

VIA Overnight Delivery

October 20, 2014

Mr. Rusty Lundberg Director of the Utah Division of Radiation Control Utah Department of Environmental Quality 195 North 1950 West P.O. Box 144810 Salt Lake City, UT 84114-4820

Re: Transmittal of Annual Seeps and Springs Monitoring Report Groundwater Quality Discharge Permit UGW370004 White Mesa Uranium Mill

Dear Mr. Lundberg:

Enclosed are two copies of the White Mesa Uranium Mill Annual Seeps and Springs Monitoring Report for 2014 as required by the Groundwater Quality Discharge Permit UGW370004, as well as two CDs each containing a word searchable electronic copy of the report.

If you should have any questions regarding this report please contact me at 303-389-4134.

Yours very truly,

Locky Weisel

ENERGY FUELS RESOURCES (USA) INC. Kathy Weinel Quality Assurance Manager

CC: David C. Frydenlund Scott A. Bakken Harold R. Roberts David E. Turk Jaime J. Massey

White Mesa Uranium Mill 2014 Annual Seeps and Springs Sampling Report

State of Utah

Groundwater Discharge Permit No. UGW370004

Prepared by:

Energy Fuels Resources (USA) Inc. 225 Union Blvd., Suite 600 Lakewood, CO 80228

October 20, 2014

Contents	
1.0 INTRODUCTION	1
2.0 SAMPLING EVENTS	
2.1 June 2014 Sampling	1
2.2 Repeat Visits to Dry Seeps and Springs.	1
2.3 Sampling Procedures	2
2.4 Field Data	3
2.5 Field QC Samples	3
3.0 SEEPS AND SPRINGS SURVEY AND CONTOUR MAP	3
4.0 QUALITY ASSURANCE AND QUALITY CONTROL	4
4.1 Laboratory Results	4
4.2 DATA EVALUATION	4
4.3 Adherence to Sampling Plan and Permit Requirements	5
4.4 Analyte Completeness Review	5
4.5 Data Validation	6
4.5.1 Field Data QA/QC Evaluation	6
4.5.2 Holding Time Evaluation	6
4.5.3 Laboratory Receipt Temperature Check	6
4.5.4 Analytical Method Check	6
4.5.5 Reporting Limit Evaluation	6
4.5.6 Trip Blank Evaluation	7
4.5.7 QA/QC Evaluation for Sample Duplicates	7
4.5.8 Radiologics Counting Error	7
4.5.9 Laboratory Matrix QC Evaluation	7
5.0 EVALUATION OF ANALYTICAL DATA	9
5.1 Evaluation of Analytical Results	9
5.1.1 Ruin Spring	9
5.1.2 Cottonwood Spring	10
5.1.3 Entrance Spring	10
6.0 CORRECTIVE ACTION REPORT	10
6.1 Assessment of Corrective Actions from Previous Period	10
7.0 ELECTRONIC DATA FILES AND FORMAT	
8.0 SIGNATURE AND CERTIFICATION	

LIST OF TABLES

Table 1	Summary of Seeps and Springs Sampling for 2014
Table 2A	Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells – Ruin Spring
Table 2B	Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells – Cottonwood Seep
Table 2C	Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells – Westwater Seep
Table 2D	Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells – Entrance Spring

INDEX OF TABS

Tab A Seeps and Springs Field Data Sheets and Photographic Documentation

- Tab B Field Parameter Measurement Data
- Tab C Survey Data and Contour Map
- Tab D Analytical Laboratory Data
- Tab EQuality Assurance and Data Validation Tables
 - E-1 Holding Time Evaluation
 - E-2 Laboratory Receipt Temperature Check
 - E-3 Analytical Method Check
 - E-4 Reporting Limit Evaluation
 - E-5 Trip Blank Evaluation
 - E-6 QA/QC Evaluation for Sample Duplicates
 - E-7 Radiologics Counting Error
 - E-8 Laboratory Matrix QC Evaluation

Tab F Comma Separated Values Transmittal

ACRONYM LIST

AWAL	American West Analytical Laboratory
DR	Dry Ridge Piezometers
DRC	Utah Division of Radiation Control
EFRI	Energy Fuels Resources (USA) Inc.
GEL	GEL Laboratories, Inc.
GWQS	Groundwater Quality Standard
LCS	Laboratory Control Spike
Mill	White Mesa Mill
MS	Matrix Spike
MSD	Matrix Spike Duplicate
Permit	State of Utah Groundwater Discharge Permit No. UGW370004
QA	Quality Assurance
QAP	Groundwater Monitoring Quality Assurance Plan
QC	Quality Control
RPD	Relative Percent Difference
TDS	Total Dissolved Solids
VOCs	Volatile Organic Compounds

2014 ANNUAL SEEPS AND SPRINGS SAMPLING REPORT

1.0 INTRODUCTION

This is the 2014 Annual Seeps and Springs Sampling Report for the Energy Fuels Resources (USA) Inc. ("EFRI") White Mesa Mill (the "Mill"), as required under Part I.F.7 of the Mill's State of Utah Groundwater Discharge Permit No. UGW370004 (the "Permit") and Section 6.0 of the Mill's *Sampling Plan for Seeps and Springs in the Vicinity of the White Mesa Uranium Mill*, Revision: 0, March 17, 2009 (the "Sampling Plan") and Revision 1, June 10, 2011 ("Draft Sampling Plan").

The Sampling Plan for Seeps and Springs in the Vicinity of the White Mesa Uranium Mill, was revised during the 2011 reporting period. The revisions were completed to address corrective actions delineated in the 2010 Annual Seeps and Springs Sampling Report for the Mill. The Draft Sampling Plan was submitted to the Utah Division of Radiation Control ("DRC") via e-mail for review on June 10, 2011. Per conversations with DRC personnel on June 28, 2011 regarding the July 2011 sampling event, EFRI used the 2011 Draft Sampling Plan field forms for the July 2011, the June 2012, July 2013, and June 2014 sampling events. To date comments have not been received from DRC on the 2011 Draft Sampling Plan.

2.0 SAMPLING EVENTS

Seeps and springs which were identified near the Mill in the 1978 Environmental Report (Plate 2.6-10, Dames and Moore, January 30, 1978) are to be sampled annually in accordance with the Sampling Plan and Part I.E.6 of the Permit. The Sampling Plan specifies the following sample locations: Corral Canyon Seep, Corral Springs, Ruin Spring, Cottonwood Seep, Westwater Seep and Entrance Spring (also referred to as Entrance Seep).

2.1 June 2014 Sampling

In accordance with the Permit and the Sampling Plan, DRC was notified of the sampling. The DRC representative was present for this sampling event. On June 17, 2014, EFRI collected seeps and springs samples from Cottonwood Seep, Ruin Spring, Back Spring (duplicate sample of Cottonwood Spring), and Entrance Spring. The DRC representative collected a "split" sample on June 17, 2014 at Ruin Spring from the EFRI sampling equipment, using sample containers he provided. Corral Canyon Seep, Westwater Seep, and Corral Springs were dry in 2014. The data from the June sampling event are included as Attachment D in this report.

2.2 Repeat Visits to Dry Seeps and Springs.

During the June 17, 2014 sampling event, Westwater Seep, Corral Canyon Seep and Corral Springs were dry, could not be sampled, and did not warrant development attempts with limited hand tool excavation at that time. Additional visits were made to these locations on June 26, 2014 and July 9, 2014 to determine if development attempts with hand tool excavation would yield enough water for sampling. The additional two visits did not indicate any changes; i.e., there was no indication that development attempts would be successful.

2.3 Sampling Procedures

Samples were collected and analyzed for the parameters listed in Table 2 of the Permit.

During the July sampling event, samples were collected from the locations indicated in Table 1. Sampling procedures for each seep or spring are determined by the site location and access.

The DRC-approved sampling procedures for seeps and springs at the Mill are contained in Sampling Plan, Revision 0. Samples collected under this plan were collected either by direct collection which involves collecting the sample directly into the sample container from the surface water feature or from spring out-flow, or by using a stainless steel ladle to collect water until a sufficient volume is contained in the ladle for transfer to the sample bottle.

Sampling Plan Revision 0, was revised in 2011 to provide flexibility in sampling procedures to address differing site conditions as well as to correct several inconsistencies noted during the 2010 report preparation and review. EFRI provided detailed descriptions of the sampling procedures used in 2010 in the 2010 Annual Seeps and Springs Sampling Report for the Mill, which was accepted by DRC. EFRI determined a revision to Sampling Plan, Revision 0 was necessary, because the procedures in Sampling Plan, Revision 0 do not match the site conditions and do not include the use of a peristaltic pump for sampling or filtering samples for metals and gross alpha analyses. EFRI submitted a Draft Sampling Plan to DRC in 2011. The procedures in the Draft Sampling Plan are consistent with the sampling procedures employed in 2010, 2011, 2012, and 2013. Samples collected under this plan are collected by direct collection, stainless steel sample ladle, or by use of a peristaltic pump. The peristaltic pump is used to deliver the sample from the source or out-flow to the sample bottles. Filtered parameters are pumped through a 0.45 micron filter prior to delivery to the sample bottle.

EFRI employed the previous sampling procedures again in 2014, because the 2010, 2011, 2012, and 2013 Annual Seeps and Springs Sampling Reports for the Mill were inspected by DRC and determined to be in compliance with the GWDP. Additionally, DRC was present during the 2010, 2011, 2012, 2013, and 2014 sampling events and did not provide comments or recommendations to modify the procedures. Since DRC has not commented on the seeps and springs sampling procedures that were used in 2010, 2011, 2012, 2013, and 2014, EFRI has concluded the 2010 procedures are acceptable and has continued using the procedures implemented in 2010.

Ruin Spring

In the case of Ruin Spring, sample bottles for the analytes collected during the June sampling event (except gross alpha and heavy metals) were filled directly from the spring out-flow which is a pipe. Samples for heavy metals and gross alpha were collected by means of a peristaltic pump and delivered directly to the sample containers through a 0.45 micron filter. The appropriate preservatives for the analytical technique were added to the samples.

1

Cottonwood Seep and Entrance Spring

Cottonwood Seep and Entrance Spring were "developed" prior to the sampling event by Field Personnel. Development was completed by removing surrounding vegetation and clearing the sampling location in the spring or seep area. For the June samples collected from Cottonwood Seep and Entrance Spring, the samples for Volatile Organic Compounds ("VOCs") were collected by means of a peristaltic pump and delivered directly to the sample containers. In the case of the samples for heavy metals and gross alpha, the samples were delivered by a peristaltic pump directly to the sample containers through a 0.45 micron filter. The other samples were filled by dipping the bottles into the developed and cleared sample depression. The samples were preserved by the addition of the appropriate preservative for the analytical technique.

The tubing on the peristaltic pump that comes into contact with the sample water was disposed of between each sampling. As a result, no equipment required decontamination, and no rinsate samples were collected.

2.4 Field Data

Attached under Tab A are copies of the field data sheets recorded in association with the June 2014 seeps and springs monitoring events. Photographic documentation of the sampling sites is also included in Tab A. Sampling dates are listed in Table 1 and field parameters collected during the sampling program are included in Tab B.

2.5 Field QC Samples

The field Quality Control ("QC") samples generated during this sampling event included one duplicate per sampling event and one trip blank per shipment to each laboratory which received samples for VOCs. The duplicate samples (Back Spring) were submitted blind to the analytical laboratory. As previously stated, no rinsate blanks were collected during this sampling event as only disposable equipment was used for sample collection.

3.0 SEEPS AND SPRINGS SURVEY AND CONTOUR MAP

Part I.F.7(c) of the Permit requires that a water table contour map that includes the elevations for each well at the facility and the elevations of the phreatic surfaces observed for each of the seeps and springs sampled be submitted with this annual report. Tab C includes two contour maps. The contour map labeled C-1, shows the water table without the water level data associated with the dry ridge ("DR") investigation piezometers. The contour map labeled C-2 shows the water table with the water level data associated with the DR investigation piezometers. It is important to note that Cottonwood Seep is not included in any of the perched water level contouring, because there is no evidence to establish a hydraulic connection between Cottonwood Seep and the perched water system. Cottonwood Seep is located near the Brushy Basin Member/Westwater Canyon Member contact, approximately 230 feet below the base of the perched water system defined by the Burro Canyon Formation/Brushy Basin Member contact. The stratigraphic position of Cottonwood Seep indicates that its elevation is not representative of the perched potentiometric surface. Exclusion of the Cottonwood Seep from water level contouring is consistent with previous submissions. The contour map includes the corrected survey data from December 2009 as discussed below.

Part I.F.7 (g) of the Permit requires that survey data for the seeps and springs be collected prior to the collection of samples. DRC previously clarified that the requirement to submit survey data applies only to the first sampling event and not on an annual basis. The December 2009 and July 2010 seeps and springs survey data shown in Tab C will be used for reporting where seeps and springs locations and elevations are relevant.

A full discussion of the survey data and the hydrogeology of seeps and springs at the margins of White Mesa in the vicinity of the Mill and the relationship of these seeps and springs to the hydrogeology of the site, in particular to the occurrence of a relatively shallow perched groundwater zone beneath the site, is contained in *Hydrogeology of the Perched Groundwater Zone and Associated Seeps and Springs Near the White Mesa Uranium Mill Site*, dated November 12, 2010, prepared by Hydro Geo Chem, Inc. and submitted to the Director on November 15, 2010. Additional information is also contained in the Second Revision Hydrogeology of the Perched Groundwater Zone in the Area Southwest of the Tailings Cells While Mesa Mill Site, dated November 7, 2012, prepared by Hydro Geo Chem, Inc. and submitted to the Director on November 7, 2012.

4.0 QUALITY ASSURANCE AND QUALITY CONTROL

4.1 Laboratory Results

Analytical results are provided by the Mill's two contract analytical laboratories GEL Laboratories, Inc., ("GEL") and American West Analytical Laboratory ("AWAL").

The laboratories utilized during this investigation were certified under the Environmental Lab Certification Program administered by UDEQ Bureau of Lab Improvement for the analyses they completed.

The analytical data as well as the laboratory Quality Assurance ("QA")/QC summaries are included under Tab D.

4.2 DATA EVALUATION

The Permit requires that the annual seeps and springs sampling program be conducted in compliance with the requirements specified in the Mill's approved White Mesa Uranium Mill Groundwater Monitoring Quality Assurance Plan ("QAP"), Revision 7.2, dated June 6, 2012, the approved Sampling Plan and the Permit. To meet this requirement, the data validation completed for the seeps and springs sampling program verified that the program met the requirements outlined in the QAP, the Permit and the approved Sampling Plan. The 2010 Annual Seeps and Springs Monitoring Report noted that in several places the requirements in the QAP and Sampling Plan, Revision 0, were in conflict. To address these inconsistencies, the Sampling Plan, Revision 0 was revised and, as previously stated, submitted to DRC for review in

June 2011. For the purposes of this data review, the Permit and the QAP requirements were used to determine compliance. The Mill QA Manager performed a QA/QC review to confirm compliance of the monitoring program with requirements of the Permit and the QAP. As required in the QAP, data QA includes preparation and analysis of QC samples in the field, review of field procedures, an analyte completeness review, and quality control review of laboratory data methods and data. Identification of field QC samples collected and analyzed is provided in Section 4.5.1. Discussion of adherence to the Sampling Plan is provided in Section 4.3. Analytical completeness review results are provided in Section 4.4. The steps and tests applied to check laboratory data QA/QC are discussed in Sections 4.5.1 through 4.5.9 below.

The analytical laboratories have provided summary reports of the analytical QA/QC measurements necessary to maintain conformance with National Environmental Laboratory Accreditation Conference certification and reporting protocol. The analytical laboratory QA/QC Summary Reports, including copies of the Mill's Chain of Custody and Analytical Request Record forms for each set of analytical results, follow the analytical results under Tab D. Results of the review of the laboratory QA/QC information are provided under Tab E and discussed in Section 4.5 below.

4.3 Adherence to Sampling Plan and Permit Requirements

On a review of adherence by Mill personnel to the Permit, the QA Manager observed that QA/QC requirements established in the Permit and the QAP were met and that the requirements were implemented as required except, as noted below.

Sampling procedures varied from those contemplated in the Revision 0, Sampling Plan as discussed in the 2010 Annual Seeps and Springs Sampling Report for the Mill. As previously stated, the Sampling Plan, Revision 0 was revised in June 2011 to accurately reflect the sampling procedures used during the 2009, 2010, 2011, 2012, 2013, and 2014 sampling events. DRC has not provided comments on the Sampling Plan to date; however, the DRC representative was present for the 2010, 2011, 2012, 2013, and 2014 sampling programs and observed the sampling procedures used. The DRC representative accepted the procedures and made no comments regarding the sampling strategies employed. No further discussions regarding the changes to the Revision 0 Sampling Plan sampling procedures are included.

The Permit only requires the measurement of the field parameters pH, conductivity and temperature. Field parameter measurements collected during this sampling event included pH, conductivity, temperature, redox potential, and turbidity. The collection of additional field parameters resulted in no effect on the usability of the data.

4.4 Analyte Completeness Review

The analyses required by the Permit Table 2 were completed.

4.5 Data Validation

The QAP and the Permit identify the data validation steps and data quality control checks required for the seeps and springs monitoring program. Consistent with these requirements, the QA Manager performed the following evaluations: a field data QA/QC evaluation, a receipt temperature check, a holding time check, an analytical method check, a reporting limit check, a trip blank check, a QA/QC evaluation of sample duplicates, a gross alpha counting error evaluation and a review of each laboratory's reported QA/QC information. Each evaluation is discussed in the following sections. Data check tables indicating the results of each test are provided under Tab E.

4.5.1 Field Data QA/QC Evaluation

The QA Manager performs a review of field recorded parameters to assess their adherence with QAP and Permit requirements. The assessment involved review of the Field Data sheets. Review of the Field Data Sheets noted that the requirements for field data collection were met.

4.5.2 Holding Time Evaluation

QAP Table 1 identifies the method holding times for each suite of parameters. Sample holding time checks are provided under Tab E. The samples were received and analyzed within the required holding time.

4.5.3 Laboratory Receipt Temperature Check

Chain of Custody sheets were reviewed to confirm compliance with the sample receipt requirements specified in the QAP. Sample receipt temperature checks are provided under Tab E. The samples were received within the QAP required temperature limit.

4.5.4 Analytical Method Check

The analytical methods reported by both laboratories were checked against the required methods specified in Table 1 of the QAP. Analytical method check results are provided in Tab E.

4.5.5 Reporting Limit Evaluation

Reporting limits utilized by the laboratory were required to be equal to or lower than the GWQSs set out in Table 2 of the Permit. For Total Dissolved Solids ("TDS"), sulfate and chloride, for which Ground Water Quality Standards are not set out in Table 2 of the Permit, reporting limits specified in Part 1.E.6.e).(1) were used. Those reporting limits are 10 mg/L for TDS, and 1 mg/L for Sulfate and Chloride. The analytical method reporting limits reported by both laboratories were checked against the reporting limits specified in the Permit. Reporting limit evaluations are provided in Tab E. All analytes were measured and reported to the required reporting limits except the sample results that had the reporting limit raised due to sample dilution necessary to accommodate the analyte concentrations in the samples. In all cases the reported value for the analyte was higher than the increased detection limit.

4.5.6 Trip Blank Evaluation

The trip blank results were reviewed to identify any blank contamination. Trip blank evaluation is provided in Tab E. The trip blank results associated with the samples were less than reporting limit for the VOCs.

4.5.7 QA/QC Evaluation for Sample Duplicates

Section 9.1.4 a) of the QAP states that the Relative Percent Difference ("RPD") will be calculated for the comparison of duplicate and original field samples. The QAP acceptance limits for RPDs between the duplicate and original field sample is less than or equal to 20% unless the measured results (described as activities in the QAP) are less than 5 times the required detection limit. This standard is based on the United Stated Environmental Protection Agency Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994, 9240.1-05-01 as cited in the QAP. The RPDs are calculated for duplicate pairs for the analytes regardless of whether or not the reported concentrations are greater than 5 times the required detection limits; however, data will be considered noncompliant only when the results are greater than 5 times the required detection limit and the RPD is greater than 20%. RPDs are also only calculated when both the sample and the duplicate report a detection for any given analyte. If only one of the pair reports a detection, the RPD cannot be calculated. The additional duplicate information purposes.

The duplicate results were within a 20% RPD in the seeps and springs samples.

4.5.8 Radiologics Counting Error

Section 9.14 of the QAP requires that all gross alpha analysis reported with an activity equal to or greater than the Groundwater Compliance Limits set out in the Permit (for the seeps and springs samples the Groundwater Quality Standards ["GWQS"] will be used), shall have a counting variance that is equal to or less than 20% of the reported activity concentration. An error term may be greater than 20% of the reported activity concentration when the sum of the activity concentration and error term is less than or equal to the GWQS.

Section 9.4 of the QAP also requires a comparability check between the sample and field duplicate sample results utilizing the formula provided in the text.

All radiological results were reported as non-detect in 2014. Results of routine radiologic sample QC are provided under Tab E.

4.5.9 Laboratory Matrix QC Evaluation

Section 9.2 of the QAP requires that the laboratory's QA/QC Manager check the following items in developing data reports: (1) sample preparation information is correct and complete, (2) analysis information is correct and complete, (3) appropriate analytical laboratory procedures are followed, (4) analytical results are correct and complete, (5) QC samples are within established

control limits, (6) blanks are within QC limits, (7) special sample preparation and analytical requirements have been met, and (8) documentation is complete. In addition to other laboratory checks described above, EFRI's QA Manager rechecks QC samples and blanks (items (5) and (6)) to confirm that the percent recovery for spikes and the relative percent difference for spike duplicates are within the method-specific required limits, or that the case narrative sufficiently explains any deviation from these limits. Results of this quantitative check are provided under Tab E. The lab QA/QC results from both GEL and AWAL met these requirements except as described below.

A number of the seeps and springs samples had the reporting limit raised due to matrix interference and/or sample dilution. In all cases where the detection limit was increased, the concentration for the analyte was higher than the increased detection limit.

The check samples included at least the following: a method blank, a laboratory control spike ("LCS"), a matrix spike ("MS") and a matrix spike duplicate ("MSD"), or the equivalent, where applicable. It should be noted that:

- Laboratory fortified blanks are equivalent to LCSs.
- Laboratory reagent blanks are equivalent to method blanks.
- Post digestion spikes are equivalent to MSs.
- Post digestion spike duplicates are equivalent to MSDs.
- For method E900.1, used to determine gross alpha, a sample duplicate was used instead of a MSD.

The qualifiers, and the corresponding explanations reported in the QA/QC Summary Reports for any of the check samples for any of the analytical methods, were reviewed by the QA Manager.

The QAP Section 8.1.2 requires that a MS/MSD pair be analyzed with each analytical batch. The QAP does not specify acceptance limits for the MS/MSD pair, and the QAP does not specify that the MS/MSD pair be prepared on EFRI samples only. Acceptance limits for MS/MSDs are set by the laboratories. The review of the information provided by the laboratories in the data packages verified that the QAP requirement to analyze a MS/MSD pair with each analytical batch was met. While the QAP does not require it, the recoveries were reviewed for compliance with each laboratory's established acceptance limits. The QAP does not require this level of review and the results of this review are provided for information only.

The information from the Laboratory QA/QC Summary Reports indicates that the MS/MSDs recoveries and the associated RPDs for the seeps and springs samples were within acceptable laboratory limits except as noted in Tab E. Eleven MS/MSD recoveries were outside the laboratory established acceptance limits. These results do not affect the quality or usability of the data, because the recoveries and RPDs above or below the acceptance limits are indicative of matrix interference most likely caused by other constituents in the samples. Matrix interferences are applicable to the individual sample results only. The requirement in the QAPs to analyze a MS/MSD pair with each analytical batch was met and as such the data are compliant with the QAP.

The QAP specifies that surrogate compounds shall be employed for all organic analyses, but the QAP does not specify acceptance limits for surrogate recoveries. The analytical data associated with the routine quarterly sampling met the requirement specified in the QAP. The information from the Laboratory QA/QC Summary Reports indicates that the surrogate recoveries for the seeps and springs samples were within acceptable laboratory limits for all surrogate compounds.

The QAP Section 8.1.2 requires that each analytical batch shall be accompanied by a reagent blank. Contamination detected in analysis of reagent blanks/method blanks will be used to evaluate any analytical laboratory contamination of environmental samples. The QAP specified process for evaluation of reagent/method blanks states that nonconformance will exist when blanks are within an order of magnitude of the sample results. No analytes were reported above the reporting limit in the reagent/method blanks from either laboratory.

5.0 EVALUATION OF ANALYTICAL DATA

Analytical Results

As previously stated, the samples were analyzed for the groundwater compliance parameters found on Table 2 of the Permit. In addition to these laboratory parameters, the pH, temperature, conductivity, (and although not required, redox and turbidity) were measured and recorded in the field.

The samples were not analyzed for semivolatile organic compounds. Although the Sampling Plan, Revision 0, currently states that the samples will also be analyzed for semivolatile organic compounds, the Permit was revised to eliminate the requirement for semivolatile analysis. The requirement to analyze the seeps and springs samples for semivolatile organic compounds has also been eliminated from the Draft Sampling Plan, Revision 1.

5.1 Evaluation of Analytical Results

The results of the June sampling event show no evidence of Mill influence in the water produced by the seeps and springs sampled. The lack of Mill influence on seeps and springs is indicated by the fact that the parameters detected are within the ranges of concentrations for the on-site monitoring wells and for available historic data for the seeps and springs themselves. For those detected analytes, concentrations are shown in Tables 2A, 2B, 2C, and 2D. The data are compared to available historic data for each seep and spring as well as to on-site monitoring well data. Specific discussions about each seep or spring are included below.

5.1.1 Ruin Spring

No VOCs or radiologics were detected. Metals and major ions were the only analytes detected. The metals detections were minimal with only molybdenum, selenium and uranium having positive detections. A comparison of the 2009, 2010, 2011, 2012, and 2013 data to the 2014 data shows that the concentrations of most detected analytes remained approximately the same with only minor changes within the limits of normal analytical deviation. The reported values for calcium, fluoride, magnesium, selenium, chloride, and uranium increased from the 2013 sample results, but they are below the upper range of historic values for the on-site monitoring wells.

The differences are not significant and are most likely due to normal fluctuations due to flow rates or seasonal variations due to annual precipitation. Overall, the data reported for Ruin Spring are typical for a surface water sample with no indication of Mill influence.

5.1.2 Cottonwood Spring

No VOCs or radiologics were detected. Metals and major ions were the only analytes detected. The metals detections were minimal with only uranium having a positive detection. A comparison of the 2009, 2010, 2011, 2012, and 2013 data to the 2014 data shows that the concentrations of most detected analytes remained approximately the same with only minor changes within the limits of normal analytical deviation. The reported values for fluoride, calcium, magnesium, potassium, sodium, uranium, and sulfate increased from the 2013 sample results, but they are below the upper range of historic values for the on-site monitoring wells. The differences are not significant and are most likely due to normal fluctuations due to flow rates or seasonal variations due to annual precipitation. Overall, the data reported for Cottonwood Spring are typical for a surface water sample with no indication of Mill influence.

5.1.3 Entrance Spring

No radiologics were detected. Toluene, metals and major ions were the only analytes detected. The metals detections were minimal with only iron, manganese, selenium, and uranium having positive detections, with the concentration of selenium increasing compared to the 2013 sample results. The reported values for fluoride, and nitrate increased from the 2013 sample results. Toluene was detected for the first time at 1.32 ug/L, which is likely due to contamination either during sampling or at the laboratory, but still significantly below the GWQS of 1,000 ug/L. The detected concentrations are below the upper range of historic values for the on-site monitoring wells. The differences are not significant and are most likely due to normal fluctuations due to flow rates or seasonal variations due to annual precipitation. Overall, the data reported for Entrance Spring are typical for a surface water sample with no indication of Mill influence.

6.0 CORRECTIVE ACTION REPORT

No corrective action reports are required for the 2014 annual sampling event.

6.1 Assessment of Corrective Actions from Previous Period

No corrective action reports were required for the 2013 annual sampling event.

7.0 ELECTRONIC DATA FILES AND FORMAT

EFRI has provided to the Director electronic copies of the laboratory results as part of the annual seeps and springs monitoring in Comma Separated Values, from the laboratory. A copy of the transmittal e-mail is included under Tab F.

8.0 SIGNATURE AND CERTIFICATION

This document was prepared by Energy Fuels Resources (USA) Inc. on October 20, 2014.

Energy Fuels Resources (USA) Inc.

By:

SBM

Scott A. Bakken Director, Permitting & Environmental Affairs

Certification

I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

-

Scott A. Bakken Director, Permitting & Environmental Affairs Energy Fuels Resources (USA) Inc.

