

August 26, 2013

Sent VIA OVERNIGHT DELIVERY

Mr. Rusty Lundberg Division of Radiation Control Utah Department of Environmental Quality 195 North 1950 West P.O. Box 144850 Salt Lake City, UT 84114-4820

Re: Transmittal of 2nd Quarter 2013 Nitrate Monitoring Report Stipulation and Consent Order Docket Number UGW12-04 White Mesa Uranium Mill

Dear Mr. Lundberg:

Enclosed are two copies of the White Mesa Uranium Mill Nitrate Monitoring Report for the 2nd Quarter of 2013 as required by the Stipulation and Consent Order Docket Number UGW12-04, as well as two CDs each containing a word searchable electronic copy of the report.

If you should have any questions regarding this report please contact me.

Yours very truly,

alm Luchler

ENERGY FUELS RESOURCES (USA) INC. Jo Ann Tischler Manager, Compliance and Licensing

cc: David C. Frydenlund Dan Hillsten Harold R. Roberts David E. Turk Katherine A. Weinel Central Files

White Mesa Uranium Mill

Nitrate Monitoring Report

State of Utah Stipulated Consent Agreement, January 2009 Docket No. UGW09-03

> 2nd Quarter (April through June) 2013

> > Prepared by:

Energy Fuels Resources (USA) Inc. 225 Union Boulevard, Suite 600 Lakewood, CO 80228

August 26, 2013

TABLE OF CONTENTS

1.0		ODUCTION1
2.0	GRO	UNDWATER NITRATE MONITORING1
2.1	San	ples and Measurements Taken During the Quarter
2	2.1.1	Nitrate Monitoring
2	2.1.2	Parameters Analyzed
2	.1.3	Groundwater Head and Level Monitoring
2.2	San	pling Methodology and Equipment and Decontamination Procedures 4
2	.2.1	Well Purging, Sampling and Depth to Groundwater
2.3	1992-010-01991-019	d Data 5
2.4	Dep	oth to Groundwater Data and Water Table Contour Map
2.5	Lab	oratory Results
2	.5.1	Copy of Laboratory Results
2	.5.2	Regulatory Framework6
3.0	QUAI	LITY ASSURANCE AND DATA VALIDATION 6
3.1	Fiel	d QC Samples 6
3.2	Adh	herence to Mill Sampling SOPs7
3.3		lyte Completeness Review7
3.4	Data	a Validation7
	.4.1	Field Data QA/QC Evaluation7
	.4.2	Holding Time Evaluation
	.4.3	Receipt Temperature Evaluation
	.4.4	Analytical Method Checklist9
	.4.5	Reporting Limit Evaluation9
	.4.6	QA/QC Evaluation for Sample Duplicates
	.4.7	Rinsate Check
	.4.8	Other Laboratory QA/QC
4.0		RPRETATION OF DATA 10
4.1		rpretation of Groundwater Levels, Gradients and Flow Directions 10
	.1.1	Current Site Groundwater Contour Map 10
4	.1.2	Comparison of Current Groundwater Contour Map to Groundwater Contour Map
		for Previous Quarter12
	.1.3	Hydrographs13
	.1.4	Depth to Groundwater Measured and Groundwater Elevation
4.2		ectiveness of Hydraulic Containment and Capture
	.2.1	Hydraulic Containment and Control
	.2.2	Current Nitrate and Chloride Isoconcentration Maps14
		mparison of Areal Extent 14
	.2.4	Nitrate and Chloride Concentration Trend Data and Graphs
	.2.5	Interpretation of Analytical Data
4.3		mation of Pumped Nitrate Mass and Residual Nitrate Mass within the Plume
		16
5.0		G TERM PUMP TEST AT TWN-02, TW4-22, TW4-24, and TW4-25
		RATIONS REPORT
5.1		oduction
5.2	Pun	nping Well Data Collection

5.3	Water Level Measurements	18
5.4	Pumping Rates and Volumes	18
6.0	CORRECTIVE ACTION REPORT	19
6.1	Assessment of Previous Quarter's Corrective Actions	19
7.0	CONCLUSIONS AND RECOMMENDATIONS	19
8.0	ELECTRONIC DATA FILES AND FORMAT	21
9.0	SIGNATURE AND CERTIFICATION	22

LIST OF TABLES

Table 1	Summary of Well Sampling and Constituents for the Period
Table 2	Nitrate Mass Removal Per Well Per Quarter
Table 3	Nitrate Well Pumping Rates and Volumes
Table 4	Quarterly Calculation of Nitrate mass Removed and Total Volume of Water Pumped
Table 5	Nitrate Data Over Time for MW-30, MW-31, MW-5, and MW-11

INDEX OF TABS

- Tab A Site Plan and Perched Well Locations White Mesa Site
- Tab B Order of Sampling and Field Data Worksheets
- Tab C Kriged Current Quarter Groundwater Contour Map and Weekly, Monthly and Quarterly Depth to Water Data
- Tab D Kriged Previous Quarter Groundwater Contour Map
- Tab E Hydrographs of Groundwater Elevations Over Time for Nitrate Monitoring Wells
- Tab F Depths to Groundwater and Elevations Over Time for Nitrate Monitoring Wells
- Tab G Laboratory Analytical Reports
- Tab H Quality Assurance and Data Validation Tables
 - H-1 Field Data QA/QC Evaluation
 - H-2 Holding Time Evaluation
 - H-3 Analytical Method Check
 - H-4 Reporting Limit Evaluation
 - H-5 QA/QC Evaluation for Sample Duplicates
 - H-6 QC Control limits for Analysis and Blanks
 - H-7 Receipt Temperature Evaluation
 - H-8 Rinsate Evaluation
- Tab I Kriged Current Quarter Nitrate and Chloride Isoconcentration Maps
- Tab J Analyte Concentration Data Over Time

Tab K Nitrate and Chloride Concentration Trend Graphs

Tab L CSV Transmittal Letter

1.0 INTRODUCTION

The Utah Department of Environmental Quality ("UDEQ") Division of Radiation Control ("DRC") noted in a Request dated September 30, 2008 (the "Request"), for a Voluntary Plan and Schedule to Investigate and Remediate Nitrate Contamination at the White Mesa Uranium Mill (the "Mill") (the "Plan"), that nitrate levels have exceeded the State water quality standard of 10 mg/L in certain monitoring wells. As a result of the Request, Energy Fuels Resources (USA) Inc. ("EFRI") entered into a Stipulated Consent Agreement (the "Consent Agreement") with the Utah Water Quality Board in January 2009 which directed the preparation of a Nitrate Contamination Investigation Report ("CIR"). A subsequent letter dated December 1, 2009, among other things, recommended that EFRI also address elevated chloride concentration in the CIR. The Consent Agreement ("CA") was amended in August 2011. Under the amended Consent Agreement, EFRI submitted a Corrective Action Plan ("CAP"), pursuant to the requirements of the Utah Groundwater Quality Protection Rules [UAC R317-6-6.15(C - E)] on November 29, 2011 and revised versions of the CAP on February 27, 2012 and May 7, 2012. On December 12, 2012, DRC signed the Stipulation and Consent Order ("SCO"), Docket Number UGW12-04, which approved the EFRI CAP, dated May 7, 2012. The SCO ordered EFRI to fully implement all elements of the May 7, 2012 CAP.

Based on the schedule included in the CAP and as delineated and approved by the SCO, all activities associated with the implementation of the CAP began in January, 2013. The reporting requirements specified in the CAP and SCO are included in this quarterly nitrate report.

This is the Quarterly Nitrate Monitoring Report, as required under the SCO, State of UDEQ Docket No. UGW12-04 for the 2nd quarter of 2013. This report meets the requirements of SCO, State of UDEQ Docket No. UGW12-04 and is the document which covers nitrate monitoring activities during the 2nd quarter of 2013.

2.0 GROUNDWATER NITRATE MONITORING

2.1 Samples and Measurements Taken During the Quarter

A map showing the location of all groundwater monitoring wells, piezometers, existing wells, temporary chloroform contaminant investigation wells and temporary nitrate investigation wells is attached under Tab A. Nitrate samples and measurements taken during this reporting period are discussed in the remainder of this section.

2.1.1 Nitrate Monitoring

Quarterly sampling for nitrate monitoring parameters was performed in the following wells:

TWN-1TW4-24*TWN-2TW4-25*TWN-3Piezometer 1TWN-4Piezometer 2TWN-7Piezometer 3TWN-18TW4-22*

As discussed in Section 2.1.2 the analytical constituents required by the CAP are inorganic chloride and nitrate+nitrite as N (referred to as nitrate in this document)

* TW4-22, TW4-24, TW4-25 are chloroform investigation wells and are sampled as part of the chloroform program. The analytical suite for these three wells includes nitrate, chloride and a select list of Volatile Organic Compounds ("VOCs") as specified in the chloroform program. These three wells are included here because they are being pumped as part of the remediation of the nitrate contamination as required by the SCO and the CAP. The nitrate and chloride data are included in this report as well as in the chloroform program quarterly report. The VOC data for these three wells will be reported in the chloroform quarterly monitoring report only.

The December 12, 2012 SCO approved the CAP which specified the cessation of sampling in TWN-5, TWN-6, TWN-8, TWN-9, TWN-10, TWN-11, TWN-12, TWN-13, TWN-14, TWN-15, TWN-16, TWN-17, and TWN-19. Per the CAP and SCO, these wells were not sampled during the this quarter. Additionally, the CAP and SCO approved the abandonment of TWN-5, TWN-8, TWN-9, TWN-10, TWN-11, TWN-12, TWN-13, TWN-15, and TWN-17 within 1 year of the SCO approval. These wells will be abandoned in accordance with the DRC-approved Well Abandonment Procedure according to the schedule set by the CAP. TWN-6, TWN-14, TWN-16, and TWN-19 will be maintained for depth to groundwater monitoring only, as noted in the CAP.

Table 1 provides an overview of all locations sampled during the current period, along with the date samples were collected from each location, and the date(s) upon which analytical data were received from the contract laboratory. Table 1 also identifies rinsate samples collected, as well as sample numbers associated with any required duplicates.

As indicated in Table 1, nitrate monitoring was performed in all of the nitrate monitoring wells, TW4-22, TW4-24, TW4-25 and Piezometers 1, 2, and 3. Analytical data for all of the abovelisted wells, and the piezometers, are included in Tab G.

Nitrate and chloride are also monitored in all of the Mill's groundwater monitoring wells and chloroform investigation wells. Data from those wells for this quarter are incorporated in certain maps and figures in this report but are discussed in their respective programmatic reports.

2.1.2 Parameters Analyzed

Locations sampled during this reporting period were analyzed for the following constituents:

- Inorganic Chloride
- Nitrate plus Nitrite as Nitrogen (referred to herein as nitrate)

Use of analytical methods consistent with the requirements found in White Mesa Mill Groundwater Quality Assurance Plan, ("QAP") Revision 7.2, dated June 6, 2012 was confirmed for all analytes, as discussed later in this report.

2.1.3 Groundwater Head and Level Monitoring

Depth to groundwater was measured in the following wells and/or piezometers, pursuant to Part I.E.3 of the Groundwater Discharge Permit (the "GWDP") (dated August 24, 2012):

- The quarterly groundwater compliance monitoring wells.
- Existing well MW-4 and all of the temporary chloroform investigation wells.
- Piezometers P-1, P-2, P-3, P-4 and P-5.
- MW-20, MW-22, and MW-34.
- The DR piezometers which were installed during the Southwest Hydrogeologic Investigation.
- Nitrate wells.
- In addition to the above, depth to water measurements are routinely observed in conjunction with sampling events for all wells sampled during quarterly and accelerated efforts, regardless of the sampling purpose.

All well levels used for groundwater contour mapping were measured and recorded within 5 calendar days of each other as indicated by the measurement dates in the summary sheet under Tab C.

Weekly and monthly depth to groundwater measurements were taken in the chloroform pumping wells MW-4, MW-26, TW4-19, TW4-20, and TW4-4, and the nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2. In addition, monthly water level measurements were taken in non-pumping wells MW-27, MW-30, MW-31, TW4-21, TWN-1, TWN-3, TWN-4, TWN-7, and TWN-18 as required by the CAP.

Depth to groundwater was measured in all of the nitrate wells this quarter. The CAP, which became effective December 12, 2012, approved the abandonment of TWN-5, TWN-8, TWN-9, TWN-10, TWN-11, TWN-12, TWN-13, TWN-15, and TWN-17 and removed the requirement to measure depth to groundwater in these wells. Since these wells were not abandoned during the quarter, the depth to groundwater was measured. The depth to groundwater measurement data for these wells are provided for information purposes only.

2.2 Sampling Methodology and Equipment and Decontamination Procedures

The QAP provides a detailed presentation of procedures utilized for groundwater sampling activities under the GWDP (August 24, 2012).

The sampling methodology, equipment and decontamination procedures that were performed for the nitrate contaminant investigation, as summarized below, are consistent with the QAP.

2.2.1 Well Purging, Sampling and Depth to Groundwater

A list of the wells in order of increasing nitrate contamination is generated quarterly. The order for purging is thus established. The list is included with the Field Data Worksheets under Tab B. Mill personnel start purging with all of the non-detect wells and then move to the more contaminated wells in order of nitrate contamination, progressing from the wells having the lowest nitrate contamination to wells with the highest nitrate contamination.

Before leaving the Mill office, the pump and hose are decontaminated using the cleaning agents described in Attachment 2-2 of the QAP. Rinsate blanks are collected at a frequency of one rinsate per 20 field samples.

Purging is completed to remove stagnant water from the casing and to assure that representative samples of formation water are collected for analysis. There are three purging strategies specified in the QAP that are used to remove stagnant water from the casing during groundwater sampling at the Mill. The three strategies are as follows:

1. Purging three well casing volumes with a single measurement of field parameters

2. Purging two casing volumes with stable field parameters (within 10% RPD)

3. Purging a well to dryness and stability (within 10% RPD) of a limited list of field parameters after recovery.

Mill personnel proceed to the first well which is the well with the lowest concentration (i.e. nondectect) of nitrate based on the previous quarter's sampling results. Well depth measurements are taken and the one casing volume is calculated. The purging strategy that will be used for the well is determined at this time based on the depth to water measurement and the previous production of the well. The Grundfos pump (a 6 to 10 gallon per minute [gpm] pump) is then lowered to the appropriate depth in the well and purging is started. At the first well, the purge rate is measured for the purging event by using a calibrated 5 gallon bucket. After the evacuation of the well has been completed, the well is sampled when possible, and the pump is removed from the well and the process is repeated at each well location moving from the least contaminated to most contaminated well. If sample collection is not possible due to the well being purged dry, a sample is collected after recovery using a disposable bailer and as described in Attachment 2-3 of the QAP. Sample collection follows the procedures described in Attachment 2-4 of the QAP.

After the samples have been collected for a particular well, the samples are placed into a cooler that contains ice. The well is then recapped and Mill personnel proceed to the next well. If a bailer has been used it is disposed of.

Decontamination of non-dedicated equipment, using the reagents in Attachment 2-2 of the QAP, is performed between each sample location, and at the beginning of each sampling day, in addition to the pre-event decontamination described above.

Piezometers

Samples are collected from Piezometers 1, 2 and 3, if possible. Samples are collected from piezometers using a disposable bailer after one set of field measurements have been collected. Due to the difficulty in obtaining samples from the piezometers, the purging protocols set out in the QAP are not followed.

After samples are collected, the bailer is disposed of and samples are placed into a cooler containing ice for sample preservation and transit to the Mill's contract analytical laboratory, American West Analytical Laboratories ("AWAL").

2.3 Field Data

Attached under Tab B are copies of all Field Data Worksheets that were completed during the quarter for the nitrate contaminant investigation monitoring wells, and piezometers identified in Section 2.1.1 above, and Table 1.

2.4 Depth to Groundwater Data and Water Table Contour Map

Depth-to-groundwater measurements which were utilized for groundwater contours are included on the Quarterly Depth to Water Sheet at Tab C of this Report along with the kriged groundwater contour map for the current quarter generated from this data. All well levels used for groundwater contour mapping were measured and recorded within 5 calendar days of each other as indicated by the measurement dates in the summary sheet under Tab C. A copy of the kriged groundwater contour map generated from the previous quarter's data is provided under Tab D.

2.5 Laboratory Results

2.5.1 Copy of Laboratory Results

All analytical results were provided by AWAL. Table 1 lists the dates when analytical results were reported to the Quality Assurance ("QA") Manager for each well or other sample.

Results from analysis of samples collected for this quarter's nitrate investigation and a limited list of chloroform investigation nitrate and chloride results are provided under Tab G of this Report. Also included under Tab G are the results of analyses for duplicate samples and rinsate samples for this sampling effort, as identified in Table 1. See the Groundwater Monitoring Report and Chloroform Monitoring Report for this quarter for nitrate and chloroform analytical results for the groundwater monitoring wells and chloroform investigation wells not listed in Table 1.

2.5.2 Regulatory Framework

As discussed in Section 1.0 above, the Request, Plan, and Consent Agreement each triggered a series of actions on EFRI's part. Potential surficial sources of nitrate and chloride have been described in the December 30, 2009 CIR and additional investigations into potential sources were completed and discussed with DRC in 2011. Pursuant to the Consent Agreement, the CAP was submitted to the Director of the Division of Radiation Control (the "Director") on May 7, 2012. The CAP describes activities associated with the nitrate in groundwater. The CAP was approved by the Director on December 12, 2012. This quarterly report documents the monitoring consistent with the program described in the CAP.

3.0 QUALITY ASSURANCE AND DATA VALIDATION

EFRI's QA Manager performed a QA/QC review to confirm compliance of the monitoring program with requirements of the QAP. As required in the QAP, data QA includes preparation and analysis of QC samples in the field, review of field procedures, an analyte completeness review, and QC review of laboratory data methods and data. Identification of field QC samples collected and analyzed is provided in Section 3.1. Discussion of adherence to Mill sampling Standard Operating Procedures ("SOPs") is provided in Section 3.2. Analytical completeness review results are provided in Section 3.3. The steps and tests applied to check field data QA/QC, holding times, receipt temperature and laboratory data QA/QC are discussed in Sections 3.4.1 through 3.4.7 below.

The analytical laboratory has provided summary reports of the analytical QA/QC measurements necessary to maintain conformance with National Environmental Laboratory Accreditation Conference ("NELAC") certification and reporting protocol. The Analytical Laboratory QA/QC Summary Reports, including copies of the Mill's Chain of Custody and Analytical Request Record forms for each set of Analytical Results, follow the analytical results under Tab G. Results of review of the laboratory QA/QC information are provided under Tab H and discussed in Section 3.4, below.

3.1 Field QC Samples

The following QC samples were generated by Mill personnel and submitted to the analytical laboratory in order to assess the quality of data resulting from the field sampling program.

Field QC samples for the nitrate investigation program consist of one field duplicate sample for each 20 samples, DI Field Blanks ("DIFB"), and equipment rinsate samples.

During the quarter, one duplicate sample was collected as indicated in Table 1. The duplicate was sent blind to the analytical laboratory and analyzed for the same parameters as the nitrate wells.

One rinsate blank sample was collected as indicated on Table 1. Rinsate samples are labeled with the name of the subsequently purged well with a terminal letter "R" added (e.g. TWN-7R).

The field QC sample results are included with the routine analyses under Tab G.

3.2 Adherence to Mill Sampling SOPs

The QA Manager review of Mill Personnel's adherence to the existing SOPs, confirmed that the QA/QC requirements established in the QAP and Chloroform QAP were met.

3.3 Analyte Completeness Review

All analyses required by the GWDP for nitrate monitoring for the period were performed.

3.4 Data Validation

The QAP and GWDP (August 24, 2012) identify the data validation steps and data QC checks required for the nitrate monitoring program. Consistent with these requirements, the QA Manager performed the following evaluations: a field data QA/QC evaluation, a holding time evaluation, an analytical method check, a reporting limit evaluation, a QC evaluation of sample duplicates, a QC evaluation of control limits for analysis and blanks, a receipt temperature evaluation, and a rinsate evaluation. Because no VOCs are analyzed for the nitrate contamination investigation, no trip blanks are required in the sampling program. Each evaluation is discussed in the following sections. Data check tables indicating the results of each test are provided under Tab H.

3.4.1 Field Data QA/QC Evaluation

The QA Manager performs a review of all field recorded parameters to assess their adherence with QAP requirements. The assessment involved review of two sources of information: the Field Data Sheets and the Quarterly Depth to Water summary sheet. Review of the Field Data Sheets addresses well purging volumes and stability of five parameters: conductance, pH, temperature, redox potential, and turbidity. Review of the Depth to Water data confirms that all depth measurements used for development of groundwater contour maps were conducted within a five-day period of each other. The results of this quarter's review are provided under Tab H.

Based upon the review of the field data sheets, all wells conformed to the QAP purging and field measurement requirements. A summary of the purging techniques employed and field measurements taken is described below:

Purging Two Casing Volumes with Stable Field Parameters (within 10% RPD)

Wells TWN-01, TWN-04, and TWN-18 were sampled after two casing volumes were removed. Field parameters pH, specific conductivity, turbidity, water temperature, and redox potential were measured during purging. All field parameters for this requirement were stable within 10% RPD.

Purging a Well to Dryness and Stability of a Limited List of Field Parameters

Wells TWN-03 and TWN-07 were purged to dryness before two casing volumes were evacuated. After well recovery, one set of measurements for the field parameters of pH, specific conductivity, and water temperature only were taken, the samples were collected, and another set of measurements for pH, specific conductivity, and water temperature were taken. Stabilization

of pH, conductivity and temperature are required within 10% RPD under the QAP.

Continuously Pumped Wells

Wells TWN-02, TW4-22, TW4-24, and TW4-25 are continuously pumped wells. These wells are pumped on a set schedule per the remediation plan and are considered sufficiently evacuated to immediately collect a sample. As previously noted, TW4-22, TW4-24, and TW4-25 are chloroform investigation wells and are sampled under the chloroform program. Data for nitrate and chloride are provided here for completeness purposes.

During review of the field data sheets, it was observed that sampling personnel consistently recorded depth to water to the nearest 0.01 foot.

All field parameters for all wells were within the QAP required limits, as indicated below.

The review of the field sheets for compliance with QAP requirements resulted in the observations noted below. The QAP requirements in Attachment 2-3 specifically state that field parameters must be stabilized to within 10% over at least 2 consecutive measurements for wells purged to two casing volumes or to dryness. The QAP Attachment 2-3 states that turbidity should be less than 5 NTU prior to sampling unless the well is characterized by water that has a higher turbidity. The QAP Attachment 2-3 does not require that turbidity measurements be less than 5 NTU prior to sampling. As such the noted observations regarding turbidity measurements greater than 5 NTU below are included for information purposes only.

• Four well measurements exceeded the QAP's 5 NTU turbidity goal as noted in Tab H. All required turbidity RPD's met the QAP Requirement to stabilize within 10%.

EFRI's letter to DRC of March 26, 2010 discusses further why turbidity does not appear to be an appropriate parameter for assessing well stabilization. In response to DRC's subsequent correspondence dated June 1, 2010 and June 24, 2010, EFRI has completed a monitoring well redevelopment program. The redevelopment report was submitted to DRC on September 30, 2011. DRC responded to the redevelopment report via letter on November 15, 2012. Per the DRC letter dated November 15, 2012, the field data generated this quarter are compliant with the turbidity requirements of the approved QAP.

3.4.2 Holding Time Evaluation

QAP Table 1 identifies the method holding times for each suite of parameters. Sample holding time checks are provided in Tab H. All samples were received and analyzed within the required holding time.

3.4.3 Receipt Temperature Evaluation

Chain of Custody sheets were reviewed to confirm compliance with the QAP requirement in QAP Table 1 that samples be received at 6° C or lower. Sample temperatures checks are provided in Tab H. All samples were received within the required temperature limit.

3.4.4 Analytical Method Checklist

All analytical methods reported by the laboratory were checked against the required methods enumerated in the QAP. Analytical method checks are provided in Tab H. All methods were consistent with the requirements of the QAP.

3.4.5 Reporting Limit Evaluation

All analytical method reporting limits reported by the laboratory were checked against the reporting limits enumerated in the QAP. Reporting Limit Checks are provided in Tab H. All analytes were measured and reported to the required reporting limits, with the exception of several samples that had increased reporting limits due to matrix interference or required dilution due to the sample concentration. However, in all of those cases the analytical results were greater than the reporting limit used.

3.4.6 QA/QC Evaluation for Sample Duplicates

Section 9.1.4 a) of the QAP states that RPDs will be calculated for the comparison of duplicate and original field samples. The QAP acceptance limits for RPDs between the duplicate and original field sample is less than or equal to 20% unless the measured results (described as activities in the QAP) are less than 5 times the required detection limit. This standard is based on the EPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994, 9240.1-05-01 as cited in the QAP. The RPDs are calculated for all duplicate pairs for all analytes regardless of whether or not the reported concentrations are greater than 5 times the required detection limits. However, data will be considered noncompliant only when the results are greater than 5 times the required detection limit and the RPD is greater than 20%. The additional duplicate information is provided for information purposes.

All duplicate results were within a 20% RPD. Results of the RPD test are provided in Tab H.

3.4.7 Rinsate Check

Rinsate checks are provided in Tab H. A comparison of the rinsate blank sample concentration levels to the QAP requirements – that rinsate sample concentrations be one order of magnitude lower than that of the actual well – indicated that all of the rinsate blank analytes met this criterion.

3.4.8 Other Laboratory QA/QC

Section 9.2 of the QAP requires that the laboratory's QA/QC Manager check the following items in developing data reports: (1) sample preparation information is correct and complete, (2) analysis information is correct and complete, (3) appropriate Analytical Laboratory procedures are followed, (4) analytical results are correct and complete, (5) QC samples are within established control limits, (6) blanks are within QC limits, (7) special sample preparation and analytical requirements have been met, and (8) documentation is complete. In addition to other laboratory checks described above, EFRI's QA Manager rechecks QC samples and blanks (items (5) and (6)) to confirm that the percent recovery for spikes and the relative percent difference for

spike duplicates are within the method-specific required limits, or that the case narrative sufficiently explains any deviation from these limits. Results of this quantitative check are provided in Tab H.

All lab QA/QC results met these specified acceptance limits.

The QAP Section 8.1.2 requires that a Matrix Spike/Matrix Spike Duplicate ("MS/MSD") pair be analyzed with each analytical batch. The QAP does not specify acceptance limits for the MS/MSD pair, and the QAP does not specify that the MS/MSD pair be prepared on EFRI samples only. Acceptance limits for MS/MSDs are set by the laboratories. The review of the information provided by the laboratories in the data packages verified that the QAP requirement to analyze an MS/MSD pair with each analytical batch was met. While the QAP does not require it, the recoveries were reviewed for compliance with the laboratory established acceptance limits. The QAP does not require this level of review, and the results of this review are provided for information only.

The information from the Laboratory QA/QC Summary Reports indicates that the MS/MSDs recoveries and the associated RPDs for all quarterly nitrate samples are within acceptable laboratory limits for all regulated compounds as indicated in Tab H.

The information from the Laboratory QA/QC Summary Reports indicates that the LCS recoveries were acceptable which indicate that the analytical system was operating properly.

The QAP Section 8.1.2 requires that each analytical batch shall be accompanied by a reagent blank. All analytical batches routinely contain a blank, which is a blank sample made and carried through all analytical steps. For the Mill samples, a method blank is prepared for all analytical methods. The information from the Laboratory QA/QC Summary Reports indicates that the method blanks did not contain detections of any target analytes above the RL.

4.0 INTERPRETATION OF DATA

4.1 Interpretation of Groundwater Levels, Gradients and Flow Directions.

4.1.1 Current Site Groundwater Contour Map

As stated above, a listing of groundwater level readings for the current quarter (shown as depth to groundwater in feet) is included under Tab C. The data from this tab has been interpreted (kriged) and plotted in a water table contour map, provided under the same tab. The contour map is based on the current quarter's data for all wells.

The water level contour maps indicate that perched water flow ranges from generally southwesterly beneath the Mill site and tailings cells to generally southerly along the eastern and western margins of White Mesa. Perched water mounding associated with the wildlife ponds locally changes the flow patterns. For example, northeast of the Mill site, mounding associated with wildlife ponds results in locally northerly flow near MW-19. The impact of the mounding associated with the northern ponds, to which water is no longer delivered, is diminishing and is expected to continue to diminish as the mound decays due to reduced recharge. Flow directions are also locally influenced by operation of chloroform pumping wells MW-4, MW-26, TW4-4,

TW4-19, and TW4-20. Well-defined cones of depression are evident in the vicinity of all chloroform pumping wells except TW4-4, which began pumping in the first quarter of 2010. Although operation of TW4-4 has depressed the water table in the vicinity of TW4-4, a well-defined cone of depression is not evident. The lack of a well-defined cone of depression likely results from 1) persistent relatively low water levels at adjacent well TW4-14, and 2) variable permeability conditions in the vicinity of TW4-4.

Flow directions are also locally influenced by the start-up of nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 during the first quarter of 2013. Nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 have not been in operation long enough for well-defined cones of depression to have developed. Although operation of the nitrate pumping system has not yet produced a well-defined impact on water levels, continued operation of the system is expected to produce a well-defined capture zone that will merge with and enhance the capture associated with the chloroform pumping system. The actual impact of nitrate pumping on the chloroform pumping system cannot be evaluated until more data are collected as part of routine monitoring. Furthermore, the persistently low water level at TWN-7 is expected to have an influence on the definition of the capture zone associated with nitrate pumping just as the persistently low water level at TW4-12 has an influence on the definition of capture associated with chloroform pumping well TW4-4.

As discussed above, the lack of a well-defined cone of depression at TW4-4 is due in part to the persistent, relatively low water level at non-pumping well TW4-14, located east of TW4-4 and TW4-6. For the current quarter, the water level at TW4-14 (approximately 5527.02 feet above mean sea level [ft amsl]) is approximately 12 feet lower than the water level at TW4-6 (approximately 5539.46 ft amsl) and nearly 16 feet lower than at TW4-4 (approximately 5543.36 ft amsl) even though TW4-4 is pumping.

The lack of a well-defined cone of depression near TW4-4 also results in part from variable permeability conditions. Changes in water levels at wells immediately south of TW4-4 resulting from TW4-4 pumping are expected to be muted because TW4-4 is located at a transition from relatively high to relatively low permeability conditions south (downgradient) of TW4-4. The permeability of the perched zone at TW4-6 and TW4-26 is approximately two orders of magnitude lower than at TW4-4. Any drawdown of water levels at wells immediately south of TW4-4 resulting from TW4-4 pumping is also difficult to determine because of a general, longterm increase in water levels in this area due to recharge from the wildlife ponds. Recharge from the southern wildlife pond is expected to continue to have an effect on water levels near TW4-4, but the effects related to recharge from the northern ponds is expected to diminish over time as water is no longer delivered to the northern ponds. Water levels at TW4-4 and TW4-6 increased by nearly 2.7 and 2.9 feet, respectively, between the fourth quarter of 2007 and the fourth quarter of 2009 (just prior to TW4-4 pumping) at rates of approximately 1.2 feet/year and 1.3 feet/year, respectively. However, the increase in water level at TW4-6 has been reduced since the start of pumping at TW4-4 (first quarter of 2010) to less than 0.5 feet/year suggesting that TW4-6 is within the hydraulic influence of TW4-4.

Well TW4-27 (installed south of TW4-14 in the fourth quarter of 2011) has a static water level of approximately 5526.3 ft amsl, similar to TW4-14. Prior to the installation of TW4-27, the persistently low water level at TW4-14 was considered anomalous because it appeared to be downgradient of all three wells TW4-4, TW4-6, and TW4-26, yet chloroform was not detected at TW4-14. Chloroform had apparently migrated from TW4-4 to TW4-6 and from TW4-6 to TW4-26 which suggested that TW4-26 was actually downgradient of TW4-6, and TW4-6 was actually downgradient of TW4-4, regardless of the flow direction implied by the low water level at TW4-14. The water level at TW4-26 (5539.0 feet amsl) is, however, lower than water levels at adjacent wells TW4-6 (5539.5 feet amsl), and TW4-23 (5543.2 feet amsl)

Hydraulic tests conducted in November, 2011 indicate that the permeability at TW4-27 is an order of magnitude lower than at TW4-6 and three orders of magnitude lower than at TW4-4. The similar water levels at TW4-14 and TW4-27, and the low permeability estimate at TW4-27 suggest that both wells are completed in materials having lower permeability than nearby wells. The low permeability condition likely reduces the rate of long-term water level increase at TW4-14 and TW4-27 compared to nearby wells, yielding water levels that appear anomalously low.

4.1.2 Comparison of Current Groundwater Contour Map to Groundwater Contour Map for Previous Quarter

The groundwater contour maps for the Mill site for the previous quarter, as submitted with the Nitrate Monitoring Report for the previous quarter, are attached under Tab D.

A comparison of the water table contour maps for the current (first) quarter of 2013 to the water table contour maps for the previous quarter (fourth quarter of 2012) indicates similar patterns of drawdown related to operation of chloroform pumping wells MW-4, MW-26, TW4-4, TW4-19 and TW4-20. Although nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 were brought into operation during the first quarter of 2013, water levels and water level contours for the site have not changed significantly since the last quarter, except for a few locations. As discussed in Section 4.1.1, pumping at TW4-4, which began in the first quarter of 2010, has depressed the water table near TW4-4, but a well-defined cone of depression is not yet evident, likely due to variable permeability conditions near TW4-4 and the persistently low water level at adjacent well TW4-14.

Reported decreases in water levels (increases in drawdown) of approximately 7 feet and 2 feet occurred in chloroform pumping wells TW4-19 and MW-4, respectively, and decreases in water levels (increases in drawdown) of approximately 10 feet and 4 feet occurred in nitrate pumping wells TW4-25 and TWN-2, respectively. Changes in water levels at other pumping wells (chloroform pumping wells MW-26, TW4-4 and TW4-20 and nitrate pumping well TW4-22 and TW4-24) were less than 2 feet. Water level fluctuations at pumping wells typically occur in part because of fluctuations in pumping conditions just prior to and at the time the measurements are taken.

A reported water level increase of nearly 5 feet occurred at MW-23, and a decrease of of approximately 3 feet occurred at MW-20. Water level decreases ranging from approximately 0.5 to 1.5 feet at Piezometers 1, 2, 3, and TWN-4, likely result from cessation of water delivery to the northern wildlife ponds and the consequent continuing decay of the associated perched water

mound. The water level decrease of approximately 1.4 feet reported for TWN-3 is likely related to operation of nitrate pumping well TWN-2, and the decrease of approximately 1.2 feet reported for TWN-1 is likely related to both decay of the perched water mound and operation of nitrate pumping well TW4-25.

The decreases in water levels (increases in drawdown) at chloroform pumping wells MW-4 and TW4-19 have slightly increased the apparent capture of these wells relative to other pumping wells. Overall, the combined capture of chloroform pumping wells MW-4, MW-26, TW4-4, TW4-19, and TW4-20 has been increased slightly since the last quarter.

4.1.3 Hydrographs

Attached under Tab E are hydrographs showing groundwater elevation in each nitrate contaminant investigation monitor well over time.

4.1.4 Depth to Groundwater Measured and Groundwater Elevation

Attached in Tab F are tables showing depth to groundwater measured and groundwater elevation over time for each of the wells listed in Section 2.1.1 above.

4.2 Effectiveness of Hydraulic Containment and Capture

4.2.1 Hydraulic Containment and Control

The CAP states that hydraulic containment and control will be evaluated in part based on water level data and in part on concentrations in wells downgradient of pumping wells TW4-22 and TW4-24.

Water level data will be used to evaluate flow patterns resulting from operation of nitrate pumping wells. Bounding stream tubes defining the capture zone of nitrate pumping wells will be generated from the kriged quarterly perched water level data. Hydraulic containment and control based on water level data will be considered successful per the CAP if the entire nitrate plume upgradient of TW4-22 and TW4-24 falls within the combined capture of the nitrate pumping wells. The CAP requires that EFRI will evaluate the capture zones after four quarters of water level measurements have been taken, and will include the capture zone boundaries on figures in the quarterly nitrate monitoring report following the fourth quarter of water level measurements. The current quarter is the second quarter of data collected after the commencement of pumping the nitrate system. The capture zone maps will be generated after four quarters of data are collected and will be included in the fourth quarter 2013 report which will be submitted on or before March 1, 2014.

The CAP states that MW-5, MW-11, MW-30, and MW-31 are located downgradient of TW4-22 and TW4-24. MW-30 and MW-31 are within the plume near its downgradient edge and MW-5 and MW-11 are outside and downgradient of the plume. Per the CAP, hydraulic control based on concentration data will be considered successful if the concentrations of nitrate in MW-30 and MW-31 remain stable or decline, and concentrations of nitrate in downgradient wells MW-5 and MW-11 do not exceed the 10 mg/L standard.

Table 5 presents the nitrate concentration data for MW-30, MW-31, MW-5 and MW-11 which are down-gradient of pumping wells TW4-22 and TW4-24. Based on these data, the nitrate plume is under control.

The plume has not migrated downgradient to MW-5 nor MW-11 because nitrate was not detected at MW-5 or MW-11. Between the previous and current quarters, nitrate concentrations decreased slightly in MW-30 and increased slightly in MW-31. Nitrate in MW-30 decreased from 21.4 mg/L to 18.8 mg/L and nitrate in MW-31 increased from 19.3 mg/L to 23.8 mg/L. Changes in both wells were less than 20% suggesting the changes are within the range typical for sampling and analytical error. Although short-term fluctuations have occurred, nitrate concentrations in MW-30 and MW-31 have been relatively stable, demonstrating that plume migration is minimal or absent. The relative stability of chloride in these wells also supports minimal plume movement.

4.2.2 Current Nitrate and Chloride Isoconcentration Maps

Included under Tab I of this Report are current nitrate and chloride iso-concentration maps for the Mill site. Nitrate iso-contours start at 5 mg/L and chloride iso-contours start at 100 mg/L because those values appear to separate the plumes from background. All nitrate and chloride data used to develop these iso-concentration maps are from the current quarter's sampling events.

4.2.3 Comparison of Areal Extent

Although changes in concentration have occurred in wells within the nitrate plume, the boundaries of the plume have not changed significantly since the last quarter, even under the influence of nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 which started pumping during the previous quarter. Nitrate pumping has, however, caused the boundary of the northern portion of the chloroform plume to move slightly to the west toward nitrate pumping well TW4-24. Nitrate concentrations at the downgradient edge of the plume (MW-30 and MW-31) continue to be relatively stable, demonstrating that plume migration is minimal or absent.

4.2.4 Nitrate and Chloride Concentration Trend Data and Graphs

Attached under Tab J is a table summarizing values for nitrate and chloride for each well over time.

Attached under Tab K are graphs showing nitrate and chloride concentration plots in each monitor well over time.

4.2.5 Interpretation of Analytical Data

Comparing the nitrate analytical results to those of the previous quarter, as summarized in the table included under Tab K, the following observations can be made for wells within and immediately surrounding the nitrate plume:

- a) Nitrate concentrations have increased by more than 20% in the following wells compared to last quarter: MW-26, TW4-18, and TWN-7;
- b) Nitrate concentrations have decreased by more than 20% in the following wells compared to last quarter: TW4-19, TW4-24, and TW4-25;
- Nitrate concentrations have remained within 20% in the following wells compared to last quarter: MW-27, MW-30, MW-31, TW4-20, TW4-21, TW4-22, TWN-1, TWN-2, TWN-3, TWN-4, and TWN-18;
- d) MW-11, MW-25and TW4-16 remained non-detect; and
- e) MW-32 increased from non-detect to 0.1 mg/L.

As indicated, nitrate concentrations at many of the wells with detected nitrate were within 20% of the values reported for the wells during the previous quarter, suggesting that variations are within the range typical for sampling and analytical error. Wells MW-26, TW4-18, TW4-19, TW4-24, TW4-25, and TWN-7 had changes in concentration greater than 20%. Of the latter, MW-26 and TW4-19 are chloroform pumping wells, and TW4-24 and TW4-25 are nitrate pumping wells. TW4-18 is located adjacent to nitrate pumping well TWN-2. Fluctuations in concentrations at pumping wells and wells adjacent to pumping wells likely result in part from the effects of pumping.

Nitrate pumping well TWN-2 had the highest detected nitrate concentration. Since the last quarter, the nitrate concentration in pumping well TWN-2 increased slightly from 57 mg/L to 58 mg/L. The chloroform concentration in nitrate pumping well TW4-22 increased from 10,600 µg/L to 12,500 µg/L. Chloroform increases during the current quarter and the previous quarter are likely in response to the start-up of nitrate pumping in the previous quarter and the presence of historically high chloroform concentrations at adjacent, cross-gradient well TW4-20. MW-27, located west of TWN-2, and TWN-18, located north of TWN-3, bound the nitrate plume to the west and north. In addition, the southernmost (downgradient) boundary of the plume remains between MW-30/MW-31 and MW-5/MW-11. Nitrate concentrations at MW-5 (adjacent to MW-11) and MW-11 have historically been low (< 1 mg/L) or non-detect for nitrate. MW-25, MW-26, MW-32, TW4-16, TW4-19, TW4-25, TWN-1, and TWN-4 bound the nitrate plume to the east.

Nitrate concentrations outside the nitrate plume exceed 10 mg/L at a few locations: TW4-12 (14.2 mg/L), TW4-26 (13.6 mg/L), TW4-27 (29.4 mg/L), and TW4-28 (14.9 mg/L). All are located southeast of the nitrate plume and are separated from the plume by numerous wells having nitrate concentrations that are either non-detect, or, if detected, are less than 10 mg/L. Concentrations at the above wells are within 20% of their concentrations during the previous quarter.

Chloride concentrations are measured because elevated chloride (greater than 100 mg/L) is associated with the nitrate plume. Chloride concentrations at all measured locations are within 20% of their respective concentrations during the previous quarter except at the following locations: MW-26 (decreased from 77 to 63 mg/L); TW4-24 (decreased from 1,260 mg/L to 916

mg/L); and TW4-25 (decreased from 190 mg/L to 136 mg/L). TW4-24 and TW4-25 are nitrate pumping wells, and MW-26 is a chloroform pumping well. Changes in concentrations in these wells are likely related to the start-up of nitrate pumping during the previous quarter.

4.3 Estimation of Pumped Nitrate Mass and Residual Nitrate Mass within the Plume

Nitrate mass removed by pumping is summarized in Table 2, and includes mass removed by both chloroform and nitrate pumping wells. Mass removal calculations begin with the third quarter of 2010 because the second quarter, 2010 data were specified to be used to establish a baseline mass for the nitrate plume. As stated in the CAP, the baseline mass is to be calculated using the second quarter, 2010 concentration and saturated thickness data "within the area of the kriged 10 mg/L plume boundary." The second quarter, 2010 data set was considered appropriate because "the second quarter, 2010 concentration peak at TWN-2 likely identifies a high concentration zone that still exists but has migrated away from the immediate vicinity of TWN-2."

As shown in Table 2, a total of approximately 428 lb of nitrate has been removed from the perched zone since the third quarter of 2010. Prior to the current quarter, all direct nitrate mass removal resulted from operation of chloroform pumping wells MW-4, MW-26, TW4-4, TW4-19, and TW4-20. During the current quarter:

- A total of approximately 92 lb of nitrate was removed by the chloroform pumping wells and by nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2.
- Of the 92 lb removed during the current quarter, approximately 78 lb, (or 85%), was removed by the nitrate pumping wells.

Baseline mass and current quarter mass estimates (nitrate + nitrite as N) for the nitrate plume are approximately 43,700 lb and 34,142 lb, respectively. Mass estimates were calculated within the plume boundaries as defined by the kriged 10 mg/L isocons by 1) gridding (kriging) the nitrate concentration data on 50-foot centers; 2) calculating the volume of water in each grid cell based on the saturated thickness and assuming a porosity of 0.18; 3) calculating the mass of nitrate+nitrite as N in each cell based on the concentration and volume of water for each cell; and 4) totaling the mass of all grid cells within the 10 mg/L plume boundary. Data used in these calculations included data from wells listed in Table 3 of the CAP.

The nitrate mass estimate for the current quarter is lower than the baseline estimate by 9,558 lb, and this difference is greater than the amount of nitrate mass removed directly by pumping. Changes in the quarterly mass estimates are expected to result primarily from 1) nitrate mass removed directly by pumping, 2) natural attenuation of nitrate, and 3) changes in nitrate concentrations in wells within the plume as a result of re-distribution of nitrate within the plume and changes in saturated thicknesses. Redistribution of nitrate within the plume and changes in saturated thicknesses will be impacted by changes in pumping and in background conditions (such as the decay of the perched water mound associated with the northern wildlife ponds).

The mass estimate during the current quarter (34,142 lb) was lower than the mass estimate during the previous quarter (41,350 lb) by 7,208 lb, or 17%. The reasons for the difference were 1) generally lower nitrate concentrations measured in wells within the plume this quarter

compared to last quarter and 2) slightly smaller saturated thicknesses within the plume this quarter compared to last quarter.

Nitrate mass removal by pumping and natural attenuation will always act to lower nitrate mass within the plume. Changes resulting from redistribution of nitrate within the plume are expected to result in both increases and decreases in concentrations at wells within the plume and therefore increases and decreases in mass estimates based on those concentrations, thus generating 'noise' in the mass estimates. Furthermore, because the sum of sampling and analytical error is typically about 20%, changes in the mass estimates from quarter to quarter of up to 20% could result from typical sampling and analytical error alone. Only longer-term analyses of the mass estimates that minimize the impact of these quarter to quarter variations will provide useful information on plume mass trends. Over the long term, nitrate mass estimates are expected to trend downward as a result of direct removal by pumping and through natural attenuation.

As specified in the CAP, once eight quarters of data have been collected (starting with the current quarter), a regression trend line will be applied to the quarterly mass estimates and evaluated. The trend line will then be updated quarterly and reevaluated as additional quarters of data are collected. The evaluation will determine whether the mass estimates are increasing, decreasing, or stable.

5.0 LONG TERM PUMP TEST AT TWN-02, TW4-22, TW4-24, and TW4-25 OPERATIONS REPORT

5.1 Introduction

Beginning in January 2013, EFRI began long term pumping of TW4-22, TW4-24, TW4-25, and TWN-02 as required by the Nitrate CAP, dated May 7, 2012 and the SCO dated December 12, 2012.

In addition, as a part of the investigation of chloroform contamination at the Mill site, EFRI has been conducting a Long Term Pump Test on MW-4, TW4-19, MW-26, and TW4-20, and, since January 31, 2010, TW4-4. The purpose of the test is to serve as an interim action that will remove a significant amount of chloroform-contaminated water while gathering additional data on hydraulic properties in the area of investigation.

Because wells MW-4, TW4-19, MW-26, TW4-4 and TW4-20 are pumping wells that may impact the removal of nitrate, they will be included in this report and any nitrate removal realized as part of this pumping will be calculated and included in this and all future nitrate quarterly reports.

The following information documents the operational activities during the quarter.

5.2 Pumping Well Data Collection

Data collected during the quarter included the following:

- Measurement of water levels at MW-4, TW4-19, MW-26, and TW4-20 and, commencing regularly on March 1, 2010, TW4-4, on a weekly basis, and at selected temporary wells and permanent monitoring wells on a monthly basis.
- Measurement of pumping history, including:
 - pumping rates
 - total pumped volume
 - operational and non-operational periods.
- Periodic sampling of pumped water for chloroform and nitrate/nitrite analysis and other constituents
- Measurement of water levels weekly at TW4-22, TW4-24, TW4-25, and TWN-02 commencing January 28, 2013, and on a monthly basis selected temporary wells and permanent monitoring wells.

5.3 Water Level Measurements

Beginning August 16, 2003, the frequency of water level measurements from chloroform pumping wells MW-4, MW-26, and TW4-19 was conducted weekly. From commencement of pumping TW4-20, and regularly after March 1, 2010 for TW4-4, water levels in these two chloroform pumping wells have been measured weekly. From commencement of pumping in January 2013, water levels in wells TW4-22, TW4-24, TW4-25, and TWN-02 have been measured weekly. Copies of the weekly Depth to Water monitoring sheets for MW-4, MW-26, TW4-19, TW4-20, TW4-4, TW4-22, TW4-24, TW4-25 and TWN-02 are included under Tab C.

Monthly depth to water monitoring is required for all of the chloroform contaminant investigation wells and non-pumping wells MW-27, MW-30, MW-31, TW4-21, TWN-1, TWN-3, TWN-4, TWN-7, and TWN-18. Copies of the monthly depth to Water monitoring sheets are included under Tab C.

Depth to groundwater in all other nitrate contaminant investigation wells was monitored quarterly. As previously stated, depth to groundwater was measured in all of the nitrate wells this quarter. The CAP, which became effective December 12, 2012, approved the abandonment of TWN-5, TWN-8, TWN-9, TWN-10, TWN-11, TWN-12, TWN-13, TWN-15, and TWN-17 and removed the requirement to measure depth to groundwater in these wells. Since these wells were not abandoned during the quarter, the depth to groundwater was measured. The depth to groundwater measurement data are provided for information purposes only.

5.4 Pumping Rates and Volumes

The pumping wells do not pump continuously, but are on a delay device. The wells purge for a set amount of time and then shut off to allow the well to recharge. Water from the pumping wells is either transferred to the Cell 1 evaporation pond or is used in the Mill process. Unless specifically noted below, no operational problems were observed with the well or pumping equipment during the quarter.

All of the pumped wells are fitted with a flow meter which records the volume of water pumped from the well in gallons. The flow meter readings shown in Tab C are used to calculate the gallons of water pumped from the wells each quarter as required by Section 7.2.2 of the CAP.

The average pumping rates and quarterly volumes for each of the pumping wells are shown in Table 3. The cumulative volume of water pumped from each of the wells is shown in Table 4.

6.0 CORRECTIVE ACTION REPORT

There are no corrective actions resulting from 2nd quarter 2013 nitrate sampling event.

6.1 Assessment of Previous Quarter's Corrective Actions

There were no corrective actions in the 1st quarter 2013 nitrate sampling event.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The water level contour maps for the first quarter, 2013 indicate that operation of the nitrate pumping system has not yet produced a well-defined impact on water levels, and that hydraulic capture associated with the chloroform pumping system has not changed significantly since the previous quarter. As nitrate pumping continues, the hydraulic capture associated with the nitrate pumping wells is expected to merge with the hydraulic capture associated with the chloroform pumping, yielding enhanced capture for both nitrate and chloroform plumes. However, the actual impact of nitrate pumping on the chloroform pumping system cannot be evaluated until more data are collected as part of routine monitoring.

First quarter, 2013 nitrate concentrations at many of the wells within and adjacent to the nitrate plume were within 20% of the values reported during the previous quarter, suggesting that variations are within the range typical for sampling and analytical error. Changes in concentration greater than 20% occurred in wells MW-26, TW4-18, TW4-19, TW4-24, TW4-25, and TWN-7; the concentrations in wells MW-11, MW-25 and TW4-16 remained non-detect; and the concentration in MW-32 increased from non-detect to 0.1 mg/L.

Of the wells showing changes in concentration greater than 20%, MW-26 and TW4-19 are chloroform pumping wells, and TW4-24 and TW4-25 are nitrate pumping wells. TWN-18 is located adjacent to chloroform pumping well TW4-19 and TWN-7 is located adjacent to nitrate pumping well TWN-2. Fluctuations in concentrations at pumping wells and wells adjacent to pumping wells likely result in part from the effects of pumping.

The highest nitrate concentration (58 mg/L) was detected at nitrate pumping well TWN-2. Since the last quarter, the nitrate concentration in TWN-2 increased slightly from 57 mg/L to 58 mg/L. The chloroform concentration in nitrate pumping well TW4-22 increased from 10,600 mg/L to 12,500 mg/L. The increases in chloroform during the current quarter and the previous quarter likely result from the start-up of nitrate pumping in the previous quarter and the historically high chloroform concentrations at adjacent, cross-gradient well TW4-20. MW-27, located west of TWN-2, and TWN-18, located north of TWN-3, bound the nitrate plume to the west and north. In addition, the southernmost (downgradient) boundary of the plume remains between MW-30/MW-31 and MW-5/MW-11. Nitrate concentrations at MW-5 (adjacent to MW-11) and MW-11 have historically been low (< 1 mg/L) or non-detect for nitrate. MW-25, MW-26, MW-32, TW4-16, TW4-19, TW4-25, TWN-1, and TWN-4 bound the nitrate plume to the east.

Although changes in concentration have occurred in wells within the nitrate plume, the boundaries of the plume have not changed significantly since the last quarter, even under the influence of nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2. Nitrate pumping has, however, caused the boundary of the northern portion of the chloroform plume to move slightly to the west toward nitrate pumping well TW4-24. Nitrate concentrations at the downgradient edge of the plume (MW-30 and MW-31) continue to be relatively stable, suggesting that plume migration is minimal or absent.

The baseline nitrate (nitrate+nitrite as N) plume mass calculated as specified in th CAP (based on second quarter, 2010 data) was approximately 43,700 lb. The nitrate plume mass estimate for the current quarter was calculated as 34,142 lb, which was lower than the previous quarter's estimate of 43,150 lb by 7,208 lb or 17%. The reasons for the difference were 1) generally lower nitrate concentrations measured in wells within the plume this quarter compared to last quarter and 2) slightly smaller saturated thicknesses within the plume this quarter compared to last quarter.

Nitrate mass removal by pumping and natural attenuation will always act to lower nitrate mass within the plume. Changes resulting from redistribution of nitrate within the plume are expected to result in both increases and decreases in concentrations at wells within the plume and therefore increases and decreases in mass estimates based on those concentrations, thus generating 'noise' in the mass estimates. Furthermore, because the sum of sampling and analytical error is typically about 20%, changes in the mass estimates from quarter to quarter of up to 20% could result from typical sampling and analytical error alone. Only longer-term analyses of the mass estimates that minimize the impact of these quarter to quarter variations will provide useful information on plume mass trends. Over the long term, nitrate mass estimates are expected to trend downward as a result of direct removal by pumping and through natural attenuation.

As specified in the CAP, once eight quarters of data have been collected (starting with the current quarter), a regression trend line will be applied to the quarterly mass estimates and evaluated. The trend line will then be updated quarterly and reevaluated as additional quarters of data are collected. The evaluation will determine whether the mass estimates are increasing, decreasing, or stable.

During the current quarter, a total of approximately 92 lb of nitrate was removed by the chloroform pumping wells and by nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2. Of the 92 lb removed during the current quarter, approximately 78 lb, or 85%, was removed by the nitrate pumping wells.

Nitrate concentrations outside the nitrate plume exceed 10 mg/L at a few locations: TW4-12 (14.2 mg/L), TW4-26 (13.6 mg/L), TW4-27 (29.4 mg/L), and TW4-28 (14.9 mg/L). All are located southeast of the nitrate plume and are separated from the plume by numerous wells having nitrate concentrations that are either non-detect, or, if detected, are less than 10 mg/L. Concentrations at the above wells have remained within 20% of their concentrations during the previous quarter.

Chloride concentrations at all measured locations are within 20% of their respective concentrations during the previous quarter except at the following locations: MW-26 (decreased

from 77 mg/L to 63 mg/L); TW4-24 (decreased from 1,260 mg/L to 916 mg/L); and TW4-25 (decreased from 190 mg/L to 136 mg/L). TW4-24 and TW4-25 are nitrate pumping wells, and MW-26 is a chloroform pumping well. Changes in concentrations in these wells are likely related to changes in pumping including start-up of nitrate pumping during the previous quarter.

Nitrate mass removal from the perched zone increased substantially by the start-up of nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 during the previous quarter. Continued operation of these wells is therefore recommended. Pumping these wells, regardless of any short term fluctuations in concentrations detected at the wells, helps to reduce downgradient nitrate migration by removing nitrate mass and reducing average hydraulic gradients, thereby allowing natural attenuation to be more effective. Continued operation of the nitrate pumping system is expected to reduce nitrate concentrations within the plume and to further reduce or halt downgradient nitrate migration.

8.0 ELECTRONIC DATA FILES AND FORMAT

EFRI has provided to the Director an electronic copy of all laboratory results for groundwater quality monitoring conducted under the nitrate contaminant investigation during the Quarter, in Comma Separated Values ("CSV") format. A copy of the transmittal e-mail is included under Tab L.

9.0 SIGNATURE AND CERTIFICATION

This document was prepared by Energy Fuels Resources (USA) Inc. on August 26, 2013.

Energy Fuels Resources (USA) Inc.

By:

Harold R. Roberts Executive Vice President and Chief Operating Officer

Certification:

I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Harold R. Roberts Executive Vice President and Chief Operating Officer Energy Fuels Resources (USA) Inc.

