.837 1.70 37.315	108.93 9.1 518.68 43.3			1.4 51% 0.6 51%	0.83 0.84			0 1.00 0.0	4 1.00 1.0 7 1.00 1.0	0.058	33.52 42.65 45.54 88.92			.96 0.17 .96 0.38	0.80 2 0.80 2	.53 1.0 .20 1.0		1.00 9. 1.00 43		105.69	71.26 53.93	2 2		4.76 4.81	594 1.6E- 594 1.6E-	
0.492 5607.88 0.656 5607.71		41.1 4.2 59.4 4.7	2.05 0.6	% Interim Cover	0.050 0.050	100.7 0.	03 0.00	0.02 0.03	0		1 ###### 117.	40 1798	0.61%	0.7 51% 1.0 51%	0.85 0.86	0.00	0.86	0 1.00 0.1	9 1.00 1.0 2 1.00 1.0	0.058	58.84 140.12 71.52 188.92	0.721 12	2.47 0.	.96 0.63	0.69 2		0.015		.40 0.230	141.52	55.18 76.99	2 2		4.86 4.91	594 1.6E- 594 1.6E-	03 5.5E+0
0.820 5607.55 0.984 5607.39	69.7 0.402 6		1.66 0.5	% Interim Cover	0.050	100.7 0.	05 0.00	0.04	0	1.70 118.37	3 ###### 129. 1 ###### 137.	53 1404	0.58%	1.1 51% 1.0 51%	0.86 0.87	0.00 0	0.87	0 1.00 0.1	3 1.00 1.0 4 1.00 1.0	0.058	75.89 205.75 78.58 216.11	1.000 17	7.33 0.	.96 0.66	0.66 2	.63 1.0	0.016		.53 0.322	131.88	78.34 74.60	2 2		4.96 5.01	594 1.6E- 594 1.6E-	03 5.5E+0
1.148 5607.22 1.312 5607.06 1.476 5606.89	77.9 0.651 7	88.4 3.8 77.9 3.0 71.0 6.8		% Interim Cover	0.050	100.7 0.	07 0.00	0.06 0.07 0.07	0	1.70 132.464	4 ###### 135. 4 ###### 153. 3 ###### 140	89 1178	0.84%	1.3 51% 1.2 51% 1.3 51%	0.88 0.89 0.90	0.00 0	0.89	0 1.00 0.1	4 1.00 1.0 7 0.99 1.0 5 0.99 1.0	0.057	77.74 212.88 84.32 238.21 79.57 219.92	1.000 17	7.39 0.	.96 0.67 .96 0.72 .96 0.68	0.64 2	.48 1.0 .51 1.0 .31 1.0	0.017	1.00 135 1.00 153 1.00 140	0.419	128.81	63.04 73.10 54.79	2		5.06 5.11 5.16	594 1.6E- 594 1.6E- 594 1.6E-	03 5.5E+0
1.640 5606.73 1.804 5606.57	61.8 0.871 6	6.0 70.3 5.1	2.61 1.4	% Interim Cover	0.050	100.7 0.	08 0.00	0.08	0	1.70 104.94	1 ###### 121. 3 ###### 138.	96 747	1.41%	1.5 51% 1.6 51%	0.91	0.00 0	0.91	0 1.00 0.1	3 0.99 1.0 5 0.99 1.0	0.057	73.12 195.08 79.04 217.87	0.917 15	5.97 0.		0.68 2	.11 1.0	0.020		.96 0.249	61.23	38.60 45.54	2		5.21	594 1.6E- 594 1.6E-	03 5.5E+0
1.968 5606.40 2.133 5606.24	106.9 2.471 1	06.9 8.4 99.4 11.5			0.050	100.7 0. 100.7 0.		0.10 0.11	0) ###### 211. 7 ###### 196.			1.6 51% 1.7 51%	0.92 0.93				0 0.98 1.0 5 0.98 1.0		104.41 315.52 99.25 295.67				0.60 2			1.00 210 1.07 210			111.50 103.64	2 2		5.31 5.36	594 1.6E- 594 1.6E-	
2.297 5606.07 2.461 5605.91	68.6 2.531 6	03.6 6.8 08.6 1.4	0.62 3.69	% Interim Cover		100.7 0.	12 0.00	0.12 0.12	0	1.70 116.569	5 ###### 184. 9 ###### 135.	41 552	3.70%	1.8 51% 1.9 51%	0.94 0.95	0.00 0	0.95	0 1.00 0.1	2 0.98 1.0 4 0.99 1.0	0.057	95.17 279.96 77.84 213.24	1.000 17	7.59 0.	.96 0.67	0.66 1	.20 1.0 .92 1.0	0.022		5.03 1.000	164.46	96.91 91.02	2 2		5.41 5.46	594 1.6E- 594 1.6E-	03 5.5E+0
2.625 5605.75 2.789 5605.58 2.953 5605.42	99.4 3.003 9	95.3 9.0 99.4 5.2 96.2 12.2	2.27 3.02	% Interim Cover		100.7 0. 100.7 0. 100.7 0	14 0.00	0.13 0.14 0.15	0	1.70 168.912	3 ###### 188. 2 ###### 196. 3 ###### 190	25 707	3.03%	1.8 51% 1.8 51% 1.9 51%	0.96 0.96 0.97	0.00 0	0.96	0 0.99 0.2	3 0.98 1.0 5 0.97 1.0 4 0.97 1.0	0.056	96.38 284.61 99.19 295.43 97.01 287.04	1.000 17	7.90 0.		0.60 2	.10 1.0 .07 1.0 .01 1.0	0.020	1.08 202 1.11 218 1.17 221	1.000	145.22	86.02 81.56 77.56	2 2		5.51 5.56 5.61	594 1.6E- 594 1.6E- 594 1.6E-	03 5.5E+0
3.117 5605.25 3.281 5605.09	92.1 3.557 9	96.2 12.2 92.0 12.7 90.6 37.5	5.51 3.8	% Interim Cover	0.050		16 0.00	0.15 0.16 0.16	0	1.70 156.45	7 ###### 190. 1 ###### 181. 7 ###### 159.	87 586	3.87%	1.9 51% 1.9 51% 2.0 71%	0.97 0.98 0.99	0.00 0	0.98	0 0.99 0.2	4 0.97 1.0 2 0.97 1.0 7 0.98 1.0	0.056	94.14 276.01 85.67 245.30	1.000 17	7.92 0.	.96 0.78	0.61 1	.94 1.0 .83 1.0	0.022		1.000	130.04	73.98 71.28	2		5.66 5.71	495 1.6E- 495 1.6E-	03 3.8E+0
3.445 5604.93 3.609 5604.76		21.9 40.5	17.53 2.12	% Sand Tailings	0.051	102.8 0.	17 0.00	0.17	0	1.61 195.753	3 ###### 227. 3 ###### 207.	83 708	2.12%	1.7 18% 1.7 47%	1.00 1.01	0.00	1.00	0 0.99 0.3	0 0.96 1.0 9 0.96 1.0	0.055	80.33 308.16 102.97 310.17	1.000 18	8.24 0.	.96 0.87	0.60 1	.90 1.0 .88 1.0	0.022		.08 1.000	118.64	68.44 66.67	2		5.76	495 1.6E- 495 1.8E-	03 3.9E+0
3.773 5604.60 3.937 5604.43	78.1 1.653 7 66.3 1.592 6	6.2 9.0	3.89 2.40	% Sand-Slime Tai Sand-Slime Tai	iin 0.059	119.0 0.	20 0.01	0.18 0.19	1 1	1.70 112.540	2 ###### 154.) ###### 130.	82 353	2.41%	1.8 47% 1.8 47%	1.01 1.02	0.00	1.02	0 0.99 0.1	7 0.97 1.0 4 0.98 1.0	0.056	84.38 238.58 76.18 207.00	1.000 17	7.92 0.	.95 0.66	0.67 1	.74 1.0 .66 1.0	0.025	1.14 149		42.84	30.38	2 2		5.86 5.91	495 1.8E- 495 1.8E-	03 4.5E+0
4.101 5604.27 4.265 5604.10	57.7 1.714 5 99.5 1.694 9	9.3 20.2	8.74 1.70	% Sand-Slime Tai % Sand Tailings	0.062	123.5 0.	22 0.02	0.19 0.20	1	1.66 164.464	###### 113. # ###### 191.	26 505	1.71%	2.0 47% 1.6 18%	1.03 1.04	0.00	1.04	0 0.99 0.24	2 0.98 1.0 4 0.95 1.0	0.054	70.26 184.19 70.98 262.24	1.000 18	8.38 0.		0.60 1	.59 1.0 .80 1.0	0.023	1.26 143 1.00 190	.83 1.000	104.15	24.29 61.26	2 2		5.96 6.01	495 1.8E- 495 1.9E-	03 4.7E+0
4.429 5603.94 4.593 5603.78 4.757 5603.61	96.3 1.854 9 87.1 1.742 8 81.0 1.555 8		4.55 2.00				24 0.04	0.20 0.21 0.21	1	1.70 147.593	5 ###### 185. 3 ###### 171. 2 ###### 159.	55 421	2.01%	1.7 18% 1.7 47% 1.7 47%	1.05 1.06 1.07	0.00	1.06	0 0.98 0.1	2 0.95 1.0 9 0.96 1.0 7 0.96 1.0	0.055	69.55 255.20 90.47 262.02 86.41 246.39	1.000 18	8.32 0.	.95 0.76	0.62 1	.77 1.0 .72 1.0 .67 1.0	0.024	1.07 182		99.36	59.99 58.84 57.75	2 2 2		6.06 6.11 6.16	495 1.9E- 495 1.8E- 495 1.8E-	03 4.5E+0
4.921 5603.45 5.085 5603.28	82.4 1.088 8	32.4 10.5	4.56 1.3	% Sand Tailings	0.062	123.5 0. 123.5 0.	26 0.05	0.21	1	1.70 139.914	1 ###### 162. 7 ###### 159.	63 381	1.32%	1.6 18% 1.7 18%	1.08	0.00	1.08	0 0.98 0.1	7 0.96 1.0 B 0.96 1.0 7 0.96 1.0	0.054	63.67 226.30 62.87 222.40	1.000 18	8.36 0.		0.63 1	.66 1.0 .64 1.0	0.025	1.00 162	.63 1.000	94.99	56.67 55.63	2		6.21	495 1.8E- 495 1.9E- 495 1.9E-	03 4.7E+0
5.249 5603.12 5.413 5602.96	70.7 1.164 7	70.7 9.2 85.1 8.1	3.98 1.6 3.51 1.14	Sand Tailings Sand Tailings	0.062	123.5 0. 123.5 0.	28 0.06	0.23	1	1.70 120.105	5 ###### 139. 3 ###### 163.	61 312	1.65%	1.7 18% 1.6 18%	1.10 1.11	0.00	1.10	0 0.98 0.1	5 0.96 1.0 8 0.95 1.0	0.055	57.78 197.39 63.86 227.26	1.000 18	8.30 0.	.95 0.68	0.66 1	.58 1.0 .63 1.0	0.027	1.06 148	.48 0.384	34.93	26.61 53.71	2		6.31 6.36	495 1.9E- 495 1.9E-	03 4.7E+0
5.577 5602.79 5.741 5602.63	64.0 0.689 6 47.9 0.475 4	7.9 3.6		% Sand Tailings	0.062		31 0.07	0.24 0.24	1 1	1.70 81.396	7 ###### 126. ###### 94.9	8 198	1.00%	1.6 18% 1.7 18%	1.12 1.14	0.00	1.14	0 0.98 0.1	3 0.96 1.0 0 0.97 1.0	0.055	54.42 180.88 46.27 140.85	0.235 4	1.28 0.	.95 0.56	0.72 1	.52 1.0 .43 1.0	0.029		.70 0.167	14.22	16.71 9.25	2 2		6.41 6.46	495 1.9E- 495 1.9E-	03 4.7E+0
5.905 5602.46 6.069 5602.30	39.0 0.287 3	40.9 2.7 39.0 2.6	1.11 0.74	% Sand Tailings	0.062	123.5 0.	33 0.08	0.25 0.25	1 1	1.70 69.462 1.70 66.317	921.81 77.0	15 154	0.74%	1.7 18% 1.7 18%	1.15 1.16	0.00	1.16	0 0.98 0.0 0 0.98 0.0	9 0.97 1.0	0.055	42.72 123.43 41.79 118.84	0.177 3	3.22 0.	.95 0.51	0.75 1	.38 1.0 .37 1.0	0.031	1.03 83 1.03 79	.07 0.126	10.32	7.28 6.77	2 2		6.51 6.56	495 1.9E- 495 1.9E-	03 4.7E+0
6.234 5602.14 6.398 5601.97 6.562 5601.81	40.0 0.355 4	0.0 2.0 0.0 2.8 0.0 3.0	1.20 0.89	% Sand Tailings	0.062 0.062 0.062		35 0.09	0.26 0.26 0.27	1	1.70 67.915	944.25 78.9 944.02 78.9 944.02 78.9	1 152	0.90%	1.7 18% 1.7 18% 1.8 18%	1.17 1.18 1.19	0.00	1.18	0 0.97 0.0	9 0.97 1.0 9 0.97 1.0 9 0.97 1.0	0.055	42.27 121.19 42.26 121.18 42.26 121.18	0.182 3	3.33 0.	.95 0.51	0.74 1	.36 1.0 .36 1.0 .35 1.0	0.031	1.05 83 1.07 84 1.09 85	.14 0.135	5 10.68	7.03 7.00 7.04	2 2 2		6.61 6.66 6.71	495 1.9E- 495 1.9E- 495 1.9E-	03 4.7E+0
6.726 5601.64 6.890 5601.48		2.9 3.4	1.47 0.96	% Sand Tailings		123.5 0.	37 0.10	0.27	1	1.70 72.998		2 157	0.97%	1.8 18% 1.8 18%	1.20	0.00	1.20	0 0.97 0.0	9 0.97 1.0 9 0.97 1.0 9 0.97 1.0	0.054	43.77 128.60 43.90 129.20	0.199 3	8.66 0.		0.73 1	.36 1.0 .35 1.0	0.031	1.09 85	.07 0.150	11.42	7.54 7.60	2		6.76	495 1.9E- 495 1.9E- 495 1.9E-	03 4.7E+0
7.054 5601.32 7.218 5601.15		39.0 3.6	1.56 1.07	% Sand-Slime Tai	iin 0.059	119.0 0.	39 0.11	0.28	1	1.70 66.249	920.86 76.9 831.78 69.9	9 138	1.08%	1.8 47% 1.8 47%	1.22	0.00	1.22	0 0.97 0.0	9 0.97 1.0 8 0.97 1.0	0.054	57.30 134.29 54.69 124.23	0.215 3	8.95 0.	.95 0.51	0.75 1	.33 1.0 .30 1.0	0.031	1.13 86	.86 0.141	10.35	7.15 6.25	2		6.86	495 1.8E- 495 1.8E-	03 4.5E+0
7.382 5600.99 7.546 5600.82		32.9 3.5 30.0 3.5	1.51 0.73	% Sand-Slime Tai		119.0 0.	42 0.13	0.29 0.29	1 1	1.70 55.845 1.70 51.051	709.61 59.3	4 101		1.8 47% 1.8 47%	1.24 1.24			0 0.97 0.0	8 0.97 1.0 8 0.97 1.0	0.054	53.06 117.97 51.11 110.45	0.161 2	2.96 0.	.95 0.44	0.78 1	.29 1.0 .27 1.0	0.033	1.10 71 1.13 66	.87 0.108	7.55	5.66 5.26	2 2		6.96 7.01	495 1.8E- 495 1.8E-	03 4.5E+0
7.710 5600.66 7.874 5600.50	19.6 0.239 1		2.68 1.2	% Sand-Slime Tai	iin 0.059	119.0 0.	44 0.14	0.30	1	1.70 33.269		2 63	1.25%	1.9 47% 2.1 47%	1.25	0.00	1.26	0 0.96 0.0	7 0.97 1.0 6 0.98 1.0	0.054	49.35 103.66 43.88 82.60	0.116 2	2.14 0.	.95 0.36	0.80 1	.25 1.0 .23 1.0	0.034	1.21 65 1.50 58	.23 0.098	6.69	5.04 4.41	2 2		7.06	495 1.8E- 495 1.8E-	03 4.5E+0
8.038 5600.33 8.202 5600.17 8.366 5600.00	18.1 0.197 1 23.6 0.205 2 25.6 0.288 2		4.48 1.09 9.32 0.87 6.17 1.12	% Sand-Slime Tai	iin 0.059		46 0.15	0.31 0.31 0.32	1	1.70 30.651 1.70 39.865		7 74	0.89%	2.1 47% 2.0 47% 2.0 47%	1.27 1.28 1.29	0.00	1.28	0 0.96 0.0	6 0.98 1.0 7 0.97 1.0 7 0.97 1.0	0.054	42.83 78.56 46.63 93.20 48.01 98.49	0.132 2	2.43 0.		0.80 1	23 1.0 22 1.0 23 1.0	0.034	1.51 54 1.28 59 1.34 67	.48 0.100	6.57	4.19 4.50 4.83	2 2 2		7.16 7.21 7.26	495 1.8E- 495 1.8E- 495 1.8E-	03 4.5E+0
8.530 5599.84 8.694 5599.68	29.3 0.323 2		3.65 1.10	% Sand-Slime Tai	iin 0.059	119.0 0.	48 0.16	0.32	1		690.94 57.8	14 89		2.0 47% 2.0 47% 1.8 47%	1.30	0.00	1.30		8 0.97 1.0		50.59 108.42 51.58 112.26	0.157 2	2.92 0.	.94 0.44	0.78 1	.24 1.0 .24 1.0	0.034	1.27 73	.69 0.117	7.52	5.22 5.03	2		7.31	495 1.8E- 495 1.8E-	03 4.5E+0
8.858 5599.51 9.022 5599.35		32.7 11.2	3.11 0.72 4.85 0.8	% Sand-Slime Tai Sand-Slime Tai	iin 0.059	119.0 0.	51 0.17	0.33 0.34	1 1	1.70 55.964 1.70 55.573	777.90 65.0 772.46 64.0		0.90%	1.8 47% 1.9 47%	1.32 1.33				8 0.97 1.0 8 0.96 1.0		53.13 118.22 52.99 117.67	0.175 3	3.27 0.	.94 0.46	0.77 1	25 1.0 24 1.0	0.033	1.18 76	.56 0.122	2 7.50	5.30 5.38	2 2		7.41 7.46	495 1.8E- 495 1.8E-	03 4.5E+0
9.186 5599.18 9.350 5599.02		9.8 8.8		% Sand-Slime Tai	iin 0.059	119.0 0.	53 0.18	0.34 0.35	1 1	1.70 50.575		15 85	1.30%	2.0 47% 2.0 47%	1.34 1.35	0.00	1.35	0 0.96 0.0	8 0.97 1.0 8 0.97 1.0	0.053	52.00 113.86 50.94 109.79	0.159 2	2.99 0.		0.78 1	.23 1.0 .22 1.0	0.034	1.35 79	.72 0.127	7.63	5.36 5.31	2 2		7.51 7.56	495 1.8E- 460 1.8E-	03 3.9E+0
9.514 5598.86 9.678 5598.69 9.842 5598.53	21.5 0.318 2	21.5 11.1	4.80 1.48	Sand-Slime Tai Sand-Slime Tai Sand-Slime Tai	iin 0.059	119.0 0.	55 0.19	0.35 0.35 0.36	1		605.16 50.0 507.10 42.9 384.93 32.2	1 59	1.52%	2.1 47% 2.2 47% 2.2 47%	1.36 1.37 1.38	0.00	1.37	0 0.95 0.0	7 0.97 1.0 7 0.97 1.0 6 0.97 1.0	0.053	48.08 98.77 45.21 87.72 41.63 73.92	0.124 2	2.31 0.	.94 0.41 .94 0.38 .94 0.33	0.80 1	.20 1.0 .19 1.0 .19 1.0	0.035	1.53 77 1.67 70 1.66 53	.98 0.113	6.62	4.96 4.47 3.70	2 2 2		7.61 7.66 7.71	460 1.8E- 460 1.8E- 460 1.8E-	03 3.9E+0
9.842 5598.53 10.006 5598.36 10.170 5598.20	16.4 0.157 1 14.2 0.105 1 15.4 0.103 1	14.1 11.9		% Sand-Slime Tai	iin 0.059	119.0 0. 119.0 0. 119.0 0.	57 0.20	0.36	1	1.70 24.004	333.66 28.0 363.90 30.4	3 37	0.77%	2.2 47% 2.2 47% 2.1 47%	1.38 1.39 1.40	0.00		0 0.95 0.0	6 0.97 1.0	0.053	41.03 73.92 40.13 68.16 41.00 71.49	0.097 1	.82 0.	.94 0.33 .94 0.31 .94 0.32	0.80 1	.19 1.0	0.035	1.66 46	.45 0.089	5.06	3.44 3.46	2		7.76	460 1.8E- 460 1.8E- 460 1.8E-	03 3.9E+0
10.335 5598.04		6.1 4.8	2.09 0.79	% Sand-Slime Tai	iin 0.059	119.0 0. 119.0 0.	59 0.21	0.37	1	1.70 27.370	380.44 31.8 341.22 28.9	15 42	0.82%	2.2 47% 2.3 47%	1.41	0.00	1.41	0 0.95 0.0	6 0.97 1.0	0.053	41.47 73.32 40.33 68.92	0.104 1	1.95 0.	.94 0.33 .94 0.31	0.80 1	.18 1.0	0.035	1.60 50	.94 0.092	5.14	3.54 3.56	2		7.86	460 1.8E- 460 1.8E-	03 3.9E+0
10.827 5597.54	14.4 0.178 1 16.9 0.242 1	6.8 10.1	4.39 1.44	% Sand-Slime Tai	iin 0.059 iin 0.059	119.0 0. 119.0 0.	61 0.22 62 0.23	0.38 0.39	1 1	1.70 24.446 1.70 28.560	339.80 28. 396.98 33.	i0 36 i0 42	1.49%	2.3 47%	1.44	0.00	1.44	0 0.95 0.0 0 0.95 0.0	6 0.97 1.0 6 0.97 1.0	0.053	40.30 68.80 41.98 75.27	0.098 1.	1.85 0. 2.01 0.	.94 0.31 .94 0.33	0.80 1 0.80 1	.18 1.0 .17 1.0	0.035 0.035		.37 0.107	5.76	3.60 3.88	2 2		7.96 8.01	460 1.8E- 460 1.8E-	03 3.9E+0
11.155 5597.22	15.0 0.248 1 12.9 0.198 1	2.8 12.5	5.43 1.5	% Sand-Slime Tai	iin 0.059	119.0 0.	64 0.24	0.40	1	1.70 21.726	351.85 29.9 301.99 25.3	9 31	1.62%	2.4 47%	1.46	0.00	1.46	0 0.94 0.0	6 0.97 1.0	0.053	40.66 70.19 39.21 64.59	0.093 1	1.76 0.	.94 0.29	0.80 1	.17 1.0	0.035 0.035	2.50 63	.39 0.104	5.44	3.86 3.60	2 2		8.06 8.11	460 1.8E- 460 1.8E-	03 3.9E+0
11.483 5596.89		1.5 23.8	10.31 1.14	% Sand-Slime Tai	iin 0.059	119.0 0.	66 0.25	0.40 0.41 0.41	1	1.70 19.567	271.98 22.9	2 27	1.21%	2.5 47% 2.4 47%	1.48	0.00	1.48	0 0.94 0.0	5 0.97 1.0	0.053	38.35 61.28 38.37 61.39 39.02 63.88	0.089 1	I.69 0.	.94 0.28 .94 0.28	0.80 1	.16 1.0	0.035	2.39 54		5 4.90	3.45 3.30	2 2 2		8.16 8.21	460 1.8E- 460 1.8E-	03 3.9E+0
11.811 5596.56 11.975 5596.40		5.4 20.6	8.94 1.28	% Sand-Slime Tai	iin 0.059	119.0 0.	68 0.26	0.42	1	1.70 26.110	293.01 24.0 362.93 30.9 423.55 35.0	8 36	1.33%	2.3 47%	1.50	0.00	1.50	0 0.94 0.0	6 0.97 1.0	0.052	41.03 71.60 42.80 78.43	0.102 1	I.94 0.	.94 0.32	0.80 1	.16 1.0	0.036 0.036 0.036	2.09 63		5.23	3.45 3.59 3.87	2		8.26 8.31 8.36	460 1.8E- 460 1.8E- 460 1.8E-	03 3.9E+0
12.139 5596.23 12.303 5596.07	20.8 0.332 2	20.7 20.6	8.93 1.59	% Sand-Slime Tai	iin 0.059	119.0 0.	69 0.27	0.42	1	1.62 33.523	465.97 39. 457.68 38.4	8 47	1.65%	2.3 47%	1.52	0.00	1.52		6 0.96 1.0	0.052	44.04 83.22	0.117 2	2.25 0.	.94 0.36	0.80 1	.15 1.0	0.036		.21 0.121	5.96	4.10 4.16	2		8.41	460 1.8E- 460 1.8E-	03 3.9E+0
	19.6 0.242 1	9.4 23.8	10.31 1.24	% Sand-Slime Tai	iin 0.059	119.0 0.	72 0.29	0.44	1	1.60 31.035	477.50 40. 431.38 36.3	2 43	1.28%	2.3 47%	1.55	0.00	1.55	0 0.93 0.0 0 0.93 0.0	6 0.96 1.0	0.052	43.04 79.36	0.112 2	2.15 0.	.93 0.35	0.80 1	.14 1.0	0.036 0.036	1.85 67	.84 0.114 .11 0.108	5.15	3.90 3.65	2 2		8.51 8.56	460 1.8E- 460 1.8E-	03 3.9E+0
12.959 5595.41	25.2 0.298 2 21.9 0.407 2	21.8 10.3	4.45 1.86	% Sand-Slime Tai	iin 0.059	119.0 0.	74 0.30		1	1.56 34.046	539.19 45.2 473.24 39.0	i6 47	1.93%	2.3 47%	1.57	0.00	1.57	0 0.93 0.0	6 0.96 1.0	0.052	46.17 91.40 44.21 83.87	0.118 2	2.28 0.	.93 0.39 .93 0.36	0.80 1	.14 1.0	0.036	2.09 83	.85 0.114 .02 0.133	6.22	3.95 4.25	2 2		8.61 8.66	460 1.8E- 460 1.8E-	03 3.9E+0
13.1235595.2513.2875595.0813.4515594.92	12.5 0.244 1	2.3 29.1	12.59 1.9	% Sand-Slime Tai	iin 0.059	119.0 0.		0.46	1	1.62 20.028	348.29 29.2 278.39 23.0 499.74 42.1	0 26	2.08%	2.6 47%	1.59	0.00	1.58	1 0.93 0.0	5 0.97 1.0	0.052	40.28 69.54 38.58 62.18 45.10 87.29	0.090 1	1.74 0.	.93 0.31 .93 0.28 .93 0.38	0.80 1	.14 1.0	0.036 0.036 0.037	3.15 74	.60 0.149 .30 0.118 .75 0.112	5.40	4.41 3.57 3.71	2		8.71 8.76 8.81	460 1.8E- 460 1.8E- 460 1.8E-	03 3.9E+0
13.615 5594.75	17.1 0.257 1 13.5 0.216 1	6.9 21.6	9.34 1.5	% Sand-Slime Tai	iin 0.059	119.0 0.	78 0.32	0.47	1	1.56 26.372	499.74 42. 366.57 30.8 293.25 24.3	7 35	1.58%	2.4 47%	1.61	0.02	1.59 1.59 1.60	1 0.93 0.0	6 0.96 1.0	0.052	41.13 72.00 38.99 63.78	0.102 1	1.96 0.	.93 0.32	0.80 1	.13 1.0	0.037	2.28 70		5.01	3.49 3.31	2 2 2		8.86	460 1.8E- 460 1.8E- 460 1.8E-	03 3.9E+0
13.943 5594.43 14.107 5594.26	12.3 0.109 1 13.7 0.109 1	2.1 31.7 3.5 35.9	13.73 0.8 15.56 0.8	% Sand-Slime Tai % Sand-Slime Tai	iin 0.059 iin 0.059	119.0 0. 119.0 0.	80 0.33 81 0.33	0.47 0.48	1	1.58 19.096 1.56 20.976	265.43 22.5 291.56 24.5	i4 24 7 27	0.95% 0.85%	2.4 47% 2.3 47%	1.63 1.63	0.03	1.60 1.60 1.60	1 0.92 0.0 1 0.92 0.0	5 0.97 1.0 6 0.97 1.0	0.052	38.21 60.75 38.99 63.76	0.089 1.	1.69 0. 1.76 0.	.93 0.27 .93 0.29	0.80 1 0.80 1	.13 1.0 .12 1.0	0.037	2.34 52	.74 0.094	4.07	2.88	2		8.96	460 1.8E- 460 1.8E-	03 3.9E+0
14.2715594.1014.4365593.93	15.6 0.141 1	5.4 38.1	16.50 0.90	% Sand-Slime Tai	iin 0.059	119.0 0.	83 0.34	0.49	1	1.52 23.383	301.03 25.0 325.02 27.5	8 30	0.95%	2.3 47%	1.65	0.04	1.61 1.61	1 0.92 0.0	6 0.96 1.0	0.053	39.28 64.88 39.97 67.55	0.097 1	1.84 0.	.93 0.30	0.80 1	.12 1.0		2.02 55		4.03	2.84 2.93	2 2		9.06 9.11	460 1.8E- 460 1.8E-	03 3.9E+0
	12.7 0.142 1	2.5 36.6	15.85 1.1	% Sand-Slime Tai	iin 0.059	119.0 0.	85 0.35	0.50	1	1.52 19.076	284.42 24. 265.16 22.	i6 24	1.19%	2.5 47%	1.67	0.05	1.62	1 0.92 0.0	5 0.97 1.0	0.053	38.78 62.95 38.21 60.77	0.089 1	I.68 0.	.93 0.27	0.80 1	.12 1.0	0.038	2.31 55 2.58 58	.26 0.098	4.03	2.86 2.85	2 2		9.16 9.21	500 1.8E- 500 1.8E-	03 4.6E+0
15.092 5593.28	11.6 0.159 1 12.1 0.159 1 18.8 0.159 1	1.8 38.7	16.79 1.32	% Sand-Slime Tai	iin 0.059	119.0 0.	87 0.36	0.51	1	1.51 17.844	240.44 20.5 248.04 21. 374.67 31.6	5 22	1.42%	2.5 47%	1.69	0.06	1.63	1 0.92 0.0 1 0.91 0.0 1 0.91 0.0	5 0.97 1.0	0.053	37.72 58.87	0.087 1	1.63 0.	.93 0.27	0.80 1	.11 1.0	0.038	3.05 62 2.93 62 1.81 57	.03 0.102	4.10	2.89 2.87 2.91	2		9.26 9.31 9.36		03 4.6E+0 03 4.6E+0 03 4.6E+0
18.130 5590.24				Sand-Slime Tai	iin 0.059	119.0										0.11 1		1															-	10.23		03 4.6E+0

Extra layer added to analyze seismic settlement of tailings below the bottom of CPT investigation.

ıt ıt r	Midpoi nt Depth at t ₁ , z ₁	V _s	Soil Density , ρ (tcf)	Max Shear Strain Modulus, G _{max} (tsf)	γ _{eff} *(G _{eff} /G _{max}) (tsf)	Index, Pl	g1	g ₂	Shear Strain, γ (%)	а	b	d Shear Strain, γ _{tv} (%)	Volumetri c Strain at 15 Cycles, ε _{c-15} (%)	R	с	C _N	Volumetric Strain for Design Event, ε _v (%)	Increment I Consolidat on (ft)
14 21 20	0.08 0.69 1.75	508	1.7E-03 1.7E-03 1.9E-03	4.4E+02 4.3E+02 4.8E+02		11 11 11	0.068 0.118 0.152	46696 18930 12657	0.00% 0.00% 0.01%	1.20 2.00 0.65	0.80 0.65 0.75	0.04% 0.03% 0.02%	0.000 0.000 0.000	0.32 0.34 0.34	0.133 0.079 0.079	0.778 0.765 0.765	0.00% 0.00% 0.00%	0.000 0.000 0.000
4	3.50		1.6E-03	4.0E+02		11	0.180	9583	0.02%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.000
							Seit	smic Set	tlement	Analysis	- Stewa	rt et al (200	4)	TOTA	SEISMI	C SETTL	EMENT (FT):	0.34
	Depth	Wave Velocity,	Soil Density	Shear Strain	P = γ _{eff} *(G _{eff}	ty Index,			Shear Strain,			d Shear Strain, γ _{tv}	c Strain at 15 Cycles,				Strain for Design	l Consolida
l	att ₁ , z ₁ m	Vs	, ρ	Modulus, G _{max}	/G _{max})	Ы	9 1	g ₂	γ	а	b	(%)	ε _{c-15} (%)	R	c	C _N	Event, ε _v (%)	on (ft)
	4.76	(ft/sec) 594	(tcf) 1.6E-03	tsf 5.5E+02	tsf 1.5E-04	11	0.194	8508	(%) 0.02%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.000
l	4.81 4.86	594 594	1.6E-03 1.6E-03	5.5E+02 5.5E+02		11 11	0.194 0.195	8473 8439	0.02%	2.00	0.65 0.65	0.03%	0.000	0.34 0.34	0.079	0.765 0.765	0.00%	0.000
	4.91 4.96	594 594	1.6E-03 1.6E-03	5.5E+02 5.5E+02	1.5E-04	11 11	0.195 0.196	8405 8372	0.02%	2.00 2.00	0.65 0.65	0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00%	0.000
l	5.01	594	1.6E-03	5.5E+02	1.5E-04	11	0.196	8339	0.02%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.000
l	5.06 5.11	594 594	1.6E-03 1.6E-03	5.5E+02 5.5E+02	1.6E-04	11 11	0.196 0.197	8306 8274	0.02% 0.02%	2.00 2.00	0.65 0.65	0.03%	0.000 0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00% 0.00%	0.000
l	5.16 5.21	594 594	1.6E-03 1.6E-03	5.5E+02 5.5E+02		11 11	0.197 0.198	8242 8211	0.02%	2.00 2.00	0.65 0.65	0.03%	0.000 0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00% 0.00%	0.000
l	5.26 5.31	594 594	1.6E-03 1.6E-03	5.5E+02 5.5E+02		11 11	0.198 0.199	8180 8149	0.02%	2.00 2.00	0.65 0.65	0.03%	0.000 0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00%	0.000
	5.36 5.41	594 594	1.6E-03 1.6E-03	5.5E+02 5.5E+02	1.6E-04	11 11	0.199	8119 8090	0.02% 0.02%	2.00 2.00	0.65 0.65	0.03%	0.000	0.34 0.34	0.079	0.765 0.765	0.00%	0.000
	5.46	594	1.6E-03	5.5E+02	1.7E-04	11	0.200	8060	0.02%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.000
	5.51 5.56	594 594	1.6E-03 1.6E-03	5.5E+02 5.5E+02	1.7E-04	11 11	0.201 0.201	8031 8003	0.03%	2.00 2.00	0.65 0.65	0.03%	0.000 0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00% 0.00%	0.000
l	5.61 5.66	594 495	1.6E-03 1.6E-03	5.5E+02 3.8E+02		11 11	0.201 0.202	7974 7946	0.03%	2.00 2.00	0.65 0.65	0.03%	0.000 0.008	0.34 0.34	0.079	0.765	0.00%	0.000
l	5.71 5.76	495 495	1.3E-03 1.6E-03	3.1E+02 3.9E+02	3.1E-04	16 0	0.454 0.206	6696 10223	0.10% 0.07%	2.00 2.20	0.65 1.00	0.03% 0.03%	0.017 0.001	0.34 0.34	0.079 0.079	0.765 0.765	2.60% 0.15%	0.004
	5.81	495	1.8E-03	4.5E+02	2.2E-04	10	0.204	8074	0.04%	2.00	0.65	0.03%	0.005	0.34	0.079	0.765	0.72%	0.001
	5.86 5.91	495 495	1.8E-03 1.8E-03	4.5E+02 4.5E+02	2.2E-04	10 10	0.204 0.204	8042 8010	0.04% 0.04%	2.00 2.00	0.65 0.65	0.03%	0.005 0.005	0.34 0.34	0.079 0.079	0.765 0.765	0.75% 0.78%	0.001
	5.96 6.01	495 495	1.8E-03 1.9E-03	4.5E+02 4.7E+02		10 0	0.205	7979 10023	0.04%	2.00 2.20	0.65 1.00	0.03%	0.005	0.34 0.34	0.079 0.079	0.765 0.765	0.81% 0.07%	0.001
	6.06 6.11	495 495	1.9E-03 1.8E-03	4.7E+02 4.5E+02		0 10	0.209	9984 7885	0.05%	2.20 2.00	1.00 0.65	0.03%	0.000	0.34 0.34	0.079	0.765 0.765	0.07% 0.91%	0.000
l	6.16	495	1.8E-03 1.9E-03	4.5E+02	2.3E-04	10	0.207	7855	0.04%	2.00	0.65	0.03%	0.006	0.34	0.079	0.765	0.94%	0.001
	6.21 6.26	495 495	1.9E-03	4.7E+02 4.7E+02	2.3E-04	0	0.210 0.210	9871 9833	0.05% 0.06%	2.20 2.20	1.00 1.00	0.03% 0.03%	0.001 0.001	0.34 0.34	0.079 0.079	0.765 0.765	0.08% 0.09%	0.000
l	6.31 6.36		1.9E-03 1.9E-03	4.7E+02 4.7E+02		0	0.211 0.211	9796 9760	0.06%	2.20 2.20	1.00 1.00	0.03%	0.001 0.001	0.34 0.34	0.079 0.079	0.765 0.765	0.09%	0.000
l	6.41 6.46		1.9E-03 1.9E-03	4.7E+02 4.7E+02		0	0.212	9724 9688	0.06%	2.20 2.20	1.00 1.00	0.03%	0.001	0.34 0.34	0.079 0.079	0.765 0.765	0.10%	0.000
l	6.51 6.56	495	1.9E-03 1.9E-03	4.7E+02 4.7E+02	2.4E-04	0	0.213 0.213	9653 9618	0.06%	2.20 2.20	1.00 1.00	0.03%	0.001	0.34 0.34	0.079 0.079	0.765 0.765	0.10% 0.11%	0.000
l	6.61	495	1.9E-03	4.7E+02	2.4E-04	0	0.213	9583	0.06%	2.20	1.00	0.03%	0.001	0.34	0.079	0.765	0.11%	0.000
	6.66 6.71		1.9E-03 1.9E-03	4.7E+02 4.7E+02		0	0.214 0.214	9550 9516	0.06%	2.20 2.20	1.00 1.00	0.03%	0.001 0.001	0.34 0.34	0.079 0.079	0.765 0.765	0.12% 0.12%	0.000
	6.76 6.81		1.9E-03 1.9E-03	4.7E+02 4.7E+02		0	0.215 0.215	9483 9450	0.07%	2.20 2.20	1.00 1.00	0.03%	0.001 0.001	0.34 0.34	0.079 0.079	0.765 0.765	0.12% 0.13%	0.000
l	6.86 6.91		1.8E-03 1.8E-03	4.5E+02 4.5E+02	2.6E-04	10 10	0.214 0.214	7462 7438	0.05%	2.00 2.00	0.65 0.65	0.03%	0.009	0.34 0.34	0.079 0.079	0.765 0.765	1.36% 1.39%	0.002
l	6.96	495	1.8E-03	4.5E+02	2.7E-04	10	0.214	7413	0.06%	2.00	0.65	0.03%	0.009	0.34	0.079	0.765	1.42%	0.002
l	7.01 7.06	495 495	1.8E-03 1.8E-03	4.5E+02 4.5E+02	2.7E-04	10 10	0.215 0.215	7389 7365	0.06% 0.06%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.009 0.010	0.34 0.34	0.079 0.079	0.765 0.765	1.45% 1.48%	0.002
l	7.11 7.16	495 495	1.8E-03 1.8E-03	4.5E+02 4.5E+02		10 10	0.216 0.216	7342 7318	0.06%	2.00 2.00	0.65 0.65	0.03%	0.010 0.010	0.34 0.34	0.079 0.079	0.765 0.765	1.50% 1.53%	0.002
l	7.21 7.26		1.8E-03 1.8E-03	4.5E+02 4.5E+02		10 10	0.217 0.217	7295 7272	0.06% 0.06%	2.00 2.00	0.65 0.65	0.03%	0.010 0.010	0.34 0.34	0.079 0.079	0.765 0.765	1.56% 1.59%	0.002
	7.31	495	1.8E-03 1.8E-03	4.5E+02 4.5E+02	2.8E-04	10 10	0.217	7250	0.06%	2.00	0.65	0.03%	0.011	0.34	0.079	0.765	1.62% 1.65%	0.002
	7.41	495	1.8E-03	4.5E+02	2.8E-04	10	0.218	7205	0.06%	2.00	0.65	0.03%	0.011	0.34	0.079	0.765	1.68%	0.002
l	7.46 7.51	495 495	1.8E-03 1.8E-03	4.5E+02 4.5E+02		10 10	0.219 0.219	7183 7162	0.06%	2.00 2.00	0.65 0.65	0.03%	0.011 0.011	0.34 0.34	0.079 0.079	0.765 0.765	1.70% 1.73%	0.002
l	7.56 7.61	460 460	1.8E-03 1.8E-03	3.9E+02 3.9E+02		10 10	0.219 0.220	7140 7119	0.10%	2.00 2.00	0.65 0.65	0.03%	0.017 0.017	0.34 0.34	0.079 0.079	0.765 0.765	2.60% 2.63%	0.004
	7.66 7.71	460 460		3.9E+02 3.9E+02	3.4E-04	10 10	0.220	7098 7077	0.10%	2.00 2.00	0.65 0.65	0.03%	0.017	0.34 0.34	0.079 0.079	0.765 0.765	2.67% 2.71%	0.004
l	7.76	460	1.8E-03	3.9E+02	3.5E-04	10	0.221	7056	0.10%	2.00	0.65	0.03%	0.018	0.34	0.079	0.765	2.75%	0.004
l	7.81 7.86	460	1.8E-03 1.8E-03	3.9E+02 3.9E+02	3.5E-04	10 10	0.221 0.222	7016	0.10% 0.10%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.018 0.018	0.34 0.34	0.079 0.079	0.765	2.83%	0.004
l	7.91 7.96		1.8E-03 1.8E-03	3.9E+02 3.9E+02		10 10	0.222 0.223	6996 6976	0.11%	2.00 2.00	0.65 0.65	0.03%	0.019 0.019	0.34 0.34	0.079 0.079	0.765 0.765	2.87% 2.91%	0.004
	8.01 8.06		1.8E-03 1.8E-03	3.9E+02 3.9E+02		10 10	0.223	6956 6937	0.11%	2.00 2.00	0.65 0.65	0.03%	0.019 0.020	0.34 0.34	0.079 0.079	0.765 0.765	2.95% 2.98%	0.004
l	8.11 8.16	460	1.8E-03 1.8E-03	3.9E+02	3.6E-04	10	0.224	6918 6898	0.11%	2.00	0.65	0.03%	0.020	0.34	0.079	0.765	3.02%	0.005
l	8.21	460	1.8E-03	3.9E+02	3.7E-04	10	0.224	6880	0.12%	2.00	0.65	0.03%	0.020	0.34	0.079	0.765	3.10%	0.005
l	8.26 8.31		1.8E-03 1.8E-03	3.9E+02 3.9E+02	3.7E-04	10 10	0.225 0.225	6861 6842	0.12% 0.12%	2.00 2.00	0.65 0.65	0.03%	0.021 0.021	0.34 0.34	0.079 0.079	0.765 0.765	3.14% 3.19%	0.005
l	8.36 8.41		1.8E-03 1.8E-03	3.9E+02 3.9E+02		10 10	0.226	6824 6806	0.12%	2.00 2.00	0.65	0.03%	0.021	0.34 0.34	0.079	0.765	3.23% 3.27%	0.005
	8.46 8.51		1.8E-03 1.8E-03		3.8E-04	10 10	0.226	6788 6770	0.12% 0.13%	2.00 2.00	0.65 0.65	0.03%	0.022	0.34 0.34	0.079 0.079	0.765 0.765	3.31% 3.35%	0.005
I	8.56	460	1.8E-03	3.9E+02	3.9E-04	10	0.227	6752	0.13%	2.00	0.65	0.03%	0.022	0.34	0.079	0.765	3.39%	0.005
I	8.61 8.66	460	1.8E-03 1.8E-03	3.9E+02 3.9E+02	3.9E-04	10 10	0.227 0.228	6734 6717	0.13% 0.13%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.022 0.023	0.34 0.34	0.079 0.079	0.765 0.765	3.43% 3.47%	0.00
I	8.71 8.76		1.8E-03 1.8E-03	3.7E+02 3.9E+02		16 10	0.479 0.228	5523 6692	0.16% 0.14%	2.00 2.00	0.65 0.65	0.03%	0.027	0.34 0.34	0.079 0.079	0.765 0.765	4.06% 3.56%	0.006
I	8.81 8.86	460	1.8E-03 1.8E-03	3.9E+02	4.0E-04	10 10	0.228	6684 6676	0.14%	2.00	0.65	0.03%	0.024	0.34	0.079	0.765	3.61% 3.66%	0.00
1	8.91	460	1.8E-03	3.9E+02	4.0E-04	10	0.229	6668	0.14%	2.00	0.65	0.03%	0.024	0.34	0.079	0.765	3.71%	0.00
I	8.96 9.01	460	1.8E-03 1.8E-03	3.9E+02	4.1E-04	10 10	0.229 0.229	6660 6652	0.15% 0.15%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.025 0.025	0.34 0.34	0.079 0.079	0.765 0.765	3.76% 3.81%	0.006
ļ	9.06 9.11		1.8E-03 1.8E-03			10 10	0.229 0.229	6644 6636	0.15% 0.15%	2.00 2.00	0.65 0.65	0.03%	0.025	0.34 0.34	0.079 0.079	0.765 0.765	3.87% 3.92%	0.006
	9.16 9.21	500	1.8E-03 1.8E-03	4.6E+02	3.5E-04	10	0.230	6628 6620	0.10%	2.00	0.65	0.03%	0.017	0.34	0.079	0.765	2.62% 2.65%	0.004
	9.26	500	1.8E-03	4.6E+02	3.6E-04	10	0.230	6612	0.10%	2.00	0.65	0.03%	0.018	0.34	0.079	0.765	2.69%	0.004
I	9.31 9.36 10.23	500	1.8E-03 1.8E-03 1.8E-03	4.6E+02		10 10 10	0.230 0.230 0.235	6604 6597 6397	0.10% 0.10% 0.13%	2.00 2.00 2.00	0.65 0.65 0.65	0.03% 0.03% 0.03%	0.018 0.018 0.022	0.34 0.34 0.34	0.079 0.079 0.079	0.765 0.765 0.765	2.72% 2.76% 3.35%	0.004

w	-52106_SP3-8S-B hite Mesa 2013 CF a\2013 Field Investi ds	T Investigation	al E	nd Boulanger Max. Horiz. Acc arthquake Mon Magnitude Sca	eleration, An nent Magnitu	ude, M:	0.15 5.5 1.69			5600.42 5590.63	Water surface Water surface Water surface Water surface	elevation at to elevation at to	(ft amsl) (ft amsl)	tigation (ft a	5620.45 G	round Surface hickness of Ero	levation Imr	me of CPT (ft amsl) nediately after Placemen in Layer (rock mulch/top ooting Zone (ft)		diately after pla		OVER Protection Laye ting Zone Laye		of Lay (ft) 562		s of W Layer (ft) t 5 0.50 0	(tcf) (pcf) .055 110	Bottom of Layer 0.028	Midpoint a of Layer 0 0.014	at Bottom I of Layer		ottom Mid
ailings San ailings Slim iterim Cove ells Requir	es	pulation	Youd, e	Earthquake	iz. Accelerati e Moment Ma de Scaling F	agnitude, M	5	15 .5		0.47	Scaling Factor Volumetric Str Equiv. Number	ain Ratio for S	ite-Specific D	esign Earth	3.50 T 4.25 T 1273.89 A	hickness of Hig hickness of Rar	Compaction dom/Platform due to Final	Layer (ft) h Fill on on top of existin Cover Placement, Δσ _{FC} (High Co	mpaction Laye Indom Fill Laye	r ######		14.7 5612.9 0.83 5608.7				0.320 0.531	0.00		0.424 0.638
	13 CPT Data from	Pw Pw		Material Type (as		Unit at tin		time of	Saturated at time of	ta Interpretat	ons	Normalized Cone Penetration	Normalize Ty d Friction Ind Ratio, F, I		Stress at P	Pore Effecti ressure Stress	at Saturated	Id Cyclic Stress R	iriss & Boular atio (nger (2008) Cyclic Resistance	Ratio	L	iquefactio. Cyd	n Triggering /	Analyses Youd et io	al. (2001)						
	qt fs q TSF TSF TS			determined		(eight of CF (pcf) (tsf		CPT (tsf)	CPT 1=Yes 0=No	CN qc1 TSF	qc1 qc11 MPa	Resistance, Q _t	(*9	° FC %		at t ₁ t ₁ (tsf) (tsf)	at t ₁ 1=Yes 0=No	r _d C _o K _o K _a	001	Δqc _{1n} qc _{1n-cs} (C	CRR) 4=7.5. v=1atm FoS	r _d D _r	f	f K,	Ka	CSR M=7.5, s/v=1atm	Kc qc _{in-cs}	(CRR) M=7.5, s'v=1atm	FoS	Avg FoS	Liquefiable? 1=Yes 2=No	
	17.2 0.175 17 63.5 0.285 63 90.9 0.503 90		0.45%	Interim Cover Interim Cover Interim Cover	0.050 1	00.7 0.0 00.7 0.0 00.7 0.0	2 0.00	0.01 0.02 0.02	0 0 0	1.70 107.899	406.44 33.9 ###### 125.4 ###### 179.4	4 3844	0.45% 0	.2 51% .9 51% .0 51%	0.65	0.00 0.65 0.00 0.65 0.00 0.66	0 0 0	1.00 0.06 1.02 1.0 1.00 0.13 1.04 1.0 1.00 0.21 1.06 1.0	0.060 7	42.24 76.22 0 74.34 199.78 1	.000 16.70	0.97 0.34 0.97 0.65 0.97 0.77	0.68	0.80 2.53 0.68 3.59 0.61 3.94	9 1.0	0.012 1	.00 33.98 .00 125.44 .00 179.45	0.078 0.264 1.000		96.10 168.62 413.74	2 2 2	
08.04 1 07.88 1	11.9 0.700 111 26.5 0.864 126	.9 7.7 3.38 .4 5.8 2.5	5 0.63% 1 0.68%	Interim Cover Interim Cover	0.050 1 0.050 1	00.7 0.03	8 0.00 1 0.00	0.03 0.04	0	1.70 190.145 1.70 214.948	###### 220.9 ###### 249.7	4 3385 2 3061	0.63% 1 0.68% 1	.0 51% .1 51%	0.67 0.68	0.00 0.67 0.00 0.68	0	1.00 0.30 1.08 1.0 1.00 0.30 1.07 1.0	0.062 #	##### 328.79 1 ##### 367.68 1	.000 16.09 .000 16.14	0.97 0.86 0.97 0.91	0.60	0.60 3.68 0.60 3.37	8 1.0 7 1.0	0.012 1 0.013 1	.00 220.94 .00 249.72	1.000 1.000	608.56 487.04	312.32 251.59	2 2 2	
07.55 1	25.0 0.813 125 17.6 0.695 117 04.2 0.601 104	.6 1.1 0.48	0.65% 0.59%	Interim Cover Interim Cover Interim Cover	0.050 1	00.7 0.0	6 0.00	0.05 0.06 0.07	0	1.70 199.903	###### 246.8 ###### 232.1	9 2032		.0 51% .0 51% .0 51%	0.69	0.00 0.69 0.00 0.69 0.00 0.70	0	1.00 0.30 1.07 1.0 1.00 0.30 1.06 1.0 1.00 0.28 1.06 1.0	0.062 #	##### 363.74 1 ##### 343.99 1 ##### 308.28 1	.000 16.25	0.97 0.91 0.97 0.88 0.97 0.83	0.60	0.60 3.13 0.60 2.95 0.60 2.75	5 1.0	0.015 1	.00 246.80 .00 232.19 .00 205.76	1.000 1.000 1.000	348.16	211.11 182.21 160.56	2 2 2	
07.06	81.5 0.591 81 72.9 0.416 72 64.8 0.713 64	9 -0.0 -0.0	1 0.57%	Interim Cover Interim Cover	0.050 1	00.7 0.0 00.7 0.0 00.7 0.0	3 0.00	0.07 0.08 0.09	0	1.70 123.947	###### 160.8 ###### 143.9 ###### 127.8	6 882	0.73% 1 0.57% 1 1.10% 1	.1 51%	0.72	0.00 0.71 0.00 0.72 0.00 0.73	0	1.00 0.18 1.03 1.0 1.00 0.15 1.03 1.0 1.00 0.13 1.02 1.0	0.059 8	86.76 247.58 1 80.84 224.80 1 75.19 203.03 1	.000 16.84	0.97 0.73 0.97 0.69 0.97 0.65	0.65	0.63 2.45 0.65 2.25 0.67 2.08	5 1.0	0.019 1	.00 160.82 .00 143.96 .00 127.85	1.000 0.357 0.274	87.22	143.87 52.03	2 2	
06.73	54.8 0.713 64 61.1 0.519 61 57.5 0.435 57	.1 0.6 0.2		Interim Cover Interim Cover Interim Cover	0.050 1	00.7 0.09 00.7 0.10 00.7 0.1	0.00	0.09 0.10 0.11	0	1.70 103.887	####### 127.8 ####### 120.6 ####### 113.6	7 615	0.85% 1	.3 51%	0.74	0.00 0.73 0.00 0.74 0.00 0.74	0 0 0	1.00 0.13 1.02 1.0 1.00 0.13 1.02 1.0 1.00 0.12 1.02 1.0	0.059 7	75.19 203.03 1 72.67 193.33 0 70.19 183.81 0	.854 14.50	0.97 0.65 0.97 0.63 0.97 0.62	0.68	0.68 1.98 0.69 1.90	8 1.0	0.022 1	.00 127.85 .00 120.67 .00 113.62	0.243 0.216	49.53	38.90 32.02 25.48	2 2 2	
06.24	54.3 0.512 54 53.3 1.269 53 76.9 1.662 76	3 2.3 0.99	2.38%	Interim Cover Interim Cover Interim Cover	0.050 1	00.7 0.12 00.7 0.12 00.7 0.13	2 0.00	0.12 0.12 0.13	0	1.70 90.542	###### 107.2 ###### 105.1	9 429	2.39% 1	.4 51% .8 51% .7 51%	0.76	0.00 0.75 0.00 0.76 0.00 0.77	0 0 0	1.00 0.11 1.02 1.0 1.00 0.11 1.01 1.0 1.00 0.16 1.02 1.0	0.058 6	67.95 175.19 0 67.23 172.42 0 83.63 235.56 1	.433 7.42	0.97 0.60 0.97 0.59 0.97 0.71	0.70	0.70 1.82 0.70 1.78 0.64 1.95	8 1.0	0.024 1	.00 107.24 .11 116.73 .04 158.48	0.195 0.228 0.450	37.15	20.98 22.28 42.94	2 2 2	
05.91 2 05.75 2	22.0 2.940 221 22.9 2.175 222	.9 14.3 6.2 .9 15.8 6.80	1 1.32% 5 0.98%	Interim Cover Interim Cover	0.050 1 0.050 1	00.7 0.14 00.7 0.1	0.00 0.00	0.14 0.15	0	1.61 358.013 1.59 354.180	###### 415.9 ###### 411.9	8 1580 4 1498	1.33% 1 0.98% 1	.4 51% .2 51%	0.78 0.79	0.00 0.78 0.00 0.79	0	0.99 0.30 1.03 1.0 0.99 0.30 1.03 1.0	0.059 # 0.059 #	##### 592.28 1 ##### 586.29 1	.000 16.87 .000 16.94	0.97 1.18 0.97 1.17	0.60	0.60 2.00 0.60 2.00	7 1.0 2 1.0	0.021 1	.00 415.98 .00 411.54	1.000 1.000	143.93 135.98	80.40 76.46	2	
05.42 2 05.26 1	13.5 2.265 213 07.8 1.697 207 55.2 1.444 155	.7 13.6 5.90 .1 11.4 4.92	0 0.82%	Sand Tailings	0.051 1 0.051 1	00.7 0.10 02.8 0.1 02.8 0.1	7 0.00	0.16 0.17 0.17	0 0 0	1.55 320.918 1.53 236.617	###### 388.4 ###### 372.8 ###### 274.9	8 1255 4 892			0.80 0.81	0.00 0.79 0.00 0.80 0.00 0.81	0 0 0	0.99 0.30 1.02 1.0 0.99 0.30 1.02 1.0 0.99 0.30 1.02 1.0	0.059 #	##### 555.08 1 ##### 490.30 1 92.38 367.32 1	.000 17.07 .000 17.14	0.97 1.14 0.96 1.11 0.96 0.96	0.60 0.60	0.60 1.98 0.60 1.93 0.60 1.90	3 1.0 0 1.0	0.022 1	.00 388.45 .00 372.88 .00 274.94	1.000 1.000 1.000	116.47	72.94 69.71 66.80	2 2 2	
04.93 1	25.3 1.613 125 00.1 0.839 100 32.6 1.213 82	.1 7.6 3.29	0.84%	Sand Tailings Sand Tailings Sand Tailings	0.051 1	02.8 0.1 02.8 0.1 02.8 0.2	0.00	0.18 0.19 0.20	0	1.66 166.576	###### 229.2 ###### 193.5 ###### 163.3	6 524	1.29% 1 0.84% 1 1.47% 1	.4 18%	0.83	0.00 0.82 0.00 0.83 0.00 0.84	0 0	0.99 0.30 1.01 1.0 0.99 0.24 1.01 1.0 0.99 0.18 1.01 1.0	0.058 7	80.70 309.96 1 71.57 265.13 1 63.79 226.90 1	.000 17.31	0.96 0.87 0.96 0.80 0.96 0.74	0.60	0.60 1.80 0.60 1.83 0.63 1.72	3 1.0	0.023 1	.00 229.26 .00 193.56 .00 163.11	1.000 1.000 1.000	106.25	64.17 61.78 59.60	2 2 2 2	
04.60 1 04.43 1	16.5 1.585 116 95.5 1.860 95	.5 3.6 1.5 4 10.8 4.68	7 1.36% 3 1.95%	Sand Tailings Sand Tailings	0.051 1 0.051 1	02.8 0.2	0.00	0.21 0.22	0	1.56 182.193 1.63 155.946	####### 211.0 ####### 181.2	5 560 5 441	1.36% 1 1.95% 1	.5 18% .7 18%	0.84 0.85	0.00 0.84 0.00 0.85	0	0.99 0.30 1.01 1.0 0.99 0.21 1.00 1.0	0.057 7	76.20 287.84 1 68.43 249.68 1	.000 17.41 .000 17.50	0.96 0.84 0.96 0.78	0.60 0.61	0.60 1.7	7 1.0 1 1.0	0.024 1	.00 211.65 .05 190.74	1.000 1.000	97.69 93.92	57.55 55.71	2 2	
4.11	82.7 1.658 82 86.3 1.621 85 76.9 1.353 76	5 118.1 51.1	7 1.88%	Sand-Slime Tailin Sand-Slime Tailin Sand Tailings	0.047 9	93.3 0.2 93.3 0.2 02.8 0.2	3 0.00	0.22 0.23 0.24	0 0	1.65 140.841	###### 161.4 ###### 164.9 ###### 149.7	9 372	2.01% 1 1.88% 1 1.76% 1	.8 47% .7 47% .8 18%	0.87	0.00 0.86 0.00 0.87 0.00 0.88	0 0 0	0.99 0.18 1.00 1.0 0.98 0.18 1.00 1.0 0.98 0.16 1.00 1.0	0.057 8	86.93 248.38 1 88.16 253.15 1 60.37 210.10 1	.000 17.59	0.96 0.73 0.96 0.74 0.96 0.71	0.63	0.63 1.64 0.63 1.63 0.65 1.55	3 1.0	0.026 1	.09 175.31 .07 176.22 .08 161.01	1.000 1.000 1.000		54.14 52.68 51.18	2 2 2	
3.61	51.2 1.819 60 58.0 1.686 56 60.7 1.440 60	9 179.6 77.8	1 2.91%	Sand-Slime Tailin Sand-Slime Tailin Sand-Slime Tailin	0.047 9	93.3 0.2 93.3 0.2 19.0 0.2	0.00	0.25 0.26 0.26	0	1.70 96.747	###### 120.9 ###### 114.9 ###### 119.7	8 227	2.98% 2 2.92% 2 2.38% 1	.0 47%	0.89	0.00 0.88 0.00 0.89 0.00 0.90	0 0 0	0.98 0.13 1.00 1.0 0.98 0.12 1.00 1.0 0.98 0.12 0.99 1.0	0.057 7	72.71 193.64 0 70.49 185.07 0 72.31 192.08 0	.630 11.14	0.96 0.63 0.96 0.62 0.96 0.63	0.69	0.68 1.49 0.69 1.46 0.68 1.45	6 1.0	0.029 1	.31 158.55 .33 152.13 .23 147.82	0.451 0.407 0.380	32.47	26.14 21.81 21.90	2 2 2	
)3.29)3.12	46.9 1.368 46 43.9 1.137 43	8 16.1 6.96 5 70.6 30.5	6 2.92% 9 2.59%	Sand-Slime Tailin Sand-Slime Tailin	0.059 1 0.059 1	19.0 0.2 19.0 0.2	7 0.01 3 0.01	0.27 0.27	1	1.70 79.509 1.70 73.882	###### 92.5 ###### 86.6	4 174 B 160	2.94% 2 2.61% 2	.1 47% .1 47%	0.91 0.92	0.00 0.91 0.00 0.92	0	0.98 0.10 0.99 1.0 0.98 0.10 0.99 1.0	0.056	62.76 155.30 0 60.70 147.38 0	0.298 5.29 0.260 4.62	0.96 0.56 0.96 0.54	0.72 0.73	0.72 1.38 0.73 1.36	8 1.0 6 1.0	0.031 1	.43 132.68 .40 121.40	0.297 0.246	22.57 18.40	13.93 11.51	2 2	
02.79 1	01.5 1.244 99 30.7 1.385 130 99.5 1.248 99	.5 35.7 15.4	8 1.06%	Sand Tailings	0.062 1	23.5 0.2 23.5 0.3 23.5 0.3	0.02	0.28 0.28 0.29	1 1 1		###### 177.3 ####### 214.6	2 462		.6 18% .5 18% .6 18%	0.94	0.00 0.93 0.00 0.94 0.00 0.95	0	0.98 0.21 0.98 1.0 0.98 0.30 0.97 1.0 0.98 0.20 0.98 1.0	0.055 7		.000 18.19	0.96 0.77 0.96 0.85 0.96 0.76	0.60	0.62 1.55	6 1.0	0.027 1	.00 177.38 .00 214.62 .00 172.96	1.000 1.000 1.000		45.66 45.14 44.47	2 2 2	
02.30	80.3 0.821 80 52.4 0.678 62	3 4.9 2.1 ⁻ 4 1.2 0.50	1 1.02% 0 1.09%	Sand Tailings Sand Tailings	0.062 1	23.5 0.3 23.5 0.3	2 0.03 3 0.04	0.29 0.30	1	1.63 101.688	####### 145.3 ####### 118.1	2 208	1.03% 1 1.09% 1	.7 18%	0.97	0.00 0.96 0.00 0.97	0	0.98 0.15 0.98 1.0 0.97 0.12 0.99 1.0	0.055 5	59.24 204.57 1 52.29 170.40 0	.000 18.04 .412 7.42	0.96 0.70 0.96 0.63	0.69	0.65 1.40 0.69 1.40	6 1.0 0 1.0	0.029 1 0.030 1	.00 145.33 .04 123.04	0.365 0.253	17.35	21.75 12.38	2 2	
01.97 1	65.4 0.430 65 00.8 0.407 100 94.6 0.393 94	.8 5.9 2.54		Sand Tailings Sand Tailings Sand Tailings	0.062 1	23.5 0.3 23.5 0.3 23.5 0.3	0.05	0.30 0.31 0.31	1 1 1		###### 122.0 ###### 171.3 ###### 162.0	5 327	0.66% 1 0.41% 1 0.42% 1	.3 18%	0.99	0.00 0.98 0.00 0.99 0.00 1.00	0 0 0	0.97 0.13 0.98 1.0 0.97 0.19 0.97 1.0 0.97 0.18 0.97 1.0	0.055 6	53.28 175.29 0 65.90 237.25 1 63.52 225.57 1	.000 18.30	0.96 0.64 0.96 0.76 0.96 0.73	0.62	0.68 1.40 0.62 1.48 0.63 1.48	8 1.0	0.029 1	.00 122.01 .00 171.35 .00 162.05	0.249 1.000 1.000	16.78 66.34 65.31	12.62 42.32 41.81	2 2 2 2	
01.48	89.5 0.390 89 87.6 0.521 87 81.6 0.625 81	5 3.6 1.50	0.60%	Sand Tailings Sand Tailings Sand Tailings	0.062 1	23.5 0.3 23.5 0.3 23.5 0.4	0.06	0.32 0.32 0.33	1	1.48 129.857	###### 154.3 ###### 150.8 ###### 141.7	6 270	0.44% 1 0.60% 1 0.77% 1	.3 18% .4 18% .5 18%	1.02	0.00 1.01 0.00 1.02 0.00 1.03	0	0.97 0.17 0.97 1.0 0.97 0.16 0.97 1.0 0.97 0.15 0.97 1.0	0.054 6	61.55 215.91 1 60.66 211.52 1 58.33 200.07 1	.000 18.36	0.96 0.72 0.96 0.71 0.96 0.69	0.65	0.64 1.43 0.65 1.42 0.66 1.39	2 1.0	0.030 1	.00 154.36 .00 150.86 .00 141.75	0.422 0.399 0.345		22.73 21.82 19.94	2 2 2	
01.15	73.8 0.669 73 67.0 0.509 67	8 2.8 1.20 0 2.8 1.20	0.91%	Sand Tailings Sand Tailings	0.062 1 0.062 1	23.5 0.4 23.5 0.4	0.07	0.33 0.34	1	1.52 111.871	###### 129.9 ###### 119.4	6 221 9 197	0.91% 1 0.76% 1	.6 18% .6 18%	1.04 1.05	0.00 1.04 0.00 1.05	0	0.97 0.13 0.97 1.0 0.97 0.12 0.98 1.0	0.054 5 0.054 5	55.31 185.28 0 52.64 172.13 0	0.634 11.65 0.430 7.89	0.96 0.66	0.67 0.68	0.67 1.3 0.68 1.3	7 1.0 4 1.0	0.031 1 0.031 1	.00 129.96 .00 119.49	0.284 0.239	17.47 14.46	14.56 11.18	2 2	
00.66	74.0 0.388 74 73.6 0.370 73 70.8 0.387 70	.6 3.4 1.48	6 0.52% 8 0.50% 1 0.55%	Sand Tailings Sand Tailings Sand Tailings	0.062 1	23.5 0.4 23.5 0.4 23.5 0.4	0.09	0.34 0.35 0.35	1 1 1		###### 128.9 ###### 127.0 ###### 123.0	3 210		.5 18% .5 18% .5 18%	1.07	0.00 1.06 0.00 1.07 0.00 1.08	0 0 0	0.96 0.13 0.97 1.0 0.96 0.13 0.97 1.0 0.96 0.13 0.97 1.0	0.054 5	55.06 184.01 0 54.72 182.35 0 53.55 176.59 0	.576 10.65	0.95 0.66 0.95 0.65 0.95 0.64	0.67	0.67 1.38 0.67 1.34 0.68 1.33	4 1.0	0.031 1	.00 128.95 .00 127.63 .00 123.05	0.279 0.273 0.253	16.69 16.10 14.71	13.95 13.37 11.84	2 2 2 2	
00.17	61.3 0.408 61 54.8 0.384 54 51.9 0.384 51	.8 3.9 1.69	3 0.67% 9 0.70%	Sand Tailings	0.062 1	23.5 0.4 23.5 0.4 23.5 0.4	0.10	0.36 0.36 0.37	1 1	1.52 93.454 1.54 84.591 1.55 80.294	###### 108.5 ###### 98.2	9 150	0.71% 1	.6 18% .7 18% .7 18%	1.10	0.00 1.09 0.00 1.10 0.00 1.11	0 0	0.96 0.11 0.97 1.0 0.96 0.10 0.97 1.0 0.96 0.10 0.97 1.0	0.054 4	49.85 158.44 0 47.22 145.51 0 45.94 139.26 0	.252 4.66	0.95 0.60 0.95 0.57 0.95 0.56	0.71	0.70 1.30 0.71 1.28 0.72 1.23	8 1.0	0.033 1	.00 108.59 .02 100.58 .05 97.92	0.199 0.175 0.167	11.40 9.87 9.33	8.62 7.27 6.79	2 2 2	
99.84 99.68	50.9 0.369 50 49.7 0.378 49	9 5.6 2.43 7 5.8 2.50	3 0.73% 0 0.76%	Sand Tailings Sand Tailings	0.062 1	23.5 0.4 23.5 0.5	0.11 0.12	0.37 0.38	1	1.54 78.492 1.54 76.518	###### 91.2 ###### 88.9	3 135 4 130	0.73% 1 0.77% 1	.7 18% .7 18%	1.12 1.13	0.00 1.12 0.00 1.13	0	0.96 0.10 0.97 1.0 0.96 0.10 0.97 1.0	0.054 4	45.41 136.64 0 44.83 133.76 0	.222 4.11 .213 3.96	0.95 0.55 0.95 0.54	0.72 0.73	0.72 1.20	6 1.0 5 1.0	0.033 1 0.034 1	.05 96.09 .07 95.21	0.163 0.160	8.95 8.71	6.53 6.33	2 2	
99.35	42.3 0.401 42 35.3 0.359 35 31.3 0.268 31	3 5.1 2.19	6 0.95% 9 1.02% 4 0.86%	Sand Tailings Sand-Slime Tailin Sand-Slime Tailin	0.059 1	23.5 0.5 19.0 0.5 19.0 0.5	2 0.13	0.38 0.39 0.39	1 1 1	1.57 66.297 1.60 56.332 1.61 50.398	921.53 77.0 783.02 65.4 700.54 58.6	в 90	0.96% 1 1.03% 2 0.87% 2		1.15	0.00 1.14 0.00 1.15 0.00 1.16	0 0 0	0.96 0.09 0.97 1.0 0.96 0.08 0.98 1.0 0.95 0.08 0.98 1.0	0.054 5	41.79 118.86 0 53.27 118.75 0 50.85 109.45 0	.177 3.28	0.95 0.51 0.95 0.47 0.95 0.44	0.77	0.75 1.23 0.77 1.2 0.78 1.19	1 1.0	0.035 1	.16 89.46 .25 81.59 .25 73.12	0.147 0.131 0.116	7.86 6.92 6.10	5.57 5.10 4.52	2 2 2	
98.86	41.5 0.241 41 40.4 0.177 40 28.6 0.177 28	.3 6.1 2.63	3 0.44%	Sand Tailings Sand Tailings Sand-Slime Tailin	0.062 1	23.5 0.5 23.5 0.5	5 0.14	0.40 0.40 0.41	1	1.54 63.961 1.54 62.123 1.60 45.687		2 99	0.44% 1	.8 18% .7 18% .9 47%	1.18	0.00 1.17 0.00 1.18 0.00 1.19	0 0	0.95 0.09 0.97 1.0 0.95 0.09 0.97 1.0 0.95 0.07 0.98 1.0	0.054 4	40.55 112.77 0	.165 3.08	0.95 0.50 0.95 0.49 0.95 0.42	0.75	0.75 1.2 0.75 1.2 0.79 1.1	1 1.0	0.035 1	.08 80.27 .05 75.47 .21 64.44	0.128 0.120 0.105	6.63 6.14 5.31	4.90 4.61 4.01	2 2 2	
98.53 98.37	30.6 0.160 30 30.2 0.173 30	5 5.3 2.29 1 5.8 2.5	9 0.52% 1 0.57%	Sand-Slime Tailin Sand-Slime Tailin	0.059 1 0.059 1	19.0 0.5 19.0 0.5	7 0.16 3 0.16	0.41 0.42	1	1.58 48.157 1.57 47.326	669.38 55.9 657.83 55.0	9 73 3 71	0.53% 1 0.58% 1	.9 47% .9 47%	1.20 1.21	0.00 1.20 0.00 1.21	0	0.95 0.07 0.97 1.0 0.95 0.07 0.97 1.0	0.054 4	49.94 105.93 0 49.60 104.63 0	0.153 2.85 0.150 2.81	0.95 0.43 0.95 0.43	0.78 0.79	0.78 1.17 0.79 1.17	7 1.0 7 1.0	0.036 1	.16 64.84 .18 65.18	0.105 0.106	5.27 5.23	4.06 4.02	2 2 2	
98.04	28.4 0.178 28 24.0 0.188 24 22.1 0.178 22	0 6.8 2.94	1 0.78%	Sand-Slime Tailin Sand-Slime Tailin Sand-Slime Tailin	0.059 1	19.0 0.6	0.17	0.42 0.43 0.43		1.59 38.157	619.66 51.8 530.38 44.4 489.40 40.9	0 55	0.64% 1 0.80% 2 0.83% 2		1.23	0.00 1.22 0.00 1.23 0.00 1.24	0 0 0	0.95 0.07 0.97 1.0 0.95 0.07 0.98 1.0 0.95 0.07 0.98 1.0	0.053 4	45.87 90.27 0	.127 2.38		0.80	0.79 1.10 0.80 1.15 0.80 1.15	5 1.0	0.036 1	.23 63.89 .39 61.79 .46 60.03	0.104 0.102 0.100	5.11 4.94 4.80	3.89 3.66 3.53	2 2 2 2	
97.71 97.55	19.0 0.177 19 14.9 0.165 14	0 8.1 3.53 8 11.6 5.03	3 0.93% 3 1.11%	Sand-Slime Tailin Sand-Slime Tailin	0.059 1 0.059 1	19.0 0.6 19.0 0.6	2 0.18 2 0.19	0.43 0.44	1	1.61 30.600 1.64 24.349	425.34 35.6 338.45 28.4	4 42 2 33	0.96% 2 1.15% 2	.2 47% .3 47%	1.25 1.26	0.00 1.25 0.00 1.26	0	0.94 0.06 0.98 1.0 0.94 0.06 0.98 1.0	0.053 4	42.80 78.43 0 40.27 68.69 0	0.111 2.07 0.098 1.84	0.95 0.34 0.95 0.31	0.80 0.80	0.80 1.15	5 1.0 4 1.0	0.036 1	.67 59.45 .09 59.25	0.100 0.099	4.72 4.67	3.40 3.25	2	
97.22 97.05	19.1 0.146 19 13.8 0.173 13	8 17.0 7.3 1 12.4 5.3 8 11.9 5.1	6 0.76% 5 1.25%	Sand-Slime Tailin Sand-Slime Tailin	0.059 1 0.059 1	19.0 0.64 19.0 0.65	4 0.20 5 0.20	0.44 0.45 0.45	1	1.58 30.094 1.62 22.264	315.02 26.5 418.31 35.0 309.47 26.0	9 41 D 29	1.31% 2	.2 47% .4 47%	1.28 1.29	0.00 1.27 0.00 1.28 0.00 1.29	0 0 0	0.94 0.06 0.98 1.0 0.94 0.06 0.98 1.0 0.94 0.06 0.98 1.0	0.053 4	42.61 77.70 0 39.42 65.42 0	0.110 2.06 0.094 1.77	0.95 0.29	0.80 0.80	0.80 1.14	4 1.0 4 1.0	0.037 1	.36 61.36	0.096 0.101	4.22 4.42 4.63	3.00 3.24 3.20	2 2 2	
6.73	15.5 0.105 15		2 0.68%	Sand-Slime Tailin Sand-Slime Tailin	0.059 1	19.0 0.6	0.21	0.46 0.46 0.47		1.58 24.265	260.01 21.9 337.29 28.4 340.12 28.5	2 32	1.41% 2 0.71% 2 0.69% 2	.2 47%		0.00 1.30 0.00 1.31 0.00 1.32	0 0 0	0.94 0.05 0.98 1.0 0.94 0.06 0.98 1.0 0.94 0.06 0.98 1.0	0.053 4	40.27 68.69 0	.098 1.85	0.95 0.27	0.80	0.80 1.13 0.80 1.13 0.80 1.13	3 1.0	0.037 1	.78 60.88 .76 50.09 .75 49.90	0.101 0.092 0.092	4.56 4.10 4.05	3.11 2.98 2.96	2 2 2 2	
96.40 96.23	14.7 0.073 14 12.9 0.081 12	6 11.8 5.1 8 12.1 5.25	1 0.50% 5 0.63%	Sand-Slime Tailin Sand-Slime Tailin	0.059 1 0.059 1	19.0 0.6 19.0 0.7	0.22	0.47 0.48	1	1.57 22.852 1.57 20.146	317.64 26.6 280.04 23.5	7 30 4 26	0.52% 2 0.66% 2	.2 47% .3 47%	1.33 1.34	0.00 1.33 0.00 1.34	0	0.94 0.06 0.98 1.0 0.93 0.05 0.98 1.0	0.053 3	39.66 66.33 0 38.56 62.09 0	0.095 1.80 0.090 1.71	0.94 0.30 0.94 0.28	0.80 0.80	0.80 1.13	3 1.0 3 1.0	0.037 1	.69 44.97 .98 46.69	0.087 0.089	3.84 3.86	2.82 2.79	2 2	
95.90	13.8 0.074 13 14.6 0.071 14		5 0.53% 2 0.49%	Sand-Slime Tailin Sand-Slime Tailin	0.059 1 0.059 1	19.0 0.7 19.0 0.7	2 0.24 3 0.24	0.48 0.49 0.49	1	1.54 21.243 1.53 22.185	298.64 25.0 295.27 24.7 308.37 25.9	9 27 0 28	0.56% 2 0.51% 2	.3 47% .2 47%	1.36	0.00 1.35 0.00 1.36 0.00 1.37	0 0 0	0.93 0.06 0.97 1.0 0.93 0.06 0.97 1.0 0.93 0.06 0.97 1.0	0.052 3	39.00 63.79 0 39.39 65.28 0	0.092 1.76 0.094 1.79	0.94 0.29 0.94 0.29	0.80 0.80		2 1.0 2 1.0	0.037 1	.80 45.15 .82 45.16 .72 44.57		3.68	2.77 2.75 2.74	2 2 2	
95.41	15.1 0.085 15 18.1 0.188 18 14.3 0.276 14	0 12.9 5.59	9 0.56% 4 1.04%	Sand-Slime Tailin Sand-Slime Tailin	0.059 1 0.059 1	19.0 0.74 19.0 0.75	0.25 0.25	0.49 0.50 0.50	1	1.48 26.626	314.89 26.4 370.11 31.0 296.43 24.9	9 35	0.59% 2 1.09% 2 2.03% 2		1.39	0.00 1.38 0.00 1.39 0.00 1.40	0 0 0	0.93 0.06 0.97 1.0 0.93 0.06 0.97 1.0 0.93 0.06 0.97 1.0 0.93 0.06 0.97 1.0	0.052 4	41.20 72.29 0	.102 1.97	0.94 0.30	0.80	0.80 1.12 0.80 1.12 0.80 1.12	2 1.0	0.037 1	.77 46.90 .96 60.82 .03 75.54	0.089 0.101 0.120	3.73 4.19 4.94	2.77 3.08 3.36	2 2 2	
95.08 94.92	12.3 0.228 12 10.8 0.190 10	1 23.3 10.0 7 27.0 11.7	8 1.86% 0 1.75%	Sand-Slime Tailin Sand-Slime Tailin	0.059 1 0.059 1	19.0 0.7 19.0 0.7	7 0.26 3 0.27	0.51 0.51	1 1	1.51 18.270 1.50 15.970	253.95 21.4 221.98 18.8	7 23 4 20	1.98% 2 1.89% 2	.6 47% .6 47%	1.41 1.42	0.00 1.41 0.00 1.42	0	0.93 0.05 0.97 1.0 0.92 0.05 0.97 1.0	0.052 3	37.83 59.31 0 36.91 55.75 0	0.087 1.67 0.083 1.60	0.94 0.27 0.94 0.25	0.80 0.80	0.80 1.1 ⁻ 0.80 1.1 ⁻	1 1.0 1 1.0	0.037 3	.35 71.88 .60 67.84	0.115 0.109	4.67 4.41	3.17 3.00	2 2 2	
94.59	10.0 0.115 9.	7 47.3 20.4 6 60.9 26.4 5 34.5 14.9	0 1.15%	Sand-Slime Tailin	0.059 1	19.0 0.8	0.28	0.52 0.52 0.53	1	1.48 14.251	159.95 13.8 198.09 17.2 254.73 21.6	0 18		.6 47%	1.43 1.44 1.45		0 0 0	0.92 0.05 0.98 1.0 0.92 0.05 0.97 1.0 0.92 0.05 0.97 1.0	0.052 3	36.34 53.54 0	.081 1.56	0.94 0.24	0.80	0.80 1.1 ¹ 0.80 1.1 ¹ 0.80 1.10	1 1.0	0.037 5	.23 55.51	0.096	4.51 3.82 3.84	2.99 2.69 2.76	2 2 2 2	
i94.26 i94.10	8.1 0.129 7. 6.3 0.101 6.	9 39.8 17.2 0 61.5 26.6	3 1.59% 4 1.59%	Slime Tailings Slime Tailings	0.057 1 0.057 1	13.1 0.8 13.1 0.8	2 0.29 3 0.29	0.53 0.54		1.46 11.483 1.45 8.629	159.62 13.7 119.94 10.6	6 14 7 10	1.77% 2 1.83% 2	.8 71% .9 71%	1.46 1.47	0.00 1.46 0.00 1.47	0	0.92 0.05 0.97 1.0 0.92 0.05 0.98 1.0	0.052 3	34.88 48.64 0 33.80 44.47 0	0.076 1.47 0.072 1.40	0.94 0.21 0.94 0.19	0.80 0.80	0.80 1.10	0 1.0	0.038 4	.42 60.74 .42 57.80	0.101 0.098	3.95 3.81	2.71 2.60	2 2 2	
93.77	6.0 0.095 5. 5.9 0.056 5. 6.8 0.056 6.	5 66.0 28.6	1 0.95%		0.057 1 0.057 1 0.059 1	13.1 0.8	5 0.30	0.54 0.54 0.55		1.44 8.029 1.43 7.895 1.42 9.295		9	1.83% 2 1.10% 2 0.94% 2	.8 71%	1.48	0.00 1.47 0.00 1.48 0.00 1.49	0 0 0	0.92 0.05 0.98 1.0 0.92 0.05 0.98 1.0 0.91 0.05 0.97 1.0	0.052 3	33.52 43.38 0	.071 1.38	0.94 0.18	0.80	0.80 1.10 0.80 1.10 0.80 1.09	0 1.0	0.038 4	.66 57.05 .79 47.20 .07 45.87	0.089	3.75 3.42 3.35	2.57 2.40 2.39	2 2 2	
	9.0 0.056 8.				0.059 1	19.0 0.8		0.55	1		171.00 14.7					0.00 1.50	0	0.91 0.05 0.97 1.0											3.25	2.38	2	

Energy Fuels Resources (USA) Inc White Mesa Mill Seismic Settlement Analyses

dpoi nt apth t ₁ , z ₁	Shear Wave Velocity, Vs	Soil Density , ρ (tcf)	Max Shear Strain Modulus, G _{max} (tsf)	P = γ _{eff} *(G _{eff} /G _{max}) (tsf)	Plastici ty Index, Pl	g1	g ₂	Shear Strain, V (%)	a	ь	Threshhol d Shear Strain, γ _{tv} (%)	Volumetri c Strain at 15 Cycles, ε _{c-15} (%)	R	c	C _N	Volumetric Strain for Design Event, ε _v (%)	Incrementa I Consolidat on (ft)
0.08 0.69	508 508	1.7E-03 1.7E-03	4.4E+02 4.3E+02	3.0E-06 2.8E-05	11 11	0.068	46696 18930	0.00%	1.20	0.80 0.65	0.04%	0.000	0.32 0.34	0.133 0.079	0.778 0.765	0.00%	0.000
1.75 2.93	508 508	1.9E-03 1.6E-03	4.8E+02 4.0E+02		11 11	0.152 0.173	12657 10248	0.01% 0.02%	0.65 2.00	0.75 0.65	0.02% 0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00% 0.00%	0.000
						Seis	smic Set	tlement A	Analysis	- Stewar	rt et al (2004	4)	TOTAL	SEISMI	C SETTL	EMENT (FT):	0.35
opth	Wave Velocity, V₅	Soil Density	Shear Strain	P = γ _{eff} *(G _{eff}	ty Index,			Shear Strain,			d Shear Strain, γ _{tv}	c Strain at 15 Cycles,			c	Strain for Design	l Consolidat
t1, z1 m	Vs	, ρ (tcf)	Modulus, G _{max} tsf	/G _{max})	PI	91	9 2	γ (%)	а	b	(%)	ε _{c-15} (%)	R	c	C _N	Event, ε _v (%)	on (ft)
3.63 3.68	(10 Sec) 594 594	1.6E-03 1.6E-03	5.5E+02 5.5E+02	1.1E-04	11 11	0.181 0.182	9453 9404	(%) 0.01% 0.02%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00%	0.000
3.73	594	1.6E-03	5.5E+02	1.2E-04	11	0.183	9355	0.02%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.000
3.78 3.83	594 594	1.6E-03 1.6E-03	5.5E+02 5.5E+02	1.2E-04	11 11	0.183 0.184	9307 9259	0.02% 0.02%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00% 0.00%	0.000
3.88 3.93	594 594	1.6E-03 1.6E-03	5.5E+02 5.5E+02	1.2E-04	11 11	0.184 0.185	9213 9167	0.02% 0.02%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00% 0.00%	0.000
3.98 4.03	594 594	1.6E-03 1.6E-03	5.5E+02 5.5E+02		11 11	0.185 0.186	9122 9078	0.02%	2.00 2.00	0.65 0.65	0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00%	0.000
4.08 4.13	594 594	1.6E-03 1.6E-03	5.5E+02 5.5E+02		11 11	0.187 0.187	9035 8992	0.02% 0.02%	2.00 2.00	0.65 0.65	0.03%	0.000	0.34 0.34	0.079	0.765 0.765	0.00%	0.000
4.18 4.23	594 594	1.6E-03 1.6E-03	5.5E+02 5.5E+02	1.3E-04	11 11	0.188 0.188	8950 8909	0.02% 0.02%	2.00 2.00	0.65 0.65	0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00%	0.000
4.28	594 594	1.6E-03	5.5E+02	1.3E-04	11	0.189	8868	0.02%	2.00	0.65	0.03%	0.000	0.34	0.079	0.765	0.00%	0.000
4.33 4.38	594	1.6E-03 1.6E-03	5.5E+02 5.5E+02	1.4E-04	11 11	0.189 0.190	8828 8788	0.02% 0.02%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00% 0.00%	0.000
4.43 4.48	594 594	1.6E-03 1.6E-03	5.5E+02 5.5E+02	1.4E-04	11	0.190 0.191	8749 8711	0.02% 0.02%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.00% 0.00%	0.000
4.53 4.58	495 495	1.6E-03 1.6E-03	3.8E+02 3.9E+02	2.0E-04	11 0	0.191 0.196	8673 11168	0.04% 0.05%	2.00 2.20	0.65 1.00	0.03% 0.03%	0.003	0.34 0.34	0.079 0.079	0.765 0.765	0.53% 0.06%	0.000
4.63 4.68	495 495	1.6E-03 1.6E-03	3.9E+02 3.9E+02		0	0.196 0.197	11121 11074	0.05% 0.05%	2.20 2.20	1.00 1.00	0.03% 0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.06% 0.06%	0.000
4.73 4.78	495 495	1.6E-03 1.6E-03	3.9E+02 3.9E+02		0	0.197 0.198	11027 10981	0.05% 0.05%	2.20 2.20	1.00 1.00	0.03% 0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.07% 0.07%	0.000
4.83 4.88	495 495	1.6E-03 1.6E-03	3.9E+02 3.9E+02	2.1E-04	0	0.198	10936 10892	0.05%	2.20	1.00	0.03%	0.000	0.34	0.079	0.765	0.08%	0.000
4.93 4.98	495	1.4E-03 1.4E-03	3.5E+02 3.5E+02	2.4E-04	10 10	0.196 0.196	8612 8580	0.05%	2.00	0.65	0.03%	0.008	0.34	0.079	0.765	1.18%	0.001
5.03	495	1.6E-03	3.9E+02 3.5E+02	2.2E-04	0	0.200	10770	0.06%	2.20	1.00	0.03%	0.001	0.34	0.079	0.765	0.09%	0.000
5.08 5.13	495 495	1.4E-03 1.4E-03	3.5E+02	2.5E-04	10 10	0.197 0.197	8515 8485	0.05% 0.05%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.008	0.34 0.34	0.079 0.079	0.765 0.765	1.28% 1.31%	0.002
5.18 5.23	495 495	1.8E-03 1.8E-03	4.5E+02 4.5E+02	2.0E-04	10 10	0.198 0.199	8447 8409	0.03% 0.03%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.002	0.34 0.34	0.079 0.079	0.765 0.765	0.33% 0.38%	0.000
5.28 5.33	495 495	1.8E-03 1.9E-03	4.5E+02 4.7E+02		10 0	0.199 0.203	8372 10506	0.03% 0.04%	2.00 2.20	0.65 1.00	0.03%	0.003	0.34 0.34	0.079 0.079	0.765 0.765	0.42%	0.000
5.38 5.43	495 495	1.9E-03 1.9E-03	4.7E+02 4.7E+02		0	0.203	10460 10414	0.04%	2.20 2.20	1.00 1.00	0.03%	0.000	0.34 0.34	0.079	0.765 0.765	0.04%	0.000
5.48 5.53	495 495	1.9E-03 1.9E-03	4.7E+02 4.7E+02		0	0.204	10369 10324	0.04% 0.04%	2.20 2.20	1.00 1.00	0.03%	0.000	0.34	0.079	0.765 0.765	0.05% 0.05%	0.000
5.58 5.63	495 495	1.9E-03 1.9E-03	4.7E+02 4.7E+02	2.0E-04	0	0.205	10280 10237	0.05% 0.05%	2.20	1.00	0.03%	0.000	0.34	0.079	0.765	0.05%	0.000
5.68	495	1.9E-03	4.7E+02 4.7E+02	2.1E-04	0	0.206	10195	0.05%	2.20	1.00	0.03%	0.000	0.34	0.079	0.765	0.06%	0.000
5.73 5.78	495 495	1.9E-03 1.9E-03	4.7E+02	2.1E-04	0	0.207	10153 10111	0.05% 0.05%	2.20 2.20	1.00 1.00	0.03% 0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.06%	0.000
5.83 5.88	495 495	1.9E-03 1.9E-03	4.7E+02 4.7E+02	2.2E-04	0	0.208 0.208	10071 10030	0.05% 0.05%	2.20 2.20	1.00 1.00	0.03% 0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.07% 0.07%	0.000
5.93 5.98	495 495	1.9E-03 1.9E-03	4.7E+02 4.7E+02		0	0.208	9991 9952	0.05% 0.05%	2.20 2.20	1.00 1.00	0.03% 0.03%	0.000	0.34 0.34	0.079 0.079	0.765 0.765	0.07% 0.08%	0.000
6.03 6.08	495 495	1.9E-03 1.9E-03	4.7E+02 4.7E+02		0	0.209	9913 9875	0.05% 0.05%	2.20 2.20	1.00 1.00	0.03%	0.001	0.34 0.34	0.079	0.765 0.765	0.08% 0.08%	0.000
6.13 6.18	495 495	1.9E-03 1.9E-03	4.7E+02 4.7E+02		0	0.210 0.211	9837 9800	0.06% 0.06%	2.20 2.20	1.00 1.00	0.03%	0.001	0.34 0.34	0.079 0.079	0.765 0.765	0.09% 0.09%	0.000
6.23 6.28	495 495	1.9E-03 1.9E-03	4.7E+02 4.7E+02	2.3E-04	0	0.211	9764 9727	0.06%	2.20	1.00 1.00	0.03%	0.001	0.34	0.079 0.079	0.765	0.09%	0.000
6.33 6.38	495 495	1.9E-03 1.9E-03	4.7E+02 4.7E+02	2.4E-04	0	0.212	9692 9656	0.06%	2.20	1.00	0.03%	0.001	0.34	0.079	0.765	0.10%	0.000
6.43	460	1.8E-03	3.9E+02	2.9E-04	10	0.211	7626	0.07%	2.00	0.65	0.03%	0.012	0.34	0.079	0.765	1.85%	0.0030
6.48 6.53	460 460	1.8E-03 1.9E-03	3.9E+02 4.1E+02	2.8E-04	10 0	0.211 0.214	7599 9556	0.07% 0.10%	2.00 2.20	0.65 1.00	0.03% 0.03%	0.012	0.34 0.34	0.079 0.079	0.765 0.765	0.22%	0.003
6.58 6.63	460	1.8E-03	4.1E+02 3.9E+02	3.0E-04	0 10	0.214 0.213	9522 7519	0.10% 0.07%	2.20 2.00	1.00 0.65	0.03% 0.03%	0.002 0.013	0.34 0.34	0.079 0.079	0.765 0.765	0.23% 2.00%	0.000
6.68 6.73	460	1.8E-03 1.8E-03	3.9E+02 3.9E+02	3.0E-04	10 10	0.213 0.213	7494 7469	0.07% 0.08%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.013 0.014	0.34 0.34	0.079 0.079	0.765 0.765	2.03% 2.07%	0.003
6.78 6.83	460 460	1.8E-03 1.8E-03	3.9E+02 3.9E+02	3.1E-04	10 10	0.214 0.214	7444 7420	0.08% 0.08%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.014 0.014	0.34 0.34	0.079 0.079	0.765 0.765	2.11% 2.14%	0.003
6.88 6.93	460 460	1.8E-03 1.8E-03	3.9E+02 3.9E+02	3.1E-04	10 10	0.215 0.215	7396 7372	0.08% 0.08%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.014 0.014	0.34 0.34	0.079 0.079	0.765 0.765	2.18% 2.21%	0.003
6.98 7.03	460	1.8E-03 1.8E-03	3.9E+02 3.9E+02	3.1E-04	10 10	0.216	7348 7325	0.08%	2.00	0.65	0.03%	0.015	0.34	0.079	0.765	2.25% 2.29%	0.003
7.08	460	1.8E-03 1.8E-03	3.9E+02 3.9E+02	3.2E-04	10 10	0.216	7301	0.08%	2.00	0.65	0.03%	0.015	0.34	0.079	0.765	2.32%	0.003
7.18	460 460 460	1.8E-03	3.9E+02 3.9E+02 3.9E+02	3.2E-04	10	0.217	7256	0.09%	2.00 2.00 2.00	0.65	0.03%	0.016	0.34 0.34 0.34	0.079	0.765	2.30% 2.40% 2.44%	0.003
7.23	460	1.8E-03 1.8E-03	3.9E+02	3.3E-04	10	0.218	7211	0.09%	2.00	0.65	0.03%	0.016	0.34	0.079	0.765	2.47%	0.004
7.33 7.38	460	1.8E-03 1.8E-03	3.9E+02 3.9E+02	3.3E-04	10 10	0.218 0.219	7189 7167	0.09% 0.09%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.016 0.017	0.34 0.34	0.079 0.079	0.765 0.765	2.51% 2.55%	0.004
7.43 7.48	460	1.8E-03 1.8E-03	3.9E+02 3.9E+02	3.4E-04	10 10	0.219 0.220	7146 7124	0.09% 0.10%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.017 0.017	0.34 0.34	0.079 0.079	0.765 0.765	2.59% 2.62%	0.004
7.53 7.58	460	1.8E-03 1.8E-03	3.9E+02 3.9E+02	3.4E-04	10 10	0.220 0.220	7103 7082	0.10% 0.10%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.017 0.018	0.34 0.34	0.079 0.079	0.765 0.765	2.66% 2.70%	0.004
7.63 7.68	460 460	1.8E-03 1.8E-03	3.9E+02 3.9E+02	3.5E-04 3.5E-04	10 10	0.221 0.221	7062 7041	0.10% 0.10%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.018 0.018	0.34 0.34	0.079 0.079	0.765 0.765	2.74% 2.78%	0.004
7.73	460	1.8E-03 1.8E-03	3.9E+02 3.9E+02	3.5E-04	10 10	0.222	7021	0.10%	2.00	0.65	0.03%	0.018	0.34	0.079	0.765	2.82%	0.004
7.83 7.88	460	1.8E-03 1.8E-03	3.7E+02 3.9E+02	3.7E-04	16 10	0.474	5753 6962	0.13%	2.00 2.00	0.65	0.03%	0.022	0.34	0.079	0.765	3.41% 2.93%	0.005
7.93	460	1.8E-03	3.9E+02	3.6E-04	10	0.223	6943	0.11%	2.00	0.65	0.03%	0.019	0.34	0.079	0.765	2.97%	0.0049
7.98 8.03	500	1.8E-03 1.8E-03	3.7E+02 4.4E+02	3.3E-04	16 16	0.475 0.475	5706 5691	0.13% 0.09%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.023 0.016	0.34 0.34	0.079 0.079	0.765 0.765	3.53% 2.43%	0.005
8.08 8.13	500 500	1.8E-03 1.8E-03	4.4E+02 4.4E+02	3.3E-04	16 16	0.475 0.476	5676 5661	0.09% 0.09%	2.00 2.00	0.65 0.65	0.03% 0.03%	0.016 0.016	0.34 0.34	0.079 0.079	0.765 0.765	2.46% 2.49%	0.004
8.18 8.23	500	1.8E-03 1.8E-03	4.6E+02 4.6E+02	3.2E-04	10 10	0.225 0.225	6852 6833	0.08% 0.08%	2.00 2.00	0.65 0.65	0.03%	0.014 0.014	0.34 0.34	0.079 0.079	0.765 0.765	2.07% 2.10%	0.0034
0.61		1.8E-03	5.3E+02		10	0.240	6155	0.09%	2.00	0.65		0.016	0.34	0.079	0.765		

ATTACHMENT F.4

LIQUEFACTION CALCULATIONS

Notes

 t_0 corresponds to beginning of final cover placement t_1 corresponds to dewatering of the tailings to a level 5 feet above the liner

t2 corresponds to completion of dewatering

Assumes 99% of consolidation due to existing stress conditions has taken place

	SOIL PROPERTIES	
TAILINGS		
Specific G		
2.70	Specific gravity of tailing sands, G s-TSand	Based on testing performed on other uranium tailings and presented in Keshian and Rager (1988)
2.80	Specific gravity of tailing sand-slimes, G s-TS-S	Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015b)
2.86	Specific gravity of tailing slimes, G s-TSlime	Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015b)
Fines Con		
18%	Fines content of tailings sands (%)	Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015b)
47%	Fines content of tailings sand-slimes (%)	Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015b)
71%	Fines content of tailings slimes (%)	Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015b)
Dry Unit W		
97	In-situ dry unit weight of tailings sands at $t_0,\gamma_{d0\text{-}Tsand}$ (pcf)	Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015b)
88	In-situ dry unit weight of tailings sand-slimes at $t_0, \gamma_{d0\text{-}TS\text{-}S}$ (pcf)	Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015b)
78	In-situ dry unit weight of tailings slimes at t_0 , $\gamma_{d0-Tslime}$ (pcf)	Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015b)
	Unit Weight, _{ysat}	
123	In-situ saturated unit weight of tailings sands at $t_0, \gamma_{\text{sat0-Tsand}}$ (pcf)	Calculated
119	In-situ saturated unit weight of tailings sand-slimes at $t_{0},\gamma_{\text{sat0-TS-S}}$ (pcf)	Calculated
113	In-situ saturated unit weight of tailings slimes at t_0 , $\gamma_{\text{sat0-Tslime}}$ (pcf)	Calculated
	Weight, γ_m	
103	Moist unit weight of tailings sands, $\gamma_{m-Tsand}$ (pcf)	Calculated, assuming long-term water content from laboratory testing (Tailings Data Analysis Report. MWH, 2015b)
93	Moist unit weight of tailings sand-slimes, ym-TS-S (pcf)	Calculated, assuming long-term water content from laboratory testing (Tailings Data Analysis Report. MWH, 2015b)
83	Moist unit weight of tailings slimes, ym-Tslime (pcf)	Calculated, assuming long-term water content from laboratory testing (Tailings Data Analysis Report. MWH, 2015b)
Void Ratio		
0.74	Void ratio of tailing sands at t ₀ , e _{0-TSand}	Calculated
0.99	Void ratio of tailing sand-slimes at t ₀ , e _{0-TS-S}	Calculated
1.29	Void ratio of tailing slimes at t ₀ , e _{0-TSlime}	Calculated
	Water Content, w _{Sat}	
27%	Saturated water content of tailings sands at t ₀ , w _{sat0-TSand} (%)	Calculated
35%	Saturated water content of tailings sand-slimes at t ₀ , w _{sat0-TS-S} (%)	Calculated
45%	Saturated water content of tailings slimes at t ₀ , w _{sat0-TSlime} (%)	Calculated
	ntent of Moist Tailings, w _{m-T}	From All should be Dedon From the Madeller installer with this substitut
6% 6%	Water content of moist tailings sands, w _{m-TSand} (%)	From Attachment H - Radon Emanation Modeling including with this submittal
	Water content of moist tailings sand-slimes, w _{m-TS-S} (%)	From Attachment H - Radon Emanation Modeling including with this submittal
6%	Water content of moist tailings slimes, w _{m-TSlime} (%)	From Attachment H - Radon Emanation Modeling including with this submittal
Plasticity I		
0	Plasticity index of tailings sands, PI TSand	Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015b)
10	Plasticity index of tailings sand-slimes, PI TS-S	Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015b)
16	Plasticity index of tailings slimes, PI TSlime	Average value from lab testing of samples obtained on-site (Tailings Data Analysis Report. MWH, 2015b)
Seismic S	ettlement Coefficients	
2.2	Coefficient "a" of Unsaturated Sand Tailings	From Stewart, et al (2004), page 86, Figure 6.5
5.0	Coefficient "a" of Saturated Sand Tailings	From Stewart, et al (2004), page 86, Figure 6.5
2.0	Coefficient "a" of Sand-Slime Tailings	From Stewart, et al (2004), page 89, Figure 6.7
2.0	Coefficient "a" of Slime Tailings	From Stewart, et al (2004), page 89, Figure 6.7
1.00	Coefficient "b" of Sand Tailings	From Stewart, et al (2004), page 86, Figure 6.5
0.65	Coefficient "b" of Sand-Slime Tailings	From Stewart, et al (2004), page 89, Figure 6.7
0.65	Coefficient "b" of Slime Tailings	From Stewart, et al (2004), page 89, Figure 6.7
0.01%	Strain threshold value of Sand Tailings, ytv	From Stewart, et al (2004), page 86, Figure 6.5
0.03%	Strain threshold value of Sand-Slime Tailings, ytv	From Stewart, et al (2004), page 89, Figure 6.7
0.03%	Strain threshold value of Slime Tailings, ytv	From Stewart, et al (2004), page 89, Figure 6.7
0.36	Coefficient "R" of Sand Tailings	From Stewart, et al (2004), page 86, for soils with non-plastic fines
0.34	Coefficient "R" of Sand-Slime Tailings	From Stewart, et al (2004), page 89, for soils with medium plasticity fines
0.34	Coefficient "R" of Slime Tailings	From Stewart, et al (2004), page 89, for soils with medium plasticity lines
0.04	comment in ononine runningo	. Tom exemute, examples of, page of, for solid war medialin plasticity into

Other

5.0	Height of water table above liner at t ₁ , H _{sat-1} (ft)
0.0	Height of water table above liner at t ₂ , H _{sat-2} (ft)
6.0%	Long-term moisture content of tailings, w _{tailings} (%)
508	Shear Wave Velocity of Tailings, V s (ft/sec)

Assumed for end of active maintenance

From Attachment H - Radon Emanation Modeling including with this submittal Conservatively assumed to be the average of the shear wave velocities measured in Cell 2 tailings

COVER SOIL

Specific Gr	avity, G _s	
2.61	Specific gravity of topsoil, G _{s-Topsoil}	From Attachment H - Radon Emanation Modeling including with this submittal
2.62	Specific gravity of rock mulch, G s-mulch	From Attachment H - Radon Emanation Modeling including with this submittal
2.63	Specific gravity of cover soil, G s-cover	From Attachment H - Radon Emanation Modeling including with this submittal
Unit Weigh	t , γ	
118.0	Maximum dry unit weight of cover soil y _{cover-max} (pcf)	Average calculated from laboratory testing results (UWM, 2012)
100.7	Moist unit weight of cover soil at 80% relative compaction, $\gamma_{cover80}$ (pcf)	Calculated
107.0	Moist unit weight of cover soil at 85% relative compaction, $\gamma_{cover85}$ (pcf)	Calculated
119.6	Moist unit weight of cover soil at 95% relative compaction, $\gamma_{cover95}$ (pcf)	Calculated
00	Dry unit weight of topsoil layer at 85% relative compaction, $\gamma_{topsoil5}$ (pcf)	From Attachment H - Radon Emanation Modeling including with this submittal
105	Moist unit weight of topsoil layer at 85% relative compaction, $\gamma_{topsoil5}$ (pcf)	Calculated
06	Dry unit weight of rock mulch layer at 85% relative compaction, $\gamma_{mulch85}$ (pcf)	Calculated
10	Moist unit weight of rock mulch layer at 85% relative compaction, $\gamma_{mulch85}$ (pcf)	From Attachment H - Radon Emanation Modeling including with this submittal
Void Ratio,		
0.74	Void Ratio of cover soil at 80% relative compaction, e cover80	Calculated
0.64	Void Ratio of cover soil at 85% relative compaction, e cover85	Calculated
0.46	Void Ratio of cover soil at 95% relative compaction, e cover95	Calculated
0.61	Void Ratio of topsoil at 85% relative compaction, e topsoil85	Calculated from porosity presented in Attachment H - Radon Emanation Modeling including with this submittal
0.54	Void Ratio of rock mulch at 85% relative compaction, e $_{\rm mulch85}$	Calculated from porosity presented in Attachment H - Radon Emanation Modeling including with this submittal
Seismic Se	ttlement Coefficients	
1.2	Coefficient "a" of Erosion Protection/Topsoil Cover	From Stewart, et al (2004), page 88, Figure 6.6
2.0	Coefficient "a" of General Cover Soil	From Stewart, et al (2004), page 89, Figure 6.7
0.65	Coefficient "a" of High-Compaction Layer	From Stewart, et al (2004), page 89, Figure 6.7
0.80	Coefficient "b" of Erosion Protection/Topsoil Cover	From Stewart, et al (2004), page 88, Figure 6.6
0.65	Coefficient "b" of General Cover Soil	From Stewart, et al (2004), page 89, Figure 6.7
0.75	Coefficient "b" of High-Compaction Layer	From Stewart, et al (2004), page 89, Figure 6.7
0.04%	Strain threshold value of Erosion Protection/Topsoil Cover, ytv	From Stewart, et al (2004), page 88, Figure 6.6
0.03%	Strain threshold value of General Cover Soil, ytv	From Stewart, et al (2004), page 89, Figure 6.7
0.02%	Strain threshold value of High-Compaction Layer, ytv	From Stewart, et al (2004), page 89, Figure 6.7
0.32	Coefficient "R" of Erosion Protection/Topsoil Cover	From Stewart, et al (2004), page 88, for soils with low plasticity fines
0.34	Coefficient "R" of General Cover Soil	From Stewart, et al (2004), page 89, for soils with medium plasticity fines
0.34	Coefficient "R" of High-Compaction Layer	From Stewart, et al (2004), page 89, for soils with medium plasticity fines
Other		
6.7%	Long-term moisture content of cover soil, w _{cover} (%)	Estimated based on measured 15bar water content. (UWM, 2012)
5.2%	Long-term moisture content of topsoil, w _{topsoil} (%)	From Attachment H - Radon Emanation Modeling including with this submittal
4.0%	Long-term moisture content of rock mulch, w _{rockmulch} (%)	From Attachment H - Radon Emanation Modeling including with this submittal
0.14	Compression index of cover soil, C c-cover	Calculated from empirical equation presented in Holtz and Kovacs, 1981. Page 341. C $_c$ = 0.30*(e $_0$ -0.27)
51%	Fines content of cover soil (%)	Mean value from laboratory analyses presented in previous response to interrogatories (EFRI, 2012)
11	Plasticity Index of cover soil, Pl	Weighted Average from 2010 and 2012 laboratory testing (laboratory results presented in EFRI, 2012)
508	Shear Wave Velocity of Cover Soil, V s (ft/sec)	Conservatively assumed to be the average of the shear wave velocities measured in Cell 2 tailings

SEISMIC PARAMETERS

5.5 20 1.00	Magnitude of Design Event, M Site-Source Distance, r (km)	From Probabilistic Seismic Hazard Analysis (MWH, 2015a)
1 00	Sile-Source Distance, r (km)	From Probabilistic Seismic Hazard Analysis (MWH, 2015a)
1.00	Stress reduction factor, r _d	Conservatively assumed.
7.51	Equiv. Number of Uniform Strain Cycles, N	Calculated from Stewart, et al (2004), Equation 6.11, page 79, S parameter =0 since shallow soil and rock underlie the tailings (<20m) below tailings
594	Average shear wave velocity for cover, Vs (ft/s)	Conservatively estimated as upper bound average Vs for tailings in Cell 2 in October 2013 (Tailings Data Analysis Report. MWH, 2015b)
495	Average shear wave velocity for tailings (3' - 9.4'), Vs (ft/s)	Conservatively estimated as average Vs over depth range for tailings in Cell 2 in October 2013 (Tailings Data Analysis Report. MWH, 2015b)
460	Average shear wave velocity for tailings (9.4' - 14.4'), Vs (ft/s)	Conservatively estimated as average Vs over depth range for tailings in Cell 2 in October 2013 (Tailings Data Analysis Report. MWH, 2015b)
500	Average shear wave velocity for tailings (14.4' - 19.6'), Vs (ft/s)	Conservatively estimated as average Vs over depth range for tailings in Cell 2 in October 2013 (Tailings Data Analysis Report. MWH, 2015b)
538	Average shear wave velocity for tailings (19.6' - 24.7'), Vs (ft/s)	Conservatively estimated as average Vs over depth range for tailings in Cell 2 in October 2013 (Tailings Data Analysis Report. MWH, 2015b)
594	Average shear wave velocity for tailings (24.7' - liner), Vs (ft/s)	Conservatively estimated as average Vs over depth range for tailings in Cell 2 in October 2013 (Tailings Data Analysis Report. MWH, 2015b)

Unit Weight of Water, γ_W Atmospheric Pressure, P_a (kPa) Atmospheric Pressure, P_a (psf) 62.4

82.4 1722.0 Calculated assuming elev=5600' amsl. http://www.engineeringtoolbox.com/air-altitude-pressure-d_462.html Unit conversion calculation

REFERENCES

Energy Fuels Resources (USA) Inc. (EFRI), 2012. Responses to Interrogatories – Round 1 for Reclamation Plan, Revision 5.0, March 2012. August 15.

Holtz, R.D. and Kovacs, W.D., 1981. An Introduction to Geotechnical Engineering. Prentice Hall, Inc. New Jersey

Keshian, B., and Rager, R. 1988. Geotechnical Properties of Hydraulically Placed Uranium Mill Tailings, in Hydraulically Fill Structures, Geotechnical Special Publication No. 21, Eds. Van Zyl, D., and Vick, S., ASCE, August

MWH Americas, Inc. (MWH), 2015a. White Mesa Mill Probabilistic Seismic Hazard Analysis Report. Prepared for Energy Fuels Resources (USA) Inc. April.

MWH Americas, Inc. (MWH), 2015b. White Mesa Mill Tailings Data Analysis Report. Prepared for Energy Fuels Resources (USA) Inc. April.

Stewart, J.P., D. Whang, M.Moyneur, and P.Duku, 2004. Seismic Compression of As-Compacted Fill Soils With Variable Levels of Fines Content and Fines Plasticity. CUREE Publication No.EDA-05. July.

Terzaghi, K., R. Peck, and G. Mesri, 1996. Soil Mechanics in Engineering Practice, Third Edition. John Wiley and Sons, Inc. New York

University of Wisconsin-Madison (UWM), Wisconsin Geotechnics Laboratory, 2012. Compaction and Hydraulic Properties of Soils from Banding, Utah. Geotechnics Report NO. 12-41 by C.H. Benson and X. Wang. July 24.

Data File: 13-52106_SP2W2-BSC-CPT Location: White Mesa 2013 CPT Investigation	WHITE MESA TAILINGS REPOSITORY LIQUEFACT Idriss and Boulanger (2008) Max. Horiz. Acceleration, Amax/g: 0.15	TION AND SEISMIC SETTLEMENT ANALYSES - 2W2 5613.10 Water surface elevation during CPT investigation (f 5607.57 Water surface elevation at t ₀ (ft amsl)	(ft. 5615.85 Ground Surface Elevation at time of CPT (ft amsl) 5625.87 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl)	Elev. at Elev. At Bottom Stress at Stress at Pressure Equil Pore Stress at Stress at Top of Midpoint of Thicknes Unit Unit Bottom Midpoint at Bottom Pressure at Bottom Midpoint Layer of Layer s of Weigh Veigh Veight of Layer of Layer Midpoint of Layer Alayer FINAL COVER (ft) (ft) Layer(ft) (tcf) (csf) (tsf) (tsf) (tsf) Layer (tsf) (tsf)
\\.6.2.3 Field Data\2013 Field Investigation\Conetec Da Tailings Sands	a Earthquake Moment Magnitude, M: 5.5 Magnitude Scaling Factor, MSF: 1.69		0.50 Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after pla	Erosion Protection Layer ###### 6625.62 5625.37 0.05 110 0.028 0.014 0.00 0.028 0.014 ter Storage/Rooting Zone Layer ###### 5623.62 5621.87 3.50 0.054 107 0.215 0.121 0.00 0.0215 0.121
Tailings Sand-Slimes Tailings Slimes Interim Cover	Youd, et al (2001) Max. Horiz. Acceleration, Amax/g: 0.15 Earthquake Moment Magnitude, M: 5.5	1.44 Scaling Factor for stress ration, rm 0.47 Volumetric Strain Ratio for Site-Specific Design Ear	4.00 Thickness of High Compaction Layer (ft) 2.02 Thickness of Random/Platform Fill on on top of existing interim cover (ft) artt[1111.60 Additional Stress due to Final Cover Placement, Δσ _{FC} (psf)	High Compaction Layer ###### 5619.87 5617.87 4.00 0.060 120 0.454 0.334 0.00 0.05 0.334 Platform/Random Fill Layer ###### 5616.86 5615.85 2.02 0.050 101 0.566 0.505 0.00 0.056 0.505
Cells Requiring User Input/Manipulation 2013 CPT Data from ConeTec	Magnitude Scaling Factor, MSF: 2.21	7.51 Equiv. Number of Uniform Strain Cycles, N CPT Data Interpretations	5593.51 Elevation of bottom of tailings (liner) (ft ams) Conditions at t,	Liquefaction Triggering Analyses Idriss & Boulanger (2008)
Depth at time Pw Pw			Pore Effective Idriss & Boulanger (2008) Total Stress Pressure Stress at Saturated Cyclic Stress Ratio Cyclic Resistance	Youd et al. (2001) e Ratio Cyclic Stress Ratio
of CPT Elevation qt fs qc (u2) (u2) (ft) (ft amsl) TSF TSF TSF (ft) PSI		1=Yes TSF MPa ^{, Q} , %	% (tsf) (tsf) (tsf) 1=Yes $\Delta qc_{1n} qc_{1n-cs}$	
0.164 6615.69 19.0 0.292 19.0 2.8 1.22 0.328 6615.52 27.6 0.30 1.26 1.33 0.666 6615.91 130.6 1.407 130.6 1.2 0.53 0.820 6616.37 202.3 0.22 202.3 2.2 0.53 0.820 6614.87 188.1 1.311 188.0 4.1 1.77 1.148 6614.70 207.8 1.514 207.8 0.14 1.04 1.460 6614.37 25.5 1.332 52.5 0.32 1.01 1.464 6613.88 6.45 1.05 6.45 0.83 0.00 2.267 6613.23 1.1 0.910 7.1 0.70 0.32 2.789 6613.06 610 0.753 610 0.93 3.11 0.910 7.1 0.90 7.3 3.117 6510.75 0.51 0.55 0.55 1.00 0.55 1.00 3	1.53 Interm Cover 0.050 100.7 0.01 0.00 0.01 2.78% Interm Cover 0.050 100.7 0.02 0.00 0.02 1.88% Interm Cover 0.050 100.7 0.02 0.00 0.02 1.88% Interm Cover 0.050 100.7 0.04 0.00 0.04 0.44% Interm Cover 0.050 100.7 0.05 0.00 0.07 2.15% Interm Cover 0.050 100.7 0.06 0.00 0.07 2.63% Interm Cover 0.050 100.7 0.09 0.00 0.01 1.56% Interm Cover 0.050 100.7 0.11 0.00 0.11 1.56% Interm Cover 0.050 100.7 0.12 0.00 0.12 1.12% Interm Cover 0.050 100.7 0.18 0.02 0.15 1.12% Interm Cover 0.050 100.7 0.16 0.11 0.14	D=N0 U <thu< th=""> U <thu< th=""> <thu< th=""></thu<></thu<></thu<>	0.10 0.10 0.00 1.00 0.00 0.00 1.00 0.00 <th< td=""><td>mm field 1</td></th<>	mm field 1

		WHITE MESA TAILINGS REPOSITORY LIQUEFACTION	AND SEISMIC SETTLEMENT ANALYSES - 2W2		Elev. at Elev. At Bottom Stress at Stress a	
Data File:	13-52106_SP2W2-BSC-CPT	Idriss and Boulanger (2008)		Ground Surface Elevation at time of CPT (ft amsl)		t at Bottom Pressure at Bottom Midpoint of Layer Midpoint of of Layer of Layer
Location:	White Mesa 2013 CPT Investigation	Max. Horiz. Acceleration, Amax/g: 0.15		Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl)	FINAL COVER (ft) (ft) Layer (ft) t (tcf) (pcf) (tsf) (tsf)	(tsf) Layer (tsf) (tsf) (tsf)
	Field Data\2013 Field Investigation\Conetec E ings Sands	a Earthquake Moment Magnitude, M: 5.5 Magnitude Scaling Factor, MSF: 1.69		Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after pla Thickness of Water Storage/Rooting Zone (ft)	Erosion Protection Layer ###### 5625.62 5625.37 0.50 0.055 110 0.028 0.01 later Storage/Rooting Zone Layer ####### 5623.62 5621.87 3.50 0.054 107 0.215 0.12	
	ings Sand-Slimes	Youd, et al (2001)		Thickness of High Compaction Layer (ft)	High Compaction Layer ###### 5619.87 5617.87 4.00 0.060 120 0.454 0.33	
	ings Slimes	Max. Horiz. Acceleration, Amax/g: 0.15		Thickness of Random/Platform Fill on on top of existing interim cover (ft)	Platform/Random Fill Layer ###### 5616.86 5615.85 2.02 0.050 101 0.556 0.50	5 0.00 0.00 0.556 0.505
	rim Cover s Requiring User Input/Manipulation	Earthquake Moment Magnitude, M: 5.5 Magnitude Scaling Factor, MSF: 2.21 2.21		Additional Stress due to Final Cover Placement, $\Delta \sigma_{FC}$ (psf) Elevation of bottom of tailinos (liner) (ft amsl)		
Cells	2013 CPT Data from ConeTec	Magnitude Scaling Factor, MSF. 2.21 222		Conditions at t ₁	Liquefaction Triggering Analyses	Idriss & Boulanger (2008)
Depth		Material Stress Pore Stress a	aturated Normalized Normalize Type Cone d Friction Index,	Pore Effective Idriss & Boulanger (2008)	Youd et al. (2001)	
at time of CPT Elev	Pw Pw	Type (as determined Unit Unit at time Pressure time of Multiple 4 OPT at time of OPT	time of Penetration Ratio, Fr. L. Total Stress	s Pressure Stress at Saturated Cyclic Stress Ratio Cyclic Resistant		Ava Linux Entrop CN ac1 ac1 ac1N
(ft) (ft a			CPT CN qc1 qc1 qc1N Resistance (%) C at t ₁ 1=Yes TSF MPa , Q _t % (tsf)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(CRR) M=7.5, r _d D _r t K _o K _a CSR (CRR) M=7.5, Kc qc _{1rvcs M=7.5}	Avg Liquefiable? CN qc1 qc1 qc1N FoS 1=Yes TSF MPa
			0=No	0=No s'v=1atm	sv=1atm FoS sv=1atm FoS	2=No
12.139 560			1 1.70 12.682 176.28 15.23 18 1.51% 2.6 71% 1.24			3.21 2 1.7 13.111 1.2552 15.227
12.303 560 12.467 560		7 1.56% Slime Tailings 0.057 113.1 0.69 0.30 0.39 2 1.57% Slime Tailings 0.057 113.1 0.70 0.30 0.40	1 1.70 11.594 161.16 13.95 16 1.72% 2.7 71% 1.25 1 1.70 11.169 155.25 13.43 15 1.75% 2.7 71% 1.25	0.00 1.25 0 0.94 0.05 0.98 1.0 0.053 34.95 48.90 0.00 1.25 0 0.93 0.05 0.98 1.0 0.053 34.77 48.20		3.22 2 1.7 12.015 1.1503 13.954 3.20 2 1.7 11.566 1.1073 13.433
12.631 560			1 1.70 11.543 160.45 13.78 16 1.47% 2.7 71% 1.26			3.11 2 1.7 11.867 1.1362 13.783
12.795 560			1 1.70 10.234 142.25 12.34 14 1.90% 2.8 71% 1.27	0.00 1.27 0 0.93 0.05 0.98 1.0 0.053 34.38 46.72		3.17 2 1.7 10.622 1.017 12.337
12.959 560 13.123 560			1 1.70 12.733 176.99 15.33 17 1.76% 2.7 71% 1.28 1 1.70 17.493 243.15 20.71 24 1.51% 2.5 47% 1.29	0.00 1.28 0 0.93 0.05 0.98 1.0 0.053 35.43 50.75 0.00 1.29 0 0.93 0.05 0.98 1.0 0.053 37.57 58.28		3.23 2 1.7 13.198 1.2636 15.328 3.31 2 1.7 17.833 1.7073 20.712
13.123 560			1 1.70 17.493 243.15 20.71 24 1.51% 2.5 47% 1.29 1 1 1.70 13.515 187.86 16.07 18 2.39% 2.7 71% 1.30	0.00 1.30 0 0.93 0.05 0.98 1.0 0.053 37.57 58.28		3.31 2 1.7 17.833 1.7073 20.712 3.48 2 1.7 13.834 1.3244 16.067
13.451 560			1 1.70 11.237 156.19 13.47 14 2.22% 2.8 71% 1.31	0.00 1.31 0 0.93 0.05 0.98 1.0 0.052 34.78 48.25		3.27 2 1.7 11.601 1.1107 13.474
13.615 560 13.779 560			1 1.70 13.073 181.71 15.63 17 1.93% 2.7 71% 1.32 1 1.70 10.489 145.80 12.50 13 2.25% 2.8 71% 1.33	0.00 1.32 0 0.93 0.05 0.98 1.0 0.052 35.53 51.16 0.00 1.33 0 0.92 0.05 0.98 1.0 0.052 34.44 46.95		3.25 2 1.7 13.459 1.2886 15.632 3.21 2 1.7 10.765 1.0307 12.503
13.943 560			1 1.70 10.489 145.80 12.50 13 2.25% 2.6 71% 1.33 1 1.70 13.413 186.44 15.95 17 1.65% 2.7 71% 1.34			3.14 2 1.7 10.765 1.0507 12.505 3.14 2 1.7 13.73 1.3145 15.947
14.107 560	01.74 16.0 0.167 16.0 7.3 3.14		1 1.63 26.112 362.96 30.41 35 1.09% 2.3 47% 1.35	0.00 1.35 0 0.92 0.06 0.97 1.0 0.052 40.97 71.38	0.101 1.95 0.94 0.32 0.80 1.14 1.0 0.036 1.96 59.56 0.100 4.71	3.33 2 1.632 26.186 2.507 30.413
14.271 560			1 1.66 20.342 282.76 23.74 26 1.34% 2.5 47% 1.36	0.00 1.36 0 0.92 0.05 0.97 1.0 0.052 38.63 62.37		3.23 2 1.661961 20.442 1.9571 23.742
14.436 560 14.600 560			1 1.67 15.535 215.94 18.22 19 1.66% 2.6 47% 1.37 1 1.66 12.673 176.16 15.07 16 1.55% 2.7 71% 1.38	0.00 1.37 0 0.92 0.05 0.98 1.0 0.052 36.69 54.92 0.00 1.38 0 0.92 0.05 0.98 1.0 0.052 35.34 50.41		3.18 2 1.668682 15.691 1.5023 18.224 3.01 2 1.656647 12.975 1.2422 15.070
14.764 560			1 1.64 12.474 173.39 15.11 16 1.30% 2.6 47% 1.39	0.00 1.39 0 0.92 0.05 0.98 1.0 0.052 35.60 50.72		2.91 2 1.643455 13.012 1.2458 15.113
14.928 560			1 1.63 11.651 161.95 14.28 15 2.29% 2.8 71% 1.40	0.00 1.40 0 0.92 0.05 0.98 1.0 0.052 35.06 49.34		3.20 2 1.631828 12.293 1.1769 14.278
15.092 560 15.256 560			1 1.62 11.780 163.74 14.50 15 3.46% 2.9 71% 1.41 1 1.61 14.482 201.30 17.09 18 3.08% 2.8 71% 1.41	0.00 1.41 0 0.91 0.05 0.98 1.0 0.052 35.14 49.64 0.00 1.41 0 0.91 0.05 0.97 1.0 0.051 36.04 53.13		3.68 2 1.620387 12.486 1.1955 14.502 3.70 2 1.609127 14.715 1.4088 17.091
15.420 560			1 1.60 14.482 201.30 17.09 18 3.08% 2.6 71% 1.41 1 1.60 15.709 218.35 18.60 19 2.69% 2.7 71% 1.42			3.58 2 1.598044 16.018 1.5335 18.603
15.584 560			1 1.59 14.475 201.20 17.14 18 2.36% 2.7 71% 1.43	0.00 1.43 0 0.91 0.05 0.97 1.0 0.051 36.06 53.20		3.32 2 1.587134 14.757 1.4128 17.139
15.748 560 15.912 559			1 1.58 14.476 201.21 17.37 18 1.60% 2.6 47% 1.44 1 1.56 14.461 201.01 17.33 18 0.87% 2.5 47% 1.45			2.99 2 1.575164 14.956 1.4319 17.370 2.72 2 1.563399 14.922 1.4287 17.331
16.076 559			1 1.55 15.937 221.53 19.00 20 0.75% 2.4 47% 1.46			2.70 2 1.551831 16.356 1.5659 18.997
16.240 559			1 1.43 41.329 574.48 48.52 57 0.67% 2.0 47% 1.47			3.53 2 1.427613 41.778 3.9998 48.522
16.404 559 16.568 559			1 1.45 32.779 455.63 38.16 43 1.65% 2.3 47% 1.48 1 1.50 21.048 292.57 24.60 26 2.57% 2.6 71% 1.49			3.73 2 1.452341 32.853 3.1454 38.157 3.74 2 1.500236 21.179 2.0277 24.599
16.732 559			1 1.50 21.048 292.57 24.60 26 2.57% 2.6 71% 1.49 1 1.51 13.104 182.14 15.47 16 3.50% 2.9 71% 1.50	0.00 1.49 0 0.90 0.06 0.97 1.0 0.051 36.65 63.25		3.74 2 1.500236 21.179 2.0277 24.599 3.61 2 1.509668 13.323 1.2755 15.473
16.896 559		1 2.17% Slime Tailings 0.057 113.1 0.95 0.44 0.51	1 1.50 12.346 171.60 14.80 15 2.44% 2.8 71% 1.51	0.00 1.51 0 0.90 0.05 0.97 1.0 0.051 35.24 50.05	0.078 1.53 0.94 0.22 0.80 1.11 1.0 0.037 4.85 71.80 0.114 4.65	3.09 2 1.500079 12.746 1.2203 14.803
17.060 559			1 1.49 12.178 169.28 14.74 15 2.42% 2.8 71% 1.52	0.00 1.52 0 0.90 0.05 0.97 1.0 0.051 35.22 49.96		3.07 2 1.490627 12.688 1.2147 14.736
17.224 559 17.388 559			1 1.48 11.717 162.87 14.32 14 2.37% 2.8 71% 1.53 1 1.47 13.529 188.05 16.33 16 2.29% 2.8 71% 1.54	0.00 1.53 0 0.90 0.05 0.97 1.0 0.050 35.08 49.40 0.00 1.54 1 0.90 0.05 0.97 1.0 0.050 35.77 52.10		3.01 2 1.481311 12.332 1.1807 14.323 3.07 2 1.472126 14.059 1.346 16.329
17.552 559	98.30 8.9 0.209 8.4 74.2 32.1		1 1.46 12.319 171.23 15.09 15 2.65% 2.8 71% 1.55	0.01 1.54 1 0.90 0.05 0.97 1.0 0.051 35.34 50.44		3.12 2 1.463069 12.996 1.2443 15.095
17.716 559			1 1.45 12.622 175.44 15.37 15 2.46% 2.8 71% 1.56			3.04 2 1.454139 13.235 1.2671 15.371
17.880 559 18.044 559			1 1.45 12.545 174.38 15.20 15 2.11% 2.8 71% 1.57 1 1.44 12.921 179.60 15.61 15 1.70% 2.7 47% 1.58	0.02 1.55 1 0.89 0.05 0.97 1.0 0.051 35.38 50.59 0.02 1.55 1 0.89 0.05 0.97 1.0 0.051 35.77 51.38		2.88 2 1.445332 13.091 1.2534 15.205 2.74 2 1.435653 13.436 1.2864 15.605
18.208 559			1 1.43 11.845 164.64 14.35 14 2.74% 2.9 71% 1.58	0.03 1.56 1 0.89 0.05 0.97 1.0 0.051 35.09 49.44		3.02 2 1.427098 12.359 1.1833 14.354
18.372 559			1 1.42 13.491 187.53 16.41 16 2.91% 2.8 71% 1.59			3.20 2 1.418658 14.129 1.3527 16.410
18.537 559 18.701 559			1 1.41 14.484 201.33 17.38 17 3.35% 2.8 71% 1.60 1 1.40 16.910 235.04 20.02 20 2.64% 2.7 71% 1.61	0.04 1.57 1 0.89 0.05 0.97 1.0 0.051 36.14 53.52 0.04 1.57 1 0.89 0.05 0.97 1.0 0.051 36.14 53.52		3.45 2 1.410331 14.962 1.4324 17.377 3.25 2 1.402115 17.235 1.65 20.017
18.865 559		J.16% Sand-Slime Tailing 0.057 113.1 1.06 0.50 0.56	1 1.40 10.910 235.04 20.02 20 2.64% 2.7 71% 1.81 1 1.37 23.404 325.31 27.38 29 1.23% 2.4 47% 1.62	0.05 1.57 1 0.89 0.05 0.97 1.0 0.051 37.06 57.08 0.05 1.57 1 0.89 0.06 0.97 1.0 0.051 39.91 67.29		2.82 2 1.402115 17.235 1.05 20.017 2.82 2 1.369428 23.578 2.2574 27.385
19.029 559		1.31% Sand-Slime Tailin 0.059 119.0 1.08 0.51 0.57	1 1.36 22.707 315.63 26.57 28 1.39% 2.4 47% 1.63	0.05 1.58 1 0.88 0.06 0.97 1.0 0.051 39.62 66.19		2.85 2 1.363804 22.878 2.1904 26.572
19.193 559 19.357 559		1.37% Sand-Slime Tailin 0.059 119.0 1.09 0.51 0.57 2 1.58% Sand-Slime Tailin 0.059 119.0 1.10 0.52 0.58	1 1.36 20.954 291.26 24.53 25 1.47% 2.5 47% 1.64 1 1.37 16.059 223.22 18.93 19 1.74% 2.6 47% 1.65	0.06 1.58 1 0.88 0.06 0.97 1.0 0.051 38.90 63.43 0.06 1.59 1 0.88 0.05 0.97 1.0 0.051 36.94 55.88		2.80 2 1.362408 21.119 2.0219 24.528 2.71 2 1.366753 16.302 1.5607 18.934
19.357 559 19.521 559		2 1.58% Sand-Slime Tailing 0.059 119.0 1.10 0.52 0.58 3 2.02% Slime Tailing 0.057 113.1 1.10 0.52 0.58	1 1.37 16.059 223.22 18.93 19 1.74% 2.6 47% 1.65 1 1.36 13.972 194.20 16.64 16 2.26% 2.8 71% 1.66		0.083 1.63 0.93 0.25 0.80 1.08 1.0 0.039 3.56 67.47 0.109 3.79 0.080 1.56 0.93 0.24 0.80 1.08 1.0 0.040 4.40 73.27 0.117 4.03	2.71 2 1.366753 16.302 1.5607 18.934 2.79 2 1.359102 14.327 1.3717 16.641
19.685 559	06.17 10.7 0.236 10.3 60.5 26.2	1 2.21% Slime Tailings 0.057 113.1 1.11 0.53 0.59	1 1.35 13.907 193.31 16.75 16 2.47% 2.8 71% 1.67	0.07 1.60 1 0.88 0.05 0.97 1.0 0.051 35.92 52.66	0.080 1.56 0.93 0.24 0.80 1.08 1.0 0.040 4.57 76.54 0.122 4.17	2.86 2 1.351548 14.418 1.3804 16.745
19.849 559		2 1.62% Sand-Slime Tailine 0.059 119.0 1.12 0.53 0.59	1 1.34 17.596 244.59 20.83 21 1.77% 2.6 47% 1.68 1 1.04 10.000 000 10.04 10.04 10.04 10.04	0.08 1.60 1 0.88 0.05 0.97 1.0 0.051 37.61 58.44		2.74 2 1.343236 17.933 1.717 20.829 1.011 0.011 0.011 0.011 0.011 0.011
20.013 559 20.177 559		1.44% Sand-Slime Tailin 0.059 119.0 1.13 0.54 0.59 2 1.26% Sand-Slime Tailin 0.059 119.0 1.14 0.54 0.60	1 1.34 16.808 233.63 19.91 20 1.58% 2.6 47% 1.69 1 1.32 18.997 264.05 22.53 23 1.37% 2.5 47% 1.70	0.08 1.61 1 0.88 0.05 0.97 1.0 0.052 37.29 57.20 0.09 1.61 1 0.87 0.05 0.97 1.0 0.052 38.20 60.73		2.61 2 1.335039 17.146 1.6415 19.913 2.59 2 1.321958 19.399 1.8572 22.531
		5 1.37% Sand-Slime Tailin 0.059 119.0 1.15 0.55 0.60	1 1.32 17.608 244.76 20.73 20 1.49% 2.6 47% 1.71		0.086 1.66 0.93 0.26 0.80 1.07 1.0 0.040 3.15 65.23 0.106 3.49	2.58 2 1.318983 17.845 1.7085 20.726