		Work Order	Date of Lab	
Location	Sample Date	No./Lab Set ID	Report	
		AWAL = 1406403	AWAL = 6/30/14	
Entrance Seep	6/17/2014	GEL = 351092	GEL = 7/16/14	
		AWAL = 1406403	AWAL = 6/30/14	
Cottonwood Spring	6/17/2014	GEL = 351092	GEL = 7/16/14	
Back Spring (Duplicate of		AWAL = 1406403	AWAL = 6/30/14	
Cottonwood Spring)	6/17/2014	GEL = 351092	GEL = 7/16/14	
		AWAL = 1406403	AWAL = 6/30/14	
Ruin Spring	6/17/2014	GEL = 351092	GEL = 7/16/14	
Westwater Seep	Not Sampled - Dry	Not Sampled - Dry	Not Sampled - Dry	
Corral Spring	Not Sampled - Dry	Not Sampled - Dry	Not Sampled - Dry	
Corral Canyon Seep	Not Sampled - Dry	Not Sampled - Dry	Not Sampled - Dry	

Table 1: Summary of Seeps and Springs Sampling

				Ruin Sp	ring				
Constituent	2009	2010	2011 - May	2011 - July	2012	2013	2014	Range of Average Historic Values for Monitoring Wells ¹ *	Ave 2003 2004 ²
				Major Ions	(mg/l)				
Carbonate	<1	<1	<1	1	<1	<1	<1	244	
Bicarbonate	233	254	241	239	237	208	204		
Calcium	151	136	145	_ 148	147	149	150		
Chloride	28	23	25	44	28	26.3	27.1	ND - 213	27
Fluoride	0.5	0.53	0.45	0.5	0.52	0.538	<1	ND - 1.3	0.6
Magnesium	32.3	29.7	30.6	31.1	31.9	32.1	35.4		-
Nitrogen- Ammonia	0.09	<0.05	ND	<0.05	<0.05	<0.05	<0.05	-	
Nitrogen-Nitrate	1.4	1.7	1.7	1.6	1.6	1.56	1.54		**
Potassium	3.3	3.07	3.2	3.3	3.5	3.46	3.24	-	
Sodium	104	93.4	110	111	115	118	119		
Sulfate	528	447	486	484	464	553	553	ND - 3455	521
TDS	1010	903	942	905	1000	952	984	1019 - 5548	1053
			a	Metals (ug/l)				
Arsenic	<5	<5	<5	<5	<5	<5	<5		-
Beryllium	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5		
Cadmium	< 0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	ND - 4.78	0.01
Chromium	<25	<25	<25	<25	<25	<25	<25	÷-	
Cobalt	<10	<10	<10	<10	<10	<10	<10		
Copper	<10	<10	<10	<10	<10	<10	<10		
Iron	<30	<30	<30	<30	<30	<30	<30	ND - 7942	25
Lead	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	277.1
Manganese	<10	<10	<10	<10	<10	<10	<10	ND - 34,550	5
Mercury	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	#	÷.
Molybdenum	17	17	16	17	16	16.1	16.0	÷	
Nickel	<20	<20	<20	<20	<20	<20	<20	ND - 61	0.05
Selenium	12.2	10	11.8	10.2	10.8	10.2	12.0	ND - 106.5	12.1
Silver	<10	<10	<10	<10	<10	<10	<10		-
Thallium	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5		1227
Tin	<100	<100	<100	<100	<100	<100	<100		- 221
Uranium	9.11	8.47	9.35	8.63	8.68	9.12	9.61	ND - 59.8	10
Vanadium	<15	<15	<15	<15	<15	<15	<15		
Zinc	<10	<10	<10	<10	<10	<10	<10		
				Radiologics	(pCi/l)				
Gross Alpha	<0.2	<0.2	<-0.3	<-0.05	<-0.09	<1.0	<1	ND - 36	0.28

Table2A Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells

				Ruin Sp	ring								
Constituent	2009	2010	2011 - May	2011 - July	2012	2013	2014	Range of Average Historic Values for Monitoring Wells ¹ *	Ave 2003- 2004 ²				
VOCS (ug/L)													
Acetone	<20	<20	<20	<20	<20	<20	<20	-	-				
Benzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	÷.	÷.				
Carbon tetrachloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.200	1767 c				
Chloroform	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1771					
Chloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0						
MEK	<20	<20	<20	<20	<20	<20	<20	-	(7 7)				
Methylene Chloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	125				
Naphthalene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0						
Tetrahydrofuran	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0						
Toluene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	177	177.				
Xylenes	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	1				

¹ From Figure 3, Table 10 and Appendix B of the *Revised Addendum, Background Groundwater Quality Report: New* Wells for Denison Mines (USA) Corp's White Mesa Mill Site, San Juan County, Utah, April 30, 2008, prepared by INTERA, Inc. and Table 16 and Appendix D of the *Revised Background Groundwater Quality Report: Existing Wells* for Denison Mines (USA) Corp.'s White Mesa Uranium Mill Site, San Juan County, Utah, October 2007, prepared by

² From Figure 9 of the *Revised Addendum*, *Evaluation of Available Pre-Operational and Regional Background Data*, Background Groundwater Quality Report: Existing Wells for Denison Mines (USA) Corp.'s White Mesa Mill Site, San Juan Couinty, Utah, November 16, 2007, prepared by INTERA, Inc.

*Range of average historic values for On-Site Monitoring Wells as reported on April 30, 2008 (MW-1, MW-2, MW-3, MW-3A, MW-4, MW-5, MW-11, MW-12, MW-14, MW-15, MW-17, MW-18, MW-19, MW-20, MW-22, MW-23, MW-24, MW-25, MW-26, MW-27, MW-28, MW-29, MW-30, MW-31 and MW-32)²

	Table2B Detected	Constituen	ts and Com	parison to	Historic Va	alues and Mi	ll Site Mor	nitoring W	ells	
I					Cottonwo	od Spring				
	Constituent	2009	2010	2011 - May	2011 - July	2012	2013	2014	Range of Average Historic Values for	Ave 19

Table2B Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells

Constituent	2009	2010	2011 - May	2011 - July	2012	2013	2014	Average Historic Values for Monitoring Wells ¹ *	Ave 1977 1982 ¹
	_			Major Io	ons (mg/l)	•			
Carbonate	<1	<1	<1	6	<1	<1	<1		-
Bicarbonate	316	340	330	316	326	280	251		
Calcium	90.3	92.2	95.4	94.2	101	87.9	99.7		
Chloride	124	112	113	134	149	118	128	ND - 213	31
Fluoride	0.4	0.38	0.34	0.38	0.38	0.417	<1	ND - 1.3	0.8
Magnesium	25	24.8	25.2	25.2	27.7	23.6	29.0		**
Nitrogen-Ammonia	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05		
Nitrogen-Nitrate	0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	++	••
Potassium	5.7	5.77	6	5.9	6.2	5.53	6.18	-	-
Sodium	205	214	229	227	247	217	227		
Sulfate	383	389	394	389	256	403	417	ND - 3455	230
TDS	1010	900	1030	978	1040	996	968	1019 - 5548	811
				Metal	s (ug/l)				
Arsenic	<5	<5	<5	<5	<5	<5	<5	-	
Beryllium	<0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5	<0.5		
Cadmium	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND - 4.78	
Chromium	<25	<25	<25	<25	<25	<25	<25		
Cobalt	<10	<10	<10	<10	<10	<10	<10		
Copper	<10	<10	<10	<10	<10	<10	<10	*	
Iron	<30	<30	53	<30	<30	<30	<30	ND - 7942	150
Lead	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-72
Manganese	<10	<10	<10	<10	<10	<10	<10	ND - 34,550	580
Mercury	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	**	ж.
Molybdenum	<10	<10	<10	<10	<10	<10	<10	•	+
Nickel	<20	<20	<20	<20	<20	<20	<20	ND - 61	4
Selenium	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	ND - 106.5	2
Silver	<10	<10	<10	<10	<10	<10	<10		2
Thallium	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ω. 	
Tin	<100	<100	<100	<100	<100	<100	<100		1
Uranium	8.42	8.24	7.87	8.68	8.17	8.95	9.62	ND - 59.8	11
Vanadium	<15	<15	<15	<15	<15	<15	<15		
Zinc	<10	<10	<10	<10	<10	<10	<10		-
				Radiolog	ics (pCi/l)				
Gross Alpha	<0.2	<0.2	<0.1	<-0.1	<-0.2	<1.0	<1.0	ND - 36	7.2

				Cottonwo	od Spring				
Constituent	2009	2010	2011 - May	2011 - July	2012	2013	2014	Range of Average Historic Values for Monitoring Wells ¹ *	Ave 1977 - 1982 ¹
				VOCS	(ug/L)				
Acetone	<20	<20	<20	<20	<20	<20	<20		<i>₩</i>
Benzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		(944)
Carbon tetrachloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Chloroform	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	÷.	- E
Chloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		19
MEK	<20	<20	<20	<20	<20	<20	<20		-
Methylene Chloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		ă.
Naphthalene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Tetrahydrofuran	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		15
Toluene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		-
Xylenes	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	÷	

Table2B Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells

¹ From Figure 3, Table 10 and Appendix B of the *Revised Addendum, Background Groundwater Quality Report: New Wells for Denison Mines (USA) Corp's White Mesa Mill Site, San Juan County, Utah*, April 30, 2008, prepared by INTERA, Inc. and Table 16 and Appendix D of the *Revised Background Groundwater Quality Report: Existing Wells for Denison Mines (USA) Corp.'s White Mesa Uranium Mill Site, San Juan County, Utah*, October 2007, prepared by INTERA, Inc. *Range of average historic values for On-Site Monitoring Wells as reported on April 30, 2008 (MW-1, MW-2, MW-3, MW-3A, MW-4, MW-5, MW-11, MW-12, MW-14, MW-15, MW-17, MW-18, MW-19, MW-20, MW-22, MW-23, MW-24,

MW-25, MW-26, MW-27, MW-28, MW-29, MW-30, MW-31 and MW-32)

Table2C Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells

			West	water Seep		_						
Constituent	2009	2010	2011 - May	2011 - July	2012	2013	2014	Range of Average Historic Values for Monitoring Wells ¹				
			Majo	r Ions (mg/	l)							
Carbonate	<1	<1	<1									
Bicarbonate	465	450	371	1				Historic Values fo Monitoring Wells				
Calcium	191	179	247	1						Historic Values fo Monitoring Wells ¹ ND - 213 ND - 213 ND - 1.3 ND - 3455 6.7 - 8.9 1019 - 5548 ND - 3455 6.7 - 8.9 1019 - 5548 ND - 4.78 ND - 4.78 ND - 7942 ND - 7942 ND - 7942 ND - 34,550 ND - 34,550 ND - 34,550 ND - 34,550 ND - 106.5		
Chloride	41	40	21	1								
Fluoride	0.7	0.6	0.54	1				ND - 1.3				
Magnesium	45.9	44.7	34.7	Not	Not	Not	Not					
Nitrogen-Ammonia	< 0.05	0.5	0.06	Sampled -	Sampled -	Sampled -	Sampled -					
Nitrogen-Nitrate	0.8	<0.1	<0.1	Dry	Dry	Dry	Dry					
Potassium	1.19	6.57	3.9	1				÷.				
Sodium	196	160	112	1								
Sulfate	646	607	354	1								ND - 3455
pH (s.u.)	8.01	7.38	7.2	1								
TDS	1370	1270	853	1				1019 - 5548				
			Me	tals (ug/l)								
Arsenic	<5	<5	12.3									
Beryllium	<0.5	<0.5	0.91			01		**				
Cadmium	<0.5	<0.5	0.9					ND - 4.78				
Chromium	<25	<25	<25									
Cobalt	<10	<10	<10						44-1			
Copper	<10	<10	16	1								
Iron	89	56	4540	1			1.0	ND - 7942				
Lead	<1.0	<1.0	41.4									
Manganese	37	87	268	Not	Not	Not	Not	ND - 34,550				
Mercury	<0.5	<0.5	<0.5	Sampled - Dry	Sampled - Dry	Sampled - Dry	Sampled - Dry	-				
Molybdenum	29	29	<10	Dry	Diy	Diy	Diy					
Nickel	<20	<20	29									
Selenium	<5.0	<5.0	<5.0					ND - 106.5				
Silver	<10	<10	<10				, ,					
Thallium	<0.5	<0.5	<0.5	1								
Tin	<100	<100	<100									
Uranium	15.1	46.6	6.64)					
Vanadium	<15	<15	34	4								
Zinc	<10	<10	28									
	T		Radio	logics (pCi/	r							
Gross Alpha	< -0.1	< 0.3	0.5	Not Sampled -	Not Sampled -	Not Sampled -	Not Sampled -	ND - 36				
areas rapin			0.0	Dry	Dry	Dry	Dry	1.2 00				

Table2C Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells

			West	water Seep				PERCENTER P		
Constituent	2009	2010	2011 - May	2011 - July	2012	2013	2014	Range of Average Historic Values for Monitoring Wells ¹ *		
			VO	CS (ug/L)	A					
Acetone	<20	<20	ND		Not					
Benzene	<1.0	<1.0	ND					-		
Carbon tetrachloride	<1.0	<1.0	ND							
Chloroform	<1.0	<1.0	ND					-		
Chloromethane	<1.0	<1.0	ND	Not		Not Sampled -	Not			
MEK	<20	<20	ND	Sampled -	Sampled -		Sampled -			
Methylene Chloride	<1.0	<1.0	ND	Dry	Dry	Dry	Dry	*		
Naphthalene	<1.0	<1.0	ND					**		
Tetrahydrofuran	<1.0	<1.0	ND					-		
Toluene	<1.0	<1.0	ND							
Xylenes	<1.0	<1.0	ND							

¹ From Figure 3, Table 10 and Appendix B of the *Revised Addendum, Background Groundwater Quality Report: New Wells for Denison Mines (USA) Corp's White Mesa Mill Site, San Juan County, Utah*, April 30, 2008, prepared by INTERA, Inc. and Table 16 and Appendix D of the *Revised Background Groundwater Quality Report: Existing Wells for Denison Mines (USA) Corp.'s White Mesa Uranium Mill Site, San Juan County, Utah*, October 2007, prepared by INTERA, Inc.

*Range of average historic values for On-Site Monitoring Wells as reported on April 30, 2008 (MW-1, MW-2, MW-3, MW-3A, MW-4, MW-5, MW-11, MW-12, MW-14, MW-15, MW-17, MW-18, MW-19, MW-20, MW-22, MW-23, MW-24, MW-25, MW-26, MW-27, MW-28, MW-29, MW-30, MW-31 and MW-32)

			Entra	nce Spring				
Constituent	2009	2010	2011 - May	2011 - July	2012	2013	2014	Range of Average Historic Values for Monitoring Wells ¹ *
			Major	Ions (mg/l))			
Carbonate	<1	<1	<1	7	<1	<1	<1	
Bicarbonate	292	332	270	299	298	292	247	
Calcium	90.8	96.5	88.8	96.6	105	121	103	*
Chloride	60	63	49	64	78	139	76.8	ND - 213
Fluoride	0.7	0.73	0.58	0.58	0.64	0.71	<1	ND - 1.3
Magnesium	26.6	28.9	26.4	28.4	32.7	43	34.9	*
Nitrogen-Ammonia	0.28	<0.05	<0.05	0.32	< 0.05	< 0.05	< 0.05	
Nitrogen-Nitrate	1.4	1	1.4	0.5	2.8	2.06	3.65	
Potassium	2.4	2.74	2.6	2.9	2	3.83	1.56	
Sodium	61.4	62.7	62.5	68.6	77.4	127	78.9	
Sulfate	178	179	166	171	171	394	219	ND - 3455
TDS	605	661	571	582	660	828	688	1019 - 5548
			Met	als (ug/l)		_		
Arsenic	<5	<5	<5	<5	<5	<5	<5	*
Beryllium	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Cadmium	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND - 4.78
Chromium	<25	<25	<25	<25	<25	<25	<25	
Cobalt	<10	<10	<10	<10	<10	<10	<10	÷
Copper	<10	<10	<10	<10	<10	<10	<10	
Iron	<30	<30	37	55	34	162	37.2	ND - 7942
Lead	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	+-
Manganese	54	11	47	84	<10	259	16.1	ND - 34,550
Mercury	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	~
Molybdenum	<10	<10	<10	<10	<10	<10	<10	
Nickel	<20	<20	<20	<20	<20	<20	<20	ND - 61
Selenium	12.1	9.2	13.1	5.5	13.2	11.2	15.9	ND - 106.5
Silver	<10	<10	<10	<10	<10	<10	<10	
Thallium	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Tin	<100	<100	<100	<100	<100	<100	<100	
Uranium	15.2	17.8	18.8	15.3	21.1	38.8	23.2	ND - 59.8
Vanadium	<15	<15	<15	<15	<15	<15	<15	
Zinc	<10	<10	<10	<10	<10	<10	<10	

Table2D Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells

			Entra	nce Spring				
Constituent 2009		2010	2010 2011 - 2011 May July		2012	2013	2014	Range of Average Historic Values for Monitoring Wells ¹ *
			Radiol	ogics (pCi/l)			
Gross Alpha	0.9	<0.5	1.5	1.6	0.5	2.3	<1	ND - 36
			VOO	CS (ug/L)				
Acetone	<20	<20	<20	<20	<20	<20	<20	
Benzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Carbon tetrachloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	(22)
Chloroform	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Chloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	6
MEK	<20	<20	<20	<20	<20	<20	<20	-
Methylene Chloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Naphthalene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	[:] <1.0	-
Tetrahydrofuran	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Toluene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.32	**
Xylenes	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	

Table2D Detected Constituents and Comparison to Historic Values and Mill Site Monitoring Wells

¹ From Figure 3, Table 10 and Appendix B of the *Revised Addendum, Background Groundwater Quality Report: New Wells for Denison Mines (USA) Corp's White Mesa Mill Site, San Juan County, Utah*, April 30, 2008, prepared by INTERA, Inc. and Table 16 and Appendix D of the *Revised Background Groundwater Quality Report: Existing Wells for Denison Mines (USA) Corp.'s White Mesa Uranium Mill Site, San Juan County, Utah*, October 2007, prepared by INTERA, Inc.

*Range of average historic values for On-Site Monitoring Wells as reported on April 30, 2008 (MW-1, MW-2, MW-3, MW-3A, MW-4, MW-5, MW-11, MW-12, MW-14, MW-15, MW-17, MW-18, MW-19, MW-20, MW-22, MW-23, MW-24, MW-25, MW-26, MW-27, MW-28, MW-29, MW-30, MW-31 and MW-32)

INDEX OF TABS

Tab A Seeps and Springs Field Data Sheets and Photographic Documentation

Tab B Field Parameter Measurement Data

Tab C Survey Data and Contour Map

Tab D Analytical Laboratory Data

- Tab EQuality Assurance and Data Validation Tables
 - E-1 Holding Time Evaluation
 - E-2 Laboratory Receipt Temperature Check
 - E-3 Analytical Method Check
 - E-4 Reporting Limit Evaluation
 - E-5 Trip Blank Evaluation
 - E-6 QA/QC Evaluation for Sample Duplicates
 - E-7 Radiologics Counting Error
 - E-8 Laboratory Matrix QC Evaluation

Tab F CSV Transmittal

Tab A

Seeps and Springs Field Data Sheets and Photographic Documentation

Field Data Record-Seeps and Springs Sampling

Seep or Spring Location: _ Corral Spring
Date For Initial Sampling Visit: 6/17/2014 Time: 1105
Sample Collected: 🗆 Yes 🏚 No
Date For Second Sampling Visit: 6/26/14 Time: 0830
Sample Collected: Yes XNo
Date For Third Sampling Visit: 7/9/14 Time: 0830
Sample Collected: Yes Solution
Sampling Personnel:
Weather Conditions at Time of Sampling:
Estimated Seep or Spring Flow Rate:
Field Parameter Measurements:
-Temperature (°C)
-Conductivity µMHOC/cm

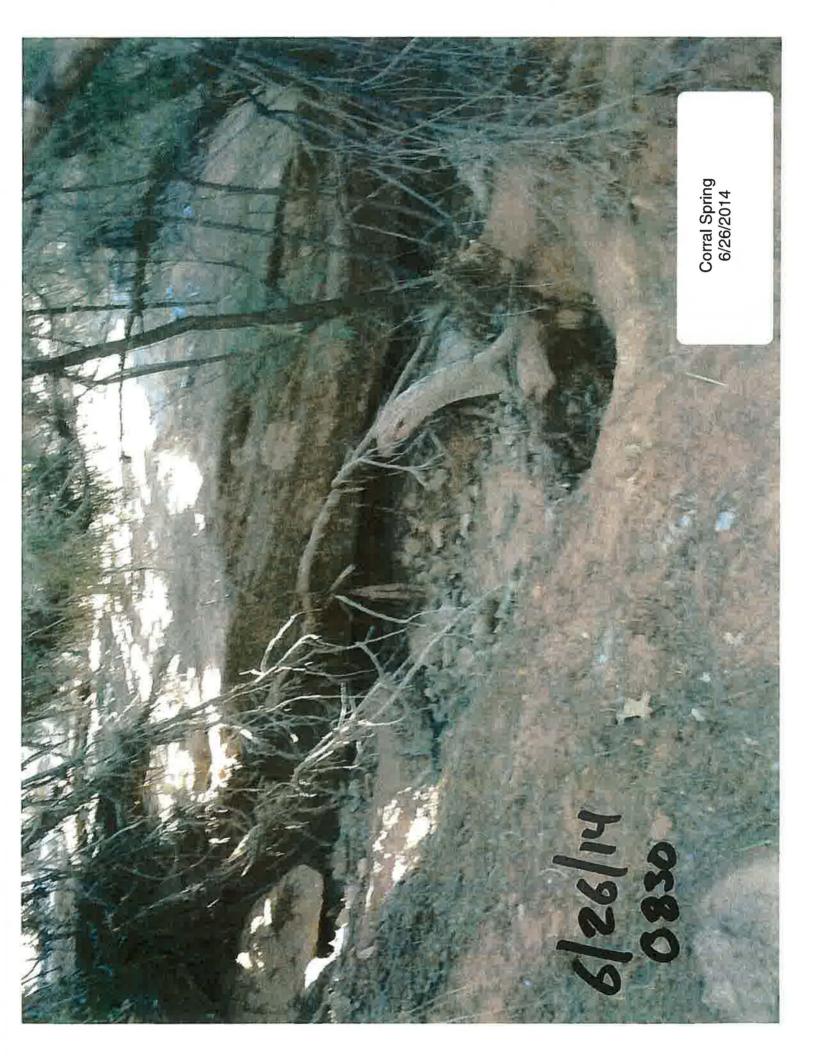
Analytical Parameters/Sample Collection Method:

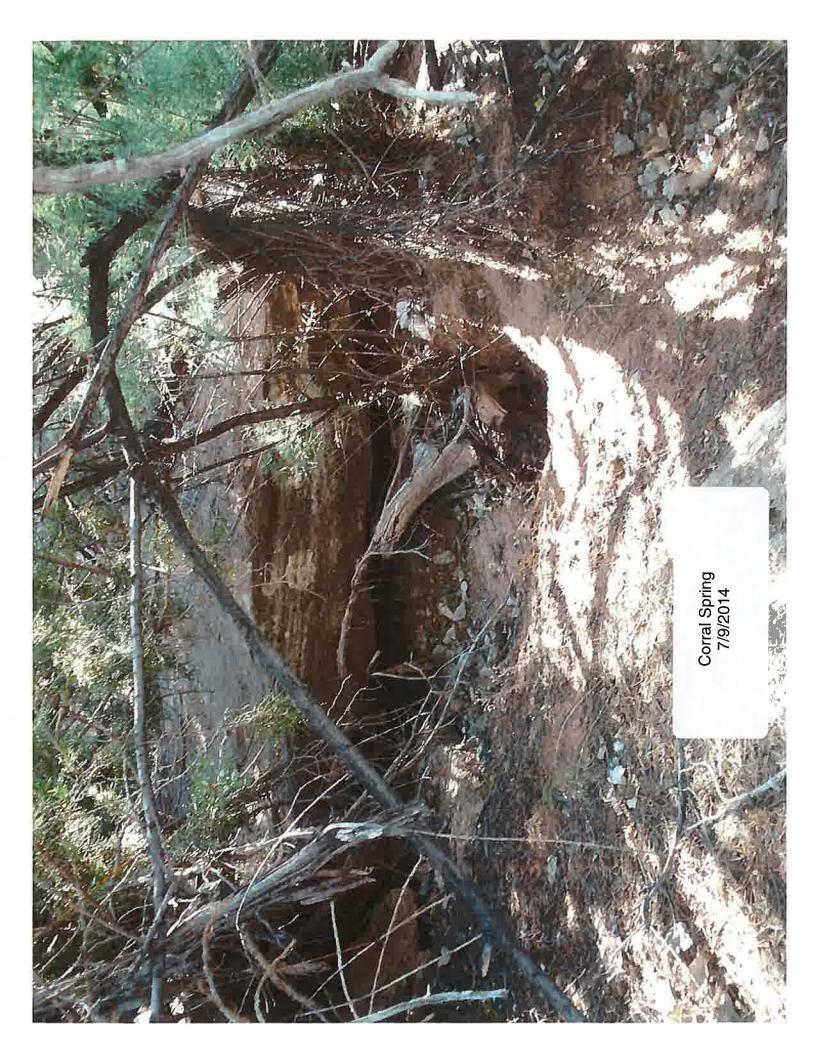
Parameter	arameter Sample Taken Filtered		Filtered		Sampling Method					
			Direct	Peristaltic Pump	Ladle	Other (describe in notes section)				
VOCs	□ Yes	🗆 No	□ Yes	🗆 No						
THF	🗆 Yes	🗆 No	□ Yes	🗆 No						
Nutrients	□ Yes	🗆 No	🗆 Yes	🗆 No						
Other Non Radiologics	🗆 Yes	🗆 No	🗅 Yes	🗆 No 🗎						
Gross Alpha	🗆 Yes	🗆 No	□ Yes	🗆 No						

QC Samples Associated with this Location:

□ Rinsate Blank

□ Duplicate


ê. ¹ 1


Duplicate Sample Name:_____

Notes: Spring was dry. see photo.