Tables

Well	Sample Collection Date	Date of Lab Report
Piezometer 01	4/24/2013	5/14/13 (5/3/13)
Piezometer 02	4/24/2013	5/14/13 (5/3/13)
Piezometer 03	4/24/2013	5/14/13 (5/3/13)
TWN-01	4/23/2013	5/14/13 (5/3/13)
TWN-02	4/24/2013	5/14/13 (5/3/13)
TWN-03	4/24/2013	5/14/13 (5/3/13)
TWN-04	4/23/2013	5/14/13 (5/3/13)
TWN-07	4/24/2013	5/14/13 (5/3/13)
TWN-07R	4/23/2013	5/14/13 (5/3/13)
TWN-18	4/23/2013	5/14/13 (5/3/13)
TW4-22	6/5/2013	6/18/2013
TW4-24	6/5/2013	6/18/2013
TW4-25	6/5/2013	6/18/2013
TWN-60	4/25/2013	5/14/13 (5/3/13)
TW4-60	6/13/2013	6/24/2013
TWN-65	4/23/2013	5/14/13 (5/3/13)

 Table 1

 Summary of Well Sampling and Constituents for the Period

Note: All wells were sampled for Nitrate and Chloride.

TWN-60 is a DI Field Blank.

TWN-65 is a duplicate of TWN-18.

TW4-60 is the chloroform program DI Field Blank.

Continuously pumped well.

Date in parantheses represents the date the data were originally reported. The data package was resubmitted to correct errors.

Quarter	MW-4 (lbs.)	MW-26 (lbs.)	TW4-19 (lbs.)	TW4-20 (lbs.)	TW4-4 (lbs.)	TW4-22 (lbs.)	TW4-24 (lbs.)	TW4-25 (lbs.)	TWN-02 (lbs.)	Quarter Totals (lbs.)
Q3 2010	3.2	0.3	5.8	1.7	4.7	NA	NA	NA	NA	15.7
Q4 2010	3.8	0.4	17.3	1.4	5.1	NA	NA	NA	NA	28.0
Q1 2011	2.9	0.2	64.5	1.4	4.3	NA	NA	NA	NA	73.3
Q2 2011	3.5	0.1	15.9	2.7	4.7	NA	NA	NA	NA	27.0
Q3 2011	3.5	0.5	3.5	3.9	5.4	NA	NA	NA	NA	16.8
Q4 2011	3.8	0.8	6.2	2.5	6.4	NA	NA	NA	NA	19.7
Q1 2012	3.6	0.4	0.7	5.0	6.0	NA	NA	NA	NA	15.9
Q2 2012	3.7	0.6	3.4	2.1	5.2	NA	NA	NA	NA	15.0
Q3 2012	3.8	0.5	3.6	2.0	4.7	NA	NA	NA	NA	14.7
Q4 2012	3.2	0.4	5.4	1.8	4.2	NA	NA	NA	NA	14.9
Q1 2013	2.5	0.4	14.1	1.4	3.6	8.1	43.4	7.5	14.8	95.7
Q2 2013	2.5	0.5	5.6	1.7	3.5	10.7	37.1	6.4	23.9	91.7
Well Totals (pounds)	40.0	5.2	146.0	27.7	57.8	18.8	80.5	13.9	38.7	428.4

Table 2 Nitrate Mass Removal Per Well Per Quarter

	Volume of Water Pumped	
Pumping Well Name	during the quarter (gals)	Average Pump Rate (gpm)
MW-4	71,187.3	4.3
MW-26	25,343.4	10.2
TW4-4	65,603.4	8.1
TW4-19	226,224.0	14.0
TW4-20	20,252.4	9.7
TW4-22	25,523.2	18.1
TW4-24	187,509.3	18.2
TW4-25	147,310.4	18.1
TWN-2	49,579.3	18.7

 Table 3 Nitrate Well Pumping Rates and Volumes

Table 4 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

				MW-4		MW-26								
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Calculations and Data Origination	Total Gallons pumped for the quarter from the Flow Meter data	Concentration from the analytical data	Concentration in mg/LX1000 to convert to ug/L	Total pumped gallons/3.785 to conver to liters	Concentration in ug/L X total liters	Total ug/1000000 to convert to grams	Total grams/453. 592 to convert to pounds							
Q3 2010	79859.1	4.8	4800	302266.7	1450880129	1450.9	3.20	63850.0	0.6	600	241672.3	145003350	145	0.32
Q4 2010	90042.2	5	5000	340809.7	1704048635	1704.0	3.76	60180.0	0.7	700	227781.3	159446910	159	0.35
Q1 2011	76247.6	4,6	4600	288597.2	1327546964	1327.5	2,93	55130.0	0,5	500	208667.1	104333525	104	0.23
Q2 2011	85849.3	4.9	4900	324939.6	1592204042	1592,2	3.51	55800.6	0.3	300	211205.3	63361581	63	0.14
Q3 2011	85327.7	4.9	4900	322965.3	1582530188	1582.5	3.49	65618.0	0.9	900	248364.1	223527717	224	0.49
Q4 2011	89735.0	5.1	5100	339647.0	1732199573	1732.2	3.82	50191.3	2	2000	189974.1	379948141	380	0.84
Q1 2012	90376.4	4.8	4800	342074.7	1641958435	1642.0	3.62	31440.1	1.7	1700	119000.8	202301323	202	0.45
Q2 2012	90916.5	4.9	4900	344118.8	1686181940	1686.2	3.72	26701.2	2,5	2500	101064.1	252660294	253	0.56
Q3 2012	91607.0	5	5000	346732.5	1733662475	1733.7	3.82	25246.0	_ 2.6	2600	95556.1	248445886	248	0.55
Q4 2012	78840.0	4.8	4800	298409.4	1432365120	1432.4	3.16	30797.0	1.46	1460	116566.6	170187302	170	0.38
Q1 2013	62943.7	4.78	4780	238241.9	1138796304	1138.8	2.51	22650.7	2.27	2270	85732.9	194613682	195	0.43
Q2 2013	71187.3	4.22	4220	269443.9	1137053387	1137.1	2.51	25343.4	2.11	2110	95924.8	202401263	202	0.45

Totals Since Q3

2010

992931.75

40.03 512948.3

5.17

Quarter				TW4-19			TW4-20							
	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Calculations and Data Origination														
Q3 2010	116899.2	5.9	5900	442463.5	2.611E+09	2611	5.76	39098.3	5.3	5300	147987.1	784331447	784	1.73
Q4 2010	767970.5	2.7	2700	2906768.3	7.848E+09	7848	17.30	36752.5	4.6	4600	139108.2	639897778	640	1.41
Q1 2011	454607.9	17	17000	1720690.9	2.925E+10	29252	64.49	37187.5	4.4	4400	140754.7	619320625	619	1.37
Q2 2011	159238.9	12	12000	602719.2	7.233E+09	7233	15.95	67907.7	4.8	4800	257030.6	1.234E+09	1234	2.72
Q3 2011	141542.6	3	3000	535738.7	1.607E+09	1607	3.54	72311.2	6.5	6500	273697.9	1.779E+09	1779	3.92
Q4 2011	147647.2	5	5000	558844.7	2.794E+09	2794	6.16	72089.3	4.2	4200	272858.0	1.146E+09	1146	2.53
Q1 2012	148747.0	0.6	600	563007.4	337804437	338	0.74	76306.0	7.9	7900	288818.2	2.282E+09	2282	5.03
Q2 2012	172082.0	2.4	2400	651330.5	1.563E+09	1563	3.45	22956.4	11	11000	86890.1	955790963	956	2.11
Q3 2012	171345.0	2.5	2500	648540.8	1.621E+09	1621	3.57	22025.0	10.8	10800	83364.6	900337950	900	1.98
Q4 2012	156653.0	4.1	4100	592931.6	2.431E+09	2431	5.36	20114.0	11	11000	76131.5	837446390	837	1.85
Q1 2013	210908.0	7.99	7990	798286.8	6.378E+09	6378	14.06	18177.0	9.07	9070	68799.9	624015501	624	1.38
Q2 2013	226224.0	2.95	2950	856257.8	2.526E+09	2526	5.57	20252.4	9.76	9760	76655.3	748156060	748	1.65

Table 4 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

Totals Since Q3

2010 2873865.3

145.95 505177.3

27.67

Table 4 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

	-			TW4-4	ALL OF		TW4-22							
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Calculations and Data Origination														
Q3 2010	76916.8	7.30	7300.00	291130.1	2.1E+09	2125.25	4.69	NA	NA	NA	NA	NA	NA	NA
Q4 2010	86872.1	7.10	7100.00	328810.9	2.3E+09	2334.56	5.15	NA	NA	NA	NA	NA	NA	NA
Q1 2011	73360.0	7.00	7000.00	277667.6	1.9E+09	1943.67	4.29	NA	NA	NA	NA	NA	NA	NA
Q2 2011	80334.6	7.00	7000.00	304066.5	2.1E+09	2128.47	4.69	NA	NA	NA	NA	NA	NA	NA
Q3 2011	97535.0	6.60	6600.00	369170.0	2.4E+09	2436.52	5.37	NA	NA	NA	NA	NA	NA	NA
Q4 2011	109043.5	7.00	7000.00	412729.6	2.9E+09	2889.11	6.37	NA	NA	NA	NA	NA	NA	NA
Q1 2012	101616.8	7.10	7100,00	384619.6	2.7E+09	2730.80	6.02	NA	NA	NA	NA	NA	NA	NA
Q2 2012	87759.1	7.10	7100.00	332168.2	2.4E+09	2358,39	5.20	NA	NA	NA	NA	NA	NA	NA
Q3 2012	80006.0	7.10	7100.00	302822.7	2.2E+09	2150.04	4.74	NA	NA	NA	NA	NA	NA	NA
Q4 2012	71596.0	7.00	7000.00	270990.9	1.9E+09	1896.94	4.18	NA	NA	NA	NA	NA	NA	NA
Q1 2013	58716.8	7.36	7360.00	222243.1	1.6E+09	1635.71	3.61	16677.4	58.0	58000.0	63124.0	3661189622.0	3661.2	8.07
Q2 2013	65603.4	6.30	6300.00	248308.9	1.6E+09	1564.35	3.45	25523.2	50.2	50200.0	96605.3	4849586662.4	4849.6	10.69

Totals Since Q3

2010 989360.1

57.75 42200.6

18.76

TW4-24 TW4-25 Total Total Total Total Pumped Conc Conc Pumped Total Total Pumped Conc Conc Pumped Total Total (ug/L) (gal) (mg/L) (ug/L) (liters) Total (ug) (grams) (pounds) (gal) (mg/L)(liters) Total (ug) (pounds) Quarter (grams) Calculations and Data Origination Q3 2010 NA Q4 2010 NA Q1 2011 NA Q2 2011 NA Q3 2011 NA Q4 2011 NA Q1 2012 NA Q2 2012 NA Q3 2012 NA Q4 2012 NA Q1 2013 144842.6 35.9 35900.0 548229.2 19681429751.9 19681.4 43.39 99369.9 9.0 9000.0 376115.1 3385035643.5 3385.0 7.46 Q2 2013 187509.3 23.7 23700.0 709722.7 16820428001.9 16820.4 37.08 147310.4 5.2 5240.0 557569.9 2921666087.4 2921.7 6.44

Table 4 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

Totals Since Q3

2010 332351.9

80.47 246680.3

13.90

	TWN-02									
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Removed by All Wells (pounds)		
Calculations and Data Origination										
Q3 2010	NA	NA	NA	NA	NA	NA	NA	15.69		
Q4 2010	NA	NA	NA	NA	NA	NA	NA	27.97		
Q1 2011	NA	NA	NA	NA	NA	NA	NA	73.30		
Q2 2011	NA	NA	NA	NA	NA	NA	NA	27.01		
Q3 2011	NA	NA	NA	NA	NA	NA	NA	16.82		
Q4 2011	NA	NA	NA	NA	NA	NA	NA	19.71		
Q1 2012	NA	NA	NA	NA	NA	NA	NA	15.86		
Q2 2012	NA	NA	NA	NA	NA	NA	NA	15.03		
Q3 2012	NA	NA	NA	NA	NA	NA	NA	14.67		
Q4 2012	NA	NA	NA	NA	NA	NA	NA	14.92		
Q1 2013	31009.4	57.3	57300.0	117370.6	6725334176.7	6725.3	14.83	95.73		
Q2 2013	49579.3	57.7	57700.0	187657.7	10827846433.9	10827.8	23.87	91.71		

Table 4 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

Totals Since Q3

2010 80588.7

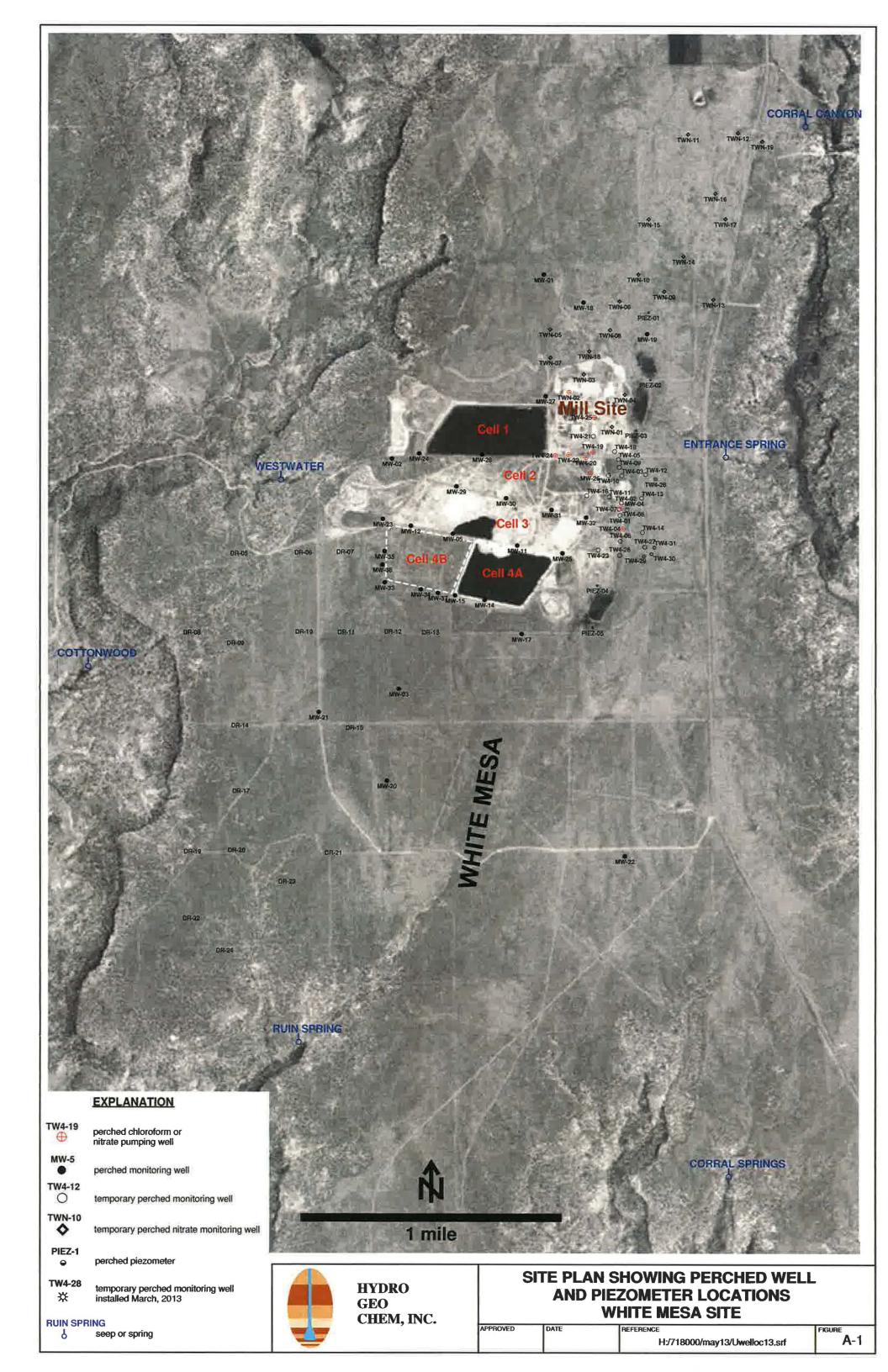
38.70 428.41

Highlighted cells are the total for the current quarter

Location	Q2 2010	Q3 2010	Q4 2010	Q1 2011	Q2 2011	Q3 2011	Q4 2011	QI 2012	Q2 2012	Q3 2012	Q4 2012	Q1 2013	Q2 2013
MW-30	15.8	15	16	16	17	16	16	17	16	17	18.5	21.4	18.8
MW-31	22.5	21	20	21	22	21	21	21	20	21	23.6	19.3	23.8
MW-5	ND	NS	0.2	NS	0.2	NS	0.2	NS	0.1	NS	ND	NS	ND
MW-11	ND												

Table 5 Nitrate Data Over Time for MW-30, MW-31, MW-5, and MW-11

ND = Not detected


NS = Not Sampled

INDEX OF TABS

- Tab A Site Plan and Perched Well Locations White Mesa Site
- Tab B Order of Sampling and Field Data Worksheets
- Tab C Kriged Current Quarter Groundwater Contour Map and Depth to Water Data
- Tab D Kriged Previous Quarter Groundwater Contour Map
- Tab E Hydrographs of Groundwater Elevations Over Time for Nitrate Monitoring Wells
- Tab F Depths to Groundwater and Elevations Over Time for Nitrate Monitoring Wells
- Tab G Laboratory Analytical Reports
- Tab H Quality Assurance and Data Validation Tables
 - H-1 Field Data QA/QC Evaluation
 - H-2 Holding Time Evaluation
 - H-3 Receipt Temperature Check
 - H-4 Analytical Method Check
 - H-5 Reporting Limit Evaluation
 - H-6 QA/QC Evaluation for Sample Duplicates
 - H-7 Rinsate Check
 - H-8 QC Control Limits for Analyses and Blanks
- Tab I Kriged Current Quarter Isoconcentration Maps
- Tab J Analyte Concentration Data Over Time
- Tab K Concentration Trend Graphs
- Tab L CSV Transmittal Letter

Tab A

Site Plan and Perched Well Locations White Mesa Site

Tab B

Order of Sampling and Field Data Worksheets

Nitrate Order 2nd Quarter 2013

		Nitrate	Samples		
Name	Nitrate Mg/L Previous Qrt.	Date/Purge	sample	Depth	Total Depth
TWN-7	0.591	4/24	0922		105
TWN-1	0.681	4/23	0835		112.5
TWN-4	1.51	4/23	0922		125.3
TWN-18	2.27	4/23	1004		145
TWN-3	22.2	4/24	0935		96
TWN-2	57.3	4/24	0945		96
Duplicate of Rinsate		4/23	1004		
Plez 1	0.218	4/24	1000		
Piez 2	8.11	4/24	1013		
Piez 3	1.85	4/24	1025		

0

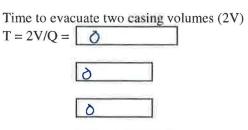
Rinsate Samples						
Name	Date	Sample				
TWN-7R	4/23	6734				
TWN-1R						
TWN-4R						
TWN-18R						
TWN-3R						
TWN-2R						

Samplers:

DI 0745 4/25

ATTACHME WHITE MESA URA FIELD DATA WORKSHEET	NIUM MILL See instruction
Description of Sampling Event: 2nd Quarter Nit	rate 2013
Location (well name): Piez-01	and initials: Tanner Holliday/TH
Field Sample ID Picz-01_04242013	
Date and Time for Purging 4/24/2013 and	d Sampling (if different)
Well Purging Equip Used: Dpump or B bailer	Well Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarlerly Nitrate Prev.	Well Sampled in Sampling Event
pH Buffer 7.0 7.0 7.0 p	H Buffer 4.0 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft):
Depth to Water Before Purging 62.2.8 Casing	g Volume (V) 4" Well: 0 (.653h) 3" Well: 0 (.367h)
Conductance (avg) 2.44 pH of	Water (avg) 7.41
Well Water Temp. (avg) 14.38 Redox Potenti	al (Eh) 397 Turbidity 1.7
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event) 7.
Time 0959 Gal. Purged o	Time Gal. Purged
Conductance 2441 pH 7.41	Conductance pH
Тетр. °С []Ч.38	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged D


gallon(s)

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 = \heartsuit

Number of casing volumes evacuated (if other than two)

If well evacuated to dryness, number of gallons evacuated

AWAL

Name of Certified Analytical Laboratory if Other Than Energy Labs

Type of Sample	Samp	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs			3x40 ml			HCL		
Nutrients	M		100 ml		X	H2SO4	Ø	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv,		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	X		Sample volume		X			D
Chlorid Final Depth 67.93		Sample T	ime 1000]		If preservative is use Type and Quantity of		
Comment								
Arrived on stc at Samples bailed and 1.HTC wood lik	Arrived on site at 0954. Tanner and Garrin present to collect samples. Samples bailed and collected at 1000, water was clear but water had little wood like particles floating. Left site at 1004							

Piez-01 04-24-2013 Do not touch this cell (SheetName)

 Mill - Greandwater Discharge Permit Groundwater Monitoring Quality Assurance Plan (QAP)

Date: 04/04/13	Rev. 7.3
----------------	----------

The ENERGY FUELS	VT 1-2 NIUM MILL See instruction
Description of Sampling Event: 2nd Quarter Nr	trate 2013
Location (well name): Piez-02	and initials: Farmer Heiliday/TH
Field Sample ID P.22-02_04242013	
Date and Time for Purging 4/24/2013 and	Sampling (if different)
Well Purging Equip Used: Dpump or 🙀 bailer W	Vell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Notrate Prev. V	Well Sampled in Sampling Event Piez-01
pH Buffer 7 0 7.6 pH	HBuffer 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft):
Depth to Water Before Purging 30.62 Casing	Volume (V) 4" Well: 0 (.653h) 3" Well: e (.367h)
Conductance (avg) 681 pH of	Water (avg) 7,95
Well Water Temp. (avg) 14.45 Redox Potentia	I (Eh) 384 Turbidity 2
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)
Time 1012 Gal. Purged 0	Time Gal. Purged
Conductance 68 pH 7.95	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV) 384	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Mill - Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan (QAP)

	0		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm.				and the second se	casing	volumes (2V)		
S/60 =			T = 2V/Q =	0				
Number of casing volume	s evacuated	l (if other	than two)	0	.]			
If well evacuated to dryne	ss, number	of gallon	s evacuated	0				
Name of Certified Analyti	cal Labora	tory if Otl	her Than Energy Labs	AWAL	-			
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type	Preserva	tive Added
	Y	N	specified below)	Y	N		Y	N
VOCs			3x40 ml			HCL		0
Nutrients	- KA		100 mf		62	H2SO4	Ø	0
Heavy Metals			250 ml			EINO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1.000 ml			HNO3		
Other (specify)	R		Sample volume					₽Ž
Chloride						If preservative is use Type and Quantity of		Vé'
Final Depth 35.43		Sample T	Time 1013			Type and Quantity o		
Final Depth 35.43	1004			it to	colle	Type and Quantity o	f Preservati	
Final Depth 35.43 Comment Arrived on site at	1004. T	woner o	and Garria preser	it to	collec	Type and Quantity o	f Preservati	
Final Depth 35.43 Comment Arrived on site at Samples collected a	+ 1013	woner o	and Garria preser	it to	collect	Type and Quantity o	f Preservati	
Final Depth 35.43 Comment Arrived on site at	+ 1013	woner o	and Garria preser	it to	collecter	Type and Quantity o	f Preservati	
Final Depth 35.43 Comment Arrived on site at Samples collected a	+ 1013	woner o	and Garria preser	it to	collec	Type and Quantity o	f Preservati	
Final Depth 35.43 Comment Arrived on site at Samples collected a	+ 1013	woner o	and Garria preser	it to	collecter	Type and Quantity o	f Preservati	
Final Depth 35.43 Comment Arrived on site at Samples collected a	+ 1013	woner o	and Garria preser	it to	collect	Type and Quantity o	f Preservati	
Final Depth 35.43 Comment Arrived on site at Samples collected a	+ 1013	woner o	and Garria preser	it to	collect	Type and Quantity o	f Preservati	
Final Depth 35.43 Comment Arrived on site at Samples collected a	+ 1013	inner a	and Garria preser	it to	collect	Type and Quantity o	f Preservati	
Final Depth 35.43 Comment Arrived on site at Samples collected a	+ 1013	inner a	and Garrin preser bailer, water w	nt to	collecter	Type and Quantity o	f Preservati	

ATTACHMEN WHITE MESA URAN FIELD DATA WORKSHEET F	
Description of Sampling Event: 2nd Quarter Notrat	
Location (well name): P.ez-03	and initials: Tanner Holliday/TH
Field Sample ID Fiez-03_04242013	
Date and Time for Purging $\frac{4/24}{2013}$ and	Sampling (if different)
Well Purging Equip Used: Dpump or D bailer W	(if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Nitrate Prev. V	Vell Sampled in Sampling Event Fro Picz-02
pH Buffer 7.0 7.0 pH	1 Buffer 4.0 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01 ft):
Depth to Water Before Purging 43.06 Casing	Volume (V) 4" Well: 0 (.653h) 3" Well: 0 (.367h)
Conductance (avg) 3336 pH of	Water (avg) 12 33
Well Water Temp. (avg) 14.8 Redox Potentia	(Eh) 285 Turbidity 7.5
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event) 9°
Time 1024 Gal. Purged O	Time Gal. Purged
Conductance 3336 pH 12.33	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV) 285	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Mill - Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan (QAP) k

Punping Rate Calculation	t							
	1							
Flow Rate (Q), in gpm. S/60 = 0	-		Time to evace T = 2V/Q =	uate two	casing	volumes (2V)		
3/00 - 0			1-20/Q-1			_]		
Number of casing volume	s evacuated	l (if other	than two)	0				
	ř	a b		0				
If well evacuated to dryne	ss, number	of gallon	s evacuated	0				
Name of Certified Analyti	cal Labora	orv if Otl	er Than Energy Labs	AWAZ				
,								
T 60 1	Sampl	e Taken	Sample Vol (indicate	Filtered			Preservative Addee	
Type of Sample	Y	N	if other than as specified below)	Y	N	Preservative Type	Y	N
VOCs			3x40 ml			HCL		
Nutrients			100 ml		1	H2SO4	1	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 mł			No Preserv.		
Gross Alpha			1,000 ml			HINO3		
Other (specify)	赵		Sample volume				D	Ø,
Final Depth 48.11	_	Sample T	ime 1025			See	instruction	1
Comment		anner a	and Garrin present	t to c	clect	samples.		
Arrived on site at Samples collected, Left site at	1018 . 7 with a 1028	bailer	at 1025 Water	was	Clear			
1 = 1 1 J	1018 . 7 with a 1028	bailer	at 1025 Water	was.	Clear			
1 = 1 1 J	with a 1028	bailer	at 1025. Water	LOA.S	C ear			
1 = 1 1 J	with a 1028	bailer	at 1025, water this cell (SheetName)	LOG S	C ear	Υ		

ENERGY FUELS	NUM MILL See instruction
Description of Sampling Event: Znd Quarter Nitra	
	Sampler Name
Location (well name): TWN-01	and initials: Tanner Holliday ATH
Field Sample ID TWN-01_04232013	
Date and Time for Purging 4/23/2013 and	Sampling (if different)
Well Purging Equip Used: Dump or bailer W	Vell Pump (if other than Bennet) Grundfos
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly N'trate Prev. W	Vell Sampled in Sampling Event TWN-07
pH Buffer 7.0 7 0 pH	I Buffer 4.0 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 112.50
Depth to Water Before Purging 54.76 Casing	Volume (V) 4" Well: 37.70 (.653h)
853	3" Well: (.367h)
	Water (avg) 7.53
Well Water Temp. (avg) 14.67 Redox Potentia	1 (Eh) 462 Turbidity 10.65
Weather Cond. Cloudy and Windy	Ext'l Amb. Temp. °C (prior sampling event) 5°
Time 6872 · Gal. Purged 60	Time 6873 · Gal. Purged 72
0832 Conductance 856 pH 7.34	0833 Conductance 857 pH 7.56
Temp. °C [14.68]	Temp. °C 14.69
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged 84	Time Gal. Purged 94
0834 Conductance 853 pH 760	0835 Conductance 852 pH 7.62
Temp. °C 14-65	Temp. °C 14.67
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU) 10,5

Volume of Water Purged

gallon(s)

Time to evacuate two casing volumes (2V)

T = 2V/Q = 6.28

0

0

AWAL

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 = 12

Number of casing volumes evacuated (if other than two)

96

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Labs

Type of Sample	Sampl	le Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserv	ative Added	
	Y	N	specified below)	Y	N		Y	N	
VOCs			3x40 ml			HCL			
Nutrients	Ĺ2		100 ml		M	H2SO4	Ø		
Heavy Metals			250 ml			HNO3			
All Other Non Radiologics			250 ml			No Preserv.			
Gross Alpha			1,000 ml			HNO3			
Other (specify)	۲ <u>۶</u>		Sample volume		I ≱			Ø	
Final Depth 77.4		Sample T	ime 0835]		Type and Quantity of	Preserva	tive:	
Comment						i c.Z.	instructio		
Arrived on site at 0824 Janner and Garrin present for purge and sampling event. Purge began at 0827. Purged well for a total of 8 minutes. water was clear. Purge ended and samples collected at 0835. Left site at 0837									

TWN-01 04-23-2013 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction									
Description of Sampling Event: 2nd Quarter Nitrate 2013									
Location (well name): TWN-02	and initials: Tanner Hollider /TH								
Field Sample ID TWN-02_04242013									
Date and Time for Purging 4/24/2013 and	A Sampling (if different)								
Well Purging Equip Used: Dump or bailer W	Vell Pump (if other than Bennet)								
Purging Method Used: 2 casings 3 casings									
Sampling Event Quarterly Nitrate Prev. V	Well Sampled in Sampling Event								
pH Buffer 7.0 7.0 pH	H Buffer 4.0 4.0								
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 96.00								
Depth to Water Before Purging 27.70 Casing Volume (V) 4" Well: 44,59 (.653h) 3" Well: 0 (.367h)									
Conductance (avg) 3419 pH of	Water (avg) 6.79								
Well Water Temp. (avg) 14.17 Redox Potentia	al (Eh) 369 Turbidity 0								
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event) 7°								
Time 0414 Gal. Purged 0	Time Gal. Purged								
Conductance 3419 pH 6.79	Conductance pH								
Temp. °C []4.17	Temp. °C								
Redox Potential Eh (mV) 369	Redox Potential Eh (mV)								
Turbidity (NTU)	Turbidity (NTU)								
Time Gal. Purged	Time Gal. Purged								
Conductance pH	Conductance pH								
Temp. °C	Temp. °C								
Redox Potential Eh (mV)	Redox Potential Eh (mV)								
Turbidity (NTU)	Turbidity (NTU)								

Volume of Water Purged	δ		gallon(s)							
Pumping Rate Calculation										
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 =$ 18.7 $T = 2V/Q =$										
Number of casing volumes evacuated (if other than two)										
If well evacuated to dryness, number of gallons evacuated										
Name of Certified Analytical Laboratory if Other Than Energy Labs										
Type of Sample	Sample Taken S		Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	tive Added		
	Y	N	specified below)	Y	N		Y	N		
VOCs			3x40 ml			HCL				
Nutrients	Ċ		100 ml		竹	H2SO4	Ă			
Heavy Metals			250 ml			HNO3				
All Other Non Radiologics			250 ml			No Preserv.				
Gross Alpha			1,000 ml			HNO3				
Other (specify)	ď		Sample volume		Ľ			۲ ۲		
Chloride						If preservative is used Type and Quantity of		ve:		
Final Depth 78,99 Sample Time 0945										
Comment						See See	instructio	n		
Hrrived on site at 0942. Tanner and Garrin present to collect samples. Samples collected at 1845. Witer was clear, Left site at 0948										

TWN-02 04-24-2013 Do not touch this cell (SheetName)

ENERGY FUELS	T 1-2 TUM MILL See instruction DR GROUNDWATER
Description of Sampling Event: 2nd Quarter A	
Location (well name): TWA - 03	and initials: Tanner Holl day MH
Field Sample ID TWN-03_04242013	
Date and Time for Purging 4/23/2013 and	Sampling (if different) 4/24/2013
Well Purging Equip Used: D pump or D bailer W	ell Pump (if other than Bennet) Grund fos
Purging Method Used: 2 casings 3 casings	
Sampling Event 3 Quarterly Nytrate Prev. W	/ell Sampled in Sampling Event
pH Buffer 7.0 7.0 pH	Buffer 4.0 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 96.00
Depth to Water Before Purging 36.30 Casing	Volume (V) 4" Well: 38 98 (.653h) 3" Well: 0 (.367h)
Conductance (avg) 2560 pH of V	Water (avg) 7.47
Well Water Temp. (avg) 14.77 Redox Potential	(Eh) 425 Turbidity 10.1
Weather Cond. Sunny and Windy	Ext'l Amb. Temp. °C (prior sampling event)
Time 1255 Gal. Purged 78	Time Gal. Purged
Conductance 2560 pH 7.47	Conductance pH
Temp. °C [14.77]	Temp, °C
Redox Potential Eh (mV) 425	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 0935 Gal. Purged 0	Time 0937 Gal. Purged C
Conductance Z612 pH 7.47	Conductance [2.60] pH 7.46
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Before	After

	-		Ť – II. ()					
Volume of Water Purged	78		gallon(s)					
Pumping Rate Calculation		54						
Flow Rate (Q), in gpm.			Time to evac	nate two	casing v	volumes (2V)		
S/60 = 12			T = 2V/Q =					
Number of casing volumes	evacualed	l (if other	than (wo)	1.38				
If well evacuated to drynes	s. number	of gallon	s evacuated	78	F	54		
Name of Certified Analytic	cal Labora	tory if Oth	ier Than Energy Labs	AWA.	L			
Type of Sample		e Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type		tive Added
	Y	N	specified below)	Y	N		Y	N
VOCs			3x40 ml			HCL		
Nutrients	123		100 ml		R	H2SO4		
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	Ø		Sample volume		53			网
Final Depth 94,39		Sample T	ime 0935	1		Type and Quantity of	f Preservati	
Comment							bish detto	u
Arrived on site at Purged well for water was clear. P. Arrived on site at 09 36.68. Samples bo	4 min	nutes	and 30 secon	ids. F	urgee	A well dry!		
	Do 1	not t <mark>ouch</mark>	this cell <mark>(SheetName)</mark>					

Mill • Groundwäter Discharge Permit

Groundwater Monitoring Quality Assurance Plan (QAP)

Date: 04/04/13 Rev. 7.3

ATTACHMEN WHITE MESA URAN FIELD DATA WORKSHEET FO	HUM MILL
Description of Sampling Event: 2nd Quarter Nitr	
	Sampler Name
Location (well name): TWN - OY	and initials: Tanner Holliday/TH
Field Sample ID TWN-04_04232013]
Date and Time for Purging 4/23/2013 and	Sampling (if different)
Well Purging Equip Used: Dpump or D bailer W	ell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Nitrate Prev. W	/ell Sampled in Sampling Event TWN-01
pH Buffer 7.0 70 pH	Buffer 4.0
Specific Conductance 994 µMHOS/ cm	Well Depth(0.01ft): 125,70
Depth to Water Before Purging 46.70 Casing	Volume (V) 4" Well: 51.58 (.653h) 3" Well: 0 (.367h)
Conductance (avg) pH of V	Vater (avg) 6.45
Well Water Temp. (avg) 14.57 Redox Potential	(Eh) 413 Turbidity 5-0
Weather Cond. Cloudy and Windy	Ext'l Amb. Temp. °C (prior sampling event)
Time 0919 Gal. Purged 108	Time 0920 Gal. Purged 120
Conductance 1077 pH 697	Conductance 1071 pH 6.95
Temp, °C [19.56	Temp. °C [14.57
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU) 5.1	Turbidity (NTU) 5.0
Time 0921 Gal. Purged 32	Time 0922 Gal. Purged 149
Conductance 1066 pH 6.95	Conductance DG9 pH G.95
Temp. °C 19.60	Temp. °C [14-57
Redox Potential Eh (mV)	Redox Potential Eh (mV) 418
Turbidity (NTU) 5.0	Turbidity (NTU)

Mill - Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan (QAP)

Volume of Water Purged	144	····.] gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = $\boxed{2}$			Time to evac T = $2V/Q$ =			volumes (2V)		
Number of casing volumes	s evacuated	d (if other	than two)	0				
If well evacuated to dryne	ss, number	ofgallon	s evacuated	D				
Name of Certified Analyti	cai Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample	Type of Sample Sample Taken Sample Vol (indicate if other than as			Filte	ered	Preservative Type	Preservative Added	
	Y	N	specified below)	Y	N		Y	N
VOCs			3x40 ml			HCL		
Nutrients			100 ml		M	H2SO4	54	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv		
Gross Alpha			1,000 ml	D		HNO3		
Other (specify)	D.		Sample volume		K			
Final Depth 47 49		Sample T	ime 0922			Type and Quantity o	instructio	
Arrived on site at a Purge began at o mostly clear throug Left site at	906 910.P hout f 0925	Tanne urged ourge.	r and Garrin pro well for a total Purg ended and .	of 12 sample:	for prinu minu s coll	arge and sampli tes. water wa ected at 0922	ng even	ŧ.
	Do	not touch	this cell (SheetName)					

ATTACHMEI WHITE MESA URA FIELD DATA WORKSHEET I	NIUM MILL See instruction
Description of Sampling Event: 2nd Quarter Nite	
Location (well name): TWN-07	and initials: Tanner Holliday/TH
Field Sample ID TWN-07_04242013	
Date and Time for Purging 4/23/2013 and	a Sampling (if different) 4/24/2013
Well Purging Equip Used: Dump or bailer	Vell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarter 13 Nitrate Prev.	Well Sampled in Sampling Event
pH Buffer 7.0 7.0 pl	H Buffer 4.0 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 105.00
Depth to Water Before Purging 87.04 Casing	g Volume (V) 4" Well: 11.72. (.653h) 3" Well: 0 (.367h)
Conductance (avg) 12.66 pH of	Water (avg) 7.90
Well Water Temp. (avg) 14.04 Redox Potentia	al (Eh) 458 Turbidity 21.6
Weather Cond. Cloudy and Windy	Ext'l Amb. Temp. °C (prior sampling event) 50
Time 059 Gal. Purged 10	Time Gal. Purged
Conductance 12.66 pH 7.90	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 0921 Gal. Purged 0	Time 0923 Gal. Purged 0
Conductance 733 pH 7.53	Conductance 728 pH 7.55
Temp. °C 15.06	Temp. °C [15.0]
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
~ Г	~ <u>∩</u>

Before Volume of Water Purged	16] gallon(s)		A+7	er					
Pumping Rate Calculation											
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 =$ Z $T = 2V/Q =$ 1.95											
Number of casing volumes evacuated (if other than two)											
If well evacuated to dryness, number of gallons evacuated											
Name of Certified Analytical Laboratory if Other Than Energy Labs											
Type of Sample	Sampl	Sample Taken Sample Vol (indicate if other than as		Filte	ered	Preservative Type	Preservative Addec				
	Y	N	specified below)	Y	N		Y	N			
VOCs			3x40 ml			HCL					
Nutrients			100 ml		X	H2SO4	X				
Heavy Metals			250 ml			HNO3					
All Other Non Radiologics			250 ml			No Preserv.					
Gross Alpha			1,000 ml			HNO3					
Other (specify)	凶		Sample volume		₽						
Chloride						If preservative is use	d specify				
						Type and Quantity of		ve:			
Final Depth 103.61	1 1	Sample T	ime 0922	ſ							
	1	Sample 1				San Car	instantio				
Comment						See See	instruction				
Arrived on site at 0754 Purged well for a to mostly clean left	t. Tann stal of	er and (I minu	farrin present for	purg.	e. Pu	rge began at	0758				
The training of the state	2110 0	J VOVL						tar.			
Arrived on site of 0918. Was 96.17. Samples	Dailed	rand G at 09	arrin present to 22. Leff site a	collect Pogze	t san	ipies. Depth	TO WAI				

TWN-07 04-23-2013 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL FIELD DATA WORKSHEET FOR GROUNDWATER							
Description of Sampling Event: 2nd Quarter N							
Location (well name): TWN-07R	and initials: Tanner Holliday KH						
Field Sample ID04232013							
Date and Time for Purging 4/23/2013	and Sampling (if different)						
Well Purging Equip Used: Dump or D bailer	Well Pump (if other than Bennet)						
Purging Method Used: 2 casings 3 casings							
Sampling Event Quarterly Nitrate Pre	v. Well Sampled in Sampling Event N/A						
pH Buffer 7.0 7.0	pH Buffer 4.0						
Specific Conductance 499 µMHOS/ cm	Well Depth(0.01ft):						
Depth to Water Before Purging 0 Cas	sing Volume (V) 4" Well: 3" Well: 3" Well: 3" (.653h) (.367h)						
Conductance (avg) 2.3 pH	of Water (avg) 9.00						
Well Water Temp. (avg) 14.87 Redox Pote	ntial (Eh) 413 Turbidity O						
Weather Cond. Cloudy and Windy	Ext'l Amb. Temp. °C (prior sampling event) 5°						
Time 0732 Gal. Purged 130	Time Gal. Purged						
Conductance 2.3 pH 9.00	Conductance pH						
Temp. °C	Temp. °C						
Redox Potential Eh (mV) 413	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						
Time Gal. Purged	Time Gal. Purged						
Conductance pH	Conductance pH						
Temp. °C	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						

Date: 04/04/13 Rev. 7.3

Volume	of	Water	Purged
--------	----	-------	--------

gallon(s)

Time to evacuate two casing volumes (2V)

0

0

AWAL

T = 2V/Q = 0

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 = 12

Number of casing volumes evacuated (if other than two)

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Labs

150

Type of Sample	Sample Taken		Sample Vol (indicate if other than as	Filtered		Preservative Type	Preservative Added		
	Y	N	specified below)	Y	N		Y	N	
VOCs			3x40 ml			HCL			
Nutrients	X		100 ml		N	H2SO4			
Heavy Metals			250 ml			HNO3			
All Other Non Radiologics			250 ml			No Preserv.			
Gross Alpha			1,000 ml			HNO3			
Other (specify)	Ø		Sample volume		X			R	
Final Depth 0		Sample T	ime 0734			See	instructio	on	
Comment	-1.5				~		_		
Arrived on site at 0715 Tanner and Garrin present for Rinsate. Rinsate began at 0720 pumped 50 Gallons of soap water and 100 Gallons of DI water. Purge ended at 0734 . Left site at 0737									

TWN-07R 04-23-2013 Do not touch this cell (SheetName)

ENERGY FUELS	NT 1-2 NIUM MILL See instruction SOR GROUNDWATER
Description of Sampling Event: 2nd Quarter Nit	
Location (well name): TWN-18	and initials: Tanner Holliday MH
Field Sample ID	
Date and Time for Purging 4/23/2013 and	Sampling (if different)
Well Purging Equip Used: D pump or bailer V	Vell Pump (if other than Bennet) GrundFos
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Nitrate Prev.	Well Sampled in Sampling Event TWN-04
pH Buffer 7.0 7,0 pH	H Buffer 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 145.00
Depth to Water Before Purging 58.12 Casing	g Volume (V) 4" Well: 56.73 (.653h) 3" Well: 0 (.367h)
Conductance (avg) 2336 pH of	Water (avg) 7,27
Well Water Temp. (avg)	al (Eh) 407 Turbidity 17.47
Weather Cond. Cloudy Windy	Ext'l Amb. Temp. °C (prior sampling event)
Time 1001 Gal. Purged 108	Time 1002 Gal. Purged 120
Conductance Z3Z8 pH 7.Z	Conductance Z337 pH 7.28
Temp. °C	Тетр. °С [19.19]
Redox Potential Eh (mV) 409	Redox Potential Eh (mV) 407
Turbidity (NTU)	Turbidity (NTU)
Time 1003 Gal. Purged 132	Time 1004 Gal. Purged 144
Conductance Z338 pH 7.39	Conductance Z34 pH 7.28
Temp. °C	Temp. °C 14.12
Redox Potential Eh (mV)	Redox Potential Eh (mV) 906
Turbidity (NTU)	Turbidity (NTU)

0

Volume of Water Purged 144 gallon(s)								
Pumping Rate Calculation								
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 =$ 1Z $T = 2V/Q =$ 9.45								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness	, number	of gallons	evacuated	0				
Name of Certified Analytica	l Labora	tory if Oth	er Than Energy Labs	AWAI	~			
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	tive Added
	Y	N	specified below)	Y	N	-	Y	N
VOCs			3x40 ml			HCL		
Nutrients	Ď.		100 ml		Ň	H2SO4	ß	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv,		
Gross Alpha			1,000 ml			HNO3		
Other (specify)			Sample volume					R
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Final Depth 60.07 Sample Time 1004								
Comment See instruction								
Arrived on site at 00	48	Tanner	and Garrin Drever	+ 5-	DUCAR	and sampling	1 erent	
Arrived on site at 0948 Tanner and Garrin present for purge and sampling event. Purge began at 0952. Purged well for a total of 12 minutes. Water was clear. Purge ended and samples collected at 1004. Left site at 1007								
Purge ended and samples collected at 1004. Left site at 1007								

TWN-18 04-23-2013 Do not touch this cell (SheetName)

The PATELS FLELS	T 1-2 STUM MILL See instruction OR GROUNDWATER
Description of Sampling Event Quarterly Chloro	Form 2013 2nd Quarter
Location (well name) TW4-22	and initials: Tonner Halliday/TH
Field Sample ID22_06052013	
Date and Time for Purging 6/5/2013 and	Sampling (if different)
Well Purgiug Equip Used: 🔲 pump or 🔲 bailer W	ell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 cusings	
Sampling Event Quarterly Chlorofarm Prev. V	Vell Sampled in Sampling Event TW4-24
pH Buffer 7.0 pH	Buffer 4 0 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01fl): 113,50
Depth to Water Before Purging 57.65 Casing	Volume (V) 4" Well 36. 47 (.653h) 3" Well: 0 (.367h)
Conductance (avg) 6188 pH of V	Water (avg) 723
Well Water Temp. (avg) [16.29] Redox Potential	(Eh) Z78 Turbidity O
Weather Cond Partly Cloudy	Ext'l Amb. Temp. 'C (prior sampling event) /3"
Time 0829 Gal Purged 0	Time Gal. Purged
Conductance 6188 pH 7 23	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV) 278	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged O gallon(s)								
Pumping Rate Calculation								
Flow Rate (Q), in gpm, S/60 = 180 Number of easing volumes	evacuated	l (if other	T = 2V/Q =	processing and the second seco	casing v	volumes (2V)		
If well evacuated to dryness	, number	of gallon	s evacuated	6				
Name of Certified Analyticz	il Labora	tory if Orl	her Than Energy Labs	AWA	L			
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type		tive Added
	$F_{\rm c}$	1.V	specified below)	Y Y	N		- F	N
VOCs	CX		[3x40 m]			HCL.		
Nutriems	卤		100 ml		I	H2SO4	Ø	
	the second s		a second statements and a second statement of the seco			and an and the second s		
Heavy Metals			250 ml			HNO3		
All Other Non Rudiologies			250 ml			No Preserv.		
Gross Alpha			L.(KW) ml			HN03		
Other (specify)	X		Sample volume					K
Chloride If preservative is used, specify Type and Quantity of Preservative								
Final Depth Joy.II Sample Time 6830 See instruction								
Comment								
Arrived on site at 0821 Tanner present to collect samples. Samples collected at 0830 Water was clear. Left site at 0833 Continuous Pumping well								
Do not touch this cell (SheetName)								

1 CCS294/0 1 B

Į.

Girlin teus. 14 03 13

11 2'ACOL: 14

ATTACHM WHITE MESA UK FIELD DATA WORKSHEE	RANIUM MILL See instruction				
Description of Sampling Event: 2nd Quarter Ch	loroform 2013				
	Sampler Name				
Location (well name): TW4-24	and initials: Tanner Holliday/TH				
Field Sample ID					
Date and Time for Purging 6/5/2013	and Sampling (if different)				
Well Purging Equip Used: Dump or D bailer	Well Pump (if other than Bennet)				
Purging Method Used: 2 casings 3 casings					
Sampling Event Quarterly Chloroform Prev	v. Well Sampled in Sampling Event $-\tau \omega 4 - 25$				
pH Buffer 7.0 7,0	pH Buffer 4.0 니, 0				
Specific Conductance 999	Well Depth(0.01ft): 112.50				
Depth to Water Before Purging63.5Casing Volume (V)4" Well:31.99(.653h)3" Well:0(.367h)					
Conductance (avg) 8118 pH	of Water (avg) 6.99				
Well Water Temp. (avg) 15,71 Redox Poter	ntial (Eh) 271 Turbidity 1.3				
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)				
Time 081] Gal. Purged 0	Time Gal. Purged				
Conductance 8118 pH 6.99	Conductance pH				
Temp. °C [15,7]	Temp. °C				
Redox Potential Eh (mV) 27	Redox Potential Eh (mV)				
Turbidity (NTU)	Turbidity (NTU)				
Time Gal. Purged	Time Gal. Purged				
Conductance pH	Conductance pH				
Temp. °C	Temp. °C				
Redox Potential Eh (mV)	Redox Potential Eh (mV)				
Turbidity (NTU)	Turbidity (NTU)				

Volume of Water Purged

gallon(s)

T = 2V/Q =

Time to evacuate two casing volumes (2V)

D

6

0

AWAL

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 = 17.80

Number of casing volumes evacuated (if other than two)

0

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Labs

Type of Sample	Samp	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs	ĽX.		3x40 ml		2	HCL	Ø	
Nutrients	DY		100 ml		28	H2SO4	M	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)			Sample volume		Ŋ			Ø
Chloride If preservative is used, specify Type and Quantity of Preservative: Final Depth 67, 1/ Sample Time								
Comment See instruction								
Arrived on site at 0805 Tanner present to collect samples. samples collected at 0812 water was clear. Left site at 0820 Continuous Pumping Well								

TW4-24 06-05-2013 Do not touch this cell (SheetName)

ATTACHMEN WHITE MESA URA FIELD DATA WORKSHEET F	NIUM MILL See instruction				
Description of Sampling Event: 2nd Quarter Chlo					
	Sampler Name				
Location (well name): Twy-25	and initials: Tanner Holliday /TH				
Field Sample ID Twy-25_06052013					
Date and Time for Purging $6/5/2013$ and	Sampling (if different)				
Well Purging Equip Used: D pump or bailer W	Vell Pump (if other than Bennet)				
Purging Method Used: 2 casings 3 casings					
Sampling Event Quarterly Chloroform Prev. N	Well Sampled in Sampling Event $TW 4-27$				
pH Buffer 7.0 7.0 pH	H Buffer 4.0 4.0				
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 134-8				
Depth to Water Before Purging 58.80 Casing Volume (V) 4" Well: 49.62 (.653h) 3" Well: 0 (.367h)					
Conductance (avg) DICZ pH of	Water (avg) 7.14				
Well Water Temp. (avg) 15.57 Redox Potentia	l (Eh) 367 Turbidity 5.3				
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)				
Time 0751 Gal. Purged 0	Time Gal. Purged				
Conductance 3167 pH 7,14	Conductance pH				
Temp. °C	Temp. °C				
Redox Potential Eh (mV) 367	Redox Potential Eh (mV)				
Turbidity (NTU) 5.3	Turbidity (NTU)				
Time Gal. Purged	Time Gal. Purged				
Conductance pH	Conductance pH				
Temp. °C	Temp. °C				
Redox Potential Eh (mV)	Redox Potential Eh (mV)				
Turbidity (NTU)	Turbidity (NTU)				

gallon(s)

T = 2V/Q = 0

Time to evacuate two casing volumes (2V)

0

0

AWAL

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 = 8.0

Number of casing volumes evacuated (if other than two)

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Labs

O

Type of Sample	Sample Taken		Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs			3x40 ml		53	HCL		
Nutrients	Ľ∑ I		100 ml			H2SO4	X	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	5		Sample volume		D3			233
Chloride If preservative is used, specify Type and Quantity of Preservative: Final Depth Sample Time							tive:	
Comment See instruction								
Arrived on site at 0747 Tanner present to collect samples. samples collected at 0752 water was clear. Left site at 0759 Continuous Pumping Well								
Continuous tamping								

TW4-25 06-05-2013 Do not touch this cell (SheetName)

ATTACHMI WHITE MESA UR	ENT 1-2 ANIUM MILL See instruction
FIELD DATA WORKSHEET	FOR GROUNDWATER
Description of Sampling Event: Z nd Quarter Chl	oroform 2013
Location (well name): Tw4-60	and initials: Tanner Holliday /TH
Field Sample ID TWH-60_06132013	
Date and Time for Purging 6/13/2013 ar	ad Sampling (if different)
Well Purging Equip Used: Dpump or D bailer	Well Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event $TW4 - 10$
pH Buffer 7.0 7,0	oH Buffer 4.0 9.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft):
Depth to Water Before Purging O Casir	ng Volume (V) 4" Well: 0 (.653h) 3" Well: 0 (.367h)
Conductance (avg) 0.5 pH of	f Water (avg) 7.42
Well Water Temp. (avg) 23.08 Redox Potent	al (Eh) 3 Turbidity 0
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 20°
Time 0829 Gal. Purged 0	Time Gal. Purged
Conductance 0.5 pH 7.92	Conductance pH
Temp. °C 23.08	Temp. °C
Redox Potential Eh (mV) 301	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

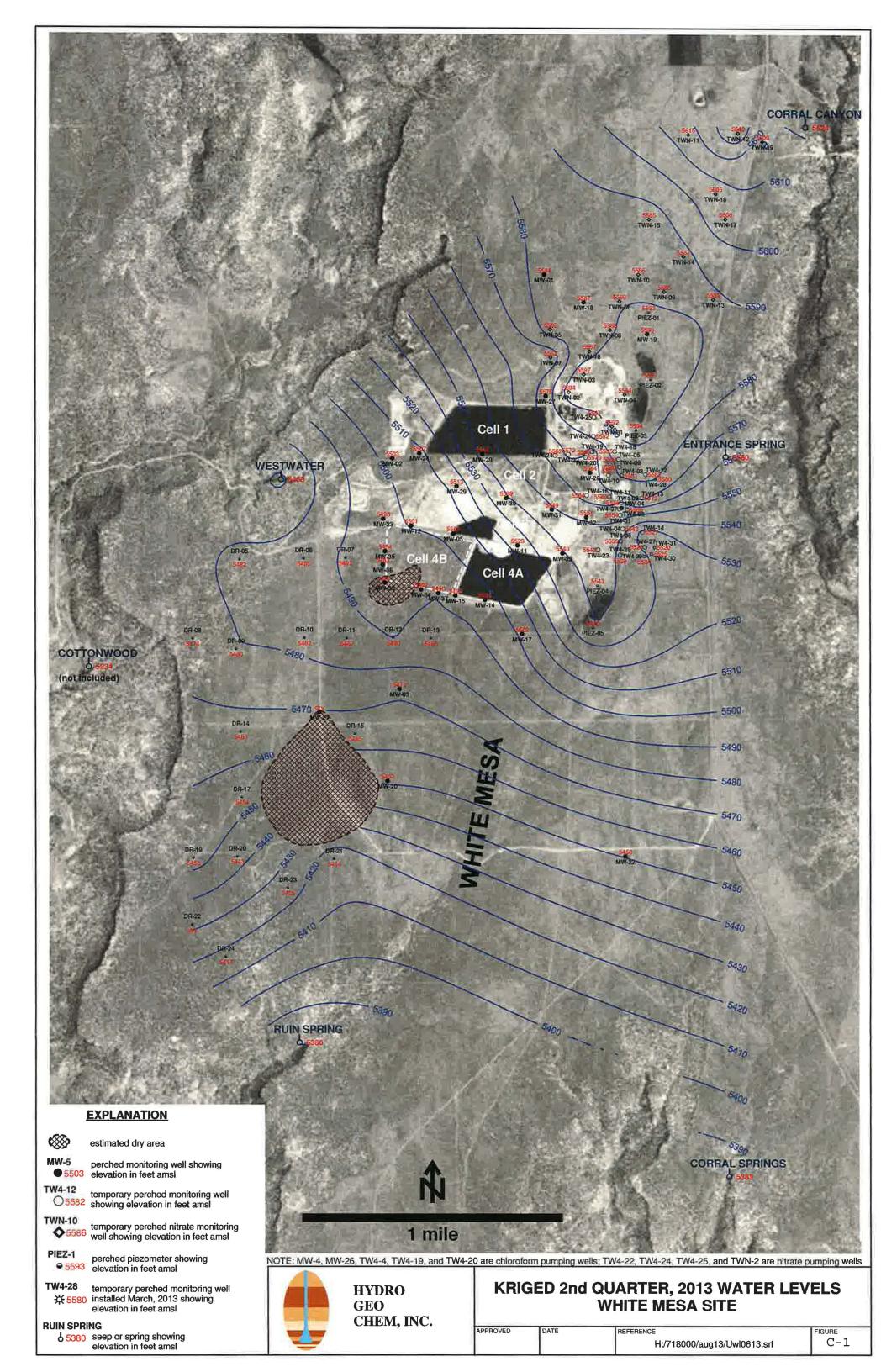
Volume of Water Purged	0		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 =$ $T = 2V/Q =$								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness	, number	of gallons	s evacuated	0				
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWA	L			
Type of Sample		le Taken	Sample Vol (indicate if other than as		ered	Preservative Type		tive Added
110.0	Y	N	specified below)	Y	N		Y	N
VOCs			3x40 ml			HCL		
Nutrients	29		100 ml			H2SO4		
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	Ø		Sample volume		X			×
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Final Depth O Sample Time 0830								
Comment See instruction								
Arrived in Lab at 0825. Janner present to collect a D.I Sample. Samples collected at 0830. Left site at 0833								
D.I. Sample								