Data File: 13-52106_SP2W3-BSC-CPT Location: White Mesa 2013 CPT Investigation 	WHITE MESA TAILINGS REPOSITORY LIQUEFACTION A Idriss and Boulanger (2008) Idriss and Boulanger (2008) Max. Horiz. Acceleration, Amax/g: 0.15 Earthquake Moment Magnitude, M: 5.5 Magnitude Scaling Factor, MSF: 1.69	$\begin{array}{c} 5613.80\\ 5607.44\\ 5597.74\\ Water surface elevation at t_0 (ft amsl) \\ 5597.74\\ Water surface elevation at t_1 (ft amsl) \\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	5626.27 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl) 0.50 Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after pla 3.50 Thickness of Water Storage/Rooting Zone (ft)	Final Covers Elev. at Dop of Midpoint Layer Bottom f Midpoint Layer Bottom of Layer Stress at Stress at Stress at Stress at Midpoint (tright being
Tailings Sand-Slimes Tailings Slimes Interim Cover	Youd, et al (2001) Max. Horiz. Acceleration, Amax/g: 0.15 Earthquake Moment Magnitude, M: 5.5			High Compaction Layer ###### 5620.27 5618.27 4.00 0.060 120 0.454 0.334 0.00 0.00 0.454 0.334 Platform/Random Fill Layer ###### 5617 5615.72 2.55 0.050 101 0.582 0.518 0.00 0.00 0.582 0.518
Cells Requiring User Input/Manipulation 2013 CPT Data from ConeTec	Magnitude Scaling Factor, MSF: 2.21 2.21	7.51 Equiv. Number of Uniform Strain Cycles, N 5 CPT Data Interpretations	Signature of the second s	Liquefaction Triggering Analyses Idriss & Boulanger (2008)
Depth at time Pw Pw	Material Type (as Unit Unit at time Pressure time of at	at time of Penetration Ratio, Fr. L. T	Pore Effective Idriss & Boulanger (2008) Total Stress Pressure Stress at Saturated Cyclic Stress Ratio Cyclic Resistance Rati	
of CPT Elevation qt fs qc (u2) (u2) (ft) (ft amsl) TSF TSF TSF (ft) PSI	(%) (tcf) (pcf) (tsf) (tsf) (tsf) 1	CPT CN qc1 qc1 qc1N Resistance (%) [∞] FC 1=Yes TSF MPa ^{,Q} t %	at t_1 at t_1 t_1 at t_1 r_d C_σ K_σ K_a CSR (Isf) (Isf) (Isf) 1=Yes $M^{-7.5}$ Δqc_{1n} qc_{1n-cs} $M^{-7.5}$	7.5. Kc qc _{1n-cs} FoS 1=Yes TSF MPa
0.3285615.3934.30.20734.27.63.280.4825615.2360.20.54860.25.772.430.8205614.40158.11.774158.07.723.130.9445614.74233.52.58023.49.64.171.1485614.47325.93.960325.96.752.581.4765614.24325.93.960325.96.753.521.4765613.25228.34.46220.8.33.01.302.1335613.59171.34.306171.31.40.622.4615613.25120.84.46220.8.33.01.302.4355613.7510.3052.02213.05-0.0-0.012.6555613.10117.51.895117.50.500.222.7895612.275661.213566-0.0-0.012.6555613.10117.51.89511.7-0.7-0.333.2815612.282.490.7212.21-0.533.6005612.1121.40.371.12-0.533.6005612.1121.40.371.12-0.544.1015611.289.90.17110.0-1.5-0.644.1015611.289.90.1619.91.77-0.253.6005612.113.130.371.505615614.575610.477.90.0311.33<	1.62% interim Cover 0.050 100.7 0.01 0.00 0.02 0.91% interim Cover 0.050 100.7 0.02 0.00 0.02 1.19% interim Cover 0.050 100.7 0.03 0.00 0.03 1.11% interim Cover 0.050 100.7 0.05 0.00 0.05 1.11% interim Cover 0.050 100.7 0.06 0.00 0.07 1.12% interim Cover 0.050 100.7 0.07 0.00 0.07 1.42% interim Cover 0.050 100.7 0.01 0.00 0.01 2.16% interim Cover 0.050 100.7 0.11 0.10 1.10 1.55% interim Cover 0.050 100.7 0.12 0.02 0.11 1.61% interim Cover 0.050 100.7 0.14 0.03 0.11 2.16% sand-Sime Taim 0.059 119.0 0.17 0.14 0.12	O 170 13.124 182.42 15.27 935 1.62% 1.5 51% 0 1.70 18.208 809.09 67.70 2074 0.60% 1.0 51% 0 1.70 198.208 809.09 67.70 2074 0.60% 1.10 51% 0 1.70 584.08 ###### 18.22 2283 1.19% 1.3 51% 0 1.70 564.81 ##### 633.46 2382 1.22% 1.3 51% 0 1.70 551.945 ##### 643.46 4382 1.22% 1.6 51% 0 1.70 471.020 ##### 643.46 2122 2.16% 1.6 51% 1 1.70 264.025 ##### 2122 2.16% 1.6 51% 1 1.70 244.75% 1.15 51% 1.6 51% 1 1.70 24.97% ##### 2.2 2.16% <t< td=""><td>U U</td><td>9/18 18.3 0.99 1.23 0.107 1.09 1.21 0.107 1.09 1.25 0.00 0.00 <</td></t<>	U U	9/18 18.3 0.99 1.23 0.107 1.09 1.21 0.107 1.09 1.25 0.00 0.00 <

					WHITE ME	ESA TAILIN	IGS REPO		UEFACTIO	N AND SE	SMIC SETTLE	MENT ANALYSE	S - 2W3											Elev. at	Elev. At E	Bottom		Stress				Stress at	Stress at	
Data File:	13-52	106_SP2W3-BSC	-СРТ	Idriss and	d Boulanger	<u>(2008)</u>								ring CPT investigat	ion (1 <mark>5615</mark>	.72 Gro	und Surface E	Elevation at ti	me of CPT (ft amsl)		_				idpoint of Layer	of Thickn Layer sof		nit Botto ght of Lay			Pressure at Midpoint of		Midpoint of Layer	
Location:		Mesa 2013 CPT 13 Field Investiga	-		ax. Horiz. Acc rthquake Mon			0.15	_			Water surface Water surface			5626 0.50				nediately after Placem				COVER Protection La	(ft)	(ft) 5626.02 5		/ / /	cf) (tsf)		(tsf) 14 0.00	Layer (tsf) 0.00	(tsf) 0.028	(tsf) 0.014	
	ilings Sands	13 Field Investiga	tion/Conetec Da	-	lagnitude Sca			1.69				Water surface			3.50				n Layer (rock mulch/to ooting Zone (ft)	psolis) imm	lediately after pla	ater Storage/Ro			5624.02 5			107 0.1			0.00	0.028		
	ilings Sand-S	imes		Youd, et a	0	5			1]					4.00		ckness of High	0	0 ()			ů	ompaction La	,	5620.27 5		0 0.060		454 0.3		0.00	0.454		
	ilings Slimes					iz. Accelera		3	0.15		1.44	Scaling Factor			2.55				Fill on on top of exist	-	cover (ft)	Platform/R	andom Fill La	ayer #######	5617 5	615.72 2.5	5 0.050	101 0.5	582 0.5	18 0.00	0.00	0.582	0.518	
	erim Cover	Jser Input/Manipu	lation		Earthquake	e Moment N Ide Scaling			5.5		0.47	_		Site-Specific Desig Strain Cycles, N			vation of botto		Cover Placement, Δσ _F (liner) (ft amsl)	c (pst)														
		PT Data from Co								CPT D	ata Interpretat						nditions at t ₁						Lie	quefaction Tr	ggering Aı	nalyses				-	_		Idriss & Boulang	ger (2008)
Depth					Material Type (as			tress Pore					Cone	Normalize Type d Friction Index.			ore Effectiv	-	Cvclic Stress		ulanger (2008) Cvclic Resistance	- Defie		Quella (tress Ratio	Youd et al. (2	001)						1	
at time of CPT Ele	evation qt	fs qc	Pw Pw (u2) (u2)	fs/qt	determined			time Pressure CPT at time c		at time of CPT	CN qc1	qc1 qc1	Penetration Resistance	Ratio, F _r I _c			ssure Stress a at t ₁ t ₁	at Saturated at t ₁	r _d C _g K _g K			(CRR)	r _d	D, f	K _a	K _a CSR		(CRF	2)	Avg	Liquefichie2		CN qc1 q	qc1 qc1N
(ft) (ft				(%)	by finan		(pcf) (1=Yes	TSF	MPa	, Q _t				tsf) (tsf)	1=Yes	u -0 0 .	M=7.5,	$\Delta qc_{1n} qc_{1n\text{-}cs}$		ŭ	1	0	a 0010 M=7.5,	14.0	x -	,	FoS	Liquefiable? 1=Yes			MPa
			-							0=No								0=No	_	s'v=1atm		s'v=1atm FoS				s'v=1atn	-	s'v=1at	m FoS		2=No		└────	
12.139 56 12.303 56		0.499 11.4 0.321 10.7			lime Tailings lime Tailings		113.1 0 113.1 0			1		270.33 22.7 253.79 21.5		4.60% 2.7 3.14% 2.7			0.00 1.27 0.00 1.28		0.94 0.05 0.98 1. 0.94 0.05 0.98 1.	0 0.053		0.089 1.68 0.087 1.64		.28 0.80 .27 0.80	1.18 1.18	1.0 0.035 1.0 0.035					2		1.7 19.613 1.3 1.7 18.58 1.3	
12.467 56			56.2 24.35		lime Tailings	0.057			0.38	1		235.59 20.3		3.53% 2.7			.00 1.29	_	0.93 0.05 0.98 1.					.26 0.80	1.18	1.0 0.035					2		1.7 17.545 1.	
12.631 56					lime Tailings	0.057			0.38	1		202.75 17.1		2.45% 2.7			.00 1.30			0 0.053		0.081 1.53		.24 0.80	1.18	1.0 0.035		.77 0.10			2		1.7 14.761 1.4	
12.795 56 12.959 56		0.203 9.3 0.206 7.9	29.1 12.59 33.3 14.44		lime Tailings lime Tailings	0.057	113.1 0 113.1 0		0.39 0.39	1	1.70 15.87 1.70 13.49	220.70 18.8 187.62 16.0		2.31% 2.6 2.78% 2.8			0.00 1.31 0.00 1.32	_	0.93 0.05 0.98 1. 0.93 0.05 0.98 1.	0 0.053	36.63 55.43 35.69 51.78			.25 0.80 .23 0.80	1.17 1.17	1.0 0.036 1.0 0.036		.31 0.10		3.68 3.73	2		1.7 16.186 1.4 1.7 13.852 1.4	
13.123 56					lime Tailings	0.057			0.39	1	1.70 11.76			2.83% 2.8			.00 1.33		0.93 0.05 0.98 1.		35.04 49.28				1.17	1.0 0.036					2		1.7 12.254 1.	
13.287 56		0.106 10.4			and-Slime Tailing			0.75 0.35	0.40	1		246.46 21.0		1.07% 2.4			.00 1.34	_		0 0.052		0.086 1.65		.26 0.80	1.17	1.0 0.036		.63 0.09		3.21	2		1.7 18.13 1.	
13.451 56 13.615 56		0.102 16.7			and-Slime Tailing and-Slime Tailing		119.0 0 119.0 0		0.40 0.41	1	1.70 28.33 1.69 29.02	393.91 33.0 403.44 33.8		0.64% 2.1 0.74% 2.2			0.00 1.35 0.00 1.36			0 0.052		0.106 2.03 0.107 2.06		.33 0.80 .34 0.80	1.16 1.16	1.0 0.036 1.0 0.036				3.37 3.41	2		1.7 28.454 2. 1.694353 29.139 2.	
13.779 56			13.8 5.99		and-Slime Tailing	1	119.0 0		0.41	1		400.53 33.6		1.00% 2.2			0.00 1.30	_		0 0.052	42.10 75.73	0.107 2.06		.33 0.80	1.16	1.0 0.036		.00 0.09		3.51	2		1.682138 28.96 2.	
13.943 56		0.200 17.0			and-Slime Tailing		119.0 0		0.42	1		407.00 34.1		1.20% 2.3			1.38	_		0 0.052				.34 0.80	1.16	1.0 0.036		.68 0.10			2		1.66558 29.44 2.	
14.107 56 14.271 56					and-Slime Tailing	1		0.80 0.38 0.81 0.39	0.42 0.43	1		431.37 36.2 424.59 35.6		1.57% 2.3 1.67% 2.3			0.00 1.39 0.00 1.39			0 0.052				.35 0.80 .34 0.80	1.15 1.15	1.0 0.036 1.0 0.036		.78 0.11 .50 0.11		3.92 3.95	2		1.64115 31.207 2.1 1.631735 30.725 2.1	
14.436 56		0.318 20.9			and-Slime Tailing			0.82 0.39	0.43	1	1.60 33.46			1.58% 2.3			0.00 1.40			0.051		0.117 2.27	0.94 0	.36 0.80	1.15	1.0 0.036		.08 0.11			2		1.60217 33.651 3.	.2218 39.084
14.600 56			9.1 3.93		and-Slime Tailing			0.83 0.40	0.44	1		414.21 34.7		0.92% 2.2			.00 1.41			0 0.051	42.48 77.19			.34 0.80	1.15	1.0 0.036		.41 0.09		3.40	2		1.612498 29.89 2.	
14.764 56 14.928 56			3.3 1.43 9.3 4.03		and-Slime Tailing and-Slime Tailing		119.0 0 119.0 0	0.84 0.40 0.85 0.41	0.44 0.45	1		349.57 29.2 280.00 23.5		0.80% 2.3 1.42% 2.5			0.00 1.42 0.00 1.43		0.92 0.06 0.97 1. 0.92 0.05 0.97 1.	0 0.051		0.099 1.93 0.090 1.75		.31 0.80 .28 0.80	1.14 1.14	1.0 0.036 1.0 0.036		.65 0.09 .56 0.10			2		1.630934 25.183 2 1.655194 20.24 1.	
15.092 56			27.6 11.96		and-Slime Tailing	1		0.86 0.41	0.45	1		259.15 21.9		1.83% 2.6			0.00 1.44	_		0.051		0.088 1.71		.27 0.80	1.14	1.0 0.036		.15 0.11		3.41	2		1.652854 18.929 1.	
15.256 56					lime Tailings	0.057			0.45	1		226.81 19.1		2.26% 2.7			.00 1.45	_		0 0.051		0.083 1.62		.25 0.80	1.14	1.0 0.036		.49 0.11			2		1.648232 16.467 1.	
15.420 56 15.584 56		0.137 8.4 0.108 9.1	31.8 13.77 29.9 12.95		lime Tailings and-Slime Tailing		113.1 0 119.0 0	0.88 0.42 0.89 0.43	0.46 0.46	1	1.64 13.69 1.62 14.84			1.78% 2.7 1.28% 2.6			0.00 1.46 0.00 1.47			0 0.051	35.76 52.05 36.47 54.06	0.079 1.55 0.082 1.59		.23 0.80 .24 0.80	1.13 1.13	1.0 0.037 1.0 0.037					2		1.636528 14.022 1.3 1.623697 15.144 1.4	
15.748 55			29.4 12.75		and-Slime Tailing	1		0.90 0.43	0.40	1	1.61 13.19			1.53% 2.7			0.00 1.48	_		0.051	35.80 51.47			.23 0.80	1.13	1.0 0.037		0.000			2		1.611093 13.491 1.	
15.912 55		0.150 7.0			lime Tailings			0.91 0.44	0.47	1	1.60 11.16			2.36% 2.8			0.00 1.49	_	0.91 0.05 0.97 1.			0.076 1.48		.21 0.80	1.13	1.0 0.037		.29 0.11			2		1.599979 11.603 1.	
16.076 55 16.240 55		0.155 6.5 0.150 6.0			lime Tailings lime Tailings	0.057 0.057		0.92 0.44 0.93 0.45	0.48 0.48	1	1.59 10.28 1.58 9.501	142.91 12.6 132.07 11.6		2.62% 2.9 2.76% 2.9			0.00 1.50 0.00 1.51			0 0.051	34.48 47.11 34.15 45.83	0.075 1.46 0.074 1.44		.21 0.80 .20 0.80	1.13 1.12	1.0 0.037 1.0 0.037		.12 0.11: .18 0.11:		3.18 3.15	2		1.589039 10.871 1. 1.578267 10.052 0.	
16.404 55			62.4 27.06		lime Tailings	0.057			0.48	1	1.57 9.139	102.01 11.0		2.93% 3.0			0.00 1.52	_		0.051	34.03 45.36				1.12	1.0 0.037					2		1.56766 9.7505 0.	
16.568 55			61.6 26.67		lime Tailings	0.057			0.49	1	1.56 9.390	130.52 11.6		2.85% 2.9			.00 1.53			0 0.051	34.13 45.73			.20 0.80	1.12	1.0 0.037				3.15	2		1.557215 9.9883 0.	
16.732 55 16.896 55		0.127 6.1 0.116 6.1	59.1 25.59 51.0 22.11		lime Tailings lime Tailings	0.057 0.057		0.95 0.46 0.96 0.47	0.49 0.50	1	1.55 9.436 1.54 9.374			2.30% 2.9 2.13% 2.9			0.00 1.54 0.00 1.55			0 0.051		0.074 1.45 0.073 1.45		.20 0.80 .20 0.80	1.12 1.12	1.0 0.037 1.0 0.037		.37 0.10		2.97 2.89	2		1.546927 10.006 0 1.536792 9.864 0.1	
17.060 55		0.121 5.1			lime Tailings	0.057			0.50	1	1.53 7.756			2.70% 3.0			.00 1.56			0 0.051	33.46 43.14	0.071 1.41		.18 0.80	1.11	1.0 0.037		.48 0.10			2		1.526807 8.3369 0.	
17.224 55			60.8 26.34		lime Tailings	0.057			0.51	1	1.52 7.433	103.32 9.30		3.33% 3.1			.00 1.57		0.90 0.04 0.97 1.		33.33 42.63				1.11	1.0 0.037				3.05	2		1.516969 8.0087 0.	
17.388 55 17.552 55		0.167 5.0 0.153 7.8	60.4 26.17 49.8 21.59		lime Tailings lime Tailings	0.057 0.057		0.99 0.48 1.00 0.49	0.51 0.51	1	1.51 7.567 1.50 11.62	105.17 9.45 161.55 14.0		3.79% 3.1 2.16% 2.8			0.00 1.57 0.00 1.58	_		0 0.050		0.071 1.41 0.077 1.52		.18 0.80 .22 0.80	1.11	1.0 0.037 1.0 0.037		.70 0.12			2		1.507275 8.1349 0. 1.49772 12.088 1.	
17.716 55			23.4 10.13		and-Slime Tailing	0.059		1.01 0.49	0.52	1		246.21 20.8		1.32% 2.5			.00 1.59			0 0.050		0.086 1.72		.26 0.80	1.11	1.0 0.037		.54 0.10		2.89	2		1.487226 17.93 1.	
17.880 55			21.9 9.47		and-Slime Tailing			1.02 0.50	0.52	1		283.79 23.9		1.01% 2.4			.00 1.60			0 0.050		0.091 1.82			1.10	1.0 0.037		.01 0.09		2.84	2		1.462524 20.616 1.4	
18.044 55 18.208 55			17.3 7.51 17.2 7.43		and-Slime Tailing and-Slime Tailing	1		1.03 0.50 1.04 0.51	0.53 0.53	1	1.45 20.19 1.46 16.98	280.74 23.6 236.10 19.9		0.57% 2.3 0.65% 2.4			0.00 1.61 0.01 1.62			0 0.050 0 0.050		0.090 1.81 0.085 1.70		.28 0.80 .26 0.80	1.10 1.10	1.0 0.037 1.0 0.038		.86 0.08			2		1.454089 20.355 1. 1.456725 17.141 1.	
18.372 55	97.35 9.1	0.178 8.9	23.4 10.12	1.96% s	lime Tailings	0.057	113.1 1	1.05 0.51	0.54	1	1.45 12.93	179.72 15.2	6 15	2.22% 2.8	71% 1	.63 0	.01 1.62	1	0.89 0.05 0.97 1.	0 0.050	35.40 50.66	0.078 1.56	0.93 0	.23 0.80	1.10	1.0 0.038	4.60 70	.24 0.11	2 4.35	2.95	2		1.447882 13.141 1.	.2581 15.262
18.537 55		0.214 6.6			lime Tailings			1.06 0.52	0.54	1	1.44 9.455			3.70% 3.0			1.62			0 0.050		0.073 1.46		.20 0.80 .26 0.80	1.10	1.0 0.038		.43 0.12			2		1.439161 9.8555 0.4 1.429575 17.38 1.4	
18.701 55 18.865 55		0.207 12.1 0.172 12.2							0.55 0.55	1		239.45 20.1 241.62 20.4		1.87% 2.6 1.52% 2.6			0.02 1.63 0.03 1.63		0.89 0.05 0.97 1. 0.89 0.05 0.97 1.					.26 0.80 .26 0.80	1.10 1.09	1.0 0.038 1.0 0.038				2.98 2.82	2		1.429575 17.38 1. 1.420133 17.571 1.	
	96.69 14.4	0.138 14.3	22.3 9.64	0.96% s	and-Slime Tailing	0.059	119.0 1	1.09 0.53	0.55	1	1.40 20.00	278.01 23.4	6 24	1.04% 2.4	47% 1	.67 0	.03 1.64	1	0.88 0.05 0.96 1.	0.050	38.53 61.98	0.090 1.79	0.93 0	.28 0.80	1.09	1.0 0.038	2.42 56	.88 0.09	7 3.60	2.70	2		1.400632 20.196 1.	.9335 23.456
19.193 55 19.357 55		0.130 15.6 0.123 16.5							0.56 0.56	1		299.38 25.2 314.83 26.5		0.89% 2.4 0.79% 2.3			0.04 1.64 0.04 1.65		0.88 0.06 0.96 1. 0.88 0.06 0.96 1.						1.09 1.09	1.0 0.039 1.0 0.039					2		1.385076 21.717 2. 1.371886 22.847 2.	
19.357 55 19.521 55		0.123 16.5							0.56	1		314.83 26.5 313.02 26.3		0.79% 2.3 0.72% 2.3			1.04 1.65 1.05 1.65		0.88 0.06 0.96 1.						1.09	1.0 0.039 1.0 0.039					2		1.371886 22.847 2. 1.363988 22.726 2.	
19.685 55	96.04 16.2	0.142 16.1	26.1 11.31	0.88% s	and-Slime Tailing	0.059	119.0 1	1.13 0.55	0.57	1	1.36 21.81	303.23 25.5	26	0.94% 2.4	47% 1	.71 0	.05 1.66	1	0.88 0.06 0.96 1.	0.051	39.28 64.87	0.093 1.85	0.93 0	.29 0.80	1.08	1.0 0.039	2.20 56	.30 0.09	3.44	2.64	2		1.358371 22.037 2.	.1098 25.594
19.849 55 20.013 55		0.203 13.5	30.3 13.14 41.6 18.02			0.059			0.58 0.58	1		256.09 21.7 181.68 15.5		1.62% 2.6 2.18% 2.8			0.06 1.66 0.06 1.67		0.88 0.05 0.96 1. 0.88 0.05 0.97 1.					.27 0.80 .23 0.80	1.08 1.08	1.0 0.039 1.0 0.039					2		1.363705 18.682 1. 1.358687 13.423 1.	
20.013 55		0.190 9.6				0.057			0.58	1		155.51 13.6		2.18% 2.8 2.28% 2.8			1.06 1.67 1.07 1.67		0.88 0.05 0.97 1.						1.08	1.0 0.039 1.0 0.039					2		1.358687 13.423 1 1.351138 11.741 1.	
20.341 55	95.38 8.9	0.207 8.5	67.9 29.41	2.32% s	lime Tailings	0.057			0.59	1		158.38 13.9		2.67% 2.9			0.07 1.67		0.87 0.05 0.97 1.						1.08	1.0 0.039	5.43 75	.40 0.12	0 4.12		2		1.343684 11.964 1.	.1454 13.895
20.505 55		0.168 8.9 0.090 12.6				0.057			0.59 0.60	1		164.57 14.3 232.99 19.8		2.08% 2.8 0.77% 2.4			0.08 1.68 0.08 1.68		0.87 0.05 0.97 1. 0.87 0.05 0.96 1.					.22 0.80 .26 0.80	1.08 1.08	1.0 0.039 1.0 0.040					2		1.336323 12.388 1 1.328222 17.119 1	
		0.090 12.6								1		232.99 19.8		0.77% 2.4 1.30% 2.5			1.08 1.68 1.09 1.69		0.87 0.05 0.96 1.					.26 0.80	1.08	1.0 0.040 1.0 0.040					2		1.328222 17.119 1 1.320232 17.469 1.0	
20.997 55	94.72 9.7	0.180 9.2	68.8 29.83	1.86% s	lime Tailings	0.057	113.1 1	1.20 0.60	0.61		1.31 12.13	168.66 14.7	5 14	2.13% 2.8	71% 1	.79 0	.09 1.69	1	0.87 0.05 0.97 1.	0 0.051	35.22 49.97	0.077 1.51	0.92 0	.22 0.80	1.07	1.0 0.040	4.73 69	.77 0.11	2 3.70	2.61	2		1.31316 12.698 1.	.2157 14.748
21.161 55 21.325 55			91.2 39.53 87.2 37.78			0.057 0.057						155.05 13.8 154.23 13.7		2.00% 2.8 2.20% 2.8			0.10 1.70 0.10 1.70		0.87 0.05 0.97 1. 0.87 0.05 0.97 1.					.21 0.80 .21 0.80	1.07 1.07	1.0 0.040 1.0 0.040				2.52 2.56	2		1.306174 11.899 1. 1.299271 11.803	
21.325 55		0.173 8.5								1		i 168.41 15.0		2.20% 2.8 1.97% 2.8			0.10 1.70		0.87 0.05 0.97 1.					.21 0.80		1.0 0.040 1.0 0.040					2		1.299271 11.803	
21.653 55	94.07 11.1	0.173 10.5	102.2 44.29	1.56% s	and-Slime Tailing	0.059	119.0 1	1.24 0.62	0.63	1	1.28 13.42	186.53 16.5	16	1.76% 2.7	47% 1	.82 0	.11 1.71	1	0.86 0.05 0.97 1.	0.051	36.10 52.64	0.080 1.56	0.91 0	.23 0.80	1.07	1.0 0.040	4.02 66	.55 0.10	7 3.45	2.50	2		1.284172 14.239 1.3	.3632 16.538

Data File: 13-52106_SP2W4-C-BSC-CPT Idriss and Boulanger Location: White Mesa 2013 CPT Investigation Max. Horiz. Act .\.\.\.6.2.3 Field Data\2013 Field Investigation\Conetec Da Earthquake Mo Tailings Sands Magnitude SC: Youd, et al (2001) Tailings Slimes Max. Horiz Max. Horiz Interim Cover Earthquake Max. Horiz	xceleration, Amax/g: 0.15 yment Magnitude, M: 5.5 aaling Factor, MSF: 1.69 riz. Acceleration, Amax/g: 0.15 ke Moment Magnitude, M: 5.5 tude Scaling Factor, MSF: 2.21	5611.20 Water surface elevation during CPT investigation (ft a 5616.24 Ground 5607.96 Water surface elevation at t ₁ (ft amsl) 5626.19 Ground 5593.50 Water surface elevation at t ₁ (ft amsl) 0.50 Thickne 5588.50 Water surface elevation at t ₂ (ft amsl) 3.50 Thickne 1.44 Scaling Factor for stress ration, r _m 1.95 Thickne 0.47 Volumetric Strain Ratio for Site-Specific Design Earth 1104.55 Additior 7.51 Equiv. Number of Uniform Strain Cycles, N 5588.50 Elevation	ess of Water Storage/Rooting Zone (ft) ess of High Compaction Layer (ft) ess of Random/Platform Fill on on top of existing interim cover (ft) and Stress due to Final Cover Placement, $\Delta\sigma_{FC}$ (psf) on of bottom of tailings (liner) (ft amsl)	
Depth at time Pw Pw of CPT Elevation qt fs qc (u2) (u2) fs/qt (ft) (ft amsi) TSF TSF TSF (ft) PSI (%)	Stress Pore Stress at Saturated Unit Unit at time Pressure time of at time of	i Normalized Normalize Type Pore	e Effective ure Stress at t ₁ Cyclic Stress Ratio Cyclic Resistance Ratio t ₁ r _d C _o K _a CSR (CRR) r _d D _r	You de tal. (2001) Cyclic Stress Ratio Avg Liquefiable? f K _a CSR (CRR) M=7.5, sv=tatm Kc qc1n-cs M-7.5, sv=tatm
12.139 5604.10 8.6 0.080 8.5 21.2 9.20 0.93% Same-Sime Taings 12.467 5603.77 6. 0.098 6.4 11.4 1.44 1.44 1.44 1.44 1.44 1.445 Sime Taings 12.675 5603.44 13.7 0.077 1.36 1.52 0.570 0.715 Sand-Sime Tain 13.287 5602.25 1.8.0 0.177 1.5.2 2.4 0.014% Sand-Sime Tain 13.487 5602.29 1.8.0 0.222 1.7.7 3.3 1.655 Sand-Sime Tain 13.475 5602.29 1.8.0 0.222 1.7.7 7.33 1.656 Sand-Sime Tain 14.405 5601.20 1.1.8 0.117 1.1.2 2.4 8.81 1.038 Sand-Sime Tain 14.405 5601.10 0.13 0.111 1.1.7 1.1.4 3.48 Sand-Sime Tain 14.505 5601.15 0.123 1.014 1.0.11 1.1.7 1.1.245	0.057113.10.680.230.4510.057113.10.690.230.4610.059119.00.700.240.4610.059119.00.720.250.4710.059119.00.740.260.4810.059119.00.740.260.4810.059119.00.770.270.4910.059119.00.780.280.5010.059119.00.780.280.5010.059119.00.790.290.5110.059119.00.800.290.5110.059119.00.820.300.5210.059119.00.840.310.5310.059119.00.840.310.5310.059119.00.860.320.5410.059119.00.860.320.5410.059119.00.860.320.5410.059119.00.860.320.5710.059119.00.860.320.5710.057113.10.940.360.5710.057113.10.950.36110.057113.10.970.380.5910.057113.10.970.380.5910.057113.10.970.380	167 14.147 196.86 16.69 18 1.01% 2.5 47% 1.22 0.00 1.66 11.958 166.02 12.7 1 16.96 28 71% 1.23 0.00 1.63 16.944 236.07 19.97 21 1.16% 2.5 47% 1.25 0.00 1.55 25.544 355.07 29.78 24 0.67% 2.2 47% 1.27 0.00 1.52 28.407 394.86 33.06 38 0.87% 2.2 47% 1.30 0.00 1.52 28.407 33.82.67 27.88 31 1.74% 1.5 1.30 0.00 1.54 13.33 22.15 17.9 19 1.88% 2.6 47% 1.33 0.00 1.54 13.34 1.00 1.75.37 23.27 1.11% 2.5 47% 1.34 0.00 1.44 13.55 0.66 17 1.34% 2.6	11000 <th< td=""><td>0 0 1.14 0 0.05 7.45 0.15 4.30 2.30 <th2.30< th=""> <th2.30< th=""> 2.30</th2.30<></th2.30<></td></th<>	0 0 1.14 0 0.05 7.45 0.15 4.30 2.30 <th2.30< th=""> <th2.30< th=""> 2.30</th2.30<></th2.30<>

								ESA TAI	LINGS F	REPOSIT		QUEFACTI		SEISMI	C SETTLE	MENT	ANALYSE	S - 2W4	с															Elev		m			ress at	Stress at					1		
Dete Filer	40	-52106 SI				ioo on d													during CP	Tinunati	action (ft c	5646.04	Crowned	Curfage El	auction at t	time of	f CPT (ft amsl)							v.at Midp		Thickne						Pressure at		Midpoint	1		
Data File: Location:		-52106_51					Boulanger		n Amov		0.15								at to (ft am			5626.19					tely after Placer	nont of Eino	Cover (ft on	nol)	EINIAL	COVER		pof ofLa er(ft) (ft					Layer (tsf)	of Layer (tsf)	of Layer (tsf)	Midpoint of		of Layer	1		
\\6.2.3 F					-		thouake Mor			•	5.5					_			att₀ (it am	·		0.50					ver (rock mulch/			,		Protection		er (π) (π 26.19 562	(=ujo: (!	/ • (•••)	u /	(tst) 0.028	(tst) 0.014	()	0.00	(tsf) 0.028	(tsf) 0.014	·		
	ings San		a investig	allomCor	letec Da		agnitude Sca		5		1.69								at t ₂ (it am			3.50			er Storage/F			topsons) im	mediately all					25.69 562			0.055	107	0.028	0.014		0.00	0.026		1		
	ings Sand				N.		agritude 302	alling Fac		г.	1.08	9			5566.50	vau	er sunace	cicvatioi	at 12 (it airi	131)		4.00			Compactio	-				alei	ő	ompaction	,	22.19 562				107	0.454	0.121		0.00	0.213		1		
	ings Sand ings Slim				10	ua, et a	Max. Hor		loration	Amov/a:		0.15	-		1.44		ing Easter	for otroo	s ration. r			4.00					er (π) on on top of exis	otina intorim	covor (ft)		J -			18.19 562			0.060	120	0.454			0.00	0.454		1		
	rim Cove				-		Earthquak					5.5	_		0.47		9		for Site-Sp	ooific Do	oian Earth						r Placement, Δα		cover (it)		Flationn/R		i Layer 50	10.19 301	1.22 3010.2	24 1.90	0.050	101	0.002	0.000	0.00	0.00	0.002	0.505	1		
		na User In			-				Ŭ	or. MSF:	0.04		_		7.51	_			rm Strain C		sigii Earti	5588.50	_		n of tailings			FC (PSI)																			
Cel		ng User in 3 CPT Da					iviagniti	lde Scal	ling Fact	OF, MSF:	2.2	2.21			Interpreta		v. Numbe	of Unito	rm Strain C	ycies, N		5588.50	Condition		n of tailings	s (liner)) (π amsi)						Liquefact	ion Triggeri	ag Analyse	•							4	Ide	riss & Boulang	aor (2009)	
	201	JUFIDa		onerec			Material			rotar	с с с с с с с с с с с с с с с с с с с	I Enecu	e	1	interpreta	110115		Norm	alized Norma	alize Tv	20		Equi		T			Idvice 9 De	oulanger (200	00)		-	Liquelaci	ion myyen	<u> </u>	s d et al. (200	4)					1	4		ss & Doularig	el (2000)	
Depth				D	D		Type (as	11-14	11-34			e Stress						Co	ne d Frict	tion Ind		T-t-LOt		Effective			Cyclic Stress		Cvclic Re		atio		(Cyclic Stress					T					1			
at time of CPT Elev	ation	at 6		Pw (u2)		s/qt	determined	Weight		t at time ht of CP		ure timeo eof CPT	f at tim CP		N ac1	~	o1 oo1	Penet N Resis	ation Ratio		. EC	i otal Stres	ss Pressure	e Stress a	t Saturated at t ₁	r r	Cyclic Stress		Cyclic Re			r _d		f K			-	,	000		Avg			CN	qc1 q	1c1 a	c1N
		TSF TS	s qc SF TSF			s/qt (%)	hy finas	(tcf)	(pcf)				1=Y		TSF	ч М	Da yu	, (Q _t (76)	,	PC 04	(tsf)	(tsf)	(tsf)	1=Yes	'd			∆qc _{1n} q	(CR	'	'd	Dr	· .	N _a	CSR	Kc	· · · ·	CRR)		FoS	Liquefiable? 1=Yes		CIN		/Pa	, IIN
(11) (11.6	amor)		101	(11)	101	(70)		((()))	(pci)) ((31)	(131)) ((31)	0=1		101	IVI	ia				70	((31)	((31)	(131)	0=No			M=7.5,	∆qo _{1n} q	C _{1n-cs M=7}						M=7.5, s'v=1atm	110		M=7.5,	Eag	100	2=No		1	101 101	i a	
24,114 559	02.42	12.8 0.1	00 11 0	140.0	C4.65 4	470/ 0	and-Slime Tailin	0.050	110 (0 1.37	0.60	0.78			08 12.814	1 178	0 1 1 1 0	06 1	5 1.65	i% 2.	7 47%	1.92	0.04	1.88	0-110	0.04	4 0.05 0.96	s'v=1atm	25.02 5	sv=1		0.90	0.00 0	.80 1.0	2 10	0.040	4.11	5	0.107	2.93	2.29	2-110		1.004000	13.824 1.3	2025	16.055
24.278 559							and-Slime Tailin and-Slime Tailin								06 12.014 08 13.024		0.11 10.	ו סע ז כי	5 1.00 5 1.37			1.92	0.04	1.89	1		+ 0.05 0.96 + 0.05 0.96	1.0 0.048		51.99 0.0		0.90	0.23 0	.80 1.0		0.040			0.107	2.93	2.29	2			14.051 1.3		16.320
24.278 555		13.9 0.1		-			and-Slime Tailin and-Slime Tailin)7 13.93 [,]		0.04 10.	0Z I	D 1.37	% 2.)% 2.		1.93	0.05	1.89			4 0.05 0.96	1.0 0.048		52.34 0.06 53.76 0.08		0.90		.80 1.0		0.040			0.102	2.70	2.21	2			14.953 1.4		10.320
24.606 559							and-Slime Tailin and-Slime Tailin)7 13.93)7 14.198		7.04 17.	5/ I 50 1	D 1.40	1% Z.	6 47% 7 47%	1.94	0.05	1.89	1		+ 0.05 0.96 + 0.05 0.96	1.0 0.048 1.0 0.048	00.00 0	53.76 0.06 54.18 0.08		0.89	0.24 0	.00 I.U 90 I.0	2 1.0	0.040	3.62		0.103	2.79	2.24	2			14.953 1.4		17.676
24.770 559		13.7 0.1					and-Slime Tailin and-Slime Tailin				0.01				06 13.60 ⁺		0.06 16	00 I 06 1	5 1.50	% 2. % 2		1.95	0.00	1.89	1		4 0.05 0.96	1.0 0.048				0.89	0.24 0	00 1.0	2 1.0	0.040	3.82		0.105	2.81	2.21	2			14.604 1.3		16.962
24.934 559		12.8 0.1					and-Slime Tailin and-Slime Tailin				0.01	- 0.00)6 12.734		7.01 15	70 I 71 1	4 1.74			1.90	0.00	1.90			+ 0.05 0.96 + 0.05 0.96	1.0 0.048		53.21 0.00 51.53 0.01		0.89	0.24 0	.80 1.0	1 1.0	0.040			0.103	2.87	2.24	2		1.059427			15.714
25.098 559		11.7 0.2					and-Slime Tailin and-Slime Tailin)5 11.464		01 10.	7 I I 20, 1	+ 1.74 3 2.04	% 2.		1.97	0.07	1.90	1		3 0.05 0.96	1.0 0.048		9.61 0.0		0.89		.80 1.0	1 1.0	0.040	4.29		0.108	2.07	2.20	2					14.292
25.262 559		11.2 0.1					and-Slime Tailin	1			0.63)5 11.40-		100 13	30 1	2.04	1% 2. 1% 2	8 47%	1.99	0.08	1.91	1		3 0.05 0.96	1.0 0.048		8.80 0.0		0.03	0.22 0	80 1.0	1 1.0	0.040	5.04	30.40 (111	2.30	2.24	2			11.791 1.1		13.694
25.426 559		11.4 0.1					and-Slime Tailin				0.00	0.01)5 11.130)5 11.236		18 13	20 1	2 1.00	% 2. % 2.		2.00	0.08	1.92			3 0.05 0.96	1.0 0.048		8.97 0.0		0.89	0.21 0	.80 1.0	1 1.0	0.040		53.56 (0.104	2.03	2.24	2			11.898 1.1		13.819
25.590 559		11.2 0.1		_			and-Slime Tailin								04 10.978		2.60 13.	55 1	2 1.53				0.00	1.92			3 0.05 0.96	1.0 0.048		8.60 0.0		0.88		.80 1.0		0.040			0.104	2.63	2.14	2			11.665 1.1		13.549
25.754 559							and-Slime Tailin								04 11.458		2.00 13.	26 1	2 1.55	'% 2.		2.01	0.09	1.92			3 0.05 0.96	1.0 0.040		9.15 0.0		0.88	0.21 0	80 1.0	1 1.0	0.040			0.102	2.65	2.11	2			12.017 1.1		13.957
25,918 559							and-Slime Tailin				0.65)3 11.356		7.85 1/1	10 1	2 1.07	10 2.	8 47%	2.02	0.00	1.93			3 0.05 0.96	1.0 0.040				0.88	0.22 0	80 1.0	1 1.0	0.041			0.108	2.74	2.16	2					13.999
		11.7 0.2					and-Slime Tailin			• • • • •	0.00	0.00)3 11.368		3.02 13	26 1 26 1	2 200)% 2.		2.03	0.10	1.94			3 0.05 0.96	1.0 0.048		9.16 0.0		0.88		.80 1.0	1 1.0	0.041).112	2.82	2.10	2	4		12.033 1.1		13.964
26.246 558		11.8 0.1	-	_			and-Slime Tailin)2 11.30		3.33 13	20 I 27 1	2 1.92			2.04	0.10	1.94			2 0.05 0.96	1.0 0.048		9.18 0.0		0.88		.80 1.0	1 1.0	0.041			0.112	2.02	2.18	2	4		12.023 1.1		13.974
26.410 558							and-Slime Tailin								02 11.03		3.12 13.	15 1	2 2.00			2.05	0.11	1.95				1.0 0.040						.80 1.0		0.041			0.111	2.77	2.10	2	4		11.579 1.1		13.448
26.574 558				_			and-Slime Tailin								01 10.12						9 47%	2.00	0.11	1.95			2 0.05 0.96							.80 1.0).112	2.79	2.16	2			10.686 1.0		12.411
20.014 000		0.0	10.0	00.0	00.20 1.	01 /0 0		0.000	113.0	0 1.52	0.07	0.00		1.4	10.12	140	12.		2.10	//o 2.	5 47/0	2.07	5.12	1.55		0.02	- 0.00 0.00	0.040	04.00 4		1.04	0.00	0.20 0		1.0	0.041	0.07	0.40		2.75	2.10		4	1.010/01	10.000 1.0	5201	12.711

Data File: 13-52106_SP2W5-C-BSC-CPT Location: White Mesa 2013 CPT Investigation .\.\.\.6.2.3 Field Data\2013 Field Investigation\Conetec I Tailings Sands Tailings Sand-Slimes	Idriss and Boulanger (2008) Max. Horiz. Acceleration, Amax/g: 0.15	SetSMIC SETTLEMENT ANALYSES - 2W5-C 5604.20 Water surface elevation during CPT investigation (f 5604.20 Water surface elevation at t ₀ (ft amsl) 5589.01 Water surface elevation at t ₁ (ft amsl) 5584.01 Water surface elevation at t ₂ (ft amsl)	Bits.se Ground Surface Elevation at time of CPT (ft ams)) FinAL COVER Items of Layer Stress of	nt er 14 21
Tailings Slimes	Max. Horiz. Acceleration, Amax/g: 0.15 Earthquake Moment Magnitude, M: 5.5	1.44 Scaling Factor for stress ration, rm 0.47 Volumetric Strain Ratio for Site-Specific Design Ear	2.42 Thickness of Random/Platform Fill on on top of existing interim cover (ft) Platform/Random Fill Layer ##### 5617.07 5615.86 2.42 0.050 101 0.576 0.515 0.00 0.00 0.576 0.515	
Cells Requiring User Input/Manipulation 2013 CPT Data from ConeTec	Magnitude Scaling Factor, MSF: 2.21	7.51 Equiv. Number of Uniform Strain Cycles, N CPT Data Interpretations	Conditions at t ₁ Liquefaction Triggering Analyses	Idriss & Boulanger (2008)
Depth at time Pw Pw	determined	of at time of Penetration Ratio, Fr	Total Stress Pressure Stress at Saturated Cyclic Stress Ratio Cyclic Resistance Ratio Cyclic Stress Ratio	and and andbi
of CPT Elevation qt fs qc (u2) (u2 (ft) (ft amsi) TSF TSF TSF (ft) PS			FC att, (tsf) t, (tsf) t, (tsf) <th, (tsf) t, (t</th, 	qc1 qc1 qc1N TSF MPa
0.3285615.5311.70.17011.68.23.500.4225615.3734.10.40834.18.93.800.6565615.0473.21.11273.16.62.80.9845614.8889.21.39289.2-0.9-0.31.1485614.71116.01.613115.87.01.4005614.22158.32.323158.27.63.31.8465613.891.2112.632219.17.23.31.8465613.801.2112.63219.17.23.31.8465613.801.216.12.8142.1412.1633.682.2975613.56191.73.125116.71.1.14.82.4615613.24152.83.566152.75.52.442.7895613.07141.73.046130.12.380.933.2815612.25113.07.5811.72.31.0.93.3695611.2713.02.5513.601.592.554.4295611.4013.42.461134.12.00.883.3975611.017.681.8786.780.990.34.5035611.779.521.14117.51.80.74.5255611.599.521.34113.01.77.74.5255611.591.521.3411.92.54.4295611.4367.81.8786.78<	1.20% Interim Cover 0.050 100.7 0.02 0.00 0.02 1.25% Interim Cover 0.050 100.7 0.04 0.00 0.02 1.56% Interim Cover 0.050 100.7 0.05 0.00 0.00 1.13% Interim Cover 0.050 100.7 0.07 0.00 0.00 1.14% Interim Cover 0.050 100.7 0.09 0.00 0.00 1.13% Interim Cover 0.050 100.7 0.10 0.00 0.11 1.36% Interim Cover 0.050 100.7 0.12 0.00 0.11 1.36% Interim Cover 0.050 100.7 0.14 0.00 0.11 1.36% Interim Cover 0.050 100.7 0.16 0.00 0.16 1.46% Sand Talings 0.051 102.8 0.18 0.00 0.16 1.56% Sand Talings 0.051 102.8 0.18 0.00 0.22	22 0 1.70 19.737 274.34 23.02 705 1.46% 1.5 51% 2 0 1.70 57.865 804.60 67.34 1375 1.20% 1.4 51% 4 0 1.70 127.02 127.03 176.07 1798 1.66% 1.4 51% 6 0 1.70 123.0724 320.07 826.02 1.99% 1.4 51% 7 0 1.70 230.724 322.07 826.02 1.99% 1.4 51% 9 0 1.70 286.974 373.47 312.40 1105 1.47% 1.5 51% 9 0 1.70 317.74 365.50 1005 2.16% 1.6 51% 1 0 1.60 216.10 304.91 24.11 90 1.72% 1.5 51% 2 0 1.67 186.01 22.99 2.42.2 690 1.65% 1.7	5 5 5 5 5 5 5 5 5<	1.7 8.155 0.7808 9.472 1.7 19.824 1.988 23.025 1.7 57.979 5.5509 67.339 1.7 87.7 8.3964 11.859 1.7 124.37 11.908 144.452 1.7 124.37 11.908 144.452 1.7 197.19 18.879 229.029 1.7 230.86 22.102 268.127 1.7 230.86 25.759 312.491 1.7 372.53 35.666 432.671 1.7 372.53 35.666 322.671 1.7 37.43 36.523 32.744 26.562 32.722 26.84 27 28.64 21.89 265.554 76 216.21 20.7 251.115 066 208.53 19.964 242.190 11 186.16 17.822 216.241 203.65 19.964 23.4275 41 203.65 19.964<

Data File: 13-52106_SP2W5-C-BSC-CPT Location: White Mesa 2013 CPT Investigation 	WHITE MESA TAILINGS REPOSITORY LIQUEFACTI Idriss and Boulanger (2008)	5589.01 Water surface elevation at t, (ft amsl) 0 5584.01 Water surface elevation at t ₂ (ft amsl) 3	Final Covers Final Covers <th< th=""><th></th></th<>	
Interim Cover Cells Requiring User Input/Manipulation 2013 CPT Data from ConeTec Depth at time Pw Pw	Earthquake Moment Magnitude, M: 5.5 Magnitude Scaling Factor, MSF: 2.21 Material Total cquir Type (as charmed) Unit Unit Unit	O.47 Volumetric Strain Ratio for Site-Specific Design Ear 1 7.51 Equiv. Number of Uniform Strain Cycles, N 5 CPT Data Interpretations Normalized Normalize Statistical Cycles, N S at Saturated Cone of at time of Penetration Ratio, F, 1	In Ear 1151.89 Additional Stress due to Final Cover Placement, Δσ _{FC} (psf) 5584.01 Elevation of bottom of tailings (liner) (ft amsl) Conditions at t ₁ Pore Effective Total Stress Pressure Stress at Saturated Cyclic Stress Ratio Cyclic Resistance Ratio Cyclic	& Boulanger (2008)
of CPT Elevation qt fs qc (u2) (u2) 12.139 5603.56 11.6 0.118 11.5 11.0 4.7 12.467 5603.39 11.3 0.166 11.2 12.8 5.6 12.631 5603.23 11.0 0.151 10.9 12.5 5.4 12.959 5602.47 22.1 0.203 0.669 2.3 0.7 0.223 13.135 5602.47 12.1 0.208 17.9 3.9 1.6 13.615 5602.41 17.9 0.208 17.9 3.9 1.6 13.615 5602.42 16.1 0.133 16.8 8.8 3.8 14.005 5601.59 25.3 0.206 2.5.3 14.8 4.4 14.005 5600.17 22.2 0.355 2.7.9 15.7 6.7.7 14.600 5600.17 2.2.1 0.322 1.8 1.3.4 4.4 15.226 5600.17	fs/qt (%) determined bisiner (tcf) Weight (pcf) of CPT at time of (tcf) CPT (tsf) CPT (tsf) CPT (tsf) CPT (tsf) CPT (tsf) CPT (tsf) CPT (tsf) CPT (tsf) CPT (tsf) 1.02% Sand-Sime Talin Sand-Sime Talin 0.059 119.0 0.61 0.03 0.55 1.38% Sand-Sime Talin 0.059 119.0 0.63 0.05 0.46% Sand-Sime Talin 0.059 119.0 0.63 0.04 0.66 0.46% Sand-Sime Talin 0.059 119.0 0.64 0.04 0.66 0.46% Sand-Sime Talin 0.059 119.0 0.66 0.05 0.66 0.46% Sand-Sime Talin 0.059 119.0 0.66 0.66 0.66 0.53% Sand-Sime Talin 0.059 119.0 0.70 0.66 0.66 0.54% Sand-Sime Talin 0.059 119.0 0.71 0.88 0.66 0.57% Sand-Sime Talin 0.059 119.0 0.72 0.86 <td>PT CPT CN Rpd Part Part<</td> <td>10 10 10 0 0 0 1 1 1 1 1 0 1</td> <td>21.747 2.0821 25.258 17.85 1.709 20.732 15.78 1.5108 18.328 11.28 2.0228 24.539 42.92 4.1092 49.849 20.712 1.9829 24.055 4.199 1.3594 16.491 9.542 1.871 22.697 17.281 1.6545 20.071</td>	PT CPT CN Rpd Part Part<	10 10 10 0 0 0 1 1 1 1 1 0 1	21.747 2.0821 25.258 17.85 1.709 20.732 15.78 1.5108 18.328 11.28 2.0228 24.539 42.92 4.1092 49.849 20.712 1.9829 24.055 4.199 1.3594 16.491 9.542 1.871 22.697 17.281 1.6545 20.071

																			Pressure I		tress at Stres	at	
Data File:	13-52106 SP2W5-C-BSC-CPT	Idriss and Boulanger (2008)		5604.20	Water surface eleva	tion during CPT investigation	on (ft 5615.86	Ground Surface E	levation at tim	e of CPT (ft amsl)				Top of Midpoint Layer of Layer		es Unit Uni Weigh Weig					Bottom Midpo	unt ver	
Location:	White Mesa 2013 CPT Investigation	Max. Horiz. Acceleration, Amax/g	0.15		Water surface eleva		5626.28			ediately after Placement of Fi	nal Cover (ft amsl)	FINA	L COVER	(ft) (ft)		(ft) t (tcf) (pc		(tsf)			(tsf) (tsf		
\\6.2.3 F	Field Data\2013 Field Investigation\Conetec Da	Earthquake Moment Magnitude, M	1: 5.5	5589.01	Water surface eleva	tion at t1 (ft amsl)	0.50	Thickness of Eros	ion Protection	Layer (rock mulch/topsoils)	mmediately after pla	Erosio	on Protection Layer	###### 5626.03	3 5625.78 0.5		110 0.028	0.014	0.00	0.00	0.028 0	014	
Tail	ings Sands	Magnitude Scaling Factor, MSF:	1.69	5584.01	Water surface eleva	tion at t ₂ (ft amsl)	3.50	Thickness of Wate	er Storage/Ro	oting Zone (ft)		ater Storage/F	Rooting Zone Layer	###### 5624.03	3 5622.28 3.5	50 0.054	107 0.215	0.121	0.00	0.00	0.215 0	121	
Tail	ings Sand-Slimes	Youd, et al (2001)			-		4.00	Thickness of High	Compaction	Layer (ft)		High	Compaction Layer	###### 5620.28	8 5618.28 4.0	0.060	120 0.454	0.334	0.00	0.00	0.454 0	334	
Tail	ings Slimes	Max. Horiz. Acceleration, A	max/g: 0.15	1.44	Scaling Factor for st	ress ration, r _m	2.42	Thickness of Rand	dom/Platform	Fill on on top of existing inter	im cover (ft)	Platform	/Random Fill Layer	###### 5617.07	5615.86 2.4	42 0.050	101 0.576	0.515	0.00	0.00	0.576 0	515	
Inte	rim Cover	Earthquake Moment Magnitu	ide, M: 5.5	0.47	Volumetric Strain Ra	atio for Site-Specific Design	Ear 1151.89	Additional Stress of	due to Final C	over Placement, $\Delta \sigma_{FC}$ (psf)	-												
Cell	Is Requiring User Input/Manipulation	Magnitude Scaling Factor				niform Strain Cycles, N	5584.01	Elevation of bottor	n of tailings (l	iner) (ft amsl)													
	2013 CPT Data from ConeTec		CPT I	Data Interpretation				Conditions at t ₁					Liquef	action Triggering								Idriss & Boulanger	(2008)
Depth		Material	Stress Pore Stress at Saturate		No	rmalized Normalize Type Cone d Friction Index.		Pore Effective			Boulanger (2008)				Youd et al. (2	2001)							
at time	Pw Pw		at time Pressure time of at time of		Per	netration Ratio, Fr L		ss Pressure Stress a		Cyclic Stress Ratio	Cyclic Resistant			Cyclic Stress Ra				4 1					
of CPT Elev		fs/qt Weight Weight	of CPT at time of CPT CPT	CN qc1	qui quite	sistance (%) ^{-c}	FC at t ₁	att ₁ t ₁	at t ₁	$r_d C_\sigma K_\sigma K_a CS$		(CRR)	r _d D _r	t K _σ	K _a CSR	14	(CRR)			iquefiable?	CN	4. 4.	
(ft) (ft a	amsl) TSF TSF TSF (ft) PSI	(%) (tcf) (pcf)	(tsf) (tsf) (tsf) 1=Yes	TSF	MPa		% (tsf)	(tsf) (tsf)	1=Yes	M=7					M=7.5	Kc qc _{1n}		5.0	FoS	1=Yes		TSF MPa	3
	91.75 10.3 0.189 10.0 60.4 26.18	4.00%	0=No		100.01 11.17				0=No	s'v=1		s'v=1atm FO			s'v=1atr	n 0 5.85 67.0	s'v=1atm 03 0.108	2.59	0.00	2=No			
24.114 559 24.278 559				0.96 9.514 0.95 8.871	132.24 11.47 123.30 11.08	10 2.09% 2.9 9 2.51% 3.0		0.00 1.88	0	0.84 0.05 0.96 1.0 0.0 0.84 0.05 0.96 1.0 0.0					1.0 0.040 1.0 0.040			2.59	2.08 2.14	2		519 9.874 0.94 801 9.5373 0.91	
24.442 559				0.95 8.871		9 2.51% 3.0 14 2.58% 2.8		0.00 1.89	0	0.84 0.05 0.96 1.0 0.0		0.073 1.5		0.80 0.99	1.0 0.040			3.03	2.14	2		439 13.251 1.26	
24.606 559				0.94 12.962		14 1.85% 2.8		0.00 1.90	0	0.84 0.05 0.96 1.0 0.0				0.80 0.99	1.0 0.040			2.64	2.30	2		722 13.337 1.27	
24.770 559				0.94 21.533		24 2.04% 2.6		0.00 1.92	0	0.84 0.06 0.96 1.0 0.0				0.80 0.98	1.0 0.040			3.21	2.61	2		183 21.962 2.10	
	0.93 29.6 0.313 29.2 58.1 25.19			0.94 27.544		30 1.11% 2.4		0.00 1.93	0	0.84 0.06 0.95 1.0 0.0		0.105 2.2		0.80 0.98	1.0 0.040			2.62	2.45	2		626 27.886 2.66	
	90.76 38.5 0.429 38.5 11.6 5.02			0.94 36.269		40 1.15% 2.3		0.00 1.94	0	0.83 0.07 0.95 1.0 0.0				0.80 0.98	1.0 0.040		30 0.125	2.93	2.81	2		024 36.337 3.47	
25.262 559			1.37 0.42 0.94 1	0.94 28.493		31 1.69% 2.5	1.94	0.00 1.94	0	0.83 0.06 0.95 1.0 0.0	46 41.93 75.08	0.106 2.3	2 0.88 0.33	0.80 0.98	1.0 0.040	2.55 84.4	46 0.136	3.18	2.75	2		336 28.547 2.7	
25.426 559	90.43 25.9 0.457 25.8 10.7 4.64	1.77% Sand-Slime Tailing 0.059 119.0	1.38 0.43 0.95 1	0.93 23.999	333.59 27.95	26 1.87% 2.5	1.95	0.00 1.95	0	0.83 0.06 0.95 1.0 0.0	46 40.10 68.05	0.097 2.1	2 0.88 0.31	0.80 0.98	1.0 0.040	2.99 83.5	54 0.134	3.13	2.63	2	0.930	567 24.062 2.30	037 27.946
25.590 559	90.27 23.2 0.409 23.0 38.5 16.67	1.76% Sand-Slime Tailing 0.059 119.0	1.39 0.43 0.95 1	0.93 21.279	295.77 24.97	23 1.87% 2.6	1.96	0.00 1.96	0	0.83 0.06 0.95 1.0 0.0	46 39.06 64.03	0.092 2.0	2 0.88 0.29	0.80 0.98	1.0 0.040	3.23 80.7	75 0.129	3.00	2.51	2	0.92	559 21.501 2.05	585 24.972
25.754 559	90.11 23.9 0.457 23.6 50.5 21.90	1.91% Sand-Slime Tailing 0.059 119.0	1.40 0.44 0.96 1	0.92 21.735	302.12 25.58	23 2.03% 2.6	1.97	0.00 1.97	0	0.83 0.06 0.95 1.0 0.0	46 39.27 64.86	0.093 2.0	4 0.88 0.29	0.80 0.98	1.0 0.040	3.31 84.6	64 0.136	3.16	2.60	2	0.922	538 22.026 2.10	25.582
25.918 558	89.94 23.4 0.409 22.9 85.5 37.03	1.75% Sand-Slime Tailin, 0.059 119.0	1.41 0.44 0.96 1	0.92 21.004	291.95 24.96	23 1.86% 2.6	1.98	0.00 1.98	0	0.83 0.06 0.95 1.0 0.0	46 39.06 64.02	0.092 2.0	3 0.88 0.29	0.80 0.98	1.0 0.040	3.23 80.6	65 0.129	2.97	2.50	2	0.918	806 21.494 2.05	578 24.964
26.082 558	89.78 26.8 0.466 26.4 63.1 27.33	1.74% Sand-Slime Tailing 0.059 119.0	1.42 0.45 0.97 1	0.92 24.200	336.38 28.53	26 1.84% 2.5	1.99	0.00 1.99	0	0.83 0.06 0.95 1.0 0.0	45 40.31 68.83	0.098 2.1	6 0.88 0.31	0.80 0.98	1.0 0.040	2.94 83.8	32 0.135	3.10	2.63	2	0.91	709 24.561 2.35	515 28.526
	89.61 24.8 0.467 24.4 58.0 25.13			0.91 22.278		24 2.00% 2.6		0.00 2.00	0	0.82 0.06 0.95 1.0 0.0		0.094 2.0		0.80 0.98	1.0 0.040		0.101	3.14	2.61	2		039 22.609 2.16	
26.410 558				0.91 25.216		27 1.67% 2.5		0.00 2.01	0	0.82 0.06 0.95 1.0 0.0				0.80 0.98	1.0 0.040			2.97	2.59	2		974 25.482 2.43	
	39.29 21.4 0.459 21.2 34.8 15.06					20 2.30% 2.7		0.00 2.02	0	0.82 0.05 0.95 1.0 0.0		0.089 1.9		0.80 0.97	1.0 0.040			3.19	2.57	2		719 19.31 1.84	
	39.12 22.9 0.449 22.4 91.9 39.81 38.96 23.7 0.369 23.3 57.9 25.11			0.90 20.162		22 2.09% 2.6		0.00 2.03	0	0.82 0.06 0.95 1.0 0.0 0.82 0.06 0.95 1.0 0.0		0.091 2.0		0.80 0.97 0.80 0.97	1.0 0.039 1.0 0.039		0.100	3.09	2.55	2		017 20.679 1.97	
	38.96 23.7 0.369 23.3 57.9 25.11 38.79 17.9 0.322 17.4 76.8 33.26			0.90 20.966		22 1.66% 2.6 16 1.96% 2.7		0.00 2.04 0.01 2.05	1	0.82 0.06 0.95 1.0 0.0				0.80 0.97	1.0 0.039 1.0 0.040			2.76 2.72	2.40 2.27	2		044 21.291 2.03 685 15.952 1.52	
	38.63 17.2 0.221 16.6 101.5 44.00			0.89 14.729		16 1.41% 2.7		0.01 2.05	1	0.82 0.05 0.96 1.0 0.0		0.082 1.8		0.80 0.97	1.0 0.040			2.37	2.08	2		446 15.293 1.46	
	88.47 17.3 0.221 16.7 96.1 41.66			0.89 14.791		16 1.40% 2.7		0.02 2.05	1	0.82 0.05 0.96 1.0 0.0				0.80 0.97	1.0 0.040			2.35	2.00	2		234 15.323 1.40	
	88.30 17.1 0.300 16.3 130.8 56.69			0.88 14.394		15 1.92% 2.7		0.02 2.06		0.81 0.05 0.96 1.0 0.0		0.081 1.7		0.80 0.97	1.0 0.040			2.61	2.20	2		047 15.115 1.44	
27.723 558				0.88 20.498		22 1.88% 2.6		0.03 2.06	1	0.81 0.06 0.95 1.0 0.0		0.092 2.0		0.80 0.97	1.0 0.040			2.88	2.46	2		549 21.409 2.04	
27.887 558	87.97 31.6 0.511 31.4 40.1 17.37	1.62% Sand-Slime Tailing 0.059 119.0	1.53 0.51 1.02 1	0.89 27.813	386.60 32.56	30 1.70% 2.5	7% 2.10	0.03 2.07	1	0.81 0.06 0.95 1.0 0.0	45 41.72 74.28	0.105 2.3	3 0.86 0.33	0.80 0.97	1.0 0.040	2.62 85.3	37 0.138	3.02	2.67	2	0.886	883 28.035 2.6	32.561
28.051 558	87.81 29.9 0.506 29.4 77.3 33.50	1.69% Sand-Slime Tailin, 0.059 119.0	1.53 0.51 1.02 1	0.88 25.927	360.38 30.61	28 1.79% 2.5	7% 2.11	0.04 2.07	1	0.81 0.06 0.95 1.0 0.0	45 41.04 71.64	0.102 2.2	5 0.86 0.32	0.80 0.97	1.0 0.040	2.80 85.6	63 0.138	3.01	2.63	2	0.882	469 26.353 2.5	523 30.607
28.215 558		1.42% Sand-Slime Tailin, 0.059 119.0	1.54 0.52 1.03 1	0.88 29.829	414.63 35.01	32 1.49% 2.4	47% 2.12	0.04 2.08	1	0.81 0.06 0.95 1.0 0.0	45 42.58 77.59	0.109 2.4	3 0.86 0.34	0.80 0.97	1.0 0.040		64 0.132	2.87	2.65	2	0.88	305 30.141 2.88	357 35.007
28.379 558	37.48 23.6 0.376 23.3 54.2 23.50	1.59% Sand-Slime Tailing 0.059 119.0	1.55 0.52 1.03 1	0.87 20.248	281.45 23.86	21 1.71% 2.6	47% 2.13	0.05 2.08	1	0.81 0.05 0.95 1.0 0.0	45 38.67 62.53	0.091 2.0	0 0.86 0.28	0.80 0.96	1.0 0.040			2.65	2.33	2	0.870	513 20.543 1.96	68 23.859
	B7.32 20.0 0.587 19.3 110.3 47.80		1.56 0.53 1.04 1	0.86 16.699		18 3.18% 2.8		0.05 2.09	1	0.81 0.05 0.95 1.0 0.0		0.085 1.8		0.80 0.96	1.0 0.040			3.58	2.72	2	0.864	778 17.294 1.65	
28.707 558				0.86 16.595		18 3.33% 2.8		0.06 2.09	1	0.80 0.05 0.95 1.0 0.0				0.80 0.96	1.0 0.040			3.72	2.80	2		075 17.537 1.67	
	36.99 70.9 0.744 70.3 91.2 39.52			0.90 63.004		00 1.0170 E.I	18% 2.16	0.06 2.10	1	0.80 0.09 0.92 1.0 0.0				0.75 0.95	1.0 0.047			3.88	3.85	2		209 63.514 6.08	
	86.82 72.6 0.686 72.2 66.2 28.68			0.89 64.601			18% 2.17	0.07 2.10	1	0.80 0.09 0.92 1.0 0.0				0.75 0.95	1.0 0.04			3.76	3.84	2		632 64.971 6.22	
	86.66 79.5 1.181 79.4 15.5 6.72			0.90 71.104		11 1.0270 2.1	18% 2.18	0.07 2.11		0.80 0.09 0.92 1.0 0.0				0.74 0.95	1.0 0.04			5.46	4.93	2		737 71.19 6.81	
29.363 558 29.527 558	B6.50 113.4 1.549 113.4 8.3 3.58 B6.33 133.5 2.246 133.4 9.1 3.95	~					18% 2.19 18% 2.20	0.08 2.11		0.80 0.12 0.89 1.0 0.0				0.68 0.94	1.0 0.042			8.71	9.44	2		885 103.07 9.86	
29.527 558			1.62 0.56 1.07 1 1.63 0.56 1.07 1	0.91 122.058		121 1110/0 210	18% 2.20 17% 2.21	0.08 2.12		0.80 0.15 0.87 1.0 0.0 0.80 0.15 0.87 1.0 0.0				0.66 0.93 0.66 0.93	1.0 0.042 1.0 0.042			20.76 20.66	22.43 22.39	2		773 122.11 11.6 325 122.44 11.7	
	36.17 134.1 3.012 134.1 -0.7 -0.28 36.00 114.2 2.896 114.0 26.4 11.45					124 2.27% 2.1 105 2.57% 2.2		0.09 2.12 0.09 2.13		0.80 0.15 0.87 1.0 0.0 0.79 0.12 0.89 1.0 0.0				0.66 0.93	1.0 0.042			20.66	22.39 19.83	2		325 122.44 11.7 371 103.13 9.8	
30.019 558							18% 2.22	0.10 2.13		0.79 0.12 0.89 1.0 0.0				0.60 0.93	1.0 0.042			20.55	23.57	2		852 165.84 15.8	
30.183 558						199 1.34% 1.8		0.10 2.13		0.79 0.24 0.78 1.0 0.0					1.0 0.043				23.57	2		365 203.58 19.4	
00.100 000	2.000 217.0 20.4 11.40	0.002 120.0		0.0. 200.420	_32 £00.40			0.10 2.14		0.00 0.10 1.0 0.0	1 010.00		0.07 0.08	2.00 0.01	0.040			20.04	20		0.000		2. 200.440

WHITE MESA TAILINGS REPO Data File: 13-52106_SP2W6-S-BSC-CPT Idriss and Boulanger (2008) Location: White Mesa 2013 CPT Investigation Max. Horiz. Acceleration, Amax/g:	SITORY LIQUEFACTION AND SEISMIC SETTLEMENT ANALYSI 5604.40 Water surfactor 0.15 5604.40 Water surfactor 5.5 5588.59 Water surfactor	e elevation during CPT investigation (f $\frac{5615.85}{5625.41}$ Ground Surface elevation at t ₀ (ft amsl) $\frac{5625.41}{5625.41}$ Ground Surface elevation during CPT investigation (f	ce Elevation at time of CPT (ft amsl) ce Elevation Immediately after Placement of Final Cover (ft amsl Erosion Protection Layer (rock mulch/topsoils) Immediately after	I) FINAL COVER (ft) (ft)	Layer s of Weigh Weight of Layer of Layer (ft) Layer (ft) t (tcf) (pcf) (tsf) (tsf)	nt at Bottom Pressure at Bottom M r of Layer Midpoint of of Layer (tsf) (tsf)	Midpoint
Tailings Sands Magnitude Scaling Factor, MSF: Tailings Sand-Slimes Youd, et al (2001)	1.69 5583.59 Water surface	4.00 Thickness of	Water Storage/Rooting Zone (ft) High Compaction Layer (ft)	ater Storage/Rooting Zone Layer ####### 5623.16 High Compaction Layer ####### 5619.41	5617.41 4.00 0.060 120 0.454 0.33	34 0.00 0.00 0.454	0.121 0.334
Tailings Slimes Max. Horiz. Acceleration, Am Interim Cover Earthquake Moment Magnitud	, M: 5.5 0.47 Volumetric SI		Random/Platform Fill on on top of existing interim cover (ft) ess due to Final Cover Placement, $\Delta\sigma_{FC}$ (psf)	Platform/Random Fill Layer ####### 5616.63	5615.85 1.56 0.050 101 0.533 0.49	93 0.00 0.00 0.533	0.493
Cells Requiring User Input/Manipulation Magnitude Scaling Factor, I 2013 CPT Data from ConeTec	SF: 2.21 2.21 7.51 Equiv. Number CPT Data Interpretations	Conditions	ottom of tailings (liner) (ft amsl) at t ₁	Liquefaction Triggering	Analyses		Idriss & Boulanger (2008)
at time Pw Pw Type (as Unit Unit a	time Pressure time of at time of	Normalized Normalize Type Cone d Friction Index, Penetration Ratio, F, Total Stress Pressure Str			Youd et al. (2001)	4	
of CPT Elevation qt fs qc (u2) (u2) fs/qt (tf) (ft amsl) TSF TSF TSF (ft) PSI (%) (tcf) (pcf)	CPT at time of CPT CPT CN qc1 qc1 qc (tsf) (tsf) (tsf) 1=Yes TSF MPa 0=No	0	$\begin{array}{ccccccc} t_1 & at \ t_1 & r_d & C_\sigma & K_a & CSR \\ tsf) & 1=Yes & & & & \\ 0=No & & & & & s \lor = tatm \end{array} \Delta qc_{1n} \ qc_{1n-q} \end{array}$	(CRR) r _d D _r f K _σ ^{cs} M=7.5, sV=1atm FoS	Ka CSR (CRR) M=7.5, Kc qc _{1n-cs} M=7.5, sv=1atm sv=1atm FoS	Avg Liquefiable? FoS 1=Yes 2=No	CN qc1 qc1 qc1N TSF MPa
	0.02 0.00 0.02 0 1.70 37.723 524.35 43.	35 1343 0.27% 0.7 51% 0.55 0.00 0	0.54 0 1.00 0.05 1.02 1.0 0.059 34.84 47.70 0.55 0 1.00 0.07 1.03 1.0 0.060 45.71 89.56 0.56 0 1.00 0.08 1.04 1.0 0.060 54.36 122.8	i6 0.126 2.12 0.98 0.38 0.80 2.20	1.0 0.017 1.00 12.87 0.061 3.63 1.0 0.020 1.00 43.85 0.087 4.59 1.0 0.018 1.00 68.51 0.110 5.44	2.45 2 3.35 2	1.7 11.079 1.0607 12.868 1.7 37.753 3.6145 43.848 1.7 50.001 50.170 00.515
0.656 5615.19 54.7 0.219 54.6 1.9 0.81 0.40% Interim Cover 0.050 100.7	0.02 0.00 0.02 0 1.70 58.973 819.72 68. 0.03 0.00 0.03 0 1.70 92.888 1291.14 107 0.04 0.00 0.04 0 1.70 141.202 1962.71 164	91 1653 0.40% 0.9 51% 0.57 0.00 (0.56 0 1.00 0.08 1.04 1.0 0.060 54.36 122.8 0.57 0 1.00 0.11 1.05 1.0 0.061 68.19 176.1 0.57 0 1.00 0.18 1.07 1.0 0.062 87.88 251.9	10 0.478 7.90 0.98 0.60 0.70 2.66	1.0 0.018 1.00 66.51 0.110 5.44 1.0 0.016 1.00 107.91 0.197 119.17 1.0 0.014 1.00 164.02 1.000 484.49	4.27 2 63.53 2 250.30 2	1.7 58.991 5.6478 68.515 1.7 92.908 8.895 107.907 1.7 141.22 13.521 164.022
0.984 5614.87 94.0 0.544 94.0 2.0 0.85 0.58% Interim Cover 0.050 100.7	0.05 0.00 0.05 0 1.70 159.715 2220.04 185	52 1895 0.58% 1.0 51% 0.58 0.00 0	0 1.00 0.18 1.07 1.0 0.062 87.88 251.9 0.58 0 1.00 0.22 1.09 1.0 0.063 95.43 280.9 0.59 0 1.00 0.23 1.09 1.0 0.063 96.00 283.1	95 1.000 15.90 0.98 0.79 0.61 3.07	1.0 0.014 1.00 185.52 1.000 403.90	209.90 2	1.7 159.74 15.293 185.524
1.312 5614.54 92.2 0.392 92.2 1.8 0.77 0.43% Interim Cover 0.050 100.7	0.07 0.00 0.07 0 1.70 156.689 2177.98 182	01 1394 0.43% 0.9 51% 0.60 0.00 (0.60 0 1.00 0.22 1.08 1.0 0.062 94.19 276.2	20 1.000 16.04 0.97 0.78 0.61 2.72	1.0 0.016 1.00 182.01 1.000 3 03.16	159.60 2	1.7 156.71 15.003 182.007
1.640 5614.21 85.8 0.359 85.8 4.3 1.87 0.42% Interim Cover 0.050 100.7	0.08 0.00 0.08 0 1.70 145.843 2027.22 169	44 1038 0.42% 1.0 51% 0.62 0.00 0	0.62 0 1.00 0.19 1.06 1.0 0.062 89.78 259.2	22 1.000 16.26 0.97 0.75 0.62 2.41	1.0 0.018 1.00 169.44 1.000 242.72	129.49 2	1.7 154.32 14.774 179.229 1.7 145.89 13.967 169.441 1.7 140.4 10.000 105.001
1.968 5613.88 76.6 0.445 76.6 1.8 0.79 0.58% Interim Cover 0.050 100.7	0.10 0.00 0.10 0 1.70 130.135 1808.88 151	17 771 0.58% 1.1 51% 0.63 0.00 (0.62 0 1.00 0.18 1.06 1.0 0.061 88.36 253.7 0.63 0 1.00 0.16 1.05 1.0 0.061 83.37 234.5 0.64 0 1.00 0.13 1.04 1.0 0.060 72.78 193.7	54 1.000 16.49 0.97 0.71 0.65 2.15	1.0 0.020 1.00 151.17 0.401 81.22	118.54 2 48.86 2	1.7 142.4 13.633 165.384 1.7 130.15 12.461 151.167 1.7 101.47 0.2722 120.022
2.297 5613.55 64.2 0.470 64.2 1.8 0.79 0.73% Interim Cover 0.050 100.7	0.12 0.00 0.12 0 1.70 109.123 1516.81 126	76 554 0.73% 1.3 51% 0.65 0.00 0	0.65 0 1.00 0.13 1.04 1.0 0.060 74.81 201.5	57 1.000 16.72 0.97 0.65 0.67 1.92	1.0 0.022 1.00 126.76 0.269 46.79	30.13 2 31.75 2	1.7 104.17 9.9733 120.988 1.7 109.14 10.449 126.762 1.7 100.14 10.449 126.762
2.625 5613.23 191.6 1.300 191.6 4.3 1.85 0.68% Interim Cover 0.050 100.7	0.12 0.00 0.13 0 1.64 314.125 4366.34 364	89 1449 0.68% 1.1 51% 0.66 0.00 (0.66 0 1.00 0.30 1.08 1.0 0.062 ###### 523.2	26 1.000 16.12 0.97 1.10 0.60 2.12	1.0 0.022 1.00 135.70 0.312 50.65 1.0 0.020 1.00 364.89 1.000 152.06		1.7 116.84 11.186 135.698 1.639484 314.17 30.079 364.888
2.953 5612.90 265.3 5.646 265.3 4.3 1.85 2.13% Interim Cover 0.050 100.7	0.14 0.00 0.14 0 1.61 389.250 5410.57 452 0.15 0.00 0.15 0 1.59 421.663 5861.12 489	79 1783 2.13% 1.6 51% 0.68 0.00 (0.67 0 0.99 0.30 1.07 1.0 0.062 ##### 641.1 0.68 0 0.99 0.30 1.07 1.0 0.061 ##### 691.9	99 1.000 16.26 0.97 1.28 0.60 2.02	1.0 0.021 1.00 452.13 1.000 143.17 1.0 0.021 1.00 489.79 1.000 135.27	75.77 2	1.61347 389.28 37.27 452.127 1.589322 421.71 40.374 489.785
3.281 5612.57 217.3 7.057 217.3 1.3 0.58 3.25% Sand-Slime Tailin 0.047 93.3	0.16 0.00 0.16 0 1.57 373.653 5193.78 434 0.16 0.00 0.16 0 1.55 336.251 4673.89 390	55 1319 3.25% 1.8 47% 0.70 0.00 (0.69 0 0.99 0.30 1.07 1.0 0.061 ##### 616.6 0.70 0 0.99 0.30 1.06 1.0 0.061 ##### 557.8	82 1.000 16.40 0.97 1.14 0.60 1.94	1.0 0.022 1.06 461.98 1.000 128.20 1.0 0.022 1.08 423.01 1.000 122.29	69.34 2	1.566812 373.68 35.776 434.004 1.547263 336.26 32.194 390.550
3.609 5612.24 256.0 7.793 256.0 1.4 0.59 3.04% Sand-Slime Tailing 0.047 93.3	0.17 0.00 0.17 0 1.53 333.101 4630.11 386 0.18 0.00 0.18 0 1.51 386.904 5377.97 449	38 1422 3.05% 1.7 47% 0.71 0.00 (0.70 0 0.99 0.30 1.06 1.0 0.061 ##### 552.8 0.71 0 0.99 0.30 1.06 1.0 0.061 ##### 637.2	29 1.000 16.53 0.97 1.22 0.60 1.87	1.0 0.022 1.07 412.59 1.000 116.91 1.0 0.023 1.06 476.39 1.000 111.98		1.52883333.1131.892386.8871.511403386.9237.043449.380
3.937 5611.91 227.8 8.106 227.7 12.0 5.18 3.56% Sand-Slime Tailin 0.047 93.3	0.19 0.00 0.19 0 1.49 469.029 6519.50 544 0.20 0.00 0.20 0 1.48 336.474 4676.99 390	92 1161 3.56% 1.8 47% 0.73 0.00 (0.72 0 0.99 0.30 1.05 1.0 0.060 ##### 706.2 0.73 0 0.99 0.30 1.05 1.0 0.060 ##### 558.3	33 1.000 16.66 0.97 1.14 0.60 1.81	1.0 0.023 1.02 554.48 1.000 107.01 1.0 0.024 1.12 437.65 1.000 102.87	59.77 2	1.493247469.0944.911544.8231.477644336.5832.225390.923
4.265 5611.58 214.9 5.761 214.9 3.0 1.32 2.68% Sand-Slime Tailin 0.047 93.3	0.20 0.00 0.20 0 1.46 319.444 4440.28 371 0.21 0.00 0.21 0 1.45 311.252 4326.41 361	53 1016 2.68% 1.7 47% 0.74 0.00 0	0.74 0 0.99 0.30 1.05 1.0 0.060 ##### 531.5 0.74 0 0.99 0.30 1.04 1.0 0.060 ##### 518.6	63 1.000 16.79 0.97 1.10 0.60 1.75	1.0 0.024 1.07 397.43 1.000 99.05 1.0 0.024 1.05 378.28 1.000 95.50	56.15 2	1.462791319.530.589371.0851.448628311.2829.802361.533
4.593 5611.26 150.8 3.824 150.8 1.6 0.68 2.54% Sand-Slime Tailin 0.047 93.3	0.22 0.00 0.22 0 1.44 251.142 3490.88 291 0.23 0.00 0.23 0 1.43 215.630 2997.26 250	46 665 2.54% 1.7 47% 0.76 0.00 0	0.75 0 0.99 0.30 1.04 1.0 0.059 ##### 424.3 0.76 0 0.98 0.30 1.04 1.0 0.059 ##### 368.6	60 1.000 16.93 0.97 0.91 0.60 1.71	1.0 0.025 1.05 307.64 1.000 92.20 1.0 0.025 1.07 268.21 1.000 89.12	53.02 2	1.435098251.1624.046291.7101.42972215.6420.646250.458
4.921 5610.93 111.4 1.755 111.4 0.9 0.40 1.57% Sand Tailings 0.051 102.8	0.24 0.00 0.24 0 1.50 181.995 2529.74 211 0.24 0.00 0.24 0 1.52 169.758 2359.64 197	17 457 1.58% 1.6 18% 0.78 0.00 0	0.77 0 0.98 0.30 1.03 1.0 0.059 76.13 287.5 0.78 0 0.98 0.25 1.03 1.0 0.058 72.50 269.6	67 1.000 17.14 0.97 0.81 0.60 1.66	1.0 0.025 1.04 220.27 1.000 85.96 1.0 0.026 1.00 197.17 1.000 83.01		1.504592182.0117.426211.3951.523449169.7716.253197.174
	0.25 0.00 0.25 0 1.53 161.916 2250.64 188 0.26 0.00 0.26 0 1.53 157.250 2185.78 182		0.78 0 0.98 0.23 1.02 1.0 0.058 70.17 258.2 0.79 0 0.98 0.22 1.02 1.0 0.058 94.35 276.9		1.0 0.026 1.06 200.17 1.000 80.26 1.0 0.027 1.11 203.34 1.000 77.93	48.75 2 47.62 2	1.529534161.9215.502188.0581.52774157.2415.054182.626
	0.27 0.00 0.27 0 1.52 155.399 2160.05 180 0.27 0.00 0.27 0 1.51 152.916 2125.53 177		0.80 0 0.98 0.21 1.02 1.0 0.058 93.60 274.0 0.81 0 0.98 0.21 1.01 1.0 0.057 92.59 270.1		1.00.0271.12202.031.00075.731.00.0271.13200.401.00073.65		1.517569155.3914.877180.4811.509532152.9114.64177.598
	0.28 0.00 0.28 0 1.52 145.768 2026.18 169 0.29 0.00 0.29 0 1.54 133.514 1855.84 155		0.82 0 0.98 0.19 1.01 1.0 0.057 89.67 258.9 0.82 0 0.98 0.17 1.01 1.0 0.057 84.68 239.7		1.00.0281.19201.391.00071.681.00.0291.23190.571.00069.82	44.59 2 43.69 2	1.515261145.7613.955169.2901.53676133.512.782155.058
	0.30 0.00 0.30 0 1.55 125.130 1739.31 145 0.31 0.00 0.31 0 1.54 122.573 1703.76 142		0.83 0 0.98 0.15 1.01 1.0 0.057 81.27 226.5 0.84 0 0.98 0.15 1.00 1.0 0.057 80.23 222.5		1.0 0.029 1.31 189.90 1.000 68.05 1.0 0.030 1.29 182.97 1.000 66.38		1.547112125.1211.979145.3201.539087122.5611.734142.348
	0.31 0.00 0.31 0 1.54 117.783 1637.19 136 0.32 0.00 0.32 0 1.61 91.966 1278.33 106		0.85 0 0.97 0.14 1.00 1.0 0.056 78.28 215.0 0.85 0 0.97 0.11 1.00 1.0 0.056 67.76 174.5		1.0 0.030 1.28 175.75 1.000 64.78 1.0 0.032 1.47 156.93 0.439 27.80	41.25 2	1.538242117.7811.276136.7951.61174491.9668.8048106.813
6.726 5609.12 51.8 1.588 51.8 -0.1 -0.03 3.07% Sand-Slime Tailin 0.047 93.3 6.890 5608.96 49.7 1.224 49.7 -0.8 -0.33 2.46% Sand-Slime Tailin 0.047 93.3	0.33 0.00 0.33 0 1.62 84.096 1168.93 97.	67 157 3.09% 2.1 47% 0.86 0.00 0	0.86 0 0.97 0.10 1.00 1.0 0.056 64.56 162.2 .87 0 0.97 0.10 1.00 1.0 0.056 63.11 156.6	23 0.341 6.07 0.96 0.57 0.71 1.32	1.0 0.032 1.52 148.18 0.383 23.65 1.0 0.033 1.41 131.92 0.294 17.74	14.86 2	1.624415 84.095 8.0513 97.672 1.620049 80.541 7.711 93.544
7.054 5608.80 56.3 1.510 56.4 -0.3 -0.13 2.68% Sand-Slime Tailin 0.047 93.3	0.34 0.00 0.34 0 1.57 88.530 1230.57 102 0.35 0.00 0.35 0 1.51 102.716 1427.76 119	82 163 2.70% 2.1 47% 0.88 0.00 (0.88 0 0.97 0.11 1.00 1.0 0.056 66.36 169.1 .88 0 0.97 0.12 1.00 1.0 0.056 71.66 191.0	18 0.399 7.14 0.96 0.59 0.71 1.31	1.0 0.032 1.41 145.18 0.365 21.55 1.0 0.032 1.53 182.92 1.000 57.98	14.34 2	1.571078 88.527 8.4756 102.819 1.509204 102.78 9.8403 119.375
7.382 5608.47 66.2 1.99 66.2 1.5 0.65 4.52% Sime Tailings 0.041 82.7 7.364 5608.430 143.2 1.935 143.2 2.8 1.21 1.35% Sand Tailings 0.051 102.8	0.36 0.00 0.36 0 1.51 99.683 1385.59 115	79 184 4.55% 2.2 71% 0.89 0.00 0	0.89 0 0.97 0.12 1.00 1.0 0.056 70.41 186.2 0.90 0 0.97 0.30 0.99 1.0 0.055 77.45 294.0	20 0.655 11.75 0.96 0.62 0.69 1.31	1.0 0.032 1.00 102.52 1.000 51.50 1.0 0.032 1.75 202.06 1.000 56.91 1.0 0.030 1.00 216.56 1.000 55.62	34.33 2	1.505264 102.76 3.6405 115.75 1.505326 99.697 9.545 115.792 1.301895 186.45 17.851 216.555
7.710 5608.14 161.7 1.640 161.7 -0.1 -0.04 1.01% Sand Tailings 0.051 102.8	0.37 0.00 0.37 0 1.27 204.599 2843.92 237	63 431 1.02% 1.5 18% 0.91 0.00 (0.91 0 0.97 0.30 0.98 1.0 0.055 82.84 320.4	47 1.000 18.19 0.96 0.89 0.60 1.40	1.0 0.030 1.00 237.63 1.000 54.38	36.29 2	1.265533 204.6 19.588 237.628
	0.39 0.00 0.39 0 1.52 76.535 1063.84 88.	91 129 2.38% 2.1 47% 0.92 0.00 0	0.91 0 0.96 0.15 0.99 1.0 0.055 79.95 221.5 0.92 0 0.96 0.10 0.99 1.0 0.055 61.48 150.3	39 0.273 4.93 0.96 0.54 0.73 1.24	1.0 0.032 1.18 167.67 1.000 53.32 1.0 0.034 1.45 128.98 0.280 14.62	9.78 2	1.404187121.8911.67141.5701.51524576.5517.32988.910
8.366 5607.48 25.8 0.664 25.8 0.5 0.20 2.58% Sand-Slime Tailin 0.047 93.3		67 63 2.62% 2.3 47% 0.94 0.00 0	0.93 0 0.96 0.08 0.99 1.0 0.055 52.66 116.4 0.94 0 0.96 0.07 0.99 1.0 0.055 47.37 96.09	5 0.136 2.46 0.96 0.40 0.80 1.16	1.0 0.035 1.76 112.27 0.212 10.86 1.0 0.036 2.09 101.59 0.178 8.94	5.70 2	1.58149354.8865.254863.7471.62541641.9084.012348.673
8.530 5607.32 31.8 0.573 31.8 2.8 1.21 1.80% Sand-Stime Tailin 0.047 93.3 8.694 5607.16 34.8 0.413 34.8 2.3 1.01 1.19% Sand-Stime Tailin 0.047 93.3			0.95 0 0.96 0.08 0.99 1.0 0.055 50.60 108.4 0.95 0 0.96 0.08 0.99 1.0 0.055 52.09 114.2	20 0.168 3.05 0.96 0.46 0.77 1.18	1.0 0.036 1.60 92.72 0.154 7.62 1.0 0.036 1.34 83.09 0.133 6.48		1.56801649.8274.770557.8721.53531853.4825.120462.116
8.858 5606.99 33.7 0.343 33.7 0.9 0.37 1.02% Sand-Stime Tailin 0.047 93.3 9.022 5606.83 29.3 0.358 29.3 0.1 0.05 1.22% Sand-Stime Tailin 0.047 93.3			0.96 0 0.96 0.08 0.99 1.0 0.055 51.27 111.0 0.97 0 0.96 0.07 0.99 1.0 0.055 48.62 100.8		1.0 0.036 1.30 77.98 0.124 5.92 1.0 0.037 1.47 76.82 0.122 5.73		1.52672451.4894.929659.8021.53721544.9654.304952.224
9.186 5606.66 20.9 0.342 20.9 -0.3 -0.13 1.64% Sand-Slime Tailin 0.047 93.3 9.350 5606.50 12.6 0.327 12.6 -0.6 -0.25 2.59% Slime Tailings 0.041 82.7			0.98 0 0.96 0.06 0.99 1.0 0.055 43.73 82.00 0.98 0 0.96 0.06 0.99 1.0 0.055 38.45 62.46		1.0 0.037 1.99 76.07 0.121 5.57 1.0 0.037 3.47 83.20 0.134 6.07		1.57776632.9573.155338.2771.63986120.6731.979224.010
9.514 5606.34 12.0 0.251 12.0 -0.7 -0.29 2.10% Slime Tailings 0.041 82.7 9.678 5606.17 14.1 0.216 14.1 -0.6 -0.26 1.53% Sand-Slime Tailing 0.047 93.3	0.46 0.00 0.46 0 1.63 19.500 271.05 22.	64 25 2.18% 2.6 71% 0.99 0.00 0	0.99 0 0.95 0.05 0.99 1.0 0.055 37.97 60.6' .00 0 0.95 0.06 0.99 1.0 0.055 39.44 65.5'	1 0.089 1.62 0.96 0.27 0.80 1.14	1.0 0.037 3.27 74.01 0.118 5.27 1.0 0.037 2.54 66.27 0.107 4.72	3.44 2	1.63042319.4931.866322.6401.58846122.4392.148326.061
9.842 506.0.1 23.2 0.158 23.2 -0.3 -0.12 0.68% Sand-Sime Tailin 0.047 93.3 10.006 5605.84 22.6 0.274 22.6 -0.3 -0.12 1.21% Sand-Sime Tailin 0.047 93.3	0.47 0.00 0.47 0 1.50 34.822 484.03 40.	44 48 0.70% 2.1 47% 1.00 0.00 1	.00 0 0.95 0.07 0.99 1.0 0.054 44.48 84.93 .01 0 0.95 0.06 0.99 1.0 0.054 44.03 83.16	3 0.120 2.19 0.95 0.37 0.80 1.13	1.0 0.037 1.42 57.38 0.098 4.23 1.0 0.037 1.75 68.53 0.110 4.69	3.21 2	1.502248 34.819 3.3336 40.441 1.490966 33.693 3.2258 39.133
10.000 5005.00 12.00 0.014 12.10 0.014 12.11 0.014 10.11 0.014 82.7 10.0170 5605.56 10.3 0.388 10.3 0.3 0.12 3.73% Silme Tailings 0.041 82.7 10.035 5605.52 10.3 0.38 10.3 0.12 3.73% Silme Tailings 0.041 82.7	0.49 0.00 0.49 0 1.56 17.349 241.15 20.	14 22 3.47% 2.8 71% 1.02 0.00 1	.01 0 0.55 0.00 0.55 1.0 0.004 44.05 0.1 .02 0 0.95 0.05 0.99 1.0 0.054 37.10 57.25 .03 0 0.95 0.05 0.99 1.0 0.054 36.52 54.96	5 0.085 1.56 0.95 0.26 0.80 1.12	1.0 0.037 1.73 0.038 0.110 4.09 1.0 0.038 4.49 90.38 0.149 6.26 1.0 0.038 5.04 92.99 0.155 6.43	3.91 2	1.562976 17.344 1.6605 20.144 1.546147 15.897 1.522 18.464
10.499 5605.35 8.6 0.299 8.6 1.8 0.79 3.46% Stime Tailings 0.041 82.7	0.50 0.00 0.50 0 1.53 13.186 183.29 15.	34 16 3.68% 2.9 71% 1.03 0.00 1	.03 0 0.95 0.05 0.99 1.0 0.054 36.32 54.36 .03 0 0.95 0.05 0.99 1.0 0.054 35.43 50.76 .04 0 0.95 0.05 0.99 1.0 0.054 36.94 56.62	6 0.078 1.44 0.95 0.23 0.80 1.11	1.0 0.038 5.50 84.30 0.136 5.56	3.50 2	1.529724 13.204 1.2641 15.335
10.827 5605.02 22.3 0.182 22.3 1.3 0.55 0.82% Sand-Slime Tailin 0.047 93.3	0.51 0.00 0.51 0 1.43 31.828 442.41 36.	98 42 0.84% 2.2 47% 1.05 0.00 1	0.05 0 0.95 0.06 0.99 1.0 0.054 43.27 80.28	5 0.113 2.09 0.95 0.35 0.80 1.11	1.0 0.038 1.59 58.90 0.099 3.95	3.02 2	1.428543 31.839 3.0483 36.979
10.991 5604.86 26.2 0.185 26.2 0.6 0.25 0.71% Sand-Stime Tailin 0.047 93.3 11.155 5604.70 24.7 0.273 24.7 0.3 0.14 1.10% Sand-Stime Tailin 0.047 93.3	0.53 0.00 0.53 0 1.39 34.382 477.91 39.	94 46 1.13% 2.2 47% 1.06 0.00 1	.05 0 0.94 0.07 0.99 1.0 0.054 45.20 87.67 .06 0 0.94 0.06 0.99 1.0 0.054 44.31 84.24	4 0.119 2.20 0.95 0.36 0.80 1.10	1.0 0.038 1.42 60.27 0.100 3.94 1.0 0.038 1.70 67.83 0.109 4.22	3.21 2	1.397102 36.567 3.5009 42.471 1.390862 34.385 3.292 39.936
11.319 5604.53 17.5 0.349 17.5 -0.1 -0.05 1.99% Sand-Slime Tailing 0.047 93.3 11.48 5604.37 12.5 0.390 12.5 -0.0 3.12% Slime Tailings 0.057 113.1	0.55 0.00 0.55 1 1.43 17.845 248.04 20.	72 22 3.27% 2.7 71% 1.08 0.00	.07 0 0.94 0.06 0.99 1.0 0.054 40.39 69.19 .08 0 0.94 0.05 0.99 1.0 0.054 37.30 58.03	3 0.086 1.59 0.95 0.26 0.80 1.10	1.0 0.038 2.75 79.07 0.126 4.81 1.0 0.038 4.35 90.07 0.148 5.57	3.58 2	1.41339724.7622.370728.7591.42872517.8431.708320.724
11.647 5604.20 12.1 0.339 12.1 2.0 0.88 2.79% Stime Tailings 0.057 113.1 11.811 5604.04 10.7 0.328 10.7 10.4 4.49 3.06% Stime Tailings 0.057 113.1	0.57 0.01 0.55 1 1.41 15.051 209.21 17.	59 18 3.23% 2.8 71% 1.10 0.00 ⁴	1.09 0 0.94 0.05 0.99 1.0 0.054 37.06 57.07 1.10 0 0.94 0.05 0.99 1.0 0.054 36.21 53.80	0 0.081 1.52 0.95 0.24 0.80 1.09	1.0 0.038 4.22 84.43 0.136 5.08 1.0 0.038 4.81 84.62 0.136 5.06	3.29 2	1.42026317.2311.649720.0131.41191515.1421.449717.587
11.975 5603.88 17.0 0.353 16.9 18.5 8.03 2.08% Sand-Slime Tailin 0.059 119.0	0.57 0.02 0.56 1 1.38 23.239 323.02 27.	18 29 2.15% 2.5 47% 1.11 0.00 ·	.11 0 0.94 0.06 0.99 1.0 0.053 39.83 67.0 ⁻	1 0.096 1.80 0.95 0.30 0.80 1.09	1.0 0.038 2.95 80.09 0.128 4.70	3.25 2	1.379148 23.398 2.2401 27.175

Data File: 13-52106_SP2W6-S-BSC-C Location: White Mesa 2013 CPT Inve .\.\.\6.2.3 Field Data\2013 Field Investigation Tailings Sands Tailings Sand-Slimes Tailings Slimes	CPT Idriss and Boulanger (2008) sstigation Max. Horiz. Acceleration, Amax/g: 0 \Conetec Da Earthquake Moment Magnitude, M: 5	10UEFACTION AND SEISMIC SETTLEMENT ANALYSES - 2066 15 5604.40 15 5.6 69 0.15 1.44 Scaling Factor for stree	during CPT investigation (f 5615.85 Ground Surface Elevation a at t ₀ (ft amsl) 5625.41 Ground Surface Elevation a at t ₁ (ft amsl) 0.50 Thickness of Erosion Prote at t ₂ (ft amsl) 3.50 Thickness of Water Storag 4.00 Thickness of High Compace Thickness of High Compace	Immediately after Placement of Final Cover (ft amsl) ection Layer (rock mulch/topsoils) Immediately after pl e/Rooting Zone (ft)	Layer of Layer L	of ayer Thicknes s of Layer (tr) Unit v (tcf) Unit Weigh (pcf) Bottom v (aper) Midpoi of Layer (tsf) 224.91 0.50 0.055 110 0.028 0.0 321.41 3.50 0.054 107 0.215 0.7 317.41 4.00 0.060 120 0.454 0.3	er of Layer Midpoint of of Layer	Midpoint r Midpoint layer (tsf) 8 0.014 5 0.121 4 0.334
Interim Cover Cells Requiring User Input/Manipulatio	Earthquake Moment Magnitude, M:		for Site-Specific Design Ear 1065.26 Additional Stress due to Fir	hal Cover Placement, $\Delta\sigma_{FC}$ (psf)	Thatomin and on this Layer minimum 3010.05 50	101 0.000 101 0.000 0.000	0.00 0.00 0.000	0.493
2013 CPT Data from ConeT Depth	ec Notorial Total L	CPT Data Interpretations	ized Normalize Type Pore Effective	Idriss & Boulanger (2008)	Liquefaction Triggering An	nalyses Youd et al. (2001)		Idriss & Boulanger (2008)
at time		ssure time of at time of Penet	tion Ratio, F, L. Total Stress Pressure Stress at Satura			K _a CSR (CRR)	Avg Liquefiable?	CN qc1 qc1 qc1N
(ft) (ft amsl) TSF TSF TSF	(ft) PSI (%) (tcf) (pcf) (tsf) (t	tsf) (tsf) 1=Yes TSF MPa ',' 0=No	% (tsf) (tsf) (tsf) 1=Ye 0=Ne	$M=7.5, \Delta qc_{1n} qc_{1n-cs} r$		M=7.5, Kc qc _{1n-cs M=7.5,} s∨=1atm s∨=1atm FoS	FoS 1=Yes 2=No	TSF MPa
12.303 5603.55 8.8 0.266 8.8 0.4 12.467 5603.32 6.7 0.119 6.6 1 12.755 5602.89 8.3 0.182 8.2 1 13.123 5602.73 6.3 0.181 6.2 2 13.267 5602.23 4.7 0.156 4.3 6 13.615 5602.23 4.7 0.156 4.5 7 13.943 5601.41 6.8 0.221 6.7 2 14.400 5601.41 6.8 0.221 6.7 2 14.600 5601.25 1.2 0.184 16.2 2 15.420 5600.43 16.2 0.125 1.0 1 14.928 5600.27 1.6 0.225 1.0.8 8 15.420 5600.43 16.2 0.412 10.2 1 15.420 5609.41 10.3 0.119 9.8 8 16.76 5599.77	6.5 2.80 3.02% Sime Tailings 0.057 113.1 0.50 9.4 4.08 2.86% Sime Tailings 0.057 113.1 0.61 0 5.58 11.18 1.94% Sime Tailings 0.057 113.1 0.62 0 6.50 2.47 C.70% Sime Tailings 0.057 113.1 0.66 0 6.50 2.47 2.70% Sime Tailings 0.057 113.1 0.66 0 6.50 2.840 3.21% Sime Tailings 0.057 113.1 0.67 0.06 6.61 3.241 Sime Tailings 0.057 113.1 0.70 0 6.72 1.17.8 3.24% Sime Tailing 0.057 113.1 0.70 0.00 7.11 3.24% Sime Tailing 0.057 113.1 0.71 0.07 7.12 3.243 Sand-Sime Tailin 0.059 119.0 0.74 0 7.12 Sand-Sime Tailing <td< td=""><td>0.2 0.56 1 1.39 16.931 235.34 19.75 2 0.3 0.57 1 1.38 7.790 108.28 9.14 19 0.4 0.58 1 1.36 12.161 169.03 14.19 1 0.4 0.58 1 1.36 12.514 173.95 14.79 1 0.5 0.59 1 1.35 8.372 116.37 9.94 1 0.6 0.59 1 1.35 8.479 16.77 19 7 0.60 0.61 1 1.32 5.962 82.87 7.60 7 0.7 0.60 1 1.32 5.962 82.87 7.60 7 0.61 1 1.30 7.477 103.93 9.29 9 6.2 1.129 8.60 11.924 10.24 11.02 11.024 11.02 11.024 11.02 11.02 11.03 11.22 11.22 11.12</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>0.94 0.05 0.99 1.0 0.053 36.96 56.71 0.93 0.04 0.99 1.0 0.053 33.27 42.41 0.03 0.93 0.05 0.99 1.0 0.053 33.27 42.41 0.03 0.93 0.05 0.99 1.0 0.053 33.24 50.03 0.03 0.93 0.04 0.99 1.0 0.053 33.04 4.52 0.93 0.93 0.04 0.99 1.0 0.053 32.76 40.42 0.93 0.92 0.04 0.99 1.0 0.053 32.91 41.01 0.92 0.92 0.04 0.98 1.0 0.052 36.75 54.96 0.92 0.92 0.05 0.98 1.0 0.052 36.75 54.96 0.91 0.92 0.05 0.98 1.0 0.051 34.14 4.754 0.91 0.92 0.05 0.98 1.0</td><td>0.084 1.58 0.95 0.26 0.80 1.09 0.077 1.44 0.95 0.22 0.80 1.09 0.071 1.32 0.95 0.17 0.80 1.08 0.078 1.46 0.95 0.22 0.80 1.08 0.075 1.42 0.95 0.18 0.80 1.08 0.071 1.34 0.95 0.16 0.80 1.07 0.069 1.31 0.95 0.16 0.80 1.07 0.069 1.31 0.95 0.16 0.80 1.07 0.069 1.31 0.94 0.17 0.80 1.07 0.071 1.35 0.94 0.80 1.07 0.071 1.35 0.94 0.25 0.80 1.06 0.071 1.35 0.94 0.23 0.80 1.06 0.072 1.38 0.94 0.22 0.80 1.06 0.080 1.53 0.94 0.</td><td>v + tatmFos100.0384.2684.150.1354.456100.0397.3467.120.1083.52100.0395.4258.120.0983.52100.0395.1267.200.1183.80100.0395.1267.200.1183.80100.0395.1266.510.1073.74100.0398.7466.510.1083.75100.0398.7466.760.1083.86100.0398.7666.760.1083.64100.0398.7775.850.1113.75100.0393.5664.990.1063.49100.0392.7468.550.1103.63100.0392.7468.550.1103.67100.0393.7587.440.1424.55100.0393.7575.400.1133.67100.0394.4670.870.1173.77100.0393.7664.850.1053.29100.0393.7664.850.1013.02100.0393.7664.850.1323.91100.0403.6760.460.1013.02100.0403.6760.460.1013.02100.0403.6760.460.1013.02100.0403.6760.46</td><td>3.26 2 3.00 2 2.61 2 2.63 2 2.62 2 2.63 2 2.64 2 2.65 2 2.64 2 2.65 2 2.64 2 2.54 2 2.54 2 2.67 2 2.67 2 2.60 2 2.60 2 2.60 2 2.60 2 2.60 2 2.61 2 2.61 2 2.61 2 2.61 2 2.29 2 2.29 2 2.33 2 2.30 2 2.30 2 2.33 2 2.30 2 2.31 2 2.61 2 2.61 2</td><td>1.39462 17.003 1.6278 19.748 1.38661 12.217 1.1696 14.189 1.376705 7.8707 0.7535 9.141 1.370901 9.2401 0.8846 10.732 1.365197 12.734 1.2191 14.789 1.355592 11.309 10.827 13.135 1.34062 8.558 0.8193 9.940 1.340666 7.9402 0.7602 9.222 1.333343 6.6009 0.632 7.666 1.32611 6.192 0.5928 7.192 1.31996 6.5446 0.6266 7.601 1.31191 6.9785 0.7655 9.287 1.291246 8.8188 0.8443 10.242 1.283752 15.715 1.5046 18.252 1.265662 1.363 1.017 2.3076 1.26529 1.3681 1.6113 18.212 1.236759 1.2.72 1.2178 1.4.774 1.23062 1.4447 1.0</td></td<>	0.2 0.56 1 1.39 16.931 235.34 19.75 2 0.3 0.57 1 1.38 7.790 108.28 9.14 19 0.4 0.58 1 1.36 12.161 169.03 14.19 1 0.4 0.58 1 1.36 12.514 173.95 14.79 1 0.5 0.59 1 1.35 8.372 116.37 9.94 1 0.6 0.59 1 1.35 8.479 16.77 19 7 0.60 0.61 1 1.32 5.962 82.87 7.60 7 0.7 0.60 1 1.32 5.962 82.87 7.60 7 0.61 1 1.30 7.477 103.93 9.29 9 6.2 1.129 8.60 11.924 10.24 11.02 11.024 11.02 11.024 11.02 11.02 11.03 11.22 11.22 11.12	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.94 0.05 0.99 1.0 0.053 36.96 56.71 0.93 0.04 0.99 1.0 0.053 33.27 42.41 0.03 0.93 0.05 0.99 1.0 0.053 33.27 42.41 0.03 0.93 0.05 0.99 1.0 0.053 33.24 50.03 0.03 0.93 0.04 0.99 1.0 0.053 33.04 4.52 0.93 0.93 0.04 0.99 1.0 0.053 32.76 40.42 0.93 0.92 0.04 0.99 1.0 0.053 32.91 41.01 0.92 0.92 0.04 0.98 1.0 0.052 36.75 54.96 0.92 0.92 0.05 0.98 1.0 0.052 36.75 54.96 0.91 0.92 0.05 0.98 1.0 0.051 34.14 4.754 0.91 0.92 0.05 0.98 1.0	0.084 1.58 0.95 0.26 0.80 1.09 0.077 1.44 0.95 0.22 0.80 1.09 0.071 1.32 0.95 0.17 0.80 1.08 0.078 1.46 0.95 0.22 0.80 1.08 0.075 1.42 0.95 0.18 0.80 1.08 0.071 1.34 0.95 0.16 0.80 1.07 0.069 1.31 0.95 0.16 0.80 1.07 0.069 1.31 0.95 0.16 0.80 1.07 0.069 1.31 0.94 0.17 0.80 1.07 0.071 1.35 0.94 0.80 1.07 0.071 1.35 0.94 0.25 0.80 1.06 0.071 1.35 0.94 0.23 0.80 1.06 0.072 1.38 0.94 0.22 0.80 1.06 0.080 1.53 0.94 0.	v + tatmFos100.0384.2684.150.1354.456100.0397.3467.120.1083.52100.0395.4258.120.0983.52100.0395.1267.200.1183.80100.0395.1267.200.1183.80100.0395.1266.510.1073.74100.0398.7466.510.1083.75100.0398.7466.760.1083.86100.0398.7666.760.1083.64100.0398.7775.850.1113.75100.0393.5664.990.1063.49100.0392.7468.550.1103.63100.0392.7468.550.1103.67100.0393.7587.440.1424.55100.0393.7575.400.1133.67100.0394.4670.870.1173.77100.0393.7664.850.1053.29100.0393.7664.850.1013.02100.0393.7664.850.1323.91100.0403.6760.460.1013.02100.0403.6760.460.1013.02100.0403.6760.460.1013.02100.0403.6760.46	3.26 2 3.00 2 2.61 2 2.63 2 2.62 2 2.63 2 2.64 2 2.65 2 2.64 2 2.65 2 2.64 2 2.54 2 2.54 2 2.67 2 2.67 2 2.60 2 2.60 2 2.60 2 2.60 2 2.60 2 2.61 2 2.61 2 2.61 2 2.61 2 2.29 2 2.29 2 2.33 2 2.30 2 2.30 2 2.33 2 2.30 2 2.31 2 2.61 2 2.61 2	1.39462 17.003 1.6278 19.748 1.38661 12.217 1.1696 14.189 1.376705 7.8707 0.7535 9.141 1.370901 9.2401 0.8846 10.732 1.365197 12.734 1.2191 14.789 1.355592 11.309 10.827 13.135 1.34062 8.558 0.8193 9.940 1.340666 7.9402 0.7602 9.222 1.333343 6.6009 0.632 7.666 1.32611 6.192 0.5928 7.192 1.31996 6.5446 0.6266 7.601 1.31191 6.9785 0.7655 9.287 1.291246 8.8188 0.8443 10.242 1.283752 15.715 1.5046 18.252 1.265662 1.363 1.017 2.3076 1.26529 1.3681 1.6113 18.212 1.236759 1.2.72 1.2178 1.4.774 1.23062 1.4447 1.0

WHITE MESA TAILINGS REPOSITORY LIQUEFACTION AN	D SEISMIC SETTLEMENT ANALYSES - 2W6-S	Elev. at Elev. At Bottom Stress at Stress at Stress at Pressure Equil Pore Stress at Stress at
Data File: 13-52106 SP2W6-S-BSC-CPT Idriss and Boulanger (2008)	5604.40 Water surface elevation during CPT investigation (f)5615.85 Ground Surface Elevation at time of CPT (ft amst)	Top of Midpoint of Thicknes Unit Unit Bottom Midpoint at Bottom Pressure at Bottom Midpoint Layer of Layer Layer s of Weigh Weight of Layer of Layer of Layer Midpoint of of Layer of Layer
Location: White Mesa 2013 CPT Investigation Max. Horiz. Acceleration, Amax/g: 0.15	5604.40 Water surface elevation at t ₀ (ft amsl) 5625.41 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl) FINAL COVER	$\begin{array}{c} \text{f(t)} & \text{(f(t) Layer(ft))} & \text{(f(t))} & \text{(f(t) Layer(ft))} & \text{(f(t))} & (f($
	5588.59 Water surface elevation at t ₁ (ft amst) 0.50 Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after pl Erosion Protection Laye	r ###### 5625.16 5624.91 0.50 0.055 110 0.028 0.014 0.00 0.00 0.028 0.014
Tailings Sands Magnitude Scaling Factor, MSF: 1.69	5583.59 Water surface elevation at t ₂ (ft amsl) 3.50 Thickness of Water Storage/Rooting Zone (ft) ater Storage/Rooting Zone Laye	rr ###### 5623.16 5621.41 3.50 0.054 107 0.215 0.121 0.00 0.00 0.215 0.121
Tailings Sand-Slimes Youd, et al (2001)	4.00 Thickness of High Compaction Layer (ft) High Compaction Laye	
Tailings Slimes Max. Horiz. Acceleration, Amax/g: 0.15	1.44 Scaling Factor for stress ration, rm 1.56 Thickness of Random/Platform Fill on on top of existing interim cover (ft) Platform/Random Fill Laye	rf ###### 5616.63 5615.85 1.56 0.050 101 0.533 0.493 0.00 0.00 0.533 0.493
Interim Cover Earthquake Moment Magnitude, M: 5.5	0.47 Volumetric Strain Ratio for Site-Specific Design Ear 1065.26 Additional Stress due to Final Cover Placement, Δσ _{FC} (psf)	
Cells Requiring User Input/Manipulation Magnitude Scaling Factor, MSF: 2.21 2.21	7.51 Equiv. Number of Uniform Strain Cycles, N 5583.59 Elevation of bottom of tailings (liner) (ft amsl)	
		efaction Triggering Analyses Idriss & Boulanger (2008)
Depth Material Stress Pore Stress at Satu t time Dw Dw Type (as Unit utiling Breasure Stress at Satu		Youd et al. (2001)
at time FW FW determined	me of Penetration Ratio, Fr. Total Stress Pressure Stress at Saturated Cyclic Stress Ratio Cyclic Resistance Ratio	Cyclic Stress Ratio
of CPT Elevation qt fs qc (u2) (u2) fs/qt weight weight of CPT at time of CPT C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		M=7.5, Kc qc _{1n-cs} M=7.5, FoS 1=Yes TSF MPa
24.114 5591.74 41.1 0.727 41.0 13.4 5.82 1.77% sand-Stime Tailing 0.059 119.0 1.28 0.40 0.89 24.278 5591.57 37.0 0.661 36.9 13.4 5.82 1.79% sand-Stime Tailing 0.059 119.0 1.28 0.40 0.89	1 0.98 40.240 559.34 46.83 45 1.82% 2.3 47% 1.82 0.00 1.82 0 0.84 0.07 0.95 10 0.046 46.73 93.56 0.132 2.86 0.90 0.40 0.00 0.00 0.00 0.00 0.00 0.00	
	1 0.98 36.033 500.86 41.95 40 1.85% 2.4 47% 1.82 0.00 1.82 0 0.84 0.07 0.95 1.0 0.046 45.01 86.96 0.122 2.65 0.90 0.37 1 0.97 31.538 438.38 36.73 35 1.93% 2.4 47% 1.83 0.00 1.83 0 0.84 0.06 0.95 1.0 0.046 43.18 79.91 0.113 2.43 0.90 0.35	
	1 0.97 31.538 438.38 36.73 35 1.93% 2.4 47% 1.83 0.00 1.83 0 0.84 0.06 0.95 1.0 0.046 43.18 79.91 0.113 2.43 0.90 0.35 1 0.97 30.546 424.59 35.57 34 1.74% 2.4 47% 1.84 0.00 1.84 0 0.84 0.60 0.95 1.0 0.046 42.78 78.35 0.110 2.39 0.90 0.34	
24.606 5591.24 31.6 0.528 31.5 13.5 5.86 1.67% Sand-Slime Tailin 0.059 119.0 1.31 0.41 0.90 24.770 5591.08 31.6 0.507 31.5 15.0 6.51 1.60% Sand-Slime Tailin 0.059 119.0 1.32 0.42 0.91	0.97 30.436 424.59 35.57 34 1.74% 2.4 47% 1.64 0.00 1.64 0 0.64 0.00 0.95 1.0 0.04 42.76 76.53 0.110 2.39 0.90 0.94 1.2 0.00 0.95 1.0 0.046 42.74 78.19 0.110 2.39 0.90 0.94 0.00 0.95 1.0 0.046 42.74 78.19 0.110 2.39 0.98 0.34	
24.770 5391.08 51.6 0.507 51.5 15.0 0.51 1.60% Sand-Silme Tailin 0.059 119.0 1.32 0.42 0.91 24.934 5590.92 32.8 0.414 32.7 16.5 7.16 1.26% Sand-Silme Tailin 0.059 119.0 1.33 0.42 0.91	0.97 30436 423.06 35.46 23 5 1.67% 2.4 47% 1.65 0.00 1.86 0.0 1.66 0.0 49 1.0 0.49 1.0 42.74 76.19 0.10 2.39 0.99 0.99 0.9	
24.934 3590.92 32.6 0.414 32.7 10.5 7.10 1.20% Sand-Sime Tailin 0.059 119.0 1.33 0.42 0.91	1 0.96 31.854 90.952 30.02 35 1.2278 2.4 477 1.00 0.00 1.87 0 0.06 0.069 1.0 0.049 43.16 75.77 0.12 2.44 0.39 0.35 0.00 1.87 0.0 1.87 0.0 0.83 0.06 0.95 1.0 0.046 43.71 81.39 0.115 2.51 0.89 0.36	
25.262 5590.59 36.0 0.512 35.9 14.2 6.17 1.42% sand-slime Tailin 0.059 119.0 1.35 0.43 0.92	1 0.96 34.352 477.49 40.00 38 1.48% 2.3 47% 1.88 0.00 1.88 0 0.83 0.06 0.95 1.0 0.44 44.33 84.32 0.119 2.60 0.89 0.37	
25,426 5590,42 41,3 0,688 41,2 15,1 6,55 1,67% sand-Sime Tailin 0,059 119,0 1,36 0,44 0,92	1 0.95 39.342 54.68 45.80 43 1.72% 2.3 47% 1.89 0.00 1.89 0 0.85 0.07 0.95 1.0 0.45 46.36 92.16 0.130 2.86 0.89 0.39	
25.590 5590.26 34.2 0.767 34.1 15.3 6.63 2.24% Sand-Slime Tailin 0.059 119.0 1.37 0.44 0.93		
25.754 5590.10 26.7 0.796 26.6 16.0 6.92 2.98% Slime Tailings 0.057 113.1 1.38 0.45 0.93		
25,918 5589,93 29,3 0.592 29,2 15,0 6,51 2,02% Sand-Stime Tailin 0.059 119,0 1,39 0,45 0,94	1 0.94 27.443 381.46 31.98 30 2.12% 2.5 47% 1.92 0.00 1.92 0 0.83 0.06 0.95 1.0 0.046 41.52 73.49 0.104 2.28 0.89 0.33	
26,082 5589.77 35.4 0.454 35.3 14.3 6.19 1.28% Sand-Slime Tailing 0.059 119.0 1.40 0.46 0.94	1 0.94 33.177 461.16 38.63 36 1.34% 2.3 47% 1.93 0.00 1.93 0 0.83 0.06 0.95 1.0 0.045 43.85 82.48 0.116 2.56 0.88 0.36	5 0.80 0.98 1.0 0.040 2.08 80.35 0.128 3.01 2.78 2 0.939859 33.261 3.1844 38.630
26.246 5589.60 36.2 0.371 36.2 3.2 1.39 1.02% Sand-Slime Tailing 0.059 119.0 1.41 0.46 0.95	1 0.94 33.911 471.36 39.41 37 1.07% 2.3 47% 1.94 0.00 1.94 0 0.82 0.06 0.95 1.0 0.045 44.12 83.53 0.118 2.60 0.88 0.36	5 0.80 0.98 1.0 0.040 1.88 73.99 0.118 2.75 2.67 2 0.937013 33.929 3.2484 39.407
26.410 5589.44 36.1 0.419 36.1 4.6 1.98 1.16% Sand-Slime Tailin 0.059 119.0 1.42 0.47 0.95	1 0.93 33.729 468.84 39.21 36 1.21% 2.3 47% 1.95 0.00 1.95 0 0.82 0.06 0.95 1.0 0.045 44.05 83.26 0.117 2.60 0.88 0.36	0.80 0.98 1.0 0.040 1.98 77.62 0.123 2.87 2.74 2 0.933816 33.756 3.2318 39.206
26.574 5589.28 33.9 0.531 33.8 12.8 5.56 1.57% Sand-Slime Tailing 0.059 119.0 1.43 0.47 0.96	1 0.93 31.447 437.12 36.61 34 1.63% 2.4 47% 1.96 0.00 1.96 0 0.82 0.06 0.95 1.0 0.045 43.14 79.75 0.112 2.49 0.88 0.35	5 0.80 0.98 1.0 0.040 2.36 86.38 0.140 3.25 2.87 2 0.929574 31.522 3.0179 36.611
26.739 5589.11 36.3 0.568 36.2 16.5 7.16 1.57% Sand-Slime Tailin 0.059 119.0 1.44 0.48 0.96	1 0.93 33.570 466.63 39.10 36 1.63% 2.4 47% 1.97 0.00 1.97 0 0.82 0.06 0.95 1.0 0.045 44.01 83.12 0.117 2.60 0.88 0.36	5 0.80 0.98 1.0 0.040 2.26 88.48 0.144 3.34 2.97 2 0.92761 33.666 3.2232 39.101
26.903 5588.95 38.8 0.595 38.7 16.5 7.16 1.53% Sand-Silime Tailin 0.059 119.0 1.45 0.48 0.97	1 0.93 35.865 498.52 41.77 39 1.59% 2.4 47% 1.98 0.00 1.98 0 0.82 0.07 0.95 1.0 0.045 44.95 86.72 0.122 2.73 0.88 0.37	7 0.80 0.98 1.0 0.040 2.15 89.86 0.147 3.40 3.06 2 0.92579 35.961 3.4429 41.766
27.067 5588.78 39.4 0.647 39.3 18.0 7.81 1.64% Sand-Slime Tailin 0.059 119.0 1.46 0.49 0.97	1 0.92 36.285 504.36 42.26 39 1.70% 2.4 47% 1.99 0.00 1.99 0 0.82 0.07 0.94 1.0 0.045 45.12 87.39 0.123 2.76 0.88 0.38	3 0.80 0.98 1.0 0.040 2.21 93.25 0.155 3.57 3.16 2 0.923048 36.389 3.4839 42.264
27.231 5588.62 40.3 0.712 40.2 20.4 8.83 1.77% Sand-Slime Tailin 0.059 119.0 1.47 0.49 0.98	1 0.92 37.005 514.36 43.11 40 1.83% 2.4 47% 2.00 0.00 2.00 0 0.82 0.70 0.94 1.0 0.045 45.42 88.54 0.125 2.80 0.87 0.38	
27.395 5588.46 41.4 0.723 41.3 21.0 9.12 1.75% Sand-Slime Tailin 0.059 119.0 1.48 0.50 0.98	1 0.92 37.919 527.07 44.18 41 1.81% 2.4 47% 2.01 0.00 2.01 1 0.82 0.07 0.94 1.0 0.045 45.80 89.98 0.127 2.85 0.87 0.38	
27.559 5588.29 42.9 0.670 42.8 19.2 8.30 1.56% Sand-Slime Tailing 0.059 119.0 1.49 0.50 0.98	1 0.92 39.157 544.29 45.61 42 1.62% 2.3 47% 2.02 0.01 2.01 1 0.81 0.07 0.94 1.0 0.045 46.30 91.90 0.130 2.91 0.87 0.39	
27.723 5588.13 42.3 0.619 42.2 18.1 7.86 1.46% Sand-Slime Tailin 0.059 119.0 1.50 0.51 0.99	1 0.91 38.500 535.15 44.84 41 1.52% 2.3 47% 2.03 0.01 2.01 1 0.81 0.07 0.94 1.0 0.045 46.03 90.86 0.128 2.88 0.87 0.39	
27.887 5587.96 42.4 0.626 42.2 20.2 8.77 1.48% Sand-Stime Tailing 0.059 119.0 1.51 0.51 0.99	1 0.91 38.435 534.24 44.77 41 1.53% 2.3 47% 2.04 0.02 2.02 1 0.81 0.07 0.94 1.0 0.045 46.00 90.78 0.128 2.87 0.87 0.39	
28.051 5587.80 39.8 0.634 39.7 20.9 9.07 1.59% Sand-Slime Tailin 0.059 119.0 1.52 0.52 1.00	1 0.91 35.941 499.57 41.88 38 1.66% 2.4 47% 2.05 0.02 2.02 1 0.81 0.07 0.94 1.0 0.045 44.99 86.87 0.122 2.74 0.87 0.37	
28.215 5587.64 43.4 0.590 43.3 19.6 8.48 1.36% Sand-Slime Tailin 0.059 119.0 1.53 0.52 1.00	1 0.90 39.142 544.07 45.59 42 1.41% 2.3 47% 2.06 0.03 2.03 1 0.81 0.07 0.94 1.0 0.045 46.29 91.88 0.130 2.91 0.87 0.39	
28.379 5587.47 44.3 0.552 44.2 15.3 6.61 1.25% Sand-Slime Tailin 0.059 119.0 1.54 0.53 1.01	1 0.90 39.911 554.76 46.45 42 1.29% 2.3 47% 2.07 0.03 2.03 1 0.81 0.07 0.94 1.0 0.045 46.59 93.05 0.132 2.95 0.87 0.39	
28.543 5587.31 44.6 0.539 44.5 16.5 7.16 1.21% Sand-Slime Tailin 0.059 119.0 1.55 0.53 1.01	1 0.90 40.085 557.18 46.66 43 1.25% 2.3 47% 2.08 0.04 2.04 1 0.81 0.07 0.94 1.0 0.045 46.67 93.33 0.132 2.95 0.86 0.39	
28.707 5587.14 45.4 0.570 45.2 18.3 7.93 1.26% Sand-Slime Tailing 0.059 119.0 1.56 0.54 1.02	1 0.90 40.610 564.48 47.29 43 1.30% 2.3 47% 2.09 0.05 2.04 1 0.80 0.07 0.94 1.0 0.045 46.89 94.17 0.133 2.98 0.86 0.40	
28.871 5586.98 47.7 0.530 47.6 19.4 8.39 1.11% Sand Tailings 0.062 123.5 1.57 0.54 1.02	1 0.90 42685 592.95 49.67 45 1.15% 2.2 18% 2.10 0.05 2.05 1 0.80 0.07 0.94 1.0 0.045 34.79 84.46 0.119 2.66 0.86 0.41	
29.035 5586.81 50.3 0.530 50.2 19.4 8.42 1.05% Sand Tailings 0.062 123.5 1.58 0.55 1.03 29.199 5586.65 52.6 0.530 52.4 18.7 8.10 1.01% Sand Tailings 0.062 123.5 1.58 0.55 1.03	1 0.89 44.933 624.57 52.31 47 1.09% 2.2 18% 2.11 0.06 2.05 1 0.80 0.07 0.94 1.0 0.045 35.46 87.78 0.124 2.77 0.86 0.42 1 0.89 46.851 651.23 54.54 49 1.04% 2.2 18% 2.12 0.06 2.06 1 0.80 0.07 0.94 1.0 0.045 36.03 90.57 0.128 2.87 0.86 0.43	
29.199 5586.65 52.6 0.530 52.4 18.7 8.10 1.01% Sand Tailings 0.062 123.5 1.59 0.55 1.03	1 0.89 46.851 651.23 54.54 49 1.04% 2.2 18% 2.12 0.06 2.06 1 0.80 0.07 0.94 1.0 0.045 36.03 90.57 0.128 2.87 0.86 0.43	0.73 0.30 1.0 0.041 1.50 00.40 0.140 3.00 2.33 2 0.893422 40.955 4.4955 54.536

WHITE MESA TAILINGS REPOSITORY LIQUEFACTION Data File: 13-52106_SP2W7-C-BSC-CPT Idriss and Boulanger (2008) Location: White Mesa 2013 CPT Investigation Max. Horiz. Acceleration, Amax/g: 0.15	5613.10 Water surface elevation during CPT investigation (5619.60 Ground Surface Elevation 5611.32 Water surface elevation at t ₀ (ft amsl) 5626.65 Ground Surface Elevation 5595.40 Water surface elevation at t ₁ (ft amsl) 0.50 Thickness of Erosion Prote 5590.40 Water surface elevation at t ₁ (ft amsl) 3.50 Thickness of Water Storag 4.00 Thickness of High Compa -0.95 Thickness of Random/Plai 0.47 Volumetric Strain Ratio for Site-Specific Design Ea 812.44 Additional Stress due to File	Immediately after Placement of Final Cover (ft ams)) FINAL COVER action Layer (rock mulch/topsoils) Immediately after pl Erosion Protection ge/Rooting Zone (ft) tater Storage/Rooting Zone ction Layer (ft) High Compaction form Fill on on top of existing interim cover (ft) Platform//Random Fill nal Cover Placement, Δσ _{FC} (psf) Fill	on Layer ###### 5626.4 5626.15 0.50 0.055 110 0.028 0.014 0.00 0.00	a at to f sf) Bottom (Layer (tsf) Midpoint of Layer 0.028 0.014 0.215 0.121 0.454 0.334
Interim Cons Respunds with Value Parkawa Image: Solution Value Parkawa Image: Value Valu	CFT Data Interpretations Equal: Number of Uniform Strain Cycless. 1 Second Strain Cycless 41 Constraint Cycless 41 at atmood at atmood 0 CN qc1 qc2 qc2 qc2 qc1 qc1 qc1 qc1 qc1 qc2 qc2 <t< th=""><th>Instrume Instrume Cyclic Stress Patio Cyclic Resistance Ratio Image of the second stress of the second stre</th><th>0.62 0.69 3.02 1.0 0.015 1.00 128.00 0.228 180.03 97.10 2 0.65 0.67 2.71 1.0 0.016 1.00 142.05 0.026 160.22 184.67 0.22.1 2 0.66 2.71 1.0 0.017 1.00 160.11 0.395 113.82 0.467 2.21 0.66 2.48 1.0 0.017 1.00 160.11 0.395 0.138 10.80 67.34 22 0.68 0.66 2.11 1.0 0.021 1.00 134.00 0.334 666 2.21 1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.01 1.02 0.02 1.01 1.02 0.02 1.01 1.02 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01</th><th>s TSF MPa</th></t<>	Instrume Instrume Cyclic Stress Patio Cyclic Resistance Ratio Image of the second stress of the second stre	0.62 0.69 3.02 1.0 0.015 1.00 128.00 0.228 180.03 97.10 2 0.65 0.67 2.71 1.0 0.016 1.00 142.05 0.026 160.22 184.67 0.22.1 2 0.66 2.71 1.0 0.017 1.00 160.11 0.395 113.82 0.467 2.21 0.66 2.48 1.0 0.017 1.00 160.11 0.395 0.138 10.80 67.34 22 0.68 0.66 2.11 1.0 0.021 1.00 134.00 0.334 666 2.21 1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.01 1.02 0.02 1.01 1.02 0.02 1.01 1.02 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01	s TSF MPa