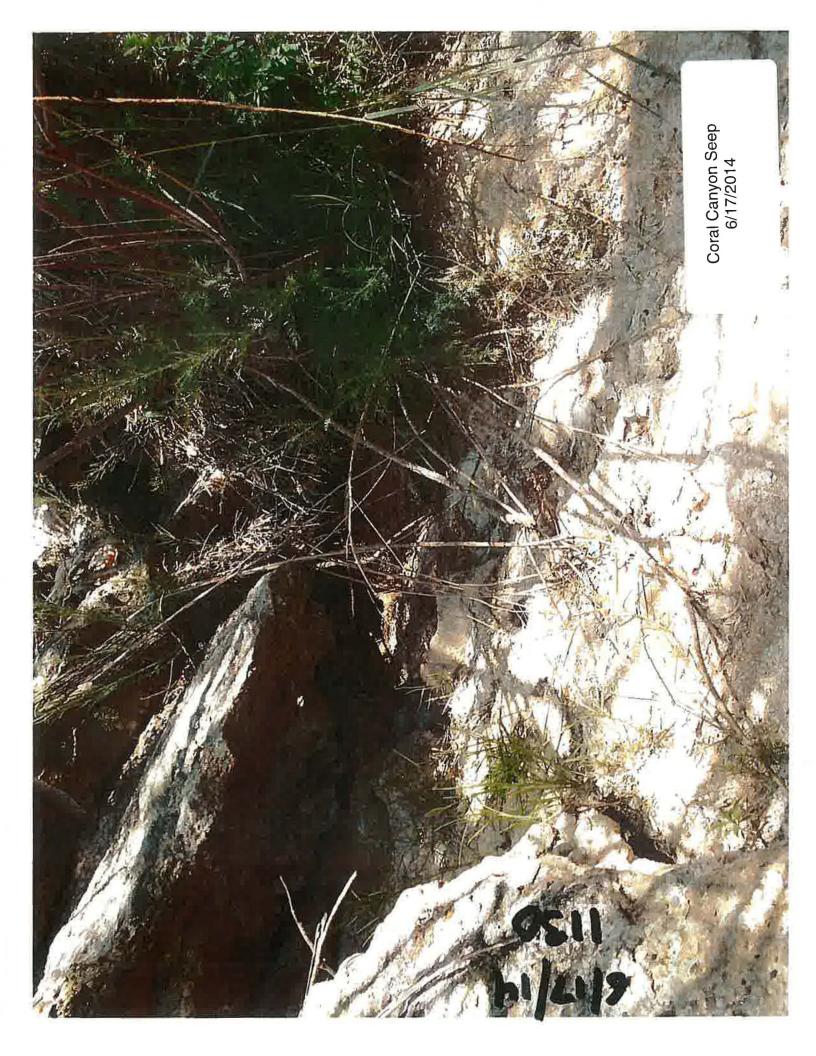
6/26/14	Arrived	on	site a	at c	2830. Spi	ine we	is dry	sec	photo.	
6/26/14	Lock 4	was	dry-	See	photo.	2	/		1	

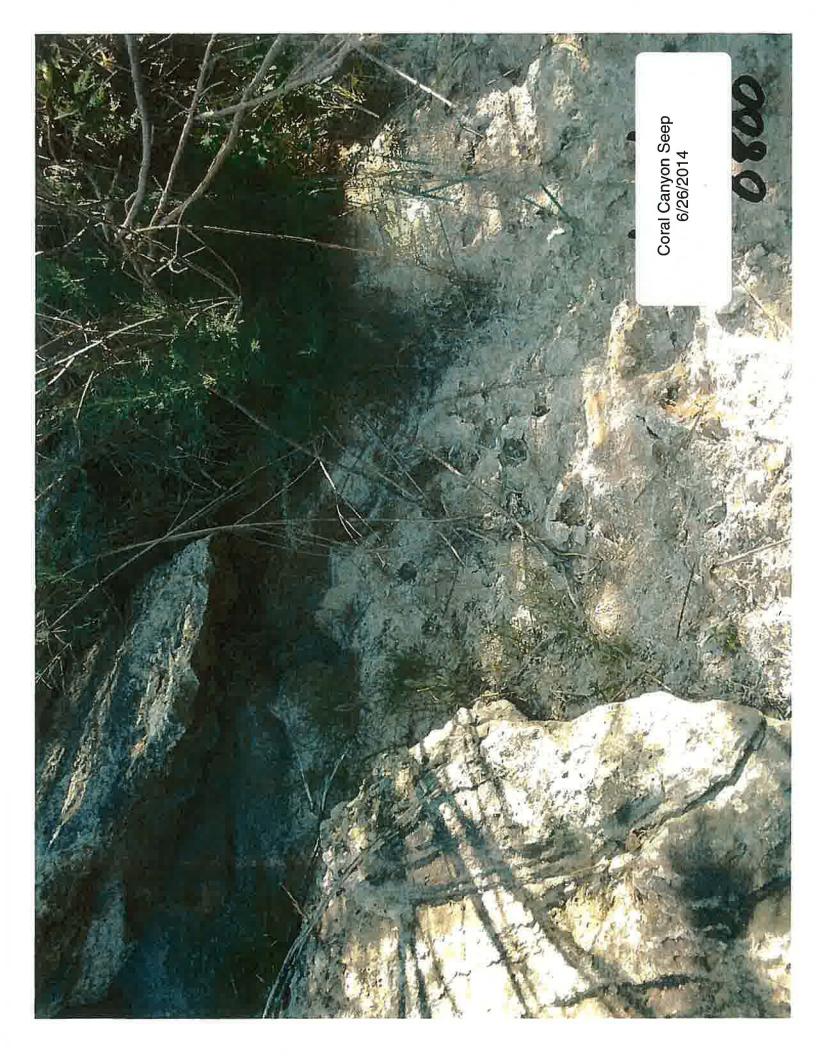
Field Data Record-Seeps and Springs Sampling

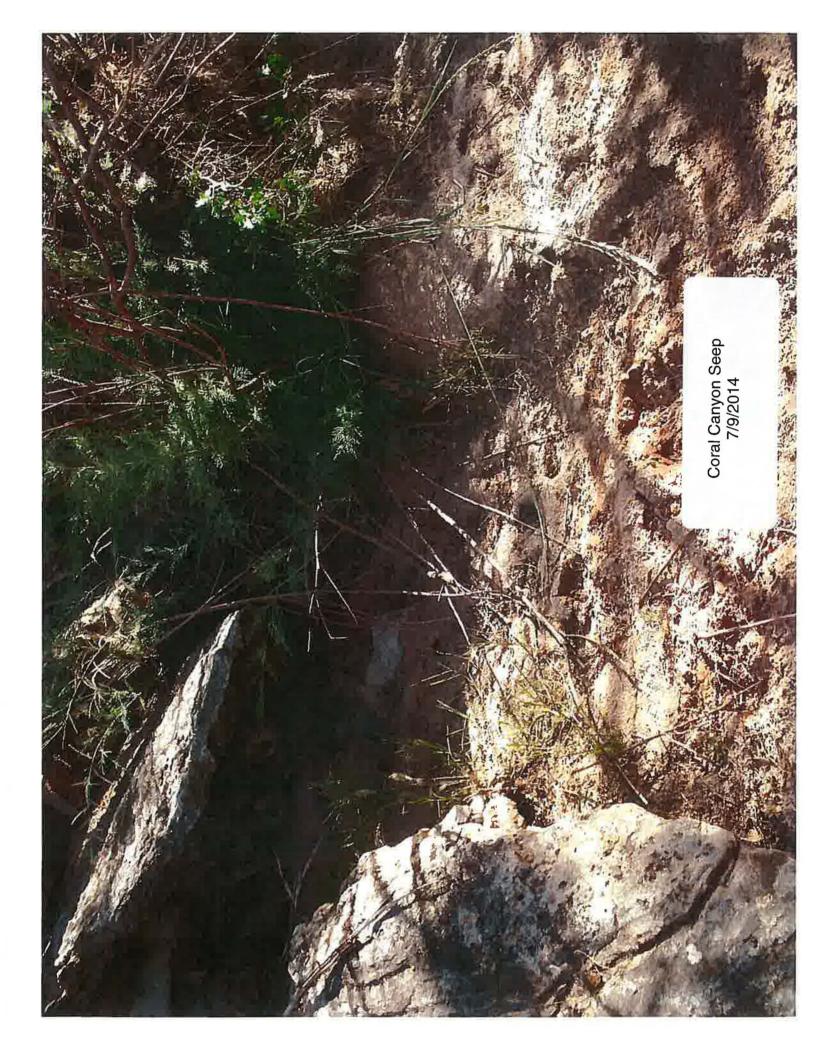
Seep or Spring Location: Loral Lanyon Scep
Date For Initial Sampling Visit: 6/17/2019 Time: 1130
Sample Collected: Yes No
Date For Second Sampling Visit: 6/26/14 Time: 0800
Sample Collected: □ Yes 🖄 No
Date For Third Sampling Visit: 7/4/14 Time: 0800
Sample Collected: Yes 🗴 No
Sampling Personnel:
Weather Conditions at Time of Sampling:
Estimated Seep or Spring Flow Rate:
Field Parameter Measurements: -pH -Temperature (°C)

Analytical Parameters/Sample Collection Method:

Parameter	Sample Taken		Filtered		Sampling Method					
					Direct	Peristaltic Pump	Ladle	Other (describe in notes section)		
VOCs	🗆 Yes	🗆 No	🗆 Yes	🗆 No						
THF	🗆 Yes	🗆 No	🗆 Yes	🗆 No						
Nutrients	□ Yes	🗆 No	🗆 Yes	🗆 No						
Other Non Radiologics	🗆 Yes	🗆 No	🗆 Yes	🗆 No				۵		
Gross Alpha	🗆 Yes	🗆 No	🗆 Yes	🗆 No						


QC Samples Associated with this Location:


- □ Rinsate Blank
- □ Duplicate


. . .

Duplicate Sample Name:_____

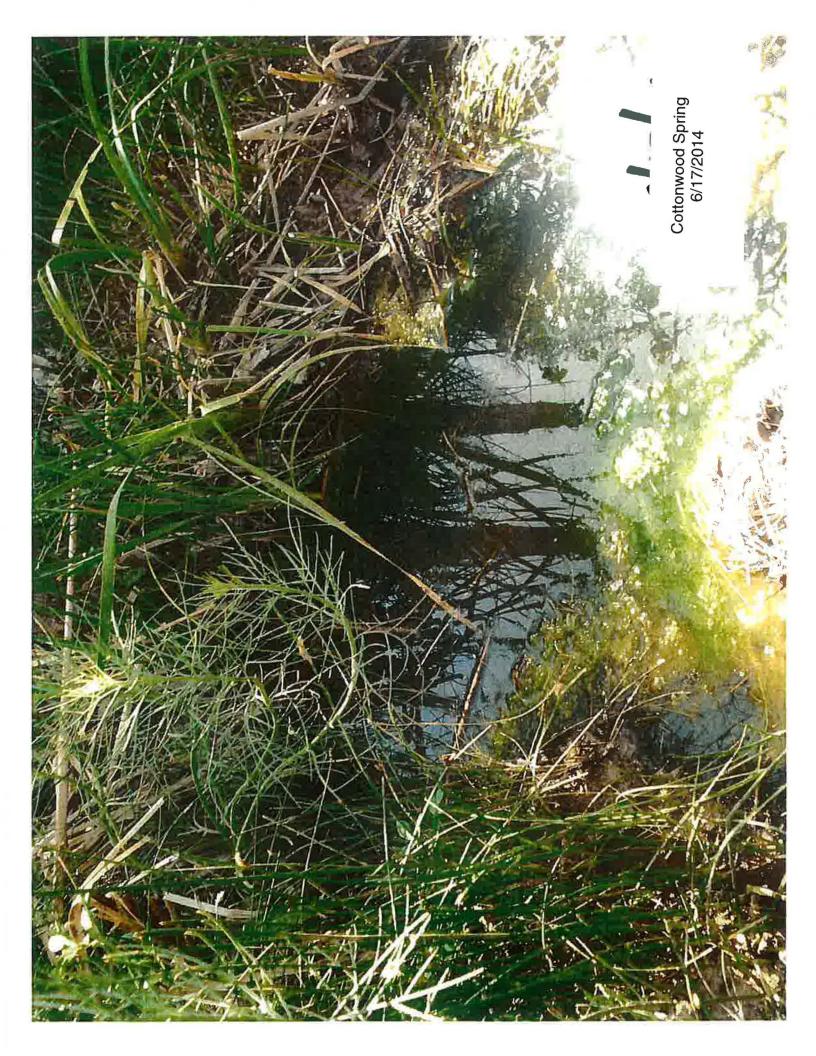
Notes: Made 3 attempts to sample seep. Seep was dry. ______

Seep or Spring Location: <u>Cottonwood</u> Spring
Date For Initial Sampling Visit: 6/17/2014 Time: 1010
Sample Collected: 🗹 Yes 🗆 No
Date For Second Sampling Visit: Time:
Sample Collected: \Box Yes \Box No
Date For Third Sampling Visit: Time:
Sample Collected: \Box Yes \Box No
Sampling Personnel: Janner Holliday, Garrin Palmer, Deen Henderson, Phil Goble
Weather Conditions at Time of Sampling: Clear and Windy
Estimated Seep or Spring Flow Rate: _O. 25 GPM (cst-mate)
Field Parameter Measurements:

-pH _7.18	
-Temperature (°C) 16.90	
-Conductivity µMHOC/cm	
-Turbidity (NTU) (if measured) O	
-Redox Potential Eh (mV) (if measured)	238

Analytical Parameters/Sample Collection Method:

Parameter	Sample	Taken	Filtered		Sampling Method				
					Direct	Peristaltic Pump	Ladle	Other (describe in notes section)	
VOCs	🛿 Yes	🗆 No	🗆 Yes	🖾 No		Ŵ			
THF	🖸 Yes	🗆 No	🗆 Yes	🕸 No		53			
Nutrients	🛱 Yes	🗆 No	🗆 Yes	🛛 🛛 No		Ø			
Other Non Radiologics	🛱 Yes	🗆 No	🗆 Yes	🖗 No		12		D	
Gross Alpha	🍕 Yes	🗆 No	19 Yes	🗆 No		S⊈			


QC Samples Associated with this Location:

□ Rinsate Blank

Duplicate

Duplicate Sample Name: back spring

Notes: Arrived on site at 0956. Tanar, Garrin, Deen, Phil add profor sampling event. Samples collected at 1010 Left site at 1022 Present

Seep or Spring Location: Back Spring
Date For Initial Sampling Visit: 6/17/2014 Time: 1010
Sample Collected: 🗹 Yes 🗆 No
Date For Second Sampling Visit: Time:
Sample Collected: Yes No
Date For Third Sampling Visit: Time:
Sample Collected: Ves No
Sampling Personnel: Jonner Holliday, Garrin Palmer, Deen Henderson, Phil Goble
Weather Conditions at Time of Sampling: Clear and windy
Estimated Seep or Spring Flow Rate:
Field Parameter Measurements:

-pH 7.18	
-Temperature (°C) <u>16.90</u>	
-Conductivity µMHOC/cm 1677	
-Turbidity (NTU) (if measured) _0	
-Redox Potential Eh (mV) (if measured)	

Analytical Parameters/Sample Collection Method:

Parameter	Sample Taken		Filtered		Sampling Method				
					Direct	Peristaltic Pump	Ladle	Other (describe in notes section)	
VOCs	🖾 Yes	🗆 No	🗆 Yes	🕅 No		X			
THF	🛛 Yes	🗆 No	🗆 Yes	🛛 No		x)			
Nutrients	🛛 Yes	🗆 No	🗆 Yes	🖾 No		DXI			
Other Non Radiologics	🛱 Yes	🗆 No	□ Yes	🛛 No		152			
Gross Alpha	🕸 Yes	🗆 No	🛛 Yes	🗆 No		X.			

QC Samples Associated with this Location:

- Rinsate Blank
- Duplicate

Duplicate Sample Name: Back Spring

Notes:_

Cottonwood 110 licalc 01

Seep or Spring Location: Enterance Seep
Date For Initial Sampling Visit: 6/17/2014 Time: 0825
Sample Collected: 🗹 Yes 🗆 No
Date For Second Sampling Visit: Time:
Sample Collected: \Box Yes \Box No
Date For Third Sampling Visit: Time:
Sample Collected: \Box Yes \Box No
Sampling Personnel: Janner Holliday, Garrin Palmer, Deen Henderson, Phil Goble Weather Conditions at Time of Sampling: Clear with some wind Gusts
Weather Conditions at Time of Sampling: Clear with some wind Gusts
Estimated Seep or Spring Flow Rate: 00.1-2000 (estimate) 10 600
Field Parameter Measurements: -pH 6,16 -Temperature (°C) 17,62

-Conductivity µMHOC/cm <u>1095</u> -Turbidity (NTU) (if measured) <u>1.7</u>

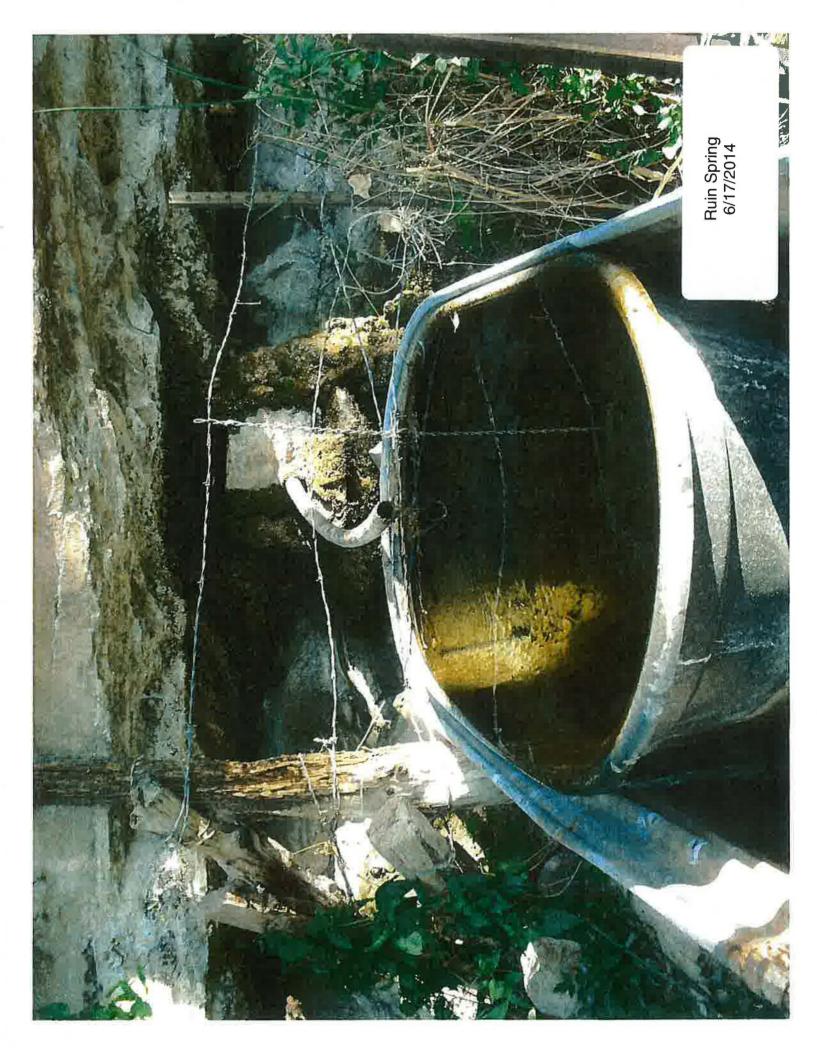
-Redox Potential Eh (mV) (if measured) 268

Analytical Parameters/Sample Collection Method:

Parameter	Sample	Taken	Filtered		Sampling Method				
					Direct	Peristaltic Pump	Ladle	Other (describe in notes section)	
VOCs	🛛 Yes	🗆 No	🗆 Yes	🔊 No		1¢			
THF	🛛 Yes	🗆 No	🗆 Yes	🗵 No		Ø			
Nutrients	🕸 Yes	🗆 No	🗆 Yes	🖻 No		Ń			
Other Non Radiologics	⊠ Yes	🗆 No	🗆 Yes	₽ No	Grab				
Gross Alpha	1 Yes	🗆 No	🛛 Yes	🗆 No		X			

QC Samples Associated with this Location:

□ Rinsate Blank


Duplicate

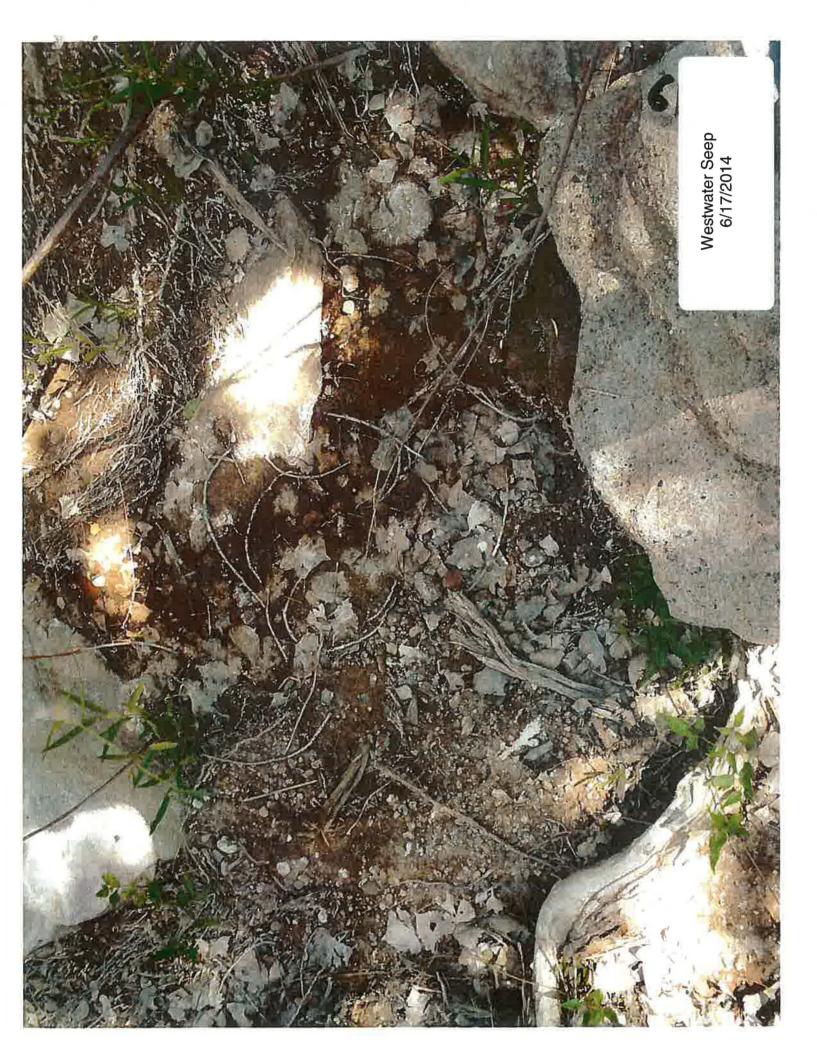
Duplicate Sample Name:_____

Notes: Arrived on site at 0819. Tanner, Garrin, Phil, Deen all present

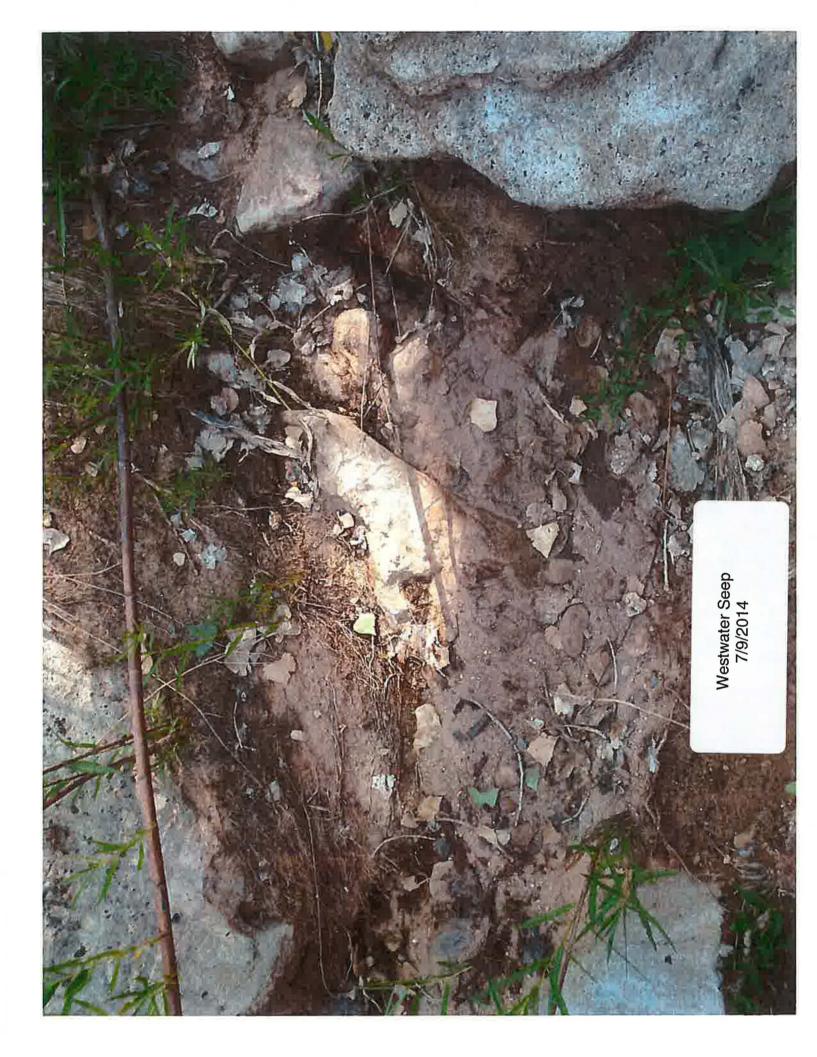
to collect	samples.	State	of utah	to solit	Sampling	Event.	
Samples	collected	at 08	25 Left	site a	t 0850		

Seep or Spring Location:
Date For Initial Sampling Visit: 6/ 17/2014 Time: 1045
Sample Collected: Ves 🕵 No
Date For Second Sampling Visit: 626/14 Time: 0900
Sample Collected: Yes No
Date For Third Sampling Visit: 7/9/14 Time: 0945
Sample Collected: Yes No
Sampling Personnel:
Weather Conditions at Time of Sampling:
Estimated Seep or Spring Flow Rate:
Field Parameter Measurements:
-pH
-Temperature (°C)

Analytical Parameters/Sample Collection Method:


Parameter	Sample Taken		Filtered		Sampling Method				
					Direct	Peristaltic Pump	Ladle	Other (describe in notes section)	
VOCs	🗆 Yes	🗆 No	🗆 Yes	🗆 No					
THF	□ Yes	🗆 No	🗆 Yes	🗆 No					
Nutrients	□ Yes	🗆 No	🗆 Yes	🗆 No					
Other Non Radiologics	🗆 Yes	🗆 No	🗆 Yes	🗆 No					
Gross Alpha	🗆 Yes	🗆 No	□ Yes	🗆 No					

QC Samples Associated with this Location:


- □ Rinsate Blank
- □ Duplicate

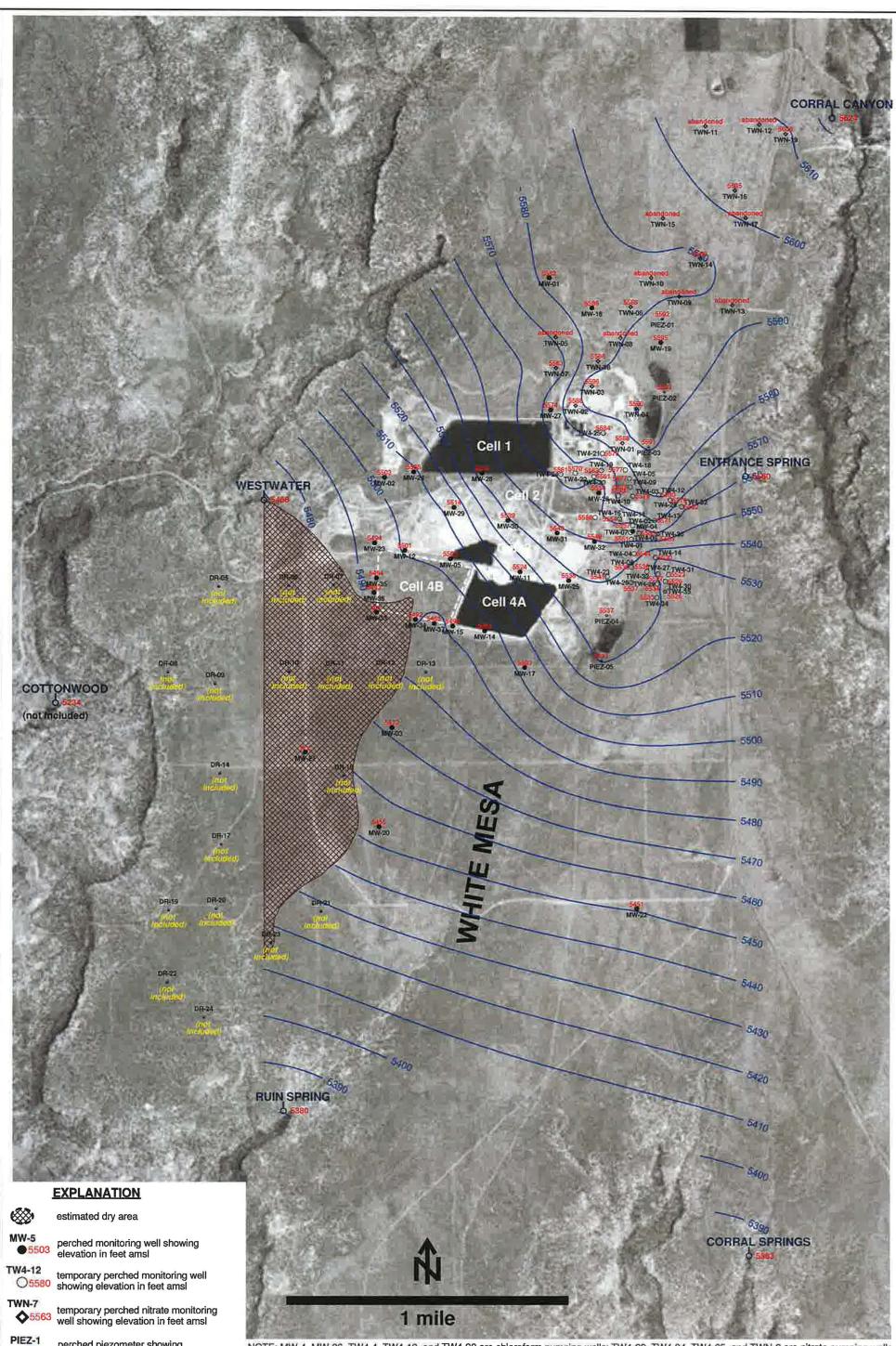
Duplicate Sample Name:_____

Notes: Made 3 attempts to sample. Seep was dry. See photos

Tab B

Field Parameter Measurement Data

Location	pH	Conductivity	Turbidity	Redox	Temperature
Date	6/17/2014	6/17/2014	6/17/2014	6/17/2014	6/17/2014
Entrance Seep	6.16	1095	1.7	268	17.62
Cottonwood Spring	7.18	1677	0.0	238	16.90
Back Spring (Duplicate of Cottonwood Spring)	7.18	1677	0.0	238	16.90
Ruin Spring	7.08	1450	17.0	234	14.44