TW4-60 06-13-2013 Do not touch this cell (SheetName)

ATTACHMEN WHITE MESA URAN FIELD DATA WORKSHEET F	NIUM MILL See instruction
Description of Sampling Event: 2nd Quarter N	litrate 2013
Location (well name): TWN-60	and initials: Tanner Holliday/TH
Field Sample ID TWN-60_04252013	
Date and Time for Purging 4/25/2013 and	Sampling (if different)
Well Purging Equip Used: Dpump or D bailer W	Vell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Nitrate Prev. V	Vell Sampled in Sampling Event Piez 03
pH Buffer 7.0 7.0 pH	H Buffer 4.0 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft):
Depth to Water Before Purging O Casing	Volume (V) 4" Well: 0 (.653h) 3" Well: 0 (.367h)
Conductance (avg) 3.6 pH of	Water (avg) 5.98
Well Water Temp. (avg) 18.60 Redox Potentia	l (Eh) Turbidity O
Weather Cond.	Ext'l Amb. Temp. °C (prior sampling event)
Time Gal. Purged	Time Gal. Purged
0744 Conductance 3.6 pH 5.5/	Conductance pH
Temp. °C 18.60 5.98	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged D gallon(s)									
Pumping Rate Calculation									
Flow Rate (Q), in gpm. $S/60 = $									
Number of casing volumes of	evacuated	d (if other	than two)	D					
If well evacuated to dryness	, number	of gallons	sevacuated	Õ					
Name of Certified Analytica	ıl Labora	tory if Oth	er Than Energy Labs	AWAL	-				
Type of Sample		e Taken	Sample Vol (indicate if other than as		ered	Preservative Type		tive Added	
	Y	N	specified below)	Y	N		Y	N	
VOCs			3x40 ml			HCL			
Nutrients	Ø		100 ml			H2SO4			
Heavy Metals			250 ml			HNO3			
All Other Non Radiologics			250 ml			No Preserv.			
Gross Alpha			1,000 ml			HNO3			
Other (specify)	52		Sample volume					Ø	
Chloride						If preservative is use Type and Quantity of		ve:	
Final Depth O	Final Depth O Sample Time 0745								
Comment						See	instructio	n1	

TWN-60 04-25-2013 Do not touch this cell (SheetName)


ATTACHMENT WHITE MESA URANIU FIELD DATA WORKSHEET FOR	UM MILL See instruction
Description of Sampling Event: 2nd Quarter Nitrate	
	Sampler Name
Location (well name): TWN-65	and initials: Tanner Hollidas/TH
Field Sample ID [1WN-65_042320]3	
Date and Time for Purging 4/23/2013 and Sa	ampling (if different)
Well Purging Equip Used: Dump or bailer Wel	1 Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarlerly Nitrate Prev. We	ll Sampled in Sampling Event TWN-04
pH Buffer 7.0 7.0 pH E	Buffer 4.0 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): [45.60
Depth to Water Before Purging 58.12 Casing V	olume (V) 4" Well: 56.73 (.653h) 3" Well: 6
Conductance (avg) 2336 pH of Wa	ater (avg) 7.27
Well Water Temp. (avg) 14.18 Redox Potential (Eh) 407 Turbidity 17.47
Weather Cond. Cloudy and Windy	Ext'l Amb. Temp. °C (prior sampling event) 7°
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged 144 gallon(s)									
Pumping Rate Calculation									
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 =$ 12 $T = 2V/Q =$ 9.45									
Number of casing volumes of	evacuated	l (if other	than two)	D					
If well evacuated to dryness	, number	of gallons	sevacuated	D					
Name of Certified Analytica	ıl Labora	tory if Oth	er Than Energy Labs	AWAL	/				
Type of Sample	î	e Taken	Sample Vol (indicate if other than as	Filte		Preservative Type		ative Added	
	Y	N	specified below)	Y	N		Y	N	
VOCs			3x40 ml			HCL			
Nutrients	₿ 2		100 ml		2	H2SO4	Ń		
Heavy Metals			250 ml			HNO3			
All Other Non Radiologics			250 ml			No Preserv.			
Gross Alpha			1,000 ml			HNO3			
Other (specify)	C2		Sample volume		X			Ø	
Chloride						If preservative is used Type and Quantity of		ive:	
Final Depth 60,01	Final Depth 60,01 Sample Time 1004								
Comment See instruction									
Duplicate of TWN-18									

TWN-65 04-23-2013 Do not touch this cell (SheetName)

Tab C

Kriged Current Quarter Groundwater Contour Map and Depth to Water Summary

NAME: Garrin Palmer, Tanner Holliday DATE: 6/27/2013

TIME	WELL	Static level	TIME	WELL	Static Level	TIME	WELL	Static Level	TIME	WELL	Static Level
837	MW-1	63.93	1033	MW-4	72.15	800	PIEZ-1	62.87	NA	DR-1	ABANDON
934	MW-2	109.89	1031	TW4-1	64.14	754	PIEZ-2	31.60	NA	DR-2	ABANDON
844	MW-3	83.05	1034	TW4-2	65.51	843	PIEZ-3	44.30			
846	MW-3A	85.09	1038	TW4-3	51.35	1006	PIEZ-4	48.70			
924	MW-5	106.37	1030	TW4-4	70.13	1008	PIEZ-5	44.25	823	DR-5	83.21
918	MW-11	87.35	1040	TW4-5	58.65				826	DR-6	94.33
928	MW-12	108.59	1029	TW4-6	69.32	854	TWN-1	55.71	852	DR-7	92.36
911	MW-14	103.75	1032	TW4-7	65.03	851	TWN-2	32.37	836	DR-8	51.07
908	MW-15	106.50	1036	TW4-8	65.05	846	TWN-3	37.32	833	DR-9	86.70
724	MW-17	73.48	1039	TW4-9	56.40	841	TWN-4	47.75	830	DR-10	78.18
831	MW-18	70.55	1037	TW4-10	57.05	835	TWN-5	69.61	734	DR-11	98.43
756	MW-19	56.84	1035	TW4-11	57.30	826	TWN-6	75.93	731	DR-12	89.55
745	MW-20	89.10	1014	TW4-12	41.98	833	TWN-7	87.05	728	DR-13	69.96
750	MW-22	67.00	1018	TW4-13	47.50	828	TWN-8	63.01	817	DR-14	76.54
931	MW-23	114.50	1020	TW4-14	85.78	802	TWN-9	62.05	741	DR-15	93.07
1001	MW-24	114.21	950	TW4-15	61.90	824	TWN-10	80.87	na	DR-16	ABANDON
915	MW-25	73.28	947	TW4-16	60.36	818	TWN-11	69.33	813	DR-17	64.95
950	MW-26	61.90	1004	TW4-17	74.90	816	TWN-12	28.70	na	DR-18	ABANDON
901	MW-27	52.39	1000	TW4-18	56.65	805	TWN-13	45.53	803	DR-19	63.20
958	MW-28	76.25	906	TW4-19	65.39	807	TWN-14	62.10	800	DR-20	55.29
937	MW-29	101.85	951	TW4-20	59.60	822	TWN-15	91.66	855	DR-21	107.31
940	MW-30	75.45	857	TW4-21	57.56	812	TWN-16	47.59		DR-22	DRY
942	MW-31	67.50	953	TW4-22	56.55	809	TWN-17	33.91	756	DR-23	70.77
945	MW-32	73.97	1026	TW4-23	64.14	849	TWN-18	58.50	807	DR-24	44.10
858	MW-33	Dry	955	TW4-24	63.20	956	TWN-19	52.48	na	DR-25	ABANDON
903	MW-34	108.00	853	TW4-25	57.30						
855	MW-35	112.51	1027	TW4-26	62.68						
857	MW-36	110.60	1026	TW4-27	81.65						
905	MW-37	109.31	1016	TW4-28	36.70						
			1022	TW4-29	72.20						
			1024	TW4-30	78.02						
			1029	TW4-31	84.22						

Some times may be the same since we split up to complete depth checks.

Date <u>4/1/2013</u>

Name Tonner Holliday

Time	Well	Depth*	<u>Comments</u>	System Operational (If no note any problems/corrective actions)
1401	MW-4	68,42	Flow 4.3	Yes No
			Meter 64190.21	(Yes)No
1358	MW-26	59,10	Flow 10.3	Tes No
			Meter 313132.38	Yes No
1450	TW4-19	59.13	Flow 14.0	Yes No
			Meter 1033735.00	Yes No
1352	TW4-20	57.71	Flow 8.9	Yes No
			Meter 5531 65.53	(Yes No
1404	TW4-4	69.95	Flow 8.1	Yes No
			Meter 64077.8	Yes No
1345	TWN-2	26.13	Flow 18.6	Yes No
			Meter 34855.7	Yes No
1349	TW4-22	55,30	Flow 18,4	Yes No
			Meter 18671.3	Yes No
1348	TW4-24	B 61.20	Flow 18.1	Yes No
			Meter 60384.5	Yes No
1341	TW4-25	57.18	Flow 18.2 GPM	(Yes No
			Meter 110819.6	Yes No

Operational Problems (Please list well number):

Corrective Action(s) Taken (Please list well number):

1+9550F.

Date	Ч	181	13
		0	1

Name Garrin Palmer

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1414	MW-4	68.15	Flow 4.4 GPM	Yes No
			Meter 69597.05	Ves No
1411	MW-26	58.52	Flow 9.2 GPM	(Yes) No
			Meter 315010,71	Yes No
1500	TW4-19	59.99	Flow 14.0	Yes No
			Meter 1051378.00	(Yes No
1407	TW4-20	69.20	Flow 10.0 GPM	(Yes) No
			Meter 554738	(Yes) No
1418	TW4-4	69.91	Flow 8.5 GPM	Yes No
			Meter 69181.40	(Yes)No
1356	TWN-2	27.50	Flow 18.7 GPM	Ves No
			Meter <u>38775</u> .чі	Yes No
1404	TW4-22	76.40	Flow 18.0 GPM	Yes No
			Meter 2066.30	Yes No
1401	TW4-24	73.16	Flow 19.0 GPM	(Yes) No
			Meter 175382.80	Yes No
1352	TW4-25	56.54	Flow 18.3 GPM	(Yes) No
			Meter 122460.50	res No

Operational Problems (Please list well number):

Corrective Action(s) Taken (Please list well number):

Date	4/15/	2013
------	-------	------

Name Tanner Holliday

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
	MW-4	71,51	Flow 4.3 GPM	(Yes) No
1306		71,51	Meter 74818.50	Yes No
1303	MW-26	61.30	Flow 10.1 G-PM	(Yes) No
			Meter 316905.72	Yes No
1400	TW4-19	59.89	Flow 14.0 GPM	Yes No
			Meter 1069021.00	< ⊊¥es ⊃ No
1300	TW4-20	58.75	Flow 10.5 6.PM	Yes No
			Meter 556234.20	Yes No
1309	TW4-4	76,59	Flow 8.3 GPM	(Yes) No
			Meter 74267.6	Yes No
12435	TWN-2	28.30	Flow 18,9 GPM	Yes No
			Meter 42566,4	(Yès No
1250	TW4-22	56.20	Flow 18.0 GPM	Yes No
			Meter 22597.3	(Yes No
124B	TW4-24	61.55	Flow 67.95 18.2	Yes No
			Meter 1900303	Yes No
1242	TW4-25	60.90	Flow 18.1 GPM	Yes No
			Meter 1338 89.1	Yes No

Operational Problems (Please list well number):

Corrective Action(s) Taken (Please list well number):

Date 4/	19/2013	/lonthly Dep			J Garrin Palm
Time	Well	Depth*	Time	Well	Depth*
0918	MW-4	<u>68.58</u>	0828	TWN-1	55.68
0925	TW4-1	64.69	0949	TWN-2	29.20
0904	TW4-2	66.22	0846	TWN-3	36.41
0906	TW4-3	51.78	0840	TWN-4	47.60
0926	TW4-4	70.43	1014	TWN-7	89.03
0909	TW4-5	58.91	0843	TWN-18	58.46
0928_	TW4-6	70.16	1034	MW-27	51.75
0920	TW4-7	65.70	1004	MW-30	76.45
0923	TW4-8	65-18	1002	MW-31	68.40
0907	TW4-9	56.69			
0912	TW4-10	57.35			
8902	TW4-11	57.67			
0938	TW4-12	42.45			
0942	TW4-13	48.28			
0944	TW4-14	86.14	-		
0858	TW4-15	73.23			
0900	TW4-16	66.37			
1023	TW4-17	74.03			
0835	TW4-18	59.71			
1051	TW4-19	62.05			
0856	TW4-20	60.31			
0832	TW4-21	_58.09			
0855	TW4-22	57.00			
0930	TW4-23	64.84			
0852	TW4-24	63.90			(
0830	TW4-25	56.94			
0933	TW4-26	63.50			
0947	TW4-27	81.84			

Comments: (Please note the well number for any comments)

0939	TW4-28	37,41	
0949	TW4-29	72.35	
0951	TW4-30	78,15	
0953	TW4-31	85.30	

Date 4/22/13

Name Garrin Palmer

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1228	MW-4	72.30	Flow 4.3 GPM	(Yes) No
-			Meter 80191.93	Yes No
1221	MW-26	61.49	Flow 102 GPM	(Yes) No
			Meter 318651.30	Yes No
1248	TW4-19	59.43	Flow 14.0 GPM	(Yes) No
			Meter 1085488.06	Yes No
1218	TW4-20	58.70	Flow 9.3 GPM	Yes No
			Meter 557742.30	> Yes No
1225	TW4-4	76.88	Flow 8.4 GPM	Yes No
			Meter 79282.43	(Yes) No
1207	TWN-2	65.80	Flow 18.1 GPM	Yes No
			Meter 46042,18	(Yes) No
1214	TW4-22	56.79	Flow if. O GPM	Ves No
			Meter 2456.88	(Yes) No
1211	TW4-24	63.10	Flow 18,4 GPM	Yes No
			Meter 20471-11	(Yes) No
1204	TW4-25	85,30	Flow 17.6 GPM	Yes No
			Meter 145050.80	Yes No

Operational Problems (Please list well number):

Corrective Action(s) Taken (Please list well number):

Date	

4/29/13

Name Tanner Holliday

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1157	MW-4	72.19	Flow 4.3 GPM	(Yes No
			Meter 85507.20	Yes No
1153	MW-26	63.40	Flow 10.2 C.PM	(Yes)No
			Meter 320752.48	Yes No
123	TW4-19	59.40	Flow 14.0 G-PM	Yes No
			Meter 320752448	Yes No
1150	TW4-20	58.68	Flow 9.3 GPM	Yes No
			Meter 559251.52	Yes No
no1	TW4-4	70.01	Flow 8.4 GPM	Yes No
			Meter 84381.2	Ves No
1139	TWN-2	28.19	Flow 18.5 GPM	Yes No
			Meter 50013.3	Yes No
1147	TW4-22	57.04	Flow 18.0 GPM	Yes No
			Meter 26410.4	Yes No
1)44	TW4-24	63.11	Flow 18.3 GPM	Yes No
			Meter 219207.9	Yes No
1135	TW4-25	58.23	Flow 17.3 GPM	(Yes) No
			Meter 156204.2	Yes No

Operational Problems (Please list well number):

Corrective Action(s) Taken (Please list well number):

* Depth is measured to the nearest 0.01 feet.

6

Date <u>5/6/2013</u>

Name Garrin Palmer

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1216	MW-4	68.65	Flow 4.3 GPM	(Yes) No
			Meter 91099.02	(Yes) No
1220	MW-26	66.01	Flow 10:1 GPM	(Yes) No
			Meter 322703.50	Yes No
1301	TW4-19	68-48	Flow 14.0 GPM	(Yes) No
			Meter 1119359.05	(Yes) No
1226	TW4-20	58.80	Flow 9.8 GPM	(Yes) No
	/1		Meter 560811.43	(Yes) No
1212	TW4-4	69.94	Flow 8.1 GPM	(Yes) No
			Meter 89481-00	(Yes) No
1245	TWN-2	29.70	Flow 19.0 GPM	(Yes) No
			Meter 53897.10	(Yes) No
1232	TW4-22	55.90	Flow 18.1 GPM	Ves No
			Meter 28471.80	(Yes) No
1238	TW4-24	68.02	Flow 17.9 GPM	(Yes) No
			Meter 233660.20	Yes No
1250	TW4-25	59,95	Flow 18.0 GPM	(Yes) No
			Meter 167767.30	(Yes) No

Operational Problems (Please list well number):

Corrective Action(s) Taken (Please list well number):

Date <u>5/13/13</u>

Name Garrin Palmer, Tamer Holliday

Time	Well	Depth*	<u>Comments</u>	System Operational (If no note any problems/corrective actions)
1451	MW-4	68.20	Flow 4.4 GPM	Ves No
			Meter 96580, 76	(Yes) No
1448	MW-26	81.49	Flow 10.1 CPM	Yes No
			Meter 324722.35	(Yes')No
1515	TW4-19	62.18	Flow 14.0 GPM	(Yes No
			Meter 1137011-00	(Yes) No
1444	TW4-20	61.20	Flow 10.0 GPM	(Yes) No
			Meter 562436.04	(Yes) No
1455	TW4-4	70.08	Flow 8.1 GPM	Yes No
			Meter 94565.23	(Yes) No
1428	TWN-2	29.50	Flow 18.5 GPM	(Yes)No
			Meter 57653.01	(Yes')No
1440	TW4-22	56.71	Flow 18.4 cpm	(Yes) No
-			Meter <u>30476.42</u>	Yes No
1432	TW4-24	64.85	Flow 18.2 GPM	(Yes) No
			Meter 248028.90	(Yes) No
1425	TW4-25	57.05	Flow 18.6 GPM	(Yes) No
			Meter 178986.80	(Yes) No

Operational Problems (Please list well number):

Corrective Action(s) Taken (Please list well number):

Date <u>5/20/13</u>

Name Garrin Palmer, Taner Holliday

Time	Well	Depth*	<u>Comments</u>	System Operational (If no note any problems/corrective actions)
1030	MW-4	72.89	Flow 4,3 GPM	Yes No
			Meter 101984,57	(Yes) No
1025	MW-26	60.31	Flow 10.5 GPM	Yes) No
			Meter 326623.91	Yes No
1044	TW4-19	61.4D	Flow 140 GAM	(Yes No
			Meter 101317.00	Yes No
1020	TW4-20	58.56	Flow 10.0 GRM	(Yes) No
			Meter 564079.80	(Yes) No
1035	TW4-4	72.40	Flow 8.2 GPM	(Yes)No
			Meter 99572.80	Yes No
1009	TWN-2	30.20	Flow 19.0 GPM	Yes No
			Meter 61377.22	Yes No
1018	TW4-22	55,93	Flow 18.0 GPM	(Yes) No
			Meter 32379.90	(Yes) No
1015	TW4-24	62.05	Flow 18,2 GPM	Yes No
			Meter 261789.76	(Yes) No
1005	TW4-25	59.05	Flow 17.5 GPM	(Yes) No
			Meter 189674.68	(Yes) No

Operational Problems (Please list well number):

Corrective Action(s) Taken (Please list well number):

Date 5/28/13

Name Garrin Palmer, Tamer Holliday

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1010	MW-4	82.64	Flow Flow	Yes No
			Meter 105287.40	Yes No
0955	MW-26	60.89	Flow 10.5 GPM	Ves No
			Meter 328923.28	(Yes) No
1032	TW4-19	60.02	Flow 14.0 GPM	Yes No
			Meter 1169140.00	(Yes) No
0950	TW4-20	58.61	Flow 10.2 GPM	Ves No
			Meter 565880.50	(es) No
1006	TW4-4	72.55	Flow 8.0 GPM	Yes No
			Meter 108283.84	Yes No
0938	TWN-2	30.95	Flow 19.6 GPM	(Yes) No
			Meter 65676.70	Yes No
0946	TW4-22	55.80	Flow 18.2 GPM	Yes No
			Meter 34208.50	Yes No
0942	TW4-24	60.32	Flow 60.52 6PM	Yes No
			Meter 2777.20.40	Yes No
0934	TW4-25	63.98	Flow 18,2 GPM	(Yes) No
			Meter 202606.80	Yes No

Operational Problems (Please list well number):

Corrective Action(s) Taken (Please list well number):

Comments: (Please note the well number for any comments)

Some times may be some because we split up to complete event.

)

Date <u>6-3-13</u>

Name Garrin Palmer

<u>Time</u>	<u>Well</u>	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1034	MW-4	69.60	Flow 4.3 GPM	(Yes) No
			Meter 112849.63	Yes No
1031	MW-26	60.00	Flow 10.4 GPM	Yes No
			Meter 330661-10	(Yes) No
1250	TW4-19	59.40	Flow 140 GRM	Ves No
			Meter 1184627.00	Yes No
1027	TW4-20	58.75	Flow 10.1 GPM	Yes No
			Meter 5671952.20	Yes No
1037	TW4-4	69.40	Flow Bod GAM	Yes No
			Meter 104305.01	Yes No
1014	TWN-2	30.65	Flow 18-7 GPM	(Yes) No
			Meter 69010.70	Yes No
1022	TW4-22	58.96	Flow 18-4 GPM	Yes No
			Meter 36259:30	Yes No
1018	TW4-24	63.20	Flow 17.8 cpm	(Yes) No
			Meter 289693.00	VesNo
1010	TW4-25	58.78	Flow 18.4 GPM	(Yes) No
			Meter 212110,50	(Yes) No

Operational Problems (Please list well number):

Corrective Action(s) Taken (Please list well number):

De
Da

ate <u>6/11/13</u>

Name Garrin Palmer, Tanner Holliday

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1344	MW-4	7.2.80	Flow 4.3 GPM	(Yes) No
			Meter 119180.76	Yes No
1339	MW-26	60.81	Flow 10.2 GPM	Yes No
		-	Meter 332629.40	YES NO
1435	TW4-19	6D.41	Flow 14.0 GPM	(Yes) No
			Meter 1205800_01	(Yes) No
1333	TW4-20	58.93	Flow 8.5 GPM	Yes No
			Meter 568070=32	(Yes) No
1350	TW4-4	69.80	Flow 8.0 GPM	Ves No
			Meter 114921.80	Yes No
1305	TWN-2	30.80	Flow 18.5 GPM	Yes No
			Meter 73236.60	Yes No
1317	TW4-22	56.13	Flow 17.8 GPM	Yes No
			Meter 38423.70	(Yes) No
1311	TW4-24	62.13	Flow 18.0 GRM	Yes No
			Meter 30524.41	Yes No
1250	TW4-25	69.50	Flow 18.5 GPM	(Tes) No
			Meter 225026.30	Yes No

Operational Problems (Please list well number):

Corrective Action(s) Taken (Please list well number):

D

Date 6/17/13

Name Garria Palme

<u>Time</u>	Well	Depth*	C	omments	System Operational (If no note any problems/corrective actions)
0942	MW-4	67.65	Flow	4.4 BPM	Yes No
			Meter	123575.59	(Yes) No
0938	MW-26	62.04	Flow	10,2 GPM	Yes No
			Meter	334424.75	Yes No
041140	TW4-19	60.32	Flow	14.0 GPM	(Yes) No
			Meter	1220635.00	Yes No
6934	TW4-20	59.31	Flow	10.0 GPM	(Yes) No
			Meter	570129.25	Yes No
0945	TW4-4	70.02	Flow	8.1 GPM	(Yes) No
			Meter	118059.30	(Yes)No
0921	TWN-2	34.13	Flow	18.6 GPM	(Yes) No
			Meter	76456.70	Yes No
0930	TW4-22	56.40	Flow	18-0 GPM	(Yes) No
			Meter	40156,80	Yes No
0926	TW4-24	57.90	Flow	18.0 GPM	Yes No
	-	57.90	Meter	317069.30	(Yes) No
0917	TW4-25	89.80	Flow	18.7 GPM	Yes No
			Meter	234350.00	(Yes) No

Operational Problems (Please list well number):

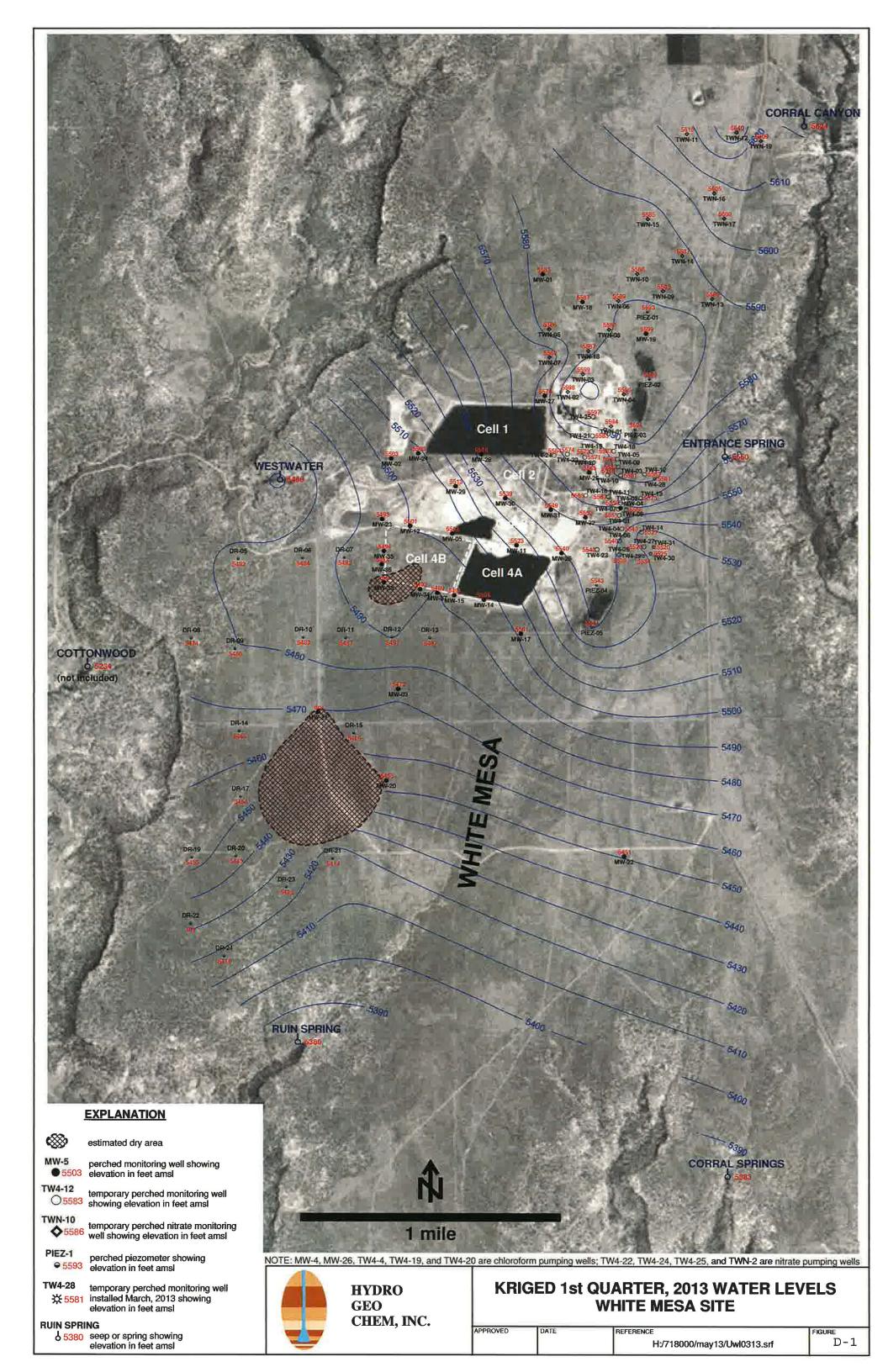
Corrective Action(s) Taken (Please list well number):

Date 6/25/13

Name Garrin Palmer, Tonner Holliday

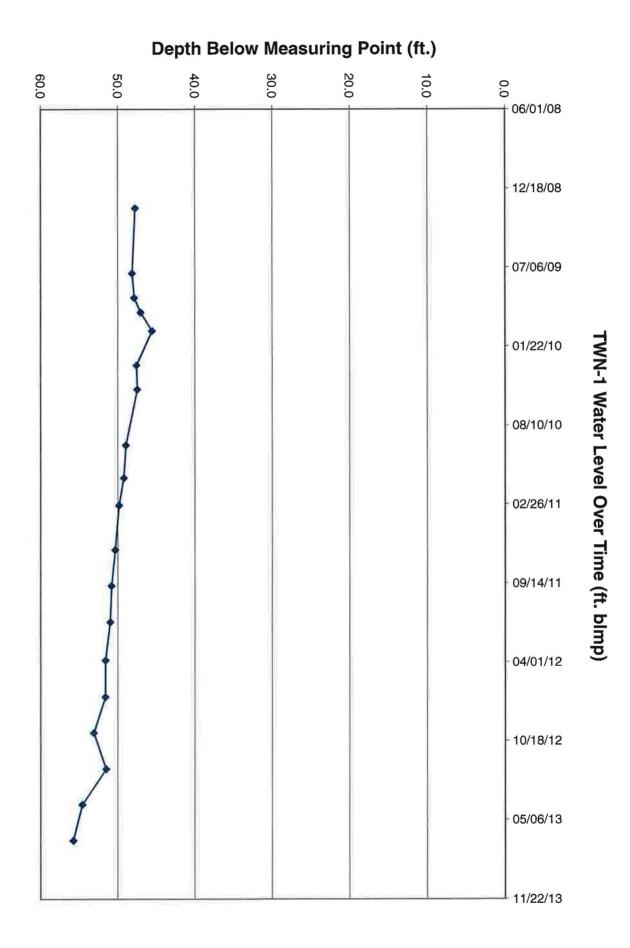
1.0

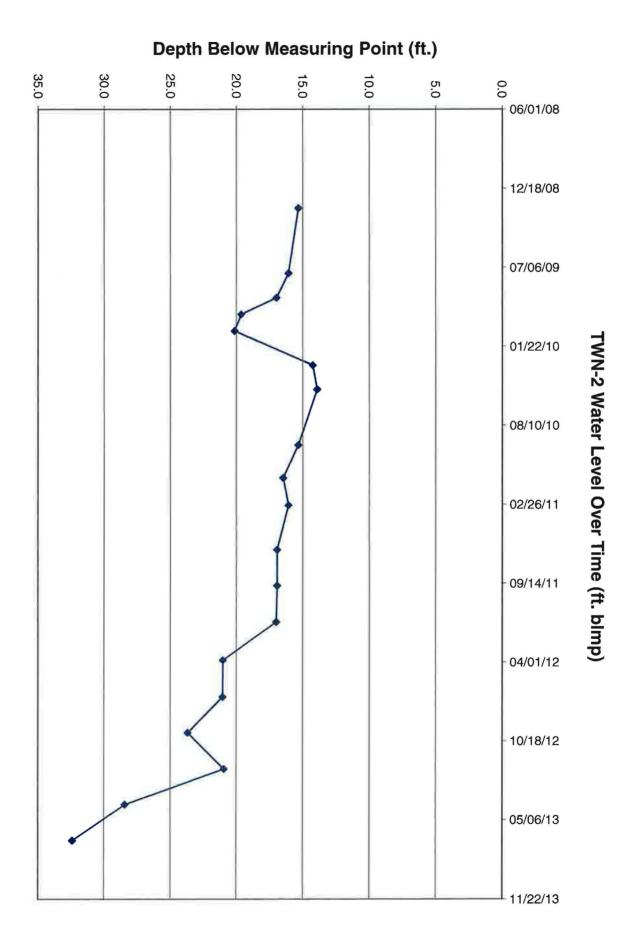
/

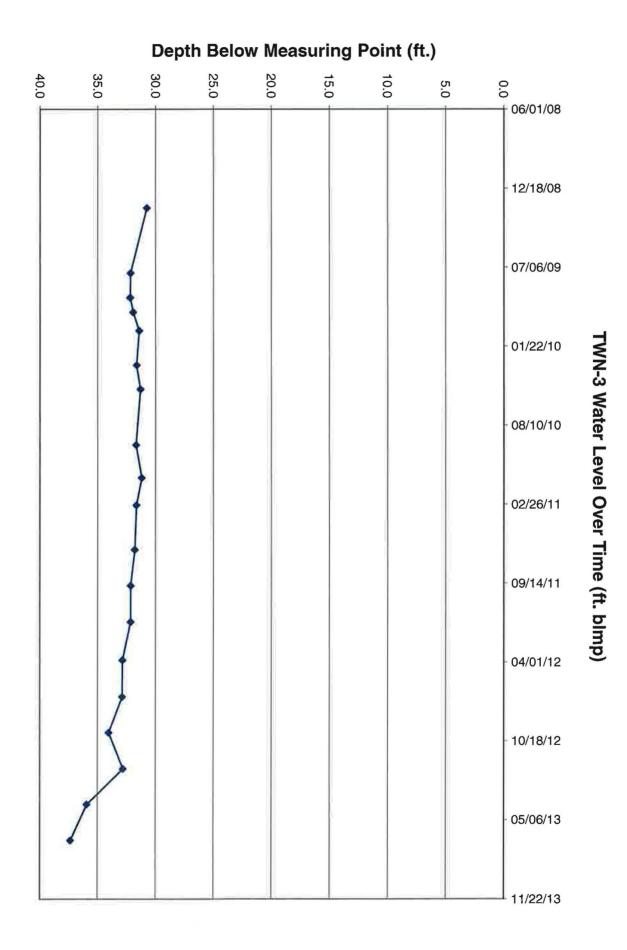

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
0719	MW-4	75_71	Flow 4.4 GPM	Yes No
			Meter 129693.40	(Yes No
0715	MW-26	61.07	Flow 10.2 GPM	(Yes) No
			Meter 336561-24	(Yes) No
0730	TW4-19	62.19	Flow 14.0 GPM	Ves No
			Meter 1240864.00	Yes No
0711	TW4-20	59.06	Flow 10.0 GPM	(Yes) No
			Meter 571890-35	(Yes) No
0723	TW4-4	69.86	Flow 7.4 6PM	(Yes) No
			Meter 124320.20	(Yes) No
0729	TWN-2	33.30	Flow 18.7 GPM	Yes No
			Meter 80588,68	Yes No
0768	TW4-22	56.30	Flow 18.1 GPM	Yes No
			Meter 42200.61	Yes No
0650	TW4-24	62.70	Flow 18.0 OPM	(Yes) No
			Meter 332351.90	(Yes) No
0724	TW4-25	58.56	Flow 18.0 GPM	Yes No
			Meter 246680.30	(Yes) No

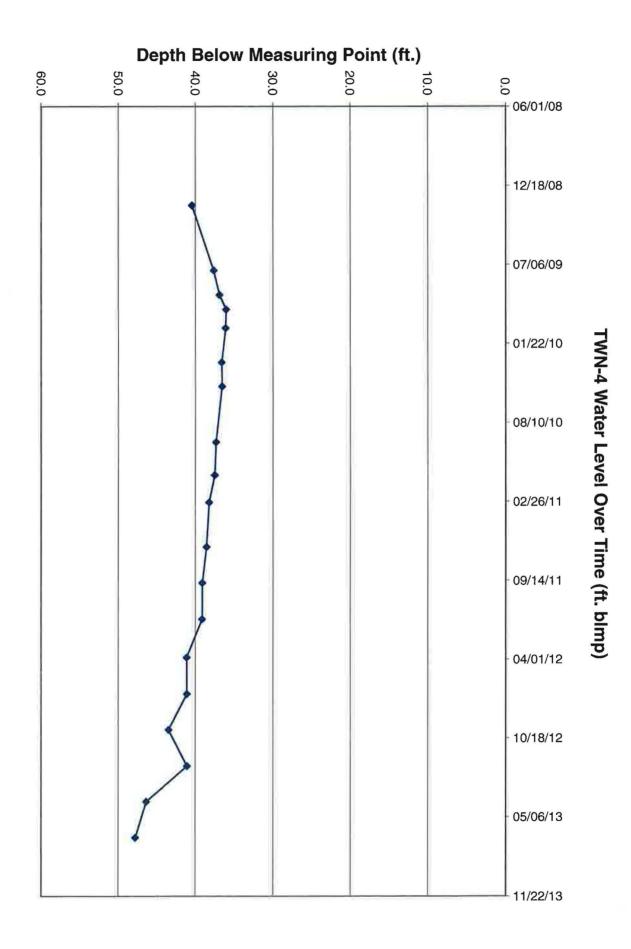
Operational Problems (Please list well number):

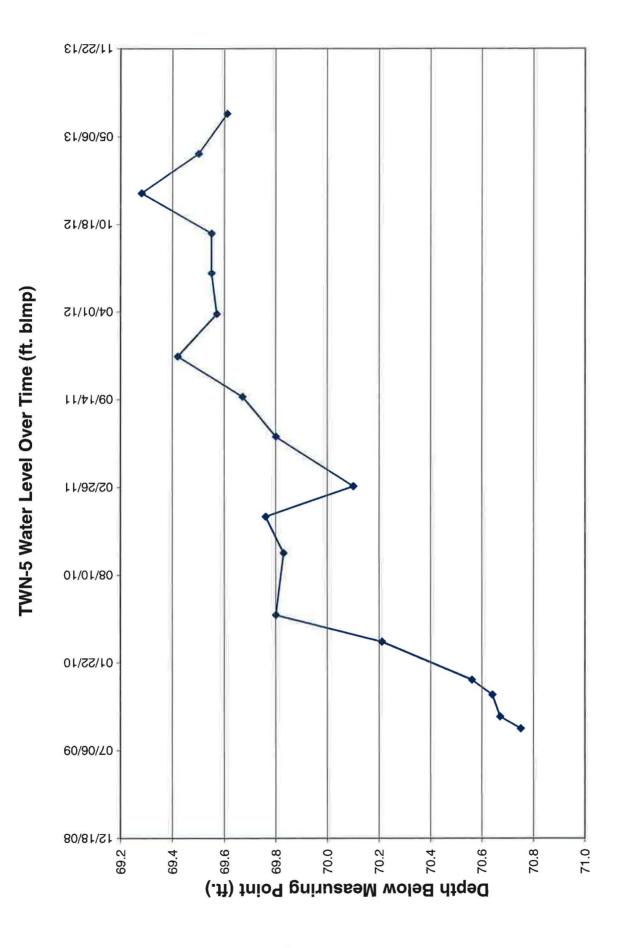
Corrective Action(s) Taken (Please list well number):

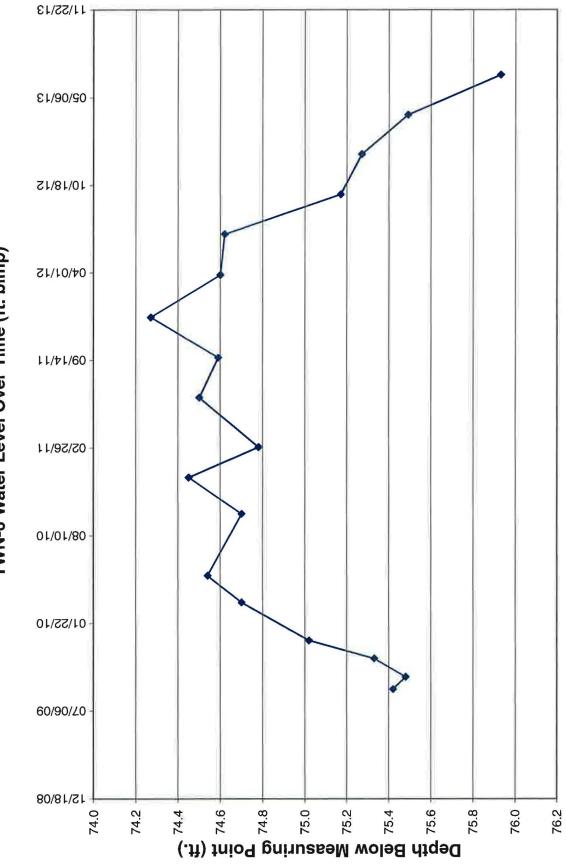

Tab D

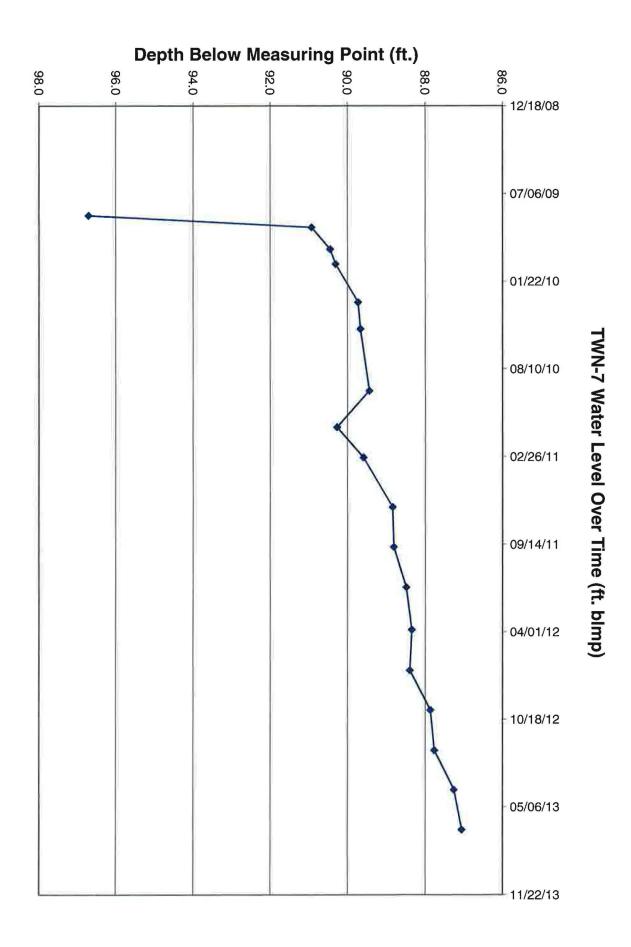

Kriged Previous Quarter Groundwater Contour Map

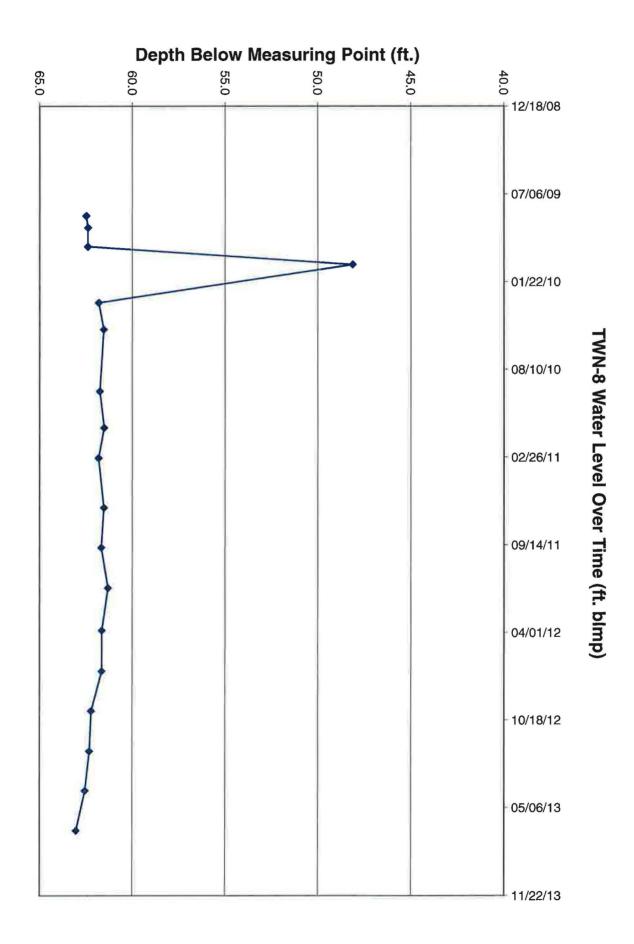


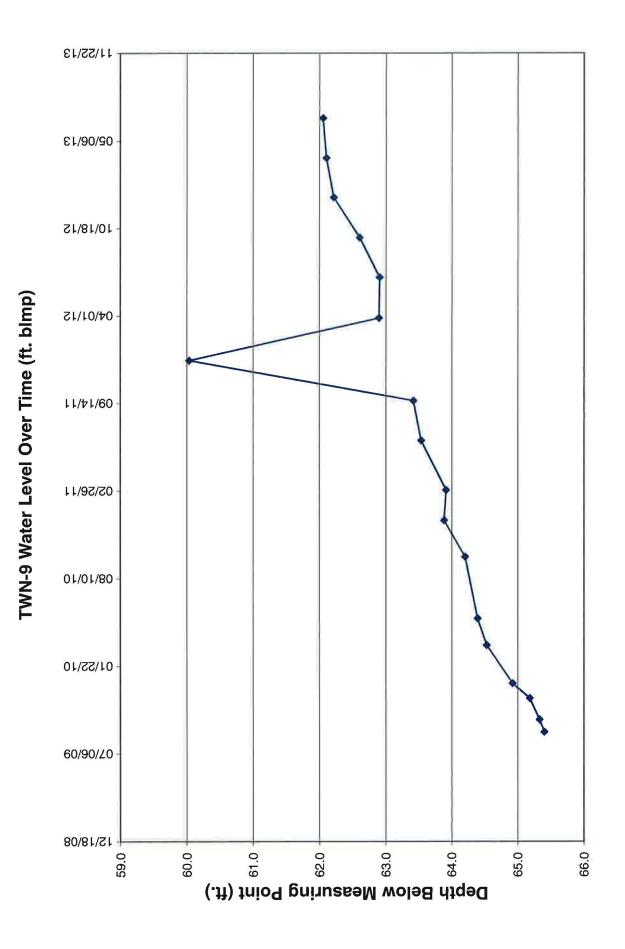

Tab E

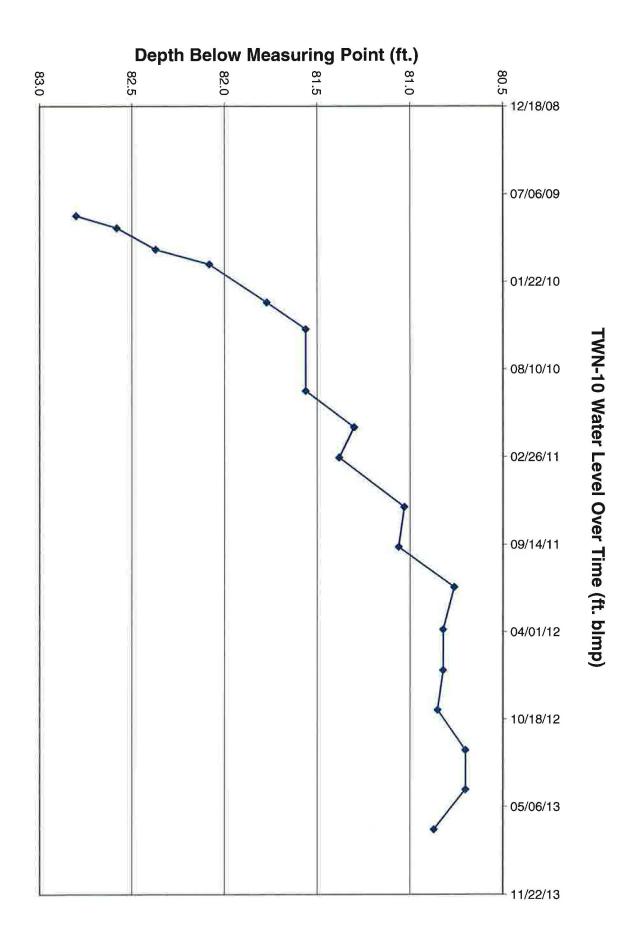

Hydrographs of Groundwater Elevations Over Time for Nitrate Monitoring Wells

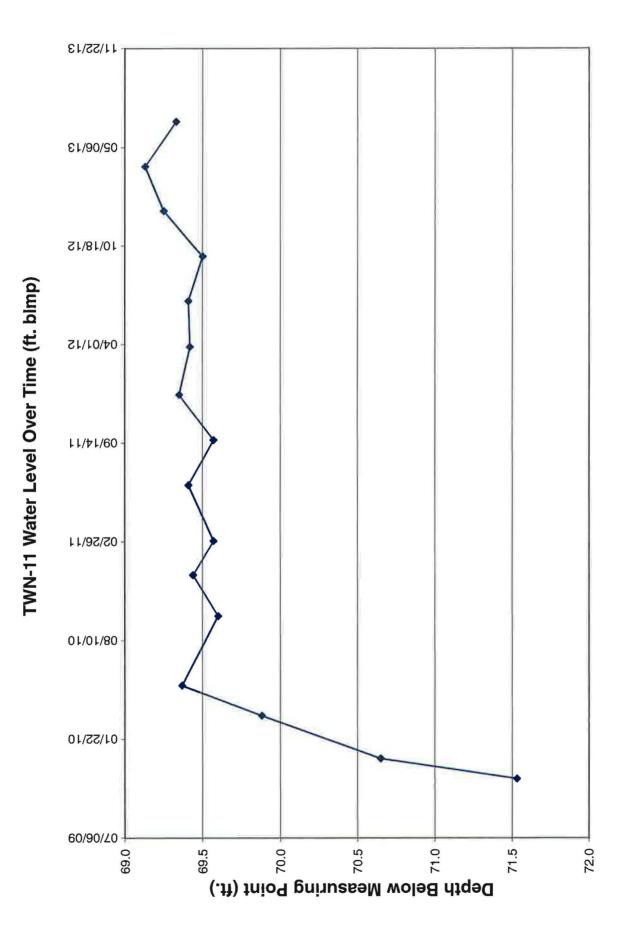


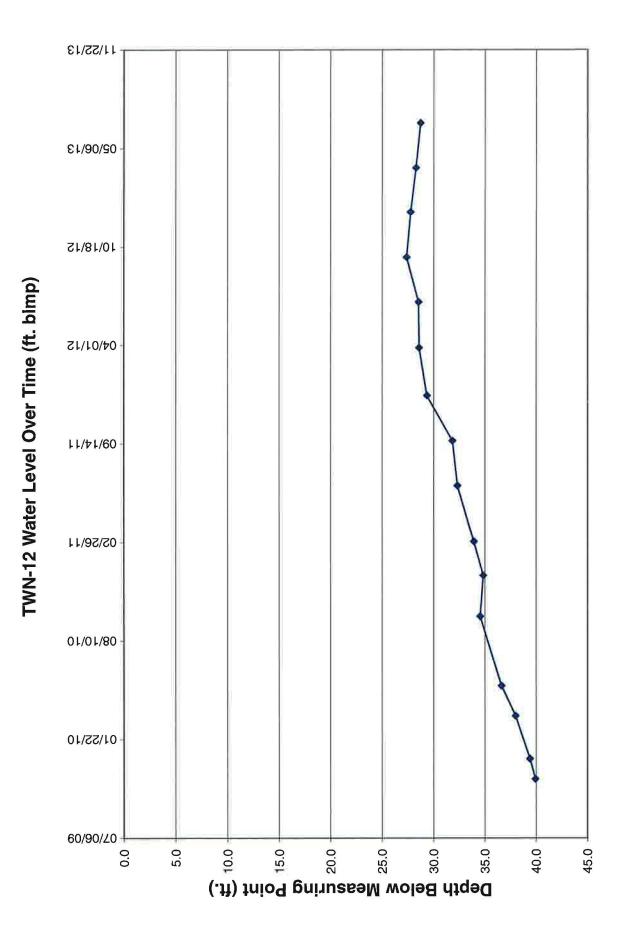


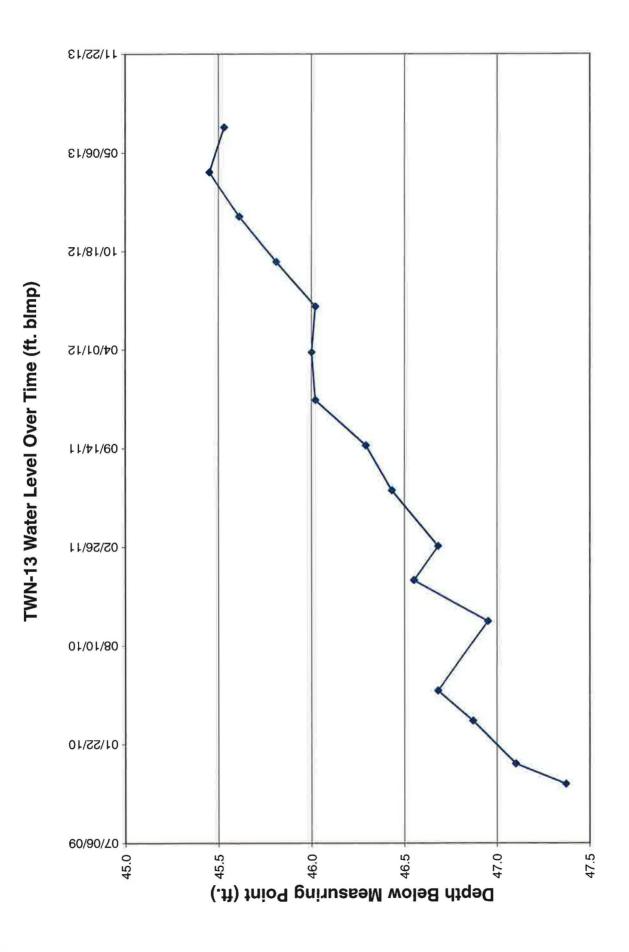


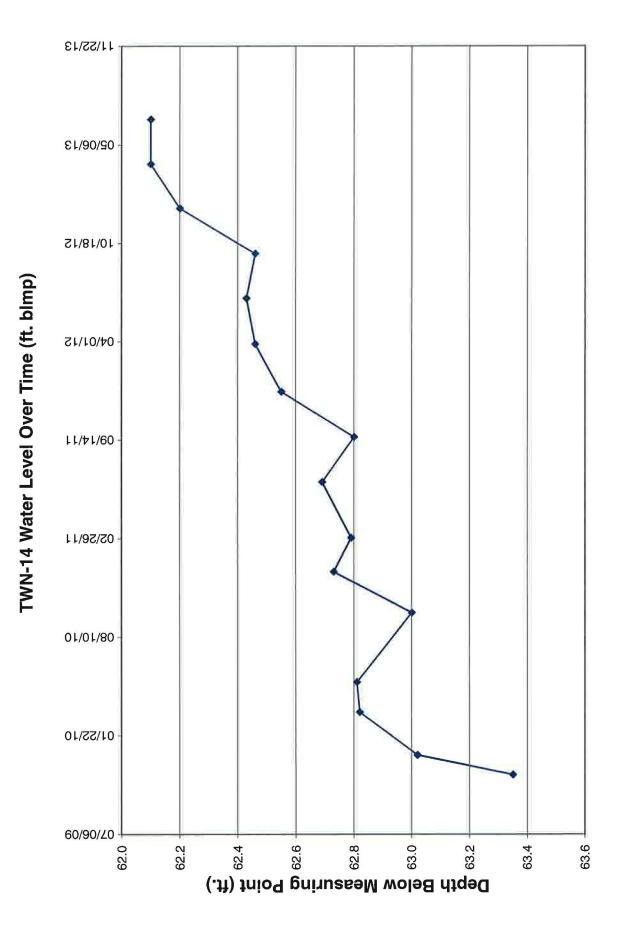


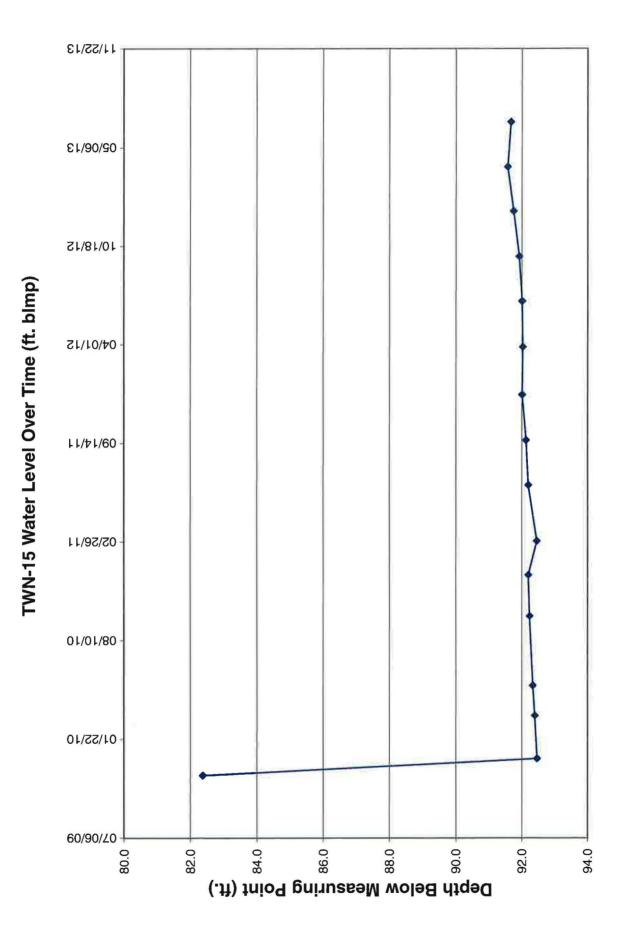


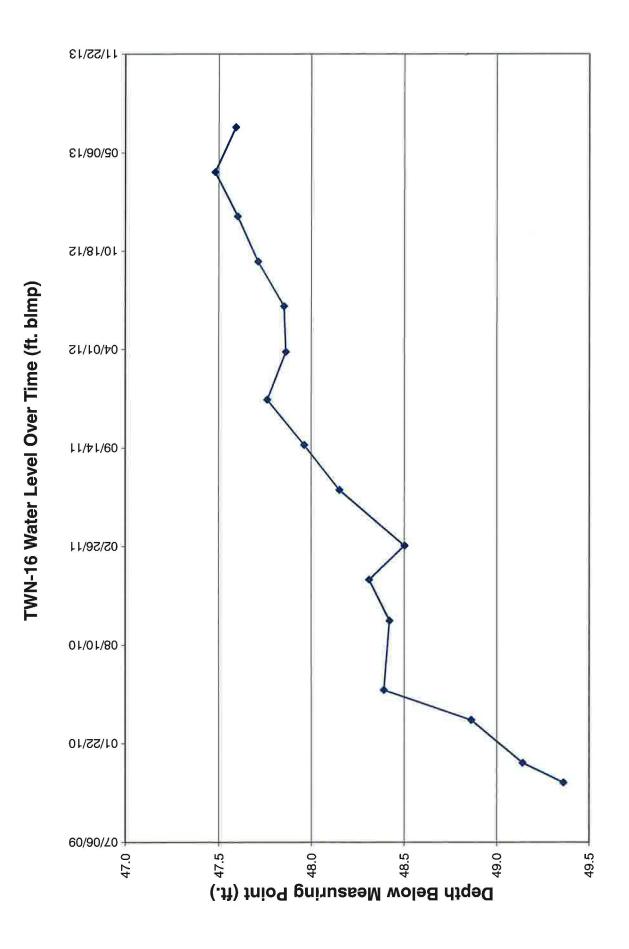

TWN-6 Water Level Over Time (ft. blmp)