WHITE MESA TAILINGS REPOSITORY LIQUEFACTION AND SEIS Data File: 13-52106_SP2W7-C-BSC-CPT Idriss and Boulanger (2008)	5613.10 Water surface elevation during CPT investigation (15619.60 Ground Surface Elevation at time of CPT (ft amsl)	Elev. At Bottom Top of Midpoint of Thicknes Unit Unit Bottom Midpoint at Bottom Pressure at Bottom Midpoint Layer of Layer s of Weigh Weight of Layer of Layer of Layer Midpoint of Layer I of Layer
Location: White Mesa 2013 CPT Investigation Max. Horiz. Acceleration, Amax/g: 0.15		VVER (ft) (ft) Layer (ft) t (tcf) (pcf) (tsf) (tsf) Layer (tsf) (tsf) (tsf) otection Layer ###### 5626.4 5626.15 0.50 0.055 110 0.028 0.014 0.00 0.000 0.028 0.014
Tailings Sands Magnitude Scaling Factor, MSF: 1.69 Tailings Sand-Slimes Youd, et al (2001) 1.69	4.00 Thickness of High Compaction Layer (ft) High Com	Instrument Second Layer ###### Second Layer ###### Second Second Layer Instrument Second Layer Second Layer Second Layer
Tailings Slimes Max. Horiz. Acceleration, Amax/g: 0.15 Interim Cover Earthquake Moment Magnitude, M: 5.5 Cells Requiring User Input/Manipulation Maanitude Scaling Factor, MSF: 2.21	0.47 Volumetric Strain Ratio for Site-Specific Design Ea 812.44 Additional Stress due to Final Cover Placement, Δσ _{FC} (psf)	dom Fill Layer ###### 5619.13 5619.60 -0.95 0.050 101 0.406 0.430 0.00 0.00 0.406 0.430
2013 CPT Data from ConeTec CPT D	Data Interpretations Conditions at t ₁ Set Interpretations Equilibrium	Liquefaction Triggering Analyses Idriss & Boulanger (2008)
Depth Type (as unit at time Pw Pw Pw determined to the time time fraction of CPT Elevation of fs qc (u2) (u2) fs/at Veight Weight of CPT at time of CPT at t	f Cone d Friction Index, Penetration Ratio, F, Ie Total Stress Pressure Stress at Saturated Cyclic Stress Ratio Cyclic Resistance Ratio	Cyclic Stress Ratio
(ft) (ft amsl) TSF TSF TSF (ft) PSI (%) (tcf) (tcf) (tsf) (t	CN qc1 qc1 qc1N Resistance (%) FC att ₁ att ₁ t ₁ att ₁ r _a C _n K _n K _n CRR (CRR) TSF MPa , Q ₁ % (tsf) (tsf) (tsf) 1=Yes Mr7.5, Δqc _{1n} qc _{1n-cs} Mr7.5, Value Value FoS Sv-taim FoS	r _g D _r T K _a CSR (CRR) Avg Liquefiable? CN qc1 qc1 qc1N M#7.5, Kc qc1 _{n-cs} M#7.5, FoS 1=Yes TSF MPa systam
12.139 5607.46 12.7 0.171 12.4 58.5 25.36 1.34% Sand-Stime Tailing 0.059 119.0 0.65 0.18 0.47 1 12.303 5607.30 13.0 0.141 12.6 69.8 30.26 1.09% Sand-Stime Tailing 0.059 119.0 0.66 0.18 0.48 1	1.58 19.546 271.68 23.37 26 1.42% 2.5 47% 1.06 0.00 1.06 0 9.4 0.05 0.99 1.0 0.054 38.50 61.87 0.090 1.68 1.57 19.678 273.52 23.65 26 1.14% 2.4 47% 1.07 0.00 1.07 0 0.94 0.05 0.99 1.0 0.053 38.60 62.24 0.99 1.69	Ope 0.28 0.80 1.13 1.0 0.037 2.66 62.07 0.102 4.42 3.05 2 1.581356 20.123 1.9266 23.372 0.95 0.28 0.80 1.12 1.0 0.037 2.41 56.98 0.097 4.16 2.93 2 1.567943 20.361 1.9494 23.648
12.667 5607.13 17.3 0.074 17.2 11.4 4.93 0.43% sand-slime train 0.059 119.0 0.67 0.19 0.48 1 12.631 5606.97 14.6 0.118 14.6 12.4 5.38 0.81% sand-slime train 0.059 119.0 0.67 0.19 0.48 1 12.631 5606.97 14.6 0.118 12.4 5.38 0.81% sand-slime train 0.059 119.0 0.68 0.19 0.49 1	1.52 26.200 364.19 30.56 34 0.44% 2.1 47% 1.07 0.00 1.07 0 0.93 0.06 0.99 1.0 0.053 41.02 71.57 0.102 1.91 1.53 22.293 309.87 26.03 29 0.85% 2.3 47% 1.08 0.00 1.08 0 0.93 0.06 0.99 1.0 0.053 39.43 65.46 0.094 1.77	0.95 0.32 0.80 1.12 1.0 0.037 1.49 45.52 0.088 3.73 2.82 2 1.52062 26.308 2.5188 30.556 0.95 0.29 0.80 1.12 1.0 0.038 2.00 52.19 0.093 3.92 2.84 2 1.52071 22.412 2.142 2.142 2.1457 26.030
12.795 5606.80 14.9 0.109 14.7 29.3 12.70 0.73% Sand-Slime Tailin 0.059 119.0 0.69 0.20 0.49 1 12.959 5606.64 17.4 0.213 17.4 6.0 2.59 1.23% Sand-Slime Tailin 0.059 119.0 0.70 0.20 0.50 1	1.52 22.317 310.21 26.24 29 0.77% 2.3 47% 1.09 0.00 1.09 0 0.93 0.06 0.99 1.0 0.053 39.51 65.75 0.094 1.78 1.49 25.878 359.71 30.12 34 1.28% 2.4 47% 1.10 0.00 1.10 0 0.93 0.06 0.99 1.0 0.053 40.87 70.99 0.101 1.90	0.95 0.30 0.80 1.12 1.0 0.038 1.93 50.67 0.092 3.83 2.81 2 1.520247 22.595 2.1633 26.243 0.95 0.32 0.80 1.12 1.0 0.038 2.13 64.14 0.105 4.31 3.11 2 1.491547 25.934 2.4829 30.121
13.123 5606.48 11.4 0.174 11.3 13.4 5.82 1.53% Sand-Slime Tailin 0.059 119.0 0.71 0.21 0.50 1 13.287 5606.31 10.3 0.144 10.2 24.4 10.58 1.40% Sand-Slime Tailin 0.059 119.0 0.72 0.21 0.51 1	1.53 17.252 239.81 20.19 21 1.63% 2.6 47% 1.11 0.00 1.11 0 0.93 0.05 0.99 1.0 0.053 37.38 57.57 0.085 1.61 1.52 15.385 213.85 18.14 19 1.50% 2.6 47% 1.12 0.00 1.12 0 0.93 0.05 0.99 1.0 0.053 36.66 54.80 0.082 1.56	0.95 0.26 0.80 1.11 1.0 0.038 3.18 64.28 0.105 4.28 2.94 2 1.526744 17.38 1.664 20.186 0.95 0.25 0.80 1.11 1.0 0.038 3.32 60.28 0.100 4.07 2.81 2 1.515783 15.616 1.4951 18.137
13.451 5606.15 8.1 0.085 7.9 29.0 12.57 1.05% Sand-Stime Tailin 0.059 119.0 0.73 0.22 0.51 1 13.615 5605.98 8.1 0.071 7.9 37.9 16.43 0.88% Sand-Stime Tailin 0.059 119.0 0.74 0.22 0.52 1	1.50 11.935 165.89 14.18 14 1.15% 2.6 47% 1.13 0.00 1.13 0 0.93 0.50 0.99 1.0 0.053 35.27 49.45 0.077 1.46 1.49 11.761 163.48 14.07 14 0.96% 2.6 47% 1.14 0.00 1.14 0 0.93 0.50 0.99 1.0 0.053 35.24 49.31 0.077 1.46	0.95 0.22 0.80 1.11 1.0 0.038 3.59 50.87 0.092 3.71 2.58 2 1.504999 12.207 1.1687 14.178 0.95 0.22 0.80 1.11 1.0 0.038 3.38 47.57 0.090 3.57 2.51 2 1.494389 12.115 1.1599 14.070
13.779 5605.82 8.4 0.071 8.2 32.9 14.24 0.85% Sand-Stime Tailin 0.059 119.0 0.75 0.23 0.52 1 13.943 5605.66 8.9 0.054 8.7 37.7 16.35 0.61% Sand-Stime Tailin 0.059 119.0 0.75 0.23 0.52 1	1.48 12.139 168.73 14.45 15 0.93% 2.6 47% 1.15 0.00 1.15 0 0.92 0.05 0.99 1.0 0.053 35.37 49.82 0.077 1.47 1.47 12.806 178.01 15.28 16 0.66% 2.5 47% 1.16 0.00 1.16 0 0.92 0.5 0.99 1.0 0.053 35.66 50.94 0.078 1.49	0.95 0.22 0.80 1.11 1.0 0.038 3.27 47.31 0.089 3.53 2.50 2 1.483948 12.443 1.1913 14.452 0.95 0.23 0.80 1.10 1.00 0.038 2.79 42.58 0.085 3.35 2.42 2 1.473672 13.153 1.2593 15.277
14.107 5605.49 11.6 0.101 11.4 38.4 16.62 0.87% sand-stime Tailin 0.059 119.0 0.77 0.24 0.53 1 14.271 5605.33 9.4 0.125 9.3 28.4 12.32 1.32% sand-stime Tailin 0.059 119.0 0.77 0.24 0.53 1	1.46 16.641 231.30 19.73 20 0.93% 2.5 47% 1.17 0.00 1.17 0 0.92 0.5 0.98 1.0 0.052 37.22 56.96 0.085 1.61 1.45 13.475 187.30 15.95 16 1.44% 2.6 47% 1.18 0.00 1.18 0 0.92 0.5 0.98 1.0 0.052 35.90 51.85 0.079 1.51	0.95 0.26 0.80 1.10 1.0 0.038 2.59 51.19 0.092 3.59 2.60 2 1.463556 16.991 1.6267 19.734 0.95 0.23 0.80 1.10 1.0 0.038 3.62 57.81 0.098 3.77 2.64 2 1.453597 13.733 1.3148 15.950
14.436 5605.16 8.8 0.126 8.5 40.5 17.53 1.44% sand-stime Tailing 0.059 119.0 0.79 0.25 0.54 1 14.600 5605.00 11.2 0.094 11.1 28.5 12.36 0.84% sand-stime Tailing 0.059 119.0 0.80 0.25 0.54 1 14.764 5604.64 15.3 0.076 15.3 0.55 4.53 0.55% sand-stime Tailing 0.059 119.0 0.81 0.26 0.55 1	1.44 12.287 170.78 14.69 15 1.58% 2.7 47% 1.19 0.00 1.19 0 0.92 0.05 0.98 1.0 0.052 35.45 50.15 0.078 1.48 1.43 15.862 220.48 18.72 19 0.90% 2.5 47% 1.20 0.00 1.20 0 0.92 0.05 0.98 1.0 0.052 36.87 55.59 0.083 1.59 1.11 0.00 1.20 0.00 1.20 0 0.92 0.05 0.98 1.0 0.052 36.87 55.59 0.083 1.59	0.95 0.22 0.80 1.10 1.0 0.038 4.01 58.88 0.099 3.78 2.63 2 1.443792 12.651 1.2112 14.694 0.95 0.25 0.80 1.10 1.0 0.038 2.68 50.09 0.092 3.47 2.53 2 1.434136 16.117 1.543 18.719 0.95 0.20 0.00 1.00 0.038 2.68 50.09 0.092 3.47 2.53 2 1.434136 16.117 1.543 18.719
14.764 5604.84 15.3 0.076 15.3 10.5 4.83 0.50% sand-stime Tailing 0.059 119.0 0.81 0.26 0.55 1 14.928 5604.67 15.6 0.127 15.5 13.6 5.57 0.81% sand-stime Tailing 0.059 119.0 0.82 0.26 0.55 1 15.092 5604.51 13.7 0.155 13.6 16.5 7.13 1.13% sand-stime Tailing 0.059 119.0 0.82 0.27 0.56 1	1.41 21.493 298.76 25.07 27 0.52% 2.3 47% 1.21 0.00 1.21 0 0.92 0.66 0.88 1.0 0.052 39.09 64.16 0.093 1.78 1.40 21.691 301.51 25.33 27 0.86% 2.3 47% 1.22 0.00 1.22 0 0.92 0.60 0.98 1.0 0.052 39.19 64.16 0.093 1.79 1.40 19.062 264.96 22.31 2.3 1.27% 2.5 47% 1.23 0.00 1.22 0 0.91 0.052 38.12 60.43 0.088 1.70 1.40 19.062 264.96 22.31 2.3 1.20% 2.5 47% 1.23 0.00 1.23 0 0.91 1.05 0.98 1.0 0.052 38.12 60.43 0.088 1.70	0.95 0.29 0.80 1.09 1.0 0.038 1.80 45.16 0.088 3.29 2.54 2 1.407553 21.585 2.0666 25.070 0.95 0.29 0.80 1.09 1.00 0.038 2.10 53.28 0.094 3.51 2.65 2 1.397623 21.809 2.088 25.330 0.95 0.27 0.80 1.09 1.00 0.038 2.64 58.96 0.099 3.66 2.68 2 1.400566 19.206 1.8387 22.306
15.256 5604.34 17.0 0.133 17.0 4.9 2.14 0.78% Sand-stime Tailing 0.059 119.0 0.82 0.27 0.56 1 15.256 5604.34 17.0 0.133 17.0 4.9 2.14 0.78% Sand-stime Tailing 0.059 119.0 0.82 0.27 0.56 1 15.420 5604.18 13.1 0.107 13.1 3.5 1.53 0.82% Sand-stime Tailing 0.059 119.0 0.84 0.27 0.56 1	1.37 23.38 324.26 27.14 29 0.82% 2.3 47% 1.25 0.00 1.29 0 0.91 0.06 0.98 1.0 0.052 39.12 0.043 0.044 0.044	0.95 0.27 0.80 1.09 1.00 0.038 2.94 53.96 0.094 3.46 2.66 2 1.970302 1.970302 2.337 2.2375 27.143 0.95 0.27 0.80 1.09 1.00 0.038 1.98 53.66 0.094 3.46 2.66 2 1.373842 2.337 2.2375 27.143 0.95 0.27 0.80 1.09 1.00 0.038 2.44 51.47 0.093 3.37 2.52 2 1.387453 18.192 1.7417 21.129
15.584 5604.02 9.6 0.107 9.5 9.3 4.03 1.12% sand-slime taim 0.059 119.0 0.85 0.28 0.57 1 15.584 5604.02 9.6 0.107 9.5 9.3 1.24% sand-slime taim 0.059 119.0 0.85 0.28 0.57 1 15.748 5603.85 9.8 0.122 9.7 17.6 7.63 1.24% sand-slime taim 0.059 119.0 0.86 0.29 0.58 1	1.38 13.129 182.50 15.34 15 1.23% 2.6 47% 1.26 0.00 1.26 0 0.91 0.05 0.98 1.0 0.052 35.78 51.64 0.004 0.51 1.52 1.38 13.129 182.50 15.34 15 1.23% 2.6 47% 1.26 0.00 1.26 0 0.91 0.052 35.68 51.02 0.078 1.52 1.37 13.307 184.97 15.63 16 1.36% 2.6 47% 1.27 0.00 1.27 0 0.91 0.052 35.78 51.41 0.079 1.53	0.95 0.23 0.80 1.09 1.00 0.038 3.54 54.32 0.095 3.43 2.47 2 1.370448 13.209 1.2647 15.342 0.95 0.23 0.80 1.08 1.00 0.038 3.54 54.32 0.097 3.49 2.51 2 1.370446 13.458 1.2884 15.632
15.912 5603.69 7.9 0.102 7.7 32.5 14.09 1.29% Sand-Slime Tailin 0.059 119.0 0.87 0.29 0.58 1 16.076 5603.52 8.2 0.088 7.9 46.7 20.23 1.07% Sand-Slime Tailin 0.059 119.0 0.88 0.30 0.58 1	1.36 10.527 146.33 12.55 12 1.44% 2.8 47% 1.28 0.00 1.28 0 0.91 0.05 0.98 1.0 0.052 34.70 47.25 0.075 1.45 1.35 10.719 148.99 12.91 13 1.20% 2.7 47% 1.29 0.00 1.29 0 0.91 0.05 0.98 1.0 0.051 34.83 47.74 0.075 1.46	0.95 0.20 0.80 1.08 1.0 0.039 4.42 55.40 0.096 3.41 2.43 2 1.361867 10.804 1.0343 12.548 0.95 0.21 0.80 1.08 1.0 0.039 4.03 52.01 0.093 3.29 2.38 2 1.35141 11.113 1.064 12.908
16.240 5603.36 8.7 0.081 8.3 59.6 25.83 0.93% sand-slime Tailing 0.059 119.0 0.89 0.30 0.59 1 16.404 5603.20 8.6 0.104 8.2 71.5 31.00 1.21% Sand-slime Tailing 0.059 119.0 0.90 0.31 0.59 1	1.35 11.178 155.37 13.56 13 1.04% 2.7 47% 1.30 0.00 1.30 0 0.91 0.55 0.98 1.0 0.051 35.06 48.62 0.076 1.48 1.34 10.935 152.00 13.39 13 1.35% 2.7 47% 1.31 0.00 1.31 0 0.90 0.55 0.98 1.0 0.051 35.00 48.39 0.076 1.48	0.95 0.21 0.80 1.08 1.0 0.039 3.68 49.89 0.092 3.21 2.35 2 1.345072 11.678 1.1181 13.563 0.95 0.21 0.80 1.08 1.0 0.039 4.11 54.99 0.095 3.32 2.40 2 1.33685 11.532 1.1041 13.394
16.568 5603.03 9.3 0.138 8.8 83.6 36.24 1.48% Sand-Silme Tailin 0.059 119.0 0.91 0.31 0.60 1 16.732 5602.87 9.9 0.155 9.3 84.3 36.52 1.57% Sand-Silme Tailin 0.059 119.0 0.92 0.32 0.60 1	1.33 11.719 162.90 14.42 14 1.64% 2.7 47% 1.32 0.00 1.32 0 0.90 0.50 0.98 1.0 0.051 35.36 49.78 0.077 1.51 1.32 12.323 171.28 15.12 15 1.74% 2.7 47% 1.33 0.00 1.33 0 0.90 0.50 0.98 1.0 0.051 35.60 50.72 0.078 1.53	0.94 0.22 0.80 1.08 1.0 0.039 4.21 60.68 0.101 3.48 2.50 2 1.328741 12.413 1.1884 14.417 0.94 0.22 0.80 1.07 1.0 0.039 4.17 63.04 0.103 3.54 2.54 2 1.320744 13.017 1.2463 15.119
16.896 5602.70 26.6 0.355 26.0 83.4 36.16 1.34% Sand-Slime Tailin 0.059 119.0 0.93 0.32 0.61 1 17.060 5602.54 17.7 0.388 17.6 16.97 2.20% sand-slime Tailin 0.059 119.0 0.93 0.32 0.61 1	1.27 33.013 458.88 39.11 42 1.39% 2.3 47% 1.34 0.00 1.34 0 0.90 0.66 0.97 1.0 0.051 44.02 83.13 0.117 2.31 1.29 22.634 314.61 26.44 27 2.32% 2.6 47% 1.35 0.00 1.35 0 0.90 0.60 0.97 1.0 0.051 39.57 66.01 0.095 1.87	0.94 0.36 0.80 1.07 1.0 0.039 1.93 75.38 0.120 4.08 3.19 2 1.268264 33.674 3.2239 39.110 0.94 0.30 0.80 1.07 1.0 0.039 3.20 84.66 0.136 4.61 3.24 2 1.268264 33.674 3.2239 39.110
17.224 5602.38 12.0 0.476 11.8 26.8 11.63 3.97% Slime Tailings 0.057 113.1 0.95 0.33 0.62 1 17.388 5602.21 14.6 0.394 14.5 24.8 10.76 2.69% Slime Tailings 0.057 113.1 0.95 0.33 0.62 1	1.30 15.332 213.11 18.06 18 4.32% 2.9 71% 1.36 0.00 1.36 0 0.90 0.05 0.98 1.0 0.051 36.38 54.44 0.082 1.62 1.29 18.673 259.56 21.92 22 2.88% 2.7 71% 1.37 0.00 1.37 0 0.90 0.55 0.98 1.0 0.051 37.72 59.64 0.087 1.37	0.94 0.25 0.80 1.07 1.0 0.039 5.61 101.37 0.177 5.94 3.78 2 1.298185 15.549 1.4887 18.059 0.94 0.27 0.80 1.07 1.0 0.039 4.07 89.16 0.146 4.87 3.30 2 1.298185 15.549 1.4887 18.059
17.552 5602.05 10.6 0.341 10.5 16.3 7.05 3.20% Slime Tailings 0.057 113.1 0.97 0.34 0.62 1 17.776 5601.88 11.2 0.288 10.8 64.1 27.78 2.57% Slime Tailings 0.057 113.1 0.98 0.35 0.63 1	1.28 13.540 188.21 15.88 15 3.53% 2.9 71% 1.38 0.00 1.38 0 0.90 0.05 0.98 1.0 0.051 35.62 51.49 0.079 1.56 1.28 13.790 191.68 16.61 16 2.82% 2.8 71% 1.39 0.00 1.39 0 0.89 0.50 0.58 1.0 0.050 35.87 52.48 0.080 1.58	0.94 0.23 0.80 1.07 1.0 0.039 5.55 88.16 0.144 4.76 3.16 2 1.284652 13.671 1.3088 15.878 0.94 0.24 0.80 1.06 1.0 0.039 4.87 80.89 0.129 4.26 2.92 2 1.278005 14.301 1.3692 16.610
17.880 5601.72 12.9 0.210 12.7 33.7 14.62 16.3% sand-stime Tailing 0.059 119.0 0.99 0.36 0.63 1 18.044 5601.36 0.15 0.231 10.2 41.6 18.04 2.0% Stime Tailing 0.057 113.1 1.00 0.36 0.64 1 18.208 5601.39 9.1 0.184 8.6 70.9 30.71 2.0% Stime Tailings 0.057 113.1 1.01 0.37 0.64 1	1.27 16.138 224.31 19.05 19 1.76% 2.6 47% 1.40 0.00 1.40 0 0.89 0.50 0.97 1.0 0.05 36.98 56.04 0.084 1.66 1.26 12.920 179.59 15.39 15 2.44% 2.8 71% 1.40 0.00 1.40 0 0.89 0.50 0.97 1.0 0.050 35.45 50.83 0.078 1.50 1.26 10.855 150.88 13.25 13 2.28% 2.8 71% 1.41 0.00 1.41 0 0.89 0.55 0.88 1.0 0.050 35.45 50.83 0.076 1.50	0.94 0.25 0.80 1.06 1.0 0.039 3.58 68.22 0.110 3.58 2.62 2 1.270685 16.405 1.5706 19.054 0.94 0.23 0.80 1.06 1.00 0.039 4.82 74.13 0.118 3.83 2.62 2 1.264201 13.249 1.26484 15.387 0.94 0.21 0.80 1.06 1.0 0.039 5.21 69.03 0.111 3.57 2.54 2 1.257793 1.1411 1.925 13.253
18.208 5601.39 9.1 0.184 8.6 70.9 30.71 2.03% Silime Tailing 0.057 113.1 1.01 0.37 0.64 1 18.372 5601.23 10.2 0.118 9.8 69.3 30.03 1.16% Sand-silime Tailing 0.057 113.1 1.01 0.37 0.64 1 18.537 5601.05 10.3 0.158 9.8 81.3 35.24 1.55% Sand-silime Tailing 0.057 119.0 1.02 0.38 0.65 1	1.26 10.855 150.88 13.25 13 2.28% 2.8 71% 1.41 0.00 1.41 0 0.89 0.05 0.89 1.0 0.055 34.70 47.96 0.076 1.50 1.25 12.20 169.85 14.82 14 1.28% 2.7 47% 1.42 0.00 1.42 0 0.89 0.05 0.98 1.0 0.050 35.50 50.32 0.078 1.55 1.24 1.25 168.91 14.85 14 1.72% 2.7 47% 1.43 0.00 1.42 0 0.89 0.05 0.98 1.0 0.050 35.51 50.36 0.078 1.55 1.24 12.152 168.91 14.85 14 1.72% 2.7 47% 1.43 0.00 1.43 0 0.89 0.50 0.88 1.0 0.050 35.51 50.36 0.078 1.55	0.94 0.22 0.80 1.06 1.0 0.039 5.21 69.03 0.111 3.57 2.54 2 1.257793 11.411 1.0925 13.253 0.94 0.22 0.80 1.06 1.0 0.039 3.79 56.22 0.097 3.10 2.32 2 1.250732 1.22717 1.4821 0.94 0.22 0.80 1.06 1.0 0.039 4.27 63.40 0.104 3.31 2.43 2 1.243762 1.2783 1.2238 1.4847
18.701 5600.90 12.1 0.167 11.4 113.1 49.03 1.38% Sand-Slime Tailin 0.059 119.0 1.04 0.38 0.66 1	1.24 14.138 196.51 17.43 17 1.50% 2.6 47% 1.44 0.00 1.45 0 0.89 0.05 0.97 1.0 0.050 36.42 53.85 0.081 1.63 1.23 16.569 230.31 19.94 20 1.29% 2.6 47% 1.45 0.00 1.45 0 0.89 0.05 0.97 1.0 0.050 37.29 57.23 0.085 1.70	0.94 0.24 0.80 1.06 1.0 0.039 3.59 62.60 0.103 3.26 2.44 2 0.94 0.26 0.80 1.05 1.0 0.039 3.05 60.77 0.101 3.17 2.44 2 1.23082 17.165 1.6434 19.936
19.029 5600.57 13.9 0.222 13.5 75.7 32.80 1.59% Sand-Slime Tailin 0.059 119.0 1.06 0.39 0.67 1 19.193 5600.41 14.2 0.182 13.9 41.6 18.02 1.28% Sand-Slime Tailin 0.059 119.0 1.06 0.39 0.67 1	122 16.479 229.06 19.81 19 1.72% 2.6 47% 1.46 0.00 1.46 0 0.88 0.05 0.97 1.0 0.050 37.25 57.06 0.085 1.70 1.22 16.937 235.42 20.04 20 1.39% 2.6 47% 1.47 0.00 1.47 0 0.88 0.05 0.97 1.0 0.050 37.33 57.37 0.085 1.71	0.94 0.26 0.80 1.05 1.0 0.039 3.48 68.88 0.110 3.45 2.58 2 1.22337 17.057 1.633 19.811 0.94 0.26 0.80 1.05 1.0 0.039 3.14 62.99 0.103 3.21 2.46 2 1.216741 17.253 1.6518 20.038
19.357 5600.24 12.2 0.148 11.8 73.0 31.64 1.21% Sand-Slime Tailin 0.059 119.0 1.08 0.40 0.67 1 19.521 5600.08 10.5 0.113 9.8 106.9 46.30 1.08% Sand-Slime Tailin 0.059 119.0 1.09 0.41 0.68 1	1.21 14.220 197.65 17.16 16 1.33% 2.6 47% 1.48 0.00 1.48 0 0.88 0.5 0.97 1.0 0.050 36.32 53.47 0.081 1.63 1.20 11.845 164.64 14.69 14 1.20% 2.7 47% 1.49 0.00 1.49 0 0.88 0.5 0.97 1.0 0.050 35.45 50.14 0.078 1.57	0.94 0.24 0.80 1.05 1.0 0.039 3.47 59.53 0.100 3.07 2.35 2 1.210193 14.771 1.4142 17.156 0.94 0.22 0.80 1.05 1.0 0.039 3.75 55.14 0.096 2.93 2.25 2 1.20193 14.771 1.4142 17.156
19.685 5599.92 10.6 0.200 9.8 131.7 57.08 1.89% Stime Tailings 0.057 113.1 1.09 0.41 0.68 1 19.849 5599.75 36.3 0.300 35.3 156.8 67.96 0.83% Same Tailings 0.062 123.5 1.10 0.42 0.69 1	1.20 11.716 162.86 14.75 14 2.10% 2.8 71% 1.50 0.00 1.50 0 0.88 0.50 0.97 1.0 0.049 35.22 49.98 0.077 1.57 1.15 40.813 567.29 48.71 51 0.85% 2.1 18% 1.51 0.00 1.51 0 0.88 0.07 0.69 3.45 83.26 0.117 2.40	0.94 0.22 0.80 1.05 1.0 0.039 4.71 69.55 0.111 3.39 2.48 2 1.197992 12.702 1.216 14.752 0.94 0.40 0.80 1.05 1.0 0.040 1.46 71.18 0.114 3.44 2.92 2 1.154854 41.943 4.0156 48.715
20.013 5599.59 33.0 0.456 32.9 14.8 6.43 1.38% Sand-Slime Tailing 0.059 119.0 1.11 0.42 0.69 1 20.177 5599.42 18.7 0.520 18.6 13.8 5.96 2.78% Slime Tailings 0.057 113.1 1.12 0.43 0.70 1	1.15 37.997 528.16 44.26 46 1.43% 2.3 47% 1.52 0.00 1.52 0 0.88 0.7 0.96 1.0 0.049 45.82 90.08 0.127 2.61 1.17 21.803 303.07 25.44 25 2.96% 2.7 71% 1.53 0.00 1.53 0 0.87 0.06 0.97 1.0 0.049 38.95 64.39 0.093 1.90	0.94 0.38 0.80 1.04 1.0 0.040 1.86 82.24 0.132 3.96 3.29 2 1.154221 38.104 3.6481 44.255 0.94 0.29 0.80 1.04 1.00 0.400 3.80 96.63 0.164 4.90 3.40 2 1.154221 38.104 3.6481 44.255
20.341 5599.26 13.7 0.464 13.5 40.0 17.35 3.39% Slime Tailings 0.057 113.1 1.13 0.43 0.70 1 20.505 5599.10 11.5 0.373 11.1 62.3 27.01 3.25% Slime Tailings 0.057 113.1 1.14 0.44 0.71 1	1.17 15.789 219.47 18.68 18 3.69% 2.8 71% 1.54 0.00 1.54 0 0.87 0.05 0.97 1.0 0.049 36.59 55.27 0.083 1.69 1.17 12.959 180.13 15.58 15 3.61% 2.9 71% 1.55 0.00 1.55 0 0.87 0.05 0.97 1.0 0.049 35.51 51.09 0.079 1.00	0.94 0.25 0.80 1.04 1.0 0.040 5.20 97.17 0.165 4.92 3.30 2 1.173927 16.083 1.5398 18.679 0.94 0.23 0.80 1.04 1.0 0.040 5.80 90.30 0.148 4.39 3.00 2 1.168511 13.413 1.2842 15.579
20.669 5598.93 12.4 0.338 11.7 107.6 46.62 2.73% Sime Tailings 0.057 113.1 1.15 0.44 0.71 1 20.833 5598.77 13.3 0.244 12.9 67.9 29.44 1.84% Sand-Slime Tailing 0.057 113.1 1.15 0.44 0.71 1	1.16 13.644 189.65 16.75 16 3.00% 2.8 71% 1.56 0.00 1.56 0 0.87 0.05 0.97 1.0 0.049 35.92 52.68 0.080 1.64 1.16 14.894 207.02 17.87 17 2.01% 2.7 47% 1.57 0.00 1.57 0 0.87 0.05 0.97 1.0 0.049 35.92 52.68 0.080 1.64 1.16 14.894 207.02 17.87 17 2.01% 2.7 47% 1.57 0.00 1.57 0 0.87 0.049 35.92 52.68 0.080 1.64 1.16 14.894 207.02 17.87 17 2.01% 2.7 47% 1.57 0.00 1.57 0 0.87 0.049 35.97 54.44 0.082 1.68	0.94 0.24 0.80 1.04 1.0 0.040 5.09 85.21 0.138 4.05 2.84 2 1.163152 14.425 1.3811 16.754 0.93 0.24 0.80 1.04 1.0 0.040 4.06 72.57 0.116 3.38 2.53 2 1.153152 14.425 1.3811 16.754 1.157241 15.385 1.4729 17.868
20.997 5598.60 15.3 0.235 15.0 45.2 19.60 1.54% sand-stime Tailing 0.059 119.0 1.17 0.45 0.72 1 21.161 5598.44 18.4 0.276 18.0 52.8 22.87 1.50% sand-stime Tailing 0.059 119.0 1.18 0.46 0.72 1 21.325 5598.27 17.9 0.231 17.7 21.2 9.20 1.29% sand-stime Tailing 0.059 119.0 1.18 0.46 0.73 1	1.14 20.588 286.17 24.35 24 1.61% 2.5 47% 1.59 0.00 1.59 0 0.87 0.06 0.97 1.0 0.048 38.84 63.19 0.091 1.89	0.93 0.26 0.80 1.04 1.0 0.040 3.40 69.41 0.111 3.23 2.49 2 1.151398 17.573 1.6824 20.410 0.93 0.28 0.80 1.04 1.0 0.040 2.94 71.66 0.114 3.30 2.59 2 1.151398 17.573 1.6824 20.410 0.93 0.28 0.80 1.04 1.0 0.040 2.83 66.67 0.108 3.09 2.48 2 1.13632 2.0292 1.9427 23.568
21.325 5598.27 17.9 0.231 17.7 21.2 9.20 1.29% sand-stime Tailing 0.059 119.0 1.19 0.46 0.73 1 21.489 5598.11 12.3 0.171 12.1 31.8 13.76 1.39% sand-stime Tailing 0.059 119.0 1.20 0.47 0.73 1 21.653 5597.95 9.4 0.173 9.0 70.1 30.36 1.84% Stime Tailing 0.057 113.1 1.21 0.47 0.74 1	1.14 20.141 279.96 23.57 23 1.39% 2.5 47% 1.60 0.00 1.60 0 0.87 0.05 0.97 1.0 0.048 38.57 62.13 0.090 1.87 1.13 13.736 190.93 16.21 15 1.54% 2.7 47% 1.61 0.00 1.61 0 0.86 0.05 0.97 1.0 0.048 35.99 52.20 0.080 1.65 1.13 10.141 140.96 12.35 11 2.11% 2.9 71% 1.62 0.00 1.62 0 0.86 0.05 0.97 1.0 0.048 34.39 46.74 0.074 1.54	0.93 0.23 0.80 1.03 1.0 0.040 3.91 63.32 0.104 2.96 2.30 2 1.134265 13.961 1.3366 16.215
21.805 5597.78 10.2 0.308 9.6 109.8 47.60 3.01% Slime Tailings 0.057 113.1 1.21 0.47 0.74 1 21.817 5597.78 10.2 0.308 9.6 109.8 47.60 3.01% Slime Tailings 0.057 113.1 1.22 0.48 0.74 1 21.881 5597.62 16.3 0.494 15.9 55.4 24.01 3.04% Slime Tailings 0.057 113.1 1.22 0.48 0.74 1	1.13 10.141 140.96 12.35 11 2.11% 2.9 71% 1.62 0.00 1.62 0 0.86 0.05 0.97 1.0 0.048 34.39 46.74 0.074 1.54 1.12 10.748 149.40 13.38 12 3.41% 3.0 71% 1.63 0.00 1.63 0 0.86 0.05 0.97 1.0 0.048 34.75 48.13 0.076 1.57 1.12 17.829 247.82 21.16 20 3.28% 2.8 71% 1.63 0.00 1.63 0 0.86 0.05 0.97 1.0 0.048 34.76 58.61 0.086 0.05 0.97 1.0 0.048 34.75 48.13 0.076 1.57 1.12 17.829 247.82 21.16 20 3.28% 2.8 71% 1.63 0.00 1.63 0 0.86 0.05 0.97 1.0 0.048 34.76 58.61 0.086 1.80	0.93 0.27 0.80 1.03 1.0 0.040 5.44 67.21 0.108 3.07 2.31 2 1.129256 10.635 1.0182 12.351 0.93 0.21 0.80 1.03 1.0 0.040 6.30 84.34 0.136 3.84 2.70 2 1.129256 1.0182 13.379 0.93 0.27 0.80 1.03 1.0 0.040 4.58 9.683 0.164 4.62 3.21 2 1.11211 18.216 1.744 21.159
21.86 0.597.42 10.3 0.484 10.5 0.494 24.01 0.494 Sime ratings 0.057 113.1 1.23 0.48 0.75 1 22.145 5597.45 14.7 0.580 14.5 37.9 16.40 3.94% Sime ratings 0.057 113.1 1.24 0.49 0.75 1 22.309 5597.29 15.8 0.533 15.5 43.5 18.86 3.33% Sime ratings 0.057 113.1 1.25 0.49 0.75 1	1.11 1.12 2.47.52 2.47.52 2.47.52 2.47.52 2.47.52 2.47.52 2.47.52 2.47.52 2.47.52 2.47.52 2.47.52 2.47.52 2.47.52 2.47.52 2.57.52 0.083 1.74 1.11 16.127 224.17 19.04 18 4.31% 2.9 71% 1.64 0.00 1.64 0 0.86 0.05 0.97 1.0 0.048 36.72 55.75 0.083 1.74 1.11 17.189 238.93 20.31 19 3.67% 2.8 71% 1.65 0.00 1.65 0 0.86 0.05 0.97 1.0 0.048 37.16 57.48 0.085 1.78	0.93 0.27 0.80 1.03 1.0 0.040 4.95 90.63 0.104 4.02 5.21 2 1.11521 1.11521 1.5210 1.744 2.1.157 0.93 0.25 0.80 1.03 1.0 0.040 5.59 106.43 0.192 5.37 3.55 2 1.114527 16.391 1.5692 19.037 0.93 0.26 0.80 1.03 1.0 0.040 4.97 100.99 0.176 4.89 3.53 2 1.1109714 17.491 1.6746 20.315
22.435 5597.13 14.0 0.457 13.9 15.6 6.74 3.26% Sime Tailings 0.057 113.1 1.26 0.49 0.16 1 22.438 5596.96 22.3 0.455 22.1 22.5 9.75 2.04% Same Tailing 0.057 113.1 1.26 0.49 0.76 1 22.638 5596.96 22.3 0.455 22.1 2.25 9.75 2.04% Same Tailing 0.057 113.1 1.26 0.76 1	1.11 1.13 2.0.51 2.0.51 1.35 0.00 1.05 0.00 0.05 0.71 0.048 36.15 0.062 1.71 1.10 15.381 213.79 17.99 17 3.58% 2.9 71% 1.66 0.00 1.66 0 0.86 0.97 1.0 0.048 36.35 54.34 0.082 1.71 1.09 24.213 336.55 28.30 28 2.17% 2.6 47% 1.67 0.00 1.67 0 0.85 0.06 96 1.0 0.048 40.23 68.53 0.988 2.06	0.33 0.24 0.80 1.02 1.00 0.40 5.32 95.70 0.162 4.47 3.09 2 1.103/14 1.648 1.6488 1.7989 1.013/14 1.104/14 <th< td=""></th<>
22.802 5596.80 17.6 0.383 17.4 21.7 9.38 2.18% Sand-Slime Tailin 0.059 119.0 1.28 0.51 0.77 1 22.966 5596.63 11.2 0.327 10.7 70.0 30.33 2.93% Slime Tailing 0.057 113.1 1.28 0.51 0.77 1	1.09 19.057 264.90 22.31 21 2.35% 2.7 47% 1.68 0.00 1.68 0 0.85 0.05 0.96 1.0 0.048 38.12 60.43 0.088 1.86 1.09 11.705 162.70 14.15 13 3.31% 2.9 71% 1.69 0.00 1.69 0 0.85 0.05 0.97 1.0 0.048 35.01 49.16 0.077 1.61	0.93 0.27 0.80 1.02 1.0 0.040 3.78 84.25 0.136 3.71 2.78 2 1.093357 19.205 1.8387 22.305 0.93 0.22 0.80 1.02 1.0 0.040 6.03 85.32 0.138 3.75 2.68 2 1.089866 12.181 1.1662 14.148
23.130 5596.47 11.9 0.236 11.3 90.3 39.11 1.99% Sand-Slime Tailin 0.059 119.0 1.29 0.52 0.78 1 23.294 5596.31 13.5 0.214 12.9 103.9 45.01 1.59% sand-slime Tailin 0.059 119.0 1.30 0.52 0.78 1	1.08 12.269 170.54 14.96 14 2.23% 2.8 47% 1.70 0.00 1.70 0 0.85 0.55 0.97 1.0 0.048 35.55 50.51 0.078 1.64 1.08 13.874 192.85 16.93 16 1.75% 2.7 47% 1.71 0.00 1.71 0 0.85 0.55 0.07 1.0 0.42 35.47 0.081 1.70	0.93 0.22 0.80 1.02 1.00 0.40 4.90 73.26 0.117 3.16 2.40 2 1.084767 12.88 1.2331 14.959 0.93 0.24 0.80 1.02 1.0 0.040 4.04 68.45 0.110 2.96 2.33 2 1.079723 14.575 1.3954 16.927
23.458 5596.14 12.3 0.222 11.8 82.8 35.86 1.80% Sand-Stime Tailing 0.059 119.0 1.31 0.53 0.79 1 23.622 5595.98 10.7 0.234 10.1 92.5 40.09 2.19% Sime Tailings 0.057 113.1 1.32 0.53 0.79 1	1.07 10.821 150.41 13.29 12 2.50% 2.9 71% 1.73 0.00 1.73 0 0.85 0.05 0.97 1.0 0.047 34.71 48.00 0.076 1.60	0.93 0.23 0.80 1.02 1.0 0.40 4.60 70.84 0.113 3.04 2.35 2 1.074732 13.269 1.2704 15.411 0.92 0.21 0.80 1.02 1.0 0.404 5.61 74.52 0.118 3.17 2.38 2 1.074732 13.269 1.2704 15.411
23.786 5595.81 17.2 0.313 16.6 101.1 43.81 1.82% Sand-Silme Tailin 0.059 119.0 1.33 0.54 0.79 1 23.950 5595.65 18.0 0.305 17.9 11.3 4.88 1.70% Sand-Silme Tailin 0.059 119.0 1.33 0.54 0.79 1	1.07 17.630 245.06 21.26 20 1.98% 2.6 47% 1.74 0.00 1.74 0 0.85 0.05 0.96 1.0 0.047 37.76 59.01 0.087 1.84 1.06 18.952 263.44 22.10 21 1.84% 2.6 47% 1.75 0.00 1.75 0 0.84 0.5 0.96 1.0 0.047 38.05 60.15 0.088 1.84	

					WHITE MES		GS REPO	OSITORY	LIQUE FACTIO		D SEISM				2W7-C															Elev. At		lakaaa	Unit Unit	Stress at Bottom			e Equil Pore				
Data File:	13-52106 SI	2W7-C-BS	-CPT	Idriss a	nd Boulanger (2008)						5613.10	0 Wate	er surface e	evation du	rina CPT	nvestigation	(15619.60	Ground	l Surface F	Elevation at t	time of CPT	(ft amsl)							Midpoint of Layer		nicknes sof \					r Midpoint of				
Location:	White Mesa				Max. Horiz. Acc		Amax/a:	(0.15					r surface e				5626.65					()	t of Final	l Cover (ft amsl	D	FINAL C	OVER	(ft)	(ft)		aver (ft) t	t (tcf) (pcf)		(tsf)	(tsf)	Laver (tsf)		(tsf)		
\.\.\6.2.3 Fi	Id Data\2013 Fiel		•	F	arthquake Mon	ent Magni	itude. M:		5.5			5595.40	0 Wate	r surface e	levation at	t₁ (ft amsl		0.50				,			mediately after	,	Erosion F	Protection Layer	()	5626.4	(0.50	0.055 1	10 0.028	8 0.01	14 0.00	0.00	0.02			
	as Sands				Magnitude Sca	Ŭ			1.69					r surface e				3.50			ter Storage/F			,	,			ting Zone Laver		5624.4	5622.65	3.50	0.054 10	0.215	5 0.121		0.00	0.21			
	s Sand-Slimes			Youd, e	et al (2001)	5		<u>I</u>										4.00			n Compactio	0	. ,				High Co	mpaction Laver	r ######	5620.65	5618.65	4.00	0.060 12	20 0.454	4 0.334		0.00	0.45			
	gs Slimes				Max. Hori	z. Accelera	ation. Am	ax/a:	0.15			1.44	Scalir	ng Factor fo	or stress ra	tion. r.,		-0.95					top of existing	a interim	cover (ft)	Pla	atform/Ra	indom Fill Layer	r ######	5619.13				0.406			0.00	0.400			
	n Cover				Earthquake	Moment M	Magnitude	e. M:	5.5			0.47	Volun	netric Strai	n Ratio for	Site-Spec	ific Design E	a 812.44	Additio	nal Stress	due to Final	Cover Place	cement, $\Delta \sigma_{FC}$ (psf)					1 1							<u> </u>					
Cells	Requiring User In	nut/Maninula	tion			de Scaling		-	2.21 2.21			7.51	_	. Number o			0	5590.40			m of tailings			/																	
0000	2013 CPT Da				Magnita	ao ooaniig	r dotor, r			0	CPT Data	Interpretat				oliulii oje	100, 11	0000.10		tions at t	in or tailingo							Lique	efaction T	riggering	Analvses							A	Idrist	s & Boulanger (20	08)
					Material					VC]					Normalize			Equi	Effectiv			Idr	iss & Boi	ulanger (2008)					33 3		al. (2001)				T	1			
Depth at time			Pw Pw		Type (as	Unit			Pore Stress essure time o						Cone Penetratior	d Friction	Index,	Total St	Pore ress Pressu			d Cvo	vclic Stress Ra		Cvclic Resist		, ,		Cyclic	Stress Rat			/		T	-					
of CPT Eleva	tion at f	s ac	(u2) (u2)	fs/qt	determined				time of CPT			CN ac1	ac1	1 ac1N	Resistance		ار F(c at t ₁	at t ₁	tie Ouess	at t1		_a K _a K _a			(CRR)		r _d D _r	f	K.	-	CSR		(CRR)	1	Avg	Linux Cable (_	CN	qc1 qc1	qc1N
(ft) (ft ar	·· •		(ft) PSI	(%)	by finan				(tsf) (tsf)		=Yes	TSF		-1-	, Q,	. ,	%	(tsf)	(tsf)	(tsf)	1=Yes	u -0	0 0 a	M=7.5.	∆qc _{1n} qc _{1n-0}			u 1		0	a	M=7.5.	Kc qc _{1n-c}	(-)		FoS	Liquefiable? 1=Yes	1		TSF MPa	
(, (,		(,	(,)		()	(1)	()	()		=No			-				(,	(12.)	(10.)	0=No			s'v=1atm	1.10 1.105	s'v=1atm	FoS					s'v=1atm	1.116	s w=7.5, s'v=1atm	FoS		2=No				
24,114 5595	.49 13.6 0.2	88 13 /	40.7 17.64	2 12%	Sand-Slime Tailin	0.059	119.0	135 (0.55 0.80			.06 14.10	5 196.0	06 16.69	15	2.35%	2.8 47	% 1.76	0.00	1 76	0	0.84 0.04	05 0.96 1.0	0.047	36.16 52.8		1 71	0.92 0.24	0.80	1.01		0.040	4.66 77.81		3.27	2.49	2		1 055773	14.373 1.3761	16.694
24.278 5595				1.87%		0.059		1.36 (0.55 0.81	·		1.05 19.38		43 23.24	22	2.01%	2.6 47				1	0.84 0.05		0.047	38.45 61.6		1.92	0.92 0.24		1.01	1.0	0.040	3.44 79.99	•••=•	3.35	2.63	2			20.009 1.9157	23.240
24.442 5595			24.9 10.80						0.56 0.81			05 20.49		88 23.99	23	2.21%	2.6 47			1.77	1	0.84 0.06		0.047	38.72 62.7		1.94	0.92 0.28		1.01			3.52 84.43		3.55	2.74	2			20.658 1.9778	23.993
24.606 5594				2.62%			110.0		0.56 0.82	,		1.03 20.43		89 21.06	20	2.85%	2.0 47	% 1.79		1.78		0.84 0.05	0.00 1.0	0.047	37.42 58.4		1.84	0.92 0.20		1.01			4.35 91.61	0.100	3.92	2.88	2			18.129 1.7357	21.056
24.770 5594				2.62%	Slime Tailings			1.39 (0.57 0.82			1.04 12.35			13	2.96%	2.9 71	% 1.80				0.84 0.05		0.047	35.14 49.6		1.64	0.92 0.20		1.01		0.040	5.71 82.84	0.101	3.42	2.53	2			12.49 1.1958	14.506
24.934 5594			49.0 21.21						0.58 0.83			1.03 10.19		71 12.21	11	2.84%	3.0 71	% 1.80 % 1.81				0.84 0.05		0.047	34.34 46.5		1.57	0.91 0.20		1.01			6.33 77.25		3.14	2.36	2			10.511 1.0063	12.207
25.098 5594				2.41%				1.41 (0.58 0.83			03 9.897		57 12.09	10	2.81%	3.0 71	% 1.81 % 1.82				0.83 0.05		0.047	34.30 46.3			0.91 0.20		1.01			6.34 76.70		3.10	2.33	2			10.409 0.9966	12.090
25.262 5594					Sand-Slime Tailing			1.42 (0.59 0.83			03 14.48		40 16.91	15	2.04%	2.7 47					0.83 0.05		0.047			1.71	0.91 0.24		1.01			4.37 73.93		2.97	2.34	2			14.555 1.3935	16.905
25.426 5594			52.2 22.60					1.43 (0.59 0.84			02 14.11			15	3.26%	2.9 71					0.83 0.05		0.047	35.93 52.7		1.70	0.91 0.24		1.01	1.0		5.42 91.00		3.76	2.73	2			14.449 1.3833	16.781
25,590 5594				2.46%	Slime Tailings				0.60 0.84			02 15.23			16	2.72%	2.8 71	% 1.84				0.83 0.05		0.047	36.30 54.1		1.73	0.91 0.24		1.00		0.041	4.79 85.43		3 44	2.58	2			15.36 1.4705	17.839
25.754 5593				3.10%				1.45 (0.60 0.85			1.01 12.20			13	3.51%	2.9 71					0.83 0.05		0.047	35.20 49.8		1.63	0.91 0.22		1.00			6.13 90.06		3.67	2.65	2			12.648 1.2109	14.690
25,918 5593		24 15.0		1.46%		0.059	119.0	1.46 (0.61 0.85			.01 15.16		85 18.00	16	1.61%	2.7 47			1.81		0.83 0.05		0.047	36.61 54.6		1.73	0.91 0.24		1.00		0.041	3.79 68.14	0 109	2.69	2.21	2			15.495 1.4835	17.997
		26 20.5			Sand-Slime Tailing		119.0	147 (0.61 0.86			00 20.60		46 24.05	22	1.18%	2.5 47				1	0.83 0.06		0.047	38.73 62.7		1.92	0.90 0.28		1.00		0.041	2.68 64.55	0.105	2.57	2.25	2			20.703 1.9821	24.046
26.246 5593	.35 17.9 0.2				Sand-Slime Tailing	0.059	119.0	148 (0.62 0.86			00 17.73		48 20.82	19	1.39%	2.6 47	1.88	0.06		1	0.82 0.05		0.047	37.60 58.4		1.82	0.90 0.26		1.00	1.0	0.041	3.20 66.52	0 107	2.61	2.21	2			17.924 1.716	20.817
26.410 5593			41.9 18.16				113.1	1.49 (0.62 0.86			00 13.03			14	2.56%	2.8 71	% 1.89		1.82		0.82 0.05		0.048	35.46 50.9		1.65	0.90 0.23		1.00			5.18 79.94	0.128	3.08	2.36	2			13.291 1.2725	15.437
26.574 5593					Sand-Slime Tailing				0.63 0.87).99 11.774			12	1.88%	2.8 47			1.83		0.82 0.05		0.048			1.62	0.90 0.22		1.00			4.83 68.70		2.64	2.13	2			12.24 1.1719	14.216
26,739 5592		54 20.8		0.73%			119.0	1.51 (0.63 0.87).99 20.61			22	0.79%	2.4 47					0.82 0.06		0.047	38.76 62.8		1.92	0.90 0.22		1.00			2.30 55.56		2.29	2.10	2			20.765 1.988	24.117
26,903 5592		57 21.6			Sand-Slime Tailing	0.059	119.0	1.51 (0.64 0.88			0.99 21.28			23	0.78%	2.4 47				1	0.82 0.06		0.047	39.01 63.8		1.94	0.90 0.29		1.00			2.24 55.75		2.28	2.11	2			21.389 2.0478	24.842
27.067 5592		22 21.4		1.03%		0.059	119.0	1.52 (0.64 0.88).98 20.94		15 24.48	23	1.11%	2.5 47	% 1.93	0.09		1	0.82 0.06		0.047	38.89 63.3		1.93	0.90 0.29		0.99	1.0	0.042	2.60 63.68	0.104	2.45	2.19	2			21.075 2.0177	24.477
27.231 5592				1.26%		0.059	119.0	1.53 (0.65 0.89).98 19.73			21	1.36%	2.5 47			1.85	1	0.82 0.05		0.048	38.40 61.4		1.88	0.90 0.28		0.99		0.042	2.95 68.20	0.110	2.56	2.22	2			19.875 1.9028	23.084
27.395 5592					Sand-Slime Tailing	0.059	119.0	1.54 (0.65 0.89).97 25.65			28	1.63%	2.5 47			1.85		0.82 0.06		0.047	40.81 70.7		2.12	0.89 0.32		0.99			2.66 79.84		2.96	2.54	2			25.801 2.4701	29.966
27.559 5592			24.8 10.73				119.0	1.55 (0.66 0.90).97 18.97		71 22.21	20	2.84%	2.7 47					0.81 0.05		0.048			1.85	0.89 0.27	0.80	0.99			4.26 94.50	0.127	3.66	2.76	2			19.122 1.8307	22.208
27.723 559			25.6 11.08				110.0	1.56 (0.66 0.90).97 14.70			15	3.51%	2.9 71			1.86	1	0.81 0.05		0.048			1.69	0.89 0.24		0.99			5.57 96.13	0.100	3.73	2.70	2			14.862 1.4229	17.262
27.887 559				3.73%					0.67 0.91).96 12.27			13	4.24%	3.0 71	% 1.98			1	0.81 0.05		0.048			1.61	0.89 0.24		0.99			6.77 98.65		3.87	2.74	2			12.541 1.2007	14.566
28.051 559			75.6 32.75						0.67 0.91).96 12.27				4.24%	3.1 71				1				34.65 47.74			0.89 0.22		0.99			7.64 100.0		3.93	2.74	2			11.27 1.079	13.090
20.001 000	11.0 0.4	11.0		4.10/0	omito ranniga	0.001	. 10.1		0.01				- 100.0	0. 10.00		4.1170	0.1 /1		0.12	1.57		0.01 0.00	1.0	0.040	1.00 41.1	. 0.070	1.07	0.00 0.21	0.00	0.00	1.0	0.072		0.170	0.00	2.75		A	3.000100		10.000

Data File: 13-52106_SP2E1-BSC_CPT Idriss and Boular Location: White Mesa 2013 CPT Investigation Max. Horiz .\.\.\.6.2.3 Field Data\2013 Field Investigation\Conetec Da Earthquake Tailings Sands Magnitude Tailings Silmes Youd, et al (2001) Tailings Silmes Max. Interim Cover Earthquake	iz. Acceleration, Amax/g: 0.15 iz. Moment Magnitude, M: 5.5 de Scaling Factor, MSF: 1.69 1) 1) 1) 1) 1) 10 10 10 10 10 10 10 10 10 10	5613.10 Water surface elevation during CPT investigation (ft a 5619.95 Grou 5611.67 Water surface elevation at t₀ (ft amsl) 5630.46 Grou 5595.46 Water surface elevation at t₀ (ft amsl) 0.50 Thici 5590.46 Water surface elevation at t₀ (ft amsl) 3.50 Thici 1.44 Scaling Factor for stress ration, rm 2.51 Thici 0.47 Volumetric Strain Ratio for Site-Specific Design Earth 1160.95 Addit	ckness of Erosion Protection Layer (rock mulch/topsoils) Immediately after plac ckness of Water Storage/Rooting Zone (ft) ckness of High Compaction Layer (ft) ckness of Random/Platform Fill on on top of existing interim cover (ft) ditional Stress due to Final Cover Placement, $\Delta \sigma_{Fc}$ (psf)	Top of Layer Midpoint of Layer of Layer Thicknes s of Layer Unit Veigh Bottom Midpoint (tr) Mid of L (tr) FINAL COVER (tt) fLayer (tt) it prover (tt) Not Sol Sol Sol Sol Sol Sol Sol Sol Sol Sol	Ass at point Pressure at Bottom (tsf) Equil Pore Pressure at Midpoint of Layer Stress at Midpoint of Layer Stress at Midpoint of Layer 0.014 0.00 0.00 0.028 0.014 0.121 0.00 0.00 0.215 0.121 0.334 0.00 0.00 0.580 0.517
Interim Cover Earthol Cells Requiring User Input/Manipulation Material Construction Depth at time of CPT Elevation qt fs qc (u2) (u2) (u2) (u2) fs/qt (t1 (t1 ams)) TSF TSF TSF TSF (t1 PSI (%)) 0.164 5619.79 13.5 0.057 13.5 -0.0 -0.01 0.42% (mterim Construction) 0.164 5619.79 13.5 0.057 13.5 -0.0 -0.01 0.42% (mterim Construction) 0.164 5619.79 13.5 0.721 78.6 0.4 0.9 9.2% (mterim Construction) 0.656 6619.213 133.5 1.017 133.5 1.017 0.48 1.16% (mterim Construction) 0.656 6819.71 159.6 1.1 0.48 1.16% (mterim Construction) 0.866 0.7221 78.6 0.770 202.0 1.55 1.66 0.78% (mterim Construction) 0.866 18.80 202.0 1.570 202.0 1.556 1.11 0.48 1.66% 1.11 0.48 1.66% 1.11 0.48 1.66% 1.27% 1.46	nuake Moment Magnitude M. 5.5 Iganitude Scaling Factor, MSFE: 2.1 1 Ital Total Lord CFT Data It Veright Weight of CFT at time of Uregin Uregin Stress al Saturated of at time of at time of or at time of 0.50 10.7 0.01 0.00 0.01 1.70 ver 0.050 100.7 0.02 0.00 0.02 0 1.70 ver 0.050 100.7 0.03 0.00 0.04 0 1.70 ver 0.050 100.7 0.03 0.00 0.05 10.7 ver 0.050 100.7 0.06 0.00 0.06 0 1.70 ver 0.050 100.7 0.10 0.00 0.07 1.70 ver 0.050 100.7 0.11 0.00 1.70 ver 0.050 100.7 0.12 0.00 1.70 ver 0.050 100.7 0.12 0.00 1.70	0 Volumetric Strain Ratio for Site-Specific Design Earth Equiv. Number of Unform Strain Cycles, N 1180.95 Acd Epretations 5500.46 Epret Event 5500.46 5500.46 5500.46 5500.46 5500.46 5500.46 5500.46 5500.46 5500.46 5500.46 5500.46 5500.46 5500.46 5500.46 5500.46 5500.47 5510 0.661 0.062 0.07 0.053 0.0530.47 0.5111.4 5116 0.666 0.0330.48 0.071 0.053 0.071 0.052 0.071 0.071 0.071 0.071 0.071 0.071 0.072 0.071 0.072 0.071 0.072 0.077 0.072	Jitana Brees due to Final Cover Placement, Ac ₇ e (sri) Valido obtion of allange (iner) (it ams) Valido obtion obt	Lage Scale and the set of the	Arg Liquefable? 65 $\frac{9}{15}$ $\frac{9}{2}$ 05 $\frac{9}{15}$ $\frac{9}{2}$ 05 $\frac{9}{15}$ $\frac{9}{2}$ 05 $\frac{9}{15}$ $\frac{9}{2}$ 05 $\frac{9}{11}$ $\frac{9}{2}$ $\frac{9}{11}$ $\frac{9}{22}$ $\frac{1}{17}$ $\frac{9}{22}$ $\frac{1}{25}$ $\frac{9}{22}$ $\frac{1}{25}$ $\frac{9}{22}$ $\frac{1}{25}$ $\frac{1}{22}$ $\frac{1}{25}$

Data File: 13-52106_SP2E1-BSC-CPT Location: White Mesa 2013 CPT Investigation	WHITE MESA TAILINGS REPOSITORY LIQUEFACT Idriss and Boulanger (2008) Max. Horiz. Acceleration, Amax/g: 0.15	5613.10 Water surface elevation during CPT investigation (ft 5619.95 Ground Surface Elevation at time of CPT (ft amsl) 5611.67 Water surface elevation at t ₀ (ft amsl) 5630.46 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl)	Elev. at Elev. At Bottom Stress at Stress at Stress at Bressure Equil Pore Stress at Stress at Top of Midpoint of Thicknes Unit Unit Bottom Midpoint at Bottom Pressure at Bottom Midpoint Layer of Layer s of Weight of Layer (tsf) (tsf)
\.\.\6.2.3 Field Data\2013 Field Investigation\Conetec I Tailings Sands Tailings Sand-Slimes	Da Earthquake Moment Magnitude, M: 5.5 Magnitude Scaling Factor, MSF: 1.69 Youd, et al (2001)	5595.46 Water surface elevation at t ₁ (ft amsl) 0.50 Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after plac 5590.46 Water surface elevation at t ₂ (ft amsl) 3.50 Thickness of Water Storage/Rooting Zone (ft) at 4.00 Thickness of High Compaction Layer (ft) Thickness of High Compaction Layer (ft) at	Erosion Protection Layer ###### 5630.21 5629.96 0.50 0.055 110 0.028 0.014 0.00 0.008 0.014 ter Storage/Rooting Zone Layer ####### 5628.21 5626.46 3.50 0.054 107 0.215 0.121 0.00 0.00 0.215 0.121 High Compaction Layer ###### 5624.46 5622.46 4.00 0.060 120 0.454 0.334 0.00 0.04 0.334
Tailings Slimes Interim Cover Cells Requiring User Input/Manipulation	Max. Horiz. Acceleration, Amax/g: 0.15 Earthquake Moment Magnitude, M: 5.5 Magnitude Scaling Factor, MSF: 2.21	1.44 Scaling Factor for stress ration, rm 2.51 Thickness of Random/Platform Fill on on top of existing interim cover (ft) 0.47 Volumetric Strain Ratio for Site-Specific Design Earth 1160.95 Additional Stress due to Final Cover Placement, Δσ _{FC} (psf) 7.51 Equiv. Number of Uniform Strain Cycles, N 5590.46 Elevation of bottom of tailings (liner) (ft amsl)	Platform/Random Fill Layer ###### 5621.21 5619.95 2.51 0.050 101 0.580 0.517 0.00 0.00 0.580 0.517
2013 CPT Data from ConeTec Depth	Material Stress Pore Stress	CPT Data Interpretations Conditions at t ₁	Liquefaction Triggering Analyses Idriss & Boulanger (2008) Youd et al. (2001)
at time Pw Pv	y 2) fs/qt Type (as determined Weight Weight of CPT at time of CPT	at time of CPT CN qc1 qc1 qc1N Resistance (%) FC at t ₁ at t ₁	CRR) r _d D _r f K _a K _a CSR (CRR) Avg Liquefiable? CN qc1 qc1 qc1N
12.303 5607.65 7.5 0.137 7.4 15.9 6.8 12.467 5607.48 9.8 0.166 9.7 9.9 4.2 12.795 5607.15 13.0 0.92 13.0 15.9 10.0 8.2 13.237 5606.60 17.4 0.161 15.9 10.0 8.2 13.345 5606.50 19.4 0.173 19.3 8.1 3.4 13.451 5606.51 11.2 0.94 17.2 15.8 4.2 13.943 5605.11 11.2 0.94 13.9 15.5 8.4 14.00 5605.51 1.1.2 0.94 1.3 4.8 6.9 3.0 14.400 5605.52 1.5 1.33 0.157 1.3 1.4.8 6.9 3.0 15.55 5604.69 16.0 0.117 16.0 9.8 4.2 15.02 5604.53 2.0.1 0.148 2.0.2 1.9 1.5	1.70* Sand-Silme Tailing 0.059 119.0 0.67 0.18 0.50 0 1.76% Sime Tailings 0.057 113.1 0.68 0.18 0.50 0 1.76% Sime Tailing 0.057 113.1 0.68 0.19 0.51 3 1.04% Sand-Sime Tailin 0.059 119.0 0.70 0.19 0.51 3 1.12% Sand-Sime Tailin 0.059 119.0 0.71 0.20 0.52 9 0.89% Sand-Sime Tailin 0.059 119.0 0.74 0.21 0.53 7 0.90% Sand-Sime Tailin 0.059 119.0 0.76 0.22 0.54 3 1.13% Sand-Sime Tailin 0.059 119.0 0.77 0.23 0.55 5 1.45% Sand-Sime Tailin 0.059 119.0 0.80 0.24 0.55 5 1.45% Sand-Sime Tailin 0.059 119.0 0.82 0.57 <td< td=""><td>1 1.44 1.44 0.00 2.5 4.75 1.35 0.00 1.32 0.0 0.2 0.0 0.0 0.00<td>1000 1100</td></td></td<>	1 1.44 1.44 0.00 2.5 4.75 1.35 0.00 1.32 0.0 0.2 0.0 0.0 0.00 <td>1000 1100</td>	1000 1100

		WHITE	MESA TAILINGS REP	OSITORY LIQUEFACT	ION AND SE	EISMIC SETTLI	EMENT ANALY	SES - 2E1										ev. at Elev. At		-lane line			t Pressure			Stress at	
Data File:	13-52106 SP2E1-BSC-CPT	Idriss and Boulanger	(2008)			5613.10	Water surface	elevation during	CPT investigation (f	t a 5619.95	Ground Su	rface Eleva	tion at tir	me of CPT (ft amsl)				op of Midpoint ayer of Layer		cknes Unit sof Weigh	Unit Botto Weight of Lay			Midpoint of o	Bottom N	Aidpoint of Laver	
Location:	White Mesa 2013 CPT Investigation		celeration, Amax/g:	0.15				elevation at to (ft		5630.46				nediately after Placement of Final C	over (ft amsl)	FINAL C	OVER	(ft) (ft)		ver (ft) t (tcf)			(tsf)			(tsf)	
\\6.2.3	Field Data\2013 Field Investigation\Conetec Da	Earthouake Mo	ment Magnitude. M:	5.5		5595.46	Water surface	elevation at t1 (ft	amsl)	0.50	Thickness	of Erosion I	Protectio	on Layer (rock mulch/topsoils) Imme	diately after plac	Erosion F	Protection Laver ##	., .,	5629.96	0.50 0.055	110 0.0	0.01	14 0.00	0.00	0.028	0.014	
	ings Sands	Magnitude Sc	aling Factor, MSF:	1.69				elevation at t2 (ft		3.50				ooting Zone (ft)		ter Storage/Roo	ting Zone Layer ##	#### 5628.21	5626.46	3.50 0.054	107 0.2	215 0.12	21 0.00	0.00	0.215	0.121	
Tai	ings Sand-Slimes	Youd, et al (2001)								4.00	Thickness	of High Cor	npaction	Laver (ft)	F	High Co	mpaction Layer ##	#### 5624.46	5622.46	4.00 0.060	120 0.4	154 0.33	34 0.00	0.00	0.454	0.334	
Tai	ings Slimes	Max. Ho	riz. Acceleration, Amax	/g: 0.15		1.44	Scaling Facto	r for stress ration,	r _m	2.51	Thickness	of Random	/Platform	n Fill on on top of existing interim co	ver (ft)	Platform/Ra	ndom Fill Layer ##	#### 5621.21	5619.95	2.51 0.050	101 0.5	580 0.51	0.00	0.00	0.580	0.517	
Inte	rim Cover	Earthqual	e Moment Magnitude,	M: 5.5		0.47	Volumetric St	ain Ratio for Site-	Specific Design Ea	th 1160.95	Additional S	Stress due	to Final (Cover Placement, Δσ _{FC} (psf)									•				
Cel	s Requiring User Input/Manipulation	Magnit	ude Scaling Factor, MS	SF: 2.21 2.21		7.51	Equiv. Numbe	r of Uniform Strai	n Cycles, N	5590.46	Elevation o	f bottom of	tailings ((liner) (ft amsl)													
	2013 CPT Data from ConeTec				CPT D	ata Interpretat	ions				Condition	s at t ₁					Liquefacti	ion Triggering Ar	nalyses							Idriss & Boulange	r (2008)
Depth		Material	St	ress Pore Stress a	at Saturated			Normalized No	rmalize Type Friction Index.		Pore E	ffective		Idriss & Bou	anger (2008)				Youd et a	al. (2001)							
at time	Pw Pw	Type (as		time Pressure time of				Penetration R		Total Stre	ess Pressure S		aturated	Cyclic Stress Ratio	Cyclic Resistance	Ratio	(Cyclic Stress Rati	0								
of CPT Ele	vation qt fs qc (u2) (u2)	fs/qt determined	Weight Weight of	CPT at time of CPT	CPT	CN qc1	qc1 qc	1N Resistance	(%) ^I c FC	at t ₁	at t ₁	t ₁	at t ₁	r _d C _o K _o K _{a CSR}	(CRR)	r _d D _r	f K _o	K _a C	CSR	(CRF	:)	Avg	Liquefiable?		CN qc1 qc	1 qc1N
(ft) (ft	amsl) TSF TSF TSF (ft) PSI		(tcf) (pcf) (t	tsf) (tsf) (tsf)	1=Yes	TSF	MPa	, Q _t	%	(tsf)	(tsf)	(tsf)	1=Yes	M=7.5,	∆qc _{1n} qc _{1n-cs}	M=7.5,			м	I=7.5, Kc	qc _{1n-cs} M=7.5		FoS	1=Yes		TSF MF	а
					0=No								0=No	s'v=1atm	5	iv=1atm FoS			s'v	=1atm	s'v=1ati	m FoS		2=No			
24.114 55	95.84 18.1 0.289 18.0 13.9 6.03	1.60% Sand-Slime Taili	0.059 119.0 1	.36 0.54 0.82	1	1.03 18.635	259.03 21	75 20 1	.73% 2.6 479	6 1.94	0.00	1.94	0	0.84 0.05 0.96 1.0 0.047	37.93 59.68	0.087 1.88	0.89 0.27 0	0.80 1.01	1.0 0.	.039 3.37	73.35 0.11	7 3.10	2.49	2		1.034131 18.725 1.7	21.748
24.278 55	95.67 18.2 0.238 18.1 15.7 6.80	1.31% Sand-Slime Taili	0.059 119.0 1	.37 0.54 0.83	1	1.03 18.616	258.76 21	74 20 1	.42% 2.6 479	6 1.95	0.00	1.95	0	0.84 0.05 0.96 1.0 0.046	37.93 59.66	0.087 1.88	0.89 0.27 0	0.80 1.01	1.0 0.	.039 3.10	67.33 0.10	3 2.87	2.37	2		1.029637 18.717 1.7	919 21.738
24.442 55	95.51 24.4 0.195 24.3 16.8 7.27	0.80% Sand-Slime Taili	0.059 119.0 1	.38 0.55 0.83	1	1.02 24.907	346.21 29	05 28 0	.85% 2.3 479	6 1.96	0.00	1.96	0	0.84 0.06 0.95 1.0 0.046	40.49 69.54	0.099 2.14	0.89 0.31 0	0.80 1.01	1.0 0.	.039 2.05	59.56 0.10	2.62	2.38	2		1.023719 25.014 2.3	29.053
24.606 55	95.34 34.4 0.343 34.3 15.2 6.60	1.00% Sand-Slime Taili	0.059 119.0 1	.39 0.55 0.84	1	1.02 34.889	484.95 40	63 39 1	.04% 2.2 479	6 1.97	0.00	1.97	1	0.84 0.07 0.95 1.0 0.046	44.55 85.19	0.120 2.61	0.89 0.37 0	0.80 1.01	1.0 0.	.039 1.79	72.69 0.11	3.03	2.82	2		1.018055 34.986 3.3	40.634
24.770 55	95.18 20.5 0.393 20.4 14.3 6.19	1.91% Sand-Slime Taili	0.059 119.0 1	.40 0.56 0.84	1	1.02 20.768	288.68 24	23 23 2	.05% 2.6 479	6 1.98	0.01	1.97	1	0.84 0.06 0.95 1.0 0.046	38.80 63.02	0.091 1.97	0.89 0.28 0	0.80 1.00	1.0 0.	.039 3.40	82.30 0.13	2 3.43	2.70	2		1.016063 20.859 1.	997 24.226
24.934 55		1.89% Sand-Slime Taili	0.059 119.0 1	.41 0.56 0.85	1	1.01 16.751	232.84 19	58 18 2	.06% 2.7 479	6 1.99	0.01	1.98	1	0.84 0.05 0.96 1.0 0.047	37.17 56.75	0.084 1.81	0.89 0.26 0	0.80 1.00	1.0 0.	.039 3.96	77.45 0.12	3.18	2.50	2		1.012167 16.856 1.6	138 19.577
25.098 55	04.85 14.6 0.266 14.4 26.3 11.40	1.83% Sand-Slime Taili	n 0.059 119.0 1	.42 0.57 0.85	1	1.01 14.503	201.59 17	04 15 2	.03% 2.7 479	6 2.00	0.02	1.98	1	0.83 0.05 0.96 1.0 0.047	36.28 53.31	0.081 1.73	0.88 0.24 0	0.80 1.00	1.0 0.	.039 4.34	73.97 0.11	3 3.02	2.38	2		1.007857 14.669 1.4	044 17.037
25.262 55	04.69 24.0 0.214 23.8 30.2 13.07	0.89% Sand-Slime Taili	n 0.059 119.0 1	.43 0.57 0.86	1	1.00 23.851	331.52 27	92 26 0	.95% 2.4 479	6 2.01	0.02	1.99	1	0.83 0.06 0.95 1.0 0.046		0.097 2.09	0.88 0.31 0	0.80 1.00	1.0 0.	.039 2.21	61.74 0.102	2 2.60	2.35	2		1.003389 24.039 2.3	015 27.920
25.426 55	94.52 24.6 0.322 24.5 24.1 10.42	1.31% Sand-Slime Taili	0.059 119.0 1	.44 0.58 0.86	1	1.00 24.455	339.93 28	58 27 1	.39% 2.5 479	6 2.02	0.03	1.99	1	0.83 0.06 0.95 1.0 0.046	40.32 68.90	0.098 2.12	0.88 0.31 0	0.80 1.00	1.0 0.	.039 2.54	72.71 0.11		2.52	2		0.9994 24.605 2.3	557 28.578
25.590 55		2.01% Sand-Slime Tailin		.45 0.58 0.87	1	1.00 18.640	259.10 21	83 20 2	.18% 2.7 479	6 2.03	0.03	2.00	1	0.83 0.05 0.95 1.0 0.047	37.96 59.79		0.88 0.27 0	0.80 1.00		.040 3.77	82.36 0.13		2.60	2		0.995211 18.799 1.7	
25.754 55	04.20 17.6 0.410 17.4 32.3 14.00	2.33% Sand-Slime Tailin	0.059 119.0 1	.46 0.59 0.87	1	0.99 17.234	239.55 20	25 19 2	.54% 2.7 479	6 2.04	0.04	2.00	1	0.83 0.05 0.96 1.0 0.047	37.40 57.65	0.085 1.83	0.88 0.26 0	0.80 1.00	1.0 0.	.040 4.27	86.54 0.14	3.51	2.67	2		0.991028 17.434 1.6	691 20.248
25.918 55			0.001 110.1	.47 0.59 0.88	1	0.99 14.652	203.67 17	36 16 2	.84% 2.8 719	6 2.05	0.04	2.01	1	0.83 0.05 0.96 1.0 0.047	36.13 53.49		0.88 0.24 0	0.80 1.00		.040 5.00			2.62	2		0.987343 14.944 1.4	
	93.87 12.7 0.338 12.4 51.7 22.40			.48 0.60 0.88	1	0.98 12.217			.00% 2.9 719	6 2.06	0.05	2.01	1	0.83 0.05 0.96 1.0 0.047	35.16 49.72		0.88 0.22 0	0.80 1.00		.040 5.79	84.24 0.13		2.50	2		0.983689 12.535 1.2	
26.246 55	93.70 17.4 0.296 17.0 74.4 32.24			.49 0.61 0.88	1	0.98 16.605	230.81 19	•••••	.86% 2.7 479	6 2.07	0.05	2.01	1	0.82 0.05 0.96 1.0 0.047	37.25 57.06		0.87 0.26 0	0.80 0.99		.040 3.77	1 11 0 01 11		2.37	2		0.97965 17.06 1.6	
26.410 55					1	0.98 15.162			.32% 2.8 479	2.00	0.06	2.02	1	0.82 0.05 0.96 1.0 0.047	36.58 54.47			0.80 0.99		.040 4.48			2.44	2		0.975649 15.404 1.4	
26.574 55				.51 0.62 0.89	1	0.97 14.863	206.60 17		.82% 2.8 719	6 2.09	0.07	2.02	1	0.82 0.05 0.96 1.0 0.047	36.31 54.18		0.87 0.24 0	0.80 0.99		.040 4.91	87.67 0.143		2.60	2		0.972092 15.387 1.4	
26.739 55				.52 0.62 0.90	1	0.97 15.487			.83% 2.8 719	6 2.10	0.07	2.03	1	0.82 0.05 0.96 1.0 0.047		0.082 1.75		0.80 0.99		.040 4.84			2.62	2		0.968565 15.723 1.5	
	93.0519.80.35319.459.325.69			.53 0.63 0.90	1	0.97 18.751			.93% 2.6 479	6 2.11	0.08	2.03	1	0.82 0.05 0.95 1.0 0.047		0.088 1.88	0.87 0.27 0	0.80 0.99		.040 3.55			2.45	2		0.965029 19.108 1.8	
27.067 55	92.88 25.7 0.481 25.6 31.0 13.43			.54 0.63 0.91	1	0.96 24.609			.99% 2.5 479	6 2.12	0.08	2.04	1	0.82 0.06 0.95 1.0 0.047	40.40 69.20		0.87 0.31 0	0.80 0.99		.040 3.01	86.67 0.14		2.73	2		0.963182 24.796 2.3	
		1.93% Sand-Slime Tailin		.55 0.64 0.91	1	0.96 22.359			.07% 2.6 479		0.09	2.04	1	0.82 0.06 0.95 1.0 0.047	39.51 65.78			0.80 0.99		.040 3.27	85.87 0.13		2.66	2		0.958797 22.614 2.1	
27.395 55				.56 0.64 0.92	1	0.95 21.416			.37% 2.6 479		0.09	2.05	1	0.82 0.06 0.95 1.0 0.047	39.16 64.43		0.87 0.29 0	0.80 0.99		.040 3.59	90.66 0.14		2.75	2		0.95481 21.757 2.	
27.559 55			0.000 110.0 1	.57 0.65 0.92	1	0.95 16.510			.33% 2.7 479		0.10	2.05	1	0.81 0.05 0.95 1.0 0.047	37.20 56.86		0.86 0.26 0	0.80 0.99		.040 4.23			2.46	2		0.94942 16.932 1.	
27.723 55				.58 0.65 0.92	1	0.95 21.674			.78% 2.6 479	6 2.16		2.06	1	0.81 0.06 0.95 1.0 0.047		0.093 1.99		0.80 0.99			79.73 0.12		2.48	2		0.947722 22.062 2.1	
27.887 55				.59 0.66 0.93	1	0.94 17.700			.22% 2.7 479		0.11	2.06	1	0.81 0.05 0.95 1.0 0.047		0.086 1.83		0.80 0.98		.041 3.98			2.46	2		0.942001 17.917 1.7	
28.051 55	91.9023.90.38723.575.032.50	1.62% Sand-Slime Taili	0.059 119.0 1	.60 0.66 0.93	1	0.94 22.063	306.68 26	14 24 1	.73% 2.6 479	6 2.18	0.11	2.06	1	0.81 0.06 0.95 1.0 0.047	39.47 65.61	0.094 2.01	0.86 0.30 0	0.80 0.98	1.0 0.	.041 3.04	79.33 0.120	5 2.92	2.46	2		0.940871 22.504 2.1	545 26.137

Data File: 13-52106_SP3-1S-BSC-CPT Location: White Mesa 2013 CPT Investigation	Idriss and Boulanger (2008) Max. Horiz. Acceleration, Amax/g: 0.15		5620.47 Ground Surface Elevation Immediately after Placement of Final Cover (ft ans) FINAL COVER (ft) (ft) (ft) Layer (ft) (t) (c) (ts) (ts) Layer (tsf) (tsf) (tsf) (tsf) (tsf) (tsf)	
.\.\.\6.2.3 Field Data\2013 Field Investigation\Conetec Tailings Sands Tailings Sand-Slimes Tailings Slimes Interim Cover	Da Earthquake Moment Magnitude, M: 5.5 Magnitude Scaling Factor, MSF: 1.69 Youd, et al (2001) Max. Horiz. Acceleration, Amax/g: 0.15 Earthquake Moment Magnitude, M: 5.5	5590.59 Water surface elevation at t ₂ (ft amsl) 3 5 1.44 Scaling Factor for stress ration, r _m 0	0.50 Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after pl Erosion Protection Layer ###### 5620.22 5619.97 0.50 0.055 110 0.028 0.014 0.00 0.00 0.028 0.014 3.50 Thickness of Water Storage/Rooting Zone (ft) ater Storage/Rooting Zone Layer ###### 5618.22 5616.47 3.50 0.054 107 0.215 0.121 0.00 0.00 0.215 0.121 3.60 Thickness of High Compaction Layer (ft) High Compaction Layer ###### 5618.27 5612.77 3.50 0.064 107 0.424 0.320 0.00 0.424 0.320 0.41 Thickness of Random/Platform Fill on on top of existing interim cover (ft) High Compaction Layer ###### 5612.77 5612.57	1
Cells Requiring User Input/Manipulation 2013 CPT Data from ConeTec	Magnitude Scaling Factor, MSF: 2.21	7.51 Equiv. Number of Uniform Strain Cycles, N 5 CPT Data Interpretations	5590.59 Elevation of bottom of tailings (liner) (ft amsl) Liquefaction Triggering Analyses Idris	riss & Boulanger (2008)
Depth at time Pw Pv of CPT Elevation qt fs qc (u2) (u2 (ft) (ft amsl) TSF TSF TSF (ft) PS	2) fs/qt determined Weight Weight of CPT at time of C	time of at time of Penetration Ratio, Fr 1	FC Item constraints Cyclic Stress Ratio Cyclic Resistance Ratio Cyclic Resistance Ratio Cyclic Stress Ratio Avg Liquefiable? For Item constraint CN % (tsf) (tsf) (tsf) 1=Yes 0=No	qc1 qc1 qc1N TSF MPa
0.3285612.231.00.0101.00.440.40.4925611.041.00.0101.00.010.0100.8205611.44560.0235.61.446.20.9845611.589.50.0939.416.67.21.1485611.0480.00.9127.9.917.97.71.6405610.2989.01.03388.917.57.21.6405610.769.611.2329.617.47.52.421335610.4353.31.64053.39.664.22.1335610.435.331.64053.39.664.22.4615610.109.81.42439.78.07.72.4615609.113.601.1253.600.50.22.4525609.913.601.1253.600.50.23.1175609.413.01.1253.600.50.23.4455609.122.7.80.771.880.30.33.6095608.522.23.1133.19-1.80.23.7375608.791.881.0371.880.30.23.6095607.471.1281.170.30.24.2555607.391.881.0371.880.33.354055607.471.1371.0471.186.33.354055606.697.61.447.75.57.4 <td>19 1.00% Interim Cover 0.050 100.7 0.02 0.00 0.050 0.10% Interim Cover 0.050 100.7 0.03 0.00 0.00 0.10% Interim Cover 0.050 100.7 0.03 0.00 0.00 0.128 Interim Cover 0.050 100.7 0.05 0.00 0.00 0.144% Interim Cover 0.050 100.7 0.07 0.00 0.00 11.44% Interim Cover 0.050 100.7 0.10 0.00 0.00 10.17 Interim Cover 0.050 100.7 0.10 0.00 0.00 10.14 4.27% Interim Cover 0.050 100.7 0.11 0.00 0.00 10.3 3.28% Interim Cover 0.050 100.7 0.14 0.00 0.00 11.3 5.86% Sime Tailings 0.041 82.7 0.16 0.00 0.00 12.3 5.86% Sime Tailings 0.041<td>0.01 0 170 1700 23.63 1.97 120 1.01% 2.1 51% 0.02 0 1.70 1.700 23.63 1.97 39 1.03% 2.2 51% 0.03 0 1.70 1.700 23.63 1.97 39 1.03% 2.2 51% 0.04 0 1.70 1.700 23.63 1.97 39 1.03% 2.2 51% 0.05 0 1.70 1.700 23.63 1.87 1.90 0.99% 1.7 15% 0.06 0 1.70 151.30 2010.71 1.71 1.75 1.44% 1.6 51% 0.07 0 1.70 163.37 2010.71 1075 1.14% 1.6 51% 0.10 0 1.70 163.37 12.06 1.74% 1.6 51% 0.11 0 1.70 67.57 10.91.40 9.399 4.24% 3.75% 2.1</td><td>95 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0<td>1.69750.16251.9711.70460.16321.9801.69890.16271.9731.69810.16261.9729.58750.917911.13516.1051.541918.70533.5133.208538.92360.2635.769560.991136.0213.023157.979151.3214.487175.744163.4515.649189.835132.131.265153.46390.6778.6815105.31676.5926.471378.50477.0057.372489.43665.8996.309276.53861.1545.864971.02754.1945.188662.94451.2874.910259.56747.1914.518154.81039.3953.771745.75530.20253.066137.19519.9041.905623.11743.6274.176850.67041.3663.960448.04438.3953.771745.75526.6936.002372.815128.6912.321149.471147.8714.157171.74073.9716.656202.054183.9217.609213.613157.8415.112183.320310.639.6345118.87898.5999.4399114.51790.35675.352664.93310.639.6345118.87898.5999.4399114.51793.5675.3526<</td></td></td>	19 1.00% Interim Cover 0.050 100.7 0.02 0.00 0.050 0.10% Interim Cover 0.050 100.7 0.03 0.00 0.00 0.10% Interim Cover 0.050 100.7 0.03 0.00 0.00 0.128 Interim Cover 0.050 100.7 0.05 0.00 0.00 0.144% Interim Cover 0.050 100.7 0.07 0.00 0.00 11.44% Interim Cover 0.050 100.7 0.10 0.00 0.00 10.17 Interim Cover 0.050 100.7 0.10 0.00 0.00 10.14 4.27% Interim Cover 0.050 100.7 0.11 0.00 0.00 10.3 3.28% Interim Cover 0.050 100.7 0.14 0.00 0.00 11.3 5.86% Sime Tailings 0.041 82.7 0.16 0.00 0.00 12.3 5.86% Sime Tailings 0.041 <td>0.01 0 170 1700 23.63 1.97 120 1.01% 2.1 51% 0.02 0 1.70 1.700 23.63 1.97 39 1.03% 2.2 51% 0.03 0 1.70 1.700 23.63 1.97 39 1.03% 2.2 51% 0.04 0 1.70 1.700 23.63 1.97 39 1.03% 2.2 51% 0.05 0 1.70 1.700 23.63 1.87 1.90 0.99% 1.7 15% 0.06 0 1.70 151.30 2010.71 1.71 1.75 1.44% 1.6 51% 0.07 0 1.70 163.37 2010.71 1075 1.14% 1.6 51% 0.10 0 1.70 163.37 12.06 1.74% 1.6 51% 0.11 0 1.70 67.57 10.91.40 9.399 4.24% 3.75% 2.1</td> <td>95 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0<td>1.69750.16251.9711.70460.16321.9801.69890.16271.9731.69810.16261.9729.58750.917911.13516.1051.541918.70533.5133.208538.92360.2635.769560.991136.0213.023157.979151.3214.487175.744163.4515.649189.835132.131.265153.46390.6778.6815105.31676.5926.471378.50477.0057.372489.43665.8996.309276.53861.1545.864971.02754.1945.188662.94451.2874.910259.56747.1914.518154.81039.3953.771745.75530.20253.066137.19519.9041.905623.11743.6274.176850.67041.3663.960448.04438.3953.771745.75526.6936.002372.815128.6912.321149.471147.8714.157171.74073.9716.656202.054183.9217.609213.613157.8415.112183.320310.639.6345118.87898.5999.4399114.51790.35675.352664.93310.639.6345118.87898.5999.4399114.51793.5675.3526<</td></td>	0.01 0 170 1700 23.63 1.97 120 1.01% 2.1 51% 0.02 0 1.70 1.700 23.63 1.97 39 1.03% 2.2 51% 0.03 0 1.70 1.700 23.63 1.97 39 1.03% 2.2 51% 0.04 0 1.70 1.700 23.63 1.97 39 1.03% 2.2 51% 0.05 0 1.70 1.700 23.63 1.87 1.90 0.99% 1.7 15% 0.06 0 1.70 151.30 2010.71 1.71 1.75 1.44% 1.6 51% 0.07 0 1.70 163.37 2010.71 1075 1.14% 1.6 51% 0.10 0 1.70 163.37 12.06 1.74% 1.6 51% 0.11 0 1.70 67.57 10.91.40 9.399 4.24% 3.75% 2.1	95 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <td>1.69750.16251.9711.70460.16321.9801.69890.16271.9731.69810.16261.9729.58750.917911.13516.1051.541918.70533.5133.208538.92360.2635.769560.991136.0213.023157.979151.3214.487175.744163.4515.649189.835132.131.265153.46390.6778.6815105.31676.5926.471378.50477.0057.372489.43665.8996.309276.53861.1545.864971.02754.1945.188662.94451.2874.910259.56747.1914.518154.81039.3953.771745.75530.20253.066137.19519.9041.905623.11743.6274.176850.67041.3663.960448.04438.3953.771745.75526.6936.002372.815128.6912.321149.471147.8714.157171.74073.9716.656202.054183.9217.609213.613157.8415.112183.320310.639.6345118.87898.5999.4399114.51790.35675.352664.93310.639.6345118.87898.5999.4399114.51793.5675.3526<</td>	1.69750.16251.9711.70460.16321.9801.69890.16271.9731.69810.16261.9729.58750.917911.13516.1051.541918.70533.5133.208538.92360.2635.769560.991136.0213.023157.979151.3214.487175.744163.4515.649189.835132.131.265153.46390.6778.6815105.31676.5926.471378.50477.0057.372489.43665.8996.309276.53861.1545.864971.02754.1945.188662.94451.2874.910259.56747.1914.518154.81039.3953.771745.75530.20253.066137.19519.9041.905623.11743.6274.176850.67041.3663.960448.04438.3953.771745.75526.6936.002372.815128.6912.321149.471147.8714.157171.74073.9716.656202.054183.9217.609213.613157.8415.112183.320310.639.6345118.87898.5999.4399114.51790.35675.352664.93310.639.6345118.87898.5999.4399114.51793.5675.3526<

			WHIT	E MESA	TAILINGS R	EPOSITOR	Y LIQUEFACT	ION AND S	EISMIC SET	TLEMENT A	ANALYSES	- 3-1S												Elev. at Elev.		m		Stress at	Stress at	Pressure		ress at Str	ess at		
Data File:	13-52106 SP3-	1S-BSC-CPT	Idriss and Boulan	ger (200)8)				560	8.00 Water	r surface ele	vation duri	ng CPT inv	estigation (ft 5612.56	Ground	Surface Ele	evation at ti	me of CPT (ft amsl)					Top of Midpoi Layer of Lay		Thicknes r s of	Unit Unit Weigh Weigh		Midpoint of Layer	at Bottom of Layer	Pressure at B Midpoint of of	ottom Mie Layer of	lpoint Laver		
Location:	White Mesa 201	13 CPT Investigation	Max. Horiz.	Acceler	ation, Amax/g	j:	0.15			4.28 Water				. .	5620.47	Ground	Surface Ele	vation Imm	nediately after Placeme	nt of Final Cover	er (ft amsl)	FINAL C	OVER	(ft) (ft)			t (tcf) (pcf)		(tsf)	(tsf)			tsf)		
\\6.2.3 Fie	ld Data\2013 Field In	vestigation\Conetec Da	Earthquake	Moment	t Magnitude, N		5.5		559	5.59 Water	r surface ele	vation at t ₁	(ft amsl)		0.50	Thickne	ess of Erosio	n Protectio	on Layer (rock mulch/to	psoils) Immediat	tely after pla	Erosion F	Protection Layer	###### 5620.	.22 5619.9	97 0.50	0.055 1	10 0.028	0.014		0.00	0.028	0.014		
Tailin	s Sands		Magnitude	Scaling	Factor, MSF:		1.69		559	0.59 Water	r surface ele	vation at t ₂	(ft amsl)		3.50	Thickne	ess of Water	Storage/R	ooting Zone (ft)		ater S	Storage/Roo	ting Zone Layer	###### 5618.	.22 5616.4	47 3.50	0.054 1	07 0.215	0.121	0.00	0.00	0.215	0.121		
	s Sand-Slimes		Youd, et al (2001)												3.50		ess of High (J 1 1		###### 5614.				20 0.424	0.320		0.00	0.424	0.320		
	js Slimes		-		cceleration, A		0.15		1.4		ng Factor for				0.41				n Fill on on top of existi	0	· (ft)	Platform/Ra	ndom Fill Layer	###### 5612.	.77 5612.5	56 0.41	0.050 1	01 0.445	0.434	0.00	0.00	0.445	0.434		
	1 Cover				oment Magnitu	,	5.5		0.4		netric Strain			•					Cover Placement, $\Delta \sigma_{FC}$	(psf)															
Cells	Requiring User Input		Mag	gnitude S	Scaling Factor	r, MSF:	2.21 2.21		7.5		. Number of	Uniform St	rain Cycles	, N	5590.59	_		of tailings	(liner) (ft amsl)																
	2013 CPT Data f	rom ConeTec				rotai i		CPT	Data Interpr	etations		No and a line of	Namalian	_		Condit	ions at t ₁						Liquef	action Triggeri	<u> </u>								Idriss & Bo	ulanger (200	<mark>/8)</mark>
Depth			Materia Type (a	-			Pore Stress					Cone	Normalize d Friction	Type ndex.			Effective			driss & Boulange	. ()					ud et al. (200	01)		·						
at time		Pw Pw	determin	0			essure time o					Penetration	Ratio, Fr	I,			re Stress at		Cyclic Stress R		lic Resistance Ra			Cyclic Stress						A			01		
of CPT Eleva (ft) (ft an		qc (u2) (u2) TSF (ft) PSI	fs/qt (%)	vve	eight vveight tcf) (pcf)		time of CPT (tsf) (tsf)	CPT 1=Yes	-	IC1 QC1 SF MP		Resistance , Q _t	(%)	FC	at t ₁ (tsf)	at t ₁ (tsf)	τ ₁ (tsf)	at t ₁ 1=Yes	r _d C _σ K _σ K _a	CSR	(CRI		r _d D _r	f K _σ	K _a	CSR	Kc qc _{1n-c}	(CRR)		Avg FoS	Liquefiable?		CN qc1 TSF	qc1 MPa	qc1N
(it) (it an	ISI) ISF ISF	15F (II) PSI	(%)	(1	(per)	(ISI)	((SI) ((SI)	0=No		SF MP	a			70	(tst)	(tsi)	(ISI)	0=No			C _{1n} qC _{1n-cs M=7.5}					M=7.5,	Kc qc _{1n-c}	CS M=7.5,	FoS	F05	1=Yes 2=No		155	MPa	
40.400 5000	40 07 0.004	0.4 54.0 00.40	0.000/		050 440.0	0.00			4.00 4/	804 219.6	68 18.99	00	0 740/	0.4 470	4.40	0.00	4.40	0=1N0	0.94 0.05 0.99 1.0	s'v=1atm	s'v=1a		0.05 0.05	0.00 4.44	4.0	s'v=1atm	2.36 44.75	s'v=1atm 5 0.087		0.04	2=N0		00400 40.054	4 4 5055	40.004
12.139 5600 12.303 5600		9.4 51.9 22.49 10.7 65.5 28.37	0.66% Sand-Slime		059 119.0 059 119.0		0.24 0.44 0.24 0.45	1	1.69 15		45 21.55	20 23		2.4 47% 2.5 47%	6 1.12 6 1.13	0.00	=	0	0.94 0.05 0.99 1.0		96 55.95 0.08 86 59.41 0.08			0.80 1.14 0.80 1.14			2.36 44.75 2.59 55.72		4.06 4.42	2.81 3.03	2		588489 16.351 570492 18.557		18.991 21.553
12.303 5600		16.4 67.8 29.38			059 119.0		0.24 0.45	1	1.60 26		45 21.55 32 31.14	23 36		2.5 479	6 1.13	0.00		0			22 72.37 0.10		0.95 0.27	0.80 1.14			2.59 55.72		4.42	3.03	2		570492 16.557 596709 26.814		21.555
12.631 5599		30.8 23.6 10.23			062 123.5		0.25 0.45		1.49 45			36 66		1.8 18%	6 1.14 6 1.15	0.00		0	0.93 0.06 0.98 1.0		22 72.37 0.10 78 89.31 0.12			0.79 1.14			1.04 50.96		4.21	3.42	2		490923 46.095		53.537
12.795 5599					059 119.0		0.25 0.45		1.48 45			65		1.9 47%	6 1.15 6 1.16	0.00		0	0.93 0.07 0.98 1.0		80 101.53 0.14			0.79 1.14			1.21 63.65		4.64	3.70	2		484114 45.406		52.737
12.959 5599			1.18% Sand-Slime		059 119.0		0.26 0.46		1.51 37			52		2.2 47%	6 1.10 6 1.17	0.00		0			59 89.16 0.12			0.80 1.13			1.63 71.04		5.01	3.70	2		506858 37.521		43.579
13,123 5599		22.0 13.6 5.90					0.27 0.47	1	1.52 33			46		2.2 47%	6 1.18	0.00		0	0.93 0.06 0.98 1.0		96 82.89 0.11			0.80 1.13			1.72 67.05		4.73	3.47	2		515057 33.521		38.932
13.287 5599	27 17.9 0.174	17.8 18.4 7.98	0.97% Sand-Slime	Tailing 0.	059 119.0	0.75	0.27 0.47	1	1.54 27	.284 379.2	25 31.89	36	1.02%	2.3 47%	6 1.19	0.00	1.19	0	0.93 0.06 0.98 1.0	0.053 41.4	49 73.38 0.10		0.95 0.33	0.80 1.13	1.0	0.037	1.86 59.29	9 0.099	4.31	3.14	2		535421 27.461		31.894
13.451 5599	11 18.6 0.120	18.3 33.7 14.61	0.65% Sand-Slime	Tailing 0.	059 119.0	0.76	0.28 0.48	1	1.52 27	.891 387.6	68 32.76	37	0.67%	2.2 47%	6 1.20	0.00	1.20	0	0.93 0.06 0.98 1.0	0.052 41.7	79 74.56 0.10	05 2.01	0.95 0.33	0.80 1.12	1.0	0.037	1.60 52.27	7 0.093	4.01	3.01	2	1.	520751 28.211	1 2.7009	32.765
13.615 5598	94 19.0 0.093	18.8 27.6 11.94	0.49% Sand-Slime	Tailing 0.	059 119.0	0.77	0.28 0.48	1	1.51 28	.342 393.9	95 33.22	38	0.51%	2.1 47%	6 1.21	0.00	1.21	0	0.93 0.06 0.98 1.0	0.052 41.9	95 75.17 0.10	06 2.03	0.95 0.33	0.80 1.12	1.0	0.037	1.47 48.88	8 0.091	3.86	2.95	2	1.	508334 28.601	1 2.7383	33.218
13.779 5598	78 18.8 0.035	18.6 24.7 10.70	0.19% Sand-Slime	Tailing 0.	059 119.0	0.77	0.29 0.49	1	1.50 27	.908 387.9	92 32.68	37	0.19%	2.0 47%	6 1.22	0.00	1.22	0	0.92 0.06 0.98 1.0	0.052 41.7	76 74.45 0.10	05 2.01	0.95 0.33	0.80 1.12	1.0	0.037	1.26 41.2	7 0.084	3.56	2.79	2	1.	500419 28.139	9 2.694	32.682
13.943 5598	02 11.0 0.010	17.4 14.9 6.47			059 119.0	0.78	0.29 0.49	1	1.50 26	.084 362.5	57 30.46	34	0.27%	2.0 47%	6 1.23	0.00	1.23	0	0.92 0.06 0.98 1.0		98 71.44 0.10			0.80 1.12			1.36 41.55	0.000	3.54	2.74	2	1.	499961 26.224	4 2.5107	30.458
14.107 5598			0.65% Sand-Slime		059 119.0	0.79	0.30 0.50	1	1.51 22	.922 318.6	61 26.92	29	0.69%	2.3 47%	6 1.24	0.00	1.24	0	0.92 0.06 0.98 1.0				0.95 0.30	0.80 1.12			1.84 49.42	2 0.091	3.78	2.80	2		506034 23.175		26.917
14.271 5598			1.55% Sand-Slime		059 119.0		0.30 0.50	1	1.49 24			32		2.4 47%	6 1.25	0.00		0	0.92 0.06 0.98 1.0		50 69.56 0.09		0.95 0.31	0.80 1.11			2.44 71.02		4.66	3.28	2		485827 25.027		29.068
14.436 5598	12 15.9 0.208	15.7 41.2 17.86			059 119.0		0.31 0.51	1	1.48 23			30		2.4 47%	6 1.26	0.00		0	0.92 0.06 0.98 1.0		92 67.36 0.09		0.95 0.30	0.80 1.11			2.37 64.97		4.30	3.07	2		483063 23.621		27.435
14.600 5597	96 17.8 0.165	17.6 26.3 11.41			059 119.0		0.31 0.51	1	1.46 25		29 30.22	33		2.3 47%	6 1.27	0.00		0	0.92 0.06 0.98 1.0		90 71.12 0.10		0.95 0.32	0.80 1.11			1.92 58.1		3.97	2.96	2		461241 26.017		30.217
14.764 5597					059 119.0		0.32 0.52		1.47 21		52 25.85			2.3 47%	6 1.28	0.00		0			37 65.21 0.09			0.80 1.11			1.95 50.29		3.68	2.74	2		470246 22.253		25.846
14.928 5597 15.092 5597	63 16.4 0.396 47 15.6 0.201	16.2 36.8 15.96 15.3 59.5 25.80	2.41% Sand-Slime		059 119.0 059 119.0		0.32 0.52 0.33 0.52		1.45 23					2.6 47% 2.4 47%	6 1.29 6 1.30	0.00		0	0.92 0.06 0.98 1.0		00 67.67 0.09 53 65.85 0.09		0.95 0.30 0.95 0.30	0.80 1.11			3.16 87.53 2.44 64.33		5.65 4.12	3.76 2.98	2		.45255 23.822 448658 22.659		27.667 26.317
15.256 5597	47 15.6 0.201 30 25.6 0.270				059 119.0		0.33 0.52		1.45 22 1.39 35			28 47		2.4 479	6 1.30 6 1.31	0.00		0			53 65.85 0.09 75 85.96 0.12		0.95 0.30	0.80 1.10			2.44 64.3		4.12	2.98	2		48658 22.658 388093 35.477		41.204
15.420 5597	14 21.4 0.308		1.06% Sand-Slime		059 119.0		0.33 0.53		1.39 33		27 41.20 58 34.71	47		2.2 479	6 1.31	0.00		0			75 85.96 0.12 47 77.18 0.10			0.80 1.10			2.11 73.2		4.20	3.32 3.31	2		399511 29.884		41.204 34.709
15.584 5596	98 18.8 0.188	18.7 18.8 8.16			059 119.0		0.34 0.54		1.40 26			33		2.3 479	6 1.32	0.00		0			07 71.78 0.10			0.80 1.10			1.98 60.69		3.87	2.93	2		404285 26.439		30.708
15.748 5596					059 119.0		0.34 0.54		1.40 20			36		2.3 477	6 1.33	0.00		0			92 75.04 0.10			0.80 1.10			2.18 72.28		4.38	3.23	2		387634 28.519		33.123
15.912 5596	65 16.7 0.170	16.4 37.1 16.09		1	059 119.0		0.35 0.55	1	1.40 22		47 27.07	29		2.4 47%	6 1.34 6 1.35	0.00		ő	0.91 0.06 0.97 1.0		80 66.87 0.09			0.80 1.09			2.19 59.36		3.76	2.81	2		399728 23.308		27.071
16.076 5596		19.5 48.9 21.20			059 119.0		0.36 0.55	1	1.38 26			34		2.3 47%	6 1.36	0.00		Ő			39 73.00 0.10		0.94 0.32	0.80 1.09			1.82 57.5		3.66	2.84	2		375706 27.219		31.613
16.240 5596		21.7 42.0 18.19			059 119.0		0.36 0.56	1	1.36 29			38		2.3 47%	6 1.36	0.00		0			43 77.01 0.10		0.94 0.34	0.80 1.09			2.04 70.42		4.18	3.16	2		358653 29.771		34.577
16.404 5596	16 21.9 0.319	21.5 65.3 28.28	1.46% Sand-Slime	Tailing 0.	059 119.0	0.93	0.37 0.56	1	1.35 29		13 34.32	37	1.52%	2.4 47%	6 1.37	0.00	1.37	0	0.90 0.06 0.97 1.0	0.051 42.3	34 76.66 0.10	08 2.13	0.94 0.34	0.80 1.09	1.0	0.038	2.16 74.09	9 0.118	4.34	3.24	2		351456 29.553		34.324
16.568 5595	99 28.0 0.500	27.9 24.0 10.38	1.78% Sand-Slime	Tailing 0.	059 119.0	0.94	0.37 0.57	1	1.32 36	.866 512.4	44 43.05	48	1.85%	2.3 47%	6 1.38	0.00	1.38	0	0.90 0.07 0.97 1.0	0.051 45.4	40 88.45 0.12	25 2.46	0.94 0.38	0.80 1.09	1.0	0.038	2.04 87.67	7 0.143	5.22	3.84	2		321846 37.064		43.048
16.732 5595	83 19.0 0.522	18.7 40.7 17.62	2.75% Slime Tailing	s 0.	057 113.1	0.95	0.38 0.57	1	1.35 25	.254 351.0	03 29.73	32	2.90%	2.6 71%	6 1.39	0.00	1.39	0	0.90 0.06 0.97 1.0	0.051 40.4	44 70.17 0.10	00 1.97	0.94 0.31	0.80 1.09	1.0	0.038	3.27 97.24	4 0.166	6.01	3.99	2	1.	349769 25.597	7 2.4506	29.729
16.896 5595	66 22.1 0.393	21.4 112.6 48.78	1.78% Sand-Slime	Tailing 0.	059 119.0	0.96	0.38 0.57	1	1.33 28	.441 395.3	33 34.12	37	1.86%	2.4 47%	6 1.40	0.00	1.40	0	0.90 0.06 0.97 1.0	0.051 42.2	27 76.39 0.10	08 2.13	0.94 0.34	0.80 1.08	1.0	0.038	2.39 81.44	4 0.130	4.69	3.41	2	1.	329655 29.376	6 2.8124	34.118
17.060 5595		22.6 47.8 20.69			059 119.0		0.39 0.58	1	1.32 29		56 35.10	38	2.10%	2.4 47%	6 1.41	0.00		1	0.90 0.06 0.97 1.0		61 77.71 0.11			0.80 1.08			2.49 87.26		5.06	3.62	2	1	.31966 30.218	8 2.893	35.096
17.224 5595		18.5 76.9 33.34			059 119.0		0.40 0.58	1	1.33 24		73 29.29	31	1.71%	2.5 47%	6 1.42	0.01	1.42	1			58 69.87 0.09		0.94 0.31	0.80 1.08			2.56 74.93		4.21	3.08	2	1.	327489 25.223	3 2.4148	29.295
17.388 5595		26.7 20.4 8.84			059 119.0		0.40 0.59		1.29 34		67 40.27	44		2.1 47%	6 1.43	0.01		1	0.90 0.07 0.97 1.0		43 84.70 0.11			0.80 1.08			1.49 59.88		3.49	2.92	2		293425 34.673		40.271
17.552 5595				1	059 119.0		0.41 0.59		1.29 31		53 36.47			2.0 47%		0.02			0.90 0.06 0.97 1.0		09 79.56 0.11			0.80 1.08			1.31 47.86		3.10	2.65	2		294762 31.399		36.469
17.716 5594		21.6 11.9 5.16			059 119.0		0.41 0.60		1.30 27		00 02.01	35		2.1 47%		0.02			0.89 0.06 0.97 1.0		74 74.35 0.10			0.80 1.08			1.42 46.25		3.02	2.54	2		.29659 28.077		32.609
17.880 5594	68 17.6 0.073	17.5 13.5 5.83	0.42% Sand-Slime	Tailing 0.	059 119.0	1.02	0.42 0.60	1	1.30 22	.828 317.3	31 26.64	27	0.44%	2.2 47%	6 1.46	0.03	1.43	1	0.89 0.06 0.97 1.0	0.051 39.6	64 66.29 0.09	95 1.86	0.94 0.30	0.80 1.07	1.0	0.039	1.68 44.88	8 0.087	2.95	2.41	2	1.	304474 22.938	8 2.1961	26.641

		WHITE MESA TAILINGS REPOSITORY		NO SETTI EMENT ANALYSES 2.20						Elev. at E	lev. At Botto	om		Stress at Stress	at Pressure	e Equil Pore S	Stress at S	itress at	
Data File:	13-52106_SP3-2C-BSC-CPT	Idriss and Boulanger (2008)	LIQUEFACTION AND SEISN	5605.30 Water surface elevation during CPT investigation (ft		Ground Surface Elevation at tir				Layer o	idpoint of f Layer Laye	er sof	Weigh Weight		ver of Layer	m Pressure at I r Midpoint of c	of Layer of	Nidpoint of Layer	
Location:	White Mesa 2013 CPT Investigation Field Data 2013 Field Investigation Conetec Data	Max. Horiz. Acceleration, Amax/g: 0.1 Earthquake Moment Magnitude, M: 5.	5	5602.54 Water surface elevation at t ₀ (ft amsl) 5591.64 Water surface elevation at t ₁ (ft amsl)	5621.51 0.50	Ground Surface Elevation Imm Thickness of Erosion Protection	ediately after Placement of Fina 1 Layer (rock mulch/topsoils) Im		FINAL COVER Erosion Protection La		(ft) (ft) 5621.26 5621.		t (tcf) (pcf) 0.055 110	(tsf) (tsf) 0.028 0.0	014 0.00		(tsf) 0.028	(tsf) 0.014	
	ings Sands ings Sand-Slimes	Magnitude Scaling Factor, MSF: 1.6 Youd, et al (2001)	69	5586.64 Water surface elevation at t_2 (ft amsl)	3.50 3.50	Thickness of Water Storage/Ro Thickness of High Compaction			/ater Storage/Rooting Zone La High Compaction La		5619.26 5617. 5615.76 5614.				121 0.00 320 0.00		0.215	0.121	
Taili	ings Slimes	Max. Horiz. Acceleration, Amax/g:	0.15	1.44 Scaling Factor for stress ration, r _m	3.19	Thickness of Random/Platform	Fill on on top of existing interim	cover (ft)	Platform/Random Fill La		612.415 5610.				320 0.00 504 0.00		0.424	0.320	
	rim Cover Is Requiring User Input/Manipulation	Earthquake Moment Magnitude, M: Magnitude Scaling Factor, MSF: 2.2	5.5 21 2.21	0.47 Volumetric Strain Ratio for Site-Specific Design Earl 7.51 Equiv. Number of Uniform Strain Cycles, N		Additional Stress due to Final C Elevation of bottom of tailings (
Death	2013 CPT Data from ConeTec	Material Chase De	CPT Data	I Interpretations Normalized Normalize Type		Conditions at t ₁ Pore Effective	Idriss & I	Boulanger (2008)		Liquefaction Triggeri		et al. (2001)					- F	Idriss & Boulange	(2008)
Depth at time of CPT Elev	Pw Pw vation qt fs qc (u2) (u2)	Type (as Unit Unit at time Pres	sure time of at time of	Cone d'Friction Index, Penetration Ratio, Fr I _c CN qc1 qc1 qc1N Resistance (%) FC	Total Stress	Pressure Stress at Saturated at t ₁ t ₁ at t ₁	Cyclic Stress Ratio	Cyclic Resistan		Cyclic Stress	Ratio K _a K _a			(000)	Avg			CN qc1 qc	1 qc1N
(ft) (ft a		(%) (tcf) (pcf) (tsf) (ts		TSF MPa , Qt %	(tsf)	(tsf) (tsf) 1=Yes 0=No	r _d C _σ K _σ K _a CSF M=7.5	Aqc _{1n} qc _{1n-cs}	M=7.5,	D _r i i	κ _σ κ _a	CSR M=7.5,	Kc qc _{1n-cs}	(CRR) M=7.5,	FoS	Liquefiable? 1=Yes 2=No		TSF MP	
0.164 561			00 0.01 0 1	.70 16.099 223.78 18.83 1153 8.59% 2.2 51%		0.00 0.59 0	s'v=1a/ 1.00 0.05 1.02 1.0 0.05		0.083 1.41 0.97 0.		2.53 1.0		1.65 31.02	sv=1atm P03		2		1.7 16.209 1.55	
0.328 561 0.492 561				.70 115.243 1601.88 133.95 4105 0.63% 1.0 51% .70 177.871 2472.41 206.68 4223 0.58% 1.0 51%	6 0.60 6 0.61	0.00 0.60 0 0.00 0.61 0	1.000.141.051.00.061.000.281.101.00.06				3.75 1.0 4.36 1.0		1.00 133.95 1.00 206.68	0.304 368.2 1.000 809.0				1.7 115.34 11.0 1.7 177.96 17.0	
0.656 561 0.820 561	10.10 10.1 0.000 10.0 0.0 2.12			.70 124.661 1732.79 144.86 2219 0.95% 1.2 51% .70 154.241 2143.95 179.20 2196 1.78% 1.5 51%		0.00 0.62 0 0.00 0.62 0	1.00 0.15 1.05 1.0 0.06 1.00 0.21 1.07 1.0 0.06				3.10 1.0 3.23 1.0		1.00 144.86 1.00 179.20	0.363 220.1				1.7 124.72 11.9 1.7 154.29 14.7	
0.984 560	09.84 98.7 0.951 98.7 4.8 2.06	0.96% Interim Cover 0.050 100.7 0.05 0.0	00 0.05 0 1	.70 167.790 2332.28 194.94 1991 0.96% 1.2 51%	6 0.63	0.00 0.63 0	1.00 0.25 1.08 1.0 0.06	2 98.73 293.67	1.000 16.07 0.97 0.	.81 0.60 0.60	3.13 1.0	0.014	1.00 194.94	1.000 404.9	9 210.53	2		1.7 167.84 16.0	
1.148 560 1.312 560				.70 242.879 3376.02 282.16 2470 0.81% 1.1 51% .70 241.910 3362.55 281.03 2153 0.54% 1.0 51%		0.00 0.64 0 0.00 0.65 0	1.00 0.30 1.09 1.0 0.06 1.00 0.30 1.08 1.0 0.06				2.95 1.0 2.79 1.0		1.00 282.16 1.00 281.03	1.000 347.2 1.000 303.9				1.7 242.94 23.2 1.7 241.97 23.1	
1.476 560	09.34 150.3 0.964 150.3 3.4 1.49	0.64% Interim Cover 0.050 100.7 0.07 0.0		.70 255.544 3552.06 296.84 2021 0.64% 1.0 51%	6 0.66	0.00 0.66 0	1.00 0.30 1.08 1.0 0.06				2.66 1.0	0.016	1.00 296.84	1.000 270.3				1.7 255.58 24.4	469 296.841
1.640 560 1.804 560				.70 242.862 3375.78 282.13 1729 0.66% 1.1 51% .70 220.643 3066.94 256.32 1428 0.70% 1.1 51%		0.00 0.67 0 0.00 0.67 0	1.00 0.30 1.08 1.0 0.06 1.00 0.30 1.07 1.0 0.06				2.55 1.0 2.46 1.0		1.00 282.13 1.00 256.32	1.000 243.3 1.000 221.3				1.7 242.91 23.2 1.7 220.69 21.1	
1.968 560 2.133 560		1.07% Interim Cover 0.050 100.7 0.10 0.0 0.58% Interim Cover 0.050 100.7 0.11 0.0		.70 229.313 3187.45 266.38 1360 1.07% 1.3 51% .70 222.496 3092.69 258.45 1218 0.58% 1.1 51%		0.00 0.68 0 0.00 0.69 0	1.00 0.30 1.07 1.0 0.06 1.00 0.30 1.07 1.0 0.06				2.37 1.0 2.30 1.0		1.00 266.38 1.00 258.45	1.000 202.9 1.000 187.4				1.7 229.35 21.9 1.7 222.52 21.3	
2.297 560	08.52 120.4 0.968 120.4 3.4 1.47	0.80% Interim Cover 0.050 100.7 0.12 0.0	00 0.12 0 1	.70 204.714 2845.52 237.80 1040 0.80% 1.2 51%	6 0.70	0.00 0.70 0	1.00 0.30 1.06 1.0 0.06	1 113.77 351.58	1.000 16.32 0.97 0.	.89 0.60 0.60	2.23 1.0	0.019	1.00 237.80	1.000 174.1	2 95.22			1.7 222.52 21.3	
2.461 560 2.625 560		1.15% Interim Cover 0.050 100.7 0.12 0.0 1.54% Interim Cover 0.050 100.7 0.13 0.0		.70 167.773 2332.04 194.90 796 1.15% 1.4 51% .70 128.367 1784.30 149.13 570 1.54% 1.6 51%		0.00 0.71 0 0.00 0.72 0	1.00 0.25 1.05 1.0 0.06 1.00 0.16 1.03 1.0 0.05				2.17 1.0 1.94 1.0		1.00 194.90 1.00 149.13	1.000 162.5 0.388 59.23		2		1.7 167.81 16.0 1.7 128.4 12.2	
2.789 560	08.03 54.0 0.768 54.0 2.0 0.85	1.42% Interim Cover 0.050 100.7 0.14 0.0	00 0.14 0 1	.70 91.749 1275.31 106.59 383 1.43% 1.6 51%	6 0.72	0.00 0.72 0	0.99 0.11 1.02 1.0 0.05	9 67.72 174.31	0.455 7.77 0.97 0.	.60 0.70 0.70	1.72 1.0	0.025	1.00 106.59	0.193 27.65	5 17.71	2		1.7 91.77 8.7	786 106.585
2.953 560 3.117 560	0.001 0.001 0.001			.70 85.136 1183.39 98.90 336 2.00% 1.8 51% .70 96.713 1344.31 112.36 362 1.93% 1.8 51%		0.00 0.73 0 0.00 0.74 0	0.99 0.11 1.02 1.0 0.05 0.99 0.12 1.02 1.0 0.05				1.66 1.0 1.68 1.0		1.10 108.69 1.08 121.15	0.199 27.05		2 2		1.7 85.149 8.15 1.7 96.742 9.26	
3.281 560		1.15% Sand Tailings 0.051 102.8 0.17 0.0 1.70% Sand-Slime Tailing 0.047 93.3 0.17 0.0		70 109.174 1517.52 126.83 387 1.15% 1.6 18%		0.00 0.75 0	0.99 0.13 1.02 1.0 0.05				1.71 1.0		1.00 126.83 1.08 110.88	0.270 32.92		2		1.7 109.2 10.4	454 126.825
3.445 560 3.609 560				.70 88.570 1231.12 102.89 300 1.71% 1.8 47% .70 49.436 687.16 57.43 161 3.60% 2.2 71%		0.00 0.76 0 0.00 0.76 0	0.99 0.11 1.01 1.0 0.05 0.99 0.08 1.01 1.0 0.05		0.100 0.00 0.01 0.		1.60 1.0 1.41 1.0		1.08 110.88 1.62 93.01	0.207 24.13 0.155 17.39		2		1.7 88.591 8.48 1.7 49.443 4.73	
3.773 560 3.937 560	21.00 21.0 1.012 21.0 1.0 0.00			.70 36.550 508.05 42.47 114 4.89% 2.4 71% .70 27.744 385.64 32.26 83 4.19% 2.4 71%		0.00 0.77 0 0.00 0.78 0	0.99 0.07 1.01 1.0 0.05 0.99 0.06 1.01 1.0 0.05				1.36 1.0 1.35 1.0		2.21 93.92 2.34 75.43	0.157 17.0 ⁴ 0.120 12.54		2		1.7 36.566 3.50 1.7 27.779 2.65	
4.101 560	06.72 18.3 0.612 18.2 5.0 2.18	3.35% Slime Tailings 0.041 82.7 0.20 0.0	00 0.20 0 1	.70 31.008 431.01 36.08 90 3.39% 2.3 71%	6 0.78	0.00 0.78 0	0.99 0.06 1.01 1.0 0.05	7 42.65 78.73	0.111 1.93 0.97 0.	.35 0.80 0.80	1.34 1.0	0.032	1.99 71.97	0.115 11.59	9 6.76	2		1.7 31.061 2.97	
4.265 560 4.429 560		· · · · · · · · · · · · · · · · · · ·		.70 25.568 355.40 29.75 72 4.11% 2.4 71% .70 32.810 456.06 38.17 89 3.14% 2.3 71%		0.00 0.79 0 0.00 0.80 0	0.99 0.06 1.01 1.0 0.05 0.99 0.06 1.00 1.0 0.05				1.33 1.0 1.32 1.0		2.49 74.20 1.92 73.46	0.118 11.54		2		1.7 25.611 2.4 1.7 32.861 3.14	
4.593 560	06.23 24.6 0.687 24.5 4.0 1.73	2.80% Sand-Slime Tailin, 0.047 93.3 0.22 0.0	00 0.22 0 1	.70 41.701 579.64 48.48 110 2.82% 2.2 47%	6 0.80	0.00 0.80 0	0.98 0.07 1.00 1.0 0.05	7 47.31 95.79	0.136 2.37 0.96 0.	40 0.80 0.80	1.31 1.0	0.032	1.66 80.63	0.129 11.78	8 7.07	2		1.7 41.743 3.99	965 48.482
4.757 560 4.921 560		2.57% Sand-Slime Tailin 0.047 93.3 0.23 0.0 1.71% Sand-Slime Tailin 0.047 93.3 0.24 0.0		.70 41.684 579.41 48.44 106 2.60% 2.2 47% .70 39.712 552.00 46.19 98 1.72% 2.1 47%		0.00 0.81 0 0.00 0.82 0	0.98 0.07 1.00 1.0 0.05 0.98 0.07 1.00 1.0 0.05				1.30 1.0 1.29 1.0		1.62 78.55 1.41 65.26	0.125 11.06 0.106 9.06		2 2		1.7 41.706 3.99 1.7 39.766 3.80	
5.085 560	05.73 25.5 0.327 25.5 7.2 3.11	1.28% Sand-Slime Tailin 0.047 93.3 0.24 0.0	00 0.24 0 1	.70 43.282 601.62 50.36 103 1.29% 2.0 47%	6 0.83	0.00 0.83 0	0.98 0.07 1.00 1.0 0.05		0.140 2.46 0.96 0.		1.29 1.0		1.27 63.77	0.104 8.64	5.55	2		1.7 43.358 4.15	511 50.358
5.249 560 5.413 560	20.01 20.0 0.010 20.0 1.1 0.00	1.53% Sand-Slime Tailin 0.047 93.3 0.25 0.0 2.37% Slime Tailings 0.041 82.7 0.26 0.0		.70 34.425 478.51 40.00 79 1.55% 2.1 47% .70 19.040 264.66 22.12 42 2.42% 2.4 71%		0.00 0.84 0 0.00 0.84 0	0.98 0.06 1.00 1.0 0.05 0.98 0.05 1.00 1.0 0.05				1.28 1.0 1.27 1.0		1.47 58.96 2.50 55.31	0.099 7.97 0.096 7.51		2 2		1.7 34.44 3.29 1.7 19.047 1.82	
5.577 560 5.741 560		*		.70 12.750 177.23 14.82 27 1.95% 2.5 71% .70 13.090 181.95 15.22 27 1.20% 2.4 47%		0.00 0.85 0 0.00 0.86 0	0.98 0.05 1.00 1.0 0.05 0.98 0.05 1.00 1.0 0.05				1.26 1.0 1.26 1.0		2.95 43.70 2.36 35.90	0.086 6.59		2		1.7 12.757 1.22	
5.741 560 5.905 560		1.15% Sand-Slime Tailing 0.059 119.0 0.28 0.0 0.84% Sand-Slime Tailing 0.059 119.0 0.29 0.0		.70 13.090 181.95 15.22 27 1.20% 2.4 47% .70 16.881 234.65 19.64 35 0.87% 2.2 47%		0.00 0.86 0 0.00 0.87 0	0.98 0.05 1.00 1.0 0.05 0.98 0.05 1.00 1.0 0.05				1.26 1.0 1.26 1.0		2.36 35.90 1.79 35.17	0.080 5.99 0.079 5.85		2		1.7 13.102 1.25 1.7 16.912 1.61	
6.069 560 6.234 560		1.50% Slime Tailings 0.057 113.1 0.30 0.0 1.53% Slime Tailings 0.057 113.1 0.31 0.0		.70 9.962 138.47 11.61 20 1.58% 2.6 71% .70 9.418 130.91 10.99 19 1.62% 2.6 71%		0.00 0.88 0 0.00 0.89 0	0.98 0.05 1.00 1.0 0.05 0.98 0.05 1.00 1.0 0.05				1.25 1.0 1.25 1.0		3.28 38.05 3.48 38.27	0.082 5.94		2		1.7 9.993 0.95 1.7 9.4649 0.90	
6.398 560	04.42 7.0 0.088 6.9 6.4 2.77	1.26% Slime Tailings 0.057 113.1 0.32 0.0	03 0.29 1 1	.70 11.798 163.99 13.78 23 1.32% 2.5 71%		0.00 0.90 0	0.97 0.05 1.00 1.0 0.05	6 34.89 48.67	0.076 1.36 0.96 0.	.21 0.80 0.80	1.24 1.0	0.034	2.75 37.89	0.082 5.76	3.56	2		1.7 11.866 1.1	136 13.781
	04.26 7.1 0.082 7.1 6.8 2.93 04.09 10.7 0.082 10.6 7.0 3.03	1.15% Slime Tailings 0.057 113.1 0.32 0.0 0.77% Sand-Slime Tailing 0.059 119.0 0.33 0.0		.70 12.019 167.06 14.04 23 1.21% 2.5 71% .70 18.088 251.42 21.09 35 0.79% 2.2 47%		0.00 0.91 0 0.00 0.92 0	0.97 0.05 1.00 1.0 0.05 0.97 0.05 1.00 1.0 0.05				1.24 1.0 1.24 1.0		2.64 37.10 1.74 36.71	0.081 5.63 0.081 5.53		2		1.7 12.091 1.15 1.7 18.162 1.73	
6.890 560	03.93 13.4 0.114 13.4 5.9 2.54	0.85% Sand-Slime Tailin 0.059 119.0 0.34 0.0	04 0.30 1 1	.70 22.746 316.17 26.49 43 0.87% 2.2 47%	6 0.93	0.00 0.93 0	0.97 0.06 1.00 1.0 0.05	6 39.59 66.08	0.095 1.70 0.96 0.	.30 0.80 0.80	1.23 1.0	0.034	1.60 42.25	0.085 5.75	3.73	2		1.7 22.808 2.18	837 26.490
7.054 560 7.218 560		0.90% Sand-Slime Tailin 0.059 119.0 0.35 0.0 0.60% Sand-Slime Tailin 0.059 119.0 0.36 0.0		.70 25.364 352.56 29.52 48 0.92% 2.1 47% .70 38.029 528.60 44.27 71 0.61% 1.9 47%	6 0.94 6 0.95	0.00 0.94 0 0.00 0.95 0	0.97 0.06 1.00 1.0 0.05 0.97 0.07 0.99 1.0 0.05		0.100 1.79 0.96 0. 0.127 2.28 0.96 0.		1.23 1.0 1.23 1.0	0.034 0.034	1.55 45.64 1.19 52.90	0.088 5.86 0.094 6.15	5 3.82 5 4.22	2 2		1.7 25.419 2.43 1.7 38.114 3.6	
7.382 560		0.93% Sand-Slime Tailin 0.059 119.0 0.37 0.0		70 29.580 411.16 34.48 54 0.95% 2.1 47%			0.97 0.06 0.99 1.0 0.05 0.97 0.06 0.99 1.0 0.05				1.22 1.0		1.47 50.71	0.092 5.96		2		1.7 29.69 2.84	
7.546 560 7.710 560	03.11 17.0 0.227 16.8 44.3 19.18	1.29% Sand-Slime Tailin 0.059 119.0 0.38 0.0 1.33% Sand-Slime Tailin 0.059 119.0 0.39 0.0		.70 26.112 362.96 30.63 47 1.32% 2.2 47% .70 28.492 396.04 33.64 51 1.36% 2.2 47%			0.97 0.06 0.99 1.0 0.05 0.97 0.06 0.99 1.0 0.05				1.22 1.0 1.22 1.0		1.77 54.31 1.72 57.87	0.095 6.05 0.098 6.16		2		1.7 26.373 2.52 1.7 28.962 2.77	
7.874 560 8.038 560		0.97% Sand-Slime Tailin, 0.059 119.0 0.40 0.0 0.70% Sand-Slime Tailin, 0.059 119.0 0.41 0.0		.70 29.903 415.65 35.25 53 1.00% 2.1 47% .70 34.680 482.05 40.68 60 0.71% 2.0 47%			0.96 0.06 0.99 1.0 0.05 0.96 0.07 0.99 1.0 0.05						1.51 53.23 1.30 52.92	0.094 5.83 0.094 5.73		2		1.7 30.35 2.90 1.7 35.021 3.35	
8.202 560	02.62 26.4 0.168 26.2 32.9 14.27	0.64% Sand-Slime Tailin 0.059 119.0 0.42 0.0	08 0.34 1 1	.70 44.557 619.34 52.16 77 0.65% 1.9 47%	6 1.01	0.00 1.01 0	0.96 0.07 0.99 1.0 0.05	5 48.59 100.75	0.144 2.61 0.96 0.	.42 0.79 0.79	1.21 1.0	0.035	1.18 61.54	0.102 6.13	4.37	2		1.7 44.906 4.29	993 52.156
8.366 560 8.530 560		0.84% Sand-Slime Tailin 0.059 119.0 0.43 0.0 1.24% Sand-Slime Tailin 0.059 119.0 0.44 0.0		.70 50.405 700.63 58.99 86 0.86% 1.9 47% .70 37.621 522.93 44.04 63 1.27% 2.1 47%			0.96 0.08 0.99 1.0 0.05 0.96 0.07 0.99 1.0 0.05				1.23 1.0 1.20 1.0		1.21 71.32 1.52 66.73	0.114 6.77 0.108 6.33		2 2		1.7 50.792 4.86 1.7 37.923 3.63	
8.694 560	02.13 21.8 0.392 21.5 41.9 18.15	1.80% Sand-Slime Tailin 0.059 119.0 0.45 0.1	10 0.35 1 1	.70 36.533 507.81 42.95 60 1.84% 2.2 47%	6 1.04	0.00 1.04 0	0.96 0.07 0.99 1.0 0.05	5 45.36 88.31	0.124 2.27 0.95 0.	.38 0.80 0.80	1.20 1.0	0.035	1.79 77.08	0.123 7.11	4.69	2		1.7 36.977 3.54	402 42.947
8.858 560 9.022 560		1.16% Sand-Slime Tailin 0.059 119.0 0.46 0.1 1.03% Sand-Slime Tailin 0.059 119.0 0.47 0.1		.70 35.768 497.18 42.32 59 1.18% 2.1 47% .70 50.044 695.61 58.57 81 1.05% 2.0 47%			0.96 0.07 0.99 1.0 0.05 0.96 0.08 0.98 1.0 0.05					0.035	1.53 64.55 1.29 75.74	0.105 6.02 0.120 6.81		2 2	1	1.7 36.436 3.48 .6952481 50.428 4.8	
9.186 560 9.350 560		0.63% Sand-Slime Tailin 0.059 119.0 0.48 0.1 0.81% Sand-Slime Tailin 0.059 119.0 0.49 0.1		.70 38.267 531.91 44.58 60 0.65% 2.0 47% .70 30.039 417.54 34.94 46 0.83% 2.1 47%			0.96 0.07 0.99 1.0 0.05 0.96 0.06 0.99 1.0 0.05				1.19 1.0 1.18 1.0		1.27 56.79 1.52 53.08	0.097 5.42		2		1.7 38.379 3.67	744 44.575
9.514 560	01.31 14.2 0.178 14.2 4.4 1.90	1.25% Sand-Slime Tailin, 0.059 119.0 0.50 0.1	12 0.38 1 1	.70 24.072 334.60 28.01 36 1.30% 2.3 47%	6 1.08	0.00 1.08 0	0.95 0.06 0.99 1.0 0.05	4 40.13 68.14	0.097 1.79 0.95 0.	.31 0.80 0.80	1.18 1.0	0.036	2.04 57.25	0.097 5.32	3.55	2		1.7 30.086 2.88 1.7 24.118 2.30	091 28.012
9.678 560 9.842 560		1.73% Sand-Slime Tailin 0.059 119.0 0.51 0.' 1.07% Sand-Slime Tailin 0.059 119.0 0.52 0.'		.70 19.737 274.34 23.01 29 1.81% 2.5 47% .70 18.989 263.95 22.22 28 1.12% 2.4 47%			0.95 0.05 0.99 1.0 0.05 0.95 0.05 0.99 1.0 0.05				1.18 1.0 1.17 1.0		2.72 62.50 2.27 50.41	0.103 5.54 0.092 4.90		2		1.7 19.816 1.89 1.7 19.13 1.83	
10.006 560	00.81 14.4 0.083 14.3 11.9 5.15	0.58% Sand-Slime Tailin 0.059 119.0 0.53 0.1	14 0.39 1 1	.70 24.293 337.67 28.36 36 0.60% 2.2 47%	6 1.11	0.00 1.11 0	0.95 0.06 0.99 1.0 0.05	4 40.25 68.61	0.098 1.81 0.95 0.	.31 0.80 0.80	1.17 1.0	0.036	1.58 44.88	0.087 4.60	3.20	2		1.7 24.419 2.33	379 28.361
10.170 560 10.335 560		0.38% Sand-Slime Tailin 0.059 119.0 0.54 0.1 0.45% Sand-Slime Tailin 0.059 119.0 0.55 0.1		.70 31.110 432.43 36.22 45 0.39% 2.0 47% .68 34.682 482.08 40.35 50 0.46% 2.0 47%			0.95 0.06 0.98 1.0 0.05 0.95 0.07 0.98 1.0 0.05				1.171.01.171.0		1.28 46.49 1.27 51.31	0.089 4.62 0.093 4.76		2 2	1	1.7 31.185 2.98 .6835791 34.744 3.32	
10.499 560	00.32 21.3 0.111 21.3 5.5 2.39	0.52% Sand-Slime Tailin 0.059 119.0 0.56 0.1	16 0.40 1 1	.67 35.475 493.10 41.27 51 0.53% 2.0 47%	6 1.14	0.00 1.14 0	0.95 0.07 0.98 1.0 0.05	4 44.78 86.04	0.121 2.25 0.95 0.	.37 0.80 0.80	1.16 1.0	0.036	1.30 53.52	0.094 4.80	3.53	2	1	.6654836 35.532 3.40	019 41.268
10.663 560 10.827 559		0.54% Sand-Slime Tailin 0.059 119.0 0.57 0.' 0.63% Sand-Slime Tailin 0.059 119.0 0.58 0.'		.64 38.112 529.76 44.34 56 0.55% 2.0 47% .63 38.033 528.66 44.25 55 0.65% 2.0 47%			0.95 0.07 0.98 1.0 0.05 0.95 0.07 0.98 1.0 0.05				1.16 1.0 1.16 1.0		1.27 56.24 1.31 58.18	0.097 4.86 0.098 4.90		2 2		.6371138 38.174 3.65 .6253497 38.101 3.64	
	99.83 23.4 0.151 23.3 6.8 2.96	0.65% Sand-Slime Tailin 0.059 119.0 0.59 0.1	17 0.42 1 1	.62 37.699 524.02 43.87 55 0.66% 2.0 47%	6 1.17	0.00 1.17 0	0.94 0.07 0.98 1.0 0.05	3 45.69 89.55	0.126 2.36 0.95 0.	.38 0.80 0.80	1.16 1.0	0.036	1.33 58.30	0.098 4.85	5 3.61	2	1	.6152194 37.768 3.61	43.865
		0.79% Sand-Slime Tailin 0.059 119.0 0.60 0.1 1.14% Sand-Slime Tailin 0.059 119.0 0.61 0.1		.60 37.995 528.13 44.21 55 0.81% 2.1 47% .62 33.296 462.82 38.76 47 1.17% 2.2 47%			0.94 0.07 0.98 1.0 0.05 0.94 0.06 0.98 1.0 0.05				1.151.01.151.0		1.40 61.77 1.70 65.83	0.102 4.97 0.107 5.14		2		.6018202 38.069 3.64 .6163248 33.371 3.19	
11.483 559 11.647 559		1.13% Sand-Slime Tailin 0.059 119.0 0.62 0.7 0.79% Sand-Slime Tailin 0.059 119.0 0.63 0.7		.63 28.640 398.09 33.36 39 1.17% 2.3 47% .59 33.858 470.62 39.42 48 0.81% 2.1 47%			0.94 0.06 0.98 1.0 0.05 0.94 0.06 0.98 1.0 0.05				1.15 1.0 1.15 1.0		1.87 62.34 1.49 58.73	0.103 4.89 0.099 4.67				1.632818 28.722 2.74 .5895544 33.938 3.24	
11.811 559	99.01 21.3 0.146 21.2 7.4 3.21	0.69% Sand-Slime Tailin 0.059 119.0 0.64 0.2	20 0.44 1 1	.58 33.555 466.42 39.06 47 0.71% 2.1 47%	6 1.22	0.00 1.22 0	0.94 0.06 0.98 1.0 0.05	3 44.00 83.06	0.117 2.20 0.95 0.	.36 0.80 0.80	1.14 1.0	0.037	1.44 56.33	0.097 4.52	3.36	2	1	.5798159 33.628 3.21	196 39.057
		0.58% Sand-Slime Tailin 0.059 119.0 0.65 0.2 0.62% Sand-Slime Tailin 0.059 119.0 0.66 0.2		.56 35.751 496.95 41.62 50 0.59% 2.0 47% .53 38.252 531.70 44.53 54 0.63% 2.0 47%			0.94 0.07 0.98 1.0 0.05 0.94 0.07 0.98 1.0 0.05						1.34 55.78 1.32 58.78	0.096 4.45				.5571208 35.838 3.43 .5343587 38.336 3.67	
		0.58% Sand-Slime Tailin 0.059 119.0 0.67 0.2		.54 35.751 496.94 41.62 50 0.60% 2.0 47%			0.94 0.07 0.98 1.0 0.05						1.34 55.97	0.096 4.37		2		.5357058 35.836 3.43	