Field parameters

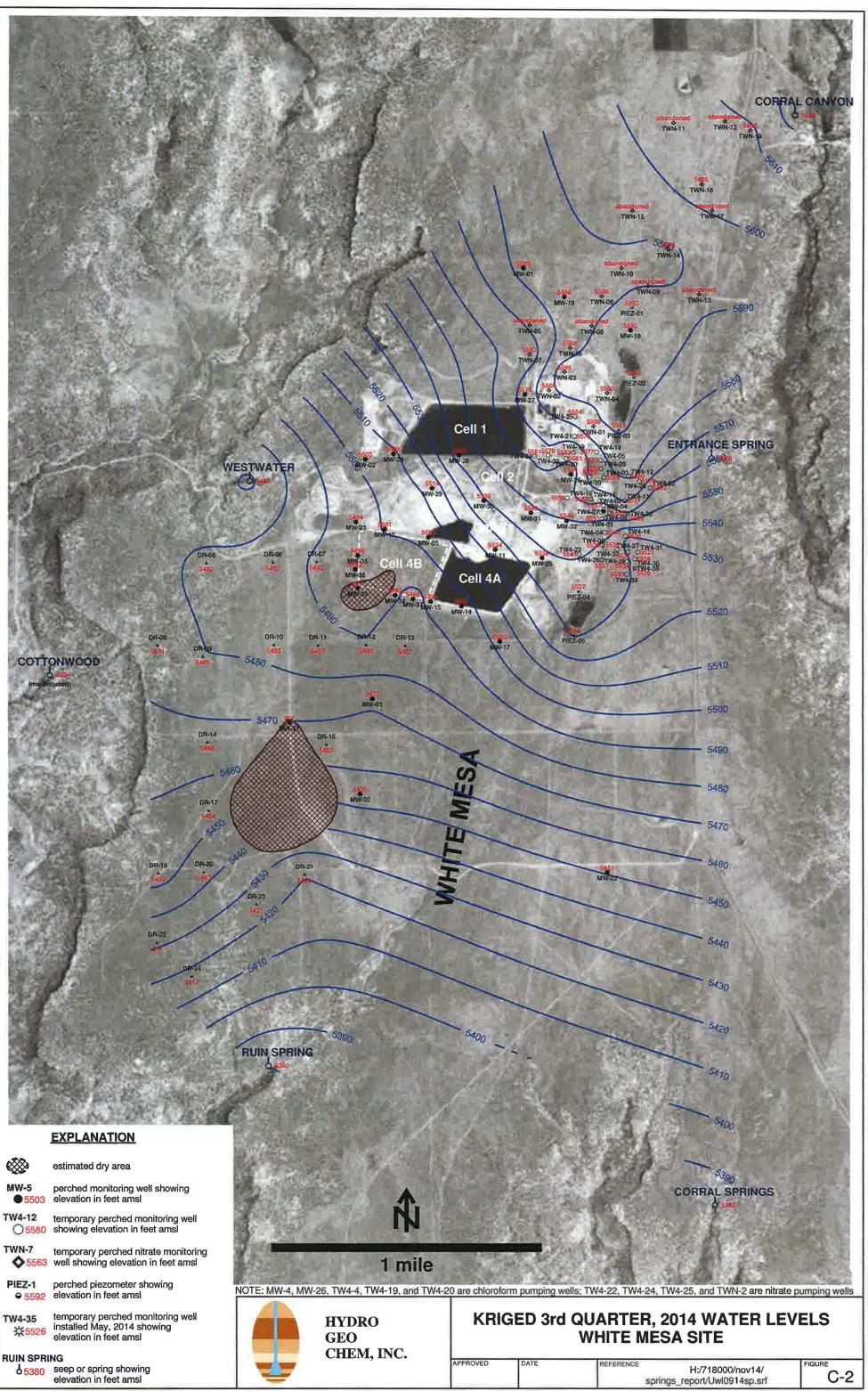
Tab C

Survey Data and Contour Map

	Mid-December	2009 Survey	
Location	Latitude (N)	Longitude (W)	Elevation
FROG POND	37°33'03.5358"	109°29'04.9552"	5589.56
CORRAL CANYON	37°33'07.1392"	109°29'12.3907"	5623.97
ENTRANCE SPRING	37°32'01.6487"	109°29'33.7005"	5559.71
CORRAL SPRINGS	37°29'37.9192"	109°29'35.8201"	5383.35
RUIN SPRING	37°30'06.0448"	109°31'23.4300"	5380.03
COTTONWOOD	37°31'21.7002"	109°32'14.7923"	5234.33
WESTWATER	37°31'58.5020"	109°31'25.7345"	5468.23
	Verification Surv	vey July 2010	
RUIN SPRING	37°30'06.0456"	109°31'23.4181"	5380.01
COTTONWOOD	37°31'21.6987"	109°32'14.7927"	5234.27
WESTWATER	37°31'58.5013"	109°31'25.7357"	5468.32

Seeps and Springs Survey Locations

perched piezometer showing 95592 elevation in feet amsl

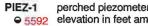

W4-35temporary perched monitoring well☆ 5526installed May, 2014 showing
approximate elevation in feet amsl

RUIN SPRING

5380 seep or spring showing elevation in feet amsl

NOTE: MW-4, MW-26, TW4-4, TW4-19, and TW4-20 are chloroform pumping wells; TW4-22, TW4-24, TW4-25, and TWN-2 are nitrate pumping wells

	HYDRO GEO CHEM, INC.				014 WATER LEV RS NOT INCLUD A SITE	
4		APPROVED	DATE	REFERENCE springs_r	H:/718000/nov14/ report/Uwl0914sp_nodr.srf	FIGURE C-1



TW4-35	
*5526	

Tab D

Analytical Laboratory Data

Energy Fuels Resources, Inc. Seeps and Springs 2014 1406403-003 Lab Sample ID: Client Sample ID: Cottonwood Spring **Collection Date:** 6/17/2014 1010h **Received Date:** 6/19/2014 900h

Contact: Garrin Palmer

Analytical Results

Client:

Project:

DISSOLVED METALS

463 West 3600 South	Compound	Units	Date Prepared	Date Analy		Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84115	Arsenic	mg/L	6/19/2014 1230h	6/20/2014	1653h	E200.8	0.00500	< 0.00500	
	Beryllium	mg/L	6/19/2014 1230h	6/20/2014	1825h	E200.8	0.000500	< 0.000500	
	Cadmium	mg/L	6/19/2014 1230h	6/20/2014	1653h	E200.8	0.000500	< 0.000500	
Phone: (801) 263-8686	Calcium	mg/L	6/19/2014 1230h	6/25/2014	1009h	E200.7	10.0	99.7	
× ,	Chromium	mg/L	6/19/2014 1230h	6/20/2014	1653h	E200.8	0.0250	< 0.0250	
Toll Free: (888) 263-8686	Cobalt	mg/L	6/19/2014 1230h	6/20/2014	1653h	E200.8	0.0100	< 0.0100	
Fax: (801) 263-8687	Copper	mg/L	6/19/2014 1230h	6/20/2014	1653h	E200.8	0.0100	< 0.0100	
e-mail: awal@awal-labs.com	Iron	mg/L	6/19/2014 1230h	6/25/2014	1643h	E200.8	0.0300	< 0.0300	
	Lead	mg/L	6/19/2014 1230h	6/20/2014	1825h	E200.8	0.00100	< 0.00100	
web: www.awal-labs.com	Magnesium	mg/L	6/19/2014 1230h	6/25/2014	1009h	E200.7	10.0	29.0	
	Manganese	mg/L	6/19/2014 1230h	6/20/2014	1653h	E200.8	0.0100	< 0.0100	
	Mercury	mg/L	6/23/2014 1445h	6/24/2014	850h	E245.1	0.000500	< 0.000500	
Kyle F. Gross	Molybdenum	mg/L	6/19/2014 1230h	6/20/2014	1653h	E200.8	0.0100	< 0.0100	
Laboratory Director	Nickel	mg/L	6/19/2014 1230h	6/20/2014	1653h	E200.8	0.0200	< 0.0200	
	Potassium	mg/L	6/19/2014 1230h	6/25/2014	1134h	E200.7	1.00	6.18	
Jose Rocha	Selenium	mg/L	6/19/2014 1230h	6/20/2014	1653h	E200.8	0.00500	< 0.00500	
QA Officer	Silver	mg/L	6/19/2014 1230h	6/20/2014	1653h	E200.8	0.0100	< 0.0100	
QITOMOU	Sodium	mg/L	6/19/2014 1230h	6/25/2014	1009h	E200.7	10.0	227	
	Thallium	mg/L	6/19/2014 1230h	6/20/2014	1825h	E200.8	0.000500	< 0.000500	
	Tin	mg/L	6/19/2014 1230h	6/23/2014	1553h	E200.8	0.100	< 0.100	
	Uranium	mg/L	6/19/2014 1230h	6/23/2014	1805h	E200.8	0.000300	0.00962	
	Vanadium	mg/L	6/19/2014 1230h	6/25/2014	1134h	E200.7	0.0150	< 0.0150	
	Zinc	mg/L	6/19/2014 1230h	6/25/2014	11 34 h	E200.7	0.0100	< 0.0100	

Report Date: 6/30/2014 Page 9 of 38

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC_Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

9

Energy Fuels Resources, Inc. Seeps and Springs 2014 **Project:** Lab Sample ID: 1406403-003 Client Sample ID: Cottonwood Spring **Collection Date:** 6/17/2014 1010h **Received Date:** 6/19/2014 900h

Contact: Garrin Palmer

Analytical Results

Client:

463 West 3600 South	Compound	Units	Date Prepared	Date Analy		Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84115	Ammonia (as N)	mg/L	6/25/2014 1130h	6/25/2014	2013h	E350.1	0.0500	< 0.0500	
	Bicarbonate (as CaCO3)	mg/L		6/20/2014	705h	SM2320B	1.00	251	
	Carbonate (as CaCO3)	mg/L		6/20/2014	705h	SM2320B	1.00	< 1.00	
Phone: (801) 263-8686	Chloride	mg/L		6/24/2014	1944h	E300.0	10.0	128	
Toll Free: (888) 263-8686	Fluoride	mg/L		6/24/2014	1944h	E300.0	1.00	< 1.00	
Fax: (801) 263-8687	Ion Balance	%		6/26/2014	1450h	Calc.	-100	0.346	
e-mail: awal@awal-labs.com	Nitrate/Nitrite (as N)	mg/L		6/19/2014	1552h	E353.2	0.100	< 0.100	
Ŭ	Sulfate	mg/L		6/24/2014	2000h	E300.0	100	417	
web: www.awal-labs.com	Total Anions, Measured	meq/L		6/26/2014	1450h	Calc.		17.3	
	Total Cations, Measured	meq/L		6/26/2014	1450h	Calc.		17.4	
Kala E. Carre	Total Dissolved Solids	mg/L		6/20/2014	1050h	SM2540C	20.0	968	
Kyle F. Gross	Total Dissolved Solids			6/26/2014	1450h	Calc.		0.916	
Laboratory Director	Ratio, Measured/Calculated								
Jose Rocha	Total Dissolved Solids,	mg/L		6/26/2014	1450h	Calc.		1,060	
QA Officer	Calculated								

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client: Energy Fuels Resources, Inc. Seeps and Springs 2014 **Project:** 1406403-003A Lab Sample ID: Client Sample ID: Cottonwood Spring **Collection Date:** 6/17/2014 1010h **Received Date:** 6/19/2014 900h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

463 West 3600 Salt Lake City, UT

Phone: (801) 26 Toll Free: (888) 26. Fax: (801) 26 e-mail: awal@awal-la

web: www.awal-lal

Kyle F. Laboratory D

> Jose QA

Units: µg/L	Dilution Facto	or: 1		Method:	SW8260C	
Compound		N	CAS F Number	Reporting Limit	Analytical Result	Qua
2-Butanone		5	78-93-3	20.0	< 20.0	
Acetone		6	57-64-1	20.0	< 20.0	
Benzene			/1-43-2	1.00	< 1.00	
Carbon tetrachloride		4	6-23-5	1.00	< 1.00	
Chloroform		e	57-66-3	1.00	< 1.00	
Chloromethane		2	4-87-3	1.00	< 1.00	
Methylene chloride		5	5-09-2	1.00	< 1.00	
Naphthalene		ç	01-20-3	1.00	< 1.00	
Tetrahydrofuran		1	09-99-9	1.00	< 1.00	
Toluene		1	08-88-3	1.00	< 1.00	
Xylenes, Total		13	330-20-7	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spike	I % REC	Limits	Qua
Surr: 1,2-Dichloroethane-d4	17060-07-0	56.3	50.00	113	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	49.7	50.00	99.4	80-128	
Surr: Dibromofluoromethane	1868-53-7	52.2	50.00	104	80-124	
Surr: Toluene-d8	2037-26-5	50.3	50.00	101	77-129	

Report Date: 6/30/2014 Page 17 of 38

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

				2			1 <u>y 515</u>		F	Report Da	ate:	July 16	5, 2014
	Company : Address :	225 U Suite Lakey	Jnion B 600 wood, C	Resources oulevard	. ,								
	Contact: Project:		Cathy W	einel ng Project									
	Client Sample ID: Sample ID: Matrix: Collect Date: Receive Date: Collector:	Cotto 35109 Groun 17-JU	nwood \$ 92003 nd Wate JN-14 19 JN-14	Spring r			Projec Clien		DNM DNM	1100106 11001			
Parameter	Quali	fier	Result	Uncertaint	y MDC	RL	Units	DF	Analy	st Date	Tim	e Batch	Method
	low Proportional Cou		rtoburo	Cheenan)	10	C III C	21	. many	St Date		ie Duien	nieuro
	al Alpha Radium, Li	~	As Recei	ived"									
Gross Radium	n Alpha	Ū	0.0848	+/-0.110	0 0.428	1.00	pCi/L		CXP3	07/12/14	1614	1399658	1
The follow	ving Analytical Meth	ods we	ere perfo	rmed:									
Method	Descri EPA 90	ption 0.1 Mod	ified				Ana	alyst Co	omment	ts			
						-							

Surrogate/Tracer Recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Barium Carrier	GFPC, Total Alpha Radium, Liquid "As Received"			94.9	(25%-125%)

Notes: Counting Uncertainty is calculated at the 68% confidence level (1-sigma).

SRL = Sample Reporting Limit. For metals analysis only. When the sample is U qualified and ND, the SRL column reports the value which is the greater of either the adjusted MDL or the CRDL.

Client:Energy Fuels Resources, Inc.Project:Seeps and Springs 2014Lab Sample ID:1406403-004Client Sample ID:Back SpringCollection Date:6/17/2014Received Date:6/19/2014900h

Contact: Garrin Palmer

Analytical Results

DISSOLVED METALS

463 West 3600 South	Compound	Units	Date Prepared	Dat Analy		Method Used	Reporting Limit	Analytical Result	Qual
Lake City, UT 84115	Arsenic	mg/L	6/19/2014 1230h	6/20/2014	1659h	E200.8	0.00500	< 0.00500	
	Beryllium	mg/L	6/19/2014 1230h	6/20/2014	1830h	E200.8	0.000500	< 0.000500	
	Cadmium	mg/L	6/19/2014 1230h	6/20/2014	1659h	E200.8	0.000500	< 0.000500	
Phone: (801) 263-8686	Calcium	mg/L	6/19/2014 1230h	6/25/2014	1015h	E200.7	10.0	91.4	
	Chromium	mg/L	6/19/2014 1230h	6/20/2014	1659h	E200.8	0.0250	< 0.0250	
Free: (888) 263-8686	Cobalt	mg/L	6/19/2014 1230h	6/20/2014	1659h	E200.8	0.0100	< 0.0100	
Fax: (801) 263-8687	Copper	mg/L	6/19/2014 1230h	6/20/2014	1659h	E200.8	0.0100	< 0.0100	
il: awal@awal-labs.com	Iron	mg/L	6/19/2014 1230h	6/25/2014	1648h	E200.8	0.0300	< 0.0300	
	Lead	mg/L	6/19/2014 1230h	6/20/2014	1830h	E200.8	0.00100	< 0.00100	
: www.awal-labs.com	Magnesium	mg/L	6/19/2014 1230h	6/25/2014	1015h	E200.7	10.0	27.1	
	Manganese	mg/L	6/19/2014 1230h	6/20/2014	1659h	E200.8	0.0100	< 0.0100	
	Mercury	mg/L	6/23/2014 1445h	6/24/2014	855h	E245.1	0.000500	< 0.000500	
Kyle F. Gross	Molybdenum	mg/L	6/19/2014 1230h	6/20/2014	1659h	E200.8	0.0100	< 0.0100	
Laboratory Director	Nickel	mg/L	6/19/2014 1230h	6/20/2014	1659h	E200.8	0.0200	< 0.0200	
	Potassium	mg/L	6/19/2014 1230h	6/25/2014	1136h	E200.7	1.00	6.04	
Jose Rocha	Selenium	mg/L	6/19/2014 1230h	6/20/2014	1659h	E200.8	0.00500	< 0.00500	
QA Officer	Silver	mg/L	6/19/2014 1230h	6/20/2014	1659h	E200.8	0.0100	< 0.0100	
Qui onicci	Sodium	mg/L	6/19/2014 1230h	6/25/2014	1015h	E200.7	10.0	214	
	Thallium	mg/L	6/19/2014 1230h	6/20/2014	1830h	E200.8	0.000500	< 0.000500	
	Tin	mg/L	6/19/2014 1230h	6/23/2014	1558h	E200.8	0.100	< 0.100	
	Uranium	mg/L	6/19/2014 1230b	6/23/2014	1810h	E200.8	0.000300	0.00924	
	Vanadium	mg/L	6/19/2014 1230h	6/25/2014	1136h	E200.7	0.0150	< 0.0150	
	Zinc	mg/L	6/19/2014 1230h	6/25/2014	1136h	E200.7	0.0100	< 0.0100	

Report Date: 6/30/2014 Page 10 of 38

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Energy Fuels Resources, Inc. **Project:** Seeps and Springs 2014 Lab Sample ID: 1406403-004 Client Sample ID: Back Spring **Collection Date:** 6/17/2014 1010h **Received Date:** 6/19/2014 900h

Contact: Garrin Palmer

Analytical Results

Client:

463 West 3600 South	Compound	Units	Date Prepared	Date Analy		Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84115	Ammonia (as N)	mg/L	6/25/2014 1130h	6/25/2014	2014h	E350.1	0.0500	< 0.0500	
	Bicarbonate (as CaCO3)	mg/L		6/20/2014	705h	SM2320B	1.00	218	
	Carbonate (as CaCO3)	mg/L		6/20/2014	705h	SM2320B	1.00	< 1.00	
Phone: (801) 263-8686	Chloride	mg/L		6/24/2014	2016h	E300.0	10.0	127	
Toll Free: (888) 263-8686	Fluoride	mg/L		6/24/2014	2016h	E300.0	1.00	< 1.00	
Fax: (801) 263-8687	Ion Balance	%		6/26/2014	1450h	Calc.	-100	-1.22	
e-mail: awal@awal-labs.com	Nitrate/Nitrite (as N)	mg/L		6/19/2014	1553h	E353.2	0.100	< 0.100	
0	Sulfate	mg/L		6/24/2014	2032h	E300.0	100	418	
web: www.awal-labs.com	Total Anions, Measured	meq/L		6/26/2014	1450h	Calc.		16.7	
	Total Cations, Measured	meq/L		6/26/2014	1450h	Calc.		16.3	
Kala E. Cassa	Total Dissolved Solids	mg/L		6/20/2014	1050h	SM2540C	20.0	1,000	
Kyle F. Gross	Total Dissolved Solids			6/26/2014	1450h	Calc.		0.985	
Laboratory Director	Ratio, Measured/Calculated								
Jose Rocha	Total Dissolved Solids, Calculated	mg/L		6/26/2014	1450h	Calc.		1,020	
QA Officer									

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact, This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the tade and of science

Client: Energy Fuels Resources, Inc. **Project:** Seeps and Springs 2014 Lab Sample ID: 1406403-004A Client Sample ID: Back Spring **Collection Date:** 6/17/2014 1010h **Received Date:** 6/19/2014 900h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

463 West 360 Salt Lake City, UT

Phone: (801) 2 Toll Free: (888) 2 Fax: (801) 20 e-mail: awal@awal-

web: www.awal-la

Kyle Laboratory

> Jos QA

Units: µg/L	Dilution Factor	r: 1		Method:	SW8260C	
Compound		N	CAS I lumber	Reporting Limit	Analytical Result	Qu
2-Butanone		5	78-93-3	20.0	< 20.0	
Acetone		e	57-64-1	20.0	< 20.0	
Benzene		7	1-43-2	1.00	< 1.00	
Carbon tetrachloride		5	6-23-5	1.00	< 1.00	
Chloroform		e	57-66-3	1.00	< 1.00	
Chloromethane		7	4-87-3	1.00	< 1.00	
Methylene chloride		7	5-09-2	1.00	< 1.00	
Naphthalene		ç	01-20-3	1.00	< 1.00	
Tetrahydrofuran		1	09-99-9	1.00	< 1.00	
Toluene		1	08-88-3	1.00	< 1.00	
Xylenes, Total		13	30-20-7	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qu
Surr: 1,2-Dichloroethane-d4	17060-07-0	56.1	50.00	112	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	49.8	50.00	99.7	80-128	
Surr: Dibromofluoromethane	1868-53-7	52.4	50.00	105	80-124	
Surr: Toluene-d8	2037-26-5	50.4	50.00	101	77-129	

Report Date: 6/30/2014 Page 18 of 38

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

				lincau		ary 515		Report D	ate: July 10	6, 2014
	Company : Address : Contact:	225 Union Suite 600	Colorado 80228							
	Project:		oring Project							
	Client Sample ID: Sample ID: Matrix: Collect Date: Receive Date: Collector:	Back Sprin 351092004 Ground Wa 17-JUN-14 20-JUN-14 Client	ter 10:10				oject: ent ID:	DNMI00106 DNMI001		
Parameter	Qualit		t Uncertainty	MDC	RL	Units	DF	Analyst Date	Time Batch	Method
GFPC, Tota Bross Radium	ow Proportional Cou al Alpha Radium, Li Alpha ving Analytical Meth	quid "As Rec U 0.1	93 +/-0.122	0.400	1.00	pCi/L		CXP3 07/12/14	1614 1399658	1
Method	Descri					I	Analyst Co	omments		
	EPA 90	0.1 Modified								
Surrogate/T	Tracer Recovery	Test			1	Result 1	Nominal	Recovery%	Acceptable I	Limits
Barium Carrie	er G	FPC, Total Alp	ha Radium, Liquid "A	s Received"				98.5	(25%-125%	6)

Barium Carrier GFPC, Total Alpha Radium, Liquid "As Received"

Notes: Counting Uncertainty is calculated at the 68% confidence level (1-sigma).

SRL = Sample Reporting Limit. For metals analysis only. When the sample is U qualified and ND, the SRL column reports the value which is the greater of either the adjusted MDL or the CRDL.

Energy Fuels Resources, Inc. **Project:** Seeps and Springs 2014 Lab Sample ID: 1406403-001 Client Sample ID: Entrance Seep **Collection Date:** 6/17/2014 825h **Received Date:** 6/19/2014 900h

Contact: Garrin Palmer

Analytical Results

Client:

DISSOLVED METALS

463 West 3600 South	Compound	Units	Date Prepared	Date Analy		Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84115	Arsenic	mg/L	6/19/2014 1230	6/20/2014	1616h	E200.8	0.00500	< 0.00500	
	Beryllium	mg/L	6/19/2014 1230	6/20/2014	1813h	E200.8	0.000500	< 0.000500	
	Cadmium	mg/L	6/19/2014 1230	6/20/2014	1616h	E200.8	0.000500	< 0.000500	
Phone: (801) 263-8686	Calcium	mg/L	6/19/2014 12301	6/25/2014	1000h	E200.7	10.0	103	2
	Chromium	mg/L	6/19/2014 1230	6/20/2014	1616h	E200.8	0.0250	< 0.0250	
Toll Free: (888) 263-8686	Cobalt	mg/L	6/19/2014 1230	6/20/2014	1616h	E200.8	0.0100	< 0.0100	
Fax: (801) 263-8687	Copper	mg/L	6/19/2014 1230h	6/20/2014	1616h	E200.8	0.0100	< 0.0100	
e-mail: awal@awal-labs.com	Iron	mg/L	6/19/2014 12301	6/25/2014	1631h	E200.8	0.0300	0.0372	
	Lead	mg/L	6/19/2014 12301	6/20/2014	1813h	E200.8	0.00100	< 0.00100	
web: www.awal-labs.com	Magnesium	mg/L	6/19/2014 1230	6/25/2014	1000h	E200.7	10.0	34.9	1
	Manganese	mg/L	6/19/2014 1230	6/20/2014	1616h	E200.8	0.0100	0.0161	
	Mercury	mg/L	6/23/2014 1445	6/24/2014	842h	E245.1	0.000500	< 0.000500	
Kyle F. Gross	Molybdenum	mg/L	6/19/2014 12301	6/20/2014	1616h	E200.8	0.0100	< 0.0100	
Laboratory Director	Nickel	mg/L	6/19/2014 1230h	6/20/2014	1616h	E200.8	0.0200	< 0.0200	
	Potassium	mg/L	6/19/2014 1230	6/25/2014	1127h	E200.7	1.00	1.56	
Jose Rocha	Selenium	mg/L	6/19/2014 1230	6/20/2014	1616h	E200.8	0.00500	0.0159	
QA Officer	Silver	mg/L	6/19/2014 1230h	6/20/2014	1616h	E200.8	0.0100	< 0.0100	
2	Sodium	mg/L	6/19/2014 12301	6/25/2014	1000h	E200.7	10.0	78.9	2
	Thallium	mg/L	6/19/2014 12301	6/20/2014	1813h	E200.8	0.000500	< 0.000500	
	Tin	mg/L	6/19/2014 12301	6/23/2014	1529h	E200.8	0.100	< 0.100	
	Uranium	mg/L	6/19/2014 1230	6/23/2014	1753h	E200.8	0.000300	0.0232	
	Vanadium	mg/L	6/19/2014 1230	6/25/2014	1127h	E200.7	0.0150	< 0.0150	
	Zinc	mg/L	6/19/2014 1230	6/25/2014	11 27 h	E200.7	0.0100	< 0.0100	
	- Matrix snike recovery	indicates matrix i	ntarfarance The	method is in	control	as indicated by	theICS		

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

² - Analyte concentration is too high for accurate matrix spike recovery and/or RPD.

Report Date: 6/30/2014 Page 7 of 38

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be graated only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the rade and of science.

Client:Energy Fuels Resources, Inc.Project:Seeps and Springs 2014Lab Sample ID:1406403-001Client Sample ID:Entrance SeepCollection Date:6/17/2014825hReceived Date:6/19/2014900h

Contact: Garrin Palmer

Analytical Results

463 West 3600 South	Compound	Units	Date Prepared	Date Analy		Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84115	Ammonia (as N)	mg/L	6/25/2014 1130h	6/25/2014	2008h	E350.1	0.0500	< 0.0500	î.
	Bicarbonate (as CaCO3)	mg/L		6/20/2014	705h	SM2320B	1.00	247	
	Carbonate (as CaCO3)	mg/L		6/20/2014	705h	SM2320B	1.00	< 1.00	
Phone: (801) 263-8686	Chloride	mg/L		6/24/2014	1841h	E300.0	10.0	76.8	
Toll Free: (888) 263-8686	Fluoride	mg/L		6/24/2014	1841h	E300.0	1.00	< 1.00	
Fax: (801) 263-8687	Ion Balance	%		6/26/2014	1450h	Calc.	-100	-1.13	
e-mail: awal@awal-labs.com	Nitrate/Nitrite (as N)	mg/L		6/19/2014	1549h	E353.2	0.500	3.65	
0	Sulfate	mg/L		6/24/2014	1857h	E300.0	100	219	
web: www.awal-labs.com	Total Anions, Measured	meq/L		6/26/2014	1450h	Calc.		11.7	
	Total Cations, Measured	meq/L		6/26/2014	1450h	Calc.		11.5	
K-1-E-C	Total Dissolved Solids	mg/L		6/20/2014	1050h	SM2540C	20.0	688	@
Kyle F. Gross	Total Dissolved Solids			6/26/2014	1450h	Calc.		1.03	
Laboratory Director	Ratio, Measured/Calculated								
Jose Rocha	Total Dissolved Solids, Calculated	mg/L		6/26/2014	1450h	Calc.		666	
QA Officer	@ - High RPD due to suspected	sample no	n-homogeneity or i	matrix inte	rference.				

(a) - High RPD due to suspected sample non-homogeneity or matrix interference.

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Report Date: 6/30/2014 Page 11 of 38

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client: Energy Fuels Resources, Inc. Seeps and Springs 2014 **Project:** Lab Sample ID: 1406403-001A Client Sample ID: Entrance Seep **Collection Date:** 6/17/2014 825h **Received Date:** 6/19/2014 900h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

463 West 36 Salt Lake City, U

Phone: (801) 2 Toll Free: (888) 2 Fax: (801) 2 e-mail: awal@awal

web: www.awal-

Kyle Laboratory

> Jo Q

Analyzed: 6/19/2014 1237h Units: μg/L	Dilution Fact	or: 1		Method:	SW8260C	
Compound		N	CAS F lumber	Reporting Limit	Analytical Result	Qu
2-Butanone		7	8-93-3	20.0	< 20.0	
Acetone		6	7-64-1	20.0	< 20.0	
Benzene		7	1-43-2	1.00	< 1.00	
Carbon tetrachloride		5	6-23-5	1.00	< 1.00	
Chloroform		6	7-66-3	1.00	< 1.00	
Chloromethane		7	4-87-3	1.00	< 1.00	
Methylene chloride		7	5-09-2	1.00	< 1.00	
Naphthalene		9	1-20-3	1.00	< 1.00	
Tetrahydrofuran		1	09-99-9	1.00	< 1.00	
Toluene		10	08-88-3	1.00	1.32	
Xylenes, Total		13	30-20-7	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spike	d % REC	Limits	Qua
Surr: 1,2-Dichloroethane-d4	17060-07-0	54.4	50.00	109	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	50.8	50.00	102	80-128	
Surr: Dibromofluoromethane	1868-53-7	51.6	50.00	103	80-124	
Surr: Toluene-d8	2037-26-5	49.6	50.00	99.1	77-129	

Report Date: 6/30/2014 Page 15 of 38

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the rade and of science

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

				tiffcatt		1,010		Re	port Da	ate:	July 16	, 2014
	Company : Address :	225 Union Bo Suite 600	Resources (USA pulevard plorado 80228	A), Inc.								
	Contact: Project:	Ms. Kathy W GW Monitori	einel									
	Client Sample ID:	Enterance See				Proje	ct:	DNMI	00106			
	Sample ID:	351092001	r			Clien		DNMI				
	Matrix:	Ground Water	ſ									
	Collect Date:	17-JUN-14 08	3:25									
	Receive Date:	20-JUN-14										
	Collector:	Client										
Parameter	Qualit	fier Result	Uncertainty	MDC	RL	Units	DF	Analyst	Date	Time	Batch	Method
Rad Gas Fle	ow Proportional Cou	inting										
	al Alpha Radium, Li	-		0.420	1.00	0.17		OVD2 0		1/10		
Fross Radium	-	U 0.659	+/-0.184	0.438	1.00	pCi/L		CXP3 0	7/12/14	1613 1	1399658	1
	ing Analytical Meth		rmed:									
Method	Descri EPA 90	ption 0.1 Modified				Ana	alyst Co	omments				
Surrogate/T	racer Recovery	Test			Re	sult No	minal	Recov	ery%	Accep	otable L	imits

Surrogate/Tracer RecoveryTestResultNominalRecovery%Acceptable LimitsBarium CarrierGFPC, Total Alpha Radium, Liquid "As Received"93.4(25%-125%)

Notes:

Counting Uncertainty is calculated at the 68% confidence level (1-sigma).