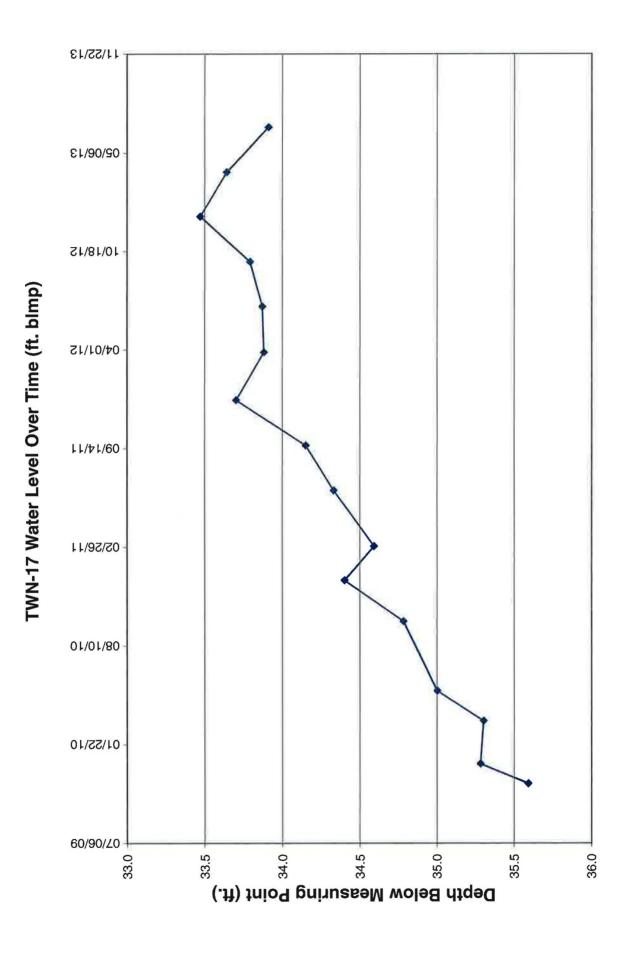


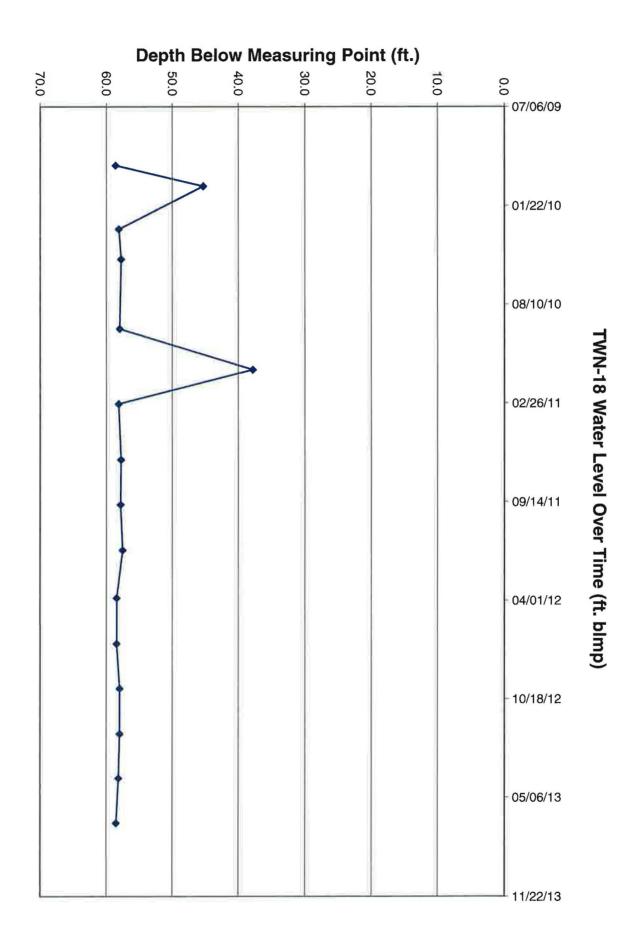


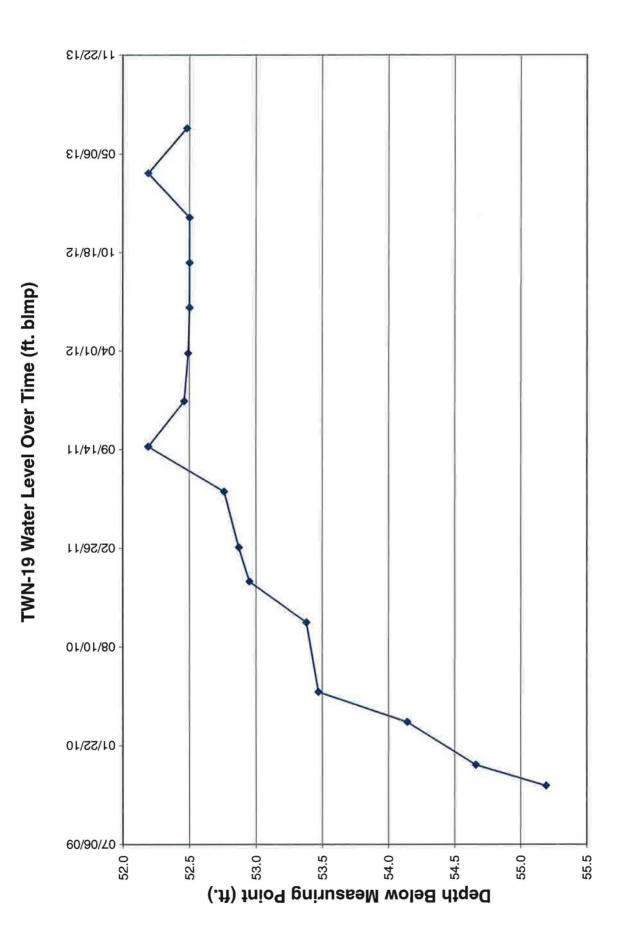


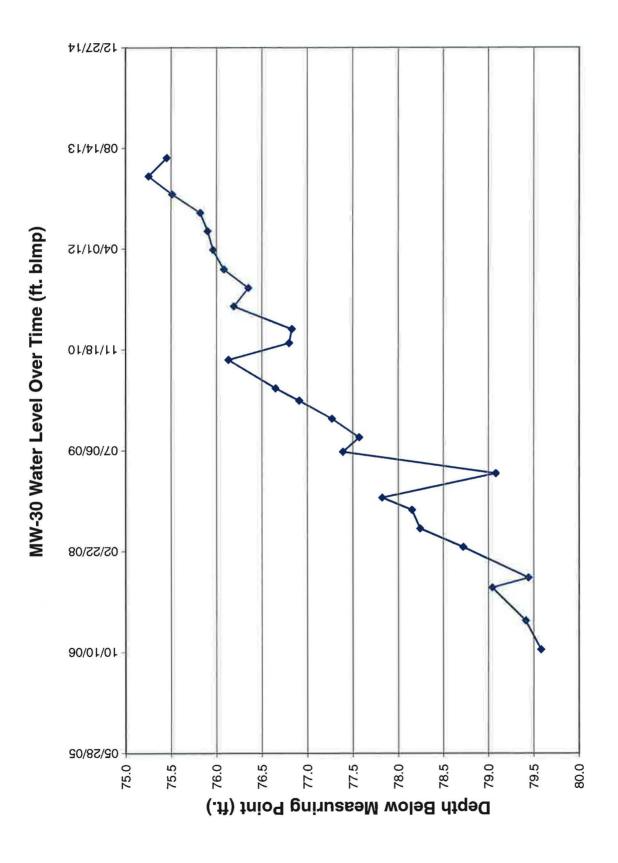


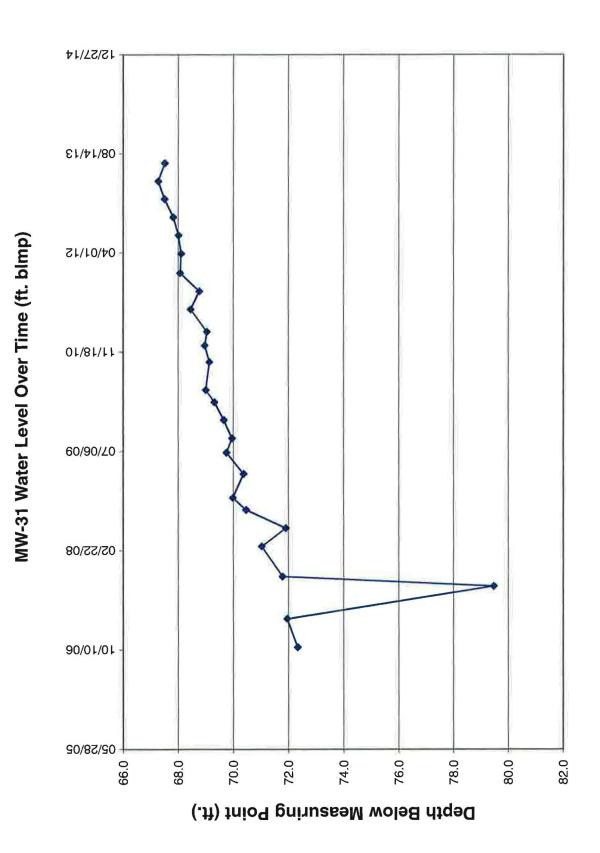












Tab F

Depths to Groundwater and Elevations Over Time for Nitrate Monitoring Wells

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,646.96	5,648.09	1.13				112.5
5,600.38				02/06/09	47.71	46.58	
5,599.99				07/21/09	48.10	46.97	
5,600.26				09/21/09	47.83	46.70	
5,601.10				10/28/09	46.99	45.86	
5,602.59				12/14/09	45.50	44.37	
5,600.55				03/11/10	47.54	46.41	
5,600.66				05/11/10	47.43	46.30	
5,599.18				09/29/10	48.91	47.78	
5,598.92				12/21/10	49.17	48.04	
5,598.29				02/28/11	49.80	48.67	
5,597.80				06/21/11	50.29	49.16	
5,597.32				09/20/11	50.77	49.64	
5,597.15				12/21/11	50.94	49.81	
5,596.54				03/27/12	51.55	50.42	
5,596.52				06/28/12	51.57	50.44	
5,595.03				09/27/12	53.06	51.93	
5,596.62				12/28/12	51.47	50.34	
5,593.54				03/28/13	54.55	53.42	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,625.75	5,626.69	0.94				95
5,611.37				02/06/09	15.32	14.38	
5,610.63				07/21/09	16.06	15.12	
5,609.73				09/21/09	16.96	16.02	
5,607.08				11/02/09	19.61	18.67	
5,606.57				12/14/09	20.12	19.18	
5,612.45				03/11/10	14.24	13.30	
5,612.78				05/11/10	13.91	12.97	
5,611.37				09/29/10	15.32	14.38	
5,610.24				12/21/10	16.45	15.51	
5,610.64				02/28/11	16.05	15.11	
5,609.78				06/21/11	16.91	15.97	
5609.79				09/20/11	16.90	15.96	
5609.72				12/21/11	16.97	16.03	
5,605.69				03/27/12	21.00	20.06	
5,605.67				06/28/12	21.02	20.08	
5,603.03				09/27/12	23.66	22.72	
5,605.76				12/28/12	20.93	19.99	
5,598.28				03/28/13	28.41	27.47	
5,594.32				06/27/13	32.37	31.43	

				Total or		
	Measuring			Measured	Total	
Land	Point			Depth to	Depth to	Total
Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
5,633.64	5,634.50	0.86				110
			02/06/09	30.73	29.87	
			07/21/09	32.13	31.27	
			09/21/09	32.16	31.30	
			10/28/09	31.90	31.04	
			12/14/09	31.38	30.52	
			03/11/10	31.60	30.74	
			05/11/10	31.27	30.41	
			09/29/10	31.64	30.78	
			12/21/10	31.15	30.29	
			02/28/11	31.61	30.75	
			06/21/11	31.75	30.89	
			09/20/11	32.10	31.24	
			12/21/11	32.10	31.24	
			03/27/12	32.80	31.94	
			06/28/12	32.83	31.97	
			09/27/12	34.00	33.14	
			12/28/12	32.76	31.90	
			03/28/13	35.90	35.04	
			06/27/13	37.32	36.46	
	Surface (LSD)	LandPointSurfaceElevation(LSD)(MP)	LandPointSurfaceElevationLength Of(LSD)(MP)Riser (L)	Land Point Length Of Date Of Surface Elevation Length Of Date Of (LSD) (MP) Riser (L) Monitoring 5,633.64 5,634.50 0.86 07/21/09 5,633.64 5,634.50 02/06/09 07/21/09 07/21/09 09/21/09 09/21/09 10/28/09 12/14/09 03/11/10 03/11/10 05/11/10 05/11/10 09/29/10 12/21/10 05/21/11 05/21/11 66/21/11 06/21/11 06/21/11 05/21/11 03/27/12 06/28/12 09/20/11 12/21/10 03/27/12 06/28/12 09/27/12 05/21/11 03/27/12 06/28/12 09/27/12	KeasuringKeasuringLandPointLength ODate OfSurfaceElevationLength ODate Of(LSD)(MP)Riser (L)Monitoring(hew.MP)5,633.645,634.500.865,633.645,634.500.865,633.645,634.500.866,032.0130.7307/21/0932.130,072.10932.16109/21/0931.380,121.40931.3803/11/1031.610,121.40931.6109/29/1031.611,121.41091,121.4131.151,121.410131.1509/29/101,121.410131.1509/20/111,121.410131.151,121.410131.151,121.410132.10 <t< td=""><td>MeasuringMeasuringMeasuringLandPointLength OfDate OfMyaterSurfaceElevationRiser (L)MonitoringOlde (Mu)(Mu2SD)(LSD)(MP)Riser (L)MonitoringOlde (Mu)(Mu2SD)5,633.645,634.500.86</td></t<>	MeasuringMeasuringMeasuringLandPointLength OfDate OfMyaterSurfaceElevationRiser (L)MonitoringOlde (Mu)(Mu2SD)(LSD)(MP)Riser (L)MonitoringOlde (Mu)(Mu2SD)5,633.645,634.500.86

				Total or		
	Measuring			Measured	Total	
Land	Point			Depth to	Depth to	Total
Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
5,641.04	5,641.87	0.83				136
			02/06/09	40.40	39.57	
			07/21/09	37.61	36.78	
			09/21/09	36.85	36.02	
			10/28/09	36.00	35.17	
			12/14/09	36.06	35.23	
			03/11/10	36.56	35.73	
			05/11/10	36.51	35.68	
			09/29/10	37.28	36.45	
			12/21/10	37.45	36.62	
			02/28/11	38.18	37.35	
			06/21/11	38.51	37.68	
			09/20/11	39.05	38.22	
			12/21/11	39.08	38.25	
			03/27/12	41.05	40.22	
			06/28/12	41.03	40.20	
			09/27/12	43.40	42.57	
			12/28/12	41.01	40.18	
			03/28/13	46.30	45.47	
			06/27/13	47.75	46.92	
	Surface (LSD)	LandPointSurfaceElevation(LSD)(MP)	LandPointSurfaceElevationLength Of(LSD)(MP)Riser (L)	Land Point Length Of Date Of Surface Elevation Riser (L) Monitoring 5,641.04 5,641.87 0.83 02/06/09 5,641.04 5,641.87 0.83 07/21/09 09/21/09 09/21/09 09/21/09 10/28/09 12/14/09 03/11/10 05/11/10 05/11/10 05/11/10 09/29/10 12/21/10 05/11/10 09/29/10 12/21/10 02/28/11 06/21/11 06/21/11 09/20/11 12/21/10 02/28/11 06/21/11 09/20/11 12/21/11 03/27/12 06/28/12 09/27/12 06/28/12 09/27/12 03/28/13 03/28/13 03/28/13 03/28/13	KeasuringMeasuringLandPointDepth toSurfaceElevationLength OfDate Of(LSD)(MP)Riser (L)Montoring(hew.MP)5,641.045,641.870.83U5,641.045,641.870.8302/06/0940.405,641.045,641.870.8309/21/0936.856,41.045,641.87U09/21/0936.067,114,1444,14410/28/0936.0610/28/044,1444,14436.5610/28/044,1444,14436.5110/28/144,1444,14436.5110/28/144,1444,14434.8110/28/144,1444,14434.8111/144,1444,14434.8111/144,1444,14434.8111/144,1454,14311/144,1444,14411/14 <th< td=""><td>MeasuringMeasuredTotalLandPointLength OfDate OfWaterSurfaceElevationKenert (1)MontorusWater(LSD)(MP)Riser (1)Montorus(ibw.MD)(ibw.LSD)5,641.045,641.870.835,641.045,641.870.835,641.045,641.870.835,641.045,641.870.8307/21/0937.6136.7309/21/0936.8536.0210/28/0936.0035.1712/14/0936.0635.2303/11/1036.5635.7305/11/1036.5635.7305/11/1036.5135.6809/29/1037.2836.4512/21/1037.4536.6202/28/1138.1837.3506/21/1138.1837.3506/21/1138.5137.6809/20/1139.0538.2212/21/1039.0538.2212/21/1039.0538.2203/27/1241.0540.2206/28/1241.0340.2009/27/1243.4042.5712/28/1241.0140.1809/27/1241.0140.1803/28/1346.3045.4712/28/1241.0140.18</td></th<>	MeasuringMeasuredTotalLandPointLength OfDate OfWaterSurfaceElevationKenert (1)MontorusWater(LSD)(MP)Riser (1)Montorus(ibw.MD)(ibw.LSD)5,641.045,641.870.835,641.045,641.870.835,641.045,641.870.835,641.045,641.870.8307/21/0937.6136.7309/21/0936.8536.0210/28/0936.0035.1712/14/0936.0635.2303/11/1036.5635.7305/11/1036.5635.7305/11/1036.5135.6809/29/1037.2836.4512/21/1037.4536.6202/28/1138.1837.3506/21/1138.1837.3506/21/1138.5137.6809/20/1139.0538.2212/21/1039.0538.2212/21/1039.0538.2203/27/1241.0540.2206/28/1241.0340.2009/27/1243.4042.5712/28/1241.0140.1809/27/1241.0140.1803/28/1346.3045.4712/28/1241.0140.18

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,653.70	5,655.18	1.48				155
5,584.43				08/25/09	70.75	69.27	
5,584.51				09/21/09	70.67	69.19	
5,584.54				11/10/09	70.64	69.16	
5,584.62				12/14/09	70.56	69.08	
5,584.97				03/11/10	70.21	68.73	
5,585.38				05/11/10	69.80	68.32	
5,585.35				09/29/10	69.83	68.35	
5,585.42				12/21/10	69.76	68.28	
5,585.08				02/28/11	70.10	68.62	
5,585.38				06/21/11	69.80	68.32	
5,585.51				09/20/11	69.67	68.19	
5,585.76				12/21/11	69.42	67.94	
5,585.61				03/27/12	69.57	68.09	
5,585.63				06/28/12	69.55	68.07	
5,585.63				09/27/12	69.55	68.07	
5,585.90				12/28/12	69.28	67.80	
5,585.68				03/28/13	69.50	68.02	
5,585.57				06/27/13	69.61	68.13	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,663.03	5,664.94	1.91				135
5,589.52				08/25/09	75.42	73.51	
5,589.46				09/22/09	75.48	73.57	
5,589.61				11/03/09	75.33	73.42	
5,589.92				12/14/09	75.02	73.11	
5,590.24				03/11/10	74.70	72.79	
5,590.40				05/11/10	74.54	72.63	
5,590.24				09/29/10	74.70	72.79	
5,590.49				12/21/10	74.45	72.54	
5,590.16				02/28/11	74.78	72.87	
5,590.44				06/21/11	74.50	72.59	
5,590.35				09/20/11	74.59	72.68	
5,590.67				12/21/11	74.27	72.36	
5,590.34				03/27/12	74.60	72.69	
5,590.32				06/28/12	74.62	72.71	
5,589.77				09/27/12	75.17	73.26	
5,589.67				12/28/12	75.27	73.36	
5,589.45				03/28/13	75.49	73.58	
5,589.01				06/27/13	75.93	74.02	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,647.39	5,649.26	1.87				120
5,552.56				08/25/09	96.70	94.83	
5,558.34				09/21/09	90.92	89.05	
5,558.82				11/10/09	90.44	88.57	
5,558.96				12/14/09	90.30	88.43	
5,559.54				03/11/10	89.72	87.85	
5,559.60				05/11/10	89.66	87.79	
5,559.83				09/29/10	89.43	87.56	
5,559.00				12/21/10	90.26	88.39	
5,559.68				02/28/11	89.58	87.71	
5,560.43				06/21/11	88.83	86.96	
5,560.46				09/20/11	88.80	86.93	
5,560.78				12/21/11	88.48	86.61	
5,560.92				03/27/12	88.34	86.47	
5,560.87				06/28/12	88.39	86.52	
5,561.40				09/27/12	87.86	85.99	
5,561.50				12/28/12	87.76	85.89	
5,562.01				03/28/13	87.25	85.38	
5,562.21				06/27/13	87.05	85.18	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,649.35	5,651.48	2.13				160
5,589.01				08/25/09	62.47	60.34	
5,589.10				09/21/09	62.38	60.25	
5,589.09				11/03/09	62.39	60.26	
5,603.38				12/14/09	48.10	45.97	
5,589.68				03/11/10	61.80	59.67	
5,589.95				05/11/10	61.53	59.40	
5,589.74				09/29/10	61.74	59.61	
5,589.97				12/21/10	61.51	59.38	
5,589.67				02/28/11	61.81	59.68	
5,589.96				06/21/11	61.52	59.39	
5,589.82				09/20/11	61.66	59.53	
5,590.18				12/21/11	61.30	59.17	
5,589.85				03/27/12	61.63	59.50	
5,589.84				06/28/12	61.64	59.51	
5,589.28				09/27/12	62.20	60.07	
5,589.18				12/28/12	62.30	60.17	
5,588.95				03/28/13	62.53	60.40	
5,588.47				06/27/13	63.01	60.88	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,645.68	5,647.45	1.77				102.5
5,582.05				08/25/09	65.40	63.63	
5,582.12				09/22/09	65.33	63.56	
5,582.27				11/10/09	65.18	63.41	
5,582.53				12/14/09	64.92	63.15	
5,582.92				03/11/10	64.53	62.76	
5,583.06				05/11/10	64.39	62.62	
5,583.25				09/29/10	64.20	62.43	
5,583.57				12/21/10	63.88	62.11	
5,583.54				02/28/11	63.91	62.14	
5,583.92				06/21/11	63.53	61.76	
5,584.04				09/20/11	63.41	61.64	
5,587.42				12/21/11	60.03	58.26	
5,584.56				03/27/12	62.89	61.12	
5,584.55				06/28/12	62.90	61.13	
5,584.85				09/27/12	62.6	60.83	
5,585.24				12/28/12	62.21	60.44	
5,585.35				03/28/13	62.10	60.33	
5,585.40				06/27/13	62.05	60.28	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,664.63	5,666.98	2.35				107.5
5,584.18				08/25/09	82.80	80.45	
5,584.40				09/22/09	82.58	80.23	
5,584.61				11/10/09	82.37	80.02	
5,584.90				12/14/09	82.08	79.73	
5,585.21				03/11/10	81.77	79.42	
5,585.42				05/11/10	81.56	79.21	
5,585.42				09/29/10	81.56	79.21	
5,585.68				12/21/10	81.30	78.95	
5,585.60				02/28/11	81.38	79.03	
5,585.95				06/21/11	81.03	78.68	
5,585.92				09/20/11	81.06	78.71	
5,586.22				12/21/11	80.76	78.41	
5,586.16				03/27/12	80.82	78.47	
5,586.16				06/28/12	80.82	78.47	
5,586.13				09/27/12	80.85	78.50	
5,586.28				12/28/12	80.70	78.35	
5,586.28				03/28/13	80.70	78.35	
5,586.11				06/27/13	80.87	78.52	

				Total or		
	Measuring			Measured	Total	
Land	Point			Depth to	Depth to	Total
Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
5,683.16	5,684.53	1.37				147.5
			11/03/09	71.53	70.16	
			12/14/09	70.65	69.28	
			03/11/10	69.88	68.51	
			05/11/10	69.37	68.00	
			09/29/10	69.60	68.23	
			12/21/10	69.44	68.07	
			02/28/11	69.57	68.20	
			06/21/11	69.41	68.04	
			09/20/11	69.57	68.20	
			12/21/11	69.35	67.98	
			03/27/12	69.42	68.05	
			06/28/12	69.41	68.04	
			09/27/12	69.50	68.13	
			12/28/12	69.25	67.88	
			03/28/13	69.13	67.76	
			06/27/13	69.33	67.96	
	Surface (LSD)	LandPointSurfaceElevation(LSD)(MP)	LandPointSurfaceElevationLength Of(LSD)(MP)Riser (L)	Land Point Length Of Date Of Surface Elevation Length Of Date Of (LSD) (MP) Riser (L) Monitoring 5,683.16 5,684.53 1.37 11/03/09 5,683.16 5,684.53 1.37 12/14/09 03/11/10 03/11/10 05/11/10 05/11/10 09/29/10 12/21/10 05/21/11 05/21/11 04/21/11 9/20/11 12/21/11 03/27/12 04/21/11 04/21/11 04/21/11 04/21/11 05/21/12 04/28/12 04/28/12 04/28/12 04/21/12 12/21/10 03/27/12 04/28/12 04/21/11 04/21/11 04/21/11 04/21/11 04/21/12 04/28/12 04/28/12 04/28/12 04/21/12 04/28/12 04/28/12 04/28/12 04/28/12 04/28/12 04/28/12 04/28/12	MeasuringMeasuringLandPointDepth toSurfaceElevationLength OfDate Of(MD)Riser (L)Monitoring(blw.MP)5,683.165,684.531.3711/03/0971.535,683.165,684.531.3712/14/0970.655,683.165,684.531.4103/11/1069.886,683.176,84405/11/1069.887,7312/21/1069.377,8449,929/1069.677,8446,84402/28/1169.577,8446,84402/28/1169.577,8446,84409/20/1169.577,8446,84403/27/1269.357,8446,84403/27/1269.357,8446,8446,9446,9447,8446,8446,9417,8446,8446,9417,8446,8446,9417,8446,8448,9446,9448,9446,9449,9456,9449,9446,9449,9446,9449,9446,9449,9446,9449,9446,9449,9446,9449,9446,9449,9446,9449,9446,9449,9446,9449,9446,9449,9446,9449,9446,9449,9446,9449,9446,9449,9446,9449,9446,9449,944	Land PointMeasuringMeasured Depth to Depth toSurface

				Total or		
	Measuring			Measured	Total	
Land	Point			Depth to	Depth to	Total
Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
5,667.03	5,668.24	1.21				115
			11/03/09	39.91	38.70	
			12/14/09	39.38	38.17	
			03/11/10	37.97	36.76	
			05/11/10	36.60	35.39	
			09/29/10	34.51	33.30	
			12/21/10	34.81	33.60	
			02/28/11	33.89	32.68	
			06/21/11	32.29	31.08	
			09/20/11	31.80	30.59	
			12/21/11	29.31	28.10	
			03/27/12	28.55	27.34	
			06/28/12	28.50	27.29	
			09/27/12	27.34	26.13	
			12/28/12	27.72	26.51	
			03/28/13	28.25	27.04	
			06/27/13	28.70	27.49	
	Surface (LSD)	LandPointSurfaceElevation(LSD)(MP)	LandPointSurfaceElevationLength Of(LSD)(MP)Riser (L)	Land Point Length Of Date Of Surface Elevation Riser (L) Monitoring 5,667.03 5,668.24 1.21 11/03/09 5,667.04 1.21 12/14/09 03/11/10 05/11/10 05/11/10 05/11/10 05/21/11 0 12/21/10 02/28/11 06/21/11 0 1 12/21/10 02/28/11 0 1 12/21/10 03/27/12 0 1 12/21/11 05/21/11 0 1 12/21/11 05/21/11 0 1 12/21/11 05/21/11 0 1 12/21/11 05/21/11 0 1 12/21/11 05/21/11 0 1 12/21/11 05/21/11 0 1 12/21/11 05/21/12 0 1 12/21/11 05/21/12 0 1 12/21/11 05/21/12 1 1 12/21/12 05/28/12	MeasuringMeasuringLandPointDepth toSurfaceElevationLength OfDate Of(LSD)(MP)Riser (L)Montoring(bw.MP)5,667.035,668.241.2111/03/0939.915,667.045,668.241.2112/14/0939.385,667.055,668.241.2103/11/1037.975,667.045,668.241.2103/11/1036.606,011.2134.8102/28/1133.896,111.211.2134.81101.221.2231.80111.211.2131.80111.211.211.21111.211.211.21111.211.211.21111.211.211.21111.211.211.21111.211.211.21111.211.211.21111.211.211.21111.211.211.21111.211.211.21111.211.211.21111.211.211.21111.211.211.21111.211.211.21111.211.211.21111.211.211.21111.211.211.21111.211.211.21111.211.211.21111.211.21 <th< td=""><td>HeasuringMeasuredTotalLandPointLength OfDate OfDepth toSurfaceElevationLength OfMaterWater(LSD)(MP)Riser (L)Monitoring(blw.MD)(blw.LSD)5,667.035,668.241.2111/03/0939.9138.705,667.035,668.241.2111/03/0939.9138.705,667.035,668.241.2111/03/0939.9138.705,667.035,668.241.2112/14/0939.3838.1703/11/1037.9736.7605/11/1036.6035.3909/29/1034.5133.3032.6806/21/1133.8932.6801/21/1133.8932.6806/21/1132.2931.0801/20/1131.8030.5912/21/1129.3128.1003/27/1228.5527.3406/28/1228.5527.3409/27/1227.3426.1312/28/1227.7226.5103/28/1328.2527.0412/28/1227.2426.51</td></th<>	HeasuringMeasuredTotalLandPointLength OfDate OfDepth toSurfaceElevationLength OfMaterWater(LSD)(MP)Riser (L)Monitoring(blw.MD)(blw.LSD)5,667.035,668.241.2111/03/0939.9138.705,667.035,668.241.2111/03/0939.9138.705,667.035,668.241.2111/03/0939.9138.705,667.035,668.241.2112/14/0939.3838.1703/11/1037.9736.7605/11/1036.6035.3909/29/1034.5133.3032.6806/21/1133.8932.6801/21/1133.8932.6806/21/1132.2931.0801/20/1131.8030.5912/21/1129.3128.1003/27/1228.5527.3406/28/1228.5527.3409/27/1227.3426.1312/28/1227.7226.5103/28/1328.2527.0412/28/1227.2426.51

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,633.04	5,634.32	1.28				120
5,586.95				11/03/09	47.37	46.09	
5,587.22				12/14/09	47.10	45.82	
5,587.45				03/11/10	46.87	45.59	
5,587.64				05/11/10	46.68	45.40	
5,587.37				09/29/10	46.95	45.67	
5,587.77				12/21/10	46.55	45.27	
5,587.64				02/28/11	46.68	45.40	
5,587.89				06/21/11	46.43	45.15	
5,588.03				09/20/11	46.29	45.01	
5,588.30				12/21/11	46.02	44.74	
5,588.32				03/27/12	46.00	44.72	
5,588.30				06/28/12	46.02	44.74	
5,588.51				09/27/12	45.81	44.53	
5,588.71				12/28/12	45.61	44.33	
5,588.87				03/28/13	45.45	44.17	
5,588.79				06/27/13	45.53	44.25	

					Total or		
	AT 154 - 1676	Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,647.80	5,649.53	1.73				135
5,586.18				11/04/09	63.35	61.62	
5,586.51				12/14/09	63.02	61.29	
5,586.71				03/11/10	62.82	61.09	
5,586.72				05/11/10	62.81	61.08	
5,586.53				09/29/10	63.00	61.27	
5,586.80				12/21/10	62.73	61.00	
5,586.74				02/28/11	62.79	61.06	
5,586.84				06/21/11	62.69	60.96	
5,586.73				09/20/11	62.80	61.07	
5,586.98				12/21/11	62.55	60.82	
5,587.07				03/27/12	62.46	60.73	
5,587.10				06/28/12	62.43	60.70	
5,587.07				09/27/12	62.46	60.73	
5,587.33				12/28/12	62.20	60.47	
5,587.43				03/28/13	62.10	60.37	
5,587.43				06/27/13	62.10	60.37	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,675.01	5,676.49	1.48				155
5,594.12				11/10/09	82.37	80.89	
5,584.03				12/14/09	92.46	90.98	
5,584.10				03/11/10	92.39	90.91	
5,584.16				05/11/10	92.33	90.85	
5,584.26				09/29/10	92.23	90.75	
5,584.30				12/21/10	92.19	90.71	
5,584.04				02/28/11	92.45	90.97	
5,584.30				06/21/11	92.19	90.71	
5,584.37				09/20/11	92.12	90.64	
5,584.49				12/21/11	92.00	90.52	
5,584.47				03/27/12	92.02	90.54	
5,584.49				06/28/12	92.00	90.52	
5,584.58				09/27/12	91.91	90.43	
5,584.75				12/28/12	91.74	90.26	
5,584.93				03/28/13	91.56	90.08	
5,584.83				06/27/13	91.66	90.18	

					Total or	T (1	
Watan	Land	Measuring			Measured	Total Donth to	Total
Water Elevation	Land Surface	Point Elevation	Length Of	Date Of	Depth to Water	Depth to Water	Total Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
(112)	5,651.07	5,652.70	1.63		(()))))))))))))))))))))))))))))))))))))	(BITTED)	100
5,603.34				11/04/09	49.36	47.73	
5,603.56				12/14/09	49.14	47.51	
5,603.84				03/11/10	48.86	47.23	
5,604.31				05/11/10	48.39	46.76	
5,604.28				09/29/10	48.42	46.79	
5,604.39				12/21/10	48.31	46.68	
5,604.20				02/28/11	48.50	46.87	
5,604.55				06/21/11	48.15	46.52	
5,604.74				09/20/11	47.96	46.33	
5,604.94				12/21/11	47.76	46.13	
5,604.84				03/27/12	47.86	46.23	
5,604.85				06/28/12	47.85	46.22	
5,604.99				09/27/12	47.71	46.08	
5,605.10				12/28/12	47.60	45.97	
5,605.22				03/28/13	47.48	45.85	
5,605.11				06/27/13	47.59	45.96	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth O
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,639.73	5,641.55	1.82				100
5,605.96				11/04/09	35.59	33.77	
5,606.27				12/14/09	35.28	33.46	
5,606.25				03/11/10	35.30	33.48	
5,606.55				05/11/10	35.00	33.18	
5,606.77				09/29/10	34.78	32.96	
5,607.15				12/21/10	34.40	32.58	
5,606.96				02/28/11	34.59	32.77	
5,607.22				06/21/11	34.33	32.51	
5,607.40				09/20/11	34.15	32.33	
5,607.85				12/21/11	33.70	31.88	
5,607.67				03/27/12	33.88	32.06	
5,607.68				06/28/12	33.87	32.05	
5,607.76				09/27/12	33.79	31.97	
5,608.08				12/28/12	33.47	31.65	
5,607.91				03/28/13	33.64	31.82	
5,607.64				06/27/13	33.91	32.09	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,643.95	5,645.45	1.50				100
5,586.85				11/02/09	58.60	57.10	
5,600.14				12/14/09	45.31	43.81	
5,587.36				03/11/10	58.09	56.59	
5,587.71				05/11/10	57.74	56.24	
5,587.50				09/29/10	57.95	56.45	
5,607.66				12/21/10	37.79	36.29	
5,587.35				02/28/11	58.10	56.60	
5,587.71				06/21/11	57.74	56.24	
5,587.65				09/20/11	57.80	56.30	
5,587.95				12/21/11	57.50	56.00	
5,587.05				03/27/12	58.40	56.90	
5,587.05				06/28/12	58.40	56.90	
5,587.50				09/27/12	57.95	56.45	
5,587.50				12/28/12	57.95	56.45	
5,587.32				03/28/13	58.13	56.63	
5,586.95				06/27/13	58.50	57.00	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,659.59	5,661.36	1.77				110
5,606.17				11/02/09	55.19	53.42	
5,606.70				12/14/09	54.66	52.89	
5,607.22				03/11/10	54.14	52.37	
5,607.89				05/11/10	53.47	51.70	
5,607.98				09/29/10	53.38	51.61	
5,608.41				12/21/10	52.95	51.18	
5,608.49				02/28/11	52.87	51.10	
5,608.60				06/21/11	52.76	50.99	
5,609.17				09/20/11	52.19	50.42	
5,608.90				12/21/11	52.46	50.69	
5,608.87				03/27/12	52.49	50.72	
5,608.86				06/28/12	52.50	50.73	
5,608.86				09/27/12	52.50	50.73	
5,608.86				12/28/12	52.50	50.73	
5,609.17				03/28/13	52.19	50.42	
5,608.88				06/27/13	52.48	50.71	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,613.34	5,614.50	1.16				110
5,534.92				10/24/2006	79.58	78.42	
5,535.09				3/16/2007	79.41	78.25	
5,535.46				8/27/2007	79.04	77.88	
5,535.06				10/15/2007	79.44	78.28	
5,535.78				3/15/2008	78.72	77.56	
5,536.26				6/15/2008	78.24	77.08	
5,536.35				9/15/2008	78.15	76.99	
5,536.68				11/15/2008	77.82	76.66	
5,535.42				3/15/2009	79.08	77.92	
5,537.11				6/30/2009	77.39	76.23	
5,536.93				9/10/2009	77.57	76.41	
5,537.23				12/11/2009	77.27	76.11	
5,537.59				3/11/2010	76.91	75.75	
5,537.85				5/11/2010	76.65	75.49	
5,538.37				9/29/2010	76.13	74.97	
5537.70				12/21/2010	76.8	75.64	
5537.67				2/28/2011	76.83	75.67	
5538.31				6/21/2011	76.19	75.03	
5538.15				9/20/2011	76.35	75.19	
5538.42				12/21/2011	76.08	74.92	
5538.54				3/27/2012	75.96	74.8	
5538.60				6/28/2012	75.9	74.74	
5538.68				9/27/2012	75.82	74.66	
5538.99				12/28/2012	75.51	74.35	
5539.25				3/28/2013	75.25	74.09	
5539.05				6/27/2013	75.45	74.29	

Water Elevation	Land Surface	Measuring Point Elevation	Length Of	Date Of	Total or Measured Depth to Water	Total Depth to Water	Total Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,615.26	5,616.40	1.14				130
5,544.07				10/24/2006	72.33	71.19	
5,544.45				3/16/2007	71.95	70.81	
5,536.94				8/27/2007	79.46	78.32	
5,544.62				10/15/2007	71.78	70.64	
5,545.37				3/15/2008	71.03	69.89	
5,544.50				6/15/2008	71.90	70.76	
5,545.94				9/15/2008	70.46	69.32	
5,546.42				11/15/2008	69.98	68.84	
5,546.03				3/15/2009	70.37	69.23	
5,546.65				6/30/2009	69.75	68.61	
5,546.45				9/10/2009	69.95	68.81	
5,546.75				12/11/2009	69.65	68.51	
5,547.09				3/11/2010	69.31	68.17	
5,547.41				5/11/2010	68.99	67.85	
5,547.28				9/29/2010	69.12	67.98	
5547.45				12/21/2010	68.95	67.81	
5547.37				2/28/2011	69.03	67.89	
5547.96				6/21/2011	68.44	67.3	
5547.65				9/20/2011	68.75	67.61	
5548.34				12/21/2011	68.06	66.92	
5548.30				3/27/2012	68.10	66.96	
5548.40				6/28/2012	68.00	66.86	
5548.59				9/27/2012	67.81	66.67	
5548.91				12/28/2012	67.49	66.35	
5549.14				3/28/2013	67.26	66.12	
5548.90				6/27/2013	67.50	66.36	

Tab G

Laboratory Analytical Reports

Client: Energy Fuels Resources, Inc. **Project:** 2nd Quarter Nitrate Lab Sample ID: 1304696-010 Client Sample ID: Piez-01_04242013 **Collection Date:** 4/24/2013 1000h **Received Date:** 4/26/2013 1015h

Contact: Garrin Palmer

Analytical Results

463 West 3600 South	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
t Lake City, UT 84115	Chloride	mg/L		4/29/2013 2146h	E300.0	10.0	53.3	
	Nitrate/Nitrite (as N)	mg/L		4/30/2013 2000h	E353.2	1.00	8.88	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

Salt Lake City, UT

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 5/3/2013 Page 13 of 19

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols, Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any

Client:Energy Fuels Resources, Inc.Project:2nd Quarter NitrateLab Sample ID:1304696-011Client Sample ID:Piez-02_04242013Collection Date:4/24/20131013hReceived Date:4/26/2013

Contact: Garrin Palmer

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

h	Compound	Units	Date Prepared	Date Analyz		Method Used	Reporting Limit	Analytical Result	Qual
5	Chloride	mg/L		4/29/2013	2210h	E300.0	1.00	10.3	
	Nitrate/Nitrite (as N)	mg/L		5/7/2013	2232h	E353.2	0.100	0.172	^

^ - Reissue of a previously generated report. Information has been added, updated, or revised. Information herein supersedes that of the previously issued reports.

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 >-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any

Client:Energy Fuels Resources, Inc.Project:2nd Quarter NitrateLab Sample ID:1304696-012Client Sample ID:Piez-03_04242013Collection Date:4/24/20131025hReceived Date:4/26/2013

Contact: Garrin Palmer

Analytical Results

463 West 3600 South	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84115	Chloride	mg/L		4/29/2013 2233h	E300.0	5.00	21.2	
	Nitrate/Nitrite (as N)	mg/L		4/30/2013 2003h	E353.2	0.100	1.83	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 >-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 5/3/2013 Page 15 of 19

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any

Client: Energy Fuels Resources, Inc. **Project:** 2nd Quarter Nitrate Lab Sample ID: 1304696-004 Client Sample ID: TWN-01 04232013 **Collection Date:** 4/23/2013 0835h **Received Date:** 4/26/2013 1015h

1

Contact: Garrin Palmer

Analytical Results

463 West 3600 South	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
t Lake City, UT 84115	Chloride	mg/L		4/29/2013 1841h	E300.0	5.00	17.4	
	Nitrate/Nitrite (as N)	mg/L		4/30/2013 1947h	E353.2	0.100	0.840	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 >-mail: awal@awal-labs.com

Salt Lake City, UT

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC, This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any

Client:Energy Fuels Resources, Inc.Project:2nd Quarter NitrateLab Sample ID:1304696-008Client Sample ID:TWN-02_04242013Collection Date:4/24/2013Quarter Vitrate4/26/2013Received Date:4/26/20131015h

Contact: Garrin Palmer

Analytical Results

0 South	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
84115	Chloride	mg/L		4/29/2013 2100h	E300.0	10.0	82.1	
	Nitrate/Nitrite (as N)	mg/L		4/30/2013 1957h	E353.2	10.0	57.7	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 >-mail: awal@awal-labs.com

463 West 3600

Salt Lake City, UT

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 5/3/2013 Page 11 of 19

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addresses. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any

Client: Energy Fuels Resources, Inc. **Project:** 2nd Quarter Nitrate Lab Sample ID: 1304696-007 Client Sample ID: TWN-03 04242013 4/24/2013 0935h **Collection Date: Received Date:** 4/26/2013 1015h

Contact: Garrin Palmer

Analytical Results

463 West 3600 South	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
t Lake City, UT 84115	Chloride	mg/L		4/29/2013 2037h	E300.0	50.0	158	
	Nitrate/Nitrite (as N)	mg/L		4/30/2013 1956h	E353.2	10.0	27.2	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

Salt Lake City, UT

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 5/3/2013 Page 10 of 19

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any

Client:Energy Fuels Resources, Inc.Project:2nd Quarter NitrateLab Sample ID:1304696-005Client Sample ID:TWN-04_04232013Collection Date:4/23/2013Quarter Nitrate4/23/2013Received Date:4/26/20131015h

Contact: Garrin Palmer

Analytical Results

0 South	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
84115	Chloride	mg/L		4/29/2013 1950h	E300.0	5.00	24.4	
	Nitrate/Nitrite (as N)	mg/L		4/30/2013 1953h	E353.2	0.100	1.63	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 5-mail: awal@awal-labs.com

463 West 3600

Salt Lake City, UT

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 5/3/2013 Page 8 of 19

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any

Client:Energy Fuels Resources, Inc.Project:2nd Quarter NitrateLab Sample ID:1304696-003Client Sample ID:TWN-07_04242013Collection Date:4/24/20130922hReceived Date:4/26/20131015h

Contact: Garrin Palmer

Analytical Results

463 West 3600 South	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84115	Chloride	mg/L		4/29/2013 1817h	E300.0	1.00	5.88	
	Nitrate/Nitrite (as N)	mg/L		4/30/2013 1946h	E353.2	0.100	1.16	

Phone: (801) 263-8686 Foll Free: (888) 263-8686 Fax: (801) 263-8687 >-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of

Client:Energy Fuels Resources, Inc.Project:2nd Quarter NitrateLab Sample ID:1304696-001Client Sample ID:TWN-07R_04232013Collection Date:4/23/20134/26/20131015h

Contact: Garrin Palmer

Analytical Results

463 West 3600 South	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84115	Chloride	mg/L		4/29/2013 1558h	E300.0	1.00	< 1.00	
	Nitrate/Nitrite (as N)	mg/L		4/30/2013 1943h	E353.2	0.100	< 0.100	

Reissue of a previously generated report. Information has been added, updated, or revised. Information herein supersedes that of previously issued reports.

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 >-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 5/14/2013 Page 4 of 19

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of

Client: Energy Fuels Resources, Inc. **Project:** 2nd Quarter Nitrate 1304696-006 Lab Sample ID: Client Sample ID: TWN-18_04232013 **Collection Date:** 4/23/2013 1004h **Received Date:** 4/26/2013 1015h

Contact: Garrin Palmer

Analytical Results

463 West 3600 South	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
t Lake City, UT 84115	Chloride	mg/L		4/29/2013 2013h	E300.0	10.0	64.3	
	Nitrate/Nitrite (as N)	mg/L		4/30/2013 2031h	E353.2	1.00	2.32	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 >-mail: awal@awal-labs.com

Salt Lake City, UT

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 5/3/2013 Page 9 of 19

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any

Client: Energy Fuels Resources, Inc. **Project:** 2nd Quarter Chloroform 2013 Lab Sample ID: 1306139-007 Client Sample ID: TW4-22 06052013 **Collection Date:** 6/5/2013 0830h 6/7/2013 **Received Date:** 1000h

Contact: Garrin Palmer

Analytical Results

463 West 3600 South	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
t Lake City, UT 84115	Chloride	mg/L		6/10/2013 2339h	E300.0	100	586	
	Nitrate/Nitrite (as N)	mg/L		6/13/2013 1752h	E353.2	10.0	50.2	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

Salt Lake City, UT

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Report Date: 6/18/2013 Page 11 of 29

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols, Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any

Client:Energy Fuels Resources, Inc.Project:2nd Quarter Chloroform 2013Lab Sample ID:1306139-002Client Sample ID:TW4-24_06052013Collection Date:6/5/20130812hReceived Date:6/7/20131000h

Contact: Garrin Palmer

Analytical Results

) South	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
84115	Chloride	mg/L		6/10/2013 2056h	E300.0	100	916	
	Nitrate/Nitrite (as N)	mg/L		6/13/2013 1738h	E353.2	10.0	23.7	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 2-mail: awal@awal-labs.com

463 West 3600

Salt Lake City, UT

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 6/18/2013 Page 6 of 29

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the adverses. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report or any

American West

Client:Energy Fuels Resources, Inc.Project:2nd Quarter Chloroform 2013Lab Sample ID:1306139-001Client Sample ID:TW4-25_06052013Collection Date:6/5/20130752hReceived Date:6/7/20131000h

Contact: Garrin Palmer

Analytical Results

) South	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
84115	Chloride	mg/L		6/10/2013 1946h	E300.0	50.0	136	
	Nitrate/Nitrite (as N)	mg/L		6/13/2013 1737h	E353.2	1.00	5.24	

INORGANIC ANALYTICAL REPORT

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 >-mail: awal@awal-labs.com

463 West 3600

Salt Lake City, UT

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any

Client:Energy Fuels Resources, Inc.Project:2nd Quarter NitrateLab Sample ID:1304696-002Client Sample ID:TWN-60_04252013Collection Date:4/25/2013Quarter Nitrate1015h

Contact: Garrin Palmer

Analytical Results

463 West 3600 South	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84115	Chloride	mg/L		4/29/2013 1708h	E300.0	1.00	< 1.00	
	Nitrate/Nitrite (as N)	mg/L		4/30/2013 1945h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686 Foll Free: (888) 263-8686 Fax: (801) 263-8687 >-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 5/3/2013 Page 5 of 19

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols, Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee Privileges of

Client: Energy Fuels Resources, Inc. 2nd Quarter Chloroform 2013 **Project:** 1306288-006 Lab Sample ID: Client Sample ID: TW4-60 06132013 **Collection Date:** 6/13/2013 830h **Received Date:** 6/14/2013 1442h

Contact: Garrin Palmer

Analytical Results

463 West 3600 South	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
t Lake City, UT 84115	Chloride	mg/L		6/18/2013 024h	E300.0	1.00	< 1.00	
	Nitrate/Nitrite (as N)	mg/L		6/17/2013 1620h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

Salt Lake City, UT

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any

Client:Energy Fuels Resources, Inc.Project:2nd Quarter NitrateLab Sample ID:1304696-009Client Sample ID:TWN-65_04232013Collection Date:4/23/20131004hReceived Date:4/26/2013

Contact: Garrin Palmer

Analytical Results

) South	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
84115	Chloride	mg/L		4/29/2013 2123h	E300.0	5.00	66.1	
	Nitrate/Nitrite (as N)	mg/L		4/30/2013 2017h	E353.2	1.00	2.46	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 ۶-mail: awal@awal-labs.com

463 West 3600

Salt Lake City, UT

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 5/3/2013 Page 12 of 19

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report in connection of this report in connection.

Garrin Palmer Energy Fuels Resources, Inc. 6425 S. Hwy 191 Blanding, UT 84511 TEL: (435) 678-2221

	TEE. (155) 010 2221
	RE: 2nd Quarter Nitrate
463 West 3600 South	Dear Garrin Palmer: Lab Set ID: 1304696
Salt Lake City, UT 84115	American West Analytical Laboratories received 12 sample(s) on 4/26/2013 for the analyses presented in the following report.
Phone: (801) 263-8686	American West Analytical Laboratories (AWAL) is accredited by The National
	Environmental Laboratory Accreditation Program (NELAP) in Utah and Texas; and is
Toll Free: (888) 263-8686	state accredited in Colorado, Idaho, New Mexico, and Missouri.
Fax: (801) 263-8687	
e-mail: awal@awal-labs.com	All analyses were performed in accordance to the NELAP protocols unless noted
web: www.awal-labs.com	otherwise. Accreditation scope documents are available upon request. If you have any questions or concerns regarding this report please feel free to call.
	The abbreviation "Surr" found in organic reports indicates a surrogate compound that is
Kyle F. Gross	intentionally added by the laboratory to determine sample injection, extraction, and/or
	purging efficiency. The "Reporting Limit" found on the report is equivalent to the
Laboratory Director	practical quantitation limit (PQL). This is the minimum concentration that can be
	reported by the method referenced and the sample matrix. The reporting limit must not be
Jose Rocha	confused with any regulatory limit. Analytical results are reported to three significant
QA Officer	figures for quality control and calculation purposes.

This is a revision to a report orignally issued 5/3/2013. Pages 1, 3, 4, 14, and 16-19 have been revised.