														Flev at	Elev. At	Bottom		Stress at	Stress at	Pressure Equil F	ore Stress at	Stress at	
				SITORY LIQUEFACT	ION AND SEI		EMENT ANALYSES - 3-							Top of	Midpoint	of Thicknes				at Bottom Pressu	e at Bottom	Midpoint	
Data File:	13-52106_SP3-2C-BSC-CPT	Idriss and Boulanger (2						tion during CPT investigation			ion at time of CPT (ft amsl)	(= 10 (0))		Layer		Layer s of	Weigh Weig		of Layer	of Layer Midpoi			
Location:	White Mesa 2013 CPT Investigation	Max. Horiz. Acce		0.15			4 Water surface eleva		5621.51		ion Immediately after Placement		FINAL CO	(1)	(ft)) t (tcf) (pc		(tsf)	(tsf) Layer		(tsf)	
	Data\2013 Field Investigation\Conetec Data		ent Magnitude, M:	5.5			4 Water surface eleva 4 Water surface eleva		0.50		rotection Layer (rock mulch/tops	oils) Immediately after plac		rotection Layer 5621.51	5621.26			110 0.028				0.014	
Tailings		ş	ling Factor, MSF:	1.69	-	5586.6	4 water surface eleva	uon at t ₂ (it amsi)			prage/Rooting Zone (ft)			ing Zone Layer 5621.01	5619.26			107 0.215	-				
	s Sand-Slimes	Youd, et al (2001)	Assolatetian Amoul	/g: 0.15		4.44			3.50 3.19	Thickness of High Cor		interim en (A)		mpaction Layer 5617.51 ndom Fill Layer 5614.01	5615.76 5612.415			120 0.424 101 0.585					
-	s Slimes		z. Acceleration, Amax/g Moment Magnitude, M	0		0.47	Scaling Factor for st				Platform Fill on on top of existing		Platiorm/Ran	Idom Fill Layer 5614.01	5012.415	5010.82 3.19	0.050	101 0.565	0.504	0.00 0.00	0.585	0.504	
Interim	Cover Lequiring User Input/Manipulation		de Scaling Factor, MSF		_		Equiv. Number of Ur	tio for Site-Specific Design E		Elevation of bottom of	D Final Cover Placement, $\Delta \sigma_{FC}$ (st)											
Cells R	2013 CPT Data from ConeTec	Magnitud	e Scaling Factor, MSF	F: 2.21 2.21	CRT D	ata Interpreta		hitorm Strain Cycles, N	5586.64	Conditions at t ₁	allings (liner) (ft amsi)			Liquefaction Tri	iggoring Apoly							Idriss & Boulanger	(2008)
	2013 CFT Data Holli ColleTec	Material		J ai Lyui Liicui	ve			ormalized Normalize Type		Equi		riss & Boulanger (2008)			<u> </u>	oud et al. (2001)				r			(2000)
Depth at time	Pw Pw	Type (as		ess Pore Stress				Cone d Friction Index.	Tatal Chas	Pore Effective s Pressure Stress at S	aturated Cyclic Stress Ra		ce Ratio	Cyclic	Stress Ratio		1		T				
of CPT Elevation		fs/at determined		time Pressure time o CPT at time of CPT		CN ac1	ac1 ac1N Re	enetration Ratio, Fr Ic	FC at t ₁		att ₁ r_d C_σ K_σ K_a			r₄ D. f f	K _a	K. 000	1			Avg Liquofic		CN qc1 qc1	ac1N
(ft) (ft ams		(%)	(tcf) (pcf) (tsf		1=Yes	TSF	4. 4.	, Q _t	% (tsf)		1=Yes	CSR M=7.5, ∆qc _{1n} qc _{1n-cs}	(CRR)	ia Dr	Νσ	K _a CSR M=7.5.	Kc gc _{1n}	(CRR)		FoS 1=Ye		TSF MPa	
(it) (it arris		(70)	(101) (101) (101	(i) (iii) (iii)	0=No	101	WI C		/0 ((31)	() ()	0=No	s'v=1atm	M=7.5, s'v=1atm FoS			M=7.5,	quin	-CS M=7.5,	FoS	2=N		101 101 101 1	u
12.467 5598.3	35 19.3 0.160 19.2 8.9 3.87	0.83% Sand-Slime Tailin	0.059 119.0 0.6	.68 0.22 0.46	1	1 56 29.85	9 415.03 34.78	40 0.86% 2.2 4	7% 1.26	0.00 1.26	0 0.93 0.06 0.98 1.0			0.95 0.34 0.80 0.8	30 1.13	1.0 0.037	1.65 57.3	0 0.097	4.38	3.22 2		1.5551349 29.945 2.86	67 34,780
12.631 5598.1		0.70% Sand-Slime Tailing	0.059 119.0 0.6			1.54 31.20		42 0.73% 2.1 4	7% 1.27	0.00 1.27	0 0.93 0.06 0.98 1.0		0.112 2.12	0.95 0.35 0.80 0.8		1.0 0.037	1.53 55.4		4.27	3.20 2		1.5371723 31.281 2.994	
12.795 5598.0			0.059 119.0 0.7			1.53 30.46			7% 1.28	0.00 1.27	0 0.93 0.06 0.98 1.0		0.112 2.12	0.95 0.33 0.80 0.8		1.0 0.037	1.52 54.0		4.17	3.14 2		1.5303446 30.541 2.92	
12.959 5597.8			0.059 119.0 0.7			1.51 32.64	3 453.73 38.02	44 0.72% 2.1 4	7% 1.29	0.00 1.29	0 0.93 0.06 0.97 1.0	0.052 43.63 81.65		0.94 0.36 0.80 0.8		1.0 0.037	1.49 56.5		4.23	3.21 2		1.5091412 32.732 3.133	
13.123 5597.7			0.059 119.0 0.7			1.51 31.05			7% 1.30	0.00 1.30	0 0.93 0.06 0.97 1.0	0.052 42.98 79.14		0.94 0.35 0.80 0.8		1.0 0.037	1.64 59.3		4.31	3.22 2		1.5066131 31.134 2.980	
13.287 5597.5			0.059 119.0 0.7		1	1.50 30.43	8 423.09 35.45		7% 1.31	0.00 1.31	0 0.93 0.06 0.97 1.0		0.110 2.11	0.94 0.34 0.80 0.8		1.0 0.037	1.96 69.6		4.77	3.44 2		1.4994011 30.527 2.922	
13.451 5597.3			0.059 119.0 0.7			1.51 26.31	5 365.78 30.70	34 2.60% 2.5 4		0.00 1.32	0 0.93 0.06 0.97 1.0	0.052 41.07 71.77		0.94 0.32 0.80 0.8		1.0 0.037	2.93 90.0		6.28	4.12 2		1.5097542 26.432 2.530	
13.615 5597.2	20 16.3 0.451 16.2 16.3 7.05	2.77% Slime Tailings	0.057 113.1 0.7	.74 0.25 0.49	1	1.51 24.40	9 339.29 28.53	32 2.91% 2.6 7	1% 1.33	0.00 1.33	0 0.93 0.06 0.97 1.0	0.052 40.02 68.55	0.098 1.88	0.94 0.31 0.80 0.8	80 1.12	1.0 0.037	3.28 93.4	5 0.156	6.57	4.22 2		1.5104631 24.562 2.351	16 28.528
13.779 5597.0	04 20.4 0.353 20.2 19.3 8.35	1.73% Sand-Slime Tailing	0.059 119.0 0.7	.75 0.26 0.50	1	1.47 29.81	9 414.48 34.84	40 1.80% 2.4 4	7% 1.34	0.00 1.34	0 0.92 0.06 0.97 1.0	0.052 42.52 77.36	0.109 2.10	0.94 0.34 0.80 0.8	80 1.12	1.0 0.037	2.25 78.3	6 0.125	5.21	3.65 2		1.4732613 29.996 2.871	18 34.838
13.943 5596.8	38 25.7 0.379 25.6 13.1 5.68	1.48% Sand-Slime Tailing	0.059 119.0 0.7	.76 0.26 0.50	1	1.44 36.75	3 510.87 42.82	50 1.52% 2.3 4	7% 1.35	0.00 1.35	0 0.92 0.07 0.97 1.0	0.052 45.32 88.14	0.124 2.40	0.94 0.38 0.80 0.8	80 1.11	1.0 0.037	1.83 78.2	0.125	5.16	3.78 2		1.4356655 36.871 3.5	.53 42.823
14.107 5596.7	71 19.0 0.491 19.0 7.7 3.35	2.58% Sand-Slime Tailing	0.059 119.0 0.7	.77 0.27 0.51	1	1.46 27.76	9 385.99 32.33	36 2.69% 2.5 4	7% 1.36	0.00 1.36	0 0.92 0.06 0.97 1.0	0.052 41.64 73.98	0.105 2.02	0.94 0.33 0.80 0.8	30 1.11	1.0 0.037	2.90 93.8	0.157	6.43	4.23 2		1.4638491 27.84 2.665	54 32.334
14.271 5596.5	55 14.6 0.427 14.6 5.8 2.51	2.92% Slime Tailings	0.057 113.1 0.7	.78 0.27 0.51	1	1.49 21.65	0 300.93 25.21	27 3.09% 2.7 7	1% 1.37	0.00 1.37	0 0.92 0.06 0.97 1.0	0.052 38.87 64.07	0.092 1.78	0.94 0.29 0.80 0.8	30 1.11	1.0 0.037	3.71 93.4	6 0.156	6.35	4.07 2		1.4859142 21.703 2.077	79 25.207
14.436 5596.3	88 9.2 0.378 9.2 7.3 3.14	4.11% Slime Tailings	0.057 113.1 0.7	.79 0.28 0.51	1	1.50 13.70	6 190.52 16.00	16 4.50% 2.9 7	1% 1.38	0.00 1.38	0 0.92 0.05 0.98 1.0	0.052 35.66 51.66	0.079 1.52	0.94 0.23 0.80 0.8	80 1.11	1.0 0.037	6.02 96.3		6.59	4.06 2		1.4979452 13.774 1.318	87 15.998
14.600 5596.2	22 10.5 0.412 10.2 45.5 19.71	3.91% Slime Tailings	0.057 113.1 0.8	.80 0.28 0.52	1	1.49 15.24	2 211.87 18.19	19 4.24% 2.9 7	1% 1.38	0.00 1.38	0 0.92 0.05 0.98 1.0	0.052 36.42 54.62	0.082 1.59	0.94 0.25 0.80 0.8	30 1.11	1.0 0.037	5.41 98.3	0.169	6.76	4.17 2		1.4885243 15.665 1.499	98 18.194
14.764 5596.0	06 12.3 0.360 12.1 42.1 18.25	2.92% Slime Tailings	0.057 113.1 0.8	.81 0.29 0.52	1	1.48 17.85	7 248.22 21.19	22 3.12% 2.7 7	1% 1.39	0.00 1.39	0 0.92 0.05 0.97 1.0	0.052 37.47 58.66		0.94 0.27 0.80 0.8	80 1.11	1.0 0.038	4.23 89.5	0.147	5.84	3.76 2		1.4782492 18.246 1.746	69 21.191
14.928 5595.8			0.057 113.1 0.8		1	1.47 16.25	9 226.00 19.44	20 3.61% 2.8 7		0.00 1.40	0 0.92 0.05 0.97 1.0	0.052 36.86 56.30		0.94 0.25 0.80 0.8		1.0 0.038	4.80 93.4		6.15	3.89 2		1.4700815 16.74 1.602	
15.092 5595.7			0.057 113.1 0.8			1.46 15.04	9 209.18 18.27	19 3.01% 2.8 7	1% 1.41	0.00 1.41	0 0.91 0.05 0.97 1.0	0.052 36.45 54.71		0.94 0.25 0.80 0.8		1.0 0.038	4.59 83.9		5.29	3.44 2		1.4610537 15.727 1.505	
15.256 5595.5			0.059 119.0 0.8			1.41 27.15	0 011110 01101	35 1.57% 2.4 4		0.00 1.42	0 0.91 0.06 0.97 1.0	0.051 41.40 73.04		0.94 0.32 0.80 0.8		1.0 0.038	2.29 72.4		4.49	3.25 2		1.4078566 27.241 2.608	
15.420 5595.4			0.059 119.0 0.8			1.39 29.14	2 405.07 33.91	37 0.80% 2.2 4	7% 1.43	0.00 1.43	0 0.91 0.06 0.97 1.0	0.051 42.19 76.10		0.94 0.34 0.80 0.8		1.0 0.038	1.68 56.9		3.75	2.92 2		1.3916875 29.194 2.795	
15.584 5595.2		0.72% Sand-Slime Tailing	0.059 119.0 0.8			1.38 30.53	2 121.10 00.00	CO CITOTO ELE	7% 1.44	0.00 1.44	0 0.91 0.06 0.97 1.0		0.110 2.16	0.94 0.34 0.80 0.8		1.0 0.038	1.60 56.8		3.71	2.94 2		1.3784218 30.562 2.92	
15.748 5595.0		0.78% Sand-Slime Tailing	0.059 119.0 0.8			1.38 28.08	8 390.43 32.65	36 0.82% 2.2 4	7% 1.45	0.00 1.45	0 0.91 0.06 0.97 1.0	0.051 41.75 74.40		0.94 0.33 0.80 0.8		1.0 0.038	1.74 56.8		3.68	2.87 2		1.3788977 28.112 2.691	
15.912 5594.9			0.059 119.0 0.8			1.38 26.69	8 371.11 31.10		7% 1.46	0.00 1.46		0.051 41.21 72.30		0.94 0.32 0.80 0.8		1.0 0.038	1.87 58.2		3.70	2.86 2		1.3754991 26.773 2.563	
16.076 5594.7		0.74% Sand-Slime Tailing	0.059 119.0 0.8			1.37 26.71	2 371.29 31.16	•••••••	7% 1.47	0.00 1.47			0.103 2.02	0.94 0.32 0.80 0.8		1.0 0.038	1.77 55.1		3.57	2.79 2		1.3670323 26.831 2.568	
16.240 5594.5		0.55% Sand-Slime Tailing	0.059 119.0 0.9			1.35 29.95 1.33 34.00	2 110.01 01.01	00 0.0170 E.I	7% 1.48 7% 1.49	0.00 1.48		0.051 42.56 77.50		0.94 0.34 0.80 0.8		1.0 0.038	1.50 52.5		3.46	2.81 2		1.3479919 30.084 2.880	
16.404 5594.4 16.568 5594.2		1.16% Sand-Slime Tailin 2.14% Sand-Slime Tailin	0.059 119.0 0.9 0.059 119.0 0.9			1.33 34.00	3 344.89 29.04		7% 1.49 7% 1.50	0.00 1.49 0.00 1.50	0 0.90 0.06 0.96 1.0 0 0.90 0.06 0.97 1.0	0.050 44.21 83.87 0.051 40.49 69.53		0.94 0.36 0.80 0.8 0.94 0.31 0.80 0.8		1.0 0.038 1.0 0.038	1.78 70.6 2.92 84.8		4.15 4.99	3.24 2 3.47 2		1.3281917 34.149 3.269 1.3492412 25.004 2.393	
16.732 5594.0			0.059 119.0 0.9			1.36 20.47			1% 1.50 1% 1.51	0.00 1.50	0.00 0.00 0.01 1.0	0.051 40.49 69.55		0.94 0.28 0.80 0.8		1.0 0.038	3.98 96.0		5.88	3.84 2		1.3577821 20.779 1.989	
16.896 5593.9			0.059 119.0 0.9			1.35 20.09	1 279.26 24.20	25 2.41% 2.6 4	7% 1.52	0.00 1.52	0 0.90 0.06 0.97 1.0		0.091 1.81	0.94 0.28 0.80 0.8		1.0 0.038	3.45 83.4	0.102	4.82	3.31 2		1.3492937 20.836 1.994	
17.060 5593.5			0.059 119.0 0.9			1.30 33.54			7% 1.52	0.00 1.52	0 0.90 0.06 0.97 1.0		0.118 2.36	0.94 0.28 0.80 0.8		1.0 0.038	1.73 68.4		3.92	3.14 2		1.3001914 34.132 3.267	
17.224 5593.6		1.93% Sand-Slime Tailin	0.059 119.0 0.9			1.31 27 15	3 377.43 31.71		7% 1.54	0.00 1.54	0 0.90 0.06 0.97 1.0	0.050 41.42 73.14		0.93 0.33 0.80 0.8		1.0 0.038	2.62 83.2		4.73	3.40 2		1.3117576 27.306 2.614	
17.388 5593.4			0.059 119.0 0.9			1.33 20.10			7% 1.55	0.00 1.55	0 0.90 0.05 0.97 1.0		0.090 1.80	0.93 0.28 0.80 0.8		1.0 0.038	3.47 81.8		4.60	3.20 2		1.3272144 20.281 1.941	
17.552 5593.2		0.98% Sand-Slime Tailing	0.059 119.0 0.9			1.31 21.42	4 297.79 25.23	26 1.04% 2.4 4	7% 1.56	0.00 1.56			0.093 1.85	0.93 0.29 0.80 0.8		1.0 0.038	2.31 58.3		3.43	2.64 2		1.314342 21.723 2.079	
17.716 5593.1		1.01% Sand-Slime Tailing	0.059 119.0 0.9			1.28 31.12	8 432.68 36.45	39 1.05% 2.3 4	7% 1.57	0.00 1.57	0 0.89 0.06 0.96 1.0	0.050 43.09 79.54		0.93 0.35 0.80 0.8		1.0 0.038	1.81 65.8		3.69	2.97 2		1.2794019 31.384 3.004	
17.880 5592.9			0.059 119.0 0.9		1	1.30 21.98	2 305.54 25.81		7% 1.58	0.00 1.58	0 0.89 0.06 0.97 1.0	0.050 39.35 65.16		0.93 0.29 0.80 0.8		1.0 0.038	3.06 78.9		4.32	3.10 2		1.2976165 22.222 2.127	
18.044 5592.7			0.057 113.1 1.0		1	1.30 19.19	5 266.82 22.70	23 3.22% 2.7 7	1% 1.59	0.00 1.59	0 0.89 0.05 0.97 1.0		0.089 1.78	0.93 0.28 0.80 0.8		1.0 0.038	4.20 95.3		5.48	3.63 2		1.2996199 19.546 1.871	
18.208 5592.6	61 12.2 0.284 11.8 60.5 26.21	2.32% Slime Tailings	0.057 113.1 1.0	.01 0.40 0.62	1	1.30 15.36	7 213.60 18.42	18 2.53% 2.7 7	1% 1.60	0.00 1.60	0 0.89 0.05 0.97 1.0	0.050 36.50 54.92	0.082 1.65	0.93 0.25 0.80 0.8	80 1.07	1.0 0.038	4.32 79.5	0.127	4.31	2.98 2		1.297855 15.857 1.518	81 18.417
18.372 5592.4	45 20.9 0.383 20.4 78.0 33.81	1.83% Sand-Slime Tailing	0.059 119.0 1.0	.02 0.40 0.62	1	1.27 25.87	1 359.60 30.76	32 1.92% 2.5 4	7% 1.61	0.00 1.61	0 0.89 0.06 0.96 1.0	0.050 41.09 71.85	0.102 2.06	0.93 0.32 0.80 0.8	80 1.07	1.0 0.039	2.64 81.2	0.130	4.38	3.22 2		1.2656973 26.487 2.535	30.764
18.537 5592.2		1.63% Sand-Slime Tailing	0.059 119.0 1.0	.03 0.41 0.63	1	1.27 22.68	4 315.30 26.72	27 1.73% 2.5 4	7% 1.62	0.00 1.62	0 0.89 0.06 0.96 1.0	0.049 39.67 66.40	0.095 1.92	0.93 0.30 0.80 0.8	80 1.07	1.0 0.039	2.78 74.2	25 0.118	3.95	2.94 2		1.2679476 23.008 2.202	28 26.723
18.701 5592.1		1.78% Sand-Slime Tailing	0.059 119.0 1.0	.04 0.41 0.63	1	1.25 26.75	9 371.95 31.65	33 1.87% 2.5 4	7% 1.63	0.00 1.63	0 0.89 0.06 0.96 1.0		0.103 2.10	0.93 0.32 0.80 0.8	80 1.06	1.0 0.039	2.56 81.0	0 0.129	4.30	3.20 2		1.2504122 27.248 2.608	88 31.647
18.865 5591.9			0.059 119.0 1.0			1.25 23.21	2 322.65 27.38	28 2.32% 2.6 4		0.00 1.64	0 0.89 0.06 0.96 1.0		0.096 1.95	0.93 0.30 0.80 0.8		1.0 0.039	3.15 86.2		4.61	3.28 2		1.2526649 23.576 2.257	
19.029 5591.7			0.059 119.0 1.0			1.25 22.95	8 319.11 26.86	27 2.45% 2.6 4		0.00 1.65	0 0.88 0.06 0.96 1.0		0.095 1.94	0.93 0.30 0.80 0.8		1.0 0.039	3.28 88.2		4.72	3.33 2		1.2470318 23.131 2.214	
19.193 5591.6			0.057 113.1 1.0			1.25 16.22		19 3.17% 2.8 7		0.00 1.65		0.049 36.75 55.88		0.93 0.25 0.80 0.8		1.0 0.039	4.71 90.1		4.82	3.26 2		1.2545588 16.474 1.577	
19.357 5591.4			0.057 113.1 1.0			1.25 13.84	3 192.42 17.08	17 2.97% 2.8 7	1% 1.66	0.01 1.66	1 0.88 0.05 0.97 1.0	0.049 36.04 53.12		0.93 0.24 0.80 0.8		1.0 0.039	4.94 84.3		4.38	3.01 2		1.2482606 14.706 1.407	
19.521 5591.3			0.059 119.0 1.0			1.24 16.85	201.01 20.21	20 1.0170 2.0	7% 1.67	0.01 1.66		0.049 37.40 57.64		0.93 0.26 0.80 0.8		1.0 0.039	3.50 70.9		3.62	2.67 2		1.2413212 17.429 1.668	
19.685 5591.1			0.059 119.0 1.1			1.23 16.36	9 227.53 20.05	20 1.86% 2.6 4	7% 1.68	0.02 1.67	1 0.88 0.05 0.97 1.0	0.050 37.33 57.38		0.93 0.26 0.80 0.8		1.0 0.039	3.57 71.6		3.62	2.67 2		1.2344691 17.263 1.652	
19.849 5590.9			0.059 119.0 1.1			1.23 15.18	211.00 10.01	18 1.85% 2.7 4		0.02 1.67	1 0.88 0.05 0.97 1.0	0.050 36.80 55.34		0.93 0.25 0.80 0.8		1.0 0.039	3.77 69.9		3.52	2.59 2		1.2277026 15.959 1.527	
20.013 5590.8			0.057 113.1 1.1			1.22 14.25		17 2.94% 2.8 7		0.03 1.68	1 0.88 0.05 0.97 1.0	0.050 36.31 54.17		0.92 0.24 0.80 0.8		1.0 0.039	4.79 85.4		4.31	2.98 2		1.2217066 15.382 1.472	
							8 261 85 23 17			0.03 1.68									4.00	2.90 2		1 2106766 19 949 1 909	99 23 170
20.177 5590.6 20.341 5590.4			0.059 119.0 1.1 0.059 119.0 1.1			1.21 10.00	5 201.00 20.11	23 2.20% 2.6 4 28 1.78% 2.5 4		0.03 1.68 0.04 1.69	1 0.87 0.05 0.96 1.0 1 0.87 0.06 0.96 1.0			0.92 0.28 0.80 0.8 0.92 0.31 0.80 0.8		1.0 0.039 1.0 0.040	3.49 80.7 2.77 77.2		4.00 3.77	2.90 2		1.2106766 19.949 1.909 1.1958988 24.048 2.302	20.110

Data File: 13-52106_SP3-3S-BSC-CPT Location: White Mesa 2013 CPT Investigation .\.\.6.2.3 Field Data/2013 Field Investigation\Conetec D Tailings Sands	Magnitude Scaling Factor, MSF: 1.69	5605.60 Water surface elevation during CPT investigation (ff 5609.63 Ground Surface Elevation 5601.35 Water surface elevation at t ₀ (ft amsi) 5620.49 Ground Surface Elevation 5582.14 Water surface elevation at t ₁ (ft amsi) 0.50 Thickness of Erosion Proi 5577.14 Water surface elevation at t ₂ (ft amsi) 3.50 Thickness of Water Stora	Immediately after Placement of Final Cover (ft amsi) FINAL COVE ection Layer (rock mulch/topsoils) Immediately after pl ge/Rooting Zone (ft) ater Storage/Rooting Z	Protection Layer ###### 5620.24 5619.99 0.05 0.054 110 0.028 0.014 0.00 0.000 0.028 0.014 ting Zone Layer ###### 5616.49 3.50 0.054 107 0.215 0.121 0.00 0.000 0.215 0.7	sint yer) 0.014 .121
Tailings Sand-Slimes Tailings Slimes Interim Cover	Youd, et al (2001) Max. Horiz. Acceleration, Amax/g: 0.15 Earthquake Moment Magnitude, M: 5.5	1.44 Scaling Factor for stress ration, rm 3.50 Thickness of High Compa 0.47 Volumetric Strain Ratio for Site-Specific Design Earl 1184.24 Additional Stress due to F	form Fill on on top of existing interim cover (ft) Platform/Random		<u>320</u> 509
Cells Requiring User Input/Manipulation 2013 CPT Data from ConeTec	Magnitude Scaling Factor, MSF: 2.21 221	7.51 Equiv. Number of Uniform Strain Cycles, N 5577.14 Elevition of bottom of tail CPT Data Interpretations Conditions at t		Liquefaction Triggering Analyses	Idriss & Boulanger (2008)
Depth at time Pw Pw	Material Stress Pore Stress at Type (as Unit Unit at time Pressure time of	Normalized Normalize Type Total Pore Effective	Idriss & Boulanger (2008)	Youd et al. (2001) Cyclic Stress Ratio	
of CPT Elevation qt fs qc (u2) (u2) (ft) (ft amsl) TSF TSF TSF (ft) PS) fs/qt determined Weight Weight of CPT at time of CPT	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	r _d D _r f K _a CSR (CRR) Avg Liquefiable? CN M=7.5, sv=tam Kc qc1ncs M=7.5, sv=tam FoS 1=Yes 2=No CN	l qc1 qc1 qc1N TSF MPa
0.656 5608.97 73.3 0.296 73.3 3.9 1.60 0.820 5608.65 84.2 0.326 84.2 3.9 1.60 1.148 5608.65 84.7 0.167 84.7 2.9 1.22 1.312 5608.32 73.0 0.231 72.9 3.0 1.33 1.476 5608.15 71.2 0.306 71.2 1.7 0.7 1.640 5607.66 54.7 0.206 54.7 1.6 0.77 2.133 5607.66 54.8 0.504 48.8 2.3 1.07 2.461 5607.17 59.1 1.594 59.1 3.4 1.44 2.625 5607.01 70.3 1.024 70.2 6.0 2.56 2.789 5606.63 49.0 0.296 49.0 3.9 1.66 3.454 5605.60 52.7 1.75 52.6 1.22 5.00 3.609 5605.02 70.0 0.296 </td <td>10.39%Interim Cover0.050100.70.020.000.02100.33%Interim Cover0.050100.70.030.000.0300.33%Interim Cover0.050100.70.050.000.05100.22%Interim Cover0.050100.70.060.000.06100.32%Interim Cover0.050100.70.070.000.07100.43%Interim Cover0.050100.70.070.000.07100.43%Interim Cover0.050100.70.100.000.01100.22%Interim Cover0.050100.70.110.000.11100.83%Interim Cover0.050100.70.120.000.12100.84%Interim Cover0.050100.70.130.000.13100.65%100.70.140.001.140.001.1400.65%100.70.150.000.170.140.0000.65%100.70.150.000.170.140.000.1700.65%100.70.140.000.170.180.000.1900.65%100.70.140.000.170.140.000.1400.65%100.70.150.000.170.140.000.1400.65%100.70.160.000.16</td> <td>1 1.70 16.524 229.68 19.58 31 1.05% 2.3 47% 1.00 0.00 1.00 1.00 1 1.70 14.127 196.37 16.83 26 0.99% 2.4 47% 1.01 0.00 1.01 0.00 1 1.70 16.932 235.35 20.13 31 0.70% 2.2 47% 1.02 0.00 1.02 1 1.70 14.008 194.71 16.74 25 0.75% 2.3 47% 1.03 0.00 1.03 1 1.70 13.226 18.34 16.02 23 0.99% 2.4 47% 1.06 0.00 1.06 1 1.70 13.26 18.34 18.99 27 2.30% 2.6 71% 1.07 0.00 1.07 1 1.70 15.487 215.27 18.67 26 2.36% 2.6 71% 1.00 0.00 1.09 0.0</td> <td>1.00 0.05 1.3.07 79.38 0.112 1.89 0. 1.00 0.15 1.05 1.00 0.066 81.42 25.55 1.000 16.41 0. 1.00 0.15 1.05 1.00 0.061 86.65 254.67 1.000 16.41 0. 1.00 0.15 1.04 1.00 0.066 80.67 226.21 1.000 16.67 0. 1.00 0.15 1.04 1.00 0.056 65.61 177.51 0.48 8.83 0.0 1.00 0.11 1.02 1.00 0.056 67.21 172.33 0.432 7.32 0.10 0.10 0.10 0.056 1.172.33 0.432 7.32 0.00 1.00 1.00 1.00 1.00 0.056 8.19 1.00 1.06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00<td>197 0.05 0.00 0.00 0.00 0.00 0.00 100 0.00 100 0.00 100 0.00 100 <t< td=""><td>1.7 23.561 2.2557 27.364 1.7 31.271 2.9938 36.319 1.7 99.552 9.5311 115.623 1.7 124.69 11.937 144.814 1.7 138.45 13.256 160.805 1.7 143.11 13.702 166.217 1.7 143.97 13.784 167.213 1.7 124.03 11.875 144.054 1.7 9.0106 109.309 1.7 1.7 9.0116 109.309 1.7 1.7 9.0511 8.6655 105.123 1.7 9.0557 7.6194 92.433 1.7 10.051 9.6225 216.020 1.7 11.427 11.227 132.200 1.7 14.238 13.632 165.371 1.7.83.75 7.824 96.836 1.7 1.7 8.76412 94.484 1.7 1.7 8.7674 100.066 1.7 1.7</td></t<></td></td>	10.39%Interim Cover0.050100.70.020.000.02100.33%Interim Cover0.050100.70.030.000.0300.33%Interim Cover0.050100.70.050.000.05100.22%Interim Cover0.050100.70.060.000.06100.32%Interim Cover0.050100.70.070.000.07100.43%Interim Cover0.050100.70.070.000.07100.43%Interim Cover0.050100.70.100.000.01100.22%Interim Cover0.050100.70.110.000.11100.83%Interim Cover0.050100.70.120.000.12100.84%Interim Cover0.050100.70.130.000.13100.65%100.70.140.001.140.001.1400.65%100.70.150.000.170.140.0000.65%100.70.150.000.170.140.000.1700.65%100.70.140.000.170.180.000.1900.65%100.70.140.000.170.140.000.1400.65%100.70.150.000.170.140.000.1400.65%100.70.160.000.16	1 1.70 16.524 229.68 19.58 31 1.05% 2.3 47% 1.00 0.00 1.00 1.00 1 1.70 14.127 196.37 16.83 26 0.99% 2.4 47% 1.01 0.00 1.01 0.00 1 1.70 16.932 235.35 20.13 31 0.70% 2.2 47% 1.02 0.00 1.02 1 1.70 14.008 194.71 16.74 25 0.75% 2.3 47% 1.03 0.00 1.03 1 1.70 13.226 18.34 16.02 23 0.99% 2.4 47% 1.06 0.00 1.06 1 1.70 13.26 18.34 18.99 27 2.30% 2.6 71% 1.07 0.00 1.07 1 1.70 15.487 215.27 18.67 26 2.36% 2.6 71% 1.00 0.00 1.09 0.0	1.00 0.05 1.3.07 79.38 0.112 1.89 0. 1.00 0.15 1.05 1.00 0.066 81.42 25.55 1.000 16.41 0. 1.00 0.15 1.05 1.00 0.061 86.65 254.67 1.000 16.41 0. 1.00 0.15 1.04 1.00 0.066 80.67 226.21 1.000 16.67 0. 1.00 0.15 1.04 1.00 0.056 65.61 177.51 0.48 8.83 0.0 1.00 0.11 1.02 1.00 0.056 67.21 172.33 0.432 7.32 0.10 0.10 0.10 0.056 1.172.33 0.432 7.32 0.00 1.00 1.00 1.00 1.00 0.056 8.19 1.00 1.06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <td>197 0.05 0.00 0.00 0.00 0.00 0.00 100 0.00 100 0.00 100 0.00 100 <t< td=""><td>1.7 23.561 2.2557 27.364 1.7 31.271 2.9938 36.319 1.7 99.552 9.5311 115.623 1.7 124.69 11.937 144.814 1.7 138.45 13.256 160.805 1.7 143.11 13.702 166.217 1.7 143.97 13.784 167.213 1.7 124.03 11.875 144.054 1.7 9.0106 109.309 1.7 1.7 9.0116 109.309 1.7 1.7 9.0511 8.6655 105.123 1.7 9.0557 7.6194 92.433 1.7 10.051 9.6225 216.020 1.7 11.427 11.227 132.200 1.7 14.238 13.632 165.371 1.7.83.75 7.824 96.836 1.7 1.7 8.76412 94.484 1.7 1.7 8.7674 100.066 1.7 1.7</td></t<></td>	197 0.05 0.00 0.00 0.00 0.00 0.00 100 0.00 100 0.00 100 0.00 100 <t< td=""><td>1.7 23.561 2.2557 27.364 1.7 31.271 2.9938 36.319 1.7 99.552 9.5311 115.623 1.7 124.69 11.937 144.814 1.7 138.45 13.256 160.805 1.7 143.11 13.702 166.217 1.7 143.97 13.784 167.213 1.7 124.03 11.875 144.054 1.7 9.0106 109.309 1.7 1.7 9.0116 109.309 1.7 1.7 9.0511 8.6655 105.123 1.7 9.0557 7.6194 92.433 1.7 10.051 9.6225 216.020 1.7 11.427 11.227 132.200 1.7 14.238 13.632 165.371 1.7.83.75 7.824 96.836 1.7 1.7 8.76412 94.484 1.7 1.7 8.7674 100.066 1.7 1.7</td></t<>	1.7 23.561 2.2557 27.364 1.7 31.271 2.9938 36.319 1.7 99.552 9.5311 115.623 1.7 124.69 11.937 144.814 1.7 138.45 13.256 160.805 1.7 143.11 13.702 166.217 1.7 143.97 13.784 167.213 1.7 124.03 11.875 144.054 1.7 9.0106 109.309 1.7 1.7 9.0116 109.309 1.7 1.7 9.0511 8.6655 105.123 1.7 9.0557 7.6194 92.433 1.7 10.051 9.6225 216.020 1.7 11.427 11.227 132.200 1.7 14.238 13.632 165.371 1.7.83.75 7.824 96.836 1.7 1.7 8.76412 94.484 1.7 1.7 8.7674 100.066 1.7 1.7

	WHITE MESA TAILINGS REPOSITORY LIQUEFACTION	N AND SEISMIC SETTLEMENT ANALYSES - 3-3S			Elev. at Elev. At Bottom		ure Equil Pore Stress at Stress at
Data File: 13-52106_SP3-3S-BSC-CPT Location: White Mesa 2013 CPT Investigation	Idriss and Boulanger (2008) Max. Horiz. Acceleration, Amax/g: 0.15	5605.60 Water surface elevation during CPT investigation (f 5601.35 Water surface elevation at t ₀ (ft ams))		me of CPT (ft amsl) mediately after Placement of Final Cover (ft amsl) FINAL COVER		eigh Weight of Layer of Layer of Lay	om Pressure at Bottom Midpoint rer Midpoint of of Layer of Layer
	Earthquake Moment Magnitude, M: 5.5	5582.14 Water surface elevation at t ₁ (ft amsl)	0.50 Thickness of Erosion Protecti	on Layer (rock mulch/topsoils) Immediately after pl Erosion Protection I		.055 110 0.028 0.014 0.00	0.00 0.028 0.014
Tailings Sands Tailings Sand-Slimes	Magnitude Scaling Factor, MSF: 1.69 Youd. et al (2001)	5577.14 Water surface elevation at t ₂ (ft amsl)	3.50 Thickness of Water Storage/F 3.50 Thickness of High Compactio		, , , , , , , , , , , , , , , , , , , ,	054 107 0.215 0.121 0.00 060 120 0.424 0.320 0.00	
Tailings Slimes Interim Cover	Max. Horiz. Acceleration, Amax/g: 0.15 Earthquake Moment Magnitude, M: 5.5		3.36 Thickness of Random/Platfor	m Fill on on top of existing interim cover (ft) Platform/Random Fill	Layer ####### 5611.31 5609.63 3.36 0.		0 0.00 0.593 0.509
Cells Requiring User Input/Manipulation	Magnitude Scaling Factor, MSF: 2.21 221		5577.14 Elevation of bottom of tailings	(liner) (ft amsl)			
2013 CPT Data from ConeTec Depth	Material Stress Pore Stress a	CPT Data Interpretations OP Normalized Normalize Type	Total Pore Effective	Idriss & Boulanger (2008)	Liquefaction Triggering Analyses Youd et al. (2001)		Idriss & Boulanger (2008)
at time Pw Pw of CPT Elevation qt fs qc (u2) (u2)	Type (as Unit Unit at time Pressure time of		Stress at Pressure Stress at Saturated t ₁ at t ₁ t ₁ at t ₁	Cyclic Stress Ratio Cyclic Resistance Ratio r _d C _o K _o K _a CSR (CRR) r _d	Cyclic Stress Ratio Dr f K _a CSR	(CRR) Avg	Liquefichica CN qc1 qc1 qc1N
(ft) (ft amsl) TSF TSF TSF (ft) PSI		1=Yes TSF MPa , Q, %	(tsf) (tsf) (tsf) 1=Yes	$\Delta qc_{1n} qc_{1n-cs} = \Delta qc_{1n} qc_{1n-cs}$	· · · · · · · · · · · · · · · · · · ·	Kc qc _{1n-cs M=7.5} , Fos	1=Yes TSF MPa
	0.45% Sand-Slime Tailin 0.059 119.0 0.69 0.25 0.43	1 1.70 17.663 245.52 20.69 23 0.48% 2.3 47%	1.28 0.00 1.28 0	0.94 0.05 0.98 1.0 0.053 37.56 58.25 0.086 1.62 0.95		sv=1atm FoS 95 40.29 0.084 3.98 2.80	
12.303 5597.33 10.3 0.077 10.2 9.8 4.26 12.467 5597.16 6.7 0.073 6.6 12.8 5.56		1 1.70 17.362 241.32 20.29 22 0.80% 2.4 47% 1 1.68 11.118 154.55 13.07 14 1.22% 2.7 71%	1.29 0.00 1.29 0 1.30 0.00 1.30 0			34 47.56 0.090 4.23 2.92 85 50.30 0.092 4.29 2.86	
12.631 5597.00 8.2 0.034 8.1 16.4 7.12 12.795 5596.83 9.3 0.032 9.2 15.5 6.73	0.41% Sand-Slime Tailin 0.059 119.0 0.71 0.27 0.45	1 1.67 13.584 188.82 15.98 17 0.45% 2.4 47% 1 1.66 15.282 212.42 17.94 19 0.37% 2.3 47%	1.310.001.3101.320.001.320			.35 37.50 0.081 3.76 2.63 .04 36.66 0.081 3.69 2.63	
12.959 5596.67 9.4 0.034 9.3 15.5 6.73	0.36% Sand-Slime Tailin, 0.059 119.0 0.73 0.28 0.46	1 1.64 15.259 212.10 17.91 19 0.39% 2.3 47%	1.33 0.00 1.33 0	0.93 0.05 0.98 1.0 0.053 36.58 54.49 0.082 1.56 0.94	0.24 0.80 1.14 1.0 0.037 2.	.08 37.23 0.081 3.68 2.62	2 1.644253 15.418 1.4761 17.907
	0.45% Sand-Slime Tailin 0.059 119.0 0.74 0.28 0.46 0.59% Sand-Slime Tailin 0.059 119.0 0.75 0.29 0.47	1 1.63 15.350 213.37 18.02 19 0.49% 2.4 47% 1 1.62 14.632 203.38 17.18 18 0.64% 2.4 47%	1.34 0.00 1.34 0 1.35 0.00 1.35 0			20 39.68 0.083 3.73 2.65 49 42.76 0.086 3.81 2.65	
13.451 5596.18 9.2 0.068 9.1 17.0 7.36	0.74% Sand-Slime Tailin 0.059 119.0 0.76 0.29 0.47	1 1.61 14.615 203.15 17.17 18 0.81% 2.5 47% 1 1.59 14.710 204.47 17.28 18 0.93% 2.5 47%	1.36 0.00 1.36 0 1.37 0.00 1.37 0	0.93 0.05 0.98 1.0 0.052 36.32 53.50 0.081 1.55 0.94		69 46.27 0.089 3.90 2.72 84 49.02 0.091 3.97 2.76	2 1.606033 14.785 1.4155 17.172
13.779 5595.85 11.2 0.068 11.1 17.5 7.60	0.61% Sand-Slime Tailin 0.059 119.0 0.78 0.30 0.48	1 1.59 14.710 204.47 17.28 18 0.93% 2.5 47% 1 1.58 17.525 243.59 20.55 22 0.65% 2.4 47%	1.37 0.00 1.37 0 1.38 0.00 1.38 0	0.92 0.05 0.98 1.0 0.052 37.51 58.07 0.086 1.65 0.94		84 49.02 0.091 3.97 2.76 20 45.17 0.088 3.79 2.72	
	0.57% Sand-Slime Tailin 0.059 119.0 0.79 0.31 0.48 1.01% Sand-Slime Tailin 0.059 119.0 0.80 0.31 0.49	1 1.54 22.107 307.29 25.85 28 0.60% 2.3 47% 1 1.56 17.669 245.60 20.70 22 1.08% 2.5 47%	1.39 0.00 1.39 0 1.39 0.00 1.39 0			81 46.71 0.089 3.81 2.8 64 54.59 0.095 4.04 2.8	
14.271 5595.36 8.1 0.115 8.0 17.0 7.37	1.43% Slime Tailings 0.057 113.1 0.81 0.32 0.49	1 1.55 12.321 171.26 14.50 15 1.59% 2.7 71%	1.40 0.00 1.40 0	0.92 0.05 0.98 1.0 0.052 35.14 49.64 0.077 1.48 0.94		03 58.43 0.099 4.15 2.82	2 1.547803 12.485 1.1953 14.500
	0.73% Sand-Slime Tailin 0.059 119.0 0.82 0.32 0.50 0.52% Sand-Slime Tailin 0.059 119.0 0.83 0.33 0.50	1 1.54 10.571 146.94 12.49 12 0.83% 2.6 47% 1 1.53 9.534 132.52 11.27 11 0.60% 2.6 47%	1.410.001.4101.420.001.420	0.92 0.05 0.98 1.0 0.052 34.25 45.52 0.073 1.41 0.94		54 44.20 0.087 3.62 2.53 48 39.19 0.083 3.42 2.42	
14.764 5594.87 5.4 0.063 5.2 20.0 8.68 14.928 5594.70 4.8 0.108 4.6 28.3 12.24		1 1.52 7.926 110.18 9.43 9 1.40% 2.9 71% 1 1.51 6.912 96.08 8.34 8 2.76% 3.1 71%	1.43 0.00 1.43 0 1.44 0.00 1.44 0	0.92 0.04 0.98 1.0 0.052 33.37 42.80 0.071 1.37 0.94 0.92 0.04 0.98 1.0 0.052 32.99 41.33 0.070 1.35 0.94		37 50.59 0.092 3.78 2.57 58 63.21 0.103 4.22 2.78	
15.092 5594.54 4.8 0.126 4.7 28.1 12.16	6 2.60% Slime Tailings 0.057 113.1 0.86 0.35 0.51	1 1.50 6.988 97.13 8.42 8 3.16% 3.1 71%	1.45 0.00 1.45 0	0.91 0.04 0.98 1.0 0.052 33.02 41.44 0.070 1.35 0.94	0.17 0.80 1.11 1.0 0.037 7.	94 66.87 0.108 4.36 2.85	2 1.49635 7.25 0.6941 8.420
15.256 5594.37 5.7 0.083 5.6 15.5 6.72 15.420 5594.21 8.3 0.060 8.2 16.1 6.98	1.45% Slime Tailings 0.057 113.1 0.87 0.35 0.52 0.72% Sand-Slime Tailin 0.059 119.0 0.88 0.36 0.52		1.46 0.00 1.46 0 1.47 0.00 1.47 0			61 55.39 0.096 3.84 2.62 18 45.42 0.088 3.49 2.50	
15.584 5594.05 8.5 0.058 8.4 8.8 3.83 15.748 5593.88 7.7 0.056 7.6 10.8 4.66		1 1.47 12.348 171.63 14.44 14 0.76% 2.6 47% 1 1.46 11.084 154.06 12.99 13 0.83% 2.6 47%	1.48 0.00 1.48 0 1.49 0.00 1.49 0			10 44.78 0.087 3.44 2.48 48 45.16 0.088 3.43 2.45	
15.912 5593.72 8.0 0.059 7.9 13.9 6.00	0.74% Sand-Slime Tailin 0.059 119.0 0.91 0.37 0.54	1 1.45 11.457 159.25 13.45 13 0.83% 2.6 47%	1.50 0.00 1.50 0	0.91 0.05 0.97 1.0 0.051 35.02 48.47 0.076 1.49 0.94	0.21 0.80 1.10 1.0 0.038 3.	39 45.63 0.088 3.41 2.45	2 1.446613 11.582 1.1089 13.452
16.076 5593.55 8.8 0.072 8.7 17.5 7.57 16.240 5593.39 9.7 0.120 9.5 20.4 8.83	0.82% Sand-Silme Tailin 0.059 119.0 0.92 0.38 0.54 1.24% Sand-Silme Tailin 0.059 119.0 0.93 0.38 0.55	1 1.44 12.487 173.57 14.68 15 0.91% 2.6 47% 1 1.43 13.603 189.08 16.01 16 1.37% 2.6 47%	1.510.001.5101.520.001.520			28 48.10 0.090 3.47 2.49 59 57.55 0.098 3.73 2.64	
	2.42% Stime Tailings 0.057 113.1 0.94 0.39 0.55 2.60% Stime Tailings 0.057 113.1 0.95 0.39 0.55	1 1.42 11.536 160.35 13.62 13 2.73% 2.9 71% 1 1.41 9.747 135.49 11.54 11 3.00% 3.0 71%	1.53 0.00 1.53 0 1.54 0.00 1.54 0			42 73.86 0.117 4.45 2.9 34 73.18 0.116 4.38 2.9	
16.732 5592.90 6.2 0.154 6.1 20.6 8.92	2.48% Slime Tailings 0.057 113.1 0.95 0.40 0.56	1 1.40 8.540 118.71 10.13 9 2.93% 3.0 71%	1.55 0.00 1.55 0	0.90 0.05 0.97 1.0 0.051 33.61 43.74 0.072 1.41 0.94	0.18 0.80 1.09 1.0 0.038 6.	88 69.68 0.111 4.16 2.79	2 1.40237 8.7206 0.8349 10.128
	1.32% Slime Tailings 0.057 113.1 0.96 0.40 0.56 0.66% Sand-Slime Tailin 0.059 119.0 0.97 0.41 0.57	1 1.39 9.383 130.43 11.19 11 1.53% 2.8 71% 1 1.39 13.119 182.36 15.46 15 0.73% 2.5 47%	1.56 0.00 1.56 0 1.57 0.00 1.57 0			96 55.55 0.096 3.56 2.50 93 45.31 0.088 3.23 2.33	
	0.46% Sand-Slime Tailin 0.059 119.0 0.98 0.41 0.57 0.57% Sand-Slime Tailin 0.059 119.0 0.99 0.42 0.58	1 1.38 15.417 214.30 18.13 18 0.50% 2.4 47% 1 1.37 16.989 236.15 19.94 20 0.61% 2.4 47%	1.58 0.00 1.58 0 1.59 0.00 1.59 0			30 41.65 0.085 3.09 2.36 28 45.39 0.088 3.18 2.44	
17.552 5592.08 13.7 0.092 13.6 19.3 8.35	0.67% Sand-Slime Tailin 0.059 119.0 1.00 0.42 0.58	1 1.36 18.404 255.82 21.57 22 0.73% 2.4 47%	1.60 0.00 1.60 0	0.90 0.05 0.97 1.0 0.050 37.86 59.43 0.087 1.74 0.93	0.27 0.80 1.08 1.0 0.038 2.	27 48.98 0.091 3.27 2.50	2 1.357251 18.568 1.7777 21.565
17.716 5591.91 13.7 0.124 13.6 19.8 8.56 17.880 5591.75 11.4 0.157 11.3 19.8 8.58	0.91% Sand-Slime Tailin 0.059 119.0 1.01 0.43 0.59 1.38% Sand-Slime Tailin 0.059 119.0 1.02 0.43 0.59	1 1.35 18.297 254.32 21.44 22 0.98% 2.5 47% 1 1.34 15.145 210.51 17.78 18 1.51% 2.6 47%	1.61 0.00 1.61 0 1.61 0.00 1.61 0			.55 54.65 0.095 3.40 2.51 .51 62.37 0.103 3.63 2.64	
18.044 5591.59 10.6 0.162 10.5 21.3 9.25 18.208 5591.42 9.0 0.183 8.9 21.8 9.45	1.52% Sand-Slime Tailing 0.059 119.0 1.03 0.44 0.60 2.03% Slime Tailings 0.057 113.1 1.04 0.44 0.60	1 1.33 14.025 194.94 16.50 16 1.69% 2.7 47% 1 1.33 11.759 163.45 13.87 13 2.30% 2.8 71%	1.62 0.00 1.62 0 1.63 0.00 1.63 0			89 64.15 0.105 3.68 2.64 05 70.01 0.112 3.91 2.72	
18.372 5591.26 8.4 0.100 8.2 27.4 11.89	0 1.19% Sand-Slime Tailin 0.059 119.0 1.05 0.45 0.60	1 1.32 10.844 150.73 12.86 12 1.36% 2.7 47%	1.64 0.00 1.64 0	0.89 0.05 0.97 1.0 0.050 34.81 47.67 0.075 1.51 0.93	0.21 0.80 1.07 1.0 0.038 4.	32 55.55 0.096 3.33 2.42	2 1.319204 11.07 1.0598 12.857
	0.70% Sand-Slime Tailin 0.059 119.0 1.06 0.45 0.61 1.19% Sand-Slime Tailin 0.059 119.0 1.07 0.46 0.61	1 1.31 17.559 244.07 20.60 20 0.76% 2.4 47% 1 1.30 12.971 180.29 15.23 15 1.33% 2.7 47%	1.65 0.00 1.65 0 1.66 0.00 1.66 0	0.89 0.05 0.97 1.0 0.050 37.52 58.12 0.086 1.73 0.93 0.89 0.05 0.97 1.0 0.050 35.64 50.88 0.078 1.58 0.93		41 49.69 0.091 3.15 2.44 .77 57.42 0.098 3.34 2.46	
	1.17% Sand-Slime Tailin 0.059 119.0 1.08 0.46 0.62 1.17% Sand-Slime Tailin 0.059 119.0 1.09 0.47 0.62	1 1.30 12.648 175.81 14.87 14 1.32% 2.7 47% 1 1.29 17.870 248.39 20.88 21 1.27% 2.5 47%		0.89 0.05 0.97 1.0 0.050 35.52 50.38 0.078 1.57 0.93 0.88 0.05 0.96 1.0 0.049 37.62 58.50 0.086 1.75 0.93		83 56.90 0.097 3.30 2.44 92 60.91 0.101 3.41 2.58	
19.193 5590.44 13.6 0.284 13.5 11.7 5.08	2.09% Sand-Slime Tailin, 0.059 119.0 1.10 0.47 0.63	1 1.28 17.279 240.18 20.18 20 2.28% 2.7 47%	1.69 0.00 1.69 0	0.88 0.05 0.96 1.0 0.049 37.38 57.56 0.085 1.73 0.93	0.26 0.80 1.07 1.0 0.038 3.	.88 78.37 0.125 4.18 2.96	2 1.280906 17.373 1.6633 20.178
19.357 5590.27 10.2 0.200 10.1 14.7 6.36 19.521 5590.11 17.8 0.357 17.7 18.6 8.07	1.96% Slime Tailings 0.057 113.1 1.11 0.48 0.63 2.00% Sand-Slime Tailing 0.059 119.0 1.12 0.48 0.64			0.88 0.05 0.97 1.0 0.049 35.35 50.44 0.078 1.58 0.93 0.88 0.06 0.96 1.0 0.049 39.41 65.37 0.094 1.92 0.93		.70 70.98 0.113 3.77 2.68 .15 81.85 0.131 4.34 3.13	
19.685 5589.95 22.3 0.302 22.2 25.3 10.96 19.849 5589.78 22.1 0.259 21.8 57.2 24.73	5 1.35% Sand-Slime Tailin 0.059 119.0 1.13 0.49 0.64 0 1.17% Sand-Slime Tailin 0.059 119.0 1.14 0.49 0.65			0.88 0.06 0.96 1.0 0.049 41.53 73.56 0.104 2.14 0.93 0.88 0.06 0.96 1.0 0.049 41.39 73.02 0.103 2.13 0.92		26 72.25 0.115 3.79 2.96 .14 67.74 0.109 3.57 2.85	
20.013 5589.62 20.9 0.204 20.3 100.3 43.47	0.98% Sand-Slime Tailin, 0.059 119.0 1.15 0.50 0.65	1 1.23 24.850 345.41 29.75 30 1.03% 2.3 47%	1.74 0.00 1.74 0	0.88 0.06 0.96 1.0 0.049 40.74 70.49 0.100 2.06 0.92	0.31 0.80 1.06 1.0 0.038 2.	.08 62.00 0.102 3.33 2.69	2 1.227142 25.618 2.4527 29.754
	5 1.27% Sand-Slime Tailine 0.059 119.0 1.16 0.50 0.65 1.39% Sand-Slime Tailine 0.059 119.0 1.17 0.51 0.66			0.87 0.06 0.96 1.0 0.049 39.62 66.19 0.095 1.96 0.92 0.87 0.06 0.96 1.0 0.048 40.10 68.05 0.097 2.01 0.92		53 67.18 0.108 3.50 2.73 53 70.78 0.113 3.64 2.82	
20.505 5589.13 25.1 0.237 24.5 96.6 41.86 20.669 5588.96 31.4 0.092 31.0 58.2 25.23	Sound-Slime Tailin 0.059 119.0 1.18 0.51 0.66 0.29% Sand Tailings 0.062 123.5 1.19 0.52 0.67			0.87 0.06 0.96 1.0 0.048 42.55 77.49 0.109 2.27 0.92 0.87 0.07 0.95 1.0 0.048 33.11 76.23 0.108 2.25 0.92		85 64.63 0.105 3.36 2.82 .24 53.32 0.094 2.99 2.62	
20.833 5588.80 32.9 0.194 32.7 35.6 15.43	0.59% Sand Tailings 0.062 123.5 1.20 0.52 0.67	1 1.17 38.397 533.72 44.90 47 0.61% 2.1 18%	1.79 0.00 1.79 0	0.87 0.07 0.95 1.0 0.048 33.57 78.47 0.111 2.31 0.92	0.39 0.80 1.05 1.0 0.038 1.	.39 62.28 0.102 3.24 2.78	2 1.174936 38.658 3.7011 44.899
	0.90% Sand-Silme Tailin 0.059 119.0 1.21 0.53 0.68 0.54% Sand-Silme Tailin 0.059 119.0 1.22 0.53 0.68			0.87 0.06 0.96 1.0 0.048 41.22 72.33 0.103 2.14 0.91 0.87 0.06 0.96 1.0 0.048 40.41 69.25 0.099 2.06 0.91		97 61.27 0.101 3.19 2.66 76 50.76 0.092 2.88 2.41	
	0.95% Sand-Slime Tailin 0.059 119.0 1.23 0.54 0.69 3 1.20% Sand-Slime Tailin 0.059 119.0 1.24 0.54 0.69			0.87 0.06 0.96 1.0 0.048 40.44 69.36 0.099 2.06 0.91 0.86 0.06 0.96 1.0 0.048 40.95 71.32 0.101 2.12 0.91		13 61.57 0.102 3.17 2.62 26 68.55 0.110 3.40 2.76	
21.653 5587.98 18.5 0.419 18.0 91.4 39.5	2.26% Sand-Slime Tailin, 0.059 119.0 1.25 0.55 0.70	1 1.17 21.059 292.72 25.24 25 2.42% 2.6 47%	1.84 0.00 1.84 0	0.86 0.06 0.96 1.0 0.048 39.15 64.39 0.093 1.94 0.91	0.29 0.80 1.04 1.0 0.038 3.4	.47 87.68 0.143 4.39 3.1 7	2 1.172557 21.728 2.0802 25.236
	2 1.08% Sand-Slime Tailin 0.059 119.0 1.26 0.55 0.70 0 0.83% Sand-Slime Tailin 0.059 119.0 1.27 0.56 0.71			0.86 0.06 0.95 1.0 0.048 41.12 71.97 0.102 2.15 0.91 0.86 0.06 0.95 1.0 0.047 43.54 81.29 0.114 2.42 0.91		15 66.25 0.107 3.28 2.7 70 64.18 0.105 3.19 2.80	
	1.45% Sand-Slime Tailin 0.059 119.0 1.28 0.57 0.71 7 0.86% Sand-Slime Tailin 0.059 119.0 1.29 0.57 0.72			0.86 0.06 0.95 1.0 0.047 40.69 70.30 0.100 2.11 0.91 0.86 0.06 0.95 1.0 0.047 41.92 75.06 0.106 2.25 0.90		51 74.48 0.118 3.59 2.89 88 62.32 0.103 3.09 2.61	
22.473 5587.16 25.7 0.237 24.6 172.5 74.75	5 0.92% Sand-Slime Tailin, 0.059 119.0 1.30 0.58 0.72	1 1.13 27.896 387.75 33.82 34 0.97% 2.3 47%	1.89 0.00 1.89 0	0.86 0.06 0.95 1.0 0.047 42.16 75.98 0.107 2.28 0.90	0.34 0.80 1.04 1.0 0.038 1.	90 64.40 0.105 3.15 2.7	2 1.134432 29.117 2.7877 33.818
22.802 5586.83 25.6 0.229 24.5 184.7 80.05	7 1.03% Sand-Slime Tailin 0.059 119.0 1.31 0.58 0.72 5 0.89% Sand-Slime Tailin 0.059 119.0 1.32 0.59 0.73			0.85 0.06 0.95 1.0 0.047 41.99 75.32 0.106 2.26 0.90 0.85 0.06 0.95 1.0 0.047 42.03 75.49 0.107 2.27 0.90		.01 66.86 0.108 3.22 2.74 .90 63.56 0.104 3.09 2.68	
	3 0.51% Sand-Slime Tailin 0.059 119.0 1.33 0.59 0.73 3 0.73% Sand-Slime Tailin 0.059 119.0 1.33 0.60 0.74			0.85 0.06 0.95 1.0 0.047 43.28 80.28 0.113 2.42 0.90 0.85 0.06 0.95 1.0 0.047 44.06 83.30 0.117 2.51 0.90		50 55.48 0.096 2.84 2.63 61 63.15 0.103 3.05 2.78	
23.294 5586.34 35.2 0.314 34.0 190.1 82.37	0.89% Sand-Slime Tailin, 0.059 119.0 1.34 0.60 0.74	1 1.10 37.465 520.76 45.03 46 0.93% 2.2 47%	1.94 0.00 1.94 0	0.85 0.07 0.94 1.0 0.046 46.09 91.13 0.129 2.77 0.90	0.39 0.80 1.03 1.0 0.038 1.	.59 71.48 0.114 3.34 3.06	2 1.101255 38.772 3.712 45.031
23.622 5586.01 38.4 0.271 37.3 171.7 74.40	0.71% Sand Tailings 0.062 123.5 1.35 0.61 0.75 0.071% Sand Tailings 0.062 123.5 1.36 0.61 0.75	1 1.09 40.621 564.64 48.54 49 0.73% 2.1 18%	1.96 0.00 1.96 0	0.85 0.07 0.94 1.0 0.046 34.55 83.28 0.117 2.54 0.89 0.85 0.07 0.94 1.0 0.046 34.50 83.03 0.117 2.53 0.89	0.40 0.80 1.03 1.0 0.038 1.4	42 69.29 0.111 3.23 2.88 43 69.22 0.111 3.22 2.81	2 1.089628 41.789 4.0009 48.536
23.786 5585.84 41.4 0.271 40.3 174.7 75.68	3 0.66% Sand Tailings 0.062 123.5 1.37 0.62 0.76	1 1.08 43.621 606.34 52.04 53 0.68% 2.0 18%	1.97 0.00 1.97 0	0.85 0.07 0.94 1.0 0.046 35.39 87.43 0.123 2.68 0.89	0.42 0.79 1.03 1.0 0.038 1.	.36 70.53 0.113 3.25 2.96	2 1.083221 44.802 4.2894 52.035

WHITE MESA TAILINGS REPOSITORY LIQUEFACTION Data File: 13-52106_SP3-4N-BSC-CPT Idriss and Boulanger (2008) Location: White Mesa 2013 CPT Investigation Max. Horiz. Acceleration, Amax/g: 0.15 .\.\.\.6.2.3. Field Data\2013 Field Investigation\Conetec Da Max. Horiz. Acceleration, Amax/g: 0.15 Tailings Sand-Slimes Magnitude Scaling Factor, MSF: 1.69 Tailings Slimes Max. Horiz. Acceleration, Amax/g: 0.15 Interim Cover Earthquake Moment Magnitude, M: 5.5	5606.00 Water surface elevation during CPT investigation (ft 5608.70 Ground Surface Elevation at time of CPT (ft amsl) FINAL C 5600.42 Water surface elevation at t ₀ (ft amsl) 5623.35 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl) FINAL C 5583.71 Water surface elevation at t ₁ (ft amsl) 0.50 Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after pl Erosion P 5578.71 Water surface elevation at t ₂ (ft amsl) 0.50 Thickness of Storage/Rooting Zone (ft) ater Storage/Rooting Zone (ft) ater Storage/Rooting Cone (ft) 1.44 Scaling Factor for stress ration, r _m 7.15 Thickness of Random/Platform Fill on on top of existing interim cover (ft) Platform/Ra 0.47 Volumetric Strain Ratio for Site-Specific Design Ear 1565.99 Additional Stress due to Final Cover Placement, Δσ _{Frc} (psf)	Elev. at Top of LayerElev. At Midpoint LayerBottom of LayerThicknes of LayerUnit s of LayerStress at Weigh (pt)Stress at unit (pcf)Pressure of Layer (tsf)Equil Pore at Bottom of LayerStress at Midpoint of LayerStress at at BottomStress at Midpoint of LayerPressure at BottomEquil Pore Pressure at Midpoint of LayerStress at Midpoint of LayerStress at Midpoint of LayerStress at midpoint of LayerStress at midpoint of of LayerStress at midpoint of LayerStress at midpoint of LayerStress at midpoint of LayerStress at midpoint of LayerStress at midpoint of of LayerStress at midpointStress at of LayerStress at midpoint of of LayerStress at midpoint of of LayerStress at midpointview######5612.155615.853.500.0601100.0280.0140.000.0000.0280.014mpaction Layer######5612.855608.707.150.0501010.7840.6040.000.0000.0240.020mpaction Layer###
Data File: 13-52106_SP3-4N-BSC_CPT Idriss and Boulanger (2008) Location: White Mesa 2013 CPT Investigation Max. Horiz. Acceleration, Amax/g: 0.15	SetUp:00 563.71 Visual surface elevation at 1; (ff ame) 567.71 SetUp:00 700 SetUp:	Top of (t) Midpoint of Layer (ti) Midpoint of Layer (ti) Midpoint sof (ti) Thicknes sof (ti) Unit sof (tic) Bottom of Layer (tic) Pressure at of Layer (tsf) Bottom of Layer (tsf) Midpoint of Layer (tsf) Midpoint of Layer (tsf) Midpoint of Layer (tsf) Protection Layer ###### 5623.1 5613.35 0.55 0.055 110 0.028 0.014 0.00 0.028 0.014 ting Zone Layer ###### 5617.6 515.85 3.50 0.06 120 0.424 0.320 0.00 0.028 0.014
10.335 5598.37 5.5 0.171 5.5 6.9 2.99 3.11% Stime Tailings 0.057 113.1 0.59 0.24 0.35 10.499 558.20 10.4 0.222 10.4 3.4 1.48 2.14% Stime Tailings 0.057 113.1 0.60 0.24 0.35 10.63 5598.20 10.4 0.221 10.4 3.4 1.48 2.14% Stime Tailings 0.057 113.1 0.60 0.24 0.35 10.63 5597.87 5.7 0.238 5.6 2.2 10.07 1.47% Stime Tailings 0.057 113.1 0.62 0.26 0.36 10.991 5597.57 3.0 0.253 2.9 12.9 5.59 8.49% Stime Tailings 0.057 113.1 0.64 0.26 0.37 11.15 5597.55 3.0 0.253 2.8 12.7 7.9 3.44 9.10% Stime Tailings 0.057 113.1 0.64 0.27	1 1.70 17.612 244.81 20.50 28 2.27% 2.6 71% 1.38 0.00 1.38 0 0.95 0.95 0.98 1.0 0.053 37.23 57.72 0.085 1.80 1 1.70 7.089 98.54 8.40 10 6.61% 3.2 71% 1.39 0.00 1.39 0 0.95 0.95 0.98 1.0 0.053 34.02 4.31 0.070 1.30 1.0 0.95 0.95 0.98 1.0 0.053 34.02 4.53 0.073 1.37 1 1.70 4.946 131.86 11.30 14 4.68% 3.0 71% 1.40 0.001 1.41 0.95 0.95 0.98 1.0 0.053 34.02 4.53 0.03 1.65 1 1.70 4.930 68.53 5.88 6 10.79% 3.5 71% 1.42 0.00 1.44 0 9.4 0.4 0.88 1.0 0.53 31.93 37.43 0.67 1.26 1.5 1.66	0.94 0.26 0.80 1.19 1.0 0.035 3.14 64.46 0.105 6.13 3.87 2 1.7 17.648 1.6896 20.497 0.94 0.17 0.80 1.19 1.0 0.035 9.23 77.49 0.123 7.13 4.21 2 1.7 7.29 0.6921 8.396 0.94 0.19 0.80 1.19 1.0 0.035 2.66 6.57 0.106 6.01 3.83 2 1.7 7.29 0.6921 8.396 0.94 0.12 7.08 1.81 2 1.7 9.7325 0.9318 11.04 0.94 0.14 0.80 1.18 1.0 0.035 1.58 2.96 6.57 0.106 6.01 3.83 2 1.7 5.0669 0.4851 5.885 0.94 0.13 0.80 1.18 1.0 0.035 15.18 82.68 0.039 5.41 3.56 2 1.7 2.0458<

WHITE	MESA TAILINGS REPOSITORY LIQUEFACTION AND SEISMI	IC SETTLEMENT ANALYSES - 3-4N		Elev. at Elev. At I		sure Equil Pore Stress at Stress at
Data File: 13-52106_SP3-4N-BSC-CPT Idriss and Boular		5606.00 Water surface elevation during CPT investigation (fl	5608.70 Ground Surface Elevation at time of CPT (ft amsl)		of Thicknes Unit Unit Bottom Midpoint at Bot Layer s of Weigh Weight of Layer of Layer of La	tom Pressure at Bottom Midpoint yer Midpoint of of Layer of Layer
	z. Acceleration, Amax/g: 0.15 e Moment Magnitude, M: 5.5		5623.35 Ground Surface Elevation Immediately after Placement of 0.50 Thickness of Erosion Protection Layer (rock mulch/topsoils	()	(ft) Layer (ft) t (tcf) (pcf) (tsf) (tsf) (ts 5622.85 0.50 0.055 110 0.028 0.014 0.0	
	le Scaling Factor, MSF: 1.69		3.50 Thickness of Water Storage/Rooting Zone (ft)	,	5622.85 0.50 0.055 110 0.028 0.014 0.0 5619.35 3.50 0.054 107 0.215 0.121 0.0	
Tailings Sand-Slimes Youd, et al (2001)			3.50 Thickness of High Compaction Layer (ft)	High Compaction Layer ####### 5617.6		
	K. Horiz. Acceleration, Amax/g: 0.15 guake Moment Magnitude, M: 5.5		7.15 Thickness of Random/Platform Fill on on top of existing int 1565.99 Additional Stress due to Final Cover Placement, Δσ _{FC} (psf)	erim cover (ft) Platform/Random Fill Layer ###### 5612.28	5608.70 7.15 0.050 101 0.784 0.604 0.0	0 0.00 0.784 0.604
	agnitude Scaling Factor, MSF: 2.21 2.21		5578.71 Elevation of bottom of tailings (liner) (ft amsl)			
2013 CPT Data from ConeTec Materi		a Interpretations Normalized Normalize Type	Conditions at t ₁	Liquefaction Triggering A		Idriss & Boulanger (2008)
Depth at time Pw Pw Type (Cone d Friction Index, Penetration Ratio, Fr	Total Pore Effective Idriss Stress at Pressure Stress at Saturated Cyclic Stress Ratio	Boulanger (2008) Cyclic Resistance Ratio Cyclic Stress Ratio	Youd et al. (2001)	
of CPT Elevation qt fs qc (u2) (u2) fs/qt determi	Weight Weight of CPT at time of CPT CPT C	CN qc1 qc1 qc1N Resistance (%) CN	t_1 at t_1 t_1 at t_1 r_d C_σ K_σ K_a C_σ		K _a CSR (CRR) Av	
(ft) (ft amsl) TSF TSF TSF (ft) PSI (%)	(tcf) (pcf) (tsf) (tsf) (tsf) 1=Yes 0=No	TSF MPa ^{, Qt} %	A N	_{-7.5.} Δqc _{1n} qc _{1n-cs} _{M=7.5.}	M=7.5, Kc qc _{1n-cs M=7.5} , Fo	S 1=Yes TSF MPa 2=No
12.139 5596.56 153.1 1.039 152.7 76.3 33.05 0.68% Sand Tailing		.26 192.043 2669.40 223.74 381 0.68% 1.4 18%			sv=1atm FOS 1.0 0.030 1.00 223.74 1.000 52.09 37.1	
12.303 5596.40 126.4 0.970 126.3 17.7 7.67 0.77% Sand Tailing		.30 163.560 2273.49 190.13 310 0.77% 1.5 18%		047 70.70 260.83 1.000 21.23 0.94 0.80 0.60 1.35	1.0 0.031 1.00 190.13 1.000 51.46 36.3	
12.467 5596.23 12.1 0.808 12.0 22.2 9.64 6.66% Sime Tailin 12.631 5596.07 18.2 0.402 18.1 12.5 5.41 2.21% sand-slime		1.70 20.400 283.56 23.97 28 7.07% 2.9 71% 1.67 30.267 420.71 35.30 42 2.30% 2.4 47%	1.50 0.00 1.50 0 0.93 0.06 0.97 1.0 0. 1.51 0.00 1.51 0 0.93 0.06 0.97 1.0 0.	052 38.43 62.40 0.091 1.73 0.94 0.28 0.80 1.16 052 42.68 77.99 0.110 2.11 0.94 0.34 0.80 1.16	1.0 0.036 5.65 135.34 0.311 15.83 8.7 1.0 0.036 2.44 86.07 0.139 7.02 4.5	
12.795 5595.90 26.5 0.286 26.5 1.9 0.81 1.08% Sand-Slime	e Tailine 0.059 119.0 0.73 0.31 0.42 1 1.	.59 42.092 585.08 48.91 62 1.11% 2.1 47%	1.52 0.00 1.52 0 0.93 0.07 0.96 1.0 0.	052 47.45 96.36 0.137 2.64 0.94 0.40 0.80 1.16	1.0 0.036 1.46 71.51 0.114 5.69 4.1	6 2 1.59017 42.11 4.0317 48.909
12.959 5595.74 36.4 0.258 36.4 1.4 0.59 0.71% Sand Tailing 13.123 5595.58 11.0 0.376 10.9 16.2 7.02 3.43% Slime Tailing		1.52 55.289 768.51 64.23 84 0.72% 1.9 18% 1.70 18.462 256.62 21.64 24 3.68% 2.8 71%		051 38.51 102.74 0.147 2.87 0.94 0.46 0.77 1.18 052 37.62 59.27 0.087 1.67 0.94 0.27 0.80 1.15	1.0 0.035 1.18 75.48 0.120 5.92 4.3 1.0 0.036 4.38 94.82 0.159 7.78 4.7	
13.287 5595.41 24.7 0.375 24.6 16.4 7.12 1.52% Sand-Slime		1.70 18.402 250.02 21.04 24 5.08% 2.6 71% 1.57 38.712 538.09 45.15 55 1.57% 2.2 47%			1.0 0.030 4.38 94.62 0.139 7.78 4.7 1.0 0.036 1.75 78.95 0.126 6.08 4.2	
13.451 5595.25 8.9 0.177 8.8 15.2 6.59 1.99% Slime Tailin	5	1.70 14.960 207.94 17.56 19 2.18% 2.7 71%			1.0 0.036 3.97 69.67 0.111 5.34 3.4	
13.615 5595.08 3.6 0.140 3.4 36.3 15.72 3.88% Sime Tailin 13.779 5594.92 4.3 0.102 4.0 46.1 19.97 2.37% Sime Tailin	·	1.69 5.708 79.34 7.07 6 4.95% 3.3 71% 1.68 6.739 93.67 8.39 8 2.90% 3.1 71%	1.56 0.00 1.56 0 0.93 0.04 0.97 1.0 0. 1.57 0.00 1.57 0 0.92 0.04 0.97 1.0 0.	052 32.55 39.62 0.068 1.31 0.93 0.15 0.80 1.14 052 33.01 41.40 0.070 1.34 0.93 0.17 0.80 1.14	1.0 0.036 10.41 73.64 0.117 5.56 3.4 1.0 0.036 7.60 63.70 0.104 4.89 3.1	
13.943 5594.76 4.7 0.064 4.4 49.6 21.48 1.35% Slime Tailin	ngs 0.057 113.1 0.80 0.35 0.45 1 1.	1.66 7.355 102.24 9.14 9 1.63% 2.9 71%	1.58 0.00 1.58 0 0.92 0.04 0.97 <mark>1.0</mark> 0.	052 33.27 42.41 0.071 1.36 0.93 0.17 0.80 1.14	1.0 0.036 5.75 52.54 0.093 4.36 2.8	6 2 1.664136 7.8703 0.7535 9.141
14.107 5594.59 5.1 0.026 4.8 50.7 21.98 0.51% Sime Tailin 14.271 5594.43 9.8 0.045 9.6 29.9 12.96 0.46% sad-slime		1.65 7.897 109.77 9.78 9 0.61% 2.7 71% 1.64 15.784 219.40 18.69 20 0.50% 2.4 47%	1.59 0.00 1.59 0 0.92 0.05 0.97 1.0 0. 1.60 0.00 1.60 0 0.92 0.05 0.97 1.0 0.	052 33.49 43.27 0.071 1.38 0.93 0.18 0.80 1.14 052 36.86 55.54 0.083 1.61 0.93 0.25 0.80 1.13	1.0 0.036 3.91 38.23 0.082 3.78 2.5 1.0 0.036 2.17 40.47 0.084 3.83 2.7	
14.271 5594.43 9.8 0.045 9.6 29.9 12.96 0.46% Sand-Sime 14.436 5594.26 8.9 0.082 8.9 8.8 3.82 0.92% Sand-Slime		1.63 14.408 200.27 16.84 17 1.01% 2.5 47%	1.60 0.00 1.60 0 0.92 0.05 0.97 1.0 0. 1.61 0.00 1.61 0 0.92 0.05 0.97 1.0 0.		1.0 0.036 2.17 40.47 0.064 5.83 2.7 1.0 0.036 2.99 50.37 0.092 4.16 2.8	
14.600 5594.10 6.1 0.065 6.0 10.0 4.33 1.07% Slime Tailin		.61 9.689 134.68 11.37 11 1.24% 2.8 71%			1.0 0.036 4.41 50.17 0.092 4.12 2.7	
14.764 5593.94 6.3 0.071 6.2 13.9 6.00 1.13% Stime Tailin 14.928 5593.77 9.5 0.050 9.4 12.9 5.57 0.53% Sand-Stime	5	1.60 9.927 137.98 11.69 12 1.31% 2.8 71% 1.59 15.023 208.82 17.60 18 0.58% 2.4 47%	1.63 0.00 1.63 0 0.92 0.05 0.97 1.0 0. 1.64 0.00 1.64 0 0.92 0.05 0.97 1.0 0.		1.0 0.036 4.41 51.51 0.093 4.13 2.7 1.0 0.036 2.38 41.96 0.085 3.75 2.6	
15.092 5593.61 8.2 0.031 8.1 11.9 5.14 0.38% Sand-Slime		1.58 12.809 178.04 15.01 15 0.42% 2.4 47%		051 35.57 50.58 0.078 1.52 0.93 0.22 0.80 1.12	1.0 0.037 2.48 37.18 0.081 3.54 2.5	
15.256 5593.44 12.5 0.026 12.4 11.9 5.14 0.21% Sand-Sime 15.420 5593.28 13.4 0.032 13.4 10.3 4.47 0.24% Sand-Sime		1.56 19.333 268.72 22.59 24 0.22% 2.2 47% 1.54 20.554 285.71 23.99 26 0.26% 2.2 47%	1.66 0.00 1.66 0 0.91 0.05 0.96 1.0 0. 1.67 0.00 1.67 0 0.91 0.06 0.96 1.0 0.	051 38.22 60.81 0.089 1.74 0.93 0.27 0.80 1.12 051 38.71 62.70 0.091 1.79 0.93 0.28 0.80 1.12	1.0 0.037 1.59 35.90 0.080 3.46 2.6 1.0 0.037 1.56 37.47 0.081 3.49 2.6	
15.420 5593.28 13.4 0.032 13.4 10.3 4.47 0.24% Sand-Slime 15.584 5593.12 13.2 0.032 13.1 11.4 4.95 0.24% Sand-Slime		1.54 20.554 285.71 23.99 26 0.26% 2.2 47% 1.53 20.065 278.90 23.43 25 0.26% 2.2 47%			1.0 0.037 1.56 37.47 0.081 3.49 2.6 1.0 0.037 1.59 37.37 0.081 3.46 2.6	
15.748 5592.95 12.9 0.034 12.9 12.5 5.42 0.26% Sand-Slime		.52 19.566 271.97 22.86 24 0.28% 2.2 47%			1.0 0.037 1.65 37.72 0.081 3.44 2.6	
15.912 5592.79 13.3 0.033 13.2 12.9 5.61 0.25% Sand-Slime 16.076 5592.62 12.7 0.033 12.6 12.9 5.58 0.26% Sand-Slime		1.51 19.983 277.76 23.35 25 0.27% 2.2 47% 1.50 18.976 263.76 22.18 23 0.28% 2.2 47%			1.0 0.037 1.61 37.58 0.081 3.41 2.5 1.0 0.037 1.69 37.43 0.081 3.38 2.5	
16.240 5592.46 12.7 0.036 12.6 13.1 5.68 0.28% Sand-Slime		1.49 18.852 262.04 22.04 23 0.31% 2.2 47%			1.0 0.037 1.73 38.09 0.082 3.38 2.5	
16.404 5592.30 13.4 0.038 13.3 13.6 5.91 0.28% Sand-Slime 16.568 5592.13 14.1 0.045 14.0 13.7 5.93 0.32% sand-slime		1.48 19.694 273.75 23.02 24 0.31% 2.2 47% 1.46 20.524 285.29 23.98 25 0.34% 2.2 47%		050 38.38 61.39 0.089 1.78 0.92 0.28 0.80 1.11 050 38.71 62.70 0.091 1.81 0.92 0.28 0.80 1.11	1.0 0.037 1.68 38.59 0.082 3.37 2.5 1.0 0.037 1.67 40.09 0.083 3.39 2.6	
16.568 5592.13 14.1 0.045 14.0 13.7 5.93 0.32% Sand-Slime 16.732 5591.97 13.5 0.052 13.4 13.7 5.93 0.39% Sand-Slime		1.46 20.524 285.29 23.98 25 0.34% 2.2 47% 1.46 19.527 271.42 22.82 24 0.42% 2.3 47%		050 38.71 62.70 0.091 1.81 0.92 0.28 0.80 1.11 050 38.31 61.13 0.089 1.78 0.92 0.28 0.80 1.10	1.0 0.037 1.67 40.09 0.083 3.39 2.6 1.0 0.037 1.82 41.47 0.085 3.42 2.6	
16.896 5591.80 13.5 0.050 13.5 14.1 6.13 0.37% Sand-Slime		.45 19.512 271.22 22.81 24 0.40% 2.3 47%		050 38.30 61.11 0.089 1.78 0.92 0.28 0.80 1.10	1.0 0.037 1.80 41.05 0.084 3.38 2.5	
17.060 5591.64 14.2 0.052 14.1 14.4 6.25 0.37% Sand-Slime 17.224 5591.48 15.7 0.057 15.6 14.5 6.26 0.36% Sand-Slime		1.44 20.251 281.48 23.67 25 0.39% 2.2 47% 1.42 22.160 308.02 25.89 27 0.39% 2.2 47%		050 38.60 62.27 0.090 1.81 0.92 0.28 0.80 1.10 050 39.38 65.27 0.094 1.88 0.91 0.29 0.80 1.10	1.0 0.037 1.75 41.43 0.085 3.36 2.5 1.0 0.037 1.64 42.48 0.085 3.38 2.6	
17.388 5591.31 16.7 0.068 16.6 14.7 6.37 0.41% Sand-Slime		1.40 23.276 323.53 27.18 29 0.43% 2.2 47%		050 39.84 67.02 0.096 1.93 0.91 0.30 0.80 1.10	1.0 0.037 1.63 44.44 0.087 3.42 2.6	
17.552 5591.15 17.4 0.079 17.3 15.0 6.49 0.45% Sand-Slime 17.716 5590.98 17.4 0.085 17.3 15.1 6.52 0.49% Sand-Slime		.39 24.051 334.31 28.09 30 0.48% 2.2 47% .38 24.003 333.64 28.03 30 0.52% 2.2 47%			1.0 0.037 1.65 46.24 0.089 3.45 2.7 1.0 0.037 1.68 47.14 0.089 3.45 2.7	
17.716 5590.98 17.4 0.085 17.3 15.1 6.52 0.49% Sand-Slime 17.880 5590.82 16.7 0.082 16.7 15.2 6.57 0.49% Sand-Slime		1.38 24.003 333.64 28.03 30 0.52% 2.2 47% 1.38 22.974 319.34 26.83 28 0.52% 2.2 47%		050 40.13 68.16 0.097 1.97 0.91 0.31 0.80 1.09 049 39.71 66.55 0.095 1.93 0.91 0.30 0.80 1.09	1.0 0.037 1.68 47.14 0.089 3.45 2.7 1.0 0.037 1.74 46.63 0.089 3.42 2.6	
18.044 5590.66 15.6 0.083 15.5 15.5 6.70 0.53% Sand-Slime		.38 21.358 296.87 24.96 26 0.57% 2.3 47%			1.0 0.037 1.88 46.89 0.089 3.40 2.6	4 2 1.377916 21.491 2.0575 24.960
18.208 5590.49 15.5 0.082 15.4 15.8 6.83 0.53% Sand-Slime 18.372 5590.33 15.5 0.076 15.4 15.9 6.89 0.49% Sand-Slime		.37 21.066 292.82 24.62 25 0.57% 2.3 47% .36 21.021 292.19 24.57 25 0.53% 2.3 47%	1.83 0.00 1.83 0 0.89 0.06 0.96 1.0 0. 1.84 0.00 1.84 0 0.89 0.06 0.96 1.0 0.	049 38.94 63.56 0.092 1.86 0.91 0.29 0.80 1.09 049 38.92 63.49 0.092 1.86 0.91 0.29 0.80 1.08	1.0 0.037 1.90 46.75 0.089 3.37 2.6 1.0 0.037 1.86 45.70 0.088 3.32 2.5	
18.537 5590.16 15.0 0.075 14.9 15.9 6.90 0.50% Sand-Slime	a Tailin 0.059 119.0 1.07 0.49 0.58 1 1.	1.36 20.261 281.63 23.69 24 0.54% 2.3 47%	1.85 0.00 1.85 0 0.89 0.05 0.96 <mark>1.0</mark> 0.	049 38.61 62.30 0.090 1.84 0.90 0.28 0.80 1.08	1.0 0.037 1.93 45.62 0.088 3.29 2.5	7 2 1.357054 20.396 1.9527 23.688
18.701 5590.00 14.3 0.060 14.2 15.9 6.90 0.42% Sand-Slime 18.865 5589.84 14.4 0.060 14.3 15.9 6.90 0.42% Sand-Slime		I.35 19.251 267.59 22.51 23 0.45% 2.3 47% I.34 19.229 267.28 22.49 23 0.45% 2.3 47%		049 38.20 60.71 0.089 1.80 0.90 0.27 0.80 1.08 049 38.19 60.68 0.089 1.81 0.90 0.27 0.80 1.08	1.0 0.037 1.91 42.96 0.086 3.19 2.5 1.0 0.037 1.91 42.95 0.086 3.17 2.4	
19.029 5589.67 13.4 0.061 13.3 15.9 6.87 0.46% Sand-Sime		1.34 17.843 248.02 20.88 21 0.50% 2.3 47%		049 37.62 58.50 0.086 1.76 0.90 0.26 0.80 1.08	1.0 0.037 1.91 42.95 0.080 3.17 2.4 1.0 0.037 2.08 43.40 0.086 3.16 2.4	
19.193 5589.51 13.3 0.066 13.2 16.5 7.15 0.50% Sand-Slime		.33 17.561 244.10 20.56 20 0.54% 2.4 47%		049 37.51 58.07 0.086 1.75 0.90 0.26 0.80 1.08	1.0 0.037 2.16 44.45 0.087 3.17 2.4	
19.357 5589.34 13.3 0.073 13.2 16.6 7.18 0.55% Sand-Slime 19.521 5589.18 13.2 0.076 13.1 16.9 7.33 0.58% Sand-Slime		I.33 17.469 242.81 20.45 20 0.60% 2.4 47% I.32 17.192 238.98 20.13 20 0.63% 2.4 47%		049 37.47 57.92 0.086 1.75 0.90 0.26 0.80 1.07 049 37.36 57.49 0.085 1.75 0.90 0.26 0.80 1.07	1.0 0.037 2.24 45.86 0.088 3.20 2.4 1.0 0.037 2.31 46.52 0.089 3.20 2.4	
19.685 5589.02 13.3 0.078 13.2 17.3 7.51 0.59% Sand-Slime	e Tailin: 0.059 119.0 1.14 0.53 0.61 1 1.	.31 17.260 239.92 20.21 20 0.64% 2.4 47%	1.92 0.00 1.92 0 0.88 0.05 0.96 1.0 0.	049 37.39 57.60 0.085 1.75 0.89 0.26 0.80 1.07	1.0 0.037 2.32 46.87 0.089 3.19 2.4	7 2 1.309586 17.402 1.6661 20.211
19.849 5588.85 14.4 0.075 14.3 17.5 7.57 0.52% Sand-Sime 20.013 5588.69 17.2 0.080 17.1 18.1 7.83 0.47% Sand-Sime		.30 18.534 257.63 21.69 22 0.57% 2.3 47% .38 .31.877 .304.00 .35.58 .36 0.50% .3.2 .47%		049 37.91 59.60 0.087 1.80 0.89 0.27 0.80 1.07 048 39.27 64.85 0.093 1.93 0.89 0.29 0.80 1.07	1.0 0.037 2.11 45.87 0.088 3.14 2.4 1.0 0.037 1.81 46.18 0.088 3.13 2.5	
20.013 5588.69 17.2 0.080 17.1 18.1 7.83 0.47% Sand-Slime 20.177 5588.52 20.3 0.100 20.2 18.0 7.79 0.49% Sand-Slime		.28 21.877 304.09 25.58 26 0.50% 2.3 47% l.26 25.566 355.37 29.86 31 0.52% 2.2 47%		048 39.27 64.85 0.093 1.93 0.89 0.29 0.80 1.07 048 40.77 70.63 0.100 2.09 0.89 0.32 0.80 1.07	1.0 0.037 1.81 46.18 0.088 3.13 2.5 1.0 0.037 1.65 49.26 0.091 3.20 2.6	
20.341 5588.36 21.7 0.131 21.6 18.0 7.79 0.60% Sand-Slime	e Tailing 0.059 119.0 1.18 0.55 0.63 1 1.	.25 27.037 375.81 31.57 33 0.64% 2.2 47%	1.96 0.00 1.96 0 0.87 0.06 0.95 <mark>1.0</mark> 0.	048 41.37 72.94 0.103 2.15 0.89 0.32 0.80 1.07	1.0 0.037 1.69 53.33 0.094 3.29 2.7	2 2 1.254035 27.178 2.602 31.565
20.505 5588.20 22.7 0.153 22.6 18.4 7.99 0.67% Sand-Slime 20.669 5588.03 23.1 0.172 23.0 18.7 8.09 0.74% sand-slime		.24 28.112 390.75 32.82 34 0.71% 2.2 47% .24 28.492 396.03 33.26 34 0.78% 2.2 47%		048 41.81 74.63 0.105 2.20 0.89 0.33 0.80 1.06 048 41.97 75.22 0.106 2.22 0.89 0.33 0.80 1.06	1.0 0.037 1.71 55.97 0.096 3.35 2.7 1.0 0.037 1.75 58.12 0.098 3.39 2.8	
20.833 5587.87 23.6 0.180 23.5 18.7 8.09 0.76% Sand-Slime	e Tailing 0.059 119.0 1.21 0.57 0.64 1 1.	.23 28.892 401.60 33.72 35 0.80% 2.2 47%	1.99 0.00 1.99 0 0.87 0.06 0.95 <mark>1.0</mark> 0.	048 42.13 75.85 0.107 2.24 0.89 0.34 0.80 1.06	1.0 0.037 1.75 58.98 0.099 3.40 2.8	
20.997 5587.70 23.1 0.180 23.0 18.8 8.16 0.78% Sand-Slime 21.161 5587.54 23.7 0.180 23.6 19.2 8.33 0.76% Sand-Slime		1.23 28.155 391.36 32.87 34 0.82% 2.2 47% 1.22 28.695 398.86 33.50 34 0.80% 2.2 47%			1.0 0.037 1.79 58.98 0.099 3.38 2.8 1.0 0.037 1.76 58.94 0.099 3.36 2.8	
21.101 0007.04 23.7 0.100 23.0 19.2 0.33 0.76% Sand-Silme		1.22 20.090 380.00 33.00 34 0.00% 2.2 47%		040 42.00 75.00 0.107 2.24 0.00 0.00 0.80 1.06		1.210400 20.041 2.7012 33.497

WHITE MESA TAILINGS REPOSITOR	LIQUEFACTION AND SEISMIC SETTLEMENT ANALYSES - 3-6N		Elev. at Elev. At Bottom Stress at S
Data File: 13-52106_SP3-6N-BSC-CPT Idriss and Boulanger (2008) Location: White Mesa 2013 CPT Investigation Max. Horiz. Acceleration, Amax/g:	5604.20 Water surface elevation during CPT investigation .15 5599.16 Water surface elevation at t ₀ (ft amsl)	t a 5607.44 Ground Surface Elevation at time of CPT (ft amsl) 5623.62 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl)	Layer of Layer Layer s of Weigh Weigh of Layer
	5590.44 Water surface elevation at t1 (ft amsl) 69 5585.44 Water surface elevation at t2 (ft amsl)	0.50 Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after pla 3.50 Thickness of Water Storage/Rooting Zone (ft)	a Erosion Protection Layer ###### 5623.37 5623.12 0.50 0.055 110 0.028 0.014 0.00 0.00 0.028 0.014 ater Storage/Rooting Zone Layer ###### 5621.37 5619.62 3.50 0.054 107 0.215 0.121 0.00 0.00 0.215 0.121
Tailings Sand-Slimes Youd, et al (2001) Tailings Slimes Max. Horiz. Acceleration, Amax/g:	0.15 1.44 Scaling Factor for stress ration, r _m	3.50 Thickness of High Compaction Layer (ft) 8.68 Thickness of Random/Platform Fill on on top of existing interim cover (ft)	High Compaction Layer ###### 5617.87 5616.12 3.50 0.060 120 0.424 0.320 0.00 0.424 0.320 Platform/Random Fill Layer ###### 5611.78 5607.44 8.68 0.050 101 0.643 0.00 0.00 0.861 0.643
Interim Cover Earthquake Moment Magnitude, M:	5.5 0.47 Volumetric Strain Ratio for Site-Specific Design Ea 21 7.51 Equiv. Number of Uniform Strain Cycles, N		
2013 CPT Data from ConeTec	CPT Data Interpretations	Conditions at t ₁	Liquefaction Triggering Analyses Idriss & Boulanger (2008)
at time Pw Pw Type (as Unit Unit at time P	ore Stress at Saturated Cone d Friction Index, ssure time of at time of Penetration Ratio, Fr	Stress at Pressure Stress at Saturated Cyclic Stress Ratio Cyclic Resistan	nce Ratio Cyclic Stress Ratio
of CPT Elevation qt is qc (u2) (u2) is/qt weight weight of CPT at	me of CPT CPT CN qc1 qc1 qc1N Resistance (%) ^{*c} F sf) (tsf) 1=Yes TSF MPa , Q _i	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(CRR) r_d D_r f K_a CSR (CRR) Avg Liquefiable? CN qc1 qc1 qc1N M=7.5, M=7.5, Kc qc1 _{n-cs} M=7.5, FoS 1=Yes TSF MPa
0.164 5607.28 10.8 0.029 10.8 8.7 3.75 0.27% Interim Cover 0.050 100.7 0.01	0=No .00 0.01 0 1.70 18.326 254.73 21.39 1310 0.27% 0.7 5	0=No sv=1atm % 0.87 0.00 0.87 0 1.00 0.05 1.00 0.058 37.83 59.22	sv=tatm FoS 2=No 0.087 1.51 0.96 0.27 0.80 2.53 1.0 0.017 1.00 21.39 0.068 166.66 84.08 2 1.7 18.418 1.7633 21.391
	.00 0.02 0 1.70 28.968 402.66 33.69 1032 0.65% 1.1 5 .00 0.02 0 1.70 64.804 900.78 75.30 1538 0.31% 0.8 5		
0.656 5606.78 56.7 0.134 56.7 2.8 1.21 0.24% Interim Cover 0.050 100.7 0.03		% 0.89 0.00 0.89 0 1.00 0.12 1.00 1.0 0.058 69.60 181.53	3 0.561 9.75 0.96 0.61 0.69 2.71 1.0 0.016 1.00 111.93 0.210 129.42 69.59 2 1.7 96.369 9.2263 111.926
0.984 5606.46 88.8 0.411 88.8 7.3 3.17 0.46% Interim Cover 0.050 100.7 0.05	.00 0.05 0 1.70 150.909 2097.64 175.36 1791 0.46% 0.9 5	% 0.91 0.00 0.91 0 1.00 0.20 0.99 1.0 0.057 91.86 267.22	2 1.000 17.49 0.96 0.76 0.62 2.98 1.0 0.014 1.00 175.36 1.000 410.39 213.94 2 1.7 150.99 14.455 175.362
1.312 5606.13 120.3 0.621 120.3 5.6 2.42 0.52% Interim Cover 0.050 100.7 0.07	0.00 0.06 0 1.70 165.002 2293.53 191.72 1678 0.47% 0.9 5 0.00 0.07 0 1.70 204.459 2841.98 237.54 1819 0.52% 1.0 5	% 0.93 0.00 0.93 0 1.00 0.30 0.98 1.0 0.057 113.68 351.21	1.000 17.69 0.96 0.89 0.60 2.79 1.0 0.015 1.00 237.54 1.000 308.04 162.86 2 1.7 204.52 19.581 237.536
	.00 0.07 0 1.70 199.682 2775.58 232.00 1579 0.94% 1.2 5 .00 0.08 0 1.70 201.212 2796.85 233.84 1433 1.54% 1.4 5	% 0.94 0.00 0.94 0 1.00 0.30 0.97 1.0 0.056 112.38 346.22	2 1.000 17.78 0.96 0.88 0.60 2.55 1.0 0.017 1.00 233.84 1.000 246.63 132.21 2 1.7 201.33 19.276 233.836
	0.00 0.09 0 1.70 209.780 2915.94 243.91 1358 1.84% 1.5 5 0.00 0.10 0 1.70 273.394 3800.18 317.58 1621 1.23% 1.3 5		
	.00 0.11 0 1.70 300.577 4178.02 349.13 1645 0.85% 1.2 5 .00 0.12 0 1.70 236.977 3293.98 275.32 1206 1.09% 1.3 5		
2.461 5604.98 107.1 1.707 107.0 5.4 2.32 1.59% Interim Cover 0.050 100.7 0.12	00 0.12 0 1.70 181.951 2529.12 211.39 863 1.60% 1.5 5 0.0 0.13 0 1.70 143.480 1994.37 166.72 638 1.58% 1.6 5	% 0.98 0.00 0.98 0 1.00 0.30 0.96 1.0 0.055 104.50 315.90	0 1.000 18.08 0.96 0.84 0.60 2.17 1.0 0.019 1.00 211.39 1.000 164.75 91.41 2 1.7 182.01 17.425 211.391
2.789 5604.65 89.6 1.432 89.6 -4.7 -2.02 1.60% Interim Cover 0.050 100.7 0.14	00 0.14 0 1.70 152.388 2118.19 176.93 637 1.60% 1.6 5 00 0.15 0 1.70 152.388 218.19 176.93 637 1.60% 1.6 5	% 1.00 0.00 1.00 0 0.99 0.21 0.97 1.0 0.056 92.41 269.34	1.000 17.94 0.96 0.77 0.62 2.01 1.0 0.021 1.00 176.93 1.000 145.48 81.71 2 1.7 152.34 14.585 176.932
3.117 5604.32 57.2 1.269 57.2 -3.2 -1.37 2.22% Interim Cover 0.050 100.7 0.16	.00 0.16 0 1.70 97.240 1351.64 112.90 363 2.23% 1.8 5	% 1.02 0.00 1.02 0 0.99 0.12 0.98 <mark>1.0</mark> 0.056 69.94 182.84	0.585 10.40 0.96 0.61 0.69 1.69 1.0 0.025 1.12 125.96 0.266 34.64 22.52 2 1.7 97.207 9.3066 112.900
3.445 5604.00 105.1 0.904 105.1 -2.7 -1.16 0.86% Sand Tailings 0.062 123.5 0.18	0.0 0.17 1 1.70 97.019 1348.56 112.64 344 2.16% 1.8 4 0.01 0.17 1 1.68 177.110 2461.83 205.67 616 0.86% 1.3 1	% 1.04 0.00 1.04 0 0.99 0.28 0.95 1.0 0.054 74.67 280.34	1.000 18.41 0.95 0.83 0.60 1.91 1.0 0.022 1.00 205.67 1.000 120.06 69.23 2 1.684674 177.08 16.954 205.670
	.01 0.18 1 1.70 102.765 1428.43 119.34 343 0.75% 1.4 1 .02 0.18 1 1.70 62.560 869.58 72.57 203 1.55% 1.8 4		
	.02 0.18 1 1.70 31.246 434.32 36.21 98 2.17% 2.1 4 .03 0.19 1 1.70 11.526 160.21 13.37 35 5.65% 2.8 7		
	.03 0.19 1 1.70 13.481 187.39 15.67 40 2.76% 2.5 7 .04 0.20 1 1.70 15.436 214.56 17.94 45 2.24% 2.4 7		
4.593 5602.85 7.9 0.200 7.9 1.4 0.59 2.54% Stime Tailings 0.057 113.1 0.24	.04 0.20 1 1.70 13.362 185.73 15.54 38 2.62% 2.5 7	% 1.10 0.00 1.10 0 0.98 0.05 0.99 1.0 0.056 35.50 51.03	0.078 1.40 0.95 0.23 0.80 1.34 1.0 0.031 2.78 43.24 0.086 8.77 5.08 2 1.7 13.376 1.2807 15.536
4.921 5602.52 29.5 0.077 29.5 0.6 0.26 0.26% Sand-Slime Tailin 0.059 119.0 0.26	.05 0.21 1 1.70 50.201 697.79 58.31 139 0.26% 1.5 4	% 1.12 0.00 1.12 0 0.98 0.08 0.98 1.0 0.056 50.75 109.07	7 0.158 2.84 0.95 0.44 0.78 1.36 1.0 0.031 1.00 58.31 0.098 9.60 6.22 2 1.7 50.207 4.8069 58.313
5.249 5602.19 21.8 0.186 21.8 2.1 0.91 0.85% Sand-Slime Tailin 0.059 119.0 0.28	0.6 0.22 1 1.70 41.633 578.70 48.34 112 0.43% 1.7 4 0.6 0.22 1 1.70 37.094 515.61 43.11 98 0.86% 1.9 4	% 1.14 0.00 1.14 0 0.98 0.07 0.98 1.0 0.056 45.42 88.53	0.125 2.24 0.95 0.38 0.80 1.31 1.0 0.032 1.17 50.35 0.092 8.59 5.41 2 1.7 37.116 3.5535 43.108
	0.07 0.22 1 1.70 22.474 312.39 26.14 58 1.99% 2.3 4 0.07 0.23 1 1.70 17.068 237.25 19.96 43 2.98% 2.5 7	% 1.16 0.00 1.16 0 0.98 0.05 0.98 <mark>1.0</mark> 0.056 37.04 57.00	0.085 1.52 0.95 0.26 0.80 1.30 1.0 0.032 2.76 55.19 0.096 8.60 5.06 2 1.7 17.186 1.6454 19.960
	0.08 0.23 1 1.70 14.144 196.60 16.57 35 3.07% 2.6 7 0.08 0.24 1 1.70 12.308 171.08 14.45 30 2.89% 2.6 7		
	0.9 0.24 1 1.70 19.125 265.84 22.50 46 1.44% 2.3 4 0.9 0.25 1 1.70 22.712 315.70 26.48 53 1.55% 2.2 4		
	.10 0.25 1 1.70 29.529 410.45 34.41 68 0.79% 2.0 4 .10 0.26 1 1.70 56.967 791.84 66.26 130 0.46% 1.6 1		
6.726 5600.71 25.5 0.167 25.5 1.3 0.57 0.65% Sand-Slime Tailin 0.059 119.0 0.37	11 0.26 1 1.70 43.418 603.51 50.44 97 0.66% 1.8 4 11 0.27 1 1.70 22.287 309.79 25.91 48 1.02% 2.2 4	% 1.23 0.00 1.23 0 0.97 0.07 0.97 1.0 0.055 47.99 98.44	0.140 2.56 0.95 0.41 0.79 1.28 1.0 0.033 1.12 56.34 0.097 7.65 5.10 2 1.7 43.432 4.1582 50.444
7.054 5600.39 6.0 0.125 5.9 15.6 6.76 2.08% Slime Tailings 0.057 113.1 0.39	.12 0.27 1 1.70 10.047 139.65 11.86 21 2.22% 2.7 7	% 1.25 0.00 1.25 0 0.97 0.05 0.98 1.0 0.055 34.22 46.08	0.074 1.34 0.95 0.20 0.80 1.26 1.0 0.033 3.72 44.16 0.087 6.65 3.99 2 1.7 10.212 0.9777 11.861
7.382 5600.06 19.6 0.120 19.5 19.3 8.36 0.61% Sand-Slime Tailin 0.059 119.0 0.41		% 1.27 0.00 1.27 0 0.97 0.06 0.98 1.0 0.055 43.88 82.60	0.116 2.13 0.95 0.36 0.80 1.25 1.0 0.033 1.21 46.84 0.089 6.61 4.37 2 1.7 33.338 3.1918 38.720
7.546 5599.89 11.8 0.165 11.8 7.7 3.32 1.40% Sand-Slime Tailing 0.059 11.9 0.42 7.710 5599.73 11.2 0.230 11.1 15.6 6.75 2.06% Slime Tailings 0.057 11.3 0.43	.14 0.29 1 1.70 18.819 261.58 22.05 37 2.14% 2.5 7	% 1.29 0.00 1.29 0 0.97 0.05 0.98 1.0 0.055 37.77 59.82	
7.874 5599.57 9.4 0.185 9.3 9.2 4.00 1.98% Sime Tailings 0.057 113.1 0.44 8.038 5599.40 7.2 0.119 7.1 13.2 5.73 1.66% Sime Tailings 0.057 113.1 0.45			
8.202 5599.24 6.0 0.067 5.9 26.0 11.28 1.11% Sime Tailings 0.057 113.1 0.45 8.366 5599.07 6.1 0.081 5.9 31.3 13.56 1.34% Sime Tailings 0.057 113.1 0.46	.15 0.30 1 1.70 9.962 138.47 11.89 19 1.20% 2.6 7 .16 0.30 1 1.70 9.962 138.47 11.96 18 1.45% 2.6 7		
8.530 5598.91 13.2 0.065 12.9 48.6 21.04 0.49% Sand-Slime Tailin 0.059 119.0 0.47		% 1.33 0.00 1.33 0 0.96 0.06 0.98 <mark>1.0</mark> 0.054 39.47 65.59	0.094 1.74 0.94 0.30 0.80 1.23 1.0 0.034 1.41 36.75 0.081 5.42 3.58 2 1.7 22.496 2.1538 26.128
8.858 5598.58 6.7 0.132 6.6 9.6 4.14 1.98% Slime Tailings 0.057 113.1 0.49	18 0.32 1 1.70 11.254 156.43 13.19 20 2.13% 2.7 7 18 0.32 1 1.70 6.137 85.30 7.22 10 3.71% 3.1 7	% 1.35 0.00 1.35 0 0.96 0.05 0.98 <mark>1.0</mark> 0.054 34.68 47.87	0.075 1.39 0.94 0.21 0.80 1.22 1.0 0.034 3.81 50.27 0.092 6.00 3.70 2 1.7 11.355 1.0872 13.189
9.186 5598.25 2.3 0.054 2.2 18.5 8.01 2.32% Sime Tailings 0.057 113.1 0.51	.19 0.33 1 1.70 3.757 52.22 4.59 6 2.98% 3.2 7	% 1.37 0.00 1.37 0 0.96 0.04 0.98 <mark>1.0</mark> 0.054 31.69 36.28	0.066 1.21 0.94 0.12 0.80 1.21 1.0 0.034 9.35 42.94 0.086 5.47 3.34 2 1.7 3.9532 0.3785 4.591
9.514 5597.93 2.6 0.011 2.4 34.3 14.85 0.42% Slime Tailings 0.057 113.1 0.53	.20 0.33 1 1.70 4.080 56.71 5.16 6 0.53% 2.8 7	% 1.39 0.00 1.39 0 0.95 0.04 0.98 1.0 0.054 31.88 37.05	0.066 1.23 0.94 0.13 0.80 1.21 1.0 0.034 5.10 26.30 0.072 4.48 2.85 2 1.7 4.4436 0.4254 5.161
9.842 5597.60 3.2 0.010 2.9 39.6 17.14 0.32% Slime Tailings 0.057 113.1 0.55	20 0.34 1 1.70 4.403 61.20 5.58 7 0.70% 2.8 7 21 0.34 1 1.70 4.947 68.76 6.23 8 0.38% 2.7 7	% 1.41 0.00 1.41 0 0.95 0.04 0.98 <mark>1.0</mark> 0.054 32.26 38.49	0.067 1.25 0.94 0.14 0.80 1.20 1.0 0.034 4.07 25.35 0.071 4.32 2.79 2 1.7 5.3668 0.5138 6.233
10.170 5597.27 22.4 0.010 22.4 7.4 3.19 0.04% Sand-Slime Tailin 0.059 119.0 0.57	.21 0.35 1 1.70 7.225 100.43 8.93 11 0.40% 2.5 7 .22 0.35 1 1.70 37.995 528.13 44.22 62 0.05% 1.7 4	% 1.43 0.00 1.43 0 0.95 0.07 0.97 <mark>1.0</mark> 0.053 45.81 90.03	
	.22 0.36 1 1.70 15.997 222.36 18.66 25 1.19% 2.4 4 .23 0.36 1 1.70 12.971 180.30 15.18 20 2.49% 2.7 7		
10.663 5596.78 6.4 0.128 6.3 17.8 7.70 2.00% Stime Tailings 0.057 113.1 0.60	23 0.36 1 1.70 10.693 148.63 12.64 16 2.20% 2.8 7 24 0.37 1 1.70 7.123 99.01 8.70 10 2.37% 2.9 7		0.075 1.40 0.94 0.21 0.80 1.19 1.0 0.035 4.41 55.68 0.096 5.50 3.45 2 1.7 10.882 1.0418 12.638
10.991 5596.45 5.0 0.031 4.7 52.3 22.65 0.62% Slime Tailings 0.057 113.1 0.61	14 1.10 1	% 1.47 0.00 1.47 0 0.94 0.05 0.98 <mark>1.0</mark> 0.053 33.54 43.47	0.072 1.34 0.94 0.18 0.80 1.18 1.0 0.035 3.47 34.43 0.079 4.41 2.88 2 1.7 8.5447 0.8181 9.924
11.319 5596.12 3.6 0.014 3.2 58.6 25.37 0.39% Slime Tailings 0.057 113.1 0.63	.25 0.38 1 1.70 5.508 76.56 7.12 8 0.47% 2.7 7	% 1.49 0.00 1.49 0 0.94 0.04 0.98 1.0 0.053 32.57 39.69	0.068 1.29 0.94 0.15 0.80 1.18 1.0 0.035 4.20 29.90 0.075 4.11 2.70 2 1.7 6.1294 0.5868 7.119
11.647 5595.79 3.5 0.010 3.1 63.3 27.45 0.29% Stime Tailings 0.057 113.1 0.65	26 0.38 1 1.70 5.610 77.98 7.33 8 0.33% 2.7 7 26 0.39 1 1.70 5.270 73.25 6.90 7 0.35% 2.7 7 26 0.39 1 1.70 5.270 73.25 6.90 7 0.35% 2.7 7	% 1.51 0.00 1.51 0 0.94 0.04 0.98 <mark>1.0</mark> 0.053 32.49 39.39	0.068 1.28 0.94 0.15 0.80 1.17 1.0 0.035 4.11 28.39 0.074 3.96 2.62 2 1.7 5.9422 0.5689 6.902
11.811 5595.63 3.3 0.010 2.9 65.8 28.52 0.31% Slime Tailings 0.057 113.1 0.66 11.975 5595.47 3.0 0.010 2.6 62.5 27.10 0.33% Slime Tailings 0.057 113.1 0.67	27 0.39 1 1.70 4.862 67.58 6.46 7 0.38% 2.8 7 27 0.40 1 1.70 4.420 61.44 5.90 6 0.43% 2.8 7		0.068 1.28 0.93 0.15 0.80 1.17 1.0 0.035 4.51 29.12 0.074 3.95 2.61 2 1.7 5.5605 0.5324 6.458 0.067 1.27 0.93 0.14 0.80 1.17 1.0 0.035 5.09 30.06 0.075 3.95 2.61 2 1.7 5.605 0.5324 6.458 0.067 1.27 0.93 0.14 0.80 1.17 1.0 0.035 5.09 30.06 0.075 3.95 2.61 2 1.7 5.0837 0.4867 5.904

		WHITE MESA TAILINGS REPOSITORY LIQUEFACTION AND SEIS	SMIC SETTLEMENT ANALYSES - 3-6N			Elev. at Elev. At Bottom Stress at Stress at		Stress at
Data File:	13-52106_SP3-6N-BSC-CPT	Idriss and Boulanger (2008)	5604.20 Water surface elevation during CPT investigation (ft	5607.44 Ground Surface Elevation at time of	of CPT (ft amsl)	Top of Midpoint of Thicknes Unit Unit Bottom Midpoint Layer of Layer Layer s of Weigh Weight of Layer of Layer		Midpoint of Layer
Location:	White Mesa 2013 CPT Investigation	Max. Horiz. Acceleration, Amax/g: 0.15	5599.16 Water surface elevation at t ₀ (ft amsl)	5623.62 Ground Surface Elevation Immediat	tely after Placement of Final Cover (ft amsl) FINAL COVER	(ft) (ft) (ft) Layer (ft) t (tcf) (pcf) (tsf) (tsf)	(tsf) Layer (tsf) (tsf)	(tsf)
	Id Data\2013 Field Investigation\Conetec Da	Earthquake Moment Magnitude, M: 5.5	5590.44 Water surface elevation at t ₁ (ft amsl)			r ###### 5623.37 5623.12 0.50 0.055 110 0.028 0.014		
	gs Sands	Magnitude Scaling Factor, MSF: 1.69	5585.44 Water surface elevation at t ₂ (ft amsl)	3.50 Thickness of Water Storage/Rooting				
	gs Sand-Slimes	Youd, et al (2001)	A 44 Occilian Easter for share within a	3.50 Thickness of High Compaction Laye				
	gs Slimes n Cover	Max. Horiz. Acceleration, Amax/g: 0.15 Earthquake Moment Magnitude. M: 5.5	1.44 Scaling Factor for stress ration, rm 0.47 Volumetric Strain Ratio for Site-Specific Design Eart			r ###### 5611.78 5607.44 8.68 0.050 101 0.861 0.64	3 0.00 0.00 0.861	0.643
	Requiring User Input/Manipulation	Earthquake Moment Magnitude, M: 5.5 Magnitude Scaling Factor, MSF: 2.21	7.51 Equiv. Number of Uniform Strain Cycles, N	5585.44 Elevation of bottom of tailings (liner)				
Cells	2013 CPT Data from ConeTec	j	ata Interpretations	Conditions at t		efaction Triggering Analyses		Idriss & Boulanger (2008)
Death		Material Stress Pore Stress at Saturated	Normalized Normalize Type	Total Pore Effective	Idriss & Boulanger (2008)	Youd et al. (2001)		
Depth at time	Pw Pw	Type (as Unit Unit at time Pressure time of at time of	Cone d Friction Index, Penetration Ratio, Fr	Stress at Pressure Stress at Saturated	Cyclic Stress Ratio Cyclic Resistance Ratio	Cyclic Stress Ratio		
of CPT Eleva		fs/qt Weight Weight of CPT at time of CPT CPT	CN qc1 qc1 qc1N Resistance (%) CN FC	t ₁ at t ₁ t ₁ at t ₁ r _d	C _a K _a K _a CSR (CRR) r _d D _r	f K _a K _a CSR (CRR)	Avg Liquefiable?	CN qc1 qc1 qc1N
(ft) (ft ar	nsl) TSF TSF TSF (ft) PSI	(%) (tcf) (pcf) (tsf) (tsf) 1=Yes	TSF MPa , Q, %	(tsf) (tsf) (tsf) 1=Yes	M=7.5, Δqc _{1n} qc _{1n-cs} M=7.5,	M=7.5, Kc qc _{1n-cs} M=7.5,	FoS 1=Yes	TSF MPa
		0=No		0=No	s'v=1atm s'v=1atm FoS	s'v=1atm s'v=1atm F0S	2=No	
12.139 5595		· · · · · · · · · · · · · · · · · · ·	1.70 4.420 61.44 5.91 6 0.43% 2.8 71%		4 0.04 0.98 <mark>1.0</mark> 0.053 32.15 38.06 0.067 1.27 0.93 0.14		2.60 2	1.7 5.0926 0.4876 5.915
12.303 5595		0.50% Slime Tailings 0.057 113.1 0.69 0.28 0.41 1	1.70 5.610 77.98 7.45 8 0.62% 2.8 71%		4 0.04 0.97 1.0 0.053 32.68 40.13 0.069 1.30 0.93 0.16		2.68 2	1.7 6.4161 0.6143 7.452
12.467 5594			1.70 13.957 194.00 17.12 19 1.89% 2.6 71% 1.70 12.121 168.48 14.41 16 2.02% 2.7 71%		3 0.05 0.97 1.0 0.052 36.05 53.17 0.081 1.54 0.93 0.24 3 0.05 0.97 1.0 0.052 35.11 49.52 0.077 1.47 0.93 0.22		3.38 2	1.7 14.743 1.4115 17.123
12.631 5594 12.795 5594			1.70 12.121 168.48 14.41 16 2.02% 2.7 71% 1.70 5.950 82.71 7.43 7 1.84% 3.0 71%		3 0.05 0.97 1.0 0.052 35.11 49.52 0.077 1.47 0.93 0.22 3 0.04 0.97 1.0 0.052 32.68 40.11 0.069 1.31 0.93 0.16		3.30 2 2.95 2	1.7 12.408 1.1879 14.411 1.7 6.3988 0.6126 7.432
12.959 5594		1.12% Slime Tailings 0.057 113.1 0.72 0.30 0.42 1	1.70 5.423 75.38 6.89 7 1.41% 3.0 71%		3 0.04 0.97 1.0 0.052 32.08 40.11 0.009 1.31 0.93 0.16		2.83 2	1.7 5.9295 0.5677 6.887
13.123 5594		1.08% Slime Tailings 0.057 113.1 0.73 0.31 0.43 1	1.70 5.627 78.22 7.12 7 1.36% 3.0 71%		3 0.04 0.97 1.0 0.052 32.57 39.68 0.068 1.31 0.93 0.15		2.82 2	1.7 6.1261 0.5865 7.115
13.287 5594	.15 3.8 0.053 3.5 53.2 23.07	1.38% Slime Tailings 0.057 113.1 0.74 0.31 0.43 1	1.70 5.950 82.71 7.57 7 1.72% 3.0 71%	1.60 0.00 1.60 0 0.93	3 0.04 0.97 1.0 0.052 32.72 40.29 0.069 1.32 0.93 0.16	0.80 1.15 1.0 0.036 6.65 50.32 0.092 4.47	2.90 2	1.7 6.5149 0.6237 7.567
13.451 5593	.99 4.6 0.055 4.3 58.0 25.13	1.19% Stime Tailings 0.057 113.1 0.75 0.32 0.43 1	1.70 7.259 100.90 9.15 9 1.42% 2.9 71%	1.61 0.00 1.61 0 0.93	3 0.04 0.97 <mark>1.0</mark> 0.052 33.27 42.42 0.071 1.36 0.93 0.17	0.80 1.15 1.0 0.036 5.40 49.36 0.091 4.40	2.88 2	1.7 7.8745 0.7539 9.146
13.615 5593		0.92% Slime Tailings 0.057 113.1 0.76 0.32 0.44 1	1.69 8.639 120.08 10.67 11 1.07% 2.7 71%		3 0.05 0.97 <mark>1.0</mark> 0.052 33.80 44.47 0.072 1.39 0.93 0.19		2.81 2	1.693906 9.1838 0.8793 10.666
13.779 5593			1.68 7.298 101.44 9.13 9 1.51% 2.9 71%		2 0.04 0.97 <mark>1.0</mark> 0.052 33.27 42.40 0.071 1.36 0.93 0.17		2.87 2	1.681453 7.862 0.7527 9.131
13.943 5593		1.45% Slime Tailings 0.057 113.1 0.78 0.33 0.45 1	1.67 6.927 96.29 8.70 8 1.75% 2.9 71%		2 0.04 0.97 1.0 0.052 33.12 41.81 0.070 1.35 0.93 0.17		2.89 2	1.669208 7.4881 0.7169 8.697
14.107 5593 14.271 5593			1.66 7.093 98.59 8.89 8 1.75% 2.9 71% 1.65 7.042 97.88 8.84 8 1.67% 2.9 71%		2 0.04 0.97 1.0 0.052 33.18 42.07 0.070 1.36 0.93 0.17 2 0.04 0.97 1.0 0.052 33.17 42.00 0.070 1.36 0.93 0.17		2.88 2	1.657163 7.6529 0.7327 8.888 1.645315 7.6096 0.7285 8.838
14.436 5593		1.38% Slime Tailings 0.057 113.1 0.80 0.34 0.46 1 1.07% Slime Tailings 0.057 113.1 0.81 0.35 0.46 1	1.65 7.042 97.88 8.84 8 1.67% 2.9 71% 1.63 7.090 98.55 8.86 8 1.30% 2.9 71%		2 0.04 0.97 1.0 0.052 33.17 42.00 0.070 1.36 0.93 0.17 2 0.04 0.97 1.0 0.052 33.17 42.03 0.070 1.36 0.92 0.17		2.85 2 2.75 2	1.645315 7.6096 0.7285 8.838 1.633658 7.6255 0.7301 8.857
14.600 5592			1.62 5.905 82.08 7.43 7 1.44% 3.0 71%		2 0.04 0.97 1.0 0.052 32.68 40.11 0.069 1.33 0.92 0.16		2.73 2	1.622188 6.3999 0.6127 7.433
14.764 5592		0.68% Slime Tailings 0.057 113.1 0.83 0.36 0.47 1	1.61 5.477 76.13 6.91 6 0.87% 2.9 71%		2 0.04 0.97 1.0 0.051 32.49 39.40 0.068 1.32 0.92 0.15		2.57 2	1.6109 5.9497 0.5696 6.910
14.928 5592	.51 3.7 0.014 3.5 43.2 18.70	0.38% Slime Tailings 0.057 113.1 0.84 0.36 0.47 1	1.60 5.535 76.94 6.93 6 0.48% 2.8 71%	1.70 0.00 1.70 0 0.92	2 0.04 0.97 1.0 0.051 32.50 39.43 0.068 1.33 0.92 0.15	0.80 1.13 1.0 0.036 5.06 35.03 0.079 3.56	2.44 2	1.599789 5.9662 0.5712 6.929
15.092 5592	.35 4.0 0.031 3.7 46.9 20.31	0.77% Stime Tailings 0.057 113.1 0.85 0.37 0.48 1	1.59 5.911 82.16 7.40 7 0.98% 2.9 71%	1.71 0.00 1.71 0 0.91	1 0.04 0.97 <mark>1.0</mark> 0.051 32.67 40.07 0.069 1.34 0.92 0.16	0.80 1.13 1.0 0.036 5.81 42.99 0.086 3.83	2.58 2	1.588851 6.3753 0.6104 7.405
15.256 5592		0.86% Slime Tailings 0.057 113.1 0.86 0.37 0.48 1	1.58 10.179 141.48 12.14 12 0.99% 2.7 71%		1 0.05 0.97 1.0 0.051 34.32 46.46 0.074 1.45 0.92 0.20		2.70 2	1.578083 10.456 1.001 12.144
15.420 5592			1.57 9.515 132.25 11.64 11 1.18% 2.7 71%		1 0.05 0.97 1.0 0.051 34.14 45.78 0.074 1.44 0.92 0.20		2.73 2	1.567479 10.02 0.9593 11.637
15.584 5591		0.98% Slime Tailings 0.057 113.1 0.87 0.39 0.49 1	1.56 9.358 130.07 11.60 11 1.14% 2.7 71%		1 0.05 0.97 1.0 0.051 34.13 45.73 0.074 1.44 0.92 0.20		2.71 2	1.557036 9.9872 0.9562 11.599
15.748 559 ² 15.912 559 ²		0.74% Sand-Slime Tailin 0.059 119.0 0.88 0.39 0.49 1 0.66% Sand-Slime Tailin 0.059 119.0 0.89 0.40 0.50 1	1.55 9.583 133.20 11.90 12 0.85% 2.7 47% 1.53 10.004 139.05 12.41 12 0.76% 2.6 47%		1 0.05 0.97 1.0 0.051 34.47 46.37 0.074 1.46 0.91 0.20 1 0.05 0.97 1.0 0.051 34.65 47.06 0.075 1.47 0.91 0.20		2.62 2 2.58 2	1.545575 10.244 0.9807 11.897 1.534305 10.681 1.0226 12.406
16.076 559 ⁴		0.66% Sand-Slime Tailin 0.059 119.0 0.89 0.40 0.50 1 0.67% Sand-Slime Tailin 0.059 119.0 0.90 0.40 0.50 1	1.52 10.004 139.05 12.41 12 0.78% 2.6 479		1 0.05 0.97 1.0 0.051 34.05 47.06 0.075 1.47 0.91 0.20 1 0.05 0.97 1.0 0.051 34.75 47.44 0.075 1.48 0.91 0.21		2.58 2	1.52322 10.924 1.0458 12.687
16.240 559		0.69% Sand-Slime Tailin 0.059 119.0 0.91 0.41 0.51 1	1.51 10.072 140.00 12.67 12 0.77% 2.6 47%		1 0.05 0.97 1.0 0.051 34.75 47.42 0.075 1.48 0.91 0.21		2.58 2	1.512317 10.91 1.0445 12.671
16.404 559		0.49% Sand-Slime Tailing 0.059 119.0 0.92 0.41 0.51 1	1.50 12.583 174.91 15.69 16 0.54% 2.5 47%		0 0.05 0.96 1.0 0.050 35.80 51.49 0.079 1.57 0.91 0.23		2.55 2	1.501589 13.509 1.2934 15.690
16.568 5590	.87 9.0 0.056 8.4 104.5 45.27	0.62% Sand-Slime Tailin 0.059 119.0 0.93 0.42 0.52 1	1.49 12.495 173.68 15.64 16 0.69% 2.5 47%	1.79 0.00 1.79 0 0.90	0 0.05 0.96 <mark>1.0</mark> 0.050 35.79 51.43 0.079 1.57 0.91 0.23	0.80 1.11 1.0 0.036 2.82 44.05 0.087 3.61	2.59 2	1.491034 13.467 1.2894 15.642
16.732 5590		0.58% Sand-Slime Tailin 0.059 119.0 0.94 0.42 0.52 1	1.48 12.319 171.23 15.32 15 0.65% 2.5 47%		0 0.05 0.96 <mark>1.0</mark> 0.050 35.67 50.99 0.078 1.56 0.91 0.23		2.56 2	1.480646 13.189 1.2627 15.318
16.896 5590			1.47 11.205 155.74 14.07 14 1.02% 2.6 47%		0 0.05 0.96 <mark>1.0</mark> 0.050 35.24 49.31 0.077 1.53 0.90 0.22		2.64 2	1.470421 12.116 1.16 14.072
17.060 5590			1.46 11.230 156.10 14.11 14 0.77% 2.6 47%		0 0.05 0.96 1.0 0.050 35.25 49.37 0.077 1.53 0.90 0.22		2.55 2	1.460356 12.152 1.1635 14.114
17.224 5590		0.56% Sand-Slime Tailin, 0.059 119.0 0.97 0.44 0.54 1	1.45 10.878 151.21 13.61 13 0.63% 2.6 47%		0 0.05 0.96 1.0 0.050 35.07 48.68 0.076 1.52 0.90 0.21 0 0.05 0.97 1.0 0.050 34.22 45.41 0.073 1.45 0.90 0.19		2.47 2	1.450447 11.717 1.1218 13.609
17.388 5590 17.552 5589		0.70% Sand-Slime Tailin 0.059 119.0 0.98 0.44 0.54 1 0.70% Sand-Slime Tailin 0.059 119.0 0.99 0.45 0.54 1	1.44 8.687 120.75 11.19 11 0.82% 2.7 47% 1.43 8.544 118.76 10.92 10 0.82% 2.7 47%		0 0.05 0.97 1.0 0.050 34.22 45.41 0.073 1.45 0.90 0.19 0 0.05 0.97 1.0 0.050 34.13 45.05 0.073 1.45 0.90 0.19		2.46 2 2.44 2	1.440689 9.6307 0.922 11.185 1.43108 9.4034 0.9003 10.922
17.552 5588			1.43 6.544 118.76 10.92 10 0.62% 2.7 477 1.42 7.782 108.16 9.99 9 1.03% 2.8 71%		9 0.05 0.97 1.0 0.051 33.57 43.56 0.072 1.42 0.90 0.19		2.46 2	1.43108 9.4034 0.9003 10.922
17.880 5589		· · · · · · · · · · · · · · · · · · ·	1.41 7.283 101.24 9.42 9 0.89% 2.8 71%		9 0.03 0.97 1.0 0.051 33.37 43.58 0.072 1.42 0.90 0.18		2.40 2	1.414208 8.1121 0.7767 9.422
18.044 5589			1.41 7.873 109.44 9.93 9 0.67% 2.7 71%		9 0.05 0.97 1.0 0.051 33.55 43.48 0.072 1.41 0.90 0.18		2.33 2	1.405941 8.5532 0.8189 9.934
18.208 5589	.23 5.2 0.036 4.7 84.2 36.50	0.69% Slime Tailings 0.057 113.1 1.03 0.47 0.56 1	1.40 6.570 91.32 8.48 7 0.86% 2.8 71%	1.89 0.04 1.85 1 0.89	9 0.04 0.97 1.0 0.051 33.04 41.53 0.070 1.38 0.89 0.17	0.80 1.09 1.0 0.037 5.14 43.60 0.086 3.29	2.33 2	1.397782 7.3045 0.6993 8.484
18.372 5589			1.39 6.824 94.85 8.78 8 0.82% 2.8 71%		9 0.04 0.97 <mark>1.0</mark> 0.051 33.15 41.93 0.070 1.38 0.89 0.17		2.32 2	1.389731 7.5595 0.7238 8.780
18.537 5588	.90 6.0 0.036 5.4 86.7 37.59	0.60% Slime Tailings 0.057 113.1 1.05 0.48 0.57 1	1.38 7.489 104.10 9.57 9 0.73% 2.8 71%	1.91 0.05 1.86 1 0.89	9 0.04 0.97 1.0 0.051 33.42 42.99 0.071 1.40 0.89 0.18	0.80 1.09 1.0 0.037 4.42 42.33 0.085 3.20	2.30 2	1.381785 8.2375 0.7887 9.567