SRL = Sample Reporting Limit. For metals analysis only. When the sample is U qualified and ND, the SRL column reports the value which is the greater of either the adjusted MDL or the CRDL.

Energy Fuels Resources, Inc. **Project:** Seeps and Springs 2014 Lab Sample ID: 1406403-002 Client Sample ID: Ruin Spring 6/17/2014 925h **Collection Date: Received Date:** 6/19/2014 900h

Contact: Garrin Palmer

Analytical Results

Client:

DISSOLVED METALS

463 West 3600 South	Compound	Units	Date Prepared	Date Analy		Method Used	Reporting Limit	Analytical Result	Qual
t Lake City, UT 84115	Arsenic	mg/L	6/19/2014 1230h	6/20/2014	1647h	E200.8	0.00500	< 0.00500	
	Beryllium	mg/L	6/19/2014 1230h	6/20/2014	1819h	E200.8	0.000500	< 0.000500	
	Cadmium	mg/L	6/19/2014 1230h	6/20/2014	1647h	E200.8	0.000500	< 0.000500	
Phone: (801) 263-8686	Calcium	mg/L	6/19/2014 1230h	6/25/2014	1007h	E200.7	10.0	150	
	Chromium	mg/L	6/19/2014 1230h	6/20/2014	1647h	E200.8	0.0250	< 0.0250	
ll Free: (888) 263-8686	Cobalt	mg/L	6/19/2014 1230h	6/20/2014	1647h	E200.8	0.0100	< 0.0100	
Fax: (801) 263-8687	Copper	mg/L	6/19/2014 1230h	6/20/2014	1 647 h	E200.8	0.0100	< 0.0100	
ail: awal@awal-labs.com	Iron	mg/L	6/19/2014 1230h	6/25/2014	1637h	E200.8	0.0300	< 0.0300	
	Lead	mg/L	6/19/2014 1230h	6/20/2014	1819h	E200.8	0.00100	< 0.00100	
b: www.awal-labs.com	Magnesium	ṁg/L	6/19/2014 1230h	6/25/2014	1007h	E200.7	10.0	35.4	
	Manganese	mg/L	6/19/2014 1230h	6/20/2014	1647h	E200.8	0.0100	< 0.0100	
	Mercury	mg/L	6/23/2014 1445h	6/24/2014	848h	E245.1	0.000500	< 0.000500	
Kyle F. Gross	Molybdenum	mg/L	6/19/2014 1230h	6/20/2014	1647h	E200.8	0.0100	0.0160	
Laboratory Director	Nickel	mg/L	6/19/2014 1230h	6/20/2014	1647h	E200.8	0.0200	< 0.0200	
	Potassium	mg/L	6/19/2014 1230h	6/25/2014	1132h	E200.7	1.00	3.24	
Jose Rocha	Selenium	mg/L	6/19/2014 1230h	6/20/2014	1647h	E200.8	0.00500	0.0120	
QA Officer	Silver	mg/L	6/19/2014 1230h	6/20/2014	1647h	E200.8	0.0100	< 0.0100	
Qui onnou	Sodium	mg/L	6/19/2014 1230h	6/25/2014	1007h	E200.7	10.0	119	
	Thallium	mg/L	6/19/2014 1230h	6/20/2014	1819h	E200.8	0.000500	< 0.000500	
	Tin	mg/L	6/19/2014 1230h	6/23/2014	1547h	E200.8	0.100	< 0.100	
	Uranium	mg/L	6/19/2014 1230h	6/23/2014	1 759h	E200.8	0.000300	0.00961	
	Vanadium	mg/L	6/19/2014 1230h	6/25/2014	1132h	E200.7	0.0150	< 0.0150	
	Zinc	mg/L	6/19/2014 1230h	6/25/2014	11 32h	E200.7	0.0100	< 0.0100	

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science

Client:Energy Fuels Resources, Inc.Project:Seeps and Springs 2014Lab Sample ID:1406403-002Client Sample ID:Ruin SpringCollection Date:6/17/2014925hReceived Date:6/19/2014900h

Contact: Garrin Palmer

Analytical Results

463 West 3600 South	Compound	Units	Date Prepared	Date Analy		Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84115	Ammonia (as N)	mg/L	6/25/2014 1130h	6/25/2014	2012h	E350.1	0.0500	< 0.0500	
	Bicarbonate (as CaCO3)	mg/L		6/20/2014	705h	SM2320B	1.00	204	
	Carbonate (as CaCO3)	mg/L		6/20/2014	705h	SM2320B	1.00	< 1.00	
Phone: (801) 263-8686	Chloride	mg/L		6/24/2014	1913h	E300.0	10.0	27.1	
Toll Free: (888) 263-8686	Fluoride	mg/L		6/24/2014	1913h	E300.0	1.00	< 1.00	
Fax: (801) 263-8687	Ion Balance	%		6/26/2014	1450h	Calc.	-100	-2.15	
e-mail: awal@awal-labs.com	Nitrate/Nitrite (as N)	mg/L		6/19/2014	1550h	E353.2	0.100	1.54	
	Sulfate	mg/L		6/24/2014	1929h	E300.0	100	553	
web: www.awal-labs.com	Total Anions, Measured	meq/L		6/26/2014	1450h	Calc.		16.4	
	Total Cations, Measured	meq/L		6/26/2014	1450h	Calc.		15.7	
V L E C	Total Dissolved Solids	mg/L		6/20/2014	1050h	SM2540C	20.0	984	
Kyle F. Gross	Total Dissolved Solids			6/26/2014	1450h	Calc.		0.972	
Laboratory Director	Ratio, Measured/Calculated								
Jose Rocha	Total Dissolved Solids,	mg/L		6/26/2014	1450h	Calc.		1,010	
QA Officer	Calculated								

Report Date: 6/30/2014 Page 12 of 38

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information. This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the tude and of science.

Client: Energy Fuels Resources, Inc. **Project:** Seeps and Springs 2014 Lab Sample ID: 1406403-002A Client Sample ID: Ruin Spring **Collection Date:** 6/17/2014 925h **Received Date:** 6/19/2014 900h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

463 West 3 Salt Lake City, I

Phone: (801) 263-8686
Toll Free: (888) 263-8686
Fax: (801) 263-8687
e-mail: awal@awal-labs.com

web: www.awal

Kyl Laborator

> J C

Analyzed: 6/19/2014 1255h Units: μg/L	Dilution Fact	or: 1		Method:	SW8260C	
Compound		N	CAS Number	Reporting Limit	Analytical Result	Qua
2-Butanone		5	78-93-3	20.0	< 20.0	
Acetone		6	67-64-1	20.0	< 20.0	
Benzene		2	71-43-2	1.00	< 1.00	
Carbon tetrachloride		4	56-23-5	1.00	< 1.00	
Chloroform		6	67-66-3	1.00	< 1.00	
Chloromethane		5	74-87-3	1.00	< 1.00	
Methylene chloride		5	75-09-2	1.00	< 1.00	
Naphthalene		ç	91-20-3	1.00	< 1.00	
Tetrahydrofuran		1	09-99-9	1.00	< 1.00	
Toluene		1	08-88-3	1.00	< 1.00	
Xylenes, Total		13	330-20-7	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spik	ed % REC	Limits	Qua
Surr: 1,2-Dichloroethane-d4	17060-07-0	55.9	50.00	112	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	51.3	50.00	103	80-128	
Surr: Dibromofluoromethane Surr: Toluene-d8	1868-53-7 2037-26-5	51.7 49.9	50.00 50.00	103 99.8	80-124 77-129	
Surr. Toluene-us	2037-20-5	49.9	50.00	99.8	77-129	

Report Date: 6/30/2014 Page 16 of 38

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertiment sampling information is located on the attached COC, Confidential Business Information. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the rade and of science.

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

				lincau		141 y 515		Rep	ort Date	e: July 16	5, 2014
	Company : Address : Contact:	225 Union B Suite 600	olorado 80228								
	Project:	GW Monitor									
	Client Sample ID: Sample ID: Matrix: Collect Date: Receive Date: Collector:	Ruin Spring 351092002 Ground Wate 17-JUN-14 0 20-JUN-14 Client					Project: Client ID:	DNMI00 DNMI00			
Parameter	Qualit	fier Result	Uncertainty	MDC	RL	Un	its DF	Analyst	Date	Time Batch	Method
Rad Gas Fl	ow Proportional Cou	inting									
Gross Radium	-	U 0.251	+/-0.136	0.422	1.00	pCi	/L	CXP3 07/	12/14 I	614 1399658	1
	ing Analytical Meth		ormed:								
Method	Descri	ption 0.1 Modified					Analyst Co	omments			
Surrogate/T		Fest				Result	Nominal	Recover	v% 4	Acceptable L	imits
Barium Carrie			Radium, Liquid "A	s Received"		reoun	Tommar	91.0		(25%-125%	

÷

Notes: Counting Uncertainty is calculated at the 68% confidence level (1-sigma).

SRL = Sample Reporting Limit. For metals analysis only. When the sample is U qualified and ND, the SRL column reports the value which is the greater of either the adjusted MDL or the CRDL.

Client: Energy Fuels Resources, Inc. **Project:** Seeps and Springs 2014 Lab Sample ID: 1406403-005A Client Sample ID: Trip Bank **Collection Date:** 6/17/2014 **Received Date:** 6/19/2014 900h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

463 West 360 Salt Lake City, UT

Phone: (801) 2 Toll Free: (888) 2 Fax: (801) 2 e-mail: awal@awal-

web: www.awal-l

Kyle Laboratory

> Jos QA

Analyzed: 6/19/2014 1351h Units: μg/L	Dilution Facto	r: 1		Method:	SW8260C	
Compound	CAS Number			eporting Limit	Analytical Result	Qua
2-Butanone		7	78-93-3	20.0	< 20.0	
Acetone		e	67-64-1	20.0	< 20.0	
Benzene		5	1-43-2	1.00	< 1.00	
Carbon tetrachloride		5	6-23-5	1.00	< 1.00	
Chloroform		6	57-66-3	1.00	< 1.00	
Chloromethane		5	4-87-3	1.00	< 1.00	
Methylene chloride		5	5-09-2	1.00	< 1.00	
Naphthalene		9	01-20-3	1.00	< 1.00	
Tetrahydrofuran		1	09-99-9	1.00	< 1.00	
Toluene		1	08-88-3	1.00	< 1.00	
Xylenes, Total		13	30-20-7	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spiked	I % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	56.0	50.00	112	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	51.6	50.00	103	80-128	
Surr: Dibromofluoromethane	1868-53-7	51.6	50.00	103	80-124	
Surr: Toluene-d8	2037-26-5	50.0	50.00	99.9	77-129	

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertiment sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connaction with the re-publication of this report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connaction with the re-publication of this report in connaction with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the nade and of science.

Garrin Palmer Energy Fuels Resources, Inc. 6425 S. Hwy 191 Blanding, UT 84511 TEL: (435) 678-2221

RE: Seeps and Springs 2014

462 West 2600 Bards	Dear Garrin Palmer:	Lab Set ID:	1406403					
463 West 3600 South Salt Lake City, UT 84115	American West Analytical Laboratories received 5 sample(s) on 6/19/2014 for the analyses presented in the following report.							
Phone: (801) 263-8686 Toll Free: (888) 263-8686	American West Analytical Laboratories (AWA Environmental Laboratory Accreditation Progra state accredited in Colorado, Idaho, New Mexic	am (NELAP) in Utah and						
Fax: (801) 263-8687	state accredited in Colorado, Idailo, New Mexic	to, and Missouri.	5					
e-mail: awal@awal-labs.com	All analyses were performed in accordance to the NELAP protocols unless noted otherwise. Accreditation scope documents are available upon request. If you have any							
web: www.awal-labs.com	questions or concerns regarding this report plea							
Kyle F. Gross Laboratory Director Jose Rocha QA Officer	The abbreviation "Surr" found in organic report intentionally added by the laboratory to determin purging efficiency. The "Reporting Limit" four practical quantitation limit (PQL). This is the re- reported by the method referenced and the same confused with any regulatory limit. Analytical figures for quality control and calculation purpor	ine sample injection, extra and on the report is equival minimum concentration the ple matrix. The reporting results are reported to three	ection, and/or ent to the at can be limit must not be					

Thank You,

Approved by:

Report Date: 6/30/2014 Page 1 of 38

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressec, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the explosite use of the addressec, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the explosite use of the addressec of the name of the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science,

SAMPLE SUMMARY

Client: Project: Lab Set ID:

Energy Fuels Resources, Inc. Seeps and Springs 2014 1406403 Date Received: 6/19/2014 900h

Contact: Garrin Palmer

	Lab Sample ID	Client Sample ID	Date Colle	cted	Matrix	Analysis
463 West 3600 South Salt Lake City, UT 84115	1406403-001A	Entrance Seep	6/17/2014	825h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1406403-001B	Entrance Seep	6/17/2014	825h	Aqueous	Anions, E300.0
	1406403-001B	Entrance Seep	6/17/2014	825h	Aqueous	Alkalinity/ Bicarbonate/ Carbonate, A2320B
Phone: (801) 263-8686	1406403-001C	Entrance Seep	6/17/2014	825h	Aqueous	Total Dissolved Solids, A2540C
Toll Free: (888) 263-8686	1406403-001D	Entrance Seep	6/17/2014	825h	Aqueous	Nitrite/Nitrate (as N), E353.2
Fax: (801) 263-8687	1406403-001D	Entrance Seep	6/17/2014	825h	Aqueous	Ammonia, Aqueous
e-mail: awal@awal-labs.com	1406403-001E	Entrance Seep	6/17/2014	825h	Aqueous	Mercury, Drinking Water Dissolved
web: www.awal-labs.com	1406403-001E	Entrance Seep	6/17/2014	825h	Aqueous	Ion Balance
	1406403-001E	Entrance Seep	6/17/2014	825h	Aqueous	ICP Metals, Dissolved
	1406403-001E	Entrance Seep	6/17/2014	825h	Aqueous	ICPMS Metals, Dissolved
Kyle F. Gross	1406403-002A	Ruin Spring	6/17/2014	925h	Aqueous	VOA by GC/MS Method 8260C/5030C
Laboratory Director	1406403-002B	Ruin Spring	6/17/2014	925h	Aqueous	Alkalinity/ Bicarbonate/ Carbonate, A2320B
Jose Rocha	1406403-002B	Ruin Spring	6/17/2014	925h	Aqueous	Anions, E300.0
QA Officer	1406403-002C	Ruin Spring	6/17/2014	925h	Aqueous	Total Dissolved Solids, A2540C
X	1406403-002D	Ruin Spring	6/17/2014	925h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1406403-002D	Ruin Spring	6/17/2014	925h	Aqueous	Ammonia, Aqueous
	1406403-002E	Ruin Spring	6/17/2014	925h	Aqueous	Mercury, Drinking Water Dissolved
	1406403-002E	Ruin Spring	6/17/2014	925h	Aqueous	Ion Balance
	1406403-002E	Ruin Spring	6/17/2014	925h	Aqueous	ICP Metals, Dissolved
	1406403-002E	Ruin Spring	6/17/2014	925h	Aqueous	ICPMS Metals, Dissolved
	1406403-003A	Cottonwood Spring	6/17/2014	1010h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1406403-003B	Cottonwood Spring	6/17/2014	1010h	Aqueous	Anions, E300.0
	1406403-003B	Cottonwood Spring	6/17/2014	1010h	Aqueous	Alkalinity/ Bicarbonate/ Carbonate, A2320B
	1406403-003C	Cottonwood Spring	6/17/2014	1010h	Aqueous	Total Dissolved Solids, A2540C
	1406403-003D	Cottonwood Spring	6/17/2014	1010h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1406403-003D	Cottonwood Spring	6/17/2014	1010h	Aqueous	Ammonia, Aqueous
	1406403-003E	Cottonwood Spring	6/17/2014	1010h	Aqueous	Mercury, Drinking Water Dissolved
	1406403-003E	Cottonwood Spring	6/17/2014	1010h	Aqueous	Ion Balance
	1406403-003E	Cottonwood Spring	6/17/2014	1010h	Aqueous	ICP Metals, Dissolved

Report Date: 6/30/2014 Page 2 of 38

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the rude and of science.

Client:Energy Fuels Resources, Inc.Project:Seeps and Springs 2014Lab Set ID:1406403Date Received:6/19/2014 900h

Contact: Garrin Palmer

	Lab Sample ID	Client Sample ID	Date Collected	d N	Matrix	Analysis
	1406403-003E	Cottonwood Spring	6/17/2014 10	010h A	Aqueous	ICPMS Metals, Dissolved
463 West 3600 South	1406403-004A	Back Spring	6/17/2014 10	010h A	Aqueous	VOA by GC/MS Method 8260C/5030C
Salt Lake City, UT 84115	1406403-004B	Back Spring	6/17/2014 10	010h A	Aqueous	Alkalinity/ Bicarbonate/ Carbonate, A2320B
	1406403-004B	Back Spring	6/17/2014 10	010h A	Aqueous	Anions, E300.0
D1 (001) 2(2 0(0)	1406403-004C	Back Spring	6/17/2014 10	010h A	Aqueous	Total Dissolved Solids, A2540C
Phone: (801) 263-8686	1406403-004D	Back Spring	6/17/2014 10	010h A	Aqueous	Nitrite/Nitrate (as N), E353.2
Toll Free: (888) 263-8686	1406403-004D	Back Spring	6/17/2014 10	010h A	Aqueous	Ammonia, Aqueous
Fax: (801) 263-8687	1406403-004E	Back Spring	6/17/2014 10	010h A	Aqueous	Ion Balance
e-mail: awal@awal-labs.com	1406403-004E	Back Spring	6/17/2014 10	010h A	Aqueous	ICP Metals, Dissolved
	1406403-004E	Back Spring	6/17/2014 10	010h A	Aqueous	ICPMS Metals, Dissolved
web: www.awal-labs.com	1406403-004E	Back Spring	6/17/2014 10	010h A	Aqueous	Mercury, Drinking Water Dissolved
	1406403-005A	Trip Bank	6/17/2014	A	Aqueous	VOA by GC/MS Method 8260C/5030C
Kyle F. Gross						

Laboratory Director

Jose Rocha QA Officer

Report Date: 6/30/2014 Page 3 of 38

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, prontotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the rade aud of science.

Inorganic Case Narrative

Vest	Client:	
W. Sta	Contact:	
	Project:	
	Lab Set ID:	

Energy Fuels Resources, Inc. Garrin Palmer Seeps and Springs 2014 1406403

463 West 3600 South	Sample Receipt Informa	ition:		
Salt Lake City, UT 84115	Date of Receipt: Date(s) of Collec Sample Conditio C-O-C Discrepa	n:	6/19/2014 6/17/2014 Intact None	
Phone: (801) 263-8686				
Toll Free: (888) 263-8686				nalysis and preparation for the
Fax: (801) 263-8687	samples were performed preserved.	within the method	a holding time	s. The samples were properly
e-mail: awal@awal-labs.com	preserved.			
web: www.awal-labs.com	Preparation and Analy methods stated on the ana		: The sample	s were analyzed following the
Kyle F. Gross Laboratory Director	Analytical QC Requir requirements were met. A Batch QC Requirements	ll internal standard	recoveries met	
Jose Rocha QA Officer	indicating that the Laboratory Con	e procedure was fre- trol Samples (LC	e from contamination contamination (CS): All LCS	recoveries were within control
	Matrix Spike / M RPDs (Relative following excepti	Percent Difference ons:	icates (MS/MS es) were insid	D): All percent recoveries and e established limits, with the
	Sample ID	Analyte	QC	Explanation

Sample ID	Analyte	QC	Explanation
1406403-001D	Ammonia (as N)	MS	Sample matrix interference
1406403-001E	Calcium	MSD	High analyte concentration
1406403-001E	Magnesium	MS/MSD	Sample matrix interference
1406403-001E	Sodium	MSD	High analyte concentration
1406404-001E	Arsenic	MSD	Sample matrix interference
1406404-001E	Beryllium	MSD/RPD	Sample non-homogeneity or matrix interference
1406404-001E	Cadmium	RPD	Sample non-homogeneity or matrix interference
1406404-001E	Calcium	MS/MSD	High analyte concentration
1406404-001E	Lead	RPD	Sample non-homogeneity or matrix interference

Report Date: 6/30/2014 Page 4 of 38

-

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Sample ID	Analyte	QC	Explanation
1406404-001E	Molybdenum	MSD/RPD	Sample non-homogeneity or matrix interference
1406404-001E	Selenium	MSD	Sample matrix interference
1406404-001E	Silver	RPD	Sample non-homogeneity or matrix interference
1406404-001E	Sodium	MS/MSD	High analyte concentration
1406404-001E	Thallium	RPD	Sample non-homogeneity or matrix interference
1406404-001E	Uranium	MSD/RPD	Sample non-homogeneity or matrix interference

Duplicate (DUP): The parameters that required a duplicate analysis had RPDs within the control limits, with the following exception: On samples 1406403-001C and 1406404-001C, high RPDs were observed on Total Dissolved Solids due to suspected sample non-homogeneity of matrix interference.

Corrective Action: None required.

Phone: (801) 263-8686 Toll Free: (888) 263-8686

463 West 3600 South Salt Lake City, UT 84115

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 6/30/2014 Page 5 of 38

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the rade and of science.

Volatile Case Narrative

American West	Client: Contact: Project: Lab Set ID:	Energy Fuels Resources, Inc. Garrin Palmer Seeps and Springs 2014 1406403
463 West 3600 South	Sample Receipt Information:	
Salt Lake City, UT 84115	Date of Receipt: Date(s) of Collection: Sample Condition: C-O-C Discrepancies:	6/19/2014 6/17/2014 Intact None
Phone: (801) 263-8686	Method:	SW-846 8260C/5030C
Toll Free: (888) 263-8686	Analysis:	Volatile Organic Compounds
Fax: (801) 263-8687 e-mail: awal@awal-labs.com	General Set Comments: Toluene was Seep (AWAL 1406403-001A).	observed above reporting limits on sample Entrance
web: www.awal-labs.com	containers and properly preserved '	irements: All samples were received in appropriate The analysis and preparation of all samples were imes following the methods stated on the analytical
Kyle F. Gross		
Laboratory Director	Analytical QC Requirements: A requirements were met. All internal star	Il instrument calibration and calibration check adard recoveries met method criterion.
Jose Rocha QA Officer	Batch QC Requirements: MB, LCS, 1	MS, MSD, RPD, and Surrogates:
QA OILLI	Method Blanks (MBs): No taindicating that the procedure wa	arget analytes were detected above reporting limits, as free from contamination.
		(LCSs): All LCS recoveries were within control ration and analysis were in control.
		Duplicate (MS/MSD): All percent recoveries and ences) were inside established limits, indicating no
	Surrogates: All surrogate reco	veries were within established limits.

Corrective Action: None required.

Report Date: 6/30/2014 Page 6 of 38

.

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Garrin Palmer

ME

Contact:

Dept:

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:	Energy Fuels Resources, Inc.
Lab Set ID:	1406403
Project:	Seeps and Springs 2014

Project: S	Seeps and Springs 2014						QC Тур	e: LCS						
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:	LCS-33054	Date Analyzed:	06/25/201	14 957h										
Test Code:	200.7-DIS	Date Prepared:	06/19/201	14 1230h										
Calcium		9.56	mg/L	E200 7	0.00892	1.00	10.00	0	95.6	85 - 115				
Magnesium		9.82	mg/L	E200.7	0.0389	1.00	10.00	0	98.2	85 - 115				
Potassium		9.77	mg/L	E200.7	0.0721	1.00	10.00	0	97.7	85 - 115				
Sodium		9.91	mg/L	E200.7	0.0269	1.00	10.00	0	99.1	85 - 115				
Vanadium		0.199	mg/L	E200.7	0.000596	0.00500	0.2000	0	99.4	85 - 115				
Zinc		1.01	mg/L	E200.7	0.00448	0.0100	1.000	0	101	85 - 115				
Lab Sample ID:	LCS-33055	Date Analyzed:	06/23/202	14 1713h										
Test Code:	200.8-DIS	Date Prepared:	06/19/201	14 1230h										
Arsenic		0.200	mg/L	E200.8	0.000802	0.00200	0.2000	0	100	85 - 115				
Beryllium		0.206	mg/L	E200.8	0.0000950	0.00200	0.2000	0	103	85 - 115				
Cadmium		0.195	mg/L	E200.8	0.0000598	0.000500	0.2000	0	97.7	85 - 115				
Chromium		0.192	mg/L	E200.8	0.000608	0.00200	0.2000	0	95.8	85 - 115				
Cobalt		0.190	mg/L	E200.8	0.000124	0.00400	0.2000	0	95.0	85 - 115				
Copper		0.194	mg/L	E200.8	0.00149	0.00200	0.2000	0	97.0	85 - 115				
Iron		0.997	mg/L	E200.8	0.0304	0.100	1.000	0	99.7	85 - 115				
Lead		0.197	mg/L	E200.8	0.000726	0.00200	0.2000	0	98.5	85 - 115				
Manganese		0.188	mg/L	E200.8	0.00175	0.00200	0.2000	0	94.0	85 - 115				
Molybdenum		0.206	mg/L	E200.8	0.000806	0.00200	0.2000	0	103	85 - 115				
Nickel		0.190	mg/L	E200.8	0.00175	0.00200	0.2000	0	95.0	85 - 115				
Selenium		0.192	mg/L	E200.8	0.000644	0.00200	0.2000	0	96.2	85 - 115				
Silver		0.196	mg/L	E200.8	0.000504	0.00200	0.2000	0	97.9	85 - 115				
Thallium		0.190	mg/L	E200.8	0.0000788	0.00200	0.2000	0	95.2	85 - 115				
Uranium		0.198	mg/L	E200.8	0.0000336	0.00200	0.2000	0	99.2	85 - 115				
Lab Sample ID:	LCS-33055	Date Analyzed:	06/23/20	14 1523h										
Test Code:	200.8-DIS	Date Prepared:	06/19/201	14 1230h										
Tin		0.985	mg/L	E200,8	0.000482	0.00200	1.000	0	98.5	85 - 115				

Report Date: 6/30/2014 Page 20 of 38

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the addressee, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

				463 Wes	t 3600 South	1							
				Salt Lake (City, UT 841	.15				K	yle F. Gro	DSS	
		Phone	e: (801) 263-	8686, Toll Free	: (888) 263-86	586, Fax: (801) 2	63-8687			L	aboratory	Directo	r
2			e-mail: awal	l@awal-labs.co	m, web: www	.awal-labs.com							
										J	ose Rocha		
										Ç	A Officer		
Nest			QC	SUMMA	ARY RE	EPORT							
ergy Fuels Resources, In	IC.					Contact:	Garrin Pa	almer					
06403						Dept:	ME						
eps and Springs 2014						QC Type:	LCS						
	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
LCS-33115	Date Analyzed:	06/24/2014	838h										
Hg-DW-DIS-245 1	Date Prepared	06/23/2014	1445h										
11g-D # -D15-245.1	Date Trepared.	00/20/2011	- 14 N										
	ATORIES ergy Fuels Resources, In 06403 eps and Springs 2014 LCS-33115	atories ergy Fuels Resources, Inc. 06403 eps and Springs 2014 Result LCS-33115 Date Analyzed:	Vest Pergy Fuels Resources, Inc. 06403 2ps and Springs 2014 Result Units LCS-33115 Date Analyzed: 06/24/2014	e-mail: awa Correst ergy Fuels Resources, Inc. 06403 eps and Springs 2014 Result Units Method LCS-33115 Date Analyzed: 06/24/2014 838h	Salt Lake C Phone: (801) 263-8686, Toll Free e-mail: awal@awal-labs.co QC SUMMA ergy Fuels Resources, Inc. 06403 eps and Springs 2014 Result Units Method MDL LCS-33115 Date Analyzed: 06/24/2014 838h	Salt Lake City, UT 841 Phone: (801) 263-8686, Toll Free: (888) 263-86 e-mail: awal@awal-labs.com, web: www OCC SUMMARY RE ergy Fuels Resources, Inc. 06403 eps and Springs 2014 Method MDL Reporting Limit LCS-33115 Date Analyzed: 06/24/2014 838h	e-mail: awal@awal-labs.com, web: www.awal-labs.com ergy Fuels Resources, Inc. 06403 eps and Springs 2014 Result Units Method MDL Reporting Amount Spiked LCS-33115 Date Analyzed: 06/24/2014 838h	Salt Lake City, UT 84115 Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687 e-mail: awal@awal-labs.com, web: www.awal-labs.com ergy Fuels Resources, Inc. 6403 pps and Springs 2014 Result Units Method MDL Reporting Amount Spike Ref. ME LCS-33115 Date Analyzed: 06/24/2014 838h	Salt Lake City, UT 84115 Salt Lake City, UT 84115 Phone: (801) 263-8686, Foll Free: (888) 263-8686, Fax: (801) 263-8687 e-mail: awal@awal-labs.com, web: www.awal-labs.com OC SUMMARY REPORT Contact: Garrin Palmer Dept: ME gC Type: LCS Result Units Method MDL Reporting Limit Amount Spike Ref. Amount Spike Ref. Amount %REC LCS-33115	Salt Lake City, UT 84115 Salt Lake City, UT 84115 Phone: (801) 263-8686, Fax: (801) 263-8687 e-mail: awal@awal-labs.com, web: www.awal-labs.com Contact: Garrin Palmer Dept: ME Amount Garrin Palmer Dept: ME Oct Type: LCS Method MDL Result Vnits Method MDL Reporting Amount Spike Ref. Spike Ref. Spike Ref. Amount Spike Ref. S	Salt Lake City, UT 84115 K Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687 L e-mail: awal@awal-labs.com, web: www.awal-labs.com Jac VORTES Contact: Garrin Palmer pregy Fuels Resources, Inc. Contact: Garrin Palmer 06403 Dept: ME pregs and Springs 2014 Vinits Method MDL Reporting Limit Amount Spike Ref. Amount %REC Limits RPD Ref. Amt LCS-33115 Date Analyzed: 06/24/2014 838h Set Set Set Set	Salt Lake City, UT 84115 Kyle F. Gro Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687 Laboratory e-mail: awal@awal-labs.com, web: www.awal-labs.com Jose Rocha QA Officer Option (1000) progry Fuels Resources, Inc. Contact: Garrin Palmer 06403 Dept: ME ops and Springs 2014 Method MDL Reporting Amount Spike Ref. RPD Ref. Result Units Method MDL Reporting Amount %REC Limits RPD Ref. LCS-33115 Date Analyzed: 06/24/2014 838h Spike Ref. Water Spike Ref. Water Spike Ref. Water Spike Ref. Water Spike Ref. Manual %REC Limits RPD Ref. % RPD	Salt Lake City, UT 84115 Kyle F. Gross Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687 Laboratory Director None: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687 Laboratory Director Contact: Garrin Palmer Jose Rocha Optimit awal@awal-labs.com, web: www.awal-labs.com Jose Rocha Optimit Gord Colspan="6">ME Optimit Gord Colspan="6">South Colspan="6">Contact: Garrin Palmer Jose Rocha Optimit ME Optimit ME Optimit ME Optimit ME Optimit Method ME Optimit Method Method Method Method Me