Thank You,

Laboratory Director or designee

SAMPLE SUMMARY

Client: Project: Lab Set ID:

Client:Energy Fuels Resources, Inc.Project:2nd Quarter NitrateLab Set ID:1304696Date Received:4/26/2013 1015h

Contact: Garrin Palmer

	Lab Sample ID	Client Sample ID	Date Collecte	ed Matrix	Analysis
463 West 3600 South	1304696-001A	TWN-07R_04232013	4/23/2013 07	0734h Aqueous	Anions, E300.0
Salt Lake City, UT 84115	1304696-001B	TWN-07R_04232013	4/23/2013 07	734h Aqueous	Nitrite/Nitrate (as N), E353.2
	1304696-002A	TWN-60_04252013	4/25/2013 07	745h Aqueous	Anions, E300.0
	1304696-002B	TWN-60_04252013	4/25/2013 07	745h Aqueous	Nitrite/Nitrate (as N), E353.2
Phone: (801) 263-8686	1304696-003A	TWN-07_04242013	4/24/2013 09	922h Aqueous	Anions, E300.0
Toll Free: (888) 263-8686	1304696-003B	TWN-07_04242013	4/24/2013 09	922h Aqueous	Nitrite/Nitrate (as N), E353.2
Fax: (801) 263-8687	1304696-004A	TWN-01_04232013	4/23/2013 08	0835h Aqueous	Anions, E300.0
	1304696-004B	TWN-01_04232013	4/23/2013 08	835h Aqueous	Nitrite/Nitrate (as N), E353.2
>-mail: awal@awal-labs.com	1304696-005A	TWN-04_04232013	4/23/2013 09	922h Aqueous	Anions, E300.0
web: www.awal-labs.com	1304696-005B	TWN-04_04232013	4/23/2013 09	922h Aqueous	Nitrite/Nitrate (as N), E353.2
web: www.awai-labs.com	1304696-006A	TWN-18_04232013	4/23/2013 10	.004h Aqueous	Anions, E300.0
	1304696-006B	TWN-18_04232013	4/23/2013 10	004h Aqueous	Nitrite/Nitrate (as N), E353.2
K L F C	1304696-007A	TWN-03_04242013	4/24/2013 09	935h Aqueous	Anions, E300.0
Kyle F. Gross	1304696-007B	TWN-03_04242013	4/24/2013 09	935h Aqueous	Nitrite/Nitrate (as N), E353.2
Laboratory Director	1304696-008A	TWN-02_04242013	4/24/2013 09	945h Aqueous	Anions, E300.0
	1304696-008B	TWN-02_04242013	4/24/2013 09	945h Aqueous	Nitrite/Nitrate (as N), E353.2
Jose Rocha	1304696-009A	TWN-65_04232013	4/23/2013 10	004h Aqueous	Anions, E300.0
QA Officer	1304696-009B	TWN-65_04232013	4/23/2013 10	004h Aqueous	Nitrite/Nitrate (as N), E353.2
	1304696-010A	Piez-01_04242013	4/24/2013 10	000h Aqueous	Anions, E300.0
	1304696-010B	Piez-01_04242013	4/24/2013 10	000h Aqueous	Nitrite/Nitrate (as N), E353.2
	1304696-011A	Piez-02_04242013	4/24/2013 10	013h Aqueous	Anions, E300.0
	1304696-011B	Piez-02_04242013	4/24/2013 10	013h Aqueous	Nitrite/Nitrate (as N), E353.2
	1304696-012A	Piez-03_04242013	4/24/2013 10	025h Aqueous	Anions, E300.0
	1304696-012B	Piez-03_04242013	4/24/2013 10	025h Aqueous	Nitrite/Nitrate (as N), E353.2

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of

Revised Inorganic Case Narrative

American Haberatorics	Client: Contact: Project: Lab Set ID:	Energy Fuels Resources, Inc. Garrin Palmer 2nd Quarter Nitrate 1304696
463 West 3600 South	Sample Receipt Information:	
Salt Lake City, UT 84115	Date of Receipt: Date(s) of Collection: Sample Condition: C-O-C Discrepancies:	4/26/2013 4/23, 4/24, and 4/25/2013 Intact None
Phone: (801) 263-8686		
Toll Free: (888) 263-8686	Holding Time and Preservation Requirem	
Fax: (801) 263-8687	samples were performed within the method preserved.	holding times. All samples were properly
e-mail: awal@awal-labs.com	preserved.	
web: www.awal-labs.com	Preparation and Analysis Requirements: methods stated on the analytical reports.	The samples were analyzed following the
	Analytical QC Requirements: All inst requirements were met. All internal standard re	trument calibration and calibration check ecoveries met method criterion.
Kyle F. Gross	Peter OC Description MD LCS MS M	
Laboratory Director	Batch QC Requirements: MB, LCS, MS, M	SD, RPD:
Jose Rocha	Method Blanks (MB): No target an indicating that the procedure was free	nalytes were detected above reporting limits, from contamination.
QA Officer	Laboratory Control Samples (LCS limits, indicating that the preparation a): All LCS recoveries were within control and analysis were in control.
		eates (MS/MSD): All percent recoveries and were inside established limits, indicating no

Corrective Action: None required.

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

OC SUMMARY REPORT

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha **QA** Officer

Client: Energy Fuels Resources, Inc. **Contact:** Garrin Palmer WC Lab Set ID: 1304696 Dept: QC Type: LCS 2nd Quarter Nitrate **Project: RPD** Ref. Reporting Amount Spike Ref. RPD MDL %REC Analyte Result Units Method % RPD Qual Limit Spiked Amount Limits Amt Limit Lab Sample ID: LCS-R53633 Date Analyzed: 04/29/2013 1535h Test Code: 300.0-W 0 Chloride 4.48 E300.0 0.0114 1.00 5.000 89.6 90 - 110 mg/L 8 Lab Sample ID: LCS-R53670 04/30/2013 1936h Date Analyzed: Test Code: NO2/NO3-W-353.2 1.03 E353.2 0.00252 0.100 1.000 0 103 90 - 110 Nitrate/Nitrite (as N) mg/L Lab Sample ID: LCS-R53945 Date Analyzed: 05/07/2013 2147h Test Code: NO2/NO3-W-353.2 1.04 E353.2 0.00252 1.000 104 \wedge Nitrate/Nitrite (as N) mg/L 0.100 0 90 - 110

^ - Reissue of a previously generated report. Information has been added, updated, or revised. Information herein supersedes that of the previously issued reports.

§ - QC limits are set with an accuracy of two significant figures, therefore the recovery rounds to an acceptable value within the control limits.

Report Date: 5/14/2013 Page 16 of 19

analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressec. Privileges of subsequent use of the name of this company or any mber of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Lab Set ID:	Energy Fuels Resources, 1304696 2nd Quarter Nitrate	Inc.					Contact: Dept: QC Type:	Garrin Pa WC MBLK	llmer					
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID Test Code:	MB-R53633 300.0-W	Date Analyzed:	04/29/2013	1511h										
Chloride		< 1.00	mg/L	E300.0	0.0114	1.00								
Lab Sample ID Test Code:	MB-R53670 NO2/NO3-W-353.2	Date Analyzed:	04/30/2013	1935h										
Nitrate/Nitrite	(as N)	< 0.100	mg/L	E353.2	0.00252	0.100								
Lab Sample ID Test Code:	MB-R53945 NO2/NO3-W-353.2	Date Analyzed:	05/07/2013	2144h										
Nitrate/Nitrite	(as N)	< 0.100	mg/L	E353.2	0.00252	0.100								

^ - Reissue of a previously generated report. Information has been added, updated, or revised. Information herein supersedes that of the previously issued reports.

Report Date: 5/14/2013 Page 17 of 19

analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any mber of its staff, or reproduction of this report is provided for the addressee will be granted only on contact. This company accepts no responsibility

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Lab Set ID:	Energy Fuels Resources, 1304696 2nd Quarter Nitrate	Inc.					Contact: Dept: QC Type:	Garrin Pa WC MS	ılmer					
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID Test Code:	1304696-001AMS 300.0-W	Date Analyzed:	04/29/2013	1621 h										
Chloride		4.70	mg/L	E300.0	0.0114	1.00	5.000	0	94.0	90 - 110				
Lab Sample ID Test Code:	1304696-002AMS 300.0-W	Date Analyzed:	04/29/2013	1731h										
Chloride		4.73	mg/L	E300.0	0.0114	1.00	5.000	0	94.7	90 - 110				
Lab Sample ID Test Code:	• 1304650-003DMS NO2/NO3-W-353.2	Date Analyzed:	04/30/2013	2021h										
Nitrate/Nitrite	(as N)	1.59	mg/L	E353.2	0.00252	0.100	1.000	0.618	97.1	90 - 110				
Lab Sample ID Test Code:	1304696-011BMS NO2/NO3-W-353.2	Date Analyzed:	05/07/2013	2233h										
Nitrate/Nitrite	(as N)	1.13	mg/L	E353.2	0.00252	0.100	1.000	0.172	95.7	90 - 110				

^ - Reissue of a previously generated report. Information has been added, updated, or revised. Information herein supersedes that of the previously issued reports.

Report Date: 5/14/2013 Page 1 of 19

analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any mber of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

QC SUMMARY REPORT

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Garrin Palmer

Contact:

Kyle F. Gross Laboratory Director

Qual

^

Jose Rocha **QA** Officer

Lab Set ID: 13	304696 nd Quarter Nitrate						Dept: QC Type	WC : MSD					
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit
Lab Sample ID: Test Code:	1304696-001AMSD 300.0-W	Date Analyzed:	04/29/2013	1644h									
Chloride		4.77	mg/L	E300.0	0.0114	1.00	5.000	0	95.4	90 - 110	4.7	1.52	20
Lab Sample ID: Test Code:	1304696-002AMSD 300.0-W	Date Analyzed:	04/29/2013	1754h									
Chloride		4.76	mg/L	E300.0	0.0114	1.00	5.000	0	95.1	90 - 110	4.73	0.485	20
Lab Sample ID: Test Code:	1304650-003DMSD NO2/NO3-W-353.2	Date Analyzed:	04/30/2013	2022h									
Nitrate/Nitrite (a	s N)	1.65	mg/L	E353.2	0.00252	0.100	1.000	0.618	103	90 - 110	1.59	3.48	10
Lab Sample ID: Test Code:	1304696-011BMSD NO2/NO3-W-353.2	Date Analyzed:	05/07/2013	2234h									
Nitrate/Nitrite (a	s N)	1.14	mg/L	E353.2	0.00252	0.100	1.000	0.172	96.7	90 - 110	1.13	0.935	10

viously generated report. Information has been added, updated, or revised. Information herein supersedes that of the previously issued reports.

Report Date: 5/14/2013 Page 19 of 19

analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any mber of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility

American West Analytical Laboratories

WORK O	RDER Summary				W	ork Order: 13	304696	Page 1 of 2
Client:	Energy Fuels Resources, Inc.					Due Date: 5/7	/2013	
Client ID:	DEN100		Contact:	Garrin Palmer				
Project:	2nd Quarter Nitrate		QC Level	: III		WO Type: Pro	ject	
Comments:	PA Rush. QC 3 (no chromatograms). M	UST report project			1 mg/L. EDD-	• •	-	Group;
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix		Storage	
1304696-001A	TWN-07R_04232013	4/23/2013 0734h	4/26/2013 1015h	300.0-W	Aqueous		df - cl	1
1304696-001B				1 SEL Analytes: CL NO2/NO3-W-353.2		V	df - no2/no3	
				1 SEL Analytes: NO3NO2N				
1304696-002A	TWN-60_04252013	4/25/2013 0745h	4/26/2013 1015h	300.0-W 1 SEL Analytes: CL	Aqueous	\checkmark	df - cl	1
1304696-002B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		V	df - no2/no3	
1304696-003A	TWN-07_04242013	4/24/2013 0922h	4/26/2013 1015h	300.0-W	Aqueous		df - cl	1
				1 SEL Analytes: CL				
1304696-003B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		\checkmark	df - no2/no3	
1304696-004A	TWN-01_04232013	4/23/2013 0835h	4/26/2013 1015h	300.0-W	Aqueous	\checkmark	df - cl	1
1304696-004B				1 SEL Analytes: CL NO2/NO3-W-353.2		V	df - no2/no3	
1304696-005A	TWN-04_04232013	4/23/2013 0922h	4/26/2013 1015h	1 SEL Analytes: NO3NO2N 300.0-W	A 01190115		df - cl	1
1304090-005A	1 111-04_04232013	4/25/2015 092211	4/20/2015 10151	1 SEL Analytes: CL	Aqueous		di - 01	
1304696-005B				NO2/NO3-W-353.2		V	df - no2/no3	
1304696-006A	TWN-18_04232013	4/23/2013 1004h	4/26/2013 1015h	1 SEL Analytes: NO3NO2N 300.0-W	Aqueous	V	df - cl	1
				1 SEL Analytes: CL				
1304696-006B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		\checkmark	df - no2/no3	
1304696-007A	TWN-03_04242013	4/24/2013 0935h	4/26/2013 1015h	300.0-W	Aqueous		df - cl	I
1304696-007B				1 SEL Analytes: CL NO2/NO3-W-353.2		V	df - no2/no3	
				1 SEL Analytes: NO3NO2N				
1304696-008A	TWN-02_04242013	4/24/2013 0945h	4/26/2013 1015h	300.0-W <i>I SEL Analytes: CL</i>	Aqueous	V	df - cl	1
1304696-008B				NO2/NO3-W-353.2		V	df - no2/no3	
1204(0(000)	TNAL (5. 04222012	4/22/2012 1004	406/2012 1015	1 SEL Analytes: NO3NO2N	A	C 7	df al	
1304696-009A	TWN-65_04232013	4/23/2013 1004h	4/26/2013 1015h	300.0-W 1 SEL Analytes: CL	Aqueous		df - cl	1
Printed: 4/26/2013	FOR LABORATORY USE ONLY [fill out on page 1]:	%M Z RT Z		AC HOKOL	HOK	HOK	COC Emailed	

WORK O	RDER Summary					Work Order: 13	804696	Page 2 of 2
Client:	Energy Fuels Resources, Inc.					Due Date: 5/7	/2013	
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	
1304696-009B	TWN-65_04232013	4/23/2013 1004h	4/26/2013 1015h	NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N	Aqueous		df - no2/no3	1
1304696-010A	Piez-01_04242013	4/24/2013 1000h	4/26/2013 1015h	300.0-W 1 SEL Analytes: CL	Aqueous	V	df - cl	1
1304696-010B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N			df - no2/no3	
1304696-011A	Piez-02_04242013	4/24/2013 1013h	4/26/2013 1015h	300.0-W 1 SEL Analytes: CL	Aqueous	V	df - cl	1
1304696-011B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		V	df - no2/no3	
1304696-012A	Piez-03_04242013	4/24/2013 1025h	4/26/2013 1015h	300.0-W 1 SEL Analytes: CL	Aqueous		df - cl	1
1304696-012B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N			df - no2/no3	

Client Energy Fuels Address <u>G425 S Hwy 191</u> <u>Blanding UT</u> <u>City State</u> Phone <u>435 678 2.221</u> Fax	8451 Zip	<u>\</u>	A		46	LAB	NAL SORA	YTI ATOI 600 S City,	EST CAL RIES South Utah	Fax	CU (801) (888) (801)	LAI UST) 263-4) 263-4) 263-8 val@a	OD 8686 8686 8687		Page <u>l</u> Turn Arou	nd Time	<u>/30 4 6 9 (0</u> of (Circle One) 4 day 5 day Standard
Contact Garcin Palmer								Т	EST	s re	QU	IRED			QC LE	VEL	LABORATORY USE ONLY
E-mail gpalmerpenergyfuels	1-				â	N						Т					SAMPLES WERE:
Project Name 2nd Quarter Nite	ale				of Containers (Total)	Nitrite									1 2	2+	1 Shipped or hand delivered Notes: Fed -X
Project Number/P.O.#			Date/Time Collected		ontaine	Nº	100	1							3 3+	4	2 Ambient of Chilled
Sampler Name Tanner Holliday			Concolor	ž	er of C	ste.	Chlorid								\bigcirc		3 Temperature 2.()
Sample ID				Matrix	Number	N'trate.	Ù								COMME	NTS	
the second se			100 00 0730		2		×	\vdash	\vdash	-	-		+	-			4 Received Broken/Leaking (Improperly Sealed)
TWN-07R_04232013			4/23/13 0734		1.00	× ×	X	-	-	-	+	-+	+				Notes:
TWN-60_04252013			4/25/13 0745			4	X	\vdash	\vdash	-		+	+	-		-	5 Property Preserved
TWN-07_04242013	10000	*****	4/23/13 0835			Y	X				-		-	-			Cheeked at Bench
TWN-01_04232013 TWN-04_04232013			4/23/13 0922			X	1X					-+	+		Trip Bla	nK	Notes:
TWN-18_04232013			4/23/13 1004	w		X	1V	1-			-	-	+		Include		-1 1
TWN-03_04242013			4/24/13 0935	-		×	X					1			04/25		6 Received Within Holding Times
TWN-02_04242013			4/24/13 0945	1		X	X							-			Notes:
TWN-65_04232013		x	4/23/13 1004	W	-	X	X			2			-				
Picz-01-04242013			4/24/13 1000	w	2	X	X										
Piez-02_04242013			4/24/13 1013	W	2	X	X										COC Tape Was:
Piez-03_04242013			4/24/13 1025	W	2	4	X										1 Present on Outer
Relinquished By: Signature	W/25/131	Received E	By: Signature			Da	ate		Spe	cial I	nstr	uctior	ns:				
PRINT NAME Tanner Holliday		PRINT NA	ME			Tir	me			_							2 Unbroken on Outer Package Y N NA
Relinquished By: Signature	Date	Received I	By: Signature			Da	ate	1									
PRINT NAME	Time	PRINT NA	ME			Ti	me										Y N
Relinquished By: Signature	Date	Received 8	By: Signature			Da	ate										4 Unbroken on Sample Y N
PRINT NAME	Time	PRINT NA	ME			Th	me										Discrepancies Between Sample Labels and COC
Relinquished By: Signature	Date	Received I	signature Ak			A	ate /	ala							11	<u></u>	Record? Y Notes:
DRINT NAME	Time	PRINT NA			1		me,,										

Sample Set: 1304696

Preservation Check Sheet

						Sample	Set Exte	ension a	nd pH									0
Bottle Type	Preservative	All	Except	Except	Except	Excopt	Except	Except	Except	Except	-Except	Except	Except	Except	Except	Except	Except	el
		OK	-/	2	3	4	5	6	7	8	9	10	11	12				4/2
Ammonia	pH <2 H2SO4																	
COD	pH <2 H ₂ SO ₄	1										9						
Cyanide	PH >12 NaOH																[]	
Metals	pH <2 HNO3																	1
NO2 & NO3	pH <2 H2SO4		Yes	Ver	Yes	Ves	Ver	Yes	Yes	Ver	Ves	Ves	Ves	ves				
Nutrients	pH <2 H ₂ SO ₄		1	1	1	1	1	1	/	1	1	1	1	/				
0 & G	pH <2 HCL																	2
Phenols	pH <2 H ₂ SO ₄																	
Sulfide	pH > 9NaOH,																	ľ.
	Zn Acetate				1	1												
TKN	pH <2 H ₂ SO ₄								1									
TOC	pH <2 H ₃ PO ₄																	
ТОХ	pH <2 H ₂ SO ₄							L			1							
T PO ₄	pH <2 H ₂ SO ₄			1			1											
ТРН	pH <2 HCL			1			1											
		1						1									1	
							-				1							1
			1				1											
				1					-									

1) Procedure:

2)

3)

Pour a small amount of sample in the sample lid Pour sample from Lid gently over wide range pH paper Do Not dip the pH paper in the sample bottle or lid If sample is not preserved properly list its extension and receiving pH in the appropriate column above 4)

Flag COC, notify client if requested 5)

Place client conversation on COC 6)

Samples may be adjusted 7)

Frequency: All samples requiring preservation

Garrin Palmer Energy Fuels Resources, Inc. 6425 S. Hwy 191 Blanding, UT 84511 TEL: (435) 678-2221

RE: 2nd Quarter Chloroform 2013

463 West 3600 South	Dear Garrin Palmer:	Lab Set ID:	1306139
Salt Lake City, UT 84115	American West Analytical Laboratories received 9 san presented in the following report.	nple(s) on 6/7/201	3 for the analyses
Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687	American West Analytical Laboratories (AWAL) is ac Environmental Laboratory Accreditation Program (NE state accredited in Colorado, Idaho, New Mexico, and	LAP) in Utah and	
e-mail: awal@awal-labs.com web: www.awal-labs.com	All analyses were performed in accordance to the NEL otherwise. Accreditation scope documents are available questions or concerns regarding this report please feel	le upon request. I	
Kyle F. Gross Laboratory Director Jose Rocha	The abbreviation "Surr" found in organic reports indica intentionally added by the laboratory to determine sam purging efficiency. The "Reporting Limit" found on the practical quantitation limit (PQL). This is the minimum reported by the method referenced and the sample math confused with any regulatory limit. Analytical results	ple injection, extr e report is equiva n concentration th ix. The reporting	action, and/or lent to the nat can be glimit must not be
QA Officer	figures for quality control and calculation purposes.		

Thank You,

Approved by:

Laboratory Director or designee

Client:

Project:

Lab Set ID:

SAMPLE SUMMARY

Energy Fuels Resources, Inc. 2nd Quarter Chloroform 2013 1306139 Date Received: 6/7/2013 1000h

Contact: Garrin Palmer

	Lab Sample ID	Client Sample ID	Date Colle	ected	Matrix	Analysis
463 West 3600 South	1306139-001A	TW4-25_06052013	6/5/2013	0752h	Aqueous	Anions, E300.0
Salt Lake City, UT 84115	1306139-001B	TW4-25_06052013	6/5/2013	0752h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1306139-001C	TW4-25_06052013	6/5/2013	0752h	Aqueous	VOA by GC/MS Method 8260C/5030C
Phone: (801) 263-8686	1306139-002A	TW4-24_06052013	6/5/2013	0812h	Aqueous	Anions, E300.0
	1306139-002B	TW4-24_06052013	6/5/2013	0812h	Aqueous	Nitrite/Nitrate (as N), E353.2
Toll Free: (888) 263-8686 Fax: (801) 263-8687	1306139-002C	TW4-24_06052013	6/5/2013	0812h	Aqueous	VOA by GC/MS Method 8260C/5030C
e-mail: awal@awal-labs.com	1306139-003A	MW-26_06052013	6/5/2013	0855h	Aqueous	Anions, E300.0
	1306139-003B	MW-26_06052013	6/5/2013	0855h	Aqueous	Nitrite/Nitrate (as N), E353.2
web: www.awal-labs.com	1306139-003C	MW-26_06052013	6/5/2013	0855h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1306139-004A	TW4-04_06052013	6/5/2013	0925h	Aqueous	Anions, E300.0
Kyle F. Gross	1306139-004B	TW4-04_06052013	6/5/2013	0925h	Aqueous	Nitrite/Nitrate (as N), E353.2
Laboratory Director	1306139-004C	TW4-04_06052013	6/5/2013	0925h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1306139-005A	MW-04_06052013	6/5/2013	0910h	Aqueous	Anions, E300.0
Jose Rocha	1306139-005B	MW-04_06052013	6/5/2013	0910h	Aqueous	Nitrite/Nitrate (as N), E353.2
QA Officer	1306139-005C	MW-04_06052013	6/5/2013	0910h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1306139-006A	TW4-19_06052013	6/5/2013	1400h	Aqueous	Anions, E300.0
	1306139-006B	TW4-19_06052013	6/5/2013	1400h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1306139-006C	TW4-19_06052013	6/5/2013	1400h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1306139-007A	TW4-22_06052013	6/5/2013	0830h	Aqueous	Anions, E300.0
	1306139-007B	TW4-22_06052013	6/5/2013	0830h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1306139-007C	TW4-22_06052013	6/5/2013	0830h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1306139-008A	TW4-20_06052013	6/5/2013	0842h	Aqueous	Anions, E300.0
	1306139-008B	TW4-20_06052013	6/5/2013	0842h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1306139-008C	TW4-20_06052013	6/5/2013	0842h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1306139-009A	Trip Blank	6/5/2013		Aqueous	VOA by GC/MS Method 8260C/5030C

Inorganic Case Narrative

American West	Client: Contact: Project: Lab Set ID:	Energy Fuels Resources, Inc. Garrin Palmer 2nd Quarter Chloroform 2013 1306139
463 West 3600 South	Sample Receipt Information:	
Salt Lake City, UT 84115	Date of Receipt: Date of Collection: Sample Condition:	6/7/2013 6/5/2013 Intact
Phone: (801) 263-8686	C-O-C Discrepancies:	None
Toll Free: (888) 263-8686 Fax: (801) 263-8687 2-mail: awal@awal-labs.com	Holding Time and Preservation Requirements samples were performed within the method h preserved.	
web: www.awal-labs.com	Preparation and Analysis Requirements: methods stated on the analytical reports.	The samples were analyzed following the
Kyle F. Gross	Analytical QC Requirements: All instr requirements were met. All internal standard rea	rument calibration and calibration check coveries met method criterion.
Laboratory Director	Batch QC Requirements: MB, LCS, MS, MS	D, RPD:
Jose Rocha	Method Blanks (MB): No target and indicating that the procedure was free free	alytes were detected above reporting limits, rom contamination.
QA Officer	Laboratory Control Samples (LCS) limits, indicating that the preparation ar	: All LCS recoveries were within control analysis were in control.
		ttes (MS/MSD): All percent recoveries and were inside established limits, indicating no

Corrective Action: None required.

Volatile Case Narrative

American West	Client:	Energy Fuels Resources, Inc.
	Contact:	Garrin Palmer
	Project:	2nd Quarter Chloroform 2013
	Lab Set ID:	1306139
463 West 3600 South	Sample Receipt Information:	
Salt Lake City, UT 84115	Date of Receipt:	6/7/2013
	Date of Collection:	6/5/2013
	Sample Condition:	Intact
D1	C-O-C Discrepancies:	None
Phone: (801) 263-8686	Method:	SW-846 8260C/5030C
Toll Free: (888) 263-8686	Analysis:	Volatile Organic Compounds
Fax: (801) 263-8687	General Set Comments: Multiple tars	get analytes were observed above reporting limits.
e-mail: awal@awal-labs.com	General Ser Comments: Manipie ang	set analytes were observed above reporting minto.
web: www.awal-labs.com		The analysis and preparation of all samples were times following the methods stated on the analytical
Kyle F. Gross	Analytical QC Requirements: A	All instrument calibration and calibration check
Laboratory Director	requirements were met. All internal star	
Jose Rocha	Batch QC Requirements: MB, LCS,	MS, MSD, RPD, and Surrogates:
QA Officer	Method Blanks (MBs): No t indicating that the procedure w	arget analytes were detected above reporting limits, as free from contamination.
		(LCSs): All LCS recoveries were within control ration and analysis were in control.
		Duplicate (MS/MSD): All percent recoveries and rences) were inside established limits, indicating no
	Surrogates: All surrogate reco	overies were within established limits.

Corrective Action: None required.

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

Kyle F. Gross Laboratory Director

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Jose Rocha QA Officer

QC SUMMARY REPORT

Lab Set ID:	Energy Fuels Resources 1306139 2nd Quarter Chloroforn						Contact: Dept: QC Type	Garrin Pa WC : LCS	llmer					
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample II Test Code:	LCS-R55412 300.0-W	Date Analyzed:	06/10/2013	1357h										
Chloride		4.69	mg/L	E300.0	0.0114	1.00	5.000	0	93.8	90 - 110				
Lab Sample II Test Code:	D: LCS-R55537 NO2/NO3-W-353.2	Date Analyzed:	06/13/2013	1736h										
Nitrate/Nitrite	(as N)	0.987	mg/L	E353.2	0.00252	0.100	1.000	0	98.7	90 - 110				

Report Date: 6/18/2013 Page 22 of 29

analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols, Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any mber of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

Kyle F. Gross Laboratory Director

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Jose Rocha QA Officer

OC SUMMARY REPORT Client: Energy Fuels Resources, Inc. **Contact:** Garrin Palmer WC Lab Set ID: 1306139 Dept: 2nd Quarter Chloroform 2013 QC Type: MBLK **Project:** Reporting Amount Spike Ref. **RPD** Ref. RPD Result MDL %REC Analyte Units Method Limit Spiked Amount Limits Amt % RPD Limit Qual Lab Sample ID: MB-R55412 Date Analyzed: 06/10/2013 1334h

Nitrate/Nitrite (as N)	< 0.100	mg/L	E353.2	0.00252	0.100	
Lab Sample ID: Test Code:	MB-R55537 NO2/NO3-W-353.2	Date Analyzed:	06/13/2013	734h			
Chloride		< 1.00	mg/L	E300.0	0.0114	1.00	
Test Code:	300.0-W						

Report Date: 6/18/2013 Page 23 of 29

analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols, Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any mber of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

QC SUMMARY REPORT

Kyle F. Gross Laboratory Director

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Jose Rocha QA Officer

Client: Energy Fuels Resources, Inc. Contact: Garrin Palmer Lab Set ID: 1306139 Dept: WC Project: 2nd Quarter Chloroform 2013 QC Type: MS Analyte Result Units Method MDL Limit Spike Ref. RPD Ref. RPD Limit

Analyte		Result	Units	Method	MDL	Limit	Spiked	Amount	%REC	Limits	Amt	% RPD	Limit	Qual
Lab Sample ID: Test Code:	1306068-001BMS 300.0-W	Date Analyzed:	06/10/2013	1640h										
Chloride		24,000	mg/L	E300.0	57.0	5,000	25,000	61.3	95.6	90 - 110				
Lab Sample ID: Test Code:	1306139-001AMS 300.0-W	Date Analyzed:	06/10/2013	2010h										
Chloride		2,500	mg/L	E300.0	5.70	500	2,500	136	94.7	90 - 110				
Lab Sample ID: Test Code:	1306139-003BMS NO2/NO3-W-353.2	Date Analyzed:	06/13/2013	1741h										
Nitrate/Nitrite (as	s N)	12.3	mg/L	E353.2	0.0252	1.00	10.00	2.11	102	90 - 110				
Lab Sample ID: Test Code:	1306188-034AMS NO2/NO3-W-353.2	Date Analyzed:	06/13/2013	1756h										
Nitrate/Nitrite (a	s N)	1.10	mg/L	E353.2	0.00252	0.100	1.000	0	110	90 - 110				

Report Date: 6/18/2013 Page 24 of 29

analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any mber of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

QC SUMMARY REPORT

Garrin Palmer

WC

Kyle F. Gross Laboratory Director

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Jose Rocha QA Officer

Client: Energy Fuels Resources, Inc. **Contact:** Dept: Lab Set ID: 1306139 QC Type: MSD 2nd Quarter Chloroform 2013 **Project:**

	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
1306068-001BMSD 300.0-W	Date Analyzed:	06/10/2013	1703h										
	23,700	mg/L	E300.0	57.0	5,000	25,000	61.3	94.5	90 - 110	24000	1.17	20	
1306139-001AMSD 300.0-W	Date Analyzed:	06/10/2013	2033h										
	2,480	mg/L	E300.0	5.70	500	2,500	136	93.8	90 - 110	2500	0.854	20	
1306139-003BMSD NO2/NO3-W-353.2	Date Analyzed:	06/13/2013	1743h										
N)	11.9	mg/L	E353.2	0.0252	1.00	10.00	2.11	97.7	90 - 110	12.3	3.49	10	
1306188-034AMSD NO2/NO3-W-353.2	Date Analyzed:	06/13/2013	1758h										
N)	1.08	mg/L	E353.2	0.00252	0.100	1.000	0	108	90 - 110	1.1	1.96	10	
	300.0-W 1306139-001AMSD 300.0-W 1306139-003BMSD NO2/NO3-W-353.2 N 1306188-034AMSD NO2/NO3-W-353.2	1306068-001BMSD Date Analyzed: 300.0-W 23,700 1306139-001AMSD Date Analyzed: 300.0-W 2,480 1306139-003BMSD Date Analyzed: N02/NO3-W-353.2 Date Analyzed: N02/NO3-W-353.2 Date Analyzed:	1306068-001BMSD Date Analyzed: 06/10/2013 300.0-W 23,700 mg/L 1306139-001AMSD Date Analyzed: 06/10/2013 300.0-W 2,480 mg/L 1306139-003BMSD Date Analyzed: 06/13/2013 NO2/NO3-W-353.2 11.9 mg/L 1306188-034AMSD Date Analyzed: 06/13/2013 NO2/NO3-W-353.2 0ate Analyzed: 06/13/2013	1306068-001BMSD Date Analyzed: 06/10/2013 1703h 300.0-W 23,700 mg/L E300.0 1306139-001AMSD Date Analyzed: 06/10/2013 2033h 300.0-W 2,480 mg/L E300.0 1306139-003BMSD Date Analyzed: 06/10/2013 1743h NO2/NO3-W-353.2 11.9 mg/L E353.2 1306188-034AMSD Date Analyzed: 06/13/2013 1758h	1306068-001BMSD Date Analyzed: 06/10/2013 1703h 300.0-W 23,700 mg/L E300.0 57.0 1306139-001AMSD Date Analyzed: 06/10/2013 2033h 57.0 1306139-003BMSD Date Analyzed: 06/13/2013 1743h 5.70 1306139-003BMSD Date Analyzed: 06/13/2013 1743h 5.70 N) 11.9 mg/L E353.2 0.0252 1306188-034AMSD Date Analyzed: 06/13/2013 1758h 0.0252	Result Units Method MDL Limit 1306068-001BMSD Date Analyzed: 06/10/2013 1703h	Result Units Method MDL Limit Spiked 1306068-001BMSD 300.0-W Date Analyzed: 06/10/2013 1703h	Result Units Method MDL Limit Spiked Amount 1306068-001BMSD 300.0-W Date Analyzed: 06/10/2013 1703h	Result Units Method MDL Limit Spiked Amount %REC 1306068-001BMSD 300.0-W Date Analyzed: 06/10/2013 1703h </td <td>Result Units Method MDL Limit Spiked Amount %REC Limits 1306068-001BMSD 300.0-W Date Analyzed: 06/10/2013 1703h </td> <td>Result Units Method MDL Limit Spiked Amount %REC Limits Amt 1306068-001BMSD 300.0-W Date Analyzed: 06/10/2013 1703h Amount %REC Limits Amt 300.0-W 23,700 mg/L E300.0 57.0 5,000 25,000 61.3 94.5 90 - 110 24000 1306139-001AMSD 300.0-W Date Analyzed: 06/10/2013 2033h 2,480 mg/L E300.0 5.70 500 2,500 136 93.8 90 - 110 2500 1306139-003BMSD NO2/NO3-W-353.2 Date Analyzed: 06/13/2013 1743h 12.3 1306188-034AMSD NO2/NO3-W-353.2 Date Analyzed: 06/13/2013 1758h 12.3</td> <td>Result Units Method MDL Limit Spiked Amount %REC Limits Amt % RPD 1306068-001BMSD 300.0-W Date Analyzed: 06/10/2013 1703h</td> <td>Result Units Method MDL Limit Spiked Amount %REC Limits Amt % RPD Limit 1306068-001BMSD 300.0-W Date Analyzed: 06/10/2013 1703h </td>	Result Units Method MDL Limit Spiked Amount %REC Limits 1306068-001BMSD 300.0-W Date Analyzed: 06/10/2013 1703h	Result Units Method MDL Limit Spiked Amount %REC Limits Amt 1306068-001BMSD 300.0-W Date Analyzed: 06/10/2013 1703h Amount %REC Limits Amt 300.0-W 23,700 mg/L E300.0 57.0 5,000 25,000 61.3 94.5 90 - 110 24000 1306139-001AMSD 300.0-W Date Analyzed: 06/10/2013 2033h 2,480 mg/L E300.0 5.70 500 2,500 136 93.8 90 - 110 2500 1306139-003BMSD NO2/NO3-W-353.2 Date Analyzed: 06/13/2013 1743h 12.3 1306188-034AMSD NO2/NO3-W-353.2 Date Analyzed: 06/13/2013 1758h 12.3	Result Units Method MDL Limit Spiked Amount %REC Limits Amt % RPD 1306068-001BMSD 300.0-W Date Analyzed: 06/10/2013 1703h	Result Units Method MDL Limit Spiked Amount %REC Limits Amt % RPD Limit 1306068-001BMSD 300.0-W Date Analyzed: 06/10/2013 1703h

Report Date: 6/18/2013 Page 25 of 29

analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any mber of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility

WORK O	RDER Summary				Work Order:	13	06139	Page 1 of 2
Client:	Energy Fuels Resources, Inc.				Due Date:	6/18	/2013	
Client ID:	DEN100		Contact:	Garrin Palmer				
	2nd Quarter Chloroform 2013		QC Leve		WO Type	Pro	iect	
Project:	PA Rush. QC 3 (Summary/No chroma	to grown DI of 1 m	-				•	
Comments:	Jenn. J-flag what we can't meet. EDD-			and VOC and 0.1 ppni for s	NO2/NO3. Expected levels	provi	ded by chem	- see
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	
1306139-001A	TW4-25_06052013	6/5/2013 0752h	6/7/2013 1000h	300.0-W	Aqueous		df-wc	1
	5			1 SEL Analytes: CL			10 0/ 0	
1306139-001B				NO2/NO3-W-353.2	T	\checkmark	df - no2/no3	
1306139-001C				I SEL Analytes: NO3NO21 8260-W	Ŷ		VOCFridge	3
1306139-001C					om; # of Analytes: 4 / # of Surr: 4		1001 hugo	5
1306139-002A	TW4-24_06052013	6/5/2013 0812h	6/7/2013 1000h	300.0-W	Aqueous		df - wc	1
				1 SEL Analytes: CL				
1306139-002B				NO2/NO3-W-353.2		V	df - no2/no3	
				1 SEL Analytes: NO3NO21	V			
1306139-002C				8260-W Test Group: 8260-W-Custo	om; # of Analytes: 4 / # of Surr: 4	\mathbf{V}	VOCFridge	3
1306139-003A	MW-26_06052013	6/5/2013 0855h	6/7/2013 1000h	300.0-W	Aqueous		df - wc	1
				1 SEL Analytes: CL				
1306139-003B				NO2/NO3-W-353.2	17		df - no2/no3	
1306139-003C				1 SEL Analytes: NO3NO21 8260-W	γ		VOCFridge	4
1300139-005C					om; # of Analytes: 4 / # of Surr: 4		, o or noge	-
1306139-004A	TW4-04_06052013	6/5/2013 0925h	6/7/2013 1000h	300.0-W	Aqueous		df - wc	j
				1 SEL Analytes: CL				
1306139-004B				NO2/NO3-W-353.2		\checkmark	df - no2/no3	
				1 SEL Analytes: NO3NO2	V		MOOD '1	
1306139-004C				8260-W	and the of Arradiation of Altheory of Frances of	~	VOCFridge	3
1306139-005A	MW-04_06052013	6/5/2013 0910h	6/7/2013 1000h	300.0-W	om; # of Analytes: 4 / # of Surr: 4 Aqueous		df - wc	
1300139-003A	W1W-04_00032013	0/5/2015 09101	0/7/2013 10001	I SEL Analytes: CL	Aqueous		ui - wo	
1306139-005B				NO2/NO3-W-353.2		V	df - no2/no3	
				1 SEL Analytes: NO3NO2.	N			
1306139-005C				8260-W		V	VOCFridge	1
					om; # of Analytes: 4 / # of Surr: 4		10	
1306139-006A	TW4-19_06052013	6/5/2013 1400h	6/7/2013 1000h	300.0-W	Aqueous	\checkmark	df - wc	3
				1 SEL Analytes: CL				

WORK O	RDER Summary					Work Order: 13	06139	Page 2 of 2
Client:	Energy Fuels Resources, Inc.					Due Date: 6/1	8/2013	
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	
1306139-006B	TW4-19_06052013	6/5/2013 1400h	6/7/2013 1000h	NO2/NO3-W-353.2 I SEL Analytes: NO3N	Aqueous		df - no2/no3	1
1306139-006C				8260-W			VOCFridge	3
1306139-007A	TW4-22_06052013	6/5/2013 0830h	6/7/2013 1000h	Test Group: 8260-W-C 300.0-W	ustom; # of Analyte. Aqueous	s: 4 / # of Surr: 4	df - wc	1
1500157-00721	1 **********	0/5/2015 005011	0,772013 1000M	1 SEL Analytes: CL	11400005			,
1306139-007B				NO2/NO3-W-353.2		V	df - no2/no3	
				1 SEL Analytes: NO3N	02N			
1306139-007C				8260-W		\checkmark	VOCFridge	3
				Test Group: 8260-W-C	ustom; # of Analyte.	s: 4 / # of Surr: 4		
1306139-008A	TW4-20_06052013	6/5/2013 0842h	6/7/2013 1000h	300.0-W	Aqueous		df - wc	1
				1 SEL Analytes: CL				
1306139-008B				NO2/NO3-W-353.2		V	df - no2/no3	
				1 SEL Analytes: NO3N	O2N			
1306139-008C				8260-W		\checkmark	VOCFridge	3
				Test Group: 8260-W-C	ustom; # of Analyte	s: 4 / # of Surr: 4		
1306139-009A	Trip Blank	6/5/2013	6/7/2013 1000h	8260-W Test Group: 8260-W-C	Aqueous	₩ 4/# of Summ 4	VOCFridge	3

Client Energy Fuels Address 6425 S Hwy 191 Blanding UT City State Phone 435 678 ZZZI Fax	<u>8451)</u> Zip		A		46	Al LAB 63 We	NAL ORA est 36	YTIC TOR 500 S City, 1	EST CAL RIES outh Utah	(8 (8 Fax (8	CUS 601) 26 188) 26 01) 26	IN (TOL 3-8686 3-8686 3-8687 @awal-	DY 5	Lab Sample Set # Page <i>Turn Around Time</i> 1 day 2 day 3 day	_ of
Contact Garrin Palmer	14 C.3 K	— [Π	Π			Т	ESTS	REQ	UIRE	D		QC LEVEL	LABORATORY USE ONLY
E-mail gpalmer@energyfuels.		_	6		-	J		1	T		Τ	Π		1	SAMELES WERE:
Project Name 2nd Quarter chlo	rotorm 20	13_	6	[]	of Containers (Total)	Nitrite								1 2 2+	Notes: Ped X
Project Number/P.O.#			Date/Time Collected		ontaine	Ś	ide							37 3+ 4	2 Ambient of Chilled
Sampler Name Tanner Holliday		_	Collected	ž	ar of Co	te +	chlorid	OCS							3 Temperature 2.2
Sample ID				Mat	Number of	Nitrate	r Ú	5						COMMENTS	4 Received Broken/Leaking
TW4-25_06052013			6/5/13 0752	W	5	X	X	X					1		(Improperty Sealed) Y Notes:
TW4-24_06052013			6/5/13 0812	W	5	X	X	X							
MW-26_06052013			6/5/13 0855			X	X	X							5 Property Preserved Y N Ghecked at Bench
TW4-04_06052013			6/5/13 0925	W	5	X	X	X							Y N Notes:
MW-04_06052013				W		X	X	X							
TW4-19_06052013			6/5/13 1400	1	15	1-1	X	X	Ц	-				0	6 Réceived Within
TW4-22_06052013			6/5/13 0830	-	5	1	X	X	\square						Holding Times
TW4-20_06052013			6/5/13 0842	W	5	X	X	X	\square	-					Notes: N
Trip Blank		*	6/5/13	\vdash	\downarrow			X	\square	\rightarrow	_				
Temp Blank			6/6/13	\downarrow	\downarrow	<u> </u>	-		\vdash	+			\vdash		
				┢	\downarrow						+-				COC Tape Was:
							L	<u> </u>						1	1 Present on Outer Package (Y) N NA
Relinquished By: Signature	6/6/13		By: Signature		2	Da	ate		Spec	cial In	struct	ions:			-11 - 1
PRINT NAME Tanner Holliday	1100	RINT NAM		\leq	_	Tir	me								2 Unbroken on Outer Backage Y N NA
Relinquished By: Signature 0	Date Re	aceived F	By: Signature			Da	ate			_					3 Present on Sample
PRINT NAME	Time	RINT NAM	ME	_		Tir	ime								Y N (NA)
Relinquished By: Signature	Date	eceived F	By: Signature			Di	ate			_					4 Unbroken on Sample Y N
PRINT NAME	Time PR	RINT NAI	ME			Ti	ime			1					Discrepancies Between Sample Labels and COC
Relinquished By: Signature	Date Re	served F	By: Signature	u	2) - P		13	67	13			_		Record? Y Notes:
PRINT NAME	Time PF	RINTWA	MEIO R.		17	TI			Digit	113	_				

AWAL - Analytical Scope of Work White Mesa Mill Blanding Utah Page 11 of 13

Contaminant	Analytical Methods to be Used	Reporting Limit	Maximum Holding Times	Sample Preservation Requirements	Sample Temperature Requirements
	to be Used	er a khrole	Times	Requirements	Requirements
General Inorganics	THE R.		11.11001	Alter March Con	the first of same as
Chloride	A4500-C1	1 mg/L	28 days	None	≤6°C
	B or				T
	A4500-CI				
	E				1
	or E300.0	>	F		
Sulfate	A4500-	1 mg/L	28 days	None	$\leq 6^{\circ}C$
	SO4 E or				
0.1.1.1.00	E300.0	1 /7	14.1		190
Carbonate as CO3	A2320 B	1 mg/L	14 days	None	36°C
Bicarbonate as HCO3	A2320 B	1 mg/L	14 days	None	Old all and the
Volatile Organic Compound Carbon Tetrachloride	SW8260B		14 days	HCl to pH<2	≤6°C
Carbon retrachioride		1.0 μg/L	14 days	nci w pri<2	200
	or SW8260C				
Chloroform	SW8260B	1.0 μg/L	14 days	HCl to pH<2	≤6°C
	or	1.0 HB/T	1+ duys		
	SW8260C				
Dichloromethane	SW8260B	1.0 μg/L	14 days	HCl to pH<2	≤ 6°C
(Methylene Chloride)	or			nor to pri 2	_ ~ ~
(SW8260C			_	
Chloromethane	SW8260B	1.0 μg/L	14 days	HCl to pH<2	≤6°C
	or	, ,			
	SW8260C				
SVOCs - Tailings Impound	ment Samples	Only		U.V. States	1
1,2,4-Trichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
1,2-Dichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
1,3-Dichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
1,4-Dichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	$\leq 6^{\circ}C$
1-Methylnaphthalene	SW8270D	<10 ug/L	7/40 days	None	$\leq 6^{\circ}C$
2,4,5-Trichlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤ 6°C
2,4,6-Trichlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4-Dichlorophenol	SW8270D	<10 ug/L	7/40 days	None	$\leq 6^{\circ}C$
2,4-Dimethylphenol	SW8270D	<10 ug/L	1/40 days	None	≤6°C
2,4-Dinitrophenol	SW8270D	<20 ug K	7/40 days	None	$\leq 6^{\circ}C$
2,4-Dinitrotoluene	SW8270D	<10 ug/L	7/40 days	None	$\leq 6^{\circ}C$
2,6-Dinitrotoluene	SW8270D	<10 ug/L	7/40 days	None	$\leq 6^{\circ}C$
2-Chloronaphthalene	SW8270D	<10 ug/L	7/40 days	None	≤ 6°C
2-Chlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Methylnaphthalene	SW8270D	<10 ug/L	7/40 days	None	≤ 6°C
2-Methylphenol	SW8270D	<10 ug/L	7/40 days	None	≤ 6°C
2-Nitrophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
3&4-Methylphenol	SW8270D	<10 ug/L	7/40 days	None	₹6°C
3,3'-Dichlorobenzidine	SW8270D	<10 ug/L	7/40 days	None	≤66
4.6-Dinitro-2-methylphenol	SW8270D	<10 ug/L	7/40 days	None	$\leq 6^{\circ}C$

Sample Set: 1306139

Preservation Check Sheet

						Sample	Set Exte	ension a	nd pH									DBb
Bottle Type	Preservative	All OK	Except-	-except	Except		-005			-DOT	Except	Except	Except	Except	Excopt	Except.	Except.	DR P
Ammonia	pH <2 H ₂ SO ₄																	
COD	pH <2 H ₂ SO ₄									_								
Cyanide	PH >12 NaOH																	
Metals	pH <2 HNO3]
NO2 & NO3	pH <2 H2SO4		ves	yes	Ves	Nes	ves	Ves	des	Nes								1
Nutrients	pH <2 H2SO4		1	V	1	1	15	1	1	1-					-			
0&G	pH <2 HCL																	1
Phenols	pH <2 H2SO4																	1
Sulfide	pH > 9NaOH,										1							1
	Zn Acetate			1														
TKN	pH <2 H ₂ SO ₄]
TOC	pH <2 H3PO4]
TOX	pH <2 H2SO4																	
T PO ₄	pH <2 H ₂ SO ₄																	
TPH	pH <2 HCL]
]
			_												12			
							1]
													1					1

Procedure:

1) Pour a small amount of sample in the sample lid

2) Pour sample from Lid gently over wide range pH paper

3) Do Not dip the pH paper in the sample bottle or lid

4) If sample is not preserved properly list its extension and receiving pH in the appropriate column above

5) Flag COC, notify client if requested

6) Place client conversation on COC

7) Samples may be adjusted

Frequency: All samples requiring preservation

Garrin Palmer Energy Fuels Resources, Inc. 6425 S. Hwy 191 Blanding, UT 84511 TEL: (435) 678-2221

RE: 2nd Quarter Chloroform 2013

463 West 3600 South	Dear Garrin Palmer:	Lab Set ID:	1306288
Salt Lake City, UT 84115	American West Analytical Laboratories received 9 s analyses presented in the following report.	ample(s) on 6/14/20	13 for the
Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687	American West Analytical Laboratories (AWAL) is Environmental Laboratory Accreditation Program (N state accredited in Colorado, Idaho, New Mexico, ar	NELAP) in Utah and	
e-mail: awal@awal-labs.com web: www.awal-labs.com	All analyses were performed in accordance to the NI otherwise. Accreditation scope documents are avail questions or concerns regarding this report please fer	able upon request. I	
Kyle F. Gross Laboratory Director Jose Rocha QA Officer	The abbreviation "Surr" found in organic reports ind intentionally added by the laboratory to determine sa purging efficiency. The "Reporting Limit" found on practical quantitation limit (PQL). This is the minin reported by the method referenced and the sample m confused with any regulatory limit. Analytical result figures for quality control and calculation purposes.	imple injection, extra the report is equival num concentration th atrix. The reporting	action, and/or lent to the nat can be limit must not be

Thank You,

Approved by:

SAMPLE SUMMARY

Contact: Garrin Palmer

Client:Energy Fuels Resources, Inc.Project:2nd Quarter Chloroform 2013Lab Set ID:1306288Date Received:6/14/2013 1442h

Client Sample ID Date Collected Matrix Lab Sample ID Analysis 463 West 3600 South 1306288-001A TW4-26 06132013 6/13/2013 702h Anions, E300.0 Aqueous Salt Lake City, UT 84115 1306288-001B TW4-26 06132013 702h Nitrite/Nitrate (as N), E353.2 6/13/2013 Aqueous 6/13/2013 702h VOA by GC/MS Method 1306288-001C TW4-26 06132013 Aqueous 8260C/5030C 1306288-002A TW4-06_06132013 6/13/2013 712h Anions, E300.0 Aqueous Phone: (801) 263-8686 1306288-002B TW4-06 06132013 6/13/2013 712h Aqueous Nitrite/Nitrate (as N), E353.2 Toll Free: (888) 263-8686 VOA by GC/MS Method 1306288-002C TW4-06 06132013 6/13/2013 712h Aqueous Fax: (801) 263-8687 8260C/5030C 730h 1306288-003A TW4-05 06132013 6/13/2013 Anions, E300.0 e-mail: awal@awal-labs.com Aqueous TW4-05_06132013 730h Nitrite/Nitrate (as N), E353.2 1306288-003B 6/13/2013 Aqueous 1306288-003C TW4-05 06132013 6/13/2013 730h Aqueous VOA by GC/MS Method web: www.awal-labs.com 8260C/5030C 1306288-004A TW4-18 06132013 6/13/2013 740h Anions, E300.0 Aqueous 1306288-004B TW4-18 06132013 6/13/2013 740h Nitrite/Nitrate (as N), E353.2 Aqueous Kyle F. Gross 1306288-004C TW4-18_06132013 6/13/2013 740h VOA by GC/MS Method Aqueous Laboratory Director 8260C/5030C 1306288-005A TW4-10 06132013 6/13/2013 750h Aqueous Anions, E300.0 Jose Rocha 1306288-005B TW4-10 06132013 6/13/2013 750h Nitrite/Nitrate (as N), E353.2 Aqueous VOA by GC/MS Method 1306288-005C TW4-10_06132013 6/13/2013 750h Aqueous QA Officer 8260C/5030C 1306288-006A TW4-60 06132013 6/13/2013 830h Aqueous Anions, E300.0 1306288-006B TW4-60 06132013 6/13/2013 830h Nitrite/Nitrate (as N), E353.2 Aqueous TW4-60 06132013 6/13/2013 830h VOA by GC/MS Method 1306288-006C Aqueous 8260C/5030C 1306288-007A TW4-70 06132013 6/13/2013 702h Anions, E300.0 Aqueous 1306288-007B TW4-70 06132013 6/13/2013 702h Aqueous Nitrite/Nitrate (as N), E353.2 TW4-70 06132013 6/13/2013 702h VOA by GC/MS Method 1306288-007C Aqueous 8260C/5030C 6/13/2013 VOA by GC/MS Method 1306288-008A **Trip Blank** Aqueous 8260C/5030C 1306288-009A TW4-06R-06122013 6/12/2013 745h Aqueous Anions, E300.0 1306288-009B TW4-06R-06122013 6/12/2013 745h Aqueous Nitrite/Nitrate (as N), E353.2 VOA by GC/MS Method 1306288-009C TW4-06R-06122013 6/12/2013 745h Aqueous 8260C/5030C

Inorganic Case Narrative

Client: Contact: Project: Lab Set ID:	Energy Fuels Resources, Inc. Garrin Palmer 2nd Quarter Chloroform 2013 1306288
Sample Receipt Information:	
Date of Receipt: Date(s) of Collection: Sample Condition:	6/14/2013 6/12 & 6/13/2013 Intact See COC
C-O-C Discrepancies:	See COC
Holding Time and Preservation Requirem	
	holding times. All samples were properly
preserved.	
Preparation and Analysis Requirements: methods stated on the analytical reports.	The samples were analyzed following the
Analytical QC Requirements: All inst requirements were met. All internal standard re	
Batch QC Requirements: MB, LCS, MS, M	SD, RPD:
Method Blanks (MB): No target ar indicating that the procedure was free	nalytes were detected above reporting limits, from contamination.
Laboratory Control Samples (LCS limits, indicating that the preparation a): All LCS recoveries were within control and analysis were in control.
	ates (MS/MSD): All percent recoveries and were inside established limits, indicating no
	Contact: Project: Lab Set ID: Sample Receipt Information: Date of Receipt: Date(s) of Collection: Sample Condition: C-O-C Discrepancies: Holding Time and Preservation Requirent samples were performed within the method preserved. Preparation and Analysis Requirements: methods stated on the analytical reports. Analytical QC Requirements: All inst requirements were met. All internal standard re Batch QC Requirements: MB, LCS, MS, M Method Blanks (MB): No target ar indicating that the procedure was free Laboratory Control Samples (LCS limits, indicating that the preparation a Matrix Spike / Matrix Spike Duplic RPDs (Relative Percent Differences)

Corrective Action: None required.

Report Date: 6/24/2013 Page 3 of 29

Volatile Case Narrative

American West	Client: Contact: Project: Lab Set ID:	Energy Fuels Resources, Inc. Garrin Palmer 2nd Quarter Chloroform 2013 1306288
463 West 3600 South	Sample Receipt Information:	
Salt Lake City, UT 84115		(114)2012
Suit Lake City, OT 01115	Date of Receipt:	6/14/2013
	Date(s) of Collection: Sample Condition:	6/12 & 6/13/2013 Intact
	C-O-C Discrepancies:	See COC
Phone: (801) 263-8686	Method:	SW-846 8260C/5030C
	Analysis:	Volatile Organic Compounds
Toll Free: (888) 263-8686		· oranie organie competities
Fax: (801) 263-8687	General Set Comments: Multiple targ	get analytes were observed above reporting limits.
e-mail: awal@awal-labs.com		
web: www.awal-labs.com	containers and properly preserved, w $1306288-008A$ was > 2. Analysis was	tirements: All samples were received in appropriate with the following exception: . The pH of sample performed within 7 day holding time. The analysis performed within the method holding times following ports.
Kyle F. Gross	2	
Laboratory Director	Analytical QC Requirements: A requirements were met. All internal star	All instrument calibration and calibration check indard recoveries met method criterion.
Jose Rocha	Batch QC Requirements: MB, LCS,	MS, MSD, RPD, and Surrogates:
QA Officer	Method Blanks (MBs): No t indicating that the procedure w	arget analytes were detected above reporting limits, as free from contamination.
		(LCSs): All LCS recoveries were within control ration and analysis were in control.
		Duplicate (MS/MSD): All percent recoveries and rences) were inside established limits, indicating no

Surrogates: All surrogate recoveries were within established limits.

Corrective Action: None required.