WHITE MESA TAILINGS REPOSITORY LIQUEFACTION AND	D SEISMIC SETTLEMENT ANALYSES - 3-8N		Elev. at Elev. At Bottom Stress at Stress at Stress at Pressure Equil Pore Stress at Stress at Stress at
Data File: 13-52106_SP3-8N-BSC- CPT Idriss and Boulanger (2008). Location: White Mesa 2013 CPT Investigation Max. Horiz. Acceleration, Amax/g: 0.15	5604.90 Water surface elevation during CPT investigation (1560) 5600.09 Water surface elevation at t _n (ft amsl) 560	08.37 Ground Surface Elevation at time of CPT (ft amsl) 323.82 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl) FINAL COVER	Top of Midpoint of Thicknes Unit Unit Bottom Midpoint at Bottom Pressure at Bottom Midpoint Layer of Layer Layer s of Weigh Weigh of Layer of Layer of Layer Midpoint of Layer of Layer of Layer (ft) (ft) Laver (ft) I (tcf)
		50 Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after pla Erosion Protection	ayer ###### 5623.57 5623.32 0.50 0.055 110 0.028 0.014 0.00 0.028 0.014
Tailings Sand-Slimes Youd, et al (2001)	3.5	50 Thickness of High Compaction Layer (ft) High Compaction	_ayer ###### 5618.07 5616.32 3.50 0.060 120 0.424 0.320 0.00 0.00 0.424 0.320
Tailings Slimes Max. Horiz. Acceleration, Amax/g: 0.15 Interim Cover Earthquake Moment Magnitude, M: 5.5	0.47 Volumetric Strain Ratio for Site-Specific Design Ea 164	Additional Stress due to Final Cover Placement, $\Delta\sigma_{FC}$ (psf)	ayer ###### 5612.35 5608.37 7.95 0.050 101 0.825 0.624 0.00 0.00 0.825 0.624
Cells Requiring User Input/Manipulation Magnitude Scaling Factor, MSF: 2.21 2.21 2013 CPT Data from ConeTec CO CO CO CO	CPT Data Interpretations	590.24 Elevation of bottom of tailings (liner) (ft amst) Conditions at t ₁ I	iquefaction Triggering Analyses Idriss & Boulanger (2008)
Material Total Legin Literate Depth Stress Pore Stress at Sature at time Pw Pw Unit Unit Unit time for at time of at ti		Total Pore Effective Idriss & Boulanger (2008) tress at Pressure Stress at Saturated Cyclic Stress Ratio Cyclic Resistance Ratio	Youd et al. (2001) Cyclic Stress Ratio
of CPT Elevation qt fs qc (u2) (u2) fs/qt determined Weight Weight of CPT at time of CPT C	CPT CN qc1 qc1 qc1N Resistance (%) ¹ ° FC	t_1 at t_1 t_1 at t_1 r_d C_σ K_σ K_a CSR (CRR) r_d	D _r f K _a K _a CSR (CRR) Avg Liquefiable? CN qc1 qc1 qc1N
0:	I=No	(tsf) (tsf) 1=Yes 0=N0 M=7.5. evertam Δqctn qctn-cas M=7.5. evertam Fos 0.83 0.00 0.83 0 1.00 0.04 1.00 1.00 0.58 33.52 42.65 0.071 1.22 0.96	svetam svetam FoS 2=No
0.328 5608.04 22.0 0.044 22.0 2.8 1.22 0.20% interim cover 0.050 100.7 0.02 0.00 0.02 0.492 5607.88 41.2 0.114 41.1 4.2 1.81 0.28% interim cover 0.050 100.7 0.02 0.00 0.02	0 1.70 37.315 518.68 43.37 1329 0.20% 0.6 51%	0.84 0.00 0.84 0 1.00 0.07 1.00 1.00 0.058 45.54 88.92 0.125 2.16 0.96 0.85 0.00 0.85 0 1.00 0.09 1.00 0.058 58.84 140.12 0.233 4.02 0.96	0.38 0.80 2.20 1.0 0.019 1.00 43.37 0.086 105.69 53.93 2 1.7 37.345 3.5754 43.374
		0.86 0.00 0.86 0 1.00 0.12 1.00 0.05 71.52 188.92 0.721 12.47 0.96 0.86 0.00 0.86 0 1.00 0.13 1.00 0.058 75.89 205.75 1.000 17.31 0.96	0.63 0.69 2.77 1.0 0.015 1.00 117.40 0.230 141.52 76.99 2 1.7 101.08 9.6775 117.400 0.66 0.67 2.72 1.0 0.016 1.00 129.86 0.284 139.38 78.34 2 1.7 111.81 10.704 129.855
		0.87 0.00 0.87 0 1.00 0.14 1.00 1.00 0.058 78.58 216.11 1.000 17.33 0.96 0.88 0.00 0.88 0 1.00 0.14 1.00 1.00 0.558 77.74 212.88 1.000 17.35 0.96	0.68 0.66 2.63 1.0 0.016 1.00 137.53 0.322 131.88 74.60 2 1.7 118.41 11.337 137.528 0.67 0.66 2.48 1.0 0.017 1.00 135.14 0.310 108.73 63.04 2 1.7 116.35 11.14 135.138
1.312 5607.06 77.9 0.651 77.9 3.0 1.29 0.84% Interim Cover 0.050 100.7 0.07 0.00 0.07	0 1.70 132.464 ####### 153.89 1178 0.84% 1.2 51%	0.89 0.00 0.89 0 1.00 0.17 0.99 1.0 0.057 84.32 238.21 1.000 17.39 0.96 0.90 0.00 0.90 0 1.00 0.15 0.99 1.0 0.057 79.57 219.92 1.000 17.41 0.96	0.72 0.64 2.51 1.0 0.017 1.00 153.89 0.419 128.81 73.10 2 1.7 132.5 12.685 153.886
1.640 5606.73 61.8 0.871 61.7 6.0 2.61 1.41% Interim Cover 0.050 100.7 0.08 0.00 0.08	0 1.70 104.941 ###### 121.96 747 1.41% 1.5 51% (0.91 0.00 0.91 0 1.00 0.13 0.99 1.0 0.057 73.12 195.08 0.917 15.97 0.96	0.64 0.68 2.11 1.0 0.020 1.00 121.96 0.249 61.23 38.60 2 1.7 105 10.053 121.957
1.968 5606.40 106.9 2.471 106.9 8.4 3.62 2.31% Interim Cover 0.050 100.7 0.10 0.00 0.10	0 1.70 181.679 ###### 211.11 1078 2.31% 1.6 51%	0.92 0.00 0.92 0 1.00 0.30 0.98 1.0 0.057 104.41 315.52 1.000 17.68 0.96	0.84 0.60 2.37 1.0 0.018 1.00 210.84 1.000 205.32 111.50 2 1.7 181.77 17.402 211.112
2.297 5606.07 93.6 3.017 93.6 6.8 2.93 3.22% Interim Cover 0.050 100.7 0.12 0.00 0.12	0 1.70 159.035 ####### 184.79 808 3.23% 1.8 51% (0.78 0.61 2.20 1.0 0.019 1.12 206.98 1.000 176.13 96.91 2 1.7 159.11 15.233 184.793
		0.95 0.00 0.95 0 1.00 0.14 0.99 1.0 0.057 77.84 213.24 1.000 17.59 0.96 0.96 0.00 0.96 0 1.00 0.23 0.98 1.0 0.056 96.38 284.61 1.000 17.80 0.96	
		0.96 0.00 0.96 0 0.99 0.25 0.97 1.0 0.056 99.19 295.43 1.000 17.90 0.96 0.97 0.00 0.97 0 0.99 0.24 0.97 1.0 0.056 97.01 287.04 1.000 17.91 0.96	0.81 0.60 2.07 1.0 0.020 1.11 218.70 1.000 145.22 81.56 2 1.7 168.97 16.177 196.246 0.80 0.60 2.01 1.0 0.021 1.17 221.96 1.000 137.21 77.56 2 1.7 163.62 15.665 190.033
		0.98 0.00 0.98 0 0.99 0.22 0.97 1.0 0.056 94.14 276.01 1.000 17.92 0.96 0.99 0.00 0.99 0 0.99 0.17 0.98 10 0.056 85.67 245.30 1.000 17.86 0.96	
		1.00 0.00 1.00 0 0.99 0.30 0.96 1.0 0.055 80.33 308.16 1.000 18.24 0.96 1.01 0.00 1.01 0 0.99 0.29 0.96 1.0 0.055 102.97 310.17 1.000 18.28 0.96	
3.773 5604.60 78.1 1.653 78.1 6.0 2.59 2.12% Sand-Stime Tailing 0.059 119.0 0.19 0.01 0.18 3.937 5604.43 66.3 1.552 66.2 9.0 3.89 2.40% Sand-Stime Tailing 0.059 119.0 0.20 0.01 0.18	1 1.70 132.702 ###### 154.20 427 2.12% 1.8 47%	1.01 0.00 1.01 0 0.99 0.17 0.97 1.0 0.056 84.38 238.58 1.000 17.97 0.96 1.02 0.00 1.02 0 0.99 0.4 0.88 1.00 0.056 76.18 207.00 1.797 0.96	0.72 0.64 1.74 1.0 0.024 1.08 166.26 1.000 112.18 65.08 2 1.7 132.77 12.711 154.199
4.101 5604.27 57.7 1.714 57.7 8.7 3.75 2.97% Sand-Slime Tailin 0.059 119.0 0.21 0.02 0.19	1 1.70 98.005 ####### 113.93 300 2.98% 2.0 47%	1.03 0.00 1.03 0 0.99 0.12 0.98 1.0 0.056 70.26 184.19 0.612 10.95 0.95	0.62 0.69 1.59 1.0 0.026 1.26 143.03 0.352 37.62 24.29 2 1.7 98.097 9.3918 113.934
4.265 5604.10 99.5 1.694 99.3 20.2 8.74 1.70% Sand Tailings 0.062 123.5 0.22 0.02 0.20 4.429 5603.94 96.3 1.854 96.2 10.5 4.55 1.93% Sand Tailings 0.062 123.5 0.22 0.02 0.20	1 1.66 159.735 ####### 185.65 477 1.93% 1.7 18%	1.04 0.00 1.04 0 0.99 0.24 0.95 1.0 0.054 70.98 262.24 1.00 18.38 0.95 1.05 0.00 1.05 0 0.99 0.22 0.95 1.0 0.054 69.55 255.20 1.000 18.38 0.95	0.79 0.61 1.77 1.0 0.024 1.04 192.83 1.000 101.60 59.99 2 1.660272 159.84 15.303 185.649
4.593 5603.78 87.1 1.742 87.0 10.5 4.55 2.00% Sand-Slime Tailin 0.059 119.0 0.24 0.04 0.21 4.757 5603.61 81.0 1.555 81.0 10.4 4.50 1.92% Sand-Slime Tailin 0.059 119.0 0.24 0.04 0.21		1.06 0.00 1.06 0 0.98 0.19 0.96 1.0 0.055 90.47 262.02 1.00 18.32 0.95 1.07 0.00 1.07 0 0.98 0.17 0.96 1.0 0.055 86.41 246.39 1.000 18.29 0.95	0.76 0.62 1.72 1.0 0.024 1.07 182.82 1.000 99.36 58.84 2 1.695881 147.7 14.141 171.549 0.73 0.63 1.67 1.0 0.025 1.07 171.03 1.000 97.21 57.75 2 1.7 137.74 13.187 159.979
4.921 5603.45 82.4 1.088 82.4 10.5 4.56 1.32% Sand Tailings 0.062 123.5 0.26 0.05 0.22 5.085 5603.28 81.0 1.231 80.9 13.0 5.62 1.52% Sand Tailings 0.062 123.5 0.26 0.05 0.22		1.08 0.00 1.08 0 0.98 0.18 0.96 1.0 0.054 63.67 226.30 1.000 18.36 0.95 1.09 0.00 1.09 0 0.98 0.17 0.96 1.0 0.054 62.87 222.40 1.000 18.38 0.95	
5.249 5603.12 70.7 1.164 70.7 9.2 3.98 1.65% Sand Tailings 0.062 123.5 0.28 0.06 0.23 5.413 5602.96 85.1 0.966 85.1 8.1 3.51 1.14% Sand Tailings 0.062 123.5 0.29 0.06 0.23		1.10 0.00 1.10 0 0.98 0.15 0.96 1.0 0.055 57.78 197.39 1.000 18.30 0.95 1.11 0.00 1.11 0 0.98 0.18 0.95 1.0 0.054 63.86 227.26 1.000 18.51 0.95	
5.577 5602.79 64.0 0.689 64.0 6.3 2.74 1.08% Sand Tailings 0.062 123.5 0.30 0.07 0.24 5.741 5602.63 47.9 0.475 47.9 3.6 1.57 0.99% Sand Tailings 0.062 123.5 0.30 0.07 0.24		1.12 0.00 1.12 0 0.98 0.13 0.96 1.0 0.055 54.42 180.88 0.550 10.08 0.95 1.14 0.00 1.14 0 0.98 0.10 0.97 1.0 0.055 46.27 140.85 0.235 4.28 0.95	0.65 0.68 1.52 1.0 0.028 1.00 126.46 0.268 23.34 16.71 2 1.7 108.88 10.425 126.462
5.905 5602.46 40.9 0.32 40.9 2.7 1.18 0.81% Sand Tailings 0.062 123.5 0.32 0.08 0.25 6.069 5602.30 39.0 0.26 1.11 0.74% Sand Tailings 0.062 123.5 0.33 0.08 0.25	1 1.70 69.462 965.52 80.71 165 0.82% 1.7 18%		0.52 0.74 1.38 1.0 0.030 1.03 83.17 0.134 11.16 7.28 2 1.7 69.491 6.6531 80.710
6.234 5602.14 40.0 0.341 40.0 2.0 0.85 0.85% Sand Tailings 0.062 123.5 0.34 0.09 0.26	1 1.70 67.932 944.25 78.92 155 0.86% 1.7 18%	1.17 0.00 1.17 0 0.98 0.09 0.97 1.0 0.055 42.27 121.19 0.182 3.32 0.95	0.51 0.74 1.36 1.0 0.031 1.05 83.18 0.134 10.73 7.03 2 1.7 67.953 6.5058 78.923
6.398 5601.97 40.0 0.355 40.0 2.8 1.20 0.89% Sand Tailings 0.062 123.5 0.35 0.09 0.26 6.562 5601.81 40.0 0.387 40.0 3.0 1.30 0.97% Sand Tailings 0.062 123.5 0.35 0.09 0.26	1 1.70 67.915 944.02 78.92 149 0.98% 1.8 18%	1.19 0.00 1.19 0 0.97 0.09 0.97 1.0 0.055 42.26 121.18 0.182 3.33 0.95	
6.726 5601.64 43.0 0.411 42.9 3.4 1.47 0.96% Sand Tailings 0.062 123.5 0.37 0.10 0.27 6.890 5601.48 43.2 0.434 43.2 4.0 1.72 1.00% Sand Tailings 0.062 123.5 0.37 0.10 0.27			0.53 0.73 1.36 1.0 0.031 1.07 91.07 0.150 11.42 7.54 2 1.7 73.034 6.9923 84.825 0.53 0.73 1.35 1.0 0.031 1.09 92.69 0.154 11.50 7.60 2 1.7 73.448 7.0319 85.306
7.054 5601.32 39.0 0.417 39.0 3.6 1.56 1.07% Sand-Slime Tailin 0.059 119.0 0.39 0.11 0.28 7.218 5601.15 35.2 0.330 35.2 3.4 1.46 0.94% Sand-Slime Tailin 0.059 119.0 0.40 0.12 0.29			0.51 0.75 1.33 1.0 0.031 1.13 86.86 0.141 10.35 7.15 2 1.7 66.287 6.3463 76.989 0.44 0.48 0.76 1.30 1.0 0.032 1.13 78.48 0.125 9.03 6.25 2 1.7 59.876 5.7325 69.542
7.382 5600.99 32.9 0.239 32.9 1.53 0.73% Sand-Slime Tailin 0.059 119.0 0.41 0.12 0.29 7.546 5600.82 30.1 0.219 30.0 3.5 1.51 0.73% Sand-Slime Tailin 0.059 119.0 0.41 0.12 0.29			0.47 0.77 1.29 1.0 0.032 1.10 71.31 0.114 8.09 5.66 2 1.7 55.882 5.3502 64.904 0.44 0.78 1.27 1.0 0.033 1.13 66.87 0.108 7.55 5.26 2 1.7 51.088 4.8912 59.336
7.710 5600.66 27.5 0.248 27.5 4.2 1.82 0.90% Sand-Slime Tailin 0.059 119.0 0.43 0.13 0.30 7.874 5600.50 19.6 0.239 19.6 6.2 2.68 1.22% Sand-Slime Tailin 0.059 119.0 0.44 0.14 0.30	1 1.70 46.716 649.35 54.31 91 0.92% 1.9 47%		0.43 0.79 1.25 1.0 0.033 1.21 65.63 0.106 7.33 5.04 2 1.7 46.761 4.4769 54.310
8.038 5600.33 18.1 0.197 18.0 10.3 4.48 1.09% Sand-Slime Tailin 0.059 119.0 0.45 0.14 0.31	1 1.70 30.651 426.05 35.73 57 1.12% 2.1 47%	1.27 0.00 1.27 0 0.96 0.06 0.98 1.0 0.054 42.83 78.56 0.111 2.04 0.95	0.35 0.80 1.23 1.0 0.034 1.51 54.07 0.095 6.34 4.19 2 1.7 30.761 2.945 35.727
8.366 5600.00 25.6 0.288 25.5 14.2 6.17 1.13% Sand-Silime Tailin 0.059 119.0 0.47 0.15 0.32	1 1.70 43.316 602.09 50.48 79 1.15% 2.0 47%	1.29 0.00 1.29 0 0.96 0.07 0.97 1.0 0.054 48.01 98.49 0.140 2.59 0.94	0.41 0.79 1.23 1.0 0.034 1.34 67.52 0.109 7.07 4.83 2 1.7 43.467 4.1615 50.484
8.530 5599.84 29.3 0.323 29.2 8.4 3.65 1.10% Sand-Stime Tailin 0.059 119.0 0.48 0.16 0.32 8.694 5599.68 30.7 0.209 30.7 6.5 2.83 0.68% Sand-Stime Tailin 0.059 119.0 0.48 0.16 0.32	1 1.70 52.173 725.20 60.68 92 0.69% 1.8 47%		0.45 0.78 1.24 1.0 0.033 1.14 68.98 0.111 6.99 5.03 2 1.7 52.242 5.0017 60.676
8.858 5599.51 33.0 0.238 32.9 7.2 3.11 0.72% Sand-Slime Tailin 0.059 119.0 0.50 0.17 0.33 9.022 5599.35 32.8 0.289 32.7 11.2 4.85 0.88% Sand-Slime Tailin 0.059 119.0 0.51 0.17 0.33		1.32 0.00 1.32 0 0.96 0.98 0.97 1.0 0.053 53.13 118.22 0.176 3.29 0.94 1.33 0.00 1.33 0 0.96 0.08 0.96 1.0 0.053 52.99 117.67 0.175 3.27 0.94	
9.186 5599.18 31.3 0.342 31.3 6.6 2.86 1.09% Sand-Stime Tailin 0.059 119.0 0.52 0.18 0.34 9.350 5599.02 29.8 0.381 29.8 8.8 3.81 1.28% sand-Stime Tailin 0.059 119.0 0.53 0.18 0.35		1.34 0.00 1.34 0 0.96 0.88 0.97 1.0 0.053 52.00 113.86 0.167 3.13 0.94 1.35 0.00 1.35 0 0.96 0.88 0.97 1.0 0.053 50.94 109.79 0.159 2.99 0.94	
9.514 5598.86 25.7 0.381 25.6 10.2 4.40 1.48% Sand-Stime Tailing 0.059 119.0 0.54 0.19 0.35 9.678 5598.69 21.5 0.318 21.5 11.1 4.80 1.48% Sand-Stime Tailing 0.059 119.0 0.55 0.19 0.35	1 1.70 43.537 605.16 50.69 72 1.52% 2.1 47%	1.36 0.00 1.36 0 0.95 0.07 0.97 1.0 0.053 48.08 98.77 0.141 2.63 0.94 1.37 0.00 1.37 0 0.95 0.07 0.97 1.0 0.053 45.21 87.72 0.124 2.31 0.94	0.41 0.79 1.20 1.0 0.035 1.53 77.35 0.123 7.29 4.96 2 1.7 43.645 4.1786 50.691
9.842 5598.53 16.4 0.157 16.3 10.5 4.54 0.96% Sand-Siline Tailing 0.059 119.0 0.56 0.20 0.36 10.006 5598.36 14.2 0.105 14.1 11.9 5.14 0.74% sand-sline Tailing 0.059 119.0 0.56 0.20 0.36	1 1.70 27.693 384.93 32.29 44 0.99% 2.2 47%	1.38 0.00 1.38 0 0.95 0.06 0.97 1.0 0.053 41.63 73.92 0.105 1.96 0.94 1.39 0.00 1.39 0 0.95 0.06 0.97 1.0 0.053 41.63 73.92 0.105 1.96 0.94 1.39 0.00 1.39 0 0.95 0.06 0.97 1.0 0.053 40.13 68.16 0.097 1.82 0.94	0.33 0.80 1.19 1.0 0.035 1.66 53.47 0.094 5.44 3.70 2 1.7 27.804 2.662 32.293
10.170 5598.20 15.4 0.103 15.4 7.0 3.05 0.67% sand-Slime Tailin 0.059 119.0 0.58 0.21 0.37	1 1.70 26.180 363.90 30.49 40 0.69% 2.1 47%	1.40 0.00 1.40 0 0.95 0.06 0.97 1.0 0.053 41.00 71.49 0.101 1.90 0.94	0.32 0.80 1.18 1.0 0.035 1.54 47.04 0.089 5.02 3.46 2 1.7 26.255 2.5136 30.493
10.499 5597.87 14.5 0.162 14.4 6.6 2.86 1.12% Sand-Slime Tailin 0.059 119.0 0.60 0.22 0.38	1 1.70 24.548 341.22 28.59 37 1.17% 2.3 47%	1.42 0.00 1.42 0 0.95 0.06 0.97 1.0 0.053 40.33 68.92 0.098 1.85 0.94	0.31 0.80 1.18 1.0 0.035 1.95 55.63 0.096 5.28 3.56 2 1.7 24.618 2.3569 28.592
10.663 5597.71 14.4 0.178 14.4 8.8 3.80 1.23% Sand-stime Tailin 0.059 119.0 0.61 0.22 0.38 10.827 5597.54 16.9 0.242 16.8 10.1 4.39 1.44% Sand-stime Tailin 0.059 119.0 0.61 0.22 0.38	1 1.70 28.560 396.98 33.30 42 1.49% 2.3 47%	1.43 0.00 1.43 0 0.95 0.06 0.97 1.0 0.053 40.30 68.80 0.98 1.85 0.94 1.44 0.00 1.44 0 0.95 0.66 0.97 1.0 0.053 41.98 75.27 0.106 2.01 0.94	0.33 0.80 1.17 1.0 0.035 1.99 66.37 0.107 5.76 3.88 2 1.7 28.668 2.7446 33.296
10.991 5597.38 15.0 0.248 14.9 10.7 4.62 1.66% Sand-Stime Tailin 0.059 119.0 0.63 0.23 0.39 11.155 5597.22 12.9 0.198 12.8 12.5 5.43 1.54% Sand-Stime Tailin 0.059 119.0 0.64 0.24 0.40		1.45 0.00 1.45 0 0.94 0.66 0.97 1.0 0.053 40.66 70.19 0.100 1.89 0.94 1.46 0.00 1.46 0 0.94 0.66 0.97 1.0 0.533 39.21 64.59 0.093 1.76 0.94	
11.319 5597.05 11.6 0.168 11.5 17.1 7.40 1.45% Sand-Slime Tailin 0.059 119.0 0.65 0.24 0.40 11.483 5596.89 11.7 0.133 11.5 23.8 10.31 1.14% Sand-Slime Tailin 0.059 119.0 0.66 0.25 0.41		1.47 0.00 1.47 0 0.94 0.05 0.97 1.0 0.053 38.35 61.28 0.089 1.69 0.94 1.48 0.00 1.48 0 0.94 0.05 0.97 1.0 0.053 38.37 61.39 0.089 1.69 0.94	
11.647 5596.72 12.6 0.172 12.4 30.6 13.24 1.37% sand-Silime Tailin 0.059 119.0 0.67 0.26 0.41		1.49 0.00 1.49 0 0.94 0.06 0.97 1.0 0.053 39.02 63.88 0.092 1.75 0.94	0.29 0.80 1.16 1.0 0.036 2.46 61.18 0.101 5.14 3.45 2 1.7 21.404 2.0492 24.860
	1 1.65 30.471 423.55 35.63 43 1.52% 2.3 47%		

Data File: 13-52106_SP3-8N-BSC-CPT Id Location: White Mesa 2013 CPT Investigation 	WHITE MESA TAILINGS REPOSITORY LIQUEFACTION AN riss and Boulanger (2008) Max. Horiz. Acceleration, Amax/g: 0.15 Earthquake Moment Magnitude, M: 5.5 Magnitude Scaling Factor, MSF: 1.69	5604.90 Water surface elevation during CPT investigation (15608.37 Ground Surface 5600.09 Water surface elevation at t ₀ (ft amsi) 5523.82 Ground Surface 5595.24 Water surface elevation at t ₁ (ft amsi) 0.50 Thickness of Ero	Elevation at time of CPT (ft amsi) Elevation Immediately after Placement of Final Cover (ft amsi) Sion Protection Layer (rock mulch/topsoils) Immediately after pla Erosion F er Storage/Rooting Zone (ft)	Top of Layer Midpoint of Layer of Layer Thicknes s of (ft) Unit work Bottom flayer Midpoint of Layer OVER (ft) (f	ass at point Pressure at Bottom Equil Pore Pressure stress at bottom Stress at Midpoint of Layer Midpoint of Layer (tsf) Layer (tsf) (tsf) (tsf) 0.014 0.00 0.00 0.028 0.014 0.121 0.00 0.00 0.215 0.121
Tailings Slimes Interim Cover Cells Requiring User Input/Manipulation	Max. Horiz. Acceleration, Amax/g: 0.15 Earthquake Moment Magnitude, M: 5.5 Magnitude Scaling Factor, MSF: 2.21	1.44 Scaling Factor for stress ration, rm 7.95 Thickness of Ra 0.47 Volumetric Strain Ratio for Site-Specific Design Ea 1646.57 Additional Stress 7.51 Equiv. Number of Uniform Strain Cycles, N 5590.24 Elevation of bottom	dom/Platform Fill on on top of existing interim cover (ft) Platform/Ra due to Final Cover Placement, Δσ _{FC} (psf) m of tailings (liner) (ft amsl)	ndom Fill Layer ###### 5612.35 5608.37 7.95 0.050 101 0.825	0.320 0.00 0.00 0.424 0.320 0.624 0.00 0.00 0.825 0.624
	Material Type (as determined Note and the second Stress Determined Pressure Intervent time Determined Pressure Determined Time Determined Pressure Determined Time Determined Pressure Determined Time Determined Time <thdetermined Time Determined Time<!--</th--><th></th><th>re Idriss & Boulanger (2008) at Saturated Cyclic Stress Ratio Cyclic Resistance Ratio at t₁ r_d C_σ K_a CSR 1=Yes M=7.5, Δqc_{1n} qc_{1n-cs} M=7.5,</th><th>Liquefaction Triggering Analyses Youd et al. (2001) Cyclic Stress Ratio r_d D_r f K_n CSR (CRR) MP7.5, stratam Kc qC1ncs M=7.5, stratam Fr</th><th>Avg Liquefiable? CN qc1 qc1 qc1N FoS 1=Yes TSF MPa</th></thdetermined 		re Idriss & Boulanger (2008) at Saturated Cyclic Stress Ratio Cyclic Resistance Ratio at t ₁ r _d C _σ K _a CSR 1=Yes M=7.5, Δqc _{1n} qc _{1n-cs} M=7.5,	Liquefaction Triggering Analyses Youd et al. (2001) Cyclic Stress Ratio r_d D_r f K_n CSR (CRR) MP7.5, stratam Kc qC1ncs M=7.5, stratam Fr	Avg Liquefiable? CN qc1 qc1 qc1N FoS 1=Yes TSF MPa
12.303 5596.07 20.6 0.354 20.4 21.5 9.33 1 12.467 5595.90 21.7 0.293 21.6 21.5 9.33 1 12.631 5595.74 19.6 0.242 19.4 23.8 10.31 1 12.795 5595.71 21.9 0.242 19.4 23.8 10.31 1 12.795 5595.71 21.9 0.407 21.8 10.3 4.45 1 12.595 5595.41 21.9 0.407 21.8 10.3 4.45 1 13.123 5595.25 15.7 0.413 15.6 13.9 6.04 2 13.267 5595.08 12.5 0.244 12.3 29.1 12.59 1 13.451 5594.75 17.1 0.257 16.9 21.6 9.3	59% Sand-Sime Tailin 0.059 119.0 0.69 0.27 0.42 72% Sand-Sime Tailin 0.059 119.0 0.70 0.28 0.43 35% Sand-Sime Tailin 0.059 119.0 0.71 0.28 0.43 24% Sand-Sime Tailin 0.059 119.0 0.71 0.28 0.43 18% Sand-Sime Tailin 0.059 119.0 0.72 0.29 0.44 18% Sand-Sime Tailin 0.059 119.0 0.73 0.29 0.44 86% Sand-Sime Tailin 0.059 119.0 0.74 0.30 0.45 95% Sand-Sime Tailin 0.059 119.0 0.76 0.31 0.46 16% Sand-Sime Tailin 0.059 119.0 0.76 0.32 0.47 88% Sand-Sime Tailin 0.059 119.0 0.80 0.33 0.48 88% Sand-Sime Tailin 0.059 119.0 0.81 0.33 0.48 <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>0 0.94 0.06 0.96 1.0 0.052 44.04 83.22 0.117 2.25 0 0.94 0.06 0.96 1.0 0.052 44.04 83.22 0.117 2.25 0 0.94 0.06 0.96 1.0 0.052 43.80 82.30 0.116 2.22 0 0.93 0.07 0.96 1.0 0.052 43.80 84.53 0.119 2.29 0 0.93 0.07 0.96 1.0 0.052 46.17 91.40 0.129 2.50 0 0.93 0.06 0.96 1.0 0.052 44.21 83.87 0.118 2.28 0 0.93 0.06 0.96 1.0 0.052 44.21 83.87 0.118 2.28 0 0.93 0.06 0.96 1.0 0.052 45.10 87.29 0.123 2.38 1 0.93 0.06 0.97 1.0 0.052</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>CS 2=NO 1.96 4.10 2 1.620237 33.731 3.2294 39.177 0.99 4.16 2 1.620237 33.731 3.2294 39.177 1.51 3.90 2 1.51166 33.143 3.1731 38.494 4.15 3.95 2 1.59186 34.566 3.094 40.147 1.51 3.65 2 1.59186 34.566 3.294 36.321 4.40 3.95 2 1.547297 38.948 3.7289 45.236 9.22 4.25 2 1.502078 25.196 2.4123 29.264 4.40 3.577 2 1.620278 25.196 2.4123 29.264 4.40 3.57 2 1.528012 36.324 3.4777 42.189 0.03 3.71 2 1.558037 2.6582 2.5449 30.873 1.85 3.31 2 1.557223 21.325 2.0416 24.768</td>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 0.94 0.06 0.96 1.0 0.052 44.04 83.22 0.117 2.25 0 0.94 0.06 0.96 1.0 0.052 44.04 83.22 0.117 2.25 0 0.94 0.06 0.96 1.0 0.052 43.80 82.30 0.116 2.22 0 0.93 0.07 0.96 1.0 0.052 43.80 84.53 0.119 2.29 0 0.93 0.07 0.96 1.0 0.052 46.17 91.40 0.129 2.50 0 0.93 0.06 0.96 1.0 0.052 44.21 83.87 0.118 2.28 0 0.93 0.06 0.96 1.0 0.052 44.21 83.87 0.118 2.28 0 0.93 0.06 0.96 1.0 0.052 45.10 87.29 0.123 2.38 1 0.93 0.06 0.97 1.0 0.052	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CS 2=NO 1.96 4.10 2 1.620237 33.731 3.2294 39.177 0.99 4.16 2 1.620237 33.731 3.2294 39.177 1.51 3.90 2 1.51166 33.143 3.1731 38.494 4.15 3.95 2 1.59186 34.566 3.094 40.147 1.51 3.65 2 1.59186 34.566 3.294 36.321 4.40 3.95 2 1.547297 38.948 3.7289 45.236 9.22 4.25 2 1.502078 25.196 2.4123 29.264 4.40 3.577 2 1.620278 25.196 2.4123 29.264 4.40 3.57 2 1.528012 36.324 3.4777 42.189 0.03 3.71 2 1.558037 2.6582 2.5449 30.873 1.85 3.31 2 1.557223 21.325 2.0416 24.768

WHITE MESA TAI	NILINGS REPOSITORY LIQUEFACTION AND SEISMIC SETTLEMENT ANALYSES - 3-85		Elev. at Elev. At Bottom Stress at Stress at Pressure Equil Pore Stress at Stress at
Data File: 13-52106_SP3-8S-BSC-CPT Idriss and Boulanger (2008)	5603.50 Water surface elevation during CPT investigation	(ft at 5608.70 Ground Surface Elevation at time of CPT (ft amsl) 5620.45 Ground Surface Elevation Immediately after Placement of Final Cover (ft amsl)	Top of Midpoint of Thicknes Unit Bottom of Midpoint at Bottom Pressure at Bottom Midpoint Layer of Layer Layer s of Weigh Weight Layer of Layer f Layer of Layer f Layer of Layer of Layer f Layer of Layer f Layer<
Location: White Mesa 2013 CPT Investigation Max. Horiz. Acceleration	agnitude, M: 5.5 5590.63 Water surface elevation at t ₁ (ft amsl)	0.50 Thickness of Erosion Protection Layer (rock mulch/topsoils) Immediately after pla	Erosion Protection Layer 5620.45 5620.2 5619.95 0.50 0.055 110 0.028 0.014 0.00 0.00 0.028 0.014
Tailings Sands Magnitude Scaling Fac Tailings Sand-Slimes Youd, et al (2001)	actor, MSF: 1.69 5585.63 Water surface elevation at t_2 (ft amsl)	3.50 Thickness of Water Storage/Rooting Zone (ft) // 3.50 Thickness of High Compaction Layer (ft) //	Tater Storage/Rooting Zone Layer 5619.95 5618.2 5616.45 3.50 0.054 107 0.215 0.121 0.00 0.215 0.121 High Compaction Layer 5616.45 5614.7 5612.95 3.50 0.060 120 0.424 0.320 0.00 0.424 0.320
Tailings Slimes Max. Horiz. Accel Interim Cover Earthquake Momer		4.25 Thickness of Random/Platform Fill on on top of existing interim cover (ft) Farth 1273.89 Additional Stress due to Final Cover Placement, $\Delta \sigma_{FC}$ (psf)	Platform/Random Fill Layer 5612.95 5610.825 5608.70 4.25 0.050 101 0.638 0.531 0.00 0.638 0.531
Cells Requiring User Input/Manipulation Magnitude Scali	aling Factor, MSF: 2.21 2.21 7.51 Equiv. Number of Uniform Strain Cycles, N	5585.63 Elevation of bottom of tailings (liner) (ft ams) Conditions at t,	
2013 CPT Data from ConeTec Material Depth Material	CPT Data Interpretations Otom Event Normalized Normalize Type Stress Pore Stress at Saturated Cone d Friction Index.	Total Pore Effective Idriss & Boulanger (2008)	Liquefaction Triggering Analyses Idriss & Boulanger (2008) Youd et al. (2001)
attime of CPT Elevation qt fs qc (u2) (u2) fs/qt Unit Weight	t Unit at time Pressure time of at time of Penetration Ratio, F, tech th Weight of CPT at time of CPT CN qc1 qc1 Nessistance (%)	Stress at Pressure Stress at FC Pressure Stress at t1 Saturated at t1 Cyclic Stress Ratio Cyclic Resistance	CRRio Cyclic Stress Ratio Avg Liquefiable? CN qc1 qc
(ft) (ft amsl) TSF TSF TSF (ft) PSI (%) (tcf)	p (pcf) (tsf) (tsf) (tsf) 1=Yes TSF MPa ^{, Q} , 0=No	% (tsf) (tsf) (tsf) 1=Yes Δqc _{1n} qc _{1n-cs}	
0.164 5608.54 17.2 0.175 17.2 1.2 0.54 1.02% Interim Cover 0.050 0.328 5608.37 63.5 0.285 63.5 10.1 4.36 0.45% Interim Cover 0.050		51% 0.65 0.00 0.65 0 1.00 0.06 1.02 1.0 0.059 42.24 76.22	0.108 1.83 0.97 0.34 0.80 0.80 2.53 1.0 0.017 1.00 33.98 0.078 190.38 96.10 2 1.7 29.253 2.8007 33.976
0.492 5608.21 90.9 0.503 90.8 10.4 4.50 0.55% Interim Cover 0.050	0 100.7 0.02 0.00 0.02 0 1.70 154.394 2146.08 179.45 3666 0.55% 1.0 5	51% 0.66 0.00 0.66 0 1.00 0.21 1.06 1.0 0.061 93.29 272.74	1.000 16.39 0.97 0.77 0.61 0.61 3.94 1.0 0.011 1.00 179.45 1.000 811.09 413.74 2 1.7 154.5 14.792 179.447
0.656 5608.04 111.9 0.700 111.9 7.7 3.35 0.63% Interim Cover 0.050 0.820 5607.88 126.5 0.864 126.4 5.8 2.51 0.68% Interim Cover 0.050		51% 0.67 0.00 0.67 0 1.00 0.30 1.08 1.0 0.062 ##### 328.79 51% 0.68 0.00 0.68 0 1.00 0.30 1.07 1.0 0.062 ##### 367.68	1.000 16.09 0.97 0.86 0.60 0.60 3.68 1.0 0.012 1.00 220.94 1.000 608.56 312.32 2 1.7 190.23 18.212 220.937 1.000 16.14 0.97 0.91 0.60 0.60 3.37 1.0 0.013 1.00 249.72 1.000 487.04 251.59 2 1.7 215.01 20.585 249.720
0.984 5607.72 125.0 0.813 125.0 3.0 1.31 0.65% Interim Cover 0.050 1.148 5607.55 117.6 0.695 117.6 1.1 0.48 0.59% Interim Cover 0.050			
1.312 5607.39 104.2 0.601 104.2 1.5 0.66 0.58% Interim Cover 0.050	0 100.7 0.07 0.00 0.07 0 1.70 177.140 2462.25 205.76 1576 0.58% 1.0 5	51% 0.70 0.00 0.70 0 1.00 0.28 1.06 1.0 0.061 ##### 308.28	1.000 16.36 0.97 0.83 0.60 0.60 2.79 1.0 0.015 1.00 205.76 1.000 304.76 160.56 2 1.7 177.16 16.961 205.756
1.476 5607.22 81.5 0.591 81.5 0.0 0.01 0.73% Interim Cover 0.050 1.640 5607.06 72.9 0.416 72.9 -0.0 -0.01 0.57% Interim Cover 0.050	0 100.7 0.08 0.00 0.08 0 1.70 123.947 1722.86 143.96 882 0.57% 1.1 5	51% 0.72 0.00 0.72 0 1.00 0.15 1.03 1.0 0.059 80.84 224.80	1.000 16.84 0.97 0.69 0.65 0.25 1.0 0.019 1.00 143.96 0.357 87.22 52.03 2 1.7 123.95 11.867 143.957
1.804 5606.90 64.8 0.713 64.8 0.1 0.05 1.10% Interim Cover 0.050 1.968 5606.73 61.1 0.519 61.1 0.6 0.27 0.85% Interim Cover 0.050		51% 0.73 0.00 0.73 0 1.00 0.13 1.02 1.0 0.059 75.19 203.03 51% 0.74 0.00 0.74 0 1.00 0.13 1.02 1.0 0.059 75.19 203.03	
2.133 5606.57 57.5 0.435 57.5 2.3 0.98 0.76% Interim Cover 0.050 2.297 5606.40 54.3 0.512 54.3 5.3 2.29 0.94% Interim Cover 0.050		51% 0.74 0.00 0.74 0 1.00 0.12 1.02 1.0 0.059 70.19 183.81 51% 0.75 0.00 0.75 0 1.00 0.11 1.02 1.0 0.059 67.95 175.19	0.604 10.29 0.97 0.62 0.69 1.90 1.0 0.022 1.00 113.62 0.216 40.67 25.48 2 1.7 97.825 9.3658 113.618
2.461 5606.24 53.3 1.269 53.3 2.3 0.99 2.38% Interim Cover 0.050	0 100.7 0.12 0.00 0.12 0 1.70 90.542 1258.53 105.19 429 2.39% 1.8 5	51% 0.76 0.00 0.76 0 1.00 0.11 1.01 1.0 0.058 67.23 172.42	0.433 7.42 0.97 0.59 0.70 0.70 1.78 1.0 0.024 1.11 116.73 0.228 37.15 22.28 2 1.7 90.566 8.6708 105.187
2.625 5606.08 76.9 1.662 76.9 5.5 2.37 2.16% Interim Cover 0.050 2.789 5605.91 222.0 2.940 221.9 14.3 6.21 1.32% Interim Cover 0.050	0 100.7 0.14 0.00 0.14 0 1.61 358.013 4976.38 415.98 1580 1.33% 1.4 5	51% 0.78 0.00 0.78 0 0.99 0.30 1.03 1.0 0.059 ##### 592.28	1.000 16.87 0.97 1.18 0.60 0.60 2.07 1.0 0.021 1.00 143.93 80.40 2 1.6134701 358.16 34.29 415.978
2.953 5605.75 222.9 2.175 222.9 15.8 6.86 0.98% Interim Cover 0.050 3.117 5605.58 213.5 2.265 213.3 28.9 12.50 1.06% Interim Cover 0.050			
3.281 5605.42 207.8 1.697 207.7 13.6 5.90 0.82% Sand Tailings 0.051	1 102.8 0.17 0.00 0.17 0 1.55 320.918 4460.77 372.88 1255 0.82% 1.2 1	18% 0.80 0.00 0.80 0 0.99 0.30 1.02 1.0 0.059 ##### 490.30	1.000 17.07 0.96 1.11 0.60 0.60 1.93 1.0 0.022 1.00 372.88 1.000 122.36 69.71 2 1.5453286 321.05 30.737 372.880
3.445 5605.26 155.2 1.444 155.1 11.4 4.92 0.93% Sand Tailings 0.051 3.609 5605.09 125.3 1.613 125.3 6.9 2.98 1.29% Sand Tailings 0.051	1 102.8 0.18 0.00 0.18 0 1.57 197.324 2742.80 229.26 687 1.29% 1.5 1	18% 0.82 0.00 0.82 0 0.99 0.30 1.01 1.0 0.058 80.70 309.96	1.000 17.21 0.96 0.87 0.60 1.86 1.0 0.023 1.00 229.26 1.000 111.12 64.17 2 1.5748132 197.39 18.898 229.259
3.773 5604.93 100.1 0.839 100.1 7.6 3.29 0.84% Sand Tailings 0.051 3.937 5604.76 82.6 1.213 82.5 16.4 7.12 1.47% Sand Tailings 0.051		18% 0.83 0.00 0.83 0 0.99 0.24 1.01 1.0 0.058 71.57 265.13 18% 0.84 0.00 0.84 0 0.99 0.18 1.01 1.0 0.057 63.79 226.90	
4.101 5604.60 116.5 1.585 116.5 3.6 1.57 1.36% Sand Tailings 0.051	1 102.8 0.21 0.00 0.21 0 1.56 182.193 2532.48 211.65 560 1.36% 1.5 1	18% 0.84 0.00 0.84 0 0.99 0.30 1.01 1.0 0.057 76.20 287.84	1.000 17.41 0.96 0.84 0.60 0.60 1.77 1.0 0.024 1.00 211.65 1.000 97.69 57.55 2 1.5638874 182.23 17.447 211.647
4.429 5604.27 82.7 1.658 82.6 23.5 10.20 2.00% Sand-Slime Tailin 0.047	7 93.3 0.22 0.00 0.22 0 1.68 138.765 1928.83 161.45 369 2.01% 1.8 4	17% 0.86 0.00 0.86 0 0.99 0.18 1.00 1.0 0.057 86.93 248.38	1.000 17.55 0.96 0.73 0.63 0.63 1.64 1.0 0.026 1.09 175.31 1.000 90.74 54.14 2 1.6801632 139.01 13.309 161.453
4.593 5604.11 86.3 1.621 85.5 118.1 51.17 1.88% Sand-Slime Tailin 0.047 4.757 5603.94 76.9 1.353 76.5 64.1 27.77 1.76% Sand Tailings 0.051		17% 0.87 0.00 0.87 0 0.98 0.18 1.00 1.0 0.057 88.16 253.15 18% 0.88 0.00 0.88 0 0.98 0.16 1.00 1.0 0.057 60.37 210.10	
4.921 5603.78 61.2 1.819 60.2 164.5 71.28 2.97% Sand-Slime Tailin 0.047 5.085 5603.61 58.0 1.686 56.9 179.6 77.81 2.91% Sand-Slime Tailin 0.047		17% 0.88 0.00 0.88 0 0.98 0.13 1.00 1.0 0.057 72.71 193.64 17% 0.89 0.00 0.89 0 0.98 0.12 1.00 1.0 0.057 70.49 185.07	
5.249 5603.45 60.7 1.440 60.7 -1.3 -0.55 2.37% Sand-Slime Tailin 0.059	9 119.0 0.26 0.00 0.26 1 1.70 103.139 1433.63 119.77 229 2.38% 1.9 4	17% 0.90 0.00 0.90 0 0.98 0.12 0.99 1.0 0.056 72.31 192.08	0.813 14.42 0.96 0.63 0.68 0.68 1.45 1.0 0.029 1.23 147.82 0.380 29.38 21.90 2 1.7 103.13 9.8732 119.774
5.413 5603.29 46.9 1.368 46.8 16.1 6.96 2.92% Sand-Silme Tailin 0.059 5.577 5603.12 43.9 1.137 43.5 70.6 30.59 2.59% Sand-Silme Tailin 0.059		17% 0.91 0.00 0.91 0 0.98 0.10 0.99 1.0 0.056 62.76 155.30 17% 0.92 0.00 0.92 0 0.98 0.10 0.99 1.0 0.056 60.70 147.38	
5.741 5602.96 101.5 1.244 99.3 344.3 ##### 1.23% Sand Tailings 0.062 5.905 5602.79 130.7 1.385 130.5 35.7 15.48 1.06% Sand Tailings 0.062		18% 0.93 0.00 0.93 0 0.98 0.21 0.98 1.0 0.056 67.44 244.81 18% 0.94 0.00 0.94 0 0.98 0.30 0.97 1.0 0.055 76.96 291.57	
6.069 5602.63 99.5 1.248 99.5 9.3 4.02 1.25% Sand Tailings 0.062	2 123.5 0.31 0.03 0.29 1 1.50 148.832 2068.77 172.96 345 1.26% 1.6 1	8% 0.95 0.00 0.95 0 0.98 0.20 0.98 <mark>1.0</mark> 0.055 66.31 239.27	1.000 18.08 0.96 0.76 0.62 0.62 1.52 1.0 0.028 1.00 172.96 1.000 70.85 44.47 2 1.4962526 148.92 14.257 172.960
6.234 5602.47 80.3 0.821 80.3 4.9 2.11 1.02% sand Tailings 0.062 6.398 5602.30 62.4 0.678 62.4 1.2 0.50 1.09% sand Tailings 0.062		18% 0.96 0.00 0.96 0 0.98 0.15 0.98 1.0 0.055 59.24 204.57 18% 0.97 0.00 0.97 0 0.97 0.12 0.99 1.0 0.055 52.29 170.40	0.412 7.42 0.96 0.63 0.69 0.69 1.40 1.0 0.030 1.04 123.04 0.253 17.35 12.38 2 1.630915 101.7 9.7367 118.118
6.562 5602.14 65.4 0.430 65.4 1.8 0.78 0.66% Sand Tailings 0.062 6.726 5601.97 100.8 0.407 100.8 5.9 2.54 0.40% Sand Tailings 0.062		18% 0.98 0.00 0.98 0 0.97 0.13 0.98 1.0 0.055 53.28 175.29 18% 0.99 0.00 0.99 0 0.97 0.19 0.97 1.0 0.055 53.28 175.29 18% 0.99 0.00 0.99 0 0.97 0.19 0.97 1.0 0.055 65.90 237.25	
	2 123.5 0.37 0.05 0.31 1 1.48 139.500 1939.05 162.05 301 0.42% 1.3 1	8% 1.00 0.00 1.00 0 0.97 0.18 0.97 1.0 0.055 63.52 225.57 8% 1.01 0.00 1.01 0 0.97 0.17 0.97 1.0 0.055 61.55 215.91	1.000 18.31 0.96 0.73 0.63 0.63 1.45 1.0 0.029 1.00 162.05 1.000 65.31 41.81 2 1.4755629 139.53 13.358 162.054
7.218 5601.48 87.6 0.521 87.5 3.6 1.56 0.60% Sand Tailings 0.062	2 123.5 0.39 0.06 0.32 1 1.48 129.857 1805.02 150.86 270 0.60% 1.4 1	18% 1.02 0.00 1.02 0 0.97 0.16 0.97 1.0 0.054 60.66 211.52	1.000 18.36 0.96 0.71 0.65 0.65 1.42 1.0 0.030 1.00 150.86 0.399 25.29 21.82 2 1.4835763 129.89 12.436 150.860
		18% 1.03 0.00 1.03 0 0.97 0.15 0.97 1.0 0.054 58.33 200.07 18% 1.04 0.00 1.04 0 0.97 0.13 0.97 1.0 0.054 55.31 185.28	
		18% 1.05 0.00 1.05 0 0.97 0.12 0.98 1.0 0.054 52.64 172.13 18% 1.06 0.00 1.06 0 0.96 0.13 0.97 1.0 0.054 55.06 184.01	
8.038 5600.66 73.6 0.370 73.6 3.4 1.48 0.50% Sand Tailings 0.062	2 123.5 0.44 0.09 0.35 1 1.49 109.856 1527.01 127.63 210 0.51% 1.5 1	1.07 0.00 1.07 0 0.96 0.13 0.97 1.0 0.054 54.72 182.35	0.576 10.65 0.95 0.65 0.67 0.67 1.34 1.0 0.031 1.00 127.63 0.273 16.10 13.37 2 1.493427 109.89 10.521 127.629
8.366 5600.33 61.3 0.408 61.3 4.3 1.88 0.67% Sand Tailings 0.062	2 123.5 0.46 0.10 0.36 1 1.52 93.454 1299.01 108.59 170 0.67% 1.6 1	18% 1.08 0.00 1.08 0 0.96 0.13 0.97 1.0 0.054 53.55 176.59 18% 1.09 0.00 1.09 0 0.96 0.11 0.97 1.0 0.054 49.85 158.44	0.316 5.84 0.95 0.60 0.70 0.70 1.30 1.0 0.032 1.00 108.59 0.199 11.40 8.62 2 1.5240349 93.495 8.9512 108.589
		18% 1.10 0.00 1.10 0 0.96 0.10 0.97 1.0 0.054 47.22 145.51 18% 1.11 0.00 1.11 0 0.96 0.10 0.97 1.0 0.054 45.94 139.26	
8.858 5599.84 50.9 0.369 50.9 5.6 2.43 0.73% Sand Tailings 0.062	2 123.5 0.49 0.11 0.37 1 1.54 78.492 1091.04 91.23 135 0.73% 1.7 1	111 112 0.00 1.12 0.00 1.10 0.054 45.41 136.64 8% 1.13 0.00 1.13 0 0.96 0.10 0.97 1.0 0.054 44.83 133.76	0.222 4.11 0.95 0.55 0.72 0.72 1.26 1.0 0.033 1.05 96.09 0.163 8.95 6.53 2 1.5433018 78.546 7.52 91.227
9.186 5599.51 42.3 0.401 42.3 5.9 2.56 0.95% Sand Tailings 0.062	2 123.5 0.51 0.12 0.38 1 1.57 66.297 921.53 77.07 109 0.96% 1.9 1	1.14 0.00 1.14 0 0.96 0.09 0.97 1.0 0.054 41.79 118.86	0.177 3.29 0.95 0.51 0.75 0.75 1.23 1.0 0.034 1.16 89.46 0.147 7.86 5.57 2 1.5669354 66.355 6.3528 77.067
9.350 5599.35 35.3 0.359 35.3 5.1 2.19 1.02% Sand-Sime Tailin 0.059 9.514 5599.19 31.3 0.268 31.2 5.2 2.24 0.86% Sand-Sime Tailin 0.059		17% 1.15 0.00 1.15 0 0.96 0.08 0.98 1.0 0.054 53.27 118.75 17% 1.16 0.00 1.16 0 0.95 0.08 0.98 1.0 0.054 53.27 118.75	
9.678 5599.02 41.5 0.241 41.4 6.6 2.87 0.58% Sand Tailings 0.062	2 123.5 0.54 0.14 0.40 1 1.54 63.961 889.06 74.36 103 0.59% 1.8 1	8% 1.17 0.00 1.17 0 0.95 0.09 0.97 1.0 0.054 41.10 115.46 8% 1.18 0.00 1.18 0 0.95 0.09 0.97 1.0 0.054 40.55 112.77	0.170 3.18 0.95 0.50 0.75 0.75 1.21 1.0 0.035 1.08 80.27 0.128 6.63 4.90 2 1.5442154 64.025 6.1298 74.361
10.006 5598.69 28.6 0.177 28.5 5.9 2.55 0.62% Sand-Slime Tailin 0.059	9 119.0 0.56 0.15 0.41 1 1.60 45.687 635.05 53.13 69 0.63% 1.9 4	17% 1.19 0.00 1.19 0 0.95 0.07 0.98 <mark>1.0</mark> 0.054 48.94 102.07	0.146 2.72 0.95 0.42 0.79 0.79 1.17 1.0 0.036 1.21 64.44 0.105 5.31 4.01 2 1.6008107 45.746 4.3797 53.131
	9 119.0 0.58 0.16 0.42 1 1.57 47.326 657.83 55.03 71 0.58% 1.9 4	17% 1.21 0.00 1.21 0 0.95 0.07 0.97 1.0 0.053 49.60 104.63	0.150 2.81 0.95 0.43 0.79 0.79 1.17 1.0 0.036 1.18 65.18 0.106 5.23 4.02 2 1.5707235 47.383 4.5364 55.032
10.499 5598.20 28.4 0.178 28.4 6.7 2.89 0.63% Sand-Slime Tailin 0.059 10.663 5598.04 24.0 0.188 24.0 6.8 2.94 0.78% Sand-Slime Tailin 0.059			
10.827 5597.87 22.1 0.178 22.0 7.3 3.16 0.81% Sand-Slime Tailin 0.059	9 119.0 0.61 0.18 0.43 1 1.60 35.208 489.40 40.98 50 0.83% 2.1 4	17% 1.24 0.00 1.24 0 0.95 0.07 0.98 <mark>1.0</mark> 0.053 44.67 85.65	0.121 2.26 0.95 0.37 0.80 0.80 1.15 1.0 0.036 1.46 60.03 0.100 4.80 3.53 2 1.5974781 35.281 3.3778 40.977
11.155 5597.55 14.9 0.165 14.8 11.6 5.03 1.11% Sand-Slime Tailin 0.059	9 119.0 0.62 0.18 0.43 1 1.61 30.600 425.34 35.64 42 0.96% 2.2 4 9 119.0 0.62 0.19 0.44 1 1.64 24.349 338.45 28.42 33 1.15% 2.3 4	17% 1.26 0.00 1.26 0 0.94 0.06 0.98 <mark>1.0</mark> 0.053 40.27 68.69	0.098 1.84 0.95 0.31 0.80 0.80 1.14 1.0 0.036 2.09 59.25 0.099 4.67 3.25 2 1 .6407745 24.468 2.3426 28.418
11.319 5597.38 13.9 0.096 13.8 17.0 7.37 0.69% Sand-Slime Tailin 0.059 11.483 5597.22 19.1 0.146 19.1 12.4 5.36 0.76% Sand-Slime Tailin 0.059	9 119.0 0.63 0.19 0.44 1 1.64 22.664 315.02 26.52 30 0.72% 2.3 4 9 119.0 0.64 0.20 0.45 1 1.58 30.094 418.31 35.09 41 0.79% 2.2 4		
11.647 5597.05 13.8 0.173 13.8 11.9 5.15 1.25% Sand-Slime Tailin 0.059	9 119.0 0.65 0.20 0.45 1 1.62 22.264 309.47 26.00 29 1.31% 2.4 4	17% 1.29 0.00 1.29 0 0.94 0.06 0.98 1.0 0.053 39.42 65.42	0.094 1.77 0.95 0.29 0.80 0.80 1.14 1.0 0.037 2.36 61.36 0.101 4.63 3.20 2 1.6180172 22.384 2.143 25.998
11.811 5596.89 11.6 0.154 11.5 16.0 6.92 1.33% Sand-Slime Tailin 0.059 11.975 5596.73 15.5 0.105 15.4 21.0 9.12 0.68% Sand-Slime Tailin 0.059	9 119.0 0.67 0.21 0.46 1 1.58 24.265 337.29 28.42 32 0.71% 2.2 4	1.31 0.00 1.31 0 0.94 0.06 0.98 <mark>1.0</mark> 0.053 40.27 68.69	0.098 1.85 0.94 0.31 0.80 0.80 1.13 1.0 0.037 1.76 50.09 0.092 4.10 2.98 2 1.5797785 24.473 2.343 28.424
12.139 5596.56 15.7 0.104 15.6 11.4 4.93 0.66% Sand-Slime Tailin 0.059 12.303 5596.40 14.7 0.073 14.6 11.8 5.11 0.50% Sand-Slime Tailin 0.059			

Elev. at Elev. At Bottom Stress at Stress at Pressure Equil Pore Stress at S												
Location: White Mesa 2013 CPT Investigation .\.\.\6.2.3 Field Data/2013 Field Investigation\Conetec Data Tailings Sands Tailings Sand-Slimes Tailings Slimes Interim Cover Cells Requiring User Input/Manipulation	Idriss and Boulanger (2008) Max. Horiz. Accelerat Earthquake Moment N Magnitude Scaling F Youd, et al (2001) Max. Horiz. Acc Earthquake Mon	ation, Amax/g: 0.15 Magnitude, M: 5.5	5603.50 Wate 5600.42 Wate 5590.63 Wate 5585.63 Wate 1.44 Scalir 0.47 Volun 7.51 Equiv	surface elevation during CPT investigation (ft surface elevation at t ₀ (ft amsi) surface elevation at t ₁ (ft amsi) surface elevation at t ₂ (ft amsi) ing Factor for stress ration, r _m hetric Strain Ratio for Site-Specific Design Eart Number of Uniform Strain Cycles, N	5620.45 Ground St 0.50 Thickness 3.50 Thickness 3.50 Thickness 4.25 Thickness 1273.89 Additional 5585.63 Elevation of	surface Elevation Immed s of Erosion Protection I s of Water Storage/Roo s of High Compaction L s of Random/Platform F I Stress due to Final Co of bottom of tailings (lir	diately after Placement of Final Cover (ft amsl) Layer (rock mulch/topsoils) Immediately after pla titing Zone (ft) ayer (ft) II on on top of existing interim cover (ft) wer Placement, $\Delta\sigma_{rc}$ (psf)	FINAL COVER Erosion Protection Layer ter Storage/Rooting Zone Layer High Compaction Layer Platform/Random Fill Layer	5619.95 5618.2 5616.45 3.50 5616.45 5614.7 5612.95 3.50 5612.95 5610.825 5608.70 4.25	Weight t (tc) Weight (pcf) Layer (tsf) of Layer (tsf) 0.055 110 0.028 0.01 0.054 107 0.215 0.12 0.060 120 0.424 0.32	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ayer of Layer (tsf) 0.028 0.028 0.014 0.215 0.121 0.424 0.320 0.638 0.531
2013 CPT Data from ConeTec	Material		CPT Data Interpretations	Normalized Normalize Type	Conditio			Li	quefaction Triggering Analyses			Idriss & Boulanger (2008)
Depth at time Pw Pw Pw of CPT Elevation qt fs qc (u2) (u2) (ft) (ft amsl) TSF TSF TSF (ft) PSI	Type (as Un	Stress Pore Stress a nit Unit at time Pressure time of ight Weight of CPT at time of CPT cf) (pcf) (tsf) (tsf) (tsf)		Cone d'Friction Index, Penetration Ratio, Fr I _c qc1N Resistance (%) FC	Total Pore Stress at Pressure t ₁ at t ₁ (tsf) (tsf)			P Ratio CRR) r _d D _r	Youd et al. (2001) Cyclic Stress Ratio f f K _e K _a CSR M*7.5, stretam	(CRR) Kc qc _{1n-cs M=7.5,} swetatim FoS	Avg Liquefiable? FoS 1=Yes 2=No	CN qc1 qc1 qc1N TSF MPa
12.631 5596.07 13.9 0.074 13.8 9.8 4.25 12.795 5695.90 13.8 0.074 13.8 10.5 4.55 12.959 5595.74 14.6 0.071 14.5 12.1 5.22 13.28 5595.78 15.1 0.085 15.0 12.9 5.59 13.287 5595.41 18.1 0.188 18.0 15.1 6.54 13.451 5595.25 14.3 0.276 14.2 17.2 7.45	0.63% Sand-Sime Tailin 0.05 0.53% Sand-Sime Tailin 0.05 0.53% Sand-Sime Tailin 0.05 0.49% Sand-Sime Tailin 0.05 0.56% Sand-Sime Tailin 0.05 1.04% Sand-Sime Tailin 0.05 1.04% Sand-Sime Tailin 0.05	55 119.0 0.71 0.23 0.48 059 119.0 0.72 0.24 0.49 059 119.0 0.73 0.24 0.49 059 119.0 0.73 0.24 0.49 059 119.0 0.74 0.25 0.49 059 119.0 0.76 0.25 0.50 059 119.0 0.76 0.26 0.50	1 1.55 21.485 298. 1 1.55 21.485 298. 1 1.54 21.243 295. 1 1.53 22.185 308. 1 1.51 22.654 314. 1 1.54 26.626 370. 1 1.50 21.326 296.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.34 0.00 1.35 0.00 1.36 0.00 1.37 0.00 1.38 0.00 1.39 0.00 1.40 0.00	1.36 0 0 1.37 0 0 1.38 0 0 1.39 0 0 1.40 0 0	0.03 0.06 0.97 1.0 0.053 39.09 64.16 (0.93 0.06 0.97 1.0 0.052 39.09 64.16 (0.93 0.06 0.97 1.0 0.052 39.00 63.79 (0.93 0.06 0.97 1.0 0.052 39.39 65.28 (0.93 0.06 0.97 1.0 0.052 39.39 64.03 (0.93 0.06 0.97 1.0 0.052 39.39 64.03 (0.93 0.06 0.97 1.0 0.052 39.26 64.01 (0.93 0.06 0.97 1.0 0.052 39.05 64.01 (0.090 1.71 0.94 0.28 0.093 1.76 0.94 0.29 0.092 1.76 0.94 0.29 0.094 1.79 0.94 0.29 0.094 1.79 0.94 0.30 0.095 1.81 0.94 0.30 0.102 1.97 0.94 0.32 0.992 1.77 0.94 0.29	0.80 0.80 1.13 1.0 0.037 0.80 0.80 1.12 1.0 0.037 0.80 0.80 1.12 1.0 0.037 0.80 0.80 1.12 1.0 0.037 0.80 0.80 1.12 1.0 0.037 0.80 0.80 1.12 1.0 0.037 0.80 0.80 1.12 1.0 0.037 0.80 0.80 1.12 1.0 0.037 0.80 0.80 1.12 1.0 0.037 0.80 0.80 1.12 1.0 0.037 0.80 0.80 1.12 1.0 0.037	1.98 46.69 0.089 3.86 1.80 45.15 0.088 3.77 1.82 45.16 0.088 3.74 1.72 44.57 0.087 3.68 1.77 46.90 0.089 3.73 1.96 60.82 0.101 4.19 3.03 75.54 0.120 4.94	2.79 2 2.77 2 2.75 2 2.74 2 2.77 2 3.08 2 3.36 2	1.572711 20.265 1.9402 23.537 1.5523965 21.58 2.0661 25.064 1.542676 21.344 2.0435 24.789 1.5257894 22.3 2.135 25.900 1.5122892 22.776 2.1806 26.453 1.480883 26.766 2.5626 31.087 1.4986703 21.487 2.0722 24.956
13.779 5594.92 10.8 0.190 10.7 27.0 11.70 13.943 5594.76 8.0 0.181 7.7 47.3 20.48 14.107 5594.59 10.0 0.115 9.6 60.9 26.40 14.271 5594.43 12.7 0.137 12.5 34.5 14.95 14.46 5594.26 8.1 0.129 7.9 39.8 17.23 14.600 5594.10 6.3 0.101 6.0 61.5 26.64 14.764 5593.94 6.0 0.095 5.6 71.3 30.89 14.922 5593.77 5.9 0.066 6.5 47.2 20.44	1.86% Sand-Sime Tailin 0.02 1.75% Sand-Sime Tailin 0.02 2.26% Sime Tailings 0.02 1.15% Sand-Sime Tailing 0.02 1.08% Sand-Sime Tailing 0.02 1.08% Sand-Sime Tailing 0.02 1.59% Sime Tailings 0.02 1.59% Sime Tailings 0.02 0.95% Sime Tailings 0.02 0.82% Sand-Sime Tailing 0.02 0.82% Sand-Sime Tailing 0.02 0.82% Sand-Sime Tailing 0.02 0.82% Sand-Sime Tailing 0.02	359 119.0 0.78 0.27 0.51 157 113.1 0.79 0.27 0.52 059 119.0 0.80 0.28 0.52 059 119.0 0.81 0.28 0.53 057 113.1 0.82 0.29 0.53 057 113.1 0.83 0.29 0.54 057 113.1 0.84 0.30 0.54 057 113.1 0.85 0.30 0.54 057 113.1 0.85 0.30 0.54 057 113.1 0.85 0.31 0.54 059 119.0 0.86 0.31 0.54	1 1.46 11.483 159.0 1 1.45 8.629 119.0 1 1.45 8.029 111.0 1 1.43 7.895 109.0 1 1.42 9.295 129.0	8 18.84 20 1.89% 2.6 47% 95 13.88 14 2.50% 2.8 71% 99 17.20 18 1.25% 2.6 47% 73 21.65 23 1.15% 2.5 47%	1.41 0.00 1.42 0.00 1.43 0.00 1.44 0.00 1.45 0.00 1.46 0.00 1.47 0.00 1.47 0.00 1.48 0.00 1.49 0.00 1.50 0.00	1.42 0 (1.43 0 (1.44 0 (1.45 0 (1.46 0 (1.47 0 (1.48 0 (1.49 0 (0.92 0.05 0.97 1.0 0.052 36.91 55.75 0 0.92 0.05 0.88 1.0 0.052 34.92 48.80 0 0.92 0.05 0.97 1.0 0.052 34.92 48.80 0 0.92 0.05 0.97 1.0 0.052 37.89 59.55 0 0.92 0.05 0.97 1.0 0.052 34.84 48.64 0 0.92 0.05 0.97 1.0 0.052 34.88 48.64 0 0.92 0.05 0.97 1.0 0.052 33.80 44.47 0.92 0.05 98 1.0 0.052 33.80 44.47 0.92 0.05 98 1.0 0.052 33.82 43.87	0.087 1.67 0.94 0.27 0.083 1.60 0.94 0.25 0.081 1.60 0.94 0.22 0.081 1.56 0.94 0.22 0.081 1.56 0.94 0.22 0.081 1.56 0.94 0.22 0.087 1.69 0.94 0.21 0.076 1.47 0.94 0.21 0.072 1.40 0.94 0.19 0.072 1.39 0.94 0.18 0.071 1.38 0.94 0.18 0.073 1.42 0.94 0.19 0.073 1.45 0.94 0.22	0.80 0.80 1.11 1.0 0.037 0.80 0.80 1.11 1.0 0.037 0.80 0.80 1.11 1.0 0.037 0.80 0.80 1.11 1.0 0.037 0.80 0.80 1.11 1.0 0.037 0.80 0.80 1.11 1.0 0.037 0.80 0.80 1.10 1.0 0.038 0.80 0.80 1.10 1.0 0.038 0.80 0.80 1.10 1.0 0.038 0.80 0.80 1.10 1.0 0.038 0.80 0.80 1.10 1.0 0.038 0.80 0.80 1.09 1.0 0.038	3.35 71.88 0.115 4.67 3.60 67.84 0.109 4.41 5.07 70.29 0.112 4.51 3.23 55.51 0.096 3.82 2.64 57.06 0.097 3.84 4.42 60.74 0.101 3.95 5.42 57.80 0.098 3.81 5.66 57.05 0.097 3.75 4.79 47.20 0.089 3.342 4.07 4.56 0.356 0.325 2.96 43.56 0.086 3.25	3.17 2 3.00 2 2.99 2 2.69 2 2.76 2 2.71 2 2.60 2 2.57 2 2.40 2 2.39 2	1.506168 18.489 1.7701 21.473 1.4981009 16.222 1.5531 18.841 1.4886778 11.947 1.1438 13.875 1.478327 14.813 1.4182 17.205 1.464967 16.641 1.7847 21.651 1.4591381 11.846 1.1341 13.758 1.4502622 9.1857 0.8794 10.669 1.4415084 8.6707 0.8301 10.071 1.4328741 8.4858 0.8124 9.856 1.423829 9.7137 0.93 11.282 1.410338 1.266 1.2121 14.704

ATTACHMENT F

SUPPORTING DOCUMENTATION FOR INTERROGATORY 08/1:

REVISED APPENDIX G, EROSIONAL STABILITY EVALUATION, TO THE UPDATED TAILINGS COVER DESIGN REPORT (APPENDIX D OF THE RECLAMATION PLAN, REVISION 5.0)

APPENDIX G

EROSIONAL STABILITY EVALUATION

G.1 INTRODUCTION

This appendix presents the hydrologic analysis and evaluation of erosion protection for the cover surface of the White Mesa Mill tailings disposal cells, and for the discharge channel and sedimentation basin. These analyses are an update to the analyses presented in MWH (2011) to incorporate revisions to the analyses to address State of Utah, Division of Waste Management and Radiation Control (DWMRC) (formerly Utah Division of Radiation Control, DRC) interrogatories (DRC, 2012) and review comments on EFRI responses to 2012 interrogatories (DRC, 2013). These analyses also incorporate the revised cover grading design and results of cover material testing conducted in 2010 and 2012 (summarized in Attachment B of EFRI, 2012). These analyses have been conducted in a manner consistent with Nuclear Regulatory Commission (NRC) guidelines documented in NRC (1990) and Johnson (2002). The analyses include the tasks listed below.

- 1. Selection of the Probable Maximum Precipitation (PMP) as the design event for the site.
- 2. Calculation of the peak discharge (due to the PMP) from the surfaces of Cells 1, 2, 3, 4A and 4B for the cover surface, and for the drainage basin for the discharge channel.
- 3. Evaluation of reclaimed tailings disposal cell surfaces for erosional stability (the top surfaces and the reclaimed embankment slopes) and evaluation of the discharge channel and sedimentation basin for erosional stability.
- 4. Evaluation of the need for filter material between erosional protection riprap and underlying soil layers on the transition slopes on the top surface, the reclaimed embankment slopes, and the rock aprons.
- 5. Evaluation of the need for a rock apron at the toe of the reclaimed embankment slopes to accommodate flow transitioning from embankment slopes to native ground.
- 6. Evaluation of surface sheet erosion of top surface of cells due to action of surface water and wind.

These tasks are presented in the following sections of this appendix.

G.2 CONCEPTUAL EROSIONAL PROTECTION DESIGN

Erosional protection was evaluated for the proposed monolithic ET cover design based on the following proposed cover surface of the tailings disposal cells, as well as for the sedimentation basin and diversion channel:

- Cells 2 and 3 top surfaces graded to 0.5 percent slope: Erosional protection is provided by 6 inches of topsoil vegetated with a grass mixture providing poor or better vegetated conditions with a minimum of 30 percent plant coverage (representing drought conditions).
- Portions of Cell 1 and 2 with top surfaces graded at 1 percent slope and Cells 4A and 4B with top surfaces at 0.8 percent slope: Erosional protection is provided by 6 inches of topsoil mixed with 25 percent (by weight) of 1-inch minus (D₁₀₀ = 1 inch) gravel, vegetated with a grass mixture providing poor or better vegetated conditions with a minimum of 30 percent plant coverage (representing drought conditions).

- External side slopes graded to 5 horizontal to 1 vertical (5H:1V): Erosional protection is provided by various sized angular and rounded riprap with thicknesses ranging from 6 to 8 inches and minimum D₅₀'s ranging from 1.5 to 5.3 inches. Filter material will be placed between the erosional protection and the underlying soil layer.
- Cover transition slopes graded to 10H:1V: Erosional protection is provided by 7 inches of angular riprap with a minimum D₅₀ of 4.5 inches. Filter material will be placed between the erosional protection and the underlying soil layer.
- A rock apron at the toe of 5H:1V slopes: Erosional protection and scour protection on the west and east sides of the cells is provided by a rock apron measuring 10.2 inches deep and 4.25 feet in width, with a D₅₀ of 3.4 inches. On the south side of cells 4A and 4B, and east side of Cell 4A, the rock apron measures 2.7 feet in depth, 13.2 feet in width, and has a D₅₀ of 10.6 inches. On the north side slope of the Cell 1 disposal area, the rock apron measures 2.3 feet deep, 11.3 feet wide, and contains a minimum D₅₀ of 9.0 inches.
- Sedimentation Basin area graded to 0.1 percent slope: Erosional protection is provided by 6 inches of topsoil vegetated with a grass mixture providing poor or better vegetated conditions with a minimum of 30 percent plant coverage (representing drought conditions).
- Diversion Channel: The diversion channel will be excavated into bedrock.

G.3 PROBABLE MAXIMUM PRECIPITATION EVENT

As outlined in NRC (1990) and Johnson (2002), the design event for evaluation of long-term erosional stability of the reclaimed tailings disposal cells is the PMP. The selected PMP events used to calculate the peak discharges for evaluation of erosional stability were the six-hour duration PMP (with a precipitation total of 9.6 inches) and the one-hour duration PMP (with a precipitation total of 8.3 inches). These events were determined for the site area using "Hydrometeorological Report (HMR) No. 49: Probable Maximum Precipitation Estimates, Colorado River and Great Basin Drainages (Hansen et al. 1984), as well as Jensen (1995). Rainfall depth versus duration for short-term events (less than 1 hour) was developed using procedures in HMR 49 and NUREG/CR-4620 (Nelson et al., 1986). PMP calculations were provided in Denison (2009) and updated in Denison (2012). The calculations are provided in Attachment G.1.

G.4 CALCULATION OF PEAK DISCHARGE

The peak discharge calculations were made using the Rational Method as described in Johnson (2002) and Nelson et al. (1986). The time of concentration was calculated for the longest flow path (see Figure G.1) across the tailings disposal cells using procedures by Kirpich, Soil Conservation Service (SCS) and Brant and Oberman as presented in Nelson et al. (1986) and DOE (1989). Equal weight was given to each of the three methods. A runoff coefficient of 1.0 was used to represent PMP conditions (DOE, 1989). These characteristics represent high runoff quantities and peak flow velocities.

The PMP discharge results across the tailings disposal cells are presented in Table G.1. These discharges represent flow across a unit-width across the slope.

Location	Slope Length (feet)	Time of Concentration (min)	Rainfall Intensity (in/hr)	Runoff Coefficient	Peak Unit Discharge (cfs/ft)
Upper reach of Cell 2 at 1 % slope	900	9.4	32.7	1.0	0.68
Lower reach of Cell 2 at 0.5 % slope	550	18.5	21.4	1.0	0.71
Cell 3 at 0.5 % slope	830	30.0	14.8	1.0	0.78
Cell 4A at 0.8 % slope	1200	42.2	11.2	1.0	0.90
Cell 4A side slopes at 20% slope	100	42.2	11.2	1.0	0.92

Note: Flow accumulates as it flows from Cell 2 to Cell 4A

The unit discharge values in Table G.1 above were used to evaluate the erosional stability of the reclaimed surfaces and size erosion protection materials where necessary. These evaluations are presented in Sections G.5 and G.6.

G.5 EROSIONAL STABILITY OF VEGETATED SLOPES

The surface of the reclaimed tailings disposal cells was evaluated for erosional stability using the methods recommended in NRC (1990) and Johnson (2002).

Temple Method. Temple et al. (1987) outlines procedures for grass-lined channel design. These procedures are recommended in Johnson (2002) for areas of vegetated cover and include methods for estimating stresses on channel vegetation as well as the channel surface soils. The evaluation for the tailings disposal cells used the peak discharge values from the PMP (summarized in Table G.1) to conservatively represent the effective stresses from runoff on the cover surface. The stresses on both the vegetation and the soil were evaluated.

The erosional stability of the cover surface for the tailings disposal cells was evaluated by calculating a factor of safety against erosion due to the peak runoff from the PMP. Factor-of-safety values were calculated as the ratio of the allowable stresses (the resisting strength of the cover vegetation or soils) to the effective stresses (the stresses impacted by the runoff flowing over the cover). Two factors of safety were calculated for each analysis to evaluate both the resistance of the vegetation, and the resistance of the silty topsoil layer. The peak unit discharge flow for the tailings disposal cells (from Table G.1) was conservatively multiplied by a concentration factor of 3 to account for channelization of flow.

Allowable stresses. Allowable stresses for the cover soils were calculated using the equations in Temple et al. (1987). Material planned for the upper layer of the cover system is the on-site stockpiled topsoil. Laboratory testing of the topsoil conducted in 2010 (see Appendix A) indicates the topsoil classifies as either a silty clay with sand or a sandy silty clay. The D_{75} (diameter of which 75 percent of the material is finer) is approximately 0.08 mm to 0.1 mm (.003 in to .004 in) with a plasticity index (PI) of approximately 4 to 7. The resistance of a silty soil with a PI less than 10 is estimated to be approximately 0.02 psf (Temple et al., 1987). For noncohesive soils with a D_{75} greater than 0.05 in., the resistance is calculated as follows:

 $\tau_a=~0.4D_{75}$, for soils with D_{75}>0.05 in, $\tau_a=0.02,$ for noncohesive soils with D_{75}\leq0.05 in.

Where

 τ_a = allowable shear strength (psf), and D_{75} = particle diameter in which 75 percent of the soil is finer (inch).

For areas where 1-inch gravel is added to the topsoil (25 percent by weight), the D_{75} of the topsoil mixture will increase to approximately 0.2 inches.

As discussed in Appendix J of this report, the cover will be vegetated with a mixture of perennial grasses (primarily wheatgrass, ricegrass, squirreltail, and fescue) and forbs (yarrow and sage). The allowable vegetation shear strength is calculated as:

$$\tau_{va} = 0.75C_I$$

Where

 τ_{va} = allowable vegetation shear strength (in psf), C_1 =cover index = 2.5 [h(M)^{1/2}]^{1/3}, h = stem length (ft), and M = stem density factor (stems per square ft).

Conservatively using poor vegetation conditions, h=1.0, M=67, and $C_I=5.03$, the resulting vegetation shear strength value is 3.78 psf.

Effective stresses. The effective shear stress on soil due to peak runoff from the PMP was calculated as:

$$\tau_e = \gamma dS (1 - C_f) (n_s/n)^2$$

Where

$$\begin{split} \tau_e &= \text{effective shear stress (psf)}, \\ \gamma &= \text{unit weight of water = 62.4 pcf}, \\ d &= \text{depth of flow (ft), from Table G.2,} \\ S &= \text{slope of cover surface (ft/ft), from Table G.1,} \\ C_f &= \text{cover factor (0.375 for poor vegetation),} \\ n_s &= \text{soil roughness factor (0.0156 for soils with D_{75} \leq 0.05 in., or 0.0256(D_{75})^{1/6} for D_{75} > 0.05 in), and \\ n &= \text{Manning's roughness coefficient for vegetated surface.} \end{split}$$

$$n = e^{C_i (0.0133 [\ln q]^2 - 0.0954 \ln q + 0.297) - 4.16}$$

The effective shear stress on vegetation is calculated as:

$$\tau_v = \gamma dS - \tau_e$$

Where

 τ_v = effective vegetal stress (psf).

Conservatively using poor vegetation conditions, the effective shear stresses on soil and vegetation on the tailings cover surfaces are summarized in Table G.2.

				Soil			Vegetation	
Location	Description of Erosion Protection	Depth of Flow ¹ (ft)	Effective Shear Stress (psf)	Allowable Shear Stress (psf)	Factor of Safety	Effective Shear Stress (psf)	Allowable Shear Stress (psf)	Factor of Safety
Cell 1 at 1% slope	Vegetation and Gravel (D ₇₅ =0.2 in)	0.80	0.040	0.08	2.0	0.449	3.78	8.4
Cell 2 at 0.5 % slope	Vegetation (D ₇₅ = 0.003 in)	1.01	0.019	0.02	1.1	0.297	3.78	12.7
Cell 2 at 1 % slope	Vegetation and gravel (D ₇₅ = 0.2 in)	0.82	0.044	0.08	1.8	0.467	3.78	8.1
Cell 3 at 0.5 % slope	Vegetation (D ₇₅ = 0.003 in)	1.05	0.021	0.02	1.0	0.306	3.78	12.4
Cells 4A and 4B at 0.8 % slope	Vegetation and gravel (D ₇₅ = 0.2 in)	0.97	0.050	0.08	1.6	0.433	3.78	8.7

Table G.2. Effective Shear Stresses on Soil and Vegetation

¹ Calculated using a concentration factor of 3 for peak unit discharge

The calculated factors of safety above show that for poor vegetation conditions, the allowable shear strengths are equal to or higher than the effective shear stresses on both the vegetation and the soil during peak discharge from the PMP. When vegetation conditions are good or better, the soil factor of safety improves significantly, while the vegetation factor of safety decreases slightly, but remains well above 1.0. Further details of calculations can be found in Attachment G.2.

These analyses indicate that the cover on the top surface of the tailings disposal cells can be constructed as a vegetated slope. Top slopes at 0.5 percent slopes are adequately stable without the addition of gravel, while the 1 percent slope in Cell 2, and the 0.8 percent slope in Cells 4A and 4B will require the addition of approximately 25 percent of 1-inch-minus gravel.

G.6 EROSIONAL STABILITY OF ROCK-PROTECTED SIDE-SLOPES

Because of the difficulty in maintaining vegetation on side slopes, the 5:1 side slopes have been designed for erosional protection assuming vegetation is minimal. The maximum unit discharge value from Table G.1 was used to size riprap for the embankment slopes. The Johnson and Abt

method referenced in Johnson (2002) was used for the side slopes. The required angular rock size is calculated as follows:

$$D_{50} = 5.23S^{0.43} q_{design}^{0.56}$$

Where

 D_{50} = median particle diameter of which 50 percent of the soil is finer (inch), S = slope (ft/ft), and

 q_{design} = design flow (cfs/ft).

Flow Characteristics. The peak unit discharge values from Table G.1 were used to represent flow conditions across the cover surface and down the embankment side slopes south of Cells 4A and 4B. Concentration factors of 3 were used to account for channelization of flow.

Rock Characteristics. A specific gravity of 2.65 was assumed for the riprap. The overall erosion protection design uses rounded and angular rock for the embankment side slopes. Angular rock was selected for slopes where the required minimum D_{50} for rounded rock was too large to produce. For areas where rounded rock was selected, the minimum D_{50} was increased by 40 percent in the design to account for rounded rock characteristics (Abt and Johnson, 1991). The results of the riprap sizing for the embankment slopes are summarized in Table G.3 below.

Location	Design Unit Discharge (cfs/ft)	Slope (ft/ft)	Concentration Factor	Median Rock Size (inches)
Non-Accumulating Side Slopes (Rounded Rock)	0.06	0.20	3	1.7
Cell 4A and 4B southern side slopes(Angular Rock)	0.87	0.20	3	5.3
Cell 1 Disposal Area side slope (Angular Rock)	0.65	0.20	3	4.5

Table G.3. Results of Riprap Sizing

Filter Requirements. NUREG-1623 (Johnson, 2002) recommends a filter or bedding layer be placed under the erosion protection if interstitial velocities are greater than 1 ft/s, in order to prevent erosion of the underlying soils. Bedding is not required if interstitial velocities are less than 0.5 ft/s, and are recommended depending on the characteristics of the underlying soil if velocities are between 0.5 and 1.0 ft/s.

Interstitial velocities are calculated by procedures presented by Abt et al. (1991) as given in the following equation:

$$V_i = 0.23(g \times D_{10} \times S)^{0.5}$$

Where

Vi = interstitial velocities (ft/s),

G = acceleration due to gravity (ft/s^2),

 D_{10} = stone diameter at which 10 percent is finer (inches), and

S = gradient in decimal form.

The maximum D_{10} of the erosion protection is estimated based on the D_{50} required for erosion protection, assuming the erosion protection will have a coefficient of uniformity (CU) of 6 and a

band width of 5. Band width refers to the ratio of the minimum and maximum allowed particle sizes acceptable for any given percent finer designation. USDA (1994) recommends CU to be a maximum of 6 in order to prevent gap-grading of filters. Table G.4 summarizes the results for the side slopes.

Location	Non-Accumulating Side Slopes (Rounded Rock)	Cell 4A and 4B southern side slopes(Angular Rock)	Cell 1 Disposal Area side slope (Angular Rock)
Minimum D50 (inches)	1.7	5.3	4.5
Maximum D ₁₀ (inches)	0.53	1.65	1.40
Slope (%)	20	20	20
Interstitial Velocity (ft/s)	0.43	0.75	0.69
Filter Requirement	No	Recommended	Recommended

Table G.4. Results of Filter Requirements for Side Slopes

Based on the results in Table G.4 and the fine-grained nature of the top soil, it is recommended that a filter be placed between the soil and the rock protection for the side slope areas that require angular riprap. These areas include the southern side slopes of Cells 4A and 4B as well as the northern side slope of the Cell 1 disposal area as shown in Figure G.1. The interstitial velocity results confirm that a filter is not necessary for the non-accumulating side slopes where rounded rock is proposed on the west and east sides of Cells 2, 3 and 4.

Gradation for proposed Filter. The procedure from USDA (1994) for determining the gradation limits for a sand or gravel filter was used to evaluate the type of material needed to satisfy filter requirements between the soil and rock protection for the side slopes. The method details twelve steps to determine an appropriate gradation range for the filter layer. The steps can be found in Chapter 26 of the USDA Handbook and are shown in the Attachment G.2 for supporting calculations. In addition, Equation 5.3 from Cedegren (1989) and Equation 4.36 from Nelson et al. (1986) were used to determine the filter gradation requirements. Table G.5 presents the recommended gradation.

Diameter (mm)	Sieve Sizes	Percent Passing
76.2	3"	100
4.75	No. 4	70-100
0.85	No. 20	40-60
0.075	No. 200	0-5

Table G.5. Results of Filter Gradation Requirements

Based on the results of Table G.5, the filter material should be a medium sand that will be placed between the erosion protection and the base layer on the side slopes.

Sheet Erosion. The Modified Universal Soil Loss Equation (MUSLE) as presented in NUREG/CR4620 (Nelson et al., 1986) was used to evaluate the potential for soil loss due to sheet flows across the gravel/topsoil surface layer of the cover.

The MUSLE is defined as:

A = R * K * LS * VM

Where:

A = soil loss, in tons per acre per year,
R = rainfall factor,
K = soil erodibility factor,
LS = topographic factor, and
VM = dimensionless erosion factor relating to vegetative and mechanical factors

The rainfall factor, R, is 30, as given in NUREG/CR-4620 for the eastern third of Utah. The soil erodibility factor, K, was estimated to be 0.28 for the topsoil and 0.16 for the gravel and topsoil mixture, based on the nomograph (Fig. 5.1) in NUREG/CR-4620.

The topographic factor, LS, is calculated based on the following equation:

$$LS = \frac{650 + 450s + 65s^2}{10,000 + s^2} * \left(\frac{L}{72.6}\right)^m$$

Where:

s = slope steepness, in percent (%),

L = slope length in feet,

m = slope steepness dependent exponent

The topographic factor was calculated using a slope of 0.82 percent and a slope length of 1,300 feet. From the Table 5.2 in NUREG/CR-4620, the slope steepness exponent, m, is 0.2 for slopes less than or equal to 1.0 percent.

The erosion factor, VM, used was 0.4, from Table 5.3 of NUREG/CR-4620, to represent seedlings of 0 to 60 days, to mimic light vegetation on the cover. Table G.5 summarizes the MUSLE results for the proposed topsoil and the proposed topsoil mixed with 25 percent gravel, by weight.

Table G.6.	Results	of MUSLE
------------	---------	----------

Soil Cover	Proposed Topsoil	Proposed Topsoil with 25% Gravel
Rainfall factor, R	30	30
Silt and very fine sand (%)	43.6	32.7
Sand (%)	39.2	29.4
Organic matter (%)	1.5	1.5
Soil structure	Fine granular	Medium or coarse granular
Relative permeability	Moderate	Moderate to rapid
Erodibility factor, K	0.28	0.12
Topographic Factor, LS	0.16	0.19
Erosion factor, VM – low density seedings	0.4	0.4
Soil loss (tons/acre/year)	0.54	0.27
Soil loss (inches/1,000 years)	3.0	1.4

The soil loss equation shows the potential for erosion will be reduced by almost one half, by using 25 percent gravel in the topsoil mixture. The topsoil loss of 1.5 to 3.0 inches over the life of the cover (1,000 years) is less than the minimum design thickness of 6 inches.

G.7 ROCK SIZING FOR APRON

Additional erosion protection will be provided for runoff from the south side slopes of the reclaimed surfaces of Cells 4A and 4B, the east side of Cell 4A, and the north side of Cell 1 with a rock apron. The perimeter apron will: (1) serve as an impact basin and provide for energy dissipation of runoff, (2) provide erosion protection, and (3) transition flow from side slopes to natural ground. The median rock size required in the perimeter apron was calculated using the equations derived by Abt et al. (1998) as outlined in NUREG 1623 (Johnson, 2002) as follows:

$D_{50 \ energy \ dissipation} = 10.46 S^{0.43} q^{0.56}$

Flow Characteristics. The peak unit discharge values from Table G.1 were used to represent flow conditions down the embankment side slopes south of Cells 4A and 4B. Concentration factors of 3 were used to account for channelization of flow.

Rock Characteristics. A specific gravity of 2.65 was assumed for the riprap. Both rounded and angular rock was used in the apron design.

Based on the above equation, the rock apron (Apron A) along the toe of the non-accumulating slopes covered with rounded riprap (west and east side slopes of Cells 2 and 3) should be constructed using rounded rock with a median rock diameter of 3.4 inches. The width of the apron should be a minimum of 15 times the median rock size (4.25 ft) and the apron thickness should be a minimum of three times the median rock size (10.2 inches). Rock Apron B should be placed on the toes of the south slope of Cells 4A and 4B and along the east of Cell 4A. Apron B should have a median angular rock size of 10.6 inches, with a minimum width of 13.2 feet and a minimum thickness of 2.7 feet. Rock Apron C should be placed on the toes of the remaining slope (Cell 1 disposal area side slope). Apron C should have a median rock size of 9.0 inches, a minimum width of 11.3 feet, and a minimum thickness of 2.3 feet.

Filter Requirements. NUREG-1623 (Johnson, 2002), as detailed in section G.6, was used to determine if a bedding layer was required for the rock aprons. The results are presented in Table G.7 below.

Location	Apron A: Non- Accumulating Slopes (Rounded)	Apron B: Cell 4A and 4B slopes(Angular)	Apron C: Cell 1 disposal area side slope (Angular)
Minimum D ₅₀ (inches)	3.4	10.6	9.0
Maximum D ₁₀ (inches)	1.0	3.3	2.8
Slope (%)	1	1	1
Interstitial Velocity (ft/s)	0.13	0.24	0.22
Filter Requirement	No	No	No

Table G.7. Results of Filter Requirements for Rock Aprons

Based on the results in Table G.7, it is not required to place a bedding layer between the soil and rock protection for the rock aprons.

G.8 DISCHARGE CHANNEL AND SEDIMENTATION BASIN

The PMP event described in Section G.3 was used to determine the peak discharge to the channel to be located at the west end of the sedimentation basin. The peak discharge calculations were made using the Rational Method and the time of concentration was calculated for the longest flow path (see Figure G.1) across the mill site and sedimentation basin using the procedures described in section G.4. A runoff coefficient of 1.0 was used to represent PMP conditions (DOE, 1989). These characteristics represent high runoff quantities and peak flow velocities.

The PMP peak discharge calculated across the mill site and sedimentation basin is presented in Table G.8. This discharge represents the peak flow into the channel. Further details of the calculations can be found in Attachment G.1

Location	Slope Length (feet)	Time of Concentration (min)	Rainfall Intensity (in/hr)	Runoff Coefficient	Peak Discharge (cfs)
Mill site and sedimentation basin	4,600	26.3	16.4	1.0	2,440

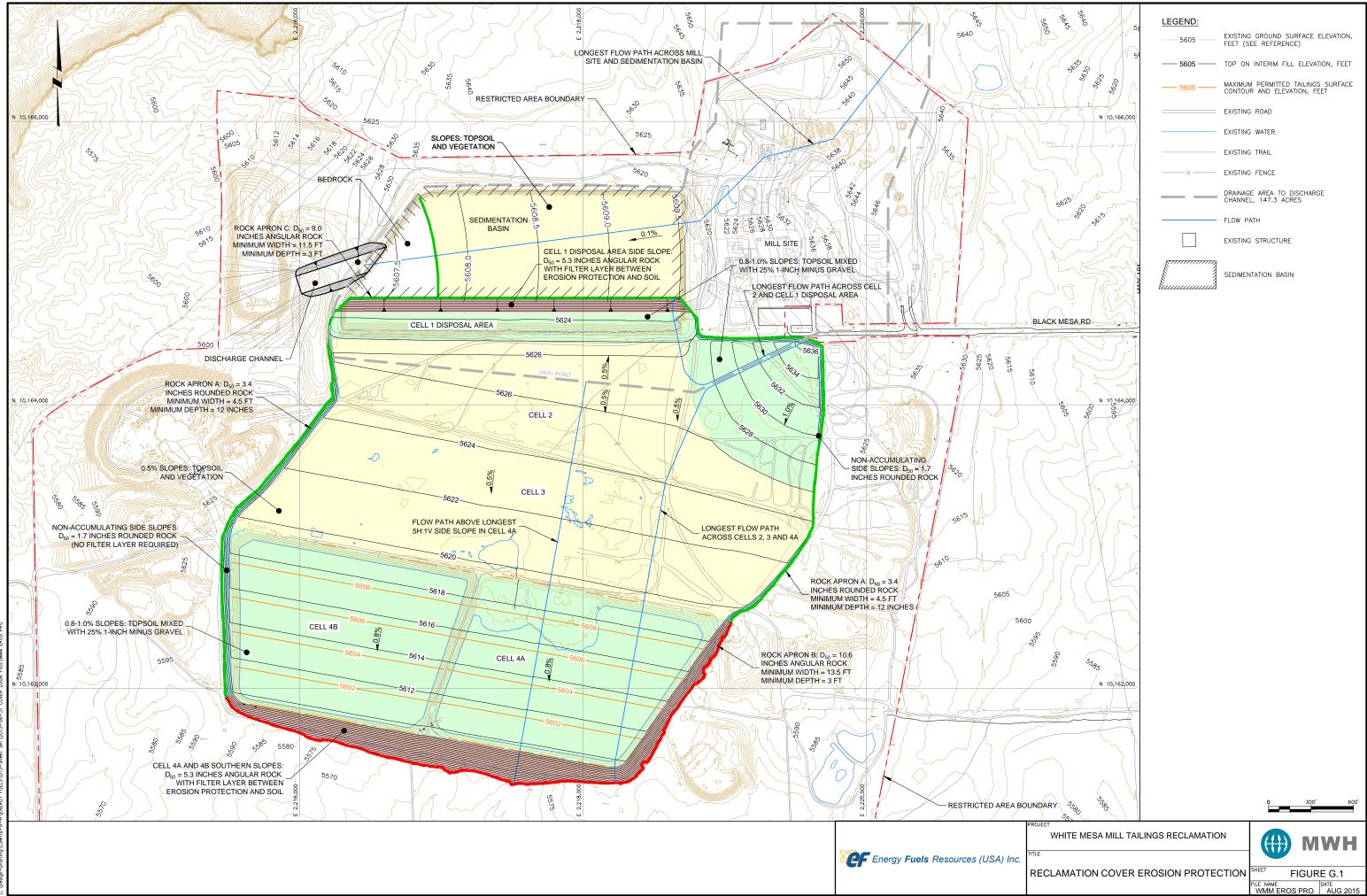
Table G.8. Peak Discharge Flow to the Discharge Channel

The peak discharge value in Table G.8 above, was used to evaluate the peak flow velocities through the discharge channel excavated into bedrock. The channel dimensions are shown on Drawing REC-3 and include a 150-foot bottom width and 3:1 (H:V) side slopes. The Manning's n-value was estimated and adjusted based on the anticipated type of bedrock and the presumed roughness, along the channel, after excavation. Table G.9 includes peak flow velocities for Manning's n-values of 0.02 and 0.03.

Table G.9. Peak Discharge Channel Flow Velocities

Location	Channel Bottom Width (feet)	Channel Side Slopes (H:V)	Manning Coefficient, n	Flow Depth (ft)	Cross Sectional Area of Flow (ft ²)	Hydraulic Radius (ft)	Peak Velocity (fps)
Discharge channel	150	3:1	0.02	1.67	259	1.61	9.4
Discharge channel	150	3:1	0.03	2.12	332	2.03	7.3

Based on the available bedrock information near the channel location, the rock is expected to consist of a fine to medium-grained sandstone with varying degrees of cementation and weathering, or a claystone (Dames and Moore, 1978). The shear wave velocities from seismic refraction surveys indicate the bedrock will range from rippable to hard rock, requiring blasting (D'Appolonia, 1979). Because of this variability, an initial Manning's n-value of 0.015 was selected, for a channel in rock and then modifications of 0.005 and 0.015 were added for increasing irregularities in the final excavated rock surface. (USBR, 1987). Maximum suggested


permissible peak channel velocities are 10 feet per second for channels excavated in "poor rock" (USACE, 1994).

G.9 REFERENCES

- Abt, S., J. Ruff, and R. Wittler, 1991. Estimating Flow Through Riprap, Journal of Hydraulic Engineering, Vol. 117, No. 5, May.
- Abt, S., and T. Johnson, 1991. Riprap Design for Overtopping Flow, Journal of Hydraulic Engineering, Vol. 117, No. 8, August.
- Abt, S., T. Johnson, C. Thornton, and S. Trabant, 1998. Riprap Sizing at Toe of Embankment Slopes, Journal of Hydraulic Engineering, Vol. 124, No. 7, July.
- Cedegren, H.R., 1989. Seepage, Drainage, and Flow Nets. Equation 5.3. 3rd Edition. John Wiley & Sons, Inc., New York.
- Dames and Moore, 1978. Site Selection and Design Study Tailing Retention and Mill Facilities White Mesa Uranium Project. January 17.
- D'Appalonia, 1979. Tailings Management System, White Mesa Uranium Project, Blanding Utah. June.
- Denison Mines (USA) Corporation (Denison), 2009. "Re: Cell 4B Lining System Design Report, Response to DRC Request for Additional Information – Round 3 Interrogatory, Cell 4B Design – Exhibit C: Probable Maximum Precipitation (PMP) Event Calculation", Letter to Dane Finerfrock, September 11.
- Denison Mines (USA) Corporation (Denison), 2012. Responses to Interrogatories Round 1 for Reclamation Plan, Revision 5.0, March 2012; Attachment B: Updated Probable Maximum Precipitation (PMP) Calculation. May 31.
- Energy Fuels Resources (USA), Inc. (EFRI), 2012. Responses to Interrogatories Round 1 for Reclamation Plan, Revision 5.0, March 2012. August 15.
- Hansen, E. M., F.K. Schwarz, J.T. Riedel, 1984. "Hydrometeorological Report No. 49: Probable Maximum Precipitation Estimates, Colorado River and Great Basin Drainages," Hydrometeorological Branch Office of Hydrology, National Weather Service, U.S. Department of Commerce, National Oceanic and Atmosphere Administration, U.S. Department of the Army, Corps of Engineers, Silver Springs, MD.
- Jensen, D. 1995. Final Report: Probable Maximum Precipitation Estimates for Short Duration, Small Area Storms in Utah, October.
- Johnson, T.L., 2002. "Design of Erosion Protection for Long-Term Stabilization." U.S. Nuclear Regulatory Commission (NRC), *NUREG-1623*. September.
- MWH Americas, Inc. (MWH), 2011. Updated Tailings Cover Design. Prepared for Denison Mines (USA) Corp. September.

- Nelson, J., S. Abt, R. Volpe, D. van Zyl, N. Hinkle, and W. Staub, 1986. "Methodologies for Evaluation of Long-term Stabilization Designs of Uranium Mill Tailings Impoundments." *NUREG/CR-4620*, U.S. Nuclear Regulatory Commission, June.
- Temple, D.M., K.M. Robinson, R.A. Ahring, and A.G. Davis, 1987. "Stability Design of Grass-Lined Open Channels." USDA Handbook 667.
- U.S. Army Corps of Engineers, 1994. *Hydraulic Design of Flood Control Channels*, EM 1110-2-1601. p.2-16. June.
- U.S. Department of Agriculture (USDA), 1994. Gradation Design of Sand and Gravel Filters, National Engineering Handbook, Part 633, Chapter 26, October.
- U.S. Department of Energy (DOE), 1989. Technical Approach Document, Revision II, UMTRA-DOE/AL 050425.0002, Uranium Mill Tailings Remedial Action Project, Albuquerque, New Mexico.
- U.S. Department of the Interior, Bureau of Reclamation (USBR), 1987. *Design of Small Dams.* 3rd Edition. p.595.
- U.S. Nuclear Regulatory Commission (NRC), 1990. "Final Staff Technical Position, Design of Erosion Protective Covers for Stabilization of Uranium Mill Tailings Sites," August.
- Utah Department of Environmental Quality, Utah Division of Radiation Control (DRC). 2012. Denison Mines (USA) Corp's White Mesa Reclamation Plan, Rev. 5.0, Interrogatories -Round 1. March.
- Utah Department of Environmental Quality, Division of Radiation Control (DRC), 2013. Review of August 15, 2012 (and May 31, 2012) Energy Fuels Resources (USA), Inc. Responses to Round 1 Interrogatories on Revision 5 Reclamation Plan Review, White Mesa Mill, Blanding, Utah, report dated September 2011. February 13.

ATTACHMENT G.1

PMP CALCULATIONS DENISON (2012) DENISON (2009)

Client:	Denison Mines
Project:	White Mesa Reclamation Plan
Detail:	Updated Probable Maximum Precipitation (PMP) Calculation

References:

Denison Mines (USA) Corporation (Denison), 2009. Re: Cell 4B Lining System Design Report, Response to DRC Request for Additional Information – Round 3 Interrogatory, Cell 4B Design – Exhibit C: Probable Maximum Precipitation (PMP) Event Calculation, Letter to Dane Finerfrock, September 11.

Hansen, E. M., Schwarz, F.K., Riedel, J.T., 1984. Hydrometeorological Report No. 49: Probable Maximum Precipitation Estimates, Colorado River and Great Basin Drainages, Hydrometeorological Branch Office of Hydrology, National Weather Service, U.S. Department of Commerce, National Oceanic and Atmosphere Administration, U.S. Department of the Army, Corps of Engineers, Silver Springs, MD.

Jensen, D. 1995. Final Report: Probable Maximum Precipitation Estimates for Short Duration, Small Area Storms in Utah, October.

Jensen, D., 2003. 2002 Update for Probable Maximum Precipitation, Utah 72 Hour Estimates to 5,000 sq. mi., March.

Utah Division of Radiation Control (DRC), 2012. Denison Mines (USA) Corp's White Mesa Reclamation Plan, Rev. 5.0, Interrogatories - Round 1, March.

Approach:

Update previous calculations (Denison, 2009) to incorporate Jensen (1995) and Jensen (2003) references as recommended by DRC (2012) Jensen (2003) is applicable for 72-hour durations for areas up to 5,000 square miles. Incorporation of this reference does not modify the previous calculations for one-hour or six-hour duration PMP values for the site.

Calculations:

Site Information Parameter Value Units Comments 0.4 mi² Denison (2009) for Cells 2 through 4B Drainage Area Latitude N 37°31 Denison (2009) Longitude W 109°30' Denison (2009) Minimum Elevation 5600 ft Denison (2009)

Updated Local-Storm PMP Estimates

Parameter	Value	Units	Comments		
One-hour point precipitation PMP value	8.6	in	Jensen (1995) references Figure 4.7 in Hansen (1984).		
Elevation Reduction	97	%	Jensen (1995) recomments same elevation reduction as used in Hansen (1984).		
One-Hour PMP (adjusted for elevation)	8.3	in	This is the same value presented in Denison (2009)		
6-hr to 1-hr Depth Percentage	115	%	Table 15 in Jensen (1995)		
Six-Hour PMP	9.6	in	One-hour PMP multiplied by 6-hr to 1-hr depth percentage		
Areal Reduction	100	%	Table 15 in Jensen (1995) for 1 sq. mi. area		

RESULTS

One-Hour Duration PMP	8.3 in
Six-Hour Duration PMP	9.6 in

Updated Local-Storm PMP Incremental Values

Duration (hr)	Percentage of 1-hr PMP	Depth (in)	Incremental Depth (in)
0.25	50	4.2	4.2
0.5	74	5.5	1.3
0.75	90	7.5	2.0
1	100	8.3	0.8
2	110	9.1	0.8
3	112	9.3	0.2
4	113.5	9.4	0.1
5	114.5	9.5	0.1
6	115	9.6	0.1

Six-Hour Duration PMP						
Hourly						
Increments	Depth (in)					
1st	0.1					
2nd	0.2					
3rd	8.3					
4th	0.8					
5th	0.1					
6th	0.1					

One-Hour Duration PMP						
15-Min.						
Increments	Depth (in)					
1st	4.2					
2nd	2.0					
3rd	1.3					
4th	0.8					

Г

EXHIBIT C

PROBABLE MAXIMUM PRECIPITATION (PMP) EVENT CALCULATION PACKAGE

Geosyntec[▷]

consultants

COMPUTATION COVER SHEET

Client:	DMC	Project: W	hite Mesa Mill – Cell 4B	Project/ Proposal No.: Task No.	SC0349
Title of C	omputations	PROBAB	LE MAXIMUM PREC) EVENT
Computat	ions by:	Signature Printed Name	Mannie	<u> </u>	09
		Title	Meghan Lithgow Senior Staff Engineer		1
Assumption Procedure by:	ons and es Checked	Signature Printed Name	Rebecca Flynn, PE	<u>r 919</u> Date	109
(peer revi	,	Title Signature	Engineer	9/9/	09
Checked		Printed Name Title	Meghan Lithgow X	Date	
Computat backchecl (originato	ked by:	Signature Printed Name Title	Meghan Lithgow	9/9/ Date	09
Approved (pm or de		Signature (Senior Staff Engineer Gregory T. Corcoran,	9/10/0	9
Approval	notes:	Title	Principal		
Revisions	(number and	initial all revisior	ıs)		
No.	Sheet	Date	Ву	Checked by	Approval

•

......

					Page	1	of 5
Written b	y: <u>M. Li</u>	thgow	Date: 09/04/09	Reviewed by:	G. Corcoran	Date:	9/10/09
Client:	DMC	Project:	White Mesa Mill- Cell 4B	Project/ Proposal No.:	SC0349	Task No.:	02

PROBABLE MAXIMUM PRECIPITATION (PMP) EVENT COMPUTATION WHITE MESA MILL – CELL 4B BLANDING, UTAH

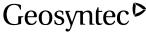
OBJECTIVE

The purpose of this calculation is to evaluate the local-storm Probable Maximum Precipitation (PMP) event for the White Mesa Mill Facility site located in Blanding, Utah. This calculation demonstrates that the probable maximum precipitation (PMP) event that the site will experience is 10 inches (0.83 ft) in 6 hours.

PMP COMPUTATION PROCEDURE

The Probable Maximum Precipitation (PMP) for the site was evaluated using "Hydrometeorological Report No. 49: Probable Maximum Precipitation Estimates, Colorado River and Great Basin Drainages" (Hansen, et. al., 1984). The use of this method is cited in a hydrology report that was prepared as part of an agreement between UMETCO and the Nuclear Regulatory Commission (NRC) during the permitting of Cell 4A (UMETCO, 1990).

PROBABLE MAXIMUM PRECIPITATION EVENT CALCULATIONS


Step 1: Calculate the Average 1-hr 1-mi² PMP for drainage using Figure 4.5

The average 1-hr $1-mi^2$ PMP is 8.6-in (Attachment A, 1/7)

Step 2a: Reduce the 1-hr 1-mi² PMP event for elevation

If the lowest elevation within the drainage is above 5,000 feet (ft) above Mean Seal Level (MSL), decrease the PMP value from Step 1 by 5% for each 1,000 ft or proportionate fraction thereof above 5,000 ft to obtain the elevation adjusted drainage average 1-hr 1-mi² PMP.

The elevation of Cell 4B is 5,598 ft above MSL, which is conservatively the lowest elevation for the completed cells 2 through 4B; therefore, it is required to interpolate

					Page	2	of 5
Written b	y: <u>M. L</u>	ithgow	Date: 09/04/09	Reviewed by:	G. Corcoran	Date:	9/10/09
Client:	DMC	Project:	White Mesa Mill- Cell 4B	Project/ Proposal No.:	SC0349	Task No.:	02

between 95% and 100% using the following equation:

 $\frac{5\%}{1,000 ft} = \frac{x\%}{598 ft}; x = 3\%$ reduction

100 % - 3 % = 97 %

Therefore, reduce the value obtained in Step 1 by 97%.

Step 2b: Multiply the number calculated in Step 1 by the number calculated in Step 2a.

8.6 inches x 0.97 = 8.3 inches

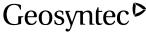
Step 3: Determine the average 6/1-hr ratio for drainage using Figure 4.7

The average 6/1-hr ratio for drainage is approximately 1.2. (Attachment A, 2/7)

Step 4: Calculate the durational variation for 6/1-hr ratio of Step 3 using Table 4.4

The durational value is determined using Table 4.4 is as follows: (Attachment A, 3/7)

				Durat	ion (hr)			
1⁄4	1⁄2	3⁄4	1	2	3	4	5	6
74	89	95	100	110	115	118	119	120 %


Step 5: Multiply step 2b by Step 4 to calculate the 1-mi² PMP for indicated durations

For example, for the $\frac{1}{4}$ hour duration: 8.3 x 0.74 = 6.1

The following numbers are calculated as follows:

				Dura	tion (hr)			_
1⁄4	1⁄2	3⁄4	1	2	3	4	5	6	
6.1	7.4	7.9	8.3	9.1	9.5	9.8	9.9	10.0	in.

Step 6:	Determine the area	reduction using	Figure 4.9 for the site:

					Page	3	of 5
Written by:	M. Lith	igow	Date: 09/04/09	Reviewed by:	G. Corcoran	Date:	9/10/09
Client:	DMC	Project:	White Mesa Mill- Cell 4B	Project/ Proposal No.:	SC0349	Task No.:	02

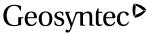
First, determine the total watershed contributing to Cell 4B, including Cell 4B. The watershed areas of the upstream Cells 2, 3, and 4A are 87 acres (ac), 83 ac, and 40 ac, respectively and the proposed Cell 4B is 42 ac. Areas outside of these cells do not drain to Cell 4B and are therefore not part of the watershed area.

Total acreage is 87 ac + 83 ac + 42 ac + 42 ac = 254 acres. Next, convert this number into square miles:

254 acre x
$$\frac{43,560 \text{ ft}^2}{1 \text{ acre}} x \frac{(1mi)^2}{(5,280 \text{ ft})^2} = 0.40 \text{ mi}^2$$

Using Figure 4.9, the depth ratio of $\leq 1 \text{ mi}^2$ is 100 percent for each of the durations (Attachment A, 4/7).

<u>Step 7:</u> Multiply the duration values in Step 5 by the areal reduction in Step 6 to calculate the areal reduced PMP.


This step is neglected because the depth ratio is 100 percent; therefore, the values obtained in Step 5 are not reduced.

Step 8: Calculate the incremental PMP using successive subtraction of the values in Step 7 for the hourly durations (1 hr through 6 hr) and 15-minute incremental durations (1/4 hr through 1 hr).

The incremental PMP is calculated in two separate steps; the incremental PMP is calculated on the first line for the hourly increments (hours 1 through 6) and then calculated on the second line for the 15-minute increments during the first hour of the storm. To determine the incremental PMP, the following formula is used:

 $PMP_{t to t+1} = PMP_{t+1} - PMP_t$, where t = time

In this example, the PMP between the first interval and second interval is determined by subtracting the PMP for interval 1 from the PMP for the second interval, as calculated in Step 5. The following equation illustrates the calculation of the incremental PMP between hours 0 and 1:

				Page	4	of 5
Written by: M.	Lithgow	Date: 09/04/09	Reviewed by:	G. Corcoran	Date:	9/10/09
Client: DMC	Project:	White Mesa Mill- Cell 4B	Project/ Proposal No.:	SC0349	Task No.:	02

 $PMP_1 - PMP_0 = 8.3 \text{ in} - 0 \text{ in.} = 8.3 \text{ in}.$

The next equation illustrates the calculation of the incremental PMP between hours 1 and 2:

 $PMP_2 - PMP_1 = 9.1$ in -8.3 in. = 0.8 in.

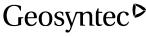
This calculation is continued until the following table is completed as shown for each PMP interval.

		Duration (hr)								
1⁄4	1⁄2	3⁄4	1	2	3	4	5	6		
			8.3	0.8	0.4	0.2	0.1	0.1	in.	
6.1	1.2	0.5	0.4						in.	

Step 9: Order the incremental PMP in a sequence dictated by hourly and 15-minute increments using Table 4.7 (Attachment 5/7) and Table 4.8 (Attachment 6/7), respectively.

The incremental PMP calculated in Step 8 must now be arranged in a specific order to model the runoff generated by the storm event. This order is dictated by Table 4.7 for the hourly PMP intervals and Table 4.8 for the 15-minute PMP intervals.

The final arrangement of the numbers determined in Step 8 is as follows:


Hourly increments:	0.1	0.4	8.3	0.8	0.2	0.1	in.
15-minute increments:	6.1	1.2	0.5	0.4			in.

The storm's 6 hour PMP runoff event is calculated by summing the incremental PMP for each hour of the storm.

0.1 in. + 0.4 in. + 8.3 in. + 0.8 in. + 0.2 in. + 0.1 in. = 9.9 inches (10 inches).

This step is repeated to calculate the runoff generated during the first hour of the storm.

6.1 in. + 1.3 in. + 0.5 in. + 0.4 in. = 8.3 inches

				Page	5	of 5	
Written by: <u>M</u> .	Lithgow	Date: 09/04/09	Reviewed by:	G. Corcoran	Date:	9/10/09	
Client: DMC	Project:	White Mesa Mill-	Project/	SC0349	Task	02	
		Cell 4B	Proposal No.:		No.:		

Because 9.9 > 8.3, the runoff generated from the 6 hour storm (9.9 inches) is used.

CONCLUSIONS AND RECOMMENDATIONS

Our calculations are summarized in a worksheet modeled after Table 6.3A in the Hydrometerological Report No. 49 and is provided as Attachment A, 7/7. Our analysis determined the Probable Maximum Precipitation (PMP) event generates 10 inches (0.83 ft) over 6 hours.

REFERENCES

UMETCO Minerals Corporation, 1990, "White Mesa Mill Drainage Report for Submittal to NRC."

Attachment A

Hansen, E. Marshall, Schwartz, Francis K., Riedel, John T., 1984. "Hydrometeorological Report No. 49: Probable Maximum Precipitation Estimates, Colorado River and Great Basin Drainages," Hydrometeorological Branch Office of Hydrology National Weather Service, U.S. Department of Commerce, National Oceanic and Atmosphere Administration, U.S. Department of Army Corps of Engineers, Silver Springs, Md.

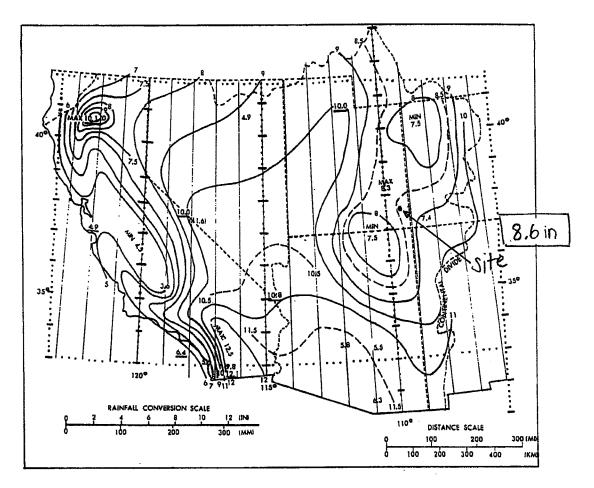


Figure 4.5--Local-storm PMP for 1 mi² (2.6 km²) 1 hr. Directly applicable for locations between sea level and 5000 ft (1524 m). Elevation adjustment must be applied for locations above 5000 ft.

events. In contrast to figure 4.4, figure 4.5 maintains a maximum between these two locations. There is no known meteorological basis for a different solution. The analysis suggests that in the northern portion of the region maximum PMP occurs between the Sierra Nevada on the west and the Wasatch range on the east.

A discrete maximum (> 10 inches, 254 mm) occurs at the north end of the Sacramento Valley in northern California because the northward-flowing moist air is increasingly channeled and forced upslope. Support for this PMP center comes from the Newton, Kennett, and Red Bluff storms (fig. 4.1). Although the analysis in this region appears to be an extension of the broad maximum through the center of the Southwestern Region, it does not indicate the direction of moist inflow. The pattern has evolved primarily as a result of attempts to tie plotted maxima into a reasonable picture while considering inflow directions, terrain effects, and moisture potential.

115

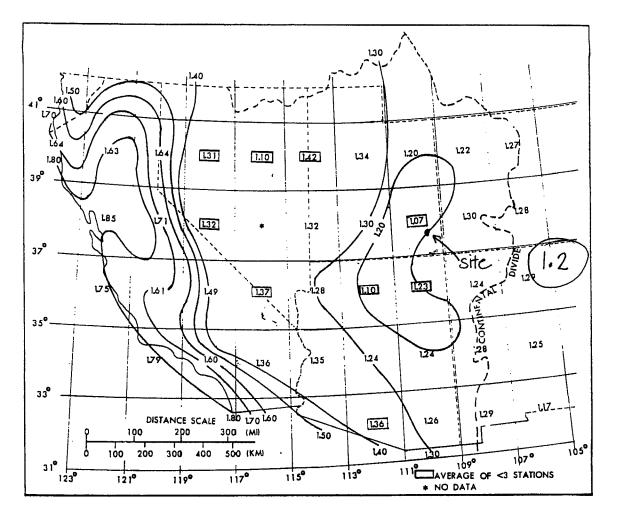


Figure 4.7.--Analysis of 6/1-hr ratios of averaged maximum station data (plotted at midpoints of a 2° latitude-longitude grid).

establish the basic depth-duration curve, then structure a variable set of depth-duration curves to cover the range of 6/1-hr ratios that are needed.

Three sets of data were considered for obtaining a base relation (see table 4.3 for depth-duration data).

a. An average of depth-duration relations from each of 17 greatest 3-hr rains from summer storms (1940-49) in Utah (U. S. Weather Bureau 1951b) and in unpublished tabulations for Nevada and Arizona (1940-63). The 3-hr amounts ranged from 1 to 3 inches (25 to 76 mm) in these events.

b. An average depth-duration relation from 14 of the most extreme shortduration storms listed in Storm Rainfall (U. S. Army, Corps of Engineers 1945-). These storms come from Eastern and Central States and have 3-hr amounts of 5 to 22 inches (127 to 559 mm).

Attachment A ,2/7

118

ratios than storms with high 3/1-hr ratios. The geographical distribution of 15-min to 1-hr ratios also were inversely correlated with magnitudes of the 6/1-hr ratios of figure 4.7. For example, Los Angeles and San Diego (high 6/1-hr ratios) have low 15-min to 1-hr ratios (approximately 0.60) whereas the 15-min to 1-hr ratios in Arizona and Utah (low 6/1-hr ratios) were generally higher (approximately 0.75).

Depth-duration relations for durations less than 1 hour were then smoothed to provide a family of curves consistent with the relations determined for 1 to 6 hours, as shown in figure 4.3. Adjustment was necessary to some of the curves to provide smoother relations through the common point at 1 hour.

We believe we were justified in reducing the number of the curves shown in figure 4.3 for durations less than 1 hour, letting one curve apply to a range of 6/1-hr ratios. The corresponding curves have been indicated by letter designators, A-D, on figure 4.3. As an example, for any 6-hr amount between 115% and 135% of 1-hr, 1-mi² (2.6-km²) PMP, the associated values for durations less than 1 hour are obtained from the curve designated as "B".

Table 4.4 lists durational variations in percent of 1-hr PMP for selected 6/1-hr rain ratios. These values were interpolated from figure 4.3.

To determine 6-hr PMP for a basin, use figure 4.3 (or table 4.4) and the geographical distribution of 6/1-hr ratios given in figure 4.7.

Table 4.4.--Durational variation of 1-mi² (2.6-km²) local-storm PMP in percent of 1-hr PMP (see figure 4.3)

	6/1-hr			Duratio	on (hr)						
	ratio	1/4	1/2	3/4	1	2	3	4	5	6	
	1.1	86	93	97	100	107	109	110	110	110	
A	1.2	74	89	95	100	110	115	118	119	120	
	1.3	74	89	95	100	114	121	125	128	130	
	1.4	63	83	93	100	118	126	132	137	140	
	1.5	63	83	93	100	121	132	140	145	150	
	1.6	43	70	87	100	124	138	147	154	160	
	1.8	43	70	87	100	130	149	161	171	180	
	2.0	43	70	87	100	137	161	175	188	200	

4.5 Depth-Area Relation

We have thus far developed local-storm PMP for an area of 1 mi^2 (2.6 km²). To apply PMP to a basin, we need to determine how $1-\text{mi}^2$ (2.6-km²) PMP should decrease with increasing area. We have adopted depth-area relations based on rainfalls in the Southwest and from consideration of a model thunderstorm.

Attachment A, 3/7

120

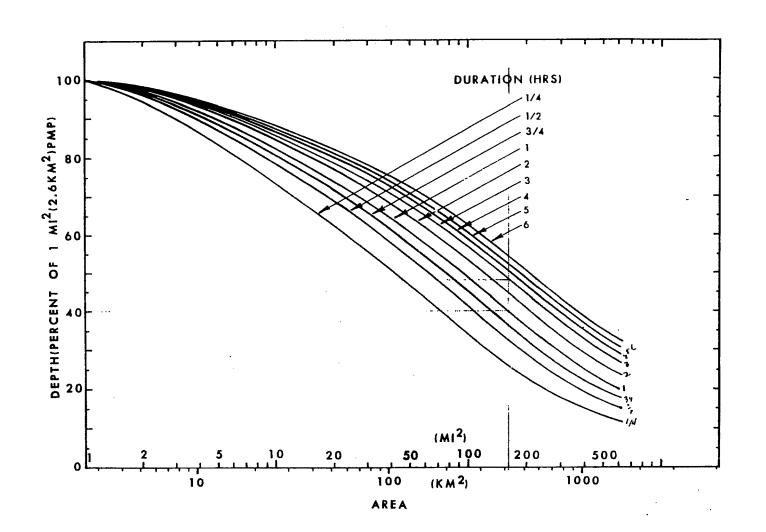
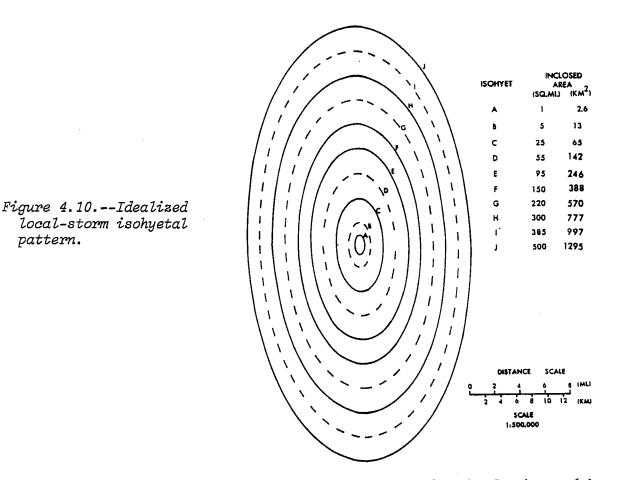



Figure 4.9.--Adopted depth-area relations for local-storm PMP.

123

storm period. The sequence of hourly incremental PMP for the Southwest 6-hr thunderstorm in accord with this study is presented in column 2 of table 4.7. A small variation from this sequence is given in Engineering Manual 1110-2-1411 (U. S. Army, Corps of Engineers 1965). The latter, listed in column 3 of table 4.7, places greater incremental amounts somewhat more toward the end of the 6-hr storm period. In application, the choice of either of these distributions is left to the user since one may prove to be more critical in a specific case than the other.

Table 4.7.--Time sequence for hourly incremental PMP in 6-hr storm

	1	*	$\underline{HMR} \text{ No. 5}^{1}$	Em1110-2-1411 ²
	Increment		Sequence	Position
*	Largest hourly amount 2nd largest 3rd largest 4th largest 5th largest least	8.3 0.8 0.5 0.2 0.2 0.1	Third Fourth Second Fifth First Last	Fourth Third Fifth Second Last First

¹U. S. Weather Bureau 1947.

2U. S. Corps of Engineers 1952.

126

Attachment A, 5/7

Also of importance is the sequence of the four 15-min incremental PMP values. We recommend a time distribution, table 4.8, giving the greatest intensity in the first 15-min interval (U.S. Weather Bureau 1947). This is based on data from a broad geographical region. Additional support for this time distribution is found in the reports of specific storms by Keppell (1963) and Osborn and Renard (1969).

Table 4.8.--Time sequence for 15-min incremental PMP within 1 hr.

Increment	Sequence Position
Largest 15-min amount	First
2nd largest	Second
3rd largest	Third
least	Last

4.8 Seasonal Distribution

The time of the year when local-storm PMP is most likely is of interest. Guidance was obtained from analysis of the distribution of maximum 1-hr thunderstorm events through the warm season at the recording stations in Utah, Arizona, and in southern California (south of 37°N and east of the Sierra Nevada ridgeline). The period of record used was for 1940-72 with an average record length for the stations considered of 27 years. The month with the one greatest thunderstorm rainfall for the period of record at each station was noted. The totals of these events for each month, by States, are shown in table 4.9.

Table 4.9.--Seasonal distribution of thunderstorm rainfalls.

(The maximum event at each of 108 stations, period of record 1940-72.)

	Month											
		М	L	J	A	S	0	No. of Cases				
	Utah	1	5	9	14	5		34				
	Arizona		4	16	19	4		43				
	S. Calif.*		14	10	7			31				
No.	of cases/mo.	1	23	35	40	9	0					

*South of 37°N and east of Sierra Nevada ridgeline.

127

Attachment A, 6/2

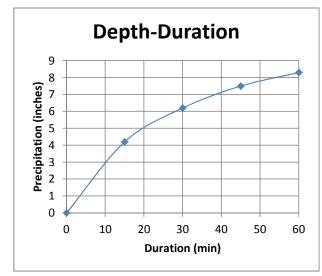
Table 6.3A -- Local-storm PMP computation, Colorado River, Great Basin and California drainages. For drainage average depth PMP.

	Drainage: White Mesa Mill Facility, Cells 2 - 4E	3					Area	0.3	39	mi^2	
	Latitude: N 37° 31'		Longitu	de: W 1	09° 30'	_	Min. El	evation	5598	ft	
1	Average 1-hr 1-mi ² (2.6-km ²) PMP for drainage [fig. 4.5]	8.6	in.								
2a.	Reduction for Elevation. [No adjustment for elevations up to 5,000 feet: 5% decrease per										
	1,000 feet above 5,000 feet.	0.97	%								
b.	Multiply step 1 by step 2a.	8.3	in.								
3.	Average 6/1-hr ratio for drainage [fig 4.7]	1.2									
					D	uration (on (hr)				
		1/4	1/2	3/4	1	2	3	4	5	6	-
4	Durational variation for 6/1-hr ratio of step 3 [table 4.4]	74	89	95	100	110	115	118	119	120	%
5	1-mi ² (2.6 km ²) PMP for indicated durations [step 2b x step 4]	6.1	7.4	7.9	8.3	9.1	9.5	9.8	9.9	10.0	-
6	Areal reduction [fig. 4.9]	6.1 100	100	100	8.5 100	9.1	9.5	9.8	9.9	10.0	-%
7	Areal reduced PMP [steps 5 x 6]	6.1	7.4	7.9	8.3	9.1	9.5	9.8	9.9	10.0	
1	Thear reduced T wit [steps 5 x 6]	0.1	7.4	1.9	0.5	9.1	9.5	9.0	9.9	10.0	
8	Incremental PMP [successive subtraction in step 7]				8.3	0.8	0.4	0.2	0.1	0.1	in.
		6.1	1.2	0.5	0.4	} 15-	-min. incr	rements			-
9	Time sequence of incremental PMP to: Hourly increments [table 4.7]				0.1	0.4	8.3	0.8	0.2	0.1	in.
						Total	l depth o	f 6 hour	storm	9.9	in.
						Tota	i ucpui 0		5101111	7.7	
	Four largest 15-min increments [table 4.8]				6.1	1.2	0.5	0.4	in		
					Total d	epth of	1st hour	of storm		8.3	in.

ATTACHMENT G.2

SUPPORTING CALCULATIONS

Client:	Energy Fuels Resources (USA) Inc.	Job No.:	1009740
Project:	White Mesa Reclamation Plan	Date:	5/31/2011
Detail:	Erosion Protection	Computed By:	RTS


PMP Event

PMP calculation from "Re: Cell 4B Lining System Design Report, Response to DRC Request fo Additional Information - Round 3 Interrogatory, Cell 4B design", September 11,2009.

Procedure: Hydrometeorological Report No. 49: Probable Maximum Precipitation Estimates, Colorado river and Great Basin Drainages (Hansen et al., 1984), corrected for elevation and area.