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Q

Kyle F. Gross Laboratory Director

DDD

Jose Rocha QA Officer

Client:	Energy Fuels Resources, Inc.
Lab Set ID:	1406403
Project:	Seeps and Springs 2014

C	SU	IVIN	VIAH	XY	REP	U	к	1

Penorting	Amount	Spike Bef	DDD Dof
	QC Type:	MBLK	
	Dept:	ME	
	Contact:	Garrin Palmer	

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:	MB-33054	Date Analyzed:	06/25/201	4 955h										
Test Code:	200.7-DIS	Date Prepared:	06/19/201	4 1230h										
Calcium		< 1.00	mg/L	E200.7	0.00892	1.00								
Magnesium		< 1.00	mg/L	E200.7	0.0389	1.00								
Potassium		< 1.00	mg/L	E200.7	0.0721	1.00								
Sodium		< 1.00	mg/L	E200.7	0.0269	1.00								
Vanadium		< 0.00500	mg/L	E200.7	0.000596	0.00500								
Zinc		< 0.0100	mg/L	E200.7	0.00448	0.0100								
Lab Sample ID:	MB-33055	Date Analyzed:	06/20/201	4 1605h										
Test Code:	200.8-DIS	Date Prepared:	06/19/201	4 1230h										
Arsenic		< 0.00200	mg/L	E200.8	0.000802	0.00200								
Cadmium		< 0.000500	mg/L	E200.8	0.0000598	0.000500								
Chromium		< 0.00200	mg/L	E200.8	0.000608	0.00200								
Cobalt		< 0.00400	mg/L	E200.8	0.000124	0.00400								
Copper		< 0.00200	mg/L	E200.8	0.00149	0.00200								
Manganese		< 0.00200	mg/L	E200.8	0.00175	0.00200								
Molybdenum		< 0.00200	mg/L	E200.8	0.000806	0.00200								
Nickel		< 0.00200	mg/L	E200.8	0.00175	0.00200								
Selenium		< 0.00200	mg/L	E200.8	0.000644	0.00200								
Silver		< 0.00200	mg/L	E200.8	0.000504	0.00200								
Lab Sample ID:	MB-33055	Date Analyzed:	06/20/201	4 1807h										
Test Code:	200.8-DIS	Date Prepared:	06/19/201	4 1230h										
Beryllium		< 0.000500	mg/L	E200.8	0.0000238	0.000500								
Lead		< 0.000500	mg/L	E200.8	0.000182	0.000500								
Thallium		< 0.000500	mg/L	E200_8	0.0000197	0.000500								
Lab Sample ID:	MB-33055	Date Analyzed:	06/23/201	4 1747h										
Test Code:	200.8-DIS	Date Prepared:	06/19/201	4 1230h										
Uranium		< 0.000200	mg/L	E200.8	0.00000336	0.000200								

Report Date: 6/30/2014 Page 22 of 38

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Garrin Palmer

ME

QC Type: MBLK

Contact:

Dept:

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:Energy Fuels Resources, Inc.Lab Set ID:1406403Project:Seeps and Springs 2014

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:	MB-33055	Date Analyzed:	06/23/201	4 1517h										
Test Code:	200.8-DIS	Date Prepared:	06/19/201	4 1230h										
Tin		< 0.00200	mg/L	E200.8	0.000482	0.00200								
Lab Sample ID:	MB-33055	Date Analyzed:	06/25/201	4 1625h										
Test Code:	200.8-DIS	Date Prepared:	06/19/201	4 1230h										
Iron		< 0.0250	mg/L	E200.8	0.00760	0.0250								
Lab Sample ID:	MB-33115	Date Analyzed:	06/24/201	4 837h										
Test Code:	Hg-DW-DIS-245.1	Date Prepared:	06/23/201	4 1445h										
Мегсигу		< 0.000150	mg/L	E245.1	0.00000675	0.000150								
														-

Report Date: 6/30/2014 Page 23 of 38

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the addressee, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Resources, Inc. ings 2014 Result EMS Date Analyzed: Date Prepared: 12.0 0.207 1.03 EMS Date Analyzed: Date Prepared: 26.8 36.2 0.212 1.08 EMS Date Analyzed: Date Prepared: 26.8	06/19/2014 mg/L mg/L : 06/25/2014 06/19/2014 mg/L mg/L mg/L	E200.7 E200.7 E200.7 E200.7	MDL 0.0721 0.000596 0.00448 0.0389 0.0721 0.000596 0.00448	Reporting Limit 1.00 0.00500 0.0100 1.00 1.00 1.00 0.00500 0.0100	Contact: Dept: QC Type: Amount Spiked	Spike Ref. Amount 1.56 0.00134 0.00524 17.3 26.8 0.0113	Imer %REC 104 103 103 94.3 94.1 100	Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	RPD Ref. Amt	% RPD	RPD Limit	Qual
EMS Date Analyzed: Date Prepared: 12.0 0.207 1.03 EMS Date Analyzed: Date Prepared: 26.8 36.2 0.212 1.08 EMS Date Analyzed:	 06/25/2014 06/19/2014 mg/L mg/L 06/25/2014 06/19/2014 mg/L mg/L mg/L mg/L 	+ 1129h + 1230h E200,7 E200,7 E200,7 E200,7 H 1140h + 1230h E200,7 E200,7 E200,7	0.0721 0.000596 0.00448 0.0389 0.0721 0.000596	Limit 1.00 0.00500 0.0100 1.00 1.00 0.00500	Spiked 10.00 0.2000 1.000 10.00 0.2000	Amount 1.56 0.00134 0.00524 17.3 26.8 0.0113	104 103 103 94.3 94.1	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130		% RPD		Qua
Date Prepared: 12.0 0.207 1.03 EMS Date Analyzed: Date Prepared: 26.8 36.2 0.212 1.08 EMS Date Analyzed:	06/19/2014 mg/L mg/L : 06/25/2014 06/19/2014 mg/L mg/L mg/L	E200,7 E200,7 E200,7 E200,7 E200,7 E200,7 E200,7 E200,7	0.000596 0.00448 0.0389 0.0721 0.000596	0.00500 0.0100 1.00 1.00 0.00500	0.2000 1.000 10.00 10.00 0.2000	0.00134 0.00524 17.3 26.8 0.0113	103 103 94.3 94.1	70 - 130 70 - 130 70 - 130 70 - 130				
0.207 1.03 EMS Date Analyzed: Date Prepared: 26.8 36.2 0.212 1.08 EMS Date Analyzed:	mg/L mg/L : 06/25/2014 06/19/2014 mg/L mg/L mg/L mg/L	E200.7 E200.7 11140h 1230h E200.7 E200.7 E200.7	0.000596 0.00448 0.0389 0.0721 0.000596	0.00500 0.0100 1.00 1.00 0.00500	0.2000 1.000 10.00 10.00 0.2000	0.00134 0.00524 17.3 26.8 0.0113	103 103 94.3 94.1	70 - 130 70 - 130 70 - 130 70 - 130				
Date Prepared: 26.8 36.2 0.212 1.08 EMS Date Analyzed:	06/19/2014 mg/L mg/L mg/L mg/L	E200.7 E200.7 E200.7 E200.7	0.0721 0.000596	1.00 0.00500	10.00 0.2000	26.8 0.0113	94.1	70 - 130				
36.2 0.212 1.08 EMS Date Analyzed:	mg/L mg/L mg/L	E200.7 E200.7	0.0721 0.000596	1.00 0.00500	10.00 0.2000	26.8 0.0113	94.1	70 - 130				
10.00	: 06/25/2014				1.000	0.00693	107	70 - 130				
Date Trepared.												
111 41.5 87.1	mg/L mg/L mg/L	E200.7 E200.7 E200.7	0.0892 0.389 0.269	10.0 10.0 10.0	10.00 10.00 10.00	103 34.9 78.9	78.8 66.5 81.6	70 - 130 70 - 130 70 - 130				ίŝ
340 1,180	mg/L mg/L	E200.7 E200.7	0.446 1.34	50.0 50.0	10.00 10.00	337 1190	28.0 -117	70 - 130 70 - 130				3 2
0.229 0.212 0.198 0.209 0.201	mg/L mg/L mg/L mg/L mg/L	E200.8 E200.8 E200.8 E200.8 E200.8	0.000802 0.0000950 0.0000598 0.000608 0.000124	0.00200 0.00200 0.000500 0.00200 0.00400	0.2000 0.2000 0.2000 0.2000 0.2000	0,00366 0 0,00665 0	113 106 98.9 101 100	75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125				
	87.1 EMS Date Analyzed Date Prepared: 340 1,180 EMS Date Analyzed Date Prepared: 0.229 0.212 0.198 0.209 0.201	87.1 mg/L EMS Date Analyzed: 06/25/2014 Date Prepared: 06/19/2014 340 mg/L 1,180 mg/L EMS Date Analyzed: 06/20/2014 Date Prepared: 06/20/2014 Date Prepared: 06/19/2014 Date Prepared: 06/19/2014 Date Prepared: 06/19/2014 0.229 mg/L 0.212 mg/L 0.198 mg/L 0.209 mg/L 0.201 mg/L	87.1 mg/L E200.7 EMS Date Analyzed: 06/25/2014 1024h Date Prepared: 06/19/2014 1230h 340 mg/L E200.7 1,180 mg/L E200.7 EMS Date Analyzed: 06/20/2014 1230h EMS Date Analyzed: 06/20/2014 1738h Date Prepared: 06/19/2014 1230h 0.229 mg/L E200.8 0.212 mg/L E200.8 0.198 mg/L E200.8 0.209 mg/L E200.8 0.201 mg/L E200.8 0.201 mg/L E200.8	87.1 mg/L E200.7 0.269 EMS Date Analyzed: 06/25/2014 1024h 06/19/2014 1230h 340 mg/L E200.7 0.446 1,180 mg/L E200.7 1.34 EMS Date Analyzed: 06/20/2014 1738h 06/20/2014 1230h EMS Date Analyzed: 06/20/2014 1230h 06/19/2014 1230h 0.229 mg/L E200.8 0.000802 0.212 mg/L E200.8 0.0000950 0.198 mg/L E200.8 0.0000598 0.209 mg/L E200.8 0.000608 0.201 mg/L E200.8 0.000608	87.1 mg/L E200,7 0.269 10.0 EMS Date Analyzed: 06/25/2014 1024h <td>87.1 mg/L E200,7 0.269 10.0 10.00 EMS Date Analyzed: 06/25/2014 1024h 06/19/2014 1230h 10.00 340 mg/L E200.7 0.446 50.0 10.00 1,180 mg/L E200.7 0.446 50.0 10.00 EMS Date Analyzed: 06/20/2014 1738h 50.0 10.00 EMS Date Prepared: 06/19/2014 1230h 0.000802 0.00200 0.2000 0.229 mg/L E200.8 0.000802 0.00200 0.2000 0.212 mg/L E200.8 0.0000950 0.00200 0.2000 0.198 mg/L E200.8 0.0000598 0.000500 0.2000 0.209 mg/L E200.8 0.0000598 0.000500 0.2000 0.201 mg/L E200.8 0.0000598 0.00200 0.2000</td> <td>87.1 mg/L E200,7 0.269 10.0 10.00 78.9 EMS Date Analyzed: 06/25/2014 1024h 06/19/2014 1230h 50.0 10.00 337 340 mg/L E200.7 0.446 50.0 10.00 337 1,180 mg/L E200.7 0.446 50.0 10.00 1190 EMS Date Analyzed: 06/20/2014 1738h E200.7 1.34 50.0 10.00 1190 EMS Date Prepared: 06/19/2014 1230h </td> <td>87.1 mg/L E200.7 0.269 10.0 10.00 78.9 81.6 EMS Date Analyzed: 06/25/2014 1024h 06/19/2014 1230h 28.0 10.00 337 28.0 340 mg/L E200.7 0.446 50.0 10.00 337 28.0 1,180 mg/L E200.7 0.446 50.0 10.00 337 28.0 EMS Date Analyzed: 06/20/2014 1738h E200.7 1.34 50.0 10.00 1190 -117 EMS Date Prepared: 06/19/2014 1230h </td> <td>87.1 mg/L E200.7 0.269 10.0 10.00 78.9 81.6 70 - 130 EMS Date Analyzed: 06/25/2014 1024h 06/19/2014 1230h 50.0 10.00 337 28.0 70 - 130 340 mg/L E200.7 0.446 50.0 10.00 190 -117 70 - 130 1,180 mg/L E200.7 1.34 50.0 10.00 1190 -117 70 - 130 EMS Date Analyzed: 06/20/2014 1738h E200.7 0.00802 0.00200 0.2000 0,00366 113 75 - 125 0.212 mg/L E200.8 0.0000950 0.00200 0.2000 0 0.0665 101 75 - 125 0.212 mg/L E200.8 0.0000598 0.000500 0.2000 0 98.9 75 - 125 0.209 mg/L E200.8 0.000608 0.00200 0.2000 0.00665 101 75 - 125 0.201 mg/L E200.8 0.000124 0.00</td> <td>87.1 mg/L E200,7 0.269 10.0 10.00 78.9 81.6 70 - 130 EMS Date Analyzed: 06/19/2014 1024h <</td> <td>87.1 mg/L E200.7 0.269 10.0 10.00 78.9 81.6 70 - 130 EMS Date Analyzed: Date Prepared: 06/25/2014 1024h 06/19/2014 1230h 340 mg/L E200.7 0.446 50.0 10.00 337 28.0 70 - 130 1,180 mg/L E200.7 0.446 50.0 10.00 337 28.0 70 - 130 EMS Date Analyzed: 06/20/2014 1738h Date Prepared: 06/20/2014 1230h 50.0 10.00 1190 -117 70 - 130 EMS Date Prepared: 06/19/2014 1230h 0.000802 0.00200 0.2000 0.00366 113 75 - 125 0.229 mg/L E200.8 0.0000598 0.00200 0.2000 0 106 75 - 125 0.198 mg/L E200.8 0.0000598 0.00200 0.2000 0.00665 101 75 - 125 0.209 mg/L E200.8</td> <td>87.1 ng/L E200.7 0.269 10.0 10.00 78.9 81.6 70 - 130 EMS Date Analyzed: 06/19/2014 06/25/2014 1024h 50.0 10.00 337 28.0 70 - 130 340 mg/L E200.7 0.446 50.0 10.00 337 28.0 70 - 130 340 mg/L E200.7 0.446 50.0 10.00 337 28.0 70 - 130 EMS Date Analyzed: 1,180 06/20/2014 1738h 50.0 10.00 1190 -117 70 - 130 EMS Date Analyzed: 06/19/2014 06/20/2014 1738h 50.0 10.00 0.00366 113 75 - 125 0.229 mg/L E208.8 0.0000598 0.00200 0.2000 0 106 75 - 125 0.198 mg/L E208.8 0.0000598 0.000200 0.2000 0 98.9 75 - 125 0.209 mg/L E208.8 0.000608 0.00200 0.2000 0<!--</td--></td>	87.1 mg/L E200,7 0.269 10.0 10.00 EMS Date Analyzed: 06/25/2014 1024h 06/19/2014 1230h 10.00 340 mg/L E200.7 0.446 50.0 10.00 1,180 mg/L E200.7 0.446 50.0 10.00 EMS Date Analyzed: 06/20/2014 1738h 50.0 10.00 EMS Date Prepared: 06/19/2014 1230h 0.000802 0.00200 0.2000 0.229 mg/L E200.8 0.000802 0.00200 0.2000 0.212 mg/L E200.8 0.0000950 0.00200 0.2000 0.198 mg/L E200.8 0.0000598 0.000500 0.2000 0.209 mg/L E200.8 0.0000598 0.000500 0.2000 0.201 mg/L E200.8 0.0000598 0.00200 0.2000	87.1 mg/L E200,7 0.269 10.0 10.00 78.9 EMS Date Analyzed: 06/25/2014 1024h 06/19/2014 1230h 50.0 10.00 337 340 mg/L E200.7 0.446 50.0 10.00 337 1,180 mg/L E200.7 0.446 50.0 10.00 1190 EMS Date Analyzed: 06/20/2014 1738h E200.7 1.34 50.0 10.00 1190 EMS Date Prepared: 06/19/2014 1230h	87.1 mg/L E200.7 0.269 10.0 10.00 78.9 81.6 EMS Date Analyzed: 06/25/2014 1024h 06/19/2014 1230h 28.0 10.00 337 28.0 340 mg/L E200.7 0.446 50.0 10.00 337 28.0 1,180 mg/L E200.7 0.446 50.0 10.00 337 28.0 EMS Date Analyzed: 06/20/2014 1738h E200.7 1.34 50.0 10.00 1190 -117 EMS Date Prepared: 06/19/2014 1230h	87.1 mg/L E200.7 0.269 10.0 10.00 78.9 81.6 70 - 130 EMS Date Analyzed: 06/25/2014 1024h 06/19/2014 1230h 50.0 10.00 337 28.0 70 - 130 340 mg/L E200.7 0.446 50.0 10.00 190 -117 70 - 130 1,180 mg/L E200.7 1.34 50.0 10.00 1190 -117 70 - 130 EMS Date Analyzed: 06/20/2014 1738h E200.7 0.00802 0.00200 0.2000 0,00366 113 75 - 125 0.212 mg/L E200.8 0.0000950 0.00200 0.2000 0 0.0665 101 75 - 125 0.212 mg/L E200.8 0.0000598 0.000500 0.2000 0 98.9 75 - 125 0.209 mg/L E200.8 0.000608 0.00200 0.2000 0.00665 101 75 - 125 0.201 mg/L E200.8 0.000124 0.00	87.1 mg/L E200,7 0.269 10.0 10.00 78.9 81.6 70 - 130 EMS Date Analyzed: 06/19/2014 1024h <	87.1 mg/L E200.7 0.269 10.0 10.00 78.9 81.6 70 - 130 EMS Date Analyzed: Date Prepared: 06/25/2014 1024h 06/19/2014 1230h 340 mg/L E200.7 0.446 50.0 10.00 337 28.0 70 - 130 1,180 mg/L E200.7 0.446 50.0 10.00 337 28.0 70 - 130 EMS Date Analyzed: 06/20/2014 1738h Date Prepared: 06/20/2014 1230h 50.0 10.00 1190 -117 70 - 130 EMS Date Prepared: 06/19/2014 1230h 0.000802 0.00200 0.2000 0.00366 113 75 - 125 0.229 mg/L E200.8 0.0000598 0.00200 0.2000 0 106 75 - 125 0.198 mg/L E200.8 0.0000598 0.00200 0.2000 0.00665 101 75 - 125 0.209 mg/L E200.8	87.1 ng/L E200.7 0.269 10.0 10.00 78.9 81.6 70 - 130 EMS Date Analyzed: 06/19/2014 06/25/2014 1024h 50.0 10.00 337 28.0 70 - 130 340 mg/L E200.7 0.446 50.0 10.00 337 28.0 70 - 130 340 mg/L E200.7 0.446 50.0 10.00 337 28.0 70 - 130 EMS Date Analyzed: 1,180 06/20/2014 1738h 50.0 10.00 1190 -117 70 - 130 EMS Date Analyzed: 06/19/2014 06/20/2014 1738h 50.0 10.00 0.00366 113 75 - 125 0.229 mg/L E208.8 0.0000598 0.00200 0.2000 0 106 75 - 125 0.198 mg/L E208.8 0.0000598 0.000200 0.2000 0 98.9 75 - 125 0.209 mg/L E208.8 0.000608 0.00200 0.2000 0 </td

Report Date: 6/30/2014 Page 24 of 38

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols, Pertinent sampling information is located on the attached COC, Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the rules of th

Thallium

Uranium

0.192

0.228

mg/L

mg/L

E200.8

E200,8

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Garrin Palmer

ME

Contact: Dept: Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:	Energy Fuels Resources, Inc.
Lab Set ID:	1406403
Project:	Seeps and Springs 2014

Lab Set ID. 1	400403						Dept.	IVIL						
Project: S	eeps and Springs 2014						QC Type	e: MS						
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:	1406404-001EMS	Date Analyzed:	06/20/201	4 1738h										
Test Code:	200.8-DIS	Date Prepared:	06/19/201	4 1230h										
Iron		1.05	mg/L	E200.8	0.0304	0.100	1.000	0	105	75 - 125				
Lead		0.193	mg/L	E200.8	0.000726	0.00200	0.2000	0	96.6	75 - 125				
Manganese		0.202	mg/L	E200.8	0.00175	0.00200	0.2000	0	101	75 - 125				
Molybdenum		0.237	mg/L	E200.8	0.000806	0.00200	0.2000	0.0235	107	75 - 125				
Nickel		0.203	mg/L	E200.8	0.00175	0.00200	0.2000	0	102	75 - 125				
Selenium		0.248	mg/L	E200.8	0.000644	0.00200	0.2000	0.00289	123	75 - 125				
Silver		0.187	mg/L	E200.8	0.000504	0.00200	0.2000	0	93.4	75 - 125				
Thallium		0.182	mg/L	E200.8	0.0000788	0.00200	0.2000	0	91.2	75 - 125				
Uranium		0.202	mg/L	E200.8	0.0000336	0.00200	0.2000	0.00193	100	75 - 125				
ab Sample ID:	1406403-001EMS	Date Analyzed:	06/23/201	4 1719h										
Test Code:	200.8-DIS	Date Prepared:	06/19/201	4 1230h										
Arsenic		0.210	mg/L	E200.8	0.000802	0.00200	0.2000	0.000988	104	75 - 125				
Beryllium		0.210	mg/L	E200.8	0.0000950	0.00200	0.2000	0	105	75 - 125				
Cadmium		0.200	mg/L	E200.8	0.0000598	0.000500	0.2000	0	99.8	75 - 125				
Chromium		0.199	mg/L	E200.8	0.000608	0.00200	0.2000	0	99.3	75 - 125				
Cobalt		0.196	mg/L	E200.8	0.000124	0.00400	0.2000	0.000863	97.5	75 - 125				
Copper		0.202	mg/L	E200.8	0.00149	0.00200	0.2000	0	101	75 - 125				
Iron		1.06	mg/L	E200.8	0.0304	0.100	1.000	0.0372	102	75 - 125				
Lead		0.199	mg/L	E200.8	0.000726	0.00200	0.2000	0	99.6	75 - 125				
Manganese		0.211	mg/L	E200.8	0.00175	0.00200	0.2000	0.0161	97.3	75 - 125				
Molybdenum		0.219	mg/L	E200.8	0.000806	0.00200	0.2000	0.00423	107	75 - 125				
Nickel		0.194	mg/L	E200.8	0.00175	0.00200	0.2000	0	97.2	75 - 125				
Selenium		0.211	mg/L	E200.8	0.000644	0.00200	0.2000	0.0159	97.5	75 - 125				
Silver		0.199	mg/L	E200.8	0.000504	0.00200	0.2000	0	99.3	75 - 125				

Report Date: 6/30/2014 Page 25 of 38

All analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

0.00200

0.00200

0.2000

0.2000

0

0.0232

95.9

102

75 - 125

75 - 125

0.0000788

0.0000336

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Garrin Palmer

ME

Contact: Dept:

QC Type: MS

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:	Energy Fuels Resources, Inc.
Lab Set ID:	1406403
Project:	Seeps and Springs 2014

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:	1406403-001EMS	Date Analyzed:	06/23/201	4 1535h										
Test Code:	200.8-DIS	Date Prepared:	06/19/201	4 1230h										
Tin		1.01	mg/L	E200.8	0.000482	0.00200	1.000	0.00107	101	75 - 125				
Lab Sample ID:	1406404-001EMS	Date Analyzed:	06/23/201	4 1610h										
Test Code:	200.8-DIS	Date Prepared:	06/19/201	4 1230h										
Tin		0.974	mg/L	E200.8	0.000482	0.00200	1.000	0	97.4	75 - 125				
Lab Sample ID:	1406403-001EMS	Date Analyzed:	06/24/201	4 845h										
Test Code:	Hg-DW-DIS-245.1	Date Prepared:	06/23/201	4 1445h										
Mercury		0.00329	mg/L	E245.1	0.00000675	0.000150	0.003330	0	98.9	85 - 115				
Lab Sample ID:	1406404-001EMS	Date Analyzed:	06/24/201	4 900h										
Test Code:	Hg-DW-DIS-245.1	Date Prepared:	06/23/201	4 1445h										
Mercury		0.00338	mg/L	E245.1	0.00000675	0.000150	0.003330	0	102	85 - 115				

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

² - Analyte concentration is too high for accurate matrix spike recovery and/or RPD.