Report Date: 6/24/2013 Page 4 of 29

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

Kyle F. Gross Laboratory Director

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Jose Rocha QA Officer

QC SUMMARY REPORT Garrin Palmer **Client:** Energy Fuels Resources, Inc. **Contact:** WC Dept: Lab Set ID: 1306288 QC Type: LCS 2nd Quarter Chloroform 2013 **Project:** Reporting Amount **RPD** Ref. RPD Spike Ref. Result Units Method MDL Limit %REC Analyte Spiked Amount Limits % RPD Amt Limit Oual Lab Sample ID: LCS-R55718 Date Analyzed: 06/17/2013 1944h Test Code: 300.0-W

reor oode.	000.0 11										
Chloride		4.66	mg/L	E300.0	0.0114	1.00	5.000	0	93.1	90 - 110	
Lab Sample ID	: LCS-R55667	Date Analyzed:	06/17/2013	1612h							
Test Code:	NO2/NO3-W-353.2										
Nitrate/Nitrite	(as N)	1.05	mg/L	E353.2	0.00252	0.100	1.000	0	105	90 - 110	

Report Date: 6/24/2013 Page 22 of 29

analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any mber of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility

Client:

Project:

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

Kyle F. Gross Laboratory Director

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Jose Rocha **OA** Officer

QC SUMMARY REPORT Garrin Palmer Energy Fuels Resources, Inc. **Contact:** WC Dept: Lab Set ID: 1306288 QC Type: MBLK 2nd Quarter Chloroform 2013

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qua
Lab Sample ID: Test Code:	MB-R55718 300.0-W	Date Analyzed:	06/17/2013	1921h										
Chloride		< 1.00	mg/L	E300.0	0.0114	1.00								
Lab Sample ID: Test Code:	MB-R55667 NO2/NO3-W-353.2	Date Analyzed:	06/17/2013	1610h										
Nitrate/Nitrite (a	s N)	< 0.100	mg/L	E353.2	0.00252	0.100								

Report Date: 6/24/2013 Page 23 of 29

l analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC_n This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any mber of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

		D. K	** **	MDI	Reporting	Amount	Spike Ref.		 RPD Ref.	 RPD	~
Project:	2nd Quarter Chloroform 2013					QC Type	e: MS				
Lab Set ID	: 1306288					Dept:	WC				
Client:	Energy Fuels Resources, Inc.					Contact:	Garrin Pa	lmer			

Analyte		Result	Units	Method	MDL	Limit	Spiked	Amount	%REC	Limits	Amt	% RPD	Limit	Qual
Lab Sample ID: Test Code:	1306288-006AMS 300.0-W	Date Analyzed:	06/18/2013	047h										
Chloride		4.96	mg/L	E300.0	0.0114	1.00	5.000	0.042	98.3	90 - 110				
Lab Sample ID: Test Code:	1306288-009AMS 300.0-W	Date Analyzed:	06/18/2013	221h										
Chloride		4.94	mg/L	E300.0	0.0114	1.00	5.000	0.044	97.8	90 - 110				
Lab Sample ID: Test Code:	1306288-002BMS NO2/NO3-W-353.2	Date Analyzed:	06/17/2013	1621h										
Nitrate/Nitrite (as	N)	1.14	mg/L	E353.2	0.00252	0.100	1.000	0.155	98.5	90 - 110				

Report Date: 6/24/2013 Page 24 of 29

analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any mber of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qua
Project:	2nd Quarter Chloroform 2013						QC Type	e: MSD						
Lab Set ID	: 1306288						Dept:	WC						
Client:	Energy Fuels Resources, Inc.						Contact:	: Garrin Pa	lmer					-

Lab Sample ID: Test Code:	1306288-006AMSD 300.0-W	Date Analyzed:	06/18/2013	11h									
Chloride		5.03	mg/L	E300.0	0.0114	1.00	5.000	0.042	99.7	90 - 110	4.96	1.36	20
Lab Sample ID: Test Code:	1306288-009AMSD 300.0-W	Date Analyzed:	06/18/2013 2	244h									
Chloride		5.06	mg/L	E300.0	0.0114	1.00	5.000	0.044	100	90 - 110	4.94	2.44	20
Lab Sample ID: Test Code:	1306288-002BMSD NO2/NO3-W-353.2	Date Analyzed:	06/17/2013	1624h									
Nitrate/Nitrite (as	; N)	1.17	mg/L	E353.2	0.00252	0.100	1.000	0.155	102	90 - 110	1.14	2.98	10

Report Date: 6/24/2013 Page 25 of 29

analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any mber of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility

WORK O	RDER Summary				Work Order:	13	06288	Page 1 of 2
Client:	Energy Fuels Resources, Inc.				Due Date:	6/25	/2013	
Client ID:	DEN100		Contact:	Garrin Palmer				
Project:	2nd Quarter Chloroform 2013		QC Leve		WO Type:	Pro	iect	
Comments:	PA Rush. QC 3 (Summary/No chromat Jenn. J-flag what we can't meet. EDD-J		pm for Chloride a				-	- see
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	للــــــــــــــــــــــــــــــــــــ
1306288-001A	TW4-26_06132013	6/13/2013 0702h	6/14/2013 1442h	300.0-W I SEL Analytes: CL	Aqueous		df - wc	1
1306288-001B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		~	df - no2/po3	
1306288-001C				8260-W	# of Analytes: 4 / # of Surr: 4	~	VOCFridge	3
1306288-002A	TW4-06_06132013	6/13/2013 0712h	6/14/2013 1442h	300.0-W 1 SEL Analytes: CL	Aqueous	V	df - wc	1
1306288-002B				NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N			df - no2/no3	
1306288-002C				8260-W Test Group: 8260-W-Custom	; # of Analytes: 4 / # of Surr: 4		VOCFridge	3
1306288-003A	TW4-05_06132013	6/13/2013 0730h	6/14/2013 1442h	300.0-W 1 SEL Analytes; CL	Aqueous		df - wc	1
1306288-003B				NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N		~	df - no2/no3	
1306288-003C				8260-W Test Group: 8260-W-Custom	; # of Analytes: 4 / # of Surr: 4	V	VOCFridge	3
1306288-004A	TW4-18_06132013	6/13/2013 0740h	6/14/2013 1442h	300.0-W I SEL Analytes: CL	Aqueous		df - wc	1
1306288-004B				NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N		V	df - no2/no3	
1306288-004C				8260-W Test Group: 8260-W-Custom	; # of Analytes: 4 / # of Surr: 4		VOCFridge	3
1306288-005A	TW4-10_06132013	6/13/2013 0750h	6/14/2013 1442h	300.0-W I SEL Analytes: CL	Aqueous		df - wc	1
1306288-005B				NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N			df - no2/no3	
1306288-005C				8260-W Test Group: 8260-W-Custom	; # of Analytes: 4 / # of Surr: 4		VOCFridge	3
1306288-006A	TW4-60_06132013	6/13/2013 0830h	6/14/2013 1442h	300.0-W I SEL Analytes: CL	Aqueous	V	df - wc	1
		5		1				1

A mariaan West Analytical Laboratorias

UL.

no . outer canol

13

WORK O	RDER Summary					Work Order: 13	06288	Page 2 of 2
Client:	Energy Fuels Resources, Inc.					Due Date: 6/2	5/2013	
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	
1306288-006B	TW4-60_06132013	6/13/2013 0830h	6/14/2013 1442h	NO2/NO3-W-353.2	Aqueous	\checkmark	df - no2/no3	1
				1 SEL Analytes: NO3NO2	N			
1306288-006C				8260-W		\checkmark	VOCFridge	3
				Test Group: 8260-W-Cust	om; # of Analytes	:: 4 / # of Surr: 4		
1306288-007A	TW4-70_06132013	6/13/2013 0702h	6/14/2013 1442h	300.0-W	Aqueous	\checkmark	df - wc	1
				I SEL Analytes: CL				
1306288-007B				NO2/NO3-W-353.2		\checkmark	df - no2/no3	
				1 SEL Analytes: NO3NO2	N			
1306288-007C				8260-W		~	VOCFridge	3
				Test Group: 8260-W-Cust	om; # of Analytes	s: 4 / # of Surr: 4		
1306288-008A	Trip Blank	6/13/2013	6/14/2013 1442h	8260-W	Aqueous		VOCFridge	3
10000000000				Test Group: 8260-W-Cust	1			
1306288-009A	TW4-06R-06122013	6/12/2013 0745h	6/14/2013 1442h	300.0-W	Aqueous	V	df - wc	1
1000200 00001				1 SEL Analytes: CL				
1306288-009B				NO2/NO3-W-353.2			df - no2/no3	
1900200 0002				1 SEL Analytes: NO3NO2	2N	1,22,42		
1306288-009C				8260-W		V	VOCFridge	3
				Test Group: 8260-W-Cust	tom: # of Analytes		0	

Client Energy Fuels Address 6425 5 Hwy 191 Blanding UT 8451 City State Zip Phone 435 678 2221 Fax	Ā	AMERICAN WEST ANALYTICAL LABORATORIES 463 West 3600 South Salt Lake City, Utak 84115					EST CAL RIES outh Utah Fa	CHAIN OF CUSTODY (801) 263-8686 (888) 263-8686 (888) 263-8687 nail:awal@awal-labs.com	Turn Around Time (of
Contact <u>Garrin Palmer</u> E-mail <u>gpalmer@energy</u> fuels. Con Project Name <u>2nd Quarter Chlorotorm</u> Z Project Number/P.O.# Sampler Name <u>Tanner</u> Holliday Sample ID	M Oi3 Date/Time Collected	Matrix	Number of Containers (Total)	Nitrate + Nitrite	Chloride		ESTS R	REQUIRED	QC LEVEL 1 2 2+ 3 3+ 4 COMMENTS	LABORATORY USE ONLY SAMPLES WERE: 1 Shipped or hand delivered Notes: 2 Ambient or Chilled Notes: 3 Temperature 3.6° 4 Received Broken/Leaking
TW4-26_06132013	6/13/2013 0702	w	5	χ	4	X				(Improperly Sealed) Y
TW4-06_06132013	6/13/2013 0712				X	+			- 17.	Notes:
TW4-05_06132913	6/13/2013 0730				X	X				5 Property Preserved
TW4-18_06132013	6/13/2013 0740				X	X				Checked at Bench Y N Notes:
; TWY-10_06132013	6/13/2013 0750			1	4	X				Notes.
TW4-60_0613 2013	6/13/2013 0830	1		7	X	X				
TW4-70_06132013	6/13/2013 0702	W	5	X	X	X				6 Received Within
Trip Rlank	6/13/2017					X				Wotes: N
Temp Blank	6/14/2013									
1 TW4-06R-06122013 *	6/12/13 0745	W	5	X	X	×			emailed client	
									-D8614113	COC Tape Was:
					1					1 Present on Outer Package
Relinquished By: Signature	Received By: Signature	2		10	atte	13	Specia	Instructions:		Y N NA
PRINT NAME Garrin Palmer Time 1442	PRINT NAME JUNISE Bru	un	2	T	ine 14:	42				2 Unbroken on Outer Package
	Received By: Signature	-		_	ate					Y N (NA)
PRINT NAME Time	PRINT NAME		_	Π	ime					3 Present on Sample Y N
Relinquished By: Signature Date	Received By: Signature			D	ate					4 Unbroken on Sample Y N NA
PRINT NAME Time	PRINT NAME			Т	ime					Discrepancies Between Sample Labels and COC
Relinquished By: Signature Date	Received By: Signature			D	ate	1				Record?
	PRINTNAME			T	ime					Notes:

Sample Set: 130628

Preservation Check Sheet

						Sample	Set Exte	ension a	nd pH					_			
Bottle Type	Preservative	All		Except		Except	1				Except	Except_	Except	Except	Except	Except	Except
		OK	-001	-007	-003	-004	-065	-000	-007	-009							
Ammonia	pH <2 H ₂ SO ₄																
COD	pH <2 H ₂ SO ₄	1 III									(*)					1	
Cyanide	PH >12 NaOH			(A)													
Metals	pH <2 HNO3																
NO ₂ & NO ₃	pH <2 H2SO4		Ves	NES	Ves	ves	VES	NES	Nes	YES							
Nutrients	pH <2 H2SO4		11	T.	1	1	1	17	1	11							
0&G	pH <2 HCL																
Phenols	pH <2 H ₂ SO ₄							Ĥ									
Sulfide	pH > 9NaOH,	1							10		1						
	Zn Acetate	1				1											
TKN	pH <2 H ₂ SO ₄	1															
TOC	pH <2 H ₃ PO ₄																
TOX	pH <2 H2SO4																
T PO4	pH <2 H ₂ SO ₄	1										1					
TPH	pH <2 HCL												-				
													0				
								1		_							
														1			
															1		
		10							1						1		

Procedure:

11

1)

Pour a small amount of sample in the sample lid Pour sample from Lid gently over wide range pH paper Do Not dip the pH paper in the sample bottle or lid If sample is not preserved properly list its extension and receiving pH in the appropriate column above Flag COC, notify client if requested Place client conversation on COC

2) 3) 4) 5) 6)

7) Samples may be adjusted

All samples requiring preservation Frequency:

Tab H

Quality Assurance and Data Validation Tables

Location		2x Casing Volume	Volume Pumped	Volume Check	Condu	ctivity	RPD	P	H	RPD	Те	mp	RPD	Redox P	otential	RPD	Turb	idity	RPD
Piezometer 1					244	1.0	NC	7	41	NC	14	.38	NC	39	97	NC	1.	7	NC
Piezometer 2					68	1.0	NC	7	95	NC	14	.45	NC	38	34	NC	2.	6	NC
Piezometer 3					333	6.0	NC	12	.33	NC	14	.81	NC	28	35	NC	7.	5	NC
TWN-1	37.70	75.40	96.00	OK	853.0	852.0	0.12	7.60	7.62	0.26	14.65	14.67	0.14	461	458	0.65	10.1	10,5	3.88
TWN-2	NA	Continuo	usly Pumped	Well	34	19	NC	6	79	NC	14	.17	NC	30	59	NC	(NC
TWN-3	38.98	77.96	54.00	Pumped Dry	2612.0	2601.0	0.42	7.47	7.46	0.13	14.23	14.31	0.56	N	М	NC	N	М	NC
TWN-4	51.58	103.16	144.00	OK	1066.0	1069.0	0.28	6.95	6.95	0.00	14.60	14.57	0.21	418	418	0.00	5.0	4.9	2.02
TWN-7	11.72	23.44	16.00	Pumped Dry	733.0	728.0	0.68	7.53	7.55	0.27	15.06	15.01	0.33	N	М	NC	N	М	NC
TWN-18	56.73	113.46	144.00	OK	2338.0	2341.0	0.13	7.34	7.28	0.82	14.18	14.16	0.14	406	406	0.00	17.0	17.2	1.17
TW4-22	NA	Continuo	usly pumped	l well	61	88	NC	7.	23	NC	16	.29	NC	27	78	NC	(NC
TW4-24	NA	Continuo	usly pumped	i well	81	18	NC	6.	99	NC	15	.71	NC	27	71	NC	1.	3	NC
TW4-25	NA		usly pumped		31	62	NC	7.	14	NC	15	.57	NC	30	57	NC	5	3	NC

H-1 Field Data QA/QC Evaluation

NC = Not Calculated

TWN-2, TW4-22, TW4-24, and TW4-25 are continuously pumping wells.

Piezometers 1, 2, and 3 were not pumped, only one set of parameters were taken.

TWN-3 and TWN-7 were pumped dry and sampled after recovery.

The QAP states that turbidity should be less than 5 Nephelometric Turbidity Units ("NTU") prior to sampling unless the well is characterized by water that has a higher turbidity. The QAP does not require that turbidity measurements be less than 5 NTU prior to sampling. As such, the noted observations regarding turbidity measurements less than 5 NTU below are included for information purposes only.

RPD >10%. Per the revised QAP Revision 7.2, Attachment 2-3, when a well is purged to dryness, only pH, temperature and specific conductance parameters are required to be within 10% RPD. Redox potential and turbidity parameters are measured for information purposes only and as such are not required to meet the 10% RPD criteria used for pH, specific conductance and temperature.

NM = Not Measured. The QAP does not require the measurement of redox potential or turbidity in wells that were purged to dryness.

Location ID	Parameter Name	Sample Date	Analysis Date	Hold Time (Days)	Allowed Hold Time (Days)	Hold Time Check
PIEZ-01	Chloride	4/24/2013	4/29/2013	5	28	OK
PIEZ-01	Nitrate/Nitrite (as N)	4/24/2013	4/30/2013	6	28	OK
PIEZ-02	Chloride	4/24/2013	4/29/2013	5	28	OK
PIEZ-02	Nitrate/Nitrite (as N)	4/24/2013	4/30/2013	6	28	OK
PIEZ-03	Chloride	4/24/2013	4/29/2013	5	28	OK
PIEZ-03	Nitrate/Nitrite (as N)	4/24/2013	4/30/2013	6	28	OK
TWN-01	Chloride	4/23/2013	4/29/2013	6	28	OK
TWN-01	Nitrate/Nitrite (as N)	4/23/2013	4/30/2013	7	28	OK
TWN-02	Chloride	4/24/2013	4/29/2013	5	28	OK
TWN-02	Nitrate/Nitrite (as N)	4/24/2013	4/30/2013	6	28	OK
TWN-03	Chloride	4/24/2013	4/29/2013	5	28	OK
TWN-03	Nitrate/Nitrite (as N)	4/24/2013	4/30/2013	6	28	OK
TWN-04	Chloride	4/23/2013	4/29/2013	6	28	OK
TWN-04	Nitrate/Nitrite (as N)	4/23/2013	4/30/2013	7	28	OK
TWN-07	Chloride	4/24/2013	4/29/2013	5	28	OK
TWN-07	Nitrate/Nitrite (as N)	4/24/2013	4/30/2013	6	28	OK
TWN-07R	Chloride	4/23/2013	4/29/2013	6	28	OK
TWN-07R	Nitrate/Nitrite (as N)	4/23/2013	4/30/2013	7	28	OK
TWN-18	Chloride	4/23/2013	4/29/2013	6	28	OK
TWN-18	Nitrate/Nitrite (as N)	4/23/2013	4/30/2013	7	28	OK
TW4-22	Chloride	6/5/2013	6/10/2013	5	28	OK
TW4-22	Nitrate/Nitrite (as N)	6/5/2013	6/13/2013	8	28	OK
TW4-24	Chloride	6/5/2013	6/10/2013	5	28	OK
TW4-24	Nitrate/Nitrite (as N)	6/5/2013	6/13/2013	8	28	OK
TW4-25	Chloride	6/5/2013	6/10/2013	5	28	OK
TW4-25	Nitrate/Nitrite (as N)	6/5/2013	6/13/2013	8	28	OK
TWN-60	Chloride	4/25/2013	4/29/2013	4	28	OK
TWN-60	Nitrate/Nitrite (as N)	4/25/2013	4/30/2013	5	28	OK
TW4-60	Chloride	6/13/2013	6/18/2013	5	28	OK
TW4-60	Nitrate/Nitrite (as N)	6/13/2013	6/17/2013	4	28	OK
TWN-65	Chloride	4/23/2013	4/29/2013	6	28	OK
TWN-65	Nitrate/Nitrite (as N)	4/23/2013	4/30/2013	7	28	OK

H-3: Analytical Method Check

Parameter	Method	Method Used by Lab		
Nitrate	E353.1 or E353.2	E353.2		
	A4500-Cl B or A4500-Cl E			
Chloride	or E300.0	E300.0		

Both Nitrate and Chloride were analyzed with the correct analytical method.

H-4 Reporting Limit Check

		Lab Reporting			Required Reporting		RL
Location	Analyte	Limit	Units	Qualifier	Limit	Units	Check
PIEZ-01	Chloride	10	mg/L		1	mg/L	OK
PIEZ-01	Nitrate/Nitrite (as N)	1	mg/L		0.1	mg/L	OK
PIEZ-02	Chloride	1	mg/L		1	mg/L	OK
PIEZ-02	Nitrate/Nitrite (as N)	0.1	mg/L		0.1	mg/L	OK
PIEZ-03	Chloride	5	mg/L		1	mg/L	OK
PIEZ-03	Nitrate/Nitrite (as N)	0.1	mg/L		0.1	mg/L	OK
TWN-01	Chloride	5	mg/L		1	mg/L	OK
TWN-01	Nitrate/Nitrite (as N)	0.1	mg/L		0.1	mg/L	OK
TWN-02	Chloride	10	mg/L		1	mg/L	OK
TWN-02	Nitrate/Nitrite (as N)	10	mg/L		0.1	mg/L	OK
TWN-03	Chloride	50	mg/L		1	mg/L	OK
TWN-03	Nitrate/Nitrite (as N)	10	mg/L		0.1	mg/L	OK
TWN-04	Chloride	5	mg/L		1	mg/L	OK
TWN-04	Nitrate/Nitrite (as N)	0.1	mg/L		0.1	mg/L	OK
TWN-07	Chloride	1	mg/L		1	mg/L	OK
TWN-07	Nitrate/Nitrite (as N)	0.1	mg/L		0.1	mg/L	OK
TWN-07R	Chloride	1	mg/L	U	1	mg/L	OK
TWN-07R	Nitrate/Nitrite (as N)	0.1	mg/L	U	0.1	mg/L	OK
TWN-18	Chloride	10	mg/L		1	mg/L	OK
TWN-18	Nitrate/Nitrite (as N)	1	mg/L		0.1	mg/L	OK
TW4-22	Chloride	100	mg/L		1	mg/L	OK
TW4-22	Nitrate/Nitrite (as N)	10	mg/L		0.1	mg/L	OK
TW4-24	Chloride	100	mg/L		1	mg/L	OK
TW4-24	Nitrate/Nitrite (as N)	10	mg/L	1	0.1	mg/L	OK
TW4-25	Chloride	50	mg/L	1	1	mg/L	OK
TW4-25	Nitrate/Nitrite (as N)	1	mg/L		0.1	mg/L	OK
TWN-60	Chloride	1	mg/L	U	1	mg/L	OK
TWN-60	Nitrate/Nitrite (as N)	0.1	mg/L	U	0.1	mg/L	OK
TW4-60	Chloride	1	mg/L	U	1	mg/L	OK
TW4-60	Nitrate/Nitrite (as N)	0.1	mg/L	U	0.1	mg/L	OK
TWN-65	Chloride	5	mg/L		1	mg/L	OK
TWN-65	Nitrate/Nitrite (as N)	1	mg/L		0.1	mg/L	OK

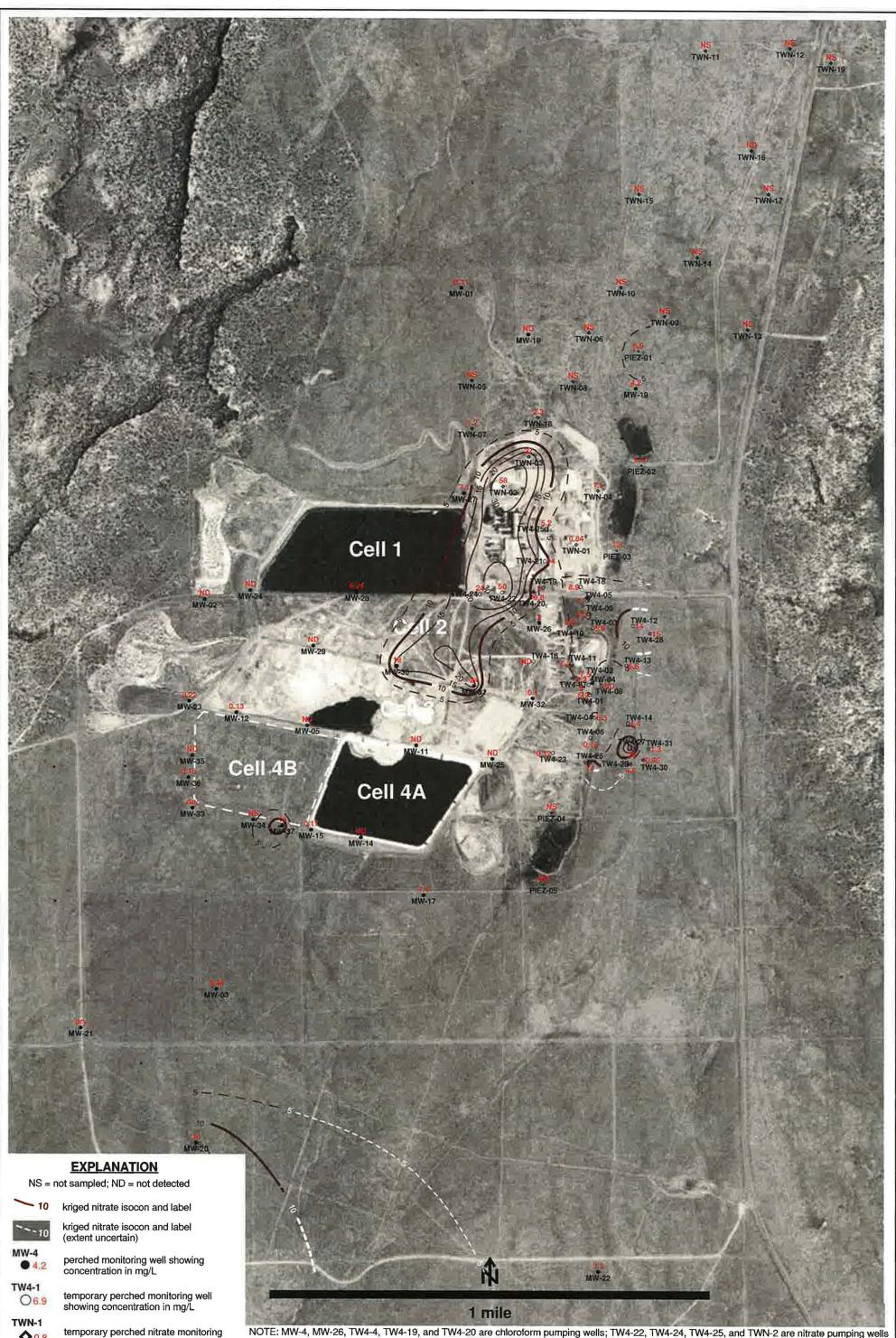
H-5 QA/QC Evaluation for Sample Duplicates

Constituent	TWN-18	TWN-65	%RPD
Chloride	64.3	66.1	2.76
Nitrogen	2.32	2.46	5.86

H-6 QC Control Limits for Analysis and Blanks

All QC control limits for the 2nd quarter of 2013 were within acceptable limits.

H-7 Receipt Temperature Evaluation


Sample Batch	Wells in Batch	Temperature
1304696	Piezometer 1, Piezometer 2, Piezometer 3, TWN-1, TWN-2, TWN-3, TWN-4, TWN-7, TWN-18, TWN-60, TWN-65	2.0 °C
1306139	TW4-22, TW4-24, TW4-25	2.2 °C
1302239	TW4-60	3.6 °C

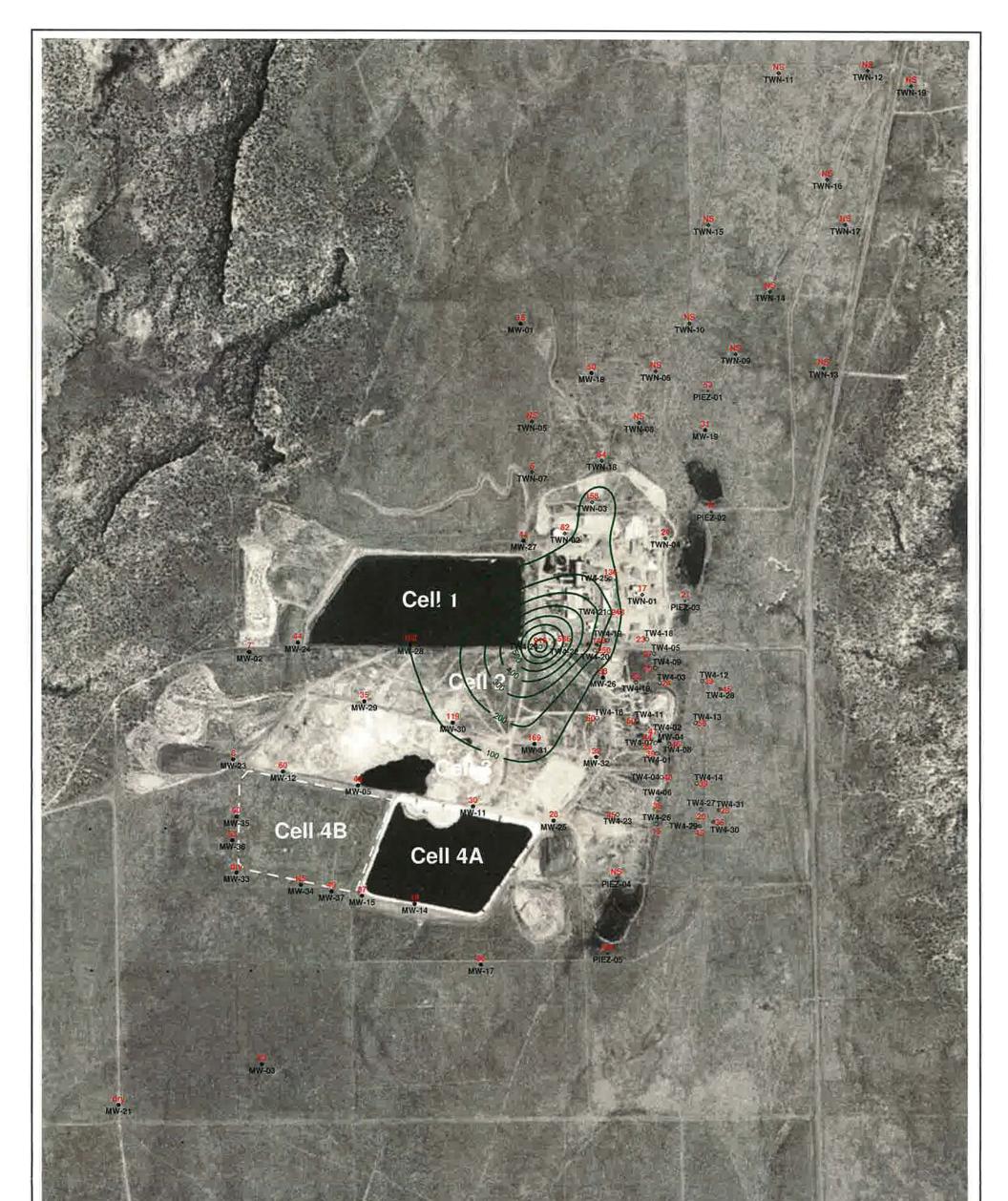
H-8 Rinsate Evaluation

All Rinsate and DI Blank samples were non-detect for the 2nd quarter of 2013.

Tab I

Kriged Current Quarter Isoconcentration Maps

well showing concentration in mg/L


perched piezometer showing concentration in mg/L

temporary perched monitoring well installed March, 2013

NOTE: MW-4, MW-26, TW4-4, TW4-19, and TW4-20 are chloroform pumping wells; TW4-22, TW4-24, TW4-25, and TWN-2 are nitrate pumping wells

	HYDRO GEO CHEM, INC.	KRI		d QUARTER, 2013 NITRATE IITRATE + NITRITE as N) WHITE MESA SITE	(mg/L)
T		APPROVED	DATE	REFERENCE H:/718000/aug13/nitrate/Unt0613.srf	FIGURE - 1

EXPLANATION

NS = not sampled; ND = not detected

100 chloride isocon and label

MW-4

perched monitoring well showing concentration in mg/L

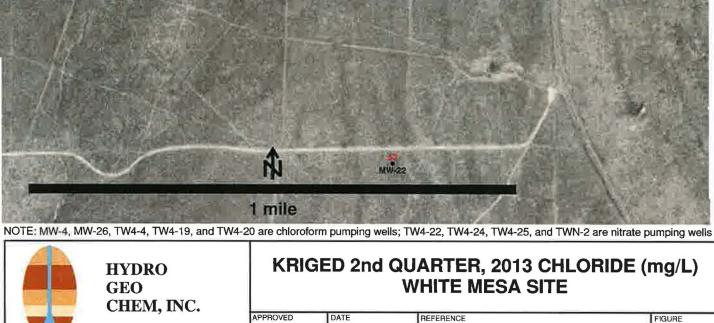
MW-20

TW4-1

O39 t

temporary perched monitoring well showing concentration in mg/L

TWN-1



temporary perched nitrate monitoring well showing concentration in mg/L

PIEZ-1 € 53 perched piezometer showing concentration in mg/L

temporary perched monitoring well installed March, 2013 (not sampled)

Tab J

Analyte Concentrations Over Time

TWN-1			
Date	Nitrate (mg/l)	Chloride (mg/l)	
2/6/2009	0.7	19	
7/21/2009	0.4	17	
9/21/2009	0.4	19	
10/28/2009	0.5	18	
3/17/2010	0.5	17	
5/26/2010	0.6	20	
9/27/2010	0.6	19	
12/7/2010	0.6	14	
1/26/2011	0.5	17	
4/20/2011	0.5	19	
7/26/2011	0.5	14	
10/17/2011	0.5	10	
1/9/2012	0.6	15	
4/18/2012	0.6	17	
7/24/2012	0.6	17	
10/15/2012	0.432	17.5	
2/18/2013	0.681	17.6	
4/23/2013	0.84	17.4	

Date	Nitrate (mg/l)	Chloride (mg/l)
2/6/2009	25.4	29
7/21/2009	25	25
9/21/2009	22.6	17
11/2/2009	20.8	55
3/24/2010	62.1	85
6/2/2010	69	97
9/29/2010	69	104
12/9/2010	48	93
2/1/2011	43	93
4/28/2011	40	85
7/28/2011	33	74
10/20/2011	33	76
1/12/2012	31	86
4/20/2012	48	103
7/31/2012	54	93
10/17/2012	22.1	79
2/19/2013	57.3	80.5
4/24/2013	57.7	82.1

Date	Nitrate (mg/l)	Chloride (mg/l)
2/6/2009	23.6	96
7/21/2009	25.3	96
9/21/2009	27.1	99
11/2/2009	29	106
3/25/2010	25.3	111
6/3/2010	26	118
7/15/2010	27	106
12/10/2010	24	117
2/1/2011	24	138
4/28/2011	26	128
7/29/2011	25	134
10/20/2011	25	129
1/12/2012	25	143
4/20/2012	24	152
7/31/2012	27	158
10/17/2012	12.1	149
2/19/2013	22.2	157
4/24/2013	27.2	158

Date	Nitrate (mg/l)	Chloride (mg/l)
2/6/2009	1	13
7/21/2009	0.05	12
9/21/2009	0.4	13
10/28/2009	0.4	11
3/16/2010	0.9	22
5/27/2010	1.0	22
9/27/2010	0.9	19
12/8/2010	1	21
1/25/2011	0.9	21
4/20/2011	0.9	21
7/26/2011	1.1	35
10/18/2011	0.9	20
1/9/2012	0.9	20
4/18/2012	1.1	24
7/25/2012	1.4	25
10/15/2012	1.45	26.4
2/18/2013	1.51	25.3
4/23/2013	1.63	24.4

TWN-5			
Date	Nitrate (mg/l)	Chloride (mg/l)	
8/25/2009	0.22	42	
9/21/2009	0.5	45	
11/10/2009	0.2	48	
3/16/2010	0.3	43	
5/26/2010	0.3	44	
7/12/2010	0.3	43	
12/7/2010	0.3	45	
1/25/2011	0.4	47	
4/20/2011	0.3	44	
7/26/2011	0.3	44	
10/17/2011	0.3	45	
1/9/2012	0.2	45	
4/18/2012	0.3	39	
7/24/2012	0.3	48	
10/15/2012	0.1	43.5	Nitrate ND

Date	Nitrate (mg/l)	Chloride (mg/l)
8/25/2009	3.2	32
9/22/2009	1.6	13
11/3/2009	1.4	21
3/23/2010	1.5	19
6/1/2010	1.4	22
7/13/2010	1.4	73
12/8/2010	1.2	21
1/26/2011	1.1	18
4/20/2011	1.5	22
7/27/2011	1.1	17
10/18/2011	1.4	21
1/10/2012	1.2	20
4/18/2012	1.1	22
7/25/2012	1.4	22
10/15/2012	0.786	20.4

Date	Nitrate (mg/l)	Chloride (mg/l)
8/25/2009	ND	11
9/21/2009	ND	7
11/10/2009	0.1	7
3/17/2010	0.8	6
5/28/2010	1.2	6
7/14/2010	1.6	7
12/10/2010	1	4
1/27/2011	1.3	6
4/21/2011	1.7	6
7/29/2011	0.7	5
10/19/2011	2.2	6
1/11/2012	2.3	5
4/20/2012	1.2	, 6
7/26/2012	0.9	6
10/16/2012	0.641	5.67
2/19/2013	0.591	5.68
4/24/2013	1.16	5.88

Date	Nitrate (mg/l)	Chloride (mg/l)	Notes
8/25/2009	0	11	Nitrate is ND
9/21/2009	0	12	Nitrate is ND
11/10/2009	0	12	Nitrate is ND
3/16/2010	0	11	Nitrate is ND
5/26/2010	0	11	Nitrate is ND
7/12/2010	0	11	Nitrate is ND
12/6/2010	0	9	Nitrate is ND
1/25/2011	0	13	Nitrate is ND
4/18/2011	0	10	Nitrate is ND
7/26/2011	0	18	Nitrate is ND
10/17/2011	0	10	Nitrate is ND
1/9/2012	0	11	Nitrate is ND
4/18/2012	0	15	Nitrate is ND
7/24/2012	0	11	Nitrate is ND
10/15/2012	0	11.1	Nitrate is ND

Nitrate (mg/l)	Chloride (mg/l)
9.3	169
8.9	201
12	205
7.6	183
7.6	175
10.7	210
8	172
9.5	217
10	192
11	208
10.9	134
12.2	202
10.6	209
12.3	215
12.5	194
	9.3 8.9 12 7.6 7.6 10.7 8 9.5 10 11 10.9 12.2 10.6 12.3

Date	Nitrata (mg/l)	Chlorido (ma/l)
	Nitrate (mg/l)	Chloride (mg/l)
8/25/2009	1.1	19
9/22/2009	1.6	35
11/10/2009	1.4	26
3/23/2010	1.5	54
6/4/2010	1	30
7/14/2010	0.2	21
12/8/2010	1.3	28
1/27/2011	0.3	40
4/21/2011	1.2	28
7/27/2011	0.1	28
10/18/2011	0.2	33
1/10/2012	0.8	44
4/19/2012	0.9	28
7/25/2012	0.6	33
10/16/2012	0.119	30.8

Date	Nitrate (mg/l)	Chloride (mg/l)
11/3/2009	1.3	74
3/17/2010	1.4	73
6/4/2010	1.3	72
9/27/2010	1.4	76
12/8/2010	1.4	72
1/27/2011	1.4	84
4/26/2011	1.4	76
7/27/2011	0.1	76
10/17/2011	1.6	76
1/10/2012	1.6	69
4/19/2012	1.6	71
7/25/2012	1.8	77
10/16/2012	1.84	76.4

Date	Nitrate (mg/l)	Chloride (mg/l)
11/3/2009	0.5	109
3/17/2010	0.7	113
5/26/2010	0.8	106
7/12/2010	0.7	112
12/7/2010	0.7	103
1/26/2011	4.2	87
4/26/2011	1	109
7/26/2011	0.6	102
10/17/2011	1.2	87
1/10/2012	0.9	104
4/18/2012	1.2	106
7/25/2012	1.4	102
10/16/2012	1.41	101

Date	Nitrate (mg/l)	Chloride (mg/l)	Notes
11/4/2009	0.5	83	
3/17/2010	0	47	Nitrate N
5/26/2010	0.1	49	
9/27/2010	0.2	53	
12/7/2010	0.4	57	
1/25/2011	1.6	103	
4/26/2011	0	49	Nitrate N
7/26/2011	0.1	49	
10/17/2011	0	48	Nitrate N
1/9/2012	0	46	Nitrate N
4/18/2012	0	53	Nitrate N
7/24/2012	0.1	48	
10/15/2012	0	47.3	Nitrate N

Date	Nitrate (mg/l)	Chloride (mg/l)
11/4/2009	3.4	32
3/24/2010	2.9	24
6/2/2010	2.9	30
7/15/2010	3.5	26
12/10/2010	4.2	28
1/28/2011	3.7	24
4/27/2011	3.5	30
7/29/2011	3.5	25
10/19/2011	3.9	27
1/11/2012	3.5	26
4/20/2012	3.4	27
7/27/2012	3.7	27
10/17/2012	4.03	27.4

Nitrate (mg/l)	Chloride (mg/l)
1.1	78
0.7	43
1.0	39
1.0	36
1.2	38
1.4	43
1.6	49
1.6	47
1.3	38
1.5	38
1.6	46
2.1	50
1.8	47
	1.1 0.7 1.0 1.0 1.2 1.4 1.6 1.6 1.3 1.5 1.6 2.1

Nitrate (mg/l)	Chloride (mg/l)
1	39
1.2	35
0.2	35
2.6	35
2	30
4.6	34
1.6	39
2.4	31
2.6	34
2.8	33
2	50
2.4	33
2.5	32.1
	1 1.2 0.2 2.6 2 4.6 1.6 2.4 2.6 2.8 2 2.4

TWN-17 Nitrate (mg/l) Chloride (mg/l) Date 11/4/2009 6.7 152 3/24/2010 10.4 78 6/3/2010 11 87 7/15/2010 8.9 66 12/10/2010 8 65 2/1/2011 90 8.6 9 4/28/2011 81 7/29/2011 8.5 74 10/20/2011 8.1 71 1/12/2012 8.7 79 4/20/2012 9.1 80 7/27/2012 9.5 85 10/17/2012 9.65 84.8

TWN-18 Nitrate (mg/l) Chloride (mg/l) Date 57 11/2/2009 1.3 3/17/2010 42 1.6 6/1/2010 63 1.8 9/27/2010 1.8 64 12/9/2010 1.6 59 1/27/2011 61 1.4 4/26/2011 1.8 67 7/28/2011 1.8 65 10/18/2011 1.9 60 1/10/2012 1.9 64 4/19/2012 2.1 64 7/26/2012 2.3 67 67.5 10/16/2012 1.95

2.27

2.32

68.7 64.3

2/18/2013

4/23/2013

Date	Nitrate (mg/l)	Chloride (mg/l)
11/2/2009	7.4	125
3/23/2010	7.2	118
6/1/2010	6.2	113
9/29/2010	7.2	113
12/9/2010	7	107
2/1/2011	7	114
4/28/2011	6.9	120
7/28/2011	7.1	113
10/18/2011	6.5	108
1/10/2012	7	114
4/19/2012	6.8	117
7/26/2012	7.5	117
10/16/2012	7.7	118

Piezometer 1		
Date	Nitrate (mg/l)	Chloride (mg/l)
2/19/2009	6.8	NA
7/14/2009	6.8	60
9/22/2009	7.3	78
10/27/2009	7.4	61
6/2/2010	7.2	52
7/19/2010	6.8	52
12/10/2010	6.5	60
1/31/2011	7	60
4/25/2011	6.8	58
7/25/2011	7	53
10/19/2011	6.6	55
1/11/2012	7.1	78
4/20/2012	6.6	58
7/27/2012	7.2	56
10/17/2012	7.66	55
2/18/2013	8.11	56.7
4/24/2013	8.88	53.3

Date	Nitrate (mg/l)	Chloride (mg/l)
	0.5	NA
2/19/2009		
7/14/2009	0.5	7
9/22/2009	0.5	17
10/27/2009	0.6	7
6/2/2010	0.6	8
7/19/2010	0.6	8
12/10/2010	0.2	6
1/31/2011	0.3	9
4/25/2011	0.3	8
7/25/2011	0.1	9
10/19/2011	0.1	8
1/11/2012	0.1	9
4/20/2012	0.2	8
7/27/2012	0.2	9
10/17/2012	0.192	9.5
2/19/2013	0.218	9.67
4/24/2013	0.172	10.3

Date	Nitrate (mg/l)	Chloride (mg/l)
2/19/2009	0.7	NA
7/14/2009	0.8	12
9/22/2009	0.8	24
10/27/2009	1.2	19
3/24/2010	1.7	116
6/2/2010	1.6	36
7/19/2010	1.6	35
12/10/2010	1.8	25
1/31/2011	1.8	40
4/25/2011	1.7	35
7/25/2011	1.8	61
10/19/2011	1.7	12
1/11/2012	1.8	20
4/20/2012	1.7	53
7/27/2012	1.8	21
10/17/2012	2.75	20.1
2/19/2013	1.85	21
4/24/2013	1.83	21.2

Pond		
Nitrate (mg/l)	Chloride (mg/l)	Note
0	5	Nitrate ND
0	3	Nitrate ND
0	0	Nitrate and Chloride ND
0	0	Nitrate and Chloride ND
0	1	Nitrate ND
0.1	1	
0	0	Nitrate and Chloride ND
0	0	Nitrate and Chloride ND
0	0	Nitrate and Chloride ND
0	2	Nitrate ND
	Nitrate (mg/l) 0 0 0 0 0 0 0.1 0 0	Nitrate (mg/l) Chloride (mg/l) 0 5 0 3 0 0 0 1 0.1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

.

TW4-22				
Date	Nitrate (mg/l)	Chloride (mg/l)	Notes	
2/28/2007	20.9		347	
6/27/2007	19.3		273	
8/15/2007	19.3		259	
10/10/2007	18.8		238	
3/26/2008	39.1		519	
6/25/2008	41.9		271	
9/10/2008	38.7		524	
10/15/2008	36.3		539	
3/11/2009	20.7		177	
6/24/2009	20.6		177	
9/15/2009	40.3		391	
12/29/2009	17.8		175	
3/3/2010	36.6		427	
6/15/2010	19		134	
8/12/2010	18		127	
8/24/2010	15		130	
10/13/2010	16		134	
2/23/2011	18		114	
6/1/2011	17		138	
8/17/2011	15		120	
11/16/2011	19		174	
1/19/2012	14		36	
6/13/2012	12.8		35	
9/12/2012	7		121	
10/4/2012	14		130	
2/11/2013	58		635	
6/5/2013	50.2		586	

Date	Nitrate (mg/l)	Chloride (mg/l)	Notes
6/27/2007	26.1	770	
8/15/2007	29	791	
10/10/2007	24.7	692	
3/26/2008	24.4	740	
6/25/2008	45.3	834	
9/10/2008	38.4	1180	
10/15/2008	44.6	1130	
3/4/2009	30.5	1010	
6/24/2009	30.4	759	
9/15/2009	30.7	618	
12/17/2009	28.3	1080	
2/25/2010	33.1	896	
6/9/2010	30	639	
8/11/2010	32	556	
8/24/2010	31	587	
10/6/2010	31	522	
2/17/2011	31	1100	
5/26/2011	35	1110	
8/17/2011	34	967	
11/16/2011	35	608	
1/18/2012	37	373	
6/6/2012	37	355	
8/30/2012	37	489	
10/3/2012	38	405	
2/11/2013	35.9	1260	
6/5/2013	23.7	916	

TW4-25			
Date	Nitrate (mg/l)	Chloride (mg/l)	Notes
6/27/2007	17.1	395	
8/15/2007	16.7	382	
10/10/2007	17	356	
3/26/2008	18.7	374	
6/25/2008	22.1	344	
9/10/2008	18.8	333	
10/15/2008	21.3	366	
3/4/2009	15.3	332	
6/24/2009	15.3	328	
9/15/2009	3.3	328	
12/16/2009	14.2	371	
2/23/2010	14.4	296	
6/8/2010	16	306	
8/10/2010	14	250	
10/5/2010	15	312	
2/16/2011	15	315	
5/25/2011	16	321	
8/16/2011	16	276	
11/15/2011	16	294	
1/18/2012	16	304	
5/31/2012	16	287	
9/11/2012	17	334	
10/3/2012	17	338	
2/11/2013	9.04	190	
6/5/2013	5.24	136	

MW-30			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
6/22/2005	12.4	6/22/2005	125
9/22/2005	12.8	9/22/2005	125
12/14/2005	13.6	12/14/2005	128
3/22/2006	13.8	3/22/2006	125
6/21/2006	14.5	6/21/2006	124
9/13/2006	14.1	9/13/2006	118
10/25/2006	14.6	10/25/2006	124
3/15/2007	14.4	3/15/2007	125
8/22/2007	14.6	8/22/2007	126
10/24/2007	14.9	10/24/2007	122
3/19/2008	14.8	3/19/2008	118
6/3/2008	18.7	6/3/2008	125
8/4/2008	17.3	8/4/2008	121
11/5/2008	15.6	11/5/2008	162
2/3/2009	15.3	2/3/2009	113
5/13/2009	15.1	5/13/2009	122
8/24/2009	20.9	8/24/2009	118
10/14/2009	15.0	10/14/2009	129
1/20/2010	15.4	1/20/2010	106
2/9/2010	16.1	2/9/2010	127
4/27/2010	15.8	4/27/2010	97
5/24/2010	17.0	9/14/2010	111
6/15/2010	15.3	11/9/2010	126
8/24/2010	16.0	2/1/2011	134
9/14/2010	15.0	4/11/2011	134
10/19/2010	15.0	5/10/2011	128
11/9/2010	15.0	6/20/2011	127
12/14/2010	16.0	7/5/2011	127
1/10/2011	15.0	8/3/2011	126
2/1/2011	16.0	9/7/2011	145
3/14/2011	17.0	10/4/2011	129
4/11/2011	16.0	11/8/2011	122
5/10/2011	16.0	12/12/2011	124
6/20/2011	17.0	1/24/2012	124
7/5/2011	17.0	2/14/2012	126
8/3/2011 9/7/2011	14.0	3/14/2012	128 128
	16.0	4/10/2012	
10/4/2011	16.0	5/2/2012 6/18/2012	124 131
11/8/2011	16.0	7/10/2012	128
12/12/2011	16.0		
1/24/2012	17.0	8/7/2012	139
2/14/2012	17.0	9/19/2012	130
3/14/2012	18.0	10/23/2012	135 114
4/10/2012	17.0	11/13/2012	
5/2/2012	16.0	12/26/2012	122

MW-30			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
6/18/2012	15.0	1/23/2013	128
7/10/2012	17.0	2/26/2013	129
8/7/2012	18.0	3/20/2013	126
9/19/2012	16.0	4/17/2013	117
10/23/2012	16.2	5/15/2013	119
11/13/2012	18.5	6/25/2013	127
12/26/2012	17.2		
1/23/2013	19.2		
2/26/2013	21.4		
3/20/2013	14.3		
4/17/2013	16.8		
5/15/2013	18.8		
6/25/2013	16.1		

Under the groundwater sampling progran, accelerated monitoring for nitrate began in MW-30 prior to when the accelerated monitoring for chloride began. This difference accounts for the different number of data points represented above.

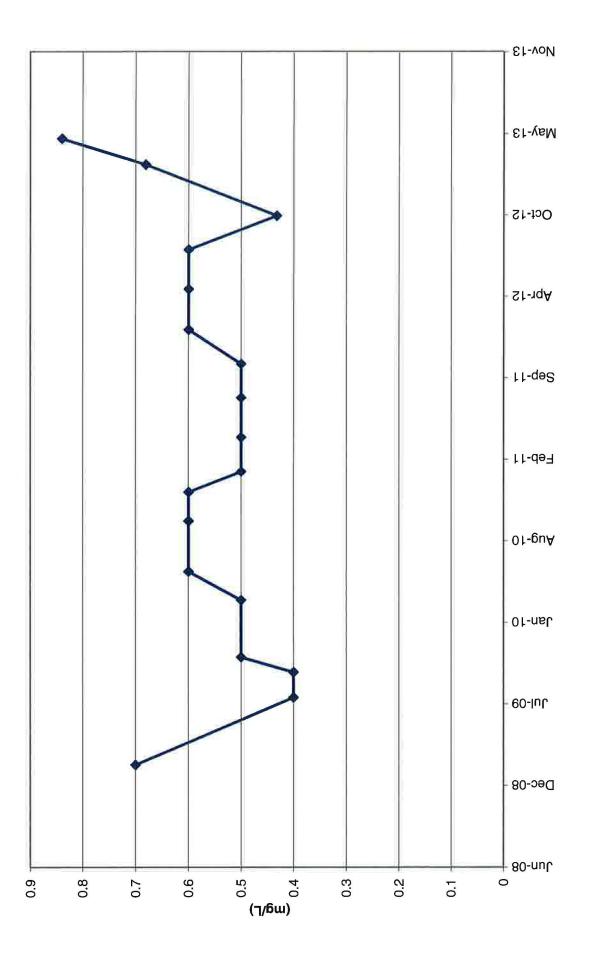
MW-31			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
6/22/2005	24.2	6/22/2005	139
9/22/2005	22.4	9/22/2005	136
12/14/2005	23.8	12/14/2005	135
3/22/2006	24.1	3/22/2006	133
6/21/2006	25.3	6/21/2006	138
9/13/2006	24.6	9/13/2006	131
10/25/2006	25.1	10/25/2006	127
3/15/2007	23.2	3/15/2007	132
3/15/2007	22.0	3/15/2007	132
8/27/2007	23.3	8/27/2007	136
10/24/2007	24.6	10/24/2007	122
3/19/2008	25.0	3/19/2008	124
6/3/2008	29.3	6/3/2008	128
8/4/2008	28.7	8/4/2008	124
11/11/2008	29.9	11/11/2008	119
2/3/2009	23.4	2/3/2009	115
5/13/2009	22.4	5/13/2009	124 122
8/24/2009	15.4	8/24/2009	
10/14/2009 2/9/2010	22.6 21.7	10/14/2009 2/9/2010	138 128
4/20/2010	22.5	4/20/2010	128
4/20/2010 5/21/2010	23.0	9/13/2010	139
6/15/2010	21.1	11/9/2010	135
8/24/2010	22.0	2/1/2011	145
9/13/2010	21.0	4/1/2011	143
10/19/2010	20.0	5/10/2011	143
11/9/2010	20.0	6/20/2011	145
12/14/2010	20.0	7/5/2011	148
1/10/2011	19.0	8/2/2011	148
2/1/2011	21.0	9/6/2011	148
3/14/2011	22.0	10/3/2011	145
4/1/2011	21.0	11/8/2011	145
5/10/2011	20.0	12/12/2011	148
6/20/2011	22.0	1/24/2012	155
7/5/2011	22.0	2/13/2012	150
8/2/2011	20.0	3/13/2012	152
9/6/2011	21.0	4/9/2012	160
10/3/2011	21.0	5/2/2012	151
11/8/2011	21.0	6/18/2012	138
12/12/2011	21.0	7/9/2012	161
1/24/2012	21.0	8/6/2012	175
2/13/2012	21.0	9/18/2012	172
3/13/2012	22.0	10/22/2012	157
4/9/2012	21.0	11/6/2012	189
5/2/2012	20.0	12/18/2012	170

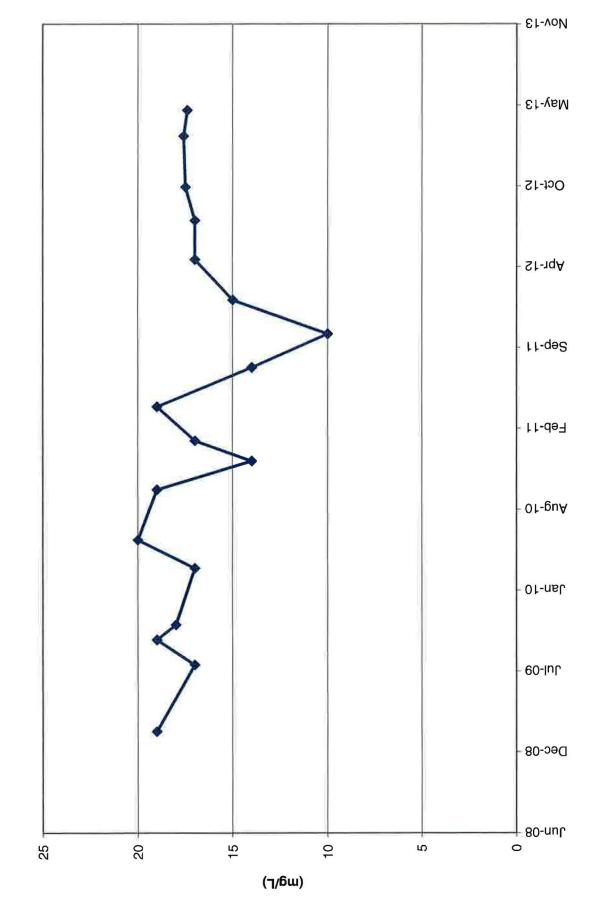
MW-31			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
6/18/2012	21.6	1/22/2013	176
7/9/2012	21.0	2/19/2013	174
8/6/2012	21.0	3/19/2013	168
9/18/2012	21.0	4/16/2013	171
10/22/2012	18.0	5/13/2013	169
11/6/2012	23.6	6/24/2013	179
12/18/2012	22.2		
1/22/2013	22.8		
2/19/2013	19.3		
3/19/2013	19.1		
4/16/2013	18.8		
5/13/2013	23.8		
6/24/2013	20.0		

Under the groundwater sampling progran, accelerated monitoring for nitrate began in MW-31 prior to when the accelerated monitoring for chloride began. This difference accounts for the different number of data points represented above.