Table 1. Estimated Precipitation Depths For Local-Storm PMP, White Mesa Mill, Utah Site

Hourly Increments	First Hour	Second Hour	Third Hour				Fourth Hour	Fifth Hour	Sixth Hour
PMP Depths (inches)	0.1	0.2		8	.3		0.8	0.1	0.1
Third-Hour Component Depths (inches)			4.2	2.0	1.3	0.8			

Erosion Protection_25Aug2015:PMP Attachment G.2

Client:	Energy Fuels Resources (USA) Inc.	Job No.:	1009740
Project:	White Mesa Reclamation Plan	Date:	8/22/2015
Detail:	Erosion Protection	Computed By:	TMS/MMD

Time of Concentration

1-hour PMP (in)

Flow Path 1: flow path across longest 5H:1V side slope in Cell 4A

8.3

		Slope	Time of Concentration (minutes)						
	Slope	Length			Brant and		% of 1-hour		Intensity
Description	(feet/feet)	(feet)	Kirpich	SCS	Oberman	Average	PMP	PD _{PMP} (in)	(in/hr)
Cell 2 at 0.5%	0.005	570	7.9	8.0	11.8	9.2	61.3	5.08	33.0
Cell 3 top	0.005	870	18.9	19.0	25.4	21.1	82.3	6.83	19.4
Cell 4A top	0.008	1200	30.7	30.7	38.4	33.3	91.2	7.57	13.7
Cell 4A side slope	0.2	230	31.7	31.7	41.0	34.8	92.0	7.6	13.2

Note: Flow accumulates as it flows from Cell 2 to Cell 4A. Design flow path is longest path across maximum 5H:1V side slope

Flow Path 2: longest flow path across cells across cells 2, 3, 4A and 4B

		Slope	Time	e of Con	centration (I				
	Slope	Length			Brant and		% of 1-hour		Intensity
Description	(feet/feet)	(feet)	Kirpich	SCS	Oberman	Average	PMP	PD _{PMP} (in)	(in/hr)
Cell 2 at 1%	0.01	900	8.6	8.7	10.9	9.4	61.8	5.13	32.7
Cell 2 at 0.5%	0.005	550	16.4	16.4	22.6	18.5	79.3	6.58	21.4
Cell 3 top	0.005	830	27.0	27.0	36.0	30.0	89.4	7.42	14.8
Cell 4A top	0.008	1200	38.7	38.8	49.0	42.2	95.0	7.88	11.2
Cell 4A side slope	0.2	100	39.2	39.3	50.9	43.2	95.3	7.9	11.0

Note: Flow accumulates as it flows from Cell 2 to Cell 4A. Design flow path is longest path across Cell 2, 3, and 4A, and not the longest flow path across each individual cell

Cell 2 and Side slopes that only drain area of slope

		Slope	Time of Concentration (minutes)						
	Slope	Length			Brant and		% of 1-hour		Intensity
Description	(feet/feet)	(feet)	Kirpich	SCS	Oberman	Average	PMP	PD _{PMP} (in)	(in/hr)
Cell 2 Top 1%									
Slope	0.01	830	8.1	8.1	10.6	9.0	60.4	5.0	33.6
Cell 2 Northern									
.5% Slope	0.005	250	12.3	12.3	19.6	14.8	73.8	6.1	24.9
Cell 1 Disposal									
1% Slope	0.01	230	15.4	15.4	26.6	19.1	80.1	6.6	20.9
Cell 1 Northern									
Side Slope	0.2	90	15.8	15.8	28.4	20.0	81.1	6.7	20.2
Non-Accumulating									
Side Slopes	0.2	50	0.3	0.3	1.5	2.5	27.5	2.3	54.8

Note: These are the slopes on the sides of Cells 4A, 4B, 3, and 2

Flow Path 3: Flow Path Across Cell 1

		Slope	Time of Concentration (minutes)						
	Slope	Length			Brant and		% of 1-hour		Intensity
Description	(feet/feet)	(feet)	Kirpich	SCS	Oberman	Average	PMP	PD _{PMP} (in)	(in/hr)
Cell 1 at .1%	0.001	2232	42.2	42.3	31.9	38.8	93.7	7.8	12.0

Source: Brant and Oberman(1975) as presented in UMTRA TAD (1989) Formula: tc=C(L/Si^2)^(1/3). Source:Kirpich (1940) as presented in NUREG 4620

Formula: tc=0.00013*L^0.77/S^0.385 with L in feet, tc in hours

Source: SCS as presented in NUREG 4620

Formula: tc=(11.9L^3/H)^0.385 with L in miles, H in feet, t in hours

% of one-hour PMP=RD/(0.0089*RD+0.0686) for tc<15 min based on Table 4.1 of TAD

Cell geometry based on Figure G.1

Client:	Energy Fuels Resources (USA) Inc.	Job No.:	1009740
Project:	White Mesa Reclamation Plan	Date:	8/22/2015
Detail:	Erosion Protection	Computed By:	TMS/MMD

Unit discharge of PMP

Description	Total Drainage Length (ft)	С	Tc (min)	Intensity (in/hr)	unit discharge (cfs/ft)
Cell 2 at 0.5%	570	1	9.2	33.0	0.43
Cell 3 top	1440	1	21.1	19.4	0.64
Cell 4A top	2640	1	33.3	13.7	0.83
Cell 4A side	2870				
slope		1	34.8	13.2	0.87

Flow Path 1: flow path across longest 5H:1V side slope in Cell 4A

Note: Flow accumulates as it flows from Cell 2 to Cell 4A

Flow Path 2: longest flow	path across cells with 0.8% to	p slope across cells 4A and 4E
i lon i dan E. longoot lion		

	$\hat{}$	To (main)	Intensity	discharge
	U	· ,	· /	(cfs/ft)
900	1	9.4	32.7	0.68
1450	1	18.5	21.4	0.71
2280	1	30.0	14.8	0.78
3480	1	42.2	11.2	0.90
3580				
	1	42.2	11.2	0.92
	1450 2280 3480 3580	900 1 1450 1 2280 1 3480 1 3580 1	900 1 9.4 1450 1 18.5 2280 1 30.0 3480 1 42.2 3580 1 42.2	900 1 9.4 32.7 1450 1 18.5 21.4 2280 1 30.0 14.8 3480 1 42.2 11.2 3580 32.7

Note: Flow accumulates as it flows from Cell 2 to Cell 4A

Side Slope Flow Paths

	Total Drainage			Intensity	unit
Description	Length (ft)	С	Tc (min)	(in/hr)	discharge
Cell 2 Northern	830				
1% Slope		1	9.0	33.6	0.64
Cell 2 Northern	1080				
.5% Slope		1	14.8	24.9	0.62
Cell 1 Disposal	1310				
1% Slope		1	19.1	20.9	0.63
Cell 1 Disposal	1400				
Side Slope		1	20.0	20.2	0.65
Non-	50				
Accumulating					
Side Slopes		1	2.5	54.8	0.06
Cell 1 at .1%	2232	1	38.8	12.0	0.62

Client: Project: Detail: Energy Fuels Resources (USA) Inc. White Mesa Reclamation Plan Erosion Protection

Job No.: Date: Computed By: 1009740 8/22/2015 TMS/MMD

Temple Method for Vegetated Slopes - Top Soil

Reference: Temple, D.M., Robinson, K.M., Ahring, R.M., and Davis, A.G., 1987. Stability Design of Grass-Lined Open Channels, USDA Handbook 667. And as presented in UMTRA TAD Section 4.3.3 and NUREG 1623, Appendix A

Area	Cell 2 at 0.5%	Cell 3 top	
PMP Design flow (cfs/ft)	0.71	0.78	
Concentration Factor, F	3	3	
PMP Design flow (cfs/ft), q	2.14	2.33	
Slope, S (ft/ft)	0.005		
average dry density (pcf)	100		(estimated from laboratory testing)
average specific gravity	2.61		(estimated from laboratory testing)
void ratio, e	0.629	0.629	(countaiod nonn laboratory tootang)
unit weight water (pcf)	62.4	62.4	
	02.1	UL. T]
	topooil	tanaail	
Topsoil Description Plasticity Index, Pl	topsoil	topsoil	
Plasticity Index, Pl	<10	<10	(from laboratory testing)
hann allawahla tractiva ahaar atraas (asf) -ah	20	20	
base allowable tractive shear stress (psf) τab=	na	na	
void ratio correction factor, Ce=	na	na	
allowable tractive shear stress (psf), ra=	0.020	0.020	
Long-term, PMP precip			1
Repr. stem length (ft) h(ave)			
good veg	2	2	pg 36 and 39 of Temple et al. (198
poor veg	1	1	
Repr. stem density (stems/sq ft), M(ave)			
good veg	200	200	Temple Table 3.1, grass mixture
poor veg	67	67	
Retardance curve index, Ci			
good veg	7.62	7.62	
poor veg	5.03	5.03	
Cover factor, Cf			
good veg	0.75	0.75	Temple Table 3.1, grass mixture
poor veg			assume min 30% coverage
allowable vegetated shear strength (psf), tva			
good veg	5.71	5.71	
poor veg			
Mannings n for soil roughness, ns=	0.0156		
Mannings n for vegetal conditions, nr	0.0100	0.0100	
good veg	0.0916	0.0872	
poor veg	0.0503	0.0487	
Mannings n for vegetated slopes, nv	0.0000	0.0.01	
good veg	0.0916	0.0872	
poor veg	0.0503	0.0487	
assumed depth of flow, d (ft)	0.0303	0.0+07	
good veg	1.452	1.485	
	1.013	1.047	
poor veg	1.013	1.047	
calculated q (cfs/ft), with veg	0.4.4	0.00	
good veg	2.14		
poor veg	2.14	2.33	
qcalc - qdesign			
good veg			4
poor veg	0.00	0.00	
lterate with d until q calc equals q design			
velocity (ft/s), v			
good veg	1.47	1.57	
poor veg	2.11	2.23	1
effective shear stress (psf), τe			
good veg	0.0033		
poor veg	0.0190	0.0210	
effective veg shear stress (psf) τve			
good veg	0.4497	0.4597	
poor veg	0.2970		
shear stress ratio, vegetated slope			
good veg	12.7	12.4	1
poor veg	12.7	12.4	1
2001 V0g		12.4	1
shear stress ratio, soil on vegetated slope			
should be			1
good veg	6.1	5.4	

Job No.: Date: Computed By: 1009740 8/22/2015 TMS/MMD

Temple Method for Vegetated Slopes - Top Soil Ammended with 25% Gravel

Reference: Temple, D.M., Robinson, K.M., Ahring, R.M., and Davis, A.G., 1987. Stability Design of Grass-Lined Open Channels, USDA Handbook 667. And as presented in UMTRA TAD Section 4.3.3 and NUREG 1623, Appendix A

r					1
Area		Cell 1 at 1%	Cell 2 at 1%	Cell 4A top	
PMP Design flow (cfs/ft)		0.63	0.68		
Concentration Factor, F		3	3	3	
PMP Design flow (cfs/ft), q		1.88			
Slope, S (ft/ft)		0.01	0.01	0.008	
average dry density (pcf)		106			(estimated from laboratory testing)
average specific gravity void ratio, e		0.542		2.62 0.542	(estimated from laboratory testing)
unit weight water (pcf)		61.4		62.4	
(p)					<u>u</u>
		Topsoil with 25% 1"-	Topsoil with 25% 1"-minus	Topsoil with 25% 1"-	
Topsoil Description		minus gravel	gravel	minus gravel	
					from preliminary
d75 (inches)		0.2	0.2	0.2	gradation specs
base allowable tractive shear stress (psf) τa	h=	na	na	na	
void ratio correction factor, Ce=		na	na	na	
allowable tractive shear stress (psf), ta=		0.080		0.080	
Long-term, PMP precip					
Repr. stem length (ft) h(ave)					
•	d veg	2		2	pg 36 and 39 of Temple et al. (1987)
	or veg	1	1	1	
Repr. stem density (stems/sq ft), M(ave)	d veq	200	200	200	Temple Table 3.1, grass mixture
	or veg	67	67	67	remple rable 5.1, grass mixture
Retardance curve index, Ci		01	01	0,	
	d veg	7.62	7.62	7.62	
poo	or veg	5.03	5.03	5.03	
Cover factor, Cf					
	d veg	0.75			Temple Table 3.1, grass mixture
	or veg	0.375	0.375	0.375	assume min 30% coverage
allowable vegetated shear strength (psf), tva	a d veg	5.71	5.71	5.71	
-	or veg	3.78			
Mannings n for soil roughness, ns=		0.0196			
Mannings n for vegetal conditions, nr					
goo	d veg	0.0986		0.0821	
	or veg	0.0528	0.0513	0.0468	
Mannings n for vegetated slopes, nv	al a ai	0.0000	0.0050	0.0000	
	d veg or veg	0.0993	0.0952	0.0829	
assumed depth of flow, d (ft)	Ji veg	0.0041	0.0320	0.0402	
	d veg	1.148	1.169	1.338	
	or veg	0.797	0.819	0.966	
calculated q (cfs/ft), with veg					
	d veg	1.88		2.60	
	or veg	1.88	2.03	2.60	
qcalc - qdesign	d veg	0.00	0.00	0.00	
	or veg	0.00			
Iterate with d until q calc equals q design					
velocity (ft/s), v					
	d veg	1.64			
рос	or veg	2.36	2.47	2.69	
effective shear stress (psf), τe					
	d veg	0.0068	0.0077	0.0093	
	or veg	0.0401		0.0497	
effective veg shear stress (psf) τve					
	d veg	0.6978			
рос	or veg	0.4494	0.4672	0.4328	
aboot atrago ratio yestatad alaa					
shear stress ratio, vegetated slope	d veg	8.2	7.9	8.7	
	or veg	8.4		8.7	
pot	09	0.4	0.1	0.7	
shear stress ratio, soil on vegetated slope					
goo	d veg	11.7			
рос	or veg	2.0	1.8	1.6	
					-

Client:	Energy Fuels Resources (USA) Inc.	Job No.:	1009740
Project:	White Mesa Reclamation Plan	Date:	8/22/2015
Detail:	Erosion Protection	Computed By:	TMS/MMD

Abt and Johnson method (Abt and Johnson, 1991) applicable for slopes of 50% or less.

Angular-Shaped rock sizing equation: For rounded rock, increase size by 40%. $D_{50} = 5.235^{0.43} q_{design}^{0.56} \qquad q_{design} = 1.35 q_f$

Area	Cell 4A Flow Path 2 Southern Side Slope - Angular	0	Cell 2 Northern Side Slope - Angular
Side Slope (ft/ft)	0.2	0.2	0.2
angle α (rad)	0.197	0.197	0.197
PMP unit flow (cfs/ft)	0.87	0.06	0.65
Concentration Factor	3	3	3
Coef. Of Movement	1.35	1.35	1.35
design flow (cfs/ft)	3.51	0.25	2.63
Coef. Of Uniformity	NA	NA	NA
design flow over rock (cfs/ft)	3.51	0.25	2.63
D50 (inches)	5.29	1.70	4.49

Client:	Energy Fuels Resources (USA) Inc.	Job No.:	1009740
Project:	White Mesa Reclamation Plan	Date:	8/22/2015
Detail:	Erosion Protection	Computed By:	TMS/MMD

Preliminary Gradations

This spreadsheet calculates preliminary gradations of riprap based on D50 Source: NUREG 4620 Source: USDA, National Engineering Handbook, Part 633, Chapter 26, Gradation Design of Sand and Gravel Filters, October 1994.

Area Description	Cell 4A side slope	Comment
Minimum DEQ (in)	4.40	Assuming Angular Rock, Safety Factor Method for Top
Minimum D50 (in)	4.49	Slope, Abt and Johnson (1991) method for side slopes
		Based on constructability: 1.5 to 2*D50. May consider 12"
Rock thickness (in)	8.99	as minimum thickness for rock
Maximum D50 (in)	5.99	Based on constructability: Thickness/1.5
Maximum D50 (in)	22.47	Prevent gap-grading: minimum D50*5
Maximum D50 (in)	5.99	Smaller of two above criteria
Maximum D100 (in)	8.99	Based on constructability: 1*Thickness
Maximum D100 (in)	29.96	Based on internal stability?: 5*maximum D50
Maximum D100 (in)	8.99	Smaller of two above criteria
Minimum D100 (in)	6.74	1.5*minimum D50
Minimum D15 (in)	0.56	Based on internal stability: Maximum D100/16
Maximum D15 (in)	2.81	Prevent gap-grading: Minimum D15*5
Minimum D60 (in)	6.29	Prevent gap-grading: D60/D10<=6
Maximum D60 (in)	8.39	Prevent gap-grading: D60/D10<=6
Minimum D10 (in)	1.05	Prevent gap-grading: D60/D10<=6
Maximum D10 (in)	1.40	Prevent gap-grading: D60/D10<=6

Client:	Energy Fuels Resources (USA) Inc.	Job No.:	1009740
Project:	White Mesa Reclamation Plan	Date:	8/22/2015
Detail:	Erosion Protection	Computed By:	TMS/MMD

Interstitial Velocities

Source:

NUREG 1623, Section D Abt, SR, JF Ruff, RJ Wittler (1991). Estimating Flow Through Riprap, Journal of Hydraulic Engineering, Vol. 117, No. 5, May.

	Non- Accumulating	Cell 1 Disposal Area Side	Cell 4A Flow Path 2	
	Side Slopes -	Slope -	Southern Side	
Description	Rounded	Angular	Slope - Angular	
Minimum D50 (inches)	1.70	4.49	5.29	from Safety Factor Method, or Abt/Johnson Method, assuming rounded rock
Minimum D10 (inches)	0.40	1.05	1.23	from preliminary gradation specs
Maximum D10 (inches)	0.53	1.40	1.65	from preliminary gradation specs
Slope (ft/ft)	0.2	0.20	0.20	from preliminary design
Min Velocity (ft/s)	0.37	0.60	0.65	calculated from Abt et al. (1991) based on Min D10
Max Velocity (ft/s)	0.43	0.69	0.75	calculated from Abt et al. (1991) based on Max D10
Underlying filter				
required?	No	Recommended	Recommended	Per NUREG 1623, Appendix D, section 2.1.1

Client: Energy Fuels Resources (USA) Inc. Project: White Mesa Reclamation Plan Detail: Erosion Protection

USDA Filter Gradation Calulations - 2010 Material Testing

Step 1: Plot Gradation Curve of Base Soil

Stockpile ID	E4 (Fiel	ld ID 2)	E5 (Field ID 3)	E6 (Field I	D 4)	E7 (Field	ID 5)	E8 (Fie	ld ID 6)	W9 (Fie	ld ID 7)	W7 (Fie	ld ID 8)	W1 (Field	ID 12)	W2 (Fie	ld ID 13)
Description	Sandy Cla	y Random							Sandy Cla	y Random	Sandy Cla	y Random	Sandy Cla	y Random			Sandy Cla	ay Random
Description	Fi	1	Sandy C	lay Random Fill	Clay Rando	m Fill	Sandy Clay R	andom Fill	F	ill	F		Fi		Sandy Clay R	andom Fill	F	ill
Sieve Sizes	Diameter (mm)	% Finer	Diameter (mm)	% Finer	Diameter (mm)	% Finer	Diameter (mm)	% Finer	Diameter (mm)	% Finer	Diameter (mm)	% Finer	Diameter (mm)	% Finer	Diameter (mm)	% Finer	Diameter (mm)	% Finer
1 1/2"	38.1	100	38.1	100	38.1	100	38.1	100	38.1	100	38.1	100	38.1	100	38.1	100	38.1	100
1"	25.4	100	25.4	100	25.4	100	25.4	100	25.4	100	25.4	100	25.4	100	25.4	100	25.4	100
3/4"	19.1	100	19.1	100	19.1	100	19.1	100	19.1	100	19.1	100	19.1	100	19.1	100	19.1	100
3/8"	9.8	100	9.8	100	9.8	100	9.8	100	9.8	100	9.8	100	9.8	100	9.8	100	9.8	100
Nº 4	4.75	99.9	4.75	100	4.75	99.9	4.75	100	4.75	100	4.75	100	4.75	100	4.75	100	4.75	99.8
Nº 10	2	99.8	2	99.9	2	99.9	2	100	2	100	2	100	2	99.3	2	100	2	99.7
Nº 20	0.85	98.9	0.85	99.2	0.85	99.2	0.85	100	0.85	99	0.85	99.3	0.85	98.8	0.85	99.5	0.85	97.4
Nº 40	0.425	97.7	0.425	97.9	0.425	96.9	0.425	99.7	0.425	97.4	0.425	98.3	0.425	98.1	0.425	98.8	0.425	94.7
Nº 60	0.25	95.1	0.25	93.1	0.25	92.6	0.25	98.8	0.25	91.9	0.25	96.1	0.25	94.4	0.25	97.8	0.25	88.2
№ 100	0.15	90.8	0.15	80.9	0.15	88.8	0.15	96.7	0.15	74.7	0.15	92.3	0.15	79.4	0.15	95.2	0.15	76.6
Nº 200	0.075	58.8	0.075	64.5	0.075	82.2	0.075	69.8	0.075	53	0.075	62.6	0.075	56.2	0.075	59.4	0.075	58.3

D15 estimated as 0.025

All Steps below are from USDA Ch. 26 Example 26-2A

Step 4. Base Soil																		
Category		2		2		2		2		2		2		2		2		2
D85	0.14		0.18		0.11		0.12		0.21		0.13		0.19		0.13		0.22	
Step 5. Filtering																		
Criteria (Max D15)																		
(mm)		0.70		0.70		0.70		0.70		0.70		0.70		0.70		0.70		0.70
Step 6. Min D15		0.08		0.07		0.05		0.06		0.08		0.07		0.08		0.08		0.08
Step 7. Ratio		9.15		10.03		12.79		10.86		8.24		9.74		8.74		9.24		9.07
Control Point 1																		
(D15max)		0.38		0.35		0.27		0.32		0.42		0.36		0.40		0.38		0.39
Control Point 2																		
(D15min)		0.08		0.07		0.05		0.06		0.08		0.07		0.08		0.08		0.08
Step 8. MaxD10		0.32		0.29		0.23		0.27		0.35		0.30		0.33		0.32		0.32
CP3 Max D60		1.91		1.74		1.37		1.61		2.12		1.80		2.00		1.89		1.93
CP4 Min D60		0.38		0.35		0.27		0.32		0.42		0.36		0.40		0.38		0.39
Step 9. CP5 D5min		0.08		0.08		0.08		0.08		0.08		0.08		0.08		0.08		0.08
CP6 D100 max		75.00		75.00		75.00		75.00		75.00		75.00		75.00		75.00		75.00
Step 10. CP7 D10		0.06		0.06		0.05		0.05		0.07		0.06		0.07		0.06		0.06
CP8 D90		20.00		20.00		20.00		20.00		20.00		20.00		20.00		20.00		20.00
For Plotting:	4.75	100.00																

For Plotting: Step 11, Connecting Co trol Points

Step 11. Connect	шyч		1115																
		E4 (Fie	eld ID 2)	E5	(Field ID 3)	E6 (Field I	D 4)	E7 (Field	ID 5)	E8 (Fie	eld ID 6)	W9 (Fie	eld ID 7)	W7 (Field ID 8)		W1 (Field ID 12)		W2 (Field ID 13)	
	CP	D(mm)	% Finer	D(mm)	% Finer	D(mm)	% Finer	D(mm)	% Finer	D(mm)	% Finer	D(mm)	% Finer	D(mm)	% Finer	D(mm)	% Finer	D(mm)	% Finer
Fine Design	4	0.382653	60	0.348837	60	0.273722628	60	0.32234957	60	0.424528	60	0.359425	60	0.400356	60	0.378787879	60	0.385935	60
Band (Upper)	2	0.076531	15	0.069767	15	0.054744526	15	0.064469914	15	0.084906	15	0.071885	15	0.080071	15	0.075757576	15	0.077187	15
	5	0.075	5	0.075	5	0.075	5	0.075	5	0.075	5	0.075	5	0.075	5	0.075	5	0.075	5
	6	75	100	75	100	75	100	75	100	75	100	75	100	75	100	75	100	75	100
Course Design	3	1.913265	60	1.744186	60	1.368613139	60	1.611747851	60	2.122642	60	1.797125	60	2.001779	60	1.893939394	60	1.929674	60
	1	0.382653	15	0.348837	15	0.273722628	15	0.32234957	15	0.424528	15	0.359425	15	0.400356	15	0.378787879	15	0.385935	15
	7	0.063776	i 10	0.05814	10	0.045620438	10	0.053724928	10	0.070755	10	0.059904	10	0.066726	10	0.063131313	10	0.064322	10

Step 12. Determine Gradation from plot

Shaded boxes means these values were changed to meet the requirements from the references listed below. References cited and listed in Appendix G

D50 base D50 Fine Filter	0.06 0.31	0.06 0.29	0.05 0.23	0.05 0.27	0.07 0.35	0.06 0.30	0.07 0.33	0.06 0.31	0.06 0.32
D50 Course Filter	1.57	1.43	1.13	1.33	1.75	1.48	1.65	1.56	1.59
Nelson eqn 4.35	2.81	1.90	2.56	2.75	2.02	2.73	2.14	2.94	1.74
Cedergren eqn 5.3	24.67	24.67	24.67	24.67	24.67	24.67	24.67	24.67	24.67
Nelson eqn 4.36	2.81	1.90	2.56	2.75	2.02	2.73	2.14	2.94	1.74

Job No.: 1009740 Date: 7/9/2012 Computed By: TMS

Client: Energy Fuels Resources (USA) Inc Project: White Mesa Reclamation Plan Detail: Erosion Protection

USDA Filter Gradation Calulations - 2012 Material Testing

Step 1: Plot Gradation Curve of Base Soil

Field ID	E3-	Α	E5-	B	E8-	·B	W2-	-A	W2	-В	W5-	A	W5-	-B	W8-	-A	W8-	·B	W9	-В
Description	Sandy Clay	Random	Sandy Clay	/ Random			Sandy Clay	Random	Sandy Cla	/ Random	Sandy Clay	Random	Sandy Clay	/ Random	Sandy Clay	/ Random	Sandy Clay	Random	Sandy Clay	y Random
Description	Fil		Fil	1	Clay Ran	dom Fill	Fil	1	Fi	1	Fil	I	Fil		Fil	1	Fil	I	Fi	11
Sieve Sizes	Diameter (mm)	% Finer	Diameter (mm)	% Finer	Diameter (mm)	% Finer	Diameter (mm)	% Finer	Diameter (mm)	% Finer	Diameter (mm)	% Finer	Diameter (mm)	% Finer	Diameter (mm)	% Finer	Diameter (mm)	% Finer	Diameter (mm)	% Finer
2"	50.8	100	50.8	100	50.8	100	50.8	100	50.8	100	50.8	100	50.8	100	50.8	100	50.8	100	50.8	100
1"	25.4	100	25.4	100	25.4	81.93	25.4	93.18	25.4	100	25.4	100	25.4	82.21	25.4	85.17	25.4	75.41	25.4	100
3/4"	19.1	100	19.1	100	19.1	76.8	19.1	90.46	19.1	100	19.1	100	19.1	81.53	19.1	79.85	19.1	75.41	19.1	98.84
3/8"	9.8	100	9.8	99.31	9.8	66.01	9.8	79.02	9.8	100	9.8	99.64	9.8	75.03	9.8	71.12	9.8	69.81	9.8	97.64
Nº 4	4.75	99.56	4.75	98.46	4.75	60.03	4.75	69.56	4.75	99.89	4.75	99.08	4.75	70.97	4.75	65.34	4.75	68.41	4.75	94.13
Nº 10	2	97.56	2	97.21	2	56.18	2	59.53	2	99.72	2	97	2	66.88	2	59.49	2	66.04	2	89.65
Nº 20	0.85	95.84	0.85	96.11	0.85	54.66	0.85	53.25	0.85	99.46	0.85	95.03	0.85	64.04	0.85	55.59	0.85	63.76	0.85	86.42
Nº 40	0.425	94.66	0.425	95.19	0.425	52.56	0.425	49.39	0.425	98.73	0.425	93.04	0.425	59.3	0.425	48.97	0.425	58.56	0.425	84.16
Nº 60	0.25	92.35	0.25	93.34	0.25	47.28	0.25	43.49	0.25	96.47	0.25	88.27	0.25	45.76	0.25	33.93	0.25	47.26	0.25	80.58
Nº 100	0.15	86.48	0.15	89.93	0.15	39.4	0.15	34.43	0.15	94.12	0.15	83.32	0.15	38.09	0.15	20.12	0.15	39.94	0.15	75.53
Nº 200	0.075	76.74	0.075	82.68	0.075	28.78	0.075	25.11	0.075	61.5	0.075	50.38	0.075	26.77	0.075	13.78	0.075	28.17	0.075	50.1

Note: Areas with fiels ID's E1-A and W4-B were topsoil samples and thus were not included in this analysis

All Steps below are from USDA Ch. 26 Example 26-2/

Step 4. Base Soil																				
Category		2		2		3		3		2		2		3		4		3		1
D85	0.14		0.10		29.72		14.66		0.13		0.18		29.38		25.20		35.31		0.58	1
Step 5. Filtering																				1
Criteria (Max D15)																				1
(mm)		0.70		0.70		53.73		35.21		0.70		0.70		62.53		100.79		67.20		0.70
Step 6. Min D15		0.10		0.10		0.16		0.18		0.10		0.10		0.17		0.27		0.16		0.10
Step 7. Ratio		7.00		7.00		343.64		196.48		7.00		7.00		371.98		368.62		420.65		7.0
Control Point 1																				1
(D15max)		0.50		0.49		0.78		0.90		0.50		0.50		0.84		1.37		0.80		0.50
Control Point 2																				1
(D15min)		0.10		0.10		0.16		0.18		0.10		0.10		0.17		0.27		0.16		0.10
Step 8. MaxD10		0.42		0.41		0.65		0.75		0.42		0.42		0.70		1.14		0.67		0.42
CP3 Max D60		2.50		2.45		3.91		4.48		2.50		2.50		4.20		6.84		3.99		2.50
CP4 Min D60		0.50		0.49		0.78		0.90		0.50		0.50		0.84		1.37		0.80		0.50
Step 9. CP5 D5min		0.08		0.08		0.08		0.08		0.08		0.08		0.08		0.08		0.08		0.08
CP6 D100 max		75.00		75.00		75.00		75.00		75.00		75.00		75.00		75.00		75.00		75.00
Step 10. CP7 min																				1
D10		0.08		0.08		0.13		0.15		0.08		0.08		0.14		0.23		0.13		0.08
CP8 D90		20		20		20		20		20		20		20		20		20		20
For Plotting:	4.75																			
Step 11. Connecting																				
	E3-		E5-		E8-		W2-		W2-		W5-		W5-		W8-		W8-		W9-I	
CP	D(mm)	% Finer	D(mm)	% Finer	D(mm)	% Finer	D(mm)	% Finer	D(mm)	% Finer	D(mm)	% Finer	D(mm)	% Finer	D(mm)	% Finer	D(mm)	% Finer		% Finer
Fine Design 4	0.5	60	0.49			60	0.896	60	0.5	60	0.5	60	0.840	60	1.367	60	0.799	60	0.5	60
Band (Upper) 2	0.1	15	0.1	15		15	0.179	15	0.1	15	0.1	15	0.168	15	0.273		0.160	15	0.1	15
5	0.075		0.075	5	0.075	5	0.075	5	0.075		0.075		0.075	5	0.075		0.075	5	0.075	
Course Design 6	75		75	100		100	75	100	75		75	100	75	100	75		75	100	75	
	1.4		1.3	60		60	4.480	60	1.8		2.2	60	4.202	60	6.836		3.994	60	2.2	
Band (Lower) 1	0.5		0.49	15		15	0.896	15	0.5		0.5	15	0.840	15	1.367	15	0.799	15	0.5	1
7	0.083	-	0.083	10	0.130	10	0.149	10	0.083	10	0.083	10	0.140	10	0.228	10	0.133	10	0.083	10
Step 12. Determine G	radation from	m plot																		

Shaded boxes means these values were changed to meet the requirements from the references listed belov References cited and listed in Appendix G

D50 base D50 Fine Filter	0.05 0.41	0.05 0.40	0.34 0.64	0.49 0.74	0.06 0.41	0.07 0.41	0.30 0.69	0.49 1.12	0.29 0.66	0.07 0.41
D50 Course Filter	1.20	1.12	3.21	3.68	1.51	1.82	3.46	5.62	3.28	1.82
Nelson eqn 4.35	3.61	4.95	0.03	0.06	3.88	2.72	0.03	0.05	0.02	0.86
Cedergren eqn 5.3	24.56	24.69	9.45	7.48	24.78	24.48	11.34	11.44	11.23	24.34
Nelson eqn 4.36	3.61	4.95	0.03	0.06	3.88	2.72	0.03	0.05	0.02	0.86

Job No.: 1009740 Date: 7/9/2012 Computed By: TMS

Client:	Energy Fuels Resources (USA) Inc.	Job No.:	1009740
Project:	White Mesa Reclamation Plan	Date:	8/22/2015
Detail:	Erosion Protection	Computed By:	TMS/MMD

Apron Protection

Source:

Abt, SR, Johnson, TL, Thornton, CI, and Trabant, SC, Riprap Sizing at Toe of Embankment Slopes, Journal of Hydraulic Engineering, Vol. 124, No. 7, July 1998.

Equation:

D50=10.46*S^0.43*qd^0.56

	Apron C: Cell 2 Northern Side Slope	Apron B: Cell 4A Southern Side Slope	Apron A: Non- Accumulating Slopes	West
unit discharge (cfs/ft)	0.65	0.87	0.06	0.06
Cr	1	1	1	1
Cf	3	3	3	3
Cm	1.35	1.35	1.35	1.35
design discharge (cfs/ft)	2.63	3.51	0.25	0.25
Slope (ft/ft)	0.2	0.2	0.2	0.2
D50 Angular (in)	9.0	10.6	2.4	2.4
D50 Rounded (in)	12.6	14.8	3.4	3.4

Client:	Energy Fuels Resources (USA) Inc.	Job No.:	1009740
Project:	White Mesa Reclamation Plan	Date:	8/22/2015
Detail:	Erosion Protection	Computed By:	TMS/MMD

Interstitial Velocities - Apron

Source:

NUREG 1623, Section D

Abt, SR, JF Ruff, RJ Wittler (1991). Estimating Flow Through Riprap, Journal of Hydraulic Engineering, Vol. 117, No. 5, May.

	Non- Accumulating Side Slopes -	Cell 1 Disposal Area Side	Cell 4A Flow Path 2 Southern Side Slope -	
Description	Rounded	Slope - Angular	Angular	
Minimum D50 (inches)	3.18	8.99	10.58	from Safety Factor Method, or Abt/Johnson Method, assuming rounded rock
Minimum D10 (inches)	0.74	2.10	2.47	from preliminary gradation specs
Maximum D10 (inches)	0.99	2.80	3.29	from preliminary gradation specs
Slope (ft/ft)	0.01	0.01	0.01	from preliminary design
Min Velocity (ft/s)	0.11	0.19	0.21	calculated from Abt et al. (1991) based on Min D10
Max Velocity (ft/s)	0.13	0.22	0.24	calculated from Abt et al. (1991) based on Max D10
Underlying filter				
required?	No	No	No	Per NUREG 1623, Appendix D, section 2.1.1

Client:	Energy Fuels Resources (USA) Inc.	Job No.:	1009740
Project:	White Mesa Reclaimation	Date:	8/22/2015
Detail:	Erosion Protection	Computed By:	TMS/MMD

Modified Universal Soil Loss Equation (MUSLE)

Source : Clyde et al. (1978) as presented in NUREG 4620, section 5.1.2 A=R*K*LS*VM

Inputs for K factor	Topsoil	Rock Mulch	
Percent silt and very fine sand	43.6	32.7	from laboratory testing
Percent sand (0.10-2.0 mm)	39.2	29.4	from laboratory testing
Percent organic matter	1.5	1.5	
Soil structure Number	2	3	
Permeability	3	2	
Inputs for LS factor			
Slope length (ft)	144	0 1200) from Figure G.1
slope steepness (%)	0.	5 0.8	3
m exponent	0.2	2 0.2	2 Table 5.2 of NUREG 4620

		Topsoil	Rock Mulch	
R	Rainfall Factor	30	30	From Table 5.1 of NUREG 4620 for eastern third of Utah
K	Soil Erodibility factor	0.28	0.12	From nomograph Fig. 5.1 of NUREG 4620
LS	Topographic factor	0.16	0.18	
VM	Dimensionless erosion control factor	0.4	0.4	From Table 5.3 of NUREG 4620 for seedings, 0-60 days
A	Soil Loss (tons/acre/year)	0.54	0.27	
A	Soil density (pcf)	100	106	from laboratory testing
А	Soil Loss (inches/1000 years)	3.0	1.4	

Client:	Energy Fuels Resources (USA) Inc.	Job No.:	1009740
Project:	White Mesa Mill	Date:	8/14/2012
Detail:	Discharge Channel	Computed By:	JMC

Peak Discharge of PMP precipitation

Description	Total Drainage Area (acres)	С	Tc (min)	Intensity (in/hr)	Q (cfs)
Sed-Channel	148.40	1	26.3	16.4	2440.1

Client:	Energy Fuels Resources (USA) Inc.	Job No.:	1009740
Project:	White Mesa Mill	Date:	8/14/2012
Detail:	Discharge Channel	Computed By:	JMC

Time of Concentration

1-hour PMP (in) 8.3

		Path	Time of Concentration (minutes)						
	Slope	Length			Brant and		% of 1-hour		Intensity
Description	(feet/feet)	(feet)	Kirpich	SCS	Oberman	Average	PMP	PD _{PMP} (in)	(in/hr)
Sed-Channel	0.010	4600	30.1	30.2	18.7	26.3	86.9	7.21	16.4

Source: Brant and Oberman(1975) as presented in UMTRA TAD (1989) Formula: tc=C(L/Si^2)^(1/3).

Source:Kirpich (1940) as presented in NUREG 4620 Formula: tc=0.00013*L^0.77/S^0.385 with L in feet, tc in hours

Source: SCS as presented in NUREG 4620

Formula: tc=(11.9L^3/H)^0.385 with L in miles, H in feet, t in hours % of one-hour PMP=RD/(0.0089*RD+0.0686) for tc<15 min based on Table 4.1 of TAD

Cell geometry and grading based on REC-1 Reclamation Plan Revisions, September, 2011

Client: Project: Detail:	Energy Fuels Resources (USA White Mesa Mill Discharge Channel) Inc.	Job No.: Date: Computed By:	1009740 8/2/2012 JMC
Peak Channel Velocity				
Design flow:		2,440 cfs		
Trapezoid or triangular channels slope (ft/ft) Channel Side Slope 1 (ft/ft) Channel Side Slope 2 (ft/ft) bottom width	0.009 ft/ft 0.33 ft/ft 0.33 ft/ft 150 ft			
Q n native soils Area of flow (A) Wetted Perimeter Slope 1 (P1) Wetted Perimeter Slope 2 (P2) Hydraulic Radius (R) Top Width (T) Maximum depth of flow (d) Q calc average velocity (v) unit discharge	2,440 cfs 0.020 258.52 ft^2 5.32 ft 5.32 ft 1.61 ft 160.1 ft 1.67 ft 2440.0 cfs 9.4 fps 15.74 cfs/ft	bedrock channel with ok 8-10 fps ok take as total Q divide	n minor irregularities ed by average flow width	1

Client:	Energy Fuels Resources (USA) Inc.	Job No.:	1009740
Project:	White Mesa Mill	Date:	8/14/2012
Detail:	Discharge Channel	Computed By:	JMC
Dotail		Computed By.	unio

Peak Channel Velocity

Design flow:		2,440 cfs
Trapezoid or triangular channels slope (ft/ft) Channel Side Slope 1 (ft/ft) Channel Side Slope 2 (ft/ft) bottom width	0.009 ft/ft 0.33 ft/ft 0.33 ft/ft 150 ft	
Q n native soils Area of flow (A) Wetted Perimeter Slope 1 (P1) Wetted Perimeter Slope 2 (P2) Hydraulic Radius (R) Top Width (T) Maximum depth of flow (d) Q calc average velocity (v) unit discharge	2,440 cfs 0.030 332.10 ft^2 6.77 ft 6.77 ft 2.03 ft 162.9 ft 2440.0 cfs 7.3 fps 15.60 cfs/ft	bedrock channel with moderate irregularities ok less than 8-10 fps ok take as total Q divided by average flow width

Client:	Energy Fuels Resources (USA) Inc.	Job No.:	1009740
Project:	White Mesa Mill	Date:	8/2/2012
Detail:	Discharge Channel	Computed By:	JMC

Manning's N-value Determination

From US Department of the Interior, Bureau of Reclamation. Design of Small Dams. p. 595. 1987.

Basic N-value for channels in Rock	0.015
Modifications of N-value	0.005 Minor degree of irregularity 0.010 Moderate degree of irregularity 0.020 Severe irregualrity

Based on seismic refraction data, test numbers 1-3, shear wave velocities ranged from 3100 to 7400 feet/sec (see test results from Nielsons, 1978, Appendix A D'Appolonia, 1979). The bedrock in the area c excavation is anticpated to range from soft and rippable to hard rock requiring blasting. The excavated rock surface will likely exhibit minor ro moderate irregularity.

Assume an N-value ranging from	0.020	0.030
--------------------------------	-------	-------

From US Army Corps of Engineers. Hydraulic Design of Flood Control Channels, EM 1110-2-1601. p.2-16. June 1994. From Table 2-5, Suggested Maximum Permissible Mean Channel Velocities

Poor Rock (usually sedimentary)	10.0 fps
Soft Sandstone	8.0 fps
Soft Shale	3.5 fps
Good Rock (usually igneous or hard metamorphic)	20.0 fps

The bedrock within the channel excavation is anticipated to consist of fine to medium-grained sandstone of varying cementation and weathering, or claystone. (see borings by Dames and Moore, 1978) Based on the presumed rock type and the referenced table above, permissible mean channel velocities may range up to 8 to 10 fps.

ATTACHMENT G

SUPPORTING DOCUMENTATION FOR INTERROGATORY 11/1:

REVISED APPENDIX D, VEGETATION AND BIOINTRUSION, TO THE UPDATED TAILINGS COVER DESIGN REPORT (APPENDIX D OF THE RECLAMATION PLAN, REVISION 5.0)

ATTACHMENT G.1

REVISED APPENDIX D, VEGETATION AND BIOINTRUSION, TO THE UPDATED TAILINGS COVER DESIGN REPORT (APPENDIX D OF THE RECLAMATION PLAN, REVISION 5.0)

APPENDIX D

VEGETATION AND BIOTINTRUSION EVALUATION

D.1 INTRODUCTION

This appendix provides an evaluation of vegetation that would be used as an integral part of an evapotranspiration (ET) cover proposed for reclamation of tailings cells at the White Mesa Mill (Mill) site. A critical component of an ET cover is the plant community that will be established on the cover and will function over the long term to provide protection from wind and water erosion and assist in removing water through the process of transpiration. In this appendix, issues related to the short-term establishment and long-term sustainability of vegetation proposed as part of the ET cover are addressed. These issues include: plant species selection, ecological characteristics of species (i.e., longevity, sustainability, compatibility, competition, rooting depth and root distribution), characteristics of the established plant community (i.e., percent plant cover and leaf area index [LAI]), and soil requirements for sustained plant growth. Information is also presented on weed control, vegetation performance goals and criteria, and post-closure vegetation monitoring. In addition, biointrusion from both plants and animals is addressed using information from an on-site survey conducted in June 2012 and literature applicable to site conditions. Finally there is discussion on climate change projections for the performance period and possible changes that may occur with plant community composition over time.

D.2 PROPOSED SPECIES FOR ET COVER RECLAMATION

The following 15 species (11 grasses, 2 forbs, and 2 shrubs) are proposed for the ET cover system at the Mill site. These species were selected for their adaptability to site conditions, compatibility, and long-term sustainability. Species were also selected based on the assumption that institutional controls will exclude grazing by domestic livestock. The proposed species are:

- Western wheatgrass, variety Arriba (Pascopyrum smithii)
- Bluebunch wheatgrass, variety Goldar (*Pseudoroegneria spicata*)
- Slender wheatgrass, variety San Luis (*Elymus trachycaulus*)
- Streambank wheatgrass, variety Sodar (*Elymus lanceolatus ssp. psammophilus*)
- Pubescent wheatgrass, variety Luna (Thinopyrum intermedium ssp. barbulatum)
- Indian ricegrass, variety Paloma (Achnatherum hymenoides)
- Sandberg bluegrass, variety Canbar (Poa secunda)
- Sheep fescue, variety Covar (*Festuca ovina*)
- Squirreltail, variety Toe Jam Creek (*Elymus elymoides*)
- Blue grama, variety Hachita (Bouteloua gracilis)
- Galleta, variety Viva (Hilaria jamesii)
- Common yarrow, no variety (*Achillea millefolium*)
- White sage, variety Summit (*Artemisia ludoviciana*)
- Fourwing saltbush, variety Wytana (*Atriplex canescens*)
- Rubber rabbitbrush, no variety (*Ericameria nauseosus*).

These species are described in more detail later in this appendix.

D.3 PROPOSED SEEDING RATES

Given a mixture of the species listed above, Table D.1 presents broadcast seeding rates for each species. Seeding rates were developed based on the objective of establishing a permanent cover of grasses, forbs, and shrubs in a mixture that would promote compatibility among species and minimize competitive exclusion or loss of species over time. The proposed seeding rate is based on number of seeds/ft² and then converted to pounds of pure live seed per acre (lbs PLS/acre), with further discussion presented below.

The number of seeds placed in a unit area of soil is called the seeding rate. The total seeding rate is the sum of the individual species seeding rates. Seeding rates are normally expressed as the number of seeds per square foot or pounds per acre. Many different seeding rates for the same species can be found in the literature. The primary reason for these differences is that some rates are for monocultures and other rates are for diverse mixtures. In addition, seeding rates vary depending on the method of seeding and site conditions related to edpaphic factors, topography and climate.

Seeding rates are developed on the basis of number of seeds per unit area (e.g. number of seeds per square foot). Once this number is determined, then it can be converted to weight per unit area (e.g. pounds per acre). Since each species produces seed that weighs a different amount, the development of seeding rates based purely on weight per unit area will produce erroneous rates that will tend to over emphasize small seeded species and under-emphasize large seeded species. For example, blue grama has approximately 700,000 seeds per pound, while Indian ricegrass has approximately 175,000 seeds per pound. If seeding rates were calculated simply on the basis of weight per unit area, without recognizing the fact that a pound of blue grama seed has four times the number of seeds per pound as Indian ricegrass, it would be very easy to over plant blue grama and under plant Indian ricegrass.

Scientific Name	Common Name	Varietal Native/ Name Introduced		Seeding Rate (Ibs PLS/acre) [†]	Seeding Rate (# seeds/ft ²)
Grasses					
Pascopyrum smithii	Western wheatgrass	Arriba	Native	3.0	7.9
Pseudoroegneria spicata	Bluebunch wheatgrass	Goldar	Native	3.0	9.6
Elymus trachycaulus	Slender wheatgrass	San Luis	Native	2.0	6.2
Elymus lanceolatus	Streambank wheatgrass	Sodar	Native	2.0	7.3
Elymus elymoides	Squirreltail	Toe Jam	Native	2.0	8.8
Thinopyrum intermedium	Pubescent wheatgrass	Luna	Introduced [‡]	1.0	1.8
Achnatherum hymenoides	Indian ricegrass	Paloma	Native	4.0	14.7
Poa secunda	Sandberg bluegrass	Canbar	Native	0.5	11.4
Festuca ovina	Sheep fescue	Covar	Introduced [‡]	1.0	11.5
Bouteloua gracilis	Blue grama	Hachita	Native	1.0	16.5
Hilaria jamesii	Galleta	Viva	Native	2.0	7.3
Forbs					

Table D.1. Species and Seeding Rates Proposed for ET Cover at the Mill Site

Scientific Name	Common Name	Varietal Name	Native/ Introduced	Seeding Rate (Ibs PLS/acre) [†]	Seeding Rate (# seeds/ft ²)
Achillea millefolium, variety occidentalis	Common yarrow	VNS*	Native	0.5	32
Artemisia ludoviciana	White sage	VNS	Native	0.5	45
Shrubs					
Atriplex canescens	Fourwing saltbush	Wytana	Native	3.0	3.4
Ericameria nauseosus	Rubber rabbitbrush	VNS	Native	0.5	4.6
Total				26.5	188

[†]Seeding rate is for broadcast seed and presented as pounds of pure live seed per acre (lbs PLS/acre). [‡]Introduced refers to species that have been 'introduced' from another geographic region, typically outside of North America. Also referred to as 'exotic' species. *VNS=Variety Not Specified but seed source would be designated from sites similar to the Mill site.

Seeding rate may be calculated from an expected field emergence for each species and the desired number of plants per unit area. For purposes of calculation, field emergence for small seeded grasses and forbs is assumed to be around 50 percent if germination is greater than 80 percent. Field emergence is assumed to be around 30 percent if germination is between 60 and 80 percent. The Natural Resource Conservation Service recommends a seeding rate of 20 to 30 pure live seeds per square foot as a minimum number of seeds when drill seeding single species in areas with an annual precipitation between 6 and 18 inches. Twenty pure live seeds per square foot, with an expected field emergence of 50 percent should produce an adequate number of plants on the seeded area to control erosion and suppress annual invasion. This seeding rate is primarily for favorable growing conditions, soils that are not extreme in texture, gentle slopes, north or east facing aspect, good moisture, adequate soil nutrients and single species vs. multiple species in a mixture. When conditions are less favorable when the seed is broadcast, or when multiple species are in a mixture the seeding rates are increased.

A Quality Assurance/Quality Control Plan for application rates and procedures for confirming that specified application rates are achieved is as follows. The first step begins with a seed order. Seed would be purchased as pounds of pure live seed. Each State has a seed certifying agency and certification programs may be adopted by seed growers. Certification of a container of seed assures the customer that the seed is correctly identified and genetically pure. The State agency responsible for seed certification sets minimum standards for mechanical purity and germination for each species of seed. When certified, a container of seed must be labeled as to origin, germination percentage, date of the germination test, percentage of pure seed (by weight), other crop and weed seeds, and inert material. The certification is the consumer's best guarantee that the seed being purchased meets minimum standards and the quality specified.

Once the seed is obtained, seed labels would be checked to determine the percent PLS and the date that the seed was tested for percent purity and percent germination. If the test date is greater than 6 months old, the seed would be tested again before being accepted. Seed will be applied using a broadcasting method. This procedure would use a centrifugal type broadcaster (or similar implement)), also called an end-gate seeder. These broadcasters operate with an electric motor and are usually mounted on the back of a small tractor and generally have an effective spreading width of about 20 feet or more. Prior to seeding, a known area will be covered with a tarp and seed will be distributed using the broadcaster and simulating conditions that would exist under actual seeding conditions. Seed will then be collected and weighed to determine actual seeding rate in terms of pounds per acre. This process will be repeated until the specified seeding rate is

obtained. During the seeding process, the seeding rate will be verified at least once by comparing pounds of seed applied to the size of the area seeded. In addition, seed will be applied in two separate passes. One-half of the seed will be spread in one direction and the other half of seed will be spread in a perpendicular direction. This will ensure that seed distribution across the site is highly uniform and also provide the opportunity to adjust the seeding rate if the specified rate is not being achieved.

D.4 ECOLOGICAL CHARACTERISTICS OF PROPOSED SPECIES AND ESTABLISHED PLANT COMMUNITY

D.4.1 Ecological Characteristics of Plant Species of Tailings Cover System

Important ecological characteristics for each species proposed for reclamation are provided in the paragraphs that follow. Species information was obtained from a number of references that are cited below. The proposed species are adapted to the elevation (5,600 feet), precipitation (13 inches per year on average), and soil textural ranges (loam to sandy clay) that are well within the environmental conditions of the Mill site. Table D.2 presents a summary of the ecological characteristics discussed in the following paragraphs.

Western wheatgrass, variety Arriba (*Pascopyrum smithii***)** – Western wheatgrass is a native, rhizomatous, long-lived perennial cool season grass. It grows well in a 10- to 14-inch mean annual precipitation zone and is adapted to a wide range of soil textural classes at elevation ranges up to 9,000 feet. Western wheatgrass has been an important species for restoring mining related disturbances, for erosion control and for critical area stabilization in semi-arid regions because of its ease of establishment and ability to grow successfully in pure or mixed stands of both warm and cool season species. Western wheatgrass is fire tolerant and regenerates readily following burning. The variety of Arriba is known for rapidly establishing seedlings and high seed production. The combination of its ability to spread vegetatively and reproduce by seed ensures long-term sustainability of this species.

Bluebunch wheatgrass, variety Goldar (*Pseudoroegneria spicata***)** – Bluebunch wheatgrass is a native, cool season perennial bunch grass. Bluebunch wheatgrass grows on soils that vary in texture, depth and parent material. It is one of the most important and productive grasses found in sagebrush communities in the intermountain west. Bluebunch wheatgrass is fire tolerant and regenerates vegetatively following burning. This species is well adapted to a 12- to 14-inch mean annual precipitation range and is considered to be highly drought resistant. Bluebunch wheatgrass performs well in mixtures with other species and grows at elevations up to 10,000 feet.

Slender wheatgrass, variety San Luis (*Elymus trachycaulus***) – Slender wheatgrass is a native, cool season, perennial bunch grass that occasional produces rhizomes. It is a short-lived species (5 to 10 years) but it reseeds and spreads well by natural seeding, exceeding most other wheatgrasses in this characteristic. Slender wheatgrass can serve as an important pioneer species; its seedlings are vigorous and capable of establishing on harsh sites. In addition, it is able to establish and compete with weedy species. Slender wheatgrass is commonly seeded in mixtures with other grasses and forbs to restore disturbances and rehabilitate native communities. It is adapted to a wide variety of sites and is moderately drought tolerant. It performs best at sites with an annual precipitation of 15 inches or more, but can grow on sites with precipitation levels as low as 13 inches.**

Species	Origin	Annual or Perennial	Method of Spread	Ease of Establishment ^a	Compatibility with Other Species ^a	Longevity ^a	Annual Precipitation Range (inches)	Elevation Range (feet)	Soil Texture ^b	Rooting Depth (cm)	Soil Stabilization ^a	Drought Tolerance ^a	Fire Tolerance ^a
Western wheatgrass	Native	Perennial	Vegetative	4	3	4	10-14	≤9,000	S,C,L	109 ^d	4	4	4
Bluebunch wheatgrass	Native	Perennial	Seed	4	4	4	12-14	≤10,000	S,C,L	122 ^e	4	4	4
Slender wheatgrass	Native	Perennial	Seed	4	4	2	13-18	≤10,000	S,C,L	109 ^d	2	2	2
Streambank wheatgrass	Native	Perennial	Vegetative	4	4	4	11-18	≤10,000	S,C,L	165 ^f	4	4	3
Pubescent wheatgrass	Introduced	Perennial	Vegetative	4	2	4	12-18	≤10,000	S,C,L	185 ^d	4	4	3
Indian ricegrass	Native	Perennial	Seed	3	4	4	6-16	≤10,000	S,L	84 ^g	2	4	2
Sandberg bluegrass	Native	Perennial	Seed	4	4	4	12-18	≤12,000	S,C,L	45 ^h	2	3	4
Sheep fescue	Introduced	Perennial	Seed	4	2	4	10-14	≤11,000	S,C, L	56 ^e	3	4	2
Squirreltail	Native	Perennial	Seed	3	4	3	8-15	≤11,000	S,C,L	30 ^{c,i}	2	4	3
Blue grama	Native	Perennial	Vegetative	2	4	4	10-16	≤10,000	S,L	119 ⁹	4	4	4
Galleta	Native	Perennial	Vegetative	3	4	4	6-18	≤8,000	S,C,L	30 ^j	4	4	4
Common yarrow	Native	Perennial	Vegetative	4	3	4	13-18	≤11,000	S,C,L	105 ^h	4	3	2
White sage	Native	Perennial	Vegetative	4	4	4	12-18	≥5,000	S,C,L	20 ^{c,i}	3	3	2
Fourwing saltbush	Native	Perennial	Seed	4	4	4	8-14	≤8,000	S,L	600 ^j	4	4	1
Rubber rabbitbrush	Native	Perennial	Seed	4	4	4	7-18	≤9,000	S,C,L	150 ^k	4	4	1

Table D.2. Summary of Ecological Characteristics of Plant Species Proposed for the ET Cover at the Mill Site

^aKey to Ratings—4 = Excellent, 3 = Good, 2 = Fair, 1 = Poor

^bSoil Texture Codes—S = Sand, C = Clay, L = Loam

^cDepth represents minimum depth; no information in the literature on average or maximum depth could be found.

^fCoupland and Johnson, 1965.

⁹Foxx and Tierney, 1987.

^hSpence, 1937.

ⁱUSDA, 2012.

^jGibbens and Lenz 2001

^kMonsen et al., 2004.

^dWyatt et al., 1980.

^eWeaver and Clements, 1938.

Streambank wheatgrass, variety Sodar (*Elymus lanceolatus ssp. psammophilus***)** – Streambank wheatgrass is considered to be part of the thickspike wheatgrass (*Elymus lanceolatus ssp. lanceolatus*) taxa. Variety Sodar is a native, perennial sod grass that is highly rhizomatous and adapted to the western intermountain area. It is highly drought tolerant and performs well in mean annual precipitation ranges between 11 and 18 inches. It grows on a wide range of soil textures, from sandy to clayey. Streambank wheatgrass is commonly used in mine land reclamation and is best known for its ability to control erosion and compete with annual weeds. Its highly rhizomatous nature ensures long-term sustainability of this species.

Pubescent wheatgrass, variety Luna (*Thinopyrum intermedium* **ssp.** *barbulatum***)** – Pubescent wheatgrass is a long-lived sod forming perennial introduced from Eurasia. It is highly drought tolerant and grows where the mean annual precipitation is 12 inches or more. It is adapted to a wide range of soil textures, from sand to clay. Pubescent wheatgrass is a highly persistent species, should be seeded at low densities to avoid competition with native species.

Indian ricegrass, variety Paloma (*Achnatherum hymenoides***)** – Indian ricegrass is a native, cool season, perennial bunchgrass with a highly fibrous root system. Indian ricegrass is one of the most common grasses on semi-arid lands in the west and is one of the most drought tolerant species used in mine land reclamation. It generally occurs on sandy soils, but is found on soils ranging from sandy to heavy clays. It grows from 2,000 to 10,000 feet in areas where the mean annual precipitation is 6 to 16 inches. Indian ricegrass is slow to establish, but highly persistent once it becomes established.

Sandberg bluegrass, variety Canbar (*Poa secunda***)** – Sandberg bluegrass is a native, cool season perennial bunchgrass that is adapted to all soil textures and is highly resistant to fire damage. Sandberg bluegrass is one of the more common early-season bunchgrasses in the Intermountain area. It grows at elevations from 1,000 to 12,000 feet and can be successfully established in areas with a mean annual precipitation of 12 inches or more. Established plants are not overly competitive, and therefore highly compatible with other native species.

Sheep fescue, variety Covar (*Festuca ovina***)** – Sheep fescue is a short, mat-forming introduced perennial that grows well on infertile soils in areas with a mean annual precipitation of 10 to 14 inches. It is long-lived and highly drought tolerant. Sheep fescue is a cool season species that greens up early in the spring. The proposed variety, Covar, was introduced from Turkey and is commonly used in mine land reclamation for long-term stabilization and erosion control. This variety was selected because plants are persistent, winter hardy, and drought tolerant.

Squirreltail, variety Toe Jam Creek (*Elymus elymoides***) – Squirreltail is a short-lived perennial that is selected for its ability to establish quickly and to effectively compete with undesirable annual grasses. It grows along an elevation range from 2,000 to 11,000 feet and on all soil textures in mean annual precipitations zones of 8 to 15 inches. Squirreltail is fairly tolerant of fire because of its small size.**

Blue grama, variety Hachita (*Bouteloua gracilis***)** – Blue grama is a low-growing perennial warm season bunchgrass. Blue grama produces an efficient, widely spreading root system that is mostly concentrated near the soil surface. Blue grama is adapted to a variety of soil types, but does best on well-drained soils and once established, is highly drought tolerant. This species is commonly found with cool-season species and is highly compatible with other native perennials.

Galleta, variety Viva (*Hilaria jamesii*) – Galleta is a strongly rhizomatous perennial warm season grass with a dense, fibrous root system. Galleta grows on sits receiving 6 to 18 inches of annual precipitation with soils ranging from coarse to fine. Plants have a low requirement for soil fertility and are drought and fire tolerant.

Common yarrow (*Achillea millefolium, var. occidentalis***)** – Yarrow is a common native forb species that is rhizomatous and found growing from valley bottoms to timberline. It is commonly used in mine land reclamation, establishes easily from seed and is highly persistent. It grows on a variety of soil textures and found in a mean annual precipitation range between 13 and 18 inches. If seed is not available for *Achillea millefolium* var. *occidentalis*, then the introduced *Achillea millefolium* would be used, which has the same growth characteristics as the native form.

White sage, variety Summit (*Artemisia ludoviciana*) – White sage is considered to be a pioneer rhizomatous forb species that establishes quickly on disturbed sites and is highly compatible with perennial grasses. It does best on well-drained soils, but can be found growing on a wide range of soil textures. It is adapted to sites above 5,000 feet in elevation and to sites with a mean annual precipitation above 12 inches.

Fourwing saltbush, variety Wytana (*Atriplex canescens***)** – Fourwing saltbush can be deciduous or evergreen, depending on climate. Its much-branched stems are stout and mature plants range from 1 to 8 feet in height, depending on ecotype, the soil, and climate. Fourwing saltbush is one of the most widely distributed and important native shrubs on rangelands in the western United States. Fourwing saltbush is highly palatable browse and is utilized primarily in the winter at which time it is high in carotene and digestible protein. Fourwing saltbush provides excellent season long browse for deer. It is a good browse plant for antelope and elk in fall and winter. It is also a food source and excellent cover for upland birds. Fourwing saltbush has excellent drought tolerance. Fourwing saltbush is adapted to most soils but is best suited to loamy to sandy to gravely soils. It is not especially tolerant of fire, but may re-sprout to some degree if fire intensity is not too severe. Fourwing saltbush occurs most commonly in salt-desert scrub communities in the desert areas of western North America in areas that receive 8 to 14 inches of annual precipitation. It can be found from sea level in Texas to over 8,000 feet in Wyoming.

Rubber rabbitbrush (*Ericameria nauseosus***)** – Rubber rabbitbrush is a native, perennial, warm-season shrub that grows to 1 to 8 feet tall. Rubber rabbitbrush is an important browse species for wildlife during the winter months. Rubber rabbitbrush occurs as a dominant to minor component in many plant communities, ranging from arid rangelands to montane openings. It thrives in poor conditions, and can tolerate coarse, alkaline soils. Dense stands are often found on degraded rangelands, along roadsides, and in abandoned agricultural fields. The species is useful in soil stabilization and restoration of disturbed sites. The root system establishes quickly and plants produce large quantities of leaf litter. Rubber rabbitbrush is adapted to cold, dry environments receiving 7 to 18 inches of annual precipitation at elevations ranging from 450 to 8,000 feet. Depending on the ecotype, rubber rabbitbrush can be found on loamy, sandy, gravelly or heavy clay soils that are slightly acidic, slight to strongly basic, or saline.

D.4.2 Longevity and Sustainability

All of the species proposed for reclamation of the tailings cells are long-lived, except for slender wheatgrass (*Elymus trachycaulus*) and squirreltail (*Elymus elymoides*). Slender wheatgrass is a perennial bunchgrass that is short-lived (5 to 10 years) but has the ability to reseed and spread vegetatively with rhizomes. Squirreltail is also a short-lived perennial but has the ability to establish quickly and is highly effective in competing with undesirable annual grasses. Both of these species are included in the proposed seed mixture because of their ability to provide quick cover for erosion protection and to effectively compete with annual and biennial species that cannot be relied upon to provide consistent and sustainable plant cover. The use of these species will facilitate the establishment of the remaining long-lived perennials that have been documented to be highly adapted to the elevation, climate, and soil conditions found at the Mill site (Monsen et al., 2004; Alderson and Sharp, 1994; Wasser, 1982; Thornburg, 1982).

The perennial grasses, forbs, and shrubs in the proposed seed mixture include species that develop individual plants that are long lived (30 years or more) and are able to reproduce either by seed or vegetative plant parts like rhizomes and tillers. The use of these species in reclamation of the tailings cells will ensure a permanent or sustainable plant cover because of the highly adapted nature of these species to site conditions, their tolerance to environmental stresses such as drought, fire, and herbivory, and their ability to effectively reproduce over time.

The use of a mixture of species for the ET cover also contributes to longevity and sustainability. The establishment of a diverse community has many advantages over a monoculture for sustained plant growth. The use of a variety of species ensures that diverse microsites that may exist over a seeded site are properly matched with species that are adapted to those specific environmental conditions. In addition, a mixture of species reverses the loss of plant diversity and enhances natural recovery processes following impacts from insects, disease organisms, and adverse or changes in climatic conditions. Finally, mixtures provide improved ground cover and surface stability, along with reducing weed invasion by fully utilizing plant resources such as water, nutrients, sunlight and space. Weeds in this context are typically annual or biennial plants considered to be undesirable, especially growing where they are not wanted.

D.4.3 Compatibility

Reclamation research and its application have been ongoing in the U.S. since the early 1900s. First with the reseeding of millions of acres following the dust bowl of the 1930s. Then, improvements of large tracts of arid and semi-arid rangelands between the 1960s and 1980s following more than a half a century of rangeland exploitation through overgrazing. In 1985 the U.S. Department of Agriculture Conservation Reserve Program was implemented which resulted in the conversion of more than 40 million acres of marginal farm land to permanent grasslands through an extensive seeding program. Finally, there have been tens of thousands of acres of mined lands reclaimed across the U.S. with the implementation of federal and state rules and regulations governing mine land reclamation. Over this time period, there have been thousands of reclamation publications in the form of books, scientific journal articles, symposium proceedings, and government publications. Many publications have reported on the performance of individual species and mixtures of species under semi-arid conditions similar to southeastern Utah (e.g., Plummer et al., 1968; Monsen et al., 2004). All of this work has led to a knowledge base about species compatibility. Species that are seeded together in mixtures must be compatible as young, developing plants or certain individuals will succeed and others will fail. The species proposed for the ET cover at the Mill site are all compatible with each other and seeding rates will be used to prevent overseeding species that may be aggressive [e.g., pubescent wheatgrass (Thinopyrum intermedium)] and could potentially dominate the site (Monsen et al.,

2004). These species are commonly seeded together and many studies have shown excellent interspecies compatibility (e.g., DePuit et al., 1978; DePuit, 1982; Redente et al., 1984; Sydnor and Redente, 2000; Newman and Redente, 2001). Finally, to increase compatibility and to reduce competition among seeded species, sites would be broadcast seeded as opposed to drill seeded. According to Monsen et al. (2004), drill seeding causes species in a mixture to be placed in potentially competitive situations, while broadcasted seeds are not placed in as close contact with each other as with drilling and therefore are less likely to be negatively impacted from competition.

D.4.4 Competition

There are two ways to view competition. In the context of establishing an ET cover on the tailings cells, the use of seeded species to compete with weeds is a desirable attribute. However, competition among seeded species with the potential loss of any of these species is undesirable. Therefore, as stated earlier, the proposed seed mixtures is comprised of species that can coexist and also fully utilize plant resources to minimize weed species establishment and excluding seeded species. The establishment of weeds, especially invasives (i.e., non-native species whose introduction causes economic and environmental harm) is unacceptable because of the potential loss of seeded perennial species and the subsequent reduction in species diversity, plant cover, and overall sustainability. Once established, the proposed seed mixture will produce a grass-forb-shrub community of highly adapted and productive species that will effectively compete with undesirable species.

D.4.5 Plant Cover

Monitoring of an alternative cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site showed that the plant cover performed well over a seven year period. Plant cover ranged from 5.5 percent during the first growing season to nearly 46 percent in the seventh growing season (Waugh et al., 2008). Using results from the 2007 vegetation monitoring report (DOE, 2008) the following contributions to relative cover were reported showing that 6 of the 16 species seeded provided 70 percent or more of the cover when cover differences between reclamation zones is averaged: big sagebrush—5 percent to 10 percent; rubber rabbitbrush—5.3 percent to 17 percent; western wheatgrass—38.6 percent; cicer milkvetch—11 percent; thickspike wheatgrass—7.2 percent; and globemallow—0.1 to 0.2 percent.

Approximately 40 percent of the species proposed for the Mill site were seeded at Monticello and of the six best-performing species, three of these species are in the White Mesa mixture (i.e. *Pascopyrum smithii, Elymus lanceolatus,* and *Ericameria nauseosus*). Highly competitive species used at Monticello that are not proposed for White Mesa include three introduced species (i.e. smooth brome, crested wheatgrass, and alfalfa) that were not considered acceptable for the Mill site. Based on these results and the similarity in environmental conditions between Monticello and White Mesa, a plant cover estimate of 40 percent was determined to be a reasonable estimate for a long-term average, while a percent plant cover of 30 percent was assigned as a reduced performance scenario. The percent vegetative cover at White Mesa is expected to be slightly less than what would be found at Monticello because the average annual precipitation at White Mesa is approximately 13 inches compared to 15 inches at Monticello and the average annual maximum/minimum air temperatures are 64/37°F for White Mesa and 59/33°F for Monticello. The slightly greater precipitation and lower temperatures at Monticello are due to its slightly higher elevation of 7,000 feet compared to 5,600 feet at White Mesa.

A map of current vegetation at the Mill site does not exist. The most recent mapping of vegetation at the Mill site was conducted by Dames and Moore in 1977 (Dames and Moore 1978) as part of the Environmental Report for the White Mesa Uranium Project. In 1977, the major mapping units

for the project site were: big sagebrush (232 acres), controlled big sagebrush (567 acres), and reseeded grassland (369 acres). In June 2012 the area surrounding the Mill site was surveyed for plant community composition and cover in response to Interrogatory 11/1: Vegetation and Biointrusion Evaluation and Revegetation Plan of DRC (2012). There are two principal plant community types in the vicinity of the Mill site. These plant communities are Big Sagebrush shrubland and Juniper woodland. The Dames and Moore Environmental Report (1978) classified the Juniper woodland as a Pinyon-Juniper community type, but the primary tree species is Utah juniper (Juniperus osteosperma) and the presence of pinyon pine (Pinus edulis) is so infrequent that the community may be more appropriately classified as a Juniper woodland. In addition to these two principal plant community types, there are a number of disturbed areas that are in different stages of successional development and reflect past disturbances such as sagebrush removal (chaining and plowing) and seeding and intense grazing as evidenced by a complete lack of any understory species in some areas. The vegetation survey conducted in 2012 provides information of species that exist on the Mill site and their relative importance in terms of plant cover. All areas surveyed in 2012 show that big sagebrush (Artemisia tridentata) is the dominant species and subdominants are either broom snakeweed (Gutierrezia sarothroae) or galleta (Hilaria jamesii). If the area were re-mapped, most of the site would map as Big Sagebrush association. It appears that areas that were reseeded to crested wheatgrass and areas where controlled measures were applied to remove big sagebrush have returned to big sagebrush following seeding and/or control measures implemented sometime prior to 1978.

The Big Sagebrush shrubland is dominated by big sagebrush (*Artemisia tridentata*) with interspersed shrubs of broom snakeweed (*Gutierrezia sarothroae*) pale desert-thorn (*Lycium pallidum* var. *pallidum*), and rubber rabbitbrush (*Ericameria nauseosa*). The understory is mostly grasses with an infrequent occurrence of forbs. The grasses include galleta (*Hilaria jamesii*), squirreltail (*Elymus elymoides*), Indian ricegrass (*Achnatherum hymenoides*), and cheatgrass (*Bromus tectorum*). Forb species include scarlet globemallow (*Sphaeralcea coccinea*), lesser rushy milkvetch (*Astragalus convallarius*), and Russian thistle (*Salsola kali*).

The Juniper woodland occurs on shallow soils along the canyon rim to the east and west of the site. It is highly unlikely that this community type would expand its range into the deep, very fine sandy loam soil that occurs on the Mill site, which is the primary soil type supporting the Big Sagebrush shrubland. The vegetation sampling that was conducted in 2012 focused on the Big Sagebrush community and did not include the Juniper woodland because of the unlikely probability that this community type would ever establish on the Mill site or tailings cell cover system. A reconnaissance level survey was conducted in the Juniper community to observe both plant and animal species that occupy these areas.

D.4.6 2012 Plant Survey

The big sagebrush community type within the White Mesa Control Area to the north, south, and west of the restricted area of the mill and tailings facilities was surveyed using randomly placed transects and estimating cover by species using a point intercept sampling method (see Figure D.1). Along each 100 m long transect, live plant cover by species was determined by lowering a pin at 1 meter intervals and recording the plant species or ground cover (litter and bareground) that intersected the point. A total of 10 transects were sampled in each of the areas to the north, south and west of the mill and tailings cells. Table D.3 presents a summary of the vegetation survey conducted in the areas surrounding the mill and tailings cells. Tables D.4 through D.33 present plant cover data by transect for each of the three areas sampled in 2012.

Site and Plant Species	% Cover
North of Mill	
 Big sagebrush (Artemisia tridentata) 	19.1
 Broom snakeweed (Gutierrezia sarothroae) 	3.9
• Rubber rabbitbrush (<i>Ericameria nauseosa</i>).	0.2
• Palm desert-thorn (Lycium pallidum var. pallidum)	0.1
o Galleta (Hilaria jaamesii)	3.6
 Squirreltail (<i>Elymus elymoides</i>) 	0.1
 Indian ricegrass (Achnatherum hymenoides) 	0.1
 Cheatgrass (Bromus tectorum) 	9.5
 Scarlet globemallow (Sphaeralcea coccinea) 	0.1
 Lesser rushy milkvetch (Astragalus convallarius) 	0.1
 Russian thistle (Salsola kali) 	0.6
Total Live Cover	37.4
Total Litter Cover	9.7
Total Bareground	53.1
South of Mill	
 Big sagebrush (Artemisia tridentata) 	18.3
 Broom snakeweed (Gutierrezia sarothroae) 	3.0
o Galleta (<i>Hilaria jaamesii</i>)	8.5
 Squirreltail (<i>Elymus elymoides</i>) 	0.3
 Indian ricegrass (Achnatherum hymenoides) 	0.1
 Cheatgrass (Bromus tectorum) 	6.7
 Scarlet globemallow (Sphaeralcea coccinea) 	0.1
 Russian thistle (Salsola kali) 	1.4
Total Live Cover	38.4
Total Litter Cover	13.4
Total Bareground	48.2
¥	
West of Mill	
 Big sagebrush (Artemisia tridentata) 	20.5
o Broom snakeweed (Gutierrezia sarothroae)	4.4
• Pale desert-thorn (Lycium pallidum var. pallidum)	0.1
 Galleta (<i>Hilaria jaamesii</i>) 	6.6
 Squirreltail (Elymus elymoides) 	0.1
 Indian ricegrass (Achnatherum hymenoides) 	0.1
 Cheatgrass (Bromus tectorum) 	5.3
 Scarlet globemallow (Sphaeralcea coccinea) 	0.1
 Russian thistle (Salsola kali) 	0.8
Total Live Cover	37.9
Total Litter Cover	16.1
Total Bareground	46.0

Table D.3.	Average Plant and Ground Cover from June 2012 Sampling in Areas
	Surrounding the Mill Site

Results from the 2012 sampling of the Big Sagebrush community surrounding the Mill site showed a mean live plant cover of 37.8 percent after averaging live plant cover estimated in areas north, south and west of the Mill site (Table D.3). This plant cover included an average of 23.1 percent

cover for shrubs, 13.7 percent cover for grasses, and 1.0 percent cover for forbs. In addition, the average percent litter was 13.1 percent and bareground averaged 49.1 percent. These cover estimates are somewhat greater than the cover values reported in Dames and Moore Environmental Report (1978). In the Environmental Report, the average live plant cover in the Big Sagebrush community was 33.3 percent. This cover included an average of 19.4 percent for shrubs and 13.8 percent for grasses. Litter was estimated at 16.9 percent and bareground was 49.9 percent. Annual precipitation in 1977 was 23.6 cm compared to a long-term average of 29.7 cm (Dames and Moore 1978). In addition, monthly precipitation during the period May-September 1978 totaled 3.8 cm compared to a long-term average of 12.5 cm for the same period. Considering the fact that the areas sampled are currently grazed, it is highly likely that a cover of 40 percent can be achieved and maintained on the tailings cell cover system for conditions that exclude grazing by livestock. The formation of desert pavement and potential impact on plant cover has been raised as an issue for discussion. Desert pavements are armored surfaces composed of angular or rounded rock fragments, usually 2 to 3 cm thick, set on or in a matrix of finer material (Cooke and Warren, 1973). These surfaces form on arid soils through deflation of fine material by wind or water erosion due to a lack of protection by surface vegetation (Cooke and Warren, 1973). Desert pavements are not common in semi-arid regions and do not occur where either wind or water erosion are controlled by plant cover (Hendricks, 1991), as would be the case for the White Mesa cover system. In addition, there is no evidence of desert pavement formation either on the Mill site or areas surrounding the site (which was confirmed during the 2012 plant survey). Even with the use of a topsoil layer amended with gravel, there is no supporting evidence to indicate a potential for desert pavement formation or an associated decrease in plant cover over the long term.

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	20
Broom snakeweed (Gutierrezia sarothroae)	7
Galleta (<i>Hilaria jaamesii</i>)	6
Cheatgrass (Bromus tectorum)	13
Russian thistle (Salsola kali)	1
Litter	8
Bareground	45
Total Live Cover	47

Table D.5. Plant cover data collected in 2012 north of the Mill Site on Transect #2

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	28
Broom snakeweed (Gutierrezia sarothroae)	9
Rubber rabbitbrush (Ericameria nauseosa).	1
Galleta (<i>Hilaria jaamesii</i>)	2
Cheatgrass (Bromus tectorum)	8
Scarlet globemallow (Sphaeralcea coccinea)	1
Russian thistle (Salsola kali)	1
Litter	11
Bareground	39
Total Live Cover	50

Table D.6. Plant cover data collected in 2012 north of the Mill site on Transect #3

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	13
Rubber rabbitbrush (Ericameria nauseosa).	1
Galleta (<i>Hilaria jaamesii</i>)	6
Cheatgrass (Bromus tectorum)	9
Litter	7
Bareground	63
Total Live Cover	30

Table D.7. Plant cover data collected in 2012 north of the Mill site on Transect #4

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	27
Galleta (Hilaria jaamesii)	3
Cheatgrass (Bromus tectorum)	13
Russian thistle (Salsola kali)	2
Litter	8
Bareground	47
Total Live Cover	45

Table D.8. Plant cover data collected in 2012 north of the Mill site on Transect #5

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	31
Broom snakeweed (Gutierrezia sarothroae)	8
Indian ricegrass (Achnatherum hymenoides)	1
Lesser rushy milkvetch (Astragalus convallarius)	1
Russian thistle (Salsola kali)	1
Litter	9
Bareground	49
Total Live Cover	42

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	6
Broom snakeweed (Gutierrezia sarothroae)	6
Squirreltail (<i>Elymus elymoides</i>)	1
Cheatgrass (Bromus tectorum)	9
Russian thistle (Salsola kali)	1
Litter	6
Bareground	71
Total Live Cover	23

Table D.9. Plant cover data collected in 2012 north of the Mill site on Transect #6

Table D.10. Plant cover data collected in 2012 north of the Mill site on Transect #7

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	8
Broom snakeweed (Gutierrezia sarothroae)	6
Galleta (<i>Hilaria jaamesii</i>)	4
Cheatgrass (Bromus tectorum)	7
Litter	12
Bareground	63
Total Live Cover	25

Table D.11. Plant cover data collected in 2012 north of the Mill site on Transect #8

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	29
Galleta (<i>Hilaria jaamesii</i>)	11
Cheatgrass (Bromus tectorum)	14
Litter	14
Bareground	32
Total Live Cover	54

Table D.12. Plant cover data collected in 2012 north of the Mill site on Transect #9

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	4
Broom snakeweed (Gutierrezia sarothroae)	2
Indian ricegrass (Achnatherum hymenoides)	1
Galleta (<i>Hilaria jaamesii</i>)	4
Cheatgrass (Bromus tectorum)	6
Litter	9
Bareground	74
Total Live Cover	17

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	24
Palm desert-thorn (Lycium pallidum var. pallidum)	1
Cheatgrass (Bromus tectorum)	16
Litter	13
Bareground	46
Total Live Cover	41

Table D.13. Plant cover data collected in 2012 north of the Mill site on Transect #10

Table D.14. Plant cover data collected in 2012 south of the Mill site on Transect #1

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	12
Broom snakeweed (Gutierrezia sarothroae)	4
Galleta (<i>Hilaria jaamesii</i>)	7
Cheatgrass (Bromus tectorum)	12
Russian thistle (Salsola kali)	3
Litter	14
Bareground	48
Total Live Cover	38

Table D.15. Plant cover data collected in 2012 south of the Mill site on Transect #2

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	15
Broom snakeweed (Gutierrezia sarothroae)	
Galleta (<i>Hilaria jaamesii</i>)	17
Cheatgrass (Bromus tectorum)	7
Russian thistle (Salsola kali)	2
Litter	19
Bareground	40
Total Live Cover	41

Table D.16. Plant cover data collected in 2012 south of the Mill site on Transect #3

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	14
Rubber rabbitbrush (Ericameria nauseosa).	7
Galleta (<i>Hilaria jaamesii</i>)	8
Scarlet globemallow (Sphaeralcea coccinea)	1
Cheatgrass (Bromus tectorum)	6
Russian thistle (Salsola kali)	2
Litter	16
Bareground	46
Total Live Cover	38

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	28
Galleta (<i>Hilaria jaamesii</i>)	4
Indian ricegrass (Achnatherum hymenoides)	1
Cheatgrass (Bromus tectorum)	1
Russian thistle (Salsola kali)	1
Litter	17
Bareground	48
Total Live Cover	35

Table D.17. Plant cover data collected in 2012 south of the Mill site on Transect #4

Table D.18. Plant cover data collected in 2012 south of the Mill site on Transect #5

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	6
Galleta (<i>Hilaria jaamesii</i>)	6
Squirreltail (<i>Elymus elymoides</i>)	3
Cheatgrass (Bromus tectorum)	11
Litter	14
Bareground	60
Total Live Cover	26

Table D.19. Plant cover data collected in 2012 south of the Mill site on Transect #6

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	26
Broom snakeweed (Gutierrezia sarothroae)	8
Galleta (<i>Hilaria jaamesii</i>)	8
Cheatgrass (Bromus tectorum)	5
Litter	8
Bareground	45
Total Live Cover	47

Table D.20. Plant cover data collected in 2012 south of the Mill site on Transect #7

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	23
Cheatgrass (Bromus tectorum)	6
Russian thistle (Salsola kali)	3
Litter	12
Bareground	56
Total Live Cover	32

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	13
Galleta (<i>Hilaria jaamesii</i>)	13
Cheatgrass (Bromus tectorum)	11
Russian thistle (Salsola kali)	3
Litter	16
Bareground	44
Total Live Cover	40

Table D.21. Plant cover data collected in 2012 south of the Mill site on Transect #8

Table D.22. Plant cover data collected in 2012 south of the Mill site on Transect #9

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	18
Broom snakeweed (Gutierrezia sarothroae)	8
Galleta (Hilaria jaamesii)	9
Cheatgrass (Bromus tectorum)	2
Litter	14
Bareground	49
Total Live Cover	37

Table D.23. Plant cover data collected in 2012 south of the Mill site on Transect #10

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	29
Broom snakeweed (Gutierrezia sarothroae)	2
Galleta (<i>Hilaria jaamesii</i>)	13
Cheatgrass (Bromus tectorum)	6
Litter	4
Bareground	46
Total Live Cover	50

Table D.24. Plant cover data collected in 2012 west of the Mill site on Transect #1

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	26
Broom snakeweed (Gutierrezia sarothroae)	6
Galleta (Hilaria jaamesii)	4
Cheatgrass (Bromus tectorum)	7
Litter	13
Bareground	44
Total Live Cover	43

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	26
Galleta (<i>Hilaria jaamesii</i>)	9
Cheatgrass (Bromus tectorum)	1
Litter	18
Bareground	46
Total Live Cover	36

Table D.25. Plant cover data collected in 2012 west of the Mill site on Transect #2

Table D.26. Plant cover data collected in 2012 west of the Mill site on Transect #3

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	9
Cheatgrass (Bromus tectorum)	11
Litter	23
Bareground	57
Total Live Cover	20

Table D.27 Plant cover data collected in 2012 west of the Mill site on Transect #4

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	33
Broom snakeweed (Gutierrezia sarothroae)	13
Galleta (<i>Hilaria jaamesii</i>)	7
Scarlet globemallow (Sphaeralcea coccinea)	1
Cheatgrass (Bromus tectorum)	4
Russian thistle (Salsola kali)	4
Litter	9
Bareground	39
Total Live Cover	62

Table D.28. Plant cover data collected in 2012 west of the Mill site on Transect #5

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	29
Galleta (<i>Hilaria jaamesii</i>)	6
Squirreltail (<i>Elymus elymoides</i>)	1
Cheatgrass (Bromus tectorum)	5
Russian thistle (Salsola kali)	2
Litter	14
Bareground	43
Total Live Cover	43

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	12
Broom snakeweed (Gutierrezia sarothroae)	9
Indian ricegrass (Achnatherum hymenoides)	1
Cheatgrass (Bromus tectorum)	7
Russian thistle (Salsola kali)	2
Litter	17
Bareground	52
Total Live Cover	31

Table D.29. Plant cover data collected in 2012 west of the Mill site on Transect #6

Table D.30. Plant cover data collected in 2012 west of the Mill site on Transect #7

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	14
Broom snakeweed (Gutierrezia sarothroae)	4
Galleta (<i>Hilaria jaamesii</i>)	14
Palm desert-thorn (Lycium pallidum var. pallidum)	1
Cheatgrass (Bromus tectorum)	6
Litter	14
Bareground	37
Total Live Cover	39

Table D.31. Plant cover data collected in 2012 west of the Mill site on Transect #8

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	22
Broom snakeweed (Gutierrezia sarothroae)	7
Cheatgrass (Bromus tectorum)	6
Litter	20
Bareground	45
Total Live Cover	35

Table D.32. Plant cover data collected in 2012 west of the Mill site on Transect #9

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	14
Broom snakeweed (Gutierrezia sarothroae)	2
Galleta (<i>Hilaria jaamesii</i>)	11
Cheatgrass (Bromus tectorum)	3
Litter	19
Bareground	51
Total Live Cover	30

Species and Other Cover Categories	Percent Cover
Big sagebrush (Artemisia tridentata)	19
Broom snakeweed (Gutierrezia sarothroae)	3
Galleta (Hilaria jaamesii)	15
Cheatgrass (Bromus tectorum)	3
Litter	14
Bareground	46
Total Live Cover	40

Table D.33. Plant cover data collected in 2012 west of the Mill site on Transect #10

D.4.7 Leaf Area Index

Monthly leaf area index (LAI) values were estimated for the proposed ET cover at the Mill site. Three primary publications were used to estimate monthly LAI for the ET cover, including: Groeneveld (1997), Scurlock et al. (2001), and Fang et al. (2008). Table D.34 presents a compilation of LAI values based on North American data sets that were focused on semi-arid herbaceous plant communities. Scurlock et al. (2001) presented mean LAI values for 15 biomes/land cover classes that included desert, grassland, and shrubland. Leaf Area Index data was a compilation of data from the literature and represented various data collection methods. Mean LAI values reported were 1.3 (S.D. 0.85) for desert, 2.6 (S.D. 3.0) for grassland, and 2.1 (S.D. 1.6) for shrubland. Fang et al. (2008) presented LAI data for various biomes using MODIS (Moderate Resolution Imaging Spectroradiometer). These authors reported monthly LAIs for grasslands and shrublands with peak values for shrubland reported at 1.5 and 1.0 for grasslands. Finally, Groeneveld (1997) conducted field measurements of LAI in Owens Valley, CA in 1983. He reported LAI values for individual grass and shrub species and reported the following values in November for big sagebrush and in July for the remaining species: big sagebrush LAI's ranged from 0.65 to 1.8; fourwing saltbush (Atriplex canescens) LAI's ranged from 1.2 to 4.7; shadscale saltbush (Atriplex confertifolia) LAI's ranged from 1.6 to 2.6; greasewood (Sarcobatus vermiculatus) LAI's ranged from 1.0 to 3.3; alkali sacaton (Sporobolus airoides) LAI's ranged from 0.38 to 4.0; and saltgrass (Distichlis spicata) LAI's ranged from 0.67 to 3.9. All of the data presented in these three papers was used to estimate an average monthly LAI for the revegetated cover system assuming a well-established plant community. A maximum LAI of 2.6 was selected for peak biomass in the month of September which matches the mean grassland LAI reported by Scurlock al. (2001) and well below values reported by Groeneveld (1997). Leaf Area Index values for the remaining months was then extrapolated from the peak month using monthly values presented by Fang et al. (2008). It is important to note that the proposed species for the ET cover include both cool- and warm-season species. This combination of species will maximize the length of the growing season and transpiration from early spring to late fall. Cool-season species are more productive and use more water during the cooler times of the growing season, while warm-season species are more productive and use more water during the warmest period of the year.

	Month								
Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec								Dec	
0	0 0 0.3 0.7 0.6 0.6 1.8 2.4 2.6 0.8 0.1 0								

Table D.34. Leaf Area Index for the ET Cover at Mill Site

D.4.8 Project Root Biomass for Infiltration Modeling

We have chosen to use root biomass data from a seeded site in Cheyenne, Wyoming that was seeded in the 1950s with root biomass data collected about 35 years after seeding (Redente et al. 1989). Data were collected as g/m² and will not be converted (Table D.35). Infiltration model uses a normalized root density function, so root measurement units are irrelevant. The climatic conditions between Blanding, Utah and Cheyenne, Wyoming are similar with Blanding receiving 34 cm of precipitation and Cheyenne receiving 36 cm. Potential evapotranspiration (PET) at Blanding is 122 cm and 115 cm in Cheyenne. Finally, the precipitation to PET ratio is 0.28 for Blanding and 0.31 for Cheyenne. Table D.35 presents both anticipated root biomass and reduced biomass that is calculated based on a 75 percent reduction in biomass that has been reported in long-term drought studies (Weaver and Albertson 1936).

Table D.35. Projected root biomass data for anticipated and reduced performance for use in infiltration modelling

Depth (cm)	Root Biomass (g/m ²) Anticipated Performance	Root Biomass (g/m²) Reduced Performance [†]
0-5	160	64
5-10	140	49
10-20	76	23
20-60	125	32
60-100 [‡]	52	2

[†]Based on an increasing percent reduction from 60% to 80% with depth, as extended drought or reduced precipitation with potential climate change would result in less deep infiltration and therefore greater negative effect on deeper roots compared to shallower roots. [‡]Maximum rooting depth under the reduced performance scenario would be 68 cm.

D.5 BIOINTRUSION

D.5.1 Plant Intrusion

Table D.36 presents percent of root mass by depth for grass and shrub species that exist or may occur on the Mill site during the performance period. It is extremely important to recognize that the rooting depths for the shrubs do not reflect the rooting depths that are expected in the cover system but represent rooting depths reported in the literature with an effort to identify the maximum rooting depths reported. Detailed rooting depth studies are rare and the majority of studies do not report root mass by depth. The shrub values reported in Table D.36 represent extrapolations from the literature using the maximum rooting depths reported and following the general findings in the literature that the majority of root growth typically is in the upper 30 cm for grasses and the upper 60 cm for shrubs growing in semiarid regions. The final note of importance that relates to the cover system is that root growth is strongly influenced by the soil which the root is growing and therefore root data from the literature must be carefully scrutinized as it is applied to specific site conditions (Munshower 1995). The shrub root data shown in Table D.36 should therefore not be interpreted to represent the expected rooting depths in the cover system since

rooting depth will be controlled by the highly compacted radon attenuation layer within the cover system.

Soil texture appears to be the most important soil property determining the growth-limiting bulk density of a soil because of the effect of texture on soil pore size and mechanical resistance. A soil with a large amount of fine particles (silt and clay) will have smaller pore diameters and a higher penetration resistance at a lower bulk density than a soil with a large amount of coarse particles (sand size). Zisa et al. (1980) reported a silt loam soil had 19 percent macropore space and a measured penetration resistance of 2.5 bars at a bulk density of 1.4 g/cm³. A coarser sandy loam soil had 28.9 percent macropore space and a penetration resistance of 1.2 bars at the same bulk density.

Roots grow in soil through large soil pores and by moving soil particles aside when the roots penetrate pores that are smaller than the root tips. When a soil is compacted to a growth-limiting level, most soil pore diameters are substantially smaller than the diameters of growing roots. In this situation, root growth is essentially halted because the roots cannot exert enough pressure to overcome the mechanical resistance and move soil particles. Other pertinent studies that relate root growth and bulk density include articles by Siegel Issem et al. 2005, Mimore and Woollard 1969, and Heilman 1981.

Most, if not all, of the root growth studies cited above that relate root growth to soil compaction and soil bulk density are field studies in native soils that have been in place for centuries or longer. These soils have therefore gone through countless wetting and drying cycles and freeze-thaw cycles and still maintain certain bulk densities that impede root growth.

Table D.36. Percent of root mass by depth for grasses and shrub species that exist or
may occur at the Mill site during the performance period of 200 years.

				-	
Species	0-30 cm	30-60 cm	60-90 cm	90-120 cm	120-150 cm
Western wheatgrass ^a	65	14	12	9	0
Blue grama ^a	94	4	1	1	0

Species	0-20 cm	20-40 cm	40-60 cm	60-80 cm	80- 100 cm	100- 200 cm	200- 300 cm	300- 400 cm	400- 500 cm	500- 600 cm
Big sagebrush ^a	35	19	17	10	7	8	4	^f		
Fourwing saltbush ^b	18	22	15	14	10	8	6	4	2	1
Shadscale ^c	15	20	18	14	12	8	6	4	2	1
Blackbrush ^d	35	50	15							
Mormon tea ^e	20	35	17	13	10	4	1			

^aTabler 1964; ^bGibbens and Lenz 2001; ^cKearney et al 1960; ^dWest 1983; Manning et al. 1990; ^e Gibbens and Lenz 2001; ^fbeyond maximum rooting depth reported in the literature

It is important to note that shrub rooting depths reported in the literature do not reflect expected rooting depths in the cover system because of the presence of a highly compacted radon attenuation layer.

D.5.2 Animal Intrusion

The Dames and Moore Environmental Report (1978) included animal surveys for sites surrounding the Mill site. The Environmental Report recorded the presence or possible presence of a number of burrowing species in the Big Sagebrush community, including burrowing owl (*Bubo virginianus*), pocket mouse (*Perognathus* sp.), kangaroo mouse (*Microdipodops* sp.), vole (*Microtus* sp.), desert cottontail (*Sylvilagus audubonii*), coyote (*Canis latrans*), red fox (*Vulpes vulpes*), striped skunk (*Mephitis mephitis*), badger (*Taxidea taxus*), longtail weasel (*Mustela frenata*), and Gunnison prairie dog (*Cynomys gunnisoni*). Additional burrowing animals reported to occur in the Juniper community included pinyon mouse (*Peromyscus truei*) and deer mouse (*Peromyscus maniculatus*). The northern pocket gopher (*Thomomys talpoides*) was not observed in either community type and no mention of the species is made in the 1978 report.

D.5.3 2012 Burrowing Animal Survey

In June 2012 the area surrounding the Mill site was surveyed for burrowing animals in response to Interrogatory 11/1. A total of 100 km of transects were walked in Big Sagebrush and Juniper communities surrounding the Mill Site to determine either the presence of burrowing animals or future colonization based on existing habitat characteristics (see Figure D.2).

Transects were arranged in a systematic manner (at each location in Figure D.2) with a 50 m spacing between transects and transect lengths running between 100 and 400 m, depending upon physiographic features on the landscape. The primary focus of the survey was on three species that would potentially represent the deepest potential for burrows on the tailings cells during the performance period. These species included the badger, Gunnison prairie dog, and northern pocket gopher. Observations were made along each transect for animal sightings, animal presence in the form of tracks, scat or active burrows, burrow densities, and habitat characteristics.

During the animal survey one badger sighting was made and multiple active prairie dog colonies were observed to the north of the mill complex. There appears to be suitable habitat for the northern pocket gopher in the sagebrush communities surrounding the Mill site, but there is no indication that a population of northern pocket gophers occurs in the vicinity of the Mill site. There were no evidence of pocket gophers during surveys associated with the Environmental Report (Dames and Moore, 1978) and no evidence of pocket gophers 34 years later.

An attempt was made to estimate burrow densities for badgers but it was not always possible to confirm a badger burrow. No badger feeding areas (i.e. dug-out prey burrows) were observed along transects that were traversed. The reported burrow density for badgers may or may not be low, depending upon how active badgers are in the area. One of the seminal studies on badger ecology was conducted by Messick and Hornocker (1981) in southwestern Idaho. The authors reported badger densities of 159/50 km². This converts to approximately three per 100 hectares. Our survey reported the highest burrow densities at one per 80 to 100 hectares. If each burrow represented more than one individual badger, the densities potentially would be greater. Regardless, the reported burrow densities from the 2012 survey are believed to be a realistic estimate of badger presence at the Mill site.

Within the prairie dog colonies that were located in the area of the Mill site, the greatest burrow density was estimated at 148 burrows per hectare. Over the entire Mill site the prairie dog burrow density ranges from 0 to 148 burrows per hectare. Lupis et al. (2007) reported densities of active burrows in southeastern Utah in the range of 41 to 131/hectare or an average of 75 active burrows

per hectare. The burrow densities reported from out 2012 survey are well within the range of a much larger study conducted by Lupis et al. (2007).

Lupis et al. (2007) provide a list of species in grasslands and shrublands in Utah considered primary and secondary habitat for the Gunnison's prairie dog as follows:

"Perennial and annual Grasslands; or herbaceous dry meadows, including mostly forbs and grasses occurring at 640-2,740 m (2,200-9,000 ft) elevation. Principal perennial grass species include: bluebunch wheatgrass, sandburg bluegrass (Poa secunda), crested wheatgrass (Agropyron cristatum), basin wildrye (Elymus cinereus), galleta (Pleuraphis jamesii), needlegrass (Achnatherum hymenoides), sand dropseed (Sporobolus cryptandrus), blue grama (Bouteloua gracilis), Thurbers needlegrass (Achnatherum thurberianum), western wheatgrass (Pascopyum smithii), squirreltail (Sitanion hystrix), timothy (Phleum spp.), poa (Poa spp.), spike (Trisetum spicatum), Indian ricegrass (Oryzopsis hymenoides), and some sedges (Cyperaceae spp.). Principle annual grass species is cheatgrass (Bromus tectorum). Principal forb species include: yarrow (Achillea millefolium), dandelion (Taraxacum officinale), Richardson's geranium (Geranium richardsonii), penstemon (Penstemon spp.), mulesears (Wyethia amplexicaulis), golden aster (Chrysopsis villosa), arrowleaf balsamroot (Balsamorhiza sagittata), hawkbit (Agoseris pumila), larkspur (Delphinium spp.), and scarlet gilia (Gilia pulchella). Primary associated shrub species include: sagebrush (Artemesia spp.), shadscale (Atriplex confertifolia), greasewood (Sarcobatus spp.), creosote (Larrea tridentate), rabbit brush (Crysothamnus spp.), cinquefoil (Potentilla simplex), snowberry (Symphoricarpos albus), and elderberry (Sambucus spp.). Primary associated tree species is juniper (Juniperus spp.)."

"Shrublands at 670-3,150 m (2,200-10,300 ft) elevation principally dominated by greasewood (Sarcobatus vermiculatus), shadscale, graymolly (Kochia vestita), matatriplex (Atriplex corrugata), Castle Valley clover (Atriplex cuneata), winterfat, budsage (Artemisia spinescens), four-wing saltbush (Atriplex canescens), halogeton (Halogeton glomeratus), Mormon tea (Ephedra spp.), horsebrush (Tetradymia canescens), snakeweed and rabbitbrush; or low elevation perennial grassland co-dominate with shrubland. Principal grassland species include: galleta, Indian ricegrass, three-awn grass (Aristida glauca) and sand dropseed. Primary associated forb species include: desert trumpet (Eriogonum inflatum). Primary associated shrub species include: sagebrush, and black brush (Coleogyne ramosissima); other associated species include seepweed (Suaeda torreyana)."

Based on the report by Lupis et al. (2007) we agree that the habitat that will be created at the Mill site following revegetation will include species consistent with prairie dog occupation.

Table D.37 presents an updated assessment of maximum burrow depths for animal species that may occur on the Mill site. Based on a review of literature for burrow depths, the species that have the potential for the deepest burrows are badger (228 cm), northern pocket gopher (150 cm), and Gunnison prairie dog (427 cm). As discussed above, both the badger and Gunnison prairie dog were observed during the 2012 animal survey, while there is no evidence that the northern pocket gopher occurs in the vicinity of the Mill site from both the 1978 and 2012 surveys.

The proposed cover system is a monolithic evapotranspiration (ET) cover that consists of the following layers from top to bottom: 15 cm of a topsoil-gravel erosion protection layer <u>over</u> 107

cm of a water storage, biointrusion and radon attenuation layer <u>over</u> 75 cm of a highly compacted radon attenuation layer <u>over</u> 75 cm of a grading and radon attenuation layer. The proposed cover system does not contain a biobarrier (e.g. cobble layer) to minimize potential intrusion by burrowing animals. The proposed cover system is designed to minimize burrowing animal intrusion through the use of thick layers of soil cover in combination with a highly compacted layer placed at a depth that is below the expected burrowing depths among species that may inhabit the site. The thickness of the cover (total of 272 cm), the use of a highly compacted radon attenuation layer located at a depth between 122 and 197 cm, and a final 75 cm layer below the compacted zone will all contribute to minimizing any biointrusion through the cover. Considering the animal species that may inhabit the tailings cells and the thickness and physical nature of the cover, it is not anticipated that burrowing will extend below 122 cm or into the very top portion of the highly compacted zone. Burrowing into the highly compacted radon attenuation layer that begins at a depth of 122 cm will be restricted because of the high density of this material (95 percent Standard Proctor).

Species	Maximum Depth (cm)	Source		
Pocket mouse	52 to 62	Kenagy 1973; Scheriber 1978		
	35-153			
Pinyon mouse	34	Reynolds and Wakkinen 1987		
Deer mouse	13-50	Reynolds and Laundre 1988; Kritzman 1974		
Kangaroo rat	24-61	Reynolds and Wakkinen 1987; Anderson		
	20-69	and Allred 1964		
Vole	15-55	Reynolds and Wakkinen 1987		
Desert cottontail	Abandoned burrows and	Wilson and Reeder 2005;		
	surface nest	Chapman and Willner 1978		
Long-tailed weasel	Abandoned burrows and	Feldhammer et al. 2003		
	surface nest			
Striped Skunk	90	Jackson 1961		
Badger	150 to 228	Lindsey 1976; Anderson and Johns 1977		
Gunnison prairie dog	30 to 427	Verdolin et al. 2008; Sheets et al 1971;		
	69 to 185	Whitehead 1927		
	68 to 82			
Red fox	100 to 130	Feldhammer et al. 2003; Saunders 1988		
Coyote	Most common behavior is to	http://carnivora.com/topic/932884/1/		
	use burrows of other animals			
	like the badger			
Burrowing owl	Abandoned burrows	Haug et al. 1993		
Northern Pocket	10 to 30	Winsor and Whicker 1980; Gettinger 1975;		
Gopher	150	Felthauser and McInroy 1983		

Table D.37. Range of maximum burrow depths for wildlife that inhabit or may inhabit the
Mill site during the required performance period of at least 200 years

D.6 SOIL REQUIREMENTS FOR SUSTAINABLE PLANT GROWTH

There are two key components to establishing an ET cover with a sustainable plant community. The first is to select long-lived species that are adapted to the environmental conditions of the site. The second is to provide a cover soil that will function as an effective plant growth medium over the long term by supplying plants with adequate amounts of water, nutrients and rooting volume.

There are a number of soil characteristics that are particularly important to achieve long-term sustainability in semi-arid environments and include the following: pH, electrical conductivity (EC), sodium levels, percent organic matter, texture, bulk density, cation exchange capacity, macronutrient concentrations, available water holding capacity, and soil microorganisms. Table D.38 presents levels for most of these soil properties that are considered necessary for long-term sustained plant growth. In addition, the table includes soil property levels from soil samples of potential cover soil collected from stock piles at the Mill site in May 2009.

The soil properties of the potential cover soil that are acceptable for sustaining long-term plant growth include: pH, EC, sodium adsorption ratio (SAR), percent clay content, and extractable phosphorus. Those soil properties that appear to be deficient and would need improvement include: percent organic matter, total nitrogen, and extractable potassium.

Cation exchange capacity was not measured in the potential cover soil, but it is believed that the cover soil will have an acceptable level for sustained plant growth based on the percent clay content and a recommendation that an organic matter amendment be added to the soil during the reclamation process. Bulk density of the emplaced cover material will be specified in the cover design and will be controlled during the construction process to be within the sustainability range shown in Table D.38.

Soil Property	Level for Sustainability	Reference	Levels for On-Site Soil
pH (units) 6.6 to 8.4		Munshower (1994)	7.7 to 8.1
EC (mmhos/cm)	≤4.0	Munshower (1994)	<1.5
Sodium adsorption ratio	≤12	Munshower (1994)	<0.5
Organic matter (%)	1.0 to 3.0	Smith et al. (1987)	0 to 0.4
Texture (%)	> 50% silt and clay	Brady (1974)	> 50% silt and clay
Bulk density (g/cm ³)	1.2 to 1.8	Brady (1974)	1.59 to 1.99 [†]
Water holding capacity (cm H ₂ O/cm soil)	0.08 to 0.16	Brady (1974)	0.084-0.14†
Cation exchange capacity (meq/100g)	5 to 30	Munshower (1994)	Not measured
Total nitrogen (%)	0.05 to 0.5	Harding (1954)	0.02 to 0.05
Extractable phosphorus 6 to 11 (mg/kg)		Ludwick and Rogers (1976)	10 to 57
Extractable potassium (mg/kg)	60 to 120	Ludwick and Rogers (1976)	11 to 36

Table D-38. Soil Properties and Their Range of Values Important for Sustainable PlantGrowth, Along with Analytical Results of Soil Available for ET Cover Construction at theMill Site

[†]Calculated values

In order for the potential cover soil to function as a normal soil and provide long-term sustainable support for the vegetation component of the ET cover, it will be amended to improve organic matter content, nitrogen and potassium levels. An organic matter amendment will also improve available water holding capacity and cation exchange capacity. The proposed organic amendment is composted biosolids. Composted biosolids have been successfully used in mined land reclamation over the past 40 years. This amendment would also provide a source of soil microorganisms that will function to cycle nutrients over time and ensure sustainable plant growth. Composted biosolids would be applied at a rate of 10 tons/acre and incorporated into the upper six inches of the water storage layer of the cover system. Composted biosolids are also a source

of nitrogen, phosphorous and potassium and will serve to improve organic matter content and soil fertility. The following discussion provides the rationale for selecting composted biosolids as the amendment of choice for the cover soil.

Type of Amendment, Application Rates, and Costs – There are three possible soil amendments that would be a source of organic matter and nutrients for sustained plant growth. These amendments include composted biosolids, a combination of manure and hay, or a commercial organic fertilizer such as Biosol[®]. Biosol[®] is a highly effective organic amendment but would be cost prohibitive if the objective is to achieve 1 percent organic matter content in the soil. It would require the addition of at least 10 tons/acre to meet this organic matter target and the cost would be approximately \$12,300/acre, which includes a product cost of \$12,000/acre, transportation cost of \$100/acre, and an application cost of \$200/acre. Composted biosolids would be equally effective as Biosol®, but much less expensive. Composting of biosolids is a proven method for pathogen reduction and results in a product that is easy to handle, store, and use. The end product is usually a Class A, humus-like material without detectable levels of pathogens that can be applied as a soil amendment. Composted biosolids provide large quantities of organic matter and nutrients (such as nitrogen and phosphorus) to the soil, improves soil texture, and elevates soil exchange capacity. If composted biosolids were obtained from Farmington, NM (which appears at this time to be the closest source), the cost for a 10 ton/acre application rate would be \$1,530/acre, which includes \$260/acre for product cost, \$1,070/acre for transportation, and \$200/acre for application. The use of manure and hay would be the least effective amendment because both products have the potential of adding unwanted weed seed to the cover vegetation and manure is relatively high in nitrogen and if not properly off set with hay, there is a potential of having excessive nitrogen introduced into the cover system that would also lead to a proliferation of unwanted weeds.

<u>Method of Application</u> – Composted biosolids are produced by mixing biosolids (treated sewage sludge) and wood waste material. Composted biosolids are easy to apply and would be broadcast over the soil surface using a commercial manure spreader and the amendment would then be incorporated with a chisel plow or disc plow.

<u>Limitations of Soil Amendments</u> – Composted biosolids have few limitations as a soil amendment. Composted biosolids are often low in readily available nitrogen, but have high organic nitrogen levels that can be slowly released for plant use over time. The EPA has established rules for the land application of biosolids that address concerns about possible pathogen transmittal, nitrate pollution, and trace metal contamination (EPA, 1993 and 1995). In order to be land applied, a particular biosolid must have undergone a pathogen reduction process, must contain less than a specified amount of bacterial pathogens, and must meet limits for heavy metal concentration.

Considerable research has been conducted over the past 40 years on the interactions between biosolids, soil properties, plant growth and environmental quality. Amendment of disturbed soils with composted biosolids has been shown to increase soil organic matter, cation exchange capacity, soil nutrient levels, microbial biomass and activity, water holding capacity, and aggregate stability, and also to reduce soil bulk density and metal availability for plant uptake. The potential for successful reclamation with composted biosolids is tremendous and most of the highly beneficial properties of composted biosolids as a soil amendment come from its high organic matter content (Sopper, 1993). The use of composted biosolids is extremely important where topsoil is inadequate in amount or quality (Sopper, 1993; Munshower, 1994).

The application of composted biosolids on disturbed land generally has had a very beneficial effect on the establishment and growth of grasses and forbs (Sopper, 1993; Haering et al., 2000). It facilitates rapid establishment and vigorous growth of herbaceous plants. Sites treated with composted biosolids generally have a greater percent cover, greater aboveground production, and better developed root systems compared to non-amended sites or sites treated with just inorganic fertilizers (Sopper, 1993; Haering et al., 2000). The use of composted biosolids also aids in the establishment and growth of shrubs. Annual height and diameter growth is improved with composted biosolids and overall woody plant survival is increased if competition from herbaceous plants is not an issue (Sopper, 1993; Haering et al., 2000).

Field studies at the Climax Molybdenum Mine near Leadville, Colorado conducted by Carlson et al. (2006) examined the effect of composted biosolids on tailings reclamation over a seven-year period. The findings of this study were that composted biosolids are an effective means of establishing soil microbe and vegetation communities on tailings. The authors concluded that: over seven years and in extreme growing conditions, biosolid amendments reduced soil toxicity [by immobilizing heavy metals], neutralized acidity, and introduced constituents [e.g. nutrients and soil microbes] necessary to sustain vegetation communities on tailings capped with overburden material.

In a very long-term study conducted by Paschke et al. (2005) the effect of biosolids amendments were assessed on disturbances in a sagebrush community in northwestern Colorado. The authors reported that 24 years after biosolids were applied on fertile and infertile soil material that: "... biosolids amendments have long-lasting effects on soil fertility and plant community composition..."

The greatest limitation for the use of composted biosolids at the Mill site will be availability of the product. Availability varies over time depending upon supply and demand. Since the Mill site is in a remote location, sources of composted biosolids in the quantities needed for tailing cell reclamation are limited and advanced planning will be required to secure the quantities needed when the cover system is being constructed.

D.7 WEED MANAGEMENT

Weed management would be conducted on the Mill site by identifying the presence of any noxious weeds during annual vegetation surveys and developing a weed control plan that is specific to the species that are present (Table D.39). Noxious weed control is species dependent and both method and timing will vary from species to species.

Each survey will identify noxious weed populations and locate these populations on a map using a set of symbols to identify species, size of the infestation, and density of the population. The effectiveness of control methods will also be documented in each annual survey. In addition, immediately adjacent off-site properties will be visually surveyed to a distance of 100 feet. Inspections will be conducted by personnel familiar with the identification of noxious weeds in the area and based on Utah's Noxious Weed List.

The selected control methods will be based on the type, size, and location of the mapped noxious weeds. The treated area(s) will be monitored and re-inspected annually for new weed introductions and to evaluate the success of the control methods. Prevention is the highest priority weed management practice on non-infested lands; therefore protecting weed-free plant communities is the most economical and efficient land management practice. Prevention is best accomplished by ensuring that new weed species seed or vegetative reproductive plant parts of

weeds are not introduced into new areas, and by early detection of any new weed species before they begin to spread.

Control methods may include chemical or mechanical approaches. The optimum method or methods for weed management will vary depending on a number of site-specific variables such as associated vegetation, weed type, stage of growth, and severity of the weed infestation.

Scientific Name	Common Name
Utah State—Liste	d Noxious Weeds
Acroptilon repens	Russian knapweed
Cardaria spp.	Whitetop (all species)
Carduus nutans	Musk thistle
Centaurea diffusa	Diffuse knapweed
Centaurea solstitialis	Yellow star thistle
Centaurea stoebe ssp. micranthos	Spotted knapweed
Centaurea virgate ssp. Squarrosa	Squarrose knapweed
Cirsium arvense	Canada thistle
Convolvulus spp.	Bindweed (all species)
Cynodon dactylon	Bermuda grass
Elymus repens	Quackgrass
Euphorbia esula	Leafy spurge
Isatis tinctoria	Dyer's woad
Lepidium latifolium	Broadleaf pepperweed
Lythrum salicaria	Purple loosestrife
Onopordum acanthium	Scotch thistle
Sorghum almum	Perennial sorghum (all species)
Taeniatherum caput-medusae	Medusahead
San Juan County—L	isted Noxious Weeds
Aegilops cylindrical	Jointed goatgrass
Alhagi maurorum	Camelthorn
Asclepias subverticillata	Western whorled milkweed
Solanum elaeegnifolium	Silverleaf nightshade
Solanum rostratum	Buffalobur

Table D.39. Noxious Weed Species

Chemical Control

Chemical control consists mostly of selective and non-selective herbicides. Considerations for chemical controls include: herbicide selection, timing of application, target weed, desirable plant species being grown or that will be planted, number of applications per year and number of years a particular species will need to be treated for desired control. Also important are the health and safety factors involved, and the need to consider undesirable impacts. The use of herbicides will be in compliance with all Federal and State laws on proper use, storage, and disposal. The chemical application will be done by a licensed contractor in accordance with all applicable laws and regulations and all label instructions will be strictly followed. Applications of herbicides would

not be permitted when the instructions on the herbicide label indicate conditions that are not optimal.

Mechanical Control

Mechanical control is the physical removal of weeds from the soil and includes tilling, mowing, and pulling undesirable plant species. Tillage is most effective prior to seeding and establishment of desirable vegetation. The tillage method of weed control can be effective in eliminating noxious perennial weeds when repeated at short intervals (every 1-2 weeks) throughout the growing season. Tillage has the drawback of indiscriminately impacting all vegetation interspersed with weeds in established areas and can eliminate competitive, desirable vegetation leaving behind a prime seedbed for weeds to reinvade. Mowing can be an effective method for controlling the spread of an infestation and preventing the formation and dispersal of seeds. Mowing is most effective on weeds which spread solely or primarily by seed. In order to achieve this, it must be repeated at least twice during the growing season prior to, or shortly after bloom. Also, even the most intense mowing treatment will not kill hardy perennial weeds. Additional considerations will be made when selecting control treatments when specific situations arise regarding type, size, and location of weeds interspersed with desirable vegetation, large monoculture patches, or small patches requiring spot treatment.

Treatment windows schedules, based on the control methods chosen and the noxious weeds present, will be established for each treatment area. The best time to treat perennial noxious weeds is in the spring or fall during their active growth phase. Different species will have different optimum treatment times even with the same type of control. Perennial weeds usually grow vegetatively in the spring, flower and seed in late spring and early summer, enter dormancy during the summer and actively grow again in the fall. The treatment windows selected will depend on the species present and control methods selected.

The final preparatory step is to determine the priority for areas to be treated. Prioritization ensures that the most important areas are dealt with at the most effective times. Important areas of concern include areas that may transport weed seeds. These areas include ditches, roadsides, and land equipment storage sites. Large monoculture patches are of concern wherever they occur and would always be high priority. Also, small patches of weeds would be treated to prevent expansion of weed populations.

Once the treatment plan is implemented, detailed records will be kept, and success or failure of treatment will be recorded so as to eliminate unsuccessful treatments.

D.8 REVEGETATION ACCEPTANCE GOALS/CRITERIA AND MONITORING

The following Revegetation Acceptance Goals/Criteria have been adapted from the Monticello Site and would be used at the Mill site to determine reclamation success.

Criterion 1 Species Composition

a. The vegetative cover (the percentage of ground surface covered by live plants) shall be composed of a minimum of five perennial grass species (at least four listed as native), one perennial forb and two shrub species listed in Table D.1.

Criterion 2 Vegetative Cover

- a. Attain a minimum vegetative cover percentages of 40 percent.
- b. Individual grass and forb species listed in Table D.1 that are used to achieve the cover criteria shall have a minimum <u>relative</u> cover (the cover of a plant species expressed as a percentage of total vegetative cover) of 4 percent and a maximum relative cover of 40 percent.
- c. Individual species not listed in Table D.1 may be accepted as part of the cover criteria if it is demonstrated that the species is native or adapted to the area and is a desirable component of the reclaimed project site.
- d. Species not listed in Table D.1, including annual weeds or other undesirable species shall not count toward the minimum vegetative cover requirement. Every attempt should be made to minimize establishment of all non-noxious weeds.
- e. Reclaimed areas shall be free of state- and county-listed noxious weeds (Table D.40).
- f. The vegetative cover shall be self-regenerating and permanent. Self-regeneration shall be demonstrated by evidence of reproduction, such as tillers and seed production.

Criterion 3 Shrub Density

- a. A minimum shrub density of 500 stems per acre
- b. Shrubs shall be healthy and have survived at least two complete growing seasons before being evaluated against success criteria

Monitoring

Plant cover would be measured annually on the tailing cells for a minimum of ten years or until the revegetation goals stated above are achieved. Cover would be measured by the point method, using a vegetation sighting scope mounted on an adjustable tripod with a level (or similar instrument). Cover would be measured for each species encountered, as well as litter, rock, and bareground. Cover measurements would be made along a minimum of ten randomly placed transects on each tailing cell that are 100 feet long. A total of 100 points would be sited at one-foot intervals along each transect to collect cover data in the categories of live vegetation, litter, rock, and bareground. Sample adequacy would be determined for each tailing cell using the following formula that identifies the minimum number of samples that are necessary to estimate the population mean at a 90 percent level of confidence. Total live vegetation cover would be used to calculate sample adequacy.

$$n = \frac{t^2 s^2}{(.10x)^2}$$

Where: n = minimum number of samples required to meet sample

adequacy requirements s^2 = variance t^2 = 1.64 for 90% confidence x = sample mean

Shrub density would be measured in belt transects placed on either side of the cover transects. All shrubs would be counted within a three-foot wide strip or belt transect along each side of the transect used for point cover measurements, resulting in a belt transect that is six-feet wide and 100 feet long.

In addition to the above cover sampling, annual observations would be made of overall plant community health and sustainability. Overall health would be based on plant vigor, presence of annual weeds, and signs of plant deficiencies or toxicities. Plant community sustainability would be based on observations of reproduction, including both vegetative reproduction, such as tillering, and seed production.

If revegetated areas are not making satisfactory progress in meeting revegetation goals outlined above, then remedial actions will be implemented as needed. These actions may include fertilization/soil amendments, reseeding, weed control, and/or erosion control depending upon the cause of the problem that may exist and the best remediation approach to ensure plant community success. Potential revegetation problems that are most likely to occur based on typical revegetation projects in the semiarid west and on experiences at the Monticello Site fall into two categories. The first is poor initial plant establishment following revegetation practices and the second is poor plant growth during post-revegetation management. Poor initial plant establishment can be caused by a number of factors including unfavorable soil conditions related to texture or soil chemistry, improper seedbed preparation, improper seeding techniques, improper species selection, poor seed quality, planting in the wrong season, seed predation, and inadequate precipitation. If revegetation at the Mill site results in unacceptable initial plant establishment, the cause of this response will be investigated, the identified cause will be corrected, and the necessary revegetation practices will be applied until successful plant establishment has occurred. The most likely cause of poor initial plant establishment at the Mill site would be low precipitation and additional seedings would be required in a subsequent year(s) until precipitation improves and an adequate stand of vegetation is achieved. Additional mulching to control erosion and improve soil moisture conditions for seed germination and initial seedling growth would be part of the remedial process. Poor plant growth during post-revegetation management has been an issue at the Monticello Site as it relates to shrub establishment. The primary species that has been an issue is big sagebrush and the cause of the problem has been seedling damage associated with vole herbivory.

D.9 SUSTAINABILITY OF THE COVER DESIGN

D.9.1 CLIMATE CHANGE

Climate, more than any other factor, controls the broadscale distributions of plant species and vegetation. At finer scales, other factors such as local environmental conditions including soil nutrient status, pH, water-holding capacity and the physical elements of aspect or slope influence the potential presence or absence of a species. However, intra- and inter-specific interactions, such as competition for resources (light, water, nutrients), ultimately determine whether an individual plant is actually found at any particular location (Sykes 2009). Rapid climate change

associated with increasing greenhouse gas emissions (IPCC 2007) influences current and future vegetation patterns. Other human-influenced factors are, however, also involved. Sala et al. (1997) identified five different drivers of change that can be expected to affect global biodiversity over the next 100 years. Globally, land use change was considered the most important driver of change, followed by climate change, airborne nitrogen deposition, biotic interactions (invasive species) and direct CO_2 fertilizing or water use efficiency effects.

Predicted changes in climate that may occur in the southwestern U.S. include increased atmospheric concentrations of CO₂, increased surface temperatures, changes in the amount, seasonality, and distribution of precipitation, more frequent climatic extremes, and a greater variability in climate patterns. Recent temperature increases have made the current drought in the region more severe than the natural droughts of the last several centuries. This drought has caused substantial die-off of pinyon pine trees in approximately 4,600 square miles of pinyon-juniper woodland in the Four Corners region (Breshears et al. 2005). Williams et al. (2010) examined correlations between climate and the radial growth of trees across North America. They show that conifer trees in the southwest are particularly sensitive to temperature and aridity relative to other regions. They used climate-tree growth relations calculated for the past 100 years, combined with Intergovernmental Panel on Climate Change (IPCC) climate model estimates for the 21st century to predict the likely fate of important southwest tree species such as pinyon pine. They concluded that woodlands and forests will experience substantially reduced growth rates and increase mortality at many southwest sites as the century progresses.

The specific physiological effects of increasing GHG emissions (particularly CO_2) on vegetation include increased net photosynthesis, reduced photorespiration, changes in dark respiration, and reduced stomatal conductance which decreases transpiration and increases water use efficiency (Patterson and Flint 1990). Ambient temperature affects plants directly and indirectly at each stage of their life cycle (Morison and Lawlor 1999). Water (i.e. soil moisture) is usually the abiotic factor most limiting to vegetation, especially in arid and semi-arid regions. Carbon dioxide, temperature, and soil moisture effects on plant physiology are exhibited at the whole-plant level in terms of growth and resource acquisition. In addition to the individual effects of increasing temperatures, CO_2 is the additional interactive effect on photosynthetic productivity and ecosystem-level process (Long and Hutchin 1991).

Plants are finely tuned to the seasonality of their environment, and shifts in the timing of plant activity (i.e. phenology) provide some of the most compelling evidence that species and ecosystems are being influenced by global environmental change (Cleland et al. 2007). Changes in the phenology of plants have been noted in recent decades in regions around the world (Bradley et al. 1999; Fitter and Fitter 2002; Walther et al. 2002; Parmesan and Yohe 2003). Phenology of plant species is important both at the individual and population levels. Specific timing is crucial to optimal seed set for individuals and populations; and variation among species in their phenology is an important mechanism for maintaining species coexistence in diverse plant communities by reducing competition for pollinators and other resources. Global climate change could significantly alter plant phenology because temperature influences the timing of development, both alone and through interactions with other cues, such as photoperiod.

Shifts in the relative competitive ability of plants that experience changes in CO_2 , surface temperatures, or soil moisture may result in changes to their spatial distribution (Long and Hutchin 1991; Neilson and Marks 1994). Increases in temperature may enhance the competitive ability of C₄ plants (such as grasses) relative to C₃ plants (shrubs and trees) (Owensby et al. 1999), especially where soil moisture (Neilson 1993) or temperature (Esser 1992) is limiting.

There are numerous uncertainties and complexities associated with the use of all regional climate models with regard to their ability to reliably forecast longer-term future climate conditions in the North American South West (NASW) and at the Mill site. Therefore, attempts to extend the results from climate model predictions forecasting climate conditions through the end of the 21st century to timeframes of 200 to 1,000 years will likely result in further compounding of these uncertainties and result in unreliable predictions. We identified this concern in earlier discussions presented on the topic of climate change.

We have reviewed references cited in the Division's Rd 1 Interrogatories for White Mesa Revised ICTM Report on estimating the range of future climates (CNRWA 2005; NRC 2003; NRC 1997). The Center for Nuclear Waste Regulatory Analyses (CNRWA 2005) conducted an analysis of factors contributing to uncertainty in estimating future climates at Yucca Mountain. Their report concludes the following:

"In summary, research performed within the last five years suggests that the timing of climate changes over the next 100,000 years may be difficult to infer from the patterns of climate change over the last 500,000 years due to the unusually low eccentricity of Earth's orbit and, possibly, the influence of anthropogenic greenhouses gases. After 100,000 years, the Earth's orbital climate forcing will be stronger, and the influence of greenhouse gases may have diminished so that the Pleistocene climate history may offer a better analog in terms of timing of climate changes. In terms of the characteristics of future climates (i.e., mean annual precipitation and temperature, seasonal weather patterns, and storm intensities), the characteristics inferred from paleoclimate reconstructions and present day analog records may represent the range of climate conditions that will occur in the future, even if the timing of these climates cannot be reliably estimated. The greatest uncertainty in future climate conditions relates to anthropogenic effects that may result in climates in southern Nevada that do not have analogs with present or Pleistocene climates, such as prolonged El Niño conditions. The nature, likelihood, and duration of such nonrepresentative climate conditions cannot be reliably assessed based on current research. Over longer time periods, the range of conditions inferred from the Pleistocene paleoclimate record reasonably bounds future climate during the period of geologic stability."

We agree with NRC's preferred approach of using paleoclimate data to estimate the likely range of future conditions. In fact, in our previous discussion of climate change in Attachment G (EFRI, 2012), we discussed the paleoclimate approach presented by Waugh and Petersen (1994) for the Monticello site.

Waugh and Petersen (1994) summarize future climate change as follows:

"Global mean temperature may increase by 1.8 to 5.2° C in the next century, in response to an industrial age buildup of carbon dioxide (CO₂), methane, and other gases (Houghton et al. 1992). Model projections of the magnitude of warming vary, depending on whether factors such as CO₂ fertilization, feedback from stratospheric ozone depletion, and the radiative effects of sulfate aerosols are taken into account. Model projections of precipitation responses to greenhouse warming also are inconsistent (Houghton et al. 1990; Crowley and North 1991; Washington and Meehl 1984; Wilson and Mitchell 1987; Schlesinger and Mitchell 1987). Some regions may be effectively wetter and others drier, depending on the balance of the greater potential evaporation and the greater waterholding capacity of a warmer atmosphere. Greenhouse warming may eventually be overwhelmed as the earth plunges into another ice age. Models of cyclic astronomical forcing of climate agree that, without anthropogenic disturbances, a long-term cooling trend that started about 6,000 years ago will continue, climaxing with a major glaciation in about 60,000 years (Imbrie and Imbrie 1980; Berger et al. 1991). In contrast, aperiodicity in the timing of past ice ages is evident in oxygen isotope records (Winograd et al. 1992). Other paleorecords suggest that certain feedback mechanisms have caused rapid and unpredictable transitions into ice ages (Berger and Labeyrie 1987; Phillips et al. 1990)."

Waugh and Petersen (1994) concluded from their investigation that despite uncertainty about drivers of future climate change, climate extremes in the next 1,000 years likely will not exceed those associated with the last glacial and interglacial periods. Therefore, paleo-records of full glacial and Altithermal climates in the Four Corners region provide reasonable ranges of possible future climate and should be incorporated in assessments of the long-term performance of tailings disposal facilities. For Monticello, Utah, full glacial and Altithermal climate reconstructions provide working levels of 2 to 10° C mean annual temperature and 38 to 80 cm mean annual precipitation. If we assume that a similar range of temperature and precipitation could also occur at the Mill site, then during the next glacial phase anticipated to occur approximately 60,000 years into the future the climate would be a colder and wetter compared to current conditions, and if conditions post-glaciation result in a warm period the climate would be warmer and wetter than current conditions.

Table D.41 presents a list of possible climate scenarios for the Mill site, their likelihood of occurrence and the resulting plant community type that would develop during the required performance period. From the review of climate change literature applicable to the southwest U.S. and an analysis of the impact of various climate change scenarios, it is our conclusion that the most likely plant community type that will be maintained throughout the 200- to 1,000-year performance period is a community dominated initially by cool season grasses, with a long-term transition to dominance by warm season grasses and shrubs as atmospheric CO_2 and temperature continues to increase and precipitation ether increases or decreases.

D.7.2 Plant Community Succession and Potential for Species Colonization

Plant succession is the ecological process of directional vegetation change over time, usually beginning with relatively-short lived herbaceous plants and culminating in plant communities dominated by long-lived, generally woody species. Succession occurs on all sites. The rate of succession can be relatively rapid, especially in regions of higher rainfall, or it can be very slow, as in some desert and arctic regions, but this process of vegetation change is constantly taking place.

Two common aspects of succession are 1) an increase in vegetation structure and 2) an increase in the relative amounts of woody plants. Both of these aspects have profound implications to the function of cover systems. Vegetation structure refers to the shape of the vegetation, e.g., height, coverage, and stratification. Structure increases as succession proceeds, both above- and belowground. Aboveground, the height of the vegetation increases (e.g., grasses may be replaced by shrubs), coverage of the soil surface increases, and layering (strata) of vegetation occurs, with different species occupying different vertical layers. Similar processes occur belowground. Root systems become deeper as shallow-rooted species are replaced by deeperrooted species, root biomass increases in lower soil depths as the number and types of species increase, and the density of the root system increases in the various layers.

Table D.40. Possible Climate Scenarios for the Mill Site, Likelihood of Occurrence and
Projected Change in Plant Species Composition Compared to the Initial Grass/forb
Community Established on the Soil Cover

Possible Climate	Likelihood of	Projected Plant Community Type in 1,000 Years
Scenarios	Occurence ⁹	with Seeded Grass/Forb as the Initial Community
Warmer and Dryer than Present ¹	Highly Likely	Grass/forb community with an increase in warm season species.
Warmer and Wetter than Present ²	Highly Likely	Will depend on distribution of additional precipitation. If more precipitation in winter months, then the plant community would experience an increase in woody plants; if more precipitation in the summer months, then the plant community would continue as a grass/forb type.
Warmer than Present with Similar Total Precipitation ³	Unlikely	Grass/forb community with an increase in warm season species.
Cooler and Wetter than Present ⁴	Highly Unlikely	Shift to more woody plants because of more snow in winter months.
Cooler and Dryer than Present ⁵	Highly Unlikely	Shift to more woody plants because of more snow in winter months.
Cooler than Present with Similar Precipitation ⁶	Highly Unlikely	Shift to more woody plants because of more snow in winter months.
Dryer than Present with Similar Temperature ⁷	Unlikely	Grass/forb community with an increase in warm season species because of less overall moisture and increase in atmospheric CO ₂ .
Wetter than Present with Similar Temperature ⁸	Unlikely	Shift to more woody plants because of more winter precipitation.

¹Results in less total precipitation but shift to less snow and more rain in winter months.

²Results in more total precipitation with shift to less snow and more rain in winter months or more rain in summer months.

³Results in no change in total precipitation but shift to less snow and more rain in winter months.

⁴Results in more total precipitation with shift to more snow in winter months.

⁵Results in less total precipitation but shift to more snow in winter months

⁶Results in no change in total precipitation but shift to more snow in winter months.

⁷Results in less total precipitation.

⁸Results in more total precipitation.

⁹Likelihood of occurrence based on majority of climate model estimates analyzed by Cayan et al. 2010 and Seager and Vecchi 2010, with a focus on the southwest U.S.

As the vegetation shifts from dominance by herbaceous plants (e.g., grasses), which have relatively shallow root systems but with very dense root mass in the upper profile, to dominance by woody species (e.g., shrubs), which have deeper roots systems with proportionately more roots in deeper layers, the hydrological dynamics of the system change. Early successional plant communities tend to extract most of the water they transpire from the upper soil profile. Late successional communities have greater ability to extract water from depth. This can be both a positive and a negative in the functional efficiency of covers. Because of successional changes in the vegetation, the plant-soil-water characteristics of a cover are likely to become very different over time. Conditions 200 years or more after construction are not likely to be similar to those soon after construction was completed. In some ways, conditions will be more favorable, e.g.,

evapotranspiration will likely be higher thus reducing the amount of deep infiltration and stability of the vegetation may be greater. In other ways, conditions will be less favorable, e.g., deeper root systems increase the concern for biointrusion. Because succession is a process that is nearuniversal ecologically, these changes have been accounted for in the cover design.

As stated earlier, the proposed cover system is a monolithic ET cover that consists of the following layers from top to bottom: 15 cm of a topsoil-gravel erosion protection layer <u>over</u> 107 cm of a water storage, biointrusion and radon attenuation layer <u>over</u> up to 110 to 136 cm of a highly compacted radon attenuation layer <u>over</u> 76 cm of a grading and radon attenuation layer. The proposed cover system does not contain a biobarrier (e.g. cobble layer) to minimize potential intrusion by plant roots during the required performance period. The proposed cover system is designed to minimize plant root intrusion through the use of thick layers of soil cover in combination with a highly compacted layer placed deep within the cover. The climax community for the Mill site is believed to be Big Sagebrush based on the current community type at the site and the relatively deep fine loamy soils that are present. If climate trends towards a warmer and dryer climate for the White Mesa area over the next 200 to 1,000 years, it is unlikely that sagebrush will remain on site and a community dominated by warm season species and more arid shrub species (e.g. shadscale saltbush, blackbrush and Mormon tea) may occur.

As discussed above, the process of succession and the effect of climate change will bring about changes in species composition in the tailings cover system. Our best forecast for the percentage of potential species colonization would be for a small percent of non-seeded species establishing during the first 50 years. The seeded community will be highly sustainable and big sagebrush would be the primary invader into the cover system. It is estimated that the established community will consist of 60 to 70 percent seeded species and 30 to 40 percent non-seeded species at end of the first 100 years. These non-seeded species will include big sagebrush and broom snakeweed, and a few grass and forb species common in the area. During the next 100 years the plant community will begin to transition to warm season species and big sagebrush will begin to diminish. By the end of the second 100 years it is estimated that the plant community will consist of 30 to 40 percent seeded and 60 to 70 percent non-seeded species and many of the non-seeded species will be warm season grasses and more arid shrub species. This trend will most likely continue through the remainder of the performance period with only 10 to 20 percent of the original seeded species still present and these would include blue grama and galleta. The remainder of the community would consist of more warm season grasses and shrubs that will have migrated north and higher in elevation with the warming climate.

REFERENCES

- Alderson, J. and W.C. Sharp. 1994. Grass Varieties in the United States. U.S. Department of Agriculture, Agriculture Handbook No. 170. Washington, D.C.
- Anderson, D.C. and D.W. Johns. 1977. Predation by badger on yellow-bellied marmot in Colorado. Southwest. Naturalist. 22:283-284.
- Anderson, O.A. and D.M. Allred. 1964. Kangaroo rat burrows at the Nevada Test Site. Great Basin Naturalist 24:93-101.
- Berger, A., H. Gallee, and J.L. Melice. 1991. The Earth's future climate at the astronomical timescale. Pp. 148-165. In: Future Climate Change and Radioactive Waste Disposal: Proceedings of International Workshop. G. M. Goodess and J. P. Paulutifof (eds). NSS/R257. U.K. Nirex Radioactive Waste Disposal, Ltd. Harwell, UK.

- Berger, W.H. and L. D. Labeyrie. 1987. Abrupt Climatic Change: Evidence and Implications. Reidel, Dordrecht, The Neatherlands.
- Bradley, N.L., Leopold, A.C., Ross, J. and W. Huffaker. 1999. Phenological changes reflect climate change in Wisconsin. Proceedings of the National Academy of Sciences 96:9701–9704.

Brady, N. C. 1974. The Nature and Property of Soils. 8th ed. MacMillian Press. New York, NY.

- Breshears, D.D., N.S. Cobb, P.M. Rich, K.P. Price, C.D. Allen, R.G. Balice, W.H. Romme, J.H. Hastens, M.L. Floyd, J. Belnap, J.J. Anderson, O.B. Myers, and C.W. Meyer. 2005. Regional vegetation die-off in response to global-change drought. Proceedings of the National Academy of Sciences 102:15144-15148.
- Carlson, K., A. Radil, and B. Romig. 2006. Biosolid applications at the Climax Mine: revegetation and soil results. In Proceedings High Altitude Revegetation Workshop No. 17. Colorado Water Resources Research Institute Information Series No. 101. Fort Collins, CO.

Carnivora. 2012. http://carnivora.com/topic/932884/1/. Site accessed in July 2012.

Cayan, D., T. Das, D. Pierce, T. Parnett, M. Tyree, and A. Gershunov. 2010. Future dryness in the southwest U.S. and the hydrology o the early 21st century drought. Proceedings of the National Academy of Sciences 107:21271-21276.

Chapman, J. and G. Willner. 1978. Sylvilagus audubonii. Mammalian Species No. 106. 4 pp.

- Cleland E., I. Chuine, A. Menzel, H. Mooney, and M. Schwartz. 2007. Shifting plant phenology in response to global change. Trends in Ecology and Evolution 22:357-365.
- Center for Nuclear Waste Regulatory Analysis (CNRWA) 2005. Analysis of Factors Contributing to Uncertainty in Estimating Future Climates at Yucca Mountain. San Antonio, Texas. Revised November 2005.
- Cooke, R.V. and A. Warren. 1973. Geomorphology in Deserts. University of California Press. Berkeley, CA.
- Coupland, R.T. and R.E. Johnson. 1965. Rooting characteristics of native grassland species in Saskatchewan. J. of Ecology 53:475-507.
- Crowley, T.J. and G.R. North. 1991. Paleoclimatology. Oxford Monographs on Geology and Geophysics No. 16. Oxford University Press. NY.
- Dames and Moore. 1978. Environmental Report—White Mesa Uranium Project, San Juan County, Utah. Prepared for Energy Fuels Nuclear, Inc.
- DePuit, E. J. 1982. Cool-season perennial grass establishment on Northern Great Plains mined lands: status of current technology. Pages B1-B24 In Proceedings: Symposium on surface Coal Mining and Reclamation in the Northern Great Plains. Montana Agricultural Experiment Station Research Report 194. Bozeman, MT.
- DePuit, E. J., J. G. Coenenberg, and W. H. Willmuth. 1978. Research on Revegetation of Surface Mined Lands at Coalstrip Montana: Progress Report 1975—1977 Res. Rep. 127. Montana

Agricultural Experiments Station, Bozeman, MT.