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC, Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Garrin Palmer

ME

Contact:

QC Type: MSD

Dept:

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:Energy Fuels Resources, Inc.Lab Set ID:1406403Project:Seeps and Springs 2014

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	1406403-001EMSD 200.7-DIS	Date Analyzed: Date Prepared:	06/25/201 06/19/201											
Potassium		11.7	mg/L	E200.7	0.0721	1.00	10.00	1.56	102	70 - 130	12	1.72	20	
Vanadium		0.203	mg/L	E200.7	0.000596	0.00500	0.2000	0.00134	101	70 - 130	0.207	1.77	20	
Zinc		1.02	mg/L	E200.7	0.00448	0.0100	1.000	0.00524	101	70 - 130	1.03	1.46	20	
Lab Sample ID: Test Code:	1406404-001EMSD 200.7-DIS	Date Analyzed: Date Prepared:	06/25/201 06/19/201											
Magnesium		27.5	mg/L	E200.7	0.0389	1.00	10.00	17.3	101	70 - 130	26.8	2.61	20	
Potassium		37.6	mg/L	E200.7	0.0721	1.00	10.00	26.8	108	70 - 130	36.2	3.88	20	
Vanadium		0.218	mg/L	E200.7	0.000596	0.00500	0.2000	0.0113	103	70 - 130	0.212	2.54	20	
Zinc		1.11	mg/L	E200.7	0.00448	0.0100	1.000	0.00693	110	70 - 130	1.08	2.63	20	
Lab Sample ID: Test Code:	1406403-001EMSD 200.7-DIS	Date Analyzed: Date Prepared:	06/25/201 06/19/201											
Calcium		104	mg/L	E200.7	0.0892	10.0	10.00	103	13.3	70 - 130	111	6.10	20	ù.
Magnesium		39.3	mg/L	E200.7	0.389	10.0	10.00	34.9	43.9	70 - 130	41.5	5.60	20	1
Sodium		82.4	mg/L	E200,7	0.269	10.0	10.00	78.9	34.1	70 - 130	87.1	5.60	20	2
Lab Sample ID: Test Code:	1406404-001EMSD 200.7-DIS	Date Analyzed: Date Prepared:	06/25/201 06/19/201											
Calcium		355	mg/L	E200.7	0.446	50.0	10.00	337	179	70 - 130	340	4.35	20	1
Sodium		1,230	mg/L	E200.7	1.34	50.0	10.00	1190	376	70 - 130	1180	4.08	20	:
Lab Sample ID: Test Code:	1406404-001EMSD 200.8-DIS	Date Analyzed: Date Prepared:	06/20/201 06/19/201											
Arsenic		0.273	mg/L	E200.8	0.000802	0.00200	0.2000	0.00366	135	75 - 125	0.229	17.6	20	3
Beryllium		0.268	mg/L	E200.8	0.0000950	0.00200	0.2000	0	134	75 - 125	0.212	23.3	20	'@
Cadmium		0.249	mg/L	E200.8	0.0000598	0.000500	0.2000	0	125	75 - 125	0.198	22.9	20	@
Chromium		0.250	mg/L	E200,8	0.000608	0,00200	0.2000	0.00665	121	75 - 125	0.209	17.5	20	
Cobalt		0.239	mg/L	E200.8	0.000124	0.00400	0.2000	0	119	75 - 125	0.201	17.5	20	
Copper		0.239	mg/L	E200.8	0.00149	0.00200	0.2000	0.00761	116	75 - 125	0.201	17.3	20	

Report Date: 6/30/2014 Page 27 of 38

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols, Pertinent sampling information is located on the attached COC, Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the use of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:	Energy Fuels Resources, Inc.
Lab Set ID:	1406403
Project:	Seeps and Springs 2014

	Contact:	Garrin Palmer
	Dept:	ME
	~ ~ ~	

QC Type: MSD

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	1406404-001EMSD 200.8-DIS	Date Analyzed: Date Prepared:	06/20/20 06/19/20											
Iron		1.25	mg/L	E200.8	0.0304	0.100	1.000	0	125	75 - 125	1.05	17.2	20	
Lead		0.244	mg/L	E200.8	0.000726	0.00200	0.2000	0	122	75 - 125	0.193	23.2	20	@
Manganese		0.239	mg/L	E200.8	0.00175	0.00200	0.2000	0	120	75 - 125	0.202	16.7	20	
Molybdenum		0.302	mg/L	E200.8	0.000806	0.00200	0.2000	0.0235	140	75 - 125	0.237	24.5	20	'@
Nickel		0.240	mg/L	E200.8	0.00175	0.00200	0.2000	0	120	75 - 125	0.203	16.8	20	
Selenium		0.291	mg/L	E200.8	0.000644	0.00200	0.2000	0.00289	144	75 - 125	0.248	15.8	20	0
Silver		0.234	mg/L	E200.8	0.000504	0.00200	0.2000	0	117	75 - 125	0.187	22.5	20	@
Thallium		0.227	mg/L	E200.8	0.0000788	0.00200	0.2000	0	113	75 - 125	0.182	21.7	20	a
Uranium		0.254	mg/L	E200.8	0.0000336	0.00200	0.2000	0.00193	126	75 - 125	0.202	22.6	20	1@
Lab Sample ID:	1406403-001EMSD	Date Analyzed:	06/23/20	14 1725h								11		
Test Code:	200.8-DIS	Date Prepared:	06/19/20	14 1230h										
Arsenic		0.205	mg/L	E200.8	0.000802	0.00200	0.2000	0.000988	102	75 - 125	0.21	2.32	20	
Beryllium		0.217	mg/L	E200.8	0.0000950	0.00200	0.2000	0	109	75 - 125	0.21	3.19	20	
Cadmium		0.205	mg/L	E200.8	0.0000598	0.000500	0.2000	0	103	75 - 125	0.2	2.83	20	
Chromium		0.194	mg/L	E200.8	0.000608	0.00200	0.2000	0	97.0	75 - 125	0.199	2.41	20	
Cobalt		0.192	mg/L	E200.8	0.000124	0.00400	0.2000	0.000863	95.5	75 - 125	0.196	2.04	20	
Copper		0.195	mg/L	E200.8	0.00149	0.00200	0.2000	0	97.4	75 - 125	0.202	3.41	20	
Iron		1.03	mg/L	E200.8	0.0304	0.100	1.000	0.0372	99.6	75 - 125	1.06	2.45	20	
Lead		0.205	mg/L	E200.8	0.000726	0.00200	0.2000	0	103	75 - 125	0.199	3.06	20	
Manganese		0.205	mg/L	E200.8	0.00175	0.00200	0.2000	0.0161	94.4	75 - 125	0.211	2.82	20	
Molybdenum		0.226	mg/L	E200.8	0.000806	0.00200	0.2000	0.00423	111	75 - 125	0.219	3.01	20	
Nickel		0.190	mg/L	E200.8	0.00175	0.00200	0.2000	0	95.1	75 - 125	0.194	2.18	20	
Selenium		0.210	mg/L	E200.8	0.000644	0.00200	0.2000	0.0159	97.3	75 - 125	0.211	0.200	20	
Silver		0.205	mg/L	E200.8	0.000504	0.00200	0.2000	0	103	75 - 125	0.199	3.29	20	
Thallium		0.197	mg/L	E200.8	0.0000788	0.00200	0.2000	0	98.6	75 - 125	0.192	2.73	20	
Uranium		0.232	mg/L	E200.8	0.0000336	0.00200	0.2000	0.0232	104	75 - 125	0.228	1.74	20	

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Garrin Palmer

ME

Contact:

QC Type: MSD

Dept:

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:	Energy Fuels Resources, Inc.
Lab Set ID:	1406403
Project:	Seeps and Springs 2014

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:	1406403-001EMSD	Date Analyzed:	06/23/201	4 1541h										
Test Code:	200.8-DIS	Date Prepared:	06/19/201	4 1230h										
Tin		1.00	mg/L	E200.8	0.000482	0.00200	1.000	0.00107	100	75 - 125	1.01	1.26	20	
Lab Sample ID:	1406404-001EMSD	Date Analyzed:	06/23/201	4 1638h										
Test Code:	200.8-DIS	Date Prepared:	06/19/201	4 1230h										
Tin		0.985	mg/L	E200.8	0.000482	0.00200	1.000	0	98.5	75 - 125	0.974	1.08	20	
Lab Sample ID:	1406403-001EMSD	Date Analyzed:	06/24/201	4 847h										
Test Code:	Hg-DW-DIS-245.1	Date Prepared:	06/23/201	4 1445h										
Mercury		0.00334	mg/L	E245.1	0.00000675	0.000150	0.003330	0	100	85 - 115	0.00329	1.48	20	
Lab Sample ID:	1406404-001EMSD	Date Analyzed:	06/24/201	4 900h										
Test Code:	Hg-DW-DIS-245.1	Date Prepared:	06/23/201	4 1445h										
Mercury		0.00340	mg/L	E245.1	0.00000675	0.000150	0.003330	0	102	85 - 115	0.00338	0.649	20	

@ - High RPD due to suspected sample non-homogeneity or matrix interference.

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

² - Analyte concentration is too high for accurate matrix spike recovery and/or RPD.

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

gy Fuels Resources, Ir 403 5 and Springs 2014	10.					Contact: Dept:	Garrin Pa WC	lmer					
						Dept:	WC						
s and Springs 2014													
						QC Type:	DUP						
	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qua
06403-001CDUP 9S-W-2540C	Date Analyzed:	06/20/2014	, 1050h										
s	728	mg/L	SM2540C	4.34	20.0					688	5.65	5	@
06404-001CDUP 0S-W-2540C	Date Analyzed:	06/20/2014	- 1050h										
s	4,610	mg/L	SM2540C	4.34	20.0					4980	7.59	5	@
s 06 0S-	W-2540C	403-001CDUPDate Analyzed:•W-2540C728404-001CDUPDate Analyzed:•W-2540C•	403-001CDUP Date Analyzed: 06/20/2014 W-2540C 728 mg/L 404-001CDUP Date Analyzed: 06/20/2014 W-2540C 06/20/2014 06/20/2014	403-001CDUP Date Analyzed: 06/20/2014 1050h W-2540C 728 mg/L SM2540C 404-001CDUP Date Analyzed: 06/20/2014 1050h W-2540C	403-001CDUP Date Analyzed: 06/20/2014 1050h •W-2540C 728 mg/L SM2540C 4.34 404-001CDUP Date Analyzed: 06/20/2014 1050h 4.34 •W-2540C 06/20/2014 1050h 4.34	Result Units Method MDL Limit 403-001CDUP Date Analyzed: 06/20/2014 1050h •W-2540C 728 mg/L SM2540C 4.34 20.0 404-001CDUP Date Analyzed: 06/20/2014 1050h •W-2540C Date Analyzed: 06/20/2014 1050h	Result Units Method MDL Limit Spiked 403-001CDUP Date Analyzed: 06/20/2014 1050h	Result Units Method MDL Limit Spiked Amount 403-001CDUP Date Analyzed: 06/20/2014 1050h	Result Units Method MDL Limit Spiked Amount %REC 403-001CDUP Date Analyzed: 06/20/2014 1050h	Result Units Method MDL Limit Spiked Amount %REC Limits 403-001CDUP -W-2540C Date Analyzed: 06/20/2014 1050h	ResultUnitsMethodMDLLimitSpikedAmount%RECLimitsAmt403-001CDUP •W-2540CDate Analyzed:06/20/2014 1050h06/20/2014 1050h688404-001CDUP •W-2540CDate Analyzed:06/20/2014 1050h688	Result Units Method MDL Limit Spiked Amount %REC Limits Amt % RPD 403-001CDUP -W-2540C Date Analyzed: 06/20/2014 1050h	Result Units Method MDL Limit Spiked Amount %REC Limits Amt % RPD Limit 403-001CDUP Date Analyzed: 06/20/2014 1050h

@ - High RPD due to suspected sample non-homogeneity or matrix interference.

Report Date: 6/30/2014 Page 30 of 38

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols, Pertinent sampling information is located on the attached COC, Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the addressee, Privileges of subsequent use of the company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Total Dissolved Solids

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Kyle F. Gross Laboratory Director

Qual

Jose Rocha QA Officer

Lab Set ID:	Energy Fuels Resources, 2 1406403 Seeps and Springs 2014	Inc.					Contact: Dept: QC Type	Garrin Pa WC : LCS	lmer				
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit
Lab Sample ID Test Code:	: LCS-R70795 300.0-W	Date Analyzed:	06/24/20	14 1257h									
Chloride		4.93	mg/L	E300.0	0.00623	0.100	5.000	0	98.6	90 - 110			
Fluoride		5.08	mg/L	E300.0	0.00510	0.100	5.000	0	102	90 - 110			
Sulfate		5.10	mg/L	E300.0	0.0331	0.750	5.000	0	102	90 - 110			
Lab Sample ID Test Code:	: LCS-R70641 ALK-W-2320B	Date Analyzed:	06/20/20	14 705h									
Alkalinity (as C	CaCO3)	51,000	mg/L	SM2320B	0.719	10.0	50,000	0	102	90 - 110			
Lab Sample ID Test Code:	: LCS-33164 NH3-W-350.1	Date Analyzed: Date Prepared:		014 1951h 014 1130h									
Ammonia (as N	1)	0.985	mg/L	E350.1	0.0214	0.0500	1.000	0	98.5	90 - 110			

Date Analyzed: 06/19/2014 1531h Lab Sample ID: LCS-R70616 Test Code: NO2/NO3-W-353.2 Nitrate/Nitrite (as N) 1.01 E353.2 0.00368 0.100 1.000 0 101 90 - 110 mg/L Lab Sample ID: LCS-R70736 Date Analyzed: 06/20/2014 1050h Test Code: TDS-W-2540C

2.17

SM2540C

210

mg/L

Report Date: 6/30/2014 Page 31 of 38

All analyses applicable to the CWA, SDWA. and RCRA are performed in accordance to NELAC protocols, Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the addressee, privileges of subsequent use of the company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

10.0

205.0

0

102

80 - 120

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact:

Dept:

Garrin Palmer

WC

QC Type: MBLK

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:	Energy Fuels Resources, Inc.
Lab Set ID:	1406403
Project:	Seeps and Springs 2014

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	MB-R70795 300.0-W	Date Analyzed:	06/24/201	4 1241h										
Chloride Fluoride Sulfate		< 0.100 < 0.100 < 0.750	mg/L mg/L mg/L	E300.0 E300.0 E300.0	0.00623 0.00510 0.0331	0.100 0.100 0.750								
Lab Sample ID: Test Code:	MB-R70641 ALK-W-2320B	Date Analyzed:	06/20/201	4 705h		_								
Bicarbonate (as C Carbonate (as Car	,	< 1.00 < 1.00	mg/L mg/L	SM2320B SM2320B	0.719 0.719	1_00 1_00								
Lab Sample ID: Test Code:	MB-33164 NH3-W-350.1	Date Analyzed: Date Prepared:	06/25/201 06/25/201											
Ammonia (as N)		< 0.0500	mg/L	E350.1	0.0214	0.0500								
Lab Sample ID: Test Code:	MB-R70616 NO2/NO3-W-353.2	Date Analyzed:	06/19/201	4 1530h										
Nitrate/Nitrite (as	; N)	< 0.100	mg/L	E353.2	0.00368	0.100								
Lab Sample ID: Test Code:	MB-R70736 TDS-W-2540C	Date Analyzed:	06/20/201	4 1050h	k.									
Total Dissolved S	olids	< 10.0	mg/L	SM2540C	2.17	10.0								

Report Date: 6/30/2014 Page 32 of 38

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC, Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the addressee, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact:

QC Type: MS

Dept:

Garrin Palmer

WC

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:	Energy Fuels Resources, Inc.	
Lab Set ID:	1406403	
Project:	Seeps and Springs 2014	

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	1406403-004BMS 300.0-W	Date Analyzed:	06/24/20	14 2047h										
Chloride		633	mg/L	E300.0	0.623	10.0	500.0	126	101	90 - 110				
Fluoride		518	mg/L	E300.0	0.510	10.0	500.0	0	104	90 - 110				
Sulfate		940	mg/L	E300.0	3.31	75.0	500.0	418	104	90 - 110				
Lab Sample ID: Test Code:	1406403-001BMS ALK-W-2320B	Date Analyzed:	06/20/20	14 705h	_									
Alkalinity (as Ca	CO3)	296	mg/L	SM2320B	0.719	10.0	50.00	247	98.4	80 - 120				
Lab Sample ID: Test Code:	1406404-003BMS ALK-W-2320B	Date Analyzed:	06/20/20	14 705h										
Alkalinity (as Ca	CO3)	289	mg/L	SM2320B	0.719	10.0	50.00	240	98.4	80 - 120				
Lab Sample ID: Test Code:	1406403-001DMS NH3-W-350.1	Date Analyzed: Date Prepared:	06/25/20 06/25/20											
Ammonia (as N)		0.877	mg/L	E350.1	0.0214	0.0500	1.000	0	87.7	90 - 110				1
Lab Sample ID: Test Code:	1406404-001DMS NH3-W-350.1	Date Analyzed: Date Prepared:	06/25/20 06/25/20											
Ammonia (as N)		0.981	mg/L	E350.1	0.0214	0.0500	1.000	0	98.1	90 - 110				
Lab Sample ID: Test Code:	1406403-003DMS NO2/NO3-W-353.2	Date Analyzed:	06/19/20	14 1557h										
Nitrate/Nitrite (as	5 N)	1.10	mg/L	E353.2	0.00368	0.100	1.000	0.0384	106	90 - 110				
Lab Sample ID:		Date Analyzed:	06/19/20	14 1618h										
Test Code:	NO2/NO3-W-353.2													

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Report Date: 6/30/2014 Page 33 of 38

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the addressee, privileges of subsequent use of the company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science,

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Garrin Palmer

WC

Contact:

Dept:

Kyle F. Gross Laboratory Director

Jose Rocha OA Officer

Client: Energy Fuels Resources, Inc. Lab Set ID: 1406403 Project: Seeps and Springs 2014

QC Type: MSD Reporting Amount Spike Ref. **RPD** Ref. RPD Analyte Result Units Method MDL. Limit %REC Limits % RPD Oual Spiked Amount Amt Limit Lab Sample ID: 1406403-004BMSD Date Analyzed: 06/24/2014 2103h 300.0-W Test Code: E300.0 Chloride 636 0.623 10.0 500.0 126 mg/L 102 90 - 110 633 0.453 20 Fluoride 520 mg/L E300.0 0.510 10.0 500.0 0 104 90 - 110 518 0.343 20 947 E300.0 75.0 500.0 Sulfate mg/L 3.31 418 106 90 - 110940 0.717 20 Lab Sample ID: 1406403-001BMSD Date Analyzed: 06/20/2014 705h Test Code: ALK-W-2320B SM2320B 0.719 Alkalinity (as CaCO3) 296 10.0 50.00 247 98.4 80 - 120 296 0 mg/L 10 Lab Sample ID: 1406404-003BMSD Date Analyzed: 06/20/2014 705h ALK-W-2320B Test Code: 289 SM2320B 0.719 50.00 98.4 0 Alkalinity (as CaCO3) mg/L 10.0 240 80 - 120 289 10 Lab Sample ID: 1406403-001DMSD 06/25/2014 2011h Date Analyzed: Test Code: NH3-W-350.1 Date Prepared: 06/25/2014 1130h E350.1 0 Ammonia (as N) 0.922 mg/L 0.0214 0.0500 1.000 92.2 90 - 110 0.877 5.02 10 Lab Sample ID: 1406404-001DMSD 06/25/2014 2022h Date Analyzed: Test Code: NH3-W-350.1 Date Prepared: 06/25/2014 1130h Ammonia (as N) 0.952 E350.1 0.0214 0.0500 1.000 0 95.2 90 - 110 0.981 3.03 10 mg/L Lab Sample ID: 1406403-003DMSD Date Analyzed: 06/19/2014 1559h Test Code: NO2/NO3-W-353.2 E353.2 0.00368 Nitrate/Nitrite (as N) 1.11 mg/L 0.100 1.000 0.0384 107 90 - 110 1.1 0.780 10 Lab Sample ID: 1406404-003DMSD Date Analyzed: 06/19/2014 1619h Test Code: NO2/NO3-W-353.2 E353.2 1.28 0.00368 0.100 1.000 0.258 Nitrate/Nitrite (as N) mg/L 103 90 - 110 1.32 2.64 10

Report Date: 6/30/2014 Page 34 of 38

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC, Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Kyle F. Gross Laboratory Director

Qual

Jose Rocha QA Officer

Client:	Energy Fuels Resources, I	nc.					Contact	Garrin Pa	lmer					
Lab Set ID:	1406403						Dept:	MSVOA						
Project:	Seeps and Springs 2014						QC Typ	e: LCS						
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	(
Lab Sample I Test Code:	D: LCS VOC-C 061914A 8260-W	Date Analyzed:	06/19/20	14 726h										
2		150	~	011/00/000	0.0050	0.00	20.00	0	00 ((0.107				-

Benzene	17.9	μg/L	SW8260C	0.0859	2.00	20.00	0	89.6	62 - 127
Chloroform	19.2	μg/L	SW8260C	0.626	2.00	20.00	0	96.2	67 - 132
Methylene chloride	18.5	μg/L	SW8260C	0.321	2.00	20.00	0	92.4	32 - 185
Naphthalene	16.8	μg/L	SW8260C	0.315	2.00	20.00	0	84.0	28 - 136
Tetrahydrofuran	17.1	μg/L	SW8260C	0.214	2.00	20.00	0	85.4	43 - 146
Toluene	18.0	μg/L	SW8260C	0.206	2.00	20.00	0	90.1	64 - 129
Xylenes, Total	56.0	μg/L	SW8260C	0.333	2.00	60.00	0	93.3	52 - 134
Surr: 1,2-Dichloroethane-d4	53.9	μg/L	SW8260C			50.00		108	76 - 138
Surr: 4-Bromofluorobenzene	48.6	μg/L	SW8260C			50.00		97.2	77 - 121
Surr: Dibromofluoromethane	51.4	μg/L	SW8260C			50.00		103	67 - 128
Surr: Toluene-d8	48.7	μg/L	SW8260C			50.00		97.3	81 - 135

Report Date: 6/30/2014 Page 35 of 38

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC, Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the addressee, privileges of subsequent use of the responsibility excepts for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Analyte

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:	Energy Fuels Resources, Inc.
Lab Set ID:	1406403
Project:	Seeps and Springs 2014

Lab Sample ID: MB VOC-C 061914A

	OC	SU	MM	ARY	REP	ORT
--	----	----	----	-----	-----	-----

Inc.					Contact:	Garrin Pa	lmer					
					Dept:	MSVOA						
					QC Type	e: MBLK						
Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Date Analyzed:	06/19/20	014 803h										

Test Code: 8260-W										
2-Butanone	< 20.0	μg/L	SW8260C	1.01	20.0					
Acetone	< 20.0	μg/L	SW8260C	3.62	20.0					
Benzene	< 1.00	µg/L	SW8260C	0.0859	1.00					
Carbon tetrachloride	< 1.00	μg/L	SW8260C	0.738	1.00					
Chloroform	< 1.00	μg/L	SW8260C	0.626	1.00					
Chloromethane	< 1.00	μg/L	SW8260C	0.214	1.00					
Methylene chloride	< 1.00	μg/L	SW8260C	0.321	1.00					
Naphthalene	< 1.00	μg/L	SW8260C	0.315	1.00					
Tetrahydrofuran	< 1.00	μg/L	SW8260C	0.214	1.00					
Toluene	< 1.00	μg/L	SW8260C	0.206	1.00					
Xylenes, Total	< 1.00	μg/L	SW8260C	0.333	1.00					
Surr: 1,2-Dichloroethane-d4	55.2	μg/L	SW8260C			50.00	110	76 - 138		
Surr: 4-Bromofluorobenzene	49.5	μg/L	SW8260C			50.00	99.0	77 - 121		
Surr: Dibromofluoromethane	51.4	μg/L	SW8260C			50.00	103	67 - 128		
Surr: Toluene-d8	50.1	μg/L	SW8260C			50.00	100	81 - 135		

Report Date: 6/30/2014 Page 36 of 38

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols, Pertinent sampling information is located on the attached COC Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Garrin Palmer

MSVOA

Contact: Dept:

QC Type: MS

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Cliante	Energy Evals Deservess Inc	
Client:	Energy Fuels Resources, Inc.	
Lab Set ID:	1406403	
Project:	Seeps and Springs 2014	

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1406403-001AMS Test Code: 8260-W	Date Analyzed:	06/19/201	4 1410h										
Benzene	19.0	µg/L	SW8260C	0.0859	2.00	20.00	0	94.9	66 - 145				
Chloroform	20.3	μg/L	SW8260C	0.626	2.00	20.00	0	102	50 - 146				
Methylene chloride	19.8	µg/L	SW8260C	0.321	2.00	20.00	0	98.8	30 - 192				
Naphthalene	16.2	µg/L	SW8260C	0.315	2.00	20.00	0	81.0	41 - 131				
Tetrahydrofuran	20.6	µg/L	SW8260C	0.214	2.00	20.00	0	103	43 - 146				
Toluene	19.6	µg/L	SW8260C	0.206	2.00	20.00	1.32	91.4	18 - 192				
Xylenes, Total	57.7	μg/L	SW8260C	0.333	2.00	60.00	0	96.1	42 - 167				
Surr: 1,2-Dichloroethane-d4	56.5	μg/L	SW8260C			50.00		113	72 - 151				
Surr: 4-Bromofluorobenzene	47.8	μg/L	SW8260C			50.00		95.6	80 - 128				
Surr: Dibromofluoromethane	52.7	μg/L	SW8260C			50.00		105	80 - 124				
Surr: Toluene-d8	47.6	µg/L	SW8260C			50.00		95.1	77 - 129				

Report Date: 6/30/2014 Page 37 of 38

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC, Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the addressee, privileges of subsequent use of the republication of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact:

QC Type: MSD

Dept:

Garrin Palmer MSVOA Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:	Energy Fuels Resources, Inc.
Lab Set ID:	1406403
Project:	Seeps and Springs 2014

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1406403-001AMSD Test Code: 8260-W	Date Analyzed:	06/19/201	4 1429h										
Benzene	19.0	μg/L	SW8260C	0.0859	2.00	20.00	0	95.1	66 - 145	19	0.211	25	
Chloroform	20.4	μg/L	SW8260C	0.626	2.00	20.00	0	102	50 - 146	20.3	0.295	25	
Methylene chloride	19.6	μg/L	SW8260C	0.321	2.00	20.00	0	97.9	30 - 192	19.8	0.864	25	
Naphthalene	16.4	μg/L	SW8260C	0.315	2.00	20.00	0	82.0	41 - 131	16.2	1.17	25	
Tetrahydrofuran	23.1	μg/L	SW8260C	0.214	2.00	20.00	0	116	43 - 146	20.6	11.4	25	
Toluene	19.5	μg/L	SW8260C	0.206	2.00	20.00	1.32	91.0	18 - 192	19.6	0.460	25	
Xylenes, Total	57.4	μg/L	SW8260C	0.333	2.00	60.00	0	95.6	42 - 167	57.7	0.574	25	
Surr: 1,2-Dichloroethane-d4	57.3	μg/L	SW8260C			50.00		115	72 - 151				
Surr: 4-Bromofluorobenzene	48.9	μg/L	SW8260C			50.00		97.7	80 - 128				
Surr: Dibromofluoromethane	53.4	μg/L	SW8260C			50.00		107	80 - 124				
Surr: Toluene-d8	48.6	µg/L	SW8260C			50.00		97.1	77 - 129				

Report Date: 6/30/2014 Page 38 of 38

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

American West Analytical Laboratories

WORK O	RDER Summary				Work	Order: 14	06403 Pag	ge 1 of
Client:	Energy Fuels Resources, Inc.				Due	e Date: 6/30	/2014	
Client ID:	DEN100		Contact:	Garrin Palmer				
			QC Leve		XI.	O Type: Pro	icat	
Project:	Seeps and Springs 2014		-				-	_
Comments:	PA Rush. QC 3 (Summary/No chro for Be, Fe, Pb, and Tl, and 20X for 200.8 for necessary reporting limits.	others for required 200.8	PQLs. Run 200.	.8 on the Agilent. EDD				
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	7
1406403-001A	Entrance Seep	6/17/2014 0825h	6/19/2014 0900h	8260-W Test Group: 8260-W-C	Aqueous ustom; # of Analytes: 11 / # e	of Surr: 4	VOCFridge	
1406403-001 B				300.0-W		2	df-wc	
				3 SEL Analytes: CL F S	504			
				ALK-W-2320B		\checkmark	df - wc	
				2 SEL Analytes: ALKB	ALKC			
1406403-001C				TDS-W-2540C			ww - tds	
	(**			1 SEL Analytes: TDS			10 0/ 0.0 10	
1406403-001D				NH3-W-350.1 1 SEL Analytes: NH3N			df - no2/no3 & nh3	
	0			NH3-W-PR		~	df - no2/no3 & nh3	
	1			NO2/NO3-W-353.2		v	df - no2/no3 & nh3	
				1 SEL Analytes: NO3N	O2N			
1406403-001E				200.7-DIS		\checkmark	df-met	
				5 SEL Analytes: CA MO	G K NA V			
				200.7-DIS-PR		\checkmark	df-met	
				200.8-DIS 17 SEL Analytes: AS B. TL SN U ZN	E CD CR CO CU FE PB MN	MO NI SE AG	df-met	
	1			200.8-DIS-PR			df-met	
	1			HG-DW-DIS-245.1			df-met	
				1 SEL Analytes: HG				
				HG-DW-DIS-PR			df-met	
	·			IONBALANCE		\checkmark	df-met	
				5 SEL Analytes: BALA	NCE Anions Cations TDS-Bo	alance TDS-Cal	с	
1406403-002A	Ruin Spring	6/17/2014 0925h	6/19/2014 0900h	8260-W Test Group: 8260-W-C	Aqueous Sustom; # of Analytes: 11 / #	of Surr: 4	VOCFridge	
1406403-002B	4			300.0-W		~	df - wc	
				3 SEL Analytes: CL F S	SO4			
				ALK-W-2320B		\checkmark	df-wc	
				2 SEL Analytes: ALKB	ALKC			_

UL Denison

WORK O	RDER Summary				Work Order:	14(06403 г	Page 2 of 2
Client:	Energy Fuels Resources, Inc.				Due Date:	6/30/	/2014	
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	
1406403-002C	Ruin Spring	6/17/2014 0925h	6/19/2014 0900h	TDS-W-2540C 1 SEL Analytes: TDS	Aqueous	~	ww - tds	
1406403-002D				NH3-W-350.1 I SEL Analytes: NH3N		•	df - no2/no3 & nh3	1
	14			NH3-W-PR		~	df - no2/no3 & nh3	5
				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N	1		df-no2/no3 & nh3	5
1406403-002E				200.7-DIS 5 SEL Analytes: CA MG K			df-met	
				200.7-DIS-PR		V	df-met	
				200.8-DIS		V	df-met	
				17 SEL Analytes: AS BE CL TL SN U ZN	D CR CO CU FE PB MN MO NI S	EAG		
				200.8-DIS-PR		V	df-met	
				HG-DW-DIS-245.1		\checkmark	df-met	
				1 SEL Analytes: HG		1.2	10	
				HG-DW-DIS-PR IONBALANCE		V	df-met	
					Anions Cations TDS-Balance TD			
1406403-003A	Cottonwood Spring	6/17/2014 1010h	6/19/2014 0900h	8260-W	Aqueous		VOCFridge	
1406403-003B				300.0-W	m; # of Analytes: 11 / # of Surr: 4	V	df - wc	
1400405-005D				3 SEL Analytes: CL F SO4		(E)	ur no	
				ALK-W-2320B		V	df - wc	
				2 SEL Analytes: ALKB ALI	KC			
1406403-003C				TDS-W-2540C		V	ww - tds	
				1 SEL Analytes: TDS				
1406403-003D				NH3-W-350.1		V	df - no2/no3 & nh3	ļ
				1 SEL Analytes: NH3N NH3-W-PR			df - no2/no3 & nh3	3
		3		N02/N03-W-353.2			df - no2/no3 & nh3	
				I SEL Analytes: NO3NO21	V			
1406403-003E				200.7-DIS		V	df-met	
				5 SEL Analytes: CA MG K	NA V			
				200.7-DIS-PR		V	df-met	
				200.8-DIS		V	df-met	
				TL SN U ZN	D CR CO CU FE PB MN MO NI S			
				200.8-DIS-PR		Y	df-met	
				HG-DW-DIS-245.1		~	df-met	
				1 SEL Analytes; HG				