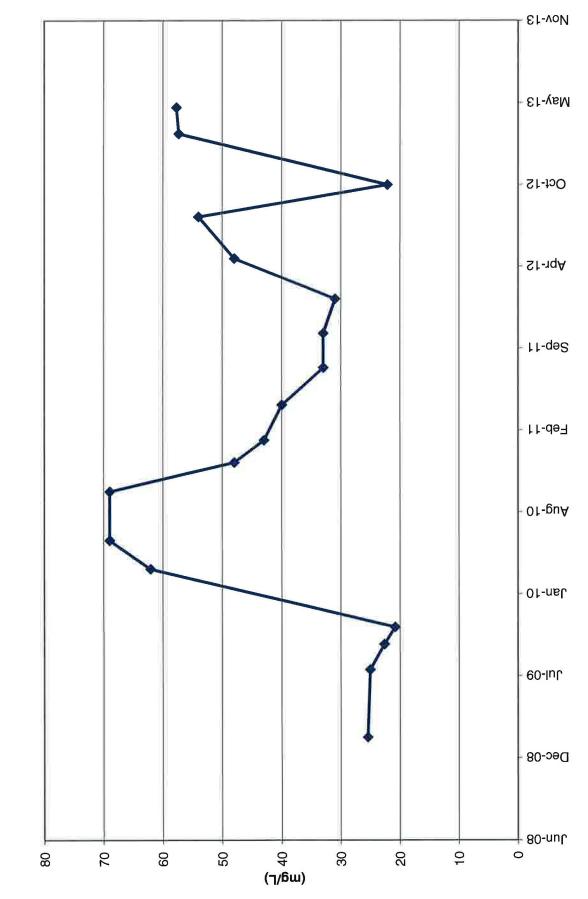
TW4-19			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
7/22/2002	42.80	12/7/2005	81
9/12/2002	47.60	3/9/2006	86
3/28/2003	61.40	7/20/2006	123
6/23/2003	11.40	11/9/2006	134
7/15/2003	6.80	2/28/2007	133
8/15/2003	4.00	8/15/2007	129
9/12/2003	5.70	10/10/2007	132
9/25/2003	9.20	3/26/2008	131
10/29/2003	7.70	6/25/2008	128
11/9/2003	4.80	9/10/2008	113
8/16/2004	9.91	10/15/2008	124
9/17/2004	4.50	3/4/2009	127
3/16/2005	5.30	6/23/2009	132
6/7/2005	5.70	9/14/2009	43
8/31/2005	4.60	12/14/2009	124
12/1/2005	0.10	2/17/2010	144
3/9/2006	4.00	6/9/2010	132
6/14/2006	5.20	8/16/2010	142
7/20/2006	4.30	10/11/2010	146
11/9/2006	4.60	2/17/2011	135
2/28/2007	4.00	6/7/2011	148
8/15/2007	4.10	8/17/2011	148
10/10/2007	4.00	11/17/2011	148
3/26/2008	2.20	1/23/2012	138
6/25/2008	2.81	6/6/2012	149
9/10/2008	36.20	9/5/2012	149
10/15/2008	47.80	10/3/2012	150
3/4/2009	3.20	2/11/2013	164
6/23/2009	2.40	6/5/2013	148
9/14/2009	0.10		
12/14/2009	26.70		
2/17/2010	2.00		
6/9/2010	4.40		
8/16/2010	5.90		
10/11/2010	2.70		
2/17/2011	17.00		
6/7/2011	12.00		
8/17/2011	3.00		
11/17/2011	5.00		
1/23/2012	0.60		
6/6/2012	2.40		
9/5/2012	2.50		
10/3/2012	4.10		
2/11/2013	7.99		
6/5/2013	2.95		

The sampling program for TW4-19 was updated in the fourth quarter of 2005 to include analysis for chloride as well as nitrate. This change accounts for the different number of data points represented above.

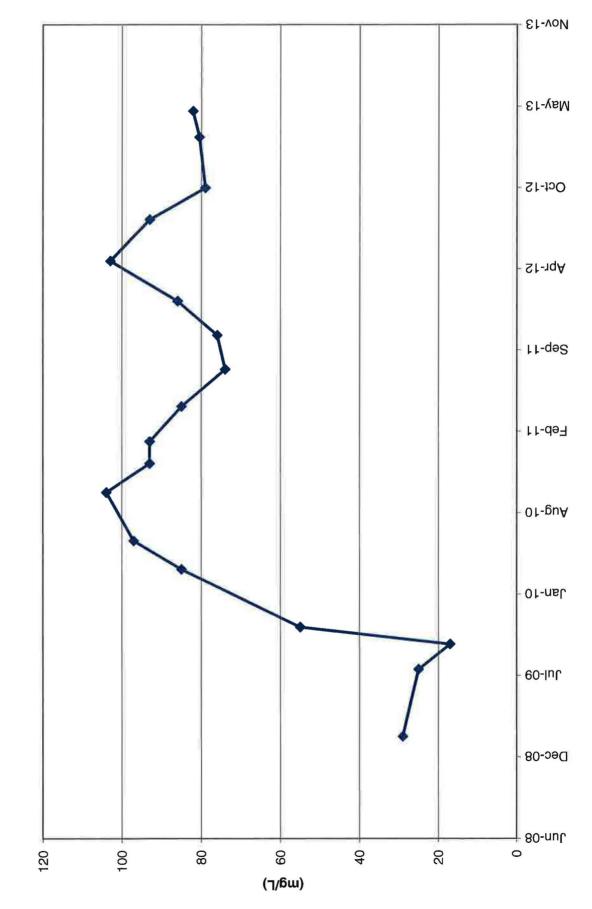

TW4-21			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
5/25/2005	14.6	12/7/2005	353
8/31/2005	10.1	3/9/2006	347
11/30/2005	9.6	7/20/2006	357
3/9/2006	8.5	11/8/2006	296
6/14/2006	10.2	2/28/2007	306
7/20/2006	8.9	6/27/2007	327
11/8/2006	8.7	8/15/2007	300
2/28/2007	8.7	10/10/2007	288
6/27/2007	8.6	3/26/2008	331
8/15/2007	8.6	6/25/2008	271
10/10/2007	8.3	9/10/2008	244
3/26/2008	14.3	10/15/2008	284
6/25/2008	8.8	3/11/2009	279
9/10/2008	7.6	6/24/2009	291
10/15/2008	8.0	9/15/2009	281
3/11/2009	8.3	12/22/2009	256
6/24/2009	8.1	2/25/2010	228
9/15/2009	9.2	6/10/2010	266
12/22/2009	8.4	8/12/2010	278
2/25/2010	8.4	10/13/2010	210
6/10/2010	12.0	2/22/2011	303
8/12/2010	14.0	6/1/2011	297
10/13/2010	7.0	8/17/2011	287
2/22/2011	9.0	11/16/2011	276
6/1/2011	13.0	1/19/2012	228
8/17/2011	14.0	6/13/2012	285
11/16/2011	13.0	9/13/2012	142
1/19/2012	15.0	10/4/2012	270
6/13/2012	11.0	2/13/2013	221
9/13/2012	13.0	6/18/2013	243
10/4/2012	14.0		
2/13/2013	11.8		
6/18/2013	13.8		

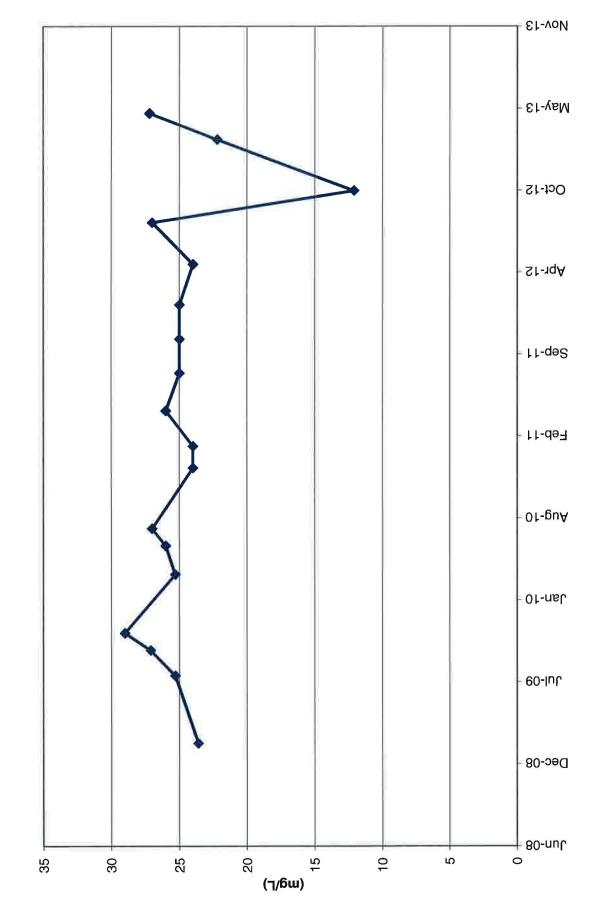

The sampling program for TW4-21 was updated in the fourth quarter of 2005 to include analysis for chloride as well as nitrate. This change accounts for the different number of data points represented above.