- DOE (U.S. Department of Energy). 2008. 2007 Revegetation Monitoring of the Monticello, Utah, Repository Cover, U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado, March.
- Energy Fuels Resources (USA) Inc. (EFRI), 2012. Responses to Interrogatories Round 1 for Reclamation Plan, Revision 5.0, March 2012. August 15.
- Esser, G. 1992. Implications of climate change for production and decomposition in grasslands and coniferous forests. Ecological Applications 2:47-54.
- Fang, H., S. Liang, J.R. Townshend and R. Dickenson. 2008. Spatially and temporally continuous LAI data sets based on integrated filtering method: Examples from North America. Remote Sensing of Environment 112:75-93.
- Feldhammer, G., B. Thompson, and J. Chapman. 2003. Wild Mammals of North America: biology, management, and conservation. John Hopkins University Press. Baltimore, MD.
- Felthauser, M. and D. McInroy. 1983. Mapping pocket gopher burrow systems with expanding polyurethane foam. Journal Wildlife Management 47:555-558.
- Fitter, A. H. and R. S. Fitter. 2002. Rapid changes in flowering time in British plants. Science 296:1689–1691.
- Foxx, T. S. and G. D. Tierney. 1987. Rooting patterns in the pinyon-juniper woodland. pp. 69-79 In Everett, R. L. (ed.). Proceedings—Pinyon-Juniper Conference. USDA Forest Service. Intermountain Forest and Range Experiment Station. General Technical Report INT-215.
- Gettinger, R. D. 1975. Metabolism and thermoregulation of a fossorial rodent, the northern pocket gopher (Thomomys talpoides). Physiol. Zool. 48:311-322.
- Gibbens, R. P. and J. M. Lenz. 2001. Root systems of some Chihuahuan Desert plants. Journal of Arid Environments 49:221-263. Groeneveld, David. 1997. Vertical point quadrat sampling and an extinction factor to calculate leaf area index. J. of Arid Environments. 36:475-485.
- Groeneveld, D., 1997. Vertical point quadrat sampling and an extinction factor to calculate leaf area index. J. of Arid Environments. 36:475-485.
- Haering, K., W. Daniels, and S. Feagley. 2000. Reclaiming mined lands with biosolids, manures, and papermill sludge. pp. 615-644. In Barnhisel, R., R. Darmody and W. Daniels (eds.) Reclamation of Drastically Disturbed Lands. American Society of Agronomy. Madison, WI.
- Harding, R. B. 1954. Surface accumulation of nitrates and other soluble salts in California orange orchards. Soil Science Society of America Proceedings. 18:369-372.
- Haug, E., D. Millsap, and M. Martell. 1993. Burrowing owl. In Poule, A. and F. Gill (eds.) Birds of North America. The Academy of Natural Sciences. Philadelphia, PA.
- Heilman, P. 1981. Root penetration of Douglas-fir seedlings into compacted soil. Forest Science 27:660-666.

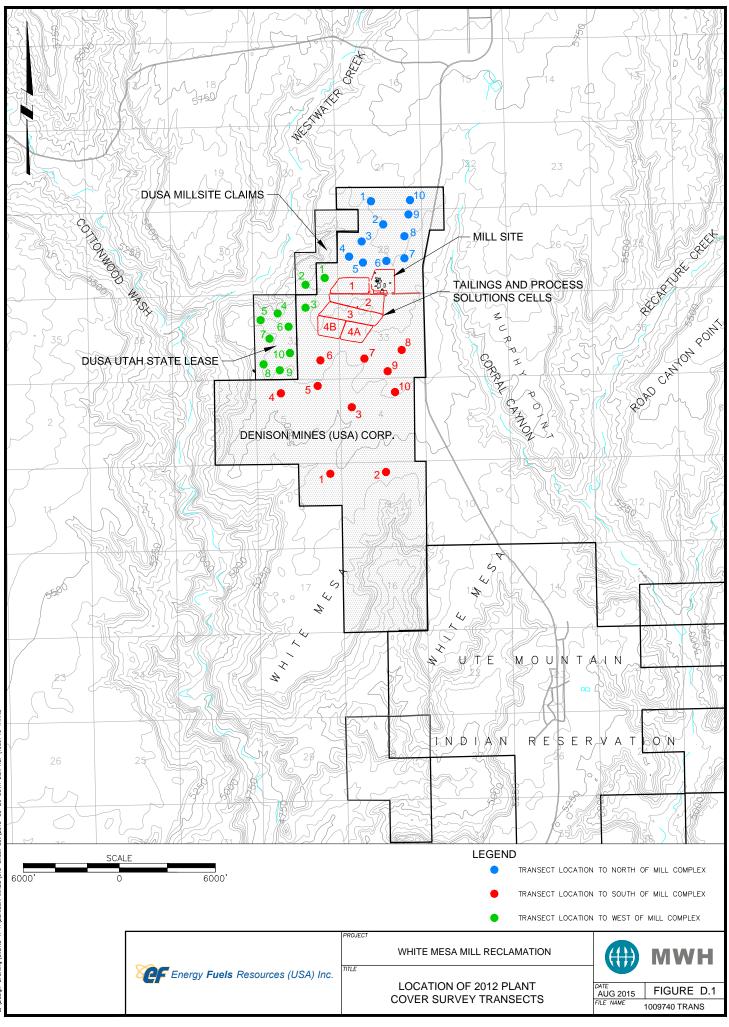
- Hendricks, David M. 1991. Genesis and classification of arid region soils. Pages 33-79 In Skujins, J. (ed.) Semiarid Lands and Deserts. Marcel Dekker, Inc. New York, NY.
- Houghton, J. T., B. A. Callander, and S. K. Varney. 1992. Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment. Cambridge University Press. Cambridge, UK.
- Imbrie, J. and J. Z. Imbrie. 1980. Modeling the climatic response to orbital variation. Science 207:143-153.
- Houghton, J.T., G.J. Jenkins, and J.J. Ephraums (eds.). 1990. Climate Change: The IPCC Scientific Assessment. Cambridge University Press. Cambridge, UK.
- Intergovernmental Panel on Climate Change (IPCC). 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
- Jackson, H.H.T. 1961. Mammals of Wisconsin. University of Wisconsin Press. Madison, WI.
- Kearney, T.H., Peebles, R.H., Howell, J.T and E. McClintock. 1960. Arizona flora. 2nd ed. University of California Press. Berkeley, CA. 1085p.
- Kenagy, G. J. 1973. Daily and seasonal patterns of activity and energetics in a heteromyid rodent community. Ecology 54:1201-1219.
- Kritzman, E. B. 1974. Ecological relationships of Peromyscus maniculatus and Perognathus parvus in eastern Washington. Journal of Mammalogy 55:172-188.
- Lindsey, F. 1976. Characteristics of the Natal Den of the Badger. Northwest Science 50:178-180.
- Long, S. P. and P.R. Hutchin. 1991. Primary production in grasslands and coniferous forests with climate change: an overview. Ecological Applications 1:139-156.
- Ludwick, A.E., and J.R. Rogers. 1976. Soil test explanation. 502 Service in Action. Colorado State University Agricultural Extension Service. Fort Collins, CO.
- Lupis, S.G., K.D. Bunnell, T. A. Black, and T.A. Messmer. 2007. Utah Gunnison's Prairie Dog and White-Tailed Prairie Dog Conservation Plan: Draft #5. Utah Department of Natural Resources. Salt Lake City UT.
- Manning, S. J. and D. P. Groeneveld. 1990. Shrub rooting characteristics and water acquisition on xeric sites in western Great Basin. Pp. 238-244 In McArthur, D. E., E. M. Romney, S. Smith, and P. Tueller (eds) Proceedings—Symposium of Cheatgrass Invasion, Shrub Die-Off and Other Aspects of Shrub Biology and Management. Gen Tech Rept INT-276. U.S. Department of Agriculture, Forest Service, Intermountain Research Station. Ogden, UT.
- Messick, J.P. and M.G. Hornocker. 1981. Ecology of the badger in southwestern Idaho. *Wildl. Monogr.* 76. 17 p.

- Mimore, D., D. Smith, and F. Woollard. 1969. Effects of high soil density on seedling root growth of seven northwestern tree species. USDA Forest Service Research Note PNW-112. Pacific Northwest Forest and Range Experiment Station, Portland, OR.
- Monsen, S.B., R. Stevens and N.L. Shaw. 2004. Restoring Western Ranges and Wildlands. U.S. Department of Agriculture. Forest Service. General Technical Report RMRS-GTR-136-vol 1-3. Rocky Mountain Research Station. Fort Collins, CO.
- Morison, J. I. L., and D.W. Lawlor. 1999. Interactions between increasing CO2 concentration and temperature on plant growth. Plant, Cell & Environment 22:659-682.
- Munshower, F. 1994. Practical Handbook of Disturbed Land Revegetation. CRC Press. Boca Raton, FL.
- Munshower, F. 1995. Forbs, Shrubs and Trees for Revegetation of Disturbed Lands in the Northern Great Plains and Adjacent Areas. 2nd Edition. Montana State University Reclamation Research Unit Publication No. 9505. Bozeman, MT.
- Neilson, R.P. 1993. Transient ecotone response to climatic change: some conceptual and modelling approaches. Ecological Applications 3:385-395.
- Neilson, R.P. and D. Marks. 1994. A global perspective of regional vegetation and hydrologic sensitivities from climatic change. Journal of Vegetation Science 5:715-730.
- Newman, G.J., and E.F. Redente. 2001. Long-term plant community development as influenced by revegetation techniques. J. Range Manage. 54:717-724.
- Owensby, C.E., Ham, J.M., Knapp, A.K. and Auen, L.M. 1999. Biomass production and species composition change in a tallgrass prairie ecosystem after long-term exposure to elevated atmospheric CO2. Global Change Biology 5:497-506.
- Parmesan, C. and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42.
- Paschke, M.W., K. Topper, R.B. Brobst and E.F. Redente. 2005. Long-term effects of biosolids on revegetation of disturbed sagebrush steppe in Northwestern Colorado. Restoration Ecology 13:545-551.
- Patterson, D.T. and E.P. Flint. 1990. Implications of increasing carbon dioxide and climate change for plant communities and competition in natural and managed ecosystems. pp 83-110 In B.A. Kimball, N.J. Rosenberg, L.H. Allen, Jr., G.H. Heichel, C.W. Stuber, D.E. Kissel, S. Ernst, (eds.). Impact of carbon dioxide, trace gases, and climate change on global agriculture. ASA Spec. Publ. No. 53. Am. Soc. Agron., Crop Sci. Soc. Am., and Soil Sci. Soc. Am.
- Phillips, F.M., A.C. Campbell, R. Roberts, and C.V. Kruger. 1990. Abrupt interglacial/glacial transition in the 1.4 Ma water balance record from Searles Lake, CA. PP. 28 In: CANQUA/AMQUA 1990: Program and Abstracts, First Joint Meeting, Canadian Quaternary Association and American Quaternary Association. University of Waterloo, Waterloo, Ontario, Canada.

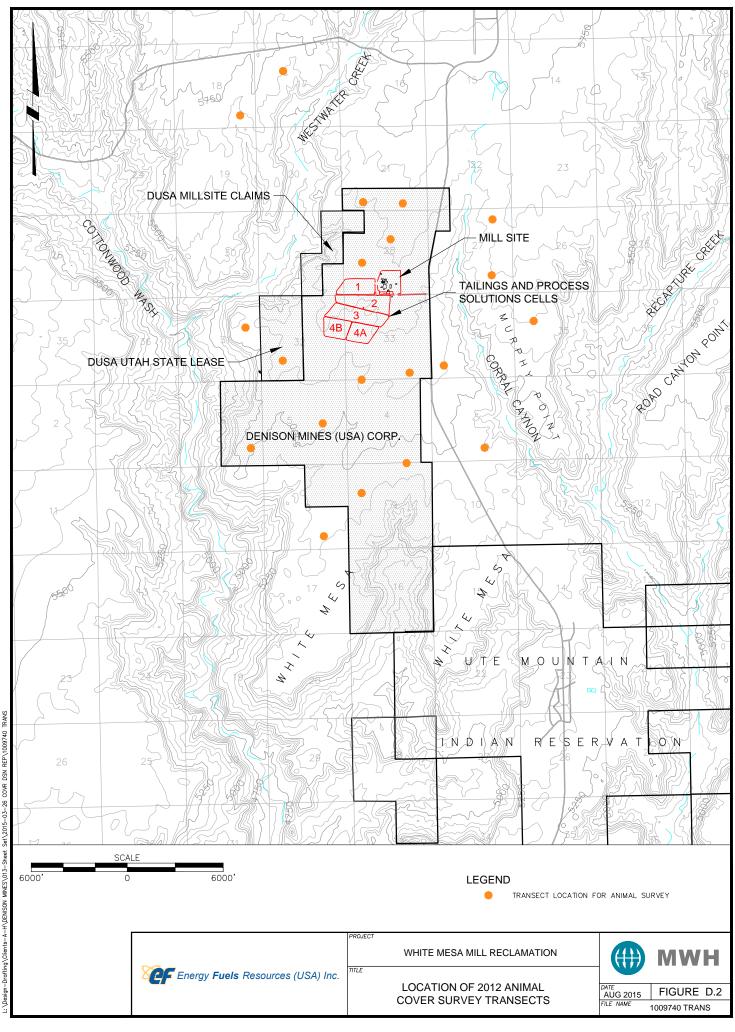
Plummer, A.P., D.R. Christensen, and S.B. Monsen. 1968. Restoring Big-Game Range in Utah.

Utah Division of Fish and Game. Publication No. 68-3. Utah Division of Fish and Game, Ephraim, UT.

- Redente, E.F., M.E. Biondini, and J.C. Moore. 1989. Productivity dynamics of a crested wheatgrass (Agropyron cristatum) and native shortgrass ecosystem in southern Wyoming. J. Range Manage. 42:113-118.
- Redente, E. F., T. B. Doerr, C. E. Grygiel, and M. E. Biondini. 1984. Vegetation establishment and succession on disturbed soils in northwest Colorado. Reclamation and Revegetation Research 3:153-166.
- Reynolds, T. and J. Laundre, 1988. Vertical Distribution of Soil Removed by Four Species of Burrowing Rodents in Disturbed and Undisturbed Soils. Health Physics 54:445–450.
- Reynolds, T. and W. Wakkinen, 1987. Burrow Characteristics of Four Species of Rodents in Undisturbed Soils in Southeastern Idaho. American Midland Naturalist 118:245–260.
- Sala, O., W. Lauenroth, and R. Golluscio. 1997. Plant functional types in temperate semi-arid regions. pp. 217-233 In Smith, T., H. Shugart, and F. Woodward (eds.). Plant Functional Types: Their Relevance to Ecosystem Properties and Global Change. Cambridge University Press. Cambridge, England.
- Saunders, D. A. 1988. Adirondack Mammals. State University of New York, College of Environmental Science and Forestry. 216pp
- Schlesinger, M. E. and J. F. B. Mitchell. 1987. Climate model simulations of the equilibrium climatic response to increased carbon dioxide. Reviews of Geophysics 25:760-798.
- Schreiber, R. K. 1978. Bioenergetics of the Great Basin Pocket Mouse, Prognathus parvus. Acta Theriol. 32:469-487.
- Scurlock, J. M. O., G. P. Asner, and S. T. Gower. 2001. Worldwide Historical Estimates of Leaf Area Index, 1932-2000. Oakridge National Laboratory. ORNL/TM-2001/268.
- Seager, R. and G. Vecchi. 2010. Greenhouse warming and the 21st century hydroclimate of southwestern North America. Proceedings of the National Academy of Sciences 107:21277-21282.
- Siegel Issem, C., J. Burger, R. Power, F. Ponder, and S. Patterson. 2005. Seedling root growth as a function of soil density and water content. Soil Science Society of America Journal 69:215-226.
- Sheets, R. G., R. L. Linder and R. B. Dahlgren. 1971. Burrow systems of prairie dogs in South Dakota. J. Mammal. 52:451-453.
- Sopper, W. E. 1993. Municipal Sludge Use in Land Reclamation. Lewis Publishers. Boca Raton, FL.
- Smith, P.L., E.F. Redente, and E. Hooper. 1987. Soil organic matter, p. 185-214. In R. Dean Williams and Gerald E. Schuman, eds. Reclaiming Mine Soils and Overburden in the Western United States, Analytic Parameters and Procedures. Soil Conservation Society of America. Ankeny,



lowa.


- Spence, L. E. 1937. Root studies of important range plants of the Boise River watershed. J. of Forestry 35:747-754.
- Sydnor, R.S. and E.F. Redente. 2000. Long-term plant community development on topsoil treatments overlying a phytotoxic growth medium. J. Environmental Quality 29:1778-1786.
- Sykes, M. T. 2009. Climate Change Impacts: Vegetation. In Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd.
- Tabler, R. D. 1964. The root system of Artemisia tridentata at 9,500 feet in Wyoming. Ecology 45:633-636.
- Thornburg, A.A. 1982. Plant Materials for Use on Surface-Mined Lands in Arid and Semiarid Regions. USDA. Soil Conservation Service. SCS-TP-157. EPA-600/7-79-134. U.S. Government Printing Office. Washington, D.C.
- USDA. 2012. http://plants.USDA.gov. Accessed on July 24, 2012.
- U.S. Environmental Protection Agency. 1993. Standards for the use or disposal of sewage sludge. Fed. Reg. 58(32):9248-9415.
- U.S. Environmental Protection Agency. 1995. Part 503 Implementation Guidance. EPA 833-R-95-001. EPA, Washington, D.C.
- U.S. NRC 1997. "Issue Resolution Status Report on Methods to Evaluate Climate Change and Associated Effects at Yucca Mountain." Washington, DC: NRC. 1997.
- U.S. NRC. 2003. NUREG–1804. "Yucca Mountain Review Plan." Final Report. Rev. 2. Washington, DC: NRC. 2003.
- Utah Department of Environmental Quality, Division of Radiation Control (DRC), 2012. Dension Mines (USA) Corp's White Mesa Reclamation Plan, Rev. 5.0; Interrogatories – Round 1. March.
- Verdolin, J., K. Lewis and C. Slobodchidoff. 2008. Morphology of burrow systems: A comparison of Gunnison's (Cynomy gunnisoni), White-tailed (C. leucurus), black-tailed (C. ludovicianus), and Utah (C. parvidens) Prairie Dogs. The Southwestern Naturalist 53:201-207.
- Walther G., E. Post, P. Convey, A, Menzel, C. Parmesan, T. Beebee, J. Fromentin, O. Hoegh-Guldberg, and F. Bairlein. 2002. Ecological responses to recent climate change. Nature 416:389–395.
- Washington, W. M. and G. A. Meehl. 1984. Seasonal cycle experiment on the climate sensitivity due to a doubling of CO₂ with an atmospheric general circulation model coupled to a simple mixed-layer ocean model. Journal of Geophysical Research 89:9475-9503.
- Wasser, C.H. 1982. Ecology and Culture of Selected Species Useful in Revegetating Disturbed Lands in the West. U.S. Department of Interior. Fish and Wildlife Service. FWS/OBS-82/56. U.S. Government Printing Office. Washington, D.C.

- Waugh, W. J., M. K. Kastens, L. R. L. Sheader, C. H. Benson, W. H. Albright, and P. S. Mushovic. 2008. Monitoring the performance of an alternative landfill cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site. Proceedings of the Waste Management 2008 Symposium. Phoenix, AZ.
- Waugh, W. J. and K. Petersen. 1994. Paleoclimatic data application: long-term performance of uranium mill tailings repositories. pp. 163-185 In Climate Change in the Four Corners and Adjacent Regions: Implications for Environmental Restoration and Land Use Planning. U.S. Department of Energy, Washington, D.C.
- Weaver, J.E. and F.W. Albertson. 1936. Effects of the great drought on the prairies of Iowa, Nebraska, and Kansas. Ecology 17:567-639.
- Weaver, J.E. and F.E. Clements. 1938. Plant Ecology. 2nd Edition. McGraw-Hill. New York, NY.
- West, N.E. 1983. Colorado Plateau—Mohavian Blackbrush Semi-Desert. Pp. 399-411 In: West N.
 E. (ed) Temperate Deserts and Semi-Deserts. Elsevier Scientific Publication Co., Amsterdam, Netherlands.
- Whitehead, L. C. 1927. Notes on prairie dogs. J. Mammal. 8:58.
- Williams, A., J. Michaelsen, S. Leavitt, and C. Still. 2010. Using tree rings to predict the response of tree growth to climate change in the continental United States during the Twenty-First Century. Earth Interactions 14:1–20.
- Wilson, C.A. and J.F.B. Mitchell. 1987. A doubled CO2 climate sensitivity experiment with a global climate model including a simple ocean. Journal of Geophysical Research 92:13315-13343.
- Wilson, D. and D. Reeder. 2005. Mammal Species of the World: At Taxonomic and Geographic Reference (3rd Edition). John Hopkins University Press. Baltimore, MD.
- Winograd, I.J., T.B. Coplen, J.M. Landwehr, A.C. Riggs, K.R. Ludwig, B.J. Szabo, P.T. Kolesar, and K.M. Revesz. 1992. Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada. Science 258:255-260.
- Winsor, T.F., and F.W. Whicker. 1980. Pocket gophers and redistribution of plutonium in soil. Health Phys. 39:257-262.
- Wyatt, J. W., D. J. Dollhopf, and W. M. Schafer. 1980. Root distribution in 1 to 48 year old stripmine spoils in southeastern Montana. J. Range Management 33:101-104.
- Zisa, R., H. Halverson, and B. Stout. 1980. Establishment and early growth of conifers on compact soils in urban areas. USDA Forest Service Research Paper NE-451. Northeastern Forest Experiment Station, Broomall, PA.

Design-Drafting\Clients-A-H\DENISON MINES\013-Sheet Set\2015-03-26 COVR DSN REP\1009740 TRANS

COVR DSN REP\1009740 -03-26 (Set/ Sheet MINES\013-

ATTACHMENT G.2

REVISED APPENDIX J, REVEGETATION PLAN, TO THE UPDATED TAILINGS COVER DESIGN REPORT (APPENDIX D OF THE RECLAMATION PLAN, REVISION 5.0)

APPENDIX J

REVEGETATION PLAN

J.1 INTRODUCTION

Revegetation of the tailing cells at the White Mesa Mill Site will be completed following construction of the cover system. The revegetation process will establish a grass-forb-shrub community consisting primarily of native, long-lived perennial grasses, forbs, and shrubs that are highly adapted to the climatic and edaphic conditions of the site. Revegetation methods will follow state-of-the-art techniques for soil amendments, seedbed preparation, seeding and mulching. In addition, quality assurance and quality control procedures will be followed to ensure that revegetation methods are implemented correctly and the results of the process meet expectations.

J.2 PLANT SPECIES AND SEEDING RATES

The following 15 species (11 grasses, 2 forbs, and 2 shrubs) are proposed for the ET cover system at the White Mesa Mill site. These species were selected for their adaptability to site conditions, compatibility, and long-term sustainability. Species were also selected based on the assumption that institutional controls will exclude grazing by domestic livestock. The proposed species are:

- Western wheatgrass, variety Arriba (Pascopyrum smithii)
- Bluebunch wheatgrass, variety Goldar (*Pseudoroegneria spicata*)
- Slender wheatgrass, variety San Luis (*Elymus trachycaulus*)
- Streambank wheatgrass, variety Sodar (*Elymus lanceolatus ssp. psammophilus*)
- Pubescent wheatgrass, variety Luna (*Thinopyrum intermedium ssp. barbulatum*)
- Indian ricegrass, variety Paloma (Achnatherum hymenoides)
- Sandberg bluegrass, variety Canbar (*Poa secunda*)
- Sheep fescue, variety Covar (*Festuca ovina*)
- Squirreltail, variety Toe Jam Creek (*Elymus elymoides*)
- Blue grama, variety Hachita (Bouteloua gracilis)
- Galleta, variety Viva (Hilaria jamesii)
- Common yarrow, no variety (*Achillea millefolium*)
- White sage, variety Summit (*Artemisia ludoviciana*)
- Fourwing saltbush, variety Wytana (*Atriplex canescens*)
- Rubber rabbitbrush (*Ericameria nauseosus*).

The ecological characteristics of these species are described in detail in Appendix D.

Table J.1 presents broadcast seeding rates for each species. Seeding rates were developed based on the objective of establishing a permanent cover of grasses, forbs, and shrubs in a mixture that would promote compatibility among species and minimize competitive exclusion or loss of species over time. Seeding rates were developed on the basis of number of seeds per unit area (e.g. number of seeds per square foot) and then converted to weight per unit area (e.g. pounds per acre).

Scientific Name	Common Name	Varietal Name	Native/ Introduced	Seeding Rate (Ibs PLS/acre) [†]	Seeding Rate (# seeds/ft ²)
Grasses					
Pascopyrum smithii	Western wheatgrass	Arriba	Native	3.0	7.9
Pseudoroegneria spicata	Bluebunch wheatgrass	Goldar	Native	3.0	9.6
Elymus trachycaulus	Slender wheatgrass	San Luis	Native	2.0	6.2
Elymus lanceolatus	Streambank wheatgrass	Sodar	Native	2.0	7.3
Elymus elymoides	Squirreltail	Toe Jam	Native	2.0	8.8
Thinopyrum intermedium	Pubescent wheatgrass	Luna	Introduced [‡]	1.0	1.8
Achnatherum hymenoides	Indian ricegrass	Paloma	Native	4.0	14.7
Poa secunda	Sandberg bluegrass	Canbar	Native	0.5	11.4
Festuca ovina	Sheep fescue	Covar	Introduced [‡]	1.0	11.5
Bouteloua gracilis	Blue grama	Hachita	Native	1.0	16.5
Hilaria jamesii	Galleta	Viva	Native	2.0	7.3
Forbs					
Achillea millefolium, variety occidentalis	Common yarrow	VNS*	Native	0.5	32
Artemisia ludoviciana	White sage	VNS	Native	0.5	45
Shrubs					
Atriplex canescens	Fourwing saltbush	Wytana	Native	3.0	3.4
Ericameria nauseosus	Rubber rabbitbrush	VNS	Native	0.5	4.6
Total				26.5	188

Table J.1.	Species and	seeding rates p	roposed for ET	cover at the	White Mesa Mill Site
		occurry rates p			

[†]Seeding rate is for broadcast seed and presented as pounds of pure live seed per acre (lbs PLS/acre). [‡]Introduced refers to species that have been 'introduced' from another geographic region, typically outside of North America. Also referred to as 'exotic' species. * VNS=Variety Not Specified but seed source would be designated from sites similar to the Mill Site.

Seeding rates are calculated from an expected field emergence for each species and the desired number of plants per unit area. For purposes of calculation, field emergence for small seeded grasses and forbs is assumed to be around 50 percent if germination is greater than 80 percent. Field emergence is assumed to be around 30 percent if germination is between 60 and 80 percent. The Natural Resource Conservation Service recommends a seeding rate of 20 to 30 pure live seeds per square foot as a minimum number of seeds when drill seeding single species in areas with an annual precipitation between 6 and 18 inches. Twenty pure live seeds per square foot, with an expected field emergence of 50 percent should produce an adequate number of plants on the seeded area to control erosion and suppress annual invasion. This seeding rate is primarily for favorable growing conditions, soils that are not extreme in texture, gentle slopes, north or east facing aspect, good moisture, adequate soil nutrients and single species vs. multiple species in a mixture. When conditions are less favorable when the seed is broadcast, or when multiple species are in a mixture the seeding rates are increased.

A Quality Assurance/Quality Control Plan for application rates and procedures for confirming that specified application rates are achieved is as follows. The first step begins with a seed order. Seed would be purchased as pounds of pure live seed. Each State has a seed certifying agency and certification programs may be adopted by seed growers. Certification of a container

of seed assures the customer that the seed is correctly identified and genetically pure. The State agency responsible for seed certification sets minimum standards for mechanical purity and germination for each species of seed. When certified, a container of seed must be labeled as to origin, germination percentage, date of the germination test, percentage of pure seed (by weight), other crop and weed seeds, and inert material. The certification is the consumer's best guarantee that the seed being purchased meets minimum standards and the quality specified.

Once the seed is obtained, seed labels would be checked to determine the percent PLS and the date that the seed was tested for percent purity and percent germination. If the test date is greater than 6 months old, the seed would be tested again before being accepted. Seed will be applied using a broadcasting method as described below.

J.3 SOIL FERTILIZATION AND ORGANIC MATTER AMENDMENT

The physical and chemical characteristics of the soil that will be used for the cover system are presented in Appendix D. Based on this analysis, there are three soil properties that appear to be deficient for sustained plant growth and will need to be treated prior to seeding and to ensure that the soil provides adequate carbon and plant essential nutrients for initial plant establishment and long-term sustainability. The soil properties that will need treatment include percent organic matter, total nitrogen, and plant available potassium (Appendix D). The upper 15 cm of the water storage layer will be treated with an organic matter amendment to alleviate the existing deficiencies. This treatment will be applied after the water storage layer is in place and before placement of the topsoil-gravel erosion protection layer. Further chemical analysis will be conducted prior to placement of the water storage layer to verify the chemical properties of this material and to finalize the proposed treatment. In order for the potential cover soil to function as a normal soil and provide long-term sustainable support for the vegetation component of the ET cover, it will be amended to improve organic matter content, nitrogen and potassium levels. An organic matter amendment will also improve available water holding capacity and cation exchange capacity. The proposed organic amendment is composted biosolids. Composted biosolids have been successfully used in mined land reclamation over the past 40 years. This amendment would also provide a source of soil microorganisms that will function to cycle nutrients over time and ensure sustainable plant growth. Composted biosolids would be applied at a rate of 10 tons/acre and incorporated into the upper six inches of the water storage layer of the cover system. Composted biosolids are also a source of nitrogen, phosphorous and potassium and will serve to improve organic matter content and soil fertility.

The topsoil-gravel erosion control layer will not be amended for organic matter or nutrients to avoid the stimulation of undesirable weedy species. The addition of nutrients, especially nitrogen, during revegetation is known to stimulate the growth of annual weeds at the potential detriment of seeded perennial species. Withholding nutrient additions from the topsoil-gravel cover will allow the seeded species to establish without the unwanted competition from undesirable weedy species.

J.4 SEEDBED PREPARATION

Following placement of the topsoil-gravel erosion protection layer, the area will be harrowed to reduce any compaction that may have occurred during placement of the cover and to create an uneven surface for optimum seedbed conditions. Since seeding will be conducted with a broadcast method it is critical for the soil surface to be loose and uneven, but also have a

firmness below the soil surface to allow proper seeding depth and to promote optimum seed-soil contact for germination and initial plant establishment.

J.5 SEEDING

Seed will be applied using a broadcasting method as soon as practicable following seedbed preparation. This procedure will use a centrifugal type broadcaster (or similar implement), also called an end-gate seeder. These broadcasters operate with an electric motor and are usually mounted on the back of a small tractor and generally have an effective spreading width of about 20 feet or more. Prior to seeding, a known area will be covered with a tarp and seed will be distributed using the broadcaster and simulating conditions that would exist under actual seeding conditions. Seed will then be collected and weighed to determine actual seeding rate in terms of pounds per acre. This process will be repeated until the specified seeding rate is obtained. During the seeding process, the seeding rate will be verified at least once by comparing pounds of seed applied to the size of the area seeded. In addition, seed will be applied in two separate passes. One-half of the seed will be spread in one direction and the other half of seed will be spread in a perpendicular direction. This will ensure that seed distribution across the site is highly uniform and also provide the opportunity to adjust the seeding rate if the specified rate is not being achieved. Seeding will not occur if wind speeds exceed 10 mph.

Immediately following seeding, the area will be lightly harrowed to provide seed coverage and to maximize seed-soil contact. This step in the revegetation process will ensure that the seed is placed at an optimum seeding depth and in good soil contact for proper germination conditions.

Seeding will take place as soon as practical after the cover system is in place. Successful seeding in southeastern Utah can occur either in late fall (e.g. October) as a dormant seeding, with germination and establishment occurring the following spring or can be conducted in June, prior to the summer monsoon season. The timing for seeding will be dependent upon the construction schedule for the cover system.

J.6 MULCHING

A mulch will be applied immediately following seeding to conserve soil moisture for seed germination and initial plant establishment. Mulching will also provide additional soil erosion protection from both wind and water until a plant cover is established. A weed-free, wood-fiber mulch will be applied to the seeded area at a rate of 1.5 tons/acre. Wood fiber mulch will consist of specially prepared wood fibers and will not be produced from recycled material such as sawdust, paper, cardboard, or residue from pulp and paper plants. The fibers will be dyed an appropriate color, non-toxic, water-soluble dye to facilitate visual metering during application. Wood fiber mulch will be supplied in packages and each package will be marked by the manufacturer to show the air-dry weight.

The wood fiber mulch will be applied by means of hydraulic equipment that utilizes water as the carrying agent. The mulch will be applied in a uniform manner at a minimum rate of 1.0 ton/acre. A continuous agitator action, that keeps the mulching material and approved additives in uniform suspension, will be maintained throughout the distribution cycle. The pump pressure will be capable of maintaining a continuous non-fluctuating stream of slurry. The slurry distribution lines will be large enough to prevent stoppage and the discharge line will be equipped with a set of hydraulic spray nozzles that will provide an even distribution of the mulch

slurry to the seedbed. Mulching will not be done in the presence of free surface water resulting from rains, melting snow, or other causes.

A tackifier will be used with the wood fiber mulch to improve adhesion. The tackifier will be a biodegradable organic formulation processed specifically for the adhesive binding of mulch. In addition, the tackifier will uniformly disperse when mixed with water and will not be detrimental to the homogeneous properties of the mulch slurry. Tackifier may be added either during the manufacturing of the mulch or incorporated during mulch application. Tackifier will have characteristics of hydrating and dispersing in circulating water to form a homogeneous slurry and remain in such a state in the hydraulic mulching unit when mixed with the wood fiber mulch. When applied, the tackifier will form a loose chain-like protective film, but not a plant inhibiting membrane, which will allow moisture to percolate into the underlying soil, while helping bind seeds to the soil surface during germination and initial seedling growth, after which the tackifier will break down through natural processes.

ATTACHMENT H

SUPPORTING DOCUMENTATION FOR INTERROGATORY 12/1:

REVISED APPENDIX C, RADON EMANATION MODELING, TO THE UPDATED TAILINGS COVER DESIGN REPORT (APPENDIX D OF THE RECLAMATION PLAN, REVISION 5.0)

APPENDIX C

RADON EMANATION MODELING

C.1 BACKGROUND

This appendix presents the results of modeling the emanation of radon-222 from the top surface of the proposed cover over the White Mesa tailing impoundments to achieve the State of Utah's long-term radon emanation standard for uranium mill tailings (Utah Administrative Code, Rule 313-24). These results comprise an update of radon emanation modeling presented in Attachment F of the 2009 Reclamation Plan (Denison, 2009) and Appendix H of the Infiltration and Contaminant Transport Modeling Report (Denison, 2010), as well as an update to Appendix C of the 2011 Updated Tailings Cover Design report (MWH, 2011). This appendix provides a summary of additional analyses of radon attenuation through the proposed evapotranspiration (ET) cover, and incorporates the revised cover grading design, results of cover material testing conducted in 2010 and 2012 (summarized in Attachment B of EFRI, 2012), and results of tailings testing conducted in 2013 (presented in MWH, 2015).

The final version of this appendix will be provided as Appendix C to the next version of the Updated Tailings Cover Design report. The Updated Tailings Cover Design report will be submitted as an attachment to the next version of the Reclamation Plan.

The monolithic ET cover system evaluated in this appendix consists of the following layers from top to bottom:

- 0.5 ft (15 cm) Erosion Protection Layer (gravel-admixture or topsoil)
- 3.5 ft (107 cm) Water Storage/Biointrusion/Frost Protection/Radon Attenuation Layer (loam to sandy clay)
- 3.0 to 4.0 ft (91 to 122 cm) Radon Attenuation Layer (highly compacted loam to sandy clay)
- 2.5 ft (76 cm) Radon Attenuation and Grading Layer (loam to sandy clay)

The loam to sandy clay soil used to construct the ET cover, referred to in previous reports (Titan 1996, Knight Piesold 1999) as random/platform fill, is stockpiled at the site.

C.2 DESCRIPTION OF MODEL AND INPUT VALUES

The thickness of the reclamation cover necessary to limit radon emanation from the disposal areas was analyzed using the NRC RADON model (NRC, 1989). The model utilizes the onedimensional radon diffusion equation, which uses the physical and radiological characteristics of the tailings and overlying materials to calculate the rate of radon emanation from the tailings through the cover. The model was used to calculate the cover thickness required to limit the radon emanation rate through the top of the cover to 20 picocuries per square meter per second (pCi/m²-s), following the guidance presented in U.S. Nuclear Regulatory Commission (NRC) publications NUREG/CR-3533 and Regulatory Guide 3.64 (NRC 1984, 1989). The rate of emanation standard is applied to the average emanation over the entire surface of the disposal area.

The input parameters used in the model are based on engineering experience with similar projects, recent laboratory testing results for samples of random fill (summarized in Attachment B of EFRI, 2012) and tailings (MWH, 2015), in addition to available data from previous work by others, including Chen and Associates (1978, 1979, 1987), Rogers and Associates Engineering Corporation (1988), Western Colorado Testing (1999a, 1999b), IUC (2000), and Titan (1996).

The available data from testing performed by others was summarized in Appendix A of the Updated Tailings Cover Design report (MWH, 2011). Appendix A will be revised for the next version of the Updated Tailings Cover Design report to include data from recent random fill and tailings testing. The input parameters and values used in the model are outlined below.

C.2.1 Thickness of Tailings

The thickness of tailings currently deposited in Cells 2 and 3 is approximately 30 ft (914 cm), while the anticipated tailings thickness deposited in Cells 4A and 4B will be approximately 42 ft (1,280 cm). As documented in NRC Regulatory Guide 3.64, a tailings thickness greater than 100 to 200 cm is effectively equivalent to an infinitely thick radon source. Therefore, a thickness of 500 cm may be used in RADON to represent an equivalent infinitely thick tailings source of radon.

C.2.2 Radium Activity Concentration

The radium-226 activity concentration values for the tailings in the impoundments are estimated based on material inventory data provided by Energy Fuels Resources (USA), Inc. (EFRI). A summary of the material inventories for Cells 2 and 3 and the projected inventory for Cells 4A and 4B is provided in Attachment C.1. The radium-226 and thorium-230 activity concentrations are listed for each material in the inventories. These values were used to calculate a weighted average for radium-226 and thorium-230 activity concentrations for the tailings using the volume of material placed in Cells 2 and 3. In addition, these values were used to project radium-226 and thorium-230 activity concentrations for the materials to be placed in Cells 4A and 4B. Calculations for radium-226 from decay of thorium-230 were also made. These calculations are also provided in Attachment C.1. The results for Cell 3 and Cells 4A and 4B indicate the highest radium-226 values are a result of original radium-226 and radium-226 from thorium-230 decay at approximately 1000 years. The results are summarized below and in Table C.1.

Tailings Cell	Weighted Average Radium-226 Activity Concentration (pCi/g)	Weighted Average Thorium-230 Activity Concentration (pCi/g)	Total Radium-226 Activity Concentration (original radium-226 and radium- 226 from thorium-230 decay) (pCi/g)
Cell 2	923	923	923
Cell 3	606	1048	758
Cells 4A and 4B	617	695	642

Table C.1. Radium Activity Concentrations

Random Fill and Erosion Protection. The radium activity of the random fill and erosion protection layer is assumed to be zero, based on guidance in Regulatory Guide 3.64 (NRC, 1989) which states that radium activity in the cover soils may be neglected for cover design purposes provided the cover soils are obtained from background materials that are not associated with ore formations or other radium-enriched materials.

C.2.3 Radon Emanation Coefficient

The radon emanation coefficient used in the model for the tailings is 0.20 based on laboratory data (Rogers & Associates, 1988) and the recommendation in NUREG-1620 (NRC, 2003) to use a value of 0.20 for tailings if there is limited site-specific data.

The radon emanation coefficient used in the model for the cover layers is 0.35. This is the conservative default value used in the RADON model.

C.2.4 Specific Gravity, Density and Porosity

The densities and porosities of the tailings and cover materials used in the model are based on laboratory testing results. The values are summarized in Table C.2 and discussed in more detail below.

Material	Specific Gravity	Degree of Compaction (%)	Placed Density (pcf)	Placed Density (g/cc)	Porosity
Erosion Protection (topsoil)	2.61	85% SP	100	1.6	0.38
Erosion Protection (rock mulch)*	2.62	85% SP	106	1.7	0.35
Random fill (low compaction water storage, rooting zone)	2.63	85% SP	100	1.6	0.39
Random Fill (high compaction)	2.63	95% SP	112	1.8	0.32
Random Fill (in place, low compaction, platform fill)	2.63	80% SP	94	1.5	0.43
Tailings	2.80		96	1.5	0.45

Table C.2. Density and Porosity Values

SP = standard proctor compaction

* Estimated by applying a 25% rock correction to the topsoil

The specific gravity of the tailings was estimated as 2.80 based as the weighted average specific gravity from laboratory tests using estimated percentages of sand, sand-slime, and slime tailings of 10, 65, and 25 percent, respectively (MWH, 2015). The dry density of the tailings was estimated as 96 pcf, based on laboratory tests (Chen and Associates, 1987 and Western Colorado Testing, 1999b) and assuming the upper bound long-term density of the tailings should be no greater than 90 percent of the average laboratory measured maximum dry density for the tailings. The referenced reports are provided as part of Appendix A.1 of MWH (2011). The porosity of the tailings was calculated using the estimated specific gravity and dry density based on the following equation:

$$n = 1 - \left(\frac{\gamma_d}{G_s \gamma_w}\right)$$
 (Eq. C.1)

where

$$\label{eq:gamma_d} \begin{split} n &= \text{porosity}, \\ \gamma_d &= \text{dry density of soil}, \\ G_s &= \text{specific gravity of soil, and} \\ \gamma_w &= \text{unit weight of water.} \end{split}$$

The specific gravity and dry density values used in the model for the random fill layers were estimated by laboratory tests (ATT, 2010 and UWM, 2012). The referenced reports will be

provided as part of Appendix A.2 of the next version of the of the Updated Tailings Cover Design report. These reports were presented in Attachment B of EFRI (2012). The estimation for the values used in the model is provided in Attachment C.2. The porosity values for the layers were calculated using equation C.1. The proposed cover system has three layers of random fill placed at different levels of compaction. The lower layer of random fill consists of a minimum thickness of 2.5 feet of random fill that is assumed to be dumped and minimally compacted by construction equipment to approximately 80 percent standard Proctor. The middle layer (3.0 - 4.0 feet) of random fill will be compacted to 95 percent of standard Proctor. In Cell 2 and parts of Cell 3, the lower layer of random fill is already placed and is approximately 3 feet. It is assumed the upper 6 inches of this fill will be part of the middle random fill layer and can be compacted by additional passes of compactors to reach 95 percent of standard Proctor compaction. The uppermost 3.5 feet of random fill will be placed at 85 percent of standard Proctor compaction in order to optimize water storage and rooting characteristics for plant growth.

The 0.5 foot erosion protection layer is assumed to be topsoil or rock mulch consisting of topsoil material mixed with 25 percent gravel by weight. The specific gravity and density of the topsoil was estimated to be 2.61 and 100 pcf, respectively, based on laboratory testing results for topsoil (UWM, 2012) The specific gravity and density of the rock mulch was estimated to be 2.62 and 106 pcf, respectively, based on laboratory testing results for topsoil (UWM, 2012) and applying a rock correction based on 25 percent gravel by weight.

C.2.5 Long-term Moisture Content

The long-term moisture content value for the tailings is assumed to be 6 percent. This is a conservative assumption, per NRC Regulatory Guide 3.64 (NRC, 1989), which represents the lower bound for moisture in western soils and is typically used as a default value for the long-term water content of tailings. Use of 15 bar water contents to estimate a long-term water content is one of the methods recommended in NRC (2003) for radon emanation modeling.

MWH collected representative samples from the on-site random fill and topsoil stockpiles for use in estimating the long-term moisture contents for the random fill and erosion protection cover layers. The laboratory results for the 15 bar water contents for these samples were used to estimate long-term water contents for the random fill and erosion protection layers.

The long-term water content of the topsoil was estimated as 5.2 percent based on the measured 15 bar gravimetric water content for a topsoil sample (E1-A) which represents the average index properties for the topsoil stockpiles (UWM, 2012). The long-term water content of the rock mulch was estimated as 4 percent based on the addition of 25 percent gravel by weight to the topsoil.

Based on the cover material gradations, the cover soils were bracketed into three groups, finer grained soils, uniform graded soils, and broadly graded soils. A weighted average procedure that accounts for the size of soil type based on the stockpile volumes was incorporated to determine the average long-term gravimetric water content for the random fill using the measured 15 bar water contents. The estimation of the long-term water content value for the cover material is provided in Attachment C.2.

The average long-term moisture contents are summarized in Table C.3.

Material	Gravimetric Water Content (%)
Erosion Protection (topsoil)	5.2
Erosion Protection (rock mulch)	4.0
Random fill	6.7
Tailings	6.0

Table C.3. Estimated Long-Term Moisture Contents

C.2.6 Diffusion Coefficient

The radon diffusion coefficient used in the RADON model can either be calculated based on an empirical relationship dependent upon porosity and the degree of saturation or input directly in the model using values measured from laboratory testing. Although laboratory test data was available for the tailings and the cover material (Rogers & Associates 1988), tests were performed at porosities and water contents different than those estimated to represent long-term conditions. Therefore, the empirical relationship presented in Rogers and Nielson (1991) was used, resulting in the calculated values summarized in Table C.4 below.

Table C.4. Estimated Radon Diffusion Coefficients

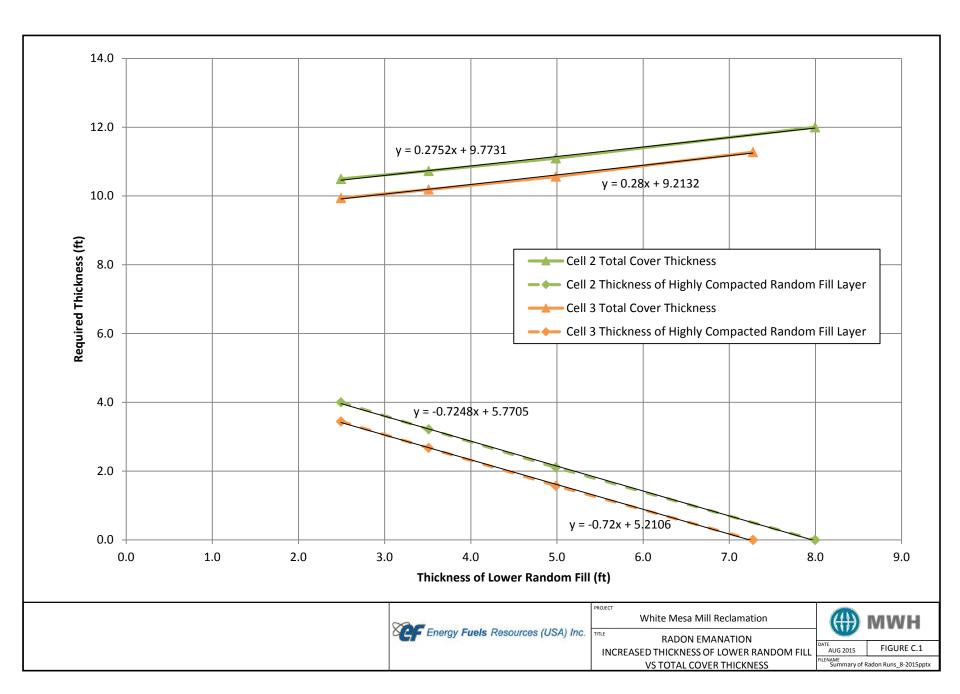
Material	Diffusion Coefficient (cm ² /s)
Erosion Protection (rock mulch)	0.0254
Random Fill (low compaction water storage, rooting zone)	0.0225
Random Fill (high compaction)	0.0160
Random Fill (in place, low compaction, platform fill)	0.0260
Tailings	0.0288

C.3 MODEL RESULTS

The radon emanation modeling results show that the designed cover systems presented in Table C.5 will reduce the rate of radon emanation to values below the limit of 20 picocuries per square meter per second (pCi/m²-s) averaged over the entire area of the tailings impoundments, which is the regulatory criterion (Utah Administrative Code, Rule 313-24). The RADON model output is provided in Attachment C.3.

	Cover Thickness (ft)						
Cover Layer	Cell 2	Cell 3	Cells 4A/4B				
Erosion Protection (rock mulch or topsoil)	0.5	0.5	0.5				
Random Fill (low compaction water storage, rooting zone)	3.5	3.5	3.5				
Random Fill (high compaction)	4.0	3.5	3.0				
Random Fill (in place, low compaction, platform fill)	2.5	2.5	2.5				
Total Cover Thickness	10.5	10.0	9.5				

Table C.5. Summary of Results


C.4 IMPACTS OF INCREASED THICKNESS OF RANDOM FILL

Radon modeling as discussed above assumed that the lower layer of random fill was placed at 80 percent of standard Proctor compaction, and had a thickness of 2.5 feet (assuming top 6 inches can be compacted to 95 percent of standard Proctor density prior to placement of additional fill). However, there are some areas within Cells 2 and 3 which show thicknesses of existing random fill greater than 3.0 feet. Additional modeling was performed to determine the minimum thickness of highly compacted random fill required in order to meet regulatory criterion to limit the radon emanation rate through the top of the cover to 20 pCi/m²-s. This modeling indicates that for every extra foot of low-compaction random fill (80 percent standard Proctor compaction), the highly compacted random fill layer (95 percent standard Proctor compaction) can be reduced in thickness by approximately 0.75 feet. This trend is shown in Figure C.1. The RADON model output is provided in Attachment C.4.

C.5 REFERENCES

- Advanced Terra Testing (ATT), 2010. Denison White Mesa Project, Job No. 2521-53, Laboratory Testing for Borrow Stockpiles. October.
- Chen and Associates, Inc., 1978. Earth Lined Tailings Cells, White Mesa Uranium Project, Blanding, Utah, Report prepared for Energy Fuels Nuclear, Inc., July 18.
- Chen and Associates, Inc., 1979. Soil Property Study, Proposed Tailings Retention Cells, White Mesa Uranium Project, Blanding, Utah, Report prepared for Energy Fuels Nuclear, Inc. January 23.
- Chen and Associates, Inc., 1987. Physical Soil Data, White Mesa Project, Blanding Utah, Report prepared for Energy Fuels Nuclear, Inc.
- Denison Mines USA Corporation (Denison), 2009. Reclamation Plan, White Mesa Mill, Blanding Utah, Revision 4.0, November.
- Denison Mines USA Corporation (Denison), 2010. Revised Infiltration and Contaminant Transport Modeling Report, White Mesa Mill, Blanding, Utah, March.
- Energy Fuels Resources (USA), Inc. (EFRI), 2012. Responses to Interrogatories Round 1 for Reclamation Plan, Revision 5.0, March 2012. August 15.

- International Uranium Corporation (IUC), 2000. Reclamation Plan, White Mesa Mill, Blanding, Utah, Source Material License No. SUA-1358, Docket No. 40-8681, Revision 3.0. July.
- Knight Piesold, 1999. Radon Emanation Calculations (Revised). Technical Memorandum from Roman Popielak and Pete Duryea to File 1626B. April 15.
- MWH Americas, Inc. (MWH), 2011. Updated Tailings Cover Design. Prepared for Denison Mines (USA) Corp. September.
- MWH Americas, Inc. (MWH), 2015. White Mesa Mill Tailings Data Analysis Report. Prepared for Energy Fuels Resources (USA) Inc. April.
- Rogers & Associates Engineering Corporation, 1988. Two separate letters prepared by Renee Y. Bowser for C.O. Sealy of Umetco Minerals Corporation. March 4 and May 9.
- Rogers, V.C., and K.K. Nielson. 1991. Correlations for Predicting Air Permeabilities and Rn- 222 Diffusion Coefficients of Soils, Health Physics (61) 2.
- TITAN Environmental Corporation (Titan), 1996. Tailings Cover Design, White Mesa Mill, Blanding Utah, Report prepared for Energy Fuels Nuclear, Inc. September.
- University of Wisconsin-Madison (UWM), Wisconsin Geotechnics Laboratory, 2012. Compaction and Hydraulic Properties of Soils from Banding, Utah. Geotechnics Report NO. 12-41 by C.H. Benson and X. Wang. July 24.
- U.S. Nuclear Regulatory Commission (NRC), 1984. Radon Attenuation Handbook for Uranium Mill Tailings Cover Design, NUREG/CR-3533.
- U.S. Nuclear Regulatory Commission (NRC), 1989. Calculation of Radon Flux Attenuation by Earthen Uranium Mill Tailings Covers, Regulatory Guide 3.64.
- U.S. Nuclear Regulatory Commission (NRC), 2003. Standard Review Plan for the Review of a Reclamation Plan for Mill Tailings Sites Under Title II of the Uranium Mill Tailings Radiation Control Act of 1978. Final Report. NUREG-1620, Rev. 1. June.
- Western Colorado Testing, Inc., 1999a. Soil Sample Testing Results for On-Site Random Fill and Clay Stockpiles, prepared for International Uranium (USA) Corporation. May.
- Western Colorado Testing, Inc., 1999b. Report of Soil Sample Testing of Tailings Collected from Cell 2 and Cell 3, Prepared for International Uranium (USA) Corporation. May 4.

ATTACHMENT C.1

RADIUM-226 ESTIMATION TABLES

Energy Fuels Resources (USA) Inc.
White Mesa Mill Site, Summary of Processed Ores and Alternate Feeds

			Total Mass Ores		Ra-226 Activity	Th-230 Activity	
Material			Processed		Conc.ª	Conc. ^b	
Category/Location	Origin/ Description	Dates	(tons)	%U ₃ O ₈	(pCi/g)	(pCi/g)	Reference/Comments
Processed Ores							
Natural Ores	Arizona Strip Ores	1980 - 2000	1,000,000	0.55	1546.6	1546.6	Total quantity for both ores from Denison (2009, 2011), ore grades and quantity breakdown from Roberts (2012b)
	Colorado Plateau Ores	1980 - 2000	2,840,536	0.25	703.0	703.0	Total quantity for both ores from Denison (2009, 2011), ore grades and quantity breakdown from Roberts (2012b)
Pandora		2008-2011	231,191	0.218	613.0		Data provided from D. Turk (2012a)
Daneros		2010-2011	71,287	0.269	756.4		Data provided from D. Turk (2012a)
Beaver		2010-2011	90,280	0.174	489.3		Data provided from D. Turk (2012a)
Arizona 1		2010-2011	41,863	0.608	1709.7	1709.7	Data provided from D. Turk (2012a)
Sunday		2008-2011	20,251	0.178	500.5	500.5	Data provided from D. Turk (2012a)
West Sunday		2008-2010	79,744	0.157	441.5	-	Data provided from D. Turk (2012a)
Topaz		2008-2010	16,869	0.128	359.9	359.9	Data provided from D. Turk (2012a)
St. Jude		2008-2010	29,572	0.167	469.6	469.6	Data provided from D. Turk (2012a)
Tony M		2008-2009	189,876	0.131	368.4		Data provided from D. Turk (2012a)
Dawn Mining		2009-2010	2,875	0.456	1282.3	1282.3	Data provided from D. Turk (2012a)
Carnation		2009-2010	5,584	0.166	466.8	466.8	Data provided from D. Turk (2012a)
Purchased Ore		2010-2011	18,008	0.146	410.6	410.6	Data provided from D. Turk (2012a)
Humbug Cressler		2011	118	0.044	123.7	123.7	Data provided from D. Turk (2012a)
Alternate Feeds							
Linde	Soil	1996-1999, 2002-2003, 2007	258,992		33	133	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a,2012c). Activities est. from Turk (2012b).
Ashland 1	Soil	1996-1999, 2002-2003	317,831		91.3	1849	Date range est. from Denison (2011) and Roberts (2012c). Quantities and activities est. from Roberts (2012a,2012c).
Heritage	Monazite sands	1996-1999, 2002-2003, 2007	7,374		19.4	10.6	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a,2012c). Activities est. from Turk (2012b).
Cabot	Tantalum residues	1996-1999	16,828		772	118	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a,2012c). Activities est. from Turk (2012b).
Ashland 2	Soil	1996-1999	43,981		91.3	1849	Date range est. from Denison (2011) and Roberts (2012c). Quantities and activities est. from Roberts (2012a,2012c).
Cameco	KF product	1996-1999	1,966		0.6	5.3	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a,2012c). Activities est. from Turk (2012b).
Allied Signal/Honeywell	Calcium Fluoride	1996-1997	2,343		989	23800	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a,2012c). Activities est. from Turk (2012b).
Cameco	Phosph. regen. product	1996-1999	557		2.70	2.10	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a,2012c). Activities est. from Turk (2012b).
Cameco	Calcined product	1996-1999	2,197		1040	9170	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a,2012c). Activities est. from Turk (2012b).
Allied Signal	KOH solution recovery	1996-1999	1,526		989	0.00	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a,2012c). Activities est. from Harold (2012a) and Turk (2012b).
Rhone-Poulenc	Uranyl nitrate hexahydrate	1996-1997	17		156	2550	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a,2012c). Activities est. from Harold (2012a) and Turk (2012b).
Cameco	UF4 with filter ash	1996-1999	10		156	2550	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a,2012c). Activities est. from Turk (2012b).
Nev. Test Site	Cotter Concentrate	1996-1997	420		3590	585000	Date range est. from Denison (2011) and Roberts (2012c). Quantities and activities est. from Roberts (2012a,2012c).
Molycorp		2002-2003, 2007	11,689		38.6	268.0	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a,2012c). Activities est. from Turk (2012b).
Cabot	Tantalum residues	2011	8,700		772	118	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a,2012c). Activities est. from Turk (2012b).
Cameco	UF4	2009-2010	462		156	2550	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a,2012c). Activities est. from Turk (2012b).
Allied Signal/Honeywell	Calcium Fluoride	2011	1,969		989	23800	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a,2012c). Activities est. from Turk (2012b).
FMRI (Fansteel)		2011	1,369		236	4.9	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a,2012c). Activities est. from Turk (2012b).

Notes:

^aValues for ores estimated using method in NRC Reg. Guide 3.64 (1989) of multiplying the ore grade by 2812 pCi/g.

^bValues for thorium estimated as Ra-226 values.

References:

Denison Mines USA Corporation (Denison), 2009. Reclamation Plan, White Mesa Mill, Blanding Utah, Revision 4.0, November.

Denison Mines USA Corporation (Denison), 2011. Reclamation Plan, White Mesa Mill, Blanding Utah, Revision 5.0, September.

Roberts, H., 2012a. Electronic communication including files "InvThNov00.xls and Inventory Umass in tails xls" from Harold Roberts, Denison Mines (USA) Corp., to Melanie Davis, MWH Americas, Inc., July 20.

Roberts, H., 2012b. Personal communication from Harold Roberts, Denison Mines (USA) Corp., to Melanie Davis, MWH Americas, Inc., June 21.

Roberts, H., 2012c. Electronic communication including file "Alternate Feed Tons.pdf" and personal communication from Harold Roberts, Denison Mines (USA) Corp., to Melanie Davis, MWH Americas, Inc., July 24.

Turk, D., 2012a. Electronic communication including file "Ore Numbers.pdf" from David Turk, Denison Mines (USA) Corp., to Melanie Davis, MWH Americas, Inc., June 8.

Turk, D., 2012b. Electronic communication including file "DAC s Calculations 2012_rev6-29-12" from David Turk, Denison Mines (USA) Corp., to Melanie Davis, MWH Americas, Inc., June 29.

Energy Fuels Resources (USA) Inc. Estimation of Cell 2 Ra-226 and Th-230 Activity Concentrations for Tailings

Material Category/Location	Origin/ Description	Dates	Total Mass Ores Processed (tons)	Total Mass Ore Processed for Cell 2 ^a (tons)		Ra-226 Activity Conc. ^b (pCi/g)	Th-230 Activity Conc. [°] (pCi/g)	Reference/Comments
Processed Ores								
Natural Ores	Arizona Strip Ores	1980 - 2000	1,000,000	598,875	0.55	1547	1547	Total quantity for both ores from Denison (2009, 2011), ore grades and quantity breakdown from Roberts (2012b)
Natural Ores	Colorado Plateau Ores	1980 - 2000	2,840,536	1,701,125	0.25	703	703	Total quantity for both ores from Denison (2009, 2011), ore grades and quantity breakdown from Roberts (2012b
			Total Tons	2.300.000	Weighted Ave.	923	923	

Notes:

^cEstimated from total tons of tailings to Cell 2 from Denison (2009), Attachment E. Estimated mass is for ore processed. Material placed in Cell 2 are only those listed in the table (Roberts, 2012c).

^bValues for ores estimated using method in NRC Reg. Guide 3.64 (1989) of multiplying the ore grade by 2812 pCi/g.

^cValues for thorium estimated as Ra-226 values.

References:

Denison Mines USA Corporation (Denison), 2009. Reclamation Plan, White Mesa Mill, Blanding Utah, Revision 4.0, November.

Denison Mines USA Corporation (Denison), 2011. Reclamation Plan, White Mesa Mill, Blanding Utah, Revision 5.0, September.

Roberts, H., 2012b. Personal communication from Harold Roberts, Denison Mines (USA) Corp., to Melanie Davis, MWH Americas, Inc., June 21.

Roberts, H., 2012c. Electronic communication including file "Alternate Feed Tons.pdf" and personal communication from Harold Roberts, Denison Mines (USA) Corp., to Melanie Davis, MWH Americas, Inc., July 24.

Energy Fuels Resources (USA) Inc.

Estimation of Cell 3 Ra-226 and Th-230 Activity Concentrations for Tailings

			Total Mass	Total Mass Ore		Ra-226		Th-230		
			Ores	Processed		Activity		Activity		
Material			Processed	for Cell 3 ^a		Conc. ^a		Conc. ^b		
Category/Location	Origin/ Description	Dates	(tons)	(tons)	%U ₃ O ₈	(pCi/g)		(pCi/g)		Reference/Comments
Processed Ores										
Natural Ores	Arizona Strip Ores	1980 - 2000	1,000,000	401,125	0.55	1546.6	253.15	1546.6	253.15	Total quantity for both ores from Denison (2009, 2011), ore grades and quantity breakdown from Roberts (2012b)
	Colorado Plateau Ores	1980 - 2000	2,840,536	1,139,411	0.25	703.0	326.85	703.0	326.85	Total quantity for both ores from Denison (2009, 2011), ore grades and quantity breakdown from Roberts (2012b)
Pandora		2008	80,046	80,046	0.218	613.0	20.02	613.02	20.02	Data provided from D. Turk (2012a)
Sunday		2008	12,066	12,066	0.178	500.5	2.46	500.54	2.46	Data provided from D. Turk (2012a)
West Sunday		2008	53,613	53,613	0.157	441.5	9.66	441.48	9.66	Data provided from D. Turk (2012a)
Topaz		2008	8,746	8,746	0.128	359.9	1.28	359.94	1.28	Data provided from D. Turk (2012a)
St. Jude		2008	15,140	15,140	0.167	469.6	2.90	469.60	2.90	Data provided from D. Turk (2012a)
Tony M		2008	74,802	74,802	0.131	368.4	11.24	368.37	11.24	Data provided from D. Turk (2012a)
Alternate Feeds										
Linde	Soil	1996-1999, 2002-2003, 2007	258,992	258,992		33	3.49	133	14.06	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a,2012c). Activities est. from Turk (2012b).
Ashland 1	Soil	1996-1999, 2002-2003	317,831	317,831		91.3	11.84	1849	239.80	Date range est. from Denison (2011) and Roberts (2012c). Quantities and activities est. from Roberts (2012a,2012c).
Heritage	Monazite sands	1996-1999, 2002-2003, 2007	7,374	7,374		19.4	0.06	10.6	0.03	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a,2012c). Activities est. from Turk (2012b).
Cabot	Tantalum residues	1996-1999	16,828	16,828		772	5.30	118	0.81	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a, 2012c). Activities est. from Turk (2012b).
Ashland 2	Soil	1996-1999	43,981	43,981		91.3	1.64	1849	33.18	Date range est. from Denison (2011) and Roberts (2012c). Quantities and activities est. from Roberts (2012a,2012c).
Cameco	KF product	1996-1999	1,966	1,966		0.6	0.00	5.3	0.00	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a,2012c). Activities est. from Turk (2012b).
Allied Signal/Honeywell	Calcium Fluoride	1996-1997	2,343	2,343		989	0.95	23800	22.75	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a,2012c). Activities est. from Turk (2012b).
Cameco	Phosph. regen. product	1996-1999	557	557		2.70	0.00	2.10	0.00	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a, 2012c). Activities est. from Turk (2012b).
Cameco	Calcined product	1996-1999	2,197	2,197		1040	0.93	9170	8.22	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a,2012c). Activities est. from Turk (2012b).
Allied Signal	KOH solution recovery	1996-1999	1,526	1,526		989	0.62	0.00	0.00	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a, 2012c). Activities est. from Harold (2012a) and Turk (2012b).
Rhone-Poulenc	Uranyl nitrate hexahydrate	1996-1997	17	17		156	0.00	2550	0.02	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a, 2012c). Activities est. from Harold (2012a) and Turk (2012b).
Cameco	UF4 with filter ash	1996-1999	10	10		156	0.00	2550	0.01	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a,2012c). Activities est. from Turk (2012b).
Nev. Test Site	Cotter Concentrate	1996-1997	420	420		3590	0.62	585000	100.26	Date range est. from Denison (2011) and Roberts (2012c). Quantities and activities est. from Roberts (2012a,2012c).
Molycorp		2002-2003, 2007	11,689	11,689		38.6	0.18	268.0	1.28	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a,2012c). Activities est. from Turk (2012b).
			Total Tons	2,450,679	Weighted Ave.	606		1048		

Notes:

^cEstimated from total tons of tailings to Cell 2 and capacity of Cell 3 from Denison (2009), Attachment E. Material placed before 2009 was placed in Cells 2 and 3 (Roberts, 2012c).

^bValues for ores estimated using method in NRC Reg. Guide 3.64 (1989) of multiplying the ore grade by 2812 pCi/g.

Values for thorium estimated as Ra-226 values.

References:

Denison Mines USA Corporation (Denison), 2009. Reclamation Plan, White Mesa Mill, Blanding Utah, Revision 4.0, November.

Denison Nimes USA Corporation (Denison), 2007. Reclamation F and Yinte measuring Usari, Yerstaon Yao, November. Denison Nimes USA Corporation (Denison), 2017. Reclamation Plan, White Mess Mill, Blanding Usari, Revision 5.0, September. Roberts, H., 2012a. Electronic communication including files 'InvTNov00.xis and Inventory Umass in tails.xis' from Harold Roberts, Denison Mines (USA) Corp., to Melanie Davis, MWH Americas, Inc., July 20. Roberts, H., 2012b. Personal communication including file 'Illemate Feed Tons.pdf' and personal communication from Harold Roberts, Denison Mines (USA) Corp., to Melanie Davis, MWH Americas, Inc., July 20. Roberts, H., 2012b. Electronic communication including file 'Illemate Feed Tons.pdf' and personal communication form Harold Roberts, Denison Mines (USA) Corp., to Melanie Davis, MWH Americas, Inc., July 24.

Turk, D., 2012a. Electronic communication including file "Ore Numbers.pdf" from David Turk, Denison Mines (USA) Corp., to Melanie Davis, MWH Americas, Inc., June 8.

Turk, D., 2012b. Electronic communication including file "DAC s Calculations 2012_rev6-29-12" from David Turk, Denison Mines (USA) Corp., to Melanie Davis, MWH Americas, Inc., June 29.

Energy Fuels Resources (USA) Inc. Estimation of Cell 4A and 4B Ra-226 and Th-230 Activity Concentrations for Tailings

Material Category/Location	Origin/ Description	Dates	Total Mass Ore/Alt. Feed Processed ^a (tons)	%U ₃ O ₈	Ra-226 Activity Conc. ^b (pCi/g)	Th-230 Activity Conc.° (pCi/g)	Reference/Comments
Processed Ores							
Pandora		2009-2011	151,145	0.218	613.0	613.0	Data provided from D. Turk (2012a)
Daneros		2010-2011	71,287	0.269	756.4	756.4	Data provided from D. Turk (2012a)
Beaver		2010-2011	90,280	0.174	489.3	489.3	Data provided from D. Turk (2012a)
Arizona 1		2010-2011	41,863	0.608	1709.7	1709.7	Data provided from D. Turk (2012a)
Sunday		2009-2011	8,185	0.178	500.5	500.5	Data provided from D. Turk (2012a)
West Sunday		2009-2010	26,131	0.157	441.5	441.5	Data provided from D. Turk (2012a)
Topaz		2009-2010	8,123		359.9	359.9	Data provided from D. Turk (2012a)
St. Jude	I	2009-2010	14,432	0.167	469.6	469.6	Data provided from D. Turk (2012a)
Tony M		2009	115,074	0.131	368.4	368.4	Data provided from D. Turk (2012a)
Dawn Mining		2009-2010	2,875	0.456	1282.3	1282.3	Data provided from D. Turk (2012a)
Carnation		2009-2010	5,584	0.166	466.8	466.8	Data provided from D. Turk (2012a)
Purchased Ore	I	2010-2011	18,008		410.6		Data provided from D. Turk (2012a)
Humbug Cressler	I	2011	118	0.044	123.7	123.7	Data provided from D. Turk (2012a)
Alternate Feeds							
Cabot	Tantalum residues	2011	8,700		772	118	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a,2012c). Activities est. from Turk (2012b).
Cameco	UF4	2009-2010	462		156	2550	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a,2012c). Activities est. from Turk (2012b).
Allied Signal/Honeywell	Calcium Fluoride	2011	1,969		989	23800	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a,2012c). Activities est. from Turk (2012b).
FMRI (Fansteel)	I	2011	1,369		236	4.9	Date range est. from Denison (2011) and Roberts (2012c). Quantities est. from Roberts (2012a,2012c). Activities est. from Turk (2012b).
			,	Weighted Ave.	617	695	

Notes:

Current tailings in Cell 4A and future tailings to Cell 4A and 4B are projected to be from ores and alternative feeds similar to those processed after 2008 (Roberts, 2012c).

^bValues for ores estimated using method in NRC Reg. Guide 3.64 (1989) of multiplying the ore grade by 2812 pCi/g.

^cValues for thorium estimated as Ra-226 values.

References:

Denison Mines USA Corporation (Denison), 2009. Reclamation Plan, White Mesa Mill, Blanding Utah, Revision 4.0, November.

Denison Mines USA Corporation (Denison), 2011. Reclamation Plan, White Mesa Mill, Blanding Utah, Revision 5.0, September.

Roberts, H., 2012a. Electronic communication including files "InvThNov00.xls and Inventory Umass in tails.xls" from Harold Roberts, Denison Mines (USA) Corp., to Melanie Davis, MWH Americas, Inc., July 20.

Roberts, H., 2012b. Personal communication from Harold Roberts, Denison Mines (USA) Corp., to Melanie Davis, MWH Americas, Inc., June 21.

Roberts, H., 2012c. Electronic communication including file "Alternate Feed Tons.pdf" and personal communication from Harold Roberts, Denison Mines (USA) Corp., to Melanie Davis, MWH Americas, Inc., July 24.

Turk, D., 2012a. Electronic communication including file "Ore Numbers.pdf" from David Turk, Denison Mines (USA) Corp., to Melanie Davis, MWH Americas, Inc., June 8.

Turk, D., 2012b. Electronic communication including file "DAC s Calculations 2012_rev6-29-12" from David Turk, Denison Mines (USA) Corp., to Melanie Davis, MWH Americas, Inc., June 29.

Energy Fuels Resources (USA) Inc. White Mesa Mill Tailings Cell 2 Calculation of Ra-226 Concentrations Due to Future Decay of Th-230

The RA-226 concentration at various times in the future depends on both the decay of the Ra-226 currently present and the ingrowth from Th-230. The Ra-226 decays with a half-life of 1602 years. The ingrowth is also a function of the Ra-226 half-life (1602 years) and the Th-230 half-life (77,000 years).

A (Ra-226) at a time t (years) = [A (Ra-226) at t=0][exp(-0.693t/1602 years)]

A (Ra-226 from decay of Th-230 at time t (years)) = [A (Th-230)][1-exp(-0.693t/1602 years)][exp(-0.693t/77,000 years)]

Residual Ra-226 at time t

Time	exp (-0.693t/1602)	Initial Ra-226 Concentratio	n (pCi/g) Ra-226 Concentration at time t (pCi/g)
(years)		Cell 2	Cell 2
() 1.000	923	923
100	0.958	923	884
200	0.917	923	847
500	0.805	923	743
1000	0.649	923	599

Ra-226 Concentration from Ingrowth Due to Decay of Th-230

Time	exp (-0.693t/1602)	Initial Th-230 Concentration (pCi/g)	Ra-226 Concentration at time t (pCi/g)	exp (-0.693t/77000)
(years)		S.I.	S.I.	
C	1.000	923	0	1.000
100	0.958	923	39	0.999
200	0.917	923	76	0.998
500	0.805	923	179	0.996
1000	0.649	923	321	0.991

Total Ra-226 Concentration at Time t (original Ra-226 and Ra-226 from Th-230 decay)

Time	Total Ra-226 Concentration (pCi/g)
(years)	avg. S.I.	
0	923	
100	923	
200	923	
500	922	
1000	920	

Energy Fuels Resources (USA) Inc. White Mesa Mill Tailings Cell 3 Calculation of Ra-226 Concentrations Due to Future Decay of Th-230

The RA-226 concentration at various times in the future depends on both the decay of the Ra-226 currently present and the ingrowth from Th-230. The Ra-226 decays with a half-life of 1602 years. The ingrowth is also a function of the Ra-226 half-life (1602 years) and the Th-230 half-life (77,000 years).

A (Ra-226) at a time t (years) = [A (Ra-226) at t=0][exp(-0.693t/1602 years)]

A (Ra-226 from decay of Th-230 at time t (years)) = [A (Th-230)][1-exp(-0.693t/1602 years)][exp(-0.693t/77,000 years)]

Residual Ra-226 at time t

Time	Time exp (-0.693t/1602)		-226 Concentration (pCi/g) Ra	a-226 Concentration at time t (pCi/g)
(years)		Cell 3	Ce	ell 3
() 1.0	000 606	;	606
10	0.9	958 606	i	580
20	0.9	917 606	i	556
50	3.0 0.8	305 606	i	488
100	0.0	606 606	;	393

Ra-226 Concentration from Ingrowth Due to Decay of Th-230

Time	exp (-0.693t/1602)	Initial Th-230 Concentration (pCi/g)	Ra-226 Concentration at time t (pCi/g)	exp (-0.693t/77000)
(years)		S.I.	S.I.	
0	1.000	1048	0	1.000
100	0.958	1048	44	0.999
200	0.917	1048	87	0.998
500	0.805	1048	203	0.996
1000	0.649	1048	365	0.991

Total Ra-226 Concentration at Time t (original Ra-226 and Ra-226 from Th-230 decay)

1000	758
500	691
200	642
100	625
0	606
(years)	avg. S.I.
Time	Total Ra-226 Concentration (pCi/g)

Energy Fuels Resources (USA) Inc. White Mesa Mill Tailings Cells 4A/B Calculation of Ra-226 Concentrations Due to Future Decay of Th-230

The RA-226 concentration at various times in the future depends on both the decay of the Ra-226 currently present and the ingrowth from Th-230. The Ra-226 decays with a half-life of 1602 years. The ingrowth is also a function of the Ra-226 half-life (1602 years) and the Th-230 half-life (77,000 years).

A (Ra-226) at a time t (years) = [A (Ra-226) at t=0][exp(-0.693t/1602 years)]

A (Ra-226 from decay of Th-230 at time t (years)) = [A (Th-230)][1-exp(-0.693t/1602 years)][exp(-0.693t/77,000 years)]

Residual Ra-226 at time t

Time	exp (-0.693t/1602)	Initial Ra-226 Concentration (p	Ci/g) Ra-226 Concentration at time t (pCi/g)
(years)		Cell 4A/B	Cell 4A/B
() 1.000	617	617
100	0.958	617	591
200	0.917	617	566
500	0.805	617	497
1000	0.649	617	400

Ra-226 Concentration from Ingrowth Due to Decay of Th-230

Time	exp (-0.693t/1602)	Initial Th-230 Concentration (pCi/g)	Ra-226 Concentration at time t (pCi/g)	exp (-0.693t/77000)
(years)		S.I.	S.I.	
() 1.000	695	0	1.000
100	0.958	695	29	0.999
200	0.917	695	57	0.998
500	0.805	695	135	0.996
1000	0.649	695	242	0.991

Total Ra-226 Concentration at Time t (original Ra-226 and Ra-226 from Th-230 decay)

1000	642
500	632
200	623
100	620
0	617
(years)	avg. S.I.
Time	Total Ra-226 Concentration (pCi/g

ATTACHMENT C.2

COVER MATERIAL PARAMETERS ESTIMATION TABLE

ENERGY FUELS RESOURCES (USA) INC. WHITE MESA MILL Summary of Laboratory Testing Results for Borrow Stockpiles

Borrow Stockpile ID	Estimated Stockpile Volume ¹ (cy)	Field Investigation Date	Material Description	USCS	Sample ID	Sample Depth (ft)		Atterberg Limits ² LL/PL/PI (%)	PI	Specific Gravity	% Gravel	%Sand	%Silt	% Clay	% Fines	Max. Density (pcf)	Opt. Moist. Cont. (%)	Ksat (cm/s)	15bar Grav. Water Content (%)	Soil Group ⁴
					•		(%)													•
E1	15,900	Apr-2012	Topsoil (Sandy Silty Clay)	CL-ML	E1-A	0 - 3		23/18/5	5	2.61	0	41	43	16	59	118	11	1.3 x 10 ⁻⁴	5.2	Topsoil
E2	92,000	Oct-2010	Silty Sand/Clayey Sand	SM	A	5	4.5	NP	NP		0.5	77.1	13.5	8.9	22					В
50	46.000			SC	B	12	5.7	23.3/11.2/12.1	12.1	2.64	13.1	50.3	22.6	14.0	37			5	10.0	
E3	16,800	· ·	Clay with Sand	СН	E3-A	0 - 3		54/24/30	30	2.53	0	23	29	48	77	105	19	9.5 x 10 ⁻⁵	13.6	F
E4	66,600		Sandy Clay	CL	A	5	8.6	30.3/14.4/15.9	15.9		0.0	41.2	39.1	19.7	59					U
E5	68,800		Sandy Clay	CL	A	6	9.0	33.2/14.3/18.9	18.9		0.0	35.5	38.1	26.4	65					F
	,		Clay with Sand	СН	E5-B	0 - 3		51/24/27	27	2.56	2	15	36	47	83					F
E6	100,700		Clay	CL	A	5	14.4	40.2/15.8/24.4	24.4	2.74	0.1	17.7	49.5	32.7	82					F
E7	74,900	Oct-2010	Sandy Clay	CL	A	6	5.7	26.2/16.3/9.9	9.9		0.0	30.2	56.1	13.7	70					U
E8	227,300		Sandy Clay	CL	A	2	7.4	23.0/12.0/11.0	11.0		0.0	47.0	36.9	16.1	53					U
			Gravel with Clay and Sand	GW-GC	E8-B	0 - 4		27/16/11	11	2.63	40.0	31.0	18.0	11.0	29	125	11		6.0	В
W1	85,700		Sandy Clay	CL	A	5	8.8	32.1/14.5/17.6	17.6		0.0	40.6	37.6	21.8	59					U
		Oct-2010	Sandy Clay	CL	A	surface	8.5	28.1/13.1/15.0	15.0		0.2	41.5	42.5	15.8	58					U
W2	584,500	Apr-2012	Clayey Sand with Gravel	SC	W2-A	0 - 3		24/14/10	10	2.62	30	45	15.0	10.0	25				6.9	В
		Apr-2012	Silty Clayey Sand with Gravel	SC-SM	W2-B	0 - 5		18/13/5	5	2.63	41	45	9.0	5.0	14	128	9	1.5 x 10 ⁻³	3.5	В
W3	84,800	Oct-2010	Topsoil (Sandy Silty Clay)	CL-ML	А	surface	4.3	20.9/16.2/4.7	4.7		0.2	44.2	39.2	16.4	56					Topsoil
W4	90,000	Oct-2010	Topsoil (Sandy Silt)	ML	A	5	5.3	21.9/18.0/3.9	3.9		0.0	32.6	54.3	13.1	67					Topsoil
VV 1	50,000	Apr-2012	Topsoil (Sandy Silty Clay)	CL-ML	W4-B	0 - 4		26/19/7	7	2.60	0	38	44	18	62					Topsoil
W5	2,001,160	Apr-2012	Sandy Clay	CL	W5-A	0 - 4		27/18/9	9	2.61	1	49	32	18	50				7.0	U
W5	2,001,100	Apr 2012	Clayey Sand with Gravel	SC	W5-B	0 - 4		24/15/9	9	2.63	29	44	19	8	27	122	10	1.1 x 10 ⁻³	3.6	В
W6	93,400	Oct-2010	Topsoil (Sandy Silty Clay)	CL-ML	А	surface	3.3	23.1/16.5/6.6	6.6		0.0	34.3	51.8	13.9	66					Topsoil
W7	39,500	Oct-2010	Sandy Clay	CL	А	5	8.7	28.0/10.6/17.3	17.3	2.67	0.0	43.8	43.1	13.1	56					U
W8	178,411	Apr-2012	Silty Sand with Gravel	SM	W8-A	0 - 3		NP	NP	2.64	35	51	9	5	14	117	13	1.2 x 10 ⁻³	5.0	В
VVO	1/0,411	Api-2012	Silty Sand with Gravel	SM	W8-B	0 - 4		NP	NP	2.66	32	40	18	10	28				6.4	В
14/0	CO 250	Oct-2010	Sandy Clay	CL	А	surface	4.4	25.9/12.3/13.5	13.5		0.0	37.4	45.2	17.4	63					U
W9	60,250	Apr-2012	Sandy Clay	CL	W9-B	0 - 4		28/16/12	12	2.63	6	44	35	15	50	115	14	4.1 x 10 ⁻⁴	7.7	U

Estimation of Cover Material Properties Used in Model

				Ave. Max.		Ave. 15bar
				Dry Density	Ave. Specific	Grav. Water
Soil Group ⁴	Volume (cy)	Total Vol (cy)	Percent of Total Volume	(pcf)	Gravity	Content (%)
Group B	1,728,308	3,596,621	48.1%	123	2.64	5.2
Group U	1,682,013	3,596,621	46.8%	115	2.64	7.3
Group F	186,300	3,596,621	5.2%	105	2.61	13.6
			Weighted Ave.	118	2.63	6.7

Notes:

1. Volumes estimated using 2009 topography and assuming a relatively flat bottom surface, except for stockpiles W5, W8 and W9. The volumes for stockpiles W8 and W9 were estimated by comparing the 2011 versus 2009 topography.

The volume for stockpile W5 was estimated using a combination of both methods.

2. LL = Liquid Limt, PL = Plastic Limit, PI = Plasticity Index (PI = LL-PL)

3. Gravel = 4.75 mm to 75 mm, Sand = 0.075 mm to 4.75 mm, Fines: Silt = 0.075 mm to 0.002 mm, Clay = less than 0.002 mm

4. Group B (broadly graded), Group U (uniformly graded), and Group F (fine textured) based on evaluation of gradations and Benson (2012). See Attachment B of EFRI (2012) for gradations and laboratory reports.

References:

Benson, C., 2012. Electronic communication from Craig Benson, University of Wisconsin-Madison, to Melanie Davis, MWH Americas, Inc., regarding evaluation of gradations performed for potential cover soils for White Mesa, May 20. Energy Fuels Resouces (USA) Inc. (EFRI), 2012. Response to Interrogatories - Round 1 for Reclamation Plan, revision 5.0., March 2012. August 15.

ATTACHMENT C.3

RADON MODEL OUTPUT

----*****! RADON !*****-----

Version 1.2 - MAY 22, 1989 - G.F. Birchard tel.# (301)492-7000 U.S. Nuclear Regulatory Commission Office of Research

RADON FLUX, CONCENTRATION AND TAILINGS COVER THICKNESS ARE CALCULATED FOR MULTIPLE LAYERS

OUTPUT FILE: Cell2ts

DESCRIPTION: Cell 2 Cover (topsoil on surface)

CONSTANTS

RADON DECAY CONSTANT	.0000021	s^-1
RADON WATER/AIR PARTITION COEFFICIENT	.26	
DEFAULT SPECIFIC GRAVITY OF COVER & TAILIN	IGS	2.65

GENERAL INPUT PARAMETERS

LAYERS OF COVER AND TAILINGS	5	
NO LIMIT ON RADON FLUX		
LAYER THICKNESS NOT OPTIMIZED		
DEFAULT SURFACE RADON CONCENTRATION	0	pCi l^-1
SURFACE FLUX PRECISION	.001	pCi m^-2 s^-1

LAYER INPUT PARAMETERS

LAYER 1 Tailings

500	Cm
.45	
1.5	g cm^-3
923	pCi/g^-l
.2	
1.292D-03	pCi cm^-3 s^-1
б	00
.200	
.0288	cm^2 s^-1
	.45 1.5 923 .2 1.292D-03 6 .200

THICKNESS	76	Cm
POROSITY	.43	
MEASURED MASS DENSITY	1.5	g cm^-3
MEASURED RADIUM ACTIVITY	0	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.35	
CALCULATED SOURCE TERM CONCENTRATION	0.000D+00	pCi cm^-3 s^-1
WEIGHT % MOISTURE	6.7	00
MOISTURE SATURATION FRACTION	.234	
MEASURED DIFFUSION COEFFICIENT	.026	cm^2 s^-1

LAYER 3 Compacted Random Fill

THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	122 .32 1.8 0 .35 0.000D+00 6.7 .377 .016	cm g cm ⁻³ pCi/g ⁻¹ pCi cm ⁻³ s ⁻¹ % cm ² s ⁻¹
LAYER 4 ET Cover		
THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT LAYER 5 TOPSOIL	107 .39 1.6 0 .35 0.000D+00 6.7 .275 .0225	cm g cm ⁻³ pCi/g ⁻¹ pCi cm ⁻³ s ⁻¹ % cm ² s ⁻¹
THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	15 .38 1.6 0 .35 0.000D+00 5.2 .219 .0254	cm g cm ⁻³ pCi/g ⁻¹ pCi cm ⁻³ s ⁻¹ % cm ² s ⁻¹

DATA SENT TO THE FILE `RNDATA' ON DRIVE A:

Ν	F01	CN1	ICOST	CRITJ	ACC	
5	-1.000D+00	0.000D+00	0	0.000D+00	1.000D-03	
LAYER	DX	D	P	Q	XMS	RHO
1	5.000D+02	2.880D-02	4.500D-01	1.292D-03	2.000D-01	1.500
2	7.600D+01	2.600D-02	4.300D-01	0.000D+00	2.337D-01	1.500
3	1.220D+02	1.600D-02	3.200D-01	0.000D+00	3.769D-01	1.800
4	1.070D+02	2.250D-02	3.900D-01	0.000D+00	2.749D-01	1.600
5	1.500D+01	2.540D-02	3.800D-01	0.000D+00	2.189D-01	1.600

BARE SOURCE FLUX FROM LAYER 1: 6.713D+02 pCi m^-2 s^-1

LAYER	THICKNESS (cm)	EXIT FLUX (pCi m^-2 s^-1)	EXIT CONC. (pCi l^-1)
1 2	5.000D+02 7.600D+01	2.884D+02 1.094D+02	3.461D+05 2.058D+05
∠ 3	1.220D+01	1.094D+02 3.505D+01	
0			3.071D+04
4	1.070D+02	2.018D+01	2.963D+03
5	1.500D+01	2.000D+01	0.000D+00

----****! RADON !*****-----

Version 1.2 - MAY 22, 1989 - G.F. Birchard tel.# (301)492-7000 U.S. Nuclear Regulatory Commission Office of Research

RADON FLUX, CONCENTRATION AND TAILINGS COVER THICKNESS ARE CALCULATED FOR MULTIPLE LAYERS

OUTPUT FILE: Cell2rm

DESCRIPTION: Cell 2 Cover (rock mulch on surface)

CONSTANTS

RADON DECAY CONSTANT	.0000021	s^-1
RADON WATER/AIR PARTITION COEFFICIENT	.26	
DEFAULT SPECIFIC GRAVITY OF COVER & TAILIN	GS	2.65

GENERAL INPUT PARAMETERS

LAYERS OF COVER AND TAILINGS	5	
NO LIMIT ON RADON FLUX		
LAYER THICKNESS NOT OPTIMIZED		
DEFAULT SURFACE RADON CONCENTRATION	0	pCi l^-1
SURFACE FLUX PRECISION	.001	pCi m^-2 s^-1

LAYER INPUT PARAMETERS

LAYER 1 Tailings

THICKNESS	500	Cm
POROSITY	.45	
MEASURED MASS DENSITY	1.5	g cm ⁻³
MEASURED RADIUM ACTIVITY	923	pCi/g^-1
MEASURED EMANATION COEFFICIENT	.2	
CALCULATED SOURCE TERM CONCENTRATION	1.292D-03	pCi cm^-3 s^-1
WEIGHT % MOISTURE	б	00
MOISTURE SATURATION FRACTION	.200	
MEASURED DIFFUSION COEFFICIENT	.0288	cm^2 s^-1

THICKNESS	76	cm
POROSITY	.43	
MEASURED MASS DENSITY	1.5	g cm^-3
MEASURED RADIUM ACTIVITY	0	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.35	
CALCULATED SOURCE TERM CONCENTRATION	0.000D+00	pCi cm^-3 s^-1
WEIGHT % MOISTURE	6.7	00
MOISTURE SATURATION FRACTION	.234	
MEASURED DIFFUSION COEFFICIENT	.026	cm^2 s^-1

LAYER 3 Compacted Random Fill

THICKNESS	122	Cm
POROSITY	.32	
MEASURED MASS DENSITY	1.8	g cm^-3
MEASURED RADIUM ACTIVITY	0	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.35	
CALCULATED SOURCE TERM CONCENTRATION	0.000D+00	pCi cm^-3 s^-1
WEIGHT % MOISTURE	6.7	00
MOISTURE SATURATION FRACTION	.377	
MEASURED DIFFUSION COEFFICIENT	.016	cm^2 s^-1

LAYER 4 ET Cover

THICKNESS	107	CM
POROSITY	.39	
MEASURED MASS DENSITY	1.6	g cm ⁻³
MEASURED RADIUM ACTIVITY	0	pCi/g^-1
MEASURED EMANATION COEFFICIENT	.35	
CALCULATED SOURCE TERM CONCENTRATION	0.000D+00	pCi cm^-3 s^-1
WEIGHT % MOISTURE	6.7	00
MOISTURE SATURATION FRACTION	.275	
MEASURED DIFFUSION COEFFICIENT	.0225	cm^2 s^-1

LAYER	5	Rock	Mulch

THICKNESS	15	Cm
POROSITY	.35	
MEASURED MASS DENSITY	1.7	g cm^-3
MEASURED RADIUM ACTIVITY	0	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.35	
CALCULATED SOURCE TERM CONCENTRATION	0.000D+00	pCi cm^-3 s^-1
WEIGHT % MOISTURE	4	00
MOISTURE SATURATION FRACTION	.194	
MEASURED DIFFUSION COEFFICIENT	.0256	cm^2 s^-1

DATA SENT TO THE FILE `RNDATA' ON DRIVE A:

N	F01	CN1	ICOST	CRITJ	ACC	
5	-1.000D+00	0.000D+00	0	0.000D+00	1.000D-03	
LAYER	DX	D	P	Q	XMS	RHO
1	5.000D+02	2.880D-02	4.500D-01	1.292D-03	2.000D-01	1.500
2	7.600D+01	2.600D-02	4.300D-01	0.000D+00	2.337D-01	1.500
3	1.220D+02	1.600D-02	3.200D-01	0.000D+00	3.769D-01	1.800
4	1.070D+02	2.250D-02	3.900D-01	0.000D+00	2.749D-01	1.600
5	1.500D+01	2.560D-02	3.500D-01	0.000D+00	1.943D-01	1.700

BARE SOURCE FLUX FROM LAYER 1: 6.713D+02 pCi m^-2 s^-1

LAYER	THICKNESS (cm)	EXIT FLUX (pCi m^-2 s^-1)	EXIT CONC. (pCi l^-1)
1	5.000D+02	2.884D+02	3.461D+05
2	7.600D+01	1.094D+02	2.058D+05
3	1.220D+02	3.501D+01	3.077D+04
4	1.070D+02	2.007D+01	3.107D+03
5	1.500D+01	1.988D+01	0.000D+00

----****! RADON !*****-----

Version 1.2 - MAY 22, 1989 - G.F. Birchard tel.# (301)492-7000 U.S. Nuclear Regulatory Commission Office of Research

RADON FLUX, CONCENTRATION AND TAILINGS COVER THICKNESS ARE CALCULATED FOR MULTIPLE LAYERS

OUTPUT FILE: Cell3ts

DESCRIPTION: Cell 3 Cover (topsoil on surface)

CONSTANTS

RADON DECAY CONSTANT	.0000021	s^-1
RADON WATER/AIR PARTITION COEFFICIENT	.26	
DEFAULT SPECIFIC GRAVITY OF COVER & TAILIN	GS	2.65

GENERAL INPUT PARAMETERS

LAYERS OF COVER AND TAILINGS	5	
NO LIMIT ON RADON FLUX		
LAYER THICKNESS NOT OPTIMIZED		
DEFAULT SURFACE RADON CONCENTRATION	0	pCi l^-1
SURFACE FLUX PRECISION	.001	pCi m^-2 s^-1

LAYER INPUT PARAMETERS

LAYER 1 Tailings

THICKNESS	500	Cm
POROSITY	.45	
MEASURED MASS DENSITY	1.5	g cm^-3
MEASURED RADIUM ACTIVITY	758	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.2	
CALCULATED SOURCE TERM CONCENTRATION	1.061D-03	pCi cm^-3 s^-1
WEIGHT % MOISTURE	б	olo
MOISTURE SATURATION FRACTION	.200	
MEASURED DIFFUSION COEFFICIENT	.0288	cm^2 s^-1

THICKNESS	76	cm
POROSITY	.43	
MEASURED MASS DENSITY	1.5	g cm^-3
MEASURED RADIUM ACTIVITY	0	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.35	
CALCULATED SOURCE TERM CONCENTRATION	0.000D+00	pCi cm^-3 s^-1
WEIGHT % MOISTURE	6.7	00
MOISTURE SATURATION FRACTION	.234	
MEASURED DIFFUSION COEFFICIENT	.026	cm^2 s^-1

LAYER 3 Compacted Random Fill

THICKNESS	107	Cm
POROSITY	.32	
MEASURED MASS DENSITY	1.8	g cm^-3
MEASURED RADIUM ACTIVITY	0	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.35	
CALCULATED SOURCE TERM CONCENTRATION	0.000D+00	pCi cm^-3 s^-1
WEIGHT % MOISTURE	6.7	00
MOISTURE SATURATION FRACTION	.377	
MEASURED DIFFUSION COEFFICIENT	.016	cm^2 s^-1

LAYER	4	ET	Cover	

THICKNESS	107	Cm
POROSITY	.39	
MEASURED MASS DENSITY	1.6	g cm^-3
MEASURED RADIUM ACTIVITY	0	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.35	
CALCULATED SOURCE TERM CONCENTRATION	0.000D+00	pCi cm^-3 s^-1
WEIGHT % MOISTURE	6.7	00
MOISTURE SATURATION FRACTION	.275	
MEASURED DIFFUSION COEFFICIENT	.0225	cm^2 s^-1

LAYER 5 Topsoil

THICKNESS	15	Cm
POROSITY	.38	
MEASURED MASS DENSITY	1.6	g cm^-3
MEASURED RADIUM ACTIVITY	0	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.35	
CALCULATED SOURCE TERM CONCENTRATION	0.000D+00	pCi cm^-3 s^-1
WEIGHT % MOISTURE	5.2	00
MOISTURE SATURATION FRACTION	.219	
MEASURED DIFFUSION COEFFICIENT	.0254	cm^2 s^-1

DATA SENT TO THE FILE `RNDATA' ON DRIVE A:

Ν	F01	CN1	ICOST	CRITJ	ACC	
5	-1.000D+00	0.000D+00	0	0.000D+00	1.000D-03	
LAYER	DX	D	P	Q	XMS	RHO
1	5.000D+02	2.880D-02	4.500D-01	1.061D-03	2.000D-01	1.500
2	7.600D+01	2.600D-02	4.300D-01	0.000D+00	2.337D-01	1.500
3	1.070D+02	1.600D-02	3.200D-01	0.000D+00	3.769D-01	1.800
4	1.070D+02	2.250D-02	3.900D-01	0.000D+00	2.749D-01	1.600
5	1.500D+01	2.540D-02	3.800D-01	0.000D+00	2.189D-01	1.600

BARE SOURCE FLUX FROM LAYER 1: 5.513D+02 pCi m^-2 s^-1

LAYER	THICKNESS (cm)	EXIT FLUX (pCi m^-2 s^-1)	EXIT CONC. (pCi l^-1)
1	5.000D+02	2.374D+02	2.838D+05
2	7.600D+01	9.084D+01	1.681D+05
3	1.070D+02	3.427D+01	3.003D+04
4	1.070D+02	1.974D+01	2.898D+03
5	1.500D+01	1.956D+01	0.000D+00

----****! RADON !*****-----

Version 1.2 - MAY 22, 1989 - G.F. Birchard tel.# (301)492-7000 U.S. Nuclear Regulatory Commission Office of Research

RADON FLUX, CONCENTRATION AND TAILINGS COVER THICKNESS ARE CALCULATED FOR MULTIPLE LAYERS

OUTPUT FILE: Cell3rm

DESCRIPTION: Cell 3 Cover (rock mulch on surface)

CONSTANTS

RADON DECAY CONSTANT	.0000021	s^-1
RADON WATER/AIR PARTITION COEFFICIENT	.26	
DEFAULT SPECIFIC GRAVITY OF COVER & TAILIN	GS	2.65

GENERAL INPUT PARAMETERS

LAYERS OF COVER AND TAILINGS	5	
NO LIMIT ON RADON FLUX		
LAYER THICKNESS NOT OPTIMIZED		
DEFAULT SURFACE RADON CONCENTRATION	0	pCi 1^-1
SURFACE FLUX PRECISION	.001	pCi m^-2 s^-1

LAYER INPUT PARAMETERS

LAYER 1 Tailings

THICKNESS	500	Cm
POROSITY	.45	
MEASURED MASS DENSITY	1.5	g cm^-3
MEASURED RADIUM ACTIVITY	758	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.2	
CALCULATED SOURCE TERM CONCENTRATION	1.061D-03	pCi cm^-3 s^-1
WEIGHT % MOISTURE	б	olo
MOISTURE SATURATION FRACTION	.200	
MEASURED DIFFUSION COEFFICIENT	.0288	cm^2 s^-1

THICKNESS	76	cm
POROSITY	.43	
MEASURED MASS DENSITY	1.5	g cm^-3
MEASURED RADIUM ACTIVITY	0	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.35	
CALCULATED SOURCE TERM CONCENTRATION	0.000D+00	pCi cm^-3 s^-1
WEIGHT % MOISTURE	6.7	₽ 0
MOISTURE SATURATION FRACTION	.234	
MEASURED DIFFUSION COEFFICIENT	.026	cm^2 s^-1

LAYER 3 Compacted Random Fill

THICKNESS	107	Cm
POROSITY	.32	
MEASURED MASS DENSITY	1.8	g cm^-3
MEASURED RADIUM ACTIVITY	0	pCi/g^-1
MEASURED EMANATION COEFFICIENT	.35	
CALCULATED SOURCE TERM CONCENTRATION	0.000D+00	pCi cm^-3 s^-1
WEIGHT % MOISTURE	6.7	00
MOISTURE SATURATION FRACTION	.377	
MEASURED DIFFUSION COEFFICIENT	.016	cm^2 s^-1

LAYER	4	ET Cover

LAYER 5 Rock Mulch

THICKNESS	107	Cm
POROSITY	.39	
MEASURED MASS DENSITY	1.6	g cm^-3
MEASURED RADIUM ACTIVITY	0	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.35	
CALCULATED SOURCE TERM CONCENTRATION	0.000D+00	pCi cm^-3 s^-1
WEIGHT % MOISTURE	6.7	00
MOISTURE SATURATION FRACTION	.275	
MEASURED DIFFUSION COEFFICIENT	.0225	cm^2 s^-1

THICKNESS	15	CM
POROSITY	.35	
MEASURED MASS DENSITY	1.7	g cm^-3
MEASURED RADIUM ACTIVITY	0	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.35	
CALCULATED SOURCE TERM CONCENTRATION	0.000D+00	pCi cm^-3 s^-1
WEIGHT % MOISTURE	4	2 0
MOISTURE SATURATION FRACTION	.194	
MEASURED DIFFUSION COEFFICIENT	.0256	cm^2 s^-1

DATA SENT TO THE FILE `RNDATA' ON DRIVE A:

F01	CN1	ICOST	CRITJ	ACC	
-1.000D+00	0.000D+00	0	0.000D+00	1.000D-03	
DX	D	P	Q	XMS	RHO
5.000D+02	2.880D-02	4.500D-01	1.061D-03	2.000D-01	1.500
7.600D+01	2.600D-02	4.300D-01	0.000D+00	2.337D-01	1.500
1.070D+02	1.600D-02	3.200D-01	0.000D+00	3.769D-01	1.800
1.070D+02	2.250D-02	3.900D-01	0.000D+00	2.749D-01	1.600
1.500D+01	2.560D-02	3.500D-01	0.000D+00	1.943D-01	1.700
	-1.000D+00 DX 5.000D+02 7.600D+01 1.070D+02 1.070D+02	-1.000D+00 0.000D+00 DX D 5.000D+02 2.880D-02 7.600D+01 2.600D-02 1.070D+02 1.600D-02 1.070D+02 2.250D-02	-1.000D+00 0.000D+00 0 DX D P 5.000D+02 2.880D-02 4.500D-01 7.600D+01 2.600D-02 4.300D-01 1.070D+02 1.600D-02 3.200D-01 1.070D+02 2.250D-02 3.900D-01	-1.000D+00 0.000D+00 0 0.000D+00 DX D P Q 5.000D+02 2.880D-02 4.500D-01 1.061D-03 7.600D+01 2.600D-02 4.300D-01 0.000D+00 1.070D+02 1.600D-02 3.200D-01 0.000D+00 1.070D+02 2.250D-02 3.900D-01 0.000D+00	-1.000D+00 0.000D+00 0 0.000D+00 1.000D-03 DX D P Q XMS 5.000D+02 2.880D-02 4.500D-01 1.061D-03 2.000D-01 7.600D+01 2.600D-02 4.300D-01 0.000D+00 2.337D-01 1.070D+02 1.600D-02 3.200D-01 0.000D+00 3.769D-01 1.070D+02 2.250D-02 3.900D-01 0.000D+00 2.749D-01

BARE SOURCE FLUX FROM LAYER 1: 5.513D+02 pCi m^-2 s^-1

LAYER	THICKNESS (cm)	EXIT FLUX (pCi m^-2 s^-1)	EXIT CONC. (pCi l^-1)
1	5.000D+02	2.374D+02	2.838D+05
2	7.600D+01	9.083D+01	1.681D+05
3	1.070D+02	3.424D+01	3.009D+04
4	1.070D+02	1.962D+01	3.038D+03
5	1.500D+01	1.945D+01	0.000D+00

----****! RADON !*****-----

Version 1.2 - MAY 22, 1989 - G.F. Birchard tel.# (301)492-7000 U.S. Nuclear Regulatory Commission Office of Research

RADON FLUX, CONCENTRATION AND TAILINGS COVER THICKNESS ARE CALCULATED FOR MULTIPLE LAYERS

OUTPUT FILE: Cells4AB

DESCRIPTION: Cells 4A and 4B Cover

CONSTANTS

RADON DECAY CONSTANT	.0000021	s^-1
RADON WATER/AIR PARTITION COEFFICIENT	.26	
DEFAULT SPECIFIC GRAVITY OF COVER & TAILIN	GS	2.65

GENERAL INPUT PARAMETERS

LAYERS OF COVER AND TAILINGS	5	
NO LIMIT ON RADON FLUX		
LAYER THICKNESS NOT OPTIMIZED		
DEFAULT SURFACE RADON CONCENTRATION	0	pCi l^-1
SURFACE FLUX PRECISION	.001	pCi m^-2 s^-1

LAYER INPUT PARAMETERS

LAYER 1 Tailings

THICKNESS	500	Cm
POROSITY	.45	
MEASURED MASS DENSITY	1.5	g cm ⁻³
MEASURED RADIUM ACTIVITY	642	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.2	
CALCULATED SOURCE TERM CONCENTRATION	8.988D-04	pCi cm^-3 s^-1
WEIGHT % MOISTURE	б	00
MOISTURE SATURATION FRACTION	.200	
MEASURED DIFFUSION COEFFICIENT	.0288	cm^2 s^-1

THICKNESS	76	cm
POROSITY	.43	
MEASURED MASS DENSITY	1.5	g cm^-3
MEASURED RADIUM ACTIVITY	0	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.35	
CALCULATED SOURCE TERM CONCENTRATION	0.000D+00	pCi cm^-3 s^-1
WEIGHT % MOISTURE	6.7	00
MOISTURE SATURATION FRACTION	.234	
MEASURED DIFFUSION COEFFICIENT	.026	cm^2 s^-1

LAYER 3 Compacted Random Fill

THICKNESS	91	cm
POROSITY	.32	
MEASURED MASS DENSITY	1.8	g cm^-3
MEASURED RADIUM ACTIVITY	0	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.35	
CALCULATED SOURCE TERM CONCENTRATION	0.000D+00	pCi cm^-3 s^-1
WEIGHT % MOISTURE	6.7	90
MOISTURE SATURATION FRACTION	.377	
MEASURED DIFFUSION COEFFICIENT	.016	cm^2 s^-1

LAYER	4	ET	Cover	

THICKNESS	107	Cm
POROSITY	.39	
MEASURED MASS DENSITY	1.6	g cm^-3
MEASURED RADIUM ACTIVITY	0	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.35	
CALCULATED SOURCE TERM CONCENTRATION	0.000D+00	pCi cm^-3 s^-1
WEIGHT % MOISTURE	6.7	00
MOISTURE SATURATION FRACTION	.275	
MEASURED DIFFUSION COEFFICIENT	.0225	cm^2 s^-1

LAYER 5	Rock Mulch		
THICKNESS		15	Cm
POROSITY		.35	
MEASURED MASS	DENSITY	1.7	g cm^-3
MEASURED RADI	UM ACTIVITY	0	pCi/g^-l
MEASURED EMAN	IATION COEFFICIENT	.35	
CALCULATED SC	URCE TERM CONCENTRATION	0.000D+00	pCi cm^-3 s^-1
WEIGHT % MOIS	TURE	4	00
MOISTURE SATU	RATION FRACTION	.194	

DATA SENT TO THE FILE `RNDATA' ON DRIVE A:

N	F01	CN1	ICOST	CRITJ	ACC	
5	-1.000D+00	0.000D+00	0	0.000D+00	1.000D-03	
LAYER	DX	D	P	Q	XMS	RHO
1	5.000D+02	2.880D-02	4.500D-01	8.988D-04	2.000D-01	1.500
2	7.600D+01	2.600D-02	4.300D-01	0.000D+00	2.337D-01	1.500
3	9.100D+01	1.600D-02	3.200D-01	0.000D+00	3.769D-01	1.800
4	1.070D+02	2.250D-02	3.900D-01	0.000D+00	2.749D-01	1.600
5	1.500D+01	2.560D-02	3.500D-01	0.000D+00	1.943D-01	1.700

BARE SOURCE FLUX FROM LAYER 1: 4.669D+02 pCi m^-2 s^-1

LAYER	THICKNESS (cm)	EXIT FLUX (pCi m^-2 s^-1)	EXIT CONC. (pCi l^-1)
1	5.000D+02	2.017D+02	2.398D+05
2	7.600D+01	7.817D+01	1.412D+05
3	9.100D+01	3.498D+01	3.074D+04
4	1.070D+02	2.005D+01	3.104D+03
5	1.500D+01	1.987D+01	0.000D+00

ATTACHMENT C.4

RADON MODEL OUTPUT FOR VARIABLE THICKNESS OF RANDOM FILL

----****! RADON !*****-----

Version 1.2 - MAY 22, 1989 - G.F. Birchard tel.# (301)492-7000 U.S. Nuclear Regulatory Commission Office of Research

RADON FLUX, CONCENTRATION AND TAILINGS COVER THICKNESS ARE CALCULATED FOR MULTIPLE LAYERS

OUTPUT FILE: Cell2pt1

DESCRIPTION: Cell 2 Evaluation of Impact of Increased Random Fill Thickness - Point 1

CONSTANTS

RADON DECAY CONSTANT	.0000021	s^-1
RADON WATER/AIR PARTITION COEFFICIENT	.26	
DEFAULT SPECIFIC GRAVITY OF COVER & T	AILINGS	2.65

GENERAL INPUT PARAMETERS

LAYERS OF COVER AND TAILINGS	5	
DEFAULT RADON FLUX LIMIT	20	pCi m^-2 s^-1
NO. OF THE LAYER TO BE OPTIMIZED	3	
DEFAULT SURFACE RADON CONCENTRATION	0	pCi 1^-1
SURFACE FLUX PRECISION	.001	pCi m^-2 s^-1

LAYER INPUT PARAMETERS

LAYER 1 Tailings

500	Cm
.45	
1.5	g cm^-3
923	pCi/g^-l
.2	
1.292D-03	pCi cm^-3 s^-1
6	00
.200	
.0288	cm^2 s^-1
	.45 1.5 923 .2 1.292D-03 6 .200

THICKNESS	76	Cm
POROSITY	.43	
MEASURED MASS DENSITY	1.5	g cm^-3
MEASURED RADIUM ACTIVITY	0	pCi/g^-1
MEASURED EMANATION COEFFICIENT	.35	

CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	0.000D+00 6.7 .234 .026	pCi cm^-3 s^-1 % cm^2 s^-1
LAYER 3 Compacted Random Fill		
THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	1 .32 1.8 0 .35 0.000D+00 6.7 .377 .016	cm g cm ⁻³ pCi/g ⁻¹ pCi cm ⁻³ s ⁻¹ % cm ² s ⁻¹
LAYER 4 ET Cover		
THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	107 .39 1.6 0 .35 0.000D+00 6.7 .275 .0225	cm g cm ⁻³ pCi/g ⁻¹ pCi cm ⁻³ s ⁻¹ % cm ² s ⁻¹
LAYER 5 Topsoil		
THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	15 .38 1.6 0 .35 0.000D+00 5.2 .219 .0254	cm g cm ⁻³ pCi/g ⁻¹ pCi cm ⁻³ s ⁻¹ % cm ² s ⁻¹

DATA SENT TO THE FILE `RNDATA' ON DRIVE A:

N	F01	CN1	ICOST	CRITJ	ACC	
5	-1.000D+00	0.000D+00	3	2.000D+01	1.000D-03	
LAYER	DX	D	P	0	XMS	RHO
1	5.000D+02	2.880D-02	4.500D-01	1.292D-03	2.000D-01	1.500
2	7.600D+01	2.600D-02	4.300D-01	0.000D+00	2.337D-01	1.500
3	1.000D+00	1.600D-02	3.200D-01	0.000D+00	3.769D-01	1.800
4	1.070D+02	2.250D-02	3.900D-01	0.000D+00	2.749D-01	1.600
5	1.500D+01	2.540D-02	3.800D-01	0.000D+00	2.189D-01	1.600

BARE SOURCE FLUX FROM LAYER 1: 6.713D+02 pCi m^-2 s^-1

LAYER	THICKNESS (cm)	EXIT FLUX (pCi m^-2 s^-1)	EXIT CONC. (pCi l^-1)
1	5.000D+02	2.884D+02	3.461D+05
2	7.600D+01	1.094D+02	2.058D+05
3	1.219D+02	3.507D+01	3.073D+04
4	1.070D+02	2.020D+01	2.966D+03
5	1.500D+01	2.000D+01	0.000D+00

----****! RADON !*****-----

Version 1.2 - MAY 22, 1989 - G.F. Birchard tel.# (301)492-7000 U.S. Nuclear Regulatory Commission Office of Research

RADON FLUX, CONCENTRATION AND TAILINGS COVER THICKNESS ARE CALCULATED FOR MULTIPLE LAYERS

OUTPUT FILE: Cell2pt2

DESCRIPTION: Cell 2 Evaluation of Impact of Increased Random Fill Thickness - Point 2

CONSTANTS

RADON DECAY CONSTAN	NT	.0000021	s^-1
RADON WATER/AIR PAR	RTITION COEFFICIENT	.26	
DEFAULT SPECIFIC G	RAVITY OF COVER & TAII	LINGS	2.65

GENERAL INPUT PARAMETERS

LAYERS OF COVER AND TAILINGS	5	
DEFAULT RADON FLUX LIMIT	20	pCi m^-2 s^-1
NO. OF THE LAYER TO BE OPTIMIZED	3	
DEFAULT SURFACE RADON CONCENTRATION	0	pCi 1^-1
SURFACE FLUX PRECISION	.001	pCi m^-2 s^-1

LAYER INPUT PARAMETERS

LAYER 1 Tailings

THICKNESS	500	Cm
POROSITY	.45	
MEASURED MASS DENSITY	1.5	g cm ⁻³
MEASURED RADIUM ACTIVITY	923	pCi/g^-1
MEASURED EMANATION COEFFICIENT	.2	
CALCULATED SOURCE TERM CONCENTRATION	1.292D-03	pCi cm^-3 s^-1
WEIGHT % MOISTURE	6	00
MOISTURE SATURATION FRACTION	.200	
MEASURED DIFFUSION COEFFICIENT	.0288	cm^2 s^-1

THICKNESS	107	Cm
POROSITY	.43	
MEASURED MASS DENSITY	1.5	g cm^-3
MEASURED RADIUM ACTIVITY	0	pCi/g^-1
MEASURED EMANATION COEFFICIENT	.35	

CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	0.000D+00 6.7 .234 .026	pCi cm^-3 s^-1 % cm^2 s^-1
LAYER 3 Compacted Random Fill		
THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	1 .32 1.8 0 .35 0.000D+00 6.7 .377 .016	cm g cm ⁻³ pCi/g ⁻¹ pCi cm ⁻³ s ⁻¹ % cm ² s ⁻¹
LAYER 4 ET Cover		
THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	107 .39 1.6 0 .35 0.000D+00 6.7 .275 .0225	cm g cm ⁻³ pCi/g ⁻¹ pCi cm ⁻³ s ⁻¹ % cm ² s ⁻¹
LAYER 5 Topsoil		
THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	15 .38 1.6 0 .35 0.000D+00 5.2 .219 .0254	cm g cm ⁻³ pCi/g ⁻¹ pCi cm ⁻³ s ⁻¹ % cm ² s ⁻¹

DATA SENT TO THE FILE `RNDATA' ON DRIVE A:

Ν	F01	CN1	ICOST	CRITJ	ACC	
5	-1.000D+00	0.000D+00	3	2.000D+01	1.000D-03	
LAYER	DX	D	P	0	XMS	RHO
DATEN	DA	D	F	Q	AND	-
1	5.000D+02	2.880D-02	4.500D-01	1.292D-03	2.000D-01	1.500
2	1.070D+02	2.600D-02	4.300D-01	0.000D+00	2.337D-01	1.500
3	1.000D+00	1.600D-02	3.200D-01	0.000D+00	3.769D-01	1.800
4	1.070D+02	2.250D-02	3.900D-01	0.000D+00	2.749D-01	1.600
5	1.500D+01	2.540D-02	3.800D-01	0.000D+00	2.189D-01	1.600

BARE SOURCE FLUX FROM LAYER 1: 6.713D+02 pCi m^-2 s^-1

LAYER	THICKNESS (cm)	EXIT FLUX (pCi m^-2 s^-1)	EXIT CONC. (pCi l^-1)
1	5.000D+02	3.002D+02	3.355D+05
2	1.070D+02	8.457D+01	1.545D+05
3	9.819D+01	3.508D+01	3.075D+04
4	1.070D+02	2.021D+01	2.967D+03
5	1.500D+01	2.000D+01	0.000D+00

----****! RADON !*****-----

Version 1.2 - MAY 22, 1989 - G.F. Birchard tel.# (301)492-7000 U.S. Nuclear Regulatory Commission Office of Research

RADON FLUX, CONCENTRATION AND TAILINGS COVER THICKNESS ARE CALCULATED FOR MULTIPLE LAYERS

OUTPUT FILE: Cell2pt3

DESCRIPTION: Cell 2 Evaluation of Impact of Increased Random Fill Thickness - Point 3

CONSTANTS

RADON DECAY CONSTANT	.0000021	s^-1
RADON WATER/AIR PARTITION COEFFICIENT	.26	
DEFAULT SPECIFIC GRAVITY OF COVER & T	AILINGS	2.65

GENERAL INPUT PARAMETERS

LAYERS OF COVER AND TAILINGS	5	
DEFAULT RADON FLUX LIMIT	20	pCi m^-2 s^-1
NO. OF THE LAYER TO BE OPTIMIZED	3	
DEFAULT SURFACE RADON CONCENTRATION	0	pCi 1^-1
SURFACE FLUX PRECISION	.001	pCi m^-2 s^-1

LAYER INPUT PARAMETERS

LAYER 1 Tailings

THICKNESS	500	CM
POROSITY	.45	
MEASURED MASS DENSITY	1.5	g cm ⁻³
MEASURED RADIUM ACTIVITY	923	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.2	
CALCULATED SOURCE TERM CONCENTRATION	1.292D-03	pCi cm^-3 s^-1
WEIGHT % MOISTURE	6	olo
MOISTURE SATURATION FRACTION	.200	
MEASURED DIFFUSION COEFFICIENT	.0288	cm^2 s^-1

LAYER 2 Random Fill

THICKNESS	152	CM
POROSITY	.43	
MEASURED MASS DENSITY	1.5	g cm^-3
MEASURED RADIUM ACTIVITY	0	pCi/g^-1
MEASURED EMANATION COEFFICIENT	.35	

CALCULATED SOURCE TERM CONCENTRATION	0.000D+00	pCi cm^-3 s^-1
WEIGHT % MOISTURE	6.7	010
MOISTURE SATURATION FRACTION	.234	
MEASURED DIFFUSION COEFFICIENT	.026	cm^2 s^-1

LAYER 3 Compacted Random Fill

1	Cm
.32	
1.8	g cm^-3
0	pCi/g^-l
.35	
0.000D+00	pCi cm^-3 s^-1
6.7	00
.377	
.016	cm^2 s^-1
	1.8 0 .35 0.000D+00 6.7 .377

LAYER 4 ET Cover

THICKNESS	107	Cm
POROSITY	.39	
MEASURED MASS DENSITY	1.6	g cm [^] -3
MEASURED RADIUM ACTIVITY	0	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.35	
CALCULATED SOURCE TERM CONCENTRATION	0.000D+00	pCi cm^-3 s^-1
WEIGHT % MOISTURE	6.7	0/0
MOISTURE SATURATION FRACTION	.275	
MEASURED DIFFUSION COEFFICIENT	.0225	cm^2 s^-1

LAYER 5 Topsoil

THICKNESS	15	CM
POROSITY	.38	
MEASURED MASS DENSITY	1.6	g cm ⁻³
MEASURED RADIUM ACTIVITY	0	pCi/g^-1
MEASURED EMANATION COEFFICIENT	.35	
CALCULATED SOURCE TERM CONCENTRATION	0.000D+00	pCi cm^-3 s^-1
WEIGHT % MOISTURE	5.2	00
MOISTURE SATURATION FRACTION	.219	
MEASURED DIFFUSION COEFFICIENT	.0254	cm^2 s^-1

DATA SENT TO THE FILE `RNDATA' ON DRIVE A:

N	F01	CN1	ICOST	CRITJ	ACC	
5	-1.000D+00	0.000D+00	3	2.000D+01	1.000D-03	
	DV	5	5	0	37140	DUO
LAYER	DX	D	P	Q	XMS	RHO
1	5.000D+02	2.880D-02	4.500D-01	1.292D-03	2.000D-01	1.500
2	1.520D+02	2.600D-02	4.300D-01	0.000D+00	2.337D-01	1.500
3	1.000D+00	1.600D-02	3.200D-01	0.000D+00	3.769D-01	1.800
4	1.070D+02	2.250D-02	3.900D-01	0.000D+00	2.749D-01	1.600
5	1.500D+01	2.540D-02	3.800D-01	0.000D+00	2.189D-01	1.600

BARE SOURCE FLUX FROM LAYER 1: 6.713D+02 pCi m^-2 s^-1

RESULTS OF THE RADON DIFFUSION CALCULATIONS

LAYER	THICKNESS (cm)	EXIT FLUX (pCi m^-2 s^-1)	EXIT CONC. (pCi l^-1)
1	5.000D+02	3.089D+02	3.276D+05
2	1.520D+02	5.950D+01	1.003D+05
3	6.418D+01	3.509D+01	3.075D+04
4	1.070D+02	2.021D+01	2.967D+03
5	1.500D+01	2.000D+01	0.000D+00

----****! RADON !*****-----

Version 1.2 - MAY 22, 1989 - G.F. Birchard tel.# (301)492-7000 U.S. Nuclear Regulatory Commission Office of Research

RADON FLUX, CONCENTRATION AND TAILINGS COVER THICKNESS ARE CALCULATED FOR MULTIPLE LAYERS

OUTPUT FILE: Cell2pt4

DESCRIPTION: Cell 2 Evaluation of Impact of Increased Random Fill Thickness - Point 4

CONSTANTS

RADON DECAY CONSTA	ANT	.0000021	s^-1
RADON WATER/AIR PA	ARTITION COEFFICIENT	.26	
DEFAULT SPECIFIC G	GRAVITY OF COVER & TAI	LINGS	2.65

GENERAL INPUT PARAMETERS

LAYERS OF COVER AND TAILINGS	4	
RADON FLUX LIMIT	20	pCi m^-2 s^-1
NO. OF THE LAYER TO BE OPTIMIZED	2	
DEFAULT SURFACE RADON CONCENTRATION	0	pCi 1^-1
SURFACE FLUX PRECISION	.001	pCi m^-2 s^-1

LAYER INPUT PARAMETERS

LAYER 1 Tailings

THICKNESS	500	Cm
POROSITY	.45	
MEASURED MASS DENSITY	1.5	g cm ⁻³
MEASURED RADIUM ACTIVITY	923	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.2	
CALCULATED SOURCE TERM CONCENTRATION	1.292D-03	pCi cm^-3 s^-1
WEIGHT % MOISTURE	б	0 0
MOISTURE SATURATION FRACTION	.200	
MEASURED DIFFUSION COEFFICIENT	.0288	cm^2 s^-1

LAYER 2 Random Fill

THICKNESS	1	Cm
POROSITY	.43	
MEASURED MASS DENSITY	1.5	g cm^-3
MEASURED RADIUM ACTIVITY	0	pCi/g^-1
MEASURED EMANATION COEFFICIENT	.35	

CALCULATED SOURCE TERM CONCENTRATION	0.000D+00	pCi cm^-3 s^-1
WEIGHT % MOISTURE	6.7	00
MOISTURE SATURATION FRACTION	.234	
MEASURED DIFFUSION COEFFICIENT	.026	cm^2 s^-1

LAYER 3 ET Cover

THICKNESS	107	CM
POROSITY	.39	
MEASURED MASS DENSITY	1.6	g cm ⁻³
MEASURED RADIUM ACTIVITY	0	pCi/g^-1
MEASURED EMANATION COEFFICIENT	.35	
CALCULATED SOURCE TERM CONCENTRATION	0.000D+00	pCi cm^-3 s^-1
WEIGHT % MOISTURE	6.7	00
MOISTURE SATURATION FRACTION	.275	
MEASURED DIFFUSION COEFFICIENT	.0225	cm^2 s^-1

LAYER 4 Topsoil

THICKNESS	15	Cm
POROSITY	.38	
MEASURED MASS DENSITY	1.6	g cm ⁻³
MEASURED RADIUM ACTIVITY	0	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.35	
CALCULATED SOURCE TERM CONCENTRATION	0.000D+00	pCi cm^-3 s^-1
WEIGHT % MOISTURE	5.2	00
MOISTURE SATURATION FRACTION	.219	
MEASURED DIFFUSION COEFFICIENT	.0254	cm^2 s^-1
MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION	.35 0.000D+00 5.2 .219	pCi/g^-1 pCi cm^-3 s^-1 %

DATA SENT TO THE FILE `RNDATA' ON DRIVE A:

N	F01	CN1	ICOST	CRITJ	ACC	
4	-1.000D+00	0.000D+00	2	2.000D+01	1.000D-03	
LAYER	DX	D	P	Q	XMS	RHO
1	5.000D+02	2.880D-02	4.500D-01	1.292D-03	2.000D-01	1.500
2	1.000D+00	2.600D-02	4.300D-01	0.000D+00	2.337D-01	1.500
3	1.070D+02	2.250D-02	3.900D-01	0.000D+00	2.749D-01	1.600
4	1.500D+01	2.540D-02	3.800D-01	0.000D+00	2.189D-01	1.600

BARE SOURCE FLUX FROM LAYER 1: 6.713D+02 pCi m⁻² s⁻¹

RESULTS OF THE RADON DIFFUSION CALCULATIONS

LAYER	THICKNESS	EXIT FLUX	EXIT CONC.
	(cm)	(pCi m^-2 s^-1)	(pCi l^-1)
1	5.000D+02	3.145D+02	3.225D+05
2	2.437D+02	3.502D+01	3.520D+04
3	1.070D+02	2.017D+01	2.961D+03
4	1.500D+01	1.998D+01	0.000D+00

----****! RADON !*****-----

Version 1.2 - MAY 22, 1989 - G.F. Birchard tel.# (301)492-7000 U.S. Nuclear Regulatory Commission Office of Research

RADON FLUX, CONCENTRATION AND TAILINGS COVER THICKNESS ARE CALCULATED FOR MULTIPLE LAYERS

OUTPUT FILE: Cell3pt1

DESCRIPTION: Cell 3 Evaluation of Impact of Increased Random Fill Thickness - Point 1

CONSTANTS

RADON DECAY CONSTA	ANT	.0000021	s^-1
RADON WATER/AIR PA	ARTITION COEFFICIENT	.26	
DEFAULT SPECIFIC G	GRAVITY OF COVER & TAI	LINGS	2.65

GENERAL INPUT PARAMETERS

LAYERS OF COVER AND TAILINGS	5	
RADON FLUX LIMIT	20	pCi m^-2 s^-1
NO. OF THE LAYER TO BE OPTIMIZED	3	
DEFAULT SURFACE RADON CONCENTRATION	0	pCi l^-1
SURFACE FLUX PRECISION	.001	pCi m^-2 s^-1

LAYER INPUT PARAMETERS

LAYER 1 Tailings

THICKNESS	500	Cm
POROSITY	.45	
MEASURED MASS DENSITY	1.5	g cm ⁻³
MEASURED RADIUM ACTIVITY	758	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.2	
CALCULATED SOURCE TERM CONCENTRATION	1.061D-03	pCi cm^-3 s^-1
WEIGHT % MOISTURE	6	oto
MOISTURE SATURATION FRACTION	.200	
MEASURED DIFFUSION COEFFICIENT	.0288	cm^2 s^-1

LAYER 2 Random Fill

THICKNESS	76	CM
POROSITY	.43	
MEASURED MASS DENSITY	1.5	g cm^-3
MEASURED RADIUM ACTIVITY	0	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.35	

CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	0.000D+00 6.7 .234 .026	pCi cm^-3 s^-1 % cm^2 s^-1
LAYER 3 Compacted Random Fill		
THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	1 .32 1.8 0 .35 0.000D+00 6.7 .377 .016	cm g cm ⁻³ pCi/g ⁻¹ pCi cm ⁻³ s ⁻¹ % cm ² s ⁻¹
LAYER 4 ET Cover		
THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	107 .39 1.6 0 .35 0.000D+00 6.7 .275 .0225	cm g cm ⁻³ pCi/g ⁻¹ pCi cm ⁻³ s ⁻¹ % cm ² s ⁻¹
LAYER 5 Topsoil		
THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	15 .38 1.6 0 .35 0.000D+00 5.2 .219 .0254	cm g cm ⁻³ pCi/g ⁻¹ pCi cm ⁻³ s ⁻¹ % cm ² s ⁻¹

DATA SENT TO THE FILE `RNDATA' ON DRIVE A:

N	F01	CN1	ICOST	CRITJ	ACC	
5	-1.000D+00	0.000D+00	3	2.000D+01	1.000D-03	
LAYER	DX	D	P	0	XMS	RHO
		2	-	~		-
1	5.000D+02	2.880D-02	4.500D-01	1.061D-03	2.000D-01	1.500
2	7.600D+01	2.600D-02	4.300D-01	0.000D+00	2.337D-01	1.500
3	1.000D+00	1.600D-02	3.200D-01	0.000D+00	3.769D-01	1.800
4	1.070D+02	2.250D-02	3.900D-01	0.000D+00	2.749D-01	1.600
5	1.500D+01	2.540D-02	3.800D-01	0.000D+00	2.189D-01	1.600

BARE SOURCE FLUX FROM LAYER 1: 5.513D+02 pCi m^-2 s^-1

RESULTS OF THE RADON DIFFUSION CALCULATIONS

LAYER	THICKNESS (cm)	EXIT FLUX (pCi m^-2 s^-1)	EXIT CONC. (pCi l^-1)
1	5.000D+02	2.375D+02	2.837D+05
2	7.600D+01	9.099D+01	1.679D+05
3	1.050D+02	3.508D+01	3.074D+04
4	1.070D+02	2.020D+01	2.966D+03
5	1.500D+01	2.000D+01	0.000D+00

----****! RADON !*****-----

Version 1.2 - MAY 22, 1989 - G.F. Birchard tel.# (301)492-7000 U.S. Nuclear Regulatory Commission Office of Research

RADON FLUX, CONCENTRATION AND TAILINGS COVER THICKNESS ARE CALCULATED FOR MULTIPLE LAYERS

OUTPUT FILE: Cell3pt2

DESCRIPTION: Cell 3 Evaluation of Impact of Increased Random Fill Thickness - Point 2

CONSTANTS

RADON DECAY CONSTA	ANT	.0000021	s^-1
RADON WATER/AIR PA	ARTITION COEFFICIENT	.26	
DEFAULT SPECIFIC G	GRAVITY OF COVER & TAI	LINGS	2.65

GENERAL INPUT PARAMETERS

LAYERS OF COVER AND TAILINGS	5	
RADON FLUX LIMIT	20	pCi m^-2 s^-1
NO. OF THE LAYER TO BE OPTIMIZED	3	
DEFAULT SURFACE RADON CONCENTRATION	0	pCi l^-1
SURFACE FLUX PRECISION	.001	pCi m^-2 s^-1

LAYER INPUT PARAMETERS

LAYER 1 Tailings

THICKNESS	500	Cm
POROSITY	.45	
MEASURED MASS DENSITY	1.5	g cm ⁻³
MEASURED RADIUM ACTIVITY	758	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.2	
CALCULATED SOURCE TERM CONCENTRATION	1.061D-03	pCi cm^-3 s^-1
WEIGHT % MOISTURE	6	00
MOISTURE SATURATION FRACTION	.200	
MEASURED DIFFUSION COEFFICIENT	.0288	cm^2 s^-1

LAYER 2 Random Fill

THICKNESS	107	Cm
POROSITY	.43	
MEASURED MASS DENSITY	1.5	g cm^-3
MEASURED RADIUM ACTIVITY	0	pCi/g^-1
MEASURED EMANATION COEFFICIENT	.35	

CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	0.000D+00 6.7 .234 .026	pCi cm^-3 s^-1 % cm^2 s^-1
LAYER 3 Compacted Random Fill		
THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	1 .32 1.8 0 .35 0.000D+00 6.7 .377 .016	cm g cm ⁻³ pCi/g ⁻¹ pCi cm ⁻³ s ⁻¹ % cm ² s ⁻¹
LAYER 4 ET Cover		
THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	107 .39 1.6 0 .35 0.000D+00 6.7 .275 .0225	cm g cm ⁻³ pCi/g ⁻¹ pCi cm ⁻³ s ⁻¹ % cm ² s ⁻¹
LAYER 5 Topsoil		
THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	15 .38 1.6 0 .35 0.000D+00 5.2 .219 .0254	cm g cm ⁻³ pCi/g ⁻¹ pCi cm ⁻³ s ⁻¹ % cm ² s ⁻¹

DATA SENT TO THE FILE `RNDATA' ON DRIVE A:

N	F01	CN1	ICOST	CRITJ	ACC	
5	-1.000D+00	0.000D+00	3	2.000D+01	1.000D-03	
1 1 1 1 1 1 1 1	DV	5	5	0	300.0	DUO
LAYER	DX	D	P	Q	XMS	RHO
1	5.000D+02	2.880D-02	4.500D-01	1.061D-03	2.000D-01	1.500
2	1.070D+02	2.600D-02	4.300D-01	0.000D+00	2.337D-01	1.500
3	1.000D+00	1.600D-02	3.200D-01	0.000D+00	3.769D-01	1.800
4	1.070D+02	2.250D-02	3.900D-01	0.000D+00	2.749D-01	1.600
5	1.500D+01	2.540D-02	3.800D-01	0.000D+00	2.189D-01	1.600

BARE SOURCE FLUX FROM LAYER 1: 5.513D+02 pCi m^-2 s^-1

RESULTS OF THE RADON DIFFUSION CALCULATIONS

LAYER	THICKNESS (cm)	EXIT FLUX (pCi m^-2 s^-1)	EXIT CONC. (pCi l^-1)
1	5.000D+02	2.471D+02	2.750D+05
2	1.070D+02	7.089D+01	1.255D+05
3	8.150D+01	3.507D+01	3.073D+04
4	1.070D+02	2.020D+01	2.966D+03
5	1.500D+01	2.000D+01	0.000D+00

----****! RADON !*****-----

Version 1.2 - MAY 22, 1989 - G.F. Birchard tel.# (301)492-7000 U.S. Nuclear Regulatory Commission Office of Research

RADON FLUX, CONCENTRATION AND TAILINGS COVER THICKNESS ARE CALCULATED FOR MULTIPLE LAYERS

OUTPUT FILE: Cell3pt3

DESCRIPTION: Cell 3 Evaluation of Impact of Increased Random Fill Thickness - Point 3

CONSTANTS

RADON DECAY CONSTANT	.0000021	s^-1
RADON WATER/AIR PARTITION COEFFICIENT	.26	
DEFAULT SPECIFIC GRAVITY OF COVER & T	AILINGS	2.65

GENERAL INPUT PARAMETERS

LAYERS OF COVER AND TAILINGS	5	
RADON FLUX LIMIT	20	pCi m^-2 s^-1
NO. OF THE LAYER TO BE OPTIMIZED	3	
DEFAULT SURFACE RADON CONCENTRATION	0	pCi l^-1
SURFACE FLUX PRECISION	.001	pCi m^-2 s^-1

LAYER INPUT PARAMETERS

LAYER 1 Tailings

THICKNESS	500	CM
POROSITY	.45	
MEASURED MASS DENSITY	1.5	g cm^-3
MEASURED RADIUM ACTIVITY	758	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.2	
CALCULATED SOURCE TERM CONCENTRATION	1.061D-03	pCi cm^-3 s^-1
WEIGHT % MOISTURE	б	00
MOISTURE SATURATION FRACTION	.200	
MEASURED DIFFUSION COEFFICIENT	.0288	cm^2 s^-1

LAYER 2 Random Fill

THICKNESS	152	CM
POROSITY	.43	
MEASURED MASS DENSITY	1.5	g cm^-3
MEASURED RADIUM ACTIVITY	0	pCi/g^-1
MEASURED EMANATION COEFFICIENT	.35	

CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	0.000D+00 6.7 .234 .026	pCi cm^-3 s^-1 % cm^2 s^-1
LAYER 3 Compacted Random Fill		
THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	1 .32 1.8 0 .35 0.000D+00 6.7 .377 .016	cm g cm ⁻³ pCi/g ⁻¹ pCi cm ⁻³ s ⁻¹ % cm ² s ⁻¹
LAYER 4 ET Cover		
THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	107 .39 1.6 0 .35 0.000D+00 6.7 .275 .0225	cm g cm ⁻³ pCi/g ⁻¹ pCi cm ⁻³ s ⁻¹ % cm ² s ⁻¹
LAYER 5 Topsoil		
THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	15 .38 1.6 0 .35 0.000D+00 5.2 .219 .0254	cm g cm ⁻³ pCi/g ⁻¹ pCi cm ⁻³ s ⁻¹ % cm ² s ⁻¹

DATA SENT TO THE FILE `RNDATA' ON DRIVE A:

N	F01	CN1	ICOST	CRITJ	ACC	
5	-1.000D+00	0.000D+00	3	2.000D+01	1.000D-03	
LAYER	DX	D	P	0	XMS	RHO
LAIER	DA	D	P	Q	AMS	RHU
1	5.000D+02	2.880D-02	4.500D-01	1.061D-03	2.000D-01	1.500
2	1.520D+02	2.600D-02	4.300D-01	0.000D+00	2.337D-01	1.500
3	1.000D+00	1.600D-02	3.200D-01	0.000D+00	3.769D-01	1.800
4	1.070D+02	2.250D-02	3.900D-01	0.000D+00	2.749D-01	1.600
5	1.500D+01	2.540D-02	3.800D-01	0.000D+00	2.189D-01	1.600

BARE SOURCE FLUX FROM LAYER 1: 5.513D+02 pCi m^-2 s^-1

RESULTS OF THE RADON DIFFUSION CALCULATIONS

LAYER	THICKNESS (cm)	EXIT FLUX (pCi m^-2 s^-1)	EXIT CONC. (pCi l^-1)
1	5.000D+02	2.543D+02	2.685D+05
2	1.520D+02	5.094D+01	8.036D+04
3	4.798D+01	3.509D+01	3.075D+04
4	1.070D+02	2.021D+01	2.967D+03
5	1.500D+01	2.000D+01	0.000D+00

----****! RADON !*****-----

Version 1.2 - MAY 22, 1989 - G.F. Birchard tel.# (301)492-7000 U.S. Nuclear Regulatory Commission Office of Research

RADON FLUX, CONCENTRATION AND TAILINGS COVER THICKNESS ARE CALCULATED FOR MULTIPLE LAYERS

OUTPUT FILE: Cell3pt4

DESCRIPTION: Cell 3 Evaluation of Impact of Increased Random Fill Thickness - Point 4

CONSTANTS

RADON DECAY CONSTA	ANT	.0000021	s^-1
RADON WATER/AIR PA	ARTITION COEFFICIENT	.26	
DEFAULT SPECIFIC G	GRAVITY OF COVER & TAI	LINGS	2.65

GENERAL INPUT PARAMETERS

LAYERS OF COVER AND TAILINGS	4	
RADON FLUX LIMIT	20	pCi m^-2 s^-1
NO. OF THE LAYER TO BE OPTIMIZED	2	
DEFAULT SURFACE RADON CONCENTRATION	0	pCi 1^-1
SURFACE FLUX PRECISION	.001	pCi m^-2 s^-1

LAYER INPUT PARAMETERS

LAYER 1 Tailings

THICKNESS	500	Cm
POROSITY	.45	
MEASURED MASS DENSITY	1.5	g cm ⁻³
MEASURED RADIUM ACTIVITY	758	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.2	
CALCULATED SOURCE TERM CONCENTRATION	1.061D-03	pCi cm^-3 s^-1
WEIGHT % MOISTURE	6	00
MOISTURE SATURATION FRACTION	.200	
MEASURED DIFFUSION COEFFICIENT	.0288	cm^2 s^-1

LAYER 2 Random Fill

THICKNESS	1	Cm
POROSITY	.43	
MEASURED MASS DENSITY	1.5	g cm^-3
MEASURED RADIUM ACTIVITY	0	pCi/g^-1
MEASURED EMANATION COEFFICIENT	.35	

CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	0.000D+00 6.7 .234 .026	pCi cm^-3 s^-1 % cm^2 s^-1
LAYER 3 ET Cover		
THICKNESS	107	Cm

POROSITY	.39	
MEASURED MASS DENSITY	1.6	g cm^-3
MEASURED RADIUM ACTIVITY	0	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.35	
CALCULATED SOURCE TERM CONCENTRATION	0.000D+00	pCi cm^-3 s^-1
WEIGHT % MOISTURE	6.7	00
MOISTURE SATURATION FRACTION	.275	
MEASURED DIFFUSION COEFFICIENT	.0225	cm^2 s^-1

LAYER 4 Topsoil

THICKNESS	15	Cm
POROSITY	.38	
MEASURED MASS DENSITY	1.6	g cm ⁻³
MEASURED RADIUM ACTIVITY	0	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.35	
CALCULATED SOURCE TERM CONCENTRATION	0.000D+00	pCi cm^-3 s^-1
WEIGHT % MOISTURE	5.2	00
MOISTURE SATURATION FRACTION	.219	
MEASURED DIFFUSION COEFFICIENT	.0254	cm^2 s^-1

DATA SENT TO THE FILE `RNDATA' ON DRIVE A:

N	F01	CN1	ICOST	CRITJ	ACC	
4	-1.000D+00	0.000D+00	2	2.000D+01	1.000D-03	
LAYER	DX	D	P	Q	XMS	RHO
1	5.000D+02	2.880D-02	4.500D-01	1.061D-03	2.000D-01	1.500
2	1.000D+00	2.600D-02	4.300D-01	0.000D+00	2.337D-01	1.500
3	1.070D+02	2.250D-02	3.900D-01	0.000D+00	2.749D-01	1.600
4	1.500D+01	2.540D-02	3.800D-01	0.000D+00	2.189D-01	1.600

BARE SOURCE FLUX FROM LAYER 1: 5.513D+02 pCi m⁻² s⁻¹

RESULTS OF THE RADON DIFFUSION CALCULATIONS

LAYER	THICKNESS	EXIT FLUX	EXIT CONC.
	(cm)	(pCi m^-2 s^-1)	(pCi l^-1)
1	5.000D+02	2.583D+02	2.649D+05
2	2.217D+02	3.506D+01	3.523D+04
3	1.070D+02	2.019D+01	2.964D+03
4	1.500D+01	2.000D+01	0.000D+00

ATTACHMENT I

SUPPORTING DOCUMENTATION FOR INTERROGATORY 16/1:

REVISED RADIATION PROTECTION MANUAL

Responsible Authority

Radiation Safety Officer

The Radiation Safety Officer (RSO) shall meet the requirements as specified in section 2.4, Technical Qualifications of Health Physics Staff in NRC Regulatory Guide 8.31. Along with meeting the requirements outline in Regulatory Guide 8.31, the RSO must also be submitted and approved by the State of Utah as an acceptable responsible authority for reclamation activities.