*

WORK O	RDER Summary					Work Order:	14(06403 Page	e3 of3
Client:	Energy Fuels Resources, Inc.					Due Date:	6/30/	/2014	
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix		Sel	Storage	
1406403-003E	Cottonwood Spring	6/17/2014 1010h	6/19/2014 0900h	HG-DW-DIS-PR	Aqueous		~	df-met	1
				IONBALANCE			V	df-met	
				5 SEL Analytes: BALA	ANCE Anions Cation	s TDS-Balance TDS	-Calc		
1406403-004A	Back Spring	6/17/2014 1010h	6/19/2014 0900h	8260-W	Aqueous		~	VOCFridge	:
				Test Group: 8260-W-	Custom; # of Analyte	es: 11 / # of Surr: 4			
1406403-004B				300.0-W			V	df-wc	
				3 SEL Analytes: CL F	' SO4				
				ALK-W-2320B			V	df - wc	
				2 SEL Analytes: ALKI	B ALKC				-
1406403-004C				TDS-W-2540C			\checkmark	ww - tds	
				1 SEL Analytes: TDS					
1406403-004D				NH3-W-350.1			~	df - no2/no3 & nh3	
				1 SEL Analytes; NH3)	N				
				NH3-W-PR			V	df - no2/no3 & nh3	
				NO2/NO3-W-353.2			~	df - no2/no3 & nh3	
				1 SEL Analytes: NO3.	NO2N				
1406403-004E				200.7-DIS			V	df-met	
				5 SEL Analytes: CA M	IG K NA V				
				200.7-DIS-PR			V	df-met	
				200.8-DIS			V	df-met	
				17 SEL Analytes: AS L TL SN U ZN	BE CD CR CO CU I	FE PB MN MO NI SI	EAG		
				200.8-DIS-PR			~	df-met	
				HG-DW-DIS-245.1			~	df-met	
				1 SEL Analytes: HG					
				HG-DW-DIS-PR		_	~	df-met	
				IONBALANCE			~	df-met	
				5 SEL Analytes: BAL	ANCE Anions Cation	s TDS-Balance TDS	S-Calc		
1406403-005A	Trip Bank	6/17/2014	6/19/2014 0900h	8260-W Test Group: 8260-W-	Aqueous	nn: 11/# of Summer 4		VOCFridge	3

Analytical Labora 463 W. 3600 S. Salt Lake City,	American West Analytical Laboratories 463 W. 3600 S. Salt Lake City, UT 84115 Phone # (801) 263-8686 Toll Free # (888) 263-8686							ng NEL	AP acc	redited	method	ls and a	ll data v	vill be n	DDY aported using AWAL's standard analyte lists and Custody and/or attached documentation.	AWAL Lab Sample Set # Page 1 of 1
	Fax # (801) 263-8687 Email awal@awal-labs.com www.awal-labs.com					Level: 3	1			Turi		und T Idard	'ime:		Unless other arrangements have been made, signed reports will be emailed by 5:00 pm on the day they are due,	Due Date: G/3 8/14
Client: Energy Fuels Resources, Inc. Address: 6425 S. Hwy. 191 Blanding, UT 84511 Blanding, UT 84511 Contact: Garrin Palmer Phone #: (435) 678-2221 Email: galmer@energyfuels.com Project Name: Seeps and Springs 2014 Project #: PO #: Sampler Name: Garrin Palmer	ls.com; Date	Time	if Containers	Sample Matrix	NO2/NO3 (353.2)	NH3 (4500G or 350.1)	, Cl, SO4 (4500 or 300.0)	TDS (2540C)	Carb/Bicarb (2320B)	Dissolved Metals (200.7/200.8/245.1)	As, Be, Cd, Cr, Co, Cu, Fe, Pb, Mn, Hg, Mo,	Ni, Se, Ag, Tl, Sn, U, V, Zn, Na, K, Mg, Ca	n Balance	VOCs (8260C)	X Include EDD: LOCUS UPLOAD EXCEL X Field Filtered For: Dissolved Metals For Compliance With: NELAP RCRA CWA SDWA ELAP / A2LA NLLAP Non-Compliance Other: Known Hazards &	Laboratory Use Only Sumples Were: 1 Shipped of hand belivered 2 Actionet & Stiller 3 Temperature 3+0 % 4 Reserved Brokantunking (unpropenty Preserved 5 Property Preserved 6 Reserved Within Highing Times 3 %
Sample ID: Entrance Seep Mc cl27/14	Sampled 6/17/2014	Sampled 825	jo #	Sar M	X	IN X	X FI,	X	с Х	Ä	x	x	Гол Х	X	Sample Comments	U
Ruin Spring	6/17/2014	925	7	w	x	x	X	x	x	x	x	x	x	x		
Cottonwood Spring	6/17/201	1010	7	w	x	x	x	x	x	x	x	x	x	x		CDC Tape Was: 1 Present dit Outer Packäge
Back Spring	6/17/2014	1010	7	w	x	x	x	x	x	x	x	x	x	x		O N NA
Trip Blank	6/17/2014		3	w					-					x		2 Unbroken bin Duter Package
7 Temp Blank																Present on Sample N O
2 2									-							N N
1				Н												× O
		Received by Signature						, 9	1		Dist Time.	19	1	<u> </u>	Special Instructions:	
Relinquished by: Signature	Inqueshed by: Date: Received by: anature Signature Signature Inter-			14	7	cule	4				Date: Time:	<u>v1</u>	0(1		Sample containers for metals w Analytical Scope of Work for Re list.	rere field filtered. See the eporting Limits and VOC analyte
Relinquished by: Signature Prini Nama;	utshed by: Date: Received by: ure Signature Time:				-					_	Date: Time;	_	*Sample ID should be E per Kathy Weinel via ema			l be Entrance Seep lia email 4/22/14 mc
Relinquished by. Signature	Date: Fime:	Received by: Signature Print Name:		_			-				Date: Time:					

Lab Set ID: 140 6403

Preservation Check Sheet

Sample Set Extension and pH

Analysis	Preservative	1	2	3	4									
Ammonia	pH <2 H ₂ SO ₄	Ves	V5	Yes	Ves									
COD	pH <2 H ₂ SO ₄	1	-7	1	6									
Cyanide	pH >12 NaOH													
Metals	pH <2 HNO ₃	Yes	Yes	Ves	Ves									
NO ₂ & NO ₃	pH <2 H ₂ SO ₄	Ves	1/es	Ves	Ves									
0&G	pH <2 HCL	/	1	/	/			 						
Phenols	pH <2 H ₂ SO ₄				-									
Sulfide	pH > 9NaOH, Zn Acetate													
TKN	pH <2 H ₂ SO ₄											_		
T PO ₄	pH <2 H ₂ SO ₄													
										2				
	i.						Q							
													1	
					1				1					
										-	 			

Procedure:

Pour a small amount of sample in the sample lid 1)

2) Pour sample from Lid gently over wide range pH paper

3) 4) Do Not dip the pH paper in the sample bottle or lid

If sample is not preserved, properly list its extension and receiving pH in the appropriate column above

5) Flag COC, notify client if requested

6) Place client conversation on COC

7) Samples may be adjusted

Frequency: All samples requiring preservation

- The sample required additional preservative upon receipt. *
- The sample was received unpreserved +
- The Sample was received unpreserved and therefore preserved upon receipt.
- # The sample pH was unadjustable to a pH < 2 due to the sample matrix
- The sample pH was unadjustable to a pH > _____ due to the sample matrix interference ٠

a member of The GEL Group INC

-P0 Box 30712 2040 Savage Road P 843,556.8171 F 843.766.1178

www.gel.com

July 16, 2014

Ms. Kathy Weinel Energy Fuels Resources (USA), Inc. 225 Union Boulevard Suite 600 Lakewood, Colorado 80228

Re: GW Monitoring Project Work Order: 351092

Dear Ms. Weinel:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on June 20, 2014. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4505.

Sincerely,

Neatter Shaffer

Heather Shaffer Project Manager

Purchase Order: DW16138 Enclosures

Receipt Narrative for Energy Fuels Resources (USA), Inc. SDG: 351092

July 16, 2014

Laboratory Identification:

GEL Laboratories LLC 2040 Savage Road Charleston, South Carolina 29407 (843) 556-8171

Summary:

Sample receipt: The samples arrived at GEL Laboratories LLC, Charleston, South Carolina on June 20, 2014 for analysis.

Sample Identification: The laboratory received the following samples:

Client ID
Enterance Seep
Ruin Spring
Cottonwood Spring
Back Spring

Case Narrative:

Sample analyses were conducted using methodology as outlined in GEL's Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

The enclosed data package contains the following sections: Case Narrative, Chain of Custody, Cooler Receipt Checklist, Data Package Qualifier Definitions and data from the following fractions: Radiochemistry.

Neatter Shaffer

Heather Shaffer Project Manager

351092

CHAIN OF CUSTODY

Samples Shipped to:

Gel Laboratories 2040 Savage Road Charleston, SC 29407

Contact: Garrin Palmer Ph: 435 678 4115 gpalmer@energyfuels.com

Chain of Custody/Sampling Analysis Request

Project		Samplers	Name Samp	Samplers Signature		
Seeps and Springs 2014		Tanner Ho	Iliday Jann	er Holliday		
Sample ID Enterance Seep Ruin Spring Cottonwood Spring Back Spring	Date Collected 6/17/2014 6/17/2014 6/17/2014 6/17/2014 6/17/2014		Gross Alpha Gross Alpha	aquested		
Participation and and a	wincer,		Gross Alpha			
Comments:						
Relinquished By (Signature)	11	Date/Time 6/19/2014 1200	Chals Jaunher	Date/Time 6-20-1 6'.50		
Relinquished By:(Signature)	1	Date/Time	Received By:(Signature)	Date/Time		

GEL Laboratories LLC

SAMPLE RECEIPT & REVIEW FORM

Cli	ent: DOM			SI	DG/AR/COC/Work Order: 351092 351093			
Rec	cived By: C. ZUrchar			D	ate Received: 0102014			
Sus	pected Hazard Information	Yes	No	*I jn	*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.			
_	C/Samples marked as radioactive?		2	М	Maximum Net Counts Observed* (Observed Counts - Area Background Counts):			
_	sified Radioactive II or III by RSO?		2	ĺf	f yes, Were swipes taken of sample contatiners < action levels?			
	2/Samples marked containing PCBs?		1	Ľ				
	kage, COC, and/or Samples marked as		1	t.				
-	llium or asbestos containing?		Ē		yes, samples are to be segregeated as Safety Controlled Samples, and opened by the GEL Safety Group. Azard Class Shipped: UN#:			
-	ples identified as Foreign Soil?		F		azard Class Shipped: UN#:			
_		1 0						
_	Sample Receipt Criteria	Yes	NA	vz	Circle Applicable:			
1	Shipping containers received intact and sealed?		1		Seals broken Damaged container Leaking container Other (describe)			
2	Samples requiring cold preservation within $(0 \le 6 \text{ deg. C})$?*		Ē		Preservation Method: (Ice bags) Blue ice Dry ice None Other (describe) *all temperatures are recorded in Celsius			
a	Daily check performed and passed on IR temperature gun?		-		Temperature Device Serial #: \200629 (CC) Secondary Temperature Device Serial # (If Applicable):			
3	Chain of custody documents included with shipment?		1 1 1 (1)					
1	Sample containers intact and sealed?	/			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)			
5	Samples requiring chemical preservation at proper pH?		/		Sample ID's, containers affected and observed pH: If Preservation added, Lot#:			
5	VOA vials free of headspace (defined as < 6mm bubble)?		/	,	Sample ID's and containers affected:			
'	Are Encore containers present?			/	(If yes, immediately deliver to Volatiles laboratory)			
	Samples received within holding time?	/			ID's and tests affected:			
	Sample ID's on COC match ID's on bottles?	/	ĺ,		Sample ID's and containers affected:			
	Date & time on COC match date & time on bottles?				Sample ID's affected:			
	Number of containers received match number indicated on COC?	7			Sample ID's affected:			
	Are sample containers identifiable as GEL provided?		9	/				
	COC form is properly signed in relinquished/received sections?	/						
					Circle Applicable: FedEx Air FedEx Ground UPS Field Services Courier Other			
	Carrier and tracking number.				8032 7121 5762			
					8032 7121 57162			

PM (or PMA) review: Initials ______ Date _____ Date _____ Page _____

1.0

of

GEL Laboratories LLC - Login Review Report

GEL Work Order/SDG:	351092	Seeps and Springs 2014
Client SDG:	351092	
Project Manager:	Heather Sha	affer
Project Name:	DNMI00106	GW Monitoring Project
Purchase Order:	DW16138	
Package Level:	LEVEL3	
EDD Format:	EIM_DNMI	

Work Order Due Date:	18-JUL-14
Package Due Date:	15-JUL-14
EDD Due Date:	18-JUL-14
Due Date:	18-JUL-14
HXS1	

Work Order: 351092 Page 1 of 2 Collector: C Prelogin #: 20140618042

Report Date: 16-JUL-14

1.1

14

Prelogin #: 2014061804 Project Workdef ID: 1329132 SDG Status: Closed Logged by:

GEL ID	Client Sampl	le ID	Client Sample Desc.	Collect Date & Time	Receive Date & Time	Time Zone	# of Cont.	Lab Matrix	Fax Due Date	Days to Process	CofC #	Prelog Group	Lab Field QC QC
351092001	Enterance See	D		17-JUN-14 08:25	20-JUN-14 08:	i0 -2	1	GROUND WATER		20		1	
351092002	Ruin Spring			17-JUN-14 09:25	20-JUN-14 08:	60 -2	1	GROUND WATER		20		1	
351092003	Cottonwood Sp	ring		17-JUN-14 10:10	20-JUN-14 08:	i0 -2	1	GROUND WATER		20		1	
351092004	Back Spring			17-JUN-14 10:10	20-JUN-14 08:	i0 -2	1	GROUND WATER		20		1	
Client	Sample ID	Status	s Tests/Methods	Product Reference	Fax Date	PM Com	ments		A	ux Data			Receive Codes
-001 Enterar	nce Seep	REVW		Gross Alpha				Temperature	: (C)	5			
-002 Ruin Sj	pring	REVW		Gross Alpha				Temperature	e (C)	5			
-003 Cotton	wood Spring	REVW		Gross Alpha				Temperature	e (C)	5			
-004 Back S	pring	REVW	Liquid GFPC, Total Alpha Radium, Liquid	Gross Alpha				Temperature	• (C)	5			
Product: G	GFCTORAL	Workde	f ID: 1329138	In Product Group? N	o Group Na	me:		Group	Reference:				
Product	Method: Description: Samples:	GFPC, T	0.1 Modified Total Alpha Radium, Liquid , 003, 004						F		dard ference: Gross orrection: "As l		
Parm	name Check:	All parm	names scheduled properly		Client R	DL or	F	Reporting Par	m Inclue	led Inciu	Ided Custom		
CAS #	#	Parmna	me		PQL &	Unit		Units Func				_	
		Gross R	adium Alpha		1			pCi/L RE	G Y	Y	(No		

Action Product Name Description

Samples

Contingent Tests

		ies LLC – Login Review Report					
Login Requiremer	nts: Requirement						
Peer Review by:		Work Order (SDG#), PO# Checked?	C of C signed in rece	ver location?		
			-				
	-						

1.2

Radiochemistry Case Narrative Energy Fuels Resources (DNMI) SDG 351092

Method/Analysis Information

Product:	GFPC, Total Alpha Radium, Liquid
Analytical Method:	EPA 900.1 Modified
Analytical Batch Number:	1399658

Sample ID	Client ID
351092001	Enterance Seep
351092002	Ruin Spring
351092003	Cottonwood Spring
351092004	Back Spring
1203118534	Method Blank (MB)
1203118535	351092001(Enterance Seep) Sample Duplicate (DUP)
1203118536	351092001(Enterance Seep) Matrix Spike (MS)
1203118537	351092001(Enterance Seep) Matrix Spike Duplicate (MSD)
1203118538	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-010 REV# 15.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solutions for these analysis are NIST traceable or verified with a NIST traceable standard and used before the expiration dates.

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 351092001 (Enterance Seep).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Chemical Recoveries

All chemical recoveries meet the required acceptance limits for this sample set.

Recounts

None of the samples in this sample set were recounted.

Miscellaneous Information:

Data Exception (DER) Documentation

Data exception reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A data exception report (DER) was not generated for this SDG.

Sample-Specific MDA/MDC

The MDA/MDC reported on the certificate of analysis is a sample-specific MDA/MDC.

Additional Comments

The matrix spike and matrix spike duplicate, 1203118536 (Enterance Seep) and 1203118537 (Enterance Seep), aliquots were reduced to conserve sample volume.

Qualifier Information

Manual qualifiers were not required.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Qualifier Definition Report for

DNMI001 Energy Fuels Resources (USA), Inc.

Client SDG: 351092 GEL Work Order: 351092

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the CRDL.

Review/Validation

GEL requires all analytical data to be verified by a qualified data reviewer. In addition, all CLP-like deliverables receive a third level review of the fractional data package.

The following data validator verified the information presented in this data report:

Stor Lal It Signature:

Name: Kate Gellatly

Date: 16 JUL 2014

Title: Analyst I

GEL LABORATORIES LLC

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: July 16, 2014

Page 1 of

Energy Fuels Resources (USA), Inc. 225 Union Boulevard Suite 600 Lakewood, Colorado Ms. Kathy Weinel

Workorder: 351092

Contact:

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Gas Flow Batch 1399658									
QC1203118535 351092001 DUP									
Gross Radium Alpha	U	0.659	U	0.760	pCi/L	N/A		N/A CXP3	07/13/14 17:0
	Uncertainty	+/-0.184		+/-0.175					
QC1203118538 LCS									
Gross Radium Alpha	555			548	pCi/L		98.6	(75%-125%)	07/13/14 17:0
	Uncertainty			+/-4.62					
QC1203118534 MB									
Gross Radium Alpha			U	0.158	pCi/L				07/13/14 17:0
	Uncertainty			+/-0.122					
QC1203118536 351092001 MS									
Gross Radium Alpha	2240 U	0.659		2270	pCi/L		101	(75%-125%)	07/13/14 17:0
	Uncertainty	+/-0.184		+/-19.0					
QC1203118537 351092001 MSD									
Gross Radium Alpha	2240 U	0.659		2160	pCi/L	4.79	96.6	(0%-20%)	07/13/14 17:0
	Uncertainty	+/-0.184		+/-18.1					

Notes:

Counting Uncertainty is calculated at the 68% confidence level (1-sigma). The Qualifiers in this report are defined as follows:

- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- F Estimated Value
- H Analytical holding time was exceeded
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- M M if above MDC and less than LLD
- M Matrix Related Failure
- N/A RPD or %Recovery limits do not apply.
- N1 See case narrative
- ND Analyte concentration is not detected above the detection limit

GEL LABORATORIES LLC

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workor	der: 351092										Pag	e 2 of
Parmnar	me	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time
NJ	Consult Case Narrative, Dat	a Summary packag	e, or Project	Manager c	concerning	this qualifi	er					
Q	One or more quality control	criteria have not be	en met. Refe	r to the ap	plicable na	rrative or l	DER.					
R	Sample results are rejected											
U	Analyte was analyzed for, b	ut not detected abov	ve the CRDL									
UI	Gamma SpectroscopyUnce	ertain identification										
UJ	Gamma SpectroscopyUnce	ertain identification										
UL	Not considered detected. Th	e associated numbe	er is the repor	ted concer	ntration, wł	nich may b	e inaccurate	due to a low	bias.			
Х	Consult Case Narrative, Dat	a Summary packag	e, or Project	Manager c	concerning	this qualifi	er					
Y	QC Samples were not spiked	d with this compour	nd									
^	RPD of sample and duplicat	e evaluated using +	-/-RL. Conce	entrations a	are <5X the	RL. Qua	lifier Not Ap	plicable for 1	Radiochem	istry.		
h	Preparation or preservation I	holding time was ex	ceeded									
^ The Re five time RL is us	icates that spike recovery lim elative Percent Difference (R es (5X) the contract required to evaluate the DUP result tes that a Quality Control par	PD) obtained from detection limit (RL t.	the sample di). In cases wh	uplicate (I nere either	DUP) is ev	aluated aga	ainst the acce	ptance criter	ia when the	e sample is	s greater	

* Indicates that a Quality Control parameter was not within specifications. For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Tab E

Quality Assurance and Data Validation Tables

	Required Holding Time	Entrance Seep	Cottonwood Spring	Ruin Spring	Back Spring (duplicate of Cottonwood Spring)
Major Ions					
Carbonate	14 days	OK	ОК	ОК	OK
Bicarbonate	14 days	OK	OK	OK	OK
Calcium	6 months	OK	OK	ОК	OK
Chloride	28 days	OK	ОК	ОК	OK
Fluoride	28 days	OK	OK	OK	OK
Magnesium	6 months	OK	OK	ОК	OK
Nitrogen-Ammonia	28 days	OK	OK	OK	OK
Nitrogen-Nitrate	28 days	OK	OK	ОК	OK
Potassium	6 months	OK	OK	OK	OK
Sodium	6 months	OK	OK	OK	OK
Sulfate	28 days	OK	OK	ОК	OK
pH (s.u.)	N/A	OK	OK	OK	OK
TDS	7 days	OK	OK	OK	OK
Metals	6 months (except mercury which is 28 days)	OK	OK	ОК	ОК
Radiologics	6 months	OK	OK	OK	OK
VOCS (including THF)	14 days	OK	ОК	ОК	OK

Table E-1 Holding Time Evaluation

* - Corral Spring, Corral Canyon, and Westwater Seep were all dry during the quarter and no samples were collected.

Work Order Number/Lab Set ID	Receipt Temp
AWAL - 1406403	3.0°C
GEL - 351092	N/A

E-2 Laboratory Receipt Temperature Check

N/A = These shipments contained samples for the analysis of Gross Alpha only. Per Table 1 in the approved QAP, samples submitted for Gross Alpha analyses do not have a sample temperature requirement.

Parameter	QAP/Permit Method	Method Used by Lab		
Ammonia (as N)	A4500-NH3 G or E350.1	E350.1		
Nitrate + Nitrite (as N)	E 353.1 or E353.2	E353.2		
Metals	E 200.7 or E200.8	E200.7, E200.8		
Mercury	E200.7 or E200.8 or E245.1	E245.1		
Gross Alpha	E900.0 or E900.1	E900.1		
VOCs	SW8260B or SW8260C	SW8260C		
Chloride	A4500-Cl B, A4500-Cl E, or E300.0	E300.0		
Fluoride	A4500-F C or E300.0	E300.0		
Sulfate	A4500-SO4 E or E300.0	E300.0		
TDS	A2540C	A2540C		
Carbonate as CO3, Bicarbonate as HCO3	A2320B	A2320B		
Calcium, Magnesium, Potassium, Sodium	E200.7	E200.7		

E-3: Analytical Method Check - Routine Samples

E-4 Reporting Limit Eva Parameter				
	Permit-Specified RL			
Ammonia (as N)	25 mg/L			
Nitrate + Nitrite (as N)	10 mg/L			
Arsenic Metals ug/L	50			
Beryllium	4			
Cadmium				
Chromium	5			
Cobalt	100			
	730			
Copper	1300			
Iron	11000			
Lead	15			
Manganese	800			
Mercury	2			
Molybdenum	40			
Nickel	100			
Selenium	50			
Silver	100			
Thallium	2			
Tin	17000			
Uranium	30			
Vanadium	60			
Zinc	5000			
Gross Alpha	15			
VOCs ug/L				
Acetone	700			
Benzene	5			
Carbon tetrachloride	5			
Chloroform	70			
Chloromethane	30			
MEK	4000			
Methylene Chloride	5			
Naphthalene	100			
Tetrahydrofuran	46			
Toluene	1000			
Xylenes	10000			
Major Ions mg/L				
Chloride	1			
Fluoride	4			
Sulfate	1			
TDS	10			
Carbonate as CO3, Bicarbonate as HCO3	Not Specified			
Calcium, Magnesium, Potassium, Sodium	Not Specified			

E-4 Reporting Limit Evaluation

All analyses were reported to the required RLs unless noted in the text.

E-5: Trip Blank Evaluation

The trip blank for the 2014 sampling program was nondetect.

Blank	Sample Date	Laboratory		
1	6/17/2014	AWAL		

Major Ions (mg/l)	Cottonwood Spring	Back Spring (Duplicate of Cottonwood Spring)	RPD 9
Carbonate	<1	<1	N/C
Bicarbonate	251	218	14.1
Calcium	99.7	91.4	8.7
Chloride	128	127	0.8
Fluoride	<1	<1	N/C
Magnesium	29	27.1	6.8
Nitrogen-Ammonia	< 0.05	<0.05	N/C
Nitrogen-Nitrate	<0.1	<0.1	N/C
Potassium	6.18	6.04	2.3
Sodium	227	214	5.9
Sulfate	417	418	0.2
TDS	968	1000	3.3
Metals (ug/l)			
Arsenic	<5	<5	N/C
Beryllium	<0.5	<0.5	N/C
Cadmium	<0.5	<0.5	N/C
Chromium	<25	<25	N/C
Cobalt	<10	<10	N/C
Copper	<10	<10	N/C
Iron	<30	<30	N/C
Lead	<1.0	<1.0	N/C
Manganese	<10	<10	N/C
Mercury	<0.5	<0.5	N/C
Molybdenum	<10	<10	N/C
Nickel	<20	<20	N/C
Selenium	<5	<5	N/C
Silver	<10	<10	N/C
Thallium	<0.5	<0.5	N/C
Tin	<100	<100	N/C
Uranium	9.62	9.24	4.0
Vanadium	<15	<15	N/C
Zinc	<10	<10	N/C
Radiologics (pCi/l)			
Gross Alpha	<1.0	<1.0	N/C
VOCS (ug/L)			
Acetone	ND	ND	N/C
Benzene	ND	ND	N/C
Carbon tetrachloride	ND	ND	N/C
Chloroform	ND	ND	N/C
Chloromethane	ND	ND	N/C

E-6 Duplicate Sample Relative Percent Difference

Major Ions (mg/l)	Cottonwood Spring	Back Spring (Duplicate of Cottonwood Spring)	RPD %
MEK	ND	ND	N/C
Methylene Chloride	ND	ND	N/C
Naphthalene	ND	ND	N/C
Tetrahydrofuran	ND	ND	N/C
Toluene	ND	ND	N/C
Xylenes	ND	ND	N/C

E-6 Duplicate Sample Relative Percent Difference

N/C = Not Calculated

Sample ID	Gross Alpha minus Rn & U	Gross Alpha minus Rn & U Precision (±)	Counting Error ≤ 20%	GWQS	Within GWQS
Entrance Seep	ND	N/A	N/A	15	N/A
Westwater Seep	NS	NS	N/A	15	N/A
Cottonwood					
Spring	ND	N/A	N/A	15	N/A
Ruin Spring	ND	N/A	N/A	15	N/A
Back Spring					
(duplicate of					
Cottonwood					
Spring)	ND	N/A	N/A	15	N/A

E-7 Radiologics Counting Error

N/A - The sample results are all non-detect and the QAP required checks are not applicable.

NS - Westwater Seep was dry and not sampled in 2014

E-8: Laboratory Matrix QC

Lab Report	Well	Analyte	MS %REC	MSD %REC	REC Range	RPD
1406403	Entrance Seep	Magnesium	66.5	43.9	70 - 130	5.60
1406403	Entrance Seep	Calcium*	NC	NC	70 - 130	NC
1406403	Entrance Seep	Sodium*	NC	NC	70 - 130	NC
1406403	N/A	Calcium*	NC	NC	70 - 130	NC
1406403	N/A	Sodium*	NC	NC	70 - 130	NC
1406403	N/A	Arsenic	113	135	75-125	17.6
1406403	N/A	Beryllium	106	134	75-125	23.3
1406403	N/A	Cadmium	98.9	125	75-125	22.9
1406403	N/A	Lead	96.6	122	75-125	23.2
1406403	N/A	Molybdenum	107	140	75-125	24.5
1406403	N/A	Selenium	123	144	75-125	15.8
1406403	N/A	Silver	93.4	117	75-125	22.5
1406403	N/A	Thallium	91.2	113	75-125	21.7
1406403	N/A	Uranium	100	126	75-125	22.6
1406403	Entrance Seep	Ammonia (as N)	87.7	92.2	90-110	5.02

Matrix Spike % Recovery Comparison

* Recovery was not calculated as the analyte level in the sampe was greater than 4 times the spike amount

N/A - MS/MSD not an EFRI Sample

Laboratory Duplicate % Recovery Comparison

Lab Report	Well	Analyte	Sample Result (mg/L)	Duplicate Result	RPD %	RPD Range %
1406403	Entrance Seep	Total Dissolved Solids	728	688	5.65	5
1406403	N/A	Total Dissolved Solids	4610	4980	7.59	5

N/A - MS/MSD not an EFRI Sample

Surrogate % Recovery

All surrogate recoveries were within the laboratory established acceptance limits.

Method/Laboratory Reagent Blank detections

No analytes were detected in the laboratory blanks.

Tab F

CSV Transmittal

Kathy Weinel

From:	Kathy Weinel
Sent:	Tuesday, October 21, 2014 10:44 AM
То:	Rusty Lundberg
Cc:	'Phillip Goble'; 'Dean Henderson'; Harold Roberts; David Frydenlund; David Turk; Dan Hillsten; Jaime Massey; Scott Bakken
Subject: Attachments:	Transmittal of CSV Files White Mesa Mill 2014 Seeps and Springs Monitoring 351092.csv; 1406403-EDD.csv

Mr. Lundberg,

Attached to this e-mail are electronic copies of laboratory results for annual seeps and springs monitoring conducted at the White Mesa Mill during 2014, in Comma Separated Value (CSV) format.

Please contact me at 303-389-4134 if you have any questions on this transmittal,

Yours Truly

Kathy Weinel