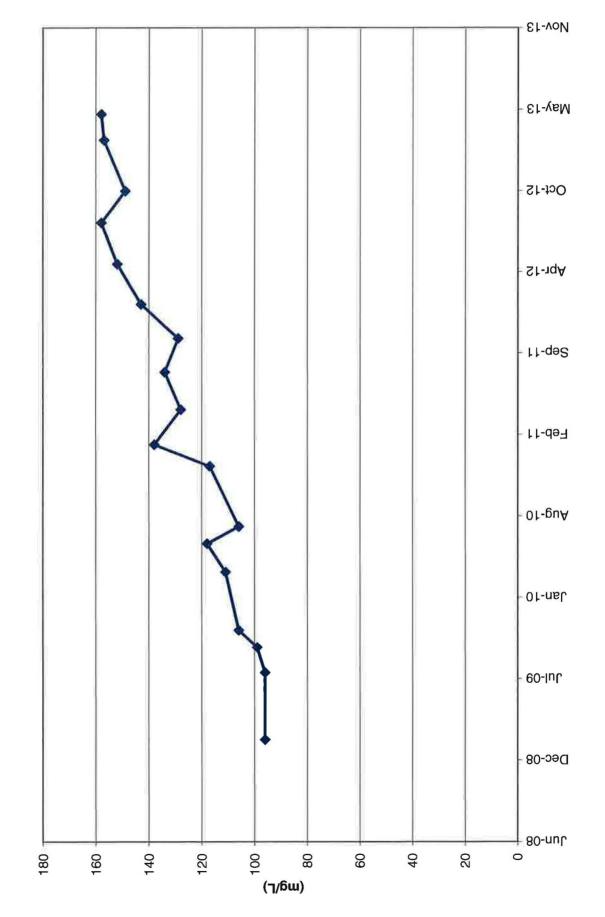
Tab K


Concentration Trend Graphs

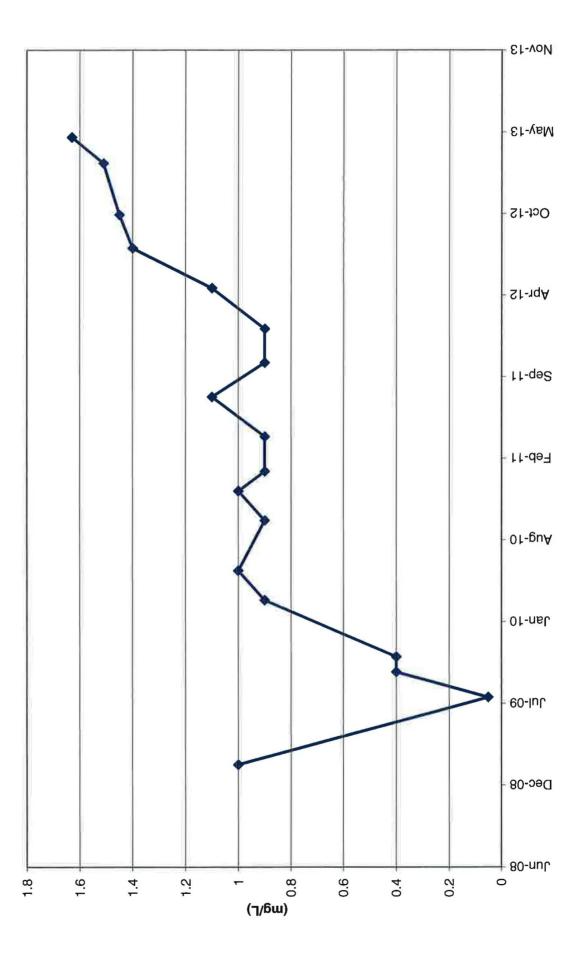
TWN-1 Nitrate Concentrations

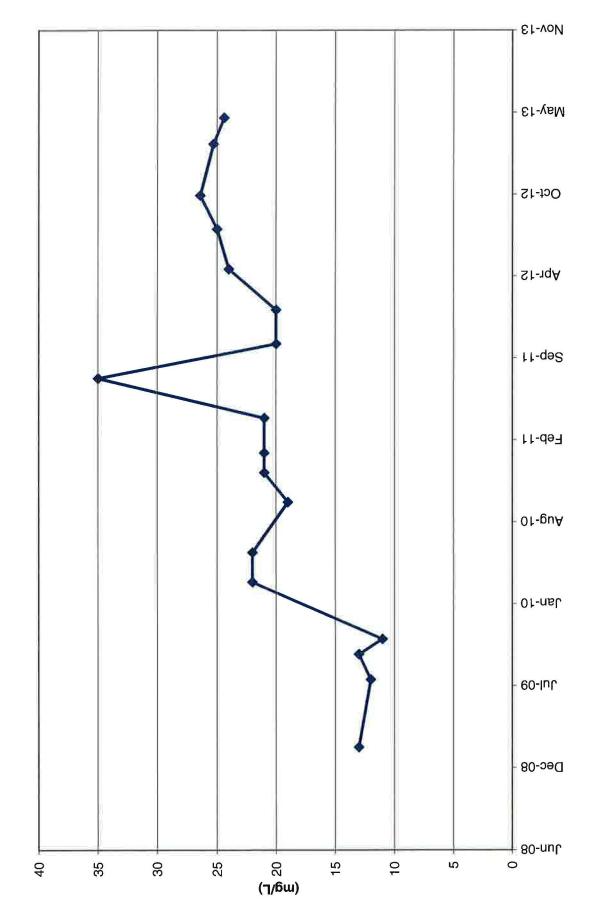



TWN-1 Chloride Concentrations

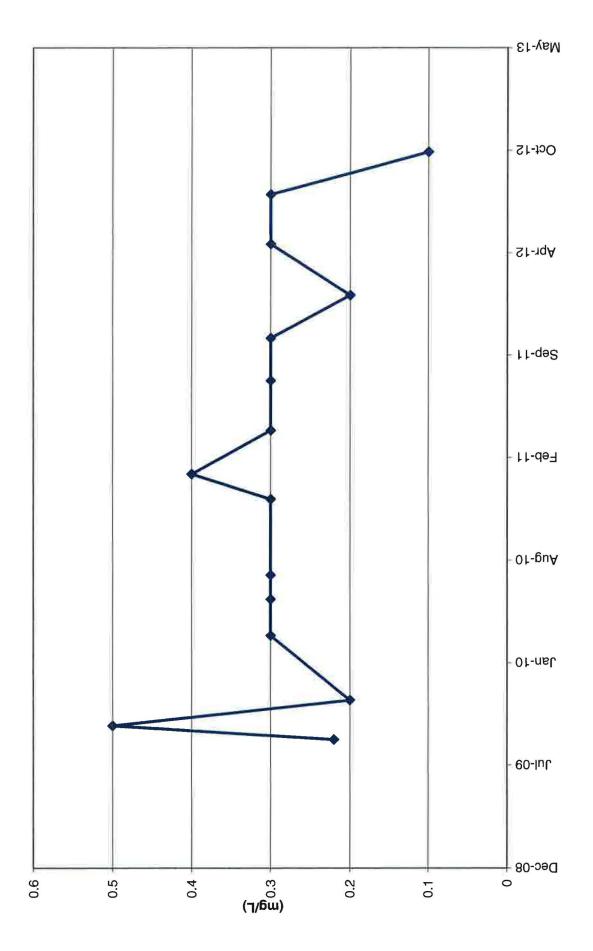

TWN-2 Nitrate Concentrations

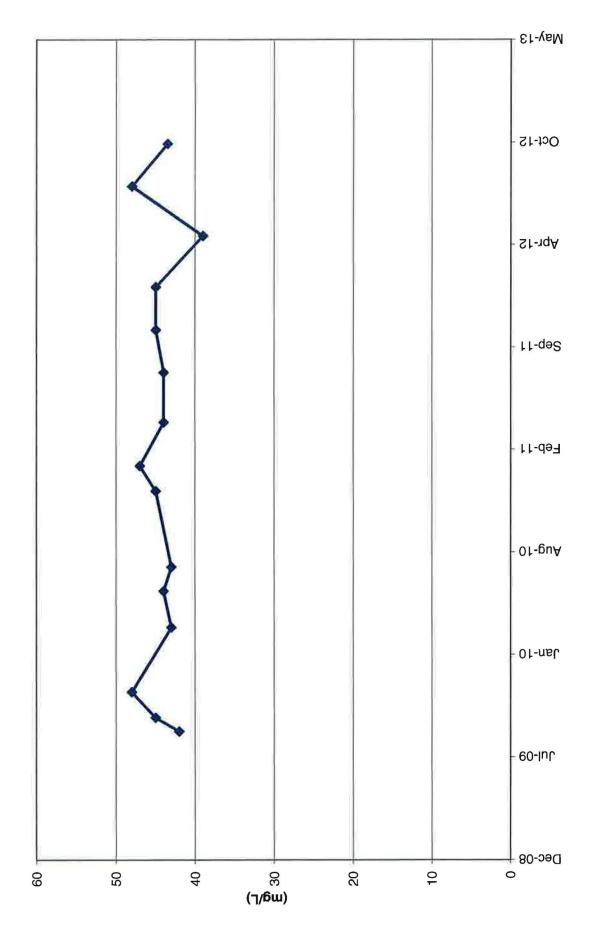
TWN-2 Chloride Concentrations



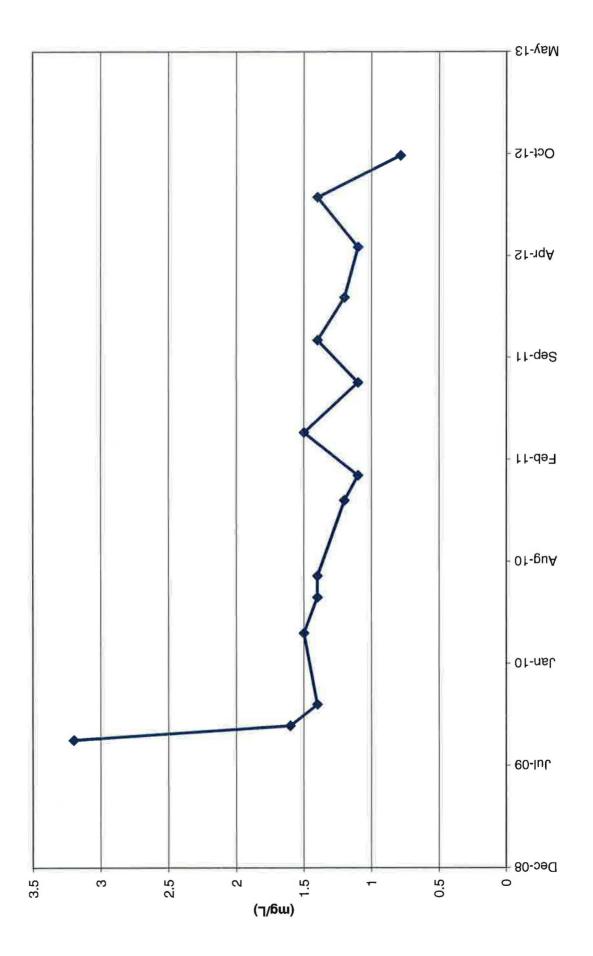

TWN-3 Nitrate Concentrations

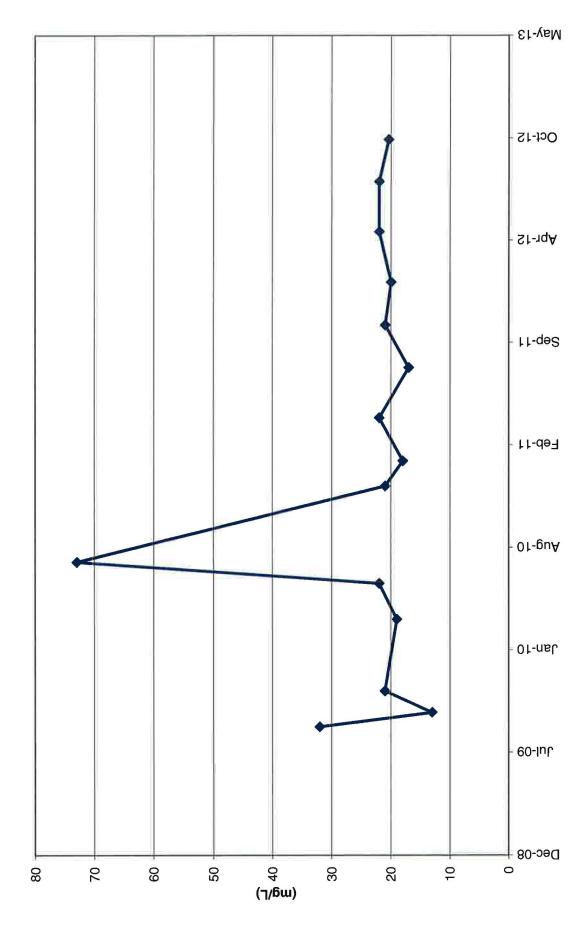
TWN-3 Chloride Concentrations

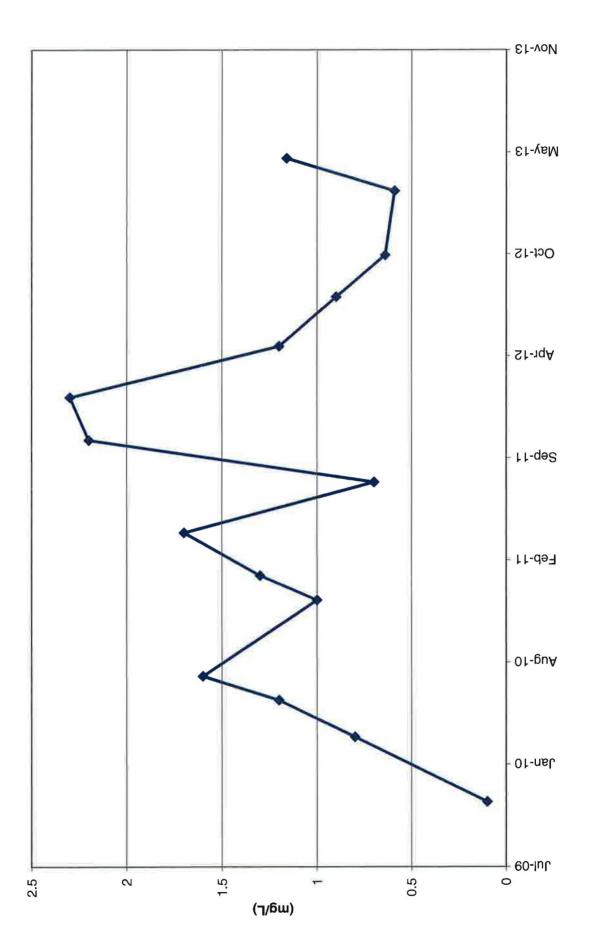


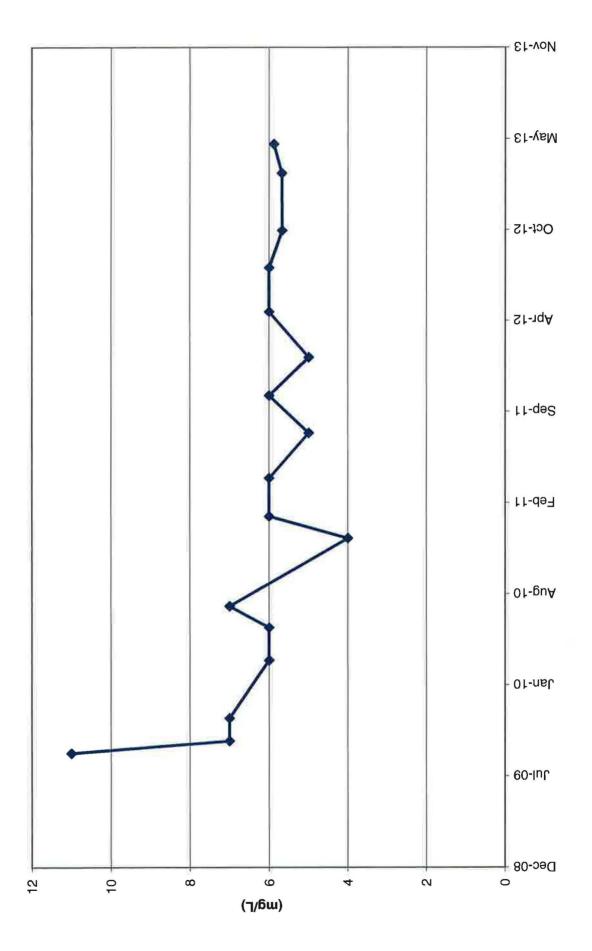


TWN-4 Chloride Concentrations

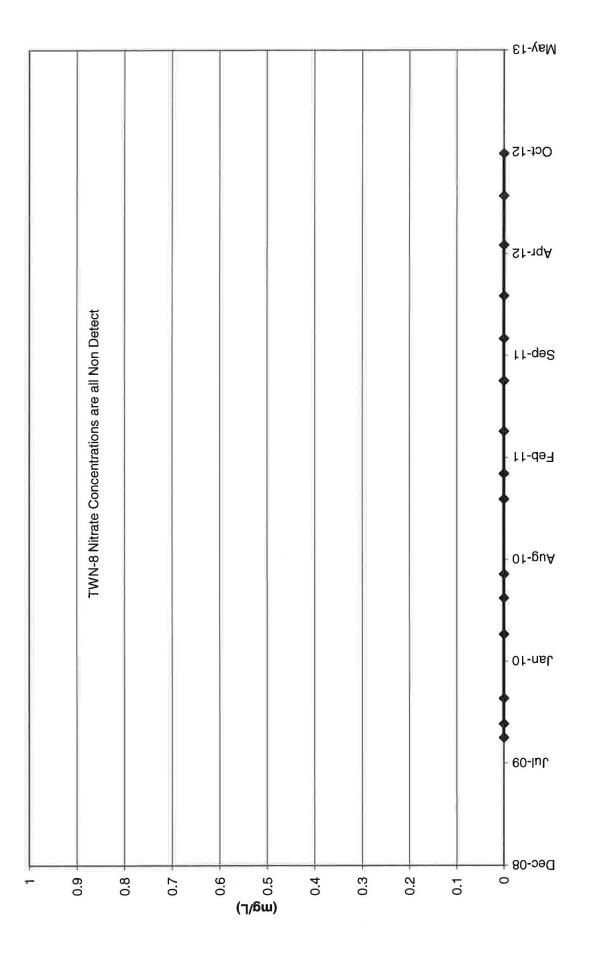


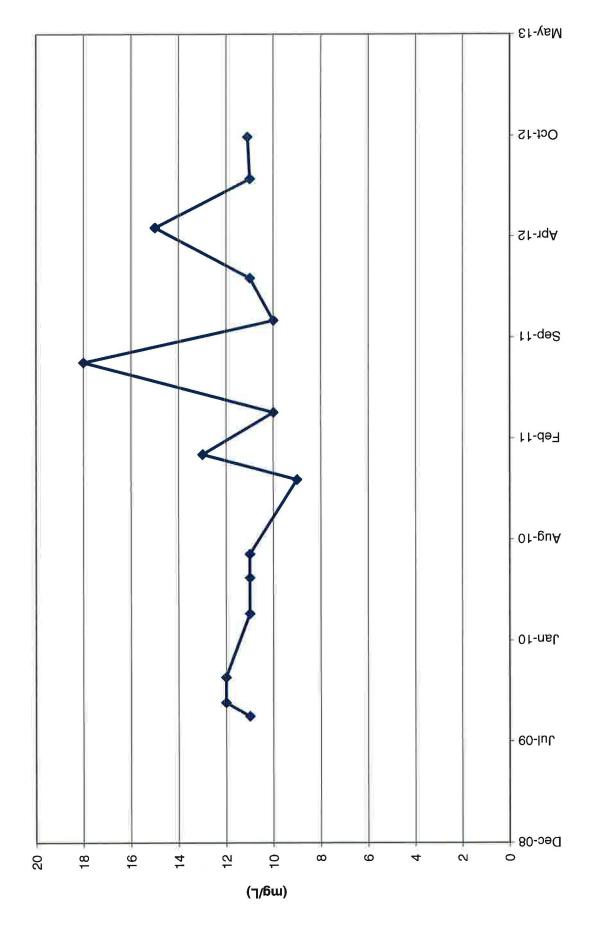


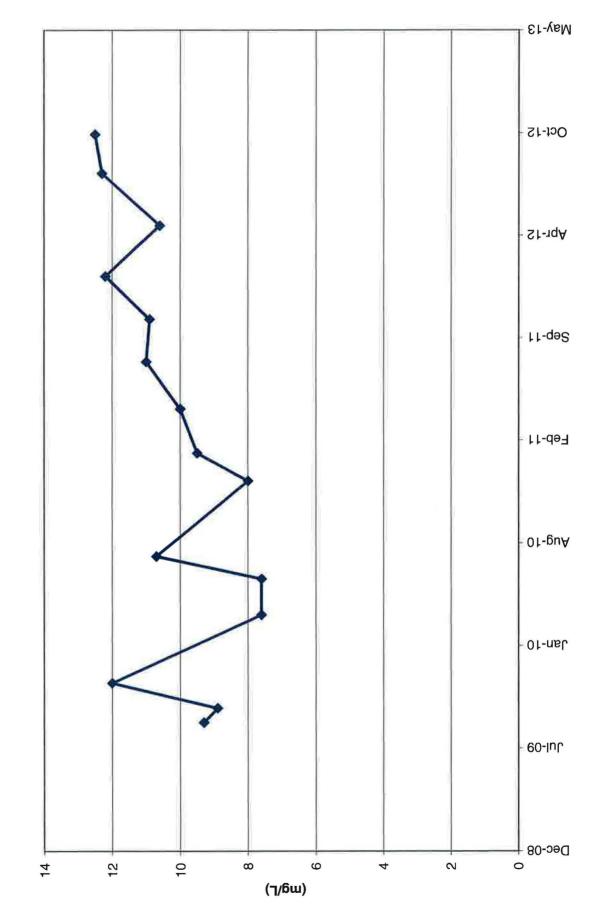

TWN-6 Nitrate Concentrations

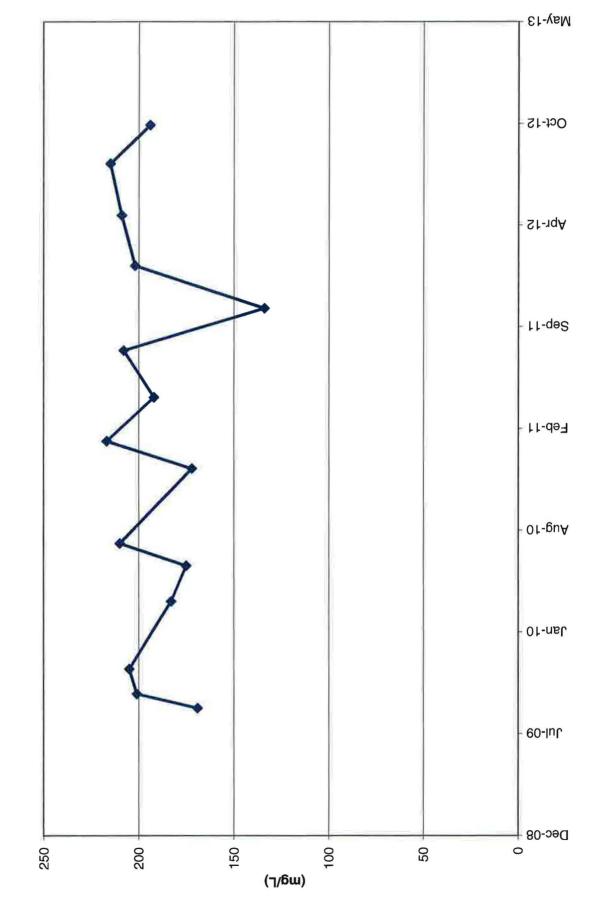


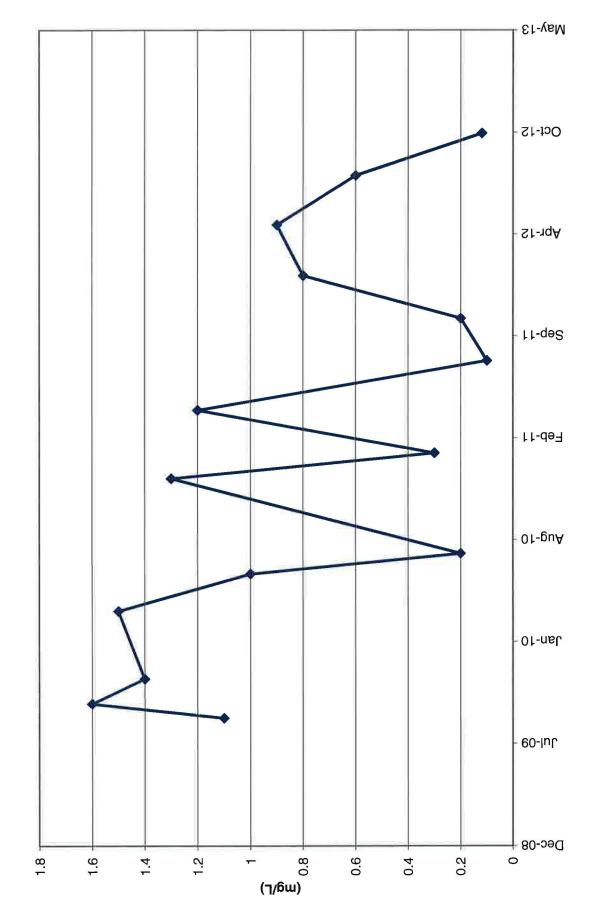
TWN-6 Chloride Concentrations

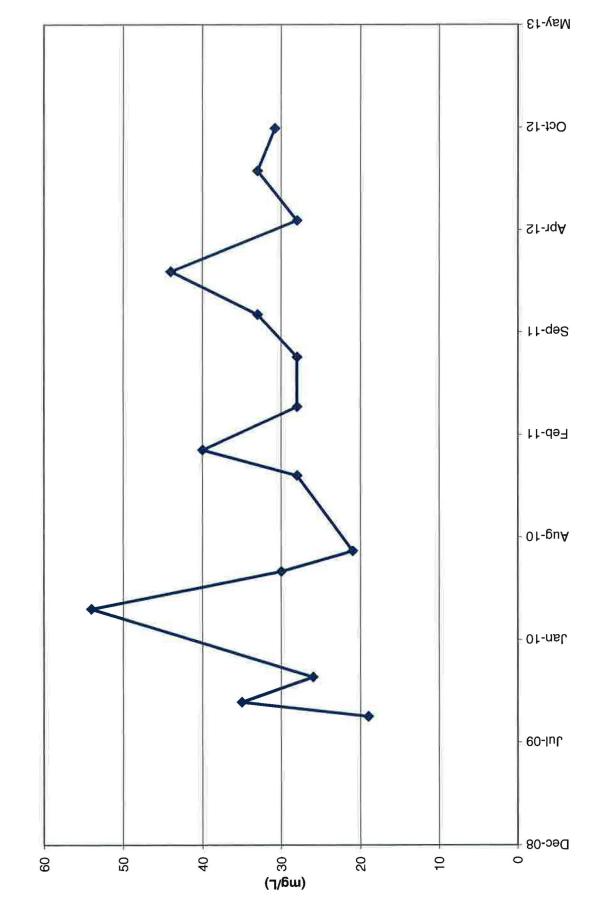


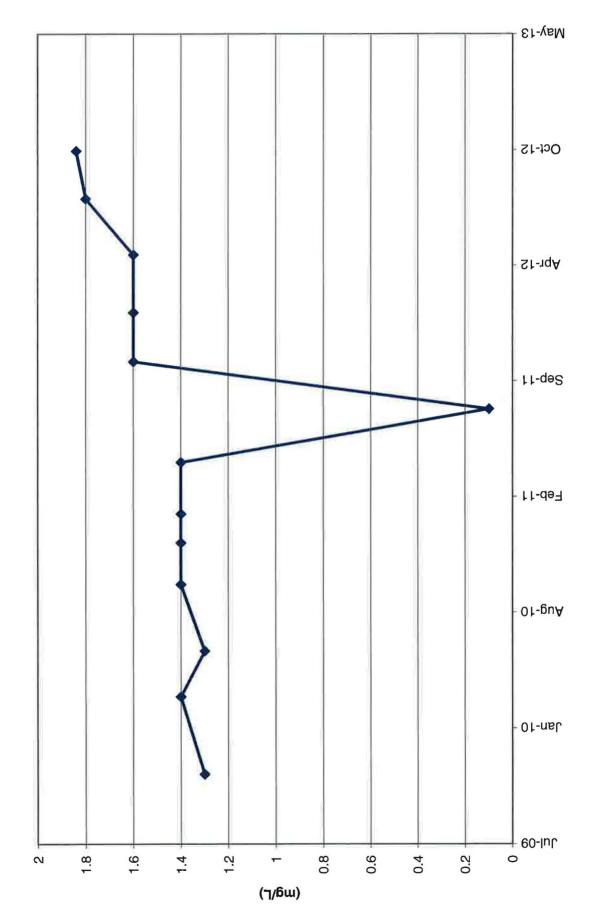


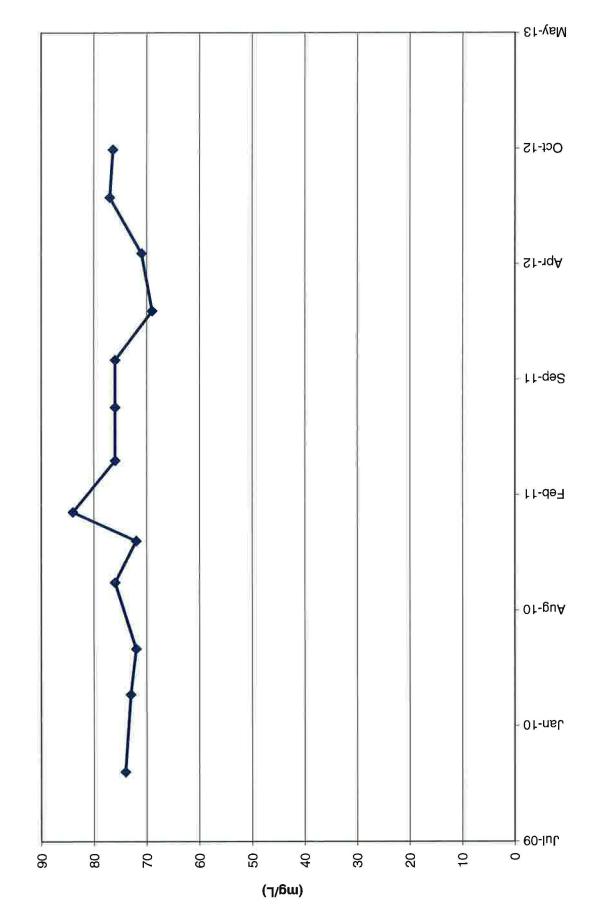


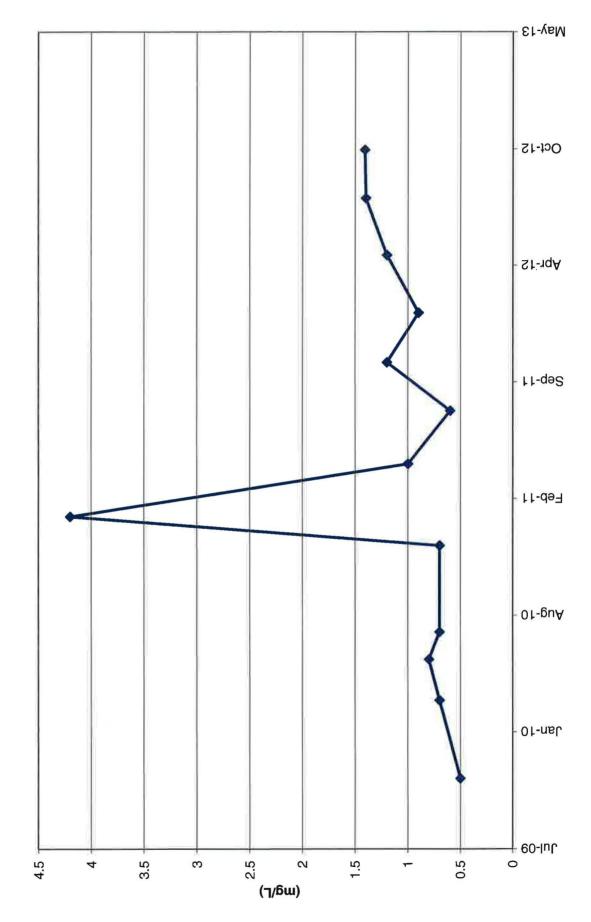


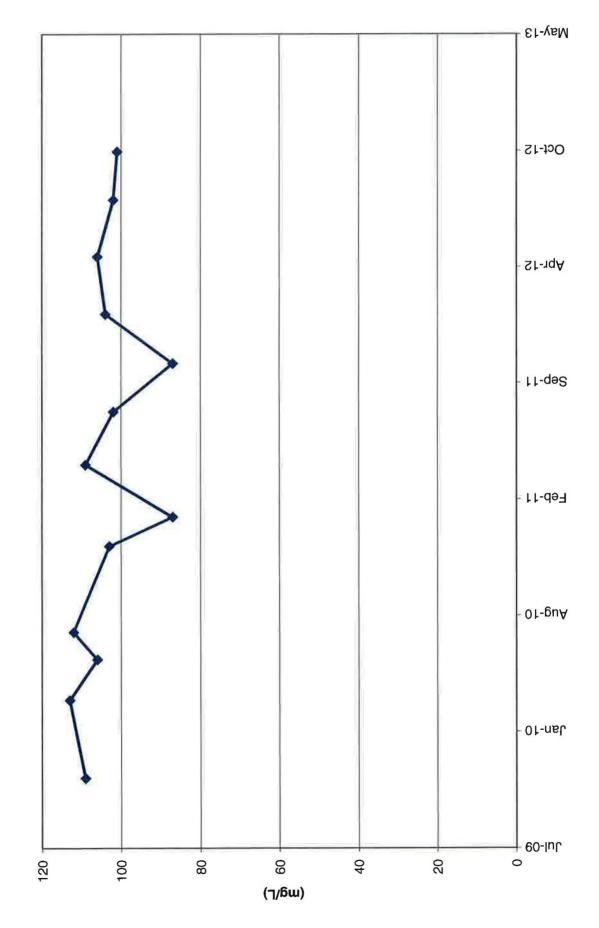

TWN-8 Chloride Concentrations

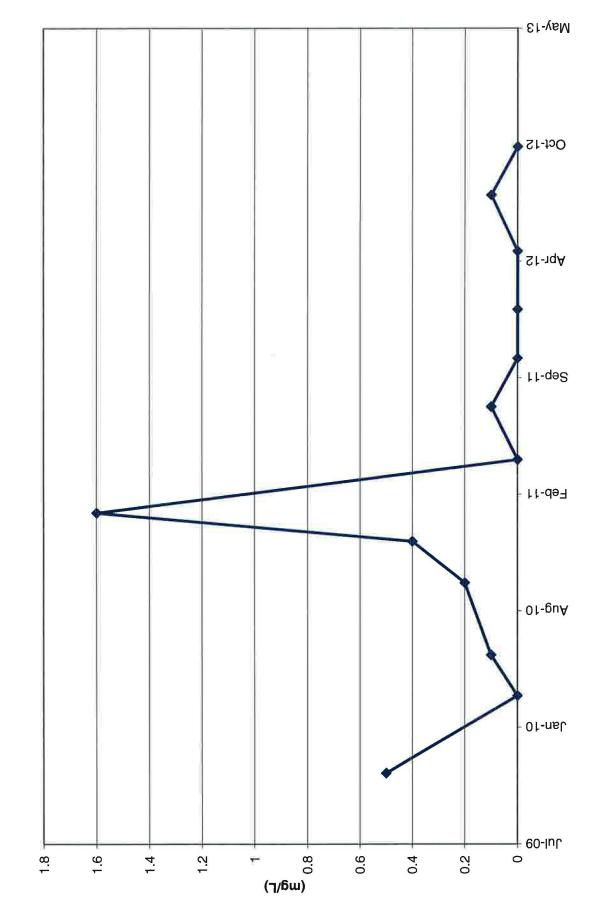

TWN-9 Nitrate Concentrations

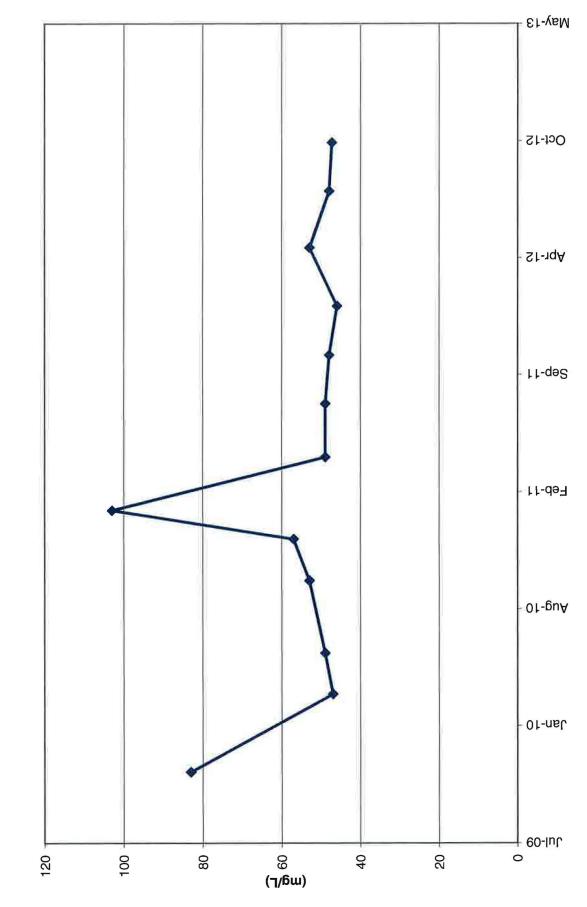

TWN-9 Chloride Concentrations

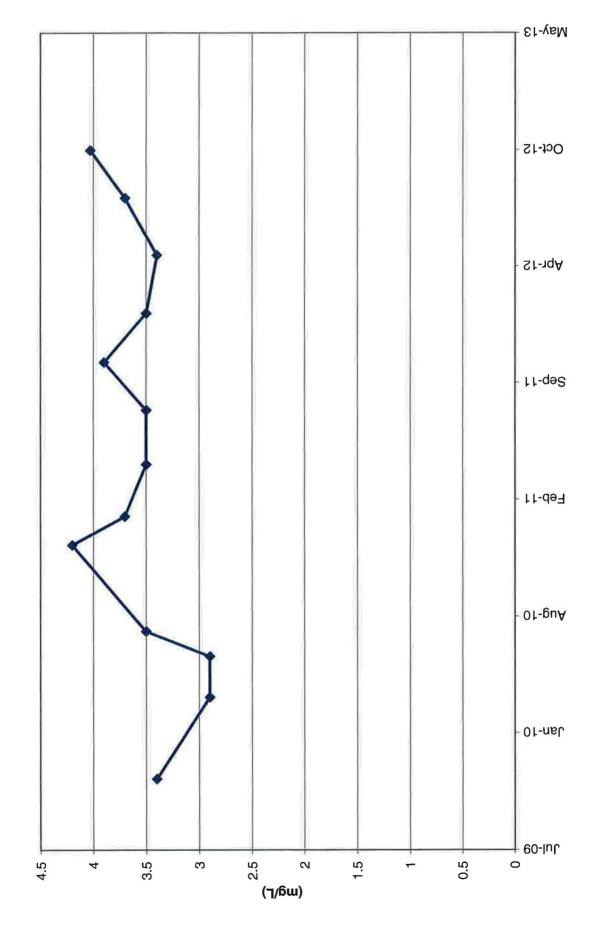

TWN-10 Nitrate Concentrations

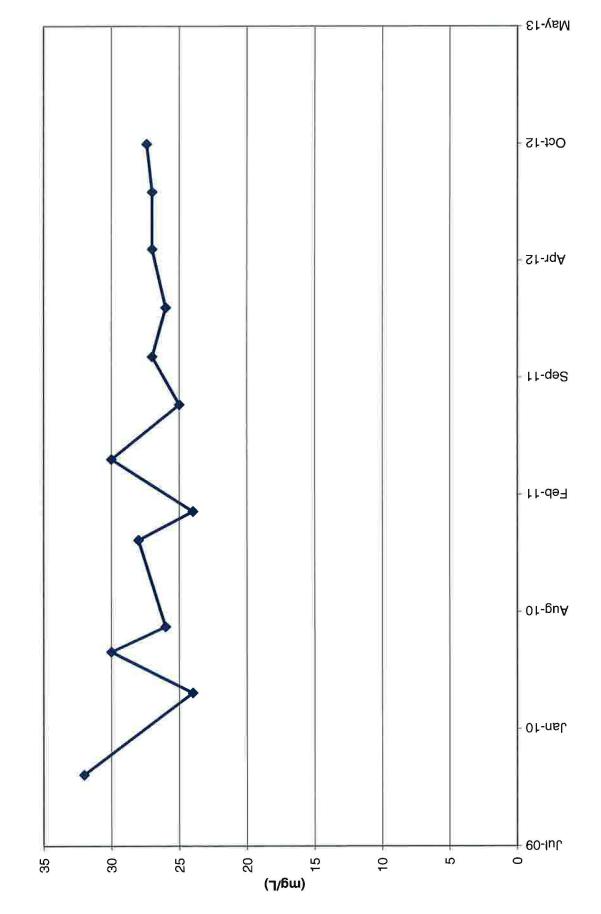

TWN-10 Chloride Concentrations

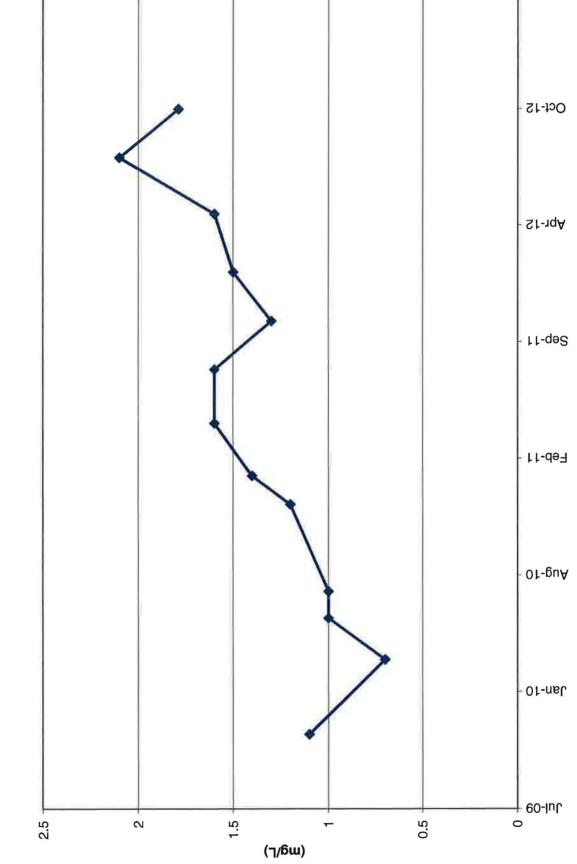

TWN-11 Nitrate Concentrations


TWN-11 Chloride Concentrations

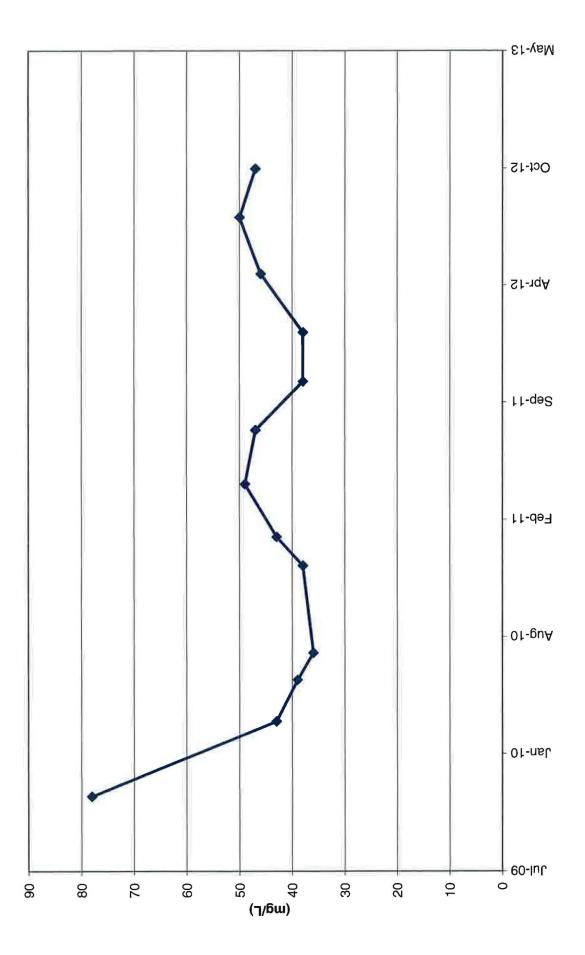

TWN-12 Nitrate Concentrations

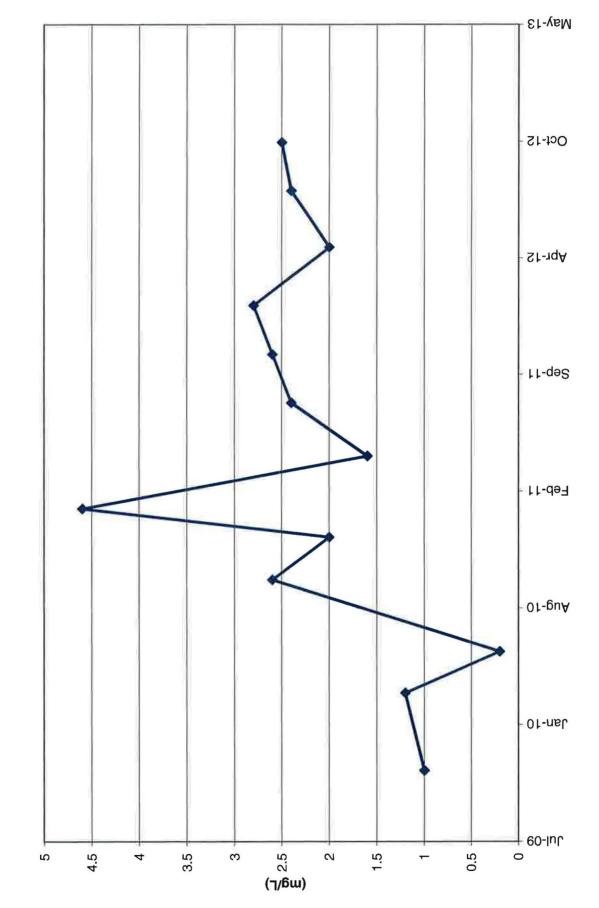

TWN-12 Chloride Concentrations


TWN-13 Nitrate Concentrations

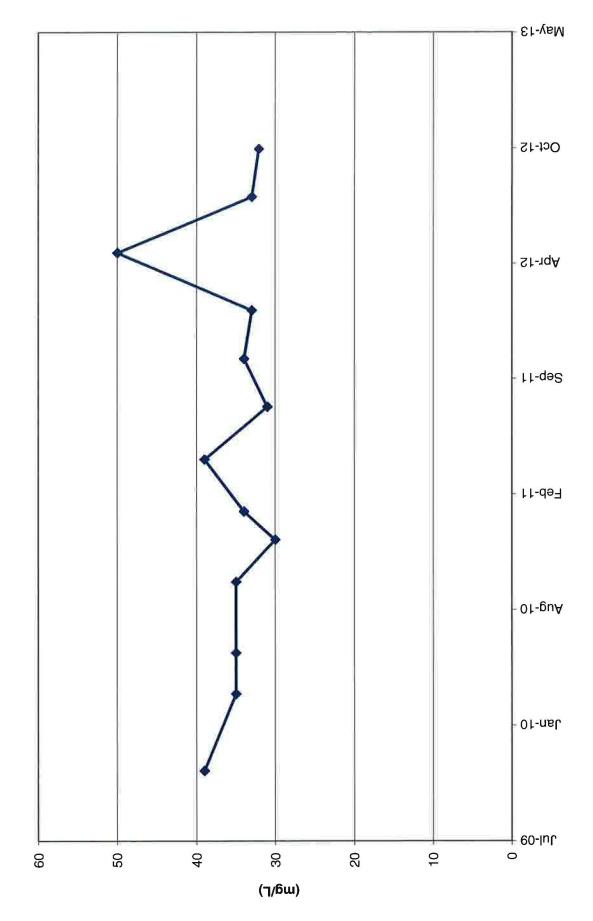

TWN-13 Chloride Concentrations

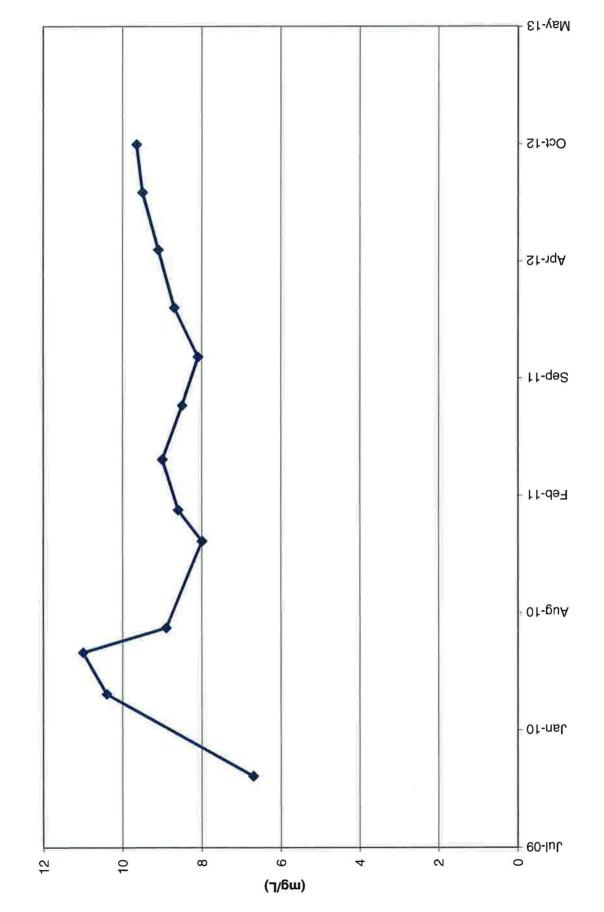
TWN-14 Nitrate Concentrations


TWN-14 Chloride Concentrations

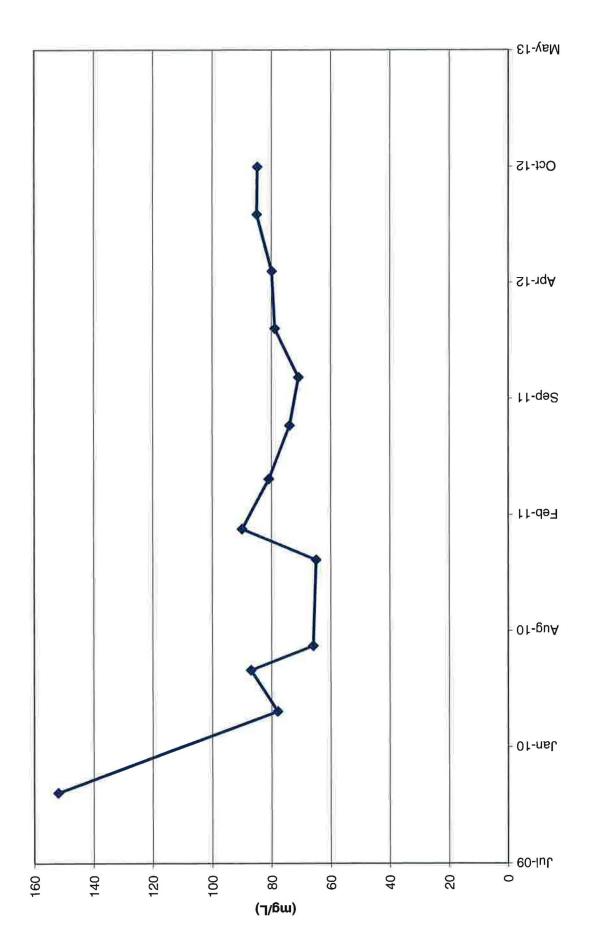


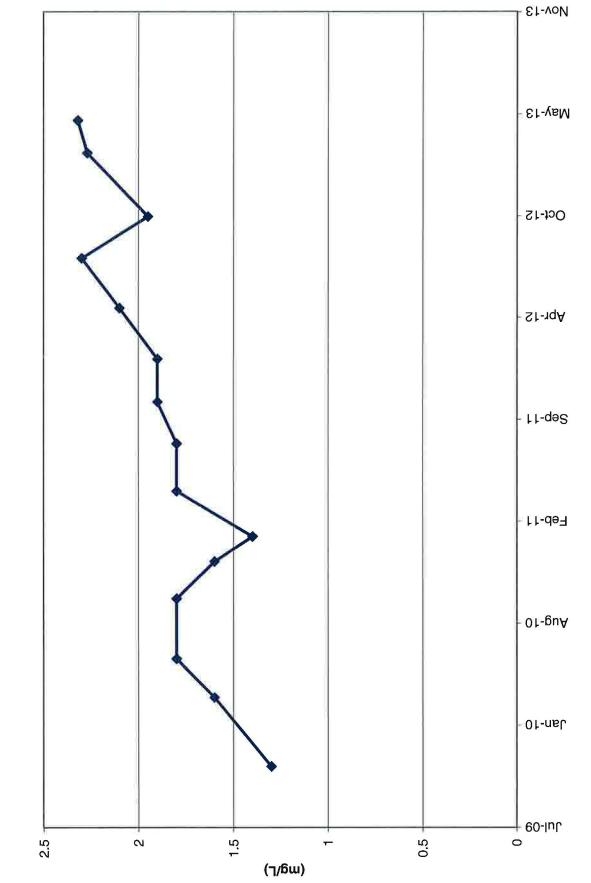
Kay-13

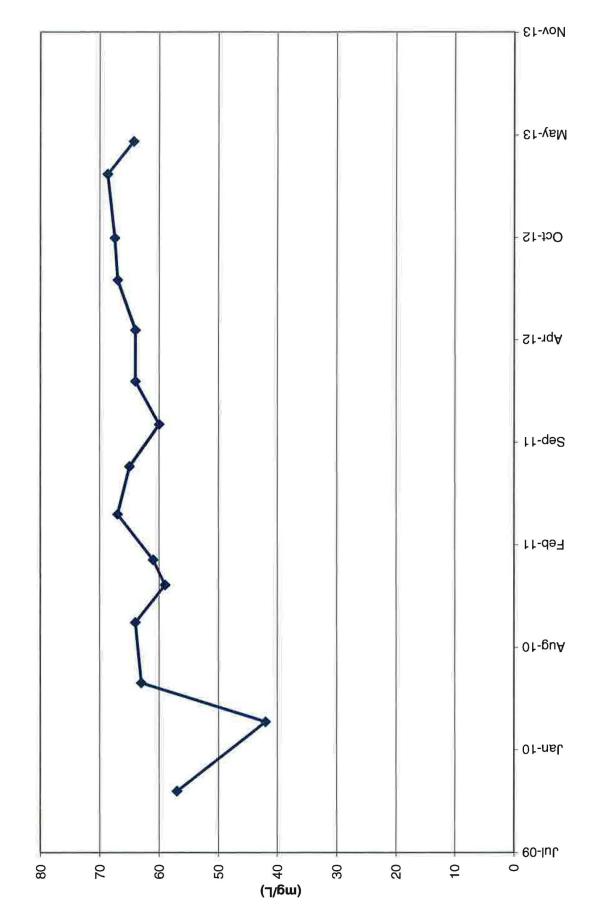

TWN-15 Nitrate Concentrations



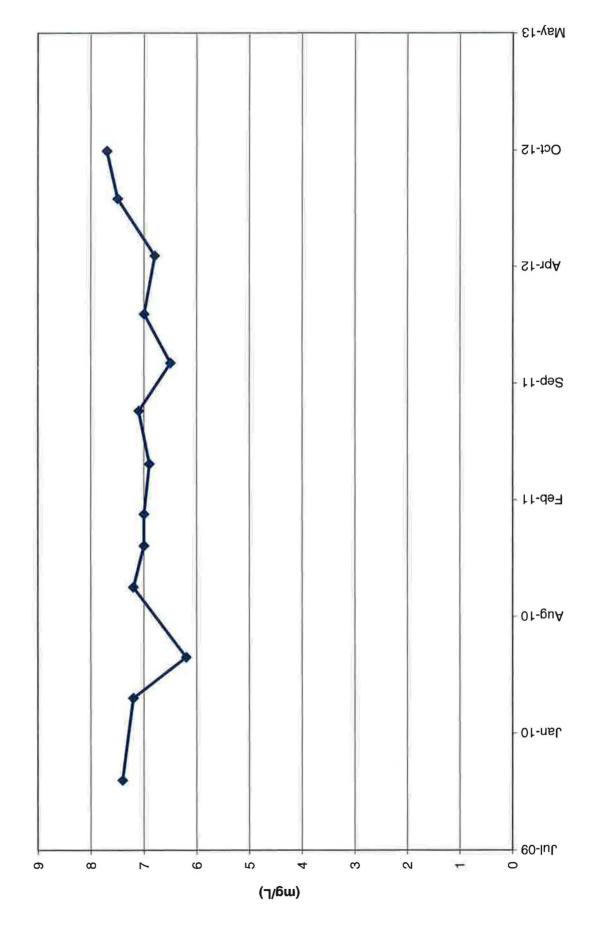
TWN-16 Nitrate Concentrations



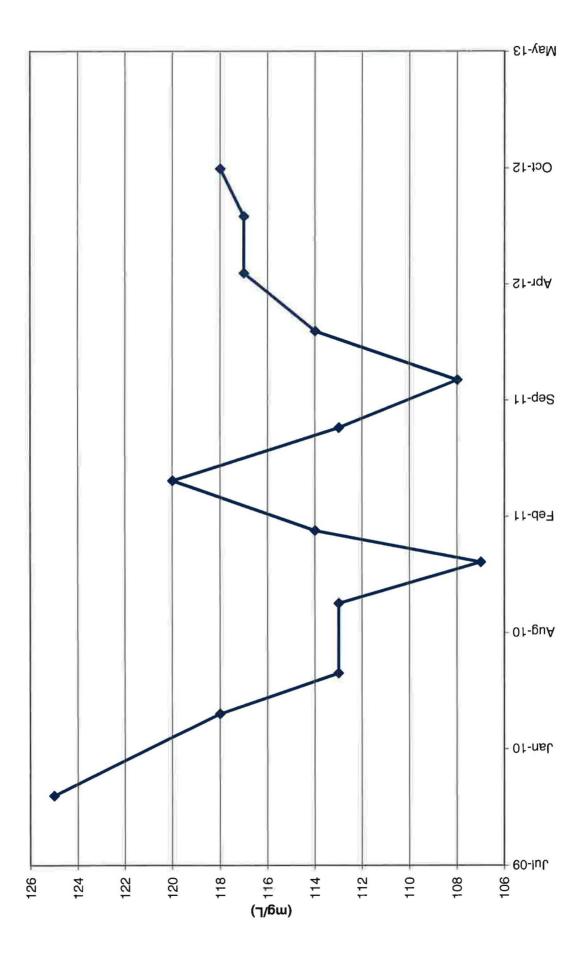

TWN-16 Chloride Concentrations


TWN-17 Nitrate Concentrations

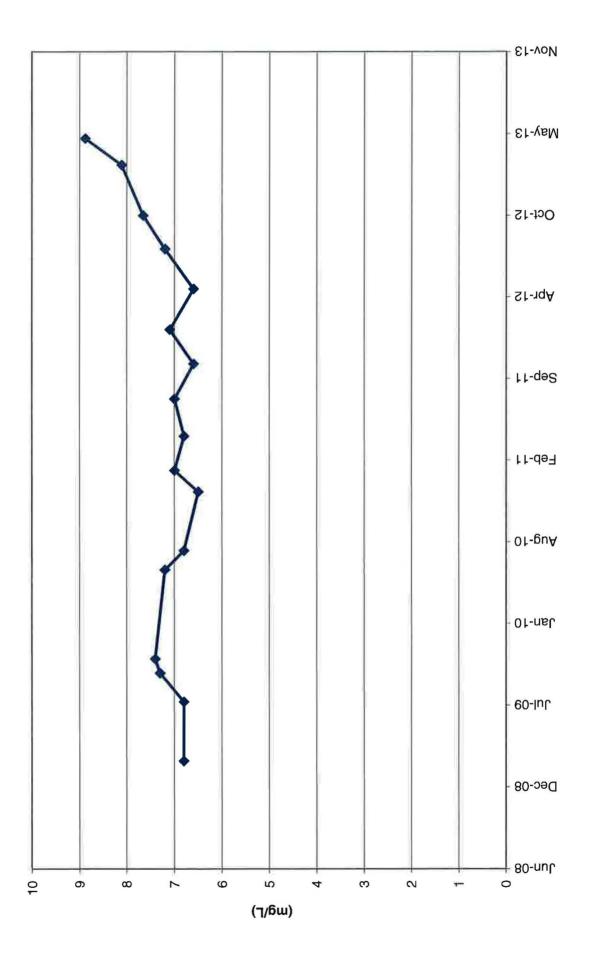
TWN-17 Chloride Concentrations

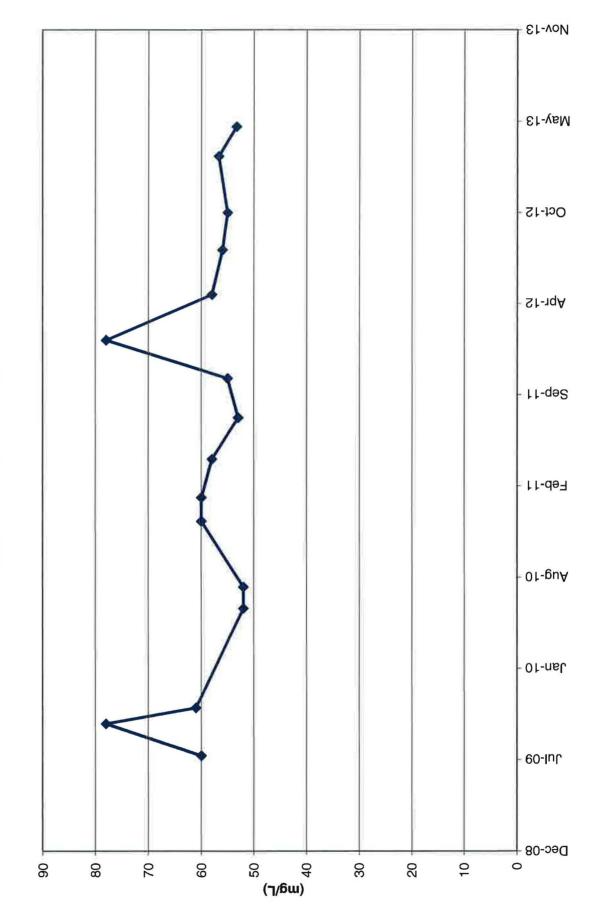


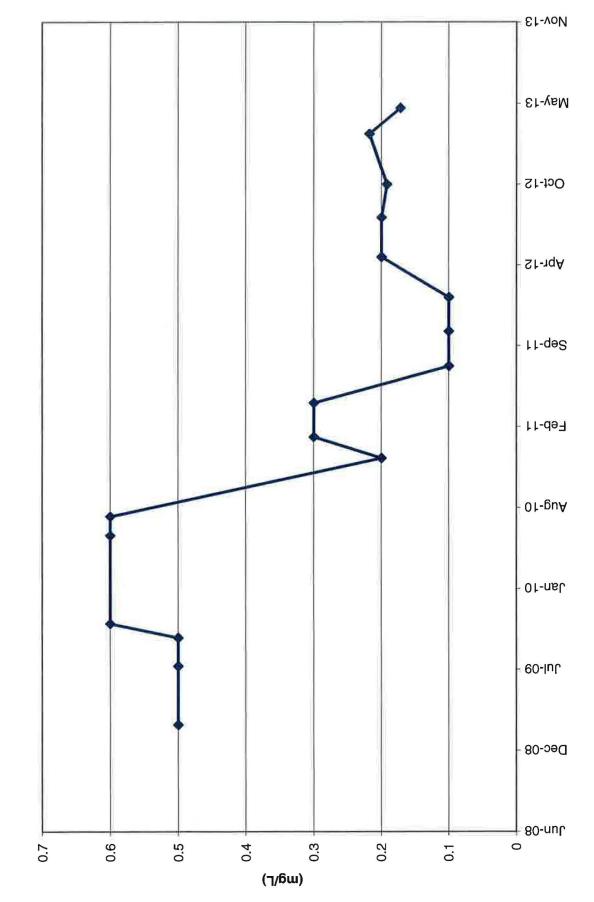
TWN-18 Nitrate Concentrations

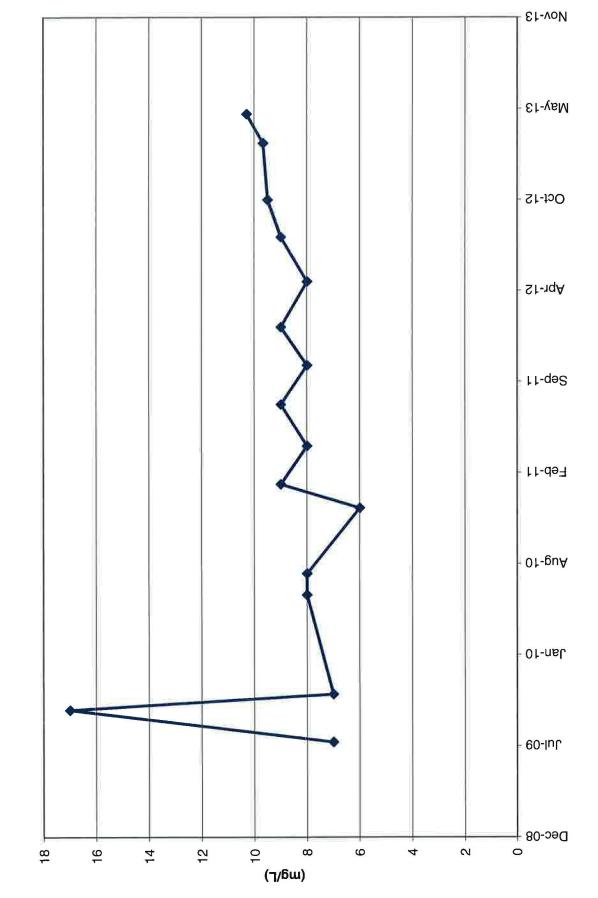


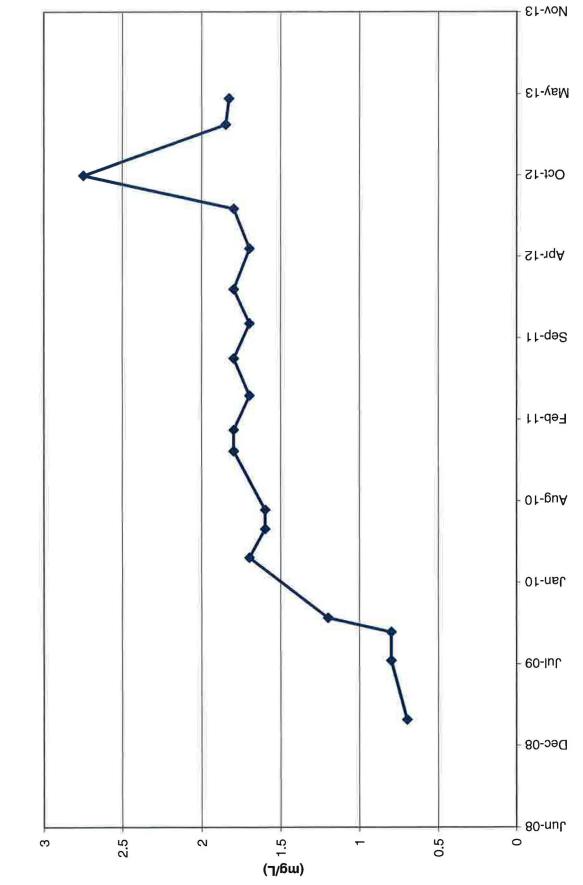
TWN-18 Chloride Concentrations

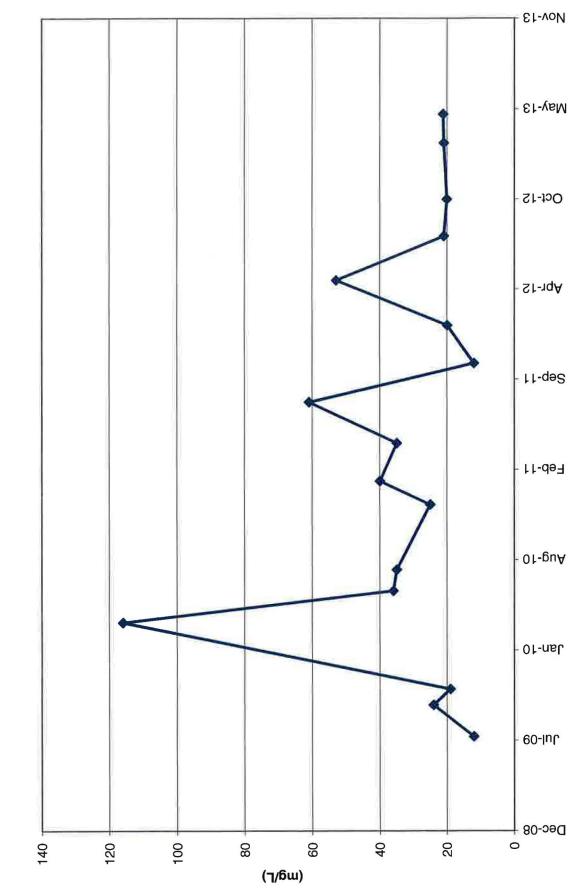


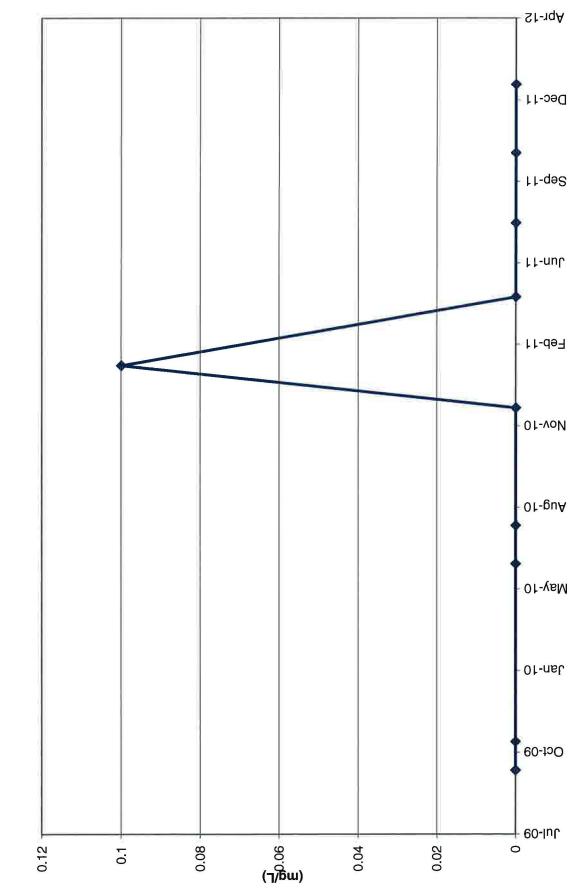

TWN-19 Nitrate Concentrations

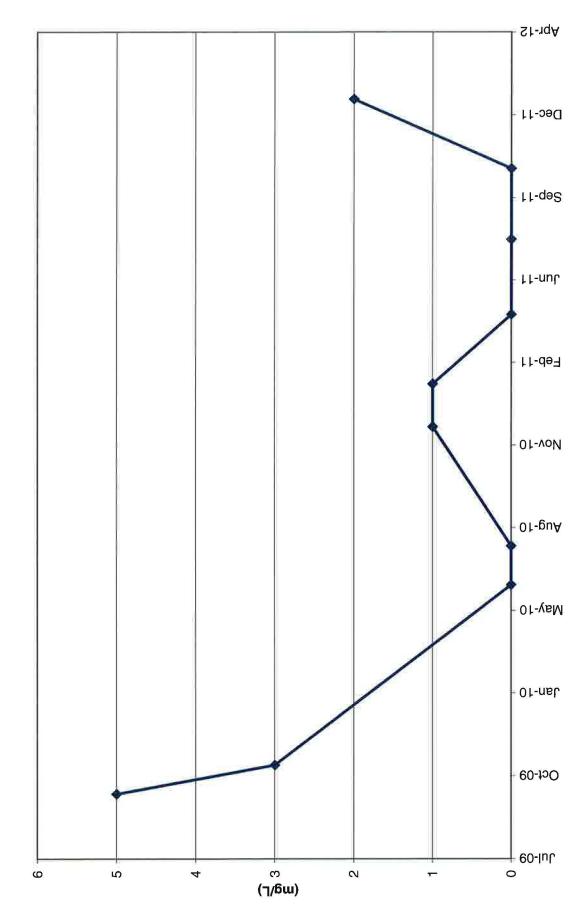


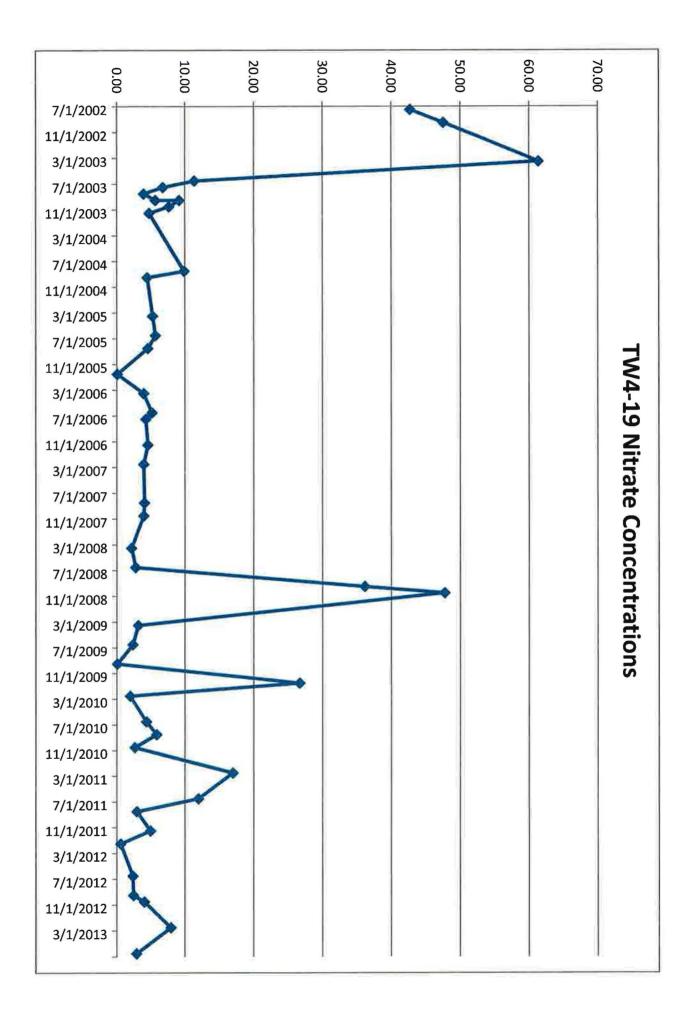


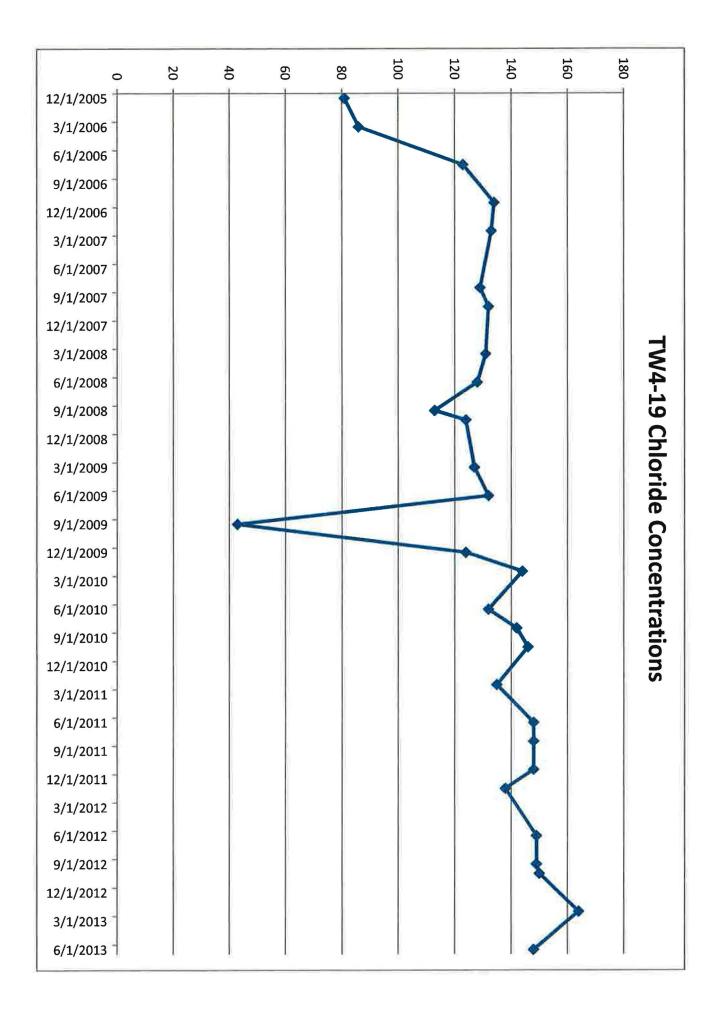

Piezometer 1 Chloride Concentrations

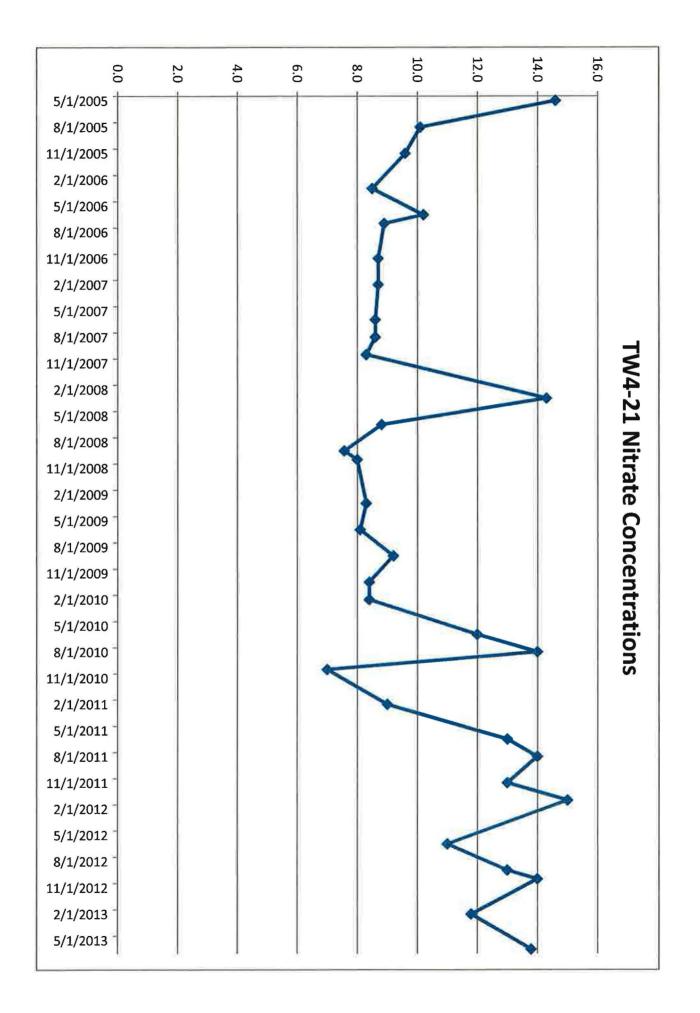


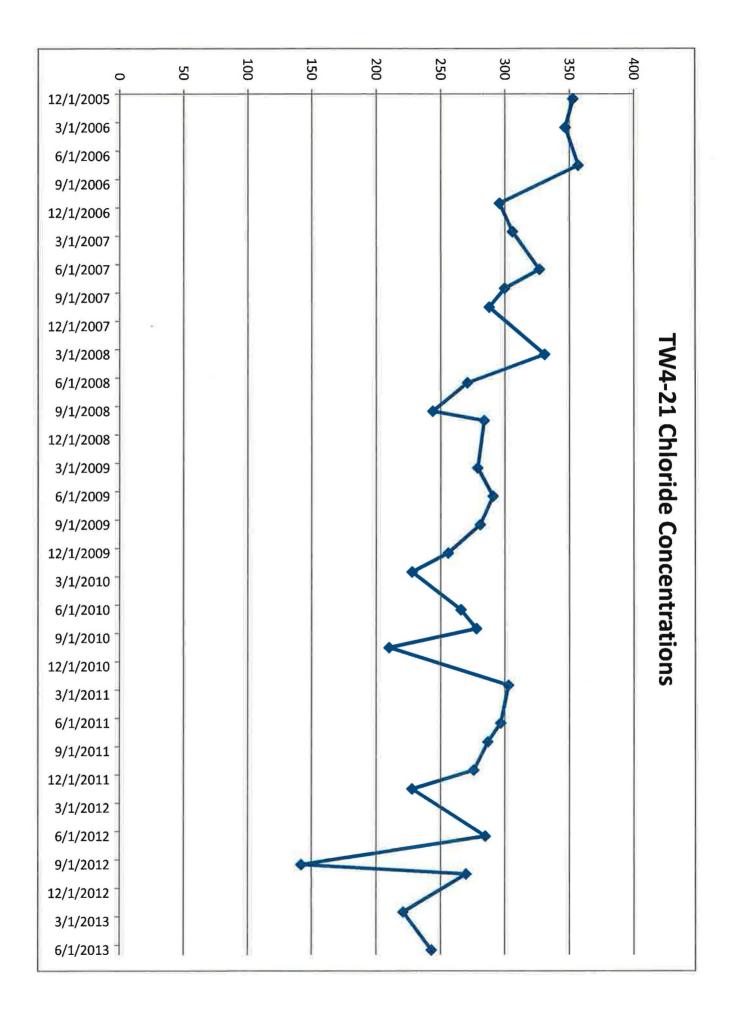

Piezometer 2 Chloride Concentrations

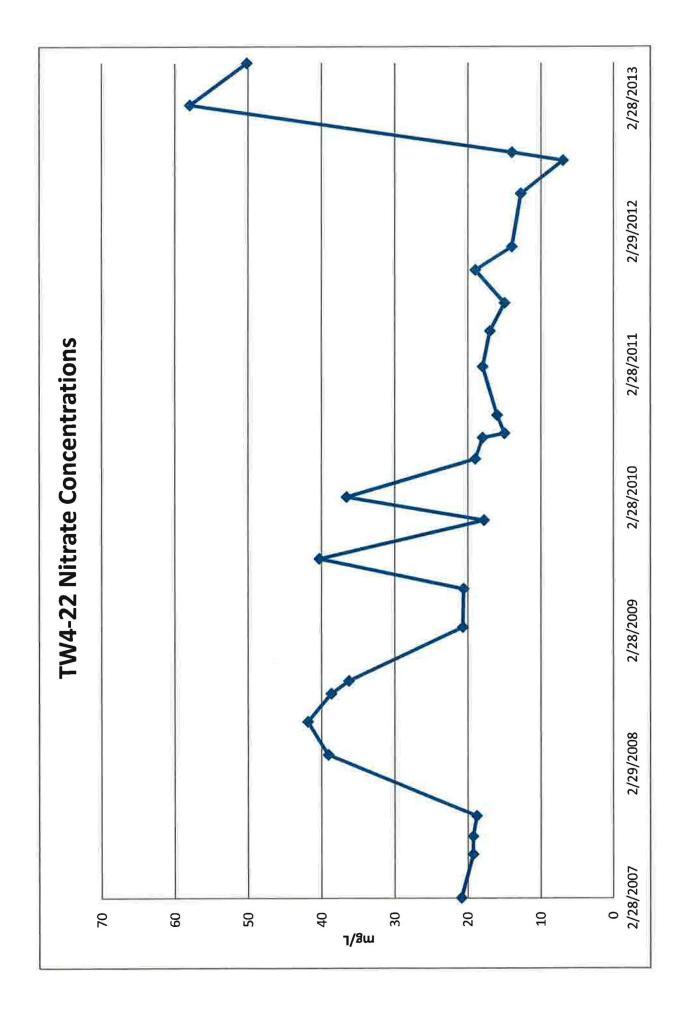

Piezometer 3 Nitrate Concentrations

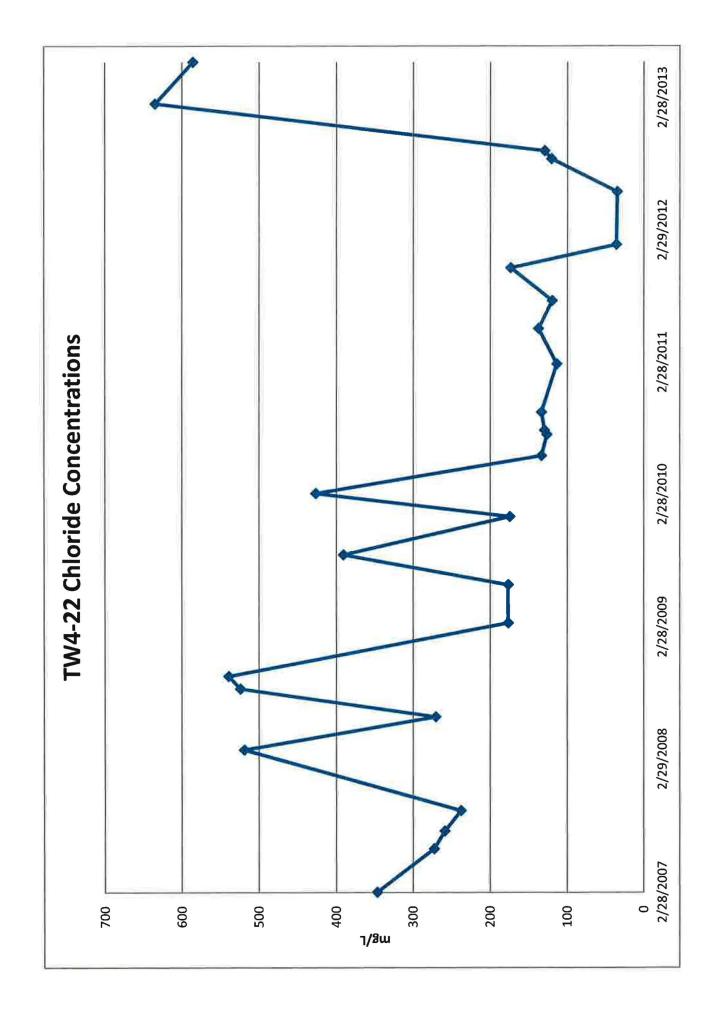

Piezometer 3 Chloride Concentrations

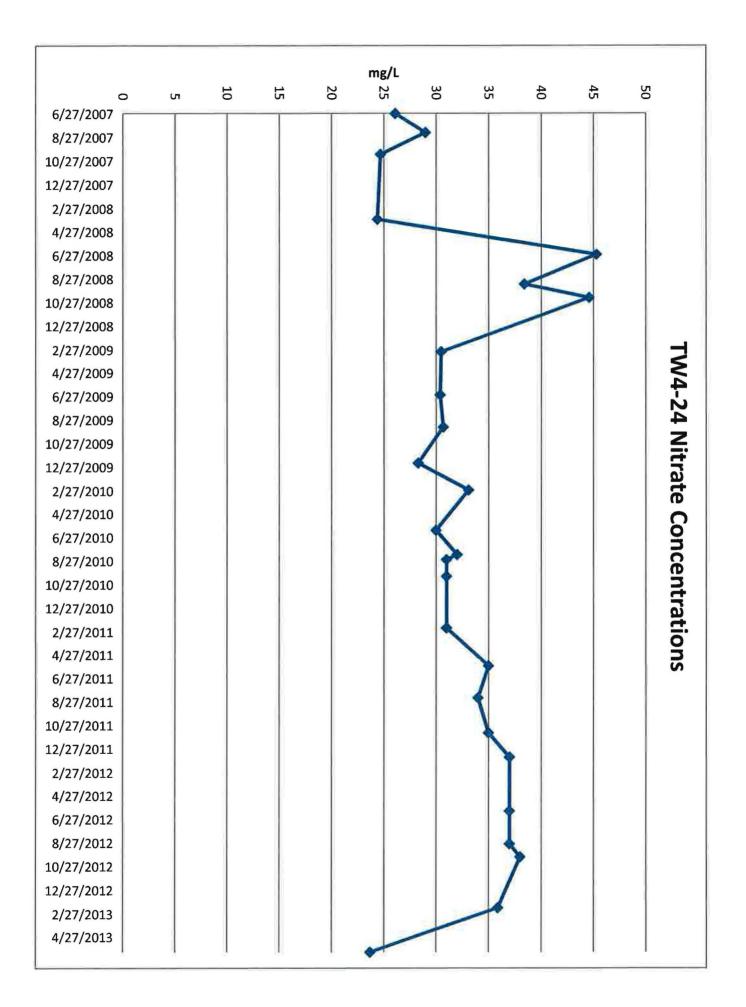


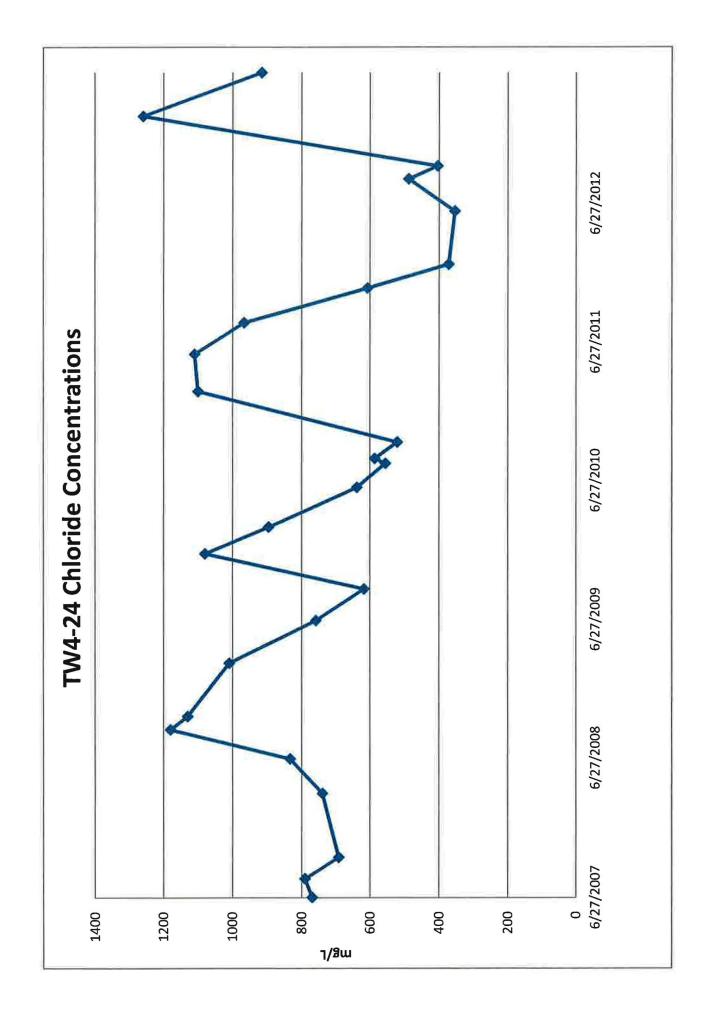


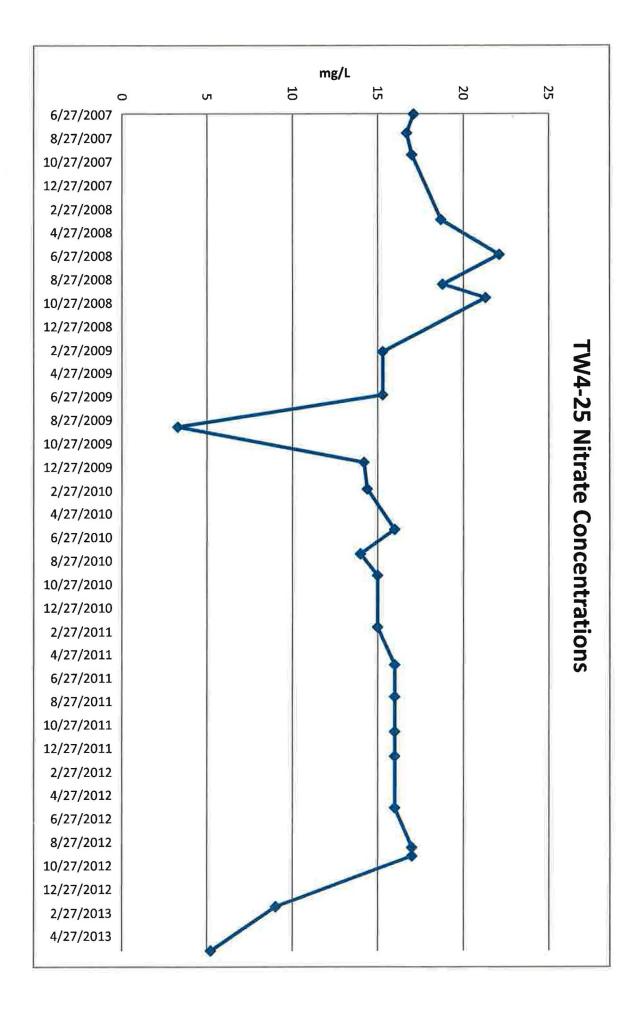


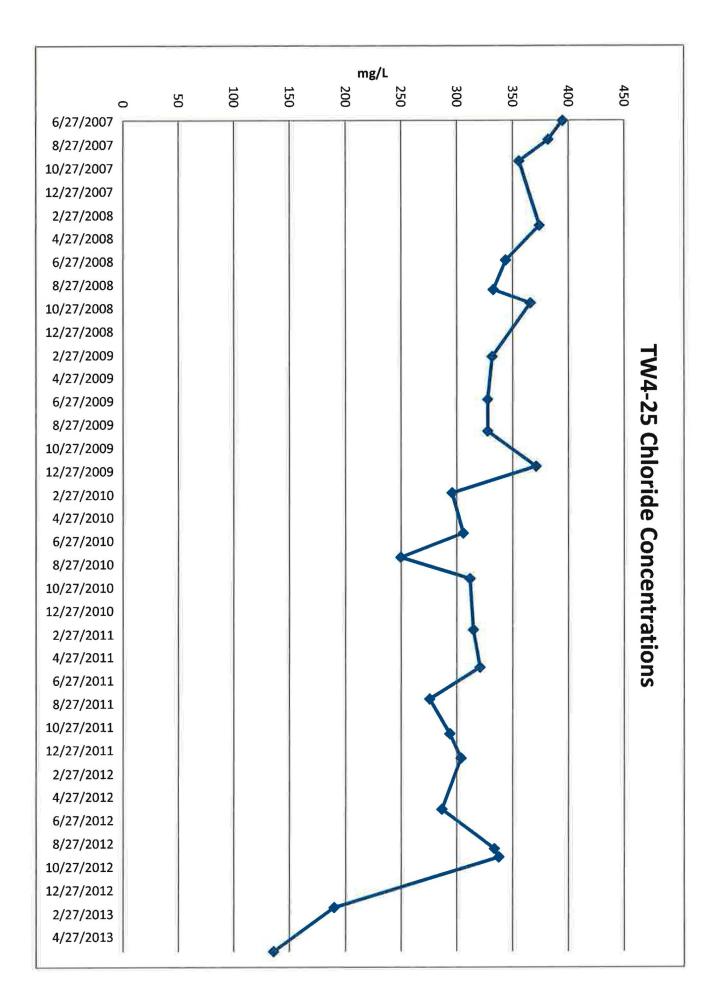

Upper Wildlife Pond Chloride Concentrations

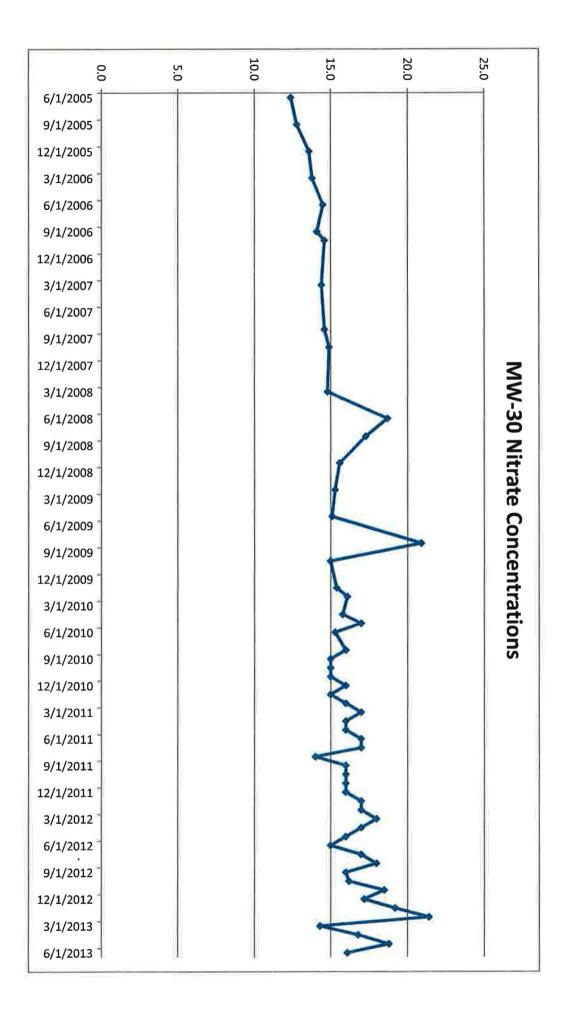


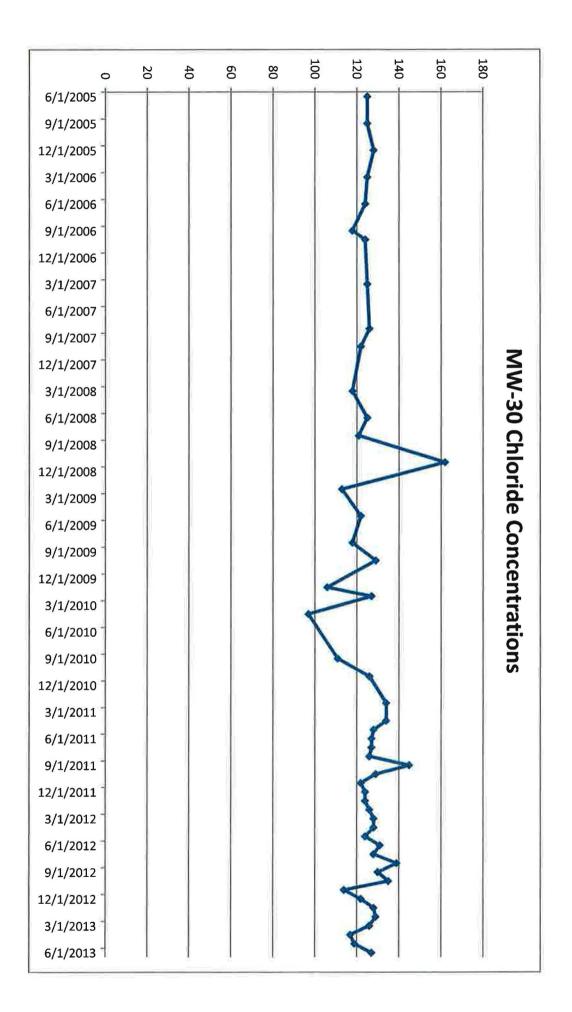


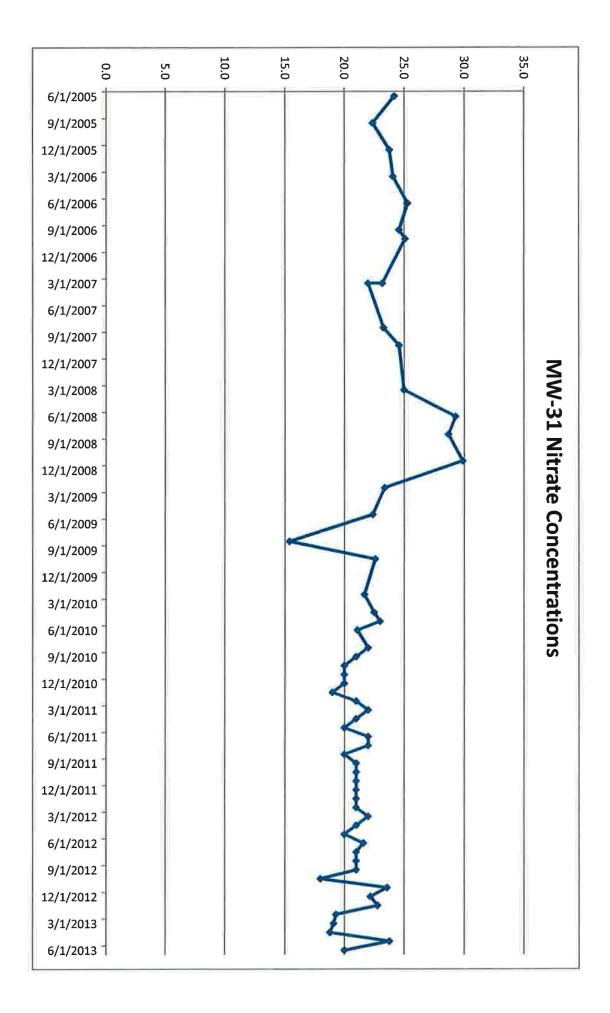












0	20	40	60	80	100	120	140	160	180	200
6/1/2005		1					1			
9/1/2005 -							f			
12/1/2005							+			
3/1/2006						•	$\left\{ \right\}$			
6/1/2006 -							>			
9/1/2006						1				
12/1/2006										
3/1/2007										
6/1/2007							N			
9/1/2007 -						-	~			Z
12/1/2007										MW-31 Chloride Concentra
3/1/2008						ł				ယ်
6/1/2008										
9/1/2008 -		1				1				Ц Ц
12/1/2008 -						1				Pri.
3/1/2009 -						1				de
6/1/2009 -						Ĩ				C C
9/1/2009 -							>			DNC
12/1/2009										er
3/1/2010 -						1				Itr
6/1/2010										ati
9/1/2010 -							}			itions
12/1/2010 -							1			N N
3/1/2011							1			
6/1/2011							1			
9/1/2011 -							2			
12/1/2011 -							*	>		
3/1/2012 -								5		
6/1/2012							-			
9/1/2012 -									7	
12/1/2012 -								1	5	
3/1/2013 -										
6/1/2013		Į		I	l					

Tab L

CSV Transmittal Letter

Kathy Weinel

From:	Kathy Weinel			
Sent:	Monday, August 26, 2013 9:30 AM			
То:	Rusty Lundberg			
Cc:	'Phillip Goble'; 'Thomas Rushing'; 'Dean Henderson'; Harold Roberts; Dan Hillsten; David			
	Frydenlund; David Turk; Jo Ann Tischler; Jaime Massey			
Subject:	Transmittal of CSV Files White Mesa Mill 2013 Q2 Nitrate Monitoring			
Attachments:	1304696-EDD-rev1.csv			

Dear Mr. Lundberg,

Attached to this e-mail are electronic copies of laboratory results for nitrate monitoring conducted at the White Mesa Mill during the second quarter of 2013, in Comma Separated Value (CSV) format.

Please contact me at 303-389-4134 if you have any questions on this transmittal.

Yours Truly

Kathy Weinel