The RSO will be responsible for following and complying with all rules and specifications that are outlined in the Reclamation Plan along with all standards pertaining to the health and safety of the employees and environment. The RSO must also maintain accurate documentation of all decontamination and disposal activities. The RSO will have the responsibility of overseeing all aspects of this procedure and all total releases of any materials from the facility. These records will be maintained on site for review.

1.0 <u>RADIATION MONITORING – PERSONNEL</u>

This section contains the following procedures for personnel radiation monitoring including: (1) airborne particulates (2) alpha surveys (3) beta/gamma surveys and (4) urinalysis surveys.

1.1 AIRBORNE PARTICULATES

Sampling for personnel exposure to airborne particulate radionuclides, other than for radon progeny, will be done utilizing two distinct sampling protocols: (1) personnel breathing zone samplers, and (2) ambient air high volume samplers. Specific standard operating procedures for these two collection methods are described in Section 1.1.2 and 1.1.3 below.

1.1.1 Frequency

For work where there is the potential to cause airborne radiation doses to site personnel, the frequency and type of air sampling to be conducted is determined from measured air concentrations:

0.01 DAC – 0.1 DAC	Quarterly or monthly area air sampling and/or bioassay measurements
> 0.1 DAC	Continuous sampling is appropriate if concentrations are likely to exceed 0.10 DAC averaged over 40 hours or longer.

The RSO will determine the exact frequency of area air sampling, breathing zone sampling and/or bioassay measurements and determine how many workers in a group of workers performing similar jobs are to be equipped with breathing zone air samplers. Higher airborne concentrations warrant more frequent use of area air samplers, bioassay measurements, and breathing zone air samplers. Area air samplers may be used where documentation exists showing the sample is equivalent to a breathing zone sample. Breathing zone samples taken within one foot of the worker's head are considered representative without further documentation. Breathing zone air samplers are preferred under work conditions of higher airborne concentrations. Table 1.1.1-1 below, from Regulatory Guide 8.25, provides additional guidance for the RSO in designing and implementing air sampling programs for specific jobs.

Table 1.1.1-1 Air Sampling Recommendations Based on Estimated Intakes and Airborne Concentrations

Worker's Estimated	Estimated Airborne	
Annual Intake as a	Concentrations as a	Air Sampling Recommendations
Fraction of ALI	Fraction of DAC	
< 0.1	< 0.01	Air sampling is generally not necessary. However, monthly or quarterly grab samples or some other measurement may be appropriate to confirm that airborne levels are indeed low.
	> 0.01	Some air sampling is appropriate. Intermittent or grab samples are appropriate near the lower end of the range. Continuous sampling is appropriate if concentrations are likely to exceed 0.1 DAC averaged over 40 hours or longer.
> 0.1	< 0.3	Monitoring of intake by air sampling or bioassay is required by 10 CFR 20.1502(b).
	> 0.3	A demonstration that the air samples are representative of the breathing zone is appropriate if (1) intakes of record will be based on air sampling and (2) concentrations are likely to exceed 0.3 DAC averaged over 40 hours (i.e., intake more than 12 DAC-hours in a week).
Any annual intake	> 1	Air samples should be analyzed before work resumes the next day when potential intakes may exceed 40 DAC-hours in 1 week. When work is done in shifts, results should be available before the next shift ends. (Credit may be taken for protection factors if a respiratory protection program is in place.)
	> 5	Continuous air monitoring should be provided if there is a potential for intakes to exceed 40 DAC- hours in 1 day. (Credit may be taken for protection factors if a respiratory protection program is in place.)

White Mesa Mill – Standard Operating Procedures Book 20: Radiation Protection for Reclamation Activities, Section 1

1.1.2 Breathing Zone Sampling

1.1.2.1 General

Breathing zone samplers (SKC pumps and accessory kits, or equivalent) are used to determine airborne exposure to uranium while individuals are performing specific jobs. The units consist of a portable low volume pump that attaches to the individuals belt, tygon tubing and filter holder that is attached to the individual's lapel or shirt collar. The unit monitors airborne uranium in a person's breathing zone. Pumps must be recharged after 6 to 8 hours of use.

1.1.2.2 Applicability

Breathing zone samples are required:

- for all calciner activities,
- at least quarterly during routine tasks on representative individuals performing these tasks,
- when radiation work permits are issued in which airborne concentrations may exceed 25% of 10 CFR Part 20 limits, or
- at the discretion of the RSO.

1.1.2.3 Procedure

The procedure for collecting a breathing zone sample is as follows:

- 1. Secure the breathing zone sampler, which has been charged and loaded with a filter paper from the radiation department.
- 2. Secure the pump to the worker's belt and the filter holder to the shirt collar or lapel. Try to secure pump tubing to minimize restriction of motion.
- 3. Turn pump on (record the time pump was turned on) and continue monitoring until the work being monitored is completed and the worker no longer is in the exposure area. Record the time at which the job is complete.
- 4. Return the pump and accessories to the RSO, who will remove the filter paper for analysis. Be sure to indicate accurately the total time taken by the work being monitored.
- 5. Analysis of filter samples will be performed using a sensitive alpha detector. The procedure is as follows: (a) count a background sample for ten minutes; (b) divide the background count by ten to obtain the background count rate in cpm; (c) Place the breathing zone sample in the instrument and count the sample again for ten minutes;

(d) divide the sample count by ten to obtain the count rate in cpm; (e) subtract the background count rate from the sample count rate; and, (f) record all data on the Breathing Zone sampling analysis form (a copy of which is attached).

- 6. Record the total hours of exposure that are being assigned to the employee on the Employee Exposure form, which is maintained in personnel folders. Be sure to consider protection factors permitted by respirator use if the employee was also wearing respiratory protection during the job.
- 7. The number of DAC hours assigned is calculated using the following formula:

DAC hours	=	Measured air concentration x Total hours of exposure
of exposure		(DAC)(PF)

where: DAC = Derived Air Concentration (for uranium; 10 CFR Part 20, Appendix B)

PF = protection factor for respirator use. If no respiratory protection was used PF = 1.

The measured air concentration must be in μ Ci/cc.

1.1.2.4 Calibration

Prior to use, calibration of the breathing zone samplers will be done using a calibration method as described in Section 3.2.

1.1.2.5 Equipment – Breathing Zone Sampler

The equipment used for breathing zone samples consists of:

- 1. Personal sampling pumps
- 2. Gelman 37 mm Delrin filter holders, or equivalent
- 3. Gelman 37 mm type A/E glass fiber filters, or equivalent
- 4. Kurz Model 543 air mass flow meter, or equivalent

1.1.2.6 Data Record

Data maintained on file includes:

- 1. Time on and off for each sample pump.
- 2. Sampling location(s).
- 3. Individual's name, identification number, etc.
- 4. Date and sample number.

White Mesa Mill –Standard Operating Procedures Book 20: Radiation Protection for Reclamation Activities, Section 1

5. Sample count rate.

1.1.2.7 Calculations

The airborne concentration in μ Ci/cc is equal to the sample count rate minus the background count rate in cpm divided by the instrument alpha efficiency, the sample flow rate in cc/minute, the sample time in minutes and a conversion factor converting dpm to μ Ci.

The calculation is:

Equation Number 1: Airborne concentration = (Count Rate)(Time)(eff)(Conversion factor)(Flow Rate) i.e. $\underline{uCi} = (cpm-Bkg) 1 \underline{uCi}$ (1) (1) cc (eff)(2.22x10⁶dpm)(cc/min)(min) where: eff = cpm/dpm for counting instruments cpm = counts/min dpm = disintegrations/min Conversion factor 1 μ Ci = 2.22x10⁶ dpm Flow Rate = cc/min

Collection time = min

Once the airborne concentration has been calculated it is possible to calculate personnel exposure in microcuries (μ Ci). Personnel exposure is determined for an individual who is working in an area at a known air concentration (μ Ci /cc) for a given amount of time (hours) breathing the area air at an assumed rate. The breathing rate for a standard person (Handbook of Radiological Health) is 1.20 cubic meters per hour (m³/hr).

The calculation for personnel exposure is:

Equation Number 2:

Exposure $\mu Ci = (\mu Ci / cc)(1.20m^3/hr)$ (hours of exposure)(conversion rate)

Where: $\mu Ci / cc = air concentration from Equation 1$

1.20 m³/hr = breathing rate for standard man (ICRP) hours of exposure = hours conversion factor = 10^{6} cc/m³ It is also possible to determine the percent or fraction of the Derived Air Concentration (DAC) for a particular radionuclide using the information obtained from the exposure calculation and dividing this value by the regulatory limit DAC listed in 10 CFR Part 20.

% DAC = Exposure in μ Ci / μ Ci limit 10 CFR Part 20

For the natural uranium (U-Nat) the DAC limits from 10 CFR Part 20 for insoluble Class Y compounds are as follows:

• Weekly	$1.0 \ge 10^{-3} \mu \text{Ci}$ /week
----------	---------------------------------------

- Quarterly $1.25 \times 10^{-2} \,\mu\text{Ci}/\text{Qt}$
- Yearly $5.0 \times 10^{-2} \,\mu \text{Ci} \,/\text{yr}$

1.1.2.8 ALARA/Quality Control

The RSO reviews each monitored result and initiates action if levels exceed 25% of 10 CFR 20 limits. At a minimum, ten percent (10%) of the air samples collected in a given quarter will be recounted using the same instrument or using a different instrument and these results will be compared to the original sample results. Deviations exceeding 30% of the original sample results will be reviewed by the RSO and the samples will be recounted again until the sample results are determined to be consistent. Additional QA samples consisting of spiked air samples, duplicate samples and blank samples will be submitted to the radiation department for counting. This will be based on ten percent (10%) of the number of samples collected during a quarter. The sample results will be compared to the spiked values, duplicate values, or blank (background) values of the prepared sample. Deviations exceeding 30% of the determined spiked, duplicate or blank value will be recounted. If no resolution of the deviation exceeding 30% is made the QA samples preparation will be made and documented to ensure quality maintenance and ALARA control.

1.1.3 Airborne High Volume Sampling

Grab air sampling involves passing a representative sample of air through a filter paper disc via an air pump for the purpose of determining the concentration of uranium in breathing air at that location. Although the process is only measuring airborne concentrations at a specific place and at a specific time, the results can often be used to represent average concentration in a general area. A high volume sample pump will be used for this purpose. Samples will be analyzed as per standard gross alpha analysis procedures using a sensitive alpha detector.

1.1.3.1 Frequency and Locations

The following principles used for the collection of area grab samples must be considered when collecting a sample in order to obtain a representative air concentration that workers may be exposed to during their assigned work tasks.

- 1. The locations selected for sampling should be representative of exposures to employees working in the area.
- 2. For special air sampling, the sampling period should represent the conditions during the entire period of exposure. This may involve sampling during the entire exposure period.
- 3. For routine sampling, the sampling period must be sufficient to ensure a minimum flow rate of 40 liters per minute (lpm) for at least 60 minutes.
- 4. Sample filters will be analyzed for gross alpha using a sensitive alpha detector.
- 5. Grab sampling procedures may be supplemented by use of Breathing Zone Samples for special jobs or non-routine situations.

1.1.3.2 Sampling Equipment

Monitoring equipment will be capable of obtaining an air sample flow rate of at least 40 liters per minute for one hour or longer. Equipment utilized will be and Eberline RAS-1, or a Scientific Industries Model H25004, or equivalent. Filter media will be of appropriate micron pore diameter. Equipment is calibrated prior to each usage as per Section 3.3 of this manual.

1.1.3.3 Sampling Procedure

Steps for collection of area airborne grab samples are as follows:

- 1. A high volume pump will be used for sample collection.
- 2. Check sample pump calibration.
- 3. Locate sampler at designated site. Insert a clean filter, using tweezers, into the filter holder on the sampler. Do not contaminate the filter. Log start time and conditions at the site.
- 4. Collect a sample for a minimum of 60 minutes at a flow rate of 40 lpm.
- 5. After sampling is completed, carefully remove the filter, using tweezers, from the filter holder and place it in a clean envelope, or in the plastic casing furnished with the filter.

- 6. Log all sample data on the log sheet.
 - A. Sample location and number (also on the envelope).
 - B. Time on, time off and date.
 - C. Mill operating conditions at the site.
 - D. Sampler's initials.
- 7. Analyze for gross alpha

1.1.3.4 Calculations

Perform calculations as described in Section 1.1.2.7.

1.1.3.5 Records

Logs of all samples taken are filed in the RSO's files. Data are used to calculate radiation exposures as described in Section 4.0.

Whenever grab sampling results indicate that concentrations in work locations exceed 25% of the applicable value in 10 CFR Part 20, Appendix B, time weighted exposures of employees who have worked at these locations shall be computed. Calculations will reveal an individual's exposure in DAC hours. This value shall be assigned to the worker and logged onto the worker's "Employee Exposure to Airborne Radionuclides" form. This form is in Section 4. Whenever special air sampling programs (as required for cleanup, maintenance, decontamination incidents, etc.) reveal that an employee has been exposed to airborne radioactive material, the calculated value shall also be entered on the individual's exposure form.

1.1.3.6 Quality Assurance

Calibration checks on each air sampler, prior to field use, ensure accurate airflow volumes. Use of tweezers and new filter storage containers minimizes contamination potential. Field logging of data during sampling and logging of identifying data on sampled filter containers minimizes sample transposition. Quality control samples will be analyzed as described in Section 1.1.2.8

Review of data by the RSO and by the ALARA Audit committee further assures quality maintenance.

1.2 ALPHA SURVEYS

1.2.1 Restricted Area

The Restricted Area is defined as:

- 1. The property area within the chain link fence surrounding the mill property and the area enclosed to the north and east of the facility by the posted Restricted Area fence.
- 2. The active tailings and liquid waste disposal areas.

All personnel who enter the Restricted Area will monitor themselves each time they leave the Restricted Area and at the end of their shift. The Radiation Safety Department will review the monitoring information. All personnel exiting the Restricted Area must initial a record of their monitoring activity.

1.2.2 Instrumentation

The instrumentation utilized for personnel alpha scanning is listed in Appendix 1 at the end of this manual. Personnel alpha survey instruments are located at the exits from the Restricted Area.

1.2.3 Monitoring Procedures

The monitoring procedure includes the following steps:

- 1. The alarm rate meter is adjusted within the range of 750 to 1,000 dpm/100 cm² to ensure a margin of 250 dpm/100 cm² due to the low efficiency of this instrumentation.
- 2. An individual monitors himself by slowly passing the detector over their hands, clothing and shoes, including the shoe bottoms, at a distance from the surface of approximately ¹/₄ inch. An area that is suspected of possessing any contamination (i.e. hands, boots, visible spotting/stain on clothing etc.) should be carefully monitored by placing the detector directly on the surface and note the measurement.
- 3. Should an alarm be set off indicating the presence of contamination, the individual should:
 - a. Resurvey themselves to verify the contamination.
 - b. If contamination is present the individual must wash the affected area and again resurvey themselves to ensure the contamination has been removed.
- 4. If the decontamination efforts by the individual are not successful, then the Radiation Safety personnel will be contacted to assess the situation. Further decontamination may be required.
- 5. If an individual's clothing cannot be successfully decontaminated, they must obtain clothing from the warehouse to use and must launder the personal clothing in the laundry room.

- 6. Individual surveys are to be logged and initialed.
- 7. Access to and from the Mill's Restricted Area by all Mill workers, contractors and delivery personnel, other than Radiation, Safety and Environmental Staff, Senior Laboratory personnel, Mill Management and Mill Supervisory personnel and others as may be designated by the RSO, will be limited to one or more access points as may be designated by the RSO from time to time.
- 8. A Radiation Technician will be positioned at each access point designated by the RSO under paragraph 7 above during peak transition times, such as during breaks and at the ends of shifts, to observe that each worker, contractor or delivery person is performing a proper scan.

1.2.4 Training

All employees will be trained on the proper scanning procedures and techniques.

1.2.5 Records

Log sheets will be collected daily and filed by the Radiation staff. Records will be retained at the Mill. Contamination incidents will result in a written record, which is maintained on file.

1.2.6 Limits/ALARA

Contamination limits for personnel scans are set at $1,000 \text{ dpm}/100 \text{ cm}^2$. Records will be reviewed by the RSO to maintain levels noted as low as reasonable achievable.

1.2.7 Quality Assurance

A random check of an individual's scanning technique provides quality assurance of the monitoring procedures. Daily function checks using calibrated sources assures instrumentation performance. Periodic review by the RSO and the ALARA audit committee document and ensure quality control and ALARA maintenance.

1.3 PERSONNEL BETA-GAMMA MONITORING

Site employees working within the Restricted Area will be required to wear a personal monitoring device (such as a TLD, LUXEL badge or other NVLAP approved device which has been approved by the RSO and the SERP) during their work period. The personal monitoring devices are normally issued to each employee quarterly; however, during pregnancy or if the radiological potential for exposure to an individual is

anticipated to be elevated and requires quick assessment the badges may be issued monthly.

1.3.1 Monitoring Procedures

The monitoring procedures consist of:

- 1. Personnel issued personal monitoring devices will wear the device on the trunk (torso) of the body. The personal monitoring device records beta/gamma radiation as well as other forms of penetrating radiation such as x-rays. A personal monitoring device is an exposure record of an individual's personal exposure to radiation while on the job. Therefore, personal monitoring devices are to remain at the Mill and stored on the assigned dosimeter storage boards. All exposure records obtained by a personal monitoring device which are not consistent with the exposure rates of work tasks or work location measurements made throughout the Mill will be evaluated by the RSO. This evaluation will result in an investigation by the RSO and a written explanation of the findings. These written records will be maintained at the Mill.
- 2. Personal monitoring devices will be issued at a minimum quarterly and will be exchanged by the Radiation Safety Department. Missing or lost badges will be reported to management.
- 3. Female employees that become pregnant and continue to work during the course of their pregnancy will be placed on a monthly personal monitoring device exchange during this period. NRC Regulation Guide 8.13 provides guidelines to be followed during pregnancy and is made part of this procedure.

1.3.2 Records

The Radiation Safety Department will maintain all occupational exposure records in the departmental files:

- 1. Occupational exposure records are a part of an individual's health record and, as such, will be considered private information.
- 2. An individual may examine his/her exposure record upon request.
- 3. An employee terminating his/her employment with the Company may request a copy of his/her occupational exposure records.
- 4. The Radiation Safety Department on the signature of the employee will request prior occupational exposure records.

5. Occupational exposure records will be made available to authorized company or regulatory personnel.

1.3.3 Quality Assurance

Periodic reviews by the RSO and the ALARA audit committee document and ensure quality control and maintenance of conditions ALARA.

1.4 URINALYSIS SURVEYS

1.4.1 Frequency

Urinalyses will be performed on those employees that are a) exposed to potential airborne yellowcake or involved in maintenance tasks during which yellowcake dust may be produced, or b) routinely exposed to airborne uranium dust. Baseline urinalyses will be performed prior to initial work assignments.

Urine samples are collected on a routine basis from employees as required in Regulatory Guide 8.22. Samples will be collected from all employees monthly. Bi-weekly samples will be collected if individual exposures are expected to exceed 25% of the DAC value. Non-routine urinalyses will usually be performed on employees who have been working on assignments that require a Radiation Work Permit, and always on any individual that may have been exposed to airborne uranium or ore dust concentrations that exceed the 25% of the DAC level.

1.4.2 Specimen Collection

Clean, disposable sample cups with lids will be provided to each employee that will be required to submit a urine specimen. The containers will be picked up at the administration building before the individual enters the Restricted Area.

The container, filled with specimen, will be returned to the bioassay laboratory prior to reporting to work. The name of the employee and the date of collection will be indicated on the specimen cup.

A valid sample must be collected at least 40 hours, but not more than 96 hours, after the most recent occupancy of the employee's work area (after two days, but not more than four days off).

The specimen should be collected prior to reporting to the individual's work location. To prevent contamination, the hands should be carefully washed prior to voiding.

Under unusual circumstances where specimens cannot be collected in this manner, the worker will shower immediately prior to voiding.

1.4.3 Sample Preparation

Equipment required:

- 15 ml disposable centrifuge tubes with lids
- 10 ml pipette
- 1 mL pipette
- 200 μL pipette
- 5 μl pipette
- 10 µl pipette
- Disposable tips for the above pipettes
- 1,000 ppm uranium solution
- Spiking solution 0.03 or 0.02 g/l of uranium in de-ionized water

After the specimens are received, they will be stored in a refrigerator until they are prepared for analysis.

Sample preparation will be done in an area decontaminated to less than 25 dpm alpha (removable) per 100 cm^2 prior to preparation of samples. All of the equipment that is used in sample preparation will be clean and maintained in such condition.

A log will be prepared and the following information will be kept for each urinalysis performed:

Sample identification number Name of employee submitting the specimen Date of sample collection Date the sample was sent to the laboratory Date the results were received Results of the urinalysis in µg/1 Indication of any spike used in µg/1

The centrifuge tubes will be marked with a sample identification number. 10 milliliters of urine will then be pipetted into the centrifuge tube using the pipette device. Or 1 milliliters of urine will then be pipette into the centrifuge tube using the pipette device (To prevent contamination, a new tip must be used for each specimen.) After each step of the procedure, the proper entry must be made in the logbook.

The samples that are to be spiked for quality assurance purposes will then be prepared. The spikes will be introduced into the sample with 5 μ l or 10 μ l pipettes. A new tip must be used with each spike. With the standard spike solution (0.03 g/l of U), a 5 μ l spike will result in a 15 μ g/l concentration for the 10 ml sample; the 10 μ l spike will give 30 μ g/l). The proper entry must be made in the logbook for each sample spiked.

After preparation has been completed, the QA samples are securely packaged as soon as practicable and sent to the contract laboratory for analysis.

The samples that are to be analyzed in-house will be placed in the chemistry laboratory's refrigerator until the analysis can be completed. A copy of the in-house analytical procedure is described in Section 1.4.7.6. Once the on-site laboratory is no longer functional, all samples will be submitted to a certified laboratory.

1.4.4 Quality Assurance

To assure reliability and reproducibility of results, at least 25% of the samples that are submitted for analysis will be used for quality assurance purposes. These samples will consist of spikes, duplicates, and blanks (samples collected from individuals known to have no lung or systemic uranium burden).

Spiked samples will be prepared as stated under sample preparation of this procedure.

Duplicates will be identical samples of the same specimen and/or spikes of identical concentrations.

To assure reliability of the in-house analytical procedure, 10% of the samples will be sent to a contractor laboratory for analysis. These samples will contain quality assurance items designed to provide intra-laboratory comparisons.

1.4.5 Analysis

After the samples are collected as outlined in Guide 8.22, they are identified to the lab by collection date and number. Urinalysis results must be completed and reported to the Radiation Safety Department within seven days of the sample collection.

1.4.5.1 Equipment List

- 1. Specimen collection cups with disposable lids (VWR No. 15708-711 or equivalent)
- 2. Screw cap, disposable, graduated 15 ml centrifuge tubes (Corning No. 25310 or equivalent)
- 3. Micro-pipettes 1 each 5, 5 each 10 µL (Oxford Model 7000 or equivalent)
- 4. Adjustable Finnpipette each 1,000 µL, 200 µL and 5 mL
- 5. Disposable micro-pipette tips for micro-pipettes (Oxford No. 910A or equivalent)
- 6. Fume Hood
- 7. Ultrasonic Cleaner
- 8. PE-SCIEX ELAN DRC II AXIAL FIELD TECHNOLOGY ICP-MS (or equivalent)
- 9. Polyscience Water Circulator (or equivalent)
- 10. Perkin-Elmer AS-10 Auto Sampler (or equivalent)

11. Thermo Scientific Vortex mixtures (or equivalent)

1.4.5.2 Reagent List

- 1. 1% to 2% Nitric Acid
- 2. Concentrated Nitric Acid
- 3. 1,000 µg/ml Uranium Stock Solution, certified vendor prepared
- 4. Dilutions of the above stock solution, replaced bi-annually. Used for QA/QC.
- 5. Appropriate Cleaning Solution for Ultrasonic Cleaner
- 6. 1,000 μ g/ml Uranium Stock Solution, purchased from certified vendor to use as calibration standard at different dilutions

Ensure that all reagents used are within their expiration dates listed on each reagent package, if applicable.

1.4.5.3 Premise

A portion of urine is diluted with 2% Nitric acid solution, mixed thoroughly and analyzed.

1.4.5.4 Safety Precautions

- 1 Follow laboratory guidelines when working with acids.
- 2. Utilize all appropriate PPE.

1.4.5.5 Sample Preparation Procedure

- 1. Compare sample numbering with bioassay result sheet to insure order and eliminate discrepancies.
- 2. To 15 ml centrifuge tube add 1 mL urine sample, 200 μL internal standard of 1,000 ppb and 2% Nitric acid to make up volume to 10 mL.
- 3. Maintaining sample order of left to right, front to back, lowest sample number to highest sample number in the set.
- 4. Use vortex to mix it thoroughly.
- 5. Analyze using procedure on the ICP-MS described in section 1.4.5.6.

1.4.5.6 ICP-MS Procedures

Special considerations: Because of the high salt content of the samples, it is necessary to clean the skimmer and sampler cones after each use.

- 1. Turn the argon on at the tank and set the delivery pressure at 80 pounds per square inch (psi).
- 2. Turn on the exhaust fan and the water supply to the ICP-MS. The water supply has to have a delivery pressure of 70 psi. It may be necessary to change the filters on the water supply in order to achieve sufficient water supply pressure. The ICP-MS will not operate below this pressure.
- 3. Turn on the computer, monitor and printer.
- 4. On the windows desktop, double-click the ELAN icon.
- 5. Check the condition of the sample introduction system.
- 6. Check that the sample tubing and drain tubing leading from the peristaltic pump to the spray chamber are properly set up and in good working condition. It is recommended to use new tubes every day.
- 7. Place the capillary tubing into a container of 2% Nitric acid solution.
- 8. Open the instrument window, and then click the Front Panel Tab.
- 9. On the front panel tab click vacuum start.
- 10. When the instrument is ready, click Plasma Start.
- 11. After the plasma ignites, allow the instrument to warm up for 45 minutes.
- 12. To begin sample analysis, click the sample tab, build the sample analysis list and click on analyze sample.
- 13. After the last sample, aspirate the blank long enough to clean the lines.
- 14. Allow the pump to run long enough without aqueous uptake to void all lines.
- 15. Turn the flame off and relax lines off of pump.
- 16. After 5 to 10 minutes, turn off the water supply, exhaust fan and argon.

All bioassay samples need to be analyzed three (3) working days from receipt in the laboratory. Samples are extremely susceptible to contamination. Precautions should be taken to minimize traffic and fugitive dust while samples are digesting.

1.4.6 Reporting and Corrective Actions

As soon as the analytical results are received, they are entered in the logbook and the entries are checked for correctness and completeness.

The lab report is returned to the Radiation Safety Department with results reported as micrograms/liter of uranium. The information must be placed in the individual employee's exposure file and maintained as directed by the DRC.

The Radiation Safety Department is notified immediately of any sample with a concentration greater than 35 micrograms/liter of uranium. Corrective actions will be taken when the urinary uranium concentration falls within the limits listed in Table 1 (attached).

The Radiation Safety Department should compute the error on the control spiked samples and advise the lab if the results are more than $\pm 30\%$ of the known values. If any of the results obtained for the quality assurance control samples are in error by a $\pm 30\%$, the analysis must be repeated.

1.5 IN-VIVO MONITORING

In-vivo body counting for lung burdens of U-natural and U-235 will not be routinely conducted. Monitoring will be conducted at the discretion of the RSO, samples may be sent for a follow-up analysis for specific radionuclides in consultation with DUSA management should potential exposure to an individual warrant.

2.0 RADIATION MONITORING – AREA

2.1 HIGH VOLUME AIRBORNE AREA AIR SAMPLING

Area air sampling involves passing a representative sample of air through a filter paper disc via an air pump for the purpose of determining the concentration of uranium in breathing air at that location. Although the process is only measuring airborne concentrations at a specific place and at a specific time, the results can often be used to represent average concentration in a general area. A high volume sampler or similar high volume pump will be used for this purpose. Samples will be analyzed as per standard gross alpha analysis procedures using a sensitive alpha detector.

2.1.1 Equipment

Monitoring equipment will be capable of obtaining an air sample flow rate of 40 lpm or greater for one hour or longer. A variety of equipment may be used for area air sampling, however normally the equipment used is an Eberline RAS-1, Scientific Industries Model H25004, or equivalent. Equipment is calibrated prior to each usage as per Section 3.6 of this manual.

2.1.2 Frequency/Locations

Area dust monitoring frequency is monthly for the locations shown in Table 2.1.2-1.

Table 2.1.2-1		
Airborne Radiation Sample Locations		

Code	Location/Description
BA1	Ore Scalehouse
BA2	Ore Storage
BA6	Sample Plant
BA7	SAG Mill Area
BA7A	SAG Mill Control Room
BA8	Leach Tank Area
BA9	Washing Circuit CCD Thickness
BA10	Solvent Extraction Building/Stripping Section
BA 11	Solvent Extraction Building/Control Room
BA12	Yellowcake Precipitation & West Storage Area
BA12A	North Yellowcake Dryer Enclosure
BA12B	South Yellowcake Dryer Enclosure
BA13	Yellowcake Drying & Packaging Area
BA13A	Yellowcake Packaging Enclosure
BA14	Packaged Yellowcake Storage Room
BA15	Metallurgical Laboratory Sample Preparation Room

Code	Location/Description
BA16	Lunch Room Area (New Training Room)
BA17	Change Room
BA18	Administrative Building
BA19	Warehouse
BA20	Maintenance Shop
BA21	Boiler
BA22	Vanadium Panel
BA22A	Vanadium Dryer
BA23	Filter Belt/Rotary Dryer
BA24	Tails
BA25	Central Control Room
BA26	Shifter's Office
BA27	Operator's Lunch Room
BA29	Filter Press
BA30	Truck Shop
BA31	Women's Locker Room
BA32	Oxidation
BA33A	AF South Pad
BA33B	AF North Pad

Areas BA-10 and BA-12 were soluble uranium exposure areas. These areas were areas where the uranium compounds that were produced are soluble in lung fluids and are comparatively quickly eliminated from the body. All the other areas are insoluble exposure areas. Insoluble uranium areas were areas where the uranium compounds are not readily soluble in lung fluids and are retained by the body to a higher degree. Temperature of drying operations has a significant impact on solubility of uranium compounds. High drying temperatures produce insoluble uranium compounds. Area uranium dust monitoring, during production periods, is weekly in the designated yellowcake production areas. Monitoring increases to weekly in other monitored areas with the observance of levels exceeding 25% of 10 CFR 20 limits and reverts to monthly upon a continued observance of levels below 25% of 10 CFR 20 limits as determined by the RSO. The RSO may also perform any additional samplings at his or her discretion.

As areas are decommission and the ability to sample those areas is removed, the RSO will document this in the files and those areas will be removed from further monitoring.

2.1.3 Sampling Procedures

- 1. A RAS-1 or similar high volume pump shall be used for area grab sampling. Insure the pump has been recently calibrated within the past month.
- 2. The locations selected for area air samples should be representative of exposures to employees working in the area.
- 3. For routine sampling, the sampling period should be for a minimum collection duration of 60 minutes at a flow of 40 lpm or greater.
- 4. Insert a clean filter into the filter holder on the sampler. Note start time of pump and record unusual mill operating conditions if they exist.
 - A. Stop sample collection and note time. Normally, an automatic timer is connected to the sampler and a 1 hour sample collection time is used.
- 6. Remove the filter from the sampler and place in a clean glassine envelope or the package supplied by the manufacturer for delivery to the Radiation Department.
- 7. Count the sample by gross alpha counting techniques and enter the result and sampling information into the record.

2.1.4 Calculations

Perform calculations as specified in Section 4.0.

2.1.5 Records

Logs of all samples taken are filed in the Radiation Safety Officer's files. Data is utilized to calculate radiation exposures as specified in Section 4.0.

2.1.6 Quality Assurance

Calibration checks on each air sampler are made at least monthly to ensure accurate airflow volumes are being collected. Usage of tweezers and new filter storage containers minimizes contamination potential. Field logging of data during sampling and logging of identifying data on sampled filter containers minimizes sample transposition. Samples may periodically be submitted for chemical analysis and a comparison of these results to the radiometric measurements will be made.

Review of data by the RSO and by the ALARA audit committee further assures quality maintenance.

2.2 RADON PROGENY

2.2.1 Definitions

Working Level:

A. The exposure to 1.3E + 05 MEV of alpha energy or the potential alpha energy in one liter of standard air containing 100 pCi each of RaA (Polonium-218), RaB (Lead-214), RaC (Bismuth-214), and RaC prime (Polonium-214). (Exposure level, not a dose rate)

Kusnetz Method: Method of radon progeny measurement and calculation based upon a 10 liter sample and at least 40 minutes decay time before counting.

2.2.2 Equipment

The equipment utilized consists of the following, or appropriate equivalents:

- Portable personal sampler
- Gelman 25 mm filter holder with end cap, or equivalent
- Gelman Type A/E 25 mm diameter glass fiber filters, or equivalent
- Counter-Scaler Eberline MS-3 with SPA-1 probe, or equivalent

2.2.3 Frequency/Location

Radon progeny samples are obtained monthly for only those locations occupied by personnel where exposures may have the potential of exceeding 25% of 10 CFR 20 limits.

2.2.4 Procedures

The procedures to be utilized are as follows:

- 1. Assemble filter trains.
- 2. Ensure pump batteries are fully charged.
- 3. Calibrate pump (see Section 3.5).
- 4. Attached filter trains at sample locations; disconnect end plug.
- 5. Collect sample in the breathing zone of the employee.
- 6. Collect sample for five minutes at 4.0 lpm.

- 7. Log sample site, time started, time stopped, and filter pump number prior to leaving each site on the field log notebook.
- 8. Samples are counted between 40 minutes and 90 minutes after collection using sensitive alpha detector.
- 9. Check the calibration and function check information to ensure the detector is calibrated and operating.
- 10. If the calibration check correlates, proceed with sample analysis.
- 11. Radon progeny samples are normally counted for three minutes; however any sample count time may be selected for counting.
- 12. Run background detector count prior to running sampled filters.
- 13. After counting, calculate working levels.

Equation:	$\frac{(CPM - Bkg)}{(\alpha \text{ eff}) (20 \text{ liters}) (Time Factor)} = WL$
Where:	 CPM - sample count per minute Bkg - counter-detector background count per minute α Efficiency - The efficiency of the counting system (See Section 3.2.3.3) Time Factor - Values determined from Kusnetz method (See attached Table 2.2.4-1) WL - Working Levels

TABLE 2.2.4-1Time Factors				
Factor	Min.	Factor		
150	71	89		
148	72	87		
146	73	85		
144	74	84		
142	75	83		
140	76	82		
138	77	81		
136	78	78		
134	79	76		
132	80	75		
130	81	74		
128	82	73		
126	83	71		
124	84	69		
122	85	68		
120	86	66		
118	87	65		
116	88	63		
114	89	61		
112	90	60		
110				
108				
106				
104				
102				
100				
98				
96				
94				
92				
90				
	Time F <u>Factor</u> 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 114 112 110 108 106 104 102 100 98 96 94 92	Time FactorsFactorMin.150711487214673144741427514076138771367813479132801308112882126831248412285120861188711688114891129011010810610410210098969492		

2.2.5 Exposure Calculations

The personnel exposure calculations are a job-weighted average of those areas and concentrations that an individual is exposed to. The procedure is:

1. Determine areas and durations (hrs.) each individual worked during the period (month and quarter).

- 2. Determine monitored concentrations (WL) for each area so noted.
- 3. The multiplication of the hours worked in each area by the area concentration (WL) noted is added to the result for each area involved in the period.
- 4. The result is the Working Level Hours exposed (WLH) for the period.
- 5. The working level hours (WLH) divided by 173 (30 CFR 57.5-40 note); or hours per month gives the working level months (WLM) exposure. (The limit is 4 working level months exposure per year.)
- 6. If calculated per quarter, the working level hours summed for the quarter are divided by 519 (173 X 3) to obtain the working level quarter exposure.

See Section 4.0 for details on how to perform exposure calculations and maintain the exposure records.

2.2.6 Records

Data records, which are filed in the Radiation Safety files, include:

- 1. Sample location
- 2. Date and time of sample
- 3. Time on and off of sample pump
- 4. Counts per minute of sample
- 5. Elapsed time after sampling
- 6. Background detector count
- 7. Appropriate Kusnetz time factor
- 8. Working level
- 9. Sampler identification

Employee exposure records include:

- 1. Month monitored
- 2. Areas and duration worked
- 3. Employee identification
- 4. Concentrations (WL) observed
- 5. Calculated WLMs

2.2.7 Quality Assurance

Calibration checks each month assure proper calibration of the counting equipment. Documented semi-annual calibrations of the counting equipment using certified alpha calibration and pulse meter sources ensure proper calibration of the equipment over the anticipated ranges. The air sampling system has documented calibration prior to each use, ensuring sampling the appropriate air volumes. Duplicate counts of select data may be counted to assure instrument precision. Field documentation is maintained for each sample during monitoring. This methodology provides assurance in data quality.

Review of data by the RSO and the ALARA audit committee further assures quality maintenance.

2.3 ALPHA SURVEYS

2.3.1 Equipment

Equipment to be utilized in area alpha surveys is shown in Appendix 1. Pre-use function checks will be performed on all radiation survey equipment as specified in Section 3.1.2.3.2.

2.3.2 Frequency/Locations

Fixed and removable alpha surveys are made at those general locations on the Table 2.3.2-1, "Alpha Area Survey Locations." Surveys are completed weekly in those areas designated by the RSO as authorized lunchroom/break areas are monitored. Designated eating areas are listed in Table 2.3.2-2.

As areas are decommission and the ability to sample those areas is removed, the RSO will document this in the files and those areas will be removed from further monitoring.

Table 2.3.2-1White Mesa MillAlpha Area Survey Locations

Scale House Table Warehouse Office Desks Maintenance Office Desks Change Room Lunch Tables Maintenance Lunchroom Tables Mill Office Lunchroom Tables Metallurgical Laboratory Desks Chemical Laboratory Desks Administrative Break Room Counter Administrative Office Desks

Table 2.3.2-2White Mesa MillDesignated Eating Area Locations

Maintenance Supervisor Break Room Main Lunch/Training Room Administrative Break/Conference Rooms Administrative Office Desks

2.3.3 Procedures

2.3.3.1 Respirators

Respirators are monitored utilizing a removable alpha smear that is read using alpha scaler meter such as a Ludlum Model 2200 or other equivalent radiological instruments. Readings exceeding 100 dpm/100 cm² result in re-cleaning or discarding of the respirator. Respirator cleaning and monitoring is a function of the Radiation Safety staff assigned to this duty. The meter's performance is checked prior to each use period.

2.3.3.2 Fixed Alpha Surveys

Alpha surveys for fixed alpha contamination are performed using a variety of alpha detecting instruments, as listed in Appendix 1. Each instrument is checked using a calibrated alpha source for proper function and operation prior to use, as described in Section 3.1.2.3.2.

Adjustments to the surface area being measured must be made to convert from the particular detector's surface area to the commonly used surface area of 100 cm². Therefore when converting a measurement to the commonly used unit of dpm/100 cm², a multiplying area factor must be applied to the measurement. For the Ludlum instrument with a 43-1 detector of 75 cm² surface, multiply the value by 1.33 (i.e. 100 cm² divided by 75 cm²).

The procedures are:

- 1. Turn the meter on and check the meter battery condition.
- 2. Check alpha detector mylar surface for pinholes, etc. Replace if necessary and repeat calibration.
- 3. As specified in Section 3.1.2.3.2, perform a function calibration check using calibrated alpha source.
- 4. If check is acceptable, proceed with monitoring.

- 5. At each designated site, monitor designated surfaces, table tops, etc., holding within ¹/₄ inch of the surface.
- 6. Record data, location, cpm/cm^2 monitored on data sheet.
- 7. At the conclusion of the survey, transpose results to the file log, correcting to $dpm/100 \text{ cm}^2$, using correction for detector's surface area and cpm/dpm conversion factor.

2.3.3.3 *Removable Alpha Surveys*

The Ludlum Model 2200 scaler with 43-17 detector, or a variety of other sensitive alpha detection instruments such as Model 2929 or equivalent, counts wipe samples collected during removable alpha surveys. Glass fiber filters, sized to fit the detector sample slot, are utilized as the wipe medium. A template having a 100 cm² surface area maybe used to standardize the surface area wiped.

The procedure is:

- 1. Perform function check calibration of the scaler/detector. Ensure that this measurement is within $\pm 10\%$ of the value obtained from the calibration laboratory.
- 2. If so proceed with the survey and counting.
- 3. Obtain clean filters and clean envelopes for filter storage.
- 4. At a location to be surveyed, remove the filter from the envelope and wipe the surface covering approximately 100 cm². This is easily accomplished by making an "S" shaped smear for approximately 10 inches using normal swipes (approximately 2.5 cm diameter).
- 5. Record on envelope the date and location of the sample.
- 6. Upon returning to counting lab, place an unused filter in the counting unit for at least 1 minute and obtain a background count rate.
- 7. Repeat procedure for each used filter, extracting filter from envelope, immediately prior to counting, using tweezers and placing in the detector slot with the wiped surface facing the detector, and count for at least 1 minute.
- 8. Convert results from cpm/filter to dpm/filter (100 cm² wiped) after subtracting the blank background count.

9. Record on the alpha survey form the following information:

- A. Sample location and conditions
- B. Sample date
- C. Sampler identification
- D. Wipe count dpm/100 cm^2

10. Discard the filters and envelopes

2.3.4 Action Limits

2.3.4.1 Respirators

Levels greater than 100 dpm/100 cm^2 squared require re-cleaning or discarding of a respirator.

2.3.4.2 Fixed Alpha Surveys

Levels greater than 1,000 dpm/100 cm^2 squared require remedial action by management. ALARA criterion ensures that the RSO takes action where necessary to maintain levels as low as reasonably achievable.

2.3.4.3 2.3.4.3 Removable Alpha Surveys

Levels greater than $1,000 \text{ dpm}/100 \text{ cm}^2$ squared require remedial action and decontamination. ALARA criteria ensure that the RSO takes action where necessary to maintain levels as low as reasonably achievable.

2.3.5 Records

Records of fixed and removable alpha surveys are maintained in the Radiation Safety office files. Records include:

- 1. Sample location/conditions
- 2. Sample date
- 3. Sampler identification
- 4. Fixed alpha determination $dpm/100 cm^2$
- 5. Removable alpha determination $dpm/100 cm^2$
- 6. Remedial action taken, where necessary

2.3.6 Quality Assurance

Calibration function checks of detector performance and visual observation of detector surfaces prior to each survey ensures counting reliability and consistency. Usage of clean

containers and tweezers minimizes contamination of wipe samples. A Field log of sample I.D.'s on sample containers minimizes transposition of samples. Data review by the RSO and by the Audit Committee further assures quality maintenance.

2.4 BETA-GAMMA SURVEYS

2.4.1 Equipment

Beta/Gamma surveying instruments used for beta-gamma surveys are listed in Appendix 1 and the sources used are listed in Appendix 2.

Some instruments read directly in mrem/hour while others read in cpm (with a conversion to mrem/hour). The model 44-6 detector has a removable beta shield allowing discrimination between beta and gamma contributions. Each instrument has a manufactures user's manual which describes the function, use and capability of each instrument. These manuals must be understood before surveying proceeds. Calibration of Beta/Gamma and functional checks are performed using calibrated Cs-137 or SrY 90 sources

2.4.2 Frequency/Locations

The sites noted on Table 2.4.2-1 may be monitored on a monthly basis by of the Radiation Safety staff. During reclamation periods, only areas routinely occupied by personnel are monitored as designated by the RSO. As areas are decommission and the ability to sample those areas is removed, the RSO will document this in the files and those areas will be removed from further monitoring.

Table 2.4.2-1Beta-gamma Survey Locations

	Description of Possible	
Identification Number	Source of Area of Exposure	Distance from Source in cm
WM-1	Mill Feed Hopper & Transfer Chute	1
WM-2	SAG Mill Intake-Feed Chute	1
WM-3	Screens-Area Floor Between Screen	1
WM-4	Leach Operator's Desk	1
WM-5	Leach Tank Vent #3	1
WM-6	Leach Tank #3 – Wall	1
WM-7	CCD Thickeners	1
WM-8	Pumphouse Tailings Discharge	1
WM-9	Oxidant Makeup Room-Sump Pump	1
WM-10	Shift Foreman's Office-Work Desk	1
WM-11	SX Operator's Area	1
WM-12	Precipitation Tanks #1 Tank; Wall	1
WM-13	Precipitation Section "Lab Bench"	1

	Description of Possible	
Identification Number	Source of Area of Exposure	Distance from Source in cm
WM-14	Precipitation Vent	1
WM-15	Yellowcake Thickener #1; Wall	1
WM-16	Centrifuge Discharge-Chute Wall	1
WM-17	Yellowcake Thickener #2; Wall	1
WM-18	Yellowcake Packaging Room	1
WM-19	Yellowcake Dryer	1
WM-20	Yellowcake Dust Collector	1
WM-21	SX Uranium Mixer #1 Extractor	1
WM-22	SX Uranium Mixer #1 Stripping	1
WM-23	SX Vanadium Mixer #1 Stripping	1
WM-24	Vanadium Dryer	1
WM-25	Mill Laboratory Fume Hood	1
WM-26	Chemical Laboratory Work Area	1
WM-27	Metallurgical Laboratory Work Area	1
WM-28	Lunchroom Eating Area	1
WM-29	Lunchroom Wash Area	1
WM-30	Maintenance Shop – Work Area	1
WM-31	Maintenance Shop – Rubber Coating	1
WM-32	Tailings Impoundment Discharge	1
WM-33	Tailings Impoundment Dike 1	1
WM-34	Tailings Impoundment Dike 2	1
WM-35	Tailings Impoundment Dike 3	1
WM-36	Scalehouse	1
WM-37	Tailings Impoundment Dike 4	1

2.4.3 **Procedures**

The monitoring procedures are:

1. Check meter battery condition.

White Mesa Mill - Standard Operating Procedures

- 2. Check detector using a check source.
- 3. If the calibration function check indicates that the instrument is operating within calibration specifications, proceed with monitoring.
- 4. Survey each designated location on Table 2.4.2-1 and record in the field log:
 - A. Site location/condition
 - B. Date
 - C. Instrument used
 - D. Sampler's initials
 - E. Meter reading (beta + gamma)
 - F. Meter reading (gamma)

5. Upon returning to the office, record the mrem/hr reading into a permanent file which is maintained for beta-gamma exposure evaluation.

2.4.4 Action Levels

The ALARA concept is utilized in action levels. Responses include operative cleaning of the area or isolation of the source. The Radiation Safety Department will ensure levels ALARA.

2.4.5 Records

Records maintained in the Radiation Safety office files include:

- 1. Date monitored
- 2. Site location/condition
- 3. Instrument used
- 4. Sampler's initials
- 5. Beta/Gamma level, mrem/hr
- 6. Remedial action taken, if necessary

2.4.6 Quality Assurance

Quality of data is maintained with routine calibration and individual function checks of meter performance. Personnel utilizing equipment are trained in its usage. Records of the operational checks and calibrations are maintained in the files. The RSO routinely reviews the data and the ALARA audit committee periodically analyzes the performance of the management of the monitoring and administrative programs.

2.5 EXTERNAL GAMMA MONITORING

External gamma area monitoring is conducted at various locations around the Mill site in order to provide Radiation Safety Staff with area-specific gamma measurements. The procedures applicable to such monitoring are set out in Section 4.3 of the Mill's Environmental Protection Manual.

2.5.1 Locations and Frequency of Monitoring

External gamma measurements are taken over a quarterly interval for the twelve months of the year at all BHV locations and selected areas around the mill site (see Attachment #1 for those locations).

2.5.2 Quality Assurance

Quality assurance for external gamma measurements consists of:

- **2.5.2.1.1** Monitoring the container locations to ensure the TLDs have not been lost;
- **2.5.2.1.2** Ensuring that all containers are present when receiving or shipping to Landauer; and
- **2.5.2.1.3** Reviewing Landauer data for consistency and data transportation.

2.5.3 Analytical Requirements

Values reported are in millirems per week average for the monitor period (supplied by Landauer) along with a counting error term. The counting error term is calculated by:

[(sample 2 sigma) – (control mrem/week)] / (#weeks)

2.5.4 STANDARD OPERATING PROCEDURES

2.5.4.1 Equipment

External gamma is monitored at the ambient air sampling sites and other selected areas around the mill site, using the OSL badges from Landauer, Inc., or the equivalent.

2.5.4.2 Monitoring Methodology

- **2.5.4.2.1** The containers, each containing five TLD chips, are mounted approximately one meter above ground plane at each site with one container per site.
- **2.5.4.2.2** The containers loaded with TLDs are received the first of each quarter from Landauer and exchanged with those in the field.
- **2.5.4.2.3** A background TLD is stored in the Administration Vault as a transportation control.
- **2.5.4.2.4** The TLDs are returned to Landauer for processing.

2.5.4.3 Record Keeping

Data maintained in record form for external gamma is:

2.5.4.3.1 Sample period;

2.5.4.3.2 Sample location; and

External gamma levels for total radiation.

2.6 EQUIPMENT RELEASE SURVEYS

2.6.1 Policy

Materials leaving a Restricted Area going to unrestricted areas for usage must meet requirements of NRC guidance for "Decontamination of Facilities and Equipment Prior to Release for Unrestricted Use" (dated April 1993).

All material originating within the restricted area will be considered contaminated until checked by the Radiation Safety Department. All managers who desire to ship or release material from the facility will inform the RSO of their desires. The RSO has the authority to deny release of materials exceeding NRC guidance for "Decontamination of Facilities and Equipment Prior to Release for Unrestricted Use" (dated April 1993). No equipment or materials will be released without documented release by the RSO or his designee.

2.6.2 Limits

The release limits for unrestricted use of equipment and materials is contained in the NRC guidance listed above in Section 2.6.1 and are summarized as follows:

Limits for Alpha emissions for U-Nat and its daughter products are:

Average	$5,000 \text{ dpm}/100 \text{ cm}^2$
Maximum	15,000 dpm/100 cm ²
Removable	$1,000 \text{ dpm}/100 \text{ cm}^2$

Limits for Beta-gamma emissions (measured at a distance of one centimeter) for Beta/Gamma emitting radioisotopes are:

Average	$0.2 \text{ mrem/hr or } 5,000 \text{ dpm/}100 \text{ cm}^2$
Maximum	$1.0 \text{ mrem/hr or } 15,000 \text{ dpm}/100 \text{ cm}^2$

2.6.3 Equipment

Radiological survey instruments are listed in Appendix 1.

2.6.4 Procedures

Upon notification that materials are requested for release, the Radiation Safety Department shall inspect and survey the material. Surveys include fixed and removable alpha surveys and beta-gamma surveys. See sections 2.3 Alpha Surveys and 2.4 Beta-Gamma Surveys for a detailed breakdown on the surveying aspects and equipment used for each survey. An equipment inspection and release form, see attached, is to be prepared and signed by the RSO or his designee. Any material released from the mill will be accompanied with the appropriate release form. If contamination exceeds levels found in NRC guidance "Decontamination of Facilities and Equipment Prior to Release for Unrestricted Use", (dated April 1993), then decontamination must proceed at the direction of the RSO. If the material cannot be decontaminated, then it will not be released.

2.6.5 Records

Documented records for each released item are filed in the Radiation Safety Department files. These files shall include a completed Release Form, see attached, and a photograph of the material that is being released.

2.6.6 Quality Assurance

The RSO and the ALARA Audit Committee periodically review the policy and documented release forms to ensure policy and regulatory compliance.

2.7 Field Gamma Surveys

The field gamma surveys will be conducted in accordance with the currently approved Reclamation Plan, Section 6 of the Technical Specifications.

3.0 <u>EQUIPMENT/CALIBRATION</u>

All radiation detection instruments used at the Mill are sent to a qualified independent laboratory for calibration every six months. If necessary, Radiation Safety Staff can use the procedures outlined below to verify calibration.

3.1 Counters/Detectors

3.1.1 General

All radiation detectors require determination of detector optimal voltage performance or plateau operating point. The graph of voltage applied to a detector versus detector response is referred to as a plateau curve. The plateau curve typically has two rapidly sloping sections and a stable, flat region. The optimal operating point is typically located at the beginning of the flat, or flatter, section of the graph. The plateau curve is specific for a particular detector and its accompanying readout, or measuring meter, and may vary over time depending upon electronic component condition.

The equipment used to determine detector plateau curves includes:

- 1. Appropriate radiation sources
- 2. Electrostatic voltmeter
- 3. Radiation detecting instrument
- 4. Graph paper
- 5. Manufacturer's technical manual

The procedure is:

- 1. Ensure instrument batteries are fresh or fully charged, if applicable.
- 2. Turn the instrument on.
- 3. Adjust the instrument voltage control starting at voltage of 600 using electrostatic voltmeter to monitor voltage setting.
- 4. Expose detector to a radiation source applicable to the type of detector and in the appropriate setting.
- 5. Record voltage and instrument response for each adjustment of voltage applied; increments of 50 volts are adequate.
- 6. Repeat steps 4 and 5 until instrument response rapidly increases versus voltage level. At this point, the detector is approaching potential differentials across the electrode that may damage the detector.

- 7. Graph instrument response versus voltage applied.
- 8. Set equipment high voltage control to the optimum operating point. Record on graph voltage selected.
- 9. Retain graph with calibration records.

3.1.2 Function Checks

Calibration function checks are required prior to use of radiation detection instruments used at the Mill for the purpose of verifying that the instruments are operating at the same efficiency as when they were calibrated by the calibration laboratory (i.e., within +/-10%). Function checks are also used for verifying repeatability, reliability, and comparability of an instrument's measurements from one period to another. By performing function checks for extended time periods, or on a larger sample size, these goals are met.

Function checks involve two basic elements:

- (1) The calibration laboratory efficiency is compared to the instrument's efficiency on the date of the function check; and
- (2) The function check is verified with a check source having similar isotopic composition as the one that was used by the calibration laboratory to calibrate the instrument.

Function checks are made for all types of radiation survey instruments. The basic principle in performing a function check is measuring the radiation field using a survey instrument against a known amount of radiation from a calibrated source. These measurements are made for the specific type of radiation occurring. For example, when performing a beta/gamma survey, the instrument function check is performed using a beta/gamma check source, such as a (SrY)-90. When performing an alpha survey, use an alpha check source, such as Th-230 or Pu-239 for performing the function check.

Function checks are documented on the Calibration Check Forms (see Attachment A for copies of forms to be used) for each specific instrument. They will be maintained in the instrument's' calibration and maintenance file.

A number of radiation detection instruments are used at the Mill. An Instrument Users Manual for each instrument is maintained in the calibration files, together with calibration documentation. The Users Manuals are to be considered the primary reference for operating a particular instrument. This Standard Operating Procedure (SOP) is not intended to replace the Users Manual, but rather to supplement the Manual by providing steps to be performed for function checks. Before operating an instrument, personnel should read the Users Manual and become familiar with the instrument's operation, capabilities, and special features. Personnel will also receive on the job training on each instrument.

3.1.3 Alpha Monitors

Alpha particles travel very short distances in the air due to their high ionization ability – typically $\frac{1}{4}$ to $\frac{1}{2}$ inch. Due to this limitation, alpha monitoring must be done at a distance of $\frac{1}{4}$ inch or less between the detector face and the source. Alpha monitoring, to be consistent, requires ensuring a consistent distance be utilized between the detector face and the source. Alpha detectors read out in counts per minute (cpm). A correlation relationship, known as the efficiency factor, between the meter response and the actual disintegration rate of the source is used to determine actual calibration of the meter.

Radioactivity is measured in curies (Ci), which, by definition, is 3.7×10^{10} disintegrations per second (dps), or 2.2 X 10^{12} disintegrations per minute (dpm). Another measurement unit is the Becquerel, or one dps. Alpha radiation is usually monitored as dpm, per surface area measured.

Radiation survey equipment used at the Mill for alpha surveys is listed in Appendices 1 and 2.

3.1.3.1 Calibration and Function Check Frequency

The frequency of calibration is specified in individual instrument user manuals and manufacturer's specifications.

The following frequencies are observed for calibration and function checks of radiation detection instruments:

		Calibration	Function
	Type	Frequency	Checks
1.	Employee scans	6 months	7 days/week
2.	Radon progeny	6 months	each use
3.	Respirator checks	6 months	each use
4.	Area fixed scans	6 months	Daily or each use
5.	Area wipe scans	6 months	Daily or each use

3.1.3.2 Function Check Procedures – Alpha Counters and Scaler Instruments

The following steps will be used for function checks for alpha counters and alpha scaler instruments.

- 1. Turn the instrument on and place a calibrated alpha check source in the detector holder on or the face of the detector.
- 2_{*} Count the source for 1 minute and record this value in cpm.
- 3. Repeat step 2 four more times.
- 4. Average the five readings and divide the average in cpm by the known activity on the alpha source. This is the efficiency of the instrument and detector.
- 5. Compare this efficiency with the efficiency obtained from the calibration lab. If the efficiency comparison is within $\pm 10\%$ deviation the instrument needs is calibrated if not the instrument needs to be recalibrated.
- 6. If this efficiency comparison is within $\pm 10\%$ deviation the instrument is in calibration.
- 7. Proceed with monitoring activities.

3.1.3.4 Calibration Procedures

All radiation detection instruments used at the Mill are sent to a qualified offsite laboratory every six months for calibration. However, if additional onsite calibration is required the calibration procedures are:

- 1. Set the detector high voltage at the prior determined operating point using an electrostatic voltmeter.
- 2. For counter/scalers (radon progeny/wipes), close the detector, without source present, obtain a reading for a set time. This is a background reading.
- 3. Place a calibrated source for the type of radiation being measured in the source holder and obtain reading.
- 4. Observe the cpm for both the background and the source,
- 5. Subtract the cpm value of background from the cpm value of the source to obtain the net cpm.
- 6. Divide the net cpm value by the known dpm of the source. This is the percentage efficiency of the instrument system for this energy source.
- 7. By dividing 100 by this efficiency, an efficiency factor is obtained.

8. Dpm equals the cpm divided by the efficiency of the instrument detector system:

Note: 1 *curie* = 2.22 *E* + 12 *dpm* 1 *microcurie* = 2.22 *E* + 6 *dpm* 1 *picocurie* = 2.22 *dpm*

3.1.4 Beta-gamma Monitors

Equipment utilized for beta-gamma monitoring is listed in Appendices 1 and 2.

3.1.4.1 Function Check Procedure

The following steps will be used for function checks on beta/gamma instruments:

- 1. Turn the instrument on and place the calibrated beta/gamma (SrY-90) check source on the face of the detector.
- 2. Let the reading stabilize to a constant value.
- 3. Record this value in cpm.
- 4. Divide this value by the known activity on the check source. This is the efficiency of the instrument and detector.
- 5. Compare this efficiency to the efficiency obtained from the calibration laboratory. If the efficiency comparison is within $\pm 10\%$ deviation the instrument needs is calibrated if not the instrument needs to be recalibrated.
- 6. If this efficiency comparison is within $\pm 10\%$ deviation the instrument is in calibration.
- 7. Proceed with monitoring activities.

3.1.4.2 *Calibration*

All beta-gamma survey instruments are sent out every six months for calibration. Additional calibration, if necessary, may be performed on site using techniques described in Reg. Guide 8.30, Appendix C – Beta Calibration of Survey Instruments for calibration performed by a qualified calibration laboratory using the indicated source as listed in Appendix 2.

3.1.5 Gamma Monitors

Instruments for gamma measurements are listed in Appendix 1.

3.1.5.1 Calibration

Independent calibration service laboratories shall perform calibrations every six months. Meters are calibrated to Cs-137 or other radioisotopes as suggested by the calibration laboratory or manufacturer. Most calibration service laboratories calibrate Beta/Gamma instruments electronically in accordance with their standard calibration procedures. However, electronic calibration basically consists of the steps described below:

- 1. Connect survey instrument to be calibrated to the Model 500.
- 2. Turn both instruments on.
- 3. Record high voltage reading on Model 500.
- 4. Set cpm and the range multiplier on the Model 500 to the desired meter deflection. The model 500 frequency controls consist of the three-digit readout, range selector, coarse tuning knob, and the fine tuning knob. The three-digit readout is in cpm times the frequency multiplier.
- 5. Calibrating survey instruments in cpm:
 - A. Set Model 500 frequency to value that will provide a ³/₄ meter deflection on the survey instrument's highest count scale. Set pulse height/amplitude to twice instrument input sensitivity.
 - B. Adjust the range calibration potentiometer on the survey meter to provide correct reading record.
 - C. De-code Model 500 frequency to next lower value; then do the same for the survey instrument.
 - D. Adjust the range calibration potentiometer for correct reading on survey instrument. Record readings.
 - E. Repeat process until all ranges have been calibrated at ³/₄ meter deflection. Record readings.
 - F. Return to highest count scale on survey meter.
 - G. Set Model 500 for ¹/₄ scale deflection readings.
 - H. Survey instrument should read within \pm 10% of Model 500 frequency. Record readings.

- 1) If readings are outside of the tolerance, re-calibrate for ³/₄ meter deflection.
- 2) Tap instrument meter lightly to check for sticky meter. Meter tolerance is $\pm 3\%$ from the initial readings to the final reading.
- I. Decode Model 500 to next lower scale. Check survey instruments for ¹/₄ scale reading. Record.
- 6. Record input sensitivity.
 - A. Select the most sensitive amplitude range 0-5 mv on the Model 500.
 - B. Observe meter on survey instrument.
 - C. Increase pulse amplitude, switching to next higher range, if necessary, until the rate meter indicates a stable reading (i.e., further increase of pulse amplitude does not cause an increase in meter reading). Now, decrease pulse height until the survey instrument meter reading drops $15 \pm 5\%$. Record this pulse height as the instrument sensitivity.
 - D. If your instrument has a gain or threshold control to set instrument sensitivity, set pulse height on the Model 500 to desired sensitivity level. Now adjust your instrument threshold or gain control until the rate meter reading is within $85 \pm 5\%$ of its stable reading value (see step C). Record the pulse height as instrument sensitivity.
- 7. Calibrating survey instrument to cps.
 - A. Set frequency in Model 500. Divide the Model 500 readings by 60 to convert to counts per second.
 - B. Repeat calibration steps as in item 5 above.

3.1.5.2 Frequency of Calibration

If electronic calibration is performed using the above method by the Radiation Safety Department, the Model 500 pulse generator will be sent out for calibration on an annual basis.

3.2 PERSONNEL AIR SAMPLERS

The calibration procedure for personnel air samplers involves one of three calibration procedures. Samplers will be calibrated prior to each use by one of the three

methodologies: bubble tube, electronic or mass flow determinations. Air samplers may be calibrated to standard air conditions.

3.2.1 Bubble Tube Calibration Method

The Bubble Tube Calibration Method is a calibration method and does not require corrections to or from standard conditions for temperature and pressure. Personal air samplers are calibrated for the flow rate for the sampling being performed, typically 2-4 lpm.

The equipment utilized is as follows:

- 1. Burette 1,000 ml capacity, 10 ml divisions
- 2. Support, iron, rectangular base, with rod
- 3. Burette clamps 2
- 4. Soap solution, dish
- 5. Tubing, Gelman filter holder, filter media (0.8 micron glass fiber Gelman type A/E)
- 6. Stopwatch
- 7. Small screwdriver
- 8. Sample pump

The procedures utilized are:

- 1. Assemble a filter train place a filter in an in-line filter. Attach two lengths of tubing to each connector of the in-line filter holder.
- 2. Make sure the Burette is clean. Clamp the 1,000 ml Burette upside down on the ring stand with the Burette clamps.
- 3. Attach the pump to be calibrated to one end of the filter train, connect the other end of the filter train to the small end of the 1,000 ml Burette, as per Figure 1.
- 4. Check all tubing connections for air tightness.
- 5. Pour approximately ¹/₂ inch (12 mm) of soap solution into the dish.
- 6. Start the pump.
- 7. Raise the dish up under the Burette opening, and then immediately lower the dish. This should cause a film of soap to form over the Burette opening (i.e., a bubble). Repeat this procedure until the film (bubble) will travel up the inverted Burette the length of the graduation marks on the Burette without breaking.

- 8. When the film (bubble) has wetted the Burette inside and will travel the entire length of the graduated area of the Burette, proceed with the actual calibration run.
- 9. Quickly form three bubbles and start the stopwatch when the middle bubble is at the bottom graduation line (actually the 1,000 ml mark, but for purposes here, it will be called the "zero" line).
- 10. Time the travel of the bubble from the zero line to the top line of the graduated distance (0 ml). Since the capacity of the Burette is 1,000 ml (1.0 liter), then the volume of air that is displaced above the bubble (i.e., needed to raise the bubble) is 1.0 liter. Stopping the stopwatch at the top mark is the time elapsed for the pump to accomplish this. The rate of rise of the bubble through the apparatus is the flow rate of air being pulled by the pump.
- 11. Increase or decrease the pump collection rate by adjusting the appropriate screw or knob designed for this purpose.
- 12. Set the pump flow collection rate to the desired valued usually between 2 and 4 liters per minute for low volume collection pumps and between 30 and 80 liters per minute for high volume collection pumps.

3.2.2 Mass Flow Method

Mass flow meters are manufactured equipment designed to measure air collection flow rates for a variety of purposes. Mass flow meters may be subject to temperature and pressure corrections of air movement depending on whether they are calibrated/manufactured for standard conditions.

Utilizing an air mass flow meter, traceable to NBS, the airflow rate of pumps can be quickly adjusted to correct standard flow rate conditions. However, the mass flow meter must be calibrated annually using a primary calibration method.

The equipment consists of the following:

- 1. Kurz air mass flow model 543 or equivalent
- 2. Suitable filter head adapter connections
- 3. Filter heads with filter media
- 4. Pump to be calibrated

Note: The meter is calibrated directly in standard air conditions – 25° C., 29.82" Hg.

The procedures utilized are:

1. Ensure pump batteries are fully charged.

- 2. Ensure flow meter batteries are fully charged.
- 3. Assemble filter train.
- 4. Connect (with a suitable adapter) the Kurz probe onto the filter train. Ensure an airtight seal with tape, if necessary.
- 5. Set the meter function switch to the highest range: 40 std liters per minute.
- 6. Turn the pump on.
- 7. Select appropriate range on the meter. (Do not allow meter needle to be forcibly pegged.)
- 8. Adjust the pump flow rate as necessary to desired flow rate. Allow the meter to stabilize before adjustment of the pump.
- 9. Meter reads directly in standard air conditions, correcting for temperature and barometric pressure.

Pump is now calibrated. Low volume pumps are set 4 lpm.

3.2.3 Electronic Calibration Method

The electronic calibration is the calibration method and does not require corrections to or from standards conditions for temperature and pressure. Personal air samplers are calibrated for the flow rate for the sampling being performed typically 2 - 4 lpm. Area Airborne high volume air samplers should be calibrated to a minimum of 40 lpm.

The equipment utilized is as follows:

- 1. UltraFlo Primary Gas Flow Calibrator, or equivalent
- 2. Soap solution
- 3. Tubing
- 4. Small screwdriver
- 5. Sample pump

The procedure proceeds as follows:

- 1. Remove the two nipples on the back of the UltraFlo Primary Gas Flow Calibrator.
- 2. Attach the connection tubing from the top nipple to the sample pump.
- 3. Turn calibrator on.
- 4. Turn sample pump on.

- 5. Press the plunger style button on top of the soap dispensing portion of the device.
- 6. Write down the digital reading from the calibrator device.
- 7. Repeat steps 5 and 6 three times.
- 8. Take an average of the three readings.
- 9. If the sample pump requires adjustment, take the screwdriver and adjust the set screw on the face of the sample pump and then repeat steps 5 through 7.
- 10. After the sample pump is calibrated, document the calibration on the Breathing Zone/Radon or the High Volume Calibration Sheet depending on which device is being calibrated, in the Radiation department.
- 11. Replace nipple caps on the back of the calibrator.

3.3 AREA AIR SAMPLERS

The calibration procedure for area air samplers involves one of the following procedures; Kurz Mass Flow, Wet Test Gas Meter, Electronic or Bubble Tube Method.

3.3.1 Kurz Mass Flow Method

Repeat procedures discussed in 3.2.2 – except – airflow rate is adjusted to 40 slpm and samplers utilized are:

- 1. Eberline RAS-1
- 2. Scientific Industries Model H25004
- 3. Equivalent

3.3.2 Wet Test Gas Meter Method

The wet test gas meter method utilizes a Precision Scientific wet test meter rated at one cubic foot per revolution of the main dial. This method is used to calibrate the Kurz air mass flow meter in addition to direct calibration of the area air samplers.

The procedures are:

- 1. Attached coupling to sampler filter assembly; secure it with tape.
- 2. Connect wet test meter hose to coupling.
- 3. Check water level of wet test meter. The needle should be on slightly above the water level.
- 4. Check the thermometer temperature of the wet test meter. Record this on the calibration sheet. Assume that the wet and dry bulb temperatures are the same.

- Turn on the sampler. Check the west test meter's manometer reading. This reading is obtained by adding the left and right column values. (A typical reading might be .3). Log these values for each ball height on the "Static pressure ... H₂O" column.
- 6. For the following sampler approximate settings, pull one cubic foot of air through the wet test meter and record the time (in seconds) for each: 20, 30, 40, and 50 lpm.

Sampler Calibration Procedures – Calculations and Equations

- 1. To convert the static pressure (of the manometer attached to the wet test meter) from inches of water to inches of mercury, divide the number of inches to water by 13.6. Example: 0.4/13.6-0.02941176" Hg
- To compute the actual flow rate ("Q rate act. lpm"), first divide the number of cubic feet by the number of seconds. Example: 1 ft.³/90 sec = .01111 ft.³/awx. Convert the cubic feet to liters. The conversion factor is 28.317. Example: .01111 ft.³/sec x 28.317 L ft.³ = .3146 L/sec. Multiply this by 60 to convert from seconds to minutes. Example: .3146 L/sec x 60 sec = 1888 L/m or 18.88 lpm.
- 3. Using the "Vapor Pressures of Water" chart, find the vapor pressure inside the wet test meter by matching the wet bulb temperature with the corresponding vapor pressure. This number is the vapor pressure at the standard wet bulb (Pvpstw).
- 4. Find the vapor pressure at dewpoint using this formula: Pv dewpoint = Pvpstw = 0.0003613 (td-tw) Bp (Where +d = dry bulb temp; tw = wet bulb temp; bp = barometric pressure in inches of mercury.) Assume that the dry bulb temperature and the wet bulb temperature are the same, so the difference between them will always be zero. Thus, Pv dewpoint will equal Pvpstw.
- 5. Determine the actual air density (D act) with this formula:

D act = $\frac{1.327}{td + 459.67}$ [(Pg-Sp) - 0.378 (Pv dewpoint)]

(Where td - dry bulb temp in degrees F.; Bp = barometric pressure in inches of mercury; Sp = static pressure of wet test meter in inches of mercury.)

White Mesa Mill – Standard Operating Procedures Book 20: Radiation Protection for Reclamation Activities, Section 3

Example:

D act = 1.32770.5 + 459.67 [(24,8031 - 0.02941176) - 0.378 (.875)] = 1.327530.17 (24,773688 - 0.33075)

= (0.00250297) (24.442938)

D act = 0.06117996

Log this in "Air Density lbs/ft³" column of log sheet.

6. Find the flow rate of the sampler at standard conditions (Q std) using this formula:

Q std = Q act D act D std (Where D std = .075 lbs/ft³) (i.e., Q std = 18.88 $\frac{(0.06117996)}{0.075}$ = 18.88 (0.8157328) = 15.40

Q std = 15.40 (write this down for each position in the Q 0.075 column)

3.3.3 Bubble Tube Method

Refer to Section 3.2.1 to perform this method.

3.3.4 Electronic Calibration

Refer to Section 3.2.3 to perform this method.

4

White Mesa Mill – Standard Operating Procedures Book 20: Radiation Protection for Reclamation Activities, Section 4

4. <u>EXPOSURE CALCULATIONS AND RECORD MAINTENANCE</u>

4.1 **PERSONNEL EXPOSURE CALCULATIONS**

4.1.1 DACs for Conventional Ores

4.1.1.1 Solubility Classes

The solubility class, chemical form and abundance of conventional ores at the Mill, and the resulting DACs to be used are as set out in the following table:

Location	DAC	U nat	Th-230	Ra-226	Pb-210
Ore-Grind	6.00E-11	DAC is specified in 10 CFR Part 20			
Leach	2.8E-10	¹ / ₂ Ore, ¹ / ₂ Precipitation	1/2 Ore, 1/2 Precipitation	1/2 Ore, 1/2 Precipitation	¹ / ₂ Ore, ¹ / ₂ Precipitation
CCD	1.2E-11	Class D	Class W ⁻¹	Class W ¹	Class D ¹
		Sulfate	Sulfate	Sulfate	Sulfate
		25%	25%	25%	25%
SX	1.2E-11	Class D	Class W ⁻¹	Class W ⁻¹	Class D ¹
		Sulfate	Sulfate	Sulfate	Sulfate
		25%	25%	25%	25%
Precipitation	5.00E-10	Class D ²			
		Diuranate 100%	NA	NA	NA
Yellowcake Packaging	2.20E-11	Class Y: 90 % and Class W: 10 %			
		Oxide 100%	NA	NA	NA
Tailings	1.70E-11	Class Y	Class Y ²	Class W ⁻¹	Class W ⁻¹
		Oxide	Oxide	Oxide	Oxide
		4%	32%	32%	32%

Table 4.1.1.1-1 Solubility Class, Chemical Form and Abundance of Conventional Ores

¹ 10 CFR Part 20, Appendix B

² NUREG/CR-0530, PNL-2870, D.R. Kalkwarf, 1979, "Solubility Classifications of Airborne Products from Uranium Ores and Tailings Piles"

Page 2 of 11

4.1.1.2 Application of Conventional Ore DACs to Workplace Locations

The Conventional Ore DACs will be applied as follows to the various locations in the Mill site:

Type of DAC	DAC (µCi/ml)	Individual Location
Ore/Grind	6.00E-11	Ore Scalehouse Ore Storage Maintenance Shop Warehouse Lunch Room Change Room Administration Bldg
Ore/Grind	6.00E-11	Dump Station
Ore/Grind	6.00E-11	SAG Mill SAG Mill Control Shifter's Office Operations Lunch Room Filter Press
Leach	2.80E-10	Leach Tank Area
CCD	1.20E-11	CCD Circuit Thickeners
SX	1.20E-11	SX Building South Boiler
Ore/Grind	6.00E-11	Control Room
Yellowcake Precipitation	5.00E-10	YC Precipitation &Wet Storage
Yellowcake Packaging	2.20E-11	North YC Dryer Encl. South YC Dryer Encl. YC Pkg Enclosure YC Drying & Packaging Area Packaged YC Staging Area
Tailings	1.70E-11	Truck Shop Tailings
Yellowcake Precipitation	5.00E-10	Vanadium Circuit

 Table 4.1.1.2-1

 Application of Conventional Ore DACs to Workplace Locations

Page 3 of 11

4.1.2 Sampling Time

Calculate the sampling time required to detect 10% of the DAC by solving for sampling time in the following equation:

 $\frac{\text{LLD}}{\text{(Sampling Time) (Flow Rate}} = 0.1 \text{ DAC}$ of Sampler)

For example:

To detect 10% of the DAC for U-Nat, a 40 lpm air sampler would have to operate 57 minutes, assuming the sample counter has a lower level of detection of 10 dpm above background, i.e.:

$$(10 \text{ DPM}) (\underline{pCi}) (\underline{E-6 \ \mu Ci})$$

$$\underline{2.22 \ DPM} \ \underline{pCi} = 2E-12 \ \underline{\mu Ci}$$

$$(X \text{ min.}) (\underline{40 \ lit}) \ \underline{10^3 \text{ml}}$$

$$\underline{10^3 \text{ml}}$$

$$\underline{11}$$

X = 56.8 minutes

4.1.3 Dose Calculations (10 CFR 20.1201-20.1202)

1. Analytical results of airborne particulate samples may be obtained in several different units that need to be converted into mg soluble natural uranium to determine the weekly exposures and into uCi-hr/ml or WL-hr to determine annual exposures. The following table presents a summary of the conversions that may be necessary. The first row of the table presents the operations to be performed in the conversions. Enter the measured weight or activity, the sampler flow rate, the sampling time, and the exposure time into the first four columns. Divide the values in column 1 by the values in column 2 and column 3, and then multiply by the values in columns 4 and 5 to obtain the units in column 6, or:

 $\frac{\text{(Column 1) (Column 4) (Column 5)}}{\text{(Column 2) (Column 3)}} = \text{Column 6}$

Page 4 of 11

1	2	3	4	5	6
OPERATION	DIVIDE	DIVIDE	MULTIPLY	MULTIPLY	ANSWER
MEASURED VALUE	SAMPLER FLOW RATE	SAMPLING TIME	EXPOSURE TIME	CONSTANT	ANSWER
µg soluble U-Nat	L/min	min	hrs	1.2	mg soluble U-Nat
pCi soluble U-Nat	L/min	min	hrs	1.77	mg soluble U-Nat
pCi gross alpha	L/min	min	hrs	E-9	<u>µCi-hrs</u> ML
μg U-Nat	L/min	min	hrs	6.77E-10	<u>µCi-hrs</u> ML
μCi mL	***		hrs	E7	WL-hrs
Radon					

UNIT CONVERSION TABLE

For example:

 $\frac{(10 \text{ } \mu\text{g Soluble U-Nat)} (10 \text{ } \text{hrs}) (1.2)}{(2 \text{ L/min}) (30 \text{ } \text{min})} = 2 \text{ } \text{mg Soluble U-Nat}$

See notes for a description of the unit conversions.

- 2. The table on the following page is divided into four quadrants. Different quadrants are for soluble uranium, insoluble uranium, tailings dust, and radon. Select the proper quadrant for the type of airborne particulate being sampled. Enter the area, particulate concentration, and hours of exposure in the labeled columns of the selected quadrant.
- 3. The protection factors are whole numbers, e.g., 10, 50, 1,000. Divide 1 by the protection factor and enter the quotient in the fourth column of each quadrant, e.g., for a protection factor of 1,000, enter 1/1,000 or 0.001 in the column. The 1/PF values are unit-less.
- 4. Enter the product of the airborne concentration, the hours of exposure, the time, and 1/PF in the fifth column of each quadrant. Add these values and enter the total at the bottom of the column.
- 5. On the dose calculations form which follows, enter the total for <u>Soluble Uranium</u> in the equation and calculate the corresponding mg. If a value exceeds 10 mg, an over-exposure may have occurred. If verified by a high uranium in urine results, an over-exposure has probably occurred and needs to be reported to the NRC.
- 6. Enter the totals for <u>Soluble Uranium</u>, <u>Insoluble Uranium</u>, <u>Tailings Dust</u>, and <u>Radon</u> in their respective equations. Perform the indicated calculations, add the fractions

Page 5 of 11

together, and record as the subtotal. (Use the DAC for Th-230 or the DAC for tailings dust to determine the contribution of tailings dust to the subtotal.) If a subtotal exceeds 1, an over-exposure may have occurred. If verified by a high uranium in urine result, an over-exposure has probably occurred and needs to be reported to the NRC.

- 7. Enter the TLD determinations of whole body dose as the <u>Deep Dose Equivalent</u> on the form. If the Deep Dose Equivalent exceeds 5 rems, an over-exposure may have occurred and needs to be reported to the NRC.
- 8. If the Deep Dose Equivalent exceeds 0.5 rem <u>and</u> the subtotal exceeds 0.1, calculate the <u>Total Effective Dose Equivalent</u> by adding the Deep Dose Equivalent to the product of 5 rems times the subtotal and enter on the form. If the total effective dose equivalent exceeds 5 rems, an over-exposure may have occurred and may have to be reported to the NRC.

Name	ume		Soc. Sec. No.		Co. I.D. No.		Week		Year
AREA	SOL. U μCi/ML	HR	1 PF	μ <u>Ci-HR</u> ML	AREA	INSOL. U µCi/ML	HR	<u>1</u> PF	μ <u>Ci-HR</u> ML
TOTAL					TOTAL				
AREA	TAILINGS DUST μCi/ML	HR	1 PF	<u>μCi-HR</u> ML	AREA	RADON WL	HR	<u>1</u> PF	WL-HR

DOSE CALCULATIONS (10 CFR 20.1201 + 20.1202)

White Mesa Mill – Standard Operating Procedures SOP PBL-RP-4 Book: Radiation Protection Manual, Section 4

Page 6 of 11

TOTAL	 		TOTAL	 	
		·			

Page 7 of 11

DOSE CALCULATIONS (10 CFR 20.1201 + 20.1202)

Name	Soc. Sec. No.	Co. I.D. No. Week	Year
Weekly Soluble Uranium	<u>(μCi-hr) (1.77E9)</u> (mL)	= Limit	mg 10 mg
Annual Soluble Uranium	(<u>μCi-hr</u>) <u>mL</u> (2000 hr) (5E-10)	_ =	
Annual Insoluble Uranium	$\frac{(\underbrace{\mu Ci-hr})}{mL}$ (2000 hr) (2E-11)	=	
Annual Tailings Dust	$\frac{(\underbrace{\mu Ci-hr})}{mL}$ (2000 hr) (*)	- =	
	* = DAC for Th-230 = or = DAC for tailings		
Annual Radon with Daughters Present	(WL-hi (2000 hr) (0.33 WI		
		Limit	1
Deep Dose Equivaler	nt = TLD Whole Body	Dose in rem =	rem
If the Deep Dose Equ and the Subtotal is > 0.1,		Limit	5 rem
Total Effective Dose Equivalent	= Deep Dose Equivalent	+ Comm Dose Equivale	itted Effective
= (rem) + (5 rem) (Subtotal) =	rem
		Limit	5 rem

Page 8 of 11

DOSE CALCULATIONS (10 CFR 20.1201 + 20.1202)

Notes:µ

- 1. PF = Respiratory Protection Factor.
- 2. The 10 mg soluble uranium per week limit in 10 CFR Part 20.1201 is more restrictive than the (40 hour) (DAC) limit for natural uranium, thus compliance is based on 10 mg per week.
- 3. The conversion of uCi-hr/mL to mg natural uranium is the product of:

(air concentration) (hours of exposure) (breathing rate for light work) (conversion of minutes to hours) (specific activity of natural uranium) (conversion of ug to mg) which is:

 $(\underline{\mu Ci-hr}) (\underline{2E4 \text{ mL}}) (\underline{60 \text{ min}}) (\underline{\mu g}) (\underline{E-3 \text{ mg}}) =$ mL min hr 6.77E-7 μCi μg ($\underline{\mu Ci-hr}$) (1.77E9) mL = mg U-Nat

Thus to obtain mg natural uranium, multiply the μ Ci-hr/mL by 1.77E9.

4.	Soluble Uranium DAC (Class D)	=	5E-10 μCi/mL
	Insoluble Uranium DAC (Class Y)	=	2E-11 μCi/mL
	Thorium-230 DAC (Class Y)	=	6E-12 μCi/mL
	Radon with Daughters DAC	=	$3E-8 \ \mu Ci/mL = 0.33 \ WL$
	Tailings Dust DAC is a Site Specific Value	=	μ5. Description of
unit co	onversions:		_

a. ug soluble U-Nat \rightarrow mg soluble U-Nat

$$(\underline{\mu g}) (\underline{E-3 mg}) (\underline{60 min}) (hr exposure) = (L/min) (min sampler) (\underline{E3 mL}) \mu g hr$$

 $(\underline{\mu g})$ (hr exposure) (1.2) = mg soluble U-Nat (L/min) (min sampler)

b. pCi soluble U-Nat \rightarrow mg soluble U-Nat

$$(\underline{pCi}) (\underline{E-9 mCi}) (\underline{mg}) (\underline{2E4 mL}) \rightarrow (L/min) (min sampler) (\underline{E3 mL}) pCi 6.77E-7 mCi min L$$

$$(\underline{60 min}) (hr exposure) = hr$$

$$(\underline{pCi}) (hr exposure) (1.77) = mg soluble U-Nat$$

(L/min) (min sampler)

c. pCi gross alpha
$$\rightarrow \mu Ci$$
-hr

$$(\underline{pCi}) (\underline{E-6 \ \mu Ci}) (hr exposure) = (\underline{L}) (min \ sampler) (\underline{E-3 \ mL}) pCi \\ min L$$

$$(\underline{pCi}) (hr exposure) (E-9) = \underline{\muCi-hr}$$

$$(\underline{L}) (min sampler) mL$$

d.
$$\mu g \text{ U-Nat} \rightarrow \underline{\mu \text{Ci-hr}}_{mL}$$

 $(\underline{\mu g}) (\underline{6.77E-7 \mu Ci}) (hr exposure) = (\underline{L}) (min sampler) (\underline{E3 mL}) \mu g \\ min L$

 $(\underline{\mu Ci}) (hr exposure) (6.77E-10) = \underline{\mu Ci-hr}$ $(\underline{L}) (min sampler) mL$

e.
$$\underline{\mu Ci}$$
 of Radon-222 \rightarrow WL mL

$$(\underline{\mu Ci}) (\underline{E6 \ pCi}) (\underline{E3 \ mL}) (\underline{L-WL}) = mL \ \mu Ci \qquad L \qquad E2 \ pCi$$

$$(\underline{\mu Ci}) (E7) = WL$$
mL

4.2 **Personnel Exposure Files**

The Company will generate and maintain individual exposure records for each employee that works at the White Mesa Mill. The record system will be designed to meet the specifications of the Federal Code of Regulations 10 CFR Part 20.

When an employee is hired, a file will be generated specifically for that individual. All records that are to be in the radiation exposure file will be maintained during the term of employment. When the employee terminates, all records will be preserved until the NRC authorizes their disposition.

Personnel exposure records will be maintained at the mill site and will be accessible only to the employee and the Radiation Safety staff. No copy of the exposure history will be furnished to anyone outside of the Radiation Safety Department without a signed consent form from the employee.

Contents of the exposure file:

Each personnel exposure file will contain the following records:

- 1. Information Sheet Each information sheet will include the following information:
 - A. Employee's full name
 - B. Birth date
 - C. Social Security number
 - D. Date of hire
 - E. Date of termination
- 2. Record of Urinalyses A multiple entry log of all urinalyses conducted at this work site will include the following information:
 - A. Employee's full name
 - B. Sample dates
 - C. Sample identification number
 - D. Concentration of uranium in µg/l
 - E. An entry for any quality assurance "spikes" entered in $\mu g/l$
- 3. Internal personnel Exposure Records These will be calculated and prepared using the forms above or by the computer and the printout will be used as the permanent record in the exposure file. The internal exposure records will contain the following information:
 - A. Employee's full name
 - B. Social Security number

- C. Birth date
- D. Exposure to airborne uranium expressed in both μ Ci and percent MPC
- E. Any breathing zone samples collected for airborne uranium to be expressed in μ Ci
- F. Radon daughters expressed in working levels (WL) and period of exposure (date)
- 4. External Exposure Record (OSL, Dosimeter) The date received from the Dosimeter contractor will be posted to the Dosimeter record in the exposure file. The following information will be included on the Dosimeter record:
 - A. Employee's full name
 - B. Birth date
 - C. Social Security number
 - D. Period of exposure (dates)
 - E. Exposure in millirems (mrem) for a given period
 - F. Total accumulated exposure while at the White Mesa Mill
 - G. Identification number of the Dosimeter badge
- 5. Record of Exposure from Previous Employment (NRC form 4 or similar) A record of occupational exposures that occurred prior to employment at the mill must be obtained for each employee. If no such exposure record is available, the employee must sign a statement to that affect. If previous exposure records were kept, a copy must be secured and placed in the individual's file.
- 6. Reports of Over-exposure If an individual has been found to be over-exposed, the RSO will draft a letter of explanation. The report will explain the circumstances and/or reasons for the over-exposure. It will also state any actions taken to correct the problem or to prevent future over-exposures. The report must be placed in the individual's exposure file.

5. RADIATION WORK PERMITS

5.1 General

A Radiation Work Permit ("RWP") system has been established for non-routine activities where there is a potential for a significant radiation exposure, or for certain routine activities where there is a potential to spread radioactive materials.

Specifically, an RWP is required for:

a) All non-routine maintenance work, or work for which there is no effective procedure, which may, by the determination of the RSO, exceed 25% of the R313-15 limits;

b) All routine work, not covered by an procedure, that could involve the spread of radioactive materials; and

c) The receipt, handling or processing of any alternate feed material or other radioactive material, which has been determined by the RSO, not to fall within an existing operating procedure.

An RWP may also be used on a temporary basis for routine activities in lieu of an procedure, while a procedure is being developed for the activity.

5.2 All Non-Routine Activities Require RSO Review

All non-routine activities require review by the RSO. The RSO will advise the Mill Manager on a regular basis of any activities that require an RWP.

5.3 Radiation Work Permit

The RWP is a form that describes the work to be performed, the location, duration and personnel involved, and the radiological controls needed, such as respirator, urine samples, breathing zone monitoring, time limitations for the activity, etc. The form must also have an area for the RSO, or his designee's, signature. A copy of a form of RWP is attached.

5.4 Procedure for Obtaining a Radiation Work Permit

The procedure for obtaining an RWP is:

a) When RWP-type work is to be performed, the Shift Foreman, Maintenance Superintendent or other supervisory personnel shall complete the top portion of the RWP, which will provide information on the specific work locations,

estimated work duration, type of work to be performed, and personnel utilized, and present it to the RSO;

b) The RSO will indicate the radiological controls needed based on the information given and the safety of personnel. The RSO or his designee will provide the necessary surveillance and respiratory protection equipment;

c) No work can be performed until the RSO or his designee has approved the RWP;

d) Any maintenance or RWP jobs done in the yellowcake dryer or packaging enclosures will require a member of the Radiation Staff to be present for the duration of the job;

e) All supervisors will be given training in and copies of the requirements for using RWPs, with the permits remaining on file for five years; and

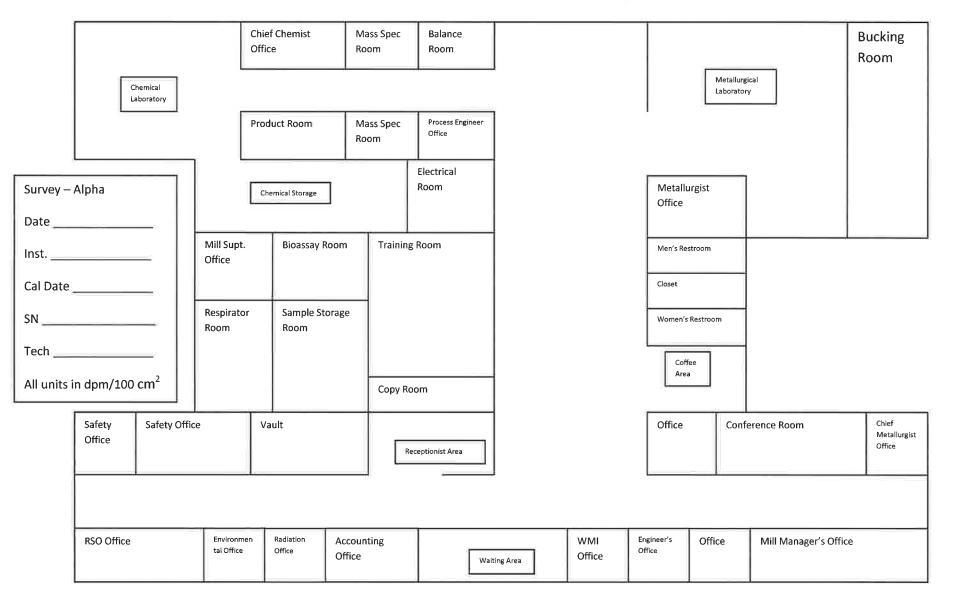
f) Any supervisor found to be knowingly and willfully violating these procedures will be issued a written warning, and the situation will be reviewed by appropriate management for remedial action.

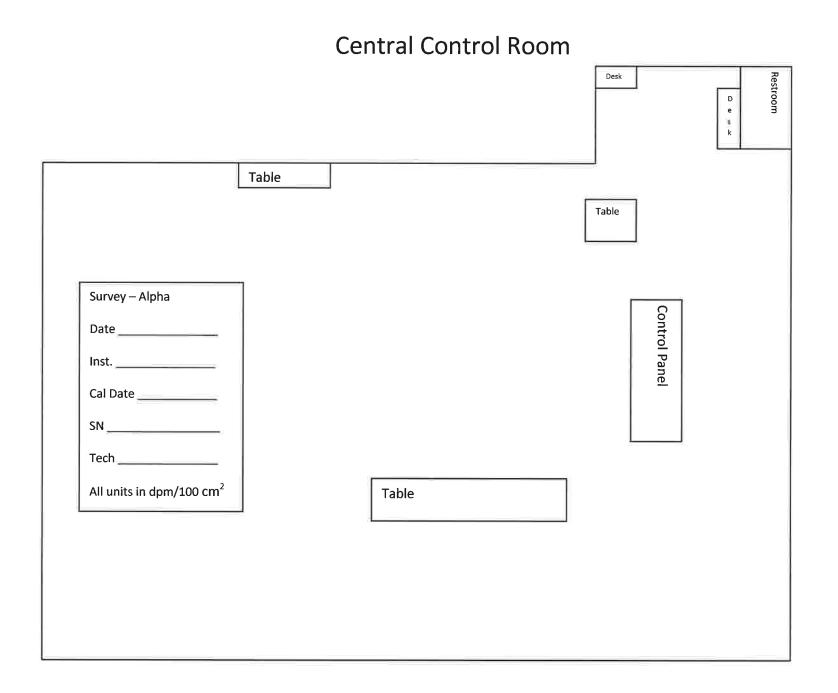
EMPLOYEE SPOT ALPHA CONTAMINATION SURVEY

DATE	NAME	BOOTS	CLOTHES	HANDS	COMMENTS
				·	
		· · · · · · · · · · · · · · · · · · ·			

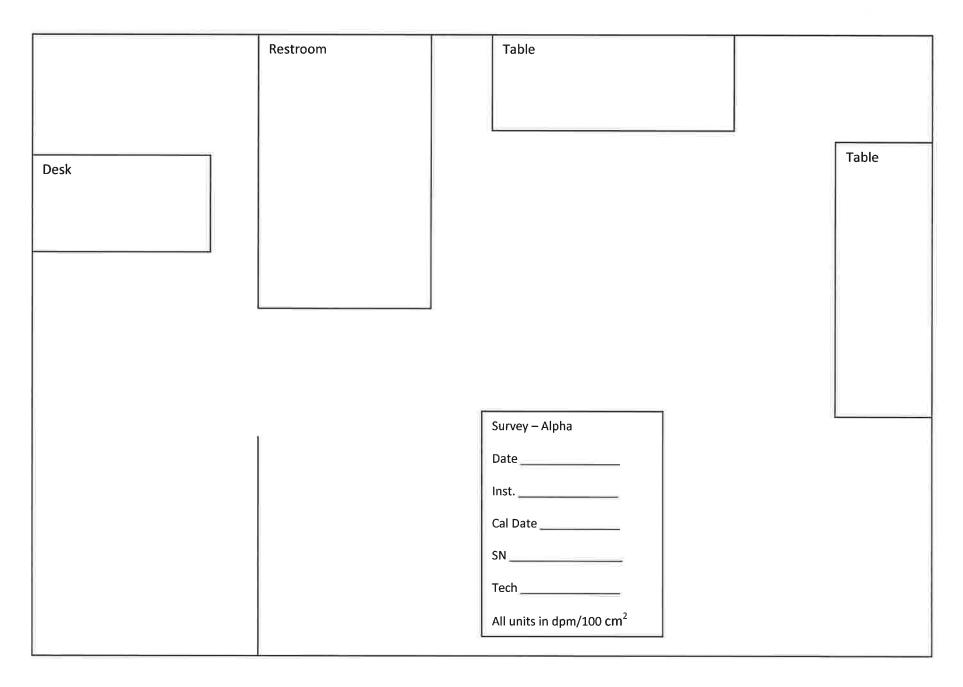
Alpha Instrument Information:

Instrument Model: _____

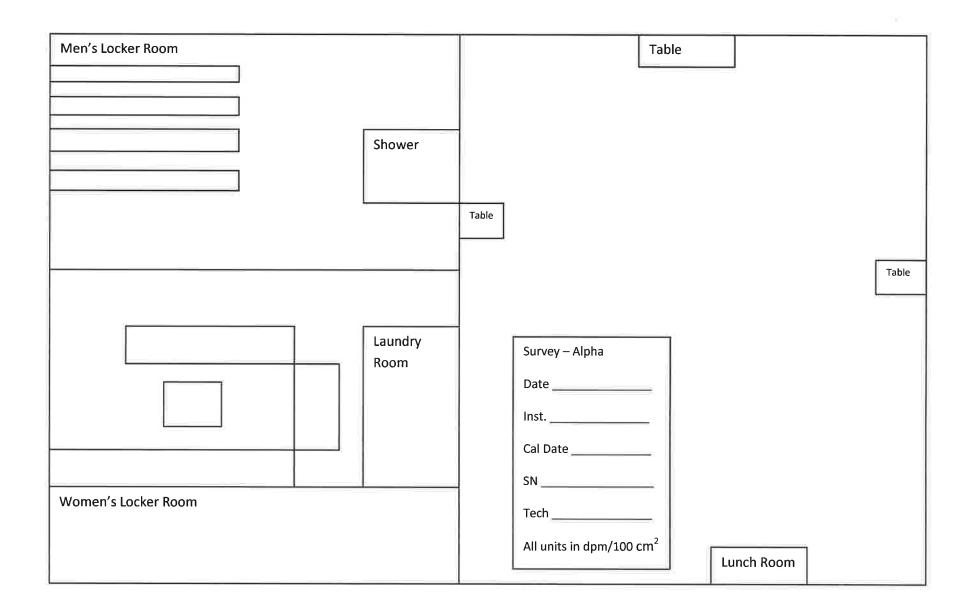

Instrument SN: _____

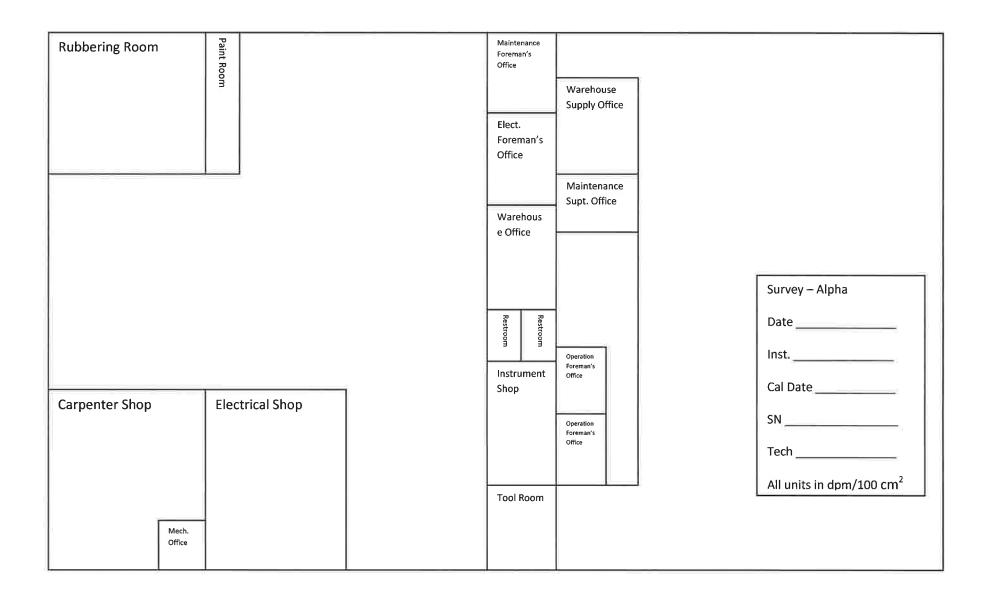

Th₂₃₀ Source SN:_____

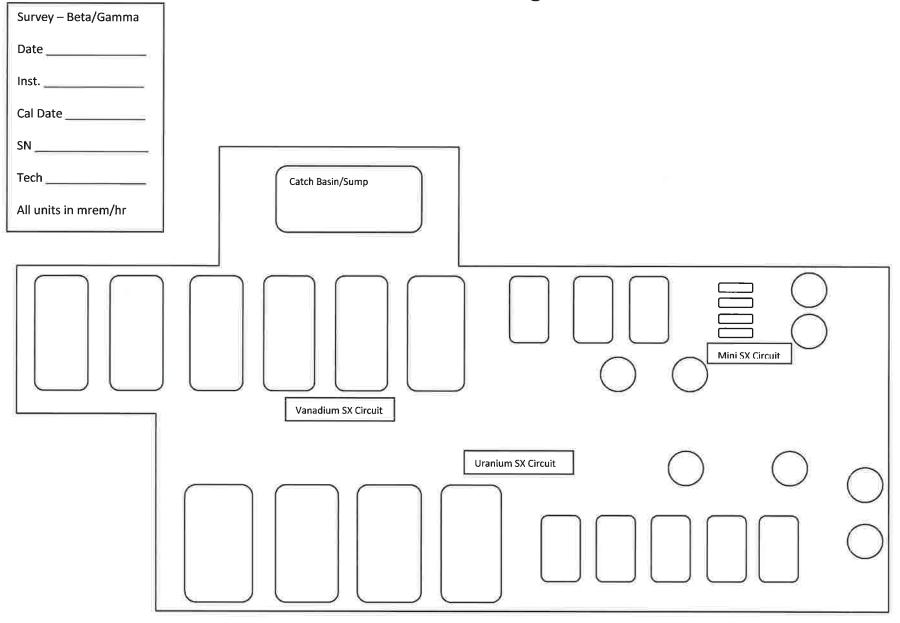
DPM: _____ CPM: _____

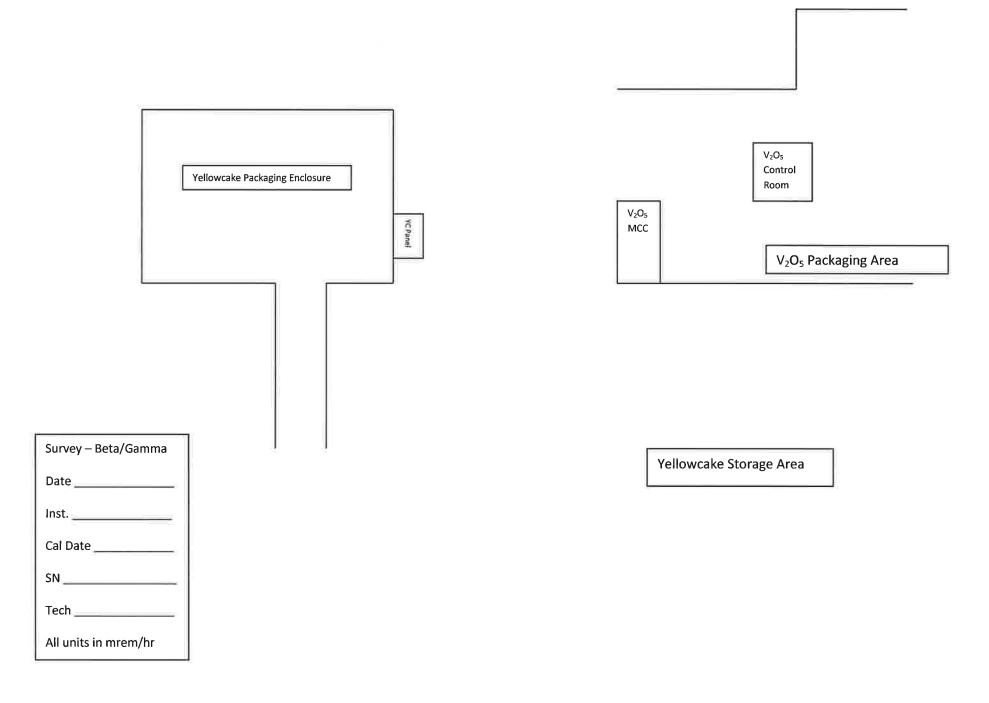

Efficiency: ______ Efficiency Factor: _____

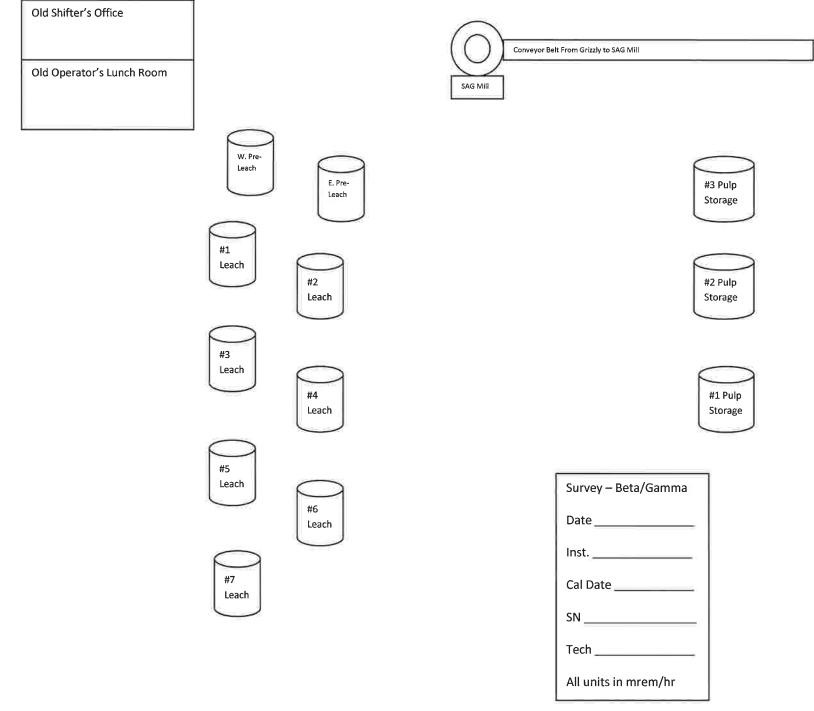
Administration Building



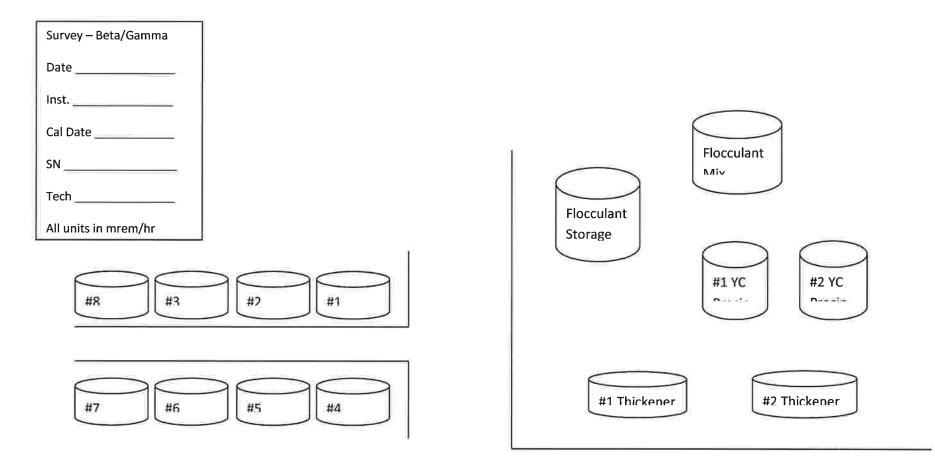

Scalehouse

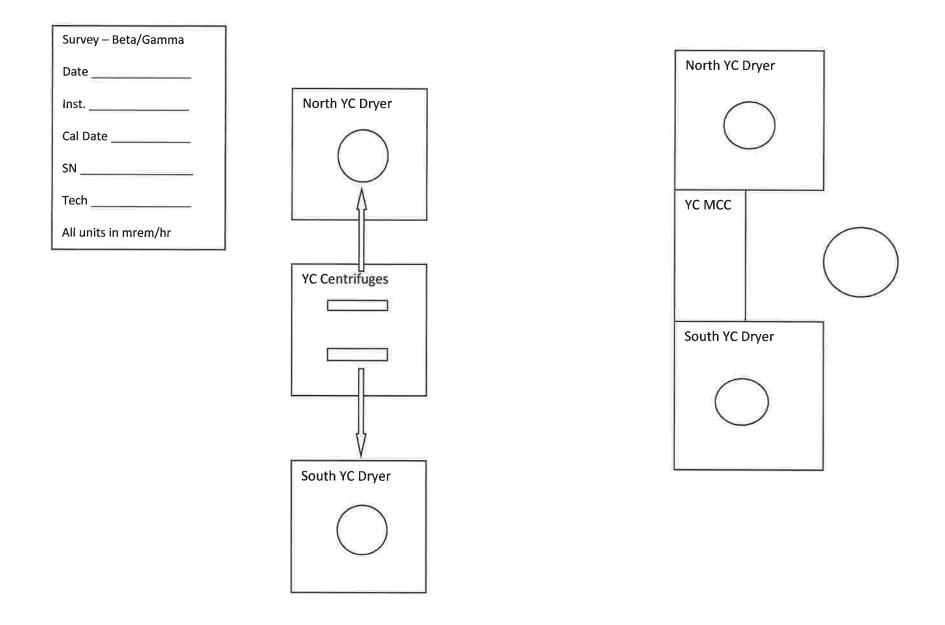

Change/Lunch Room


Maintenance and Warehouse Areas

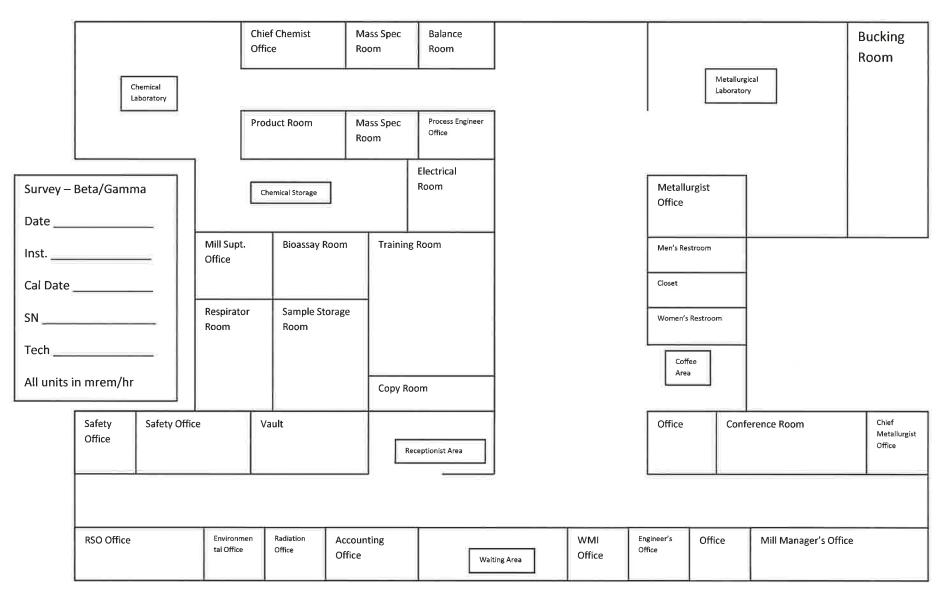

SX Building

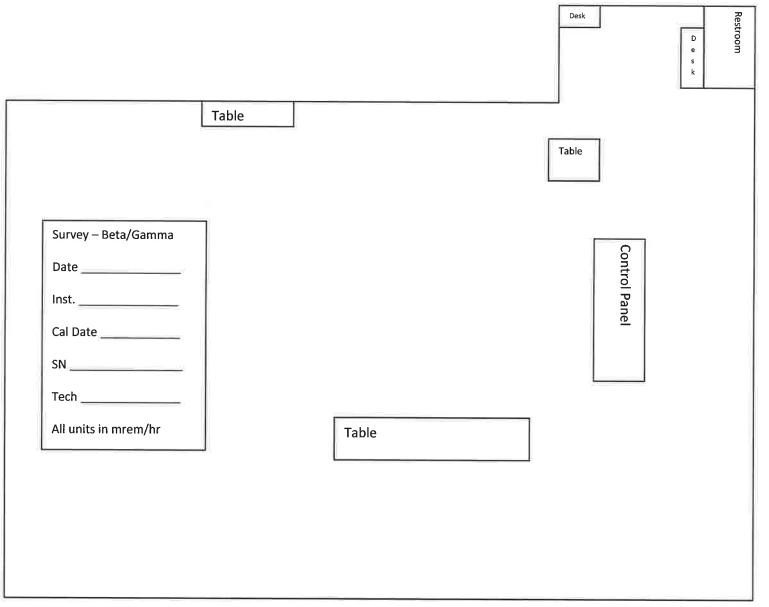
Product Packaging Areas

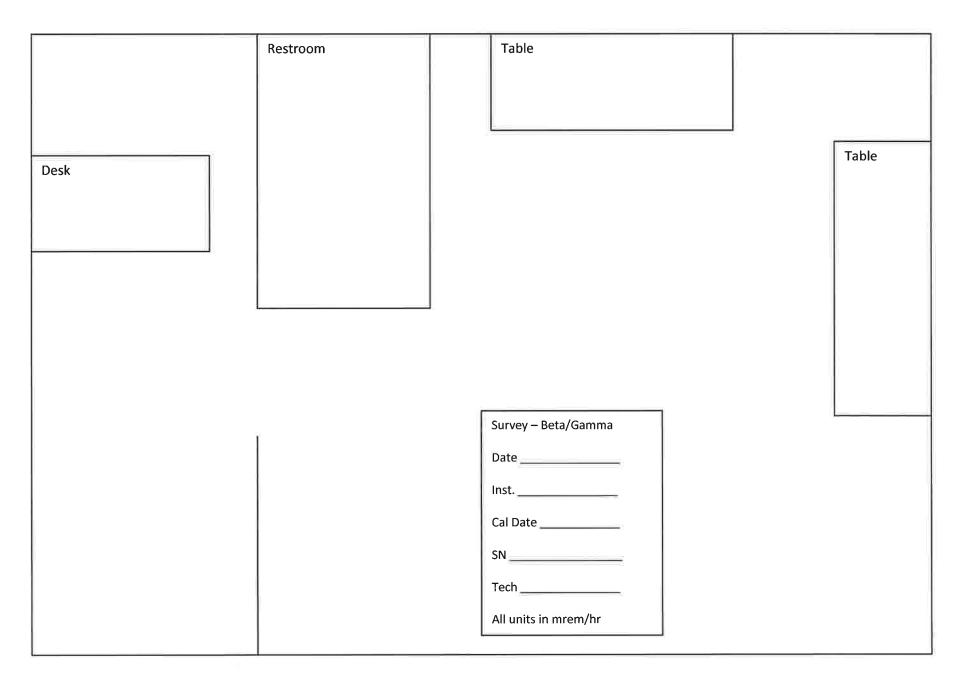

SAG Mill/Leach Areas

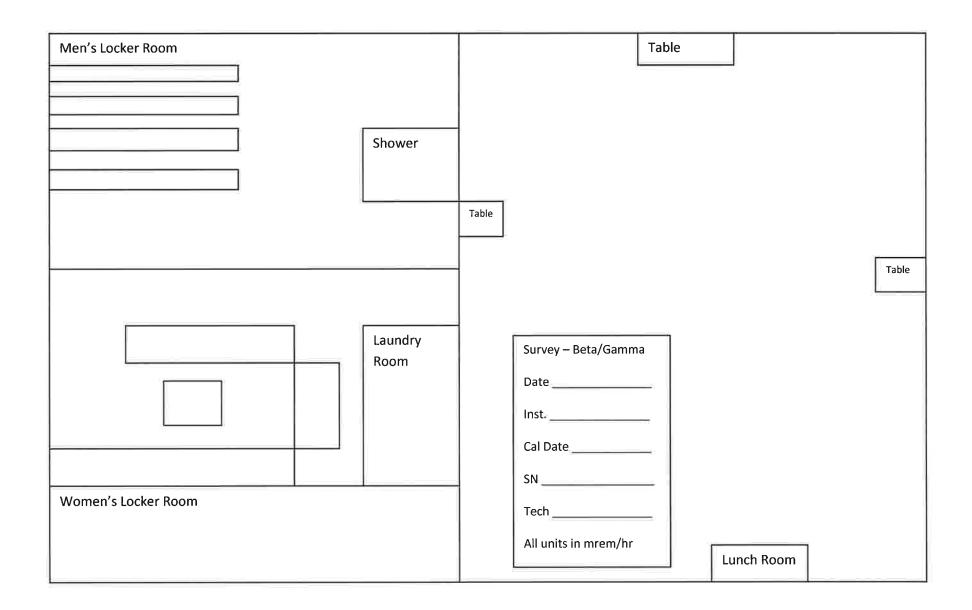

Emergency Generator Building

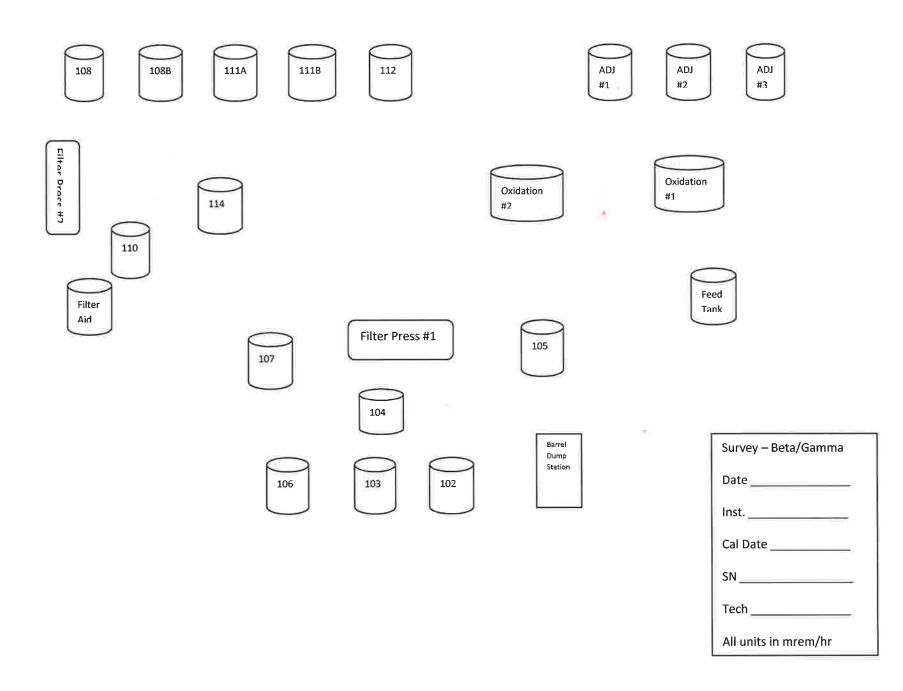
Survey – Beta/Gamma		
Date		
Inst		
Cal Date		
SN		
Tech		
All units in mrem/hr		
	Emergency Generator	
		1

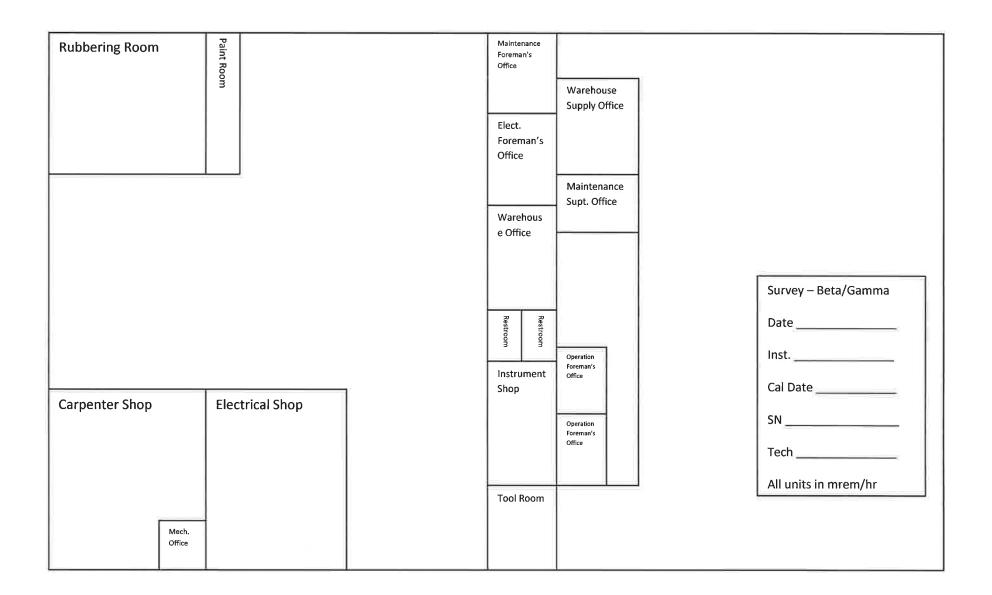

CCD/Precipitation Circuits


Uranium Packaging Circuit Upper Levels


Administration Building


Central Control Room


Scalehouse


Change/Lunch Room

Alternate Feed Circuit

Maintenance and Warehouse Areas

Monthly Beta-Gamma Survey

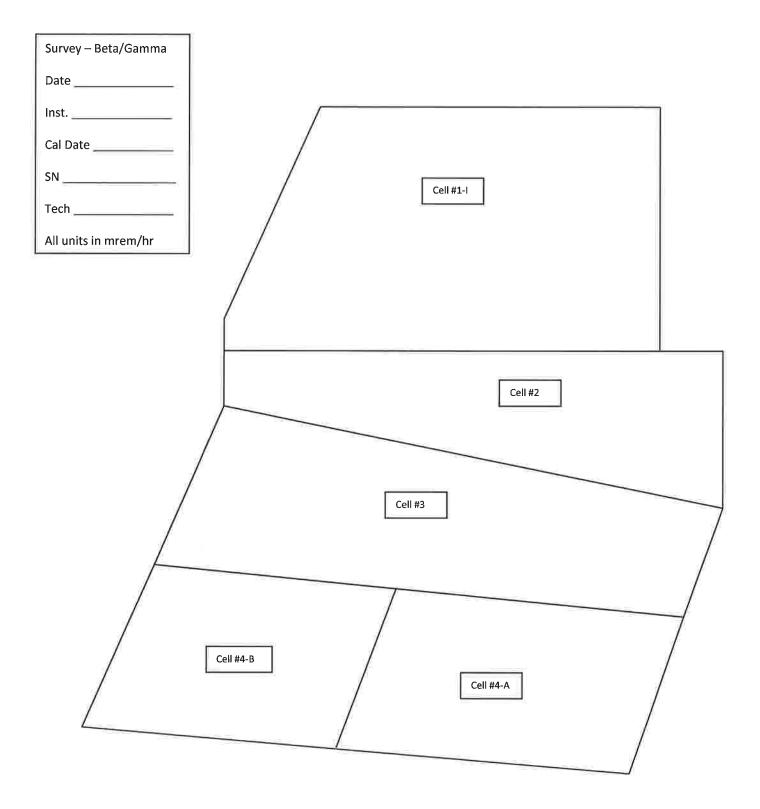
Date:	

Technician: _____

Function Check of Survey Instrument

Model #:	
Serial #:	
Calibration:	
Source:	
Source #:	
Reading mrem/hr:	
All units are in mrem/hr.	

RSO Reviewed:	


RSO Comments:

Feedstock Areas

Feedstock Source	Reading

Survey – Beta/Gamma
Date
Inst
Cal Date
SN
Tech
All units in mrem/hr

Tails Area

White Mesa Mill Weekly Alpha Survey

Date: _____

Technician: _____

Alpha Survey Instruments

Fixed	Removable
Model #:	Model #:
Serial #:	
Calibration:	Calibration:
Efficiency:	
Factor:	
Background:	
MDA:	

Notes:

All fixed readings are in dpm/100 cm^2

T or t = Total or Fixed Alpha Reading in dpm/100 cm^2

R or r = Removable Alpha Reading per swipe or filter (approximately 100 cm²)

RSO Reviewed: _____

RSO Comments: _____

Energy Fuels Resources (USA) Inc. White Mesa Mill Radiation Survey of Equipment Released for Unrestricted Use

All equipment or material released from the White Mesa Mill to an unrestricted area must be surveyed for release in accordance with the following procedure.

- 1. Monitor for Gross alpha contamination with the appropriate survey meter.
- 2. If calculated assay exceeds 1,000 dpm/100cm², then perform swipe analysis at applicable points.
- 3. Decontaminate if a removable alpha exceeds 1,000 dpm/100cm² or fixed alpha exceeds 5,000 dpm/100cm².
- 4. Release equipment or material if alpha contamination and Beta-Gamma levels are below the following limit:

Removable alpha – 1,000 dpm/100cm² Fixed alpha- 5,000 dpm/100cm² average 15,000 dpm/100cm² maximum Beta-Gamma- 0.2 mr/hr @1cm average

1.0 mr/hr @ 1cm maximum

Released from White Mesa Mill to:

Released by (print name):

Signature:

Date: _____

List of Equipment	Total Alpha dpm/100cm ²	Removable Alpha dpm/100cm ²	Beta/Gamma mr/hr
1,			
2,			
3.			
4.			
5.			

Instrument Function checks

Alpha Meter: Inst. Model____SN____ Th-230 Source SN_____ dpm___ cpm___ eff____ Efficiency Factor____ Cal. Date: _____ Bkg _____ MDA _____

Beta-Gamma Meter:	
Inst. Model	SN
Cs-137 Source SN	
Inst. Response	
Cal. Date:	

Removable Alpha: Inst. Model	SN	_
Th-230 Source SN_		
dpmcpm	eff	_
Efficiency Factor		
Cal. Date:		

Was a copy of this document offered to the recipient? Yes or No Signature of recipient

Comments: